content
stringlengths
5
1.05M
from django.contrib.auth.models import BaseUserManager class AccountManager(BaseUserManager): """ Custom user model manager where email is the unique identifiers for authentication instead of usernames. """ def create_user(self, email, password, **extra_fields): """ Create and save a User with the given email, password. """ if not email: raise ValueError('Users must have an email address!') email = self.normalize_email(email) user = self.model(email= email,**extra_fields) user.set_password(password) user.save(using=self._db) return user def create_staff(self, email, password, **extra_fields): """ Create and save a Staff User with the given email, password. """ user = self.create_user(email,password) user.is_staff = True user.save(using=self._db) return user def create_superuser(self, email, password): """ Create and save a SuperUser with the given email and password. """ user = self.create_user(email,password) user.is_staff = True user.is_superuser = True user.save(using=self._db) return user
#! python3 # tests.py import json import os import unittest import selenium from selenium import webdriver from selenium.webdriver.firefox.options import Options class TestClassFanGraphs(unittest.TestCase): def test_files_exist(self): directories = { 'leaders': [ 'menu.txt', 'dropdown.txt', 'checkbox.txt', 'button.txt'] } for dirname in directories: self.assertTrue( os.path.exists(os.path.join('data', dirname))) self.assertEqual( set(os.listdir(os.path.join('data', dirname))), set(directories[dirname])) class TestFanGraphsLeadersSettings(unittest.TestCase): def setUp(self): with open(os.path.join('data', 'base_address.txt')) as file: self.url = json.load(file).get("leaders") options = Options() options.headless = True self.browser = webdriver.Firefox(options=options) def tearDown(self): self.browser.quit() def test_leaders_address(self): self.browser.get(self.url) self.assertIn("Leaderboards", self.browser.title) def test_find_data_configuration_elements(self): self.browser.get(self.url) files = ['menu.txt', 'dropdown.txt', 'checkbox.txt', 'button.txt'] for filename in files: with open(os.path.join('data', 'leaders', filename)) as file: data = json.load(file) for select in data: self.assertEqual( len(self.browser.find_elements_by_id(data[select])), 1, data[select]) def test_find_export_data_elements(self): self.browser.get(self.url) export_data_button = self.browser.find_element_by_id( "LeaderBoard1_cmdCSV") self.assertEqual(export_data_button.text, "Export Data") def test_find_popup_elements(self): self.browser.get(self.url) while True: try: close_popup_button = self.browser.find_element_by_css_selector( "span[class='ezmob-footer-close']") break except selenium.common.exceptions.NoSuchElementException: self.browser.refresh() continue self.assertEqual(close_popup_button.text, "x") popup = self.browser.find_element_by_id("ezmobfooter") self.assertEqual(popup.get_attribute("style"), "") close_popup_button.click() self.assertNotEqual(popup.get_attribute("style"), "") if __name__ == '__main__': unittest.main()
# -*- coding: utf-8 -*- """Tests for `statemachine` processors.""" import os import cv2 from gabrieltool.statemachine import processor_zoo def drawPred(frame, class_name, conf, left, top, right, bottom): # Draw a bounding box. cv2.rectangle(frame, (left, top), (right, bottom), (0, 255, 0)) label = '%.2f' % conf label = '%s: %s' % (class_name, label) labelSize, baseLine = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, 0.5, 1) top = max(top, labelSize[1]) cv2.rectangle(frame, (left, top - labelSize[1]), (left + labelSize[0], top + baseLine), (255, 255, 255), cv2.FILLED) cv2.putText(frame, label, (left, top), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 0)) return frame def test_FasterRCNNOpenCVProcessor(): """Test FasterRCNNOpenCV Processor. Needs the data directory. """ data_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), '../data/sandwich-model') labels = ["tomato", "cheese", "full", "ham", "lettuce", "cucumber", "half", "hamwrong", "bread"] if os.path.exists(data_dir) and os.path.isdir(data_dir): proc = processor_zoo.FasterRCNNOpenCVCallable( proto_path=os.path.join(data_dir, 'faster_rcnn_test.pt'), model_path=os.path.join(data_dir, 'model.caffemodel'), labels=labels ) im = cv2.imread(os.path.join(data_dir, 'test.jpg')) app_state = proc(im) for (cls_name, objects) in app_state.items(): for (left, top, right, bottom, confidence, classId) in objects: drawPred(im, cls_name, confidence, left, top, right, bottom) cv2.imwrite('tested.jpg', im) assert("ham" in app_state)
import traceback from flask import Flask, request, jsonify from simulator import config, utils from simulator.exchange import Poloniex from simulator.order_handler import CoreOrder, SimulationOrder from simulator.balance_handler import BalanceHandler api = Flask(__name__) logger = utils.get_logger() @api.route('/public') def public(): params = request.args.to_dict() command = params.get('command') if command == 'returnOrderBook': params['timestamp'] = utils.get_timestamp() try: ob = poloniex.order_book_api(**params) return jsonify(ob) except Exception as e: logger.error(e) return jsonify({ 'error': str(e) }) else: return jsonify({ 'error': 'command {} is not supported'.format(command) }) @api.route('/tradingApi') def trading_api(): try: api_key = request.headers.get('Key') if not api_key: raise ValueError('Key is missing ') params = request.args.to_dict() params['api_key'] = api_key command = params.get('command') params['timestamp'] = utils.get_timestamp(request.args.to_dict()) if command == 'returnBalances': output = poloniex.get_balance_api(**params) elif command == 'returnDepositsWithdrawals': output = poloniex.get_history_api(**params) elif command == 'returnOpenOrders': output = poloniex.get_open_orders_api(**params) elif command == 'sell' or command == 'buy': params['type'] = command output = poloniex.trade_api(**params) elif command == 'cancelOrder': output = poloniex.cancel_order_api(**params) elif command == 'withdraw': output = poloniex.withdraw_api(**params) else: return jsonify({ 'error': 'command {} is not supported'.format(command) }) return jsonify(output) except Exception as e: # traceback.print_exc() logger.error(e) return jsonify({'error': str(e)}) rdb = utils.get_redis_db() if config.MODE == 'simulation': order_handler = SimulationOrder(rdb) else: order_handler = CoreOrder() supported_tokens = config.SUPPORTED_TOKENS balance_handler = BalanceHandler(rdb, supported_tokens.keys()) poloniex = Poloniex( 'liqui', config.PRIVATE_KEY['poloniex'], list(supported_tokens.values()), rdb, order_handler, balance_handler, config.POLONIEX_ADDRESS ) if __name__ == '__main__': logger.info('Running in {} mode'.format(config.MODE)) api.run(host='0.0.0.0', port=5500, debug=True)
# Copyright 2012 OpenStack Foundation # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import mock from cinder.api.contrib import used_limits from cinder.api.openstack import wsgi from cinder import exception from cinder import test from cinder.tests.unit.api import fakes class FakeRequest(object): def __init__(self, context): self.environ = {'cinder.context': context} class UsedLimitsTestCase(test.TestCase): def setUp(self): """Run before each test.""" super(UsedLimitsTestCase, self).setUp() self.controller = used_limits.UsedLimitsController() @mock.patch('cinder.quota.QUOTAS.get_project_quotas') @mock.patch('cinder.policy.enforce') def test_used_limits(self, _mock_policy_enforce, _mock_get_project_quotas): fake_req = FakeRequest(fakes.FakeRequestContext('fake', 'fake')) obj = { "limits": { "rate": [], "absolute": {}, }, } res = wsgi.ResponseObject(obj) quota_map = { 'totalVolumesUsed': 'volumes', 'totalGigabytesUsed': 'gigabytes', 'totalSnapshotsUsed': 'snapshots', } limits = {} for display_name, q in quota_map.items(): limits[q] = {'limit': 2, 'in_use': 1} _mock_get_project_quotas.return_value = limits # allow user to access used limits _mock_policy_enforce.return_value = None self.controller.index(fake_req, res) abs_limits = res.obj['limits']['absolute'] for used_limit, value in abs_limits.items(): self.assertEqual(value, limits[quota_map[used_limit]]['in_use']) obj = { "limits": { "rate": [], "absolute": {}, }, } res = wsgi.ResponseObject(obj) # unallow user to access used limits _mock_policy_enforce.side_effect = exception.NotAuthorized self.controller.index(fake_req, res) abs_limits = res.obj['limits']['absolute'] self.assertNotIn('totalVolumesUsed', abs_limits) self.assertNotIn('totalGigabytesUsed', abs_limits) self.assertNotIn('totalSnapshotsUsed', abs_limits)
# Generated by Django 2.2.8 on 2020-06-21 19:30 import datetime from django.db import migrations, models from django.utils.timezone import utc class Migration(migrations.Migration): dependencies = [ ('donations', '0016_auto_20200621_1609'), ] operations = [ migrations.AddField( model_name='donationrequest', name='allowed_blood_groups', field=models.CharField(blank=True, max_length=255, null=True), ), migrations.AlterField( model_name='donationrequest', name='created', field=models.DateTimeField(default=datetime.datetime(2020, 6, 21, 19, 30, 16, 241260, tzinfo=utc), max_length=255), ), ]
# Generated by Django 2.0.3 on 2018-03-21 18:59 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('patientbasicinfo', '0012_auto_20180321_1827'), ] operations = [ migrations.AddField( model_name='identity', name='email', field=models.EmailField(blank=True, db_index=True, max_length=254), ), ]
def calculate_amstrong_numbers_3_digits(): result = [] for item in range(100, 1000): sum = 0 for number in str(item): sum += int(number) ** 3 if sum == item: result.append(item) return result print("3-digit Amstrong Numbers:") print(calculate_amstrong_numbers_3_digits())
#N 個の街と N−1 本の道路なのでループはない。木構造 #根への距離をそれぞれ求めて、和が2で割り切れるかで判断できそう from collections import defaultdict from collections import deque N, Q = map(int, input().split()) connect_nodes = defaultdict(set) for i in range(N - 1): a, b = map(int, input().split()) connect_nodes[a].add(b) connect_nodes[b].add(a) dist = [-1 for _ in range(N + 1)] #1からの距離。到達不可なら-1 is_visited = [False for _ in range(N + 1)] #訪問フラグ #function 幅優先探索(v) search_deque = deque() #Q ← 空のキュー is_visited[1] = True #v に訪問済みの印を付ける search_deque.append(1) #v を Q に追加 dist[1] = 0 while len(search_deque) != 0: #while Q が空ではない do node = search_deque.popleft() # v ← Q から取り出す # v を処理する for connect_node in connect_nodes[node]: # for each v に接続している頂点 i do if is_visited[connect_node] == False: # if i が未訪問 then is_visited[connect_node] = True # iに訪問済みの印を付ける search_deque.append(connect_node) # i を Q に追加 dist[connect_node] = dist[ node] + 1 #(左記は距離が全点間1固定の時。異なる場合は読み込み部分と共に変更すること) for i in range(Q): c, d = map(int, input().split()) if (dist[c] + dist[d]) % 2 == 1: print("Road") else: print("Town")
# coding: utf-8 # # Permute Hetnets for Interpreting Compressed Latent Spaces # # Modified from @dhimmel - https://github.com/dhimmel/integrate/blob/master/permute.ipynb # # Generate several randomly permuted hetnets to serve as a null distribution. The permutations preserve node degree but randomizes connections between nodes. See [Himmelstein et al. 2017](https://doi.org/10.7554/eLife.26726) for more details. # In[1]: import os import pandas as pd import hetio.readwrite import hetio.permute # In[2]: get_ipython().run_cell_magic('time', '', "hetnet_path = os.path.join('hetnets', 'interpret_hetnet.json.bz2')\ngraph = hetio.readwrite.read_graph(hetnet_path)") # In[3]: # Selected as a result of `scripts/evaluate-permutations.ipynb` num_permuted_hetnets = 10 num_swaps = 4 # In[4]: get_ipython().run_cell_magic('time', '', "stat_dfs = list()\npermuted_graph = graph\n \nfor i in range(num_permuted_hetnets):\n i += 1\n print('Starting permutation', i)\n permuted_graph, stats = hetio.permute.permute_graph(permuted_graph,\n multiplier=num_swaps,\n seed=i)\n stat_df = pd.DataFrame(stats)\n stat_df['permutation'] = i\n stat_dfs.append(stat_df)\n perm_path = os.path.join('hetnets', 'permuted',\n 'interpret_hetnet_perm-{}.json.bz2'.format(i))\n hetio.readwrite.write_graph(permuted_graph, perm_path)") # In[5]: # Save stats stat_df = pd.concat(stat_dfs) stat_path = os.path.join('hetnets', 'permuted', 'stats.tsv') stat_df.to_csv(stat_path, sep='\t', index=False, float_format='%.5g')
#!/usr/bin/env python3 # Converts PLINK covariate and fam file into a covariate file for Gemma import sys import pandas as pd import argparse import numpy as np def readbed(filebed, wind): readbed=open(filebed) dicpos={} dicrange={} for line in readbed: spll=line.replace('\n','').split() if spll[0] not in dicpos : dicpos[spll[0]]=[] dicrange[spll[0]]=[] bp=int(spll[1]) dicpos[spll[0]].append(bp) dicrange[spll[0]].append([max(0,bp-wind),bp+wind,bp]) return (dicpos, dicrange) # extract_posgwas.py --bed $pos --gwas $gwas --chr_gwas ${params.head_chr} --ps_gwas ${params.head_bp} --a1_gwas ${params.head_a1} --a2_gwas ${params.head_a2} --wind ${params.size_win_kb} --pval_gwas ${params.head_pval} --rs_gwas ${params.head_rs} def parseArguments(): parser = argparse.ArgumentParser(description='fill in missing bim values') parser.add_argument('--gwas',type=str,required=True) parser.add_argument('--bed',type=str,required=False) parser.add_argument('--chr_gwas', type=str,help="comma separated list of covariates",default="") parser.add_argument('--ps_gwas', type=str,help="comma separated list of covariates",default="") parser.add_argument('--a1_gwas',type=str,required=True,help="comma separated list of pheno column") parser.add_argument('--a2_gwas', type=str,required=True,help="output fam file") parser.add_argument('--wind', type=float,required=True,help="output covariate file") parser.add_argument('--rs_gwas', required=True,type=str,help="output covariate file") parser.add_argument('--af_gwas', type=str,help="output covariate file") parser.add_argument('--pval_gwas', type=str,help="output covariate file") parser.add_argument('--out', type=str,help="output covariate file") args = parser.parse_args() return args def checkpos(chro, pos, infopos): if chro in infopos and int(pos) in infopos[chro]: return True return False def checkrange(chro, pos, inforange): if chro in inforange : for rangei in inforange[chro]: if pos>=rangei[0] and pos <rangei[1]: return True return False args=parseArguments() (infopos,inforange)=readbed(args.bed, (args.wind+10)*1000) read_gwas=open(args.gwas) gwashead=read_gwas.readline().replace('\n','') gwasspl=gwashead.split() chrgwas=gwasspl.index(args.chr_gwas) posgwas=gwasspl.index(args.ps_gwas) rsgwas=gwasspl.index(args.rs_gwas) a1gwas=gwasspl.index(args.a1_gwas) a2gwas=gwasspl.index(args.a2_gwas) pvalgwas=gwasspl.index(args.pval_gwas) #afgwas=gwasspl.index(args.a2_gwas) if args.af_gwas : headmaf="FRQ" headmafpos=gwasspl.index(args.af_gwas) ListParam=[chrgwas,rsgwas, posgwas, a1gwas, a2gwas,headmafpos,pvalgwas] ListHeadPlk=["CHR","SNP", "BP", "A1", "A2", headmafchr,"P"] else : ListParam=[chrgwas,rsgwas, posgwas, a1gwas, a2gwas,pvalgwas] ListHeadPlk=["CHR","SNP", "BP", "A1", "A2", "P"] writepos=open(args.out+'_pos.init','w') writerange=open(args.out+'_range.init','w') writepos_plk=open(args.out+'_pos.assoc','w') writerange_plk=open(args.out+'_range.assoc','w') writerange_bed=open(args.out+'_range.bed','w') #writeall_plk=open(args.out+'_all.assoc','w') writepos.write(gwashead+'\n') writerange.write(gwashead+'\n') #dataformatplk<-allinfo[,c('chro','rs_bim', 'bp','A1', 'A2', 'risk.allele.af', 'beta.cat', 'sd.cat', 'pvalue')] #names(dataformatplk)<-c("CHR", "SNP", "BP","A1", "A2", "FRQ", "BETA", "SE", "P") writepos_plk.write("\t".join(ListHeadPlk)+'\n') writerange_plk.write("\t".join(ListHeadPlk)+'\n') #writeall_plk.write("\t".join(ListHeadPlk)+'\n') for line in read_gwas : line=line.replace('\n','') spl=line.replace('\n','').split() chro=spl[chrgwas] pos=int(spl[posgwas]) plkchar="\t".join([spl[x] for x in ListParam]) #writeall_plk.write(plkchar) if checkrange(chro, pos, inforange) : writerange.write(line+'\n') writerange_plk.write(plkchar+'\n') writerange_bed.write(chro+"\t"+str(pos)+"\t"+str(pos)+'\n') if checkpos(chro, pos, infopos): writepos.write(line+'\n') writepos_plk.write(plkchar+'\n') writepos.close() writerange.close() writepos_plk.close() writerange_plk.close() #writeall_plk.close()
class ResizingArrayStack(object): """ """ def __init__(self): self.n = 0 self.capacity = 2 self.resizing_array = [None] * self.capacity def __len__(self): return self.n def __contains__(self, i): """ >>> stack = ResizingArrayStack() >>> stack.push('a') >>> stack.push('b') >>> 'a' in stack True >>> 'b' in stack True >>> 'c' in stack False """ for j in self: if i == j: return True return False def __iter__(self): """ >>> stack = ResizingArrayStack() >>> stack.push('a') >>> stack.push('b') >>> for i in stack: ... print(i) ... b a """ n = self.n while n > 0: n -= 1 yield self.resizing_array[n] def __str__(self): """ >>> stack = ResizingArrayStack() >>> stack.push('a') >>> stack.push('b') >>> stack ResizingArrayStack(['b', 'a']) >>> print(stack) ResizingArrayStack(['b', 'a']) """ return 'ResizingArrayStack([{}])'.format(', '.join(repr(i) for i in self)) __repr__ = __str__ def push(self, item): """ >>> stack = ResizingArrayStack() >>> stack.push('a') >>> stack.push('b') >>> len(stack) 2 >>> stack.capacity 2 >>> stack.n 2 >>> stack.push('c') >>> stack.push('d') >>> len(stack) 4 >>> stack.capacity 4 >>> stack.push('e') >>> stack.push('f') >>> len(stack) 6 >>> stack.capacity 8 >>> stack.push('g') >>> stack.push('h') >>> len(stack) 8 >>> stack.capacity 8 """ if self.n == self.capacity: self._resize(self.capacity*2) self.resizing_array[self.n] = item self.n += 1 def pop(self): """ >>> stack = ResizingArrayStack() >>> stack.push('a') >>> stack.push('b') >>> stack.push('c') >>> stack.push('d') >>> stack.push('e') >>> stack.push('f') >>> stack.push('g') >>> stack.push('h') >>> len(stack) 8 >>> stack.pop() 'h' >>> stack.pop() 'g' >>> stack.pop() 'f' >>> stack.pop() 'e' >>> stack.pop() 'd' >>> stack.pop() 'c' >>> len(stack) 2 >>> stack.capacity 8 >>> stack.pop() 'b' >>> len(stack) 1 >>> stack.capacity 4 >>> stack.pop() 'a' >>> len(stack) 0 >>> stack.capacity 2 """ if len(self) == 0: raise IndexError('pop from empty stack') if len(self) * 4 <= self.capacity: m = int(self.capacity / 2) self._resize(m) self.n -= 1 return self.resizing_array[self.n] @property def top(self): """ >>> stack = ResizingArrayStack() >>> stack.push('a') >>> stack.top 'a' >>> stack.push('b') >>> stack.top 'b' """ if len(self) == 0: raise IndexError('pop from empty stack') return self.resizing_array[self.n-1] def _resize(self, m): """ >>> stack = ResizingArrayStack() >>> stack.push('a') >>> stack.push('b') >>> stack._resize(6) >>> stack.resizing_array ['a', 'b', None, None, None, None] >>> stack.capacity 6 >>> len(stack) 2 >>> stack ResizingArrayStack(['b', 'a']) """ resizing_array = [None] * m for i in range(self.n): resizing_array[i] = self.resizing_array[i] self.resizing_array = resizing_array self.capacity = m if __name__ == '__main__': import doctest doctest.testmod()
# -*- coding: utf-8 -*- """ Created on Fri Oct 1 16:54:46 2021 @author: vanch """ import argparse import FileToDataFrame as ftd import matplotlib.pyplot as plt def getTopMsgs(people_name, data_frame): top_list = [] col_map = plt.get_cmap('Paired') for name in people_name: tmp_df_by_name = data_frame.loc[data_frame.Name == name] index = tmp_df_by_name.index number_of_rows = len(index) top_list.append([name, number_of_rows]) ordered_list = sorted(top_list,key=lambda l:l[1], reverse=True) names_ordered, msgs = zip(*ordered_list) plt.figure(figsize=[14, 7]) plt.bar(names_ordered, msgs, width=0.8, color=col_map.colors, edgecolor='k', linewidth=2) plt.savefig('Top_Bars.png') print(*ordered_list, sep = "\n") def plotMsgsPerDayPerPerson(people_name, data_frame): first = True plt.figure() for name in people_name: data_frame[name] = data_frame['Name'].eq(name).cumsum() if first: plt.figure(); msg_cnt_x = data_frame[name].plot() first = False else: data_frame[name].plot(ax=msg_cnt_x) msg_cnt_x.legend(people_name); fig = msg_cnt_x.get_figure() fig.savefig('msgCountPerPerson.png') def plotMsgsPerDay(data_frame): plt.figure() messages_per_day = data.groupby([data.index.year,data.index.month,data.index.day]).agg('count') messages_per_day.Msg.plot() def plotTotalMsgs(people_name, data_frame): plt.figure() data_frame["Total"] = 0 for name in people_name: data_frame["Total"] += data_frame[name] total_data_plot = data['Total'].plot() total_data_plot.legend("Total"); fig = total_data_plot.get_figure() fig.savefig('TotalMngs.png') def plotBarMsgsByMonth(data_frame): plt.figure(); messages_per_month = data.groupby([data.index.year,data.index.month]).agg('count') monthly_plot = messages_per_month.Name.plot.bar() monthly_plot.legend("Grouped"); fig2 = monthly_plot.get_figure() fig2.savefig('Monthly.png') parser = argparse.ArgumentParser() parser.add_argument('-f', '--filename', default='') args = parser.parse_args() print (args.filename) #df = ftd.FileToDataFrame(args.filename) df = ftd.FileToDataFrame("../../samples/Gunner.txt") data = df.Df data.set_index('Date', inplace =True) #Totals per person people_name = data.Name.unique() getTopMsgs(people_name, data) plotMsgsPerDayPerPerson(people_name, data) #Total Mesages per day plotMsgsPerDay(data) plotBarMsgsByMonth(data) plotTotalMsgs(people_name, data) from collections import Counter mostCommonWords= Counter(" ".join(data["Msg"]).split()).most_common(100) mostCommonCh = Counter(" ".join(data["Msg"])).most_common(10000)
# # PySNMP MIB module IF-MIB (http://snmplabs.com/pysmi) # ASN.1 source file:///usr/share/snmp/mibs/ietf/IF-MIB # Produced by pysmi-0.3.2 at Tue Apr 7 17:35:33 2020 # On host sensei platform Linux version 4.19.97-v7l+ by user nagios # Using Python version 3.7.3 (default, Dec 20 2019, 18:57:59) # OctetString, Integer, ObjectIdentifier = mibBuilder.importSymbols("ASN1", "OctetString", "Integer", "ObjectIdentifier") NamedValues, = mibBuilder.importSymbols("ASN1-ENUMERATION", "NamedValues") ValueSizeConstraint, ConstraintsUnion, ValueRangeConstraint, SingleValueConstraint, ConstraintsIntersection = mibBuilder.importSymbols("ASN1-REFINEMENT", "ValueSizeConstraint", "ConstraintsUnion", "ValueRangeConstraint", "SingleValueConstraint", "ConstraintsIntersection") IANAifType, = mibBuilder.importSymbols("IANAifType-MIB", "IANAifType") NotificationGroup, ObjectGroup, ModuleCompliance = mibBuilder.importSymbols("SNMPv2-CONF", "NotificationGroup", "ObjectGroup", "ModuleCompliance") snmpTraps, = mibBuilder.importSymbols("SNMPv2-MIB", "snmpTraps") Counter64, IpAddress, TimeTicks, MibIdentifier, Gauge32, MibScalar, MibTable, MibTableRow, MibTableColumn, Counter32, NotificationType, ObjectIdentity, mib_2, ModuleIdentity, Unsigned32, Integer32, Bits, iso = mibBuilder.importSymbols("SNMPv2-SMI", "Counter64", "IpAddress", "TimeTicks", "MibIdentifier", "Gauge32", "MibScalar", "MibTable", "MibTableRow", "MibTableColumn", "Counter32", "NotificationType", "ObjectIdentity", "mib-2", "ModuleIdentity", "Unsigned32", "Integer32", "Bits", "iso") TextualConvention, TruthValue, AutonomousType, PhysAddress, TestAndIncr, DisplayString, TimeStamp, RowStatus = mibBuilder.importSymbols("SNMPv2-TC", "TextualConvention", "TruthValue", "AutonomousType", "PhysAddress", "TestAndIncr", "DisplayString", "TimeStamp", "RowStatus") ifMIB = ModuleIdentity((1, 3, 6, 1, 2, 1, 31)) ifMIB.setRevisions(('2000-06-14 00:00', '1996-02-28 21:55', '1993-11-08 21:55',)) if mibBuilder.loadTexts: ifMIB.setLastUpdated('200006140000Z') if mibBuilder.loadTexts: ifMIB.setOrganization('IETF Interfaces MIB Working Group') ifMIBObjects = MibIdentifier((1, 3, 6, 1, 2, 1, 31, 1)) interfaces = MibIdentifier((1, 3, 6, 1, 2, 1, 2)) class OwnerString(TextualConvention, OctetString): status = 'deprecated' displayHint = '255a' subtypeSpec = OctetString.subtypeSpec + ValueSizeConstraint(0, 255) class InterfaceIndex(TextualConvention, Integer32): status = 'current' displayHint = 'd' subtypeSpec = Integer32.subtypeSpec + ValueRangeConstraint(1, 2147483647) class InterfaceIndexOrZero(TextualConvention, Integer32): status = 'current' displayHint = 'd' subtypeSpec = Integer32.subtypeSpec + ValueRangeConstraint(0, 2147483647) ifNumber = MibScalar((1, 3, 6, 1, 2, 1, 2, 1), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: ifNumber.setStatus('current') ifTableLastChange = MibScalar((1, 3, 6, 1, 2, 1, 31, 1, 5), TimeTicks()).setMaxAccess("readonly") if mibBuilder.loadTexts: ifTableLastChange.setStatus('current') ifTable = MibTable((1, 3, 6, 1, 2, 1, 2, 2), ) if mibBuilder.loadTexts: ifTable.setStatus('current') ifEntry = MibTableRow((1, 3, 6, 1, 2, 1, 2, 2, 1), ).setIndexNames((0, "IF-MIB", "ifIndex")) if mibBuilder.loadTexts: ifEntry.setStatus('current') ifIndex = MibTableColumn((1, 3, 6, 1, 2, 1, 2, 2, 1, 1), InterfaceIndex()).setMaxAccess("readonly") if mibBuilder.loadTexts: ifIndex.setStatus('current') ifDescr = MibTableColumn((1, 3, 6, 1, 2, 1, 2, 2, 1, 2), DisplayString().subtype(subtypeSpec=ValueSizeConstraint(0, 255))).setMaxAccess("readonly") if mibBuilder.loadTexts: ifDescr.setStatus('current') ifType = MibTableColumn((1, 3, 6, 1, 2, 1, 2, 2, 1, 3), IANAifType()).setMaxAccess("readonly") if mibBuilder.loadTexts: ifType.setStatus('current') ifMtu = MibTableColumn((1, 3, 6, 1, 2, 1, 2, 2, 1, 4), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: ifMtu.setStatus('current') ifSpeed = MibTableColumn((1, 3, 6, 1, 2, 1, 2, 2, 1, 5), Gauge32()).setMaxAccess("readonly") if mibBuilder.loadTexts: ifSpeed.setStatus('current') ifPhysAddress = MibTableColumn((1, 3, 6, 1, 2, 1, 2, 2, 1, 6), PhysAddress()).setMaxAccess("readonly") if mibBuilder.loadTexts: ifPhysAddress.setStatus('current') ifAdminStatus = MibTableColumn((1, 3, 6, 1, 2, 1, 2, 2, 1, 7), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2, 3))).clone(namedValues=NamedValues(("up", 1), ("down", 2), ("testing", 3)))).setMaxAccess("readwrite") if mibBuilder.loadTexts: ifAdminStatus.setStatus('current') ifOperStatus = MibTableColumn((1, 3, 6, 1, 2, 1, 2, 2, 1, 8), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2, 3, 4, 5, 6, 7))).clone(namedValues=NamedValues(("up", 1), ("down", 2), ("testing", 3), ("unknown", 4), ("dormant", 5), ("notPresent", 6), ("lowerLayerDown", 7)))).setMaxAccess("readonly") if mibBuilder.loadTexts: ifOperStatus.setStatus('current') ifLastChange = MibTableColumn((1, 3, 6, 1, 2, 1, 2, 2, 1, 9), TimeTicks()).setMaxAccess("readonly") if mibBuilder.loadTexts: ifLastChange.setStatus('current') ifInOctets = MibTableColumn((1, 3, 6, 1, 2, 1, 2, 2, 1, 10), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: ifInOctets.setStatus('current') ifInUcastPkts = MibTableColumn((1, 3, 6, 1, 2, 1, 2, 2, 1, 11), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: ifInUcastPkts.setStatus('current') ifInNUcastPkts = MibTableColumn((1, 3, 6, 1, 2, 1, 2, 2, 1, 12), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: ifInNUcastPkts.setStatus('deprecated') ifInDiscards = MibTableColumn((1, 3, 6, 1, 2, 1, 2, 2, 1, 13), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: ifInDiscards.setStatus('current') ifInErrors = MibTableColumn((1, 3, 6, 1, 2, 1, 2, 2, 1, 14), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: ifInErrors.setStatus('current') ifInUnknownProtos = MibTableColumn((1, 3, 6, 1, 2, 1, 2, 2, 1, 15), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: ifInUnknownProtos.setStatus('current') ifOutOctets = MibTableColumn((1, 3, 6, 1, 2, 1, 2, 2, 1, 16), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: ifOutOctets.setStatus('current') ifOutUcastPkts = MibTableColumn((1, 3, 6, 1, 2, 1, 2, 2, 1, 17), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: ifOutUcastPkts.setStatus('current') ifOutNUcastPkts = MibTableColumn((1, 3, 6, 1, 2, 1, 2, 2, 1, 18), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: ifOutNUcastPkts.setStatus('deprecated') ifOutDiscards = MibTableColumn((1, 3, 6, 1, 2, 1, 2, 2, 1, 19), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: ifOutDiscards.setStatus('current') ifOutErrors = MibTableColumn((1, 3, 6, 1, 2, 1, 2, 2, 1, 20), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: ifOutErrors.setStatus('current') ifOutQLen = MibTableColumn((1, 3, 6, 1, 2, 1, 2, 2, 1, 21), Gauge32()).setMaxAccess("readonly") if mibBuilder.loadTexts: ifOutQLen.setStatus('deprecated') ifSpecific = MibTableColumn((1, 3, 6, 1, 2, 1, 2, 2, 1, 22), ObjectIdentifier()).setMaxAccess("readonly") if mibBuilder.loadTexts: ifSpecific.setStatus('deprecated') ifXTable = MibTable((1, 3, 6, 1, 2, 1, 31, 1, 1), ) if mibBuilder.loadTexts: ifXTable.setStatus('current') ifXEntry = MibTableRow((1, 3, 6, 1, 2, 1, 31, 1, 1, 1), ) ifEntry.registerAugmentions(("IF-MIB", "ifXEntry")) ifXEntry.setIndexNames(*ifEntry.getIndexNames()) if mibBuilder.loadTexts: ifXEntry.setStatus('current') ifName = MibTableColumn((1, 3, 6, 1, 2, 1, 31, 1, 1, 1, 1), DisplayString()).setMaxAccess("readonly") if mibBuilder.loadTexts: ifName.setStatus('current') ifInMulticastPkts = MibTableColumn((1, 3, 6, 1, 2, 1, 31, 1, 1, 1, 2), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: ifInMulticastPkts.setStatus('current') ifInBroadcastPkts = MibTableColumn((1, 3, 6, 1, 2, 1, 31, 1, 1, 1, 3), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: ifInBroadcastPkts.setStatus('current') ifOutMulticastPkts = MibTableColumn((1, 3, 6, 1, 2, 1, 31, 1, 1, 1, 4), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: ifOutMulticastPkts.setStatus('current') ifOutBroadcastPkts = MibTableColumn((1, 3, 6, 1, 2, 1, 31, 1, 1, 1, 5), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: ifOutBroadcastPkts.setStatus('current') ifHCInOctets = MibTableColumn((1, 3, 6, 1, 2, 1, 31, 1, 1, 1, 6), Counter64()).setMaxAccess("readonly") if mibBuilder.loadTexts: ifHCInOctets.setStatus('current') ifHCInUcastPkts = MibTableColumn((1, 3, 6, 1, 2, 1, 31, 1, 1, 1, 7), Counter64()).setMaxAccess("readonly") if mibBuilder.loadTexts: ifHCInUcastPkts.setStatus('current') ifHCInMulticastPkts = MibTableColumn((1, 3, 6, 1, 2, 1, 31, 1, 1, 1, 8), Counter64()).setMaxAccess("readonly") if mibBuilder.loadTexts: ifHCInMulticastPkts.setStatus('current') ifHCInBroadcastPkts = MibTableColumn((1, 3, 6, 1, 2, 1, 31, 1, 1, 1, 9), Counter64()).setMaxAccess("readonly") if mibBuilder.loadTexts: ifHCInBroadcastPkts.setStatus('current') ifHCOutOctets = MibTableColumn((1, 3, 6, 1, 2, 1, 31, 1, 1, 1, 10), Counter64()).setMaxAccess("readonly") if mibBuilder.loadTexts: ifHCOutOctets.setStatus('current') ifHCOutUcastPkts = MibTableColumn((1, 3, 6, 1, 2, 1, 31, 1, 1, 1, 11), Counter64()).setMaxAccess("readonly") if mibBuilder.loadTexts: ifHCOutUcastPkts.setStatus('current') ifHCOutMulticastPkts = MibTableColumn((1, 3, 6, 1, 2, 1, 31, 1, 1, 1, 12), Counter64()).setMaxAccess("readonly") if mibBuilder.loadTexts: ifHCOutMulticastPkts.setStatus('current') ifHCOutBroadcastPkts = MibTableColumn((1, 3, 6, 1, 2, 1, 31, 1, 1, 1, 13), Counter64()).setMaxAccess("readonly") if mibBuilder.loadTexts: ifHCOutBroadcastPkts.setStatus('current') ifLinkUpDownTrapEnable = MibTableColumn((1, 3, 6, 1, 2, 1, 31, 1, 1, 1, 14), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2))).clone(namedValues=NamedValues(("enabled", 1), ("disabled", 2)))).setMaxAccess("readwrite") if mibBuilder.loadTexts: ifLinkUpDownTrapEnable.setStatus('current') ifHighSpeed = MibTableColumn((1, 3, 6, 1, 2, 1, 31, 1, 1, 1, 15), Gauge32()).setMaxAccess("readonly") if mibBuilder.loadTexts: ifHighSpeed.setStatus('current') ifPromiscuousMode = MibTableColumn((1, 3, 6, 1, 2, 1, 31, 1, 1, 1, 16), TruthValue()).setMaxAccess("readwrite") if mibBuilder.loadTexts: ifPromiscuousMode.setStatus('current') ifConnectorPresent = MibTableColumn((1, 3, 6, 1, 2, 1, 31, 1, 1, 1, 17), TruthValue()).setMaxAccess("readonly") if mibBuilder.loadTexts: ifConnectorPresent.setStatus('current') ifAlias = MibTableColumn((1, 3, 6, 1, 2, 1, 31, 1, 1, 1, 18), DisplayString().subtype(subtypeSpec=ValueSizeConstraint(0, 64))).setMaxAccess("readwrite") if mibBuilder.loadTexts: ifAlias.setStatus('current') ifCounterDiscontinuityTime = MibTableColumn((1, 3, 6, 1, 2, 1, 31, 1, 1, 1, 19), TimeStamp()).setMaxAccess("readonly") if mibBuilder.loadTexts: ifCounterDiscontinuityTime.setStatus('current') ifStackTable = MibTable((1, 3, 6, 1, 2, 1, 31, 1, 2), ) if mibBuilder.loadTexts: ifStackTable.setStatus('current') ifStackEntry = MibTableRow((1, 3, 6, 1, 2, 1, 31, 1, 2, 1), ).setIndexNames((0, "IF-MIB", "ifStackHigherLayer"), (0, "IF-MIB", "ifStackLowerLayer")) if mibBuilder.loadTexts: ifStackEntry.setStatus('current') ifStackHigherLayer = MibTableColumn((1, 3, 6, 1, 2, 1, 31, 1, 2, 1, 1), InterfaceIndexOrZero()) if mibBuilder.loadTexts: ifStackHigherLayer.setStatus('current') ifStackLowerLayer = MibTableColumn((1, 3, 6, 1, 2, 1, 31, 1, 2, 1, 2), InterfaceIndexOrZero()) if mibBuilder.loadTexts: ifStackLowerLayer.setStatus('current') ifStackStatus = MibTableColumn((1, 3, 6, 1, 2, 1, 31, 1, 2, 1, 3), RowStatus()).setMaxAccess("readcreate") if mibBuilder.loadTexts: ifStackStatus.setStatus('current') ifStackLastChange = MibScalar((1, 3, 6, 1, 2, 1, 31, 1, 6), TimeTicks()).setMaxAccess("readonly") if mibBuilder.loadTexts: ifStackLastChange.setStatus('current') ifRcvAddressTable = MibTable((1, 3, 6, 1, 2, 1, 31, 1, 4), ) if mibBuilder.loadTexts: ifRcvAddressTable.setStatus('current') ifRcvAddressEntry = MibTableRow((1, 3, 6, 1, 2, 1, 31, 1, 4, 1), ).setIndexNames((0, "IF-MIB", "ifIndex"), (0, "IF-MIB", "ifRcvAddressAddress")) if mibBuilder.loadTexts: ifRcvAddressEntry.setStatus('current') ifRcvAddressAddress = MibTableColumn((1, 3, 6, 1, 2, 1, 31, 1, 4, 1, 1), PhysAddress()) if mibBuilder.loadTexts: ifRcvAddressAddress.setStatus('current') ifRcvAddressStatus = MibTableColumn((1, 3, 6, 1, 2, 1, 31, 1, 4, 1, 2), RowStatus()).setMaxAccess("readcreate") if mibBuilder.loadTexts: ifRcvAddressStatus.setStatus('current') ifRcvAddressType = MibTableColumn((1, 3, 6, 1, 2, 1, 31, 1, 4, 1, 3), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2, 3))).clone(namedValues=NamedValues(("other", 1), ("volatile", 2), ("nonVolatile", 3))).clone('volatile')).setMaxAccess("readcreate") if mibBuilder.loadTexts: ifRcvAddressType.setStatus('current') linkDown = NotificationType((1, 3, 6, 1, 6, 3, 1, 1, 5, 3)).setObjects(("IF-MIB", "ifIndex"), ("IF-MIB", "ifAdminStatus"), ("IF-MIB", "ifOperStatus")) if mibBuilder.loadTexts: linkDown.setStatus('current') linkUp = NotificationType((1, 3, 6, 1, 6, 3, 1, 1, 5, 4)).setObjects(("IF-MIB", "ifIndex"), ("IF-MIB", "ifAdminStatus"), ("IF-MIB", "ifOperStatus")) if mibBuilder.loadTexts: linkUp.setStatus('current') ifConformance = MibIdentifier((1, 3, 6, 1, 2, 1, 31, 2)) ifGroups = MibIdentifier((1, 3, 6, 1, 2, 1, 31, 2, 1)) ifCompliances = MibIdentifier((1, 3, 6, 1, 2, 1, 31, 2, 2)) ifCompliance3 = ModuleCompliance((1, 3, 6, 1, 2, 1, 31, 2, 2, 3)).setObjects(("IF-MIB", "ifGeneralInformationGroup"), ("IF-MIB", "linkUpDownNotificationsGroup"), ("IF-MIB", "ifFixedLengthGroup"), ("IF-MIB", "ifHCFixedLengthGroup"), ("IF-MIB", "ifPacketGroup"), ("IF-MIB", "ifHCPacketGroup"), ("IF-MIB", "ifVHCPacketGroup"), ("IF-MIB", "ifCounterDiscontinuityGroup"), ("IF-MIB", "ifRcvAddressGroup")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): ifCompliance3 = ifCompliance3.setStatus('current') ifGeneralInformationGroup = ObjectGroup((1, 3, 6, 1, 2, 1, 31, 2, 1, 10)).setObjects(("IF-MIB", "ifIndex"), ("IF-MIB", "ifDescr"), ("IF-MIB", "ifType"), ("IF-MIB", "ifSpeed"), ("IF-MIB", "ifPhysAddress"), ("IF-MIB", "ifAdminStatus"), ("IF-MIB", "ifOperStatus"), ("IF-MIB", "ifLastChange"), ("IF-MIB", "ifLinkUpDownTrapEnable"), ("IF-MIB", "ifConnectorPresent"), ("IF-MIB", "ifHighSpeed"), ("IF-MIB", "ifName"), ("IF-MIB", "ifNumber"), ("IF-MIB", "ifAlias"), ("IF-MIB", "ifTableLastChange")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): ifGeneralInformationGroup = ifGeneralInformationGroup.setStatus('current') ifFixedLengthGroup = ObjectGroup((1, 3, 6, 1, 2, 1, 31, 2, 1, 2)).setObjects(("IF-MIB", "ifInOctets"), ("IF-MIB", "ifOutOctets"), ("IF-MIB", "ifInUnknownProtos"), ("IF-MIB", "ifInErrors"), ("IF-MIB", "ifOutErrors")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): ifFixedLengthGroup = ifFixedLengthGroup.setStatus('current') ifHCFixedLengthGroup = ObjectGroup((1, 3, 6, 1, 2, 1, 31, 2, 1, 3)).setObjects(("IF-MIB", "ifHCInOctets"), ("IF-MIB", "ifHCOutOctets"), ("IF-MIB", "ifInOctets"), ("IF-MIB", "ifOutOctets"), ("IF-MIB", "ifInUnknownProtos"), ("IF-MIB", "ifInErrors"), ("IF-MIB", "ifOutErrors")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): ifHCFixedLengthGroup = ifHCFixedLengthGroup.setStatus('current') ifPacketGroup = ObjectGroup((1, 3, 6, 1, 2, 1, 31, 2, 1, 4)).setObjects(("IF-MIB", "ifInOctets"), ("IF-MIB", "ifOutOctets"), ("IF-MIB", "ifInUnknownProtos"), ("IF-MIB", "ifInErrors"), ("IF-MIB", "ifOutErrors"), ("IF-MIB", "ifMtu"), ("IF-MIB", "ifInUcastPkts"), ("IF-MIB", "ifInMulticastPkts"), ("IF-MIB", "ifInBroadcastPkts"), ("IF-MIB", "ifInDiscards"), ("IF-MIB", "ifOutUcastPkts"), ("IF-MIB", "ifOutMulticastPkts"), ("IF-MIB", "ifOutBroadcastPkts"), ("IF-MIB", "ifOutDiscards"), ("IF-MIB", "ifPromiscuousMode")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): ifPacketGroup = ifPacketGroup.setStatus('current') ifHCPacketGroup = ObjectGroup((1, 3, 6, 1, 2, 1, 31, 2, 1, 5)).setObjects(("IF-MIB", "ifHCInOctets"), ("IF-MIB", "ifHCOutOctets"), ("IF-MIB", "ifInOctets"), ("IF-MIB", "ifOutOctets"), ("IF-MIB", "ifInUnknownProtos"), ("IF-MIB", "ifInErrors"), ("IF-MIB", "ifOutErrors"), ("IF-MIB", "ifMtu"), ("IF-MIB", "ifInUcastPkts"), ("IF-MIB", "ifInMulticastPkts"), ("IF-MIB", "ifInBroadcastPkts"), ("IF-MIB", "ifInDiscards"), ("IF-MIB", "ifOutUcastPkts"), ("IF-MIB", "ifOutMulticastPkts"), ("IF-MIB", "ifOutBroadcastPkts"), ("IF-MIB", "ifOutDiscards"), ("IF-MIB", "ifPromiscuousMode")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): ifHCPacketGroup = ifHCPacketGroup.setStatus('current') ifVHCPacketGroup = ObjectGroup((1, 3, 6, 1, 2, 1, 31, 2, 1, 6)).setObjects(("IF-MIB", "ifHCInUcastPkts"), ("IF-MIB", "ifHCInMulticastPkts"), ("IF-MIB", "ifHCInBroadcastPkts"), ("IF-MIB", "ifHCOutUcastPkts"), ("IF-MIB", "ifHCOutMulticastPkts"), ("IF-MIB", "ifHCOutBroadcastPkts"), ("IF-MIB", "ifHCInOctets"), ("IF-MIB", "ifHCOutOctets"), ("IF-MIB", "ifInOctets"), ("IF-MIB", "ifOutOctets"), ("IF-MIB", "ifInUnknownProtos"), ("IF-MIB", "ifInErrors"), ("IF-MIB", "ifOutErrors"), ("IF-MIB", "ifMtu"), ("IF-MIB", "ifInUcastPkts"), ("IF-MIB", "ifInMulticastPkts"), ("IF-MIB", "ifInBroadcastPkts"), ("IF-MIB", "ifInDiscards"), ("IF-MIB", "ifOutUcastPkts"), ("IF-MIB", "ifOutMulticastPkts"), ("IF-MIB", "ifOutBroadcastPkts"), ("IF-MIB", "ifOutDiscards"), ("IF-MIB", "ifPromiscuousMode")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): ifVHCPacketGroup = ifVHCPacketGroup.setStatus('current') ifRcvAddressGroup = ObjectGroup((1, 3, 6, 1, 2, 1, 31, 2, 1, 7)).setObjects(("IF-MIB", "ifRcvAddressStatus"), ("IF-MIB", "ifRcvAddressType")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): ifRcvAddressGroup = ifRcvAddressGroup.setStatus('current') ifStackGroup2 = ObjectGroup((1, 3, 6, 1, 2, 1, 31, 2, 1, 11)).setObjects(("IF-MIB", "ifStackStatus"), ("IF-MIB", "ifStackLastChange")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): ifStackGroup2 = ifStackGroup2.setStatus('current') ifCounterDiscontinuityGroup = ObjectGroup((1, 3, 6, 1, 2, 1, 31, 2, 1, 13)).setObjects(("IF-MIB", "ifCounterDiscontinuityTime")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): ifCounterDiscontinuityGroup = ifCounterDiscontinuityGroup.setStatus('current') linkUpDownNotificationsGroup = NotificationGroup((1, 3, 6, 1, 2, 1, 31, 2, 1, 14)).setObjects(("IF-MIB", "linkUp"), ("IF-MIB", "linkDown")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): linkUpDownNotificationsGroup = linkUpDownNotificationsGroup.setStatus('current') ifTestTable = MibTable((1, 3, 6, 1, 2, 1, 31, 1, 3), ) if mibBuilder.loadTexts: ifTestTable.setStatus('deprecated') ifTestEntry = MibTableRow((1, 3, 6, 1, 2, 1, 31, 1, 3, 1), ) ifEntry.registerAugmentions(("IF-MIB", "ifTestEntry")) ifTestEntry.setIndexNames(*ifEntry.getIndexNames()) if mibBuilder.loadTexts: ifTestEntry.setStatus('deprecated') ifTestId = MibTableColumn((1, 3, 6, 1, 2, 1, 31, 1, 3, 1, 1), TestAndIncr()).setMaxAccess("readwrite") if mibBuilder.loadTexts: ifTestId.setStatus('deprecated') ifTestStatus = MibTableColumn((1, 3, 6, 1, 2, 1, 31, 1, 3, 1, 2), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2))).clone(namedValues=NamedValues(("notInUse", 1), ("inUse", 2)))).setMaxAccess("readwrite") if mibBuilder.loadTexts: ifTestStatus.setStatus('deprecated') ifTestType = MibTableColumn((1, 3, 6, 1, 2, 1, 31, 1, 3, 1, 3), AutonomousType()).setMaxAccess("readwrite") if mibBuilder.loadTexts: ifTestType.setStatus('deprecated') ifTestResult = MibTableColumn((1, 3, 6, 1, 2, 1, 31, 1, 3, 1, 4), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2, 3, 4, 5, 6, 7))).clone(namedValues=NamedValues(("none", 1), ("success", 2), ("inProgress", 3), ("notSupported", 4), ("unAbleToRun", 5), ("aborted", 6), ("failed", 7)))).setMaxAccess("readonly") if mibBuilder.loadTexts: ifTestResult.setStatus('deprecated') ifTestCode = MibTableColumn((1, 3, 6, 1, 2, 1, 31, 1, 3, 1, 5), ObjectIdentifier()).setMaxAccess("readonly") if mibBuilder.loadTexts: ifTestCode.setStatus('deprecated') ifTestOwner = MibTableColumn((1, 3, 6, 1, 2, 1, 31, 1, 3, 1, 6), OwnerString()).setMaxAccess("readwrite") if mibBuilder.loadTexts: ifTestOwner.setStatus('deprecated') ifGeneralGroup = ObjectGroup((1, 3, 6, 1, 2, 1, 31, 2, 1, 1)).setObjects(("IF-MIB", "ifDescr"), ("IF-MIB", "ifType"), ("IF-MIB", "ifSpeed"), ("IF-MIB", "ifPhysAddress"), ("IF-MIB", "ifAdminStatus"), ("IF-MIB", "ifOperStatus"), ("IF-MIB", "ifLastChange"), ("IF-MIB", "ifLinkUpDownTrapEnable"), ("IF-MIB", "ifConnectorPresent"), ("IF-MIB", "ifHighSpeed"), ("IF-MIB", "ifName")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): ifGeneralGroup = ifGeneralGroup.setStatus('deprecated') ifTestGroup = ObjectGroup((1, 3, 6, 1, 2, 1, 31, 2, 1, 8)).setObjects(("IF-MIB", "ifTestId"), ("IF-MIB", "ifTestStatus"), ("IF-MIB", "ifTestType"), ("IF-MIB", "ifTestResult"), ("IF-MIB", "ifTestCode"), ("IF-MIB", "ifTestOwner")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): ifTestGroup = ifTestGroup.setStatus('deprecated') ifStackGroup = ObjectGroup((1, 3, 6, 1, 2, 1, 31, 2, 1, 9)).setObjects(("IF-MIB", "ifStackStatus")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): ifStackGroup = ifStackGroup.setStatus('deprecated') ifOldObjectsGroup = ObjectGroup((1, 3, 6, 1, 2, 1, 31, 2, 1, 12)).setObjects(("IF-MIB", "ifInNUcastPkts"), ("IF-MIB", "ifOutNUcastPkts"), ("IF-MIB", "ifOutQLen"), ("IF-MIB", "ifSpecific")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): ifOldObjectsGroup = ifOldObjectsGroup.setStatus('deprecated') ifCompliance = ModuleCompliance((1, 3, 6, 1, 2, 1, 31, 2, 2, 1)).setObjects(("IF-MIB", "ifGeneralGroup"), ("IF-MIB", "ifStackGroup"), ("IF-MIB", "ifFixedLengthGroup"), ("IF-MIB", "ifHCFixedLengthGroup"), ("IF-MIB", "ifPacketGroup"), ("IF-MIB", "ifHCPacketGroup"), ("IF-MIB", "ifTestGroup"), ("IF-MIB", "ifRcvAddressGroup")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): ifCompliance = ifCompliance.setStatus('deprecated') ifCompliance2 = ModuleCompliance((1, 3, 6, 1, 2, 1, 31, 2, 2, 2)).setObjects(("IF-MIB", "ifGeneralInformationGroup"), ("IF-MIB", "ifStackGroup2"), ("IF-MIB", "ifCounterDiscontinuityGroup"), ("IF-MIB", "ifFixedLengthGroup"), ("IF-MIB", "ifHCFixedLengthGroup"), ("IF-MIB", "ifPacketGroup"), ("IF-MIB", "ifHCPacketGroup"), ("IF-MIB", "ifRcvAddressGroup")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): ifCompliance2 = ifCompliance2.setStatus('deprecated') mibBuilder.exportSymbols("IF-MIB", ifIndex=ifIndex, ifNumber=ifNumber, ifCompliance2=ifCompliance2, ifConformance=ifConformance, ifOutBroadcastPkts=ifOutBroadcastPkts, ifTestEntry=ifTestEntry, ifLastChange=ifLastChange, ifOutOctets=ifOutOctets, ifHCInMulticastPkts=ifHCInMulticastPkts, ifMtu=ifMtu, ifHCInOctets=ifHCInOctets, ifSpeed=ifSpeed, ifFixedLengthGroup=ifFixedLengthGroup, ifInBroadcastPkts=ifInBroadcastPkts, ifName=ifName, ifCompliance=ifCompliance, ifSpecific=ifSpecific, ifHCOutMulticastPkts=ifHCOutMulticastPkts, ifStackTable=ifStackTable, ifCounterDiscontinuityTime=ifCounterDiscontinuityTime, ifInMulticastPkts=ifInMulticastPkts, ifHCFixedLengthGroup=ifHCFixedLengthGroup, ifTestType=ifTestType, ifCounterDiscontinuityGroup=ifCounterDiscontinuityGroup, ifEntry=ifEntry, ifOutNUcastPkts=ifOutNUcastPkts, ifRcvAddressEntry=ifRcvAddressEntry, linkUp=linkUp, ifHighSpeed=ifHighSpeed, linkDown=linkDown, InterfaceIndexOrZero=InterfaceIndexOrZero, ifGeneralGroup=ifGeneralGroup, ifOutMulticastPkts=ifOutMulticastPkts, ifGeneralInformationGroup=ifGeneralInformationGroup, ifInNUcastPkts=ifInNUcastPkts, ifLinkUpDownTrapEnable=ifLinkUpDownTrapEnable, ifRcvAddressGroup=ifRcvAddressGroup, ifInOctets=ifInOctets, ifOperStatus=ifOperStatus, ifRcvAddressType=ifRcvAddressType, ifInUnknownProtos=ifInUnknownProtos, ifInDiscards=ifInDiscards, ifXTable=ifXTable, interfaces=interfaces, OwnerString=OwnerString, ifAdminStatus=ifAdminStatus, PYSNMP_MODULE_ID=ifMIB, linkUpDownNotificationsGroup=linkUpDownNotificationsGroup, ifTableLastChange=ifTableLastChange, ifStackGroup=ifStackGroup, ifXEntry=ifXEntry, ifStackEntry=ifStackEntry, ifStackGroup2=ifStackGroup2, ifMIBObjects=ifMIBObjects, ifType=ifType, ifTestResult=ifTestResult, ifStackLastChange=ifStackLastChange, ifHCOutOctets=ifHCOutOctets, ifOutErrors=ifOutErrors, ifStackLowerLayer=ifStackLowerLayer, InterfaceIndex=InterfaceIndex, ifTestOwner=ifTestOwner, ifPacketGroup=ifPacketGroup, ifTestId=ifTestId, ifHCOutBroadcastPkts=ifHCOutBroadcastPkts, ifPromiscuousMode=ifPromiscuousMode, ifStackHigherLayer=ifStackHigherLayer, ifHCOutUcastPkts=ifHCOutUcastPkts, ifTestTable=ifTestTable, ifPhysAddress=ifPhysAddress, ifMIB=ifMIB, ifOutQLen=ifOutQLen, ifConnectorPresent=ifConnectorPresent, ifInErrors=ifInErrors, ifOutDiscards=ifOutDiscards, ifCompliance3=ifCompliance3, ifVHCPacketGroup=ifVHCPacketGroup, ifDescr=ifDescr, ifOldObjectsGroup=ifOldObjectsGroup, ifHCInBroadcastPkts=ifHCInBroadcastPkts, ifGroups=ifGroups, ifStackStatus=ifStackStatus, ifOutUcastPkts=ifOutUcastPkts, ifRcvAddressStatus=ifRcvAddressStatus, ifHCPacketGroup=ifHCPacketGroup, ifAlias=ifAlias, ifTestStatus=ifTestStatus, ifRcvAddressAddress=ifRcvAddressAddress, ifCompliances=ifCompliances, ifTestCode=ifTestCode, ifInUcastPkts=ifInUcastPkts, ifTestGroup=ifTestGroup, ifHCInUcastPkts=ifHCInUcastPkts, ifTable=ifTable, ifRcvAddressTable=ifRcvAddressTable)
from collections import OrderedDict from pathlib import Path from tempfile import NamedTemporaryFile from typing import Dict, List, Tuple import pytest from datamodel_code_generator import DataTypeManager from datamodel_code_generator.model import DataModel, DataModelFieldBase from datamodel_code_generator.model.pydantic import BaseModel from datamodel_code_generator.parser.base import Parser, relative, sort_data_models from datamodel_code_generator.reference import snake_to_upper_camel class A(DataModel): pass class B(DataModel): pass class C(Parser): def parse_raw(self, name: str, raw: Dict) -> None: pass def parse(self) -> str: return 'parsed' def test_parser(): c = C( data_model_type=D, data_model_root_type=B, data_model_field_type=DataModelFieldBase, base_class='Base', source='', ) assert c.data_model_type == D assert c.data_model_root_type == B assert c.data_model_field_type == DataModelFieldBase assert c.base_class == 'Base' def test_sort_data_models(): reference = [ BaseModel(name='A', reference_classes={'A', 'C'}, fields=[]), BaseModel(name='B', reference_classes={'B'}, fields=[]), BaseModel(name='C', reference_classes={'B'}, fields=[]), ] unresolved, resolved, require_update_action_models = sort_data_models(reference) expected = OrderedDict() expected['B'] = reference[1] expected['C'] = reference[2] expected['A'] = reference[0] assert resolved == expected assert unresolved == [] assert require_update_action_models == ['B', 'A'] def test_sort_data_models_unresolved(): reference = [ BaseModel(name='A', reference_classes=['A', 'C'], fields=[]), BaseModel(name='B', reference_classes=['B'], fields=[]), BaseModel(name='C', reference_classes=['B'], fields=[]), BaseModel(name='D', reference_classes=['A', 'C', 'v'], fields=[]), BaseModel(name='z', reference_classes=['v'], fields=[]), ] with pytest.raises(Exception): sort_data_models(reference) def test_sort_data_models_unresolved_raise_recursion_error(): reference = [ BaseModel(name='A', reference_classes=['A', 'C'], fields=[]), BaseModel(name='B', reference_classes=['B'], fields=[]), BaseModel(name='C', reference_classes=['B'], fields=[]), BaseModel(name='D', reference_classes=['A', 'C', 'v'], fields=[]), BaseModel(name='z', reference_classes=['v'], fields=[]), ] with pytest.raises(Exception): sort_data_models(reference, recursion_count=100000) @pytest.mark.parametrize( 'current_module,reference,val', [ ('', 'Foo', ('', '')), ('a', 'a.Foo', ('', '')), ('a', 'a.b.Foo', ('.', 'b')), ('a.b', 'a.Foo', ('.', 'Foo')), ('a.b.c', 'a.Foo', ('..', 'Foo')), ('a.b.c', 'Foo', ('...', 'Foo')), ], ) def test_relative(current_module: str, reference: str, val: Tuple[str, str]): assert relative(current_module, reference) == val @pytest.mark.parametrize( 'word,expected', [ ( '_hello', '_Hello', ), # In case a name starts with a underline, we should keep it. ('hello_again', 'HelloAgain'), # regular snake case ('hello__again', 'HelloAgain'), # handles double underscores ( 'hello___again_again', 'HelloAgainAgain', ), # handles double and single underscores ('hello_again_', 'HelloAgain'), # handles trailing underscores ('hello', 'Hello'), # no underscores ('____', '_'), # degenerate case, but this is the current expected behavior ], ) def test_snake_to_upper_camel(word, expected): """Tests the snake to upper camel function.""" actual = snake_to_upper_camel(word) assert actual == expected class D(DataModel): def __init__( self, filename: str, data: str, name: str, fields: List[DataModelFieldBase] ): super().__init__(name, fields) self._data = data def render(self) -> str: return self._data
import collections import io import os import typing import torch import numpy as np from .operators import CommonGraph, ExtendedOperator, GraphOptimizer, HybridQuantizer from .operators.op_version import OPVersioner from .operators.tflite import Tensor from .operators.torch import OPERATOR_CONVERTER_DICT from .operators.torch.base import NoTrackOperator from ..util.converter_util import generate_converter_config from ..util.util import get_logger log = get_logger(__name__, 'INFO') class TFLiteConverter(object): def __init__( self, model: typing.Union[torch.jit.ScriptFunction, torch.jit.ScriptModule, torch.nn.Module], dummy_input: typing.Union[torch.Tensor, typing.Iterable[torch.Tensor]], tflite_path: str, input_transpose: typing.Optional[typing.Union[bool, typing.Iterable[bool]]] = None, dump_jit_model_path: typing.Optional[str] = None, dump_dummy_input_path: typing.Optional[str] = None, dump_config_path: typing.Optional[str] = None, strict_symmetric_check: bool = False, preserve_tensors: bool = False, optimize: int = GraphOptimizer.ALL_OPTIMIZE, quantize_target_type: str = 'uint8', hybrid_quantization_from_float: bool = False, hybrid_per_channel: bool = False, hybrid_asymmetric_inputs: bool = True, fuse_quant_dequant: bool = False, gc_when_reload: bool = False, ) -> None: """ The TFLiteConverter class Args: model (typing.Union[torch.jit.ScriptFunction, torch.jit.ScriptModule, torch.nn.Module]): The input model \ (either traced or non-traced) dummy_input (typing.Union[torch.Tensor, typing.Iterable[torch.Tensor]]): A viable input to the model tflite_path (str): Path to use for exporting input_transpose (typing.Optional[typing.Union[bool, typing.Iterable[bool]]], optional): Whether to \ transpose the input(s). Defaults to None(True for 4d-input, False otherwise). dump_jit_model_path (typing.Optional[str]): The path for dumping the jit model. Defaults to None dump_dummy_input_path (typing.Optional[str]): The path for dumping the dummy input. Defaults to None dump_config_path (typing.Optional[str]): The path for dumping the json config. Defaults to None strict_symmetric_check (bool): Strict symmetric quantization checks. Defaults to False preserve_tensors (bool): Preserve the copies of the intermediate tensors. Defaults to False optimize (int): The level of graph optimization. Defaults to `GraphOptimizer.ALL_OPTIMIZE` quantize_target_type (str): Target type for quantization. Defaults to 'uint8' hybrid_quantization_from_float (bool): Direct hybrid quantization from a float model. Defaults to False hybrid_per_channel (bool): Prefer per-channel kernels in hybrid quantization. Defaults to False hybrid_asymmetric_inputs (bool): Prefer asymmetric inputs while performing hybrid quantization fuse_quant_dequant (bool): Remove quant and dequant nodes directly connected to i/o nodes. Defaults to False gc_when_reload (bool): Apply GC when reloading the torchscript into memory """ self.model = model self.lower_model = None self.graph = None self.tensor_map = {} self.tensor_map_copies = {} self.common_graph = CommonGraph() if type(dummy_input) in (tuple, list): self.dummy_input = dummy_input else: self.dummy_input = [dummy_input] self.tflite_path = tflite_path self.input_transpose = input_transpose self.strict_symmetric_check = strict_symmetric_check self.dump_jit_model_path = dump_jit_model_path self.dump_dummy_input_path = dump_dummy_input_path self.dump_config_path = dump_config_path self.preserve_tensors = preserve_tensors self.optimize = optimize self.hybrid = hybrid_quantization_from_float self.hybrid_per_channel = hybrid_per_channel self.hybrid_asymmetric_inputs = hybrid_asymmetric_inputs self.fuse_quant_dequant = fuse_quant_dequant self.gc_when_reload = gc_when_reload if quantize_target_type == 'uint8': self.q_type = np.uint8 if self.strict_symmetric_check: log.warning('Symmetric quantized model with uint8 is unsupported in most backends of TFLite') if self.hybrid: if self.hybrid_per_channel: raise AttributeError('Per-channel kernels supports int8 only') log.warning( 'Unless you are using legacy TFLite (<1.14), please set quantize_target_type to int8 instead' ) elif quantize_target_type == 'int8': self.q_type = np.int8 elif quantize_target_type == 'int16': if self.hybrid: raise AttributeError('Hybrid kernels supports int8 only') if not self.strict_symmetric_check: raise AttributeError('Int16 quantization requires strict_symmetric_check=True') self.q_type = np.int16 else: raise AttributeError(f'unknown quantize_target_type: {quantize_target_type}, expected: uint8, int8, int16') if dump_config_path and not dump_jit_model_path: raise AssertionError("when dump_config_path is set, dump_jit_model_path is required to be set") self.input_offset = 1 def init_jit_graph(self): # Multi-GPU modules doesn't support JIT tracing if isinstance(self.model, (torch.nn.DataParallel, torch.nn.parallel.DistributedDataParallel)): self.model = self.model.module if not isinstance(self.model, (torch.jit.ScriptFunction, torch.jit.ScriptModule)): if hasattr(self.model, 'cpu'): self.model.cpu() if hasattr(self.model, 'eval'): self.model.eval() with torch.no_grad(): script = torch.jit.trace(self.model, self.dummy_input) # Remove reference to original model to save memory self.model = None # Have to save it once, otherwise something weird happens if self.dump_jit_model_path is None: with io.BytesIO() as f: torch.jit.save(script, f) f.seek(0) script = torch.jit.load(f) else: jit_model_dir = os.path.abspath(os.path.dirname(self.dump_jit_model_path)) os.makedirs(jit_model_dir, exist_ok=True) torch.jit.save(script, self.dump_jit_model_path) if self.gc_when_reload: import gc script = None gc.collect() script = torch.jit.load(self.dump_jit_model_path) self.model = script if isinstance(self.model, torch.jit.ScriptFunction): self.input_offset = 0 if self.dump_dummy_input_path is not None: dummy_arrs = list(map(lambda x: x.detach().cpu().numpy(), self.dummy_input)) np.savez(self.dump_dummy_input_path, *dummy_arrs) if self.dump_config_path is not None: generate_converter_config( self.dummy_input, [], self.input_transpose, [], self.dump_jit_model_path, self.tflite_path, self.dump_config_path, ) def init_lowered_module(self): assert ( isinstance(self.model, torch.jit.ScriptFunction) or self.model.training is False or str(next(self.model.graph.inputs()).type()) == '__torch__.PlaceholderModule' ), 'Model is in training model' graph = self.model.graph # Inline everything torch._C._jit_pass_inline(graph) # Remove fork/wait nodes torch._C._jit_pass_inline_fork_wait(graph) torch._C._jit_pass_lint(graph) torch._C._jit_pass_lower_all_tuples(graph) # we record now record some ops like ones/zeros # into a trace where we previously recorded constants # use constant prop to maintain our current level of onnx support # without implementing symbolics for all of them torch._C._jit_pass_constant_propagation(graph) # _split_tensor_list_constants(graph, graph) # run dce to eliminate dead parts of the graph that might have been # left behind by things like symbolic_override torch._C._jit_pass_dce(graph) torch._C._jit_pass_lint(graph) torch._C._jit_pass_canonicalize_graph_fuser_ops(graph) torch._C._jit_pass_lint(graph) torch._C._jit_pass_peephole(graph, True) torch._C._jit_pass_fuse_addmm(graph) torch._C._jit_pass_lint(graph) torch._C._jit_pass_peephole(graph, True) torch._C._jit_pass_lower_all_tuples(graph) self.graph = graph log.debug('Lowered graph:') log.debug(self.graph) def init_input_transpose(self): input_transpose = self.input_transpose if type(input_transpose) not in (tuple, list): input_transpose = [input_transpose] * len(self.dummy_input) for i, t in enumerate(self.dummy_input): if input_transpose[i] is None: input_transpose[i] = t.dim() == 4 self.input_transpose = input_transpose def init_common_graph(self): graph_inputs = [x.debugName() for x in list(self.graph.inputs())][self.input_offset :] graph_outputs = [x.debugName() for x in list(self.graph.outputs())] self.common_graph.inputs.extend(graph_inputs) self.common_graph.outputs.extend(graph_outputs) self.common_graph.input_transpose.extend(self.input_transpose) tensors = [] for i, node in enumerate(graph_inputs): tensors.append( Tensor( self.dummy_input[i], node, has_buffer=False, asymmetric=not self.strict_symmetric_check, q_type=self.q_type, ) ) self.common_graph.add_nodes(tensors, ExtendedOperator.INPUT_NODE) def init_inputs(self): graph_inputs = [x.debugName() for x in list(self.graph.inputs())] for i, node in enumerate(graph_inputs): if self.input_offset > 0 and i == 0: self.tensor_map[graph_inputs[i]] = self.model else: self.tensor_map[graph_inputs[i]] = self.dummy_input[i - self.input_offset] def unsupported_operations(self, unique=True) -> typing.List[str]: """Returns unsupported operations in the graph""" if self.graph is None: self.init_lowered_module() all_nodes = list(self.graph.nodes()) ops = [] for node in all_nodes: k = node.kind() converter_type = OPERATOR_CONVERTER_DICT.get(k, None) if converter_type is None: ops.append(k) if unique: return list(set(ops)) else: return ops def init_operations(self): log.debug('Initialize operators...') node_queue = collections.deque(self.graph.nodes()) while node_queue: node = node_queue.popleft() k = node.kind() output_tensors = [] converter_type = OPERATOR_CONVERTER_DICT.get(k, NoTrackOperator) converter = converter_type(node, self.tensor_map, not self.strict_symmetric_check, self.q_type) # Don't track the operator if all the input nodes are not tracked unless it has custom implementation # (e.g prim::* ops) if converter_type.run == NoTrackOperator.run and converter_type != NoTrackOperator: no_track_flag = True for n in converter.input_names: if self.common_graph.has_nested_names(n): nested_names = self.common_graph.get_list_expanded_names(n) for x in nested_names: if x in self.common_graph.tensor_map: no_track_flag = False break elif n in self.common_graph.tensor_map: no_track_flag = False break if no_track_flag: converter_type = NoTrackOperator converter = converter_type(node, self.tensor_map, not self.strict_symmetric_check, self.q_type) if k != 'prim::Constant': log.debug(f'{k} {converter.input_names} -> {converter.output_names} {converter_type.__name__}') # Don't fetch attrs and schemas for non-tracking nodes if converter_type != NoTrackOperator: try: attrs = converter.fetch_all_attrs(node) except StopIteration: attrs = None args = converter.fetch_annotated_args(node) else: attrs = None args = None converter.parse(node, attrs, args, self.common_graph) outputs = converter.output_names new_nodes = converter.output_nodes if output_tensors is not None: output_tensors.extend(converter.get_output_tensors()) if len(new_nodes) > 0: node_queue.extendleft(reversed(new_nodes)) assert len(output_tensors) == len(outputs) for t, name in zip(output_tensors, outputs): self.tensor_map[name] = t if self.preserve_tensors and isinstance(t, torch.Tensor): self.tensor_map_copies[name] = t.detach().clone() def __try_infer_type(self, params): inferred = torch._C._jit_try_infer_type(params) if hasattr(inferred, 'type'): return inferred.type().annotation_str else: return str(inferred) def __unpack_params(self, params): return NoTrackOperator.unpack_params(None, params) def convert(self): """Converts the model to the TFLite format Raises: Exception: If unsupported ops are found, an Exception will be raised """ self.init_input_transpose() self.init_jit_graph() self.init_lowered_module() self.init_common_graph() self.init_inputs() self.init_operations() unsupported_ops = self.unsupported_operations() if len(unsupported_ops) > 0: log.error(f'Unsupported ops: {", ".join(unsupported_ops)}') raise Exception("Cannot continue due to fatal error") else: optimizer = GraphOptimizer(self.common_graph, self.optimize, self.fuse_quant_dequant) optimizer.optimize() if self.hybrid: quantizer = HybridQuantizer( self.common_graph, self.hybrid_asymmetric_inputs, self.q_type, self.hybrid_per_channel ) quantizer.quantize() optimizer.cleanup_dead_nodes() versioner = OPVersioner(self.common_graph) versioner.process() self.common_graph.convert(self.tflite_path) log.info(f'Generated model saved to {self.tflite_path}') def visualize(self, hide_constants=True): """Visualize the TinyNeuralNetwork Graph Args: hide_constants (bool, optional): Hide the constant nodes in the graph. Defaults to True. """ self.common_graph.visualize(hide_constants) def get_outputs(self): """Returns the output of the model, which is evaluated via tracing nodes one by one""" outputs = [] for name in self.common_graph.outputs: outputs.append(self.tensor_map[name]) return outputs def get_value(self, name, default_val=None): """Returns the output according to the name of the node. If the name doesn't exist, `default_val` is returned""" if self.preserve_tensors: val = self.tensor_map_copies.get(name, default_val) else: val = self.tensor_map.get(name, default_val) type_ = self.__try_infer_type(val) if type_.endswith('PackedParamsBase'): return self.__unpack_params(val) return val def tensor_names(self) -> typing.List[str]: """Returns the all the names of the intermediate tensors Returns: typing.List[str]: The names of the intermediate tensors """ if self.preserve_tensors: return list(self.tensor_map_copies.keys()) else: return list(self.tensor_map.keys()) def inputs_for_tflite(self) -> typing.List[np.ndarray]: """Prepare inputs for the TFLite backend Returns: typing.List[np.ndarray]: The input tensors """ arrs = [] for t, trans in zip(self.dummy_input, self.input_transpose): arr = t.detach().clone().numpy() if trans: arr = np.transpose(arr, (0, 2, 3, 1)) arrs.append(arr) return arrs
# Copyright (c) 2013, erpcloud.systems and contributors # For license information, please see license.txt from __future__ import unicode_literals import frappe from frappe import _ def execute(filters=None): columns, data = [], [] columns=get_columns() data=get_data(filters,columns) return columns, data def get_columns(): return [ { "label": _("Contract No"), "fieldname": "name", "fieldtype": "Link", "options": "PMS Lease Contract", "width": 155 }, { "label": _("Party"), "fieldname": "party_name", "fieldtype": "Data", "width": 200 }, { "label": _("Posting Date"), "fieldname": "posting_date", "fieldtype": "Date", "width": 105 }, { "label": _("Contract Period In Months"), "fieldname": "no_of_months", "fieldtype": "Data", "width": 220 }, { "label": _("Start Date"), "fieldname": "start_date", "fieldtype": "Date", "width": 100 }, { "label": _("End Date"), "fieldname": "end_date", "fieldtype": "Date", "width": 100 }, { "label": _("Unit"), "fieldname": "unit", "fieldtype": "Data", "width": 100 }, { "label": _("Unit Type"), "fieldname": "type", "fieldtype": "Data", "width": 110 }, { "label": _("Floor"), "fieldname": "floor", "fieldtype": "Data", "width": 110 }, { "label": _("Zone"), "fieldname": "zone", "fieldtype": "Data", "width": 110 }, { "label": _("Area"), "fieldname": "area", "fieldtype": "Data", "width": 140 }, { "label": _("Allocation"), "fieldname": "allocation", "fieldtype": "Data", "width": 90 }, { "label": _("Activity"), "fieldname": "activity", "fieldtype": "Data", "width": 140 }, { "label": _("Internal Space"), "fieldname": "internal_space", "fieldtype": "Float", "width": 130 }, { "label": _("External Space"), "fieldname": "external_space", "fieldtype": "Float", "width": 130 }, { "label": _("Total Space"), "fieldname": "total_space", "fieldtype": "Float", "width": 110 }, { "label": _("Meter Price"), "fieldname": "meter_price", "fieldtype": "Currency", "width": 160 }, { "label": _("State"), "fieldname": "state", "fieldtype": "Data", "width": 110 }, { "label": _("Rent Amount"), "fieldname": "rent_value_", "fieldtype": "Currency", "width": 140 }, { "label": _("Annual Increase %"), "fieldname": "annual_increase", "fieldtype": "Percent", "width": 160 }, { "label": _("Annual Increase Type"), "fieldname": "annual_increase_type", "fieldtype": "Data", "width": 160 }, { "label": _("Insurance Amount"), "fieldname": "insurance_value", "fieldtype": "Currency", "width": 160 }, { "label": _("Total Payable Amount"), "fieldname": "total_payable_amount", "fieldtype": "Currency", "width": 160 }, { "label": _("Total Amount Paid"), "fieldname": "total_amount_paid", "fieldtype": "Currency", "width": 160 } ] def get_data(filters, columns): item_price_qty_data = [] item_price_qty_data = get_item_price_qty_data(filters) return item_price_qty_data def get_item_price_qty_data(filters): conditions = "" if filters.get("contract"): conditions += " and a.name=%(contract)s" if filters.get("unit"): conditions += " and a.unit=%(unit)s" if filters.get("type"): conditions += " and a.type=%(type)s" if filters.get("floor"): conditions += " and a.floor=%(floor)s" if filters.get("zone"): conditions += " and a.zone=%(zone)s" if filters.get("area"): conditions += " and a.area=%(area)s" if filters.get("activity"): conditions += " and a.activity=%(activity)s" if filters.get("allocation"): conditions += " and a.allocation=%(allocation)s" if filters.get("from_date"): conditions += " and a.posting_date>=%(from_date)s" if filters.get("to_date"): conditions += " and a.posting_date<=%(to_date)s" item_results = frappe.db.sql(""" select a.name as name, a.party_name as party_name, a.posting_date as posting_date, a.unit as unit, a.type as type, a.floor as floor, a.zone as zone, a.area as area, a.activity as activity, a.allocation as allocation, a.internal_space as internal_space, a.external_space as external_space, (a.internal_space + a.external_space) as total_space, a.meter_price as meter_price, a.state as state, a.no_of_months as no_of_months, a.rent_value_ as rent_value_, a.annual_increase as annual_increase, a.annual_increase_type as annual_increase_type, a.start_date as start_date, a.end_date as end_date, a.total_payable_amount as total_payable_amount, a.total_amount_paid as total_amount_paid, a.insurance_value as insurance_value from `tabPMS Lease Contract` a where a.docstatus = 1 {conditions} """.format(conditions=conditions), filters, as_dict=1) result = [] if item_results: for item_dict in item_results: data = { 'name': item_dict.name, 'party_name': item_dict.party_name, 'unit': item_dict.unit, 'type': item_dict.type, 'floor': item_dict.floor, 'zone': item_dict.zone, 'area': item_dict.area, 'allocation': item_dict.allocation, 'internal_space': item_dict.internal_space, 'external_space': item_dict.external_space, 'total_space': item_dict.total_space, 'meter_price': item_dict.meter_price, 'activity': item_dict.activity, 'state': item_dict.state, 'posting_date': item_dict.posting_date, 'no_of_months': item_dict.no_of_months, 'rent_value_': item_dict.rent_value_, 'annual_increase': item_dict.annual_increase, 'annual_increase_type': item_dict.annual_increase_type, 'start_date': item_dict.start_date, 'end_date': item_dict.end_date, 'total_payable_amount': item_dict.total_payable_amount, 'total_amount_paid': item_dict.total_amount_paid, 'insurance_value': item_dict.insurance_value, } result.append(data) return result
from middleware.db import repository from middleware.connection.conn import session from middleware.db.tables import PokemonMoveAvailability from pokedex.db.tables import VersionGroup red_blue_vg = session.query(VersionGroup).filter(VersionGroup.identifier == 'red-blue').one() yellow_vg = session.query(VersionGroup).filter(VersionGroup.identifier == 'yellow').one() gold_silver_vg = session.query(VersionGroup).filter(VersionGroup.identifier == 'gold-silver').one() crystal_vg = session.query(VersionGroup).filter(VersionGroup.identifier == 'crystal').one() ruby_sapphir_vg = session.query(VersionGroup).filter(VersionGroup.identifier == 'ruby-sapphire').one() firered_leafgreen_vg = session.query(VersionGroup).filter(VersionGroup.identifier == 'firered-leafgreen').one() emerald_vg = session.query(VersionGroup).filter(VersionGroup.identifier == 'emerald').one() fire_red_leaf_green_vg = session.query(VersionGroup).filter(VersionGroup.identifier == 'firered-leafgreen').one() diamond_pearl_vg = session.query(VersionGroup).filter(VersionGroup.identifier == 'diamond-pearl').one() platinum_vg = session.query(VersionGroup).filter(VersionGroup.identifier == 'platinum').one() heart_gold_soul_silver_vg = session.query(VersionGroup).filter( VersionGroup.identifier == 'heartgold-soulsilver').one() black_white_vg = session.query(VersionGroup).filter(VersionGroup.identifier == 'black-white').one() black2_white2_vg = session.query(VersionGroup).filter(VersionGroup.identifier == 'black-2-white-2').one() xy_vg = session.query(VersionGroup).filter(VersionGroup.identifier == 'x-y').one() oras_vg = session.query(VersionGroup).filter(VersionGroup.identifier == 'omega-ruby-alpha-sapphire').one() sun_moon_vg = session.query(VersionGroup).filter(VersionGroup.identifier == 'sun-moon').one() ultra_sun_ultra_moon_vg = session.query(VersionGroup).filter( VersionGroup.identifier == 'ultra-sun-ultra-moon').one() lgpe_vg = session.query(VersionGroup).filter(VersionGroup.identifier == 'lets-go-pikachu-lets-go-eevee').one() sword_shield_vg = session.query(VersionGroup).filter(VersionGroup.identifier == 'sword-shield').one() def load_basic_move_availabilities(): save_availabilities(red_blue_vg, 1, 151) save_availabilities(yellow_vg, 1, 151) save_availabilities(crystal_vg, 1, 251) save_availabilities(gold_silver_vg, 1, 251) save_availabilities(fire_red_leaf_green_vg, 1, 386) save_availabilities(ruby_sapphir_vg, 1, 386) save_availabilities(emerald_vg, 1, 386) save_availabilities(diamond_pearl_vg, 1, 493) save_availabilities(platinum_vg, 1, 493) save_availabilities(heart_gold_soul_silver_vg, 1, 493) save_availabilities(black_white_vg, 1, 649) save_availabilities(black2_white2_vg, 1, 649) save_availabilities(xy_vg, 1, 721) save_availabilities(oras_vg, 1, 721) save_availabilities(sun_moon_vg, 1, 807) save_availabilities(ultra_sun_ultra_moon_vg, 1, 807) save_alola_pokemons(sun_moon_vg) save_alola_pokemons(ultra_sun_ultra_moon_vg) save_alola_pokemons(sword_shield_vg, True) save_galar_pokemons(sword_shield_vg) save_default_gen8_pokemons(sword_shield_vg) save_availabilities(lgpe_vg, 1, 151) save_availabilities(lgpe_vg, 808, 809) save_alola_pokemons(lgpe_vg) def load_specific_pokemon_move_availabilities(): # gen 3 save_pokemon_move_availabilities_with_forms([ruby_sapphir_vg, emerald_vg, firered_leafgreen_vg], 'deoxys-normal', ['deoxys-attack', 'deoxys-defense', 'deoxys-speed'], False, True, False, False, True) # gen4 save_pokemon_move_availabilities_with_forms([diamond_pearl_vg, platinum_vg, heart_gold_soul_silver_vg], 'deoxys-normal', ['deoxys-attack', 'deoxys-defense', 'deoxys-speed'], False, True, False, False, True) save_pokemon_move_availabilities_with_forms([diamond_pearl_vg, platinum_vg, heart_gold_soul_silver_vg], 'wormadam-plant', ['wormadam-sandy', 'wormadam-trash'], False, True, True, False, True) save_pokemon_move_availabilities_with_forms([platinum_vg, heart_gold_soul_silver_vg, heart_gold_soul_silver_vg], 'shaymin-land', ['shaymin-sky'], False, True, False, False, True) # gen 5 save_pokemon_move_availabilities_with_forms([black_white_vg, black2_white2_vg], 'deoxys-normal', ['deoxys-attack', 'deoxys-defense', 'deoxys-speed'], False, True, False, False, True) save_pokemon_move_availabilities_with_forms([black_white_vg, black2_white2_vg], 'wormadam-plant', ['wormadam-sandy', 'wormadam-trash'], False, True, True, False, True) save_pokemon_move_availabilities_with_forms([black_white_vg, black2_white2_vg], 'shaymin-land', ['shaymin-sky'], False, True, False, False, True) save_pokemon_move_availabilities_with_forms([black2_white2_vg], 'kyurem', ['kyurem-black', 'kyurem-white'], True) # gen6 # noinspection DuplicatedCode save_pokemon_move_availabilities_with_forms([xy_vg, oras_vg], 'meowstic-male', ['meowstic-female'], False, True, False, False, False) save_pokemon_move_availabilities_with_forms([xy_vg, oras_vg], 'deoxys-normal', ['deoxys-attack', 'deoxys-defense', 'deoxys-speed'], False, True, False, False, True) save_pokemon_move_availabilities_with_forms([xy_vg, oras_vg], 'wormadam-plant', ['wormadam-sandy', 'wormadam-trash'], False, True, True, False, True) save_pokemon_move_availabilities_with_forms([xy_vg, oras_vg], 'shaymin-land', ['shaymin-sky'], False, True, False, False, True) save_pokemon_move_availabilities_with_forms([xy_vg, oras_vg], 'kyurem', ['kyurem-black', 'kyurem-white'], True) save_pokemon_move_availabilities_with_forms([xy_vg, oras_vg], 'hoopa', ['hoopa-unbound'], False, True, False, False, False) # gen7 # noinspection DuplicatedCode save_pokemon_move_availabilities_with_forms([sun_moon_vg, ultra_sun_ultra_moon_vg], 'meowstic-male', ['meowstic-female'], False, True, False, False, False) save_pokemon_move_availabilities_with_forms([sun_moon_vg, ultra_sun_ultra_moon_vg], 'deoxys-normal', ['deoxys-attack', 'deoxys-defense', 'deoxys-speed'], False, True, False, False, True) save_pokemon_move_availabilities_with_forms([sun_moon_vg, ultra_sun_ultra_moon_vg], 'wormadam-plant', ['wormadam-sandy', 'wormadam-trash'], False, True, True, False, True) save_pokemon_move_availabilities_with_forms([sun_moon_vg, ultra_sun_ultra_moon_vg], 'shaymin-land', ['shaymin-sky'], False, True, False, False, True) save_pokemon_move_availabilities_with_forms([sun_moon_vg, ultra_sun_ultra_moon_vg], 'kyurem', ['kyurem-black', 'kyurem-white'], True) save_pokemon_move_availabilities_with_forms([sun_moon_vg, ultra_sun_ultra_moon_vg], 'hoopa', ['hoopa-unbound'], False, True, False, False, False) save_pokemon_move_availabilities_with_forms([sun_moon_vg], 'lycanroc-midday', ['lycanroc-midnight'], False, True, False, False, True) save_pokemon_move_availabilities_with_forms([ultra_sun_ultra_moon_vg], 'lycanroc-midday', ['lycanroc-midnight', 'lycanroc-dusk'], False, True, False, False, True) save_pokemon_move_availabilities_with_forms([sun_moon_vg, ultra_sun_ultra_moon_vg], 'thundurus-incarnate', ['thundurus-therian'], False, False, True, False, False) save_pokemon_move_availabilities_with_forms([ultra_sun_ultra_moon_vg], 'necrozma', ['necrozma-dusk', 'necrozma-dawn'], True) # gen 8 save_pokemon_move_availabilities_with_forms([sword_shield_vg], 'meowstic-male', ['meowstic-female'], False, True, True, False, False) save_pokemon_move_availabilities_with_forms([sword_shield_vg], 'indeedee-male', ['indeedee-female'], False, True, True, True, False) save_pokemon_move_availabilities_with_forms([sword_shield_vg], 'lycanroc-midday', ['lycanroc-midnight', 'lycanroc-dusk'], False, True, True, False, True) save_pokemon_move_availabilities_with_forms([sword_shield_vg], 'toxtricity-amped', ['toxtricity-low-key'], False, True, True, False, True) save_pokemon_move_availabilities_with_forms([sword_shield_vg], 'urshifu-single-strike', ['urshifu-rapid-strike']) save_pokemon_move_availabilities_with_forms([sword_shield_vg], 'calyrex', ['calyrex-ice', 'calyrex-shadow'], True) def save_pokemon_move_availabilities_with_forms(version_groups: list, original_name: str, forms: list, specific_page_forms=False, level=True, machine=True, egg=True, tutor=True): with session.no_autoflush: for version_group in version_groups: original_pokemon_availability = repository.find_availability_by_pkm_and_form( original_name, version_group) for form in forms: form_pokemon = repository.find_pokemon_by_identifier(form) availability = PokemonMoveAvailability() availability.version_group_id = version_group.id availability.pokemon_id = form_pokemon.id availability.has_pokepedia_page = specific_page_forms availability.is_default = False availability.level = level availability.machine = machine availability.egg = egg availability.tutor = tutor session.add(availability) original_pokemon_availability.forms.append(availability) session.add(original_pokemon_availability) session.commit() def save_availabilities(version_group, start, end): pokemons = repository.find_default_pokemons_in_national_dex(start, end) for pokemon in pokemons: move_availability = PokemonMoveAvailability() move_availability.version_group_id = version_group.id move_availability.pokemon_id = pokemon.id session.add(move_availability) session.commit() def save_alola_pokemons(version_group, gen8=False): excludeds = [ 'rattata-alola', 'raticate-alola', 'geodude-alola', 'graveler-alola', 'golem-alola', 'grimer-alola', 'muk-alola' ] pokemons = repository.find_alola_pokemons() for pokemon in pokemons: if gen8: if pokemon.identifier in excludeds: continue move_availability = PokemonMoveAvailability() move_availability.version_group_id = version_group.id move_availability.pokemon_id = pokemon.id move_availability.is_default = False session.add(move_availability) session.commit() def save_galar_pokemons(version_group): pokemons = repository.find_galar_pokemons() for pokemon in pokemons: move_availability = PokemonMoveAvailability() move_availability.version_group_id = version_group.id move_availability.pokemon_id = pokemon.id move_availability.is_default = False session.add(move_availability) session.commit() def save_default_gen8_pokemons(version_group): pokemons = repository.find_default_gen8_pokemons() for pokemon in pokemons: move_availability = PokemonMoveAvailability() move_availability.version_group_id = version_group.id move_availability.pokemon_id = pokemon.id session.add(move_availability) session.commit()
# Copyright (C) 2014 Universidad Politecnica de Madrid # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import itertools import datetime from keystone.common import authorization from keystone import exception from keystone.common import controller from keystone.common import dependency @dependency.requires('roles_api', 'identity_api') class BaseControllerV3(controller.V3Controller): @classmethod def base_url(cls, context, path=None): """Construct a path and pass it to V3Controller.base_url method.""" path = '/OS-ROLES/' + cls.collection_name return super(BaseControllerV3, cls).base_url(context, path=path) # CUSTOM API CHECKS def _check_allowed_to_manage_roles(self, context, protection, role=None, role_id=None): """Add a flag for the policy engine if the user is allowed to manage the requested application. """ ref = {} application_id = None if role_id or (role and not 'application_id' in role): role = self.roles_api.get_role(role_id) if role: application_id = role['application_id'] if 'application_id' in context['query_string']: # List filtering application_id = context['query_string']['application_id'] if ('environment' in context and authorization.AUTH_CONTEXT_ENV in context['environment']): user_id = context['environment'][authorization.AUTH_CONTEXT_ENV]['user_id'] allowed_applications = self.roles_api.list_applications_user_allowed_to_manage_roles( user_id=user_id, organization_id=None) ref['is_allowed_to_manage_roles'] = application_id in allowed_applications else: ref['is_allowed_to_manage_roles'] = False self.check_protection(context, protection, ref) def _check_allowed_to_get_and_assign(self, context, protection, user_id=None, role_id=None, organization_id=None, application_id=None): """Add a flag for the policy engine if the user is allowed to asign and remove roles from a user or list application assignments. """ user_id = user_id if user_id else context['query_string'].get('user_id') ref = {} if ('environment' in context and authorization.AUTH_CONTEXT_ENV in context['environment']): if application_id: req_user = self.identity_api.get_user( context['environment'][authorization.AUTH_CONTEXT_ENV]['user_id']) req_project_id = context['environment'][authorization.AUTH_CONTEXT_ENV]['project_id'] if req_project_id == req_user.get('default_project_id'): # user acting as user allowed_roles = self.roles_api.list_roles_user_allowed_to_assign( user_id=req_user['id'], organization_id=None) else: # user logged as org allowed_roles = self.roles_api.list_roles_organization_allowed_to_assign( organization_id=req_project_id) if role_id: # Role must be allowed ref['is_allowed_to_get_and_assign'] = role_id in list( itertools.chain(*allowed_roles.values())) else: # application must be allowed ref['is_allowed_to_get_and_assign'] = application_id in allowed_roles.keys() elif user_id: ref['is_allowed_to_get_and_assign'] = ( user_id == context['environment'][authorization.AUTH_CONTEXT_ENV]['user_id']) else: ref['is_allowed_to_get_and_assign'] = False self.check_protection(context, protection, ref) def _check_allowed_to_manage_permissions(self, context, protection, permission=None, permission_id=None, role_id=None): """Add a flag for the policy engine if the user is allowed to manage the requested application. """ ref = {} application_id = None if permission_id or (permission and not 'application_id' in permission): permission = self.roles_api.get_permission(permission_id) if permission: application_id = permission['application_id'] if role_id: role = self.roles_api.get_role(role_id) application_id = role['application_id'] if 'application_id' in context['query_string']: # List filtering application_id = context['query_string']['application_id'] if ('environment' in context and authorization.AUTH_CONTEXT_ENV in context['environment']): user_id = context['environment'][authorization.AUTH_CONTEXT_ENV]['user_id'] allowed_applications = self.roles_api.list_applications_user_allowed_to_manage_roles( user_id=user_id, organization_id=None) ref['is_allowed_to_manage_roles'] = application_id in allowed_applications else: ref['is_allowed_to_manage_roles'] = False self.check_protection(context, protection, ref) def _check_allowed_to_manage_consumer(self, context, protection, consumer_id=None, consumer=None): """Add a flag for the policy engine if the user is allowed to manage the requested application. """ ref = {} if ('environment' in context and authorization.AUTH_CONTEXT_ENV in context['environment']): user_id = context['environment'][authorization.AUTH_CONTEXT_ENV]['user_id'] allowed_applications = self.roles_api.list_applications_user_allowed_to_manage( user_id=user_id, organization_id=None) ref['is_allowed_to_manage'] = consumer_id in allowed_applications else: ref['is_allowed_to_manage'] = False self.check_protection(context, protection, ref) # CONTROLLERS class RoleCrudV3(BaseControllerV3): collection_name = 'roles' member_name = 'role' @controller.protected(callback=_check_allowed_to_manage_roles) def list_roles(self, context): """Description of the controller logic.""" filters = context['query_string'] ref = self.roles_api.list_roles(**filters) return RoleCrudV3.wrap_collection(context, ref) @controller.protected(callback=_check_allowed_to_manage_roles) def create_role(self, context, role): ref = self._assign_unique_id(self._normalize_dict(role)) role_ref = self.roles_api.create_role(ref) return RoleCrudV3.wrap_member(context, role_ref) @controller.protected(callback=_check_allowed_to_manage_roles) def get_role(self, context, role_id): role_ref = self.roles_api.get_role(role_id) return RoleCrudV3.wrap_member(context, role_ref) @controller.protected(callback=_check_allowed_to_manage_roles) def update_role(self, context, role_id, role): self._require_matching_id(role_id, role) ref = self.roles_api.update_role(role_id, self._normalize_dict(role)) return RoleCrudV3.wrap_member(context, ref) @controller.protected(callback=_check_allowed_to_manage_roles) def delete_role(self, context, role_id): self.roles_api.delete_role(role_id) class RoleUserAssignmentV3(BaseControllerV3): collection_name = 'role_assignments' member_name = 'role_assignment' @classmethod def _add_self_referential_link(cls, context, ref): pass @controller.protected(callback=_check_allowed_to_get_and_assign) def list_role_user_assignments(self, context): filters = context['query_string'] use_default_org = filters.pop('default_organization', False) user_id = filters.get('user_id', False) if use_default_org and user_id: user = self.identity_api.get_user(user_id) organization_id = user.get('default_project_id', None) if not organization_id: raise exception.ProjectNotFound( message='This user has no default organization') filters['organization_id'] = organization_id ref = self.roles_api.list_role_user_assignments(**filters) return RoleUserAssignmentV3.wrap_collection(context, ref) @controller.protected(callback=_check_allowed_to_get_and_assign) def add_role_to_user(self, context, role_id, user_id, organization_id, application_id): self.roles_api.add_role_to_user(role_id, user_id, organization_id, application_id) @controller.protected(callback=_check_allowed_to_get_and_assign) def remove_role_from_user(self, context, role_id, user_id, organization_id, application_id): self.roles_api.remove_role_from_user(role_id, user_id, organization_id, application_id) @controller.protected(callback=_check_allowed_to_get_and_assign) def add_role_to_user_default_org(self, context, role_id, user_id, application_id): user = self.identity_api.get_user(user_id) organization_id = user.get('default_project_id', None) if organization_id: self.roles_api.add_role_to_user(role_id, user_id, organization_id, application_id) else: raise exception.ProjectNotFound( message='This user has no default organization') @controller.protected(callback=_check_allowed_to_get_and_assign) def remove_role_from_user_default_org(self, context, role_id, user_id, application_id): user = self.identity_api.get_user(user_id) organization_id = user.get('default_project_id', None) if organization_id: self.roles_api.remove_role_from_user(role_id, user_id, organization_id, application_id) else: raise exception.ProjectNotFound( message='This user has no default organization') class RoleOrganizationAssignmentV3(BaseControllerV3): collection_name = 'role_assignments' member_name = 'role_assignment' @classmethod def _add_self_referential_link(cls, context, ref): pass @controller.protected(callback=_check_allowed_to_get_and_assign) def list_role_organization_assignments(self, context): filters = context['query_string'] ref = self.roles_api.list_role_organization_assignments(**filters) return RoleOrganizationAssignmentV3.wrap_collection(context, ref) @controller.protected(callback=_check_allowed_to_get_and_assign) def add_role_to_organization(self, context, role_id, organization_id, application_id): self.roles_api.add_role_to_organization(role_id, organization_id, application_id) #@controller.protected(callback=_check_allowed_to_get_and_assign) def remove_role_from_organization(self, context, role_id, organization_id, application_id): self.roles_api.remove_role_from_organization(role_id, organization_id, application_id) class AllowedActionsControllerV3(BaseControllerV3): @controller.protected() def list_roles_user_allowed_to_assign(self, context, user_id, organization_id): ref = self.roles_api.list_roles_user_allowed_to_assign( user_id, organization_id) response = { 'allowed_roles': ref } return response @controller.protected() def list_roles_organization_allowed_to_assign(self, context, organization_id): ref = self.roles_api.list_roles_organization_allowed_to_assign( organization_id) response = { 'allowed_roles': ref } return response @controller.protected() def list_applications_user_allowed_to_manage(self, context, user_id, organization_id): ref = self.roles_api.list_applications_user_allowed_to_manage( user_id, organization_id) response = { 'allowed_applications': ref } return response @controller.protected() def list_applications_organization_allowed_to_manage(self, context, organization_id): ref = self.roles_api.list_applications_organization_allowed_to_manage( organization_id) response = { 'allowed_applications': ref } return response @controller.protected() def list_applications_user_allowed_to_manage_roles(self, context, user_id, organization_id): ref = self.roles_api.list_applications_user_allowed_to_manage_roles( user_id, organization_id) response = { 'allowed_applications': ref } return response @controller.protected() def list_applications_organization_allowed_to_manage_roles(self, context, organization_id): ref = self.roles_api.list_applications_organization_allowed_to_manage_roles( organization_id) response = { 'allowed_applications': ref } return response class PermissionCrudV3(BaseControllerV3): collection_name = 'permissions' member_name = 'permission' @controller.protected(callback=_check_allowed_to_manage_permissions) def list_permissions(self, context): """Description of the controller logic.""" filters = context['query_string'] ref = self.roles_api.list_permissions(**filters) return PermissionCrudV3.wrap_collection(context, ref) @controller.protected(callback=_check_allowed_to_manage_permissions) def create_permission(self, context, permission): ref = self._assign_unique_id(self._normalize_dict(permission)) permission_ref = self.roles_api.create_permission(ref) return PermissionCrudV3.wrap_member(context, permission_ref) @controller.protected(callback=_check_allowed_to_manage_permissions) def get_permission(self, context, permission_id): permission_ref = self.roles_api.get_permission(permission_id) return PermissionCrudV3.wrap_member(context, permission_ref) @controller.protected(callback=_check_allowed_to_manage_permissions) def update_permission(self, context, permission_id, permission): self._require_matching_id(permission_id, permission) ref = self.roles_api.update_permission( permission_id, self._normalize_dict(permission)) return PermissionCrudV3.wrap_member(context, ref) @controller.protected(callback=_check_allowed_to_manage_permissions) def delete_permission(self, context, permission_id): self.roles_api.delete_permission(permission_id) @controller.protected(callback=_check_allowed_to_manage_permissions) def list_permissions_for_role(self, context, role_id): ref = self.roles_api.list_permissions_for_role(role_id) return PermissionCrudV3.wrap_collection(context, ref) @controller.protected(callback=_check_allowed_to_manage_permissions) def add_permission_to_role(self, context, role_id, permission_id): self.roles_api.add_permission_to_role(role_id, permission_id) @controller.protected(callback=_check_allowed_to_manage_permissions) def remove_permission_from_role(self, context, role_id, permission_id): self.roles_api.remove_permission_from_role(role_id, permission_id) @dependency.requires('identity_api', 'oauth2_api') class FiwareApiControllerV3(BaseControllerV3): #@controller.protected() def authorized_organizations(self, context, token_id): """ Returns all the organizations in which the user has a role from the application that got the OAuth2.0 token. """ # TODO(garcianavalon) check if token is valid, use user_id to filter in get token = self.oauth2_api.get_access_token(token_id) user = self.identity_api.get_user(token['authorizing_user_id']) application_id = token['consumer_id'] organizations = self.roles_api.get_authorized_organizations( user, application_id, remove_default_organization=True) return { 'organizations': organizations } # @controller.protected() def validate_oauth2_token(self, context, token_id): """ Return a list of the roles and permissions of the user associated with this token. See https://github.com/ging/fi-ware-idm/wiki/Using-the-FI-LAB-instance\ #get-user-information-and-roles """ # TODO(garcianavalon) check if token is valid, use user_id to filter in get token = self.oauth2_api.get_access_token(token_id) application_id = token['consumer_id'] application = self.oauth2_api.get_consumer(application_id) if not token['authorizing_user_id']: # Client Credentials Grant # We validate the token but no user info is provided return { } if not token['valid'] or datetime.datetime.strptime(token['expires_at'], '%Y-%m-%d %H:%M:%S') < datetime.datetime.today(): raise exception.Unauthorized user = self.identity_api.get_user(token['authorizing_user_id']) organizations = self.roles_api.get_authorized_organizations( user, application_id) # remove the default organization and extract its roles user_roles = [] user_organization = next((org for org in organizations if org['id'] == user['default_project_id']), None) if user_organization: organizations.remove(user_organization) # extract the user-scoped roles user_roles = user_organization.pop('roles') def _get_name(user): name = user.get('username') if not name: name = user['name'] return name response_body = { 'id':user['id'], 'email': user['name'], 'displayName': _get_name(user), 'roles': user_roles, 'organizations': organizations, 'app_id': application_id, 'isGravatarEnabled': user['use_gravatar'] if 'use_gravatar' in user else False } if 'ac_domain' in application: response_body['app_azf_domain'] = application['ac_domain'] return response_body @dependency.requires('oauth2_api') class ExtendedPermissionsConsumerCrudV3(BaseControllerV3): """This class is ment to extend the basic consumer with callbacks that use the internal permission from this extensions. """ collection_name = 'consumers' member_name = 'consumer' @controller.protected() def list_consumers(self, context): ref = self.oauth2_api.list_consumers() return ExtendedPermissionsConsumerCrudV3.wrap_collection(context, ref) @controller.protected() def create_consumer(self, context, consumer): ref = self._assign_unique_id(self._normalize_dict(consumer)) consumer_ref = self.oauth2_api.create_consumer(ref) return ExtendedPermissionsConsumerCrudV3.wrap_member(context, consumer_ref) @controller.protected(callback=_check_allowed_to_manage_consumer) def get_consumer(self, context, consumer_id): consumer_ref = self.oauth2_api.get_consumer_with_secret(consumer_id) return ExtendedPermissionsConsumerCrudV3.wrap_member(context, consumer_ref) @controller.protected(callback=_check_allowed_to_manage_consumer) def update_consumer(self, context, consumer_id, consumer): self._require_matching_id(consumer_id, consumer) ref = self._normalize_dict(consumer) self._validate_consumer_ref(ref) ref = self.oauth2_api.update_consumer(consumer_id, ref) return ExtendedPermissionsConsumerCrudV3.wrap_member(context, ref) def _validate_consumer_ref(self, consumer): if 'secret' in consumer: msg = 'Cannot change consumer secret' raise exception.ValidationError(message=msg) @controller.protected(callback=_check_allowed_to_manage_consumer) def delete_consumer(self, context, consumer_id): self.oauth2_api.delete_consumer(consumer_id)
""" NFS exports configuration ========================= NFSExports and NFSExportsD provide a parsed output of the content of an exports file as defined in ``man exports(5)``. The content is parsed into a dictionary, where the key is the export path and the value is another dictionary, where the key is the hostname and the value is the option list, parsed into an actual list. The default (``"-"``) hostname is not specially handled, nor are wildcards. If export paths are defined multiple times in a file, only the first one is parsed. All subsequent redefinitions are not parsed and the raw line is added to the ``ignored_lines`` member. All raw lines are kept in ``raw_lines``, which is a ``dict`` where the key is the export path and the value is the stripped raw line. Parsers included in this module are: NFSExports - file ``nfs_exports`` --------------------------------- NFSExportsD - files in the ``nfs_exports.d`` directory ------------------------------------------------------ Sample content of the ``/etc/exports`` file:: /home/utcs/shared/ro @group(ro,sync) ins1.example.com(rw,sync,no_root_squash) ins2.example.com(rw,sync,no_root_squash) /home/insights/shared/rw @group(rw,sync) ins1.example.com(rw,sync,no_root_squash) ins2.example.com(ro,sync,no_root_squash) /home/insights/shared/special/all/mail @group(rw,sync,no_root_squash) /home/insights/ins/special/all/config @group(ro,sync,no_root_squash) ins1.example.com(rw,sync,no_root_squash) #/home/insights ins1.example.com(rw,sync,no_root_squash) /home/example @group(rw,sync,root_squash) ins1.example.com(rw,sync,no_root_squash) ins2.example.com(rw,sync,no_root_squash) # A duplicate host for this exported path /home/example ins2.example.com(rw,sync,no_root_squash) Examples: >>> type(exports) <class 'insights.parsers.nfs_exports.NFSExports'> >>> type(exports.data) == type({}) True >>> exports.raw_lines['/home/insights/shared/rw'] # List of lines that define this path ['/home/insights/shared/rw @group(rw,sync) ins1.example.com(rw,sync,no_root_squash) ins2.example.com(ro,sync,no_root_squash)'] >>> exports.raw_lines['/home/example'] # Lines are stored even if they contain duplicate hosts ['/home/example @group(rw,sync,root_squash) ins1.example.com(rw,sync,no_root_squash) ins2.example.com(rw,sync,no_root_squash)', '/home/example ins2.example.com(rw,sync,no_root_squash)'] >>> exports.ignored_exports {'/home/example': {'ins2.example.com': ['rw', 'sync', 'no_root_squash']}} >>> sorted(list(exports.all_options())) ['no_root_squash', 'ro', 'root_squash', 'rw', 'sync'] >>> sorted(list(exports.export_paths())) ['/home/example', '/home/insights/ins/special/all/config', '/home/insights/shared/rw', '/home/insights/shared/special/all/mail', '/home/utcs/shared/ro'] """ from itertools import chain from .. import Parser, parser from . import get_active_lines from insights.specs import Specs from insights.util import deprecated class NFSExportsBase(Parser): """ Class to parse ``/etc/exports`` and ``/etc/exports.d/*.exports``. Exports are stored keyed on the path of the export, and then the host definition. The flags are stored as a list. NFS allows the same path to be listed on multiple lines and in multiple files, but an exported path can only have one definition for a given host. Attributes: data (dict): Key is export path, value is a dict, where the key is the client host and the value is a list of options. ignored_exports (dict): A dictionary of exported paths that have host definitions that conflicted with a previous definition. ignored_lines (dict): A synonym for the above `ignored_exports` dictionary, for historical reasons. raw_lines (dict of lists): The list of the raw lines that define each exported path, including any lines that may have ignored exports. """ def _parse_host(self, content): if "(" in content: host, options = content.split("(") options = options.rstrip(")").split(",") else: host, options = content, [] return host, options def _parse_line(self, line): split = [i.strip() for i in line.split()] path, hosts = split[0], dict(self._parse_host(s) for s in split[1:]) return path, hosts def parse_content(self, content): # Exports can be duplicated, but the path-host tuple cannot: the # first read will be stored and all later path-host tuples cause # `exportfs` to generate a warning when setting up the export. self.data = {} self.ignored_exports = {} self.ignored_lines = self.ignored_exports self.raw_lines = {} for line in get_active_lines(content): path, hosts = self._parse_line(line) if path not in self.data: # New path, just add the hosts. self.data[path] = hosts self.raw_lines[path] = [line] else: # Add to raw lines even if some (or all) hosts are ignored. self.raw_lines[path].append(line) # Have to check each path-host tuple for host, flags in hosts.items(): if host not in self.data[path]: # Only add if it doesn't already exist. self.data[path][host] = flags else: if path not in self.ignored_exports: self.ignored_exports[path] = {host: flags} else: self.ignored_exports[path][host] = flags def export_paths(self): """Returns the set of all export paths as strings""" return set(self.data.keys()) def all_options(self): """Returns the set of all options used in all export entries""" items = chain.from_iterable(hosts.values() for hosts in self.data.values()) return set(chain.from_iterable(items)) def __iter__(self): return iter(self.data.items()) @staticmethod def reconstitute(path, d): """ .. warning:: This function is deprecated. Please use the `raw_lines` dictionary property of the parser instance instead, as this contains the actual lines from the exports file. 'Reconstitute' a line from its parsed value. The original lines are not used for this. The hosts in d are listed in alphabetical order, and the options are listed in the order originally given. Arguments: path (str): The exported path d (dict): The hosts definition of the exported path Returns: str: A line simulating the definition of that exported path to those hosts. """ deprecated( NFSExportsBase.reconstitute, 'Please use the `raw_lines` dictionary property of the parser instance' ) return " ".join([path] + ["%s(%s)" % (host, ",".join(options)) for host, options in d.items()]) @parser(Specs.nfs_exports) class NFSExports(NFSExportsBase): """Subclass to attach ``nfs_exports`` spec to""" pass @parser(Specs.nfs_exports_d) class NFSExportsD(NFSExportsBase): """Subclass to attach ``nfs_exports.d`` spec to""" pass
from __future__ import unicode_literals, print_function from jinja2 import FileSystemLoader, StrictUndefined from jinja2.environment import Environment env = Environment(undefined=StrictUndefined) env.loader = FileSystemLoader(".") vrf_list [ {"vrf_name": "blue1", "ipv4_enabled": True, "ipv6_enabled": True,"red": "100:1"} {"vrf_name": "blue2, "ipv4_enabled": True, "ipv6_enabled": True,"red": "200:2"} ] vrf_vars = {"vrf_list": vrf_list} my_template = "bgp_template.j2" j2_template = env.get_template(my_template) output = j2_template.render(**vrf_vars) print(output)
__author__ = 'mattjmorris' from .dynamo import Dynamo from boto.dynamodb2.table import Table from datetime import datetime, date, timedelta from pandas import DataFrame import re DAY_STR_FORMAT = "%Y-%m-%d" DAY_STR_RE = re.compile(r'^(\d{4})-(\d{2})-(\d{2})$') SECOND_STR_FORMAT = "%Y-%m-%d %H:%M:%S" SECOND_STR_RE = re.compile(r'^(\d{4})-(\d{2})-(\d{2})\s(\d{2}:\d{2}:\d{2})$') class DDBRuns(Dynamo): @classmethod def from_test_mode(cls, access_key=None, secret=None): """ Use this for getting an instance of this class that uses test tables. """ instance = cls(access_key, secret) instance.table = Table('test_runs', connection=instance.connection) return instance def __init__(self, access_key=None, secret=None): """ When called directly (as should be done for production code), sets table to the production 'runs' table. """ super(DDBRuns, self).__init__(access_key, secret) self.table = Table('runs', connection=self.connection) def save_new_run(self, dt_str=None, start_date_str=None, end_date_str=None): """ dt_str = datetime of run. Defaults to now. start_date_str = the start date for look-back of query performance data processing. * No default end_date_str = the end date for query performance data processing. Defaults to today. """ assert start_date_str, "start_date_str is required when saving a new run to runs table." assert DAY_STR_RE.match(start_date_str) if end_date_str: assert DAY_STR_RE.match(end_date_str) if dt_str: assert SECOND_STR_RE.match(dt_str) dt_str = dt_str or datetime.now().strftime(SECOND_STR_FORMAT) end_date_str = end_date_str or datetime.now().strftime(DAY_STR_FORMAT) return self.table.put_item(data={'dt': dt_str, 'start': start_date_str, 'end': end_date_str}) def most_recent_start_date_str(self): """ :return: a string representing most recent start date from db """ df = self.get_runs_df() if df.empty: return None else: # should already be sorted, but just in case... df.sort(columns=['dt'], ascending=True, inplace=True) return df.iloc[len(df)-1]['start'] def most_recent_end_date_str(self): """ :return: a string representing most recent end date from db """ df = self.get_runs_df() if df.empty: return None else: # should already be sorted, but just in case... df.sort(columns=['dt'], ascending=True, inplace=True) return df.iloc[len(df)-1]['end'] def get_runs_df(self): """ Returns all table as dataframe, sorted with most recent entry on bottom (ascending order) """ df = DataFrame([{k: v for k, v in list(r.items())} for r in self.table.scan()]) if df.empty: return df else: df.sort(columns=['dt'], ascending=True, inplace=True) # force df to have columns in this order return df[['dt', 'start', 'end']] def modify_throughput(self, requested_read, requested_write, table=None): table = table or self.table return super(DDBRuns, self).modify_throughput(requested_read, requested_write, table) def truncate_table(self): """ WARNING! Only use for test mode table """ assert self.table.table_name == 'test_runs', "Will only truncate test table. To truncate production table, run code manually" with self.table.batch_write() as batch: for item in self.table.scan(): batch.delete_item(dt=item['dt']) def thors_start_end_date_strings(self, new_run=True, days_ago_start=30): if new_run: if days_ago_start is not None: print(days_ago_start) start_date_str = self._days_ago_str(days_ago_start) else: start_date_str = self.most_recent_end_date_str() end_date_str = date.today().strftime(DAY_STR_FORMAT) else: start_date_str = self.most_recent_start_date_str() end_date_str = self.most_recent_end_date_str() assert start_date_str, "Start date string is None, please check the database since we are not doing a new run" assert end_date_str, "End date string is None, please check the database since we are not doing a new run" return start_date_str, end_date_str def _days_ago_str(self, num_days_ago): return (date.today() - timedelta(days=num_days_ago)).strftime(DAY_STR_FORMAT) def start_end_date_strings(self, new_run=True, days_ago_start=30): if new_run: start_date_str = self.most_recent_end_date_str() or self._days_ago_str(days_ago_start) end_date_str = date.today().strftime(DAY_STR_FORMAT) else: start_date_str = self.most_recent_start_date_str() end_date_str = self.most_recent_end_date_str() return start_date_str, end_date_str
# -*- coding: utf-8 -*- from .aliases import * from .helper import Helper from ..consts.lessons import LESSON_ID_MAX_LENGTH, LESSON_TITLE_MAX_LENGTH, LESSON_BODY_MAX_LENGTH, LESSON_DESC_MAX_LENGTH from .topics import Topics from wcics.utils.time import get_time class lessons(dbmodel, Helper): id = dbcol(dbint, primary_key = True) lid = dbcol(dbstr(LESSON_ID_MAX_LENGTH), unique = True, nullable = False) oid = dbcol(dbint, dbforkey('organizations.id', ondelete = "CASCADE", onupdate = "CASCADE")) title = dbcol(dbstr(LESSON_TITLE_MAX_LENGTH), nullable = False) desc = dbcol(dbstr(LESSON_DESC_MAX_LENGTH), nullable = False) body = dbcol(dbstr(LESSON_BODY_MAX_LENGTH), nullable = False) create_time = dbcol(dbint, default = get_time, nullable = False) def has_author(self, uid): return LessonAuthors.query.filter_by(lid = self.id, uid = uid).count() > 0 @property def authors(self): from .users import Users # importing inside the function to avoid a circular import at the top # the alternative is worse, which uses a private method and key access to the name directly return Users.query.join(LessonAuthors).filter(LessonAuthors.lid == self.id).all() @property def author_ids(self): return [uid for (uid,) in db.session.query(LessonAuthors.uid).filter_by(lid = self.id).all()] @property def topics(self): return LessonTopics.query.filter_by(lid = self.id).all() class lesson_topics(dbmodel, Helper): lid = dbcol(dbint, dbforkey(lessons.id, onupdate = "CASCADE", ondelete = "CASCADE"), primary_key = True) tid = dbcol(dbint, dbforkey(Topics.id, onupdate = "CASCADE", ondelete = "CASCADE"), primary_key = True) class lesson_authors(dbmodel, Helper): lid = dbcol(dbint, dbforkey(lessons.id, onupdate = "CASCADE", ondelete = "CASCADE"), primary_key = True) uid = dbcol(dbint, dbforkey('users.id', onupdate = "CASCADE", ondelete = "CASCADE"), primary_key = True) oid = dbcol(dbint, dbforkey('organizations.id', onupdate = "CASCADE", ondelete = "CASCADE"), nullable = False) __table_args__ = (db.ForeignKeyConstraint(("uid", "oid"), ("organization_users.uid", "organization_users.oid")), ) Lessons = lessons LessonTopics = lesson_topics LessonAuthors = lesson_authors
# coding: utf-8 """ ===================================== Feature Extraction for Classification ===================================== Extract acoustic features from labeled data for training an environment or speech classifier. To see how soundpy implements this, see `soundpy.builtin.envclassifier_feats`. """ ############################################################################################### # ##################################################################### import os, sys import inspect currentdir = os.path.dirname(os.path.abspath( inspect.getfile(inspect.currentframe()))) parentdir = os.path.dirname(currentdir) parparentdir = os.path.dirname(parentdir) packagedir = os.path.dirname(parparentdir) sys.path.insert(0, packagedir) import matplotlib.pyplot as plt import soundpy as sp import IPython.display as ipd package_dir = '../../../' os.chdir(package_dir) sp_dir = package_dir ###################################################### # Prepare for Extraction: Data Organization # ----------------------------------------- ###################################################### # I will use a sample speech commands data set: ########################################################## # Designate path relevant for accessing audiodata data_dir = '/home/airos/Projects/Data/sound/speech_commands_small_section/' ###################################################### # Choose Feature Type # ~~~~~~~~~~~~~~~~~~~ # We can extract 'mfcc', 'fbank', 'powspec', and 'stft'. # if you are working with speech, I suggest 'fbank', 'powspec', or 'stft'. feature_type = 'fbank' ###################################################### # Set Duration of Audio # ~~~~~~~~~~~~~~~~~~~~~ # How much audio in seconds used from each audio file. # The example noise and speech files are only 1 second long dur_sec = 1 ############################################################# # Built-In Functionality - soundpy extracts the features for you # ---------------------------------------------------------------------------- ############################################################ # Define which data to use and which features to extract # Everything else is based on defaults. A feature folder with # the feature data will be created in the current working directory. # (Although, you can set this under the parameter `data_features_dir`) # `visualize` saves periodic images of the features extracted. # This is useful if you want to know what's going on during the process. extraction_dir = sp.envclassifier_feats(data_dir, feature_type=feature_type, dur_sec=dur_sec, visualize=True); ################################################################ # The extracted features, extraction settings applied, and # which audio files were assigned to which datasets # will be saved in the following directory: extraction_dir ############################################################ # And that's it!
import os.path import sys import pytest from shapely.geometry import LineString from shapely.geometry import Point import conftest sys.path.append(os.path.join(os.path.dirname(__file__), '.')) sys.path.append(os.path.join(os.path.dirname(__file__), '..')) from interpoint import models class TestPtOnEdge: def test_is_point(self, fp_pt1): """ Point と LineString をテスト """ ptonedge = models.PtOnEdge(fp_pt1) assert ptonedge.is_point() ptonedge.gdf['geometry'] = LineString([(0, 0), (1, 1)]) assert not ptonedge.is_point() def test_is_numeric_m(self, fp_pt1): """ 縦断距離フィールドで、数値と文字列をテスト """ ptonedge = models.PtOnEdge(fp_pt1) fld_m = ptonedge.gdf.columns[0] assert ptonedge.is_numeric(fld_m) ptonedge.gdf[fld_m] = [c for c in 'abcde'] assert not ptonedge.is_numeric(fld_m) def test_is_numeric_z(self, fp_pt1): """ 標高値フィールドで、数値と文字列をテスト """ ptonedge = models.PtOnEdge(fp_pt1) fld_z = ptonedge.gdf.columns[1] assert ptonedge.is_numeric(fld_z) ptonedge.gdf[fld_z] = [c for c in 'abcde'] assert not ptonedge.is_numeric(fld_z) def test_fieldname(self, fp_pt1): """ カラム名と縦断距離昇順をテスト """ ptonedge = models.PtOnEdge(fp_pt1) ptonedge.fieldname(*conftest.COLS_MZ) list_columns = ptonedge.gdf.columns.tolist() assert list_columns == ['m', 'z', 'geometry'] assert ptonedge.gdf['m'].is_monotonic # type: ignore @pytest.mark.parametrize(('idx', 'm', 'z', 'x', 'y'), [ (0, 0, 10, 0, 0), (15, 150, 11.5, 150, 150), (40, 400, 14, 400, 400) ]) def test_interpolate_lengthwide(self, fp_pt1, idx, m, z, x, y): """ NAテストと、同値テスト """ pitch = 10.0 ptonedge = models.PtOnEdge(fp_pt1) ptonedge.fieldname(*conftest.COLS_MZ) ptonedge.interpolate_lengthwide(pitch=pitch) assert ptonedge.gdf.isnull().values.sum() == 0 # type: ignore list_mzxyg = ptonedge.gdf.iloc[idx].tolist() # type: ignore assert list_mzxyg == [m, z, x, y, Point(x, y, z)] class TestPtAll: @pytest.mark.parametrize(('idx', 'i', 'x', 'y', 'm', 'z'), [ (0, 0, 0.0, 0.0, 0.0, 10.0), (100, 2, 180.0, 200.0, 180.0, 11.8), (450, 10, 400.0, 500.0, 400.0, 14.0) ]) def test_interpolate_crosswide( self, ptall: models.PtAll, idx, i, x, y, m, z ): """ NAテストと、同値テスト """ assert ptall.gdf.isnull().values.sum() == 0 list_ixymzg = ptall.gdf.iloc[idx].tolist() # type: ignore assert list_ixymzg == [i, x, y, m, z, Point(x, y, z)] def test_output_shp(self, ptall: models.PtAll, fn='ptall.shp'): """ シェープファイル出力テスト """ fp = os.path.join(conftest.TMPFOLD, fn) ptall.output_shp(fp) assert os.path.isfile(fp) conftest.delfiles(fn) def test_is_qual_projected_crs(fp_pt1, fp_pt2): """ crs投影座標一致、定義なし、地理座標、不一致をテスト """ ptonedge1 = models.PtOnEdge(fp_pt1) ptonedge2 = models.PtOnEdge(fp_pt2) assert models.is_equal_projected_crs(ptonedge1, ptonedge2) ptonedge1.gdf.crs = None assert not models.is_equal_projected_crs(ptonedge1, ptonedge2) ptonedge1.gdf.crs = 'EPSG:4612' assert not models.is_equal_projected_crs(ptonedge1, ptonedge2) ptonedge1.gdf.crs = 'EPSG:2443' ptonedge2.gdf.crs = 'EPSG:2444' assert not models.is_equal_projected_crs(ptonedge1, ptonedge2) def test_is_equal_m(fp_pt1, fp_pt2): """ 2つの PtOnEdge の縦断距離で、一致と不一致をテスト """ ptonedge1 = models.PtOnEdge(fp_pt1) ptonedge2 = models.PtOnEdge(fp_pt2) ptonedge1.fieldname(*conftest.COLS_MZ) ptonedge2.fieldname(*conftest.COLS_MZ) assert models.is_equal_m(ptonedge1, ptonedge2) ptonedge1.gdf['m'] = ptonedge1.gdf['m'] + 1 # type: ignore assert not models.is_equal_m(ptonedge1, ptonedge2)
#! /usr/bin/python import time from datetime import datetime import serial from xbee import XBee, ZigBee PORT = '/dev/ttyUSB0' BAUD_RATE = 9600 # Open serial port and enable flow control ser = serial.Serial(PORT, BAUD_RATE, bytesize=8, parity='N', stopbits=1, timeout=None, xonxoff=1, rtscts=1, dsrdtr=1) # Create API object xbee = ZigBee(ser,escaped=True) #DEST_ADDR_LONG = "\x00\x13\xA2\x00\x40\x9C\x91\xA5" #DEST_ADDR_LONG = "\x00\x13\xA2\x00\x40\xC5\x5A\x84" # Router DEST_ADDR_LONG = "\x00\x13\xA2\x00\x40\xC5\x5B\x05" #part to discovery shot 16-bit address xbee.send("tx",data="000\n",dest_addr_long=DEST_ADDR_LONG,dest_addr="\xff\xfe") response = xbee.wait_read_frame() shot_addr = response["dest_addr"] # Continuously read and print packets while True: try: print "send data" tstart = datetime.now() xbee.send("tx",data="321\n",dest_addr_long=DEST_ADDR_LONG,dest_addr=shot_addr) xbee.send("tx",data="322\n",dest_addr_long=DEST_ADDR_LONG,dest_addr=shot_addr) xbee.send("tx",data="323\n",dest_addr_long=DEST_ADDR_LONG,dest_addr=shot_addr) xbee.send("tx",data="324\n",dest_addr_long=DEST_ADDR_LONG,dest_addr=shot_addr) xbee.send("tx",data="325\n",dest_addr_long=DEST_ADDR_LONG,dest_addr=shot_addr) tend = datetime.now() print tend - tstart time.sleep(1) except KeyboardInterrupt: break ser.close()
# Generated by Django 3.0.8 on 2020-08-08 15:07 from django.conf import settings from django.db import migrations, models import django.db.models.deletion import django_countries.fields class Migration(migrations.Migration): dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ('Shop', '0003_like'), ('Main', '0001_initial'), ] operations = [ migrations.CreateModel( name='Address', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('street_address', models.CharField(max_length=100)), ('apartment_address', models.CharField(max_length=100)), ('country', django_countries.fields.CountryField(max_length=2)), ('zip', models.CharField(max_length=100)), ('address_type', models.CharField(choices=[('B', 'Billing'), ('S', 'Shipping')], max_length=1)), ('default', models.BooleanField(default=False)), ('usr', models.ForeignKey(null=True, on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL)), ], options={ 'verbose_name_plural': 'Addresses', }, ), migrations.CreateModel( name='Payment', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('stripe_charge_id', models.CharField(max_length=50)), ('amount', models.FloatField()), ('timestamp', models.DateTimeField(auto_now_add=True)), ('usr', models.ForeignKey(null=True, on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL)), ], ), migrations.CreateModel( name='OrderItem', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('ordered', models.BooleanField(default=False)), ('quantity', models.IntegerField(default=1)), ('item', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='Shop.Item')), ('usr', models.ForeignKey(null=True, on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL)), ], ), migrations.CreateModel( name='Order', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('ref_code', models.CharField(blank=True, max_length=20, null=True)), ('start_date', models.DateTimeField(auto_now_add=True)), ('ordered_date', models.DateTimeField()), ('ordered', models.BooleanField(default=False)), ('being_delivered', models.BooleanField(default=False)), ('received', models.BooleanField(default=False)), ('refund_requested', models.BooleanField(default=False)), ('refund_granted', models.BooleanField(default=False)), ('billing_address', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='billing_address', to='Main.Address')), ('items', models.ManyToManyField(to='Main.OrderItem')), ('payment', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, to='Main.Payment')), ('shipping_address', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='shipping_address', to='Main.Address')), ('usr', models.ForeignKey(null=True, on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL)), ], ), ]
from math import cos, pi from typing import Callable, List from src.common.model.line_segment import LineSegment from src.common.model.numerical_integrator import NumericalIntegrator def get_mohler_roots(n: int) -> List[float]: return [cos((2 * k - 1) / (2 * n) * pi) for k in range(1, n + 1)] def get_mohler_coefficients(n: int) -> List[float]: return [pi / n] * n class MohlerMethod(NumericalIntegrator): def integrate(self, *, f: Callable, segment: LineSegment, n: int, **kwargs) -> float: roots = get_mohler_roots(n) coefficients = get_mohler_coefficients(n) return sum([coefficient * f(root) for coefficient, root in zip(coefficients, roots)]) @property def accuracy_degree(self) -> int: raise NotImplementedError
# Citcuit pseudocode # Data structures struct op: # operation data tx_type: # type of transaction, see the list: https://docs.google.com/spreadsheets/d/1ejK1MJfVehcwjgjVDFD3E2k1EZ7auqbG_y0DKidS9nA/edit#gid=0 chunk: # op chunk number (0..3) pubdata_chunk: # current chunk of the pubdata (always 8 bytes) args: # arguments for the operation # Merkle branches lhs: # left Merkle branch data rhs: # right Merkle branch data clear_account: # bool: instruction to clear the account in the current branch clear_subaccount: # bool: instruction to clear the subaccount in the current branch # precomputed witness: a: # depends on the optype, used for range checks b: # depends on the optype, used for range checks new_root: # new state root after the operation is applied account_path: # Merkle path witness for the account in the current branch subtree_path: # Merkle path witness for the subtree in the current branch struct cur: # current Merkle branch data struct computed: last_chunk: # bool: whether the current chunk is the last one in sequence pubdata: # pubdata accumulated over all chunks range_checked: # bool: ensures that a >= b new_pubkey_hash: # hash of the new pubkey, truncated to 20 bytes (used only for deposits) # Circuit functions def circuit: running_hash := initial_hash current_root := last_state_root prev.lhs := { 0, ... } prev.rhs := { 0, ... } prev.chunk := 0 prev.new_root := 0 for op in operations: # enfore correct bitlentgh for every input in witness # TODO: create a macro gadget to recursively iterate over struct member annotations (ZKS-119). for x in op: verify_bitlength(x) # check and prepare data verify_correct_chunking(op, computed) accumulate_sha256(op.pubdata_chunk) accumulate_pubdata(op, computed) # prepare Merkle branch cur := select_branch(op, computed) cur.cosigner_pubkey_hash := hash(cur.cosigner_pubkey) # check initial Merkle paths, before applying the operation op.clear_account := False op.clear_subaccount := False state_root := check_account_data(op, cur, computed, check_intersection = False) enforce state_root == current_root # check validity and perform state updates for the current branch by modifying `cur` struct execute_op(op, cur, computed) # check final Merkle paths after applying the operation new_root := check_account_data(op, cur, computed, check_intersection = True) # NOTE: this is checked separately for each branch side, and we already enforced # that `op.new_root` remains unchanged for both by enforcing that it is shared by all chunks enforce new_root == op.new_root # update global state root on the last op chunk if computed.last_chunk: current_root = new_root # update `prev` references # TODO: need a gadget to copy struct members one by one (ZKS-119). prev.rhs = op.rhs prev.lhs = op.lhs prev.args = op.args prev.new_root = op.new_root prev.chunk = op.chunk # final checks after the loop end enforce current_root == new_state_root enforce running_hash == pubdata_hash enforce last_chunk # any operation should close with the last chunk # make sure that operation chunks are passed correctly def verify_correct_chunking(op, computed): # enforce chunk sequence correctness enforce (op.chunk == 0) or (op.chunk == prev.chunk + 1) # ensure that chunks come in sequence max_chunks := switch op.tx_type deposit => 4, transfer_to_new=> 1, transfer => 2, # ...and so on enforce op.chunk < max_chunks # 4 constraints computed.last_chunk = op.chunk == max_chunks-1 # flag to mark the last op chunk # enforce that all chunks share the same witness: # - `op.args` for the common arguments of the operation # - `op.lhs` and `op.rhs` for left and right Merkle branches # - `new_root` of the state after the operation is applied correct_inputs := op.chunk == 0 # skip check for the first chunk or ( prev.args == op.args and prev.lhs == op.lhs and prev.rhs == op.rhs and prev.new_root == op.new_root ) # TODO: need a gadget for logical equality which works with structs (ZKS-119). enforce correct_inputs # accumulate pubdata from multiple chunks def accumulate_pubdata(op, computed): computed.pubdata = if op.chunk == 0: op.pubdata_chunk # initialize from the first chunk else: computed.pubdata << 8 + op.pubdata_chunk # determine the Merkle branch side (0 for LHS, 1 for RHS) and set `cur` for the current Merkle branch def select_branch(op, computed): op.current_side := LHS if op.tx_type == 'deposit' else op.chunk # TODO: need a gadget for conditional swap applied to each struct member (ZKS-119). cur := op.lhs if current_side == LHS else op.rhs return cur def check_account_data(op, cur, computed, check_intersection): # leaf data for account and balance leaves subaccount_data := ( cur.subaccount_balance, cur.subaccount_nonce, cur.creation_nonce, cur.cosigner_pubkey_hash, cur.cosigner_balance, cur.subaccount_token) balance_data := cur.balance # subaccount emptiness check and clearing cur.subaccount_is_empty := subaccount_data == EMPTY_SUBACCOUNT subaccount_data = EMPTY_SUBACCOUNT if clear_subaccount else subaccount_data # subtree Merkle checks balances_root := merkle_root(token, op.balances_path, balance_data) subaccounts_root := merkle_root(token, op.balances_path, subaccount_data) subtree_root := hash(balances_root, subaccounts_root) # account data account_data := hash(cur.owner_pub_key, cur.subtree_root, cur.account_nonce) # account emptiness check and clearing cur.account_is_empty := account_data == EMPTY_ACCOUNT account_data = EMPTY_ACCOUNT if clear_account else account_data # final state Merkle root verification with conditional intersection check intersection_path := intersection(op.account_path, cur.account, lhs.account, rhs.account, lhs.intersection_hash, rhs.intersection_hash) path_witness := intersection_path if check_intersection else op.account_path state_root := merkle_root(cur.account, path_witness, account_data) return state_root # verify operation and execute state updates def execute_op(op, cur, computed): # universal range check computed.range_checked := op.a >= op.b # unpack floating point values and hashes op.args.amount := unpack(op.args.amount_packed) op.args.fee := unpack(op.args.fee_packed) # some operations require tighter amount packing (with less precision) computed.compact_amount_correct := op.args.amount == op.args.compact_amount * 256 # new pubkey hash for deposits computed.new_pubkey_hash := hash(cur.new_pubkey) # signature check # NOTE: signature check must always be valid, but msg and signer can be phony enforce check_sig(cur.sig_msg, cur.signer_pubkey) # execute operations op_valid := False op_valid = op_valid or op.tx_type == 'noop' op_valid = op_valid or transfer_to_new(op, cur, computed) op_valid = op_valid or deposit(op, cur, computed) op_valid = op_valid or close_account(op, cur, computed) op_valid = op_valid or withdraw(op, cur, computed) op_valid = op_valid or escalation(op, cur, computed) op_valid = op_valid or create_subaccount(op, cur, computed) op_valid = op_valid or close_subaccount(op, cur, computed) op_valid = op_valid or fill_orders(op, cur, computed) # `op` MUST be one of the operations and MUST be valid enforce op_valid def transfer_to_new(op, cur, computed): # transfer_to_new validation is split into lhs and rhs; pubdata is combined from both branches lhs_valid := op.tx_type == 'transfer_to_new' # here we process the first chunk and op.chunk == 0 # sender authorized spending and recepient and lhs.sig_msg == hash('transfer_to_new', lhs.account, lhs.token, lhs.account_nonce, op.args.amount_packed, op.args.fee_packed, cur.new_pubkey) # sender is account owner and lhs.signer_pubkey == cur.owner_pub_key # sender has enough balance: we checked above that `op.a >= op.b` # NOTE: no need to check overflow for `amount + fee` because their bitlengths are enforced] and computed.range_checked and (op.a == cur.balance) and (op.b == (op.args.amount + op.args.fee) ) # NOTE: updating the state is done by modifying data in the `cur` branch if lhs_valid: cur.leaf_balance = cur.leaf_balance - (op.args.amount + op.args.fee) cur.account_nonce = cur.account_nonce + 1 rhs_valid := op.tx_type == 'transfer_to_new' # here we process the second (last) chunk and op.chunk == 1 # compact amount is passed to pubdata for this operation and computed.compact_amount_correct # pubdata contains correct data from both branches, so we verify it agains `lhs` and `rhs` and pubdata == (op.tx_type, lhs.account, lhs.token, lhs.compact_amount, cur.new_pubkey_hash, rhs.account, rhs.fee) # new account branch is empty and cur.account_is_empty # sender signed the same recepient pubkey of which the hash was passed to public data and lhs.new_pubkey == rhs.new_pubkey if rhs_valid: cur.leaf_balance = op.args.amount return lhs_valid or rhs_valid def deposit(op, cur, computed): ignore_pubdata := not last_chunk tx_valid := op.tx_type == 'deposit' and (ignore_pubdata or pubdata == (cur.account, cur.token, args.compact_amount, cur.new_pubkey_hash, args.fee)) and cur.is_account_empty and computed.compact_amount_correct and computed.range_checked and (op.a == op.args.amount) and (op.b == op.args.fee) if tx_valid: cur.leaf_balance = op.args.amount - op.args.fee return tx_valid def close_account(op, cur, computed): tx_valid := op.tx_type == 'close_account' and pubdata == (cur.account, cur.subtree_root) and cur.sig_msg == ('close_account', cur.account, cur.leaf_index, cur.account_nonce, cur.amount, cur.fee) and cur.signer_pubkey == cur.owner_pub_key if tx_valid: op.clear_account = True return tx_valid def no_nonce_overflow(nonce): nonce_overflow := cur.leaf_nonce == 0x10000-1 # nonce is 2 bytes long return not nonce_overflow def withdraw(op, cur, computed): tx_valid := op.tx_type == 'withdraw' and computed.compact_amount_correct and pubdata == (op.tx_type, cur.account, cur.token, op.args.amount, op.args.fee) and computed.range_checked and (op.a == cur.balance) and (op.b == (op.args.amount + op.args.fee) ) and cur.sig_msg == ('withdraw', cur.account, cur.token, cur.account_nonce, cur.amount, cur.fee) and cur.signer_pubkey == cur.owner_pub_key and no_nonce_overflow(cur.leaf_nonce) if tx_valid: cur.balance = cur.balance - (op.args.amount + op.args.fee) cur.account_nonce = cur.leaf_nonce + 1 return tx_valid def escalation(op, cur, computed): tx_valid := op.tx_type == 'escalation' and pubdata == (op.tx_type, cur.account, cur.subaccount, cur.creation_nonce, cur.leaf_nonce) and cur.sig_msg == ('escalation', cur.account, cur.subaccount, cur.creation_nonce) (cur.signer_pubkey == cur.owner_pub_key or cur.signer_pubkey == cosigner_pubkey) if tx_valid: cur.clear_subaccount = True return tx_valid def transfer(op, cur, computed): lhs_valid := op.tx_type == 'transfer' and op.chunk == 0 and lhs.sig_msg == ('transfer', lhs.account, lhs.token, lhs.account_nonce, op.args.amount_packed, op.args.fee_packed, rhs.account_pubkey) and lhs.signer_pubkey == cur.owner_pub_key and computed.range_checked and (op.a == cur.balance) and (op.b == (op.args.amount + op.args.fee) ) and no_nonce_overflow(cur.account_nonce) if lhs_valid: cur.balance = cur.balance - (op.args.amount + op.args.fee) cur.account_nonce = cur.account_nonce + 1 rhs_valid := op.tx_type == 'transfer' and op.chunk == 1 and not cur.account_is_empty and pubdata == (op.tx_type, lhs.account, lhs.token, op.args.amount, rhs.account, op.args.fee) and computed.range_checked and (op.a == (cur.balance + op.args.amount) ) and (op.b == cur.balance ) if rhs_valid: cur.balance = cur.balance + op.args.amount return lhs_valid or rhs_valid # Subaccount operations def create_subaccount(op, cur, computed): # On the LHS we have cosigner, we only use it for a overflow check lhs_valid: = op.tx_type == 'create_subaccount' and op.chunk == 0 and computed.range_checked and (op.a == rhs.balance) and (op.b == (op.args.amount + op.args.fee) ) # We process everything else on the RHS rhs_valid := op.tx_type == 'create_subaccount' and op.chunk == 1 and cur.sig_msg == ( 'create_subaccount', cur.account, # cur = rhs lhs.account, # co-signer account on the lhs cur.token, cur.account_nonce, op.args.amount_packed, op.args.fee_packed ) and cur.signer_pubkey == cur.owner_pub_key and cur.subaccount_is_empty and pubdata == (op.tx_type, lhs.account, lhs.leaf_index, op.args.amount, rhs.account, op.args.fee) and computed.range_checked and (op.a == (cur.subaccount_balance + op.args.amount) ) and (op.b == cur.subaccount_balance) and no_nonce_overflow(cur.account_nonce) if rhs_valid: # initialize subaccount cur.subaccount_balance = cur.subaccount_balance + op.args.amount cur.creation_nonce = cur.account_nonce cur.cosigner_pubkey = lhs.account_pubkey cur.subaccount_token = cur.token # update main account cur.balance = cur.balance - (op.args.amount + op.args.fee) cur.account_nonce = cur.account_nonce + 1 return lhs_valid or rhs_valid def close_subaccount(op, cur, computed): # tbd: similar to create_subaccount() def fill_orders(op, cur, computed): # tbd
#!/bin/env python3 "ngugen -- generate nginx.unit config files, safely and sanely via a tiny DSL;" if True: from collections import OrderedDict # To make things look 'right'; import json import os import re __author__ = "mr.wooK@gmail.com" __license__ = "MIT License" __copyright__ = "2021 (c)" DEBUG = False """ # Routes { "match": { "uri": [ "/v1" ]}, "action": { "pass": "applications/error_v1" } }, { "match": { "uri": [ "/search", "/esearch", "/search/v0", "/search/v1" ] } } { "match": { "uri": [ "/dummy/v0" ] }, "action": { "pass": "applications/dummy_v0" } }, { "match": { "uri": [ "/dummy" ] }, "action": { "pass": "applications/dummy_app" } }, { "action": { "pass": "applications/search" } }, Applications "error_v1": { "type": "python3.8", "user": "nobody", "path": "/var/www/unit/applications/error_server", "module": "error_server", "working_directory" : "/tmp", "processes" : { "max": 3, "spare": 2 }, "environment": { "aws_access_key_id":"x", "aws_secret_access_key":"y" } }, , "dummy_app": { "type": "python3.8", "working_directory": "/var/app/error_service", "path": "/var/www/unit/applications/error_server", "module": "dummy_server" }, "dummy_v0": { "type": "python3.8", "working_directory": "/var/app/error_service", "path": "/var/www/unit/applications/error_server", "module": "dummy_server" }, ____________________________________________________________________________ % ngugen <conf_file> : show -- show file as conf : jq -- show via jq : q : write <conf_file>.json : !param spec (as below) : update <conf_file> """ class Ngugen(): ASSIGNMENT = re.compile(r'(?P<lhs>[\w\.\"]+)\s*=\s*(?P<rhs>.*)') INCLUDE = re.compile(r'^include\s+(?P<filename>[\w\.\/]+)') LISTENERS = re.compile(r'^listeners\s+(?P<domains>.*):(?P<port>\d+)\s+(?P<processor>.*)') ROUTES = re.compile(r'^routes\s+(?P<matcher>\w+)\s*(?P<processor>[a-z]+)\s*(?P<application>\w+)\s*(?P<targets>.*)') def __init__(self, cfg_file = None): self._fn = cfg_file self._globals = dict(applications=dict(), listeners=dict(), routes=dict(), settings=dict(), isolation=dict(), extras=dict()) self._listeners = {} self._applications = {} self._isolation = {} self._routes = [ ] self._settings = {} self._extras = {} self._top = { "global" : self._globals, "apps" : self._applications, "applications" : self._applications, "listeners" : self._listeners, "routes" : self._routes, "settings": self._settings, "isolation" : self._isolation, "extras" : self._extras } self._sequence = [ 'listeners', 'routes', 'applications', 'settings', 'isolation', 'extras' ] if cfg_file: self.load(cfg_file) def parse_line(self, ln): ln = ln.strip() match = Ngugen.ASSIGNMENT.match(ln) if match: gd = match.groupdict() return self._assign(gd['lhs'], gd['rhs']) match = Ngugen.INCLUDE.match(ln) if match: gd = match.groupdict() return self._include(gd['filename']) match = Ngugen.LISTENERS.match(ln) if match: gd = match.groupdict() return self._listener(gd['domains'], gd['port'], gd['processor']) match = Ngugen.ROUTES.match(ln) if match: gd = match.groupdict() if gd['processor'] == "default": targets = "" else: targets = gd['targets'] return self._routing(gd['matcher'], gd['processor'], gd['application'], targets) return False def load(self, fn): ifd = open(fn, 'r') ibuf = [ln[:-1].strip() for ln in ifd.readlines()] ifd.close() ibuf = [ln for ln in ibuf if ln] ibuf = [ln for ln in ibuf if not ln[0] in [ '#', ';' ] ] self._ibuf = ibuf load_ok = True for ln in self._ibuf: self.debug(f"--{ln}--") rc = self.parse_line(ln) if not rc: print(f"Parse failed for {ln}") load_ok = False return load_ok def _assign(self, lhs, rhs): self.debug(f"_assign: {lhs} {rhs}") lhs, rhs = lhs.strip(), rhs.strip() if lhs != lhs.lower(): print("WARNING: assignment: left hand side {lhs} is not all lower case") if '"' in lhs: lhs_split = self._assignment_quoted(lhs) if not lhs_split: raise ValueError(f"Bad quotes in assignment in {lhs}") else: lhs_split = lhs.split('.') if len(lhs_split) < 2: raise ValueError(f"Bad assignment destination in {lhs}") group = lhs_split.pop(0).lower() if group not in self._top: raise ValueError(f"Unknown assignment group {group}") domain = self._top[group] while lhs_split: pointer = lhs_split.pop(0) if lhs_split and (pointer in domain): domain = domain[pointer] continue # if more things in vector but pointer not established in domain, establish it; if lhs_split and (pointer not in domain): domain[pointer] = dict() domain = domain[pointer] continue # Check for terminal pointer, and make assignment if (not lhs_split) and pointer: domain[pointer] = rhs return True # if not lhs_split, should have done assignment by now? raise ValueError(f"Termination issues in assignment for {lhs} = {rhs}") def _assignment_quoted(self, lhs): lhs_split = [ ] while lhs: if not lhs.startswith('"'): if '.' in lhs: dot = lhs.index('.') lhs_split.append(lhs[:dot]) lhs = lhs[dot + 1:] continue # Terminal word lhs_split.append(lhs) return lhs_split # lhs must start with '"' by now; if lhs.count('"') & 1: raise ValueError(f"Odd number of quotes in {lhs}") q0 = 0 # Skip the first quote... q1 = lhs.index('"', q0 +1 ) # q1 = lhs[q0+1:lhs.index('"') + 1] # Get everything between the quotes... field = lhs[q0 +1:q1] lhs = lhs[len(field) + 3:] # Lose dot + what's been parsed before next iteration; lhs_split.append(field) continue return lhs_split def debug(self, txt): if DEBUG: print(txt) return True def _include(self, fn): self.debug(f"_include {fn}") self._load(fn) return True def _listener(self, domains, port, processor): """ Listeners are a dict of key-value pairs where the key is "hostnames:portnums and the value is a dictionary of pass options; """ group = self._top['listeners'] domain_port = f"{domains}:{port}" action, where = re.split(r'\s+', processor) group[domain_port] = { action : where } return True def _routing(self, matcher, processor, app, targets): """ routes are a list of dicts, where match provides a predicate condition (ie: uri against a list of potential matches), with a final action case that provides the default route if none of the prior matches succeeds; """ routes = self._top['routes'] matcher, processor = matcher.lower(), processor.lower() if matcher == "match_uri": targets = targets.replace(",", " ") uri_list = re.split(r'\s+', targets) pass_dict = { processor : app } route = dict(match=OrderedDict(uri=uri_list, action=pass_dict)) routes.append(route) return True elif matcher == "default": route = dict(action={ processor : app }) routes.append(route) return True else: raise ValueError(f"Unknown processor type {processor}") return True def save(self, fn): if os.path.isfile(fn): os.rename(fn, f"{fn}~") ofd = open(fn, 'w') top = dict() final = dict() for section in self._sequence: user_globals = self._globals[section] specified = self._top[section] if section == 'routes': top[section] = specified continue elif section == 'extras': top.update(self._top[section]) continue elif not self._top[section]: continue elif section == 'applications': if not self._top[section]: continue top[section] = dict() subsections = list(self._top[section].keys()) subsections.sort() for sub in subsections: per_app = self._top[section][sub] use = { **user_globals, **per_app } top[section][sub] = use continue else: top[section] = { **user_globals, **specified} continue output = json.dumps(top, indent=2) ofd.write(f"{output}\n") ofd.close() return True if __name__ == "__main__": import sys args = sys.argv[:] pname = args.pop(0) if not args: print(f"No filename on command line, that's all folks!") sys.exit(1) ifn = args.pop(0) if not os.path.isfile(ifn): print(f"File {ifn} not found, ttfn!") sys.exit(1) if args: ofn = args.pop(0) else: ofn = os.path.splitext(ifn)[0] + ".json" ngugen = Ngugen(ifn) ngugen.save(ofn) print(f"Wrote {ofn}")
import datetime import json import os import typing import gpxpy # type: ignore import pint # type: ignore import s2sphere # type: ignore import polyline # type: ignore from stravaviz.exceptions import TrackLoadError from stravaviz.units import Units class Track: """Create and maintain info about a given activity track (corresponding to one GPX file). Attributes: file_names: Basename of a given file passed in load_gpx. polylines: Lines interpolated between each coordinate. start_time: Activity start time. end_time: Activity end time. length: Length of the track (2-dimensional). self.special: True if track is special, else False. Methods: load_gpx: Load a GPX file into the current track. bbox: Compute the border box of the track. append: Append other track to current track. load_cache: Load track from cached json data. store_cache: Cache the current track. """ def __init__(self) -> None: self.file_names: typing.List[str] = [] self.polylines: typing.List[typing.List[s2sphere.LatLng]] = [] self.elevations = [] self._start_time: typing.Optional[datetime.datetime] = None self._end_time: typing.Optional[datetime.datetime] = None # Don't use Units().meter here, as this constructor is called from # within a thread (which would create a second unit registry!) self._length_meters = 0.0 self.special = False def load_gpx(self, file_name: str) -> None: """Load the GPX file into self. Args: file_name: GPX file to be loaded . Raises: TrackLoadError: An error occurred while parsing the GPX file (empty or bad format). PermissionError: An error occurred while opening the GPX file. """ try: self.file_names = [os.path.basename(file_name)] # Handle empty gpx files # (for example, treadmill runs pulled via garmin-connect-export) if os.path.getsize(file_name) == 0: raise TrackLoadError("Empty GPX file") with open(file_name, "r") as file: self._load_gpx_data(gpxpy.parse(file)) except TrackLoadError as e: raise e except gpxpy.gpx.GPXXMLSyntaxException as e: raise TrackLoadError("Failed to parse GPX.") from e except PermissionError as e: raise TrackLoadError("Cannot load GPX (bad permissions)") from e except Exception as e: raise TrackLoadError("Something went wrong when loading GPX.") from e def has_time(self) -> bool: return self._start_time is not None and self._end_time is not None def start_time(self) -> datetime.datetime: assert self._start_time is not None return self._start_time def set_start_time(self, value: datetime.datetime) -> None: self._start_time = value def end_time(self) -> datetime.datetime: assert self._end_time is not None return self._end_time def set_end_time(self, value: datetime.datetime) -> None: self._end_time = value @property def length_meters(self) -> float: return self._length_meters @length_meters.setter def length_meters(self, value: float) -> None: self._length_meters = value def length(self) -> pint.quantity.Quantity: return self._length_meters * Units().meter def bbox(self) -> s2sphere.LatLngRect: """Compute the smallest rectangle that contains the entire track (border box).""" bbox = s2sphere.LatLngRect() for line in self.polylines: for latlng in line: bbox = bbox.union(s2sphere.LatLngRect.from_point(latlng.normalized())) return bbox def _load_gpx_data(self, gpx: gpxpy.gpx.GPX) -> None: self._start_time, self._end_time = gpx.get_time_bounds() if not self.has_time(): raise TrackLoadError("Track has no start or end time.") self._length_meters = gpx.length_2d() if self._length_meters <= 0: raise TrackLoadError("Track is empty.") gpx.simplify() for t in gpx.tracks: for s in t.segments: line = [s2sphere.LatLng.from_degrees(p.latitude, p.longitude) for p in s.points] self.polylines.append(line) elevation_line = [p.elevation for p in s.points] if not all(elevation_line): raise TrackLoadError("Track has invalid elevations.") self.elevations.append(elevation_line) def append(self, other: "Track") -> None: """Append other track to self.""" self._end_time = other.end_time() self.polylines.extend(other.polylines) self._length_meters += other.length_meters self.file_names.extend(other.file_names) self.special = self.special or other.special
import click import pkgutil import os import os.path as osp from . import ( CONFIG_DIR, ) @click.command() @click.option("--config", default=None, type=click.Path(exists=True)) def cli(config): # make the bimker configuration dir os.makedirs(CONFIG_DIR) ## Generate or link to the config file config_path = osp.join(CONFIG_DIR, 'config.py') if config is None: # generate the default config.py file config_str = pkgutil.get_data(__name__, 'profile_config/config.py') with open(config_path, 'wb') as wf: wf.write(config_str) else: os.symlink(config, config_path) # then generate the default env.sh file env_str = pkgutil.get_data(__name__, 'env_script/env.sh') env_path = osp.join(CONFIG_DIR, 'env.sh') with open(env_path, 'wb') as wf: wf.write(env_str) if __name__ == "__main__": cli()
# optimizer optimizer = dict(type='AdamW', lr=1e-4, betas=(0.95, 0.99), weight_decay=0.01,) # learning policy lr_config = dict( policy='CosineAnnealing', warmup='linear', warmup_iters=1600 * 8, warmup_ratio=1.0 / 100, min_lr_ratio=1e-8, by_epoch=False) # test add by_epoch false optimizer_config = dict(grad_clip=dict(max_norm=35, norm_type=2)) # runtime settings runner = dict(type='IterBasedRunner', max_iters=1600 * 24) checkpoint_config = dict(by_epoch=False, max_keep_ckpts=10, interval=1600) evaluation = dict(by_epoch=False, start=0, interval=1600, pre_eval=True, rule='less', save_best='abs_rel_all', greater_keys=("a1_all", "a2_all", "a3_all"), less_keys=("abs_rel_all", "rmse_all"))
bl_info = {"name": "Icicle Generator", "author": "Eoin Brennan (Mayeoin Bread)", "version": (2, 1), "blender": (2, 7, 4), "location": "View3D > Add > Mesh", "description": "Adds a linear string of icicles of different sizes", "warning": "", "wiki_url": "", "tracker_url": "", "category": "Add Mesh"} import bpy import bmesh from mathutils import Vector from math import pi, sin, cos, tan, asin, acos, atan from bpy.props import FloatProperty, IntProperty import random class IcicleGenerator(bpy.types.Operator): """Icicle Generator""" bl_idname = "mesh.icicle_gen" bl_label = "Icicle Generator" bl_options = {"REGISTER", "UNDO"} ## # User input ## # Maximum radius maxR = FloatProperty(name="Max R", description="Maximum radius of a cone", default=0.15, min=0.01, max=1.0, unit="LENGTH") # Minimum radius minR = FloatProperty(name="Min R", description="Minimum radius of a cone", default=0.025, min=0.01, max=1.0, unit="LENGTH") # Maximum depth maxD = FloatProperty(name="Max D", description="Maximum depth (height) of cone", default=2.0, min=0.2, max=2.0, unit="LENGTH") # Minimum depth minD = FloatProperty(name="Min D", description="Minimum depth (height) of cone", default=1.5, min=0.2, max=2.0, unit="LENGTH") # Number of verts at base of cone verts = IntProperty(name="Vertices", description="Number of vertices", default=8, min=3, max=24) # Number of iterations before giving up trying to add cones # Prevents crashes and freezes # Obviously, the more iterations, the more time spent calculating. # Max value (10,000) is safe but can be slow, # 2000 to 5000 should be adequate for 95% of cases its = IntProperty(name="Iterations", description="Number of iterations before giving up, prevents freezing/crashing", default=2000, min=1, max=10000) ## # Main function ## def execute(self, context): rad = self.maxR radM = self.minR depth = self.maxD minD = self.minD ## # Add cone function ## def add_cone(x, y, z, randrad, rd): ac = bpy.ops.mesh.primitive_cone_add ac( vertices=self.verts, radius1=randrad, radius2=0.0, depth=rd, end_fill_type='NGON', view_align=False, location=(x, y, z), rotation=(pi, 0.0, 0.0)) ## # Add icicle function ## def add_icicles(rad, radM, depth, minD): pos1 = Vector((0.0, 0.0, 0.0)) pos2 = Vector((0.0, 0.0, 0.0)) pos = 0 obj = bpy.context.object bm = bmesh.from_edit_mesh(obj.data) wm = obj.matrix_world # Vectors for selected verts for v in bm.verts: if v.select: if pos == 0: p1 = v.co pos = 1 elif pos == 1: p2 = v.co pos = 2 else: p5 = v.co # Set first to left most vert on X-axis... if(p1.x > p2.x): pos1 = p2 pos2 = p1 # Or bottom-most on Y-axis if X-axis not used elif(p1.x == p2.x): if(p1.y > p2.y): pos1 = p2 pos2 = p1 else: pos1 = p1 pos2 = p2 else: pos1 = p1 pos2 = p2 # World matrix for positioning pos1 = pos1 * wm pos2 = pos2 * wm # X values not equal, working on X-Y-Z planes if pos1.x != pos2.x: # Get the angle of the line if(pos2.y != pos1.y): angle = atan((pos2.x - pos1.x) / (pos2.y - pos1.y)) print("Angle:", angle) else: angle = pi / 2 # Total length of line, neglect Z-value (Z only affects height) xLength = (((pos2.x - pos1.x)**2) + ((pos2.y - pos1.y)**2))**0.5 # Slopes if lines ySlope = (pos2.y - pos1.y) / (pos2.x - pos1.x) zSlope = (pos2.z - pos1.z) / (pos2.x - pos1.x) # Fixes positioning error with some angles if (angle < 0): i = pos2.x j = pos2.y k = pos2.z else: i = pos1.x j = pos1.y k = pos1.z l = 0.0 # Z and Y axis' intercepts zInt = k - (zSlope * i) yInt = j - (ySlope * i) # Equal values, therfore radius should be that size if(radM == rad): randrad = rad # Otherwise randomise it else: randrad = (rad - radM) * random.random() # Depth, as with radius above if(depth == minD): rd = depth else: rd = (depth - minD) * random.random() # Get user iterations iterations = self.its # Counter for iterations c = 0 while(l < xLength) and (c < iterations): if(radM == rad): rr = randrad else: rr = randrad + radM if(depth == minD): dd = rd else: dd = rd + minD # Icicles generally taller than wider, check if true if(dd > rr): # If the new icicle won't exceed line length # Fix for overshooting lines if(l + rr + rr <= xLength): # Using sine/cosine of angle keeps icicles consistently spaced i = i + (rr) * sin(angle) j = j + (rr) * cos(angle) l = l + rr # Add a cone in new position add_cone(i, j, (i * zSlope) + (zInt - (dd) / 2), rr, dd) # Add another radius to i & j to prevent overlap i = i + (rr) * sin(angle) j = j + (rr) * cos(angle) l = l + rr # New values for rad and depth if(radM == rad): randrad = rad else: randrad = (rad - radM) * random.random() if(depth == minD): rd = depth else: rd = (depth - minD) * random.random() # If overshoot, try find smaller cone else: if(radM == rad): randrad = rad else: randrad = (rad - radM) * random.random() if(depth == minD): rd = depth else: rd = (depth - minD) * random.random() # If wider than taller, try find taller than wider else: if(radM == rad): randrad = rad else: randrad = (rad - radM) * random.random() if(depth == minD): rd = depth else: rd = (depth - minD) * random.random() # Increase iterations by 1 c = c + 1 # if(c >= iterations): # print("Too many iterations, please try different values") # print("Try increasing gaps between min and max values") # If X values equal, then just working in Y-Z plane, # Provided Y values not equal elif (pos1.x == pos2.x) and (pos1.y != pos2.y): # Absolute length of Y line xLength = ((pos2.y - pos1.y)**2)**0.5 i = pos1.x j = pos1.y k = pos1.z l = 0.0 # Z-slope and intercept zSlope = (pos2.z - pos1.z) / (pos2.y - pos1.y) zInt = k - (zSlope * j) # Same as above for X-Y-Z plane, just X values don't change if(radM == rad): randrad = rad else: randrad = (rad - radM) * random.random() if(depth == minD): rd = depth else: rd = (depth - minD) * random.random() iterations = self.its c = 0 while(l < xLength) and (c < iterations): if(radM == rad): rr = randrad else: rr = randrad + radM if(depth == minD): dd = rd else: dd = rd + minD if(dd > rr): if(l + rr + rr <= xLength): j = j + (rr) l = l + (rr) add_cone(i, j, (i * zSlope) + (zInt - (dd) / 2), rr, dd) j = j + (rr) l = l + (rr) if(radM == rad): randrad = rad else: randrad = (rad - radM) * random.random() if(depth == minD): rd = depth else: rd = (depth - minD) * random.random() else: if(radM == rad): randrad = rad else: randrad = (rad - radM) * random.random() if(depth == minD): rd = depth else: rd = (depth - minD) * random.random() else: if(radM == rad): randrad = rad else: randrad = (rad - radM) * random.random() if(depth == minD): rd = depth else: rd = (depth - minD) * random.random() c = c + 1 # Otherwise X and Y values the same, so either verts are on top of each other # Or its a vertical line. Either way, we don't like it else: print("Cannot work on vertical lines") ## # Run function ## def runIt(rad, radM, depth, minD): # Check that min values are less than max values if(rad >= radM) and (depth >= minD): obj = bpy.context.object if obj.mode == 'EDIT': # List of initial edges oEdge = [] bm = bmesh.from_edit_mesh(obj.data) for e in bm.edges: if e.select: # Append selected edges to list oEdge.append(e.index) # For every initially selected edge, add cones for e in oEdge: bpy.ops.mesh.select_all(action='DESELECT') bm.edges.ensure_lookup_table() bm.edges[e].select = True add_icicles(rad, radM, depth, minD) else: print("Object not in edit mode") # Run the function obj = bpy.context.object if obj.type == 'MESH': runIt(rad, radM, depth, minD) else: print("Only works on meshes") return {'FINISHED'} # Add to menu and register/unregister stuff def menu_func(self, context): self.layout.operator(IcicleGenerator.bl_idname, text="Icicle", icon="PLUGIN") def register(): bpy.utils.register_class(IcicleGenerator) bpy.types.INFO_MT_mesh_add.append(menu_func) def unregister(): bpy.utils.unregister_class(IcicleGenerator) bpy.types.INFO_MT_mesh_add.remove(menu_func) if __name__ == "__main__": register()
# ~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~ # MIT License # # Copyright (c) 2021 Nathan Juraj Michlo # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # ~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~ import logging from dataclasses import dataclass from numbers import Number from typing import Any from typing import Dict from typing import final from typing import Sequence from typing import Tuple from typing import Union import torch from disent.frameworks.ae._ae_mixin import _AeAndVaeMixin from disent.frameworks.helper.util import detach_all from disent.model import AutoEncoder from disent.util.iters import map_all # ========================================================================= # # framework_vae # # ========================================================================= # class Ae(_AeAndVaeMixin): """ Basic Auto Encoder ------------------ See the docs for the VAE, while the AE is more simple, the VAE docs cover the concepts needed to get started with writing Auto-Encoder sub-classes. Like the VAE, the AE is also written such that you can change the number of required input observations that should be fed through the network in parallel with `REQUIRED_OBS`. Various hooks are also made available to add functionality and access the internal data. - HOOKS: * `hook_ae_intercept_zs` * `hook_ae_compute_ave_aug_loss` (NB: not the same as `hook_compute_ave_aug_loss` from VAEs) - OVERRIDES: * `compute_ave_recon_loss` """ # override REQUIRED_Z_MULTIPLIER = 1 REQUIRED_OBS = 1 @dataclass class cfg(_AeAndVaeMixin.cfg): pass def __init__(self, model: AutoEncoder, cfg: cfg = None, batch_augment=None): super().__init__(cfg=cfg, batch_augment=batch_augment) # initialise the auto-encoder mixin (recon handler, model, enc, dec, etc.) self._init_ae_mixin(model=model) # --------------------------------------------------------------------- # # AE Training Step -- Overridable # # --------------------------------------------------------------------- # @final def do_training_step(self, batch, batch_idx): xs, xs_targ = self._get_xs_and_targs(batch, batch_idx) # FORWARD # -~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~- # # latent variables zs = map_all(self.encode, xs) # [HOOK] intercept latent variables zs, logs_intercept_zs = self.hook_ae_intercept_zs(zs) # reconstruct without the final activation xs_partial_recon = map_all(self.decode_partial, detach_all(zs, if_=self.cfg.detach_decoder)) # -~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~- # # LOSS # -~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~- # # compute all the recon losses recon_loss, logs_recon = self.compute_ave_recon_loss(xs_partial_recon, xs_targ) # [HOOK] augment loss aug_loss, logs_aug = self.hook_ae_compute_ave_aug_loss(zs=zs, xs_partial_recon=xs_partial_recon, xs_targ=xs_targ) # compute combined loss loss = 0 if not self.cfg.disable_rec_loss: loss += recon_loss if not self.cfg.disable_aug_loss: loss += aug_loss # -~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~- # # log general self.log_dict({ **logs_intercept_zs, **logs_recon, **logs_aug, }) # log progress bar self.log_dict({ 'recon_loss': float(recon_loss), 'aug_loss': float(aug_loss), }, prog_bar=True) # return values return loss # --------------------------------------------------------------------- # # Overrideable # # --------------------------------------------------------------------- # def hook_ae_intercept_zs(self, zs: Sequence[torch.Tensor]) -> Tuple[Sequence[torch.Tensor], Dict[str, Any]]: return zs, {} def hook_ae_compute_ave_aug_loss(self, zs: Sequence[torch.Tensor], xs_partial_recon: Sequence[torch.Tensor], xs_targ: Sequence[torch.Tensor]) -> Tuple[Union[torch.Tensor, Number], Dict[str, Any]]: return 0, {} def compute_ave_recon_loss(self, xs_partial_recon: Sequence[torch.Tensor], xs_targ: Sequence[torch.Tensor]) -> Tuple[Union[torch.Tensor, Number], Dict[str, Any]]: # compute reconstruction loss pixel_loss = self.recon_handler.compute_ave_loss_from_partial(xs_partial_recon, xs_targ) # return logs return pixel_loss, { 'pixel_loss': pixel_loss } # --------------------------------------------------------------------- # # AE Model Utility Functions (Visualisation) # # --------------------------------------------------------------------- # @final def encode(self, x: torch.Tensor) -> torch.Tensor: """Get the deterministic latent representation (useful for visualisation)""" return self._model.encode(x) @final def decode(self, z: torch.Tensor) -> torch.Tensor: """Decode latent vector z into reconstruction x_recon (useful for visualisation)""" return self.recon_handler.activate(self._model.decode(z)) @final def forward(self, batch: torch.Tensor) -> torch.Tensor: """Feed through the full deterministic model (useful for visualisation)""" return self.decode(self.encode(batch)) # --------------------------------------------------------------------- # # AE Model Utility Functions (Training) # # --------------------------------------------------------------------- # @final def decode_partial(self, z: torch.Tensor) -> torch.Tensor: """Decode latent vector z into partial reconstructions that exclude the final activation if there is one.""" return self._model.decode(z) # ========================================================================= # # END # # ========================================================================= #
# -*- coding:utf-8 -*- # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from networkapi.admin_permission import AdminPermission from networkapi.auth import has_perm from networkapi.infrastructure.xml_utils import dumps_networkapi import logging from networkapi.rest import RestResource, UserNotAuthorizedError from networkapi.equipamento.models import Marca, Modelo, EquipamentoError, MarcaNotFoundError from networkapi.exception import InvalidValueError from networkapi.util import is_valid_int_greater_zero_param class ModelGetByBrandResource(RestResource): log = logging.getLogger('ModelGetByBrandResource') def handle_get(self, request, user, *args, **kwargs): """Treat requests GET to list all the Model by Brand. URL: model/brand/<id_brand>/ """ try: self.log.info("GET to list all the Model by Brand") # User permission if not has_perm(user, AdminPermission.BRAND_MANAGEMENT, AdminPermission.READ_OPERATION): self.log.error( u'User does not have permission to perform the operation.') raise UserNotAuthorizedError(None) id_brand = kwargs.get('id_brand') # Valid ID Brand if not is_valid_int_greater_zero_param(id_brand): self.log.error( u'The id_brand parameter is not a valid value: %s.', id_brand) raise InvalidValueError(None, 'id_groupl3', id_brand) # Find Brand by ID to check if it exist Marca.get_by_pk(id_brand) model_list = [] for model in Modelo.get_by_brand(id_brand): model_map = dict() model_map['id'] = model.id model_map['nome'] = model.nome model_map['id_marca'] = model.marca.id model_map['nome_marca'] = model.marca.nome model_list.append(model_map) return self.response(dumps_networkapi({'model': model_list})) except InvalidValueError, e: return self.response_error(269, e.param, e.value) except UserNotAuthorizedError: return self.not_authorized() except MarcaNotFoundError: return self.response_error(167, id_brand) except EquipamentoError: return self.response_error(1)
# https://opensource.com/article/18/6/tornado-framework # https://stackoverflow.com/questions/6131915/web-sockets-tornado-notify-client-on-database-update # __init__.py from tornado.httpserver import HTTPServer from tornado.ioloop import IOLoop from tornado.options import define, options from tornado.web import Application define('port', default=9000, help='port to listen on') def main(): """Construct and serve the tornado application.""" app = Application() http_server = HTTPServer(app) http_server.listen(options.port) print('Listening on http://localhost:%i' % options.port) IOLoop.current().start()
from os import path import subprocess from venv import EnvBuilder projects_dir = path.join(path.abspath(path.dirname(__name__)), 'projects') class PipEnv: def __init__(self, name, libs): self.env = EnvBuilder(clear=True, with_pip=True) if not path.isdir(f"{projects_dir}/{name}"): self.env.create(f"{projects_dir}/{name}") self.pip = f"{projects_dir}/{name}/bin/pip" def do_pip(self, cmd: list, **kwargs): subprocess.run([self.pip] + cmd, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, **kwargs) def install(self, name, *args): self.do_pip(["install", name] + list(args)) print("Complete") def uninstall(self, name, *args): self.do_pip(["uninstall", name, "-y"] + list(args)) print("Complete")
# -*- coding: utf-8 -*- """ Created on Thu Jan 28 19:30:32 2021 """ GREETING = { 'en' : '''Hi! Im Clockwork Fox I\'m here to greet every new member of your groups, also I can help you with some events you may want to do with friends. If you want to know how to do some you can use some /help ''', 'es' : '''¡Hola! Soy Clockwork Fox Estoy acá para dar la bienvenida a los nuevos miembros de tus grupos, también puedo ayudarte con algunos eventos que quieras hacer con amigos. Si quieres saber como hacer algunas cosas puedes usar /help ''' } EVENT = { 'en' : '''Alright! Here\'s the new #CLOCKWORK_EVENT\n<i>Make sure you have started me on private, else you won't receive the notification</i>\n\n''', 'es' : '''¡Bien! Acá está el nuevo #CLOCKWORK_EVENT\n<i>Asegúrate de haberme iniciado en privado, de otra forma no recibirás notificaciones</i>\n\n''', 'en_btn' : "I\'m in!", 'es_btn' : "¡Cuenta conmigo!", 'en_error' : "Sorry, there\'s an event running", 'es_error' : "Lo siento, ya hay un evento en marcha" } LANG = { 'en' : "Alright, how sould I speak?", 'es' : "Bien, ¿cómo debería hablar?" } HELP = { 'en' : '''Here\'s some help <b>/new_event <i>"event text"</i></b> - I'll start a new event, there's only allowed one event at time. <b>/new_raffle <i>"texto del sorteo" "número de participantes"</i></b> - I\'ll start a raffle. <b>NOTE</b>: if you want to cancel any of this you can use the <b><i>/cancel_event</i>/b> or <b><i>/cancel_raffle</i>/b>''', #With the command /language you\'ll be able to change my language''', 'es' : '''Acá un poco de ayuda <b>/new_event <i>"texto del evento"</i></b> - Iniciaré un evento, solo se permite un evento por grupo a la vez. <b>/new_raffle <i>"texto del sorteo" "número de participantes"</i></b> - Iniciaré un sorteo. <b>NOTA</b>: si quieres cancelar alguno de estos puedes usar el comando <b><i>/cancel_event</i></b> o <b><i>/cancel_raffle</i></b>''' #Con el comando /language podrás cambiar mi idioma''' } RAFFLE = { 'en' : '''\n#CLOCKWORK_RAFFLE Press the button below to participate!''', 'es' : '''\n#CLOCKWORK_RAFFLE ¡Presiona el botón de abajo para participar!''' } NOTIFICATION = { 'en' : '''There is a <b>new</b> participant on the raffle, we have now: ''', 'es' : '''Hay un <b>nuevo</b> participante en el sorteo, tenemos ahora: ''' }
from __future__ import division import numpy as np import matplotlib.pyplot as plt import lmfit import scipy.stats import scipy.optimize minimize = lmfit.minimize from fitter import Fitter # To use different defaults, change these three import statements. from kid_readout.analysis.khalil import delayed_generic_s21 as default_model from kid_readout.analysis.khalil import delayed_generic_guess as default_guess from kid_readout.analysis.khalil import generic_functions as default_functions from kid_readout.analysis.khalil import bifurcation_s21, bifurcation_guess def fit_resonator(freq, s21, mask= None, errors=None, weight_by_errors=True, min_a = 0.08, fstat_thresh = 0.999, delay_estimate = None, verbose=False): if delay_estimate is not None: def my_default_guess(f,data): params = default_guess(f,data) params['delay'].value = delay_estimate return params else: my_default_guess = default_guess rr = Resonator(freq, s21, mask=mask, errors=errors, weight_by_errors=weight_by_errors,guess=my_default_guess) if delay_estimate is not None: def my_bifurcation_guess(f,data): params = bifurcation_guess(f,data) params['delay'].value = delay_estimate return params else: my_bifurcation_guess = bifurcation_guess bif = Resonator(freq, s21, mask=mask, errors=errors, weight_by_errors=weight_by_errors, guess = my_bifurcation_guess, model = bifurcation_s21) fval = scipy.stats.f_value(np.sum(np.abs(rr.residual())**2), np.sum(np.abs(bif.residual())**2), rr.result.nfree, bif.result.nfree) fstat = scipy.stats.distributions.f.cdf(fval,rr.result.nfree,bif.result.nfree) aval = bif.result.params['a'].value aerr = bif.result.params['a'].stderr reasons = [] if aval <= aerr: prefer_bif = False reasons.append("Error on bifurcation parameter exceeds fitted value") else: if aval < min_a: prefer_bif = False reasons.append("Bifurcation parameter %f is less than minimum required %f" % (aval,min_a)) else: #not sure this is working right, so leave it out for now. if False:#fstat < fstat_thresh: prefer_bif = False reasons.append("F-statistic %f is less than threshold %f" % (fstat,fstat_thresh)) else: prefer_bif = True if verbose and not prefer_bif: print "Not using bifurcation model because:",(','.join(reasons)) return rr,bif,prefer_bif def fit_best_resonator(*args,**kwargs): rr,bif,prefer_bif = fit_resonator(*args,**kwargs) return (rr,bif)[prefer_bif] class Resonator(Fitter): """ This class represents a single resonator. All of the model-dependent behavior is contained in functions that are supplied to the class. There is a little bit of Python magic that allows for easy access to the fit parameters and functions of only the fit parameters. The idea is that, given sweep data f and s21, r = Resonator(f, s21) should just work. Modify the import statements to change the defaults. """ def __init__(self, f, data, model=default_model, guess=default_guess, functions=default_functions, mask=None, errors=None, weight_by_errors=True): """ Instantiate a resonator using our current best model. Parameter model is a function S_21(params, f) that returns the modeled values of S_21. Parameter guess is a function guess(f, data) that returns a good-enough initial guess at all of the fit parameters. Parameter functions is a dictionary that maps keys that are valid Python variables to functions that take a Parameters object as their only argument. Parameter mask is a boolean array of the same length as f and data; only points f[mask] and data[mask] are used to fit the data. The default is to use all data. Use this to exclude glitches or resonances other than the desired one. """ if not np.iscomplexobj(data): raise TypeError("Resonator data should always be complex, but got real values") if errors is not None: if not np.iscomplexobj(errors): errors = errors*(1+1j) # ensure errors is complex super(Resonator,self).__init__(f,data,model=model,guess=guess,functions=functions,mask=mask, errors=errors,weight_by_errors=weight_by_errors) if self.x_data.max() < 1e6: self.freq_units_MHz = True else: self.freq_units_MHz = False self.freq_data = self.x_data self.s21_data = self.y_data def get_normalization(self, freq, remove_amplitude = True, remove_delay = True, remove_phase = True): """ return the complex factor that removes the arbitrary amplitude, cable delay, and phase from the resonator fit freq : float or array of floats frequency in same units as the model was built with, at which normalization should be computed remove_amplitude : bool, default True include arbitrary amplitude correction remove_delay : bool, default True include cable delay correction remove_phase : bool, default True include arbitrary phase offset correction """ normalization = 1.0 if remove_amplitude: normalization *= 1.0/self.A_mag if remove_phase: phi = self.phi + self.A_phase else: phi = 0 if remove_delay: delay = self.delay else: delay = 0 normalization *= np.exp(1j*(2*np.pi*(freq-self.f_phi)*delay - phi)) return normalization def normalize(self, freq, s21_raw, remove_amplitude = True, remove_delay = True, remove_phase = True): """ Normalize s21 data, removing arbitrary ampltude, delay, and phase terms freq : float or array of floats frequency in same units as the model was built with, at which normalization should be computed s21_raw : complex or array of complex raw s21 data which should be normalized """ normalization = self.get_normalization(freq, remove_amplitude=remove_amplitude, remove_delay=remove_delay, remove_phase= remove_phase) return s21_raw*normalization def normalized_model(self,freq,remove_amplitude = True, remove_delay = True, remove_phase = True): """ Evaluate the model, removing arbitrary ampltude, delay, and phase terms freq : float or array of floats frequency in same units as the model was built with, at which normalized model should be evaluated """ return self.normalize(freq, self.model(x=freq),remove_amplitude=remove_amplitude, remove_delay=remove_delay, remove_phase= remove_phase) def approx_normalized_gradient(self,freq): """ Calculate the approximate gradient of the normalized model dS21/df at the given frequency. The units will be S21 / Hz freq : float or array of floats frequency in same units as the model was built with, at which normalized gradient should be evaluated """ if self.freq_units_MHz: df = 1e-6 # 1 Hz else: df = 1.0 f1 = freq+df y = self.normalized_model(freq) y1 = self.normalized_model(f1) gradient = y1-y # division by 1 Hz is implied. return gradient def project_s21_to_delta_freq(self,freq,s21,use_data_mean=True,s21_already_normalized=False): """ Project s21 data onto the orthogonal vectors tangent and perpendicular to the resonance circle at the measurement frequency This results in complex data with the real part projected along the frequency direction (in Hz) and the imaginary part projected along the dissipation direction (also in pseudo-Hz). freq : float frequency in same units as the model was built with, at which the S21 data was measured. s21 : complex or array of complex Raw S21 data measured at the indicated frequency use_data_mean : bool, default True if true, center the data on the mean of the data before projecting. if false, center the data on the value of the model evaluated at the measurement frequency. s21_already_normalized : bool, default False if true, the s21 data has already been normalized if false, first normalize the s21 data """ if s21_already_normalized: normalized_s21 = s21 else: normalized_s21 = self.normalize(freq,s21) if use_data_mean: mean_ = normalized_s21.mean() else: mean_ = self.normalized_model(freq) gradient = self.approx_normalized_gradient(freq) delta_freq = (normalized_s21-mean_)/gradient return delta_freq def convert_s21_to_freq_fluctuation(self,freq,s21): """ Use formula in Phil's LTD paper to convert S21 data to frequency fluctuations. The result of this is the same as Re(S21/(dS21/df)), so the same as self.project_s21_to_delta_freq().real freq : float frequency in same units as the model was built with, at which the S21 data was measured. s21 : complex or array of complex Raw S21 data measured at the indicated frequency """ normalized_s21 = self.normalize(freq,s21) gradient = self.approx_normalized_gradient(freq) # using notation from Phil's LTD paper I = normalized_s21.real Q = normalized_s21.imag dIdf = gradient.real dQdf = gradient.imag ef = (I*dIdf + Q*dQdf)/(dIdf**2 + dQdf**2) return ef
import tweepy from keys import consumer_key, consumer_secret, access_token, access_secret from scrape import auth, api, get_tweets from create import markov, dict_maker auth.set_access_token(access_token, access_secret) #Dictionaries for specific accounts are created here playstation = dict_maker("PlayStation") lil_nas_x = dict_maker("LilNasX") mark_hamill = dict_maker("HamillHimself")
import logging from typing import Optional from homeassistant.components.sensor import STATE_CLASS_MEASUREMENT from homeassistant.const import ( DEVICE_CLASS_ENERGY, DEVICE_CLASS_POWER, DEVICE_CLASS_TEMPERATURE, DEVICE_CLASS_BATTERY, DEVICE_CLASS_POWER_FACTOR, DEVICE_CLASS_TIMESTAMP, TEMP_CELSIUS, TEMP_FAHRENHEIT, ) #from homeassistant.components.sensor import ( # STATE_CLASS_MEASUREMENT, # STATE_CLASS_TOTAL_INCREASING #) # For now, let's not force the newer version, we'll use the same constants # but it'll be optional. # TODO: Force the usage of new HA STATE_CLASS_MEASUREMENT = "measurement" STATE_CLASS_TOTAL_INCREASING = 'total_increasing' from homeassistant.helpers.entity import Entity from gehomesdk import ErdCode, ErdCodeType, ErdCodeClass, ErdMeasurementUnits from .ge_erd_entity import GeErdEntity from ...devices import ApplianceApi _LOGGER = logging.getLogger(__name__) class GeErdSensor(GeErdEntity, Entity): """GE Entity for sensors""" def __init__( self, api: ApplianceApi, erd_code: ErdCodeType, erd_override: str = None, icon_override: str = None, device_class_override: str = None, state_class_override: str = None, uom_override: str = None, ): super().__init__(api, erd_code, erd_override, icon_override, device_class_override) self._uom_override = uom_override self._state_class_override = state_class_override @property def state(self) -> Optional[str]: try: value = self.appliance.get_erd_value(self.erd_code) except KeyError: return None # TODO: perhaps enhance so that there's a list of variables available # for the stringify function to consume... return self._stringify(value, temp_units=self._temp_units) @property def unit_of_measurement(self) -> Optional[str]: return self._get_uom() @property def state_class(self) -> Optional[str]: return self._get_state_class() @property def _temp_units(self) -> Optional[str]: if self._measurement_system == ErdMeasurementUnits.METRIC: return TEMP_CELSIUS return TEMP_FAHRENHEIT def _get_uom(self): """Select appropriate units""" #if we have an override, just use it if self._uom_override: return self._uom_override if ( self.erd_code_class in [ErdCodeClass.RAW_TEMPERATURE, ErdCodeClass.NON_ZERO_TEMPERATURE] or self.device_class == DEVICE_CLASS_TEMPERATURE ): return self._temp_units if ( self.erd_code_class == ErdCodeClass.BATTERY or self.device_class == DEVICE_CLASS_BATTERY ): return "%" if self.erd_code_class == ErdCodeClass.PERCENTAGE: return "%" if self.device_class == DEVICE_CLASS_POWER_FACTOR: return "%" if self.erd_code_class == ErdCodeClass.FLOW_RATE: if self._measurement_system == ErdMeasurementUnits.METRIC: return "lpm" return "gpm" if self.erd_code_class == ErdCodeClass.LIQUID_VOLUME: if self._measurement_system == ErdMeasurementUnits.METRIC: return "l" return "g" return None def _get_device_class(self) -> Optional[str]: if self._device_class_override: return self._device_class_override if self.erd_code_class in [ ErdCodeClass.RAW_TEMPERATURE, ErdCodeClass.NON_ZERO_TEMPERATURE, ]: return DEVICE_CLASS_TEMPERATURE if self.erd_code_class == ErdCodeClass.BATTERY: return DEVICE_CLASS_BATTERY if self.erd_code_class == ErdCodeClass.POWER: return DEVICE_CLASS_POWER if self.erd_code_class == ErdCodeClass.ENERGY: return DEVICE_CLASS_ENERGY return None def _get_state_class(self) -> Optional[str]: if self._state_class_override: return self._state_class_override if self.device_class in [DEVICE_CLASS_TEMPERATURE, DEVICE_CLASS_ENERGY]: return STATE_CLASS_MEASUREMENT if self.erd_code_class in [ErdCodeClass.FLOW_RATE, ErdCodeClass.PERCENTAGE]: return STATE_CLASS_MEASUREMENT if self.erd_code_class in [ErdCodeClass.LIQUID_VOLUME]: return STATE_CLASS_TOTAL_INCREASING return None def _get_icon(self): if self.erd_code_class == ErdCodeClass.DOOR: if self.state.lower().endswith("open"): return "mdi:door-open" if self.state.lower().endswith("closed"): return "mdi:door-closed" return super()._get_icon() async def set_value(self, value): """Sets the ERD value, assumes that the data type is correct""" try: await self.appliance.async_set_erd_value(self.erd_code, value) except: _LOGGER.warning(f"Could not set {self.name} to {value}")
import pytest import sdk_cmd import sdk_install import sdk_hosts import sdk_plan import sdk_utils import retrying from security import transport_encryption from tests import config DEFAULT_JOURNAL_NODE_TLS_PORT = 8481 DEFAULT_NAME_NODE_TLS_PORT = 9003 DEFAULT_DATA_NODE_TLS_PORT = 9006 @pytest.fixture(scope='module') def service_account(configure_security): """ Sets up a service account for use with TLS. """ try: name = config.SERVICE_NAME service_account_info = transport_encryption.setup_service_account(name) yield service_account_info finally: transport_encryption.cleanup_service_account(config.SERVICE_NAME, service_account_info) @pytest.fixture(scope='module') def hdfs_service_tls(service_account): try: sdk_install.uninstall(config.PACKAGE_NAME, config.SERVICE_NAME) sdk_install.install( config.PACKAGE_NAME, service_name=config.SERVICE_NAME, expected_running_tasks=config.DEFAULT_TASK_COUNT, additional_options={ "service": { "service_account": service_account["name"], "service_account_secret": service_account["secret"], "security": { "transport_encryption": { "enabled": True } } } }, timeout_seconds=30 * 60) sdk_plan.wait_for_completed_deployment(config.SERVICE_NAME) yield service_account finally: sdk_install.uninstall(config.PACKAGE_NAME, config.SERVICE_NAME) @pytest.mark.tls @pytest.mark.sanity @pytest.mark.dcos_min_version('1.10') @sdk_utils.dcos_ee_only def test_healthy(hdfs_service_tls): config.check_healthy(service_name=config.SERVICE_NAME) @pytest.mark.tls @pytest.mark.sanity @pytest.mark.data_integrity @pytest.mark.dcos_min_version('1.10') @sdk_utils.dcos_ee_only def test_write_and_read_data_over_tls(hdfs_service_tls): test_filename = "test_data_tls" # must be unique among tests in this suite config.write_data_to_hdfs(config.SERVICE_NAME, test_filename) config.read_data_from_hdfs(config.SERVICE_NAME, test_filename) @pytest.mark.tls @pytest.mark.sanity @pytest.mark.dcos_min_version('1.10') @sdk_utils.dcos_ee_only @pytest.mark.parametrize("node_type,port", [ ('journal', DEFAULT_JOURNAL_NODE_TLS_PORT), ('name', DEFAULT_NAME_NODE_TLS_PORT), ('data', DEFAULT_DATA_NODE_TLS_PORT), ]) def test_verify_https_ports(node_type, port, hdfs_service_tls): """ Verify that HTTPS port is open name, journal and data node types. """ host = sdk_hosts.autoip_host( config.SERVICE_NAME, "{}-0-node".format(node_type), port) @retrying.retry( wait_fixed=1000, stop_max_delay=config.DEFAULT_HDFS_TIMEOUT*1000, retry_on_result=lambda res: not res) def fn(): exit_status, output = sdk_cmd.master_ssh(_curl_https_get_code(host)) return exit_status and output == '200' assert fn() def _curl_https_get_code(host): """ Create a curl command for a given host that outputs HTTP status code. """ return ( '/opt/mesosphere/bin/curl ' '-s -o /dev/null -w "%{{http_code}}" ' 'https://{host}' ).format(host=host)
import numpy as np import pandas as pd import os import argparse from utils.data_utils import * from tqdm import tqdm import itertools if __name__ == "__main__": """ Generate dataframe where each row represents patient admission """ parser = argparse.ArgumentParser(description="Process Mimic-iii CSV Files") parser.add_argument( "-p", "--path", default=None, type=str, help="path to mimic-iii csvs" ) parser.add_argument( "-s", "--save", default=None, type=str, help="path to dump output" ) parser.add_argument( "-min-adm", "--min_admission", default=1, type=int, help="minimum number of admissions for each patient", ) args = parser.parse_args() # format date time df_adm = pd.read_csv(os.path.join(args.path, "ADMISSIONS.csv")) df_adm.ADMITTIME = pd.to_datetime( df_adm.ADMITTIME, format="%Y-%m-%d %H:%M:%S", errors="coerce" ) df_adm.DISCHTIME = pd.to_datetime( df_adm.DISCHTIME, format="%Y-%m-%d %H:%M:%S", errors="coerce" ) df_adm.DEATHTIME = pd.to_datetime( df_adm.DEATHTIME, format="%Y-%m-%d %H:%M:%S", errors="coerce" ) df_adm = df_adm.sort_values(["SUBJECT_ID", "ADMITTIME"]) df_adm = df_adm.reset_index(drop=True) # one task in the paper is to predict re-admission within 30 days df_adm["NEXT_ADMITTIME"] = df_adm.groupby("SUBJECT_ID").ADMITTIME.shift(periods=-1) df_adm["NEXT_ADMISSION_TYPE"] = df_adm.groupby("SUBJECT_ID").ADMISSION_TYPE.shift( periods=-1 ) rows = df_adm.NEXT_ADMISSION_TYPE == "ELECTIVE" df_adm.loc[rows, "NEXT_ADMITTIME"] = pd.NaT df_adm.loc[rows, "NEXT_ADMISSION_TYPE"] = np.NaN df_adm = df_adm.sort_values(["SUBJECT_ID", "ADMITTIME"]) # When we filter out the "ELECTIVE", # we need to correct the next admit time # for these admissions since there might # be 'emergency' next admit after "ELECTIVE" df_adm[["NEXT_ADMITTIME", "NEXT_ADMISSION_TYPE"]] = df_adm.groupby(["SUBJECT_ID"])[ ["NEXT_ADMITTIME", "NEXT_ADMISSION_TYPE"] ].fillna(method="bfill") df_adm["DAYS_NEXT_ADMIT"] = ( df_adm.NEXT_ADMITTIME - df_adm.DISCHTIME ).dt.total_seconds() / (24 * 60 * 60) df_adm["readmission_label"] = (df_adm.DAYS_NEXT_ADMIT < 30).astype("int") ### filter out newborn and death df_adm = df_adm[df_adm["ADMISSION_TYPE"] != "NEWBORN"] df_adm["DURATION"] = ( df_adm["DISCHTIME"] - df_adm["ADMITTIME"] ).dt.total_seconds() / (24 * 60 * 60) # remove patients with admissions < min_adm if args.min_admission > 1: df_adm = remove_min_admissions(df_adm, min_admits=args.min_admission) # Adding clinical codes to dataset # add diagnoses code = "ICD9_CODE" diagnoses = read_icd_diagnoses_table(args.path) diagnoses = filter_codes(diagnoses, code=code, min_=10) # add procedures procedures = read_icd_procedures_table(args.path) procedures = filter_codes(procedures, code=code, min_=10) with open("vocab/icd-map.pkl", "rb") as f: dic_icd = pickle.load(f) with open("vocab/proc-map.pkl", "rb") as f: dic_proc = pickle.load(f) diagnoses['ICD9_SHORT'] = diagnoses['ICD9_CODE'].apply(lambda x: dic_icd[x]) # adding a constant to procedure code mapping to avoid conflicts mapping_shift = max(dic_icd.values()) procedures['ICD9_CODE'] = procedures['ICD9_CODE'].astype(str) procedures['PROC_SHORT'] = procedures['ICD9_CODE'].apply(lambda x: dic_proc[x]+mapping_shift if x in dic_proc.keys() else None) procedures.dropna(inplace=True) diagnoses = group_by_return_col_list( diagnoses, ["SUBJECT_ID", "HADM_ID"], 'ICD9_SHORT') procedures = group_by_return_col_list( procedures, ["SUBJECT_ID", "HADM_ID"], 'PROC_SHORT' ) # ICU info patients = read_patients_table(args.path) stays = read_icustays_table(args.path) stays = stays.merge(patients, how='inner', left_on=['SUBJECT_ID'], right_on=["SUBJECT_ID"]) cols = ["SUBJECT_ID", "HADM_ID"] stays = stays.merge(diagnoses, how="inner", left_on=cols, right_on=cols) stays = stays.merge(procedures, how="inner", left_on=cols, right_on=cols) stays = add_age_to_icustays(stays) df_adm = pd.merge( df_adm, stays, on=["SUBJECT_ID", "HADM_ID"], how="inner" ) df_adm["ADMITTIME_C"] = df_adm.ADMITTIME.apply( lambda x: str(x).split(" ")[0] ) df_adm["ADMITTIME_C"] = pd.to_datetime( df_adm.ADMITTIME_C, format="%Y-%m-%d", errors="coerce" ) df_adm = compute_time_delta(df_adm) # only retain the first row for each HADM ID df = df_adm.groupby("HADM_ID").first() # remove organ donor admissions if "DIAGNOSIS" in df.columns: REMOVE_DIAGNOSIS = ~( (df["DIAGNOSIS"] == "ORGAN DONOR ACCOUNT") | (df["DIAGNOSIS"] == "ORGAN DONOR") | (df["DIAGNOSIS"] == "DONOR ACCOUNT") ) df = df[REMOVE_DIAGNOSIS] # begin demographic info processing demographic_cols = { "AGE": [], "GENDER": [], "LAST_CAREUNIT": [], "MARITAL_STATUS": [], "ETHNICITY": [], "DISCHARGE_LOCATION": [], } df["MARITAL_STATUS"], demographic_cols["MARITAL_STATUS"] = pd.factorize( df["MARITAL_STATUS"] ) df["ETHNICITY"], demographic_cols["ETHNICITY"] = pd.factorize(df["ETHNICITY"]) df["DISCHARGE_LOCATION"], demographic_cols["DISCHARGE_LOCATION"] = pd.factorize( df["DISCHARGE_LOCATION"] ) df["LAST_CAREUNIT"], demographic_cols["LAST_CAREUNIT"] = pd.factorize( df["LAST_CAREUNIT"] ) df["GENDER"], demographic_cols["GENDER"] = pd.factorize(df["GENDER"]) los_bins = [1, 2, 3, 4, 5, 6, 7, 8, 14, float("inf")] los_labels = [1, 2, 3, 4, 5, 6, 7, 8, 9] # LOS: Length of stay df["LOS"] = pd.cut(df["LOS"], bins=los_bins, labels=los_labels) data = {} pids = list(set(df["SUBJECT_ID"])) for i, pid in enumerate(tqdm(pids)): pid_df = df[df["SUBJECT_ID"] == pid] pid_df = pid_df.sort_values("ADMITTIME").reset_index() # change key from subject ID to the integer number data[i] = [] time = 0 tmp = pid_df.iloc[0] # first part of admit data, which is same regardless of visits admit_data = {} # one-hot encoding for MARITAL, LAST_CAREUNIT and ETHNICITY demographics = [tmp["AGE"], tmp["GENDER"]] marital_status = np.zeros( (demographic_cols["MARITAL_STATUS"].size,), dtype=int ) marital_status[tmp["MARITAL_STATUS"]] = 1 demographics += list(marital_status) icu_unit = np.zeros( (demographic_cols["LAST_CAREUNIT"].size,), dtype=int ) icu_unit[tmp["LAST_CAREUNIT"]] = 1 demographics += list(icu_unit) ethnicity = np.zeros((demographic_cols["ETHNICITY"].size,), dtype=int) ethnicity[tmp["ETHNICITY"]] = 1 demographics += list(ethnicity) admit_data["demographics"] = demographics admit_data["readmission"] = tmp["readmission_label"] admit_data["mortality"] = tmp["DEATHTIME"] == tmp["DEATHTIME"] data[i].append(admit_data) for _, r in pid_df.iterrows(): admit_data = {} # gather the medical codes for each visit admit_data["diagnoses"] = r['ICD9_SHORT'] admit_data["procedures"] = r['PROC_SHORT'] admit_data["los"] = r["LOS"] time += r["TIMEDELTA"] admit_data["timedelta"] = time data[i].append(admit_data) pids = list(data.keys()) data_info = {} data_info["num_patients"] = len(pids) num_icd9_codes = max(dic_icd.values()) + 1 # mapping start with 0 num_proc_codes = max(dic_proc.values()) + 1 data_info["num_icd9_codes"] = num_icd9_codes data_info["num_proc_codes"] = num_proc_codes data_info["num_med_codes"] = 0 data_info["num_cpt_codes"] = 0 data_info["demographics_shape"] = len(data[pids[0]][0]["demographics"]) data_info["demographic_cols"] = demographic_cols if not os.path.isdir(args.save): os.makedirs(args.save) with open(os.path.join(args.save, "data_no_grouped.pkl"), "wb") as handle: data_dict = {} data_dict["info"] = data_info data_dict["data"] = data pickle.dump(data_dict, handle, protocol=pickle.HIGHEST_PROTOCOL)
import sys import paho.mqtt.subscribe as subscribe broker = sys.argv[1] topic = sys.argv[2] def callback(client, userdata, message): print("message received ", str(message.payload.decode("utf-8"))) try: subscribe.callback(callback, topic, hostname=broker).loop_forever() except KeyboardInterrupt: exit(0)
import numpy as np import pandas as pd import cv2 import tensorflow as tf from tensorflow.keras.preprocessing.image import ImageDataGenerator class DataLoader: def __init__ (self, train_dataframe, validation_dataframe, image_dir): self.train_dataframe =train_dataframe self.validation_dataframe = validation_dataframe self.image_dir = image_dir return def CreateImageGenerator(self): #Normalize the image and perform angle rotation as a data augmentation techinique self.train_image_generator = ImageDataGenerator( rescale = 1.0/255.0, rotation_range= 30, fill_mode = 'nearest' ) self.validation_image_generator = ImageDataGenerator( rescale = 1.0/255.0 ) def CreateDataLoader(self): self.train_data_loader = self.train_image_generator.flow_from_dataframe( dataframe=self.train_dataframe, directory = self.image_dir, x_col = "filename", y_col = "finding", class_mode="binary", batch_size=2, #images per batch shuffle=True, target_size= (416,416) ) self.validation_data_loader = self.train_image_generator.flow_from_dataframe( dataframe=self.train_dataframe, directory = self.image_dir, x_col = "filename", y_col = "finding", class_mode="binary", batch_size=1, #images per batch shuffle=True, target_size= (416,416) ) return if __name__ == '__main__': pass
import re import nltk from nltk.stem.porter import PorterStemmer def data_cleaning(text): # Remove symbols and punctuations & apply lower() to string formatted_text = re.sub(r"[^\w\s]", " ", text).lower() # Remove stopwords stopwords = set(nltk.corpus.stopwords.words('english')) words = [i for i in formatted_text.split() if not i in stopwords] # Stemming tokens word_stem = [PorterStemmer().stem(word) for word in words] return " ".join(word_stem)
import traceback from io import BytesIO from PIL import Image from ocr import ocr import numpy as np import json import os def validBegin(s): return s.startswith("62") or s.startswith("60") or s.startswith("34") or s.startswith("35") or s.startswith("37") or s.startswith("51") or s.startswith("52") or s.startswith("53") or s.startswith("54") or s.startswith("55") or s.startswith("9") or s.startswith("43") or s.startswith("48") or s.startswith("42") def filterLong(results): res = "" for cs in results: trimed = "".join([c for c in cs if c.isdigit()]) l = len(trimed) # 16-19 if len(trimed) > len(res): res = trimed return res def filter(results): res = "" for cs in results: trimed = "".join([c for c in cs if c.isdigit()]) l = len(trimed) # 16-19 if l < 16 or l > 19: continue while trimed != "" and not validBegin(trimed): trimed = trimed[1:] if len(trimed) == 0: continue if len(trimed) >= 19: trimed = trimed[0:19] elif len(trimed) >= 16: pass else: continue if len(trimed) > len(res): res = trimed return res if res != "" else filterLong(results) def get_result(img): if os.getenv("IN_DEMO"): return "00000000000000000" image = np.array(img.convert('RGB')) result, _ = ocr(image) return filter(map(lambda x: x[1], result.values()))
PHASES = ["build", "test"] CUDA_VERSIONS = [ None, # cpu build "92", "101", "102", ] STANDARD_PYTHON_VERSIONS = [ "3.6", "3.7", "3.8" ]
from dataclasses import dataclass from bindings.gmd.dq_conceptual_consistency_type import DqConceptualConsistencyType __NAMESPACE__ = "http://www.isotc211.org/2005/gmd" @dataclass class DqConceptualConsistency(DqConceptualConsistencyType): class Meta: name = "DQ_ConceptualConsistency" namespace = "http://www.isotc211.org/2005/gmd"
#!/usr/bin/env python """Geoname Annotator""" from __future__ import absolute_import import math import re import sqlite3 from collections import defaultdict from .annotator import Annotator, AnnoTier, AnnoSpan from .ngram_annotator import NgramAnnotator from .ne_annotator import NEAnnotator from geopy.distance import great_circle from .maximum_weight_interval_set import Interval, find_maximum_weight_interval_set from .get_database_connection import get_database_connection from . import geoname_classifier import logging from six.moves import zip logging.basicConfig(level=logging.ERROR, format='%(asctime)s %(message)s') logger = logging.getLogger(__name__) blocklist = set([ 'January', 'February', 'March', 'April', 'May', 'June', 'July', 'Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday', 'Saturday', 'Sunday', 'August', 'September', 'October', 'November', 'December', 'North', 'East', 'West', 'South', 'Northeast', 'Southeast', 'Northwest', 'Southwest', 'Eastern', 'Western', 'Southern', 'Northern', 'About', 'Many', 'See', 'Also', 'As', 'In', 'About', 'Health', 'Some', 'International', 'City', 'World', 'Federal', 'Federal District', 'The city', 'British', 'Russian', 'Valley', 'University', 'Center', 'Central', # These locations could be legitimate, # but they are rarely referred to in a context # where its location is relevent. 'National Institutes of Health', 'Centers for Disease Control', 'Ministry of Health and Sanitation', '1', ]) # Containment levels indicate which properties must match when determing # whether a geoname of a given containment level contains another geoname. # The admin codes generally correspond to states, provinces and cities. CONTAINMENT_LEVELS = [ 'country_code', 'admin1_code', 'admin2_code', 'admin3_code', 'admin4_code' ] def location_contains(loc_outer, loc_inner): """ Do a comparison to see if the first geoname contains the second. It returns an integer to indicate the level of containment. 0 indicates no containment. Siblings locations and identical locations have 0 containment. The level of containment is determined by the specificty of the outer location. e.g. USA would be a smaller number than Texas. In order for containment to be detected the outer location must have a ADM* or PCL* feature code, which is most countries, states, and districts. """ # Test the country code in advance for efficiency. The country code must match for # any level of containment. if loc_outer.country_code != loc_inner.country_code or loc_outer.country_code == '': return 0 feature_code = loc_outer.feature_code if feature_code == 'ADM1': outer_feature_level = 2 elif feature_code == 'ADM2': outer_feature_level = 3 elif feature_code == 'ADM3': outer_feature_level = 4 elif feature_code == 'ADM4': outer_feature_level = 5 elif re.match("^PCL.", feature_code): outer_feature_level = 1 else: return 0 for prop in CONTAINMENT_LEVELS[1:outer_feature_level]: if loc_outer[prop] == '': return 0 if loc_outer[prop] != loc_inner[prop]: return 0 if loc_outer.geonameid == loc_inner.geonameid: return 0 return outer_feature_level class GeoSpan(AnnoSpan): def __init__(self, start, end, doc, geoname): super(GeoSpan, self).__init__( start, end, doc, metadata={ 'geoname': geoname }) self.geoname = geoname self.label = geoname.name def to_dict(self): result = super(GeoSpan, self).to_dict() result['geoname'] = self.geoname.to_dict() return result GEONAME_ATTRS = [ 'geonameid', 'name', 'feature_code', 'country_code', 'admin1_code', 'admin2_code', 'admin3_code', 'admin4_code', 'longitude', 'latitude', 'population', 'asciiname', 'names_used', 'name_count'] ADMINNAME_ATTRS = [ 'country_name', 'admin1_name', 'admin2_name', 'admin3_name'] class GeonameRow(object): __slots__ = GEONAME_ATTRS + ADMINNAME_ATTRS + [ 'alternate_locations', 'spans', 'parents', 'score', 'lat_long', 'high_confidence'] def __init__(self, sqlite3_row): for key in sqlite3_row.keys(): if key in GEONAME_ATTRS: setattr(self, key, sqlite3_row[key]) self.lat_long = (self.latitude, self.longitude,) self.alternate_locations = set() self.spans = set() self.parents = set() self.score = None def add_spans(self, span_text_to_spans): for name in self.names_used.split(';'): for span in span_text_to_spans[name.lower().strip()]: self.spans.add(span) def __hash__(self): return id(self) def __repr__(self): return self.name def __getitem__(self, key): return getattr(self, key) def to_dict(self): result = {} for key in GEONAME_ATTRS: result[key] = self[key] for key in ADMINNAME_ATTRS: if hasattr(self, key): result[key] = self[key] result['parents'] = [p.to_dict() for p in self.parents] result['score'] = self.score return result class GeonameFeatures(object): """ This represents the aspects of a condidate geoname that are used to determine whether it is being referenced. """ # The feature name array is used to maintain the order of the # values in the feature vector. feature_names = [ 'log_population', 'name_count', 'num_spans', 'max_span_length', 'cannonical_name_used', 'loc_NE_portion', 'other_NE_portion', 'noun_portion', 'other_pos_portion', 'num_tokens', 'ambiguity', 'PPL_feature_code', 'ADM_feature_code', 'CONT_feature_code', 'other_feature_code', 'combined_span_parents', # contextual features 'close_locations', 'very_close_locations', 'containing_locations', 'max_containment_level', # high_confidence indicates the base feature set received a high score. # It is an useful feature for preventing high confidence geonames # from receiving low final scores when they lack contextual cues - # for example, when they are the only location mentioned. 'high_confidence', ] def __init__(self, geoname, spans_to_nes, span_to_tokens): self.geoname = geoname # The set of geonames that are mentioned in proximity to the spans # corresponding to this feature. # This will be populated by the add_contextual_features function. self.nearby_mentions = set() d = {} d['log_population'] = math.log(geoname.population + 1) # Geonames with lots of alternate names # tend to be the ones most commonly referred to. d['name_count'] = geoname.name_count d['num_spans'] = len(geoname.spans) d['max_span_length'] = max([ len(span.text) for span in geoname.spans]) def cannonical_name_match(span, geoname): first_leaf = next(span.iterate_leaf_base_spans(), None) if first_leaf: span_text = first_leaf.text else: span_text = span.text span_in_name = span_text in geoname.name or span_text in geoname.asciiname return (float(len(span_text)) if span_in_name else 0) / len(geoname.name) d['cannonical_name_used'] = max([ cannonical_name_match(span, geoname) for span in geoname.spans ]) loc_NEs_overlap = 0 other_NEs_overlap = 0 total_spans = len(geoname.spans) for span in geoname.spans: for ne_span in spans_to_nes[span]: if ne_span.label == 'GPE' or ne_span.label == 'LOC': loc_NEs_overlap += 1 else: other_NEs_overlap += 1 d['loc_NE_portion'] = float(loc_NEs_overlap) / total_spans d['other_NE_portion'] = float(other_NEs_overlap) / total_spans noun_pos_tags = 0 other_pos_tags = 0 pos_tags = 0 for span in geoname.spans: for token_span in span_to_tokens[span]: token = token_span.token pos_tags += 1 if token.tag_.startswith("NN") or token.tag_ == "FW": noun_pos_tags += 1 else: other_pos_tags += 1 d['combined_span_parents'] = len(geoname.parents) d['noun_portion'] = float(noun_pos_tags) / pos_tags d['other_pos_portion'] = float(other_pos_tags) / pos_tags d['num_tokens'] = pos_tags d['ambiguity'] = len(geoname.alternate_locations) feature_code = geoname.feature_code if feature_code.startswith('PPL'): d['PPL_feature_code'] = 1 elif feature_code.startswith('ADM'): d['ADM_feature_code'] = 1 elif feature_code.startswith('CONT'): d['CONT_feature_code'] = 1 else: d['other_feature_code'] = 1 self._values = [0] * len(self.feature_names) self.set_values(d) def set_value(self, feature_name, value): self._values[self.feature_names.index(feature_name)] = value def set_values(self, value_dict): for idx, name in enumerate(self.feature_names): if name in value_dict: self._values[idx] = value_dict[name] def set_contextual_features(self): """ GeonameFeatures are initialized with only values that can be extracted from the geoname database and span. This extends the GeonameFeature with values that require information from nearby_mentions. """ geoname = self.geoname close_locations = 0 very_close_locations = 0 containing_locations = 0 max_containment_level = 0 for recently_mentioned_geoname in self.nearby_mentions: if recently_mentioned_geoname == geoname: continue containment_level = max( location_contains(geoname, recently_mentioned_geoname), location_contains(recently_mentioned_geoname, geoname)) if containment_level > 0: containing_locations += 1 if containment_level > max_containment_level: max_containment_level = containment_level distance = great_circle( recently_mentioned_geoname.lat_long, geoname.lat_long ).kilometers if distance < 400: close_locations += 1 if distance < 100: very_close_locations += 1 self.set_values(dict( close_locations=close_locations, very_close_locations=very_close_locations, containing_locations=containing_locations, max_containment_level=max_containment_level)) def to_dict(self): return { key: value for key, value in zip(self.feature_names, self._values)} def values(self): return self._values class GeonameAnnotator(Annotator): def __init__(self, custom_classifier=None): self.connection = get_database_connection() self.connection.row_factory = sqlite3.Row if custom_classifier: self.geoname_classifier = custom_classifier else: self.geoname_classifier = geoname_classifier def get_candidate_geonames(self, doc): """ Returns an array of geoname dicts correponding to locations that the document may refer to. The dicts are extended with lists of associated AnnoSpans. """ if 'ngrams' not in doc.tiers: doc.add_tiers(NgramAnnotator()) logger.info('Ngrams annotated') if 'nes' not in doc.tiers: doc.add_tiers(NEAnnotator()) logger.info('Named entities annotated') def is_possible_geoname(text): if text in blocklist: return False # We can rule out a few FPs and make the query much faster # by only looking at capitalized names. if text[0] != text[0].upper(): return False if len(text) < 3 and text != text.upper(): return False return True all_ngrams = list(set([span.text.lower() for span in doc.tiers['ngrams'].spans if is_possible_geoname(span.text) ])) logger.info('%s ngrams extracted' % len(all_ngrams)) cursor = self.connection.cursor() geoname_results = list(cursor.execute(''' SELECT geonames.*, count AS name_count, group_concat(alternatename, ";") AS names_used FROM geonames JOIN alternatename_counts USING ( geonameid ) JOIN alternatenames USING ( geonameid ) WHERE alternatename_lemmatized IN (''' + ','.join('?' for x in all_ngrams) + ''') GROUP BY geonameid''', all_ngrams)) logger.info('%s geonames fetched' % len(geoname_results)) geoname_results = [GeonameRow(g) for g in geoname_results] # Associate spans with the geonames. # This is done up front so span information can be used in the scoring # function span_text_to_spans = defaultdict(list) for span in doc.tiers['ngrams'].spans: if is_possible_geoname(span.text): span_text_to_spans[span.text.lower()].append(span) candidate_geonames = [] for geoname in geoname_results: geoname.add_spans(span_text_to_spans) # In rare cases geonames may have no matching spans because # sqlite unicode equivalency rules match geonames that use different # characters the document spans used to query them. # These geonames are ignored. if len(geoname.spans) > 0: candidate_geonames.append(geoname) # Add combined spans to locations that are adjacent to a span linked to # an administrative division. e.g. Seattle, WA span_to_geonames = defaultdict(list) for geoname in candidate_geonames: for span in geoname.spans: span_to_geonames[span].append(geoname) geoname_spans = span_to_geonames.keys() combined_spans = AnnoTier(geoname_spans).chains(at_least=2, at_most=4, max_dist=4) for combined_span in combined_spans: leaf_spans = combined_span.iterate_leaf_base_spans() first_spans = next(leaf_spans) potential_geonames = {geoname: set() for geoname in span_to_geonames[first_spans]} for leaf_span in leaf_spans: leaf_span_geonames = span_to_geonames[leaf_span] next_potential_geonames = defaultdict(set) for potential_geoname, prev_containing_geonames in potential_geonames.items(): containing_geonames = [ containing_geoname for containing_geoname in leaf_span_geonames if location_contains(containing_geoname, potential_geoname) > 0] if len(containing_geonames) > 0: next_potential_geonames[potential_geoname] |= prev_containing_geonames | set(containing_geonames) potential_geonames = next_potential_geonames for geoname, containing_geonames in potential_geonames.items(): geoname.spans.add(combined_span) geoname.parents |= containing_geonames # Replace individual spans with combined spans. span_to_geonames = defaultdict(list) for geoname in candidate_geonames: geoname.spans = set(AnnoTier(geoname.spans).optimal_span_set().spans) for span in geoname.spans: span_to_geonames[span].append(geoname) # Find locations with overlapping spans # Note that is is possible for two valid locations to have # overlapping names. For example, Harare Province has # Harare as an alternate name, so the city Harare is very # likely to be an alternate location that competes with it. for span, geonames in span_to_geonames.items(): geoname_set = set(geonames) for geoname in geonames: geoname.alternate_locations |= geoname_set for geoname in candidate_geonames: geoname.alternate_locations -= set([geoname]) logger.info('%s alternative locations found' % sum([ len(geoname.alternate_locations) for geoname in candidate_geonames])) logger.info('%s candidate locations prepared' % len(candidate_geonames)) return candidate_geonames def extract_features(self, geonames, doc): spans_to_nes = {} span_to_tokens = {} geospan_tier = AnnoTier( set([span for geoname in geonames for span in geoname.spans])) for span, ne_spans in geospan_tier.group_spans_by_containing_span( doc.tiers['nes'], allow_partial_containment=True): spans_to_nes[span] = ne_spans for span, token_spans in geospan_tier.group_spans_by_containing_span( doc.tiers['spacy.tokens']): span_to_tokens[span] = token_spans return [GeonameFeatures(geoname, spans_to_nes, span_to_tokens) for geoname in geonames] def add_contextual_features(self, features): """ Extend a list of features with values that are based on the geonames mentioned nearby. """ logger.info('adding contextual features') span_to_features = defaultdict(list) for feature in features: for span in feature.geoname.spans: span_to_features[span].append(feature) geoname_span_tier = AnnoTier(list(span_to_features.keys())) def feature_generator(filter_fun=lambda x: True): for span in geoname_span_tier.spans: for feature in span_to_features[span]: if filter_fun(feature): yield span.start, feature # Create iterators that will cycle through all the spans returning the span # offset and the associated feature. all_feature_span_iter = feature_generator() resolved_feature_span_iter = feature_generator( lambda x: x.geoname.high_confidence) # boolean indicators of whether the corresponding iterator has reached # its end. afs_iter_end = False rfs_iter_end = False # The starting index of the of the current feature span or resolved # feature span. f_start = 0 rf_start = 0 # A ring buffer containing the recently mentioned resolved geoname # features. rf_buffer = [] rf_buffer_idx = 0 BUFFER_SIZE = 10 # The number of characters to lookahead searching for nearby mentions. LOOKAHEAD_OFFSET = 50 # Fill the buffer to capacity with initially mentioned resolved # features. while len(rf_buffer) < BUFFER_SIZE: try: rf_start, feature = next(resolved_feature_span_iter) rf_buffer.append(feature.geoname) except StopIteration: rfs_iter_end = True break # Iterate over all the feature spans and add the resolved features # in the ring buffer to the nearby_mentions set. while not afs_iter_end: while rfs_iter_end or f_start < rf_start - LOOKAHEAD_OFFSET: try: f_start, feature = next(all_feature_span_iter) except StopIteration: afs_iter_end = True break feature.nearby_mentions.update(rf_buffer) try: rf_start, resolved_feature = next(resolved_feature_span_iter) rf_buffer[rf_buffer_idx % BUFFER_SIZE] = resolved_feature.geoname rf_buffer_idx += 1 except StopIteration: rfs_iter_end = True for feature in features: feature.set_contextual_features() # deprecated def cull_geospans(self, geo_spans): print("The cull geospans function has been deprecated.") mwis = find_maximum_weight_interval_set([ Interval( geo_span.start, geo_span.end, # If the size is equal the score is used as a tie breaker. geo_span.size() + geo_span.geoname.score, geo_span ) for geo_span in geo_spans ]) retained_spans = [interval.corresponding_object for interval in mwis] return retained_spans def annotate(self, doc): logger.info('geoannotator started') candidate_geonames = self.get_candidate_geonames(doc) features = self.extract_features(candidate_geonames, doc) if len(features) == 0: doc.tiers['geonames'] = AnnoTier([]) return doc scores = self.geoname_classifier.predict_proba_base([ list(f.values()) for f in features]) for geoname, feature, score in zip(candidate_geonames, features, scores): geoname.high_confidence = float( score[1]) > self.geoname_classifier.HIGH_CONFIDENCE_THRESHOLD feature.set_value('high_confidence', geoname.high_confidence) has_high_confidence_features = any( [geoname.high_confidence for geoname in candidate_geonames]) if has_high_confidence_features: self.add_contextual_features(features) scores = self.geoname_classifier.predict_proba_contextual([ list(f.values()) for f in features]) for geoname, score in zip(candidate_geonames, scores): geoname.score = float(score[1]) culled_geonames = [geoname for geoname in candidate_geonames if geoname.score > self.geoname_classifier.GEONAME_SCORE_THRESHOLD] cursor = self.connection.cursor() for geoname in culled_geonames: geoname_results = list(cursor.execute(''' SELECT cc.name, a1.name, a2.name, a3.name FROM adminnames a3 JOIN adminnames a2 ON ( a2.country_code = a3.country_code AND a2.admin1_code = a3.admin1_code AND a2.admin2_code = a3.admin2_code AND a2.admin3_code = "" ) JOIN adminnames a1 ON ( a1.country_code = a3.country_code AND a1.admin1_code = a3.admin1_code AND a1.admin2_code = "" AND a1.admin3_code = "" ) JOIN adminnames cc ON ( cc.country_code = a3.country_code AND cc.admin1_code = "00" AND cc.admin2_code = "" AND cc.admin3_code = "" ) WHERE (a3.country_code = ? AND a3.admin1_code = ? AND a3.admin2_code = ? AND a3.admin3_code = ?) ''', ( geoname.country_code or "", geoname.admin1_code or "", geoname.admin2_code or "", geoname.admin3_code or "",))) for result in geoname_results: prev_val = None for idx, attr in enumerate(['country_name', 'admin1_name', 'admin2_name', 'admin3_name']): val = result[idx] if val == prev_val: # Names are repeated for admin levels beyond that of # the geoname. break setattr(geoname, attr, val) prev_val = val logger.info('admin names added') geo_spans = [] for geoname in culled_geonames: for span in geoname.spans: geo_span = GeoSpan( span.start, span.end, doc, geoname) geo_spans.append(geo_span) culled_geospans = AnnoTier(geo_spans).optimal_span_set(prefer=lambda x: (x.size(), x.geoname.score,)) logger.info('overlapping geospans removed') return {'geonames': culled_geospans}
"""Processing profile in admin site page """ from django.contrib import admin from .models import Profile admin.site.register(Profile)
# -*- coding: utf-8 -*- from model.contact import Contact def test_add_new_contact(app): app.contact.add_new_contact(Contact(first_name="Fname", middle_name="Mname", last_name="Lname", nickname="Nickname", title="Test_title", company="Test_company", address="Test_address", tel_home="123456", tel_mobile="11223344", tel_work="11224433", tel_fax="11225566", email="test@mail.com", email2="test2@mail.com", email3="test3@mail.com", homepage="www.test.com", address2="second_address", phone2="123465798", notes="test_notes")) def test_add_new_empty_contact(app): app.contact.add_new_contact(Contact(first_name="", middle_name="", last_name="", nickname="", title="", company="", address="", tel_home="", tel_mobile="", tel_work="", tel_fax="", email="", email2="", email3="", homepage="", address2="", phone2="", notes=""))
from django.contrib import admin from django.contrib.auth.admin import UserAdmin from .forms import UserChangeForms, UserCreationForms from .models import User # Register your models here. @admin.register(User) class UserAdmin(UserAdmin): # type: ignore form = UserChangeForms add_form = UserCreationForms model = User fieldsets = UserAdmin.fieldsets + ( ("campos personalizados", {"fields": ("bio",)}), )
from __future__ import division from typing import List, Optional import numpy as np import matplotlib.pyplot as plt import random import cv2 from PIL import Image, ImageDraw, ImageFont import pickle from pathlib import Path import scipy.signal as ssig import scipy.stats as sstat import math def sample_weighted(p_dict): ps = list(p_dict.keys()) return p_dict[np.random.choice(ps, p=ps)] def move_bb(bbs, t): """ Translate the bounding-boxes in by t_x,t_y. BB : 2x4xn T : 2-long np.array """ return bbs + t[:, None, None] def crop_safe(arr, rect, bbs=[], pad=0): """ ARR : arr to crop RECT: (x,y,w,h) : area to crop to BBS : nx4 xywh format bounding-boxes PAD : percentage to pad Does safe cropping. Returns the cropped rectangle and the adjusted bounding-boxes """ rect = np.array(rect) rect[:2] -= pad rect[2:] += 2*pad x1, y1 = max(0, rect[0]), max(0, rect[1]) x2, y2 = [min(arr.shape[0], rect[0]+rect[2]), min(arr.shape[1], rect[1]+rect[3])] arr = arr[y1:y2, x1:x2] if len(bbs) > 0: for i in range(len(bbs)): bbs[i, 0] -= x1 bbs[i, 1] -= y1 return arr, bbs else: return arr class BaselineState(object): A = [0.50, 0.05] def __init__(self, a) -> None: self.a = a def curve(self, x): return self.a*x**2 def differential(self, x): return 2*self.a*x @staticmethod def get_sample(): """ Returns the functions for the curve and differential for a and b """ sgn = 1.0 if np.random.rand() < 0.5: sgn = -1 a = BaselineState.A[1]*np.random.randn() + sgn*BaselineState.A[0] return BaselineState(a) class RenderFont(object): """ Outputs a rasterized font sample. Output is a binary mask matrix cropped closesly with the font. Also, outputs ground-truth bounding boxes and text string """ def __init__(self, font_dir: Path, font_model_path: Path, text_path: Path): # distribution over the type of text: # whether to get a single word, paragraph or a line: self.p_text = {1.0: 'WORD', 0.0: 'LINE', 0.0: 'PARA'} # TEXT PLACEMENT PARAMETERS: self.f_shrink = 0.90 self.max_shrink_trials = 5 # 0.9^5 ~= 0.6 # the minimum number of characters that should fit in a mask # to define the maximum font height. self.min_nchar = 2 self.min_font_h = 48 # px : 0.6*12 ~ 7px <= actual minimum height self.max_font_h = 320 # px self.p_flat = 0.10 # curved baseline: self.p_curved = 1.0 self.baselinestate = BaselineState.get_sample() # text-source : gets english text: self.text_source = TextSource(min_nchar=self.min_nchar, fn=text_path) # get font-state object: self.font_state = FontState(font_dir, font_model_path) def render_multiline(self, font: ImageFont.FreeTypeFont, text): """ renders multiline TEXT on the pygame surface SURF with the font style FONT. A new line in text is denoted by \n, no other characters are escaped. Other forms of white-spaces should be converted to space. returns the updated surface, words and the character bounding boxes. """ # get the number of lines lines = text.split('\n') line_max_length = lines[np.argmax([len(l) for l in lines])] LINE_W, LINE_H = font.getsize(line_max_length) fsize = (round(2.0*LINE_W), round(1.25*LINE_H*len(lines))) image = Image.new('L', fsize, color='black') draw = ImageDraw.Draw(image) char_bb = [] space_w = font.getsize('O')[0] x, y = 0, 0 for line in lines: x = 0 # carriage-return for ch in line: # render each character if ch.isspace(): # just shift x += space_w else: # render the character draw.text((x, y), ch, fill='white', font=font) ch_size = font.getsize(ch) char_bb.append((x, y, ch_size[0], ch_size[1])) x += ch_size[0] y += LINE_H # line-feed crop_box_x = min([box[0] for box in char_bb]) crop_box_y = min([box[1] for box in char_bb]) crop_box_w = max([box[0]+box[2] for box in char_bb]) crop_box_h = max([box[1]+box[3] for box in char_bb]) crop_box = (crop_box_x, crop_box_y, crop_box_w, crop_box_h) # debug = image.convert('RGB') # draw = ImageDraw.Draw(debug) # for (x, y, w, h) in char_bb: # draw.rectangle((x, y, x+w, y+h), outline=(255, 0, 0)) # draw.rectangle(crop_box, outline=(0, 255, 0)) # debug.show() words = ' '.join(text.split()) image = np.array(image.crop(crop_box)) char_bb = np.array(char_bb) return image, words, char_bb def render_curved(self, font: ImageFont.FreeTypeFont, word_text): # add lang """ use curved baseline for rendering word """ def draw_char(font: ImageFont.FreeTypeFont, ch: str, rotation: float): offsetx, offsety, w, h = list(font.getbbox(ch)) ch_image = Image.new('RGBA', (w, h), (0, 0, 0, 0)) draw = ImageDraw.Draw(ch_image) draw.text((0, 0), ch, font=font, fill=(255, 255, 255, 255)) ch_image = ch_image.crop((offsetx, offsety, w, h)) ch_image = ch_image.rotate(rotation, Image.BICUBIC, expand=True) return ch_image wl = len(word_text) isword = len(word_text.split()) == 1 if not isword or wl > 10 or np.random.rand() > self.p_curved: return self.render_multiline(font, word_text) word_bound = font.getbbox(word_text) fsize = (round(2.0*word_bound[2]), round(3*word_bound[3])) image = Image.new('L', fsize, color='black') # baseline state mid_idx = wl//2 BS = BaselineState.get_sample() curve = [BS.curve(i-mid_idx) for i in range(wl)] curve[mid_idx] = -np.sum(curve) / (wl-1) rots = [math.degrees(math.atan(BS.differential(i-mid_idx)/(font.size/2))) for i in range(wl)] # pillow size = image.size ch_image = draw_char(font, word_text[mid_idx], rots[mid_idx]) x = int((size[0] - ch_image.size[0]) / 2) y = int((size[1] - ch_image.size[1]) / 2 - curve[mid_idx]) image.paste(ch_image, (x, y), mask=ch_image) mid_ch_bb = (x, y, ch_image.size[0], ch_image.size[1]) char_bb = [] last_bb = mid_ch_bb for i in range(wl): # skip the middle character if i == mid_idx: last_bb = mid_ch_bb char_bb.append(mid_ch_bb) continue elif i < mid_idx: # left-chars i = mid_idx-1-i elif i > mid_idx: # right-chars begin pass ch = word_text[i] # draw a single character to a separate image ch_bb = list(font.getbbox(ch)) ch_image = draw_char(font, ch, rots[i]) if i < mid_idx: x = last_bb[0] - ch_bb[2] elif i >= mid_idx: x = last_bb[0] + last_bb[2] y = int(last_bb[1] + 2 + curve[i]) image.paste(ch_image, (x, y), mask=ch_image) ch_bb[0] = x ch_bb[1] = y last_bb = (x, y, ch_image.size[0], ch_image.size[1]) char_bb.append(last_bb) crop_box_x = min([box[0] for box in char_bb]) crop_box_y = min([box[1] for box in char_bb]) crop_box_w = max([box[0]+box[2] for box in char_bb]) crop_box_h = max([box[1]+box[3] for box in char_bb]) crop_box = (crop_box_x, crop_box_y, crop_box_w, crop_box_h) # debug = image.convert('RGB') # draw = ImageDraw.Draw(debug) # for (x, y, w, h) in char_bb: # draw.rectangle((x, y, x+w, y+h), outline=(255, 0, 0)) # draw.rectangle(crop_box, outline=(0, 255, 0)) # debug.show() # exit(0) word_image = np.array(image.crop(crop_box)) char_bb = np.array(char_bb) # update box coordinates after cropping char_bb[:, 0] = char_bb[:, 0] - crop_box_x char_bb[:, 1] = char_bb[:, 1] - crop_box_y # plt.imshow(word_image) # plt.show() # exit() return word_image, word_text, char_bb def get_nline_nchar(self, mask_size, font_height, font_width): """ Returns the maximum number of lines and characters which can fit in the MASK_SIZED image. """ H, W = mask_size nline = int(np.ceil(H/(2*font_height))) nchar = int(np.floor(W/font_width)) return nline, nchar def place_text(self, text_arrs: List[np.ndarray], back_arr, bbs: List[np.ndarray]): areas = [-np.prod(ta.shape) for ta in text_arrs] order = np.argsort(areas) locs = [None for i in range(len(text_arrs))] out_arr = np.zeros_like(back_arr) for i in order: ba = np.clip(back_arr.copy().astype(np.float), 0, 255) ta = np.clip(text_arrs[i].copy().astype(np.float), 0, 255) ba[ba > 127] = 1e8 intersect = ssig.fftconvolve(ba, ta[:: -1, :: -1], mode='valid') safemask = intersect < 1e8 if not np.any(safemask): # no collision-free position: print("COLLISION!!!") # warn("COLLISION!!!") return back_arr, locs[: i], bbs[: i], order[: i] minloc = np.transpose(np.nonzero(safemask)) loc = minloc[np.random.choice(minloc.shape[0]), :] locs[i] = loc # update the bounding-boxes: bbs[i] = move_bb(bbs[i], loc[:: -1]) # blit the text onto the canvas w, h = text_arrs[i].shape out_arr[loc[0]: loc[0]+w, loc[1]: loc[1]+h] += text_arrs[i] return out_arr, locs, bbs, order def robust_HW(self, mask): m = mask.copy() m = (~mask).astype('float')/255 rH = np.median(np.sum(m, axis=0)) rW = np.median(np.sum(m, axis=1)) return rH, rW def sample_font_height_px(self, h_min, h_max): if np.random.rand() < self.p_flat: rnd = np.random.rand() else: rnd = np.random.beta(2.0, 2.0) h_range = h_max - h_min f_h = np.floor(h_min + h_range*rnd) return f_h def bb_xywh2coords(self, bbs): """ Takes an nx4 bounding-box matrix specified in x,y,w,h format and outputs a 2x4xn bb-matrix, (4 vertices per bb). """ n, _ = bbs.shape coords = np.zeros((2, 4, n)) for i in range(n): coords[:, :, i] = bbs[i, : 2][:, None] coords[0, 1, i] += bbs[i, 2] coords[:, 2, i] += bbs[i, 2: 4] coords[1, 3, i] += bbs[i, 3] return coords def render_sample(self, font_name, font, mask): """ Places text in the "collision-free" region as indicated in the mask -- 255 for unsafe, 0 for safe. The text is rendered using FONT, the text content is TEXT. """ # H,W = mask.shape H, W = self.robust_HW(mask) # find the maximum height in pixels: max_font_h = min(0.9*H, W/(self.min_nchar+1)) max_font_h = min(max_font_h, self.max_font_h) if max_font_h < self.min_font_h: # not possible to place any text here return # None # let's just place one text-instance for now # TODO : change this to allow multiple text instances? i = 0 while i < self.max_shrink_trials and max_font_h > self.min_font_h: # if i > 0: # print colorize(Color.BLUE, "shrinkage trial : %d"%i, True) # sample a random font-height: f_h_px = self.sample_font_height_px(self.min_font_h, max_font_h) # print "font-height : %.2f (min: %.2f, max: %.2f)"%(f_h_px, self.min_font_h,max_font_h) # convert from pixel-height to font-point-size: f_h = self.font_state.get_font_size(font_name, f_h_px) # update for the loop max_font_h = f_h_px i += 1 # font.size = f_h # set the font-size # compute the max-number of lines/chars-per-line: nline, nchar = self.get_nline_nchar(mask.shape[: 2], f_h, f_h) # print (' > nline = {}, nchar = {}'.format(nline, nchar)) if nchar < self.min_nchar: return None assert nline >= 1 and nchar >= self.min_nchar, f'nline={nline}, nchar={nchar}, min_nchar={self.min_nchar}' # sample text: text_type = sample_weighted(self.p_text) text = self.text_source.sample(nline, nchar, text_type) if len(text) == 0 or np.any([len(line) == 0 for line in text]): continue # print colorize(Color.GREEN, text) # render the text: txt_arr, txt, bb = self.render_curved(font, text) bb = self.bb_xywh2coords(bb) # debug = Image.fromarray(txt_arr).convert('RGB') # draw = ImageDraw.Draw(debug) # debug_boxes = bb.transpose() # for box in debug_boxes: # draw.polygon(box.flatten().tolist(), outline=(255,0,0)) # # for (x,y,w,h) in bb: # # draw.rectangle([(x, y), (x+w, y+h)], outline=(255, 0, 0)) # debug.show() # exit(0) # make sure that the text-array is not bigger than mask array: if np.any(np.r_[txt_arr.shape[:2]] > np.r_[mask.shape[:2]]): # warn("text-array is bigger than mask") continue # position the text within the mask: text_mask, loc, bb, _ = self.place_text([txt_arr], mask, [bb]) if len(loc) > 0: # successful in placing the text collision-free: return text_mask, loc[0], bb[0], text return # None def visualize_bb(self, text_arr, bbs): ta = text_arr.copy() for r in bbs: cv2.rectangle(ta, (r[0], r[1]), (r[0]+r[2], r[1]+r[3]), color=128, thickness=1) plt.imshow(ta, cmap='gray') plt.show() class FontState(object): """ Defines the random state of the font rendering """ # size = [50, 10] # normal dist mean, std size = [30, 70] # normal dist mean, std underline = 0.05 strong = 0.5 oblique = 0.2 wide = 0.5 strength = [0.05, 0.1] # uniform dist in this interval underline_adjustment = [1.0, 2.0] # normal dist mean, std # beta distribution alpha, beta, offset, range (mean is a/(a+b)) kerning = [2, 5, 0, 20] border = 0.25 random_caps = -1 # don't recapitalize : retain the capitalization of the lexicon # lower case, upper case, proper noun capsmode = [str.lower, str.upper, str.capitalize] curved = 0.2 random_kerning = 0.2 random_kerning_amount = 0.1 def __init__(self, font_dir: Path, font_model_path: Path, char_freq_path: Optional[Path] = None, create_model=False): # get character-frequencies in the English language: # with open(char_freq_path,'rb') as f: # self.char_freq = cp.load(f) # u = pickle._Unpickler(f) # u.encoding = 'latin1' # p = u.load() # self.char_freq = p # get the model to convert from pixel to font pt size: with open(font_model_path, 'rb') as f: self.font_model = pickle.load(f) # get the names of fonts to use: self.fonts = sorted(font_dir.glob('**/*.ttf')) print(self.fonts) print(f'Total: {len(self.fonts)} font(s)') def get_aspect_ratio(self, font, size=None): """ Returns the median aspect ratio of each character of the font. """ if size is None: size = 12 # doesn't matter as we take the RATIO return 1.0 # chars = '' # chars = ''.join(self.char_freq.keys()) # w = np.array(self.char_freq.values()) # get the [height,width] of each character: try: sizes = font.get_metrics(chars, size) good_idx = [i for i in range(len(sizes)) if sizes[i] is not None] sizes, w = [sizes[i] for i in good_idx], w[good_idx] sizes = np.array(sizes).astype('float')[:, [3, 4]] r = np.abs(sizes[:, 1]/sizes[:, 0]) # width/height good = np.isfinite(r) r = r[good] w = w[good] w /= np.sum(w) r_avg = np.sum(w*r) return r_avg except: return 1.0 def get_font_size(self, font_name, font_size_px): """ Returns the font-size which corresponds to FONT_SIZE_PX pixels font height. """ m = self.font_model[font_name] return m[0]*font_size_px + m[1] # linear model def sample(self): """ Samples from the font state distribution """ font = self.fonts[int(np.random.randint(0, len(self.fonts)))] font_name = font.stem return { 'font': font, 'name': font_name, 'size': np.random.randint(self.size[0], self.size[1]), 'underline': np.random.rand() < self.underline, 'underline_adjustment': max(2.0, min(-2.0, self.underline_adjustment[1]*np.random.randn() + self.underline_adjustment[0])), 'strong': np.random.rand() < self.strong, 'oblique': np.random.rand() < self.oblique, 'strength': (self.strength[1] - self.strength[0])*np.random.rand() + self.strength[0], 'char_spacing': int(self.kerning[3]*(np.random.beta(self.kerning[0], self.kerning[1])) + self.kerning[2]), 'border': np.random.rand() < self.border, 'random_caps': np.random.rand() < self.random_caps, 'capsmode': random.choice(self.capsmode), 'curved': np.random.rand() < self.curved, 'random_kerning': np.random.rand() < self.random_kerning, 'random_kerning_amount': self.random_kerning_amount, } class TextSource(object): """ Provides text for words, paragraphs, sentences. """ def __init__(self, min_nchar, fn): """ TXT_FN : path to file containing text data. """ self.min_nchar = min_nchar self.fdict = {'WORD': self.sample_word, 'LINE': self.sample_line, 'PARA': self.sample_para} with open(fn, 'r') as f: self.txt = [l.strip() for l in f.readlines()] # print(self.txt) # distribution over line/words for LINE/PARA: self.p_line_nline = np.array([0.85, 0.10, 0.05]) self.p_line_nword = [4, 3, 12] # normal: (mu, std) self.p_para_nline = [1.0, 1.0] # [1.7,3.0] # beta: (a, b), max_nline self.p_para_nword = [1.7, 3.0, 10] # beta: (a,b), max_nword # probability to center-align a paragraph: self.center_para = 0.5 def check_symb_frac(self, txt, f=0.35): """ T/F return : T iff fraction of symbol/special-charcters in txt is less than or equal to f (default=0.25). """ return np.sum([not ch.isalnum() for ch in txt])/(len(txt)+0.0) <= f def is_good(self, txt, f=0.35): """ T/F return : T iff the lines in txt (a list of txt lines) are "valid". A given line l is valid iff: 1. It is not empty. 2. symbol_fraction > f 3. Has at-least self.min_nchar characters 4. Not all characters are i,x,0,O,- """ def is_txt(l): char_ex = ['i', 'I', 'o', 'O', '0', '-'] chs = [ch in char_ex for ch in l] return not np.all(chs) return [(len(l) > self.min_nchar and self.check_symb_frac(l, f) and is_txt(l)) for l in txt] def center_align(self, lines): """ PADS lines with space to center align them lines : list of text-lines. """ ls = [len(l) for l in lines] max_l = max(ls) for i in range(len(lines)): l = lines[i].strip() dl = max_l-ls[i] lspace = dl//2 rspace = dl-lspace lines[i] = ' '*lspace+l+' '*rspace return lines def get_lines(self, nline, nword, nchar_max, f=0.35, niter=100): def h_lines(niter=100): lines = [''] iter = 0 while not np.all(self.is_good(lines, f)) and iter < niter: iter += 1 line_start = np.random.choice(len(self.txt)-nline) lines = [self.txt[line_start+i] for i in range(nline)] return lines lines = [''] iter = 0 while not np.all(self.is_good(lines, f)) and iter < niter: iter += 1 lines = h_lines(niter=100) # get words per line: nline = len(lines) for i in range(nline): words = lines[i].split() dw = len(words)-nword[i] if dw > 0: first_word_index = random.choice(range(dw+1)) lines[i] = ' '.join( words[first_word_index:first_word_index+nword[i]]) # chop-off characters from end: while len(lines[i]) > nchar_max: if not np.any([ch.isspace() for ch in lines[i]]): lines[i] = '' else: lines[i] = lines[i][:len( lines[i])-lines[i][::-1].find(' ')].strip() if not np.all(self.is_good(lines, f)): return # None else: return lines def sample(self, nline_max, nchar_max, kind='WORD'): return self.fdict[kind](nline_max, nchar_max) def sample_word(self, nline_max, nchar_max, niter=100): rand_line = self.txt[np.random.choice(len(self.txt))] words = rand_line.split() if len(words) == 0: return [] rand_word = random.choice(words) iter = 0 while iter < niter and (not self.is_good([rand_word])[0] or len(rand_word) > nchar_max): rand_line = self.txt[np.random.choice(len(self.txt))] words = rand_line.split() if len(words) == 0: continue rand_word = random.choice(words) iter += 1 if not self.is_good([rand_word])[0] or len(rand_word) > nchar_max: return [] else: return rand_word def sample_line(self, nline_max, nchar_max): nline = nline_max+1 while nline > nline_max: nline = np.random.choice([1, 2, 3], p=self.p_line_nline) # get number of words: nword = [self.p_line_nword[2]*sstat.beta.rvs(a=self.p_line_nword[0], b=self.p_line_nword[1]) for _ in range(nline)] nword = [max(1, int(np.ceil(n))) for n in nword] lines = self.get_lines(nline, nword, nchar_max, f=0.35) if lines is not None: return '\n'.join(lines) else: return [] def sample_para(self, nline_max, nchar_max): # get number of lines in the paragraph: nline = nline_max * \ sstat.beta.rvs(a=self.p_para_nline[0], b=self.p_para_nline[1]) nline = max(1, int(np.ceil(nline))) # get number of words: nword = [self.p_para_nword[2]*sstat.beta.rvs(a=self.p_para_nword[0], b=self.p_para_nword[1]) for _ in range(nline)] nword = [max(1, int(np.ceil(n))) for n in nword] lines = self.get_lines(nline, nword, nchar_max, f=0.35) if lines is not None: # center align the paragraph-text: if np.random.rand() < self.center_para: lines = self.center_align(lines) return '\n'.join(lines) else: return []
# coding: utf-8 # Copyright (c) Pymatgen Development Team. # Distributed under the terms of the MIT License. """ Classes for reading/manipulating/writing QChem input files. """ import logging import sys from typing import Union, Dict, List, Optional, Tuple from monty.io import zopen from monty.json import MSONable from pymatgen.core import Molecule from .utils import lower_and_check_unique, read_pattern, read_table_pattern if sys.version_info >= (3, 8): from typing import Literal else: from typing_extensions import Literal __author__ = "Brandon Wood, Samuel Blau, Shyam Dwaraknath, Julian Self, Evan Spotte-Smith" __copyright__ = "Copyright 2018, The Materials Project" __version__ = "0.1" __email__ = "b.wood@berkeley.edu" __credits__ = "Xiaohui Qu" logger = logging.getLogger(__name__) class QCInput(MSONable): """ An object representing a QChem input file. QCInput attributes represent different sections of a QChem input file. To add a new section one needs to modify __init__, __str__, from_sting and add staticmethods to read and write the new section i.e. section_template and read_section. By design, there is very little (or no) checking that input parameters conform to the appropriate QChem format, this responsible lands on the user or a separate error handling software. """ def __init__( self, molecule: Union[Molecule, Literal["read"]], rem: Dict, opt: Optional[Dict[str, List]] = None, pcm: Optional[Dict] = None, solvent: Optional[Dict] = None, smx: Optional[Dict] = None, scan: Optional[Dict[str, List]] = None, van_der_waals: Optional[Dict[str, float]] = None, vdw_mode: str = "atomic", plots: Optional[Dict] = None, ): """ Args: molecule (pymatgen Molecule object or "read"): Input molecule. molecule can be set as either a pymatgen Molecule object or as the str "read". "read" can be used in multi_job QChem input files where the molecule is read in from the previous calculation. rem (dict): A dictionary of all the input parameters for the rem section of QChem input file. Ex. rem = {'method': 'rimp2', 'basis': '6-31*G++' ... } opt (dict of lists): A dictionary of opt sections, where each opt section is a key and the corresponding values are a list of strings. Stings must be formatted as instructed by the QChem manual. The different opt sections are: CONSTRAINT, FIXED, DUMMY, and CONNECT Ex. opt = {"CONSTRAINT": ["tors 2 3 4 5 25.0", "tors 2 5 7 9 80.0"], "FIXED": ["2 XY"]} pcm (dict): A dictionary of the PCM section, defining behavior for use of the polarizable continuum model. Ex: pcm = {"theory": "cpcm", "hpoints": 194} solvent (dict): A dictionary defining the solvent parameters used with PCM. Ex: solvent = {"dielectric": 78.39, "temperature": 298.15} smx (dict): A dictionary defining solvent parameters used with the SMD method, a solvent method that adds short-range terms to PCM. Ex: smx = {"solvent": "water"} scan (dict of lists): A dictionary of scan variables. Because two constraints of the same type are allowed (for instance, two torsions or two bond stretches), each TYPE of variable (stre, bend, tors) should be its own key in the dict, rather than each variable. Note that the total number of variable (sum of lengths of all lists) CANNOT be more than two. Ex. scan = {"stre": ["3 6 1.5 1.9 0.1"], "tors": ["1 2 3 4 -180 180 15"]} van_der_waals (dict): A dictionary of custom van der Waals radii to be used when construcing cavities for the PCM model or when computing, e.g. Mulliken charges. They keys are strs whose meaning depends on the value of vdw_mode, and the values are the custom radii in angstroms. vdw_mode (str): Method of specifying custom van der Waals radii - 'atomic' or 'sequential'. In 'atomic' mode (default), dict keys represent the atomic number associated with each radius (e.g., 12 = carbon). In 'sequential' mode, dict keys represent the sequential position of a single specific atom in the input structure. """ self.molecule = molecule self.rem = lower_and_check_unique(rem) self.opt = opt self.pcm = lower_and_check_unique(pcm) self.solvent = lower_and_check_unique(solvent) self.smx = lower_and_check_unique(smx) self.scan = lower_and_check_unique(scan) self.van_der_waals = lower_and_check_unique(van_der_waals) self.vdw_mode = vdw_mode self.plots = lower_and_check_unique(plots) # Make sure rem is valid: # - Has a basis # - Has a method or DFT exchange functional # - Has a valid job_type or jobtype valid_job_types = [ "opt", "optimization", "sp", "freq", "frequency", "force", "nmr", "ts", "pes_scan", ] if "basis" not in self.rem: raise ValueError("The rem dictionary must contain a 'basis' entry") if "method" not in self.rem: if "exchange" not in self.rem: raise ValueError("The rem dictionary must contain either a 'method' entry or an 'exchange' entry") if "job_type" not in self.rem: raise ValueError("The rem dictionary must contain a 'job_type' entry") if self.rem.get("job_type").lower() not in valid_job_types: raise ValueError("The rem dictionary must contain a valid 'job_type' entry") # Still to do: # - Check that the method or functional is valid # - Check that basis is valid # - Check that basis is defined for all species in the molecule # - Validity checks specific to job type? # - Check OPT and PCM sections? def __str__(self): combined_list = [] # molecule section combined_list.append(self.molecule_template(self.molecule)) combined_list.append("") # rem section combined_list.append(self.rem_template(self.rem)) combined_list.append("") # opt section if self.opt: combined_list.append(self.opt_template(self.opt)) combined_list.append("") # pcm section if self.pcm: combined_list.append(self.pcm_template(self.pcm)) combined_list.append("") # solvent section if self.solvent: combined_list.append(self.solvent_template(self.solvent)) combined_list.append("") if self.smx: combined_list.append(self.smx_template(self.smx)) combined_list.append("") # section for pes_scan if self.scan: combined_list.append(self.scan_template(self.scan)) combined_list.append("") # section for van_der_waals radii if self.van_der_waals: combined_list.append(self.van_der_waals_template(self.van_der_waals, self.vdw_mode)) combined_list.append("") # plots section if self.plots: combined_list.append(self.plots_template(self.plots)) combined_list.append("") return "\n".join(combined_list) @staticmethod def multi_job_string(job_list: List["QCInput"]) -> str: """ Args: job_list (): List of jobs Returns: (str) String representation of multi job input file. """ multi_job_string = str() for i, job_i in enumerate(job_list): if i < len(job_list) - 1: multi_job_string += job_i.__str__() + "\n@@@\n\n" else: multi_job_string += job_i.__str__() return multi_job_string @classmethod def from_string(cls, string: str) -> "QCInput": """ Read QcInput from string. Args: string (str): String input. Returns: QcInput """ sections = cls.find_sections(string) molecule = cls.read_molecule(string) rem = cls.read_rem(string) # only molecule and rem are necessary everything else is checked opt = None pcm = None solvent = None smx = None scan = None plots = None vdw = None vdw_mode = "atomic" if "opt" in sections: opt = cls.read_opt(string) if "pcm" in sections: pcm = cls.read_pcm(string) if "solvent" in sections: solvent = cls.read_solvent(string) if "smx" in sections: smx = cls.read_smx(string) if "scan" in sections: scan = cls.read_scan(string) if "plots" in sections: plots = cls.read_plots(string) if "van_der_waals" in sections: vdw_mode, vdw = cls.read_vdw(string) return cls( molecule, rem, opt=opt, pcm=pcm, solvent=solvent, smx=smx, scan=scan, plots=plots, van_der_waals=vdw, vdw_mode=vdw_mode, ) def write_file(self, filename: str): """ Write QcInput to file. Args: filename (str): Filename """ with zopen(filename, "wt") as f: f.write(self.__str__()) @staticmethod def write_multi_job_file(job_list: List["QCInput"], filename: str): """ Write a multijob file. Args: job_list (): List of jobs. filename (): Filename """ with zopen(filename, "wt") as f: f.write(QCInput.multi_job_string(job_list)) @staticmethod def from_file(filename: str) -> "QCInput": """ Create QcInput from file. Args: filename (str): Filename Returns: QcInput """ with zopen(filename, "rt") as f: return QCInput.from_string(f.read()) @classmethod def from_multi_jobs_file(cls, filename: str) -> List["QCInput"]: """ Create list of QcInput from a file. Args: filename (str): Filename Returns: List of QCInput objects """ with zopen(filename, "rt") as f: # the delimiter between QChem jobs is @@@ multi_job_strings = f.read().split("@@@") # list of individual QChem jobs input_list = [cls.from_string(i) for i in multi_job_strings] return input_list @staticmethod def molecule_template(molecule: Union[Molecule, Literal["read"]]) -> str: """ Args: molecule (Molecule): molecule Returns: (str) Molecule template. """ # todo: add ghost atoms mol_list = [] mol_list.append("$molecule") if isinstance(molecule, str): if molecule == "read": mol_list.append(" read") else: raise ValueError('The only acceptable text value for molecule is "read"') else: mol_list.append( " {charge} {spin_mult}".format(charge=int(molecule.charge), spin_mult=molecule.spin_multiplicity) ) for site in molecule.sites: mol_list.append( " {atom} {x: .10f} {y: .10f} {z: .10f}".format( atom=site.species_string, x=site.x, y=site.y, z=site.z ) ) mol_list.append("$end") return "\n".join(mol_list) @staticmethod def rem_template(rem: Dict) -> str: """ Args: rem (): Returns: (str) """ rem_list = [] rem_list.append("$rem") for key, value in rem.items(): rem_list.append(" {key} = {value}".format(key=key, value=value)) rem_list.append("$end") return "\n".join(rem_list) @staticmethod def opt_template(opt: Dict[str, List]) -> str: """ Optimization template. Args: opt (): Returns: (str) """ opt_list = [] opt_list.append("$opt") # loops over all opt sections for key, value in opt.items(): opt_list.append("{section}".format(section=key)) # loops over all values within the section for i in value: opt_list.append(" {val}".format(val=i)) opt_list.append("END{section}".format(section=key)) opt_list.append("") # this deletes the empty space after the last section del opt_list[-1] opt_list.append("$end") return "\n".join(opt_list) @staticmethod def pcm_template(pcm: Dict) -> str: """ Pcm run template. Args: pcm (): Returns: (str) """ pcm_list = [] pcm_list.append("$pcm") for key, value in pcm.items(): pcm_list.append(" {key} {value}".format(key=key, value=value)) pcm_list.append("$end") return "\n".join(pcm_list) @staticmethod def solvent_template(solvent: Dict) -> str: """ Solvent template. Args: solvent (): Returns: (str) """ solvent_list = [] solvent_list.append("$solvent") for key, value in solvent.items(): solvent_list.append(" {key} {value}".format(key=key, value=value)) solvent_list.append("$end") return "\n".join(solvent_list) @staticmethod def smx_template(smx: Dict) -> str: """ Args: smx (): Returns: (str) """ smx_list = [] smx_list.append("$smx") for key, value in smx.items(): if value == "tetrahydrofuran": smx_list.append(" {key} {value}".format(key=key, value="thf")) else: smx_list.append(" {key} {value}".format(key=key, value=value)) smx_list.append("$end") return "\n".join(smx_list) @staticmethod def scan_template(scan: Dict[str, List]) -> str: """ Args: scan (dict): Dictionary with scan section information. Ex: {"stre": ["3 6 1.5 1.9 0.1"], "tors": ["1 2 3 4 -180 180 15"]} Returns: String representing Q-Chem input format for scan section """ scan_list = list() scan_list.append("$scan") total_vars = sum([len(v) for v in scan.values()]) if total_vars > 2: raise ValueError("Q-Chem only supports PES_SCAN with two or less " "variables.") for var_type, variables in scan.items(): if variables not in [None, list()]: for var in variables: scan_list.append(" {var_type} {var}".format(var_type=var_type, var=var)) scan_list.append("$end") return "\n".join(scan_list) @staticmethod def van_der_waals_template(radii: Dict[str, float], mode: str = "atomic") -> str: """ Args: radii (dict): Dictionary with custom van der Waals radii, in Angstroms, keyed by either atomic number or sequential atom number (see 'mode' kwarg). Ex: {1: 1.20, 12: 1.70} mode: 'atomic' or 'sequential'. In 'atomic' mode (default), dict keys represent the atomic number associated with each radius (e.g., '12' = carbon). In 'sequential' mode, dict keys represent the sequential position of a single specific atom in the input structure. **NOTE: keys must be given as strings even though they are numbers!** Returns: String representing Q-Chem input format for van_der_waals section """ vdw_list = list() vdw_list.append("$van_der_waals") if mode == "atomic": vdw_list.append("1") elif mode == "sequential": vdw_list.append("2") else: raise ValueError(f"Invalid value {mode} given for 'mode' kwarg.") for num, radius in radii.items(): vdw_list.append(f" {num} {radius}") vdw_list.append("$end") return "\n".join(vdw_list) @staticmethod def plots_template(plots: Dict) -> str: """ Args: plots (): Returns: (str) """ plots_list = [] plots_list.append("$plots") for key, value in plots.items(): plots_list.append(" {key} {value}".format(key=key, value=value)) plots_list.append("$end") return "\n".join(plots_list) @staticmethod def find_sections(string: str) -> List: """ Find sections in the string. Args: string (str): String Returns: List of sections. """ patterns = {"sections": r"^\s*?\$([a-z_]+)", "multiple_jobs": r"(@@@)"} matches = read_pattern(string, patterns) # list of the sections present sections = [val[0] for val in matches["sections"]] # remove end from sections sections = [sec for sec in sections if sec != "end"] # this error should be replaced by a multi job read function when it is added if "multiple_jobs" in matches.keys(): raise ValueError("Output file contains multiple qchem jobs please parse separately") if "molecule" not in sections: raise ValueError("Output file does not contain a molecule section") if "rem" not in sections: raise ValueError("Output file does not contain a rem section") print(sections) return sections @staticmethod def read_molecule(string: str) -> Union[Molecule, Literal["read"]]: """ Read molecule from string. Args: string (str): String Returns: Molecule """ charge = None spin_mult = None patterns = { "read": r"^\s*\$molecule\n\s*(read)", "charge": r"^\s*\$molecule\n\s*((?:\-)*\d+)\s+\d", "spin_mult": r"^\s*\$molecule\n\s(?:\-)*\d+\s*(\d)", } matches = read_pattern(string, patterns) if "read" in matches.keys(): return "read" if "charge" in matches.keys(): charge = float(matches["charge"][0][0]) if "spin_mult" in matches.keys(): spin_mult = int(matches["spin_mult"][0][0]) header = r"^\s*\$molecule\n\s*(?:\-)*\d+\s*\d" row = r"\s*((?i)[a-z]+)\s+([\d\-\.]+)\s+([\d\-\.]+)\s+([\d\-\.]+)" footer = r"^\$end" mol_table = read_table_pattern(string, header_pattern=header, row_pattern=row, footer_pattern=footer) species = [val[0] for val in mol_table[0]] coords = [[float(val[1]), float(val[2]), float(val[3])] for val in mol_table[0]] if charge is None: mol = Molecule(species=species, coords=coords) else: mol = Molecule(species=species, coords=coords, charge=charge, spin_multiplicity=spin_mult) return mol @staticmethod def read_rem(string: str) -> Dict: """ Parse rem from string. Args: string (str): String Returns: (dict) rem """ header = r"^\s*\$rem" row = r"\s*([a-zA-Z\_]+)\s*=?\s*(\S+)" footer = r"^\s*\$end" rem_table = read_table_pattern(string, header_pattern=header, row_pattern=row, footer_pattern=footer) return dict(rem_table[0]) @staticmethod def read_opt(string: str) -> Dict[str, List]: """ Read opt section from string. Args: string (str): String Returns: (dict) Opt section """ patterns = { "CONSTRAINT": r"^\s*CONSTRAINT", "FIXED": r"^\s*FIXED", "DUMMY": r"^\s*DUMMY", "CONNECT": r"^\s*CONNECT", } opt_matches = read_pattern(string, patterns) opt_sections = list(opt_matches.keys()) opt = {} if "CONSTRAINT" in opt_sections: c_header = r"^\s*CONSTRAINT\n" c_row = r"(\w.*)\n" c_footer = r"^\s*ENDCONSTRAINT\n" c_table = read_table_pattern(string, header_pattern=c_header, row_pattern=c_row, footer_pattern=c_footer) opt["CONSTRAINT"] = [val[0] for val in c_table[0]] if "FIXED" in opt_sections: f_header = r"^\s*FIXED\n" f_row = r"(\w.*)\n" f_footer = r"^\s*ENDFIXED\n" f_table = read_table_pattern( string, header_pattern=f_header, row_pattern=f_row, footer_pattern=f_footer, ) opt["FIXED"] = [val[0] for val in f_table[0]] if "DUMMY" in opt_sections: d_header = r"^\s*DUMMY\n" d_row = r"(\w.*)\n" d_footer = r"^\s*ENDDUMMY\n" d_table = read_table_pattern( string, header_pattern=d_header, row_pattern=d_row, footer_pattern=d_footer, ) opt["DUMMY"] = [val[0] for val in d_table[0]] if "CONNECT" in opt_sections: cc_header = r"^\s*CONNECT\n" cc_row = r"(\w.*)\n" cc_footer = r"^\s*ENDCONNECT\n" cc_table = read_table_pattern( string, header_pattern=cc_header, row_pattern=cc_row, footer_pattern=cc_footer, ) opt["CONNECT"] = [val[0] for val in cc_table[0]] return opt @staticmethod def read_pcm(string: str) -> Dict: """ Read pcm parameters from string. Args: string (str): String Returns: (dict) PCM parameters """ header = r"^\s*\$pcm" row = r"\s*([a-zA-Z\_]+)\s+(\S+)" footer = r"^\s*\$end" pcm_table = read_table_pattern(string, header_pattern=header, row_pattern=row, footer_pattern=footer) if not pcm_table: print("No valid PCM inputs found. Note that there should be no '=' chracters in PCM input lines.") return {} return dict(pcm_table[0]) @staticmethod def read_vdw(string: str) -> Tuple[str, Dict]: """ Read van der Waals parameters from string. Args: string (str): String Returns: (str, dict) vdW mode ('atomic' or 'sequential') and dict of van der Waals radii. """ header = r"^\s*\$van_der_waals" row = r"[^\d]*(\d+).?(\d+.\d+)?.*" footer = r"^\s*\$end" vdw_table = read_table_pattern(string, header_pattern=header, row_pattern=row, footer_pattern=footer) if not vdw_table: print("No valid vdW inputs found. Note that there should be no '=' chracters in vdW input lines.") return "", {} if vdw_table[0][0][0] == 2: mode = "sequential" else: mode = "atomic" return mode, dict(vdw_table[0][1:]) @staticmethod def read_solvent(string: str) -> Dict: """ Read solvent parameters from string. Args: string (str): String Returns: (dict) Solvent parameters """ header = r"^\s*\$solvent" row = r"\s*([a-zA-Z\_]+)\s+(\S+)" footer = r"^\s*\$end" solvent_table = read_table_pattern(string, header_pattern=header, row_pattern=row, footer_pattern=footer) if not solvent_table: print("No valid solvent inputs found. Note that there should be no '=' chracters in solvent input lines.") return {} return dict(solvent_table[0]) @staticmethod def read_smx(string: str) -> Dict: """ Read smx parameters from string. Args: string (str): String Returns: (dict) SMX parameters. """ header = r"^\s*\$smx" row = r"\s*([a-zA-Z\_]+)\s+(\S+)" footer = r"^\s*\$end" smx_table = read_table_pattern(string, header_pattern=header, row_pattern=row, footer_pattern=footer) if not smx_table: print("No valid smx inputs found. Note that there should be no '=' chracters in smx input lines.") return {} smx = {} for key, val in smx_table[0]: smx[key] = val if smx["solvent"] == "tetrahydrofuran": smx["solvent"] = "thf" return smx @staticmethod def read_scan(string: str) -> Dict[str, List]: """ Read scan section from a string. Args: string: String to be parsed Returns: Dict representing Q-Chem scan section """ header = r"^\s*\$scan" row = r"\s*(stre|bend|tors|STRE|BEND|TORS)\s+((?:[\-\.0-9]+\s*)+)" footer = r"^\s*\$end" scan_table = read_table_pattern(string, header_pattern=header, row_pattern=row, footer_pattern=footer) if scan_table == list(): print("No valid scan inputs found. Note that there should be no '=' chracters in scan input lines.") return dict() stre = list() bend = list() tors = list() for row in scan_table[0]: if row[0].lower() == "stre": stre.append(row[1].replace("\n", "").rstrip()) elif row[0].lower() == "bend": bend.append(row[1].replace("\n", "").rstrip()) elif row[0].lower() == "tors": tors.append(row[1].replace("\n", "").rstrip()) if len(stre) + len(bend) + len(tors) > 2: raise ValueError("No more than two variables are allows in the scan section!") return {"stre": stre, "bend": bend, "tors": tors} @staticmethod def read_plots(string: str) -> Dict: """ Read plots parameters from string. Args: string (str): String Returns: (dict) plots parameters. """ header = r"^\s*\$plots" row = r"\s*([a-zA-Z\_]+)\s+(\S+)" footer = r"^\s*\$end" plots_table = read_table_pattern(string, header_pattern=header, row_pattern=row, footer_pattern=footer) if plots_table == []: print("No valid plots inputs found. Note that there should be no '=' chracters in plots input lines.") return {} plots = {} for key, val in plots_table[0]: plots[key] = val return plots
''' Atakan Ayaşlı 170401066 ''' import socket import time import os import sys def Dosya_listele(): msg = "LİSTE Komutu doğru" msgEn = msg.encode('utf-8') s.sendto(msgEn, clientAddr) F = os.listdir( path="C:\Users\Atakan\Desktop\170401066\server") """ lütfen server.py dosyasının olduğu path'i yazınız eğer unicode hatası alıyorsanız pathi yazarken başlangıca r koyunuz örnek= r"C:/Users/...." """ Lists = [] for file in F: Lists.append(file) ListsStr = str(Lists) ListsEn = ListsStr.encode('utf-8') s.sendto(ListsEn, clientAddr) def PUT(): msg = "Kabul edilen PUT komutu" msgEn = msg.encode('utf-8') s.sendto(msgEn, clientAddr) if t2[0] == "PUT": BigSAgain = open(t2[1], "wb") d = 0 print("Transfer başlıyor") try: Count, countaddress = s.recvfrom(4096) except ConnectionResetError: print( "Port numaraları uyuşmuyor.") sys.exit() except: print("Bilinmeyen Hata") sys.exit() tillI = Count.decode('utf8') tillI = int(tillI) while tillI != 0: ServerData, serverAddr = s.recvfrom(4096) dataS = BigSAgain.write(ServerData) d += 1 tillI = tillI - 1 print("Alınan Paket numarası:" + str(d)) BigSAgain.close() print("Son") def Exit(): print("Çıkış") s.close() sys.exit() def ipkontrol(): if len(sys.argv) != 2: print( "lütfen ip giriniz(server.py 127.0.0.1)!/\n Eğer server.py dosyasınının 16. satırınının dosya pathini manuel ayarlamadıysanız hata verebilir path'i server.py'ın bulunduğu klasörün pathini manuel yazınız ") sys.exit() def GET(g): msg = "Kabul edilen komut " msgEn = msg.encode('utf-8') s.sendto(msgEn, clientAddr) if os.path.isfile(g): msg = "Dosya bulundu. " msgEn = msg.encode('utf-8') s.sendto(msgEn, clientAddr) c = 0 sizeS = os.stat(g) sizeSS = sizeS.st_size print("File size in bytes:" + str(sizeSS)) NumS = int(sizeSS / 4096) NumS = NumS + 1 tillSS = str(NumS) tillSSS = tillSS.encode('utf8') s.sendto(tillSSS, clientAddr) check = int(NumS) GetRunS = open(g, "rb") while check != 0: RunS = GetRunS.read(4096) s.sendto(RunS, clientAddr) c += 1 check -= 1 print("Paket numarası:" + str(c)) GetRunS.close() print("Sn") else: msg = "Hata:dosya bulunamadı" msgEn = msg.encode('utf-8') s.sendto(msgEn, clientAddr) def Else(): msg = "istediğniz " + \ t2[0] + " server tarafından anlaşılmadı" msgEn = msg.encode('utf-8') s.sendto(msgEn, clientAddr) host = "" ipkontrol() port=42 try: s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) s.bind((host, port)) print("Başarılı birleşme. Şimdi client bekleniyor.") except socket.error: print("Hata") sys.exit() while True: try: data, clientAddr = s.recvfrom(4096) except ConnectionResetError: print( "Port numaraları uyuşmuyor") sys.exit() text = data.decode('utf8') t2 = text.split() if t2[0] == "GET": GET(t2[1]) elif t2[0] == "PUT": PUT() elif t2[0] == "LİSTE": Dosya_listele() elif t2[0] == "exit": Exit() else: Else() print("Program sonlandırılıyor ") quit()
import torch import numpy as np import streamlit as st from encode import encode_long_text, decode_long_text,colorize import difflib @st.cache(ignore_hash=True) def load_models(): en2fr = torch.hub.load('pytorch/fairseq', 'transformer.wmt19.en-de.single_model', tokenizer='moses', bpe='fastbpe') fr2en = torch.hub.load('pytorch/fairseq', 'transformer.wmt19.de-en.single_model', tokenizer='moses', bpe='fastbpe') en2fr.cuda(); fr2en.cuda(); return (en2fr,fr2en) def token2color(token,added=True): if token[0]=='+': return '```{}```'.format(token[2:]) if added else ''#" b`{}`b ".format(token[1:]) if (added) else ''#colorize(token[1:],'green') if added else '' elif token[0]=='-': return '' if added else '```{}```'.format(token[2:])#`{}".format(token[1:])#colorize(token[1:],'red') elif token[0]=='?': return '' else: return token[2:] models = load_models() T = st.sidebar.slider("Temperature", min_value=0.7, max_value=1.5, value=1.05, step=None, format=None) topk = st.sidebar.slider("topk", min_value=5, max_value=200, value=25, step=5, format=None) decode = st.sidebar.checkbox('Decode?') if not decode: st.markdown('# Encode') else: st.markdown('# Decode') phrase="Japanese researchers began studying transistors three months after they were invented at America’s Bell Labs in 1947. Japanese companies then used transistors and other electronic parts and components to produce radios, television sets, Sony Walkmans, video cassette recorders, and computers. As the yen appreciated by 60% following the 1985 Plaza Accord, Japanese companies lost competitiveness in final electronics goods and moved upstream in electronics value chains. They focused on exporting electronic parts and components and capital goods to producers of final electronics goods abroad. " cover_text = st.text_area("Cover Text", phrase) if not decode: secret_message = st.text_area("Secret Message","secret code here: blah blah") encoded_text, bits_encoded, otherlang_text = encode_long_text(cover_text,secret_message,models,temperature=T,sampling_topk=topk) diff = st.sidebar.checkbox('Diff?',False) if diff: diff = list(difflib.Differ().compare(cover_text.split(' '),encoded_text.split(' '))) highlighted_diff_p = ' '.join([token2color(tok,True) for tok in diff]) highlighted_diff_m = ' '.join([token2color(tok,False) for tok in diff]).replace('```','~~') st.markdown('## Cover:') st.markdown(highlighted_diff_m) st.markdown('## Cover + Payload:') st.markdown(highlighted_diff_p) else: st.markdown('## Cover + Payload:') st.write(encoded_text) st.write(f'`{bits_encoded}` payload bits delivered at a bitrate of `{100*bits_encoded/(8*len(encoded_text)):.2f}`%') if st.sidebar.checkbox('Show German?'): st.markdown('## German Intermediary') st.write(otherlang_text) if decode: example_encoded = "Three months after Japanese researchers invented transistors at American Bell Labs in 1947, they began research into transistors. Japanese companies used transistors and other electronic components in manufacturing radios, TVs, Sony Walkmans, video cassette recorders and computers. When Japanese companies regained 60% of the value value of Japanese goods under the 1985 Plaza agreement, they lost their competitive position and advanced into electronic value chains, focusing on exports of electronic components and capital goods to end-product manufacturers overseas." encoded_text = st.text_area("Cover + Payload", example_encoded) decoded_text = decode_long_text(cover_text,encoded_text,models,temperature=T,sampling_topk=topk) st.markdown('## Decoded Text') st.write(str(decoded_text)[1:]+'\n')
from biicode.common.edition.hive_manager import HiveManager from biicode.client.exception import ConnectionErrorException, ClientException, NotInAHiveException from biicode.client.checkout.snapshotbuilder import compute_files, compute_deps_files from biicode.common.exception import BiiException from biicode.client.command.printers.command_printer import Printer from biicode.common.utils.bii_logging import logger from biicode.client.hooks import handle_hooks import traceback import shutil import os from biicode.common.migrations.biiconfig_migration import delete_migration_files from biicode.client.workspace.bii_paths import SRC_DIR, DEP_DIR, BII_DIR, BII_HIVE_DB from biicode.common.utils.file_utils import save from biicode.common.model.brl.complex_name import ComplexName def init_hive(bii, project_name=None, layout=None): """ Initializes an empty project """ user_cache = bii.user_cache out = bii.user_io.out bii_paths = bii.bii_paths if bii_paths.current_dir.startswith(bii_paths.user_bii_home): raise BiiException('Cannot create a project inside the user .biicode folder') try: bii_paths.project_root raise ClientException('Cannot create project inside other project') except NotInAHiveException: pass if project_name: name = ComplexName(project_name) current_dir = os.path.join(bii_paths.current_dir, name) bii_paths.current_dir = current_dir else: current_dir = bii_paths.current_dir ComplexName(os.path.basename(current_dir)) for root, _, _ in os.walk(current_dir): if os.path.exists(os.path.join(root, BII_DIR, BII_HIVE_DB)): if root == current_dir: project_name = os.path.basename(current_dir) raise ClientException('Project "%s" already exists' % project_name) raise ClientException('Cannot create project with other project inside:\n%s' % root) hive_disk_image = bii.hive_disk_image hive_disk_image.initialize() try: hive_disk_image.hivedb.read_edition_contents() out.success('Successfully initialized biicode project %s' % (project_name or "")) # If an exception is launched, the hive folder is deleted except BaseException as e: out.error('An error occurred while creating the project %s' % str(e)) logger.error(traceback.format_exc()) if project_name and os.path.exists(current_dir): hive_disk_image.hivedb.disconnect() shutil.rmtree(current_dir) else: layout_content = user_cache.layout(layout) if layout_content: save(os.path.join(hive_disk_image.paths.bii, "layout.bii"), layout_content) class ClientHiveManager(HiveManager): """ The main entry point for business logic in client """ def __init__(self, bii): self.bii = bii self.user_io = self.bii.user_io self.hive_disk_image = self.bii.hive_disk_image super(ClientHiveManager, self).__init__(self.hive_disk_image.hivedb, bii.biiapi, bii.user_io.out) @property def paths(self): return self.hive_disk_image.paths def _process(self): """ always the first step in every command """ files = self.hive_disk_image.get_src_files() settings = self.hive_disk_image.settings self.user_io.out.info('Processing changes...') deleted_migration = self.process(settings, files) delete_migration_files(deleted_migration, self.hive_disk_image.paths.blocks) self._checkout() self._checkout_deps() def work(self): self._process() self._handle_hooks('post_proc') def _handle_hooks(self, stage): """ will manage user defined hooks. It has a problem, it works only if project is processed. So for clean, it has to detect if there are hooks, then execute a work first """ handle_hooks(stage, self.hive_holder, self.closure, self.bii) def _checkout(self, allow_delete_block=None): ''' Checks-out HiveDB into disk Params: delete: BlockName or None if BlockName it will delete that block_name ''' if allow_delete_block: self.hive_disk_image.delete_removed(SRC_DIR, self.hive_holder.resources, block_filter=allow_delete_block) settings = self.hive_disk_image.settings update_files = compute_files(self.hive_holder, self.user_io.out, settings) self.hive_disk_image.save(SRC_DIR, update_files) def _checkout_deps(self): if self.closure is not None: files = compute_deps_files(self.closure) if files: self.hive_disk_image.save(DEP_DIR, files) self.hive_disk_image.delete_removed(DEP_DIR, files) def new(self, block_name=None, hello_lang=None): root_block = self.hive_disk_image.paths.root_block auto_root_path = self.hive_disk_image.paths.auto_root_block if block_name and not block_name == root_block: new_block_path = self.hive_disk_image.create_new_block(block_name) elif auto_root_path or root_block: new_block_path = self.hive_disk_image.paths.project_root else: raise ClientException("Too few arguments, specify a block name " "or add in your lauout.bii auto-root-path: True " "or a root-block: my_user/my_block") # If user has entered -- hello cpp, we create a main file with hello world cpp template if hello_lang: from biicode.client.dev.wizards import get_main_file_template hello_lang = ''.join(hello_lang) file_name, content = get_main_file_template(hello_lang) self.hive_disk_image.create_new_file(new_block_path, file_name, content) def clean(self): # TODO: Check that there are no changes in deps if self.hive_disk_image.clean_hooks(): self._process() self._handle_hooks('clean') self.hive_disk_image.clean() def publish(self, block_name, tag, msg, versiontag, publish_all, origin): self._process() parents = [b.parent for b in self.hive_holder.block_holders if b.parent.time != -1] self.bii.biiapi.check_valid(parents) HiveManager.publish(self, block_name, tag, msg, versiontag, publish_all=publish_all, origin=origin) self._checkout() # Check again, in case some parent outdated DEV => STABLE parents = [b.parent for b in self.hive_holder.block_holders if b.parent.time != -1] self.bii.biiapi.check_valid(parents, publish=False) def find(self, **find_args): self._process() try: policies = self.hive_disk_image.policies find_result = super(ClientHiveManager, self).find(policies, **find_args) Printer(self.user_io.out).print_find_result(find_result) self.apply_find_result(find_result) self._checkout() self._checkout_deps() except ConnectionErrorException: self.user_io.out.error('Unable to connect to server to find deps') def update(self, block, time): self._process() parents = [b.parent for b in self.hive_holder.block_holders if b.parent.time != -1] self.bii.biiapi.check_valid(parents, publish=False) block = super(ClientHiveManager, self).update(block, time) self._checkout(allow_delete_block=block) self._checkout_deps() def open(self, block_name, track, time, version_tag): ''' Params: block_version. It time is None last version will be retrieved ''' self._process() opened_version = HiveManager.open(self, block_name, track, time, version_tag) self._checkout() self._checkout_deps() if os.path.exists(os.path.join(self.hive_disk_image.paths.deps, block_name)): raise BiiException("Unable to remove %s from 'deps' folder. Maybe there exist " "temporary files, or some file is locked by other " "application. Check it and delete manually 'deps/%s' folder." % (block_name, block_name)) self.bii.user_io.out.write('Opened %s\n' % str(opened_version)) def close(self, block_name, force): self._process() HiveManager.close(self, block_name, self.hive_disk_image.settings, force) self._checkout(allow_delete_block=block_name) self._checkout_deps() # When closing a block we might have less dependencies if os.path.exists(os.path.join(self.hive_disk_image.paths.blocks, block_name)): raise BiiException("Unable to remove %s from '%s' folder. Maybe there exist " "temporary or ignored files, or some file is locked by an open " "application. Check it and delete manually 'blocks/%s' folder." % (block_name, SRC_DIR, block_name)) self.bii.user_io.out.write('%s closed\n' % block_name) def diff(self, block_name, version_child, version_parent, short): from biicode.client.command.printers.diff_printer import print_diff self._process() print_diff(self.bii.user_io.out, self.hive_holder, self._biiapi, block_name, version_child, version_parent, short) def deps(self, block_name=None, details=False, files=False): ''' Command to show all the dependencies in a project ''' from biicode.client.command.printers.deps_printer import print_deps self._process() print_deps(self.bii.user_io.out, self.hive_holder, block_name, details, files)
from django.conf.urls import url from . import views from django.conf import settings from django.conf.urls.static import static urlpatterns = [ url('^$', views.index, name='home'), url(r'^search/', views.search_results, name='search_results'), url(r'^singleimage/(\d+)', views.single_photo, name='singleImage'), ] if settings.DEBUG: urlpatterns += static(settings.MEDIA_URL, document_root=settings.MEDIA_ROOT)
""" import csv import os class GenericCar: def __init__(self, car_type, brand, photo_file_name, carrying): self.car_type = car_type self.brand = brand self.photo_file_name = photo_file_name self.carrying = float(carrying) def get_photo_file_ext(self): _, file_extension = os.path.splitext(self.photo_file_name) return file_extension class Car(GenericCar): def __init__(self, car_type, brand, photo_file_name, carrying, passenger_seats_count): super().__init__(car_type, brand, photo_file_name, carrying) self.passenger_seats_count = int(passenger_seats_count) class Truck(GenericCar): def __init__(self, car_type, brand, photo_file_name, carrying, body_whl): super().__init__(car_type, brand, photo_file_name, carrying) self.body_length, self.body_width, self.body_height = 0.0, 0.0, 0.0 if body_whl != '': dimensions = body_whl.split('x') self.body_length, self.body_width, self.body_height = [float(dim) for dim in dimensions] def get_body_volume(self): return self.body_length * self.body_width * self.body_height class SpecialCar(GenericCar): def __init__(self, car_type, brand, photo_file_name, carrying, extra): super().__init__(car_type, brand, photo_file_name, carrying) self.extra = extra def get_car_list(csv_file_name): car_list = [] with open(csv_file_name) as f: reader = csv.reader(f, delimiter=';') next(reader) # skip header for row in reader: try: car_type = row[0] if car_type == 'car': car_list.append(Car(car_type, brand=row[1], photo_file_name=row[3], carrying=row[5], passenger_seats_count=row[2])) elif car_type == 'truck': car_list.append(Truck(car_type, brand=row[1], photo_file_name=row[3], carrying=row[5], body_whl=row[4])) elif car_type == 'spec_machine': car_list.append(SpecialCar(car_type, brand=row[1], photo_file_name=row[3], carrying=row[5], extra=row[6])) else: pass except Exception: pass return car_list if __name__ == '__main__': print(get_car_list('coursera_week3_cars.csv')) """ # Teachers way import csv import sys import os.path class CarBase: """Базовый класс с общими методами и атрибутами""" # индексы полей, которые соответствуют колонкам в исходном csv-файле ix_car_type = 0 ix_brand = 1 ix_passenger_seats_count = 2 ix_photo_file_name = 3 ix_body_whl = 4 ix_carrying = 5 ix_extra = 6 def __init__(self, brand, photo_file_name, carrying): self.brand = brand self.photo_file_name = photo_file_name self.carrying = float(carrying) def get_photo_file_ext(self): _, ext = os.path.splitext(self.photo_file_name) return ext class Car(CarBase): """Класс легковой автомобиль""" car_type = "car" def __init__(self, brand, photo_file_name, carrying, passenger_seats_count): super().__init__(brand, photo_file_name, carrying) self.passenger_seats_count = int(passenger_seats_count) @classmethod def from_tuple(cls, row): """ Метод для создания экземпляра легкового автомобиля из строки csv-файла""" return cls( row[cls.ix_brand], row[cls.ix_photo_file_name], row[cls.ix_carrying], row[cls.ix_passenger_seats_count], ) class Truck(CarBase): """Класс грузовой автомобиль""" car_type = "truck" def __init__(self, brand, photo_file_name, carrying, body_whl): super().__init__(brand, photo_file_name, carrying) # обрабатываем поле body_whl try: length, width, height = (float(c) for c in body_whl.split("x", 2)) except ValueError: length, width, height = .0, .0, .0 self.body_length = length self.body_width = width self.body_height = height def get_body_volume(self): return self.body_width * self.body_height * self.body_length @classmethod def from_tuple(cls, row): return cls( row[cls.ix_brand], row[cls.ix_photo_file_name], row[cls.ix_carrying], row[cls.ix_body_whl], ) class SpecMachine(CarBase): """Класс спецтехника""" car_type = "spec_machine" def __init__(self, brand, photo_file_name, carrying, extra): super().__init__(brand, photo_file_name, carrying) self.extra = extra @classmethod def from_tuple(cls, row): return cls( row[cls.ix_brand], row[cls.ix_photo_file_name], row[cls.ix_carrying], row[cls.ix_extra], ) def get_car_list(csv_filename): with open(csv_filename) as csv_fd: # создаем объект csv.reader для чтения csv-файла reader = csv.reader(csv_fd, delimiter=';') # пропускаем заголовок csv next(reader) # это наш список, который будем возвращать car_list = [] # объявим словарь, ключи которого - тип автомобиля (car_type), # а значения - класс, объект которого будем создавать create_strategy = {car_class.car_type: car_class for car_class in (Car, Truck, SpecMachine)} # обрабатываем csv-файл построчно for row in reader: try: # определяем тип автомобиля car_type = row[CarBase.ix_car_type] except IndexError: # если не хватает колонок в csv - игнорируем строку continue try: # получаем класс, объект которого нужно создать # и добавить в итоговый список car_list car_class = create_strategy[car_type] except KeyError: # если car_type не извесен, просто игнорируем csv-строку continue try: # создаем и добавляем объект в car_list car_list.append(car_class.from_tuple(row)) except (ValueError, IndexError): # если данные некорректны, то игнорируем их pass return car_list if __name__ == "__main__": print(get_car_list(sys.argv[1]))
import os from builtins import str from builtins import object from builtins import range from retriever.lib.models import Engine from retriever import DATA_DIR, open_fr, open_fw from retriever.lib.tools import xml2csv, sort_csv class DummyConnection(object): def cursor(self): pass def commit(self): pass def rollback(self): pass def close(self): pass class DummyCursor(DummyConnection): pass class engine(Engine): """Engine instance for writing data to a XML file.""" name = "XML" abbreviation = "xml" datatypes = { "auto": "INTEGER", "int": "INTEGER", "bigint": "INTEGER", "double": "REAL", "decimal": "REAL", "char": "TEXT", "bool": "INTEGER", } required_opts = [ ("table_name", "Format of table name", os.path.join(DATA_DIR, "{db}_{table}.xml")), ] table_names = [] def create_db(self): """Override create_db since there is no database just an XML file""" return None def create_table(self): """Create the table by creating an empty XML file""" self.output_file = open_fw(self.table_name()) self.output_file.write(u'<?xml version="1.0" encoding="UTF-8"?>') self.output_file.write(u'\n<root>') self.table_names.append((self.output_file, self.table_name())) self.auto_column_number = 1 def disconnect(self): """Close out the xml files Close all the file objects that have been created Re-write the files stripping off the last comma and then close with a closing tag) """ if self.table_names: for output_file_i, file_name in self.table_names: output_file_i.close() current_input_file = open_fr(file_name) file_contents = current_input_file.readlines() current_input_file.close() file_contents[-1] = file_contents[-1].strip(',') current_output_file = open_fw(file_name) current_output_file.writelines(file_contents) current_output_file.write(u'\n</root>') current_output_file.close() self.table_names = [] def execute(self, statement, commit=True): """Write a line to the output file""" self.output_file.writelines(statement) def format_insert_value(self, value, datatype): """Formats a value for an insert statement""" v = Engine.format_insert_value(self, value, datatype, escape=False, processed=True) if v == 'null': return "" try: if len(v) > 1 and v[0] == v[-1] == "'": v = '"%s"' % v[1:-1] except: pass return v def insert_statement(self, values): if not hasattr(self, 'auto_column_number'): self.auto_column_number = 1 keys = self.table.get_insert_columns(join=False, create=True) if self.table.columns[0][1][0][3:] == 'auto': newrows = [] for rows in values: insert_stmt = [self.auto_column_number] + rows newrows.append(insert_stmt) self.auto_column_number += 1 else: newrows = values xml_lines = ['\n<row>\n{}</row>'.format(self._format_single_row(keys, line_data)) for line_data in newrows] return xml_lines def _format_single_row(self, keys, line_data): return ''.join(' <{key}>{value}</{key}>\n'.format(key=key, value=value) for key, value in zip(keys, line_data)) def table_exists(self, dbname, tablename): """Check to see if the data file currently exists""" tablename = self.table_name(name=tablename, dbname=dbname) return os.path.exists(tablename) def to_csv(self): """Export table from xml engine to CSV file""" for keys in list(self.script.tables): table_name = self.opts['table_name'].format(db=self.db_name, table=keys) header = self.script.tables[keys].get_insert_columns(join=False, create=True) csv_outfile = xml2csv(table_name, header_values=header) sort_csv(csv_outfile) def get_connection(self): """Gets the db connection.""" self.get_input() return DummyConnection()
"""A data structure for a set of coronal hole tracking (CHT) algorithm. Module purposes: (1) used as a holder for a window of frames and (2) matches coronal holes between frames. Last Modified: July 21st, 2021 (Opal). """ import json import numpy as np import datetime as dt import pickle from chmap.coronal_holes.tracking.src.frame import Frame from chmap.coronal_holes.tracking.src.knn import KNN from chmap.coronal_holes.tracking.src.time_interval import * from chmap.coronal_holes.tracking.src.areaoverlap import area_overlap, max_area_overlap from chmap.coronal_holes.tracking.src.graph import CoronalHoleGraph class CoronalHoleDB: """ Coronal Hole Object Data Structure.""" # contour binary threshold. BinaryThreshold = 0.7 # coronal hole area threshold. AreaThreshold = 5E-3 # window to match coronal holes. window = 1000 # window time interval (time-delta) window_time_interval = dt.timedelta(days=7) # parameter for longitude dilation (this should be changed for larger image dimensions). gamma = 20 # parameter for latitude dilation (this should be changed for larger image dimensions). beta = 10 # connectivity threshold. ConnectivityThresh = 0.1 # connectivity threshold. AreaMatchThresh = 5E-3 # knn k hyper parameter kHyper = 10 # knn thresh kNNThresh = 1E-3 # MeshMap with information about the input image mesh grid and pixel area. Mesh = None def __init__(self): # connectivity graph. self.Graph = CoronalHoleGraph() # data holder for previous *window* frames. self.window_holder = [None] * self.window def __str__(self): return json.dumps( self.json_dict(), indent=4, default=lambda o: o.json_dict()) def json_dict(self): return { 'num_frames': self.Graph.frame_num, 'num_coronal_holes': self.Graph.total_num_of_coronal_holes, 'num_of_nodes': self.Graph.G.number_of_nodes(), 'num_of_edges': self.Graph.G.number_of_edges(), } def _assign_id_coronal_hole(self, ch): """Assign a *unique* ID number to a coronal hole based on its class association." Parameters ---------- ch: CoronalHole() object Returns ------- ch: with assigned id. """ # set the index id. ch.id = self.Graph.total_num_of_coronal_holes + 1 # update coronal hole holder. self.Graph.total_num_of_coronal_holes += 1 return ch def _assign_color_coronal_hole(self, ch): """Assign a unique color (RBG) to coronal hole" Parameters ---------- ch: CoronalHole() object Returns ------- ch: with assigned color. """ ch.color = self.generate_ch_color() return ch @staticmethod def _assign_count_coronal_hole(ch, contour_list): """Assign a count to coronal hole, the number " Parameters ---------- ch: CoronalHole() object contour_list: list of contours found in previous frame. Returns ------- ch: with assigned count. """ count = 0 for contour in contour_list: if contour.id == ch.id and contour != ch: count += 1 ch.count = count return ch def update_previous_frames(self, frame): """Update *window* previous frame holders. Parameters ---------- frame: new frame object Frame() see frame.py Returns ------- None """ # append the new frame to the end of the list. self.window_holder.append(frame) def adjust_window_size(self, mean_timestamp, list_of_timestamps): """Update the window holder as we add a new frame info. :param mean_timestamp: the current timestamp. :param list_of_timestamps: list of all the timestamps in the database. :return: N/A """ # get window of frames that are within the time interval new_window_size = get_number_of_frames_in_interval(curr_time=mean_timestamp, time_window=self.window_time_interval, list_of_timestamps=list_of_timestamps) # if the window holder is now smaller then before. if new_window_size < self.window: self.window_holder = self.window_holder[-new_window_size:] # this is not really possible - there is an error in the database. elif new_window_size > self.window + 1: raise ArithmeticError('The window size is invalid. ') # update window to be the new window size. self.window = new_window_size def initialize_window_holder(self, db_session, query_start, query_end, map_vars, map_methods, prev_run_path): """Initialize the previous run history. :param db_session: database session. :param query_start: start-time timestamp. :param query_end: end-time timestamp. :param map_vars: map variables. :param map_methods: define map type and grid to query. :param prev_run_path: path to previous run pickle files. :return: N/A """ # get list of timestamps in the window interval. list_of_timestamps = get_time_interval_list(db_session, query_start, query_end - dt.timedelta(seconds=1), map_vars, map_methods) # update the window holder. self.window_holder = read_prev_run_pkl_results(ordered_time_stamps=list_of_timestamps, prev_run_path=prev_run_path) @staticmethod def generate_ch_color(): """Generate a random color. :return: list of 3 integers between 0 and 255. """ return np.random.randint(low=0, high=255, size=(3,)).tolist() def assign_new_coronal_holes(self, contour_list, timestamp=None): """Match coronal holes to previous *window* of frames. Parameters ---------- contour_list: (list) current frame Contour() list. timestamp: (str) frame timestamp Returns ------- N/A """ # if this is the first frame in the video sequence then just save coronal holes. if self.Graph.frame_num == 1: for ii in range(len(contour_list)): # assign a unique class ID to the contour object. contour_list[ii] = self._assign_id_coronal_hole(ch=contour_list[ii]) # assign a unique color (RBG) to the contour object. contour_list[ii] = self._assign_color_coronal_hole(ch=contour_list[ii]) # update the color dictionary. self.Graph.color_dict[contour_list[ii].id] = contour_list[ii].color # add coronal hole as a node to graph. self.Graph.insert_node(node=contour_list[ii]) # this is *NOT* the first frame - then we need to match the new contours. else: # match coronal holes to previous *window* frames. match_list, contour_list, area_overlap_results, area_check_list = \ self.global_matching_algorithm(contour_list=contour_list) for ii in range(len(contour_list)): # new coronal hole if match_list[ii] == 0: # assign a unique class ID number to the contour. contour_list[ii] = self._assign_id_coronal_hole(ch=contour_list[ii]) # assign a unique color (RBG) to the contour. contour_list[ii] = self._assign_color_coronal_hole(ch=contour_list[ii]) # update the color dictionary. self.Graph.color_dict[contour_list[ii].id] = contour_list[ii].color # existing coronal hole else: # assign a unique class ID number to the contour that resulted in the best match # highest area overlapping ratio. contour_list[ii].id = match_list[ii] # assign a the corresponding color that all contours of this class have. contour_list[ii].color = self.Graph.color_dict[contour_list[ii].id] # assign count to contour. contour_list[ii] = self._assign_count_coronal_hole(ch=contour_list[ii], contour_list=contour_list) # add coronal hole as a node to graph. self.Graph.insert_node(node=contour_list[ii]) # update graph edges -- connectivity. self.update_connectivity_prev_frame(contour_list=contour_list) # update the latest frame index number in graph. self.Graph.max_frame_num = self.Graph.frame_num # update window holder. self.update_previous_frames(frame=Frame(contour_list=contour_list, identity=self.Graph.frame_num, timestamp=timestamp, map_mesh=self.Mesh)) def global_matching_algorithm(self, contour_list): """Match coronal holes between sequential frames using KNN and area overlap probability. Parameters ---------- contour_list: list of new coronal holes (identified in the latest frame, yet to be classified). Returns ------- 1 List of all corresponding ID to each coronal hole in contour_list. Note the corresponding ID is in order of coronal holes in contour_list. "0" means "new class" 2 contour list 3 area overlap results 4 area check list """ # ============================================================================================================== # KNN - K nearest neighbors for contour centroid location. # ============================================================================================================== # prepare dataset for K nearest neighbor algorithm. X_train, Y_train, X_test = self.prepare_knn_data(contour_list=contour_list) # fit the training data and classify. classifier = KNN(X_train=X_train, X_test=X_test, Y_train=Y_train, K=self.kHyper, thresh=self.kNNThresh) # ============================================================================================================== # Area Overlap - Pixel overlap (connectivity and ID matching). # ============================================================================================================== # if probability > KNN threshold then check its overlap of pixels area (functions are in areaoverlap.py) area_check_list = classifier.check_list # compute the average area overlap ratio, this will be used for matching coronal holes and connectivity edges. area_overlap_results = self.get_area_overlap_ratio_list(area_check_list=area_check_list, contour_list=contour_list) # return list of coronal holes corresponding unique ID. match_list = max_area_overlap(area_check_list=area_check_list, area_overlap_results=area_overlap_results, threshold=self.AreaMatchThresh) # assign count for each contour. return match_list, contour_list, area_overlap_results, area_check_list def prepare_knn_data(self, contour_list): """ Prepare X_train, Y_train, X_test for KNN algorithm. Parameters ---------- contour_list: list of the contours identified in the latest frame. Returns ------- X_train, Y_train, X_test """ # prepare knn test dataset containing all the new coronal hole centroids in spherical coordinates. [theta, phi] # initialize X_test X_test = [ch.phys_centroid for ch in contour_list] # prepare X_train and Y_train saved in self.window_holder. X_train = [] Y_train = [] for frame in self.window_holder: if frame is not None: X_train.extend(frame.centroid_list) Y_train.extend(frame.label_list) return X_train, Y_train, X_test def get_all_instances_of_class(self, class_id): """A list of all instances of contours in the last *window* of frames that have the specific class_id. Parameters ---------- class_id: (int) class identification number. Returns ------- list of Contour() with class_id in the *window* of frames. """ res = [] for frame in self.window_holder: if frame is not None: for ch in frame.contour_list: if ch.id == class_id: res.append(ch) return res def get_area_overlap_ratio_list(self, area_check_list, contour_list): """Results of area overlap between the new coronal holes found in the latest frame and the coronal holes saved in window_holder. Parameters ---------- contour_list: list of new coronal holes (identified in the latest frame, yet to be classified). area_check_list: list of coronal holes that need to be checked. Returns ------- A list of area overlap probability corresponding to area_check_list """ # initialize the returned list containing the average area overlap. area_overlap_ratio_list = [] # iterator ii = 0 # loop over suggested matches from KNN. for ch_list in area_check_list: # corresponding average ratio. holder = [] # loop over every "suggested match" based on KNN. # weighted mean. for identity in ch_list: # find all contours with "identity" labelling in the previous *window* of frames. coronal_hole_list = self.get_all_instances_of_class(class_id=identity) # save all ratios in this list and then average the elements. p = [] # keep track of weight sum weight_sum = 0 for ch in coronal_hole_list: p1, p2 = area_overlap(ch1=ch, ch2=contour_list[ii], da=self.Mesh.da) # weight is based on frame timestamp proximity measured in units of hours. weight = time_distance(time_1=contour_list[ii].frame_timestamp, time_2=ch.frame_timestamp) # weighted average. p.append(weight * (p1 + p2) / 2) # keep track of the sum of weights. weight_sum += weight # save the weighted average -> later used to dictate the ch id number. holder.append(sum(p) / weight_sum) area_overlap_ratio_list.append(holder) ii += 1 return area_overlap_ratio_list def update_connectivity_prev_frame(self, contour_list): """Update connectivity graph by checking area overlap with the previous frame contours. Parameters ---------- contour_list: list of new coronal holes (identified in the latest frame, yet to be classified). Returns ------- N/A """ for curr_contour in contour_list: for prev_contour in self.window_holder[-1].contour_list: self.add_weighted_edge(contour1=prev_contour, contour2=curr_contour) if curr_contour.id < self.Graph.total_num_of_coronal_holes: prev_list = self.find_latest_contour_in_window(identity=curr_contour.id) for prev_contour in prev_list: self.add_weighted_edge(contour1=prev_contour, contour2=curr_contour) def add_weighted_edge(self, contour1, contour2): """Add a weighted edge between two contours based on their area overlap. Parameters ---------- contour1: Contour() contour2: Contour() Returns ------- N/A """ p1, p2 = area_overlap(ch1=contour1, ch2=contour2, da=self.Mesh.da) if (p1 + p2) / 2 > self.ConnectivityThresh: self.Graph.insert_edge(node_1=contour1, node_2=contour2, weight=round((p1 + p2) / 2, 3)) def find_latest_contour_in_window(self, identity): """Find the latest contour of a specific id, in the window frame holder. Parameters ---------- identity: (int) Contour() ID number. Returns ------- Contour() object. """ ii = self.window - 1 while ii >= 0: frame = self.window_holder[ii] # initialize contour list. node_list = [] if frame is None: # exit- the frame is fairly new and there is no point in continuing the iterations. return [] else: for contour in frame.contour_list: if contour.id == identity: node_list.append(contour) # check if contour list is empty. if len(node_list) > 0: return node_list ii += -1 return []
# Copyright (c) 2021 Sebastian Pipping <sebastian@pipping.org> # Licensed under the MIT license import base64 import hashlib import os import tempfile from argparse import ArgumentParser import requests def download_url_to_file(url): response = requests.get(url, allow_redirects=True) with tempfile.NamedTemporaryFile(delete=False) as f: f.write(response.content) return f.name def obtain_hash_for_local_file(filename: str) -> str: h = hashlib.sha256() with open(filename, 'br') as f: h.update(f.read()) bytes_digest = b'sha256-' + base64.b64encode(h.digest()) return bytes_digest.decode('ascii') def run(config): delete_file = False if config.filename_or_url.startswith('https://'): filename = download_url_to_file(config.filename_or_url) delete_file = True else: filename = config.filename_or_url try: print(obtain_hash_for_local_file(filename)) finally: if delete_file: os.remove(filename) def main(): parser = ArgumentParser() parser.add_argument('filename_or_url', metavar='FILE|URL', help='File or https:// URL to compute checksum for') config = parser.parse_args() run(config) if __name__ == '__main__': main()
from django import forms from django.forms.fields import DateField from .models import Exam, Question, AnsweredQuestion, Recommendation BIRTH_YEAR_CHOICES = range(1940, 2019) class TakeExamForm(forms.ModelForm): birthdate = forms.DateField( widget=forms.SelectDateWidget(years=BIRTH_YEAR_CHOICES, empty_label=("Escoja un año", "Escoja un mes", "Escoja un día"),), label="Fecha de nacimiento") class Meta: model = Exam exclude = ['answered_questions', 'user', 'active', 'recommendation'] def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) for question in Question.objects.filter(active=True): self.fields[question.slug] = forms.ModelChoiceField( queryset=question.answers, empty_label="Seleccione una respuesta", label=question.question_text) def clean(self): # Nothing to clean pass def save(self, user): score = 0 exam = self.instance exam.user = user exam.save() for question in Question.objects.filter(active=True): score += self.cleaned_data[question.slug].weight exam.answered_questions.add( question, through_defaults={'answer': self.cleaned_data[question.slug]}) print(score) try: exam.recommendation = Recommendation.objects.get( upper__gte=score, lower__lte=score) except Exception: exam.recommendation = None exam.save(update_fields=['recommendation', ]) return exam
EMOTIONS = { 0:"anger", 1:"disgust", 2:"fear", 3:"happy", 4:"sad", 5:"surprise", 6:"neutral" } EMOTION2INTEGER = { "anger":0, "disgust":1, "fear":2, "happy":3, "sad":4, "surprise":5, "neutral":6 }
""" Contains the Parameter class. Copyright (c) 2014 Kenn Takara See LICENSE for details """ from sympy import Symbol from pysolve import InvalidNameError from pysolve.variable import Variable class Parameter(Symbol): """ This class contains a 'parameter'. This is an exogenous variable. The solver is not allowed to change this value when solving a set of equations. Attributes: symbol: name: desc: default: value: """ # pylint: disable=too-many-ancestors def __init__(self, name, desc=None, default=None): if name in Variable.ILLEGAL_NAMES: raise InvalidNameError(name, 'Name already used by sympy') super().__init__() self.name = name self.desc = desc self.default = default self.model = None self._index = None self._value = default @property def value(self): """ Getter accessor for parameter value """ return self._value @value.setter def value(self, val): """ Setter accessor for parameter value """ self._value = val class SeriesParameter(Parameter): """ A parameter that can access the previous solution values. Attributes: name: variable: iteration: default: """ # pylint: disable=too-many-ancestors def __init__(self, name, variable=None, iteration=None, default=None): super(SeriesParameter, self).__init__(name, default=default) if variable is None or iteration is None: raise ValueError('variable and iteration cannot be none') self.variable = variable self.iteration = iteration @property def value(self): """ Returns the value of a variable at a another iteration. If the iteration value is out-of-range, the variable's default value is returned. """ try: return self.variable.model.get_value( self.variable, self.iteration) except IndexError: return self.variable.value or self.variable.default
# Copyright 2016-2019 Douglas G. Moore. All rights reserved. # Use of this source code is governed by a MIT # license that can be found in the LICENSE file. """ All of the currently implemented time series measures are only defined on discretely-valued time series. However, in practice continuously-valued time series are ubiquitous. There are two approaches to accomodating continuous values. The simplest is to *bin* the time series, forcing the values into discrete states. This method has its downsides, namely that the binning is often a bit unphysical and it can introduce bias. What's more, without some kind of guiding principle it can be difficult to decide exactly which binning approach. The second approach attempts to infer condinuous probability distributions from continuous data. This is potentially more robust, but more technically difficult. Unfortunately, PyInform does not yet have an implementation of information measures on continous distributions. This module (:py:mod:`pyinform.utils.binning`) provides a basic binning facility via the :py:func:`.bin_series` function. """ import numpy as np from ctypes import byref, c_double, c_int, c_ulong, POINTER from pyinform import _inform from pyinform.error import ErrorCode, error_guard def series_range(series): """ Compute the range of a continuously-valued time series. Examples: .. doctest:: utils >>> utils.series_range([0,1,2,3,4,5]) (5.0, 0.0, 5.0) >>> utils.series_range([-0.1, 8.5, 0.02, -6.3]) (14.8, -6.3, 8.5) :param sequence series: the time series :returns: the range and the minimum/maximum values :rtype: 3-tuple (float, float, float) :raises InformError: if an error occurs within the ``inform`` C call """ xs = np.ascontiguousarray(series, dtype=np.float64) data = xs.ctypes.data_as(POINTER(c_double)) min, max = c_double(), c_double() e = ErrorCode(0) rng = _inform_range(data, c_ulong(xs.size), byref(min), byref(max), byref(e)) error_guard(e) return rng, min.value, max.value def bin_series(series, b=None, step=None, bounds=None): """ Bin a continously-valued times series. The binning can be performed in any one of three ways. .. rubric:: 1. Specified Number of Bins The first is binning the time series into *b* uniform bins (with *b* an integer). .. doctest:: utils >>> import numpy as np >>> np.random.seed(2019) >>> xs = 10 * np.random.rand(20) >>> xs array([9.03482214, 3.93080507, 6.23969961, 6.37877401, 8.80499069, 2.99172019, 7.0219827 , 9.03206161, 8.81381926, 4.05749798, 4.52446621, 2.67070324, 1.6286487 , 8.89214695, 1.48476226, 9.84723485, 0.32361219, 5.15350754, 2.01129047, 8.86010874]) >>> utils.bin_series(xs, b=2) (array([1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1], dtype=int32), 2, 4.761811327822174) >>> utils.bin_series(xs, b=3) (array([2, 1, 1, 1, 2, 0, 2, 2, 2, 1, 1, 0, 0, 2, 0, 2, 0, 1, 0, 2], dtype=int32), 3, 3.1745408852147823) With this approach the binned sequence (as an ``numpy.ndarray``), the number of bins, and the size of each bin are returned. This binning method is useful if, for example, the user wants to bin several time series to the same base. .. rubric:: 2. Fixed Size Bins The second type of binning produces bins of a specific size *step*. .. doctest:: utils >>> utils.bin_series(xs, step=4.0) (array([2, 0, 1, 1, 2, 0, 1, 2, 2, 0, 1, 0, 0, 2, 0, 2, 0, 1, 0, 2], dtype=int32), 3, 4.0) >>> utils.bin_series(xs, step=2.0) (array([4, 1, 2, 3, 4, 1, 3, 4, 4, 1, 2, 1, 0, 4, 0, 4, 0, 2, 0, 4], dtype=int32), 5, 2.0) As in the previous case the binned sequence, the number of bins, and the size of each bin are returned. This approach is appropriate when the system at hand has a particular sensitivity or precision, e.g. if the system is sensitive down to 5.0mV changes in potential. .. rubric:: 3. Thresholds The third type of binning is breaks the real number line into segments with specified boundaries or thresholds, and the time series is binned according to this partitioning. The bounds are expected to be provided in ascending order. .. doctest:: utils >>> utils.bin_series(xs, bounds=[2.0, 7.5]) (array([2, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 0, 2, 0, 2, 0, 1, 1, 2], dtype=int32), 3, [2.0, 7.5]) >>> utils.bin_series(xs, bounds=[2.0]) (array([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1], dtype=int32), 2, [2.0]) Unlike the previous two types of binning, this approach returns the specific bounds rather than the bin sizes. The other two returns, the binned sequence and the number of bins, are returned as before. This approach is useful in situations where the system has natural thesholds, e.g. the polarized/hyperpolarized states of a neuron. :param sequence series: the continuously-valued time series :param int b: the desired number of uniform bins :param float step: the desired size of each uniform bin :param sequence bounds: the (finite) bounds of each bin :return: the binned sequence, the number of bins and either the bin sizes or bin bounds :rtype: either (``numpy.ndarray``, int, float) or (``numpy.ndarray``, int, sequence) :raises ValueError: if no keyword argument is provided :raises ValueError: if more than one keyword argument is provided :raises InformError: if an error occurs in the ``inform`` C call """ if b is None and step is None and bounds is None: raise ValueError( "must provide either number of bins, step size, or bin boundaries") elif b is not None and step is not None: raise ValueError("cannot provide both number of bins and step size") elif b is not None and bounds is not None: raise ValueError( "cannot provide both number of bins and bin boundaries") elif step is not None and bounds is not None: raise ValueError("cannot provide both step size and bin boundaries") xs = np.ascontiguousarray(series, dtype=np.float64) data = xs.ctypes.data_as(POINTER(c_double)) binned = np.empty(xs.shape, dtype=np.int32) out = binned.ctypes.data_as(POINTER(c_int)) e = ErrorCode(0) if b is not None: spec = _inform_bin(data, c_ulong(xs.size), c_int(b), out, byref(e)) elif step is not None: spec = step b = _inform_bin_step(data, c_ulong(xs.size), c_double(step), out, byref(e)) elif bounds is not None: boundaries = np.ascontiguousarray(bounds, dtype=np.float64) bnds = boundaries.ctypes.data_as(POINTER(c_double)) spec = bounds b = _inform_bin_bounds(data, c_ulong( xs.size), bnds, c_ulong(boundaries.size), out, byref(e)) error_guard(e) return binned, b, spec _inform_range = _inform.inform_range _inform_range.argtypes = [POINTER(c_double), c_ulong, POINTER( c_double), POINTER(c_double), POINTER(c_int)] _inform_range.restype = c_double _inform_bin = _inform.inform_bin _inform_bin.argtypes = [ POINTER(c_double), c_ulong, c_int, POINTER(c_int), POINTER(c_int)] _inform_bin.restype = c_double _inform_bin_step = _inform.inform_bin_step _inform_bin_step.argtypes = [ POINTER(c_double), c_ulong, c_double, POINTER(c_int), POINTER(c_int)] _inform_bin_step.restype = c_int _inform_bin_bounds = _inform.inform_bin_bounds _inform_bin_bounds.argtypes = [POINTER(c_double), c_ulong, POINTER( c_double), c_ulong, POINTER(c_int), POINTER(c_int)] _inform_bin_bounds.restype = c_int
# -*- coding: utf-8 -*- # Generated by Django 1.9.8 on 2016-08-07 19:02 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('skaba', '0005_event_date'), ] operations = [ migrations.RemoveField( model_name='attendance', name='modified', ), migrations.AddField( model_name='attendance', name='verified', field=models.BooleanField(default=False), ), ]
import hashlib import json import time from tools import logger as log from tools import auction_house_data_logger as ah_log import strategies from strategies import support_functions def auctionh_get_prices(**kwargs): """ A strategy to get prices from the auction house. :param kwargs: strategy, listener, and orders_queue :return: the input strategy with a report """ strategy = kwargs['strategy'] listener = kwargs['listener'] orders_queue = kwargs['orders_queue'] assets = kwargs['assets'] logger = log.get_logger(__name__, strategy['bot']) ah_logger = ah_log.get_logger(__name__, strategy['bot'] + '_data') global_start, start = time.time(), time.time() n_new_entries = 0 sample_timestamp = int(time.time()) if 'sample_timestamp' in strategy['parameters']: sample_timestamp = strategy['parameters']['sample_timestamp'] # Check that the auction house is open. If it is, close it and open it again. # This is to prevent some edge case of item or type selection. See todos, lower in this script. if not listener.game_state['auction_house_info']: sub_strategy = strategies.auctionh_open.auctionh_open( listener=listener, orders_queue=orders_queue, assets=assets, strategy={ "bot": strategy['bot'], "parameters": { "mode": "buy" } } ) if not sub_strategy['report']['success']: strategy['report'] = { 'success': False, 'details': {'Execution time': time.time() - start, 'Reason': sub_strategy['report']} } log.close_logger(logger) ah_log.close_logger(ah_logger) return strategy else: sub_strategy = strategies.auctionh_close.auctionh_close( listener=listener, orders_queue=orders_queue, assets=assets, strategy={ "bot": strategy['bot'], } ) if not sub_strategy['report']['success']: strategy['report'] = { 'success': False, 'details': {'Execution time': time.time() - start, 'Reason': sub_strategy['report']} } log.close_logger(logger) ah_log.close_logger(ah_logger) return strategy sub_strategy = strategies.auctionh_open.auctionh_open( listener=listener, orders_queue=orders_queue, assets=assets, strategy={ "bot": strategy['bot'], "parameters": { "mode": "buy" } } ) if not sub_strategy['report']['success']: strategy['report'] = { 'success': False, 'details': {'Execution time': time.time() - start, 'Reason': sub_strategy['report']} } log.close_logger(logger) ah_log.close_logger(ah_logger) return strategy if 'parameters' in strategy.keys() and 'general_ids_list' in strategy['parameters']: if strategy['parameters']['general_ids_list'] not in [None, 'all']: ids = strategy['parameters']['general_ids_list'] else: ids = 'all' else: ids = 'all' all = False if ids == 'all': all = True actual_ids = [] for item_id, type_id in assets['id_2_type'].items(): if type_id in listener.game_state['auction_house_info']['buyerDescriptor']['types']: item_level = assets['id_2_level'][str(item_id)] if item_level <= 60 or listener.game_state['sub_end']: actual_ids.append(int(item_id)) ids = actual_ids id_with_types = {} for item_id in ids: type_id = assets['id_2_type'][str(item_id)] if type_id in id_with_types.keys(): id_with_types[type_id].append(item_id) else: id_with_types[type_id] = [item_id] results = {} for type_id, item_ids in id_with_types.items(): previous_available_ids = listener.game_state['auction_house_info']['items_available'] if 'items_available' in listener.game_state['auction_house_info'].keys() else [] order = { "command": "auctionh_select_category", "parameters": { "category_id": type_id } } logger.info('Sending order to bot API: {}'.format(order)) orders_queue.put((json.dumps(order),)) start = time.time() timeout = 10 if 'timeout' not in strategy.keys() else strategy['timeout'] waiting = True while waiting and time.time() - start < timeout: if 'auction_house_info' in listener.game_state.keys() and 'items_available' in listener.game_state['auction_house_info']: # FIXME: This test is going to wrongly fail if asked to switch from a category to the same one if listener.game_state['auction_house_info']['items_available'] != previous_available_ids: waiting = False time.sleep(0.05) execution_time = time.time() - start if waiting: logger.warn('Failed to change categories in {}s'.format(execution_time)) strategy['report'] = { 'success': False, 'details': {'Execution time': execution_time, 'Reason': 'Failed to change categories'} } log.close_logger(logger) ah_log.close_logger(ah_logger) return strategy for item_id in item_ids: if item_id in listener.game_state['auction_house_info']['items_available']: previous_available_ids = str(listener.game_state['auction_house_info']['item_selected'][-1]) if 'item_selected' in listener.game_state['auction_house_info'].keys() else [] order = { "command": "auctionh_select_item", "parameters": { "general_id": item_id } } logger.info('Sending order to bot API: {}'.format(order)) orders_queue.put((json.dumps(order),)) start = time.time() timeout = 10 if 'timeout' not in strategy.keys() else strategy['timeout'] waiting = True while waiting and time.time() - start < timeout: if 'auction_house_info' in listener.game_state.keys() and 'item_selected' in listener.game_state['auction_house_info']: # FIXME: This test is going to wrongly fail if asked to switch from an item to the same one if str(listener.game_state['auction_house_info']['item_selected'][-1]) != str(previous_available_ids): waiting = False time.sleep(0.05) execution_time = time.time() - start if waiting: logger.warn('Failed to select item') strategy['report'] = { 'success': False, 'details': {'Execution time': execution_time, 'Reason': 'Failed to select item {}/{}'.format(item_id, assets['id_2_names'][str(item_id)])} } log.close_logger(logger) ah_log.close_logger(ah_logger) return strategy item_name = assets['id_2_names'][str(item_id)] object_type = 'item' if int(item_id) in assets['hdv_2_id']['Equipements'] else 'resource' objects = listener.game_state['auction_house_info']['actual_item_selected'] for object in objects: if object_type == 'item': formatted_object = { 'item_id': item_id, 'item_name': item_name, 'item_type': object_type, 'server': listener.game_state['server'], 'price_1': object['prices'][0], 'price_10': object['prices'][1], 'price_100': object['prices'][2], 'stats': object['effects'], 'hash': hashlib.sha256((item_name + str(object['effects']) + str(object['prices'][0]) + str(object['prices'][1]) + str(object['prices'][2])).encode('utf8')).hexdigest(), 'sample_id': int(sample_timestamp) } if object_type == 'resource': formatted_object = { 'item_id': item_id, 'item_name': item_name, 'item_type': object_type, 'server': listener.game_state['server'], 'price_1': object['prices'][0], 'price_10': object['prices'][1], 'price_100': object['prices'][2], 'sample_id': int(sample_timestamp) } ah_logger.info(json.dumps(formatted_object, ensure_ascii=False)) n_new_entries += 1 results[item_id] = { 'item_name': assets['id_2_names'][str(item_id)], 'items_stats': listener.game_state['auction_house_info']['actual_item_selected'] } if all: strategy['report'] = { 'success': True, 'details': {'Execution time': time.time() - global_start, 'Number of new entries': n_new_entries} } else: strategy['report'] = { 'success': True, 'details': {'Execution time': time.time() - global_start, 'Results': results} } log.close_logger(logger) ah_log.close_logger(ah_logger) return strategy
# -*- coding: utf-8 -*- """ Allow us to use lib as a package """
# this script needs either the ViennaRNA python bindings or the RNAfold binary to be # available to predict RNA secondary structures def measure_rbp(entry): import os from time import time from pysster import utils output_folder = entry[4] + "_pysster/" if not os.path.isdir(output_folder): os.makedirs(output_folder) start = time() # predict secondary structures utils.predict_structures(entry[0], entry[0]+".struct", annotate=True) utils.predict_structures(entry[1], entry[1]+".struct", annotate=True) utils.predict_structures(entry[2], entry[2]+".struct", annotate=True) utils.predict_structures(entry[3], entry[3]+".struct", annotate=True) from pysster.Data import Data from pysster.Model import Model # load data data = Data([entry[0]+".struct", entry[1]+".struct"], ("ACGU", "HIMS")) data.train_val_test_split(0.8, 0.1999) # we need to have at least one test sequence, even though we have a separate test object # training params = {"kernel_len": 8} model = Model(params, data) model.train(data) # load and predict test data data_test = Data([entry[2]+".struct", entry[3]+".struct"], ("ACGU", "HIMS")) predictions = model.predict(data_test, "all") stop = time() print("{}, time in seconds: {}".format(entry[4], stop-start)) # performance evaluation labels = data_test.get_labels("all") utils.plot_roc(labels, predictions, output_folder+"roc.pdf") utils.plot_prec_recall(labels, predictions, output_folder+"prec.pdf") # get motifs activations = model.get_max_activations(data_test, "all") _ = model.visualize_all_kernels(activations, data_test, output_folder) # save model to drive utils.save_model(model, "{}model.pkl".format(output_folder)) if __name__ == "__main__": from multiprocessing import Process rbps = [("data/pum2.train.positive.fasta", "data/pum2.train.negative.fasta", "data/pum2.test.positive.fasta", "data/pum2.test.negative.fasta", "PUM2"), ("data/qki.train.positive.fasta", "data/qki.train.negative.fasta", "data/qki.test.positive.fasta", "data/qki.test.negative.fasta", "QKI"), ("data/igf2bp123.train.positive.fasta", "data/igf2bp123.train.negative.fasta", "data/igf2bp123.test.positive.fasta", "data/igf2bp123.test.negative.fasta", "IGF2BP123"), ("data/srsf1.train.positive.fasta", "data/srsf1.train.negative.fasta", "data/srsf1.test.positive.fasta", "data/srsf1.test.negative.fasta", "SRSF1"), ("data/taf2n.train.positive.fasta", "data/taf2n.train.negative.fasta", "data/taf2n.test.positive.fasta", "data/taf2n.test.negative.fasta", "TAF2N"), ("data/nova.train.positive.fasta", "data/nova.train.negative.fasta", "data/nova.test.positive.fasta", "data/nova.test.negative.fasta", "NOVA")] for entry in rbps: p = Process(target=measure_rbp, args=(entry,)) p.start() p.join()
from PIL import Image def resize(file_path="./.tmp/bg.jpg", size=(128, 128)): try: outfile = "./.tmp/bg_{}x{}.jpg".format(size[0], size[1]) im = Image.open(file_path) im.thumbnail(size, Image.ANTIALIAS) im.save(outfile, "JPEG") return outfile except Exception: return None
''' Authors: Alex Wong <alexw@cs.ucla.edu>, Safa Cicek <safacicek@ucla.edu> If this code is useful to you, please cite the following paper: A. Wong, S. Cicek, and S. Soatto. Learning topology from synthetic data for unsupervised depth completion. In the Robotics and Automation Letters (RA-L) 2021 and Proceedings of International Conference on Robotics and Automation (ICRA) 2021 @article{wong2021learning, title={Learning topology from synthetic data for unsupervised depth completion}, author={Wong, Alex and Cicek, Safa and Soatto, Stefano}, journal={IEEE Robotics and Automation Letters}, volume={6}, number={2}, pages={1495--1502}, year={2021}, publisher={IEEE} } ''' import tensorflow as tf def remove_outliers(sparse_depth, threshold=1.5, kernel_size=7): ''' Outlier removal by filtering those points with large distance discrepancy Args: sparse_depth : tensor N x H x W x 1 sparse depth map threshold : float threshold to consider a point an outlier kernel_size : int kernel size to use for filtering outliers Returns: tensor : N x H x W x 1 validity map ''' max_val = tf.reduce_max(sparse_depth) + 100.0 # We only care about min, so we remove all zeros by setting to max sparse_depth_mod = tf.where( sparse_depth <= 0.0, max_val * tf.ones_like(sparse_depth), sparse_depth) # Find the neighborhood minimum n_pad = int(kernel_size / 2) sparse_depth_mod = tf.pad( sparse_depth_mod, paddings=[[0, 0], [n_pad, n_pad], [n_pad, n_pad], [0, 0]], mode='CONSTANT', constant_values=max_val) patches = tf.extract_image_patches( sparse_depth_mod, ksizes=[1, kernel_size, kernel_size, 1], strides=[1, 1, 1, 1], rates=[1, 1, 1, 1], padding='VALID') sparse_depth_min = tf.reduce_min(patches, axis=-1, keepdims=True) # Find mark all possible occlusions as zeros return tf.where( sparse_depth_min < sparse_depth - threshold, tf.zeros_like(sparse_depth), sparse_depth)
# coding: utf-8 import numpy as np import pandas as pd ################################################## # メイン ################################################## if __name__ == '__main__': df = pd.DataFrame( { "id": range(1,7), "raw_grade": ['a', 'b', 'b', 'a', 'a', 'e'], "categorical_grade": pd.Categorical(['a', 'b', 'b', 'a', 'a', 'e']) } ) print("------------------------------------------------------------------") print("df:") print(df) print("------------------------------------------------------------------") print("Convert the raw grades to a categorical data type.") print("----------------------------------------") df['grade'] = df['raw_grade'].astype('category') print("df['raw_grade'].astype('category')") print(df['grade']) print("------------------------------------------------------------------") print("Rename the categories to more meaningful names (assigning to Series.cat.categories is inplace!).") print("----------------------------------------") df['grade'].cat.categories = ['very good', 'good', 'very bad'] print("[df['grade'].cat.categories = ['very good', 'good', 'very bad']]") print(df['grade']) print("------------------------------------------------------------------") print("Reorder the categories and simultaneously add the missing categories") print("(methods under Series .cat return a new Series by default).") print("----------------------------------------") df['grade'] = df['grade'].cat.set_categories( ['very bad', 'bad', 'medium', 'good', 'very good']) print(df['grade']) print("------------------------------------------------------------------") print("Sorting is per order in the categories, not lexical order.") print("----------------------------------------") df_sorted = df.sort_values(by='grade') print("[df.sort_values(by='grade')]") print(df_sorted) print("------------------------------------------------------------------") print("Grouping by a categorical column also shows empty categories.") print("----------------------------------------") df_grouped = df.groupby('grade').size() print("[df.groupby('grade').size()]") print(df_grouped)
#!/usr/bin/env python """Splunk App for Pagerduty.""" __author__ = 'Greg Albrecht <gba@onbeep.com>' __copyright__ = 'Copyright 2014 OnBeep, Inc.' __license__ = 'Apache License, Version 2.0' from .pagerduty import (PagerDutyException, PagerDuty, extract_events, # NOQA trigger_pagerduty, get_pagerduty_api_key)
from . import data_access_layer as DAL import web from web import Appication,NestableBlueprint,jsonify # from flask.views import MethodView,View import json from web.restful import Resource class UserAPI(Resource): Model=DAL.User def create_app(): app=Appication(__name__) app=UserAPI.register_api(app,endpoint='user_api',url='/users/',pk='resource_id',pk_type='string') return app
# -*- coding: utf-8 -*- # # GIS Unit Tests # # To run this script use: # python web2py.py -S eden -M -R applications/eden/modules/unit_tests/s3/s3gis.py import unittest import datetime from gluon import * from gluon.storage import Storage from s3 import * from unit_tests import run_suite # ============================================================================= class S3LocationTreeTests(unittest.TestCase): """ Location Tree update tests """ # ------------------------------------------------------------------------- @classmethod def setUpClass(cls): current.auth.override = True spatialdb = current.deployment_settings.get_gis_spatialdb() table = current.s3db.gis_location fields = [table.inherited, table.lat, table.lon, table.lat_min, table.lat_max, table.lon_min, table.lon_max, table.parent, table.path, table.wkt, table.L0, table.L1, table.L2, table.L3, table.L4, table.L5, ] if spatialdb: fields.append(table.the_geom) cls.spatialdb = spatialdb cls.table = table cls.fields = fields cls.L0 = "New Country" cls.L1 = "Normal L1" cls.L2 = "Normal L2" cls.L3 = "Normal L3" cls.L4 = "Normal L4" cls.L5 = "Normal L5" cls.ids = {} # ------------------------------------------------------------------------- def testL0_with_level(self): """ Test updating a Country with Polygon - including level optimisation """ self._testL0(with_level=True) # ------------------------------------------------------------------------- def testL0_without_level(self): """ Test updating a Country with Polygon - without level optimisation """ self._testL0(with_level=False) # ------------------------------------------------------------------------- def testL1_with_level(self): """ Test updating a normal L1, with L0 Parent - including level optimisation """ self._testL1(with_level=True) # ------------------------------------------------------------------------- def testL1_without_level(self): """ Test updating a normal L1, with L0 Parent - without level optimisation """ self._testL1(with_level=False) # ------------------------------------------------------------------------- def testL2_with_level(self): """ Test updating a normal L2, with normal L1 Parent - including level optimisation """ self._testL2(with_level=True) # ------------------------------------------------------------------------- def testL2_without_level(self): """ Test updating a normal L2, with normal L1 Parent - without level optimisation """ self._testL2(with_level=False) # ------------------------------------------------------------------------- def testL3_with_level(self): """ Test updating a normal L3, with normal L2 Parent - including level optimisation """ self._testL3(with_level=True) # ------------------------------------------------------------------------- def testL3_without_level(self): """ Test updating a normal L3, with normal L2 Parent - without level optimisation """ self._testL3(with_level=False) # ------------------------------------------------------------------------- def testL4_with_level(self): """ Test updating a normal L4, with normal L3 Parent - including level optimisation """ self._testL4(with_level=True) # ------------------------------------------------------------------------- def testL4_without_level(self): """ Test updating a normal L4, with normal L3 Parent - without level optimisation """ self._testL4(with_level=False) # ------------------------------------------------------------------------- def testL5_with_level(self): """ Test updating a normal L5, with normal L4 Parent - including level optimisation """ self._testL5(with_level=True) # ------------------------------------------------------------------------- def testL5_without_level(self): """ Test updating a normal L5, with normal L4 Parent - without level optimisation """ self._testL5(with_level=False) # ------------------------------------------------------------------------- def testL3_L1_parent_with_level(self): """ Test updating an L3, without an L2 Parent, going straight to L1 - including level optimisation """ self._testL3_L1_parent(with_level=True) # ------------------------------------------------------------------------- def testL3_L1_parent_without_level(self): """ Test updating an L3, without an L2 Parent, going straight to L1 - without level optimisation """ self._testL3_L1_parent(with_level=False) # ------------------------------------------------------------------------- def testULT1_update_location_tree_disabled(self): """ Test inserting a location during prepop with location tree updates disabled """ from s3.s3gis import GIS table = self.table db = current.db gis = current.gis #GIS = s3base.GIS # Insert a country L0_lat = 10.0 L0_lon = -10.0 L0_id = table.insert(level = "L0", name = "s3gis.testULT1.L0", lat = L0_lat, lon = L0_lon, ) # Insert a child location L1_id = table.insert(level = "L1", name = "s3gis.testULT1.L1", parent = L0_id, ) # When disable_update_location_tree is set to True, update_location_tree # should just return without making changes. GIS.disable_update_location_tree = True L1_feature = dict(id = L1_id) gis.update_location_tree(L1_feature) # Verify that the path, lat, lon are unset and inherited is False. L1_record = db(table.id == L1_id).select(*self.fields, limitby=(0, 1) ).first() self.assertEqual(L1_record.inherited, False) self.assertEqual(L1_record.path, None) self.assertEqual(L1_record.lat, None) self.assertEqual(L1_record.lon, None) # Update again, this time in the normal case with location tree # updates active. GIS.disable_update_location_tree = False gis.update_location_tree(L1_feature) # Verify that the path, lat, lon, inherited are properly set. L1_record = db(table.id == L1_id).select(*self.fields, limitby=(0, 1) ).first() self.assertEqual(L1_record.inherited, True) self.assertEqual(L1_record.path, "%s/%s" %(L0_id, L1_id)) self.assertEqual(L1_record.lat, L0_lat) self.assertEqual(L1_record.lon, L0_lon) # ------------------------------------------------------------------------- def testULT2_update_location_tree_all_locations(self): """ Test that the all locations update updates locations """ from s3.s3gis import GIS table = self.table db = current.db gis = current.gis # Mimic doing prepopulate by turning off location tree updates. # Has no effect here as we're not doing validation, but leave this in # in case someone modifies this test so it does call validation. GIS.disable_update_location_tree = True # Insert a country L0_lat = 10.0 L0_lon = -10.0 L0_id = table.insert(level = "L0", name = "s3gis.testULT2.L0", lat = L0_lat, lon = L0_lon, ) # Insert a child location L1_id = table.insert(level = "L1", name = "s3gis.testULT2.L1", parent = L0_id, ) # And a child of that child L2_id = table.insert(level = "L2", name = "s3gis.testULT2.L2", parent = L1_id, ) # And a specific location at the end specific_id = table.insert( name = "s3gis.testULT2.specific", parent = L2_id, ) # After prepop data is loaded, an update of all locations is run. GIS.disable_update_location_tree = False gis.update_location_tree() # Verify that the path, lat, lon, and inherited are set for the # descendent locations. (Note we are verifying *that* update was run # on the descendents, rather than checking in detail what the update # did to each field.) L1_record = db(table.id == L1_id).select(*self.fields, limitby=(0, 1) ).first() self.assertEqual(L1_record.inherited, True) self.assertEqual(L1_record.path, "%s/%s" % (L0_id, L1_id)) self.assertEqual(L1_record.lat, L0_lat) self.assertEqual(L1_record.lon, L0_lon) L2_record = db(table.id == L2_id).select(*self.fields, limitby=(0, 1) ).first() self.assertEqual(L2_record.inherited, True) self.assertEqual(L2_record.path, "%s/%s/%s" % (L0_id, L1_id, L2_id)) self.assertEqual(L2_record.lat, L0_lat) self.assertEqual(L2_record.lon, L0_lon) specific_record = db(table.id == specific_id).select(*self.fields, limitby=(0, 1) ).first() self.assertEqual(specific_record.inherited, True) self.assertEqual(specific_record.path, "%s/%s/%s/%s" % (L0_id, L1_id, L2_id, specific_id)) self.assertEqual(specific_record.lat, L0_lat) self.assertEqual(specific_record.lon, L0_lon) # ------------------------------------------------------------------------- def testULT3_update_location_tree_all_locations_no_infinite_recursion(self): """ Test that the all locations update does not get a "too much recursion" error. """ # NB: This was found to happen if there was a hierarchy location that # pointed to a parent that is not the immediate next level. table = self.table # Set up a pattern of locations known to have provoked this error. # Insert a country L0_id = table.insert(level = "L0", name = "s3gis.testULT3.L0", lat = 10.0, lon = -10.0, ) # Insert an L1 child location L1_id = table.insert(level = "L1", name = "s3gis.testULT3.L1", parent = L0_id, ) # And a child of that child, but skipping over L2 to L3 L3_id = table.insert(level = "L3", name = "s3gis.testULT3.L3", parent = L1_id, ) # And a specific location at the end specific_id = table.insert( name = "s3gis.testULT3.specific", parent = L3_id, ) # Capture log messages. log_recorder = current.log.recorder() # Run an update. current.gis.update_location_tree() # Retrieve the log messages. log_messages = log_recorder.stop() # Did we get the recursion error? self.assertNotIn("too much recursion", log_messages) # ------------------------------------------------------------------------- def testULT4_get_parents(self): """ Test get_parents in a case that causes it to call update_location_tree. """ table = self.table gis = current.gis # Add locations with parents, but don't include a path. Skip one level. # (This is a test of get_parents itself. as update_location_tree was not # known to cause a problem when run on one location.) # Insert a country L0_id = table.insert(level = "L0", name = "s3gis.testULT4.L0", lat = 10.0, lon = -10.0, ) # Insert an L1 child location L1_id = table.insert(level = "L1", name = "s3gis.testULT4.L1", parent = L0_id, ) # And a child of that child, but skipping over L2 to L3 L3_id = table.insert(level = "L3", name = "s3gis.testULT4.L3", parent = L1_id, ) # And a specific location at the end specific_id = table.insert( name = "s3gis.testULT4.specific", parent = L3_id, ) # Ask for the parents of the specific location -- this has the side # effect of calling update_location_tree and filling in the paths. parents = gis.get_parents(specific_id) # Expected parents. expected_parents = [L0_id, L1_id, L3_id] for parent in parents: parent_id = parent.id self.assertIn(parent_id, expected_parents) expected_parents.remove(parent_id) # We should have seen all the expected parents. self.assertEqual(len(expected_parents), 0) # ------------------------------------------------------------------------- def _testL0(self, with_level): """ Test updating a Country with Polygon """ LEVEL = "L0" POLYGON = "POLYGON ((30 10, 40 40, 20 40, 10 20, 30 10))" L0 = "%s_%s" % (self.L0, with_level) table = self.table # Insert a new Country form = Storage(vars=Storage(level=LEVEL, name=L0, wkt=POLYGON, ), errors=None, ) current.gis.wkt_centroid(form) L0_id = table.insert(**form.vars) # Store for future tests S3LocationTreeTests.ids[L0] = L0_id # Update the Location Tree for the L0 feature = dict(id=L0_id) if with_level: feature["level"] = LEVEL current.gis.update_location_tree(feature) # Read the results record = current.db(table.id == L0_id).select(*self.fields, limitby=(0, 1) ).first() # Compare to what we expect self.assertEqual(record.inherited, False) self.assertAlmostEqual(record.lat, 26.969696969696972, 13) self.assertAlmostEqual(record.lon, 25.454545454545453, 13) self.assertEqual(record.lat_min, 10) self.assertEqual(record.lat_max, 40) self.assertEqual(record.lon_min, 10) self.assertEqual(record.lon_max, 40) self.assertEqual(record.parent, None) self.assertEqual(record.path, "%s" % L0_id) self.assertEqual(record.wkt, POLYGON) self.assertEqual(record.L0, L0) self.assertEqual(record.L1, None) self.assertEqual(record.L2, None) self.assertEqual(record.L3, None) self.assertEqual(record.L4, None) self.assertEqual(record.L5, None) if self.spatialdb: self.assertTrue(record.the_geom is not None) # ------------------------------------------------------------------------- def _testL1(self, with_level): """ Test updating a normal L1, with L0 Parent """ LEVEL = "L1" POLYGON = "POLYGON ((30 11, 39 39, 21 39, 11 20, 30 11))" L0 = "%s_%s" % (self.L0, with_level) L1 = "%s_%s" % (self.L1, with_level) L0_id = self.ids[L0] table = self.table # Insert a new L1 form = Storage(vars=Storage(level=LEVEL, name=L1, parent=L0_id, wkt=POLYGON, ), errors=None, ) current.gis.wkt_centroid(form) L1_id = table.insert(**form.vars) # Store for future tests S3LocationTreeTests.ids[L1] = L1_id # Update the Location Tree for the L1 feature = dict(id=L1_id) if with_level: feature["level"] = LEVEL current.gis.update_location_tree(feature) # Read the results record = current.db(table.id == L1_id).select(*self.fields, limitby=(0, 1) ).first() # Compare to what we expect self.assertEqual(record.inherited, False) self.assertAlmostEqual(record.lat, 26.675741710296684, 13) self.assertAlmostEqual(record.lon, 25.59232111692845, 13) self.assertEqual(record.lat_min, 11) self.assertEqual(record.lat_max, 39) self.assertEqual(record.lon_min, 11) self.assertEqual(record.lon_max, 39) self.assertEqual(record.parent, L0_id) self.assertEqual(record.path, "%s/%s" % (L0_id, L1_id)) self.assertEqual(record.wkt, POLYGON) self.assertEqual(record.L0, L0) self.assertEqual(record.L1, L1) self.assertEqual(record.L2, None) self.assertEqual(record.L3, None) self.assertEqual(record.L4, None) self.assertEqual(record.L5, None) if self.spatialdb: self.assertTrue(record.the_geom is not None) # ------------------------------------------------------------------------- def _testL2(self, with_level): """ Test updating a normal L2, with normal L1 Parent """ LEVEL = "L2" POLYGON = "POLYGON ((30 12, 38 38, 22 38, 12 20, 30 12))" L0 = "%s_%s" % (self.L0, with_level) L1 = "%s_%s" % (self.L1, with_level) L2 = "%s_%s" % (self.L2, with_level) L0_id = self.ids[L0] L1_id = self.ids[L1] table = self.table # Insert a new L2 form = Storage(vars=Storage(level=LEVEL, name=L2, parent=L1_id, wkt=POLYGON, ), errors=None, ) current.gis.wkt_centroid(form) L2_id = table.insert(**form.vars) # Store for future tests S3LocationTreeTests.ids[L2] = L2_id # Update the Location Tree for the L2 feature = dict(id=L2_id) if with_level: feature["level"] = LEVEL current.gis.update_location_tree(feature) # Read the results record = current.db(table.id == L2_id).select(*self.fields, limitby=(0, 1) ).first() # Compare to what we expect self.assertEqual(record.inherited, False) self.assertAlmostEqual(record.lat, 26.37723577235772, 13) self.assertAlmostEqual(record.lon, 25.73008130081301, 13) self.assertEqual(record.lat_min, 12) self.assertEqual(record.lat_max, 38) self.assertEqual(record.lon_min, 12) self.assertEqual(record.lon_max, 38) self.assertEqual(record.parent, L1_id) self.assertEqual(record.path, "%s/%s/%s" % (L0_id, L1_id, L2_id)) self.assertEqual(record.wkt, POLYGON) self.assertEqual(record.L0, L0) self.assertEqual(record.L1, L1) self.assertEqual(record.L2, L2) self.assertEqual(record.L3, None) self.assertEqual(record.L4, None) self.assertEqual(record.L5, None) if self.spatialdb: self.assertTrue(record.the_geom is not None) # ------------------------------------------------------------------------- def _testL3(self, with_level): """ Test updating a normal L3, with normal L2 Parent """ LEVEL = "L3" POLYGON = "POLYGON ((30 13, 37 37, 23 37, 13 20, 30 13))" L0 = "%s_%s" % (self.L0, with_level) L1 = "%s_%s" % (self.L1, with_level) L2 = "%s_%s" % (self.L2, with_level) L3 = "%s_%s" % (self.L3, with_level) L0_id = self.ids[L0] L1_id = self.ids[L1] L2_id = self.ids[L2] table = self.table # Insert a new L3 form = Storage(vars=Storage(level=LEVEL, name=L3, parent=L2_id, wkt=POLYGON, ), errors=None, ) current.gis.wkt_centroid(form) L3_id = table.insert(**form.vars) # Store for future tests S3LocationTreeTests.ids[L3] = L3_id # Update the Location Tree for the L3 feature = dict(id=L3_id) if with_level: feature["level"] = LEVEL current.gis.update_location_tree(feature) # Read the results record = current.db(table.id == L3_id).select(*self.fields, limitby=(0, 1) ).first() # Compare to what we expect self.assertEqual(record.inherited, False) self.assertAlmostEqual(record.lat, 26.072901678657075, 13) self.assertAlmostEqual(record.lon, 25.867625899280576, 13) self.assertEqual(record.lat_min, 13) self.assertEqual(record.lat_max, 37) self.assertEqual(record.lon_min, 13) self.assertEqual(record.lon_max, 37) self.assertEqual(record.parent, L2_id) self.assertEqual(record.path, "%s/%s/%s/%s" % (L0_id, L1_id, L2_id, L3_id)) self.assertEqual(record.wkt, POLYGON) self.assertEqual(record.L0, L0) self.assertEqual(record.L1, L1) self.assertEqual(record.L2, L2) self.assertEqual(record.L3, L3) self.assertEqual(record.L4, None) self.assertEqual(record.L5, None) if self.spatialdb: self.assertTrue(record.the_geom is not None) # ------------------------------------------------------------------------- def _testL4(self, with_level): """ Test updating a normal L4, with normal L3 Parent """ LEVEL = "L4" POLYGON = "POLYGON ((30 14, 36 36, 24 36, 14 20, 30 14))" L0 = "%s_%s" % (self.L0, with_level) L1 = "%s_%s" % (self.L1, with_level) L2 = "%s_%s" % (self.L2, with_level) L3 = "%s_%s" % (self.L3, with_level) L4 = "%s_%s" % (self.L4, with_level) L0_id = self.ids[L0] L1_id = self.ids[L1] L2_id = self.ids[L2] L3_id = self.ids[L3] table = self.table # Insert a new L4 form = Storage(vars=Storage(level=LEVEL, name=L4, parent=L3_id, wkt=POLYGON, ), errors=None, ) current.gis.wkt_centroid(form) L4_id = table.insert(**form.vars) # Store for future tests S3LocationTreeTests.ids[L4] = L4_id # Update the Location Tree for the L4 feature = dict(id=L4_id) if with_level: feature["level"] = LEVEL current.gis.update_location_tree(feature) # Read the results record = current.db(table.id == L4_id).select(*self.fields, limitby=(0, 1) ).first() # Compare to what we expect self.assertEqual(record.inherited, False) self.assertAlmostEqual(record.lat, 25.760919540229885, 13) self.assertAlmostEqual(record.lon, 26.004597701149425, 13) self.assertEqual(record.lat_min, 14) self.assertEqual(record.lat_max, 36) self.assertEqual(record.lon_min, 14) self.assertEqual(record.lon_max, 36) self.assertEqual(record.parent, L3_id) self.assertEqual(record.path, "%s/%s/%s/%s/%s" % (L0_id, L1_id, L2_id, L3_id, L4_id)) self.assertEqual(record.wkt, POLYGON) self.assertEqual(record.L0, L0) self.assertEqual(record.L1, L1) self.assertEqual(record.L2, L2) self.assertEqual(record.L3, L3) self.assertEqual(record.L4, L4) self.assertEqual(record.L5, None) if self.spatialdb: self.assertTrue(record.the_geom is not None) # ------------------------------------------------------------------------- def _testL5(self, with_level): """ Test updating a normal L5, with normal L4 Parent """ LEVEL = "L5" POLYGON = "POLYGON ((30 15, 35 35, 23 35, 15 20, 30 15))" L0 = "%s_%s" % (self.L0, with_level) L1 = "%s_%s" % (self.L1, with_level) L2 = "%s_%s" % (self.L2, with_level) L3 = "%s_%s" % (self.L3, with_level) L4 = "%s_%s" % (self.L4, with_level) L5 = "%s_%s" % (self.L5, with_level) L0_id = self.ids[L0] L1_id = self.ids[L1] L2_id = self.ids[L2] L3_id = self.ids[L3] L4_id = self.ids[L4] table = self.table # Insert a new L5 form = Storage(vars=Storage(level=LEVEL, name=L5, parent=L4_id, wkt=POLYGON, ), errors=None, ) current.gis.wkt_centroid(form) L5_id = table.insert(**form.vars) # Update the Location Tree for the L5 feature = dict(id=L5_id) if with_level: feature["level"] = LEVEL current.gis.update_location_tree(feature) # Read the results record = current.db(table.id == L5_id).select(*self.fields, limitby=(0, 1) ).first() # Compare to what we expect self.assertEqual(record.inherited, False) self.assertAlmostEqual(record.lat, 25.70957095709571, 13) self.assertAlmostEqual(record.lon, 25.834983498349835, 13) self.assertEqual(record.lat_min, 15) self.assertEqual(record.lat_max, 35) self.assertEqual(record.lon_min, 15) self.assertEqual(record.lon_max, 35) self.assertEqual(record.parent, L4_id) self.assertEqual(record.path, "%s/%s/%s/%s/%s/%s" % (L0_id, L1_id, L2_id, L3_id, L4_id, L5_id)) self.assertEqual(record.wkt, POLYGON) self.assertEqual(record.L0, L0) self.assertEqual(record.L1, L1) self.assertEqual(record.L2, L2) self.assertEqual(record.L3, L3) self.assertEqual(record.L4, L4) self.assertEqual(record.L5, L5) if self.spatialdb: self.assertTrue(record.the_geom is not None) # ------------------------------------------------------------------------- def _testL3_L1_parent(self, with_level): """ Test updating an L3, without an L2 Parent, going straight to L1 - this is like Cotabato City & Isabela City in the Philippines """ LEVEL = "L3" POLYGON = "POLYGON ((30 13, 37 37, 23 37, 13 20, 30 13))" L0 = "%s_%s" % (self.L0, with_level) L1 = "%s_%s" % (self.L1, with_level) L3 = "Test of Cotabato City" L0_id = self.ids[L0] L1_id = self.ids[L1] table = self.table # Insert a new L3 form = Storage(vars=Storage(level=LEVEL, name=L3, parent=L1_id, wkt=POLYGON, ), errors=None, ) current.gis.wkt_centroid(form) L3_id = table.insert(**form.vars) # Update the Location Tree for the L3 feature = dict(id=L3_id) if with_level: feature["level"] = LEVEL current.gis.update_location_tree(feature) # Read the results record = current.db(table.id == L3_id).select(*self.fields, limitby=(0, 1) ).first() # Compare to what we expect self.assertEqual(record.inherited, False) self.assertAlmostEqual(record.lat, 26.072901678657075, 13) self.assertAlmostEqual(record.lon, 25.867625899280576, 13) self.assertEqual(record.lat_min, 13) self.assertEqual(record.lat_max, 37) self.assertEqual(record.lon_min, 13) self.assertEqual(record.lon_max, 37) self.assertEqual(record.parent, L1_id) self.assertEqual(record.path, "%s/%s/%s" % (L0_id, L1_id, L3_id)) self.assertEqual(record.wkt, POLYGON) self.assertEqual(record.L0, L0) self.assertEqual(record.L1, L1) self.assertEqual(record.L2, None) self.assertEqual(record.L3, L3) self.assertEqual(record.L4, None) self.assertEqual(record.L5, None) if self.spatialdb: self.assertTrue(record.the_geom is not None) # ------------------------------------------------------------------------- @classmethod def tearDownClass(cls): current.auth.override = False current.db.rollback() # ============================================================================= class S3NoGisConfigTests(unittest.TestCase): """ Tests for handling of missing GIS config """ # ------------------------------------------------------------------------- @classmethod def setUpClass(cls): # Replace get_config with dummy that always returns None cls.original_get_config = staticmethod(GIS.get_config) GIS.get_config = staticmethod(lambda: None) # ------------------------------------------------------------------------- @classmethod def tearDownClass(cls): # Restore original get_config method GIS.get_config = staticmethod(cls.original_get_config) # ------------------------------------------------------------------------- def testMapSetup(self): """ Verify that MAP setup without config produces an error message """ map = MAP() setup_result = map._setup() self.assertIsNone(setup_result) self.assertIsNotNone(map.error_message) def testMap2Xml(self): """ Verify that MAP2 rendering without config produces an error message """ map = MAP2() xml = map.xml() self.assertTrue(b"Map cannot display without GIS config!" in xml) # ============================================================================= if __name__ == "__main__": run_suite( S3LocationTreeTests, S3NoGisConfigTests, ) # END ========================================================================
class LibtoolPackage (GnuPackage): def __init__(self): GnuPackage.__init__(self, 'libtool', '2.4.2', override_properties={ 'build_dependency': False}) def install(self): Package.install(self) self.sh('rm -f "%{staged_prefix}/bin/glibtool"') self.sh('ln -s libtool "%{staged_prefix}/bin/glibtool"') self.sh('rm -f "%{staged_prefix}/bin/glibtoolize"') self.sh('ln -s libtoolize "%{staged_prefix}/bin/glibtoolize"') LibtoolPackage()
#!/usr/bin/env python ''' TACO: Multi-sample transcriptome assembly from RNA-Seq Utility script that profiles the splice junctions in a BED file Requirements: pysam library ''' import os import sys import argparse import logging import operator from collections import Counter from taco.lib.base import Strand from taco.lib.transfrag import Transfrag from taco.lib.pysam.cfaidx import FastaFile __author__ = "Matthew Iyer, Yashar Niknafs, and Balaji Pandian" __copyright__ = "Copyright 2012-2018" __credits__ = ["Matthew Iyer", "Yashar Niknafs", "Balaji Pandian"] __license__ = "MIT" __version__ = "0.7.3" __maintainer__ = "Yashar Niknafs" __email__ = "yniknafs@umich.edu" __status__ = "Development" rev_comp_dict = {'A':'T', 'T':'A', 'G':'C', 'C':'G', 'N': 'N'} def dna_reverse_complement(seq): return ''.join(rev_comp_dict[x] for x in reversed(seq)) def main(): logging.basicConfig(level=logging.DEBUG) parser = argparse.ArgumentParser() parser.add_argument('genome_fasta_file') parser.add_argument('bed_file') args = parser.parse_args() # check args if not os.path.exists(args.genome_fasta_file): parser.error('genome fasta file %s not found' % args.genome_fasta_file) if not os.path.exists(args.bed_file): parser.error('bed file %s not found' % args.bed_file) logging.info('genome fasta file: %s' % args.genome_fasta_file) logging.info('bed file: %s' % args.bed_file) # process bed file to get junctions logging.info('Reading Junctions') splice_juncs = set() fasta_fh = FastaFile(args.genome_fasta_file) with open(args.bed_file) as bed_fh: for line in bed_fh: t = Transfrag.from_bed(line) if t.chrom not in fasta_fh: continue for start, end in t.iterintrons(): splice_juncs.add((t.chrom, start, end, t.strand)) logging.info('Read %d Junctions' % (len(splice_juncs))) logging.info('Profiling Splice Motifs') motif_counter = Counter() for chrom, start, end, strand in splice_juncs: s = fasta_fh.fetch(chrom, start, start + 2) s += fasta_fh.fetch(chrom, end - 2, end) if strand == Strand.NEG: s = dna_reverse_complement(s) motif_counter[s] += 1 fasta_fh.close() # report statistics total = sum(motif_counter.values()) print '\t'.join(['motif', 'count', 'frac']) for motif, count in motif_counter.most_common(): print '\t'.join([motif, str(count), str(float(count) / total)]) logging.info('Done') if __name__ == '__main__': sys.exit(main())
import os from pathlib import Path from h2o import h2o from ..models.AIModel import AIModel class RequestModel: x_names = [] x_values = [] def __init__(self, x_values, x_names): self.x_values = x_values self.x_names = x_names def get_frame(self): return h2o.H2OFrame(dict(zip(self.x_names, self.x_values))) class H2oManager: def predict(self, request: RequestModel, modelAI: AIModel): parent = os.path.join(Path(__file__).parents[2], "models") path = os.path.join(parent, modelAI.uuid) f = None h2oModel = None try: f = open(path, "w+b") f.write(modelAI.file) h2oModel = h2o.load_model(path) f.close() os.remove(path) except: os.remove(path) f.close() raise Exception return h2oModel.predict(request.get_frame()) def check_model(self, model, uuid): parent = os.path.join(Path(__file__).parents[2], "models") path = os.path.join(parent, uuid) f = None try: f = open(path, "w+b") f.write(model) h2o.load_model(path) f.close() os.remove(path) return True except: os.remove(path) f.close() return False h2oManager = H2oManager()
from django.conf.urls import url, include from rest_framework_nested import routers from auv.urls import router from .views import TripViewSet, WayPointViewSet auv_router = routers.NestedSimpleRouter(router, r'auvs', lookup='auv') # api/auvs/{auv_pk}/trips auv_router.register(r'trips', TripViewSet, base_name='trips') trip_router = routers.NestedSimpleRouter(auv_router, r'trips', lookup='trip') # api/auvs/{auv_pk}/trips/{trip_pk}/waypoints trip_router.register(r'waypoints', WayPointViewSet, base_name='waypoints') urlpatterns = ( url(r'^', include(auv_router.urls)), url(r'^', include(trip_router.urls)), )
from unittest import TestCase from scipy.io import wavfile import torch import torch.autograd from torch.nn import ConstantPad2d import torch.nn.functional as F from torch.autograd import Variable, gradcheck from wavenet_training import DilatedQueue, custom_padding from pathlib import Path class Test_dilated_queue(TestCase): def test_enqueue(self): queue = DilatedQueue(max_length=8, num_channels=3) e = torch.zeros((3)) for i in range(11): e = e + 1 queue.enqueue(e) data = queue.data[0, :] print('data: ', data) assert data[0] == 9 assert data[2] == 11 assert data[7] == 8 def test_dequeue(self): queue = DilatedQueue(max_length=8, num_channels=1) e = torch.zeros((1)) for i in range(11): e = e + 1 queue.enqueue(e) print('data: ', queue.data) for i in range(9): d = queue.dequeue(num_deq=3, dilation=2) print(d) assert d[0][0] == 5 assert d[0][1] == 7 assert d[0][2] == 9 def test_combined(self): queue = DilatedQueue(max_length=12, num_channels=1) e = torch.zeros((1)) for i in range(30): e = e + 1 queue.enqueue(e) d = queue.dequeue(num_deq=3, dilation=4) assert d[0][0] == max(i - 7, 0) class Test_wav_files(TestCase): def test_wav_read(self): p = Path(__file__).parents[1] / 'train_samples/violin.wav' data = wavfile.read(str(p))[1] print(data) # [0.1, -0.53125... class Test_padding(TestCase): def test_1d(self): x = torch.ones((2, 3, 4), requires_grad=True) res = custom_padding(x, 5, dimension=0, pad_start=False) assert res.size() == (5, 3, 4) assert res[-1, 0, 0] == 0 def test_2d(self): pad = ConstantPad2d((5, 0, 0, 0), 0) x = Variable(torch.ones((2, 3, 4, 5))) res = pad(x) print(res.size())
import numpy import torch import torch.nn.functional as F from torch_rl.algos.base import BaseAlgo class PPOAlgo(BaseAlgo): """The class for the Proximal Policy Optimization algorithm ([Schulman et al., 2015](https://arxiv.org/abs/1707.06347)).""" def __init__(self, envs, acmodel, num_frames_per_proc=None, discount=0.99, lr=7e-4, gae_lambda=0.95, entropy_coef=0.01, value_loss_coef=0.5, max_grad_norm=0.5, recurrence=4, adam_eps=1e-5, clip_eps=0.2, epochs=4, batch_size=256, preprocess_obss=None, reshape_reward=None): num_frames_per_proc = num_frames_per_proc or 128 super().__init__(envs, acmodel, num_frames_per_proc, discount, lr, gae_lambda, entropy_coef, value_loss_coef, max_grad_norm, recurrence, preprocess_obss, reshape_reward) self.clip_eps = clip_eps self.epochs = epochs self.batch_size = batch_size assert self.batch_size % self.recurrence == 0 self.optimizer = torch.optim.Adam(self.acmodel.parameters(), lr, eps=adam_eps) self.batch_num = 0 def update_parameters(self): # Collect experiences exps, logs = self.collect_experiences() for _ in range(self.epochs): # Initialize log values log_entropies = [] log_values = [] log_policy_losses = [] log_value_losses = [] log_grad_norms = [] for inds in self._get_batches_starting_indexes(): # Initialize batch values batch_entropy = 0 batch_value = 0 batch_policy_loss = 0 batch_value_loss = 0 batch_loss = 0 # Initialize memory if self.acmodel.recurrent: memory = exps.memory[inds] for i in range(self.recurrence): # Create a sub-batch of experience sb = exps[inds + i] # Compute loss if self.acmodel.recurrent: dist, value, memory = self.acmodel(sb.obs, memory * sb.mask) else: dist, value = self.acmodel(sb.obs) # compute mean entropy steer_dist, acc_dist = dist steer_entropy = steer_dist.entropy().mean() acc_entropy = acc_dist.entropy().mean() # compute steer policy loss ratio = torch.exp(steer_dist.log_prob(sb.steer_action) - sb.steer_log_prob) surr1 = ratio * sb.advantage surr2 = torch.clamp(ratio, 1.0 - self.clip_eps, 1.0 + self.clip_eps) * sb.advantage steer_policy_loss = -torch.min(surr1, surr2).mean() # compute acceleration policy loss ratio = torch.exp(acc_dist.log_prob(sb.acc_action) - sb.acc_log_prob) surr1 = ratio * sb.advantage surr2 = torch.clamp(ratio, 1.0 - self.clip_eps, 1.0 + self.clip_eps) * sb.advantage acc_policy_loss = -torch.min(surr1, surr2).mean() # compute value loss value_clipped = sb.value + torch.clamp(value - sb.value, -self.clip_eps, self.clip_eps) surr1 = (value - sb.returnn).pow(2) surr2 = (value_clipped - sb.returnn).pow(2) value_loss = torch.max(surr1, surr2).mean() # compute loss loss = steer_policy_loss + acc_policy_loss - self.entropy_coef * (steer_entropy + acc_entropy) + self.value_loss_coef * value_loss # Update batch values batch_entropy += steer_entropy.item() + acc_entropy.item() batch_value += value.mean().item() batch_policy_loss += steer_policy_loss.item() + acc_policy_loss.item() batch_value_loss += value_loss.item() batch_loss += loss # Update memories for next epoch if self.acmodel.recurrent and i < self.recurrence - 1: exps.memory[inds + i + 1] = memory.detach() # Update batch values batch_entropy /= self.recurrence batch_value /= self.recurrence batch_policy_loss /= self.recurrence batch_value_loss /= self.recurrence batch_loss /= self.recurrence # Update actor-critic self.optimizer.zero_grad() batch_loss.backward() grad_norm = sum(p.grad.data.norm(2).item() ** 2 for p in self.acmodel.parameters()) ** 0.5 torch.nn.utils.clip_grad_norm_(self.acmodel.parameters(), self.max_grad_norm) self.optimizer.step() # Update log values log_entropies.append(batch_entropy) log_values.append(batch_value) log_policy_losses.append(batch_policy_loss) log_value_losses.append(batch_value_loss) log_grad_norms.append(grad_norm) # Log some values logs["entropy"] = numpy.mean(log_entropies) logs["value"] = numpy.mean(log_values) logs["policy_loss"] = numpy.mean(log_policy_losses) logs["value_loss"] = numpy.mean(log_value_losses) logs["grad_norm"] = numpy.mean(log_grad_norms) return logs def _get_batches_starting_indexes(self): """Gives, for each batch, the indexes of the observations given to the model and the experiences used to compute the loss at first. First, the indexes are the integers from 0 to `self.num_frames` with a step of `self.recurrence`, shifted by `self.recurrence//2` one time in two for having more diverse batches. Then, the indexes are splited into the different batches. Returns ------- batches_starting_indexes : list of list of int the indexes of the experiences to be used at first for each batch """ indexes = numpy.arange(0, self.num_frames, self.recurrence) indexes = numpy.random.permutation(indexes) # Shift starting indexes by self.recurrence//2 half the time if self.batch_num % 2 == 1: indexes = indexes[(indexes + self.recurrence) % self.num_frames_per_proc != 0] indexes += self.recurrence // 2 self.batch_num += 1 num_indexes = self.batch_size // self.recurrence batches_starting_indexes = [indexes[i:i+num_indexes] for i in range(0, len(indexes), num_indexes)] return batches_starting_indexes
dist = input("Enter the distance travelled by youto and fro in kms : ") f_avg = input("Enter the fuel average in your area [km/litre]: ") cost_of_diesel = input("Enter the cost of diesel [int INR]: ") f_cons = float(dist) / float(f_avg) cost = float(f_cons) * float(cost_of_diesel) print("The cost of travel is : ", cost)
import os import sys os.environ['DJANGO_SETTINGS_MODULE'] = 'tests.settings' from tests import settings settings.INSTALLED_APPS = ( 'django.contrib.auth', 'django.contrib.sessions', 'django.contrib.contenttypes', 'django.contrib.admin', 'django.contrib.sites', 'paloma', ) def run_tests(settings): from django.test.utils import get_runner TestRunner = get_runner(settings) test_runner = TestRunner(interactive=False) failures = test_runner.run_tests(['paloma']) return failures def main(): failures = run_tests(settings) sys.exit(failures) if __name__ == '__main__': main()
from core.terraform.resources.aws.load_balancer import LoadBalancerResource from resources.vpc.security_group import InfraSecurityGroupResource from core.config import Settings class ApplicationLoadBalancer(LoadBalancerResource): name = "" internal = True load_balancer_type = "application" security_groups = [InfraSecurityGroupResource.get_output_attr('id')] subnets = Settings.get('VPC')['SUBNETS'] OUTPUT_LIST = ['dns_name'] @classmethod def get_http_url(cls): return "http://%s" % cls.get_output_attr('dns_name') @classmethod def get_api_base_url(cls): return "http://%s/api" % cls.get_output_attr('dns_name') @classmethod def get_api_version_url(cls, service): version_url = cls.get_api_server_url(service) return version_url if service == "auth" else version_url + "/v1" @classmethod def get_api_server_url(cls, service): return "%s/%s" % (cls.get_api_base_url(), service) def render_output(self, outputs): if self.resource_in_tf_output(outputs): return { 'Pacbot Domain': outputs[self.get_resource_id()]['dns_name'], 'Admin': Settings.PACBOT_LOGIN_CREDENTIALS['Admin'], 'User': Settings.PACBOT_LOGIN_CREDENTIALS['User'] }
#!/usr/bin/env python # -*- coding: utf-8 -*- __all__ = ["db"] from flask.ext.sqlalchemy import SQLAlchemy db = SQLAlchemy()
# Step with a savebutton for saving a specified datacollect param # with the perform_save() method # # Works only in datacollect mode. Must be late enough # in the checklist that checklist filename has already been determined import os import sys import posixpath try: # py2.x from urllib import pathname2url from urllib import url2pathname from urllib import quote from urllib import unquote pass except ImportError: # py3.x from urllib.request import pathname2url from urllib.request import url2pathname from urllib.parse import quote from urllib.parse import unquote pass if "gi" in sys.modules: # gtk3 import gi gi.require_version('Gtk','3.0') from gi.repository import Gtk as gtk from gi.repository import GObject as gobject pass else : # gtk2 import gtk import gobject pass from .. import paramdb2 as pdb from .. import dc_value from .. import dc2_misc from .buttonreadoutstep import buttonreadoutstep from .. import canonicalize_path class simpleobj: name=None pass __pychecker__="no-import no-argsused" # gtk superclass should be first of multiple inheritances class hrefbuttonstep(buttonreadoutstep): __gtype_name__="hrefbuttonstep" __gproperties__ = { "paramname": (gobject.TYPE_STRING, "parameter", "datacollect parameter to show and to use for save. The named parameter should store an hrefvalue with a controller that supports the perform_save method. Only this parameter is shown in the readout (the others are invisible)", "", # default value gobject.PARAM_READWRITE), # flags # NOTE: "buttonlabel" parameter handled by buttonreadoutstep superclass "intermediate": (gobject.TYPE_BOOLEAN, "intermediate parameter setting", "Intermediate parameter setting: Intermediate step parameters are saved to the XML checklist file when the step is checked, and the widgets freeze when the checklist is read-only or once the checkbox ix checked", False, # default value gobject.PARAM_READWRITE), # flags # also "buttonlabel" and "description" properties # inherited from buttonreadoutstep } __dcvalue_xml_properties={} # dictionary by property of dc_value class to be transmitted as a serialized xmldoc __dcvalue_href_properties=frozenset([]) # set of properties to be transmitted as an hrefvalue with the checklist context as contexthref paramnotify=None # self.paramdb and self.dc_gui_io defined by buttonreadoutstep, set by buttonreadoutstep's dc_gui_init() def __init__(self,checklist,step,xmlpath): buttonreadoutstep.__init__(self,checklist,step,xmlpath) # paramhandler.__init__(self,super(adjustparamstep,self),self.__proplist)# .__gproperties__) # gobject.GObject.__init__(self) self.myprops["paramname"]="" self.myprops["intermediate"]=False self.set_property("readoutparam",self.myprops["paramname"]) self.set_property("buttonlabel","Save DGS Snapshot") self.set_property("intermediate",False) pass def destroystep(self): if len(self.myprops["paramname"]) > 0: self.paramdb.remnotify(self.myprops["paramname"],self.paramnotify) pass self.paramnotify=None pass def dc_gui_init(self,guistate): # Set up notifications... # call superclass buttonreadoutstep.dc_gui_init(self,guistate) if len(self.myprops["paramname"]) > 0: self.paramnotify=self.paramdb.addnotify(self.myprops["paramname"],self.changedcallback,pdb.param.NOTIFY_NEWVALUE) pass pass def do_set_property(self,gproperty,value): #print "set_property(%s,%s)" % (gproperty.name,str(value)) if gproperty.name=="paramname": # print "paramname=%s" % value self.myprops["paramname"]=value #import pdb as pythondb #pythondb.set_trace() nameobj=simpleobj() nameobj.name="readoutparam" buttonreadoutstep.do_set_property(self,nameobj,value) pass elif gproperty.name=="intermediate": # print "paramname=%s" % value self.myprops["intermediate"]=value pass else : #sys.stderr.write("calling buttonreadoutstep set_property()\n") buttonreadoutstep.do_set_property(self,gproperty,value) pass pass def do_get_property(self,property): if property.name == "paramname": return self.myprops["paramname"] if property.name == "intermediate": return self.myprops["intermediate"] return buttonreadoutstep.do_get_property(self,property) def do_save_param_datacollect(self,paramname): raise ValueError("This function is never called from anywhere... not sure if it makes sense") if paramname is None or paramname=="": return desthref=self.paramdb["dest"].dcvalue # suggest a filename chklistfilename=self.checklist.xmldoc.filehref.get_bare_unquoted_filename() chklistbasename=posixpath.splitext(chklistfilename)[0] filename="%s_%s.%s" % (chklistbasename,paramname,self.paramdb[paramname].save_extension) savefilehref=dc_value.hrefvalue(quote(filename),contexthref=desthref) #import pdb as pythondb #pythondb.set_trace() if (os.path.exists(savefilehref.getpath())) : if hasattr(gtk,"MessageType") and hasattr(gtk.MessageType,"WARNING"): # gtk3 existsdialog=gtk.MessageDialog(type=gtk.MessageType.ERROR,buttons=gtk.ButtonsType.NONE) pass else : existsdialog=gtk.MessageDialog(type=gtk.MESSAGE_ERROR,buttons=gtk.BUTTONS_NONE) pass existsdialog.set_markup("Error: File %s exists." % (savefilehref.getpath())) existsdialog.add_button("Overwrite",1) existsdialog.add_button("Cancel operation",0) existsdialogval=existsdialog.run() existsdialog.destroy() if existsdialogval==0: # Cancel return pass #import pdb as pythondb #pythondb.set_trace() # NOTE: perform_save() now takes an extra parameter: saveparamdictoverride self.paramdb[paramname].perform_save(savefilehref) pass def find_file_dialog(self,paramname,desthref=None): if desthref is not None: reference_href=desthref pass else: reference_href=self.checklist.xmldoc.getcontexthref().leafless() pass reference_path=reference_href.getpath() if hasattr(gtk,"FileChooserAction") and hasattr(gtk.FileChooserAction,"OPEN"): # gtk3 Chooser=gtk.FileChooserDialog(title="Open...",action=gtk.FileChooserAction.OPEN,buttons=(gtk.STOCK_CANCEL,gtk.ResponseType.CANCEL,gtk.STOCK_OPEN,gtk.ResponseType.OK)) ResponseOK=gtk.ResponseType.OK pass else: # gtk2 Chooser=gtk.FileChooserDialog(title="Open...",action=gtk.FILE_CHOOSER_ACTION_OPEN,buttons=(gtk.STOCK_CANCEL,gtk.RESPONSE_CANCEL,gtk.STOCK_OPEN,gtk.RESPONSE_OK)) ResponseOK=gtk.RESPONSE_OK pass Chooser.set_modal(True) Chooser.set_current_folder(reference_path) datafilter=gtk.FileFilter() datafilter.set_name(self.paramdb[self.myprops["paramname"]].save_extension.upper() + " files") datafilter.add_pattern("*." + self.paramdb[self.myprops["paramname"]].save_extension) Chooser.add_filter(datafilter) allfilter=gtk.FileFilter() allfilter.set_name("All files") allfilter.add_pattern("*") Chooser.add_filter(allfilter) response=Chooser.run() outfilename=Chooser.get_filename() Chooser.hide() Chooser.destroy() if response != ResponseOK: return # datafilename should be relative to desthref relpath=canonicalize_path.relative_path_to(reference_path,outfilename) filehref=dc_value.hrefvalue(pathname2url(relpath),contexthref=reference_href) self.paramdb[paramname].requestval(filehref) pass def buttoncallback(self,*args): if self.checklist.readonly: return if self.is_fixed(): # determined by buttonreadoutstep superclass return #if not self.checklist.checknotcurrent(): # return # In datacollectmode the checklist autosaves once enough steps # have been checked to determine the filename, so we have to be # past this point if self.checklist.datacollectmode: if self.checklist.xmldoc.filehref is None: raise ValueError("Save button step is too early -- checklist not yet saved to a file, so impossible to determine filename") self.find_file_dialog(self.myprops["paramname"]) pass else : # not datacollect mode... # determine filename automatically if possible, but ask user self.checklist.xmldoc.lock_ro() try : destelement=self.checklist.xmldoc.xpathsingle("chx:dest") desthref=dc_value.hrefvalue.fromxml(self.checklist.xmldoc,destelement) finally: self.checklist.xmldoc.unlock_ro() pass self.find_file_dialog(self.myprops["paramname"],desthref) pass #self.update_xml() #self.set_fixed() #self.setbuttonbgcolor("green") # indicate that we have been pushed pass def is_fixed(self): # note overridden by savebuttonstep if self.paramdb is None: return True # fixed during initialization # param readout is NEVER fixed when parameter intermediate is False # ... non-intermediate params are saved in the experiment log, # not in the checklist if not self.myprops["intermediate"]: return False # param readout is fixed when checklist is marked as # readonly or when checkbox is checked. return self.checklist.readonly or self.step.gladeobjdict["checkbutton"].get_property("active") # override set_fixed() so underlying widget is ALWAYS fixed def set_fixed(self): fixed=self.is_fixed() (value,displayfmt)=self.value_from_xml() # sys.stderr.write("savebuttonstep: set_fixed: %s\n" % (str(value))) self.gladeobjdict["readout"].set_fixed(fixed,value,displayfmt) self.gladeobjdict["pushbutton"].set_sensitive(not fixed) if not fixed: self.update_xml() pass pass def changedcallback(self,param,condition): if not self.is_fixed(): self.setbuttonbgcolor("green") # indicate that we have been pushed self.update_xml() pass pass def value_from_xml(self): if not "paramname" in self.myprops: # not fully initialized return ("",None) # same as value_from_xml from dc_paramstep but iterates over paramnames... # Since the text box is read-only and this is just used for the retval=dc_value.stringvalue("") retfmt=None (gotvalue,gotdisplayfmt)=(dc_value.stringvalue(""),None) if self.myprops["paramname"] is not None: (gotvalue,gotdisplayfmt)=dc2_misc.stepwidget_value_from_xml(self,self.myprops["paramname"]) pass retval=gotvalue retfmt=gotdisplayfmt # We only show the first param return (retval,retfmt) def update_xml(self): # ... save as update_xml from dc_paramstep but iterates over params if self.is_fixed(): return # only intermediate params are saved to the checklist XML if not self.myprops["intermediate"]: return if self.guistate is None or self.paramdb is None: return if self.myprops["paramname"] != None and len(self.myprops["paramname"]) > 0: newvalue=self.paramdb[self.myprops["paramname"]].dcvalue dc2_misc.stepwidget_update_xml(self,self.myprops["paramname"],newvalue) pass return def resetchecklist(self): buttonreadoutstep.resetchecklist(self) self.setbuttonbgcolor("gray") # indicate that we have not been pushed # reset parameter values #if self.paramdb is not None: # if self.myprops["paramname"] is not None and len(self.myprops["paramname"]) > 0: # self.paramdb[self.myprops["paramname"]].requestvalstr_sync("") # pass # if self.myprops["paramname2"] is not None and len(self.myprops["paramname2"]) > 0: # self.paramdb[self.myprops["paramname2"]].requestvalstr_sync("") # pass # if self.myprops["paramname3"] is not None and len(self.myprops["paramname3"]) > 0: # self.paramdb[self.myprops["paramname3"]].requestvalstr_sync("") # pass # pass # clear #self.update_xml() self.set_fixed() pass pass gobject.type_register(hrefbuttonstep) # required since we are defining new properties/signals
import requests import json import sys import time from api import * blockTime = get_block_time() difficulty = get_difficulty() usd_price = get_usd_price() data = { 'blockTime': blockTime, 'difficulty': difficulty, 'priceUsd': usd_price, 'lastUpdate': time.time(), } file(sys.argv[1], 'w').write('ethereumStats = ' + json.dumps(data) + ';')
import tensorflow as tf from tensorflow.keras.layers import Dense, Conv2D, BatchNormalization, MaxPool2D from tensorflow.keras import Model class CNN(object): def __init__(self, height, width, channel, num_class, leaning_rate=1e-3, ckpt_dir='./Checkpoint'): print("\nInitializing Neural Network...") self.height, self.width, self.channel = height, width, channel self.num_class, self.k_size = num_class, 3 self.leaning_rate = leaning_rate self.ckpt_dir = ckpt_dir self.model = SKNet(num_class=self.num_class) self.model(tf.zeros([1, self.height, self.width, self.channel]), training=False, verbose=True) self.optimizer = tf.optimizers.Adam(self.leaning_rate) self.summary_writer = tf.summary.create_file_writer(self.ckpt_dir) def step(self, x, y, iteration=0, train=False): with tf.GradientTape() as tape: logits = self.model(x, training=train) smce = tf.nn.softmax_cross_entropy_with_logits(labels=y, logits=logits) loss = tf.math.reduce_mean(smce) score = tf.nn.softmax(logits) pred = tf.argmax(score, 1) correct_pred = tf.equal(pred, tf.argmax(y, 1)) accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32)) if(train): gradients = tape.gradient(loss, self.model.trainable_variables) self.optimizer.apply_gradients(zip(gradients, self.model.trainable_variables)) with self.summary_writer.as_default(): tf.summary.scalar('CNN/loss', loss, step=iteration) tf.summary.scalar('CNN/accuracy', accuracy, step=iteration) return loss, accuracy, score def save_params(self): self.model.save_weights("%s/model.h5" %(self.ckpt_dir)) def load_params(self): self.model.load_weights("%s/model.h5" %(self.ckpt_dir)) class SKNet(Model): def __init__(self, num_class): super(SKNet, self).__init__() self.num_class = num_class # Block 1 self.conv1_a = Conv2D(filters=16, kernel_size=3, strides=1, padding="SAME") self.bn1_a = BatchNormalization() self.conv1_b = Conv2D(filters=16, kernel_size=5, strides=1, padding="SAME") self.bn1_b = BatchNormalization() self.fc1 = Dense(8, activation=None) self.bn1_fc = BatchNormalization() self.fc1_a = Dense(16, activation=None) # Block 2 self.conv2_a = Conv2D(filters=32, kernel_size=3, strides=1, padding="SAME") self.bn2_a = BatchNormalization() self.conv2_b = Conv2D(filters=32, kernel_size=5, strides=1, padding="SAME") self.bn2_b = BatchNormalization() self.fc2 = Dense(16, activation=None) self.bn2_fc = BatchNormalization() self.fc2_a = Dense(32, activation=None) # Block 2 self.conv3_a = Conv2D(filters=64, kernel_size=3, strides=1, padding="SAME") self.bn3_a = BatchNormalization() self.conv3_b = Conv2D(filters=64, kernel_size=5, strides=1, padding="SAME") self.bn3_b = BatchNormalization() self.fc3 = Dense(32, activation=None) self.bn3_fc = BatchNormalization() self.fc3_a = Dense(64, activation=None) # FC self.fc_out = Dense(self.num_class, activation=None) self.maxpool = MaxPool2D(pool_size=(2, 2)) def call(self, x, training=False, verbose=False): if(verbose): print(x.shape) """ Conv-1 """ # Split-1 u1_a = tf.keras.activations.relu(self.bn1_a(self.conv1_a(x), training=training)) u1_b = tf.keras.activations.relu(self.bn1_b(self.conv1_b(x), training=training)) # Fuse-1 u1 = u1_a + u1_b s1 = tf.math.reduce_sum(u1, axis=(1, 2)) z1 = tf.keras.activations.relu(self.bn1_fc(self.fc1(s1), training=training)) # Select-1 a1 = tf.keras.activations.softmax(self.fc1_a(z1)) a1 = tf.expand_dims(a1, 1) a1 = tf.expand_dims(a1, 1) b1 = 1 - a1 v1 = (u1_a * a1) + (u1_b * b1) if(verbose): print(v1.shape) p1 = self.maxpool(v1) if(verbose): print(p1.shape) """ Conv-2 """ # Split-2 u2_a = tf.keras.activations.relu(self.bn2_a(self.conv2_a(p1), training=training)) u2_b = tf.keras.activations.relu(self.bn2_b(self.conv2_b(p1), training=training)) # Fuse-2 u2 = u2_a + u2_b s2 = tf.math.reduce_sum(u2, axis=(1, 2)) z2 = tf.keras.activations.relu(self.bn2_fc(self.fc2(s2), training=training)) # Select-2 a2 = tf.keras.activations.softmax(self.fc2_a(z2)) a2 = tf.expand_dims(a2, 1) a2 = tf.expand_dims(a2, 1) b2 = 1 - a2 v2 = (u2_a * a2) + (u2_b * b2) if(verbose): print(v2.shape) p2 = self.maxpool(v2) if(verbose): print(p2.shape) """ Conv-3 """ # Split-3 u3_a = tf.keras.activations.relu(self.bn3_a(self.conv3_a(p2), training=training)) u3_b = tf.keras.activations.relu(self.bn3_b(self.conv3_b(p2), training=training)) # Fuse-3 u3 = u3_a + u3_b s3 = tf.math.reduce_sum(u3, axis=(1, 2)) z3 = tf.keras.activations.relu(self.bn3_fc(self.fc3(s3), training=training)) # Select-3 a3 = tf.keras.activations.softmax(self.fc3_a(z3)) a3 = tf.expand_dims(a3, 1) a3 = tf.expand_dims(a3, 1) b3 = 1 - a3 v3 = (u3_a * a3) + (u3_b * b3) if(verbose): print(v3.shape) gap = tf.math.reduce_sum(v3, axis=(1, 2)) if(verbose): print(gap.shape) out = self.fc_out(gap) if(verbose): print(out.shape) return out
import cv2 import numpy as np import glob import os import argparse parser = argparse.ArgumentParser(description='prepare captures for annotation') parser.add_argument('--input_folder', help='the input folder', required=True) parser.add_argument('--video_name', help='the top view video name ... e.g. view2-color.mp4', default="view2-color.mp4") parser.add_argument('--ouput_folder_name', help='annotation data folder name. default: annotation_data', default="annotation_data") args = parser.parse_args() print(args.input_folder) video_id = args.input_folder.split("/") if len(video_id) > 1: video_id = video_id[-1] else: video_id = video_id[0] print("video id:", video_id) print("load video:", f"{args.input_folder}/{args.video_name}") cap = cv2.VideoCapture(f'{args.input_folder}/{args.video_name}') if args.ouput_folder_name not in os.listdir(f'{args.input_folder}'): os.mkdir(f'{args.input_folder}/{args.ouput_folder_name}') if "video" not in os.listdir(f'{args.input_folder}/{args.ouput_folder_name}'): os.mkdir(f'{args.input_folder}/{args.ouput_folder_name}/video') os.mkdir(f'{args.input_folder}/{args.ouput_folder_name}/video/{video_id}') with open(f'{args.input_folder}/{args.ouput_folder_name}/video_{video_id}.txt', "w") as f: f.write("URLID,URL\n") f.write(f"{video_id},{video_id}\n") with open(f'{args.input_folder}/{args.ouput_folder_name}/frames_{video_id}.txt', "w") as f: f.write("URLID,Frame,Time\n") frame_number = 0 while cap.isOpened(): print("export frame:", frame_number) ret, frame = cap.read() if not ret: break if cv2.waitKey(1) & 0xFF == ord('q'): break # cv2.imshow('frame', frame) frame_name = str(frame_number).zfill(12) frame_name = f"{frame_name}.jpg" frame = frame[:, 255:-305] # crop to ROI # frame = cv2.resize(frame, (480, 480)) # resize img frame = cv2.resize(frame, (224, 224)) # resize img cv2.imwrite(f'{args.input_folder}/{args.ouput_folder_name}/video/{video_id}/{frame_name}', frame) f.write(f"{video_id},{frame_name},{frame_number}\n") frame_number += 1 cap.release() cv2.destroyAllWindows()
import fxpt_experiments as fe num_procs = 10 test_data_ids = [ "big1024_base", "big512_base", "big256_base", "full_base", ] for test_data_id in test_data_ids: _ = fe.run_TvB_stability_experiments(test_data_id,num_procs)
""" Load the Kepler light curve from FITS files. Also do a bit of preprocessing. """ import inputs as inp def loadlc(files, usepdc=False, **kwargs): """ Load Kepler light curves. Parameters ---------- files : list of strings The locations of the light curves to load together. usepdc : bool, optional Set to True to load the PDC light curves instead of the default SAP. Returns ------- time : ndarray Kepler times of center of exposure flux : ndarray Kepler normalized fluxes fluxerr : ndarray Kepler flux errors cadence : ndarray Kepler cadence number quarter : ndarray Kepler quarter quality : ndarray Kepler quality flag """ import astropy.io.fits as pyfits import numpy as np # load the first file ifile = files[0] data = pyfits.getdata(ifile) # get the times and fluxes time = data['time']+54833e0 flux = data['sap_flux'] fluxerr = data['sap_flux_err'] if usepdc: flux = data['pdcsap_flux'] fluxerr = data['pdcsap_flux_err'] # where the times and fluxes are finite good = (np.isfinite(time) & np.isfinite(flux)) # get the good values of everything time = time[good] flux = flux[good] fluxerr = fluxerr[good] quality = data['sap_quality'][good] cadence = data['cadenceno'][good] # pull the quarter from the header and set it up as an array quart = pyfits.getval(ifile, 'quarter', 0) quarter = np.zeros(len(time)) + quart # normalize the fluxes fluxerr /= np.median(flux) flux /= np.median(flux) # add in subsequent files for i in np.arange(len(files)-1)+1: ifile = files[i] data = pyfits.getdata(ifile) # get the times and fluxes itime = data['time']+54833e0 iflux = data['sap_flux'] ifluxerr = data['sap_flux_err'] if usepdc: iflux = data['pdcsap_flux'] ifluxerr = data['pdcsap_flux_err'] # where the times and fluxes are finite good = (np.isfinite(itime) & np.isfinite(iflux)) # get the good values of everything itime = itime[good] iflux = iflux[good] ifluxerr = ifluxerr[good] iquality = data['sap_quality'][good] icadence = data['cadenceno'][good] # pull the quarter from the header and set it up as an array quart = pyfits.getval(ifile, 'quarter', 0) iquarter = np.zeros(len(itime)) + quart # normalize the fluxes ifluxerr /= np.median(iflux) iflux /= np.median(iflux) time = np.concatenate((time, itime)) flux = np.concatenate((flux, iflux)) fluxerr = np.concatenate((fluxerr, ifluxerr)) quality = np.concatenate((quality, iquality)) cadence = np.concatenate((cadence, icadence)) quarter = np.concatenate((quarter, iquarter)) # guarantee the light curve in sequential order order = np.argsort(time) time = time[order] flux = flux[order] fluxerr = fluxerr[order] quality = quality[order] cadence = cadence[order] quarter = quarter[order] return time, flux, fluxerr, cadence, quarter, quality def preparelc(KIC, dataloc=inp.keplerdata, fill=True, badflags=(128, 2048), ignorelist=inp.baddata, **kwargs): """ Load Kepler light curves, then process them for analysis. Parameters ---------- KIC : int The Kepler ID for the system to look at dataloc : string, optional Directory point to the location of the Kepler light curves. Default can be changed in the module initialization. fill : boolean, optional Should we fill in all missing cadences? If true, will interpolate times to all missing cadences and assign them flux with np.inf errors. Necessary for QATS requiring continuous data. Default True. badflags : tuple, optional Flags that can be set by Kepler that we should take seriously and ignore. Set all cadences with these flags to have infinite errors. Default 128 and 2048. ignorelist : string, optional File containing regions of time to ignore. File contents should be 2 columns, with start and end times (in times already adjusted by inp.timeoffset). Defaults to the file listed in the module. Returns ------- time : ndarray Kepler times of center of exposure flux : ndarray Kepler normalized fluxes fluxerr : ndarray Kepler flux errors cadence : ndarray Cadence number, starting at 0 quarter : ndarray Kepler quarter quality : ndarray Kepler quality flag """ from glob import glob import numpy as np from scipy import interpolate # load the lightcurve from FITS files KICstr = str(int(KIC)) files = glob(dataloc + 'kplr*' + KICstr + '*llc.fits') time, flux, fluxerr, cad, quart, qual = loadlc(files, **kwargs) time -= inp.timeoffset # make sure cadences start at 0 cad -= cad[0] if fill: # fill in the missing cadences and interpolate their times and # fluxes (though the flux errors will be infinite) newcad = np.arange(cad[-1]+1) time = np.interp(newcad, cad, time) newfluxerr = newcad * 0. + np.inf newfluxerr[cad] = fluxerr # fill in the old fluxes, etc to the new grid newflux = newcad * 0. + 1. newflux[cad] = flux newqual = newcad * 0 newqual[cad] = qual # default to quarter -1 for filled in gaps newquart = newcad * 0. - 1. newquart[cad] = quart cad = newcad flux = newflux fluxerr = newfluxerr qual = newqual quart = newquart # fill in the infinite flux errors with interpolated values # to make plotting look better func = interpolate.interp1d(time[np.isfinite(fluxerr)], flux[np.isfinite(fluxerr)], bounds_error=False, fill_value=1.) flux[~np.isfinite(fluxerr)] = func(time[~np.isfinite(fluxerr)]) # ignore the places with these bad flags for ii in badflags: bad = np.where(qual & ii)[0] fluxerr[bad] = np.inf # ignore these regions for whatever reason if ignorelist is not None: tstart, tend = np.loadtxt(ignorelist, unpack=True, ndmin=2) for ii in np.arange(len(tstart)): igsrch = np.where((time >= tstart[ii]) & (time <= tend[ii]))[0] fluxerr[igsrch] = np.inf return time, flux, fluxerr, cad, quart, qual
def test_movie_goofs(ia): movie = ia.get_movie('0133093', info=['goofs']) goofs = movie.get('goofs', []) assert len(goofs) > 120
import numpy as np from scipy import misc import matplotlib.pyplot as plt face = misc.face(gray=True) plt.imshow(face, cmap=plt.cm.gray) plt.savefig('face0.png') plt.clf() bwimage = np.zeros_like(face) bwimage[face > 128] = 255 plt.imshow(bwimage, cmap=plt.cm.gray) plt.savefig('face1.png') plt.clf() framedface = np.zeros_like(face) framedface[31:-30, 31:-30] = face[31:-30, 31:-30] plt.imshow(framedface, cmap=plt.cm.gray) plt.savefig('face2.png') plt.clf() darkface = 255*(face/255)**1.5 plt.imshow(darkface, cmap=plt.cm.gray) plt.savefig('face3.png') plt.clf() sy, sx = face.shape y, x = np.ogrid[0:sy, 0:sx] centerx, centery = (660, 300) mask = ((y - centery)**2 + (x - centerx)**2) > 230**2 face[mask] = 0 plt.imshow(face, cmap=plt.cm.gray) plt.savefig('face4.png')
"""Added start, enddate to digitize group Revision ID: 4f17336641b9 Revises: 4237cb2ca161 Create Date: 2016-10-18 16:16:56.159752 """ # revision identifiers, used by Alembic. revision = '4f17336641b9' down_revision = '4237cb2ca161' branch_labels = None depends_on = None from alembic import op import sqlalchemy as sa from sqlalchemy.dialects import postgresql def upgrade(): op.add_column('digitize_feature_groups', sa.Column('_active', sa.Boolean(), nullable=True)) op.add_column('digitize_feature_groups', sa.Column('end_date', sa.DateTime(), nullable=True)) op.add_column('digitize_feature_groups', sa.Column('start_date', sa.DateTime(), nullable=True)) op.drop_column('digitize_feature_groups', 'active') def downgrade(): op.add_column('digitize_feature_groups', sa.Column('active', sa.BOOLEAN(), autoincrement=False, nullable=True)) op.drop_column('digitize_feature_groups', 'start_date') op.drop_column('digitize_feature_groups', 'end_date') op.drop_column('digitize_feature_groups', '_active')
import teams as t import org as o import employee as emp from empstore import employees from empstore import teams from empstore import org while True: print("Press 1 for add employee") print("Press 2 for delete employee ") print("Press 3 for search employee") print("Press 4 for display employee") print("Press 5 for change employee details") print("Press 6 manage all teams") print("Press 7 for Quit") ch = int(input("Enter choice:")) if ch == 1: #adding employee emp.add_employee() elif ch == 2: #delete emp.delete_employee() elif ch == 3: #search emp.search_employee() elif ch == 4: #display employee emp.display_employee() elif ch== 5: #change employee details emp.change_employee() elif ch == 6: t.manage_all_teams() elif ch == 7: break else: print("Invalid Choice")
#Felipe Lima #Linguagem: Python #Exercício 06 do site: https://wiki.python.org.br/EstruturaSequencial #Importa biblioteca import math #Entra com o raio raio = float(input("Qual o raio do círculo: ")) #Calcula a área area = math.pi*raio #Imprime o resultado print("A área do círculo, para o raio digitado, é: {:.2f}.".format(area))
#-------------------------------------------------------------------------------------------- # Simplistic implementation of the Sinkhorn divergences, with a vanilla PyTorch backend #-------------------------------------------------------------------------------------------- import numpy as np import torch ####################################################################################################################### # Elementary operations ..................................................................... ####################################################################################################################### def scal( α, f ) : return torch.dot( α.view(-1), f.view(-1) ) def lse( v_ij ): """[lse(v_ij)]_i = log sum_j exp(v_ij), with numerical accuracy.""" V_i = torch.max(v_ij, 1)[0].view(-1,1) return V_i + (v_ij - V_i).exp().sum(1).log().view(-1,1) def dist_matrix(x_i, y_j, p) : x_y = x_i.unsqueeze(1) - y_j.unsqueeze(0) if p == 1 : return x_y.norm(dim=2) / ε elif p == 2 : return ( x_y ** 2).sum(2) / ε else : return x_y.norm(dim=2)**(p/2) / ε ####################################################################################################################### # Sinkhorn iterations ..................................................................... ####################################################################################################################### def sink(α_i, x_i, β_j, y_j, p=1, eps=.1, nits=100, **kwargs): ε = eps # Python supports Unicode. So fancy! # Sinkhorn loop with A = a/eps , B = b/eps .................................................... α_i_log, β_j_log = α_i.log(), β_j.log() # Precompute the logs of the measures' weights B_i, A_j = torch.zeros_like(α_i), torch.zeros_like(β_j) # Sampled influence fields Cxy_e = dist_matrix(x_i, y_j, p) for i in range(nits): A_j = -lse( (B_i + α_i_log).view(1,-1) - Cxy_e.t() ) # a(y)/ε = Smin_ε,x~α [ C(x,y) - b(x) ] / ε B_i = -lse( (A_j + β_j_log).view(1,-1) - Cxy_e ) # b(x)/ε = Smin_ε,y~β [ C(x,y) - a(y) ] / ε return ε*A_j.view(-1), ε*B_i.view(-1) def sym_sink(α_i, x_i, y_j=None, p=1, eps=.1, nits=100, **kwargs): ε = eps # Python supports Unicode. So fancy! # Sinkhorn loop ...................................................................... α_i_log = α_i.log() A_i = torch.zeros_like(α_i) Cxx_e = dist_matrix(x_i, x_i, p) for i in range(nits-1): A_i = 0.5 * (A_i - lse( (A_i + α_i_log).view(1,-1) - Cxx_e )) # a(x)/ε = .5*(a(x)/ε + Smin_ε,y~α [ C(x,y) - a(y) ] / ε) a_x = -ε*lse( (A_i + α_i_log).view(1,-1) - Cxx_e ).view(-1) # a(x) = Smin_e,z~α [ C(x,z) - a(z) ] if y_j is None : return None, a_x else : # extrapolate "a" to the point cloud "y_j" Cyx_e = dist_matrix(y_j, x_i, p) a_y = - ε * lse( (A_i + α_i_log).view(1,-1) - Cyx_e ).view(-1) # a(z) = Smin_e,z~α [ C(y,z) - a(z) ] return a_y, a_x ####################################################################################################################### # Derived Functionals ..................................................................... ####################################################################################################################### def regularized_ot( α, x, β, y, **params): # OT_ε a_y, b_x = sink( α, x, β, y, **params) return scal(α, b_x) + scal(β, a_y) def hausdorff_divergence(α, x, β, y, **params): # H_ε a_y, a_x = sym_sink( α, x, y, **params) b_x, b_y = sym_sink( β, y, x, **params) return .5 * ( scal( α, b_x - a_x ) + scal( β, a_y - b_y ) ) def sinkhorn_divergence(α, x, β, y, **params): # S_ε a_y, b_x = sink( α, x, β, y, **params) _, a_x = sym_sink( α, x, **params ) _, b_y = sym_sink( β, y, **params ) return scal( α, b_x - a_x ) + scal( β, a_y - b_y )