content
stringlengths
5
1.05M
# Copyright (c) 2012 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. { 'variables': { 'use_system_sqlite%': 0, }, 'target_defaults': { 'defines': [ 'SQLITE_CORE', 'SQLITE_ENABLE_BROKEN_FTS3', 'DSQLITE_ENABLE_FTS3_PARENTHESIS', 'SQLITE_ENABLE_FTS3', 'SQLITE_ENABLE_FTS4', 'SQLITE_ENABLE_MEMORY_MANAGEMENT', 'SQLITE_SECURE_DELETE', 'SQLITE_SEPARATE_CACHE_POOLS', 'THREADSAFE', '_HAS_EXCEPTIONS=0', ], }, 'targets': [ { 'target_name': 'sqlite', 'conditions': [ [ 'v8_is_3_28==1', { 'defines': [ 'V8_IS_3_28=1' ], }], [ 'node_win_onecore==1', { 'defines': ['SQLITE_OS_WINRT'] }], [ 'v8_is_3_14==1', { 'defines': [ 'V8_IS_3_14=1' ], }], ['use_system_sqlite', { 'type': 'none', 'direct_dependent_settings': { 'defines': [ 'USE_SYSTEM_SQLITE', ], }, 'conditions': [ ['OS == "ios"', { 'dependencies': [ 'sqlite_regexp', ], 'link_settings': { 'libraries': [ '$(SDKROOT)/usr/lib/libsqlite3.dylib', ], }, }], ], }, { # !use_system_sqlite 'product_name': 'sqlite3', 'type': 'static_library', 'sources': [ 'sqlite3.h', 'sqlite3ext.h', 'sqlite3.c', ], 'include_dirs': [ # 'amalgamation', # Needed for fts2 to build. # 'src/src', ], 'direct_dependent_settings': { 'include_dirs': [ '.', '../..', ], }, 'msvs_disabled_warnings': [ 4018, 4244, 4267, ], 'conditions': [ ['OS=="linux"', { 'link_settings': { 'libraries': [ '-ldl', ], }, }], ['OS == "mac" or OS == "ios"', { 'link_settings': { 'libraries': [ '$(SDKROOT)/System/Library/Frameworks/CoreFoundation.framework', ], }, }], ['OS=="ios"', { 'xcode_settings': { 'ALWAYS_SEARCH_USER_PATHS': 'NO', 'GCC_CW_ASM_SYNTAX': 'NO', # No -fasm-blocks 'GCC_DYNAMIC_NO_PIC': 'NO', # No -mdynamic-no-pic # (Equivalent to -fPIC) 'GCC_ENABLE_CPP_EXCEPTIONS': 'NO', # -fno-exceptions 'GCC_ENABLE_CPP_RTTI': 'NO', # -fno-rtti 'GCC_ENABLE_PASCAL_STRINGS': 'NO', # No -mpascal-strings 'GCC_THREADSAFE_STATICS': 'NO', # -fno-threadsafe-statics 'PREBINDING': 'NO', # No -Wl,-prebind 'EMBED_BITCODE': 'YES', 'IPHONEOS_DEPLOYMENT_TARGET': '6.0', 'GCC_GENERATE_DEBUGGING_SYMBOLS': 'NO', 'USE_HEADERMAP': 'NO', 'OTHER_CFLAGS': [ '-fno-strict-aliasing', '-fno-standalone-debug' ], 'OTHER_CPLUSPLUSFLAGS': [ '-fno-strict-aliasing', '-fno-standalone-debug' ], 'OTHER_LDFLAGS': [ '-s' ], 'WARNING_CFLAGS': [ '-Wall', '-Wendif-labels', '-W', '-Wno-unused-parameter', ], }, 'defines':[ '__IOS__' ], 'conditions': [ ['target_arch=="ia32"', { 'xcode_settings': {'ARCHS': ['i386']}, }], ['target_arch=="x64"', { 'xcode_settings': {'ARCHS': ['x86_64']}, }], [ 'target_arch in "arm64 arm armv7s"', { 'xcode_settings': { 'OTHER_CFLAGS': [ '-fembed-bitcode' ], 'OTHER_CPLUSPLUSFLAGS': [ '-fembed-bitcode' ], } }], [ 'target_arch=="arm64"', { 'xcode_settings': {'ARCHS': ['arm64']}, }], [ 'target_arch=="arm"', { 'xcode_settings': {'ARCHS': ['armv7']}, }], [ 'target_arch=="armv7s"', { 'xcode_settings': {'ARCHS': ['armv7s']}, }], [ 'target_arch=="x64" or target_arch=="ia32"', { 'xcode_settings': { 'SDKROOT': 'iphonesimulator' }, }, { 'xcode_settings': { 'SDKROOT': 'iphoneos', 'ENABLE_BITCODE': 'YES'}, }] ], }], ['OS == "android"', { 'defines': [ 'HAVE_USLEEP=1', 'SQLITE_DEFAULT_JOURNAL_SIZE_LIMIT=1048576', 'SQLITE_DEFAULT_AUTOVACUUM=1', 'SQLITE_TEMP_STORE=3', 'SQLITE_ENABLE_FTS3_BACKWARDS', 'DSQLITE_DEFAULT_FILE_FORMAT=4', ], }], ['os_posix == 1 and OS != "mac" and OS != "ios" and OS != "android"', { 'cflags': [ # SQLite doesn't believe in compiler warnings, # preferring testing. # http://www.sqlite.org/faq.html#q17 '-Wno-int-to-pointer-cast', '-Wno-pointer-to-int-cast', ], }], ['clang==1', { 'xcode_settings': { 'WARNING_CFLAGS': [ # sqlite does `if (*a++ && *b++);` in a non-buggy way. '-Wno-empty-body', # sqlite has some `unsigned < 0` checks. '-Wno-tautological-compare', ], }, 'cflags': [ '-Wno-empty-body', '-Wno-tautological-compare', ], }], ], }], ], }, ], }
n, m = [int(x) for x in input().split()] while n: ans = 1 for x in range(n, n+m): ans *= x for x in range(2, m+1): ans //= x print(ans) n, m = [int(x) for x in input().split()]
#!/usr/bin/env python3 # -*- coding: utf-8 -*- __author__ = 'Jason' import re def injection(input_path, weibo_dir_path): ret = [] with open(input_path, 'r') as fr: for line in fr: if line.strip() == '': continue temp_list = re.split(r'\s', line.strip()) ret.append((temp_list[0], temp_list[1])) input_str = '[' for idx in range(len(ret) - 1): input_str += "('{0:s}', '{1:s}'), ".format(ret[idx][0], ret[idx][1]) input_str += "('{0:s}', '{1:s}')]".format(ret[-1][0], ret[-1][1]) new_doc = '' with open(weibo_dir_path + 'WeiboSpider/settings.py', 'r') as fr: for line in fr: if re.search('SPEC_WEIBO_ENABLED', line.strip()): new_doc += 'SPEC_WEIBO_ENABLED = True\n' elif re.search('SPEC_WEIBO_LIST', line.strip()): new_doc += 'SPEC_WEIBO_LIST = {0:s}\n'.format(input_str) else: new_doc += line with open(weibo_dir_path + 'WeiboSpider/settings.py', 'w') as fw: fw.write(new_doc) if __name__ == '__main__': input_path = '/home/cuckootan/Desktop/sample.txt' weibo_dir_path = '/home/cuckootan/Desktop/WeiboSpider/' injection(input_path, weibo_dir_path)
# Copyright 2015 Fortinet Inc. # All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. # from netaddr import IPAddress from netaddr import IPNetwork from oslo_log import log as logging from oslo_utils import excutils from neutron_lib import constants as n_consts from neutron_lib.plugins import directory from neutron.api import extensions as neutron_extensions from neutron import context as neutron_context from neutron.db.models import l3 as l3_db from neutron.plugins.common import constants as const from neutron_fwaas.db.firewall import firewall_db from neutron_fwaas.db.firewall import firewall_router_insertion_db import neutron_fwaas.extensions as extensions from neutron_fwaas.extensions import firewall as fw_ext from bell_fortinet._i18n import _LE from bell_fortinet.common import config from bell_fortinet.common import constants as constants from bell_fortinet.common import utils as utils from bell_fortinet.db import models as fortinet_db from bell_fortinet.tasks import constants as t_consts from bell_fortinet.tasks import tasks LOG = logging.getLogger(__name__) FORTINET_FW = "fortinet_fw" FORTINET_FW_PLUGIN = "fortinet_fw_plugin" class FortinetFirewallPlugin( firewall_db.Firewall_db_mixin, firewall_router_insertion_db.FirewallRouterInsertionDbMixin): """Implementation of the Neutron Firewall Service Plugin. This class manages the workflow of FWaaS request/response. Most DB related works are implemented in class firewall_db.Firewall_db_mixin. """ neutron_extensions.append_api_extensions_path(extensions.__path__) supported_extension_aliases = ["fwaas", "fwaasrouterinsertion"] path_prefix = fw_ext.FIREWALL_PREFIX def __init__(self): """Do the initialization for the firewall service plugin here.""" self._fortigate = config.fgt_info self._driver = config.get_apiclient() self.task_manager = tasks.TaskManager() self.task_manager.start() firewall_db.subscribe() def _rpc_update_firewall(self, context, firewall_id): status_update = {"firewall": {"status": const.PENDING_UPDATE}} super(FortinetFirewallPlugin, self).update_firewall( context, firewall_id, status_update) fw_with_rules = self._make_firewall_dict_with_rules(context, firewall_id) # this is triggered on an update to fw rule or policy, no # change in associated routers. fw_with_rules['add-router-ids'] = self.get_firewall_routers( context, firewall_id) fw_with_rules['del-router-ids'] = [] self._apply_firewall(context, **fw_with_rules) def _rpc_update_firewall_policy(self, context, firewall_policy_id): firewall_policy = self.get_firewall_policy(context, firewall_policy_id) if firewall_policy: for firewall_id in firewall_policy['firewall_list']: self._rpc_update_firewall(context, firewall_id) def _ensure_update_firewall(self, context, firewall_id): fwall = self.get_firewall(context, firewall_id) if fwall['status'] in [const.PENDING_CREATE, const.PENDING_UPDATE, const.PENDING_DELETE]: raise fw_ext.FirewallInPendingState(firewall_id=firewall_id, pending_state=fwall['status']) def _ensure_update_firewall_policy(self, context, firewall_policy_id): firewall_policy = self.get_firewall_policy(context, firewall_policy_id) if firewall_policy and 'firewall_list' in firewall_policy: for firewall_id in firewall_policy['firewall_list']: self._ensure_update_firewall(context, firewall_id) def _ensure_update_firewall_rule(self, context, firewall_rule_id): fw_rule = self.get_firewall_rule(context, firewall_rule_id) if 'firewall_policy_id' in fw_rule and fw_rule['firewall_policy_id']: self._ensure_update_firewall_policy(context, fw_rule['firewall_policy_id']) def _get_routers_for_create_firewall(self, tenant_id, context, firewall): # pop router_id as this goes in the router association db # and not firewall db LOG.debug("# _get_routers_for_create_firewall called Fortinet_plugin") router_ids = firewall['firewall'].pop('router_ids', None) if router_ids == n_consts.ATTR_NOT_SPECIFIED: # old semantics router-ids keyword not specified pick up # all routers on tenant. l3_plugin = directory.get_plugin(n_consts.L3) ctx = neutron_context.get_admin_context() routers = l3_plugin.get_routers(ctx) router_ids = [ router['id'] for router in routers if router['tenant_id'] == tenant_id] # validation can still fail this if there is another fw # which is associated with one of these routers. self.validate_firewall_routers_not_in_use(context, router_ids) return router_ids else: if not router_ids: # This indicates that user specifies no routers. return [] else: # some router(s) provided. self.validate_firewall_routers_not_in_use(context, router_ids) return router_ids def create_firewall(self, context, firewall): LOG.debug("create_firewall() called Fortinet_plugin") tenant_id = firewall['firewall']['tenant_id'] fw_new_rtrs = self._get_routers_for_create_firewall( tenant_id, context, firewall) if not fw_new_rtrs: # no messaging to agent needed, and fw needs to go # to INACTIVE(no associated rtrs) state. status = const.INACTIVE fw = super(FortinetFirewallPlugin, self).create_firewall( context, firewall, status) fw['router_ids'] = [] return fw else: fw = super(FortinetFirewallPlugin, self).create_firewall( context, firewall) fw['router_ids'] = fw_new_rtrs fw_with_rules = ( self._make_firewall_dict_with_rules(context, fw['id'])) fw_with_rtrs = {'fw_id': fw['id'], 'router_ids': fw_new_rtrs} self.set_routers_for_firewall(context, fw_with_rtrs) fw_with_rules['add-router-ids'] = fw_new_rtrs fw_with_rules['del-router-ids'] = [] self._apply_firewall(context, **fw_with_rules) return fw def update_firewall(self, context, id, firewall): LOG.debug("Fortinet_plugin update_firewall() called, " "id is %(id)s, firewall is %(fw)s", {'id': id, 'fw': firewall}) self._ensure_update_firewall(context, id) # pop router_id as this goes in the router association db # and not firewall db router_ids = firewall['firewall'].pop('router_ids', None) fw_current_rtrs = self.get_firewall_routers(context, id) if router_ids is not None: if router_ids == []: # This indicates that user is indicating no routers. fw_new_rtrs = [] else: self.validate_firewall_routers_not_in_use( context, router_ids, id) fw_new_rtrs = router_ids self.update_firewall_routers(context, {'fw_id': id, 'router_ids': fw_new_rtrs}) else: # router-ids keyword not specified for update pick up # existing routers. fw_new_rtrs = self.get_firewall_routers(context, id) if not fw_new_rtrs and not fw_current_rtrs: # no messaging to agent needed, and we need to continue # in INACTIVE state firewall['firewall']['status'] = const.INACTIVE fw = super(FortinetFirewallPlugin, self).update_firewall( context, id, firewall) fw['router_ids'] = [] return fw else: firewall['firewall']['status'] = const.PENDING_UPDATE fw = super(FortinetFirewallPlugin, self).update_firewall( context, id, firewall) fw['router_ids'] = fw_new_rtrs fw_with_rules = ( self._make_firewall_dict_with_rules(context, fw['id'])) # determine rtrs to add fw to and del from fw_with_rules['add-router-ids'] = fw_new_rtrs fw_with_rules['del-router-ids'] = list( set(fw_current_rtrs).difference(set(fw_new_rtrs))) # last-router drives agent to ack with status to set state to INACTIVE fw_with_rules['last-router'] = not fw_new_rtrs LOG.debug("## update_firewall %s: Add Routers: %s, Del Routers: %s", fw['id'], fw_with_rules['add-router-ids'], fw_with_rules['del-router-ids']) self._apply_firewall(context, **fw_with_rules) #self.agent_rpc.update_firewall(context, fw_with_rules) return fw def update_firewall_for_delete_router(self, context, router_id): LOG.debug("fwaas delete_router() called, router_id: %(rtid)s", {'rtid': router_id}) cls = firewall_router_insertion_db.FirewallRouterAssociation db_fw_rt = fortinet_db.query_record(context, cls, router_id=router_id) if not db_fw_rt: return None firewall = {u'firewall': {'router_ids': []}} return self.update_firewall(context, db_fw_rt.fw_id, firewall) def delete_db_firewall_object(self, context, id): super(FortinetFirewallPlugin, self).delete_firewall(context, id) def delete_firewall(self, context, id): LOG.debug("Fortinet_plugin delete_firewall() called, fw_id %(id)s", {'id': id}) fw_with_rules = ( self._make_firewall_dict_with_rules(context, id)) status = {"firewall": {"status": const.PENDING_DELETE}} super(FortinetFirewallPlugin, self).update_firewall( context, id, status) # Reflect state change in fw_with_rules fw_with_rules['del-router-ids'] = self.get_firewall_routers( context, id) self._apply_firewall(context, **fw_with_rules) self.delete_db_firewall_object(context, id) def update_firewall_policy(self, context, id, firewall_policy): LOG.debug("update_firewall_policy called, " "id =%(id)s, firewall_policy=%(fp)s", {'id': id, 'fp': firewall_policy}) self._ensure_update_firewall_policy(context, id) firewall_policy_old = self.get_firewall_policy(context, id) firewall_rule_ids = firewall_policy_old.get('firewall_rules', []) tenant_id = firewall_policy_old.get('tenant_id', None) fwp = super(FortinetFirewallPlugin, self).update_firewall_policy(context, id, firewall_policy) for fwr_id in firewall_rule_ids: fw_rule = self.get_firewall_rule(context, fwr_id) self._delete_firewall_rule(context, tenant_id, **fw_rule) self._rpc_update_firewall_policy(context, id) return fwp def create_firewall_rule(self, context, firewall_rule): """ :param context: :param firewall_rule: firewall_rule={'firewall_rule': {... }} :return: """ LOG.debug("create_firewall_rule() firewall_rule=%(fwr)s", {'fwr': firewall_rule}) return super(FortinetFirewallPlugin, self).create_firewall_rule(context, firewall_rule) def delete_firewall_rule(self, context, id): super(FortinetFirewallPlugin, self).delete_firewall_rule(context, id) def update_firewall_rule(self, context, id, firewall_rule): LOG.debug("update_firewall_rule() id: %(id)s, " "firewall_rule: %(firewall_rule)s", {'id': id, 'firewall_rule': firewall_rule}) try: fwr = self._update_firewall_rule_dict(context, id, firewall_rule) self._update_firewall_rule(context, id, fwr) self._ensure_update_firewall_rule(context, id) fwr = super(FortinetFirewallPlugin, self).update_firewall_rule(context, id, firewall_rule) utils.update_status(self, context, t_consts.TaskStatus.COMPLETED) return fwr except Exception as e: with excutils.save_and_reraise_exception(): LOG.error(_LE("update_firewall_rule %(fwr)s failed"), {'fwr': firewall_rule}) utils._rollback_on_err(self, context, e) def insert_rule(self, context, id, rule_info): self._ensure_update_firewall_policy(context, id) try: fwp = super(FortinetFirewallPlugin, self).insert_rule(context, id, rule_info) self._rpc_update_firewall_policy(context, id) utils.update_status(self, context, t_consts.TaskStatus.COMPLETED) return fwp except Exception as e: with excutils.save_and_reraise_exception(): self.remove_rule(context, id, rule_info) utils._rollback_on_err(self, context, e) def remove_rule(self, context, id, rule_info): LOG.debug("Fortinet_plugin remove_rule() called") self._ensure_update_firewall_policy(context, id) if rule_info.get('firewall_rule_id', None): firewall_rule = self._get_firewall_rule( context, rule_info['firewall_rule_id']) fwr = self._make_firewall_rule_dict(firewall_rule) self._delete_firewall_rule(context, fwr['tenant_id'], **fwr) fwp = super(FortinetFirewallPlugin, self).remove_rule( context, id, rule_info) self._rpc_update_firewall_policy(context, id) return fwp def get_firewalls(self, context, filters=None, fields=None): LOG.debug("fwaas get_firewalls() called, filters=%(filters)s, " "fields=%(fields)s", {'filters': filters, 'fields': fields}) fw_list = super(FortinetFirewallPlugin, self).get_firewalls( context, filters, fields) for fw in fw_list: fw_current_rtrs = self.get_firewall_routers(context, fw['id']) fw['router_ids'] = fw_current_rtrs return fw_list def get_firewall(self, context, id, fields=None): LOG.debug("fwaas get_firewall() called") res = super(FortinetFirewallPlugin, self).get_firewall( context, id, fields) fw_current_rtrs = self.get_firewall_routers(context, id) res['router_ids'] = fw_current_rtrs return res def _apply_firewall(self, context, **fw_with_rules): tenant_id = fw_with_rules['tenant_id'] default_fwr = self._make_default_firewall_rule_dict(tenant_id) try: if fw_with_rules.get('del-router-ids', None): for fwr in list(fw_with_rules.get('firewall_rule_list', None)): self._delete_firewall_rule(context, tenant_id, **fwr) if default_fwr: self._delete_firewall_rule( context, tenant_id, **default_fwr) self.update_firewall_status( context, fw_with_rules['id'], const.INACTIVE) if fw_with_rules.get('add-router-ids', None): vdom = getattr( fortinet_db.Fortinet_ML2_Namespace.query_one( context, tenant_id=tenant_id), 'vdom', None) if not vdom: raise fw_ext.FirewallInternalDriverError( driver='Fortinet_fwaas_plugin') if default_fwr: self._add_firewall_rule(context, tenant_id, **default_fwr) for fwr in reversed( list(fw_with_rules.get('firewall_rule_list', None))): self._add_firewall_rule(context, tenant_id, **fwr) self.update_firewall_status( context, fw_with_rules['id'], const.ACTIVE) else: self.update_firewall_status( context, fw_with_rules['id'], const.INACTIVE) except Exception as e: with excutils.save_and_reraise_exception(): LOG.error(_LE("apply_firewall %(fws)s failed"), {'fws': fw_with_rules}) utils._rollback_on_err(self, context, e) utils.update_status(self, context, t_consts.TaskStatus.COMPLETED) def _add_firewall_rule(self, context, fwp_tenant_id, **fwr): """ :param obj: :param context: :param kwargs: dictionary, firewall rule firewall_rule: {'source_ip_address': u'192.176.10.0/24',... } :return: """ LOG.debug("# _add_firewall_rule() called") namespace = fortinet_db.Fortinet_ML2_Namespace.query_one( context, tenant_id=fwp_tenant_id) vdom = getattr(namespace, 'vdom', None) if not vdom or not fwr: return None inf_int, inf_ext = utils.get_vlink_intf( self, context, vdom=namespace.vdom) srcaddr = self._add_fwr_ip_address( context, vdom, place='source_ip_address', **fwr) dstaddr = self._add_fwr_ip_address( context, vdom, place='destination_ip_address', **fwr) service = self._add_fwr_service(context, vdom, **fwr) action = self._get_fwr_action(**fwr) profiles = self._get_fwp_profiles(action) match_vip = 'enable' name = fwr.get('name', '') # add a basic firewall rule('accept': incoming, 'deny': bidirectional) fortinet_fwp = utils.add_fwpolicy_to_head(self, context, vdom=vdom, srcaddr=srcaddr['name'], srcintf='any', dstaddr=dstaddr['name'], dstintf='any', service=service['name'], match_vip=match_vip, action=action, comments=name, **profiles) utils.add_record(self, context, fortinet_db.Fortinet_FW_Rule_Association, fwr_id=fwr['id'], fortinet_pid=fortinet_fwp.id, type=constants.TYPE_INT) if action in ['accept']: # if allow, for the outgoing traffic it need to enable nat fortinet_fwp = utils.add_fwpolicy_to_head(self, context, vdom=vdom, srcaddr=srcaddr['name'], srcintf='any', dstaddr=dstaddr['name'], dstintf=inf_int, nat='enable', service=service['name'], action=action, comments=name, **profiles) utils.add_record(self, context, fortinet_db.Fortinet_FW_Rule_Association, fwr_id=fwr['id'], fortinet_pid=fortinet_fwp.id, type=constants.TYPE_EXT) def _update_firewall_rule(self, context, id, firewall_rule): LOG.debug("# _add_firewall_rule() called") fwps_int = fortinet_db.Fortinet_FW_Rule_Association.query_all( context, fwr_id=id, type=constants.TYPE_INT) fwps_ext = fortinet_db.Fortinet_FW_Rule_Association.query_all( context, fwr_id=id, type=constants.TYPE_EXT) if fwps_ext and fwps_int: fwps = fwps_int + fwps_ext else: fwps = fwps_int or fwps_ext if not fwps: return firewall_rule.setdefault('id', id) srcaddr = self._make_fortinet_fwaddress_dict( place='source_ip_address', **firewall_rule) dstaddr = self._make_fortinet_fwaddress_dict( place='destination_ip_address', **firewall_rule) service = self._make_fortinet_fwservice_dict(**firewall_rule) action = self._get_fwr_action(**firewall_rule) profiles = self._get_fwp_profiles(action) for fwp in fwps_int: vdom = fwp.fortinet_policy.vdom if service['name'] != 'ALL': utils.set_fwservice(self, context, vdom=vdom, **service) if srcaddr['name'] != 'all': utils.set_fwaddress(self, context, vdom=vdom, **srcaddr) if dstaddr['name'] != 'all': utils.set_fwaddress(self, context, vdom=vdom, **dstaddr) # check whether related firewall policies need to update fwp = fwps_int[0].fortinet_policy name = firewall_rule.setdefault('name', fwp.comments) if fwp.srcaddr == srcaddr['name'] and fwp.action == action and \ fwp.dstaddr == dstaddr['name'] and fwp.service == service['name']: return if action in ['accept']: for fwp in fwps: fortinet_fwp = utils.set_fwpolicy(self, context, id=fwp.fortinet_pid, srcaddr=srcaddr['name'], dstaddr=dstaddr['name'], service=service['name'], action=action, comments=name, **profiles) if not fwps_ext: inf_int, inf_ext = utils.get_vlink_intf( self, context, vdom=fortinet_fwp.vdom) utils.add_fwaas_subpolicy(self, context, before=fortinet_fwp.edit_id, vdom=fortinet_fwp.vdom, srcaddr=srcaddr['name'], dstaddr=dstaddr['name'], dstintf=inf_int, nat='enable', service=service['name'], action=action, comments=name, fwr_id=id, type=constants.TYPE_EXT, **profiles) elif action in ['deny']: for fwp_ext in fwps_ext: utils.delete_fwaas_subpolicy(self, context, fwr_id=fwp_ext.fwr_id, fortinet_pid=fwp_ext.fortinet_pid) for fwp in fwps_int: utils.set_fwpolicy(self, context, id=fwp.fortinet_pid, srcaddr=srcaddr['name'], dstaddr=dstaddr['name'], service=service['name'], action=action, comments=name, **profiles) for fwp in fwps_int: vdom = fwp.fortinet_policy.vdom if service['name'] == 'ALL': #delete all old services if exist utils.delete_fwservice(self, context, vdom=vdom, name=id) if srcaddr['name'] == 'all': name = constants.PREFIX['source_ip_address'] + id utils.delete_fwaddress(self, context, vdom=vdom, name=name) if dstaddr['name'] == 'all': name = constants.PREFIX['destination_ip_address'] + id utils.delete_fwaddress(self, context, vdom=vdom, name=name) def _delete_firewall_rule(self, context, fwp_tenant_id, **fwr): """ :param obj: :param context: :param kwargs: dictionary, firewall rule firewall_rule: {'source_ip_address': u'192.176.10.0/24',... } :return: """ # need to consider shared firewall rules LOG.debug("# _delete_firewall_rule() called") namespace = fortinet_db.Fortinet_ML2_Namespace.query_one( context, tenant_id=fwp_tenant_id) if not namespace: return None fwp_assed = fortinet_db.Fortinet_FW_Rule_Association.query_all( context, fwr_id=fwr['id']) for fwp in fwp_assed: fortinet_db.delete_record( context, fortinet_db.Fortinet_FW_Rule_Association, fwr_id=fwp.fwr_id, fortinet_pid=fwp.fortinet_pid) utils.delete_fwpolicy( self, context, id=fwp.fortinet_pid, vdom=namespace.vdom) if fwr.get('source_ip_address', None): srcaddr = constants.PREFIX['source_ip_address'] + fwr['id'] utils.delete_fwaddress( self, context, vdom=namespace.vdom, name=srcaddr) if fwr.get('destination_ip_address', None): dstaddr = constants.PREFIX['destination_ip_address'] + fwr['id'] utils.delete_fwaddress( self, context, vdom=namespace.vdom, name=dstaddr) self._delete_fwr_service(context, namespace.vdom, **fwr) def _update_firewall_rule_dict(self, context, id, firewall_rule): fwr = firewall_rule.get('firewall_rule', firewall_rule) fwr_db = self._get_firewall_rule(context, id) if fwr_db.firewall_policy_id: fwp_db = self._get_firewall_policy(context, fwr_db.firewall_policy_id) if 'shared' in fwr and not fwr['shared']: if fwr_db['tenant_id'] != fwp_db['tenant_id']: raise fw_ext.FirewallRuleInUse(firewall_rule_id=id) fwr.setdefault('source_port', self._get_port_range_from_min_max_ports( fwr_db['source_port_range_min'], fwr_db['source_port_range_max'])) fwr.setdefault('destination_port', self._get_port_range_from_min_max_ports( fwr_db['destination_port_range_min'], fwr_db['destination_port_range_max'])) keys = ['name', 'protocol', 'action', 'shared', 'ip_version', 'source_ip_address', 'destination_ip_address', 'enabled'] for key in keys: fwr.setdefault(key, fwr_db[key]) return fwr def _make_default_firewall_rule_dict(self, tenant_id): if tenant_id and self._fortigate["enable_default_fwrule"]: return {'id': tenant_id, 'tenant_id': tenant_id, 'name': '_default_rule_deny_all', 'description': '_default_rule_deny_all', 'protocol': None, 'source_ip_address': None, 'source_port': None, 'destination_ip_address': None, 'destination_port': None, 'action': 'deny'} else: return {} def _add_fwr_ip_address(self, context, vdom, place='source_ip_address', **fwr): fwaddress = self._make_fortinet_fwaddress_dict( place=place, vdom=vdom, **fwr) utils.add_fwaddress(self, context, **fwaddress) return fwaddress def _make_fortinet_fwaddress_dict(self, place='source_ip_address', vdom=None, **fwr): fwaddress = {} if place not in ['source_ip_address', 'destination_ip_address']: raise ValueError("_add_fwr_ip_address() value error of where") if vdom: fwaddress.setdefault('vdom', vdom) if fwr.get(place, None): fwaddress.setdefault('name', constants.PREFIX[place] + fwr['id']) fwaddress.setdefault('subnet', utils.get_subnet(fwr[place])) else: fwaddress.setdefault('name', 'all') return fwaddress def _add_fwr_service(self, context, vdom, **fwr): kw_service = self._make_fortinet_fwservice_dict(vdom=vdom, **fwr) utils.add_fwservice(self, context, **kw_service) return kw_service def _make_fortinet_fwservice_dict(self, vdom=None, **fwr): LOG.debug("_make_fortinet_fwservice_dict() fwr=%(fwr)s", {'fwr': fwr}) kw_service = {} if vdom: kw_service.setdefault('vdom', vdom) if fwr['protocol'] in ['any', None] and \ not fwr['destination_port'] and not fwr['source_port']: # SamSu: The firewall service 'all' was already added by default kw_service.setdefault('name', 'ALL') else: portrange = ':'.join([ utils.port_range(fwr['destination_port']), utils.port_range(fwr['source_port'])]) if fwr['protocol'] in ['tcp']: kw_service.setdefault('tcp_portrange', portrange) elif fwr['protocol'] in ['udp']: kw_service.setdefault('udp_portrange', portrange) elif fwr['protocol'] in ['icmp']: kw_service.setdefault('protocol', 'ICMP') kw_service.setdefault('name', fwr['id']) kw_service.setdefault('comment', fwr.get('name', '')) return kw_service def _delete_fwr_service(self, context, vdom, **fwr): LOG.debug("# _delete_fwr_service() fwr=%(fwr)s", {'fwr': fwr}) if fwr['protocol'] in ['any', None] and \ not fwr['destination_port'] and not fwr['source_port']: return None else: return utils.delete_fwservice( self, context, vdom=vdom, name=fwr['id']) def _get_fwr_action(self, **fwr): if fwr.get('action', None) in ['allow']: action = 'accept' else: action = 'deny' return action def _get_fwp_profiles(self, action): profiles = { 'av_profile': None, 'webfilter_profile': None, 'ips_sensor': None, 'application_list': None, 'ssl_ssh_profile': None } if action in ['allow', 'accept']: for key in profiles: profiles[key] = self._fortigate[key] return profiles def _get_fip_before_id(self, context, fwr_id): fwp_assed = fortinet_db.Fortinet_FW_Rule_Association.query_one( context, type=constants.TYPE_EXT, fwr_id=fwr_id) if not fwp_assed: fwp_assed = fortinet_db.Fortinet_FW_Rule_Association.query_one( context, type=constants.TYPE_INT, fwr_id=fwr_id) fwp = fortinet_db.query_record(context, fortinet_db.Fortinet_Firewall_Policy, id=fwp_assed.fortinet_pid) return getattr(fwp, 'edit_id', None) def _get_fips_in_fw(self, context, tenant_id, fw_net): fw_fips = [] if not fw_net: return fw_fips namespace = fortinet_db.Fortinet_ML2_Namespace.query_one( context, tenant_id=tenant_id) if not namespace: return fw_fips db_fips = fortinet_db.query_records( context, l3_db.FloatingIP, tenant_id=tenant_id, status=n_consts.FLOATINGIP_STATUS_ACTIVE) for fip in db_fips: if getattr(fip, 'fixed_ip_address', None) and \ IPAddress(fip.fixed_ip_address) in IPNetwork(fw_net): fw_fips.append((fip.id, fip.floating_ip_address)) return fw_fips
# Copyright 2021 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import fiber class TestFiber(unittest.TestCase): def test_fib(self): @fiber.fiber(locals=locals()) def fib(n): if n == 0: return 0 if n == 1: return 1 return fib(n-1) + fib(n=n-2) self.maxDiff = None want = """ def __fiberfn_fib(frame): if frame['__pc'] == 0: if frame['n'] == 0: if frame['__pc'] == 0: frame['__pc'] = 1 return RetOp(value=0) if frame['n'] == 1: if frame['__pc'] == 0: frame['__pc'] = 1 return RetOp(value=1) frame['__pc'] = 1 return CallOp(func='fib', args=[frame['n'] - 1], kwargs={}, ret_variable='__tmp0__') if frame['__pc'] == 1: frame['__pc'] = 2 return CallOp(func='fib', args=[], kwargs={'n': frame['n'] - 2}, ret_variable='__tmp1__') if frame['__pc'] == 2: frame['__pc'] = 3 return RetOp(value=frame['__tmp0__'] + frame['__tmp1__']) """.strip() self.assertEqual(want, fib.__fibercode__) def test_sum(self): @fiber.fiber(locals=locals()) def sum(lst, acc): if not lst: return acc return sum(lst[1:], acc + lst[0]) want = """ def __fiberfn_sum(frame): if frame['__pc'] == 0: if not frame['lst']: if frame['__pc'] == 0: frame['__pc'] = 1 return RetOp(value=frame['acc']) frame['__pc'] = 1 return TailCallOp(func='sum', args=[frame['lst'][1:], frame['acc'] + frame['lst'][0]], kwargs={}) """.strip() self.assertEqual(want, sum.__fibercode__) if __name__ == '__main__': unittest.main()
import unittest from matrox import Matrix, DimensionError, fill_matrix from matrox.linalg import * class TestMatrixFactorizations(unittest.TestCase): def test_permute_matrix(self): matrix = Matrix([[1, 1, 1], [1, 1, 1], [1, 1, 1]]) permute = permute_matrix(matrix) self.assertEqual(repr(permute), "Matrix([['1', '0', '0'], ['0', '1', '0'], ['0', '0', '1']])") matrix = Matrix([[0, 1, 1], [1, 2, 1], [2, 7, 9]]) permute = permute_matrix(matrix) self.assertEqual(repr(permute), "Matrix([['0', '1', '0'], ['1', '0', '0'], ['0', '0', '1']])") matrix = fill_matrix(2, 3, 1) with self.assertRaises(DimensionError) as c: permute = permute_matrix(matrix) self.assertTrue("Matrix must be a square matrix." in str(c.exception)) def test_upper_triangular(self): matrix = Matrix([[2, 1], [6, 8]], fraction=True) upper, history, inverse_history = \ upper_triangular(matrix, history=True, inverse_history=True) self.assertEqual(repr(upper), "Matrix([['2', '1'], ['0', '5']])") self.assertEqual(repr(history), "[Matrix([['1', '0'], ['-3', '1']])]") self.assertEqual(repr(inverse_history), "[Matrix([['1', '0'], ['3', '1']])]") matrix = fill_matrix(2, 3, 1) with self.assertRaises(DimensionError) as c: upper = upper_triangular(matrix) self.assertTrue("Matrix must be a square matrix." in str(c.exception)) def test_lower_triangular(self): matrix = Matrix([[2, 1], [6, 8]], fraction=True) lower, history, inverse_history = \ lower_triangular(matrix, history=True, inverse_history=True) self.assertEqual(repr(lower), "Matrix([['5/4', '0'], ['6', '8']])") self.assertEqual(repr(history), "[Matrix([['1', '-1/8'], ['0', '1']])]") self.assertEqual(repr(inverse_history), "[Matrix([['1', '1/8'], ['0', '1']])]") matrix = fill_matrix(2, 3, 1) with self.assertRaises(DimensionError) as c: lower = lower_triangular(matrix) self.assertTrue("Matrix must be a square matrix." in str(c.exception)) def test_lu_factorization(self): matrix = Matrix([[2, 1], [6, 8]], fraction=True) lower, upper = lu_factorization(matrix) self.assertEqual(repr(lower), "Matrix([['1', '0'], ['3', '1']])") self.assertEqual(repr(upper), "Matrix([['2', '1'], ['0', '5']])") self.assertEqual(repr(lower * upper), repr(matrix)) matrix = fill_matrix(2, 3, 1) with self.assertRaises(DimensionError) as c: lower, upper = lu_factorization(matrix) self.assertTrue("Matrix must be a square matrix." in str(c.exception)) def test_ldu_factorization(self): matrix = Matrix([[1, 5, 4], [3, 6, 4], [8, 2, 3]], fraction=True) lower, diag, upper = ldu_factorization(matrix) self.assertEqual(repr(lower), "Matrix([['1', '0', '0'], ['3', '1', '0'], ['8', '38/9', '1']])") self.assertEqual(repr(diag), "Matrix([['1', '0', '0'], ['0', '-9', '0'], ['0', '0', '43/9']])") self.assertEqual(repr(upper), "Matrix([['1', '5', '4'], ['0', '1', '8/9'], ['0', '0', '1']])") self.assertEqual(repr(lower * diag * upper), repr(matrix)) matrix = fill_matrix(2, 3, 1) with self.assertRaises(DimensionError) as c: lower, diag, upper = ldu_factorization(matrix) self.assertTrue("Matrix must be a square matrix." in str(c.exception)) def test_plu_factorization(self): matrix = Matrix([[1, 5, 4], [3, 6, 4], [8, 2, 3]], fraction=True) permuted, lower, upper = plu_factorization(matrix) self.assertEqual(repr(permuted), "Matrix([['1', '0', '0'], ['0', '1', '0'], ['0', '0', '1']])") self.assertEqual(repr(lower), "Matrix([['1', '0', '0'], ['3', '1', '0'], ['8', '38/9', '1']])") self.assertEqual(repr(upper), "Matrix([['1', '5', '4'], ['0', '-9', '-8'], ['0', '0', '43/9']])") self.assertEqual(repr(lower * upper), repr(permuted * matrix)) matrix = Matrix([[0, 5, 4], [3, 0, 4], [8, 2, 3]], fraction=True) permuted, lower, upper = plu_factorization(matrix) self.assertEqual(repr(permuted), "Matrix([['0', '1', '0'], ['1', '0', '0'], ['0', '0', '1']])") self.assertEqual(repr(lower), "Matrix([['1', '0', '0'], ['0', '1', '0'], ['8/3', '2/5', '1']])") self.assertEqual(repr(upper), "Matrix([['3', '0', '4'], ['0', '5', '4'], ['0', '0', '-139/15']])") self.assertEqual(repr(lower * upper), repr(permuted * matrix)) matrix = fill_matrix(2, 3, 1) with self.assertRaises(DimensionError) as c: permuted, lower, upper = plu_factorization(matrix) self.assertTrue("Matrix must be a square matrix." in str(c.exception)) def test_ldlt_factorization(self): matrix = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]], fraction=True) lower, diag, lower_t = ldlt_factorization(matrix) self.assertEqual(repr(lower), "None") self.assertEqual(repr(diag), "None") self.assertEqual(repr(lower_t), "None") matrix = Matrix([[1, 2, 3], [2, 1, 4], [3, 4, 1]], fraction=True) lower, diag, lower_t = ldlt_factorization(matrix) self.assertEqual(repr(lower), "Matrix([['1', '0', '0'], ['2', '1', '0'], ['3', '2/3', '1']])") self.assertEqual(repr(diag), "Matrix([['1', '0', '0'], ['0', '-3', '0'], ['0', '0', '-20/3']])") self.assertEqual(repr(lower_t), "Matrix([['1', '2', '3'], ['0', '1', '2/3'], ['0', '0', '1']])") self.assertEqual(repr(lower * diag * lower_t), repr(matrix)) matrix = fill_matrix(2, 3, 1) with self.assertRaises(DimensionError) as c: lower, diag, lower_t = ldlt_factorization(matrix) self.assertTrue("Matrix must be a square matrix." in str(c.exception))
#! /usr/bin/python3 import boto3 from vectorize import vectorize import io import numpy as np from copy import deepcopy import random from queue import Queue from threading import Thread import time s3 = boto3.client('s3') image_paths = Queue() np_arrs = Queue(maxsize=100) unsuccessful = [] with open('images.txt', 'r') as in_f: lines = in_f.readlines() random.shuffle(lines) for line in lines: image_paths.put(line.strip()) def get_data(key): print('Got ' + key) obj = io.BytesIO() s3.download_fileobj('isitanime-data-clean', key, obj) return np.asarray(vectorize(obj, scale_size=512)) / 256 def fetch_thread(): while not image_paths.empty(): im = image_paths.get() try: np_arrs.put((get_data(im), im)) except Exception: unsuccessful.append(im) def store_thread(): fcount = 0 while (not image_paths.empty()) or (not np_arrs.empty()): if np_arrs.qsize() < 100: time.sleep(3) if (image_paths.empty()): pass else: print('Queued: ' + str(np_arrs.qsize())) continue arrs = [] names = [] while len(arrs) < 100 and not np_arrs.empty(): arr, name = np_arrs.get() arrs.append(arr) names.append(name) np.savez_compressed('efs/' + str(fcount), *arrs) with open('efs/' + str(fcount) + '.txt', 'w') as out_f: for line in names: out_f.write(line) out_f.write('\n') fcount += 1 for _ in range(10): t = Thread(target=fetch_thread) t.start() t = Thread(target=store_thread) t.start() t.join()
import os import numpy as np import tensorflow as tf from utils import save_images, make_dirs from utils import data_loader class Experiments(object): def __init__(self, config, model): self.config = config self.model = model _, self.testloader = data_loader(config) # directory to save experimental results self.dir = make_dirs(os.path.join(self.config.result_path, self.config.experiment_path)) def image_generation(self): # the number of samples nx = ny = 20 num_samples = nx * ny # sampling z from N(0, 1) z_samples = np.random.normal(0, 1, (num_samples, self.config.latent_dim)) # generate images _, samples = self.model.dec(z_samples) # save images path = make_dirs(os.path.join(self.dir, 'image_generation')) + '/epoch_{}.png'.format(self.model.global_epoch.numpy()) save_images(samples, path)
""" Premium Question """ from bisect import bisect_left from collections import defaultdict import sys __author__ = 'Daniel' class WordDistance: # # @param {string[]} words def __init__(self, words): """ initialize your data structure here. :type words: list[str] """ self.word_dict = defaultdict(list) for i, w in enumerate(words): self.word_dict[w].append(i) def shortest(self, word1, word2): """ :type word1: str :type word2: str :rtype: int """ mini = sys.maxint for i in self.word_dict[word1]: idx = bisect_left(self.word_dict[word2], i) for nei in (-1, 0): if 0 <= idx+nei < len(self.word_dict[word2]): mini = min(mini, abs(i-self.word_dict[word2][idx+nei])) return mini
import tkinter as tk from typing import TYPE_CHECKING, Optional from core.gui.frames.base import DetailsFrame, InfoFrameBase from core.gui.utils import bandwidth_text from core.gui.wrappers import Interface if TYPE_CHECKING: from core.gui.app import Application from core.gui.graph.edges import CanvasEdge from core.gui.graph.node import CanvasNode from core.gui.graph.edges import CanvasWirelessEdge def get_iface(canvas_node: "CanvasNode", net_id: int) -> Optional[Interface]: iface = None for edge in canvas_node.edges: link = edge.link if link.node1_id == net_id: iface = link.iface2 elif link.node2_id == net_id: iface = link.iface1 return iface class EdgeInfoFrame(InfoFrameBase): def __init__( self, master: tk.BaseWidget, app: "Application", edge: "CanvasEdge" ) -> None: super().__init__(master, app) self.edge: "CanvasEdge" = edge def draw(self) -> None: self.columnconfigure(0, weight=1) link = self.edge.link options = link.options src_node = self.app.core.session.nodes[link.node1_id] dst_node = self.app.core.session.nodes[link.node2_id] frame = DetailsFrame(self) frame.grid(sticky=tk.EW) frame.add_detail("Source", src_node.name) iface1 = link.iface1 if iface1: mac = iface1.mac if iface1.mac else "auto" frame.add_detail("MAC", mac) ip4 = f"{iface1.ip4}/{iface1.ip4_mask}" if iface1.ip4 else "" frame.add_detail("IP4", ip4) ip6 = f"{iface1.ip6}/{iface1.ip6_mask}" if iface1.ip6 else "" frame.add_detail("IP6", ip6) frame.add_separator() frame.add_detail("Destination", dst_node.name) iface2 = link.iface2 if iface2: mac = iface2.mac if iface2.mac else "auto" frame.add_detail("MAC", mac) ip4 = f"{iface2.ip4}/{iface2.ip4_mask}" if iface2.ip4 else "" frame.add_detail("IP4", ip4) ip6 = f"{iface2.ip6}/{iface2.ip6_mask}" if iface2.ip6 else "" frame.add_detail("IP6", ip6) if link.options: frame.add_separator() bandwidth = bandwidth_text(options.bandwidth) frame.add_detail("Bandwidth", bandwidth) frame.add_detail("Delay", f"{options.delay} us") frame.add_detail("Jitter", f"\u00B1{options.jitter} us") frame.add_detail("Loss", f"{options.loss}%") frame.add_detail("Duplicate", f"{options.dup}%") class WirelessEdgeInfoFrame(InfoFrameBase): def __init__( self, master: tk.BaseWidget, app: "Application", edge: "CanvasWirelessEdge" ) -> None: super().__init__(master, app) self.edge: "CanvasWirelessEdge" = edge def draw(self) -> None: link = self.edge.link src_canvas_node = self.app.canvas.nodes[self.edge.src] src_node = src_canvas_node.core_node dst_canvas_node = self.app.canvas.nodes[self.edge.dst] dst_node = dst_canvas_node.core_node # find interface for each node connected to network net_id = link.network_id iface1 = get_iface(src_canvas_node, net_id) iface2 = get_iface(dst_canvas_node, net_id) frame = DetailsFrame(self) frame.grid(sticky=tk.EW) frame.add_detail("Source", src_node.name) if iface1: mac = iface1.mac if iface1.mac else "auto" frame.add_detail("MAC", mac) ip4 = f"{iface1.ip4}/{iface1.ip4_mask}" if iface1.ip4 else "" frame.add_detail("IP4", ip4) ip6 = f"{iface1.ip6}/{iface1.ip6_mask}" if iface1.ip6 else "" frame.add_detail("IP6", ip6) frame.add_separator() frame.add_detail("Destination", dst_node.name) if iface2: mac = iface2.mac if iface2.mac else "auto" frame.add_detail("MAC", mac) ip4 = f"{iface2.ip4}/{iface2.ip4_mask}" if iface2.ip4 else "" frame.add_detail("IP4", ip4) ip6 = f"{iface2.ip6}/{iface2.ip6_mask}" if iface2.ip6 else "" frame.add_detail("IP6", ip6)
from abc import ABC, abstractmethod class BaseExplainer(ABC): def __init__(self, model_to_explain, graphs, features, task): self.model_to_explain = model_to_explain self.graphs = graphs self.features = features self.type = task @abstractmethod def prepare(self, args): """Prepars the explanation method for explaining. Can for example be used to train the method""" pass @abstractmethod def explain(self, index): """ Main method for explaining samples :param index: index of node/graph in self.graphs :return: explanation for sample """ pass
# This script contains all of the code necessary for galcv. # We want a function that returns the cosmic variance values for input apparent magnitudes import numpy as np import pandas as pd import os from scipy import integrate from scipy import interpolate # A dictionary of the parameters for which I have the exact interp files fitParams = dict(mag=np.array([22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34]), z=np.array([5., 6., 7., 8., 9., 10., 11., 12., 13., 14., 15.]), zW=np.array([0.1, 0.15, 0.25, 0.5, 0.75, 1., 1.5, 2.])) # This is a tuple of int and float types to check inputs against intOrFloat = (int, np.int8, np.int16, np.int32, np.int64, float, np.float16, np.float32, np.float64) # How many decimal places to round the outputs to roundTo = 4 def getcv(mag, area, z, zW=1., appOrAbs='apparent', CMF_method='nu-scaling', interpWarning=1, goFast='No'): ''' This function returns relative cosmic variance results. This function is a wrapper function for formatting. The actual calculation happens in singlecv() Parameters ------------------------- mag : int, float, list, or numpy.ndarray The magnitude(s) to consider. This must be in rest-UV (1500 - 2800 Angstroms) AB magnitude (default apparent magnitude; see appOrAbs param) area : int or float The area of a survey in arcmin^2 (square survey pattern only) z : int or float The central redshift of the survey zW : int or float The width of the redshift bin the survey is considering. Default is 1. appOrAbs: 'apparent' or 'absolute' Whether the mag input(s) are in apparent magnitudes or in absolute magnitudes CMF_method: 'nu-scaling' or 'PS-scaling' The method used for generating the conditional mass function. See Trapp & Furlanetto (2020) for details. interpWarning: int or float Flag for displaying interpolation warning message. 0 for no message, 1 for short message (Default), 2 for long message Returns ------------------------- A Python list of cosmic variance values of the same length as the mag input ''' # My code uses apparent magnitudes, so it they are given in absolute magnitudes, convert to apparent first if appOrAbs == 'absolute': mag = absToApp(Mabs=mag, z=z) # Check to make sure the keywords have the correct formats if goFast == 'No': checkVars(mag=mag, area=area, z=z, zW=zW, appOrAbs=appOrAbs, CMF_method=CMF_method, interpWarning=interpWarning) # Now, if mag is just an int or float, return an int or float if isinstance(mag, intOrFloat): return singlecv(mag=mag, area=area, z=z, zW=zW, CMF_method=CMF_method, interpWarning=interpWarning, goFast=goFast) else: # else, return a list of the cv values answer = [singlecv(mag=a_mag, area=area, z=z, zW=zW, CMF_method=CMF_method, interpWarning=interpWarning, goFast=goFast) for a_mag in mag] if any([a_answer == np.nan for a_answer in answer]): if goFast == 'No': print('\nSome mag values are too bright to estimate cosmic variance. Those values are returned as np.nan objects.') return answer # If we want other variables able to be passed as an array, we need a nest of # if statements for the ways to properly call singlecv() def singlecv(mag, area, z, zW, CMF_method, interpWarning, goFast): ''' This function returns relative cosmic variance results by reading in interp files of cosmic variance for parameters near those given, and interpolating between them. Parameters ------------------------- mag : int or float The magnitudes to consider. The type of magnitude is determined by the magType argument area : int or float The area of a survey in arcmin^2 z : int or float The central redshift of the survey zW : int or float The width of the redshift bin the survey is considering. Default is 1 interpWarning: bolean Flag for displaying interpolation warning message ''' kwargs_fitMatches = dict(mag=mag, z=z, zW=zW) # For each parameter, check to see if the provided one matches one of the fit files exactly isExact, interpBetween = fitMatches(kwargs_fitMatches, fitParams) # isExact is a bolean that tells us if the parameters ALL have exact fit files for them # if so, this function becomes very simple. if isExact: # Read in the fit files and output the answer thecv = readcv(mag=mag, area=area, z=z, zW=zW, CMF_method=CMF_method) return round(thecv, roundTo) ############## else: # Gotta do some interpolation if interpWarning == 1: print('Parameter combination requires interpolation.') elif interpWarning == 2: print('This code does not provide results for the specific combination of \'z\' and \'zW\' parameters. In this case, we interpolate between nearest valid parameters, which are:') print('mag: ', fitParams['mag']) print('z: ', fitParams['z']) print('zW: ', fitParams['zW']) print('We interpolate with log10(cosmic variance) between parameters, as cosmic variance is close to a powerlaw with these parameters.') print('To shorten this message, set interpWarning = 1. To stop this message, set interpWarning = 0') # interpBetween has all of the combination of parameters we need. # Create empty arrays to hold the mags = np.zeros(2) zs = np.zeros((2, 2)) zWs = np.zeros((2, 2, 2)) zW_epcvs = np.zeros((2, 2, 2)) # Read in all of the fit files adjacent to the desired parameters. # If one or more of the parameters are an exact match for a fit file, read it in twice for i in range(2): i_mag = interpBetween['mag'][i] mags[i] = i_mag for j in range(2): j_z = interpBetween['z'][j] zs[i][j] = j_z for k in range(2): k_zW = interpBetween['zW'][k] zWs[i][j][k] = k_zW zW_epcvs[i][j][k] = readcv(mag=i_mag, area=area, z=j_z, zW=k_zW, CMF_method=CMF_method, verbose=False) if np.any(np.isnan(zW_epcvs)): # If any of the epcv values required are np.nan, can't do the interpolation if goFast == 'No': print('Apparent magnitude {:.2f} is too bright for a cosmic variance interpolation estimate at this area, z, and zW'.format(mag)) return np.nan # Now we interpolate between constant mag and z, but differing zW epcvs z_epcvs = np.zeros((2, 2)) for i in range(2): for j in range(2): j_epcvs = zW_epcvs[i][j] j_zWs = zWs[i][j] z_epcvs[i][j] = interpcv(zW, ixs=j_zWs, iys=j_epcvs) # now interpolate between constant mag but differing values of z mag_epcvs = np.zeros(2) for i in range(2): i_epcvs = z_epcvs[i] i_zs = zs[i] mag_epcvs[i] = interpcv(z, ixs=i_zs, iys=i_epcvs) # Finally, interpolate between magnitudes final_epcvs = interpcv(mag, ixs=mags, iys=mag_epcvs) return round(final_epcvs, roundTo) def fitMatches(kwargs, fitParams): ''' This function takes two dictionaries, one is the parameters that are being called, the other is the parameters for which I have exact fit files. If I have exact fit files for all parameters, then isExact is returned True, and interpBetween is returned None. Otherwise, isExact is returned False and interpBetween is a dict of the parameters of fit files that I should use to interp between Parameters ------------------------- kwargs : dict A dictionary of all the parameters passed to singlecv fitParams : dict A dictionary of all the parameters for which I have exact fit files ''' mag = kwargs['mag'] mags = fitParams['mag'] z = kwargs['z'] zs = fitParams['z'] zW = kwargs['zW'] zWs = fitParams['zW'] # If all of the parameters have exact fit files, return True and None if (mag in mags) and (z in zs) and (zW in zWs): return (True, None) else: # Check to see if mag is one of the ones I have an fit file for. # If so, return itself twice for the singlecv function to use if mag in mags: interpBetween = dict(mag=[mag, mag]) else: # Otherwise, append the closest values on either side maglo = mags[mags < mag].max() maghi = mags[mags > mag].min() interpBetween = dict(mag=[maglo, maghi]) # Now the same for the z parameters if z in zs: interpBetween['z'] = [z, z] else: zlo = zs[zs < z].max() zhi = zs[zs > z].min() interpBetween['z'] = [zlo, zhi] # Finally the zW param if zW in zWs: interpBetween['zW'] = [zW, zW] else: zWlo = zWs[zWs < zW].max() zWhi = zWs[zWs > zW].min() interpBetween['zW'] = [zWlo, zWhi] return (False, interpBetween) def readcv(mag, area, z, zW, CMF_method, verbose=True): ''' This function reads in the cv fits and returns the cv value, or np.nan if there is no estimate Parameters ------------------------- mag : int or float The apparent magnitude to consider area : int or float The survey area in arcmin^2 z : int or float The redshift zW : int or float The redshift bin width ''' if mag not in fitParams['mag']: raise Exception('Error, readcv should only be recieving magnitudes I know are in the fit files.') # Which CMF method file to read in if CMF_method == 'nu-scaling': CMF_string = 'stdScale' elif CMF_method == 'PS-scaling': CMF_string = 'PSfrac' # Read in the file of fits THIS_FOLDER = os.path.dirname(os.path.abspath(__file__)) my_file = os.path.join(THIS_FOLDER, 'varepsilonCV_' + CMF_string + '_z{:.0f}_zW{:.2f}.pkl'.format(z, zW)) dffit = pd.read_pickle(my_file) mapps = dffit['mapp'].values Psis = dffit['Psi'].values gammas = dffit['gamma'].values bs = dffit['b'].values minAs = dffit['minA'].values maxAs = dffit['maxA'].values if mag not in mapps: raise Exception('Error, the mag supplied to readcv is not in the mapps array from the fit file, but it should be.') # What index is the mag in the mapps array? whichIndex = np.where(mapps == mag)[0][0] # Check to see if there is an estimate at this survey area, # and also make sure there is an estimate at this magnitude at all if (area >= minAs[whichIndex]) and ~np.isnan(minAs[whichIndex]): return 10**log10Eps(area, Psis[whichIndex], gammas[whichIndex], bs[whichIndex]) else: if verbose: print('apparent magnitude {:.2f} is too bright to calculate cosmic variance.'.format(mag)) i = 1 while (mag + i) < max(mapps): # Finding the brightest mag that has an estimate at this area checkIdx = np.where(mapps == (mag + i))[0][0] if (area >= minAs[checkIdx]) and minAs[checkIdx] != -9999: print('minimum magnitude for this area, z, and zW: mag = ', (mag + i)) break i += 1 print('Returning np.nan object.') return np.nan def interpcv(x, ixs, iys): ''' This function takes 2 x values (ixs) and 2 y values (iys), interpolates a line between them (in log10(y)), and then evaluates x on that line Parameters ------------------------- x : int or float The value to evaluate at ixs : int or float The x values for the interpolation iys : int or float The epcv values ''' if ixs[0] > ixs[1]: raise Exception('The two ixs put into interpcv should be sorted low to high') if x < ixs[0] or x > ixs[1]: raise Exception('The x value given to interpcv should be between the two ixs values') iys = np.log10(iys) rise = iys[1] - iys[0] run = ixs[1] - ixs[0] # If the same x and y values are given, just return one of the y values. if (rise == 0) or (run == 0): return 10**iys[1] else: slope = rise / run ans = iys[0] + slope * (x - ixs[0]) return 10**ans def inRange(value, theRange): ''' This function checks if the value is within the range theRange Parameters ------------------------- value : int or float The numerical value theRange: list The lower and upper bounds of the range ''' if not isinstance(value, intOrFloat): raise Exception('The argument of inRange() must be a single int or float') if type(theRange) != list: raise Exception('theRange must be a list with two values') elif len(theRange) != 2: raise Exception('theRange must be a list with two values') if (value >= theRange[0]) and (value <= theRange[1]): return True else: return False def checkVars(mag, area, z, zW, appOrAbs, CMF_method, interpWarning): # Check if the variables have the correct dtype and are in the correct ranges. If not, raise an exception. magRange = [min(fitParams['mag']), max(fitParams['mag'])] areaRange = [1, 3.16e4] zRange = [min(fitParams['z']), max(fitParams['z'])] zWRange = [min(fitParams['zW']), max(fitParams['zW'])] # Check the mag variable if type(mag) in (list, np.ndarray): if any([not isinstance(a_mag, intOrFloat) for a_mag in mag]): raise Exception('All values in the list/array \'mag\' must be a int or float') elif any([not inRange(a_mag, magRange) for a_mag in mag]): raise Exception('at least one mag value is outside of apparent mag range: {}'.format(magRange)) elif isinstance(mag, intOrFloat): if not inRange(mag, magRange): raise Exception('mag value is outside of apparent mag range: {}'.format(magRange)) else: raise Exception('\'mag\' must be a float, int, list, or numpy array') # Now the area variable if isinstance(area, intOrFloat): if not inRange(area, areaRange): raise Exception('area value outside of area range: {}'.format(areaRange)) else: raise Exception('area must be a float or an int') # Now the z variable if isinstance(z, intOrFloat): if not inRange(z, zRange): raise Exception('z value outside of z range: {}'.format(zRange)) else: raise Exception('z must be a float or an int') # Now the zW variable if isinstance(zW, intOrFloat): if not inRange(zW, zWRange): raise Exception('zW value outside of zW range: {}'.format(zWRange)) else: raise Exception('zW must be a float or an int') # Now the appOrAbs variable if type(appOrAbs) != str: raise Exception('appOrAbs must be \'apparent\' or \'absolute\'') # Now the CMF_method variable if type(CMF_method) != str: raise Exception('CMF_method must be \'nu-scaling\' or \'PS-scaling\'') # Now for interpWarning if isinstance(interpWarning, intOrFloat): if interpWarning not in [0, 1, 2]: raise Exception('interpWarning be equal to 0, 1, or 2') else: raise Exception('interpWarning must be int or float') def log10Eps(area, Psi, gamma, b): ''' This function returns log10(epsilon_cv) given the fit parameters Psi, gamma, and b Parameters ------------------------- area : int or float The area of the survey Psi, gamma, b: int or float The parameters of the varepsiloncv fit ''' return Psi * area**gamma + b def lincv(mass, area, z, zW=1, message='yes'): ''' Warning! Use with caution and only if outside the bounds of 'galcv.getcv()'. This function is designed to be used at larger areas and larger masses (brighter galaxies) than galcv.getcv(). For additional questions see the README on GitHub. This function returns the 1-sigma linear approximation of cosmic variance for haloes of the chosen mass (in solar masses) in the chosen volume at the chosen redshift. Also, this method assumes the survey volume is a sphere. If your survey volume is actually very elongated in some direction, this method will overestimate cosmic variance. Parameters ------------------------- mass : int or float or array-like Mass of a halo (in units of solar mass) area : int or float Survey area in square arcminutes z : int or float Central redshift (range: 4 - 15) zW : int or float Redshift width (default = 1; range: 0.1 - 2) message : 'yes' or 'no' Whether or not to print the warning message Returns ------------------------- A NumPy list of cosmic variance values of the same length as the mass input ''' if message == 'yes': print('Warning! Use with caution and only if outside the bounds of \'galcv.getcv()\'. This function is designed to be used at larger areas and larger masses (brighter galaxies) than galcv.getcv(). For additional questions see the README on GitHub. This function returns the 1-sigma linear approximation of cosmic variance for haloes of the chosen mass (in solar masses) in the chosen volume at the chosen redshift. Also, this method assumes the survey volume is a sphere. If your survey volume is actually very elongated in some direction, this method will overestimate cosmic variance.') tckS = np.load(os.path.dirname(os.path.abspath(__file__)) + '/sigma0fM_interp.npy', allow_pickle=True) # sigma associated with the halo mass sigM = 10**interpolate.splev(np.log10(mass), tckS) * growthFac(z=z) alpha = -1.36 beta = -1.14 # Calculating the Trac linear bias bTR = 1 bTR += (alpha / delCrit0(z=z)) * (sigM / 2.54)**alpha / (1 + (sigM / 2.54)**alpha) bTR -= (2 * beta) / (sigM**2 * delCrit0(z=z)) CRITDENMSOLMPC = 2.7755e11 # Calculating the sigma associated with the survey area s_sr = arcmin2ToSr(arcmin2=area) s_Vol = volCM(z1=z - 0.5 * zW, z2=z + 0.5 * zW, Omega=s_sr) s_RegMass = s_Vol * CRITDENMSOLMPC * om0hh sigM_Reg = 10**interpolate.splev(np.log10(s_RegMass), tckS) * growthFac(z=z) # The cosmic variance is the survey-wide 1-sigma fluctuation times the bias factor if z < 4 or z > 15: print('\n\n\nAnother Warning! You have chosen a redshift outside the recommended range of 4 - 15. I\'ll still output an answer but be wary.') if area < 3e4: print('\n\n\nAnother Warning! This area is covered in getcv(); you may be able to use that instead.') if zW/z > 0.25: print('\n\n\nAnother Warning! The redshift bin width is getting large compared to the redshift.') if zW > 2: print('\n\n\nAnother Warning! The redshift bin width is getting large. Recommend to keep it below 2') if np.any(mass > 1e14): print('\n\n\nAnother Warning! There is a very massive halo here! Are you sure that is what you wanted?') if np.any(mass < 4e8): print('\n\n\nAnother Warning! There is a very small-mass halo here... Are you sure that is what you wanted?') return bTR * sigM_Reg ###Now to define various cosmology equations for use in the main methods def absToApp(Mabs='ER', z='ER'): ''' This function converts absolute magnitude into apparent Parameters ------------------------- Mabs : int or float or array-like absolute magnitudes z : int or float redshift ''' DL_parsec = lum_dist(z=z) # Convert to parsecs DL_parsec = DL_parsec * 1.e6 mapp = Mabs mapp = mapp + 5.0 * np.log10(DL_parsec / 10) mapp = mapp - 2.5 * np.log10(1.0 + z) return mapp def lum_dist(z='ER', **kwargs): ''' This function returns the luminosity distance to some redshift Parameters ------------------------- z : int or float redshift ''' ans = comv_dist(z=z) * (1.0 + z) return ans HPARAM = 0.678 # hubble constant today/100 OMEGA0 = 0.308 # matter fraction today OMEGANU = 0.0 # radiation fraction today LAMBDA0 = 0.692 # dark energy fraction today SPEEDOFLIGHTMPCPERSEC = 9.71561e-15 TCMB = 2.726 # CMB temp today thetaCMB = TCMB / 2.7 om0hh = OMEGA0 * HPARAM * HPARAM zEquality = 2.50e4 * om0hh * pow(thetaCMB, -4.0) - 1.0 def comv_dist(z='ER', **kwargs): ''' This function returns the comoving distance to some redshift Parameters ------------------------- z : int or float redshift ''' def wrapper_comv_dist(x): # What is the hubble constant today in 1/s Hnot = 100.0 * HPARAM * 3.24078e-20 Hofz = Hnot * np.sqrt(OMEGA0 * (1. + x)**3. + OMEGANU * (1. + x)**4. + LAMBDA0) ansWR = SPEEDOFLIGHTMPCPERSEC / Hofz return ansWR ans, abserr = integrate.quad(wrapper_comv_dist, 0.0, z) if abs(abserr / ans) > 1e-4: print('Warning! Comoving distance calculation err is high') print('err/value = ' + str(abs(abserr / ans))) return ans def growthFac(z): omZ = omegaZ(z=z) lamZ = lambdaZ(z=z) D = ((1.0 + zEquality) / (1.0 + z) * 5.0 * omZ / 2.0 * pow(pow(omZ, 4.0 / 7.0) - lamZ + (1.0 + omZ / 2.0) * (1.0 + lamZ / 70.0), -1.0)) D = D / ((1.0 + zEquality) * 5.0 / 2.0 * OMEGA0 * pow(pow(OMEGA0, 4.0 / 7.0) - LAMBDA0 + (1.0 + OMEGA0 / 2.0) * (1.0 + LAMBDA0 / 70.0), -1.0)) return D def omegaZ(z): z = z + 1. temp = OMEGA0 * z**3.0 temp = temp / (temp + LAMBDA0 + (1. - OMEGA0 - LAMBDA0) * z**2) return temp def lambdaZ(z): z = z + 1. temp = LAMBDA0 temp = temp / (temp + OMEGA0 * z**3 + ((1. - OMEGA0 - LAMBDA0) * z**2)) return temp def delCrit0(z): t1 = 0.15 * (12 * np.pi)**(2. / 3.) omZ = 0 + omegaZ(z=z) if abs(omZ - 1) < 1.0e-5: return t1 elif abs(LAMBDA0) < 1.0e-5: t1 = t1 * omZ**0.0185 return t1 else: t1 = t1 * omZ**0.0055 return t1 def arcmin2ToSr(arcmin2): steradians = arcmin2 * (1. / (60. * 180. / np.pi))**2. return steradians def volCM(z1='ER', z2='ER', Omega='ER'): if z1 == 0: print('Warning 8623478: You can\'t have z1=0. Pick some small value instead if you must.') # First, interpolate the comoving radius between the redshift bounds the_dz = 0.1 the_zs = np.arange(z1, z2 + 2 * the_dz, the_dz) the_rcoms = np.zeros(len(the_zs)) for i in range(len(the_zs)): the_rcoms[i] = comv_dist(the_zs[i]) tckRCOM = interpolate.splrep(the_zs, the_rcoms, k=1, s=0) def wrapper_volCM(x): Hnot = 100.0 * HPARAM * 3.24078e-20 Hofz = Hnot * np.sqrt(OMEGA0 * (1. + x)**3. + OMEGANU * (1. + x)**4. + LAMBDA0) c_over_Hofz = SPEEDOFLIGHTMPCPERSEC / Hofz ansWR = c_over_Hofz ansWR = ansWR * interpolate.splev(x, tckRCOM)**2 return ansWR ans, abserr = integrate.quad(wrapper_volCM, z1, z2, limit=100) if abs(abserr / ans) > 1e-4: print('Warning! Volum (comoving) calculation err is high') print('err/value = ' + str(abs(abserr / ans))) return ans * Omega
#self-hosting guide: https://gist.github.com/emxsys/a507f3cad928e66f6410e7ac28e2990f #updated to use scratchcloud from scratchcloud import CloudClient, CloudChange import scEncoder import os, time, json from mcstatus import JavaServer from dotenv import load_dotenv from random import randint #get .env passcodes load_dotenv() username = os.environ['USERNAME'] password = os.environ['PASSWORD'] client = CloudClient(username=username, project_id='690926913') encoder = scEncoder.Encoder() chars = scEncoder.ALL_CHARS def lookup(server_ip): try: server = JavaServer(server_ip) status = server.status() #query = server.query() modt = status.description print(modt) description = ''.join([i for i in modt if i in chars]) print(description) raw = status.raw rawjson = json.dumps(raw) rawdata = json.loads(str(rawjson)) players = [] for name in rawdata['players']['sample']: print(name['name']) players.append(name['name']) print(players) players1 = players[0:6] playersample=' '.join([str(item) for item in players1]) print(playersample) return randint(0, 10000), server_ip, "{0}/{1}".format(status.players.online, status.players.max), status.version.name, status.latency, description, playersample except: try: server = JavaServer(server_ip) status = server.status() return randint(0, 10000), server_ip, "{0}/{1}".format(status.players.online, status.players.max), status.version.name, status.latency except: return "Error" @client.event async def on_connect(): print('Project connected.') @client.event async def on_disconnect(): print('Project disconnected!') @client.cloud_event('REQUEST') async def on_request(var: CloudChange): print(f'The {var.name} variable was changed to {var.value}!') server_ip = encoder.decode(var.value) response = lookup(server_ip) if response == "Error": await client.set_cloud('RESPONSE', '400') print("Error response sent") await client.set_cloud('REQUEST', '400') else: print(response) #response object needs to be sent in two pieces to avoid scratch cloud character limit print(encoder.encode_list(list(response))) await client.set_cloud('RESPONSE', encoder.encode_list(list(response[0:5]))) await client.set_cloud('modt', encoder.encode(response[5])) await client.set_cloud('playersample', encoder.encode(response[6])) await client.set_cloud('REQUEST', '200') client.run(password)
import re from openstackinabox.services.cinder.v1 import base from openstackinabox.models.cinder import model from openstackinabox.services.cinder.v1 import volumes class CinderV1Service(base.CinderV1ServiceBase): def __init__(self, keystone_service): super(CinderV1Service, self).__init__(keystone_service, 'cinder/v1') self.log_info('initializing cinder v1.0 services...') self.model = model.CinderModel(keystone_service.model) self.__subservices = [ { 'path': re.compile('^/volumes'), 'service': volumes.CinderV1Volumes( self.model, keystone_service ) } ] for subservice in self.__subservices: self.register_subservice( subservice['path'], subservice['service'] ) self.log_info('initialized')
from enum import Enum, auto """ Enum of Task status Represents all possible statuses of task """ class TaskStatus(Enum): COMPLETED = auto() UNCOMPLETED = auto() PLANNED = auto() RUNNING = auto() FINISHED = auto() def __json__(self): """ JSON serialization for TaskStatus :return: Task status name """ return self.name for_json = __json__ # supported by simplejson
import numpy as np import random from segmentation.utils import visualize import importlib importlib.reload(visualize) def test_visualize_z_scores(): # Create random Z score z = np.random.uniform(low=-5, high=5, size=(26, 26)) # Assign random phenotype titles pheno_titles = [chr(i) for i in range(ord('a'), ord('z') + 1)] plot = visualize.visualize_z_scores(z, pheno_titles) def test_visualize_cells(): rand_type = [] ids = [] for x in range(0,1000): rand_type.append(chr(random.randint(0,25) + 97)) ids.append(random.randint(1,5)) print(rand_type, ids) rand_dict = {"PatientID": ids, "cell_type": rand_type} df = pd.DataFrame.from_dict(rand_dict) print(df) visualize_cell_distribution_in_all_patients(df, "cell_type") visualize_distribution_of_cell_count(df, "PatientID", "cell_type") visualize_proportion_of_cell_count(df, "PatientID", "cell_type")
from django.contrib.auth.mixins import LoginRequiredMixin from django.views.generic import DetailView from django.views.generic.list import ListView from django.views.generic.edit import CreateView, DeleteView, UpdateView, \ FormMixin, FormView from django.urls import reverse_lazy from .models import Machine, Device, Service from .forms import DeviceSearchForm, MachineSetupForm, ServiceForm import time class MachineIndex(LoginRequiredMixin, ListView): """ host list """ template_name = 'machines/index.html' context_object_name = 'machines' def get_queryset(self): return Machine.objects.prefetch_related('location').order_by('pk') class MachineDetail(DetailView): """ host details """ model = Machine template_name = 'machines/detail.html' queryset = Machine.objects.prefetch_related('device').all() class MachineCreate(CreateView): """ create a host """ model = Machine fields = ['name', 'location'] class MachineUpdate(UpdateView): """ edit machine """ model = Machine fields = '__all__' class MachineDelete(DeleteView): """ remove a host """ model = Machine success_url = reverse_lazy('machines:index') class ServiceIndexView(LoginRequiredMixin, ListView): """ service list """ template_name = 'machines/service_index.html' context_object_name = 'services' paginate_by = 25 def get_queryset(self): query = Service.objects.prefetch_related('machine', 'device')\ .all() return query.order_by('-date') class ServiceCreate(LoginRequiredMixin, CreateView): """ service add """ model = Service fields = ['machine', 'date', 'description', 'device'] def get_initial(self, **kwargs): return {'machine': self.request.GET.get("machine_id", None), 'date': time.strftime('%Y-%m-%d')} class ServiceUpdate(LoginRequiredMixin, UpdateView): """ service update """ model = Service form_class = ServiceForm class ServiceDelete(LoginRequiredMixin, DeleteView): """ service delete """ model = Service def get_success_url(self): machine = self.object.machine return reverse_lazy('machines:detail', kwargs={'pk': machine.pk}) class DeviceIndexView(LoginRequiredMixin, FormMixin, ListView): """ component list """ template_name = 'machines/device_index.html' form_class = DeviceSearchForm context_object_name = 'device' model = Device paginate_by = 25 def get_queryset(self): query = Device.objects.prefetch_related('type', 'location').all() if self.device_type: query = query.filter(type=self.device_type) if self.location: query = query.filter(location=self.location) return query def get_initial(self): initials = {} if self.device_type: initials['device_type'] = self.device_type if self.location: initials['location'] = self.location return initials def dispatch(self, request, *args, **kwargs): self.device_type = request.GET.get('device_type', None) self.location = request.GET.get('location', None) return super().dispatch(request, *args, **kwargs) class DeviceDetailView(LoginRequiredMixin, DetailView): """ component detail """ model = Device template_name = 'machines/device_detail.html' class DeviceCreate(LoginRequiredMixin, CreateView): """ component add """ model = Device fields = ['type', 'location', 'date', 'name', 'price', 'company', 'invoice', 'serial', 'machine', 'invoice_pdf'] def get_initial(self, **kwargs): return {'date': time.strftime('%Y-%m-%d')} class DeviceUpdate(LoginRequiredMixin, UpdateView): """ component update """ model = Device fields = ['type', 'location', 'date', 'name', 'price', 'company', 'invoice', 'serial', 'machine', 'invoice_pdf'] class DeviceDelete(LoginRequiredMixin, DeleteView): """ component delete """ model = Device success_url = reverse_lazy('machines:device_index') class MachineSetupUpload(FormView): """ upload ansile setup json """ form_class = MachineSetupForm success_url = reverse_lazy('machines:index') template_name = 'machines/setup_upload.html' def post(self, request, *args, **kwargs): form_class = self.get_form_class() form = self.get_form(form_class) files = request.FILES.getlist('file_field') if form.is_valid(): for f in files: import json str = f.file.read().decode() j = json.loads(str) if 'failed' in j: continue fqdn = j['ansible_facts']['ansible_fqdn'] try: obj = Machine.objects.get(FQDN=fqdn) except Machine.DoesNotExist: return self.form_invalid(form) obj.date = j['ansible_facts']['ansible_date_time']['date'] obj.form = j['ansible_facts']['ansible_form_factor'] obj.bios = j['ansible_facts']['ansible_bios_date'] obj.prod = j['ansible_facts']['ansible_product_name'] obj.vendor = j['ansible_facts']['ansible_system_vendor'] obj.OS = "%s %s" % (j['ansible_facts']['ansible_distribution'], j['ansible_facts']['ansible_distribution_version']) # noqa obj.kernel = j['ansible_facts']['ansible_kernel'] obj.CPU = j['ansible_facts']['ansible_processor'][2] obj.cores = j['ansible_facts']['ansible_processor_cores'] obj.arch = j['ansible_facts']['ansible_architecture'] obj.mem = j['ansible_facts']['ansible_memtotal_mb'] # obj.disk = j ['ansible_facts']['ansible_devices']['sda']['model'] # noqa obj.IPs = ', '.join(j['ansible_facts']['ansible_all_ipv4_addresses']) # noqa obj.gateway = j['ansible_facts']['ansible_default_ipv4']['gateway'], # noqa obj.gate_iface =j['ansible_facts']['ansible_default_ipv4']['interface'] # noqa obj.save() return self.form_valid(form) else: return self.form_invalid(form)
name = 'bah' version = '2.1' authors = ["joe.bloggs"] uuid = "3c027ce6593244af947e305fc48eec96" description = "bah humbug" private_build_requires = ["build_util"] variants = [ ["foo-1.0"], ["foo-1.1"]] hashed_variants = True build_command = 'python {root}/build.py {install}'
""" Day 08 of the 2021 Advent of Code https://adventofcode.com/2021/day/8 https://adventofcode.com/2021/day/8/input """ def load_data(path): data_list = [] with open(path, "r") as file: for line in file: ref_values, values = line.split(" | ") ref_values = ref_values.split(" ") ref_values = [i.strip() for i in ref_values] ref_values = sorted(ref_values, key=len) ref_values = ["".join(sorted(i, key=str.lower)) for i in ref_values] assert len(ref_values) == 10 values = values.split(" ") values = [i.strip() for i in values] values = ["".join(sorted(i, key=str.lower)) for i in values] assert len(values) == 4 data_list.append((ref_values, values)) return data_list def value_in_value(ref, value): for i in ref: if not i in value: return False return True def value_minus_value(value, min_value): for i in min_value: value = value.replace(i, "") return value def order_ref_values(ref_values): values_order = [None] * 10 len_5 = ref_values[3 : 5 + 1] len_6 = ref_values[6 : 8 + 1] # 1 rechts = ref_values[0] values_order[1] = rechts values_order[4] = ref_values[2] values_order[7] = ref_values[1] values_order[8] = ref_values[9] # 2 values_order[3] = [i for i in len_5 if value_in_value(values_order[1], i)][0] values_order[6] = [i for i in len_6 if not value_in_value(values_order[1], i)][0] # 3 rechts_boven = value_minus_value(values_order[8], values_order[6]) values_order[2] = [i for i in len_5 if not value_in_value(values_order[1], i) and value_in_value(rechts_boven, i)][0] values_order[5] = [i for i in len_5 if not value_in_value(values_order[1], i) and not value_in_value(rechts_boven, i)][0] # 4 links = value_minus_value(values_order[8], values_order[3]) values_order[9] = [i for i in len_6 if value_in_value(values_order[1], i) and not value_in_value(links, i)][0] values_order[0] = [i for i in len_6 if value_in_value(values_order[1], i) and value_in_value(links, i)][0] return values_order def part_1(data): solution = 0 for i in data: for value in i[1]: if len(value) in [2, 4, 3, 7]: solution = solution + 1 return solution def part_2(data): solution = 0 for line in data: line_number = "" ordered_ref = order_ref_values(line[0]) for value in line[1]: for index in range(10): if value == ordered_ref[index]: line_number = line_number + str(index) break solution = solution + int(line_number) return solution def main(): data = load_data("..//Data//Prod.txt") data_test = load_data("..//Data//Test.txt") assert part_1(data_test) == 26 assert part_1(data) == 445 assert part_2(data_test) == 61229 assert part_2(data) == 1043101 if __name__ == "__main__": main()
# Copyright 2018 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Test citest.reporting.html_renderer module.""" import os import shutil import tempfile import unittest from citest.base import ( Journal, StreamJournalNavigator) class StreamNavigatorTest(unittest.TestCase): # pylint: disable=missing-docstring @classmethod def setUpClass(cls): cls.temp_dir = tempfile.mkdtemp(prefix='journal_nav_test') @classmethod def tearDownClass(cls): shutil.rmtree(cls.temp_dir) def test_iterator(self): journal = Journal() path = os.path.join(self.temp_dir, 'test_iterator.journal') expect = [] journal.open_with_path(path, TestString='TestValue', TestNum=123) expect.append({'_type': 'JournalMessage', '_value': 'Starting journal.', 'TestString': 'TestValue', 'TestNum': 123}) journal.write_message('Initial Message') expect.append({'_type': 'JournalMessage', '_value': 'Initial Message'}) journal.begin_context('OUTER', TestProperty='BeginOuter') expect.append({'_type': 'JournalContextControl', 'control': 'BEGIN', '_title': 'OUTER', 'TestProperty': 'BeginOuter'}) journal.write_message('Context Message', format='pre') expect.append({'_type': 'JournalMessage', '_value': 'Context Message', 'format': 'pre'}) journal.end_context(TestProperty='END OUTER') expect.append({'_type': 'JournalContextControl', 'control': 'END', 'TestProperty': 'END OUTER'}) journal.terminate(EndProperty='xyz') expect.append({'_type': 'JournalMessage', '_value': 'Finished journal.', 'EndProperty': 'xyz'}) # We're going to pop off expect, so reverse it # so that we can check in order. expect.reverse() navigator = StreamJournalNavigator.new_from_path(path) for record in navigator: del(record['_thread']) del(record['_timestamp']) self.assertEquals(record, expect.pop()) self.assertEquals([], expect) if __name__ == '__main__': unittest.main()
# Definition for singly-linked list. # class ListNode: # def __init__(self, x): # self.val = x # self.next = None class Solution: def rotateRight(self, head: ListNode, k: int) -> ListNode: if head == None or head.next == None: return head count = 1 p = head while p.next: count+=1 p=p.next rot = k%count temp = head p.next = head for i in range(count-rot-1): temp = temp.next answer = temp.next temp.next = None return answer
# Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Utilities for OSS-Fuzz infrastructure.""" import os import re import stat import helper ALLOWED_FUZZ_TARGET_EXTENSIONS = ['', '.exe'] FUZZ_TARGET_SEARCH_STRING = 'LLVMFuzzerTestOneInput' VALID_TARGET_NAME = re.compile(r'^[a-zA-Z0-9_-]+$') def chdir_to_root(): """Changes cwd to OSS-Fuzz root directory.""" # Change to oss-fuzz main directory so helper.py runs correctly. if os.getcwd() != helper.OSSFUZZ_DIR: os.chdir(helper.OSSFUZZ_DIR) def is_fuzz_target_local(file_path): """Returns whether |file_path| is a fuzz target binary (local path). Copied from clusterfuzz src/python/bot/fuzzers/utils.py with slight modifications. """ filename, file_extension = os.path.splitext(os.path.basename(file_path)) if not VALID_TARGET_NAME.match(filename): # Check fuzz target has a valid name (without any special chars). return False if file_extension not in ALLOWED_FUZZ_TARGET_EXTENSIONS: # Ignore files with disallowed extensions (to prevent opening e.g. .zips). return False if not os.path.exists(file_path) or not os.access(file_path, os.X_OK): return False if filename.endswith('_fuzzer'): return True if os.path.exists(file_path) and not stat.S_ISREG(os.stat(file_path).st_mode): return False with open(file_path, 'rb') as file_handle: return file_handle.read().find(FUZZ_TARGET_SEARCH_STRING.encode()) != -1 def get_fuzz_targets(path): """Get list of fuzz targets in a directory. Args: path: A path to search for fuzz targets in. Returns: A list of paths to fuzzers or an empty list if None. """ if not os.path.exists(path): return [] fuzz_target_paths = [] for root, _, _ in os.walk(path): for filename in os.listdir(path): file_path = os.path.join(root, filename) if is_fuzz_target_local(file_path): fuzz_target_paths.append(file_path) return fuzz_target_paths def get_container_name(): """Gets the name of the current docker container you are in. /proc/self/cgroup can be used to check control groups e.g. Docker. See: https://docs.docker.com/config/containers/runmetrics/ for more info. Returns: Container name or None if not in a container. """ with open('/proc/self/cgroup') as file_handle: if 'docker' not in file_handle.read(): return None with open('/etc/hostname') as file_handle: return file_handle.read().strip()
import sys import subprocess import shlex from os import path args = sys.argv usage = ''' Usage: python %s -inkey [public.key] -in [signed.bin] -out [output.bin] ''' % args[0] not_there = False not_there_list = [] for arg in ["-inkey", "-out", "-in"]: if arg not in args: not_there = True not_there_list.append(arg) if not_there: print 'Missing arg(s): %s.' % not_there_list print usage sys.exit(1) inkey = args[args.index("-inkey")+1] out = args[args.index("-out")+1] _in = args[args.index("-in")+1] command = "openssl rsautl -verify -pubin -inkey %s -in %s -out %s" % (inkey, _in, out) print command split = shlex.split(command) call = subprocess.call(split) sys.exit(call)
# Copyright (c) OpenMMLab. All rights reserved. import math import torch from torch.utils.data import DistributedSampler as _DistributedSampler class DistributedSampler(_DistributedSampler): def __init__(self, dataset, num_replicas=None, rank=None, shuffle=True, seed=0): super().__init__( dataset, num_replicas=num_replicas, rank=rank, shuffle=shuffle) # for the compatibility from PyTorch 1.3+ self.seed = seed if seed is not None else 0 def __iter__(self): # deterministically shuffle based on epoch if self.shuffle: g = torch.Generator() g.manual_seed(self.epoch + self.seed) indices = torch.randperm(len(self.dataset), generator=g).tolist() else: indices = torch.arange(len(self.dataset)).tolist() # add extra samples to make it evenly divisible # in case that indices is shorter than half of total_size indices = (indices * math.ceil(self.total_size / len(indices)))[:self.total_size] assert len(indices) == self.total_size # subsample indices = indices[self.rank:self.total_size:self.num_replicas] assert len(indices) == self.num_samples return iter(indices)
# A* ALGORITHM class Node: def __init__(self, row, col, value): self.id = str(row) + "-" + str(col) self.row = row self.col = col self.value = value self.distanceFromStart = float("inf") self.estimatedDistanceToEnd = float("inf") self.cameFrom = None # O(W * H * log(W * H)) time and O(W * H) space # W -> Width, H -> Height def aStarAlgorithm(startRow, startCol, endRow, endCol, graph): # Write your code here. nodes = initializeNodes(graph) startNode = nodes[startRow][startCol] endNode = nodes[endRow][endCol] startNode.distanceFromStart = 0 startNode.estimatedDistanceToEnd = calculateManhattanDistance(startNode, endNode) nodesToVisit = MinHeap([startNode]) while not nodesToVisit.isEmpty(): currentMinDistanceNode = nodesToVisit.remove() if currentMinDistanceNode == endNode: break neighbors = getNeighboringNodes(currentMinDistanceNode, nodes) for neighbor in neighbors: if neighbor.value == 1: continue tentativeDistanceToNeighbor = currentMinDistanceNode.distanceFromStart + 1 if tentativeDistanceToNeighbor >= neighbor.distanceFromStart: continue neighbor.cameFrom = currentMinDistanceNode neighbor.distanceFromStart = tentativeDistanceToNeighbor neighbor.estimatedDistanceToEnd = tentativeDistanceToNeighbor + calculateManhattanDistance( neighbor, endNode ) if not nodesToVisit.containsNode(neighbor): nodesToVisit.insert(neighbor) else: nodesToVisit.update(neighbor) return reconstructPath(endNode) def initializeNodes(graph): nodes = [] for i, row in enumerate(graph): nodes.append([]) for j, value in enumerate(row): nodes[i].append(Node(i, j, value)) return nodes def calculateManhattanDistance(currentNode, endNode): currentRow = currentNode.row currentCol = currentNode.col endRow = endNode.row endCol = endNode.col return abs(currentRow - endRow) + abs(currentCol - endCol) def getNeighboringNodes(node, nodes): neighbors = [] numRows = len(nodes) numCols = len(nodes[0]) row = node.row col = node.col if row < numRows - 1: neighbors.append(nodes[row + 1][col]) if row > 0: neighbors.append(nodes[row - 1][col]) if col < numCols - 1: neighbors.append(nodes[row][col + 1]) if col > 0: neighbors.append(nodes[row][col - 1]) return neighbors def reconstructPath(endNode): if not endNode.cameFrom: return [] currentNode = endNode path = [] while currentNode is not None: path.append([currentNode.row, currentNode.col]) currentNode = currentNode.cameFrom return path[::-1] class MinHeap: def __init__(self, array): self.nodePositionsInHeap = {node.id: idx for idx, node in enumerate(array)} self.heap = self.buildHeap(array) def isEmpty(self): return len(self.heap) == 0 def buildHeap(self, array): firstParentIdx = (len(array) - 2) // 2 for currentIdx in reversed(range(firstParentIdx + 1)): self.siftDown(currentIdx, len(array) - 1, array) return array def siftDown(self, currentIdx, endIdx, heap): childOneIdx = currentIdx * 2 + 1 while childOneIdx <= endIdx: childTwoIdx = currentIdx * 2 + 2 if currentIdx * 2 + 2 <= endIdx else -1 if ( childTwoIdx != -1 and heap[childTwoIdx].estimatedDistanceToEnd < heap[childOneIdx].estimatedDistanceToEnd ): idxToSwap = childTwoIdx else: idxToSwap = childOneIdx if heap[idxToSwap].estimatedDistanceToEnd < heap[currentIdx].estimatedDistanceToEnd: self.swap(currentIdx, idxToSwap, heap) currentIdx = idxToSwap childOneIdx = currentIdx * 2 + 1 else: return def siftUp(self, currentIdx, heap): parentIdx = (currentIdx - 1) // 2 while currentIdx > 0 and heap[currentIdx].estimatedDistanceToEnd < heap[parentIdx].estimatedDistanceToEnd: self.swap(currentIdx, parentIdx, heap) currentIdx = parentIdx parentIdx = (currentIdx - 1) // 2 def remove(self): if self.isEmpty(): return self.swap(0, len(self.heap) - 1, self.heap) node = self.heap.pop() del self.nodePositionsInHeap[node.id] self.siftDown(0, len(self.heap) - 1, self.heap) return node def insert(self, node): self.heap.append(node) self.nodePositionsInHeap[node.id] = len(self.heap) - 1 self.siftUp(len(self.heap) - 1, self.heap) def swap(self, i, j, heap): self.nodePositionsInHeap[heap[i].id] = j self.nodePositionsInHeap[heap[j].id] = i heap[i], heap[j] = heap[j], heap[i] def containsNode(self, node): return node.id in self.nodePositionsInHeap def update(self, node): self.siftUp(self.nodePositionsInHeap[node.id], self.heap)
#!/usr/bin/env python import re import setuptools def get_info(): with open("README.md", "r") as fh: long_description = fh.read() version = re.search( r'^__version__\s*=\s*"(.*)"', open("experimenting/__init__.py").read(), re.MULTILINE, ).group(1) return long_description, version long_description, version = get_info() setuptools.setup( name='lifting_events_to_3d_hpe', version=version, description='Code for 2021 CVPRw "Lifting Monocular Events to 3D Human Poses"', long_description=long_description, author='Gianluca Scarpellini', author_email='gianluca.scarpellini@iit.it', url='https://github.com/iit-pavis/lifting_events_to_3d_hpe', install_requires=[ 'albumentations', 'opencv-python==4.2.0.34', 'h5py', 'scikit-image', 'scikit-learn', 'scikit-video', 'scipy', 'torch>1.4', 'kornia', 'hydra-core==1.0.0rc1', 'omegaconf', 'pytorch-lightning==1.1.6', 'torchvision', 'tqdm', 'segmentation_models_pytorch', ], packages=setuptools.find_packages(exclude=["tests", "tests/*"]), test_suite="tests", long_description_content_type="text/markdown", classifiers=[ "Programming Language :: Python :: 3", "License :: OSI Approved :: GPL License", "Operating System :: Linux", ], )
import factory from .models import Order, Payment class OrderFactory(factory.DjangoModelFactory): class Meta: model = Order name = factory.Sequence(lambda n: "order {}".format(n)) class PaymentFactory(factory.DjangoModelFactory): class Meta: model = Payment order = factory.SubFactory(OrderFactory) amount = 200 currency = "PLN" backend = "getpaid.backends.payu"
"""Installation script for coex using setuptools.""" from setuptools import setup setup( name='coex', version='1.0', packages=['coex'], install_requires=['numpy', 'scipy'], author='Adam Rall', author_email='arall@buffalo.edu', license='BSD', keywords='molecular simulation', )
#! python3 # __author__ = "YangJiaHao" # date: 2018/2/13
# vim: tabstop=4 shiftwidth=4 softtabstop=4 # Copyright (c) 2019 John Dewey # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to # deal in the Software without restriction, including without limitation the # rights to use, copy, modify, merge, publish, distribute, sublicense, and/or # sell copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER # DEALINGS IN THE SOFTWARE. import pytest import ucl from konfig import config @pytest.fixture def _instance(): return config.Config() @pytest.fixture def _daemonset(): return """ apiVersion = "apps/v1" kind = "DaemonSet" metadata { name = "name" namespace = "namespace" labels = { foo = "bar" } } spec { selector { matchLabels { name = "name" } } } """ def test_config_loads(_instance, _daemonset): _instance._data = _daemonset got = _instance.loads() want = { 'apiVersion': 'apps/v1', 'kind': 'DaemonSet', 'metadata': { 'name': 'name', 'namespace': 'namespace', 'labels': { 'foo': 'bar', } }, 'spec': { 'selector': { 'matchLabels': { 'name': 'name' } } } } assert want == got
""" rec_secret.py Recoveres a secret using the Fuzzy Key Recovery scheme """ import click from fuzzy import RecoverSecret, bytes_to_hex, FuzzyError, FuzzyState def work(words, key_count, secret) -> None: """ 1. re-create the state object from json file 2. call RecoverySecret on the recovery words (words) 3. print the recovery words An FuzzyError exception is throw upon failure """ with open(secret, 'r') as fobj: repn = fobj.read() state = FuzzyState.Loads(repn) recovery_words = [int(word) for word in words.split()] keys = RecoverSecret(state, recovery_words, key_count) print("keys:") for key in keys: print("-", bytes_to_hex(key)) @click.command() @click.option('--words', type=str, prompt="words", required=True, help='recovery words as integers eg. "8 6 0 3"') @click.option('--key-count', type=int, default=1, help='number of keys to be generated [default=1]') @click.option('--secret', type=str, default='secret.json', help='path to JSON file holding the secret (FuzzyState)') def rec_secret(words, key_count, secret) -> None: """ recover a secret example: python3 rec_secret.py --words "1 2 3" [--secret secret.json] [--key-count 1] """ work(words, key_count, secret) if __name__ == '__main__': try: # pylint: disable=no-value-for-parameter rec_secret() # pylint: enable=no-value-for-parameter except FuzzyError as error: print("\nKey Recovery Failed:") print(" ", error.message) # work("1 2 3", 1, "output.json")
""" Configuration file for Flask and Flask-SQLAlchemy modules. All environment variables are stored in local .env file. """ import os from dotenv import load_dotenv load_dotenv() #load environment variables from .env file class Config(object): db_host = os.environ.get('DB_HOST') db_name = os.environ.get('DB_NAME') db_password = os.environ.get('DB_PASSWORD') db_port = os.environ.get('DB_PORT') db_user = os.environ.get('DB_USERNAME') SQLALCHEMY_DATABASE_URI = f"postgresql://{db_user}:{db_password}@{db_host}:{db_port}/{db_name}" SECRET_KEY = os.environ.get('FLASK_SECRET_KEY') SQLALCHEMY_TRACK_MODIFICATIONS = False PROPAGATE_EXCEPTIONS = True
""" Find a nearby root of the coupled radial/angular Teukolsky equations. TODO Documentation. """ from __future__ import division, print_function, absolute_import import logging import numpy as np from scipy import optimize from .angular import sep_const_closest, C_and_sep_const_closest from . import radial # TODO some documentation here, better documentation throughout class NearbyRootFinder(object): """Object to find and store results from simultaneous roots of radial and angular QNM equations, following the Leaver and Cook-Zalutskiy approach. Parameters ---------- a: float [default: 0.] Dimensionless spin of black hole, 0 <= a < 1. s: int [default: -2] Spin of field of interest m: int [default: 2] Azimuthal number of mode of interest A_closest_to: complex [default: 4.+0.j] Complex value close to desired separation constant. This is intended for tracking the l-number of a sequence starting from the analytically-known value at a=0 l_max: int [default: 20] Maximum value of l to include in the spherical-spheroidal matrix for finding separation constant and mixing coefficients. Must be sufficiently larger than l of interest that angular spectral method can converge. The number of l's needed for convergence depends on a. omega_guess: complex [default: .5-.5j] Initial guess of omega for root-finding tol: float [default: sqrt(double epsilon)] Tolerance for root-finding omega cf_tol: float [defailt: 1e-10] Tolerance for continued fraction calculation n_inv: int [default: 0] Inversion number of radial infinite continued fraction, which selects overtone number of interest Nr: int [default: 300] Truncation number of radial infinite continued fraction. Must be sufficiently large for convergence. Nr_min: int [default: 300] Floor for Nr (for dynamic control of Nr) Nr_max: int [default: 4000] Ceiling for Nr (for dynamic control of Nr) r_N: complex [default: 1.] Seed value taken for truncation of infinite continued fraction. UNUSED, REMOVE """ def __init__(self, *args, **kwargs): # Set defaults before using values in kwargs self.a = 0. self.s = -2 self.m = 2 self.A0 = 4.+0.j self.l_max = 20 self.omega_guess = .5-.5j self.tol = np.sqrt(np.finfo(float).eps) self.cf_tol = 1e-10 self.n_inv = 0 self.Nr = 300 self.Nr_min = 300 self.Nr_max = 4000 self.r_N = 1. self.set_params(**kwargs) def set_params(self, *args, **kwargs): """Set the parameters for root finding. Parameters are described in the class documentation. Finally calls :meth:`clear_results`. """ # TODO This violates DRY, do better. self.a = kwargs.get('a', self.a) self.s = kwargs.get('s', self.s) self.m = kwargs.get('m', self.m) self.A0 = kwargs.get('A_closest_to', self.A0) self.l_max = kwargs.get('l_max', self.l_max) self.omega_guess = kwargs.get('omega_guess', self.omega_guess) self.tol = kwargs.get('tol', self.tol) self.cf_tol = kwargs.get('cf_tol', self.cf_tol) self.n_inv = kwargs.get('n_inv', self.n_inv) self.Nr = kwargs.get('Nr', self.Nr) self.Nr_min = kwargs.get('Nr_min', self.Nr_min) self.Nr_max = kwargs.get('Nr_max', self.Nr_max) self.r_N = kwargs.get('r_N', self.r_N) # Optional pole factors self.poles = np.array([]) # TODO: Check that values make sense self.clear_results() def clear_results(self): """Clears the stored results from last call of :meth:`do_solve`""" self.solved = False self.opt_res = None self.omega = None self.A = None self.C = None self.cf_err = None self.n_frac = None self.poles = np.array([]) def __call__(self, x): """Internal function for usage with optimize.root, for an instance of this class to act like a function for root-finding. optimize.root only works with reals so we pack and unpack complexes into float[2] """ omega = x[0] + 1.j*x[1] # oblateness parameter c = self.a * omega # Separation constant at this a*omega A = sep_const_closest(self.A0, self.s, c, self.m, self.l_max) # We are trying to find a root of this function: # inv_err = radial.leaver_cf_trunc_inversion(omega, self.a, # self.s, self.m, A, # self.n_inv, # self.Nr, self.r_N) # TODO! # Determine the value to use for cf_tol based on # the Jacobian, cf_tol = |d cf(\omega)/d\omega| tol. inv_err, self.cf_err, self.n_frac = radial.leaver_cf_inv_lentz(omega, self.a, self.s, self.m, A, self.n_inv, self.cf_tol, self.Nr_min, self.Nr_max) # logging.info("Lentz terminated with cf_err={}, n_frac={}".format(self.cf_err, self.n_frac)) # Insert optional poles pole_factors = np.prod(omega - self.poles) supp_err = inv_err / pole_factors return [np.real(supp_err), np.imag(supp_err)] def do_solve(self): """Try to find a root of the continued fraction equation, using the parameters that have been set in :meth:`set_params`.""" # For the default (hybr) method, tol sets 'xtol', the # tolerance on omega. self.opt_res = optimize.root(self, [np.real(self.omega_guess), np.imag(self.omega_guess)], method = 'hybr', tol = self.tol) if (not self.opt_res.success): tmp_opt_res = self.opt_res self.clear_results() self.opt_res = tmp_opt_res return None self.solved = True self.omega = self.opt_res.x[0] + 1.j*self.opt_res.x[1] c = self.a * self.omega # As far as I can tell, scipy.linalg.eig already normalizes # the eigenvector to unit norm, and the coefficient with the # largest norm is real self.A, self.C = C_and_sep_const_closest(self.A0, self.s, c, self.m, self.l_max) return self.omega def get_cf_err(self): """Return the continued fraction error and the number of iterations in the last evaluation of the continued fraction. Returns ------- cf_err: float n_frac: int """ return self.cf_err, self.n_frac def set_poles(self, poles=[]): """ Set poles to multiply error function. Parameters ---------- poles: array_like as complex numbers [default: []] """ self.poles = np.array(poles).astype(complex)
import base64 import datetime import logging import os import traceback from io import BytesIO import pdfkit from dateutil.relativedelta import relativedelta from django.conf import settings from django.core.exceptions import ObjectDoesNotExist, ValidationError from django.core.files.base import ContentFile from django.core.files.storage import default_storage as storage from django.db import transaction from django.db.models import Sum from django.template.loader import render_to_string from django.utils import timezone from django.utils.translation import ugettext_lazy as _ from PIL import Image from rest_framework import exceptions as rf_exceptions from rest_framework import serializers, status from waldur_core.core import models as core_models from waldur_core.core import serializers as core_serializers from waldur_core.core import utils as core_utils from waldur_core.structure import filters as structure_filters from waldur_core.structure import models as structure_models from waldur_mastermind.common.utils import create_request from waldur_mastermind.invoices import models as invoice_models from waldur_mastermind.invoices import registrators from waldur_mastermind.invoices.utils import get_full_days from waldur_mastermind.marketplace import attribute_types from . import models, plugins logger = logging.getLogger(__name__) def get_order_item_processor(order_item): if order_item.resource: offering = order_item.resource.offering else: offering = order_item.offering if order_item.type == models.RequestTypeMixin.Types.CREATE: return plugins.manager.get_processor(offering.type, 'create_resource_processor') elif order_item.type == models.RequestTypeMixin.Types.UPDATE: return plugins.manager.get_processor(offering.type, 'update_resource_processor') elif order_item.type == models.RequestTypeMixin.Types.TERMINATE: return plugins.manager.get_processor(offering.type, 'delete_resource_processor') def process_order_item(order_item: models.OrderItem, user): processor = get_order_item_processor(order_item) if not processor: order_item.error_message = ( 'Skipping order item processing because processor is not found.' ) order_item.set_state_erred() order_item.save(update_fields=['state', 'error_message']) return try: order_item.set_state_executing() order_item.save(update_fields=['state']) processor(order_item).process_order_item(user) except Exception as e: # Here it is necessary to catch all exceptions. # If this is not done, then the order will remain in the executed status. order_item.error_message = str(e) order_item.error_traceback = traceback.format_exc() order_item.set_state_erred() logger.error(f'Error processing order item { order_item }.') order_item.save(update_fields=['state', 'error_message', 'error_traceback']) def validate_order_item(order_item, request): processor = get_order_item_processor(order_item) if processor: try: processor(order_item).validate_order_item(request) except NotImplementedError: # It is okay if validation is not implemented yet pass def create_screenshot_thumbnail(screenshot): pic = screenshot.image fh = storage.open(pic.name, 'rb') image = Image.open(fh) image.thumbnail(settings.WALDUR_MARKETPLACE['THUMBNAIL_SIZE'], Image.ANTIALIAS) fh.close() thumb_extension = os.path.splitext(pic.name)[1] thumb_extension = thumb_extension.lower() thumb_name = os.path.basename(pic.name) if thumb_extension in ['.jpg', '.jpeg']: FTYPE = 'JPEG' elif thumb_extension == '.gif': FTYPE = 'GIF' elif thumb_extension == '.png': FTYPE = 'PNG' else: return temp_thumb = BytesIO() image.save(temp_thumb, FTYPE) temp_thumb.seek(0) screenshot.thumbnail.save(thumb_name, ContentFile(temp_thumb.read()), save=True) temp_thumb.close() def create_order_pdf(order): logo_path = settings.WALDUR_CORE['SITE_LOGO'] if logo_path: with open(logo_path, 'rb') as image_file: deployment_logo = base64.b64encode(image_file.read()).decode("utf-8") else: deployment_logo = None context = dict( order=order, currency=settings.WALDUR_CORE['CURRENCY_NAME'], deployment_name=settings.WALDUR_CORE['SITE_NAME'], deployment_address=settings.WALDUR_CORE['SITE_ADDRESS'], deployment_email=settings.WALDUR_CORE['SITE_EMAIL'], deployment_phone=settings.WALDUR_CORE['SITE_PHONE'], deployment_logo=deployment_logo, ) html = render_to_string('marketplace/order.html', context) pdf = pdfkit.from_string(html, False) return pdf def import_resource_metadata(resource): instance = resource.scope fields = {'action', 'action_details', 'state', 'runtime_state'} for field in fields: if field == 'state': value = instance.get_state_display() else: value = getattr(instance, field, None) if field in fields: resource.backend_metadata[field] = value if instance.backend_id: resource.backend_id = instance.backend_id resource.name = instance.name resource.save( update_fields=['backend_metadata', 'attributes', 'name', 'backend_id'] ) def get_service_provider_info(source): try: resource = models.Resource.objects.get(scope=source) customer = resource.offering.customer service_provider = getattr(customer, 'serviceprovider', None) return { 'service_provider_name': customer.name, 'service_provider_uuid': '' if not service_provider else service_provider.uuid.hex, } except models.Resource.DoesNotExist: return {} def get_offering_details(offering): if not isinstance(offering, models.Offering): return {} return { 'offering_type': offering.type, 'offering_name': offering.name, 'offering_uuid': offering.uuid.hex, 'service_provider_name': offering.customer.name, 'service_provider_uuid': offering.customer.uuid.hex, } def format_list(resources): """ Format comma-separated list of IDs from Django queryset. """ return ', '.join(map(str, sorted(resources.values_list('id', flat=True)))) def get_order_item_url(order_item): return core_utils.format_homeport_link( 'projects/{project_uuid}/marketplace-order-item-details/{order_item_uuid}/', order_item_uuid=order_item.uuid.hex, project_uuid=order_item.order.project.uuid, ) def fill_activated_field(apps, schema_editor): # We cannot use RequestTypeMixin.Types.CREATE and OrderItem.States.Done because this function called in migrations state_done = 3 type_create = 1 OrderItem = apps.get_model('marketplace', 'OrderItem') for order_item in OrderItem.objects.filter(type=type_create, state=state_done): if not order_item.activated and order_item.resource: order_item.activated = order_item.resource.created order_item.save() def get_info_about_missing_usage_reports(): now = timezone.now() billing_period = core_utils.month_start(now) whitelist_types = [ offering_type for offering_type in plugins.manager.get_offering_types() if plugins.manager.enable_usage_notifications(offering_type) ] offering_ids = models.OfferingComponent.objects.filter( billing_type=models.OfferingComponent.BillingTypes.USAGE, offering__type__in=whitelist_types, ).values_list('offering_id', flat=True) resource_with_usages = models.ComponentUsage.objects.filter( billing_period=billing_period ).values_list('resource', flat=True) resources_without_usages = models.Resource.objects.filter( state=models.Resource.States.OK, offering_id__in=offering_ids ).exclude(id__in=resource_with_usages) result = [] for resource in resources_without_usages: rows = list( filter(lambda x: x['customer'] == resource.offering.customer, result) ) if rows: rows[0]['resources'].append(resource) else: result.append( {'customer': resource.offering.customer, 'resources': [resource],} ) return result def get_public_resources_url(customer): return core_utils.format_homeport_link( 'organizations/{organization_uuid}/marketplace-public-resources/', organization_uuid=customer.uuid, ) def validate_limits(limits, offering): if not plugins.manager.can_update_limits(offering.type): raise serializers.ValidationError( {'limits': _('Limits update is not supported for this resource.')} ) valid_component_types = set( offering.components.filter( billing_type=models.OfferingComponent.BillingTypes.LIMIT ).values_list('type', flat=True) ) invalid_types = set(limits.keys()) - valid_component_types if invalid_types: raise serializers.ValidationError( {'limits': _('Invalid types: %s') % ', '.join(invalid_types)} ) # Validate max and min limit value. components_map = { component.type: component for component in offering.components.filter(type__in=valid_component_types) } for key, value in limits.items(): component = components_map.get(key) if not component: continue if component.max_value and value > component.max_value: raise serializers.ValidationError( _('The limit %s value cannot be more than %s.') % (value, component.max_value) ) if component.min_value and value < component.min_value: raise serializers.ValidationError( _('The limit %s value cannot be less than %s.') % (value, component.min_value) ) def validate_attributes(attributes, category): category_attributes = models.Attribute.objects.filter(section__category=category) required_attributes = category_attributes.filter(required=True).values_list( 'key', flat=True ) missing_attributes = set(required_attributes) - set(attributes.keys()) if missing_attributes: raise rf_exceptions.ValidationError( { 'attributes': _( 'These attributes are required: %s' % ', '.join(sorted(missing_attributes)) ) } ) for attribute in category_attributes: value = attributes.get(attribute.key) if value is None: # Use default attribute value if it is defined if attribute.default is not None: attributes[attribute.key] = attribute.default continue validator = attribute_types.get_attribute_type(attribute.type) if not validator: continue try: validator.validate( value, list(attribute.options.values_list('key', flat=True)) ) except ValidationError as e: raise rf_exceptions.ValidationError({attribute.key: e.message}) def create_offering_components(offering, custom_components=None): fixed_components = plugins.manager.get_components(offering.type) category_components = { component.type: component for component in models.CategoryComponent.objects.filter( category=offering.category ) } for component_data in fixed_components: models.OfferingComponent.objects.create( offering=offering, parent=category_components.get(component_data.type, None), **component_data._asdict(), ) if custom_components: for component_data in custom_components: models.OfferingComponent.objects.create(offering=offering, **component_data) def get_resource_state(state): SrcStates = core_models.StateMixin.States DstStates = models.Resource.States mapping = { SrcStates.CREATION_SCHEDULED: DstStates.CREATING, SrcStates.CREATING: DstStates.CREATING, SrcStates.UPDATE_SCHEDULED: DstStates.UPDATING, SrcStates.UPDATING: DstStates.UPDATING, SrcStates.DELETION_SCHEDULED: DstStates.TERMINATING, SrcStates.DELETING: DstStates.TERMINATING, SrcStates.OK: DstStates.OK, SrcStates.ERRED: DstStates.ERRED, } return mapping.get(state, DstStates.ERRED) def get_marketplace_offering_uuid(serializer, scope): try: return models.Resource.objects.get(scope=scope).offering.uuid except ObjectDoesNotExist: return def get_marketplace_offering_name(serializer, scope): try: return models.Resource.objects.get(scope=scope).offering.name except ObjectDoesNotExist: return def get_marketplace_category_uuid(serializer, scope): try: return models.Resource.objects.get(scope=scope).offering.category.uuid except ObjectDoesNotExist: return def get_marketplace_category_name(serializer, scope): try: return models.Resource.objects.get(scope=scope).offering.category.title except ObjectDoesNotExist: return def get_marketplace_resource_uuid(serializer, scope): try: return models.Resource.objects.get(scope=scope).uuid except ObjectDoesNotExist: return def get_marketplace_plan_uuid(serializer, scope): try: resource = models.Resource.objects.get(scope=scope) if resource.plan: return resource.plan.uuid except ObjectDoesNotExist: return def get_marketplace_resource_state(serializer, scope): try: return models.Resource.objects.get(scope=scope).get_state_display() except ObjectDoesNotExist: return def get_is_usage_based(serializer, scope): try: return models.Resource.objects.get(scope=scope).offering.is_usage_based except ObjectDoesNotExist: return def get_is_limit_based(serializer, scope): try: return models.Resource.objects.get(scope=scope).offering.is_limit_based except ObjectDoesNotExist: return def add_marketplace_offering(sender, fields, **kwargs): fields['marketplace_offering_uuid'] = serializers.SerializerMethodField() setattr(sender, 'get_marketplace_offering_uuid', get_marketplace_offering_uuid) fields['marketplace_offering_name'] = serializers.SerializerMethodField() setattr(sender, 'get_marketplace_offering_name', get_marketplace_offering_name) fields['marketplace_category_uuid'] = serializers.SerializerMethodField() setattr(sender, 'get_marketplace_category_uuid', get_marketplace_category_uuid) fields['marketplace_category_name'] = serializers.SerializerMethodField() setattr(sender, 'get_marketplace_category_name', get_marketplace_category_name) fields['marketplace_resource_uuid'] = serializers.SerializerMethodField() setattr(sender, 'get_marketplace_resource_uuid', get_marketplace_resource_uuid) fields['marketplace_plan_uuid'] = serializers.SerializerMethodField() setattr(sender, 'get_marketplace_plan_uuid', get_marketplace_plan_uuid) fields['marketplace_resource_state'] = serializers.SerializerMethodField() setattr(sender, 'get_marketplace_resource_state', get_marketplace_resource_state) fields['is_usage_based'] = serializers.SerializerMethodField() setattr(sender, 'get_is_usage_based', get_is_usage_based) fields['is_limit_based'] = serializers.SerializerMethodField() setattr(sender, 'get_is_limit_based', get_is_limit_based) def get_offering_costs(offering, active_customers, start, end): costs = [] date = start while date <= end: year = date.year month = date.month invoice_items = invoice_models.InvoiceItem.objects.filter( details__offering_uuid=offering.uuid.hex, project__customer__in=active_customers, invoice__year=year, invoice__month=month, ) stats = { 'tax': 0, 'total': 0, 'price': 0, 'price_current': 0, 'period': '%s-%02d' % (year, month), } for item in invoice_items: stats['tax'] += item.tax stats['total'] += item.total stats['price'] += item.price stats['price_current'] += item.price_current costs.append(stats) date += relativedelta(months=1) return costs def get_offering_customers(offering, active_customers): resources = models.Resource.objects.filter( offering=offering, project__customer__in=active_customers, ) customers_ids = resources.values_list('project__customer_id', flat=True) return structure_models.Customer.objects.filter(id__in=customers_ids) def get_start_and_end_dates_from_request(request): serializer = core_serializers.DateRangeFilterSerializer(data=request.query_params) serializer.is_valid(raise_exception=True) today = datetime.date.today() default_start = datetime.date(year=today.year - 1, month=today.month, day=1) start_year, start_month = serializer.validated_data.get( 'start', (default_start.year, default_start.month) ) end_year, end_month = serializer.validated_data.get( 'end', (today.year, today.month) ) end = datetime.date(year=end_year, month=end_month, day=1) start = datetime.date(year=start_year, month=start_month, day=1) return start, end def get_active_customers(request, view): customers = structure_models.Customer.objects.all() return structure_filters.AccountingStartDateFilter().filter_queryset( request, customers, view ) def get_offering_component_stats(offering, active_customers, start, end): component_stats = [] resources = models.Resource.objects.filter( offering=offering, project__customer__in=active_customers, ) resources_ids = resources.values_list('id', flat=True) date = start while date <= end: year = date.year month = date.month period = '%s-%02d' % (year, month) # for consistency with usage resource usage reporting, assume values at the beginning of the last day period_visible = ( core_utils.month_end(date) .replace(hour=0, minute=0, second=0, microsecond=0) .isoformat() ) invoice_items = invoice_models.InvoiceItem.objects.filter( resource_id__in=resources_ids, invoice__year=year, invoice__month=month, ) for item in invoice_items: # Case when invoice item details includes plan component data. plan_component_id = item.details.get('plan_component_id') if not plan_component_id: continue try: plan_component = models.PlanComponent.objects.get(pk=plan_component_id) offering_component = plan_component.component if ( offering_component.billing_type == models.OfferingComponent.BillingTypes.LIMIT ): component_stats.append( { 'usage': item.quantity, 'description': offering_component.description, 'measured_unit': offering_component.measured_unit, 'type': offering_component.type, 'name': offering_component.name, 'period': period, 'date': period_visible, 'offering_component_id': offering_component.id, } ) if ( offering_component.billing_type == models.OfferingComponent.BillingTypes.USAGE ): if [ *filter( lambda x: x['period'] == period and x['offering_component_id'] == offering_component.id, component_stats, ) ]: continue usages = models.ComponentUsage.objects.filter( component=offering_component, billing_period=date ).aggregate(usage=Sum('usage'))['usage'] component_stats.append( { 'usage': usages, 'description': offering_component.description, 'measured_unit': offering_component.measured_unit, 'type': offering_component.type, 'name': offering_component.name, 'period': period, 'date': period_visible, 'offering_component_id': offering_component.id, } ) if ( offering_component.billing_type == models.OfferingComponent.BillingTypes.FIXED ): other = [ *filter( lambda x: x['period'] == period and x['offering_component_id'] == offering_component.id, component_stats, ) ] if other: other[0]['usage'] += item.get_factor() continue component_stats.append( { 'usage': item.get_factor(), 'description': offering_component.description, 'measured_unit': offering_component.measured_unit, 'type': offering_component.type, 'name': offering_component.name, 'period': period, 'date': period_visible, 'offering_component_id': offering_component.id, } ) except models.PlanComponent.DoesNotExist: logger.error( 'PlanComponent with id %s is not found.' % plan_component_id ) date += relativedelta(months=1) # delete internal data [s.pop('offering_component_id', None) for s in component_stats] return component_stats class MoveResourceException(Exception): pass @transaction.atomic def move_resource(resource: models.Resource, project): if project.customer.blocked: raise rf_exceptions.ValidationError('New customer must be not blocked') old_project = resource.project resource.project = project resource.save(update_fields=['project']) if resource.scope: resource.scope.project = project resource.scope.save(update_fields=['project']) for service_settings in structure_models.ServiceSettings.objects.filter( scope=resource.scope ): models.Offering.objects.filter(scope=service_settings).update( project=project ) order_ids = resource.orderitem_set.values_list('order_id', flat=True) for order in models.Order.objects.filter(pk__in=order_ids): if order.items.exclude(resource=resource).exists(): raise MoveResourceException( 'Resource moving is not possible, ' 'because related orders are related to other resources.' ) order.project = project order.save(update_fields=['project']) for invoice_item in invoice_models.InvoiceItem.objects.filter( resource=resource, invoice__state=invoice_models.Invoice.States.PENDING, project=old_project, ): start_invoice = invoice_item.invoice target_invoice, _ = registrators.RegistrationManager.get_or_create_invoice( project.customer, date=datetime.date( year=start_invoice.year, month=start_invoice.month, day=1 ), ) if target_invoice.state != invoice_models.Invoice.States.PENDING: raise MoveResourceException( 'Resource moving is not possible, ' 'because invoice items moving is not possible.' ) invoice_item.project = project invoice_item.project_uuid = project.uuid.hex invoice_item.project_name = project.name invoice_item.invoice = target_invoice invoice_item.save( update_fields=['project', 'project_uuid', 'project_name', 'invoice'] ) start_invoice.update_current_cost() target_invoice.update_current_cost() def get_invoice_item_for_component_usage(component_usage): if not component_usage.plan_period: # Field plan_period is optional if component_usage is not connected with billing return else: if component_usage.plan_period.end: plan_period_end = component_usage.plan_period.end else: plan_period_end = core_utils.month_end(component_usage.billing_period) if component_usage.plan_period.start: plan_period_start = component_usage.plan_period.start else: plan_period_start = component_usage.billing_period try: item = invoice_models.InvoiceItem.objects.get( invoice__year=component_usage.billing_period.year, invoice__month=component_usage.billing_period.month, resource=component_usage.resource, start__gte=plan_period_start, end__lte=plan_period_end, details__offering_component_type=component_usage.component.type, ) return item except invoice_models.InvoiceItem.DoesNotExist: pass def serialize_resource_limit_period(period): billing_periods = get_full_days(period['start'], period['end']) return { 'start': period['start'].isoformat(), 'end': period['end'].isoformat(), 'quantity': period['quantity'], 'billing_periods': billing_periods, 'total': str(period['quantity'] * billing_periods), } def check_customer_blocked_for_terminating(resource): try: project = resource.project except structure_models.Project.DoesNotExist: project = structure_models.Project.all_objects.get(pk=resource.project_id) if project.customer.blocked: raise rf_exceptions.ValidationError(_('Blocked organization is not available.')) def schedule_resources_termination(resources): from waldur_mastermind.marketplace import views if not resources: return view = views.ResourceViewSet.as_view({'post': 'terminate'}) user = core_utils.get_system_robot() if not user: logger.error( 'Staff user with username system_robot for terminating resources ' 'of project with due date does not exist.' ) return for resource in resources: response = create_request(view, user, {}, uuid=resource.uuid.hex) if response.status_code != status.HTTP_200_OK: logger.error( 'Terminating resource %s has failed. %s' % (resource.uuid.hex, response.content) ) def create_local_resource(order_item, scope): resource = models.Resource( project=order_item.order.project, offering=order_item.offering, plan=order_item.plan, limits=order_item.limits, attributes=order_item.attributes, name=order_item.attributes.get('name') or '', scope=scope if scope and type(scope) != str else None, backend_id=scope if scope and type(scope) == str else '', ) resource.init_cost() resource.save() resource.init_quotas() order_item.resource = resource order_item.save(update_fields=['resource']) return resource
# AUTOGENERATED! DO NOT EDIT! File to edit: nbs/02_effective_area.ipynb (unless otherwise specified). __all__ = ['EffectiveArea'] # Cell import os import numpy as np from astropy.io import fits class EffectiveArea(object): """ manage the effective area calculation from a CALDB FITS file Must specify either a file_path, or a value for CALDB, or that the CALDB environment varable is set """ def __init__(self, irf: 'IRF to use'= 'P8R2_SOURCE_V6', file_path: 'folder to find the AEFF file'=None, CALDB: 'path to override environment variable'=None, use_phidep:'use azmithual dependence for effective area'=False, ): """ """ #ct0_file,ct1_file = get_irf_file(self.irf,CALDB=self.CALDB) if CALDB is None: self.CALDB=os.environ.get('CALDB',None) assert (file_path or self.CALDB), 'No path given for effective area' if not file_path: if os.path.exists(f'{self.CALDB}/data' ): self.CALDB+='/data' self.file_path = f'{self.CALDB}/glast/lat/bcf/ea' self.aeff_file = os.path.expandvars(f'{file_path}/aeff_{irf}_FB.fits') assert os.path.exists(self.aeff_file), f'Effective area file {self.aeff_file} not found' ct0_file = ct1_file = self.aeff_file ##cdbm.get_aeff() self._read_aeff(ct0_file,ct1_file) if use_phidep: self._read_phi(ct0_file,ct1_file) def _read_file(self,filename,tablename,columns): with fits.open(filename) as hdu: table = hdu[tablename] cbins = np.append(table.data.field('CTHETA_LO')[0],table.data.field('CTHETA_HI')[0][-1]) ebins = np.append(table.data.field('ENERG_LO')[0],table.data.field('ENERG_HI')[0][-1]) images = [np.asarray(table.data.field(c)[0],dtype=float).reshape(len(cbins)-1,len(ebins)-1) for c in columns] return ebins,cbins,images def _read_aeff(self,ct0_file,ct1_file): try: ebins,cbins,feffarea = self._read_file(ct0_file,'EFFECTIVE AREA',['EFFAREA']) ebins,cbins,beffarea = self._read_file(ct1_file,'EFFECTIVE AREA',['EFFAREA']) except KeyError: ebins,cbins,feffarea = self._read_file(ct0_file,'EFFECTIVE AREA_FRONT',['EFFAREA']) ebins,cbins,beffarea = self._read_file(ct1_file,'EFFECTIVE AREA_BACK',['EFFAREA']) self.ebins,self.cbins = ebins,cbins self.feffarea = feffarea[0]*1e4;self.beffarea = beffarea[0]*1e4 self.aeff = _InterpTable(np.log10(ebins),cbins) self.faeff_aug = self.aeff.augment_data(self.feffarea) self.baeff_aug = self.aeff.augment_data(self.beffarea) def _read_phi(self,ct0_file,ct1_file): try: ebins,cbins,fphis = self._read_file(ct0_file,'PHI_DEPENDENCE',['PHIDEP0','PHIDEP1']) ebins,cbins,bphis = self._read_file(ct1_file,'PHI_DEPENDENCE',['PHIDEP0','PHIDEP1']) except KeyError: ebins,cbins,fphis = self._read_file(ct0_file,'PHI_DEPENDENCE_FRONT',['PHIDEP0','PHIDEP1']) ebins,cbins,bphis = self._read_file(ct1_file,'PHI_DEPENDENCE_BACK',['PHIDEP0','PHIDEP1']) self.fphis = fphis; self.bphis = bphis self.phi = _InterpTable(np.log10(ebins),cbins,augment=False) def _phi_mod(self,e,c,event_class,phi): # assume phi has already been reduced to range 0 to pi/2 if phi is None: return 1 tables = self.fphis if event_class==0 else self.bphis par0 = self.phi(e,c,tables[0],bilinear=False) par1 = self.phi(e,c,tables[1],bilinear=False,reset_indices=False) norm = 1. + par0/(1. + par1) phi = 2*abs((2./np.pi)*phi - 0.5) return (1. + par0*phi**par1)/norm def __call__(self,e,c,phi=None,event_class=-1,bilinear=True): """ Return bilinear (or nearest-neighbour) interpolation. Input: e -- bin energy; potentially array c -- bin cos(theta); potentially array NB -- if e and c are both arrays, they must be of the same size; in other words, no outer product is taken """ #print(f'Eff call: ({e,c})'); #return e = np.log10(e) at = self.aeff if event_class == -1: return (at(e,c,self.faeff_aug,bilinear=bilinear)*self._phi_mod(e,c,0,phi), at(e,c,self.baeff_aug,bilinear=bilinear,reset_indices=False)*self._phi_mod(e,c,1,phi)) elif event_class == 0: return at(e,c,self.faeff_aug)*self._phi_mod(e,c,0,phi) return at(e,c,self.baeff_aug)*self._phi_mod(e,c,1,phi) def get_file_names(self): return self.ct0_file,self.ct1_file def plots(self, fignum=1): """ """ import matplotlib.pyplot as plt ee = np.logspace(2,6) ct = np.linspace(0.2,1) plt.rc('font', size=14) fig, (ax1,ax2) = plt.subplots(1,2, figsize=(10,4), num=fignum) for et, etname in enumerate('Front Back'.split()): ax1.semilogx(ee, [ea(e, 1)[et] for e in ee], '-', lw=2, label=etname) ax2.plot(ct, [self(1000,x )[et]/ea(1000,1)[et] for x in ct], '-', lw=2, label=etname) ax1.legend() ax1.set(xlabel='Energy [Mev]', ylabel='effective area', ylim=(0,None)) ax1.grid(alpha=0.5) ax2.legend() ax2.set(xlabel =r'$\cos\ \theta$',ylabel='relative to normal at 1 GeV') ax2.grid(alpha=0.5) fig.set_facecolor('white') class _InterpTable(object): """Helper class -- does 2-d interpolation """ def __init__(self,xbins,ybins,augment=True): """ Interpolation bins in energy and cos(theta).""" self.xbins_0,self.ybins_0 = xbins,ybins self.augment = augment if augment: x0 = xbins[0] - (xbins[1]-xbins[0])/2 x1 = xbins[-1] + (xbins[-1]-xbins[-2])/2 y0 = ybins[0] - (ybins[1]-ybins[0])/2 y1 = ybins[-1] + (ybins[-1]-ybins[-2])/2 self.xbins = np.concatenate(([x0],xbins,[x1])) self.ybins = np.concatenate(([y0],ybins,[y1])) else: self.xbins = xbins; self.ybins = ybins self.xbins_s = (self.xbins[:-1]+self.xbins[1:])/2 self.ybins_s = (self.ybins[:-1]+self.ybins[1:])/2 def augment_data(self,data): """ Build a copy of data with outer edges replicated.""" d = np.empty([data.shape[0]+2,data.shape[1]+2]) d[1:-1,1:-1] = data d[0,1:-1] = data[0,:] d[1:-1,0] = data[:,0] d[-1,1:-1] = data[-1,:] d[1:-1,-1] = data[:,-1] d[0,0] = data[0,0] d[-1,-1] = data[-1,-1] d[0,-1] = data[0,-1] d[-1,0] = data[-1,0] return d def set_indices(self,x,y,bilinear=True): if bilinear and (not self.augment): print('Not equipped for bilinear, going to nearest neighbor.') bilinear = False self.bilinear = bilinear if not bilinear: i = np.searchsorted(self.xbins,x)-1 j = np.searchsorted(self.ybins,y)-1 else: i = np.searchsorted(self.xbins_s,x)-1 j = np.searchsorted(self.ybins_s,y)-1 self.indices = i,j def value(self,x,y,data): i,j = self.indices # NB transpose here if not self.bilinear: return data[j,i] x2,x1 = self.xbins_s[i+1],self.xbins_s[i] y2,y1 = self.ybins_s[j+1],self.ybins_s[j] f00 = data[j,i] f11 = data[j+1,i+1] f01 = data[j+1,i] f10 = data[j,i+1] norm = (x2-x1)*(y2-y1) return ( (x2-x)*(f00*(y2-y)+f01*(y-y1)) + (x-x1)*(f10*(y2-y)+f11*(y-y1)) )/norm def __call__(self,x,y,data,bilinear=True,reset_indices=True): if reset_indices: self.set_indices(x,y,bilinear=bilinear) return self.value(x,y,data)
import bpy op = bpy.context.active_operator export_selected = True export_apply = True op.export_format = 'GLB' op.ui_tab = 'GENERAL' op.export_copyright = '' op.export_image_format = 'NAME' op.export_texture_dir = '' op.export_texcoords = True op.export_normals = True op.export_draco_mesh_compression_enable = False op.export_draco_mesh_compression_level = 6 op.export_draco_position_quantization = 14 op.export_draco_normal_quantization = 10 op.export_draco_texcoord_quantization = 12 op.export_draco_generic_quantization = 12 op.export_tangents = False op.export_materials = True op.export_colors = True op.export_cameras = False op.export_extras = False op.export_yup = True op.export_apply = True op.export_animations = True op.export_frame_range = True op.export_frame_step = 1 op.export_force_sampling = True op.export_nla_strips = True op.export_def_bones = False op.export_current_frame = False op.export_skins = True op.export_all_influences = False op.export_morph = True op.export_morph_normal = True op.export_morph_tangent = False op.export_lights = False op.export_displacement = False op.will_save_settings = False
from gym.envs.registration import register register( id='maze-v0', entry_point='gym_maze.envs:MazeEnvSample5x5', max_episode_steps=2000, ) register( id='maze-sample-5x5-v0', entry_point='gym_maze.envs:MazeEnvSample5x5', max_episode_steps=10000000000000, ) register( id='maze-empty-5x5-v0', entry_point='gym_maze.envs:MazeEnvEmpty5x5', max_episode_steps=10000000000000, ) register( id='maze-warehouse-5x5-v0', entry_point='gym_maze.envs:MazeEnvWarehouse5x5', max_episode_steps=10000000000000, ) register( id='maze-warehouse-8x8-v0', entry_point='gym_maze.envs:MazeEnvWarehouse8x8', max_episode_steps=10000000000000, ) register( id='maze-warehouse-11x11-v0', entry_point='gym_maze.envs:MazeEnvWarehouse11x11', max_episode_steps=10000000000000, ) register( id='maze-warehouse-14x14-v0', entry_point='gym_maze.envs:MazeEnvWarehouse14x14', max_episode_steps=10000000000000, ) register( id='maze-warehouse-17x17-v0', entry_point='gym_maze.envs:MazeEnvWarehouse17x17', max_episode_steps=10000000000000, ) register( id='maze-warehouse-20x20-v0', entry_point='gym_maze.envs:MazeEnvWarehouse20x20', max_episode_steps=10000000000000, ) register( id='maze-random-5x5-v0', entry_point='gym_maze.envs:MazeEnvRandom5x5', max_episode_steps=10000000000000, nondeterministic=True, ) register( id='maze-random-8x8-v0', entry_point='gym_maze.envs:MazeEnvRandom8x8', max_episode_steps=10000000000000, nondeterministic=True, ) register( id='maze-random-11x11-v0', entry_point='gym_maze.envs:MazeEnvRandom11x11', max_episode_steps=10000000000000, nondeterministic=True, ) register( id='maze-random-14x14-v0', entry_point='gym_maze.envs:MazeEnvRandom14x14', max_episode_steps=10000000000000, nondeterministic=True, ) register( id='maze-random-17x17-v0', entry_point='gym_maze.envs:MazeEnvRandom17x17', max_episode_steps=10000000000000, nondeterministic=True, ) register( id='maze-random-20x120-v0', entry_point='gym_maze.envs:MazeEnvRandom20x20', max_episode_steps=10000000000000, nondeterministic=True, ) register( id='maze-sample-10x10-v0', entry_point='gym_maze.envs:MazeEnvSample10x10', max_episode_steps=10000000000000, ) register( id='maze-random-10x10-v0', entry_point='gym_maze.envs:MazeEnvRandom10x10', max_episode_steps=10000000000000, nondeterministic=True, ) register( id='maze-sample-3x3-v0', entry_point='gym_maze.envs:MazeEnvSample3x3', max_episode_steps=10000000000000, ) register( id='maze-random-3x3-v0', entry_point='gym_maze.envs:MazeEnvRandom3x3', max_episode_steps=10000000000000, nondeterministic=True, ) register( id='maze-random-25x25-v0', entry_point='gym_maze.envs:MazeEnvRandom25x25', max_episode_steps=10000000000000, ) register( id='maze-random-50x50-v0', entry_point='gym_maze.envs:MazeEnvRandom50x50', max_episode_steps=10000000000000, ) register( id='maze-random-60x60-v0', entry_point='gym_maze.envs:MazeEnvRandom60x60', max_episode_steps=10000000000000, ) register( id='maze-random-75x75-v0', entry_point='gym_maze.envs:MazeEnvRandom75x75', max_episode_steps=10000000000000, ) register( id='maze-sample-100x100-v0', entry_point='gym_maze.envs:MazeEnvSample100x100', max_episode_steps=10000000000000, ) register( id='maze-random-100x100-v0', entry_point='gym_maze.envs:MazeEnvRandom100x100', max_episode_steps=10000000000000, nondeterministic=True, ) register( id='maze-random-10x10-plus-v0', entry_point='gym_maze.envs:MazeEnvRandom10x10Plus', max_episode_steps=10000000000000, nondeterministic=True, ) register( id='maze-random-20x20-plus-v0', entry_point='gym_maze.envs:MazeEnvRandom20x20Plus', max_episode_steps=10000000000000, nondeterministic=True, ) register( id='maze-random-30x30-plus-v0', entry_point='gym_maze.envs:MazeEnvRandom30x30Plus', max_episode_steps=10000000000000, nondeterministic=True, )
from django.views.generic import View from django.http import HttpResponse from django.utils.decorators import method_decorator from stronghold.decorators import public from stronghold.views import StrongholdPublicMixin class ProtectedView(View): """A view we want to be private""" def get(self, request, *args, **kwargs): return HttpResponse("ProtectedView") class PublicView(View): """ A view we want to be public""" @method_decorator(public) def dispatch(self, *args, **kwargs): return super(PublicView, self).dispatch(*args, **kwargs) def get(self, request, *args, **kwargs): return HttpResponse("PublicView") class PublicView2(StrongholdPublicMixin, View): """ A view we want to be public, using the StrongholdPublicMixin""" def get(self, request, *args, **kwargs): return HttpResponse("PublicView") @public def public_view3(request): """ A function view we want to be public""" return HttpResponse("PublicView")
""" Libary of linear regressions. """ import numpy as np from scipy.stats import linregress from astroML.linear_model import TLS_logL from scipy.odr import Model, Data, RealData, ODR import scipy.optimize as op import emcee def mcmc_linear_model(x, y, xerr, yerr, nwalkers=100, nruns=2000, cut=100): """ This was built using the following references: * http://dan.iel.fm/emcee/current/user/line/ * http://www.astroml.org/book_figures/chapter8/fig_total_least_squares.html * https://github.com/astroML/astroML/blob/master/astroML/linear_model/TLS.py The linear models is $y=a*x+b$ Returns (a,b), ((a_lower, a_upper), (b_lower, b_upper)) """ # translate between typical slope-intercept representation, # and the normal vector representation def get_a_b(theta): b = np.dot(theta, theta) / theta[1] a = -theta[0] / theta[1] return a, b def get_beta(a, b): denom = (1 + a * a) return np.array([-b * a / denom, b / denom]) # Define the log-maximum likelihood def lnlike(theta, x, y, xerr, yerr): arr = np.column_stack((x, y)) arr_err = np.column_stack((xerr, yerr)) return TLS_logL(theta, arr, arr_err**2) # Get a first extimative of the parameters # based on the maximum likelihood nll = lambda *args: -lnlike(*args) x0 = get_beta(*linregress(x, y)[:2]) # Initial guesses from # Ordinary Least Squares result = op.minimize(nll, x0=x0, args=(x, y, xerr, yerr), method='Nelder-Mead') theta = result["x"] # Define the log-prior def lnprior(theta): a, b = get_a_b(theta) if -5.0 < a < 0.5 and 0.0 < b < 10.0: return 0.0 return -np.inf # Define the full log-probability function def lnprob(theta, x, y, xerr, yerr): lp = lnprior(theta) if not np.isfinite(lp): return -np.inf return lp + lnlike(theta, x, y, xerr, yerr) # Set the MCMC walkers ndim = 2 pos = [theta + 1e-4*np.random.randn(ndim) for i in range(nwalkers)] # Set and Run sampler = emcee.EnsembleSampler(nwalkers, ndim, lnprob, args=(x, y, xerr, yerr)) sampler.run_mcmc(pos, nruns) # Get the samples. Do not get the first `cut` ones. samples = sampler.chain[:, cut:, :].reshape((-1, ndim)) coeffs = np.array([get_a_b(bt) for bt in samples]) # Get the a, b and their errors # The value of a and are the median of the # sampling distribution, while the lower and # upper values are the 16% and 84% percentiles. a_mcmc, b_mcmc = map(lambda v: (v[1], v[2]-v[1], v[1]-v[0]), zip(*np.percentile(coeffs, [16, 50, 84], axis=0))) return (a_mcmc[0], b_mcmc[0]), ((a_mcmc[1], a_mcmc[2]), (b_mcmc[1], b_mcmc[2])) def odr_linear_fit(x, y, xerr, yerr): """ Obtained from Scipy ODR webpage with small modifications https://docs.scipy.org/doc/scipy/reference/odr.html """ def f(B, x): '''Linear function y = m*x + b''' # B is a vector of the parameters. # x is an array of the current x values. # x is in the same format as the x passed to Data or RealData. # # Return an array in the same format as y passed to Data or RealData. return B[0]*x + B[1] # Create a model linear = Model(f) # Create a Data instance mydata = Data(x, y, wd=1./np.power(xerr,2), we=1./np.power(yerr,2)) #Instantiate ODR with your data, model and initial parameter estimate.: beta0 = linregress(x, y)[:2] myodr = ODR(mydata, linear, beta0=beta0) #Run the fit.: myoutput = myodr.run() a, b = myoutput.beta a_error, b_error = myoutput.sd_beta return a, b, a_error, b_error
"""Unit test package for siepic_analysis_package."""
''' Created on 08.04.2019 @author: mort ipywidget interface to the GEE for IR-MAD ''' import ee, time, warnings, math import ipywidgets as widgets from IPython.display import display from ipyleaflet import (Map,DrawControl,TileLayer, basemaps,basemap_to_tiles, LayersControl, MeasureControl, FullScreenControl) from auxil.eeMad import imad,radcal from geopy.geocoders import photon ee.Initialize() geolocator = photon.Photon(timeout=10) warnings.filterwarnings("ignore", message="numpy.dtype size changed") warnings.filterwarnings("ignore", message="numpy.ufunc size changed") poly = ee.Geometry.MultiPolygon([]) # poly = ee.Geometry.Polygon([[6.30154, 50.948329], [6.293307, 50.877329], # [6.427091, 50.875595], [6.417486, 50.947464], # [6.30154, 50.948329]]) def chi2cdf(chi2,df): ''' Chi square cumulative distribution function ''' return ee.Image(chi2.divide(2)).gammainc(ee.Number(df).divide(2)) def makefeature(data): ''' for exporting as CSV to Drive ''' return ee.Feature(None, {'data': data}) def handle_draw(self, action, geo_json): global poly coords = geo_json['geometry']['coordinates'] if action == 'created': poly = ee.Geometry.MultiPolygon(poly.coordinates().add(coords)) w_preview.disabled = True w_export.disabled = True w_collect.disabled = False elif action == 'deleted': poly1 = ee.Geometry.MultiPolygon(coords) poly = poly.difference(poly1) if len(poly.coordinates().getInfo()) == 0: w_collect.disabled = True dc = DrawControl(polyline={},circle={}) dc.on_draw(handle_draw) # def GetTileLayerUrl(ee_image_object): # map_id = ee.Image(ee_image_object).getMapId() # tile_url_template = "https://earthengine.googleapis.com/map/{mapid}/{{z}}/{{x}}/{{y}}?token={token}" # return tile_url_template.format(**map_id) def GetTileLayerUrl(ee_image_object): map_id = ee.Image(ee_image_object).getMapId() return map_id["tile_fetcher"].url_format w_text = widgets.Textarea( layout = widgets.Layout(width='75%'), value = 'Algorithm output', rows = 4, disabled = False ) w_platform = widgets.RadioButtons( options=['SENTINEL/S2(VNIR/SWIR)','SENTINEL/S2(NIR/SWIR)','LANDSAT LC08','LANDSAT LE07','LANDSAT LT05'], value='SENTINEL/S2(VNIR/SWIR)', description='Platform:', disabled=False ) w_startdate1 = widgets.Text( value='2020-05-01', placeholder=' ', description='Start T1:', disabled=False ) w_enddate1 = widgets.Text( value='2020-07-01', placeholder=' ', description='End T1:', disabled=False ) w_startdate2 = widgets.Text( value='2020-08-01', placeholder=' ', description='Start T2:', disabled=False ) w_enddate2 = widgets.Text( value='2020-10-01', placeholder=' ', description='End T2:', disabled=False ) w_iterations = widgets.IntText( value=30, placeholder=' ', description='Max Iter:', disabled=False ) w_scale = widgets.IntText( value=30, placeholder=' ', description='Scale:', disabled=False ) w_exportname = widgets.Text( value='users/<username>/<path>', placeholder=' ', disabled=False ) w_location = widgets.Text( value='Jülich', placeholder=' ', description='', disabled=False ) w_goto = widgets.Button(description="GoTo",disabled=False) w_collect = widgets.Button(description="Collect",disabled=True) w_preview = widgets.Button(description="Preview",disabled=True) w_export = widgets.Button(description='Export to assets',disabled=True) w_dates1 = widgets.VBox([w_startdate1,w_enddate1,w_iterations]) w_dates2 = widgets.VBox([w_startdate2,w_enddate2,w_scale]) w_dates = widgets.HBox([w_platform,w_dates1,w_dates2]) w_exp = widgets.HBox([w_export,w_exportname]) w_go = widgets.HBox([w_collect,w_preview,w_exp]) w_txt = widgets.HBox([w_text,w_goto,w_location]) box = widgets.VBox([w_txt,w_dates,w_go]) def on_widget_change(b): w_preview.disabled = True w_export.disabled = True w_platform.observe(on_widget_change,names='value') w_startdate1.observe(on_widget_change,names='value') w_enddate1.observe(on_widget_change,names='value') w_startdate2.observe(on_widget_change,names='value') w_enddate2.observe(on_widget_change,names='value') def on_goto_button_clicked(b): try: location = geolocator.geocode(w_location.value) m.center = (location.latitude,location.longitude) m.zoom = 11 except Exception as e: print('Error: %s'%e) w_goto.on_click(on_goto_button_clicked) def on_collect_button_clicked(b): global result,m,collection,count, \ w_startdate1,w_enddate1,w_startdate2, \ w_platfform,w_enddate2,w_changemap, \ scale,nbands, \ image1,image2, \ madnames,coords,timestamp1,timestamp2 try: coords = ee.List(poly.bounds().coordinates().get(0)) w_text.value = 'collecting, please wait ...' cloudcover = 'CLOUD_COVER' scale = 30.0 rgb = ['B4','B5','B7'] if w_platform.value=='SENTINEL/S2(VNIR/SWIR)': collectionid = 'COPERNICUS/S2' scale = 10.0 bands = ['B2','B3','B4','B8'] rgb = ['B8','B4','B3'] cloudcover = 'CLOUDY_PIXEL_PERCENTAGE' elif w_platform.value=='SENTINEL/S2(NIR/SWIR)': collectionid = 'COPERNICUS/S2' scale = 20.0 bands = ['B5','B6','B7','B8A','B11','B12'] rgb = ['B5','B7','B11'] cloudcover = 'CLOUDY_PIXEL_PERCENTAGE' elif w_platform.value=='LANDSAT LC08': collectionid = 'LANDSAT/LC08/C01/T1_RT_TOA' bands = ['B2','B3','B4','B5','B6','B7'] rgb = ['B5','B6','B7'] elif w_platform.value=='LANDSAT LE07': collectionid = 'LANDSAT/LE07/C01/T1_RT_TOA' bands = ['B1','B2','B3','B4','B5','B7'] else: collectionid = 'LANDSAT/LT05/C01/T1_TOA' bands = ['B1','B2','B3','B4','B5','B7'] collection1 = ee.ImageCollection(collectionid) \ .filterBounds(ee.Geometry.Point(coords.get(0))) \ .filterBounds(ee.Geometry.Point(coords.get(1))) \ .filterBounds(ee.Geometry.Point(coords.get(2))) \ .filterBounds(ee.Geometry.Point(coords.get(3))) \ .filterDate(ee.Date(w_startdate1.value), ee.Date(w_enddate1.value)) \ .sort(cloudcover, True) count = collection1.size().getInfo() if count==0: raise ValueError('No images found for first time interval: '+collectionid) collection2 = ee.ImageCollection(collectionid) \ .filterBounds(ee.Geometry.Point(coords.get(0))) \ .filterBounds(ee.Geometry.Point(coords.get(1))) \ .filterBounds(ee.Geometry.Point(coords.get(2))) \ .filterBounds(ee.Geometry.Point(coords.get(3))) \ .filterDate(ee.Date(w_startdate2.value), ee.Date(w_enddate2.value)) \ .sort(cloudcover, True) count = collection2.size().getInfo() if count==0: raise ValueError('No images found for second time interval: '+collectionid) image1 = ee.Image(collection1.first()).select(bands) timestamp1 = ee.Date(image1.get('system:time_start')).getInfo() timestamp1 = time.gmtime(int(timestamp1['value'])/1000) timestamp1 = time.strftime('%c', timestamp1) systemid1 = image1.get('system:id').getInfo() cloudcover1 = image1.get(cloudcover).getInfo() image2 = ee.Image(collection2.first()).select(bands) timestamp2 = ee.Date(image2.get('system:time_start')).getInfo() timestamp2 = time.gmtime(int(timestamp2['value'])/1000) timestamp2 = time.strftime('%c', timestamp2) systemid2 = image2.get('system:id').getInfo() cloudcover2 = image2.get(cloudcover).getInfo() txt = 'Image1: %s \n'%systemid1 txt += 'Acquisition date: %s, Cloud cover: %f \n'%(timestamp1,cloudcover1) txt += 'Image2: %s \n'%systemid2 txt += 'Acquisition date: %s, Cloud cover: %f \n'%(timestamp2,cloudcover2) w_text.value = txt nbands = image1.bandNames().length() madnames = ['MAD'+str(i+1) for i in range(nbands.getInfo())] # co-register image2 = image2.register(image1,60) w_preview.disabled = False w_export.disabled = False # display first image if len(m.layers)>3: m.remove_layer(m.layers[3]) img = image1.clip(poly).select(rgb).rename('r','g','b') ps = img.reduceRegion(ee.Reducer.percentile([2,98]),maxPixels=1e10).getInfo() mn = [ps['r_p2'],ps['g_p2'],ps['b_p2']] mx = [ps['r_p98'],ps['g_p98'],ps['b_p98']] m.add_layer(TileLayer(url=GetTileLayerUrl(img.visualize(min=mn,max=mx)))) except Exception as e: w_text.value = 'Error: %s'%e w_collect.on_click(on_collect_button_clicked) def on_preview_button_clicked(b): global nbands try: w_text.value = 'iteration started, please wait ...\n' # iMAD inputlist = ee.List.sequence(1,w_iterations.value) first = ee.Dictionary({'done':ee.Number(0), 'scale':ee.Number(w_scale.value), 'niter':ee.Number(0), 'image':image1.addBands(image2).clip(poly), 'allrhos': [ee.List.sequence(1,nbands)], 'chi2':ee.Image.constant(0), 'MAD':ee.Image.constant(0)}) result = ee.Dictionary(inputlist.iterate(imad,first)) MAD = ee.Image(result.get('MAD')).rename(madnames) niter = ee.Number(result.get('niter')).getInfo() # threshold nbands = MAD.bandNames().length() chi2 = ee.Image(result.get('chi2')).rename(['chi2']) pval = chi2cdf(chi2,nbands).subtract(1).multiply(-1) tst = pval.gt(ee.Image.constant(0.0001)) MAD = MAD.where(tst,ee.Image.constant(0)) allrhos = ee.Array(result.get('allrhos')).toList() txt = 'Canonical correlations: %s \nIterations: %i\n'%(str(allrhos.get(-1).getInfo()),niter) w_text.value += txt if len(m.layers)>3: m.remove_layer(m.layers[3]) MAD2 = MAD.select(1).rename('b') ps = MAD2.reduceRegion(ee.Reducer.percentile([1,99])).getInfo() mn = ps['b_p1'] mx = ps['b_p99'] m.add_layer(TileLayer(url=GetTileLayerUrl( MAD2.visualize(min=mn,max=mx)))) except Exception as e: w_text.value = 'Error: %s\n Retry collect/preview or export to assets'%e w_preview.on_click(on_preview_button_clicked) def on_export_button_clicked(b): global w_exportname, nbands try: # iMAD inputlist = ee.List.sequence(1,w_iterations.value) first = ee.Dictionary({'done':ee.Number(0), 'scale':ee.Number(w_scale.value), 'niter':ee.Number(0), 'image':image1.addBands(image2).clip(poly), 'allrhos': [ee.List.sequence(1,nbands)], 'chi2':ee.Image.constant(0), 'MAD':ee.Image.constant(0)}) result = ee.Dictionary(inputlist.iterate(imad,first)) MAD = ee.Image(result.get('MAD')).rename(madnames) # threshold chi2 = ee.Image(result.get('chi2')).rename(['chi2']) pval = chi2cdf(chi2,nbands).subtract(1).multiply(-1) tst = pval.gt(ee.Image.constant(0.0001)) MAD = MAD.where(tst,ee.Image.constant(0)) allrhos = ee.Array(result.get('allrhos')).toList().slice(1,-1) # radcal ncmask = chi2cdf(chi2,nbands).lt(ee.Image.constant(0.05)).rename(['invarpix']) inputlist1 = ee.List.sequence(0,nbands.subtract(1)) first = ee.Dictionary({'image':image1.addBands(image2), 'ncmask':ncmask, 'nbands':nbands, 'scale':ee.Number(w_scale.value), 'rect':poly, 'coeffs': ee.List([]), 'normalized':ee.Image()}) result1 = ee.Dictionary(inputlist1.iterate(radcal,first)) coeffs = ee.List(result1.get('coeffs')) sel = ee.List.sequence(1,nbands) normalized = ee.Image(result1.get('normalized')).select(sel) MADs = ee.Image.cat(MAD,chi2,ncmask,image1.clip(poly),image2.clip(poly),normalized) assexport = ee.batch.Export.image.toAsset(MADs, description='assetExportTask', assetId=w_exportname.value,scale=scale,maxPixels=1e9) assexport.start() assexportid = str(assexport.id) w_text.value= 'Exporting change map, chisqr, original images and normalized image to %s\n task id: %s'%(w_exportname.value,assexportid) except Exception as e: w_text.value = 'Error: %s'%e # export metadata to drive ninvar = ee.String(ncmask.reduceRegion(ee.Reducer.sum().unweighted(), scale=scale,maxPixels= 1e9).toArray().project([0])) metadata = ee.List(['IR-MAD: '+time.asctime(), 'Platform: '+w_platform.value, 'Asset export name: '+w_exportname.value, 'Timestamps: %s %s'%(timestamp1,timestamp2)]) \ .cat(['Canonical Correlations:']) \ .cat(allrhos) \ .cat(['Radiometric Normalization, Invariant Pixels:']) \ .cat([ninvar]) \ .cat(['Slope, Intercept, R:']) \ .cat(coeffs) fileNamePrefix=w_exportname.value.replace('/','-') gdexport = ee.batch.Export.table.toDrive(ee.FeatureCollection(metadata.map(makefeature)).merge(ee.Feature(poly)), description='driveExportTask_meta', folder = 'gee', fileNamePrefix=fileNamePrefix ) gdexport.start() w_text.value += '\n Exporting metadata to Drive/EarthEngineImages/%s\n task id: %s'%(fileNamePrefix,str(gdexport.id)) w_export.on_click(on_export_button_clicked) def run(): global m,center center = [51.0,6.4] osm = basemap_to_tiles(basemaps.OpenStreetMap.Mapnik) ews = basemap_to_tiles(basemaps.Esri.WorldStreetMap) ewi = basemap_to_tiles(basemaps.Esri.WorldImagery) dc = DrawControl(polyline={},circlemarker={}) dc.rectangle = {"shapeOptions": {"fillColor": "#0000ff","color": "#0000ff","fillOpacity": 0.05}} dc.polygon = {"shapeOptions": {"fillColor": "#0000ff","color": "#0000ff","fillOpacity": 0.05}} dc.on_draw(handle_draw) lc = LayersControl(position='topright') fs = FullScreenControl(position='topleft') mc = MeasureControl(position='topright',primary_length_unit = 'kilometers') m = Map(center=center, zoom=11, layout={'height':'500px'},layers=(ewi,ews,osm),controls=(mc,dc,lc,fs)) # m = Map(center=center, zoom=11, layout={'height':'500px'},controls=(lc,dc,fs,mc,sm_control)) display(m) return box
# This script tests LED display and speaker of calliope mini from calliope_mini import * import music # list of pitch values. Every value # represents a frequency (Hz) melody = [200, 300, 200, 300, 200, 300, 100, 300, 100, 300, 100, 300, 400, 300, 400, 300, 500, 600, 700, 300, 200] pom = True # image object can be created and then passed to # the display and drawn. Every five numbers between : # represent one row on the display img_1 = Image('09090:90909:09090:90909:09090:') img_2 = Image('90909:09090:90909:09090:90909:') # this function plays a melody and switches between # two display patterns. This function can be improved # using multiprocessing def play(pom, img_1, img_2): music.stop() for p in melody: music.pitch(p) if pom: display.show(img_1) pom = False else: display.show(img_2) pom = True sleep(200) while True: play(pom, img_1, img_2)
""" schedule cog that handles all scheduling tasks which includes scheduled announcements for members """ from discord.ext import commands import random import json import aiocron class Schedule(commands.Cog): def __init__(self, bot, anilist_api, emojis, config): self.bot = bot self.anilist_api = anilist_api self.emojis = emojis self.channel_id = config['CHANNEL_ID'] self.role_id = config['ROLE_ID'] # set up skip parameter self.skip = False @aiocron.crontab('0 17 * * 0') async def on_monday_reminder(): await self.sunday_message() @aiocron.crontab('0 17 * * 1') async def on_sunday_reminder(): await self.monday_message() @commands.command() async def schedule(self, ctx, anilist_url_1, anilist_url_2, anilist_url_3): """ schedules the three anime sessions - must provide 3 anilist urls """ # build emojis positive_emoji = self.bot.get_emoji(random.choice(self.emojis['positive'])) # build a dictionary for the scheduled anime schedule = { 'anime_1': anilist_url_1, 'anime_2': anilist_url_2, 'anime_3': anilist_url_3, } # dump it to a temporary file with open('data/schedule.json', 'w') as fn: json.dump(schedule, fn) usr_msg = "かしこまりました、ご主人様。" usr_msg += "\nI have successfully updated the scheduled messages!" await ctx.send(usr_msg) await ctx.send(positive_emoji) @commands.command() async def skip(self, ctx): """ has bot skip the pinging and scheduling until reactivated again """ # set up the skip parameter self.skip = True usr_msg = "かしこまりました、ご主人様。" usr_msg += "\nI have deactivated the scheduling upon your request!" await ctx.send(usr_msg) await ctx.send(positive_emoji) @commands.command() async def activate(self, ctx): """ has bot activate the pinging and scheduling until deactivated again """ # set up the skip parameter self.skip = False usr_msg = "かしこまりました、ご主人様。" usr_msg += "\nI have activated the scheduling upon your request!" await ctx.send(usr_msg) await ctx.send(positive_emoji) async def sunday_message(self): """ sunday scheduled message """ # do not run method if skip parameter is true if self.skip: return # set up the channel to post in channel = self.bot.get_channel(int(self.channel_id)) # build emojis positive_emoji = self.bot.get_emoji(random.choice(self.emojis['positive'])) # load the requested scheduled anime schedule = {} with open('data/schedule.json', 'r') as fn: schedule = json.load(fn) # set up the anime urls anime_1_url = schedule.get('anime_1', '') anime_2_url = schedule.get('anime_2', '') # set up the titles anime_1_title = self.anilist_api.get_title(anime_1_url) anime_2_title = self.anilist_api.get_title(anime_2_url) # set up the progress anime_1_progress = self.anilist_api.get_current_progress(anime_1_url) anime_2_progress = self.anilist_api.get_current_progress(anime_2_url) # set up the message to the user usr_msg = f'<@&{self.role_id}> おはようございます、ご主人様たち!' usr_msg += '\nWe have the following anime scheduled for today.' usr_msg += f'\n **2:00 PM PST**: {anime_1_title}. Currently on episode {anime_1_progress}.' usr_msg += f'\n **7:30 PM PST**: {anime_2_title}. Currently on episode {anime_2_progress}.' usr_msg += f'\nHope to see you there!' await channel.send(usr_msg) await channel.send(positive_emoji) async def monday_message(self): """ monday scheduled message """ # do not run method if skip parameter is true if self.skip: return # set up the channel to post in channel = self.bot.get_channel(int(self.channel_id)) # build emojis positive_emoji = self.bot.get_emoji(random.choice(self.emojis['positive'])) # load the requested scheduled anime schedule = {} with open('data/schedule.json', 'r') as fn: schedule = json.load(fn) # set up the anime urls anime_3_url = schedule.get('anime_3', '') # set up the titles anime_3_title = self.anilist_api.get_title(anime_3_url) # set up the progress anime_3_progress = self.anilist_api.get_current_progress(anime_3_url) # set up the message to the user usr_msg = f'<@&{self.role_id}> おはようございます、ご主人様たち!' usr_msg += '\nWe have the following anime scheduled for today.' usr_msg += f'\n **7:30 PM PST**: {anime_3_title}. Currently on episode {anime_3_progress}.' usr_msg += f'\nHope to see you there!' await channel.send(usr_msg) await channel.send(positive_emoji)
import unittest from zeppos_data_manager.data_cleaner import DataCleaner from datetime import datetime class TestTheProjectMethods(unittest.TestCase): def test_to_date_method(self): self.assertEqual(DataCleaner.to_date('01/01/2020'), datetime.strptime('2020-01-01 00:00:00', '%Y-%m-%d %H:%M:%S')) def test_to_numeric_method(self): self.assertEqual(DataCleaner.to_numeric('0'), 0) def test_to_string_method(self): self.assertEqual(DataCleaner.to_string(0), '0') def test_is_numeric_method(self): self.assertEqual(DataCleaner.is_numeric(1), True) self.assertEqual(DataCleaner.is_numeric("1"), True) self.assertEqual(DataCleaner.is_numeric(1.0), True) self.assertEqual(DataCleaner.is_numeric("1.0"), True) self.assertEqual(DataCleaner.is_numeric("nan"), False) self.assertEqual(DataCleaner.is_numeric("a"), False) self.assertEqual(DataCleaner.is_numeric(None), False) def test_is_integer_method(self): self.assertEqual(DataCleaner.is_integer(1), True) self.assertEqual(DataCleaner.is_integer(1.0), False) self.assertEqual(DataCleaner.is_integer(1.1), False) self.assertEqual(DataCleaner.is_integer("1"), True) self.assertEqual(DataCleaner.is_integer("1.0"), False) self.assertEqual(DataCleaner.is_integer("1.1"), False) self.assertEqual(DataCleaner.is_integer(None), False) def test_is_decimal_method(self): self.assertEqual(DataCleaner.is_decimal(1.1), True) self.assertEqual(DataCleaner.is_decimal(1.0), True) self.assertEqual(DataCleaner.is_decimal("1.1"), True) self.assertEqual(DataCleaner.is_decimal("1.0"), True) self.assertEqual(DataCleaner.is_decimal("1"), False) self.assertEqual(DataCleaner.is_decimal(1), False) self.assertEqual(DataCleaner.is_decimal("a.1"), False) def test_is_alpha_only_method(self): self.assertEqual(DataCleaner.is_alpha_only("test"), True) self.assertEqual(DataCleaner.is_alpha_only(""), False) self.assertEqual(DataCleaner.is_alpha_only(None), False) self.assertEqual(DataCleaner.is_alpha_only(1), False) self.assertEqual(DataCleaner.is_alpha_only("1"), False) self.assertEqual(DataCleaner.is_alpha_only("test1"), False) self.assertEqual(DataCleaner.is_alpha_only("test test"), False) def test_is_nan_method(self): self.assertEqual(DataCleaner.is_nan(0), False) def test_is_date_method(self): self.assertEqual(DataCleaner.is_date('1/1/1900'), True) def test_lreplace_method(self): self.assertEqual(DataCleaner.lreplace("0", "_", "011"), "_11") def test_rreplace_method(self): self.assertEqual(DataCleaner.rreplace("0", "_", "110"), "11_") def test_drop_first_characters_method(self): self.assertEqual(DataCleaner.drop_first_characters("12345", 2), "345") def test_replace_alpha_numeric_value_only_method(self): self.assertEqual(DataCleaner.replace_alpha_numeric_value_only(" $231aA "), "231aA") def test_pad_left_method(self): self.assertEqual(DataCleaner.pad_left('2', '0', 2), '02') self.assertEqual(DataCleaner.pad_left('02', '0', 2), '02') self.assertEqual(DataCleaner.pad_left('002', '0', 2), '02') def test_get_date_format_method(self): self.assertEqual(DataCleaner.get_date_format('1900'), '%Y') self.assertEqual(DataCleaner.get_date_format('1/1/1900'), '%m/%d/%Y') self.assertEqual(DataCleaner.get_date_format('111900'), None) def test_clean_filename_method(self): self.assertEqual(DataCleaner.clean_filename("$my_File_123"), "_my_File_123") def test_adjust_escape_character_method(self): self.assertEqual('\\"', DataCleaner.adjust_escape_character('"')) self.assertEqual("\\'", DataCleaner.adjust_escape_character("'")) self.assertEqual('\\r', DataCleaner.adjust_escape_character('\r')) self.assertEqual('\\n', DataCleaner.adjust_escape_character('\n')) def test_strip_content_method(self): # don't adjust alignment. The unit test will fail! self.assertEqual("test", DataCleaner.strip_content(" test")) self.assertEqual("""test1 test2""", DataCleaner.strip_content(""" test1 test2 """)) self.assertEqual("""test1 test2 """, DataCleaner.strip_content(""" test1 test2 """, remove_last_line_seperator=False)) if __name__ == '__main__': unittest.main()
import unittest2 from django import test from django.core import exceptions, serializers from django_bitmask_field import BitmaskField, BitmaskFormField from .models import TestModel, ContributingModel, TestForm class TestCase(test.TestCase, unittest2.TestCase): pass class BitmaskFieldTestCase(TestCase): def test_bitmaskfield_return_error_on_invalid_choices(self): cases = dict( none=[(None, 'choice')], str=[('foo', 'choice')], negative=[(-1, 'choice')], optgroup=[('optgroup', [(None, 'choice')])], ) for case, choices in cases.items(): with self.subTest(case=case): field = BitmaskField(choices=choices) field.contribute_to_class(ContributingModel, 'bitmask') errors = field.check() self.assertEqual(1, len(errors)) error = errors[0] self.assertEqual("all 'choices' must be of integer type.", error.msg) def test_bitmaskfield_max_length_validation(self): field = BitmaskField(max_length=1) field.clean(256, None) with self.assertRaises(exceptions.ValidationError): field.clean(257, None) def test_bitmaskfield_cleans_valid_choice(self): field = BitmaskField(choices=[(1, 'choice 0'), ('optgroup', [(4, 'choice 1')])]) cases = dict( first_choice=dict( # 0001 choice=1, expected_cleaned=1, ), second_choice=dict( # 0100 choice=4, expected_cleaned=4, ), combo=dict( # 0101 choice=5, expected_cleaned=5, ), ) for case, data in cases.items(): with self.subTest(case=case): self.assertEqual( data['expected_cleaned'], field.clean(data['choice'], None), ) def test_bitmaskfield_works_with_multibit_choices(self): field = BitmaskField(choices=[(1, 'choice 0'), (4, 'choice 1'), ('optgroup', [(5, 'choice 2')])]) self.assertEqual(5, field.clean(5, None)) def test_bitmaskfield_raises_error_on_invalid_choice(self): field = BitmaskField(choices=[(1, 'choice 0'), ('optgroup', [(4, 'choice 1')])]) cases = dict( none=None, single_invalid_bit=2, # 0010 two_invalid_bits=10, # 1010 partly_invalid_1=3, # 0011 partly_invalid_2=6, # 0110 partly_invalid_3=7, # 0111 ) for case, value in cases.items(): with self.subTest(case=case): with self.assertRaises(exceptions.ValidationError): field.clean(value, None) def test_bitmaskfield_write_and_read_from_db(self): cases = dict( empty=0, single=1, double=5, null=None, ) for case, value in cases.items(): with self.subTest(case=case): test_model = TestModel(bitmask=value) test_model.save() self.assertEqual(value, TestModel.objects.get(id=test_model.id).bitmask) def test_bitmaskfield_serialization_deserialization(self): cases = dict( none=None, regualar=42, ) for case, expected_value in cases.items(): with self.subTest(case=case): model = TestModel(bitmask=expected_value) serialized_data = serializers.serialize("xml", [model]) deserialized_data = list(serializers.deserialize('xml', serialized_data)) deserialized_model = deserialized_data[0].object self.assertEqual(expected_value, deserialized_model.bitmask) class BitmaskFormFieldTestCase(TestCase): def test_is_valid(self): cases = dict( empty=dict( data={}, is_valid=False, errors={'bitmask', 'bitmask_int'}, expected={}, ), blank=dict( data={'bitmask': [], 'bitmask_int': ''}, is_valid=False, errors={'bitmask', 'bitmask_int'}, expected={}, ), regular=dict( data={'bitmask': ['1'], 'bitmask_int': '42'}, is_valid=True, errors=set(), expected={'bitmask': 1, 'bitmask_int': 42}, ), ) for case, test_data in cases.items(): with self.subTest(case=case): form = TestForm(test_data['data']) self.assertEqual( test_data['is_valid'], form.is_valid(), form.errors.as_text(), ) self.assertFalse(test_data['errors'] ^ set(form.errors)) self.assertEqual(test_data['expected'], form.cleaned_data) def test_has_changed(self): cases = dict( empty=dict( initial=None, data={}, has_changed=False, ), scratch=dict( initial=None, data={'bitmask': ['1'], 'bitmask_int': '42'}, has_changed=True, ), changed=dict( initial={'bitmask': 1, 'bitmask_int': 42}, data={'bitmask': ['1', '4'], 'bitmask_int': '42'}, has_changed=True, ), not_changed=dict( initial={'bitmask': 1, 'bitmask_int': 42}, data={'bitmask': ['1'], 'bitmask_int': '42'}, has_changed=False, ), ) for case, test_data in cases.items(): with self.subTest(case=case): form = TestForm(test_data['data'], initial=test_data['initial']) self.assertEqual(test_data['has_changed'], form.has_changed()) def test_prepare_value(self): cases = dict( none=dict( initial_value=None, prepared_value=None, ), zero=dict( initial_value=0, prepared_value=0, ), prepared=dict( initial_value=['1', '4'], prepared_value=['1', '4'], ), single_value=dict( initial_value=32, prepared_value=[32], ), double_value=dict( initial_value=33, prepared_value=[1, 32], ), ) for case, test_data in cases.items(): with self.subTest(case=case): form_field = BitmaskFormField() self.assertEqual( test_data['prepared_value'], form_field.prepare_value(test_data['initial_value']), )
from flask import current_app as app from config.extensions import db class DFCluster(db.Model): """ DF Cluster uniquely identifies a Deepfence on-prem deployment. Unique ID, based on MAC address will be created based on rfc4122 recommendations. Once created, it will be persisted in database and will not change for the entire installation session """ id = db.Column(db.BigInteger, primary_key=True) def save(self, commit=True): db.session.add(self) if commit: try: db.session.commit() except: db.session.rollback() raise def __repr__(self): return "<DFCluster {}>".format(self.id)
def get_keytaps(target_set, key_capacity): le = len(target_set) if le>sum(key_capacity): return -1 buttons = len(key_capacity) target_set = sorted(target_set, reverse=True) key_capacity = sorted(key_capacity) multipliers = [ 1 for i in range(buttons) ] pointer = 0 keytaps = 0 for i in range(le): keytaps += multipliers[pointer]*target_set[i] multipliers[pointer] += 1 pointer += 1 if pointer==buttons : pointer = 0 return keytaps def main(): target_set = list(map(int,input().split())) key_capacity = list(map(int,input().split())) print(get_keytaps(target_set,key_capacity)) if __name__=='__main__': main()
def test_program_units(library): for program_unit in library.program_units: assert program_unit.program_unit_text def test_library_has_program_units(library): assert library.program_units
# -*- coding: utf-8 -*- """Export / Import of generic python models. This module defines generic filesystem format for python models and provides utilities for saving and loading to and from this format. The format is self contained in a sense that it includes all necessary information for anyone to load it and use it. Dependencies are either stored directly with the model or referenced via a conda environment. The convention for pyfunc models is to have a predict method or function with the following signature predict(data: pandas.DataFrame) -> pandas.DataFrame This convention is relied upon by other mlflow components. Pyfunc model format is defined as a directory structure containing all required data, code and configuration: ./dst-path/ ./MLmodel - config <code> - any code packaged with the model (specified in the conf file, see below) <data> - any data packaged with the model (specified in the conf file, see below) <env> - conda environment definition (specified in the conf file, see below) It must contain MLmodel file in its root with "python_function" format with the following parameters: - loader_module [required]: Python module that can load the model. Expected as module identifier e.g. ``mlflow.sklearn``, it will be imported via importlib.import_module. The imported module must contain function with the following signature: load_pyfunc(path: string) -> <pyfunc model> The path argument is specified by the data parameter and may refer to a file or directory. - code [optional]: relative path to a directory containing the code packaged with this model. All files and directories inside this directory are added to the python path prior to importing the model loader. - data [optional]: relative path to a file or directory containing model data. the path is passed to the model loader. - env [optional]: relative path to an exported conda environment. If present this environment should be activated prior to running the model. Example: ``` >tree example/sklearn_iris/mlruns/run1/outputs/linear-lr ├── MLmodel ├── code │   ├── sklearn_iris.py │   ├── data │   └── model.pkl └── mlflow_env.yml >cat example/sklearn_iris/mlruns/run1/outputs/linear-lr/MLmodel python_function: code: code data: data/model.pkl env: mlflow_env.yml main: sklearn_iris ``` Todo: * Get default conda_env of the project. """ import importlib import os import shutil import sys import pandas from mlflow import tracking from mlflow.models import Model from mlflow.utils.file_utils import TempDir FLAVOR_NAME = "python_function" MAIN = "loader_module" CODE = "code" DATA = "data" ENV = "env" def add_to_model(model, loader_module, data=None, code=None, env=None): """ Add pyfunc spec to the model configuration. Defines pyfunc configuration schema. Caller can use this to create a valid pyfunc model flavor out of an existing directory structure. For example, other model flavors can use this to specify how to use their output as a pyfunc. NOTE: all paths are relative to the exported model root directory. :param loader_module: :param model: Existing servable :param data: to the model data :param code: path to the code dependencies :param env: conda environment :return: updated model configuration. """ parms = {MAIN: loader_module} if code: parms[CODE] = code if data: parms[DATA] = data if env: parms[ENV] = env return model.add_flavor(FLAVOR_NAME, **parms) def load_pyfunc(path, run_id=None): """ Load model stored in python-function format. """ if run_id: path = tracking._get_model_log_dir(path, run_id) conf_path = os.path.join(path, "MLmodel") model = Model.load(conf_path) if FLAVOR_NAME not in model.flavors: raise Exception("Format '{format}' not found not in {path}.".format(format=FLAVOR_NAME, path=conf_path)) conf = model.flavors[FLAVOR_NAME] if CODE in conf and conf[CODE]: code_path = os.path.join(path, conf[CODE]) sys.path = [code_path] + _get_code_dirs(code_path) + sys.path data_path = os.path.join(path, conf[DATA]) if (DATA in conf) else path return importlib.import_module(conf[MAIN]).load_pyfunc(data_path) def _get_code_dirs(src_code_path, dst_code_path=None): if not dst_code_path: dst_code_path = src_code_path return [(os.path.join(dst_code_path, x)) for x in os.listdir(src_code_path) if not x.endswith(".py") and not x.endswith(".pyc") and not x == "__pycache__"] def spark_udf(spark, path, run_id=None, result_type="double"): """Returns a Spark UDF that can be used to invoke the python-function formatted model. Note that parameters passed to the UDF will be forwarded to the model as a DataFrame where the names are simply ordinals (0, 1, ...). Example: predict = mlflow.pyfunc.spark_udf(spark, "/my/local/model") df.withColumn("prediction", predict("name", "age")).show() Args: spark (SparkSession): a SparkSession object path (str): A path containing a pyfunc model. result_type (str): Spark UDF type returned by the model's prediction method. Default double """ # Scope Spark import to this method so users don't need pyspark to use non-Spark-related # functionality. from mlflow.pyfunc.spark_model_cache import SparkModelCache from pyspark.sql.functions import pandas_udf if run_id: path = tracking._get_model_log_dir(path, run_id) archive_path = SparkModelCache.add_local_model(spark, path) def predict(*args): model = SparkModelCache.get_or_load(archive_path) schema = {str(i): arg for i, arg in enumerate(args)} pdf = pandas.DataFrame(schema) result = model.predict(pdf) return pandas.Series(result) return pandas_udf(predict, result_type) def _copy_file_or_tree(src, dst, dst_dir): name = os.path.join(dst_dir, os.path.basename(os.path.abspath(src))) if dst_dir: os.mkdir(os.path.join(dst, dst_dir)) if os.path.isfile(src): shutil.copy(src=src, dst=os.path.join(dst, name)) else: shutil.copy_tree(src=src, dst=os.path.join(dst, name)) return name def save_model(dst_path, loader_module, data_path=None, code_path=(), conda_env=None, model=Model()): """Export model as a generic python-function model. Args: dst_path (str): path where the model is gonna be stored. loader_module (str): the module to be used to load the model. data_path (str): path to a file or directory containing model data. code_path (list[str]): list of paths (file or dir) contains code dependencies not present in the environment. every path in the code_path is added to the python path before the model is loaded. conda_env (str): path to the conda environment definition (.yml). This environment will be activated prior to running model code. Returns: model config (Servable) containing model info. :param dst_path: :param loader_module: :param data_path: :param code_path: :param conda_env: :param model: """ if os.path.exists(dst_path): raise Exception("Path '{}' already exists".format(dst_path)) os.makedirs(dst_path) code = None data = None env = None if data_path: model_file = _copy_file_or_tree(src=data_path, dst=dst_path, dst_dir="data") data = model_file if code_path: for path in code_path: _copy_file_or_tree(src=path, dst=dst_path, dst_dir="code") code = "code" if conda_env: shutil.copy(src=conda_env, dst=os.path.join(dst_path, "mlflow_env.yml")) env = "mlflow_env.yml" add_to_model(model, loader_module=loader_module, code=code, data=data, env=env) model.save(os.path.join(dst_path, 'MLmodel')) return model def log_model(artifact_path, **kwargs): """Export the model in python-function form and log it with current mlflow tracking service. Model is exported by calling @save_model and logs the result with @tracking.log_output_files """ with TempDir() as tmp: local_path = tmp.path(artifact_path) run_id = tracking.active_run().info.run_uuid if 'model' in kwargs: raise Exception("Unused argument 'model'. log_model creates a new model object") save_model(dst_path=local_path, model=Model(artifact_path=artifact_path, run_id=run_id), **kwargs) tracking.log_artifacts(local_path, artifact_path) def get_module_loader_src(src_path, dst_path): """ Generate python source of the model loader. Model loader contains load_pyfunc method with no parameters. It basically hardcodes model loading of the given model into a python source. This is done so that the exported model has no unnecessary dependencies on mlflow or any other configuration file format or parsing library. :param src_path: current path to the model :param dst_path: relative or absolute path where the model will be stored in the deployment environment :return: python source code of the model loader as string. """ conf_path = os.path.join(src_path, "MLmodel") model = Model.load(conf_path) if FLAVOR_NAME not in model.flavors: raise Exception("Format '{format}' not found not in {path}.".format(format=FLAVOR_NAME, path=conf_path)) conf = model.flavors[FLAVOR_NAME] update_path = "" if CODE in conf and conf[CODE]: src_code_path = os.path.join(src_path, conf[CODE]) dst_code_path = os.path.join(dst_path, conf[CODE]) code_path = ["os.path.abspath('%s')" % x for x in [dst_code_path] + _get_code_dirs(src_code_path, dst_code_path)] update_path = "sys.path = {} + sys.path; ".format("[%s]" % ",".join(code_path)) data_path = os.path.join(dst_path, conf[DATA]) if (DATA in conf) else dst_path return loader_template.format(update_path=update_path, main=conf[MAIN], data_path=data_path) loader_template = """ import importlib import os import sys def load_pyfunc(): {update_path}return importlib.import_module('{main}').load_pyfunc('{data_path}') """
#!/usr/bin/env python3 import __future__ import __main__ import _thread import abc import aifc import argparse import array import ast import asynchat import asyncio import asyncore import atexit import audioop import base64 import bdb import binascii import binhex import bisect import builtins import bz2 import calendar import cgi import cgitb import chunk import cmath import cmd import code import codecs import codeop import collections import collections.abc import colorsys import compileall import concurrent.futures import configparser import contextlib import contextvars import copy import copyreg import crypt import csv import ctypes import curses import curses.ascii import curses.panel import curses.textpad import dataclasses import datetime import dbm import decimal import difflib import dis import distutils import doctest import email import ensurepip import enum import errno import faulthandler import fcntl import filecmp import fileinput import fnmatch import formatter import fractions import ftplib import functools import gc import getopt import getpass import gettext import glob import graphlib import grp import gzip import hashlib import heapq import hmac import html import html.entities import html.parser import http import http.client import http.cookiejar import http.cookies import http.server import imaplib import imghdr import imp import importlib import inspect import io import ipaddress import itertools import json import keyword import linecache import locale import logging import logging.config import logging.handlers import lzma import mailbox import mailcap import marshal import math import mimetypes import mmap import modulefinder import msilib import msvcrt import multiprocessing import multiprocessing.shared_memory import netrc import nis import nntplib import numbers import operator import optparse import os import os.path import ossaudiodev import parser import pathlib import pdb import pickle import pickletools import pipes import pkgutil import platform import plistlib import poplib import posix import posixpath import pprint import pty import pwd import py_compile import pyclbr import pydoc import queue import quopri import random import re import readline import reprlib import resource import rlcompleter import runpy import sched import secrets import select import selectors import shelve import shlex import shutil import signal import site import smtpd import smtplib import sndhdr import socket import socketserver import spwd import sqlite3 import ssl import stat import statistics import string import stringprep import struct import subprocess import sunau import symbol import symtable import sys import sysconfig import syslog import tabnanny import tarfile import telnetlib import tempfile import termios import test import test.support import test.support.bytecode_helper import test.support.script_helper import test.support.socket_helper import textwrap import threading import time import timeit import tkinter import tkinter.colorchooser import tkinter.dnd import tkinter.font import tkinter.messagebox import tkinter.scrolledtext import tkinter.tix import tkinter.ttk import token import tokenize import trace import traceback import tracemalloc import tty import turtle import types import typing import unicodedata import unittest import unittest.mock import urllib import urllib.error import urllib.parse import urllib.request import urllib.response import urllib.robotparser import uu import uuid import venv import warnings import wave import weakref import webbrowser import winreg import winsound import wsgiref import xdrlib import xml.dom import xml.dom.minidom import xml.dom.pulldom import xml.etree.ElementTree import xml.parsers.expat import xml.sax import xml.sax.handler import xml.sax.saxutils import xml.sax.xmlreader import xmlrpc import xmlrpc.client import xmlrpc.server import zipapp import zipfile import zipimport import zlib import zoneinfo
import getopt import sys import string import os.path import jsonpickle import random from model.contact import Contact try: opts, args = getopt.getopt(sys.argv[1:], "n:f:", ["number of contacts", "file"]) except getopt.GetoptError: getopt.usage() sys.exit(2) n = 3 f = "data/contact.json" for o, a in opts: if o == "-n": n = int(a) elif o == "-f": f = a def random_string(prefix, max_length): symbols = string.ascii_letters + string.digits + string.punctuation + " " * 20 return prefix + "".join([random.choice(symbols) for i in range(random.randrange(max_length))]) # Using special pattern for phone numbers def random_phone(prefix): symbols = string.digits + " " * 10 + "(" * 10 + ")" * 10 + "-" * 10 return prefix + "".join([random.choice(symbols) for i in range(1, 21)]) # Using special pattern for emails def random_email(prefix, max_length): symbols = string.ascii_letters + string.digits + "_" * 10 username = "".join([random.choice(symbols) for i in range(random.randrange(max_length))]) domain = "".join([random.choice(symbols) for i in range(2, 21)]) extension = "".join([random.choice(string.ascii_letters) for i in range(3)]) return prefix + username + "@" + domain + "." + extension test_data = [Contact(first_name="", last_name="", address="", home_phone="", work_phone="", mobile_phone="", secondary_phone="", email="", email2="", email3="")] + [ Contact(first_name=random_string("firstname", 20), last_name=random_string("lastname", 20), address=random_string("address", 50), home_phone=random_phone("home_phone"), mobile_phone=random_phone("mobile_phone"), work_phone=random_phone("work_phone"), secondary_phone=random_phone("secondary_phone"), email=random_email("email", 30), email2=random_email("email2", 30), email3=random_email("email3", 30)) for i in range(n)] file = os.path.join(os.path.dirname(os.path.abspath(__file__)), "..", f) with open(file, "w") as out: jsonpickle.set_encoder_options("json", indent=2) out.write(jsonpickle.encode(test_data))
#-*- encoding:utf-8 -*- #搭建模型所需要的一些模块 import tensorflow as tf import os import h5py import numpy as np def encoder_lstm_layer(layer_inputs,sequence_lengths,num_units,initial_state,is_training = 'True',direction = 'bidirectional'): ''' Build a layer of lstm ''' ''' 参数解释: layer_inputs:[batch_size,T,?],Input of this layer sequence_lengths:[batch_size],Entered true length num_units:Number of hidden nodes in each layer of lstm initial_state:Initial state direction:Lstm direction of each layer ''' #The set environment is under the GPU, so CudnnLSTM is used ##cudnnlstm defaults to time-major, so you need to transform the entire input dimension inputs = tf.transpose(layer_inputs,[1,0,2]) if direction == 'bidirectional': cudnnlstm_layer = tf.contrib.cudnn_rnn.CudnnLSTM(num_layers = 1,num_units = num_units//2,direction = direction,kernel_initializer = tf.keras.initializers.Orthogonal()) else: cudnnlstm_layer = tf.contrib.cudnn_rnn.CudnnLSTM(num_layers = 1,num_units = num_units,direction = direction,kernel_initializer = tf.keras.initializers.Orthogonal()) outputs,state = cudnnlstm_layer(inputs,initial_state = initial_state,sequence_lengths = sequence_lengths) #Transform the dimensions of the generated outputs outputs = tf.transpose(outputs,[1,0,2]) return outputs,state def reshape_pyramidal(inputs,sequence_lengths): ''' Overlay the input frames so that the entire sequence can be downsampled 参数解释: inputs:[batch_size,T,?]Feature input sequence_lengths:[batch_size]The true length of this feature sequence This is proposed in the "Listen Attend and Spell" paper ''' shape = tf.shape(inputs) #Draw three dimensions batch_size,max_time = shape[0], shape[1] inputs_dim = inputs.get_shape().as_list()[-1] #The length of the sequence to be prevented is odd and cannot be divisible, so zero-padded operation is required pads = [[0,0],[0,tf.floormod(max_time,2)],[0,0]] padded_inputs = tf.pad(inputs, pads) #Reshape for frame overlay concat_outputs = tf.reshape(padded_inputs, (batch_size, -1, inputs_dim * 2)) concat_sequence_lengths = tf.floordiv(sequence_lengths, 2) + tf.floormod(sequence_lengths, 2) return concat_outputs, concat_sequence_lengths def rnn_cell(num_units): ''' Build a single layer of lstm num_units:Number of hidden nodes in this layer of lstm ''' cell = tf.nn.rnn_cell.LSTMCell(num_units) #cell = tf.contrib.cudnn_rnn.CudnnLSTM(num_layers = 1,num_units = num_units,direction = "unidirectional") return cell def attention_cell(decoder_cell,num_units,encoder_outputs,encoder_sequence_lengths): ''' Encapsulate decoder_cell using high-level api in tensorflow 参数解释: decoder_cell:Set up the lstm layer in the decoder num_units:Dimensions when calculating attention encoder_outputs:Encoding sequence from the encoder encoder_sequence_lengths:The actual length of the encoding sequence from the encoder ''' attention_mechanism = tf.contrib.seq2seq.BahdanauAttention(num_units = num_units, memory = encoder_outputs, memory_sequence_length = encoder_sequence_lengths, name = 'BahdanauAttention') #attention_layer_size:After generating the context and concat with the hidden state, it enters a fully connected layer with attention_layer_size return tf.contrib.seq2seq.AttentionWrapper(cell = decoder_cell, alignment_history = True, attention_mechanism = attention_mechanism, attention_layer_size = 256, output_attention = False) def compute_loss(logits,labels,labels_lengths,max_time): ''' Loss calculation during training 参数解释: logits:[batch_size,T,num_classes] labels:[batch_size,T] max_time:maximum true length in label Sequence_loss is used, so you need to set the mask according to the given sequence length ''' #First set a mask with tf.variable_scope('Loss'): target_weights = tf.sequence_mask(lengths = labels_lengths, maxlen = max_time, dtype = tf.float32, name = "loss_mask") loss = tf.contrib.seq2seq.sequence_loss(logits = logits, targets = labels, weights = target_weights, average_across_timesteps = True, average_across_batch = True) return loss def dense_to_sparse(tensor,eos_id): ''' Convert tensor to a specific sparse format Because when calculating tf.edit_distance, only sparse tensor is received ''' added_values = tf.cast(tf.fill((tf.shape(tensor)[0],1), eos_id), tensor.dtype) #Add eos to the entire tensor concat_tensor = tf.concat((tensor, added_values), axis = -1) #Find duplicate phonemes diff = tf.cast(concat_tensor[:,1:] - concat_tensor[:,:-1], tf.bool) eos_indices = tf.where(tf.equal(concat_tensor, eos_id)) #Find the position of the first eos in each decoded sequence first_eos = tf.segment_min(eos_indices[:,1],eos_indices[:, 0]) # mask = tf.sequence_mask(first_eos,maxlen = tf.shape(tensor)[1]) indices = tf.where(diff & mask & tf.not_equal(tensor, -1)) values = tf.gather_nd(tensor, indices) shape = tf.shape(tensor, out_type = tf.int64) return tf.SparseTensor(indices, values, shape) def compute_ler(logits,labels,eos_id): ''' During training, calculate the label error rate for each batch 参数解释: logits:[batch_size,T,num_classes] labels:[batch_size,T] ''' with tf.variable_scope('Ler'): predicted_ids = tf.to_int32(tf.arg_max(logits,-1)) hypothesis = dense_to_sparse(predicted_ids,eos_id) truth = dense_to_sparse(labels,eos_id) label_error_rate = tf.edit_distance(hypothesis, truth, normalize = True) return label_error_rate def feature_extract(path): ''' 从文件中提取特征,一般是从h5py文件中提取,key = 'feature' ''' audio_filename = os.path.abspath(path) feature_filename = audio_filename.split('.')[0] + '.feat' f = h5py.File(feature_filename, 'r') data = f.get('feature') data = np.array(data) f.close() return data def label_extract(path): ''' 从文件中提取label,一般是从h5py文件中提取,key = 'label' ''' audio_filename = os.path.abspath(path) label_filename = audio_filename.split('.')[0] + '.label' f = h5py.File(label_filename,'r') label = f.get('label') label = np.array(label) f.close() return label
# Generated by Django 3.0.7 on 2020-06-27 20:57 from django.conf import settings from django.db import migrations class Migration(migrations.Migration): dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ('entrymeasures', '0003_auto_20200623_2348'), ] operations = [ migrations.AlterUniqueTogether( name='entrymeasure', unique_together={('user', 'date_measure')}, ), ]
"""Python Script Template.""" from .adversarial_policy import AdversarialPolicy class JointPolicy(AdversarialPolicy): """Given a protagonist and an antagonist policy, combine to give a joint policy.""" def __init__(self, dim_action, action_scale, *args, **kwargs) -> None: super().__init__( dim_action=dim_action, action_scale=action_scale, *args, **kwargs ) def forward(self, state): """Forward compute the policy.""" p_dim = self.protagonist_policy.dim_action[0] a_dim = self.antagonist_policy.dim_action[0] p_mean, p_scale_tril = self.protagonist_policy(state) a_mean, a_scale_tril = self.antagonist_policy(state) p_std = p_scale_tril.diagonal(dim1=-1, dim2=-2) a_std = a_scale_tril.diagonal(dim1=-1, dim2=-2) if self.protagonist: h_mean = p_mean[..., p_dim:] h_std = p_std[..., p_dim:] elif self.antagonist: h_mean = a_mean[..., a_dim:] h_std = a_std[..., a_dim:] else: raise NotImplementedError if p_dim + a_dim < self.dim_action[0]: h_mean, h_scale_tril = self.hallucination_policy(state) h_std = h_scale_tril.diagonal(dim1=-1, dim2=-2) p_mean, p_std = p_mean[..., :p_dim], p_std[..., :p_dim] a_mean, a_std = a_mean[..., :a_dim], a_std[..., :a_dim] return self.stack_policies((p_mean, a_mean, h_mean), (p_std, a_std, h_std))
print ' -->> Lordran pack was invoked <<-- '
#!/usr/bin/env python import time import os import sys import numpy as np import socket from distributed import Client, LocalCluster import dask from collections import Counter # get our start time global st st=time.time() def test(i,j=10): # get pid, start time, host and sleep for j seconds pid=os.getpid() when=time.time()-st print("%6d %6.2f" % (pid,when)) time.sleep(j) back="%s %6.2f %s" % (str(os.getpid()),when,socket.gethostname()) return back def main(): #get command line arguments controling launch threads=1 workers=8 for x in sys.argv[1:] : if x.find("threads") > -1 : z=x.split("=") threads=int(z[1]) if x.find("workers") > -1 : z=x.split("=") workers=int(z[1]) # launch with either threads and/or workers specified (0 = default) if threads == 0 and workers != 0 : print("lanching %d workers, default threads" % (workers)) cluster = LocalCluster(n_workers=workers) if threads != 0 and workers == 0 : print("lanching %d threads, defalut workers" % (threads)) cluster = LocalCluster(threads_per_worker=threads) if threads != 0 and workers != 0 : print("lanching %d workers with %d threads" % (workers,threads)) cluster = LocalCluster(n_workers=workers,threads_per_worker=threads) print(cluster) client = Client(cluster) print(client) # do serial # NOTE: it is possible to launch an asynchronous client # but here we just do serial synchronous. See: # https://distributed.dask.org/en/latest/asynchronous.html result = [] print(" pid Start T") for i in range (0,5): j=2 result.append(client.submit(test,i,j).result()) print(result) print (Counter(result)) #do parallel n=15 np.random.seed(1234) x=np.random.random(n)*20 #set to uniform nonzero to get uniform run times for each task x=np.ones(n)*10 print(x) print(" pid Start T") L=client.map(test,range(n),x) mylist=client.gather(L) pids=[] for m in mylist: x=m.split()[0] pids.append(x) print(m) pids=sorted(set(pids)) print(len(pids),pids) if __name__ == '__main__': main()
from flask import Flask, render_template, request, jsonify from flask_cors import CORS from file_processing import write_file, read_lines app = Flask(__name__) CORS(app) @app.route('/') def index(): return render_template('index.html') @app.route('/save_result', methods = ['POST']) def save_result(): params = request.get_json() write_file(f"{params['player']} {params['bet']} {params['result']}") return jsonify(status='ok') @app.route('/show_results') def show_results(): return render_template('results.html', lines = read_lines())
import subprocess from acquisition import AcquisitionStep class AcquisitionForkStep(AcquisitionStep): """ Class to describe a fork acquisition step. Attributes: command_template (string): command template to execute """ command_template = None def add_extra_arguments(self, parser): parser.add_argument('--command-template', action='store', default=None, help='command template to execute ({PATH} string' 'will be replaced by the file fullpath, ' '{PLUGIN_DIR} by the full plugin dir path') def init(self): if self.args.command_template is None: raise Exception('you have to set a command-template') if "{PATH}" not in self.args.command_template: raise Exception('{PATH} is not in the command template') def get_command(self, filepath): return self.args.command_template.replace('{PATH}', filepath).\ replace('{PLUGIN_DIR}', self.get_plugin_directory_path()) def process(self, xaf): cmd = self.get_command(xaf.filepath) self.info("Calling %s ...", cmd) return_code = subprocess.call(cmd, shell=True) if return_code != 0: self.warning("%s returned a bad return code: %i", cmd, return_code) return (return_code == 0)
from .check import Check from .is_cls import Is __all__ = [Check, Is]
"""@package config Contains all config files necessary for simulator Rigid body configuration data """ from config.protobuf import * # Rigid Bodies --------------------------------------------------------------------------------------------------------- # Single Joint Robot # Base Link points_0 = [Point(x=0, y=0, z=0), Point(x=-100, y=0, z=0), Point(x=100, y=0, z=0)] lines_0 = [Line(point_0=points_0[1], point_1=points_0[2])] graphics_0 = Graphics(points=points_0, lines=lines_0) joints_0 = [Joint(type=JointType.REVOLUTE, index=0)] rigid_body_0 = RigidBody(index=0, name='base', graphics=graphics_0, is_fixed=True, joints=joints_0) # First Link points_1 = [Point(x=-100, y=0, z=0), Point(x=100, y=0, z=0)] lines_1 = [Line(point_0=points_1[0], point_1=points_1[1])] graphics_1 = Graphics(points=points_0, lines=lines_1) joints_1 = [Joint(type=JointType.REVOLUTE, index=0, xfm=Xfm(tx=-100)), Joint(type=JointType.REVOLUTE, index=1, xfm=Xfm(tx=100))] rigid_body_1 = RigidBody(index=1, name='first', graphics=graphics_1, joints=joints_1) # Second Link points_2 = [Point(x=-100, y=0, z=0), Point(x=100, y=0, z=0)] lines_2 = [Line(point_0=points_2[0], point_1=points_2[1])] graphics_2 = Graphics(points=points_2, lines=lines_2) joints_2 = [Joint(type=JointType.REVOLUTE, index=0, xfm=Xfm(tx=-100)), Joint(type=JointType.REVOLUTE, index=1, xfm=Xfm(tx=100))] rigid_body_2 = RigidBody(index=2, name='second', graphics=graphics_2, joints=joints_2) # Third Link points_3 = [Point(x=-100, y=0, z=0), Point(x=100, y=0, z=0)] lines_3 = [Line(point_0=points_3[0], point_1=points_3[1])] graphics_3 = Graphics(points=points_3, lines=lines_3) joints_3 = [Joint(type=JointType.REVOLUTE, index=0, xfm=Xfm(tx=-100)), Joint(type=JointType.REVOLUTE, index=1, xfm=Xfm(tx=100))] rigid_body_3 = RigidBody(index=3, name='third', graphics=graphics_3, joints=joints_3) # Fourth Link points_4 = [Point(x=-100, y=0, z=0), Point(x=100, y=0, z=0)] lines_4 = [Line(point_0=points_4[0], point_1=points_4[1])] graphics_4 = Graphics(points=points_4, lines=lines_4) joints_4 = [Joint(type=JointType.REVOLUTE, index=0, xfm=Xfm(tx=-100)), Joint(type=JointType.REVOLUTE, index=1, xfm=Xfm(tx=100))] rigid_body_4 = RigidBody(index=4, name='fourth', graphics=graphics_4, joints=joints_4) # Fifth Link points_5 = [Point(x=-100, y=0, z=0), Point(x=100, y=0, z=0)] lines_5 = [Line(point_0=points_5[0], point_1=points_5[1])] graphics_5 = Graphics(points=points_5, lines=lines_5) joints_5 = [Joint(type=JointType.REVOLUTE, index=0, xfm=Xfm(tx=-100)), Joint(type=JointType.REVOLUTE, index=1, xfm=Xfm(tx=100))] rigid_body_5 = RigidBody(index=5, name='fifth', graphics=graphics_5, joints=joints_5) # Sixth Link points_6 = [Point(x=-100, y=0, z=0), Point(x=100, y=0, z=0)] lines_6 = [Line(point_0=points_6[0], point_1=points_6[1])] graphics_6 = Graphics(points=points_6, lines=lines_6) joints_6 = [Joint(type=JointType.REVOLUTE, index=0, xfm=Xfm(tx=-100)), Joint(type=JointType.REVOLUTE, index=1, xfm=Xfm(tx=100))] rigid_body_6 = RigidBody(index=6, name='sixth', graphics=graphics_6, joints=joints_6) # Seventh Link points_7 = [Point(x=-100, y=0, z=0), Point(x=100, y=0, z=0)] lines_7 = [Line(point_0=points_1[0], point_1=points_7[1])] graphics_7 = Graphics(points=points_7, lines=lines_7) joints_7 = [Joint(type=JointType.REVOLUTE, index=0, xfm=Xfm(tx=-100)), Joint(type=JointType.REVOLUTE, index=1, xfm=Xfm(tx=100))] rigid_body_7 = RigidBody(index=7, name='seventh', graphics=graphics_7, joints=joints_7) # Eight Link points_8 = [Point(x=-100, y=0, z=0), Point(x=100, y=0, z=0)] lines_8 = [Line(point_0=points_8[0], point_1=points_8[1])] graphics_8 = Graphics(points=points_8, lines=lines_8) joints_8 = [Joint(type=JointType.REVOLUTE, index=0, xfm=Xfm(tx=-100)), Joint(type=JointType.REVOLUTE, index=1, xfm=Xfm(tx=100))] rigid_body_8 = RigidBody(index=8, name='eight', graphics=graphics_8, joints=joints_8) # Rigid Body System ---------------------------------------------------------------------------------------------------- rigid_bodies = [rigid_body_0, rigid_body_1, rigid_body_2, rigid_body_3, rigid_body_4, rigid_body_5, rigid_body_6, rigid_body_7, rigid_body_8] mates = [ Mate(index=0, bearing_rigid_body_index=0, bearing_joint_index=0, shaft_rigid_body_index=1, shaft_joint_index=0), Mate(index=1, bearing_rigid_body_index=1, bearing_joint_index=1, shaft_rigid_body_index=2, shaft_joint_index=0), Mate(index=2, bearing_rigid_body_index=1, bearing_joint_index=1, shaft_rigid_body_index=3, shaft_joint_index=0), Mate(index=3, bearing_rigid_body_index=3, bearing_joint_index=1, shaft_rigid_body_index=4, shaft_joint_index=0), Mate(index=4, bearing_rigid_body_index=2, bearing_joint_index=1, shaft_rigid_body_index=5, shaft_joint_index=0), Mate(index=5, bearing_rigid_body_index=3, bearing_joint_index=1, shaft_rigid_body_index=6, shaft_joint_index=0), Mate(index=6, bearing_rigid_body_index=2, bearing_joint_index=1, shaft_rigid_body_index=7, shaft_joint_index=0), Mate(index=7, bearing_rigid_body_index=8, bearing_joint_index=1, shaft_rigid_body_index=0, shaft_joint_index=0)] sample_robot = RigidBodySystem(index=0, name='robot', rigid_bodies=rigid_bodies, mates=mates)
import sys, os from time import sleep import numpy ############ projectroot=os.path.split(os.getcwd())[0] sys.path.append(projectroot) sys.path.append(os.path.join(projectroot,'QtForms')) sys.path.append(os.path.join(projectroot,'AuxPrograms')) sys.path.append(os.path.join(projectroot,'OtherApps')) from CreateExperimentApp import expDialog from CalcFOMApp import calcfomDialog from VisualizeDataApp import visdataDialog from VisualizeBatchFcns import choosexyykeys from fcns_io import * from fcns_ui import * from SaveImagesApp import * from DBPaths import * class MainMenu(QMainWindow): def __init__(self, previousmm, execute=True):#, TreeWidg): super(MainMenu, self).__init__(None) self.setWindowTitle('HTE Experiment and FOM Data Processing') self.expui=expDialog(self, title='Create/Edit an Experiment') self.calcui=calcfomDialog(self, title='Calculate FOM from EXP', guimode=False) self.visdataui=visdataDialog(self, title='Visualize Raw, Intermediate and FOM data', GUIMODE=False) def visui_exec(self, show=True): if self.visdataui is None: self.visdataui=visdataDialog(self, title='Visualize Raw, Intermediate and FOM data') if show: self.visdataui.show() def visexpana(self, anafiledict=None, anafolder=None, experiment_path=None, show=True): self.visui_exec(show=show) if not (anafiledict is None or anafolder is None): self.visdataui.importana(anafiledict=anafiledict, anafolder=anafolder) elif not experiment_path is None: self.visdataui.importexp(experiment_path=experiment_path) # def openwindow(): # form.show() # form.setFocus() # form.calcui.show() # mainapp.exec_() # expui=form.expui # visdataui=form.visdataui def select_ana_fcn(calcui, analabel): calcui.FOMProcessNamesComboBox.setCurrentIndex(0) cb = calcui.AnalysisNamesComboBox # print cb.count() for i in range(1, int(cb.count())): # print (str(cb.itemText(i)).partition('(')[0].partition('__')[2]) if (str(cb.itemText(i)).partition('(')[0].partition('__')[2]) == analabel: cb.setCurrentIndex(i) calcui.getactiveanalysisclass() return True return False def select_procana_fcn(calcui, analabel): cb = calcui.FOMProcessNamesComboBox # print cb.count() for i in range(1, int(cb.count())): # print (str(cb.itemText(i)).partition('(')[0].partition('__')[2]) if (str(cb.itemText(i)).partition('(')[0].partition('__')[2]) == analabel: cb.setCurrentIndex(i) calcui.getactiveanalysisclass() return True return False def updateanalysisparams(calcui, paramd): calcui.analysisclass.params.update(paramd) calcui.processeditedparams() # calcui.analysisclass.processnewparams(calcFOMDialogclass=calcui) def select_techtype(searchstr): qlist = calcui.TechTypeButtonGroup.buttons() typetechfound = False for button in qlist: if searchstr in str(button.text()).strip(): button.setChecked(True) typetechfound = True break calcui.fillanalysistypes(calcui.TechTypeButtonGroup.checkedButton()) if not typetechfound: calcui.exec_() raiseerror def plot_new_fom(visdataui, fom_name): cb = visdataui.fomplotchoiceComboBox # print cb.count() for i in range(0, int(cb.count())): # print(str(cb.itemText(i)).partition('(')[0].partition('__')[2]) if str(cb.itemText(i)) == fom_name: cb.setCurrentIndex(i) visdataui.filterandplotfomdata() return True return False runfoldername = None expsaveextension = '.done' anasaveextension = '.run' # providing these paths will skip the generation of the exp/ana expname = None expdestchoice = 'eche' anadestchoice = 'eche' # explst = [ # ('L:/processes/experiment/eche/20190501.125714.copied-20190501221215867PDT/20190501.125714.exp', (0.48, 1.0), (0.5, 1.0)), # 7 # ('L:/processes/experiment/eche/20190416.140535.copied-20190416220707052PDT/20190416.140535.exp', (0.48, 1.0), (0.5, 1.0)), # 7 # ('L:/processes/experiment/eche/20190415.115538.copied-20190415220556175PDT/20190415.115538.exp', (0.48, 1.0), (0.5, 1.0)), # 7 # ('L:/processes/experiment/eche/20180411.141724.copied-20180411220901744PDT/20180411.141724.exp', (0.48, 1.0), (0.5, 1.0)), # 3 # ('L:/processes/experiment/eche/20180411.152214.copied-20180411220901744PDT/20180411.152214.exp', (0.48, 1.0), (0.5, 1.0)), # 3 # ('L:/processes/experiment/eche/20180411.154249.copied-20180411220901744PDT/20180411.154249.exp', (0.48, 1.0), (0.5, 1.0)), # 3 # ('L:/processes/experiment/eche/20170828.170010.copied-20170828220902243PDT/20170828.170010.exp', (0.48, 0.9), (0.5, 0.9)), # 9 # ('L:/processes/experiment/eche/20170828.165552.copied-20170828220902243PDT/20170828.165552.exp', (0.48, 0.9), (0.5, 0.9)), # 9 # ('L:/processes/experiment/eche/20170828.165831.copied-20170828220902243PDT/20170828.165831.exp', (0.48, 0.9), (0.5, 0.9)), # 9 # ('L:/processes/experiment/eche/20170823.145121.copied-20170823194838230PDT/20170823.145121.exp', (0.32, 0.6), (0.35, 0.65)), # 13 # ('L:/processes/experiment/eche/20170823.143138.copied-20170823194838230PDT/20170823.143138.exp', (0.32, 0.6), (0.35, 0.65)), # 13 # ('L:/processes/experiment/eche/20170823.151056.copied-20170823194838230PDT/20170823.151056.exp', (0.32, 0.6), (0.35, 0.65)) # 13 # ] # explst = [ # ('L:/processes/experiment/eche/20190814.210551.done/20190814.210551.exp', (0.32, 0.6), (0.35, 0.65)), # 13 # ] # explst = [ # ('L:/processes/experiment/eche/20190819.120802.done/20190819.120802.exp', (0.48, 1.0), (0.5, 1.0)), # ('L:/processes/experiment/eche/20190819.120931.done/20190819.120931.exp', (0.48, 1.0), (0.5, 1.0)) # ] # 9/20 update TRI dataset # explst = [ # ('L:/processes/experiment/eche/20161208.093513.copied-20161208221238642PST/20161208.093513.exp', # (0.32, 0.6), (0.35, 0.65)), # ('L:/processes/experiment/eche/20160705.085609.copied-20160705220726116PDT/20160705.085609.exp', # (0.32, 0.6), (0.35, 0.65)), # ('L:/processes/experiment/eche/20170301.101901.copied-20170308132955800PST/20170301.101901.exp', # (0.32, 0.6), (0.35, 0.65)), # ('L:/processes/experiment/eche/20190520.161947.copied-20190520221254058PDT/20190520.161947.exp', # (0.32, 0.6), (0.35, 0.65)), # ('L:/processes/experiment/eche/20170823.145121.copied-20170823194838230PDT/20170823.145121.exp', # (0.32, 0.6), (0.35, 0.65)), # ] # 9/20 reprocess 4098 # explst = [ # ('L:/processes/experiment/eche/20190920.110322.done/20190920.110322.exp', # (0.32, 0.6), (0.35, 0.65)), # ] # 9/20 reprocess pH < 13 # explst = [ # ('L:/processes/experiment/eche/20160314.112931.copied-20160314220326441PDT/20160314.112931.exp', (0.48, 1), (0.5, 1)), # ('L:/processes/experiment/eche/20160721.085158.copied-20160727063023665PDT/20160721.085158.exp', (0.48, 1), (0.5, 1)), # ('L:/processes/experiment/eche/20190520.162751.copied-20190520221254058PDT/20190520.162751.exp', (0.48, 1), (0.5, 1)), # ('L:/processes/experiment/eche/20190304.154816.copied-20190304221211247PST/20190304.154816.exp', (0.48, 1), (0.5, 1)), # ('L:/processes/experiment/eche/20180411.141724.copied-20180411220901744PDT/20180411.141724.exp', (0.48, 1), (0.5, 1)), # ('L:/processes/experiment/eche/20170301.110115.copied-20170308132955800PST/20170301.110115.exp', (0.48, 1), (0.5, 1)), # ('L:/processes/experiment/eche/20180411.154249.copied-20180411220901744PDT/20180411.154249.exp', (0.48, 1), (0.5, 1)), # ('L:/processes/experiment/eche/20180411.152214.copied-20180411220901744PDT/20180411.152214.exp', (0.48, 1), (0.5, 1)), # ('L:/processes/experiment/eche/20190819.120802.copied-20190821054206716PDT/20190819.120802.exp', (0.48, 1), (0.5, 1)), # ('L:/processes/experiment/eche/20190913.110534.copied-20190913220646905PDT/20190913.110534.exp', (0.48, 1), (0.5, 1)), # ('L:/processes/experiment/eche/20190819.120931.copied-20190821054206716PDT/20190819.120931.exp', (0.48, 1), (0.5, 1)), # ('L:/processes/experiment/eche/20161114.153016.copied-20161114220507745PST/20161114.153016.exp', (0.48, 1), (0.5, 1)), # ('L:/processes/experiment/eche/20160314.151855.copied-20160314220326441PDT/20160314.151855.exp', (0.48, 1), (0.5, 1)), # ('L:/processes/experiment/eche/20190304.151422.copied-20190304221211247PST/20190304.151422.exp', (0.48, 1), (0.5, 1)), # ('L:/processes/experiment/eche/20160720.163219.copied-20160727063023665PDT/20160720.163219.exp', (0.48, 1), (0.5, 1)), # ('L:/processes/experiment/eche/20170228.142848.copied-20170301220342337PST/20170228.142848.exp', (0.48, 1), (0.5, 1)), # ('L:/processes/experiment/eche/20170328.101615.copied-20170328220334394PDT/20170328.101615.exp', (0.48, 1), (0.5, 1)), # ('L:/processes/experiment/eche/20190920.225000.done/20190920.225000.exp', (0.48, 1), (0.5, 1)), # ('L:/processes/experiment/eche/20190430.140031.copied-20190430220754109PDT/20190430.140031.exp', (0.48, 1), (0.5, 1)), # ('L:/processes/experiment/eche/20190812.142046.copied-20190814002507232PDT/20190812.142046.exp', (0.48, 1), (0.5, 1)), # ('L:/processes/experiment/eche/20190812.140146.copied-20190814002507232PDT/20190812.140146.exp', (0.48, 1), (0.5, 1)), # ('L:/processes/experiment/eche/20190920.163109.done/20190920.163109.exp', (0.48, 1), (0.5, 1)), # ('L:/processes/experiment/eche/20160308.105918.copied-20160308220226709PST/20160308.105918.exp', (0.48, 0.9), (0.5, 0.9)), # ('L:/processes/experiment/eche/20161114.133636.copied-20161114220507745PST/20161114.133636.exp', (0.48, 0.9), (0.5, 0.9)), # ('L:/processes/experiment/eche/20190520.161823.copied-20190520221254058PDT/20190520.161823.exp', (0.48, 0.9), (0.5, 0.9)), # ('L:/processes/experiment/eche/20170828.165831.copied-20170828220902243PDT/20170828.165831.exp', (0.48, 0.9), (0.5, 0.9)), # ('L:/processes/experiment/eche/20190920.162750.done/20190920.162750.exp', (0.48, 0.9), (0.5, 0.9)), # ('L:/processes/experiment/eche/20160418.172947.copied-20160418220703150PDT/20160418.172947.exp', (0.32, 0.6), (0.35, 0.65)), # ('L:/processes/experiment/eche/20170823.143138.copied-20170823194838230PDT/20170823.143138.exp', (0.32, 0.6), (0.35, 0.65)), # ('L:/processes/experiment/eche/20190814.210551.copied-20190816111512496PDT/20190814.210551.exp', (0.32, 0.6), (0.35, 0.65)), # ('L:/processes/experiment/eche/20190920.163245.done/20190920.163245.exp', (0.32, 0.6), (0.35, 0.65)) # ] explst = [ ('L:/processes/experiment/eche/20190920.234643.done/20190920.234643.exp', (0.48, 0.9), (0.5, 0.9)), ('L:/processes/experiment/eche/20190920.235421.done/20190920.235421.exp', (0.48, 1.0), (0.5, 1.0)) ] for exp, lim1, lim2 in explst: mainapp = QApplication(sys.argv) form = MainMenu(None) calcui = form.calcui visdataui=form.visdataui try: calcui.importexp(exppath=exp) select_techtype('CP3') select_procana_fcn(calcui, '') select_ana_fcn(calcui, 'Etaave') calcui.analysisclass.params['num_std_dev_outlier'] = 1.5 calcui.processeditedparams() calcui.analyzedata() select_techtype('CP3') select_procana_fcn(calcui, 'FOM_Merge_PlatemapComps') calcui.analysisclass.params['select_ana'] = 'ana__1' calcui.processeditedparams() calcui.analyzedata() select_techtype('CP3') select_procana_fcn(calcui, 'CDEF') calcui.analysisclass.params['select_ana'] = 'ana__2' calcui.processeditedparams() calcui.batch_process_allsubspace() select_techtype('CP4') select_procana_fcn(calcui, '') select_ana_fcn(calcui, 'Etaave') calcui.analysisclass.params['num_std_dev_outlier'] = 1.5 calcui.processeditedparams() calcui.analyzedata() select_techtype('CP4') select_procana_fcn(calcui, 'FOM_Merge_PlatemapComps') calcui.analysisclass.params['select_ana'] = 'ana__18' calcui.processeditedparams() calcui.analyzedata() select_techtype('CP4') select_procana_fcn(calcui, 'CDEF') calcui.analysisclass.params['select_ana'] = 'ana__19' calcui.processeditedparams() calcui.batch_process_allsubspace() anasavefolder = calcui.saveana( dontclearyet=True, anatype=anadestchoice, rundone=anasaveextension) calcui.viewresult(anasavefolder=anasavefolder, show=False) comboind_strlist=[] for i in range(1, visdataui.numStdPlots+1): visdataui.stdcsvplotchoiceComboBox.setCurrentIndex(i) comboind_strlist+=[(i, str(visdataui.stdcsvplotchoiceComboBox.currentText()))] batchidialog=saveimagesbatchDialog(visdataui, comboind_strlist) batchidialog.plotstyleoverrideCheckBox.setChecked(1) inds=numpy.where(numpy.logical_not(numpy.isnan(visdataui.fomplotd['fom'])))[0] if len(inds)>0: samplestoplot=list(visdataui.fomplotd['sample_no'][inds]) filterinds=[ind for ind, smp in enumerate(visdataui.fomplotd['sample_no']) if smp in samplestoplot] for k in visdataui.fomplotd.keys(): if isinstance(visdataui.fomplotd[k], numpy.ndarray): visdataui.fomplotd[k]=visdataui.fomplotd[k][filterinds] for i in range(1, 35): visdataui.stdcsvplotchoiceComboBox.setCurrentIndex(i) visdataui.numcompintervalsSpinBox.setValue(10) if i<18: vmin, vmax = lim1 else: vmin, vmax = lim2 visdataui.vminmaxLineEdit.setText('%.3f,%.3f' %(vmin, vmax)) if i == 2 or i == 19: continue if i==1 or i==18: filenamesearchlist=['plate_id'] else: filenamesearchlist=['code__-1'] filenamesearchlist=[s.strip() for s in filenamesearchlist if (len(s.strip())>0) and s!='&'] if len(filenamesearchlist)==0: filenamesearchlist=None else: filenamesearchlist=[[sv.strip() for sv in s.split('&') if len(sv.strip())>0] for s in filenamesearchlist if len(s.strip())>0] visdataui.plot_preparestandardplot(loadstyleoptions=True)# or logic for ,-delim and and logic within each or block with &-delim visdataui.savefigs(save_all_std_bool=True, batchidialog=batchidialog, filenamesearchlist=filenamesearchlist, lastbatchiteration=(i==32))#for std plots all foms will be from same ana__ and prepend str will be filled in automatically visdataui.close() sleep(0.5) calcui.close() sleep(0.5) mainapp.quit() sleep(0.5) del visdataui del calcui del mainapp except: visdataui.close() sleep(0.5) calcui.close() sleep(0.5) mainapp.quit() sleep(0.5) del visdataui del calcui del mainapp
#!/usr/bin/env python3 import wpilib import ctre from magicbot import MagicRobot from robotpy_ext.autonomous.selector import AutonomousModeSelector from networktables import NetworkTables from networktables.util import ntproperty from rev.color import ColorSensorV3, ColorMatch from components import swervedrive, swervemodule, shooter, wof from common import color_sensor, vision from collections import namedtuple # Get the config preset from the swervemodule ModuleConfig = swervemodule.ModuleConfig class MyRobot(MagicRobot): """ After creating low-level components like "shooter", use component's name and an underscore to inject objects to the component. e.g. Using variable annotation like "shooter_beltMotor: ctre.WPI_VictorSPX" decleares the type of the variable. When beltMotor is called from the shooter component, it's going to be a VictorSPX object. Using equal sign for variable decleration like "shooter_beltMotor = ctre.WPI_VictorSPX(11)" creates the actual object. When beltMotor is called from the shooter component, it's going to be a VictorSPX at the can port 11. Use the equal sign (mostly) in the #createObjects function so they can be correctly injected to their parent components. For more info refer to https://robotpy.readthedocs.io/en/stable/frameworks/magicbot.html """ # Create low-level object drive: swervedrive.SwerveDrive shooter: shooter.Shooter wof: wof.WheelOfFortune frontLeftModule: swervemodule.SwerveModule frontRightModule: swervemodule.SwerveModule rearLeftModule: swervemodule.SwerveModule rearRightModule: swervemodule.SwerveModule # Create configs for each module. This is before #createObjects because modules need these configs to be initialized. frontLeftModule_cfg = ModuleConfig(sd_prefix='FrontLeft_Module', zero=2.97, inverted=True, allow_reverse=True) frontRightModule_cfg = ModuleConfig(sd_prefix='FrontRight_Module', zero=2.69, inverted=False, allow_reverse=True) rearLeftModule_cfg = ModuleConfig(sd_prefix='RearLeft_Module', zero=0.18, inverted=True, allow_reverse=True) rearRightModule_cfg = ModuleConfig(sd_prefix='RearRight_Module', zero=4.76, inverted=False, allow_reverse=True) # Decleare motors for the shooter component shooter_leftShooterMotor: ctre.WPI_VictorSPX shooter_rightShooterMotor: ctre.WPI_VictorSPX shooter_intakeMotor: ctre.WPI_VictorSPX shooter_beltMotor: ctre.WPI_VictorSPX # Create common components vision: vision.Vision colorSensor: color_sensor.ColorSensor def createObjects(self): """ This is where all the components are actually created with "=" sign. Components with a parent prefix like "shooter_" will be injected. """ # SmartDashboard self.sd = NetworkTables.getTable('SmartDashboard') # Gamepad self.gamempad = wpilib.Joystick(0) self.gamempad2 = wpilib.Joystick(1) # Drive Motors self.frontLeftModule_driveMotor = ctre.WPI_VictorSPX(5) self.frontRightModule_driveMotor = ctre.WPI_VictorSPX(8) self.rearLeftModule_driveMotor = ctre.WPI_VictorSPX(4) self.rearRightModule_driveMotor = ctre.WPI_VictorSPX(9) # Rotate Motors self.frontLeftModule_rotateMotor = ctre.WPI_VictorSPX(3) self.frontRightModule_rotateMotor = ctre.WPI_VictorSPX(14) self.rearLeftModule_rotateMotor = ctre.WPI_VictorSPX(2) self.rearRightModule_rotateMotor = ctre.WPI_VictorSPX(15) # Encoders self.frontLeftModule_encoder = wpilib.AnalogInput(0) self.frontRightModule_encoder = wpilib.AnalogInput(3) self.rearLeftModule_encoder = wpilib.AnalogInput(1) self.rearRightModule_encoder = wpilib.AnalogInput(2) # Shooter self.shooter_leftShooterMotor = ctre.WPI_VictorSPX(6) self.shooter_rightShooterMotor = ctre.WPI_VictorSPX(7) self.shooter_beltMotor = ctre.WPI_VictorSPX(11) self.shooter_intakeMotor = ctre.WPI_VictorSPX(0) # Wheel of Fortune self.wof_motor = ctre.WPI_VictorSPX(13) # Climber self.climbingMotor = ctre.WPI_VictorSPX(10) self.hookMotor = ctre.WPI_VictorSPX(1) # Color Sensor self.colorSensor = color_sensor.ColorSensor() # Vision self.vision = vision.Vision() # Limit Switch self.switch = wpilib.DigitalInput(0) # PDP self.pdp = wpilib.PowerDistributionPanel(0) def disabledPeriodic(self): # Update the dashboard, even when the robot is disabled. self.update_sd() def autonomousInit(self): # Reset the drive when the auto starts. self.drive.flush() self.drive.threshold_input_vectors = True def autonomous(self): # For auto, use MagicBot's auto mode. # This will load the ./autonomous folder. super().autonomous() def teleopInit(self): # Reset the drive when the teleop starts. self.drive.flush() self.drive.squared_inputs = True self.drive.threshold_input_vectors = True def move(self, x, y, rcw): """ This function is ment to be used by the teleOp. :param x: Velocity in x axis [-1, 1] :param y: Velocity in y axis [-1, 1] :param rcw: Velocity in z axis [-1, 1] """ if self.gamempad.getRawButton(3): # If the button is pressed, lower the rotate speed. rcw *= 0.7 self.drive.move(x, y, rcw) def teleopPeriodic(self): # Drive self.move(self.gamempad.getRawAxis(5), self.gamempad.getRawAxis(4), self.gamempad.getRawAxis(0)) # Lock if self.gamempad.getRawButton(1): self.drive.request_wheel_lock = True # Vectoral Button Drive if self.gamempad.getPOV() == 0: self.drive.set_raw_fwd(-0.35) elif self.gamempad.getPOV() == 180: self.drive.set_raw_fwd(0.35) elif self.gamempad.getPOV() == 90: self.drive.set_raw_strafe(0.35) elif self.gamempad.getPOV() == 270: self.drive.set_raw_strafe(-0.35) # Climber if self.gamempad2.getRawButton(1): self.climbingMotor.set(1) else: self.climbingMotor.set(0) # Hook if self.gamempad2.getRawAxis(5) < 0 and not self.switch.get(): self.hookMotor.set(self.gamempad2.getRawAxis(5)) elif self.gamempad2.getRawAxis(5) > 0: self.hookMotor.set(self.gamempad2.getRawAxis(5)) else: self.hookMotor.set(0) # Shooter if self.gamempad.getRawAxis(3) > 0: self.shooter.shoot() elif self.gamempad.getRawButton(6): self.shooter.align() elif self.gamempad.getRawButton(5) or self.gamempad2.getRawAxis(2) > 0: self.shooter.unload() elif self.gamempad.getRawAxis(2) > 0 or self.gamempad2.getRawAxis(3) > 0: self.shooter.intake() else: self.shooter.stop() # WoF if self.gamempad2.getRawButton(3): self.wof.handleFirstStage() elif self.gamempad2.getRawButton(2): self.wof.handleSecondStage() elif self.gamempad2.getRawButton(4): self.wof.reset() elif self.gamempad2.getRawButton(5): self.wof.manualTurn(1) elif self.gamempad2.getRawButton(6): self.wof.manualTurn(-1) else: self.wof.manualTurn(0) # Update smartdashboard self.update_sd() def update_sd(self): """ Calls each component's own update function and puts data to the smartdashboard. """ self.sd.putNumber('Climb_Current_Draw', self.pdp.getCurrent(10)) self.drive.update_smartdash() self.colorSensor.updateSD() self.wof.updateSD() self.vision.updateTable() if __name__ == "__main__": wpilib.run(MyRobot)
# N = int(input()) # A = [0] * N # B = [0] * N # for k in range(N): # A[k] = int(input()) # for k in range(N): # B[k] = A[k] # # print(B) # def array_search(A: list, N: int, x: int): """ Осуществляет поиск числа x в массиве A от 0 до N-1 индекса включительно. Возвращает индекс элемента x в массиве A. Или -1, если такого нет. Если в массиве несколько одинаковых элементов, равных x, то вернуть индекс первого по счёту. :param A: :param N: :param x: :return: """ for k in range(N): if A[k] == x: return k return -1 def test_array_search(): A1 = [1, 2, 3, 4, 5] m = array_search(A1, 5, 8) if m == -1: print("#test1 - ok") else: print("#test1 - false") A2 = [-1, -2, -3, -4, -5] m = array_search(A2, 5, -3) if m == 2: print("#test2 - ok") else: print("#test2 - false") A3 = [10, 20, 30, 10, 10] m = array_search(A3, 5, 10) if m == 0: print("#test3 - ok") else: print("#test3 - false") test_array_search()
""" SPDX-License-Identifier: Apache-2.0 Copyright 2021 Sergio Correia (scorreia@redhat.com), Red Hat, Inc. """ import json as json_module from typing import IO, Any, Dict, List, Union JSONType = Union[str, int, float, bool, None, Dict[str, Any], List[Any]] _list_types = [list, tuple] try: from sqlalchemy.engine.row import Row # sqlalchemy >= 1.4. _list_types.append(Row) except ModuleNotFoundError: try: from sqlalchemy.engine import RowProxy _list_types.append(RowProxy) except ModuleNotFoundError: pass def bytes_to_str(data: Any) -> Any: if isinstance(data, (bytes, bytearray)): data = data.decode("utf-8") elif isinstance(data, dict): for _k, _v in data.items(): data[_k] = bytes_to_str(_v) elif isinstance(data, tuple(_list_types)): _l = list(data) for _k, _v in enumerate(_l): _l[_k] = bytes_to_str(_v) data = _l return data def dumps(obj: JSONType, **kwargs: Any) -> str: try: ret = json_module.dumps(obj, **kwargs) except TypeError: # dumps() from the built-it json module does not work with bytes, # so let's convert those to str if we get a TypeError exception. ret = json_module.dumps(bytes_to_str(obj), **kwargs) return ret def dump(obj: JSONType, fp: IO[str], **kwargs: Any) -> None: try: json_module.dump(obj, fp, **kwargs) except TypeError: # dump() from the built-it json module does not work with bytes, # so let's convert those to str if we get a TypeError exception. json_module.dump(bytes_to_str(obj), fp, **kwargs) def load(fp: Any, **kwargs: Any) -> Any: return json_module.load(fp, **kwargs) def loads(s: Union[str, bytes], **kwargs: Any) -> Any: return json_module.loads(s, **kwargs) # JSON pickler that fulfills SQLAlchemy requirements, from # social-storage-sqlalchemy. # https://github.com/python-social-auth/social-storage-sqlalchemy/commit/39d129 class JSONPickler: """JSON pickler wrapper around json lib since SQLAlchemy invokes dumps with extra positional parameters""" @classmethod def dumps(cls, value: JSONType, *_args: Any, **_kwargs: Any) -> str: # pylint: disable=unused-argument """Dumps the python value into a JSON string""" return dumps(value) @classmethod def loads(cls, value: Union[str, bytes]) -> Any: """Parses the JSON string and returns the corresponding python value""" return loads(value)
import logging import os from configuration_overrider.abstract_overrider import AbstractOverrider log = logging.getLogger(__name__) class EnvironmentOverrider(AbstractOverrider): def get(self, key) -> str: log.info(f"[get|in] ({key})") result = None try: result = os.environ[key] except KeyError as x: log.debug(f"environment variable not found: {key}", exc_info=x) log.info(f"[get|out] => {result if result is not None else 'None'}") return result
# pylint: skip-file # flake8: noqa ''' OpenShiftCLI class that wraps the oc commands in a subprocess ''' # pylint: disable=too-many-lines from __future__ import print_function import atexit import json import os import re import shutil import subprocess import tempfile # pylint: disable=import-error import ruamel.yaml as yaml from ansible.module_utils.basic import AnsibleModule
import warnings from ._version import get_versions __version__ = get_versions()['version'] del get_versions from gisutils.projection import get_proj_str, get_authority_crs from gisutils.projection import project as project_fn from gisutils.raster import get_values_at_points, get_raster_crs, write_raster from gisutils.shapefile import df2shp, shp2df, get_shapefile_crs def __getattr__(name): if name == 'project': warnings.warn("The 'project' module was renamed to 'projection' " "to avoid confusion with the project() function.", DeprecationWarning) return project_fn raise AttributeError('No module named ' + name)
from lenstronomy.Plots.model_plot import ModelPlot import numpy as np from lenstronomywrapper.LensSystem.LensSystemExtensions.chain_post_processing import ChainPostProcess from lenstronomywrapper.LensSystem.LensSystemExtensions.lens_maps import ResidualLensMaps import random class MCMCchainNew(object): def __init__(self, original_chain): self.mcmc_samples = original_chain.mcmc_samples self.lensModel = original_chain.lensModel self.kwargs_lens = original_chain.kwargs_lens self.param_class = original_chain.param_class self.lens_system_fit = original_chain.lens_system_fit self.lens = original_chain.lens self.modelPlot = original_chain.modelPlot self.kwargs_result = original_chain.kwargs_result self.lensModel_full = original_chain.lensModel_full self.kwargs_lens_full = original_chain.kwargs_lens_full self.window_size = original_chain.window_size self.kwargs_data_setup = original_chain.kwargs_data_setup self.save_name_path = original_chain.save_name_path def extract_observables(self, n_burn_frac, n_keep): nsamples_total = int(len(self.mcmc_samples[:, 0])) n_start = round(nsamples_total * (1 - n_burn_frac)) if n_start < 0: raise Exception('n burn too large, length of array is ' + str(nsamples_total)) chain_samples = self.mcmc_samples[n_start:nsamples_total, :] keep_inds = random.sample(list(np.arange(1, chain_samples.shape[0])), n_keep) chain_samples = self.mcmc_samples[keep_inds, :] chain_process = ChainPostProcess(self.lensModel, chain_samples, self.param_class, background_quasar=self.lens_system_fit.background_quasar) flux_ratios, source_x, source_y = chain_process.flux_ratios(self.lens.x, self.lens.y) macro_params = chain_process.macro_params() arrival_times = chain_process.arrival_times(self.lens.x, self.lens.y) relative_arrival_times = np.empty((n_keep, 3)) for row in range(0, n_keep): relative_arrival_times[row, :] = self.lens.relative_time_delays(arrival_times[row, :]) return_kwargs_data = {'flux_ratios': flux_ratios, 'time_delays': relative_arrival_times, 'source_x': source_x, 'source_y': source_y, 'kwargs_lens_macro_fit': macro_params} return return_kwargs_data, self.kwargs_data_setup def maps(self): logL = self.modelPlot._imageModel.likelihood_data_given_model( source_marg=False, linear_prior=None, **self.kwargs_result) ndata_points = self.modelPlot._imageModel.num_data_evaluate chi2_imaging = logL * 2 / ndata_points observed_lens = self.modelPlot._select_band(0)._data modeled_lens = self.modelPlot._select_band(0)._model normalized_residuals = self.modelPlot._select_band(0)._norm_residuals reconstructed_source, coord_transform = \ self.modelPlot._select_band(0).source(numPix=250, deltaPix=0.025) reconstructed_source_log = np.log10(reconstructed_source) vmin, vmax = max(np.min(reconstructed_source_log), -5), min(np.max(reconstructed_source_log), 10) reconstructed_source_log[np.where(reconstructed_source_log < vmin)] = vmin reconstructed_source_log[np.where(reconstructed_source_log > vmax)] = vmax residual_maps = ResidualLensMaps(self.lensModel_full, self.lensModel, self.kwargs_lens_full, self.kwargs_lens) kappa = residual_maps.convergence(self.window_size, 250) tdelay_res_geo, tdelay_res_grav = residual_maps.time_delay_surface_geoshapiro(self.window_size, 250, self.lens.x[0], self.lens.y[0]) tdelay_res_map = tdelay_res_geo + tdelay_res_grav return_kwargs = {'chi2_imaging': chi2_imaging, 'mean_kappa': np.mean(kappa), 'residual_convergence': kappa, 'time_delay_residuals': tdelay_res_map, 'reconstructed_source': reconstructed_source, 'observed_lens': observed_lens, 'modeled_lens': modeled_lens, 'normalized_residuals': normalized_residuals, } return return_kwargs class MCMCchain(object): def __init__(self, save_name_path, lens_system_fit, lens, mcmc_samples, kwargs_result, kwargs_model, multi_band_list, kwargs_special, param_class, lensModel, kwargs_lens, lensModel_full, kwargs_lens_full, window_size, kwargs_data_setup): self.mcmc_samples = mcmc_samples self.kwargs_result = kwargs_result self.kwargs_model = kwargs_model self.multi_band_list = multi_band_list self.kwargs_special = kwargs_special self.param_class = param_class self.lensModel = lensModel self.kwargs_lens = kwargs_lens self.kwargs_data_setup = kwargs_data_setup self.save_name_path = save_name_path self.lens = lens self.lensModel_full = lensModel_full self.kwargs_lens_full = kwargs_lens_full self.lens_system_fit = lens_system_fit self.window_size = window_size self.modelPlot = ModelPlot(multi_band_list, kwargs_model, kwargs_result, arrow_size=0.02, cmap_string="gist_heat") def get_output(self, n_burn_frac, n_keep): assert n_burn_frac < 1 logL = self.modelPlot._imageModel.likelihood_data_given_model( source_marg=False, linear_prior=None, **self.kwargs_result) ndata_points = self.modelPlot._imageModel.num_data_evaluate chi2_imaging = logL * 2 / ndata_points observed_lens = self.modelPlot._select_band(0)._data modeled_lens = self.modelPlot._select_band(0)._model normalized_residuals = self.modelPlot._select_band(0)._norm_residuals reconstructed_source, coord_transform = \ self.modelPlot._select_band(0).source(numPix=250, deltaPix=0.025) reconstructed_source_log = np.log10(reconstructed_source) vmin, vmax = max(np.min(reconstructed_source_log), -5), min(np.max(reconstructed_source_log), 10) reconstructed_source_log[np.where(reconstructed_source_log < vmin)] = vmin reconstructed_source_log[np.where(reconstructed_source_log > vmax)] = vmax residual_maps = ResidualLensMaps(self.lensModel_full, self.lensModel, self.kwargs_lens_full, self.kwargs_lens) kappa = residual_maps.convergence(self.window_size, 250) tdelay_res_geo, tdelay_res_grav = residual_maps.time_delay_surface_geoshapiro(self.window_size, 250, self.lens.x[0], self.lens.y[0]) tdelay_res_map = tdelay_res_geo + tdelay_res_grav nsamples_total = int(len(self.mcmc_samples[:,0])) n_start = round(nsamples_total * (1 - n_burn_frac)) if n_start < 0: raise Exception('n burn too large, length of array is '+str(nsamples_total)) chain_samples = self.mcmc_samples[n_start:nsamples_total, :] keep_inds = random.sample(list(np.arange(1, chain_samples.shape[0])), n_keep) chain_samples = self.mcmc_samples[keep_inds, :] chain_process = ChainPostProcess(self.lensModel, chain_samples, self.param_class, background_quasar=self.lens_system_fit.background_quasar) flux_ratios, source_x, source_y = chain_process.flux_ratios(self.lens.x, self.lens.y) macro_params = chain_process.macro_params() arrival_times = chain_process.arrival_times(self.lens.x, self.lens.y) relative_arrival_times = np.empty((n_keep, 3)) for row in range(0, n_keep): relative_arrival_times[row, :] = self.lens.relative_time_delays(arrival_times[row, :]) return_kwargs_data = {'flux_ratios': flux_ratios, 'time_delays': relative_arrival_times, 'source_x': source_x, 'source_y': source_y} return_kwargs = {'chi2_imaging': chi2_imaging, 'kwargs_lens_macro_fit': macro_params, 'mean_kappa': np.mean(kappa), 'residual_convergence': kappa, 'time_delay_residuals': tdelay_res_map, 'reconstructed_source': reconstructed_source, 'observed_lens': observed_lens, 'modeled_lens': modeled_lens, 'normalized_residuals': normalized_residuals, 'source_x': self.lens_system_fit.source_centroid_x, 'source_y': self.lens_system_fit.source_centroid_y, 'zlens': self.lens_system_fit.zlens, 'zsource': self.lens_system_fit.zsource} return return_kwargs, return_kwargs_data, self.kwargs_data_setup
# Copyright 2021. ThingsBoard # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from regex import compile from thingsboard_gateway.connectors.ftp.file import File COMPATIBLE_FILE_EXTENSIONS = ('json', 'txt', 'csv') class Path: def __init__(self, path: str, delimiter: str, telemetry: list, device_name: str, attributes: list, txt_file_data_view: str, poll_period=60, with_sorting_files=True, device_type='Device', max_size=5, read_mode='FULL'): self._path = path self._with_sorting_files = with_sorting_files self._poll_period = poll_period self._files: [File] = [] self._delimiter = delimiter self._last_polled_time = 0 self._telemetry = telemetry self._attributes = attributes self._device_name = device_name self._device_type = device_type self._txt_file_data_view = txt_file_data_view self.__read_mode = File.ReadMode[read_mode] self.__max_size = max_size @staticmethod def __is_file(ftp, filename): current = ftp.pwd() try: ftp.cwd(filename) except Exception: ftp.cwd(current) return True ftp.cwd(current) return False def __get_files(self, ftp, paths, file_name, file_ext): kwargs = {} pattern = compile(file_name.replace('*', '.*')) for item in paths: ftp.cwd(item) folder_and_files = ftp.nlst() for ff in folder_and_files: cur_file_name, cur_file_ext = ff.split('.') if cur_file_ext in COMPATIBLE_FILE_EXTENSIONS and self.__is_file(ftp, ff) and ftp.size(ff): if (file_name == file_ext == '*') \ or pattern.fullmatch(cur_file_name) \ or (cur_file_ext == file_ext and file_name == cur_file_name) \ or (file_name != '*' and cur_file_name == file_name and ( file_ext == cur_file_ext or file_ext == '*')): kwargs[ftp.voidcmd(f"MDTM {ff}")] = (item + '/' + ff) if self._with_sorting_files: return [File(path_to_file=val, read_mode=self.__read_mode, max_size=self.__max_size) for (_, val) in sorted(kwargs.items(), reverse=True)] return [File(path_to_file=val, read_mode=self.__read_mode, max_size=self.__max_size) for val in kwargs.values()] def find_files(self, ftp): final_arr = [] current_dir = ftp.pwd() dirname, basename = os.path.split(self._path) filename, fileex = basename.split('.') for (index, item) in enumerate(dirname.split('/')): if item == '*': current = ftp.pwd() arr = [] for x in final_arr: ftp.cwd(x) node_paths = ftp.nlst() for node in node_paths: if not self.__is_file(ftp, node): arr.append(ftp.pwd() + node) final_arr = arr ftp.cwd(current) else: if len(final_arr) > 0: current = ftp.pwd() for (j, k) in enumerate(final_arr): ftp.cwd(k) if not self.__is_file(ftp, item): final_arr[j] = str(final_arr[j]) + '/' + item else: final_arr = [] ftp.cwd(current) else: if not self.__is_file(ftp, item): final_arr.append(item) final_arr = self.__get_files(ftp, final_arr, filename, fileex) ftp.cwd(current_dir) self._files = final_arr @property def config(self): return { 'delimiter': self.delimiter, 'devicePatternName': self.device_name, 'devicePatternType': self.device_type, 'timeseries': self.telemetry, 'attributes': self.attributes, 'txt_file_data_view': self.txt_file_data_view } @property def files(self): return self._files @property def delimiter(self): return self._delimiter @property def telemetry(self): return self._telemetry @property def device_name(self): return self._device_name @property def device_type(self): return self._device_type @property def attributes(self): return self._attributes @property def txt_file_data_view(self): return self._txt_file_data_view @property def last_polled_time(self): return self._last_polled_time @property def path(self): return self._path @property def poll_period(self): return self._poll_period @last_polled_time.setter def last_polled_time(self, value): self._last_polled_time = value
import unittest from .addr import * class TestAddrParts(unittest.TestCase): def test_st_num_is_valid(self): addrs = [ ("1234 North Fake Street", 1234), ("5678 North Fake Street", 5678), ("9012 North Fake Street", 9012) ] for addr, exp in addrs: with self.subTest(addr=addr, exp=exp): parts = AddrParts.from_text(addr) self.assertEqual(parts.st_num, exp) def test_st_num_is_invalid(self): addrs = [ "A123 North Fake Street", "678Z North Fake Street", "ABCD North Fake Street", "ABCD North Fake Street", ] for addr in addrs: with self.subTest(addr=addr), self.assertRaises(AddrError): AddrParts.from_text(addr) def test_st_dir_is_valid(self): addrs = [ ("1234 N Fake Street", AddrDir.NORTH), ("1234 North Fake Street", AddrDir.NORTH), ("1234 S Fake Street", AddrDir.SOUTH), ("1234 South Fake Street", AddrDir.SOUTH), ("1234 E Fake Street", AddrDir.EAST), ("1234 East Fake Street", AddrDir.EAST), ("1234 W Fake Street", AddrDir.WEST), ("1234 West Fake Street", AddrDir.WEST) ] for addr, exp in addrs: with self.subTest(addr=addr, exp=exp): parts = AddrParts.from_text(addr) self.assertEqual(parts.st_dir, exp) def test_st_dir_is_invalid(self): addrs = [ "1234 Zamboni Fake Street", "1234 4567 Fake Street", "1234 Cat Fake Street", ] for addr in addrs: with self.subTest(addr=addr), self.assertRaises(AddrError): AddrParts.from_text(addr) def test_st_name_is_valid(self): addrs = [ ("1234 N Fake Street", "FAKE"), ("1234 North Blah Blorg Street", "BLAH BLORG"), ("1234 S Fake Terrace Ave", "FAKE TERRACE"), ("1234 North 51st Street", "51ST"), ] for addr, exp in addrs: with self.subTest(addr=addr, exp=exp): parts = AddrParts.from_text(addr) self.assertEqual(parts.st_name, exp) def test_st_name_is_invalid(self): addrs = [ "1234 North Street", ] for addr in addrs: with self.subTest(addr=addr), self.assertRaises(AddrError): AddrParts.from_text(addr) def test_st_name_suffix_is_added(self): addrs = [ # Try some of the single-digit streets ("1234 North 1 Street", "1ST"), ("1234 North 2 Street", "2ND"), ("1234 North 3 Street", "3RD"), ("1234 North 4 Street", "4TH"), # 10-19 always end with "TH" ("1234 North 10 Street", "10TH"), ("1234 North 11 Street", "11TH"), ("1234 North 12 Street", "12TH"), ("1234 North 13 Street", "13TH"), ("1234 North 14 Street", "14TH"), ("1234 North 15 Street", "15TH"), ("1234 North 16 Street", "16TH"), ("1234 North 17 Street", "17TH"), ("1234 North 18 Street", "18TH"), ("1234 North 19 Street", "19TH"), # Try each of the last digits from 0-9 ("1234 North 20 Street", "20TH"), ("1234 North 21 Street", "21ST"), ("1234 North 22 Street", "22ND"), ("1234 North 33 Street", "33RD"), ("1234 North 44 Street", "44TH"), ("1234 North 55 Street", "55TH"), ("1234 North 66 Street", "66TH"), ("1234 North 77 Street", "77TH"), ("1234 North 88 Street", "88TH"), ("1234 North 99 Street", "99TH"), # Likewise 110-119 also end with "TH" ("1234 North 110 Street", "110TH"), ("1234 North 111 Street", "111TH"), ("1234 North 112 Street", "112TH"), ("1234 North 113 Street", "113TH"), ("1234 North 114 Street", "114TH"), ("1234 North 115 Street", "115TH"), ("1234 North 116 Street", "116TH"), ("1234 North 117 Street", "117TH"), ("1234 North 118 Street", "118TH"), ("1234 North 119 Street", "119TH"), ] for addr, exp in addrs: with self.subTest(addr=addr, exp=exp): parts = AddrParts.from_text(addr) self.assertEqual(parts.st_name, exp) def test_st_suffix_is_valid(self): addrs = [ ("1234 North Fake Ave", AddrSuffix.AVE), ("1234 North Fake Avenue", AddrSuffix.AVE), ("1234 North Fake Boulevard", AddrSuffix.BLVD), ("1234 North Fake BLVD", AddrSuffix.BLVD), ("1234 North Fake Circle", AddrSuffix.CIRCLE), ("1234 North Fake CIR", AddrSuffix.CIRCLE), ("1234 North Fake Court", AddrSuffix.COURT), ("1234 North Fake CT", AddrSuffix.COURT), ("1234 North Fake Drive", AddrSuffix.DRIVE), ("1234 North Fake DR", AddrSuffix.DRIVE), ("1234 North Fake Lane", AddrSuffix.LANE), ("1234 North Fake LN", AddrSuffix.LANE), ("1234 North Fake PKWY", AddrSuffix.PKWY), ("1234 North Fake Place", AddrSuffix.PLACE), ("1234 North Fake PL", AddrSuffix.PLACE), ("1234 North Fake Road", AddrSuffix.ROAD), ("1234 North Fake RD", AddrSuffix.ROAD), ("1234 North Fake Square", AddrSuffix.SQUARE), ("1234 North Fake SQ", AddrSuffix.SQUARE), ("1234 North Fake Street", AddrSuffix.STREET), ("1234 North Fake ST", AddrSuffix.STREET), ("1234 North Fake Terrace", AddrSuffix.TERRACE), ("1234 North Fake TER", AddrSuffix.TERRACE), ("1234 North Fake Way", AddrSuffix.WAY) ] for (addr, exp) in addrs: with self.subTest(addr=addr, exp=exp): parts = AddrParts.from_text(addr) self.assertEqual(parts.st_suffix, exp) def test_st_suffix_is_invalid(self): addrs = [ "1234 North Fake", "1234 North Fake Stroll", ] for addr in addrs: with self.subTest(addr=addr), self.assertRaises(AddrError): AddrParts.from_text(addr)
from ete3 import NCBITaxa #The first time this will download the taxonomic NCBI database and save a parsed version #of it in `~/.etetoolkit/taxa.sqlite`.May take some minutes ncbi = NCBITaxa() print("ncbi.dbfile", ncbi.dbfile) with open(snakemake.input[0], 'r', encoding='utf8') as fh: genus_list = fh.read().strip().split('\n') genus_to_taxid = ncbi.get_name_translator(genus_list) tax_id_vals = genus_to_taxid.values() tree = ncbi.get_topology([genus_id for subls in tax_id_vals for genus_id in subls], intermediate_nodes=True) # `get_ascii()` has a bug, prints the taxons before to genus without any separation between them, so a way to avoid that is using extra attribues, `dist` seems to be less invasive. Also, numbers from 'dist' are replaced with open(snakemake.output[0], mode='w', encoding='utf8') as fh: print(tree.get_ascii(attributes=["dist", "sci_name"]).replace('1.0,','-'), file=fh)
import numpy as np class MatrixFactorization: @classmethod def run(cls, R, P, Q, K, steps=5000, alpha=0.0002, beta=0.02, threshold=0.001): """ Args: R (numpy.ndarray): Rating P (numpy.ndarray): m x K のユーザ行列 Q (numpy.ndarray): n x K のアイテム行列 K (int): Latent factor(潜在変数)数 alpha (flaot): 学習率 beta (float): 正則化項の学習率 """ m, n = R.shape Q = Q.T for step in range(steps): for i in range(m): for j in range(n): if R[i][j] == 0: continue # 各レーティングの誤差算出 err = cls._calc_rating_err(R[i][j], P[i, :], Q[:, j]) # P, Q更新 for k in range(K): P[i][k] = P[i][k] + alpha * (2 * err * Q[k][j] - beta * P[i][k]) Q[k][j] = Q[k][j] + alpha * (2 * err * P[i][k] - beta * Q[k][j]) # 全体の誤差算出 e = cls._calc_error(R, P, Q, m, n, beta) if e < threshold: break return P, Q @classmethod def _calc_error(cls, R, P, Q, m, n, beta): """レーティング行列Rと推定レーティング行列との差を算出する Args: R (numpy.ndarray): 評価値行列 P (numpy.ndarray): ユーザ行列 K x m Q (numpy.ndarray): アイテム行列 K x n beta (flaot): Learning rate """ err = 0.0 for i in range(m): for j in range(n): current_rating = R[i][j] if current_rating == 0: continue # 行列全体の二乗誤差の和 err += pow(cls._calc_rating_err(current_rating, P[i, :], Q[:, j]), 2) # L2 regularization l2_term = (beta / 2) * (np.linalg.norm(P) + np.linalg.norm(Q)) err += l2_term return err @classmethod def _calc_rating_err(cls, r, p, q): """実際の評価値と内積との差を算出する Args: r (int): 実際の評価値 p (numpy.ndarray): m列のユーザ行列 q (numpy.ndarray): n列のアイテム行列 Return: (int) 評価値との誤差 """ return r - np.dot(p, q) if __name__ == '__main__': # 潜在因子数 K = 2 # m x n のレーティング行列 R = np.array([ [5, 3, 0, 1], [4, 0, 0, 1], [1, 1, 0, 5], [1, 0, 0, 4], [0, 1, 5, 4] ]) m, n = R.shape # m x K のユーザ行列P P = np.random.rand(m, K) # n x K のアイテム行列Q Q = np.random.rand(n, K) print('========================================') print('Old P: {}'.format(P)) print('Old Q: {}'.format(Q)) print() P_new, Q_new = MatrixFactorization.run(R, P, Q, K, steps=5000, alpha=0.0002, beta=0.2, threshold=0.001) print('========================================') print('New P: {}'.format(P_new)) print('New Q: {}'.format(Q_new)) print('----------------------------------------') print(R) print(np.round(np.dot(P, Q.T)))
from keras import backend as K from keras.layers import Layer class ExpandLayer(Layer): def __init__(self, axis, **kwargs): super().__init__(**kwargs) self._axis = axis def call(self, inputs, **kwargs): return K.expand_dims(inputs, axis=self._axis) def compute_output_shape(self, input_shape): if self._axis < 0: axis = self._axis + len(input_shape) + 1 else: axis = self._axis output_shape = input_shape[:axis] + (1,) + input_shape[axis:] return tuple(output_shape) def get_config(self): config = { "index": self._index } base_config = super().get_config() config.update(base_config) return config def get_encoder(self): return self._encoder
import abc class Response(abc.ABC): def __init__(self): self.output = "" def with_output(self, output): self.output = output return self @abc.abstractmethod def print(self): pass def __eq__(self, other): return isinstance(other, self.__class__) \ and self.output == other.output def __hash__(self): return hash(('output', self.output))
# makes KratosMultiphysics backward compatible with python 2.6 and 2.7 from __future__ import print_function, absolute_import, division #makes KratosMultiphysics backward compatible with python 2.6 and 2.7 # Application dependent names and paths import KratosMultiphysics as KM from KratosDemStructuresCouplingApplication import * application = KratosDemStructuresCouplingApplication() application_name = "KratosDemStructuresCouplingApplication" application_folder = "DemStructuresCouplingApplication" KM._ImportApplicationAsModule(application, application_name, application_folder, __path__)
from engine import * from grid import Grid class Maze: ''' Class that will generate the maze This is the environment of this program Maybe built in PyGame ''' def __init__(self, title, dim): self.window = Window(title, dim, FPS_CAP=60) self.window.background_color = pygame.Color('white') self.id = "maze" self.running = False self.ready_loading = False # Grid self.grid = Grid(dim, self.window) # Event handler self.eventListener = EventListener() # Setup self.setup() def setup(self): # Grid setup self.window.addWidget(self.grid) self.grid.cell_maz_size = 15 cellx, celly = self.grid.setup() # Draw Instuctions labels label1 = Label((0, (celly*self.grid.cell_dim)+100), (self.window.dimension[1], self.grid.cell_dim), "S start point, E end point,SPACE start simulation") label1.text_size = 25 self.window.addWidget(label1) label2 = Label((0, (celly * self.grid.cell_dim) + 150), (self.window.dimension[1], self.grid.cell_dim), "C to clear the grid, M_Sx to build walls, L to load") label2.text_size = 25 self.window.addWidget(label2) # Add event listener self.eventListener.bind('onKeyDown', function) self.window.addWidget(self.eventListener) # Add maze to objects self.window.addObject(self, self.id) def start(self): self.window.start() # Function event listener def function(self, win, key): if key == ' ' and not win.objects["maze"].running and win.objects["maze"].grid.exist_start_point() and win.objects["maze"].grid.exist_end_point(): win.objects["maze"].grid.updateMatrixWidg() win.objects["maze"].running = True elif key == ' ' and win.objects["maze"].running: win.objects["maze"].grid.updateMatrixWidg() win.objects["maze"].running = False elif key == 'c' and not win.objects["maze"].running: win.objects["maze"].grid.clear() win.objects["maze"].grid.updateMatrixAi() elif key == 'l': win.objects["maze"].ready_loading = not win.objects["maze"].ready_loading
from datetime import datetime import unittest import time import six from salesmachine.version import VERSION from salesmachine.client import Client class TestClient(unittest.TestCase): def fail(self, e, batch): """Mark the failure handler""" self.failed = True def setUp(self): self.failed = False self.client = Client("key", "secret", debug=True, on_error=self.fail) def test_requires_write_key(self): self.assertRaises(AssertionError, Client) def test_empty_flush(self): self.client.flush() def test_basic_track_event(self): client = self.client success, msg = client.track_event('contact_uid', 'event_uid') client.flush() self.assertTrue(success) self.assertFalse(self.failed) self.assertEqual(msg['contact_uid'], 'contact_uid') self.assertEqual(msg['event_uid'], 'event_uid') self.assertEqual(msg['method'], 'event') def test_basic_set_contact(self): client = self.client success, msg = client.set_contact('contact_uid', {'name': 'Jean'}) client.flush() self.assertTrue(success) self.assertFalse(self.failed) self.assertEqual(msg['params'], {'name': 'Jean' }) self.assertEqual(msg['contact_uid'], 'contact_uid') self.assertEqual(msg['method'], 'contact') def test_basic_set_account(self): client = self.client success, msg = client.set_account('account_uid', {'name': 'Jean Corp.'}) client.flush() self.assertTrue(success) self.assertFalse(self.failed) self.assertEqual(msg['params'], {'name': 'Jean Corp.' }) self.assertEqual(msg['account_uid'], 'account_uid') self.assertEqual(msg['method'], 'account') def test_basic_track_pageview(self): client = self.client success, msg = client.track_pageview('contact_uid', {'display_name': 'Jean has seen page 2.'}) client.flush() self.assertTrue(success) self.assertFalse(self.failed) self.assertEqual(msg['params'], {'display_name': 'Jean has seen page 2.'}) self.assertEqual(msg['contact_uid'], 'contact_uid') self.assertEqual(msg['method'], 'event') def test_flush(self): client = self.client # send a few more requests than a single batch will allow for i in range(60): success, msg = client.set_contact('contact_uid', { 'name': 'value' }) self.assertFalse(client.queue.empty()) client.flush() self.assertTrue(client.queue.empty()) def test_overflow(self): client = Client('testkey', 'testsecret', max_queue_size=1) client.consumer.pause() time.sleep(5.1) # allow time for consumer to exit for i in range(10): client.set_contact('contact_uid') success, msg = client.set_contact('contact_uid') self.assertFalse(success) def test_error_on_invalid_write_key(self): client = Client('bad_key', 'bad_secret', on_error=self.fail) client.set_contact('contact_uid') client.flush() self.assertTrue(self.failed) def test_unicode(self): Client('tetskey', six.u('unicode_key')) def test_numeric_user_id(self): self.client.set_contact(789) self.client.flush() self.assertFalse(self.failed) def test_debug(self): Client('bad_key', 'bad_secret', debug=True)
#!/usr/bin/env python # -*- coding: utf-8 -*- # # :Author: snxx # :Copyright: (c) 2021 snxx # For license and copyright information please follow this like: # https://github.com/snxx-lppxx/Cloud-vk-bot/blob/master/LICENSE ''' GitHub: snxx-lppxx/Cloud-vk-bot ''' # Importing modules import vk_api import time import json from vk_api.bot_longpoll import VkBotEventType, VkBotLongPoll from source.resource.word import err from source.betypes.config import token, version, gid from vk_api.keyboard import VkKeyboard, VkKeyboardColor vk = vk_api.VkApi(token=token) vk._auth_token() vk.get_api() longpoll = VkBotLongPoll(vk, gid) settings = dict(one_time=False, inline=True) class Server(object): # Send starting message. Etry point print('{}\n{}{}\n'.format('Server started...', 'API: ', version)) # INFDEF MAIN def __init__(self, keyboard): ''' Creating keyboards ''' # Keyboard number-1 keyboard.add_callback_button(label='1', color=vk_api.keyboard.VkKeyboardColor.SECONDARY, payload={"type": "show_snackbar", "text": "1"} ) keyboard.add_line() # Keyboard number-2 keyboard.add_callback_button(label='2', color=vk_api.keyboard.VkKeyboardColor.POSITIVE, payload={"type": "open_link", "link": "https://github.com/snxx-lppxx"} ) keyboard.add_line() # Keyboard number-3 keyboard.add_callback_button(label='3', color=vk_api.keyboard.VkKeyboardColor.SECONDARY, payload={"type": "open_link", "link": "https://github.com/snxx-lppxx"} ) # ENDIF MAIN # IFNDEF LOGICS f_toggle: bool = False for event in longpoll.listen(): keyboard = vk_api.keyboard.VkKeyboard(**settings) try: if event.type == vk_api.bot_longpoll.VkBotEventType.MESSAGE_NEW: if event.from_user: # Checking correctness if event.obj.message['text'] != '': if 'callback' not in event.obj.client_info['button_actions']: print(f'Client does not supported: {event.obj.message["from_id"]}') vk.messages.send(user_id = event.obj.message['from_id'], peer_id = event.obj.message['from_id'], message = 'Здравствуйте, я Ваш консультант, могу чем-то помочь?', random_id = 0, keyboard=keyboard.get_keyboard() ) elif event.type == VkBotEventType.MESSAGE_EVENT: if event.object.payload.get('type') in CALLBACK_TYPES: r = vk.messages.sendMessageEventAnswer( event_id = event.object.event_id, user_id = event.object.user_id, peer_id = event.object.peer_id, event_data = json.dumps(event.object.payload)) f_toggle = not f_toggle if 'Negative' in event.obj.text: vk.messages.send(peer_id = event.obj.message['peer_id'], message = '1', random_id = 0) if 'Primary' in event.obj.text: vk.messages.send(peer_id = event.obj.message['peer_id'], message = '2', random_id = 0) if 'Secondary' in event.obj.text: vk.messages.send(peer_id = event.obj.message['peer_id'], message = '3', random_id = 0) except Exception as e: time.sleep(0.75) # ENDIF LOGICS if __name__ == '__main__': Server(object).main(keyboard)
#!/bin/env python # -*coding: UTF-8 -*- """ High level helper methods to load Argo data from any source The facade should be able to work with all available data access point, Usage for LOCALFTP: from argopy import DataFetcher as ArgoDataFetcher argo_loader = ArgoDataFetcher(backend='localftp', ds='phy') or argo_loader = ArgoDataFetcher(backend='localftp', ds='bgc') argo_loader.float(6902746).to_xarray() argo_loader.float([6902746, 6902747, 6902757, 6902766]).to_xarray() Usage for ERDDAP (default backend): from argopy import DataFetcher as ArgoDataFetcher argo_loader = ArgoDataFetcher(backend='erddap') or argo_loader = ArgoDataFetcher(backend='erddap', cachedir='tmp', cache=True) or argo_loader = ArgoDataFetcher(backend='erddap', ds='ref') argo_loader.profile(6902746, 34).to_xarray() argo_loader.profile(6902746, np.arange(12,45)).to_xarray() argo_loader.profile(6902746, [1,12]).to_xarray() or argo_loader.float(6902746).to_xarray() argo_loader.float([6902746, 6902747, 6902757, 6902766]).to_xarray() argo_loader.float([6902746, 6902747, 6902757, 6902766], CYC=1).to_xarray() or argo_loader.region([-85,-45,10.,20.,0,1000.]).to_xarray() argo_loader.region([-85,-45,10.,20.,0,1000.,'2012-01','2014-12']).to_xarray() """ import os import sys import glob import pandas as pd import xarray as xr import numpy as np import warnings from argopy.options import OPTIONS, _VALIDATORS from .errors import InvalidFetcherAccessPoint, InvalidFetcher from .utilities import list_available_data_backends AVAILABLE_BACKENDS = list_available_data_backends() # Import plotters : from .plotters import plot_trajectory, plot_dac, plot_profilerType # Highest level API / Facade: class ArgoDataFetcher(object): """ Fetch and process Argo data. Can return data selected from: - one or more float(s), defined by WMOs - one or more profile(s), defined for one WMO and one or more CYCLE NUMBER - a space/time rectangular domain, defined by lat/lon/pres/time range Can return data from the regular Argo dataset ('phy': temperature, salinity) and the Argo referenced dataset used in DMQC ('ref': temperature, salinity). This is the main API facade. Specify here all options to data_fetchers """ def __init__(self, mode: str = "", backend : str = "", ds: str = "", **fetcher_kwargs): # Facade options: self._mode = OPTIONS['mode'] if mode == '' else mode self._dataset_id = OPTIONS['dataset'] if ds == '' else ds self._backend = OPTIONS['datasrc'] if backend == '' else backend _VALIDATORS['mode'](self._mode) _VALIDATORS['datasrc'](self._backend) _VALIDATORS['dataset'](self._dataset_id) # Load backend access points: if self._backend not in AVAILABLE_BACKENDS: raise ValueError("Data fetcher '%s' not available" % self._backend) else: Fetchers = AVAILABLE_BACKENDS[self._backend] # Auto-discovery of access points for this fetcher: # rq: Access point names for the facade are not the same as the access point of fetchers self.valid_access_points = ['profile', 'float', 'region'] self.Fetchers = {} for p in Fetchers.access_points: if p == 'wmo': # Required for 'profile' and 'float' self.Fetchers['profile'] = Fetchers.Fetch_wmo self.Fetchers['float'] = Fetchers.Fetch_wmo if p == 'box': # Required for 'region' self.Fetchers['region'] = Fetchers.Fetch_box # Init sub-methods: self.fetcher = None if ds is None: ds = Fetchers.dataset_ids[0] self.fetcher_options = {**{'ds':ds}, **fetcher_kwargs} self.postproccessor = self.__empty_processor # Dev warnings #Todo Clean-up before each release if self._dataset_id == 'bgc' and self._mode == 'standard': warnings.warn(" 'BGC' dataset fetching in 'standard' user mode is not reliable. " "Try to switch to 'expert' mode if you encounter errors.") def __repr__(self): if self.fetcher: summary = [self.fetcher.__repr__()] summary.append("Backend: %s" % self._backend) summary.append("User mode: %s" % self._mode) else: summary = ["<datafetcher 'Not initialised'>"] summary.append("Backend: %s" % self._backend) summary.append("Fetchers: %s" % ", ".join(self.Fetchers.keys())) summary.append("User mode: %s" % self._mode) return "\n".join(summary) def __empty_processor(self, xds): """ Do nothing to a dataset """ return xds def __getattr__(self, key): """ Validate access points """ # print("key", key) valid_attrs = ['Fetchers', 'fetcher', 'fetcher_options', 'postproccessor'] if key not in self.valid_access_points and key not in valid_attrs: raise InvalidFetcherAccessPoint("'%s' is not a valid access point" % key) pass def float(self, wmo, **kw): """ Load data from a float, given one or more WMOs """ if "CYC" in kw or "cyc" in kw: raise TypeError("float() got an unexpected keyword argument 'cyc'. Use 'profile' access " "point to fetch specific profile data.") if 'float' in self.Fetchers: self.fetcher = self.Fetchers['float'](WMO=wmo, **self.fetcher_options) else: raise InvalidFetcherAccessPoint("'float' not available with '%s' backend" % self._backend) if self._mode == 'standard' and self._dataset_id != 'ref': def postprocessing(xds): xds = self.fetcher.filter_data_mode(xds) xds = self.fetcher.filter_qc(xds) xds = self.fetcher.filter_variables(xds, self._mode) return xds self.postproccessor = postprocessing return self def profile(self, wmo, cyc): """ Load data from a profile, given one or more WMOs and CYCLE_NUMBER """ if 'profile' in self.Fetchers: self.fetcher = self.Fetchers['profile'](WMO=wmo, CYC=cyc, **self.fetcher_options) else: raise InvalidFetcherAccessPoint("'profile' not available with '%s' backend" % self._backend) if self._mode == 'standard' and self._dataset_id != 'ref': def postprocessing(xds): xds = self.fetcher.filter_data_mode(xds) xds = self.fetcher.filter_qc(xds) xds = self.fetcher.filter_variables(xds, self._mode) return xds self.postproccessor = postprocessing return self def region(self, box): """ Load data from a rectangular region, given latitude, longitude, pressure and possibly time bounds """ if 'region' in self.Fetchers: self.fetcher = self.Fetchers['region'](box=box, **self.fetcher_options) else: raise InvalidFetcherAccessPoint("'region' not available with '%s' backend" % self._backend) if self._mode == 'standard' and self._dataset_id != 'ref': def postprocessing(xds): xds = self.fetcher.filter_data_mode(xds) xds = self.fetcher.filter_qc(xds) xds = self.fetcher.filter_variables(xds, self._mode) return xds self.postproccessor = postprocessing return self def deployments(self, box): """ Retrieve deployment locations in a specific space/time region """ warnings.warn("This access point is to be used with an index fetcher") pass def to_xarray(self, **kwargs): """ Fetch and post-process data, return xarray.DataSet """ if not self.fetcher: raise InvalidFetcher(" Initialize an access point (%s) first." % ",".join(self.Fetchers.keys())) xds = self.fetcher.to_xarray(**kwargs) xds = self.postproccessor(xds) return xds class ArgoIndexFetcher(object): """ Specs discussion : https://github.com/euroargodev/argopy/issues/8 https://github.com/euroargodev/argopy/pull/6) Usage : from argopy import ArgoIndexFetcher idx = ArgoIndexFetcher.region([-75, -65, 10, 20]) idx.plot.trajectories() idx.to_dataframe() Fetch and process Argo index. Can return metadata from index of : - one or more float(s), defined by WMOs - one or more profile(s), defined for one WMO and one or more CYCLE NUMBER - a space/time rectangular domain, defined by lat/lon/pres/time range idx object can also be used as an input : argo_loader = ArgoDataFetcher(index=idx) Specify here all options to data_fetchers """ def __init__(self, mode: str = "", backend : str = "", **fetcher_kwargs): # Facade options: self._mode = OPTIONS['mode'] if mode == '' else mode self._backend = OPTIONS['datasrc'] if backend == '' else backend _VALIDATORS['mode'](self._mode) _VALIDATORS['datasrc'](self._backend) # Load backend access points: if self._backend not in AVAILABLE_BACKENDS: raise ValueError("Fetcher '%s' not available" % self._backend) else: Fetchers = AVAILABLE_BACKENDS[self._backend] # Auto-discovery of access points for this fetcher: # rq: Access point names for the facade are not the same as the access point of fetchers self.valid_access_points = ['float', 'region'] self.Fetchers = {} for p in Fetchers.access_points: if p == 'wmo': # Required for 'profile' and 'float' self.Fetchers['float'] = Fetchers.IndexFetcher_wmo if p == 'box': # Required for 'region' self.Fetchers['region'] = Fetchers.IndexFetcher_box # Init sub-methods: self.fetcher = None self.fetcher_options = {**fetcher_kwargs} self.postproccessor = self.__empty_processor def __repr__(self): if self.fetcher: summary = [self.fetcher.__repr__()] summary.append("User mode: %s" % self._mode) else: summary = ["<indexfetcher 'Not initialised'>"] summary.append("Fetchers: 'float' or 'region'") summary.append("User mode: %s" % self._mode) return "\n".join(summary) def __empty_processor(self, xds): """ Do nothing to a dataset """ return xds def __getattr__(self, key): """ Validate access points """ valid_attrs = ['Fetchers', 'fetcher', 'fetcher_options', 'postproccessor'] if key not in self.valid_access_points and key not in valid_attrs: raise InvalidFetcherAccessPoint("'%s' is not a valid access point" % key) pass def float(self, wmo): """ Load index for one or more WMOs """ if 'float' in self.Fetchers: self.fetcher = self.Fetchers['float'](WMO=wmo, **self.fetcher_options) else: raise InvalidFetcherAccessPoint("'float' not available with '%s' backend" % self._backend) return self def region(self, box): """ Load index for a rectangular region, given latitude, longitude, and possibly time bounds """ if 'region' in self.Fetchers: self.fetcher = self.Fetchers['region'](box=box, **self.fetcher_options) else: raise InvalidFetcherAccessPoint("'region' not available with '%s' backend" % self._backend) return self def to_dataframe(self, **kwargs): """ Fetch index and return pandas.Dataframe """ if not self.fetcher: raise InvalidFetcher(" Initialize an access point (%s) first." % ",".join(self.Fetchers.keys())) return self.fetcher.to_dataframe(**kwargs) def to_xarray(self, **kwargs): """ Fetch index and return xr.dataset """ if not self.fetcher: raise InvalidFetcher(" Initialize an access point (%s) first." % ",".join(self.Fetchers.keys())) return self.fetcher.to_xarray(**kwargs) def to_csv(self, file: str='output_file.csv'): """ Fetch index and return csv """ if not self.fetcher: raise InvalidFetcher(" Initialize an access point (%s) first." % ",".join(self.Fetchers.keys())) return self.to_dataframe().to_csv(file) def plot(self, ptype='trajectory'): """ Custom plots """ idx=self.to_dataframe() if ptype=='dac': plot_dac(idx) elif ptype=='profiler': plot_profilerType(idx) elif ptype=='trajectory': plot_trajectory(idx.sort_values(['file'])) else: raise ValueError("Type of plot unavailable. Use: 'dac', 'profiler' or 'trajectory' (default)")
from rest_framework.views import APIView from rest_framework.response import Response from rest_framework.viewsets import ReadOnlyModelViewSet, GenericViewSet from rest_framework.mixins import RetrieveModelMixin, CreateModelMixin from django_redis import get_redis_connection from wechat.core.bot import SaveModelMessageBot from wechat.core.authentication import AccessTokenAuthentication from wechat.core import pkl_path from wechat import serializers, models from wechat.core import utils import threading import time import os class LoginView(APIView): bot_class = SaveModelMessageBot authentication_classes = [AccessTokenAuthentication] def get(self, request, *args, **kwargs): assert self.bot_class is not None, 'bot_class不能为`None`' # 创建线程 flag = time.time() login = threading.Thread(target=self.bot_login, args=(flag,)) login.start() # 递归获取二维码 response = self.get_response(flag) # byte 转字符串 response = {k.decode(): v.decode() for k, v in response.items()} # 将键名改过来,便于登陆查询 self.rename_redis_key(flag) return Response(response) def bot_login(self, flag): obj = self.bot_class(request=self.request, flag=flag) # 永久存储puid obj.enable_puid(os.path.join(pkl_path, f'{self.request.auth.app_id}.pkl')) def get_response(self, flag): time.sleep(0.01) coon = get_redis_connection('default') qrcode = coon.hgetall(flag) return qrcode if qrcode else self.get_response(flag) @staticmethod def rename_redis_key(flag): coon = get_redis_connection('default') uuid = coon.hget(flag, 'uuid') coon.rename(flag, uuid) class CheckLoginView(APIView): """检查登陆状态""" authentication_classes = [AccessTokenAuthentication] def get(self, request, *args, **kwargs): serializer = serializers.CheckLoginSerializer(data=request.GET, context={'request': request}) serializer.is_valid(raise_exception=True) return Response(serializer.validated_data) class FriendsReadOnlyModelViewSet(ReadOnlyModelViewSet): """好友列表查询接口""" serializer_class = serializers.WxUserModelModelSerializer authentication_classes = [AccessTokenAuthentication] filterset_fields = ['puid', 'name', 'nick_name', 'user_name', 'remark_name', 'signature', 'sex', 'province', 'city'] def get_queryset(self): return self.request.user.friends.all() class GroupsReadOnlyModelViewSet(ReadOnlyModelViewSet): """群查询接口""" authentication_classes = [AccessTokenAuthentication] serializer_class = serializers.WxGroupModelModelSerializer filterset_fields = ['puid', 'name', 'nick_name', 'user_name', ] def get_queryset(self): return self.request.user.wxgroupmodel_set.all() class GroupsMembersRetrieveModelMixinViewSet(RetrieveModelMixin, GenericViewSet): """群成员查询接口""" serializer_class = serializers.WxGroupMembersSerializer authentication_classes = [AccessTokenAuthentication] def get_queryset(self): return self.request.user.wxgroupmodel_set.all() def get_object(self): """修改`get_object`的返回结果,让`retrieve`调用""" instance = super().get_object() return instance.members.all() def retrieve(self, request, *args, **kwargs): instance = self.get_object() queryset = self.filter_queryset(instance) page = self.paginate_queryset(queryset) if page is not None: serializer = self.get_serializer(page, many=True) return self.get_paginated_response(serializer.data) serializer = self.get_serializer(queryset, many=True) return Response(serializer.data) class MpReadOnlyModelViewSet(ReadOnlyModelViewSet): """微信公众号查询接口""" serializer_class = serializers.WxMpsModelModelSerializer authentication_classes = [AccessTokenAuthentication] filterset_fields = ['puid', 'name', 'nick_name', 'province', 'city', 'signature'] def get_queryset(self): return self.request.user.wxmpsmodel_set.all() class MessageReadOnlyModelViewSet(ReadOnlyModelViewSet): """聊天记录查询接口""" serializer_class = serializers.MessageReadModelSerializer authentication_classes = [AccessTokenAuthentication] queryset = models.MessageModel.objects.all() filterset_fields = ['type', 'create_time', 'receive_time', 'is_at', 'sender_puid', 'receiver_puid'] def get_queryset(self): return self.queryset.filter(owner=self.request.user) class AccessTokenView(APIView): """获取access token""" def get(self, request, *args, **kwargs): serializer = serializers.AccessTokenSerializer(data=request.GET) serializer.is_valid(raise_exception=True) return Response(serializer.validated_data) class SendMessageView(CreateModelMixin, GenericViewSet): """主动发送消息""" serializer_class = serializers.SendMessageSerializer authentication_classes = [AccessTokenAuthentication] class UpdateUserInfoView(APIView): """主动更新列表信息""" authentication_classes = [AccessTokenAuthentication] def get(self, request, *args, **kwargs): try: utils.update_app_info_by_view(request) except AssertionError as e: return Response({'errmsg': e.__str__()}) return Response({'msg': '更新成功!'}, status=201)
import pyxb.binding.generate import pyxb.utils.domutils from xml.dom import Node import os.path xsd='''<?xml version="1.0" encoding="UTF-8"?> <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"> <xs:complexType name="tAddress"> <xs:choice> <xs:sequence> <xs:element name="Line1" type="xs:string"/> <xs:element name="Line2" type="xs:string"/> </xs:sequence> <xs:sequence> <xs:element name="Missing" type="xs:string"/> </xs:sequence> </xs:choice> </xs:complexType> <xs:complexType name="tOther"> <xs:sequence> <xs:element name="Header" type="xs:string"/> <xs:choice> <xs:sequence> <xs:element name="Special" type="tAddress"/> <xs:element name="Common" type="tAddress" minOccurs="0"/> </xs:sequence> <xs:sequence> <xs:element name="Common" type="tAddress"/> </xs:sequence> </xs:choice> </xs:sequence> </xs:complexType> <xs:element name="elt" type="tOther"/> </xs:schema>''' code = pyxb.binding.generate.GeneratePython(schema_text=xsd) file('code.py', 'w').write(code) #print code rv = compile(code, 'test', 'exec') eval(rv) from pyxb.exceptions_ import * import unittest class TestTrac0033a (unittest.TestCase): def test (self): xml = '<elt><Header/><Common><Line1/><Line2/></Common></elt>' instance = CreateFromDocument(xml) if __name__ == '__main__': unittest.main()
#!/usr/bin/env python import rospy from std_msgs.msg import String import threading import time from gps3 import gps3 latitude=0 longitude=0 gps_socket = gps3.GPSDSocket() data_stream = gps3.DataStream() gps_socket.connect() gps_socket.watch() def pos_update(): while True: global latitude,longitude print('here1') for new_data in gps_socket: if new_data: data_stream.unpack(new_data) global latitude,longitude latitude = data_stream.TPV['lat'] longitude = data_stream.TPV['lon'] if type(longitude) is type('sdas') or type(latitude) is type('sdas'): continue else: return latitude,longitude def gpub(): pubcor=rospy.Publisher("coordinates",String, queue_size=1) #publong=rospy.Publisher("longitude",String, queue_size=1) rospy.init_node("GPS",anonymous=True) rate=rospy.Rate(10) while not rospy.is_shutdown(): latitude,longitude=pos_update() pubcor.publish(str(latitude)+','+str(longitude)) rate.sleep() if __name__=='__main__': try: gpub() except rospy.ROSInterruptException: pass
# -*- coding: utf-8 -*- # Copyright 2012 Loris Corazza, Sakis Christakidis # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from p2ner.core.namespace import autoNS from p2ner.abstract.message import Message from weakref import ref class MessageSent(Exception): def __init__(self, peer= None): self.peer = peer class MessageError(Exception): def __init__(self, peer=None): self.peer = peer def probe_ack(f,func=None,*args): f.trap(MessageSent,MessageError) if f.check(MessageSent): return True if f.check(MessageError): if func: func(peer=f.value.peer,*args) return False def probe_rec(f,func=None,*args): f.trap(MessageSent,MessageError) if f.check(MessageSent): if func: func(peer=f.value.peer,*args) return False if f.check(MessageError): return True def probe_all(f,suc_func=None,err_func=None,**kwargs): f.trap(MessageSent,MessageError) if f.check(MessageSent): if suc_func: suc_func(f.value.peer,**kwargs) return False if f.check(MessageError): if err_func: err_func(f.value.peer,**kwargs) return False def trap_sent(f): f.trap(MessageSent,MessageError) class ControlMessage(Message): __instances__ = [] @property def code(self): return self.__class__.code @property def type(self): return self.__class__.type @property def ack(self): return self.__class__.ack @classmethod def _cleanref(cls, r): #print 'del',r #cls.Log().error('removing %s',str(r)) ControlMessage.__instances__.remove(r) #print ControlMessage.__instances__ @classmethod def remove_refs(cls,inst): #cls.Log.error('in remove refs') i=0 for msg_ref in ControlMessage.__instances__: if msg_ref() is inst: found=i #cls.Log.debug('removing control message instance:%s',msg_ref()) #cls.__instances__.remove(msg_ref) break i+=1 ControlMessage.__instances__.pop(found) @autoNS def __init__(self, *args, **kwargs): ControlMessage.__instances__.append(ref(self, ControlMessage._cleanref)) #if not 'Log' in ControlMessage.__dict__: # ControlMessage.Log=ref(self.logger.getLoggerChild('messages',self.interface)) #ControlMessage.Log().debug('registering message %s',str(self)) self.initMessage(*args, **kwargs) def initMessage(self, *args, **kwargs): pass @classmethod def codefilter(cls, code): msglist = [] for msg_ref in cls.__instances__: msg = msg_ref() if msg == None: continue if msg.type == "messageheader": continue elif msg.code == code or msg.code == "*": msglist.append(msg) if len(msglist)==0: print "No matches for msg code", code #cls.Log.warning("No matches for msg code:%s", code) # print "Message instances: ", [m() for m in cls.__instances__] #cls.Log.warning("Message instances:%s ",str( [m() for m in cls.__instances__])) return msglist @classmethod def fallbackmsgs(cls): msglist = [] for msg_ref in cls.__instances__: msg = msg_ref() if msg: if msg.code == "-": msglist.append(msg) return msglist @classmethod def trig(cls, msgs, triggers): triggered = [] for msg in msgs: if msg.trigger(triggers[msg.type]): triggered.append((msg, triggers[msg.type])) return triggered def __str__(self): return "CODE: %d TYPE: %s ACK: %d" % (self.__class__.code, self.__class__.type, self.__class__.ack) def __repr__(self): return "%s()" % self.__class__.__name__ class BaseControlMessage(ControlMessage): @autoNS def __init__(self, *args, **kwargs): pass def trigger(self,message): pass def action(self,message,peer): pass
""" Detect and recognize faces using dlib served by zerorpc Should be called from a zerorpc client with ZoneMinder alarm image metadata from zm-s3-upload.js. This program should be run in the 'cv' virtual python environment, i.e., $ /home/lindo/.virtualenvs/cv/bin/python ./face_detect_server.py This is part of the smart-zoneminder project. See https://github.com/goruck/smart-zoneminder Copyright (c) 2018, 2019 Lindo St. Angel """ import numpy as np import cv2 import face_recognition import json import zerorpc import logging import pickle import gevent import signal logging.basicConfig(level=logging.ERROR) # Get configuration. with open('./config.json') as fp: config = json.load(fp)['faceDetServer'] # Heartbeat interval for zerorpc client in ms. # This must match the zerorpc client config. ZRPC_HEARTBEAT = config['zerorpcHeartBeat'] # IPC (or TCP) socket for zerorpc. # This must match the zerorpc client config. ZRPC_PIPE = config['zerorpcPipe'] # Settings for face classifier. # The model and label encoder need to be generated by 'train.py' first. MODEL_PATH = config['modelPath'] LABEL_PATH = config['labelPath'] MIN_PROBA = config['minProba'] # Images with Variance of Laplacian less than this are declared blurry. FOCUS_MEASURE_THRESHOLD = config['focusMeasureThreshold'] # Faces with width or height less than this are too small for recognition. # In pixels. MIN_FACE = config['minFace'] # Factor to scale image when looking for faces. # May increase the probability of finding a face in the image. # Use caution setting the value > 1 since you may run out of memory. # See https://github.com/ageitgey/face_recognition/wiki/Face-Recognition-Accuracy-Problems. NUMBER_OF_TIMES_TO_UPSAMPLE = config['numFaceImgUpsample'] # Face detection model to use. Can be either 'cnn' or 'hog'. FACE_DET_MODEL = config['faceDetModel'] # How many times to re-sample when calculating face encoding. NUM_JITTERS = config['numJitters'] # Load face recognition model along with the label encoder. with open(MODEL_PATH, 'rb') as fp: recognizer = pickle.load(fp) with open(LABEL_PATH, 'rb') as fp: le = pickle.load(fp) def face_classifier(encoding, min_proba): # perform classification to recognize the face based on 128D encoding # note: reshape(1,-1) converts 1D array into 2D preds = recognizer.predict_proba(encoding.reshape(1, -1))[0] j = np.argmax(preds) proba = preds[j] logging.debug('face classifier proba {} name {}'.format(proba, le.classes_[j])) if proba >= min_proba: name = le.classes_[j] logging.debug('face classifier says this is {}'.format(name)) else: name = None # prob too low to recog face logging.debug('face classifier cannot recognize face') return name, proba def variance_of_laplacian(image): # compute the Laplacian of the image and then return the focus # measure, which is simply the variance of the Laplacian return cv2.Laplacian(image, cv2.CV_64F).var() def image_resize(image, width=None, height=None, inter=cv2.INTER_AREA): # ref: https://stackoverflow.com/questions/44650888/resize-an-image-without-distortion-opencv # initialize the dimensions of the image to be resized and # grab the image size dim = None (h, w) = image.shape[:2] # if both the width and height are None, then return the # original image if width is None and height is None: return image # check to see if the width is None if width is None: # calculate the ratio of the height and construct the # dimensions r = height / float(h) dim = (int(w * r), height) # otherwise, the height is None else: # calculate the ratio of the width and construct the # dimensions r = width / float(w) dim = (width, int(h * r)) # resize the image resized = cv2.resize(image, dim, interpolation=inter) # return the resized image return resized # Define zerorpc class. class DetectRPC(object): def detect_faces(self, test_image_paths): # List that will hold all images with any face detection information. objects_detected_faces = [] # Loop over the images paths provided. for obj in test_image_paths: logging.debug('**********Find Face(s) for {}'.format(obj['image'])) for label in obj['labels']: # If the object detected is a person then try to identify face. if label['name'] == 'person': # Read image from disk. img = cv2.imread(obj['image']) if img is None: # Bad image was read. logging.error('Bad image was read.') label['face'] = None continue # First bound the roi using the coord info passed in. # The roi is area around person(s) detected in image. # (x1, y1) are the top left roi coordinates. # (x2, y2) are the bottom right roi coordinates. y2 = int(label['box']['ymin']) x1 = int(label['box']['xmin']) y1 = int(label['box']['ymax']) x2 = int(label['box']['xmax']) roi = img[y2:y1, x1:x2] #cv2.imwrite('./roi.jpg', roi) if roi.size == 0: # Bad object roi...move on to next image. logging.error('Bad object roi.') label['face'] = None continue # Detect the (x, y)-coordinates of the bounding boxes corresponding # to each face in the input image. rgb = cv2.cvtColor(roi, cv2.COLOR_BGR2RGB) #cv2.imwrite('./rgb.jpg', rgb) detection = face_recognition.face_locations(rgb, NUMBER_OF_TIMES_TO_UPSAMPLE, FACE_DET_MODEL) if not detection: # No face detected...move on to next image. logging.debug('No face detected.') label['face'] = None continue # Carve out face roi and check to see if large enough for recognition. face_top, face_right, face_bottom, face_left = detection[0] #cv2.rectangle(rgb, (face_left, face_top), (face_right, face_bottom), (255,0,0), 2) #cv2.imwrite('./face_rgb.jpg', rgb) face_roi = roi[face_top:face_bottom, face_left:face_right] #cv2.imwrite('./face_roi.jpg', face_roi) (f_h, f_w) = face_roi.shape[:2] # If face width or height are not sufficiently large then skip. if f_h < MIN_FACE or f_w < MIN_FACE: logging.debug('Face too small to recognize.') label['face'] = None continue # Compute the focus measure of the face # using the Variance of Laplacian method. # See https://www.pyimagesearch.com/2015/09/07/blur-detection-with-opencv/ gray = cv2.cvtColor(face_roi, cv2.COLOR_BGR2GRAY) fm = variance_of_laplacian(gray) # If fm below a threshold then face probably isn't clear enough # for face recognition to work, so skip it. if fm < FOCUS_MEASURE_THRESHOLD: logging.debug('Face too blurry to recognize.') label['face'] = None continue # Find the 128-dimension face encoding for face in image. # face_locations in css order (top, right, bottom, left) face_location = (face_top, face_right, face_bottom, face_left) encoding = face_recognition.face_encodings(rgb, known_face_locations=[face_location], num_jitters=NUM_JITTERS)[0] logging.debug('face encoding {}'.format(encoding)) # Perform classification on the encodings to recognize the face. (name, proba) = face_classifier(encoding, MIN_PROBA) # Add face name to label metadata. label['face'] = name # Add face confidence to label metadata. # (First convert NumPy value to native Python type for json serialization.) label['faceProba'] = proba.item() # Add processed image to output list. objects_detected_faces.append(obj) # Convert json to string and return data. return(json.dumps(objects_detected_faces)) s = zerorpc.Server(DetectRPC(), heartbeat=ZRPC_HEARTBEAT) s.bind(ZRPC_PIPE) # Register graceful ways to stop server. gevent.signal(signal.SIGINT, s.stop) # Ctrl-C gevent.signal(signal.SIGTERM, s.stop) # termination # Start server. # This will block until a gevent signal is caught s.run()
"""Voice Assistant base NL processor.""" from abc import ABC, abstractmethod from dataclasses import dataclass from typing import Optional from voiceassistant.utils.datastruct import DottedDict @dataclass class NlpResult: """NLP Result class. Should be a return type of all NL processors. """ intent: str entities: DottedDict is_complete: bool class BaseNLP(ABC): """Base Natural Language Processor.""" @property @abstractmethod def name(self) -> str: """Return NL Processor name.""" raise NotImplementedError @abstractmethod def process(self, transcript: str) -> Optional[NlpResult]: """Process natural language `transcript`.""" raise NotImplementedError
import sys import click from subprocess import check_call DEFAULT_PYTHON_VERSION = "3.6" PYTHON_VERSIONS = ["3.6"] ADDITIONAL_CORE_DEPS = [ 'pyface>=7.0.0-3', 'traitsui>=7.0.0-2', 'requests==2.18.4-1' ] ADDITIONAL_PLATFORM_CORE_DEPS = { 'rh6-x86_64': [ 'lxml==3.7.3-2' ], 'osx-x86_64': [ 'lxml==3.7.3-1' ] } @click.group() def cli(): pass python_version_option = click.option( '--python-version', default=DEFAULT_PYTHON_VERSION, type=click.Choice(PYTHON_VERSIONS), show_default=True, help="Python version for the environment") @cli.command(name="install", help="Installs the code and its dependencies") @python_version_option def install(python_version): env_name = get_env_name(python_version) check_call(["edm", "install", "-e", env_name, "--yes"] + ADDITIONAL_CORE_DEPS + ADDITIONAL_PLATFORM_CORE_DEPS[current_platform()]) check_call([ "edm", "run", "-e", env_name, "--", "pip", "install", "-e", "."]) @cli.command(name="install-dummy-granta", help="Installs a dummy version " "of the GRANTA library") @python_version_option def install_dummy_granta(python_version): env_name = get_env_name(python_version) check_call([ "edm", "run", "-e", env_name, "--", "pip", "install", "dummy/granta"]) @cli.command(help="Run the tests") @python_version_option def test(python_version): env_name = get_env_name(python_version) check_call([ "edm", "run", "-e", env_name, "--", "python", "-m", "unittest", "discover" ]) @cli.command(help="Run flake") @python_version_option def flake8(python_version): env_name = get_env_name(python_version) check_call(["edm", "run", "-e", env_name, "--", "flake8", "."]) @cli.command(help="Runs the coverage") @python_version_option def coverage(python_version): env_name = get_env_name(python_version) check_call(["edm", "run", "-e", env_name, "--", "coverage", "run", "-m", "unittest", "discover"]) @cli.command(help="Builds the documentation") @python_version_option def docs(python_version): env_name = get_env_name(python_version) check_call(["edm", "run", "-e", env_name, "--", "make", "html"], cwd="doc") def get_env_name(python_version): return "force-py{}".format(remove_dot(python_version)) def remove_dot(python_version): return "".join(python_version.split('.')) def current_platform(): platform = sys.platform if platform.startswith("linux"): return "rh6-x86_64" elif platform == "darwin": return "osx-x86_64" else: raise RuntimeError("platform {!r} not supported".format(platform)) if __name__ == "__main__": cli()
def parse_range(srange): left, right = [int(e) for e in srange.split('=')[-1].split('..')] return left, right def parse_line(line): line2 = line.strip() if line2.startswith('on '): line3 = line2[3:] light_on = True elif line2.startswith('off '): line3 = line2[4:] light_on = False else: raise ValueError('Unknown switch value') xr, yr, zr = [parse_range(srange) for srange in line3.split(',')] return light_on, xr, yr, zr def intersect_interval(I1, I2): intervals = sorted([I1, I2]) a1, b1 = intervals[0] a2, b2 = intervals[1] return b1 >= a2 def intersect_cubes(ci, cj): _, xir, yir, zir = ci xi1, xi2 = xir yi1, yi2 = yir zi1, zi2 = zir _, xjr, yjr, zjr = cj xj1, xj2 = xjr yj1, yj2 = yjr zj1, zj2 = zjr inter_x = intersect_interval((xi1, xi2), (xj1, xj2)) inter_y = intersect_interval((yi1, yi2), (yj1, yj2)) inter_z = intersect_interval((zi1, zi2), (zj1, zj2)) return all([inter_x, inter_y, inter_z]) def get_gross_lights(cube): _, xr, yr, zr = cube x1, x2 = xr xl = x2 - x1 + 1 y1, y2 = yr yl = y2 - y1 + 1 z1, z2 = zr zl = z2 - z1 + 1 return xl * yl * zl def intersected_interval(I1, I2): intervals = sorted([I1, I2]) a1, b1 = intervals[0] a2, b2 = intervals[1] return a2, min(b1, b2) def intersected_cube(ci, cj): if not intersect_cubes(ci, cj): return False, 0 else: _, xir, yir, zir = ci xi1, xi2 = xir yi1, yi2 = yir zi1, zi2 = zir _, xjr, yjr, zjr = cj xj1, xj2 = xjr yj1, yj2 = yjr zj1, zj2 = zjr inter_x = intersected_interval((xi1, xi2), (xj1, xj2)) inter_y = intersected_interval((yi1, yi2), (yj1, yj2)) inter_z = intersected_interval((zi1, zi2), (zj1, zj2)) res_c = True, inter_x, inter_y, inter_z return True, res_c def get_net_lights(i, cubes): current_cube = cubes[i] future_cubes = cubes[i + 1:] inter_cubes_results = [intersected_cube(current_cube, future_cube) for future_cube in future_cubes] inter_cubes = [c for b, c in inter_cubes_results if b] inter_cubes_net_lights = [get_net_lights(j, inter_cubes) for j in range(len(inter_cubes))] sum_icnl = sum(inter_cubes_net_lights) result = get_gross_lights(current_cube) - sum_icnl return result def usecase2(filename): with open(filename, 'r') as input_file: cubes = [parse_line(line) for line in input_file] C = len(cubes) all_net_lights = [get_net_lights(i, cubes) for i in range(C) if cubes[i][0]] result = sum(all_net_lights) print(f'result = {result}') def main(): usecase2('sample-input2.txt') usecase2('input.txt') if __name__ == '__main__': main()
from os import listdir from pickle import dump from keras.applications.vgg16 import VGG16 from keras.preprocessing.image import load_img from keras.preprocessing.image import img_to_array from keras.applications.vgg16 import preprocess_input from keras.models import Model import tensorflow as tf #import theano import os #os.environ["CUDA_VISIBLE_DEVICES"]="0" #from tensorflow.python.client import device_lib #print (device_lib.list_local_devices()) #import tensorflow as tf #config = tf.ConfigProto() #config.gpu_options.per_process_gpu_memory_fraction = 0.5 #session = tf.Session(config=tf.ConfigProto(log_device_placement=True)) #print(session) #%matplotlib inline # extract features from each photo in the directory def extract_features(directory): # load the model model = VGG16() # re-structure the model model.layers.pop() model = Model(inputs=model.inputs, outputs=model.layers[-1].output) # summarize print(model.summary()) # extract features from each photo features = dict() for name in listdir(directory): # load an image from file filename = directory + '/' + name image = load_img(filename, target_size=(224, 224)) # convert the image pixels to a numpy array image = img_to_array(image) # reshape data for the model image = image.reshape((1, image.shape[0], image.shape[1], image.shape[2])) # prepare the image for the VGG model image = preprocess_input(image) # get features feature = model.predict(image, verbose=0) # get image id image_id = name.split('.')[0] # store feature features[image_id] = feature print('>%s' % name) return features # extract features from all images #directory = 'D:/my_tutorials/fewimages model/Images Dataset' directory = 'D:/my_tutorials/New Created Database/Dabasets Self Captioning' features = extract_features(directory) print('Extracted Features: %d' % len(features)) # save to file dump(features, open('features1.pkl', 'wb')) import string # load doc into memory def load_doc(filename): # open the file as read only file = open(filename, 'r') # read all text text = file.read() # close the file file.close() return text # extract descriptions for images def load_descriptions(doc): mapping = dict() # process lines for line in doc.split('\n'): # split line by white space tokens = line.split() if len(line) < 2: continue # take the first token as the image id, the rest as the description image_id, image_desc = tokens[0], tokens[1:] # remove filename from image id image_id = image_id.split('.')[0] # convert description tokens back to string image_desc = ' '.join(image_desc) # create the list if needed if image_id not in mapping: mapping[image_id] = list() # store description mapping[image_id].append(image_desc) return mapping def clean_descriptions(descriptions): # prepare translation table for removing punctuation table = str.maketrans('', '', string.punctuation) for key, desc_list in descriptions.items(): for i in range(len(desc_list)): desc = desc_list[i] # tokenize desc = desc.split() # convert to lower case desc = [word.lower() for word in desc] # remove punctuation from each token desc = [w.translate(table) for w in desc] # remove hanging 's' and 'a' desc = [word for word in desc if len(word)>1] # remove tokens with numbers in them desc = [word for word in desc if word.isalpha()] # store as string desc_list[i] = ' '.join(desc) # convert the loaded descriptions into a vocabulary of words def to_vocabulary(descriptions): # build a list of all description strings all_desc = set() for key in descriptions.keys(): [all_desc.update(d.split()) for d in descriptions[key]] return all_desc # save descriptions to file, one per line def save_descriptions(descriptions, filename): lines = list() for key, desc_list in descriptions.items(): for desc in desc_list: lines.append(key + ' ' + desc) data = '\n'.join(lines) file = open(filename, 'w') file.write(data) file.close() #filename = 'D:/my_tutorials/fewimages model/Tokens/Document1.txt' filename = 'D:/my_tutorials/New Created Database/tokens.txt' # load descriptions doc = load_doc(filename) # parse descriptions descriptions = load_descriptions(doc) print('Loaded: %d ' % len(descriptions)) # clean descriptions clean_descriptions(descriptions) # summarize vocabulary vocabulary = to_vocabulary(descriptions) print('Vocabulary Size: %d' % len(vocabulary)) # save to file save_descriptions(descriptions, 'descriptions.txt') from pickle import load # load doc into memory def load_doc(filename): # open the file as read only file = open(filename, 'r') # read all text text = file.read() # close the file file.close() return text # load a pre-defined list of photo identifiers def load_set(filename): doc = load_doc(filename) dataset = list() # process line by line for line in doc.split('\n'): # skip empty lines if len(line) < 1: continue # get the image identifier identifier = line.split('.')[0] dataset.append(identifier) return set(dataset) # load clean descriptions into memory def load_clean_descriptions(filename, dataset): # load document doc = load_doc(filename) descriptions = dict() for line in doc.split('\n'): # split line by white space tokens = line.split() # split id from description image_id, image_desc = tokens[0], tokens[1:] # skip images not in the set if image_id in dataset: # create list if image_id not in descriptions: descriptions[image_id] = list() # wrap description in tokens desc = 'startseq ' + ' '.join(image_desc) + ' endseq' # store descriptions[image_id].append(desc) return descriptions # load photo features def load_photo_features(filename, dataset): # load all features all_features = load(open(filename, 'rb')) # filter features features = {k: all_features[k] for k in dataset} return features # load training dataset #filename = 'D:/my_tutorials/fewimages model/Tokens/Document2.txt' filename = 'D:/my_tutorials/New Created Database/train.txt' train = load_set(filename) print('Dataset: %d' % len(train)) # descriptions train_descriptions = load_clean_descriptions('descriptions.txt', train) print('Descriptions: train=%d' % len(train_descriptions)) # photo features train_features = load_photo_features('features1.pkl', train) print('Photos: train=%d' % len(train_features)) from keras.preprocessing.text import Tokenizer # fit a tokenizer given caption descriptions # fit a tokenizer given caption descriptions def create_tokenizer(descriptions): lines = to_lines(descriptions) tokenizer = Tokenizer() tokenizer.fit_on_texts(lines) return tokenizer # calculate the length of the description with the most words def max_length(descriptions): lines = to_lines(descriptions) return max(len(d.split()) for d in lines) def create_sequences(tokenizer, max_length, descriptions, photos): X1, X2, y = list(), list(), list() # walk through each image identifier for key, desc_list in descriptions.items(): # walk through each description for the image for desc in desc_list: # encode the sequence seq = tokenizer.texts_to_sequences([desc])[0] # split one sequence into multiple X,y pairs for i in range(1, len(seq)): # split into input and output pair in_seq, out_seq = seq[:i], seq[i] # pad input sequence in_seq = pad_sequences([in_seq], maxlen=max_length)[0] # encode output sequence out_seq = to_categorical([out_seq], num_classes=vocab_size)[0] # store X1.append(photos[key][0]) X2.append(in_seq) y.append(out_seq) return array(X1), array(X2), array(y) # calculate the length of the description with the most words def max_length(descriptions): lines = to_lines(descriptions) return max(len(d.split()) for d in lines) # define the captioning model def define_model(vocab_size, max_length): # feature extractor model inputs1 = Input(shape=(4096,1)) fe1 = Dropout(0.5)(inputs1) fe2 = Dense(256, activation='relu')(fe1) # sequence model inputs2 = Input(shape=(max_length,)) se1 = Embedding(vocab_size, 256, mask_zero=True)(inputs2) se2 = Dropout(0.5)(se1) se3 = LSTM(256)(se2) # decoder model decoder1 = add([fe2, se3]) decoder2 = Dense(256, activation='relu')(decoder1) outputs = Dense(vocab_size, activation='softmax')(decoder2) # tie it together [image, seq] [word] model = Model(inputs=[inputs1, inputs2], outputs=outputs) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) # summarize model print(model.summary()) plot_model(model, to_file='model.png', show_shapes=True) return model ## Start###################################################################### Above 16GB MEMORY from numpy import array from pickle import load from keras.preprocessing.text import Tokenizer from keras.preprocessing.sequence import pad_sequences from keras.utils import to_categorical from keras.utils import plot_model from keras.models import Model from keras.layers import Input from keras.layers import Dense from keras.layers import LSTM from keras.layers import Embedding from keras.layers import Dropout from keras.layers.merge import add from keras.callbacks import ModelCheckpoint # load doc into memory def load_doc(filename): # open the file as read only file = open(filename, 'r') # read all text text = file.read() # close the file file.close() return text # load a pre-defined list of photo identifiers def load_set(filename): doc = load_doc(filename) dataset = list() # process line by line for line in doc.split('\n'): # skip empty lines if len(line) < 1: continue # get the image identifier identifier = line.split('.')[0] dataset.append(identifier) return set(dataset) # load clean descriptions into memory def load_clean_descriptions(filename, dataset): # load document doc = load_doc(filename) descriptions = dict() for line in doc.split('\n'): # split line by white space tokens = line.split() # split id from description image_id, image_desc = tokens[0], tokens[1:] # skip images not in the set if image_id in dataset: # create list if image_id not in descriptions: descriptions[image_id] = list() # wrap description in tokens desc = 'startseq ' + ' '.join(image_desc) + ' endseq' # store descriptions[image_id].append(desc) return descriptions # load photo features def load_photo_features(filename, dataset): # load all features all_features = load(open(filename, 'rb')) # filter features features = {k: all_features[k] for k in dataset} return features # covert a dictionary of clean descriptions to a list of descriptions def to_lines(descriptions): all_desc = list() for key in descriptions.keys(): [all_desc.append(d) for d in descriptions[key]] return all_desc # fit a tokenizer given caption descriptions def create_tokenizer(descriptions): lines = to_lines(descriptions) tokenizer = Tokenizer() tokenizer.fit_on_texts(lines) return tokenizer # calculate the length of the description with the most words def max_length(descriptions): lines = to_lines(descriptions) return max(len(d.split()) for d in lines) # create sequences of images, input sequences and output words for an image def create_sequences(tokenizer, max_length, descriptions, photos): X1, X2, y = list(), list(), list() # walk through each image identifier for key, desc_list in descriptions.items(): # walk through each description for the image for desc in desc_list: # encode the sequence seq = tokenizer.texts_to_sequences([desc])[0] # split one sequence into multiple X,y pairs for i in range(1, len(seq)): # split into input and output pair in_seq, out_seq = seq[:i], seq[i] # pad input sequence in_seq = pad_sequences([in_seq], maxlen=max_length)[0] # encode output sequence out_seq = to_categorical([out_seq], num_classes=vocab_size)[0] # store X1.append(photos[key][0]) X2.append(in_seq) y.append(out_seq) return array(X1), array(X2), array(y) # define the captioning model def define_model(vocab_size, max_length): # feature extractor model inputs1 = Input(shape=(4096,)) fe1 = Dropout(0.5)(inputs1) fe2 = Dense(256, activation='relu')(fe1) # sequence model inputs2 = Input(shape=(max_length,)) se1 = Embedding(vocab_size, 256, mask_zero=True)(inputs2) se2 = Dropout(0.5)(se1) se3 = LSTM(256)(se2) # decoder model decoder1 = add([fe2, se3]) decoder2 = Dense(256, activation='relu')(decoder1) outputs = Dense(vocab_size, activation='softmax')(decoder2) # tie it together [image, seq] [word] model = Model(inputs=[inputs1, inputs2], outputs=outputs) model.compile(loss='categorical_crossentropy', optimizer='adam') # summarize model print(model.summary()) plot_model(model, to_file='model.png', show_shapes=True) return model # train dataset # load training dataset (6K) filename = 'D:/my_tutorials/New Created Database/train.txt' train = load_set(filename) print('Dataset: %d' % len(train)) # descriptions train_descriptions = load_clean_descriptions('descriptions.txt', train) print('Descriptions: train=%d' % len(train_descriptions)) # photo features train_features = load_photo_features('features1.pkl', train) print('Photos: train=%d' % len(train_features)) # prepare tokenizer tokenizer = create_tokenizer(train_descriptions) vocab_size = len(tokenizer.word_index) + 1 print('Vocabulary Size: %d' % vocab_size) # determine the maximum sequence length max_length = max_length(train_descriptions) print('Description Length: %d' % max_length) # prepare sequences X1train, X2train, ytrain = create_sequences(tokenizer, max_length, train_descriptions, train_features) # dev dataset # load test set filename = 'D:/my_tutorials/New Created Database/dev.txt' test = load_set(filename) print('Dataset: %d' % len(test)) # descriptions test_descriptions = load_clean_descriptions('descriptions.txt', test) print('Descriptions: test=%d' % len(test_descriptions)) # photo features test_features = load_photo_features('features1.pkl', test) print('Photos: test=%d' % len(test_features)) # prepare sequences X1test, X2test, ytest = create_sequences(tokenizer, max_length, test_descriptions, test_features) # fit model # define the model model = define_model(vocab_size, max_length) # define checkpoint callback filepath = 'D:/my_tutorials/New Created Database/' checkpoint = ModelCheckpoint(filepath, monitor='val_loss', verbose=1, save_best_only=True, mode='min') # fit model model.fit([X1train, X2train], ytrain, epochs=1, verbose=2, batch_size=5) model.save('modelz'+ '.h5') from numpy import argmax from pickle import load from keras.preprocessing.text import Tokenizer from keras.preprocessing.sequence import pad_sequences from keras.models import load_model from nltk.translate.bleu_score import corpus_bleu # load doc into memory def load_doc(filename): # open the file as read only file = open(filename, 'r') # read all text text = file.read() # close the file file.close() return text # load a pre-defined list of photo identifiers def load_set(filename): doc = load_doc(filename) dataset = list() # process line by line for line in doc.split('\n'): # skip empty lines if len(line) < 1: continue # get the image identifier identifier = line.split('.')[0] dataset.append(identifier) return set(dataset) # load clean descriptions into memory def load_clean_descriptions(filename, dataset): # load document doc = load_doc(filename) descriptions = dict() for line in doc.split('\n'): # split line by white space tokens = line.split() # split id from description image_id, image_desc = tokens[0], tokens[1:] # skip images not in the set if image_id in dataset: # create list if image_id not in descriptions: descriptions[image_id] = list() # wrap description in tokens desc = 'startseq ' + ' '.join(image_desc) + ' endseq' # store descriptions[image_id].append(desc) return descriptions # load photo features def load_photo_features(filename, dataset): # load all features all_features = load(open(filename, 'rb')) # filter features features = {k: all_features[k] for k in dataset} return features # covert a dictionary of clean descriptions to a list of descriptions def to_lines(descriptions): all_desc = list() for key in descriptions.keys(): [all_desc.append(d) for d in descriptions[key]] return all_desc # fit a tokenizer given caption descriptions def create_tokenizer(descriptions): lines = to_lines(descriptions) tokenizer = Tokenizer() tokenizer.fit_on_texts(lines) return tokenizer # calculate the length of the description with the most words def max_length(descriptions): lines = to_lines(descriptions) return max(len(d.split()) for d in lines) # map an integer to a word def word_for_id(integer, tokenizer): for word, index in tokenizer.word_index.items(): if index == integer: return word return None # generate a description for an image def generate_desc(model, tokenizer, photo, max_length): # seed the generation process in_text = 'startseq' # iterate over the whole length of the sequence for i in range(max_length): # integer encode input sequence sequence = tokenizer.texts_to_sequences([in_text])[0] # pad input sequence = pad_sequences([sequence], maxlen=max_length) # predict next word yhat = model.predict([photo,sequence], verbose=0) # convert probability to integer yhat = argmax(yhat) # map integer to word word = word_for_id(yhat, tokenizer) # stop if we cannot map the word if word is None: break # append as input for generating the next word in_text += ' ' + word # stop if we predict the end of the sequence if word == 'endseq': break return in_text # evaluate the skill of the model def evaluate_model(model, descriptions, photos, tokenizer, max_length): actual, predicted = list(), list() # step over the whole set for key, desc_list in descriptions.items(): # generate description yhat = generate_desc(model, tokenizer, photos[key], max_length) # store actual and predicted references = [d.split() for d in desc_list] actual.append(references) predicted.append(yhat.split()) # calculate BLEU score print('BLEU-1: %f' % corpus_bleu(actual, predicted, weights=(1.0, 0, 0, 0))) print('BLEU-2: %f' % corpus_bleu(actual, predicted, weights=(0.5, 0.5, 0, 0))) print('BLEU-3: %f' % corpus_bleu(actual, predicted, weights=(0.3, 0.3, 0.3, 0))) print('BLEU-4: %f' % corpus_bleu(actual, predicted, weights=(0.25, 0.25, 0.25, 0.25))) # prepare tokenizer on train set # load training dataset (6K) filename ='D:/my_tutorials/New Created Database/train.txt' train = load_set(filename) print('Dataset: %d' % len(train)) # descriptions train_descriptions = load_clean_descriptions('descriptions.txt', train) print('Descriptions: train=%d' % len(train_descriptions)) # prepare tokenizer tokenizer = create_tokenizer(train_descriptions) vocab_size = len(tokenizer.word_index) + 1 print('Vocabulary Size: %d' % vocab_size) # determine the maximum sequence length max_length = max_length(train_descriptions) print('Description Length: %d' % max_length) # prepare test set # load test set filename = 'D:/my_tutorials/New Created Database/test.txt' test = load_set(filename) print('Dataset: %d' % len(test)) # descriptions test_descriptions = load_clean_descriptions('descriptions.txt', test) print('Descriptions: test=%d' % len(test_descriptions)) # photo features test_features = load_photo_features('features1.pkl', test) print('Photos: test=%d' % len(test_features)) # load the model filename = 'modelx.h5' model = load_model(filename) # evaluate model evaluate_model(model, train_descriptions, train_features, tokenizer, max_length) ##################################################################### from keras.preprocessing.text import Tokenizer from pickle import dump # load doc into memory def load_doc(filename): # open the file as read only file = open(filename, 'r') # read all text text = file.read() # close the file file.close() return text # load a pre-defined list of photo identifiers def load_set(filename): doc = load_doc(filename) dataset = list() # process line by line for line in doc.split('\n'): # skip empty lines if len(line) < 1: continue # get the image identifier identifier = line.split('.')[0] dataset.append(identifier) return set(dataset) # load clean descriptions into memory def load_clean_descriptions(filename, dataset): # load document doc = load_doc(filename) descriptions = dict() for line in doc.split('\n'): # split line by white space tokens = line.split() # split id from description image_id, image_desc = tokens[0], tokens[1:] # skip images not in the set if image_id in dataset: # create list if image_id not in descriptions: descriptions[image_id] = list() # wrap description in tokens desc = 'startseq ' + ' '.join(image_desc) + ' endseq' # store descriptions[image_id].append(desc) return descriptions # covert a dictionary of clean descriptions to a list of descriptions def to_lines(descriptions): all_desc = list() for key in descriptions.keys(): [all_desc.append(d) for d in descriptions[key]] return all_desc # fit a tokenizer given caption descriptions def create_tokenizer(descriptions): lines = to_lines(descriptions) tokenizer = Tokenizer() tokenizer.fit_on_texts(lines) return tokenizer # load training dataset (6K) #filename = 'D:/my_tutorials/New Created Database/train.txt' filename='D:/my_tutorials/tf_object_detection_api/Flickr8k_text/Flickr_8k.trainImages.txt' train = load_set(filename) print('Dataset: %d' % len(train)) # descriptions train_descriptions = load_clean_descriptions('descriptions.txt', train) print('Descriptions: train=%d' % len(train_descriptions)) # prepare tokenizer tokenizer = create_tokenizer(train_descriptions) # save the tokenizer dump(tokenizer, open('tokenizer.pkl', 'wb')) ################################################################################### from keras.models import Sequential from keras.layers import Dense, Activation from pickle import load from numpy import argmax from keras.preprocessing.sequence import pad_sequences from keras.applications.vgg16 import VGG16 from keras.preprocessing.image import load_img from keras.preprocessing.image import img_to_array from keras.applications.vgg16 import preprocess_input from keras.models import Model from keras.models import load_model import os # extract features from each photo in the directory def extract_features(filename): # load the model model = VGG16() # re-structure the model model.layers.pop() model = Model(inputs=model.inputs, outputs=model.layers[-1].output) # load the photo image = load_img(filename, target_size=(224, 224)) # convert the image pixels to a numpy array image = img_to_array(image) # reshape data for the model image = image.reshape((1, image.shape[0], image.shape[1], image.shape[2])) # prepare the image for the VGG model image = preprocess_input(image) # get features feature = model.predict(image, verbose=0) return feature model = load_model('modelx.h5') print(model.summary()) photo = extract_features('4.jpg') print(photo.shape) # generate description # map an integer to a word def word_for_id(integer, tokenizer): for word, index in tokenizer.word_index.items(): if index == integer: return word return None # generate a description for an image def generate_desc(model, tokenizer, photo, max_length): # seed the generation process in_text = 'startseq' # iterate over the whole length of the sequence for i in range(max_length): # integer encode input sequence sequence = tokenizer.texts_to_sequences([in_text])[0] # pad input sequence = pad_sequences([sequence], maxlen=max_length) # predict next word yhat = model.predict([photo,sequence], verbose=0) # convert probability to integer yhat = argmax(yhat) # map integer to word word = word_for_id(yhat, tokenizer) # stop if we cannot map the word if word is None: break # append as input for generating the next word in_text += ' ' + word # stop if we predict the end of the sequence if word == 'endseq': break return in_text # load the tokenizer tokenizer = load(open('tokenizer.pkl', 'rb')) # pre-define the max sequence length (from training) max_length = 34 # load and prepare the photograph # generate description description = generate_desc(model, tokenizer, photo, max_length) print(description) ############################################################################################################################################ #from numpy import array #from pickle import load #from keras.preprocessing.text import Tokenizer #from keras.preprocessing.sequence import pad_sequences #from keras.utils import to_categorical #from keras.utils import plot_model #from keras.models import Model #from keras.layers import Input #from keras.layers import Dense #from keras.layers import LSTM #from keras.layers import Embedding #from keras.layers import Dropout #from keras.layers.merge import add #from keras.callbacks import ModelCheckpoint # ## load doc into memory #def load_doc(filename): # # open the file as read only # file = open(filename, 'r') # # read all text # text = file.read() # # close the file # file.close() # return text # ## load a pre-defined list of photo identifiers #def load_set(filename): # doc = load_doc(filename) # dataset = list() # # process line by line # for line in doc.split('\n'): # # skip empty lines # if len(line) < 1: # continue # # get the image identifier # identifier = line.split('.')[0] # dataset.append(identifier) # return set(dataset) # ## load clean descriptions into memory #def load_clean_descriptions(filename, dataset): # # load document # doc = load_doc(filename) # descriptions = dict() # for line in doc.split('\n'): # # split line by white space # tokens = line.split() # # split id from description # image_id, image_desc = tokens[0], tokens[1:] # # skip images not in the set # if image_id in dataset: # # create list # if image_id not in descriptions: # descriptions[image_id] = list() # # wrap description in tokens # desc = 'startseq ' + ' '.join(image_desc) + ' endseq' # # store # descriptions[image_id].append(desc) # return descriptions # ## load photo features #def load_photo_features(filename, dataset): # # load all features # all_features = load(open(filename, 'rb')) # # filter features # features = {k: all_features[k] for k in dataset} # return features # ## covert a dictionary of clean descriptions to a list of descriptions #def to_lines(descriptions): # all_desc = list() # for key in descriptions.keys(): # [all_desc.append(d) for d in descriptions[key]] # return all_desc # ## fit a tokenizer given caption descriptions #def create_tokenizer(descriptions): # lines = to_lines(descriptions) # tokenizer = Tokenizer() # tokenizer.fit_on_texts(lines) # return tokenizer # ## calculate the length of the description with the most words #def max_length(descriptions): # lines = to_lines(descriptions) # return max(len(d.split()) for d in lines) # ## create sequences of images, input sequences and output words for an image #def create_sequences(tokenizer, max_length, desc_list, photo): # X1, X2, y = list(), list(), list() # # walk through each description for the image # for desc in desc_list: # # encode the sequence # seq = tokenizer.texts_to_sequences([desc])[0] # # split one sequence into multiple X,y pairs # for i in range(1, len(seq)): # # split into input and output pair # in_seq, out_seq = seq[:i], seq[i] # # pad input sequence # in_seq = pad_sequences([in_seq], maxlen=max_length)[0] # # encode output sequence # out_seq = to_categorical([out_seq], num_classes=vocab_size)[0] # # store # X1.append(photo) # X2.append(in_seq) # y.append(out_seq) # return array(X1), array(X2), array(y) # ## define the captioning model #def define_model(vocab_size, max_length): # # feature extractor model # inputs1 = Input(shape=(4096,)) # fe1 = Dropout(0.5)(inputs1) # fe2 = Dense(256, activation='relu')(fe1) # # sequence model # inputs2 = Input(shape=(max_length,)) # se1 = Embedding(vocab_size, 256, mask_zero=True)(inputs2) # se2 = Dropout(0.5)(se1) # se3 = LSTM(256)(se2) # # decoder model # decoder1 = add([fe2, se3]) # decoder2 = Dense(256, activation='relu')(decoder1) # outputs = Dense(vocab_size, activation='softmax')(decoder2) # # tie it together [image, seq] [word] # model = Model(inputs=[inputs1, inputs2], outputs=outputs) # # compile model # model.compile(loss='categorical_crossentropy', optimizer='adam') # # summarize model # model.summary() # plot_model(model, to_file='model.png', show_shapes=True) # return model # ## data generator, intended to be used in a call to model.fit_generator() #def data_generator(descriptions, photos, tokenizer, max_length): # # loop for ever over images # while 1: # for key, desc_list in descriptions.items(): # # retrieve the photo feature # photo = photos[key][0] # in_img, in_seq, out_word = create_sequences(tokenizer, max_length, desc_list, photo) # yield [[in_img, in_seq], out_word] # ## load training dataset (6K) #filename = 'D:/my_tutorials/New Created Database/train.txt' #train = load_set(filename) #print('Dataset: %d' % len(train)) ## descriptions #train_descriptions = load_clean_descriptions('descriptions.txt', train) #print('Descriptions: train=%d' % len(train_descriptions)) ## photo features #train_features = load_photo_features('features1.pkl', train) #print('Photos: train=%d' % len(train_features)) ## prepare tokenizer #tokenizer = create_tokenizer(train_descriptions) #vocab_size = len(tokenizer.word_index) + 1 #print('Vocabulary Size: %d' % vocab_size) ## determine the maximum sequence length #max_length = max_length(train_descriptions) #print('Description Length: %d' % max_length) # ## define the model #model = define_model(vocab_size, max_length) ## train the model, run epochs manually and save after each epoch #epochs = 2 #steps = len(train_descriptions) #for i in range(epochs): # # create the data generator # generator = data_generator(train_descriptions, train_features, tokenizer, max_length) # # fit for one epoch # model.fit_generator(generator, epochs=1, steps_per_epoch=steps) # # save model # model.save('model_' + str(i) + '.h5') ############### DETAILS import matplotlib.pyplot as plt print(history.history.keys()) # summarize history for accuracy plt.plot(history.history['acc']) #plt.plot(history.history['val_acc']) plt.title('model accuracy') plt.ylabel('accuracy') plt.xlabel('epoch') plt.legend(['train', 'test'], loc='upper left') plt.show() # summarize history for loss plt.plot(history.history['loss']) #plt.plot(history.history['val_loss']) plt.title('model loss') plt.ylabel('loss') plt.xlabel('epoch') plt.legend(['train', 'test'], loc='upper left') plt.show() ################################### csv MATLAB # #srcFiles = dir('Directory\*.jpg'); #X=length(srcFiles)% the folder in which ur images exists #for i = 1 : length(srcFiles) # filename = strcat('Directory\',srcFiles(i).name); # I = imread(filename); # csvwrite('bb.csv',I(:)); #end # # # ############################################################################################### #import numpy #from sklearn.model_selection import GridSearchCV #learn_rate = [0.001, 0.01, 0.1, 0.2, 0.3] #momentum = [0.0, 0.2, 0.4, 0.6, 0.8, 0.9] #param_grid = dict(learn_rate=learn_rate, momentum=momentum) #grid = GridSearchCV(estimator=model, param_grid=param_grid, n_jobs=-1) #grid_result = grid.fit(X, Y) ## summarize results #print("Best: %f using %s" % (grid_result.best_score_, grid_result.best_params_)) #means = grid_result.cv_results_['mean_test_score'] #stds = grid_result.cv_results_['std_test_score'] #params = grid_result.cv_results_['params'] #for mean, stdev, param in zip(means, stds, params): # print("%f (%f) with: %r" % (mean, stdev, param))
import os, time, errno import mss #https://python-mss.readthedocs.io/en/dev/examples.html import numpy as np import csv import cv2 import dlib import IMDBActors as imdb MONITOR = {'top': 0, 'left': 0, 'width': 1080, 'height': 720} def capture(sct): return sct.grab(MONITOR) KNEWFACES_DIR = 'Resources/KnownPeopleToEncode' KFACES_DIR = 'Resources/KnownPeople' KFACES_FILEPATH = 'Resources/KnownEncodings.csv' KPEOPLE = [] ''' Reads the .csv file that contains all the saved known pairs (name, encoding). Adds each pair to KPEOPLE array. input: no input output: no output ''' def kFacesRead(): #If the file exists - loads the saved known pairs (name, encoding). try: print('Trying to load saved known encodings...') #Opens the .csv file that contains all the saved known pairs (name, encoding). with open(KFACES_FILEPATH, 'r') as csvfile: reader = csv.reader(csvfile) #Inits the reader. failedFaces = 0 totalFaces = 0 for row in reader: try: totalFaces += 1 #Transforms the string of the numpy array of the enconding to #a numpy array. encS = row[1] encS = encS.split() encS[0] = encS[0][1:] encS[-1] = encS[-1][:-1] encSF = [] for i, j in enumerate(encS): if j == '': continue f = float(j) encSF.append(f) encNP = np.array(encSF, dtype=float) #Appends the saved known pair (name, encoding) to the array. KPEOPLE.append([row[0], encNP]) except OSError as e: failedFaces += 1 print(e) print('Unable to load face {}'.format(row[0])) print('Loaded {} of {} known faces.'.format(totalFaces - failedFaces, totalFaces)) print('Done loading saved known encodings') #If the file does not exist - theres were no saved known pairs (name, encoding). except FileNotFoundError as filenotfound: print('Did not find any saved known encodings.') ''' Encodes all the new people's faces found in KNEWFACES_DIR and creates the pair ((name, encoding). Adds each pair to KPEOPLE array. Writes each pair to the .csv file that contains all the saved known pairs. Moves all the new images (found in KNEWFACES_DIR) to the directory where all the known, already encoded, people's faces's images are. input: no input output: no output ''' def kFacesSaveNew(): #Tries to create the directory to store the images of already encoded faces. try: os.makedirs(KFACES_DIR) except OSError as e: if e.errno != errno.EEXIST: raise print('\nEncoding and saving new known people...') #Opens the .csv file that contains all the saved known pairs (name, encoding). with open(KFACES_FILEPATH, 'a', newline = '') as csvfile: writer = csv.writer(csvfile) #Inits the writer. failedFaces = 0 totalFaces = 0 for img in os.listdir(KNEWFACES_DIR): totalFaces += 1 pName = (img.split('.'))[0] #Gets the name. print('\tEnconding {}'.format(pName)) path = os.path.join(KNEWFACES_DIR, img) image = cv2.imread(path) #Opens the image. #Detects the face. try: (x, y, w, h) = faceDetector.detectMultiScale(image, 1.3, 5)[0] #Transforms the rectangle coordenates to the expected type. faceRect = dlib.rectangle(int(x), int(y), int(x+w), int(y+h)) #Warp the image so the points are always in the same position. faceAligned = facePosePredictor(image, faceRect) #Gets the face's encoding. faceEncoding = uFaceEncode(image, faceAligned, 1) #Appends the saved known pair (name, encoding) to the array. KPEOPLE.append([pName, faceEncoding]) #Writes the new known pair (name, encoding) to the .csv file. writer.writerow([pName, faceEncoding]) except: failedFaces += 1 print('Couldn\'t find face in {}.'.format(img)) #Moves the image to the directory of images of already encoded faces. try: newpath = os.path.join(KFACES_DIR, img) os.rename(path, newpath) except: print('Couldn\'t move file - {}.'.format(img)) print('Encoded {} of {} new faces.'.format(totalFaces - failedFaces, totalFaces)) print('Done encoding and saving new known people.') ''' Returns the similarity of the unknown face (that is being detected) with all the known people's faces. input: <numpy.array(128)>uEncoding Encoding of the unknown detected face. output: <array(len(KPEOPLE))> Distance between the detected face and all the know ones. ''' def kFacesSimilarity(uEncoding): if len(KPEOPLE) == 0: return [9999] return [np.linalg.norm(person[1] - uEncoding) for person in KPEOPLE] ''' Returns the name of the detected face or 'Face not recognized' if it does not find a match. input: <numpy.array(128)>uEncoding Encoding of the unknown detected face. output: <str> Name of the detected person or 'Face not recognized'. ''' def uFaceGetName(uEncoding): #Checks if the distance between the unknown encoding and each of the known #encodings is lower than the maximum distance needed to be considered a match. #The lower the distance, the more similar the encodings need to be. l = [i <= 0.6 for i in kFacesSimilarity(uEncoding)] #if True in l: return 1, KPEOPLE[l.index(True)][0] #else: return 'Face not recognized.' names = [] for i, tValue in enumerate(l): if tValue: names.append(KPEOPLE[i][0]) break #SOLVE - WHEN MULTIPLE NAMES ARE GIVEN, IMDB CANT FIND ID. if len(names) == 0: names.append('Face not recognized.') return '+'.join(names) ''' Returns encoding of the detected face. input: <np.array()>image Frame where the face was detected. <dlib.dlib.full_object_detection'> Location of the face. <int>resampling Number of times to resample the face. output: <numpy.array(128)> Encoding of the unknown detected face. ''' def uFaceEncode(image, shape, resampling = 1): return np.array(faceEncoder.compute_face_descriptor(image, shape, resampling)) def faceDD(imageRGB, x, y, w, h): #Adds a rectangle to the image. Debugging and interface purposes. cv2.rectangle(imageRGB, (x, y), (x+w, y+h), (255, 255,255), 2) #Transforms the rectangle coordenates to the expected type. faceRect = dlib.rectangle(int(x), int(y), int(x+w), int(y+h)) #Warp the image so the points are always in the same position. shape = facePosePredictor(imageRGB, faceRect) #Gets the face's encoding. uFaceEncoding = uFaceEncode(imageRGB, shape, 1) #Encodes the face. #Gets the face's name. uFaceName = uFaceGetName(uFaceEncoding) #Names the face. #Adds the name of the face on top of the rectangle in the image. #Debugging and interface purposes. cv2.putText(imageRGB, uFaceName, (x, y-5), 0, 0.5, (0, 255, 0), 1, cv2.LINE_AA) return uFaceName def main(): kFacesRead() #Loads all the saved known pairs (name, encoding). kFacesSaveNew() #Loads all the new known pairs (name, encoding). with mss.mss() as sct: ids = [] previousActorList = [] while True: lastTime = time.time() #Debugging purposes. image = np.array(capture(sct)) #Captures the screen. imageRGB = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) #Detects the faces in the image. facesDetected = faceDetector.detectMultiScale(image, 1.3, 5) if len(facesDetected) != 0: ids = [] #For each face detected, indentifies it. for (x, y, w, h) in facesDetected: name = faceDD(imageRGB, x, y, w, h) print(name) # actorID = imdb.getActorID(name) # if actorID != -1: # ids.append(str(actorID)) # if ids != previousActorList: # print('\n\n-------------------------------------------------\n') # previousActorList = ids # movies = imdb.getActorsMovies(ids) # print('\nTotal of {} movies.'.format(len(movies))) # print('-------------------------------------------------') cv2.imshow('image', cv2.cvtColor(imageRGB, cv2.COLOR_RGB2BGR)) #Shows the image (with the identities) #print('FPS = {}'.format(1 / (time.time() - lastTime))) #Debugging purposes. if cv2.waitKey(1) & 0xFF == ord('q'): break #Exits if 'Q' is pressed. cv2.destroyAllWindows() faceDetector = cv2.CascadeClassifier('Resources/HaarCascades/haarcascade_frontalface_default_CPU.xml') predictorModel = 'Resources/TrainedModels/shape_predictor_68_face_landmarks.dat' facePosePredictor = dlib.shape_predictor(predictorModel) enconderModel = 'Resources/TrainedModels/dlib_face_recognition_resnet_model_v1.dat' faceEncoder = dlib.face_recognition_model_v1(enconderModel) if __name__ == '__main__': main()
from utils import run def test_list_krake_applications(): cmd = "kubectl get po --all-namespaces" response = run(cmd) assert response.returncode == 0 assert "NAMESPACE" in response.output
from functools import partial import jax from jax.flatten_util import ravel_pytree import jax.numpy as jnp import optax import numpy as np from absl import flags from tqdm import tqdm flags.DEFINE_integer('iter_max', 100, help='number of iteration for Hutchison method') FLAGS = flags.FLAGS @jax.pmap def acc_batch(state, batch): pred = state.apply_fn( {'params': state.params, 'batch_stats': state.batch_stats}, batch['x'], train=False, ) acc = jnp.mean( jnp.argmax(pred, axis=-1) == jnp.argmax(batch['y'],axis=-1) ) return acc def acc_dataset(state, dataset): acc_total = 0. n_total = 0 for batch in dataset: batch_shape = batch['x'].shape n = batch_shape[0] * batch_shape[1] acc = acc_batch(state, batch) acc_total += np.mean(jax.device_get(acc)) * n n_total += n acc_total /= n_total return acc_total @partial(jax.pmap, static_broadcasted_argnums=(0,)) def tr_hess_batch_p(loss_fn, state, batch): # Hutchinson's method for estimating trace of Hessian rng = jax.random.PRNGKey(FLAGS.seed) # redefine loss for HVP computation loss_fn_ = lambda params, inputs, targets : loss_fn( params, state, {'x' : inputs, 'y' : targets}, False, )[0] def body_fn(_, carrier): res, rng = carrier rng, rng_r = jax.random.split(rng) v = jax.random.rademacher( rng_r, (ravel_pytree(state.params)[0].size,), jnp.float32, ) Hv = optax.hvp(loss_fn_, v, state.params, batch['x'], batch['y']) Hv = ravel_pytree(Hv)[0] / batch['x'].shape[0] vHv = jnp.vdot(v, Hv) res += vHv / FLAGS.iter_max return res, rng res, rng = jax.lax.fori_loop(0, FLAGS.iter_max, body_fn, (0, rng)) return res def tr_hess_batch(loss_fn, state, batch): tr_hess = tr_hess_batch_p(loss_fn, state, batch) tr_hess = np.mean(jax.device_get(tr_hess)) return tr_hess def tr_hess_dataset(loss_fn, state, dataset): tr_hess_total = 0. n_total = 0 for batch in tqdm(dataset): batch_shape = batch['x'].shape n = batch_shape[0] * batch_shape[1] tr_hess = tr_hess_batch(loss_fn, state, batch) tr_hess_total += tr_hess * n n_total += n tr_hess_total /= n_total return tr_hess_total @jax.pmap def tr_ntk_batch_p(state, batch): # Hutchinson's method for estimating trace of NTK rng = jax.random.PRNGKey(FLAGS.seed) # redefine forward for JVP computation def f(params): return state.apply_fn( {'params' : params, 'batch_stats': state.batch_stats}, batch['x'], train=False, ) _, f_vjp = jax.vjp(f, state.params) def body_fn(_, carrier): res, rng = carrier _, rng = jax.random.split( rng ) v = jax.random.rademacher( rng, (batch['x'].shape[0], batch['y'].shape[-1]), jnp.float32, ) j_p = ravel_pytree(f_vjp(v))[0] tr_ntk= jnp.sum(jnp.square(j_p)) / batch['x'].shape[0] res += tr_ntk / FLAGS.iter_max return res, rng a = jax.lax.fori_loop(0, FLAGS.iter_max, body_fn, (0.,rng)) res, rng = a return res def tr_ntk_batch(state, batch): tr_ntk = tr_ntk_batch_p(state, batch) tr_ntk = np.mean(jax.device_get(tr_ntk)) return tr_ntk def tr_ntk_dataset(state, dataset): tr_ntk_total = 0. n_total = 0 for batch in tqdm(dataset): batch_shape = batch['x'].shape n = batch_shape[0] * batch_shape[1] tr_ntk = tr_ntk_batch(state, batch) tr_ntk_total += tr_ntk * n n_total += n tr_ntk_total /= n_total return tr_ntk_total
#!/usr/bin/env python3 # encoding: utf-8 # # Copyright (c) 2019 SAP SE or an SAP affiliate company. All rights reserved. # # This file is part of ewm-cloud-robotics # (see https://github.com/SAP/ewm-cloud-robotics). # # This file is licensed under the Apache Software License, v. 2 except as noted # otherwise in the LICENSE file (https://github.com/SAP/ewm-cloud-robotics/blob/master/LICENSE) # """K8s custom resource handler for new warehouse orders.""" import os import sys import traceback import logging from typing import Dict, Optional from robcoewmtypes.helper import create_robcoewmtype_str, get_sample_cr from robcoewmtypes.warehouseorder import ( WarehouseOrder, ConfirmWarehouseTask, WarehouseOrderCRDSpec) from k8scrhandler.k8scrhandler import K8sCRHandler, k8s_cr_callback from .robot import WarehouseOrderStateRestore _LOGGER = logging.getLogger(__name__) WAREHOUSEORDER_TYPE = create_robcoewmtype_str(WarehouseOrder('lgnum', 'who')) class OrderController(K8sCRHandler): """Handle K8s custom resources.""" def __init__(self) -> None: """Constructor.""" self.init_robot_fromenv() # Last successfully processed spec of warehouse order self.processed_order_spec = {} template_cr = get_sample_cr('warehouseorder') labels = {} labels['cloudrobotics.com/robot-name'] = self.robco_robot_name super().__init__( 'sap.com', 'v1', 'warehouseorders', 'default', template_cr, labels ) @k8s_cr_callback def _callback(self, name: str, labels: Dict, operation: str, custom_res: Dict) -> None: """Process custom resource operation.""" _LOGGER.debug('Handling %s on %s', operation, name) # Run all registered callback functions try: # Check if warehouse order has to be processed in callback. process_cr = self._warehouse_order_precheck(name, custom_res) # If pre check was successfull set iterate over all callbacks if process_cr: for callback in self.callbacks[operation].values(): callback(WAREHOUSEORDER_TYPE, custom_res['spec']['data']) except Exception: # pylint: disable=broad-except _LOGGER.error( 'Error while processing custom resource %s', name) exc_info = sys.exc_info() _LOGGER.error( '%s/%s: Error in callback - Exception: "%s" / "%s" - TRACEBACK: %s', self.group, self.plural, exc_info[0], exc_info[1], traceback.format_exception(*exc_info)) else: if operation == 'DELETED': # Cleanup when CR was deleted self.processed_order_spec.pop(name, None) elif process_cr: # When CR was processed successfully, save its spec self.processed_order_spec[name] = custom_res['spec'] _LOGGER.debug('Successfully processed custom resource %s', name) def _warehouse_order_precheck(self, name: str, custom_res: Dict) -> bool: """Check if warehouse order has to be processed in callback.""" # Skip warehouse orders with specs already processed before if self.processed_order_spec.get(name) == custom_res['spec']: _LOGGER.debug('Spec for "%s" already processed before - skip', name) return False cr_status = custom_res.get('status') if isinstance(custom_res.get('status'), dict) else {} status_data = cr_status.get('data', {}) process_status = custom_res['spec'].get('process_status', {}) order_status = custom_res['spec'].get('order_status') # Skip warehouse order which is not RUNNING if order_status != WarehouseOrderCRDSpec.STATE_RUNNING: _LOGGER.debug( 'Skip "%s" because warehouse order is not %s but in order_status "%s"', name, WarehouseOrderCRDSpec.STATE_RUNNING, order_status) return False # Skip warehouse order if process status from order manager is not # equal to status of the warehouse order if status_data != process_status: _LOGGER.info( 'Skip "%s" because order manager process status is not equal to warehouse order ' 'status', name) return False # Check if a warehouse task is already confirmed if status_data: for wht in custom_res['spec']['data']['warehousetasks']: for conf in status_data: if wht['tanum'] == conf['tanum'] and wht['lgnum'] == conf['lgnum']: if (conf['confirmationnumber'] == ConfirmWarehouseTask.FIRST_CONF and conf['confirmationtype'] == ConfirmWarehouseTask.CONF_SUCCESS and wht['vlpla'] != ''): _LOGGER.error( 'Skip "%s" because warehouse task "%s" already got first ' 'confirmation but includes a source bin', name, wht['tanum']) return False if conf['confirmationnumber'] == ConfirmWarehouseTask.SECOND_CONF: _LOGGER.error( 'Skip "%s" because warehouse task "%s" already got second ' 'confirmation', name, wht['tanum']) return False return True def init_robot_fromenv(self) -> None: """Initialize EWM Robot from environment variables.""" # Read environment variables envvar = {} envvar['ROBCO_ROBOT_NAME'] = os.environ.get('ROBCO_ROBOT_NAME') # Check if complete for var, val in envvar.items(): if val is None: raise ValueError('Environment variable "{}" is not set'.format(var)) # Robot identifier self.robco_robot_name = envvar['ROBCO_ROBOT_NAME'] def confirm_wht(self, dtype: str, wht: Dict, clear_progress: bool = False) -> bool: """Notify order manager about current status of who + tasks.""" name = '{lgnum}.{who}'.format(lgnum=wht['lgnum'], who=wht['who']) # Get current status from custom resource of the warehouse order custom_res = self.get_cr(name) status = custom_res.get('status') if isinstance(custom_res.get('status'), dict) else {} # Append current wht confirmation to status if not status.get('data'): status['data'] = [] # Check if confirmation was already sent for conf in status['data']: if conf == wht: _LOGGER.error('Confirmation already sent. Not doing anything.') return True status['data'].append(wht) # Clear robot progress if clear_progress is True: status['robot'] = {'mission': '', 'statemachine': '', 'tanum': ''} success = self.update_cr_status(name, status) return success def send_wht_progress_update(self, wht: Dict, mission: str, statemachine: str) -> bool: """Save the progress the robot made on processing the warehouse task.""" name = '{lgnum}.{who}'.format(lgnum=wht['lgnum'], who=wht['who']) tanum = wht['tanum'] # Create robot subtree in status status = {'robot': {'mission': mission, 'statemachine': statemachine, 'tanum': tanum}} success = self.update_cr_status(name, status) return success def get_who_in_process(self) -> Optional[WarehouseOrderStateRestore]: """ Get the warehouse order which is process plus active mission and statemachine state. Assume that there is only one warehouse order in process. If there are multiple, get the first one. """ # Get all warehouse order CRs cr_resp = self.list_all_cr() # Return the first warehouse order in process for custom_res in cr_resp['items']: warehouseorder = custom_res.get('spec', {}).get('data', {}) tanum = custom_res.get('status', {}).get('robot', {}).get('tanum') mission = custom_res.get('status', {}).get('robot', {}).get('mission') statemachine = custom_res.get('status', {}).get('robot', {}).get('statemachine') if warehouseorder and mission and statemachine and tanum: # Determine type of warehouse order who_type = statemachine[:statemachine.rfind('_')] # MoveHU warehouse orders are always assigned to the robot and do not have sub # warehouse orders if who_type == 'MoveHU': # Only warehouse orders assigned to the robot if warehouseorder.get('rsrc') != str(self.robco_robot_name).upper(): continue who_restore = WarehouseOrderStateRestore( warehouseorder=warehouseorder, mission=mission, statemachine=statemachine, tanum=tanum, subwarehouseorder=None) # In PickPackPass scenario there might be a sub warehouse order elif who_type == 'PickPackPass': # If robot is working on a sub warehouse order, there is a topwhoid if warehouseorder.get('topwhoid') != '0000000000': topwarehouseorder = None # Find top warehouse order for cr_top in cr_resp['items']: who_top = cr_top.get('spec', {}).get('data', {}) if (who_top.get('who') == warehouseorder.get('topwhoid') and who_top.get('lgnum') == warehouseorder.get('lgnum') and who_top.get('rsrc') == str(self.robco_robot_name).upper()): topwarehouseorder = who_top # Continue only if top warehouse order found if topwarehouseorder: who_restore = WarehouseOrderStateRestore( warehouseorder=topwarehouseorder, mission=mission, tanum=tanum, statemachine=statemachine, subwarehouseorder=warehouseorder) else: return else: who_restore = WarehouseOrderStateRestore( warehouseorder=warehouseorder, mission=mission, tanum=tanum, statemachine=statemachine, subwarehouseorder=None) return who_restore
""" https://docs/python.org/3/library """ import math from math import sqrt # import modulesexternal.car as car # from modulesexternal import car # better way to do it from modulesexternal.car import info # from modulesexternal.fibo import * from modulesexternal import fibo class ModulesDemo(): def builtin_modules(self): print(math.sqrt(100)) print(sqrt(100)) def car_description(self): make = "bmw" model = "550i" # car.info(make, model) info(make, model) m = ModulesDemo() m.builtin_modules() m.car_description() print(fibo.__name__) print(fibo.fib(1000)) print(fibo.fib2(1000)) import sys print(dir(fibo)) print(dir()) import builtins print(dir(builtins))
""" activations.py Each of the supported activation functions. """ import torch from utils.dictionary import D_CLAMPED_ABS, D_CLAMPED_LINEAR, D_COS, D_EXP, D_EXP_ABS, D_GAUSS, D_HAT, D_SIGMOID, \ D_SIN, D_TANH def clamped_abs_activation(x): return min(1.0, torch.abs(x) / 3) def clamped_linear_activation(x): return max(-1.0, min(1.0, x / 3)) def cos_activation(x): return torch.cos(x * 3.14) def exponential_activation(x): return 1 - 1 / (2 * torch.exp(torch.abs(3 * x))) def exponential_abs_activation(x): return torch.abs(x) ** (1 / torch.abs(x)) def gauss_activation(x): return torch.exp(-x ** 2) def hat_activation(x): return max(0.0, 1 - torch.abs(x / 3)) def sigmoid_activation(x): return torch.sigmoid(2 * x) def sin_activation(x): return torch.sin(x * 3.14) def tanh_activation(x): return torch.tanh(x) str_to_activation = { D_CLAMPED_ABS: clamped_abs_activation, D_CLAMPED_LINEAR: clamped_linear_activation, D_COS: cos_activation, D_EXP: exponential_activation, D_EXP_ABS: exponential_abs_activation, D_GAUSS: gauss_activation, D_HAT: hat_activation, D_SIGMOID: sigmoid_activation, D_SIN: sin_activation, D_TANH: tanh_activation, }
from MiddleKit.Run.MiddleObject import MiddleObject def assertBazIsObjRef(bar): bazAttr = getattr(bar, '_baz') assert isinstance(bazAttr, MiddleObject), ( 'bazAttr=%r, type(bazAttr)=%r' % (bazAttr, type(bazAttr))) def test(store): foos = store.fetchObjectsOfClass('Foo') assert len(foos) == 2 foo1 = foos[0] foo2 = foos[1] bar = foo1.bar() baz = foo1.bar().baz() assert baz.x() == 5 # just to make sure we got what we expected assertBazIsObjRef(bar) # Now here's what we're really testing for: # # When we ask foo2 for bar(), it's baz attribute # should still be a Python pointer, NOT a longint # (e.g., unpacked obj ref) # # This was not the case earlier, because store.fetchObject() # was _always_ calling store.fetchObjectsOfClass() instead of # checking the in-memory object cache first. bar = foo2.bar() assertBazIsObjRef(bar) if 0: bazAttr = getattr(bar, '_baz') assert isinstance(bazAttr, MiddleObject), ( 'bazAttr=%r, type(bazAttr)=%r' % (bazAttr, type(bazAttr)))
#!/use/bin/env python #coding:utf-8 #Author:WuYa import os def data_dir(data='data',fileName=None): '''查找文件的路径''' return os.path.join(os.path.dirname(os.path.dirname(__file__)),data,fileName)
# Generated by Django 2.2.6 on 2021-08-21 16:40 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('posts', '0023_auto_20210821_1635'), ] operations = [ migrations.RemoveField( model_name='post', name='views', ), migrations.AddField( model_name='post', name='views', field=models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='post_views', to='posts.Ip', verbose_name='просмотры'), ), ]
''' GetQueueAttributes Command ''' import time from .base_command import BaseRSMQCommand from .exceptions import QueueDoesNotExist class GetQueueAttributesCommand(BaseRSMQCommand): ''' Get Queue Attributes from existing queue ''' PARAMS = {'qname': {'required': True, 'value': None}, 'quiet': {'required': False, 'value': False} } def exec_command(self): ''' Exec Command ''' secs, usecs = self.client.time() now = secs * 1000 + int(usecs / 1000) queue_base = self.queue_base queue_key = self.queue_key tx = self.client.pipeline(transaction=True) tx.hmget(queue_key, "vt", "delay", "maxsize", "totalrecv", "totalsent", "created", "modified") tx.zcard(queue_base) tx.zcount(queue_base, now, "+inf") results = tx.execute() if not results or results[0][0] is None: raise QueueDoesNotExist(self.get_qname) stats = results[0] return { "vt": float(stats[0]), "delay": float(stats[1]), "maxsize": int(stats[2]), "totalrecv": int(stats[3] or 0), "totalsent": int(stats[4] or 0), "created": int(stats[5]), "modified": int(stats[6]), "msgs": results[1], "hiddenmsgs": results[2] }
"""Array algorithms""" from .find_peak import * from .two_sum import *
#DataClass.py #-*- coding: utf-8 -*- import numpy as np from sklearn.datasets import fetch_mldata class LabeledSet: def __init__(self,x,y,input_dim,output_dim): self.x = x self.y = y self.input_dim = input_dim self.output_dim = output_dim #Renvoie la dimension de l'espace d'entrée def getInputDimension(self): return self.input_dim #Renvoie la dimension de l'espace de sortie def getOutputDimension(self): return self.output_dim #Renvoie le nombre d'exemple dans le set def size(self): return len(self.x) #Renvoie la valeur de x_i def getX(self,i): return self.x[i] #Renvoie la valeur de y_i def getY(self,i): return self.y[1] def createGaussianDataset(positive_center_1,positive_center_2,positive_sigma,negative_center_1,negative_center_2,negative_sigma,nb_points): pos = True first = True while nb_points>0: if pos: a = np.random.multivariate_normal([positive_center_1,positive_center_2],[[positive_sigma,0],[0,positive_sigma]]) if first: x=a first = False y = np.array([1]) else: x = np.vstack((x,a)) y = np.vstack((y,np.array([1]))) pos = False else: b = np.random.multivariate_normal([negative_center_1,negative_center_2],[[negative_sigma,0],[0,negative_sigma]]) x = np.vstack((x,b)) y = np.vstack((y,np.array([-1]))) pos = True nb_points -= 1 return LabeledSet(x,y,2,1) def getMnistDualDataset(): mnist=fetch_mldata('MNIST original') #Creation des vecteurs d'entrée mnist_6=mnist.data[mnist.target==6] nb_6=len(mnist_6) mnist_8=mnist.data[mnist.target==8] nb_8=len(mnist_8) mnist_6_8=np.vstack((mnist_6,mnist_8)) print "%d 6s and %d 8s" % (nb_6,nb_8) #Creation des vecteurs de sortie target_6_8=np.array([[1]]) for i in range(nb_6-1): target_6_8=np.vstack((target_6_8,[1])) for i in range(nb_8): target_6_8=np.vstack((target_6_8,[-1])) print "%d/%d vecteurs d'apprentissage" % (len(target_6_8),len(mnist_6_8)) randomvec=np.random.rand(len(target_6_8)) randomvec=randomvec>0.8 target_6_8=target_6_8[randomvec] mnist_6_8=mnist_6_8[randomvec] print "%d/%d vecteurs d'apprentissage apres echantillonage" % (len(target_6_8),len(mnist_6_8)) randomvec=np.random.rand(len(target_6_8)) randomvec=randomvec>0.5 train_data=mnist_6_8[randomvec] train_label=target_6_8[randomvec] test_data=mnist_6_8[np.logical_not(randomvec)] test_label=target_6_8[np.logical_not(randomvec)] print "%d training examples and %d testing examples " % (len(train_data),len(test_data)) return (train_data,train_label,test_data,test_label)