content
stringlengths
5
1.05M
from utils.print import print_block import pandas as pd from utils.prediction import PredictionType def generate_cf_for_all(packs, cf_func, feature_names): output_column_names = [f'orgin_{f}' for f in feature_names] + [ f'cf_{f}' for f in feature_names] + ['time(sec)'] + ["prediction_type"] # Create an empty dataframe for appending data. result_df = pd.DataFrame({}, columns=output_column_names) # Loop through each predict type. for p_t in [PredictionType.TruePositive, PredictionType.TrueNegative, PredictionType.FalsePositive, PredictionType.FalseNegative]: print_block("", "Doing %s" % p_t.value) # Get the length, so we can through all the instance in this predict type. total_length = packs.get_len(p_t) # Loop through all the instance in this predict type. for i in range(total_length): print_block("Instance %d" % i, "Running...") # Get the result (including counterfactal and running time) from the cf_func. returned_case = cf_func(packs.get_instance(p_t, i)) # Using the information from returned_case to create a dataframe (for appending to result_df). df_i = pd.DataFrame([ returned_case["original_vector"] + returned_case['cf'] + [returned_case['time'], returned_case['prediction_type']]], columns=output_column_names) # appending the current result to the total result dataframe. result_df = result_df.append(df_i) return result_df
"""Test aspects of lldb commands on universal binaries.""" import os, time import unittest2 import lldb from lldbtest import * import lldbutil class UniversalTestCase(TestBase): mydir = TestBase.compute_mydir(__file__) def setUp(self): # Call super's setUp(). TestBase.setUp(self) # Find the line number to break inside main(). self.line = line_number('main.c', '// Set break point at this line.') @python_api_test @skipUnlessDarwin @unittest2.skipUnless(hasattr(os, "uname") and os.uname()[4] in ['i386', 'x86_64'], "requires i386 or x86_64") def test_sbdebugger_create_target_with_file_and_target_triple(self): """Test the SBDebugger.CreateTargetWithFileAndTargetTriple() API.""" # Invoke the default build rule. self.buildDefault() # Note that "testit" is a universal binary. exe = os.path.join(os.getcwd(), "testit") # Create a target by the debugger. target = self.dbg.CreateTargetWithFileAndTargetTriple(exe, "i386-apple-macosx") self.assertTrue(target, VALID_TARGET) # Now launch the process, and do not stop at entry point. process = target.LaunchSimple (None, None, self.get_process_working_directory()) self.assertTrue(process, PROCESS_IS_VALID) @skipUnlessDarwin @unittest2.skipUnless(hasattr(os, "uname") and os.uname()[4] in ['i386', 'x86_64'], "requires i386 or x86_64") def test_process_launch_for_universal(self): """Test process launch of a universal binary.""" from lldbutil import print_registers # Invoke the default build rule. self.buildDefault() # Note that "testit" is a universal binary. exe = os.path.join(os.getcwd(), "testit") # By default, x86_64 is assumed if no architecture is specified. self.expect("file " + exe, CURRENT_EXECUTABLE_SET, startstr = "Current executable set to ", substrs = ["testit' (x86_64)."]) # Break inside the main. lldbutil.run_break_set_by_file_and_line (self, "main.c", self.line, num_expected_locations=1, loc_exact=True) # We should be able to launch the x86_64 executable. self.runCmd("run", RUN_SUCCEEDED) # Check whether we have a 64-bit process launched. target = self.dbg.GetSelectedTarget() process = target.GetProcess() self.assertTrue(target and process and self.invoke(process, 'GetAddressByteSize') == 8, "64-bit process launched") frame = process.GetThreadAtIndex(0).GetFrameAtIndex(0) registers = print_registers(frame, string_buffer=True) self.expect(registers, exe=False, substrs = ['Name: rax']) self.runCmd("continue") # Now specify i386 as the architecture for "testit". self.expect("file -a i386 " + exe, CURRENT_EXECUTABLE_SET, startstr = "Current executable set to ", substrs = ["testit' (i386)."]) # Break inside the main. lldbutil.run_break_set_by_file_and_line (self, "main.c", self.line, num_expected_locations=1, loc_exact=True) # We should be able to launch the i386 executable as well. self.runCmd("run", RUN_SUCCEEDED) # Check whether we have a 32-bit process launched. target = self.dbg.GetSelectedTarget() process = target.GetProcess() self.assertTrue(target and process, "32-bit process launched") pointerSize = self.invoke(process, 'GetAddressByteSize') self.assertTrue(pointerSize == 4, "AddressByteSize of 32-bit process should be 4, got %d instead." % pointerSize) frame = process.GetThreadAtIndex(0).GetFrameAtIndex(0) registers = print_registers(frame, string_buffer=True) self.expect(registers, exe=False, substrs = ['Name: eax']) self.runCmd("continue") if __name__ == '__main__': import atexit lldb.SBDebugger.Initialize() atexit.register(lambda: lldb.SBDebugger.Terminate()) unittest2.main()
from .baseinternal import BaseInternal from math import sin, cos, radians, sqrt class LiquidRing(BaseInternal): def __init__(self): return def draw(self, ctx): if self.parent is None: Warning("Internal has no parent set!") return unit = self.parent lines = 4 bladeLength = unit.size[0] / 2 * 0.5 for i in range(lines): angle = 180 / lines * i angleInRadians = radians(angle) dxs = bladeLength * cos(angleInRadians) dys = bladeLength * sin(angleInRadians) ctx.line( ( unit.position[0] + unit.size[0] / 2 + dxs, unit.position[1] + unit.size[1] / 2 + dys, ), ( unit.position[0] + unit.size[0] / 2 - dxs, unit.position[1] + unit.size[1] / 2 - dys, ), unit.lineColor, unit.lineSize / 2, ) return
# Copyright 2016 Isotoma Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from touchdown.tests.aws import StubberTestCase from touchdown.tests.stubs.aws import CacheClusterStubber, LaunchConfigurationStubber class TestCacheClusterCreation(StubberTestCase): def test_create_cache_cluster(self): goal = self.create_goal("apply") cache_cluster = self.fixtures.enter_context( CacheClusterStubber( goal.get_service( self.aws.add_cache_cluster( name="my-cache-cluster", instance_class="cache.m3.medium" ), "apply", ) ) ) cache_cluster.add_describe_cache_clusters_empty_response() cache_cluster.add_create_cache_cluster() cache_cluster.add_describe_cache_clusters_one_response(status="creating") cache_cluster.add_describe_cache_clusters_one_response() cache_cluster.add_describe_cache_clusters_one_response() goal.execute() def test_create_cache_cluster_idempotent(self): goal = self.create_goal("apply") cache_cluster = self.fixtures.enter_context( CacheClusterStubber( goal.get_service( self.aws.add_cache_cluster( name="my-cache-cluster", instance_class="cache.m3.medium" ), "apply", ) ) ) cache_cluster.add_describe_cache_clusters_one_response() self.assertEqual(len(list(goal.plan())), 0) self.assertEqual(len(goal.get_changes(cache_cluster.resource)), 0) class TestCacheClusterDeletion(StubberTestCase): def test_delete_cache_cluster(self): goal = self.create_goal("destroy") cache_cluster = self.fixtures.enter_context( CacheClusterStubber( goal.get_service( self.aws.add_cache_cluster( name="my-cache-cluster", instance_class="cache.m3.medium" ), "destroy", ) ) ) cache_cluster.add_describe_cache_clusters_one_response() cache_cluster.add_delete_cache_cluster() # Wait for it to go away cache_cluster.add_describe_cache_clusters_one_response(status="deleting") cache_cluster.add_describe_cache_clusters_empty_response() goal.execute() def test_delete_cache_cluster_idempotent(self): goal = self.create_goal("destroy") cache_cluster = self.fixtures.enter_context( CacheClusterStubber( goal.get_service( self.aws.add_cache_cluster( name="my-cache-cluster", instance_class="cache.m3.medium" ), "destroy", ) ) ) cache_cluster.add_describe_cache_clusters_empty_response() self.assertEqual(len(list(goal.plan())), 0) self.assertEqual(len(goal.get_changes(cache_cluster.resource)), 0) class TestCacheClusterComplications(StubberTestCase): def test_with_launch_configuration(self): goal = self.create_goal("apply") cache_cluster = self.fixtures.enter_context( CacheClusterStubber( goal.get_service( self.aws.add_cache_cluster( name="my-cache-cluster", instance_class="cache.m3.medium" ), "apply", ) ) ) cache_cluster.add_describe_cache_clusters_empty_response() cache_cluster.add_create_cache_cluster() cache_cluster.add_describe_cache_clusters_one_response(status="creating") cache_cluster.add_describe_cache_clusters_one_response() cache_cluster.add_describe_cache_clusters_one_response() launch_config = self.fixtures.enter_context( LaunchConfigurationStubber( goal.get_service( self.aws.add_launch_configuration( name="my-test-lc", image="ami-cba130bc", instance_type="t2.micro", json_user_data={ "REDIS_ADDRESS": cache_cluster.resource.endpoint_address, "REDIS_PORT": cache_cluster.resource.endpoint_port, }, ), "apply", ) ) ) user_data = ( '{"REDIS_ADDRESS": "mycacheclu.q68zge.ng.0001.use1devo.elmo-dev.amazonaws.com", ' '"REDIS_PORT": 6379}' ) launch_config.add_describe_launch_configurations_empty_response() launch_config.add_describe_launch_configurations_empty_response() launch_config.add_create_launch_configuration(user_data=user_data) launch_config.add_describe_launch_configurations_one_response( user_data=user_data ) launch_config.add_describe_launch_configurations_one_response( user_data=user_data ) launch_config.add_describe_launch_configurations_one_response( user_data=user_data ) goal.execute()
def main(): n = int(input()) x,y = map(int,input().split()) k = int(input()) a = list(map(int,input().split())) a.append(x) a.append(y) if len(a) == len(list(set(a))): print("YES") else: print("NO") if __name__ == "__main__": main()
#!/usr/bin/env python """ Reads output of Transcar sim, yielding Incoherent Scatter Radar plasma parameters. python transcar2isr.py tests/data/beam52 """ from pathlib import Path from matplotlib.pyplot import show from argparse import ArgumentParser from datetime import datetime # import transcarread.plots as plots import transcarread as tr def compute(path: Path, tReq: datetime, plot_params: list, verbose: bool): path = Path(path).expanduser().resolve() # %% get sim parameters datfn = path / "dir.input/DATCAR" tctime = tr.readTranscarInput(datfn) # %% load transcar output iono = tr.read_tra(path, tReq) # %% do plot plots.plot_isr(iono, path, tctime, plot_params, verbose) return iono, tctime def main(): p = ArgumentParser(description="reads dir.output/transcar_output") p.add_argument("path", help="path containing dir.output/transcar_output file") p.add_argument("--tReq", help="time to extract data at") p.add_argument("-v", "--verbose", help="more plots", action="store_true") p.add_argument("-p", "--params", help="only plot these params", choices=["ne", "vi", "Ti", "Te"], nargs="+") p = p.parse_args() compute(p.path, p.tReq, p.params, p.verbose) show() if __name__ == "__main__": main()
import numpy as np from common.constant import * from common.clusteringAlgorithms import ClusteringAlgorithm from utils.distance import get_EuclideanDistance_matrix class FCMA(ClusteringAlgorithm): def __init__(self, X : np.ndarray, cluster_num : int, m = 2): super(FCMA, self).__init__(X, cluster_num) # hyper parameter self.m = m def __Update_U__(self, V : np.ndarray, U : np.ndarray) -> np.ndarray: distance_matrix = get_EuclideanDistance_matrix(self.X, V) times = 2 / (self.m - 1) for i in range(self.c): for j in range(self.n): if distance_matrix[j][i] > epsilon: # 如果 x_j 离 v_i 太近的话,那 x_j 直接看作属于 i 类 _sum = 0 for h in range(self.c): if distance_matrix[j][h] > epsilon: # 如果 x_j 离 v_h 太近的话,那 x_h 可以直接看作属于 h 类的聚类中心 _sum += (distance_matrix[j][i] / distance_matrix[j][h]) ** times U[i][j] = 1 / _sum else: U[i][j] = 1 return U def __Update_V__(self, U : np.ndarray) -> np.ndarray: U_power_m = U ** self.m U_row_sum = np.sum(U_power_m, axis = 1) # \sum_{j = 1}^{n} \mu_{ij} # U_row_sum.shape = (c,) donation = np.zeros((self.n, self.c)) for j in range(self.c): if U_row_sum[j] > epsilon: donation[:, j] = U_power_m.T[:, j] / U_row_sum[j] V = np.matmul(self.X, donation) return V
def foo(y1): y1 + 1 print y1
#!/usr/bin/python from expanduino.subdevice import Subdevice from expanduino.codec import * from enum import IntEnum from time import time from cached_property import cached_property import asyncio import os import termios import re from fcntl import ioctl from ..utils import run_coroutines, create_link, forever, fd_reader EXTPROC = 0o200000 TIOCPKT_IOCTL = 64 BAUD_CONSTANTS = { getattr(termios, x): int(x[1:]) for x in filter(lambda x: re.match("B\\d+", x), dir(termios)) } CHARACTER_SIZE_CONSTANTS = { getattr(termios, x): int(x[2:]) for x in filter(lambda x: re.match("CS\\d+", x), dir(termios)) } class SerialSubdevice(Subdevice): class Command(IntEnum): NUM_SERIALS = 0, NAME = 1, WRITE = 2, READ = 3, AVAILABLE = 4 class Serial: def __init__(self, subdevice, serialNum): self.subdevice = subdevice self.serialNum = serialNum self.ptyMaster = None self.ptySlave = None self.ptyLink = None @cached_property def name(self): return self.subdevice.call(SerialSubdevice.Command.NAME, args=[self.serialNum], parser=parseString) @property def available(self): return self.subdevice.call(SerialSubdevice.Command.AVAILABLE, args=[self.serialNum], parser=parseByte) def read(self, n): return self.subdevice.call(SerialSubdevice.Command.READ, args=[self.serialNum, n], parser=parseBytes) def write(self, data): self.subdevice.call(SerialSubdevice.Command.WRITE, args=bytes([self.serialNum]) + bytes(data)) def __str__(self): return "#%-3d %s" % (self.serialNum, self.name) async def attach(self): if self.ptyMaster: return self.ptyMaster, self.ptySlave = os.openpty() try: attr = termios.tcgetattr(self.ptyMaster) attr[3] |= EXTPROC termios.tcsetattr(self.ptyMaster, termios.TCSANOW, attr) ioctl(self.ptyMaster, termios.TIOCPKT, b'\1') def got_packet(packet): if packet[0] == termios.TIOCPKT_DATA: self.write(packet[1:]) if packet[0] & TIOCPKT_IOCTL: attr = termios.tcgetattr(self.ptyMaster) # Dont let the slave clear the EXTPROC flag (e.g., screen does so) # IMO, allowing the slave fd to do this sounds pretty dumb if not attr[3] & EXTPROC: attr[3] |= EXTPROC termios.tcsetattr(self.ptyMaster, termios.TCSANOW, attr) ibaud = BAUD_CONSTANTS[attr[4]] obaud = BAUD_CONSTANTS[attr[5]] #FIXME: Pty driver assumes 8 bits, no parity, ALWAYS #https://github.com/torvalds/linux/blob/master/drivers/tty/pty.c#L290-L291 bits = CHARACTER_SIZE_CONSTANTS[attr[2] & termios.CSIZE] if attr[2] & termios.PARENB: if attr[2] & termios.PARODD: parity = 'O' else: parity = 'E' else: parity = 'N' if attr[2] & termios.CSTOPB: stop_bits = 2 else: stop_bits = 1 print("Changed %s config: %d:%d %d%s%d" % (self, ibaud, obaud, bits, parity, stop_bits)) #TODO: Reconfigure the port async with create_link(os.ttyname(self.ptySlave), "/dev/ttyExpanduino%d") as link: async with fd_reader(self.ptyMaster, n=20, callback=got_packet): await forever() finally: os.close(self.ptySlave) os.close(self.ptyMaster) self.ptyMaster = None def handleInterruption(self, data): if self.ptyMaster: os.write(self.ptyMaster, data) def __init__(self, container, devNum): Subdevice.__init__(self, container, devNum) def handleInterruption(self, data): if data: serialNum = data[0] payload = data[1:] if serialNum < len(self.serials): self.serials[serialNum].handleInterruption(payload) @cached_property def serials(self): num_serials = self.call(SerialSubdevice.Command.NUM_SERIALS, parser=parseByte) return [ SerialSubdevice.Serial(self, i) for i in range(num_serials) ] async def attach(self): serials = self.serials with self.with_interruptions(): coroutines = [] for serial in serials: print(" ", serial) coroutines.append(serial.attach()) await run_coroutines(*coroutines)
from django.urls import path from . import views urlpatterns = [ path("", views.index), path("<int:month>", views.monthly_challege_by_number), path("<str:month>", views.monthly_challenge, name="month-challenge") ]
from flask import jsonify, request, abort from flask_login import current_user, login_user, logout_user from datetime import datetime import uuid import json from random import random from searchTwd import searchTwd from searchTwdComponents import sanitizeTwd from searchTwdComponents import matchInventory from searchCrypt import searchCrypt from searchLibrary import searchLibrary from searchCryptComponents import get_crypt_by_id from searchLibraryComponents import get_library_by_id from deckExport import deckExport from deckExportAll import deckExportAll from deckImport import deckImport from deckProxy import deckProxy from inventoryExport import inventoryExport from inventoryImportParse import inventoryImportParse from api import app from api import db from models import User from models import Deck @app.route('/api/inventory', methods=['GET']) def listInventory(): try: if current_user.is_authenticated: # Fix users without inventory if not current_user.inventory: current_user.inventory = {} # Fix bad imports if 'undefined' in current_user.inventory: new_cards = current_user.inventory.copy() del new_cards['undefined'] current_user.inventory = new_cards db.session.commit() crypt = {} library = {} for k, v in current_user.inventory.items(): k = int(k) if k > 200000: crypt[k] = {'q': v} elif k < 200000: library[k] = {'q': v} return jsonify({ "crypt": crypt, "library": library, }) except AttributeError: return jsonify({'error': 'not logged'}) @app.route('/api/inventory/export', methods=['POST']) def inventoryExportRoute(): try: deck = { 'cards': current_user.inventory, 'author': current_user.public_name, } result = inventoryExport(deck, request.json['format']) return jsonify(result) except Exception: pass @app.route('/api/inventory/import', methods=['POST']) def inventoryImportRoute(): if current_user.is_authenticated: i = current_user.inventory try: new_cards = inventoryImportParse(request.json) merged_cards = i.copy() if i else {} for k, v in new_cards.items(): if k not in merged_cards: merged_cards[k] = v else: merged_cards[k] = merged_cards[k] + v current_user.inventory = merged_cards.copy() db.session.commit() return jsonify(new_cards) except Exception: return jsonify("error") else: return jsonify({'Not logged in.'}) @app.route('/api/inventory/delete', methods=['GET']) def deleteInventory(): try: if current_user.is_authenticated: current_user.inventory = {} db.session.commit() return jsonify({'delete inventory': 'success'}) except AttributeError: return jsonify({'error': 'not logged'}) @app.route('/api/inventory/add', methods=['POST']) def inventoryAddCard(): if current_user.is_authenticated: i = current_user.inventory try: new_cards = request.json merged_cards = i.copy() if i else {} for k, v in new_cards.items(): if k not in merged_cards: merged_cards[k] = v else: merged_cards[k] = merged_cards[k] + v current_user.inventory = merged_cards.copy() db.session.commit() return jsonify({'inventory card added': 'success'}) except Exception: pass else: return jsonify({'Not logged in.'}) @app.route('/api/inventory/del', methods=['POST']) def inventoryDelCard(): if current_user.is_authenticated: i = current_user.inventory try: new_cards = request.json merged_cards = i.copy() if i else {} for k, v in new_cards.items(): if k in merged_cards: if merged_cards[k] > v: merged_cards[k] = merged_cards[k] - v else: del merged_cards[k] current_user.inventory = merged_cards.copy() db.session.commit() return jsonify({'inventory card deleted': 'success'}) except Exception: pass else: return jsonify({'Not logged in.'}) @app.route('/api/inventory/change', methods=['POST']) def inventoryChangeCard(): if current_user.is_authenticated: i = current_user.inventory try: new_cards = request.json merged_cards = i.copy() if i else {} for k, v in new_cards.items(): if v < 0: del merged_cards[k] else: merged_cards[k] = v current_user.inventory = merged_cards.copy() db.session.commit() return jsonify({'inventory card change': 'success'}) except Exception: pass else: return jsonify({'Not logged in.'}) @app.route('/api/deck/<string:deckid>', methods=['GET']) def showDeck(deckid): if len(deckid) == 32: decks = {} deck = Deck.query.filter_by(deckid=deckid).first() if not deck: abort(400) crypt = {} library = {} for k, v in deck.cards.items(): k = int(k) if k > 200000: crypt[k] = {'q': v} elif k < 200000: library[k] = {'q': v} decks[deckid] = { 'name': deck.name, 'owner': deck.author.username, 'author': deck.author_public_name, 'description': deck.description, 'crypt': crypt, 'library': library, 'deckid': deck.deckid, 'timestamp': deck.timestamp, } return jsonify(decks) else: with open("twdDecksById.json", "r") as twdDecks_file: twdDecks = json.load(twdDecks_file) try: deck = twdDecks[deckid] comments = deck['description'] deck['description'] = 'Date: ' + deck['date'] + '\n' deck['description'] += 'Players: ' + str( deck['players']) + '\n' deck['description'] += 'Event: ' + deck['event'] + '\n' deck['description'] += 'Location: ' + deck['location'] + '\n' if comments: deck['description'] += '\n' + comments deck['author'] = deck['player'] del (deck['player']) del (deck['disciplines']) del (deck['format']) del (deck['event']) del (deck['link']) del (deck['location']) del (deck['players']) del (deck['timestamp']) del (deck['score']) del (deck['cardtypes_ratio']) del (deck['libraryTotal']) decks = {deckid: deck} return jsonify(decks) except KeyError: abort(400) @app.route('/api/deck/<string:deckid>', methods=['PUT']) def updateDeck(deckid): if current_user.is_authenticated: d = Deck.query.filter_by(author=current_user, deckid=deckid).first() d.timestamp = datetime.utcnow() try: if 'cardChange' in request.json: new_cards = request.json['cardChange'] merged_cards = d.cards.copy() for k, v in new_cards.items(): if v < 0: del merged_cards[k] else: merged_cards[k] = v d.cards = merged_cards.copy() except Exception: pass try: if 'cardAdd' in request.json: new_cards = request.json['cardAdd'] merged_cards = d.cards.copy() for k, v in new_cards.items(): if k not in merged_cards: merged_cards[k] = v d.cards = merged_cards.copy() except Exception: pass try: if 'name' in request.json: d.name = request.json['name'] if d.master: master = Deck.query.filter_by(author=current_user, deckid=d.master).first() master.name = request.json['name'] for i in master.branches: j = Deck.query.filter_by(author=current_user, deckid=i).first() j.name = request.json['name'] elif d.branches: for i in d.branches: j = Deck.query.filter_by(author=current_user, deckid=i).first() j.name = request.json['name'] except Exception: pass try: if 'description' in request.json: d.description = request.json['description'] except Exception: pass try: if 'author' in request.json: d.author_public_name = request.json['author'] or '' if d.master: master = Deck.query.filter_by(author=current_user, deckid=d.master).first() master.author_public_name = request.json['author'] for i in master.branches: j = Deck.query.filter_by(author=current_user, deckid=i).first() j.author_public_name = request.json['author'] elif d.branches: for i in d.branches: j = Deck.query.filter_by(author=current_user, deckid=i).first() j.author_public_name = request.json['author'] except Exception: pass try: if 'branchName' in request.json: d.branch_name = request.json['branchName'] or '' except Exception: pass try: if 'makeFlexible' in request.json: if request.json['makeFlexible'] == 'all': d.used_in_inventory = {} d.inventory_type = 's' else: r = str(request.json['makeFlexible']) used = d.used_in_inventory.copy() used[r] = 's' d.used_in_inventory = used except Exception: pass try: if 'makeFixed' in request.json: if request.json['makeFixed'] == 'all': d.used_in_inventory = {} d.inventory_type = 'h' else: r = str(request.json['makeFixed']) used = d.used_in_inventory.copy() used[r] = 'h' d.used_in_inventory = used except Exception: pass try: if 'makeClear' in request.json: if request.json['makeClear'] == 'all': d.used_in_inventory = {} d.inventory_type = '' else: r = str(request.json['makeClear']) used = d.used_in_inventory.copy() del (used[r]) d.used_in_inventory = used except Exception: pass try: if 'setTags' in request.json: new_tags = request.json['setTags'] d.tags = new_tags except Exception: pass if d.master: old_master = Deck.query.filter_by(author=current_user, deckid=d.master).first() branches = old_master.branches.copy() branches.remove(d.deckid) branches.append(old_master.deckid) d.branches = branches d.master = None old_master.branches = None for b in branches: branch_deck = Deck.query.filter_by(author=current_user, deckid=b).first() branch_deck.master = d.deckid db.session.commit() return jsonify({'updated deck': d.deckid}) else: return jsonify({'Not logged in.'}) @app.route('/api/deck/parse', methods=['POST']) def parseDeck(): try: crypt = {} library = {} cards = request.json['cards'] for k, v in cards.items(): k = int(k) if k > 200000: crypt[k] = {'c': get_crypt_by_id(k), 'q': v} elif k < 200000: library[k] = {'c': get_library_by_id(k), 'q': v} decks = {} decks['deckInUrl'] = { 'name': '', 'owner': '', 'author': '', 'description': '', 'deckid': '', 'crypt': crypt, 'library': library, 'timestamp': datetime.utcnow() } if 'name' in request.json: decks['deckInUrl']['name'] = request.json['name'] if 'author' in request.json: decks['deckInUrl']['author'] = request.json['author'] if 'description' in request.json: decks['deckInUrl']['description'] = request.json['description'] return jsonify(decks) except AttributeError: return jsonify({'error': 'not logged'}) @app.route('/api/decks', methods=['GET']) def listDecks(): try: decks = {} for deck in current_user.decks.all(): # Fix pre-inventory period decks if not deck.used_in_inventory: deck.used_in_inventory = {} db.session.commit() if not deck.inventory_type: deck.inventory_type = '' db.session.commit() # Fix pre-tags decks if not deck.tags: deck.tags = [] db.session.commit() # Fix bad imports if 'undefined' in deck.cards: new_cards = deck.cards.copy() del new_cards['undefined'] deck.cards = new_cards db.session.commit() # Fix branches if deck.master: d = Deck.query.filter_by(author=current_user, deckid=deck.master).first() if not d: print(deck.deckid, 'del branch without master') db.session.delete(deck) db.session.commit() if deck.branches: for b in deck.branches: d = Deck.query.filter_by(author=current_user, deckid=b).first() if not d: print(b, 'fix not-existing branch') old_branches = deck.branches.copy() old_branches.remove(b) deck.branches = old_branches db.session.commit() if deck.branches: for b in deck.branches: d = Deck.query.filter_by(author=current_user, deckid=b).first() if d.master != deck.deckid: print(b, 'fix bad master') d.master = deck.deckid db.session.commit() # Fix cards cards = {} for k, v in deck.cards.items(): cards[str(k)] = v deck.cards = cards crypt = {} library = {} for k, v in deck.cards.items(): int_k = int(k) if int_k > 200000: crypt[int_k] = {'q': v} if k in deck.used_in_inventory: crypt[int_k]['i'] = deck.used_in_inventory[k] elif int_k < 200000: library[int_k] = {'q': v} if k in deck.used_in_inventory: library[int_k]['i'] = deck.used_in_inventory[k] decks[deck.deckid] = { 'name': deck.name, 'branchName': deck.branch_name, 'owner': deck.author.username, 'author': deck.author_public_name, 'description': deck.description, 'crypt': crypt, 'library': library, 'deckid': deck.deckid, 'inventory_type': deck.inventory_type, 'timestamp': deck.timestamp, 'master': deck.master, 'branches': deck.branches, 'tags': deck.tags, } return jsonify(decks) except AttributeError: return jsonify({'error': 'not logged'}) @app.route('/api/decks/create', methods=['POST']) def newDeck(): if current_user.is_authenticated: try: deckid = uuid.uuid4().hex d = Deck( deckid=deckid, name=request.json['deckname'], author_public_name=request.json['author'] if 'author' in request.json else current_user.public_name, description=request.json['description'] if 'description' in request.json else '', author=current_user, inventory_type='', tags=[], used_in_inventory={}, cards=request.json['cards'] if 'cards' in request.json else {}) db.session.add(d) db.session.commit() return jsonify({ 'new deck created': request.json['deckname'], 'deckid': deckid, }) except Exception: pass else: return jsonify({'Not logged in.'}) @app.route('/api/branch/create', methods=['POST']) def createBranch(): if current_user.is_authenticated: master = Deck.query.filter_by(author=current_user, deckid=request.json['master']).first() source = Deck.query.filter_by(author=current_user, deckid=request.json['source']).first() deckid = uuid.uuid4().hex branch = Deck(deckid=deckid, name=master.name, branch_name=f"#{len(master.branches) + 1}" if master.branches else "#1", author_public_name=source.author_public_name, description=source.description, author=current_user, inventory_type='', tags=[], master=master.deckid, used_in_inventory={}, cards=source.cards) branches = master.branches.copy() if master.branches else [] branches.append(deckid) master.branches = branches if not master.branch_name: master.branch_name = 'Original' db.session.add(branch) db.session.commit() return jsonify({ 'master': master.deckid, 'source': source.deckid, 'deckid': deckid, }) else: return jsonify({'Not logged in.'}) @app.route('/api/branch/remove', methods=['POST']) def removeBranch(): if current_user.is_authenticated: try: d = Deck.query.filter_by(author=current_user, deckid=request.json['deckid']).first() if d.master: master = Deck.query.filter_by(author=current_user, deckid=d.master).first() branches = master.branches.copy() branches.remove(d.deckid) master.branches = branches db.session.delete(d) db.session.commit() return jsonify({'branch removed': request.json['deckid']}) else: j = Deck.query.filter_by(author=current_user, deckid=d.branches[-1]).first() branches = d.branches.copy() branches.remove(j.deckid) j.branches = branches for i in branches: k = Deck.query.filter_by(author=current_user, deckid=i).first() k.master = j.deckid j.master = None db.session.delete(d) db.session.commit() return jsonify({'branch removed': request.json['deckid']}) except Exception: return jsonify({'error': 'idk'}) else: return jsonify({'Not logged in.'}) @app.route('/api/decks/clone', methods=['POST']) def cloneDeck(): if 'deck' in request.json: deck = request.json['deck'] cards = {} for i in deck['crypt']: cards[i] = deck['crypt'][i]['q'] for i in deck['library']: cards[i] = deck['library'][i]['q'] deckid = uuid.uuid4().hex d = Deck(deckid=deckid, name=f"{deck['name']} [by {deck['author']}]", author_public_name=deck['author'], description=deck['description'], author=current_user, inventory_type='', tags=[], used_in_inventory={}, cards=cards) db.session.add(d) db.session.commit() return jsonify({ 'deck cloned': request.json['deckname'], 'deckid': deckid }) elif request.json['src'] == 'twd': with open("twdDecksById.json", "r") as twdDecks_file: twdDecks = json.load(twdDecks_file) deck = twdDecks[request.json['target']] cards = {} for i in deck['crypt']: cards[i] = deck['crypt'][i]['q'] for i in deck['library']: cards[i] = deck['library'][i]['q'] description = 'Date: ' + deck['date'] + '\n' description += 'Players: ' + str(deck['players']) + '\n' description += 'Event: ' + deck['event'] + '\n' description += 'Location: ' + deck['location'] + '\n' if deck['description']: description += '\n' + deck['description'] deckid = uuid.uuid4().hex d = Deck(deckid=deckid, name=f"{deck['name']} [by {deck['player']}]", author_public_name=deck['player'], description=description, author=current_user, inventory_type='', tags=['twd'], used_in_inventory={}, cards=cards) db.session.add(d) db.session.commit() return jsonify({ 'deck cloned': request.json['deckname'], 'deckid': deckid }) elif request.json['src'] == 'precons': set, precon = request.json['target'].split(':') with open("preconDecks.json", "r") as precons_file: precon_decks = json.load(precons_file) deck = precon_decks[set][precon] cards = {} for i in deck: cards[i] = deck[i] deckid = uuid.uuid4().hex d = Deck(deckid=deckid, name=f"Preconstructed {set}:{precon}", author_public_name='VTES Team', description='', author=current_user, inventory_type='', tags=['precon'], used_in_inventory={}, cards=cards) db.session.add(d) db.session.commit() return jsonify({ 'deck cloned': request.json['deckname'], 'deckid': deckid }) else: targetDeck = Deck.query.filter_by( deckid=request.json['target']).first() deckid = uuid.uuid4().hex d = Deck(deckid=deckid, name=request.json['deckname'], author_public_name=request.json['author'], description='', author=current_user, inventory_type='', tags=[], used_in_inventory={}, cards=targetDeck.cards) db.session.add(d) db.session.commit() return jsonify({ 'deck cloned': request.json['deckname'], 'deckid': deckid, }) @app.route('/api/decks/import', methods=['POST']) def importDeck(): if current_user.is_authenticated: try: [name, author, description, cards] = deckImport(request.json['deckText']) if len(cards) > 0: deckid = uuid.uuid4().hex d = Deck(deckid=deckid, name=name, author_public_name=author, description=description, author=current_user, inventory_type='', tags=[], used_in_inventory={}, cards=cards) db.session.add(d) db.session.commit() return jsonify({'deckid': deckid}) return jsonify({'Cannot import this deck.'}) except Exception: pass else: return jsonify({'Not logged in.'}) @app.route('/api/decks/export', methods=['POST']) def deckExportRoute(): try: if request.json['deckid'] == 'all' and current_user.is_authenticated: decks = Deck.query.filter_by(author=current_user).all() result = deckExportAll(decks, request.json['format']) return jsonify(result) elif request.json['src'] == 'twd': deckid = request.json['deckid'] with open("twdDecksById.json", "r") as twdDecks_file: twdDecks = json.load(twdDecks_file) deck = twdDecks[deckid] comments = deck['description'] deck['description'] = 'Date: ' + deck['date'] + '\n' deck['description'] += 'Players: ' + str( deck['players']) + '\n' deck['description'] += 'Event: ' + deck['event'] + '\n' deck['description'] += 'Location: ' + deck['location'] + '\n' deck['cards'] = {} for i in deck['crypt']: deck['cards'][i] = deck['crypt'][i]['q'] for i in deck['library']: deck['cards'][i] = deck['library'][i]['q'] if comments: deck['description'] += '\n' + comments deck['author'] = deck['player'] result = deckExport(deck, request.json['format']) return jsonify(result) elif request.json['src'] == 'precons': set, precon = request.json['deckid'].split(':') with open("preconDecks.json", "r") as precons_file: precon_decks = json.load(precons_file) d = precon_decks[set][precon] deck = { 'cards': d, 'name': f"Preconstructed {set}:{precon}", 'author': 'VTES Publisher', 'description': 'Preconstructed deck', } result = deckExport(deck, request.json['format']) return jsonify(result) elif request.json['src'] == 'shared': deck = request.json['deck'] result = deckExport(deck, request.json['format']) return jsonify(result) elif request.json['src'] == 'my': d = Deck.query.filter_by(deckid=request.json['deckid']).first() deck = { 'cards': d.cards, 'name': d.name, 'author': d.author.public_name, 'branch_name': d.branch_name, 'description': d.description, } result = deckExport(deck, request.json['format']) return jsonify(result) except Exception: pass @app.route('/api/decks/proxy', methods=['POST']) def deckProxyRoute(): try: return deckProxy(request.json['cards']) except Exception: pass @app.route('/api/decks/remove', methods=['POST']) def removeDeck(): if current_user.is_authenticated: try: d = Deck.query.filter_by(author=current_user, deckid=request.json['deckid']).first() if d.branches: for i in d.branches: j = Deck.query.filter_by(author=current_user, deckid=i).first() db.session.delete(j) if d.master: j = Deck.query.filter_by(author=current_user, deckid=d.master).first() db.session.delete(j) db.session.delete(d) db.session.commit() return jsonify({'deck removed': request.json['deckid']}) except Exception: return jsonify({'error': 'idk'}) else: return jsonify({'Not logged in.'}) @app.route('/api/register', methods=['POST']) def register(): if current_user.is_authenticated: return jsonify({'already logged as:': current_user.username}) try: user = User( username=request.json['username'], public_name=request.json['username'], inventory={}, ) user.set_password(request.json['password']) db.session.add(user) db.session.commit() login_user(user) return jsonify({'registered as': user.username}) except Exception: abort(400) @app.route('/api/login', methods=['GET', 'POST']) def login(): if request.method == 'GET': if current_user.is_authenticated: return jsonify({ 'username': current_user.username, 'email': current_user.email, 'public_name': current_user.public_name, }) else: return jsonify({'username': ''}) elif request.method == 'POST': try: user = User.query.filter_by( username=request.json['username']).first() if user is None or not user.check_password( request.json['password']): return jsonify({'error': 'invalid username or password'}), 401 login_user(user, remember=request.json['remember']) return jsonify({'logged in as': current_user.username}) except KeyError: pass @app.route('/api/account', methods=['POST']) def account(): if current_user.is_authenticated: try: if (request.json['publicName']): current_user.public_name = request.json['publicName'] db.session.commit() return jsonify('public name changed') except Exception: pass try: if (request.json['email']) and current_user.check_password( request.json['password']): current_user.email = request.json['email'] db.session.commit() return jsonify('email changed') except Exception: pass try: if (request.json['newPassword']) and current_user.check_password( request.json['password']): current_user.set_password(request.json['newPassword']) db.session.commit() return jsonify('password changed') except Exception: pass else: return jsonify({'error': 'Not logged in'}) @app.route('/api/account/remove', methods=['POST']) def removeAccount(): if current_user.is_authenticated and current_user.check_password( request.json['password']): try: db.session.delete(current_user) db.session.commit() return jsonify({'account removed': current_user.username}) except Exception: pass else: return jsonify({'Not logged in or wrong password.'}) @app.route('/api/logout') def logout(): try: user = current_user.username logout_user() return jsonify({'logged out from': user}) except AttributeError: return jsonify({'error': 'not logged'}) @app.route('/api/search/twd', methods=['POST']) def searchTwdRoute(): result = searchTwd(request) if 'matchInventory' in request.json: if result != 400: result = matchInventory(request.json['matchInventory'], current_user.inventory, result) else: result = matchInventory(request.json['matchInventory'], current_user.inventory) if result != 400: return jsonify(result) else: abort(400) @app.route('/api/twd/locations', methods=['GET']) def getLocations(): with open("twdLocations.json", "r") as twdLocations_file: return jsonify(json.load(twdLocations_file)) @app.route('/api/twd/players', methods=['GET']) def getPlayers(): with open("twdPlayers.json", "r") as twdPlayers_file: return jsonify(json.load(twdPlayers_file)) @app.route('/api/twd/new/<int:quantity>', methods=['GET']) def getNewTwd(quantity): with open("twdDecks.json", "r") as twd_file: twda = json.load(twd_file) decks = [] for i in range(quantity): deck = sanitizeTwd(twda[i]) decks.append(deck) return jsonify(decks) @app.route('/api/twd/random/<int:quantity>', methods=['GET']) def getRandomTwd(quantity): with open("twdDecks.json", "r") as twd_file: twda = json.load(twd_file) decks = [] max_id = len(twda) - 1 counter = 0 while counter < quantity: counter += 1 deck = twda[round(random() * max_id)] decks.append(sanitizeTwd(deck)) return jsonify(decks) @app.route('/api/search/crypt', methods=['POST']) def searchCryptRoute(): result = searchCrypt(request) if result != 400: return jsonify(result) else: abort(400) @app.route('/api/search/library', methods=['POST']) def searchLibraryRoute(): result = searchLibrary(request) if result != 400: return jsonify(result) else: abort(400) @app.route('/api/search/quick', methods=['POST']) def searchQuickRoute(): result = [] crypt = searchCrypt(request) if crypt != 400: result += crypt library = searchLibrary(request) if library != 400: result += library if result: return jsonify(result) else: abort(400)
import math import numpy as np from helpers.agent8 import forward_execution, parent_to_child_dict from src.Agent import Agent class Agent8(Agent): def __init__(self): super().__init__() # Override execution method of Agent class def execution(self, full_maze: np.array, target_position=None): percent_of_cells_to_examine = 15 # what % of cells in path from A* to examine with highest probabilities # get path from start(current_position) to goal(current_estimated_goal) # print("Parents:", self.parents) temp_child = parent_to_child_dict(self.parents, self.current_estimated_goal) # print("Child:", temp_child) # number of cells to examine from the whole path by A* num_cells_to_examine = math.ceil((percent_of_cells_to_examine * len(temp_child)) / 100) temp_current_pos = self.current_position # list that contains the cells in the path but in the descending order of their probability of containing target path_list = list() # if len(temp_child) == 1 and temp_child == {(0, 0): (0, 0)}: # Condition for start element only # # print("here") # path_list.append([self.maze[temp_current_pos[0]][temp_current_pos[1]].probability_of_containing_target * # (1 - self.maze[temp_current_pos[0]][temp_current_pos[1]].false_negative_rate), # temp_current_pos]) """loop to store the prob of containing target with the indices in list of list from start to end of path returned by A""" while temp_current_pos != temp_child[temp_current_pos]: # print("here") (1 - self.maze[temp_current_pos[0]][temp_current_pos[1]].false_negative_rate) path_list.append([self.maze[temp_current_pos[0]][temp_current_pos[1]].probability_of_containing_target, temp_current_pos]) temp_current_pos = temp_child[temp_current_pos] path_list.append([self.maze[temp_current_pos[0]][temp_current_pos[1]].probability_of_containing_target * (1 - self.maze[temp_current_pos[0]][temp_current_pos[1]].false_negative_rate), temp_current_pos]) # Sort the cells w.r.t to their prob of containing target in descending order path_list.sort(reverse=True) # set containing cells to examine in the forward execution cells_to_examine = set() count = 0 # keeps track of the index in the path_list # print("Dict len:", len(temp_child)) print('Target position', target_position) print('Current path', path_list) for element in path_list: print(self.maze[element[1][0]][element[1][1]].is_blocked, full_maze[element[1][0]][element[1][1]], end=" ") print() # print("Cells to examine:", num_cells_to_examine) print('Children', temp_child) # loop to store num_cells_to_examine in set which will be used in forward execution while num_cells_to_examine > 0: cells_to_examine.add(path_list[count][1]) count += 1 num_cells_to_examine -= 1 self.num_astar_calls += 1 self.num_bumps += 1 # make changes in forward_execution() current_path, num_backtracks, truth_value, examinations = forward_execution(self.maze, full_maze, self.current_position, self.current_estimated_goal, self.parents, cells_to_examine, target_position, self.global_threshold)[:4] self.current_position = current_path[-1] self.final_paths.append(current_path) self.num_examinations += examinations self.num_backtracks += num_backtracks return truth_value
# Implement a function that takes as input three variables, and returns the largest of the three. Do this without # using the Python max() function! # # The goal of this exercise is to think about some internals that Python normally takes care of for us. All you need # is some variables and if statements! def largest(a, b, c): if a > b and a > c: print(f"Maximum Value is {a}") elif b > c and b > a: print(f"Maximum Value is {b}") elif c > b and c > a: print(f"Maximum Value is {c}") largest(31, 9, 17)
from threading import Thread import time from typing import Tuple from room import Room from structsock import StructuredSocket, PeerDisconnect from service import format_config, log, Signal, hexdump from result import Status, StatusCode import elite, msgpack, queue # global configuration config = { "MinBetween": 1, "MaxMessageLength": 0xFF, "BacklogSize": 5 } class Session: 'Represents a session to communicate with the client.' def __init__(self, client: StructuredSocket, server: 'Server'): 'Initializes with a client and a server.' self._user = None self._scheme = elite.getscheme() self._client = client self._server = server self._room = None self._lastTimestamp = 0 def lifecycle(self, multithread: bool=False) -> None: 'Runs the lifecycle, either in this thread or in another.' if multithread: t = Thread(name='Session-{}:{}'.format(*self._client.getpeername()), target=self.lifecycle) t.start() return try: self._handshake() self._main() except PeerDisconnect: pass log("会话结束。") if self._room: self._room.userLeft(self._user) self._room.metaMessage('{} 离开了房间。'.format(self._user)) self._room = None self._server.sessionExit(self) def _send(self, status: Status, encrypt: bool=True): 'Sends the specific status.' data = status.pack() if encrypt: data = self._scheme.encrypt(data) self._client.send(data) def _handshake(self) -> None: 'Handshakes with the client.' while True: key = self._client.recv() try: self._scheme.importBinaryKey(key) self._send(Status.ok(self._scheme.exportBinaryKey()), False) break except elite.secret.CurveKindMismatch: self._send( Status(StatusCode.SC_KEY_INVALID), False ) log("密钥协商完毕。共享密钥如下:\n{}".format(hexdump(self._scheme.secret().hex()))) def _main(self) -> None: 'The main loop of the session.' while True: data = self._client.recv() try: data = self._scheme.decrypt(data) except elite.cipher.AuthorizationCodeInvalid: self._send( Status(StatusCode.SC_UNAUTHORIZED) ) continue data = msgpack.unpackb(data) op = data['type'] if op == 'login': self._user = data['user'] self._send(Status.ok()) elif op == 'join': if self._user is None: self._send(Status(StatusCode.SC_NEEDS_LOGIN)) else: self._room = self._server.getRoom(data['room']) if self._room.userJoined(self._user): self._room.onMessage.register(self._message) self._send(Status.ok()) self._room.metaMessage('{} 加入了房间。'.format(self._user)) else: self._send(Status(StatusCode.SC_DUPLICATE_USER)) elif op == 'send': if self._room is None: self._send(Status(StatusCode.SC_WANDER_ROOM)) elif time.time() - self._lastTimestamp <= config.get("MinBetween", 1): self._send(Status(StatusCode.SC_TOO_FREQUENT)) else: message = data['message'] signature = data['signature'] if not self._scheme.verify(message.encode(), signature): self._send(Status(StatusCode.SC_UNAUTHORIZED)) elif len(message) >= config.get("MaxMessageLength", 0xFF): self._send(Status(StatusCode.SC_MSG_TOO_LONG)) else: self._room.messageReceived(self._user, message) self._lastTimestamp = time.time() self._send(Status.ok()) elif op == 'leave': if self._room is None: self._send(Status(StatusCode.SC_WANDER_ROOM)) else: self._room.userLeft(self._user) self._room.onMessage.deregister(self._message) self._room.metaMessage('{} 离开了房间。'.format(self._user)) self._room = None self._send(Status.ok()) elif op == 'quit': if self._room is not None: self._room.userLeft(self._user) self._room.onMessage.deregister(self._message) self._room.metaMessage('{} 离开了房间。'.format(self._user)) self._room = None self._client.close() break else: self._send(Status(StatusCode.SC_INVALID_CMD)) def _message(self, user: str, message: str) -> None: 'Called when a new message was sent.' self._send(Status.message((user, message))) class Server: 'Represents the server to manage the connections.' def __init__(self, port: int): 'Initializes the server with specific port.' self._sock = StructuredSocket() self._sock.bind(('0.0.0.0', port)) self._port = port self._sessions = set() self._rooms = {} def sessionExit(self, session: Session): 'Called when a session exits.' self._sessions.remove(session) def serve(self, multithread: bool=False) -> None: 'Launches the server.' if multithread: t = Thread(name='ServerDaemon', target=self.serve, daemon=True) t.start() return log('使用配置: {}'.format(format_config(config))) log('正在监听 0.0.0.0 端口 {}'.format(self._port)) self._sock.listen(config.get('BacklogSize', 5)) while True: client, addr = self._sock.accept() log('客户端 {}:{} 已连接'.format(*addr)) session = Session(client, self) self._sessions.add(session) session.lifecycle(True) def getRoom(self, name: str) -> Room: 'Gets a room with specific name.' try: return self._rooms[name] except KeyError: room = Room(name) self._rooms[name] = room return room class Client: 'Represents a client.' def __init__(self, host: str, port: int): 'Initializes with specific host and port.' self._address = (host, port) self._scheme = elite.getscheme() self._sock = StructuredSocket() self.onMessage = Signal() self.onFailure = Signal() self._queue = queue.Queue() @property def address(self) -> Tuple[str, int]: 'Gets the address of the peer.' return self._address @property def scheme(self) -> elite.scheme.ECCScheme: 'Gets the security scheme.' return self._scheme def connect(self) -> None: self._sock.connect(self._address) while True: self._sock.send(self._scheme.exportBinaryKey()) stat = Status.unpack(self._sock.recv()) if stat.success: self._scheme.importBinaryKey(stat.data) break self._sock.setblocking(False) def enqueue(self, operation: dict) -> None: 'Pushes an operation to the message queue.' self._queue.put(operation) def enterRoom(self, room: str) -> None: 'Enters a room with specific name.' self.enqueue({ 'type': 'join', 'room': room }) def leaveRoom(self) -> None: 'Leaves the current room.' self.enqueue({ 'type': 'leave' }) def login(self, user: str) -> None: 'Logs in as specific user.' self.enqueue({ 'type': 'login', 'user': user }) def compose(self, message: str) -> None: 'Composes a message and send it.' signature = self._scheme.sign(message.encode()) self.enqueue({ 'type': 'send', 'message': message, 'signature': signature }) def close(self) -> None: 'Closes this client.' self.enqueue({ 'type': 'quit' }) def mainLoop(self, multithread: bool=False) -> None: 'Runs the main loop.' if multithread: t = Thread(name='ClientMainLoop', target=self.mainLoop, daemon=True) t.start() return try: while True: try: stat = Status.unpack( self._scheme.decrypt(self._sock.recv()) ) if stat.code == StatusCode.SC_NEW_MESSAGE: self.onMessage(*stat.data) elif not stat.success: self.onFailure(stat.code) except BlockingIOError: pass try: operation = self._queue.get_nowait() data = msgpack.packb(operation) data = self._scheme.encrypt(data) self._sock.send(data) except queue.Empty: pass except PeerDisconnect: pass finally: self._sock.close()
#!/usr/bin/env python # -*- coding: utf-8 -*- from collections import defaultdict, deque def is_value(x): return x.isdigit() or (x[0] == '-' and x[1:].isdigit()) class Program(object): def __init__(self, instructions, pid): self.registers = defaultdict(lambda: 0) self.registers['p'] = pid self.last_played_freq = None self.n_sent = 0 self.received = deque() self.instructions = instructions self.duet_bind = None self.is_waiting = False def bind(self, other): self.duet_bind = other self.duet_bind.duet_bind = self def is_deadlock(self): if self.is_waiting and not self.received and \ self.duet_bind.is_waiting and not self.duet_bind.received: return True return False def __getitem__(self, item): return int(item) if is_value(item) else self.registers[item] def run(self): n = 0 while 0 <= n < len(self.instructions): parts = self.instructions[n].split(' ') if parts[0] == 'snd': self.n_sent += 1 value = self[parts[1]] self.last_played_freq = value if self.duet_bind: self.duet_bind.received.appendleft(value) elif parts[0] == 'set': self.registers[parts[1]] = self[parts[2]] elif parts[0] == 'add': self.registers[parts[1]] += self[parts[2]] elif parts[0] == 'mul': self.registers[parts[1]] *= self[parts[2]] elif parts[0] == 'mod': self.registers[parts[1]] %= self[parts[2]] elif parts[0] == 'rcv': if self.duet_bind: if self.received: self.registers[parts[1]] = self.received.pop() else: self.is_waiting = True yield if self.received: self.is_waiting = False self.registers[parts[1]] = self.received.pop() else: # Sleep one last time. Deadlock has occurred. yield else: if self.registers[parts[1]] != 0: yield self.last_played_freq elif parts[0] == 'jgz': condition = self[parts[1]] if condition > 0: n += self[parts[2]] continue else: raise ValueError(str(parts)) n += 1 def solve_1(instructions): p = Program(instructions, 0) out = next(p.run()) return out def solve_2(instructions): p0 = Program(instructions, 0) p1 = Program(instructions, 1) p0.bind(p1) p0_run = p0.run() p1_run = p1.run() while not p0.is_deadlock(): next(p0_run) next(p1_run) return p1.n_sent def main(): from _aocutils import ensure_data ensure_data(18) with open('input_18.txt', 'r') as f: data = f.read().strip() print("Part 1: {0}".format(solve_1(data.splitlines()))) print("Part 2: {0}".format(solve_2(data.splitlines()))) if __name__ == '__main__': main()
# multivariate lin regresion of heights vs weights import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from scipy.stats import norm, uniform, multivariate_normal from scipy.interpolate import griddata import pymc3 as pm d = pd.read_csv('../../rethinking/data/WaffleDivorce.csv', sep=';', header=0) plt.plot(d.Marriage, d.Divorce, 'C0o') plt.xlabel('marriage') plt.ylabel('divorce') plt.show() d['Marriage_s'] = (d.Marriage - np.mean(d.Marriage)) / np.std(d.Marriage) with pm.Model() as model: sigma = pm.Uniform(name='sigma', lower=0, upper=10) bA = pm.Normal(name='bA', mu=0, sd=1) a = pm.Normal(name='a', mu=10, sd=10) mu = pm.Deterministic('mu', a + bA * d.Marriage_s) divorce = pm.Normal(name='divorce', mu=mu, sd=sigma, observed=d.Divorce) trace_model = pm.sample(1000, tune=1000) pm.traceplot(trace_model) plt.show() mu_mean = trace_model['mu'] mu_hpd = pm.hpd(mu_mean, alpha=0.11) plt.plot(d.Marriage_s, d.Divorce, 'C0o') plt.plot(d.Marriage_s, mu_mean.mean(0), 'C2') idx = np.argsort(d.Marriage_s) plt.fill_between(d.Marriage_s[idx], mu_hpd[:, 0][idx], mu_hpd[:, 1][idx], color='C2', alpha=0.25) # plt.fill_between(d.Marriage_s, mu_hpd[:, 0], mu_hpd[:, 1], color='C2', alpha=0.25) plt.xlabel('deviation of standard marriage rate') plt.ylabel('divorce') plt.show() samples = pm.sample_ppc(trace_model, 1000, model) mu_mean = samples['divorce'] mu_hpd = pm.hpd(mu_mean, alpha=0.11) plt.plot(d.Marriage_s, d.Divorce, 'C0o') idx = np.argsort(d.Marriage_s) plt.plot(d.Marriage_s[idx], mu_mean.mean(0)[idx], 'C2') # plt.plot(d.Marriage_s, mu_mean.mean(0), 'C2') plt.fill_between(d.Marriage_s[idx], mu_hpd[:, 0][idx], mu_hpd[:, 1][idx], color='C2', alpha=0.25) # plt.fill_between(d.Marriage_s, mu_hpd[:, 0], mu_hpd[:, 1], color='C2', alpha=0.25) plt.xlabel('deviation of standard marriage rate') plt.ylabel('divorce') plt.show()
# -*- coding: utf-8 -*- from django.conf import settings from django.forms.forms import BoundField from django.forms.models import formset_factory from django.template import Context try: from django.template.loader import get_template_from_string except ImportError: from django.template import Engine def get_template_from_string(s): return Engine().from_string(s) from .base import CrispyTestCase from .forms import TestForm from crispy_forms.templatetags.crispy_forms_field import crispy_addon class TestBasicFunctionalityTags(CrispyTestCase): def test_as_crispy_errors_form_without_non_field_errors(self): template = get_template_from_string(u""" {% load crispy_forms_tags %} {{ form|as_crispy_errors }} """) form = TestForm({'password1': "god", 'password2': "god"}) form.is_valid() c = Context({'form': form}) html = template.render(c) self.assertFalse("errorMsg" in html or "alert" in html) def test_as_crispy_errors_form_with_non_field_errors(self): template = get_template_from_string(u""" {% load crispy_forms_tags %} {{ form|as_crispy_errors }} """) form = TestForm({'password1': "god", 'password2': "wargame"}) form.is_valid() c = Context({'form': form}) html = template.render(c) self.assertTrue("errorMsg" in html or "alert" in html) self.assertTrue("<li>Passwords dont match</li>" in html) self.assertFalse("<h3>" in html) def test_crispy_filter_with_form(self): template = get_template_from_string(u""" {% load crispy_forms_tags %} {{ form|crispy }} """) c = Context({'form': TestForm()}) html = template.render(c) self.assertTrue("<td>" not in html) self.assertTrue("id_is_company" in html) self.assertEqual(html.count('<label'), 7) def test_crispy_filter_with_formset(self): template = get_template_from_string(u""" {% load crispy_forms_tags %} {{ testFormset|crispy }} """) TestFormset = formset_factory(TestForm, extra=4) testFormset = TestFormset() c = Context({'testFormset': testFormset}) html = template.render(c) self.assertEqual(html.count('<form'), 0) # Check formset management form self.assertTrue('form-TOTAL_FORMS' in html) self.assertTrue('form-INITIAL_FORMS' in html) self.assertTrue('form-MAX_NUM_FORMS' in html) def test_classes_filter(self): template = get_template_from_string(u""" {% load crispy_forms_field %} {{ testField|classes }} """) test_form = TestForm() test_form.fields['email'].widget.attrs.update({'class': 'email-fields'}) c = Context({'testField': test_form.fields['email']}) html = template.render(c) self.assertTrue('email-fields' in html) def test_crispy_field_and_class_converters(self): if hasattr(settings, 'CRISPY_CLASS_CONVERTERS'): template = get_template_from_string(u""" {% load crispy_forms_field %} {% crispy_field testField 'class' 'error' %} """) test_form = TestForm() field_instance = test_form.fields['email'] bound_field = BoundField(test_form, field_instance, 'email') c = Context({'testField': bound_field}) html = template.render(c) self.assertTrue('error' in html) self.assertTrue('inputtext' in html) def test_crispy_addon(self): test_form = TestForm() field_instance = test_form.fields['email'] bound_field = BoundField(test_form, field_instance, 'email') if self.current_template_pack == 'bootstrap': # prepend tests self.assertIn("input-prepend", crispy_addon(bound_field, prepend="Work")) self.assertNotIn("input-append", crispy_addon(bound_field, prepend="Work")) # append tests self.assertNotIn("input-prepend", crispy_addon(bound_field, append="Primary")) self.assertIn("input-append", crispy_addon(bound_field, append="Secondary")) # prepend and append tests self.assertIn("input-append", crispy_addon(bound_field, prepend="Work", append="Primary")) self.assertIn("input-prepend", crispy_addon(bound_field, prepend="Work", append="Secondary")) elif self.current_template_pack == 'bootsrap3': self.assertIn("input-group-addon", crispy_addon(bound_field, prepend="Work", append="Primary")) self.assertIn("input-group-addon", crispy_addon(bound_field, prepend="Work", append="Secondary")) # errors with self.assertRaises(TypeError): crispy_addon() crispy_addon(bound_field)
from builtins import range import pandas as pd # type: ignore from langdetect import detect from datamart_isi.profilers.helpers.feature_compute_hih import is_Decimal_Number import string import numpy as np # type: ignore import re # till now, this file totally compute 16 types of features def compute_missing_space(column, feature, feature_list): """ NOTE: this function may change the input column. It will trim all the leading and trailing whitespace. if a cell is empty after trimming(which means it only contains whitespaces), it will be set as NaN (missing value), and both leading_space and trailing_space will += 1. (1). trim and count the leading space and trailing space if applicable. note that more than one leading(trailing) spaces in a cell will still be counted as 1. (2). compute the number of missing value for a given series (column); store the result into (feature) """ # if one of them is specified, just compute all; since does not increase lot computations if (("number_of_values_with_leading_spaces" in feature_list) or ("ratio_of_values_with_leading_spaces" in feature_list) or ("number_of_values_with_trailing_spaces" in feature_list) or ("ratio_of_values_with_trailing_spaces" in feature_list)): leading_space = 0 trailing_space = 0 for id, cell in column.iteritems(): if (pd.isnull(cell)): continue change = False trim_leading_cell = re.sub(r"^\s+", "", cell) if (trim_leading_cell != cell): leading_space += 1 change = True trim_trailing_cell = re.sub(r"\s+$", "", trim_leading_cell) if ((trim_trailing_cell != trim_leading_cell) or len(trim_trailing_cell) == 0): trailing_space += 1 change = True # change the origin value in data if change: if (len(trim_trailing_cell) == 0): column[id] = np.nan else: column[id] = trim_trailing_cell feature["number_of_values_with_leading_spaces"] = leading_space feature["ratio_of_values_with_leading_spaces"] = leading_space / column.size feature["number_of_values_with_trailing_spaces"] = trailing_space feature["ratio_of_values_with_trailing_spaces"] = trailing_space / column.size def compute_length_distinct(column, feature, delimiter, feature_list): """ two tasks because of some overlaping computation: (1). compute the mean and std of length for each cell, in a given series (column); mean and std precision: 5 after point missing value (NaN): treated as does not exist (2). also compute the distinct value and token: number: number of distinct value or tokens, ignore the NaN ratio: number/num_total, ignore all NaN """ # (1) column = column.dropna() # get rid of all missing value if (column.size == 0): # if the column is empty, do nothing return # 1. for character # lenth_for_all = column.apply(len) # feature["string_length_mean"] = lenth_for_all.mean() # feature["string_length_std"] = lenth_for_all.std() # (2) if (("number_of_distinct_values" in feature_list) or ("ratio_of_distinct_values" in feature_list)): feature["number_of_distinct_values"] = column.nunique() feature["ratio_of_distinct_values"] = feature["number_of_distinct_values"] / float(column.size) if (("number_of_distinct_tokens" in feature_list) or ("ratio_of_distinct_tokens" in feature_list)): tokenlized = pd.Series([token for lst in column.str.split().dropna() for token in lst]) # tokenlized Series lenth_for_token = tokenlized.apply(len) # feature["token_count_mean"] = lenth_for_token.mean() # feature["token_count_std"] = lenth_for_token.std() feature["number_of_distinct_tokens"] = tokenlized.nunique() feature["ratio_of_distinct_tokens"] = feature["number_of_distinct_tokens"] / float(tokenlized.size) def compute_lang(column, feature): """ compute which language(s) it use for a given series (column); store the result into (feature). not apply for numbers PROBLEMS: 1. not accurate when string contains digits 2. not accurate when string is too short maybe need to consider the special cases for the above conditions """ column = column.dropna() # ignore all missing value if (column.size == 0): # if the column is empty, do nothing return feature["natural_language_of_feature"] = list() language_count = {} for cell in column: if cell.isdigit() or is_Decimal_Number(cell): continue else: # detecting language try: language = detect(cell) if language in language_count: language_count[language] += 1 else: language_count[language] = 1 except Exception as e: print("there is something may not be any language nor number: {}".format(cell)) pass languages_ordered = sorted(language_count, key=language_count.get, reverse=True) for lang in languages_ordered: lang_obj = {} lang_obj['name'] = lang lang_obj['count'] = language_count[lang] feature["natural_language_of_feature"].append(lang_obj) def compute_filename(column, feature): """ compute number of cell whose content might be a filename """ column = column.dropna() # ignore all missing value filename_pattern = r"^\w+\.[a-z]{1,5}" column.str.match(filename_pattern) num_filename = column.str.match(filename_pattern).sum() feature["num_filename"] = num_filename def compute_punctuation(column, feature, weight_outlier): """ compute the statistical values related to punctuations, for details, see the format section of README. not apply for numbers (eg: for number 1.23, "." does not count as a punctuation) weight_outlier: = number_of_sigma in function "helper_outlier_calcu" """ column = column.dropna() # get rid of all missing value if (column.size == 0): # if the column is empty, do nothing return number_of_chars = sum(column.apply(len)) # number of all chars in column num_chars_cell = np.zeros(column.size) # number of chars for each cell puncs_cell = np.zeros([column.size, len(string.punctuation)], dtype=int) # (number_of_cell * number_of_puncs) sized array # step 1: pre-calculations cell_id = -1 for cell in column: cell_id += 1 num_chars_cell[cell_id] = len(cell) # only counts puncs for non-number cell if cell.isdigit() or is_Decimal_Number(cell): continue else: counts_cell_punc = np.asarray(list(cell.count(c) for c in string.punctuation)) puncs_cell[cell_id] = counts_cell_punc counts_column_punc = puncs_cell.sum(axis=0) # number of possible puncs in this column cell_density_array = puncs_cell / num_chars_cell.reshape([column.size, 1]) puncs_density_average = cell_density_array.sum(axis=0) / column.size # step 2: extract from pre-calculated data # only create this feature when punctuations exist if (sum(counts_column_punc) > 0): feature["most_common_punctuations"] = list() # list of dict # extract the counts to feature, for each punctuation for i in range(len(string.punctuation)): if (counts_column_punc[i] == 0): # if no this punctuation occur in the whole column, ignore continue else: punc_obj = {} punc_obj["punctuation"] = string.punctuation[i] punc_obj["count"] = counts_column_punc[i] punc_obj["ratio"] = counts_column_punc[i] / float(number_of_chars) punc_obj["punctuation_density_aggregate"] = {"mean": puncs_density_average[i]} # calculate outlier outlier_array = helper_outlier_calcu(cell_density_array[:, i], weight_outlier) # only one element in outlier punc_obj["punctuation_density_outliers"] = [{"n": weight_outlier, "count": sum(outlier_array)}] feature["most_common_punctuations"].append(punc_obj) # step 3: sort feature["most_common_punctuations"] = sorted(feature["most_common_punctuations"], key=lambda k: k['count'], reverse=True) def helper_outlier_calcu(array, number_of_sigma): """ input: array is a 1D numpy array, number_of_sigma is a integer. output: boolean array, size same with input array; true -> is outlier, false -> not outlier outlier def: the values that not within mean +- (number_of_sigma * sigma) of the statics of the whole list """ mean = np.mean(array) std = np.std(array) upper_bound = mean + number_of_sigma * std lower_bound = mean - number_of_sigma * std outlier = (array > upper_bound) + (array < lower_bound) return outlier
from nose.tools import * import pygraphviz as pgv
import textwrap from typing import ForwardRef, List, Optional import pytest import databases import ormar import sqlalchemy import strawberry database = databases.Database("sqlite:///db.sqlite") metadata = sqlalchemy.MetaData() MasterRef = ForwardRef("Hero") class City(ormar.Model): class Meta: database = database metadata = metadata id: Optional[int] = ormar.Integer(primary_key=True, default=None) name: str = ormar.String(max_length=255) population: int = ormar.Integer() class Manager(ormar.Model): class Meta: database = database metadata = metadata id: Optional[int] = ormar.Integer(primary_key=True, default=None) name: str = ormar.String(max_length=255) class Team(ormar.Model): class Meta: database = database metadata = metadata id: int = ormar.Integer(primary_key=True) name: str = ormar.String(index=True, max_length=255) headquarters: Optional[str] = ormar.String(nullable=True, max_length=255) manager: Manager = ormar.ForeignKey( Manager, nullable=False, related_name="managed_teams" ) referrers: List[Manager] = ormar.ManyToMany(Manager, related_name="referring_teams") class Hero(ormar.Model): class Meta: database = database metadata = metadata id: int = ormar.Integer(primary_key=True) name: str = ormar.String(index=True, max_length=255) secret_name: str age: Optional[int] = ormar.Integer(default=None, index=True, nullable=True) master: Optional[MasterRef] = ormar.ForeignKey( MasterRef, nullable=True, default=None ) team: Optional[int] = ormar.ForeignKey(Team, nullable=True, related_name="heroes") @pytest.fixture def clear_types(): for model in (Team, Hero, Manager, City): if hasattr(model, "_strawberry_type"): delattr(model, "_strawberry_type") def test_all_fields(clear_types): @strawberry.experimental.pydantic.type(City, all_fields=True) class CityType: pass @strawberry.type class Query: @strawberry.field def city(self) -> CityType: return CityType(id=1, name="Gotham", population=100000) schema = strawberry.Schema(query=Query) expected_schema = """ type CityType { name: String! population: Int! id: Int } type Query { city: CityType! } """ assert str(schema) == textwrap.dedent(expected_schema).strip() query = "{ city { name } }" result = schema.execute_sync(query) assert not result.errors assert result.data["city"]["name"] == "Gotham" def test_basic_type_field_list(clear_types): @strawberry.experimental.pydantic.type(Team, fields=["name", "headquarters"]) class TeamType: pass @strawberry.type class Query: @strawberry.field def team(self) -> TeamType: return TeamType(name="hobbits", headquarters="The Shire") schema = strawberry.Schema(query=Query) expected_schema = """ type Query { team: TeamType! } type TeamType { name: String! headquarters: String } """ assert str(schema) == textwrap.dedent(expected_schema).strip() query = "{ team { name } }" result = schema.execute_sync(query) assert not result.errors assert result.data["team"]["name"] == "hobbits" def test_one_to_one_optional(clear_types): @strawberry.experimental.pydantic.type(Team, fields=["name"]) class TeamType: pass @strawberry.experimental.pydantic.type(Hero, fields=["team"]) class HeroType: pass @strawberry.type class Query: @strawberry.field def hero(self) -> HeroType: return HeroType(team=TeamType(name="Skii")) schema = strawberry.Schema(query=Query) expected_schema = """ type HeroType { team: TeamType } type Query { hero: HeroType! } type TeamType { name: String! } """ assert str(schema) == textwrap.dedent(expected_schema).strip() query = "{ hero { team { name } } }" result = schema.execute_sync(query) assert not result.errors assert result.data["hero"]["team"]["name"] == "Skii" def test_one_to_one_required(clear_types): @strawberry.experimental.pydantic.type(Manager, fields=["name"]) class ManagerType: pass @strawberry.experimental.pydantic.type(Team, fields=["manager"]) class TeamType: pass @strawberry.type class Query: @strawberry.field def team(self) -> TeamType: return TeamType(manager=ManagerType(name="Skii")) schema = strawberry.Schema(query=Query) expected_schema = """ type ManagerType { name: String! } type Query { team: TeamType! } type TeamType { manager: ManagerType! } """ assert str(schema) == textwrap.dedent(expected_schema).strip() query = "{ team { manager { name } } }" result = schema.execute_sync(query) assert not result.errors assert result.data["team"]["manager"]["name"] == "Skii" def test_nested_type_unordered(clear_types): @strawberry.experimental.pydantic.type(Hero, fields=["team"]) class HeroType: pass @strawberry.experimental.pydantic.type(Team, fields=["name"]) class TeamType: pass @strawberry.type class Query: @strawberry.field def hero(self) -> HeroType: return HeroType(team=TeamType(name="Skii")) schema = strawberry.Schema(query=Query) expected_schema = """ type HeroType { team: TeamType } type Query { hero: HeroType! } type TeamType { name: String! } """ assert str(schema) == textwrap.dedent(expected_schema).strip() query = "{ hero { team { name } } }" result = schema.execute_sync(query) assert not result.errors assert result.data["hero"]["team"]["name"] == "Skii" def test_reverse_relation(clear_types): @strawberry.experimental.pydantic.type(Team, fields=["heroes"]) class TeamType: pass @strawberry.experimental.pydantic.type(Hero, fields=["name"]) class HeroType: pass @strawberry.type class Query: @strawberry.field def team(self) -> TeamType: return TeamType(heroes=[HeroType(name="Skii"), HeroType(name="Chris")]) schema = strawberry.Schema(query=Query) expected_schema = """ type HeroType { name: String! } type Query { team: TeamType! } type TeamType { heroes: [HeroType] } """ assert str(schema) == textwrap.dedent(expected_schema).strip() query = "{ team { heroes { name } } }" result = schema.execute_sync(query) assert not result.errors assert result.data["team"]["heroes"][0]["name"] == "Skii" assert result.data["team"]["heroes"][1]["name"] == "Chris" def test_all_fields_and_reverse_relation(clear_types): @strawberry.experimental.pydantic.type(Manager, fields=["name"]) class ManagerType: pass @strawberry.experimental.pydantic.type(Team, all_fields=True) class TeamType: pass @strawberry.experimental.pydantic.type(Hero, fields=["name"]) class HeroType: pass @strawberry.type class Query: @strawberry.field def team(self) -> TeamType: return TeamType( name="Avengers", manager="Tony", referrers=[ManagerType(name="Hulk")], heroes=[HeroType(name="Skii"), HeroType(name="Chris")], ) schema = strawberry.Schema(query=Query) query = "{ team { heroes { name } } }" result = schema.execute_sync(query) assert not result.errors assert result.data["team"]["heroes"][0]["name"] == "Skii" assert result.data["team"]["heroes"][1]["name"] == "Chris" def test_one_to_many(clear_types): @strawberry.experimental.pydantic.type(Team, fields=["referrers"]) class TeamType: pass @strawberry.experimental.pydantic.type(Manager, fields=["name"]) class ManagerType: pass @strawberry.type class Query: @strawberry.field def team(self) -> TeamType: return TeamType( referrers=[ManagerType(name="Skii"), ManagerType(name="Chris")] ) schema = strawberry.Schema(query=Query) expected_schema = """ type ManagerType { name: String! } type Query { team: TeamType! } type TeamType { referrers: [ManagerType] } """ assert str(schema) == textwrap.dedent(expected_schema).strip() query = "{ team { referrers { name } } }" result = schema.execute_sync(query) assert not result.errors assert result.data["team"]["referrers"][0]["name"] == "Skii" assert result.data["team"]["referrers"][1]["name"] == "Chris" def test_forwardref(clear_types): @strawberry.experimental.pydantic.type(Hero, fields=["master", "name"]) class HeroType: pass @strawberry.type class Query: @strawberry.field def hero(self) -> HeroType: return HeroType(name="Chris", master=HeroType(name="Skii", master=None)) schema = strawberry.Schema(query=Query) expected_schema = """ type HeroType { name: String! master: HeroType } type Query { hero: HeroType! } """ assert str(schema) == textwrap.dedent(expected_schema).strip() query = "{ hero { master { name } } }" result = schema.execute_sync(query) assert not result.errors assert result.data["hero"]["master"]["name"] == "Skii"
# Copyright 2021 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Any, Dict from pandas import DataFrame from lib.cast import numeric_code_as_string from lib.data_source import DataSource from lib.time import datetime_isoformat from lib.utils import aggregate_admin_level, table_rename _column_adapter = { "reg": "subregion1_code", "dep": "subregion2_code", "jour": "date", "n_dose1": "new_persons_vaccinated", "n_cum_dose1": "total_persons_vaccinated", "n_tot_dose1": "total_persons_vaccinated", "n_complet": "new_persons_fully_vaccinated", "n_cum_complet": "total_persons_fully_vaccinated", "n_tot_complet": "total_persons_fully_vaccinated", } _region_code_map = { 84: "ARA", 27: "BFC", 53: "BRE", 94: "COR", 24: "CVL", 44: "GES", 3: "GF", 1: "GUA", 32: "HDF", 11: "IDF", 4: "LRE", 6: "MAY", 2: "MQ", 75: "NAQ", 28: "NOR", 76: "OCC", 93: "PAC", 52: "PDL", } def _preprocess_dataframe(data: DataFrame) -> DataFrame: data = data.copy() # Convert date to ISO format data["date"] = data["date"].str.slice(0, 10) # In some datasets the second dose column can be missing if "new_persons_fully_vaccinated" not in data.columns: data["new_persons_fully_vaccinated"] = None if "total_persons_fully_vaccinated" not in data.columns: data["total_persons_fully_vaccinated"] = None # Estimate the doses from person counts data["new_vaccine_doses_administered"] = ( data["new_persons_vaccinated"] + data["new_persons_fully_vaccinated"] ) data["total_vaccine_doses_administered"] = ( data["total_persons_vaccinated"] + data["total_persons_fully_vaccinated"] ) return data class FranceDepartmentDataSource(DataSource): def parse_dataframes( self, dataframes: Dict[Any, DataFrame], aux: Dict[str, DataFrame], **parse_opts ) -> DataFrame: data = table_rename(dataframes[0], _column_adapter, remove_regex=r"[^\w]", drop=True) data = _preprocess_dataframe(data) # Make sure all records have the country code and match subregion2 only data["key"] = None data["country_code"] = "FR" data["locality_code"] = None # We consider some departments as regions data.loc[data["subregion2_code"] == "971", "key"] = "FR_GUA" data.loc[data["subregion2_code"] == "972", "key"] = "FR_MQ" data.loc[data["subregion2_code"] == "973", "key"] = "FR_GF" data.loc[data["subregion2_code"] == "974", "key"] = "FR_LRE" # Drop bogus data data = data.dropna(subset=["subregion2_code"]) data = data[data["subregion2_code"] != "00"] return data class FranceRegionDataSource(DataSource): def parse_dataframes( self, dataframes: Dict[Any, DataFrame], aux: Dict[str, DataFrame], **parse_opts ) -> DataFrame: data = table_rename(dataframes[0], _column_adapter, remove_regex=r"[^\w]", drop=True) data = _preprocess_dataframe(data) # Convert the region codes to ISO format data["subregion1_code"] = data["subregion1_code"].apply(_region_code_map.get) data = data.dropna(subset=["subregion1_code"]) # Make sure all records have the country code and match subregion1 only data["country_code"] = "FR" data["subregion2_code"] = None data["locality_code"] = None return data class FranceCountryDataSource(DataSource): def parse_dataframes( self, dataframes: Dict[Any, DataFrame], aux: Dict[str, DataFrame], **parse_opts ) -> DataFrame: data = table_rename(dataframes[0], _column_adapter, remove_regex=r"[^\w]", drop=True) data = _preprocess_dataframe(data) data["key"] = "FR" return data
# Faça um programa que leia três números e mostre qual é o maior e qual é o menor. a = int(input('Informe o primeiro número: ')) b = int(input('Informe o segundo número: ')) c = int(input('Informe o terceiro número: ')) # Verificando quem é menor menor = a if b < a and b < c: menor = b if c < a and c < b: menor = c # Verificando quem é o maior maior = a if b > a and b > c: maior = b if c > a and c > b: maior = c print(f'O menor valor digitado foi {menor}.') print(f'O maior valor digitado foi {maior}')
import os, sys import unittest sys.path.append(os.path.join(os.path.dirname(os.path.dirname(__file__)), 'tools')) from hcx_report import HouseCallXReport class HouseCallXReportTestCase(unittest.TestCase): def setUp(self): pass def tearDown(self): pass def test_get_scores(self): report_path = os.path.join('UT','staff','60_Report.log') scores = HouseCallXReport.get_scores(report_path) malicious_count = 0 suspicious_count = 0 normal_count = 0 for key, value in scores.items(): if value[0] == 2: malicious_count += 1 elif value[0] == 1: suspicious_count += 1 else: normal_count += 1 # print('{},{},{}'.format(normal_count, suspicious_count, malicious_count)) assert(normal_count == 0) assert(suspicious_count == 11) assert(malicious_count == 89)
f=open("testfile.txt", "w") # it removes initial written things and write new things and also create a new file if not created at first f.write("I'm loving Solus.") f.close() #must close the file after writing
# Generated by Django 2.1.3 on 2020-08-22 15:04 import commons.models from django.conf import settings from django.db import migrations, models import django.db.models.deletion import django_extensions.db.fields class Migration(migrations.Migration): dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ('eurowiki', '0001_initial'), ] operations = [ migrations.CreateModel( name='QueryRun', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('result', models.TextField(blank=True, null=True, verbose_name='query result')), ('executed', django_extensions.db.fields.CreationDateTimeField(auto_now_add=True, verbose_name='execution time')), ('executor', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='executor', to=settings.AUTH_USER_MODEL, verbose_name='executor')), ], options={ 'verbose_name': 'SPARQL query execution', 'verbose_name_plural': 'SPARQL query executions', }, ), migrations.CreateModel( name='SparqlQuery', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('title', models.CharField(db_index=True, max_length=200, verbose_name='title')), ('description', models.TextField(blank=True, null=True, verbose_name='description')), ('text', models.TextField(blank=True, null=True, verbose_name='query text')), ('state', models.IntegerField(choices=[(-3, 'Portlet'), (-1, 'Grey'), (1, 'Draft'), (2, 'Submitted'), (3, 'Published'), (4, 'Un-published')], default=1, null=True, verbose_name='publication state')), ('modified', django_extensions.db.fields.ModificationDateTimeField(auto_now=True, verbose_name='last modified')), ('editor', models.ForeignKey(on_delete=django.db.models.deletion.PROTECT, related_name='query_editor', to=settings.AUTH_USER_MODEL, verbose_name='last editor')), ], options={ 'verbose_name': 'SPARQL query definition', 'verbose_name_plural': 'SPARQL query definitions', }, bases=(models.Model, commons.models.Publishable), ), migrations.AddField( model_name='queryrun', name='query', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='query', to='eurowiki.SparqlQuery', verbose_name='query'), ), ]
from random import randrange bolso = 100 resultado = 0 resposta = "s" while(resposta=="s"): numero_apostado = int(input("Escolha um número entre 1 e 6 para você apostar: ")) valor_aposta = float(input("Qual o valor da aposta? ")) bolso -= valor_aposta dado1 = randrange(1,6) dado2 = randrange(1,6) print("Sorteados os dados {} e {}.".format(dado1, dado2)) if(dado1==numero_apostado)and(dado2==numero_apostado): resultado = valor_aposta * 10 bolso += resultado print("Você ganhou {} e agora está com {}.".format(resultado,bolso)) elif (dado1==numero_apostado)or(dado2==numero_apostado): resultado = valor_aposta * 2 bolso += resultado print("Você ganhou {} e agora está com {}.".format(resultado,bolso)) else: print("Você errou. Agora tem {} no bolso.".format(bolso)) resposta = input("Deseja jogar outra vez? ".lower()) print("Fim de jogo.")
import pandas as pd import numpy as np def voting(time_matrix, values_array): time_matrix = np.array(time_matrix) col_sum = time_matrix.sum(axis=0) # Sum of votes for every option idx = col_sum.argmax() matrix_size = time_matrix.shape if col_sum[idx] > matrix_size[0]/2: # If at least half of the voters chose a certain time return idx mult = np.multiply(col_sum, np.asarray(values_array)) # Weighing votes sum = col_sum.sum() if sum == 0: return 0 Avg = mult.sum()/sum # Average = weighted votes / sum of all the votes # Returning the index of the closest value from values_array idx = (np.abs(values_array-Avg)).argmin() return idx def ranking_algorithm(price_matrix,food_matrix,filename="restaurant_database.csv"): # Reading requisite files database = pd.read_csv(filename, index_col = 0, sep=';') # Restaurant data to_matrix=database.drop(["Name"],1) restaurant_matrix=to_matrix.to_numpy() price_matrix=np.array(price_matrix) food_matrix=np.array(food_matrix) #manipulating food_matrix fm_sum=food_matrix.sum(axis=1) food_matrix_norm=[] for i,row in enumerate(food_matrix): if fm_sum[i]!=0: food_matrix_norm.append(row/fm_sum[i]) else: sh = row.shape food_matrix_norm.append(np.zeros(sh[0])) food_matrix_norm=np.array(food_matrix_norm) #manipulating price_matrix: pm_sum=price_matrix.sum(axis=1)*2+2 price_matrix_norm=[] coefficients=[] for row in price_matrix: tmp=0 tmp_row=[] for i,elem in enumerate(row): if row[i]==1: tmp+=2 else: if i==0: if row[i+1]==1: tmp+=1 elif i==len(row)-1: if row[i-1]==1: tmp+=1 else: if (row[i-1]==1 or row[i+1]==1): tmp+=1 for i,elem in enumerate(row): if tmp!=0: if row[i]==1: tmp_row.append(2*1/tmp) else: if i==0: if row[i+1]==1: tmp_row.append(1/tmp) else: tmp_row.append(0) elif i==len(row)-1: if row[i-1]==1: tmp_row.append(1/tmp) else: tmp_row.append(0) else: if (row[i-1]==1 or row[i+1]==1): tmp_row.append(1/tmp) else: tmp_row.append(0) else: tmp_row=[0,0,0,0] price_matrix_norm.append(tmp_row) price_matrix_norm=np.array(price_matrix_norm) #matrix multiplication (algorithm core) participant_matrix_norm=np.concatenate((price_matrix_norm,food_matrix_norm),axis=1) result=np.matmul(participant_matrix_norm,np.transpose(restaurant_matrix)) #sort, list ranked restaurants: ranking=result.sum(axis=0) database.insert(0,"Ranking",ranking) database=database.sort_values(by=["Ranking"], ascending=False) #print(database) ranked_restaurant=database["Name"].to_list() return ranked_restaurant # Its a list of restaurant names from best to worst
from __future__ import unicode_literals import unittest import mock import vcr from mopidy_youtube import Extension from mopidy_youtube.backend import resolve_playlist from mopidy_youtube.backend import search_youtube from mopidy_youtube.backend import resolve_track class ExtensionTest(unittest.TestCase): def test_get_default_config(self): ext = Extension() config = ext.get_default_config() self.assertIn('[youtube]', config) self.assertIn('enabled = true', config) @vcr.use_cassette('tests/fixtures/youtube_playlist_resolve.yaml') def test_playlist_resolver(self): with mock.patch('mopidy_youtube.backend.pafy'): videos = resolve_playlist('PLOxORm4jpOQfMU7bpfGCzDyLropIYEHuR') self.assertEquals(len(videos), 104) @vcr.use_cassette('tests/fixtures/youtube_search.yaml') def test_search_yt(self): with mock.patch('mopidy_youtube.backend.pafy'): videos = search_youtube('chvrches') self.assertEquals(len(videos), 15) @vcr.use_cassette('tests/fixtures/resolve_track.yaml') def test_resolve_track(self): with mock.patch('mopidy_youtube.backend.pafy'): video = resolve_track('TU3b1qyEGsE') self.assertTrue(video) @vcr.use_cassette('tests/fixtures/resolve_track_failed.yaml') def test_resolve_track_failed(self): with mock.patch('mopidy_youtube.backend.pafy') as pafy: pafy.new.side_effect = Exception('Removed') video = resolve_track('unknown') self.assertFalse(video) @vcr.use_cassette('tests/fixtures/resolve_track_stream.yaml') def test_resolve_track_stream(self): with mock.patch('mopidy_youtube.backend.pafy'): video = resolve_track('TU3b1qyEGsE', True) self.assertTrue(video)
class bindings: def __init__(self): pass def getName(self): return "bindings" def getDescription(self): return "Flow snowboard bindings"
from time import perf_counter import warnings import torch import torch.nn.functional as F import numpy as np from mmdet.datasets.builder import PIPELINES from mmdet.datasets.pipelines.compose import Compose @PIPELINES.register_module() class Timer(Compose): """Times a list of transforms and stores result in img_meta.""" def __init__(self, name, transforms): super(Timer, self).__init__(transforms) self.name = f"{name}_time" def __call__(self, data): t1 = perf_counter() data = super(Timer, self).__call__(data) data[self.name] = perf_counter() - t1 return data @PIPELINES.register_module() class DummyResize(object): """Replacement for resize in case the scale is 1. Adds img_shape, pad_shape, scale_factor to results.""" def __call__(self, results): """Resize images with ``results['scale']``.""" for key in results.get('img_fields', ['img']): img_shape = results[key].shape results['img_shape'] = img_shape # in case that there is no padding results['pad_shape'] = img_shape results['scale_factor'] = np.array([1, 1, 1, 1], dtype=np.float32) return results @PIPELINES.register_module() class ImageTestTransformGPU(object): """Preprocess an image using GPU.""" def __init__(self, img_norm_cfg, size_divisor, scale_factor): self.img_norm_cfg = img_norm_cfg self.mean = torch.tensor(img_norm_cfg['mean'], dtype=torch.float32) self.std = torch.tensor(img_norm_cfg['std'], dtype=torch.float32) self.to_rgb = img_norm_cfg['to_rgb'] self.std_inv = 1/self.std self.size_divisor = size_divisor self.scale_factor = float(scale_factor) def __call__(self, results, device='cuda'): start = perf_counter() img = results['img'] ori_shape = img.shape h, w = img.shape[:2] new_size = (round(h*self.scale_factor), round(w*self.scale_factor)) img_shape = (*new_size, 3) img = torch.from_numpy(img).to(device).float() if self.to_rgb: img = img[:, :, (2, 1, 0)] # to BxCxHxW img = img.permute(2, 0, 1).unsqueeze(0) if new_size[0] != img.shape[2] or new_size[1] != img.shape[3]: with warnings.catch_warnings(): warnings.simplefilter("ignore") # ignore the align_corner warnings img = F.interpolate(img, new_size, mode='bilinear') for c in range(3): img[:, c, :, :] = img[:, c, :, :].sub(self.mean[c]) \ .mul(self.std_inv[c]) if self.size_divisor is not None: pad_h = int(np.ceil(new_size[0] / self.size_divisor)) \ * self.size_divisor - new_size[0] pad_w = int(np.ceil(new_size[1] / self.size_divisor)) \ * self.size_divisor - new_size[1] img = F.pad(img, (0, pad_w, 0, pad_h), mode='constant', value=0) pad_shape = (img.shape[2], img.shape[3], 3) else: pad_shape = img_shape img_meta = dict( filename=results['filename'], ori_filename=results['ori_filename'], ori_shape=ori_shape, img_shape=img_shape, pad_shape=pad_shape, scale_factor=self.scale_factor, flip=False, img_norm_cfg=self.img_norm_cfg, start_time=start, ) if 'gt_bboxes' in results: gt_bboxes = torch.from_numpy(results['gt_bboxes']) \ .to(device).float() gt_labels = torch.from_numpy(results['gt_labels']) \ .to(device).float() return dict(img=img, img_metas=[img_meta], gt_bboxes=gt_bboxes, gt_labels=gt_labels) else: return dict(img=img, img_metas=[img_meta])
#!/usr/bin/python #-*- coding:utf8 -*- """ 本程序用来获取音乐台网站的NV排行榜的数据 音悦台:http://www.yinyuetai.com 参考书籍 《用Python写网络爬虫》 《Python网络爬虫实战》 """ import requests import sys import os import re import random import time from bs4 import BeautifulSoup reload(sys) sys.setdefaultencoding('utf8') """ Item 代表一个MV榜单 """ class Item(object): topNum = None #排名 score = None #打分 desc_score:趋势下降 asc_score:趋势上升 mvName = None #MV名字 singer = None #演唱者 releasTime = None #释放时间 '''获取url地址 初始化整个程序的数据,包含网址,以及需要用到的字典和列表等''' def getURL(): urlBase = 'http://vchart.yinyuetai.com/vchart/trends?' areas = ['ML','HT','US','KR','JP'] # 和后面的areaDict相对应 pages = [str(i) for i in range(1,4)] urls = [] for area in areas: for page in pages: urlEnd = 'area=' + area + '&page=' + page url = urlBase + urlEnd urls.append(url) getMvsList(area, urls) # return urls # 获取页面的Text数据 def getHTMLText(url): try: # r = requests.get(url, headers=header, timeout=30, proxies=proxy) r = requests.get(url,timeout=30) r.raise_for_status() r.encoding = r.apparent_encoding return r.text except: return "" # 获取页面上的专辑的数据 def getMvsList(area, urls): url = 'http://vchart.yinyuetai.com/vchart/trends?area=ML&page=1'; html = getHTMLText(url) items = [] try: soup = BeautifulSoup(html, 'html.parser') tags = soup.find_all('li', attrs={'name':'dmvLi'}) for tag in tags: item = Item() item.topNum = tag.find('div', attrs={'class':'top_num'}).get_text() if tag.find('h3', attrs={'class':'desc_score'}): item.score = tag.find('h3', attrs={'class':'desc_score'}).get_text() else: item.score = tag.find('h3', attrs={'class':'asc_score'}).get_text() item.mvName = tag.find('img').get('alt') item.singer = tag.find('a', attrs={'class':'special'}).get_text() pst = re.compile(r'\d{4}-\d{2}-\d{2}') item.releaseTime = pst.findall(tag.find('p', attrs={'class':'c9'}).get_text())[0] items.append(item) except Exception as e: raise e handleMvsData(area, items) def handleMvsData(area, items): areasDic = {'ML':'Mainland','HT':'Hongkong&Taiwan','US':'Americ','KR':'Korea','JP':'Japan'} fileName = "/Users/miraclewong/github/MoocStudy/python_web_scrap/YinYueTaiMvsList.txt" nowTime = time.strftime('%Y-%m-%d %H:%M:%S', time.localtime()) tplt = "{:8}\t{:10}\t{:20}\t{:20}\t{:16}\r\n" with open(fileName, 'a') as f: f.write('%s -------%s\r\n' %(areasDic.get(area), nowTime)) f.write(tplt.format("排名","得分","发布时间","歌手","专辑名称")) for item in items: f.write('%s \t %s \t %s \t %s \t\t %s \r\n' %(item.topNum, item.score, item.releaseTime, item.singer, item.mvName)) f.write('\r\n'*4) def main(): urls = getURL() # items = getMvsList(urls) if __name__ == '__main__': main()
""" This is essentially an interface for other converter classes, these methods MUST be present! """ class BaseConverter: def get_file(self): raise NotImplementedError() def get_filename(self): raise NotImplementedError() def is_inline(self): raise NotImplementedError() def get_content_id(self): raise NotImplementedError()
#! /usr/bin/env python import sourmash import pickle import argparse from sourmash.search import gather_databases from sourmash.lca import lca_utils from sourmash.lca.lca_utils import LCA_Database def main(): p = argparse.ArgumentParser() p.add_argument("node_mh_pickle") p.add_argument("lca_db") args = p.parse_args() node_mhs = pickle.load(open(args.node_mh_pickle, "rb")) lca_obj = LCA_Database() lca_obj.load(args.lca_db) databases = ((lca_obj, args.lca_db, "LCA"),) d = {} n_pure95 = 0 total = 0 for k, v in node_mhs.items(): ss = sourmash.SourmashSignature(v) results = [x[0] for x in gather_databases(ss, databases, 0, True)] sum_f_uniq = sum([result.f_unique_to_query for result in results]) keep_results = [] for result in results: if result.f_unique_to_query < 0.10: break keep_results.append(result) if not keep_results: print("** no match for {}".format(k)) continue idents = [result.name.split()[0].split(".")[0] for result in keep_results] idxlist = [lca_obj.ident_to_idx[ident] for ident in idents] lidlist = [lca_obj.idx_to_lid[idx] for idx in idxlist] lineages = [lca_obj.lid_to_lineage[lid] for lid in lidlist] tree = lca_utils.build_tree(lineages) lca, reason = lca_utils.find_lca(tree) level = "*none*" if lca: level = lca[-1].rank lineage = ";".join(lca_utils.zip_lineage(lca, truncate_empty=True)) this_f_uniq = sum([result.f_unique_to_query for result in keep_results]) print( "node {} matches {} @ {:.1f}".format( k, level, this_f_uniq / sum_f_uniq * 100 ) ) if level in ("strain", "genus", "species") and this_f_uniq / sum_f_uniq >= 0.95: n_pure95 += 1 total += 1 print("XXX", n_pure95, total) if __name__ == "__main__": main()
############################################################################### # Copyright 2020 Amazon.com, Inc. or its affiliates. All Rights Reserved. # # # # Licensed under the Apache License, Version 2.0 (the "License"). # # You may not use this file except in compliance with the License. # A copy of the License is located at # # # # http://www.apache.org/licenses/LICENSE-2.0 # # # # or in the "license" file accompanying this file. This file is distributed # # on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, express # # or implied. See the License for the specific language governing permissions# # and limitations under the License. # ############################################################################### import gzip, re import pandas as pd import csv import sys from awsglue.utils import getResolvedOptions import boto3 s3 = boto3.client('s3') s3_resource = boto3.resource('s3') args = getResolvedOptions(sys.argv, ['input_bucket', 'clinvar_input_key', 'clinvar_annotated_input_key', 'output_bucket', 'output_key']) def download_to_local(filename): new_filename = filename.split('/')[-1] s3_resource.meta.client.download_file(args['input_bucket'], filename, '/tmp/' + new_filename) return new_filename def list_to_dict(l): """Convert list to dict.""" return {k: v for k, v in (x.split("=") for x in l)} fieldnames = [ "CHROM", "POS", "REF", "ALT", "AF_ESP", "AF_EXAC", "AF_TGP", "CLNDISDB", "CLNDISDBINCL", "CLNDN", "CLNDNINCL", "CLNHGVS", "CLNSIGINCL", "CLNVC", "CLNVI", "MC", "ORIGIN", "SSR", "CLASS", "Allele", "Consequence", "IMPACT", "SYMBOL", "Feature_type", "Feature", "BIOTYPE", "EXON", "INTRON", "cDNA_position", "CDS_position", "Protein_position", "Amino_acids", "Codons", "DISTANCE", "STRAND", "BAM_EDIT", "SIFT", "PolyPhen", "MOTIF_NAME", "MOTIF_POS", "HIGH_INF_POS", "MOTIF_SCORE_CHANGE", "LoFtool", "CADD_PHRED", "CADD_RAW", "BLOSUM62", ] obj = s3.get_object(Bucket=args['input_bucket'], Key=args['clinvar_input_key']) cv_columns = {} with gzip.GzipFile(fileobj=obj['Body'], mode='rb') as f: for metaline in f: if metaline.startswith(b'##INFO'): colname = re.search(b'ID=(\w+),', metaline.strip(b'#\n')) coldesc = re.search(b'.*Description=(.*)>', metaline.strip(b'#\n')) cv_columns[colname.group(1)] = coldesc.group(1).strip(b'"') # read clinvar vcf obj = s3.get_object(Bucket=args['input_bucket'], Key=args['clinvar_input_key']) with gzip.GzipFile(fileobj=obj['Body'], mode='rb') as f: cv_df = pd.read_csv(f, sep='\t', comment='#', header=None, usecols=[0, 1, 2, 3, 4, 7], dtype={0: object}) # convert dictionaries to columns cv_df = pd.concat( [ cv_df.drop([7], axis=1), cv_df[7].str.split(";").apply(list_to_dict).apply(pd.Series), ], axis=1, ) # rename columns cv_df.rename(columns={0: "CHROM", 1: "POS", 2: "ID", 3: "REF", 4: "ALT"}, inplace=True) # drop columns we know we won't need cv_df = cv_df.drop(columns=["CHROM", "POS", "REF", "ALT"]) # assign classes cv_df["CLASS"] = 0 cv_df.loc[cv_df["CLNSIGCONF"].notnull(), "CLASS"] = 1 # convert NaN to 0 where allele frequencies are null cv_df[["AF_ESP", "AF_EXAC", "AF_TGP"]] = cv_df[["AF_ESP", "AF_EXAC", "AF_TGP"]].fillna( 0 ) # select variants that have beeen submitted by multiple organizations. cv_df = cv_df.loc[ cv_df["CLNREVSTAT"].isin( [ "criteria_provided,_multiple_submitters,_no_conflicts", "criteria_provided,_conflicting_interpretations", ] ) ] # Reduce the size of the dataset below cv_df.drop(columns=["ALLELEID", "RS", "DBVARID"], inplace=True) # drop columns that would reveal class cv_df.drop(columns=["CLNSIG", "CLNSIGCONF", "CLNREVSTAT"], inplace=True) # drop this redundant columns cv_df.drop(columns=["CLNVCSO", "GENEINFO"], inplace=True) # dictionary to map ID to clinvar annotations clinvar_annotations = cv_df.set_index("ID")[ [col for col in cv_df.columns if col in fieldnames] ].to_dict(orient="index") # open the output file outfile = "/tmp/clinvar_conflicting.csv" with open(outfile, "w") as fout: dw = csv.DictWriter( fout, delimiter=",", fieldnames=fieldnames, extrasaction="ignore" ) dw.writeheader() # read the VEP-annotated vcf file line-by-line filename = download_to_local(args['clinvar_annotated_input_key']) filename = "/tmp/" + filename with gzip.GzipFile(filename, mode='rb') as f: for line in f: line = line.decode("utf-8") if line.startswith("##INFO=<ID=CSQ"): m = re.search(r'.*Format: (.*)">', line) cols = m.group(1).split("|") continue if line.startswith("#"): continue record = line.split("\t") ( chromosome, position, clinvar_id, reference_base, alternate_base, qual, filter_, info, ) = record info_field = info.strip("\n").split(";") # to lookup in clivnar_annotaitons clinvar_id = int(clinvar_id) # only keep the variants that have been evaluated by multiple submitters if clinvar_id in clinvar_annotations: # initialize a dictionary to hold all the VEP annotation data annotation_data = {column: None for column in cols} annotation_data.update(clinvar_annotations[clinvar_id]) # fields directly from the vcf annotation_data["CHROM"] = str(chromosome) annotation_data["POS"] = position annotation_data["REF"] = reference_base annotation_data["ALT"] = alternate_base for annotations in info_field: column, value = annotations.split("=") if column == "CSQ": for csq_column, csq_value in zip(cols, value.split("|")): annotation_data[csq_column] = csq_value continue annotation_data[column] = value dw.writerow(annotation_data) s3_resource.meta.client.upload_file(outfile, args['output_bucket'], args['output_key'])
# -*- coding: utf-8 -*- from permission import Permission from app import db class Role(db.Model): __tablename__ = 'roles' id = db.Column(db.Integer, primary_key=True) name = db.Column(db.String, nullable=True, unique=True) default = db.Column(db.Boolean, default=False) permissions = db.Column(db.Integer) user = db.relationship('User', backref='itsrole') @staticmethod def insert_roles(): roles = { 'User': (Permission.FOLLOW | Permission.COMMENT | Permission.WRITE_ARTICLES, True), 'Moderare': (Permission.FOLLOW | Permission.COMMENT | Permission.WRITE_ARTICLES | Permission.MODERATE_COMMENTS, False), 'Administrator': (Permission.ADMINISTRATOR, False) } for r in roles: role = Role.query.filter_by(name=r).first() if role is None: role = Role(name=r) role.permissions = roles[r][0] role.default = roles[r][1] db.session.add(role) db.session.commit()
""" :attr:`~django.db.models.Field.help_text` string constants for the various fields. """ SERIES_UID = "Unique identifier of the series" SERIES_DATE = "Date the series started" SERIES_TIME = "Time the series started" SERIES_DESCRIPTION = "Description of the series" PIXEL_SPACING = "Physical distance in the patient between the center of each pixel, specified by a numeric pair: adjacent row spacing (delimiter) adjacent column spacing in mm" SERIES_NUMBER = "A number that identifies this series within a given session" INVERSION_TIME = "Time in milliseconds after the middle of inverting RF pulse to middle of excitation pulse to detect the amount of longitudinal magnetization" ECHO_TIME = "Time in ms between the middle of the excitation pulse and the peak of the echo produced" REPETITION_TIME = "The period of time in milliseconds between the beginning of a pulse sequence and the beginning of the succeeding pulse sequence." SCANNING_SEQUENCE = "Description of the type of data taken" SEQUENCE_VARIANT = "Variant of the scanning sequence" FLIP_ANGLE = "Steady state angle in degrees to which the magnetic vector is flipped from the magnetic vector of the primary field." MODALITY = "Type of equipment that originally acquired the data used to create the images in this series" MANUFACTURER = ( "Manufacturer of the equipment that produced the composite instances" ) MANUFACTURER_MODEL_NAME = "Manufacturer's model name of the equipment that produced the composite instances" MAGNETIC_FIELD_STRENGTH = "Nominal field strength of MR magnet, in Tesla" DEVICE_SERIAL_NUMBER = "Manufacturer's serial number of the equipment that produced the Composite Instances" BODY_PART_EXAMINED = "Text description of the part of the body examined" PATIENT_POSITION = "Patient position descriptor relative to the equipment" INSTITUTE_NAME = "Institution where the equipment that produced the Composite Instances is located" PROTOCOL_NAME = "User-defined description of the conditions under which the series was performed" MR_ACQUISITION_TYPE = "Identification of data encoding scheme" SLICE_THICKNESS = "Nominal slice thickness, in millimeters." OPERATORS_NAME = "Name(s) of the operator(s) supporting the Series." ECHO_TRAIN_LENGTH = ( "Number of lines in k-space acquired per excitation per image." ) PULSE_SEQUENCE_NAME = "Name of the pulse sequence for annotation purposes. Potentially vendor-specific name." SEQUENCE_NAME = "User defined name for the combination of Scanning Sequence and Sequence Variant." # flake8: noqa: E501
from knx_stack.decode.usb_hid.report_body import usb_protocol_header
#!/usr/bin/env python # -*- coding: utf-8 -*- # # Generated Thu Dec 13 17:56:14 2018 by generateDS.py version 2.29.5. # Python 3.6.5 (default, May 19 2018, 11:27:13) [GCC 4.2.1 Compatible Apple LLVM 9.0.0 (clang-900.0.39.2)] # # Command line options: # ('-o', '../python/eVSCertifyRequest.xsd.py') # # Command line arguments: # eVSCertifyRequest.xsd # # Command line: # /Users/danielkobina/Documents/Open/bin/generateDS -o "../python/eVSCertifyRequest.xsd.py" eVSCertifyRequest.xsd # # Current working directory (os.getcwd()): # schemas # import sys import re as re_ import base64 import datetime as datetime_ import warnings as warnings_ try: from lxml import etree as etree_ except ImportError: from xml.etree import ElementTree as etree_ Validate_simpletypes_ = True if sys.version_info.major == 2: BaseStrType_ = basestring else: BaseStrType_ = str def parsexml_(infile, parser=None, **kwargs): if parser is None: # Use the lxml ElementTree compatible parser so that, e.g., # we ignore comments. try: parser = etree_.ETCompatXMLParser() except AttributeError: # fallback to xml.etree parser = etree_.XMLParser() doc = etree_.parse(infile, parser=parser, **kwargs) return doc def parsexmlstring_(instring, parser=None, **kwargs): if parser is None: # Use the lxml ElementTree compatible parser so that, e.g., # we ignore comments. try: parser = etree_.ETCompatXMLParser() except AttributeError: # fallback to xml.etree parser = etree_.XMLParser() element = etree_.fromstring(instring, parser=parser, **kwargs) return element # # Namespace prefix definition table (and other attributes, too) # # The module generatedsnamespaces, if it is importable, must contain # a dictionary named GeneratedsNamespaceDefs. This Python dictionary # should map element type names (strings) to XML schema namespace prefix # definitions. The export method for any class for which there is # a namespace prefix definition, will export that definition in the # XML representation of that element. See the export method of # any generated element type class for a example of the use of this # table. # A sample table is: # # # File: generatedsnamespaces.py # # GenerateDSNamespaceDefs = { # "ElementtypeA": "http://www.xxx.com/namespaceA", # "ElementtypeB": "http://www.xxx.com/namespaceB", # } # try: from generatedsnamespaces import GenerateDSNamespaceDefs as GenerateDSNamespaceDefs_ except ImportError: GenerateDSNamespaceDefs_ = {} # # The root super-class for element type classes # # Calls to the methods in these classes are generated by generateDS.py. # You can replace these methods by re-implementing the following class # in a module named generatedssuper.py. try: from generatedssuper import GeneratedsSuper except ImportError as exp: class GeneratedsSuper(object): tzoff_pattern = re_.compile(r'(\+|-)((0\d|1[0-3]):[0-5]\d|14:00)$') class _FixedOffsetTZ(datetime_.tzinfo): def __init__(self, offset, name): self.__offset = datetime_.timedelta(minutes=offset) self.__name = name def utcoffset(self, dt): return self.__offset def tzname(self, dt): return self.__name def dst(self, dt): return None def gds_format_string(self, input_data, input_name=''): return input_data def gds_validate_string(self, input_data, node=None, input_name=''): if not input_data: return '' else: return input_data def gds_format_base64(self, input_data, input_name=''): return base64.b64encode(input_data) def gds_validate_base64(self, input_data, node=None, input_name=''): return input_data def gds_format_integer(self, input_data, input_name=''): return '%d' % input_data def gds_validate_integer(self, input_data, node=None, input_name=''): return input_data def gds_format_integer_list(self, input_data, input_name=''): return '%s' % ' '.join(input_data) def gds_validate_integer_list( self, input_data, node=None, input_name=''): values = input_data.split() for value in values: try: int(value) except (TypeError, ValueError): raise_parse_error(node, 'Requires sequence of integers') return values def gds_format_float(self, input_data, input_name=''): return ('%.15f' % input_data).rstrip('0') def gds_validate_float(self, input_data, node=None, input_name=''): return input_data def gds_format_float_list(self, input_data, input_name=''): return '%s' % ' '.join(input_data) def gds_validate_float_list( self, input_data, node=None, input_name=''): values = input_data.split() for value in values: try: float(value) except (TypeError, ValueError): raise_parse_error(node, 'Requires sequence of floats') return values def gds_format_double(self, input_data, input_name=''): return '%e' % input_data def gds_validate_double(self, input_data, node=None, input_name=''): return input_data def gds_format_double_list(self, input_data, input_name=''): return '%s' % ' '.join(input_data) def gds_validate_double_list( self, input_data, node=None, input_name=''): values = input_data.split() for value in values: try: float(value) except (TypeError, ValueError): raise_parse_error(node, 'Requires sequence of doubles') return values def gds_format_boolean(self, input_data, input_name=''): return ('%s' % input_data).lower() def gds_validate_boolean(self, input_data, node=None, input_name=''): return input_data def gds_format_boolean_list(self, input_data, input_name=''): return '%s' % ' '.join(input_data) def gds_validate_boolean_list( self, input_data, node=None, input_name=''): values = input_data.split() for value in values: if value not in ('true', '1', 'false', '0', ): raise_parse_error( node, 'Requires sequence of booleans ' '("true", "1", "false", "0")') return values def gds_validate_datetime(self, input_data, node=None, input_name=''): return input_data def gds_format_datetime(self, input_data, input_name=''): if input_data.microsecond == 0: _svalue = '%04d-%02d-%02dT%02d:%02d:%02d' % ( input_data.year, input_data.month, input_data.day, input_data.hour, input_data.minute, input_data.second, ) else: _svalue = '%04d-%02d-%02dT%02d:%02d:%02d.%s' % ( input_data.year, input_data.month, input_data.day, input_data.hour, input_data.minute, input_data.second, ('%f' % (float(input_data.microsecond) / 1000000))[2:], ) if input_data.tzinfo is not None: tzoff = input_data.tzinfo.utcoffset(input_data) if tzoff is not None: total_seconds = tzoff.seconds + (86400 * tzoff.days) if total_seconds == 0: _svalue += 'Z' else: if total_seconds < 0: _svalue += '-' total_seconds *= -1 else: _svalue += '+' hours = total_seconds // 3600 minutes = (total_seconds - (hours * 3600)) // 60 _svalue += '{0:02d}:{1:02d}'.format(hours, minutes) return _svalue @classmethod def gds_parse_datetime(cls, input_data): tz = None if input_data[-1] == 'Z': tz = GeneratedsSuper._FixedOffsetTZ(0, 'UTC') input_data = input_data[:-1] else: results = GeneratedsSuper.tzoff_pattern.search(input_data) if results is not None: tzoff_parts = results.group(2).split(':') tzoff = int(tzoff_parts[0]) * 60 + int(tzoff_parts[1]) if results.group(1) == '-': tzoff *= -1 tz = GeneratedsSuper._FixedOffsetTZ( tzoff, results.group(0)) input_data = input_data[:-6] time_parts = input_data.split('.') if len(time_parts) > 1: micro_seconds = int(float('0.' + time_parts[1]) * 1000000) input_data = '%s.%s' % (time_parts[0], micro_seconds, ) dt = datetime_.datetime.strptime( input_data, '%Y-%m-%dT%H:%M:%S.%f') else: dt = datetime_.datetime.strptime( input_data, '%Y-%m-%dT%H:%M:%S') dt = dt.replace(tzinfo=tz) return dt def gds_validate_date(self, input_data, node=None, input_name=''): return input_data def gds_format_date(self, input_data, input_name=''): _svalue = '%04d-%02d-%02d' % ( input_data.year, input_data.month, input_data.day, ) try: if input_data.tzinfo is not None: tzoff = input_data.tzinfo.utcoffset(input_data) if tzoff is not None: total_seconds = tzoff.seconds + (86400 * tzoff.days) if total_seconds == 0: _svalue += 'Z' else: if total_seconds < 0: _svalue += '-' total_seconds *= -1 else: _svalue += '+' hours = total_seconds // 3600 minutes = (total_seconds - (hours * 3600)) // 60 _svalue += '{0:02d}:{1:02d}'.format( hours, minutes) except AttributeError: pass return _svalue @classmethod def gds_parse_date(cls, input_data): tz = None if input_data[-1] == 'Z': tz = GeneratedsSuper._FixedOffsetTZ(0, 'UTC') input_data = input_data[:-1] else: results = GeneratedsSuper.tzoff_pattern.search(input_data) if results is not None: tzoff_parts = results.group(2).split(':') tzoff = int(tzoff_parts[0]) * 60 + int(tzoff_parts[1]) if results.group(1) == '-': tzoff *= -1 tz = GeneratedsSuper._FixedOffsetTZ( tzoff, results.group(0)) input_data = input_data[:-6] dt = datetime_.datetime.strptime(input_data, '%Y-%m-%d') dt = dt.replace(tzinfo=tz) return dt.date() def gds_validate_time(self, input_data, node=None, input_name=''): return input_data def gds_format_time(self, input_data, input_name=''): if input_data.microsecond == 0: _svalue = '%02d:%02d:%02d' % ( input_data.hour, input_data.minute, input_data.second, ) else: _svalue = '%02d:%02d:%02d.%s' % ( input_data.hour, input_data.minute, input_data.second, ('%f' % (float(input_data.microsecond) / 1000000))[2:], ) if input_data.tzinfo is not None: tzoff = input_data.tzinfo.utcoffset(input_data) if tzoff is not None: total_seconds = tzoff.seconds + (86400 * tzoff.days) if total_seconds == 0: _svalue += 'Z' else: if total_seconds < 0: _svalue += '-' total_seconds *= -1 else: _svalue += '+' hours = total_seconds // 3600 minutes = (total_seconds - (hours * 3600)) // 60 _svalue += '{0:02d}:{1:02d}'.format(hours, minutes) return _svalue def gds_validate_simple_patterns(self, patterns, target): # pat is a list of lists of strings/patterns. We should: # - AND the outer elements # - OR the inner elements found1 = True for patterns1 in patterns: found2 = False for patterns2 in patterns1: if re_.search(patterns2, target) is not None: found2 = True break if not found2: found1 = False break return found1 @classmethod def gds_parse_time(cls, input_data): tz = None if input_data[-1] == 'Z': tz = GeneratedsSuper._FixedOffsetTZ(0, 'UTC') input_data = input_data[:-1] else: results = GeneratedsSuper.tzoff_pattern.search(input_data) if results is not None: tzoff_parts = results.group(2).split(':') tzoff = int(tzoff_parts[0]) * 60 + int(tzoff_parts[1]) if results.group(1) == '-': tzoff *= -1 tz = GeneratedsSuper._FixedOffsetTZ( tzoff, results.group(0)) input_data = input_data[:-6] if len(input_data.split('.')) > 1: dt = datetime_.datetime.strptime(input_data, '%H:%M:%S.%f') else: dt = datetime_.datetime.strptime(input_data, '%H:%M:%S') dt = dt.replace(tzinfo=tz) return dt.time() def gds_str_lower(self, instring): return instring.lower() def get_path_(self, node): path_list = [] self.get_path_list_(node, path_list) path_list.reverse() path = '/'.join(path_list) return path Tag_strip_pattern_ = re_.compile(r'\{.*\}') def get_path_list_(self, node, path_list): if node is None: return tag = GeneratedsSuper.Tag_strip_pattern_.sub('', node.tag) if tag: path_list.append(tag) self.get_path_list_(node.getparent(), path_list) def get_class_obj_(self, node, default_class=None): class_obj1 = default_class if 'xsi' in node.nsmap: classname = node.get('{%s}type' % node.nsmap['xsi']) if classname is not None: names = classname.split(':') if len(names) == 2: classname = names[1] class_obj2 = globals().get(classname) if class_obj2 is not None: class_obj1 = class_obj2 return class_obj1 def gds_build_any(self, node, type_name=None): return None @classmethod def gds_reverse_node_mapping(cls, mapping): return dict(((v, k) for k, v in mapping.iteritems())) @staticmethod def gds_encode(instring): if sys.version_info.major == 2: return instring.encode(ExternalEncoding) else: return instring @staticmethod def convert_unicode(instring): if isinstance(instring, str): result = quote_xml(instring) elif sys.version_info.major == 2 and isinstance(instring, unicode): result = quote_xml(instring).encode('utf8') else: result = GeneratedsSuper.gds_encode(str(instring)) return result def __eq__(self, other): if type(self) != type(other): return False return self.__dict__ == other.__dict__ def __ne__(self, other): return not self.__eq__(other) def getSubclassFromModule_(module, class_): '''Get the subclass of a class from a specific module.''' name = class_.__name__ + 'Sub' if hasattr(module, name): return getattr(module, name) else: return None # # If you have installed IPython you can uncomment and use the following. # IPython is available from http://ipython.scipy.org/. # ## from IPython.Shell import IPShellEmbed ## args = '' ## ipshell = IPShellEmbed(args, ## banner = 'Dropping into IPython', ## exit_msg = 'Leaving Interpreter, back to program.') # Then use the following line where and when you want to drop into the # IPython shell: # ipshell('<some message> -- Entering ipshell.\nHit Ctrl-D to exit') # # Globals # ExternalEncoding = 'utf-8' Tag_pattern_ = re_.compile(r'({.*})?(.*)') String_cleanup_pat_ = re_.compile(r"[\n\r\s]+") Namespace_extract_pat_ = re_.compile(r'{(.*)}(.*)') CDATA_pattern_ = re_.compile(r"<!\[CDATA\[.*?\]\]>", re_.DOTALL) # Change this to redirect the generated superclass module to use a # specific subclass module. CurrentSubclassModule_ = None # # Support/utility functions. # def showIndent(outfile, level, pretty_print=True): if pretty_print: for idx in range(level): outfile.write(' ') def quote_xml(inStr): "Escape markup chars, but do not modify CDATA sections." if not inStr: return '' s1 = (isinstance(inStr, BaseStrType_) and inStr or '%s' % inStr) s2 = '' pos = 0 matchobjects = CDATA_pattern_.finditer(s1) for mo in matchobjects: s3 = s1[pos:mo.start()] s2 += quote_xml_aux(s3) s2 += s1[mo.start():mo.end()] pos = mo.end() s3 = s1[pos:] s2 += quote_xml_aux(s3) return s2 def quote_xml_aux(inStr): s1 = inStr.replace('&', '&amp;') s1 = s1.replace('<', '&lt;') s1 = s1.replace('>', '&gt;') return s1 def quote_attrib(inStr): s1 = (isinstance(inStr, BaseStrType_) and inStr or '%s' % inStr) s1 = s1.replace('&', '&amp;') s1 = s1.replace('<', '&lt;') s1 = s1.replace('>', '&gt;') if '"' in s1: if "'" in s1: s1 = '"%s"' % s1.replace('"', "&quot;") else: s1 = "'%s'" % s1 else: s1 = '"%s"' % s1 return s1 def quote_python(inStr): s1 = inStr if s1.find("'") == -1: if s1.find('\n') == -1: return "'%s'" % s1 else: return "'''%s'''" % s1 else: if s1.find('"') != -1: s1 = s1.replace('"', '\\"') if s1.find('\n') == -1: return '"%s"' % s1 else: return '"""%s"""' % s1 def get_all_text_(node): if node.text is not None: text = node.text else: text = '' for child in node: if child.tail is not None: text += child.tail return text def find_attr_value_(attr_name, node): attrs = node.attrib attr_parts = attr_name.split(':') value = None if len(attr_parts) == 1: value = attrs.get(attr_name) elif len(attr_parts) == 2: prefix, name = attr_parts namespace = node.nsmap.get(prefix) if namespace is not None: value = attrs.get('{%s}%s' % (namespace, name, )) return value class GDSParseError(Exception): pass def raise_parse_error(node, msg): msg = '%s (element %s/line %d)' % (msg, node.tag, node.sourceline, ) raise GDSParseError(msg) class MixedContainer: # Constants for category: CategoryNone = 0 CategoryText = 1 CategorySimple = 2 CategoryComplex = 3 # Constants for content_type: TypeNone = 0 TypeText = 1 TypeString = 2 TypeInteger = 3 TypeFloat = 4 TypeDecimal = 5 TypeDouble = 6 TypeBoolean = 7 TypeBase64 = 8 def __init__(self, category, content_type, name, value): self.category = category self.content_type = content_type self.name = name self.value = value def getCategory(self): return self.category def getContenttype(self, content_type): return self.content_type def getValue(self): return self.value def getName(self): return self.name def export(self, outfile, level, name, namespace, pretty_print=True): if self.category == MixedContainer.CategoryText: # Prevent exporting empty content as empty lines. if self.value.strip(): outfile.write(self.value) elif self.category == MixedContainer.CategorySimple: self.exportSimple(outfile, level, name) else: # category == MixedContainer.CategoryComplex self.value.export( outfile, level, namespace, name, pretty_print=pretty_print) def exportSimple(self, outfile, level, name): if self.content_type == MixedContainer.TypeString: outfile.write('<%s>%s</%s>' % ( self.name, self.value, self.name)) elif self.content_type == MixedContainer.TypeInteger or \ self.content_type == MixedContainer.TypeBoolean: outfile.write('<%s>%d</%s>' % ( self.name, self.value, self.name)) elif self.content_type == MixedContainer.TypeFloat or \ self.content_type == MixedContainer.TypeDecimal: outfile.write('<%s>%f</%s>' % ( self.name, self.value, self.name)) elif self.content_type == MixedContainer.TypeDouble: outfile.write('<%s>%g</%s>' % ( self.name, self.value, self.name)) elif self.content_type == MixedContainer.TypeBase64: outfile.write('<%s>%s</%s>' % ( self.name, base64.b64encode(self.value), self.name)) def to_etree(self, element): if self.category == MixedContainer.CategoryText: # Prevent exporting empty content as empty lines. if self.value.strip(): if len(element) > 0: if element[-1].tail is None: element[-1].tail = self.value else: element[-1].tail += self.value else: if element.text is None: element.text = self.value else: element.text += self.value elif self.category == MixedContainer.CategorySimple: subelement = etree_.SubElement( element, '%s' % self.name) subelement.text = self.to_etree_simple() else: # category == MixedContainer.CategoryComplex self.value.to_etree(element) def to_etree_simple(self): if self.content_type == MixedContainer.TypeString: text = self.value elif (self.content_type == MixedContainer.TypeInteger or self.content_type == MixedContainer.TypeBoolean): text = '%d' % self.value elif (self.content_type == MixedContainer.TypeFloat or self.content_type == MixedContainer.TypeDecimal): text = '%f' % self.value elif self.content_type == MixedContainer.TypeDouble: text = '%g' % self.value elif self.content_type == MixedContainer.TypeBase64: text = '%s' % base64.b64encode(self.value) return text def exportLiteral(self, outfile, level, name): if self.category == MixedContainer.CategoryText: showIndent(outfile, level) outfile.write( 'model_.MixedContainer(%d, %d, "%s", "%s"),\n' % ( self.category, self.content_type, self.name, self.value)) elif self.category == MixedContainer.CategorySimple: showIndent(outfile, level) outfile.write( 'model_.MixedContainer(%d, %d, "%s", "%s"),\n' % ( self.category, self.content_type, self.name, self.value)) else: # category == MixedContainer.CategoryComplex showIndent(outfile, level) outfile.write( 'model_.MixedContainer(%d, %d, "%s",\n' % ( self.category, self.content_type, self.name,)) self.value.exportLiteral(outfile, level + 1) showIndent(outfile, level) outfile.write(')\n') class MemberSpec_(object): def __init__(self, name='', data_type='', container=0, optional=0, child_attrs=None, choice=None): self.name = name self.data_type = data_type self.container = container self.child_attrs = child_attrs self.choice = choice self.optional = optional def set_name(self, name): self.name = name def get_name(self): return self.name def set_data_type(self, data_type): self.data_type = data_type def get_data_type_chain(self): return self.data_type def get_data_type(self): if isinstance(self.data_type, list): if len(self.data_type) > 0: return self.data_type[-1] else: return 'xs:string' else: return self.data_type def set_container(self, container): self.container = container def get_container(self): return self.container def set_child_attrs(self, child_attrs): self.child_attrs = child_attrs def get_child_attrs(self): return self.child_attrs def set_choice(self, choice): self.choice = choice def get_choice(self): return self.choice def set_optional(self, optional): self.optional = optional def get_optional(self): return self.optional def _cast(typ, value): if typ is None or value is None: return value return typ(value) # # Data representation classes. # class eVSCertifyRequest(GeneratedsSuper): subclass = None superclass = None def __init__(self, USERID=None, Option=None, Revision=None, ImageParameters=None, FromName=None, FromFirm=None, FromAddress1=None, FromAddress2=None, FromCity=None, FromState=None, FromZip5=None, FromZip4=None, FromPhone=None, POZipCode=None, AllowNonCleansedOriginAddr=None, ToName=None, ToFirm=None, ToAddress1=None, ToAddress2=None, ToCity=None, ToState=None, ToZip5=None, ToZip4=None, ToPhone=None, POBox=None, AllowNonCleansedDestAddr=None, WeightInOunces=None, ServiceType=None, Container=None, Width=None, Length=None, Height=None, Machinable=None, ProcessingCategory=None, PriceOptions=None, InsuredAmount=None, AddressServiceRequested=None, ExpressMailOptions=None, ShipDate=None, CustomerRefNo=None, ExtraServices=None, HoldForPickup=None, OpenDistribute=None, PermitNumber=None, PermitZIPCode=None, PermitHolderName=None, CRID=None, SenderName=None, SenderEMail=None, RecipientName=None, RecipientEMail=None, ReceiptOption=None, ImageType=None, HoldForManifest=None, NineDigitRoutingZip=None, ShipInfo=None, CarrierRelease=None, ReturnCommitments=None, PrintCustomerRefNo=None, Content=None, ShippingContents=None, CustomsContentType=None, ContentComments=None, RestrictionType=None, RestrictionComments=None, AESITN=None, ImportersReference=None, ImportersContact=None, ExportersReference=None, ExportersContact=None, InvoiceNumber=None, LicenseNumber=None, CertificateNumber=None): self.original_tagname_ = None self.USERID = _cast(None, USERID) self.Option = Option self.Revision = Revision self.ImageParameters = ImageParameters self.FromName = FromName self.FromFirm = FromFirm self.FromAddress1 = FromAddress1 self.FromAddress2 = FromAddress2 self.FromCity = FromCity self.FromState = FromState self.FromZip5 = FromZip5 self.FromZip4 = FromZip4 self.FromPhone = FromPhone self.POZipCode = POZipCode self.AllowNonCleansedOriginAddr = AllowNonCleansedOriginAddr self.ToName = ToName self.ToFirm = ToFirm self.ToAddress1 = ToAddress1 self.ToAddress2 = ToAddress2 self.ToCity = ToCity self.ToState = ToState self.ToZip5 = ToZip5 self.ToZip4 = ToZip4 self.ToPhone = ToPhone self.POBox = POBox self.AllowNonCleansedDestAddr = AllowNonCleansedDestAddr self.WeightInOunces = WeightInOunces self.ServiceType = ServiceType self.Container = Container self.Width = Width self.Length = Length self.Height = Height self.Machinable = Machinable self.ProcessingCategory = ProcessingCategory self.PriceOptions = PriceOptions self.InsuredAmount = InsuredAmount self.AddressServiceRequested = AddressServiceRequested self.ExpressMailOptions = ExpressMailOptions self.ShipDate = ShipDate self.CustomerRefNo = CustomerRefNo self.ExtraServices = ExtraServices self.HoldForPickup = HoldForPickup self.OpenDistribute = OpenDistribute self.PermitNumber = PermitNumber self.PermitZIPCode = PermitZIPCode self.PermitHolderName = PermitHolderName self.CRID = CRID self.SenderName = SenderName self.SenderEMail = SenderEMail self.RecipientName = RecipientName self.RecipientEMail = RecipientEMail self.ReceiptOption = ReceiptOption self.ImageType = ImageType self.HoldForManifest = HoldForManifest self.NineDigitRoutingZip = NineDigitRoutingZip self.ShipInfo = ShipInfo self.CarrierRelease = CarrierRelease self.ReturnCommitments = ReturnCommitments self.PrintCustomerRefNo = PrintCustomerRefNo self.Content = Content self.ShippingContents = ShippingContents self.CustomsContentType = CustomsContentType self.ContentComments = ContentComments self.RestrictionType = RestrictionType self.RestrictionComments = RestrictionComments self.AESITN = AESITN self.ImportersReference = ImportersReference self.ImportersContact = ImportersContact self.ExportersReference = ExportersReference self.ExportersContact = ExportersContact self.InvoiceNumber = InvoiceNumber self.LicenseNumber = LicenseNumber self.CertificateNumber = CertificateNumber def factory(*args_, **kwargs_): if CurrentSubclassModule_ is not None: subclass = getSubclassFromModule_( CurrentSubclassModule_, eVSCertifyRequest) if subclass is not None: return subclass(*args_, **kwargs_) if eVSCertifyRequest.subclass: return eVSCertifyRequest.subclass(*args_, **kwargs_) else: return eVSCertifyRequest(*args_, **kwargs_) factory = staticmethod(factory) def get_Option(self): return self.Option def set_Option(self, Option): self.Option = Option def get_Revision(self): return self.Revision def set_Revision(self, Revision): self.Revision = Revision def get_ImageParameters(self): return self.ImageParameters def set_ImageParameters(self, ImageParameters): self.ImageParameters = ImageParameters def get_FromName(self): return self.FromName def set_FromName(self, FromName): self.FromName = FromName def get_FromFirm(self): return self.FromFirm def set_FromFirm(self, FromFirm): self.FromFirm = FromFirm def get_FromAddress1(self): return self.FromAddress1 def set_FromAddress1(self, FromAddress1): self.FromAddress1 = FromAddress1 def get_FromAddress2(self): return self.FromAddress2 def set_FromAddress2(self, FromAddress2): self.FromAddress2 = FromAddress2 def get_FromCity(self): return self.FromCity def set_FromCity(self, FromCity): self.FromCity = FromCity def get_FromState(self): return self.FromState def set_FromState(self, FromState): self.FromState = FromState def get_FromZip5(self): return self.FromZip5 def set_FromZip5(self, FromZip5): self.FromZip5 = FromZip5 def get_FromZip4(self): return self.FromZip4 def set_FromZip4(self, FromZip4): self.FromZip4 = FromZip4 def get_FromPhone(self): return self.FromPhone def set_FromPhone(self, FromPhone): self.FromPhone = FromPhone def get_POZipCode(self): return self.POZipCode def set_POZipCode(self, POZipCode): self.POZipCode = POZipCode def get_AllowNonCleansedOriginAddr(self): return self.AllowNonCleansedOriginAddr def set_AllowNonCleansedOriginAddr(self, AllowNonCleansedOriginAddr): self.AllowNonCleansedOriginAddr = AllowNonCleansedOriginAddr def get_ToName(self): return self.ToName def set_ToName(self, ToName): self.ToName = ToName def get_ToFirm(self): return self.ToFirm def set_ToFirm(self, ToFirm): self.ToFirm = ToFirm def get_ToAddress1(self): return self.ToAddress1 def set_ToAddress1(self, ToAddress1): self.ToAddress1 = ToAddress1 def get_ToAddress2(self): return self.ToAddress2 def set_ToAddress2(self, ToAddress2): self.ToAddress2 = ToAddress2 def get_ToCity(self): return self.ToCity def set_ToCity(self, ToCity): self.ToCity = ToCity def get_ToState(self): return self.ToState def set_ToState(self, ToState): self.ToState = ToState def get_ToZip5(self): return self.ToZip5 def set_ToZip5(self, ToZip5): self.ToZip5 = ToZip5 def get_ToZip4(self): return self.ToZip4 def set_ToZip4(self, ToZip4): self.ToZip4 = ToZip4 def get_ToPhone(self): return self.ToPhone def set_ToPhone(self, ToPhone): self.ToPhone = ToPhone def get_POBox(self): return self.POBox def set_POBox(self, POBox): self.POBox = POBox def get_AllowNonCleansedDestAddr(self): return self.AllowNonCleansedDestAddr def set_AllowNonCleansedDestAddr(self, AllowNonCleansedDestAddr): self.AllowNonCleansedDestAddr = AllowNonCleansedDestAddr def get_WeightInOunces(self): return self.WeightInOunces def set_WeightInOunces(self, WeightInOunces): self.WeightInOunces = WeightInOunces def get_ServiceType(self): return self.ServiceType def set_ServiceType(self, ServiceType): self.ServiceType = ServiceType def get_Container(self): return self.Container def set_Container(self, Container): self.Container = Container def get_Width(self): return self.Width def set_Width(self, Width): self.Width = Width def get_Length(self): return self.Length def set_Length(self, Length): self.Length = Length def get_Height(self): return self.Height def set_Height(self, Height): self.Height = Height def get_Machinable(self): return self.Machinable def set_Machinable(self, Machinable): self.Machinable = Machinable def get_ProcessingCategory(self): return self.ProcessingCategory def set_ProcessingCategory(self, ProcessingCategory): self.ProcessingCategory = ProcessingCategory def get_PriceOptions(self): return self.PriceOptions def set_PriceOptions(self, PriceOptions): self.PriceOptions = PriceOptions def get_InsuredAmount(self): return self.InsuredAmount def set_InsuredAmount(self, InsuredAmount): self.InsuredAmount = InsuredAmount def get_AddressServiceRequested(self): return self.AddressServiceRequested def set_AddressServiceRequested(self, AddressServiceRequested): self.AddressServiceRequested = AddressServiceRequested def get_ExpressMailOptions(self): return self.ExpressMailOptions def set_ExpressMailOptions(self, ExpressMailOptions): self.ExpressMailOptions = ExpressMailOptions def get_ShipDate(self): return self.ShipDate def set_ShipDate(self, ShipDate): self.ShipDate = ShipDate def get_CustomerRefNo(self): return self.CustomerRefNo def set_CustomerRefNo(self, CustomerRefNo): self.CustomerRefNo = CustomerRefNo def get_ExtraServices(self): return self.ExtraServices def set_ExtraServices(self, ExtraServices): self.ExtraServices = ExtraServices def get_HoldForPickup(self): return self.HoldForPickup def set_HoldForPickup(self, HoldForPickup): self.HoldForPickup = HoldForPickup def get_OpenDistribute(self): return self.OpenDistribute def set_OpenDistribute(self, OpenDistribute): self.OpenDistribute = OpenDistribute def get_PermitNumber(self): return self.PermitNumber def set_PermitNumber(self, PermitNumber): self.PermitNumber = PermitNumber def get_PermitZIPCode(self): return self.PermitZIPCode def set_PermitZIPCode(self, PermitZIPCode): self.PermitZIPCode = PermitZIPCode def get_PermitHolderName(self): return self.PermitHolderName def set_PermitHolderName(self, PermitHolderName): self.PermitHolderName = PermitHolderName def get_CRID(self): return self.CRID def set_CRID(self, CRID): self.CRID = CRID def get_SenderName(self): return self.SenderName def set_SenderName(self, SenderName): self.SenderName = SenderName def get_SenderEMail(self): return self.SenderEMail def set_SenderEMail(self, SenderEMail): self.SenderEMail = SenderEMail def get_RecipientName(self): return self.RecipientName def set_RecipientName(self, RecipientName): self.RecipientName = RecipientName def get_RecipientEMail(self): return self.RecipientEMail def set_RecipientEMail(self, RecipientEMail): self.RecipientEMail = RecipientEMail def get_ReceiptOption(self): return self.ReceiptOption def set_ReceiptOption(self, ReceiptOption): self.ReceiptOption = ReceiptOption def get_ImageType(self): return self.ImageType def set_ImageType(self, ImageType): self.ImageType = ImageType def get_HoldForManifest(self): return self.HoldForManifest def set_HoldForManifest(self, HoldForManifest): self.HoldForManifest = HoldForManifest def get_NineDigitRoutingZip(self): return self.NineDigitRoutingZip def set_NineDigitRoutingZip(self, NineDigitRoutingZip): self.NineDigitRoutingZip = NineDigitRoutingZip def get_ShipInfo(self): return self.ShipInfo def set_ShipInfo(self, ShipInfo): self.ShipInfo = ShipInfo def get_CarrierRelease(self): return self.CarrierRelease def set_CarrierRelease(self, CarrierRelease): self.CarrierRelease = CarrierRelease def get_ReturnCommitments(self): return self.ReturnCommitments def set_ReturnCommitments(self, ReturnCommitments): self.ReturnCommitments = ReturnCommitments def get_PrintCustomerRefNo(self): return self.PrintCustomerRefNo def set_PrintCustomerRefNo(self, PrintCustomerRefNo): self.PrintCustomerRefNo = PrintCustomerRefNo def get_Content(self): return self.Content def set_Content(self, Content): self.Content = Content def get_ShippingContents(self): return self.ShippingContents def set_ShippingContents(self, ShippingContents): self.ShippingContents = ShippingContents def get_CustomsContentType(self): return self.CustomsContentType def set_CustomsContentType(self, CustomsContentType): self.CustomsContentType = CustomsContentType def get_ContentComments(self): return self.ContentComments def set_ContentComments(self, ContentComments): self.ContentComments = ContentComments def get_RestrictionType(self): return self.RestrictionType def set_RestrictionType(self, RestrictionType): self.RestrictionType = RestrictionType def get_RestrictionComments(self): return self.RestrictionComments def set_RestrictionComments(self, RestrictionComments): self.RestrictionComments = RestrictionComments def get_AESITN(self): return self.AESITN def set_AESITN(self, AESITN): self.AESITN = AESITN def get_ImportersReference(self): return self.ImportersReference def set_ImportersReference(self, ImportersReference): self.ImportersReference = ImportersReference def get_ImportersContact(self): return self.ImportersContact def set_ImportersContact(self, ImportersContact): self.ImportersContact = ImportersContact def get_ExportersReference(self): return self.ExportersReference def set_ExportersReference(self, ExportersReference): self.ExportersReference = ExportersReference def get_ExportersContact(self): return self.ExportersContact def set_ExportersContact(self, ExportersContact): self.ExportersContact = ExportersContact def get_InvoiceNumber(self): return self.InvoiceNumber def set_InvoiceNumber(self, InvoiceNumber): self.InvoiceNumber = InvoiceNumber def get_LicenseNumber(self): return self.LicenseNumber def set_LicenseNumber(self, LicenseNumber): self.LicenseNumber = LicenseNumber def get_CertificateNumber(self): return self.CertificateNumber def set_CertificateNumber(self, CertificateNumber): self.CertificateNumber = CertificateNumber def get_USERID(self): return self.USERID def set_USERID(self, USERID): self.USERID = USERID def hasContent_(self): if ( self.Option is not None or self.Revision is not None or self.ImageParameters is not None or self.FromName is not None or self.FromFirm is not None or self.FromAddress1 is not None or self.FromAddress2 is not None or self.FromCity is not None or self.FromState is not None or self.FromZip5 is not None or self.FromZip4 is not None or self.FromPhone is not None or self.POZipCode is not None or self.AllowNonCleansedOriginAddr is not None or self.ToName is not None or self.ToFirm is not None or self.ToAddress1 is not None or self.ToAddress2 is not None or self.ToCity is not None or self.ToState is not None or self.ToZip5 is not None or self.ToZip4 is not None or self.ToPhone is not None or self.POBox is not None or self.AllowNonCleansedDestAddr is not None or self.WeightInOunces is not None or self.ServiceType is not None or self.Container is not None or self.Width is not None or self.Length is not None or self.Height is not None or self.Machinable is not None or self.ProcessingCategory is not None or self.PriceOptions is not None or self.InsuredAmount is not None or self.AddressServiceRequested is not None or self.ExpressMailOptions is not None or self.ShipDate is not None or self.CustomerRefNo is not None or self.ExtraServices is not None or self.HoldForPickup is not None or self.OpenDistribute is not None or self.PermitNumber is not None or self.PermitZIPCode is not None or self.PermitHolderName is not None or self.CRID is not None or self.SenderName is not None or self.SenderEMail is not None or self.RecipientName is not None or self.RecipientEMail is not None or self.ReceiptOption is not None or self.ImageType is not None or self.HoldForManifest is not None or self.NineDigitRoutingZip is not None or self.ShipInfo is not None or self.CarrierRelease is not None or self.ReturnCommitments is not None or self.PrintCustomerRefNo is not None or self.Content is not None or self.ShippingContents is not None or self.CustomsContentType is not None or self.ContentComments is not None or self.RestrictionType is not None or self.RestrictionComments is not None or self.AESITN is not None or self.ImportersReference is not None or self.ImportersContact is not None or self.ExportersReference is not None or self.ExportersContact is not None or self.InvoiceNumber is not None or self.LicenseNumber is not None or self.CertificateNumber is not None ): return True else: return False def export(self, outfile, level, namespace_='', name_='eVSCertifyRequest', namespacedef_='', pretty_print=True): imported_ns_def_ = GenerateDSNamespaceDefs_.get('eVSCertifyRequest') if imported_ns_def_ is not None: namespacedef_ = imported_ns_def_ if pretty_print: eol_ = '\n' else: eol_ = '' if self.original_tagname_ is not None: name_ = self.original_tagname_ showIndent(outfile, level, pretty_print) outfile.write('<%s%s%s' % (namespace_, name_, namespacedef_ and ' ' + namespacedef_ or '', )) already_processed = set() self.exportAttributes(outfile, level, already_processed, namespace_, name_='eVSCertifyRequest') if self.hasContent_(): outfile.write('>%s' % (eol_, )) self.exportChildren(outfile, level + 1, namespace_='', name_='eVSCertifyRequest', pretty_print=pretty_print) showIndent(outfile, level, pretty_print) outfile.write('</%s%s>%s' % (namespace_, name_, eol_)) else: outfile.write('/>%s' % (eol_, )) def exportAttributes(self, outfile, level, already_processed, namespace_='', name_='eVSCertifyRequest'): if self.USERID is not None and 'USERID' not in already_processed: already_processed.add('USERID') outfile.write(' USERID=%s' % (self.gds_encode(self.gds_format_string(quote_attrib(self.USERID), input_name='USERID')), )) def exportChildren(self, outfile, level, namespace_='', name_='eVSCertifyRequest', fromsubclass_=False, pretty_print=True): if pretty_print: eol_ = '\n' else: eol_ = '' if self.Option is not None: showIndent(outfile, level, pretty_print) outfile.write('<Option>%s</Option>%s' % (self.gds_format_integer(self.Option, input_name='Option'), eol_)) if self.Revision is not None: showIndent(outfile, level, pretty_print) outfile.write('<Revision>%s</Revision>%s' % (self.gds_encode(self.gds_format_string(quote_xml(self.Revision), input_name='Revision')), eol_)) if self.ImageParameters is not None: self.ImageParameters.export(outfile, level, namespace_, name_='ImageParameters', pretty_print=pretty_print) if self.FromName is not None: showIndent(outfile, level, pretty_print) outfile.write('<FromName>%s</FromName>%s' % (self.gds_encode(self.gds_format_string(quote_xml(self.FromName), input_name='FromName')), eol_)) if self.FromFirm is not None: showIndent(outfile, level, pretty_print) outfile.write('<FromFirm>%s</FromFirm>%s' % (self.gds_encode(self.gds_format_string(quote_xml(self.FromFirm), input_name='FromFirm')), eol_)) if self.FromAddress1 is not None: showIndent(outfile, level, pretty_print) outfile.write('<FromAddress1>%s</FromAddress1>%s' % (self.gds_encode(self.gds_format_string(quote_xml(self.FromAddress1), input_name='FromAddress1')), eol_)) if self.FromAddress2 is not None: showIndent(outfile, level, pretty_print) outfile.write('<FromAddress2>%s</FromAddress2>%s' % (self.gds_encode(self.gds_format_string(quote_xml(self.FromAddress2), input_name='FromAddress2')), eol_)) if self.FromCity is not None: showIndent(outfile, level, pretty_print) outfile.write('<FromCity>%s</FromCity>%s' % (self.gds_encode(self.gds_format_string(quote_xml(self.FromCity), input_name='FromCity')), eol_)) if self.FromState is not None: showIndent(outfile, level, pretty_print) outfile.write('<FromState>%s</FromState>%s' % (self.gds_encode(self.gds_format_string(quote_xml(self.FromState), input_name='FromState')), eol_)) if self.FromZip5 is not None: showIndent(outfile, level, pretty_print) outfile.write('<FromZip5>%s</FromZip5>%s' % (self.gds_format_integer(self.FromZip5, input_name='FromZip5'), eol_)) if self.FromZip4 is not None: showIndent(outfile, level, pretty_print) outfile.write('<FromZip4>%s</FromZip4>%s' % (self.gds_format_integer(self.FromZip4, input_name='FromZip4'), eol_)) if self.FromPhone is not None: showIndent(outfile, level, pretty_print) outfile.write('<FromPhone>%s</FromPhone>%s' % (self.gds_format_integer(self.FromPhone, input_name='FromPhone'), eol_)) if self.POZipCode is not None: showIndent(outfile, level, pretty_print) outfile.write('<POZipCode>%s</POZipCode>%s' % (self.gds_encode(self.gds_format_string(quote_xml(self.POZipCode), input_name='POZipCode')), eol_)) if self.AllowNonCleansedOriginAddr is not None: showIndent(outfile, level, pretty_print) outfile.write('<AllowNonCleansedOriginAddr>%s</AllowNonCleansedOriginAddr>%s' % (self.gds_encode(self.gds_format_string(quote_xml(self.AllowNonCleansedOriginAddr), input_name='AllowNonCleansedOriginAddr')), eol_)) if self.ToName is not None: showIndent(outfile, level, pretty_print) outfile.write('<ToName>%s</ToName>%s' % (self.gds_encode(self.gds_format_string(quote_xml(self.ToName), input_name='ToName')), eol_)) if self.ToFirm is not None: showIndent(outfile, level, pretty_print) outfile.write('<ToFirm>%s</ToFirm>%s' % (self.gds_encode(self.gds_format_string(quote_xml(self.ToFirm), input_name='ToFirm')), eol_)) if self.ToAddress1 is not None: showIndent(outfile, level, pretty_print) outfile.write('<ToAddress1>%s</ToAddress1>%s' % (self.gds_encode(self.gds_format_string(quote_xml(self.ToAddress1), input_name='ToAddress1')), eol_)) if self.ToAddress2 is not None: showIndent(outfile, level, pretty_print) outfile.write('<ToAddress2>%s</ToAddress2>%s' % (self.gds_encode(self.gds_format_string(quote_xml(self.ToAddress2), input_name='ToAddress2')), eol_)) if self.ToCity is not None: showIndent(outfile, level, pretty_print) outfile.write('<ToCity>%s</ToCity>%s' % (self.gds_encode(self.gds_format_string(quote_xml(self.ToCity), input_name='ToCity')), eol_)) if self.ToState is not None: showIndent(outfile, level, pretty_print) outfile.write('<ToState>%s</ToState>%s' % (self.gds_encode(self.gds_format_string(quote_xml(self.ToState), input_name='ToState')), eol_)) if self.ToZip5 is not None: showIndent(outfile, level, pretty_print) outfile.write('<ToZip5>%s</ToZip5>%s' % (self.gds_format_integer(self.ToZip5, input_name='ToZip5'), eol_)) if self.ToZip4 is not None: showIndent(outfile, level, pretty_print) outfile.write('<ToZip4>%s</ToZip4>%s' % (self.gds_encode(self.gds_format_string(quote_xml(self.ToZip4), input_name='ToZip4')), eol_)) if self.ToPhone is not None: showIndent(outfile, level, pretty_print) outfile.write('<ToPhone>%s</ToPhone>%s' % (self.gds_encode(self.gds_format_string(quote_xml(self.ToPhone), input_name='ToPhone')), eol_)) if self.POBox is not None: showIndent(outfile, level, pretty_print) outfile.write('<POBox>%s</POBox>%s' % (self.gds_encode(self.gds_format_string(quote_xml(self.POBox), input_name='POBox')), eol_)) if self.AllowNonCleansedDestAddr is not None: showIndent(outfile, level, pretty_print) outfile.write('<AllowNonCleansedDestAddr>%s</AllowNonCleansedDestAddr>%s' % (self.gds_encode(self.gds_format_string(quote_xml(self.AllowNonCleansedDestAddr), input_name='AllowNonCleansedDestAddr')), eol_)) if self.WeightInOunces is not None: showIndent(outfile, level, pretty_print) outfile.write('<WeightInOunces>%s</WeightInOunces>%s' % (self.gds_format_integer(self.WeightInOunces, input_name='WeightInOunces'), eol_)) if self.ServiceType is not None: showIndent(outfile, level, pretty_print) outfile.write('<ServiceType>%s</ServiceType>%s' % (self.gds_encode(self.gds_format_string(quote_xml(self.ServiceType), input_name='ServiceType')), eol_)) if self.Container is not None: showIndent(outfile, level, pretty_print) outfile.write('<Container>%s</Container>%s' % (self.gds_encode(self.gds_format_string(quote_xml(self.Container), input_name='Container')), eol_)) if self.Width is not None: showIndent(outfile, level, pretty_print) outfile.write('<Width>%s</Width>%s' % (self.gds_format_integer(self.Width, input_name='Width'), eol_)) if self.Length is not None: showIndent(outfile, level, pretty_print) outfile.write('<Length>%s</Length>%s' % (self.gds_format_integer(self.Length, input_name='Length'), eol_)) if self.Height is not None: showIndent(outfile, level, pretty_print) outfile.write('<Height>%s</Height>%s' % (self.gds_format_integer(self.Height, input_name='Height'), eol_)) if self.Machinable is not None: showIndent(outfile, level, pretty_print) outfile.write('<Machinable>%s</Machinable>%s' % (self.gds_encode(self.gds_format_string(quote_xml(self.Machinable), input_name='Machinable')), eol_)) if self.ProcessingCategory is not None: showIndent(outfile, level, pretty_print) outfile.write('<ProcessingCategory>%s</ProcessingCategory>%s' % (self.gds_encode(self.gds_format_string(quote_xml(self.ProcessingCategory), input_name='ProcessingCategory')), eol_)) if self.PriceOptions is not None: showIndent(outfile, level, pretty_print) outfile.write('<PriceOptions>%s</PriceOptions>%s' % (self.gds_encode(self.gds_format_string(quote_xml(self.PriceOptions), input_name='PriceOptions')), eol_)) if self.InsuredAmount is not None: showIndent(outfile, level, pretty_print) outfile.write('<InsuredAmount>%s</InsuredAmount>%s' % (self.gds_format_integer(self.InsuredAmount, input_name='InsuredAmount'), eol_)) if self.AddressServiceRequested is not None: showIndent(outfile, level, pretty_print) outfile.write('<AddressServiceRequested>%s</AddressServiceRequested>%s' % (self.gds_encode(self.gds_format_string(quote_xml(self.AddressServiceRequested), input_name='AddressServiceRequested')), eol_)) if self.ExpressMailOptions is not None: self.ExpressMailOptions.export(outfile, level, namespace_, name_='ExpressMailOptions', pretty_print=pretty_print) if self.ShipDate is not None: showIndent(outfile, level, pretty_print) outfile.write('<ShipDate>%s</ShipDate>%s' % (self.gds_encode(self.gds_format_string(quote_xml(self.ShipDate), input_name='ShipDate')), eol_)) if self.CustomerRefNo is not None: showIndent(outfile, level, pretty_print) outfile.write('<CustomerRefNo>%s</CustomerRefNo>%s' % (self.gds_encode(self.gds_format_string(quote_xml(self.CustomerRefNo), input_name='CustomerRefNo')), eol_)) if self.ExtraServices is not None: self.ExtraServices.export(outfile, level, namespace_, name_='ExtraServices', pretty_print=pretty_print) if self.HoldForPickup is not None: showIndent(outfile, level, pretty_print) outfile.write('<HoldForPickup>%s</HoldForPickup>%s' % (self.gds_encode(self.gds_format_string(quote_xml(self.HoldForPickup), input_name='HoldForPickup')), eol_)) if self.OpenDistribute is not None: showIndent(outfile, level, pretty_print) outfile.write('<OpenDistribute>%s</OpenDistribute>%s' % (self.gds_encode(self.gds_format_string(quote_xml(self.OpenDistribute), input_name='OpenDistribute')), eol_)) if self.PermitNumber is not None: showIndent(outfile, level, pretty_print) outfile.write('<PermitNumber>%s</PermitNumber>%s' % (self.gds_encode(self.gds_format_string(quote_xml(self.PermitNumber), input_name='PermitNumber')), eol_)) if self.PermitZIPCode is not None: showIndent(outfile, level, pretty_print) outfile.write('<PermitZIPCode>%s</PermitZIPCode>%s' % (self.gds_encode(self.gds_format_string(quote_xml(self.PermitZIPCode), input_name='PermitZIPCode')), eol_)) if self.PermitHolderName is not None: showIndent(outfile, level, pretty_print) outfile.write('<PermitHolderName>%s</PermitHolderName>%s' % (self.gds_encode(self.gds_format_string(quote_xml(self.PermitHolderName), input_name='PermitHolderName')), eol_)) if self.CRID is not None: showIndent(outfile, level, pretty_print) outfile.write('<CRID>%s</CRID>%s' % (self.gds_encode(self.gds_format_string(quote_xml(self.CRID), input_name='CRID')), eol_)) if self.SenderName is not None: showIndent(outfile, level, pretty_print) outfile.write('<SenderName>%s</SenderName>%s' % (self.gds_encode(self.gds_format_string(quote_xml(self.SenderName), input_name='SenderName')), eol_)) if self.SenderEMail is not None: showIndent(outfile, level, pretty_print) outfile.write('<SenderEMail>%s</SenderEMail>%s' % (self.gds_encode(self.gds_format_string(quote_xml(self.SenderEMail), input_name='SenderEMail')), eol_)) if self.RecipientName is not None: showIndent(outfile, level, pretty_print) outfile.write('<RecipientName>%s</RecipientName>%s' % (self.gds_encode(self.gds_format_string(quote_xml(self.RecipientName), input_name='RecipientName')), eol_)) if self.RecipientEMail is not None: showIndent(outfile, level, pretty_print) outfile.write('<RecipientEMail>%s</RecipientEMail>%s' % (self.gds_encode(self.gds_format_string(quote_xml(self.RecipientEMail), input_name='RecipientEMail')), eol_)) if self.ReceiptOption is not None: showIndent(outfile, level, pretty_print) outfile.write('<ReceiptOption>%s</ReceiptOption>%s' % (self.gds_encode(self.gds_format_string(quote_xml(self.ReceiptOption), input_name='ReceiptOption')), eol_)) if self.ImageType is not None: showIndent(outfile, level, pretty_print) outfile.write('<ImageType>%s</ImageType>%s' % (self.gds_encode(self.gds_format_string(quote_xml(self.ImageType), input_name='ImageType')), eol_)) if self.HoldForManifest is not None: showIndent(outfile, level, pretty_print) outfile.write('<HoldForManifest>%s</HoldForManifest>%s' % (self.gds_encode(self.gds_format_string(quote_xml(self.HoldForManifest), input_name='HoldForManifest')), eol_)) if self.NineDigitRoutingZip is not None: showIndent(outfile, level, pretty_print) outfile.write('<NineDigitRoutingZip>%s</NineDigitRoutingZip>%s' % (self.gds_encode(self.gds_format_string(quote_xml(self.NineDigitRoutingZip), input_name='NineDigitRoutingZip')), eol_)) if self.ShipInfo is not None: showIndent(outfile, level, pretty_print) outfile.write('<ShipInfo>%s</ShipInfo>%s' % (self.gds_encode(self.gds_format_string(quote_xml(self.ShipInfo), input_name='ShipInfo')), eol_)) if self.CarrierRelease is not None: showIndent(outfile, level, pretty_print) outfile.write('<CarrierRelease>%s</CarrierRelease>%s' % (self.gds_encode(self.gds_format_string(quote_xml(self.CarrierRelease), input_name='CarrierRelease')), eol_)) if self.ReturnCommitments is not None: showIndent(outfile, level, pretty_print) outfile.write('<ReturnCommitments>%s</ReturnCommitments>%s' % (self.gds_encode(self.gds_format_string(quote_xml(self.ReturnCommitments), input_name='ReturnCommitments')), eol_)) if self.PrintCustomerRefNo is not None: showIndent(outfile, level, pretty_print) outfile.write('<PrintCustomerRefNo>%s</PrintCustomerRefNo>%s' % (self.gds_encode(self.gds_format_string(quote_xml(self.PrintCustomerRefNo), input_name='PrintCustomerRefNo')), eol_)) if self.Content is not None: self.Content.export(outfile, level, namespace_, name_='Content', pretty_print=pretty_print) if self.ShippingContents is not None: self.ShippingContents.export(outfile, level, namespace_, name_='ShippingContents', pretty_print=pretty_print) if self.CustomsContentType is not None: showIndent(outfile, level, pretty_print) outfile.write('<CustomsContentType>%s</CustomsContentType>%s' % (self.gds_encode(self.gds_format_string(quote_xml(self.CustomsContentType), input_name='CustomsContentType')), eol_)) if self.ContentComments is not None: showIndent(outfile, level, pretty_print) outfile.write('<ContentComments>%s</ContentComments>%s' % (self.gds_format_integer(self.ContentComments, input_name='ContentComments'), eol_)) if self.RestrictionType is not None: showIndent(outfile, level, pretty_print) outfile.write('<RestrictionType>%s</RestrictionType>%s' % (self.gds_encode(self.gds_format_string(quote_xml(self.RestrictionType), input_name='RestrictionType')), eol_)) if self.RestrictionComments is not None: showIndent(outfile, level, pretty_print) outfile.write('<RestrictionComments>%s</RestrictionComments>%s' % (self.gds_format_integer(self.RestrictionComments, input_name='RestrictionComments'), eol_)) if self.AESITN is not None: showIndent(outfile, level, pretty_print) outfile.write('<AESITN>%s</AESITN>%s' % (self.gds_format_integer(self.AESITN, input_name='AESITN'), eol_)) if self.ImportersReference is not None: showIndent(outfile, level, pretty_print) outfile.write('<ImportersReference>%s</ImportersReference>%s' % (self.gds_format_integer(self.ImportersReference, input_name='ImportersReference'), eol_)) if self.ImportersContact is not None: showIndent(outfile, level, pretty_print) outfile.write('<ImportersContact>%s</ImportersContact>%s' % (self.gds_encode(self.gds_format_string(quote_xml(self.ImportersContact), input_name='ImportersContact')), eol_)) if self.ExportersReference is not None: showIndent(outfile, level, pretty_print) outfile.write('<ExportersReference>%s</ExportersReference>%s' % (self.gds_format_integer(self.ExportersReference, input_name='ExportersReference'), eol_)) if self.ExportersContact is not None: showIndent(outfile, level, pretty_print) outfile.write('<ExportersContact>%s</ExportersContact>%s' % (self.gds_encode(self.gds_format_string(quote_xml(self.ExportersContact), input_name='ExportersContact')), eol_)) if self.InvoiceNumber is not None: showIndent(outfile, level, pretty_print) outfile.write('<InvoiceNumber>%s</InvoiceNumber>%s' % (self.gds_encode(self.gds_format_string(quote_xml(self.InvoiceNumber), input_name='InvoiceNumber')), eol_)) if self.LicenseNumber is not None: showIndent(outfile, level, pretty_print) outfile.write('<LicenseNumber>%s</LicenseNumber>%s' % (self.gds_encode(self.gds_format_string(quote_xml(self.LicenseNumber), input_name='LicenseNumber')), eol_)) if self.CertificateNumber is not None: showIndent(outfile, level, pretty_print) outfile.write('<CertificateNumber>%s</CertificateNumber>%s' % (self.gds_encode(self.gds_format_string(quote_xml(self.CertificateNumber), input_name='CertificateNumber')), eol_)) def build(self, node): already_processed = set() self.buildAttributes(node, node.attrib, already_processed) for child in node: nodeName_ = Tag_pattern_.match(child.tag).groups()[-1] self.buildChildren(child, node, nodeName_) return self def buildAttributes(self, node, attrs, already_processed): value = find_attr_value_('USERID', node) if value is not None and 'USERID' not in already_processed: already_processed.add('USERID') self.USERID = value def buildChildren(self, child_, node, nodeName_, fromsubclass_=False): if nodeName_ == 'Option': sval_ = child_.text try: ival_ = int(sval_) except (TypeError, ValueError) as exp: raise_parse_error(child_, 'requires integer: %s' % exp) ival_ = self.gds_validate_integer(ival_, node, 'Option') self.Option = ival_ elif nodeName_ == 'Revision': Revision_ = child_.text Revision_ = self.gds_validate_string(Revision_, node, 'Revision') self.Revision = Revision_ elif nodeName_ == 'ImageParameters': obj_ = ImageParametersType.factory() obj_.build(child_) self.ImageParameters = obj_ obj_.original_tagname_ = 'ImageParameters' elif nodeName_ == 'FromName': FromName_ = child_.text FromName_ = self.gds_validate_string(FromName_, node, 'FromName') self.FromName = FromName_ elif nodeName_ == 'FromFirm': FromFirm_ = child_.text FromFirm_ = self.gds_validate_string(FromFirm_, node, 'FromFirm') self.FromFirm = FromFirm_ elif nodeName_ == 'FromAddress1': FromAddress1_ = child_.text FromAddress1_ = self.gds_validate_string(FromAddress1_, node, 'FromAddress1') self.FromAddress1 = FromAddress1_ elif nodeName_ == 'FromAddress2': FromAddress2_ = child_.text FromAddress2_ = self.gds_validate_string(FromAddress2_, node, 'FromAddress2') self.FromAddress2 = FromAddress2_ elif nodeName_ == 'FromCity': FromCity_ = child_.text FromCity_ = self.gds_validate_string(FromCity_, node, 'FromCity') self.FromCity = FromCity_ elif nodeName_ == 'FromState': FromState_ = child_.text FromState_ = self.gds_validate_string(FromState_, node, 'FromState') self.FromState = FromState_ elif nodeName_ == 'FromZip5': sval_ = child_.text try: ival_ = int(sval_) except (TypeError, ValueError) as exp: raise_parse_error(child_, 'requires integer: %s' % exp) ival_ = self.gds_validate_integer(ival_, node, 'FromZip5') self.FromZip5 = ival_ elif nodeName_ == 'FromZip4': sval_ = child_.text try: ival_ = int(sval_) except (TypeError, ValueError) as exp: raise_parse_error(child_, 'requires integer: %s' % exp) ival_ = self.gds_validate_integer(ival_, node, 'FromZip4') self.FromZip4 = ival_ elif nodeName_ == 'FromPhone': sval_ = child_.text try: ival_ = int(sval_) except (TypeError, ValueError) as exp: raise_parse_error(child_, 'requires integer: %s' % exp) ival_ = self.gds_validate_integer(ival_, node, 'FromPhone') self.FromPhone = ival_ elif nodeName_ == 'POZipCode': POZipCode_ = child_.text POZipCode_ = self.gds_validate_string(POZipCode_, node, 'POZipCode') self.POZipCode = POZipCode_ elif nodeName_ == 'AllowNonCleansedOriginAddr': AllowNonCleansedOriginAddr_ = child_.text AllowNonCleansedOriginAddr_ = self.gds_validate_string(AllowNonCleansedOriginAddr_, node, 'AllowNonCleansedOriginAddr') self.AllowNonCleansedOriginAddr = AllowNonCleansedOriginAddr_ elif nodeName_ == 'ToName': ToName_ = child_.text ToName_ = self.gds_validate_string(ToName_, node, 'ToName') self.ToName = ToName_ elif nodeName_ == 'ToFirm': ToFirm_ = child_.text ToFirm_ = self.gds_validate_string(ToFirm_, node, 'ToFirm') self.ToFirm = ToFirm_ elif nodeName_ == 'ToAddress1': ToAddress1_ = child_.text ToAddress1_ = self.gds_validate_string(ToAddress1_, node, 'ToAddress1') self.ToAddress1 = ToAddress1_ elif nodeName_ == 'ToAddress2': ToAddress2_ = child_.text ToAddress2_ = self.gds_validate_string(ToAddress2_, node, 'ToAddress2') self.ToAddress2 = ToAddress2_ elif nodeName_ == 'ToCity': ToCity_ = child_.text ToCity_ = self.gds_validate_string(ToCity_, node, 'ToCity') self.ToCity = ToCity_ elif nodeName_ == 'ToState': ToState_ = child_.text ToState_ = self.gds_validate_string(ToState_, node, 'ToState') self.ToState = ToState_ elif nodeName_ == 'ToZip5': sval_ = child_.text try: ival_ = int(sval_) except (TypeError, ValueError) as exp: raise_parse_error(child_, 'requires integer: %s' % exp) ival_ = self.gds_validate_integer(ival_, node, 'ToZip5') self.ToZip5 = ival_ elif nodeName_ == 'ToZip4': ToZip4_ = child_.text ToZip4_ = self.gds_validate_string(ToZip4_, node, 'ToZip4') self.ToZip4 = ToZip4_ elif nodeName_ == 'ToPhone': ToPhone_ = child_.text ToPhone_ = self.gds_validate_string(ToPhone_, node, 'ToPhone') self.ToPhone = ToPhone_ elif nodeName_ == 'POBox': POBox_ = child_.text POBox_ = self.gds_validate_string(POBox_, node, 'POBox') self.POBox = POBox_ elif nodeName_ == 'AllowNonCleansedDestAddr': AllowNonCleansedDestAddr_ = child_.text AllowNonCleansedDestAddr_ = self.gds_validate_string(AllowNonCleansedDestAddr_, node, 'AllowNonCleansedDestAddr') self.AllowNonCleansedDestAddr = AllowNonCleansedDestAddr_ elif nodeName_ == 'WeightInOunces': sval_ = child_.text try: ival_ = int(sval_) except (TypeError, ValueError) as exp: raise_parse_error(child_, 'requires integer: %s' % exp) ival_ = self.gds_validate_integer(ival_, node, 'WeightInOunces') self.WeightInOunces = ival_ elif nodeName_ == 'ServiceType': ServiceType_ = child_.text ServiceType_ = self.gds_validate_string(ServiceType_, node, 'ServiceType') self.ServiceType = ServiceType_ elif nodeName_ == 'Container': Container_ = child_.text Container_ = self.gds_validate_string(Container_, node, 'Container') self.Container = Container_ elif nodeName_ == 'Width': sval_ = child_.text try: ival_ = int(sval_) except (TypeError, ValueError) as exp: raise_parse_error(child_, 'requires integer: %s' % exp) ival_ = self.gds_validate_integer(ival_, node, 'Width') self.Width = ival_ elif nodeName_ == 'Length': sval_ = child_.text try: ival_ = int(sval_) except (TypeError, ValueError) as exp: raise_parse_error(child_, 'requires integer: %s' % exp) ival_ = self.gds_validate_integer(ival_, node, 'Length') self.Length = ival_ elif nodeName_ == 'Height': sval_ = child_.text try: ival_ = int(sval_) except (TypeError, ValueError) as exp: raise_parse_error(child_, 'requires integer: %s' % exp) ival_ = self.gds_validate_integer(ival_, node, 'Height') self.Height = ival_ elif nodeName_ == 'Machinable': Machinable_ = child_.text Machinable_ = self.gds_validate_string(Machinable_, node, 'Machinable') self.Machinable = Machinable_ elif nodeName_ == 'ProcessingCategory': ProcessingCategory_ = child_.text ProcessingCategory_ = self.gds_validate_string(ProcessingCategory_, node, 'ProcessingCategory') self.ProcessingCategory = ProcessingCategory_ elif nodeName_ == 'PriceOptions': PriceOptions_ = child_.text PriceOptions_ = self.gds_validate_string(PriceOptions_, node, 'PriceOptions') self.PriceOptions = PriceOptions_ elif nodeName_ == 'InsuredAmount': sval_ = child_.text try: ival_ = int(sval_) except (TypeError, ValueError) as exp: raise_parse_error(child_, 'requires integer: %s' % exp) ival_ = self.gds_validate_integer(ival_, node, 'InsuredAmount') self.InsuredAmount = ival_ elif nodeName_ == 'AddressServiceRequested': AddressServiceRequested_ = child_.text AddressServiceRequested_ = self.gds_validate_string(AddressServiceRequested_, node, 'AddressServiceRequested') self.AddressServiceRequested = AddressServiceRequested_ elif nodeName_ == 'ExpressMailOptions': obj_ = ExpressMailOptionsType.factory() obj_.build(child_) self.ExpressMailOptions = obj_ obj_.original_tagname_ = 'ExpressMailOptions' elif nodeName_ == 'ShipDate': ShipDate_ = child_.text ShipDate_ = self.gds_validate_string(ShipDate_, node, 'ShipDate') self.ShipDate = ShipDate_ elif nodeName_ == 'CustomerRefNo': CustomerRefNo_ = child_.text CustomerRefNo_ = self.gds_validate_string(CustomerRefNo_, node, 'CustomerRefNo') self.CustomerRefNo = CustomerRefNo_ elif nodeName_ == 'ExtraServices': obj_ = ExtraServicesType.factory() obj_.build(child_) self.ExtraServices = obj_ obj_.original_tagname_ = 'ExtraServices' elif nodeName_ == 'HoldForPickup': HoldForPickup_ = child_.text HoldForPickup_ = self.gds_validate_string(HoldForPickup_, node, 'HoldForPickup') self.HoldForPickup = HoldForPickup_ elif nodeName_ == 'OpenDistribute': OpenDistribute_ = child_.text OpenDistribute_ = self.gds_validate_string(OpenDistribute_, node, 'OpenDistribute') self.OpenDistribute = OpenDistribute_ elif nodeName_ == 'PermitNumber': PermitNumber_ = child_.text PermitNumber_ = self.gds_validate_string(PermitNumber_, node, 'PermitNumber') self.PermitNumber = PermitNumber_ elif nodeName_ == 'PermitZIPCode': PermitZIPCode_ = child_.text PermitZIPCode_ = self.gds_validate_string(PermitZIPCode_, node, 'PermitZIPCode') self.PermitZIPCode = PermitZIPCode_ elif nodeName_ == 'PermitHolderName': PermitHolderName_ = child_.text PermitHolderName_ = self.gds_validate_string(PermitHolderName_, node, 'PermitHolderName') self.PermitHolderName = PermitHolderName_ elif nodeName_ == 'CRID': CRID_ = child_.text CRID_ = self.gds_validate_string(CRID_, node, 'CRID') self.CRID = CRID_ elif nodeName_ == 'SenderName': SenderName_ = child_.text SenderName_ = self.gds_validate_string(SenderName_, node, 'SenderName') self.SenderName = SenderName_ elif nodeName_ == 'SenderEMail': SenderEMail_ = child_.text SenderEMail_ = self.gds_validate_string(SenderEMail_, node, 'SenderEMail') self.SenderEMail = SenderEMail_ elif nodeName_ == 'RecipientName': RecipientName_ = child_.text RecipientName_ = self.gds_validate_string(RecipientName_, node, 'RecipientName') self.RecipientName = RecipientName_ elif nodeName_ == 'RecipientEMail': RecipientEMail_ = child_.text RecipientEMail_ = self.gds_validate_string(RecipientEMail_, node, 'RecipientEMail') self.RecipientEMail = RecipientEMail_ elif nodeName_ == 'ReceiptOption': ReceiptOption_ = child_.text ReceiptOption_ = self.gds_validate_string(ReceiptOption_, node, 'ReceiptOption') self.ReceiptOption = ReceiptOption_ elif nodeName_ == 'ImageType': ImageType_ = child_.text ImageType_ = self.gds_validate_string(ImageType_, node, 'ImageType') self.ImageType = ImageType_ elif nodeName_ == 'HoldForManifest': HoldForManifest_ = child_.text HoldForManifest_ = self.gds_validate_string(HoldForManifest_, node, 'HoldForManifest') self.HoldForManifest = HoldForManifest_ elif nodeName_ == 'NineDigitRoutingZip': NineDigitRoutingZip_ = child_.text NineDigitRoutingZip_ = self.gds_validate_string(NineDigitRoutingZip_, node, 'NineDigitRoutingZip') self.NineDigitRoutingZip = NineDigitRoutingZip_ elif nodeName_ == 'ShipInfo': ShipInfo_ = child_.text ShipInfo_ = self.gds_validate_string(ShipInfo_, node, 'ShipInfo') self.ShipInfo = ShipInfo_ elif nodeName_ == 'CarrierRelease': CarrierRelease_ = child_.text CarrierRelease_ = self.gds_validate_string(CarrierRelease_, node, 'CarrierRelease') self.CarrierRelease = CarrierRelease_ elif nodeName_ == 'ReturnCommitments': ReturnCommitments_ = child_.text ReturnCommitments_ = self.gds_validate_string(ReturnCommitments_, node, 'ReturnCommitments') self.ReturnCommitments = ReturnCommitments_ elif nodeName_ == 'PrintCustomerRefNo': PrintCustomerRefNo_ = child_.text PrintCustomerRefNo_ = self.gds_validate_string(PrintCustomerRefNo_, node, 'PrintCustomerRefNo') self.PrintCustomerRefNo = PrintCustomerRefNo_ elif nodeName_ == 'Content': obj_ = ContentType.factory() obj_.build(child_) self.Content = obj_ obj_.original_tagname_ = 'Content' elif nodeName_ == 'ShippingContents': obj_ = ShippingContentsType.factory() obj_.build(child_) self.ShippingContents = obj_ obj_.original_tagname_ = 'ShippingContents' elif nodeName_ == 'CustomsContentType': CustomsContentType_ = child_.text CustomsContentType_ = self.gds_validate_string(CustomsContentType_, node, 'CustomsContentType') self.CustomsContentType = CustomsContentType_ elif nodeName_ == 'ContentComments': sval_ = child_.text try: ival_ = int(sval_) except (TypeError, ValueError) as exp: raise_parse_error(child_, 'requires integer: %s' % exp) ival_ = self.gds_validate_integer(ival_, node, 'ContentComments') self.ContentComments = ival_ elif nodeName_ == 'RestrictionType': RestrictionType_ = child_.text RestrictionType_ = self.gds_validate_string(RestrictionType_, node, 'RestrictionType') self.RestrictionType = RestrictionType_ elif nodeName_ == 'RestrictionComments': sval_ = child_.text try: ival_ = int(sval_) except (TypeError, ValueError) as exp: raise_parse_error(child_, 'requires integer: %s' % exp) ival_ = self.gds_validate_integer(ival_, node, 'RestrictionComments') self.RestrictionComments = ival_ elif nodeName_ == 'AESITN': sval_ = child_.text try: ival_ = int(sval_) except (TypeError, ValueError) as exp: raise_parse_error(child_, 'requires integer: %s' % exp) ival_ = self.gds_validate_integer(ival_, node, 'AESITN') self.AESITN = ival_ elif nodeName_ == 'ImportersReference': sval_ = child_.text try: ival_ = int(sval_) except (TypeError, ValueError) as exp: raise_parse_error(child_, 'requires integer: %s' % exp) ival_ = self.gds_validate_integer(ival_, node, 'ImportersReference') self.ImportersReference = ival_ elif nodeName_ == 'ImportersContact': ImportersContact_ = child_.text ImportersContact_ = self.gds_validate_string(ImportersContact_, node, 'ImportersContact') self.ImportersContact = ImportersContact_ elif nodeName_ == 'ExportersReference': sval_ = child_.text try: ival_ = int(sval_) except (TypeError, ValueError) as exp: raise_parse_error(child_, 'requires integer: %s' % exp) ival_ = self.gds_validate_integer(ival_, node, 'ExportersReference') self.ExportersReference = ival_ elif nodeName_ == 'ExportersContact': ExportersContact_ = child_.text ExportersContact_ = self.gds_validate_string(ExportersContact_, node, 'ExportersContact') self.ExportersContact = ExportersContact_ elif nodeName_ == 'InvoiceNumber': InvoiceNumber_ = child_.text InvoiceNumber_ = self.gds_validate_string(InvoiceNumber_, node, 'InvoiceNumber') self.InvoiceNumber = InvoiceNumber_ elif nodeName_ == 'LicenseNumber': LicenseNumber_ = child_.text LicenseNumber_ = self.gds_validate_string(LicenseNumber_, node, 'LicenseNumber') self.LicenseNumber = LicenseNumber_ elif nodeName_ == 'CertificateNumber': CertificateNumber_ = child_.text CertificateNumber_ = self.gds_validate_string(CertificateNumber_, node, 'CertificateNumber') self.CertificateNumber = CertificateNumber_ # end class eVSCertifyRequest class ImageParametersType(GeneratedsSuper): subclass = None superclass = None def __init__(self, LabelSequence=None): self.original_tagname_ = None self.LabelSequence = LabelSequence def factory(*args_, **kwargs_): if CurrentSubclassModule_ is not None: subclass = getSubclassFromModule_( CurrentSubclassModule_, ImageParametersType) if subclass is not None: return subclass(*args_, **kwargs_) if ImageParametersType.subclass: return ImageParametersType.subclass(*args_, **kwargs_) else: return ImageParametersType(*args_, **kwargs_) factory = staticmethod(factory) def get_LabelSequence(self): return self.LabelSequence def set_LabelSequence(self, LabelSequence): self.LabelSequence = LabelSequence def hasContent_(self): if ( self.LabelSequence is not None ): return True else: return False def export(self, outfile, level, namespace_='', name_='ImageParametersType', namespacedef_='', pretty_print=True): imported_ns_def_ = GenerateDSNamespaceDefs_.get('ImageParametersType') if imported_ns_def_ is not None: namespacedef_ = imported_ns_def_ if pretty_print: eol_ = '\n' else: eol_ = '' if self.original_tagname_ is not None: name_ = self.original_tagname_ showIndent(outfile, level, pretty_print) outfile.write('<%s%s%s' % (namespace_, name_, namespacedef_ and ' ' + namespacedef_ or '', )) already_processed = set() self.exportAttributes(outfile, level, already_processed, namespace_, name_='ImageParametersType') if self.hasContent_(): outfile.write('>%s' % (eol_, )) self.exportChildren(outfile, level + 1, namespace_='', name_='ImageParametersType', pretty_print=pretty_print) showIndent(outfile, level, pretty_print) outfile.write('</%s%s>%s' % (namespace_, name_, eol_)) else: outfile.write('/>%s' % (eol_, )) def exportAttributes(self, outfile, level, already_processed, namespace_='', name_='ImageParametersType'): pass def exportChildren(self, outfile, level, namespace_='', name_='ImageParametersType', fromsubclass_=False, pretty_print=True): if pretty_print: eol_ = '\n' else: eol_ = '' if self.LabelSequence is not None: self.LabelSequence.export(outfile, level, namespace_, name_='LabelSequence', pretty_print=pretty_print) def build(self, node): already_processed = set() self.buildAttributes(node, node.attrib, already_processed) for child in node: nodeName_ = Tag_pattern_.match(child.tag).groups()[-1] self.buildChildren(child, node, nodeName_) return self def buildAttributes(self, node, attrs, already_processed): pass def buildChildren(self, child_, node, nodeName_, fromsubclass_=False): if nodeName_ == 'LabelSequence': obj_ = LabelSequenceType.factory() obj_.build(child_) self.LabelSequence = obj_ obj_.original_tagname_ = 'LabelSequence' # end class ImageParametersType class LabelSequenceType(GeneratedsSuper): subclass = None superclass = None def __init__(self, PackageNumber=None, TotalPackages=None): self.original_tagname_ = None self.PackageNumber = PackageNumber self.TotalPackages = TotalPackages def factory(*args_, **kwargs_): if CurrentSubclassModule_ is not None: subclass = getSubclassFromModule_( CurrentSubclassModule_, LabelSequenceType) if subclass is not None: return subclass(*args_, **kwargs_) if LabelSequenceType.subclass: return LabelSequenceType.subclass(*args_, **kwargs_) else: return LabelSequenceType(*args_, **kwargs_) factory = staticmethod(factory) def get_PackageNumber(self): return self.PackageNumber def set_PackageNumber(self, PackageNumber): self.PackageNumber = PackageNumber def get_TotalPackages(self): return self.TotalPackages def set_TotalPackages(self, TotalPackages): self.TotalPackages = TotalPackages def hasContent_(self): if ( self.PackageNumber is not None or self.TotalPackages is not None ): return True else: return False def export(self, outfile, level, namespace_='', name_='LabelSequenceType', namespacedef_='', pretty_print=True): imported_ns_def_ = GenerateDSNamespaceDefs_.get('LabelSequenceType') if imported_ns_def_ is not None: namespacedef_ = imported_ns_def_ if pretty_print: eol_ = '\n' else: eol_ = '' if self.original_tagname_ is not None: name_ = self.original_tagname_ showIndent(outfile, level, pretty_print) outfile.write('<%s%s%s' % (namespace_, name_, namespacedef_ and ' ' + namespacedef_ or '', )) already_processed = set() self.exportAttributes(outfile, level, already_processed, namespace_, name_='LabelSequenceType') if self.hasContent_(): outfile.write('>%s' % (eol_, )) self.exportChildren(outfile, level + 1, namespace_='', name_='LabelSequenceType', pretty_print=pretty_print) showIndent(outfile, level, pretty_print) outfile.write('</%s%s>%s' % (namespace_, name_, eol_)) else: outfile.write('/>%s' % (eol_, )) def exportAttributes(self, outfile, level, already_processed, namespace_='', name_='LabelSequenceType'): pass def exportChildren(self, outfile, level, namespace_='', name_='LabelSequenceType', fromsubclass_=False, pretty_print=True): if pretty_print: eol_ = '\n' else: eol_ = '' if self.PackageNumber is not None: showIndent(outfile, level, pretty_print) outfile.write('<PackageNumber>%s</PackageNumber>%s' % (self.gds_format_integer(self.PackageNumber, input_name='PackageNumber'), eol_)) if self.TotalPackages is not None: showIndent(outfile, level, pretty_print) outfile.write('<TotalPackages>%s</TotalPackages>%s' % (self.gds_format_integer(self.TotalPackages, input_name='TotalPackages'), eol_)) def build(self, node): already_processed = set() self.buildAttributes(node, node.attrib, already_processed) for child in node: nodeName_ = Tag_pattern_.match(child.tag).groups()[-1] self.buildChildren(child, node, nodeName_) return self def buildAttributes(self, node, attrs, already_processed): pass def buildChildren(self, child_, node, nodeName_, fromsubclass_=False): if nodeName_ == 'PackageNumber': sval_ = child_.text try: ival_ = int(sval_) except (TypeError, ValueError) as exp: raise_parse_error(child_, 'requires integer: %s' % exp) ival_ = self.gds_validate_integer(ival_, node, 'PackageNumber') self.PackageNumber = ival_ elif nodeName_ == 'TotalPackages': sval_ = child_.text try: ival_ = int(sval_) except (TypeError, ValueError) as exp: raise_parse_error(child_, 'requires integer: %s' % exp) ival_ = self.gds_validate_integer(ival_, node, 'TotalPackages') self.TotalPackages = ival_ # end class LabelSequenceType class ExpressMailOptionsType(GeneratedsSuper): subclass = None superclass = None def __init__(self, DeliveryOption=None, WaiverOfSignature=None): self.original_tagname_ = None self.DeliveryOption = DeliveryOption self.WaiverOfSignature = WaiverOfSignature def factory(*args_, **kwargs_): if CurrentSubclassModule_ is not None: subclass = getSubclassFromModule_( CurrentSubclassModule_, ExpressMailOptionsType) if subclass is not None: return subclass(*args_, **kwargs_) if ExpressMailOptionsType.subclass: return ExpressMailOptionsType.subclass(*args_, **kwargs_) else: return ExpressMailOptionsType(*args_, **kwargs_) factory = staticmethod(factory) def get_DeliveryOption(self): return self.DeliveryOption def set_DeliveryOption(self, DeliveryOption): self.DeliveryOption = DeliveryOption def get_WaiverOfSignature(self): return self.WaiverOfSignature def set_WaiverOfSignature(self, WaiverOfSignature): self.WaiverOfSignature = WaiverOfSignature def hasContent_(self): if ( self.DeliveryOption is not None or self.WaiverOfSignature is not None ): return True else: return False def export(self, outfile, level, namespace_='', name_='ExpressMailOptionsType', namespacedef_='', pretty_print=True): imported_ns_def_ = GenerateDSNamespaceDefs_.get('ExpressMailOptionsType') if imported_ns_def_ is not None: namespacedef_ = imported_ns_def_ if pretty_print: eol_ = '\n' else: eol_ = '' if self.original_tagname_ is not None: name_ = self.original_tagname_ showIndent(outfile, level, pretty_print) outfile.write('<%s%s%s' % (namespace_, name_, namespacedef_ and ' ' + namespacedef_ or '', )) already_processed = set() self.exportAttributes(outfile, level, already_processed, namespace_, name_='ExpressMailOptionsType') if self.hasContent_(): outfile.write('>%s' % (eol_, )) self.exportChildren(outfile, level + 1, namespace_='', name_='ExpressMailOptionsType', pretty_print=pretty_print) showIndent(outfile, level, pretty_print) outfile.write('</%s%s>%s' % (namespace_, name_, eol_)) else: outfile.write('/>%s' % (eol_, )) def exportAttributes(self, outfile, level, already_processed, namespace_='', name_='ExpressMailOptionsType'): pass def exportChildren(self, outfile, level, namespace_='', name_='ExpressMailOptionsType', fromsubclass_=False, pretty_print=True): if pretty_print: eol_ = '\n' else: eol_ = '' if self.DeliveryOption is not None: showIndent(outfile, level, pretty_print) outfile.write('<DeliveryOption>%s</DeliveryOption>%s' % (self.gds_encode(self.gds_format_string(quote_xml(self.DeliveryOption), input_name='DeliveryOption')), eol_)) if self.WaiverOfSignature is not None: showIndent(outfile, level, pretty_print) outfile.write('<WaiverOfSignature>%s</WaiverOfSignature>%s' % (self.gds_encode(self.gds_format_string(quote_xml(self.WaiverOfSignature), input_name='WaiverOfSignature')), eol_)) def build(self, node): already_processed = set() self.buildAttributes(node, node.attrib, already_processed) for child in node: nodeName_ = Tag_pattern_.match(child.tag).groups()[-1] self.buildChildren(child, node, nodeName_) return self def buildAttributes(self, node, attrs, already_processed): pass def buildChildren(self, child_, node, nodeName_, fromsubclass_=False): if nodeName_ == 'DeliveryOption': DeliveryOption_ = child_.text DeliveryOption_ = self.gds_validate_string(DeliveryOption_, node, 'DeliveryOption') self.DeliveryOption = DeliveryOption_ elif nodeName_ == 'WaiverOfSignature': WaiverOfSignature_ = child_.text WaiverOfSignature_ = self.gds_validate_string(WaiverOfSignature_, node, 'WaiverOfSignature') self.WaiverOfSignature = WaiverOfSignature_ # end class ExpressMailOptionsType class ExtraServicesType(GeneratedsSuper): subclass = None superclass = None def __init__(self, ExtraService=None): self.original_tagname_ = None self.ExtraService = ExtraService def factory(*args_, **kwargs_): if CurrentSubclassModule_ is not None: subclass = getSubclassFromModule_( CurrentSubclassModule_, ExtraServicesType) if subclass is not None: return subclass(*args_, **kwargs_) if ExtraServicesType.subclass: return ExtraServicesType.subclass(*args_, **kwargs_) else: return ExtraServicesType(*args_, **kwargs_) factory = staticmethod(factory) def get_ExtraService(self): return self.ExtraService def set_ExtraService(self, ExtraService): self.ExtraService = ExtraService def hasContent_(self): if ( self.ExtraService is not None ): return True else: return False def export(self, outfile, level, namespace_='', name_='ExtraServicesType', namespacedef_='', pretty_print=True): imported_ns_def_ = GenerateDSNamespaceDefs_.get('ExtraServicesType') if imported_ns_def_ is not None: namespacedef_ = imported_ns_def_ if pretty_print: eol_ = '\n' else: eol_ = '' if self.original_tagname_ is not None: name_ = self.original_tagname_ showIndent(outfile, level, pretty_print) outfile.write('<%s%s%s' % (namespace_, name_, namespacedef_ and ' ' + namespacedef_ or '', )) already_processed = set() self.exportAttributes(outfile, level, already_processed, namespace_, name_='ExtraServicesType') if self.hasContent_(): outfile.write('>%s' % (eol_, )) self.exportChildren(outfile, level + 1, namespace_='', name_='ExtraServicesType', pretty_print=pretty_print) showIndent(outfile, level, pretty_print) outfile.write('</%s%s>%s' % (namespace_, name_, eol_)) else: outfile.write('/>%s' % (eol_, )) def exportAttributes(self, outfile, level, already_processed, namespace_='', name_='ExtraServicesType'): pass def exportChildren(self, outfile, level, namespace_='', name_='ExtraServicesType', fromsubclass_=False, pretty_print=True): if pretty_print: eol_ = '\n' else: eol_ = '' if self.ExtraService is not None: showIndent(outfile, level, pretty_print) outfile.write('<ExtraService>%s</ExtraService>%s' % (self.gds_encode(self.gds_format_string(quote_xml(self.ExtraService), input_name='ExtraService')), eol_)) def build(self, node): already_processed = set() self.buildAttributes(node, node.attrib, already_processed) for child in node: nodeName_ = Tag_pattern_.match(child.tag).groups()[-1] self.buildChildren(child, node, nodeName_) return self def buildAttributes(self, node, attrs, already_processed): pass def buildChildren(self, child_, node, nodeName_, fromsubclass_=False): if nodeName_ == 'ExtraService': ExtraService_ = child_.text ExtraService_ = self.gds_validate_string(ExtraService_, node, 'ExtraService') self.ExtraService = ExtraService_ # end class ExtraServicesType class ContentType(GeneratedsSuper): subclass = None superclass = None def __init__(self, ContentType_member=None, ContentDescription=None): self.original_tagname_ = None self.ContentType = ContentType_member self.ContentDescription = ContentDescription def factory(*args_, **kwargs_): if CurrentSubclassModule_ is not None: subclass = getSubclassFromModule_( CurrentSubclassModule_, ContentType) if subclass is not None: return subclass(*args_, **kwargs_) if ContentType.subclass: return ContentType.subclass(*args_, **kwargs_) else: return ContentType(*args_, **kwargs_) factory = staticmethod(factory) def get_ContentType(self): return self.ContentType def set_ContentType(self, ContentType): self.ContentType = ContentType def get_ContentDescription(self): return self.ContentDescription def set_ContentDescription(self, ContentDescription): self.ContentDescription = ContentDescription def hasContent_(self): if ( self.ContentType is not None or self.ContentDescription is not None ): return True else: return False def export(self, outfile, level, namespace_='', name_='ContentType', namespacedef_='', pretty_print=True): imported_ns_def_ = GenerateDSNamespaceDefs_.get('ContentType') if imported_ns_def_ is not None: namespacedef_ = imported_ns_def_ if pretty_print: eol_ = '\n' else: eol_ = '' if self.original_tagname_ is not None: name_ = self.original_tagname_ showIndent(outfile, level, pretty_print) outfile.write('<%s%s%s' % (namespace_, name_, namespacedef_ and ' ' + namespacedef_ or '', )) already_processed = set() self.exportAttributes(outfile, level, already_processed, namespace_, name_='ContentType') if self.hasContent_(): outfile.write('>%s' % (eol_, )) self.exportChildren(outfile, level + 1, namespace_='', name_='ContentType', pretty_print=pretty_print) showIndent(outfile, level, pretty_print) outfile.write('</%s%s>%s' % (namespace_, name_, eol_)) else: outfile.write('/>%s' % (eol_, )) def exportAttributes(self, outfile, level, already_processed, namespace_='', name_='ContentType'): pass def exportChildren(self, outfile, level, namespace_='', name_='ContentType', fromsubclass_=False, pretty_print=True): if pretty_print: eol_ = '\n' else: eol_ = '' if self.ContentType is not None: showIndent(outfile, level, pretty_print) outfile.write('<ContentType>%s</ContentType>%s' % (self.gds_encode(self.gds_format_string(quote_xml(self.ContentType), input_name='ContentType')), eol_)) if self.ContentDescription is not None: showIndent(outfile, level, pretty_print) outfile.write('<ContentDescription>%s</ContentDescription>%s' % (self.gds_encode(self.gds_format_string(quote_xml(self.ContentDescription), input_name='ContentDescription')), eol_)) def build(self, node): already_processed = set() self.buildAttributes(node, node.attrib, already_processed) for child in node: nodeName_ = Tag_pattern_.match(child.tag).groups()[-1] self.buildChildren(child, node, nodeName_) return self def buildAttributes(self, node, attrs, already_processed): pass def buildChildren(self, child_, node, nodeName_, fromsubclass_=False): if nodeName_ == 'ContentType': ContentType_ = child_.text ContentType_ = self.gds_validate_string(ContentType_, node, 'ContentType') self.ContentType = ContentType_ elif nodeName_ == 'ContentDescription': ContentDescription_ = child_.text ContentDescription_ = self.gds_validate_string(ContentDescription_, node, 'ContentDescription') self.ContentDescription = ContentDescription_ # end class ContentType class ShippingContentsType(GeneratedsSuper): subclass = None superclass = None def __init__(self, ItemDetail=None): self.original_tagname_ = None if ItemDetail is None: self.ItemDetail = [] else: self.ItemDetail = ItemDetail def factory(*args_, **kwargs_): if CurrentSubclassModule_ is not None: subclass = getSubclassFromModule_( CurrentSubclassModule_, ShippingContentsType) if subclass is not None: return subclass(*args_, **kwargs_) if ShippingContentsType.subclass: return ShippingContentsType.subclass(*args_, **kwargs_) else: return ShippingContentsType(*args_, **kwargs_) factory = staticmethod(factory) def get_ItemDetail(self): return self.ItemDetail def set_ItemDetail(self, ItemDetail): self.ItemDetail = ItemDetail def add_ItemDetail(self, value): self.ItemDetail.append(value) def insert_ItemDetail_at(self, index, value): self.ItemDetail.insert(index, value) def replace_ItemDetail_at(self, index, value): self.ItemDetail[index] = value def hasContent_(self): if ( self.ItemDetail ): return True else: return False def export(self, outfile, level, namespace_='', name_='ShippingContentsType', namespacedef_='', pretty_print=True): imported_ns_def_ = GenerateDSNamespaceDefs_.get('ShippingContentsType') if imported_ns_def_ is not None: namespacedef_ = imported_ns_def_ if pretty_print: eol_ = '\n' else: eol_ = '' if self.original_tagname_ is not None: name_ = self.original_tagname_ showIndent(outfile, level, pretty_print) outfile.write('<%s%s%s' % (namespace_, name_, namespacedef_ and ' ' + namespacedef_ or '', )) already_processed = set() self.exportAttributes(outfile, level, already_processed, namespace_, name_='ShippingContentsType') if self.hasContent_(): outfile.write('>%s' % (eol_, )) self.exportChildren(outfile, level + 1, namespace_='', name_='ShippingContentsType', pretty_print=pretty_print) showIndent(outfile, level, pretty_print) outfile.write('</%s%s>%s' % (namespace_, name_, eol_)) else: outfile.write('/>%s' % (eol_, )) def exportAttributes(self, outfile, level, already_processed, namespace_='', name_='ShippingContentsType'): pass def exportChildren(self, outfile, level, namespace_='', name_='ShippingContentsType', fromsubclass_=False, pretty_print=True): if pretty_print: eol_ = '\n' else: eol_ = '' for ItemDetail_ in self.ItemDetail: ItemDetail_.export(outfile, level, namespace_, name_='ItemDetail', pretty_print=pretty_print) def build(self, node): already_processed = set() self.buildAttributes(node, node.attrib, already_processed) for child in node: nodeName_ = Tag_pattern_.match(child.tag).groups()[-1] self.buildChildren(child, node, nodeName_) return self def buildAttributes(self, node, attrs, already_processed): pass def buildChildren(self, child_, node, nodeName_, fromsubclass_=False): if nodeName_ == 'ItemDetail': obj_ = ItemDetailType.factory() obj_.build(child_) self.ItemDetail.append(obj_) obj_.original_tagname_ = 'ItemDetail' # end class ShippingContentsType class ItemDetailType(GeneratedsSuper): subclass = None superclass = None def __init__(self, Description=None, Quantity=None, Value=None, NetPounds=None, NetOunces=None, HSTariffNumber=None, CountryOfOrigin=None): self.original_tagname_ = None self.Description = Description self.Quantity = Quantity self.Value = Value self.NetPounds = NetPounds self.NetOunces = NetOunces self.HSTariffNumber = HSTariffNumber self.CountryOfOrigin = CountryOfOrigin def factory(*args_, **kwargs_): if CurrentSubclassModule_ is not None: subclass = getSubclassFromModule_( CurrentSubclassModule_, ItemDetailType) if subclass is not None: return subclass(*args_, **kwargs_) if ItemDetailType.subclass: return ItemDetailType.subclass(*args_, **kwargs_) else: return ItemDetailType(*args_, **kwargs_) factory = staticmethod(factory) def get_Description(self): return self.Description def set_Description(self, Description): self.Description = Description def get_Quantity(self): return self.Quantity def set_Quantity(self, Quantity): self.Quantity = Quantity def get_Value(self): return self.Value def set_Value(self, Value): self.Value = Value def get_NetPounds(self): return self.NetPounds def set_NetPounds(self, NetPounds): self.NetPounds = NetPounds def get_NetOunces(self): return self.NetOunces def set_NetOunces(self, NetOunces): self.NetOunces = NetOunces def get_HSTariffNumber(self): return self.HSTariffNumber def set_HSTariffNumber(self, HSTariffNumber): self.HSTariffNumber = HSTariffNumber def get_CountryOfOrigin(self): return self.CountryOfOrigin def set_CountryOfOrigin(self, CountryOfOrigin): self.CountryOfOrigin = CountryOfOrigin def hasContent_(self): if ( self.Description is not None or self.Quantity is not None or self.Value is not None or self.NetPounds is not None or self.NetOunces is not None or self.HSTariffNumber is not None or self.CountryOfOrigin is not None ): return True else: return False def export(self, outfile, level, namespace_='', name_='ItemDetailType', namespacedef_='', pretty_print=True): imported_ns_def_ = GenerateDSNamespaceDefs_.get('ItemDetailType') if imported_ns_def_ is not None: namespacedef_ = imported_ns_def_ if pretty_print: eol_ = '\n' else: eol_ = '' if self.original_tagname_ is not None: name_ = self.original_tagname_ showIndent(outfile, level, pretty_print) outfile.write('<%s%s%s' % (namespace_, name_, namespacedef_ and ' ' + namespacedef_ or '', )) already_processed = set() self.exportAttributes(outfile, level, already_processed, namespace_, name_='ItemDetailType') if self.hasContent_(): outfile.write('>%s' % (eol_, )) self.exportChildren(outfile, level + 1, namespace_='', name_='ItemDetailType', pretty_print=pretty_print) showIndent(outfile, level, pretty_print) outfile.write('</%s%s>%s' % (namespace_, name_, eol_)) else: outfile.write('/>%s' % (eol_, )) def exportAttributes(self, outfile, level, already_processed, namespace_='', name_='ItemDetailType'): pass def exportChildren(self, outfile, level, namespace_='', name_='ItemDetailType', fromsubclass_=False, pretty_print=True): if pretty_print: eol_ = '\n' else: eol_ = '' if self.Description is not None: showIndent(outfile, level, pretty_print) outfile.write('<Description>%s</Description>%s' % (self.gds_encode(self.gds_format_string(quote_xml(self.Description), input_name='Description')), eol_)) if self.Quantity is not None: showIndent(outfile, level, pretty_print) outfile.write('<Quantity>%s</Quantity>%s' % (self.gds_format_integer(self.Quantity, input_name='Quantity'), eol_)) if self.Value is not None: showIndent(outfile, level, pretty_print) outfile.write('<Value>%s</Value>%s' % (self.gds_format_float(self.Value, input_name='Value'), eol_)) if self.NetPounds is not None: showIndent(outfile, level, pretty_print) outfile.write('<NetPounds>%s</NetPounds>%s' % (self.gds_encode(self.gds_format_string(quote_xml(self.NetPounds), input_name='NetPounds')), eol_)) if self.NetOunces is not None: showIndent(outfile, level, pretty_print) outfile.write('<NetOunces>%s</NetOunces>%s' % (self.gds_format_integer(self.NetOunces, input_name='NetOunces'), eol_)) if self.HSTariffNumber is not None: showIndent(outfile, level, pretty_print) outfile.write('<HSTariffNumber>%s</HSTariffNumber>%s' % (self.gds_format_integer(self.HSTariffNumber, input_name='HSTariffNumber'), eol_)) if self.CountryOfOrigin is not None: showIndent(outfile, level, pretty_print) outfile.write('<CountryOfOrigin>%s</CountryOfOrigin>%s' % (self.gds_encode(self.gds_format_string(quote_xml(self.CountryOfOrigin), input_name='CountryOfOrigin')), eol_)) def build(self, node): already_processed = set() self.buildAttributes(node, node.attrib, already_processed) for child in node: nodeName_ = Tag_pattern_.match(child.tag).groups()[-1] self.buildChildren(child, node, nodeName_) return self def buildAttributes(self, node, attrs, already_processed): pass def buildChildren(self, child_, node, nodeName_, fromsubclass_=False): if nodeName_ == 'Description': Description_ = child_.text Description_ = self.gds_validate_string(Description_, node, 'Description') self.Description = Description_ elif nodeName_ == 'Quantity': sval_ = child_.text try: ival_ = int(sval_) except (TypeError, ValueError) as exp: raise_parse_error(child_, 'requires integer: %s' % exp) ival_ = self.gds_validate_integer(ival_, node, 'Quantity') self.Quantity = ival_ elif nodeName_ == 'Value': sval_ = child_.text try: fval_ = float(sval_) except (TypeError, ValueError) as exp: raise_parse_error(child_, 'requires float or double: %s' % exp) fval_ = self.gds_validate_float(fval_, node, 'Value') self.Value = fval_ elif nodeName_ == 'NetPounds': NetPounds_ = child_.text NetPounds_ = self.gds_validate_string(NetPounds_, node, 'NetPounds') self.NetPounds = NetPounds_ elif nodeName_ == 'NetOunces': sval_ = child_.text try: ival_ = int(sval_) except (TypeError, ValueError) as exp: raise_parse_error(child_, 'requires integer: %s' % exp) ival_ = self.gds_validate_integer(ival_, node, 'NetOunces') self.NetOunces = ival_ elif nodeName_ == 'HSTariffNumber': sval_ = child_.text try: ival_ = int(sval_) except (TypeError, ValueError) as exp: raise_parse_error(child_, 'requires integer: %s' % exp) ival_ = self.gds_validate_integer(ival_, node, 'HSTariffNumber') self.HSTariffNumber = ival_ elif nodeName_ == 'CountryOfOrigin': CountryOfOrigin_ = child_.text CountryOfOrigin_ = self.gds_validate_string(CountryOfOrigin_, node, 'CountryOfOrigin') self.CountryOfOrigin = CountryOfOrigin_ # end class ItemDetailType GDSClassesMapping = { } USAGE_TEXT = """ Usage: python <Parser>.py [ -s ] <in_xml_file> """ def usage(): print(USAGE_TEXT) sys.exit(1) def get_root_tag(node): tag = Tag_pattern_.match(node.tag).groups()[-1] rootClass = GDSClassesMapping.get(tag) if rootClass is None: rootClass = globals().get(tag) return tag, rootClass def parse(inFileName, silence=False): parser = None doc = parsexml_(inFileName, parser) rootNode = doc.getroot() rootTag, rootClass = get_root_tag(rootNode) if rootClass is None: rootTag = 'eVSCertifyRequest' rootClass = eVSCertifyRequest rootObj = rootClass.factory() rootObj.build(rootNode) # Enable Python to collect the space used by the DOM. doc = None if not silence: sys.stdout.write('<?xml version="1.0" ?>\n') rootObj.export( sys.stdout, 0, name_=rootTag, namespacedef_='', pretty_print=True) return rootObj def parseEtree(inFileName, silence=False): parser = None doc = parsexml_(inFileName, parser) rootNode = doc.getroot() rootTag, rootClass = get_root_tag(rootNode) if rootClass is None: rootTag = 'eVSCertifyRequest' rootClass = eVSCertifyRequest rootObj = rootClass.factory() rootObj.build(rootNode) # Enable Python to collect the space used by the DOM. doc = None mapping = {} rootElement = rootObj.to_etree(None, name_=rootTag, mapping_=mapping) reverse_mapping = rootObj.gds_reverse_node_mapping(mapping) if not silence: content = etree_.tostring( rootElement, pretty_print=True, xml_declaration=True, encoding="utf-8") sys.stdout.write(content) sys.stdout.write('\n') return rootObj, rootElement, mapping, reverse_mapping def parseString(inString, silence=False): '''Parse a string, create the object tree, and export it. Arguments: - inString -- A string. This XML fragment should not start with an XML declaration containing an encoding. - silence -- A boolean. If False, export the object. Returns -- The root object in the tree. ''' parser = None rootNode= parsexmlstring_(inString, parser) rootTag, rootClass = get_root_tag(rootNode) if rootClass is None: rootTag = 'eVSCertifyRequest' rootClass = eVSCertifyRequest rootObj = rootClass.factory() rootObj.build(rootNode) # Enable Python to collect the space used by the DOM. if not silence: sys.stdout.write('<?xml version="1.0" ?>\n') rootObj.export( sys.stdout, 0, name_=rootTag, namespacedef_='') return rootObj def parseLiteral(inFileName, silence=False): parser = None doc = parsexml_(inFileName, parser) rootNode = doc.getroot() rootTag, rootClass = get_root_tag(rootNode) if rootClass is None: rootTag = 'eVSCertifyRequest' rootClass = eVSCertifyRequest rootObj = rootClass.factory() rootObj.build(rootNode) # Enable Python to collect the space used by the DOM. doc = None if not silence: sys.stdout.write('#from eVSCertifyRequest.xsd import *\n\n') sys.stdout.write('import eVSCertifyRequest.xsd as model_\n\n') sys.stdout.write('rootObj = model_.rootClass(\n') rootObj.exportLiteral(sys.stdout, 0, name_=rootTag) sys.stdout.write(')\n') return rootObj def main(): args = sys.argv[1:] if len(args) == 1: parse(args[0]) else: usage() if __name__ == '__main__': #import pdb; pdb.set_trace() main() __all__ = [ "ContentType", "ExpressMailOptionsType", "ExtraServicesType", "ImageParametersType", "ItemDetailType", "LabelSequenceType", "ShippingContentsType", "eVSCertifyRequest" ]
import zipfile import re from django.utils.html import strip_tags from util.textcleanup import split_into_chunks, calculate_unique_score_for_chunk, remove_special_characters from util.handlequeries import build_query_result def get_queries(source, num_queries=3): scored_chunks = [] zip_data = zipfile.ZipFile(source).read('word/document.xml') try: # Word docs seem to always be encoded as UTF-8. # TODO Should really scan the encoding attribute, but for now just use this method xml = zip_data.decode('UTF-8') except UnicodeDecodeError: xml = zip_data.decode('ISO-8859-1') # Clean up the data - e.g. by replacing 'key' XML like linebreaks into actual linebreaks text = xml.replace('<w:br/>', " \r\n"); text = text.replace('</w:r></w:p></w:tc><w:tc>', " "); text = text.replace('</w:r><w:proofErr w:type="gramEnd"/></w:p>', " \r\n"); text = text.replace('</w:r></w:p>', " \r\n"); text = re.sub(r'<w:hyperlink.*?<w:t>(.*?)</w:t>.*?</w:hyperlink>', r' \1 ', text) # extract hyperlink text text = re.sub(r'<w:instrText.*?</w:instrText>', '', text) # remove 'instruction text' fields text = re.sub(r'HYPERLINK ".*?"', '', text) text = strip_tags(text) scored_chunks = [] for chunk in split_into_chunks(text, filter_poor_quality=True): score = calculate_unique_score_for_chunk(chunk) scored_chunks.append((remove_special_characters(chunk), score)) return build_query_result(scored_chunks, num_queries, source=text)
#!/usr/bin/env python3 # -*- coding: utf-8 -*- ''' Gobuster Module ''' import os import configparser import sys from core.config import cfg CFG = configparser.ConfigParser() CFG.read('config.ini') class GoBusterModule: '''Class GoBusterModule''' @staticmethod def display_wordlists_filenames(wordlist_dir): '''Get all wordlists filenames function''' i = 0 for root, dirs, files in os.walk(wordlist_dir): for filename in files: print(str(i) + ' - ' + filename) i = i+1 @staticmethod def get_selected_wordlist(wordlist_dir, number): '''Get the selected wordlist function''' i = 0 for root, dirs, files in os.walk(wordlist_dir): for filename in files: if int(number) == i: return filename i = i+1 return None @staticmethod def start_webfuzz(): '''Start webfuzz function''' output_dir = os.path.abspath('{}/{}'.format(cfg.get().output_dir, 'WEBFUZZ')) scan_all = CFG['GOBUSTER']['SCAN_ALL_WORDLISTS'] gobuster_path = CFG['GOBUSTER']['GOBUSTER_PATH'] gobuster_url_path = CFG['GOBUSTER']['GOBUSTER_URL_PATH'] gobuster_args = CFG['GOBUSTER']['ARGS'] wordlist_dir = os.path.abspath('core/modules/gobuster/wordlists/') cmd = '' if not os.path.exists(output_dir + gobuster_path): os.makedirs(output_dir + gobuster_path) if scan_all == 'Y': for root, dirs, files in os.walk(wordlist_dir): for filename in files: fullpath_file = '{}/{}'.format(wordlist_dir, filename) cmd = "cd {} && ./gobuster dir -u {}{} {} -w {} -k -o {}" \ .format(gobuster_path, cfg.get().url, gobuster_url_path, gobuster_args, fullpath_file, '{}/{}' .format(output_dir, filename)) os.system(cmd) elif scan_all == 'N': GoBusterModule.display_wordlists_filenames(wordlist_dir) print('Select your wordlist number:') number = input() if not number.isdigit(): print('error: you need to select a number') sys.exit(0) wordlist = GoBusterModule.get_selected_wordlist(wordlist_dir, number) print('Selected wordlist: {}'.format(wordlist)) fullpath_file = '{}/{}'.format(wordlist_dir, wordlist) cmd = "cd {} && ./gobuster dir -u {}{} {} -w {} -k -o {}" \ .format(gobuster_path, cfg.get().url, gobuster_url_path, gobuster_args, fullpath_file, '{}/{}' .format(output_dir, wordlist)) answer = 'Y' print('CMD: {}'.format(cmd)) print('Do you want to start it ? (Y/n)') answer = input() if 'Y' in answer or '' in answer: os.system(cmd) else: sys.exit(0) else: print('You need to configure your gobuster options correctly ' \ '(Y or N for the SCAN_ALL_WORDLISTS option)') sys.exit(0)
# # run all the regression tests # # [or, you can request specific ones by giving their names on the command line] # import sys import os import subprocess def system (cmd): fo = open ('/dev/null', 'wb') p = subprocess.Popen (cmd, shell=True, stdout=fo, stderr=subprocess.STDOUT) return os.waitpid (p.pid, 0)[1] def run_test (cmd, *args): cmd = PJ ('tests', cmd) p = subprocess.Popen ([cmd] + list(args), stdout=subprocess.PIPE) out = p.stdout.read() return out def test_t17(): lines = run_test ('t17').split ('\n') # we can't say anything about the address returned by malloc # but we should expect to read this number assert (lines[1] == '3141') # and the sizeof (pxll_int) is random too, since even on the same # platform we might compile 32 or 64 bit, so just ignore it. def test_t_dump_image(): # generate the output run_test ('t_dump_image') # load the image and run it exp0 = run_test ('t_dump_image','-l') exp1 = open ('tests/t_dump_image.exp').read() assert (exp0 == exp1) def test_t21(): out = run_test ('t21') exp = open ('gc.c').read() # make sure the first part matches the contents of gc.c assert (out[:len(exp)] == exp) # the chars are too hard to tests for, and unlikely to be wrong. # should really make a separate char test. def test_t22(): out = run_test ('t22') lines = out.split ('\n') assert (lines[0].count ('<closure pc=') == 5) r6 = [ str(x) for x in range (6) ] assert (lines[1:] == (r6 + r6 + ['#u', ''])) if not os.path.isfile ('parse/lexstep.scm'): print 'generating parse/lexstep.scm...' os.system ('(cd parse; python lexer.py)') def test_t_lex(): # needs to generate parse/lexstep.scm for this test to run. out = run_test ('t_lex') assert (out.split('\n')[-4:] == ['{u0 whitespace " "}', '{u0 string1 "\\"\\""}', '"done"', '']) def test_t_vm(): out = run_test ('t_vm', 'vm/tests/t11.byc') assert (out.split('\n')[-3:] == ['{u0 7}', '#u', '']) PJ = os.path.join if len(sys.argv) > 1: # run only these specific tests files = [x + '.scm' for x in sys.argv[1:]] else: files = os.listdir ('tests') # When looking for things that are broken, I prefer to work with the smallest # test that reproduces a problem. Thus, run the tests in source-size order... files = [ (os.stat(PJ ('tests', x)).st_size, x) for x in files ] files.sort() # tests that need special handling special = [x[5:] for x in dir() if x.startswith ('test_')] failed = [] succeeded = 0 for size, file in files: if file.endswith ('.scm'): base, ext = os.path.splitext (file) path = os.path.join ('tests', file) print 'compiling', path fail = file.startswith ('f') # XXX need to make 'special' tests such that they can compile with # custom flags (e.g. t_stl). code = system ('self/compile %s' % (path,)) print 'code=', code if code == 0: if fail: failed.append ((base, 'compile did not fail like expected')) else: if base not in special: out = run_test (base) exp_path = PJ ('tests', base + '.exp') if os.path.isfile (exp_path): exp = open (exp_path).read() if out != exp: failed.append ((base, 'did not match expected output')) #raise ValueError ("oops - output didn't match on test '%s'" % (base,)) else: succeeded += 1 else: succeeded += 1 else: # tests that require special handling for whatever reason. try: eval ('test_%s()' % (base,)) except: failed.append ((base, 'assertion failed')) else: succeeded += 1 else: if not fail: failed.append ((base, 'did not compile')) print '%d tests passed' % succeeded if len(failed): print '%d tests failed!!' % (len(failed)) for base, reason in failed: print base, reason
''' Created on Aug 25, 2016 @author: David Zwicker <dzwicker@seas.harvard.edu> ''' from __future__ import division import copy import unittest import tempfile import numpy as np from .. import cache from ...testing import deep_getsizeof class TestCache(unittest.TestCase): """ test collection for caching methods """ _multiprocess_can_split_ = True # let nose know that tests can run parallel def get_serialization_methods(self, with_none=True): """ returns possible methods for serialization that are supported """ methods = ['json', 'pickle'] if with_none: methods.append(None) # check whether yaml is actually available try: import yaml # @UnusedImport except ImportError: pass else: methods.append('yaml') return methods def test_hashes(self): """ test whether the hash key makes sense """ class Dummy(object): def __init__(self, value): self.value = value def __hash__(self): return self.value for f in (cache.hash_mutable, cache.hash_readable): # test simple objects for obj in (1, 1.2, 'a', (1, 2), [1, 2], {1, 2}, {1: 2}, {(1, 2): [2, 3], (1, 3): [1, 2]}, Dummy(1), np.arange(5)): o2 = copy.deepcopy(obj) self.assertEqual(f(obj), f(o2), msg='Hash different for `%s`' % str(obj)) # make sure different objects get different hash self.assertNotEqual(1, '1') self.assertNotEqual('a', 'b') self.assertNotEqual({1, 2}, (1, 2)) def test_serializer_nonsense(self): """ test whether errors are thrown for wrong input """ with self.assertRaises(ValueError): cache.make_serializer('non-sense') with self.assertRaises(ValueError): cache.make_unserializer('non-sense') def test_serializer(self): """ tests whether the make_serializer returns a canonical hash """ methods = self.get_serialization_methods() for method in methods: encode = cache.make_serializer(method) self.assertEqual(encode(1), encode(1)) self.assertNotEqual(encode([1, 2, 3]), encode([2, 3, 1])) if method != 'json': # json cannot encode sets self.assertEqual(encode({1, 2, 3}), encode({2, 3, 1})) # test special serializer encode = cache.make_serializer('hash_mutable') self.assertEqual(encode({'a': 1, 'b': 2}), encode({'b': 2, 'a': 1})) def test_unserializer(self): """ tests whether the make_serializer and make_unserializer return the original objects """ methods = self.get_serialization_methods() data_list = [None, 1, [1, 2], {'b': 1, 'a': 2}] for method in methods: encode = cache.make_serializer(method) decode = cache.make_unserializer(method) for data in data_list: self.assertEqual(data, decode(encode(data))) def test_DictFiniteCapacity(self): """ tests the DictFiniteCapacity class """ data = cache.DictFiniteCapacity(capacity=2) data['a'] = 1 self.assertTrue(len(data), 1) data['b'] = 2 self.assertTrue(len(data), 2) data['c'] = 3 self.assertTrue(len(data), 2) with self.assertRaises(KeyError): data['a'] data.update({'d': 4}) self.assertTrue(len(data), 2) with self.assertRaises(KeyError): data['b'] def test_PersistentDict(self): """ tests the PersistentDict class """ db = tempfile.NamedTemporaryFile() data = cache.PersistentDict(db.name) with self.assertRaises(TypeError): data[1] with self.assertRaises(TypeError): _ = 1 in data with self.assertRaises(TypeError): data['a'] = 1 with self.assertRaises(TypeError): del data[1] data[b'a'] = b'1' self.assertEqual(len(data), 1) data[b'b'] = b'2' self.assertEqual(len(data), 2) del data[b'a'] self.assertEqual(len(data), 1) with self.assertRaises(KeyError): data[b'a'] data.update({b'd': b'4'}) self.assertTrue(len(data), 2) # reinitialize the dictionary data = cache.PersistentDict(db.name) self.assertEqual(len(data), 2) self.assertEqual(data[b'b'], b'2') self.assertTrue(b'd' in data) self.assertEqual({b'b', b'd'}, set(data.keys())) self.assertEqual({b'2', b'4'}, set(data.values())) data.clear() self.assertEqual(len(data), 0) # reinitialize the dictionary data = cache.PersistentDict(db.name) self.assertEqual(len(data), 0) def _test_SerializedDict(self, storage, reinitialize=None, key_serialization='pickle', value_serialization='pickle'): """ tests the SerializedDict class with a particular parameter set """ msg = 'Serializers: key: %s, value: %s' % (key_serialization, value_serialization) data = cache.SerializedDict(key_serialization, value_serialization, storage_dict=storage) if value_serialization == 'none': with self.assertRaises(TypeError): data['a'] = 1 v1, v2, v3 = '1', '2', '3' else: v1, v2, v3 = 1, 2, '3' data['a'] = v1 self.assertEqual(len(data), v1, msg=msg) data['b'] = v2 self.assertEqual(data['b'], v2, msg=msg) self.assertEqual(len(data), v2, msg=msg) del data['a'] self.assertEqual(len(data), v1, msg=msg) with self.assertRaises(KeyError): data['a'] data.update({'d': v3}) self.assertEqual(len(data), v2, msg=msg) # reinitialize the storage dictionary if reinitialize is not None: data._data = reinitialize() self.assertEqual(len(data), v2, msg=msg) self.assertEqual(data['b'], v2, msg=msg) self.assertTrue('d' in data, msg=msg) self.assertEqual({'b', 'd'}, set(data.keys()), msg=msg) self.assertEqual({v2, v3}, set(data.values()), msg=msg) data.clear() self.assertEqual(len(data), 0, msg=msg) # reinitialize the dictionary if reinitialize is not None: data._data = reinitialize() self.assertEqual(len(data), 0, msg=msg) def test_SerializedDict(self): """ tests the SerializedDict class """ serializers = self.get_serialization_methods(with_none=False) # test different storage types for storage_type in ('none', 'dict', 'persistent_dict'): if storage_type == 'none': storage = None reinitialize = None elif storage_type == 'dict': storage = {} def reinitialize(): return storage elif storage_type == 'persistent_dict': db = tempfile.NamedTemporaryFile() storage = cache.PersistentDict(db.name) def reinitialize(): return cache.PersistentDict(db.name) else: raise ValueError('Unknown storage type `%s`' % storage_type) # test different serialization methods for key_serializer in serializers: for value_serializer in serializers: self._test_SerializedDict( storage=storage, reinitialize=reinitialize, key_serialization=key_serializer, value_serialization=value_serializer ) if storage is not None: storage.clear() def _test_property_cache(self, cache_storage): """ test cached_property decorator """ # create test class class CacheTest(object): """ class for testing caching """ def __init__(self): self.counter = 0 def get_finite_dict(self, n): return cache.DictFiniteCapacity(capacity=1) @property def uncached(self): self.counter += 1 return 1 def cached(self): self.counter += 1 return 2 # apply the cache with the given storage if cache_storage is None: decorator = cache.cached_property() else: decorator = cache.cached_property(cache_storage) CacheTest.cached = decorator(CacheTest.cached) # try to objects to make sure caching is done on the instance level for obj in [CacheTest(), CacheTest()]: # test uncached method self.assertEqual(obj.uncached, 1) self.assertEqual(obj.counter, 1) self.assertEqual(obj.uncached, 1) self.assertEqual(obj.counter, 2) obj.counter = 0 # test cached methods self.assertEqual(obj.cached, 2) self.assertEqual(obj.counter, 1) self.assertEqual(obj.cached, 2) self.assertEqual(obj.counter, 1) def test_property_cache(self): """ test cached_property decorator """ for cache_storage in [None, "get_finite_dict"]: self._test_property_cache(cache_storage) def _test_method_cache(self, serializer, cache_factory=None): """ test one particular parameter set of the cached_method decorator """ # create test class class CacheTest(object): """ class for testing caching """ def __init__(self): self.counter = 0 def get_finite_dict(self, name): return cache.DictFiniteCapacity(capacity=1) def uncached(self, arg): self.counter += 1 return arg @cache.cached_method(hash_function=serializer, factory=cache_factory) def cached(self, arg): self.counter += 1 return arg @cache.cached_method(hash_function=serializer, factory=cache_factory) def cached_kwarg(self, a=0, b=0): self.counter += 1 return a + b # test what happens when the decorator is applied wrongly with self.assertRaises(ValueError): cache.cached_method(CacheTest.cached) # try to objects to make sure caching is done on the instance level and # that clearing the cache works obj1, obj2 = CacheTest(), CacheTest() for k, obj in enumerate([obj1, obj2, obj1]): # clear the cache before the first and the last pass if k == 0 or k == 2: CacheTest.cached.clear_cache_of_obj(obj) CacheTest.cached_kwarg.clear_cache_of_obj(obj) obj.counter = 0 # test uncached method self.assertEqual(obj.uncached(1), 1) self.assertEqual(obj.counter, 1) self.assertEqual(obj.uncached(1), 1) self.assertEqual(obj.counter, 2) obj.counter = 0 # test cached methods for method in (obj.cached, obj.cached_kwarg): # run twice to test clearing the cache for _ in (None, None): # test simple caching behavior self.assertEqual(method(1), 1) self.assertEqual(obj.counter, 1) self.assertEqual(method(1), 1) self.assertEqual(obj.counter, 1) self.assertEqual(method(2), 2) self.assertEqual(obj.counter, 2) self.assertEqual(method(2), 2) self.assertEqual(obj.counter, 2) # test special properties of cache_factories if cache_factory is None: self.assertEqual(method(1), 1) self.assertEqual(obj.counter, 2) elif cache_factory == 'get_finite_dict': self.assertEqual(method(1), 1) self.assertEqual(obj.counter, 3) else: raise ValueError('Unknown cache_factory `%s`' % cache_factory) obj.counter = 0 # clear cache to test the second run method.clear_cache_of_obj(obj) # test complex cached method self.assertEqual(obj.cached_kwarg(1, b=2), 3) self.assertEqual(obj.counter, 1) self.assertEqual(obj.cached_kwarg(1, b=2), 3) self.assertEqual(obj.counter, 1) self.assertEqual(obj.cached_kwarg(2, b=2), 4) self.assertEqual(obj.counter, 2) self.assertEqual(obj.cached_kwarg(2, b=2), 4) self.assertEqual(obj.counter, 2) self.assertEqual(obj.cached_kwarg(1, b=3), 4) self.assertEqual(obj.counter, 3) self.assertEqual(obj.cached_kwarg(1, b=3), 4) self.assertEqual(obj.counter, 3) def _test_method_cache_extra_args(self, serializer, cache_factory=None): """ test extra arguments in the cached_method decorator """ # create test class class CacheTest(object): """ class for testing caching """ def __init__(self, value=0): self.counter = 0 self.value = 0 def get_finite_dict(self, name): return cache.DictFiniteCapacity(capacity=1) @cache.cached_method(hash_function=serializer, extra_args=['value'], factory=cache_factory) def cached(self, arg): self.counter += 1 return self.value + arg obj = CacheTest(0) # test simple caching behavior self.assertEqual(obj.cached(1), 1) self.assertEqual(obj.counter, 1) self.assertEqual(obj.cached(1), 1) self.assertEqual(obj.counter, 1) self.assertEqual(obj.cached(2), 2) self.assertEqual(obj.counter, 2) self.assertEqual(obj.cached(2), 2) self.assertEqual(obj.counter, 2) obj.value = 10 # test simple caching behavior self.assertEqual(obj.cached(1), 11) self.assertEqual(obj.counter, 3) self.assertEqual(obj.cached(1), 11) self.assertEqual(obj.counter, 3) self.assertEqual(obj.cached(2), 12) self.assertEqual(obj.counter, 4) self.assertEqual(obj.cached(2), 12) self.assertEqual(obj.counter, 4) def _test_method_cache_ignore(self, serializer, cache_factory=None): """ test ignored parameters of the cached_method decorator """ # test two different ways of ignoring arguments for ignore_args in ['display', ['display']]: # create test class class CacheTest(object): """ class for testing caching """ def __init__(self): self.counter = 0 def get_finite_dict(self, name): return cache.DictFiniteCapacity(capacity=1) @cache.cached_method(serializer=serializer, ignore_args=ignore_args, factory=cache_factory) def cached(self, arg, display=True): return arg obj = CacheTest() # test simple caching behavior self.assertEqual(obj.cached(1, True), 1) self.assertEqual(obj.counter, 1) self.assertEqual(obj.cached(1, True), 1) self.assertEqual(obj.counter, 1) self.assertEqual(obj.cached(1, False), 1) self.assertEqual(obj.counter, 1) self.assertEqual(obj.cached(2, True), 2) self.assertEqual(obj.counter, 2) self.assertEqual(obj.cached(2, False), 2) self.assertEqual(obj.counter, 2) self.assertEqual(obj.cached(2, False), 2) self.assertEqual(obj.counter, 2) def test_method_cache(self): """ test the cached_method decorator with several parameters """ for serializer in self.get_serialization_methods(with_none=False): for cache_factory in [None, 'get_finite_dict']: self._test_method_cache(serializer, cache_factory) self._test_method_cache_extra_args(serializer, cache_factory) self._test_method_cache_extra_args(serializer, cache_factory) def test_cache_clearing(self): """ make sure that memory is freed when cache is cleared """ class Test(object): """ simple test object with a cache """ @cache.cached_method() def calc(self, n): return np.empty(n) def clear_cache(self): self._cache_methods = {} def clear_specific(self): self.calc.clear_cache_of_obj(self) t = Test() mem0 = deep_getsizeof(t) for clear_cache in (t.clear_cache, t.clear_specific): t.calc(100) mem1 = deep_getsizeof(t) self.assertGreater(mem1, mem0) t.calc(200) mem2 = deep_getsizeof(t) self.assertGreater(mem2, mem1) t.calc(100) mem3 = deep_getsizeof(t) self.assertEqual(mem3, mem2) clear_cache() mem4 = deep_getsizeof(t) self.assertGreaterEqual(mem4, mem0) self.assertGreaterEqual(mem1, mem4) def test_clear_cache_decorator(self): """ make sure that memory is freed when cache is cleared """ @cache.add_clear_cache_method class Test(object): """ simple test object with a cache """ @cache.cached_method() def calc(self, n): return np.empty(n) t = Test() mem0 = deep_getsizeof(t) t.calc(100) mem1 = deep_getsizeof(t) self.assertGreater(mem1, mem0) t.calc(200) mem2 = deep_getsizeof(t) self.assertGreater(mem2, mem1) t.calc(100) mem3 = deep_getsizeof(t) self.assertEqual(mem3, mem2) t.clear_cache() mem4 = deep_getsizeof(t) self.assertGreaterEqual(mem4, mem0) self.assertGreaterEqual(mem1, mem4) def test_CachedArray(self): """ test the CachedArray class """ for value in (None, 0, 1): array_cache = cache.CachedArray(value=value) a = array_cache((2, 2)) b = array_cache((2, 2)) self.assertIs(a, b) b = array_cache((2, 3)) b = array_cache((2, 2)) self.assertIsNot(a, b) if value is not None: np.testing.assert_equal(a, value) np.testing.assert_equal(b, value) if __name__ == "__main__": unittest.main()
#!/usr/bin/env python # -*- coding: utf-8 -*- __autor__ = u'Juan Beresiarte' from math import sqrt try: input = raw_input except NameError: pass def Tpitagoras(Hipotenusa=None, Cateto1=None, Cateto2=None): if Hipotenusa == None: return sqrt(Cateto1**2 + Cateto2**2) elif Cateto1 == None: return sqrt(Hipotenusa**2 - Cateto2**2) else: return sqrt(Hipotenusa**2 - Cateto1**2) # _______________________________________________, # Este modulo depende del modulo math | # En caso de no tener la libreria ingresar: | # Python - pip install math | # Python3 - pip3 install math | # _______________________________________________|
import exercises as e from itertools import islice import unittest class GeneratorTests(unittest.TestCase): # Uloha 1: def test_square_generator(self): self.assertNotIsInstance(e.square_generator(range(7)), list) self.assertEqual(list(e.square_generator(range(7))), [0,1,4,9,16,25,36]) # Uloha 2: def test_square_map(self): self.assertNotIsInstance(e.square_map(range(7)), list) self.assertEqual(list(e.square_map(range(7))), [0,1,4,9,16,25,36]) # Uloha 3: def test_square_comprehension(self): self.assertNotIsInstance(e.square_comprehension(range(7)), list) self.assertEqual(list(e.square_comprehension(range(7))), [0,1,4,9,16,25,36]) # Uloha 4: def test_cycle(self): self.assertEqual(list(islice(e.cycle([1,2,3]), 7)), [1,2,3,1,2,3,1]) # Uloha 5: def test_factorial(self): self.assertEqual(list(islice(e.factorial(),6)), [1, 2, 6, 24, 120, 720]) # Uloha 6: def test_digits(self): self.assertEqual(list(e.digits(123450, 10)), [0, 5, 4, 3, 2, 1]) self.assertEqual(list(e.digits(0, 10)), [0]) self.assertEqual(list(e.digits(8, 2)), [0, 0, 0, 1]) # Uloha 7: def test_factorial_digit_sum(self): self.assertEqual(e.factorial_digit_sum(10), 27) self.assertEqual(e.factorial_digit_sum(101), 639) # Uloha 8: def test_my_range(self): self.assertEqual(list(e.my_range(0,10)), list(range(0, 10))) self.assertEqual(list(e.my_range(0, 10, 2)), list(range(0, 10, 2))) self.assertEqual(list(e.my_range(0, 10, 3)), list(range(0, 10, 3))) # Uloha 9: def test_my_range_negative(self): self.assertEqual(list(e.my_range_negative(0,10)), list(range(0, 10))) self.assertEqual(list(e.my_range_negative(0, 10, 2)), list(range(0, 10, 2))) self.assertEqual(list(e.my_range_negative(0, 10, 3)), list(range(0, 10, 3))) self.assertEqual(list(e.my_range_negative(10, 0, -1)), list(range(10, 0, -1))) self.assertEqual(list(e.my_range_negative(10, 0, -3)), list(range(10, 0, -3))) # Uloha 10: def test_items(self): dictionary = {'a':1, 'b':2, 'c':3, 'd':4} self.assertEqual(list(e.items(dictionary)), list(dictionary.items())) # Uloha 11: def test_pseudorandom(self): self.assertEqual(list(islice(e.pseudorandom(9, 2, 0, 1), 6)), [2, 4, 8, 7, 5, 1]) # Uloha 12: def test_sample(self): self.assertEqual(list(islice(e.sample(['a',1,2,3,4,5,6,7,8,9]), 20)), ['a', 5, 4, 1, 4, 9, 2, 5, 6, 7, 8, 1, 6, 1, 8, 1, 6, 9, 2, 9]) # Uloha 13: def test_sample_no_rep(self): items = ['a',1,2,3,4,5,6,7,8,9] self.assertEqual(set(islice(e.sample_no_rep(items), 9)), set(['a', 4, 6, 7, 8, 9, 1, 2, 3])) self.assertEqual(set(items), set(['a',1,2,3,4,5,6,7,8,9])) self.assertEqual(set(islice(e.sample_no_rep(items), 20)), set(['a', 4, 6, 7, 8, 9, 1, 2, 3, 5])) # Uloha 14: def test_primes(self): self.assertEqual(list(islice(e.primes(), 5)), [2,3,5,7,11]) # Uloha 15: def test_primes_memory(self): self.assertEqual(list(islice(e.primes_memory(), 5)), [2,3,5,7,11]) # Uloha 16: def test_nth_prime(self): self.assertEqual(e.nth_prime(1), 2) self.assertEqual(e.nth_prime(100), 541) # Uloha 17: def test_pairs(self): self.assertEqual(list(e.pairs([1, 2, 3, 4], ['a', 'b', 'c', 'd'])), [(1, 'a'), (2, 'b'), (3, 'c'), (4, 'd')]) # Uloha 18: def test_groups(self): self.assertEqual(list(e.groups([1, 2, 3, 4], ['a', 'b', 'c', 'd'], 'xyz')), [(1, 'a', 'x'), (2, 'b', 'y'), (3, 'c', 'z')]) # Uloha 19: def test_trange(self): self.assertEqual(list(e.trange((10, 10, 10), (13, 50, 15), (0, 15, 12))), [(10, 10, 10), (10, 25, 22), (10, 40, 34), (10, 55, 46), (11, 10, 58), (11, 26, 10), (11, 41, 22), (11, 56, 34), (12, 11, 46), (12, 26, 58), (12, 42, 10), (12, 57, 22), (13, 12, 34), (13, 27, 46), (13, 42, 58)]) # Uloha 20: def test_k_permutations(self): self.assertEqual(list(e.k_permutations(['a', 'b', 'c', 'd'], 3)), [['a', 'b', 'c'], ['a', 'b', 'd'], ['a', 'c', 'b'], ['a', 'c', 'd'], ['a', 'd', 'b'], ['a', 'd', 'c'], ['b', 'a', 'c'], ['b', 'a', 'd'], ['b', 'c', 'a'], ['b', 'c', 'd'], ['b', 'd', 'a'], ['b', 'd', 'c'], ['c', 'a', 'b'], ['c', 'a', 'd'], ['c', 'b', 'a'], ['c', 'b', 'd'], ['c', 'd', 'a'], ['c', 'd', 'b'], ['d', 'a', 'b'], ['d', 'a', 'c'], ['d', 'b', 'a'], ['d', 'b', 'c'], ['d', 'c', 'a'], ['d', 'c', 'b']]) if __name__ == '__main__': unittest.main()
# -*- coding: utf-8 -*- import h5py import collections def runSubsetInputs(self): ''' This step reads the subset information - freq, pol and spatial. ''' state = self.state subset_dict = self.get_value(['runconfig', 'groups', 'processing', 'input_subset', 'list_of_frequencies']) if isinstance(subset_dict, str): state.subset_dict = collections.OrderedDict() state.subset_dict[subset_dict] = None elif not subset_dict: state.subset_dict = collections.OrderedDict() state.subset_dict['A'] = None state.subset_dict['B'] = None else: state.subset_dict = collections.OrderedDict(subset_dict) if 'outputList' not in state.__dir__(): state.outputList = collections.OrderedDict() self._radar_grid_list = collections.OrderedDict() for frequency in state.subset_dict.keys(): if not state.subset_dict[frequency]: current_key = (f'//science/LSAR/SLC/swaths/' f'frequency{frequency}/listOfPolarizations') hdf5_obj = h5py.File(state.input_hdf5, 'r') state.subset_dict[frequency] = [s.decode() for s in hdf5_obj[current_key]] hdf5_obj.close() # Get radar grid radar_grid = self.slc_obj.getRadarGrid(frequency) self._radar_grid_list[frequency] = radar_grid # Prepare outputList dict if frequency not in state.outputList.keys(): state.outputList[frequency] = [] # end of file
from typing import Optional from posthog.constants import ( BIN_COUNT, DISPLAY, FUNNEL_FROM_STEP, FUNNEL_ORDER_TYPE, FUNNEL_STEP, FUNNEL_TO_STEP, FUNNEL_VIZ_TYPE, FUNNEL_WINDOW_DAYS, INSIGHT, INSIGHT_FUNNELS, TRENDS_LINEAR, FunnelOrderType, FunnelVizType, ) from posthog.models.filters.mixins.base import BaseParamMixin from posthog.models.filters.mixins.utils import cached_property, include_dict class FunnelFromToStepsMixin(BaseParamMixin): @cached_property def funnel_from_step(self) -> Optional[int]: if self._data.get(FUNNEL_FROM_STEP): return int(self._data[FUNNEL_FROM_STEP]) return None @cached_property def funnel_to_step(self) -> Optional[int]: if self._data.get(FUNNEL_TO_STEP): return int(self._data[FUNNEL_TO_STEP]) return None @include_dict def funnel_from_to_steps_to_dict(self): dict_part = {} if self.funnel_from_step: dict_part[FUNNEL_FROM_STEP] = self.funnel_from_step if self.funnel_to_step: dict_part[FUNNEL_TO_STEP] = self.funnel_to_step return dict_part class FunnelWindowDaysMixin(BaseParamMixin): @cached_property def funnel_window_days(self) -> Optional[int]: _days = int(self._data.get(FUNNEL_WINDOW_DAYS, "0")) if _days == 0: return None return _days @include_dict def funnel_window_days_to_dict(self): return {FUNNEL_WINDOW_DAYS: self.funnel_window_days} if self.funnel_window_days else {} @staticmethod def milliseconds_from_days(days): milliseconds, seconds, minutes, hours = [1000, 60, 60, 24] return milliseconds * seconds * minutes * hours * days @staticmethod def microseconds_from_days(days): microseconds = 1000 return microseconds * FunnelWindowDaysMixin.milliseconds_from_days(days) class FunnelPersonsStepMixin(BaseParamMixin): # first step is 0 # -1 means dropoff into step 1 @cached_property def funnel_step(self) -> Optional[int]: _step = int(self._data.get(FUNNEL_STEP, "0")) if _step == 0: return None return _step @include_dict def funnel_step_to_dict(self): return {FUNNEL_STEP: self.funnel_step} if self.funnel_step else {} class FunnelTypeMixin(BaseParamMixin): @cached_property def funnel_order_type(self) -> Optional[FunnelOrderType]: return self._data.get(FUNNEL_ORDER_TYPE) @cached_property def funnel_viz_type(self) -> Optional[FunnelVizType]: funnel_viz_type = self._data.get(FUNNEL_VIZ_TYPE) if ( funnel_viz_type is None and self._data.get(INSIGHT) == INSIGHT_FUNNELS and self._data.get(DISPLAY) == TRENDS_LINEAR ): # Backwards compatibility # Before Filter.funnel_viz_type funnel trends were indicated by Filter.display being TRENDS_LINEAR return FunnelVizType.TRENDS return funnel_viz_type @include_dict def funnel_type_to_dict(self): result = {} if self.funnel_order_type: result[FUNNEL_ORDER_TYPE] = self.funnel_order_type if self.funnel_viz_type: result[FUNNEL_VIZ_TYPE] = self.funnel_viz_type return result class HistogramMixin(BaseParamMixin): @cached_property def bin_count(self) -> Optional[int]: bin_count = self._data.get(BIN_COUNT) return int(bin_count) if bin_count else None @include_dict def histogram_to_dict(self): return {"bin_count": self.bin_count} if self.bin_count else {}
#!/usr/bin/env python3 import argparse import logging import os import sys from wwpdb.utils.dp.electron_density.common_functions import convert_mdb_to_binary_cif, run_command_and_check_output_file logger = logging.getLogger() class EmVolumes: def __init__( self, em_map, node_path, volume_server_pack_path, volume_server_query_path, binary_map_out, working_dir, ): self.em_map = em_map self.em_map_name = os.path.basename(em_map) self.mdb_map = "em_map.mdb" self.node_path = node_path self.volume_server_pack_path = volume_server_pack_path self.volume_server_query_path = volume_server_query_path self.mdb_map_path = None self.bcif_map_path = binary_map_out self.workdir = working_dir if working_dir else os.getcwd() def run_conversion(self): bcif_dir_out = os.path.dirname(self.bcif_map_path) if bcif_dir_out: if not os.path.exists(bcif_dir_out): os.makedirs(bcif_dir_out) logging.debug("temp working folder: %s", self.workdir) self.mdb_map_path = os.path.join(self.workdir, self.mdb_map) worked = self.make_volume_server_map() if worked: worked = self.convert_map_to_binary_cif() return worked def make_volume_server_map(self): if os.path.exists(self.em_map): command = "%s %s em %s %s" % (self.node_path, self.volume_server_pack_path, self.em_map, self.mdb_map_path) logging.debug(command) return run_command_and_check_output_file(command=command, process_name="make Volume server map", workdir=self.workdir, output_file=self.mdb_map_path) else: logging.error("input map file missing: %s", self.em_map) return False def convert_map_to_binary_cif(self): return convert_mdb_to_binary_cif( node_path=self.node_path, volume_server_query_path=self.volume_server_query_path, map_id="em_volume", source_id="em", output_file=self.bcif_map_path, working_dir=self.workdir, mdb_map_path=self.mdb_map_path, detail=1, ) def main(): # pragma: no cover parser = argparse.ArgumentParser() parser.add_argument("--em_map", help="EM map", type=str, required=True) parser.add_argument("--working_dir", help="working dir", type=str, required=True) parser.add_argument("--binary_map_out", help="Output filename of binary map", type=str, required=True) parser.add_argument("--node_path", help="path to node", type=str, required=True) parser.add_argument("--volume_server_pack_path", help="path to volume-server-pack", type=str, required=True) parser.add_argument("--volume_server_query_path", help="path to volume-server-query", type=str, required=True) parser.add_argument("--keep_working_directory", help="keep working directory", action="store_true") parser.add_argument("--debug", help="debugging", action="store_const", dest="loglevel", const=logging.DEBUG, default=logging.INFO) args = parser.parse_args() logger.setLevel(args.loglevel) if not sys.argv[1:]: parser.print_help() exit() em = EmVolumes( em_map=args.em_map, node_path=args.node_path, volume_server_pack_path=args.volume_server_pack_path, volume_server_query_path=args.volume_server_query_path, binary_map_out=args.binary_map_out, working_dir=args.working_dir, ) worked = em.run_conversion() logging.info("EM map conversion worked: {}".format(worked)) # pylint: disable=logging-format-interpolation if not worked: sys.exit(1) if __name__ == "__main__": main()
# -*- coding: utf-8 -*- import asyncio from datetime import datetime, timedelta import discord import toml from discord.ext import commands class Rollback(Exception): pass class DBUtils(commands.Cog): def __init__(self, bot): super().__init__() self.bot = bot # ===================== # # ======= CACHE ======= # # ===================== # async def load_scan_channels(self): async with self.bot.db.acquire() as conn: record = await conn.fetch("SELECT channel_id FROM scan_channels WHERE active") return [x['channel_id'] for x in record] async def load_reviewer_channels(self): async with self.bot.db.acquire() as conn: record = await conn.fetch("SELECT user_id,channel_id FROM reviewers WHERE active") return [dict(x) for x in record] # ====================== # # ======= CHECKS ======= # # ====================== # async def has_empty_queue(self, user_id: int): async with self.bot.db.acquire() as conn: record = await conn.fetchrow( """ SELECT COUNT(*) FROM review_log WHERE user_id = $1 """, user_id ) return record['count'] != 0 # ======================== # # ======= REVIEWER ======= # # ======================== # async def add_reviewer(self, user_id: int, channel_id: int): async with self.bot.db.acquire() as conn: async with conn.transaction(): await conn.fetch( """ INSERT INTO reviewers (user_id, channel_id) VALUES ($1, $2) """, user_id, channel_id ) async def remove_reviewer(self, user_id: int): async with self.bot.db.acquire() as conn: async with conn.transaction(): await conn.fetch( """ UPDATE reviewers SET active = FALSE WHERE user_id = $1 """, user_id ) # ===================== # # ======= SCORE ======= # # ===================== # async def get_score(self, score_id: int): async with self.bot.db.acquire() as conn: record = await conn.fetchrow( """ SELECT insult, severe_toxic, identity_hate, threat, nsfw FROM scores WHERE id = $1 """, score_id ) return record async def add_score(self, scanned_content: str, scores: dict): async with self.bot.db.acquire() as conn: async with conn.transaction(): record = await conn.fetchrow( """ INSERT INTO scores (scanned_content, insult, severe_toxic, identity_hate, threat, nsfw) VALUES ($1, $2::REAL, $3::REAL, $4::REAL, $5::REAL, $6::REAL) RETURNING id """, scanned_content, scores['insult'], scores['severe_toxic'], scores['identity_hate'], scores['threat'], scores['nsfw'] ) return record['id'] # ====================== # # === REVIEW MESSAGE === # # ====================== # async def add_review_message(self, scanned_content: str, scores: dict): score_id = await self.add_score(scanned_content, scores) async with self.bot.db.acquire() as conn: async with conn.transaction(): record = await conn.fetchrow( """ INSERT INTO review_messages (score_id, clean_content) VALUES ($1, $2) RETURNING * """, score_id, scanned_content ) return record['id'] async def get_review_message(self, message_id, user_id): async with self.bot.db.acquire() as conn: record = await conn.fetchrow( """ SELECT review_id, clean_content FROM review_log INNER JOIN review_messages ON id = review_id WHERE message_id = $1 AND user_id = $2 AND review_log.active """, message_id, user_id ) return record async def edit_review_message(self, review_id, clean_content: str): async with self.bot.db.acquire() as conn: async with conn.transaction(): await conn.fetch( """ UPDATE review_messages SET clean_content = $2, in_sanitize = FALSE WHERE id = $1 """, review_id, clean_content ) await conn.fetch( """ DELETE FROM review_log WHERE review_id = $1 """, review_id ) async def delete_active_review_message(self, user_id): async with self.bot.db.acquire() as conn: await conn.fetch( """ DELETE FROM review_log WHERE user_id = $1 AND active """, user_id ) # ====================== # # ==== REVIEW QUEUE ==== # # ====================== # async def find_empty_queues(self): async with self.bot.db.acquire() as conn: record = await conn.fetch( """ SELECT user_id, channel_id FROM reviewers r WHERE NOT EXISTS( SELECT * FROM review_log WHERE user_id = r.user_id AND active ); """ ) return record async def pop_review_queue(self, user_id: int): async with self.bot.db.acquire() as conn: record = await conn.fetchrow( """ SELECT * FROM review_messages r WHERE in_sanitize = FALSE AND active AND NOT EXISTS( SELECT * FROM review_log WHERE user_id = $1 AND review_id = r.id AND active = FALSE ) AND NOT r.id IN ( SELECT review_id FROM review_log GROUP BY review_id HAVING COUNT(*) >= $2 ) ORDER BY r.id ASC """, user_id, self.bot.config.get('min_votes') ) return record async def get_active_queue_messages(self, review_id: int): async with self.bot.db.acquire() as conn: record = await conn.fetch( """ SELECT message_id,review_log.user_id,channel_id FROM review_log INNER JOIN reviewers ON review_log.user_id = reviewers.user_id WHERE review_id = $1 AND review_log.active = TRUE """, review_id ) return record # ====================== # # ===== REVIEW LOG ===== # # ====================== # async def add_review_log(self, review_id: int, user_id: int, message_id: int): async with self.bot.db.acquire() as conn: async with conn.transaction(): await conn.fetch( """ INSERT INTO review_log (review_id, user_id, message_id, trusted_review) SELECT $1, $2, $3, trusted FROM reviewers WHERE user_id = $2 """, review_id, user_id, message_id ) async def remove_review_log(self, review_id: int): async with self.bot.db.acquire() as conn: async with conn.transaction(): await conn.fetch( """ DELETE FROM review_log WHERE review_id = $1 """, review_id ) # ============================= # # ===== REVIEW SUBMISSION ===== # # ============================= # async def submit_review(self, review_id: int, user_id: int, scores: dict): async with self.bot.db.acquire() as conn: async with conn.transaction(): record = await conn.fetch( """ UPDATE review_log SET insult = $3::SMALLINT, severe_toxic = $4::SMALLINT, identity_hate = $5::SMALLINT, threat = $6::SMALLINT, nsfw = $7::SMALLINT, active = FALSE WHERE review_id = $1 and user_id = $2 RETURNING * """, review_id, user_id, scores['insult'], scores['severe_toxic'], scores['identity_hate'], scores['threat'], scores['nsfw'], ) async def check_complete_review(self, review_id: int): async with self.bot.db.acquire() as conn: record = await conn.fetchval( """ SELECT COUNT(*) FROM review_log WHERE review_id = $1 AND active = FALSE """, review_id ) if record >= self.bot.config.get('min_votes'): record = await conn.fetch( """ WITH reviews_table AS ( SELECT * FROM review_log INNER JOIN review_messages ON id = review_id WHERE review_id = $1 ), decision_table AS ( SELECT review_id, CASE WHEN AVG(insult) > 2/3::float THEN 1 ELSE 0 END insult, CASE WHEN AVG(severe_toxic) > 2/3::float THEN 1 ELSE 0 END severe_toxic, CASE WHEN AVG(identity_hate) > 2/3::float THEN 1 ELSE 0 END identity_hate, CASE WHEN AVG(threat) > 2/3::float THEN 1 ELSE 0 END threat, CASE WHEN AVG(nsfw) > 2/3::float THEN 1 ELSE 0 END nsfw FROM ( SELECT * FROM reviews_table UNION SELECT * FROM reviews_table WHERE trusted_review ) votes GROUP BY review_id ) SELECT clean_content, decision_table.* FROM decision_table INNER JOIN review_messages ON review_id = id WHERE review_id = $1 """, review_id ) new_scores = { 'insult': 0, 'severe_toxic': 0, 'identity_hate': 0, 'threat': 0, 'nsfw': 0 } for r in record: for k, v in new_scores.items(): new_scores[k] += r[k] await self.complete_review(review_id) return {'message': record[0]['clean_content'], 'score': new_scores} return None async def complete_review(self, review_id: int): async with self.bot.db.acquire() as conn: async with conn.transaction(): await conn.fetchval( """ UPDATE review_log SET active = FALSE WHERE review_id = $1 """, review_id ) await conn.fetchval( """ UPDATE review_messages SET active = FALSE WHERE id = $1 """, review_id ) # ====================== # # ====== SANITIZE ====== # # ====================== # async def set_sanitize(self, review_id: int): async with self.bot.db.acquire() as conn: async with conn.transaction(): await conn.fetch( """ UPDATE review_messages SET in_sanitize = TRUE WHERE id = $1 """, review_id ) record = await self.get_active_queue_messages(review_id) await self.remove_review_log(review_id) return record # ===================== # # ======= STATS ======= # # ===================== # async def get_total_reviews(self): async with self.bot.db.acquire() as conn: record = await conn.fetchval("SELECT COUNT(*) FROM review_messages WHERE active = FALSE AND in_sanitize = FALSE") return record async def get_reviews_count(self, user_id): async with self.bot.db.acquire() as conn: record = await conn.fetchval("SELECT COUNT(*) FROM review_log WHERE active = FALSE AND user_id = $1", user_id) return record async def get_deviance(self, user_id): async with self.bot.db.acquire() as conn: record = await conn.fetchrow( """ WITH reviews_table AS ( SELECT * FROM review_log INNER JOIN review_messages ON id = review_id WHERE review_log.active = FALSE AND review_messages.active = FALSE AND in_sanitize = FALSE AND EXISTS ( SELECT 1 FROM review_log WHERE review_messages.id = review_id AND user_id = $1 AND active = FALSE ) ), result_table AS ( SELECT review_id, CASE WHEN AVG(insult) > 2/3::float THEN 1 ELSE 0 END insult, CASE WHEN AVG(severe_toxic) > 2/3::float THEN 1 ELSE 0 END severe_toxic, CASE WHEN AVG(identity_hate) > 2/3::float THEN 1 ELSE 0 END identity_hate, CASE WHEN AVG(threat) > 2/3::float THEN 1 ELSE 0 END threat, CASE WHEN AVG(nsfw) > 2/3::float THEN 1 ELSE 0 END nsfw FROM reviews_table GROUP BY review_id ), user_table AS ( SELECT * FROM reviews_table WHERE user_id = $1 ) SELECT ROUND(AVG(CASE WHEN result_table.insult = user_table.insult THEN 0 ELSE 1 END), 3) AS insult, ROUND(AVG(CASE WHEN result_table.severe_toxic = user_table.severe_toxic THEN 0 ELSE 1 END), 3) AS severe_toxic, ROUND(AVG(CASE WHEN result_table.identity_hate = user_table.identity_hate THEN 0 ELSE 1 END), 3) AS identity_hate, ROUND(AVG(CASE WHEN result_table.threat = user_table.threat THEN 0 ELSE 1 END), 3) AS threat, ROUND(AVG(CASE WHEN result_table.nsfw = user_table.nsfw THEN 0 ELSE 1 END), 3) AS nsfw FROM result_table INNER JOIN user_table USING(review_id) """, user_id) return int(sum(record.values()) * 1000), dict(record) async def get_remaining_reviews(self, user_id: int): async with self.bot.db.acquire() as conn: record = await conn.fetchval( """ SELECT COUNT(*) FROM review_messages r WHERE in_sanitize = FALSE AND active AND NOT EXISTS( SELECT * FROM review_log WHERE user_id = $1 AND review_id = r.id AND active = FALSE ) AND NOT r.id IN ( SELECT review_id FROM review_log GROUP BY review_id HAVING COUNT(*) >= $2 ) """, user_id, self.bot.config.get('min_votes') ) return record async def get_deviance_messages(self, user_id, field): async with self.bot.db.acquire() as conn: record = await conn.fetch( f""" WITH reviews_table AS ( SELECT * FROM review_log INNER JOIN review_messages ON id = review_id WHERE review_log.active = FALSE AND review_messages.active = FALSE AND in_sanitize = FALSE AND EXISTS ( SELECT 1 FROM review_log WHERE review_messages.id = review_id AND active = FALSE ) ), result_table AS ( SELECT review_id, CASE WHEN AVG({field}) > 2/3::float THEN 1 ELSE 0 END {field} FROM reviews_table GROUP BY review_id ) SELECT clean_content, reviews_table.{field} AS submitted FROM result_table INNER JOIN reviews_table USING (review_id) WHERE result_table.{field} != reviews_table.{field} AND user_id = $1 ORDER BY review_id """, user_id ) return record # ======================= # # ===== INFRACTIONS ===== # # ======================= # async def add_infractions(self, infractions): infs = [] for inf in infractions: infs.append(( None, inf['message'].author.id, inf['message'].guild.id, inf['message'].channel.id, inf['message'].id, await self.add_score(inf['message'].content, inf['score']), None )) async with self.bot.db.acquire() as conn: async with conn.transaction(): record = await conn.fetch( """ INSERT INTO infractions (user_id, server_id, channel_id, message_id, score_id) (SELECT i.user_id, i.server_id, i.channel_id, i.message_id, i.score_id FROM unnest($1::infractions[]) as i ) """, infs ) def setup(bot): bot.add_cog(DBUtils(bot))
""" A scripts to build the forward simulation structure and submit the job. """ from ...slurm.submit_job import submit_job from ...tasks.xsede.forward import forward_task # * test is passed for this script on 01/07/2020 class Run_multiple_forward_jobs(object): def __init__(self, base=None, N_total=None, N_each=None, N_iter=None, nproc=None, N_node=None, ntasks=None, partition=None, time=None, account=None, run_mesh=True): super().__init__() self.base = base self.N_total = N_total self.N_each = N_each self.N_iter = N_iter self.nproc = nproc self.N_node = N_node self.ntasks = ntasks self.partition = partition self.time = time self.account = account self.run_mesh = run_mesh def run(self): thecommand = forward_task( base=self.base, N_total=self.N_total, N_each=self.N_each, N_iter=self.N_iter, nproc=self.nproc, run_mesh=self.run_mesh) job_id = submit_job("forward", thecommand, self.N_node, self.ntasks, self.partition, self.time, self.account, "stampede2") return job_id if __name__ == "__main__": import click @click.command() @click.option('--base', required=True, type=str, help="the base dir to be run.") @click.option('--ntotal', required=True, type=int, help="total number of events.") @click.option('--neach', required=True, type=int, help="number of running jobs at each iterations.") @click.option('--niter', required=True, type=int, help="number of iterations to run.") @click.option('--nproc', required=True, type=int, help="number of mpi processes for each event.") @click.option('--nnode', required=True, type=int, help="total number of nodes used.") @click.option('--ntasks', required=True, type=int, help="total number of mpi processes.") @click.option('--partition', required=True, type=str, help="partition used, eg: skx-normal.") @click.option('--time', required=True, type=str, help="used in slurm format.") @click.option('--account', required=True, type=str, help="account used in the slurm system.") @click.option('--run_mesh/--no-run_mesh', required=True, default=True) def main(base, ntotal, neach, niter, nproc, nnode, ntasks, partition, time, account, run_mesh): run_script = Run_multiple_forward_jobs(base=base, N_total=ntotal, N_each=neach, N_iter=niter, nproc=nproc, N_node=nnode, ntasks=ntasks, partition=partition, time=time, account=account, run_mesh=run_mesh) run_script.run() main() # pylint: disable=no-value-for-parameter
#!-*- coding:utf-8 -*- #!/usr/bin/env python #--------------------------------------------------- #掲示板のIDが空いているかを確認 #copyright 2010-2012 ABARS all rights reserved. #--------------------------------------------------- from google.appengine.ext import webapp from google.appengine.ext import db from google.appengine.api import users from google.appengine.api import memcache from myapp.MappingId import MappingId from myapp.SetUtf8 import SetUtf8 from myapp.Alert import Alert from myapp.CssDesign import CssDesign class CheckId(webapp.RequestHandler): def get(self): SetUtf8.set() is_english=CssDesign.is_english(self) short=self.request.get('id') if(MappingId.key_format_check(short)): txt="IDは半角英数である必要があります。" if(is_english): txt="ID must be 16 characters or less" Alert.alert_msg_with_write(self,txt) return if(MappingId.check_capability(short,"")==0): txt="ID:"+short+"は既に登録されていて利用できません。" if(is_english): txt="ID:"+short+" is not available" Alert.alert_msg_with_write(self,txt) return txt="ID:"+short+"は利用可能です。" if(is_english): txt="ID:"+short+" is available" Alert.alert_msg_with_write(self,txt)
from __future__ import print_function import torch import torch.nn as nn import torch.nn.functional as F from base import BaseModel import segmentation_models_pytorch as smp class conv_block(nn.Module): def __init__(self, channel_in, channel_out): super(conv_block, self).__init__() self.conv = nn.Sequential( nn.Conv2d(channel_in, channel_out, kernel_size=3,stride=1,padding=1,bias=True), nn.BatchNorm2d(channel_out), nn.ReLU(inplace=True), # inplace=True: modify the input directly, without allocating any additional memory. nn.Conv2d(channel_out, channel_out, kernel_size=3,stride=1,padding=1,bias=True), nn.BatchNorm2d(channel_out), nn.ReLU(inplace=True) ) def forward(self, x): x = self.conv(x) return x class up_conv_block(nn.Module): def __init__(self, channel_in, channel_out): super(up_conv_block, self).__init__() self.up_conv = nn.Sequential( nn.Upsample(scale_factor=2), nn.Conv2d(channel_in,channel_out,kernel_size=3,stride=1,padding=1,bias=True), nn.BatchNorm2d(channel_out), nn.ReLU(inplace=True) ) def forward(self,x): x = self.up_conv(x) return x class Attention_block(nn.Module): def __init__(self, F_g, F_l, F_int): super(Attention_block, self).__init__() self.W_g = nn.Sequential( nn.Conv2d(F_l, F_int, kernel_size=1, stride=1, padding=0, bias=True), nn.BatchNorm2d(F_int) ) self.W_x = nn.Sequential( nn.Conv2d(F_g, F_int, kernel_size=1, stride=1, padding=0, bias=True), nn.BatchNorm2d(F_int) ) self.psi = nn.Sequential( nn.Conv2d(F_int, 1, kernel_size=1, stride=1, padding=0, bias=True), nn.BatchNorm2d(1), nn.Sigmoid() ) self.relu = nn.ReLU(inplace=True) def forward(self, g, x): g1 = self.W_g(g) x1 = self.W_x(x) psi = self.relu(g1 + x1) psi = self.psi(psi) out = x * psi return out class ResNet_UNet(BaseModel): def __init__(self, encoder_name = "resnet18", encoder_weights="imagenet", encoder_depth=5, in_channels=1, classes=1, activation='sigmoid'): super(ResNet_UNet, self).__init__() self.model = smp.Unet(encoder_name=encoder_name, encoder_weights=encoder_weights, encoder_depth=encoder_depth, in_channels=in_channels, classes=classes, activation=activation) def forward(self,x): return self.model(x) class MA_Net(BaseModel): def __init__(self, encoder_name = "resnet18", encoder_weights="imagenet", in_channels=1, activation='sigmoid'): super(MA_Net, self).__init__() self.model = smp.MAnet(encoder_name=encoder_name, encoder_weights=encoder_weights, in_channels=in_channels, activation=activation) def forward(self,x): return self.model(x) class Attention_UNet(BaseModel): def __init__(self, input_channel=3, output_channel=1): super(Attention_UNet, self).__init__() filters = [64, 128, 256, 512, 1024] self.conv1 = conv_block(input_channel, filters[0]) self.conv2 = conv_block(filters[0], filters[1]) self.conv3 = conv_block(filters[1], filters[2]) self.conv4 = conv_block(filters[2], filters[3]) self.conv5 = conv_block(filters[3], filters[4]) self.up_sampling5 = up_conv_block(filters[4], filters[3]) self.up_sampling4 = up_conv_block(filters[3], filters[2]) self.up_sampling3 = up_conv_block(filters[2], filters[1]) self.up_sampling2 = up_conv_block(filters[1], filters[0]) self.up_conv5 = conv_block(filters[4], filters[3]) self.up_conv4 = conv_block(filters[3], filters[2]) self.up_conv3 = conv_block(filters[2], filters[1]) self.up_conv2 = conv_block(filters[1], filters[0]) self.att5 = Attention_block(filters[3], filters[3], filters[2]) self.att4 = Attention_block(filters[2], filters[2], filters[1]) self.att3 = Attention_block(filters[1], filters[1], filters[0]) self.att2 = Attention_block(filters[0], filters[0], int(filters[0]/2)) self.final = nn.Sequential( nn.Conv2d(filters[0], output_channel, kernel_size=1, stride=1, padding=0), nn.Sigmoid() ) self.maxpool = nn.MaxPool2d(kernel_size=2, stride=2) def forward(self, x): # Encoder path x1 = self.conv1(x) x2 = self.maxpool(x1) x2 = self.conv2(x2) x3 = self.maxpool(x2) x3 = self.conv3(x3) x4 = self.maxpool(x3) x4 = self.conv4(x4) x5 = self.maxpool(x4) x5 = self.conv5(x5) # Decoder path d5 = self.up_sampling5(x5) a4 = self.att5(d5, x4) d5 = torch.cat((a4, d5), dim=1) d5 = self.up_conv5(d5) d4 = self.up_sampling4(d5) a3 = self.att4(d4, x3) d4 = torch.cat((a3, d4), dim=1) d4 = self.up_conv4(d4) d3 = self.up_sampling3(d4) a2 = self.att3(d3, x2) d3 = torch.cat((a2, d3), dim=1) d3 = self.up_conv3(d3) d2 = self.up_sampling2(d3) a1 = self.att2(d2, x1) d2 = torch.cat((a1, d2), dim=1) d2 = self.up_conv2(d2) out = self.final(d2) return out class Attention_ResUNet(BaseModel): def __init__(self, encoder_name = "resnet18", encoder_weights="imagenet", encoder_depth=5, in_channels=1, classes=1, activation='sigmoid', aux_params=None): super(Attention_ResUNet, self).__init__() self.model = smp.Unet(encoder_name=encoder_name, encoder_weights=encoder_weights, encoder_depth=encoder_depth, in_channels=in_channels, classes=classes, activation=activation, decoder_attention_type='scse', aux_params=aux_params) def forward(self,x): return self.model(x)
# Copyright 2012 United States Government as represented by the # Administrator of the National Aeronautics and Space Administration. # All Rights Reserved. # # Copyright 2012 Nebula, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from __future__ import absolute_import import mock from horizon import exceptions from openstack_dashboard import api from openstack_dashboard.test import helpers as test @mock.patch('swiftclient.client.Connection') class SwiftApiTests(test.APIMockTestCase): def test_swift_get_containers(self, mock_swiftclient): containers = self.containers.list() cont_data = [c._apidict for c in containers] swift_api = mock_swiftclient.return_value swift_api.get_account.return_value = [{}, cont_data] (conts, more) = api.swift.swift_get_containers(self.request) self.assertEqual(len(containers), len(conts)) self.assertFalse(more) swift_api.get_account.assert_called_once_with( limit=1001, marker=None, prefix=None, full_listing=True) def test_swift_get_container_with_data(self, mock_swiftclient): container = self.containers.first() objects = self.objects.list() swift_api = mock_swiftclient.return_value swift_api.get_object.return_value = (container, objects) cont = api.swift.swift_get_container(self.request, container.name) self.assertEqual(container.name, cont.name) self.assertEqual(len(objects), len(cont.data)) swift_api.get_object.assert_called_once_with(container.name, "") def test_swift_get_container_without_data(self, mock_swiftclient): container = self.containers.first() swift_api = mock_swiftclient.return_value swift_api.head_container.return_value = container cont = api.swift.swift_get_container(self.request, container.name, with_data=False) self.assertEqual(cont.name, container.name) self.assertIsNone(cont.data) swift_api.head_container.assert_called_once_with(container.name) def test_swift_create_duplicate_container(self, mock_swiftclient): metadata = {'is_public': False} container = self.containers.first() headers = api.swift._metadata_to_header(metadata=(metadata)) swift_api = mock_swiftclient.return_value # Check for existence, then create swift_api.head_container.side_effect = self.exceptions.swift swift_api.put_container.return_value = container api.swift.swift_create_container(self.request, container.name, metadata=(metadata)) swift_api.head_container.assert_called_once_with(container.name) swift_api.put_container.assert_called_once_with(container.name, headers=headers) def test_swift_create_container(self, mock_swiftclient): metadata = {'is_public': True} container = self.containers.first() swift_api = mock_swiftclient.return_value swift_api.head_container.return_value = container with self.assertRaises(exceptions.AlreadyExists): api.swift.swift_create_container(self.request, container.name, metadata=(metadata)) swift_api.head_container.assert_called_once_with(container.name) def test_swift_update_container(self, mock_swiftclient): metadata = {'is_public': True} container = self.containers.first() swift_api = mock_swiftclient.return_value headers = api.swift._metadata_to_header(metadata=(metadata)) swift_api.post_container.return_value = container api.swift.swift_update_container(self.request, container.name, metadata=(metadata)) swift_api.post_container.assert_called_once_with(container.name, headers=headers) def test_swift_get_objects(self, mock_swiftclient): container = self.containers.first() objects = self.objects.list() swift_api = mock_swiftclient.return_value swift_api.get_container.return_value = [{}, objects] (objs, more) = api.swift.swift_get_objects(self.request, container.name) self.assertEqual(len(objects), len(objs)) self.assertFalse(more) swift_api.get_container.assert_called_once_with( container.name, limit=1001, marker=None, prefix=None, delimiter='/', full_listing=True) def test_swift_get_object_with_data_non_chunked(self, mock_swiftclient): container = self.containers.first() object = self.objects.first() swift_api = mock_swiftclient.return_value swift_api.get_object.return_value = [object, object.data] obj = api.swift.swift_get_object(self.request, container.name, object.name, resp_chunk_size=None) self.assertEqual(object.name, obj.name) swift_api.get_object.assert_called_once_with( container.name, object.name, resp_chunk_size=None) def test_swift_get_object_with_data_chunked(self, mock_swiftclient): container = self.containers.first() object = self.objects.first() swift_api = mock_swiftclient.return_value swift_api.get_object.return_value = [object, object.data] obj = api.swift.swift_get_object( self.request, container.name, object.name) self.assertEqual(object.name, obj.name) swift_api.get_object.assert_called_once_with( container.name, object.name, resp_chunk_size=api.swift.CHUNK_SIZE) def test_swift_get_object_without_data(self, mock_swiftclient): container = self.containers.first() object = self.objects.first() swift_api = mock_swiftclient.return_value swift_api.head_object.return_value = object obj = api.swift.swift_get_object(self.request, container.name, object.name, with_data=False) self.assertEqual(object.name, obj.name) self.assertIsNone(obj.data) swift_api.head_object.assert_called_once_with(container.name, object.name) def test_swift_create_pseudo_folder(self, mock_swiftclient): container = self.containers.first() folder = self.folder.first() swift_api = mock_swiftclient.return_value exc = self.exceptions.swift swift_api.head_object.side_effect = exc swift_api.put_object.return_value = folder api.swift.swift_create_pseudo_folder(self.request, container.name, folder.name) swift_api.head_object.assert_called_once_with(container.name, folder.name) swift_api.put_object.assert_called_once_with(container.name, folder.name, None, headers={}) def test_swift_create_duplicate_folder(self, mock_swiftclient): container = self.containers.first() folder = self.folder.first() swift_api = mock_swiftclient.return_value swift_api.head_object.return_value = folder with self.assertRaises(exceptions.AlreadyExists): api.swift.swift_create_pseudo_folder(self.request, container.name, folder.name) swift_api.head_object.assert_called_once_with(container.name, folder.name) def test_swift_upload_object(self, mock_swiftclient): container = self.containers.first() obj = self.objects.first() fake_name = 'fake_object.jpg' class FakeFile(object): def __init__(self): self.name = fake_name self.data = obj.data self.size = len(obj.data) headers = {'X-Object-Meta-Orig-Filename': fake_name} swift_api = mock_swiftclient.return_value test_file = FakeFile() swift_api.put_object.return_value = None api.swift.swift_upload_object(self.request, container.name, obj.name, test_file) swift_api.put_object.assert_called_once_with( container.name, obj.name, test.IsA(FakeFile), content_length=test_file.size, headers=headers) def test_swift_upload_object_without_file(self, mock_swiftclient): container = self.containers.first() obj = self.objects.first() swift_api = mock_swiftclient.return_value swift_api.put_object.return_value = None response = api.swift.swift_upload_object(self.request, container.name, obj.name, None) self.assertEqual(0, response['bytes']) swift_api.put_object.assert_called_once_with( container.name, obj.name, None, content_length=0, headers={}) def test_swift_object_exists(self, mock_swiftclient): container = self.containers.first() obj = self.objects.first() swift_api = mock_swiftclient.return_value swift_api.head_object.side_effect = [container, self.exceptions.swift] args = self.request, container.name, obj.name self.assertTrue(api.swift.swift_object_exists(*args)) # Again, for a "non-existent" object self.assertFalse(api.swift.swift_object_exists(*args)) self.assertEqual(2, swift_api.head_object.call_count) swift_api.head_object.assert_has_calls([ mock.call(container.name, obj.name), mock.call(container.name, obj.name), ])
import math import time from utils import dataset, randomizer, exporter from assignment3 import forward, backward, squared_error, optimize_sgd class Autoencoder: """Simple Autoencoder implementation with one hidden layer, that uses the identity function f(x) = x as its activation function and optimizes with Stochastic Gradient Descent (SGD). """ def __init__(self, n_in, n_units, lr=0.01, mean=0.0, stddev=0.01): """Model constructor, initializing the parameters. Args: n_in (int): Number of input units, i.e. size of the input vector. n_units (int): Number of hidden units. lr (float): Initial learning rate. mean (float): Mean of the initial parameters. stddev (float): Standard deviation of the initial random parameters. """ self.W1 = randomizer.rnd((n_units, n_in), mean, stddev) self.b1 = randomizer.rnd((n_units,), mean, stddev) self.W2 = randomizer.rnd((n_in, n_units), mean, stddev) self.b2 = randomizer.rnd((n_in,), mean, stddev) self.lr = lr def __call__(self, x, train=True): """Perform an iteration with one sample, updating the parameters of this model if the training flag is set to true, otherwise just perform a forward propagation and return the loss. Args: x (list): Input data. 1 dimensional. train (bool): True if the parameters are to be updated. False otherwise. Returns: float: Loss. """ h, y = forward(x, self.W1, self.b1, self.W2, self.b2) if train: gW1, gb1, gW2, gb2 = backward(x, h, y, self.W1, self.b1, self.W2, self.b2) self.optimize(h, y, gW1, gb1, gW2, gb2) loss = squared_error(y, x, scale=0.5) return loss def optimize(self, h, y, gW1, gb1, gW2, gb2): """Optimizes (modifies) the parameters of this model using SGD. Args: h (list): Activations of the hidden layer. y (list): Activations of the output layer. gW1 (list): Computed gradients of `W1`. gb1 (list): Computed gradients of `b1`. gW2 (list): Computed gradients of `W2`. gb2 (list): Computed gradients of `bw`. """ self.W2 = optimize_sgd(self.W2, gW2, self.lr) self.b2 = optimize_sgd(self.b2, gb2, self.lr) self.W1 = optimize_sgd(self.W1, gW1, self.lr) self.b1 = optimize_sgd(self.b1, gb1, self.lr) if __name__ == '__main__': # Train an Autoencoder model N, D, xs = dataset.read('data/dataset.dat') # Parameters for initializing the ranom parameters. The standard deviation # is set with respect to the dimensions of the inputs. # http://docs.chainer.org/en/stable/reference/links.html#linear mean = 0 stddev = math.sqrt(1 / D) n_hidden_units = 5 n_epochs = 20 initial_learning_rate = 0.001 model = Autoencoder(n_in=D, n_units=n_hidden_units, lr=initial_learning_rate, mean=mean, stddev=stddev) # Start the training for epoch in range(n_epochs): randomizer.shuffle(xs) # Optimize the model for x in xs: model(x, train=True) # Compute the loss total_loss = 0 for x in xs: loss = model(x, train=False) total_loss += loss average_loss = total_loss / N print('Epoch: {} Avg. loss: {}'.format(epoch + 1, average_loss)) # Uncomment the following lines to save the trained parameters to a file # out_filename = 'output/assignment4_params_' + str(int(time.time())) # exporter.export_model(out_filename, model)
from .datamodules import * from .datasets import *
import torch import math import warnings import pyro from pyro import poutine from pyro.infer.autoguide.utils import mean_field_entropy from pyro.contrib.oed.search import Search from pyro.infer import EmpiricalMarginal, Importance, SVI from pyro.util import torch_isnan, torch_isinf from pyro.contrib.util import lexpand __all__ = [ "laplace_eig", "vi_eig", "nmc_eig", "donsker_varadhan_eig", "posterior_eig", "marginal_eig", "lfire_eig", "vnmc_eig" ] def laplace_eig(model, design, observation_labels, target_labels, guide, loss, optim, num_steps, final_num_samples, y_dist=None, eig=True, **prior_entropy_kwargs): """ Estimates the expected information gain (EIG) by making repeated Laplace approximations to the posterior. :param function model: Pyro stochastic function taking `design` as only argument. :param torch.Tensor design: Tensor of possible designs. :param list observation_labels: labels of sample sites to be regarded as observables. :param list target_labels: labels of sample sites to be regarded as latent variables of interest, i.e. the sites that we wish to gain information about. :param function guide: Pyro stochastic function corresponding to `model`. :param loss: a Pyro loss such as `pyro.infer.Trace_ELBO().differentiable_loss`. :param optim: optimizer for the loss :param int num_steps: Number of gradient steps to take per sampled pseudo-observation. :param int final_num_samples: Number of `y` samples (pseudo-observations) to take. :param y_dist: Distribution to sample `y` from- if `None` we use the Bayesian marginal distribution. :param bool eig: Whether to compute the EIG or the average posterior entropy (APE). The EIG is given by `EIG = prior entropy - APE`. If `True`, the prior entropy will be estimated analytically, or by Monte Carlo as appropriate for the `model`. If `False` the APE is returned. :param dict prior_entropy_kwargs: parameters for estimating the prior entropy: `num_prior_samples` indicating the number of samples for a MC estimate of prior entropy, and `mean_field` indicating if an analytic form for a mean-field prior should be tried. :return: EIG estimate :rtype: torch.Tensor """ if isinstance(observation_labels, str): observation_labels = [observation_labels] if target_labels is not None and isinstance(target_labels, str): target_labels = [target_labels] ape = _laplace_vi_ape(model, design, observation_labels, target_labels, guide, loss, optim, num_steps, final_num_samples, y_dist=y_dist) return _eig_from_ape(model, design, target_labels, ape, eig, prior_entropy_kwargs) def _eig_from_ape(model, design, target_labels, ape, eig, prior_entropy_kwargs): mean_field = prior_entropy_kwargs.get("mean_field", True) if eig: if mean_field: try: prior_entropy = mean_field_entropy(model, [design], whitelist=target_labels) except NotImplemented: prior_entropy = monte_carlo_entropy(model, design, target_labels, **prior_entropy_kwargs) else: prior_entropy = monte_carlo_entropy(model, design, target_labels, **prior_entropy_kwargs) return prior_entropy - ape else: return ape def _laplace_vi_ape(model, design, observation_labels, target_labels, guide, loss, optim, num_steps, final_num_samples, y_dist=None): def posterior_entropy(y_dist, design): # Important that y_dist is sampled *within* the function y = pyro.sample("conditioning_y", y_dist) y_dict = {label: y[i, ...] for i, label in enumerate(observation_labels)} conditioned_model = pyro.condition(model, data=y_dict) # Here just using SVI to run the MAP optimization guide.train() SVI(conditioned_model, guide=guide, loss=loss, optim=optim, num_steps=num_steps, num_samples=1).run(design) # Recover the entropy with poutine.block(): final_loss = loss(conditioned_model, guide, design) guide.finalize(final_loss, target_labels) entropy = mean_field_entropy(guide, [design], whitelist=target_labels) return entropy if y_dist is None: y_dist = EmpiricalMarginal(Importance(model, num_samples=final_num_samples).run(design), sites=observation_labels) # Calculate the expected posterior entropy under this distn of y loss_dist = EmpiricalMarginal(Search(posterior_entropy).run(y_dist, design)) ape = loss_dist.mean return ape # Deprecated def vi_eig(model, design, observation_labels, target_labels, vi_parameters, is_parameters, y_dist=None, eig=True, **prior_entropy_kwargs): """Estimates the expected information gain (EIG) using variational inference (VI). The APE is defined as :math:`APE(d)=E_{Y\\sim p(y|\\theta, d)}[H(p(\\theta|Y, d))]` where :math:`H[p(x)]` is the `differential entropy <https://en.wikipedia.org/wiki/Differential_entropy>`_. The APE is related to expected information gain (EIG) by the equation :math:`EIG(d)=H[p(\\theta)]-APE(d)` in particular, minimising the APE is equivalent to maximising EIG. :param function model: A pyro model accepting `design` as only argument. :param torch.Tensor design: Tensor representation of design :param list observation_labels: A subset of the sample sites present in `model`. These sites are regarded as future observations and other sites are regarded as latent variables over which a posterior is to be inferred. :param list target_labels: A subset of the sample sites over which the posterior entropy is to be measured. :param dict vi_parameters: Variational inference parameters which should include: `optim`: an instance of :class:`pyro.Optim`, `guide`: a guide function compatible with `model`, `num_steps`: the number of VI steps to make, and `loss`: the loss function to use for VI :param dict is_parameters: Importance sampling parameters for the marginal distribution of :math:`Y`. May include `num_samples`: the number of samples to draw from the marginal. :param pyro.distributions.Distribution y_dist: (optional) the distribution assumed for the response variable :math:`Y` :param bool eig: Whether to compute the EIG or the average posterior entropy (APE). The EIG is given by `EIG = prior entropy - APE`. If `True`, the prior entropy will be estimated analytically, or by Monte Carlo as appropriate for the `model`. If `False` the APE is returned. :param dict prior_entropy_kwargs: parameters for estimating the prior entropy: `num_prior_samples` indicating the number of samples for a MC estimate of prior entropy, and `mean_field` indicating if an analytic form for a mean-field prior should be tried. :return: EIG estimate :rtype: `torch.Tensor` """ warnings.warn("`vi_eig` is deprecated in favour of the amortized version: `posterior_eig`.", DeprecationWarning) if isinstance(observation_labels, str): observation_labels = [observation_labels] if target_labels is not None and isinstance(target_labels, str): target_labels = [target_labels] ape = _vi_ape(model, design, observation_labels, target_labels, vi_parameters, is_parameters, y_dist=y_dist) return _eig_from_ape(model, design, target_labels, ape, eig, prior_entropy_kwargs) def _vi_ape(model, design, observation_labels, target_labels, vi_parameters, is_parameters, y_dist=None): def posterior_entropy(y_dist, design): # Important that y_dist is sampled *within* the function y = pyro.sample("conditioning_y", y_dist) y_dict = {label: y[i, ...] for i, label in enumerate(observation_labels)} conditioned_model = pyro.condition(model, data=y_dict) SVI(conditioned_model, **vi_parameters).run(design) # Recover the entropy with poutine.block(): guide = vi_parameters["guide"] entropy = mean_field_entropy(guide, [design], whitelist=target_labels) return entropy if y_dist is None: y_dist = EmpiricalMarginal(Importance(model, **is_parameters).run(design), sites=observation_labels) # Calculate the expected posterior entropy under this distn of y loss_dist = EmpiricalMarginal(Search(posterior_entropy).run(y_dist, design)) loss = loss_dist.mean return loss def nmc_eig(model, design, observation_labels, target_labels=None, N=100, M=10, M_prime=None, independent_priors=False): """ Nested Monte Carlo estimate of the expected information gain (EIG). The estimate is, when there are not any random effects, .. math:: \\frac{1}{N}\\sum_{n=1}^N \\log p(y_n | \\theta_n, d) - \\frac{1}{N}\\sum_{n=1}^N \\log \\left(\\frac{1}{M}\\sum_{m=1}^M p(y_n | \\theta_m, d)\\right) The estimate is, in the presence of random effects, .. math:: \\frac{1}{N}\\sum_{n=1}^N \\log \\left(\\frac{1}{M'}\\sum_{m=1}^{M'} p(y_n | \\theta_n, \\widetilde{\\theta}_{nm}, d)\\right)- \\frac{1}{N}\\sum_{n=1}^N \\log \\left(\\frac{1}{M}\\sum_{m=1}^{M} p(y_n | \\theta_m, \\widetilde{\\theta}_{m}, d)\\right) The latter form is used when `M_prime != None`. :param function model: A pyro model accepting `design` as only argument. :param torch.Tensor design: Tensor representation of design :param list observation_labels: A subset of the sample sites present in `model`. These sites are regarded as future observations and other sites are regarded as latent variables over which a posterior is to be inferred. :param list target_labels: A subset of the sample sites over which the posterior entropy is to be measured. :param int N: Number of outer expectation samples. :param int M: Number of inner expectation samples for `p(y|d)`. :param int M_prime: Number of samples for `p(y | theta, d)` if required. :param bool independent_priors: Only used when `M_prime` is not `None`. Indicates whether the prior distributions for the target variables and the nuisance variables are independent. In this case, it is not necessary to sample the targets conditional on the nuisance variables. :return: EIG estimate :rtype: `torch.Tensor` """ if isinstance(observation_labels, str): # list of strings instead of strings observation_labels = [observation_labels] if isinstance(target_labels, str): target_labels = [target_labels] # Take N samples of the model expanded_design = lexpand(design, N) # N copies of the model trace = poutine.trace(model).get_trace(expanded_design) trace.compute_log_prob() if M_prime is not None: y_dict = {l: lexpand(trace.nodes[l]["value"], M_prime) for l in observation_labels} theta_dict = {l: lexpand(trace.nodes[l]["value"], M_prime) for l in target_labels} theta_dict.update(y_dict) # Resample M values of u and compute conditional probabilities # WARNING: currently the use of condition does not actually sample # the conditional distribution! # We need to use some importance weighting conditional_model = pyro.condition(model, data=theta_dict) if independent_priors: reexpanded_design = lexpand(design, M_prime, 1) else: # Not acceptable to use (M_prime, 1) here - other variables may occur after # theta, so need to be sampled conditional upon it reexpanded_design = lexpand(design, M_prime, N) retrace = poutine.trace(conditional_model).get_trace(reexpanded_design) retrace.compute_log_prob() conditional_lp = sum(retrace.nodes[l]["log_prob"] for l in observation_labels).logsumexp(0) \ - math.log(M_prime) else: # This assumes that y are independent conditional on theta # Furthermore assume that there are no other variables besides theta conditional_lp = sum(trace.nodes[l]["log_prob"] for l in observation_labels) y_dict = {l: lexpand(trace.nodes[l]["value"], M) for l in observation_labels} # Resample M values of theta and compute conditional probabilities conditional_model = pyro.condition(model, data=y_dict) # Using (M, 1) instead of (M, N) - acceptable to re-use thetas between ys because # theta comes before y in graphical model reexpanded_design = lexpand(design, M, 1) # sample M theta retrace = poutine.trace(conditional_model).get_trace(reexpanded_design) retrace.compute_log_prob() marginal_lp = sum(retrace.nodes[l]["log_prob"] for l in observation_labels).logsumexp(0) \ - math.log(M) terms = conditional_lp - marginal_lp nonnan = (~torch.isnan(terms)).sum(0).type_as(terms) terms[torch.isnan(terms)] = 0. return terms.sum(0)/nonnan def donsker_varadhan_eig(model, design, observation_labels, target_labels, num_samples, num_steps, T, optim, return_history=False, final_design=None, final_num_samples=None): """ Donsker-Varadhan estimate of the expected information gain (EIG). The Donsker-Varadhan representation of EIG is .. math:: \\sup_T E_{p(y, \\theta | d)}[T(y, \\theta)] - \\log E_{p(y|d)p(\\theta)}[\\exp(T(\\bar{y}, \\bar{\\theta}))] where :math:`T` is any (measurable) function. This methods optimises the loss function over a pre-specified class of functions `T`. :param function model: A pyro model accepting `design` as only argument. :param torch.Tensor design: Tensor representation of design :param list observation_labels: A subset of the sample sites present in `model`. These sites are regarded as future observations and other sites are regarded as latent variables over which a posterior is to be inferred. :param list target_labels: A subset of the sample sites over which the posterior entropy is to be measured. :param int num_samples: Number of samples per iteration. :param int num_steps: Number of optimisation steps. :param function or torch.nn.Module T: optimisable function `T` for use in the Donsker-Varadhan loss function. :param pyro.optim.Optim optim: Optimiser to use. :param bool return_history: If `True`, also returns a tensor giving the loss function at each step of the optimisation. :param torch.Tensor final_design: The final design tensor to evaluate at. If `None`, uses `design`. :param int final_num_samples: The number of samples to use at the final evaluation, If `None, uses `num_samples`. :return: EIG estimate, optionally includes full optimisatio history :rtype: `torch.Tensor` or `tuple` """ if isinstance(observation_labels, str): observation_labels = [observation_labels] if isinstance(target_labels, str): target_labels = [target_labels] loss = _donsker_varadhan_loss(model, T, observation_labels, target_labels) return opt_eig_ape_loss(design, loss, num_samples, num_steps, optim, return_history, final_design, final_num_samples) def posterior_eig(model, design, observation_labels, target_labels, num_samples, num_steps, guide, optim, return_history=False, final_design=None, final_num_samples=None, eig=True, prior_entropy_kwargs={}, *args, **kwargs): """ Posterior estimate of expected information gain (EIG) computed from the average posterior entropy (APE) using `EIG = prior entropy - APE`. See [1] for full details. The posterior representation of APE is :math:`sup_{q}E_{p(y, \\theta | d)}[\\log q(\\theta | y, d)]` where :math:`q` is any distribution on :math:`\\theta`. This method optimises the loss over a given guide family `guide` representing :math:`q`. [1] Foster, Adam, et al. "Variational Bayesian Optimal Experimental Design." arXiv preprint arXiv:1903.05480 (2019). :param function model: A pyro model accepting `design` as only argument. :param torch.Tensor design: Tensor representation of design :param list observation_labels: A subset of the sample sites present in `model`. These sites are regarded as future observations and other sites are regarded as latent variables over which a posterior is to be inferred. :param list target_labels: A subset of the sample sites over which the posterior entropy is to be measured. :param int num_samples: Number of samples per iteration. :param int num_steps: Number of optimisation steps. :param function guide: guide family for use in the (implicit) posterior estimation. The parameters of `guide` are optimised to maximise the posterior objective. :param pyro.optim.Optim optim: Optimiser to use. :param bool return_history: If `True`, also returns a tensor giving the loss function at each step of the optimisation. :param torch.Tensor final_design: The final design tensor to evaluate at. If `None`, uses `design`. :param int final_num_samples: The number of samples to use at the final evaluation, If `None, uses `num_samples`. :param bool eig: Whether to compute the EIG or the average posterior entropy (APE). The EIG is given by `EIG = prior entropy - APE`. If `True`, the prior entropy will be estimated analytically, or by Monte Carlo as appropriate for the `model`. If `False` the APE is returned. :param dict prior_entropy_kwargs: parameters for estimating the prior entropy: `num_prior_samples` indicating the number of samples for a MC estimate of prior entropy, and `mean_field` indicating if an analytic form for a mean-field prior should be tried. :return: EIG estimate, optionally includes full optimisation history :rtype: `torch.Tensor` or `tuple` """ if isinstance(observation_labels, str): observation_labels = [observation_labels] if isinstance(target_labels, str): target_labels = [target_labels] ape = _posterior_ape(model, design, observation_labels, target_labels, num_samples, num_steps, guide, optim, return_history=return_history, final_design=final_design, final_num_samples=final_num_samples, *args, **kwargs) return _eig_from_ape(model, design, target_labels, ape, eig, prior_entropy_kwargs) def _posterior_ape(model, design, observation_labels, target_labels, num_samples, num_steps, guide, optim, return_history=False, final_design=None, final_num_samples=None, *args, **kwargs): loss = _posterior_loss(model, guide, observation_labels, target_labels, *args, **kwargs) return opt_eig_ape_loss(design, loss, num_samples, num_steps, optim, return_history, final_design, final_num_samples) def marginal_eig(model, design, observation_labels, target_labels, num_samples, num_steps, guide, optim, return_history=False, final_design=None, final_num_samples=None): """Estimate EIG by estimating the marginal entropy :math:`p(y|d)`. See [1] for full details. The marginal representation of EIG is :math:`inf_{q}E_{p(y, \\theta | d)}\\left[\\log \\frac{p(y | \\theta, d)}{q(y | d)} \\right]` where :math:`q` is any distribution on :math:`y`. .. warning :: this method does **not** estimate the correct quantity in the presence of random effects. [1] Foster, Adam, et al. "Variational Bayesian Optimal Experimental Design." arXiv preprint arXiv:1903.05480 (2019). :param function model: A pyro model accepting `design` as only argument. :param torch.Tensor design: Tensor representation of design :param list observation_labels: A subset of the sample sites present in `model`. These sites are regarded as future observations and other sites are regarded as latent variables over which a posterior is to be inferred. :param list target_labels: A subset of the sample sites over which the posterior entropy is to be measured. :param int num_samples: Number of samples per iteration. :param int num_steps: Number of optimisation steps. :param function guide: guide family for use in the marginal estimation. The parameters of `guide` are optimised to maximise the log-likelihood objective. :param pyro.optim.Optim optim: Optimiser to use. :param bool return_history: If `True`, also returns a tensor giving the loss function at each step of the optimisation. :param torch.Tensor final_design: The final design tensor to evaluate at. If `None`, uses `design`. :param int final_num_samples: The number of samples to use at the final evaluation, If `None, uses `num_samples`. :return: EIG estimate, optionally includes full optimisation history :rtype: `torch.Tensor` or `tuple` """ if isinstance(observation_labels, str): observation_labels = [observation_labels] if isinstance(target_labels, str): target_labels = [target_labels] loss = _marginal_loss(model, guide, observation_labels, target_labels) return opt_eig_ape_loss(design, loss, num_samples, num_steps, optim, return_history, final_design, final_num_samples) def marginal_likelihood_eig(model, design, observation_labels, target_labels, num_samples, num_steps, marginal_guide, cond_guide, optim, return_history=False, final_design=None, final_num_samples=None): """Estimates EIG by estimating the marginal entropy, that of :math:`p(y|d)`, *and* the conditional entropy, of :math:`p(y|\\theta, d)`, both via Gibbs' Inequality. See [1] for full details. [1] Foster, Adam, et al. "Variational Bayesian Optimal Experimental Design." arXiv preprint arXiv:1903.05480 (2019). :param function model: A pyro model accepting `design` as only argument. :param torch.Tensor design: Tensor representation of design :param list observation_labels: A subset of the sample sites present in `model`. These sites are regarded as future observations and other sites are regarded as latent variables over which a posterior is to be inferred. :param list target_labels: A subset of the sample sites over which the posterior entropy is to be measured. :param int num_samples: Number of samples per iteration. :param int num_steps: Number of optimisation steps. :param function marginal_guide: guide family for use in the marginal estimation. The parameters of `guide` are optimised to maximise the log-likelihood objective. :param function cond_guide: guide family for use in the likelihood (conditional) estimation. The parameters of `guide` are optimised to maximise the log-likelihood objective. :param pyro.optim.Optim optim: Optimiser to use. :param bool return_history: If `True`, also returns a tensor giving the loss function at each step of the optimisation. :param torch.Tensor final_design: The final design tensor to evaluate at. If `None`, uses `design`. :param int final_num_samples: The number of samples to use at the final evaluation, If `None, uses `num_samples`. :return: EIG estimate, optionally includes full optimisation history :rtype: `torch.Tensor` or `tuple` """ if isinstance(observation_labels, str): observation_labels = [observation_labels] if isinstance(target_labels, str): target_labels = [target_labels] loss = _marginal_likelihood_loss(model, marginal_guide, cond_guide, observation_labels, target_labels) return opt_eig_ape_loss(design, loss, num_samples, num_steps, optim, return_history, final_design, final_num_samples) def lfire_eig(model, design, observation_labels, target_labels, num_y_samples, num_theta_samples, num_steps, classifier, optim, return_history=False, final_design=None, final_num_samples=None): """Estimates the EIG using the method of Likelihood-Free Inference by Ratio Estimation (LFIRE) as in [1]. LFIRE is run separately for several samples of :math:`\\theta`. [1] Kleinegesse, Steven, and Michael Gutmann. "Efficient Bayesian Experimental Design for Implicit Models." arXiv preprint arXiv:1810.09912 (2018). :param function model: A pyro model accepting `design` as only argument. :param torch.Tensor design: Tensor representation of design :param list observation_labels: A subset of the sample sites present in `model`. These sites are regarded as future observations and other sites are regarded as latent variables over which a posterior is to be inferred. :param list target_labels: A subset of the sample sites over which the posterior entropy is to be measured. :param int num_y_samples: Number of samples to take in :math:`y` for each :math:`\\theta`. :param: int num_theta_samples: Number of initial samples in :math:`\\theta` to take. The likelihood ratio is estimated by LFIRE for each sample. :param int num_steps: Number of optimisation steps. :param function classifier: a Pytorch or Pyro classifier used to distinguish between samples of :math:`y` under :math:`p(y|d)` and samples under :math:`p(y|\\theta,d)` for some :math:`\\theta`. :param pyro.optim.Optim optim: Optimiser to use. :param bool return_history: If `True`, also returns a tensor giving the loss function at each step of the optimisation. :param torch.Tensor final_design: The final design tensor to evaluate at. If `None`, uses `design`. :param int final_num_samples: The number of samples to use at the final evaluation, If `None, uses `num_samples`. :return: EIG estimate, optionally includes full optimisation history :rtype: `torch.Tensor` or `tuple` """ if isinstance(observation_labels, str): observation_labels = [observation_labels] if isinstance(target_labels, str): target_labels = [target_labels] # Take N samples of the model expanded_design = lexpand(design, num_theta_samples) trace = poutine.trace(model).get_trace(expanded_design) theta_dict = {l: trace.nodes[l]["value"] for l in target_labels} cond_model = pyro.condition(model, data=theta_dict) loss = _lfire_loss(model, cond_model, classifier, observation_labels, target_labels) out = opt_eig_ape_loss(expanded_design, loss, num_y_samples, num_steps, optim, return_history, final_design, final_num_samples) if return_history: return out[0], out[1].sum(0) / num_theta_samples else: return out.sum(0) / num_theta_samples def vnmc_eig(model, design, observation_labels, target_labels, num_samples, num_steps, guide, optim, return_history=False, final_design=None, final_num_samples=None): """Estimates the EIG using Variational Nested Monte Carlo (VNMC). The VNMC estimate [1] is .. math:: \\frac{1}{N}\\sum_{n=1}^N \\left[ \\log p(y_n | \\theta_n, d) - \\log \\left(\\frac{1}{M}\\sum_{m=1}^M \\frac{p(\\theta_{mn})p(y_n | \\theta_{mn}, d)} {q(\\theta_{mn} | y_n)} \\right) \\right] where :math:`q(\\theta | y)` is the learned variational posterior approximation and :math:`\\theta_n, y_n \\sim p(\\theta, y | d)`, :math:`\\theta_{mn} \\sim q(\\theta|y=y_n)`. As :math:`N \\to \\infty` this is an upper bound on EIG. We minimise this upper bound by stochastic gradient descent. [1] Foster, Adam, et al. "Variational Bayesian Optimal Experimental Design." arXiv preprint arXiv:1903.05480 (2019). :param function model: A pyro model accepting `design` as only argument. :param torch.Tensor design: Tensor representation of design :param list observation_labels: A subset of the sample sites present in `model`. These sites are regarded as future observations and other sites are regarded as latent variables over which a posterior is to be inferred. :param list target_labels: A subset of the sample sites over which the posterior entropy is to be measured. :param tuple num_samples: Number of (:math:`N, M`) samples per iteration. :param int num_steps: Number of optimisation steps. :param function guide: guide family for use in the posterior estimation. The parameters of `guide` are optimised to minimise the VNMC upper bound. :param pyro.optim.Optim optim: Optimiser to use. :param bool return_history: If `True`, also returns a tensor giving the loss function at each step of the optimisation. :param torch.Tensor final_design: The final design tensor to evaluate at. If `None`, uses `design`. :param tuple final_num_samples: The number of (:math:`N, M`) samples to use at the final evaluation, If `None, uses `num_samples`. :return: EIG estimate, optionally includes full optimisation history :rtype: `torch.Tensor` or `tuple` """ if isinstance(observation_labels, str): observation_labels = [observation_labels] if isinstance(target_labels, str): target_labels = [target_labels] loss = _vnmc_eig_loss(model, guide, observation_labels, target_labels) return opt_eig_ape_loss(design, loss, num_samples, num_steps, optim, return_history, final_design, final_num_samples) def opt_eig_ape_loss(design, loss_fn, num_samples, num_steps, optim, return_history=False, final_design=None, final_num_samples=None): if final_design is None: final_design = design if final_num_samples is None: final_num_samples = num_samples params = None history = [] for step in range(num_steps): if params is not None: pyro.infer.util.zero_grads(params) with poutine.trace(param_only=True) as param_capture: agg_loss, loss = loss_fn(design, num_samples, evaluation=return_history) params = set(site["value"].unconstrained() for site in param_capture.trace.nodes.values()) if torch.isnan(agg_loss): raise ArithmeticError("Encountered NaN loss in opt_eig_ape_loss") agg_loss.backward(retain_graph=True) if return_history: history.append(loss) optim(params) _, loss = loss_fn(final_design, final_num_samples, evaluation=True) if return_history: return torch.stack(history), loss else: return loss def monte_carlo_entropy(model, design, target_labels, num_prior_samples=1000): """Computes a Monte Carlo estimate of the entropy of `model` assuming that each of sites in `target_labels` is independent and the entropy is to be computed for that subset of sites only. """ if isinstance(target_labels, str): target_labels = [target_labels] expanded_design = lexpand(design, num_prior_samples) trace = pyro.poutine.trace(model).get_trace(expanded_design) trace.compute_log_prob() lp = sum(trace.nodes[l]["log_prob"] for l in target_labels) return -lp.sum(0) / num_prior_samples def _donsker_varadhan_loss(model, T, observation_labels, target_labels): """DV loss: to evaluate directly use `donsker_varadhan_eig` setting `num_steps=0`.""" ewma_log = EwmaLog(alpha=0.90) def loss_fn(design, num_particles, **kwargs): try: pyro.module("T", T) except AssertionError: pass expanded_design = lexpand(design, num_particles) # Unshuffled data unshuffled_trace = poutine.trace(model).get_trace(expanded_design) y_dict = {l: unshuffled_trace.nodes[l]["value"] for l in observation_labels} # Shuffled data # Not actually shuffling, resimulate for safety conditional_model = pyro.condition(model, data=y_dict) shuffled_trace = poutine.trace(conditional_model).get_trace(expanded_design) T_joint = T(expanded_design, unshuffled_trace, observation_labels, target_labels) T_independent = T(expanded_design, shuffled_trace, observation_labels, target_labels) joint_expectation = T_joint.sum(0)/num_particles A = T_independent - math.log(num_particles) s, _ = torch.max(A, dim=0) independent_expectation = s + ewma_log((A - s).exp().sum(dim=0), s) loss = joint_expectation - independent_expectation # Switch sign, sum over batch dimensions for scalar loss agg_loss = -loss.sum() return agg_loss, loss return loss_fn def _posterior_loss(model, guide, observation_labels, target_labels, analytic_entropy=False): """Posterior loss: to evaluate directly use `posterior_eig` setting `num_steps=0`, `eig=False`.""" def loss_fn(design, num_particles, evaluation=False, **kwargs): expanded_design = lexpand(design, num_particles) # Sample from p(y, theta | d) trace = poutine.trace(model).get_trace(expanded_design) y_dict = {l: trace.nodes[l]["value"] for l in observation_labels} theta_dict = {l: trace.nodes[l]["value"] for l in target_labels} # Run through q(theta | y, d) conditional_guide = pyro.condition(guide, data=theta_dict) cond_trace = poutine.trace(conditional_guide).get_trace( y_dict, expanded_design, observation_labels, target_labels) cond_trace.compute_log_prob() if evaluation and analytic_entropy: loss = mean_field_entropy( guide, [y_dict, expanded_design, observation_labels, target_labels], whitelist=target_labels).sum(0) / num_particles agg_loss = loss.sum() else: terms = -sum(cond_trace.nodes[l]["log_prob"] for l in target_labels) agg_loss, loss = _safe_mean_terms(terms) return agg_loss, loss return loss_fn def _marginal_loss(model, guide, observation_labels, target_labels): """Marginal loss: to evaluate directly use `marginal_eig` setting `num_steps=0`.""" def loss_fn(design, num_particles, evaluation=False, **kwargs): expanded_design = lexpand(design, num_particles) # Sample from p(y | d) trace = poutine.trace(model).get_trace(expanded_design) y_dict = {l: trace.nodes[l]["value"] for l in observation_labels} # Run through q(y | d) conditional_guide = pyro.condition(guide, data=y_dict) cond_trace = poutine.trace(conditional_guide).get_trace( expanded_design, observation_labels, target_labels) cond_trace.compute_log_prob() terms = -sum(cond_trace.nodes[l]["log_prob"] for l in observation_labels) # At eval time, add p(y | theta, d) terms if evaluation: trace.compute_log_prob() terms += sum(trace.nodes[l]["log_prob"] for l in observation_labels) return _safe_mean_terms(terms) return loss_fn def _marginal_likelihood_loss(model, marginal_guide, likelihood_guide, observation_labels, target_labels): """Marginal_likelihood loss: to evaluate directly use `marginal_likelihood_eig` setting `num_steps=0`.""" def loss_fn(design, num_particles, evaluation=False, **kwargs): expanded_design = lexpand(design, num_particles) # Sample from p(y | d) trace = poutine.trace(model).get_trace(expanded_design) y_dict = {l: trace.nodes[l]["value"] for l in observation_labels} theta_dict = {l: trace.nodes[l]["value"] for l in target_labels} # Run through q(y | d) qyd = pyro.condition(marginal_guide, data=y_dict) marginal_trace = poutine.trace(qyd).get_trace( expanded_design, observation_labels, target_labels) marginal_trace.compute_log_prob() # Run through q(y | theta, d) qythetad = pyro.condition(likelihood_guide, data=y_dict) cond_trace = poutine.trace(qythetad).get_trace( theta_dict, expanded_design, observation_labels, target_labels) cond_trace.compute_log_prob() terms = -sum(marginal_trace.nodes[l]["log_prob"] for l in observation_labels) # At evaluation time, use the right estimator, q(y | theta, d) - q(y | d) # At training time, use -q(y | theta, d) - q(y | d) so gradients go the same way if evaluation: terms += sum(cond_trace.nodes[l]["log_prob"] for l in observation_labels) else: terms -= sum(cond_trace.nodes[l]["log_prob"] for l in observation_labels) return _safe_mean_terms(terms) return loss_fn def _lfire_loss(model_marginal, model_conditional, h, observation_labels, target_labels): """LFIRE loss: to evaluate directly use `lfire_eig` setting `num_steps=0`.""" def loss_fn(design, num_particles, evaluation=False, **kwargs): try: pyro.module("h", h) except AssertionError: pass expanded_design = lexpand(design, num_particles) model_conditional_trace = poutine.trace(model_conditional).get_trace(expanded_design) if not evaluation: model_marginal_trace = poutine.trace(model_marginal).get_trace(expanded_design) h_joint = h(expanded_design, model_conditional_trace, observation_labels, target_labels) h_independent = h(expanded_design, model_marginal_trace, observation_labels, target_labels) terms = torch.nn.functional.softplus(-h_joint) + torch.nn.functional.softplus(h_independent) return _safe_mean_terms(terms) else: h_joint = h(expanded_design, model_conditional_trace, observation_labels, target_labels) return _safe_mean_terms(h_joint) return loss_fn def _vnmc_eig_loss(model, guide, observation_labels, target_labels): """VNMC loss: to evaluate directly use `vnmc_eig` setting `num_steps=0`.""" def loss_fn(design, num_particles, evaluation=False, **kwargs): N, M = num_particles expanded_design = lexpand(design, N) # Sample from p(y, theta | d) trace = poutine.trace(model).get_trace(expanded_design) y_dict = {l: lexpand(trace.nodes[l]["value"], M) for l in observation_labels} # Sample M times from q(theta | y, d) for each y reexpanded_design = lexpand(expanded_design, M) conditional_guide = pyro.condition(guide, data=y_dict) guide_trace = poutine.trace(conditional_guide).get_trace( y_dict, reexpanded_design, observation_labels, target_labels) theta_y_dict = {l: guide_trace.nodes[l]["value"] for l in target_labels} theta_y_dict.update(y_dict) guide_trace.compute_log_prob() # Re-run that through the model to compute the joint modelp = pyro.condition(model, data=theta_y_dict) model_trace = poutine.trace(modelp).get_trace(reexpanded_design) model_trace.compute_log_prob() terms = -sum(guide_trace.nodes[l]["log_prob"] for l in target_labels) terms += sum(model_trace.nodes[l]["log_prob"] for l in target_labels) terms += sum(model_trace.nodes[l]["log_prob"] for l in observation_labels) terms = -terms.logsumexp(0) + math.log(M) # At eval time, add p(y | theta, d) terms if evaluation: trace.compute_log_prob() terms += sum(trace.nodes[l]["log_prob"] for l in observation_labels) return _safe_mean_terms(terms) return loss_fn def _safe_mean_terms(terms): mask = torch.isnan(terms) | (terms == float('-inf')) | (terms == float('inf')) if terms.dtype is torch.float32: nonnan = (~mask).sum(0).float() elif terms.dtype is torch.float64: nonnan = (~mask).sum(0).double() terms[mask] = 0. loss = terms.sum(0) / nonnan agg_loss = loss.sum() return agg_loss, loss def xexpx(a): """Computes `a*exp(a)`. This function makes the outputs more stable when the inputs of this function converge to :math:`-\\infty`. :param torch.Tensor a: :return: Equivalent of `a*torch.exp(a)`. """ mask = (a == float('-inf')) y = a*torch.exp(a) y[mask] = 0. return y class _EwmaLogFn(torch.autograd.Function): @staticmethod def forward(ctx, input, ewma): ctx.save_for_backward(ewma) return input.log() @staticmethod def backward(ctx, grad_output): ewma, = ctx.saved_tensors return grad_output / ewma, None _ewma_log_fn = _EwmaLogFn.apply class EwmaLog(object): """Logarithm function with exponentially weighted moving average for gradients. For input `inputs` this function return :code:`inputs.log()`. However, it computes the gradient as :math:`\\frac{\\sum_{t=0}^{T-1} \\alpha^t}{\\sum_{t=0}^{T-1} \\alpha^t x_{T-t}}` where :math:`x_t` are historical input values passed to this function, :math:`x_T` being the most recently seen value. This gradient may help with numerical stability when the sequence of inputs to the function form a convergent sequence. """ def __init__(self, alpha): self.alpha = alpha self.ewma = 0. self.n = 0 self.s = 0. def __call__(self, inputs, s, dim=0, keepdim=False): """Updates the moving average, and returns :code:`inputs.log()`. """ self.n += 1 if torch_isnan(self.ewma) or torch_isinf(self.ewma): ewma = inputs else: ewma = inputs * (1. - self.alpha) / (1 - self.alpha**self.n) \ + torch.exp(self.s - s) * self.ewma \ * (self.alpha - self.alpha**self.n) / (1 - self.alpha**self.n) self.ewma = ewma.detach() self.s = s.detach() return _ewma_log_fn(inputs, ewma)
import numpy as np import os import sys import errno import shutil import os.path as osp import scipy.io as sio from sklearn.neighbors import NearestNeighbors from scipy import sparse import scipy.sparse as sps import timeit from pyflann import FLANN import multiprocessing #import random #random.seed(0) #np.random.seed(0) SHARED_VARS = {} SHARED_array = {} class Logger(object): """ Write console output to external text file. Code imported from https://github.com/Cysu/open-reid/blob/master/reid/utils/logging.py. """ def __init__(self, fpath=None): self.console = sys.stdout self.file = None if fpath is not None: mkdir_if_missing(os.path.dirname(fpath)) self.file = open(fpath, 'w') def __del__(self): self.close() def __enter__(self): pass def __exit__(self, *args): self.close() def write(self, msg): self.console.write(msg) if self.file is not None: self.file.write(msg) def flush(self): self.console.flush() if self.file is not None: self.file.flush() os.fsync(self.file.fileno()) def close(self): self.console.close() if self.file is not None: self.file.close() def mkdir_if_missing(directory): if not osp.exists(directory): try: os.makedirs(directory) except OSError as e: if e.errno != errno.EEXIST: raise def str2bool(v): if isinstance(v, bool): return v if v.lower() in ('yes', 'true', 't', 'y', '1'): return True elif v.lower() in ('no', 'false', 'f', 'n', '0'): return False else: raise argparse.ArgumentTypeError('Boolean value expected.') def normalizefea(X): """ L2 normalize """ # feanorm = np.maximum(1e-14,np.sum(X**2,axis=1)) # X_out = X/(feanorm[:,None]**0.5) return X_out def get_V_jl(x,l,N,K): x = x.squeeze() temp = np.zeros((N,K)) index_cluster = l[x] temp[(x,index_cluster)]=1 temp = temp.sum(0) return temp def get_fair_accuracy(u_V,V_list,l,N,K): # pdb.set_trace() V_j_list = np.array([get_V_jl(x,l,N,K) for x in V_list]) balance = np.zeros(K) J = len(V_list) for k in range(K): V_j_list_k = V_j_list[:,k].copy() balance_temp = np.tile(V_j_list_k,[J,1]) balance_temp = balance_temp.T/np.maximum(balance_temp,1e-20) mask = np.ones(balance_temp.shape, dtype=bool) np.fill_diagonal(mask,0) balance[k] = balance_temp[mask].min() # approx_j_per_K = N/(K*V_j_list.shape[0]) # error = np.abs(V_j_list - approx_j_per_K) # error = error.sum()/N return balance.min(), balance.mean() def get_fair_accuracy_proportional(u_V,V_list,l,N,K): V_j_list = np.array([get_V_jl(x,l,N,K) for x in V_list]) clustered_uV = V_j_list/sum(V_j_list) # balance = V_j_list/sum(V_j_list) fairness_error = np.zeros(K) u_V =np.array(u_V) for k in range(K): fairness_error[k] = (-u_V*np.log(np.maximum(clustered_uV[:,k],1e-20))+u_V*np.log(u_V)).sum() return fairness_error.sum() def create_affinity(X, knn, scale = None, alg = "annoy", savepath = None, W_path = None): N,D = X.shape if W_path is not None: if W_path.endswith('.mat'): W = sio.loadmat(W_path)['W'] elif W_path.endswith('.npz'): W = sparse.load_npz(W_path) else: print('Compute Affinity ') start_time = timeit.default_timer() if alg == "flann": print('with Flann') flann = FLANN() knnind,dist = flann.nn(X,X,knn, algorithm = "kdtree",target_precision = 0.9,cores = 5); # knnind = knnind[:,1:] else: nbrs = NearestNeighbors(n_neighbors=knn).fit(X) dist, knnind = nbrs.kneighbors(X) row = np.repeat(range(N),knn-1) col = knnind[:,1:].flatten() if scale is None: data = np.ones(X.shape[0]*(knn-1)) elif scale is True: scale = np.median(dist[:,1:]) data = np.exp((-dist[:,1:]**2)/(2 * scale ** 2)).flatten() else: data = np.exp((-dist[:,1:]**2)/(2 * scale ** 2)).flatten() W = sparse.csc_matrix((data, (row, col)), shape=(N,N),dtype=np.float) W = (W + W.transpose(copy=True)) /2 elapsed = timeit.default_timer() - start_time print(elapsed) if isinstance(savepath,str): if savepath.endswith('.npz'): sparse.save_npz(savepath,W) elif savepath.endswith('.mat'): sio.savemat(savepath,{'W':W}) return W ### supporting functions to make parallel updates of clusters def n2m(a): """ Return a multiprocessing.Array COPY of a numpy.array, together with shape, typecode and matrix flag. """ if not isinstance(a, np.ndarray): a = np.array(a) return multiprocessing.Array(a.dtype.char, a.flat, lock=False), tuple(a.shape), a.dtype.char, isinstance(a, np.matrix) def m2n(buf, shape, typecode, ismatrix=False): """ Return a numpy.array VIEW of a multiprocessing.Array given a handle to the array, the shape, the data typecode, and a boolean flag indicating whether the result should be cast as a matrix. """ a = np.frombuffer(buf, dtype=typecode).reshape(shape) if ismatrix: a = np.asmatrix(a) return a def mpassing(slices): i,k = slices Q_s,kernel_s_data,kernel_s_indices,kernel_s_indptr,kernel_s_shape = get_shared_arrays('Q_s','kernel_s_data','kernel_s_indices','kernel_s_indptr','kernel_s_shape') # kernel_s = sps.csc_matrix((SHARED_array['kernel_s_data'],SHARED_array['kernel_s_indices'],SHARED_array['kernel_s_indptr']), shape=SHARED_array['kernel_s_shape'], copy=False) kernel_s = sps.csc_matrix((kernel_s_data,kernel_s_indices,kernel_s_indptr), shape=kernel_s_shape, copy=False) Q_s[i,k] = kernel_s[i].dot(Q_s[:,k]) # return Q_s def new_shared_array(shape, typecode='d', ismatrix=False): """ Allocate a new shared array and return all the details required to reinterpret it as a numpy array or matrix (same order of output arguments as n2m) """ typecode = np.dtype(typecode).char return multiprocessing.Array(typecode, int(np.prod(shape)), lock=False), tuple(shape), typecode, ismatrix def get_shared_arrays(*names): return [m2n(*SHARED_VARS[name]) for name in names] def init(*pargs, **kwargs): SHARED_VARS.update(pargs, **kwargs) ####
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi Terraform Bridge (tfgen) Tool. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from . import _utilities from . import outputs from ._inputs import * __all__ = ['CloudUserArgs', 'CloudUser'] @pulumi.input_type class CloudUserArgs: def __init__(__self__, *, description: Optional[pulumi.Input[str]] = None, openstack_rc: Optional[pulumi.Input[Mapping[str, Any]]] = None, project_id: Optional[pulumi.Input[str]] = None, role_name: Optional[pulumi.Input[str]] = None, role_names: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]] = None, service_name: Optional[pulumi.Input[str]] = None): """ The set of arguments for constructing a CloudUser resource. :param pulumi.Input[str] description: A description associated with the user. :param pulumi.Input[Mapping[str, Any]] openstack_rc: a convenient map representing an openstack_rc file. Note: no password nor sensitive token is set in this map. :param pulumi.Input[str] project_id: The id of the public cloud project. If omitted, the `OVH_PROJECT_ID` environment variable is used. DEPRECATED. Use `service_name` instead. :param pulumi.Input[str] role_name: The name of a role. See `role_names`. :param pulumi.Input[Sequence[pulumi.Input[str]]] role_names: A list of role names. Values can be: - administrator, - ai_training_operator - authentication - backup_operator - compute_operator - image_operator - infrastructure_supervisor - network_operator - network_security_operator - objectstore_operator - volume_operator :param pulumi.Input[str] service_name: The id of the public cloud project. Conflicts with `project_id`. """ if description is not None: pulumi.set(__self__, "description", description) if openstack_rc is not None: pulumi.set(__self__, "openstack_rc", openstack_rc) if project_id is not None: pulumi.set(__self__, "project_id", project_id) if role_name is not None: pulumi.set(__self__, "role_name", role_name) if role_names is not None: pulumi.set(__self__, "role_names", role_names) if service_name is not None: pulumi.set(__self__, "service_name", service_name) @property @pulumi.getter def description(self) -> Optional[pulumi.Input[str]]: """ A description associated with the user. """ return pulumi.get(self, "description") @description.setter def description(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "description", value) @property @pulumi.getter(name="openstackRc") def openstack_rc(self) -> Optional[pulumi.Input[Mapping[str, Any]]]: """ a convenient map representing an openstack_rc file. Note: no password nor sensitive token is set in this map. """ return pulumi.get(self, "openstack_rc") @openstack_rc.setter def openstack_rc(self, value: Optional[pulumi.Input[Mapping[str, Any]]]): pulumi.set(self, "openstack_rc", value) @property @pulumi.getter(name="projectId") def project_id(self) -> Optional[pulumi.Input[str]]: """ The id of the public cloud project. If omitted, the `OVH_PROJECT_ID` environment variable is used. DEPRECATED. Use `service_name` instead. """ return pulumi.get(self, "project_id") @project_id.setter def project_id(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "project_id", value) @property @pulumi.getter(name="roleName") def role_name(self) -> Optional[pulumi.Input[str]]: """ The name of a role. See `role_names`. """ return pulumi.get(self, "role_name") @role_name.setter def role_name(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "role_name", value) @property @pulumi.getter(name="roleNames") def role_names(self) -> Optional[pulumi.Input[Sequence[pulumi.Input[str]]]]: """ A list of role names. Values can be: - administrator, - ai_training_operator - authentication - backup_operator - compute_operator - image_operator - infrastructure_supervisor - network_operator - network_security_operator - objectstore_operator - volume_operator """ return pulumi.get(self, "role_names") @role_names.setter def role_names(self, value: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]]): pulumi.set(self, "role_names", value) @property @pulumi.getter(name="serviceName") def service_name(self) -> Optional[pulumi.Input[str]]: """ The id of the public cloud project. Conflicts with `project_id`. """ return pulumi.get(self, "service_name") @service_name.setter def service_name(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "service_name", value) @pulumi.input_type class _CloudUserState: def __init__(__self__, *, creation_date: Optional[pulumi.Input[str]] = None, description: Optional[pulumi.Input[str]] = None, openstack_rc: Optional[pulumi.Input[Mapping[str, Any]]] = None, password: Optional[pulumi.Input[str]] = None, project_id: Optional[pulumi.Input[str]] = None, role_name: Optional[pulumi.Input[str]] = None, role_names: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]] = None, roles: Optional[pulumi.Input[Sequence[pulumi.Input['CloudUserRoleArgs']]]] = None, service_name: Optional[pulumi.Input[str]] = None, status: Optional[pulumi.Input[str]] = None, username: Optional[pulumi.Input[str]] = None): """ Input properties used for looking up and filtering CloudUser resources. :param pulumi.Input[str] creation_date: the date the user was created. :param pulumi.Input[str] description: A description associated with the user. :param pulumi.Input[Mapping[str, Any]] openstack_rc: a convenient map representing an openstack_rc file. Note: no password nor sensitive token is set in this map. :param pulumi.Input[str] password: (Sensitive) the password generated for the user. The password can be used with the Openstack API. This attribute is sensitive and will only be retrieve once during creation. :param pulumi.Input[str] project_id: The id of the public cloud project. If omitted, the `OVH_PROJECT_ID` environment variable is used. DEPRECATED. Use `service_name` instead. :param pulumi.Input[str] role_name: The name of a role. See `role_names`. :param pulumi.Input[Sequence[pulumi.Input[str]]] role_names: A list of role names. Values can be: - administrator, - ai_training_operator - authentication - backup_operator - compute_operator - image_operator - infrastructure_supervisor - network_operator - network_security_operator - objectstore_operator - volume_operator :param pulumi.Input[Sequence[pulumi.Input['CloudUserRoleArgs']]] roles: A list of roles associated with the user. :param pulumi.Input[str] service_name: The id of the public cloud project. Conflicts with `project_id`. :param pulumi.Input[str] status: the status of the user. should be normally set to 'ok'. :param pulumi.Input[str] username: the username generated for the user. This username can be used with the Openstack API. """ if creation_date is not None: pulumi.set(__self__, "creation_date", creation_date) if description is not None: pulumi.set(__self__, "description", description) if openstack_rc is not None: pulumi.set(__self__, "openstack_rc", openstack_rc) if password is not None: pulumi.set(__self__, "password", password) if project_id is not None: pulumi.set(__self__, "project_id", project_id) if role_name is not None: pulumi.set(__self__, "role_name", role_name) if role_names is not None: pulumi.set(__self__, "role_names", role_names) if roles is not None: pulumi.set(__self__, "roles", roles) if service_name is not None: pulumi.set(__self__, "service_name", service_name) if status is not None: pulumi.set(__self__, "status", status) if username is not None: pulumi.set(__self__, "username", username) @property @pulumi.getter(name="creationDate") def creation_date(self) -> Optional[pulumi.Input[str]]: """ the date the user was created. """ return pulumi.get(self, "creation_date") @creation_date.setter def creation_date(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "creation_date", value) @property @pulumi.getter def description(self) -> Optional[pulumi.Input[str]]: """ A description associated with the user. """ return pulumi.get(self, "description") @description.setter def description(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "description", value) @property @pulumi.getter(name="openstackRc") def openstack_rc(self) -> Optional[pulumi.Input[Mapping[str, Any]]]: """ a convenient map representing an openstack_rc file. Note: no password nor sensitive token is set in this map. """ return pulumi.get(self, "openstack_rc") @openstack_rc.setter def openstack_rc(self, value: Optional[pulumi.Input[Mapping[str, Any]]]): pulumi.set(self, "openstack_rc", value) @property @pulumi.getter def password(self) -> Optional[pulumi.Input[str]]: """ (Sensitive) the password generated for the user. The password can be used with the Openstack API. This attribute is sensitive and will only be retrieve once during creation. """ return pulumi.get(self, "password") @password.setter def password(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "password", value) @property @pulumi.getter(name="projectId") def project_id(self) -> Optional[pulumi.Input[str]]: """ The id of the public cloud project. If omitted, the `OVH_PROJECT_ID` environment variable is used. DEPRECATED. Use `service_name` instead. """ return pulumi.get(self, "project_id") @project_id.setter def project_id(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "project_id", value) @property @pulumi.getter(name="roleName") def role_name(self) -> Optional[pulumi.Input[str]]: """ The name of a role. See `role_names`. """ return pulumi.get(self, "role_name") @role_name.setter def role_name(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "role_name", value) @property @pulumi.getter(name="roleNames") def role_names(self) -> Optional[pulumi.Input[Sequence[pulumi.Input[str]]]]: """ A list of role names. Values can be: - administrator, - ai_training_operator - authentication - backup_operator - compute_operator - image_operator - infrastructure_supervisor - network_operator - network_security_operator - objectstore_operator - volume_operator """ return pulumi.get(self, "role_names") @role_names.setter def role_names(self, value: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]]): pulumi.set(self, "role_names", value) @property @pulumi.getter def roles(self) -> Optional[pulumi.Input[Sequence[pulumi.Input['CloudUserRoleArgs']]]]: """ A list of roles associated with the user. """ return pulumi.get(self, "roles") @roles.setter def roles(self, value: Optional[pulumi.Input[Sequence[pulumi.Input['CloudUserRoleArgs']]]]): pulumi.set(self, "roles", value) @property @pulumi.getter(name="serviceName") def service_name(self) -> Optional[pulumi.Input[str]]: """ The id of the public cloud project. Conflicts with `project_id`. """ return pulumi.get(self, "service_name") @service_name.setter def service_name(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "service_name", value) @property @pulumi.getter def status(self) -> Optional[pulumi.Input[str]]: """ the status of the user. should be normally set to 'ok'. """ return pulumi.get(self, "status") @status.setter def status(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "status", value) @property @pulumi.getter def username(self) -> Optional[pulumi.Input[str]]: """ the username generated for the user. This username can be used with the Openstack API. """ return pulumi.get(self, "username") @username.setter def username(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "username", value) class CloudUser(pulumi.CustomResource): @overload def __init__(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, description: Optional[pulumi.Input[str]] = None, openstack_rc: Optional[pulumi.Input[Mapping[str, Any]]] = None, project_id: Optional[pulumi.Input[str]] = None, role_name: Optional[pulumi.Input[str]] = None, role_names: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]] = None, service_name: Optional[pulumi.Input[str]] = None, __props__=None): """ Creates a user in a public cloud project. ## Example Usage ```python import pulumi import pulumi_ovh as ovh user1 = ovh.CloudUser("user1", project_id="67890") ``` :param str resource_name: The name of the resource. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[str] description: A description associated with the user. :param pulumi.Input[Mapping[str, Any]] openstack_rc: a convenient map representing an openstack_rc file. Note: no password nor sensitive token is set in this map. :param pulumi.Input[str] project_id: The id of the public cloud project. If omitted, the `OVH_PROJECT_ID` environment variable is used. DEPRECATED. Use `service_name` instead. :param pulumi.Input[str] role_name: The name of a role. See `role_names`. :param pulumi.Input[Sequence[pulumi.Input[str]]] role_names: A list of role names. Values can be: - administrator, - ai_training_operator - authentication - backup_operator - compute_operator - image_operator - infrastructure_supervisor - network_operator - network_security_operator - objectstore_operator - volume_operator :param pulumi.Input[str] service_name: The id of the public cloud project. Conflicts with `project_id`. """ ... @overload def __init__(__self__, resource_name: str, args: Optional[CloudUserArgs] = None, opts: Optional[pulumi.ResourceOptions] = None): """ Creates a user in a public cloud project. ## Example Usage ```python import pulumi import pulumi_ovh as ovh user1 = ovh.CloudUser("user1", project_id="67890") ``` :param str resource_name: The name of the resource. :param CloudUserArgs args: The arguments to use to populate this resource's properties. :param pulumi.ResourceOptions opts: Options for the resource. """ ... def __init__(__self__, resource_name: str, *args, **kwargs): resource_args, opts = _utilities.get_resource_args_opts(CloudUserArgs, pulumi.ResourceOptions, *args, **kwargs) if resource_args is not None: __self__._internal_init(resource_name, opts, **resource_args.__dict__) else: __self__._internal_init(resource_name, *args, **kwargs) def _internal_init(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, description: Optional[pulumi.Input[str]] = None, openstack_rc: Optional[pulumi.Input[Mapping[str, Any]]] = None, project_id: Optional[pulumi.Input[str]] = None, role_name: Optional[pulumi.Input[str]] = None, role_names: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]] = None, service_name: Optional[pulumi.Input[str]] = None, __props__=None): if opts is None: opts = pulumi.ResourceOptions() if not isinstance(opts, pulumi.ResourceOptions): raise TypeError('Expected resource options to be a ResourceOptions instance') if opts.version is None: opts.version = _utilities.get_version() if opts.id is None: if __props__ is not None: raise TypeError('__props__ is only valid when passed in combination with a valid opts.id to get an existing resource') __props__ = CloudUserArgs.__new__(CloudUserArgs) __props__.__dict__["description"] = description __props__.__dict__["openstack_rc"] = openstack_rc __props__.__dict__["project_id"] = project_id __props__.__dict__["role_name"] = role_name __props__.__dict__["role_names"] = role_names __props__.__dict__["service_name"] = service_name __props__.__dict__["creation_date"] = None __props__.__dict__["password"] = None __props__.__dict__["roles"] = None __props__.__dict__["status"] = None __props__.__dict__["username"] = None super(CloudUser, __self__).__init__( 'ovh:index/cloudUser:CloudUser', resource_name, __props__, opts) @staticmethod def get(resource_name: str, id: pulumi.Input[str], opts: Optional[pulumi.ResourceOptions] = None, creation_date: Optional[pulumi.Input[str]] = None, description: Optional[pulumi.Input[str]] = None, openstack_rc: Optional[pulumi.Input[Mapping[str, Any]]] = None, password: Optional[pulumi.Input[str]] = None, project_id: Optional[pulumi.Input[str]] = None, role_name: Optional[pulumi.Input[str]] = None, role_names: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]] = None, roles: Optional[pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['CloudUserRoleArgs']]]]] = None, service_name: Optional[pulumi.Input[str]] = None, status: Optional[pulumi.Input[str]] = None, username: Optional[pulumi.Input[str]] = None) -> 'CloudUser': """ Get an existing CloudUser resource's state with the given name, id, and optional extra properties used to qualify the lookup. :param str resource_name: The unique name of the resulting resource. :param pulumi.Input[str] id: The unique provider ID of the resource to lookup. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[str] creation_date: the date the user was created. :param pulumi.Input[str] description: A description associated with the user. :param pulumi.Input[Mapping[str, Any]] openstack_rc: a convenient map representing an openstack_rc file. Note: no password nor sensitive token is set in this map. :param pulumi.Input[str] password: (Sensitive) the password generated for the user. The password can be used with the Openstack API. This attribute is sensitive and will only be retrieve once during creation. :param pulumi.Input[str] project_id: The id of the public cloud project. If omitted, the `OVH_PROJECT_ID` environment variable is used. DEPRECATED. Use `service_name` instead. :param pulumi.Input[str] role_name: The name of a role. See `role_names`. :param pulumi.Input[Sequence[pulumi.Input[str]]] role_names: A list of role names. Values can be: - administrator, - ai_training_operator - authentication - backup_operator - compute_operator - image_operator - infrastructure_supervisor - network_operator - network_security_operator - objectstore_operator - volume_operator :param pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['CloudUserRoleArgs']]]] roles: A list of roles associated with the user. :param pulumi.Input[str] service_name: The id of the public cloud project. Conflicts with `project_id`. :param pulumi.Input[str] status: the status of the user. should be normally set to 'ok'. :param pulumi.Input[str] username: the username generated for the user. This username can be used with the Openstack API. """ opts = pulumi.ResourceOptions.merge(opts, pulumi.ResourceOptions(id=id)) __props__ = _CloudUserState.__new__(_CloudUserState) __props__.__dict__["creation_date"] = creation_date __props__.__dict__["description"] = description __props__.__dict__["openstack_rc"] = openstack_rc __props__.__dict__["password"] = password __props__.__dict__["project_id"] = project_id __props__.__dict__["role_name"] = role_name __props__.__dict__["role_names"] = role_names __props__.__dict__["roles"] = roles __props__.__dict__["service_name"] = service_name __props__.__dict__["status"] = status __props__.__dict__["username"] = username return CloudUser(resource_name, opts=opts, __props__=__props__) @property @pulumi.getter(name="creationDate") def creation_date(self) -> pulumi.Output[str]: """ the date the user was created. """ return pulumi.get(self, "creation_date") @property @pulumi.getter def description(self) -> pulumi.Output[Optional[str]]: """ A description associated with the user. """ return pulumi.get(self, "description") @property @pulumi.getter(name="openstackRc") def openstack_rc(self) -> pulumi.Output[Mapping[str, Any]]: """ a convenient map representing an openstack_rc file. Note: no password nor sensitive token is set in this map. """ return pulumi.get(self, "openstack_rc") @property @pulumi.getter def password(self) -> pulumi.Output[str]: """ (Sensitive) the password generated for the user. The password can be used with the Openstack API. This attribute is sensitive and will only be retrieve once during creation. """ return pulumi.get(self, "password") @property @pulumi.getter(name="projectId") def project_id(self) -> pulumi.Output[Optional[str]]: """ The id of the public cloud project. If omitted, the `OVH_PROJECT_ID` environment variable is used. DEPRECATED. Use `service_name` instead. """ return pulumi.get(self, "project_id") @property @pulumi.getter(name="roleName") def role_name(self) -> pulumi.Output[Optional[str]]: """ The name of a role. See `role_names`. """ return pulumi.get(self, "role_name") @property @pulumi.getter(name="roleNames") def role_names(self) -> pulumi.Output[Optional[Sequence[str]]]: """ A list of role names. Values can be: - administrator, - ai_training_operator - authentication - backup_operator - compute_operator - image_operator - infrastructure_supervisor - network_operator - network_security_operator - objectstore_operator - volume_operator """ return pulumi.get(self, "role_names") @property @pulumi.getter def roles(self) -> pulumi.Output[Sequence['outputs.CloudUserRole']]: """ A list of roles associated with the user. """ return pulumi.get(self, "roles") @property @pulumi.getter(name="serviceName") def service_name(self) -> pulumi.Output[Optional[str]]: """ The id of the public cloud project. Conflicts with `project_id`. """ return pulumi.get(self, "service_name") @property @pulumi.getter def status(self) -> pulumi.Output[str]: """ the status of the user. should be normally set to 'ok'. """ return pulumi.get(self, "status") @property @pulumi.getter def username(self) -> pulumi.Output[str]: """ the username generated for the user. This username can be used with the Openstack API. """ return pulumi.get(self, "username")
# -*- coding: utf-8 -*- import numpy as np import matplotlib.style import matplotlib as mpl import matplotlib.pyplot as plt from sklearn.datasets import load_wine from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.linear_model import LogisticRegression X, y = load_wine(return_X_y=True) X_train, X_test, y_train, y_test = \ train_test_split(X, y, test_size=0.3, random_state=0, stratify=y) stdsc = StandardScaler() X_train_std = stdsc.fit_transform(X_train) X_test_std = stdsc.transform(X_test) colors = ['blue', 'green', 'red', 'cyan', 'magenta', 'yellow', 'black', 'pink', 'lightgreen', 'lightblue', 'gray', 'indigo', 'orange'] columns = ['Class label', 'Alcohol', 'Malic acid', 'Ash', 'Alcalinity of ash', 'Magnesium', 'Total phenols', 'Flavanoids', 'Nonflavanoid phenols', 'Proanthocyanins', 'Color intensity', 'Hue', 'OD280/OD315 of diluted wines', 'Proline'] weights, params = [], [] for c in np.arange(-4., 6.): lr = LogisticRegression( solver='liblinear', penalty='l1', C=10.**c, random_state=0) lr.fit(X_train_std, y_train) weights.append(lr.coef_[1]) params.append(10**c) weights = np.array(weights) plt.style.use('ggplot') mpl.rcParams['image.cmap'] = 'viridis' mpl.rcParams['font.serif'] = 'Source Han Serif' mpl.rcParams['font.sans-serif'] = 'Source Han Sans' fig = plt.figure(figsize=(6, 3.2)) ax = plt.subplot(111) for column, color in zip(range(weights.shape[1]), colors): plt.plot(params, weights[:, column], label=columns[column + 1], color=color) plt.axhline(0, color='black', linestyle='--', linewidth=3) plt.xlim([10**(-5), 10**5]) plt.ylabel('weight coefficient') plt.xlabel('C') plt.xscale('log') plt.legend(loc='upper left') ax.legend(loc='upper center', bbox_to_anchor=(1.4, 1), ncol=1, fancybox=True) plt.savefig('wine-lr-regularization.png', dpi=300, bbox_inches='tight', pad_inches=0.2)
# -*- coding: utf-8 -*- # # __init__.py # # Copyright 2017 Amazon.com, Inc. or its affiliates. All Rights Reserved. # # SPDX-License-Identifier: MIT-0 # # __author__ = "Rafael M. Koike" __email__ = "koiker@amazon.com" __date__ = "2016-11-14" __version__ = '0.1.5'
""" Given a string, find the length of the longest substring without repeating characters. Examples: Given "abcabcbb", the answer is "abc", which the length is 3. Given "bbbbb", the answer is "b", with the length of 1. Given "pwwkew", the answer is "wke", with the length of 3. Note that the answer must be a substring, "pwke" is a subsequence and not a substring. """ class Solution(object): def lengthOfLongestSubstring(self, s): """ :type s: str :rtype: int """ length = len(s) if length <= 1: return length # Solution 1 # res = 1 # slow_index = 0 # for i in range(1, length): # if s[i] in s[slow_index:i]: # slow_index += s[slow_index:i+1].index(s[i]) + 1 # if res < i - slow_index + 1: # res = i - slow_index + 1 # return res # Solution 2 res = 1 character_index_mapping = {} slow_index = 0 character_index_mapping[s[0]] = 0 for i in range(1, length): if character_index_mapping.get(s[i], -1) > -1 and character_index_mapping.get(s[i]) >= slow_index: if res < i - slow_index: res = i - slow_index slow_index = character_index_mapping.get(s[i]) + 1 else: if res < i - slow_index + 1: res = i - slow_index + 1 character_index_mapping[s[i]] = i return res
from sklearn import datasets from sklearn import metrics from sklearn.metrics import classification_report from sklearn import svm from sklearn.model_selection import train_test_split cancer = datasets.load_breast_cancer() print("Features: ", cancer.feature_names) print("Labels: ", cancer.target_names) cancer.data.shape print(cancer.data[0:5]) print(cancer.target) X_train, X_test, y_train, y_test = train_test_split(cancer.data, cancer.target, test_size=0.3, random_state=109) clf = svm.SVC(kernel = 'linear') clf.fit(X_train, y_train) y_pred = clf.predict(X_test) print("Accuracy:", metrics.accuracy_score(y_test, y_pred)) report_svc = classification_report(y_test, y_pred) print(report_svc) print("Precision:",metrics.precision_score(y_test, y_pred)) print("Recall:",metrics.recall_score(y_test, y_pred)) print(metrics.confusion_matrix(y_test, y_pred))
import numpy as np import init import image_service import image_draw import perceptron import noise_generation N = 36 H = 30 M = 5 ALPHA = 1 BETA = 1 D = 0.02 letter_map = { 'K': 0, 'L': 1, 'O': 2, 'T': 3, 'U': 4 } letter_image_map = {} letter_vector_map = {} for letter in letter_map: letter_image_map[letter] = image_service.get_image_from_file(letter) for letter in letter_map: letter_vector_map[letter] = init.get_y_vector(letter_map[letter], 5) inner_hidden_weights = init.init_weights(H, N) hidden_threshold = init.init_threshold(H) hidden_neurons = np.zeros(H) hidden_outer_weights = init.init_weights(M, H) outer_threshold = init.init_threshold(M) outer_neurons = np.zeros(M) def calculate_hidden_neuron_sum(index, image): return perceptron.sum_function(inner_hidden_weights[index], image, hidden_threshold[index]) def calculate_outer_neuron_sum(index): return perceptron.sum_function(hidden_outer_weights[index], hidden_neurons, outer_threshold[index]) def calculate_hidden_activations(image): for index in range(H): hidden_neurons[index] = perceptron.activation_function(calculate_hidden_neuron_sum(index, image)) def calculate_outer_activations(): for index in range(M): outer_neurons[index] = perceptron.activation_function(calculate_outer_neuron_sum(index)) def get_image_activations(image): calculate_hidden_activations(image) calculate_outer_activations() mistake_vector = [1, 1, 1, 1, 1] def recalculate_hidden_outer_weights(): for outer_index in range(M): for hidden_index in range(H): hidden_outer_weights[outer_index][hidden_index] += ALPHA * \ outer_neurons[outer_index] * \ (1 - outer_neurons[outer_index]) * \ mistake_vector[outer_index] * \ hidden_neurons[hidden_index] def recalculate_outer_threshold(): for outer_index in range(M): outer_threshold[outer_index] += ALPHA * \ outer_neurons[outer_index] * \ (1 - outer_neurons[outer_index]) * \ mistake_vector[outer_index] def calculate_error_for_hidden_weight(index): return sum(list(map(lambda i: mistake_vector[i] * outer_neurons[i] * \ (1 - outer_neurons[i]) * hidden_outer_weights[i][index], range(M)))) def recalculate_inner_hidden_weights(letter): for hidden_index in range(H): for inner_index in range(N): inner_hidden_weights[hidden_index][inner_index] += BETA * \ hidden_neurons[hidden_index] * \ (1 - hidden_neurons[hidden_index]) * \ calculate_error_for_hidden_weight(hidden_index) * \ letter_image_map[letter][inner_index] def recalculate_hidden_threshold(): for hidden_index in range(H): hidden_threshold[hidden_index] += BETA * \ hidden_neurons[hidden_index] * \ (1 - hidden_neurons[hidden_index]) * \ calculate_error_for_hidden_weight(hidden_index) def back_propagation(letter): global mistake_vector mistake_vector = np.subtract(letter_vector_map[letter], outer_neurons) recalculate_hidden_outer_weights() recalculate_outer_threshold() recalculate_inner_hidden_weights(letter) recalculate_hidden_threshold() # for letter in letter_map: # noise_generation.generate_noise_for_single_image(letter) for letter in letter_image_map: image_draw.show_image(letter_image_map[letter]) while abs(np.amax(mistake_vector)) >= D: print(abs(np.amax(mistake_vector))) for letter in letter_map: get_image_activations(letter_image_map[letter]) back_propagation(letter) print(np.amax(mistake_vector), ' - Teaching finished') while True: image = image_service.get_noised_image_from_file(input('\nLetter: '), int(input('Noise: '))) image_draw.show_image(image) get_image_activations(image) print(outer_neurons)
import os from ament_index_python.packages import get_package_share_directory from launch import LaunchDescription import launch_ros.actions from launch.actions import DeclareLaunchArgument from launch.substitutions import LaunchConfiguration from launch_ros.actions import Node from launch.conditions import IfCondition def generate_launch_description(): use_sim_time = LaunchConfiguration('use_sim_time', default='false') rviz_config_dir = os.path.join( get_package_share_directory('neuronbot2_slam'), 'rviz', 'slam.rviz') remappings = [('/tf', 'tf'), ('/tf_static', 'tf_static')] param_substitutions = { 'use_sim_time': use_sim_time, 'scan_topic': 'scan', 'base_frame': 'base_link', 'odom_frame': 'odom', 'map_frame': 'map', 'map_update_interval': 3.0, 'maxUrange': 10.0, 'sigma': 0.05, 'kernelSize': 1, 'lstep': 0.05, 'astep': 0.05, 'iterations': 5, 'lsigma': 0.075, 'ogain': 3.0, 'lskip': 0, 'srr': 0.1, 'srt': 0.2, 'str': 0.1, 'stt': 0.2, 'linearUpdate': 0.3, 'angularUpdate': 3.14, 'temporalUpdate': 5.0, 'resampleThreshold': 0.5, 'particles': 30, 'xmin': -15.0, 'ymin': -15.0, 'xmax': 15.0, 'ymax': 15.0, 'delta': 0.025, 'llsamplerange': 0.01, 'llsamplestep': 0.01, 'lasamplerange': 0.005, 'lasamplestep': 0.005, } return LaunchDescription([ DeclareLaunchArgument( 'open_rviz', default_value='false', description='open rviz'), launch_ros.actions.Node( package='slam_gmapping', executable='slam_gmapping', parameters=[param_substitutions], output='screen'), Node( package='rviz2', executable='rviz2', name='rviz2', arguments=['-d', rviz_config_dir], parameters=[{'use_sim_time': use_sim_time}], condition=IfCondition(LaunchConfiguration("open_rviz")), remappings=remappings ), ])
class Interval: type_name = {0:'tick', 1:'m1', 2:'m5'} name_type = {v:k for k,v in type_name.items()} names = list(name_type.keys()) def __init__(self, value='m1'): if value not in self.names: return AssertionError, 'Interval value not exists' self.type = self.name_type[value] def get_name(self): return self.type_name[self.type] def get_type(self): return self.type
# -*- coding: utf-8 -*- # Copyright (c) 2016 Ericsson AB # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from calvin.utilities.calvinlogger import get_actor_logger from calvin.actor.actor import Actor, manage, condition, calvinlib _log = get_actor_logger(__name__) class RandomInteger(Actor): """ Produce random integer in range [lower ... upper-1] Inputs: trigger : Any token Outputs: integer : Random integer in range [lower ... upper-1] """ @manage(['lower', 'upper']) def init(self, lower, upper): self.lower = lower self.upper = upper self.setup() def setup(self): self.rng = calvinlib.use("math.random") def did_migrate(self): self.setup() @condition(action_input=['trigger'], action_output=['integer']) def action(self, trigger): return self.rng.random_integer(lower=self.lower, upper=self.upper), action_priority = (action, ) requires = ['math.random'] test_kwargs = {'lower': 1, 'upper': 2} test_set = [ { 'inports': {'trigger': [True, 1, "a"]}, 'outports': {'integer': [1, 1, 1]} } ]
#!/usr/bin/env python3 # std import import sys import string import pkgutil import configparser # string-utils import import string_utils # project import from . import logger from .abcstep import StepStat def main(config_path): """ Main function of programme read configuration and run enable step """ config = configparser.ConfigParser(interpolation = configparser.ExtendedInterpolation()) config.read(config_path) logger.setup_logging(**config) for step_name in config['options']['steps'].split(","): if step_name in [modname for importer, modname, ispkg in pkgutil.iter_modules( sys.modules[__package__].__path__)]: appli_name = config[step_name]['name'] module_step = __import__(".".join(["pysingcells", step_name]), fromlist="pysingcells") if appli_name.lower() in [modname for importer, modname, ispkg in pkgutil.iter_modules(module_step.__path__)]: appli_module = __import__(".".join(["pysingcells", step_name, appli_name.lower()]), fromlist=".".join(["pysingcells", step_name])) appli_class = getattr(appli_module, snake_case_to_capword(appli_name)) appli_instance = appli_class() appli_instance.read_configuration(**config) if appli_instance.check_configuration(): appli_instance.run() if appli_instance.state != StepStat.succes: logger.log.warning(appli_name + " failled current run see log file") exit(1) else: logger.log.warning(appli_name + " failled in check her conf") else: logger.log.warning(appli_name + " isn't avaible in pysingcells." + step_name) else: logger.log.warning(step_name + " isn't avaible in pysingcells") def snake_case_to_capword(base): if not string_utils.is_snake_case(base) or base.isupper(): base = "".join(c.upper() if i == 0 else c for i, c in enumerate(base)) return base return string_utils.snake_case_to_camel(base).title() if __name__ == "__main__": main(sys.argv[1])
from .app.models import Category, Article from .weakrefs import IdMapWeakRefsTests class IdMapStrongRefsTests(IdMapWeakRefsTests): # derives from tests with weak refs # all tests should pass except CachedToRegular, where the expected # result is the contrary @classmethod def setUpClass(cls): Category._meta.use_strong_refs = True Article._meta.use_strong_refs = True super(IdMapStrongRefsTests, cls).setUpClass() @classmethod def tearDownClass(cls): super(IdMapStrongRefsTests, cls).tearDownClass() # restore defaults Category._meta.use_strong_refs = False Article._meta.use_strong_refs = False def test_cached_to_regular(self): # overrides a test in IdMapWeakRefsTests # the expected result is that the category objects are the same # indeed, the reference to the articles is not weak anymore and they # are kept in memory after setUp. They are only erased when calling # flush article_list = Article.objects.all().select_related('category') last_article = article_list[0] for article in article_list[1:]: self.assertIs(article.category2, last_article.category2) last_article = article
import datetime import http.client import mock from rdr_service.clock import FakeClock from rdr_service.code_constants import CONSENT_PERMISSION_YES_CODE, RACE_NONE_OF_THESE_CODE from rdr_service.dao.biobank_order_dao import BiobankOrderDao from rdr_service.dao.participant_dao import ParticipantDao from rdr_service.dao.participant_summary_dao import ParticipantSummaryDao from rdr_service.model.biobank_order import ( BiobankOrderHistory, BiobankOrderIdentifierHistory, BiobankOrderedSampleHistory, ) from rdr_service.model.participant import Participant from rdr_service.model.utils import from_client_participant_id, to_client_participant_id from rdr_service.participant_enums import OrderStatus, UNSET_HPO_ID from tests.api_tests.test_participant_summary_api import _add_code_answer from tests.helpers.unittest_base import BaseTestCase from tests.test_data import load_biobank_order_json, load_measurement_json TIME_1 = datetime.datetime(2016, 1, 1) TIME_2 = datetime.datetime(2016, 1, 2) TIME_3 = datetime.datetime(2016, 1, 3) TIME_4 = datetime.datetime(2016, 1, 4) TIME_5 = datetime.datetime(2016, 1, 5, 0, 1) TIME_6 = datetime.datetime(2015, 1, 1) class BiobankOrderApiTest(BaseTestCase): def setUp(self): super().setUp() self.participant = Participant(participantId=123, biobankId=555) self.participant_dao = ParticipantDao() self.participant_dao.insert(self.participant) self.summary_dao = ParticipantSummaryDao() self.bio_dao = BiobankOrderDao() self.path = "Participant/%s/BiobankOrder" % to_client_participant_id(self.participant.participantId) self.mayolink_response = { "orders": { "order": { "status": "Queued", "reference_number": "somebarcodenumber", "received": "2016-12-01T12:00:00-05:00", "number": "WEB1ABCD1234", "patient": {"medical_record_number": "PAT-123-456"}, } } } mayolinkapi_patcher = mock.patch( "rdr_service.dao.biobank_order_dao.MayoLinkApi", **{"return_value.post.return_value": self.mayolink_response} ) mayolinkapi_patcher.start() self.addCleanup(mayolinkapi_patcher.stop) @mock.patch('rdr_service.dao.biobank_order_dao.get_account_origin_id') def test_create_quest_order(self, quest_origin): quest_origin.return_value = 'careevolution' self.summary_dao.insert(self.participant_summary(self.participant)) order_json = load_biobank_order_json(self.participant.participantId, filename="quest_biobank_order_1.json") result = self.send_post(self.path, order_json) self.assertEqual(result['id'], 'WEB1ABCD1234') self.assertEqual(result['collectedInfo']['address'], {'city': 'Little Rock', 'line': ['address1', 'address2'], 'postalCode': '72205-5302', 'state': 'AR'}) @mock.patch('rdr_service.dao.biobank_order_dao.get_account_origin_id') def test_update_biobank_order_from_different_origin(self, quest_origin): quest_origin.return_value = 'careevolution' self.summary_dao.insert(self.participant_summary(self.participant)) order_json = load_biobank_order_json(self.participant.participantId, filename="quest_biobank_order_1.json") result = self.send_post(self.path, order_json) self.assertEqual(result['id'], 'WEB1ABCD1234') quest_origin.return_value = 'hpro' update_path = self.path + "/" + 'WEB1ABCD1234' update_json = load_biobank_order_json(self.participant.participantId, filename="biobank_order_2.json") update_json['identifier'][1]['value'] = 'WEB1ABCD1234' self.send_put(update_path, request_data=update_json, headers={"If-Match": 'W/"1"'}, expected_status=http.client.BAD_REQUEST) @mock.patch('rdr_service.dao.biobank_order_dao.get_account_origin_id') def test_get_orders_by_participant_id(self, quest_origin): quest_origin.return_value = 'careevolution' self.summary_dao.insert(self.participant_summary(self.participant)) order_json = load_biobank_order_json(self.participant.participantId, filename="quest_biobank_order_1.json") self.send_post(self.path, order_json) quest_origin.return_value = 'hpro' order_json = load_biobank_order_json(self.participant.participantId, filename="biobank_order_2.json") self.send_post(self.path, order_json) get_path = "Participant/%s/BiobankOrder" % to_client_participant_id(self.participant.participantId) result = self.send_get(get_path) self.assertEqual(result['total'], 2) self.assertEqual(len(result['data']), 2) if result['data'][0]['origin'] == 'careevolution': self.assertEqual(result['data'][1]['origin'], 'hpro') else: self.assertEqual(result['data'][1]['origin'], 'careevolution') @mock.patch('rdr_service.dao.biobank_order_dao.get_account_origin_id') def test_get_orders_by_kit_id(self, quest_origin): quest_origin.return_value = 'careevolution' self.summary_dao.insert(self.participant_summary(self.participant)) order_json = load_biobank_order_json(self.participant.participantId, filename="quest_biobank_order_1.json") self.send_post(self.path, order_json) quest_origin.return_value = 'hpro' order_json = load_biobank_order_json(self.participant.participantId, filename="biobank_order_2.json") self.send_post(self.path, order_json) get_path = "BiobankOrder?kitId=KIT-12345678" result = self.send_get(get_path) self.assertEqual(result['total'], 1) self.assertEqual(len(result['data']), 1) self.assertEqual(result['data'][0]['origin'], 'careevolution') @mock.patch('rdr_service.dao.biobank_order_dao.get_account_origin_id') def test_get_orders_by_time_range(self, quest_origin): quest_origin.return_value = 'careevolution' self.summary_dao.insert(self.participant_summary(self.participant)) order_json = load_biobank_order_json(self.participant.participantId, filename="quest_biobank_order_1.json") self.send_post(self.path, order_json) quest_origin.return_value = 'hpro' order_json = load_biobank_order_json(self.participant.participantId, filename="biobank_order_2.json") self.send_post(self.path, order_json) p2 = Participant(participantId=456, biobankId=666) self.participant_dao.insert(p2) self.summary_dao.insert(self.participant_summary(p2)) order_json = load_biobank_order_json(p2.participantId, filename="biobank_order_2.json") p2_path = "Participant/%s/BiobankOrder" % to_client_participant_id(p2.participantId) self.send_post(p2_path, order_json) p3 = Participant(participantId=789, biobankId=777) self.participant_dao.insert(p3) self.summary_dao.insert(self.participant_summary(p3)) order_json = load_biobank_order_json(p3.participantId, filename="biobank_order_2.json") p3_path = "Participant/%s/BiobankOrder" % to_client_participant_id(p3.participantId) self.send_post(p3_path, order_json) p4 = Participant(participantId=1244, biobankId=888) self.participant_dao.insert(p4) self.summary_dao.insert(self.participant_summary(p4)) order_json = load_biobank_order_json(p4.participantId, filename="biobank_order_4.json") p4_path = "Participant/%s/BiobankOrder" % to_client_participant_id(p4.participantId) self.send_post(p4_path, order_json) get_path = "BiobankOrder?origin=hpro&startDate=2016-01-04&endDate=2016-01-05&page=1&pageSize=2" result = self.send_get(get_path) self.assertEqual(result['total'], 3) self.assertEqual(len(result['data']), 2) self.assertIn(result['data'][0]['biobankId'][1:], ('555', '666')) get_path = "BiobankOrder?origin=hpro&startDate=2016-01-03&endDate=2016-01-04&page=2&pageSize=2" result = self.send_get(get_path) self.assertEqual(result['total'], 3) self.assertEqual(len(result['data']), 1) get_path = "BiobankOrder?origin=hpro&startDate=2016-01-03&endDate=2016-01-04&page=3&pageSize=2" result = self.send_get(get_path) self.assertEqual(result['total'], 3) self.assertEqual(len(result['data']), 0) get_path = "BiobankOrder?origin=hpro&startDate=2019-12-03&endDate=2019-12-04&page=1&pageSize=2" result = self.send_get(get_path) self.assertEqual(result['total'], 0) self.assertEqual(len(result['data']), 0) get_path = "BiobankOrder?origin=careevolution&startDate=2019-12-03&endDate=2019-12-04&page=1&pageSize=2" result = self.send_get(get_path) self.assertEqual(result['total'], 1) self.assertEqual(len(result['data']), 1) get_path = "BiobankOrder?origin=careevolution&state=AR&page=1&pageSize=2" result = self.send_get(get_path) self.assertEqual(result['total'], 1) self.assertEqual(len(result['data']), 1) get_path = "BiobankOrder?origin=careevolution&state=TN&page=1&pageSize=2" result = self.send_get(get_path) self.assertEqual(result['total'], 0) self.assertEqual(len(result['data']), 0) def test_cancel_order(self): self.summary_dao.insert(self.participant_summary(self.participant)) order_json = load_biobank_order_json(self.participant.participantId, filename="biobank_order_2.json") result = self.send_post(self.path, order_json) full_order_json = load_biobank_order_json(self.participant.participantId, filename="biobank_order_1.json") _strip_fields(result) _strip_fields(full_order_json) self.assertEqual(full_order_json, result) biobank_order_id = result["identifier"][1]["value"] path = self.path + "/" + biobank_order_id request_data = { "amendedReason": "Its all wrong", "cancelledInfo": { "author": {"system": "https://www.pmi-ops.org/healthpro-username", "value": "fred@pmi-ops.org"}, "site": {"system": "https://www.pmi-ops.org/site-id", "value": "hpo-site-monroeville"}, }, "status": "cancelled", } cancelled_order = self.send_patch(path, request_data=request_data, headers={"If-Match": 'W/"1"'}) get_cancelled_order = self.send_get(path) get_summary = self.summary_dao.get(self.participant.participantId) self.assertEqual(get_summary.biospecimenSourceSiteId, None) self.assertEqual(get_summary.biospecimenCollectedSiteId, None) self.assertEqual(get_summary.biospecimenOrderTime, None) self.assertEqual(get_summary.biospecimenStatus, None) self.assertEqual(get_summary.biospecimenFinalizedSiteId, None) self.assertEqual(get_summary.biospecimenProcessedSiteId, None) self.assertEqual(get_summary.sampleOrderStatus2ED10, None) self.assertEqual(get_summary.sampleOrderStatus2ED10Time, None) self.assertEqual(get_summary.sampleStatus2ED10, None) self.assertEqual(get_summary.sampleStatus2ED10Time, None) self.assertEqual(get_summary.sampleOrderStatus1PST8, None) self.assertEqual(get_summary.sampleOrderStatus1PST8Time, None) self.assertEqual(get_summary.sampleStatus1PST8, None) self.assertEqual(get_summary.sampleStatus1PST8Time, None) self.assertEqual(get_summary.sampleOrderStatus1PS08, None) self.assertEqual(get_summary.sampleOrderStatus1PS08Time, None) self.assertEqual(get_summary.sampleStatus1PS08, None) self.assertEqual(get_summary.sampleStatus1PS08Time, None) self.assertEqual(get_summary.sampleOrderStatus2PST8, None) self.assertEqual(get_summary.sampleOrderStatus2PST8Time, None) self.assertEqual(get_summary.sampleStatus2PST8, None) self.assertEqual(get_summary.sampleStatus2PST8Time, None) self.assertEqual(get_summary.sampleOrderStatus1PXR2, None) self.assertEqual(get_summary.sampleOrderStatus1PXR2Time, None) self.assertEqual(get_summary.sampleStatus1PXR2, None) self.assertEqual(get_summary.sampleStatus1PXR2Time, None) self.assertEqual(get_summary.sampleOrderStatus1CFD9, None) self.assertEqual(get_summary.sampleOrderStatus1CFD9Time, None) self.assertEqual(get_summary.sampleStatus1CFD9, None) self.assertEqual(get_summary.sampleStatus1CFD9Time, None) self.assertEqual(get_summary.sampleOrderStatus1ED02, None) self.assertEqual(get_summary.sampleOrderStatus1ED02Time, None) self.assertEqual(get_summary.sampleStatus1ED02, None) self.assertEqual(get_summary.sampleStatus1ED02Time, None) self.assertEqual(cancelled_order, get_cancelled_order) self.assertEqual(get_cancelled_order["status"], "CANCELLED") self.assertEqual(get_cancelled_order["amendedReason"], "Its all wrong") self.assertEqual(get_cancelled_order["cancelledInfo"]["author"]["value"], "fred@pmi-ops.org") self.assertEqual(get_cancelled_order["cancelledInfo"]["site"]["value"], "hpo-site-monroeville") def test_you_can_not_cancel_a_cancelled_order(self): self.summary_dao.insert(self.participant_summary(self.participant)) order_json = load_biobank_order_json(self.participant.participantId, filename="biobank_order_2.json") result = self.send_post(self.path, order_json) biobank_order_id = result["identifier"][1]["value"] path = self.path + "/" + biobank_order_id request_data = { "amendedReason": "Its all wrong", "cancelledInfo": { "author": {"system": "https://www.pmi-ops.org/healthpro-username", "value": "fred@pmi-ops.org"}, "site": {"system": "https://www.pmi-ops.org/site-id", "value": "hpo-site-monroeville"}, }, "status": "cancelled", } self.send_patch(path, request_data=request_data, headers={"If-Match": 'W/"1"'}) self.send_patch( path, request_data=request_data, headers={"If-Match": 'W/"2"'}, expected_status=http.client.BAD_REQUEST ) def test_cancel_one_order_with_another_good_order(self): self.summary_dao.insert(self.participant_summary(self.participant)) order_json = load_biobank_order_json(self.participant.participantId, filename="biobank_order_1.json") order_json2 = load_biobank_order_json(self.participant.participantId, filename="biobank_order_2.json") order_json2['identifier'][0]['value'] = 'healthpro-order-id-1231234' order_json2['identifier'][1]['value'] = 'WEB1YLHV1234' result = self.send_post(self.path, order_json) self.send_post(self.path, order_json2) biobank_order_id = result["identifier"][1]["value"] path = self.path + "/" + biobank_order_id request_data = { "amendedReason": "Its all wrong", "cancelledInfo": { "author": {"system": "https://www.pmi-ops.org/healthpro-username", "value": "fred@pmi-ops.org"}, "site": {"system": "https://www.pmi-ops.org/site-id", "value": "hpo-site-monroeville"}, }, "status": "cancelled", } self.send_patch(path, request_data=request_data, headers={"If-Match": 'W/"1"'}) self.send_patch( path, request_data=request_data, headers={"If-Match": 'W/"2"'}, expected_status=http.client.BAD_REQUEST ) get_summary = self.summary_dao.get(self.participant.participantId) self.assertEqual(get_summary.biospecimenSourceSiteId, 1) self.assertEqual(get_summary.biospecimenCollectedSiteId, 1) self.assertEqual(get_summary.biospecimenFinalizedSiteId, 2) def test_you_can_not_restore_a_not_cancelled_order(self): self.summary_dao.insert(self.participant_summary(self.participant)) order_json = load_biobank_order_json(self.participant.participantId, filename="biobank_order_2.json") result = self.send_post(self.path, order_json) biobank_order_id = result["identifier"][1]["value"] path = self.path + "/" + biobank_order_id request_data = { "amendedReason": "Its all wrong", "restoredInfo": { "author": {"system": "https://www.pmi-ops.org/healthpro-username", "value": "fred@pmi-ops.org"}, "site": {"system": "https://www.pmi-ops.org/site-id", "value": "hpo-site-monroeville"}, }, "status": "restored", } self.send_patch( path, request_data=request_data, headers={"If-Match": 'W/"1"'}, expected_status=http.client.BAD_REQUEST ) def test_restore_an_order(self): self.summary_dao.insert(self.participant_summary(self.participant)) order_json = load_biobank_order_json(self.participant.participantId, filename="biobank_order_2.json") result = self.send_post(self.path, order_json) full_order_json = load_biobank_order_json(self.participant.participantId, filename="biobank_order_1.json") _strip_fields(result) _strip_fields(full_order_json) self.assertEqual(full_order_json, result) biobank_order_id = result["identifier"][1]["value"] path = self.path + "/" + biobank_order_id request_data = { "amendedReason": "Its all wrong", "cancelledInfo": { "author": {"system": "https://www.pmi-ops.org/healthpro-username", "value": "fred@pmi-ops.org"}, "site": {"system": "https://www.pmi-ops.org/site-id", "value": "hpo-site-monroeville"}, }, "status": "cancelled", } self.send_patch(path, request_data=request_data, headers={"If-Match": 'W/"1"'}) request_data = { "amendedReason": "I didnt mean to cancel", "restoredInfo": { "author": {"system": "https://www.pmi-ops.org/healthpro-username", "value": "fred@pmi-ops.org"}, "site": {"system": "https://www.pmi-ops.org/site-id", "value": "hpo-site-monroeville"}, }, "status": "restored", } self.send_patch(path, request_data=request_data, headers={"If-Match": 'W/"2"'}) restored_order = self.send_get(path) get_summary = self.summary_dao.get(self.participant.participantId) self.assertEqual(get_summary.sampleOrderStatus1SST8, OrderStatus.CREATED) self.assertEqual(get_summary.sampleOrderStatus2ED10, OrderStatus.CREATED) self.assertEqual(get_summary.sampleOrderStatus1SAL, OrderStatus.CREATED) self.assertEqual(get_summary.sampleOrderStatus1UR10, OrderStatus.CREATED) self.assertEqual(get_summary.sampleOrderStatus1CFD9, OrderStatus.FINALIZED) self.assertEqual(get_summary.sampleOrderStatus1ED02, OrderStatus.FINALIZED) self.assertEqual(get_summary.sampleOrderStatus2SST8, OrderStatus.FINALIZED) self.assertEqual(get_summary.sampleOrderStatus2PST8, OrderStatus.FINALIZED) self.assertEqual(get_summary.biospecimenFinalizedSiteId, 2) self.assertEqual(restored_order["status"], "UNSET") self.assertEqual(restored_order["restoredInfo"]["author"]["value"], "fred@pmi-ops.org") self.assertEqual(restored_order["restoredInfo"]["site"]["value"], "hpo-site-monroeville") self.assertEqual(restored_order["amendedReason"], "I didnt mean to cancel") def test_amending_an_order(self): # pylint: disable=unused-variable self.summary_dao.insert(self.participant_summary(self.participant)) order_json = load_biobank_order_json(self.participant.participantId, filename="biobank_order_2.json") result = self.send_post(self.path, order_json) biobank_order_id = result["identifier"][1]["value"] path = self.path + "/" + biobank_order_id request_data = { "amendedReason": "Its all better", "amendedInfo": { "author": {"system": "https://www.pmi-ops.org/healthpro-username", "value": "fred@pmi-ops.org"}, "site": {"system": "https://www.pmi-ops.org/site-id", "value": "hpo-site-bannerphoenix"}, }, } biobank_order_identifiers = { "created": "2018-02-21T16:25:12", "createdInfo": { "author": {"system": "https://www.pmi-ops.org/healthpro-username", "value": "nobody@pmi-ops.org"}, "site": {"system": "https://www.pmi-ops.org/site-id", "value": "hpo-site-clinic-phoenix"}, }, } get_order = self.send_get(path) full_order = get_order.copy() full_order.update(request_data) full_order.update(biobank_order_identifiers) self.assertEqual(len(full_order["samples"]), 16) del full_order["samples"][0] self.send_put(path, request_data=full_order, headers={"If-Match": 'W/"1"'}) get_amended_order = self.send_get(path) get_summary = self.summary_dao.get(self.participant.participantId) self.assertEqual(get_summary.biospecimenProcessedSiteId, 1) self.assertEqual(get_summary.biospecimenFinalizedSiteId, 2) self.assertEqual(get_summary.biospecimenCollectedSiteId, 1) self.assertEqual(get_summary.sampleOrderStatus2PST8, OrderStatus.FINALIZED) self.assertEqual(get_summary.sampleOrderStatus1PS08, OrderStatus.FINALIZED) self.assertEqual(get_summary.sampleOrderStatus1PST8, OrderStatus.FINALIZED) self.assertEqual(get_summary.sampleOrderStatus1SST8, OrderStatus.CREATED) self.assertEqual(get_summary.sampleOrderStatus2ED10, OrderStatus.CREATED) self.assertEqual(len(get_amended_order["samples"]), 15) self.assertEqual(get_amended_order["meta"], {"versionId": 'W/"2"'}) self.assertEqual(get_amended_order["amendedReason"], "Its all better") self.assertEqual(get_amended_order["amendedInfo"]["author"]["value"], "fred@pmi-ops.org") self.assertEqual(get_amended_order["amendedInfo"]["site"]["value"], "hpo-site-bannerphoenix") self.assertEqual(get_amended_order["createdInfo"]["site"]["value"], "hpo-site-clinic-phoenix") self.assertEqual(get_amended_order["createdInfo"]["author"]["value"], "nobody@pmi-ops.org") self.assertEqual(get_amended_order["created"], "2018-02-21T16:25:12") self.assertEqual(get_amended_order["status"], "AMENDED") def test_amend_a_restored_order(self): self.summary_dao.insert(self.participant_summary(self.participant)) order_json = load_biobank_order_json(self.participant.participantId, filename="biobank_order_2.json") result = self.send_post(self.path, order_json) full_order_json = load_biobank_order_json(self.participant.participantId, filename="biobank_order_1.json") _strip_fields(result) _strip_fields(full_order_json) biobank_order_id = result["identifier"][1]["value"] path = self.path + "/" + biobank_order_id request_data = { "amendedReason": "Its all wrong", "cancelledInfo": { "author": {"system": "https://www.pmi-ops.org/healthpro-username", "value": "fred@pmi-ops.org"}, "site": {"system": "https://www.pmi-ops.org/site-id", "value": "hpo-site-monroeville"}, }, "status": "cancelled", } self.send_patch(path, request_data=request_data, headers={"If-Match": 'W/"1"'}) self.send_get(path) request_data = { "amendedReason": "I didnt mean to cancel", "restoredInfo": { "author": {"system": "https://www.pmi-ops.org/healthpro-username", "value": "fred@pmi-ops.org"}, "site": {"system": "https://www.pmi-ops.org/site-id", "value": "hpo-site-monroeville"}, }, "status": "restored", } self.send_patch(path, request_data=request_data, headers={"If-Match": 'W/"2"'}) request_data = { "amendedReason": "Its all better", "samples": [ { "test": "1ED10", "description": "EDTA 10 mL (1)", "processingRequired": False, "collected": "2016-01-04T09:45:49Z", "finalized": "2016-01-04T10:55:41Z", }, { "test": "1PST8", "description": "Plasma Separator 8 mL", "collected": "2016-01-04T09:45:49Z", "processingRequired": True, "processed": "2016-01-04T10:28:50Z", "finalized": "2016-01-04T10:55:41Z", }, ], "amendedInfo": { "author": {"system": "https://www.pmi-ops.org/healthpro-username", "value": "mike@pmi-ops.org"}, "site": {"system": "https://www.pmi-ops.org/site-id", "value": "hpo-site-monroeville"}, }, } get_order = self.send_get(path) full_order = get_order.copy() full_order.update(request_data) self.send_put(path, request_data=full_order, headers={"If-Match": 'W/"3"'}) get_amended_order = self.send_get(path) self.assertEqual(len(get_amended_order["samples"]), 2) self.assertEqual(get_amended_order["amendedInfo"]["author"]["value"], "mike@pmi-ops.org") self.assertEqual(get_amended_order["status"], "AMENDED") self.assertEqual(get_amended_order.get("restoredSiteId"), None) self.assertEqual(get_amended_order.get("restoredUsername"), None) self.assertEqual(get_amended_order.get("restoredTime"), None) self.assertEqual(get_amended_order["meta"], {"versionId": 'W/"4"'}) def test_insert_and_refetch(self): self.summary_dao.insert(self.participant_summary(self.participant)) self.create_and_verify_created_obj(self.path, load_biobank_order_json(self.participant.participantId)) def test_insert_new_order(self): self.summary_dao.insert(self.participant_summary(self.participant)) order_json = load_biobank_order_json(self.participant.participantId, filename="biobank_order_2.json") result = self.send_post(self.path, order_json) full_order_json = load_biobank_order_json(self.participant.participantId, filename="biobank_order_1.json") _strip_fields(result) _strip_fields(full_order_json) self.assertEqual(full_order_json, result) # check order origin biobank_order_id = result["identifier"][1]["value"] get_path = "Participant/{}/BiobankOrder/{}".format(to_client_participant_id(123), biobank_order_id) get_result = self.send_get(get_path) self.assertEqual(get_result["origin"], "example") def test_biobank_history_on_insert(self): with self.bio_dao.session() as session: self.summary_dao.insert(self.participant_summary(self.participant)) order_json = load_biobank_order_json(self.participant.participantId, filename="biobank_order_2.json") result = self.send_post(self.path, order_json) load_biobank_order_json(self.participant.participantId, filename="biobank_order_1.json") order_history = session.query(BiobankOrderHistory).first() identifier_history = session.query(BiobankOrderIdentifierHistory).first() sample_history = session.query(BiobankOrderedSampleHistory).first() all_samples_history = session.query(BiobankOrderedSampleHistory).all() self.assertEqual(result["id"], order_history.biobankOrderId) self.assertEqual(identifier_history.biobankOrderId, result["id"]) self.assertEqual(sample_history.biobankOrderId, result["id"]) self.assertEqual(result["meta"]["versionId"], 'W/"1"') self.assertEqual(order_history.version, 1) self.assertEqual(len(all_samples_history), 16) # Test history on updates... biobank_order_id = result["identifier"][1]["value"] path = self.path + "/" + biobank_order_id request_data = { "amendedReason": "Its all better", "amendedInfo": { "author": {"system": "https://www.pmi-ops.org/healthpro-username", "value": "fred@pmi-ops.org"}, "site": {"system": "https://www.pmi-ops.org/site-id", "value": "hpo-site-bannerphoenix"}, }, } biobank_order_identifiers = { "created": "2018-02-21T16:25:12", "createdInfo": { "author": {"system": "https://www.pmi-ops.org/healthpro-username", "value": "nobody@pmi-ops.org"}, "site": {"system": "https://www.pmi-ops.org/site-id", "value": "hpo-site-clinic-phoenix"}, }, } get_order = self.send_get(path) full_order = get_order.copy() full_order.update(request_data) full_order.update(biobank_order_identifiers) self.assertEqual(len(full_order["samples"]), 16) del full_order["samples"][0] self.send_put(path, request_data=full_order, headers={"If-Match": 'W/"1"'}) with self.bio_dao.session() as session: amended_order = self.send_get(path) second_order_history = session.query(BiobankOrderHistory).filter_by(version=2).first() second_order_samples = session.query(BiobankOrderedSampleHistory).filter_by(version=2).first() second_order_identifier = session.query(BiobankOrderIdentifierHistory).filter_by(version=2).first() self.assertEqual(second_order_history.biobankOrderId, amended_order["id"]) self.assertEqual(second_order_identifier.biobankOrderId, amended_order["id"]) self.assertEqual(second_order_samples.biobankOrderId, amended_order["id"]) # Check that original order hasn't changed in history original = session.query(BiobankOrderHistory).filter_by(version=1).first() self.assertEqual(original.asdict(), order_history.asdict()) def test_error_no_summary(self): order_json = load_biobank_order_json(self.participant.participantId) self.send_post(self.path, order_json, expected_status=http.client.BAD_REQUEST) def test_error_missing_required_fields(self): order_json = load_biobank_order_json(self.participant.participantId) del order_json["identifier"] self.send_post(self.path, order_json, expected_status=http.client.BAD_REQUEST) def test_no_duplicate_test_within_order(self): order_json = load_biobank_order_json(self.participant.participantId) order_json["samples"].extend(list(order_json["samples"])) self.send_post(self.path, order_json, expected_status=http.client.BAD_REQUEST) def test_auto_pair_updates_participant_and_summary(self): self.summary_dao.insert(self.participant_summary(self.participant)) # Sanity check: No HPO yet. p_unpaired = self.participant_dao.get(self.participant.participantId) self.assertEqual(p_unpaired.hpoId, UNSET_HPO_ID) self.assertIsNone(p_unpaired.providerLink) s_unpaired = self.summary_dao.get(self.participant.participantId) self.assertEqual(s_unpaired.hpoId, UNSET_HPO_ID) self.send_post(self.path, load_biobank_order_json(self.participant.participantId)) # Some HPO has been set. (ParticipantDao tests cover more detailed cases / specific values.) p_paired = self.participant_dao.get(self.participant.participantId) self.assertNotEqual(p_paired.hpoId, UNSET_HPO_ID) self.assertIsNotNone(p_paired.providerLink) s_paired = self.summary_dao.get(self.participant.participantId) self.assertNotEqual(s_paired.hpoId, UNSET_HPO_ID) self.assertEqual(s_paired.biospecimenCollectedSiteId, s_paired.siteId) self.assertNotEqual(s_paired.biospecimenCollectedSiteId, s_paired.biospecimenFinalizedSiteId) self.assertNotEqual(s_paired.siteId, s_paired.physicalMeasurementsCreatedSiteId) self.assertNotEqual(s_paired.siteId, s_paired.physicalMeasurementsFinalizedSiteId) def test_not_pairing_at_pm_when_has_bio(self): self.participant_id = self.create_participant() _id = int(self.participant_id[1:]) self.path = "Participant/%s/BiobankOrder" % to_client_participant_id(_id) pid_numeric = from_client_participant_id(self.participant_id) self.send_consent(self.participant_id) self.send_post(self.path, load_biobank_order_json(pid_numeric)) participant_paired = self.summary_dao.get(pid_numeric) self.assertEqual(participant_paired.siteId, participant_paired.biospecimenCollectedSiteId) self.path = "Participant/%s/PhysicalMeasurements" % to_client_participant_id(pid_numeric) self._insert_measurements(datetime.datetime.utcnow().isoformat()) self.assertNotEqual(participant_paired.siteId, participant_paired.physicalMeasurementsFinalizedSiteId) def test_bio_after_cancelled_pm(self): self.participant_id = self.create_participant() self.send_consent(self.participant_id) measurement = load_measurement_json(self.participant_id) measurement2 = load_measurement_json(self.participant_id) # send both PM's pm_path = "Participant/%s/PhysicalMeasurements" % self.participant_id response = self.send_post(pm_path, measurement) self.send_post(pm_path, measurement2) # cancel the 1st PM pm_path = pm_path + "/" + response["id"] cancel_info = self.get_restore_or_cancel_info() self.send_patch(pm_path, cancel_info) # set up questionnaires to hit the calculate_max_core_sample_time in participant summary questionnaire_id = self.create_questionnaire("questionnaire3.json") questionnaire_id_1 = self.create_questionnaire("all_consents_questionnaire.json") questionnaire_id_2 = self.create_questionnaire("questionnaire4.json") self._submit_consent_questionnaire_response( self.participant_id, questionnaire_id_1, CONSENT_PERMISSION_YES_CODE, time=TIME_6 ) self.submit_questionnaire_response( self.participant_id, questionnaire_id, RACE_NONE_OF_THESE_CODE, None, None, datetime.date(1978, 10, 10) ) self._submit_empty_questionnaire_response(self.participant_id, questionnaire_id_2) # send a biobank order _id = int(self.participant_id[1:]) self.path = "Participant/%s/BiobankOrder" % to_client_participant_id(_id) pid_numeric = from_client_participant_id(self.participant_id) self.send_post(self.path, load_biobank_order_json(pid_numeric)) # fetch participant summary ps = self.send_get("ParticipantSummary?participantId=%s" % _id) self.assertTrue(ps["entry"][0]["resource"]["physicalMeasurementsFinalizedTime"]) self.assertEqual(ps["entry"][0]["resource"]["physicalMeasurementsFinalizedSite"], "hpo-site-bannerphoenix") self.assertIsNotNone("biobankId", ps["entry"][0]["resource"]) def _insert_measurements(self, now=None): measurements_1 = load_measurement_json(self.participant_id, now) path_1 = "Participant/%s/PhysicalMeasurements" % self.participant_id self.send_post(path_1, measurements_1) def _submit_consent_questionnaire_response( self, participant_id, questionnaire_id, ehr_consent_answer, time=TIME_1 ): code_answers = [] _add_code_answer(code_answers, "ehrConsent", ehr_consent_answer) qr = self.make_questionnaire_response_json(participant_id, questionnaire_id, code_answers=code_answers) with FakeClock(time): self.send_post("Participant/%s/QuestionnaireResponse" % participant_id, qr) def _submit_empty_questionnaire_response(self, participant_id, questionnaire_id, time=TIME_1): qr = self.make_questionnaire_response_json(participant_id, questionnaire_id) with FakeClock(time): self.send_post("Participant/%s/QuestionnaireResponse" % participant_id, qr) def _strip_fields(order_json): if order_json.get("created"): del order_json["created"] if order_json.get("id"): del order_json["id"] if order_json.get("origin"): del order_json["origin"] if order_json.get("version"): del order_json["version"] for sample in order_json["samples"]: if sample.get("collected"): del sample["collected"] if sample.get("processed"): del sample["processed"] if sample.get("finalized"): del sample["finalized"]
import os from scipy import io as sio import numpy as np import tensorflow as tf import plotly.graph_objs as go NUM_POINTS = 31 METER_SCALER = 0.001 CONNECTIONS = ((0, 1), (1, 2), (2, 3), (3, 4), (3, 5), (0, 6), (6, 7), (7, 8), (8, 9), (8, 10), (0, 11), (11, 12), (12, 13), (13, 14), (14, 15), (15, 16), (13, 24), (24, 25), (25, 26), (26, 27), (27, 30), (27, 28), (27, 29), (13, 17), (17, 18), (18, 19), (19, 20), (20, 21), (20, 22), (20, 23)) BLUE = "rgb(90, 130, 238)" RED = "rgb(205, 90, 76)" path = {"tfrecords": "/dataset/chenk/cmu-mocap/tfrecords/"} def _parse_function(example_proto): """Parses raw bytes into tensors.""" features = { "points3d_raw": tf.FixedLenFeature((), tf.string, default_value=""), "points2d_raw": tf.FixedLenFeature((), tf.string, default_value=""), } parsed_features = tf.parse_single_example(example_proto, features) output_features = { "points3d": tf.reshape( tf.decode_raw(parsed_features["points3d_raw"], tf.float32), [NUM_POINTS, 3], ), "points2d": tf.reshape( tf.decode_raw(parsed_features["points2d_raw"], tf.float32), [NUM_POINTS, 2], ), } # Returns a tuple (features, labels) return output_features, 0 def train_input_fn(filename, buffer_size, batch_size): """An input function for training.""" dataset = tf.data.TFRecordDataset(filename) dataset = dataset.map(_parse_function) dataset = dataset.repeat() dataset = dataset.shuffle(buffer_size) dataset = dataset.batch(batch_size) return dataset.make_one_shot_iterator().get_next() def eval_input_fn(filename, batch_size): """An input function for evaluation.""" dataset = tf.data.TFRecordDataset(filename) dataset = dataset.map(_parse_function) dataset = dataset.batch(batch_size) return dataset.make_one_shot_iterator().get_next() def get_trace3d(points3d, point_color=None, line_color=None, name="PointCloud"): """Yields plotly traces for visualization.""" if point_color is None: point_color = "rgb(30, 20, 160)" if line_color is None: line_color = "rgb(30, 20, 160)" # Trace of points. trace_of_points = go.Scatter3d( x=points3d[:, 0], y=points3d[:, 2], z=points3d[:, 1], mode="markers", name=name, marker=dict( symbol="circle", size=3, color=point_color)) # Trace of lines. xlines = [] ylines = [] zlines = [] for line in CONNECTIONS: for point in line: xlines.append(points3d[point, 0]) ylines.append(points3d[point, 2]) zlines.append(points3d[point, 1]) xlines.append(None) ylines.append(None) zlines.append(None) trace_of_lines = go.Scatter3d( x=xlines, y=ylines, z=zlines, mode="lines", name=name, line=dict(color=line_color)) return [trace_of_points, trace_of_lines] def get_figure3d(points3d, gt=None, range_scale=1): """Yields plotly fig for visualization""" traces = get_trace3d(points3d, BLUE, BLUE, "prediction") if gt is not None: traces += get_trace3d(gt, RED, RED, "groundtruth") layout = go.Layout( scene=dict( aspectratio=dict(x=0.8, y=0.8, z=2), xaxis=dict(range=(-0.4 * range_scale, 0.4 * range_scale),), yaxis=dict(range=(-0.4 * range_scale, 0.4 * range_scale),), zaxis=dict(range=(-1 * range_scale, 1 * range_scale),),), width=700, margin=dict(r=20, l=10, b=10, t=10)) return go.Figure(data=traces, layout=layout)
import datetime import threading import time import mraa import InternationalMorseCode as ICM BASE_TIME_SECONDS = 1.0 TOLERANCE = BASE_TIME_SECONDS / 2.0 # Initialize GPIO settings def initialize_gpio(): global metronomeLED metronomeLED = mraa.Gpio(27) #Metronome metronomeLED.dir(mraa.DIR_OUT) metronomeLED.write(0) global button button = mraa.Gpio(29) button.dir(mraa.DIR_IN) # Blink a blue LED on/off (one full cycle per BASE_TIME_SECONDS) def metronome(): while True: metronomeLED.write(not metronomeLED.read()) time.sleep(BASE_TIME_SECONDS / 2.0) #Create a new thread for metronome def initialize_metronome(): t = threading.Thread(target=metronome) t.daemon = True t.start() last_edge = 0 press = datetime.datetime.now() release = datetime.datetime.now() # Intercept a rise or fall on pin 31 (button press/release) def intercept_morse_code(): global last_edge, press, release, button while True: # Button pressed - determine if start of new letter/word if int(button.read()) == 1 and last_edge == 0: last_edge = 1 press = datetime.datetime.now() detect_termination() # Button released - determine what the input is elif int(button.read()) == 0 and last_edge == 1: last_edge = 0 release = datetime.datetime.now() interpret_input() #Create a thread to detect button presses. def initialize_button(): t = threading.Thread(target=intercept_morse_code) t.daemon = True t.start() sequence = "" letters = [] words = [] # Detect whether most recent button press is start of new letter or word def detect_termination(): global sequence if sequence == "": return delta = calc_delta_in_sec(release, press) # Check for start of new letter (gap equal to 3 dots) if (delta >= ((BASE_TIME_SECONDS * 3) - TOLERANCE)) and (delta <= ((BASE_TIME_SECONDS * 4) + TOLERANCE)): process_letter() # Check for start of new word (gap equal to 7 dots - but assume anything > 7 dots is valid too) elif delta >= ((BASE_TIME_SECONDS * 7) - TOLERANCE): process_word() # Process letter def process_letter(): global sequence character = ICM.symbols.get(sequence, '') if character != '': print("Interpreted sequence " + sequence + " as the letter: " + character) letters.append(character) sequence = "" return True else: print('Invalid sequence: ' + sequence + " (deleting current sequence)") sequence = "" return False # Process word def process_word(): if process_letter(): word = ''.join(letters) letters[:] = [] if word == "AR": print("End of transmission. Here's your message: " + ' '.join(words)) print('\nClearing previous transmission. Start a new one now...\n') words[:] = [] else: words.append(word) # Interpret button click (press/release) as dot, dash or unrecognized def interpret_input(): global sequence delta = calc_delta_in_sec(press, release) if (delta >= (BASE_TIME_SECONDS - TOLERANCE)) and (delta <= (BASE_TIME_SECONDS + TOLERANCE)): sequence += '.' print(str(delta) + " : Added dot to sequence: " + sequence) elif (delta >= ((BASE_TIME_SECONDS * 3) - TOLERANCE)) and (delta <= ((BASE_TIME_SECONDS * 3) + TOLERANCE)): sequence += '-' print(str(delta) + " : Added dash to sequence: " + sequence) else: print(str(delta) + " : Unrecognized input!") def calc_delta_in_sec(time1, time2): delta = time2 - time1 return delta.seconds + (delta.microseconds / 1000000.0) try: initialize_gpio() initialize_metronome() initialize_button() message = raw_input("\nPress any key to exit.\n") finally: pass print("Goodbye!")
# encoding:utf-8 __author__ = 'shiliang' __date__ = '2019/2/21 19:28' import xadmin from xadmin import views from .models import EmailVerifyRecord # 创建admin的管理类,这里不再是继承admin,而是继承object class EmailVerifyRecordAdmin(object): # 配置后台我们需要显示的列 list_display = ['code', 'email', 'send_type', 'send_time'] # 配置搜索字段,不做时间搜索 search_fields = ['code', 'email', 'send_type'] # 配置筛选字段 list_filter = ['code', 'email', 'send_type', 'send_time'] ''' 创建xadmin的全局管理器并与view绑定。 ''' class BaseSetting(object): # 开启主题功能 enable_themes = True use_bootswatch = True ''' xadmin全局配置参数信息设置 ''' class GlobalSettings(object): site_title = '文献数据挖掘系统管理后台' site_footer = 'Copyright 2019 shiliang, Inc. NXU.' # 收起菜单 menu_style = 'accordion' xadmin.site.register(EmailVerifyRecord, EmailVerifyRecordAdmin) # 将全局配置管理与view绑定注册 xadmin.site.register(views.BaseAdminView, BaseSetting) # 将头部与脚部信息进行注册: xadmin.site.register(views.CommAdminView, GlobalSettings)
from PySide2.QtGui import * from PySide2.QtCore import * from PySide2.QtWidgets import * import traceback from mcedit_ui.ui_sprite_editor import Ui_SpriteEditor from mcedit_ui.clickable_graphics_scene import * from mcedit_ui.custom_graphics_items import * from mclib.sprite_loading import SpriteLoadingData from mclib.sprite import Sprite from mclib.docs import Docs class SpriteEditorDialog(QDialog): def __init__(self, main_window): super().__init__(main_window) self.ui = Ui_SpriteEditor() self.ui.setupUi(self) self.game = main_window.game self.rom = self.game.rom self.renderer = main_window.renderer self.type = -1 self.subtype = -1 self.form = -1 self.sprite_graphics_scene = ClickableGraphicsScene() self.ui.sprite_graphics_view.setScene(self.sprite_graphics_scene) self.ui.enemy_list.currentRowChanged.connect(self.enemy_changed) self.ui.object_list.currentRowChanged.connect(self.object_changed) self.ui.npc_list.currentRowChanged.connect(self.npc_changed) self.ui.player_list.currentRowChanged.connect(self.player_changed) self.ui.type_4s_list.currentRowChanged.connect(self.type_4_changed) self.ui.player_items_list.currentRowChanged.connect(self.player_item_changed) self.ui.form_index.activated.connect(self.form_changed) self.ui.anim_index.activated.connect(self.anim_changed) self.ui.frame_index.activated.connect(self.frame_changed) self.type_to_list_widget = { 3: self.ui.enemy_list, 6: self.ui.object_list, 7: self.ui.npc_list, 1: self.ui.player_list, 4: self.ui.type_4s_list, 8: self.ui.player_items_list, } self.type_and_row_index_to_subtype = {} for type, list_widget in self.type_to_list_widget.items(): self.type_and_row_index_to_subtype[type] = [] subtypes = Docs.get_all_subtypes_for_type("entity", type) for subtype in subtypes: self.type_and_row_index_to_subtype[type].append(subtype) form = -1 # TODO kinda hacky to do it this way text = "%02X-%02X %s" % ( type, subtype, Docs.get_name_for_entity("entity", type, subtype, form) ) list_widget.addItem(text) self.show() def enemy_changed(self, row_index): type = 3 subtype = self.type_and_row_index_to_subtype[type][row_index] form = 0 self.sprite_changed(type, subtype, form) def object_changed(self, row_index): type = 6 subtype = self.type_and_row_index_to_subtype[type][row_index] form = 0 self.sprite_changed(type, subtype, form) def npc_changed(self, row_index): type = 7 subtype = self.type_and_row_index_to_subtype[type][row_index] form = 0 self.sprite_changed(type, subtype, form) def player_changed(self, row_index): type = 1 subtype = self.type_and_row_index_to_subtype[type][row_index] form = 0 self.sprite_changed(type, subtype, form) def type_4_changed(self, row_index): type = 4 subtype = self.type_and_row_index_to_subtype[type][row_index] form = 0 self.sprite_changed(type, subtype, form) def player_item_changed(self, row_index): type = 8 subtype = self.type_and_row_index_to_subtype[type][row_index] form = 0 self.sprite_changed(type, subtype, form) def form_changed(self, form): self.sprite_changed(self.type, self.subtype, form) def sprite_changed(self, type, subtype, form): #print(type, subtype, form) if self.type == type and self.subtype == subtype: only_form_changed = True else: only_form_changed = False self.type = type self.subtype = subtype self.form = form self.sprite_graphics_scene.clear() self.ui.anim_index.clear() self.ui.frame_index.clear() if not only_form_changed: self.ui.form_index.clear() forms = Docs.get_all_forms_for_subtype("entity", self.type, self.subtype) for other_form in forms: form_name = Docs.get_name_for_entity_form("entity", self.type, self.subtype, other_form) self.ui.form_index.addItem("%02X %s" % (other_form, form_name)) self.loading_data = SpriteLoadingData(type, subtype, form, self.rom) if self.loading_data.has_no_sprite: self.sprite = None return self.sprite = Sprite(self.loading_data.sprite_index, self.rom) # TODO: how to determine number of anims and frames? num_frames = 0xFF num_anims = 0xFF for i in range(num_frames): self.ui.frame_index.addItem("%02X" % i) if self.sprite.animation_list_ptr == 0: self.frame_changed(0) else: for i in range(num_anims): self.ui.anim_index.addItem("%02X" % i) self.anim_changed(0) def anim_changed(self, anim_index): self.ui.anim_index.setCurrentIndex(anim_index) try: anim = self.sprite.get_animation(anim_index) except Exception as e: stack_trace = traceback.format_exc() error_message = "Error getting animation:\n" + str(e) + "\n\n" + stack_trace QMessageBox.warning(self, "Error getting animation", error_message ) keyframe = anim.keyframes[0] # TODO: how to handle the keyframe's h and v flip? frame_index = keyframe.frame_index self.frame_changed(frame_index) def frame_changed(self, frame_index): self.ui.frame_index.setCurrentIndex(frame_index) self.sprite_graphics_scene.clear() try: offsets = (0, 0) extra_frame_indexes = [] frame_image, x_off, y_off = self.renderer.render_entity_frame(self.loading_data, frame_index, offsets, extra_frame_indexes) except Exception as e: stack_trace = traceback.format_exc() error_message = "Error rendering frame:\n" + str(e) + "\n\n" + stack_trace QMessageBox.warning(self, "Error rendering frame", error_message ) if frame_image == None: return item = GraphicsImageItem(frame_image, x_off, y_off, draw_border=False) item.setPos(x_off, y_off) self.sprite_graphics_scene.addItem(item)
import os import pickle from pathlib import Path import networkx as nx import numpy as np import sys # sys.path.insert(1, "./transitions_main") from transitions_main import check def nodes_func(nodes_file,data_name): nodes = set() year_nodes = dict() nodes_year_labels = dict() for i, row in enumerate(nodes_file): node, year, label, count, percent_year = row.split(",") nodes.add(node) # nodes old id year_nodes[year] = year_nodes.get(year, set()) | {node} # {year: nodes_old_id} node_year_id = str(node) + "_" + str(year) nodes_year_labels[node_year_id] = nodes_year_labels.get(node_year_id, []) + [label] * int(count) old_to_new_nid = {old_id: i for i, old_id in enumerate(sorted(nodes,key=int))} # {old_id: new_id} new_to_old_nid = {new_id: old_id for old_id, new_id in old_to_new_nid.items()} # {new_id: old_id} pickle.dump(old_to_new_nid, open("./dataset/" + data_name + "/pkl/old_to_new_nid.pkl", "wb")) pickle.dump(new_to_old_nid, open("./dataset/" + data_name + "/pkl/new_to_old_nid.pkl", "wb")) nodes_id = set(k for k in new_to_old_nid.keys()) # set of new id year_nodeids = dict() # {year: new node id} for year, l_nodes in year_nodes.items(): for n in l_nodes: year_nodeids[year] = year_nodeids.get(year, set()) | set([old_to_new_nid[n]]) year_new_nodeid_labels = dict() for key, val in nodes_year_labels.items(): old = key.split("_")[0] n = old_to_new_nid[old] y = int(key.split("_")[1]) if y not in year_new_nodeid_labels: year_new_nodeid_labels[y] = {} year_new_nodeid_labels[y][n] = val return year_nodeids, old_to_new_nid, nodes_id, year_new_nodeid_labels def year_id_label_freq(year_new_nodeid_labels, num_of_labels): count_label = dict() for year in year_new_nodeid_labels.keys(): if year not in count_label: count_label[year] = dict() for node, labels in year_new_nodeid_labels[year].items(): l = [0] * num_of_labels value, counts = np.unique(labels, return_counts=True) for val, c in zip(value, counts): norm_counts = c / counts.sum() l[int(val)] = norm_counts count_label[year][node] = l return count_label def create_tag_list_by_year(count_label, nodes_id): l = [] years = sorted(list(count_label.keys())) for year in years: y = [] for id in nodes_id: if id not in count_label[year]: y.append(-1) else: y.append(count_label[year][id]) l.append(y) return l def build_graphs(nodes_id, old_to_new_nid, edges_file, years_count,start_year): initial_g = nx.Graph() initial_g.add_nodes_from(nodes_id) g = [initial_g.copy() for _ in range(years_count)] all_edges_count = 0 for line in edges_file: spline = line.split(',') # Count right now not as weights, can be added if necessary year_idx = int(spline[2]) - start_year if spline[0] not in old_to_new_nid or spline[1] not in old_to_new_nid: continue else: all_edges_count += 1 g[year_idx].add_edge(old_to_new_nid[spline[0]], old_to_new_nid[spline[1]]) return g def check(file_path,current_path=False): directory = os.path.dirname(file_path) if not os.path.exists(directory): os.makedirs(directory) print("A new directory was created: "+str(file_path)) else: print("directory exists: "+str(file_path)) if current_path: if os.path.isfile(current_path): Path(current_path).rename(file_path) print("input files moved to directory:", str(file_path)) elif os.path.isfile(file_path): print("input file exists in directory:", str(file_path)) else: print("input file is missing in directory", str(file_path)) return file_path def main_prep(dataset_name, e_path, n_path,num_of_labels,start_year, all_labeles_are_used='no'): # n_path = check("../dataset/" + str(dataset_name) + "/input_files/nodes.csv") # e_path = check("../dataset/" + str(dataset_name) + "/input_files/edges.csv") nodes_file = open(n_path) edges_file = open(e_path) next(nodes_file) next(edges_file) year_nodeids, old_to_new_nid, nodes_id, year_new_nodeid_labels = nodes_func(nodes_file, str(dataset_name)) y_id_tag_dist = year_id_label_freq(year_new_nodeid_labels,num_of_labels) graphs = build_graphs(nodes_id, old_to_new_nid, edges_file, len(year_nodeids), start_year) labels = create_tag_list_by_year(y_id_tag_dist, nodes_id) check("./dataset/" + str(dataset_name) + "/pkl/gcn_input/") for i in range(len(graphs)): pickle.dump(graphs[i], open("./dataset/" + dataset_name +"/pkl/gcn_input/graph_" + str(i) + ".pkl", "wb")) pickle.dump(labels[i], open("./dataset/" + dataset_name + "/pkl/gcn_input/labels_" + str(i) + ".pkl", "wb")) return if __name__ == "__main__": fnodes = open("nodes_little.csv", "rt") fedges = open("edges_little.csv", "rt") data_name = 'DBLP' main_prep(fnodes,fedges, data_name)
import ray class _NullLogSpan: """A log span context manager that does nothing""" def __enter__(self): pass def __exit__(self, type, value, tb): pass NULL_LOG_SPAN = _NullLogSpan() def profile(event_type, extra_data=None): """Profile a span of time so that it appears in the timeline visualization. Note that this only works in the raylet code path. This function can be used as follows (both on the driver or within a task). .. code-block:: python with ray.profiling.profile("custom event", extra_data={'key': 'val'}): # Do some computation here. Optionally, a dictionary can be passed as the "extra_data" argument, and it can have keys "name" and "cname" if you want to override the default timeline display text and box color. Other values will appear at the bottom of the chrome tracing GUI when you click on the box corresponding to this profile span. Args: event_type: A string describing the type of the event. extra_data: This must be a dictionary mapping strings to strings. This data will be added to the json objects that are used to populate the timeline, so if you want to set a particular color, you can simply set the "cname" attribute to an appropriate color. Similarly, if you set the "name" attribute, then that will set the text displayed on the box in the timeline. Returns: An object that can profile a span of time via a "with" statement. """ worker = ray.worker.global_worker if worker.mode == ray.worker.LOCAL_MODE: return NULL_LOG_SPAN return worker.core_worker.profile_event( event_type.encode("ascii"), extra_data)
#!/usr/bin/env python3 """転移学習の練習用コード。Food-101を10クラスの不均衡データにしたもの。 train: 25250 -> 250+10*9 = 340 samples val: 75750 samples val_acc: 0.582 """ import pathlib import typing import albumentations as A import numpy as np import tensorflow as tf import pytoolkit as tk num_classes = 10 train_shape = (256, 256, 3) predict_shape = (256, 256, 3) batch_size = 16 epochs = 1800 base_lr = 3e-5 data_dir = pathlib.Path("data/food-101") models_dir = pathlib.Path(f"models/{pathlib.Path(__file__).stem}") app = tk.cli.App(output_dir=models_dir) logger = tk.log.get(__name__) @app.command(logfile=False) def check(): create_model(100).check(load_data()[0].slice(list(range(10)))) @app.command(use_horovod=True) def train(): train_set, val_set = load_data() model = create_model(len(train_set)) evals = model.train(train_set, val_set) tk.notifications.post_evals(evals) @app.command(use_horovod=True) def validate(): train_set, val_set = load_data() model = create_model(len(train_set)).load() pred = model.predict(val_set, fold=0) if tk.hvd.is_master(): tk.evaluations.print_classification(val_set.labels, pred) @tk.cache.memoize("cache___", prefix="food_ib") def load_data(): train_set, val_set = tk.datasets.load_trainval_folders(data_dir, swap=True) indices = np.concatenate( [ np.where(train_set.labels == 0)[0], np.where(train_set.labels == 1)[0][:10], np.where(train_set.labels == 2)[0][:10], np.where(train_set.labels == 3)[0][:10], np.where(train_set.labels == 4)[0][:10], np.where(train_set.labels == 5)[0][:10], np.where(train_set.labels == 6)[0][:10], np.where(train_set.labels == 7)[0][:10], np.where(train_set.labels == 8)[0][:10], np.where(train_set.labels == 9)[0][:10], ] ) train_set = train_set.slice(indices) val_set = val_set.slice(np.where(val_set.labels <= 9)[0]) return train_set, val_set def create_model(train_size): return tk.pipeline.KerasModel( create_network_fn=lambda: create_network(train_size), score_fn=tk.evaluations.evaluate_classification, nfold=1, train_data_loader=MyDataLoader(data_augmentation=True), val_data_loader=MyDataLoader(), epochs=epochs, # callbacks=[tk.callbacks.CosineAnnealing()], models_dir=models_dir, model_name_format="model.h5", skip_if_exists=False, ) def create_network(train_size): inputs = x = tf.keras.layers.Input((None, None, 3)) backbone = tk.applications.efficientnet.create_b3(input_tensor=x) x = backbone.output x = tk.layers.GeMPooling2D()(x) x = tf.keras.layers.Dense( num_classes, kernel_initializer="zeros", kernel_regularizer=tf.keras.regularizers.l2(1e-4), )(x) model = tf.keras.models.Model(inputs=inputs, outputs=x) global_batch_size = batch_size * tk.hvd.size() * app.num_replicas_in_sync learning_rate = tk.schedules.ExponentialDecay( initial_learning_rate=base_lr * global_batch_size, decay_steps=-(-train_size // global_batch_size) * epochs, ) optimizer = tf.keras.optimizers.SGD( learning_rate=learning_rate, momentum=0.9, nesterov=True ) def loss(y_true, logits): return tk.losses.categorical_crossentropy( y_true, logits, from_logits=True, label_smoothing=0.2 ) tk.models.compile(model, optimizer, loss, ["acc"]) x = tf.keras.layers.Activation(activation="softmax")(x) pred_model = tf.keras.models.Model(inputs=inputs, outputs=x) tk.models.compile(pred_model, optimizer, loss, ["acc"]) return model, pred_model class MyDataLoader(tk.data.DataLoader): def __init__(self, data_augmentation=False): super().__init__( batch_size=batch_size, data_per_sample=2 if data_augmentation else 1 ) self.data_augmentation = data_augmentation self.aug2: typing.Any = None if self.data_augmentation: self.aug1 = A.Compose( [ tk.image.RandomTransform( size=train_shape[:2], base_scale=predict_shape[0] / train_shape[0], ), tk.image.RandomColorAugmentors(noisy=True), ] ) self.aug2 = tk.image.RandomErasing() else: self.aug1 = tk.image.Resize(size=predict_shape[:2]) self.aug2 = None def get_data(self, dataset: tk.data.Dataset, index: int): X, y = dataset.get_data(index) X = tk.ndimage.load(X) X = self.aug1(image=X)["image"] y = tf.keras.utils.to_categorical(y, num_classes) return X, y def get_sample(self, data): if self.data_augmentation: sample1, sample2 = data X, y = tk.ndimage.mixup(sample1, sample2, mode="beta") X = self.aug2(image=X)["image"] else: X, y = super().get_sample(data) X = tk.ndimage.preprocess_tf(X) return X, y if __name__ == "__main__": app.run(default="train")
from _md5 import md5 from urllib.parse import urlencode from jinja2 import environment from slugify import slugify environment.DEFAULT_FILTERS['md5'] = lambda s: md5(s.encode('utf-8')) environment.DEFAULT_FILTERS['hexdigest'] = lambda s: s.hexdigest() environment.DEFAULT_FILTERS['urlencode'] = urlencode environment.DEFAULT_FILTERS['slugify'] = slugify
from typing import TYPE_CHECKING, List, Literal from sqlalchemy.ext.hybrid import hybrid_property from sqlalchemy.orm import relationship from sqlalchemy.sql.expression import cast from sqlalchemy.sql.schema import Column, ForeignKey from sqlalchemy.sql.sqltypes import BOOLEAN, INTEGER, SMALLINT from typing_extensions import TypeAlias from app.database import BaseModel, CancelableModel, DatedModel if TYPE_CHECKING: from app.apis.v1.users.models import User from ._Project import Project RoleType: TypeAlias = Literal["admin", "editor", "viewer"] class ProjectUser(BaseModel, DatedModel, CancelableModel): """holds references to users assigned to a project""" __tablename__ = "project_users" PROJECT_ROLES: List[RoleType] = ["admin", "editor", "viewer"] ADMIN = "admin" EDITOR = "editor" VIEWER = "viewer" project_id = Column(INTEGER, ForeignKey("projects.id")) user_id = Column(INTEGER, ForeignKey("users.id")) user = relationship("User", foreign_keys=[user_id], uselist=False) is_active = Column( BOOLEAN, nullable=False, server_default=cast(True, BOOLEAN), comment="flags the validity of user in the project", ) role_id = Column(SMALLINT, nullable=False, comment="user's role in this project") def __init__(self, project: "Project", user: "User", role: RoleType) -> None: assert role in ProjectUser.PROJECT_ROLES self.project_id = project.id self.user_id = user.id self.role_id = ProjectUser.PROJECT_ROLES.index(role) @hybrid_property def role(self) -> RoleType: return ProjectUser.PROJECT_ROLES[self.role_id]
from discord.ext import commands class Fun(commands.Cog): def __init__(self, bot): self.bot = bot @commands.cooldown(1, 2, commands.BucketType.guild) @commands.command() async def norskeuniversiteter(self, ctx): await ctx.send('<https://imgur.com/a/uGopaSq>') @commands.cooldown(1, 2, commands.BucketType.guild) @commands.command() async def informatikkuio(self, ctx): await ctx.send('https://i.imgur.com/ypyK1mi.jpg') @commands.cooldown(1, 2, commands.BucketType.guild) @commands.command() async def informatikkuio2(self, ctx): await ctx.send('https://i.imgur.com/ZqgZEEA.jpg') @commands.cooldown(1, 2, commands.BucketType.guild) @commands.command() async def informatikkuio3(self, ctx): await ctx.send('https://i.imgur.com/Gx9DQE5.jpg') @commands.cooldown(1, 2, commands.BucketType.guild) @commands.command() async def uio(self, ctx): await ctx.send('https://i.imgur.com/188MoIV.jpg') @commands.cooldown(1, 2, commands.BucketType.guild) @commands.command() async def ntnu(self, ctx): await ctx.send('https://twitter.com/NTNU/status/970667413564993536') @commands.cooldown(1, 2, commands.BucketType.guild) @commands.command() async def ntnu2(self, ctx): await ctx.send('https://i.imgur.com/h84fknj.jpg') def setup(bot): bot.add_cog(Fun(bot))
from __future__ import unicode_literals from geckoboard import Dataset, Field as F from datetime import date, datetime, timedelta def test_create_delete(session): fields = { 'date': F.date('Date', unique=True), 'datetime': F.datetime('Date Time'), 'number': F.number('Number'), 'percentage': F.percentage('Percentage'), 'string': F.string('String'), 'money': F.money('Dollars', 'USD'), } result = Dataset.create(session, 'test', fields) assert result.id == 'test' assert result.fields == fields invalid_field = F("invalid", None) for field in fields.values(): assert field != invalid_field assert result.delete() is True def _tmp_data(start_date, count): def _day_date(day_offset): return start_date + timedelta(days=day_offset) return [{ 'date': _day_date(offset), 'datetime': datetime(2016, 9, 23), 'number': 22, 'percentage': 0.5, 'string': "test string", 'money': 7.95 } for offset in range(count)] def test_replace(tmp_dataset): data = _tmp_data(date(2016, 9, 23), 5) assert tmp_dataset.replace(data) is True def test_append(tmp_dataset): data = _tmp_data(date(2016, 9, 23), 5) assert tmp_dataset.append(data, delete_by='date') is True
from mpi4py import MPI import numpy as np comm = MPI.COMM_WORLD rank = comm.Get_rank() if rank == 0: # in real code, this section might # read in data parameters from a file numData = 10 comm.send(numData, dest=1) data = np.linspace(0.0,3.14,numData) comm.Send(data, dest=1) elif rank == 1: numData = comm.recv(source=0) print('Number of data to receive: ',numData) data = np.empty(numData, dtype='d') # allocate space to receive the array comm.Recv(data, source=0) print('data received: ',data)
''' Function: define the base model for all models Author: Zhenchao Jin ''' import copy import torch import numpy as np import torch.nn as nn import torch.distributed as dist from ...losses import * from ...backbones import * from ..base import BuildAssigner '''base model''' class BaseModel(nn.Module): def __init__(self, cfg, **kwargs): super(BaseModel, self).__init__() self.cfg = cfg self.mode = kwargs.get('mode') assert self.mode in ['TRAIN', 'TEST'] self.norm_cfg, self.act_cfg = cfg['norm_cfg'], cfg['act_cfg'] # build backbone_net backbone_cfg = copy.deepcopy(cfg['backbone']) backbone_cfg.update({'norm_cfg': self.norm_cfg}) backbone_net = BuildBackbone(backbone_cfg) if backbone_cfg['series'] in ['vgg']: self.backbone_net_stage1 = backbone_net.features self.backbone_net_stage2 = backbone_net.classifier else: raise ValueError('fail to parse backbone series %s' % backbone_cfg['series']) # build roi extractor self.roi_extractor = BuildRoILayer(copy.deepcopy(cfg['roi_extractor'])) # build assigner self.assigner = BuildAssigner(copy.deepcopy(cfg['assigner'])) # build head head_cfg = copy.deepcopy(cfg['head']) head_cfg.update({'num_classes': cfg['num_classes']}) self.buildhead(head_cfg) # freeze norm layer if cfg.get('is_freeze_norm', True): self.freezenormalization() '''forward''' def forward(self, x, proposals, targets=None, losses_cfg=None): raise NotImplementedError('not to be implemented') '''build head''' def buildhead(self, cfg): raise NotImplementedError('not to be implemented') '''return all layers with learnable parameters''' def alllayers(self): raise NotImplementedError('not to be implemented') '''freeze normalization''' def freezenormalization(self): for module in self.modules(): if type(module) in BuildNormalization(only_get_all_supported=True): module.eval() '''calculate the losses''' def calculatelosses(self, predictions, targets, losses_cfg): assert (len(predictions) == len(targets)) and (len(targets) == len(losses_cfg)) # calculate loss according to losses_cfg losses_log_dict = {} for loss_name, loss_cfg in losses_cfg.items(): losses_log_dict[loss_name] = self.calculateloss( prediction=predictions[loss_name], target=targets[loss_name], loss_cfg=loss_cfg ) loss = 0 for key, value in losses_log_dict.items(): value = value.mean() loss += value losses_log_dict[key] = value losses_log_dict.update({'total': loss}) # convert losses_log_dict for key, value in losses_log_dict.items(): if dist.is_available() and dist.is_initialized(): value = value.data.clone() dist.all_reduce(value.div_(dist.get_world_size())) losses_log_dict[key] = value.item() else: losses_log_dict[key] = torch.Tensor([value.item()]).type_as(loss) # return the loss and losses_log_dict return loss, losses_log_dict '''calculate the loss''' def calculateloss(self, prediction, target, loss_cfg): # define the supported losses supported_losses = { 'celoss': CrossEntropyLoss, 'sigmoidfocalloss': SigmoidFocalLoss, 'binaryceloss': BinaryCrossEntropyLoss, } # calculate the loss loss = 0 for key, value in loss_cfg.items(): assert key in supported_losses, 'unsupport loss type %s...' % key loss += supported_losses[key]( prediction=prediction, target=target, scale_factor=value['scale_factor'], **value['opts'] ) # return the loss return loss
"""Declare API endpoints with Django RestFramework viewsets.""" from django.apps import apps from django.shortcuts import get_object_or_404 from rest_framework.decorators import api_view from rest_framework.response import Response from .. import defaults, serializers from ..models import Video from ..utils.api_utils import validate_signature class ObjectPkMixin: """ Get the object primary key from the URL path. This is useful to avoid making extra requests using view.get_object() on a ViewSet when we only need the object's id, which is available in the URL. """ def get_object_pk(self): """Get the object primary key from the URL path.""" lookup_url_kwarg = self.lookup_url_kwarg or self.lookup_field return self.kwargs.get(lookup_url_kwarg) @api_view(["POST"]) def update_state(request): """View handling AWS POST request to update the state of an object by key. Parameters ---------- request : Type[django.http.request.HttpRequest] The request on the API endpoint, it should contain a payload with the following fields: - key: the key of an object in the source bucket as delivered in the upload policy, - state: state of the upload, should be either "ready" or "error", - extraParameters: Dict containing arbitrary data sent from AWS Lambda. Returns ------- Type[rest_framework.response.Response] HttpResponse acknowledging the success or failure of the state update operation. """ msg = request.body serializer = serializers.UpdateStateSerializer(data=request.data) if serializer.is_valid() is not True: return Response(serializer.errors, status=400) # Check if the provided signature is valid against any secret in our list if not validate_signature(request.headers.get("X-Marsha-Signature"), msg): return Response("Forbidden", status=403) # Retrieve the elements from the key key_elements = serializer.get_key_elements() # Update the object targeted by the "object_id" and "resource_id" model = apps.get_model(app_label="core", model_name=key_elements["model_name"]) extra_parameters = serializer.validated_data["extraParameters"] if ( serializer.validated_data["state"] == defaults.READY and hasattr(model, "extension") and "extension" not in extra_parameters ): # The extension is part of the s3 key name and added in this key # when generated by the initiate upload extra_parameters["extension"] = key_elements.get("extension") try: object_instance = model.objects.get(id=key_elements["object_id"]) except model.DoesNotExist: return Response({"success": False}, status=404) object_instance.update_upload_state( upload_state=serializer.validated_data["state"], uploaded_on=key_elements.get("uploaded_on") if serializer.validated_data["state"] == defaults.READY else None, **extra_parameters, ) return Response({"success": True}) @api_view(["POST"]) def recording_slices_manifest(request): """View handling AWS POST request to set a manifest on a record slice. Parameters ---------- request : Type[django.http.request.HttpRequest] The request on the API endpoint, it should contain a payload with the following fields: - video_id: the pk of a video. - harvest_job_id: the id of the harvest job. - manifest_key: the manifest key of the record slice. Returns ------- Type[rest_framework.response.Response] HttpResponse containing the current harvest status of all recording slices. """ # Check if the provided signature is valid against any secret in our list if not validate_signature(request.headers.get("X-Marsha-Signature"), request.body): return Response("Forbidden", status=403) video = get_object_or_404(Video, pk=request.data["video_id"]) video.set_recording_slice_manifest_key( request.data["harvest_job_id"], request.data["manifest_key"] ) return Response({"success": True}) @api_view(["POST"]) def recording_slices_state(request): """View handling AWS POST request to check each record slice harvest status by video pk. Parameters ---------- request : Type[django.http.request.HttpRequest] The request on the API endpoint, it should contain a payload with the following fields: - video_id: the pk of a video. Returns ------- Type[rest_framework.response.Response] HttpResponse containing the current harvest status of all recording slices. """ # Check if the provided signature is valid against any secret in our list if not validate_signature(request.headers.get("X-Marsha-Signature"), request.body): return Response("Forbidden", status=403) video = get_object_or_404(Video, pk=request.data["video_id"]) return Response(video.get_recording_slices_state())
import mapnik m = mapnik.Map(2560,2560) mapnik.load_map(m, "mapnik.xml") m.zoom_all() mapnik.render_to_file(m, "the_image.png")
import inspect from .metric import Metric from .decoding import Decoding from .dimensionality import Dimensionality from .factorization import Factorization from .generalization import Generalization from .neural_fits import NeuralFits from .rdm import RDM from .sparsity import Sparsity from .curvature import Curvature from .trajectory import Trajectory metrics_dict = {k: v for k, v in globals().items() if inspect.isclass(v) and issubclass(v, Metric) and v != Metric} ### TODO: Instead of creating a metrics_dict, change implementation to getattr(importlib.import_module('nn_analysis.metric.custom_metrics.some_metric'), 'SomeMetric') ###
from xml.etree.ElementTree import fromstring, ElementTree import time, datetime, os import json import boto3 import urllib S3R = boto3.resource('s3') OUTPUT_BUCKET_NAME = os.environ['OUTPUT_BUCKET_NAME'] print('Loading function') def lambda_handler(event, context): bucket = event['Records'][0]['s3']['bucket']['name'] key = urllib.unquote_plus(event['Records'][0]['s3']['object']['key']).decode('utf8') filename = key.rsplit('.', 1)[0].split('/')[-1] # Without the extension try: print('Getting S3 content for bucket:' + bucket) s3_content = S3R.Bucket(bucket).Object(key).get()["Body"].read() if "entity" in s3_content.lower() or "system" in s3_content.lower(): # Use error keyword as cloudwatch alert looking for this raise Exception("Error: Injection attempt for bucket file name:" + bucket) print('Parsing XML into a dictionary') xml_list = parse_dmarc_xml_to_list(s3_content, filename) print('Uploading the list into a JSON file on S3. Key:' + key) upload_dmarc_json_to_s3(xml_list, filename) except Exception as e: print(e) raise e def parse_dmarc_xml_to_list(xml_string, filename): """ :param xml_string: string with the content of the XML file :return: List of dict with the records and the metadata in each record """ try: # create element tree object tree = ElementTree(fromstring(xml_string)) except Exception: # Some reports contain xml format errors. Killing function nicely so lambda does not retry the function. # TODO: Dead Letter Queue # Avoiding word Error so cloud watch alert is not triggered. print ("Not well format for file name:" + filename) exit(0) # get root element root = tree.getroot() # Metadata - Only the one interested in date_parsed = datetime.datetime.fromtimestamp(time.time()).strftime('%Y-%m-%d %H:%M:%S') org_name = root.findtext("report_metadata/org_name", default="none") report_id = root.findtext("report_metadata/report_id", default="none") # records records_list = [] for record in root.findall("record"): record_dict = {} # Add metadata to the record record_dict.update({"date": date_parsed}) record_dict.update({"org_name": org_name}) record_dict.update({"report_id": report_id}) record_dict.update({"file_name": filename}) record_dict.update({"source_ip": record.findtext("row/source_ip", default="none")}) record_dict.update({"count": record.findtext("row/count", default="none")}) record_dict.update({"disposition": record.findtext("row/policy_evaluated/disposition", default="none")}) record_dict.update({"policy_dkim": record.findtext("row/policy_evaluated/dkim", default="none")}) record_dict.update({"policy_spf": record.findtext("row/policy_evaluated/spf", default="none")}) record_dict.update({"type": record.findtext("row/policy_evaluated/reason/type", default="none")}) record_dict.update({"header_from": record.findtext("identifiers/header_from", default="none")}) record_dict.update({"envelope_from": record.findtext("identifiers/envelope_from", default="none")}) record_dict.update({"envelope_to": record.findtext("identifiers/envelope_to", default="none")}) record_dict.update({"human_result": record.findtext("auth_results/dkim/human_result", default="none")}) record_dict.update({"spf_domain": record.findtext("auth_results/spf/domain", default="none")}) record_dict.update({"spf_result": record.findtext("auth_results/spf/result", default="none")}) record_dict.update({"spf_scope": record.findtext("auth_results/spf/scope", default="none")}) # DKIM can be a list as multiple signing can happen. dkim_results = [] for dkim in record.findall("auth_results/dkim"): dkim_dict = {} dkim_dict.update({"dkim_domain": dkim.findtext("domain", default="none")}) dkim_dict.update({"dkim_result": dkim.findtext("result", default="none")}) dkim_dict.update({"dkim_selector": dkim.findtext("selector", default="none")}) dkim_results.append(dkim_dict) record_dict.update({"dkim": dkim_results}) records_list.append(record_dict) return records_list def upload_dmarc_json_to_s3(recordList, filename): print('Temporarely saving the dict into a file') tmp_file_name = '/tmp/dmarc.json' g = open(tmp_file_name, 'w') for record in recordList: g.write(json.dumps(record) + '\n') g.close() # Upload the json file to S3 print('Uploading the JSON into the destination bucket for report id' + filename) S3R.meta.client.upload_file(tmp_file_name, OUTPUT_BUCKET_NAME, filename + '.json')
import re # order and rank functions are from here # http://code.activestate.com/recipes/491268-ordering-and-ranking-for-lists/ def order(x, NoneIsLast=True, decreasing=False): """ Returns the ordering of the elements of x. The list [ x[j] for j in order(x) ] is a sorted version of x. Missing values in x are indicated by None. If NoneIsLast is true, then missing values are ordered to be at the end. Otherwise, they are ordered at the beginning. """ omitNone = False if NoneIsLast is None: NoneIsLast = True omitNone = True n = len(x) ix = range(n) if None not in x: ix.sort(reverse=decreasing, key=lambda j: x[j]) else: # Handle None values properly. def key(i, x=x): elem = x[i] # Valid values are True or False only. if decreasing == NoneIsLast: return not(elem is None), elem else: return elem is None, elem ix = range(n) ix.sort(key=key, reverse=decreasing) if omitNone: n = len(x) for i in range(n-1, -1, -1): if x[ix[i]] is None: n -= 1 return ix[:n] return ix def rank(x, NoneIsLast=True, decreasing=False, ties="first"): """ Returns the ranking of the elements of x. The position of the first element in the original vector is rank[0] in the sorted vector. Missing values are indicated by None. Calls the order() function. Ties are NOT averaged by default. Choices are: "first" "average" "min" "max" "random" "average" """ omitNone = False if NoneIsLast is None: NoneIsLast = True omitNone = True O = order(x, NoneIsLast=NoneIsLast, decreasing=decreasing) R = O[:] n = len(O) for i in range(n): R[O[i]] = i if ties == "first" or ties not in ["first", "average", "min", "max", "random"]: return R blocks = [] newblock = [] for i in range(1, n): if x[O[i]] == x[O[i-1]]: if i-1 not in newblock: newblock.append(i-1) newblock.append(i) else: if len(newblock) > 0: blocks.append(newblock) newblock = [] if len(newblock) > 0: blocks.append(newblock) for i, block in enumerate(blocks): # Don't process blocks of None values. if x[O[block[0]]] is None: continue if ties == "average": s = 0.0 for j in block: s += j s /= float(len(block)) for j in block: R[O[j]] = s elif ties == "min": s = min(block) for j in block: R[O[j]] = s elif ties == "max": s = max(block) for j in block: R[O[j]] = s else: for i, j in enumerate(block): R[O[j]] = j if omitNone: R = [R[j] for j in range(n) if x[j] is not None] return R def match_rank(query, strings, seq=3): # create regular expression that (a) matches all letters of query, (b) correct order # see http://stackoverflow.com/a/2897073/1318686 for more details el = u'[^{s}]*({s})' expr = u''.join([el.format(s=re.escape(c)) for c in query]) # create matches mat = [re.match(expr, s, re.IGNORECASE) if query[0:seq].lower() in s.lower() else None for s in strings] # position of matched elements position = [[m.end(i) for i in range(1, m.lastindex+1, 1)] if m is not None else None for m in mat] # proportion of query that is in sequence letter_seq = [sum([p-pos[i-1] == 1 for i, p in enumerate(pos)][1::]) if pos is not None else None for pos in position] # [1-float(sum([j-pos[i-1] == 1 for i, j in enumerate(pos)][1::]))/(len(query)-1) if pos is not None else None for pos in position] # sum of position for matches pos_sum = [sum(pos) if pos is not None else None for pos in position] # rank elements rank_seq = rank(letter_seq, decreasing=True) rank_pos = rank(pos_sum) # return ranked output object return [(rank_seq[i]+rank_pos[i])/2 if m is not None else None for i, m in enumerate(mat)] def fuzzy_search(query, elements, key=lambda x: x, rank=True, seq=3): """Fuzzy search for query in list of strings, dictionaries, tulpes, or lists Args: query: search string elements: list of strings, dictionaries, tulpes, or lists key: function to access string element in dictionaries, tulpes, or lists rank: rank the elements in the return list by quality of match (currently not supported) seq: minimum sequence of characters to match Returns: a ranked list of elements that matches the query Fuzzy matching with rankning based on quality of match with two criteria (a) sequence of characters (e.g. for query 'nor', 'nor' is better then 'nxoxr') (b) earlier matches are better (e.g. for query 'nor', 'nor' is better then 'xnor') """ R = match_rank(query, [key(el) for el in elements], seq=seq) out = [(el, R[i]) for i, el in enumerate(elements) if R[i] is not None] return [el[0] for el in sorted(out, key=lambda el: el[1])] # elements = [{'key': u'ZB7K535R', 'author': u'Reskin 2003', 'title': u'Including Mechanisms in Our Models of Ascriptive Inequality: 2002 Presidential Address'}, {'key': u'DBTD3HQS', 'author': u'Igor & Ronald 2008', 'title': u'Die Zunahme der Lohnungleichheit in der Bundesrepublik. Aktuelle Befunde f\xfcr den Zeitraum von 1998 bis 2005'}, {'key': u'BKTCNEGP', 'author': u'Kirk & Sampson 2013', 'title': u'Juvenile Arrest and Collateral Educational Damage in the Transition to Adulthood'}, {'key': u'9AN4SPKT', 'author': u'Turner 2003', 'title': u'The Structure of Sociological Theory'}, {'key': u'9M92EV6S', 'author': u'Bruhns et al. 1999', 'title': u'Die heimliche Revolution'}, {'key': u'25QBTM5P', 'author': u'Durkheim 1997', 'title': u'The Division of Labor in Society'}, {'key': u'MQ3BHTBJ', 'author': u'Marx 1978', 'title': u'Alienation and Social Class'}, {'key': u'7G4BRU45', 'author': u'Marx 1978', 'title': u'The German Ideology: Part I'}, {'key': u'9ANAZXQB', 'author': u'Llorente 2006', 'title': u'Analytical Marxism and the Division of Labor'}] # query = 'marx' # fuzzy_search(query, elements, key=lambda x: '%s - %s' % (x['author'], x['title']))
class Activity(Dict): def __init__(self, name, desc, res_gained, res_consumed, duration=0, optimal_env, **kargs): self.name = name self.desc = desc self.res_gained = res_gained self.res_consumed = res_consumed self.optimal_env = optimal_env self.duration = duration for i in kargs: self.setAttr(i, kargs[i]) def finish(self): return res_gained, res_consumed
import time import math ''' FORMAT: # Police ID # First Name # Last Name # Current precinct # Complaint id # Month recieved # Year recieved # Month closed # Year Closed # Command during incident # Rank Abbreviation at incident # Rank Abbreviation now # Rank at incident # Rank now # Officer Ethnicity # Officer Gender # Officer Age # Complaintant ethnicity # Complaintant Gender # Complaintant Age # Allegation Type # Allegation # Precinct # Contact Reason # Outcome # Board Disposition ''' f = 'Data/raw.csv' data = "" precincts = {} officers = {} outcomes = {} totalCases = 0 def getPrecinct(info): # print("PRECINCT: " + info) if info not in precincts: precincts[info] = 1 else: precincts[info] += 1 def getOfficerInfo(info): # print("OFFICER: " + ", ".join(info)) if " ".join(info[1:3]) in officers: officers[" ".join(info[1:3])] += 1 else: officers[" ".join(info[1:3])] = 1 def getOutcome(info): # print("OUTCOME: " + ", ".join(info)) officerResult = info[-1] if officerResult in outcomes: outcomes[officerResult] += 1 else: outcomes[officerResult] = 1 def getIncidentInfo(info): info = info.split(",") getOfficerInfo(info[:3] + info[14:17]) getComplaintantInfo(info[17:20]) getOutcome(info[-2:]) getPrecinct(info[22]) # print("\n") # time.sleep(1) def getComplaintantInfo(info): # print("COMPLAINTANT: " + ", ".join(info)) pass def processData(data): global totalCases incidents = data.split("\n") totalCases = len(incidents) for incident in incidents: if incident: getIncidentInfo(incident) def getTotalSubstantiated(dictionary): totalSub = 0 for case in dictionary: if "Substantiated" in case: if "Un" in case: pass else: totalSub += dictionary[case] return totalSub + 1 with open(f,'r') as f: line = f.readline() # print(line) # throwaway line for headings line = f.readline() while line: data += line + "\n" line = f.readline() processData(data) sorted_Officers = sorted(officers.items(), key= lambda x: x[1], reverse=True) sorted_Precincts = sorted(precincts.items(), key= lambda x: x[1], reverse=True) sorted_Outcomes = sorted(outcomes.items(), key= lambda x: x[1], reverse=True) for i in sorted_Officers: print(i[0],i[1]) for i in sorted_Precincts: print(i[0],i[1]) for i in sorted_Outcomes: print(i[0] + ":", i[1]) totalSubstantiated = getTotalSubstantiated(outcomes) print("TOTAL CASES: " + str(totalCases)) print("TOTAL SUBSTANTIATED: " + str(totalSubstantiated)) totalUnsubstantiated = totalCases-totalSubstantiated print("TOTAL UNSUBSTANTIATED: " + str(totalUnsubstantiated)) percentageSubstantiated = totalSubstantiated/totalCases * 100 percentageUnsubstantiated = totalUnsubstantiated/totalCases * 100 print("% SUBSTANTIATED: " + str(round(percentageSubstantiated,2))) print("% UNSUBSTANTIATED: " + str(round(percentageUnsubstantiated,2))) # print(data)
import argparse import os import shutil def _parse_args(): parser = argparse.ArgumentParser(description="arg parser") parser.add_argument( "--dir", type=str, required=True, help="directory to be cleaned" ) parser.add_argument( "--date", type=int, required=True, help="logs before this date will be removed" ) args = parser.parse_args() assert args.date >= 20200101 and args.date <= 20201231 return args def _user_confirms(prompt): yes = {"yes", "y"} no = {"no", "n"} choice = input(prompt).lower() if choice in yes: return True elif choice in no: return False else: print(f"Invalid input: {choice}") return False def _log_dates_earlier_than(log_dir, reference_date): log_date = int(os.path.basename(log_dir).split("_")[0]) return log_date < reference_date def clean_log_dir(log_dir, latest_date): logs_list = sorted( [ x for x in os.listdir(log_dir) if os.path.isdir(os.path.join(log_dir, x)) and _log_dates_earlier_than(x, latest_date) ] ) print("Following logs will be removed:") for x in logs_list: print(os.path.join(log_dir, x)) if not _user_confirms("Continue [y/n]?"): return for x in logs_list: x = os.path.join(log_dir, x) print(f"Remove {x}") shutil.rmtree(x) if __name__ == "__main__": args = _parse_args() clean_log_dir(args.dir, args.date)
# Generated by Django 3.2.9 on 2021-12-03 09:27 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('hotels_app', '0008_auto_20211203_0906'), ] operations = [ migrations.RemoveField( model_name='review', name='reservation', ), ]
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Wed Jun 2 16:19:01 2021 @author: ccamargo """ import numpy as np # import scipy.optimize as opti import xarray as xr import matplotlib.pyplot as plt import sys sys.path.append("/Users/ccamargo/Documents/py_scripts/") import utils_SL as sl import utils_SLE_v2 as sle # from netCDF4 import Dataset import pandas as pd import os import datetime as dt import cmocean as cm # from mpl_toolkits.basemap import Basemap # from matplotlib.gridspec import GridSpec from cartopy import crs as ccrs#, feature as cfeature #%% Open dataset made in barystatic_standardize2.py path='/Volumes/LaCie_NIOZ/data/barystatic/use/' ds=xr.open_dataset(path+'comb/ALL_datasets_1993-2020_180x360_v2.nc') # We need to correct PCR-GLOBWB # the unit is METERS of Equivalent Water Thickness [x1000] # and not dcm of Equivalent Water Thickness [x100] file='/Volumes/LaCie_NIOZ/data/barystatic/use/TWS_PCR-GLOBWB_vW5E5_noGLA_180x360.nc' name='LWS_GWB' SL_mm=np.array(ds.SL_mm) SL_mm_y=np.array(ds.SL_mm_y) SL_EWH=np.array(ds.SL_EWH) SL_EWH_y=np.array(ds.SL_EWH_y) # SL_mm (name, time, lat, lon) float64 ... # SL_EWH (name, time, lat, lon) float64 ... # SL_mm_y (name, year, lat, lon) float64 ... # SL_EWH_y (name, year, lat, lon) float64 ... #%% time vectors # time range: months 1993-2020.08 time,time2=sl.make_date('01-01-1993',(27*12)+8) tdec,tdec0=sl.get_dec_time(time2,ns=1e-6) t=[dt.datetime.utcfromtimestamp(t.astype(int) * 1e-6) for t in time2] ty=np.array([dt.datetime.utcfromtimestamp(t.astype(int) * 1e-6).timetuple().tm_year for t in time2]) tm=np.array([dt.datetime.utcfromtimestamp(t.astype(int) * 1e-6).timetuple().tm_mon for t in time2]) # yearly timey=np.arange(1993,2021) idx=np.zeros((len(timey))) for i,year in enumerate(timey): idx[i]=np.where(ty==year)[0][0] #%% TWS GWB ifile = 24 iname=ifile print(ds.name[ifile]) if name==ds.name[ifile]: da=xr.open_dataset(file) da_y=da.groupby('time.year').mean(dim='time') name='tws_no_gla' #% % find time index time_local=np.array(da.time) tdec_local,tdec0=sl.get_dec_time(time_local,ns=1e-9) lon=np.array(da.lon) lat=np.array(da.lat) timey_local=np.array(da_y.year) # find index for yearly: idx_local=np.zeros((len(timey))) idx_local.fill('nan') # idx_local=np.full_like(timey,np.nan) for i,year in enumerate(timey): if year<=np.max(timey_local) and \ year>=np.min(timey_local): idx_local[i]=np.where(timey_local==year)[0][0] idx_0y=np.array(np.where(np.isfinite(idx_local)))[0,0] idx_00y=int(idx_local[np.isfinite(idx_local)][0]) idx_1y=np.array(np.where(np.isfinite(idx_local)))[0,-1]+1 # find index for monthly: ty_local=np.array([dt.datetime.utcfromtimestamp(t.astype(int) * 1e-9).timetuple().tm_year for t in time_local]) tm_local=np.array([dt.datetime.utcfromtimestamp(t.astype(int) * 1e-9).timetuple().tm_mon for t in time_local]) idx_local_m=np.zeros((len(ty))) idx_local_m.fill('nan') t2_local=[dt.datetime.utcfromtimestamp(t.astype(int) * 1e-9 ) for t in time_local] for i,iy in enumerate(t): year=iy.year if np.any(ty_local==year): month=iy.month if np.any(tm_local==month): # print(year) # print(month) jdx=np.array(np.where(year==ty_local))[0] jdx2=np.array(np.where(month==tm_local))[0] for jd in jdx2: if np.any(jdx==jd): j=jdx[jdx==jd] idx_local_m[i]=j #% % Water thickness original (m of water thickness) data=np.array(da[name])*1000 # m->mm of water thickness datay=np.array(da_y[name])*1000 # Put data in main array SL_EWH_y[iname,idx_0y:idx_1y,:,:]=datay[idx_00y:len(timey_local),:,:] for i,j in enumerate(idx_local_m): if np.isfinite(j): j=int(j) SL_EWH[iname,i,:,:]=data[j,:,:] # Transform data: for i in range(len(data)): data[i,:,:]=sle.EWH_to_height(data[i,:,:]).reshape(180,360) for i in range(len(datay)): datay[i,:,:]=sle.EWH_to_height(datay[i,:,:]).reshape(180,360) # Put transformed data in main array: SL_mm_y[iname,idx_0y:idx_1y,:,:]=datay[idx_00y:len(timey_local),:,:] for i,j in enumerate(idx_local_m): if np.isfinite(j): j=int(j) SL_mm[iname,i,:,:]=data[j,:,:] #%% make and save data array ds_mask=xr.open_dataset('/Volumes/LaCie_NIOZ/data/barystatic/masks/barystatic_mask2.nc') ds_mask #%% da=xr.Dataset(data_vars={'SL_mm':(('name','time','lat','lon'),SL_mm), 'SL_EWH':(('name','time','lat','lon'),SL_EWH), 'SL_mm_y':(('name','year','lat','lon'),SL_mm_y), 'SL_EWH_y':(('name','year','lat','lon'),SL_EWH_y), 'mask':(('lat','lon'),ds_mask['mask6']), 'mask2':(('lat','lon'),ds_mask['mask12']), }, coords={'lat':ds.lat, 'lon':ds.lon, 'time':time2, 'tdec':tdec, 'year':timey, 'name':ds.name}) da['SL_mm'].attrs['units']='mm of sea level' da['SL_mm_y'].attrs['units']='mm of sea level' da['SL_EWH'].attrs['units']='mm of Equivalent Water Thickness' da['SL_EWH_y'].attrs['units']='mm of Equivalent Water Thickness' da['SL_mm'].attrs['long_name']='Monthly ocean mass change in mm of sea level height' da['SL_EWH'].attrs['long_name']='Monthly ocean mass change in mm of equivalent water thickness' da['SL_mm_y'].attrs['long_name']='Yearly averages of ocean mass change in mm of sea level height' da['SL_EWH_y'].attrs['long_name']='Yearly averages of ocean mass change in mm of equivalent water thickness' da.attrs=ds.attrs da.attrs['script']='barystatic_standardize_update.py' da.attrs['date_created']=str(dt.datetime.now()) da.to_netcdf(path+'comb/ALL_datasets_1993-2020_180x360_v3_update.nc') #%% Selection updated path='/Volumes/LaCie_NIOZ/data/barystatic/use/comb/' da=xr.open_dataset(path+'ALL_datasets_1993-2020_180x360_v3_update.nc') print(da.name) da=da.sel(name=[#'AIS_IMB', 'AIS_R19_basins', 'GLWS_ZMP', 'GLWS_WGP_gl', 'AIS_300_CSR', 'GIS_300_CSR', 'LWS_CSR', 'GLWS_CSR', # 'TCWS_CSR', # 'AIS_CSR', 'GIS_CSR', 'AIS_300_JPL', 'GIS_300_JPL', 'LWS_JPL', 'GLWS_JPL', # 'TCWS_JPL', # 'AIS_JPL', 'GIS_JPL', # 'AIS_proj_CSR', 'GIS_proj_CSR', 'AIS_proj_JPL','GIS_proj_JPL', # 'GIS_IMB', 'GIS_M19', 'LWS_GWB', 'LWS_WGP_gl', # 'TCWS_WaterGAP' ]) print(da) da.to_netcdf(path+'12_input_datasets_buf_1993-2020_180x360_update_v3.nc') #%% #%% Selection updated path='/Volumes/LaCie_NIOZ/data/barystatic/use/comb/' da=xr.open_dataset(path+'ALL_datasets_1993-2020_180x360_v3_update.nc') print(da.name) da=da.sel(name=['AIS_IMB', 'AIS_R19_basins', 'GLWS_ZMP', 'GLWS_WGP_gl', 'AIS_300_CSR', 'GIS_300_CSR', 'LWS_CSR', 'GLWS_CSR', # 'TCWS_CSR', # 'AIS_CSR', 'GIS_CSR', 'AIS_300_JPL', 'GIS_300_JPL', 'LWS_JPL', 'GLWS_JPL', # 'TCWS_JPL', # 'AIS_JPL', 'GIS_JPL', # 'AIS_proj_CSR', 'GIS_proj_CSR', 'AIS_proj_JPL','GIS_proj_JPL', 'GIS_IMB', 'GIS_M19', 'LWS_GWB', 'LWS_WGP_gl', # 'TCWS_WaterGAP' ]) print(da) da.to_netcdf(path+'16_input_datasets_buf_1993-2020_180x360_update_v3.nc')
# -*- coding:utf-8 -*- # # Copyright (C) 2019-2020, Maximilian Köhl <koehl@cs.uni-saarland.de> from __future__ import annotations import typing as t def get_subclasses(cls: type, recursive: bool = True) -> t.AbstractSet[type]: subclasses: t.Set[type] = set() if recursive: queue = [cls] while queue: element = queue.pop() subclasses.update(element.__subclasses__()) queue.extend(element.__subclasses__()) else: subclasses.update(cls.__subclasses__()) return subclasses
import argparse import os import glob from KerasRFCN.Model.Model import RFCN_Model from keras.preprocessing import image from WiderFace import RFCNNConfig def loadModel(config, modelPath): model = RFCN_Model(mode="inference", config=config, model_dir=os.path.join(ROOT_DIR, "logs")) if not modelPath: modelPath = model.find_last()[1] print("Loading weights from: {}".format(modelPath)) if modelPath and os.path.isfile(modelPath): # Load trained weights model.load_weights(modelPath, by_name=True) else: raise AssertionError("Model weight file does not exists") return model def performPrediction(model, imageDir, saveDir, saveImage=False): """ Prediction format: 1. Create a folder same as the folder of image 2. Create a text file with same name as image file (replace extension with txt) 3. Content of file 0_Parade_marchingband_1_20 -> Name of image file minus the extension 2 -> Number of face 541 354 36 46 1.000 -> [x, y, width, height, confidence] of a face 100 242 20 35 0.98 -> [x, y, width, height, confidence] of a face ... """ if not os.path.isdir(imageDir): raise AssertionError("Image directory does not exists") for directory in os.listdir(imageDir): curSavDir = os.path.join(saveDir, directory) if not os.path.isdir(curSavDir): os.makedirs(curSavDir) curImgDir = os.path.join(imageDir, directory) imagePathList = glob.glob(os.path.join(curImgDir, "*.jpg")) for idx, imagePath in enumerate(imagePathList): print("-" * 80) print("Processing image [{}/{}]: {}".format(idx + 1, len(imagePathList), imagePath)) filename, ext = os.path.splitext(os.path.basename(imagePath)) txtFilePath = os.path.join(curSavDir, filename + ".txt") with open(txtFilePath, "w") as fp: fp.write(filename) fp.write("\n") img = image.img_to_array(image.load_img(imagePath)) prediction = model.detect([img], verbose=0)[0] faceList = prediction["rois"] scoreList = prediction["scores"] noOfFaces = len(faceList) print("Found {} faces".format(noOfFaces)) fp.write("{}\n".format(noOfFaces)) for face, score in zip(faceList, scoreList): y1, x1, y2, x2 = face width = x2 - x1 height = y2 - y1 fp.write("{} {} {} {} {}\n".format(x1, y1, width, height, score)) if __name__ == "__main__": ROOT_DIR = os.path.dirname(__file__) parser = argparse.ArgumentParser() parser.add_argument("--saveDir", default="prediction", help="Directory where predictions should be stored") parser.add_argument("--imageDir", required=True, help="Directory containing the images to be evaluated") parser.add_argument("--modelPath", default=None, help="Path to model weights file (h5)") args = parser.parse_args() config = RFCNNConfig() model = loadModel(config, args.modelPath) if not os.path.isdir(args.saveDir): os.makedirs(args.saveDir) performPrediction(model, args.imageDir, args.saveDir)
# # This file is part of CasADi. # # CasADi -- A symbolic framework for dynamic optimization. # Copyright (C) 2010-2014 Joel Andersson, Joris Gillis, Moritz Diehl, # K.U. Leuven. All rights reserved. # Copyright (C) 2011-2014 Greg Horn # # CasADi is free software; you can redistribute it and/or # modify it under the terms of the GNU Lesser General Public # License as published by the Free Software Foundation; either # version 3 of the License, or (at your option) any later version. # # CasADi is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public # License along with CasADi; if not, write to the Free Software # Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA # # from casadi import * from casadi.tools import * #! An SX graph a = SX.sym("a") b = SX.sym("b") c = sin(a**5 + b) c = c - b/ sqrt(fabs(c)) print(c) dotdraw(c) #! An SX dotdraw(SX.sym("x",Sparsity.lower(3))) dotdraw(SX.sym("x",Sparsity.lower(3))**2) #! An MX graph x = MX.sym("x",Sparsity.lower(2)) y = MX.sym("y",Sparsity.lower(2)) z = MX.sym("z",4,2) zz = x+y+6 dotdraw(zz) f = Function("magic", [z,y],[z+x[0,0],x-y]) z,z2 = f(vertcat(x,y),zz.T) z = z[:2,:] +x + cos(x) - sin(x) / tan(z2) dotdraw(z)
from molecules.ml.unsupervised.point_autoencoder.aae import AAE3d from molecules.ml.unsupervised.point_autoencoder.hyperparams import AAE3dHyperparams
from parallelm.mlops import mlops from parallelm.mlops.constants import PyHealth from parallelm.mlops.mlops_exception import MLOpsException from parallelm.mlops.stats.mlops_stat import MLOpsStat from parallelm.mlops.stats.mlops_stat_getter import MLOpsStatGetter from parallelm.mlops.stats.stats_utils import check_list_of_str, check_vec_of_numbers from parallelm.mlops.stats_category import StatGraphType, StatsMode from parallelm.protobuf import InfoType_pb2 import copy class _HistogramOverlapScoreStat(MLOpsStatGetter): """ A container for histogram score data that allows users to specify a generic score providing the feature and its values. The histogram score is calculated and replaced for every pipeline run. :Example: >>> hos = _HistogramOverlapScoreStat().name("hos").features(["g1", "g2"]).data([1.1, 2.4]) >>> mlops.set_stat(hos) This example creates and populates a BarGraph structure, then reports it to MLOps. """ def __init__(self): self._name = "HistogramOverlapScore" self._feature_names = [] self._data = [] def name(self, name): """ Set the name of the HistogramOverlapScore. This will used in the MLOps UI. :param name: HistogramOverlapScore name :return: self (the HistogramOverlapScore object) """ self._name = name return self def features(self, features_names): """ Set the feature names :param features_names: List of names :return: self """ check_list_of_str(features_names, error_prefix="feature names") self._feature_names = copy.deepcopy(features_names) return self def data(self, vec): """ Set the data :param vec: list of data values :return: self """ check_vec_of_numbers(vec, "values for heat graph") self._data = copy.deepcopy(vec) return self def _to_dict(self): dd = {} for label, value in zip(self._feature_names, self._data): dd[PyHealth.HISTOGRAM_OVERLAP_SCORE_PREPENDER + str(label)] = str(value) return dd def get_mlops_stat(self, model_id): if len(self._data) == 0: raise MLOpsException("There is no data in histogram score") if len(self._feature_names) == 0: raise MLOpsException("No columns names were provided") if len(self._data) != len(self._feature_names): raise MLOpsException("Number of data point does not match number of columns") data = self._to_dict() mlops_stat = MLOpsStat(name=self._name, stat_table=self._name, stat_type=InfoType_pb2.HealthCompare, graph_type=StatGraphType.MULTILINEGRAPH, mode=StatsMode.TimeSeries, data=data, model_id=model_id) return mlops_stat
from models.fast_scnn import get_fast_scnn import torch import numpy as np from torch import nn import torch.utils.model_zoo as model_zoo import torch.onnx model = get_fast_scnn(dataset= 'simulation', aux= False) model.eval() x = torch.randn(1, 3, 160, 320, requires_grad=True) torch_out = model(x) print(torch_out[0].size()) torch.onnx.export(model, x, 'out_model.onnx', export_params=True, opset_version=12, do_constant_folding=True, input_names = ['input'], output_names = ['output'])
"""Unit test package for easy_selenium."""
""" A handy script for extracting all events from a particular year from an ICS file into another ICS file. @author Derek Ruths (druths@networkdynamics.org) """ import argparse import re import sys, os from datetime import datetime from datetime import timedelta parser = argparse.ArgumentParser() parser.add_argument('input_file',help='the input ICS file') parser.add_argument('schedule_from',help='the date which from schedules are extract: %Y%m%d') parser.add_argument('schedule_to', help='the date which to schedules are extract: %Y%m%d') parser.add_argument('output_file',help='the output ICS file') args = parser.parse_args() print 'Extracting %s ~ %s events from %s into %s' % (args.schedule_from, args.schedule_to ,args.input_file,args.output_file) schedule_from = datetime.strptime(args.schedule_from, '%Y%m%d') schedule_to = datetime.strptime(args.schedule_to, '%Y%m%d') range_in_date = [schedule_from + timedelta(days=x) for x in range(0, (schedule_to-schedule_from).days)] in_fname = args.input_file out_fname = args.output_file if os.path.exists(out_fname): print 'ERROR: output file already exists! As a safety check, this script will not overwrite an ICS file' exit() infh = open(in_fname,'r') outfh = open(out_fname,'w') # parsing constants BEGIN_CALENDAR = 'BEGIN:VCALENDAR' END_CALENDAR = 'END:VCALENDAR' BEGIN_EVENT = 'BEGIN:VEVENT' END_EVENT = 'END:VEVENT' CREATED2017_OPENER = 'CREATED:2017' in_preamble = True in_event = False event_content = None event_in_2017 = False event_count = 0 out_event_count = 0 for line in infh: if in_preamble and line.startswith(BEGIN_EVENT): in_preamble = False if in_preamble: outfh.write(line) else: if line.startswith(BEGIN_EVENT): event_content = [] event_count += 1 event_in_2017 = False in_event = True if in_event: if 'DTSTART' in line: event_string = re.split(r'DTSTART.*:', line)[1].split('T')[0] event_date = datetime.strptime(event_string.strip(), '%Y%m%d') if event_date in range_in_date: event_in_2017 = True event_content.append(line) if line.startswith(END_EVENT): in_event = False if event_in_2017: out_event_count += 1 outfh.write(''.join(event_content)) outfh.write(END_CALENDAR) outfh.close() # done! print 'wrote %d of %d events' % (out_event_count,event_count)
''' ANKIT KHANDELWAL 15863 Exercise 7 ''' from math import sin, sqrt, pi import matplotlib.pyplot as plt import numpy as np def q(u): alpha = pi / (20 * 10 ** -6) return sin(alpha * u) ** 2 def y(u): return sqrt(q(u)) w = 200 * 10 ** -6 W = 10 * w wavelength = 500 * 10 ** -9 f = 1 n = 40 N = 10 * n xv = np.arange(n) u = xv * w / n - w / 2 yv = np.zeros(40) for i in xv: yv[i] = y(u[i]) extra = np.zeros(N - n) yv = np.concatenate((yv, extra)) c = np.fft.fft(yv) cmod = abs(c) ** 2 Intensity = W ** 2 / N ** 2 * cmod Intensity = Intensity[:201] Intensity = np.concatenate((np.zeros(200), Intensity)) for i in range(200): Intensity[i] = Intensity[-i - 1] xvalue = np.linspace(-5, 5, N + 1) plt.plot(xvalue, Intensity) plt.title('Diffraction Pattern') plt.xlabel('Distance (in cm)') plt.ylabel('Intensity') plt.show()