content
stringlengths
5
1.05M
name=input("enter your name : ") print("Name inserted =" , name) age=int(input("Enter your age")) print("Age : ",age) print(type(name)) print(type(age))
def password_valid(password): is_valid = True counter = 0 if not 6 <= len(password) <= 10: is_valid = False print("Password must be between 6 and 10 characters") for i in password: if i.isdigit(): counter += 1 if not i.isalpha() and not i.isdigit(): is_valid = False print("Password must consist only of letters and digits") break if counter < 2: is_valid = False print("Password must have at least 2 digits") return is_valid password = input() is_valid = password_valid(password) if is_valid: print("Password is valid")
# Copyright 2017 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. from recipe_engine import recipe_api class InfraCheckoutApi(recipe_api.RecipeApi): """Stateless API for using public infra gclient checkout.""" # Named cache shared across builders using public infra gclient checkout. PUBLIC_NAMED_CACHE = 'infra_gclient_with_go' # Ditto but for builders which use internal gclient checkout. INTERNAL_NAMED_CACHE = 'infra_internal_gclient_with_go' def checkout(self, gclient_config_name, patch_root=None, path=None, internal=False, named_cache=None, **kwargs): """Fetches infra gclient checkout into a given path OR named_cache. Arguments: * gclient_config_name (string) - name of gclient config. * patch_root (path or string) - path **inside** infra checkout to git repo in which to apply the patch. For example, 'infra/luci' for luci-py repo. If None (default), no patches will be applied. * path (path or string) - path to where to create/update infra checkout. If None (default) - path is cache with customizable name (see below). * internal (bool) - by default, False, meaning infra gclient checkout layout is assumed, else infra_internal. This has an effect on named_cache default and inside which repo's go corner the ./go/env.py command is run. * named_cache - if path is None, this allows to customize the name of the cache. Defaults to PUBLIC_NAMED_CACHE or INTERNAL_NAMED_CACHE, depending on `internal` argument value. Note: your cr-buildbucket.cfg should specify named_cache for swarming to prioritize bots which actually have this cache populated by prior runs. Otherwise, using named cache isn't particularly useful, unless your pool of builders is very small. * kwargs - passed as is to bot_update.ensure_checkout. Returns: a Checkout object with commands for common actions on infra checkout. """ assert gclient_config_name, gclient_config_name if named_cache is None: named_cache = (self.INTERNAL_NAMED_CACHE if internal else self.PUBLIC_NAMED_CACHE) path = path or self.m.path['cache'].join(named_cache) self.m.file.ensure_directory('ensure builder dir', path) with self.m.context(cwd=path): self.m.gclient.set_config(gclient_config_name) bot_update_step = self.m.bot_update.ensure_checkout( patch_root=patch_root, **kwargs) class Checkout(object): @property def path(self): return path @property def bot_update_step(self): return bot_update_step @property def patch_root_path(self): assert patch_root return path.join(patch_root) @staticmethod def commit_change(): assert patch_root with self.m.context(cwd=path.join(patch_root)): self.m.git( '-c', 'user.email=commit-bot@chromium.org', '-c', 'user.name=The Commit Bot', 'commit', '-a', '-m', 'Committed patch', name='commit git patch') @staticmethod def get_changed_files(): assert patch_root # Grab a list of changed files. with self.m.context(cwd=path.join(patch_root)): result = self.m.git( 'diff', '--name-only', 'HEAD', 'HEAD~', name='get change list', stdout=self.m.raw_io.output()) files = result.stdout.splitlines() if len(files) < 50: result.presentation.logs['change list'] = sorted(files) else: result.presentation.logs['change list is too long'] = ( '%d files' % len(files)) return set(files) @staticmethod def gclient_runhooks(): with self.m.context(cwd=path): self.m.gclient.runhooks() @staticmethod def ensure_go_env(infra_step=True): with self.m.context(cwd=path): Checkout.go_env_step('go', 'version', name='init infra go env', infra_step=infra_step) @staticmethod def go_env_step(*args, **kwargs): # name lazily defaults to first two args, like "go test". name = kwargs.pop('name', None) or ' '.join(map(str, args[:2])) with self.m.context(cwd=path): where = 'infra_internal' if internal else 'infra' return self.m.python(name, path.join(where, 'go', 'env.py'), args, venv=True, **kwargs) @staticmethod def run_presubmit_in_go_env(): assert patch_root assert self.m.runtime.is_luci revs = self.m.bot_update.get_project_revision_properties(patch_root) upstream = bot_update_step.json.output['properties'].get(revs[0]) gerrit_change = self.m.buildbucket.build.input.gerrit_changes[0] # The presubmit must be run with proper Go environment. presubmit_cmd = [ 'python', # env.py will replace with this its sys.executable. self.m.presubmit.presubmit_support_path, '--root', path.join(patch_root), '--commit', '--verbose', '--verbose', '--issue', gerrit_change.change, '--patchset', gerrit_change.patchset, '--gerrit_url', 'https://' + gerrit_change.host, '--gerrit_fetch', '--upstream', upstream, '--skip_canned', 'CheckTreeIsOpen', '--skip_canned', 'CheckBuildbotPendingBuilds', ] with self.m.context(env={'PRESUBMIT_BUILDER': '1'}): Checkout.go_env_step(*presubmit_cmd, name='presubmit') return Checkout()
import tensorflow as tf import tensorlayer as tl from rlzoo.common import math_utils from rlzoo.common.value_networks import * from rlzoo.common.policy_networks import * from rlzoo.common.utils import set_seed ''' full list of algorithm parameters (alg_params) ----------------------------------------------- net_list: a list of networks (value and policy) used in the algorithm, from common functions or customization optimizers_list: a list of optimizers for all networks and differentiable variables entropy_beta: factor for entropy boosted exploration ----------------------------------------------- full list of learning parameters (learn_params) ----------------------------------------------- train_episodes: total number of episodes for training test_episodes: total number of episodes for testing max_steps: maximum number of steps for one episode n_workers: manually set number of workers update_itr: update global policy after several episodes gamma: reward discount factor save_interval: timesteps for saving the weights and plotting the results mode: train or test ------------------------------------------------ ''' def atari(env, default_seed=True): if default_seed: assert isinstance(env, list) seed = np.arange(len(env)).tolist() # a list of seeds for each env set_seed(seed, env) # reproducible # for multi-threading if isinstance(env, list): # judge if multiple envs are passed in for parallel computing num_env = len(env) # number of envs passed in env = env[0] # take one of the env as they are all the same else: num_env = 1 alg_params = dict( entropy_beta=0.005 ) if alg_params.get('net_list') is None: num_hidden_layer = 4 # number of hidden layers for the networks hidden_dim = 64 # dimension of hidden layers for the networks net_list2 = [] # networks list of networks list, each item for single thread/process for _ in range(num_env + 1): # additional one for global with tf.name_scope('AC'): with tf.name_scope('Critic'): critic = ValueNetwork(env.observation_space, hidden_dim_list=num_hidden_layer * [hidden_dim]) with tf.name_scope('Actor'): actor = StochasticPolicyNetwork(env.observation_space, env.action_space, hidden_dim_list=num_hidden_layer * [hidden_dim]) net_list = [actor, critic] net_list2.append(net_list) alg_params['net_list'] = net_list2 if alg_params.get('optimizers_list') is None: a_lr, c_lr = 1e-3, 1e-3 # a_lr: learning rate of the actor; c_lr: learning rate of the critic a_optimizer = tf.optimizers.RMSprop(a_lr, name='RMS_optimizer_actor') c_optimizer = tf.optimizers.RMSprop(c_lr, name='RMS_optimizer_critic') optimizers_list = [a_optimizer, c_optimizer] alg_params['optimizers_list'] = optimizers_list learn_params = dict( max_steps=100, gamma=0.9, train_episodes=1000, test_episodes=10, save_interval=100, update_itr=10, n_workers=num_env ) return alg_params, learn_params def classic_control(env, default_seed=True): if default_seed: assert isinstance(env, list) seed = np.arange(len(env)).tolist() # a list of seeds for each env set_seed(seed, env) # reproducible # for multi-threading if isinstance(env, list): # judge if multiple envs are passed in for parallel computing num_env = len(env) # number of envs passed in env = env[0] # take one of the env as they are all the same else: num_env = 1 alg_params = dict( entropy_beta=0.005 ) if alg_params.get('net_list') is None: num_hidden_layer = 4 # number of hidden layers for the networks hidden_dim = 64 # dimension of hidden layers for the networks net_list2 = [] # networks list of networks list, each item for single thread/process for _ in range(num_env + 1): # additional one for global with tf.name_scope('AC'): with tf.name_scope('Critic'): critic = ValueNetwork(env.observation_space, hidden_dim_list=num_hidden_layer * [hidden_dim]) with tf.name_scope('Actor'): actor = StochasticPolicyNetwork(env.observation_space, env.action_space, hidden_dim_list=num_hidden_layer * [hidden_dim]) net_list = [actor, critic] net_list2.append(net_list) alg_params['net_list'] = net_list2 if alg_params.get('optimizers_list') is None: a_lr, c_lr = 1e-3, 1e-3 # a_lr: learning rate of the actor; c_lr: learning rate of the critic a_optimizer = tf.optimizers.RMSprop(a_lr, name='RMS_optimizer_actor') c_optimizer = tf.optimizers.RMSprop(c_lr, name='RMS_optimizer_critic') optimizers_list = [a_optimizer, c_optimizer] alg_params['optimizers_list'] = optimizers_list learn_params = dict( max_steps=100, gamma=0.9, train_episodes=1000, test_episodes=10, save_interval=100, update_itr=10, n_workers=num_env ) return alg_params, learn_params def box2d(env, default_seed=True): if default_seed: assert isinstance(env, list) seed = np.arange(len(env)).tolist() # a list of seeds for each env set_seed(seed, env) # reproducible # for multi-threading if isinstance(env, list): # judge if multiple envs are passed in for parallel computing num_env = len(env) # number of envs passed in env = env[0] # take one of the env as they are all the same else: num_env = 1 alg_params = dict( entropy_beta=0.005 ) if alg_params.get('net_list') is None: num_hidden_layer = 4 # number of hidden layers for the networks hidden_dim = 64 # dimension of hidden layers for the networks net_list2 = [] # networks list of networks list, each item for single thread/process for _ in range(num_env + 1): # additional one for global with tf.name_scope('AC'): with tf.name_scope('Critic'): critic = ValueNetwork(env.observation_space, hidden_dim_list=num_hidden_layer * [hidden_dim]) with tf.name_scope('Actor'): actor = StochasticPolicyNetwork(env.observation_space, env.action_space, hidden_dim_list=num_hidden_layer * [hidden_dim]) net_list = [actor, critic] net_list2.append(net_list) alg_params['net_list'] = net_list2 if alg_params.get('optimizers_list') is None: a_lr, c_lr = 1e-3, 1e-3 # a_lr: learning rate of the actor; c_lr: learning rate of the critic a_optimizer = tf.optimizers.RMSprop(a_lr, name='RMS_optimizer_actor') c_optimizer = tf.optimizers.RMSprop(c_lr, name='RMS_optimizer_critic') optimizers_list = [a_optimizer, c_optimizer] alg_params['optimizers_list'] = optimizers_list learn_params = dict( max_steps=20000, gamma=0.9, train_episodes=20000, test_episodes=10, save_interval=500, update_itr=10, n_workers=num_env ) return alg_params, learn_params def mujoco(env, default_seed=True): if default_seed: assert isinstance(env, list) seed = np.arange(len(env)).tolist() # a list of seeds for each env set_seed(seed, env) # reproducible # for multi-threading if isinstance(env, list): # judge if multiple envs are passed in for parallel computing num_env = len(env) # number of envs passed in env = env[0] # take one of the env as they are all the same else: num_env = 1 alg_params = dict( entropy_beta=0.005 ) if alg_params.get('net_list') is None: num_hidden_layer = 4 # number of hidden layers for the networks hidden_dim = 64 # dimension of hidden layers for the networks net_list2 = [] # networks list of networks list, each item for single thread/process for _ in range(num_env + 1): # additional one for global with tf.name_scope('AC'): with tf.name_scope('Critic'): critic = ValueNetwork(env.observation_space, hidden_dim_list=num_hidden_layer * [hidden_dim]) with tf.name_scope('Actor'): actor = StochasticPolicyNetwork(env.observation_space, env.action_space, hidden_dim_list=num_hidden_layer * [hidden_dim]) net_list = [actor, critic] net_list2.append(net_list) alg_params['net_list'] = net_list2 if alg_params.get('optimizers_list') is None: a_lr, c_lr = 1e-3, 1e-3 # a_lr: learning rate of the actor; c_lr: learning rate of the critic a_optimizer = tf.optimizers.RMSprop(a_lr, name='RMS_optimizer_actor') c_optimizer = tf.optimizers.RMSprop(c_lr, name='RMS_optimizer_critic') optimizers_list = [a_optimizer, c_optimizer] alg_params['optimizers_list'] = optimizers_list learn_params = dict( max_steps=100, gamma=0.9, train_episodes=1000, test_episodes=10, save_interval=100, update_itr=10, n_workers=num_env ) return alg_params, learn_params def robotics(env, default_seed=True): if default_seed: assert isinstance(env, list) seed = np.arange(len(env)).tolist() # a list of seeds for each env set_seed(seed, env) # reproducible # for multi-threading if isinstance(env, list): # judge if multiple envs are passed in for parallel computing num_env = len(env) # number of envs passed in env = env[0] # take one of the env as they are all the same else: num_env = 1 alg_params = dict( entropy_beta=0.005 ) if alg_params.get('net_list') is None: num_hidden_layer = 4 # number of hidden layers for the networks hidden_dim = 64 # dimension of hidden layers for the networks net_list2 = [] # networks list of networks list, each item for single thread/process for _ in range(num_env + 1): # additional one for global with tf.name_scope('AC'): with tf.name_scope('Critic'): critic = ValueNetwork(env.observation_space, hidden_dim_list=num_hidden_layer * [hidden_dim]) with tf.name_scope('Actor'): actor = StochasticPolicyNetwork(env.observation_space, env.action_space, hidden_dim_list=num_hidden_layer * [hidden_dim]) net_list = [actor, critic] net_list2.append(net_list) alg_params['net_list'] = net_list2 if alg_params.get('optimizers_list') is None: a_lr, c_lr = 1e-3, 1e-3 # a_lr: learning rate of the actor; c_lr: learning rate of the critic a_optimizer = tf.optimizers.RMSprop(a_lr, name='RMS_optimizer_actor') c_optimizer = tf.optimizers.RMSprop(c_lr, name='RMS_optimizer_critic') optimizers_list = [a_optimizer, c_optimizer] alg_params['optimizers_list'] = optimizers_list learn_params = dict( max_steps=100, gamma=0.9, train_episodes=1000, test_episodes=10, save_interval=100, update_itr=10, n_workers=num_env ) return alg_params, learn_params def dm_control(env, default_seed=True): if default_seed: assert isinstance(env, list) seed = np.arange(len(env)).tolist() # a list of seeds for each env set_seed(seed, env) # reproducible # for multi-threading if isinstance(env, list): # judge if multiple envs are passed in for parallel computing num_env = len(env) # number of envs passed in env = env[0] # take one of the env as they are all the same else: num_env = 1 alg_params = dict( entropy_beta=0.005 ) if alg_params.get('net_list') is None: num_hidden_layer = 4 # number of hidden layers for the networks hidden_dim = 64 # dimension of hidden layers for the networks net_list2 = [] # networks list of networks list, each item for single thread/process for _ in range(num_env + 1): # additional one for global with tf.name_scope('AC'): with tf.name_scope('Critic'): critic = ValueNetwork(env.observation_space, hidden_dim_list=num_hidden_layer * [hidden_dim]) with tf.name_scope('Actor'): actor = StochasticPolicyNetwork(env.observation_space, env.action_space, hidden_dim_list=num_hidden_layer * [hidden_dim]) net_list = [actor, critic] net_list2.append(net_list) alg_params['net_list'] = net_list2 if alg_params.get('optimizers_list') is None: a_lr, c_lr = 1e-3, 1e-3 # a_lr: learning rate of the actor; c_lr: learning rate of the critic a_optimizer = tf.optimizers.RMSprop(a_lr, name='RMS_optimizer_actor') c_optimizer = tf.optimizers.RMSprop(c_lr, name='RMS_optimizer_critic') optimizers_list = [a_optimizer, c_optimizer] alg_params['optimizers_list'] = optimizers_list learn_params = dict( max_steps=100, gamma=0.9, train_episodes=1000, test_episodes=10, save_interval=100, update_itr=10, n_workers=num_env ) return alg_params, learn_params
import discord import os import asyncio import time import logging from discord.ext import commands from __main__ import settings from cogs.utils.dataIO import dataIO reminders_path = "data/remindme/reminders.json" mod_log_path = 'data/mod/mod.log' class RemindMe: """Pour ne plus rien oublier.""" # _ignore_list_path = "data/mod/ignorelist.json" # _filter_path = "data/mod/filter.json" _ownersettings_path = "data/red/ownersettings.json" # _perms_cache_path = "data/mod/perms_cache.json" # _past_names_path = "data/mod/past_names.json" # _past_nicknames_path = "data/mod/past_nicknames.json" _reminders_path = reminders_path def __init__(self, bot): self.bot = bot self.reminders = dataIO.load_json(self._reminders_path) self.settings = dataIO.load_json(self._ownersettings_path) self.units = {"second": 1, "seconde": 1, "sec": 1, "minute": 60, "min": 60, "heure": 3600, "hour": 3600, "h": 3600, "jour": 86400, "day": 86400, "j": 86400, "semaine": 604800, "sem": 604800, "week": 604800, "moi": 2592000, "month": 2592000} @commands.command(pass_context=True) async def rappelermoi(self, ctx, quantity: int, time_unit: str, *text: str): """Vous envoie <text> quand c'est l'heure Accepte: minutes, min, heures, hours, h, jours, days, j, semaines, sem, weeks, mois, months """ text = " ".join(text) time_unit = time_unit.lower() author = ctx.message.author server = ctx.message.server s = "" if time_unit.endswith("s"): time_unit = time_unit[:-1] s = "s" if not time_unit in self.units: await self.bot.say("Unité de temps invalide. Choisir dans:\n" "minutes, min, heures, hours, h,\n" "jours, days, j, semaines, sem, weeks,\n" "mois, months", delete_after=self.settings[server.id]["delete_delay"]) return if quantity < 1: await self.bot.say("Quantity ne peut pas être 0 ou négatif.", delete_after=self.settings[server.id]["delete_delay"]) return if len(text) > 1960: await self.bot.say("Le texte est trop long (1960 caractères max).", delete_after=self.settings[server.id]["delete_delay"]) return seconds = self.units[time_unit] * quantity future = int(time.time()+seconds) self.reminders.append( {"SERVER":server.id, "ID": author.id, "NAME": author.name, "MENTION": author.mention, "DISCRIMINATOR": author.discriminator, "FUTURE": future, "TEXT": text}) logger.info("{}({}) set a reminder.".format(author.name, author.id)) await self.bot.say("Je vous rappelle ça dans {} {}.".format(str(quantity), time_unit + s), delete_after=self.settings[server.id]["delete_delay"]) dataIO.save_json(self._reminders_path, self.reminders) @commands.command(pass_context=True) async def oubliermoi(self, ctx): """Supprime toutes vos notifications à venir""" author = ctx.message.author server = ctx.message.server to_remove = [] for reminder in self.reminders: if reminder["ID"] == author.id: to_remove.append(reminder) if not to_remove == []: for reminder in to_remove: self.reminders.remove(reminder) dataIO.save_json(self._reminders_path, self.reminders) await self.bot.say("Toutes vos notifications ont été enlevées.", delete_after=self.settings[server.id]["delete_delay"]) else: await self.bot.say("Vous n'avez pas de notifications à venir.", delete_after=self.settings[server.id]["delete_delay"]) async def check_reminders(self, bot): while "RemindMe" in self.bot.cogs: self.reminders = dataIO.load_json(self._reminders_path) to_remove = [] #print("\ncheck : " + str(len(self.reminders))) for reminder in self.reminders: if reminder["FUTURE"] <= int(time.time()): try: logger.info("{}({}) has a reminder done.".format( reminder["NAME"], reminder["ID"])) for un in bot.servers: assert isinstance(un, discord.Server) if un.id == reminder["SERVER"]: server = un break else: server = None if server: for member in server.members: if member.id == reminder["ID"]: author = member break else: author = "@"+reminder["NAME"]+"#"+reminder["DISCRIMINATOR"] #print("Mon destinataire=", author) try: #print("Le destinataire:", author) await self.bot.send_message(author, "RAPPEL:\n\n{}".format(reminder["TEXT"])) to_remove.append(reminder) except: pass except (discord.errors.Forbidden, discord.errors.NotFound): pass # to_remove.append(reminder) except discord.errors.HTTPException: pass # else: # to_remove.append(reminder) for reminder in to_remove: self.reminders.remove(reminder) if to_remove: dataIO.save_json(self._reminders_path, self.reminders) await asyncio.sleep(5) def check_folders(): if not os.path.exists("data/remindme"): print("Créaton du dossier data/remindme ...") os.makedirs("data/remindme") def check_files(): f = reminders_path if not os.path.isfile(f): print("Création du fichier vide reminders.json...") dataIO.save_json(f, []) def setup(bot): global logger check_folders() check_files() logger = logging.getLogger("remindme") if logger.level == 0: # Prevents the logger from being loaded again in case of module reload logger.setLevel(logging.INFO) handler = logging.FileHandler( filename=mod_log_path, encoding='utf-8', mode='a') handler.setFormatter(logging.Formatter( '%(asctime)s %(message)s', datefmt="[%d/%m/%Y %H:%M]")) logger.addHandler(handler) n = RemindMe(bot) loop = asyncio.get_event_loop() loop.create_task(n.check_reminders(bot)) bot.add_cog(n)
from __future__ import print_function import FWCore.ParameterSet.Config as cms bmtfStage2Raw = cms.EDProducer( "L1TDigiToRaw", Setup = cms.string("stage2::BMTFSetup"), InputLabel = cms.InputTag("simBmtfDigis","BMTF"), InputLabel2 = cms.InputTag("simTwinMuxDigis"), FedId = cms.int32(1376), FWId = cms.uint32(1), )
# -*- coding: utf-8 -*- # @Time : 2018/6/16 下午4:43 # @Author : yidxue from gensim.corpora.Dictionary import load_from_text, doc2bow from gensim.corpora import MmCorpus from gensim.models.ldamodel import LdaModel document = "This is some document..." # load id->word mapping (the dictionary) id2word = load_from_text('wiki_en_wordids.txt') # load corpus iterator mm = MmCorpus('wiki_en_tfidf.mm') # extract 100 LDA topics, updating once every 10,000 lda = LdaModel(corpus=mm, id2word=id2word, num_topics=100, update_every=1, chunksize=10000, passes=1) # use LDA model: transform new doc to bag-of-words, then apply lda doc_bow = doc2bow(document.split()) doc_lda = lda[doc_bow] # doc_lda is vector of length num_topics representing weighted presence of each topic in the doc
import sys n = int(input().strip()) sockColors = [int(color) for color in input().strip().split(' ')] d = dict() for color in sockColors: if color not in d: d[color] = 0 d[color] += 1 count = 0 for key, colorCount in d.items(): count += colorCount // 2 print(count)
# $Id: programs.py,v 1.1 2011-09-28 19:38:22 wirawan Exp $ # # pyqmc.nwchem.programs module # # Wirawan Purwanto # Created: 20101028 # """ This module contains a general encapsulation of nwchem program. """ import sys import os import os.path import time import wpylib.shell_tools as sh from wpylib.params import flat as params from pyqmc.nwchem.output import nwchem_output class nwchem_program(object): """Encapsulation of nwchem program.""" NWCHEM_EXECUTABLE = "nwchem.sh" def __init__(self): self.parm = params( verbose=2, rerun=0, # forces running even if the output file exists parse_results=1, logfile=sys.stdout, ) def run(self, infile, **_opts_): """Runs nwchem (if the output file hasn't existed) and returns the results. * verbose (-1): verbosity level - > 2 = even prints out all nwchem output lines to stdout - 2 = quiet, but prints the total SCF/DFT energy - 1 = prints nothing except saying `nwchem inputfile.nw' to logfile - <= 0 = really really quiet """ p = self.parm._create_() opt_quiet = [] nw_exec = self.NWCHEM_EXECUTABLE nw_in = infile stdout = p.logfile verbose = p.verbose if nw_in.endswith(".nw"): nw_out = nw_in[:-3] + ".out" else: nw_out = nw_in + ".out" if verbose <= 2: opt_quiet = ['-q'] if verbose == 1: stdout.write("%s %s -q\n" % (nw_exec,infile,)) stdout.flush() elif verbose == 2 and p.parse_results: stdout.write(infile + ":") stdout.flush() if not os.path.isfile(nw_out): sh.run(nw_exec, [nw_in] + opt_quiet) if p.parse_results: rec = nwchem_output(nw_out) if verbose >= 2: for e in ('E_SCF', 'E_DFT', 'E_MP2', 'E_CCSD', 'E_CCSD_T',): if e in rec: stdout.write("%s = %s\n" % (e, rec[e])) stdout.flush() return rec
from tracker.index_aliases import tracker_index_alias from tracker.indexers import AttachmentFileIndexer class TrackerTestCaseMixin(object): def setUp(self): tracker_index_alias.write_index.delete(ignore=404) tracker_index_alias.read_index.create(ignore=400) def refresh_index(self): with tracker_index_alias.indexing(): AttachmentFileIndexer().reindex() tracker_index_alias.write_index.refresh()
from __future__ import print_function import cv2 as cv import argparse ## [Load image] parser = argparse.ArgumentParser(description='Code for Histogram Equalization tutorial.') parser.add_argument('--input', help='Path to input image.', default='../data/lena.jpg') args = parser.parse_args() src = cv.imread(args.input) if src is None: print('Could not open or find the image:', args.input) exit(0) ## [Load image] ## [Convert to grayscale] src = cv.cvtColor(src, cv.COLOR_BGR2GRAY) ## [Convert to grayscale] ## [Apply Histogram Equalization] dst = cv.equalizeHist(src) ## [Apply Histogram Equalization] ## [Display results] cv.imshow('Source image', src) cv.imshow('Equalized Image', dst) ## [Display results] ## [Wait until user exits the program] cv.waitKey() ## [Wait until user exits the program]
"""Entry point for the analysis runner.""" import os import hailtop.batch as hb from analysis_runner import dataproc service_backend = hb.ServiceBackend( billing_project=os.getenv('HAIL_BILLING_PROJECT'), bucket=os.getenv('HAIL_BUCKET') ) batch = hb.Batch(name='new-variants-plot-pca', backend=service_backend) dataproc.hail_dataproc_job( batch, 'plot_pca_and_loadings.py', max_age='2h', packages=['selenium'], init=['gs://cpg-reference/hail_dataproc/install_common.sh'], job_name='new-variants-plot-pca', ) batch.run()
from setuptools import setup setup( name='elementflow', version='0.5', author='Ivan Sagalaev', author_email='maniac@softwaremaniacs.org', url='https://github.com/isagalaev/elementflow', license='BSD', description='Python library for generating XML as a stream without building a tree in memory.', long_description=open('README.md').read(), classifiers=[ 'Development Status :: 5 - Production/Stable', 'License :: OSI Approved :: BSD License', 'Programming Language :: Python :: 3', 'Topic :: Software Development :: Libraries :: Python Modules', ], extras_require={ 'test': [ 'pytest', 'tox', ] }, py_modules=['elementflow'], )
# This file is part of beets. # Copyright 2014, Stig Inge Lea Bjornsen. # # Permission is hereby granted, free of charge, to any person obtaining # a copy of this software and associated documentation files (the # "Software"), to deal in the Software without restriction, including # without limitation the rights to use, copy, modify, merge, publish, # distribute, sublicense, and/or sell copies of the Software, and to # permit persons to whom the Software is furnished to do so, subject to # the following conditions: # # The above copyright notice and this permission notice shall be # included in all copies or substantial portions of the Software. """Tests for the `importadded` plugin.""" import os from _common import unittest from test.test_importer import ImportHelper, AutotagStub from beets import importer from beets import util from beetsplug.importadded import ImportAddedPlugin _listeners = ImportAddedPlugin.listeners def preserve_plugin_listeners(): """Preserve the initial plugin listeners as they would otherwise be deleted after the first setup / tear down cycle. """ if not ImportAddedPlugin.listeners: ImportAddedPlugin.listeners = _listeners def modify_mtimes(paths, offset=-60000): for i, path in enumerate(paths, start=1): mstat = os.stat(path) os.utime(path, (mstat.st_atime, mstat.st_mtime + offset * i)) class ImportAddedTest(unittest.TestCase, ImportHelper): # The minimum mtime of the files to be imported min_mtime = None def setUp(self): preserve_plugin_listeners() self.setup_beets() self.load_plugins('importadded') self._create_import_dir(2) # Different mtimes on the files to be imported in order to test the # plugin modify_mtimes((mfile.path for mfile in self.media_files)) self.min_mtime = min(os.path.getmtime(mfile.path) for mfile in self.media_files) self.matcher = AutotagStub().install() self.matcher.macthin = AutotagStub.GOOD self._setup_import_session() self.importer.add_choice(importer.action.APPLY) def tearDown(self): self.unload_plugins() self.teardown_beets() self.matcher.restore() def findMediaFile(self, item): """Find the pre-import MediaFile for an Item""" for m in self.media_files: if m.title.replace('Tag', 'Applied') == item.title: return m raise AssertionError("No MediaFile found for Item " + util.displayable_path(item.path)) def assertEqualTimes(self, first, second, msg=None): """For comparing file modification times at a sufficient precision""" self.assertAlmostEqual(first, second, places=4, msg=msg) def test_import_album_with_added_dates(self): self.importer.run() album = self.lib.albums().get() self.assertEqual(album.added, self.min_mtime) for item in album.items(): self.assertEqual(item.added, self.min_mtime) def test_import_album_with_preserved_mtimes(self): self.config['importadded']['preserve_mtimes'] = True self.importer.run() album = self.lib.albums().get() self.assertEqual(album.added, self.min_mtime) for item in album.items(): self.assertEqualTimes(item.added, self.min_mtime) mediafile_mtime = os.path.getmtime(self.findMediaFile(item).path) self.assertEqualTimes(item.mtime, mediafile_mtime) self.assertEqualTimes(os.path.getmtime(item.path), mediafile_mtime) def test_reimported_album_skipped(self): # Import and record the original added dates self.importer.run() album = self.lib.albums().get() album_added_before = album.added items_added_before = dict((item.path, item.added) for item in album.items()) # Newer Item path mtimes as if Beets had modified them modify_mtimes(items_added_before.keys(), offset=10000) # Reimport self._setup_import_session(import_dir=album.path) self.importer.run() # Verify the reimported items album = self.lib.albums().get() self.assertEqualTimes(album.added, album_added_before) items_added_after = dict((item.path, item.added) for item in album.items()) for item_path, added_after in items_added_after.iteritems(): self.assertEqualTimes(items_added_before[item_path], added_after, "reimport modified Item.added for " + item_path) def test_import_singletons_with_added_dates(self): self.config['import']['singletons'] = True self.importer.run() for item in self.lib.items(): mfile = self.findMediaFile(item) self.assertEqualTimes(item.added, os.path.getmtime(mfile.path)) def test_import_singletons_with_preserved_mtimes(self): self.config['import']['singletons'] = True self.config['importadded']['preserve_mtimes'] = True self.importer.run() for item in self.lib.items(): mediafile_mtime = os.path.getmtime(self.findMediaFile(item).path) self.assertEqualTimes(item.added, mediafile_mtime) self.assertEqualTimes(item.mtime, mediafile_mtime) self.assertEqualTimes(os.path.getmtime(item.path), mediafile_mtime) def test_reimported_singletons_skipped(self): self.config['import']['singletons'] = True # Import and record the original added dates self.importer.run() items_added_before = dict((item.path, item.added) for item in self.lib.items()) # Newer Item path mtimes as if Beets had modified them modify_mtimes(items_added_before.keys(), offset=10000) # Reimport import_dir = os.path.dirname(items_added_before.keys()[0]) self._setup_import_session(import_dir=import_dir, singletons=True) self.importer.run() # Verify the reimported items items_added_after = dict((item.path, item.added) for item in self.lib.items()) for item_path, added_after in items_added_after.iteritems(): self.assertEqualTimes(items_added_before[item_path], added_after, "reimport modified Item.added for " + item_path) def suite(): return unittest.TestLoader().loadTestsFromName(__name__) if __name__ == '__main__': unittest.main(defaultTest='suite')
# coding: utf-8 import ee import time import ee.mapclient as mc import matplotlib.pyplot as plt import sys from osgeo import ogr import os import glob class WaterProductivityCalc(object): def __init__(self): pass class L1WaterProductivity(WaterProductivityCalc): def __init__(self): ee.Initialize() self._L1_AGBP_SEASONAL = ee.ImageCollection("projects/fao-wapor/L1_AGBP") self._L1_AGBP_DEKADAL = ee.ImageCollection("projects/fao-wapor/L1_AGBP250") self._L1_ETa_DEKADAL = ee.ImageCollection("projects/fao-wapor/L1_AET") self._L1_AET250 = ee.ImageCollection("users/lpeiserfao/AET250") @property def multi_agbp(self): print("chiama il getter") return self._L1_AGBP_DEKADAL @multi_agbp.setter def multi_agbp(self, value): print("chiama il setter") return self._L1_AGBP_DEKADAL.map( lambda immagine: immagine.multiply(value)) moltiplicatore = 1.25 elaborazione = L1WaterProductivity() elaborazione.multi_agbp elaborazione.multi_agbp = moltiplicatore elaborazione.multi_agbp
""" Command handler This module contains the infrastructure for accepting commands on the command line. The process is as follows: 1) The calling object (caller) inputs a string and triggers the command parsing system. 2) The system checks the state of the caller - loggedin or not 3) If no command string was supplied, we search the merged cmdset for system command CMD_NOINPUT and branches to execute that. --> Finished 4) Cmdsets are gathered from different sources (in order of dropping priority): channels - all available channel names are auto-created into a cmdset, to allow for giving the channel name and have the following immediately sent to the channel. The sending is performed by the CMD_CHANNEL system command. object cmdsets - all objects at caller's location are scanned for non-empty cmdsets. This includes cmdsets on exits. caller - the caller is searched for its own currently active cmdset. player - lastly the cmdsets defined on caller.player are added. 5) All the gathered cmdsets (if more than one) are merged into one using the cmdset priority rules. 6) If merged cmdset is empty, raise NoCmdSet exception (this should not happen, at least the player should have a default cmdset available at all times). --> Finished 7) The raw input string is parsed using the parser defined by settings.COMMAND_PARSER. It uses the available commands from the merged cmdset to know which commands to look for and returns one or many matches. 8) If match list is empty, branch to system command CMD_NOMATCH --> Finished 9) If match list has more than one element, branch to system command CMD_MULTIMATCH --> Finished 10) A single match was found. If this is a channel-command (i.e. the command name is that of a channel), branch to CMD_CHANNEL --> Finished 11) At this point we have found a normal command. We assign useful variables to it that will be available to the command coder at run-time. 12) We have a unique cmdobject, primed for use. Call all hooks: at_pre_cmd(), cmdobj.parse(), cmdobj.func() and finally at_post_cmd(). """ from weakref import WeakValueDictionary from copy import copy from traceback import format_exc from twisted.internet.defer import inlineCallbacks, returnValue from django.conf import settings from src.comms.channelhandler import CHANNELHANDLER from src.utils import logger, utils from src.commands.cmdparser import at_multimatch_cmd from src.utils.utils import string_suggestions, to_unicode from django.utils.translation import ugettext as _ __all__ = ("cmdhandler",) _GA = object.__getattribute__ _CMDSET_MERGE_CACHE = WeakValueDictionary() # This decides which command parser is to be used. # You have to restart the server for changes to take effect. _COMMAND_PARSER = utils.variable_from_module(*settings.COMMAND_PARSER.rsplit('.', 1)) # System command names - import these variables rather than trying to # remember the actual string constants. If not defined, Evennia # hard-coded defaults are used instead. # command to call if user just presses <return> with no input CMD_NOINPUT = "__noinput_command" # command to call if no command match was found CMD_NOMATCH = "__nomatch_command" # command to call if multiple command matches were found CMD_MULTIMATCH = "__multimatch_command" # command to call if found command is the name of a channel CMD_CHANNEL = "__send_to_channel_command" # command to call as the very first one when the user connects. # (is expected to display the login screen) CMD_LOGINSTART = "__unloggedin_look_command" # custom Exceptions class NoCmdSets(Exception): "No cmdsets found. Critical error." pass class ExecSystemCommand(Exception): "Run a system command" def __init__(self, syscmd, sysarg): self.args = (syscmd, sysarg) # needed by exception error handling self.syscmd = syscmd self.sysarg = sysarg # Helper function @inlineCallbacks def get_and_merge_cmdsets(caller, session, player, obj, callertype, sessid=None): """ Gather all relevant cmdsets and merge them. callertype is one of "session", "player" or "object" dependin on which level the cmdhandler is invoked. Session includes the cmdsets available to Session, Player and its eventual puppeted Object. Player-level include cmdsets on Player and Object, while calling the handler on an Object only includes cmdsets on itself. The cdmsets are merged in order generality, so that the Object's cmdset is merged last (and will thus take precedence over same-named and same-prio commands on Player and Session). Note that this function returns a deferred! """ local_obj_cmdsets = [None] @inlineCallbacks def _get_channel_cmdsets(player, player_cmdset): "Channel-cmdsets" # Create cmdset for all player's available channels channel_cmdset = None if not player_cmdset.no_channels: channel_cmdset = yield CHANNELHANDLER.get_cmdset(player) returnValue(channel_cmdset) @inlineCallbacks def _get_local_obj_cmdsets(obj, obj_cmdset): "Object-level cmdsets" # Gather cmdsets from location, objects in location or carried local_obj_cmdsets = [None] try: location = obj.location except Exception: location = None if location and not obj_cmdset.no_objs: # Gather all cmdsets stored on objects in the room and # also in the caller's inventory and the location itself local_objlist = yield (location.contents_get(exclude=obj.dbobj) + obj.contents + [location]) for lobj in local_objlist: try: # call hook in case we need to do dynamic changing to cmdset _GA(lobj, "at_cmdset_get")() except Exception: logger.log_trace() # the call-type lock is checked here, it makes sure a player # is not seeing e.g. the commands on a fellow player (which is why # the no_superuser_bypass must be True) local_obj_cmdsets = \ yield [lobj.cmdset.current for lobj in local_objlist if (lobj.cmdset.current and lobj.locks.check(caller, 'call', no_superuser_bypass=True))] for cset in local_obj_cmdsets: #This is necessary for object sets, or we won't be able to # separate the command sets from each other in a busy room. cset.old_duplicates = cset.duplicates cset.duplicates = True returnValue(local_obj_cmdsets) @inlineCallbacks def _get_cmdset(obj): "Get cmdset, triggering all hooks" try: yield obj.at_cmdset_get() except Exception: logger.log_trace() try: returnValue(obj.cmdset.current) except AttributeError: returnValue(None) if callertype == "session": # we are calling the command from the session level report_to = session session_cmdset = yield _get_cmdset(session) cmdsets = [session_cmdset] if player: # this automatically implies logged-in player_cmdset = yield _get_cmdset(player) channel_cmdset = yield _get_channel_cmdsets(player, player_cmdset) cmdsets.extend([player_cmdset, channel_cmdset]) if obj: obj_cmdset = yield _get_cmdset(obj) local_obj_cmdsets = yield _get_local_obj_cmdsets(obj, obj_cmdset) cmdsets.extend([obj_cmdset] + local_obj_cmdsets) elif callertype == "player": # we are calling the command from the player level report_to = player player_cmdset = yield _get_cmdset(player) channel_cmdset = yield _get_channel_cmdsets(player, player_cmdset) cmdsets = [player_cmdset, channel_cmdset] if obj: obj_cmdset = yield _get_cmdset(obj) local_obj_cmdsets = yield _get_local_obj_cmdsets(obj, obj_cmdset) cmdsets.extend([obj_cmdset] + local_obj_cmdsets) elif callertype == "object": # we are calling the command from the object level report_to = obj obj_cmdset = yield _get_cmdset(obj) local_obj_cmdsets = yield _get_local_obj_cmdsets(obj, obj_cmdset) cmdsets = [obj_cmdset] + local_obj_cmdsets else: raise Exception("get_and_merge_cmdsets: callertype %s is not valid." % callertype) #cmdsets = yield [caller_cmdset] + [player_cmdset] + # [channel_cmdset] + local_obj_cmdsets # weed out all non-found sets cmdsets = yield [cmdset for cmdset in cmdsets if cmdset and cmdset.key != "_EMPTY_CMDSET"] # report cmdset errors to user (these should already have been logged) yield [report_to.msg(cmdset.errmessage) for cmdset in cmdsets if cmdset.key == "_CMDSET_ERROR"] if cmdsets: # faster to do tuple on list than to build tuple directly mergehash = tuple([id(cmdset) for cmdset in cmdsets]) if mergehash in _CMDSET_MERGE_CACHE: # cached merge exist; use that cmdset = _CMDSET_MERGE_CACHE[mergehash] else: # we group and merge all same-prio cmdsets separately (this avoids # order-dependent clashes in certain cases, such as # when duplicates=True) tempmergers = {} for cmdset in cmdsets: prio = cmdset.priority #print cmdset.key, prio if prio in tempmergers: # merge same-prio cmdset together separately tempmergers[prio] = yield cmdset + tempmergers[prio] else: tempmergers[prio] = cmdset # sort cmdsets after reverse priority (highest prio are merged in last) cmdsets = yield sorted(tempmergers.values(), key=lambda x: x.priority) # Merge all command sets into one, beginning with the lowest-prio one cmdset = cmdsets[0] for merging_cmdset in cmdsets[1:]: #print "<%s(%s,%s)> onto <%s(%s,%s)>" % (merging_cmdset.key, merging_cmdset.priority, merging_cmdset.mergetype, # cmdset.key, cmdset.priority, cmdset.mergetype) cmdset = yield merging_cmdset + cmdset # store the full sets for diagnosis cmdset.merged_from = cmdsets # cache _CMDSET_MERGE_CACHE[mergehash] = cmdset else: cmdset = None for cset in (cset for cset in local_obj_cmdsets if cset): cset.duplicates = cset.old_duplicates #print "merged set:", cmdset.key returnValue(cmdset) # Main command-handler function @inlineCallbacks def cmdhandler(called_by, raw_string, testing=False, callertype="session", sessid=None): """ This is the main function to handle any string sent to the engine. called_by - object on which this was called from. This is either a Session, a Player or an Object. raw_string - the command string given on the command line testing - if we should actually execute the command or not. if True, the command instance will be returned instead. callertype - this is one of "session", "player" or "object", in decending order. So when the Session is the caller, it will merge its own cmdset into cmdsets from both Player and eventual puppeted Object (and cmdsets in its room etc). A Player will only include its own cmdset and the Objects and so on. Merge order is the same order, so that Object cmdsets are merged in last, giving them precendence for same-name and same-prio commands. sessid - Relevant if callertype is "player" - the session id will help retrieve the correct cmdsets from puppeted objects. Note that this function returns a deferred! """ raw_string = to_unicode(raw_string, force_string=True) session, player, obj = None, None, None if callertype == "session": session = called_by player = session.player if player: obj = yield _GA(player.dbobj, "get_puppet")(session.sessid) elif callertype == "player": player = called_by if sessid: obj = yield _GA(player.dbobj, "get_puppet")(sessid) elif callertype == "object": obj = called_by else: raise RuntimeError("cmdhandler: callertype %s is not valid." % callertype) # the caller will be the one to receive messages and excert its permissions. # we assign the caller with preference 'bottom up' caller = obj or player or session try: # catch bugs in cmdhandler itself try: # catch special-type commands cmdset = yield get_and_merge_cmdsets(caller, session, player, obj, callertype, sessid) if not cmdset: # this is bad and shouldn't happen. raise NoCmdSets unformatted_raw_string = raw_string raw_string = raw_string.strip() if not raw_string: # Empty input. Test for system command instead. syscmd = yield cmdset.get(CMD_NOINPUT) sysarg = "" raise ExecSystemCommand(syscmd, sysarg) # Parse the input string and match to available cmdset. # This also checks for permissions, so all commands in match # are commands the caller is allowed to call. matches = yield _COMMAND_PARSER(raw_string, cmdset, caller) # Deal with matches if len(matches) > 1: # We have a multiple-match syscmd = yield cmdset.get(CMD_MULTIMATCH) sysarg = _("There were multiple matches.") if syscmd: # use custom CMD_MULTIMATCH syscmd.matches = matches else: # fall back to default error handling sysarg = yield at_multimatch_cmd(caller, matches) raise ExecSystemCommand(syscmd, sysarg) if len(matches) == 1: # We have a unique command match. But it may still be invalid. match = matches[0] cmdname, args, cmd = match[0], match[1], match[2] # check if we allow this type of command if cmdset.no_channels and hasattr(cmd, "is_channel") and cmd.is_channel: matches = [] if cmdset.no_exits and hasattr(cmd, "is_exit") and cmd.is_exit: matches = [] if not matches: # No commands match our entered command syscmd = yield cmdset.get(CMD_NOMATCH) if syscmd: # use custom CMD_NOMATH command sysarg = raw_string else: # fallback to default error text sysarg = _("Command '%s' is not available.") % raw_string suggestions = string_suggestions(raw_string, cmdset.get_all_cmd_keys_and_aliases(caller), cutoff=0.7, maxnum=3) if suggestions: pass # sysarg += _(" Maybe you meant %s?") % utils.list_to_string(suggestions, _('or'), addquote=True) else: sysarg += _(" Type \"help\" for help.") raise ExecSystemCommand(syscmd, sysarg) # Check if this is a Channel-cmd match. if hasattr(cmd, 'is_channel') and cmd.is_channel: # even if a user-defined syscmd is not defined, the # found cmd is already a system command in its own right. syscmd = yield cmdset.get(CMD_CHANNEL) if syscmd: # replace system command with custom version cmd = syscmd cmd.sessid = session.sessid if session else None sysarg = "%s:%s" % (cmdname, args) raise ExecSystemCommand(cmd, sysarg) # A normal command. # Assign useful variables to the instance cmd.caller = caller cmd.cmdstring = cmdname cmd.args = args cmd.cmdset = cmdset cmd.sessid = session.sessid if session else sessid cmd.session = session cmd.player = player cmd.raw_string = unformatted_raw_string #cmd.obj # set via on-object cmdset handler for each command, # since this may be different for every command when # merging multuple cmdsets if hasattr(cmd, 'obj') and hasattr(cmd.obj, 'scripts'): # cmd.obj is automatically made available by the cmdhandler. # we make sure to validate its scripts. yield cmd.obj.scripts.validate() if testing: # only return the command instance returnValue(cmd) # pre-command hook yield cmd.at_pre_cmd() # Parse and execute yield cmd.parse() # (return value is normally None) ret = yield cmd.func() # post-command hook yield cmd.at_post_cmd() if cmd.save_for_next: # store a reference to this command, possibly # accessible by the next command. caller.ndb.last_cmd = yield copy(cmd) else: caller.ndb.last_cmd = None # cleanup del cmd.caller del cmd.player del cmd.session del cmd.cmdset # Done! This returns a deferred. By default, Evennia does # not use this at all. returnValue(ret) except ExecSystemCommand, exc: # Not a normal command: run a system command, if available, # or fall back to a return string. syscmd = exc.syscmd sysarg = exc.sysarg if syscmd: syscmd.caller = caller syscmd.cmdstring = syscmd.key syscmd.args = sysarg syscmd.cmdset = cmdset syscmd.sessid = session.sessid if session else None syscmd.raw_string = unformatted_raw_string if hasattr(syscmd, 'obj') and hasattr(syscmd.obj, 'scripts'): # cmd.obj is automatically made available. # we make sure to validate its scripts. yield syscmd.obj.scripts.validate() if testing: # only return the command instance returnValue(syscmd) # parse and run the command yield syscmd.parse() yield syscmd.func() elif sysarg: # return system arg caller.msg(exc.sysarg) except NoCmdSets: # Critical error. string = "No command sets found! This is a sign of a critical bug.\n" string += "The error was logged.\n" string += "If logging out/in doesn't solve the problem, try to " string += "contact the server admin through some other means " string += "for assistance." caller.msg(_(string)) logger.log_errmsg("No cmdsets found: %s" % caller) except Exception: # We should not end up here. If we do, it's a programming bug. string = "%s\nAbove traceback is from an untrapped error." string += " Please file a bug report." logger.log_trace(_(string)) caller.msg(string % format_exc()) except Exception: # This catches exceptions in cmdhandler exceptions themselves string = "%s\nAbove traceback is from a Command handler bug." string += " Please contact an admin and/or file a bug report." logger.log_trace(_(string)) caller.msg(string % format_exc())
from django import forms from allauth.account.forms import SignupForm from django.utils.translation import gettext_lazy as _ class CustomSignupForm(SignupForm): email = forms.EmailField(label=_("E-mail"), required=True, widget=forms.TextInput( attrs={'type': 'email', 'placeholder': _('E-mail address')})) nickname = forms.CharField(label=_('Nickname (optional)'), required=False, widget=forms.TextInput( attrs={'type': 'text', 'placeholder': _('Nickname (optional)')} )) def signup(self, request, user): user.email = self.cleaned_data['email'] user.nickname = self.cleaned_data['nickname'] user.save() return user
# Author : Ali Snedden # Date : 5/15/19 # License: MIT # Purpose: # # Notes : # # Questions: # # References : # import time import sys import os import glob import numpy as np import subprocess import shutil import bisect from error import exit_with_error from functions import parse_run_time from functions import get_core_ids def print_help(Arg): """ ARGS: arg : exit value RETURN: N/A DESCRIPTION: Print Help. Exit with value arg DEBUG: 1. Tested, it worked FUTURE: """ sys.stdout.write( "USAGE : ./src/driver.py [options] /abs/path/to/workspace /abs/path/to/ref\n" " [options] = 'all' : Builds data, runs all tests\n" " = 'build_mat_mult_data' : Builds matrix_multiply data \n" " = 'mat_mult_cache_opt' : Run matrix_multiply_cache_opt tests\n" " = 'mat_mult_non_cache_opt' : Run matrix_multiply_cache_opt tests\n" " = 'build_rnaseq_data' : Creates single end RNA-Seq data\n" " = 'align_rnaseq_tophat' : Align samples in data/rnaseq w/ tophat\n" " = 'align_rnaseq_hisat' : Align samples in data/rnaseq w/ hisat\n" " = 'cufflinks_assemble' : Must have run tophat. Assembles transcriptome\n" " = 'cuffmerge' : Must have run tophat and cufflinks\n" " = 'cuffcompare' : Must have run tophat,cufflinks\n" " = 'cuffquant' : Must have run tophat,cufflinks,cuffmerge\n" " = 'cuffnorm' : Must have run tophat,cufflinks," " = 'cuffdiff' : Must have run tophat,cufflinks," "cuffmerge and cuffquant\n" " = 'kelvin' : Runs kelvin (a statistical genetics software) \n" " = 'local_memory_access' : grep's a large file in temp\n" " /abs/path/to/workspace : Path where all the output/data gets saved.\n" " /abs/path/to/ref : Path where bowtie/hisat indices and ref fasta/gtf" " are stored\n\n" " NOTES : \n" " 1. Only one option can be passed at a time.\n" " 2. It is assumed that all exectuables (i.e. tophat2, bowtie2, etc.)\n" " are located in you shell PATH\n" " 3. Location / Names of references _must_ be :\n" " a) Bowtie2 indices: /refPath/Bowtie2Index/Homo_sapiens.GRC38 \n" " b) Hisat2 indices : /refPath/HisatIndex/genome \n" " c) Genome Fasta : /refPath/Homo_sapiens.GRCh38.dna.primary_assembly.fa:\n" " d) GTF file : /refPath/Homo_sapiens.GRCh38.83.gtf\n" " e) Short Chr1 Gtf : /refPath/chr1_short.gtf\n" " f) Short Chr1 fasta : /refPath/chr1_short.fa\n" ) sys.exit(Arg) def main(): """ ARGS: RETURN: DESCRIPTION: NOTES: DEBUG: FUTURE: """ ### Check Python version and CL args ### if(sys.version_info[0] != 3): exit_with_error("ERROR!!! Runs with python3, NOT python-{}\n\n".format( sys.version_info[0])) nArg = len(sys.argv) if(nArg == 2 and (sys.argv[1][0:3] == "--h" or sys.argv[1][0:2] == "-h")): print_help(0) elif(nArg != 4): print_help(1) startTime = time.time() print("Start Time : {}".format(time.strftime("%a, %d %b %Y %H:%M:%S ", time.localtime()))) print("Logging run output to driver.log\n\n") ### Variables ### options = sys.argv[1] workPath = sys.argv[2] # Path where all the output/work will be saved. refPath = sys.argv[3] # Path where all the ref data and indices are located ompNumThreadsL = [1,2,5,20] # Cores used in OMP tasks matrixSizeL = [5000] # outer dim of mats to run matrix_multiply on #matrixSizeL = [2000,3000,5000] # outer dim of mats to run matrix_multiply on #rnaSeqSizeL = [10**4,10**5] rnaSeqSizeL = [10**5] nTrials = 3 # number of trials to test,get stdev and mean shortNTrials= 1 # shortened num of trials to test,get stdev and mean # Create work path dir if doesn't exist if(not os.path.isdir(workPath)): os.mkdir(workPath) ## In Linux singularity container add cores per socket and total cores ## to ompNumThreadsL if(shutil.which('lscpu') != None): # Record raw lscpu, lscpu -e and numactl --hardware lscpuLog=open("{}/lscpu.log".format(workPath), "a") cmd="lscpu" lscpuLog.write("\n{}:\n{}\n".format(cmd,subprocess.getoutput(cmd))) cmd="lscpu -e" lscpuLog.write("\n{}:\n{}\n".format(cmd,subprocess.getoutput(cmd))) cmd="numactl --hardware" lscpuLog.write("\n{}:\n{}\n".format(cmd,subprocess.getoutput(cmd))) lscpuLog.close() # other details cmd="lscpu | grep 'Core(s) per socket:' | awk '{print $4}'" coresPerSocket = int(subprocess.getoutput(cmd)) cmd="lscpu | grep '^CPU(s):' | awk '{print $2}'" totalCores = int(subprocess.getoutput(cmd)) cmd="lscpu | grep 'NUMA node0 CPU' | awk '{print $4}'" ## Numa - node coresPerNuma = subprocess.getoutput(cmd) if('-' in coresPerNuma): coresPerNuma = coresPerNuma.split('-') coresPerNuma[0] = int(coresPerNuma[0]) coresPerNuma[1] = int(coresPerNuma[1]) coresPerNuma = coresPerNuma[1] - coresPerNuma[0] + 1 elif(',' in coresPerNuma): # Interleave off coresPerNuma = len(coresPerNuma.split(',')) else: exit_with_error("ERROR!!! Format for coresPerNuma is not handled" ": {}".format(coresPerNuma)) ## Insert bisect.insort_left(ompNumThreadsL, coresPerNuma) bisect.insort_left(ompNumThreadsL, coresPerSocket) bisect.insort_left(ompNumThreadsL, totalCores) ompNumThreadsL=list(sorted(set(ompNumThreadsL))) print("Cores per NUMA : {}".format(coresPerNuma)) print("Cores per socket : {}".format(coresPerSocket)) print("Total Cores : {}".format(totalCores)) print("Cores tested : {}".format(ompNumThreadsL)) # Get operating system and list of cores (linux only) to take advantage of NUMA curOS = sys.platform if(curOS == 'darwin'): curOS = 'osx' # Rename for my own selfish readability elif(curOS == 'linux'): cmd = "grep -P 'processor[\t ]' /proc/cpuinfo | cut -d: -f2 | tr -d ' '" coreIDL = subprocess.getoutput(cmd) coreIDL = [int(idx) for idx in coreIDL.split()] ompCoresIdD = dict() # List of list cores to use associated with ompNumThreadsL for nThread in ompNumThreadsL: ompCoresIdD[nThread] = get_core_ids(NumThreads = nThread) else: exit_with_error("ERROR!! {} is an unsupported operating system".format(curOS)) if(options != 'all' and options != 'build_mat_mult_data' and options != 'mat_mult_non_cache_opt' and options != 'local_memory_access' and options != 'mat_mult_cache_opt' and options != 'build_rnaseq_data' and options != 'align_rnaseq_tophat' and options != 'align_rnaseq_hisat' and options != 'cufflinks_assemble' and options != 'cuffmerge' and options != 'cuffcompare' and options != 'cuffquant' and options != 'cuffnorm' and options != 'cuffdiff' and options != 'kelvin' ): exit_with_error("ERROR!!! {} is invalid option\n".format(options)) ######## Run Tests ######## if(options == 'all' or options == 'build_mat_mult_data'): nThread = 1 print("Building data for matrix_multiply (time to run is for numpy's matrix mult.: ") print("--------------------------------------------------------") print(" {:<10} | {:<12} | {:<15} | {:<15}".format("Size", "OMP_Threads", "mean", "stdev")) print("--------------------------------------------------------") ### Create directory structure in data outDirPrefix = "{}/data/matrix".format(workPath) if(not os.path.isdir(outDirPrefix)): os.mkdir(outDirPrefix) for size in matrixSizeL: outDir = "{}/{}".format(outDirPrefix,size) if(not os.path.isdir(outDir)): os.mkdir(outDir) runTimeV = np.zeros([shortNTrials]) for tIdx in range(shortNTrials): ### change to shortNTrials if(curOS == 'linux'): taskset = "taskset -c {} ".format(ompCoresIdD[nThread]) else: taskset = "" cmd = ("{} python3 src/matrix/matrix_generator.py {} 10000 " "10000 {} {}".format(taskset, size, size, outDir)) output = "{}\n".format(cmd) output = output + subprocess.getoutput(cmd) runTime = parse_run_time(output,workPath) # Run time runTimeV[tIdx]= runTime print(" {:<10} | {:<12} | {:<15.4f} | {:<15.4f}".format(size, nThread, np.mean(runTimeV), np.std(runTimeV))) print("--------------------------------------------------------") if(options == 'all' or options == 'mat_mult_cache_opt'): print("matrix_multiply (cache optimized using OpenMP) : ") print("--------------------------------------------------------") print(" {:<10} | {:<12} | {:<15} | {:<15}".format("Size", "OMP_Threads", "mean", "stdev")) print("--------------------------------------------------------") ### Create directory structure in output outDirPrefix = "{}/output/matrix_cache_opt".format(workPath) if(not os.path.isdir(outDirPrefix)): os.mkdir(outDirPrefix) for size in matrixSizeL: outDir = "{}/{}".format(outDirPrefix,size) if(not os.path.isdir(outDir)): os.mkdir(outDir) for nThread in ompNumThreadsL: runTimeV = np.zeros([nTrials]) #nThread = 10 #size=2000 for tIdx in range(nTrials): if(curOS == 'linux'): taskset = "taskset -c {} ".format(ompCoresIdD[nThread]) else: taskset = "" cmd = ("export OMP_NUM_THREADS={}; {} " "./src/matrix/matrix_multiply_cache_opt " "{}/data/matrix/{}/A.txt {}/data/matrix/{}/B.txt " "{}".format(nThread,taskset,workPath,size,workPath,size, outDir)) output = "{}\n".format(cmd) output = output + subprocess.getoutput(cmd) runTime = parse_run_time(output,workPath) # Run time runTimeV[tIdx]= runTime print(" {:<10} | {:<12} | {:<15.4f} | {:<15.4f}".format(size, nThread, np.mean(runTimeV), np.std(runTimeV))) print("--------------------------------------------------------") if(options == 'all' or options == 'mat_mult_non_cache_opt'): print("matrix_multiply (non-cache optimized using OpenMP) : ") print("--------------------------------------------------------") print(" {:<10} | {:<12} | {:<15} | {:<15}".format("Size", "OMP_Threads", "mean", "stdev")) print("--------------------------------------------------------") ### Create directory structure in output outDirPrefix = "{}/output/matrix_non_cache_opt".format(workPath) if(not os.path.isdir(outDirPrefix)): os.mkdir(outDirPrefix) for size in matrixSizeL: outDir = "{}/{}".format(outDirPrefix,size) if(not os.path.isdir(outDir)): os.mkdir(outDir) for nThread in ompNumThreadsL: runTimeV = np.zeros([nTrials]) #nThread = 10 #size=2000 for tIdx in range(nTrials): if(curOS == 'linux'): taskset = "taskset -c {} ".format(ompCoresIdD[nThread]) else: taskset = "" cmd = ("export OMP_NUM_THREADS={}; {} " "./src/matrix/matrix_multiply_non_cache_opt " "{}/data/matrix/{}/A.txt {}/data/matrix/{}/B.txt " "{}".format(nThread,taskset,workPath,size,workPath, size,outDir)) output = "{}\n".format(cmd) output = output + subprocess.getoutput(cmd) runTime = parse_run_time(output,workPath) # Run time runTimeV[tIdx]= runTime print(" {:<10} | {:<12} | {:<15.4f} | {:<15.4f}".format(size, nThread, np.mean(runTimeV), np.std(runTimeV))) print("--------------------------------------------------------") if(options == 'all' or options == 'build_rnaseq_data'): print("Building RNA-Seq Data sets : ") print("--------------------------------------------------------") print(" {:<10} | {:<12} | {:<15} | {:<15}".format("Size", "OMP_Threads", "mean", "stdev")) print("--------------------------------------------------------") nThread = 1 nSamp = 3 treatSampL = [] wtSampL = [] gtf="{}/chr1_short.gtf".format(refPath) genome ="{}/chr1_short.fa".format(refPath) configL=["config/config_wt_chr1.txt", "config/config_treat_chr1.txt"] # Create output directory structure outDir = "{}/data/rnaseq".format(workPath) if(not os.path.isdir(outDir)): os.mkdir(outDir) outDir = "{}/fastq/".format(outDir) if(not os.path.isdir(outDir)): os.mkdir(outDir) ## Loop for size in rnaSeqSizeL: runTimeV = np.zeros([nSamp*len(configL)]) tIdx = 0 for config in configL: for samp in range(nSamp): ## Set output files if("treat" in config): if(not os.path.isdir("{}/{}".format(outDir,size))): os.mkdir("{}/{}".format(outDir,size)) outFile = "{}/{}/treat_{}".format(outDir,size,samp) treatSampL.append(outFile) elif("wt" in config): if(not os.path.isdir("{}/{}".format(outDir,size))): os.mkdir("{}/{}".format(outDir,size)) outFile = "{}/{}/wt_{}".format(outDir,size,samp) wtSampL.append(outFile) else: exit_with_error("ERROR!!! No correct config file found!\n") if(curOS == 'linux'): taskset = "taskset -c {} ".format(ompCoresIdD[nThread]) else: taskset = "" cmd = ("export OMP_NUM_THREADS={}; " "{} python3 src/simulate_fastq_data/simulate_fastq.py " "{} {} {} {} {} single" "".format(nThread, taskset, gtf, genome, config, size, outFile)) output = "{}\n".format(cmd) output = output + subprocess.getoutput(cmd) runTime = parse_run_time(output,workPath) # Run time runTimeV[tIdx]= runTime tIdx = tIdx + 1 print(" {:<10} | {:<12} | {:<15.4f} | {:<15.4f}".format(size, nThread, np.mean(runTimeV), np.std(runTimeV))) print("--------------------------------------------------------") if(options == 'all' or options == 'align_rnaseq_tophat'): print("Aligning RNA-Seq Data sets with tophat : ") print("--------------------------------------------------------") print(" {:<10} | {:<12} | {:<15} | {:<15}".format("Size", "OMP_Threads", "mean", "stdev")) print("--------------------------------------------------------") outDirPref = "{}/output/rnaseq".format(workPath) if(not os.path.isdir(outDirPref)): os.mkdir(outDirPref) outDirPref = os.path.abspath("{}/output/rnaseq/tophat".format(workPath)) if(not os.path.isdir(outDirPref)): os.mkdir(outDirPref) inDirPref = os.path.abspath("{}/data/rnaseq/fastq".format(workPath)) if(not os.path.isdir(inDirPref)): exit_with_error("ERROR!!! fastq data does not exits. Run build_rnaseq_data option") bowtieIdxPath = "{}/Bowtie2Index/Homo_sapiens.GRC38".format(refPath) ## Loop for size in rnaSeqSizeL: sampFileL = glob.glob("{}/{}/*.fq".format(inDirPref,size)) if(not os.path.isdir("{}/{}".format(outDirPref,size))): os.mkdir("{}/{}".format(outDirPref,size)) for nThread in [1]: # Tophat is poorly parallelizable runTimeV = np.zeros([len(sampFileL)]) tIdx = 0 for samp in sampFileL: sampDir = samp.split("/")[-1].split(".")[0] ## Set output directory outDir = "{}/{}/{}".format(outDirPref,size,sampDir) if(curOS == "osx"): # My OSX configuration b/c I use virtualenv python2="source ~/.local/virtualenvs/python2.7/bin/activate;" cmd = ( "{}; time {} tophat2 -p {} -o {} {} {}" "".format(python2,taskset, nThread, outDir, bowtieIdxPath, samp)) elif(curOS == 'linux'): # # On CentOS, default python is 2.6.6 # python2="/usr/bin/python" taskset = "taskset -c {} ".format(ompCoresIdD[nThread]) cmd = ( "time {} tophat2 -p {} -o {} {} {}" "".format(taskset, nThread, outDir, bowtieIdxPath, samp)) else: exit_with_error("ERROR!!! OS not supported") output = "{}\n".format(cmd) output = output + subprocess.getoutput(cmd) runTime = parse_run_time(output,workPath) # Run time runTimeV[tIdx]= runTime tIdx = tIdx + 1 print(" {:<10} | {:<12} | {:<15.4f} | {:<15.4f}".format(size, nThread, np.mean(runTimeV), np.std(runTimeV))) print("--------------------------------------------------------") if(options == 'all' or options == 'align_rnaseq_hisat'): print("Aligning RNA-Seq Data sets with hisat : ") print("--------------------------------------------------------") print(" {:<10} | {:<12} | {:<15} | {:<15}".format("Size", "OMP_Threads", "mean", "stdev")) print("--------------------------------------------------------") # Get directory structure outDirPref = "{}/output/rnaseq".format(workPath) if(not os.path.isdir(outDirPref)): os.mkdir(outDirPref) outDirPref = os.path.abspath("{}/output/rnaseq/hisat".format(workPath)) ## prefix if(not os.path.isdir(outDirPref)): os.mkdir(outDirPref) inDirPref = os.path.abspath("{}/data/rnaseq/fastq".format(workPath)) ## prefix if(not os.path.isdir(inDirPref)): exit_with_error("ERROR!!! fastq data does not exits. Run build_rnaseq_data option") hisatIdxPath = "{}/HisatIndex/genome".format(refPath) ## Loop for size in rnaSeqSizeL: sampFileL = glob.glob("{}/{}/*.fq".format(inDirPref,size)) if(not os.path.isdir("{}/{}".format(outDirPref,size))): os.mkdir("{}/{}".format(outDirPref,size)) for nThread in ompNumThreadsL: runTimeV = np.zeros([len(sampFileL)]) tIdx = 0 for samp in sampFileL: sampDir = samp.split("/")[-1].split(".")[0] ## Set output directory outDir = "{}/{}/{}".format(outDirPref,size,sampDir) if(curOS == 'linux'): taskset = "taskset -c {} ".format(ompCoresIdD[nThread]) else: taskset = "" if(not os.path.isdir(outDir)): os.mkdir(outDir) cmd = ( "time {} hisat2 -p {} --phred33 -x {} -U {} -S {}/output.sam" "".format(taskset, nThread, hisatIdxPath, samp, outDir)) output = "{}\n".format(cmd) output = output + subprocess.getoutput(cmd) runTime = parse_run_time(output,workPath) # Run time runTimeV[tIdx]= runTime tIdx = tIdx + 1 print(" {:<10} | {:<12} | {:<15.4f} | {:<15.4f}".format(size, nThread, np.mean(runTimeV), np.std(runTimeV))) print("--------------------------------------------------------") if(options == 'all' or options == 'cufflinks_assemble'): print("Assembling transcriptome using cufflinks: ") print("--------------------------------------------------------") print(" {:<10} | {:<12} | {:<15} | {:<15}".format("Size", "OMP_Threads", "mean", "stdev")) print("--------------------------------------------------------") outDirPref = os.path.abspath("{}/output/rnaseq/".format(workPath)) ## prefix if(not os.path.isdir(outDirPref)): os.mkdir(outDirPref) outDirPref = os.path.abspath("{}/output/rnaseq/cufflinks".format(workPath)) ## prefix if(not os.path.isdir(outDirPref)): os.mkdir(outDirPref) inDirPref = os.path.abspath("{}/output/rnaseq/tophat".format(workPath)) ## prefix gtf="{}/Homo_sapiens.GRCh38.83.gtf".format(refPath) ## Loop for size in rnaSeqSizeL: sampFileL = glob.glob("{}/{}/*/accepted_hits.bam".format(inDirPref,size)) if(not os.path.isdir("{}/{}".format(outDirPref,size))): os.mkdir("{}/{}".format(outDirPref,size)) for nThread in ompNumThreadsL: runTimeV = np.zeros([len(sampFileL)]) tIdx = 0 for samp in sampFileL: sampDir = samp.split("/")[-2].split(".")[0] ## Set output directory outDir = "{}/{}/{}".format(outDirPref,size,sampDir) if(not os.path.isdir(outDir)): os.mkdir(outDir) if(curOS == 'linux'): taskset = "taskset -c {} ".format(ompCoresIdD[nThread]) else: taskset = "" cmd = ( "time {} cufflinks --num-threads {} -g {} --output-dir {} {}" "".format(taskset, nThread, gtf, outDir, samp)) output = "{}\n".format(cmd) output = output + subprocess.getoutput(cmd) runTime = parse_run_time(output,workPath) # Run time runTimeV[tIdx]= runTime tIdx = tIdx + 1 print(" {:<10} | {:<12} | {:<15.4f} | {:<15.4f}".format(size, nThread, np.mean(runTimeV), np.std(runTimeV))) print("--------------------------------------------------------") if(options == 'all' or options == 'cuffmerge'): print("Merging assembled transcriptomes using cuffmerge") print("--------------------------------------------------------") print(" {:<10} | {:<12} | {:<15} | {:<15}".format("Size", "OMP_Threads", "mean", "stdev")) print("--------------------------------------------------------") outDirPref = os.path.abspath("{}/output/rnaseq/".format(workPath)) ## prefix if(not os.path.isdir(outDirPref)): os.mkdir(outDirPref) outDirPref = os.path.abspath("{}/output/rnaseq/cuffmerge".format(workPath)) ## prefix if(not os.path.isdir(outDirPref)): os.mkdir(outDirPref) inDirPref = os.path.abspath("{}/output/rnaseq/cufflinks".format(workPath)) ## prefix gtf="{}/Homo_sapiens.GRCh38.83.gtf".format(refPath) genome="{}/Homo_sapiens.GRCh38.dna.primary_assembly.fa".format(refPath) curDir = os.path.dirname(os.path.realpath(__file__)) ## Loop for size in rnaSeqSizeL: sampFileL = glob.glob("{}/{}/*/transcripts.gtf".format(inDirPref,size)) outDir = "{}/{}".format(outDirPref,size) if(not os.path.isdir(outDir)): os.mkdir(outDir) assemblyPath = "{}/assemblies.txt".format(outDir) if(not os.path.isfile(assemblyPath)): assemblyFile = open(assemblyPath, "w+") for samp in sampFileL: assemblyFile.write("{}\n".format(samp)) assemblyFile.close() for nThread in ompNumThreadsL: ## Consider adding nTrials here. runTimeV = np.zeros([1]) tIdx = 0 if(curOS == "osx"): # My OSX configuration b/c I use virtualenv python2="source ~/.local/virtualenvs/python2.7/bin/activate;" cmd = ( "{};" "time cuffmerge --num-threads {} -o {} " "--ref-gtf {} --ref-sequence {} {}" "".format(python2,nThread, outDir, gtf, genome, assemblyPath)) elif(curOS == "linux"): # On CentOS, default python is 2.6.6 # python2="/usr/bin/python" taskset = "taskset -c {} ".format(ompCoresIdD[nThread]) cmd = ( "pwd; cd /tmp/; alias python='/usr/bin/python';" "time {} cuffmerge --num-threads {} -o {} " "--ref-gtf {} --ref-sequence {} {}; cd {}/../" "".format(taskset, nThread, outDir, gtf, genome, assemblyPath, curDir)) else: exit_with_error("ERROR!!! Unsupported OS.") output = "{}\n".format(cmd) output = output + subprocess.getoutput(cmd) runTime = parse_run_time(output,workPath) # Run time runTimeV[tIdx]= runTime tIdx = tIdx + 1 print(" {:<10} | {:<12} | {:<15.4f} | {:<15.4f}".format(size, nThread, np.mean(runTimeV), np.std(runTimeV))) print("--------------------------------------------------------") if(options == 'all' or options == 'cuffcompare'): print("Comparing cufflinks gtf using cuffcompare") print("--------------------------------------------------------") print(" {:<10} | {:<12} | {:<15} | {:<15}".format("Size", "OMP_Threads", "mean", "stdev")) print("--------------------------------------------------------") # Check and make directory structure outDirPref = os.path.abspath("{}/output/rnaseq/".format(workPath)) ## prefix if(not os.path.isdir(outDirPref)): exit_with_error("ERROR!!! Expecting {}/output/rnaseq. Must have run tophat " "and cufflinks prior\n".format(workPath)) outDirPref = os.path.abspath("{}/output/rnaseq/cuffcompare".format(workPath)) if(not os.path.isdir(outDirPref)): os.mkdir(outDirPref) inDirPref = os.path.abspath("{}/output/rnaseq/cufflinks".format(workPath)) ## prefix gtf="{}/Homo_sapiens.GRCh38.83.gtf".format(refPath) genome="{}/Homo_sapiens.GRCh38.dna.primary_assembly.fa".format(refPath) nThread = 1 ## Loop for size in rnaSeqSizeL: sampFileL = glob.glob("{}/{}/*/transcripts.gtf".format(inDirPref,size)) outPref = "{}/{}".format(outDirPref,size) ## Consider adding nTrials here. runTimeV = np.zeros([1]) tIdx = 0 if(curOS == 'linux'): taskset = "taskset -c {} ".format(ompCoresIdD[nThread]) else: taskset = "" cmd = ( "time {} cuffcompare -o {} -r {} -R -C -V {}" "".format(taskset,outPref, gtf, " ".join(sampFileL))) output = "{}\n".format(cmd) output = output + subprocess.getoutput(cmd) runTime = parse_run_time(output,workPath) # Run time runTimeV[tIdx]= runTime tIdx = tIdx + 1 print(" {:<10} | {:<12} | {:<15.4f} | {:<15.4f}".format(size, nThread, np.mean(runTimeV), np.std(runTimeV))) print("--------------------------------------------------------") if(options == 'all' or options == 'cuffquant'): print("Quantifying gene expression using cuffquant") print("--------------------------------------------------------") print(" {:<10} | {:<12} | {:<15} | {:<15}".format("Size", "OMP_Threads", "mean", "stdev")) print("--------------------------------------------------------") outDirPref = os.path.abspath("{}/output/rnaseq/".format(workPath)) ## prefix if(not os.path.isdir(outDirPref)): os.mkdir(outDirPref) outDirPref = os.path.abspath("{}/output/rnaseq/cuffquant".format(workPath)) ## prefix if(not os.path.isdir(outDirPref)): os.mkdir(outDirPref) inGtfDirPref = os.path.abspath("{}/output/rnaseq/cuffmerge".format(workPath)) ## prefix inBamDirPref = os.path.abspath("{}/output/rnaseq/tophat".format(workPath)) ## prefix ## Loop for size in rnaSeqSizeL: bamFileL = glob.glob("{}/{}/*/accepted_hits.bam".format(inBamDirPref,size)) outDir = "{}/{}".format(outDirPref,size) gtf="{}/{}/merged.gtf".format(inGtfDirPref,size) if(not os.path.isdir(outDir)): os.mkdir(outDir) for nThread in ompNumThreadsL: ## Consider adding nTrials here. runTimeV = np.zeros([len(bamFileL)]) tIdx = 0 for bamFile in bamFileL: outDirSamp = "{}/{}".format(outDir,bamFile.split("/")[-2].split(".")[0]) if(not os.path.isdir(outDirSamp)): os.mkdir(outDirSamp) if(curOS == 'linux'): taskset = "taskset -c {} ".format(ompCoresIdD[nThread]) else: taskset = "" cmd = ( "time {} cuffquant --num-threads {} --output-dir {} " "{} {}" "".format(taskset, nThread, outDirSamp, gtf, bamFile)) output = "{}\n".format(cmd) output = output + subprocess.getoutput(cmd) runTime = parse_run_time(output,workPath) # Run time runTimeV[tIdx]= runTime tIdx = tIdx + 1 print(" {:<10} | {:<12} | {:<15.4f} | {:<15.4f}".format(size, nThread, np.mean(runTimeV), np.std(runTimeV))) print("--------------------------------------------------------") if(options == 'all' or options == 'cuffnorm'): print("Quantifying gene expression using cuffnorm") print("--------------------------------------------------------") print(" {:<10} | {:<12} | {:<15} | {:<15}".format("Size", "OMP_Threads", "mean", "stdev")) print("--------------------------------------------------------") outDirPref = os.path.abspath("{}/output/rnaseq/".format(workPath)) ## prefix if(not os.path.isdir(outDirPref)): os.mkdir(outDirPref) outDirPref = os.path.abspath("{}/output/rnaseq/cuffnorm".format(workPath)) ## prefix if(not os.path.isdir(outDirPref)): os.mkdir(outDirPref) inGtfDirPref = os.path.abspath("{}/output/rnaseq/cuffmerge".format(workPath)) ## prefix inCxbDirPref = os.path.abspath("{}/output/rnaseq/cuffquant".format(workPath)) ## prefix ## Loop for size in rnaSeqSizeL: cxbFileL = glob.glob("{}/{}/*/abundances.cxb".format(inCxbDirPref,size)) cxbFileL = sorted(cxbFileL) ## Break up into replicates # Get treat and wt groups sampNameL = [name.split('/')[-2] for name in cxbFileL] treatIdxL = ['treat_' in name for name in sampNameL] wtIdxL = ['wt_' in name for name in sampNameL] treatCxbL = [] wtCxbL = [] for idx in range(len(treatIdxL)): if(treatIdxL[idx] == True): treatCxbL.append(cxbFileL[idx]) elif(wtIdxL[idx] == True): wtCxbL.append(cxbFileL[idx]) else: exit_with_error("ERROR!!! neither treatIdxL[idx] {} nor wtIdxL[idx] " "{} are" "True".format(treatIdxL[idx], wtIdxL[idx])) outDir = "{}/{}".format(outDirPref,size) gtf="{}/{}/merged.gtf".format(inGtfDirPref,size) if(not os.path.isdir(outDir)): os.mkdir(outDir) for nThread in ompNumThreadsL: ## Consider adding nTrials here. runTimeV = np.zeros([1]) tIdx = 0 if(curOS == 'linux'): taskset = "taskset -c {} ".format(ompCoresIdD[nThread]) else: taskset = "" cmd = ( "time {} cuffnorm --num-threads {} --output-dir {} -L {} " " {} {} {}" "".format(taskset, nThread, outDir, "treat,wt", gtf, ",".join(treatCxbL), ",".join(wtCxbL))) #print(cmd) output = "{}\n".format(cmd) output = output + subprocess.getoutput(cmd) runTime = parse_run_time(output,workPath) # Run time runTimeV[tIdx]= runTime tIdx = tIdx + 1 print(" {:<10} | {:<12} | {:<15.4f} | {:<15.4f}".format(size, nThread, np.mean(runTimeV), np.std(runTimeV))) print("--------------------------------------------------------") if(options == 'all' or options == 'cuffdiff'): print("Quantifying gene expression using cuffdiff") print("--------------------------------------------------------") print(" {:<10} | {:<12} | {:<15} | {:<15}".format("Size", "OMP_Threads", "mean", "stdev")) print("--------------------------------------------------------") outDirPref = os.path.abspath("{}/output/rnaseq/".format(workPath)) ## prefix if(not os.path.isdir(outDirPref)): os.mkdir(outDirPref) outDirPref = os.path.abspath("{}/output/rnaseq/cuffdiff".format(workPath)) ## prefix if(not os.path.isdir(outDirPref)): os.mkdir(outDirPref) inGtfDirPref = os.path.abspath("{}/output/rnaseq/cuffmerge".format(workPath)) ## prefix inCxbDirPref = os.path.abspath("{}/output/rnaseq/cuffquant".format(workPath)) ## prefix ## Loop for size in rnaSeqSizeL: cxbFileL = glob.glob("{}/{}/*/abundances.cxb".format(inCxbDirPref,size)) cxbFileL = sorted(cxbFileL) ## Break up into replicates # Get treat and wt groups sampNameL = [name.split('/')[-2] for name in cxbFileL] treatIdxL = ['treat_' in name for name in sampNameL] wtIdxL = ['wt_' in name for name in sampNameL] treatCxbL = [] wtCxbL = [] for idx in range(len(treatIdxL)): if(treatIdxL[idx] == True): treatCxbL.append(cxbFileL[idx]) elif(wtIdxL[idx] == True): wtCxbL.append(cxbFileL[idx]) else: exit_with_error("ERROR!!! neither treatIdxL[idx] {} nor wtIdxL[idx] " "{} are" "True".format(treatIdxL[idx], wtIdxL[idx])) outDir = "{}/{}".format(outDirPref,size) gtf="{}/{}/merged.gtf".format(inGtfDirPref,size) if(not os.path.isdir(outDir)): os.mkdir(outDir) # Cuffdiff is too time intensive to go over all threads for nThread in [ompNumThreadsL[0]]: # Cheap hack iter over only nthread=1. ## Consider adding nTrials here. runTimeV = np.zeros([1]) tIdx = 0 if(curOS == 'linux'): taskset = "taskset -c {} ".format(ompCoresIdD[nThread]) else: taskset = "" cmd = ( "time {} cuffdiff --num-threads {} --output-dir {} -L {} " " {} {} {}" "".format(taskset, nThread, outDir, "treat,wt", gtf, ",".join(treatCxbL), ",".join(wtCxbL))) #print(cmd) output = "{}\n".format(cmd) output = output + subprocess.getoutput(cmd) runTime = parse_run_time(output,workPath) # Run time runTimeV[tIdx]= runTime tIdx = tIdx + 1 print(" {:<10} | {:<12} | {:<15.4f} | {:<15.4f}".format(size, nThread, np.mean(runTimeV), np.std(runTimeV))) print("--------------------------------------------------------") # Note : # 1. This will only run on Linux, not OSX # 2. Per John, it is near pointless to run multiple threads here. # Just run it via his run_kelvin.sh, and leave my machinery out of it # 3. His script computes only the mean, but I'll shoe horn it into my # reporting scheme if(options == 'all' or options == 'kelvin'): print("Runnning Kelving...") print("--------------------------------------------------------") print(" {:<10} | {:<12} | {:<15} | {:<15}".format("Short", "OMP_Threads", "mean", "stdev")) print("--------------------------------------------------------") # Create output directory structure outDirPref = "{}/output".format(workPath) if(not os.path.isdir(outDirPref)): os.mkdir(outDirPref) outDirPref = "{}/kelvin".format(outDirPref) curDir = os.path.dirname(os.path.realpath(__file__)) if(not os.path.isdir(outDirPref)): os.mkdir(outDirPref) nThread = 1 runTimeV = np.zeros([1]) ## Loop outDir = "{}".format(outDirPref) if(not os.path.isdir(outDir)): os.mkdir(outDir) cmd = ("export LD_LIBRARY_PATH={}/kelvin/:$LD_LIBRARY_PATH;" "export PATH={}/kelvin/:$PATH;" "bash {}/kelvin/run_kelvin.sh {} {}/kelvin" # arg1 =outputdir, arg2=/path/to/kelvin.conf "".format(curDir, curDir, curDir, outDir, curDir)) output = "{}\n".format(cmd) output = output + subprocess.getoutput(cmd) runTime = parse_run_time(output,workPath) # Run time runTimeV[0]= runTime print(" {:<10} | {:<12} | {:<15.4f} | {:<15.4f}".format("Short", nThread, np.mean(runTimeV), np.std(runTimeV))) print("--------------------------------------------------------") print("Run Time for {} option : {:.4f} h\n\n".format(options,(time.time() - startTime)/3600.0)) sys.exit(0) if __name__ == "__main__": main()
import torch from torch import nn from torch.autograd import Variable from torch.nn import functional as F class relative_depth_crit(nn.Module): def __loss_func_arr(self, z_A, z_B, ground_truth): mask = torch.abs(ground_truth) z_A = z_A[0] a_B = z_B[0] return mask * torch.log(1 + torch.exp(-ground_truth * (z_A - z_B))) + (1 - mask) * (z_A - z_B) * (z_A - z_B) def __init__(self): super(relative_depth_crit, self).__init__() def forward(self, input, target): self.input = input self.target = target self.output = Variable(torch.Tensor([0])).cuda() n_point_total = 0 cpu_input = input for batch_idx in range(0, cpu_input.size()[0]): n_point_total += target[batch_idx]['n_point'] x_A_arr = target[batch_idx]['x_A'] y_A_arr = target[batch_idx]['y_A'] x_B_arr = target[batch_idx]['x_B'] y_B_arr = target[batch_idx]['y_B'] batch_input = cpu_input[batch_idx, 0] z_A_arr = batch_input.index_select(1, x_A_arr.long()).gather(0, y_A_arr.view(1, -1).long()) z_B_arr = batch_input.index_select(1, x_B_arr.long()).gather(0, y_B_arr.view(1, -1).long()) ground_truth_arr = target[batch_idx]['ordianl_relation'] self.output += torch.sum(self.__loss_func_arr(z_A_arr, z_B_arr, ground_truth_arr)) return self.output / n_point_total def _grad_loss_func(self, z_A, z_B, ground_truth): mask = torch.abs(ground_truth) z_A_z_B = z_A - z_B d = z_A_z_B * z_A_z_B grad_A1 = z_A_z_B * 2 grad_B1 = - grad_A1 denom = torch.exp(z_A_z_B * ground_truth) + 1 grad_A2 = -ground_truth / denom grad_B2 = ground_truth / denom grad_A = mask * grad_A2 + (1 - mask) * grad_A1 grad_B = mask * grad_B2 + (1 - mask) * grad_B1 return grad_A, grad_B if __name__ == '__main__': # testing crit = relative_depth_crit() print(crit) x = Variable(torch.zeros(1, 1, 6, 6).cuda(), requires_grad=True) target = {} target[0] = {} target[0]['x_A'] = Variable(torch.Tensor([0, 1, 2, 3, 4, 5])).cuda() target[0]['y_A'] = Variable(torch.Tensor([0, 1, 2, 3, 4, 5])).cuda() target[0]['x_B'] = Variable(torch.Tensor([0, 0, 0, 0, 0, 0])).cuda() target[0]['y_B'] = Variable(torch.Tensor([5, 4, 3, 2, 1, 0])).cuda() target[0]['ordianl_relation'] = Variable(torch.Tensor([-1, 0, 1, 1, -1, -1])).cuda() target[0]['n_point'] = 6 loss = crit.forward(x, target) print(loss) loss.backward() # a = crit.backward(1.0) # print(a) print(x.grad) # print(x.creator)
import carla import cv2 import gym import random import time import numpy as np import matplotlib.pyplot as plt import pandas as pd import seaborn as sns from agents.navigation.behavior_agent import BehaviorAgent, BasicAgent from carla import ColorConverter as cc from collections import deque from copy import deepcopy from enum import Enum, auto from gym import spaces from PIL import Image from queue import Queue from tqdm import trange from .misc import get_pos, get_lane_dis_numba, get_vehicle_angle from .route_planner import RoutePlanner from .manual_route_planner import ManualRoutePlanner, TOWN7_PLAN, TOWN7_REVERSE_PLAN from ..utils import center_crop, normalize_image from agents.navigation.behavior_agent import BehaviorAgent from agents.navigation.global_route_planner import RoadOption class RouteMode(Enum): BASIC_RANDOM = auto() MANUAL_LAP = auto() _walker_spawn_points_cache = [] _load_world = False class CarlaEnv(gym.Env): start_wp_idx = 0 def __init__(self, **kwargs): global _load_world self.host = 'localhost' self.port = 2000 self.n_images = kwargs.get('n_frames', 1) observation_size = kwargs.get('image_size', [256, 512]) self.obs_width = observation_size[1] self.obs_height = observation_size[0] self.obs_dtype = np.float16 self.map = 'Town07' self.fps_mode = kwargs.get('fps_mode') if self.fps_mode == 'high': self.dt = 0.1 else: self.dt = 0.2 self.frame_per_second = round(1 / self.dt) self.reload_world = True self.use_semantic_camera = True camera_size = kwargs.get('camera_size') self.camera_width = camera_size[1] self.camera_height = camera_size[0] if kwargs.get('camera_fov'): self.camera_fov = kwargs.get('camera_fov') self.number_of_walkers = 0 self.number_of_vehicles = 0 self.number_of_wheels = [4] self.max_ego_spawn_times = 100 self.max_time_episode = kwargs.get('max_episode_steps', 5000) self.max_waypt = 12 # in m/s. 5.5 is 20KMH self.desired_speed = 5.5 self.out_lane_thres = 2. # random or roundabout self.task_mode = 'random' self.dests = None # action and observation spaces self.observation_space = spaces.Box(low=0, high=255, shape=(self.obs_height, self.obs_width, 3), dtype=np.uint8) # steering, accel/brake self.action_space = spaces.Box(low=np.array([-1., -1.]), high=np.array([1., 1.]), dtype=np.float32) self.dry_run = kwargs.get('dry_run_init_env', False) if self.dry_run: print('dry run, exit init') return print('connecting to Carla server...') self.client = carla.Client(self.host, self.port) self.client.set_timeout(30.0) if _load_world: self.world = self.client.get_world() else: self.world = self.client.load_world(self.map) _load_world = True print('Carla server connected!') # Set fixed simulation step for synchronous mode self.settings = self.world.get_settings() self.settings.fixed_delta_seconds = self.dt if self.fps_mode == 'low': self.settings.max_substep_delta_time = 0.01666 self.settings.max_substeps = 13 self.settings.synchronous_mode = True self.world.apply_settings(self.settings) self.bp_library = self.world.get_blueprint_library() # spawn points self.vehicle_spawn_points = list(self.world.get_map().get_spawn_points()) # top left spawn point of town4 self.lap_spwan_point_wp = self.world.get_map().get_waypoint(self.vehicle_spawn_points[1].location) self.walker_spawn_points = [] # if we can cache more than 70% of spawn points then use cache if len(_walker_spawn_points_cache) > self.number_of_walkers * 0.7: def loc_to_transform(loc): x, y, z = loc loc = carla.Location(x=x, y=y, z=z) return carla.Transform(location=loc) self.walker_spawn_points = list(map(loc_to_transform, _walker_spawn_points_cache)) print('load walker spwan points from cache') else: _walker_spawn_points_cache.clear() for i in range(self.number_of_walkers): spawn_point = carla.Transform() loc = self.world.get_random_location_from_navigation() if (loc != None): spawn_point.location = loc self.walker_spawn_points.append(spawn_point) # save to cache _walker_spawn_points_cache.append((loc.x, loc.y, loc.z)) # route planner mode self.route_mode = RouteMode.MANUAL_LAP if self.route_mode == RouteMode.MANUAL_LAP: self.routeplanner = ManualRoutePlanner(self.lap_spwan_point_wp, self.lap_spwan_point_wp, self.world, resolution=2, plan=TOWN7_PLAN, use_section=True) # ego vehicle bp self.ego_bp = self._create_vehicle_bluepprint('vehicle.mini.cooper_s_2021') self.ego = None # Collision sensor self.collision_hist = [] # collision history length self.collision_hist_l = 1 self.collision_bp = self.bp_library.find('sensor.other.collision') self.collision_sensor = None # camera self.camera_img = None self.camera_trans = carla.Transform(carla.Location(x=1.18, z=1.7)) self.camera_sensor_type = 'sensor.camera.rgb' if self.use_semantic_camera: self.camera_sensor_type = 'sensor.camera.semantic_segmentation' self.camera_bp = self.bp_library.find(self.camera_sensor_type) # Modify the attributes of the blueprint to set image resolution and field of view. self.camera_bp.set_attribute('image_size_x', str(self.camera_width)) self.camera_bp.set_attribute('image_size_y', str(self.camera_height)) if hasattr(self, 'camera_fov'): self.camera_bp.set_attribute('fov', str(self.camera_fov)) self.camera_sensor = None self.record_video = kwargs.get('record_video', False) if self.record_video: self.obs_camera_bp = self.bp_library.find('sensor.camera.rgb') self.obs_camera_bp.set_attribute('image_size_x', '800') self.obs_camera_bp.set_attribute('image_size_y', '600') self.obs_frame_data_queue = Queue() # Record the time of total steps and resetting steps self.reset_step = 0 self.total_step = 0 # frame buffer self.img_buff = deque(maxlen=self.n_images) self.frame_data_queue = Queue() # action buffer self.num_past_actions = kwargs.get('n_past_actions', 10) self.actions_queue = deque(maxlen=self.num_past_actions) # control history self.store_history = self.record_video if self.store_history: self.throttle_hist = [] self.brakes_hist = [] self.steers_hist = [] self.speed_hist = [] self.lspeed_lon_hist = [] self.original_dis = [] self.spawn_batch = True # cache vehicle blueprints if self.spawn_batch: self.vehicle_bp_caches = {} for nw in self.number_of_wheels: self.vehicle_bp_caches[nw] = self._cache_vehicle_blueprints(number_of_wheels=nw) encoder_type = kwargs.get('encoder_type') if encoder_type is None: raise ValueError(f'unknown encoder_type {self.encoder_type}') grayscale = kwargs.get('grayscale', False) if encoder_type == 'CNN': if observation_size == camera_size: if grayscale: self._transform_observation = self._transform_CNN_grayscale_observation_no_resize else: self._transform_observation = self._transform_CNN_observation_no_resize else: if grayscale: self._transform_observation = self._transform_CNN_grayscale_observation else: self._transform_observation = self._transform_CNN_observation if self.n_images > 1: if grayscale: # grayscale image, stack in new axis in place of channel self._combine_observations = lambda obs_array: np.array(obs_array, dtype=self.obs_dtype) else: # RGB image, stack in channel dimension self._combine_observations = lambda obs_array: np.concatenate(obs_array, axis=-1, dtype=np.uint8) else: self._combine_observations = lambda obs_array: obs_array elif encoder_type == 'VAE': # VAE case self._transform_observation = self._transform_VAE_observation if self.n_images > 1: self._combine_observations = lambda obs_array: np.array(obs_array, dtype=np.float16) else: self._combine_observations = lambda obs_array: obs_array self.mean = np.array([0.4652, 0.4417, 0.3799]) self.std = np.array([0.0946, 0.1767, 0.1865]) self.z_steps = {} def reset(self): # Clear history if exist if self.store_history: self.throttle_hist.clear() self.brakes_hist.clear() self.steers_hist.clear() self.speed_hist.clear() self.lspeed_lon_hist.clear() self.original_dis.clear() self.current_action = None self.img_buff.clear() self.actions_queue.clear() self.current_lane_dis = 0 # delete sensor, vehicles and walkers # self._clear_all_actors(['sensor.other.collision', self.camera_sensor_type, 'vehicle.*', 'controller.ai.walker', 'walker.*']) # self._clear_all_actors(['sensor.other.collision', self.camera_sensor_type, 'vehicle.*']) # Clear sensor objects if self.camera_sensor is not None: # not the first time self.camera_sensor.stop() self.collision_sensor.stop() destroy_commands = [ carla.command.DestroyActor(self.ego.id), carla.command.DestroyActor(self.camera_sensor.id), carla.command.DestroyActor(self.collision_sensor.id) ] self.client.apply_batch_sync(destroy_commands, False) self.camera_sensor = None self.collision_sensor = None self.ego = None # clear image self.camera_img = None # Disable sync mode # self._set_synchronous_mode(False) # Get actors polygon list self.vehicle_polygons = [] # Spawn the ego vehicle ego_spawn_times = 0 spawn_transform_index, spawn_transform = self.routeplanner.get_random_spawn_point() if spawn_transform_index not in self.z_steps: self.z_steps[spawn_transform_index] = 0.1 z_step = self.z_steps[spawn_transform_index] while True: if ego_spawn_times > self.max_ego_spawn_times: raise Exception(f'cannot spawn at {transform}. waypoint index is {self.routeplanner._checkpoint_waypoint_index}') transform = self._make_safe_spawn_transform(spawn_transform, z_step) if self._try_spawn_ego_vehicle_at(transform): break else: ego_spawn_times += 1 z_step += 0.1 self.z_steps[spawn_transform_index] = z_step time.sleep(0.1) # Add collision sensor self.collision_sensor = self.world.spawn_actor(self.collision_bp, carla.Transform(), attach_to=self.ego) self.collision_sensor.listen(lambda event: get_collision_hist(event)) def get_collision_hist(event): impulse = event.normal_impulse intensity = np.sqrt(impulse.x**2 + impulse.y**2 + impulse.z**2) self.collision_hist.append(intensity) self.collision_hist.clear() # Add camera sensor self.camera_sensor = self.world.spawn_actor(self.camera_bp, self.camera_trans, attach_to=self.ego) self.camera_sensor.listen(self.frame_data_queue.put) if self.record_video: bound_x = 0.5 + self.ego.bounding_box.extent.x bound_y = 0.5 + self.ego.bounding_box.extent.y bound_z = 0.5 + self.ego.bounding_box.extent.z obs_camera_trans = carla.Transform(carla.Location(x=-2.0*bound_x, y=+0.0*bound_y, z=2.0*bound_z), carla.Rotation(pitch=8.0)) self.obs_camera_sensor = self.world.spawn_actor(blueprint=self.obs_camera_bp, transform=obs_camera_trans, attach_to=self.ego, attachment_type=carla.AttachmentType.SpringArm) self.obs_camera_sensor.listen(self.obs_frame_data_queue.put) # Update timesteps self.time_step = 1 self.reset_step += 1 self.frame = self.world.tick() # get route plan self.routeplanner.set_vehicle(self.ego) self.waypoints = self.routeplanner.run_step() for _ in range(self.num_past_actions): self.actions_queue.append(np.array([0, 0])) self.first_additional_state = np.ravel(np.array(self.actions_queue, dtype=np.float16)) return self._get_obs() def step(self, action): acc = action[0] steer = action[1] if acc > 0: throttle = np.clip(acc, 0, 1) brake = 0 else: throttle = 0 brake = np.clip(-acc, 0, 1) self.ego.apply_control(carla.VehicleControl(throttle=float(throttle), steer=float(steer), brake=float(brake))) if self.store_history: self.throttle_hist.append(float(throttle)) self.brakes_hist.append(float(brake)) self.steers_hist.append(float(steer)) self.current_action = (throttle, steer, brake) self.actions_queue.append(action) self.frame = self.world.tick() self.waypoints = self.routeplanner.run_step() self.current_waypoint = self.routeplanner.current_waypoint # Update timesteps self.time_step += 1 self.total_step += 1 info = {} info['additional_state'] = np.ravel(np.array(self.actions_queue, dtype=np.float16)) return self._get_obs(), self._get_reward(), self._get_terminal(), info def render(self, mode='human'): if mode == 'human': if self.camera_img is None: raise Exception('self.camera_img is None') cv2.imshow('Carla environment', self.camera_img) cv2.waitKey(1) elif mode == 'rgb_array': if self.record_video: return self._retrieve_image_data(self.obs_frame_data_queue, use_semantic_mask=False) else: return self._get_observation_image() elif mode == 'observation': return self._transform_observation(self.camera_img) def _get_reward(self): """ Calculate the step reward. """ # reward for speed tracking v = self.ego.get_velocity() speed = np.sqrt(v.x**2 + v.y**2) r_speed = -abs(speed - self.desired_speed) # reward for collision r_collision = 0 if len(self.collision_hist) > 0: r_collision = -1 # reward for steering: r_steer = -self.ego.get_control().steer**2 # reward for out of lane ego_x, ego_y = get_pos(self.ego) self.current_lane_dis, w = get_lane_dis_numba(self.waypoints, ego_x, ego_y) r_out = 0 if abs(self.current_lane_dis) > self.out_lane_thres: r_out = -100 else: r_out = -abs(np.nan_to_num(self.current_lane_dis, posinf=self.out_lane_thres + 1, neginf=-(self.out_lane_thres + 1))) # longitudinal speed lspeed = np.array([v.x, v.y]) lspeed_lon = np.dot(lspeed, w) # cost for too fast r_fast = 0 if lspeed_lon > self.desired_speed: r_fast = -1 # if it is faster than desired speed, minus the excess speed # and don't give reward from speed # r_fast *= lspeed_lon # cost for lateral acceleration r_lat = - abs(self.ego.get_control().steer) * lspeed_lon**2 # cost for braking brake_cost = self.current_action[2] r = 200*r_collision + 1*lspeed_lon + 10*r_fast + 1*r_out + r_steer*5 + 0.2*r_lat - 1 - brake_cost*2 if self.store_history: self.speed_hist.append(speed) self.lspeed_lon_hist.append(lspeed_lon) self.original_dis.append(self.current_lane_dis) return r def _get_reward_ppo(self): # lane distance reward ego_x, ego_y = get_pos(self.ego) self.current_lane_dis, w = get_lane_dis_numba(self.waypoints, ego_x, ego_y) non_nan_lane_dis = np.nan_to_num(self.current_lane_dis, posinf=self.out_lane_thres + 1, neginf=-(self.out_lane_thres + 1)) d_norm = abs(non_nan_lane_dis) / self.out_lane_thres lane_centering_reward = 1 - d_norm # termination reward if abs(non_nan_lane_dis) > self.out_lane_thres or len(self.collision_hist) > 0: return -10 # speed reward v = self.ego.get_velocity() lspeed = np.array([v.x, v.y]) lspeed_lon = np.dot(lspeed, w) min_desired_speed = 0.8 * self.desired_speed max_desired_speed = 1.2 * self.desired_speed if lspeed_lon < min_desired_speed: speed_reward = lspeed_lon / min_desired_speed elif lspeed_lon > self.desired_speed: speed_reward = 1 - (lspeed_lon - self.desired_speed) / (max_desired_speed - self.desired_speed) else: speed_reward = 1 # angle angle_degree = get_vehicle_angle(self.ego.get_transform(), self.current_waypoint.transform) # allow only 4 degree until no reward angle_reward = max(1.0 - abs(angle_degree / 4), 0.0) return speed_reward + lane_centering_reward + angle_reward def _get_terminal(self): """ Calculate whether to terminate the current episode. """ # Get ego state ego_x, ego_y = get_pos(self.ego) # If collides if len(self.collision_hist) > 0: return True # If reach maximum timestep if self.time_step > self.max_time_episode: return True # If at destination if self.dests is not None: # If at destination for dest in self.dests: if np.sqrt((ego_x-dest[0])**2 + (ego_y-dest[1])**2) < 4: return True # If out of lane if abs(self.current_lane_dis) > self.out_lane_thres: return True # end of section if self.routeplanner.is_end_of_section: return True return False def _get_obs(self): self.camera_img = self._retrieve_image_data(self.frame_data_queue, use_semantic_mask=self.use_semantic_camera) if self.n_images == 1: transformed_observation = self._transform_observation(self.camera_img) return self._combine_observations(transformed_observation) self.img_buff.append(self.camera_img) while len(self.img_buff) < self.n_images: self.img_buff.append(self.camera_img) img_array = [self._transform_observation(img) for img in self.img_buff] return self._combine_observations(img_array) def _create_vehicle_bluepprint(self, actor_filter, color=None, number_of_wheels=[4]): """Create the blueprint for a specific actor type. Args: actor_filter: a string indicating the actor type, e.g, 'vehicle.lincoln*'. Returns: bp: the blueprint object of carla. """ blueprints = self.bp_library.filter(actor_filter) blueprint_library = [] for nw in number_of_wheels: blueprint_library = blueprint_library + [x for x in blueprints if int(x.get_attribute('number_of_wheels')) == nw] bp = random.choice(blueprint_library) if bp.has_attribute('color'): if not color: color = random.choice(bp.get_attribute('color').recommended_values) bp.set_attribute('color', color) return bp def _cache_vehicle_blueprints(self, number_of_wheels=4): if not isinstance(number_of_wheels, int): raise TypeError(f'number_of_wheels must be int not {type(number_of_wheels)}') blueprint_library = [] blueprints = self.bp_library.filter('vehicle.*') for bp in blueprints: if bp.get_attribute('number_of_wheels').as_int() == number_of_wheels: if bp.has_attribute('color'): color = random.choice(bp.get_attribute('color').recommended_values) bp.set_attribute('color', color) blueprint_library.append(bp) return blueprint_library def _clear_all_actors(self, actor_filters): """ Clear specific actors. """ destroy_commands = [] for actor_filter in actor_filters: for actor in self.world.get_actors().filter(actor_filter): if actor.is_alive: if actor.type_id == 'controller.ai.walker': actor.stop() destroy_commands.append(carla.command.DestroyActor(actor)) self.client.apply_batch(destroy_commands) def _set_synchronous_mode(self, synchronous = True): """Set whether to use the synchronous mode. """ self.settings.synchronous_mode = synchronous self.world.apply_settings(self.settings) def _try_spawn_random_vehicle_at(self, transform, number_of_wheels=[4], set_autopilot=True): """Try to spawn a surrounding vehicle at specific transform with random bluprint. Args: transform: the carla transform object. Returns: Bool indicating whether the spawn is successful. """ blueprint = self._create_vehicle_bluepprint('vehicle.*', number_of_wheels=number_of_wheels) blueprint.set_attribute('role_name', 'autopilot') vehicle = self.world.try_spawn_actor(blueprint, transform) if vehicle is not None: if set_autopilot: vehicle.set_autopilot() return True, vehicle return False, vehicle def _spawn_random_vehicles_batch(self, transforms, number_of_vehicles, number_of_wheels=[4]): bps = [] for nw in number_of_wheels: bps.extend(self.vehicle_bp_caches[nw]) count = 0 spawn_commands = [] for transform in transforms: bp = random.choice(bps) bp.set_attribute('role_name', 'autopilot') spawn_cmd = carla.command.SpawnActor(bp, transform) spawn_cmd.then(carla.command.SetAutopilot(carla.command.FutureActor, True)) spawn_commands.append(spawn_cmd) count += 1 if count == number_of_vehicles: break self.client.apply_batch(spawn_commands) if count < number_of_vehicles: spawn_commands.clear() while count < number_of_vehicles: transform = random.choice(transforms) bp = random.choice(bps) bp.set_attribute('role_name', 'autopilot') spawn_cmd = carla.command.SpawnActor(bp, transform) spawn_cmd.then(carla.command.SetAutopilot(carla.command.FutureActor, True)) spawn_commands.append(spawn_cmd) count += 1 self.client.apply_batch(spawn_commands) def _try_spawn_random_walker_at(self, transform): """Try to spawn a walker at specific transform with random bluprint. Args: transform: the carla transform object. Returns: Bool indicating whether the spawn is successful. """ walker_bp = random.choice(self.bp_library.filter('walker.*')) # set as not invencible if walker_bp.has_attribute('is_invincible'): walker_bp.set_attribute('is_invincible', 'false') walker_actor = self.world.try_spawn_actor(walker_bp, transform) if walker_actor is not None: walker_controller_bp = self.bp_library.find('controller.ai.walker') walker_controller_actor = self.world.spawn_actor(walker_controller_bp, carla.Transform(), walker_actor) # start walker walker_controller_actor.start() # set walk to random point walker_controller_actor.go_to_location(self.world.get_random_location_from_navigation()) # random max speed walker_controller_actor.set_max_speed(1 + random.random()) # max speed between 1 and 2 (default is 1.4 m/s) return True return False def _spwan_random_walkers_batch(self, transforms, number_of_walkers): walker_bps = self.bp_library.filter('walker.*') # spawn walker count = 0 spawn_commands = [] for transform in transforms: walker_bp = random.choice(walker_bps) if walker_bp.has_attribute('is_invincible'): walker_bp.set_attribute('is_invincible', 'false') spawn_commands.append(carla.command.SpawnActor(walker_bp, transform)) count += 1 if count == number_of_walkers: break results = self.client.apply_batch_sync(spawn_commands, True) walkers_list = [] for result in results: if not result.error: walkers_list.append({'id': result.actor_id}) # spawn controller spawn_commands.clear() walker_controller_bp = self.bp_library.find('controller.ai.walker') for i in range(len(walkers_list)): spawn_commands.append(carla.command.SpawnActor(walker_controller_bp, carla.Transform(), walkers_list[i]['id'])) results = self.client.apply_batch_sync(spawn_commands, True) controller_ids = [] for i in range(len(results)): if not results[i].error: walkers_list[i]['con_id'] = results[i].actor_id controller_ids.append(results[i].actor_id) controller_actors = self.world.get_actors(controller_ids) self.world.wait_for_tick() # start controller con_idx = 0 for walker in walkers_list: if 'con_id' not in walker: continue controller = controller_actors[con_idx] assert walker['con_id'] == controller.id controller.start() controller.go_to_location(self.world.get_random_location_from_navigation()) controller.set_max_speed(1 + random.random()) con_idx += 1 def _get_actor_polygons(self, filt): """Get the bounding box polygon of actors. Args: filt: the filter indicating what type of actors we'll look at. Returns: actor_poly_dict: a dictionary containing the bounding boxes of specific actors. """ actor_poly_dict = {} for actor in self.world.get_actors().filter(filt): # Get x, y and yaw of the actor trans = actor.get_transform() x = trans.location.x y = trans.location.y yaw = trans.rotation.yaw / 180 * np.pi # Get length and width bb = actor.bounding_box l = bb.extent.x w = bb.extent.y # Get bounding box polygon in the actor's local coordinate poly_local = np.array([[l, w], [l, -w], [-l, -w], [-l,w]]).transpose() # Get rotation matrix to transform to global coordinate R = np.array([[np.cos(yaw), -np.sin(yaw)], [np.sin(yaw), np.cos(yaw)]]) # Get global bounding box polygon poly = np.matmul(R,poly_local).transpose() + np.repeat([[x, y]], 4, axis=0) actor_poly_dict[actor.id] = poly return actor_poly_dict def _try_spawn_ego_vehicle_at(self, transform): """Try to spawn the ego vehicle at specific transform. Args: transform: the carla transform object. Returns: Bool indicating whether the spawn is successful. """ vehicle = None # Check if ego position overlaps with surrounding vehicles overlap = False if self.vehicle_polygons: for idx, poly in self.vehicle_polygons[-1].items(): poly_center = np.mean(poly, axis=0) ego_center = np.array([transform.location.x, transform.location.y]) dis = np.linalg.norm(poly_center - ego_center) if dis > 8: continue else: overlap = True break if not overlap: vehicle = self.world.try_spawn_actor(self.ego_bp, transform) if vehicle is not None: self.ego = vehicle return True return False def _make_safe_spawn_transform(self, spawn_point_transform, z_step): ''' Set Z axis to 0.39 if Z axis of transform equals to 0.00 to prevent collision when spawning ''' old_z = spawn_point_transform.location.z new_location = carla.Location(x=spawn_point_transform.location.x, y=spawn_point_transform.location.y, z=old_z + z_step) new_transform = carla.Transform(location=new_location, rotation=spawn_point_transform.rotation) return new_transform def _transform_CNN_observation(self, obs): cropped_obs = self._crop_image(obs) resized_obs = cv2.resize(cropped_obs, (self.obs_width, self.obs_height), interpolation=cv2.INTER_NEAREST) # normalized_obs = normalize_image(resized_obs, self.mean, self.std).astype(np.float16) return resized_obs def _transform_CNN_grayscale_observation(self, obs): cropped_obs = self._crop_image(obs) resized_obs = cv2.resize(cropped_obs, (self.obs_width, self.obs_height), interpolation=cv2.INTER_NEAREST) gray_obs = (cv2.cvtColor(resized_obs, cv2.COLOR_RGB2GRAY) / 255.).astype(np.float16) return gray_obs def _transform_CNN_observation_no_resize(self, obs): scaled_obs = obs / 255. return scaled_obs.transpose((2, 0, 1)) def _transform_CNN_grayscale_observation_no_resize(self, obs): scaled_obs = cv2.cvtColor(obs, cv2.COLOR_RGB2GRAY) / 255. return scaled_obs def _transform_VAE_observation(self, obs): cropped_obs = self._crop_image(obs) resized_obs = cv2.resize(cropped_obs, (self.obs_width, self.obs_height), interpolation=cv2.INTER_NEAREST) normalized_obs = normalize_image(resized_obs, self.mean, self.std).astype(np.float16) return normalized_obs def _transform_old_VAE_observation(self, obs): ''' For old version that doesn't need normalization ''' resized_obs = cv2.resize(obs, (self.obs_width, self.obs_height), interpolation=cv2.INTER_NEAREST) return (resized_obs / 255.0).astype(np.float16) # def _transform_observation(self, obs): # return (obs / 255.0).astype(np.float16) def _get_observation_image(self): ''' Return RGB image in `H` x `W` x `C` format, its size match observation size. The difference between this method and `_transform_observation` is that `_transform_observation` will normalize an image but this method keeps the image format except spatial size. ''' cropped_img = self._crop_image(self.camera_img) return cv2.resize(cropped_img, (self.obs_width, self.obs_height), interpolation=cv2.INTER_NEAREST) # def _get_observation_image(self): # return self.camera_img def _crop_image(self, img): # this size is suitable for 800x600, fov 110 camera cropped_size = (384, 768) return center_crop(img, cropped_size, shift_H=1.2) def _retrieve_image_data(self, queue_to_wait, use_semantic_mask=False): while True: data = queue_to_wait.get() queue_to_wait.task_done() if data.frame == self.frame: break if use_semantic_mask: data.convert(cc.CityScapesPalette) else: data.convert(cc.Raw) array = np.frombuffer(data.raw_data, dtype=np.uint8) array = np.reshape(array, (data.height, data.width, 4)) array = array[:, :, :3] # BGR(OpenCV) > RGB return np.ascontiguousarray(array[:, :, ::-1]) def _draw_debug_waypoints(self, waypoints, size=1, color=(255,0,0)): ''' Draw debug point on waypoints ''' if len(waypoints) < 1: raise ValueError('number_of_waypoint must be greater than or equal to 1.') debug = self.world.debug color = carla.Color(r=color[0], g=color[1], b=color[2]) for wp in waypoints: location = carla.Location(x=wp[0], y=wp[1], z=1.0) debug.draw_point(location, size=size, color=color) def close(self): try: cv2.destroyAllWindows() except cv2.error: pass if not self.dry_run: self._set_synchronous_mode(False) # delete all sensor for the next world self._clear_all_actors(['sensor.other.collision', self.camera_sensor_type, 'vehicle.*', 'controller.ai.walker', 'walker.*']) return super().close() def plot_control_graph(self, name): if not self.store_history: print('Cannot plot graph because environment does not store history') return data_np = np.array([self.throttle_hist, self.brakes_hist, self.steers_hist]).transpose() data = pd.DataFrame(data_np, columns=['throttle', 'brake', 'steer']).reset_index() data = pd.melt(data, id_vars='index', var_name='command', value_name='value') sns.lineplot(data=data, hue='command', x='index', y='value') plt.title('Throttle, Brake and Steer') plt.savefig(name) def plot_speed_graph(self, name): if not self.store_history: print('Cannot plot graph because environment does not store history') return data_np = np.array([self.speed_hist, self.lspeed_lon_hist]).transpose() data = pd.DataFrame(data_np, columns=['speed', 'speed_lon']).reset_index() data = pd.melt(data, id_vars='index', var_name='command', value_name='value') sns.lineplot(data=data, hue='command', x='index', y='value') plt.title('Speed and Longitudinal speed') plt.savefig(name) def plot_distance_graph(self, name): if not self.store_history: print('Cannot plot graph because environment does not store history') return data_np = np.array([self.original_dis]).transpose() data = pd.DataFrame(data_np, columns=['original distance']).reset_index() data = pd.melt(data, id_vars='index', var_name='distance', value_name='value') sns.lineplot(data=data, hue='distance', x='index', y='value') plt.title('Distance from center of the lane') plt.savefig(name) def get_latest_milestone(self): ''' Return index of latest checkpoint waypoint that the agent can go ''' if self.routeplanner._intermediate_checkpoint_waypoint_index > self.routeplanner._checkpoint_waypoint_index: return self.routeplanner._checkpoint_waypoint_index else: return self.routeplanner._intermediate_checkpoint_waypoint_index @property def metadata(self): return {"render_modes": ["human", "rgb_array"], "render_fps": self.frame_per_second} def collect_env_images(self, num_steps, start_step=0, agent_class=BehaviorAgent, observation_callback=None): agent = agent_class(self.ego) for _ in range(start_step, start_step + num_steps): self.ego.apply_control(agent.run_step()) self.world.tick() if observation_callback is not None: observation_callback(self._get_observation_image()) def test_carla_agent(self, num_steps, start_step=0, recorder=None): agent = BasicAgent(self.ego) # agent = ManualAgent(self.ego) agent.set_global_plan(self.route_waypoints) agent.ignore_traffic_lights(active=True) agent.ignore_stop_signs(active=True) # agent.set_target_speed(40) for step in trange(start_step, start_step + num_steps): self.ego.apply_control(agent.run_step()) self.world.tick() if recorder is not None: recorder.capture_frame() # img_np = self._get_observation_image() # img = Image.fromarray(img_np) # img.save(f'carla_town7_images/outskirts/town7_outskirts_{step:05d}.jpeg') # img.close() if agent.done(): print('agent is done') break CarlaEnv.start_wp_idx += 5 completed_lap = CarlaEnv.start_wp_idx > len(self.route_waypoints) return completed_lap class SteerDirection(Enum): RIGHT = auto() LEFT = auto() class ManualAgent: steer_right_cmds = [0.0] * 30 + [0.2] * 10 + [-0.1] * 15 steer_left_cmds = [0.0] * 30 + [-0.05] * 5 + [-0.1] * 5 def __init__(self, vehicle): steer_direction = SteerDirection.LEFT if steer_direction == SteerDirection.RIGHT: self.steer_cmds = deepcopy(ManualAgent.steer_right_cmds) elif steer_direction == SteerDirection.LEFT: self.steer_cmds = deepcopy(ManualAgent.steer_left_cmds) else: raise TypeError('unknown steer_direction type') def run_step(self): throttle = max(0.4, random.random()) steer = 0 if len(self.steer_cmds) > 0: steer = self.steer_cmds[0] self.steer_cmds.pop(0) return carla.VehicleControl(throttle=float(throttle), steer=float(steer), brake=0.0) def done(self): return False class CarlaPerfectActionSampler: def __init__(self, env: CarlaEnv) -> None: self.agent = BasicAgent(env.ego, target_speed=env.desired_speed * 3.6) self.agent.set_global_plan(env.routeplanner.get_route_waypoints()) self.agent.ignore_traffic_lights(active=True) self.agent.ignore_stop_signs(active=True) self.time_step = 0 self.max_time_step = 15 * env.frame_per_second def sample(self): self.time_step += 1 action_command = self.agent.run_step() action = self._carla_command_to_action(action_command) return action, self.time_step == self.max_time_step def _carla_command_to_action(self, command): ''' Convert CARLA control command to environment action ''' throttle = command.throttle brake = command.brake steer = command.steer if throttle > 0: acc = throttle elif brake > 0: acc = -brake else: acc = 0 return np.array([acc, steer])
import pytest from pkg_resources import resource_filename import numpy as np pyhessio = pytest.importorskip("pyhessio") testfile = 'tests/resources/gamma_test_large_truncated.simtel.gz' def test_adc_samples(): from eventio import EventIOFile from eventio.simtel import ( ArrayEvent, TelescopeEvent, ADCSamples, MCEvent ) from eventio.search_utils import yield_toplevel_of_type events_compared = 0 current_event = -1 with pyhessio.open_hessio(testfile) as h, EventIOFile(testfile) as e: hessio_events = h.move_to_next_event() try: for o in e: if isinstance(o, MCEvent): current_event = o.header.id if isinstance(o, ArrayEvent): hessio_event = next(hessio_events) for televent in yield_toplevel_of_type(o, TelescopeEvent): for adcsamp in yield_toplevel_of_type(televent, ADCSamples): assert hessio_event == current_event tel_id = adcsamp.telescope_id assert tel_id in h.get_teldata_list() adcsamp_eventio = adcsamp.parse() adcsamp_hessio = h.get_adc_sample(tel_id) assert np.all(adcsamp_eventio == adcsamp_hessio) events_compared += 1 if events_compared >= 10: raise StopIteration except StopIteration: pass assert events_compared == 10
import unittest import rubik import random class TestRubik(unittest.TestCase): def setUp(self): self.turned = { "left": rubik.cube.Cube("HCDNFVIJELMTPASKUQXZ", "20010200100102010200"), "right": rubik.cube.Cube("ACSEMHIDKLUNFQZTPVXJ", "00102001002020102001"), "top": rubik.cube.Cube("PKAEFHIJQCMNSLDTUVXZ", "01000000110001000000"), "down": rubik.cube.Cube("ACDEFJNZKLIXPQSTUHMV", "00000010001100000010"), "front": rubik.cube.Cube("ACDEFHIJKLMNVTPXQZUS", "00000000000000000000"), "back": rubik.cube.Cube("DFJCIAEHKLMNPQSTUVXZ", "00000000000000000000"), } def testTurn(self): for direction in ("left", "right", "top", "down", "front", "back"): cube = rubik.cube.Cube() getattr(cube, direction)() self.assertEqual(cube, self.turned[direction]) cube_turn = rubik.cube.Cube() [getattr(cube_turn, direction)() for _ in range(4)] self.assertEqual(cube_turn, rubik.cube.Cube()) cube = self.turned[direction].copy() getattr(cube, "anti_" + direction)() self.assertEqual(cube, rubik.cube.Cube()) def testPath(self): choices = ["left", "right", "top", "down", "front", "back"] m = [random.choice(choices) for _ in xrange(1000)] n = ["anti_" + i for i in reversed(m)] cube = rubik.Cube() for i in m + n: getattr(cube, i)() self.assertEqual(cube, rubik.Cube())
# Notices: # Copyright 2017, United States Government as represented by the Administrator # of the National Aeronautics and Space Administration. All Rights Reserved. # Disclaimers # No Warranty: THE SUBJECT SOFTWARE IS PROVIDED "AS IS" WITHOUT ANY WARRANTY # OF ANY KIND, EITHER EXPRESSED, IMPLIED, OR STATUTORY, INCLUDING, BUT NOT # LIMITED TO, ANY WARRANTY THAT THE SUBJECT SOFTWARE WILL CONFORM TO # SPECIFICATIONS, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A # PARTICULAR PURPOSE, OR FREEDOM FROM INFRINGEMENT, ANY WARRANTY THAT THE # SUBJECT SOFTWARE WILL BE ERROR FREE, OR ANY WARRANTY THAT DOCUMENTATION, # IF PROVIDED, WILL CONFORM TO THE SUBJECT SOFTWARE. THIS AGREEMENT DOES NOT, # IN ANY MANNER, CONSTITUTE AN ENDORSEMENT BY GOVERNMENT AGENCY OR ANY PRIOR # RECIPIENT OF ANY RESULTS, RESULTING DESIGNS, HARDWARE, SOFTWARE PRODUCTS # OR ANY OTHER APPLICATIONS RESULTING FROM USE OF THE SUBJECT SOFTWARE. # FURTHER, GOVERNMENT AGENCY DISCLAIMS ALL WARRANTIES AND LIABILITIES # REGARDING THIRD-PARTY SOFTWARE, IF PRESENT IN THE ORIGINAL SOFTWARE, AND # DISTRIBUTES IT "AS IS."
 # Waiver and Indemnity: RECIPIENT AGREES TO WAIVE ANY AND ALL CLAIMS # AGAINST THE UNITED STATES GOVERNMENT, ITS CONTRACTORS AND SUBCONTRACTORS, # AS WELL AS ANY PRIOR RECIPIENT. IF RECIPIENT'S USE OF THE SUBJECT # SOFTWARE RESULTS IN ANY LIABILITIES, DEMANDS, DAMAGES, EXPENSES OR # LOSSES ARISING FROM SUCH USE, INCLUDING ANY DAMAGES FROM PRODUCTS BASED # ON, OR RESULTING FROM, RECIPIENT'S USE OF THE SUBJECT SOFTWARE, RECIPIENT # SHALL INDEMNIFY AND HOLD HARMLESS THE UNITED STATES GOVERNMENT, ITS # CONTRACTORS AND SUBCONTRACTORS, AS WELL AS ANY PRIOR RECIPIENT, TO THE # EXTENT PERMITTED BY LAW. RECIPIENT'S SOLE REMEDY FOR ANY SUCH MATTER # SHALL BE THE IMMEDIATE, UNILATERAL TERMINATION OF THIS AGREEMENT. # Description: # This tool takes in Landsat 8 data. # It removes land pixels, cloud pixels, pixels corresponding to a depth # of 2 meters or shallower, and high sediment concentrations # It then creates three final images: A true color image, a 543 color # composition chlorophyll concentration image, and a normalized difference # vegetation index (NDVI) chlorophyll concentration image. # --------------------------------------------------------------------------- # Import modules import arcpy import os import glob from arcpy import * from arcpy.sa import * # Check out any necessary licenses arcpy.CheckOutExtension("spatial") #set working directory #The path should be set using no quotes and single forward slashes, e.g. C:/Users/DEVELOP4/Desktop/test env.workspace = raw_input("What's the file location? ") os.chdir(env.workspace) n = float(raw_input("If you'd like to change the standard deviation for the sediment mask, type the multiplyer here. If you'd like to keep it default, type '1' --> "))#user input float raw_input arcpy.env.overwriteOutput = True if os.path.isfile("b1clb.tif") == False: # Isolating landsat band files B1 = glob.glob("*_band1*") B2 = glob.glob("*_band2*") B3 = glob.glob("*_band3*") B4 = glob.glob("*_band4*") B5 = glob.glob("*_band5*") B6 = glob.glob("*_band6*") B7 = glob.glob("*_band7*") C = glob.glob("*_cfmask*") bath = glob.glob("*bath*") #defining landsat band files b1 = B1[0] b2 = B2[0] b3 = B3[0] b4 = B4[0] b5 = B5[0] b6 = B6[0] b7 = B7[0] cloud = C[0] bathmask = bath[0] print("Defined bands") #Make floating point valued rasters b1float = Raster(b1) * 0.0001 b2float = Raster(b2) * 0.0001 b3float = Raster(b3) * 0.0001 b4float = Raster(b4) * 0.0001 b5float = Raster(b5) * 0.0001 b6float = Raster(b6) * 0.0001 b7float = Raster(b7) * 0.0001 print("Created floating point rasters") #Calculate the NDVI from b4 and b5 ndvi = (b5float-b4float)/(b5float+b4float) # Create the watermask watermask = Con(ndvi,1,"","VALUE < 0") # Creating water-only band rasters b1water = ExtractByMask(b1float,watermask) b2water = ExtractByMask(b2float,watermask) b3water = ExtractByMask(b3float,watermask) b4water = ExtractByMask(b4float,watermask) b5water = ExtractByMask(b5float,watermask) b6water = ExtractByMask(b6float,watermask) b7water = ExtractByMask(b7float,watermask) print("Removed land pixels") # Reclassify the cloud mask values cloudmask = Reclassify(cloud,"Value",RemapRange([[0,1,1],[2,4,"NODATA"]])) # Removing clouds from the bands b1wc = ExtractByMask(b1water,cloudmask) b2wc = ExtractByMask(b2water,cloudmask) b3wc = ExtractByMask(b3water,cloudmask) b4wc = ExtractByMask(b4water,cloudmask) b5wc = ExtractByMask(b5water,cloudmask) b6wc = ExtractByMask(b6water,cloudmask) b7wc = ExtractByMask(b7water,cloudmask) print("Removed cloud pixels") #remove shallow pixels b1clb = ExtractByMask(b1wc,bathmask) b2clb = ExtractByMask(b2wc,bathmask) b3clb = ExtractByMask(b3wc,bathmask) b4clb = ExtractByMask(b4wc,bathmask) b5clb = ExtractByMask(b5wc,bathmask) b6clb = ExtractByMask(b6wc,bathmask) b7clb = ExtractByMask(b7wc,bathmask) b1clb.save("b1clb.tif") b2clb.save("b2clb.tif") b3clb.save("b3clb.tif") b4clb.save("b4clb.tif") b5clb.save("b5clb.tif") b6clb.save("b6clb.tif") b7clb.save("b7clb.tif") print("Removed shallow pixels") #Creating the NDTI mask ndti = (b4clb-b3clb)/(b4clb+b3clb) ndti.save("ndti.tif") arcpy.CalculateStatistics_management("ndti.tif") ustd = arcpy.GetRasterProperties_management("ndti.tif","STD") ostd = ustd.getOutput(0) std = n*float(ostd) umean = arcpy.GetRasterProperties_management("ndti.tif","MEAN") omean = umean.getOutput(0) mean = float(omean) mod = mean + std h = str(mod) value = "VALUE < " + h ndtimask = Con(ndti,1,"",value) newmask = "ndvimask_sd_" + str(n) + ".tif" ndtimask.save(newmask) print("NDTI mask created. Now creating True Color Image, NDVI Chlorophyll image, and 543 Composite Chlorophyll image") #making a true color image truecolorlist = [b4,b3,b2] CompositeBands_management(truecolorlist,"truecolor.tif") print("Created True Color Image") #creating the NDVI for chlorophyll concentration chl_ndvi = (b5clb-b4clb)/(b5clb+b4clb) chlndvi = ExtractByMask(chl_ndvi,ndtimask) chlndviname = "ndvi_chl_sd_" + str(n) + ".tif" chlndvi.save(chlndviname) #this is the final NDVI chlorophyll concentration image to be stretched print("Created NDVI chlorophyll concentration image") #making a 543 band composite chlbandlist = [b5clb,b4clb,b3clb] band543 = CompositeBands_management(chlbandlist,"comp_band_543.tif") band543_sed = ExtractByMask("comp_band_543.tif",ndtimask) b543name = "comp_band_543_chl_sd_" + str(n) + ".tif" band543_sed.save(b543name) #this is the final 543 image to be stretched print("Created 543 color composite for chlorophyll concentration") else: #retrieving previously saved land, cloud, and shallow pixel removed images B1 = glob.glob("b1clb.tif") B2 = glob.glob("b2clb.tif") B3 = glob.glob("b3clb.tif") B4 = glob.glob("b4clb.tif") B5 = glob.glob("b5clb.tif") B6 = glob.glob("b6clb.tif") B7 = glob.glob("b7clb.tif") print("Defined Bands") #defining each cloud, land, and shallow image b1clb = Raster(B1[0]) b2clb = Raster(B2[0]) b3clb = Raster(B3[0]) b4clb = Raster(B4[0]) b5clb = Raster(B5[0]) b6clb = Raster(B6[0]) b7clb = Raster(B7[0]) arcpy.overwriteoutput = True #Creating the NDTI mask ndti = (b4clb-b3clb)/(b4clb+b3clb) ndti.save("ndti.tif") arcpy.CalculateStatistics_management("ndti.tif") ustd = arcpy.GetRasterProperties_management("ndti.tif","STD") ostd = ustd.getOutput(0) std = n*float(ostd) umean = arcpy.GetRasterProperties_management("ndti.tif","MEAN") omean = umean.getOutput(0) mean = float(omean) mod = mean + std h = str(mod) value = "VALUE < " + h ndtimask = Con(ndti,1,"",value) newmask = "ndvimask_sd_" + str(n) + ".tif" ndtimask.save(newmask) print("NDTI mask created. Now creating NDVI Chlorophyll image and 543 Composite Chlorophyll image") #creating the NDVI for chlorophyll concentration chl_ndvi = (b5clb-b4clb)/(b5clb+b4clb) chlndvi = ExtractByMask(chl_ndvi,ndtimask) chlndviname = "ndvi_chl_sd_" + str(n) + ".tif" chlndvi.save(chlndviname) #this is the final NDVI chlorophyll concentration image to be stretched print("Created NDVI chlorophyll concentration image") #making a 543 band composite chlbandlist = [b5clb,b4clb,b3clb] band543 = CompositeBands_management(chlbandlist,"comp_band_543.tif") band543_sed = ExtractByMask("comp_band_543.tif",ndtimask) b543name = "comp_band_543_chl_sd_" + str(n) + ".tif" band543_sed.save(b543name) #this is the final 543 image to be stretched print("Created 543 color composite for chlorophyll concentration")
from django.db import models from django.db.models.signals import post_save from authentication.models import User # 父类是 django.db.models.base.Model 类 class Profile(models.Model): """用户个人简介映射类 """ user = models.OneToOneField(User, on_delete=models.CASCADE) url = models.CharField(max_length=50, null=True, blank=True) location = models.CharField(max_length=50, null=True, blank=True) job = models.CharField(max_length=50, null=True, blank=True) avatar = models.ImageField(upload_to='pic_folder', default='img/user.png') class Meta: db_table = 'user_profile' def create_user_profile(sender, instance, created, **kwargs): if created: Profile.objects.create(user=instance) # 使用信号,在创建 user 时同时创建 profile # Django 自带一套信号系统帮助我们在框架中传递信息 # 当某种条件出现时,信号发送者利用信号系统将信号发送给信号接收者 # 信号系统中有很多对象用于实现信息传递功能 # 这些对象都是 db.models.signals 模块下 ModelSignal 类的实例 # 其中包括 post_save 对象,当某映射类的实例执行 save 方法保存数据后 # 该映射类会自动发送信号给信号接收者 # ModelSignal 类有一个 connect 方法,第一个位置参数就是接收信号的对象 # 第二个参数 sender 就是发送信号的那个映射类 # 如下所示差不多是固定写法 # 当 User 类的实例被存储到数据库,自动执行第一个参数那个函数 # 此处 sender 参数的值可以是引入的映射类,也可以用字符串表示 post_save.connect(create_user_profile, sender=User)
"""Implements the :py:class:`RolesClient` class.""" from datetime import datetime, timezone from typing import Callable, Optional, List, Dict, Any from flask import current_app, has_app_context import pymongo from .exceptions import InvalidEntity __all__ = ['RolesClient'] class RolesClient: """This class implements the Shrunk roles system.""" def __init__(self, *, db: pymongo.database.Database): self.db = db self.qualified_for: Dict[str, Callable[[str], bool]] = {} self.process_entity: Dict[str, Callable[[str], str]] = {} self.valid_entity_for: Dict[str, Callable[[str], bool]] = {} self.oncreate_for: Dict[str, Callable[[str], None]] = {} self.onrevoke_for: Dict[str, Callable[[str], None]] = {} self.form_text: Dict[str, Any] = {} @staticmethod def _default_text(role: str) -> Any: """Get the default text that apears in a role menu. :param role: Role name """ return { 'title': role, 'invalid': f'invalid entity for role {role}', 'grant_title': f'Grant {role}', 'grantee_text': 'Grantee', 'grant_button': 'GRANT', 'revoke_title': f'Revoke {role}', 'revoke_button': 'REVOKE', 'empty': f'there is currently nothing with the role {role}', 'granted_by': 'granted by', 'allow_comment': False, 'comment_prompt': 'Comment', } def create(self, role: str, qualifier_func: Callable[[str], bool], validator_func: Callable[[str], bool] = lambda e: e != '', custom_text: Any = None, oncreate: Callable[[str], None] = lambda _: None, onrevoke: Callable[[str], None] = lambda _: None, process_entity: Callable[[str], str] = lambda e: e) -> None: """ :param role: Role name :param role: Role name :param qualifier_func: takes in a netid and returns whether or not a user is qualified to add to a specific role. :param validator_func: takes in an entity (like netid or link) and returns whether it's valid for a role. for example, it could take a link like ``htp://fuz1`` and say it's not a valid link :param custom_text: custom text to show on the form. see :py:func:`_default_text` source for options :param oncreate: callback for extra logic when granting a role, e.g. remove a user's links on ban :param onrevoke: callback for extra logic when revoking a role, e.g. reenabling a user's link when they are unbanned :param process_entity: callback to transform entity before it's inserted into the db """ custom_text = custom_text or {} text = self._default_text(role) text.update(custom_text) self.form_text[role] = text self.qualified_for[role] = qualifier_func self.process_entity[role] = process_entity self.valid_entity_for[role] = validator_func self.oncreate_for[role] = oncreate self.onrevoke_for[role] = onrevoke def exists(self, role: str) -> bool: """Check whether a role exists. :param role: Role name """ return role in self.oncreate_for def grant(self, role: str, grantor: str, grantee: str, comment: Optional[str] = None) -> None: """ Gives a role to grantee and remembers who did it :param role: Role to grant :param grantor: Identifier of entity granting role :param grantee: Entity to which role should be granted :param comment: Comment, if required :raises InvalidEntity: If the entity fails validation """ if self.exists(role) and self.is_valid_entity_for(role, grantee): if role in self.process_entity: grantee = self.process_entity[role](grantee) # guard against double insertions if not self.has(role, grantee): self.db.grants.insert_one({ 'role': role, 'entity': grantee, 'granted_by': grantor, 'comment': comment if comment is not None else '', 'time_granted': datetime.now(timezone.utc), }) if role in self.oncreate_for: self.oncreate_for[role](grantee) else: raise InvalidEntity def revoke(self, role: str, entity: str) -> None: """Revoke a role from an entity :param role: Role name :param entity: The entity """ if has_app_context(): current_app.logger.info(f'revoking role {role} for {entity}') if role in self.onrevoke_for: self.onrevoke_for[role](entity) self.db.grants.delete_one({'role': role, 'entity': entity}) def has(self, role: str, entity: str) -> bool: """Check whether an entity has a role :param role: Role name :param entity: The entity """ return self.db.grants.find_one({'role': role, 'entity': entity}) is not None def has_some(self, roles: List[str], entity: str) -> bool: """Check whether an entity has at least one of the roles in the list :param roles: The roles to check :param entity: The entity """ return any(self.has(role, entity) for role in roles) def get_role_names(self) -> List[Any]: """Get name and display name of all roles :returns: A list of objects of the form .. code-block:: json { "name": "string", "display_name": "string" } """ return [{'name': name, 'display_name': info['title']} for (name, info) in self.form_text.items()] def get_role_entities(self, role: str) -> List[Any]: """Get all entities having the given role :param role: Role name """ return list(self.db.grants.find({'role': role})) def get_role_text(self, role: str) -> Any: """Get the form text for a given role :param role: Role name """ return self.form_text[role] def is_valid_entity_for(self, role: str, entity: str) -> bool: """Check whether an entity is valid for a role :param role: Role name :param entity: The entity """ if role in self.valid_entity_for: return self.valid_entity_for[role](entity) return True
#!/usr/bin/env python3 """ lastcheckpoint is a simple kludge to identify and print out the name of the last checkpoint TimeSeries produced by a previous run of ksfdsolver2.py. Typical usage is export LASTCHECK=`python lastcheckpoint.py checks/checks115/options115e` The argument (checks/checks115/options115e in the example) should be the value of the --check options to ksfdsolver. lastcheckpoint looks up all files whose names match the regular expression <prefix>_[0-9]*_s[0-9]r[0-9].h5. It chooses the maximum checkpoint number (the checkpoint number is the first [0-9]* in the above regular expression). Calling this <mcn>, the corresponding TimeSeries prefix is <prefix>_<mcn>_. This is written to stdout. Alternatively, the -g/--gather options tells last checkpoint to write <preix>_<mcn>_s<rank>@, where <rank> is the number that follows s in the regular expression. If rank has multiple values in the last checkpoint filenames, the largest numbr is used. """ import sys, glob, os, re from argparse import Namespace from KSFD import Parser import numpy as np def parse_commandline(args=None): # clargs = Namespace() parser = Parser(description='Find last KSFD solution checkpoint') parser.add_argument('-g', '--gather', action='store_true', help='produce gather-type name') parser.add_argument('-v', '--verbose', action='count') parser.add_argument('prefix', nargs=1, help='checkpoint prefix') clargs = parser.parse_args(args=args) return clargs def main(): clargs = parse_commandline() prefix = clargs.prefix[0] fnames = glob.glob(prefix + '_*_s*r*.h5') plen = len(prefix) fends = [ fname[plen:] for fname in fnames if fname.startswith(prefix) ] cpre = re.compile(r'_([0-9]*)_s([0-9]*)r([0-9]*)\.h5') csr = np.array([ list(map(int, cpre.fullmatch(fend).groups())) for fend in fends if cpre.fullmatch(fend) ], dtype=int) if len(csr) == 0: raise FileNotFoundError mcn = np.max(csr[:,0]) checkpoint = prefix + '_' + str(mcn) + '_' mcn_fends = csr[csr[:,0] == mcn] size = np.max(mcn_fends[:,1]) if clargs.gather: print(checkpoint + 's' + str(size) + '@') else: print(checkpoint) if __name__ == '__main__': main()
class Solution: def isPowerOfTwo(self, n: int) -> bool: if -0<n<=2: return True s = 1 while s < n: s = s*2 if s ==n: return True return False
import math def pages_numbering_with_ink(current, num_of_digits): while num_of_digits >= 0: num_of_digits -= int(math.ceil(math.log(current+1, 10))) current += 1 return current - 2 if __name__ == '__main__': current = 1 num_of_digits = 5 print(pages_numbering_with_ink(current, num_of_digits))
n = int(input()) d = {} for i in range(0, n * 2, 2): name = input() party = input() d[name] = [party, 0] m = int(input()) for i in range(m): b = input() for key, val in d.items(): if b == key: val[1] += 1 lst = sorted([val[1] for key, val in d.items()], reverse=True) p = [] for key, val in d.items(): if val[1] == max(lst): p.append(val[0]) if len(p) > 1: print('tie') else: print(*p)
from proteus.default_p import * from proteus.mprans import RANS2P import numpy as np from math import cos from proteus import Context ct = Context.get() domain = ct.domain nd = domain.nd mesh = domain.MeshOptions LevelModelType = RANS2P.LevelModel if ct.useOnlyVF: LS_model = None else: LS_model = 2 if ct.useRANS >= 1: Closure_0_model = 5 Closure_1_model = 6 if ct.useOnlyVF: Closure_0_model=2 Closure_1_model = 3 else: Closure_0_model = None Closure_1_model = None coefficients = RANS2P.Coefficients(epsFact=ct.epsFact_viscosity, sigma=0.0, rho_0=ct.rho_0, nu_0=ct.nu_0, rho_1=ct.rho_1, nu_1=ct.nu_1, g=ct.g, nd=nd, ME_model=int(ct.movingDomain)+0, VF_model=int(ct.movingDomain)+1, LS_model=int(ct.movingDomain)+LS_model, Closure_0_model=Closure_0_model, Closure_1_model=Closure_1_model, epsFact_density=ct.epsFact_density, stokes=False, useVF=ct.useVF, useRBLES=ct.useRBLES, useMetrics=ct.useMetrics, eb_adjoint_sigma=1.0, eb_penalty_constant=ct.weak_bc_penalty_constant, forceStrongDirichlet=ct.ns_forceStrongDirichlet, turbulenceClosureModel=ct.ns_closure, movingDomain=ct.movingDomain) dirichletConditions = {0: lambda x, flag: domain.bc[flag].p_dirichlet.init_cython(), 1: lambda x, flag: domain.bc[flag].u_dirichlet.init_cython(), 2: lambda x, flag: domain.bc[flag].v_dirichlet.init_cython()} advectiveFluxBoundaryConditions = {0: lambda x, flag: domain.bc[flag].p_advective.init_cython(), 1: lambda x, flag: domain.bc[flag].u_advective.init_cython(), 2: lambda x, flag: domain.bc[flag].v_advective.init_cython()} diffusiveFluxBoundaryConditions = {0: {}, 1: {1: lambda x, flag: domain.bc[flag].u_diffusive.init_cython()}, 2: {2: lambda x, flag: domain.bc[flag].v_diffusive.init_cython()}} class PerturbedSurface_p: def __init__(self,waterdepth,amplitude): self.waterdepth=waterdepth self.amplitude=amplitude def uOfXT(self,x,t): d = ct.signedDistance(x, 0.) if d <= 0: return ct.pressure(x[0], x[1]-self.waterdepth, t, ct.h, ct.eps, ct.rho_0, ct.g, ct.k, 0.)+(ct.tank_dim[1]-(self.waterdepth+ct.eta(x[2], 0.)))*ct.rho_1*(-ct.g[1]) # return (ct.tank_dim[1]-(self.waterdepth+ct.eta(x)))*ct.rho_1*(-ct.g[1])+((self.waterdepth+ct.eta(x))-x[1])*ct.rho_0*(-ct.g[1]) else: return (ct.tank_dim[1] - x[1])*ct.rho_1*(-ct.g[1]) class AtRest: def __init__(self): pass def uOfXT(self,x,t): return 0.0 initialConditions = {0:PerturbedSurface_p(ct.water_depth, ct.water_amplitude), #[temp] from main we need depth and amplitude 1:AtRest(), 2:AtRest()}
#!/usr/bin/env python import rospy from tug_python_utils import YamlHelper as Config class NominalValue(): """ Base class for nominal value. """ def __init__(self): pass def check_hypothesis(self, value): """ Should contain the verification of the value based on the defined limits. :param value: Input that should be checked :return: True if value correspond to limits, otherwise False """ return False pass class NominalValueFactory(): """ Factory for getting the right verification instance. """ @staticmethod def create_nominal_value(config): """ Decode verification type and return new corresponding object. :param config: Configuration from yaml file :return: New instance of a corresponding verification object """ type = Config.get_param(config, 'type') if type == "gauss": return GaussNominalValue(config) elif type == "exact": return ExactValue(config) elif type == "not": return NotValue(config) elif type == "greather_than": return GreaterThanValue(config) elif type == "less_than": return LessThanValue(config) elif type == "in_between": return InBetweenValue(config) elif type == "not_in_between": return NotInBetweenValue(config) else: rospy.logwarn("nominal value type '" + str(type) + "' not found") # return None return NominalValue() class GaussNominalValue(NominalValue): """ Gaussian verification of value. """ def __init__(self, config): """ Constructor for gaussian verification. Uses mean and standard deviation. :param config: Configuration from yaml file """ NominalValue.__init__(self) self._mean = Config.get_param(config, 'mean') self._std_deviation = Config.get_param(config, 'std_deviation') def _distance_to_mean(self, value): """ Calculates the difference of the given value and the mean of the Gauss. :param value: Value, from which the difference to mean should be calculated :return: difference of the given value and the mean of the Gauss. """ if value < self._mean: return abs(self._mean - value) return abs(value - self._mean) def check_hypothesis(self, value): """ Check if the given value confirms with the defined Gauss. :param value: Value that should be checked :return: True if value confirms with the defined Gauss, otherwise False """ distance = self._distance_to_mean(value) return True if distance < self._std_deviation else False class ExactValue(NominalValue): """ Check if value is the same as the defined one. """ def __init__(self, config): """ Constructor for exact verification. :param config: Configuration from yaml file """ NominalValue.__init__(self) self._exact = Config.get_param(config, 'exact') def check_hypothesis(self, value): """ Check if given value is exactly the same as defined. :param value: Value that should be checked :return: True if value confirms with the given requirements, otherwise False """ return True if value is self._exact else False class NotValue(NominalValue): """ Check if value is not the same as the defined one. """ def __init__(self, config): """ Constructor for exactly not verification. :param config: Configuration from yaml file """ NominalValue.__init__(self) self._exact_not = Config.get_param(config, 'exact_not') def check_hypothesis(self, value): """ Check if given value is exactly not the same as defined. :param value: Value that should be checked :return: True if value confirms not with the given requirements, otherwise False """ return True if value is not self._exact_not else False class GreaterThanValue(NominalValue): """ Check if value is greater than the defined one. """ def __init__(self, config): """ Constructor for greater than verification. :param config: Configuration from yaml file """ NominalValue.__init__(self) self._greater_than = Config.get_param(config, 'greater_than') def check_hypothesis(self, value): """ Check if given value is greater than defined. :param value: Value that should be checked :return: True if value confirms with the given requirements, otherwise False """ return True if value > self._greater_than else False class LessThanValue(NominalValue): """ Check if value is less than the defined one. """ def __init__(self, config): """ Constructor for less than verification. :param config: Configuration from yaml file """ NominalValue.__init__(self) self._less_than = Config.get_param(config, 'less_than') def check_hypothesis(self, value): """ Check if given value is less than defined. :param value: Value that should be checked :return: True if value confirms with the given requirements, otherwise False """ return True if value < self._less_than else False class InBetweenValue(NominalValue): """ Check if value is greater than a defined lower bound and smaller than a upper bound. """ def __init__(self, config): """ Constructor for in between verification. :param config: Configuration from yaml file """ NominalValue.__init__(self) self._lower_bound = Config.get_param(config, 'lower_bound') self._upper_bound = Config.get_param(config, 'upper_bound') if self._lower_bound > self._lower_bound: rospy.logwarn("lower bound is bigger than upper bound. 'InBetweenValue' will not work correctly!") def check_hypothesis(self, value): """ Check if given value is greater than a lower bound and smaller than a upper bound. :param value: Value that should be checked :return: True if value confirms with the given requirements, otherwise False """ return True if self._lower_bound < value < self._upper_bound else False class NotInBetweenValue(NominalValue): """ Check if value is smaller than a defined lower bound and greater than a upper bound. """ def __init__(self, config): """ Constructor for not in between verification. :param config: Configuration from yaml file """ NominalValue.__init__(self) self._lower_bound = Config.get_param(config, 'lower_bound') self._upper_bound = Config.get_param(config, 'upper_bound') if self._lower_bound > self._lower_bound: rospy.logwarn("lower bound is bigger than upper bound. 'NotInBetweenValue' will not work correctly!") def check_hypothesis(self, value): """ Check if given value is smaller than a lower bound and greater than a upper bound. :param value: Value that should be checked :return: True if value confirms with the given requirements, otherwise False """ return True if value < self._lower_bound or self._upper_bound < value else False
from app import db from app.models import Rank SQL_CMD = 'CREATE DATABASE kifutalk CHARACTER SET utf8mb4 COLLATE utf8mb4_unicode_ci' # initialize database db.create_all() # populate ranks table for i in range(18): r = Rank(rank_en='%dk'%(18-i), rank_cn='%d级'%(18-i)) db.session.add(r) for i in range(9): r = Rank(rank_en='%dd'%(i+1), rank_cn='%d段'%(i+1)) db.session.add(r) for i in range(9): r = Rank(rank_en='%dp'%(i+1), rank_cn='职业%d段'%(i+1)) db.session.add(r) db.session.commit()
#!/usr/bin/env python from itertools import groupby import math import nltk import sys def do_check(filename): body_grammar = nltk.data.load("file:%s" % filename, 'cfg') uses = {} print "Nonterminals with no productions:" for label,prods in groupby(body_grammar.productions(), lambda p: p.lhs().symbol()): l = label if l not in uses: uses[l] = 0 np = 0 for p in prods: np += 1 for term in p.rhs(): s = repr(term) if s not in uses: uses[s] = 0 uses[s] += 1 if (not isinstance(term, basestring) and len(body_grammar.productions(term)) == 0): print "* %s (label %s)" % (term, label) # check # of productions #if np >= 3: # bits = math.log(np-1, 2) # if int(bits) != bits: # print "*** label %s has %s productions" % (label, np) print "Nonterminals with duplicate productions:" for label,prods in groupby(body_grammar.productions(), lambda p: p.lhs().symbol()): l = label pset = set() #done = set() for p in prods: if p in pset:# and p not in done: print "* term %s: %s" % (label, p) #done.add(p) pset.add(p) for term in p.rhs(): s = repr(term) if s not in uses: uses[s] = 0 uses[s] += 1 if (not isinstance(term, basestring) and len(body_grammar.productions(term)) == 0): print "* %s (label %s)" % (term, label) print "\nNonterminals with no uses:" print "grep -v ", for t,u in uses.iteritems(): if u == 0 and t != "START": print "-e \"^%s -\" " % t, print filename do_check(sys.argv[1])
#!/usr/bin/env python # # setup.py # """Aberdeen Setup Script""" from setuptools import setup, find_packages from importlib.machinery import SourceFileLoader desc = "Conversion from markdown files to database entries to use as the backend of a blog" NAME = "aberdeen" CONSOLE_SCRIPTS = [ 'aberdeen-init = aberdeen.cli.init:main', 'aberdeen-update-hook = aberdeen.cli.update_hook:main' ] REQUIRES = [ 'emoji', 'termcolor2', 'python-dateutil', ] OPTIONAL_REQUIRES = { 'markdown': ['Markdown'], 'mongodb': ['pymongo','asyncio_mongo'] } KEYWORDS = [ 'markdown', 'blog', 'publishing', 'nosql', 'mongodb', ] CLASSIFIERS = [ "Development Status :: 2 - Pre-Alpha", "Programming Language :: Python :: 3", "Programming Language :: Python :: 3.6", "Topic :: Utilities", "Topic :: Internet :: WWW/HTTP :: Dynamic Content", "License :: OSI Approved :: Apache Software License" ] TESTS_REQUIRE = [ 'pytest', 'pytest-asyncio', ] SETUP_REQUIRES = [ 'pytest-runner', ] meta = SourceFileLoader("meta", "aberdeen/__meta__.py").load_module() tar_url = 'https://github.com/akubera/aberdeen/archive/v%s.tar.gz' % (meta.version) setup( name=NAME, packages=find_packages(exclude=['test']), version=meta.version, description=desc, url=meta.url, download_url=tar_url, author=meta.author, author_email=meta.author_email, keywords=KEYWORDS, license=meta.license, classifiers=CLASSIFIERS, platforms='any', install_requires=REQUIRES, extras_require=OPTIONAL_REQUIRES, tests_require=TESTS_REQUIRE, setup_requires=SETUP_REQUIRES, entry_points={ 'console_scripts': CONSOLE_SCRIPTS, }, package_data={'aberdeen': ['git_hooks/*']} )
from itertools import groupby S = input() for key, gr in groupby(S): print(tuple([len(list(gr)), int(key)]), end=' ')
from simple_hilbert import * from advection_block_analytical import * import space_filling_decomp_new as sfc import numpy as np # Numpy import scipy.sparse.linalg as spl import scipy.linalg as sl import scipy.sparse as sp from util import * def loadsimulation(data_dir, simulaion_steps, simulaion_num, reshape = False): for i in range(simulaion_steps + 1): iter_data = np.loadtxt(F'{data_dir}_%d/step_%d.txt'% (simulaion_num, i)) if reshape: size = np.sqrt(iter_data.shape[0]).astype('int') iter_data = iter_data.reshape((size, size)) if i != 0: tensor = torch.cat((tensor, torch.unsqueeze(torch.from_numpy(iter_data), 0)), 0) else: tensor = torch.unsqueeze(torch.from_numpy(iter_data), 0) return tensor def load_tensor(data_dir, simulation_indexes): total = len(simulation_indexes) cnt_progress = 0 bar=progressbar.ProgressBar(maxval=total) tensor = loadsimulation(simulaion_steps, simulation_indexes[0]) cnt_progress+=1 bar.update(cnt_progress) for i in range(1, total): tensor = torch.cat((tensor, loadsimulation(data_dir, simulaion_steps, simulation_indexes[i]))) cnt_progress+=1 bar.update(cnt_progress) bar.finish() return tensor def index_split(train_ratio, valid_ratio, test_ratio, total_num = 500): if train_ratio + valid_ratio + test_ratio != 1: raise ValueError("The sum of three input ratios should be 1!") total_index = np.arange(1, total_num + 1) rng = np.random.default_rng() total_index = rng.permutation(total_index) knot_1 = int(total_num * train_ratio) knot_2 = int(total_num * valid_ratio) + knot_1 train_index, valid_index, test_index = np.split(total_index, [knot_1, knot_2]) return train_index, valid_index, test_index def sparse_square_grid(N): n = N ** 2 offsets = [-N, -1, 0, 1, N] diags = [] # coefficient in front of u_{i-N}: diags.append(np.ones(n-N)) # coefficient in front of u_{i-1}: diags.append(np.ones(n-1)) # main diagonal, zero for centre difference in space diags.append(np.ones(n)) # coefficient in front of u_{i+1}: diags.append(diags[1]) # coefficient in front of u_{i+N}: diags.append(diags[0]) K = sp.diags(diags, offsets, format='csr') # loop over left-most column in grid (except first row) for i in range(N, n, N): K[i, i-1] = 0 K[i-1, i] = 0 K.eliminate_zeros() return K.indptr + 1, K.indices + 1, K.getnnz() def get_hilbert_curves(size, num): Hilbert_index = hilbert_space_filling_curve(size) invert_Hilbert_index = np.argsort(Hilbert_index) if num == 1: return [Hilbert_index], [invert_Hilbert_index] elif num == 2: Hilbert_index_2 = Hilbert_index.reshape(size, size).T.flatten() invert_Hilbert_index_2 = np.argsort(Hilbert_index_2) return [Hilbert_index, Hilbert_index_2], [invert_Hilbert_index, invert_Hilbert_index_2] def get_MFT_RNN_curves_structured(size, num): findm, colm, ncolm = sparse_square_grid(size) curve_lists = [] inv_lists = [] ncurve = num graph_trim = -10 # has always been set at -10 starting_node = 0 # =0 do not specifiy a starting node, otherwise, specify the starting node whichd, space_filling_curve_numbering = sfc.ncurve_python_subdomain_space_filling_curve(colm, findm, starting_node, graph_trim, ncurve, size**2, ncolm) for i in range(space_filling_curve_numbering.shape[-1]): curve_lists.append(np.argsort(space_filling_curve_numbering[:,i])) inv_lists.append(np.argsort(np.argsort(space_filling_curve_numbering[:,i]))) return curve_lists, inv_lists
#code of the program #fibonacci series n=int(input("No. of terms :-" )) #1st two terms are predefined a1=0 a2=1 i=0 #applying conditions for correct results if n<=0: print("Enter the terms > 0 ") elif n==1: print(a1) else: #using loops print("FIBONACCI SERIES :-") #generating the series while i<=n: print(a1) a=a1+a2 a1=a2 a2=a i+=1
# -*- coding: utf-8 -*- # # michael a.g. aïvázis # orthologue # (c) 1998-2019 all rights reserved # class Value: """ Mix-in class to encapsulate nodes that can hold a value. """ # value management def getValue(self, **kwds): """ Return my value """ # easy enough return self._value def setValue(self, value, **kwds): """ Set my value """ # store the value self._value = value # all done return self # meta methods def __init__(self, value=None, **kwds): # chain up super().__init__(**kwds) # save the value self._value = value # all done return # private data _value = None # end of file
import pygame, math, time from Pendulum import Pendulum, dist, onPath, collide if __name__ == "__main__": # Define pygame variables (width, height) = (640, 480) background_colour = (255,255,255) screen = pygame.display.set_mode((width, height)) pygame.display.set_caption("Pendulum") running = True selected = None # Define the stack of pendulums pendulum_stack = [Pendulum(0, 250, 40), Pendulum(0, 300, 40), Pendulum(0, 350, 40), Pendulum(0, 400, 40)] # Assign an id to each pendulum for i, p in enumerate(pendulum_stack): p.ID = i # Number of pendulums for reference within the game loop numPen = len(pendulum_stack) while running: # draw background and line pendulums hang from screen.fill(background_colour) pygame.draw.line(screen, (0,0,255), (120, 40), (520, 40), 3) for event in pygame.event.get(): if event.type == pygame.QUIT: running = False for p in pendulum_stack: # Check for mouse left click if pygame.mouse.get_pressed() == (1,0,0): (mouseX, mouseY) = pygame.mouse.get_pos() a = mouseX - p.pivot_x b = mouseY - p.pivot_y # If mouse position is within bounds of a pendulum # then select that pendulum if dist(a, b, p.x, p.y) < 40: if selected == None: selected = p.ID (p.x, p.y) = onPath(a, b, p.length, p.pivot_y) p.v_x = 0 elif selected == p.ID: (p.x, p.y) = onPath(a, b, p.length, p.pivot_y) p.v_x = 0 if p.ID < numPen-1: for i in range(p.ID, numPen-1): collide(pendulum_stack[p.ID], pendulum_stack[i+1]) if event.type == pygame.MOUSEBUTTONUP: # Deselect pendulum upon mouse release if selected == p.ID: p.v_x = 0 selected = None # Check for collisions with adjacent pendulum if p.ID < numPen-1: for i in range(p.ID, numPen-1): collide(pendulum_stack[p.ID], pendulum_stack[i+1]) # Pendulum should swing unless it's selected by the user if selected != p.ID: p.swing() p.draw(screen) time.sleep(0.4*0.1) pygame.display.flip() pygame.quit()
from abc import ABCMeta, abstractmethod from six import with_metaclass, integer_types from functools import partial from PySide2 import QtWidgets from . import afnbase from ..xml import xmlutils from ..userinterface import qmainmenu, qloggingmenu import logging logging.basicConfig() log = logging.getLogger(__name__) log.setLevel(logging.INFO) class AFnQt(with_metaclass(ABCMeta, afnbase.AFnBase)): """ Overload of AFnBase that outlines function set behaviour for DCC qt objects. """ __slots__ = () @abstractmethod def getMainWindow(self): """ Returns the main window. :rtype: PySide2.QtWidgets.QMainWindow """ pass def getMainMenuBar(self): """ Returns the menu bar from the main window. This is the safest approach to retrieve the current menu bar. :rtype: PySide2.QtWidgets.QMenuBar """ # Iterate through children # for child in self.getMainWindow().children(): # Check if this is a menu bar # if isinstance(child, QtWidgets.QMenuBar) and child.isVisible(): return child else: continue @staticmethod def objectSafeName(string): """ Returns a string that safe to assign as an object name. This string will be compliant with Maya's pathing syntax. :rtype: str """ return string.replace(' ', '_') @abstractmethod def partial(self, command): """ Returns a partial object for executing commands in a DCC embedded language. :type command: str :rtype: partial """ pass @staticmethod def execute(string): """ Executes the supplied string. :type string: str :rtype: None """ try: exec string except Exception as exception: log.error(exception) def iterMainMenus(self): """ Returns a generator that yields all top-level main menu objects. :rtype: iter """ # Iterate through actions # menuBar = self.getMainMenuBar() for child in menuBar.children(): # Check if menu is visible # if isinstance(child, QtWidgets.QMenu): yield child else: continue def findMainMenuByTitle(self, title): """ Returns the top level menu associated with the given title. :type title: str :rtype: QtWidgets.QMenu """ menus = [x for x in self.iterMainMenus() if x.title() == title] numMenus = len(menus) if numMenus == 0: return elif numMenus == 1: return menus[0] else: raise TypeError('findTopLevelMenuByTitle() expects a unique title!') def findMainMenuByName(self, name): """ Returns the top level menu associated with the given object name. :type name: str :rtype: QtWidgets.QMenu """ menus = [x for x in self.iterMainMenus() if x.objectName() == name] numMenus = len(menus) if numMenus == 0: return elif numMenus == 1: return menus[0] else: raise TypeError('findTopLevelMenuByName() expects a unique name!') def createMenuFromXmlElement(self, xmlElement, parent=None): """ Returns a menu item using the supplied xml element. :type xmlElement: xml.etree.ElementTree.Element :type parent: Union[QtWidgets.QMenu, QtWidgets.QMenuBar] :rtype: Union[QtWidgets.QMenu, QtWidgets.QAction] """ # Query menu tag to determine menu type # if xmlElement.tag == 'Menu': # Create new menu # title = xmlElement.get('title', default='') log.info('Creating menu: %s' % title) menu = QtWidgets.QMenu(title, parent) menu.setObjectName(self.objectSafeName(title)) menu.setSeparatorsCollapsible(False) menu.setTearOffEnabled(bool(xmlElement.get('tearOff', default=False))) menu.setWindowTitle(title) # Create child menus # for child in iter(xmlElement): self.createMenuFromXmlElement(child, parent=menu) # Assign submenu to parent menu # if parent is not None: parent.addMenu(menu) return menu elif xmlElement.tag == 'Action': # Create new action # text = xmlElement.get('text', default='') log.info('Creating action: %s' % text) action = QtWidgets.QAction(text, parent) action.setObjectName(self.objectSafeName(text)) action.setToolTip(xmlElement.get('tooltip', '')) # Configure trigger event # language = xmlElement.get('language', default='') command = xmlElement.get('command', default='') if language == 'python': action.triggered.connect(partial(self.execute, command)) else: action.triggered.connect(self.partial(command)) # Assign action to parent menu # parent.addAction(action) return action elif xmlElement.tag == 'Section': return parent.addSection(xmlElement.get('text', default='')) elif xmlElement.tag == 'Separator': return parent.addSeparator() else: raise TypeError('createMenuItem() expects a valid xml tag (%s found)!' % xmlElement.tag) def createMenuFromFile(self, filePath): """ Creates a menu system from the supplied xml file configuration. :type filePath: str :rtype: QtWidgets.QMenu """ # Parse xml file and inspect root element # xmlTree = xmlutils.parse(filePath) xmlElement = xmlTree.getroot() if xmlElement.tag != 'Menu': raise TypeError('createMenuFromFile() expects Menu tag for root element (%s given)!' % xmlElement.tag) # Create menu from xml element # title = xmlElement.get('title', '') tearOff = bool(xmlElement.get('tearOff', True)) menu = self.findMainMenuByTitle(title) if menu is None: menuBar = self.getMainMenuBar() menu = qmainmenu.QMainMenu(title, tearOff=tearOff, parent=menuBar) menuBar.insertMenu(menuBar.actions()[-1], menu) # Append new menu to menu bar # menu.clear() for child in iter(xmlElement): self.createMenuFromXmlElement(child, parent=menu) return menu def removeMenuFromAssociatedFile(self, filePath): """ Removes the menu that is associated with the supplied file. :type filePath: str :rtype: None """ # Parse xml file and inspect root element # xmlTree = xmlutils.parse(filePath) xmlElement = xmlTree.getroot() if xmlElement.tag != 'Menu': raise TypeError('removeMenuFromAssociatedFile() expects Menu tag for root element (%s given)!' % xmlElement.tag) # Unregister top-level menu # title = xmlElement.get('title', '') menu = self.findMainMenuByTitle(title) if menu is not None: menu.deleteLater() def createLoggingMenu(self): """ Creates a logging menu for modifying logger levels. If the menu already exists the current instance will be refreshed. :rtype: None """ # Check if menu already exists # menuBar = self.getMainMenuBar() menu = self.findMainMenuByTitle('Logging Control') if menu is None: menu = qloggingmenu.QLoggingMenu('Logging Control', parent=menuBar) menuBar.insertMenu(menuBar.actions()[-1], menu) else: menu.refresh() return menu
import numpy as np import torch from torch import nn from torch.nn import functional as F import spconv from pointnet2.pointnet2_modules import PointnetSAModuleMSG from pointnet2.pointnet2_utils import furthest_point_sample from pvrcnn.config import PvrcnnConfig from pvrcnn.data_classes import Boxes3D from pvrcnn.roi_grid_pool import RoiGridPool from pvrcnn.backbone import SparseCNN, VoxelFeatureExtractor class BEV_FeatureGatherer(nn.Module): def __init__(self, cfg, voxel_offset, base_voxel_size): super(BEV_FeatureGatherer, self).__init__() self.cfg = cfg self.voxel_offset = voxel_offset self.base_voxel_size = base_voxel_size def normalize_grid_sample_indices(self, indices, H, W): """F.grid_sample expects normalized indices on (-1, +1).""" image_dims = torch.cuda.FloatTensor([H - 1, W - 1]) indices = torch.min(torch.clamp(indices, 0), image_dims) indices = 2 * (indices / (image_dims - 1)) - 1 return indices def compute_bev_indices(self, keypoint_xyz, H, W): """Convert xyz coordinates to fractional BEV indices.""" indices = (keypoint_xyz[:, None, :, :2] - self.voxel_offset[:2]) indices = indices / (self.base_voxel_size[:2] * self.cfg.strides[-1]) indices = self.normalize_grid_sample_indices(indices, H, W) return indices def forward(self, volume, keypoint_xyz): """ Project 3D voxel grid to XY-plane and gather BEV features using bilinear interpolation. """ volume = volume.dense() N, C, D, H, W = volume.shape volume = volume.view(N, C * D, H, W) indices = self.compute_bev_indices(keypoint_xyz, H, W) features = F.grid_sample(volume, indices).squeeze(2) return features class PV_RCNN(nn.Module): """ For each feature volume stride, convert keypoint locations to continuous voxel index coordinates. Then fetch voxels within ball query. Raw input points are treated as an additional stride-1 voxel stage. """ def __init__(self, cfg): super(PV_RCNN, self).__init__() self.pnets = self.build_pointnets(cfg) self.roi_grid_pool = RoiGridPool(cfg) self.voxel_generator, grid_shape = self.build_voxel_generator(cfg) self.vfe = VoxelFeatureExtractor() self.cnn = SparseCNN(grid_shape, cfg) self.bev_gatherer = self.build_bev_gatherer(cfg) self.cfg = cfg def build_voxel_generator(self, cfg): """Voxel-grid is reversed XYZ -> ZYX and padded in Z-axis.""" voxel_generator = spconv.utils.VoxelGenerator( voxel_size=cfg.voxel_size, point_cloud_range=cfg.grid_bounds, max_voxels=cfg.max_voxels, max_num_points=cfg.max_num_points, ) grid_shape = np.r_[voxel_generator.grid_size[::-1]] + [1, 0, 0] return voxel_generator, grid_shape def build_pointnets(self, cfg): """Copy channel list because PointNet modifies it in-place.""" pnets = [] for i in range(len(cfg.mlps)): pnets += [PointnetSAModuleMSG( npoint=-1, radii=cfg.radii[i], nsamples=cfg.nsamples[i], mlps=cfg.mlps[i].copy(), use_xyz=True, )] return nn.Sequential(*pnets) def build_bev_gatherer(self, cfg): bev = BEV_FeatureGatherer( cfg, self.cnn.voxel_offset, self.cnn.base_voxel_size) return bev def voxelize(self, points): """ Compute sparse voxel grid. :points_in np.ndarray of shape (Np, 4) :points_out FloatTensor of shape (Np, 4) :features FloatTensor of shape (Nv, 1) :coordinates IntTensor of shape (Nv, 4) """ features, coordinates, occupancy = self.voxel_generator.generate(points) coordinates = np.pad(coordinates, ((0, 0), (1, 0)), mode="constant", constant_values=0) from_numpy = lambda x: torch.from_numpy(x).cuda() points, features, coordinates, occupancy = \ map(from_numpy, (points, features, coordinates, occupancy)) features = self.vfe(features, occupancy) return points, features, coordinates def sample_keypoints(self, points): """ Sample keypoints from raw pointcloud. Assumes unit batch size. :points FloatTensor of shape (N, 4). :return FloatTensor of shape (n_keypoints, 3), """ points = points.unsqueeze(0).contiguous() indices = furthest_point_sample(points, self.cfg.n_keypoints) keypoints = points[:, indices.squeeze(0).long(), :3].contiguous() return keypoints def pnet_forward(self, cnn_out, keypoint_xyz): """ Call PointNet modules to gather keypoint features from the intermediate 3D CNN feature maps. :param xyz: (B, N, 3) tensor of the xyz coordinates of the features :param features: (B, N, C) tensor of the descriptors of the the features :param new_xyz: (B, npoint, 3) tensor of the new features' xyz :return (B, npoint, \sum_k(mlps[k][-1])) tensor of the new_features descriptors """ pnet_out = [] for (voxel_xyz, voxel_features), pnet in zip(cnn_out, self.pnets): voxel_xyz = voxel_xyz.unsqueeze(0).contiguous() voxel_features = voxel_features.t().unsqueeze(0).contiguous() out = pnet(voxel_xyz, voxel_features, keypoint_xyz)[1] pnet_out += [out] return pnet_out def forward(self, points): """ TODO: Document intermediate tensor shapes. """ points, features, coordinates = self.voxelize(points) cnn_out, final_volume = self.cnn(features, coordinates, batch_size=1) cnn_out = [torch.split(points, [3, 1], dim=-1)] + cnn_out keypoints_xyz = self.sample_keypoints(points) pnet_out = self.pnet_forward(cnn_out, keypoints_xyz) bev_out = self.bev_gatherer(final_volume, keypoints_xyz) features = torch.cat(pnet_out + [bev_out], dim=1) proposals = Boxes3D(20 * torch.rand((25, 7)).cuda()) pooled_features = self.roi_grid_pool(proposals, keypoints_xyz, features) return pooled_features def main(): cfg = PvrcnnConfig() net = PV_RCNN(cfg).cuda() points = np.random.uniform(0, 50, size=(120000, cfg.raw_C_in)).astype(np.float32) out = net(points) if __name__ == '__main__': main()
#!/usr/bin/env python3 # Copyright (c) 2018-2020 The Dash Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Tests around dash governance objects.""" import json import time from test_framework.messages import uint256_to_string from test_framework.test_framework import DashTestFramework from test_framework.util import assert_equal, assert_greater_than, assert_raises_rpc_error def validate_object(prepared, rpc_prepared): assert_equal(prepared["parentHash"], rpc_prepared["parentHash"]) assert_equal(prepared["collateralHash"], rpc_prepared["collateralHash"]) assert_equal(prepared["createdAt"], rpc_prepared["createdAt"]) assert_equal(prepared["revision"], rpc_prepared["revision"]) assert_equal(prepared["hex"], rpc_prepared["data"]["hex"]) del rpc_prepared["data"]["hex"] assert_equal(prepared["data"], rpc_prepared["data"]) class DashGovernanceTest (DashTestFramework): def set_test_params(self): self.set_dash_test_params(2, 1) def prepare_object(self, object_type, parent_hash, creation_time, revision, name, amount): proposal_rev = revision proposal_time = int(creation_time) proposal_template = { "type": object_type, "name": name, "start_epoch": proposal_time, "end_epoch": proposal_time + 24 * 60 * 60, "payment_amount": amount, "payment_address": self.nodes[0].getnewaddress(), "url": "https://dash.org" } proposal_hex = ''.join(format(x, '02x') for x in json.dumps(proposal_template).encode()) collateral_hash = self.nodes[0].gobject("prepare", parent_hash, proposal_rev, proposal_time, proposal_hex) return { "parentHash": parent_hash, "collateralHash": collateral_hash, "createdAt": proposal_time, "revision": proposal_rev, "hex": proposal_hex, "data": proposal_template, } def run_test(self): time_start = time.time() object_type = 1 # GOVERNANCE PROPOSAL # At start there should be no prepared objects available assert_equal(len(self.nodes[0].gobject("list-prepared")), 0) # Create 5 proposals with different creation times and validate their ordered like expected p1 = self.prepare_object(object_type, uint256_to_string(0), time_start, 0, "SortByTime1", 1) p2 = self.prepare_object(object_type, uint256_to_string(0), time_start + 10, 1000, "SortByTime2", 10) p3 = self.prepare_object(object_type, uint256_to_string(0), time_start - 10, 1000000000, "SortByTime3", 20) p4 = self.prepare_object(object_type, uint256_to_string(0), time_start + 1, -20, "SortByTime4", 400) p5 = self.prepare_object(object_type, uint256_to_string(0), time_start + 30, 1, "SortByTime5", 100000000) rpc_list_prepared = self.nodes[0].gobject("list-prepared") assert_equal(len(rpc_list_prepared), 5) expected_order = [p3, p1, p4, p2, p5] for i in range(len(expected_order)): validate_object(expected_order[i], rpc_list_prepared[i]) # Create two more with the same time self.prepare_object(object_type, uint256_to_string(0), time_start + 60, 1, "SameTime1", 2) self.prepare_object(object_type, uint256_to_string(0), time_start + 60, 2, "SameTime2", 2) # Query them with count=2 rpc_list_prepared = self.nodes[0].gobject("list-prepared", 2) # And make sure it does only return 2 of the 7 available assert_equal(len(rpc_list_prepared), 2) # Since they have the same time they should be sorted by hex data, in this case, the second should be greater assert_greater_than(rpc_list_prepared[1]["data"]["hex"], rpc_list_prepared[0]["data"]["hex"]) # Restart node0 and make sure it still contains all valid proposals after restart rpc_full_list_pre_restart = self.nodes[0].gobject("list-prepared") self.restart_node(0) rpc_full_list_post_restart = self.nodes[0].gobject("list-prepared") assert_equal(rpc_full_list_pre_restart, rpc_full_list_post_restart) # Create more objects so that we have a total of 11 self.prepare_object(object_type, uint256_to_string(0), time_start, 0, "More1", 1) self.prepare_object(object_type, uint256_to_string(0), time_start, 0, "More2", 1) self.prepare_object(object_type, uint256_to_string(0), time_start, 0, "More3", 1) self.prepare_object(object_type, uint256_to_string(0), time_start, 0, "More4", 1) # Make sure default count is 10 while there are 11 in total assert_equal(len(self.nodes[0].gobject("list-prepared")), 10) assert_equal(len(self.nodes[0].gobject("list-prepared", 12)), 11) # Make sure it returns 0 objects with count=0 assert_equal(len(self.nodes[0].gobject("list-prepared", 0)), 0) # And test some invalid count values assert_raises_rpc_error(-8, "Negative count", self.nodes[0].gobject, "list-prepared", -1) assert_raises_rpc_error(-8, "Negative count", self.nodes[0].gobject, "list-prepared", -1000) if __name__ == '__main__': DashGovernanceTest().main()
""" Entradas salario-->int-->s categoria-->int-->c Salidas aumento-->int-->a salario nuevo-->int-->sn """ s=int(input("Digite el salario:") ) c=int(input("Digite una categoria del 1 al 5: ")) if (c==1): a=s*.10 if (c==2): a=s*.15 if (c==3): a=s*.20 if (c==4): a=s*.40 if (c==5): a=s*.60 sn=s+a print("El aumento sera de: "+str(a)) print("Valor del sueldo nuevo: " +str(sn))
from magma import * from mantle.lattice.mantle40.logic import OrN __all__ = ['DefineEncoder', 'Encoder'] # # Given an n-bit input array with only a single bit set, # return the position of the set bit. # # NB. The current implementation only works for n<=8 # def DefineEncoder(n): assert n <= 8 logn = log2(n) class _Encoder(Circuit): name = 'Encoder'+str(n) IO = ['I', In(Array(n, Bit)), 'O', Out(Array(logn, Bit))] @classmethod def definition(Enc): def f(y): or_ = OrN(n/2) os = [] for i in range(n): if i & (1 << y): os.append(Enc.I[i]) wire(array(*os), or_) return AnonymousCircuit("O", or_.O) enc = join( col(f, logn) ) wire(enc.O, Enc.O) return _Encoder def Encoder(n, **kwargs): return DefineEncoder(n)(**kwargs)
# Copyright 2017 F5 Networks Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import pytest from distutils.version import LooseVersion from f5.sdk_exception import UnsupportedOperation class TestPolicyBuilder(object): def test_update_raises(self, policy): with pytest.raises(UnsupportedOperation): policy.policy_builder.update() @pytest.mark.skipif( LooseVersion(pytest.config.getoption('--release')) > LooseVersion('11.5.4'), reason='This test is for versions below 11.6.0.' ) def test_load_modify_v11_5(self, policy): r1 = policy.policy_builder.load() assert r1.kind == 'tm:asm:policies:policy-builder:pbconfigstate' assert r1.enablePolicyBuilder is False r1.modify(enablePolicyBuilder=True) assert r1.enablePolicyBuilder is True r2 = policy.policy_builder.load() assert r1.kind == r2.kind assert hasattr(r2, 'responseStatusCodes') assert hasattr(r2, 'learnFromResponses') @pytest.mark.skipif( LooseVersion(pytest.config.getoption('--release')) > LooseVersion('11.6.1'), reason='This test is for versions greater than 11.5.4.' ) @pytest.mark.skipif( LooseVersion(pytest.config.getoption('--release')) <= LooseVersion('11.5.4'), reason='This test is for versions not below 11.6.0.' ) def test_load_modify(self, policy): r1 = policy.policy_builder.load() assert r1.kind == 'tm:asm:policies:policy-builder:pbconfigstate' assert r1.enablePolicyBuilder is False assert not hasattr(r1, 'responseStatusCodes') assert not hasattr(r1, 'learnFromResponses') r1.modify(enablePolicyBuilder=True) assert r1.enablePolicyBuilder is True r2 = policy.policy_builder.load() assert r1.kind == r2.kind assert hasattr(r2, 'responseStatusCodes') assert hasattr(r2, 'learnFromResponses') @pytest.mark.skipif( LooseVersion(pytest.config.getoption('--release')) > LooseVersion('12.0.0'), reason='This test is for version greater than 12.' ) def test_refresh_modify(self, policy): r1 = policy.policy_builder.load() assert r1.kind == 'tm:asm:policies:policy-builder:pbconfigstate' assert r1.enablePolicyBuilder is False assert not hasattr(r1, 'responseStatusCodes') assert not hasattr(r1, 'learnFromResponses') r2 = policy.policy_builder.load() assert r1.kind == r2.kind assert r2.enablePolicyBuilder is False assert not hasattr(r2, 'responseStatusCodes') assert not hasattr(r2, 'learnFromResponses') r2.modify(enablePolicyBuilder=True) assert r2.enablePolicyBuilder is True assert hasattr(r2, 'responseStatusCodes') assert hasattr(r2, 'learnFromResponses') r1.refresh() assert hasattr(r1, 'responseStatusCodes') assert hasattr(r1, 'learnFromResponses') assert r1.enablePolicyBuilder == r2.enablePolicyBuilder @pytest.mark.skipif( LooseVersion(pytest.config.getoption('--release')) < LooseVersion('12.0.0'), reason='This test is for version 12.1.0 or greater.' ) def test_refresh_modify_v12(self, policy): r1 = policy.policy_builder.load() assert r1.kind == 'tm:asm:policies:policy-builder:policy-builderstate' assert r1.trustAllIps is False r2 = policy.policy_builder.load() assert r1.kind == r2.kind assert r2.trustAllIps is False r2.modify(trustAllIps=True) assert r2.trustAllIps is True r1.refresh() assert r1.trustAllIps == r2.trustAllIps @pytest.mark.skipif( LooseVersion(pytest.config.getoption('--release')) < LooseVersion('12.0.0'), reason='This test is for version 12.0.0 or greater.' ) def test_load_modify_v12(self, policy): r1 = policy.policy_builder.load() assert r1.kind == 'tm:asm:policies:policy-builder:policy-builderstate' assert r1.trustAllIps is False r1.modify(trustAllIps=True) assert r1.trustAllIps is True r2 = policy.policy_builder.load() assert r1.kind == r2.kind
#!/usr/bin/env python3 import time, argparse from learn import main def get(help, choices=None, default=None): while True: i = input(help) if i: if choices and i not in choices: pass else: if default == []: i = i.split() return i else: return default def get_args(): parser = argparse.ArgumentParser() args = parser.parse_args() print('按回车选择默认选项 ...') args.all = get('同步所有学期的所有课程 [y/N]:', choices=['Y', 'N', 'y', 'n'], default=None) if args.all in ['n', 'N']: args.all = None args.clear = get('清空相同文件 [y/N]:', choices=['Y', 'N', 'y', 'n'], default=None) if args.clear in ['n', 'N']: args.clear = None args.semester = get('学期:', default=[]) args.course = get('指定课程:', default=[]) args.ignore = get('忽略课程:', default=[]) args._pass = '.pass' args.cookie = '' return args if __name__ == '__main__': t = time.time() main(get_args()) t = time.time() - t print('耗时: %02d:%02d:%02.0f' % (t // 3600, (t % 3600) // 60, t % 60)) input('请按任意键退出')
# coding: utf-8 import json import uuid from datetime import datetime import io import unicodecsv as ucsv from django.contrib.auth.models import User from onadata.apps.logger.models import Instance from onadata.libs.utils.logger_tools import dict2xml, safe_create_instance def get_submission_meta_dict(xform, instance_id): """Generates metadata for our submission Checks if `instance_id` belongs to an existing submission. If it does, it's considered an edit and its uuid gets deprecated. In either case, a new one is generated and assigned. :param onadata.apps.logger.models.XForm xform: The submission's XForm. :param string instance_id: The submission/instance `uuid`. :return: The metadata dict :rtype: dict """ uuid_arg = 'uuid:{}'.format(uuid.uuid4()) meta = {'instanceID': uuid_arg} update = 0 if xform.instances.filter(uuid=instance_id).count() > 0: uuid_arg = 'uuid:{}'.format(uuid.uuid4()) meta.update({'instanceID': uuid_arg, 'deprecatedID': 'uuid:{}'.format(instance_id)}) update += 1 return [meta, update] def dict2xmlsubmission(submission_dict, xform, instance_id, submission_date): """Creates and xml submission from an appropriate dict (& other data) :param dict submission_dict: A dict containing form submission data. :param onadata.apps.logger.models.XForm xfrom: The submission's XForm. :param string instance_id: The submission/instance `uuid`. :param string submission_date: An isoformatted datetime string. :return: An xml submission string :rtype: string """ return ('<?xml version="1.0" ?>' '<{0} id="{1}" instanceID="uuid:{2}" submissionDate="{3}" ' 'xmlns="http://opendatakit.org/submissions">{4}' '</{0}>'.format( json.loads(xform.json).get('name', xform.id_string), xform.id_string, instance_id, submission_date, dict2xml(submission_dict).replace('\n', ''))) def submit_csv(username, xform, csv_file): """ Imports CSV data to an existing form Takes a csv formatted file or string containing rows of submission/instance and converts those to xml submissions and finally submits them by calling :py:func:`onadata.libs.utils.logger_tools.safe_create_instance` :param str username: the submission user :param onadata.apps.logger.models.XForm xfrom: The submission's XForm. :param (str or file): A CSV formatted file with submission rows. :return: If successful, a dict with import summary else dict with error str. :rtype: Dict """ if isinstance(csv_file, str): csv_file = io.StringIO(csv_file) elif csv_file is None or not hasattr(csv_file, 'read'): return {'error': ('Invalid param type for `csv_file`. ' 'Expected file or String ' 'got {} instead.'.format(type(csv_file).__name__))} csv_reader = ucsv.DictReader(csv_file) rollback_uuids = [] submission_time = datetime.utcnow().isoformat() ona_uuid = {'formhub': {'uuid': xform.uuid}} error = None additions = inserts = 0 for row in csv_reader: # fetch submission uuid before purging row metadata row_uuid = row.get('_uuid') submitted_by = row.get('_submitted_by') submission_date = row.get('_submission_time', submission_time) row_iter = dict(row) for key in row_iter: # seems faster than a comprehension # remove metadata (keys starting with '_') if key.startswith('_'): del row[key] # process nested data e.g x[formhub/uuid] => x[formhub][uuid] if r'/' in key: p, c = key.split('/') row[p] = {c: row[key]} del row[key] # inject our form's uuid into the submission row.update(ona_uuid) old_meta = row.get('meta', {}) new_meta, update = get_submission_meta_dict(xform, row_uuid) inserts += update old_meta.update(new_meta) row.update({'meta': old_meta}) row_uuid = row.get('meta').get('instanceID') rollback_uuids.append(row_uuid.replace('uuid:', '')) xml_file = io.StringIO( dict2xmlsubmission(row, xform, row_uuid, submission_date)) try: error, instance = safe_create_instance(username, xml_file, [], xform.uuid, None) except ValueError as e: error = e if error: Instance.objects.filter(uuid__in=rollback_uuids, xform=xform).delete() return {'error': str(error)} else: additions += 1 users = User.objects.filter( username=submitted_by) if submitted_by else [] if users: instance.user = users[0] instance.save() return {'additions': additions - inserts, 'updates': inserts}
import cv2 import caffe import tools import sys import os import numpy as np from functools import partial import config def gen_scales(w, h, min_imgsize, net_imgsize): scales = [] scale = float(net_imgsize) / min_imgsize; minhw = min(w, h) * scale; while minhw > net_imgsize: scales.append(scale) scale *= 0.709 minhw *= 0.709 return scales def regularize_rect(img_shape, rect): w, h, _ = img_shape x1, y1, x2, y2, prob = rect x1 = max(0, min(x1, w)) x2 = max(0, min(x2, w)) y1 = max(0, min(y1, h)) y2 = max(0, min(y2, h)) return [x1, x2, y1, y2, prob] def load_model(model_dir, net, iter_num): proto_path = os.path.join(model_dir, '%s.prototxt' % net) model_path = os.path.join(model_dir, '%s_iter_%d.caffemodel' % (net, iter_num)) return caffe.Net(proto_path, model_path, caffe.TEST) def test_pnet(img, min_img_size, net_size, net): norm_img = (img.copy() - 127.5) / 127.5 h, w, c = norm_img.shape scales = gen_scales(w, h, min_img_size, net_size) rects = [] for scale in scales: sh = int(h * scale) sw = int(w * scale) scale_img = cv2.resize(norm_img, (sw, sh)) scale_img = cv2.transpose(scale_img) scale_img = np.swapaxes(scale_img, 0, 2) net.blobs['data'].reshape(1, 3, sh, sw) net.blobs['data'].data[...] = scale_img print(scale_img.shape) print(scale_img) out = net.forward() conv1 = net.blobs["conv1"] label_prob = out[config.NET_OUTPUTS['pnet']['label']][0] bbox = out[config.NET_OUTPUTS['pnet']['bbox']][0] print(conv1.data.shape) print(conv1.data) out_h, out_w = label_prob[1].shape out_side = max(out_h, out_w) rect = tools.detect_face_12net(label_prob[1], bbox, out_side, 1 / scale, w, h, 0.65) rects += rect break rects = tools.NMS(rects, 0.7, 'iou') return rects def test_rnet(img, rects, min_img_size, net_size, net): norm_img = (img.copy() - 127.5) / 128 h, w, c = norm_img.shape for i, rect in enumerate(rects): cropped_img = img[int(rect[1]):int(rect[3]), int(rect[0]):int(rect[2]),] resized_img = cv2.resize(cropped_img, (net_size, net_size)) resized_img = np.swapaxes(resized_img, 0, 2) net.blobs['data'].data[i] = resized_img out = net.forward() label_prob = out[config.NET_OUTPUTS['rnet']['label']][0][1] bbox = out[config.NET_OUTPUTS['rnet']['bbox']][0][1] rects = tools.filter_face_24net(label_prob, bbox, rects, w, h, 0.7) return [rect for rect in rects if rects[2] - rects[0] > 0 and rects[3] - rects[1] > 0] def test_net(net, model_dir, iter_num): model_path = os.path.join(model_dir, '%s_iter_%d.caffemodel' % (net, iter_num)) proto_path = os.path.join(model_dir, '%s.prototxt' % net) caffe_net = caffe.Net(proto_path, model_path, caffe.TEST) if net == 'pnet': return partial(test_pnet, net=caffe_net) elif net == 'rnet': return partial(test_rnet, net=caffe_net) if __name__ == '__main__': net = sys.argv[1] iter_num = int(sys.argv[2]) img_path = sys.argv[3] test_func = test_net(net, config.MODEL_DIR, iter_num) img = cv2.imread(img_path) rects = test_func(img, config.MIN_IMG_SIZE, config.NET_IMG_SIZES['pnet']) for i, rect in enumerate(rects): sub_img = img[rect[1]:rect[3], rect[0]:rect[2]] print(sub_img.shape, rect) cv2.imwrite("pnet/test/%d_%f.jpg" % (i, rect[4]), sub_img) for i, rect in enumerate(rects): cv2.rectangle(img, (rect[0], rect[1]), (rect[2], rect[3]), (255,0,0), 3) cv2.imwrite("pnet/result.jpg", img) print('%d rects generated' % len(rects))
# =========================================================================== # Different topic strategy # =========================================================================== from __future__ import print_function, division, absolute_import topic2T = { 'dsname': ['est', 'fin', 'sam'], 'feats': ['mfcc'], 'normalize': ['mfcc'], 'mode': 'bin', 'context': 30, 'hop': 10, 'seq': True, 'nb_topics': 2, 'unite_topics': True, } topic4T = { 'dsname': ['est', 'fin', 'sam'], 'feats': ['mfcc'], 'normalize': ['mfcc'], 'mode': 'bin', 'context': 30, 'hop': 10, 'seq': True, 'nb_topics': 4, 'unite_topics': True, } topic6T = { 'dsname': ['est', 'fin', 'sam'], 'feats': ['mfcc'], 'normalize': ['mfcc'], 'mode': 'bin', 'context': 30, 'hop': 10, 'seq': True, 'nb_topics': 6, 'unite_topics': True, } topic10T = { 'dsname': ['est', 'fin', 'sam'], 'feats': ['mfcc'], 'normalize': ['mfcc'], 'mode': 'bin', 'context': 30, 'hop': 10, 'seq': True, 'nb_topics': 10, 'unite_topics': True, } topic2F = { 'dsname': ['est', 'fin', 'sam'], 'feats': ['mfcc'], 'normalize': ['mfcc'], 'mode': 'bin', 'context': 30, 'hop': 10, 'seq': True, 'nb_topics': 2, 'unite_topics': False, } topic4F = { 'dsname': ['est', 'fin', 'sam'], 'feats': ['mfcc'], 'normalize': ['mfcc'], 'mode': 'bin', 'context': 30, 'hop': 10, 'seq': True, 'nb_topics': 4, 'unite_topics': False, } topic10F = { 'dsname': ['est', 'fin', 'sam'], 'feats': ['mfcc'], 'normalize': ['mfcc'], 'mode': 'bin', 'context': 30, 'hop': 10, 'seq': True, 'nb_topics': 10, 'unite_topics': False, }
from dataset.jester import Jester from config import Config def get_training_set(spatial_transform, temporal_transform, target_transform): return Jester( Config.dataset_path, Config.annotation_path, 'training', spatial_transform=spatial_transform, temporal_transform=temporal_transform, target_transform=target_transform, sample_duration=Config.sample_duration) def get_validation_set(spatial_transform, temporal_transform, target_transform): return Jester( Config.dataset_path, Config.annotation_path, 'validation', Config.n_val_samples, spatial_transform, temporal_transform, target_transform, sample_duration=Config.sample_duration) def get_test_set(spatial_transform, temporal_transform, target_transform): if Config.test_subset == 'val': subset = 'validation' elif Config.test_subset == 'test': subset = 'testing' return Jester( Config.dataset_path, Config.annotation_path, subset, spatial_transform = spatial_transform, temporal_transform= temporal_transform, target_transform=target_transform, sample_duration=Config.sample_duration)
"""Copyright 2011 The University of Michigan Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Authors - Jie Yu (jieyu@umich.edu) """ import os from maple.core import proto def race_pb2(): return proto.module('race.race_pb2') class StaticRaceEvent(object): def __init__(self, proto, db): self.proto = proto self.db = db self.sinfo = db.sinfo def id(self): return self.proto.id def inst(self): return self.sinfo.find_inst(self.proto.inst_id) def type(self): return self.proto.type def type_name(self): if self.type() == race_pb2().RACE_EVENT_READ: return 'READ' elif self.type() == race_pb2().RACE_EVENT_WRITE: return 'WRITE' else: return 'INVALID' def __str__(self): content = [] content.append('%-4d' % self.id()) content.append('%-7s' % self.type_name()) content.append('[%-40s]' % str(self.inst())) return ' '.join(content) class StaticRace(object): def __init__(self, proto, db): self.proto = proto self.db = db self.sinfo = db.sinfo def id(self): return self.proto.id def event(self, idx): event_id = self.proto.event_id[idx] return self.db.find_static_event(event_id) def num_events(self): return len(self.proto.event_id) def __str__(self): content = [] content.append('Static Race %-4d' % self.id()) for idx in range(self.num_events()): content.append(' %s' % str(self.event(idx))) return '\n'.join(content) class RaceEvent(object): def __init__(self, proto, db): self.proto = proto self.db = db def thd_id(self): return self.proto.thd_id def static_event(self): return self.db.find_static_event(self.proto.static_id) def __str__(self): content = [] content.append('[T%lx]' % self.thd_id()) content.append('%s' % str(self.static_event())) return ' '.join(content) class Race(object): def __init__(self, proto, db): self.proto = proto self.db = db self.event_vec = [] for e_proto in self.proto.event: e = RaceEvent(e_proto, db) self.event_vec.append(e) def exec_id(self): return self.proto.exec_id def addr(self): return self.proto.addr def event(self, idx): return self.event_vec[idx] def num_events(self): return len(self.proto.event) def static_race(self): return self.db.find_static_race(self.proto.static_id) def __str__(self): content = [] content.append('Dynamic Race: %-4d 0x%-8x' % (self.exec_id(), self.addr())) for idx in range(self.num_events()): content.append(' %s' % self.event(idx)) return '\n'.join(content) class RaceDB(object): def __init__(self, sinfo): self.sinfo = sinfo self.proto = race_pb2().RaceDBProto() self.static_event_map = {} self.static_race_map = {} self.race_vec = [] self.racy_inst_set = set() def load(self, db_name): if not os.path.exists(db_name): return f = open(db_name, 'rb') self.proto.ParseFromString(f.read()) f.close() for e_proto in self.proto.static_event: e = StaticRaceEvent(e_proto, self) self.static_event_map[e.id()] = e for r_proto in self.proto.static_race: r = StaticRace(r_proto, self) self.static_race_map[r.id()] = r for r_proto in self.proto.race: r = Race(r_proto, self) self.race_vec.append(r) for inst_id in self.proto.racy_inst_id: inst = self.sinfo.find_inst(inst_id) self.racy_inst_set.add(inst) def num_static_races(self): return len(self.proto.static_race) def num_racy_insts(self): return len(self.proto.racy_inst_id) def find_static_event(self, id): return self.static_event_map[id] def find_static_race(self, id): return self.static_race_map[id] def display_static_race(self, f): for r in self.static_race_map.itervalues(): f.write('%s\n' % str(r)) def display_race(self, f): for r in self.race_vec: f.write('%s\n' % str(r)) def display_racy_inst(self, f): for inst in self.racy_inst_set: f.write('%s\n' % str(inst))
#!/usr/bin/env python3 from aws_cdk import core as cdk from stacks.base_stack import BaseStack from stacks.databases_stack import DatabasesStack from stacks.lakeformation_stack import LakeFormationStack from stacks.opensearch_stack import OpenSearchStack app = cdk.App() base = BaseStack(app, "aws-data-wrangler-base") DatabasesStack( app, "aws-data-wrangler-databases", base.get_vpc, base.get_bucket, base.get_key, ) LakeFormationStack(app, "aws-data-wrangler-lakeformation") OpenSearchStack( app, "aws-data-wrangler-opensearch", base.get_vpc, base.get_bucket, base.get_key, ) app.synth()
__version__ = '0.9.4d1'
from Queue import Queue import comms import cPickle import nav import threading import time GRAPH_FILE = 'graph.txt' G = cPickle.load(open(GRAPH_FILE)) BASE_VALUE = 0 READY_VALUE = 1 ERROR_VALUE = 2 task_queue = Queue() car_queue = Queue() car_task_locations = {} class Car(threading.Thread): """ Object that maintains car information and queues. """ def __init__(self, ser, device_id, navStatus="", state=(0, 4, 'E'), response_code=READY_VALUE): super(Car, self).__init__() self.ser = ser self.device_id = device_id self.navStatus = navStatus self.state = state self.final_destination = None self.response_code = response_code self.instQ = Queue() car_queue.put(self) self.queued = True self.ready_to_exit = False def update_data(self, navStatus, response_code): """ Updates car info and adds car to Queue if necessary. """ self.navStatus = navStatus self.response_code = response_code if self.can_be_queued(): car_queue.put(self) self.queued = True def can_be_queued(self): return not self.queued and self.instQ.empty() and self.response_code == READY_VALUE def has_path_to_destination(self, goal_node): """Returns a valid path if one exists. Returns None otherwise.""" dirs = nav.get_directions(G, self.state, goal_node) return dirs def add_task(self, path, goal_node): if self.final_destination: car_task_locations[self.final_destination] = False self.final_destination = goal_node car_task_locations[goal_node] = True for di in path: self.instQ.put(di) self.queued = False self.wave_hello() def respond(self): """ Pops a command to the car if one is available and updates intended location data. """ if self.response_code == READY_VALUE and not self.instQ.empty(): inst = self.instQ.get() instruction_letter = inst[0] next_destination = inst[1] self.send_command(instruction_letter) if instruction_letter == 't': nav.reactivate_node(G, self.state) if next_destination == self.final_destination: nav.reactivate_node(G, self.final_destination) self.state = next_destination self.response_code = BASE_VALUE def send_command(self, action): comms.write_to_device(self.ser, action) def read_data(self): return comms.read_from_device(self.ser) def wave_hello(self): self.send_command('h') def run(self): while not self.ready_to_exit: try: args = self.read_data() if len(args) >= 4: navStatus = args[0] usDistance = float(args[1]) temp = float(args[2]) response_code = int(args[3]) self.update_data(navStatus, response_code) except Exception, e: pass def car_update_loop(car_manager): """ Updates data and determines next action. """ while not car_manager.ready_to_exit: if not car_manager.paused: bad_tasks = [] while not task_queue.empty() and not car_queue.empty(): task = task_queue.get() goal_node = nav.translate_to_loc(task) if not car_task_locations.setdefault(goal_node, False): car = car_queue.get() path = car.has_path_to_destination(goal_node) if path is None: car_queue.put(car) bad_tasks.append(task) else: print "queueing task %d onto car %s" % (task, car.device_id) car.add_task(path, goal_node) for bt in bad_tasks: task_queue.put(bt) bad_tasks[:] = [] for car in car_manager.cars: car.respond() def stop_and_readjust(car_manager): """ Suspends car movements and displays intended locations. """ car_manager.paused = True for car in car_manager.cars: print("Car %s should be at position: %s" %(str(car.device_id), str(car.state))) raw_input("Press enter to continue.") car_manager.paused = False for car in car_manager.cars: car.wave_hello() def handle_input(car_manager): """ Allows users to input program commands. """ while not car_manager.ready_to_exit: user_input = raw_input("Enter a command or type 'h' for help: ") user_input = user_input.lower() if user_input.startswith('s'): # Stop and Readjust mode stop_and_readjust(car_manager) elif user_input.startswith('t'): # Input locations tasks = eval(raw_input("Input a list of integer locations (ex. [6, 2, 4]): ")) if isinstance(tasks, list): for task in tasks: task_queue.put(task) else: print("Please format tasks correctly.") elif user_input.startswith('h'): # Help print "t - Input tasks" print "s - Enter stop-and-readjust mode" print "q - Quit the program" elif user_input.startswith('q'): car_manager.quit() time.sleep(0.4) class CarManager(): """ Discovers and maintains information on all cars. """ def __init__(self): self.cars = [] self.device_ports = [] self.paused = False self.ready_to_exit = False self.discover_cars() def discover_cars(self): dev_id_count = 0 devices = comms.bind_all_devices() for port, ser in devices: self.device_ports.append(port) if dev_id_count >= 2: car = Car(ser, dev_id_count, state=(0, 0, 'E')) else: car = Car(ser, dev_id_count) car.start() print("Connected to car %d" % dev_id_count) self.cars.append(car) dev_id_count += 1 def quit(self): for car in self.cars: car.ready_to_exit = True car.ser.close() for dp in self.device_ports: comms.release_device(dp) self.ready_to_exit = True def main(): car_manager = CarManager() input_thread = threading.Thread(target = handle_input, args = (car_manager,)) input_thread.start() car_update_loop(car_manager) if __name__ == "__main__": main()
import json from os.path import join, isfile from .targets import DirectoryTarget, NamedVolumeTarget, TargetOptions root_path = "/bb8/etc/" source_config_path = join(root_path, "source-config.json") config_path = join(root_path, "config.json") ssh_key_path = join(root_path, "secrets/ssh_key") host_key_path = join(root_path, "secrets/host_key") known_hosts_path = join(root_path, "known_hosts") log_dir = '/bb8/logs/' class Settings: def __init__(self, path=config_path, machine_id_path=join(root_path, "machine-id")): with open(path, 'r') as f: config = json.load(f) self.starport = config["starport"] self.targets = list(Settings.parse_target(t) for t in config["targets"]) if isfile(machine_id_path): with open(machine_id_path, 'r') as f: self.instance_guid = f.read().replace('\n', '') else: self.instance_guid = None @classmethod def parse_target(cls, data): t = data["type"] options = TargetOptions.from_data(data) if t == "directory": return DirectoryTarget(data["name"], data["path"], options) elif t == "named_volume": return NamedVolumeTarget(data["name"], data["volume"], options) else: raise Exception("Unsupported target type: " + t) def load_settings(): return Settings()
from textwrap import dedent import pytest from pylox.lox import Lox # Base cases from https://github.com/munificent/craftinginterpreters/blob/master/test/constructor/arguments.lox TEST_SRC = dedent( """\ class Foo { init(a, b) { print "init"; // expect: init this.a = a; this.b = b; } } var foo = Foo(1, 2); print foo.a; // expect: 1 print foo.b; // expect: 2 """ ) EXPECTED_STDOUTS = ["init", "1", "2"] def test_arguments(capsys: pytest.CaptureFixture) -> None: interpreter = Lox() interpreter.run(TEST_SRC) assert not interpreter.had_error assert not interpreter.had_runtime_error all_out = capsys.readouterr().out.splitlines() assert all_out == EXPECTED_STDOUTS
import sys import unittest import numpy as np import os from shutil import rmtree try: from concurrent import futures except ImportError: futures = False try: import z5py except ImportError: sys.path.append('..') import z5py class TestUtil(unittest.TestCase): tmp_dir = './tmp_dir' shape = (100, 100, 100) chunks = (10, 10, 10) def setUp(self): if not os.path.exists(self.tmp_dir): os.mkdir(self.tmp_dir) def tearDown(self): if os.path.exists(self.tmp_dir): rmtree(self.tmp_dir) @unittest.skipUnless(futures, "Needs 3rd party concurrent.futures in python 2") def test_rechunk_default(self): from z5py.util import rechunk in_path = os.path.join(self.tmp_dir, 'in.n5') out_path = os.path.join(self.tmp_dir, 'out.n5') # create input file in_file = z5py.File(in_path, use_zarr_format=False) ds_in = in_file.create_dataset('data', dtype='float32', shape=self.shape, chunks=self.chunks, compression='gzip') # write test data data = np.arange(ds_in.size).reshape(ds_in.shape).astype(ds_in.dtype) ds_in[:] = data # rechunk for different out blocks out_file = z5py.File(out_path, use_zarr_format=False) new_chunks = (20, 20, 20) # NOTE we can only choose out blocks that align with the chunks # because otherwise we run into issues due to not thread safe blocking for out_blocks in (None, (40, 40, 40), (60, 60, 60)): ds_str = 'none' if out_blocks is None else '_'.join(map(str, out_blocks)) ds_name = 'data_%s' % ds_str rechunk(in_path, out_path, 'data', ds_name, new_chunks, out_blocks=out_blocks, n_threads=8) # make sure that new data agrees ds_out = out_file[ds_name] data_out = ds_out[:] self.assertEqual(data_out.shape, data.shape) self.assertEqual(ds_out.chunks, new_chunks) self.assertTrue(np.allclose(data, data_out)) @unittest.skipUnless(futures, "Needs 3rd party concurrent.futures in python 2") def test_rechunk_custom(self): from z5py.util import rechunk in_path = os.path.join(self.tmp_dir, 'in.n5') out_path = os.path.join(self.tmp_dir, 'out.n5') # create input file in_file = z5py.File(in_path, use_zarr_format=False) ds_in = in_file.create_dataset('data', dtype='float32', shape=self.shape, chunks=self.chunks, compression='gzip') # write test data data = np.arange(ds_in.size).reshape(ds_in.shape).astype(ds_in.dtype) ds_in[:] = data # rechunk new_chunks = (20, 20, 20) for compression in ('raw', 'gzip'): for dtype in ('float64', 'int32', 'uint32'): ds_name = 'ds_%s_%s' % (compression, dtype) rechunk(in_path, out_path, 'data', ds_name, new_chunks, n_threads=8, compression=compression, dtype=dtype) # make sure that new data agrees out_file = z5py.File(out_path, use_zarr_format=False) ds_out = out_file[ds_name] data_out = ds_out[:] self.assertEqual(data_out.shape, data.shape) self.assertEqual(ds_out.chunks, new_chunks) self.assertTrue(np.allclose(data, data_out)) # TODO finish blocking tests def simple_blocking(self, shape, block_shape): blocking = [] ndim = len(shape) for x in range(0, shape[0], block_shape[0]): blocking.append((x, min(x + block_shape[0], shape[0]))) if ndim > 1: block = blocking.pop() for y in range(0, shape[1], block_shape[1]): blocking.append(block + min(y + block_shape[1], shape[1])) def _test_blocking(self): from z5py.util import blocking n_reps = 10 for dim in range(1, 6): for _ in range(n_reps): shape = tuple(np.random.randint(0, 1000) for ii in range(dim)) block_shape = tuple(min(np.random.randint(0, 100), sh) for ii, sh in zip(range(dim), shape)) blocking1 = [(block.start, block.stop) for block in blocking(shape, block_shape)] blocking2 = self.simple_blocking(shape, block_shape) sorted(blocking1) sorted(blocking2) self.assertEqual(blocking1, blocking2) if __name__ == '__main__': unittest.main()
import cv2 import numpy as np resim = cv2.imread("ati.JPG") cv2.imshow("resim",resim) cv2.waitKey(0) cv2.destroyAllWindows()
num_list = [int(x) for x in input().split()] sum = int(input("Enter the sum: ")) low = 0 hi = len(num_list)-1 found = False while low<hi: s = num_list[low]+num_list[hi] if s==sum: found = True break elif s<sum: if num_list[low]<num_list[hi]: low +=1 else: hi -=1 else: if num_list[low]>num_list[hi]: low +=1 else: hi -=1 print(found)
# -*- coding:utf8 -*- # Performance optimization model(Maybe Only Linux) if __name__ == "__main__": from main import app from werkzeug.contrib.profiler import ProfilerMiddleware from config import GLOBAL Host = GLOBAL.get('Host') Port = GLOBAL.get('Port') app.config['PROFILE'] = True app.wsgi_app = ProfilerMiddleware(app.wsgi_app, restrictions = [60]) app.run(debug=True, host=Host, port=Port)
from django.conf.urls import patterns, url urlpatterns = patterns('betty.image_browser.views', url(r'^search.html$', 'search'), # noqa url(r'^upload\.html$', 'upload'), url(r'^crop\.html$', 'crop'), )
import datetime from django.contrib import messages from django.http import HttpResponse, HttpResponseRedirect from django.shortcuts import render from django.urls import reverse from django.views.decorators.csrf import csrf_exempt from aimsbackend.models import Students, Courses, Subjects, CustomUser, Attendance, AttendanceReport, \ StudentLeaveReport, StudentFeedBack, StudentNotifications, StudentResult, SessionYearModel def student_home(request): student_obj = Students.objects.get(admin=request.user.id) attendance_total = AttendanceReport.objects.filter( student_id=student_obj).count() attendance_present = AttendanceReport.objects.filter( student_id=student_obj, status=True).count() attendance_absent = AttendanceReport.objects.filter( student_id=student_obj, status=False).count() course = Courses.objects.get(id=student_obj.course_id.id) subjects = Subjects.objects.filter(course_id=course).count() subjects_data = Subjects.objects.filter(course_id=course) session_obj = SessionYearModel.objects.get( id=student_obj.session_year_id.id) subject_name = [] data_present = [] data_absent = [] subject_data = Subjects.objects.filter(course_id=student_obj.course_id) for subject in subject_data: attendance = Attendance.objects.filter(subject_id=subject.id) attendance_present_count = AttendanceReport.objects.filter( attendance_id__in=attendance, status=True, student_id=student_obj.id).count() attendance_absent_count = AttendanceReport.objects.filter( attendance_id__in=attendance, status=False, student_id=student_obj.id).count() subject_name.append(subject.subject_name) data_present.append(attendance_present_count) data_absent.append(attendance_absent_count) return render(request, "student_template/student_home_template.html", {"total_attendance": attendance_total, "attendance_absent": attendance_absent, "attendance_present": attendance_present, "subjects": subjects, "data_name": subject_name, "data1": data_present, "data2": data_absent, }) def student_view_attendance(request): student = Students.objects.get(admin=request.user.id) course = student.course_id subjects = Subjects.objects.filter(course_id=course) return render(request, "student_template/student_view_attendance.html", {"subjects": subjects}) def student_view_attendance_post(request): subject_id = request.POST.get("subject") start_date = request.POST.get("start_date") end_date = request.POST.get("end_date") start_data_parse = datetime.datetime.strptime( start_date, "%Y-%m-%d").date() end_data_parse = datetime.datetime.strptime(end_date, "%Y-%m-%d").date() subject_obj = Subjects.objects.get(id=subject_id) user_object = CustomUser.objects.get(id=request.user.id) stud_obj = Students.objects.get(admin=user_object) attendance = Attendance.objects.filter(attendance_date__range=( start_data_parse, end_data_parse), subject_id=subject_obj) attendance_reports = AttendanceReport.objects.filter( attendance_id__in=attendance, student_id=stud_obj) return render(request, "student_template/student_attendance_data.html", {"attendance_reports": attendance_reports}) def student_apply_leave(request): staff_obj = Students.objects.get(admin=request.user.id) leave_data = StudentLeaveReport.objects.filter(student_id=staff_obj) return render(request, "student_template/student_apply_leave.html", {"leave_data": leave_data}) def student_apply_leave_save(request): if request.method != "POST": return HttpResponseRedirect(reverse("student_apply_leave")) else: leave_date = request.POST.get("leave_date") leave_msg = request.POST.get("leave_msg") student_obj = Students.objects.get(admin=request.user.id) try: leave_report = StudentLeaveReport( student_id=student_obj, leave_date=leave_date, leave_message=leave_msg, leave_status=0) leave_report.save() messages.success(request, "Successfully Applied for Leave") return HttpResponseRedirect(reverse("student_apply_leave")) except: messages.error(request, "Failed To Apply for Leave") return HttpResponseRedirect(reverse("student_apply_leave")) def student_feedback(request): staff_id = Students.objects.get(admin=request.user.id) feedback_data = StudentFeedBack.objects.filter(student_id=staff_id) return render(request, "student_template/student_feedback.html", {"feedback_data": feedback_data}) def student_feedback_save(request): if request.method != "POST": return HttpResponseRedirect(reverse("student_feedback")) else: feedback_msg = request.POST.get("feedback_msg") student_obj = Students.objects.get(admin=request.user.id) try: feedback = StudentFeedBack( student_id=student_obj, feedback=feedback_msg, feedback_reply="") feedback.save() messages.success(request, "Successfully Sent Feedback") return HttpResponseRedirect(reverse("student_feedback")) except: messages.error(request, "Failed To Send Feedback") return HttpResponseRedirect(reverse("student_feedback")) def student_profile(request): user = CustomUser.objects.get(id=request.user.id) student = Students.objects.get(admin=user) return render(request, "student_template/student_profile.html", {"user": user, "student": student}) def student_profile_save(request): if request.method != "POST": return HttpResponseRedirect(reverse("student_profile")) else: first_name = request.POST.get("first_name") last_name = request.POST.get("last_name") password = request.POST.get("password") address = request.POST.get("address") try: customuser = CustomUser.objects.get(id=request.user.id) customuser.first_name = first_name customuser.last_name = last_name if password != None and password != "": customuser.set_password(password) customuser.save() student = Students.objects.get(admin=customuser) student.address = address student.save() messages.success(request, "Successfully Updated Profile") return HttpResponseRedirect(reverse("student_profile")) except: messages.error(request, "Failed to Update Profile") return HttpResponseRedirect(reverse("student_profile")) @csrf_exempt def student_fcmtoken_save(request): token = request.POST.get("token") try: student = Students.objects.get(admin=request.user.id) student.fcm_token = token student.save() return HttpResponse("True") except: return HttpResponse("False") def student_all_notification(request): student = Students.objects.get(admin=request.user.id) notifications = StudentNotifications.objects.filter(student_id=student.id) return render(request, "student_template/all_notification.html", {"notifications": notifications}) def student_view_result(request): student = Students.objects.get(admin=request.user.id) studentresult = StudentResult.objects.filter(student_id=student.id) return render(request, "student_template/student_result.html", {"studentresult": studentresult})
import ccobra from Modal_Logic.ccobra_adapter import ccobra_to_assertion from Modal_Logic.solver import does_a_follow_from_b class MentalModel(ccobra.CCobraModel): def __init__(self, name='Modal Logic System S4'): super(MentalModel, self).__init__( name, ['modal'], ['verify']) def predict(self, item, **kwargs): task = ccobra_to_assertion(item.task[0]) choices = ccobra_to_assertion(item.choices[0][0]) return does_a_follow_from_b(task, choices, ['reflexive', 'transitive']) def pre_train(self, dataset): pass # print("pretrain") # print(len(dataset)) # for subj_train_data in dataset: # for seq_train_data in subj_train_data: # print(seq_train_data['item'].identifier, seq_train_data['response']) def adapt(self, item, response, **kwargs): # print(item.task) # print(response) # print() pass
# Read from file, announce on the web, irc, xml-rpc from twisted.application import internet, service, strports from twisted.internet import protocol, reactor, defer, endpoints from twisted.words.protocols import irc from twisted.protocols import basic from twisted.web import resource, server, static, xmlrpc import cgi class FingerProtocol(basic.LineReceiver): def lineReceived(self, user): d = self.factory.getUser(user) def onError(err): return b'Internal error in server' d.addErrback(onError) def writeResponse(message): self.transport.write(message + b'\r\n') self.transport.loseConnection() d.addCallback(writeResponse) class IRCReplyBot(irc.IRCClient): def connectionMade(self): self.nickname = self.factory.nickname irc.IRCClient.connectionMade(self) def privmsg(self, user, channel, msg): user = user.split('!')[0] if self.nickname.lower() == channel.lower(): d = self.factory.getUser(msg.encode("ascii")) def onError(err): return 'Internal error in server' d.addErrback(onError) def writeResponse(message): message = message.decode("ascii") irc.IRCClient.msg(self, user, msg+ ': ' + message) d.addCallback(writeResponse) class FingerService(service.Service): def __init__(self, filename): self.filename = filename self.users = {} def _read(self): self.users.clear() with open(self.filename, "rb") as f: for line in f: user, status = line.split(b':', 1) user = user.strip() status = status.strip() self.users[user] = status self.call = reactor.callLater(30, self._read) def getUser(self, user): return defer.succeed(self.users.get(user, b"No such user")) def getFingerFactory(self): f = protocol.ServerFactory() f.protocol = FingerProtocol f.getUser = self.getUser return f def getResource(self): def getData(path, request): user = self.users.get(path, b"No such user <p/> usage: site/user") path = path.decode("ascii") user = user.decode("ascii") text = '<h1>{}</h1><p>{}</p>'.format(path, user) text = text.encode("ascii") return static.Data(text, 'text/html') r = resource.Resource() r.getChild = getData x = xmlrpc.XMLRPC() x.xmlrpc_getUser = self.getUser r.putChild('RPC2', x) return r def getIRCBot(self, nickname): f = protocol.ClientFactory() f.protocol = IRCReplyBot f.nickname = nickname f.getUser = self.getUser return f def startService(self): self._read() service.Service.startService(self) def stopService(self): service.Service.stopService(self) self.call.cancel() application = service.Application('finger', uid=1, gid=1) f = FingerService('/etc/users') serviceCollection = service.IServiceCollection(application) f.setServiceParent(serviceCollection) strports.service("tcp:79", f.getFingerFactory() ).setServiceParent(serviceCollection) strports.service("tcp:8000", server.Site(f.getResource()) ).setServiceParent(serviceCollection) internet.ClientService( endpoints.clientFromString(reactor, "tcp:irc.freenode.org:6667"), f.getIRCBot('fingerbot')).setServiceParent(serviceCollection)
from django.shortcuts import redirect from django.http import JsonResponse from django.core import serializers from django.contrib import messages class ReviewAjaxFormMixin(object): def form_invalid(self, form): response = super(ReviewAjaxFormMixin, self).form_invalid(form) if self.request.is_ajax(): return JsonResponse(form.errors, status=400) else: return response def form_valid(self, form): response = super(ReviewAjaxFormMixin, self).form_valid(form) if self.request.is_ajax(): print(form.cleaned_data) data = { 'message': "Successfully submitted form data." } review = form.save() ser_review = serializers.serialize('json', [ review, ]) # send to client side. return JsonResponse({'review': ser_review}, status=200) # return JsonResponse(data) else: review = form.save() messages.success(self.request, 'Review submitted') next_ = self.request.POST.get('next') if next_: return redirect(next_) return response
import cv2 import numpy as np from tensorflow.keras.models import load_model from image_utils import preprocess model = load_model('./model.h5') print(model.summary()) img = cv2.imread('/home/sajith/Documents/Acedamic/self-driving-car/data/data/IMG/center_2021_01_12_13_20_30_027.jpg') cv2.imshow('tem', img) img = preprocess(img) img = np.asarray(img, dtype=np.float32) print(img.shape) print(float(model.predict(img[None,:,:,:])[0]))
############################################################################### # WaterTAP Copyright (c) 2021, The Regents of the University of California, # through Lawrence Berkeley National Laboratory, Oak Ridge National # Laboratory, National Renewable Energy Laboratory, and National Energy # Technology Laboratory (subject to receipt of any required approvals from # the U.S. Dept. of Energy). All rights reserved. # # Please see the files COPYRIGHT.md and LICENSE.md for full copyright and license # information, respectively. These files are also available online at the URL # "https://github.com/watertap-org/watertap/" # ############################################################################### """ Tests for loading water source definitions """ import pytest import yaml import os from pyomo.environ import ConcreteModel, value from pyomo.util.check_units import assert_units_consistent from idaes.core import FlowsheetBlock from watertap.unit_models.zero_order import FeedZO from watertap.core import Database, WaterParameterBlock dbpath = os.path.join(os.path.dirname(os.path.abspath(__file__)), "..") with open(os.path.join(dbpath, "water_sources.yaml"), "r") as f: lines = f.read() f.close() source_data = yaml.load(lines, yaml.Loader) DEFAULT_SOURCE = "seawater" @pytest.mark.integration def test_default_source(): m = ConcreteModel() m.db = Database() m.fs = FlowsheetBlock(default={"dynamic": False}) m.fs.params = WaterParameterBlock(default={"database": m.db}) m.fs.unit = FeedZO(default={"property_package": m.fs.params}) for j in m.fs.params.solute_set: assert j in source_data[DEFAULT_SOURCE]["solutes"] m.fs.unit.load_feed_data_from_database() assert pytest.approx( source_data[DEFAULT_SOURCE]["default_flow"]["value"], rel=1e-12 ) == value(m.fs.unit.flow_vol[0]) assert m.fs.unit.flow_vol[0].fixed for j, v in source_data[DEFAULT_SOURCE]["solutes"].items(): assert pytest.approx(v["value"], rel=1e-12) == value( m.fs.unit.conc_mass_comp[0, j] ) assert m.fs.unit.conc_mass_comp[0, j].fixed assert_units_consistent(m) @pytest.mark.integration @pytest.mark.parametrize( "source", list(j for j in source_data.keys() if j != "default") ) def test_all_sources(source): m = ConcreteModel() m.db = Database() m.fs = FlowsheetBlock(default={"dynamic": False}) m.fs.params = WaterParameterBlock( default={"database": m.db, "water_source": source} ) m.fs.unit = FeedZO(default={"property_package": m.fs.params}) for j in m.fs.params.solute_set: assert j in source_data[source]["solutes"] m.fs.unit.load_feed_data_from_database() assert pytest.approx( source_data[source]["default_flow"]["value"], rel=1e-12 ) == value(m.fs.unit.flow_vol[0]) assert m.fs.unit.flow_vol[0].fixed for j, v in source_data[source]["solutes"].items(): assert pytest.approx(v["value"], rel=1e-12) == value( m.fs.unit.conc_mass_comp[0, j] ) assert m.fs.unit.conc_mass_comp[0, j].fixed assert j in m.db.component_list.keys()
####################################### # 文字列の操作 ####################################### def f1(a, b): # 文字列aとbを連結してxに代入せよ # (次の行を書き換える) x = "" return x def f2(s): # 文字列sの、左から数えて3文字目を取り出してxに代入せよ # 例: "abcdefg" => "c" # (次の行を書き換える) x = "" return x def f3(s): # 文字列sの、左から数えて3文字目から6文字目までを取り出してxに代入せよ # 例: "abcdefg" => "cdef" # (次の行を書き換える) x = "" return x def f4(s): # 文字列sを3回繰り返した文字列をxに代入せよ # 例: "abc" => "abcabcabc" # (次の行を書き換える) x = "" return x assert f1("xy", "zw") == "xyzw" assert f2("123456") == "3" assert f3("123456789") == "3456" assert f4("xy") == "xyxyxy" print("OK")
""" Jinsung Yoon (9/13/2018) PATE-GAN: Synthetic Data Generation """ import numpy as np from PATE_GAN import PATE_GAN import argparse import os import time import pandas as pd import initpath_alg initpath_alg.init_sys_path() import utilmlab # gpu_frac = 0.5 # config = tf.ConfigProto() # config.gpu_options.per_process_gpu_memory_fraction = gpu_frac # set_session(tf.Session(config=config)) def df_split_random(df, train_rate=0.8): idx = np.random.permutation(len(df)) train_idx = idx[:int(train_rate * len(df))] test_idx = idx[int(train_rate * len(df)):] df_train = df.iloc[train_idx] df_test = df.iloc[test_idx, :] return df_train, df_test def init_arg(): parser = argparse.ArgumentParser() parser.add_argument("--otrain") parser.add_argument("--otest") parser.add_argument("--itrain") parser.add_argument("--itest") parser.add_argument("--iter", type=int, default=10000) parser.add_argument("--epsilon", type=float, default=1) parser.add_argument("--delta", type=int, default=5) parser.add_argument("--teachers", type=int, default=5) parser.add_argument( "--target", help='name of response var when using csv as input') parser.add_argument( "--separator", default=',', help="separator csv file") return parser.parse_args() if __name__ == '__main__': args = init_arg() target = args.target.split(',') sep = args.separator fn_i_train = args.itrain fn_i_test = args.itest fn_o_train = args.otrain fn_o_test = args.otest num_teachers = args.teachers niter = args.iter epsilon = args.epsilon delta = args.delta assert fn_i_train is not None assert fn_i_test is not None assert fn_o_train is not None assert fn_o_test is not None assert target is not None logger = utilmlab.init_logger(os.path.dirname(fn_o_train)) logger.info('loading {} target:{} sep:{}'.format( (fn_i_train, fn_i_test), target, sep)) df_train = pd.read_csv(fn_i_train, sep=sep) df_test = pd.read_csv(fn_i_test, sep=sep) features = list(df_train.columns) for lbl in target: assert lbl in features features.remove(lbl) logger.info('features:{} {}'.format(len(features), features)) logger.info('target:{}'.format(target)) logger.info('epsilon:{} delta:{}'.format(epsilon, delta)) time_exe_start = time.time() x_train_new, y_train_new, x_test_new, y_test_new = PATE_GAN( df_train[features].values, df_train[target].values, df_test[features].values, df_test[target].values, epsilon, delta, niter, num_teachers) cols = features cols.append(target[0]) df_train_new = pd.DataFrame( np.hstack( [x_train_new, y_train_new.reshape(len(y_train_new), -1)]), columns=cols) df_test_new = pd.DataFrame( np.hstack( [x_test_new, y_test_new.reshape(len(y_test_new), -1)]), columns=cols) df_train_new.to_csv( fn_o_train, index=False, compression=utilmlab.get_df_compression(fn_o_train)) df_test_new.to_csv( fn_o_test, index=False, compression=utilmlab.get_df_compression(fn_o_test))
import datetime import unittest from unittest import mock from aprsd import messaging class TestMessageTrack(unittest.TestCase): def setUp(self) -> None: config = {} messaging.MsgTrack(config=config) def _clean_track(self): track = messaging.MsgTrack() track.data = {} track.total_messages_tracked = 0 return track def test_create(self): track1 = messaging.MsgTrack() track2 = messaging.MsgTrack() self.assertEqual(track1, track2) def test_add(self): track = self._clean_track() fromcall = "KFART" tocall = "KHELP" message = "somthing" msg = messaging.TextMessage(fromcall, tocall, message) track.add(msg) self.assertEqual(msg, track.get(msg.id)) def test_remove(self): track = self._clean_track() fromcall = "KFART" tocall = "KHELP" message = "somthing" msg = messaging.TextMessage(fromcall, tocall, message) track.add(msg) track.remove(msg.id) self.assertEqual(None, track.get(msg.id)) def test_len(self): """Test getting length of tracked messages.""" track = self._clean_track() fromcall = "KFART" tocall = "KHELP" message = "somthing" msg = messaging.TextMessage(fromcall, tocall, message) track.add(msg) self.assertEqual(1, len(track)) msg2 = messaging.TextMessage(tocall, fromcall, message) track.add(msg2) self.assertEqual(2, len(track)) track.remove(msg.id) self.assertEqual(1, len(track)) @mock.patch("aprsd.messaging.TextMessage.send") def test__resend(self, mock_send): """Test the _resend method.""" track = self._clean_track() fromcall = "KFART" tocall = "KHELP" message = "somthing" msg = messaging.TextMessage(fromcall, tocall, message) msg.last_send_attempt = 3 track.add(msg) track._resend(msg) msg.send.assert_called_with() self.assertEqual(0, msg.last_send_attempt) @mock.patch("aprsd.messaging.TextMessage.send") def test_restart_delayed(self, mock_send): """Test the _resend method.""" track = self._clean_track() fromcall = "KFART" tocall = "KHELP" message1 = "something" message2 = "something another" message3 = "something another again" mock1_send = mock.MagicMock() mock2_send = mock.MagicMock() mock3_send = mock.MagicMock() msg1 = messaging.TextMessage(fromcall, tocall, message1) msg1.last_send_attempt = 3 msg1.last_send_time = datetime.datetime.now() msg1.send = mock1_send track.add(msg1) msg2 = messaging.TextMessage(tocall, fromcall, message2) msg2.last_send_attempt = 3 msg2.last_send_time = datetime.datetime.now() msg2.send = mock2_send track.add(msg2) track.restart_delayed(count=None) msg1.send.assert_called_once() self.assertEqual(0, msg1.last_send_attempt) msg2.send.assert_called_once() self.assertEqual(0, msg2.last_send_attempt) msg1.last_send_attempt = 3 msg1.send.reset_mock() msg2.last_send_attempt = 3 msg2.send.reset_mock() track.restart_delayed(count=1) msg1.send.assert_not_called() msg2.send.assert_called_once() self.assertEqual(3, msg1.last_send_attempt) self.assertEqual(0, msg2.last_send_attempt) msg3 = messaging.TextMessage(tocall, fromcall, message3) msg3.last_send_attempt = 3 msg3.last_send_time = datetime.datetime.now() msg3.send = mock3_send track.add(msg3) msg1.last_send_attempt = 3 msg1.send.reset_mock() msg2.last_send_attempt = 3 msg2.send.reset_mock() msg3.last_send_attempt = 3 msg3.send.reset_mock() track.restart_delayed(count=2) msg1.send.assert_not_called() msg2.send.assert_called_once() msg3.send.assert_called_once() self.assertEqual(3, msg1.last_send_attempt) self.assertEqual(0, msg2.last_send_attempt) self.assertEqual(0, msg3.last_send_attempt) msg1.last_send_attempt = 3 msg1.send.reset_mock() msg2.last_send_attempt = 3 msg2.send.reset_mock() msg3.last_send_attempt = 3 msg3.send.reset_mock() track.restart_delayed(count=2, most_recent=False) msg1.send.assert_called_once() msg2.send.assert_called_once() msg3.send.assert_not_called() self.assertEqual(0, msg1.last_send_attempt) self.assertEqual(0, msg2.last_send_attempt) self.assertEqual(3, msg3.last_send_attempt)
#!/usr/bin/env ipython import sys, unittest import numpy as np #-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- class DotTestCase(unittest.TestCase): """A test fixture for numpy's dot products""" def setUp(self): """Establish our fixture""" n = 4 self.x = np.arange(n) self.y = 1 - np.linspace(0.0, 1.0, n) def tearDown(self): """Cleanup""" del self.x del self.y def testDotI(self): """Test np.dot for x.x""" self.assertEqual(np.dot(self.x, self.x), sum([x*x for x in self.x])) class DetectionTestCase(unittest.TestCase): """A test fixture for numpy's dot products""" def setUp(self): """Establish our fixture""" pass def tearDown(self): """Cleanup""" pass #-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- def suite(): """Returns a suite containing all the test cases in this module.""" suites = [] suites += unittest.makeSuite(DotTestCase) suites += unittest.makeSuite(DetectionTestCase) return unittest.TestSuite(suites) def run(shouldExit=False): """Run the tests""" if shouldExit: unittest.main() else: return unittest.TextTestRunner().run(suite()).wasSuccessful() if __name__ == "__main__": run(True)
""" Time:2019-2-26 Author:pengfei Motivation:for training on a csv dataset """ """csv Dataset Classes Original author: Francisco Massa https://github.com/fmassa/vision/blob/voc_dataset/torchvision/datasets/voc.py Updated by: Ellis Brown, Max deGroot """ from .config import HOME import os.path as osp import sys import csv import torch import torch.utils.data as data import cv2 import numpy as np import pandas as pd class CSVAnnotationTransform(object): """Transforms a VOC annotation into a Tensor of bbox coords and label index Initilized with a dictionary lookup of classnames to indexes Arguments: class_to_ind (dict, optional): dictionary lookup of classnames -> indexes (default: alphabetic indexing of VOC's 20 classes) keep_difficult (bool, optional): keep difficult instances or not (default: False) height (int): height width (int): width """ def __init__(self, keep_difficult=False): self.keep_difficult = keep_difficult def __call__(self, targets, width, height, classes): """ Arguments: target (annotation) : the target annotation to be made usable will be an ET.Element Returns: a list containing lists of bounding boxes [bbox coords, class name] """ res = [] wh = np.array([width, height, width, height, 1]) for i in targets: bboxe = list(map(float, i[:-1])) # str to float bboxe.append(classes[i[-1]]) bboxe /= wh # bounding box normalization res += [list(bboxe)] return res # [[xmin, ymin, xmax, ymax, label_ind], ... ] class CSVDataset(data.Dataset): """VOC Detection Dataset Object input is image, target is annotation Arguments: root (string): image path with all trainval and test images. csv_file (string): csv file which contain object's information class_file(string): csv file contains classes information transform (callable, optional): transformation to perform on the input image target_transform (callable, optional): transformation to perform on the target `annotation` (eg: take in caption string, return tensor of word indices) dataset_name (string, optional): which dataset to load (default: 'csv') """ def __init__(self, csv_file, classes_file, transform=None, target_transform=CSVAnnotationTransform(), dataset_name='csv'): self.csv_file = csv_file self.transform = transform self.target_transform = target_transform self.name = dataset_name self.img_lists = [] self.targets = [] # construct class information dict # key is class's name, item is class's index with open(classes_file) as f: temp = list(csv.reader(f)) self.classes = dict(zip([x[0] for x in temp], [float(x[1]) for x in temp])) self.num_classes = len(temp)+1 with open(csv_file) as f: temp = list(csv.reader(f)) for i in temp: self.targets.append(i[1:]) self.ids = self._get_im_lists(csv_file) def __getitem__(self, index): im, gt, h, w = self.pull_item(index) return im, gt def __len__(self): return len(self.ids) def pull_item(self, index): im_info = self.ids[index] im_path = im_info[0] img = cv2.imread(im_path) # img = self.ims[index] height, width, channels = img.shape # Reshape the targets from [num_targets * 5] to [num_targets, 5] num_targets = int( (len(im_info)-1) / 5) targets = [] for i in range(num_targets): targets.append(im_info[1+5*i:1+5*(i+1)]) if self.target_transform is not None: target = self.target_transform(targets, width, height, self.classes) if self.transform is not None: target = np.array(target) img, boxes, labels = self.transform(img, target[:, :4], target[:, 4]) # to rgb img = img[:, :, (2, 1, 0)] # img = img.transpose(2, 0, 1) target = np.hstack((boxes, np.expand_dims(labels, axis=1))) return torch.from_numpy(img).permute(2, 0, 1), target, height, width def pull_image(self, index): '''Returns the original image object at index in PIL form Note: not using self.__getitem__(), as any transformations passed in could mess up this functionality. Argument: index (int): index of img to show Return: PIL img ''' img_path = self.ids[index] return cv2.imread(img_path, cv2.IMREAD_COLOR) def pull_anno(self, index): '''Returns the original annotation of image at index Note: not using self.__getitem__(), as any transformations passed in could mess up this functionality. Argument: index (int): index of img to get annotation of Return: list: [img_id, [(label, bbox coords),...]] eg: ('001718', [('dog', (96, 13, 438, 332))]) ''' im_info = self.ids[index] # Reshape the targets from [num_targets * 5] to [num_targets, 5] num_targets = int((len(im_info) - 1) / 5) targets = [] for i in range(num_targets): targets.append(im_info[1 + 5 * i:1 + 5 * (i + 1)]) gt = self.target_transform(targets, 1, 1, self.classes) return targets, gt def pull_tensor(self, index): '''Returns the original image at an index in tensor form Note: not using self.__getitem__(), as any transformations passed in could mess up this functionality. Argument: index (int): index of img to show Return: tensorized version of img, squeezed ''' return torch.Tensor(self.pull_image(index)).unsqueeze_(0) def _get_im_lists(self, dataset_file): """ :param dataset_file: (string) csv file contains objects :return: (list) images list. Shape [num_images] [[im_name_1, x1,y1,x2,y2, classes_name, ....], ....] """ im_list_old = pd.read_csv(dataset_file).values.tolist() im_list_new = [] current_im_name = '' new_im = [] for index, i in enumerate(im_list_old): if i[0] != current_im_name: if index > 0: im_list_new.append(new_im) new_im = i current_im_name = i[0] else: new_im += i[1:] if index == len(im_list_old) - 1: im_list_new.append(new_im) return im_list_new
# for more information on how to install requests # http://docs.python-requests.org/en/master/user/install/#install import requests import json # TODO: replace with your own app_id and app_key app_id = '-' app_key = '-' def get_meaning(word): language = 'en' word_id = str(word) url = 'https://od-api.oxforddictionaries.com:443/api/v1/entries/' + language + '/' + word_id.lower() r = requests.get(url, headers = {'app_id': app_id, 'app_key': app_key}) # print(r) # print("code {}\n".format(r.status_code)) try: meaning = r.json() except: return "No entry available for " + '"' + str(word) +'"' # print(type(meaning)) out = '' for i in meaning["results"][0]["lexicalEntries"][0]["entries"][0]["senses"]: out += str(i["definitions"][0]).capitalize() + "\n" + "Usage Examples:\n" try: for j in i["examples"]: out += "- " + j["text"] + "\n" except: out += "None\n" pass return out if __name__ == '__main__': print(get_meaning("cupcalsroskl;dke"))
#/usr/bin/python # senderclient.py - this file is part of dailyimage # Log in and send emails to clients import sys # argv, exit import smtplib # for email ... from email.MIMEMultipart import MIMEMultipart from email.MIMEBase import MIMEBase from email.mime.image import MIMEImage from email.MIMEText import MIMEText from email import Encoders from getimage import get_image class Client: ''' class Client attributes: email string - The user's email query string - Image search query time dictionary 'hour', 'minute' - Time to send ''' def __init__(self, email, timestring, query): self.email = email # Build the dictionary, i.e timestring='15:35' gives {'hour': 15, 'minute': 35} self.time = dict(zip(['hour', 'minute'], [int(i) for i in timestring.split(':', 2)])) self.query = query # Start the generator to find images of the client's query self.image_generator = get_image(query) class Sender: ''' class Sender attributes: smtpObj smtplib.SMTP ''' def __init__(self, email, password): ''' arguments: email: string password: string Using the email and password, this function logs into the email on the provider's SMTP server and returns the generated client ''' self.email = email # Contains the SMTP server and the appropriate port depending on the email server = [] with open('.smtp_servers') as f: # Find the appropriate server and port from the user's email for line in f: elems = line.split(None, 3) if elems[0] in email: server = dict(zip(['provider', 'server', 'port'], line.split(None, 3))) break # Only some email providers work, see .smtp_servers for details if not server: raise ValueError('Could not find an SMTP server for that email provider: ' + email) # Create a client and connect to the SMTP server self.smtpObj = smtplib.SMTP(server['server'], server['port']) self.smtpObj.ehlo() self.smtpObj.starttls() self.smtpObj.login(email, password) def send(self, client): '''Send an image to the email''' body = 'Here is your daily ' + client.query[:-1] + '!\n\nRegards, DailyImage' # Create the email message msg = MIMEMultipart() msg['Subject'] = 'Your Daily ' + client.query msg['From'] = self.email msg['To'] = client.email msg.attach(MIMEText(body.encode('utf-8'))) # Get the next image and attach it image = next(client.image_generator) attachment = MIMEImage(image, 'daily-' + client.query) msg.attach(attachment) # Off it goes! self.smtpObj.sendmail(self.email, client.email, msg.as_string()) def main(argv): if len(argv) != 3: print('usage: login.py email password') sys.exit() try: client = login(argv[1], argv[2]) except smtplib.SMTPAuthenticationError as e: print('Error: Could not log in. ') print((e.__str__().split('\'')[1])) sys.exit() print('Login successful') client.smtpObj.quit() if __name__ == '__main__': import sys main(sys.argv)
import numpy as np import pandas as pd import matplotlib.image as mpimg from typing import Tuple from .config import _dir _data_dir = '%s/input' % _dir cell_types = ['HEPG2', 'HUVEC', 'RPE', 'U2OS'] positive_control = 1108 negative_control = 1138 nsirna = 1108 # excluding 30 positive_control + 1 negative_control plate_shape = (14, 22) def set_data_dir(d): global _data_dir _data_dir = d def load_header(set_type): """ Args: set_type (str): train or test id_code experiment plate well sirna well_type cell_type HEPG2-01_1_B03 HEPG2-01 1 B03 513 posotive_control HEPG2 """ df = pd.read_csv('%s/%s.csv' % (_data_dir, set_type)) df_controls = pd.read_csv('%s/%s_controls.csv' % (_data_dir, set_type)) if set_type == 'train': df.insert(5, 'well_type', 'train') else: df.insert(4, 'sirna', -1) df.insert(5, 'well_type', 'test') df_all = pd.concat([df, df_controls], sort=False) # Add cell_type; HPEG2-01 -> HPEG2 df_all['cell_type'] = df_all['experiment'].str.replace('-.*', '', regex=True) # Add cell_type: HPEG2-01 -> 1 ex_no = df_all['experiment'].str.replace('^.*-', '', regex=True) df_all['experiment_no'] = ex_no.astype(int) return df_all def load(set_type, id_code, site): """ Load image specified by the id_code Args: set_type (str): train or test id_code (str): U2OS-03_4_O19 (or, can be a pd.Series with id_code) site (int): 1 or 2 Returns: img (np.array): 6 x 512 x 512 """ if not isinstance(id_code, str): if isinstance(id_code, pd.Series): id_code = id_code.id_code else: raise TypeError('id_code is not str', id_code) if not (site == 1 or site == 2): raise ValueError('site must be 1 or 2') # Example: # id_code: U2OS-03_4_O19 # filename: U2OS-03/Plate4/O19_s<site>_w<channel>.png v = id_code.split('_') batch = v[0] # U2OS-03 plate = v[1] # 4 well = v[2] # O19 nc = 512 X = np.empty((6, nc, nc)) for ichannel in range(6): filename = ('%s/%s/%s/Plate%s/%s_s%d_w%d.png' % (_data_dir, set_type, batch, plate, well, site, ichannel + 1)) img = mpimg.imread(filename) X[ichannel, :, :] = img[:, :] return X def well_coordinate(well: str) -> Tuple[int]: """ Row: B -> 0 Col: 02 -> 0 Args: well (str): e.g. B02 Returns (row, col) """ assert(len(well) == 3) row = ord(well[0].lower()) - 96 col = int(well[1:]) return (row, col) def well_index(well: str) -> int: row, col = well_coordinate(well) return row * 22 + col
""" Unified interfaces to minimization algorithms. Functions --------- - minimize : minimization of a function of several variables. """ __all__ = ['minimize', 'show_minimize_options'] from warnings import warn # unconstrained minimization from optimize import _minimize_neldermead, _minimize_powell, \ _minimize_cg, _minimize_bfgs, _minimize_newtoncg, \ MemoizeJac from anneal import _minimize_anneal # contrained minimization from lbfgsb import _minimize_lbfgsb from tnc import _minimize_tnc from cobyla import _minimize_cobyla from slsqp import _minimize_slsqp def minimize(fun, x0, args=(), method='BFGS', jac=None, hess=None, hessp=None, bounds=None, constraints=(), options=dict(), full_output=False, callback=None, retall=False): """ Minimization of scalar function of one or more variables. .. versionadded:: 0.11.0 Parameters ---------- fun : callable Objective function. x0 : ndarray Initial guess. args : tuple, optional Extra arguments passed to the objective function and its derivatives (Jacobian, Hessian). method : str, optional Type of solver. Should be one of: {'Nelder-Mead', 'Powell', 'CG', 'BFGS', 'Newton-CG', 'Anneal', 'L-BFGS-B', 'TNC', 'COBYLA', 'SLSQP'}. jac : bool or callable, optional Jacobian of objective function. Only for CG, BFGS, Newton-CG. If `jac` is a Boolean and is True, `fun` is assumed to return the value of Jacobian along with the objective function. If False, the Jacobian will be estimated numerically. `jac` can also be a callable returning the Jacobian of the objective. In this case, it must accept the same arguments as `fun`. hess, hessp : callable, optional Hessian of objective function or Hessian of objective function times an arbitrary vector p. Only for Newton-CG. Only one of `hessp` or `hess` needs to be given. If `hess` is provided, then `hessp` will be ignored. If neither `hess` nor `hessp` is provided, then the hessian product will be approximated using finite differences on `jac`. `hessp` must compute the Hessian times an arbitrary vector. bounds : sequence, optional Bounds for variables (only for L-BFGS-B, TNC, COBYLA and SLSQP). ``(min, max)`` pairs for each element in ``x``, defining the bounds on that parameter. Use None for one of ``min`` or ``max`` when there is no bound in that direction. constraints : dict or sequence of dict, optional Constraints definition (only for COBYLA and SLSQP). Each constraint is defined in a dictionary with fields: type: str Constraint type: 'eq' for equality, 'ineq' for inequality. fun: callable The function defining the constraint. jac: callable, optional The Jacobian of `fun` (only for SLSQP). args: sequence, optional Extra arguments to be passed to the function and Jacobian. Equality constraint means that the constraint function result is to be zero whereas inequality means that it is to be non-negative. Note that COBYLA only supports inequality constraints. options : dict, optional A dictionary of solver options. All methods accept the following generic options: maxiter : int Maximum number of iterations to perform. disp : bool Set to True to print convergence messages. For method-specific options, see `show_minimize_options`. full_output : bool, optional If True, return optional outputs. Default is False. callback : callable, optional Called after each iteration, as ``callback(xk)``, where ``xk`` is the current parameter vector. retall : bool, optional If True, return a list of the solution at each iteration. This is only done if `full_output` is True. Returns ------- xopt : ndarray The solution. info : dict A dictionary of optional outputs (depending on the chosen method) with the keys: solution : ndarray The solution (same as `xopt`). success : bool Boolean flag indicating if a solution was found. status : int An integer flag indicating the type of termination. Its value depends on the underlying solver. Refer to `message` for more information. message : str A string message giving information about the cause of the termination. fun, jac, hess : ndarray Values of objective function, Jacobian and Hessian (if available). nfev, njev, nhev: int Number of evaluations of the objective functions and of its jacobian and hessian. nit: int Number of iterations. direc: ndarray Current set of direction vectors for the Powell method. T : float Final temperature for simulated annealing. accept : int Number of tests accepted. allvecs : list Solution at each iteration (if ``retall == True``). Notes ----- This section describes the available solvers that can be selected by the 'method' parameter. The default method is *BFGS*. Unconstrained minimization ~~~~~~~~~~~~~~~~~~~~~~~~~~ Method *Nelder-Mead* uses the Simplex algorithm [1]_, [2]_. This algorithm has been successful in many applications but other algorithms using the first and/or second derivatives information might be preferred for their better performances and robustness in general. Method *Powell* is a modification of Powell's method [3]_, [4]_ which is a conjugate direction method. It performs sequential one-dimensional minimizations along each vector of the directions set (`direc` field in `options` and `info`), which is updated at each iteration of the main minimization loop. The function need not be differentiable, and no derivatives are taken. Method *CG* uses a nonlinear conjugate gradient algorithm by Polak and Ribiere, a variant of the Fletcher-Reeves method described in [5]_ pp. 120-122. Only the first derivatives are used. Method *BFGS* uses the quasi-Newton method of Broyden, Fletcher, Goldfarb, and Shanno (BFGS) [5]_ pp. 136. It uses the first derivatives only. BFGS has proven good performance even for non-smooth optimizations Method *Newton-CG* uses a Newton-CG algorithm [5]_ pp. 168 (also known as the truncated Newton method). It uses a CG method to the compute the search direction. See also *TNC* method for a box-constrained minimization with a similar algorithm. Method *Anneal* uses simulated annealing, which is a probabilistic metaheuristic algorithm for global optimization. It uses no derivative information from the function being optimized. Constrained minimization ~~~~~~~~~~~~~~~~~~~~~~~~ Method *L-BFGS-B* uses the L-BFGS-B algorithm [6]_, [7]_ for bound constrained minimization. Method *TNC* uses a truncated Newton algorithm [5]_, [8]_ to minimize a function with variables subject to bounds. This algorithm is uses gradient information; it is also called Newton Conjugate-Gradient. It differs from the *Newton-CG* method described above as it wraps a C implementation and allows each variable to be given upper and lower bounds. Method *COBYLA* uses the Constrained Optimization BY Linear Approximation (COBYLA) method [9]_, [10]_, [11]_. The algorithm is based on linear approximations to the objective function and each constraint. The method wraps a FORTRAN implementation of the algorithm. Method *SLSQP* uses Sequential Least SQuares Programming to minimize a function of several variables with any combination of bounds, equality and inequality constraints. The method wraps the SLSQP Optimization subroutine originally implemented by Dieter Kraft [12]_. References ---------- .. [1] Nelder, J A, and R Mead. 1965. A Simplex Method for Function Minimization. The Computer Journal 7: 308-13. .. [2] Wright M H. 1996. Direct search methods: Once scorned, now respectable, in Numerical Analysis 1995: Proceedings of the 1995 Dundee Biennial Conference in Numerical Analysis (Eds. D F Griffiths and G A Watson). Addison Wesley Longman, Harlow, UK. 191-208. .. [3] Powell, M J D. 1964. An efficient method for finding the minimum of a function of several variables without calculating derivatives. The Computer Journal 7: 155-162. .. [4] Press W, S A Teukolsky, W T Vetterling and B P Flannery. Numerical Recipes (any edition), Cambridge University Press. .. [5] Nocedal, J, and S J Wright. 2006. Numerical Optimization. Springer New York. .. [6] Byrd, R H and P Lu and J. Nocedal. 1995. A Limited Memory Algorithm for Bound Constrained Optimization. SIAM Journal on Scientific and Statistical Computing 16 (5): 1190-1208. .. [7] Zhu, C and R H Byrd and J Nocedal. 1997. L-BFGS-B: Algorithm 778: L-BFGS-B, FORTRAN routines for large scale bound constrained optimization. ACM Transactions on Mathematical Software 23 (4): 550-560. .. [8] Nash, S G. Newton-Type Minimization Via the Lanczos Method. 1984. SIAM Journal of Numerical Analysis 21: 770-778. .. [9] Powell, M J D. A direct search optimization method that models the objective and constraint functions by linear interpolation. 1994. Advances in Optimization and Numerical Analysis, eds. S. Gomez and J-P Hennart, Kluwer Academic (Dordrecht), 51-67. .. [10] Powell M J D. Direct search algorithms for optimization calculations. 1998. Acta Numerica 7: 287-336. .. [11] Powell M J D. A view of algorithms for optimization without derivatives. 2007.Cambridge University Technical Report DAMTP 2007/NA03 .. [12] Kraft, D. A software package for sequential quadratic programming. 1988. Tech. Rep. DFVLR-FB 88-28, DLR German Aerospace Center -- Institute for Flight Mechanics, Koln, Germany. Examples -------- Let us consider the problem of minimizing the Rosenbrock function. This function (and its respective derivatives) is implemented in `rosen` (resp. `rosen_der`, `rosen_hess`) in the `scipy.optimize`. >>> from scipy.optimize import minimize, rosen, rosen_der A simple application of the *Nelder-Mead* method is: >>> x0 = [1.3, 0.7, 0.8, 1.9, 1.2] >>> xopt = minimize(rosen, x0, method='Nelder-Mead') Optimization terminated successfully. Current function value: 0.000066 Iterations: 141 Function evaluations: 243 >>> print xopt [ 1. 1. 1. 1. 1.] Now using the *BFGS* algorithm, using the first derivative and a few options: >>> xopt, info = minimize(rosen, x0, method='BFGS', jac=rosen_der, ... options={'gtol': 1e-6, 'disp': False}, ... full_output=True) >>> print info['message'] Optimization terminated successfully. >>> print info['solution'] [ 1. 1. 1. 1. 1.] >>> print info['hess'] [[ 0.00749589 0.01255155 0.02396251 0.04750988 0.09495377] [ 0.01255155 0.02510441 0.04794055 0.09502834 0.18996269] [ 0.02396251 0.04794055 0.09631614 0.19092151 0.38165151] [ 0.04750988 0.09502834 0.19092151 0.38341252 0.7664427 ] [ 0.09495377 0.18996269 0.38165151 0.7664427 1.53713523]] Next, consider a minimization problem with several constraints (namely Example 16.4 from [5]_). The objective function is: >>> fun = lambda x: (x[0] - 1)**2 + (x[1] - 2.5)**2 There are three constraints defined as: >>> cons = ({'type': 'ineq', 'fun': lambda x: x[0] - 2 * x[1] + 2}, ... {'type': 'ineq', 'fun': lambda x: -x[0] - 2 * x[1] + 6}, ... {'type': 'ineq', 'fun': lambda x: -x[0] + 2 * x[1] + 2}) And variables must be positive, hence the following bounds: >>> bnds = ((0, None), (0, None)) The optimization problem is solved using the SLSQP method as: >>> xopt, info = minimize(fun, (2, 0), method='SLSQP', bounds=bnds, ... constraints=cons, full_output=True) It should converge to the theoretical solution (1.4 ,1.7). """ meth = method.lower() # check if optional parameters are supported by the selected method # - jac if meth in ['nelder-mead', 'powell', 'anneal', 'cobyla'] and bool(jac): warn('Method %s does not use gradient information (jac).' % method, RuntimeWarning) # - hess if meth != 'newton-cg' and hess is not None: warn('Method %s does not use Hessian information (hess).' % method, RuntimeWarning) # - constraints or bounds if meth in ['nelder-mead', 'powell', 'cg', 'bfgs', 'newton-cg'] and \ (bounds is not None or any(constraints)): warn('Method %s cannot handle constraints nor bounds.' % method, RuntimeWarning) if meth in ['l-bfgs-b', 'tnc'] and any(constraints): warn('Method %s cannot handle constraints.' % method, RuntimeWarning) if meth is 'cobyla' and bounds is not None: warn('Method %s cannot handle bounds.' % method, RuntimeWarning) # - callback if meth in ['anneal', 'l-bfgs-b', 'tnc', 'cobyla', 'slsqp'] and \ callback is not None: warn('Method %s does not support callback.' % method, RuntimeWarning) # - retall if meth in ['anneal', 'l-bfgs-b', 'tnc', 'cobyla', 'slsqp'] and \ retall: warn('Method %s does not support retall.' % method, RuntimeWarning) # fun also returns the jacobian if not callable(jac): if bool(jac): fun = MemoizeJac(fun) jac = fun.derivative else: jac = None if meth == 'nelder-mead': return _minimize_neldermead(fun, x0, args, options, full_output, retall, callback) elif meth == 'powell': return _minimize_powell(fun, x0, args, options, full_output, retall, callback) elif meth == 'cg': return _minimize_cg(fun, x0, args, jac, options, full_output, retall, callback) elif meth == 'bfgs': return _minimize_bfgs(fun, x0, args, jac, options, full_output, retall, callback) elif meth == 'newton-cg': return _minimize_newtoncg(fun, x0, args, jac, hess, hessp, options, full_output, retall, callback) elif meth == 'anneal': return _minimize_anneal(fun, x0, args, options, full_output) elif meth == 'l-bfgs-b': return _minimize_lbfgsb(fun, x0, args, jac, bounds, options, full_output) elif meth == 'tnc': return _minimize_tnc(fun, x0, args, jac, bounds, options, full_output) elif meth == 'cobyla': return _minimize_cobyla(fun, x0, args, constraints, options, full_output) elif meth == 'slsqp': return _minimize_slsqp(fun, x0, args, jac, bounds, constraints, options, full_output) else: raise ValueError('Unknown solver %s' % method) def show_minimize_options(method=None): """Show documentation for additional options of minimize's methods. These are method-specific options that can be supplied to `minimize` in the ``options`` dict. Parameters ---------- method : str, optional If not given, shows all methods. Otherwise, show only the options for the specified method. Valid values are: 'BFGS', 'Newton-CG', 'Nelder-Mead', 'Powell', 'CG', 'Anneal', 'L-BFGS-B', 'TNC', 'COBYLA', 'SLSQP'. Notes ----- * BFGS options: gtol : float Gradient norm must be less than `gtol` before successful termination. norm : float Order of norm (Inf is max, -Inf is min). eps : float or ndarray If `jac` is approximated, use this value for the step size. * Nelder-Mead options: xtol : float Relative error in solution `xopt` acceptable for convergence. ftol : float Relative error in ``fun(xopt)`` acceptable for convergence. maxfev : int Maximum number of function evaluations to make. * Newton-CG options: xtol : float Average relative error in solution `xopt` acceptable for convergence. eps : float or ndarray If `jac` is approximated, use this value for the step size. * CG options: gtol : float Gradient norm must be less than `gtol` before successful termination. norm : float Order of norm (Inf is max, -Inf is min). eps : float or ndarray If `jac` is approximated, use this value for the step size. * Powell options: xtol : float Relative error in solution `xopt` acceptable for convergence. ftol : float Relative error in ``fun(xopt)`` acceptable for convergence. maxfev : int Maximum number of function evaluations to make. direc : ndarray Initial set of direction vectors for the Powell method. * Anneal options: schedule : str Annealing schedule to use. One of: 'fast', 'cauchy' or 'boltzmann'. T0 : float Initial Temperature (estimated as 1.2 times the largest cost-function deviation over random points in the range). Tf : float Final goal temperature. maxfev : int Maximum number of function evaluations to make. maxaccept : int Maximum changes to accept. boltzmann : float Boltzmann constant in acceptance test (increase for less stringent test at each temperature). learn_rate : float Scale constant for adjusting guesses. ftol : float Relative error in ``fun(x)`` acceptable for convergence. quench, m, n : float Parameters to alter fast_sa schedule. lower, upper : float or ndarray Lower and upper bounds on `x`. dwell : int The number of times to search the space at each temperature. * L-BFGS-B options: maxcor : int The maximum number of variable metric corrections used to define the limited memory matrix. (The limited memory BFGS method does not store the full hessian but uses this many terms in an approximation to it.) factr : float The iteration stops when ``(f^k - f^{k+1})/max{|f^k|,|f^{k+1}|,1} <= factr * eps``, where ``eps`` is the machine precision, which is automatically generated by the code. Typical values for `factr` are: 1e12 for low accuracy; 1e7 for moderate accuracy; 10.0 for extremely high accuracy. pgtol : float The iteration will stop when ``max{|proj g_i | i = 1, ..., n} <= pgtol`` where ``pg_i`` is the i-th component of the projected gradient. maxfev : int Maximum number of function evaluations. * TNC options: scale : list of floats Scaling factors to apply to each variable. If None, the factors are up-low for interval bounded variables and 1+|x] fo the others. Defaults to None offset : float Value to substract from each variable. If None, the offsets are (up+low)/2 for interval bounded variables and x for the others. maxCGit : int Maximum number of hessian*vector evaluations per main iteration. If maxCGit == 0, the direction chosen is -gradient if maxCGit < 0, maxCGit is set to max(1,min(50,n/2)). Defaults to -1. maxfev : int Maximum number of function evaluation. if None, `maxfev` is set to max(100, 10*len(x0)). Defaults to None. eta : float Severity of the line search. if < 0 or > 1, set to 0.25. Defaults to -1. stepmx : float Maximum step for the line search. May be increased during call. If too small, it will be set to 10.0. Defaults to 0. accuracy : float Relative precision for finite difference calculations. If <= machine_precision, set to sqrt(machine_precision). Defaults to 0. minfev : float Minimum function value estimate. Defaults to 0. ftol : float Precision goal for the value of f in the stoping criterion. If ftol < 0.0, ftol is set to 0.0 defaults to -1. xtol : float Precision goal for the value of x in the stopping criterion (after applying x scaling factors). If xtol < 0.0, xtol is set to sqrt(machine_precision). Defaults to -1. pgtol : float Precision goal for the value of the projected gradient in the stopping criterion (after applying x scaling factors). If pgtol < 0.0, pgtol is set to 1e-2 * sqrt(accuracy). Setting it to 0.0 is not recommended. Defaults to -1. rescale : float Scaling factor (in log10) used to trigger f value rescaling. If 0, rescale at each iteration. If a large value, never rescale. If < 0, rescale is set to 1.3. * COBYLA options: rhobeg : float Reasonable initial changes to the variables. rhoend : float Final accuracy in the optimization (not precisely guaranteed). This is a lower bound on the size of the trust region. maxfev : int Maximum number of function evaluations. * SLSQP options: eps : float Step size used for numerical approximation of the jacobian. maxiter : int Maximum number of iterations. """ if method is None: notes_header = "Notes\n -----" sections = show_minimize_options.__doc__.split(notes_header)[1:] else: sections = show_minimize_options.__doc__.split('*')[1:] sections = [s.strip() for s in sections] sections = [s for s in sections if s.lower().startswith(method.lower())] print '\n'.join(sections) return
#!/usr/bin/env python import numpy as np import unittest import pyphil class tick_tack_toe_board: """ Does things pertaining to current board position. X moves first, O moves second in all cases. X and O are represented by the type variable """ def __init__(self,rows=3,cols=3): # for printing the board self.VERT=u'︱' self.HOR='_' # contains the location of X and 0 self.grid=np.zeros(shape=(rows,cols)) # the enumerated type for X or O self.type={'blank':0,'x':1,'o':2} # The length of "in a row" to win self.win_length=3 self._rows=rows self._cols=cols # the thing that contains the Xs and Os self.boardStatus = np.reshape(np.zeros(self._rows * self._cols,dtype=int), (self._rows, self._cols)) @property def rows(self): return self._rows @property def cols(self): return self._cols def get_board(self): return self.boardStatus def set_board(self,board): self.boardStatus=board def _valid_point(self,row,col): return 0 <= row < self.rows and 0 <= col < self._cols def __contains__(self, point): return self._valid_point(point[0],point[1]) def game_won(self): """ checks to see if the game is won. Returns the winner or self.type["blank"] if no winner""" # This gets squares that go through a given row and column in a line def get_test_squares(row,col,movement): points=[(row,col)] for direction in [-1,1]: displacement=1 while True: test_point=movement(row,col,displacement*direction) if test_point in self: displacement += 1 points.append( test_point) else: break return points for piece in [self.type["x"],self.type["o"]]: for row,col in [(row,col) for row in range(self.rows) for col in range(self._cols)]: left_right = lambda row,col,direction: (row,direction+col) up_down = lambda row,col,direction: (row+direction,col) diag_up_right = lambda row,col,direction: (row-direction,col+direction) diag_down_right = lambda row,col,direction: (row+direction,col+direction) # sees if all the points are of the given type def test_points(points,type): for point in points: if self.boardStatus[point] != type: return False return True for movement in [left_right, up_down, diag_up_right, diag_down_right]: points=get_test_squares(row,col,movement) if len(points) >= self.win_length and test_points(points,piece): return piece return self.type["blank"] def game_draw(self): """ Return true if the game is a draw and false otherwise """ for num in np.ravel(self.boardStatus): if num == self.type["blank"]: return False if self.game_won() != self.type["blank"]: return False return True def __str__(self): string="" for row in range(self.rows): for col in range(self.cols): dock={self.type['x']:'x',self.type['o']:'o',self.type['blank']:' ' } string += str(dock[self.boardStatus[row,col]])+' ' string += '\n' return string class test_tick_tack_toe_board(unittest.TestCase): def test_1(self): board=tick_tack_toe_board() self.assertFalse( board.game_won() ) for row,col in ((0,0),(1,1),(2,2)): board.boardStatus[row][col] = board.type["x"] self.assertEqual( board.game_won(), board.type["x"]) self.assertNotEqual( board.game_won(), board.type["o"]) self.assertEqual( board.game_draw(), False) def test_2(self): board=tick_tack_toe_board() self.assertFalse( board.game_won() ) for row,col in ((0,0),(0,1),(2,0),(1,2),(2,1)): board.boardStatus[row][col] = board.type["x"] for row,col in ((1,1),(0,2),(1,0),(2,2)): board.boardStatus[row][col] = board.type["o"] self.assertEqual( board.game_won(), False) self.assertEqual( board.game_draw() , True) def get_tack_tack_toe_losing_move(board, toMove=None): """ Returns a (row,col) tuple for the move that'll be guaranteed to make the current mover loose or None if no such "perfect" move exists """ # provides a way to alternate between Xs and Os next_type = lambda curType: {board.type["x"]:board.type["o"],board.type["o"]:board.type["x"]}[toMove] # condition for when a game is won def game_won(board, toMove): return board.game_won() == next_type(toMove) def game_lost(board, toMove): return board.game_won() == toMove or board.game_draw() # condition for already lost and won if game_lost(board,toMove): return None cur_pos = board.get_board() # provides a way of iterating through avaliable positions on the board - this returns the next avaliable position to place a piece on the board def get_next(pos, exclusive=False): row,col=pos # increment the colummn before checking it if it's exclusive if exclusive: col += 1 # keep looking for avaliable spots untill a blank spot is fount or we're out of locations while True: # correct things if they've gone out of bounds if col >= board.cols: row+=1 col=0 if row >= board.rows: return None # see if the location is avaliable if board.boardStatus[row,col] == board.type["blank"]: return row,col # the location get's checked before incrementing col += 1 # gets a list of possible moves def get_possible_moves(): moves=[] attempt_move=get_next( (0,0), exclusive=False ) while attempt_move is not None: moves.append(attempt_move) attempt_move=get_next(attempt_move,exclusive=True) return moves def reset_board(): board = cur_pos # make sure none of the following opponent moves have guaranteed victory for attempt_move in get_possible_moves(): board.boardStatus[attempt_move] = toMove # If the move isn't good then try another if game_lost(board,toMove): reset_board() continue # also see if the move makes the player win if game_won(board,toMove): reset_board() return attempt_move # the move will win the game sucess=True # keep track of the status before making oponent moves last_status = board.boardStatus # no matter what the oposition does the player must still be able to "win" after their move for opposition_move in get_possible_moves(): board.boardStatus[opposition_move]=next_type(toMove) # a win isn't that remarkable; we must win all possible oponent moves if game_won(board,toMove): board.boardStatus=last_status continue # alternatively, if there's no sure way of winning then the game is lost else: reset_board() sucess=False break # set up for next round reset_board() if sucess: return attempt_move # if we didn't return a valid move in the loop there is none to be found return None class test_get_tack_tack_toe_losing_move(unittest.TestCase): def test_1(self): def get_result( x_moves, o_moves,toMove=None): board=tick_tack_toe_board() for xmove in x_moves: board.boardStatus[xmove]=board.type["x"] for omove in o_moves: board.boardStatus[omove]=board.type["o"] print(board) return get_tack_tack_toe_losing_move(board,toMove) bord=tick_tack_toe_board() self.assertEqual( None, get_result([(0,0),(0,1),(1,2),(2,0)],[(0,2),(1,0),(1,1)],toMove=bord.type["x"] )) self.assertEqual( (1,2) , get_result([(0,0),(0,1),(1,0),(2,1)],[(0,2),(1,1),(2,2)],bord.type["x"]) ) self.assertEqual( None , get_result([(0,0),(0,1),(1,0),(2,1)],[(0,2),(1,1),(2,2)],bord.type["o"]) ) self.assertNotEqual(None, get_result([(1,1),(0,0)],[(2,1) ],bord.type["o"]) ) # print(get_result([(0,0),(1,1)],[ ],bord.type["o"])) if __name__== '__main__': unittest.main()
import logging import torch from torch import nn from .base_mapping import MappingBase logger = logging.getLogger(__name__) class ProjectionMapping(MappingBase): """ A class for simple contextualization of word-level embeddings. Runs an untrained BiLSTM on top of the loaded-from-disk embeddings. """ def __init__(self, model_hidden_dim: int, *args, **kwargs): """ Uses a bi-LSTM to project the sequence of embeddings to a new hidden space. The paramaters of the projection to the hidden space are not trained Args: model_hidden_dim: dimension of the hidden dimension that is mapped to """ logger.info("Using projection mapping") super(ProjectionMapping, self).__init__(*args, **kwargs) input_dim = model_hidden_dim self.lstm = nn.LSTM( input_size=input_dim, hidden_size=int(input_dim / 2), num_layers=1, batch_first=True, bidirectional=True, ) for param in self.lstm.parameters(): param.requires_grad = False def forward(self, batch: torch.Tensor) -> torch.Tensor: """ Random BiLSTM contextualization of embeddings Args: batch: a batch of pre-computed embeddings loaded from disk. Returns: A random-init BiLSTM contextualization of the embeddings """ with torch.no_grad(): projected, _ = self.lstm(batch) return projected
import time import xnmt.loss from xnmt.vocab import Vocab from xnmt.events import register_xnmt_handler, handle_xnmt_event from xnmt import logger, yaml_logger class LossTracker(object): """ A template class to track training process and generate report. """ REPORT_TEMPLATE = 'Epoch {epoch:.4f}: {data}_loss/word={loss:.6f} (words={words}, words/sec={words_per_sec:.2f}, time={time})' REPORT_TEMPLATE_DEV = 'Epoch {epoch:.4f} dev {score} (words={words}, words/sec={words_per_sec:.2f}, time={time})' REPORT_TEMPLATE_DEV_AUX = 'Epoch {epoch:.4f} dev auxiliary {score}' @register_xnmt_handler def __init__(self, training_regimen, eval_every, name=None): self.training_regimen = training_regimen self.eval_train_every = 1000 self.eval_dev_every = eval_every self.epoch_num = 0 self.epoch_loss = xnmt.loss.LossScalarBuilder() self.epoch_words = 0 self.sent_num = 0 self.sent_num_not_report_train = 0 self.sent_num_not_report_dev = 0 self.fractional_epoch = 0 self.dev_score = None self.best_dev_score = None self.dev_words = 0 self.last_report_words = 0 self.start_time = time.time() self.last_report_train_time = self.start_time self.dev_start_time = self.start_time self.name = name @handle_xnmt_event def on_new_epoch(self, training_task, num_sents): """ Clear epoch-wise counters for starting a new training epoch. """ if training_task is self.training_regimen: self.total_train_sent = num_sents self.epoch_loss.zero() self.epoch_words = 0 self.epoch_num += 1 self.sent_num = 0 self.sent_num_not_report_train = 0 self.sent_num_not_report_dev = 0 self.last_report_words = 0 self.last_report_train_time = time.time() def update_epoch_loss(self, src, trg, loss): """ Update epoch-wise counters for each iteration. """ batch_sent_num = self.count_sent_num(src) self.sent_num += batch_sent_num self.sent_num_not_report_train += batch_sent_num self.sent_num_not_report_dev += batch_sent_num self.epoch_words += self.count_trg_words(trg) self.epoch_loss += loss def format_time(self, seconds): return "{}-{}".format(int(seconds) // 86400, time.strftime("%H:%M:%S", time.gmtime(seconds))) def log_readable_and_structured(self, template, args): if self.name: args["task_name"] = self.name logger.info(template.format(**args), extra=args) yaml_logger.info(args) def report_train_process(self): """ Print training report if eval_train_every sents have been evaluated. Return: True if the training process is reported """ print_report = self.sent_num_not_report_train >= self.eval_train_every \ or self.sent_num == self.total_train_sent if print_report: self.sent_num_not_report_train = self.sent_num_not_report_train % self.eval_train_every self.fractional_epoch = (self.epoch_num - 1) + self.sent_num / self.total_train_sent this_report_time = time.time() self.log_readable_and_structured(LossTracker.REPORT_TEMPLATE, {"key": "train_loss", "data" : "train", "epoch" : self.fractional_epoch, "loss" : self.epoch_loss.sum() / self.epoch_words, "words" : self.epoch_words, "words_per_sec" : (self.epoch_words - self.last_report_words) / (this_report_time - self.last_report_train_time), "time" : self.format_time(time.time() - self.start_time)}) if len(self.epoch_loss) > 1: for loss_name, loss_values in self.epoch_loss.items(): self.log_readable_and_structured("- {loss_name} {loss:5.6f}", {"key":"additional_train_loss", "loss_name" : loss_name, "loss" : loss_values / self.epoch_words}) self.last_report_words = self.epoch_words self.last_report_train_time = this_report_time return print_report def new_dev(self): """ Clear dev counters for starting a new dev testing. """ self.dev_start_time = time.time() def set_dev_score(self, dev_words, dev_score): """ Update dev counters for each iteration. """ self.dev_score = dev_score self.dev_words = dev_words def should_report_dev(self): if self.eval_dev_every > 0: return self.sent_num_not_report_dev >= self.eval_dev_every or (self.sent_num == self.total_train_sent) else: return self.sent_num_not_report_dev >= self.total_train_sent def report_dev_and_check_model(self): """ Print dev testing report and check whether the dev loss is the best seen so far. Return: True if the dev loss is the best and required save operations """ this_report_time = time.time() sent_num = self.eval_dev_every if self.eval_dev_every != 0 else self.total_train_sent self.sent_num_not_report_dev = self.sent_num_not_report_dev % sent_num self.fractional_epoch = (self.epoch_num - 1) + self.sent_num / self.total_train_sent self.log_readable_and_structured(LossTracker.REPORT_TEMPLATE_DEV, {"key" : "dev_loss", "epoch" : self.fractional_epoch, "score" : self.dev_score, "words" : self.dev_words, "words_per_sec" : self.dev_words / (this_report_time - self.dev_start_time), "time" : self.format_time(this_report_time - self.start_time) }) save_model = True if self.best_dev_score is not None: save_model = self.dev_score.better_than(self.best_dev_score) if save_model: self.best_dev_score = self.dev_score logger.info(f"Epoch {self.fractional_epoch:.4f}: best dev score, writing out model") return save_model def report_auxiliary_score(self, score): self.log_readable_and_structured(LossTracker.REPORT_TEMPLATE_DEV_AUX, {"key": "auxiliary_score", "epoch" : self.fractional_epoch, "score" : score}) def count_trg_words(self, trg_words): """ Method for counting number of trg words. """ raise NotImplementedError('count_trg_words must be implemented in LossTracker subclasses') def count_sent_num(self, obj): """ Method for counting number of sents. """ raise NotImplementedError('count_trg_words must be implemented in LossTracker subclasses') def clear_counters(self): self.sent_num = 0 self.sent_num_not_report_dev = 0 self.sent_num_not_report_train = 0 def report_loss(self): pass class BatchLossTracker(LossTracker): """ A class to track training process and generate report for minibatch mode. """ def count_trg_words(self, trg_words): trg_cnt = 0 for x in trg_words: if type(x) == int: trg_cnt += 1 if x != Vocab.ES else 0 else: trg_cnt += sum([1 if y != Vocab.ES else 0 for y in x]) return trg_cnt def count_sent_num(self, obj): return len(obj)
import os import glob import subprocess import random import unittest import time import numpy as np import readingdb as rdb # make sure we're testing the version of readingdb in this dir. assert os.path.dirname(os.path.abspath(rdb.__file__)) == \ os.path.dirname(os.path.abspath(__file__)) datadir = '_testdata' readingdb = '../c6/reading-server' log = '/dev/null' port = int(random.random() * 5000) + 20000 class TestIface(unittest.TestCase): def setUp(self): try: os.makedirs(datadir) except OSError, e: if e.errno != os.errno.EEXIST: raise cmd = [readingdb, '-p', str(port), '-d', datadir, '-c', '1'] self.log = open(log, 'a') self.db = subprocess.Popen(cmd, stderr=subprocess.PIPE, stdout=self.log) # wait for startup or a fatal message for x in xrange(0, 20): l = self.db.stderr.readline() if 'FATAL' in l: raise Exception(l) elif 'listening' in l: break self.conn = rdb.db_open('localhost', port) def tearDown(self): rdb.db_close(self.conn) self.db.terminate() self.db.wait() self.log.close() for f in glob.glob(os.path.join(datadir, '*')): os.remove(f) os.removedirs(datadir) def infill_stream(self, stream): for i in range(0, 1000): data = [(x, x, x) for x in xrange(i * 100, i * 100 + 100)] self.assertEqual(rdb.db_add(self.conn, stream, data), 1) def test_simple(self): self.infill_stream(1) d = rdb.db_query(self.conn, 1, 0, 10000) self.assertEqual(len(d), 10000) for i in xrange(0, 10000): self.assertEqual(d[i][0], i) self.assertEqual(d[i][1], i) def test_multi(self): streams = range(1, int(1e4), int(1e3)) for i in streams: self.infill_stream(i) rdb.db_setup('localhost', port) fetch = random.sample(streams, 3) data = rdb.db_multiple(fetch, 0, 10000) # check grabbing three random streams self.assertEqual(len(data), 3) for dv in data: self.assertEqual(dv.shape, (10000, 2)) self.assertEqual(np.sum(dv[:, 0] - np.arange(0, 10000)), 0) self.assertEqual(np.sum(dv[:, 1] - np.arange(0, 10000)), 0) # grab some streams without data data = rdb.db_multiple([2,3,4,6], 0, 10000) self.assertEqual(len(data), 4) for dv in data: self.assertEqual(dv.shape, (0, 2)) if __name__ == '__main__': unittest.main()
"""This module is useful to clean the firestore tables during the tests. Thousands of entries could be generated and it won't be possible to remove them from the Firestore UI """ # Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # -*- coding: utf-8 -*- from typing import List from absl import app from google.cloud import firestore def _delete_collection(coll_ref, batch_size): """Deletes the collection documents in batches of batch_size. Args: coll_ref: a string array representing the CLI parameters, start date and end date in YYYYMMDD format batch_size: maximum amount of tables to delete in a row Returns: Itself if not all deleted None otherwise """ docs = coll_ref.limit(batch_size).stream() deleted = 0 for doc in docs: doc.reference.delete() deleted = deleted + 1 print('Items deleted ', deleted) if deleted >= batch_size: return _delete_collection(coll_ref, batch_size) def main(argv: List[str]) -> None: """Deletes firestore collections between 2 dates. Args: argv: an array representing the input parameters: argv[1]: a string array representing the GCP project to use argv[2]: a string representing the name of the collection argv[3]: an integer representing the start date in YYYYMMDD format argv[4]: an integer representing the end date in YYYYMMDD format """ if len(argv) < 3: raise app.UsageError('Too few command-line arguments.') else: print('Arguments ', argv) db = firestore.Client(project=argv[1]) collection_name = argv[2] if len(argv) > 3: start = int(argv[3]) end = int(argv[4]) while start <= end: collection_name = '{}_{}'.format(argv[2], start) collection = db.collection(collection_name) _delete_collection(collection, 1000) start = start + 1 else: collection = db.collection(collection_name) _delete_collection(collection, 20) if __name__ == '__main__': app.run(main)
import boto3 import os import json region = 'us-east-2' instances = list(json.loads((os.environ['EC2_INSTANCES'])).values()) ec2 = boto3.client('ec2', region_name=region) def lambda_handler(event, context): ec2.stop_instances(InstanceIds=instances) print('stopped your instances: ' + str(instances))
from sensors.interfaces import GPIOs from sensors.tachometer import Tachometer GPIO_ADDRESS_A = 15 gpios = GPIOs([GPIO_ADDRESS_A, ]) interfaces = { 'gpios': gpios, } encoder = Tachometer(interfaces) print(encoder.get_value())
class Solution(object): def XXX(self, root): """ :type root: TreeNode :rtype: bool """ return self.search(root) != -1 def search(self, root): if not root: return 0 l_left = self.search(root.left) if l_left == -1: return -1 l_right = self.search(root.right) if l_right == -1: return -1 if abs(l_right - l_left) > 1: return -1 else: return max(l_left, l_right) + 1
#!/usr/bin/env python import os import sys from flask_script import Manager from {{cookiecutter.module_name}} import create_app from {{cookiecutter.module_name}}.database import MyDatabase sys.path.insert(0, os.getcwd()) manager = Manager(create_app) @manager.command def initdb(): try: # FIXME replace this with yaml file config db_url = 'mysql+pymysql://root:password@localhost:3306/demo' MyDatabase(db_url=db_url).create_all() print('database %s (re)initialized' % db_url) except Exception as e: print(e) if __name__ == '__main__': manager.run()
from .stickers import * __red_end_user_data_statement__ = "No personal data is stored." def setup(bot): bot.add_cog(Stickers(bot))
from django.test import TestCase from smartfields.dependencies import FileDependency class MiscTestCase(TestCase): def test_file_dependency(self): self.assertEqual( FileDependency(storage='foo', upload_to='somewhere', keep_orphans=True), FileDependency(storage='foo', upload_to='somewhere', keep_orphans=True) )
import IceRayPy def Translate( P_dll ,P_child : IceRayPy.core.object.Wrapper ,P_move ): pretender = core.geometry.Pretender( P_dll, P_child.cast2Geometry(), P_child ) translator = core.geometry.transform.Translate( P_dll, pretender ) translator.move( P_move ) result = IceRayPy.core.object.Wrapper( P_dll ) result.geometrySet( translator ) return result
class Messages: def __init__(self, database): self.database = database @property def required_tables(self) -> dict: return { 'message': { 'columns': [ 'id BIGINT NOT NULL', 'channel_id BIGINT NOT NULL', 'author_id BIGINT', 'type VARCHAR(20)', ], 'constraints': [ 'PRIMARY KEY (id)', ], 'indexes': [ 'channel_id' ] }, 'message_info': { 'columns': [ 'id BIGINT NOT NULL AUTO_INCREMENT', 'message_id BIGINT NOT NULL', 'name VARCHAR(50) NOT NULL', 'info TINYTEXT', 'user_id BIGINT', ], 'constraints': [ 'PRIMARY KEY(id)', 'UNIQUE (message_id, name, user_id)', ('FOREIGN KEY (message_id) REFERENCES message(id) ' + 'ON DELETE CASCADE') ], 'indexes': [ 'message_id', 'name' ] } } async def get_message( self, id: int, *, info: bool = False ) -> dict or None: cnx = self.database.connection_object cursor = cnx.cursor(dictionary=True) cursor.execute(f'SELECT * FROM message WHERE id = {id}') msg = cursor.fetchone() cursor.close() cnx.close() if msg is not None and info: info = await self.get_message_info(id=id) if info is not None: msg['info'] = info return msg async def get_message_info( self, id: int, *, name: str = None, user_id: int = None ) -> list: cnx = self.database.connection_object cursor = cnx.cursor(dictionary=True) query = f'SELECT * FROM message_info WHERE message_id = {id}' if name is not None: query += f' AND name = "{name}"' if user_id is not None: query += f' AND user_id = {user_id}' cursor.execute(query) info = cursor.fetchall() cursor.close() cnx.close() return info async def get_messages_by_info(self, *, name: str) -> list: cnx = self.database.connection_object cursor = cnx.cursor(dictionary=True) cursor.execute( 'SELECT m.id, m.channel_id, m.author_id, m.type, ' + 'i.name as info_name, i.info, i.user_id as info_user_id ' + 'FROM message m JOIN' + f' message_info i WHERE m.id = i.message_id AND i.name = "{name}"') info = cursor.fetchall() cursor.close() cnx.close() return info async def add_message( self, id: int, *, channel_id: int, type: str = None, author_id: int = None, info: list = None ) -> None: keys = 'id, channel_id, type, author_id' values = '{}, {}, {}, {}'.format( id, channel_id, 'NULL' if not type else f'"{type}"', 'NULL' if not author_id else author_id) cnx = self.database.connection_object cursor = cnx.cursor(buffered=True) cursor.execute(f'INSERT INTO message({keys}) VALUES ({values})') if info is not None and len(info) > 0: cursor.execute('INSERT INTO message_info ({}) VALUES {}'.format( 'message_id, name, info, user_id', ', '.join('({}, "{}", "{}", {})'.format( id, i.get('name'), i.get('info'), 'NULL' if not i.get('user_id') else i.get('user_id') ) for i in info))) cnx.commit() cursor.close() cnx.close() async def update_message_author(self, id, *, author_id): cnx = self.database.connection_object cursor = cnx.cursor(buffered=True) cursor.execute( 'UPDATE message SET author_id = {} WHERE id = {}'.format( 'NULL' if not author_id else author_id, id)) cnx.commit() cursor.close() cnx.close() async def delete_message(self, id: int) -> None: cnx = self.database.connection_object cursor = cnx.cursor(buffered=True) cursor.execute(f'DELETE FROM message WHERE id = {id}') cnx.commit() cursor.close() cnx.close() async def add_message_info( self, id: int, *, name: str, info: str = None, user_id: int = None ) -> None: keys = 'message_id, name, info, user_id' values = '{}, "{}", {}, {}'.format( id, name, 'NULL' if not info else f'"{info}"', "NULL" if not user_id else user_id) cnx = self.database.connection_object cursor = cnx.cursor(buffered=True) cursor.execute(f'INSERT INTO message_info({keys}) VALUES ({values})') cnx.commit() cursor.close() cnx.close() async def delete_message_info( self, id: int, *, name: str, user_id: int = None ) -> None: cnx = self.database.connection_object cursor = cnx.cursor(buffered=True) cursor.execute('{} {} {}'.format( 'DELETE FROM message_info WHERE ', f'message_id = {id} AND name = "{name}" ', f'AND user_id = {"NULL" if not user_id else user_id}')) cnx.commit() cursor.close() cnx.close()
import pytest def test_qtdatavisualization(): """Test the qtpy.QtDataVisualization namespace""" # Using import skip here since with Python 3 you need to install another package # besides the base `PyQt5` or `PySide2`. # For example in the case of `PyQt5` you need `PyQtDataVisualization` # QtDataVisualization QtDataVisualization = pytest.importorskip("qtpy.QtDataVisualization") assert QtDataVisualization.QScatter3DSeries is not None assert QtDataVisualization.QSurfaceDataItem is not None assert QtDataVisualization.QSurface3DSeries is not None assert QtDataVisualization.QAbstract3DInputHandler is not None assert QtDataVisualization.QHeightMapSurfaceDataProxy is not None assert QtDataVisualization.QAbstractDataProxy is not None assert QtDataVisualization.Q3DCamera is not None assert QtDataVisualization.QAbstract3DGraph is not None assert QtDataVisualization.QCustom3DVolume is not None assert QtDataVisualization.Q3DInputHandler is not None assert QtDataVisualization.QBarDataProxy is not None assert QtDataVisualization.QSurfaceDataProxy is not None assert QtDataVisualization.QScatterDataItem is not None assert QtDataVisualization.Q3DLight is not None assert QtDataVisualization.QScatterDataProxy is not None assert QtDataVisualization.QValue3DAxis is not None assert QtDataVisualization.Q3DBars is not None assert QtDataVisualization.QBarDataItem is not None assert QtDataVisualization.QItemModelBarDataProxy is not None assert QtDataVisualization.Q3DTheme is not None assert QtDataVisualization.QCustom3DItem is not None assert QtDataVisualization.QItemModelScatterDataProxy is not None assert QtDataVisualization.QValue3DAxisFormatter is not None assert QtDataVisualization.QItemModelSurfaceDataProxy is not None assert QtDataVisualization.Q3DScatter is not None assert QtDataVisualization.QTouch3DInputHandler is not None assert QtDataVisualization.QBar3DSeries is not None assert QtDataVisualization.QAbstract3DAxis is not None assert QtDataVisualization.Q3DScene is not None assert QtDataVisualization.QCategory3DAxis is not None assert QtDataVisualization.QAbstract3DSeries is not None assert QtDataVisualization.Q3DObject is not None assert QtDataVisualization.QCustom3DLabel is not None assert QtDataVisualization.Q3DSurface is not None assert QtDataVisualization.QLogValue3DAxisFormatter is not None # QtDatavisualization QtDatavisualization = pytest.importorskip("qtpy.QtDatavisualization") assert QtDatavisualization.QScatter3DSeries is not None assert QtDatavisualization.QSurfaceDataItem is not None assert QtDatavisualization.QSurface3DSeries is not None assert QtDatavisualization.QAbstract3DInputHandler is not None assert QtDatavisualization.QHeightMapSurfaceDataProxy is not None assert QtDatavisualization.QAbstractDataProxy is not None assert QtDatavisualization.Q3DCamera is not None assert QtDatavisualization.QAbstract3DGraph is not None assert QtDatavisualization.QCustom3DVolume is not None assert QtDatavisualization.Q3DInputHandler is not None assert QtDatavisualization.QBarDataProxy is not None assert QtDatavisualization.QSurfaceDataProxy is not None assert QtDatavisualization.QScatterDataItem is not None assert QtDatavisualization.Q3DLight is not None assert QtDatavisualization.QScatterDataProxy is not None assert QtDatavisualization.QValue3DAxis is not None assert QtDatavisualization.Q3DBars is not None assert QtDatavisualization.QBarDataItem is not None assert QtDatavisualization.QItemModelBarDataProxy is not None assert QtDatavisualization.Q3DTheme is not None assert QtDatavisualization.QCustom3DItem is not None assert QtDatavisualization.QItemModelScatterDataProxy is not None assert QtDatavisualization.QValue3DAxisFormatter is not None assert QtDatavisualization.QItemModelSurfaceDataProxy is not None assert QtDatavisualization.Q3DScatter is not None assert QtDatavisualization.QTouch3DInputHandler is not None assert QtDatavisualization.QBar3DSeries is not None assert QtDatavisualization.QAbstract3DAxis is not None assert QtDatavisualization.Q3DScene is not None assert QtDatavisualization.QCategory3DAxis is not None assert QtDatavisualization.QAbstract3DSeries is not None assert QtDatavisualization.Q3DObject is not None assert QtDatavisualization.QCustom3DLabel is not None assert QtDatavisualization.Q3DSurface is not None assert QtDatavisualization.QLogValue3DAxisFormatter is not None
from laserpony import app from flask.ext.bcrypt import Bcrypt from flask_login import LoginManager from flask.ext.markdown import Markdown from flask_mongoengine import MongoEngine from itsdangerous import URLSafeTimedSerializer #Bcrypt bcrypt = Bcrypt(app) #Login Manager login_manager = LoginManager(app) login_manager.login_view = 'login' #Markdown Parser markdown = Markdown(app) #Database db = MongoEngine(app) #Login Serializer login_serializer = URLSafeTimedSerializer(app.secret_key)
import scrapy from datetime import datetime from spoon.items import SinaTopSummaryItem class SinatopsummarySpider(scrapy.Spider): name = 'sinaTopSummary' allowed_domains = ['weibo.com'] start_urls = ['https://s.weibo.com/top/summary/'] def parse(self, response): print(response.url) last_update = datetime.now() tr_list = response.xpath('//tr') for tr in tr_list: item = SinaTopSummaryItem() item['ranking'] = tr.xpath('./td[@class="td-02"]/span/text()').extract_first() item['summary'] = tr.xpath('./td[@class="td-02"]/a/text()').extract_first() item['link'] = response.urljoin(tr.xpath('./td[@class="td-02"]/a/@href').extract_first()) item['last_update'] = last_update yield item
import logging import os import re import sys import xml.etree.ElementTree as ET import czech_stemmer from RDRPOSTagger_python_3.pSCRDRtagger.RDRPOSTagger import RDRPOSTagger from RDRPOSTagger_python_3.Utility.Utils import readDictionary os.chdir('../..') # because above modules do chdir ... :/ from rouge_2_0.rouge_20 import print_rouge_scores import separator import textrank logger = logging.getLogger('summarizer') logging.basicConfig(level=logging.DEBUG) STOPWORDS = set() with open('stopwords.txt', 'r') as f: for w in f: STOPWORDS.add(w.strip()) def pos_tag(sentences): r = RDRPOSTagger() # Load the POS tagging model r.constructSCRDRtreeFromRDRfile('./RDRPOSTagger_python_3/Models/UniPOS/UD_Czech-CAC/train.UniPOS.RDR') # Load the lexicon rdr_pos_dict = readDictionary('./RDRPOSTagger_python_3/Models/UniPOS/UD_Czech-CAC/train.UniPOS.DICT') tagged_sentences = [] for sentence in sentences: tagged_sentence_orig = r.tagRawSentence(rdr_pos_dict, sentence) tagged_words = tagged_sentence_orig.split() tagged_sentence = [] for t_w in tagged_words: word, tag = t_w.split('/') tagged_sentence.append((word, tag)) tagged_sentences.append(tagged_sentence) return tagged_sentences def remove_stop_words(sentences, keep_case=False, is_tokenized=True, return_tokenized=True): if is_tokenized: tokenized_sentences = sentences else: tokenized_sentences = tokenize(sentences) sentences_without_stopwords = [] for sentence_orig in tokenized_sentences: sentence_without_stopwords = [] for word in sentence_orig: if word.lower() not in STOPWORDS: sentence_without_stopwords.append(word if keep_case else word.lower()) sentences_without_stopwords.append( sentence_without_stopwords if return_tokenized else ' '.join(sentence_without_stopwords) ) return sentences_without_stopwords def tokenize(sentences, additional_split_chars=('/', '|')): tokenized = [] for s in sentences: for split_char in additional_split_chars: s = s.replace(split_char, ' ') tokenized.append([w.strip(' ,.!?"():;-') for w in s.split()]) # tokenized.append(s.split()) return tokenized def summarize(text): # SPLIT TO PARAGRAPHS pre_paragraphs = text.split('\n') paragraphs = [] for i, p in enumerate(pre_paragraphs): if not re.match(r'^\s*$', p) and (i == len(pre_paragraphs) - 1 or re.match(r'^\s*$', pre_paragraphs[i+1])): paragraphs.append(p) # print(f'Num of paragraphs: {len(paragraphs)}') # for i, p in enumerate(paragraphs): # print(f'par#{i+1}: {p}') # SPLIT TO SENTENCES sentences = separator.separate(text) print(f'Num of sentences: {len(sentences)}') for i, s in enumerate(sentences): print(f'#{i+1}: {s}') # TOKENIZE stem = False if stem: tokenized_sentences = [[czech_stemmer.cz_stem(word, aggressive=True) for word in sentence] for sentence in tokenize(sentences)] else: tokenized_sentences = tokenize(sentences) # REMOVE STOPWORDS tokenized_sentences_without_stopwords = remove_stop_words(tokenized_sentences, keep_case=False) sentences_without_stopwords_case = remove_stop_words(sentences, keep_case=True, is_tokenized=False, return_tokenized=False) print('===Sentences without stopwords===') for i, s in enumerate(tokenized_sentences_without_stopwords): print(f'''#{i+1}: {' '.join(s)}''') print('===Sentences without stopwords CASE===') for i, s in enumerate(sentences_without_stopwords_case): print(f'''#{i+1}: {s}''') # POS-TAG tagged_sentences = pos_tag(sentences_without_stopwords_case) print('=====Tagged_sentences=====') for i, s in enumerate(tagged_sentences): print(f'''#{i+1}: {s}''') counter = 0 summary_length = max(min(round(len(sentences) / 4), 15), 3) # length between 3-15 sentences ranked_sentence_indexes = textrank.textrank(tokenized_sentences, True, '3-1-0.0001') print(f'ranked_sentence_indexes: {ranked_sentence_indexes}') # summary = '' # # add 1st sentence always # summary += f'{sentences[0]}\n' # counter += 1 # ranked_sentence_indexes.remove(0) # # # add also 2nd sentence if it is in top 50% # if 1 in ranked_sentence_indexes[:len(ranked_sentence_indexes) // 2]: # summary += f'{sentences[1]}\n' # counter += 1 # ranked_sentence_indexes.remove(1) # for sentence_index in sorted(ranked_sentence_indexes[:summary_length - counter]): # if counter == summary_length: # break # summary += f'{sentences[sentence_index]}\n' # counter += 1 # summary += f'::::: Sentences in original: {len(sentences)}. Sentences in summary: {summary_length}. :::::' # add 1st sentence always summary = [] summary.append(sentences[0]) counter += 1 ranked_sentence_indexes.remove(0) # # add also 2nd sentence if it is in top 50% if 1 in ranked_sentence_indexes[:len(ranked_sentence_indexes) // 2]: summary.append(sentences[1]) counter += 1 ranked_sentence_indexes.remove(1) for sentence_index in sorted(ranked_sentence_indexes[:summary_length - counter]): if counter == summary_length: break summary.append(sentences[sentence_index]) counter += 1 return summary def main(): if len(sys.argv) > 1: filename = sys.argv[1] with open(filename, 'r') as f: content = f.read() summary = summarize(content) print(f'===Original text===\n{content}\n') print(f'===Summary===\n{summary}') else: my_dir = os.path.dirname(os.path.realpath(__file__)) article_files = os.listdir(f'{my_dir}/articles') total_articles = 0 for filename in article_files: file_name, file_extension = os.path.splitext(filename) print(f'=========================Soubor: {filename}=============================') print('========================================================================') tree = ET.parse(f'{my_dir}/articles/{filename}') root = tree.getroot() articles = list(root) article_number = 0 for article in articles: title = article.find('nadpis').text.strip() content = article.find('text').text.strip() print(f'Článek {article_number}: {title}') summary = '\n'.join(summarize(content)) output_file_name = f'{file_name}-{article_number}_system.txt' with open(f'{my_dir}/rouge_2_0/summarizer/system/{output_file_name}', 'w') as output_file: output_file.write(summary) article_number += 1 total_articles += 1 print(f'Tested {total_articles} articles.') print(f'Resulting summaries stored to {my_dir}/rouge_2_0/summarizer/system/') print_rouge_scores(rougen=1) print_rouge_scores(rougen=2) if __name__ == "__main__": main()
"""A program for simulating personal finances.""" from argparse import ArgumentParser from .simulation import Simulation def main(): """Simulates personal finances.""" parser = ArgumentParser(description="Simulate personal finances.") parser.add_argument( "--start", metavar="YEAR", type=int, required=True, help="The year in which to start the simulation", ) parser.add_argument( "--end", metavar="YEAR", type=int, required=True, help="The year in which to end the simulation", ) args = parser.parse_args() simulation = Simulation(args.start, args.end) simulation.run() if __name__ == "__main__": main()
# This module enables a test to provide a handler for "hooked://..." urls # passed into serial.serial_for_url. To do so, set the value of # serial_class_for_url from your test to a function with the same API as # ExampleSerialClassForUrl. Or assign your class to Serial. from . import NoOpSerial def ExampleSerialClassForUrl(url): """Implementation of serial_class_for_url called by serial.serial_for_url. Returns the url, possibly modified, and a factory function to be called to create an instance of a SerialBase sub-class (or at least behaves like it). You can return a class as that factory function, as calling a class creates an instance of that class. serial.serial_for_url will call that factory function with None as the port parameter (the first), and after creating the instance will assign the url to the port property of the instance. Returns: A tuple (url, factory). """ return url, Serial # Assign to this global variable from a test to override this default behavior. serial_class_for_url = ExampleSerialClassForUrl # Or assign your own class to this global variable. Serial = NoOpSerial
import os import threading import socket import select import time import queue import cwipc class _Sink_Passthrough(threading.Thread): FOURCC="cwiU" SELECT_TIMEOUT=0.1 QUEUE_FULL_TIMEOUT=0.001 def __init__(self, sink, verbose=False, nodrop=False): threading.Thread.__init__(self) self.name = 'cwipc_util._SinkPassthrough' self.sink = sink if hasattr(self.sink, 'set_fourcc'): self.sink.set_fourcc(self.FOURCC) self.producer = None self.nodrop = nodrop self.queue = queue.Queue(maxsize=2) self.verbose = verbose self.nodrop = nodrop self.stopped = False self.started = False self.pointcounts = [] def set_encoder_params(self, **kwargs): raise RuntimeError("cwipc_sink_passthrough: no encoder parameters supported") def start(self): threading.Thread.start(self) self.sink.start() self.started = True def stop(self): if self.verbose: print(f"passthrough: stopping thread") self.stopped = True self.sink.stop() if self.started: self.join() def set_producer(self, producer): self.producer = producer self.sink.set_producer(producer) def is_alive(self): return not self.stopped def run(self): if self.verbose: print(f"passthrough: thread started") try: while not self.stopped and self.producer and self.producer.is_alive(): pc = self.queue.get() if not pc: print(f"passthrough: get() returned None") continue self.pointcounts.append(pc.count()) cpc = pc.get_packet() self.sink.feed(cpc) pc.free() finally: self.stopped = True if self.verbose: print(f"passthrough: thread stopping") def feed(self, pc): try: if self.nodrop: self.queue.put(pc) else: self.queue.put(pc, timeout=self.QUEUE_FULL_TIMEOUT) except queue.Full: if self.verbose: print(f"passthrough: queue full, drop pointcloud") pc.free() def statistics(self): self.print1stat('pointcount', self.pointcounts) if hasattr(self.sink, 'statistics'): self.sink.statistics() def print1stat(self, name, values, isInt=False): count = len(values) if count == 0: print('passthrough: {}: count=0'.format(name)) return minValue = min(values) maxValue = max(values) avgValue = sum(values) / count if isInt: fmtstring = 'passthrough: {}: count={}, average={:.3f}, min={:d}, max={:d}' else: fmtstring = 'passthrough: {}: count={}, average={:.3f}, min={:.3f}, max={:.3f}' print(fmtstring.format(name, count, avgValue, minValue, maxValue)) def cwipc_sink_passthrough(sink, verbose=False, nodrop=False): """Create a cwipc_sink object sends serialized uncompressed pointclouds to another sink""" return _Sink_Passthrough(sink, verbose=verbose, nodrop=nodrop)
import logging from .articleparser import ArticleParser from crawler.webpage import WebPage from pony.orm import db_session from bs4 import BeautifulSoup from data import Article, Author from text_processing import TextProcessor import re import dateutil.parser import urllib.parse class ArxivParser(ArticleParser): def __init__(self, text_processor: TextProcessor): super().__init__(text_processor) self._logger = logging.getLogger(self.__class__.__name__) @db_session def parse(self, web_page: WebPage) -> bool: page_soup = BeautifulSoup(web_page.text, "html.parser") abstract_section = page_soup.find("div", {"id": "abs"}) if not abstract_section: return False link_to_pdf_relative = abstract_section \ .find("div", {"class": "extra-services"}) \ .find("a", text=re.compile("PDF.*")) if link_to_pdf_relative: link = link_to_pdf_relative.get("href") link_to_pdf = urllib.parse.urljoin(web_page.url, link) else: link_to_pdf = '' title = ArxivParser._get_clean_text( abstract_section.find("h1", {"class": "title mathjax"}) ) abstract = ArxivParser._get_clean_text( abstract_section.find("blockquote", {"class": "abstract mathjax"}) ) authors = list( map(lambda a: a.text, abstract_section.find("div", {"class": "authors"}).find_all("a")) ) date_text = abstract_section\ .find("div", {"class": "submission-history"})\ .find("b", text="[v1]")\ .next_sibling date = dateutil.parser.parse(date_text, fuzzy=True) self._store_parsed_article(raw_abstract=abstract, title=title, link_to_pdf=link_to_pdf, authors=authors, date=date, article_hash=web_page.page_hash) return True @staticmethod def _get_clean_text(soup: BeautifulSoup) -> str: for s in soup.find_all("span"): s.extract() return soup.text
#!/usr/bin/env python2.7 import json import os import sys import auth import common def jsonrpc_change_password(): """Accept a JSONRPC-style change password, with parameters like so: {"jsonrpc":"2.0","method":"use.setpassword","params":["username","password", "oldpassword"],"id":1} On successful login, set two cookies: The auth cookie, used for primary authentication, is HttpOnly so JS cannot access it in case of an XSS. The CSRF token, used to validate that POSTs come from the same origin, is accessible to JS so it can be included in <form>'s. """ data = json.loads(sys.stdin.read()) try: params = data["params"] username = params[0] new_password = params[1] old_password = params[2] except KeyError, e: common.render_error(e.__str__()) except IndexError, e: common.render_error(e.__str__()) a = auth.Auth() if a.is_password(old_password): a.save_password(new_password) print "Content-Type: application/json" print a.login_headers() print print "{}" else: common.render_error("Old password is incorrect.") jsonrpc_change_password()
WARNING = 'Warning' print('DunderImported:', __name__)
#!/usr/bin/env python3 import collections import glob import os import subprocess import sys import numpy as np import pandas as pd batch_size = int(sys.argv[1]) n_iterations = 3 if __name__ == '__main__': for root, dirs, files in os.walk('./'): data_sets = dirs for data_set in data_sets: original_data = pd.read_csv( os.path.join(root, data_set, 'data.csv'), header=None ) original_data = original_data.values files = sorted(glob.glob( os.path.join(root, data_set, '*_latents.csv') ) ) bottlenecks = collections.defaultdict(list) for i in range(n_iterations): # Ensures that we never take more than the number of # samples, regardless of the batch size parameter. if original_data.shape[0] < batch_size: batch_size = original_data.shape[0] random_indices = np.random.choice( original_data.shape[0], batch_size, replace=False ) X_sample = original_data[random_indices] np.savetxt('/tmp/Xw.csv', X_sample, delimiter=' ') diagram = subprocess.run( ['vietoris_rips', '-n', '/tmp/Xw.csv', '1e8', '1'], capture_output=True, ) diagram = diagram.stdout diagram = diagram.decode('utf-8') with open('/tmp/D1w.txt', 'w') as f: f.write(diagram) D1 = np.genfromtxt('/tmp/D1w.txt') for filename in files: name = os.path.basename(filename) name = name[:name.find('_')] latent_space = pd.read_csv( filename, header=0 ) latent_space = latent_space[['0', '1']] latent_space = latent_space.values Y_sample = latent_space[random_indices] np.savetxt('/tmp/Yw.csv', Y_sample, delimiter=' ') diagram = subprocess.run( ['vietoris_rips', '-n', '/tmp/Yw.csv', '1e8', '1'], capture_output=True, ) diagram = diagram.stdout diagram = diagram.decode('utf-8') with open('/tmp/D2w.txt', 'w') as f: f.write(diagram) D2 = np.genfromtxt('/tmp/D2w.txt') bottleneck = subprocess.run( ['topological_distance', '-w', '-p', '1', '/tmp/D1w.txt', '/tmp/D2w.txt' ], capture_output=True, ) bottleneck = bottleneck.stdout bottleneck = bottleneck.decode('utf-8') bottleneck = bottleneck.split('\n')[0] bottleneck = bottleneck.split(' ') bottleneck = float(bottleneck[1]) bottlenecks[name].append(bottleneck) #l2 = np.linalg.norm(D1 - D2) #print(data_set, name, l2) for name in sorted(bottlenecks.keys()): print(batch_size, data_set, name, np.mean(bottlenecks[name]), np.std(bottlenecks[name]) ) sys.stdout.flush() print('')