content
stringlengths
5
1.05M
#!/usr/bin/python3 #Read file $1 and convert to $2 from tabulate import tabulate from sys import argv data = [] f1 = open(argv[1], "r") for line in f1: nw = line.split() if len(nw) != 4: continue data.append(nw) f1.close() rst = tabulate(data[1:], headers=data[0],tablefmt='rst') f2 = open(argv[2], "w") f2.write("Statement Coverage of pysumo and pySUMOQt\n======================================================\n") f2.write(rst) f2.write("\n") f2.close()
from lpd.enums import Phase, State from lpd.callbacks.callback_base import CallbackBase from typing import Union, List, Optional class LossOptimizerHandlerBase(CallbackBase): """ In case LossOptimizerHandler does not suitable for your needs, create your custom callback and derive from this class, and implement __call__ . There you have full control for handling loss and optimizer Args: apply_on_phase - see in CallbackBase apply_on_states - see in CallbackBase round_values_on_print_to - see in CallbackBase """ def __init__(self, apply_on_phase: Phase, apply_on_states: Union[State, List[State]], round_values_on_print_to: Optional[int]=None): super(LossOptimizerHandlerBase, self).__init__(apply_on_phase, apply_on_states, round_values_on_print_to)
import math import time from utils.defines import * from utils.interface import * kb = KeyBoard(r'/dev/hidg0') mouse = Mouse(r'/dev/hidg1') def makeCircle(r): points = [] for i in range(r): x = r * math.cos(i * 2 * math.pi / r) y = r * math.sin(i * 2 * math.pi / r) points.append((int(x), int(y))) offsets = [] for i in range(len(points)-1): x = points[i+1][0] - points[i][0] y = points[i+1][1] - points[i][1] offsets.append((x, y)) return offsets mouse.btn_press(MOUSE_BTN_LEFT) mouse.btn_release(MOUSE_BTN_LEFT) time.sleep(0.5) for (x,y) in makeCircle(200): mouse.move(x=x,y=y) time.sleep(0.01) for i in range(10): mouse.wheel_move(wh=-1) time.sleep(0.5) for key in [KEY_A,KEY_B,KEY_C,KEY_D]: kb.key_press(key) time.sleep(0.1) kb.key_release(key) time.sleep(0.1) for key in [KEY_LEFT_CTRL, KEY_LEFT_SHIFT, KEY_LEFT_ALT, KEY_RIGHT_CTRL, KEY_RIGHT_SHIFT, KEY_RIGHT_ALT, ]: kb.key_press(key) time.sleep(0.1) kb.key_release(key) time.sleep(0.5)
from flask import Flask, render_template from flask_socketio import SocketIO from config import app_config from flask_sqlalchemy import SQLAlchemy app = Flask(__name__) # app.config['SECRET_KEY'] = 'secret!' app.config.from_pyfile('config.py', silent=True) app.config.from_object(app_config['development']) socketio = SocketIO(app) db = SQLAlchemy() db.init_app(app) @socketio.on('new photo') def handle_new_photo(data): pass @app.route('/') def index(): return 'INDEX' @app.route('/images/<int: index>') def fetch_image(index): pass
""" File: boggle.py Name: Jeffrey Lin 2020/12 ---------------------------------------- This program aim to find words that can be constructed from sequentially adjacent letters from the 4×4 grid. “Adjacent” letters are those horizontally, vertically, and diagonally neighbouring. Words must be at least four letters long, but may not use the same letter. """ # This is the file name of the dictionary txt file # we will be checking if a word exists by searching through it FILE = 'dictionary.txt' # Global Variable dictionary = [] d = {} row_list = [] num = 0 check = 0 ans_list = [] def main(): """ find words that can be constructed from sequentially adjacent letters from the 4×4 grid. Words must be at least four letters long, but may not use the same letter. """ global d, num read_dictionary() input_boggle_letter() if check == 0: current_index = [] for row, col in d: current_index.append((row, col)) find_word(row, col, d, d[(row, col)], current_index) current_index.pop() print(f'There are {num} words in total.') def input_boggle_letter(): global row_list, check for i in range(4): row = input(str(i+1)+' row of letters: ').lower() if len(row) == 7: row_list = row.split() if len(row_list) == 4: for j in range(len(row_list)): d[(i, j)] = row_list[j] else: print('Illegal Input') check += 1 break def find_word(row, col, d, answer, current_index): """ :param row: int, the number of row :param col: int, the number of column :param d: dict{(int,int):str(row_character)} :param answer: the current answer string :param current_index: list[(int,int)] index list has be found """ global dictionary, num, ans_list if len(answer) >= 4: if answer in dictionary and answer not in ans_list: print(f'Found: "{answer}" ') ans_list.append(answer) num += 1 if has_prefix(answer): for i in range(-1, 2, 1): for j in range(-1, 2, 1): if 0 <= row + i < 4 and 0 <= col + j < 4: if (row+i, col+j) not in current_index: # choose current_index.append((row+i, col+j)) find_word(row+i, col+j, d, answer+d[(row+i, col+j)], current_index) # un-choose current_index.pop() def read_dictionary(): """ This function reads file "dictionary.txt" stored in FILE and appends words in each line into a Python list """ global dictionary with open(FILE, 'r') as f: for line in f: word = line.strip() dictionary.append(word) def has_prefix(sub_s): """ :param sub_s: (str) A substring that is constructed by neighboring letters on a 4x4 square grid :return: (bool) If there is any words with prefix stored in sub_s """ global dictionary for voc in dictionary: if voc.startswith(sub_s): return True return False if __name__ == '__main__': main()
from exponent_server_sdk import ( DeviceNotRegisteredError, PushClient, PushMessage, # PushResponseError, ) from app.services.user import UserService class Notification: def __init__(self, user_svc: UserService) -> None: self.user_svc = user_svc # Basic arguments. You should extend this function with the push features you # want to use, or simply pass in a `PushMessage` object. def send_push_message(token, message, extra=None): response = PushClient().publish(PushMessage(to=token, body=message, data=extra)) try: # We got a response back, but we don't know whether it's an error yet. # This call raises errors so we can handle them with normal exception # flows. response.validate_response() except DeviceNotRegisteredError: # self.user_svc.edit_user() # Mark the push token as inactive # PushToken.objects.filter(token=token).update(active=False) print("device not registered") except Exception as exc: # Encountered some other per-notification error. raise exc
import os from os.path import join, dirname from dotenv import load_dotenv # need to `pip install -U python-dotenv` # Create .env file path. dotenv_path = join(dirname(__file__), '.env') print(dotenv_path) # Load file from the path. load_dotenv(dotenv_path) # Accessing variables. ACCOUNT_SID = os.getenv('TWILIO_ACCOUNT_SID') AUTH_TOKEN = os.getenv('TWILIO_AUTH_TOKEN')
from joblib import load import pandas as pd import numpy as np class models(): def __init__(self): self.bmi_model = self.load_model(model_path='assets/bmi_model.joblib') self.general_health_model = self.load_model(model_path='assets/gen_health_model.joblib') self.model_status = 'Loading' def load_model(self, model_path): try: model = load(model_path) self.model_status = 'Models Ready' print('Model Loaded Successfully') return model except FileNotFoundError: print('Model not found. Please contact administrator.') except NameError: print('joblib Load Module not defined') class data(): def __init__(self): self.default_data= None self.model_data = None self.user_data = None self.data_status = None self.set_default_data() #'default' or 'user' for each variable def get_data(self, data_name): return np.array([list(self.model_data[data_name].values())]) def update_user_data(self, data_to_update): pass def get_model_names_if_key(self, data_to_check): assert type(data_to_check) == dict valid_keys = [] if list(data_to_check.keys())[0] in self.model_data['bmi_data']: valid_keys.append('bmi_data') if list(data_to_check.keys())[0] in self.model_data['general_health_data']: valid_keys.append('general_health_data') return valid_keys def update_model_data(self, data_to_update): assert type(data_to_update) == dict model_keys = self.get_model_names_if_key(data_to_update) for model_key in model_keys: for model_var, new_val in data_to_update.items(): self.model_data[model_key][model_var] = new_val def set_default_data(self, models='all'): self.default_data = {} default_bmi_data_path = 'assets/default_bmi_data.csv' default_general_health_data_path = 'assets/default_gen_health_data.csv' self.default_data['bmi_data'] = self.load_data(path=default_bmi_data_path) self.default_data['general_health_data'] = self.load_data(path=default_general_health_data_path) self.model_data = self.default_data self.strip_target(self.model_data['bmi_data'], 'bmi') self.strip_target(self.model_data['general_health_data'], 'general_health') def strip_target(self, data, target): try: del data[target] except: print('Could not strip target from [{}]'.format(target)) def load_data(self, path): df = pd.read_csv(path, header=None, names=['variable', 'median_value']) default_dict = {} for i in range(len(df)): default_dict[df.iloc[i][0]] = df.iloc[i][1] return default_dict
from numbers import Number from typing import Iterable class Skin: def get_index(self, x: Number, y: Number): raise NotImplementedError def get_bounds(self): raise NotImplementedError class DefiniteSkin(Skin, object): __slots__ = ("_skin",) def __init__(self, skin: Iterable[Iterable[str]]): self._skin = skin self._skin.reverse() def get_bounds(self): return (range(len(self._skin[0])), range(len(self._skin))) def get_index(self, x: Number, y: Number): bounds = self.get_bounds() if y not in bounds[1] or x not in bounds[0]: return None return self._skin[int(y)][int(x)]
import random import hashlib import os import errno import base64 from datetime import datetime import calendar import time import flask from flask import jsonify from flask.ext.restful import Resource from sqlalchemy import Column, String, DateTime, SmallInteger, ForeignKey, exc, Integer, not_, exists, BLOB, UnicodeText from sqlalchemy.orm import * from sqlalchemy.ext.hybrid import hybrid_property import pytz import database from database import Base from app import app import authorized import email_handling import string_constants from boto.s3.connection import S3Connection, Bucket, Key class UserModel(Base): __tablename__ = 'users' user_id = Column(Integer, primary_key=True) username = Column(String(app.config["COLUMN_MAX_LENGTH"])) password = Column(String(app.config["COLUMN_MAX_LENGTH"])) password_salt = Column(String(app.config["COLUMN_MAX_LENGTH"])) profile_image = Column(String(app.config["COLUMN_MAX_LENGTH"])) _display_name = Column('display_name', UnicodeText()) deactivated = Column(SmallInteger) password_reset = Column(SmallInteger) @hybrid_property def display_name(self): __display_name = self._display_name if type(self) is UserModel: __display_name = __display_name.decode('unicode_escape') return __display_name @display_name.setter def display_name(self, value): _value = value.encode('unicode_escape') self._display_name = _value def __init__(self, user_id, profile_image, username, password, password_salt, display_name, deactivated=False, password_reset=False): self.user_id = user_id self.username = username self.password = password self.password_salt = password_salt self.profile_image = profile_image self.display_name = display_name self.deactivated = deactivated self.password_reset = password_reset def __repr__(self): return "<User('%s', '%s', '%s', '%s', '%s', '%i', '%i')>" % (self.user_id, self.profile_image, self.username, self.password, self.display_name, self.deactivated, self.password_reset) class ActiveUser(Base): __tablename__ = 'active_users' user_id = Column(String(app.config["COLUMN_MAX_LENGTH"]), primary_key=True) access_token = Column(String(app.config["COLUMN_MAX_LENGTH"])) expiry_date = Column(DateTime) active = Column(SmallInteger) def __init__(self, user_id, access_token, expiry_date, active): self.user_id = user_id self.access_token = access_token self.expiry_date = expiry_date self.active = active def __repr__(self): return "<ActiveUser('%s', '%s', '%s', '%i')>" % (self.user_id, self.access_token, self.expiry_date, self.active) class Connection(Base): __tablename__ = 'connections' connection_id = Column(String(app.config["COLUMN_MAX_LENGTH"]), primary_key=True) user1 = Column(Integer, ForeignKey(UserModel.user_id)) user2 = Column(Integer, ForeignKey(UserModel.user_id)) user1_model = relationship('UserModel', foreign_keys='Connection.user1') user2_model = relationship('UserModel', foreign_keys='Connection.user2') start_date = Column(DateTime) approved = Column(SmallInteger) disabled = Column(SmallInteger) def __init__(self, connection_id, user1, user2, start_date, approved): self.connection_id = connection_id self.user1 = user1 self.user2 = user2 self.start_date = start_date self.approved = approved self.disabled = 0 def __repr__(self): return "<Connection('%s', '%i', '%i', '%s', '%i', '%i')>" % (self.connection_id, self.user1, self.user2, self.start_date, self.approved, self.disabled) class Receipt(Base): __tablename__ = 'receipts' receipt_id = Column(Integer, primary_key=True, autoincrement=True) receipt_data = Column(BLOB) receipt_date = Column(Integer) receipt_user_id = Column(Integer) receipt_product_id = Column(String(app.config["COLUMN_MAX_LENGTH"])) def __init__(self, receipt_data, receipt_date, receipt_user_id, receipt_product_id): self.receipt_id = None self.receipt_data = receipt_data self.receipt_date = receipt_date self.receipt_user_id = receipt_user_id self.receipt_product_id = receipt_product_id def __repr__(self): return "<Receipt('%i', '%s', '%i', '%i', '%s')>" % (self.receipt_id, self.receipt_data, self.receipt_date, self.receipt_user_id, self.receipt_product_id) class User(Resource): # Creating a user # Required Params: # username - string (Email) # display_name - string # password - string # profile_image - string @app.route('/api/'+app.config["API_VERSION"]+'/user/', methods=["POST"]) def createUser(): req = flask.request.get_json()['params'] username = req['username'] display_name = req['display_name'] password = req['password'] profile_image = None if "profile_image" in req: profile_image = base64.b64decode(req['profile_image']) if username is None or password is None or display_name is None: return authorized.wrongParams() session = database.DBSession() userCheck = session.query(UserModel).filter(UserModel.username == username).first() if userCheck is not None: response = jsonify(message=string_constants.kServerUserAlreadyExistsError, status=False, HTTP_CODE=200 ) response.status_code = 200 return response # Create User object salt = hashlib.sha256(str(time.time() * random.randint(1, 9999999))).hexdigest() password_hash = hashlib.sha256(password + salt).hexdigest() new_User = UserModel(None, 'profileImage', username, password_hash, salt, display_name, False) user_id = "" try: session.add(new_User) session.commit() user_id = session.query(UserModel.user_id).filter(UserModel.username == username).first()[0] if app.config["AWS_S3"]: if profile_image is not None: aws_s3_connection = S3Connection(app.config['AWS_ACCESS_KEY'], app.config['AWS_SECRET_KEY']) aws_s3_bucket = Bucket(aws_s3_connection, app.config['AWS_BUCKET_NAME']) aws_s3_profile_image_key = Key(aws_s3_bucket) aws_s3_profile_image_key.key = User.getProfileImage(user_id) aws_s3_profile_image_key.content_type = app.config['AWS_KEY_CONTENT_TYPE'] aws_s3_profile_image_key.set_contents_from_string(profile_image, replace=True) # Create Notification User object from notification import RegisteredNotificationUserModel notification_user = RegisteredNotificationUserModel(user_id, "") session.add(notification_user) session.commit() except exc.SQLAlchemyError: response = jsonify(message=string_constants.kServerUserCreationError, status=False, HTTP_CODE=404 ) response.status_code = 404 session.close() return response # Send welcome email to new user email_handling.send_email(username, (string_constants.kWelcomeEmail % display_name.encode('unicode_escape')), string_constants.kWelcomeEmailSubject) session.close() response = jsonify(message=string_constants.kServerUserSignUpSuccess, status=True, HTTP_CODE=200 ) response.status_code = 200 return response # Getting user information # Required Params: # user_id - string # user - string # access_token - string @app.route('/api/'+app.config["API_VERSION"]+'/user/info', methods=["GET"]) def getUserInfo(): user_id = flask.request.args.get('user_id') other_user_id = flask.request.args.get('user') access_token = flask.request.args.get('access_token') session = database.DBSession() if user_id is None or access_token is None or other_user_id is None: session.close() return authorized.wrongParams() # check if they are None and check the access_token against the active_users table allowed = authorized.authorized(user_id, access_token, session) if allowed is not True: session.close() return allowed user = session.query(UserModel).filter(UserModel.user_id == other_user_id).first() if user is None: response = jsonify(message=string_constants.kServerUserNotFoundError, status=False, HTTP_CODE=200, User=None ) response.status_code = 200 session.close() return response else: response = jsonify(message=string_constants.kServerUserInfoResponseSuccess, status=True, HTTP_CODE=200, User={'user_id': user.user_id, 'profile_image': User.getProfileImage(user.user_id), 'connections': None, 'display_name': user.display_name, 'deactivated': user.deactivated } ) response.status_code = 200 session.close() return response # Deleting a user # Required Params: # user_id - string # password - string # access_token - string @app.route('/api/'+app.config["API_VERSION"]+'/user/removeUser/', methods=["POST"]) def removeUser(): req = flask.request.get_json()['params'] user_id = req['user_id'] password = req['password'] access_token = req['access_token'] session = database.DBSession() if user_id is None and access_token is None and password is None: session.close() return authorized.wrongParams() allowed = authorized.authorized(user_id, access_token, session) if allowed is not True: session.close() return allowed user = session.query(UserModel).filter(UserModel.user_id == user_id).first() if user.password != hashlib.sha256(password + user.password_salt).hexdigest(): response = jsonify(message=string_constants.kServerDeactivatedNotAuthorizedError, status=False, HTTP_CODE=200 ) response.status_code = 200 session.close() return response if user.deactivated is True: response = jsonify(message=string_constants.kServerUserAlreadyDeactivatedError, status=False, HTTP_CODE=200 ) response.status_code = 200 session.close() return response #Deactivate the user's account session.query(UserModel).filter(UserModel.user_id == user_id).update({'deactivated': 1}, synchronize_session='fetch') #Remove users access token active_user = session.query(ActiveUser).filter(ActiveUser.user_id == user_id).filter( ActiveUser.access_token == access_token).first() if active_user is not None: session.delete(active_user) #Remove user from registered notifications users from notification import RegisteredNotificationUserModel notification_user = session.query(RegisteredNotificationUserModel).filter(RegisteredNotificationUserModel.user_id == user_id).first() if notification_user is not None: session.delete(notification_user) session.commit() session.close() response = jsonify(message=string_constants.kServerUserDeactivatedSuccess, status=True, HTTP_CODE=200 ) response.status_code = 200 return response # Updating a user # Required Params: # user_id - string # changes - dictionary <List of items to change> # access_token - string @app.route('/api/'+app.config["API_VERSION"]+'/user/updateUser/', methods=["POST"]) def updateUser(): req = flask.request.get_json()['params'] user_id = req['user_id'] access_token = req['access_token'] session = database.DBSession() changes = {} if 'changes' in req: changes = req['changes'] if user_id is None or access_token is None: session.close() return authorized.wrongParams() allowed = authorized.authorized(user_id, access_token, session) if allowed is not True: session.close() return allowed if (len(changes) == 0): response = jsonify(message=string_constants.kServerUserUpdateNoInfoToUpdateError, status=False, HTTP_CODE=200 ) response.status_code = 200 session.close() return response # Loop through changes dictionary and extract the white listed keys that we allow the user to change allowed_keys = ['display_name', 'password', 'username', 'profile_image'] allowed_changes = {} for key in changes: if key in allowed_keys: if key == 'display_name': changes[key] = changes[key].encode('unicode_escape') allowed_changes.update({key: changes[key]}) if 'profile_image' in allowed_changes: try: if app.config["AWS_S3"]: profile_image = base64.b64decode(allowed_changes['profile_image']) aws_s3_connection = S3Connection(app.config['AWS_ACCESS_KEY'], app.config['AWS_SECRET_KEY']) aws_s3_bucket = Bucket(aws_s3_connection, app.config['AWS_BUCKET_NAME']) aws_s3_profile_image_key = Key(aws_s3_bucket) aws_s3_profile_image_key.key = User.getProfileImage(user_id) aws_s3_profile_image_key.content_type = app.config['AWS_KEY_CONTENT_TYPE'] aws_s3_profile_image_key.set_contents_from_string(profile_image, replace=True) except: pass del allowed_changes['profile_image'] if 'password' in allowed_changes: allowed_changes['password'] = allowed_changes['password'] salt = hashlib.sha256(str(time.time() * random.randint(1, 9999999))).hexdigest() password_hash = hashlib.sha256(allowed_changes['password'] + salt).hexdigest() allowed_changes['password'] = password_hash allowed_changes['password_reset'] = False allowed_changes['password_salt'] = salt # Create an expiry date 7 days from today expiry_date = datetime.today() expiry_date = User.updateTokenExpiryDate(expiry_date) try: activeUser = session.query(ActiveUser).filter(ActiveUser.user_id == user_id).filter( ActiveUser.access_token == access_token).first() # Create a hash of the users information and save it as their access_token access_token = hashlib.sha256(str(user_id) + password_hash + expiry_date.strftime( string_constants.kDateFormatMinimalDate)).hexdigest() activeUser.access_token = access_token activeUser.expiry_date = expiry_date activeUser.active = True except exc.SQLAlchemyError: response = jsonify(message=string_constants.kServerGeneric500Error, status=False, HTTP_CODE=500 ) response.status_code = 500 session.close() return response else: activeUser = None # Update each property of the user if len(allowed_changes) > 0: try: session.query(UserModel).filter(UserModel.user_id == user_id). \ update(allowed_changes, synchronize_session='fetch') session.commit() except exc.SQLAlchemyError: response = jsonify(message=string_constants.kServerGeneric500Error, status=False, HTTP_CODE=500 ) response.status_code = 500 session.close() return response # Get updated user to return user = session.query(UserModel).filter(UserModel.user_id == user_id).first() response = jsonify(message=string_constants.kServerUserInfoUpdatedSuccess, status=True, HTTP_CODE=200, User={'username': user.username, 'user_id': user.user_id, 'connections': None, 'display_name': user.display_name, 'deactivated': user.deactivated, 'profile_image': User.getProfileImage(user_id) }, access_token=activeUser is not None and activeUser.access_token or "", expiry_date=activeUser is not None and activeUser.expiry_date.strftime( string_constants.kDateFormatFullDate) or "" ) response.status_code = 200 session.close() return response # Update Token for user # Required Params: # user_id - string # access_token - string @app.route('/api/'+app.config["API_VERSION"]+'/user/update_token', methods=["POST"]) def updateToken(): session = database.DBSession() req = flask.request.get_json()['params'] user_id = req['user_id'] access_token = req['access_token'] if user_id is None and access_token is None: return authorized.wrongParams() activeUser = session.query(ActiveUser).filter(ActiveUser.user_id == user_id).filter( ActiveUser.access_token == access_token).first() if activeUser is None: return authorized.notActiveResponse() else: user = session.query(UserModel).filter(UserModel.user_id == user_id).first() if user is None: response = jsonify(message=string_constants.kServerGeneric500Error, status=False, HTTP_CODE=500 ) response.status_code = 500 return response else: expiry_date = datetime.today() expiry_date = User.updateTokenExpiryDate(expiry_date) # Create a hash of the users information and save it as their access_token try: access_token = hashlib.sha256(str(user.user_id) + user.password + expiry_date.strftime( string_constants.kDateFormatMinimalDate)).hexdigest() activeUser.access_token = access_token activeUser.expiry_date = expiry_date activeUser.active = True session.commit() except exc.SQLAlchemyError: response = jsonify(message=string_constants.kServerGeneric500Error, status=False, HTTP_CODE=500 ) response.status_code = 500 session.close() return response response = jsonify(message=string_constants.kServerUserTokenUpdatedSuccess, status=True, HTTP_CODE=200, access_token=access_token, expiry_date=expiry_date ) response.status_code = 200 return response # Check username # Required Params: # username - string @app.route('/api/'+app.config["API_VERSION"]+'/user/check_username', methods=["GET"]) def checkUsername(): session = database.DBSession() req = flask.request.args username = req['username'] username_check = session.query(UserModel).filter(UserModel.username == username).first() response = jsonify( message=username_check is None and string_constants.kServerUserUsernameAvailableSuccess or string_constants.kServerUserUsernameAvailableError, status=username_check is None and True or False, HTTP_CODE=200 ) response.status_code = 200 session.close() return response # Logout a user # Required Params: # user_id - string # access_token = string @app.route('/api/'+app.config["API_VERSION"]+'/user/logout/', methods=["POST"]) def logout(): req = flask.request.get_json()['params'] user_id = req['user_id'] access_token = req['access_token'] session = database.DBSession() if user_id is None and access_token is None: session.close() return authorized.wrongParams() active_user = session.query(ActiveUser).filter(ActiveUser.user_id == user_id).filter( ActiveUser.access_token == access_token).first() if active_user is not None: session.delete(active_user) session.commit() response = jsonify(message=string_constants.kServerUserLoggedOutSuccess, status=True, HTTP_CODE=200 ) response.status_code = 200 session.close() return response else: response = jsonify(message=string_constants.kServerUserLoggedOutError, status=False, HTTP_CODE=200 ) response.status_code = 200 session.close() return response # Login a user # Required Params: # username - string # password - string (can be nil) # access_token = string (can be nil) @app.route('/api/'+app.config["API_VERSION"]+'/user/login/', methods=["POST"]) def login(): req = flask.request.get_json()['params'] username = req['username'] if req['password'] != '': password = req['password'] else: password = '' access_token = None if 'access_token' in req: access_token = req['access_token'] session = database.DBSession() if username is None: session.close() return authorized.wrongParams() def loginWithAccess_tokenAndUsername(username, access_token): user = checkUserWithNoPassword(username) if user is not None: access_check = checkActiveUser(user.user_id, access_token) if access_check is True: return setActiveUser(user) else: return access_check else: return incorrectUser() def checkUserWithNoPassword(username): user = session.query(UserModel).filter(UserModel.username == username).first() if (user is None): return None else: return user def checkUser(username, password): user = session.query(UserModel).filter(UserModel.username == username).first() if user is None or user.password != hashlib.sha256(str(password) + user.password_salt).hexdigest(): return None else: return user def checkActiveUser(user_id, access_token): activeUser = session.query(ActiveUser).filter(ActiveUser.user_id == user_id).filter(access_token == ActiveUser.access_token).first() if activeUser is None: return incorrectUser() else: return True def setActiveUser(user): activeUser = session.query(ActiveUser).filter(ActiveUser.user_id == user.user_id).first() expiry_date = None if activeUser is None: # User exists but isn't logged in already, add user to active user and return access_token # Create an expiry date 7 days from today expiry_date = datetime.today() expiry_date = User.updateTokenExpiryDate(expiry_date) # Create a hash of the users information and save it as their access_token access_token = hashlib.sha256(str(user.user_id) + user.password + expiry_date.strftime( string_constants.kDateFormatMinimalDate)).hexdigest() activeUser = ActiveUser(str(user.user_id), access_token, expiry_date, True) try: session.add(activeUser) session.commit() except exc.SQLAlchemyError: response = jsonify(message=string_constants.kServerGeneric500Error, status=False, HTTP_CODE=500 ) response.status_code = 500 session.close() return response try: if user.deactivated == 1: user.deactivated = 0 activeUser.expiry_date = User.updateTokenExpiryDate(activeUser.expiry_date) session.commit() except exc.SQLAlchemyError: response = jsonify(message=string_constants.kServerGeneric500Error, status=False, HTTP_CODE=500 ) response.status_code = 500 session.close() return response return returnUserInfo(user, activeUser.access_token, activeUser.expiry_date) def returnUserInfo(user, access_token, expiry_date): UTC_tz = pytz.timezone('UTC') expiry_date = UTC_tz.localize(expiry_date).astimezone(pytz.utc) response = jsonify(message=string_constants.kServerUserLoggedInSuccess, status=True, HTTP_CODE=200, User={'username': user.username, 'user_id': user.user_id, 'profile_image': User.getProfileImage(user.user_id), 'connections': None, 'display_name': user.display_name, 'deactivated': user.deactivated }, access_token=access_token, expiry_date=expiry_date.strftime(string_constants.kDateFormatFullDate) ) response.status_code = 200 session.commit() session.close() return response def incorrectUser(): response = jsonify(message=string_constants.kServerUserLoggedInError, status=False, HTTP_CODE=401, User=None, access_token=None, expiry_date=None ) response.status_code = 401 session.close() return response # Check if username/password match if not then use access token and username, if that fails then return 401 if ((username is not None and password is not None) or username is not '' and password is not '') and access_token is None or access_token is '': user = checkUser(username, password) if user is not None: return setActiveUser(user) else: return incorrectUser() elif (username is not None and access_token is not None) or (username is not '' and access_token is not ''): return loginWithAccess_tokenAndUsername(username, access_token) return incorrectUser() # Create a connection between two users # Required Params: # user_id - string # user2 - string # access_token - string @app.route('/api/'+app.config["API_VERSION"]+'/user/connection/', methods=["POST"]) def connection(): req = flask.request.get_json()['params'] user_id = req['user_id'] user2 = req['user2'] access_token = req['access_token'] session = database.DBSession() if user_id is None and access_token is None and user2 is None: return authorized.wrongParams() # Check if the user is allowed to access this method allowed = authorized.authorized(user_id, access_token, session) if allowed is not True: session.close() return allowed connection_check_query_a = session.query(Connection).filter(Connection.user1 == user_id).filter( Connection.user2 != user_id).filter(Connection.user2 == user2).filter(Connection.user1 != user2) connection_check_query_b = session.query(Connection).filter(Connection.user1 == user2).filter( Connection.user1 != user_id).filter(Connection.user2 == user_id).filter(Connection.user2 != user2) connection_check = connection_check_query_a.union(connection_check_query_b).first() if connection_check is not None: if connection_check.disabled == 0: response = jsonify(message=string_constants.kServerUserConnectionRequestExistsError, status=False, HTTP_CODE=200 ) response.status_code = 200 session.close() return response try: if connection_check is not None: if connection_check.disabled == 1: connection_check.disabled = 0 connection_check.user2 = (connection_check.user1 == int(user_id)) and connection_check.user2 or connection_check.user1 connection_check.user1 = int(user_id) connection_id = connection_check.connection_id else: connection_id = hashlib.sha256(str(user_id) + str(user2)).hexdigest() connection = Connection(connection_id, int(user_id), user2, datetime.utcnow(), False) session.add(connection) userDisplayName = session.query(UserModel.display_name).filter(UserModel.user_id == int(user_id)).first() userDisplayName = userDisplayName[0] # Add the notification for the connection request from notification import NotificationModel, RegisteredNotificationUserModel notification = NotificationModel(user_id, user2, { string_constants.kServerNotificationsType: string_constants.kServerNotificationsTypeConnectionsRequest, string_constants.kServerNotificationsUser_idKey: user_id, string_constants.kServerNotificationsConnection_idKey: connection_id, string_constants.kServerNotificationsUser_NameKey: userDisplayName }, calendar.timegm(datetime.utcnow().timetuple())) session.add(notification) session.commit() response = jsonify(message=string_constants.kServerUserConnectionRequestSentSuccess, status=True, HTTP_CODE=200 ) response.status_code = 200 session.close() return response except exc.SQLAlchemyError as e: response = jsonify(message=string_constants.kServerUserConnectionRequestSentError, status=False, HTTP_CODE=200 ) response.status_code = 200 session.close() return response # Accept or decline connection request # Required Params: # user_id - string # connection_id - string # status - bool # access_token - string @app.route('/api/'+app.config["API_VERSION"]+'/user/connection_status_change', methods=["POST"]) def connection_status_change(): req = flask.request.get_json()['params'] user_id = req['user_id'] connection_id = req['connection_id'] status = req['status'] access_token = req['access_token'] session = database.DBSession() if user_id is None and access_token is None and connection_id is None and status is not None: return authorized.wrongParams() # Check if the user is allowed to access this method allowed = authorized.authorized(user_id, access_token, session) if allowed is not True: session.close() return allowed connection = session.query(Connection).filter(Connection.connection_id == connection_id).filter(Connection.user2 == int(user_id)).first() if connection is not None: from video import Timeline, Video timeline_check = session.query(Timeline).filter(Timeline.connection_id == connection.connection_id).first() if status is False or status == 0: if timeline_check is None: session.delete(connection) session.commit() session.close() else: try: if timeline_check is None: timeline_id = Video.createTimeline(session, user_id, connection_id) else: timeline_id = timeline_check.timeline_id userDisplayName = connection.user2_model.display_name # Add the notification for the connection request confirmation from notification import NotificationModel, RegisteredNotificationUserModel notification = NotificationModel(user_id, connection.user1, { string_constants.kServerNotificationsType: string_constants.kServerNotificationsTypeConnectionsRequestConfirmation, string_constants.kServerNotificationsUser_idKey: connection.user2, string_constants.kServerNotificationsTimeline_idKey: timeline_id, string_constants.kServerNotificationsUser_NameKey: userDisplayName }, calendar.timegm(datetime.utcnow().timetuple())) session.add(notification) session.query(Connection).filter(Connection.connection_id == connection_id).filter(Connection.user2 == user_id).update({'approved': 1}) if timeline_id is not None: session.commit() session.close() except exc.SQLAlchemyError as e: response = jsonify(message=string_constants.kServerUserAcceptConnectionRequestError, status=False, HTTP_CODE=200 ) response.status_code = 200 session.close() return response response = jsonify(message=string_constants.kServerUserAcceptConnectionRequestSuccess, status=True, HTTP_CODE=200 ) response.status_code = 200 return response else: session.close() response = jsonify(message=string_constants.kServerUserAcceptConnectionRequestError, status=False, HTTP_CODE=200 ) response.status_code = 200 return response # Get a list of connections for a user # Required Params: # user_id - string # access_token - string @app.route('/api/'+app.config["API_VERSION"]+'/user/connections/', methods=["GET"]) def connections(): req = flask.request.args user_id = req['user_id'] access_token = req['access_token'] session = database.DBSession() if user_id is None and access_token is None: return authorized.wrongParams() # Check if the user is allowed to access this method allowed = authorized.authorized(user_id, access_token, session) if allowed is not True: session.close() return allowed connection_list_query_a = session.query(Connection).filter(Connection.user1 == user_id).filter( Connection.approved is True or Connection.approved == 1) connection_list_query_b = session.query(Connection).filter(Connection.user2 == user_id).filter( Connection.approved is True or Connection.approved == 1) from notification import NotificationModel notification_list = session.query(NotificationModel).filter(NotificationModel.notification_receiver_id == user_id).filter(NotificationModel.notification_sent == 1).all() connection_list = connection_list_query_a.union(connection_list_query_b).all() connection_id_list = [] for c in connection_list: connection_id_list.append(c.connection_id) from video import Timeline timelines = None if len(connection_id_list) > 0: timelines = session.query(Timeline).filter(Timeline.connection_id.in_(connection_id_list)).all() connection_list_r = {'connections': [], 'requests': []} if connection_list is not None and len(connection_list) > 0: for timeline in timelines: for connection in connection_list: if connection.connection_id == timeline.connection_id: new_connection = False video_count = 0 if notification_list is not None and len(notification_list) > 0: for notification in notification_list: if notification.notification_payload[string_constants.kServerNotificationsType] == string_constants.kServerNotificationsTypeNewVideo: if notification.notification_payload[string_constants.kServerNotificationsTimeline_idKey] == timeline.timeline_id: video_count += 1 if notification.notification_payload[string_constants.kServerNotificationsType] == string_constants.kServerNotificationsTypeConnectionsRequestConfirmation: if notification.notification_payload[string_constants.kServerNotificationsTimeline_idKey] == timeline.timeline_id: new_connection = True connection_list_r['connections'].append(User.getConnectionModelForReturn(connection, user_id, timeline.timeline_id, video_count, new_connection)) if notification_list is not None and len(notification_list) > 0: request_ids = [] for notification in notification_list: if notification.notification_payload['NotificationType'] == string_constants.kServerNotificationsTypeConnectionsRequest: request_ids.append(notification.notification_sender) if len(request_ids) > 0: friend_requests = session.query(Connection).filter(Connection.user1.in_(request_ids)).filter(Connection.approved == False or Connection.approved == 0).filter(Connection.user2 == int(user_id)).all() for request_model in friend_requests: connection_list_r['requests'].append({ 'user': User.getSerializedUserModel(request_model.user1_model), 'connection_id': request_model.connection_id }) session.close() response = jsonify(message=string_constants.kServerUserConnectionListSuccess, connections=connection_list_r['connections'], requests=connection_list_r['requests'], status=True, HTTP_CODE=200 ) response.status_code = 200 return response # Connections Profile with Timelines # Required Params: # user_id - string # timeline_id - string # access_token - string @app.route('/api/'+app.config["API_VERSION"]+'/user/connection/timeline/', methods=["GET"]) def connectionFromTimeline(): from video import Timeline, Video req = flask.request.args user_id = int(req['user_id']) timeline_id = req['timeline_id'] access_token = req['access_token'] session = database.DBSession() if user_id is None and access_token is None and timeline_id is None: return authorized.wrongParams() # Check if the user is allowed to access this method allowed = authorized.authorized(user_id, access_token, session) if allowed is not True: session.close() return allowed timeline = session.query(Timeline).filter(Timeline.timeline_id == timeline_id).first() # _response = { # "message": string_constants.kServerUserConnectionProfileSuccess, # "status": True, # "HTTP_CODE": 200 # } # if connection is not None: # _response["connection"] = connection if timeline is not None: connection = User.getConnectionModelForReturn(timeline.connection, user_id, timeline_id, timeline.video_count, False) if connection is not None: session.close() response = jsonify(message=string_constants.kServerUserConnectionProfileSuccess, status=True, connection=connection, HTTP_CODE=200 ) response.status_code = 200 return response session.close() response = jsonify(message=string_constants.kServerUserConnectionProfileError, status=False, HTTP_CODE=200 ) response.status_code = 200 return response # Get a limited profile for a user # Required Params: # user_id - string # user - string # access_token - string @app.route('/api/'+app.config["API_VERSION"]+'/user/remove_connection/', methods=["POST"]) def removeConnection(): req = flask.request.get_json()['params'] user_id = req['user_id'] connection_id = req['connection_id'] access_token = req['access_token'] session = database.DBSession() if user_id is None and access_token is None and connection_id is None: return authorized.wrongParams() # Check if the user is allowed to access this method allowed = authorized.authorized(user_id, access_token, session) if allowed is not True: session.close() return allowed connection_exists = session.query(exists().where(Connection.connection_id == connection_id)).scalar() if connection_exists is not None: try: connection = session.query(Connection).filter(Connection.connection_id == connection_id).first() connection.approved = 0 connection.disabled = 1 session.commit() except exc.SQLAlchemyError as e: session.close() response = jsonify( message=string_constants.kServerGeneric500Error, status=True, HTTP_CODE=500 ) response.status_code = 500 return response session.close() response = jsonify( message=string_constants.kServerUserConnectionRemoveProfileSuccess, status=True, HTTP_CODE=200 ) response.status_code = 200 return response else: session.close() response = jsonify( message=string_constants.kServerUserConnectionRemoveProfileFailure, status=False, HTTP_CODE=200 ) response.status_code = 200 return response @app.route('/api/'+app.config["API_VERSION"]+'/user/limited/', methods=["GET"]) def getLimitedProfile(): import video req = flask.request.args user_id = req['user_id'] access_token = req['access_token'] user = req['user'] session = database.DBSession() if user_id is None and access_token is None or user is None: return authorized.wrongParams() # Check if the user is allowed to access this method allowed = authorized.authorized(user_id, access_token, session) if allowed is not True: session.close() return allowed limited_user = session.query(UserModel).filter(UserModel.user_id == user).first() # Get the count of the users video list limited_users_video_count = session.query(video.VideoModel).filter(video.VideoModel.user == user).count() # Get the count of the users connection list connection_list_query_a = session.query(Connection).filter(Connection.user1 == user).filter( Connection.approved is True or Connection.approved == 1) connection_list_query_b = session.query(Connection).filter(Connection.user2 == user).filter( Connection.approved is True or Connection.approved == 1) limited_users_connection_list_count = connection_list_query_a.union(connection_list_query_b).count() if limited_user is not None: session.close() response = jsonify(message=string_constants.kServerUserLimitedProfileSuccess, status=True, HTTP_CODE=200, user=User.getSerializedLimitedUserModel(limited_user, limited_users_video_count, limited_users_connection_list_count) ) response.status_code = 200 return response else: session.close() response = jsonify(message=string_constants.kServerUserLimitedProfileError, user=None, status=False, HTTP_CODE=200 ) response.status_code = 200 return response # Search endpoint for finding users by display_name # Required Params: # user_id - string # search_query - string # access_token - string @app.route('/api/'+app.config["API_VERSION"]+'/user/search/', methods=["GET"]) def searchUsers(): req = flask.request.args user_id = req['user_id'] access_token = req['access_token'] search_query = req['search_query'].strip().replace("%", "").replace("_", "").replace("?", "").replace("*", "") session = database.DBSession() if user_id is None and access_token is None or search_query is None or search_query is None or search_query == '': return authorized.wrongParams() # Check if the user is allowed to access this method allowed = authorized.authorized(user_id, access_token, session) if allowed is not True: session.close() return allowed connection_list_query_a = session.query(Connection.user2).filter(Connection.user1 == user_id).filter( Connection.approved is True or Connection.approved == 1).filter(Connection.disabled == 0) connection_list_query_b = session.query(Connection.user1).filter(Connection.user2 == user_id).filter( Connection.approved is True or Connection.approved == 1).filter(Connection.disabled == 0) connection_list_query_c = session.query(Connection.user1).filter(Connection.user1 != user_id).filter(Connection.user2 == user_id).filter( Connection.approved is False or Connection.approved == 0).filter(Connection.disabled == 0) connection_list = connection_list_query_a.union(connection_list_query_b).union(connection_list_query_c).all() friends = [] for friend in connection_list: friends.append(friend[0]) if len(friends) <= 0: friends.append(-1) filter_search = UserModel.display_name.startswith(search_query) if len(search_query) > 1: search_query = '%{0}%'.format(search_query) filter_search = UserModel.display_name.ilike(search_query) search_results = session.query(UserModel).filter(filter_search).filter(UserModel.deactivated == 0).filter(not_(UserModel.user_id.in_(friends))).filter(UserModel.user_id != user_id).all() #TODO maybe add pagination support search_results_r = [] if search_results is not None: for returned_user in search_results: search_results_r.append(User.getSerializedLimitedUserModel(returned_user)) session.close() response = jsonify(message=string_constants.kServerUserSearchResponse, users=search_results_r, status=True, HTTP_CODE=200 ) response.status_code = 200 return response # Allow user to select new passworduser_id # Required Params: # username - username # token - string # new_password - string @app.route('/api/'+app.config["API_VERSION"]+'/user/reset_password/confirm', methods=["GET"]) def resetPasswordConfirmation(): req = flask.request.args username = req['username'] token = req['token'] new_password = req['new_password'] device_token = req['device_token'] request_timestamp = req['request_timestamp'] version = app.config["API_VERSION"] if username is None and token is None: return authorized.wrongParams() session = database.DBSession() user = session.query(UserModel).filter(UserModel.username == username).first() if new_password == '': session.close() return flask.render_template(string_constants.kResetPasswordTemplateName, username=username, token=token, confirm=False, date=datetime.utcnow().strftime('%Y'), device_token=device_token, request_timestamp=request_timestamp, version=version) elif user is None: session.close() return flask.render_template(string_constants.kResetPasswordTemplateName, username=username, token=token, confirm=False, confirm_message=string_constants.kResetPasswordError, date=datetime.utcnow().strftime('%Y'), device_token=device_token, request_timestamp=request_timestamp, version=version) elif token != hashlib.sha256(user.username + str(0) + user.password_salt).hexdigest(): session.close() return flask.render_template(string_constants.kResetPasswordTemplateName, username=username, token=token, confirm=False, confirm_message=string_constants.kResetPasswordError, date=datetime.utcnow().strftime('%Y'), device_token=device_token, request_timestamp=request_timestamp, version=version) else: new_password = req['new_password'] reset_check = session.query(UserModel).filter(UserModel.username == username).first().password_reset if user is not None and reset_check == 1: if token == hashlib.sha256(user.username + str(0) + user.password_salt).hexdigest(): salt = hashlib.sha256(str(time.time() * random.randint(1, 9999999))).hexdigest() password_hash = hashlib.sha256(str(new_password) + str(salt)).hexdigest() session.query(UserModel).filter(UserModel.username == username).update({'password_reset': 0, 'password': password_hash, 'password_salt': salt}, synchronize_session='fetch') active_user = session.query(ActiveUser).filter(ActiveUser.user_id == user.user_id).first() if active_user is not None: session.delete(active_user) session.commit() session.close() return flask.render_template(string_constants.kResetPasswordTemplateName, confirm=True, confirm_message=string_constants.kResetPasswordConfirmation, date=datetime.utcnow().strftime('%Y'), device_token=device_token, request_timestamp=request_timestamp, version=version) else: session.close() return flask.render_template(string_constants.kResetPasswordTemplateName, username=username, token=token, confirm=False, confirm_message=string_constants.kResetPasswordError, date=datetime.utcnow().strftime('%Y'), device_token=device_token, request_timestamp=request_timestamp, version=version) # Reset password using email address and username # Required Params: # username - username @app.route('/api/'+app.config["API_VERSION"]+'/user/reset_password/', methods=["POST"]) def resetPassword(): req = flask.request.get_json()['params'] username = req['username'] device_token = req["device_token"] request_timestamp = req["request_timestamp"] session = database.DBSession() if username is None is None: return authorized.wrongParams() user = session.query(UserModel).filter(UserModel.username == username).first() if user is None: response = jsonify(message=string_constants.kServerUserPasswordResetUserDoesNotExistRequestError, status=False, HTTP_CODE=200 ) response.status_code = 200 return response if user.password_reset == 1: session.close() response = jsonify(message=string_constants.kServerUserPasswordResetRequestAlreadyPresent, status=False, HTTP_CODE=200 ) response.status_code = 200 return response else: email_handling.send_email(username, string_constants.kEmailResetResponseMessage % string_constants.kResetPasswordLink % ( app.config['API_ADDRESS'], username, hashlib.sha256(username + str(user.password_reset) + user.password_salt).hexdigest(), device_token, request_timestamp), string_constants.kResetPasswordSubject, string_constants.kEmailTypeReset) session.query(UserModel).filter(UserModel.username == username).update({'password_reset': 1}, synchronize_session='fetch') session.commit() session.close() # temp putting password in response response = jsonify(message=string_constants.kServerUserPasswordRequestSentSuccess, status=True, HTTP_CODE=200 ) response.status_code = 200 return response # Creating a Receipt # Required Params: # user_id - string # access_token - string # receipt_timestamp - int # receipt_data - string # receipt_product_id - string @app.route('/api/'+app.config["API_VERSION"]+'/receipts/', methods=["POST"]) def createReceipt(): req = flask.request.get_json()['params'] user_id = req['user_id'] access_token = req['access_token'] receipt_data = req['receiptData'] receipt_date = req['receiptDate'] receipt_product_id = req['receiptProductID'] session = database.DBSession() if user_id is None and access_token is None and receipt_data is None and receipt_date is None and receipt_product_id is None: return authorized.wrongParams() # Check if the user is allowed to access this method allowed = authorized.authorized(user_id, access_token, session) if allowed is not True: session.close() return allowed receipt = Receipt(receipt_data, receipt_date, user_id, receipt_product_id) try: session.add(receipt) session.commit() except exc.SQLAlchemyError: session.close() response = jsonify( message=string_constants.kServerGeneric500Error, status=True, HTTP_CODE=500 ) response.status_code = 500 return response session.close() response = jsonify( message=string_constants.kServerReceiptsPostResponse, status=True, HTTP_CODE=200 ) response.status_code = 200 return response # Receipts for User # Required Params: # user_id - string # access_token - string @app.route('/api/'+app.config["API_VERSION"]+'/receipts/retrieve', methods=["GET"]) def receiptsForUser(): req = flask.request.args user_id = req['user_id'] access_token = req['access_token'] session = database.DBSession() if user_id is None and access_token is None: return authorized.wrongParams() # Check if the user is allowed to access this method allowed = authorized.authorized(user_id, access_token, session) if allowed is not True: session.close() return allowed receipts = session.query(Receipt).filter(Receipt.receipt_user_id == int(user_id)).all() receipts_return = [] if len(receipts) > 0: for receipt in receipts: receipts_return.append({ 'receipt_product_id': receipt.receipt_product_id, 'receipt_date': receipt.receipt_date, 'receipt_data': receipt.receipt_data }) session.close() response = jsonify(message=string_constants.kServerReceiptsResponse, receipts=receipts_return, status=True, HTTP_CODE=200 ) response.status_code = 200 return response # Get limited userModel ready for JSON for user # Required Params: # user - UserModel @classmethod def getSerializedLimitedUserModel(cls, user, videoCount=None, connectionCount=None): return {'user_id': user.user_id, # ** 'profile_image': User.getProfileImage(user.user_id), 'connections': None, # * 'display_name': user.display_name, 'deactivated': user.deactivated, # * 'video_count': videoCount, # * 'connection_count': connectionCount # * # * = #No need for this as this is a limited profile # ** = Not shown in search results but used to grab full profile if the user searching clicks on this user } @classmethod def getConnectionModelForReturn(cls, connection, username, timeline_id, video_count, new_connection): if connection.approved == 0 or connection.disabled == 1: return None user_model = int(connection.user1) != int(username) and connection.user1_model or connection.user2_model connection_r = { 'friend': User.getSerializedUserModel(user_model), 'connection_id': connection.connection_id, 'start_date': connection.start_date, 'timeline_id': timeline_id, 'video_count': video_count, 'new_connection': new_connection } return connection_r # Get userModel ready for JSON for user # Required Params: # user - UserModel @classmethod def getSerializedUserModel(cls, user): return {'user_id': user.user_id, 'profile_image': User.getProfileImage(user.user_id), 'connections': None, # * 'display_name': user.display_name, 'deactivated': user.deactivated # * = #No need as this is only ever called from the connection endpoint } # Get userModel for the username # Required Params: # username - string # session - DBSession @classmethod def userObjectForUsername(cls, user_id, session, forJSON): if user_id is not None or user_id == '': user = session.query(UserModel).filter(UserModel.user_id == user_id).first() if user is not None: if forJSON is True: return User.getSerializedUserModel(user) else: return user else: return None else: return None @classmethod def getUserImagePath(cls): return app.config["STATIC_FILES_FOLDER"] + "%s" @classmethod def getUserPath(cls): return app.config["STATIC_FILES_FOLDER"] + "/users/%s/" # Get profile picture for user # Required Params: # profile_image_id - string # user_id - string @classmethod def getProfileImage(cls, user_id): path = User.getProfileImageDirectory(user_id)+'profileImage' return path + '.jpg' @classmethod def getProfileImageDirectory(cls, user_id): path = app.config["STATIC_FILES_FOLDER"] + '/users/' + str(user_id) + '/profileImage/' return path # Updates the Expiry Date of an access_token to be 7 days # If the user doesn't use the app at least once every 7 days they will have to re-login @classmethod def updateTokenExpiryDate(cls, expiryDate): belowNextMonth = True if expiryDate.month == 2: if expiryDate.day + 7 > 28: belowNextMonth = False expiryDate = expiryDate.replace(month=3, day=1) if expiryDate.month == 4 or expiryDate.month == 6 or expiryDate.month == 9 or expiryDate.month == 11: if expiryDate.day + 7 > 30: belowNextMonth = False expiryDate = expiryDate.replace(month=expiryDate.month + 1, day=1) if expiryDate.month == 1 or expiryDate.month == 3 or expiryDate.month == 5 or expiryDate.month == 7 or expiryDate.month == 8 or expiryDate.month == 10 or expiryDate.month == 12: if expiryDate.day + 7 > 31: if expiryDate.month == 12: belowNextMonth = False expiryDate = expiryDate.replace(year=expiryDate.year + 1, month=1, day=1) else: belowNextMonth = False expiryDate = expiryDate.replace(month=expiryDate.month + 1, day=1) if belowNextMonth == True: expiryDate = expiryDate.replace(day=expiryDate.day + 7) return expiryDate
from onegov.election_day import ElectionDayApp from onegov.election_day.layouts import ManageLayout from onegov.election_day.models import Principal @ElectionDayApp.manage_html( model=Principal, name='provoke_error', template='manage/provoke_error.pt' ) def view_provoke_error(self, request): """ Provokes a JavaScript Error for testing. This view is not linked anywhere. """ return { 'layout': ManageLayout(self, request) }
from abc import ABC, abstractmethod class Motorcycle(ABC): @abstractmethod def useful_function_b(self) -> str: pass
""" In order to facilitate data exchange between nodes written in potentially different languages we use these intermediate data types to encode to/from the data types used inside of the nodes. This submodule contains the following user-facing parts: - Primitive data types: :py:class:`Bool` :py:class:`Char` :py:class:`Int` :py:class:`UInt` :py:class:`Float` :py:class:`Complex` - Compound data types: :py:class:`Array` :py:class:`Str` :py:class:`Tuple` :py:class:`Record` - Special data types: :py:class:`Top` :py:class:`Raw` :py:class:`Union` :py:class:`Size` :py:class:`Optional` :py:class:`Void` - Auxiliary functions: :py:func:`as_delta_type` :py:func:`delta_type` For convenience the classes and functions listed above are also exposed to the top level module and can be used like this: .. code-block:: python import deltalanguage as dl print(dl.Bool()) print(dl.delta_type(5)) More information about this submodule as well as examples of use can be found in `Deltaflow Data Types <tutorials/data_types.html>`_. """ from ._delta_types import (BaseDeltaType, PrimitiveDeltaType, CompoundDeltaType, Top, Bool, Char, Complex, Float, Int, Array, Optional, Raw, Record, Str, Tuple, UInt, Union, as_delta_type, delta_type) from ._exceptions import DeltaIOError, DeltaTypeError from ._special import Size, Void # user-facing classes __all__ = ["Top", "Bool", "Char", "Int", "UInt", "Float", "Complex", "Array", "Str", "Tuple", "Record", "Raw", "Top", "Size", "Union", "Optional", "Void", "as_delta_type", "delta_type"]
class Solution: def subarrayBitwiseORs(self, A): """ :type A: List[int] :rtype: int """ res, cur = set(), set() for x in A: cur = {x | y for y in cur} | {x} res |= cur return len(res)
from .main import parent_child
# # Autogenerated by Thrift Compiler (0.9.2) # # DO NOT EDIT UNLESS YOU ARE SURE THAT YOU KNOW WHAT YOU ARE DOING # # options string: py # from thrift.Thrift import TType, TMessageType, TException, TApplicationException from thrift.transport import TTransport from thrift.protocol import TBinaryProtocol, TProtocol try: from thrift.protocol import fastbinary except: fastbinary = None class Metadata: """ Default metadata for an object. Attributes: - object_id - object_name - object_reference - object_reference_versioned - type_string - save_date - version - saved_by - workspace_id - workspace_name - object_checksum - object_size - object_metadata """ thrift_spec = ( None, # 0 (1, TType.STRING, 'object_id', None, None, ), # 1 (2, TType.STRING, 'object_name', None, None, ), # 2 (3, TType.STRING, 'object_reference', None, None, ), # 3 (4, TType.STRING, 'object_reference_versioned', None, None, ), # 4 (5, TType.STRING, 'type_string', None, None, ), # 5 (6, TType.STRING, 'save_date', None, None, ), # 6 (7, TType.STRING, 'version', None, None, ), # 7 (8, TType.STRING, 'saved_by', None, None, ), # 8 (9, TType.I64, 'workspace_id', None, None, ), # 9 (10, TType.STRING, 'workspace_name', None, None, ), # 10 (11, TType.STRING, 'object_checksum', None, None, ), # 11 (12, TType.I64, 'object_size', None, None, ), # 12 (13, TType.STRING, 'object_metadata', None, None, ), # 13 ) def __init__(self, object_id=None, object_name=None, object_reference=None, object_reference_versioned=None, type_string=None, save_date=None, version=None, saved_by=None, workspace_id=None, workspace_name=None, object_checksum=None, object_size=None, object_metadata=None,): self.object_id = object_id self.object_name = object_name self.object_reference = object_reference self.object_reference_versioned = object_reference_versioned self.type_string = type_string self.save_date = save_date self.version = version self.saved_by = saved_by self.workspace_id = workspace_id self.workspace_name = workspace_name self.object_checksum = object_checksum self.object_size = object_size self.object_metadata = object_metadata def read(self, iprot): if iprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastbinary is not None: fastbinary.decode_binary(self, iprot.trans, (self.__class__, self.thrift_spec)) return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 1: if ftype == TType.STRING: self.object_id = iprot.readString(); else: iprot.skip(ftype) elif fid == 2: if ftype == TType.STRING: self.object_name = iprot.readString(); else: iprot.skip(ftype) elif fid == 3: if ftype == TType.STRING: self.object_reference = iprot.readString(); else: iprot.skip(ftype) elif fid == 4: if ftype == TType.STRING: self.object_reference_versioned = iprot.readString(); else: iprot.skip(ftype) elif fid == 5: if ftype == TType.STRING: self.type_string = iprot.readString(); else: iprot.skip(ftype) elif fid == 6: if ftype == TType.STRING: self.save_date = iprot.readString(); else: iprot.skip(ftype) elif fid == 7: if ftype == TType.STRING: self.version = iprot.readString(); else: iprot.skip(ftype) elif fid == 8: if ftype == TType.STRING: self.saved_by = iprot.readString(); else: iprot.skip(ftype) elif fid == 9: if ftype == TType.I64: self.workspace_id = iprot.readI64(); else: iprot.skip(ftype) elif fid == 10: if ftype == TType.STRING: self.workspace_name = iprot.readString(); else: iprot.skip(ftype) elif fid == 11: if ftype == TType.STRING: self.object_checksum = iprot.readString(); else: iprot.skip(ftype) elif fid == 12: if ftype == TType.I64: self.object_size = iprot.readI64(); else: iprot.skip(ftype) elif fid == 13: if ftype == TType.STRING: self.object_metadata = iprot.readString(); else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() def write(self, oprot): if oprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and self.thrift_spec is not None and fastbinary is not None: oprot.trans.write(fastbinary.encode_binary(self, (self.__class__, self.thrift_spec))) return oprot.writeStructBegin('Metadata') if self.object_id is not None: oprot.writeFieldBegin('object_id', TType.STRING, 1) oprot.writeString(self.object_id) oprot.writeFieldEnd() if self.object_name is not None: oprot.writeFieldBegin('object_name', TType.STRING, 2) oprot.writeString(self.object_name) oprot.writeFieldEnd() if self.object_reference is not None: oprot.writeFieldBegin('object_reference', TType.STRING, 3) oprot.writeString(self.object_reference) oprot.writeFieldEnd() if self.object_reference_versioned is not None: oprot.writeFieldBegin('object_reference_versioned', TType.STRING, 4) oprot.writeString(self.object_reference_versioned) oprot.writeFieldEnd() if self.type_string is not None: oprot.writeFieldBegin('type_string', TType.STRING, 5) oprot.writeString(self.type_string) oprot.writeFieldEnd() if self.save_date is not None: oprot.writeFieldBegin('save_date', TType.STRING, 6) oprot.writeString(self.save_date) oprot.writeFieldEnd() if self.version is not None: oprot.writeFieldBegin('version', TType.STRING, 7) oprot.writeString(self.version) oprot.writeFieldEnd() if self.saved_by is not None: oprot.writeFieldBegin('saved_by', TType.STRING, 8) oprot.writeString(self.saved_by) oprot.writeFieldEnd() if self.workspace_id is not None: oprot.writeFieldBegin('workspace_id', TType.I64, 9) oprot.writeI64(self.workspace_id) oprot.writeFieldEnd() if self.workspace_name is not None: oprot.writeFieldBegin('workspace_name', TType.STRING, 10) oprot.writeString(self.workspace_name) oprot.writeFieldEnd() if self.object_checksum is not None: oprot.writeFieldBegin('object_checksum', TType.STRING, 11) oprot.writeString(self.object_checksum) oprot.writeFieldEnd() if self.object_size is not None: oprot.writeFieldBegin('object_size', TType.I64, 12) oprot.writeI64(self.object_size) oprot.writeFieldEnd() if self.object_metadata is not None: oprot.writeFieldBegin('object_metadata', TType.STRING, 13) oprot.writeString(self.object_metadata) oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeStructEnd() def validate(self): return def __hash__(self): value = 17 value = (value * 31) ^ hash(self.object_id) value = (value * 31) ^ hash(self.object_name) value = (value * 31) ^ hash(self.object_reference) value = (value * 31) ^ hash(self.object_reference_versioned) value = (value * 31) ^ hash(self.type_string) value = (value * 31) ^ hash(self.save_date) value = (value * 31) ^ hash(self.version) value = (value * 31) ^ hash(self.saved_by) value = (value * 31) ^ hash(self.workspace_id) value = (value * 31) ^ hash(self.workspace_name) value = (value * 31) ^ hash(self.object_checksum) value = (value * 31) ^ hash(self.object_size) value = (value * 31) ^ hash(self.object_metadata) return value def __repr__(self): L = ['%s=%r' % (key, value) for key, value in self.__dict__.iteritems()] return '%s(%s)' % (self.__class__.__name__, ', '.join(L)) def __eq__(self, other): return isinstance(other, self.__class__) and self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) class History: """ Object history. thrift_spec = ( None, # 0 (1, TType.STRING, 'object_id', None, None, ), # 1 (2, TType.STRING, 'object_name', None, None, ), # 2 (3, TType.STRING, 'object_reference', None, None, ), # 3 (4, TType.STRING, 'object_reference_versioned', None, None, ), # 4 (5, TType.STRING, 'type_string', None, None, ), # 5 (6, TType.STRING, 'save_date', None, None, ), # 6 (7, TType.STRING, 'version', None, None, ), # 7 (8, TType.STRING, 'saved_by', None, None, ), # 8 (9, TType.I64, 'workspace_id', None, None, ), # 9 (10, TType.STRING, 'workspace_name', None, None, ), # 10 (11, TType.STRING, 'object_checksum', None, None, ), # 11 (12, TType.I64, 'object_size', None, None, ), # 12 (13, TType.STRING, 'object_metadata', None, None, ), # 13 ) Attributes: - events """ thrift_spec = ( None, # 0 (1, TType.LIST, 'events', (TType.STRING,None), None, ), # 1 ) def __init__(self, events=None,): self.events = events def read(self, iprot): if iprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastbinary is not None: fastbinary.decode_binary(self, iprot.trans, (self.__class__, self.thrift_spec)) return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 1: if ftype == TType.LIST: self.events = [] (_etype3, _size0) = iprot.readListBegin() for _i4 in xrange(_size0): _elem5 = iprot.readString(); self.events.append(_elem5) iprot.readListEnd() else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() def write(self, oprot): if oprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and self.thrift_spec is not None and fastbinary is not None: oprot.trans.write(fastbinary.encode_binary(self, (self.__class__, self.thrift_spec))) return oprot.writeStructBegin('History') if self.events is not None: oprot.writeFieldBegin('events', TType.LIST, 1) oprot.writeListBegin(TType.STRING, len(self.events)) for iter6 in self.events: oprot.writeString(iter6) oprot.writeListEnd() oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeStructEnd() def validate(self): return def __hash__(self): value = 17 value = (value * 31) ^ hash(self.events) return value def __repr__(self): L = ['%s=%r' % (key, value) for key, value in self.__dict__.iteritems()] return '%s(%s)' % (self.__class__.__name__, ', '.join(L)) def __eq__(self, other): return isinstance(other, self.__class__) and self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) class Provenance: """ Object provenance. Attributes: - where_i_came_from """ thrift_spec = ( None, # 0 (1, TType.STRING, 'where_i_came_from', None, None, ), # 1 ) def __init__(self, where_i_came_from=None,): self.where_i_came_from = where_i_came_from def read(self, iprot): if iprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastbinary is not None: fastbinary.decode_binary(self, iprot.trans, (self.__class__, self.thrift_spec)) return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 1: if ftype == TType.STRING: self.where_i_came_from = iprot.readString(); else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() def write(self, oprot): if oprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and self.thrift_spec is not None and fastbinary is not None: oprot.trans.write(fastbinary.encode_binary(self, (self.__class__, self.thrift_spec))) return oprot.writeStructBegin('Provenance') if self.where_i_came_from is not None: oprot.writeFieldBegin('where_i_came_from', TType.STRING, 1) oprot.writeString(self.where_i_came_from) oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeStructEnd() def validate(self): return def __hash__(self): value = 17 value = (value * 31) ^ hash(self.where_i_came_from) return value def __repr__(self): L = ['%s=%r' % (key, value) for key, value in self.__dict__.iteritems()] return '%s(%s)' % (self.__class__.__name__, ', '.join(L)) def __eq__(self, other): return isinstance(other, self.__class__) and self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) class AuthInfo: """ Authorization info Attributes: - token """ thrift_spec = ( None, # 0 (1, TType.STRING, 'token', None, None, ), # 1 ) def __init__(self, token=None,): self.token = token def read(self, iprot): if iprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastbinary is not None: fastbinary.decode_binary(self, iprot.trans, (self.__class__, self.thrift_spec)) return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 1: if ftype == TType.STRING: self.token = iprot.readString(); else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() def write(self, oprot): if oprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and self.thrift_spec is not None and fastbinary is not None: oprot.trans.write(fastbinary.encode_binary(self, (self.__class__, self.thrift_spec))) return oprot.writeStructBegin('AuthInfo') if self.token is not None: oprot.writeFieldBegin('token', TType.STRING, 1) oprot.writeString(self.token) oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeStructEnd() def validate(self): return def __hash__(self): value = 17 value = (value * 31) ^ hash(self.token) return value def __repr__(self): L = ['%s=%r' % (key, value) for key, value in self.__dict__.iteritems()] return '%s(%s)' % (self.__class__.__name__, ', '.join(L)) def __eq__(self, other): return isinstance(other, self.__class__) and self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other)
command = input() all_language = {} submissions = {} max_points = {} while command != "exam finished": command = command.split("-") # check for no banned if len(command) == 3: language = command[1] username = command[0] points = int(command[2]) # collect all submissions submissions.setdefault(language, []).append(username) # collect data if language not in all_language: all_language[language] = {} all_language[language][username] = points # add new name + points in existing language if language in all_language and username not in all_language[language]: all_language[language][username] = points # separate only high scores if points > all_language[language][username]: all_language[language][username] = points # check for banned elif len(command) == 2: username = command[0] banned = command[1] # remove banned for key in all_language.keys(): if username in all_language[key]: del all_language[key][username] command = input() # result with name + max points without language for name_p in all_language.values(): for current_name, current_points in name_p.items(): max_points[current_name] = current_points sorted_max_points = dict(sorted(max_points.items(), key=lambda x: (-x[1], x[0]))) print("Results:") print("\n".join(f"{k} | {v}" for k, v in sorted_max_points.items())) print("Submissions:") print("\n".join(f"{lang} - {len(attempts)}" for lang, attempts in sorted(submissions.items())))
#!/usr/bin/env python # coding: utf-8 # In[1]: #things to do #1 comment and review #imports import numpy as np import matplotlib.pyplot as plt import lightkurve as lk import tqdm as tq from scipy.interpolate import interp1d # In[ ]: # In[2]: #downloading the lightcurve file for our example star KIC 10685175 lcfc = lk.search_lightcurvefile("KIC 10685175",mission="Kepler").download_all() lc = lcfc.PDCSAP_FLUX.stitch().remove_nans() # In[3]: #noise threshhold function, determines at what noise levels the frequency crosses the .99 percent correct recovery line def noise_threshold(time,noise ,frequency , max_frequency, min_frequency = 0, fap = .01, max_runs= 1000): #creating sinusoidal light curve flux = np.sin(2*np.pi*frequency*time) lc = lk.LightCurve(time,flux) #lightcurve to frequency periodogram per = lc.to_periodogram(nyquist_factor = 0.01) nyquist = per.nyquist.value frequency_candidates = [] min_factor = int(np.floor(min_frequency/nyquist)) max_factor = int(np.ceil(max_frequency/nyquist)) #picking out which peaks to sample in each nyquist 'zone' for i in range(min_factor, max_factor): per = lc.to_periodogram(minimum_frequency=i*nyquist,maximum_frequency=(i+1)*nyquist) frequency_candidates.append(per.frequency_at_max_power.value) frequency_candidates = np.array(frequency_candidates) frequency_candidates = frequency_candidates[(frequency_candidates > min_frequency)&(frequency_candidates < max_frequency)] #sampling only near the peaks, increasing effeciency frequency_resolution = 1/(time[-1]-time[0]) n_samples = 41 local_sampling = np.linspace(-.1*frequency_resolution,.1*frequency_resolution,n_samples) frequency_sample = np.zeros(n_samples*len(frequency_candidates)) for i in range(len(frequency_candidates)): frequency_sample[i*n_samples:(i+1)*n_samples] = local_sampling + frequency_candidates[i] results = np.zeros(max_runs) max_incorrect_runs = (fap*max_runs) incorrect_results = 0 percentage = 0 for i in tq.tqdm(range(max_runs)): flux = np.sin(2*np.pi*(frequency*time + np.random.rand())) + np.random.randn(len(time))*noise lc = lk.LightCurve(time,flux) per = lc.to_periodogram(frequency=frequency_sample,ls_method="slow") frequency_dif = np.abs(per.frequency_at_max_power.value - frequency) results[i] = (frequency_dif < frequency_resolution) if(frequency_dif > frequency_resolution): incorrect_results += 1 if(incorrect_results > max_incorrect_runs): break percentage = np.sum(results)/(i+1) return percentage # In[4]: lc = lcfc.PDCSAP_FLUX.stitch().remove_nans() time = lc.time print(time) print(noise_threshold(time,60.3, 289.39094, 300, min_frequency = 50, max_runs=100)) # In[ ]:
from datetime import datetime, timedelta, timezone import json from .test_envelope import generate_transaction_item TEST_CONFIG = { "aggregator": {"bucket_interval": 1, "initial_delay": 0, "debounce_delay": 0,} } def test_metrics(mini_sentry, relay): relay = relay(mini_sentry, options=TEST_CONFIG) project_id = 42 mini_sentry.add_basic_project_config(project_id) timestamp = int(datetime.now(tz=timezone.utc).timestamp()) metrics_payload = f"foo:42|c\nbar:17|c" relay.send_metrics(project_id, metrics_payload, timestamp) envelope = mini_sentry.captured_events.get(timeout=2) assert len(envelope.items) == 1 metrics_item = envelope.items[0] assert metrics_item.type == "metric_buckets" received_metrics = metrics_item.get_bytes() assert json.loads(received_metrics.decode()) == [ {"timestamp": timestamp, "name": "foo", "value": 42.0, "type": "c"}, {"timestamp": timestamp, "name": "bar", "value": 17.0, "type": "c"}, ] def test_metrics_backdated(mini_sentry, relay): relay = relay(mini_sentry, options=TEST_CONFIG) project_id = 42 mini_sentry.add_basic_project_config(project_id) timestamp = int(datetime.now(tz=timezone.utc).timestamp()) - 24 * 60 * 60 metrics_payload = f"foo:42|c" relay.send_metrics(project_id, metrics_payload, timestamp) envelope = mini_sentry.captured_events.get(timeout=2) assert len(envelope.items) == 1 metrics_item = envelope.items[0] assert metrics_item.type == "metric_buckets" received_metrics = metrics_item.get_bytes() assert json.loads(received_metrics.decode()) == [ {"timestamp": timestamp, "name": "foo", "value": 42.0, "type": "c"}, ] def test_metrics_with_processing(mini_sentry, relay_with_processing, metrics_consumer): relay = relay_with_processing(options=TEST_CONFIG) metrics_consumer = metrics_consumer() project_id = 42 mini_sentry.add_full_project_config(project_id) timestamp = int(datetime.now(tz=timezone.utc).timestamp()) metrics_payload = f"foo:42|c\nbar@s:17|c" relay.send_metrics(project_id, metrics_payload, timestamp) metric = metrics_consumer.get_metric() assert metric == { "org_id": 1, "project_id": project_id, "name": "foo", "unit": "", "value": 42.0, "type": "c", "timestamp": timestamp, } metric = metrics_consumer.get_metric() assert metric == { "org_id": 1, "project_id": project_id, "name": "bar", "unit": "s", "value": 17.0, "type": "c", "timestamp": timestamp, } metrics_consumer.assert_empty() def test_metrics_full(mini_sentry, relay, relay_with_processing, metrics_consumer): metrics_consumer = metrics_consumer() upstream_config = { "aggregator": { "bucket_interval": 1, "initial_delay": 2, # Give upstream some time to process downstream entries: "debounce_delay": 0, } } upstream = relay_with_processing(options=upstream_config) downstream = relay(upstream, options=TEST_CONFIG) # Create project config project_id = 42 mini_sentry.add_full_project_config(project_id) # Send two events to downstream and one to upstream timestamp = int(datetime.now(tz=timezone.utc).timestamp()) downstream.send_metrics(project_id, f"foo:7|c", timestamp) downstream.send_metrics(project_id, f"foo:5|c", timestamp) upstream.send_metrics(project_id, f"foo:3|c", timestamp) metric = metrics_consumer.get_metric(timeout=4) metric.pop("timestamp") assert metric == { "org_id": 1, "project_id": project_id, "name": "foo", "unit": "", "value": 15.0, "type": "c", } metrics_consumer.assert_empty() def test_session_metrics_feature_disabled(mini_sentry, relay): relay = relay(mini_sentry, options=TEST_CONFIG) project_id = 42 mini_sentry.add_basic_project_config(project_id) timestamp = datetime.now(tz=timezone.utc) started = timestamp - timedelta(hours=1) session_payload = { "sid": "8333339f-5675-4f89-a9a0-1c935255ab58", "did": "foobarbaz", "seq": 42, "init": True, "timestamp": timestamp.isoformat(), "started": started.isoformat(), "duration": 1947.49, "status": "exited", "errors": 0, "attrs": {"release": "sentry-test@1.0.0", "environment": "production",}, } relay.send_session(project_id, session_payload) # Get session envelope mini_sentry.captured_events.get(timeout=2) # Get metrics envelope assert mini_sentry.captured_events.empty() def test_session_metrics(mini_sentry, relay_with_processing, metrics_consumer): relay = relay_with_processing(options=TEST_CONFIG) project_id = 42 mini_sentry.add_full_project_config(project_id) metrics_consumer = metrics_consumer() mini_sentry.project_configs[project_id]["config"]["features"] = [ "organizations:metrics-extraction" ] timestamp = datetime.now(tz=timezone.utc) started = timestamp - timedelta(hours=1) session_payload = { "sid": "8333339f-5675-4f89-a9a0-1c935255ab58", "did": "foobarbaz", "seq": 42, "init": True, "timestamp": timestamp.isoformat(), "started": started.isoformat(), "duration": 1947.49, "status": "exited", "errors": 0, "attrs": {"release": "sentry-test@1.0.0", "environment": "production",}, } relay.send_session(project_id, session_payload) metric = metrics_consumer.get_metric() assert metric == { "org_id": 1, "project_id": 42, "timestamp": int(timestamp.timestamp()), "name": "session", "type": "c", "unit": "", "value": 1.0, "tags": { "environment": "production", "release": "sentry-test@1.0.0", "session.status": "init", }, } metric = metrics_consumer.get_metric() assert metric == { "org_id": 1, "project_id": 42, "timestamp": int(timestamp.timestamp()), "name": "user", "type": "s", "unit": "", "value": [1617781333], "tags": { "environment": "production", "release": "sentry-test@1.0.0", "session.status": "init", }, } metric = metrics_consumer.get_metric() assert metric == { "org_id": 1, "project_id": 42, "timestamp": int(timestamp.timestamp()), "name": "session.duration", "type": "d", "unit": "s", "value": [1947.49], "tags": {"environment": "production", "release": "sentry-test@1.0.0",}, } metrics_consumer.assert_empty() def test_transaction_metrics(mini_sentry, relay_with_processing, metrics_consumer): metrics_consumer = metrics_consumer() for feature_enabled in (True, False): relay = relay_with_processing(options=TEST_CONFIG) project_id = 42 mini_sentry.add_full_project_config(project_id) timestamp = datetime.now(tz=timezone.utc) mini_sentry.project_configs[project_id]["config"]["features"] = ( ["organizations:metrics-extraction"] if feature_enabled else [] ) transaction = generate_transaction_item() transaction["timestamp"] = timestamp.isoformat() transaction["measurements"] = { "foo": {"value": 1.2}, "bar": {"value": 1.3}, } transaction["breakdowns"] = {"breakdown1": {"baz": {"value": 1.4},}} relay.send_event(42, transaction) # Send another transaction: transaction["measurements"] = { "foo": {"value": 2.2}, } transaction["breakdowns"] = {"breakdown1": {"baz": {"value": 2.4},}} relay.send_event(42, transaction) if not feature_enabled: message = metrics_consumer.poll(timeout=None) assert message is None, message.value() continue metrics = { metric["name"]: metric for metric in [metrics_consumer.get_metric() for _ in range(3)] } metrics_consumer.assert_empty() assert "measurement.foo" in metrics assert metrics["measurement.foo"] == { "org_id": 1, "project_id": 42, "timestamp": int(timestamp.timestamp()), "name": "measurement.foo", "type": "d", "unit": "", "value": [1.2, 2.2], } assert metrics["measurement.bar"] == { "org_id": 1, "project_id": 42, "timestamp": int(timestamp.timestamp()), "name": "measurement.bar", "type": "d", "unit": "", "value": [1.3], } assert metrics["breakdown.breakdown1.baz"] == { "org_id": 1, "project_id": 42, "timestamp": int(timestamp.timestamp()), "name": "breakdown.breakdown1.baz", "type": "d", "unit": "", "value": [1.4, 2.4], }
from .ahk_binding import AhkBinding
#!/usr/bin/env python3 import dbus from dbus.mainloop.glib import DBusGMainLoop from gi.repository import GObject import array DBusGMainLoop(set_as_default=True) def get_ble(): return dbus.Interface(dbus.SystemBus().get_object("com.devicehive.bluetooth", '/com/devicehive/bluetooth'), "com.devicehive.bluetooth") ble = get_ble() def device_discovered(mac, name, rssi): if (name == 'SATECHILED-0'): print("Discovered %s (%s) " % (mac, name)) ble.ScanStop(ignore_reply=True) ble.Disconnect(mac, ignore_reply=True) ble.Connect(mac, False, ignore_reply=True) def device_connected(mac): print("Connected to %s" % (mac)) try: ble.GattWrite(mac, "fff3", "0f0d0300ffffff0000c800c8000091ffff", ignore_reply=True) # ble.GattWrite(mac, "fff3", "0f0d0300ffffffc800c800c8000059ffff", ignore_reply=True) except dbus.DBusException as e: print(e) def main(): print('Scanning ...') ble.connect_to_signal("PeripheralDiscovered", device_discovered) ble.connect_to_signal("PeripheralConnected", device_connected) ble.ScanStart(ignore_reply=True) GObject.MainLoop().run() if __name__ == '__main__': main()
from django.contrib import messages from django.contrib.auth import get_user_model, login, logout from django.contrib.auth.views import LoginView from django.shortcuts import HttpResponseRedirect from django.urls import reverse_lazy from django.views.generic import TemplateView, RedirectView from .forms import UserRegistrationForm, UserAddressForm from django.contrib.auth.mixins import LoginRequiredMixin from django.views.generic import CreateView, ListView from django.http import HttpResponse from django.shortcuts import render from django.template import Context, Template User = get_user_model() class UserRegistrationView(TemplateView): model = User form_class = UserRegistrationForm template_name = 'accounts/user_registration.html' def dispatch(self, request, *args, **kwargs): if self.request.user.is_authenticated: return HttpResponseRedirect( reverse_lazy('transactions:transaction_report') ) return super().dispatch(request, *args, **kwargs) def post(self, request, *args, **kwargs): registration_form = UserRegistrationForm(self.request.POST) address_form = UserAddressForm(self.request.POST) if registration_form.is_valid() and address_form.is_valid(): user = registration_form.save() address = address_form.save(commit=False) address.user = user address.save() login(self.request, user) messages.success( self.request, ( f'Thank You For Creating A Bank Account. ' f'Your Account Number is {user.account.account_no}. ' ) ) return HttpResponseRedirect( reverse_lazy('transactions:deposit_money') ) return self.render_to_response( self.get_context_data( registration_form=registration_form, address_form=address_form ) ) def get_context_data(self, **kwargs): if 'registration_form' not in kwargs: kwargs['registration_form'] = UserRegistrationForm() if 'address_form' not in kwargs: kwargs['address_form'] = UserAddressForm() return super().get_context_data(**kwargs) class UserLoginView(LoginView): template_name='accounts/user_login.html' redirect_authenticated_user = True class LogoutView(RedirectView): pattern_name = 'home' def get_redirect_url(self, *args, **kwargs): if self.request.user.is_authenticated: logout(self.request) return super().get_redirect_url(*args, **kwargs) class UserDetails(LoginRequiredMixin, ListView): template_name = 'accounts/user_details.html' form_data = {} def get(self, request, *args, **kwargs): # import pdb # pdb.set_trace() c_user = self.request.user # form = TransactionDateRangeForm(request.GET or None) # if form.is_valid(): # self.form_data = form.cleaned_data args = {} args['name'] = c_user.first_name + ' ' + c_user.last_name args['email'] = c_user args['phone'] = "20111435465" args['bdate'] = c_user.account.birth_date args['acc_no'] = c_user.account.account_no args['card'] = "22344532212" args['balance'] = c_user.account.balance return render(request, 'accounts/user_details.html', args) # def get_queryset(self): # queryset = super().get_queryset().filter( # account=self.request.user.account # ) # daterange = self.form_data.get("daterange") # if daterange: # queryset = queryset.filter(timestamp__date__range=daterange) # return queryset.distinct() # def get_context_data(self, **kwargs): # context = super().get_context_data(**kwargs) # context.update({ # 'account': self.request.user.account, # 'form': TransactionDateRangeForm(self.request.GET or None) # })
# Copyright (c) 2021 Jana Darulova # # This software is released under the MIT License. # https://opensource.org/licenses/MIT import logging from nanotune.device.device_channel import DeviceChannel from typing import Mapping, Optional, Sequence from nanotune.device.device import Device from nanotune.device_tuner.tuner import (Tuner, set_back_voltages, DataSettings, SetpointSettings, Classifiers) from nanotune.device_tuner.tuningresult import MeasurementHistory logger = logging.getLogger(__name__) class Characterizer(Tuner): """Tuner sub-class specializing on device characterization. Parameters: classifiers (Classifiers): a setting.Classifiers instance holding all required classifiers. Eg. pinchoff. data_settings (DataSettings): A settings.DataSettings instance with data related information such as `db_name` and `normalization_constants`. setpoint_settings (SetpointSettings): A settings.SetpointSettings instance with setpoint related information such as `voltage_precision`. tuning_history (TuningHistory): A TuningHistory instance holding all tuning results. """ def __init__( self, name: str, data_settings: DataSettings, classifiers: Classifiers, setpoint_settings: SetpointSettings, ) -> None: super().__init__( name, data_settings, classifiers, setpoint_settings, ) def characterize( self, device: Device, skip_gates: Optional[Sequence[DeviceChannel]] = None, gate_configurations: Optional[ Mapping[int, Mapping[int, float]]] = None, ) -> MeasurementHistory: """Characterizes a device by characterizing each gate individually. Specific gates can be skipped, eg. the top barrier of a 2DEG device. Args: device (nt.Device): device to tune. skip_gates (Sequence[DeviceChannel]): optional list of gates which should not be characterized. gate_configurations (Dict[int, Dict[int, float]]): optional gate voltage combinations at which gates should be characterized. Maps gate IDs of gates to characteris onto dictionaries, which in turn map gate IDs of gates to set to their respective voltages. Returns: MeasurementHistory: Collection of all tuning results. """ if gate_configurations is None: gate_configurations = {} if skip_gates is None: skip_gates = [] measurement_result = MeasurementHistory(device.name) for gate in device.gates: if gate not in skip_gates: with set_back_voltages(device.gates): gate_id = gate.gate_id assert gate_id is not None if gate_id in gate_configurations.keys(): gate_conf = gate_configurations[gate_id] for other_id, voltage in gate_conf.items(): device.gates[other_id].voltage(voltage) sub_result = self.characterize_gate( device, gate, use_safety_voltage_ranges=True, ) measurement_result.add_result(sub_result) return measurement_result
# Importar librerias import pandas # importar libreria pandas import time # importar libreria time import datetime # importar libreria de fecha y hora from datetime import datetime # importar la libreria de datetime import os # importar la libreria de os from termcolor import colored # importar la libreria termcolor import sqlite3 # importar libreria sqlite3 os.system('CLS') # limpiar la terminal # Seccion carga de datos desde CSV (base de datos) """-----------------------------------------------------------------------------------------------------------------------""" conn = sqlite3.connect('./database.db') # conexion a la base de datos matrixpandas = pandas.read_sql_query("SELECT * FROM productos", conn) # carga de datos desde la base de datos de stock matriz = matrixpandas.values.tolist() # convertir la matriz a una lista registros = pandas.read_sql_query("SELECT * FROM registros", conn) # carga de datos desde la base de datos de registros registros = registros.values.tolist() # convertir la matriz a una lista """-----------------------------------------------------------------------------------------------------------------------""" # Seccion de funciones """-----------------------------------------------------------------------------------------------------------------------""" # funcion para imprimir la matriz de productos def print_data(matriz): os.system('CLS') print_matriz = pandas.DataFrame( matriz, columns=["code", "name", "type", "stock", "repos", "price", "last_update"]) # generar la matriz en formato pandas print("Imprimiendo matriz de datos...") # mensaje de impresion time.sleep(1) # esperar 1 segundo print(print_matriz) # imprimir la matriz de stock print(" ") decition = input( "Cuando desee regresar al menú principal ingrese cualquier tecla: ") # volver al menu principal os.system('CLS') # limpiar la terminal time.sleep(1) # esperar 1 segundo # funcion para imprimir la matriz de registros def print_registros(registros): print_registros = pandas.DataFrame( registros, columns=["code", "variacion", "motivo", "timestamp"]) # generar la matriz en formato pandas print("Imprimiendo matriz de datos...") # mensaje de impresion time.sleep(1) # esperar 1 segundo print(print_registros) # imprimir la matriz de registros print(" ") decition = input( "Cuando desee regresar al menú principal ingrese cualquier tecla: ") # volver al menu principal os.system('CLS') # limpiar la terminal time.sleep(1) # esperar 1 segundo # funcion para consultar el stock de un producto def product_stock(matriz): os.system("CLS") # limpiar la terminal founded = False # variable para saber si se encontro el producto stock = (input("Ingrese el código del producto a consultar stock: ")).upper() # capturar el codigo del producto a buscar os.system('CLS') # limpiar la terminal for i in range(len(matriz)): # recorrer la matriz if stock == matriz[i][0]: # si se encontró el codigo del producto en la matriz print("El stock actual del producto ", stock, "es: ", matriz[i][3]) # imprimir el stock del producto founded = True # cambiar la variable a True input("Ingrese cualquier tecla cuando desee volver al menu principal: ") # volver al menu principal time.sleep(1) # esperar 1 segundo os.system("CLS") # limpiar la terminal if founded == False: # si no se encontró el codigo del producto en la matriz print("No se encontro el codigo") # mensaje de error time.sleep(1) # esperar 1 segundo os.system("CLS") # limpiar la terminal print(colored("- 1.", "blue", attrs=["bold"]), "Volver a intentar ") # mensaje de volver a intentar print(colored("- 2.", "blue", attrs=["bold"]), "Volver al menú principal") # mensaje de volver al menu principal choose = (input("Ingrese una opción: ")).upper() # capturar la opcion if choose == "1": # si la opcion es 1 product_stock(matriz) # volver a intentar elif choose == "2": # si la opcion es 2 time.sleep(1) # esperar 1 segundo os.system("CLS") # limpiar la terminal # funcion para filtrar los productos por tipo def product_type(matriz): type_product = input( "Ingrese la categoria de producto por el que desea filtrar: ") # capturar el tipo de producto para filtrar a = len(matriz) # obtener la longitud de la matriz lista = list() # crear una lista for i in range(a): # recorrer la matriz if (matriz[i][2]).upper() == (type_product).upper(): # si el tipo de producto es igual al tipo de producto capturado lista.append(matriz[i]) # agregar el producto a la lista if len(lista) != 0: c = pandas.DataFrame( lista, columns=["code", "name", "type", "stock", "repos", "price", "last_update"]) # generar la matriz en formato pandas os.system('CLS') # limpiar la terminal print(c) # imprimir la matriz de productos print(" ") decition = input( "Cuando desee regresar al menú principal ingrese cualquier tecla: ") # volver al menu principal os.system('CLS') # limpiar la terminal time.sleep(1) # esperar 1 segundo else: print("No se encontraron productos con ese tipo") # mensaje de error time.sleep(1) # esperar 1 segundo os.system("CLS") # limpiar la terminal print(colored("- 1.", "blue", attrs=["bold"]), "Volver a intentar ") # mensaje de volver a intentar print(colored("- 2.", "blue", attrs=["bold"]), "Volver al menú principal") # mensaje de volver al menu principal choose = (input("Ingrese una opción: ")).upper() # capturar la opcion if choose == "1": # si la opcion es 1 product_type(matriz) # volver a intentar elif choose == "2": # si la opcion es 2 time.sleep(1) # esperar 1 segundo os.system("CLS") # limpiar la terminal # funcion para obtener el tiempo actual def get_current_time(): time_update = datetime.now() # obtener la fecha y hora actual now = time_update.strftime("%d/%m/%Y %H:%M:%S") # formatear la fecha y hora actual return now # retornar fecha # funcion para alertar si hay que reponer un producto def alert(matriz): time.sleep(0.2) # esperar 0.2 segundos os.system("CLS") # limpiar la terminal to_repos = list() # crear una lista para los productos a reponer codes_to_repos = list() # crear una lista para los codigos de los productos a reponer for i in range(len(matriz)): # recorrer la matriz if int(matriz[i][3]) <= int(matriz[i][4]): # si el stock es menor o igual al reposicion to_repos.append(matriz[i]) # agregar el producto a la lista codes_to_repos.append(matriz[i][0]) # agregar el codigo del producto a la lista to_repos = pandas.DataFrame(to_repos, columns=["code", "name", "type", "stock", "repos", "price", "last_update"]) # generar la matriz en formato pandas if len(codes_to_repos) > 0: # si hay productos a reponer print("Los codigos a reponer son: ") # mensaje de los codigos a reponer for i in codes_to_repos: # recorrer la lista de codigos a reponer print(i, end=" ") # imprimir los codigos a reponer print("") print("-----------------------------") print(" ") print(to_repos) # imprimir la matriz de productos a reponer print(" ") a = input("Ingrese una tecla cuando desee volver al menu principal: ") # volver al menu principal os.system('CLS') # limpiar la terminal else: print("No hay ningun codigo a reponer por el momento.") # mensaje de error os.system('CLS') # limpiar la terminal # funcion para agregar un nuevo producto def add_new_product(matriz): new_product = list() # crear una lista para almacenar los datos del nuevo producto code = input("Ingresa el codigo del producto que desea agregar: ") # capturar el codigo del producto name = input("Ingresa el nombre del producto que va a agregar: ") # capturar el nombre del producto type_product = input("Ingresa la categoria del producto: ") # capturar el tipo de producto stock = int(input("Ingresa el stock inicial del producto, puede ser 0: ")) # capturar el stock inicial del producto reposition = int(input("Punto de reposicion del producto: ")) # capturar el punto de reposicion del producto price = input("Ingresa el precio del producto: ") # capturar el precio del producto new_product.append(code.upper()) # agregar el codigo al nuevo producto new_product.append(name) # agregar el nombre al nuevo producto new_product.append(type_product) # agregar el tipo de producto al nuevo producto new_product.append(stock) # agregar el stock al nuevo producto new_product.append(reposition) # agregar el punto de reposicion al nuevo producto new_product.append(price) # agregar el precio al nuevo producto new_product.append(get_current_time()) # agregar la fecha y hora actual al nuevo producto matriz.append(new_product) # agregar el nuevo producto a la matriz print("El producto " + code.upper() + " fue agregado") # mensaje de confirmacion time.sleep(2) # esperar 2 segundos os.system('CLS') # limpiar la terminal df = pandas.DataFrame(matriz) # generar la matriz en formato pandas df.to_sql('productos', conn, if_exists='replace', index=False) # almacenar la matriz de stock en la base de datos ajuste = [code.upper(), "Se añadió un producto", "Producto agregado", get_current_time()] # crear una lista para almacenar los datos del ajuste registros.append(ajuste) # agregar el ajuste a la matriz de registros df = pandas.DataFrame(registros) # generar la matriz en formato pandas df.to_sql('registros', conn, if_exists='replace', index=False) # almacenar la matriz de registros en la base de datos # funcion para eliminar producto def delete_product(matriz): long = len(matriz) # obtener la longitud de la matriz eliminated = False # variable para saber si se elimino un producto code_eliminate = input( "Ingresa el codigo del producto que quieres eliminar: ") # capturar el codigo del producto a eliminar for i in range(long): # recorrer la matriz try: pos = matriz[i][0].index(code_eliminate) # obtener la posicion del codigo capturado name1 = matriz[i][1] # obtener el nombre del producto print("El producto ", name1, " fue encontrado, eliminando...") # mensaje de código encontrado matriz.pop(i) # eliminar el producto de la matriz time.sleep(1) # esperar 1 segundo print("El producto fue eliminado") # mensaje de confirmacion time.sleep(1.5) # esperar 1.5 segundos os.system('CLS') # limpiar la terminal eliminated = True # cambiar la variable a True except: continue if eliminated == False: # si no se eliminó ningun producto print("El codigo no es correcto") # mensaje de error df = pandas.DataFrame(matriz) # generar la matriz en formato pandas df.to_sql('productos', conn, if_exists='replace', index=False) # almacenar la matriz de stock en la base de datos ajuste = "Se borro el producto" motivo = "Producto eliminado" ajuste = [code_eliminate, ajuste, motivo, get_current_time()] # crear una lista para almacenar los datos del ajuste registros.append(ajuste) # agregar el ajuste a la matriz de registros df = pandas.DataFrame(registros) # generar la matriz de registros en formato pandas df.to_sql('registros', conn, if_exists='replace', index=False) # almacenar la matriz de registros en la base de datos # fución para modificar el stock de un producto def modificate_stock(matriz, code_modified): time.sleep(0.5) # esperar 0.5 segundos long = len(matriz) # obtener la longitud de la matriz os.system("CLS") # limpiar la terminal os.system("CLS") # limpiar la terminal code_founded = False # variable para saber si se encontro el codigo for i in range(long): # recorrer la matriz try: pos = matriz[i][0].index(code_modified) # obtener la posicion del codigo capturado pos_change = i # obtener la posicion del producto a modificar code_founded = True # cambiar la variable a True print(f"Se encontro el producto {matriz[pos_change][1]}...") # mensaje de confirmacion de encontrado time.sleep(2) # esperar 2 segundos os.system("CLS") # limpiar la terminal except: continue print(colored("- 1.", "blue", attrs=["bold"]), "Aumentar stock") # mensaje de opcion 1 print(colored("- 2.", "blue", attrs=["bold"]), "Disminuir stock") # mensaje de opcion 2 print(colored("- 3.", "blue", attrs=["bold"]), # mensaje de opcion 3 "Ajuste por perdida de stock") egressingress = (input("Ingrese una opción: ")).upper() # capturar la opcion del usuario os.system("CLS") # limpiar la terminal if egressingress == "1" and code_founded == True or egressingress == "AUMENTAR" and code_founded == True: # si la opcion es 1 y el codigo fue encontrado actual_stock = int(matriz[pos_change][3]) # obtener el stock actual del producto time.sleep(1) # esperar 1 segundo print(f"El stock actual de {code_modified} es: ", actual_stock) # mensaje de stock actual increase = int( input(f"Cuanto stock desea agregar al stock de {code_modified}: ")) # capturar el stock a aumentar suma = actual_stock + increase # sumar el stock actual mas el stock a aumentar suma = str(suma) # convertir el stock a string matriz[pos_change][3] = suma # cambiar el stock del producto matriz[pos_change][6] = get_current_time() # cambiar la fecha y hora de modificacion del producto df = pandas.DataFrame(matriz) # generar la matriz en formato pandas df.to_sql('productos', conn, if_exists='replace', index=False) # almacenar la matriz de stock en la base de datos ajuste = "+" + str(increase) motivo = "Ingreso de stock" ajuste = [code_modified, ajuste, motivo, get_current_time()] # crear una lista para almacenar los datos del ajuste registros.append(ajuste) # agregar el ajuste a la matriz de registros df = pandas.DataFrame(registros) # generar la matriz de registros en formato pandas df.to_sql('registros', conn, if_exists='replace', index=False) # almacenar la matriz de registros en la base de datos time.sleep(2) # esperar 2 segundos print( f"El stock de {code_modified} ha sido modificado, ahora es: {matriz[pos_change][3]}") # mensaje de confirmacion de modificacion time.sleep(2) # esperar 2 segundos os.system("CLS") # limpiar la terminal elif egressingress == "2" and code_founded == True or egressingress == "DISMINUIR" and code_founded == True: # si la opcion es 2 y el codigo fue encontrado actual_stock = int(matriz[pos_change][3]) # obtener el stock actual del producto print( f"El stock actual de {code_modified} producto es: ", actual_stock) # mensaje de stock actual time.sleep(1) # esperar 1 segundo decrease = int( input(f"Cuanto stock desea restar al stock de {code_modified}: ")) # capturar el stock a disminuir resta = actual_stock - decrease # restar el stock actual menos el stock a disminuir resta = str(resta) # convertir el stock a string matriz[pos_change][3] = resta # cambiar el stock del producto matriz[pos_change][6] = get_current_time() # cambiar la fecha de modificacion print( f"El stock de {code_modified} ha sido modificado, ahora es: {matriz[pos_change][3]}") # mensaje de confirmacion de modificacion time.sleep(2) # esperar 2 segundos df = pandas.DataFrame(matriz) # generar la matriz en formato pandas df.to_sql('productos', conn, if_exists='replace', index=False) # almacenar la matriz de stock en la base de datos ajuste = "-" + str(decrease) motivo = "Egreso de stock" ajuste = [code_modified, ajuste, motivo, get_current_time()] # crear una lista para almacenar los datos del ajuste registros.append(ajuste) # agregar el ajuste a la matriz de registros df = pandas.DataFrame(registros) # generar la matriz de registros en formato pandas df.to_sql('registros', conn, if_exists='replace', index=False) # almacenar la matriz de registros en la base de datos time.sleep(2) # esperar 2 segundos os.system("CLS") # limpiar la terminal elif egressingress == "3" and code_founded == True: # si la opcion es 3 y el codigo fue encontrado actual_stock = int(matriz[pos_change][3]) # obtener el stock actual del producto print( f"El stock actual de {code_modified} producto es: ", actual_stock) # mensaje de stock actual time.sleep(1) # esperar 1 segundo ajustar = int(input(f"Cuanto stock se extravio de {code_modified}: ")) # capturar el stock a ajustar motivo = input("Motivo del ajuste: ") # capturar el motivo del ajuste os.system("CLS") # limpiar la terminal print("Vamos a modificar el stock restando lo que se perdio, y lo que tiene que volver a enviar al cliente. ¿Es usted conciente?") # mensaje de confirmacion print(colored("- 1.", "blue", attrs=["bold"]), "Si") # opcion si print(colored("- 2.", "blue", attrs=["bold"]), "No") # opcion no choose = (input("Ingrese una opción: ")).upper() # capturar la opcion if choose == "1": # si la opcion es 1 mod = actual_stock - (ajustar+ajustar) # modificar el stock mod = str(mod) # convertir el stock a string ajuste = "-"+str(ajustar+ajustar) # crear string del ajuste matriz[pos_change][3] = mod # cambiar el stock del producto os.system("CLS") # limpiar la terminal ajuste = [code_modified, ajuste, motivo, get_current_time()] # crear una lista para almacenar los datos del ajuste registros.append(ajuste) # agregar el ajuste a la matriz de registros print( f"Ahora el stock de {code_modified} es: ", (matriz[pos_change][3])) # mensaje de confirmacion de modificacion print(f"Ajuste de {code_modified} realizado con exito") # mensaje de confirmacion de ajuste df = pandas.DataFrame(registros) # generar la matriz de registros en formato pandas df.to_sql('registros', conn, if_exists='replace', index=False) # almacenar la matriz de registros en la base de datos time.sleep(1) # esperar 1 segundo os.system("CLS") # limpiar la terminal elif choose == "2": # si la opcion es 2 print("Cancelando...") # mensaje de cancelacion time.sleep(1) # esperar 1 segundo os.system("CLS") # limpiar la terminal elif code_founded == False: # si el codigo no fue encontrado print(f"El codigo {code_modified} no se encontro") # mensaje de codigo no encontrado print(colored("- 1.", "blue", attrs=["bold"]), "Volver a intentar") # opcion 1 print(colored("- 2.", "blue", attrs=["bold"]), "Volver al menu principal") # opcion 2 choose = (input("Ingrese una opción: ")).upper() # capturar la opcion if choose == "1": # si la opcion es 1 modificate_stock(matriz) # llamar a la funcion modificar stock elif choose == "2": # si la opcion es 2 print("Volviendo al menu principal...") # mensaje de volver al menu principal time.sleep(1) # esperar 1 segundo os.system("CLS") # limpiar la terminal else: print("No ingreso una opcion correcta, volviendo al menu principal...") # mensaje de opcion incorrecta time.sleep(1) # esperar 1 segundo os.system("CLS") # limpiar la terminal else: # si no se ingreso una opcion correcta print("Usted no ingreso una opcion correcta") # mensaje de opcion incorrecta print(colored("- 1.", "blue", attrs=["bold"]), "Volver a intentar") # opcion 1 print(colored("- 2.", "blue", attrs=["bold"]), "Volver al menu principal") # opcion 2 choose = (input("Ingrese una opción: ")).upper() # capturar la opcion if choose == "1": # si la opcion es 1 modificate_stock(matriz) # llamar a la funcion modificar stock elif choose == "2": # si la opcion es 2 print("Volviendo al menu principal...") # mensaje de volver al menu principal time.sleep(1) # esperar 1 segundo os.system("CLS") # limpiar la terminal else: # si la opcion es incorrecta print("No ingreso una opcion correcta, volviendo al menu principal...") # mensaje de opcion incorrecta time.sleep(1) # esperar 1 segundo os.system("CLS") # limpiar la terminal # funcion para editar un producto def update_product(matriz): os.system("CLS") # limpiar la terminal code = (input("Ingrese el codigo del producto que quiere modificar: ")).upper() # capturar el codigo del producto founded = False # variable para saber si el codigo fue encontrado long = len(matriz) # obtener la longitud de la matriz try: for i in range(long): # recorrer la matriz if code == matriz[i][0]: # si el codigo ingresado es igual al codigo de la matriz print(" ") print(f"El producto {matriz[i][1]} fue encontrado") # mensaje de producto encontrado pos = i # obtener la posicion del producto founded = True # cambiar la variable a True time.sleep(2) # esperar 2 segundos os.system("CLS") # limpiar la terminal except: print("El codigo no es correcto") # mensaje de codigo incorrecto update_product(matriz) # llamar a la funcion update product if founded == True: # si el codigo fue encontrado print(" ") print(colored("- 1.", "blue", attrs=["bold"]), "Modificar nombre") # opcion 1 print(colored("- 2.", "blue", attrs=["bold"]), "Modificar precio") # opcion 2 print(colored("- 3.", "blue", attrs=["bold"]), "Modificar stock") # opcion 3 print(colored("- 4.", "blue", attrs=["bold"]), "Modificar codigo") # opcion 4 print(colored("- 5.", "blue", attrs=["bold"]), "Modificar categoria") # opcion 5 print(colored("- 6.", "blue", attrs=["bold"]), "Modificar punto de reposicion") # opcion 6 print(" ") choose = input("Ingrese una opcion: ") # capturar la opcion time.sleep(1) # esperar 1 segundo os.system("CLS") # limpiar la terminal if choose == "1": # si la opcion es 1 name = input("Ingrese el nuevo nombre: ") # capturar el nuevo nombre matriz[pos][1] = name # cambiar el nombre del producto matriz[pos][6] = get_current_time() # cambiar la fecha y hora de modificacion del producto print(" ") print("El nombre del producto fue modificado") # mensaje de nombre modificado time.sleep(1.5) # esperar 1.5 segundos print(" ") elif choose == "2": # si la opcion es 2 price = input("Ingrese el nuevo precio: ") # capturar el nuevo precio matriz[pos][5] = price # cambiar el precio del producto matriz[pos][6] = get_current_time() # cambiar la fecha y hora de modificacion del producto print(" ") print("El precio del producto fue modificado") # mensaje de precio modificado time.sleep(1.5) # esperar 1.5 segundos print(" ") elif choose == "3": # si la opcion es 3 modificate_stock(matriz, code) # llamar a la funcion modificar stock elif choose == "4": # si la opcion es 4 code = input("Ingrese el nuevo codigo del producto: ") # capturar el nuevo codigo matriz[pos][0] = code # cambiar el codigo del producto matriz[pos][6] = get_current_time() # cambiar la fecha y hora de modificacion del producto print(" ") print("El codigo del producto fue modificado") # mensaje de codigo modificado time.sleep(1.5) # esperar 1.5 segundos print(" ") elif choose == "5": # si la opcion es 5 category = input("Ingrese la nueva categoria: ") # capturar la nueva categoria matriz[pos][2] = category # cambiar la categoria del producto matriz[pos][6] = get_current_time() # cambiar la fecha y hora de modificacion del producto print(" ") print("La categoria del producto fue modificada") # mensaje de categoria modificada time.sleep(1.5) # esperar 1.5 segundos print(" ") elif choose == "6": # si la opcion es 6 repos = input("Ingrese el nuevo punto de reposicion: ") # capturar el nuevo punto de reposicion matriz[pos][4] = repos # cambiar el punto de reposicion del producto matriz[pos][6] = get_current_time() # cambiar la fecha y hora de modificacion del producto print(" ") print("El punto de reposicion del producto fue modificado") # mensaje de punto de reposicion modificado time.sleep(1.5) # esperar 1.5 segundos print(" ") os.system("CLS") # limpiar la terminal else: # si el codigo no fue encontrado print("El codigo no se encontro") # mensaje de codigo no encontrado time.sleep(1.5) # esperar 1.5 segundos os.system("CLS") # limpiar la terminal update_product(matriz) df = pandas.DataFrame(matriz) # convertir la matriz en un dataframe df.to_sql('productos', conn, if_exists='replace', index=False) # guardar los datos en la base de datos """-----------------------------------------------------------------------------------------------------------------------""" # Seccion menu principal-programa """-----------------------------------------------------------------------------------------------------------------------""" print() print(colored("Bienvenido a AutoStocker", "blue", attrs=["bold", "underline"])) # mensaje de bienvenida date_update = datetime.now() # obtener la fecha actual now = date_update.strftime("%d/%m/%Y") # convertir la fecha actual a string print(colored("Hoy es " + now, "white")) # imprimir la fecha actual print() o = "INICIAR" # opcion iniciar while o != "9": # mientras la opcion no sea cerrar print(colored("--- Menú Principal ---", "blue", attrs=["bold"])) # imprimir el menu principal print(colored("- 1.", "blue", attrs=["bold"]), "Imprimir Data") # opcion 1 print(colored("- 2.", "blue", attrs=["bold"]), "Agregar Producto") # opcion 2 print(colored("- 3.", "blue", attrs=["bold"]), "Eliminar Producto") # opcion 3 print(colored("- 4.", "blue", attrs=["bold"]), "Modificar producto") # opcion 4 print(colored("- 5.", "blue", attrs=["bold"]), "Filtrar por categoria") # opcion 5 print(colored("- 6.", "blue", attrs=["bold"]), "Consultar stock del producto") # opcion 6 print(colored("- 7.", "blue", attrs=["bold"]), "Alertas de reposición") # opcion 7 print(colored("- 8.", "blue", attrs=["bold"]), "Imprimir registros") # opcion 8 print(colored("- 9.", "blue", attrs=["bold"]), "Cerrar") # opcion 9 o = (input("> Ingrese una opcion: ")).upper() # capturar la opcion if o == "CERRAR" or o == "9": # si la opcion es cerrar o 7 print("Guardando datos en la base de datos...") # mensaje de guardando datos df = pandas.DataFrame(matriz) # convertir la matriz en un dataframe df.to_sql('productos', conn, if_exists='replace', index=False) # guardar los datos en la base de datos time.sleep(1) # esperar 1 segundo print("Cerrando AutoStocker...") # mensaje de cerrando AutoStocker time.sleep(1) # esperar 1 segundo elif o == "PRINT_DATA" or o == "1": # si la opcion es imprimir data o 1 print_data(matriz) # llamar a la funcion print data elif o == "AGREGAR PRODUCTO" or o == "2": # si la opcion es agregar producto o 2 add_new_product(matriz) # llamar a la funcion agregar producto elif o == "ELIMINAR PRODUCTO" or o == "3": # si la opcion es eliminar producto o 3 delete_product(matriz) # llamar a la funcion eliminar producto elif o == "MODIFICAR PRODUCTO" or o == "4": # si la opcion es modificar producto o 4 update_product(matriz) # llamar a la funcion modificar producto elif o == "FILTRAR CATEGORIA" or o == "5": # si la opcion es filtrar categoria o 5 product_type(matriz) # llamar a la funcion filtrar categoria elif o == "CONSULTAR STOCK" or o == "6": # si la opcion es consultar stock o 6 product_stock(matriz) # llamar a la funcion consultar stock elif o == "7": # si la opcion es alert o 7 alert(matriz) # llamar a la funcion alertas de reposicion elif o == "8": # si la opcion es 8 print_registros(registros) # llamar a la funcion imprimir registros else: # si la opcion no es ninguna de las anteriores print("No has ingresado un comando valido") # mensaje de comando invalido time.sleep(1) # esperar 1 segundo os.system("CLS") # limpiar la terminal """-----------------------------------------------------------------------------------------------------------------------""" conn.close()
from sqlalchemy import create_engine from sqlalchemy.orm import sessionmaker, scoped_session class Database: _conn_string = None _connection = None _engine = None _session_factory = None _session = None def __init__(self, *, db, engine, **kwargs): if not self._conn_string: self._conn_string = self._form_connection_string( db, engine, **kwargs, ) if not self._engine: self._engine = create_engine(self._conn_string) if not self._connection: self._connection = self._engine.connect() if not self._session_factory: self._session_factory = sessionmaker(bind=self._engine) @staticmethod def _form_connection_string(db, engine, user=None, password=None, host=None, port=None): conn_str = f'{engine}://' if user and password: conn_str += f'{user}:{password}' if host: conn_str += f'@{host}' if port: conn_str += f':{port}' conn_str += f'/{db}' return conn_str def get_scoped_session(self): return scoped_session(self._session_factory) @property def connection_string(self): return self._conn_string @property def connection(self): return self._connection @property def engine(self): return self._engine
cont = ("zero","um", "dois", "três", "quatro", "cinco", "seis", "sete", "oito", "nove") while True: x = int(input("Digite um número entre 1 e 9: ")) if 1 <= x <= 9: break print("Tente outra vez. ", end="") print(f"O número digitado foi {cont[x]}")
# Copyright 2017 Google LLC. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # # 1. Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from this # software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. """Core functionality for step one of DeepVariant: Making examples.""" import collections import dataclasses import os import time from typing import Dict, List, Optional, Sequence, Tuple from absl import logging import numpy as np import tensorflow as tf from deepvariant import allele_frequency from deepvariant import dv_constants from deepvariant import pileup_image from deepvariant import resources from deepvariant import tf_utils from deepvariant import variant_caller as vc_base from deepvariant import vcf_candidate_importer from deepvariant import very_sensitive_caller from deepvariant.labeler import customized_classes_labeler from deepvariant.labeler import haplotype_labeler from deepvariant.labeler import positional_labeler from deepvariant.protos import deepvariant_pb2 from deepvariant.python import allelecounter from deepvariant.realigner import realigner from deepvariant.vendor import timer from google.protobuf import text_format from third_party.nucleus.io import fasta from third_party.nucleus.io import sam from third_party.nucleus.io import tfrecord from third_party.nucleus.io import vcf from third_party.nucleus.protos import reads_pb2 from third_party.nucleus.protos import variants_pb2 from third_party.nucleus.util import ranges from third_party.nucleus.util import struct_utils from third_party.nucleus.util import utils from third_party.nucleus.util import variant_utils # For --runtime_by_region, these columns will be written out in this order. RUNTIME_BY_REGION_COLUMNS = ('region', 'get reads', 'find candidates', 'make pileup images', 'write outputs', 'num reads', 'num candidates', 'num examples') # The name used for a sample if one is not specified or present in the reads. _UNKNOWN_SAMPLE = 'UNKNOWN' # --------------------------------------------------------------------------- # Selecting variants of specific types (e.g., SNPs) # --------------------------------------------------------------------------- def _select_biallelic_snps(v): return variant_utils.is_snp(v) and variant_utils.is_biallelic(v) def _select_biallelic_indels(v): return variant_utils.is_indel(v) and variant_utils.is_biallelic(v) def _select_biallelic_insertions(v): return variant_utils.has_insertion(v) and variant_utils.is_biallelic(v) def _select_biallelic_deletions(v): return variant_utils.has_deletion(v) and variant_utils.is_biallelic(v) VARIANT_TYPE_SELECTORS = { 'snps': _select_biallelic_snps, 'indels': _select_biallelic_indels, 'insertions': _select_biallelic_insertions, 'deletions': _select_biallelic_deletions, 'multi-allelics': variant_utils.is_multiallelic, 'all': lambda v: True, } # --------------------------------------------------------------------------- # Option handling # --------------------------------------------------------------------------- def assign_sample_name(sample_name_flag, reads_filenames): """Returns sample name derived from either sample_name flag or input BAM. Function derives sample_name from the flag. If flag is not set then sample_name is derived from input BAM. Args: sample_name_flag: string. sample_name flag value. reads_filenames: A list of filenames of an alignments file, e.g. BAM. The first of these will be used. May be empty. Returns: string. Derived sample name. """ if sample_name_flag: sample_name = sample_name_flag elif reads_filenames: with sam.SamReader(reads_filenames.split(',')[0]) as sam_reader: sample_name = extract_sample_name_from_sam_reader(sam_reader) else: sample_name = _UNKNOWN_SAMPLE return sample_name def make_vc_options(sample_name, flags_obj): return deepvariant_pb2.VariantCallerOptions( min_count_snps=flags_obj.vsc_min_count_snps, min_count_indels=flags_obj.vsc_min_count_indels, min_fraction_snps=flags_obj.vsc_min_fraction_snps, min_fraction_indels=flags_obj.vsc_min_fraction_indels, min_fraction_multiplier=flags_obj.vsc_min_fraction_multiplier, # Not specified by default: fraction_reference_sites_to_emit, # Fixed random seed produced with 'od -vAn -N4 -tu4 < /dev/urandom'. random_seed=1400605801, sample_name=sample_name, p_error=0.001, max_gq=50, gq_resolution=flags_obj.gvcf_gq_binsize, ploidy=2, skip_uncalled_genotypes=flags_obj.mode == 'training') def parse_proto_enum_flag(proto_enum_pb2, flag_value, skip_unspecified_option=True): """Parses a command line flag string value into a protobuf Enum value. Args: proto_enum_pb2: a enum_type_wrapper.EnumTypeWrapper type containing a proto enum definition. For example, this would be deepvariant_pb2.MakeExamplesOptions.Mode to get the MakeExamplesOptions Mode enum. See: https://developers.google.com/protocol-buffers/docs/reference/python-generated#enum for more information. flag_value: str. The name of the proto enum option from the command line we want to convert into the enum value. skip_unspecified_option: bool. If True, any enum options that include the string 'unspecified' (in any case) will be excluded from the list of allowed options in the ValueError raised if flag_value isn't valid. Returns: The enum value for flag_value in proto_enum_pb2 Raises: ValueError: if flag_value isn't a valid enum name in proto_enum_pb2. """ try: return proto_enum_pb2.Value(flag_value) except ValueError: options = proto_enum_pb2.keys() if skip_unspecified_option: options = [o for o in options if 'unspecified' not in o.lower()] raise ValueError('Unknown enum option "{}". Allowed options are {}'.format( flag_value, ','.join(sorted(options)))) def resolve_sam_aux_fields(flags_obj): """Decide value of parse_sam_aux_fields based on other flags.""" flags_requiring_sam_aux_fields = [ 'sort_by_haplotypes', 'use_original_quality_scores' ] flags_using_sam_aux_fields_optionally = ['add_hp_channel'] parse_sam_aux_fields = flags_obj.parse_sam_aux_fields if parse_sam_aux_fields is None: # User didn't set the 'parse_sam_aux_fields' flag, so default to False # unless a flag is on that would use it. parse_sam_aux_fields = False for flag_name in (flags_requiring_sam_aux_fields + flags_using_sam_aux_fields_optionally): if flags_obj[flag_name].value: logging.info( 'Because --%s=true, --parse_sam_aux_fields is set to ' 'true to enable reading auxiliary fields from reads.', flag_name) parse_sam_aux_fields = True if not parse_sam_aux_fields: for flag_name in flags_requiring_sam_aux_fields: if flags_obj[flag_name].value: raise ValueError(f'If --{flag_name} is ' 'set then --parse_sam_aux_fields must be set too.') for flag_name in flags_using_sam_aux_fields_optionally: if flags_obj[flag_name].value: logging.info( 'Note that --%s is set but --parse_sam_aux_fields is not ' 'set. This is fine unless you are expecting to use aux fields from ' 'the alignments file, such as haplotype tags from phasing. ' 'If you do need to use aux fields, enable --parse_sam_aux_fields.', flag_name) return parse_sam_aux_fields def parse_regions_flag(regions_flag_value): if isinstance(regions_flag_value, str): regions_flag_value = regions_flag_value.split() return regions_flag_value def logging_with_options(options, message): """If options contain multiple shards, log with task/shard prefix.""" if options.num_shards > 1: prefix = 'Task {}/{}: '.format(options.task_id, options.num_shards) else: prefix = '' logging.info('%s%s', prefix, message) # --------------------------------------------------------------------------- # Simple utilities # --------------------------------------------------------------------------- def in_training_mode(options): return options.mode == deepvariant_pb2.MakeExamplesOptions.TRAINING def gvcf_output_enabled(options): """Returns True if we should be generating gVCF output.""" return bool(options.gvcf_filename) def only_true(*elts): """Returns the sublist of elements that evaluate to True.""" return [elt for elt in elts if elt] def extract_sample_name_from_sam_reader(sam_reader): """Returns the sample name as derived from the BAM file of reads. Args: sam_reader: Already opened sam_reader to use to extract the sample names from. This sam_reader will not be closed after this function returns. Returns: The sample ID annotated in the read group. """ samples_list = [ rg.sample_id for rg in sam_reader.header.read_groups if rg.sample_id ] samples = set(samples_list) if not samples: logging.warning( 'No non-empty sample name found in the input reads. ' 'DeepVariant will use %s as the sample name. You can also ' 'provide a sample name with the --sample_name argument.', dv_constants.DEFAULT_SAMPLE_NAME) return dv_constants.DEFAULT_SAMPLE_NAME elif len(samples) > 1: logging.warning( 'Multiple samples (%s) were found in the input reads. ' 'Please confirm this is intended. For now, DeepVariant ' 'will use the first sample name %s.', ', '.join(sorted(samples)), samples_list[0]) return samples_list[0] return next(iter(samples)) def trim_runtime(seconds: float) -> float: """Round seconds (float) to the nearest millisecond.""" return round(seconds, 3) # --------------------------------------------------------------------------- # Utilities for working with labeling metrics # # --------------------------------------------------------------------------- def read_make_examples_run_info(path): """Reads a MakeExamplesRunInfo proto in text_format from path.""" with tf.io.gfile.GFile(path) as f: return text_format.Parse(f.read(), deepvariant_pb2.MakeExamplesRunInfo()) def write_make_examples_run_info(run_info_proto, path): """Writes a MakeExamplesRunInfo proto in text_format to path.""" with tf.io.gfile.GFile(path, mode='w') as writer: writer.write( '# proto-file: learning/genomics/deepvariant/protos/deepvariant.proto\n' '# proto-message: MakeExamplesRunInfo\n') writer.write(text_format.MessageToString(run_info_proto, float_format='')) # --------------------------------------------------------------------------- # Region processing # --------------------------------------------------------------------------- def _ensure_consistent_contigs(ref_contigs, sam_contigs, vcf_contigs, exclude_contig_names=None, min_coverage_fraction=1.0): """Returns the common contigs after ensuring 'enough' overlap. Args: ref_contigs: list of reference_pb2.ContigInfo protos in the reference genome. sam_contigs: list of reference_pb2.ContigInfo protos in the SAM/BAM file. vcf_contigs: list of reference_pb2.ContigInfo protos in the VCF if in training mode, or None otherwise. exclude_contig_names: list of strings of contig names to exclude from overlap consideration. min_coverage_fraction: The fraction of the reference contigs that must be shared with all inputs. Returns: The list of contigs common between all input sources. Raises: ValueError: The contigs are not sufficiently similar across input sources. """ # Remove any excluded contigs from the ref_contigs, as we want to use the # selected contigs for our overlap comparison. if exclude_contig_names: ref_contigs = [c for c in ref_contigs if c.name not in exclude_contig_names] # Compute the common contigs among our inputs, and check that the contigs are # sufficiently consistent among each other. contigs = common_contigs(only_true(ref_contigs, sam_contigs)) if vcf_contigs: # If VCF contigs exist, we just check the name (not the length). vcf_contigs_names = set([x.name for x in vcf_contigs]) contigs = [x for x in contigs if x.name in vcf_contigs_names] validate_reference_contig_coverage(ref_contigs, contigs, min_coverage_fraction) return contigs def common_contigs(contigs_list): """Gets a list of contigs found in all contigs in contigs_list. A common contig is considered one where the name and length in basepairs are the same. Args: contigs_list: A sequence of lists of ContigInfo protos. Returns: A list of ContigInfo protos. Note that the individual protos found in this returned list are shared with the ContigInfo protos found in contigs_list, so should not be modified. """ def common2(contigs1, contigs2): """Computes the common contigs between contigs1 and contigs2.""" map2 = ranges.contigs_dict(contigs2) def is_common(contig1): contig2 = map2.get(contig1.name, None) return contig2 and contig1.n_bases == contig2.n_bases return [c for c in contigs1 if is_common(c)] # Compute the common contigs by recursively getting common contigs of our # cumulative set of contigs (common) and each contig in other_contigs. common = contigs_list[0] for other_contigs in contigs_list[1:]: common = common2(common, other_contigs) return common def validate_reference_contig_coverage(ref_contigs, shared_contigs, min_coverage_fraction): """Validates that shared_contigs spans a sufficient amount of ref_contigs. Args: ref_contigs: List of ContigInfo protos. All of the contigs from our reference genome. shared_contigs: The subset of ref_contigs that we found in common with ref_contigs and all other genomics data sources. min_coverage_fraction: The minimum fraction of basepairs of ref_contigs that should be found among the shared_contigs. Raises: ValueError: If the fraction of covered bases is less than min_coverage_fraction. """ def format_contig_matches(): pieces = [] common_map = ranges.contigs_dict(shared_contigs) for ref_contig in ref_contigs: status = 'matched' if ref_contig.name in common_map else 'IS MISSING' pieces.append('\n"{}" is {} bp and {}'.format(ref_contig.name, ref_contig.n_bases, status)) return ', '.join(pieces) ref_bp = ranges.contigs_n_bases(ref_contigs) common_bp = ranges.contigs_n_bases(shared_contigs) coverage = common_bp / (1. * ref_bp) if not shared_contigs or coverage < min_coverage_fraction: raise ValueError('Reference contigs span {} bases but only {} bases ' '({:.2%}) were found in common among our input files. ' 'Check that the sources were created on a common genome ' 'reference build. Contig matches were: {}. Here is a ' 'useful article about different human genome reference ' 'builds:\n' 'https://gatkforums.broadinstitute.org/gatk/discussion/' '11010/human-genome-reference-builds-grch38-hg38-b37-hg19' '\nPlease make sure the --ref input matches the build ' 'used for the input in --reads.'.format( ref_bp, common_bp, coverage, format_contig_matches())) def build_calling_regions(contigs, regions_to_include, regions_to_exclude): """Builds a RangeSet containing the regions we should call variants in. This function intersects the Ranges spanning all of the contigs with those from regions_to_include, if not empty, and removes all of the regions in regions_to_exclude. Args: contigs: Sequence of ContigInfo protos. Used to determine the initial ranges to process (i.e., all bases of these contigs). regions_to_include: RangeSet or iterable that can be converted to a RangeSet. regions_to_exclude: RangeSet or iterable that can be converted to a RangeSet. Returns: A RangeSet. """ # Initially we are going to call everything in the reference. regions = ranges.RangeSet.from_contigs(contigs) # If we provided a regions to include, intersect it with all of the regions, # producing a common set of regions between the reference and the provided # calling regions. contig_dict = ranges.contigs_dict(contigs) if regions_to_include: regions = regions.intersection( ranges.RangeSet.from_regions(regions_to_include, contig_dict)) # If we provided regions to exclude, intersect those with the existing calling # regions to further refine our set of contigs to process. if regions_to_exclude: # exclude_regions mutates regions. regions.exclude_regions( ranges.RangeSet.from_regions(regions_to_exclude, contig_dict)) return regions def regions_to_process(contigs, partition_size, calling_regions=None, task_id=None, num_shards=None): """Determines the regions to process and partitions them into pieces. This function divides the genomes into regions we should process by intersecting the Ranges spanning all of the contigs with those from calling_regions, if provided. These intersected regions are then partitioned into pieces no bigger than partition_size bp in length. By construction we ensure that the regions are in genomic order, first w.r.t. the contigs and then within each contig by start and end of each region. This function can further subdivide these regions into a subset appropriate for a single task (task_id) among N tasks (num_shards) to process. The function ensures that: set(all_regions) = union(regions(task_0), ..., regions(task_n)) when called with task_ids 0 ... N for num_shards = N. Args: contigs: Sequence of ContigInfo protos. Used to determine the initial ranges to process (i.e., all bases of these contigs) and the order of returned ranges. partition_size: The maximum size to make any region when partitioning. calling_regions: None or RangeSet. If provided, we will intersect the regions to process so that only those that overlap a region in this set are included. task_id: int >= 0 or None. The task_id of this job, which will be used to subdivide the total set of regions to process into just those that should be processed by this job. Must be < num_shards. num_shards: int >= 0 or None. The number of shards (i.e., the total number of tasks) we are running in parallel. Together with task_id determines the subset of regions we want to process. Returns: An iterable of nucleus.genomics.v1.Range objects. Raises: ValueError: if task_id and num_shards are bad or inconsistent. """ if (task_id is None) != (num_shards is None): raise ValueError('Both task_id and num_shards must be present if either is', task_id, num_shards) if num_shards: if num_shards < 0: raise ValueError('num_shards={} must be >= 0'.format(num_shards)) if task_id < 0 or task_id >= num_shards: raise ValueError('task_id={} should be >= 0 and < num_shards={}'.format( task_id, num_shards)) regions = ranges.RangeSet.from_contigs(contigs) if calling_regions: regions = regions.intersection(calling_regions) partitioned = regions.partition(partition_size) if num_shards: return (r for i, r in enumerate(partitioned) if i % num_shards == task_id) else: return partitioned def fetch_vcf_positions(vcf_path, contigs, calling_regions): """Fetches variants present in calling_regions. Args: vcf_path: Path to VCF from which to fetch positions. contigs: Sequence of ContigInfo protos. Used to determine the initial ranges to process (i.e., all bases of these contigs) and the order of returned ranges. calling_regions: A list of acceptable calling regions. Returns: Variant positions present in calling_regions. """ # Fetch the set of regions being queried. regions = ranges.RangeSet.from_contigs(contigs) if calling_regions: regions = regions.intersection(calling_regions) variant_positions = [] with vcf.VcfReader(vcf_path) as vcf_reader: for region in regions: for variant in vcf_reader.query(region): variant_positions.append(variant_utils.variant_position(variant)) return variant_positions def filter_regions_by_vcf(regions, variant_positions): """Filter a list of regions to only those that contain variants. Args: regions: a list of Range objects representing regions to filter on. variant_positions: a list of Range objects containing the positions of variants. Returns: filtered_regions: a list of Range objects, each of which appeared in the input regions and contains at least one of the input variants. """ def dict_by_chromosome(list_of_ranges): d = collections.defaultdict(list) for r in list_of_ranges: d[r.reference_name].append(r) for c in d: d[c] = sorted(d[c], key=lambda x: (x.start, x.end)) return d region_dict = dict_by_chromosome(regions) variant_dict = dict_by_chromosome(variant_positions) filtered_regions = [] for c in region_dict: ri = 0 vi = 0 if c not in variant_dict: # Skip chromosomes with no variants. continue while ri < len(region_dict[c]) and vi < len(variant_dict[c]): region = region_dict[c][ri] variant = variant_dict[c][vi] if variant.start >= region.start and variant.start < region.end: # When the variant falls within the region, then keep the region. filtered_regions.append(region) # Move both indices because we're already keeping this region, and we # don't need to see any more variants inside this same region. ri += 1 vi += 1 elif region.start < variant.start: # Move past this region since the next variant comes later. ri += 1 else: # Found another variant in the previous region we already included. vi += 1 return filtered_regions # --------------------------------------------------------------------------- # Working with samples # --------------------------------------------------------------------------- @dataclasses.dataclass class Sample(object): """Organizes sample-level properties. options: A SampleOptions proto containing instructions for how to treat the sample, most of which will be set from flags. sam_readers: SamReader objects with handles on the `reads_filenames` from the options. in_memory_sam_reader: InMemorySamReader for this sample, which stores the alignments for this sample that have been read into memory from the sam_readers. reads: A list of reads queried from the sam readers. allele_counter: An allele counter object for the sample. variant_caller: A variant caller for the sample, should be instantiated using the options.variant_caller_options. """ options: deepvariant_pb2.SampleOptions sam_readers: Optional[Sequence[sam.SamReader]] = None in_memory_sam_reader: Optional[sam.InMemorySamReader] = None reads: Optional[List[reads_pb2.Read]] = None allele_counter: Optional[allelecounter.AlleleCounter] = None variant_caller: Optional[vc_base.VariantCaller] = None def __repr__(self): return '<Sample {}>'.format(str(self.__dict__)) # --------------------------------------------------------------------------- # Region processor # --------------------------------------------------------------------------- def read_confident_regions(options): if options.confident_regions_filename: return ranges.RangeSet.from_bed(options.confident_regions_filename) else: return None def filter_candidates(candidates, select_variant_types): """Yields the candidate variants whose type is one of select_variant_types. This function iterates through candidates and yield each candidate in order if it satisfies any of the type constraints implied by select_variant_types. For example, if select_variant_types = ['snps'] this function will yield candidates that are bi-allelic SNPs only. Multiple select types are treated as OR'd together, so ['snps', 'indels'] yields candidates that are bi-allelic SNPs or indels. Args: candidates: Iterable of Variant protos. The candidates we want to select from. select_variant_types: List of str. The names of the variant type selectors we want to use to keep/remove variants. Each string must be part of VARIANT_TYPE_SELECTORS or an error will be raised. Raises: ValueError: if any str in select_variant_types isn't present in VARIANT_TYPE_SELECTORS. Yields: Candidates in order. """ if not all(s in VARIANT_TYPE_SELECTORS for s in select_variant_types): raise ValueError('Unexpected select variant type', select_variant_types) for candidate in candidates: v = candidate.variant for select_type in select_variant_types: selector = VARIANT_TYPE_SELECTORS[select_type] if selector(v): yield candidate break class RegionProcessor(object): """Creates DeepVariant example protos for a single region on the genome. This class helps us to run the very sensitive caller, pileup image creator, and variant labeler operations on a single region in parallel across many regions using the PoolExecutor API. In order to do this we need separate three key operations: (1) Collect all of the info needed to create our resources (e.g., ref reader) at construction. We cannot actually initialize those resources in the constructor, though, since we actually want different resources in each worker process/thread. I.e., we need lazy resource initialization. (2) Actually initialize these resources *after* the worker has been forked in our process pool. This gives us a fresh resource to use in each separate process. (3) Process the region to find candidate variants and process those into our tf.Example protos. """ def __init__(self, options): """Creates a new RegionProcess. Args: options: deepvariant.MakeExamplesOptions proto used to specify our resources for calling (e.g., reference_filename). """ self.options = options self.samples = [Sample(options=x) for x in self.options.sample_options] self.initialized = False self.ref_reader = None self.realigner = None self.pic = None self.labeler = None self.population_vcf_readers = None def _make_allele_counter_for_region(self, region, candidate_positions): return allelecounter.AlleleCounter(self.ref_reader.c_reader, region, candidate_positions, self.options.allele_counter_options) def _encode_tensor(self, image_tensor): return image_tensor.tostring(), image_tensor.shape, 'raw' def _make_sam_readers( self, reads_filenames: Sequence[str], downsample_fraction: float) -> Optional[List[sam.SamReader]]: """Creates a list of SamReaders, one from each filename. Args: reads_filenames: A list of string read filenames (e.g. for BAM/CRAM files). The list may contain empty strings or None, which will be skipped. downsample_fraction: Fraction by which to downsample. This applies to each file in reads_filenames separately. Returns: A list of sam readers with handles to the files. This may be shorter than the input reads_filenames if any of the filenames were empty. """ logging_with_options( self.options, 'Starting from v0.9.0, --use_ref_for_cram is default to true. ' 'If you are using CRAM input, note that we will decode CRAM ' 'using the reference you passed in with --ref') readers = [] for reads_filename in reads_filenames: if reads_filename: readers.append( sam.SamReader( reads_filename, ref_path=self.options.reference_filename if self.options.use_ref_for_cram else None, read_requirements=self.options.read_requirements, parse_aux_fields=self.options.parse_sam_aux_fields, hts_block_size=self.options.hts_block_size, downsample_fraction=downsample_fraction, random_seed=self.options.random_seed, use_original_base_quality_scores=self.options .use_original_quality_scores)) return readers def _initialize(self): """Initialize the resources needed for this work in the current env.""" if self.initialized: raise ValueError('Cannot initialize this object twice') self.ref_reader = fasta.IndexedFastaReader(self.options.reference_filename) for sample in self.samples: sample.sam_readers = self._make_sam_readers( reads_filenames=sample.options.reads_filenames, downsample_fraction=sample.options.downsample_fraction) sample.in_memory_sam_reader = sam.InMemorySamReader([]) sample.variant_caller = self._make_variant_caller_from_options( sample.options.variant_caller_options) if self.options.use_allele_frequency: population_vcf_readers = allele_frequency.make_population_vcf_readers( self.options.population_vcf_filenames) self.population_vcf_readers = population_vcf_readers if (self.options.realigner_enabled or self.options.pic_options.alt_aligned_pileup != 'none' or self.options.allele_counter_options.track_ref_reads): main_sample = self.samples[self.options.main_sample_index] input_bam_header = sam.SamReader( main_sample.options.reads_filenames[0]).header self.realigner = realigner.Realigner( self.options.realigner_options, self.ref_reader, shared_header=input_bam_header) self.pic = pileup_image.PileupImageCreator( ref_reader=self.ref_reader, options=self.options.pic_options, samples=self.samples) if in_training_mode(self.options): self.labeler = self._make_labeler_from_options() self.initialized = True def initialize(self): if not self.initialized: self._initialize() def _make_labeler_from_options(self): """Creates the labeler from options.""" truth_vcf_reader = vcf.VcfReader( self.options.truth_variants_filename, excluded_format_fields=['GL', 'GQ', 'PL']) confident_regions = read_confident_regions(self.options) if (self.options.variant_caller == deepvariant_pb2.MakeExamplesOptions.VCF_CANDIDATE_IMPORTER): logging.info('For --variant_caller=vcf_candidate_importer, we ' 'default the labeler_algorithm to positional_labler.') return positional_labeler.PositionalVariantLabeler( truth_vcf_reader=truth_vcf_reader, confident_regions=confident_regions) if (self.options.labeler_algorithm == deepvariant_pb2.MakeExamplesOptions.POSITIONAL_LABELER): return positional_labeler.PositionalVariantLabeler( truth_vcf_reader=truth_vcf_reader, confident_regions=confident_regions) elif (self.options.labeler_algorithm == deepvariant_pb2.MakeExamplesOptions.HAPLOTYPE_LABELER): return haplotype_labeler.HaplotypeLabeler( truth_vcf_reader=truth_vcf_reader, ref_reader=self.ref_reader, confident_regions=confident_regions) elif (self.options.labeler_algorithm == deepvariant_pb2.MakeExamplesOptions.CUSTOMIZED_CLASSES_LABELER): if (not self.options.customized_classes_labeler_classes_list or not self.options.customized_classes_labeler_info_field_name): raise ValueError('For -labeler_algorithm=customized_classes_labeler, ' 'you need to set ' '-customized_classes_labeler_classes_list and ' '-customized_classes_labeler_info_field_name.') return customized_classes_labeler.CustomizedClassesVariantLabeler( truth_vcf_reader=truth_vcf_reader, confident_regions=confident_regions, classes_list=self.options.customized_classes_labeler_classes_list, info_field_name=self.options .customized_classes_labeler_info_field_name) else: raise ValueError('Unexpected labeler_algorithm', self.options.labeler_algorithm) def _make_variant_caller_from_options(self, variant_caller_options): """Creates the variant_caller from options.""" if (self.options.variant_caller == deepvariant_pb2.MakeExamplesOptions.VCF_CANDIDATE_IMPORTER): if in_training_mode(self.options): candidates_vcf = self.options.truth_variants_filename else: candidates_vcf = self.options.proposed_variants_filename return vcf_candidate_importer.VcfCandidateImporter( variant_caller_options, candidates_vcf) elif (self.options.variant_caller == deepvariant_pb2.MakeExamplesOptions.VERY_SENSITIVE_CALLER): return very_sensitive_caller.VerySensitiveCaller(variant_caller_options) else: raise ValueError('Unexpected variant_caller', self.options.variant_caller) def process(self, region): """Finds candidates and creates corresponding examples in a region. Args: region: A nucleus.genomics.v1.Range proto. Specifies the region on the genome we should process. Returns: (candidates_by_sample, examples_by_sample, gvcfs_by_sample, runtimes) 1. candidates_by_sample: A dict keyed by sample role, each a list of candidates found, which are deepvariant.DeepVariantCall objects. 2. examples_by_sample: A dict keyed by sample, each a list of filled in tf.Example protos. For example, these will include the candidate variant, the pileup image, and, if in training mode, the truth variants and labels needed for training. 3. gvcfs_by_sample: A dict keyed by sample, each a list of nucleus.genomics.v1.Variant protos containing gVCF information for all reference sites, if gvcf generation is enabled, otherwise this value is []. 4. runtimes: A dict of runtimes in seconds keyed by stage. """ region_timer = timer.TimerStart() runtimes = {} if not self.initialized: self.initialize() before_get_reads = time.time() runtimes['num reads'] = 0 for sample in self.samples: if sample.in_memory_sam_reader is not None: reads = self.region_reads( region=region, sam_readers=sample.sam_readers, reads_filenames=sample.options.reads_filenames) runtimes['num reads'] += len(reads) sample.in_memory_sam_reader.replace_reads(reads) runtimes['get reads'] = trim_runtime(time.time() - before_get_reads) before_find_candidates = time.time() candidates_by_sample, gvcfs_by_sample = self.candidates_in_region(region) examples_by_sample = {} for sample in self.samples: role = sample.options.role if role not in candidates_by_sample: continue candidates = candidates_by_sample[role] examples_by_sample[role] = [] if self.options.select_variant_types: candidates = list( filter_candidates(candidates, self.options.select_variant_types)) runtimes['find candidates'] = trim_runtime(time.time() - before_find_candidates) before_make_pileup_images = time.time() # Get allele frequencies for candidates. if self.options.use_allele_frequency: candidates = list( allele_frequency.add_allele_frequencies_to_candidates( candidates=candidates, population_vcf_reader=self.population_vcf_readers[ region.reference_name], ref_reader=self.ref_reader)) if in_training_mode(self.options): for candidate, label in self.label_candidates(candidates, region): for example in self.create_pileup_examples( candidate, sample_order=sample.options.order): self.add_label_to_example(example, label) examples_by_sample[role].append(example) else: for candidate in candidates: for example in self.create_pileup_examples( candidate, sample_order=sample.options.order): examples_by_sample[role].append(example) # After any filtering and other changes above, set candidates for sample. candidates_by_sample[role] = candidates logging.vlog(2, 'Found %s candidates in %s [%d bp] [%0.2fs elapsed]', len(examples_by_sample[role]), ranges.to_literal(region), ranges.length(region), region_timer.Stop()) runtimes['make pileup images'] = trim_runtime(time.time() - before_make_pileup_images) runtimes['num examples'] = sum( [len(x) for x in examples_by_sample.values()]) runtimes['num candidates'] = sum( [len(x) for x in candidates_by_sample.values()]) return candidates_by_sample, examples_by_sample, gvcfs_by_sample, runtimes def region_reads(self, region, sam_readers, reads_filenames): """Gets read alignments overlapping the region and optionally realigns them. If self.options.realigner_enabled is set, uses realigned reads, otherwise original reads are returned. Args: region: A nucleus.genomics.v1.Range object specifying the region we want to realign reads. sam_readers: An iterable of sam.SamReader to query from. reads_filenames: Filenames matching sam_readers. This is only used for throwing more informative error messages. Returns: [genomics.deepvariant.core.genomics.Read], reads overlapping the region. """ if sam_readers is None: return [] reads = [] for sam_reader_index, sam_reader in enumerate(sam_readers): try: reads.extend(sam_reader.query(region)) except ValueError as err: error_message = str(err) if error_message.startswith('Data loss:'): raise ValueError(error_message + '\nFailed to parse BAM/CRAM file. ' 'This is often caused by:\n' '(1) When using a CRAM file, and setting ' '--use_ref_for_cram to false (which means you want ' 'to use the embedded ref instead of a ref file), ' 'this error could be because of inability to find ' 'the embedded ref file.\n' '(2) Your BAM/CRAM file could be corrupted. Please ' 'check its md5.\n' 'If you cannot find out the reason why this error ' 'is occurring, please report to ' 'https://github.com/google/deepvariant/issues') elif error_message.startswith('Not found: Unknown reference_name '): raise ValueError('{}\nThe region {} does not exist in {}.'.format( error_message, ranges.to_literal(region), reads_filenames[sam_reader_index])) else: # By default, raise the ValueError as is for now. raise err if self.options.max_reads_per_partition > 0: random_for_region = np.random.RandomState(self.options.random_seed) reads = utils.reservoir_sample(reads, self.options.max_reads_per_partition, random_for_region) reads = list(reads) if self.options.realigner_enabled: max_read_length_to_realign = 500 if max_read_length_to_realign > 0: long_reads = [ read for read in reads if len(read.aligned_sequence) > max_read_length_to_realign ] short_reads = [ read for read in reads if len(read.aligned_sequence) <= max_read_length_to_realign ] _, realigned_short_reads = self.realigner.realign_reads( short_reads, region) # Long reads will be listed before short reads when both are present. # Examples with only short or only long reads will be unaffected. return long_reads + realigned_short_reads _, reads = self.realigner.realign_reads(reads, region) return reads def candidates_in_region( self, region ) -> Tuple[Dict[str, deepvariant_pb2.DeepVariantCall], Dict[ str, variants_pb2.Variant]]: """Finds candidates in the region using the designated variant caller. Args: region: A nucleus.genomics.v1.Range object specifying the region we want to get candidates for. Returns: A 2-tuple of (candidates, gvcfs). The first value, candidates, is a dict keyed by sample role, where each item is a list of deepvariant_pb2.DeepVariantCalls objects, in coordidate order. The second value, gvcfs, is a dict keyed by sample role, where each item is a list of nucleus.genomics.v1.Variant protos containing gVCF information for all reference sites, if gvcf generation is enabled, otherwise the gvcfs value is []. """ for sample in self.samples: sample.reads = sample.in_memory_sam_reader.query(region) main_sample = self.samples[self.options.main_sample_index] if not main_sample.reads and not gvcf_output_enabled(self.options): # If we are generating gVCF output we cannot safely abort early here as # we need to return the gVCF records calculated by the caller below. return {}, {} allele_counters = {} for sample in self.samples: if sample.options.reads_filenames: # Calculate potential candidate positions from allele counts. candidate_positions = [] if self.options.allele_counter_options.track_ref_reads: candidate_positions = self.realigner.get_candidate_positions( sample.reads, region) sample.reads = sample.in_memory_sam_reader.query(region) # Final allele counts calculation. sample.allele_counter = self._make_allele_counter_for_region( region, candidate_positions) for read in sample.reads: sample.allele_counter.add(read, sample.options.name) allele_counters[sample.options.name] = sample.allele_counter candidates = {} gvcfs = {} for sample in self.samples: role = sample.options.role if in_training_mode( self.options) and self.options.sample_role_to_train != role: continue if not sample.options.reads_filenames: continue candidates[role], gvcfs[role] = sample.variant_caller.calls_and_gvcfs( allele_counters=allele_counters, target_sample=sample.options.name, include_gvcfs=gvcf_output_enabled(self.options), include_med_dp=self.options.include_med_dp) return candidates, gvcfs def align_to_all_haplotypes(self, variant, reads): """For each alternate allele, realign reads to it and get "ref" sequences. For alt-aligned pileups, this realigns the reads to each of the alternate haplotypes. It also outputs the sequence for each alternate allele, which is also needed to build the pileup image. Args: variant: a nucleus.genomics.v1.Variant containing the alt alleles to align against. reads: a list of reads (nucleus.genomics.v1.Read) to be realigned around the variant. Returns: dict of alignments keyed by haplotype, dict of window sequences keyed by haplotype. """ window_width = self.pic.width window_half_width = self.pic.half_width alt_alleles = list(variant.alternate_bases) contig = variant.reference_name ref_start = variant.start ref_bases = variant.reference_bases ref_end = ref_start + len(ref_bases) # Sanity check that the reference_bases in the variant match the reference. ref_query_at_variant = self.realigner.ref_reader.query( ranges.make_range(contig, ref_start, ref_end)) if ref_bases != ref_query_at_variant: raise ValueError('Error: reference_bases property in variant ({})' 'does not match the bases in the reference ({}) at that ' 'position.'.format(ref_bases, ref_query_at_variant)) # Margin must be equal to or more than half the window width. # Some extra prefix/suffix can be added to anchor alignments, but currently # we don't add extra. margin = window_half_width valid_end = min( self.realigner.ref_reader.contig(contig).n_bases, ref_end + margin) alignment_region = ranges.make_range(contig, max(ref_start - margin, 0), valid_end) trimmed_reads = [realigner.trim_read(r, alignment_region) for r in reads] # Filter reads to a minimum read length of 15 bp after trimming. reads = [r for r in trimmed_reads if len(r.aligned_sequence) >= 15] prefix = self.realigner.ref_reader.query( ranges.make_range(contig, max(ref_start - margin, 0), ref_start)) suffix = self.realigner.ref_reader.query( ranges.make_range(contig, ref_end, valid_end)) alignments_by_haplotype = {} sequences_by_haplotype = {} for hap in alt_alleles: # Align to each of the alt_alleles: alignments_by_haplotype[hap] = self.realigner.align_to_haplotype( this_haplotype=hap, haplotypes=[hap], prefix=prefix, suffix=suffix, reads=reads, contig=contig, ref_start=ref_start - len(prefix)) # Sequence of the alt haplotype in the window: end_of_prefix = prefix[-window_half_width:] beginning_of_suffix = suffix[:max(window_half_width + 1 - len(hap), 0)] sequences_by_haplotype[hap] = end_of_prefix + hap + beginning_of_suffix # Long haplotypes can extend past the window, so enforce the width here. sequences_by_haplotype[hap] = sequences_by_haplotype[hap][0:window_width] return { 'alt_alignments': alignments_by_haplotype, 'alt_sequences': sequences_by_haplotype } def create_pileup_examples(self, dv_call, sample_order=None): """Creates a tf.Example for DeepVariantCall. This function calls PileupImageCreator.create_pileup_images on dv_call to get raw image tensors for each alt_allele option (see docs for details). These tensors are encoded as pngs, and all of the key information is encoded as a tf.Example via a call to tf_utils.make_example. Args: dv_call: A DeepVariantCall. sample_order: A list of indices representing the order in which samples should be represented in the pileup image. Example: [1,0,2] to swap the first and second samples. This is None by default which puts the samples in order. Returns: A list of tf.Example protos. """ reads_for_samples = [ self.pic.get_reads( dv_call.variant, sam_reader=sample.in_memory_sam_reader) for sample in self.samples ] logging.vlog( 3, 'create_pileup_examples for variant: {}:{}_{}'.format( dv_call.variant.reference_name, dv_call.variant.start, dv_call.variant.reference_bases)) # Decide whether each candidate needs ALT-alignment. alt_align_this_variant = False if self.options.pic_options.alt_aligned_pileup != 'none': if self.options.pic_options.types_to_alt_align == 'indels': alt_align_this_variant = variant_utils.is_indel(dv_call.variant) else: # types_to_alt_align can only be 'all' or 'indels'. alt_align_this_variant = True haplotype_alignments_for_samples = None haplotype_sequences = None if alt_align_this_variant: # Align the reads against each alternate allele, saving the sequences of # those alleles along with the alignments for pileup images. alt_info_for_samples = [ self.align_to_all_haplotypes(dv_call.variant, reads) for reads in reads_for_samples ] # Each sample has different reads and thus different alt-alignments. haplotype_alignments_for_samples = [ sample['alt_alignments'] for sample in alt_info_for_samples ] # All samples share the same alt sequences, so select the first one. haplotype_sequences = alt_info_for_samples[0]['alt_sequences'] pileup_images = self.pic.create_pileup_images( dv_call=dv_call, reads_for_samples=reads_for_samples, sample_order=sample_order, haplotype_alignments_for_samples=haplotype_alignments_for_samples, haplotype_sequences=haplotype_sequences) if pileup_images is None: # We cannot build a PileupImage for dv_call, issue a warning. logging.warning('Could not create PileupImage for candidate at %s:%s', dv_call.variant.reference_name, dv_call.variant.start) return [] examples = [] for alt_alleles, image_tensor in pileup_images: encoded_tensor, shape, tensor_format = self._encode_tensor(image_tensor) examples.append( tf_utils.make_example( dv_call.variant, alt_alleles, encoded_tensor, shape=shape, image_format=tensor_format, sequencing_type=self.options.pic_options.sequencing_type)) return examples def label_candidates(self, candidates, region): """Gets label information for each candidate. Args: candidates: list[DeepVariantCalls]: The list of candidate variant calls we want to label. region: A nucleus.genomics.v1.Range object specifying the region we want to get candidates for. Yields: Tuples of (candidate, label_variants.Label objects) for each candidate in candidates that could be assigned a label. Candidates that couldn't be labeled will not be returned. """ # Set BAM filename (used for training stats). for candidate in candidates: struct_utils.set_string_field(candidate.variant.info, 'BAM_FNAME', self.options.bam_fname) # Get our list of labels for each candidate variant. labels = self.labeler.label_variants( [candidate.variant for candidate in candidates], region) # Remove any candidates we couldn't label, yielding candidate, label pairs. for candidate, label in zip(candidates, labels): if label.is_confident: yield candidate, label def add_label_to_example(self, example, label): """Adds label information about the assigned label to our example. Args: example: A tf.Example proto. We will write truth_variant and label into this proto. label: A variant_labeler.Label object containing the labeling information to add to our example. Returns: The example proto with label fields added. Raises: ValueError: if label isn't confident. """ if not label.is_confident: raise ValueError('Cannot add a non-confident label to an example', example, label) alt_alleles_indices = tf_utils.example_alt_alleles_indices(example) tf_utils.example_set_variant(example, label.variant) # Set the label of the example to the # alts given our alt_alleles_indices. tf_utils.example_set_label(example, label.label_for_alt_alleles(alt_alleles_indices)) return example def processing_regions_from_options(options): """Computes the calling regions from our options. This function does all of the work needed to read our input files and region specifications to determine the list of regions we should generate examples over. It also computes the confident regions needed to label variants. Args: options: deepvariant.MakeExamplesOptions proto containing information about our input data sources. Raises: ValueError: if the regions to call is empty. Returns: Two values. The first is a list of nucleus.genomics.v1.Range protos of the regions we should process. The second is a RangeSet containing the confident regions for labeling, or None if we are running in training mode. """ ref_contigs = fasta.IndexedFastaReader( options.reference_filename).header.contigs # Add in confident regions and vcf_contigs if in training mode. vcf_contigs = None if in_training_mode(options): vcf_contigs = vcf.VcfReader(options.truth_variants_filename).header.contigs if all([x.n_bases == 0 for x in vcf_contigs]): logging.info( '%s header does not contain contig lengths. Will skip contig ' 'consistency checking for this file.', options.truth_variants_filename) vcf_contigs = None main_sample = options.sample_options[options.main_sample_index] all_sam_contigs = [ sam.SamReader(reads_file).header.contigs for reads_file in main_sample.reads_filenames ] sam_contigs = common_contigs(only_true(*all_sam_contigs)) contigs = _ensure_consistent_contigs(ref_contigs, sam_contigs, vcf_contigs, options.exclude_contigs, options.min_shared_contigs_basepairs) logging_with_options(options, 'Common contigs are %s' % [c.name for c in contigs]) calling_regions = build_calling_regions(ref_contigs, options.calling_regions, options.exclude_calling_regions) if not calling_regions: raise ValueError('The regions to call is empty. Check your --regions and ' '--exclude_regions flags to make sure they are not ' 'resulting in set of empty region to process. This also ' 'happens if you use "chr20" for a BAM where contig names ' 'don\'t have "chr"s (or vice versa).') regions = regions_to_process( contigs=contigs, partition_size=options.allele_counter_options.partition_size, calling_regions=calling_regions, task_id=options.task_id, num_shards=options.num_shards) region_list = list(regions) # When using VcfCandidateImporter, it is safe to skip regions without # candidates as long as gVCF output is not needed. There is a tradeoff # though because it takes time to read the VCF, which is only worth it if # there are enough regions. if options.proposed_variants_filename and not gvcf_output_enabled(options): logging_with_options( options, 'Reading VCF to skip processing some regions without ' 'variants in the --proposed_variants VCF.') before = time.time() variant_positions = fetch_vcf_positions(options.proposed_variants_filename, contigs, calling_regions) filtered_regions = filter_regions_by_vcf(region_list, variant_positions) time_elapsed = time.time() - before logging_with_options( options, 'Filtering regions took {} seconds and reduced the number of ' 'regions to process from {} to {} regions containing variants ' 'from the supplied VCF of proposed variants.'.format( trim_runtime(time_elapsed), len(region_list), len(filtered_regions))) return filtered_regions return region_list class OutputsWriter(object): """Manages all of the outputs of make_examples in a single place.""" def __init__(self, options, suffix=None): self._writers = { k: None for k in ['candidates', 'examples', 'gvcfs', 'runtime'] } self.examples_filename = None if options.candidates_filename: self._add_writer( 'candidates', tfrecord.Writer( self._add_suffix(options.candidates_filename, suffix))) if options.examples_filename: self.examples_filename = self._add_suffix(options.examples_filename, suffix) self._add_writer('examples', tfrecord.Writer(self.examples_filename)) if options.gvcf_filename: self._add_writer( 'gvcfs', tfrecord.Writer(self._add_suffix(options.gvcf_filename, suffix))) if options.runtime_by_region: self._add_writer('runtime', tf.io.gfile.GFile(options.runtime_by_region, mode='w')) writer = self._writers['runtime'] writer.__enter__() writer.write('\t'.join(RUNTIME_BY_REGION_COLUMNS) + '\n') def _add_suffix(self, file_path, suffix): """Adds suffix to file name if a suffix is given.""" if not suffix: return file_path file_dir, file_base = os.path.split(file_path) file_split = file_base.split('.') file_split[0] = f'{file_split[0]}_{suffix}' new_file_base = ('.').join(file_split) new_file = os.path.join(file_dir, new_file_base) return new_file def write_examples(self, *examples): self._write('examples', *examples) def write_gvcfs(self, *gvcfs): self._write('gvcfs', *gvcfs) def write_candidates(self, *candidates): self._write('candidates', *candidates) def write_runtime(self, stats_dict): columns = [str(stats_dict.get(k, 'NA')) for k in RUNTIME_BY_REGION_COLUMNS] writer = self._writers['runtime'] writer.write('\t'.join(columns) + '\n') def _add_writer(self, name, writer): if name not in self._writers: raise ValueError( 'Expected writer {} to have a None binding in writers.'.format(name)) if self._writers[name] is not None: raise ValueError('Expected writer {} to be bound to None in writers but ' 'saw {} instead'.format(name, self._writers[name])) self._writers[name] = writer def __enter__(self): """API function to support with syntax.""" for writer in self._writers.values(): if writer is not None: writer.__enter__() return self def __exit__(self, exception_type, exception_value, traceback): for writer in self._writers.values(): if writer is not None: writer.__exit__(exception_type, exception_value, traceback) def _write(self, writer_name, *protos): writer = self._writers[writer_name] if writer: for proto in protos: writer.write(proto) def close_all(self): for writer in self._writers.values(): if writer is not None: writer.close() def get_example_counts(examples, num_classes): """Returns a breakdown of examples by categories (label and type).""" labels = {i: 0 for i in range(0, num_classes)} types = { tf_utils.EncodedVariantType.SNP: 0, tf_utils.EncodedVariantType.INDEL: 0, tf_utils.EncodedVariantType.UNKNOWN: 0 } for example in examples: example_label = tf_utils.example_label(example) example_type = tf_utils.encoded_variant_type( tf_utils.example_variant(example)) labels[example_label] += 1 types[example_type] += 1 return labels, types def make_examples_runner(options): """Runs examples creation stage of deepvariant.""" resource_monitor = resources.ResourceMonitor().start() before_initializing_inputs = time.time() logging_with_options(options, 'Preparing inputs') regions = processing_regions_from_options(options) # Create a processor to create candidates and examples for each region. region_processor = RegionProcessor(options) region_processor.initialize() if options.candidates_filename: logging_with_options( options, 'Writing candidates to %s' % options.candidates_filename) if options.gvcf_filename: logging_with_options(options, 'Writing gvcf records to %s' % options.gvcf_filename) n_regions, n_candidates, n_examples = 0, 0, 0 # Ideally this would use dv_constants.NUM_CLASSES, which requires generalizing # deepvariant_pb2.MakeExamplesStats to use an array for the class counts. n_class_0, n_class_1, n_class_2 = 0, 0, 0 n_snps, n_indels = 0, 0 last_reported = 0 writers_dict = {} if in_training_mode(options) or len(options.sample_options) == 1: writers_dict[options.sample_role_to_train] = OutputsWriter( options, suffix=None) else: for sample in region_processor.samples: if sample.sam_readers is not None: writers_dict[sample.options.role] = OutputsWriter( options, suffix=sample.options.role) logging_with_options( options, 'Writing examples to %s' % ', '.join([writer.examples_filename for writer in writers_dict.values()])) logging_with_options( options, 'Overhead for preparing inputs: %d seconds' % (time.time() - before_initializing_inputs)) running_timer = timer.TimerStart() for region in regions: (candidates_by_sample, examples_by_sample, gvcfs_by_sample, runtimes) = region_processor.process(region) for sample in candidates_by_sample: candidates = candidates_by_sample[sample] examples = examples_by_sample[sample] gvcfs = gvcfs_by_sample[sample] writer = writers_dict[sample] n_candidates += len(candidates) n_examples += len(examples) n_regions += 1 if in_training_mode(options) and options.run_info_filename: labels, types = get_example_counts( examples, num_classes=dv_constants.NUM_CLASSES) n_class_0 += labels[0] n_class_1 += labels[1] n_class_2 += labels[2] n_snps += types[tf_utils.EncodedVariantType.SNP] n_indels += types[tf_utils.EncodedVariantType.INDEL] before_write_outputs = time.time() writer.write_candidates(*candidates) # If we have any gvcf records, write them out. This also serves to # protect us from trying to write to the gvcfs output of writer when gvcf # generation is turned off. In that case, gvcfs will always be empty and # we'll never execute the write. if gvcfs: writer.write_gvcfs(*gvcfs) writer.write_examples(*examples) if options.runtime_by_region: runtimes['write outputs'] = runtimes.get('write outputs', 0) + ( trim_runtime(time.time() - before_write_outputs)) runtimes['region'] = ranges.to_literal(region) # Output timing for every N candidates. if (int(n_candidates / options.logging_every_n_candidates) > last_reported or n_regions == 1): last_reported = int(n_candidates / options.logging_every_n_candidates) logging_with_options( options, '%s candidates (%s examples) [%0.2fs elapsed]' % (n_candidates, n_examples, running_timer.Stop())) running_timer = timer.TimerStart() if options.runtime_by_region: # Runtimes are for all samples, so write this only once. writers_dict[options.sample_role_to_train].write_runtime( stats_dict=runtimes) for writer in writers_dict.values(): writer.close_all() # Construct and then write out our MakeExamplesRunInfo proto. if options.run_info_filename: make_examples_stats = deepvariant_pb2.MakeExamplesStats( num_examples=n_examples, num_snps=n_snps, num_indels=n_indels, num_class_0=n_class_0, num_class_1=n_class_1, num_class_2=n_class_2) run_info = deepvariant_pb2.MakeExamplesRunInfo( options=options, resource_metrics=resource_monitor.metrics(), stats=make_examples_stats) if in_training_mode(options): if region_processor.labeler.metrics is not None: run_info.labeling_metrics.CopyFrom(region_processor.labeler.metrics) else: logging.warning( 'Labeling metrics requested but the selected labeling ' 'algorithm %s does not collect metrics; skipping.', options.labeler_algorithm) logging_with_options( options, 'Writing MakeExamplesRunInfo to %s' % options.run_info_filename) write_make_examples_run_info(run_info, path=options.run_info_filename) logging_with_options(options, 'Found %s candidate variants' % n_candidates) logging_with_options(options, 'Created %s examples' % n_examples)
import numpy as np import torch from torch import nn from torch.autograd import Function from Code.broyden import broyden class Broyden_RootFind(Function): """ Generic layer module that uses bad broyden's method to find the solution """ @staticmethod def fval(func, q_next, *args): q_past, q, u_past, u, u_next = args return func(torch.cat((q_past, q, q_next, u_past, u, u_next), 1)) @staticmethod def broyden_find_root(func, q_next0, tol, maxiter, *args): g_func = lambda q_next: Broyden_RootFind.fval(func, q_next, *args) results = broyden(g_func, q_next0, tol, maxiter) return results @staticmethod def forward(ctx, func, q_next0, *args): bsz, d_f = args[0].size() root_find = Broyden_RootFind.broyden_find_root ctx.args_len = len(args) q_past, q, u_past, u, u_next = args[:-2] tol = args[-2]*np.sqrt(bsz*d_f) maxiter = args[-1] with torch.no_grad(): guess = q_next0.clone().detach() args = [q_past, q, u_past, u, u_next] results = root_find(func, guess, tol, maxiter, *args) return results @staticmethod def backward(ctx, grad_q_next): grad_args = [None for _ in range(ctx.args_len)] return (None, grad_q_next, *grad_args) class BroydenLayer(Function): """ Call this line to apply this implicit layer self.NewtonLayer.apply(self.func_copy, ...) """ @staticmethod def forward(ctx, func_copy, q_next, B, *args): q_past, q, u_past, u, u_next = args[:-2] ctx.args_len = len(args) # ctx.tol = tol ctx.B = B # ctx.maxiter = maxiter ctx.save_for_backward(q_next, q_past, q, u_past, u, u_next) ctx.func = func_copy ctx.args_len = len(args) + 2 return q_next @staticmethod def backward(ctx, grad): torch.cuda.empty_cache() # grad should have dimension (bsz x d_f) grad = grad.clone() q_next, q_past, q, u_past, u, u_next = ctx.saved_tensors bsz, d_f = q_next.size() func = ctx.func q_next = q_next.clone().detach() q_past = q_past.clone().detach() q = q.clone().detach() u_past = u_past.clone().detach() u = u.clone().detach() u_next = u_next.clone().detach() args = [q_past, q, u_past, u, u_next] # with torch.enable_grad(): # y = Broyden_RootFind.fval(func, q_next, *args) # def g(x): # y.backward(x, retain_graph=True) # Retain for future calls to g # JTx = q_next.grad.clone().detach() # q_next.grad.zero_() # return JTx + grad # maxiter = ctx.maxiter # tol = ctx.tol*np.sqrt(bsz * d_f) #Initial Guess # dl_df_est = torch.zeros_like(grad) # result_info = broyden(g, dl_df_est, tol, maxiter) # dl_df_est = result_info['result'] # y.backward(torch.zeros_like(dl_df_est), retain_graph=False) grad_args = [None for _ in range(ctx.args_len)] dl_df_est = - grad.view(bsz, 1, d_f) @ ctx.B return (None, dl_df_est.view(bsz, d_f), *grad_args)
""" Hackerrank Hourglass Solution """ #!/bin/python3 import math import os import random import re import sys # Complete the hourglassSum function below. def hourglassSum(arr): largest = -float("inf");pos=-1 for i in range(1, len(arr) -1) : for j in range(1, len(arr[i])-1) : sum = arr[i][j] + arr[i-1][j] + arr[i-1][j-1] + arr[i-1][j+1] + arr[i+1][j]+arr[i+1][j-1]+arr[i+1][j+1] if sum > largest : largest = sum pos = (i, j) return(largest) if __name__ == '__main__': fptr = open(os.environ['OUTPUT_PATH'], 'w') arr = [] for _ in range(6): arr.append(list(map(int, input().rstrip().split()))) result = hourglassSum(arr) fptr.write(str(result) + '\n') fptr.close()
import unittest from parameterized import parameterized as p from solns.naryTreePreorderTraversal.naryTreePreorderTraversal import * class UnitTest_NaryTreePreorderTraversal(unittest.TestCase): @p.expand([ [[1,3,5,6,2,4]] ]) def test_naive(self,expected): n5 = Node(5) n6 = Node(6) n3 = Node(3,[n5,n6]) n2 = Node(2) n4 = Node(4) n1 = Node(1,[n3,n2,n4]) self.assertEqual(Solution.naive(n1),expected)
import uuid from datetime import date, datetime from sqlalchemy import BigInteger, Boolean, Column, Date, DateTime, Enum, ForeignKey, Integer, String, Text, func from sqlalchemy.dialects.postgresql import UUID from sqlalchemy.orm import relationship from app.database.dbo.baseclass import Base from app.domain.models.Arkivkopi import ArkivkopiStatus from app.domain.models.Arkivuttrekk import ArkivuttrekkStatus, ArkivuttrekkType from app.domain.models.Invitasjon import InvitasjonStatus from app.domain.models.Metadatafil import MetadataType from app.domain.models.Overforingspakke import OverforingspakkeStatus from app.domain.models.Depotinstitusjoner import DepotinstitusjonerEnum class Metadatafil(Base): """The metadata file which contains the METS file which is used as a basis for the archive. If we move away from METS we should change the ENUM field to support other file types.""" id: int = Column(Integer(), autoincrement=True, nullable=False, primary_key=True, unique=True) type: MetadataType = Column(Enum('xml/mets', name='metadata_type_type', create_type=True), nullable=False, unique=False) innhold: str = Column(Text(), nullable=False) filnavn: str = Column(String(), nullable=False) opprettet: datetime = Column(DateTime(), server_default=func.now(), nullable=False) # Backrefs. These create virtual columns on the other side of the relation. arkivuttrekk = relationship('Arkivuttrekk', backref='metadatafil') class Arkivuttrekk(Base): """This is the class that represents an archive that is being processed in mottak.""" id: int = Column(Integer(), autoincrement=True, nullable=False, primary_key=True, unique=True) obj_id: uuid.UUID = Column(UUID(as_uuid=True), nullable=False, index=True, unique=True) status: ArkivuttrekkStatus = Column( Enum( 'Opprettet', 'Under behandling', 'Avvist', 'Sendt til bevaring', 'Lastet ned', name='arkivuttrekk_status_type', create_type=True, ), nullable=False, index=True, ) type: ArkivuttrekkType = Column( Enum('Noark3', 'Noark5', 'Fagsystem', 'SIARD', name='arkivvuttrekk_type_type', create_type=True), nullable=False ) tittel: str = Column(String(), nullable=False) sjekksum_sha256: str = Column(String(length=64), nullable=False) avgiver_navn: str = Column(String(), nullable=False) avgiver_epost: str = Column(String(), nullable=False) koordinator_epost: str = Column(String(), nullable=False) metadatafil_id: int = Column(Integer(), ForeignKey('metadatafil.id'), nullable=False, unique=True) arkiv_startdato: date = Column(Date, nullable=False) arkiv_sluttdato: date = Column(Date, nullable=False) storrelse: int = Column(BigInteger(), nullable=False) avtalenummer: str = Column(String(), nullable=False) opprettet: datetime = Column(DateTime(), server_default=func.now(), nullable=False) endret: datetime = Column(DateTime(), server_default=func.now(), onupdate=func.current_timestamp(), nullable=False) # depotinstitusjon is text field in DB depotinstitusjon: DepotinstitusjonerEnum = Column(Enum(DepotinstitusjonerEnum), nullable=False) # Backrefs. These create virtual columns on the other side of the relation. invitasjoner = relationship('Invitasjon', backref='arkivuttrekk') class ArkivuttrekkLokasjon(Base): id: int = Column(Integer(), autoincrement=True, nullable=False, primary_key=True, unique=True) overforingspakke_id: int = Column(Integer(), ForeignKey('overforingspakke.id'), nullable=False) bucket: str = Column(String(), nullable=False) opprettet: datetime = Column(DateTime(), server_default=func.now(), nullable=False) endret: datetime = Column(DateTime(), server_default=func.now(), onupdate=func.current_timestamp(), nullable=False) class Invitasjon(Base): """An invitation. When we send an invitation to upload we create such an object and connect it to an archive. Not sure if we should create more than one if we send out several invitations. Perhaps it should contain a reference to the actual invitation being sent. """ id: int = Column(Integer(), autoincrement=True, nullable=False, primary_key=True, unique=True) ekstern_id: uuid.UUID = Column(UUID(as_uuid=True), nullable=False, index=True, unique=True) arkivuttrekk_id: int = Column(Integer(), ForeignKey('arkivuttrekk.id'), nullable=False, unique=False) avgiver_epost: str = Column(String(), nullable=False) status: InvitasjonStatus = Column(Enum('Sendt', 'Feilet', name='invitasjon_status_type', create_type=True), nullable=False) opprettet: datetime = Column(DateTime(), server_default=func.now(), nullable=False) # Backrefs. These create virtual columns on the other side of the relation. overforingspakker = relationship('Overforingspakke', backref='invitasjon') arkivkopier = relationship('Arkivkopi', backref='invitasjon') class Overforingspakke(Base): """When we accept an upload we create a 'overforingspakke' object that points to the object which contains the tar file.""" id: int = Column(Integer(), autoincrement=True, nullable=False, primary_key=True, unique=True) invitasjon_id: int = Column(Integer(), ForeignKey('invitasjon.id'), nullable=False, unique=True) tusd_id: str = Column(String(length=60), nullable=False, unique=True, index=True) tusd_objekt_navn: str = Column(String(), nullable=False) storrelse: int = Column(BigInteger(), nullable=False) status: OverforingspakkeStatus = Column( Enum('Startet', 'OK', 'Avbrutt', 'Feilet', name='overforingspakke_status_type', create_type=True), nullable=False ) opprettet: datetime = Column(DateTime(), server_default=func.now(), nullable=False) endret: datetime = Column(DateTime(), server_default=func.now(), onupdate=func.current_timestamp(), nullable=False) # Backrefs. These create virtual columns on the other side of the relation. workflow_overforingspakker = relationship('WorkflowOverforingspakke', backref='overforingspakke') class WorkflowOverforingspakke(Base): """Information about a started (Argo) workflow for an Overføringspakke.""" id: int = Column(Integer(), autoincrement=True, nullable=False, primary_key=True, unique=True) overforingspakke_id: int = Column(Integer(), ForeignKey('overforingspakke.id'), nullable=False) workflow_navn: str = Column(String(), nullable=False) workflow_uid: uuid.UUID = Column(UUID(as_uuid=True), nullable=False, unique=True) opprettet: datetime = Column(DateTime(), server_default=func.now(), nullable=False) class Arkivkopi(Base): """A request to copy an archive to on-prem storage.""" id: int = Column(Integer(), autoincrement=True, nullable=False, primary_key=True, unique=True) invitasjon_id: int = Column(Integer(), ForeignKey('invitasjon.id'), nullable=False, unique=False) status: ArkivkopiStatus = Column( Enum('Bestilt', 'Startet', 'OK', 'Feilet', name='arkivkopi_status_type', create_type=True), nullable=False ) is_object: bool = Column(Boolean(), nullable=False) target_name: str = Column(String(), nullable=False) storage_account: str = Column(String(), nullable=False) container: str = Column(String(), nullable=False) sas_token_start: datetime = Column(DateTime(timezone=True), nullable=False) sas_token_slutt: datetime = Column(DateTime(timezone=True), nullable=False) opprettet: datetime = Column(DateTime(), server_default=func.now(), nullable=False) endret: datetime = Column(DateTime(), server_default=func.now(), onupdate=func.current_timestamp(), nullable=False)
import numpy as np import sys import os import bpy def ShowMessageBox(message = "", title = "Message Box", icon = 'INFO'): def draw(self, context): self.layout.label(text=message) bpy.context.window_manager.popup_menu(draw, title = title, icon = icon) def is_module_available(module_name): if sys.version_info < (3, 0): # python 2 import importlib torch_loader = importlib.find_loader(module_name) elif sys.version_info <= (3, 3): # python 3.0 to 3.3 import pkgutil torch_loader = pkgutil.find_loader(module_name) elif sys.version_info >= (3, 4): # python 3.4 and above import importlib torch_loader = importlib.util.find_spec(module_name) return torch_loader is not None def ensure_site_packages(packages): """ `packages`: list of tuples (<import name>, <pip name>) """ if not packages: return import site import importlib import importlib.util user_site_packages = site.getusersitepackages() os.makedirs(user_site_packages, exist_ok = True) sys.path.append(user_site_packages) modules_to_install = [module[1] for module in packages if not importlib.util.find_spec(module[0])] if modules_to_install: import subprocess if bpy.app.version < (2,91,0): python_binary = bpy.app.binary_path_python else: python_binary = sys.executable subprocess.run([python_binary, '-m', 'ensurepip'], check=True) subprocess.run([python_binary, '-m', 'pip', 'install', *modules_to_install, "--user"], check=True) def read_verts(mesh): vn = len(mesh.vertices) v = np.zeros((vn*3), dtype=np.float) mesh.vertices.foreach_get("co", v) return np.reshape(v, (vn, 3)) def read_faces(mesh): fn = len(mesh.loop_triangles) f = np.zeros((fn*3), dtype=np.int) mesh.loop_triangles.foreach_get("vertices", f) return np.reshape(f, (fn, 3))
# -------------------------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # -------------------------------------------------------------------------------------------- import os import unittest from azure_devtools.scenario_tests import AllowLargeResponse from azure.cli.testsdk import (ScenarioTest, ResourceGroupPreparer) TEST_DIR = os.path.abspath(os.path.join(os.path.abspath(__file__), '..')) class ApimgmtScenarioTest(ScenarioTest): @ResourceGroupPreparer(name_prefix='cli_test_apimgmt') def test_apimgmt(self, resource_group): self.kwargs.update({ 'name': 'test1' }) # create_or_update -- create self.cmd('aro create --resource-group "rg1" --name "clustername1" --location "location1" --open-shift-version "v3.11"', checks=[ ]) self.cmd('aro create --resource-group "rg1" --name "clustername1"', checks=[ ]) # create_or_update -- update self.cmd('aro update --resource-group "rg1" --name "clustername1" --location "location1" --open-shift-version "v3.11"', checks=[ ]) self.cmd('aro update --resource-group "rg1" --name "clustername1"', checks=[ ]) # delete -- delete self.cmd('aro delete --resource-group "rg1" --name "clustername1"', checks=[ ]) self.cmd('aro delete --resource-group "rg1" --name "clustername1"', checks=[ ]) # list_by_resource_group -- list self.cmd('aro list --resource-group "rg1"', checks=[ ]) self.cmd('aro list --resource-group "rg1"', checks=[ ]) # list -- list self.cmd('aro list --resource-group "rg1"', checks=[ ]) self.cmd('aro list --resource-group "rg1"', checks=[ ]) # get -- show self.cmd('aro show --resource-group "rg1" --name "clustername1"', checks=[ ]) self.cmd('aro show --resource-group "rg1" --name "clustername1"', checks=[ ])
#!/usr/bin/env python3 # Copyright IAIK TU Graz. # Licensed under the Apache License, Version 2.0, see LICENSE for details. # SPDX-License-Identifier: Apache-2.0 from argparse import ArgumentParser, FileType from helpers import * from CircuitGraph import CircuitGraph from time import perf_counter, process_time from Z3Checker import Z3Checker from IndepChecker import IndepChecker from sys import setrecursionlimit from multiprocessing import Pool from logger import logger setrecursionlimit(10000) def check_file(file_name, file_ending, file_type): if not file_name.endswith(file_ending): print('ERR: specified ' + str(file_type) + ' ' + str(file_name) + ' does not have ' + str(file_ending) + ' ending') exit() return def verify_circuit(circuit_file, labeling, order, mode='transient', log='tmp/report.txt'): secrets = ', '.join( [var for k in labeling for var in labeling[k] if 's_' in var]) labels = labeling time_start_abs = perf_counter() time_start_rel = process_time() circuit = CircuitGraph(labels, json_file=circuit_file) checker = Z3Checker(circuit.get_graph(), labels, order, mode) logger.info('Checking secrets: {}...'.format(secrets)) check_res, gates = checker.check() time_end_abs = perf_counter() time_end_rel = process_time() rel_time = time_end_rel - time_start_rel m_rel, s_rel = divmod(rel_time, 60) h_rel, m_rel = divmod(m_rel, 60) logger.info('... secrets {} are checked in {}h{}m{}s'.format( secrets, int(h_rel), int(m_rel), round(s_rel, 2))) logger.info('Result ({}): {}, {}'.format(secrets, check_res, gates)) return (check_res, gates) if __name__ == '__main__': parser = ArgumentParser(prog='Rebecca', description=' A tool for checking if a given netlist is side-channel analysis resistant', epilog='Questions and suggestions can be sent to the email <email>') parser.add_argument('-v', '--version', action='version', version='%(prog)s 0.9.2') parser.add_argument('-p', '--parse-verilog', nargs=2, metavar=('<netlist>', '<top module>'), help='parse verilog file and generate labeling template') parser.add_argument('-o', '--optimized', action='store_true', help='run verification in parallel') parser.add_argument('-c', '--check', nargs=4, metavar=('<netlist>', '<order>', '<labeling>', '<mode>'), help='check if a parsed netlist <netlist> is <order>-order secure with the <labeling> as initial labeling; mode = s (stable) | t (transient)') parser.add_argument('-i', '--independence-check', nargs=3, metavar=('<netlist>', '<order>', '<labeling>'), help='check if a parsed netlist <netlist> is <order>-order independent with the <labeling> as initial labeling') args = vars(parser.parse_args()) if args['parse_verilog']: netlist = args['parse_verilog'][0] check_file(netlist, '.v', 'netlist') parse_verilog(netlist, args['parse_verilog'][1]) if args['independence_check']: labeling = args['independence_check'][2] check_file(labeling, '.txt', 'labeling') shares = get_shares(labeling) labels = generate_labeling(labeling)[0] netlist = args['independence_check'][0] check_file(netlist, '.json', 'parsed netlist') circuit = CircuitGraph(labels, json_file=netlist) if is_int(args['independence_check'][1]): order = int(args['independence_check'][1]) else: print('ERR: order should be int') exit() outputs = circuit.get_outputs() checker = IndepChecker(circuit.get_graph(), labels, order, shares, outputs) print(checker.check()) if args['check']: labels = [] netlist = args['check'][0] check_file(netlist, '.json', 'parsed netlist') labeling = args['check'][2] check_file(labeling, '.txt', 'labeling') if args['optimized']: labels = generate_optimized_labeling(labeling) else: labels = generate_labeling(labeling) if is_int(args['check'][1]): order = int(args['check'][1]) else: print('ERR: order should be int') exit() if args['check'][3] == 't': mode = 'transient' elif args['check'][3] == 's': mode = 'stable' else: print('ERR: mode should be either s or t') exit() logger.info('Verifying {} for {} order in {} mode'.format( args['check'][0], order, mode)) for l in labels: logger.info('Initial labeling:\n{}'.format(get_pretty_labeling( l, labeling))) pool_len = len(labels) if len(labels) <= 10 else 10 with Pool(pool_len) as p: res = p.starmap(verify_circuit, [(netlist, l, order, mode) for l in labels]) for r in res: if not r[0]: print(r) exit() print((True, []))
# Value Function Iteration with IID Income # Greg Kaplan 2017 # Translated by Tom Sweeney Dec 2020 import numpy as np import matplotlib.pyplot as plt from scipy.interpolate import interp1d # PARAMETERS ## preferences risk_aver = 2 beta = 0.95 ## returns r = 0.03 R = 1+r ## income y = 1 ## asset grids na = 1000 amax = 20 borrow_lim = 0 agrid_par = 1 # 1 for linear, 0 for L-shaped ## computation max_iter = 1000 tol_iter = 1.0e-6 Nsim = 100 Tsim = 500 # OPTIONS Display = 1 DoSimulate = 1 MakePlots = 1 # SET UP GRIDS ## assets agrid = np.linspace(0,1,na) agrid = agrid**(1/agrid_par) agrid = borrow_lim + (amax-borrow_lim)*agrid # DRAW RANDOM NUMBERS np.random.seed(2020) arand = np.random.rand(Nsim) # UTILITY FUNCTION if risk_aver==1: u = lambda c: np.log(c) else: u = lambda c: (c**(1-risk_aver)-1)/(1-risk_aver) u1 = lambda c: c**(-risk_aver) # INITIALIZE VALUE FUNCTION Vguess = u(r*agrid+y)/(1-beta) # ITERATE ON VALUE FUNCTION V = Vguess.copy() Vdiff = 1 Iter = 0 while Iter<=max_iter and Vdiff>tol_iter: Iter = Iter + 1 Vlast = V.copy() V = np.zeros(na) sav = np.zeros(na) savind = np.zeros(na, dtype=int) con = np.zeros(na) ## loop over assets for ia in range(0,na): cash = R*agrid[ia] + y Vchoice = u(np.maximum(cash-agrid,1.0e-10)) + beta*Vlast V[ia] = np.max(Vchoice) savind[ia] = np.argmax(Vchoice) sav[ia] = agrid[savind[ia]] con[ia] = cash - sav[ia] Vdiff = np.max(abs(V-Vlast)) if Display >= 1: print('Iteration no. ' + str(Iter), ' max val fn diff is ' + str(Vdiff)) # SIMULATE if DoSimulate==1: yindsim = np.zeros((Nsim,Tsim), dtype=int) aindsim = np.zeros((Nsim,Tsim), dtype=int) ## initial assets: uniform on [borrow_lim, amax] ainitial = borrow_lim + arand*(amax-borrow_lim) ## allocate to nearest point on agrid aindsim[:,0] = interp1d(agrid,range(1,na+1),'nearest')(ainitial) ## loop over time periods for it in range(0,Tsim): if Display >= 1 and (it+1)%100 == 0: print(' Simulating, time period ' + str(it+1)) ## asset choice if it < Tsim-1: aindsim[:,it+1] = savind[aindsim[:,it]] ## assign actual asset and income values asim = agrid[aindsim] csim = R*asim[:,0:Tsim-1] + y - asim[:,1:Tsim] # MAKE PLOTS if MakePlots==1: ## consumption policy function plt.plot(agrid,con,'b-',linewidth=1) plt.grid() plt.xlim((0,amax)) plt.title('Consumption Policy Function') plt.show() ## savings policy function plt.plot(agrid,sav-agrid,'b-',linewidth=1) plt.plot(agrid,np.zeros(na),'k',linewidth=0.5) plt.grid() plt.xlim((0,amax)) plt.title('Savings Policy Function (a\'-a)') plt.show() ## nice zoom xlimits = (0,1) xlimind = np.ones(na, dtype=bool) if np.min(agrid) < xlimits[0]: xlimind = np.logical_and(xlimind,(agrid>=np.max(agrid[agrid<xlimits[0]]))) elif np.min(agrid) > xlimits[1]: xlimind = 0 if np.max(agrid) > xlimits[1]: xlimind = np.logical_and(xlimind,(agrid<=np.min(agrid[agrid>xlimits[1]]))) elif np.max(agrid) < xlimits[0]: xlimind = 0 ## consumption policy function: zoomed in plt.plot(agrid[xlimind],con[xlimind],'b-o',linewidth=2) plt.grid() plt.xlim(xlimits) plt.title('Consumption: Zoomed') plt.show() ## savings policy function: zoomed in plt.plot(agrid[xlimind],sav[xlimind]-agrid[xlimind],'b-o',linewidth=2) plt.plot(agrid,np.zeros((na,1)),'k',linewidth =0.5) plt.grid() plt.xlim(xlimits) plt.title('Savings: Zoomed (a\'-a)') plt.show() ## asset dynamics distribution plt.plot(range(0,Tsim),asim.T) plt.title('Asset Dynamics') plt.grid() plt.show() ## consumption dynamics distribution plt.plot(range(0,Tsim-1),csim.T) plt.title('Consumption Dynamics') plt.grid() plt.show()
from colorama import Fore from rtxlib import info, error from rtxlib.execution import experimentFunction def start_sequential_strategy(wf): """ executes all experiments from the definition file """ info("> ExecStrategy | Sequential", Fore.CYAN) wf.totalExperiments = len(wf.execution_strategy["knobs"]) for kn in wf.execution_strategy["knobs"]: experimentFunction(wf, { "knobs":kn, "ignore_first_n_results": wf.execution_strategy["ignore_first_n_results"], "sample_size": wf.execution_strategy["sample_size"], })
# # PySNMP MIB module Unisphere-Data-ADDRESS-POOL-MIB (http://snmplabs.com/pysmi) # ASN.1 source file:///Users/davwang4/Dev/mibs.snmplabs.com/asn1/Unisphere-Data-ADDRESS-POOL-MIB # Produced by pysmi-0.3.4 at Mon Apr 29 21:23:06 2019 # On host DAVWANG4-M-1475 platform Darwin version 18.5.0 by user davwang4 # Using Python version 3.7.3 (default, Mar 27 2019, 09:23:15) # Integer, OctetString, ObjectIdentifier = mibBuilder.importSymbols("ASN1", "Integer", "OctetString", "ObjectIdentifier") NamedValues, = mibBuilder.importSymbols("ASN1-ENUMERATION", "NamedValues") ConstraintsIntersection, SingleValueConstraint, ConstraintsUnion, ValueRangeConstraint, ValueSizeConstraint = mibBuilder.importSymbols("ASN1-REFINEMENT", "ConstraintsIntersection", "SingleValueConstraint", "ConstraintsUnion", "ValueRangeConstraint", "ValueSizeConstraint") NotificationGroup, ModuleCompliance, ObjectGroup = mibBuilder.importSymbols("SNMPv2-CONF", "NotificationGroup", "ModuleCompliance", "ObjectGroup") Integer32, ModuleIdentity, IpAddress, Counter32, Bits, NotificationType, Counter64, Gauge32, MibScalar, MibTable, MibTableRow, MibTableColumn, ObjectIdentity, Unsigned32, iso, MibIdentifier, TimeTicks = mibBuilder.importSymbols("SNMPv2-SMI", "Integer32", "ModuleIdentity", "IpAddress", "Counter32", "Bits", "NotificationType", "Counter64", "Gauge32", "MibScalar", "MibTable", "MibTableRow", "MibTableColumn", "ObjectIdentity", "Unsigned32", "iso", "MibIdentifier", "TimeTicks") RowStatus, DisplayString, TextualConvention, TruthValue = mibBuilder.importSymbols("SNMPv2-TC", "RowStatus", "DisplayString", "TextualConvention", "TruthValue") usDataMibs, = mibBuilder.importSymbols("Unisphere-Data-MIBs", "usDataMibs") usdRouterName, = mibBuilder.importSymbols("Unisphere-Data-ROUTER-MIB", "usdRouterName") usdAddressPoolMIB = ModuleIdentity((1, 3, 6, 1, 4, 1, 4874, 2, 2, 21)) usdAddressPoolMIB.setRevisions(('2002-05-06 18:38', '2001-05-02 11:57', '2001-04-27 15:00', '1999-06-01 00:00',)) if mibBuilder.loadTexts: usdAddressPoolMIB.setLastUpdated('200205061838Z') if mibBuilder.loadTexts: usdAddressPoolMIB.setOrganization('Unisphere Networks, Inc.') usdAddressPoolObjects = MibIdentifier((1, 3, 6, 1, 4, 1, 4874, 2, 2, 21, 1)) usdAddressPool = MibIdentifier((1, 3, 6, 1, 4, 1, 4874, 2, 2, 21, 1, 1)) usdAddressPoolTable = MibTable((1, 3, 6, 1, 4, 1, 4874, 2, 2, 21, 1, 1, 1), ) if mibBuilder.loadTexts: usdAddressPoolTable.setStatus('current') usdAddressPoolEntry = MibTableRow((1, 3, 6, 1, 4, 1, 4874, 2, 2, 21, 1, 1, 1, 1), ).setIndexNames((0, "Unisphere-Data-ADDRESS-POOL-MIB", "usdAddressPoolIndex")) if mibBuilder.loadTexts: usdAddressPoolEntry.setStatus('current') usdAddressPoolIndex = MibTableColumn((1, 3, 6, 1, 4, 1, 4874, 2, 2, 21, 1, 1, 1, 1, 1), Integer32().subtype(subtypeSpec=ValueRangeConstraint(1, 2147483647))) if mibBuilder.loadTexts: usdAddressPoolIndex.setStatus('current') usdAddressPoolRowStatus = MibTableColumn((1, 3, 6, 1, 4, 1, 4874, 2, 2, 21, 1, 1, 1, 1, 2), RowStatus()).setMaxAccess("readcreate") if mibBuilder.loadTexts: usdAddressPoolRowStatus.setStatus('current') usdAddressPoolName = MibTableColumn((1, 3, 6, 1, 4, 1, 4874, 2, 2, 21, 1, 1, 1, 1, 3), OctetString().subtype(subtypeSpec=ValueSizeConstraint(1, 16))).setMaxAccess("readcreate") if mibBuilder.loadTexts: usdAddressPoolName.setStatus('current') usdAddressPoolStart = MibTableColumn((1, 3, 6, 1, 4, 1, 4874, 2, 2, 21, 1, 1, 1, 1, 4), IpAddress()).setMaxAccess("readcreate") if mibBuilder.loadTexts: usdAddressPoolStart.setStatus('deprecated') usdAddressPoolEnd = MibTableColumn((1, 3, 6, 1, 4, 1, 4874, 2, 2, 21, 1, 1, 1, 1, 5), IpAddress()).setMaxAccess("readcreate") if mibBuilder.loadTexts: usdAddressPoolEnd.setStatus('deprecated') usdAddressPoolSize = MibTableColumn((1, 3, 6, 1, 4, 1, 4874, 2, 2, 21, 1, 1, 1, 1, 6), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: usdAddressPoolSize.setStatus('deprecated') usdAddressPoolInUse = MibTableColumn((1, 3, 6, 1, 4, 1, 4874, 2, 2, 21, 1, 1, 1, 1, 7), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: usdAddressPoolInUse.setStatus('deprecated') usdAddressPoolHighUtilThreshold = MibTableColumn((1, 3, 6, 1, 4, 1, 4874, 2, 2, 21, 1, 1, 1, 1, 8), Integer32().subtype(subtypeSpec=ValueRangeConstraint(1, 100)).clone(85)).setMaxAccess("readcreate") if mibBuilder.loadTexts: usdAddressPoolHighUtilThreshold.setStatus('current') usdAddressPoolAbatedUtilThreshold = MibTableColumn((1, 3, 6, 1, 4, 1, 4874, 2, 2, 21, 1, 1, 1, 1, 9), Integer32().subtype(subtypeSpec=ValueRangeConstraint(1, 100)).clone(75)).setMaxAccess("readcreate") if mibBuilder.loadTexts: usdAddressPoolAbatedUtilThreshold.setStatus('current') usdAddressPoolUtilPct = MibTableColumn((1, 3, 6, 1, 4, 1, 4874, 2, 2, 21, 1, 1, 1, 1, 10), Integer32().subtype(subtypeSpec=ValueRangeConstraint(1, 100))).setMaxAccess("readonly") if mibBuilder.loadTexts: usdAddressPoolUtilPct.setStatus('current') usdAddressPoolTrapEnable = MibTableColumn((1, 3, 6, 1, 4, 1, 4874, 2, 2, 21, 1, 1, 1, 1, 11), TruthValue()).setMaxAccess("readcreate") if mibBuilder.loadTexts: usdAddressPoolTrapEnable.setStatus('current') usdAddressPoolProfileTable = MibTable((1, 3, 6, 1, 4, 1, 4874, 2, 2, 21, 1, 1, 3), ) if mibBuilder.loadTexts: usdAddressPoolProfileTable.setStatus('current') usdAddressPoolProfileEntry = MibTableRow((1, 3, 6, 1, 4, 1, 4874, 2, 2, 21, 1, 1, 3, 1), ).setIndexNames((0, "Unisphere-Data-ADDRESS-POOL-MIB", "usdAddressPoolIndex"), (0, "Unisphere-Data-ADDRESS-POOL-MIB", "usdAddressPoolProfileIndex")) if mibBuilder.loadTexts: usdAddressPoolProfileEntry.setStatus('current') usdAddressPoolProfileIndex = MibTableColumn((1, 3, 6, 1, 4, 1, 4874, 2, 2, 21, 1, 1, 3, 1, 1), Integer32().subtype(subtypeSpec=ValueRangeConstraint(1, 2147483647))) if mibBuilder.loadTexts: usdAddressPoolProfileIndex.setStatus('current') usdAddressPoolProfileRowStatus = MibTableColumn((1, 3, 6, 1, 4, 1, 4874, 2, 2, 21, 1, 1, 3, 1, 2), RowStatus()).setMaxAccess("readcreate") if mibBuilder.loadTexts: usdAddressPoolProfileRowStatus.setStatus('current') usdAddressPoolProfileStart = MibTableColumn((1, 3, 6, 1, 4, 1, 4874, 2, 2, 21, 1, 1, 3, 1, 3), IpAddress()).setMaxAccess("readcreate") if mibBuilder.loadTexts: usdAddressPoolProfileStart.setStatus('current') usdAddressPoolProfileEnd = MibTableColumn((1, 3, 6, 1, 4, 1, 4874, 2, 2, 21, 1, 1, 3, 1, 4), IpAddress()).setMaxAccess("readcreate") if mibBuilder.loadTexts: usdAddressPoolProfileEnd.setStatus('current') usdAddressPoolProfileSize = MibTableColumn((1, 3, 6, 1, 4, 1, 4874, 2, 2, 21, 1, 1, 3, 1, 5), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: usdAddressPoolProfileSize.setStatus('current') usdAddressPoolProfileInUse = MibTableColumn((1, 3, 6, 1, 4, 1, 4874, 2, 2, 21, 1, 1, 3, 1, 6), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: usdAddressPoolProfileInUse.setStatus('current') usdAddressPoolNextPoolIndex = MibScalar((1, 3, 6, 1, 4, 1, 4874, 2, 2, 21, 1, 1, 2), Integer32().subtype(subtypeSpec=ValueRangeConstraint(0, 2147483647))).setMaxAccess("readonly") if mibBuilder.loadTexts: usdAddressPoolNextPoolIndex.setStatus('current') usdAddressPoolTraps = MibIdentifier((1, 3, 6, 1, 4, 1, 4874, 2, 2, 21, 3)) usdAddressPoolTrapPrefix = MibIdentifier((1, 3, 6, 1, 4, 1, 4874, 2, 2, 21, 3, 0)) usdAddressPoolHighAddrUtil = NotificationType((1, 3, 6, 1, 4, 1, 4874, 2, 2, 21, 3, 0, 1)).setObjects(("Unisphere-Data-ROUTER-MIB", "usdRouterName"), ("Unisphere-Data-ADDRESS-POOL-MIB", "usdAddressPoolName"), ("Unisphere-Data-ADDRESS-POOL-MIB", "usdAddressPoolSize"), ("Unisphere-Data-ADDRESS-POOL-MIB", "usdAddressPoolInUse"), ("Unisphere-Data-ADDRESS-POOL-MIB", "usdAddressPoolUtilPct")) if mibBuilder.loadTexts: usdAddressPoolHighAddrUtil.setStatus('current') usdAddressPoolAbatedAddrUtil = NotificationType((1, 3, 6, 1, 4, 1, 4874, 2, 2, 21, 3, 0, 2)).setObjects(("Unisphere-Data-ROUTER-MIB", "usdRouterName"), ("Unisphere-Data-ADDRESS-POOL-MIB", "usdAddressPoolName"), ("Unisphere-Data-ADDRESS-POOL-MIB", "usdAddressPoolSize"), ("Unisphere-Data-ADDRESS-POOL-MIB", "usdAddressPoolInUse"), ("Unisphere-Data-ADDRESS-POOL-MIB", "usdAddressPoolUtilPct")) if mibBuilder.loadTexts: usdAddressPoolAbatedAddrUtil.setStatus('current') usdAddressPoolNoAddresses = NotificationType((1, 3, 6, 1, 4, 1, 4874, 2, 2, 21, 3, 0, 3)).setObjects(("Unisphere-Data-ROUTER-MIB", "usdRouterName"), ("Unisphere-Data-ADDRESS-POOL-MIB", "usdAddressPoolName"), ("Unisphere-Data-ADDRESS-POOL-MIB", "usdAddressPoolSize")) if mibBuilder.loadTexts: usdAddressPoolNoAddresses.setStatus('current') usdAddressPoolMIBConformance = MibIdentifier((1, 3, 6, 1, 4, 1, 4874, 2, 2, 21, 4)) usdAddressPoolMIBCompliances = MibIdentifier((1, 3, 6, 1, 4, 1, 4874, 2, 2, 21, 4, 1)) usdAddressPoolMIBGroups = MibIdentifier((1, 3, 6, 1, 4, 1, 4874, 2, 2, 21, 4, 2)) usdAddressPoolCompliance = ModuleCompliance((1, 3, 6, 1, 4, 1, 4874, 2, 2, 21, 4, 1, 1)).setObjects(("Unisphere-Data-ADDRESS-POOL-MIB", "usdAddressPoolGroup")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): usdAddressPoolCompliance = usdAddressPoolCompliance.setStatus('obsolete') usdAddressPoolCompliance2 = ModuleCompliance((1, 3, 6, 1, 4, 1, 4874, 2, 2, 21, 4, 1, 2)).setObjects(("Unisphere-Data-ADDRESS-POOL-MIB", "usdAddressPoolGroup2"), ("Unisphere-Data-ADDRESS-POOL-MIB", "usdAddressPoolTrapGroup")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): usdAddressPoolCompliance2 = usdAddressPoolCompliance2.setStatus('obsolete') usdAddressPoolCompliance3 = ModuleCompliance((1, 3, 6, 1, 4, 1, 4874, 2, 2, 21, 4, 1, 3)).setObjects(("Unisphere-Data-ADDRESS-POOL-MIB", "usdAddressPoolGroup3"), ("Unisphere-Data-ADDRESS-POOL-MIB", "usdAddressPoolTrapGroup")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): usdAddressPoolCompliance3 = usdAddressPoolCompliance3.setStatus('current') usdAddressPoolGroup = ObjectGroup((1, 3, 6, 1, 4, 1, 4874, 2, 2, 21, 4, 2, 1)).setObjects(("Unisphere-Data-ADDRESS-POOL-MIB", "usdAddressPoolRowStatus"), ("Unisphere-Data-ADDRESS-POOL-MIB", "usdAddressPoolName"), ("Unisphere-Data-ADDRESS-POOL-MIB", "usdAddressPoolStart"), ("Unisphere-Data-ADDRESS-POOL-MIB", "usdAddressPoolEnd"), ("Unisphere-Data-ADDRESS-POOL-MIB", "usdAddressPoolSize"), ("Unisphere-Data-ADDRESS-POOL-MIB", "usdAddressPoolInUse"), ("Unisphere-Data-ADDRESS-POOL-MIB", "usdAddressPoolNextPoolIndex")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): usdAddressPoolGroup = usdAddressPoolGroup.setStatus('obsolete') usdAddressPoolGroup2 = ObjectGroup((1, 3, 6, 1, 4, 1, 4874, 2, 2, 21, 4, 2, 2)).setObjects(("Unisphere-Data-ADDRESS-POOL-MIB", "usdAddressPoolRowStatus"), ("Unisphere-Data-ADDRESS-POOL-MIB", "usdAddressPoolName"), ("Unisphere-Data-ADDRESS-POOL-MIB", "usdAddressPoolStart"), ("Unisphere-Data-ADDRESS-POOL-MIB", "usdAddressPoolEnd"), ("Unisphere-Data-ADDRESS-POOL-MIB", "usdAddressPoolSize"), ("Unisphere-Data-ADDRESS-POOL-MIB", "usdAddressPoolInUse"), ("Unisphere-Data-ADDRESS-POOL-MIB", "usdAddressPoolNextPoolIndex"), ("Unisphere-Data-ADDRESS-POOL-MIB", "usdAddressPoolHighUtilThreshold"), ("Unisphere-Data-ADDRESS-POOL-MIB", "usdAddressPoolAbatedUtilThreshold"), ("Unisphere-Data-ADDRESS-POOL-MIB", "usdAddressPoolUtilPct"), ("Unisphere-Data-ADDRESS-POOL-MIB", "usdAddressPoolTrapEnable")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): usdAddressPoolGroup2 = usdAddressPoolGroup2.setStatus('deprecated') usdAddressPoolTrapGroup = NotificationGroup((1, 3, 6, 1, 4, 1, 4874, 2, 2, 21, 4, 2, 3)).setObjects(("Unisphere-Data-ADDRESS-POOL-MIB", "usdAddressPoolHighAddrUtil"), ("Unisphere-Data-ADDRESS-POOL-MIB", "usdAddressPoolAbatedAddrUtil"), ("Unisphere-Data-ADDRESS-POOL-MIB", "usdAddressPoolNoAddresses")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): usdAddressPoolTrapGroup = usdAddressPoolTrapGroup.setStatus('current') usdAddressPoolGroup3 = ObjectGroup((1, 3, 6, 1, 4, 1, 4874, 2, 2, 21, 4, 2, 4)).setObjects(("Unisphere-Data-ADDRESS-POOL-MIB", "usdAddressPoolRowStatus"), ("Unisphere-Data-ADDRESS-POOL-MIB", "usdAddressPoolName"), ("Unisphere-Data-ADDRESS-POOL-MIB", "usdAddressPoolNextPoolIndex"), ("Unisphere-Data-ADDRESS-POOL-MIB", "usdAddressPoolHighUtilThreshold"), ("Unisphere-Data-ADDRESS-POOL-MIB", "usdAddressPoolAbatedUtilThreshold"), ("Unisphere-Data-ADDRESS-POOL-MIB", "usdAddressPoolUtilPct"), ("Unisphere-Data-ADDRESS-POOL-MIB", "usdAddressPoolTrapEnable"), ("Unisphere-Data-ADDRESS-POOL-MIB", "usdAddressPoolProfileRowStatus"), ("Unisphere-Data-ADDRESS-POOL-MIB", "usdAddressPoolProfileStart"), ("Unisphere-Data-ADDRESS-POOL-MIB", "usdAddressPoolProfileEnd"), ("Unisphere-Data-ADDRESS-POOL-MIB", "usdAddressPoolProfileSize"), ("Unisphere-Data-ADDRESS-POOL-MIB", "usdAddressPoolProfileInUse")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): usdAddressPoolGroup3 = usdAddressPoolGroup3.setStatus('current') mibBuilder.exportSymbols("Unisphere-Data-ADDRESS-POOL-MIB", PYSNMP_MODULE_ID=usdAddressPoolMIB, usdAddressPoolRowStatus=usdAddressPoolRowStatus, usdAddressPoolCompliance=usdAddressPoolCompliance, usdAddressPoolGroup3=usdAddressPoolGroup3, usdAddressPoolProfileStart=usdAddressPoolProfileStart, usdAddressPoolObjects=usdAddressPoolObjects, usdAddressPoolEnd=usdAddressPoolEnd, usdAddressPoolTrapEnable=usdAddressPoolTrapEnable, usdAddressPoolProfileTable=usdAddressPoolProfileTable, usdAddressPool=usdAddressPool, usdAddressPoolEntry=usdAddressPoolEntry, usdAddressPoolMIB=usdAddressPoolMIB, usdAddressPoolGroup=usdAddressPoolGroup, usdAddressPoolUtilPct=usdAddressPoolUtilPct, usdAddressPoolStart=usdAddressPoolStart, usdAddressPoolName=usdAddressPoolName, usdAddressPoolProfileEnd=usdAddressPoolProfileEnd, usdAddressPoolProfileRowStatus=usdAddressPoolProfileRowStatus, usdAddressPoolMIBGroups=usdAddressPoolMIBGroups, usdAddressPoolTable=usdAddressPoolTable, usdAddressPoolMIBCompliances=usdAddressPoolMIBCompliances, usdAddressPoolAbatedAddrUtil=usdAddressPoolAbatedAddrUtil, usdAddressPoolSize=usdAddressPoolSize, usdAddressPoolTrapGroup=usdAddressPoolTrapGroup, usdAddressPoolHighAddrUtil=usdAddressPoolHighAddrUtil, usdAddressPoolProfileSize=usdAddressPoolProfileSize, usdAddressPoolNextPoolIndex=usdAddressPoolNextPoolIndex, usdAddressPoolProfileInUse=usdAddressPoolProfileInUse, usdAddressPoolIndex=usdAddressPoolIndex, usdAddressPoolMIBConformance=usdAddressPoolMIBConformance, usdAddressPoolGroup2=usdAddressPoolGroup2, usdAddressPoolAbatedUtilThreshold=usdAddressPoolAbatedUtilThreshold, usdAddressPoolHighUtilThreshold=usdAddressPoolHighUtilThreshold, usdAddressPoolTrapPrefix=usdAddressPoolTrapPrefix, usdAddressPoolCompliance3=usdAddressPoolCompliance3, usdAddressPoolInUse=usdAddressPoolInUse, usdAddressPoolCompliance2=usdAddressPoolCompliance2, usdAddressPoolNoAddresses=usdAddressPoolNoAddresses, usdAddressPoolTraps=usdAddressPoolTraps, usdAddressPoolProfileEntry=usdAddressPoolProfileEntry, usdAddressPoolProfileIndex=usdAddressPoolProfileIndex)
try: from setuptools import find_packages, setup except ImportError: from distutils.core import find_packages, setup import sys from castle.version import VERSION install_requires = ['requests>=2.5'] test_require = ['responses'] if sys.version_info[:2] == (3, 4): test_require = ['responses<0.10.16'] setup( name="castle", version=VERSION, author="Castle Intelligence, Inc.", author_email="info@castle.io", license="MIT License", description="Castle protects your users from account compromise", long_description=open("README.rst").read(), url="https://github.com/castle/castle-python", packages=find_packages(), classifiers=[ 'Environment :: Web Environment', 'Intended Audience :: Developers', 'License :: OSI Approved :: MIT License', 'Operating System :: OS Independent', 'Programming Language :: Python', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.4', 'Programming Language :: Python :: 3.5', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3.7', 'Programming Language :: Python :: 3.8', 'Programming Language :: Python :: 3.9', ], install_requires=install_requires, tests_require=test_require, test_suite='castle.test.all' )
class Issue(object): """ Abstract class for issues. """ code = '' description = '' def __init__(self, lineno, col, parameters=None): self.parameters = {} if parameters is None else parameters self.col = col self.lineno = lineno @property def message(self): """ Return issue message. """ message = self.description.format(**self.parameters) return '{code} {message}'.format(code=self.code, message=message)
#!/usr/bin/env python3 # Usage: # PYTHONPATH=src ./train --dataset <file|directory|glob> import argparse import json import os import numpy as np import tensorflow as tf import time import tqdm from tensorflow.core.protobuf import rewriter_config_pb2 import model, sample, encoder from load_dataset import load_dataset, Sampler from accumulate import AccumulatingOptimizer import memory_saving_gradients CHECKPOINT_DIR = 'checkpoint' SAMPLE_DIR = 'samples' def maketree(path): try: os.makedirs(path) except: pass def randomize(context, hparams, p): if p > 0: mask = tf.random.uniform(shape=tf.shape(context)) < p noise = tf.random.uniform(shape=tf.shape(context), minval=0, maxval=hparams.n_vocab, dtype=tf.int32) return tf.where(mask, noise, context) else: return context def generate_samples(data_sampler, generate_from, args, sess, tf_sample, context, enc, counter): print('Generating samples...') context_tokens = data_sampler.sample(1) if generate_from is not None: context_tokens = enc.encode(generate_from) all_text = [] index = 0 while index < args.sample_num: out = sess.run( tf_sample, feed_dict={context: args.batch_size * [context_tokens]}) for i in range(min(args.sample_num - index, args.batch_size)): text = enc.decode(out[i]) text = '======== SAMPLE {} ========\n{}\n'.format( index + 1, text) #28 is the SAMPLE.. header text = text[28+len(generate_from):] all_text.append(text) index += 1 print(text) maketree(os.path.join(SAMPLE_DIR, args.run_name)) with open( os.path.join(SAMPLE_DIR, args.run_name, 'samples-{}').format(counter), 'w') as fp: fp.write('\n'.join(all_text)) return all_text[0] class Object(object): pass print("initializing train2") args = Object() args.model_name = "117M" args.restore_from = "../talkingdonkeys/layers/gpt2-models/lyrics" args.optimizer = "adam" args.batch_size = 1 args.noise = 0.0 args.sample_length = 200 args.top_k = 40 args.top_p = 0.0 args.only_train_transformer_layers = False args.learning_rate = 0.00002 args.accumulate_gradients = 1 args.memory_saving_gradients = False args.dataset = "texts.npz" args.combine = 50000 args.run_name = "run1" args.sample_num = 1 enc = encoder.get_encoder(args.model_name) hparams = model.default_hparams() generate_from = "hello world" with open(os.path.join('models', args.model_name, 'hparams.json')) as f: hparams.override_from_dict(json.load(f)) if args.model_name == '345M': args.memory_saving_gradients = True if args.optimizer == 'adam': args.only_train_transformer_layers = True config = tf.ConfigProto() config.gpu_options.allow_growth = True config.graph_options.rewrite_options.layout_optimizer = rewriter_config_pb2.RewriterConfig.OFF sess = tf.Session(config=config) def bootstrap(sess, args, hparams, enc, generate_from): context = tf.placeholder(tf.int32, [args.batch_size, None]) context_in = randomize(context, hparams, args.noise) output = model.model(hparams=hparams, X=context_in) loss = tf.reduce_mean( tf.nn.sparse_softmax_cross_entropy_with_logits( labels=context[:, 1:], logits=output['logits'][:, :-1])) tf_sample = sample.sample_sequence( hparams=hparams, length=args.sample_length, context=context, batch_size=args.batch_size, temperature=1.0, top_k=args.top_k, top_p=args.top_p) all_vars = [v for v in tf.trainable_variables() if 'model' in v.name] train_vars = [v for v in all_vars if '/h' in v.name] if args.only_train_transformer_layers else all_vars if args.optimizer == 'adam': opt = tf.train.AdamOptimizer(learning_rate=args.learning_rate) elif args.optimizer == 'sgd': opt = tf.train.GradientDescentOptimizer(learning_rate=args.learning_rate) else: exit('Bad optimizer:', args.optimizer) if args.accumulate_gradients > 1: if args.memory_saving_gradients: exit("Memory saving gradients are not implemented for gradient accumulation yet.") opt = AccumulatingOptimizer( opt=opt, var_list=train_vars) opt_reset = opt.reset() opt_compute = opt.compute_gradients(loss) opt_apply = opt.apply_gradients() summary_loss = tf.summary.scalar('loss', opt_apply) else: if args.memory_saving_gradients: opt_grads = memory_saving_gradients.gradients(loss, train_vars) else: opt_grads = tf.gradients(loss, train_vars) opt_grads = list(zip(opt_grads, train_vars)) opt_apply = opt.apply_gradients(opt_grads) summary_loss = tf.summary.scalar('loss', loss) summary_lr = tf.summary.scalar('learning_rate', args.learning_rate) summaries = tf.summary.merge([summary_lr, summary_loss]) saver = tf.train.Saver( var_list=all_vars, max_to_keep=5, keep_checkpoint_every_n_hours=2) sess.run(tf.global_variables_initializer()) ckpt = tf.train.latest_checkpoint(args.restore_from) print('Loading checkpoint', ckpt) saver.restore(sess, ckpt) print('Loading dataset...') chunks = load_dataset(enc, args.dataset, args.combine) data_sampler = Sampler(chunks) print('dataset has', data_sampler.total_size, 'tokens') print('Training...') counter = 1 counter_path = os.path.join(CHECKPOINT_DIR, args.run_name, 'counter') if os.path.exists(counter_path): # Load the step number if we're resuming a run # Add 1 so we don't immediately try to save again with open(counter_path, 'r') as fp: counter = int(fp.read()) + 1 def generate_samples(): print('Generating samples...') context_tokens = data_sampler.sample(1) if generate_from is not None: context_tokens = enc.encode(generate_from) all_text = [] index = 0 while index < args.sample_num: out = sess.run( tf_sample, feed_dict={context: args.batch_size * [context_tokens]}) for i in range(min(args.sample_num - index, args.batch_size)): text = enc.decode(out[i]) text = '======== SAMPLE {} ========\n{}\n'.format( index + 1, text) all_text.append(text) index += 1 print(text) maketree(os.path.join(SAMPLE_DIR, args.run_name)) with open( os.path.join(SAMPLE_DIR, args.run_name, 'samples-{}').format(counter), 'w') as fp: fp.write('\n'.join(all_text)) def sample_batch(): return [data_sampler.sample(1024) for _ in range(args.batch_size)] while True: if counter > 1: generate_samples() return data_sampler, generate_from, args, sess, tf_sample, context, enc, counter if args.accumulate_gradients > 1: sess.run(opt_reset) for _ in range(args.accumulate_gradients): sess.run( opt_compute, feed_dict={context: sample_batch()}) (v_loss, v_summary) = sess.run((opt_apply, summaries)) else: (_, v_loss, v_summary) = sess.run( (opt_apply, loss, summaries), feed_dict={context: sample_batch()}) counter += 1 data_sampler, generate_from, args, sess, tf_sample, context, enc, counter = bootstrap(sess, args, hparams, enc, generate_from) def generate_sample(generate_from=generate_from): return generate_samples(data_sampler, generate_from, args, sess, tf_sample, context, enc, counter) if __name__ == '__main__': print() print("sample1 from main:") generate_sample() print() print("sample2 from main:") generate_sample()
# Copyright 2019 Google LLC. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for `bigquery_row_generator` module.""" import json import unittest from typing import Any, Dict # pylint: disable=unused-import from apache_beam.io.gcp.internal.clients import bigquery import mock from gcp_variant_transforms.beam_io import vcfio from gcp_variant_transforms.libs import bigquery_sanitizer from gcp_variant_transforms.libs import bigquery_schema_descriptor from gcp_variant_transforms.libs import bigquery_row_generator from gcp_variant_transforms.libs import processed_variant from gcp_variant_transforms.libs import vcf_field_conflict_resolver from gcp_variant_transforms.libs.bigquery_util import ColumnKeyConstants from gcp_variant_transforms.libs.bigquery_util import TableFieldConstants from gcp_variant_transforms.testing import vcf_header_util from gcp_variant_transforms.testing.testdata_util import hash_name def _get_processed_variant(variant, header_num_dict=None): header_fields = vcf_header_util.make_header(header_num_dict or {}) return processed_variant.ProcessedVariantFactory( header_fields).create_processed_variant(variant) def _get_table_schema(move_hom_ref_calls=False): # type (None) -> bigquery.TableSchema schema = bigquery.TableSchema() schema.fields.append(bigquery.TableFieldSchema( name='IB', type=TableFieldConstants.TYPE_BOOLEAN, mode=TableFieldConstants.MODE_NULLABLE, description='INFO foo desc')) schema.fields.append(bigquery.TableFieldSchema( name='IBR', type=TableFieldConstants.TYPE_BOOLEAN, mode=TableFieldConstants.MODE_REPEATED, description='INFO foo desc')) schema.fields.append(bigquery.TableFieldSchema( name='II', type=TableFieldConstants.TYPE_INTEGER, mode=TableFieldConstants.MODE_NULLABLE, description='INFO foo desc')) schema.fields.append(bigquery.TableFieldSchema( name='II2', type=TableFieldConstants.TYPE_INTEGER, mode=TableFieldConstants.MODE_NULLABLE, description='INFO foo desc')) schema.fields.append(bigquery.TableFieldSchema( name='IIR', type=TableFieldConstants.TYPE_INTEGER, mode=TableFieldConstants.MODE_REPEATED, description='INFO foo desc')) schema.fields.append(bigquery.TableFieldSchema( name='IF', type=TableFieldConstants.TYPE_FLOAT, mode=TableFieldConstants.MODE_NULLABLE, description='INFO foo desc')) schema.fields.append(bigquery.TableFieldSchema( name='IF2', type=TableFieldConstants.TYPE_FLOAT, mode=TableFieldConstants.MODE_NULLABLE, description='INFO foo desc')) schema.fields.append(bigquery.TableFieldSchema( name='IFR', type=TableFieldConstants.TYPE_FLOAT, mode=TableFieldConstants.MODE_REPEATED, description='INFO foo desc')) schema.fields.append(bigquery.TableFieldSchema( name='IFR2', type=TableFieldConstants.TYPE_FLOAT, mode=TableFieldConstants.MODE_REPEATED, description='INFO foo desc')) schema.fields.append(bigquery.TableFieldSchema( name='field__IS', type=TableFieldConstants.TYPE_STRING, mode=TableFieldConstants.MODE_NULLABLE, description='INFO foo desc')) schema.fields.append(bigquery.TableFieldSchema( name='IS', type=TableFieldConstants.TYPE_STRING, mode=TableFieldConstants.MODE_NULLABLE, description='INFO foo desc')) schema.fields.append(bigquery.TableFieldSchema( name='ISR', type=TableFieldConstants.TYPE_STRING, mode=TableFieldConstants.MODE_REPEATED, description='INFO foo desc')) if move_hom_ref_calls: hom_ref_call_record = bigquery.TableFieldSchema( name=ColumnKeyConstants.HOM_REF_CALLS, type=TableFieldConstants.TYPE_RECORD, mode=TableFieldConstants.MODE_REPEATED, description='One record for each call.') hom_ref_call_record.fields.append(bigquery.TableFieldSchema( name=ColumnKeyConstants.CALLS_SAMPLE_ID, type=TableFieldConstants.TYPE_INTEGER, mode=TableFieldConstants.MODE_NULLABLE, description='Unique ID (type INT64) assigned to each sample. Table ' 'with `__sample_info` suffix contains the mapping of ' 'sample names (as read from VCF header) to these assigned ' 'IDs.')) hom_ref_call_record.fields.append(bigquery.TableFieldSchema( name=ColumnKeyConstants.CALLS_NAME, type=TableFieldConstants.TYPE_STRING, mode=TableFieldConstants.MODE_NULLABLE, description='Name of the call (sample names in the VCF Header ' 'line).')) schema.fields.append(hom_ref_call_record) # Call record. call_record = bigquery.TableFieldSchema( name=ColumnKeyConstants.CALLS, type=TableFieldConstants.TYPE_RECORD, mode=TableFieldConstants.MODE_REPEATED, description='One record for each call.') call_record.fields.append(bigquery.TableFieldSchema( name='FB', type=TableFieldConstants.TYPE_BOOLEAN, mode=TableFieldConstants.MODE_NULLABLE, description='FORMAT foo desc')) call_record.fields.append(bigquery.TableFieldSchema( name='FI', type=TableFieldConstants.TYPE_INTEGER, mode=TableFieldConstants.MODE_NULLABLE, description='FORMAT foo desc')) call_record.fields.append(bigquery.TableFieldSchema( name='GQ', type=TableFieldConstants.TYPE_INTEGER, mode=TableFieldConstants.MODE_NULLABLE, description='FORMAT foo desc')) call_record.fields.append(bigquery.TableFieldSchema( name='FIR', type=TableFieldConstants.TYPE_INTEGER, mode=TableFieldConstants.MODE_REPEATED, description='FORMAT foo desc')) call_record.fields.append(bigquery.TableFieldSchema( name='FSR', type=TableFieldConstants.TYPE_STRING, mode=TableFieldConstants.MODE_REPEATED, description='FORMAT foo desc')) schema.fields.append(call_record) return schema def _get_big_query_row(): # type: (...) -> Dict[unicode, Any] """Returns one sample BigQuery row for testing.""" row = {str(ColumnKeyConstants.REFERENCE_NAME): str('chr19'), str(ColumnKeyConstants.START_POSITION): 11, str(ColumnKeyConstants.END_POSITION): 12, str(ColumnKeyConstants.REFERENCE_BASES): 'C', str(ColumnKeyConstants.NAMES): [str('rs1'), str('rs2')], str(ColumnKeyConstants.QUALITY): 2, str(ColumnKeyConstants.FILTER): [str('PASS')], str(ColumnKeyConstants.CALLS): [ {str(ColumnKeyConstants.CALLS_SAMPLE_ID): ( str(hash_name('Sample1'))), str(ColumnKeyConstants.CALLS_GENOTYPE): [0, 1], str(ColumnKeyConstants.CALLS_PHASESET): str('*'), str('GQ'): 20, str('FIR'): [10, 20]}, {str(ColumnKeyConstants.CALLS_SAMPLE_ID): ( str(hash_name('Sample2'))), str(ColumnKeyConstants.CALLS_GENOTYPE): [0, 0], str(ColumnKeyConstants.CALLS_PHASESET): None, str('GQ'): 10, str('FB'): True} ], str(ColumnKeyConstants.ALTERNATE_BASES): [ {str(ColumnKeyConstants.ALTERNATE_BASES_ALT): str('A'), str('IFR'): 1, str('IFR2'): 0.2}, {str(ColumnKeyConstants.ALTERNATE_BASES_ALT): str('TT'), str('IFR'): 0.2, str('IFR2'): 0.3} ], str('IS'): str('some data'), str('ISR'): [str('data1'), str('data2')]} return row class VariantCallRowGeneratorTest(unittest.TestCase): """Test cases for class `VariantCallRowGenerator`.""" def setUp(self): self._schema_descriptor = bigquery_schema_descriptor.SchemaDescriptor( _get_table_schema()) self._conflict_resolver = ( vcf_field_conflict_resolver.FieldConflictResolver()) self._row_generator = bigquery_row_generator.VariantCallRowGenerator( self._schema_descriptor, self._conflict_resolver) def test_all_fields(self): variant = vcfio.Variant( reference_name='chr19', start=11, end=12, reference_bases='C', alternate_bases=['A', 'TT'], names=['rs1', 'rs2'], quality=2, filters=['PASS'], info={'IFR': [0.1, 0.2], 'IFR2': [0.2, 0.3], 'IS': 'some data', 'ISR': ['data1', 'data2']}, calls=[ vcfio.VariantCall( sample_id=hash_name('Sample1'), name='Sample1', genotype=[0, 1], phaseset='*', info={'GQ': 20, 'FIR': [10, 20]}), vcfio.VariantCall( sample_id=hash_name('Sample2'), name='Sample2', genotype=[0, 0], info={'GQ': 10, 'FB': True}), vcfio.VariantCall(sample_id=hash_name('Sample3'), name='Sample3', genotype=[vcfio.MISSING_GENOTYPE_VALUE])]) header_num_dict = {'IFR': 'A', 'IFR2': 'A', 'IS': '1', 'ISR': '2'} expected_row = { ColumnKeyConstants.REFERENCE_NAME: 'chr19', ColumnKeyConstants.START_POSITION: 11, ColumnKeyConstants.END_POSITION: 12, ColumnKeyConstants.REFERENCE_BASES: 'C', ColumnKeyConstants.ALTERNATE_BASES: [ {ColumnKeyConstants.ALTERNATE_BASES_ALT: 'A', 'IFR': 0.1, 'IFR2': 0.2}, {ColumnKeyConstants.ALTERNATE_BASES_ALT: 'TT', 'IFR': 0.2, 'IFR2': 0.3}], ColumnKeyConstants.NAMES: ['rs1', 'rs2'], ColumnKeyConstants.QUALITY: 2, ColumnKeyConstants.FILTER: ['PASS'], ColumnKeyConstants.CALLS: [ {ColumnKeyConstants.CALLS_SAMPLE_ID: hash_name('Sample1'), ColumnKeyConstants.CALLS_NAME: 'Sample1', ColumnKeyConstants.CALLS_GENOTYPE: [0, 1], ColumnKeyConstants.CALLS_PHASESET: '*', 'GQ': 20, 'FIR': [10, 20]}, {ColumnKeyConstants.CALLS_SAMPLE_ID: hash_name('Sample2'), ColumnKeyConstants.CALLS_NAME: 'Sample2', ColumnKeyConstants.CALLS_GENOTYPE: [0, 0], ColumnKeyConstants.CALLS_PHASESET: None, 'GQ': 10, 'FB': True}, {ColumnKeyConstants.CALLS_SAMPLE_ID: hash_name('Sample3'), ColumnKeyConstants.CALLS_NAME: 'Sample3', ColumnKeyConstants.CALLS_GENOTYPE: [vcfio.MISSING_GENOTYPE_VALUE], ColumnKeyConstants.CALLS_PHASESET: None}], 'IS': 'some data', 'ISR': ['data1', 'data2']} proc_variant = _get_processed_variant(variant, header_num_dict) row_generator = bigquery_row_generator.VariantCallRowGenerator( self._schema_descriptor, self._conflict_resolver, include_call_name=True) self.assertEqual( [expected_row], list(row_generator.get_rows(proc_variant))) def test_all_fields_with_hom_ref(self): schema_descriptor = bigquery_schema_descriptor.SchemaDescriptor( _get_table_schema(move_hom_ref_calls=True)) conflict_resolver = ( vcf_field_conflict_resolver.FieldConflictResolver()) variant = vcfio.Variant( reference_name='chr19', start=11, end=12, reference_bases='C', alternate_bases=['A', 'TT'], names=['rs1', 'rs2'], quality=2, filters=['PASS'], info={'IFR': [0.1, 0.2], 'IFR2': [0.2, 0.3], 'IS': 'some data', 'ISR': ['data1', 'data2']}, hom_ref_calls=[ ('Sample2', hash_name('Sample2')), ('Sample3', hash_name('Sample3')) ], calls=[ vcfio.VariantCall( sample_id=hash_name('Sample1'), name='Sample1', genotype=[0, 1], phaseset='*', info={'GQ': 20, 'FIR': [10, 20]})]) header_num_dict = {'IFR': 'A', 'IFR2': 'A', 'IS': '1', 'ISR': '2'} expected_row = { ColumnKeyConstants.REFERENCE_NAME: 'chr19', ColumnKeyConstants.START_POSITION: 11, ColumnKeyConstants.END_POSITION: 12, ColumnKeyConstants.REFERENCE_BASES: 'C', ColumnKeyConstants.ALTERNATE_BASES: [ {ColumnKeyConstants.ALTERNATE_BASES_ALT: 'A', 'IFR': 0.1, 'IFR2': 0.2}, {ColumnKeyConstants.ALTERNATE_BASES_ALT: 'TT', 'IFR': 0.2, 'IFR2': 0.3}], ColumnKeyConstants.NAMES: ['rs1', 'rs2'], ColumnKeyConstants.QUALITY: 2, ColumnKeyConstants.FILTER: ['PASS'], ColumnKeyConstants.HOM_REF_CALLS: [ {ColumnKeyConstants.CALLS_SAMPLE_ID: hash_name('Sample2'), ColumnKeyConstants.CALLS_NAME: 'Sample2'}, {ColumnKeyConstants.CALLS_SAMPLE_ID: hash_name('Sample3'), ColumnKeyConstants.CALLS_NAME: 'Sample3'} ], ColumnKeyConstants.CALLS: [ {ColumnKeyConstants.CALLS_SAMPLE_ID: hash_name('Sample1'), ColumnKeyConstants.CALLS_NAME: 'Sample1', ColumnKeyConstants.CALLS_GENOTYPE: [0, 1], ColumnKeyConstants.CALLS_PHASESET: '*', 'GQ': 20, 'FIR': [10, 20]}], 'IS': 'some data', 'ISR': ['data1', 'data2']} proc_variant = _get_processed_variant(variant, header_num_dict) row_generator = bigquery_row_generator.VariantCallRowGenerator( schema_descriptor, conflict_resolver, include_call_name=True, move_hom_ref_calls=True) self.assertEqual( [expected_row], list(row_generator.get_rows(proc_variant))) def test_no_alternate_bases(self): variant = vcfio.Variant( reference_name='chr19', start=11, end=12, reference_bases='CT', alternate_bases=[], filters=['q10'], info={'IS': 'some data', 'ISR': ['data1', 'data2']}) header_num_dict = {'IS': '1', 'ISR': '2'} proc_variant = _get_processed_variant(variant, header_num_dict) expected_row = { ColumnKeyConstants.REFERENCE_NAME: 'chr19', ColumnKeyConstants.START_POSITION: 11, ColumnKeyConstants.END_POSITION: 12, ColumnKeyConstants.REFERENCE_BASES: 'CT', ColumnKeyConstants.ALTERNATE_BASES: [], ColumnKeyConstants.FILTER: ['q10'], ColumnKeyConstants.CALLS: [], 'IS': 'some data', 'ISR': ['data1', 'data2']} self.assertEqual([expected_row], list(self._row_generator.get_rows(proc_variant))) def test_some_fields_set(self): variant = vcfio.Variant( reference_name='chr19', start=None, end=123, reference_bases=None, alternate_bases=[], quality=20) proc_variant = _get_processed_variant(variant) expected_row = { ColumnKeyConstants.REFERENCE_NAME: 'chr19', ColumnKeyConstants.START_POSITION: None, ColumnKeyConstants.END_POSITION: 123, ColumnKeyConstants.REFERENCE_BASES: None, ColumnKeyConstants.ALTERNATE_BASES: [], ColumnKeyConstants.QUALITY: 20, ColumnKeyConstants.CALLS: []} self.assertEqual([expected_row], list(self._row_generator.get_rows(proc_variant))) def test_no_field_set(self): variant = vcfio.Variant() proc_variant = _get_processed_variant(variant) expected_row = { ColumnKeyConstants.REFERENCE_NAME: None, ColumnKeyConstants.START_POSITION: None, ColumnKeyConstants.END_POSITION: None, ColumnKeyConstants.REFERENCE_BASES: None, ColumnKeyConstants.ALTERNATE_BASES: [], ColumnKeyConstants.CALLS: []} self.assertEqual([expected_row], list(self._row_generator.get_rows(proc_variant))) def test_null_repeated_fields(self): variant = vcfio.Variant( reference_name='chr19', start=11, end=12, reference_bases='CT', alternate_bases=[], filters=['q10'], info={'IIR': [0, 1, None], 'IBR': [True, None, False], 'IFR': [0.1, 0.2, None, 0.4], 'ISR': [None, 'data1', 'data2']}) header_num_dict = {'IIR': '3', 'IBR': '3', 'IFR': '4', 'ISR': '3'} proc_variant = _get_processed_variant(variant, header_num_dict) expected_row = { ColumnKeyConstants.REFERENCE_NAME: 'chr19', ColumnKeyConstants.START_POSITION: 11, ColumnKeyConstants.END_POSITION: 12, ColumnKeyConstants.REFERENCE_BASES: 'CT', ColumnKeyConstants.ALTERNATE_BASES: [], ColumnKeyConstants.FILTER: ['q10'], ColumnKeyConstants.CALLS: [], 'IIR': [0, 1, bigquery_sanitizer._DEFAULT_NULL_NUMERIC_VALUE_REPLACEMENT], 'IBR': [True, False, False], 'IFR': [0.1, 0.2, bigquery_sanitizer._DEFAULT_NULL_NUMERIC_VALUE_REPLACEMENT, 0.4], 'ISR': ['.', 'data1', 'data2']} self.assertEqual([expected_row], list(self._row_generator.get_rows(proc_variant))) def test_unicode_fields(self): sample_unicode_str = u'\xc3\xb6' sample_utf8_str = sample_unicode_str.encode('utf-8') variant = vcfio.Variant( reference_name='chr19', start=11, end=12, reference_bases='CT', alternate_bases=[], filters=[sample_unicode_str, sample_utf8_str], info={'IS': sample_utf8_str, 'ISR': [sample_unicode_str, sample_utf8_str]}) header_num_dict = {'IS': '1', 'ISR': '2'} proc_variant = _get_processed_variant(variant, header_num_dict) expected_row = { ColumnKeyConstants.REFERENCE_NAME: 'chr19', ColumnKeyConstants.START_POSITION: 11, ColumnKeyConstants.END_POSITION: 12, ColumnKeyConstants.REFERENCE_BASES: 'CT', ColumnKeyConstants.ALTERNATE_BASES: [], ColumnKeyConstants.FILTER: [sample_unicode_str, sample_unicode_str], ColumnKeyConstants.CALLS: [], 'IS': sample_unicode_str, 'ISR': [sample_unicode_str, sample_unicode_str]} self.assertEqual([expected_row], list(self._row_generator.get_rows(proc_variant))) def test_nonstandard_float_values(self): variant = vcfio.Variant( reference_name='chr19', start=11, end=12, reference_bases='CT', alternate_bases=['A', 'C', 'T', 'TC'], filters=[], calls=[vcfio.VariantCall( sample_id=hash_name('Sample1'), genotype=[0, 1], phaseset='*', info={'GQ': float('inf')})], info={'IF': float('inf'), 'IFR': [float('-inf'), float('nan'), 1.2], 'IF2': float('nan'), 'IF3': [float('-inf'), float('nan'), float('inf'), 1.2]}, ) header_num_dict = {'IF': '1', 'IFR': '3', 'IF2': '1', 'IF3': 'A'} proc_variant = _get_processed_variant(variant, header_num_dict) expected_row = { ColumnKeyConstants.REFERENCE_NAME: 'chr19', ColumnKeyConstants.START_POSITION: 11, ColumnKeyConstants.END_POSITION: 12, ColumnKeyConstants.REFERENCE_BASES: 'CT', ColumnKeyConstants.ALTERNATE_BASES: [ {'IF3': -bigquery_sanitizer._INF_FLOAT_VALUE, 'alt': 'A'}, {'IF3': None, 'alt': 'C'}, {'IF3': bigquery_sanitizer._INF_FLOAT_VALUE, 'alt': 'T'}, {'IF3': 1.2, 'alt': 'TC'} ], ColumnKeyConstants.CALLS: [ { ColumnKeyConstants.CALLS_SAMPLE_ID: hash_name('Sample1'), ColumnKeyConstants.CALLS_GENOTYPE: [0, 1], ColumnKeyConstants.CALLS_PHASESET: '*', 'GQ': bigquery_sanitizer._INF_FLOAT_VALUE } ], 'IF': bigquery_sanitizer._INF_FLOAT_VALUE, 'IFR': [-bigquery_sanitizer._INF_FLOAT_VALUE, bigquery_sanitizer._DEFAULT_NULL_NUMERIC_VALUE_REPLACEMENT, 1.2], 'IF2': None } self.assertEqual([expected_row], list(self._row_generator.get_rows(proc_variant))) def test_nonstandard_fields_names(self): variant = vcfio.Variant( reference_name='chr19', start=11, end=12, reference_bases='CT', alternate_bases=[], info={'IS': 'data1', '_IS': 'data2'}) header_num_dict = {'IS': '1', '_IS': '2'} proc_variant = _get_processed_variant(variant, header_num_dict) expected_row = { ColumnKeyConstants.REFERENCE_NAME: 'chr19', ColumnKeyConstants.START_POSITION: 11, ColumnKeyConstants.END_POSITION: 12, ColumnKeyConstants.REFERENCE_BASES: 'CT', ColumnKeyConstants.ALTERNATE_BASES: [], ColumnKeyConstants.CALLS: [], 'IS': 'data1', 'field__IS': 'data2'} self.assertEqual([expected_row], list(self._row_generator.get_rows(proc_variant))) def test_sharded_rows(self): """Tests splitting BigQuery rows that are larger than BigQuery limit.""" num_calls = 10 # Number of calls for a variant in this test. num_first_row_calls = 6 # BigQuery row limit is adjusted accordingly. variant = vcfio.Variant( reference_name='chr19', start=11, end=12, reference_bases='C', alternate_bases=['A', 'TT'], names=['rs1', 'rs2'], quality=2, filters=['PASS'], info={'IFR': [0.1, 0.2], 'IFR2': [0.2, 0.3], 'IS': 'some data'}, calls=[ vcfio.VariantCall( sample_id=hash_name('Sample{}'.format(i)), genotype=[0, 1], phaseset='*', info={'GQ': 20, 'FIR': [10, 20]}) for i in range(num_calls)]) header_num_dict = {'IFR': 'A', 'IFR2': 'A', 'IS': '1'} proc_variant = _get_processed_variant(variant, header_num_dict) expected_rows = [ { ColumnKeyConstants.REFERENCE_NAME: 'chr19', ColumnKeyConstants.START_POSITION: 11, ColumnKeyConstants.END_POSITION: 12, ColumnKeyConstants.REFERENCE_BASES: 'C', ColumnKeyConstants.ALTERNATE_BASES: [ {ColumnKeyConstants.ALTERNATE_BASES_ALT: 'A', 'IFR': 0.1, 'IFR2': 0.2}, {ColumnKeyConstants.ALTERNATE_BASES_ALT: 'TT', 'IFR': 0.2, 'IFR2': 0.3}], ColumnKeyConstants.NAMES: ['rs1', 'rs2'], ColumnKeyConstants.QUALITY: 2, ColumnKeyConstants.FILTER: ['PASS'], ColumnKeyConstants.CALLS: [ {ColumnKeyConstants.CALLS_SAMPLE_ID: ( hash_name('Sample{}'.format(i))), ColumnKeyConstants.CALLS_GENOTYPE: [0, 1], ColumnKeyConstants.CALLS_PHASESET: '*', 'GQ': 20, 'FIR': [10, 20]} for i in range(num_first_row_calls)], 'IS': 'some data' }, { ColumnKeyConstants.REFERENCE_NAME: 'chr19', ColumnKeyConstants.START_POSITION: 11, ColumnKeyConstants.END_POSITION: 12, ColumnKeyConstants.REFERENCE_BASES: 'C', ColumnKeyConstants.ALTERNATE_BASES: [ {ColumnKeyConstants.ALTERNATE_BASES_ALT: 'A', 'IFR': 0.1, 'IFR2': 0.2}, {ColumnKeyConstants.ALTERNATE_BASES_ALT: 'TT', 'IFR': 0.2, 'IFR2': 0.3}], ColumnKeyConstants.NAMES: ['rs1', 'rs2'], ColumnKeyConstants.QUALITY: 2, ColumnKeyConstants.FILTER: ['PASS'], ColumnKeyConstants.CALLS: [ {ColumnKeyConstants.CALLS_SAMPLE_ID: ( hash_name('Sample{}'.format(i))), ColumnKeyConstants.CALLS_GENOTYPE: [0, 1], ColumnKeyConstants.CALLS_PHASESET: '*', 'GQ': 20, 'FIR': [10, 20]} for i in range(num_first_row_calls, num_calls)], 'IS': 'some data' }, ] with mock.patch.object(bigquery_row_generator.VariantCallRowGenerator, '_MAX_BIGQUERY_ROW_SIZE_BYTES', num_first_row_calls * len(json.dumps( expected_rows[0][ColumnKeyConstants.CALLS][0]))): with mock.patch.object(bigquery_row_generator.VariantCallRowGenerator, '_MIN_NUM_CALLS_FOR_ROW_SIZE_ESTIMATION', num_calls): self.assertEqual(expected_rows, list(self._row_generator.get_rows(proc_variant))) def test_omit_empty_sample_calls(self): variant = vcfio.Variant( reference_name='chr19', start=11, end=12, reference_bases='C', alternate_bases=[], names=['rs1', 'rs2'], quality=2, filters=['PASS'], info={}, calls=[ vcfio.VariantCall( sample_id=hash_name('Sample1'), info={'GQ': None}), vcfio.VariantCall( sample_id=hash_name('Sample2'), genotype=[1, 0], info={'GQ': 10}), vcfio.VariantCall( sample_id=hash_name('Sample3'), genotype=[vcfio.MISSING_GENOTYPE_VALUE, vcfio.MISSING_GENOTYPE_VALUE])]) proc_variant = _get_processed_variant(variant) expected_row = { ColumnKeyConstants.REFERENCE_NAME: 'chr19', ColumnKeyConstants.START_POSITION: 11, ColumnKeyConstants.END_POSITION: 12, ColumnKeyConstants.REFERENCE_BASES: 'C', ColumnKeyConstants.ALTERNATE_BASES: [], ColumnKeyConstants.NAMES: ['rs1', 'rs2'], ColumnKeyConstants.QUALITY: 2, ColumnKeyConstants.FILTER: ['PASS'], ColumnKeyConstants.CALLS: [ {ColumnKeyConstants.CALLS_SAMPLE_ID: hash_name('Sample2'), ColumnKeyConstants.CALLS_GENOTYPE: [1, 0], ColumnKeyConstants.CALLS_PHASESET: None, 'GQ': 10}]} self.assertEqual( [expected_row], list(self._row_generator.get_rows(proc_variant, omit_empty_sample_calls=True))) def test_schema_conflict_in_info_field_type(self): variant = vcfio.Variant( reference_name='chr19', start=11, end=12, reference_bases='CT', alternate_bases=[], filters=[], info={'IB': 1, 'II': 1.1, 'IFR': [1, 2], 'ISR': [1.0, 2.0]}) header_num_dict = {'IB': '1', 'II': '1', 'IFR': '2', 'ISR': '2'} proc_variant = _get_processed_variant(variant, header_num_dict) expected_row = { ColumnKeyConstants.REFERENCE_NAME: 'chr19', ColumnKeyConstants.START_POSITION: 11, ColumnKeyConstants.END_POSITION: 12, ColumnKeyConstants.REFERENCE_BASES: 'CT', ColumnKeyConstants.ALTERNATE_BASES: [], ColumnKeyConstants.CALLS: [], 'IB': True, 'II': 1, 'IFR': [1.0, 2.0], 'ISR': ['1.0', '2.0']} self.assertEqual([expected_row], list(self._row_generator.get_rows( proc_variant, allow_incompatible_records=True))) with self.assertRaises(ValueError): variant = vcfio.Variant( reference_name='chr19', start=11, end=12, reference_bases='CT', alternate_bases=[], filters=[], # String cannot be casted to integer. info={'II': '1.1'}) header_num_dict = {'II': '1'} # self._get_row_list_from_variant( # variant, header_num_dict, allow_incompatible_records=True) proc_variant = _get_processed_variant(variant, header_num_dict) list(self._row_generator.get_rows(proc_variant, allow_incompatible_records=True)) self.fail('String data for an integer schema must cause an exception') def test_schema_conflict_in_info_field_number(self): variant = vcfio.Variant( reference_name='chr19', start=11, end=12, reference_bases='CT', alternate_bases=[], filters=[], info={'IB': [1, 2], 'IBR': 1, 'II': [10, 20], 'IFR': 1.1, 'ISR': 'foo'},) header_num_dict = {'IB': '2', 'IBR': '1', 'II': '2', 'IFR': '1', 'ISR': '1'} proc_variant = _get_processed_variant(variant, header_num_dict) expected_row = { ColumnKeyConstants.REFERENCE_NAME: 'chr19', ColumnKeyConstants.START_POSITION: 11, ColumnKeyConstants.END_POSITION: 12, ColumnKeyConstants.REFERENCE_BASES: 'CT', ColumnKeyConstants.ALTERNATE_BASES: [], ColumnKeyConstants.CALLS: [], 'IB': True, 'IBR': [True], 'II': 10, 'IFR': [1.1], 'ISR': ['foo'] } self.assertEqual( [expected_row], list(self._row_generator.get_rows(proc_variant, allow_incompatible_records=True))) def test_schema_conflict_in_format_field_type(self): variant = vcfio.Variant( reference_name='chr19', start=11, end=12, reference_bases='CT', alternate_bases=[], filters=[], calls=[ vcfio.VariantCall( sample_id=hash_name('Sample1'), genotype=[0, 1], phaseset='*', info={'FB': '', 'FI': 1.0, 'FSR': [1, 2]}), vcfio.VariantCall( sample_id=hash_name('Sample2'), genotype=[1, 0], info={'FB': 1, 'FI': True, 'FSR': [1.0, 2.0]})]) proc_variant = _get_processed_variant(variant) expected_row = { ColumnKeyConstants.REFERENCE_NAME: 'chr19', ColumnKeyConstants.START_POSITION: 11, ColumnKeyConstants.END_POSITION: 12, ColumnKeyConstants.REFERENCE_BASES: 'CT', ColumnKeyConstants.ALTERNATE_BASES: [], ColumnKeyConstants.CALLS: [ {ColumnKeyConstants.CALLS_SAMPLE_ID: hash_name('Sample1'), ColumnKeyConstants.CALLS_GENOTYPE: [0, 1], ColumnKeyConstants.CALLS_PHASESET: '*', 'FB': False, 'FI': 1, 'FSR': ['1', '2']}, {ColumnKeyConstants.CALLS_SAMPLE_ID: hash_name('Sample2'), ColumnKeyConstants.CALLS_GENOTYPE: [1, 0], ColumnKeyConstants.CALLS_PHASESET: None, 'FB': True, 'FI': 1, 'FSR': ['1.0', '2.0']}], } self.assertEqual( [expected_row], list(self._row_generator.get_rows(proc_variant, allow_incompatible_records=True))) with self.assertRaises(ValueError): variant = vcfio.Variant( reference_name='chr19', start=11, end=12, reference_bases='CT', alternate_bases=[], filters=[], # String cannot be casted to integer. calls=[ vcfio.VariantCall( sample_id=hash_name('Sample1'), genotype=[0, 1], phaseset='*', info={'FI': 'string_for_int_field'})]) proc_variant = _get_processed_variant(variant) list(self._row_generator.get_rows(proc_variant, allow_incompatible_records=True)) self.fail('String data for an integer schema must cause an exception') def test_schema_conflict_in_format_field_number(self): variant = vcfio.Variant( reference_name='chr19', start=11, end=12, reference_bases='CT', alternate_bases=[], filters=[], calls=[ vcfio.VariantCall( sample_id=hash_name('Sample1'), genotype=[0, 1], phaseset='*', info={'FB': [1, 2], 'FI': [1, 2], 'FSR': 'str'}), vcfio.VariantCall( sample_id=hash_name('Sample2'), genotype=[1, 0], info={'FB': [], 'FI': [], 'FSR': ''})]) proc_variant = _get_processed_variant(variant) expected_row = { ColumnKeyConstants.REFERENCE_NAME: 'chr19', ColumnKeyConstants.START_POSITION: 11, ColumnKeyConstants.END_POSITION: 12, ColumnKeyConstants.REFERENCE_BASES: 'CT', ColumnKeyConstants.ALTERNATE_BASES: [], ColumnKeyConstants.CALLS: [ {ColumnKeyConstants.CALLS_SAMPLE_ID: hash_name('Sample1'), ColumnKeyConstants.CALLS_GENOTYPE: [0, 1], ColumnKeyConstants.CALLS_PHASESET: '*', 'FB': True, 'FI': 1, 'FSR': ['str']}, {ColumnKeyConstants.CALLS_SAMPLE_ID: hash_name('Sample2'), ColumnKeyConstants.CALLS_GENOTYPE: [1, 0], ColumnKeyConstants.CALLS_PHASESET: None, 'FB': False, 'FI': None, 'FSR': ['']}], } self.assertEqual( [expected_row], list(self._row_generator.get_rows(proc_variant, allow_incompatible_records=True)))
"""A standard time-integrated analysis is performed, using one year of IceCube data (IC86_1). """ import logging import unittest from flarestack.data.public import icecube_ps_3_year from flarestack.core.unblinding import create_unblinder from flarestack.analyses.tde.shared_TDE import tde_catalogue_name from flarestack import MinimisationHandler, analyse # Initialise Injectors/LLHs llh_dict = { "llh_name": "standard", "llh_sig_time_pdf": {"time_pdf_name": "steady"}, "llh_bkg_time_pdf": { "time_pdf_name": "steady", }, "llh_energy_pdf": {"energy_pdf_name": "power_law"}, } true_parameters = [3.6400763376308523, 0.0, 0.0, 4.0] catalogue = tde_catalogue_name("jetted") class TestTimeIntegrated(unittest.TestCase): def setUp(self): pass def test_declination_sensitivity(self): logging.info("Testing 'fit_weight' MinimisationHandler class") mh_name = "fit_weights" # Test three declinations unblind_dict = { "name": "tests/test_mh_fit_weights", "mh_name": mh_name, "dataset": icecube_ps_3_year.get_seasons("IC86-2011"), "catalogue": catalogue, "llh_dict": llh_dict, } ub = create_unblinder(unblind_dict) key = [x for x in ub.res_dict.keys() if x != "TS"][0] res = ub.res_dict[key] logging.info("Best fit values {0}".format(list(res["x"]))) logging.info("Reference best fit {0}".format(true_parameters)) for i, x in enumerate(res["x"]): self.assertAlmostEqual(x, true_parameters[i], delta=0.1) inj_dict = { "injection_sig_time_pdf": {"time_pdf_name": "steady"}, "injection_bkg_time_pdf": { "time_pdf_name": "steady", }, "injection_energy_pdf": {"energy_pdf_name": "power_law", "gamma": 2.0}, } mh_dict = dict(unblind_dict) mh_dict["inj_dict"] = inj_dict mh_dict["n_trials"] = 1.0 mh_dict["n_steps"] = 3.0 mh_dict["scale"] = 5.0 mh = MinimisationHandler.create(mh_dict) res = mh.simulate_and_run(5.0) analyse(mh_dict, cluster=False) mh.corner_likelihood_scan( save=True, res_dict=res, ) if __name__ == "__main__": unittest.main()
#!/usr/bin/env python # setup.py generated by flit for tools that don't yet use PEP 517 from setuptools import setup, find_packages setup( name="nbopen", version="0.6", description='Open a notebook from the command line in the best available server', author='Thomas Kluyver', author_email='thomas@kluyver.me.uk', url='https://github.com/takluyver/nbopen', packages=find_packages(), install_requires=[], extras_require={"develop": []}, entry_points={ "console_scripts": [ "nbopen = nbopen:main" ], "gui_scripts": [] } )
import unittest from unittest import mock from itertools import product from remake.task_query_set import TaskQuerySet class TestTaskQuerySet(unittest.TestCase): @classmethod def setUpClass(cls) -> None: tasks = [] statuses = {'a': 'completed', 'b': 'pending', 'c': 'remaining'} for val1, val2 in product(['a', 'b', 'c'], [1, 2, 3]): task = mock.MagicMock() task.val1 = val1 task.val2 = val2 del task.val3 task.path_hash_key.return_value = ''.join([val1, str(val2)] * 20) task.__str__.return_value = f'Task(val1={val1}, val2={val2})' task.__class__.__name__ = 'Rule' + val1.upper() task.status = statuses[val1] task.task_md.rerun_reasons = [('func_changed', None), ('path_doesnt_exist', 'not/there.txt')] task.diff.return_value = ['def fn(self)', '+ print("hi")', ' pass'] tasks.append(task) task_ctrl = mock.MagicMock() cls.tasks = TaskQuerySet(tasks, task_ctrl) assert len(cls.tasks) == 9 def test_index_slice(self): assert self.tasks[0] self.assertEqual(len(self.tasks[:3]), 3) self.assertEqual(len(self.tasks[:-1]), 8) def test_filter(self): self.assertEqual(len(self.tasks.filter(val1='a')), 3) self.assertEqual(len(self.tasks.filter(val1='a', val2=3)), 1) self.assertEqual(len(self.tasks.filter(val1='a', val2='3', cast_to_str=True)), 1) self.assertEqual(len(self.tasks.exclude(val1='b')), 6) def test_get(self): task = self.tasks.get(val1='a', val2=2) self.assertEqual(task.val1, 'a') self.assertEqual(task.val2, 2) self.assertRaises(Exception, self.tasks.get, val1='a') self.assertRaises(Exception, self.tasks.get, val1='d') def test_first_last(self): task = self.tasks.first() self.assertEqual(task.val1, 'a') self.assertEqual(task.val2, 1) task = self.tasks.last() self.assertEqual(task.val1, 'c') self.assertEqual(task.val2, 3) no_tasks = self.tasks[:0] self.assertRaises(Exception, no_tasks.first) self.assertRaises(Exception, no_tasks.last) def test_in_rule(self): ruleAtasks = self.tasks.in_rule('RuleA') self.assertEqual(len(ruleAtasks), 3) rule = mock.MagicMock() for task in ruleAtasks: task.__class__ = rule ruleAtasks2 = self.tasks.in_rule(rule) self.assertEqual(len(ruleAtasks2), 3) def test_run(self): self.tasks.run() def test_status(self): self.tasks.status() self.tasks.status(True) self.tasks.status(True, True)
from experiment_impact_tracker.emissions.rough_emissions_estimator import RoughEmissionsEstimator def test_rough_emissoins_estimator(): assert "GTX 1080 Ti" in RoughEmissionsEstimator.get_available_gpus() assert "Dual-core PowerPC MPC8641D" in RoughEmissionsEstimator.get_available_cpus() emissions_estimator = RoughEmissionsEstimator(gpu="GTX 1080 Ti", cpu="PowerPC 750CXe", gpu_utilization_factor=1.0, cpu_utilization_factor=0.0, location="Portland, Oregon", experiment_length_seconds=12*60*60) assert emissions_estimator.kg_carbon == 0.381018 assert emissions_estimator.cpu_kWh == 0.0 assert emissions_estimator.gpu_kWh == 3 assert "GTX 1080 Ti" in emissions_estimator.carbon_impact_statement assert "PowerPC 750CXe" in emissions_estimator.carbon_impact_statement
""" made by Gladox114 https://github.com/Gladox114/Python/upload/master/Snake/ """ import tkinter as tk import copy class Map: def __init__(self, master=None, width=500, height=500, color="black", offset=10, Block=20,FrameColor="pink",FrameColor2="red"): self.master = master self.width = width self.height = height self.offset = offset self.color = color self.FrameColor = FrameColor self.Block = Block self.MapArea = width,height self.FrameColor2 = FrameColor2 #print("init",self.MapArea,MapAreaX,MapAreaY) self.food=[] self.MapChunks=(0,0,int(self.MapArea[0]/self.Block-1),int(self.MapArea[1]/self.Block-1)) def BuildMap(self): self.frame = tk.Frame(self.master,height=self.MapArea[1]+(self.offset*2)-1,width=self.MapArea[0]+(self.offset*2)-1) self.frame.pack(fill="both",expand="true") # Create a Frame self.canvas = tk.Canvas(self.frame,bg=self.FrameColor,height=self.MapArea[1]+(self.offset*2)-1,width=self.MapArea[0]+(self.offset*2)-1) self.canvas.pack(fill="both",expand="true") # Create Canvas inside the Frame self.f = tk.Canvas(self.canvas,bg=self.color,height=self.MapArea[1]+2,width=self.MapArea[0]+2,highlightthickness=0) self.f.pack() # Create smaller Canvas in Canvas self.f.place(x=self.offset,y=self.offset) # and offset it self.f.create_rectangle(0,0,self.MapArea[1]+1,self.MapArea[0]+1,outline=self.FrameColor2,fill=self.color) # Create a Rectangle self.c = tk.Canvas(self.canvas,bg=self.color,height=self.MapArea[1],width=self.MapArea[0],highlightthickness=0) self.c.place(x=11,y=11) self.frame2 = tk.Frame(self.master,bg="gray",height=15) self.frame2.pack(fill="both",expand="true",side="bottom") self.frame3 = tk.Frame(self.frame2,bg="gray",height=15) self.frame3.place(relx=.5, rely=.5,anchor="center") """ self.v = tk.StringVar(value="Default Value") self.Label = tk.Label(self.frame2,textvariable=self.v) self.Label.pack(side="bottom") self.v.set("Score:") """ def setScores(self,Players): self.Label={} self.v = {} for i in range(len(Players)): self.v[Players[i].Name] = tk.StringVar(value="Default Value") self.Label[i] = tk.Label(self.frame3,bg="gray",textvariable=self.v[Players[i].Name]) self.Label[i].grid(row=1, column=i) self.Label[i].grid_rowconfigure(0, weight=1) self.Label[i].grid_rowconfigure(2, weight=1) self.Label[i].grid_columnconfigure(0, weight=1) self.Label[i].grid_columnconfigure(2, weight=1) self.v[Players[i].Name].set(Players[i].Name+":"+str(Players[i].score)) def text(self,Player): self.v[Player.Name].set(str(Player.Name+":"+str(Player.score))) def drawCollision(self,pos,color1="red"): x,y=pos self.c.create_oval(self.pos(x,y),fill=color1,outline=color1) def getCanvas(self): return self.c,self.frame,self.f def pos(self,x,y): # Converting the Map into Blocks... Not the Opposite way, It's converting Blocky Positions into Pixel Block Position X=x*self.Block # This Y=y*self.Block # And this are the left top Corner X2=X+self.Block # this Y2=Y+self.Block # and this are the right Bottom Corner return X,Y,X2,Y2 def checkb(self,listd,a,b,c,d): # a is the body testing if its equal to b the second body and c and d are the direction or Position to the next bubble body if listd[a][0]+1*c==listd[b][0]: # You can do a negative or positiv number with #print("Stringasddddddddddddddddddd",listd[a][0]+1*c,listd[b][0]) x = (listd[a][0]*self.Block)+(self.Block/2) # Getting the Posittion from the Middle of the Body to the corner of the Body y = (listd[a][1]*self.Block) x2 = x+self.Block/2 y2 = y+self.Block elif listd[a][0]+1*d==listd[b][0]: # Thats the same but other direction like the all others #print("Stringasddddddddddddddddddd",listd[a][0]+1*d,listd[b][0]) x = (listd[a][0]*self.Block)+(self.Block/2) y = (listd[a][1]*self.Block) x2 = x-self.Block/2 y2 = y+self.Block elif listd[a][1]+1*c==listd[b][1]: # It's just finding out if the next Body part is on the other site of the Map #print("Stringasddddddddddddddddddd",listd[a][1]+1*c,listd[b][1]) x = (listd[a][0]*self.Block) y = (listd[a][1]*self.Block)+(self.Block/2) x2 = x+self.Block y2 = y+self.Block/2 elif listd[a][1]+1*d==listd[b][1]: # If the Snake is in y=0 and the other part y=24 by a map of y=0-y=24 then it's True and executing #print("Stringasddddddddddddddddddd",listd[a][1]+1*d,listd[b][1]) x = (listd[a][0]*self.Block) y = (listd[a][1]*self.Block)+(self.Block/2) x2 = x+self.Block, y2 = y-self.Block/2 else: #print("Nailed") #print("Stringasddddddddddddddddddd",listd[a][1],listd[b][1]) #print("Stringasddddddddddddddddddd",listd[a][1],listd[b][1]) return False,2 return True,(x,y,x2,y2) def drawSnake(self,snake): #if len(snake.body)!=snake.bodyLen: #or len(snake.body)==snake.bodyLen+1: #difference=abs(snake.bodyLen-len(snake.body)) #snake.lastBlockChain-=difference #snake.bodyLen=len(snake.body) if len(snake.body)==snake.bodyLen+1: snake.bodyLen+=1 #snake.lastBlockChain-=1 self.c.itemconfig("snake"+str(id(snake)+snake.lastBlockChain),fill="black",outline="black") else: self.c.itemconfig("snake"+str(id(snake)+snake.lastBlockChain),fill="black",outline="black") #print("Removing snake"+str(id(snake)+snake.lastBlockChain)) #self.c.itemconfig("snake"+str(id(snake)+snake.lastBlockChain),fill="black",outline="black") snake.lastBlockChain+=1 print("lastblockchain",snake.lastBlockChain) print("bodyLen1:",snake.bodyLen) print("Body1:",len(snake.body)) #self.snapColor = "white" if len(snake.body) > 1: i = len(snake.body)-1 a,coord = self.checkb(snake.body,i,i-1,1,-1) # Check for body behind #print(coord) if a==True: # If the above is going through a wall then self.c.create_rectangle(coord,fill=snake.snapColor,outline=snake.snapColor,tags="snake"+str(id(snake)+i+snake.ChainLen)) #print("Adding: snake"+str(i+snake.ChainLen)) else: # put rectangles through number = abs(snake.MapChunks[0]-snake.MapChunks[2]) # Getting the distance to the opposite bubble/wall coord = self.checkb(snake.body,i,i-1,-number,number)[1] if coord==False or coord==2: number = abs(snake.MapChunks[1]-snake.MapChunks[3]) coord = self.checkb(snake.body,i,i-1,-number,number)[1] #print(coord,number,snake.body,snake.MapChunks) self.c.create_rectangle(coord,fill=snake.snapColor,outline=snake.snapColor,tags="snake"+str(id(snake)+i+snake.ChainLen)) #print("Adding: snake"+str(i+snake.ChainLen)) a,coord = self.checkb(snake.body,i-1,i,1,-1) # Check at boddy before the last one for body in front if a==True: # If the above is going through a wall then self.c.create_rectangle(coord,fill=snake.snapColor,outline=snake.snapColor,tags="snake"+str(id(snake)+i+snake.ChainLen)) #print("Adding: snake"+str(i+snake.ChainLen)) else: # put rectangles through number = abs(snake.MapChunks[0]-snake.MapChunks[2]) coord=self.checkb(snake.body,i-1,i,-number,number)[1] if coord==False or coord==2: number = abs(snake.MapChunks[1]-snake.MapChunks[3]) coord=self.checkb(snake.body,i-1,i,-number,number)[1] self.c.create_rectangle(coord,fill=snake.snapColor,outline=snake.snapColor,tags="snake"+str(id(snake)+i+snake.ChainLen)) #print("Adding: snake"+str(i+snake.ChainLen)) self.c.create_oval(self.pos(snake.body[i][0],snake.body[i][1]),fill=snake.bodyColor,outline=snake.bodyColor,tags="snake"+str(id(snake)+i+snake.ChainLen)) self.c.create_oval(self.pos(snake.body[i-1][0],snake.body[i-1][1]),fill=snake.bodyColor,outline=snake.bodyColor,tags="snake"+str(id(snake)+i+snake.ChainLen)) #print("Adding: snake"+str(i+snake.ChainLen)) snake.ChainLen+=1 # If you Playing to loong then it will get a long number and it could maybe lag. If not then I did nothing wrong. else... i would need to reset the number after a time or length print("CHainlen"+str(id(snake)+i+snake.ChainLen),str(snake.ChainLen+i)) def removeSnake(self,snake): for i in range(0,len(snake.body)+snake.ChainLen): self.c.itemconfig("snake"+str(id(snake)+snake.lastBlockChain),fill="black",outline="black") #snake.lastBlockChain+=1 def placeFood(self,*food): if food: self.food = food if self.food != []: x,y,x2,y2 = self.pos(self.food[0],self.food[1]) self.c.create_oval(x+self.Block*0.25,y+self.Block*0.25,x2-self.Block*0.25,y2-self.Block*0.25,fill="red",outline="red",tags="food") else: print("Error: No Food") self.food = randomFood() # ------------------------------ class Snake(): def __init__(self, Map, Name, body, Joystick, borderbool, direction, snapColor="white", bodyColor="lightblue",growLen=4): super().__init__() self.Map = Map self.Name = Name self.body = body self.Joystick = Joystick self.Pop = True self.borderbool = borderbool self.lastdirection = direction self.JoyDirection=0 self.score = 0 self.snapColor=snapColor self.bodyColor=bodyColor self.lastBlockChain = 0 self.ChainLen = 0 self.counter = 0 self.growLen = growLen self.startBody = copy.deepcopy(body) self.bodyLen = len(self.body) #print(self.startBody) self.startDir = copy.copy(direction) self.lose=False #print(self.MapArea,self.Block) #print(self.Map.MapArea[0:2],int(self.Map.MapArea[0]/self.Map.Block-1)) #print(int(self.Map.MapArea[1]/self.Map.Block-1)) self.MapChunks = self.Map.MapChunks #print(self.MapChunks[0:4]) if self.borderbool==False: # Setting the Border Function self.border=self.borderOff elif self.borderbool==True: self.border=self.borderOn() #else: # print("You need to select an option at the variable border") #self.border = border() def borderOff(self): # Border Option1 # If the Head is out of Map then change the location of the Head to the other site of the Map if self.body[-1][0] > self.MapChunks[2]: #x #x,y=self.body[-1] self.body[-1][0] = self.MapChunks[0] elif self.body[-1][0] < self.MapChunks[0]: x,y=self.body[-1] self.body[-1][0] = self.MapChunks[2] if self.body[-1][1] > self.MapChunks[3]: #y #x,y=self.body[-1] self.body[-1][1] = self.MapChunks[1] elif self.body[-1][1] < self.MapChunks[1]: #x,y=self.body[-1] self.body[-1][1] = self.MapChunks[3] def borderOn(self): # Border Option2 if self.body[-1][0] > self.MapChunks[2]: #x self.lose=True elif self.body[-1][0] < self.MapChunks[0]: self.lose=True if self.body[-1][1] > self.MapChunks[3]: #y self.lose=True elif self.body[-1][1] < self.MapChunks[1]: self.lose=True def popSnake(self,x): # Using this method so if you get food you can decide if you want to pop(remove) the last body part if self.Pop==True: #print(x) self.body.pop(x) else: self.counter+=1 if self.counter > self.growLen-1: self.Pop = True self.counter=0 def move(self,direction): #print("lastDir:",self.lastdirection) #print("direction:",direction) if direction == "right" and self.lastdirection != "left": # if it's going to the Left it's not allowed to go Right (Opposite Direction) x,y=self.body[-1] # x & y from Head self.body.append([x+1,y]) # Add a body Part in the moving direction self.popSnake(0) # Remove the last body Part self.border() # Executing the border elif direction == "left" and self.lastdirection != "right": x,y=self.body[-1] self.body.append([x-1,y]) self.popSnake(0) self.border() elif direction == "up" and self.lastdirection != "down": x,y=self.body[-1] self.body.append([x,y-1]) self.popSnake(0) self.border() elif direction == "down" and self.lastdirection != "up": x,y=self.body[-1] self.body.append([x,y+1]) self.popSnake(0) self.border() else: # If it wasn't moving then repeat the old Movement direction = self.lastdirection self.move(direction) self.lastdirection = direction # ----------------------------------------- def getdir(x,*y): if type(x) == tuple: x,y = x if y == 1: y="down" elif y == 2: y="up" if x == 1: x="left" elif x == 2: x="right" if type(x) == str and type(y) == str: out=0 elif type(x) == str: out=x elif type(y) == str: out=y else: out=0 #print("dir:",out) return out import random def randomFood(Player,someList): # not tested localMap = [] for x in range(0,Area.MapChunks[2]+1): for y in range(0,Area.MapChunks[3]+1): localMap+=[[x,y]] for i in someList: try: localMap.remove(i) except ValueError: Print("error") return localMap[random.randint(0,len(localMap)-1)] def checkFood(Map,Players=None,Player=None): # not tested if Map.food!=[]: if Player: if Player.body[-1]==Map.food: Player.score+=1 Map.text(Player) someList=[] for i in Players: for z in i.body: x,y=z someList+=[[x,y]] Map.food = randomFood(Player,someList) Player.Pop=False print(Map.food) Area.placeFood() return True else: return False else: someList=[] for i in Players: for z in i.body: x,y=z someList+=[[x,y]] Map.food = randomFood(Player,someList) Area.placeFood() def collision(body,head): # If Head in a Body part (Other Player or Itself) then return True for i in body: if i==head: return True return False ########################################################### # ----------------------- Settings -----------------------# root = tk.Tk() # Master, X,Y,Background color,Offset (Thickness of the Frame), Block thickness, Frame Color, Thin Frame Color Area=Map(root,500,500,"black",10,10,"pink","white") # Creating Object from Class Map Area.BuildMap() # Building the Map once # Map, Player Name, Body, which Joystick, enable/disable Border, start direction, snapcolor, bodycolor, growLength (How long the snake gets after eating food)(Don't go over 2 or 5... It's not perfect... It's maybe buggy) Player1 = Snake(Area,"Jeff",[[6,6],[5,6],[4,6],[3,6]],1,False,"left","white","lightblue",3) Player2 = Snake(Area,"Felix",[[2,2],[3,2],[4,2],[5,2]],2,False,"left","yellow","purple",3) # --------------------------------------------------------# ########################################################### Playerslist=[Player1,Player2] Players=[Player1,Player2] import Joystick as Joy def Input(): global stop for Player in Players: #print(Player.Joystick) i=getdir(Joy.location(Player.Joystick)) if i!=0: Player.JoyDirection=i # This is the Direction. If it's set then it has or gets a string named "left","right","up","down" and you could change that to a keyboard Input if stop==False: root.after(1,Input) def losePlayer(Player,Players,remove=False): #print(type(Player.body)) if remove: for i in range(len(Player.body)): c=Area.getCanvas()[0] c.itemconfig("snake"+str(id(Player)+Player.lastBlockChain),fill="black",outline="black") Player.lastBlockChain+=1 Players.remove(Player) #del Player def start(remove=False): # Main global stop global food for Player in Players: # Executing it for each Player Player.move(Player.JoyDirection) Area.drawSnake(Player) checkFood(Area,Players,Player) for i in Players: # For each Player again if i!=Player: # Not the Player itself if collision(i.body,Player.body[-1]): # Check if Player Collides with other Player if remove==False: Area.drawCollision(Player.body[-1]) Player.lose=True if i.body[-1]==Player.body[-1]: if remove==False: Area.drawCollision(Player.body[-1]) print(i.Name,Player.Name) i.lose=True Player.lose=True else: if len(Player.body) > 4: # Check if Player Collides with itself if collision(i.body[0:-2],Player.body[-1]): if remove==False: Area.drawCollision(Player.body[-1]) Player.lose=True for i in Players: if i.lose: for z in range(len(Players)): if Players[z].lose: print(Players[z].Name,Players[z].lose) i.score-=1 Area.text(i) print(i.Name,i.score) for i in Players: if i.lose: losePlayer(i,Players,remove) if len(Players)<2: stop=True #stop=True #print(Player.body) if stop==False: root.after(100,start) else: root.after(1000,restartScreen) def restartScreen(): global stop global Players global Playerslist Players=copy.copy(Playerslist) for i in Players: #print(i.startBody) i.body = copy.deepcopy(i.startBody) i.lastdirection = i.startDir i.JoyDirection = i.startDir i.lose=False i.bodyLen=len(i.body) #c=Area.getCanvas()[0] #frame=Area.getCanvas()[1] Area.frame.pack_forget() Area.frame2.pack_forget() Area.frame3.pack_forget() #for i in range(len(Area.Label)): # Area.Label[i].pack_forget() Area.BuildMap() Area.setScores(Players) stop=False Area.food=[] checkFood(Area,Players) start() Input() Area.setScores(Players) Area.food=[5,5] Area.placeFood() stop=False Input() start() root.wm_title("Nice Snake Game not") root.mainloop()
from django.contrib import admin from .models import WeChatUser,PhoneUser,UserCreateBookList,BookInList,StarBookList admin.site.register(WeChatUser) admin.site.register(PhoneUser) admin.site.register(UserCreateBookList) admin.site.register(BookInList) admin.site.register(StarBookList) # Register your models here.
# -*- coding: utf-8 -*- # # Copyright (C) 2010-2016 . # Guijin Ding, dingguijin@gmail.com # # from .basehandler import BaseHandler from ppmessage.core.redis import redis_hash_to_dict from ppmessage.core.utils.datetimestring import datetime_to_timestamp from ppmessage.core.utils.datetimestring import string_to_datetime from ppmessage.core.constant import API_LEVEL from ppmessage.db.models import OrgGroupUserData from ppmessage.db.models import DeviceUser from ppmessage.db.models import DeviceInfo from ppmessage.db.models import OrgGroup from ppmessage.api.error import API_ERR import json import time import logging import datetime from operator import itemgetter def _online(_redis, _device_uuid): _key = DeviceInfo.__tablename__ + ".uuid." + _device_uuid if not _redis.exists(_key): return False if _redis.hget(_key, "device_is_online") == "True": return True return False def _group(_redis, _user_uuid): _key = OrgGroupUserData.__tablename__ + ".user_uuid." + _user_uuid _group_uuids = _redis.smembers(_key) if _group_uuids == None: return None _gs = [] for _group_uuid in _group_uuids: _key = OrgGroup.__tablename__ + ".uuid." + _group_uuid _group_name = _redis.hget(_key, "group_name") _gs.append({"uuid": _group_uuid, "group_name": _group_name}) return _gs def _single(_redis, _user): _is_mobile_online = False _is_browser_online = False _device_uuid = _user.get("mobile_device_uuid") if _device_uuid != None: _is_mobile_online = _online(_redis, _device_uuid) _device_uuid = _user.get("browser_device_uuid") if _device_uuid != None: _is_browser_online = _online(_redis, _device_uuid) _d = {} _d["is_browser_online"] = _is_browser_online _d["is_mobile_online"] = _is_mobile_online _d["group"] = _group(_redis, _user.get("uuid")) _fields = [ "uuid", "user_icon", "user_email", "user_fullname", "user_signature", "updatetime", ] for _i in _fields: _d[_i] = _user.get(_i) if isinstance(_d["updatetime"], str): _updatetime = string_to_datetime(_d["updatetime"]) _d["updatetime"] = datetime_to_timestamp(_updatetime) return _d def single_user(_redis, _user_dict): return _single(_redis, _user_dict) class PPGetOrgGroupUserListHandler(BaseHandler): def _get_users(self, _users): _redis = self.application.redis _pi = _redis.pipeline() _pre = DeviceUser.__tablename__ + ".uuid." for _user_uuid in _users: _key = _pre + _user_uuid _pi.hgetall(_key) _unsort = _pi.execute() return _unsort def _get(self, _app_uuid, _group_uuid): _redis = self.application.redis _key = OrgGroup.__tablename__ + ".app_uuid." + _app_uuid _is = _redis.sismember(_key, _group_uuid) if _is != True: self.setErrorCode(API_ERR.NO_ORG_GROUP) return _r = self.getReturnData() _r["list"] = [] _key = OrgGroupUserData.__tablename__ + ".group_uuid." + _group_uuid _users = _redis.smembers(_key) if _users == None or len(_users) == 0: return _users = self._get_users(_users) for _user in _users: _updatetime = string_to_datetime(_user["updatetime"], "extra") _user["updatetime"] = datetime_to_timestamp(_updatetime) _sorted = sorted(_users, key=itemgetter("updatetime"), reverse=True) _shrinked_users = [] for _user in _sorted: _shrinked_users.append(single_user(_redis, _user)) _r["list"] = _shrinked_users return def initialize(self): self.addPermission(app_uuid=True) self.addPermission(api_level=API_LEVEL.PPCOM) self.addPermission(api_level=API_LEVEL.PPKEFU) self.addPermission(api_level=API_LEVEL.PPCONSOLE) self.addPermission(api_level=API_LEVEL.THIRD_PARTY_KEFU) self.addPermission(api_level=API_LEVEL.THIRD_PARTY_CONSOLE) return def _Task(self): super(PPGetOrgGroupUserListHandler, self)._Task() _body = json.loads(self.request.body) if "app_uuid" not in _body or "group_uuid" not in _body: self.setErrorCode(API_ERR.NO_PARA) return self._get(_body.get("app_uuid"), _body.get("group_uuid")) return
class A: pass class B(A): pass class S(str): pass class Animal: pass class Person(Animal): def __init__(self, name: str, age: int): self.name = name self.age = age class PersonAndStr: def __init__(self, person_a: Person, st: str): self.person_a = person_a self.st = st class DefaultValueClass: def __init__(self, person: Person, name: str = "Annie", age: int = 55): self.person = person self.name = name self.age = age
from django.contrib import admin from django.urls import path from base import views urlpatterns = [ path('', views.algorithmsView, name='pagina_inicial'), path(r'dataset/', views.datasetView, name='dataset'), path(r'training/', views.trainingView, name='training'), #Create path(r'create_dataset/', views.createDataset, name='create_dataset'), path(r'create_network/', views.createNetwork, name='create_network'), path(r'create_dataset_txt/', views.createDatasetTxt, name='create_dataset_txt'), #Delete path(r'delete_dataset/', views.deleteDataset, name='delete_dataset'), #Algorithms path(r'kececioglu_algorithm/', views.kececiogluAlgorithm, name='kececioglu_algorithm'), path(r'reinforcement_algorithm/', views.reinforcementAlgorithm, name='reinforcement_algorithm'), ]
import numpy as np from numpy import ndarray import scipy.linalg as la #import solution from utils.gaussparams import MultiVarGaussian from config import DEBUG from typing import Sequence def get_NIS(z_pred_gauss: MultiVarGaussian, z: ndarray): """Calculate the normalized innovation squared (NIS), this can be seen as the normalized measurement prediction error squared. See (4.66 in the Sensor Fusion book.) Tip: use the mahalanobis_distance method of z_pred_gauss, (3.2) in the book Args: z_pred_gauss (MultiVarGaussian): predigted measurement gaussian z (ndarray): measurement Returns: NIS (float): normalized innovation squared """ z_pred, S = z_pred_gauss v = z - z_pred NIS = v.T @ np.linalg.inv(S)@ v return NIS def get_NEES(x_gauss: MultiVarGaussian, x_gt: ndarray): """Calculate the normalized estimation error squared (NEES) See (4.65 in the Sensor Fusion book). Tip: use the mahalanobis_distance method of x_gauss, (3.2) in the book Args: x_gauss (MultiVarGaussian): state estimate gaussian x_gt (ndarray): true state Returns: NEES (float): normalized estimation error squared """ x_hat, P_hat = x_gauss err = x_hat - x_gt NEES = err.T @ np.linalg.inv(P_hat) @ err return NEES def get_ANIS(z_pred_gauss_data: Sequence[MultiVarGaussian], z_data: Sequence[ndarray]): """Calculate the average normalized innovation squared (ANIS) Tip: use get_NIS Args: z_pred_gauss_data (Sequence[MultiVarGaussian]): Sequence (List) of predicted measurement gaussians z_data (Sequence[ndarray]): Sequence (List) of true measurements Returns: ANIS (float): average normalized innovation squared """ NIS_arr = np.array([]) for i in range(len(z_data)): NIS = get_NIS(z_pred_gauss_data[i], z_data[i]) np.append(NIS_arr, NIS) ANIS = np.average(NIS_arr) return ANIS def get_ANEES(x_upd_gauss_data: Sequence[MultiVarGaussian], x_gt_data: Sequence[ndarray]): """Calculate the average normalized estimation error squared (ANEES) Tip: use get_NEES Args: x_upd_gauss_data (Sequence[MultiVarGaussian]): Sequence (List) of state estimate gaussians x_gt_data (Sequence[ndarray]): Sequence (List) of true states Returns: ANEES (float): average normalized estimation error squared """ NEES_arr = np.array([]) for i in range(len(x_gt_data)): NEES = get_NEES(x_upd_gauss_data[i], x_gt_data[i]) np.append(NEES_arr, NEES) ANEES = np.average(NEES_arr) return ANEES # def get_RMSE(x_upd_gauss_data: Sequence[MultiVarGaussian], # x _gt_data: Sequence[ndarray]): # #TODO
# Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from .utils import MultiTaskStopOnPlateau import json from io import open from easydict import EasyDict as edict import torch import os from imix.models.builder import VQA_MODELS from transformers.modeling_bert import BertConfig from ..base_model import BaseModel from .task_utils import compute_score_with_logits from .vilbert import VILBertForVLTasks @VQA_MODELS.register_module() class VILBERT(BaseModel): def __init__(self, **kwargs): super().__init__() self.config = config = kwargs['params'] self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') self.root_path = os.path.dirname(__file__) # task_lr = [] task_ids = [] for i, task_id in enumerate(config.tasks.split('-')): task = 'TASK' + task_id cfg = config.TASKS[task] name = cfg.name task_ids.append(task) # task_lr.append(cfg.lr) # base_lr = min(task_lr) # loss_scale = {} # for i, task_id in enumerate(config.tasks.split('-')): # task = 'TASK' + task_id # loss_scale[task] = task_lr[i] / base_lr # task_ave_iter = {} self.task_stop_controller = {} for task_id in task_ids: # task_ave_iter[task_id] = int(config.TASKS[task]['num_epoch'] * num_iter * # config.train_iter_multiplier / # config.TASKS[task]['num_epoch']) # config.total_epochs) self.task_stop_controller[task_id] = MultiTaskStopOnPlateau( mode='max', patience=1, continue_threshold=0.005, cooldown=1, threshold=0.001, ) # task_ave_iter_list = sorted(task_ave_iter.values()) # median_num_iter = task_ave_iter_list[-1] # num_train_optimization_steps = ( # median_num_iter * \ # config.total_epochs // config.gradient_accumulation_steps # ) num_labels = max([config.TASKS[k]['num_labels'] for k in task_ids]) bertconfig = BertConfig.from_dict(config) if bertconfig.visual_target == 0: bertconfig.v_config.target_size = 1601 else: bertconfig.v_config.target_size = 2048 if 'roberta' in config.bert_model: bertconfig.model = 'roberta' self.model = VILBertForVLTasks.from_pretrained( config.from_pretrained, config=bertconfig, num_labels=num_labels, ) if config.freeze != -1: bert_weight_name = json.load( open(self.root_path + '/config/' + config.bert_model + '_weight_name.json', 'r')) bert_weight_name_filtered = [] for name in bert_weight_name: if 'embeddings' in name: bert_weight_name_filtered.append(name) elif 'encoder' in name: layer_num = name.split('.')[2] if int(layer_num) <= config.freeze: bert_weight_name_filtered.append(name) for key, value in dict(self.model.named_parameters()).items(): if key[12:] in bert_weight_name_filtered: value.requires_grad = False logger.info('filtered weight') logger.info(bert_weight_name_filtered) self.lr_reduce_list = [5, 7] self.global_step = 0 self.task_iter_train = {name: None for name in task_ids} self.task_count = {name: 0 for name in task_ids} self.task_ids = task_ids def run_one_time(self, task_id, data): params = self.get_image_and_text_features(task_id, data) ( vil_prediction, vil_prediction_gqa, vil_logit, vil_binary_prediction, vil_tri_prediction, vision_prediction, vision_logit, linguisic_prediction, linguisic_logit, _, ) = self.model( params.question, params.features, params.spatials, params.segment_ids, params.input_mask, params.image_mask, params.co_attention_mask, params.task_tokens, ) target = params.target batch_size = params.batch_size multiple_choice_ids = params.multiple_choice_ids num_options = params.num_options cfg_type = self.config.TASKS[task_id]['type'] if cfg_type == 'VL-classifier': batch_score = compute_score_with_logits(vil_prediction, target).sum() pred = vil_prediction elif cfg_type == 'VL-classifier-GQA': batch_score = compute_score_with_logits(vil_prediction_gqa, target).sum() pred = vil_prediction_gqa elif cfg_type == 'VL-logit': vil_logit = vil_logit.view(batch_size, num_options) _, preds = torch.max(vil_logit, 1) batch_score = float((preds == target).sum()) pred = vil_logit elif cfg_type == 'V-logit': _, select_idx = torch.max(vision_logit, dim=1) select_target = target.squeeze(2).gather(1, select_idx.view(-1, 1)) batch_score = float(torch.sum(select_target > 0.5)) pred = vision_logit elif cfg_type == 'V-logit-mc': vision_logit = vision_logit[:, 101:] vision_logit = vision_logit.squeeze(2).gather(1, multiple_choice_ids) vision_logit = vision_logit.unsqueeze(2) _, preds = torch.max(vision_logit, dim=1) _, target_tmp = torch.max(target, dim=1) batch_score = float((preds == target_tmp).sum()) pred = vision_logit elif cfg_type == 'VL-binary-classifier': batch_score = compute_score_with_logits(vil_binary_prediction, target).sum() pred = vil_binary_prediction elif cfg_type == 'VL-tri-classifier': batch_score = compute_score_with_logits(vil_tri_prediction, target).sum() pred = vil_tri_prediction return edict({ 'scores': pred, 'target': target, 'batch_score': batch_score, 'batch_size': batch_size, }) def forward_train(self, data, **kwargs): iterId = kwargs['cur_iter'] epochId = kwargs['cur_epoch'] step = kwargs['inner_iter'] # torch.autograd.set_detect_anomaly(True) first_task = True model_output = {} for task_id in self.task_ids: is_forward = False if (not self.task_stop_controller[task_id].in_stop) or (iterId % self.config.train_iter_gap == 0): is_forward = True if is_forward: output_dict = self.run_one_time(task_id, data) output_dict.batch_score /= output_dict.batch_size model_output[task_id] = { 'scores': output_dict.scores, 'target': output_dict.target, 'batch_score': output_dict.batch_score, } if (step + 1) % self.config.gradient_accumulation_steps == 0: # if config.fp16: # lr_this_step = config[learning_rate] * warmup_linear( # global_step / num_train_optimization_steps, # config[warmup_proportio]n, # ) # for param_group in optimizer.param_groups: # param_group["lr"] = lr_this_step # if first_task and ( # global_step < warmpu_steps # or config.lr_scheduler == "warmup_linear" # ): # warmup_scheduler.step() if first_task: self.global_step += 1 first_task = False # if "cosine" in config.lr_scheduler and global_step > warmpu_steps: # lr_scheduler.step() # if config.lr_scheduler == "automatic": # lr_scheduler.step(sum(val_scores.values())) # logger.info("best average score is %3f" % lr_scheduler.best) # elif config.lr_scheduler == "mannul": # lr_scheduler.step() if epochId in self.lr_reduce_list: for task_id in self.task_ids: # reset the task_stop_controller once the lr drop self.task_stop_controller[task_id]._reset() # now only one task return model_output[task_id] def forward_test(self, data, **kwargs): # test now does not support **kwargs if isinstance(self.task_ids, list): task_id = self.task_ids[0] else: task_id = self.task_ids # torch.autograd.set_detect_anomaly(True) model_output = {} output_dict = self.run_one_time(task_id, data) model_output[task_id] = { 'batch_score': output_dict.batch_score, 'batch_size': output_dict.batch_size, } # # update the multi-task scheduler. # self.task_stop_controller[task_id].step( # tbLogger.getValScore(task_id)) # score = tbLogger.showLossVal(task_id, task_stop_controller) # now only one task return model_output[task_id] def get_image_and_text_features(self, task_id, data): batch = tuple(t.cuda(device=self.device, non_blocking=True) for t in data) if task_id == 'TASK4' or task_id == 'TASK17': (features, spatials, image_mask, question, target, input_mask, segment_ids, multiple_choice_ids, co_attention_mask, question_id) = ( batch) else: (features, spatials, image_mask, question, target, input_mask, segment_ids, co_attention_mask, question_id) = ( batch) num_options = None batch_size = features.size(0) cfg_process = self.config.TASKS[task_id]['process'] if cfg_process in ['dialog']: max_num_bbox = features.size(1) nround = question.size(1) num_options = question.size(2) rbatch_size = batch_size * nround question = question.view(rbatch_size, question.size(2), question.size(3)) target = target.view(-1) input_mask = input_mask.view(rbatch_size, input_mask.size(2), input_mask.size(3)) segment_ids = segment_ids.view(rbatch_size, segment_ids.size(2), segment_ids.size(3)) co_attention_mask = co_attention_mask.view( rbatch_size, co_attention_mask.size(2), co_attention_mask.size(3), co_attention_mask.size(4), ) features = ( features.unsqueeze(1).unsqueeze(1).expand(batch_size, nround, num_options, max_num_bbox, 2048).contiguous().view(-1, max_num_bbox, 2048)) spatials = ( spatials.unsqueeze(1).unsqueeze(1).expand(batch_size, nround, num_options, max_num_bbox, 5).contiguous().view(-1, max_num_bbox, 5)) image_mask = ( image_mask.unsqueeze(1).expand(batch_size, nround, num_options, max_num_bbox).contiguous().view(-1, max_num_bbox)) question = question.view(-1, question.size(2)) input_mask = input_mask.view(-1, input_mask.size(2)) segment_ids = segment_ids.view(-1, segment_ids.size(2)) co_attention_mask = co_attention_mask.view(-1, co_attention_mask.size(2), co_attention_mask.size(3)) batch_size = rbatch_size elif cfg_process in ['expand']: max_num_bbox = features.size(1) num_options = question.size(1) features = ( features.unsqueeze(1).expand(batch_size, num_options, max_num_bbox, 2048).contiguous().view(-1, max_num_bbox, 2048)) spatials = ( spatials.unsqueeze(1).expand(batch_size, num_options, max_num_bbox, 5).contiguous().view(-1, max_num_bbox, 5)) image_mask = ( image_mask.unsqueeze(1).expand(batch_size, num_options, max_num_bbox).contiguous().view(-1, max_num_bbox)) question = question.view(-1, question.size(2)) input_mask = input_mask.view(-1, input_mask.size(2)) segment_ids = segment_ids.view(-1, segment_ids.size(2)) co_attention_mask = co_attention_mask.view(-1, co_attention_mask.size(2), co_attention_mask.size(3)) elif cfg_process in ['retrieval']: max_num_bbox = features.size(1) num_options = question.size(1) features = features.view(-1, features.size(2), features.size(3)) spatials = spatials.view(-1, spatials.size(2), spatials.size(3)) image_mask = image_mask.view(-1, image_mask.size(2)) question = question.view(-1, question.size(2)) input_mask = input_mask.view(-1, input_mask.size(2)) segment_ids = segment_ids.view(-1, segment_ids.size(2)) co_attention_mask = co_attention_mask.view(-1, co_attention_mask.size(2), co_attention_mask.size(3)) elif cfg_process in ['nlvr']: batch_size = features.size(0) max_num_bbox = features.size(1) num_options = question.size(1) features = features.view(batch_size * 2, int(features.size(1) / 2), features.size(2)) spatials = spatials.view(batch_size * 2, int(spatials.size(1) / 2), spatials.size(2)) image_mask = image_mask.view(batch_size * 2, int(image_mask.size(1) / 2)) question = question.repeat(1, 2) question = question.view(batch_size * 2, int(question.size(1) / 2)) input_mask = input_mask.repeat(1, 2) input_mask = input_mask.view(batch_size * 2, int(input_mask.size(1) / 2)) segment_ids = segment_ids.repeat(1, 2) segment_ids = segment_ids.view(batch_size * 2, int(segment_ids.size(1) / 2)) co_attention_mask = co_attention_mask.view( batch_size * 2, int(co_attention_mask.size(1) / 2), co_attention_mask.size(2), ) task_tokens = question.new().resize_(question.size(0), 1).fill_(int(task_id[4:])) return edict({ 'question': question, 'features': features, 'spatials': spatials, 'segment_ids': segment_ids, 'input_mask': input_mask, 'image_mask': image_mask, 'co_attention_mask': co_attention_mask, 'task_tokens': task_tokens, 'target': target, 'batch_size': batch_size, 'multiple_choice_ids': multiple_choice_ids if task_id == 'TASK4' or task_id == 'TASK17' else None, 'num_options': num_options, })
import redis from threading import Thread, RLock import json import time import queue import traceback import logging import random from . import defaults from . import common from .utils import ( hook_console, __org_stdout__, _stdout, _stderr, check_connect_sender, Valve, TaskEnv, ) from .pipeline import ( send_to_pipeline, send_to_pipeline_data, from_pipeline_execute, ) from .order import ( cmdline_command, script_command, ) from .error import NotInDefaultType class Worker(common.Initer): def __init__(self, rds = redis.StrictRedis(), workerid = None ): def wait_connect_pub_worker(self): rname = '{}:{}'.format(defaults.VREDIS_PUBLISH_WORKER, self.workerid) cursub = self.rds.pubsub_numsub(rname)[0][1] self._pub = self.rds.pubsub() self._pub.subscribe(rname) while self.rds.pubsub_numsub(rname)[0][1] == cursub: time.sleep(.15) self._pubn = int(self.rds.pubsub_numsub(rname)[0][1]) # 一个源于redis自身的问题,这里不一定是1,所以需要进行传递处理。 self.rds = rds self.rds.ping() self.pull_task = queue.Queue() self.cmdline_task = queue.Queue() self.workerid = self.rds.hincrby(defaults.VREDIS_WORKER, defaults.VREDIS_WORKER_ID)\ if workerid is None else workerid self.tasklist = set() hook_console() wait_connect_pub_worker(self) # 开启任务前需要等待自连接广播打开,用于任意形式工作端断开能被发送任务端检测到 self._thread_num = 0 # 用以计算当前使用的线程数量,同一时间 pull_task 线程过高会有警告。 self._settings = getattr(self, '_settings', {}) @classmethod def from_settings(cls, **kw): cls._settings = kw rds = cls.redis_from_settings(**kw) d = dict( workerid = None ) # 配置类参数 for i in kw: if i in d: d[i] = kw[i] if hasattr(defaults,i): setattr(defaults,i,kw[i]) return cls(rds=rds,**d) # 拆分函数 @staticmethod def disassemble_func(func,start=None,err=None,stop=None): def _disassemble(*a,**kw): return func, a, kw, start, err, stop return _disassemble def connect_work_queue(self,_queue,taskid,workerid,order): def _task_func(task_func): def pack_task(*a,**kw): # 给任务注入“开始回调”、“错误回调”和“停止回调”的函数,放进线程执行队列 _start = self.disassemble_func(send_to_pipeline)(self,taskid,workerid,order,'start',plus=self._pubn) _error = self.disassemble_func(send_to_pipeline)(self,taskid,workerid,order,'error') _stop = self.disassemble_func(send_to_pipeline)(self,taskid,workerid,order,'stop') _task = self.disassemble_func(task_func,start=_start,err=_error,stop=_stop)(*a,**kw) _queue.put(_task) return pack_task return _task_func def process_order(self): def _start(): print('open worker id:',self.workerid) self.pub = self.rds.pubsub() self.pub.subscribe(defaults.VREDIS_PUBLISH_WORKER) for i in self.pub.listen(): # 过滤订阅信息 if i['type'] == 'subscribe': continue order = json.loads(i['data']) workerid = self.workerid taskid = order['taskid'] order = order['order'] pull_looper = self.connect_work_queue(self.pull_task, taskid,workerid,order) cmdl_looper = self.connect_work_queue(self.cmdline_task,taskid,workerid,order) # 暂未用到 if order['command'] == 'cmdline': cmdl_looper(cmdline_command)(self,taskid,workerid,order) elif order['command'] == 'script': pull_looper(script_command) (self,taskid,workerid,order) idx = 0 # 暴力解决网络中断问题 while True: try: try: self.rds.ping() except: self.rds = super(Worker, self).redis_from_settings(**self._settings) _start() except: idx += 1 __org_stdout__.write('unconnect, retry time:{}\n'.format(idx)) time.sleep(1) continue def _thread(self,_queue): while True: func,args,kwargs,start,err,stop = _queue.get() with common.Initer.lock: self._thread_num += 1 def task(func,args,kwargs,start,err,stop): # 为了使 stack 寻找时候定位当前的环境从而找到 taskid 来分割不同任务的日志环境 # 需要确保这里的 locals() 空间内拥有该参数名并且其余的环境没有该参数名字 # 具体使用详细见 utils 内的 hook 类的函数实现(听不懂就算了,总之就是很魔法) __very_unique_function_name__ = None taskid = start[1][1] workerid = start[1][2] order = start[1][3] rds = self.rds valve = Valve(taskid) rdm = self.rds.hincrby(defaults.VREDIS_WORKER, taskid) # 阀门过滤,有配置用配置,没有配置就会用 defaults 里面的默认参数 # 使用时就当作一般的 defaults 来进行配置即可。 try: valve.update(order['settings']) if start is not None: start_callback,a,kw,_,_,_ = start start_callback(*a,**kw) func(*args,**kwargs) except: if err is not None: err_callback,a,kw,_,_,_ = err err_callback(*a,**kw,msg=traceback.format_exc()) finally: self.rds.hdel(defaults.VREDIS_WORKER, taskid) if stop is not None: stop_callback,a,kw,_,_,_ = stop if self._thread_num < valve.VREDIS_WORKER_THREAD_TASK_NUM: stop_callback(*a,**kw,plus=(valve,TaskEnv)) else: print('Warning! More than {} tasks are currently being performed, workerid:{}.' \ .format(self._thread_num-1,workerid)) Thread(target=stop_callback,args=a,kwargs={**kw,'plus':(valve,TaskEnv)}).start() _stdout._clear_cache(taskid) _stderr._clear_cache(taskid) task(func,args,kwargs,start,err,stop) with common.Initer.lock: self._thread_num -= 1 def _thread_run(self): self.clear_tail = {} while True: for etask in list(TaskEnv.__taskenv__): # 为了安全的实现 worker 的缓冲任务能够在crash后分派给别的任务,这里替换成新的处理方式 with common.Initer.lock: if etask not in self.tasklist: continue if etask not in self.clear_tail: self.clear_tail[etask] = 0 ret, rdata = from_pipeline_execute(self, etask) with common.Initer.lock: if etask not in self.tasklist: if etask in self.clear_tail: if self.clear_tail[etask] == 0: self.clear_tail.pop(etask) else: self.clear_tail[etask] -= 1 if ret: self.rds.rpush('{}:{}'.format(defaults.VREDIS_TASK, etask), ret) continue else: self.clear_tail[etask] += 1 if rdata: taskid = rdata['taskid'] func_name = rdata['function'] args = rdata['args'] kwargs = rdata['kwargs'] plus = rdata['plus'] TaskEnv.incr(self.rds, taskid, self.workerid) try: func_str = '{}(*{},**{})'.format(func_name,args,kwargs) taskenv = TaskEnv.get_env_locals(taskid) # 魔法参数,以及为了兼顾魔法的发生而需要的 get_task_locals 函数 # 看着没用实际有用(用于挂钩标准输出流) __very_unique_function_name__ = None taskid,workerid,order,rds,valve,rdm = TaskEnv.get_task_locals(taskid) table = plus.get('table',valve.VREDIS_DATA_DEFAULT_TABLE) if valve.VREDIS_HOOKCRASH is None: # 修改了 hookcrash 传递的方式,现在会更好一点。 # 也不会浪费传输资源了。 with common.Initer.lock: hookcrash = self.rds.hget(defaults.VREDIS_SENDER, '{}@hookcrash'.format(taskid)) valve.VREDIS_HOOKCRASH = json.loads(hookcrash) if valve.VREDIS_KEEPALIVE: if check_connect_sender(rds, taskid, order['sender_pubn']): data = eval(func_str, None, taskenv) send_to_pipeline_data(self,taskid,data,ret,table,valve) else: _cname = '{}:{}:{}'.format(defaults.VREDIS_TASK_CACHE, taskid, workerid) self.rds.lrem(_cname, 1, ret) else: inter = self.rds.hget(defaults.VREDIS_WORKER, '{}@inter'.format(taskid)) or 0 if int(inter): data = eval(func_str, None, taskenv) send_to_pipeline_data(self,taskid,data,ret,table,valve) else: _cname = '{}:{}:{}'.format(defaults.VREDIS_TASK_CACHE, taskid, workerid) self.rds.lrem(_cname, 1, ret) except: try: # 这里的任务会用到任务配置的空间,所以需要考虑暴力处理异常。 # 网络异常中断点的问题可能存在一些奇怪问题,目前暴力异常捕捉即可。 send_to_pipeline(self,taskid,workerid,order,'error',traceback.format_exc()) except: # 开发使用的代码 # with common.Initer.lock: # __org_stdout__.write(traceback.format_exc()) pass try: # 任务失败则重试,默认最大重试次数为3 retry = plus.get('retry',0) rdata['plus'].update({'retry':retry+1}) _rname = '{}:{}'.format(defaults.VREDIS_TASK, taskid) _cname = '{}:{}:{}'.format(defaults.VREDIS_TASK_CACHE, taskid, self.workerid) with self.rds.pipeline() as pipe: pipe.multi() if retry < defaults.VREDIS_TASK_MAXRETRY: rdata.update({'traceback': traceback.format_exc()}) pipe.rpush(_rname, json.dumps(rdata)) else: # 计入错误统计信息中,推入持久错误任务管道便于查看。 _ename = '{}:{}'.format(defaults.VREDIS_TASK_ERROR, taskid) _sname_c = '{}:{}:{}'.format(defaults.VREDIS_TASK_STATE, taskid, self.workerid) self.rds.hincrby(_sname_c,'fail',1) self.rds.lpush(_ename, ret) pipe.lrem(_cname, -1, ret) pipe.execute() except: # 防止异常破坏线程。 pass finally: TaskEnv.decr(self.rds, taskid, self.workerid) with common.Initer.lock: self.clear_tail[etask] -= 1 time.sleep(defaults.VREDIS_WORKER_IDLE_TIME) # 用于将广播的任务信号拖拽下来进行环境配置的线程群 def process_pull_task(self): for i in range(defaults.VREDIS_WORKER_THREAD_TASK_NUM): Thread(target=self._thread,args=(self.pull_task,)).start() # 直接执行任务的线程群 def process_run_task(self): for i in range(defaults.VREDIS_WORKER_THREAD_RUN_NUM): Thread(target=self._thread_run).start() # 这里将作为命令行传输执行的管道 def process_run_cmdline(self): for i in range(defaults.VREDIS_WORKER_THREAD_TASK_NUM): Thread(target=self._thread,args=(self.cmdline_task,)).start() _o_print = print def _lk_print(*a,**kw): with common.Initer.lock: _o_print(*a,**kw) __builtins__['print'] = _lk_print
# --- # jupyter: # jupytext: # formats: ipynb,py:light # text_representation: # extension: .py # format_name: light # format_version: '1.4' # jupytext_version: 1.2.4 # kernelspec: # display_name: Python (halite) # language: python # name: halite # --- # # FastAPI Usage # 1. Build the container: # ```sh # docker build -t halite:latest -f Dockerfile . # ``` # # # 2. Run the container: # ```sh # docker run --publish 8080:80 halite # ``` from kaggle_environments import make import requests env = make("halite") def act(url, observation, configuration): """ Sends a post request to one of the two agents. """ data = {"observation": observation, "configuration": configuration} return requests.post(url=url, json=data).json() URL = "http://localhost:8080/act" OBS = env.state[0].observation CONFIG = env.configuration res = act(URL, OBS, CONFIG) res
""" Reprosim library - routines for a modelling the lung The Reprosim library is an advanced modelling library for models of the reproductive system. """ classifiers = """\ Development Status :: 4 - Beta Intended Audience :: Developers Intended Audience :: Education Intended Audience :: Science/Research License :: OSI Approved :: Apache Software License Programming Language :: Python Programming Language :: Python :: 2.7 Programming Language :: Python :: 3.5 Operating System :: Microsoft :: Windows Operating System :: Unix Operating System :: MacOS :: MacOS X Topic :: Scientific/Engineering :: Medical Science Apps. Topic :: Software Development :: Libraries :: Python Modules """ from setuptools import setup doclines = __doc__#.split("\n") setup( name='reprosim', version='@Reprosim_VERSION@', author='Reproduction and Development Group, Auckland Bioengineering Institute.', author_email='alys.clark@auckland.ac.nz', packages=['reprosim'], # package_data={'reprosim': []}, platforms=['any'], url='http://www.abi.auckland.ac.nz/en/about/our-research/development-and-reproductive-health.html', license='http://www.apache.org/licenses/LICENSE-2.0', description='Reprosim library of routines for modelling the reproductive system.', classifiers = filter(None, classifiers.split("\n")), long_description=doclines, )
class LocalCache(object): pass
from pwn import * from Crypto.Util.number import * from Crypto.Cipher import AES debug = True r = remote("crypto.chall.pwnoh.io", 13374, level = 'debug' if debug else None) r.recvuntil('p = ') p = int(r.recvline()) assert isPrime(p) g = 5 r.recvuntil('A = ') A = int(r.recvline()) B = pow(g, 57, p) ss = pow(A, 57, p) r.sendlineafter('Give me your public key B: ', str(B)) r.recvuntil('ciphertext = ') ct = r.recvline(keepends=False).decode() key = hashlib.sha1(long_to_bytes(ss)).digest()[:16] cipher = AES.new(key, AES.MODE_ECB) print(cipher.decrypt(bytes.fromhex(ct)))
# Copyright (c) Microsoft. All rights reserved. # Licensed under the MIT license. See LICENSE.md file in the project root # for full license information. # ============================================================================== import os, sys import numpy as np from cntk.cntk_py import DeviceKind_GPU from cntk.device import try_set_default_device, gpu from cntk.ops.tests.ops_test_utils import cntk_device import pytest abs_path = os.path.dirname(os.path.abspath(__file__)) sys.path.append(os.path.join(abs_path, "..", "..", "..", "..", "Examples", "Image", "Classification", "ConvNet", "Python" )) from ConvNet_CIFAR10 import convnet_cifar10 TOLERANCE_ABSOLUTE = 2E-1 def test_convnet_cifar_error(device_id): if cntk_device(device_id).type() != DeviceKind_GPU: pytest.skip('test only runs on GPU') try_set_default_device(cntk_device(device_id)) externalData = 'CNTK_EXTERNAL_TESTDATA_SOURCE_DIRECTORY' in os.environ if externalData: extPath = os.environ['CNTK_EXTERNAL_TESTDATA_SOURCE_DIRECTORY'] dataset_path = os.path.join(extPath, "Image", "CIFAR", "v0") else: dataset_path = os.path.join(abs_path, "..", "..", "..", "..", "Examples", "Image", "DataSets", "CIFAR-10") error = convnet_cifar10(data_path=dataset_path, epoch_size=2000, minibatch_size=32, max_epochs=10) expected_error = 0.7 assert np.allclose(error, expected_error, atol=TOLERANCE_ABSOLUTE)
# http://stackoverflow.com/ # questions/12507274/how-to-get-bounds-of-a-google-static-map import math MERCATOR_RANGE = 256 def bound(value, opt_min, opt_max): if opt_min is not None: value = max(value, opt_min) if opt_max is not None: value = min(value, opt_max) return value def degrees_to_radians(deg): return deg * (math.pi / 180) def radians_to_degrees(rad): return rad / (math.pi / 180) class Point: def __init__(self, x=0, y=0): self.x = x self.y = y def __repr__(self): return "Point(%d,%d)" % (self.x, self.y) def __str__(self): return "(x=%d,y=%d)" % (self.x, self.y) class LatLng: def __init__(self, lt, ln): self.lat = lt self.lng = ln def __repr__(self): return "LatLng(%g,%g)" % (self.lat, self.lng) def __str__(self): return "(lat=%g,lng=%g)" % (self.lat, self.lng) class MercatorProjection: def __init__(self): self.pixelOrigin_ = Point(int(MERCATOR_RANGE / 2.0), int(MERCATOR_RANGE / 2.0)) self.pixelsPerLonDegree_ = MERCATOR_RANGE / 360.0 self.pixelsPerLonRadian_ = MERCATOR_RANGE / (2.0 * math.pi) def from_latlng_to_point(self, latlng, opt_point=None): point = opt_point if opt_point is not None else Point(0, 0) origin = self.pixelOrigin_ point.x = origin.x + latlng.lng * self.pixelsPerLonDegree_ # NOTE(appleton): Truncating to 0.9999 effectively limits latitude to # 89.189.This is about a third of a tile past the edge of world tile siny = bound(math.sin(degrees_to_radians(latlng.lat)), -0.9999, 0.9999) point.y = origin.y + 0.5 * math.log((1 + siny) / (1.0 - siny)) * -self.pixelsPerLonRadian_ return point def from_point_to_latlng(self, point): origin = self.pixelOrigin_ lng = (point.x - origin.x) / self.pixelsPerLonDegree_ lat_radians = (point.y - origin.y) / -self.pixelsPerLonRadian_ lat = radians_to_degrees(2.0 * math.atan(math.exp(lat_radians)) - math.pi / 2.0) return LatLng(lat, lng) def get_point(point, center, zoom, mapwidth, mapheight): scale = 2.0 ** zoom proj = MercatorProjection() center_p = proj.from_latlng_to_point(center) center_p.x = center_p.x * scale center_p.y = center_p.y * scale subject_p = proj.from_latlng_to_point(point) subject_p.x = subject_p.x * scale subject_p.y = subject_p.y * scale return Point((subject_p.x - center_p.x) + mapwidth / 2.0, (subject_p.y - center_p.y) + mapheight / 2.0) def get_corners(center, zoom, mapwidth, mapheight): scale = 2.0 ** zoom proj = MercatorProjection() center_px = proj.from_latlng_to_point(center) sw_point = Point(center_px.x - (mapwidth / 2.0) / scale, center_px.y + (mapheight / 2.0) / scale) sw_lat_lon = proj.from_point_to_latlng(sw_point) ne_point = Point(center_px.x + (mapwidth / 2.0) / scale, center_px.y - (mapheight / 2.0) / scale) ne_lat_lon = proj.from_point_to_latlng(ne_point) return { 'N': ne_lat_lon.lat, 'E': ne_lat_lon.lng, 'S': sw_lat_lon.lat, 'W': sw_lat_lon.lng, } # https://wiki.openstreetmap.org/wiki/Slippy_map_tilenames def get_tile_xy(latlng, zoom): lat_rad = math.radians(latlng.lat) n = 2.0 ** zoom xtile = (latlng.lng + 180.0) / 360.0 * n ytile = ((1.0 - math.log(math.tan(lat_rad) + (1 / math.cos(lat_rad))) / math.pi) / 2.0 * n) return { 'X': xtile, 'Y': ytile }
count = 0 ls = [1,2,3,0,4,0] for i in ls: if i == 0: count += 1 print(count)
# Copyright European Organization for Nuclear Research (CERN) # # Licensed under the Apache License, Version 2.0 (the "License"); # You may not use this file except in compliance with the License. # You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 # # Authors: # - Vincent Garonne, <vincent.garonne@cern.ch>, 2015 """asynchronous rules and rule approval Revision ID: 1d96f484df21 Revises: 1fc15ab60d43 Create Date: 2015-07-08 16:59:23.710208 """ from alembic import op, context import sqlalchemy as sa # revision identifiers, used by Alembic. revision = '1d96f484df21' down_revision = '3d9813fab443' def upgrade(): if context.get_context().dialect.name not in ('sqlite'): op.add_column('rules', sa.Column('ignore_account_limit', sa.Boolean(name='RULES_IGNORE_ACCOUNT_LIMIT_CHK'), default=False)) if context.get_context().dialect.name not in ('mysql'): op.drop_constraint('RULES_STATE_CHK', 'rules') op.create_check_constraint('RULES_STATE_CHK', 'rules', 'state IN (\'S\', \'R\', \'U\', \'O\', \'A\', \'I\')') def downgrade(): if context.get_context().dialect.name not in ('sqlite'): op.drop_column('rules', 'ignore_account_limit') op.drop_constraint('RULES_STATE_CHK', 'rules') op.create_check_constraint('RULES_STATE_CHK', 'rules', 'state IN (\'S\', \'R\', \'U\', \'O\')')
import unittest from test import testlmlexer from test import testlmparser suite = unittest.TestLoader().loadTestsFromTestCase(testlmlexer.testLmLexer) unittest.TextTestRunner(verbosity=2).run(suite) suite = unittest.TestLoader().loadTestsFromTestCase(testlmparser.TestLmParser) unittest.TextTestRunner(verbosity=2).run(suite)
class Solution: def possibleBipartition(self, n: int, dislikes: List[List[int]]) -> bool: self.is_bipartite = True visited = [False] * (n + 1) color = [False] * (n + 1) # build a graph graph = [[] for _ in range(n + 1)] for edge in dislikes: # undirected graph graph[edge[0]].append(edge[1]) graph[edge[1]].append(edge[0]) def dfs(node): nonlocal graph, color, visited visited[node] = True for next_node in graph[node]: if not visited[next_node]: color[next_node] = not color[node] dfs(next_node) elif color[next_node] == color[node]: # is not bipartite self.is_bipartite = False return for i in range(1, n + 1): if not visited[i]: dfs(i) if not self.is_bipartite: return False return True
#! /usr/bin/env python """ File: interpolate_exp_cos.py Copyright (c) 2016 Taylor Patti License: MIT This module calculates an interpolant approximation to the given function at the given point. """ import numpy as np def exp_cos_func(q): """Approximates interpolant approximation to the function.""" mesh = np.linspace(-1, 1, q+1) f = np.exp(- mesh**2)*np.cos(2 * np.pi * mesh) x_point = -0.45 step = 2 / float(q+1) k_val = int(1-x_point / step) approximation = f[k_val] + ((f[k_val+1] - f[k_val])/(mesh[k_val+1] - mesh[k_val])) * (x_point - mesh[k_val]) exact = f = np.exp(- x_point**2)*np.cos(2 * np.pi * x_point) return approximation, exact - approximation def test_approx(): """Ensures that the approximation is accurate at q = 8""" apt = np.fabs(exp_cos_func(8)[1]) < 0.1 msg = 'Approximation not accurate.' assert apt, msg
import pandas as pd import itertools class Node(object): # frequent pattern tree node def __init__(self, value, count, parent): # initialize the node self.value = value self.count = count self.parent = parent self.link = None self.children = [] def get_child_node(self, value): # return the child node that contains the specific value for node in self.children: if node.value == value: return node return None def add_child_node(self, value): # add a child node with a specific value and return it child = Node(value, 1, self) self.children.append(child) return child class FrequentPatternTree(object): # FPtree object def __init__(self, transactions, support_threshold, root_value, root_count): # initialize and build the FPtree self.frequent_items = self.get_frequent_items(transactions, support_threshold) self.headers = self.initialize_header_table(self.frequent_items) self.root = self.build_frequent_pattern_tree( transactions, root_value, root_count, self.frequent_items, self.headers) @staticmethod def get_frequent_items(transactions, support_threshold): # returns a dictionary of items who's support are above the support_threshold items = {} # For each item in each transaction, for transaction in transactions: for item in transaction: if item in items: # if the item is already in the dictionary increase it's key value by 1 items[item] += 1 else: # if the item is not in the dictionary add it and set its key value to 1 items[item] = 1 for key in list(items.keys()): # delete items who's support is below the support_threshold if items[key] < support_threshold: del items[key] return items @staticmethod def initialize_header_table(frequent_items): # initialize the header table for linking keys to their nodes. headers = {} for key in frequent_items.keys(): headers[key] = None return headers def build_frequent_pattern_tree(self, transactions, root_value, root_count, frequent_items, headers): # build the frequent pattern tree and return its root node root_node = Node(root_value, root_count, None) for transaction in transactions: # sift through transactions to extract frequent items sorted_items = [x for x in transaction if x in frequent_items] # sort the list of frequent items by most frequent first sorted_items.sort(key=lambda x: frequent_items[x], reverse=True) # if the transaction contained frequent items, add them to the tree if len(sorted_items) > 0: self.insert_into_tree(sorted_items, root_node, headers) return root_node def insert_into_tree(self, items, node, headers): # grow the frequent pattern tree recursively. first_item = items[0] # check to see if the item is a child of it's parent child = node.get_child_node(first_item) # if so, increase its count by 1 if child is not None: child.count += 1 else: # otherwise, add a new child to the parent node. child = node.add_child_node(first_item) # if the item doesnt have a node reference in the header table, add it. if headers[first_item] is None: headers[first_item] = child # otherwise, if the node has a reference in the header table already, # link the new child to the last known occurrence of its header key else: current = headers[first_item] while current.link is not None: current = current.link current.link = child # recurse until there are no remaining items in the list remaining_items = items[1:] if len(remaining_items) > 0: self.insert_into_tree(remaining_items, child, headers) def tree_has_single_path(self, node): # Check to see if the tree is a single path, if so return true, else false. number_of_children = len(node.children) # if more than one child, ret false if number_of_children > 1: return False # if there is no children, return true elif number_of_children == 0: return True # if there is one child, recursively check to see if it has a single path else: return True and self.tree_has_single_path(node.children[0]) def search_for_patterns(self, support_threshold): # search through the FPtree for frequent patterns. # if the tree has a single path, generate a list of frequent patterns. if self.tree_has_single_path(self.root): return self.create_pattern_list() else: # if the tree is conditional (root value != null) search subtrees for patterns # and generate new frequent patterns by appending the key_value of it's root return self.append_root(self.search_sub_trees(support_threshold)) def append_root(self, patterns): # Append value_of_root to patterns in the dictionary if we are in a conditional FPtree. value_of_root = self.root.value # if the value of the root is not null, we are in a conditional tree if value_of_root is not None: # create new patterns by appending the value of the root to patterns in the dictionary new_patterns = {} for key in patterns.keys(): new_patterns[tuple(sorted(list(key) + [value_of_root]))] = patterns[key] return new_patterns return patterns def create_pattern_list(self): # create a list of patterns with their support counts. patterns = {} # get all frequent items from the tree items = self.frequent_items.keys() # if we are in a conditional tree, add the root value as a pattern. if self.root.value is None: value_of_root = [] else: value_of_root = [self.root.value] patterns[tuple(value_of_root)] = self.root.count # find patterns by looking at combinations of frequent items # of size 1 -> length of frequent_items_list + 1 for i in range(1, len(items) + 1): for combination in itertools.combinations(items, i): pattern = tuple(sorted(list(combination) + value_of_root)) # let the support count of the new pattern be the support of the least frequent item patterns[pattern] = min([self.frequent_items[x] for x in combination]) return patterns def search_sub_trees(self, support_threshold): # create subtrees and search them for frequent patterns. patterns = {} # generate a search_order list by sorting the items # by least number of occurrences first search_order = sorted(self.frequent_items.keys(), key=lambda x: self.frequent_items[x]) # insert items into tree for item in search_order: occurrences = [] all_occurrence_paths_to_root = [] # get item's node from the header table node = self.headers[item] # trace node links to get a list of all occurrences of an item. while node is not None: occurrences.append(node) node = node.link # for each occurrence of the item, trace it's path back to the root for occurrence in occurrences: frequency = occurrence.count path_to_root = [] parent = occurrence.parent while parent.parent is not None: path_to_root.append(parent.value) parent = parent.parent for i in range(frequency): all_occurrence_paths_to_root.append(path_to_root) # with the list of all occurrence paths to root, create a subtree and search it for patterns subtree = FrequentPatternTree(all_occurrence_paths_to_root, support_threshold, item, self.frequent_items[item]) subtree_patterns = subtree.search_for_patterns(support_threshold) # add subtree patterns the patterns dictionary. for pattern in subtree_patterns.keys(): # if pattern already exits, increase it's count by it's frequency if pattern in patterns: patterns[pattern] += subtree_patterns[pattern] # otherwise add the pattern with it's frequency else: patterns[pattern] = subtree_patterns[pattern] return patterns def mine_frequent_patterns(transactions, support_threshold): # Given a list of transactions and a support threshold, # build an FPtree and search it for frequent patterns FPtree = FrequentPatternTree(transactions, support_threshold, None, None) # Search the FPtree to get a list of frequent patterns return FPtree.search_for_patterns(support_threshold) def get_association_rules(patterns, confidence_threshold): # Given a set of frequent itemsets, print out strong association rules rules = {} for itemset in patterns.keys(): # Get the support of AUB union_support = patterns[itemset] for i in range(1, len(itemset)): # find each combination of the antecedent for antecedent in itertools.combinations(itemset, i): # get the antecedent antecedent = tuple(sorted(antecedent)) # get the consequent consequent = tuple(sorted(set(itemset) - set(antecedent))) if len(set(consequent)) == 0: consequent = antecedent # if the antecedent is a known pattern if antecedent in patterns: # Get support of A antecedent_support = patterns[antecedent] # Calculate the confidence via support AUB/support A confidence = float(union_support) / antecedent_support # if the support AUB/support of A is >= the confidence threshold, add the rule if antecedent != consequent: if confidence >= confidence_threshold: print(antecedent,'->', consequent,',', confidence) return rules def main(): # Read data from csv file into a dataframe data = pd.read_csv("transactions.csv") # Group items (index) by Member_number and Date grouped_df = data.groupby(['Member_number', 'Date']) # Create a list of transactions transactions = [] for group, group_column in grouped_df: transactions.append(group_column['itemDescription'].values.tolist()) # Threshold vars support_threshold = 20 confidence_threshold = .02 # Generate frequent patterns for the transactions with support_threshold of n patterns = mine_frequent_patterns(transactions, support_threshold) # Output Rules print('Support Threshold: ', support_threshold) print('Confidence Threshold: ', confidence_threshold*100, '%') print('------------------------------------------') print('(Antecedent) -> (Consequent), Confidence') print('------------------------------------------') get_association_rules(patterns, confidence_threshold) if __name__ == "__main__": main()
# -*- coding: utf-8 -*- # Copyright Joseph Holland # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function from graffiti_monkey import cli as gm_cli import os import boto3 import logging # Remove existing log handler setup by Lambda log = logging.getLogger() for handler in log.handlers: log.removeHandler(handler) FORMAT = '%(asctime)s - %(name)s - %(levelname)s - %(message)s' logging.basicConfig(format=FORMAT, level=logging.INFO) def envvar_to_list(envvar): return os.environ[envvar].split(',') def send_notification(sns_arn, region, subject, message): client = boto3.client('sns') response = client.publish( TopicArn=sns_arn, Subject=subject, Message=message ) log.info('SNS Response: {}'.format(response)) def handler(event, context): log.info('Loading function') try: sns_arn = os.environ['SNS_ARN'] region = os.environ['REGION'] gm = gm_cli.GraffitiMonkeyCli() gm.region = region gm.config = {"_instance_tags_to_propagate": envvar_to_list('INSTANCE_TAGS_TO_PROPAGATE'), "_volume_tags_to_propagate": envvar_to_list('VOLUME_TAGS_TO_PROPAGATE'), "_volume_tags_to_be_set": envvar_to_list('VOLUME_TAGS_TO_BE_SET'), "_snapshot_tags_to_be_set": envvar_to_list('SNAPSHOT_TAGS_TO_BE_SET'), "_instance_filter": envvar_to_list('INSTANCE_FILTER'), } gm.initialize_monkey() gm.start_tags_propagation() send_notification(sns_arn, region, 'Graffiti Monkey completed successfully', 'Graffiti Monkey completed successfully in ' + region + '.') return 'Graffiti Monkey completed successfully!' except KeyError, e: error_message = 'Error: Environment variable not set: ' + str(e) log.error(error_message) send_notification(sns_arn, region, 'Error running Graffiti Monkey', 'Error running Lambda Graffiti Monkey in ' + region + '. Error Message: ' + error_message) except Exception, e: error_message = 'Error: Graffiti Monkey encountered the following error: ' + str(e) log.error(error_message) send_notification(sns_arn, region, 'Error running Graffiti Monkey', 'Error running Lambda Graffiti Monkey in ' + region + '. Error Message: ' + error_message)
import urllib.request,json from .models import News, news_article # Getting api key apiKey = None # Getting the news base url base_url = None def configure_request(app): global apiKey,base_url apiKey = app.config['NEWS_API_KEY'] base_url = app.config['NEWS_API_BASE_URL'] def get_news(endpoint): ''' Function that gets the json response to our url request ''' get_news_url = base_url.format(endpoint, apiKey) with urllib.request.urlopen(get_news_url) as url: get_news_data = url.read() get_news_response = json.loads(get_news_data) if get_news_response['sources']: news_results_list = get_news_response['sources'] news_results = process_results(news_results_list) return news_results def get_source_news(endpoint): ''' Function that gets the json response to our url request ''' get_source_url = base_url.format(endpoint, apiKey) with urllib.request.urlopen(get_source_url) as url: get_source_articles = url.read() get_articles_response = json.loads(get_source_articles) if get_articles_response['articles']: articles_results = get_articles_response['articles'] # articles_results_list = get_articles_response['articles'] # articles_results = process_results(articles_results_list) return articles_results def process_articles_results(articles_results_list): ''' Function that processes the News result and transform them to a list of Objects Args: news_list: A list of dictionaries that contain movie details Returns : news_results: A list of movie objects ''' articles_results = [] for article_item in articles_results_list: source = article_item .get('source') author = article_item .get('author') title = article_item .get('title') url = article_item .get('url') description = article_item .get('description') urlToImage = article_item .get('urlToImage') publishedAt = article_item .get('publishedAt') content = article_item .get('content') articles_object = news_article(source,description,url, title, urlToImage, publishedAt, content, author) articles_results.append(articles_object) return articles_results def process_results(news_list): ''' Function that processes the News result and transform them to a list of Objects Args: news_list: A list of dictionaries that contain movie details Returns : news_results: A list of movie objects ''' news_results = [] for news_item in news_list: id = news_item.get('id') name = news_item.get('name') description = news_item.get('description') url = news_item.get('url') category = news_item.get('category') country = news_item.get('country') language = news_item.get('language') news_object = News(id,name,description,url,category,country, language) news_results.append(news_object) return news_results
""" Author: Colin Rioux Group SPoC pseudo code and source code together *Should be run after fix_data """ import glob import pandas as pd import string import random import argparse import os from pathlib import Path arg_parser = argparse.ArgumentParser() arg_parser.add_argument('--data_path', default='./data/in/') arg_parser.add_argument('--out_path', default='./data/uniq/') args = arg_parser.parse_args() files = glob.glob(os.path.join(args.data_path, "*.tsv")) for file in files: # fname = file.split('/')[-1].split(',')[0] fname = Path(file).stem """ Skip already grouped files """ if "grouped-" in fname: continue fname = str("grouped-") + fname df = pd.read_csv(file, sep="\t") df = df.fillna('') data = {} """ Group programs together """ for index, row in df.iterrows(): worker_id, prob_id = int(row['workerid']), row['probid'] if prob_id not in data: data[prob_id] = {} if worker_id not in data[prob_id]: data[prob_id][worker_id] = { "ps": [], "sc": [], "workerid": worker_id, "probid": prob_id, "subid": row['subid'] } data[prob_id][worker_id]["ps"].append(row['text']) # data[prob_id][worker_id]["sc"].append("".join(["\\t"*int(row['indent'])]) + row['code']) data[prob_id][worker_id]["sc"].append(row['code']) """ Compress codes and texts """ for prob_id, problem in data.items(): for worker_id, worker in problem.items(): worker["ps"] = [x for x in worker["ps"] if x] # worker["ps"] = "\\n".join(worker["ps"]) worker["ps"] = "; ".join(worker["ps"]) # worker["ps"] = '"' + worker["ps"].strip("'").strip('"') + '"' worker["ps"] = worker["ps"].strip("'").strip('"') worker["sc"] = [x for x in worker["sc"] if x] # worker["sc"] = "\\n".join(worker["sc"]) worker["sc"] = " ".join(worker["sc"]) # worker["sc"] = '"' + worker["sc"].strip("'").strip('"') + '"' worker["sc"] = worker["sc"].strip("'").strip('"') data_l = [] for prob_id, problem in data.items(): for worker_id, worker in problem.items(): data_l.append(worker) final_df = pd.DataFrame(data_l) final_df.to_csv(os.path.join(args.out_path, fname + '.csv'), index=False)
import click import numpy as np from tqdm import tqdm from ..io import ( append_column_to_hdf5, read_telescope_data_chunked, get_column_names_in_file, remove_column_from_file, load_model, ) from ..apply import predict_disp from ..configuration import AICTConfig from ..logging import setup_logging @click.command() @click.argument('configuration_path', type=click.Path(exists=True, dir_okay=False)) @click.argument('data_path', type=click.Path(exists=True, dir_okay=False)) @click.argument('disp_model_path', type=click.Path(exists=False, dir_okay=False)) @click.argument('sign_model_path', type=click.Path(exists=False, dir_okay=False)) @click.option('-n', '--n-jobs', type=int, help='Number of cores to use') @click.option('-y', '--yes', help='Do not prompt for overwrites', is_flag=True) @click.option('-v', '--verbose', help='Verbose log output', is_flag=True) @click.option( '-N', '--chunksize', type=int, help='If given, only process the given number of events at once', ) def main(configuration_path, data_path, disp_model_path, sign_model_path, chunksize, n_jobs, yes, verbose): ''' Apply given model to data. Three columns are added to the file, source_x_prediction, source_y_prediction and disp_prediction CONFIGURATION_PATH: Path to the config yaml file DATA_PATH: path to the FACT data in a h5py hdf5 file, e.g. erna_gather_fits output DISP_MODEL_PATH: Path to the pickled disp model. SIGN_MODEL_PATH: Path to the pickled sign model. ''' log = setup_logging(verbose=verbose) config = AICTConfig.from_yaml(configuration_path) model_config = config.disp columns_to_delete = [ 'source_x_prediction', 'source_y_prediction', 'theta', 'theta_deg', 'theta_rec_pos', 'disp_prediction', ] for i in range(1, 6): columns_to_delete.extend([ 'theta_off_' + str(i), 'theta_deg_off_' + str(i), 'theta_off_rec_pos_' + str(i), ]) n_del_cols = 0 for column in columns_to_delete: if column in get_column_names_in_file(data_path, config.telescope_events_key): if not yes: click.confirm( 'Dataset "{}" exists in file, overwrite?'.format(column), abort=True, ) yes = True remove_column_from_file(data_path, config.telescope_events_key, column) log.warn("Deleted {} from the feature set.".format(column)) n_del_cols += 1 if n_del_cols > 0: log.warn("Source dependent features need to be calculated from the predicted source possition. " + "Use e.g. `fact_calculate_theta` from https://github.com/fact-project/pyfact.") log.info('Loading model') disp_model = load_model(disp_model_path) sign_model = load_model(sign_model_path) log.info('Done') if n_jobs: disp_model.n_jobs = n_jobs sign_model.n_jobs = n_jobs df_generator = read_telescope_data_chunked( data_path, config, chunksize, model_config.columns_to_read_apply, feature_generation_config=model_config.feature_generation ) log.info('Predicting on data...') for df_data, start, stop in tqdm(df_generator): disp = predict_disp( df_data[model_config.features], disp_model, sign_model, log_target=model_config.log_target, ) source_x = df_data[model_config.cog_x_column] + disp * np.cos(df_data[model_config.delta_column]) source_y = df_data[model_config.cog_y_column] + disp * np.sin(df_data[model_config.delta_column]) key = config.telescope_events_key append_column_to_hdf5(data_path, source_x, key, 'source_x_prediction') append_column_to_hdf5(data_path, source_y, key, 'source_y_prediction') append_column_to_hdf5(data_path, disp, key, 'disp_prediction') if __name__ == '__main__': # pylint: disable=no-value-for-parameter main()
# Copyright 2021 AlQuraishi Laboratory # Copyright 2021 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch import torch.nn as nn from typing import Tuple, Optional from openfold.model.primitives import Linear, LayerNorm from openfold.utils.tensor_utils import add, one_hot class InputEmbedder(nn.Module): """ Embeds a subset of the input features. Implements Algorithms 3 (InputEmbedder) and 4 (relpos). """ def __init__( self, tf_dim: int, msa_dim: int, c_z: int, c_m: int, relpos_k: int, **kwargs, ): """ Args: tf_dim: Final dimension of the target features msa_dim: Final dimension of the MSA features c_z: Pair embedding dimension c_m: MSA embedding dimension relpos_k: Window size used in relative positional encoding """ super(InputEmbedder, self).__init__() self.tf_dim = tf_dim self.msa_dim = msa_dim self.c_z = c_z self.c_m = c_m self.linear_tf_z_i = Linear(tf_dim, c_z) self.linear_tf_z_j = Linear(tf_dim, c_z) self.linear_tf_m = Linear(tf_dim, c_m) self.linear_msa_m = Linear(msa_dim, c_m) # RPE stuff self.relpos_k = relpos_k self.no_bins = 2 * relpos_k + 1 self.linear_relpos = Linear(self.no_bins, c_z) def relpos(self, ri: torch.Tensor): """ Computes relative positional encodings Implements Algorithm 4. Args: ri: "residue_index" features of shape [*, N] """ d = ri[..., None] - ri[..., None, :] boundaries = torch.arange( start=-self.relpos_k, end=self.relpos_k + 1, device=d.device ) oh = one_hot(d, boundaries).type(ri.dtype) return self.linear_relpos(oh) def forward( self, tf: torch.Tensor, ri: torch.Tensor, msa: torch.Tensor, ) -> Tuple[torch.Tensor, torch.Tensor]: """ Args: tf: "target_feat" features of shape [*, N_res, tf_dim] ri: "residue_index" features of shape [*, N_res] msa: "msa_feat" features of shape [*, N_clust, N_res, msa_dim] Returns: msa_emb: [*, N_clust, N_res, C_m] MSA embedding pair_emb: [*, N_res, N_res, C_z] pair embedding """ # [*, N_res, c_z] tf_emb_i = self.linear_tf_z_i(tf) tf_emb_j = self.linear_tf_z_j(tf) # [*, N_res, N_res, c_z] pair_emb = tf_emb_i[..., None, :] + tf_emb_j[..., None, :, :] pair_emb = pair_emb + self.relpos(ri.type(pair_emb.dtype)) # [*, N_clust, N_res, c_m] n_clust = msa.shape[-3] tf_m = ( self.linear_tf_m(tf) .unsqueeze(-3) .expand(((-1,) * len(tf.shape[:-2]) + (n_clust, -1, -1))) ) msa_emb = self.linear_msa_m(msa) + tf_m return msa_emb, pair_emb class RecyclingEmbedder(nn.Module): """ Embeds the output of an iteration of the model for recycling. Implements Algorithm 32. """ def __init__( self, c_m: int, c_z: int, min_bin: float, max_bin: float, no_bins: int, inf: float = 1e8, **kwargs, ): """ Args: c_m: MSA channel dimension c_z: Pair embedding channel dimension min_bin: Smallest distogram bin (Angstroms) max_bin: Largest distogram bin (Angstroms) no_bins: Number of distogram bins """ super(RecyclingEmbedder, self).__init__() self.c_m = c_m self.c_z = c_z self.min_bin = min_bin self.max_bin = max_bin self.no_bins = no_bins self.inf = inf self.linear = Linear(self.no_bins, self.c_z) self.layer_norm_m = LayerNorm(self.c_m) self.layer_norm_z = LayerNorm(self.c_z) def forward( self, m: torch.Tensor, z: torch.Tensor, x: torch.Tensor, _inplace: bool = False, ) -> Tuple[torch.Tensor, torch.Tensor]: """ Args: m: First row of the MSA embedding. [*, N_res, C_m] z: [*, N_res, N_res, C_z] pair embedding x: [*, N_res, 3] predicted C_beta coordinates Returns: m: [*, N_res, C_m] MSA embedding update z: [*, N_res, N_res, C_z] pair embedding update """ # [*, N, C_m] m_update = self.layer_norm_m(m) if(_inplace): m.copy_(m_update) m_update = m # [*, N, N, C_z] z_update = self.layer_norm_z(z) if(_inplace): z.copy_(z_update) z_update = z # This squared method might become problematic in FP16 mode. bins = torch.linspace( self.min_bin, self.max_bin, self.no_bins, dtype=x.dtype, device=x.device, requires_grad=False, ) squared_bins = bins ** 2 upper = torch.cat( [squared_bins[1:], squared_bins.new_tensor([self.inf])], dim=-1 ) d = torch.sum( (x[..., None, :] - x[..., None, :, :]) ** 2, dim=-1, keepdims=True ) # [*, N, N, no_bins] d = ((d > squared_bins) * (d < upper)).type(x.dtype) # [*, N, N, C_z] d = self.linear(d) z_update = add(z_update, d, _inplace) return m_update, z_update class TemplateAngleEmbedder(nn.Module): """ Embeds the "template_angle_feat" feature. Implements Algorithm 2, line 7. """ def __init__( self, c_in: int, c_out: int, **kwargs, ): """ Args: c_in: Final dimension of "template_angle_feat" c_out: Output channel dimension """ super(TemplateAngleEmbedder, self).__init__() self.c_out = c_out self.c_in = c_in self.linear_1 = Linear(self.c_in, self.c_out, init="relu") self.relu = nn.ReLU() self.linear_2 = Linear(self.c_out, self.c_out, init="relu") def forward(self, x: torch.Tensor) -> torch.Tensor: """ Args: x: [*, N_templ, N_res, c_in] "template_angle_feat" features Returns: x: [*, N_templ, N_res, C_out] embedding """ x = self.linear_1(x) x = self.relu(x) x = self.linear_2(x) return x class TemplatePairEmbedder(nn.Module): """ Embeds "template_pair_feat" features. Implements Algorithm 2, line 9. """ def __init__( self, c_in: int, c_out: int, **kwargs, ): """ Args: c_in: c_out: Output channel dimension """ super(TemplatePairEmbedder, self).__init__() self.c_in = c_in self.c_out = c_out # Despite there being no relu nearby, the source uses that initializer self.linear = Linear(self.c_in, self.c_out, init="relu") def forward( self, x: torch.Tensor, ) -> torch.Tensor: """ Args: x: [*, C_in] input tensor Returns: [*, C_out] output tensor """ x = self.linear(x) return x class ExtraMSAEmbedder(nn.Module): """ Embeds unclustered MSA sequences. Implements Algorithm 2, line 15 """ def __init__( self, c_in: int, c_out: int, **kwargs, ): """ Args: c_in: Input channel dimension c_out: Output channel dimension """ super(ExtraMSAEmbedder, self).__init__() self.c_in = c_in self.c_out = c_out self.linear = Linear(self.c_in, self.c_out) def forward(self, x: torch.Tensor) -> torch.Tensor: """ Args: x: [*, N_extra_seq, N_res, C_in] "extra_msa_feat" features Returns: [*, N_extra_seq, N_res, C_out] embedding """ x = self.linear(x) return x
import curses.ascii class EditField: """Single line edit field. Returns content on Enter, None on cancel (Escape). Does not touch attributes, does not care about win size. Does not touch area behind current cursor pos + width. Clears the touched are when done. """ def __init__(self, win, width=0): """Assign the field to `win`, allowing at max `width` chars. Zero width allows to uses all space up to the end of window. """ # Compute width _, w = win.getmaxyx() by, bx = win.getbegyx() y, x = win.getyx() self.width = width or w - x # Create new window for edit box self.win = curses.newwin(1, width, by + y, bx + x) self.win.keypad(1) # Edited text is split to left and right part self.left = '' # Text on left side of the cursor self.right = '' # Text on right side of the cursor def edit(self): """Run edit loop, return the content.""" while True: wc = self.win.get_wch() res = self.process_input(wc) if res == 'enter': return self.left + self.right if res == 'escape': return None self.draw() def draw(self): """Draw current content, move cursor to current position.""" left, right = self.left, self.right # If whole content cannot fit, clip it while len(left) + len(right) > self.width - 1: if len(left) > self.width // 2: left = left[1:] else: right = right[:-1] if left != self.left: left = '<' + left[1:] if right != self.right: right = right[:-1] + '>' # Draw the (possibly clipped) content self.win.move(0, 0) self.win.addnstr(left, self.width) _, curs_x = self.win.getyx() self.win.addnstr(right, self.width - curs_x) _, end_x = self.win.getyx() self.win.hline(' ', self.width - end_x) self.win.move(0, curs_x) self.win.refresh() def process_input(self, wc): """Process character obtained from get_wch(). Returns None if not resolved, or string with resolution type: * 'enter' - input finished, text is valid * 'escape' - input canceled, text is invalid """ if wc == chr(curses.ascii.ESC): return 'escape' elif wc == curses.KEY_LEFT: self.right = self.left[-1:] + self.right self.left = self.left[:-1] elif wc == curses.KEY_RIGHT: self.left = self.left + self.right[:1] self.right = self.right[1:] elif wc == curses.KEY_HOME: self.right = self.left + self.right self.left = '' elif wc == curses.KEY_END: self.left = self.left + self.right self.right = '' elif wc == curses.KEY_BACKSPACE or wc == chr(curses.ascii.BS): self.left = self.left[:-1] elif wc == curses.KEY_DC or wc == chr(curses.ascii.DEL): self.right = self.right[1:] elif wc == chr(curses.ascii.NL): return 'enter' elif isinstance(wc, str): self.left += wc if __name__ == '__main__': # Demo def curses_main(stdscr): w = 20 stdscr.move(9, 10) stdscr.hline('-', w) stdscr.move(11, 10) stdscr.hline('-', w) stdscr.move(10, 10) stdscr.refresh() field = EditField(stdscr, w) return field.edit() result = curses.wrapper(curses_main) print(result)
""" This file contains the routes (with a basic example on validation) for the application. Either extend this OR create a new routes file and include that one. """ import json import sys from app import app from app.utils import Validation, Configuration from app.payloads import ApplicationPayload, AddUserPayload from app.route_inspector import RouteRenderer, RouteInspector from app.routes_utils import RoutesBasics from app.tasks import ApplicationTask, AddUserTask, ListUserTask from flask import request, abort from flask.wrappers import Response from markupsafe import escape # Additional routes files for / import app.routes_intro as second_routes GLOB_CONFIG = Configuration(None) GLOB_VALIDATION = Validation(GLOB_CONFIG) @app.route("/", methods = ["GET"]) def default(): """ Retrieve the information of all routes that are supported by this server implementation. """ ri = RouteInspector() routes = ri.get_routes([sys.modules[__name__], second_routes]) html_content = RouteRenderer.render_routes(request.host, routes) return Response(html_content, status=200) @app.route( "/subscriptions/<subscription>/providers/Microsoft.AI", methods = ["GET", "POST"] ) def application(subscription): """ Requires: ?api_version=1.0 bearer token from configuration.json POST: Body matches ApplicationPayload class Content-Type: application/json """ global GLOB_VALIDATION # Can throw 401,400 or 422, otherwise it passed basic validation on # auth token, version, payload format (not neccesarily payload content) execute_context = RoutesBasics.request_validation( GLOB_VALIDATION, request, ApplicationPayload, False ) execute_context.configuration = GLOB_CONFIG app_task = ApplicationTask( execute_context, subscription=escape(subscription) ) if request.method.upper() == "POST": return Response(json.dumps(app_task.execute_post(), indent=4), status=201) elif request.method.upper() == "GET": return Response(json.dumps(app_task.execute_get(), indent=4), status=200) @app.route( "/users/add", methods = ["POST"] ) def add_user(): """ Requires: ?api_version=1.0 admin bearer token from configuration.json POST: Body matches AddUserPayload class Content-Type: application/json """ global GLOB_VALIDATION # Can throw 401,400 or 422, otherwise it passed basic validation on # auth token, version, payload format (not neccesarily payload content) execute_context = RoutesBasics.request_validation( GLOB_VALIDATION, request, AddUserPayload, True ) execute_context.configuration = GLOB_CONFIG app_task = AddUserTask( execute_context ) result = app_task.execute_post() return Response(result.description, status=result.status_code) @app.route( "/users/list", methods = ["GET"] ) def list_users(): """ Requires: ?api_version=1.0 any valid bearer token from configuration.json """ global GLOB_VALIDATION # Can throw 401,400 or 422, otherwise it passed basic validation on # auth token, version, payload format (not neccesarily payload content) execute_context = RoutesBasics.request_validation( GLOB_VALIDATION, request, None ) execute_context.configuration = GLOB_CONFIG app_task = ListUserTask( execute_context ) result = app_task.execute_get() return Response(result.description, status=result.status_code)
import random random.seed(42) num_nodes = 10000 max_id = 2**32 max_id = num_nodes * 100 num_channels = 4 node_by_id = dict() nodeids = [] print "use pypy" def get_closest_node_id(target_id): for node_id in nodeids: if node_id > target_id: return node_id return nodeids[0] class Node(object): def __init__(self, id, num_channels, deposit): self.id = id assert num_channels % 2 == 0 self.num_channels = num_channels self.num_initiated_channels = num_channels / 2 self.deposit = deposit self.channels = dict() # nodeid => capacity def __repr__(self): return '<Node:%d>' % self.id @property def targets(self): """ connect to closest node larger than self! """ distances = [max_id / 2**i for i in range(self.num_initiated_channels)] return [(self.id + d) % max_id for d in distances] def initiate_channels(self): assert self.id in self.targets for target_id in self.targets: node_id = get_closest_node_id(target_id) self.connect(node_id) def connect(self, other_id): assert other_id assert other_id in node_by_id node = node_by_id[other_id] # self.channels[node.id] = self.deposit / self.num_channels self.channels[node.id] = self.deposit # node.channels[self.id] = node.deposit / node.num_channels def transfer(self, transfer): """ try to transfer along a channel with a node that has a lower id than target. closest node first """ # print 'in transfer', self, transfer.receiver if self in transfer.tried: return False transfer.tried.append(self) transfer.path.append(self) # sort connections by distance to target target_id = transfer.receiver if target_id == self.id: return True def _distance(cid): d = target_id - cid if d < 0: d += max_id return d res = False channels = sorted(self.channels.keys(), lambda a, b: cmp(_distance(a), _distance(b))) # print target_id, channels for cid in channels: if cid > target_id: if len(transfer.path) > 1: # not first # print 'breaking' break capacity = self.channels[cid] # print cid, capacity, transfer.amount if capacity < transfer.amount: continue node = node_by_id[cid] try: res = node.transfer(transfer) except RuntimeError: continue if res: break if not res: transfer.path.pop() return False return True class Transfer(object): def __init__(self, sender, receiver, amount): self.sender = sender self.receiver = receiver self.amount = amount self.tried = [] self.path = [] self.success = False # print self def __repr__(self): return '<Transfer v=%d t=%s>' % (self.amount, self.receiver) deposit_distribution = [100 * 2**i for i in range(5)] print deposit_distribution print 'setting up nodes' for i in range(num_nodes): node_id = random.randrange(max_id) deposit = random.choice(deposit_distribution) node = Node(node_id, num_channels, deposit) node_by_id[node.id] = node nodeids = sorted(node_by_id.keys()) print 'setting up channels' for node in node_by_id.values(): node.initiate_channels() num_edges = sum([len(n.channels) for n in node_by_id.values()]) / 2 print 'num_nodes', len(nodeids) print 'num_edges', num_edges # dump some nodes and their channels # for nodeid in nodeids[:4]: # node = node_by_id[nodeid] # print node, sorted(node.channels.keys()), node.targets def rand_transfer(amount): sender = random.choice(nodeids) receiver = sender while receiver == sender: receiver = random.choice(nodeids) t = Transfer(sender, receiver, amount) res = node_by_id[sender].transfer(t) t.success = res return t for value in deposit_distribution: transfers = [] value /= 2 for i in range(100): t = rand_transfer(value) transfers.append(t) avg_path_len = sum([len(t.path) for t in transfers]) / float(len(transfers)) avg_tried_len = sum([len(t.tried) for t in transfers]) / float(len(transfers)) median_tried_len = sorted([len(t.tried) for t in transfers])[len(transfers) / 2] max_tried_len = max([len(t.tried) for t in transfers]) num_successful = sum(1 for t in transfers if t.success) print 'value', value, deposit_distribution print 'avg_path_len', avg_path_len print 'avg_tried_len', avg_tried_len, median_tried_len, max_tried_len print 'num_successful', num_successful, num_successful / float(len(transfers))
# from django.db import models # silence pyflakes # Create your models here.
import json from copy import copy import dateutil.parser from mythx_models.response import Analysis, AnalysisStatus from . import common as testdata def assert_analysis(analysis): assert analysis.uuid == testdata.UUID_1 assert analysis.api_version == testdata.API_VERSION_1 assert analysis.maru_version == testdata.MARU_VERSION_1 assert analysis.mythril_version == testdata.MYTHRIL_VERSION_1 assert analysis.harvey_version == testdata.HARVEY_VERSION_1 assert analysis.queue_time == testdata.QUEUE_TIME_1 assert analysis.run_time == 0 # default value assert analysis.status == AnalysisStatus(testdata.STATUS_1) assert analysis.submitted_at == dateutil.parser.parse(testdata.SUBMITTED_AT_1) assert analysis.submitted_by == testdata.SUBMITTED_BY_1 def test_analysis_from_valid_json(): analysis = Analysis.from_json(json.dumps(testdata.ANALYSIS_DICT)) assert_analysis(analysis) def test_analysis_to_json(): assert json.loads(testdata.ANALYSIS_OBJECT.to_json()) == testdata.ANALYSIS_DICT def test_analysis_to_dict(): assert testdata.ANALYSIS_OBJECT.to_dict() == testdata.ANALYSIS_DICT def test_analysis_propagate_error_field(): analysis = copy(testdata.ANALYSIS_OBJECT) # add optional error field analysis.error = testdata.ERROR analysis_dict = analysis.to_dict() analysis_dict["error"] == testdata.ERROR def test_analysis_from_valid_dict(): analysis = Analysis.from_dict(testdata.ANALYSIS_DICT) assert_analysis(analysis) def test_repr(): analysis_repr = repr(testdata.ANALYSIS_OBJECT) assert testdata.ANALYSIS_OBJECT.uuid in analysis_repr testdata.ANALYSIS_OBJECT.status in analysis_repr
def validate_thing_amount(user_input): try: user_input = int(user_input) except: return False if user_input in range(1, 5): return user_input def validate_month_amount(user_input): try: user_input = int(user_input) except: return False if user_input in range(1, 7): return user_input def validate_weeks_amount(user_input): try: user_input = int(user_input) except: return False if user_input in range(1, 5): return user_input def validate_size_cell(user_input): try: user_input = int(user_input) except: return False if user_input in range(1, 11): return user_input def validate_cell_period(user_input): try: user_input = int(user_input) except: return False if user_input in range(1, 13): return user_input
# %% cd .. # %% from tptp_features.tptp_v7_0_0_0Lexer import tptp_v7_0_0_0Lexer from tptp_features.tptp_v7_0_0_0Parser import tptp_v7_0_0_0Parser from tptp_features.tptp_v7_0_0_0Listener import tptp_v7_0_0_0Listener from antlr4 import FileStream, CommonTokenStream, ParseTreeWalker from pprint import pprint #%% from tptp_features.Tptp import Tptp tptp = Tptp("../tptp-parser/") # %% import random random.seed() problems = list(tptp.get_problems({'SPC': 'FOF_.*'})) random.shuffle(problems) #%% import logging logger = logging.getLogger() logger.setLevel(logging.DEBUG) # %% class Listener(tptp_v7_0_0_0Listener): def __init__(self): super().__init__() self.includes = [] self.first = True def enterEveryRule(self, ctx): if not hasattr(ctx, 'negated_env'): if ctx.parentCtx is None: ctx.negated_env = False else: ctx.negated_env = ctx.parentCtx.negated_env def enterFof_binary_nonassoc(self, ctx): if ctx.binary_connective().Impl(): logging.debug(f"Flipping context {ctx.negated_env} {ctx.fof_unitary_formula(0).getText()}") ctx.fof_unitary_formula(0).negated_env = not ctx.negated_env def enterInclude(self, ctx): fname = ctx.file_name().Single_quoted().getText().strip("'") if ctx.formula_selection(): formulas = tuple((c.getText() for c in ctx.formula_selection().name_list().name())) else: formulas = None self.includes.append((fname, formulas)) # %% from tptp_features.strategic_features import QuantifierFeaturesListener # %% def parse_one(problem): lexer = tptp_v7_0_0_0Lexer(FileStream(problem.file)) stream = CommonTokenStream(lexer) parser = tptp_v7_0_0_0Parser(stream) tree = parser.tptp_file() listener = QuantifierFeaturesListener() walker = ParseTreeWalker() walker.walk(listener, tree) return listener # %% l = parse_one(tptp.problems['CMX001']) # %% l = parse_one(tptp.axioms['SET005+0']) # %% l = parse_one(tptp.axioms['SET006+0']) # %% l = parse_one(tptp.problems['SYN000+1']) # %% class TimeoutException(Exception): pass def parse_problem_timeout(p, timeout): import signal def signal_handler(signum, frame): raise TimeoutSignalException('TIMEOUT') signal.signal(signal.SIGALRM, signal_handler) signal.alarm(timeout) return parse_problem(p) def parse_problem(p): listener = parse_one(p) return listener.includes # %% l = parse_problem_timeout(problems[3], 3) # %% for c, p in enumerate(problems): if c % 100 == 0: print() try: formulasel, includes = parse_problem_timeout(p, 1) if formulasel: print() print(p.name, includes, flush=True) else: print('.', end='') except Exception as e: print('*', end='') # %% from concurrent import futures with futures.ProcessPoolExecutor(max_workers=4) as executor: future_map = {executor.submit(parse_problem, p): p for p in problems} for future in futures.as_completed(future_map, timeout=30): p = future_map[future] try: formula_selection, includes = future.result() print(p, includes, formula_selection) except Exception as e: print(p, e) # %% p = tptp.problems['KRS180+1'] print(p.name) lexer = tptp_v7_0_0_0Lexer(FileStream(p.file)) listener = parse(lexer) print(listener.includes) print(type(listener.includes[0][0])) print(dir(listener.includes[0][0])) # %% c = listener.includes[0][0] c.getChild(1) print(c.symbol) # %% from pathlib import Path a = tptp.find_by_name('Axioms/KRS001+1.ax') print(a) # %%
#======================================================# # + Projet: How to use API Rest with Python and Flask # # + Author: Pedro Impulcetto, Adapted: Thiago Piovesan # # + API documentation using Swagger: # YouTube video: https://youtu.be/levz4eumJ98 #======================================================# # Libraries importation: from flask_restx import fields from src.server.instance import server #======================================================# book = server.api.model('Book', { 'id': fields.Integer(readOnly=True, description='The unique identifier of a book'), 'title': fields.String(required=True, description='The title of a book', min_length=3, max_length=100), 'author': fields.String(required=True, description='The author of a book', min_length=3, max_length=100), })
import typing def main() -> typing.NoReturn: n, x = map(int, input().split()) # dp a = list(map(int, input().split())) dp = [0] * n dp[0] = x mn = x for i in range(n - 1): p = a[i + 1] // a[i] dp[i + 1], dp[i] = divmod(dp[i], p) assert p > dp[i] if p - dp[i] + 1 <= dp[i]: dp[i + 1] += 1 dp[i] = p - dp[i] mn = min(mn, sum(dp)) print(mn) main()
from .aBuffer import ABuffer, AMappable from ...constants import _GL_TYPE_NP_TYPE_MAP, _GL_TYPE_SIZE_MAP from OpenGL import GL import numpy as np class StaticBuffer(ABuffer): _BufferUsageFlags = 0 def __init__(self, data: list, dataType: GL.GLenum): super().__init__(len(data) * _GL_TYPE_SIZE_MAP[dataType], dataType) GL.glNamedBufferStorage(self._id, self._size, np.asarray(data, dtype=_GL_TYPE_NP_TYPE_MAP[dataType]), self._BufferUsageFlags) class Buffer(ABuffer): _BufferUsageFlags = GL.GL_DYNAMIC_STORAGE_BIT def __init__(self, size: int, dataStorageView: memoryview): super().__init__(size, None) self._dataView = dataStorageView GL.glNamedBufferStorage(self._id, self._size, None, self._BufferUsageFlags) def TransferData(self, size: int) -> None: """ Transfer given amount of data from bound data storage to buffer's memory. """ GL.glNamedBufferSubData(self._id, 0, size, self._dataView.obj) def __del__(self): self._dataView.release() class MappedBuffer(AMappable): def __init__(self, size: int): super().__init__(size, None) GL.glNamedBufferStorage(self._id, self._size, None, self._BufferUsageFlags) self._MapPersistent()
"""END MODEL To better evaluate the quality of our generated training data, we evaluate an end model trained on this data. Here, the end model is implemented as a logistic regression bag of words model. However, you can replace this with any model of your choosing, as long as it has functions "fit" and "predict" with the specifications outlined below. """ import tensorflow as tf from numpy.random import seed as np_seed from random import seed as py_seed from snorkel.utils import set_seed as snork_seed from snorkel.utils import preds_to_probs from sklearn.feature_extraction.text import CountVectorizer def get_keras_logreg(input_dim, output_dim=2): """Create a simple logistic regression model (using keras) """ model = tf.keras.Sequential() if output_dim == 1: loss = "binary_crossentropy" activation = tf.nn.sigmoid else: loss = "categorical_crossentropy" activation = tf.nn.softmax dense = tf.keras.layers.Dense( units=output_dim, input_dim=input_dim, activation=activation, kernel_regularizer=tf.keras.regularizers.l2(0.001), ) model.add(dense) opt = tf.keras.optimizers.Adam(lr=0.01) model.compile(optimizer=opt, loss=loss, metrics=["accuracy"]) return model def get_keras_early_stopping(patience=10): """Create early stopping condition """ return tf.keras.callbacks.EarlyStopping( monitor="val_accuracy", patience=10, verbose=1, restore_best_weights=True ) class KerasLogReg: """This logistic regression model is trained on the labels that Ruler generates, and then evaluated against a test set. This provides a more complete picture of the quality of the generated training data. Attributes: cardinality (int): Number of output classes keras_model (a Keras logistic regression model): Description vectorizer (CountVectorizer): Object with fit and transform functions, which transforms texts into vectors """ def __init__(self, cardinality=2): """Summary Args: cardinality (int, optional): Number of output classes """ # Set all random seeds snork_seed(123) tf.random.set_seed(123) np_seed(123) py_seed(123) self.cardinality = cardinality self.keras_model = None def fit(self, X_train, Y_train, X_valid, Y_valid): """Train the model using the given training and validation data. Args: X_train (list(str)): Training text examples, length n Y_train (matrix): Training labels, size n*m, where m is the cardinality X_valid (list(str)): Validation test examples, length p Y_valid (matrix): Validation labels, size p*m """ if self.keras_model is None: self.vectorizer = CountVectorizer(ngram_range=(1, 2)) self.vectorizer.fit(X_train) X_train = self.vectorizer.transform(X_train) X_valid = self.vectorizer.transform(X_valid) if self.keras_model is None: self.keras_model = get_keras_logreg(input_dim=X_train.shape[1], output_dim=self.cardinality) self.keras_model.fit( x=X_train, y=Y_train, validation_data=(X_valid, Y_valid), callbacks=[get_keras_early_stopping()], epochs=20, verbose=0, ) def predict(self, X): """Predict probabilities that each sample in X belongs to each class. Args: X (list(str)): Texts to predict class, length n Returns: matrix: size n*m, where m is the cardinality of the model """ X_v = self.vectorizer.transform(X) return self.keras_model.predict(x=X_v)
"""Collection module.""" from .catalog import Catalog from .item import ItemCollection from .utils import Utils class Extent(dict): """The Extent object.""" def __init__(self, data): """Initialize instance with dictionary data. :param data: Dict with Extent metadata. """ super(Extent, self).__init__(data or {}) @property def spatial(self): """:return: the spatial extent.""" return SpatialExtent(self['spatial']) @property def temporal(self): """:return: the temporal extent.""" return TemporalExtent(self['temporal']) class SpatialExtent(dict): """The Spatial Extent object.""" def __init__(self, data): """Initialize instance with dictionary data. :param data: Dict with Spatial Extent metadata. """ super(SpatialExtent, self).__init__(data or {}) @property def bbox(self): """:return: the bbox of the Spatial Extent.""" return self['bbox'] class TemporalExtent(dict): """The Temporal Extent object.""" def __init__(self, data): """Initialize instance with dictionary data. :param data: Dict with Temporal Extent metadata. """ super(TemporalExtent, self).__init__(data or {}) @property def interval(self): """:return: the interval of the Temporal Extent.""" return self['interval'] class Provider(dict): """The Provider Object.""" def __init__(self, data): """Initialize instance with dictionary data. :param data: Dict with Provider metadata. """ super(Provider, self).__init__(data or {}) @property def name(self): """:return: the Provider name.""" return self['name'] @property def description(self): """:return: the Provider description.""" return self['description'] @property def roles(self): """:return: the Provider roles.""" return self['description'] @property def url(self): """:return: the Provider url.""" return self['url'] class Collection(Catalog): """The STAC Collection.""" def __init__(self, data): """Initialize instance with dictionary data. :param data: Dict with collection metadata. """ super(Collection, self).__init__(data or {}) @property def keywords(self): """:return: the Collection list of keywords.""" return self['keywords'] if 'keywords' in self else None @property def version(self): """:return: the Collection version.""" return self['version'] if 'version' in self else None @property def license(self): """:return: the Collection license.""" return self['license'] @property def providers(self): """:return: the Collection list of providers.""" return [Provider(provider) for provider in self['providers']] @property def extent(self): """:return: the Collection extent.""" return Extent(self['extent']) @property def properties(self): """:return: the Collection properties.""" return self['properties'] if 'properties' in self else None def get_items(self, item_id=None, filter=None): """:return: A GeoJSON FeatureCollection of STAC Items from the collection.""" for link in self['links']: if link['rel'] == 'items': if item_id is not None: data = Utils.get(f'{link["href"]}/{item_id}') return Item(data) data = Utils._get(link['href'], params=filter) return ItemCollection(data) return ItemCollection({})
class Solution: def hasGroupsSizeX(self, deck): helper = {} for card in deck: if helper.__contains__(card): helper[card] += 1 else: helper[card] = 1 i = 2 while i <= helper[card]: status = True for j in helper: if helper[j] % i != 0: status = False break if status is True: return True i += 1 return False slu = Solution() print(slu.hasGroupsSizeX([1, 2, 3, 4, 4, 3, 2, 1, 1]))
import numpy as np import torch from torch import nn class regressor_fcn_bn_32_b2h(nn.Module): def __init__(self): super(regressor_fcn_bn_32_b2h, self).__init__() def build_net(self, feature_in_dim, feature_out_dim, require_image=False, default_size=256): self.require_image = require_image self.default_size = default_size self.use_resnet = True embed_size = default_size if self.require_image: embed_size += default_size if self.use_resnet: self.image_resnet_postprocess = nn.Sequential( nn.Dropout(0.5), nn.Linear(1000*2, default_size), # 1000 is the size of ResNet50's embeddings (2 hands) nn.LeakyReLU(0.2, True), nn.BatchNorm1d(default_size, momentum=0.01), ) self.image_reduce = nn.Sequential( nn.MaxPool1d(kernel_size=2, stride=2), ) self.encoder = nn.Sequential( nn.Dropout(0.5), nn.Conv1d(feature_in_dim,256,3,padding=1), nn.LeakyReLU(0.2, True), nn.BatchNorm1d(256), nn.MaxPool1d(kernel_size=2, stride=2), ) self.conv5 = nn.Sequential( nn.Dropout(0.5), nn.Conv1d(embed_size,embed_size,3,padding=1), nn.LeakyReLU(0.2, True), nn.BatchNorm1d(embed_size), ) self.conv6 = nn.Sequential( nn.Dropout(0.5), nn.Conv1d(embed_size,embed_size,3,padding=1), nn.LeakyReLU(0.2, True), nn.BatchNorm1d(embed_size), ) self.conv7 = nn.Sequential( nn.Dropout(0.5), nn.Conv1d(embed_size,embed_size,5,stride=2,padding=2), nn.LeakyReLU(0.2, True), nn.BatchNorm1d(embed_size), ) # self.conv8 = nn.Sequential( # nn.Dropout(0.5), # nn.Conv1d(embed_size,embed_size,3,padding=1), # nn.LeakyReLU(0.2, True), # nn.BatchNorm1d(embed_size), # ) # self.conv9 = nn.Sequential( # nn.Dropout(0.5), # nn.Conv1d(embed_size,embed_size,3,padding=1), # nn.LeakyReLU(0.2, True), # nn.BatchNorm1d(embed_size), # ) # self.conv10 = nn.Sequential( # nn.Dropout(0.5), # nn.Conv1d(embed_size,embed_size,3,padding=1), # nn.LeakyReLU(0.2, True), # nn.BatchNorm1d(embed_size), # ) # self.skip1 = nn.Sequential( # nn.Dropout(0.5), # nn.Conv1d(embed_size,embed_size,3,padding=1), # nn.LeakyReLU(0.2, True), # nn.BatchNorm1d(embed_size), # ) # self.skip2 = nn.Sequential( # nn.Dropout(0.5), # nn.Conv1d(embed_size,embed_size,3,padding=1), # nn.LeakyReLU(0.2, True), # nn.BatchNorm1d(embed_size), # ) self.skip4 = nn.Sequential( nn.Dropout(0.5), nn.Conv1d(embed_size,embed_size,3,padding=1), nn.LeakyReLU(0.2, True), nn.BatchNorm1d(embed_size), ) self.skip5 = nn.Sequential( nn.Dropout(0.5), nn.Conv1d(embed_size,embed_size,3,padding=1), nn.LeakyReLU(0.2, True), nn.BatchNorm1d(embed_size), ) self.decoder = nn.Sequential( nn.Dropout(0.5), nn.Conv1d(embed_size,embed_size,3,padding=1), nn.LeakyReLU(0.2, True), nn.BatchNorm1d(embed_size), nn.Dropout(0.5), nn.ConvTranspose1d(embed_size, feature_out_dim, 7, stride=2, padding=3, output_padding=1), nn.ReLU(True), nn.BatchNorm1d(feature_out_dim), nn.Dropout(0.5), nn.Conv1d(feature_out_dim, feature_out_dim, 7, padding=3), ) ## create image embedding def process_image(self, image_): B, T, _ = image_.shape image_ = image_.view(-1, 1000*2) feat = self.image_resnet_postprocess(image_) feat = feat.view(B, T, self.default_size) feat = feat.permute(0, 2, 1).contiguous() feat = self.image_reduce(feat) return feat ## utility upsampling function def upsample(self, tensor, shape): return tensor.repeat_interleave(2, dim=2)[:,:,:shape[2]] ## forward pass through generator def forward(self, input_, audio_=None, percent_rand_=0.7, feats_=None): B, T = input_.shape[0], input_.shape[2] fourth_block = self.encoder(input_) if self.require_image: feat = self.process_image(feats_) fourth_block = torch.cat((fourth_block, feat), dim=1) fifth_block = self.conv5(fourth_block) sixth_block = self.conv6(fifth_block) seventh_block = self.conv7(sixth_block) # eighth_block = self.conv8(seventh_block) # ninth_block = self.conv9(eighth_block) # tenth_block = self.conv10(ninth_block) # ninth_block = tenth_block + ninth_block # ninth_block = self.skip1(ninth_block) # eighth_block = ninth_block + eighth_block # eighth_block = self.skip2(eighth_block) sixth_block = self.upsample(seventh_block, sixth_block.shape) + sixth_block sixth_block = self.skip4(sixth_block) fifth_block = sixth_block + fifth_block fifth_block = self.skip5(fifth_block) output = self.decoder(fifth_block) return output class regressor_fcn_bn_32(nn.Module): def __init__(self): super(regressor_fcn_bn_32, self).__init__() def build_net(self, feature_in_dim, feature_out_dim, require_text=None, default_size=256): self.require_text = require_text self.default_size = default_size embed_size_encoder = default_size embed_size = default_size if self.require_text: embed_size += default_size self.text_embeds_postprocess = nn.Sequential( nn.Dropout(0.5), nn.Linear(512, default_size), # 512 is the size of CLIP's text embeddings nn.LeakyReLU(0.2, True), nn.BatchNorm1d(default_size, momentum=0.01), ) self.text_reduce = nn.Sequential( nn.MaxPool1d(kernel_size=2, stride=2), ) self.encoder = nn.Sequential( nn.Dropout(0.5), nn.Conv1d(feature_in_dim,embed_size_encoder,3,padding=1), nn.LeakyReLU(0.2, True), nn.BatchNorm1d(embed_size_encoder), nn.MaxPool1d(kernel_size=2, stride=2), ) self.conv5 = nn.Sequential( nn.Dropout(0.5), nn.Conv1d(embed_size,embed_size,3,padding=1), nn.LeakyReLU(0.2, True), nn.BatchNorm1d(embed_size), ) self.conv6 = nn.Sequential( nn.Dropout(0.5), nn.Conv1d(embed_size,embed_size,3,padding=1), nn.LeakyReLU(0.2, True), nn.BatchNorm1d(embed_size), ) self.conv7 = nn.Sequential( nn.Dropout(0.5), nn.Conv1d(embed_size,embed_size,5,stride=2,padding=2), nn.LeakyReLU(0.2, True), nn.BatchNorm1d(embed_size), ) # self.conv8 = nn.Sequential( # nn.Dropout(0.5), # nn.Conv1d(embed_size,embed_size,3,padding=1), # nn.LeakyReLU(0.2, True), # nn.BatchNorm1d(embed_size), # ) # self.conv9 = nn.Sequential( # nn.Dropout(0.5), # nn.Conv1d(embed_size,embed_size,3,padding=1), # nn.LeakyReLU(0.2, True), # nn.BatchNorm1d(embed_size), # ) # self.conv10 = nn.Sequential( # nn.Dropout(0.5), # nn.Conv1d(embed_size,embed_size,3,padding=1), # nn.LeakyReLU(0.2, True), # nn.BatchNorm1d(embed_size), # ) # self.skip1 = nn.Sequential( # nn.Dropout(0.5), # nn.Conv1d(embed_size,embed_size,3,padding=1), # nn.LeakyReLU(0.2, True), # nn.BatchNorm1d(embed_size), # ) # self.skip2 = nn.Sequential( # nn.Dropout(0.5), # nn.Conv1d(embed_size,embed_size,3,padding=1), # nn.LeakyReLU(0.2, True), # nn.BatchNorm1d(embed_size), # ) self.skip4 = nn.Sequential( nn.Dropout(0.5), nn.Conv1d(embed_size,embed_size,3,padding=1), nn.LeakyReLU(0.2, True), nn.BatchNorm1d(embed_size), ) self.skip5 = nn.Sequential( nn.Dropout(0.5), nn.Conv1d(embed_size,embed_size,3,padding=1), nn.LeakyReLU(0.2, True), nn.BatchNorm1d(embed_size), ) self.decoder = nn.Sequential( nn.Dropout(0.5), nn.Conv1d(embed_size,embed_size,3,padding=1), nn.LeakyReLU(0.2, True), nn.BatchNorm1d(embed_size), nn.Dropout(0.5), nn.ConvTranspose1d(embed_size, feature_out_dim, 7, stride=2, padding=3, output_padding=1), nn.ReLU(True), nn.BatchNorm1d(feature_out_dim), nn.Dropout(0.5), nn.Conv1d(feature_out_dim, feature_out_dim, 7, padding=3), ) ## create text embedding def process_text(self, text_, T): # "v1" text_ = text_.unsqueeze(1).repeat(1, T, 1) B, _, E = text_.shape text_ = text_.view(-1, E) feat = self.text_embeds_postprocess(text_) feat = feat.view(B, T, self.default_size) feat = feat.permute(0, 2, 1).contiguous() feat = self.text_reduce(feat) return feat ## utility upsampling function def upsample(self, tensor, shape): return tensor.repeat_interleave(2, dim=2)[:,:,:shape[2]] ## forward pass through generator def forward(self, input_, audio_=None, percent_rand_=0.7, feats_=None): B, T = input_.shape[0], input_.shape[2] # print(f"input_.shape: {input_.shape}") fourth_block = self.encoder(input_) if self.require_text: # "v1" # print(text_.shape) feat = self.process_text(feats_, T) fourth_block = torch.cat((fourth_block, feat), dim=1) fifth_block = self.conv5(fourth_block) sixth_block = self.conv6(fifth_block) seventh_block = self.conv7(sixth_block) # eighth_block = self.conv8(seventh_block) # ninth_block = self.conv9(eighth_block) # tenth_block = self.conv10(ninth_block) # ninth_block = tenth_block + ninth_block # ninth_block = self.skip1(ninth_block) # eighth_block = ninth_block + eighth_block # eighth_block = self.skip2(eighth_block) sixth_block = self.upsample(seventh_block, sixth_block.shape) + sixth_block sixth_block = self.skip4(sixth_block) fifth_block = sixth_block + fifth_block fifth_block = self.skip5(fifth_block) output = self.decoder(fifth_block) return output class regressor_fcn_bn_32_v2(nn.Module): def __init__(self): super(regressor_fcn_bn_32_v2, self).__init__() def build_net(self, feature_in_dim, feature_out_dim, require_text=None, default_size=256): self.require_text = require_text self.default_size = default_size self.embed_size = default_size if self.require_text: self.embed_size += default_size self.text_embeds_postprocess = nn.Sequential( nn.Dropout(0.5), nn.Linear(512, self.embed_size), # 512 is the size of CLIP's text embeddings nn.LeakyReLU(0.2, True), nn.BatchNorm1d(self.embed_size, momentum=0.01), ) self.encoder = nn.Sequential( nn.Dropout(0.5), nn.Conv1d(feature_in_dim,self.embed_size,3,padding=1), nn.LeakyReLU(0.2, True), nn.BatchNorm1d(self.embed_size), nn.MaxPool1d(kernel_size=2, stride=2), ) self.conv5 = nn.Sequential( nn.Dropout(0.5), nn.Conv1d(self.embed_size,self.embed_size,3,padding=1), nn.LeakyReLU(0.2, True), nn.BatchNorm1d(self.embed_size), ) self.conv6 = nn.Sequential( nn.Dropout(0.5), nn.Conv1d(self.embed_size,self.embed_size,3,padding=1), nn.LeakyReLU(0.2, True), nn.BatchNorm1d(self.embed_size), ) self.conv7 = nn.Sequential( nn.Dropout(0.5), nn.Conv1d(self.embed_size,self.embed_size,5,stride=2,padding=2), nn.LeakyReLU(0.2, True), nn.BatchNorm1d(self.embed_size), ) self.skip4 = nn.Sequential( nn.Dropout(0.5), nn.Conv1d(self.embed_size,self.embed_size,3,padding=1), nn.LeakyReLU(0.2, True), nn.BatchNorm1d(self.embed_size), ) self.skip5 = nn.Sequential( nn.Dropout(0.5), nn.Conv1d(self.embed_size,self.embed_size,3,padding=1), nn.LeakyReLU(0.2, True), nn.BatchNorm1d(self.embed_size), ) self.decoder = nn.Sequential( nn.Dropout(0.5), nn.Conv1d(self.embed_size,self.embed_size,3,padding=1), nn.LeakyReLU(0.2, True), nn.BatchNorm1d(self.embed_size), nn.Dropout(0.5), nn.ConvTranspose1d(self.embed_size, feature_out_dim, 7, stride=2, padding=3, output_padding=1), nn.ReLU(True), nn.BatchNorm1d(feature_out_dim), nn.Dropout(0.5), nn.Conv1d(feature_out_dim, feature_out_dim, 7, padding=3), ) ## create text embedding def process_text(self, feats_): feats_ = feats_.unsqueeze(1) B, TT, E = feats_.shape feats_ = feats_.view(-1, E) feat = self.text_embeds_postprocess(feats_) feat = feat.view(B, TT, self.embed_size) # TT should == 1 feat = feat.permute(0, 2, 1).contiguous() return feat ## utility upsampling function def upsample(self, tensor, shape): return tensor.repeat_interleave(2, dim=2)[:,:,:shape[2]] ## forward pass through generator def forward(self, input_, audio_=None, percent_rand_=0.7, feats_=None): B, T = input_.shape[0], input_.shape[2] fourth_block = self.encoder(input_) fifth_block = self.conv5(fourth_block) sixth_block = self.conv6(fifth_block) seventh_block = self.conv7(sixth_block) if self.require_text: feat = self.process_text(feats_) seventh_block = torch.cat((seventh_block, feat), dim=2) sixth_block = self.upsample(seventh_block, sixth_block.shape) + sixth_block sixth_block = self.skip4(sixth_block) fifth_block = sixth_block + fifth_block fifth_block = self.skip5(fifth_block) output = self.decoder(fifth_block) return output class regressor_fcn_bn_32_v4(nn.Module): def __init__(self): super(regressor_fcn_bn_32_v4, self).__init__() def build_net(self, feature_in_dim, feature_out_dim, require_text=None, default_size=256): self.require_text = require_text self.default_size = default_size self.embed_size = default_size if self.require_text: self.embed_size += default_size self.text_embeds_postprocess = nn.Sequential( nn.Dropout(0.5), nn.Linear(512, self.embed_size//2), # 512 is the size of CLIP's text embeddings nn.LeakyReLU(0.2, True), nn.BatchNorm1d(self.embed_size//2, momentum=0.01), ) self.encoder = nn.Sequential( nn.Dropout(0.5), nn.Conv1d(feature_in_dim,self.embed_size,3,padding=1), nn.LeakyReLU(0.2, True), nn.BatchNorm1d(self.embed_size), nn.MaxPool1d(kernel_size=2, stride=2), ) self.conv5 = nn.Sequential( nn.Dropout(0.5), nn.Conv1d(self.embed_size,self.embed_size,3,padding=1), nn.LeakyReLU(0.2, True), nn.BatchNorm1d(self.embed_size), ) self.conv6 = nn.Sequential( nn.Dropout(0.5), nn.Conv1d(self.embed_size,self.embed_size,3,padding=1), nn.LeakyReLU(0.2, True), nn.BatchNorm1d(self.embed_size), ) self.conv7 = nn.Sequential( nn.Dropout(0.5), nn.Conv1d(self.embed_size,self.embed_size//(1+self.require_text),5,stride=2,padding=2), nn.LeakyReLU(0.2, True), nn.BatchNorm1d(self.embed_size//(1+self.require_text)), ) self.skip4 = nn.Sequential( nn.Dropout(0.5), nn.Conv1d(self.embed_size,self.embed_size,3,padding=1), nn.LeakyReLU(0.2, True), nn.BatchNorm1d(self.embed_size), ) self.skip5 = nn.Sequential( nn.Dropout(0.5), nn.Conv1d(self.embed_size,self.embed_size,3,padding=1), nn.LeakyReLU(0.2, True), nn.BatchNorm1d(self.embed_size), ) self.decoder = nn.Sequential( nn.Dropout(0.5), nn.Conv1d(self.embed_size,self.embed_size,3,padding=1), nn.LeakyReLU(0.2, True), nn.BatchNorm1d(self.embed_size), nn.Dropout(0.5), nn.ConvTranspose1d(self.embed_size, feature_out_dim, 7, stride=2, padding=3, output_padding=1), nn.ReLU(True), nn.BatchNorm1d(feature_out_dim), nn.Dropout(0.5), nn.Conv1d(feature_out_dim, feature_out_dim, 7, padding=3), ) ## create text embedding def process_text(self, feats_, T): feats_ = feats_.unsqueeze(1).repeat(1, T, 1) B, _, E = feats_.shape feats_ = feats_.view(-1, E) feat = self.text_embeds_postprocess(feats_) feat = feat.view(B, T, -1) feat = feat.permute(0, 2, 1).contiguous() return feat ## utility upsampling function def upsample(self, tensor, shape): return tensor.repeat_interleave(2, dim=2)[:,:,:shape[2]] ## forward pass through generator def forward(self, input_, audio_=None, percent_rand_=0.7, feats_=None): B, T = input_.shape[0], input_.shape[2] fourth_block = self.encoder(input_) fifth_block = self.conv5(fourth_block) sixth_block = self.conv6(fifth_block) seventh_block = self.conv7(sixth_block) if self.require_text: T = seventh_block.shape[2] feat = self.process_text(feats_, T) seventh_block = torch.cat((seventh_block, feat), dim=1) sixth_block = self.upsample(seventh_block, sixth_block.shape) + sixth_block sixth_block = self.skip4(sixth_block) fifth_block = sixth_block + fifth_block fifth_block = self.skip5(fifth_block) output = self.decoder(fifth_block) return output class regressor_fcn_bn_32_v4_deeper(nn.Module): def __init__(self): super(regressor_fcn_bn_32_v4_deeper, self).__init__() def build_net(self, feature_in_dim, feature_out_dim, require_text=None, default_size=256): self.require_text = require_text self.default_size = default_size self.embed_size = default_size if self.require_text: self.embed_size += default_size self.text_embeds_postprocess = nn.Sequential( nn.Dropout(0.5), nn.Linear(512, self.embed_size//2), # 512 is the size of CLIP's text embeddings nn.LeakyReLU(0.2, True), nn.BatchNorm1d(self.embed_size//2, momentum=0.01), ) self.encoder = nn.Sequential( nn.Dropout(0.5), nn.Conv1d(feature_in_dim,self.embed_size,3,padding=1), nn.LeakyReLU(0.2, True), nn.BatchNorm1d(self.embed_size), nn.MaxPool1d(kernel_size=2, stride=2), ) self.conv5 = nn.Sequential( nn.Dropout(0.5), nn.Conv1d(self.embed_size,self.embed_size,3,padding=1), nn.LeakyReLU(0.2, True), nn.BatchNorm1d(self.embed_size), ) self.conv6 = nn.Sequential( nn.Dropout(0.5), nn.Conv1d(self.embed_size,self.embed_size,3,padding=1), nn.LeakyReLU(0.2, True), nn.BatchNorm1d(self.embed_size), ) self.conv7 = nn.Sequential( nn.Dropout(0.5), nn.Conv1d(self.embed_size,self.embed_size,5,stride=2,padding=2), nn.LeakyReLU(0.2, True), nn.BatchNorm1d(self.embed_size), ) self.conv8 = nn.Sequential( nn.Dropout(0.5), nn.Conv1d(self.embed_size,self.embed_size,3,padding=1), nn.LeakyReLU(0.2, True), nn.BatchNorm1d(self.embed_size), ) self.conv9 = nn.Sequential( nn.Dropout(0.5), nn.Conv1d(self.embed_size,self.embed_size//(1+self.require_text),3,padding=1), nn.LeakyReLU(0.2, True), nn.BatchNorm1d(self.embed_size//(1+self.require_text)), ) self.conv10 = nn.Sequential( nn.Dropout(0.5), nn.Conv1d(self.embed_size//(1+self.require_text),self.embed_size//(1+self.require_text),3,padding=1), nn.LeakyReLU(0.2, True), nn.BatchNorm1d(self.embed_size//(1+self.require_text)), ) self.skip1 = nn.Sequential( nn.Dropout(0.5), nn.Conv1d(self.embed_size,self.embed_size,3,padding=1), nn.LeakyReLU(0.2, True), nn.BatchNorm1d(self.embed_size), ) self.skip2 = nn.Sequential( nn.Dropout(0.5), nn.Conv1d(self.embed_size,self.embed_size,3,padding=1), nn.LeakyReLU(0.2, True), nn.BatchNorm1d(self.embed_size), ) self.skip3 = nn.Sequential( nn.Dropout(0.5), nn.Conv1d(self.embed_size,self.embed_size,3,padding=1), nn.LeakyReLU(0.2, True), nn.BatchNorm1d(self.embed_size), ) self.skip4 = nn.Sequential( nn.Dropout(0.5), nn.Conv1d(self.embed_size,self.embed_size,3,padding=1), nn.LeakyReLU(0.2, True), nn.BatchNorm1d(self.embed_size), ) self.decoder = nn.Sequential( nn.Dropout(0.5), nn.Conv1d(self.embed_size,self.embed_size,3,padding=1), nn.LeakyReLU(0.2, True), nn.BatchNorm1d(self.embed_size), nn.Dropout(0.5), nn.ConvTranspose1d(self.embed_size, feature_out_dim, 7, stride=2, padding=3, output_padding=1), nn.ReLU(True), nn.BatchNorm1d(feature_out_dim), nn.Dropout(0.5), nn.Conv1d(feature_out_dim, feature_out_dim, 7, padding=3), ) ## create text embedding def process_text(self, text_, T): text_ = text_.unsqueeze(1).repeat(1, T, 1) B, _, E = text_.shape text_ = text_.view(-1, E) feat = self.text_embeds_postprocess(text_) feat = feat.view(B, T, -1) feat = feat.permute(0, 2, 1).contiguous() return feat ## utility upsampling function def upsample(self, tensor, shape): return tensor.repeat_interleave(2, dim=2)[:,:,:shape[2]] ## forward pass through generator def forward(self, input_, audio_=None, percent_rand_=0.7, feats_=None): fourth_block = self.encoder(input_) fifth_block = self.conv5(fourth_block) sixth_block = self.conv6(fifth_block) seventh_block = self.conv7(sixth_block) eighth_block = self.conv8(seventh_block) ninth_block = self.conv9(eighth_block) tenth_block = self.conv10(ninth_block) ninth_block = tenth_block + ninth_block if self.require_text: T = ninth_block.shape[2] feat = self.process_text(feats_, T) ninth_block = torch.cat((ninth_block, feat), dim=1) ninth_block = self.skip1(ninth_block) eighth_block = ninth_block + eighth_block eighth_block = self.skip2(eighth_block) sixth_block = self.upsample(seventh_block, sixth_block.shape) + sixth_block sixth_block = self.skip3(sixth_block) fifth_block = sixth_block + fifth_block fifth_block = self.skip4(fifth_block) output = self.decoder(fifth_block) return output class decoder_embed2pose(nn.Module): def __init__(self): super(decoder_embed2pose, self).__init__() def build_net(self, feature_in_dim, feature_out_dim, feature_out_len,require_text=None, default_size=256): self.require_text = require_text self.default_size = default_size self.use_embeds = True self.conv1 = nn.Sequential( nn.Dropout(0.5), nn.Conv1d(self.embed_size,self.embed_size,3,padding=1), nn.LeakyReLU(0.2, True), nn.BatchNorm1d(self.embed_size), ) self.conv2 = nn.Sequential( nn.Dropout(0.5), nn.Conv1d(self.embed_size,self.embed_size,3,padding=1), nn.LeakyReLU(0.2, True), nn.BatchNorm1d(self.embed_size), ) self.decoder = nn.Sequential( nn.Dropout(0.5), nn.Conv1d(self.embed_size,self.embed_size,3,padding=1), nn.LeakyReLU(0.2, True), nn.BatchNorm1d(self.embed_size), nn.Dropout(0.5), nn.ConvTranspose1d(self.embed_size, feature_out_dim, 7, stride=2, padding=3, output_padding=1), nn.ReLU(True), nn.BatchNorm1d(feature_out_dim), nn.Dropout(0.5), nn.Conv1d(feature_out_dim, feature_out_dim, 7, padding=3), ) ## utility upsampling function def upsample(self, tensor, shape): return tensor.repeat_interleave(2, dim=2)[:,:,:shape[2]] ## forward pass through generator def forward(self, input_, audio_=None, percent_rand_=0.7, feats_=None): B, T = input_.shape[0], input_.shape[2] # print(f"input_.shape: {input_.shape}") output = None return output class regressor_fcn_bn_discriminator(nn.Module): def __init__(self): super(regressor_fcn_bn_discriminator, self).__init__() def build_net(self, feature_in_dim): self.convs = nn.Sequential( nn.Dropout(0.5), nn.Conv1d(feature_in_dim,64,5,stride=2,padding=2), nn.LeakyReLU(0.2, True), nn.BatchNorm1d(64), ## 64 nn.Dropout(0.5), nn.Conv1d(64,64,5,stride=2,padding=2), nn.LeakyReLU(0.2, True), nn.BatchNorm1d(64), ## 32 nn.Dropout(0.5), nn.Conv1d(64,32,5,stride=2,padding=2), nn.LeakyReLU(0.2, True), nn.BatchNorm1d(32), ## 16 nn.Dropout(0.5), nn.Conv1d(32,32,5,stride=2,padding=2), nn.LeakyReLU(0.2, True), nn.BatchNorm1d(32), ## 8 nn.Dropout(0.5), nn.Conv1d(32,16,5,stride=2,padding=2), nn.LeakyReLU(0.2, True), nn.BatchNorm1d(16), ## 4 nn.Dropout(0.5), nn.Conv1d(16,16,5,stride=2,padding=2), nn.LeakyReLU(0.2, True), nn.BatchNorm1d(16), ## 2 nn.Dropout(0.5), nn.Conv1d(16,8,5,stride=2,padding=2), nn.LeakyReLU(0.2, True), nn.BatchNorm1d(8), ## 1 nn.Dropout(0.5), nn.Conv1d(8,1,3,padding=1), ) def forward(self, input_): outputs = self.convs(input_) return outputs
from qiskit import * from qiskit.chemistry.drivers import UnitsType, HFMethodType, PySCFDriver from qiskit.chemistry.core import Hamiltonian, TransformationType, QubitMappingType from qiskit.chemistry.components.initial_states import HartreeFock from qiskit.aqua import QuantumInstance,aqua_globals from qiskit.aqua import QuantumInstance,aqua_globals from qiskit.aqua.operators import Z2Symmetries from qiskit.aqua.algorithms.classical import ExactEigensolver import numpy as np import functools from qiskit.providers.aer.noise import NoiseModel from qiskit.ignis.mitigation.measurement import (complete_meas_cal,tensored_meas_cal,CompleteMeasFitter,TensoredMeasFitter) import sys from subroutines import * driver = PySCFDriver(atom='''H 0.0000 0.0000 0.0000; H 0.0000 0.0000 0.742''', unit=UnitsType.ANGSTROM,charge=0,spin=0,basis='sto-6g',hf_method=HFMethodType.RHF) molecule = driver.run() #Now the Hamiltonian core = Hamiltonian(transformation=TransformationType.FULL,qubit_mapping=QubitMappingType.PARITY,two_qubit_reduction=True,freeze_core=False,orbital_reduction=[0,1,2,5,6]) H_op,A_op = core.run(molecule) dE = core._energy_shift + core._ph_energy_shift + core._nuclear_repulsion_energy A_op = A_op[:3] dA = [0]*len(A_op) ## Initial state + variational ansatze to construct the circuit init_state = HartreeFock(num_qubits=H_op.num_qubits,num_orbitals=core._molecule_info['num_orbitals'], qubit_mapping=core._qubit_mapping,two_qubit_reduction=core._two_qubit_reduction, num_particles=core._molecule_info['num_particles']) num_qubits = H_op.num_qubits num_parameters = 6*(num_qubits-1) def generate_circuit(parameters): circuit = init_state.construct_circuit() num_qubits = H_op.num_qubits circuit.barrier() p0 = 0 for qubit1 in range(0,num_qubits-1,2): qubit2 = qubit1+1 circuit.s(qubit1) circuit.s(qubit2) circuit.h(qubit2) circuit.cx(qubit2,qubit1) circuit.u3(parameters[p0+0],parameters[p0+1],parameters[p0+2],qubit1) circuit.u3(parameters[p0+3],parameters[p0+4],parameters[p0+5],qubit2); p0 += 6 circuit.cx(qubit2,qubit1) circuit.h(qubit2) circuit.sdg(qubit1) circuit.sdg(qubit2) circuit.barrier() for qubit1 in range(1,num_qubits-1,2): qubit2 = qubit1+1 circuit.s(qubit1) circuit.s(qubit2) circuit.h(qubit2) circuit.cx(qubit2,qubit1) circuit.u3(parameters[p0+0],parameters[p0+1],parameters[p0+2],qubit1) circuit.u3(parameters[p0+3],parameters[p0+4],parameters[p0+5],qubit2); p0 += 6 circuit.cx(qubit2,qubit1) circuit.h(qubit2) circuit.sdg(qubit1) circuit.sdg(qubit2) circuit.barrier() return circuit print(generate_circuit(np.zeros(num_parameters)).draw()) ###Now choose the right instance #runtype = ['qasm',None,False,8000] #runtype = ['noise_model','ibmq_rome',False,8000] #runtype = ['noise_model','ibmq_rome',True,8000] runtype = ['hardware','ibmq_rome',True,8000] if(runtype[0]=='qasm'): # ==== running VQE on QASM simulator, without noise print("Running on qasm simulator ") backend = Aer.get_backend('qasm_simulator') instance = QuantumInstance(backend=backend,shots=runtype[3]) if(runtype[0]=='noise_model'): # ==== running VQE on QASM simulator, with noise model from an actual machine print("Running on qasm simulator with noise of a real hardware") print("Opening IBMQ account...") provider = IBMQ.load_account() backend = provider.get_backend(runtype[1]) noise_model = NoiseModel.from_backend(backend) coupling_map = backend.configuration().coupling_map basis_gates = noise_model.basis_gates simulator = Aer.get_backend('qasm_simulator') if(runtype[2]): # ==== usando readout error mitigation print("with error mitigation") instance = QuantumInstance(backend=simulator,noise_model=noise_model,coupling_map=coupling_map,basis_gates=basis_gates, measurement_error_mitigation_cls=CompleteMeasFitter,shots=runtype[3]) else: # ==== senza readout error mitigation print("without error mitigation") instance = QuantumInstance(backend=simulator,noise_model=noise_model,coupling_map=coupling_map,basis_gates=basis_gates,shots=runtype[3]) if(runtype[0]=='hardware'): # ==== running VQE on HARDWARE, I would do it with readout error mitigation print("Running on hardware") print("Running "+r) IBMQ.load_account() provider = IBMQ.get_provider(hub='ibm-q-research',group='Stefan-Barison', project='main') simulator = provider.get_backend(runtype[1]) instance = QuantumInstance(backend=simulator,measurement_error_mitigation_cls=CompleteMeasFitter,shots=runtype[3],skip_qobj_validation=False) algo = manual_VQE(H_op,dE,A_op,dA,generate_circuit,instance,num_parameters) algo.run(t_mesh=np.arange(-2,2.1,0.5))
import unittest from cnc.pulses import * from cnc.config import * from cnc.coordinates import * from cnc import hal_virtual class TestPulses(unittest.TestCase): def setUp(self): self.v = min(MAX_VELOCITY_MM_PER_MIN_X, MAX_VELOCITY_MM_PER_MIN_Y, MAX_VELOCITY_MM_PER_MIN_Z, MAX_VELOCITY_MM_PER_MIN_E) def tearDown(self): pass def test_zero(self): # PulseGenerator should never receive empty movement. self.assertRaises(ZeroDivisionError, PulseGeneratorLinear, Coordinates(0, 0, 0, 0), self.v) self.assertRaises(ZeroDivisionError, PulseGeneratorCircular, Coordinates(0, 0, 0, 0), Coordinates(0, 0, 9, 9), PLANE_XY, CW, self.v) self.assertRaises(ZeroDivisionError, PulseGeneratorCircular, Coordinates(0, 0, 0, 0), Coordinates(9, 0, 0, 9), PLANE_YZ, CW, self.v) self.assertRaises(ZeroDivisionError, PulseGeneratorCircular, Coordinates(0, 0, 0, 0), Coordinates(0, 9, 0, 9), PLANE_ZX, CW, self.v) def test_step_linear(self): # Check if PulseGenerator returns correctly single step movement. g = PulseGeneratorLinear(Coordinates(1.0 / STEPPER_PULSES_PER_MM_X, 0, 0, 0), self.v) i = 0 for direction, px, py, pz, pe in g: if direction: continue i += 1 self.assertEqual(px, 0) self.assertEqual(py, None) self.assertEqual(pz, None) self.assertEqual(pe, None) self.assertEqual(i, 1) g = PulseGeneratorLinear(Coordinates( 1.0 / STEPPER_PULSES_PER_MM_X, 1.0 / STEPPER_PULSES_PER_MM_Y, 1.0 / STEPPER_PULSES_PER_MM_Z, 1.0 / STEPPER_PULSES_PER_MM_E), self.v) i = 0 for direction, px, py, pz, pe in g: if direction: continue i += 1 self.assertEqual(px, 0) self.assertEqual(py, 0) self.assertEqual(pz, 0) self.assertEqual(pe, 0) self.assertEqual(i, 1) def __check_circular(self, delta, radius, plane, direction=CW): g = PulseGeneratorCircular(delta, radius, plane, direction, self.v) x, y, z, e = 0, 0, 0, 0 dx, dy, dz, de = None, None, None, None dir_changed = 0 dir_requested = False t = -1 for direction_i, px, py, pz, pe in g: if direction_i: dx, dy, dz, de = px, py, pz, pe if STEPPER_INVERTED_X: dx = -dx if STEPPER_INVERTED_Y: dy = -dy if STEPPER_INVERTED_Z: dz = -dz if STEPPER_INVERTED_E: de = -de dir_requested = True continue if dir_requested: # ignore last change dir_requested = False dir_changed += 1 if px is not None: x += dx if py is not None: y += dy if pz is not None: z += dz if pe is not None: e += de v = list(i for i in (px, py, pz, pe) if i is not None) self.assertEqual(min(v), max(v)) self.assertLessEqual(t, min(v)) t = max(v) return dir_changed, Coordinates(x / STEPPER_PULSES_PER_MM_X, y / STEPPER_PULSES_PER_MM_Y, z / STEPPER_PULSES_PER_MM_Z, e / STEPPER_PULSES_PER_MM_E) def test_single_radius_circles(self): # Check if PulseGenerator returns correctly single radius movement in # both direction. zero_delta = Coordinates(0, 0, 0, 0) radius = Coordinates(1.0 / STEPPER_PULSES_PER_MM_X, 0, 0, 0) _, pos = self.__check_circular(zero_delta, radius, PLANE_XY, CW) self.assertEqual(pos, Coordinates(0, 0, 0, 0)) radius = Coordinates(-1.0 / STEPPER_PULSES_PER_MM_X, 0, 0, 0) _, pos = self.__check_circular(zero_delta, radius, PLANE_XY, CW) self.assertEqual(pos, Coordinates(0, 0, 0, 0)) radius = Coordinates(0, 1.0 / STEPPER_PULSES_PER_MM_Y, 0, 0) _, pos = self.__check_circular(zero_delta, radius, PLANE_YZ, CW) self.assertEqual(pos, Coordinates(0, 0, 0, 0)) radius = Coordinates(0, -1.0 / STEPPER_PULSES_PER_MM_Y, 0, 0) _, pos = self.__check_circular(zero_delta, radius, PLANE_YZ, CW) self.assertEqual(pos, Coordinates(0, 0, 0, 0)) radius = Coordinates(0, 0, 1.0 / STEPPER_PULSES_PER_MM_Z, 0) _, pos = self.__check_circular(zero_delta, radius, PLANE_ZX, CW) self.assertEqual(pos, Coordinates(0, 0, 0, 0)) radius = Coordinates(0, 0, -1.0 / STEPPER_PULSES_PER_MM_Z, 0) _, pos = self.__check_circular(zero_delta, radius, PLANE_ZX, CW) self.assertEqual(pos, Coordinates(0, 0, 0, 0)) radius = Coordinates(1.0 / STEPPER_PULSES_PER_MM_X, 0, 0, 0) _, pos = self.__check_circular(zero_delta, radius, PLANE_XY, CCW) self.assertEqual(pos, Coordinates(0, 0, 0, 0)) radius = Coordinates(-1.0 / STEPPER_PULSES_PER_MM_X, 0, 0, 0) _, pos = self.__check_circular(zero_delta, radius, PLANE_XY, CCW) self.assertEqual(pos, Coordinates(0, 0, 0, 0)) radius = Coordinates(0, 1.0 / STEPPER_PULSES_PER_MM_Y, 0, 0) _, pos = self.__check_circular(zero_delta, radius, PLANE_YZ, CCW) self.assertEqual(pos, Coordinates(0, 0, 0, 0)) radius = Coordinates(0, -1.0 / STEPPER_PULSES_PER_MM_Y, 0, 0) _, pos = self.__check_circular(zero_delta, radius, PLANE_YZ, CCW) self.assertEqual(pos, Coordinates(0, 0, 0, 0)) radius = Coordinates(0, 0, 1.0 / STEPPER_PULSES_PER_MM_Z, 0) _, pos = self.__check_circular(zero_delta, radius, PLANE_ZX, CCW) self.assertEqual(pos, Coordinates(0, 0, 0, 0)) radius = Coordinates(0, 0, -1.0 / STEPPER_PULSES_PER_MM_Z, 0) _, pos = self.__check_circular(zero_delta, radius, PLANE_ZX, CCW) self.assertEqual(pos, Coordinates(0, 0, 0, 0)) def test_with_hal_virtual(self): # Using hal_virtual module for this test, it already contains plenty # of asserts for wrong number of pulses, pulse timing issues etc hal_virtual.move(PulseGeneratorLinear(Coordinates(1, 0, 0, 0), self.v)) hal_virtual.move(PulseGeneratorLinear(Coordinates(25.4, 0, 0, 0), self.v)) hal_virtual.move(PulseGeneratorLinear(Coordinates(25.4, 0, 0, 0), self.v)) hal_virtual.move(PulseGeneratorLinear(Coordinates(25.4, 0, 0, 0), self.v)) hal_virtual.move(PulseGeneratorLinear(Coordinates(TABLE_SIZE_X_MM, TABLE_SIZE_Y_MM, TABLE_SIZE_Z_MM, 100.0), self.v)) hal_virtual.move(PulseGeneratorCircular(Coordinates(0, 20, 0, 0), Coordinates(-10, 10, 0, 0), PLANE_XY, CW, self.v)) hal_virtual.move(PulseGeneratorCircular(Coordinates(-4, -4, 0, 0), Coordinates(-2, -2, 0, 0), PLANE_XY, CW, self.v)) delta = Coordinates(- 2.0 / STEPPER_PULSES_PER_MM_X, - 2.0 / STEPPER_PULSES_PER_MM_Y, 0, 0) radius = Coordinates(- 1.0 / STEPPER_PULSES_PER_MM_X, - 1.0 / STEPPER_PULSES_PER_MM_Y, 0, 0) hal_virtual.move(PulseGeneratorCircular(delta, radius, PLANE_XY, CW, self.v)) def test_twice_faster_linear(self): # Checks if one axis moves exactly twice faster, pulses are correct. m = Coordinates(2, 4, 0, 0) g = PulseGeneratorLinear(m, self.v) i = 0 j = 0 k = 0 for direction, px, py, pz, pe in g: if direction: continue if py is not None: k += 1 j += 1 else: self.assertNotEqual(px, None) if px is not None: if i != 0: self.assertEqual(j, 2 * STEPPER_PULSES_PER_MM_Y / STEPPER_PULSES_PER_MM_X) j = 0 self.assertEqual(pz, None) self.assertEqual(pe, None) i += 1 self.assertEqual(k / STEPPER_PULSES_PER_MM_Y, m.y) def test_pulses_count_and_timings(self): # Check if number of pulses is equal to specified distance. m = Coordinates(TABLE_SIZE_X_MM, TABLE_SIZE_Y_MM, TABLE_SIZE_Z_MM, 100.0) g = PulseGeneratorLinear(m, self.v) ix = 0 iy = 0 iz = 0 ie = 0 t = -1 for direction, px, py, pz, pe in g: if direction: continue if px is not None: ix += 1 if py is not None: iy += 1 if pz is not None: iz += 1 if pe is not None: ie += 1 v = list(x for x in (px, py, pz, pe) if x is not None) self.assertEqual(min(v), max(v)) self.assertLess(t, min(v)) t = max(v) self.assertEqual(m.x * STEPPER_PULSES_PER_MM_X, ix) self.assertEqual(m.y * STEPPER_PULSES_PER_MM_Y, iy) self.assertEqual(m.z * STEPPER_PULSES_PER_MM_Z, iz) self.assertEqual(m.e * STEPPER_PULSES_PER_MM_E, ie) self.assertLessEqual(t, g.total_time_s()) _, pos = self.__check_circular(Coordinates(0, 8, 0, 7), Coordinates(1, 0, 1, 0), PLANE_ZX, CCW) self.assertEqual(pos, Coordinates(0, 8, 0, 7)) _, pos = self.__check_circular(Coordinates(5, 0, 0, 6), Coordinates(0, 1, -1, 0), PLANE_YZ, CW) self.assertEqual(pos, Coordinates(5, 0, 0, 6)) _, pos = self.__check_circular(Coordinates(-2, -2, 3, 2), Coordinates(-1, -1, 0, 0), PLANE_XY, CCW) self.assertEqual(pos, Coordinates(-2, -2, 3, 2)) def test_acceleration_velocity(self): # Check if acceleration present in pulses sequence and if velocity # is correct, since PulseGenerator is responsible for this, check only # one child class. m = Coordinates(TABLE_SIZE_X_MM, 0, 0, 0) velocity = 1000 g = PulseGeneratorLinear(m, velocity) i = 0 lx = 0 lt, at, bt = None, None, None for direction, px, py, pz, pe in g: if direction: continue if i == 2: at = px - lx if i == TABLE_SIZE_X_MM * STEPPER_PULSES_PER_MM_X / 2: lt = px - lx bt = px - lx lx = px i += 1 self.assertEqual(round(60.0 / lt / STEPPER_PULSES_PER_MM_X), velocity) self.assertGreater(at, lt) self.assertGreater(bt, lt) def test_directions(self): # Check if directions are set up correctly. m = Coordinates(1, -2, 3, -4) g = PulseGeneratorLinear(m, self.v) dir_found = False for direction, px, py, pz, pe in g: if direction: if STEPPER_INVERTED_X: px = -px if STEPPER_INVERTED_Y: py = -py if STEPPER_INVERTED_Z: pz = -pz if STEPPER_INVERTED_E: pe = -pe # should be once self.assertFalse(dir_found) dir_found = True # check dirs self.assertTrue(px > 0 and py < 0 and pz > 0 and pe < 0) m = Coordinates(-1, 2, -3, 4) g = PulseGeneratorLinear(m, self.v) dir_found = False for direction, px, py, pz, pe in g: if direction: if STEPPER_INVERTED_X: px = -px if STEPPER_INVERTED_Y: py = -py if STEPPER_INVERTED_Z: pz = -pz if STEPPER_INVERTED_E: pe = -pe # should be once self.assertFalse(dir_found) dir_found = True # check dirs self.assertTrue(px < 0 and py > 0 and pz < 0 and pe > 0) # check for circle, full circle dir_changed, _ = self.__check_circular(Coordinates(0, 0, 0, 0), Coordinates(1.0, 1.0, 0, 0), PLANE_ZX, CCW) self.assertEqual(dir_changed, 4) if __name__ == '__main__': unittest.main()
"""Simple DHT scraper.""" import logging import os import threading from logging.handlers import TimedRotatingFileHandler from queue import Queue from random import randint from secrets import token_hex from signal import SIGINT, SIGTERM, signal from typing import List from dht_node import DHTNode from dht_node.data_structures import Counter from dht_node.utils import log_stats from diskcache import Cache from src import handlers, utils if __name__ == "__main__": cache = Cache("cache", eviction_policy="none", size_limit=5 * 10 ** 10) counters = {"all": Counter(), "saved": Counter()} found_torrents: Queue = Queue(maxsize=10 ** 6) started_nodes: List[DHTNode] = [] # Generate folders, if necessary for folder in ["logs", "results"]: if not os.path.exists(folder): os.makedirs(folder) # Generate random node details, if necessary if not os.path.exists("nodes.csv") or os.path.getsize("nodes.csv") == 0: with open("nodes.csv", "w", encoding="utf8") as source_file: source_file.write(f"{token_hex(20)},{randint(1025, 65535)}\n") # Configure logging log_f = os.path.join("logs/log.txt") logging.basicConfig( format="%(asctime)s [%(name)s] %(levelname)s: %(message)s", handlers=[TimedRotatingFileHandler(log_f, utc=True, when="midnight")], level=logging.INFO, ) # Handle close signal gracefully stop = threading.Event() signal(SIGINT, lambda *args: utils.signal_handler(started_nodes, stop)) signal(SIGTERM, lambda *args: utils.signal_handler(started_nodes, stop)) # Add existing info hashes to the cache utils.update_cache(cache, stop) # Start result queue handler threading.Thread( target=handlers.process_found_torrents, args=(cache, counters, found_torrents, stop), ).start() # Load list of nodes from the source file with open("nodes.csv", "r", encoding="utf8") as source_file: # Initialize and start them if not stop.is_set(): for row in source_file: if not row.strip(): continue node_id = row.split(",")[0].strip() node_port = int(row.split(",")[1].strip()) new_node = DHTNode(node_id, node_port) new_node.add_message_handler( lambda m, n: utils.on_dht_message(found_torrents, m, n), ) new_node.start() started_nodes.append(new_node) while not stop.is_set(): # Log the progress logging.info("%s threads", threading.active_count()) log_stats(*started_nodes) logging.info( "Processed info hashes: %s all, %s saved", counters["all"].value, counters["saved"].value, ) logging.info("Queue length: %s info hashes\n", found_torrents.qsize()) # Reset counters for counter in counters.values(): counter.reset() # Wait until the next check stop.wait(60) logging.info("Exiting!\n")
#tuto obtenido de aca https://www.youtube.com/watch?v=a8xNuu-2X_4 import sys import pyqtgraph as pg import numpy as np from PyQt5 import QtGui, QtCore app = QtGui.QApplication(sys.argv) #QGuiApplication x = np.random.normal(loc=0.0, scale=2, size=100) widget = pg.PlotWidget(title="Some plotting") widget.setWindowTitle("Random Plottoring") widget.plotItem.plot(x) widget.show() sys.exit(app.exec_())
# 실제로 게임이 진행되는 게임 월드 from character import Player from attack_kind import FireAttackKind, IceAttackKind from monsters import (FireMonster, IceMonster, StoneMonster, KungfuMonster) fm=FireMonster() im=IceMonster() sm=StoneMonster() kfm=KungfuMonster() monsters=[] monsters.extend((fm, im, sm, kfm)) # Dependency Injection : DI player = Player('john', 120, 20, FireAttackKind(), IceAttackKind()) print(player) for mon in monsters: player.attack(mon, 'Fire') for mon in monsters: print(mon) print() print("Monster Attack!") for mon in monsters: print(mon.get_attack_kind()) mon.attack(player, mon.get_attack_kind()) print() print(player)
"Bidirectional IPC with anonymous pipes" ''' Pipes normally let data flow in only one direction—one side is input, one is output. What if you need your programs to talk back and forth, though? For example, one program might send another a request for information and then wait for that information to be sent back. A single pipe can’t generally handle such bidirectional conversations, but two pipes can. One pipe can be used to pass requests to a program and another can be used to ship replies back to the requestor. by spawning command-line programs with streams attached by pipes, systems can add new interfaces to legacy programs. ''' """ spawn a child process/program, connect my stdin/stdout to child process's stdout/stdin--my reads and writes map to output and input streams of the spawned program; much like tying together streams with subprocess module; """ import os, sys def spawn(prog, *args): # pass progname, cmdline args stdinFd = sys.stdin.fileno() # get descriptors for streams stdoutFd = sys.stdout.fileno() # normally stdin=0, stdout=1 parentStdin, childStdout = os.pipe() # make two IPC pipe channels childStdin, parentStdout = os.pipe() # pipe returns (inputfd, outoutfd) pid = os.fork() # make a copy of this process if pid: os.close(childStdout) # in parent process after fork: os.close(childStdin) # close child ends in parent os.dup2(parentStdin, stdinFd) # my sys.stdin copy = pipe1[0] os.dup2(parentStdout, stdoutFd) # my sys.stdout copy = pipe2[1] else: os.close(parentStdin) # in child process after fork: os.close(parentStdout) # close parent ends in child os.dup2(childStdin, stdinFd) # my sys.stdin copy = pipe2[0] os.dup2(childStdout, stdoutFd) # my sys.stdout copy = pipe1[1] args = (prog,) + args os.execvp(prog, args) # new program in this process assert False, 'execvp failed!' # os.exec call never returns here if __name__ == '__main__': mypid = os.getpid() spawn('python', 'pipes-testchild.py', 'spam') # fork child program print('Hello 1 from parent', mypid) # to child's stdin sys.stdout.flush() # subvert stdio buffering reply = input() # from child's stdout sys.stderr.write('Parent got: "%s"\n' % reply) # stderr not tied to pipe! print('Hello 2 from parent', mypid) sys.stdout.flush() reply = sys.stdin.readline() sys.stderr.write('Parent got: "%s"\n' % reply[:-1]) """ The spawn function in this module does not work on standard Windows Python (remember that fork isn’t yet available there today). # Unix concepts os.fork Copies the calling process as usual and returns the child’s process ID in the parent process only. os.execvp Overlays a new program in the calling process; it’s just like the os.execlp used earlier but takes a tuple or list of command-line argument strings (collected with the *args form in the function header). os.pipe Returns a tuple of file descriptors representing the input and output ends of a pipe, as in earlier examples. os.close(fd) Closes the descriptor-based file fd. os.dup2(fd1,fd2) Copies all system information associated with the file named by the file descriptor fd1 to the file named by fd2. In terms of connecting standard streams, os.dup2 is the real nitty-gritty here. For example, the call os.dup2(parentStdin,stdinFd) essentially assigns the parent process’s stdin file to the input end of one of the two pipes created; all stdin reads will henceforth come from the pipe. """
def lastk(head,k): slow,fast = head,head while k > 0: fast = fast.next k -= 1 while fast != None: slow = slow.next fast = fast.next return slow
from core.Model import * from core.Utils import Utils class AppVersion(Base, Model): __tablename__ = 'app_version' id = Column(Integer, primary_key = True, autoincrement=True) version = Column(Float, nullable=False) created = Column(DateTime, default = Utils.time()) formatters = { "created": Utils.date_formatter } @staticmethod def get_actual_version(): return AppVersion.max("version") @staticmethod def get_actual_version_class(): return AppVersion.get(AppVersion.max("id"))
import yaml from lib.dashboard import Dashboard from lib.widgets.wmata_widget import WMATAWidget from lib.widgets.weather_widget import WeatherWidget from lib.widgets.calendar_widget import CalendarWidget from lib.widgets.rss_widget import RSSWidget from lib.widgets.message_widget import MessageWidget class DashboardConfig: def __init__(self, path, args): self.path = path self.load_config() if len(args) > 1: self.config["output"] = args[1] def load_config(self): with open(self.path, 'r') as file: self.config = yaml.load(file.read(), Loader=yaml.SafeLoader) def get(self, key): if key not in self.config: raise Exception("Key \"%s\" not in config!" % (key)) return self.config[key] def generate_dashboard(self): text_global_config = self.get("text") font_size = text_global_config["font_size"] font_path = text_global_config["font_path"] dashboard_config = self.get("dashboard") return Dashboard( dashboard_config["width"], dashboard_config["height"], dashboard_config["rows"], dashboard_config["cols"], dashboard_config["gutter"], dashboard_config["show_status"], font_size, font_path ) def generate_widgets(self): widget_global_config = self.get("widget") text_global_config = self.get("text") font_size = text_global_config["font_size"] padding = widget_global_config["padding"] font_path = text_global_config["font_path"] widgets = self.get("widgets") widget_instances = [] for widget_config in widgets: widget = self.init_widget(widget_config["type"], font_size, font_path, padding, widget_config) widget_instances.append(widget) return widget_instances def init_widget(self, widget_type, font_size, font_path, padding, config): if widget_type == "calendar": return CalendarWidget(font_size, font_path, padding, config) elif widget_type == "wmata": return WMATAWidget(font_size, font_path, padding, config) elif widget_type == "weather": return WeatherWidget(font_size, font_path, padding, config) elif widget_type == "rss": return RSSWidget(font_size, font_path, padding, config) elif widget_type == "message": return MessageWidget(font_size, font_path, padding, config)
import subprocess from manifestManager import ManifestManager class DiskManager(object): def __init__(self, configure): self.imagesLocation = configure.VM_IMAGES_LOCATION self.vmLocation = configure.INSTANTIATED_VM_LOCATION self.manifestManager = ManifestManager(configure) def retriveDisk(self, nfID, localNFID): ''' Retrieve the Disk for a NF ''' manifest = self.manifestManager.getManifest(nfID) subprocess.call(["qemu-img", "create", "-b", self.imagesLocation+manifest['disk'], "-f", "qcow2", self.vmLocation+localNFID+".qcow2"]) return self.vmLocation+localNFID+".qcow2" def removeLocalDisk(self, localNFID): ''' Remove a Disk from the local drive ''' subprocess.call(["rm", "-f", self.vmLocation+localNFID+".qcow2"])
from datetime import date from django.shortcuts import render from django.db.models import Count from django.http import HttpResponseRedirect # Create your views here. from .models import Book, Author, BookInstance, Genre, Loan def toggle_available_only(request): if "available_only" in request.session: request.session["available_only"] = not request.session["available_only"] else: request.session["available_only"] = True return HttpResponseRedirect(request.GET.get('next', "/books")) def index(request): """View function for home page of site.""" # Generate counts of some of the main objects num_books = Book.objects.all().count() num_instances = BookInstance.objects.all().count() # Available copies of books num_instances_available = num_instances - Loan.objects.filter(return_date__isnull=True).count() num_authors = Author.objects.count() # The 'all()' is implied by default. # Render the HTML template index.html with the data in the context variable. return render( request, 'index.html', context={'num_books': num_books, 'num_instances': num_instances, 'num_instances_available': num_instances_available, 'num_authors': num_authors, }, ) from django.views import generic class BookListView(generic.ListView): """Generic class-based view for a list of books.""" model = Book paginate_by = 12 class BookDetailView(generic.DetailView): """Generic class-based detail view for a book.""" model = Book class AuthorListView(generic.ListView): """Generic class-based list view for a list of authors.""" model = Author paginate_by = 20 queryset = Author.objects.all().annotate(book_count=Count("book")) class AuthorDetailView(generic.DetailView): """Generic class-based detail view for an author.""" model = Author class GenreListView(generic.ListView): model = Genre paginate_by = 20 queryset = Genre.objects.all().annotate(book_count=Count("book")) class GenreDetailView(generic.DetailView): model = Genre from django.contrib.auth.mixins import LoginRequiredMixin class LoanedBooksByUserListView(LoginRequiredMixin, generic.ListView): """Generic class-based view listing books on loan to current user.""" model = Loan template_name = 'catalog/bookinstance_list_borrowed_user.html' paginate_by = 10 def get_queryset(self): return Loan.objects.filter(borrower=self.request.user).order_by('due_date') # Added as part of challenge! from django.contrib.auth.mixins import PermissionRequiredMixin class LoanedBooksAllListView(PermissionRequiredMixin, generic.ListView): """Generic class-based view listing all books on loan. Only visible to users with can_mark_returned permission.""" model = BookInstance permission_required = 'catalog.can_mark_returned' template_name = 'catalog/bookinstance_list_borrowed_all.html' paginate_by = 10 def get_queryset(self): return Loan.objects.order_by('due_date') from django.shortcuts import get_object_or_404 from django.http import HttpResponseRedirect from django.urls import reverse import datetime from django.contrib.auth.decorators import login_required, permission_required # from .forms import RenewBookForm from catalog.forms import RenewBookForm @login_required @permission_required('catalog.can_mark_returned', raise_exception=True) def renew_book_librarian(request, pk): """View function for renewing a specific BookInstance by librarian.""" book_instance = get_object_or_404(BookInstance, pk=pk) # If this is a POST request then process the Form data if request.method == 'POST': # Create a form instance and populate it with data from the request (binding): form = RenewBookForm(request.POST) # Check if the form is valid: if form.is_valid(): # process the data in form.cleaned_data as required (here we just write it to the model due_back field) book_instance.due_back = form.cleaned_data['renewal_date'] book_instance.save() # redirect to a new URL: return HttpResponseRedirect(reverse('all-borrowed')) # If this is a GET (or any other method) create the default form else: proposed_renewal_date = datetime.date.today() + datetime.timedelta(weeks=1) form = RenewBookForm(initial={'renewal_date': proposed_renewal_date}) context = { 'form': form, 'book_instance': book_instance, } return render(request, 'catalog/book_renew_librarian.html', context) from django.contrib import messages @login_required def reserve_book(request, pk): """View function for reserving a book.""" if request.user.loan_set.filter(reserved_date__isnull=False, return_date__isnull=True).count() >= request.user.max_books: messages.error(request, 'Already reached the maximum number of {} Reserved books.'.format(request.user.max_books)) else: book_instance= get_object_or_404(BookInstance, pk=pk) if book_instance.status != "Available": messages.error(request, 'Book not available') else: loan = Loan(book_instance=book_instance, borrower=request.user, reserved_date=date.today()) loan.save() return HttpResponseRedirect(reverse('my-borrowed')) @login_required def cancel_reservation(request, pk): loan = get_object_or_404(Loan, pk=pk) if loan.borrower == request.user and loan.is_reservation: loan.return_date = date.today() loan.save() return HttpResponseRedirect(reverse('my-borrowed'))
def test_import_databand(): print("Starting Import") import dbnd str(dbnd) def test_import_airflow_settings(): print("Starting Import") import airflow.settings str(airflow.settings)
from __future__ import annotations from typing import List, TYPE_CHECKING from numpy.core.numeric import _outer_dispatcher if TYPE_CHECKING: from typing import Any from .modifiers import Passive from .stats import Stats class Item: def __init__(self, name, cost, stat, passives=None) -> None: self.name = name self.cost = cost self.stat = stat self.passives = passives if passives != None else [] def __str__(self) -> str: return f"{self.name} | {self.cost}g\n{self.stat}" def __repr__(self) -> str: return str(self) class Inventory: # deliberately limit constructor to 6 items. def __init__(self, item1: Item=None, item2: Item = None, item3: Item = None, item4: Item = None, item5: Item = None, item6: Item = None) -> None: self.items = list(filter(None, [item1, item2, item3, item4, item5, item6])) self.current_stats = sum(map(lambda x: x.stat, self.items), Stats()) def get_all_unique_passives(self) -> List[Passive]: out = set() for item in self.items: out.add(*item.passives) return list(out) # forward the attributes from curent_stats so inventory can be used as a stats object # TODO: this feels hacky def __getattribute__(self, name: str) -> Any: try: return super().__getattribute__(name) except: return self.current_stats.__dict__[name] from .modifiers import SteelTipped from .modifiers import IcathianBite from .modifiers import SpawnBuff from .modifiers import BringItDown from .modifiers import GiantSlayer '''AD Base Items''' Long_Sword = Item("Long Sword", 350, Stats(ad=10)) Pickaxe = Item("Pickaxe", 875, Stats(ad=25)) BFSword = Item("B. F. Sword", 1300, Stats(ad=40)) '''AP Base Items''' AmplifyingTome = Item("Amplifying Tome", 350, Stats(ap=20)) BlastingWand = Item("Blasting Wand", 850, Stats(ap=40)) NeedlesslyLargeRod = Item("Needlessly Large Rod", 1300, Stats(ap=60)) '''ASPD Base Items''' Dagger = Item("Dagger", 300, Stats(aspd=25)) RecurveBow = Item("Recurve Bow", 1000, Stats(aspd=25), passives=[SteelTipped()]) '''Crit Chance''' CloakOfAgility = Item("Cloak of Agility", 600, Stats(cs=15)) '''Hp''' RubyCrystal = Item("Ruby Crystal", 400, Stats(hp=150)) GiantsBelt = Item("Giant's Belt", 900, Stats(hp=350)) '''Armour ''' ClothArmor = Item("Cloth Armor", 300, Stats(ar=15)) ChainVest = Item("Chain Vest", 800, Stats(ar=40)) '''Magic Resist''' NullMagicMantle = Item("Null-Magic Mantle", 450, Stats(mr=25)) NegatronCloak = Item("Negatron Cloak", 900, Stats(mr=50)) '''marksmen items''' KrakenSlayer = Item("Kraken Slayer", 3400, Stats(ad=65, aspd=25, cs=20), passives=[BringItDown()]) LordDominiksRegards = Item("Lord Dominik's Regards", 3000, Stats(ad=30,cs=20,arp=35), passives=[GiantSlayer()]) ''' Sheen Items ''' from .buff import SheenSpellBlade, TriforceSpellBlade, LichBaneSpellBlade Sheen = Item("Sheen", 700, Stats(), passives=[SpawnBuff(toSpawn=SheenSpellBlade())]) Triforce = Item("Trinity Force", 3333, Stats(ad=30, ah=20, aspd=30, hp=200), passives=[SpawnBuff(toSpawn=TriforceSpellBlade())]) # TODO: MS LichBane = Item("Lich Bane", 3000, Stats(ap=70), passives=[SpawnBuff(toSpawn=LichBaneSpellBlade())]) NashorsTooth = Item("Nashor's Tooth", 3000, Stats(ap=100, aspd=50), passives=[IcathianBite()])
from .AbbreviationLegalFormNormalizer import AbbreviationLegalFormNormalizer from .AndNormalizer import AndNormalizer from .CharacterNormalizer import CharacterNormalizer from .CommonAbbreviationNormalizer import CommonAbbreviationNormalizer from .KeepOtherWordsNormalizer import KeepOtherWordsNormalizer from .MisplacedCharacterNormalizer import MisplacedCharacterNormalizer from .OtherWordsAbbreviationNormalizer import OtherWordsAbbreviationNormalizer from .SplitNormalizer import SplitNormalizer from .StripNormalizer import StripNormalizer from .TokenCategoryNormalizer import TokenCategoryNormalizer from .UnicodeNormalizer import UnicodeNormalizer
import asyncio from datetime import datetime from nats.aio.client import Client as NATS async def run(loop): nc = NATS() await nc.connect(loop=loop) async def message_handler(msg): with open('received.jpg', 'wb') as f: f.write(msg.data) await nc.subscribe('webcam', cb=message_handler, is_async=True) if __name__ == '__main__': loop = asyncio.get_event_loop() loop.run_until_complete(run(loop)) loop.run_forever() loop.close()
import pytest from core.location.mobility import WayPoint POSITION = (0.0, 0.0, 0.0) class TestMobility: @pytest.mark.parametrize( "wp1, wp2, expected", [ (WayPoint(10.0, 1, POSITION, 1.0), WayPoint(1.0, 2, POSITION, 1.0), False), (WayPoint(1.0, 1, POSITION, 1.0), WayPoint(10.0, 2, POSITION, 1.0), True), (WayPoint(1.0, 1, POSITION, 1.0), WayPoint(1.0, 2, POSITION, 1.0), True), (WayPoint(1.0, 2, POSITION, 1.0), WayPoint(1.0, 1, POSITION, 1.0), False), ], ) def test_waypoint_lessthan(self, wp1, wp2, expected): assert (wp1 < wp2) == expected