content
stringlengths
5
1.05M
import yaml try: from yaml import CLoader as Loader except ImportError: from yaml import Loader with open('LINKS.md', 'r') as file_: config = yaml.load(file_, Loader=Loader) for link in config['links']: print("* [{}]({}) - {}".format(link.get('title', 'LINK'), link.get('url', ''), link.get('description', '')))
""" This batch script executes an experiment according to a config file. """ if __name__ == "__main__": pass
# sometimes the standard random is overwritten by numpy.random # so random is renamed as std_random here import numpy as np from warp import * import random as std_random from scipy.constants import k, m_e class ParticleReflector: """Class that handles particle reflection. To use: To define a particlereflector instance based on the installed scraper named "scraper" and the conductor named "collector" with the reflected species being "rc_electrons": >>> collector_reflector = particleconductor(scraper=scraper, conductor=collector, spref=rc_electrons) The defined reflector must be installed, otherwise it will NOT be used: >>> installparticlereflector(collector_reflector) To define the specular reflection probability to be 0.2 (default 0), and the diffuse reflection probability to be 0.3 (default 0): >>> collector_reflector = particleconductor(scraper=scraper, conductor=collector, spref=rc_electrons, srefprob=0.2, drefprob=0.3) To only allow species "e1" and "e2" reflectable (default allows all defined species reflectable): >>> collector_reflector = particleconductor(scraper=scraper, conductor=collector, spref=rc_electrons, spinc=["e1", "e2"], srefprob=0.2, drefprob=0.3) """ def __init__(self, scraper=None, conductor=None, spref=None, spinc=None, srefprob=0., drefprob=0., refscheme="rand_angle", top=top): """Initialize a particle reflector. Args: scraper: Warp's scraper instance (must be specified). conductor: Warp's conductor instance to be treated as reflector (must be specified). spref: Reflected species (must be given) spinc: A list of incident species which are allowed to be reflected. All the species defined are allowed to be reflected if it is not specified. srefprob: specular reflection probability (default 0) drefprob: diffuse reflection probability (default 0) refscheme: Scheme of assigning velocity compoents for reflected particles. Available options are "rand_angle" (default) and "uniform". "rand_angle" randomizes the angles in the spherical coordinate system for the reflected particles. "uniform" first assigns a random fraction (uniformly distributed between 0 and 1) of the particle's total kinetic energy to the normal component, and then randomly distributes the rest of the kinetic energy to the two tangent components. top: Warp's top module """ if not isinstance(scraper, ParticleScraper): raise RuntimeError("scraper must be defined") else: if not scraper.lcollectlpdata: raise RuntimeError("lcollectlpdata flag must be True in scraper") if not scraper.lsaveintercept: raise RuntimeError("lsaveintercept flag must be True in scraper") if not conductor: raise RuntimeError("conductor must be defined") else: if not conductor in scraper.conductors: raise RuntimeError("conductor is not registered in scraper") if not spref: raise RuntimeError("reflected species (spref) must be defined") if srefprob < 0.: raise RuntimeError("srefprob cannot be negative") if drefprob < 0.: raise RuntimeError("drefprob cannot be negative") if srefprob + drefprob > 1.: raise RuntimeError("sum of srefprob and drefprob cannot exceed 1") self._top = top self._conductor = conductor self._spref = spref self._jsref = spref.js self._srefprob = srefprob self._drefprob = drefprob self._totrefprob = srefprob + drefprob self._srefprobratio = self._srefprob/(self._totrefprob+1e-14) if spinc is None: # consider all sp as incident sp if spinc not defined self._jsinc = range(top.ns) else: try: self._jsinc = [s.js for s in spinc] except: self._jsinc = [spinc.js] if refscheme == "rand_angle": self._refscheme = 0 elif refscheme == "uniform": self._refscheme = 1 else: raise RuntimeError("Illegal refscheme value [{}]".format(refscheme)) self._nsinc = len(self._jsinc) self._npslost_cumulative = np.zeros((self._nsinc,), dtype=np.uint64) self._nps_sref_res = np.zeros((self._nsinc,), dtype=np.float) self._nps_dref_res = np.zeros((self._nsinc,), dtype=np.float) def inject_particles(self): """Inject reflected particles. This function is passed to Warp through the interface "installparticlereflector", which wraps Warp's "installuserinjection" function. """ for i, js in enumerate(self._jsinc): # skip if no particle lost in this step npslost = int(self._top.npslost[js] - self._npslost_cumulative[i]) # num of lost js particles for this step if npslost == 0: continue istart = int(self._npslost_cumulative[i] + self._top.inslost[js]-1) iend = istart + npslost plostindx = np.arange(istart, iend) # get a local reference # initial coordinates of particles at this step xpold = self._top.pidlost[plostindx, 0] ypold = self._top.pidlost[plostindx, 1] zpold = self._top.pidlost[plostindx, 2] # initial velocities of particles at this step uxpold = self._top.uxplost[plostindx] uypold = self._top.uyplost[plostindx] uzpold = self._top.uzplost[plostindx] # time step dt = self._top.dt # new position (inside conductor) xpinsi = uxpold*dt + xpold ypinsi = uypold*dt + ypold zpinsi = uzpold*dt + zpold # particles scraped by this conductor cinside = nint(self._conductor.isinside(xpinsi, ypinsi, zpinsi).isinside) cplostindx = compress(cinside, plostindx) cnpslost = len(cplostindx) # floating total num of particles to be reflected nps_totref = cnpslost*self._totrefprob # floating num of particles to be specularly and diffusively reflected nps_sref = nps_totref*self._srefprobratio nps_dref = nps_totref-nps_sref nps_sref_inj = int(nps_sref + self._nps_sref_res[i] + np.random.rand()) nps_dref_inj = int(nps_dref + self._nps_dref_res[i] + np.random.rand()) # if total num of particles to be injected exceeds total num of lost particles this step # then reduce num of particles to be injected while nps_sref_inj + nps_dref_inj > cnpslost: if np.random.rand() < self._srefprobratio: nps_sref_inj -= 1 else: nps_dref_inj -= 1 # accumulate the residual number of particles # to correct the number of particles to be injected in the future self._nps_sref_res[i] += (nps_sref - nps_sref_inj) self._nps_dref_res[i] += (nps_dref - nps_dref_inj) if nps_sref_inj+nps_dref_inj > 0: # The current strategy is the fastest (at least for array of range(istart, iend)) # alternatives purely based on numpy could be: # rand_indx = np.random.choice(np.arange(istart, iend), nps_sref_inj+nps_dref_inj, replace=False) # or # rand_indx = np.random.permutation(np.arange(istart, iend))[:nps_sref_inj+nps_dref_inj] # the two numpy strategies are essentially the same, but slower than the following implementation rand_indx = np.array(std_random.sample(range(cnpslost), nps_sref_inj+nps_dref_inj)) if nps_sref_inj > 0: # specular reflection self._specular_reflection(cplostindx[rand_indx[:nps_sref_inj]]) if nps_dref_inj > 0: # diffuse reflection self._diffuse_reflection(cplostindx[rand_indx[nps_sref_inj:]]) # self._conductor.emitparticles_data.append(array([top.time, # totemit, # top.dt, # self.inter[js]['emitted_species'][ics][ie].jslist[0], # totabsorb])) self._conductor.emitparticles_data.append(array([self._top.time, self._top.dt, js, nps_sref_inj*self._top.pgroup.sq[self._jsref]*self._top.pgroup.sw[self._jsref], nps_dref_inj*self._top.pgroup.sq[self._jsref]*self._top.pgroup.sw[self._jsref]])) self._npslost_cumulative[i] = self._top.npslost[js] return def _specular_reflection(self, selected_lpid): """Perform specular reflection. Args: selected_lpid: A list of particle id selected to be reflected specularly. """ pos_intsec = self._get_intersection(selected_lpid) nvec = self._get_surface_normal(selected_lpid) vel_inc = self._get_incident_velocity(selected_lpid) # velocities of reflected particles vel_ref = self._vel_specular_reflection(nvec, vel_inc) t_left = self._get_time_left(selected_lpid) # coordinates of reflected particles pos_ref = self._pos_reflection(t_left, pos_intsec, vel_ref) # add the new reflected particles to "reflected species" self._spref.addparticles(x=pos_ref[:,0], y=pos_ref[:,1], z=pos_ref[:,2], vx=vel_ref[:,0], vy=vel_ref[:,1], vz=vel_ref[:,2]) return def _diffuse_reflection(self, selected_lpid): """Perform diffuse reflection. Args: selected_lpid: A list of particle id selected to be reflected diffusively. """ pos_intsec = self._get_intersection(selected_lpid) nvec = self._get_surface_normal(selected_lpid) vel_inc = self._get_incident_velocity(selected_lpid) # velocities of reflected particles vel_ref = self._vel_diffuse_reflection(nvec, vel_inc) t_left = self._get_time_left(selected_lpid) # coordinates of reflected particles pos_ref = self._pos_reflection(t_left, pos_intsec, vel_ref) # add the new reflected particles to "reflected species" self._spref.addparticles(x=pos_ref[:,0], y=pos_ref[:,1], z=pos_ref[:,2], vx=vel_ref[:,0], vy=vel_ref[:,1], vz=vel_ref[:,2]) return def _pos_reflection(self, t_left, pos_intsec, v_re): """Calculate reflected particles' new positions Args: t_left: A list of time left for particles after they hit the reflector. pos_intsec: A list of position coordinates where particles hit the reflector. v_re: A list of reflected particles' new velocities. Return: pos_re: Reflected particles' new positions. """ pos_re = pos_intsec + v_re*t_left return pos_re def _vel_specular_reflection(self, nvec, v_in): """Calculate new velocities for specularly reflected particles. Args: nvec: Normal vectors for the reflector surfaces at which particles hit. v_in: Velocities of incident particles. Return: v_re: New velocities of reflected particles. """ size = v_in.shape[0] v_in_n = np.zeros_like(v_in) for i in range(size): dotprod = np.dot(v_in[i,:], nvec[i,:]) v_in_n[i] = dotprod*nvec[i,:] v_in_t = v_in - v_in_n v_re_n = -v_in_n v_re_t = v_in_t v_re = v_re_n + v_re_t return v_re def _vel_diffuse_reflection(self, nvec, v_in): """Calculate new velocities for diffusively reflected particles. Args: nvec: Normal vectors for the reflector surfaces at which particles hit. v_in: Velocities of incident particles. Return: v_re: New velocities of reflected particles. """ size = v_in.shape[0] v_re = np.zeros_like(v_in) ############################################### # redistribute post-kinetic energy # ############################################### if self._refscheme == 0: # S0: randomize velocity spherical coordinate v_mag = np.sqrt(v_in[:,0]**2 + v_in[:,1]**2 + v_in[:,2]**2) # spherical coordinates theta [0~pi/2], phi [0~2*pi] theta = np.random.rand(size)*0.5*np.pi phi = np.random.rand(size)*2.0*np.pi # velocity aligned with the conductor coordinate system vn = v_mag*np.cos(theta) # normal component vt1 = v_mag*np.sin(theta) vt2 = vt1*np.sin(phi) # 1st tangent component vt1[:] *= np.cos(phi) # 2nd tangent component elif self._refscheme == 1: # S1: randomize En with a uniform distribution vsq = v_in[:,0]**2 + v_in[:,1]**2 + v_in[:,2]**2 vn = vsq*np.random.rand(size) vt1 = vsq - vn vt2 = vt1*np.random.rand(size) vt1 = vt1 - vt2 vn = np.sqrt(vn) vt1 = np.sqrt(vt1) vt2 = np.sqrt(vt2) ############################################### # convert to Cartesian coordinate system # ############################################### t1, t2 = self._get_tangent_from_normal(nvec) v_re[:, 0] = vn*nvec[:, 0] + vt1*t1[:, 0] + vt2*t2[:, 0] v_re[:, 1] = vn*nvec[:, 1] + vt1*t1[:, 1] + vt2*t2[:, 1] v_re[:, 2] = vn*nvec[:, 2] + vt1*t1[:, 2] + vt2*t2[:, 2] return v_re def _get_intersection(self, selected_lpid): # particles' intersections with the conductor xx = self._top.xplost[selected_lpid] yy = self._top.yplost[selected_lpid] zz = self._top.zplost[selected_lpid] return np.array([xx, yy, zz]).transpose() def _get_surface_normal(self, selected_lpid): theta = self._top.pidlost[selected_lpid, -3] phi = self._top.pidlost[selected_lpid, -2] # convert spherical coordinate angles to normal vector return self._normal_spherical_to_cartesian(theta, phi) def _get_incident_velocity(self, selected_lpid): vx = self._top.uxplost[selected_lpid] vy = self._top.uyplost[selected_lpid] vz = self._top.uzplost[selected_lpid] return np.array([vx, vy, vz]).transpose() def _get_time_left(self, selected_lpid): t_left = self._top.time - self._top.pidlost[selected_lpid, -4] return t_left.reshape(len(t_left), 1) def _normal_spherical_to_cartesian(self, theta, phi): """Convert the normal vector in spherical coordinate system to Cartesian. The surface normal obtained from Warp is in spherical coordinate system. This is converted to Cartesian coordinate system in order to easily compute the reflected particles' new velocities and positions. """ nvec = np.zeros((len(theta), 3)) nvec[:, 0] = np.sin(theta)*np.cos(phi) nvec[:, 1] = np.sin(theta)*np.sin(phi) nvec[:, 2] = np.cos(theta) return nvec def _get_tangent_from_normal(self, nvec): """Compute two tangent vectors based on the surface normal. This is needed when converting the velocties and positions of particles in the surface coordinate system back to the lab coordinate system. """ a = np.array([0., 0., 1.]) b = np.array([0., 1., 0.]) t1v = np.zeros_like(nvec) t2v = np.zeros_like(nvec) for i in range(nvec.shape[0]): n = nvec[i,:] c1 = np.cross(n, a) c2 = np.cross(n, b) norm_c1 = np.linalg.norm(c1) norm_c2 = np.linalg.norm(c2) if (norm_c1 > norm_c2): t1 = c1/norm_c1 else: t1 = c2/norm_c2 t2 = np.cross(n, t1) # second tangent t1v[i,:] = t1 t2v[i,:] = t2 return t1v, t2v # end of class ParticleReflector def installparticlereflector(pr): """Install particle reflector. Args: pr: Particle reflector instance already defined. """ if not isinstance(pr, ParticleReflector): raise RuntimeError("Illegal ParticleReflector instance") installuserinjection(pr.inject_particles) def analyze_collected_charge(top, solver): """Analyze charges collected by all conductors. Args: top: Warp's top module. solver: Warp's field solver. Return: collected_charge: A list of collected particle info for all conductors and all species. collected_charge[conductor_id][species_id] """ nspecies = top.ns cond_ids = [] cond_objs = [] collected_charge = {} for cond in solver.conductordatalist: cond_objs.append(cond[0]) cond_ids.append(cond[0].condid) for i, ids in enumerate(cond_ids): collected_charge[ids] = [[] for _ in range(nspecies)] for js in range(nspecies): jsid = top.pgroup.sid[js] indx = np.ndarray.astype(cond_objs[i].lostparticles_data[:, 3] + 1e-6, 'int') == jsid collected_charge[ids][js] = np.copy(cond_objs[i].lostparticles_data[indx, 0:4]) return collected_charge def analyze_reflected_charge(top, reflectors, comm_world=None): """Analyze charges due to reflection. Args: top: Warp's top module. reflectors: A list of particle reflectors. comm_wold: MPI communicator, must be passed in if running in parallel. Return: reflected_charge: A list of charges reflected particle info for the corresponding reflector and species. reflected_charge[reflector's_cond_id] """ cond_ids = [] cond_objs = [] reflected_charge = {} for reflector in reflectors: cond_objs.append(reflector._conductor) cond_ids.append(reflector._conductor.condid) for i, ids in enumerate(cond_ids): reflected_charge[ids] = np.copy(cond_objs[i].emitparticles_data[:, 0:5]) if comm_world: all_reflected_charge = {} for ids in cond_ids: all_reflected_charge[ids] = comm_world.gather(reflected_charge[ids], root=0) if comm_world.rank == 0: all_reflected_charge[ids] = np.vstack(all_reflected_charge[ids]) return all_reflected_charge else: return reflected_charge
# # Copyright (c) 2017 Stefan Seefeld # All rights reserved. # # This file is part of Faber. It is made available under the # Boost Software License, Version 1.0. # (Consult LICENSE or http://www.boost.org/LICENSE_1_0.txt) from ..artefact import source import yaml class node(object): """Convert a (nested) dictionary into an ordinary object.""" def __init__(self, d): for a, b in d.items(): if isinstance(b, (list, tuple)): setattr(self, a, [node(x) if isinstance(x, dict) else x for x in b]) else: setattr(self, a, node(b) if isinstance(b, dict) else b) def load_info(filename): """Load a package metadata file.""" with open(filename) as f: data = yaml.safe_load(f) return node(data) class info(source): def __init__(self, name): source.__init__(self, name) self.doc = load_info(self._filename)
from main import * from transaction import * from bci import * from deterministic import * # Takes privkey, address, value (satoshis), fee (satoshis) def send(frm, to, value, fee=1000): u = unspent(privtoaddr(frm)) u2 = select(u, value+fee) argz = u2 + [to+':'+str(value), privtoaddr(to), fee] tx = mksend(argz) tx2 = signall(tx, privtoaddr(to)) pushtx(tx2) def bip32_hdm_script(*args): if len(args) == 3: keys, req, path = args else: i, keys, path = 0, [], [] while len(args[i]) > 40: keys.append(args[i]) i += 1 req = int(args[i]) path = map(int, args[i+1:]) pubs = sorted(map(lambda x: bip32_descend(x, path), keys)) return mk_multisig_script(pubs, req) def bip32_hdm_addr(*args): return scriptaddr(bip32_hdm_script(*args)) def setup_coinvault_tx(tx, script): txobj = deserialize(tx) N = deserialize_script(script)[-2] for inp in txobj["ins"]: inp["script"] = serialize_script([None] * (N+1) + [script]) return serialize(txobj)
import paho.mqtt.client as mqtt import cv2 import logging from von.singleton import Singleton from von.terminal_font import TerminalFont class MQTT_ConnectionConfig: broker = 'voicevon.vicp.io' port = 1883 uid = '' password = '' client_id = '' class MqttConfigableItem(): topic = '' type = '' value = '' def __init__(self,topic,value,type='string'): self.topic = topic self.type = type self.value = value class MqttHelper(metaclass=Singleton): # class MqttHelper(mqtt.Client, metaclass=Singleton): def __init__(self): # super(MqttHelper, self).__init__() self.__is_connected = False self.client = None # self.client = mqtt # self.client = mqtt.Client(client_id) # create new instance self.__YELLOW = TerminalFont.Color.Fore.yellow self.__GREEN = TerminalFont.Color.Fore.green self.__RED = TerminalFont.Color.Fore.red self.__RESET = TerminalFont.Color.Control.reset # self.mqtt_system_turn_on = True self.__on_message_callbacks = [] self.__configable_vars = [] self.__counter = 0 def on_connect(self, client, userdata, flags,rc): ''' rc == return code. ''' if rc==0: self.connected_flag=True #set flag logging.info(self.__GREEN + "MQTT connected OK. Start subscribe. Returned code=" + self.__RESET,rc) #client.subscribe(topic) self.auto_subscribe() else: print("Bad connection Returned code= ",rc) # def connect_to_broker(self, client_id, broker, port, uid, psw): def connect_to_broker(self, config:MQTT_ConnectionConfig): self.client = mqtt.Client(config.client_id) # create new instance self.client.on_connect = self.on_connect # binding call back function self.client.username_pw_set(username=config.uid, password=config.password) self.client.connect(config.broker, port=config.port) if self.client.is_connected(): print(self.__GREEN + '[Info]: MQTT has connected to: %s' % config.broker + self.__RESET) else: print(self.__RED + '[Warn]: MQTT has NOT! connected to: %s, Is trying auto connect backgroundly.' % config.broker + self.__RESET) self.client.on_message = self.__on_message self.__do_debug_print_out = False #self.client.loop_forever() self.client.loop_start() # self.client.loop_stop() return self.client def append_on_message_callback(self, callback, do_debug_print_out=False): ''' will call back on received any message. Says not invoved to topic. ''' self.__on_message_callbacks.append(callback) self.__do_debug_print_out = do_debug_print_out def append_configable_var(self, var): self.__configable_vars.append(var) def subscribe(self, topic, qos=0): self.client.subscribe(topic, qos) def subscribe_with_var(self, var, qos=1, space_len=0): ''' Search all members of var and childrens if the member(or child, grand child)'s type is 'mqtt_configableItem' subscribe it by the 'topic' of that member. ''' # TODO: remove build in methods if space_len / 8 >= 3: return #self.__counter += 1 #print('oooo', self.__counter,var) target_type_name = 'MqttConfigableItem' for this_item in dir(var): if this_item[:1] != '_': attr = getattr(var,this_item) type_name =type(attr).__name__ # space = ' ' * space_len if type_name == target_type_name: # For better understanding, we rename attr. configable_item = attr # print ('aaaa', space + configable_item, type_name) for type_value_topic in dir(configable_item): # print('bbbb',type_value_topic) if type_value_topic == 'topic': topic_string = getattr(configable_item,type_value_topic) # print('cccc', type_value_topic,topic_string) self.client.subscribe(topic_string,qos) print('MQTT subscribed: Topic= ', topic_string) else: self.subscribe_with_var(attr, qos, space_len + 4) def auto_subscribe(self, qos=1, space_len=0): ''' call append_configable_var() in advance. ''' # target_type_name = 'MqttConfigableItem' for var in self.__configable_vars: self.subscribe_with_var(var) def update_leaf_by_topic(self, root_var, topic, payload, space_len=0): ''' Search all members of var and childrens if the member(or child, grand child)'s type is 'mqtt_configableItem', and the topic_string is wanted, update the value of that member to payload. ''' if space_len / 8 >= 3: return #self.__counter += 1 #print(self.__counter, root_var) target_type_name = 'MqttConfigableItem' for this_item in dir(root_var): if this_item[:1] != '_': attr = getattr(root_var,this_item) type_name =type(attr).__name__ # space = ' ' * space_len if type_name == target_type_name: # For better understanding, we rename attr. configable_item = attr # print ('aaaa', space + configable_item, type_name) for type_value_topic in dir(configable_item): # print('bbbb',type_value_topic) if type_value_topic == 'topic': topic_string = getattr(configable_item,type_value_topic) # print('cccc', type_value_topic,topic_string) if topic_string == topic: # print('ffff',type_value_topic,topic_string) if topic_string == topic: # print('RRRRRRRRRRRR', configable_item, type_value_topic, value) #TODO: type checking here. setattr(configable_item,'value',payload) print('Configable item is updated from MQTT-server, topic=%s, value=', topic, payload) else: self.update_leaf_by_topic(attr, topic, payload, space_len + 8) def update_from_topic(self, topic, payload, space_len=3): ''' call append_configable_var() in advance. ''' self.__counter =0 for var in self.__configable_vars: self.update_leaf_by_topic(var, topic, payload) print('======================================== update_from_topic() is Done!') def __on_message(self, client, userdata, message): #self.__do_debug_print_out = True if self.__do_debug_print_out: #print("MQTT message received ", str(message.payload.decode("utf-8"))) print("MQTT message topic=", message.topic) print('MQTT message payload=', message.payload) print("MQTT message qos=", message.qos) print("MQTT message retain flag=", message.retain) payload = str(message.payload.decode("utf-8")) #print('ppppppppppppppppppppppppp',topic, payload) #Solution A: for invoking in self.__on_message_callbacks: invoking(message.topic, payload) #Solution B: #logging.info('payload %s'oad) self.update_from_topic(message.topic, payload) def publish_init(self): # traverse Json file, publish all elements to broker with default values pass def publish_cv_image(self, topic, cv_image, retain=True): # return image as mqtt message payload is_success, img_encode = cv2.imencode(".jpg", cv_image) if is_success: img_pub = img_encode.tobytes() self.client.publish(topic, img_pub, retain=retain) def publish_file_image(self, topic, file_name, retain=True): with open(file_name, 'rb') as f: byte_im = f.read() self.client.publish('sower/img/bin',byte_im ) def publish(self, topic, value): self.client.publish(topic, value, qos=2, retain =True) g_mqtt = MqttHelper() if __name__ == "__main__": class mqtt_config_test: right = MqttConfigableItem('gobot/test/right',1) left = MqttConfigableItem('gobot/test/right',2) hello = MqttConfigableItem('gobot/test/hello','Hello World') # put this line to your system_setup() config = MQTT_ConnectionConfig() config.uid = '' config.password = '' g_mqtt.connect_to_broker(config) test_id =2 if test_id ==1: # put this line to anywhere. g_mqtt.publish('test/test1/test2', 1) if test_id ==2: g_mqtt.append_configable_var(mqtt_config_test) g_mqtt.update_from_topic(mqtt_config_test,'gobot/test/hello', 'aaaabbbb') print (mqtt_config_test.hello.value)
#!/usr/bin/env python """ Example usage of 'print_container', a tool to print any layout in a non-interactive way. """ from prompt_toolkit.shortcuts import print_container from prompt_toolkit.widgets import Frame, TextArea print_container( Frame( TextArea(text="Hello world!\n"), title="Stage: parse", ) )
from abc import ABC from httpx import Response from starlette.status import HTTP_200_OK from app.db.repositories import RefreshSessionsRepository from app.schemas.authentication import AuthenticationResult from app.services.authentication.cookie import REFRESH_TOKEN_COOKIE_KEY from ...base import BaseTestRoute __all__ = ['BaseTestAuthRoute'] class BaseTestAuthRoute(BaseTestRoute, ABC): def test_response(self, response: Response): # noqa Method may be 'static' response_json = response.json() assert response.status_code == HTTP_200_OK assert 'user' in response_json assert 'tokens' in response_json def test_setting_refresh_token_cookie(self, response: Response): # noqa Method may be 'static' refresh_token_in_cookie = response.cookies[REFRESH_TOKEN_COOKIE_KEY] refresh_token_in_response = AuthenticationResult(**response.json()).refresh_token assert refresh_token_in_cookie == refresh_token_in_response async def test_creating_refresh_session_in_db( # noqa Method may be 'static' self, response: Response, test_refresh_sessions_repository: RefreshSessionsRepository ): refresh_token = response.cookies[REFRESH_TOKEN_COOKIE_KEY] assert await test_refresh_sessions_repository.fetch_by_refresh_token(refresh_token)
from typing import Union def get_first_line(o, default_val: str) -> Union[str, None]: """ Get first line for a pydoc string :param o: object which is documented (class or function) :param default_val: value to return if there is no documentation :return: the first line which is not whitespace """ doc: Union[str, None] = o.__doc__ if doc is None: return default_val lines = doc.split("\n") for line in lines: if line == "" or line.isspace(): continue return line.strip() return default_val
# -------------------------------------------------------------------------- # This extension generates a customizable string of page navigation links # for index pages. # # The links can be accessed in templates as: # # {{ paging }} # # Default settings can be overridden by including a 'paging' dictionary in # the site's config.py file containing one or more of the following options: # # paging = { # 'first': 'First', # text for link to first page # 'last': 'Last', # text for link to last page # 'prev': 'Prev', # text for link to previous page # 'next': 'Next', # text for link to next page # 'delta': 2, # number of neighbouring pages to include # 'multiples': 2, # number of larger/smaller multiples # 'multiple': 10, # link to page numbers in multiples of... # } # # Author: Darren Mulholland <darren@mulholland.xyz> # License: Public Domain # -------------------------------------------------------------------------- from ark import hooks, site # Register a callback on the 'render_page' event hook to generate our # string of page navigation links and add it to the page object. @hooks.register('render_page') def add_paging_links(page): if page['is_paged']: page['paging'] = generate_paging_links( page['slugs'][:-1], page['page'], page['total'] ) # Generates a string of page navigation links. def generate_paging_links(slugs, page_number, total_pages): # Default settings can be overridden in the site's configuration file. data = { 'first': 'First', 'last': 'Last', 'prev': 'Prev', 'next': 'Next', 'delta': 2, 'multiples': 2, 'multiple': 10, } data.update(site.config('paging', {})) # Start and end points for the sequence of numbered links. start = page_number - data['delta'] end = page_number + data['delta'] if start < 1: start = 1 end = 1 + 2 * data['delta'] if end > total_pages: start = total_pages - 2 * data['delta'] end = total_pages if start < 1: start = 1 out = [] # First page link. if start > 1: out.append("<a class='first' href='%s'>%s</a>" % ( site.paged_url(slugs, 1, total_pages), data['first'] )) # Previous page link. if page_number > 1: out.append("<a class='prev' href='%s'>%s</a>" % ( site.paged_url(slugs, page_number - 1, total_pages), data['prev'] )) # Smaller multiple links. if data['multiples']: multiples = list(range(data['multiple'], start, data['multiple'])) for multiple in multiples[-data['multiples']:]: out.append("<a class='pagenum multiple' href='%s'>%s</a>" % ( site.paged_url(slugs, multiple, total_pages), multiple )) # Sequence of numbered page links. for i in range(start, end + 1): if i == page_number: out.append("<span class='pagenum current'>%s</span>" % i) else: out.append("<a class='pagenum' href='%s'>%s</a>" % ( site.paged_url(slugs, i, total_pages), i )) # Larger multiple links. if data['multiples']: starting_multiple = (int(end / data['multiple']) + 1) * data['multiple'] multiples = list(range(starting_multiple, total_pages, data['multiple'])) for multiple in multiples[:data['multiples']]: out.append("<a class='pagenum multiple' href='%s'>%s</a>" % ( site.paged_url(slugs, multiple, total_pages), multiple )) # Next page link. if page_number < total_pages: out.append("<a class='next' href='%s'>%s</a>" % ( site.paged_url(slugs, page_number + 1, total_pages), data['next'] )) # Last page link. if end < total_pages: out.append("<a class='last' href='%s'>%s</a>" % ( site.paged_url(slugs, total_pages, total_pages), data['last'] )) return ''.join(out)
from client import exceptions as ex from client.sources.common import core from client.sources.common import interpreter from client.sources.common import pyconsole from client.sources.ok_test import models from client.utils import format import logging log = logging.getLogger(__name__) class DoctestSuite(models.Suite): setup = core.String(default='') teardown = core.String(default='') console_type = pyconsole.PythonConsole def __init__(self, test, verbose, interactive, timeout=None, **fields): super().__init__(test, verbose, interactive, timeout, **fields) self.skip_locked_cases = True self.console = self.console_type(verbose, interactive, timeout) def post_instantiation(self): for i, case in enumerate(self.cases): if not isinstance(case, dict): raise ex.SerializeException('Test cases must be dictionaries') self.cases[i] = interpreter.CodeCase(self.console, self.setup, self.teardown, **case) def run(self, test_name, suite_number, env=None): """Runs test for the doctest suite. PARAMETERS: test_name -- str; the name of the parent test. Used for printing purposes. suite_number -- int; the suite number in relation to the parent test. Used for printing purposes. env -- dict; environment in which to run tests. If None, an empty dictionary is used instead. RETURNS: dict; results of the following form: { 'passed': int, 'failed': int, 'locked': int, } """ results = { 'passed': 0, 'failed': 0, 'locked': 0, } if env is not None: # env should be None in the command-line scenario. env should only # be non-None in the programmatic API case. self.console.load_env(env) for i, case in self.enumerate_cases(): log.info('Running case {}'.format(i)) if (case.locked == True or results['locked'] > 0) and self.skip_locked_cases: # If a test case is locked, refuse to run any of the subsequent # test cases log.info('Case {} is locked'.format(i)) results['locked'] += 1 continue success = self._run_case(test_name, suite_number, case, i + 1) if not success and self.interactive: self.console.interact() if success: results['passed'] += 1 else: results['failed'] += 1 if not success and not self.verbose: # Stop at the first failed test break return results
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Project : MeUtils. # @File : hydra_demo # @Time : 2021/1/26 1:28 下午 # @Author : yuanjie # @Email : yuanjie@xiaomi.com # @Software : PyCharm # @Description : https://github.com/facebookresearch/hydra/tree/1.0_branch/examples/tutorials/basic/your_first_hydra_app from omegaconf import DictConfig, OmegaConf import hydra @hydra.main(config_name='conf') def my_app(cfg: DictConfig) -> None: print(OmegaConf.to_yaml(cfg)) logger.info("Info level message") if __name__ == "__main__": my_app()
#!/usr/bin/env python3 import argparse # command line arguments parser from db import Database, DatabaseError from dbhelper import DatabaseHelper parser = argparse.ArgumentParser(description="Database helper for FSG exam bank.") parser.add_argument( "--db", action="store", type=str, dest="db_path", default=".", help="Path to the database, default is current path") subparsers = parser.add_subparsers(dest="command") def add_exam_fields_options(sp: argparse.ArgumentParser) -> None: sp.add_argument( "-y", "--year", type=int, action="store", dest="year", default=None, help="Exam year") sp.add_argument( "-s", "--semester", type=str, action="store", dest="semester", help="Exam semester (accepted values: W, S, F, A, E, H)") sp.add_argument( "-c", "--course", type=str, action="store", dest="course", default=None, help="Exam course code (DDD-NNNN format, where D is the department and N the class number)") sp.add_argument( "--course-name", type=str, action="store", dest="course_name", default=None, help="Full name of the course. Required if this is the first exam for the course.") sp.add_argument( "-a", "--author", type=str, action="store", dest="author", default=None, help="Exam author name") sp.add_argument( "-t", "--title", type=str, action="store", dest="title", default=None, help="Exam title or name") def add_no_confirm_option(sp: argparse.ArgumentParser) -> None: sp.add_argument( "--no-confirm", action="store_false", dest="confirm", default=True, help="Set to skip confirmation for command") # add command add_parser = subparsers.add_parser("add", help="Add exams to the database") add_parser.add_argument( action="store", type=str, nargs="*", dest="files", help="PDF files to add to database. At least one is required.") add_exam_fields_options(add_parser) add_parser.add_argument( "--batch", type=str, action="store", dest="batch", help="Raw JSON data to add exams in batch mode. The expected JSON structure is a list of " "objects with the all of the following fields: 'course', 'author', 'year', 'semester', " "'title', 'files'. The format is the same as otherwise expected by parameters." "Files is a list of PDF filenames for each exam.") add_parser.add_argument("--batch-regex", type=str, action="store", dest="batch_regex", help="Alternative method to add exams in batch mode. " "The given regex will match all PDF files in the input directory. " "The regex must have named groups for 'course', 'year' and 'semester'," " and may also have named groups for 'author' and 'title'. " "If more several files have the same fields, they are considered part" "of the same exam. Here's an example regex: " "'(?P<course>\w{3}-\d{4})-(?P<author>.*)-(?P<title>.*?)" "-(?P<year>\d{4})(?P<semester>[AHE]).*', " "which will match the following files: " "'gel-1000-John Doe-Exam 1-2020H.pdf', " "'gel-1000-John Doe-Exam 1-2020H-sol.pdf', " "'gel-1001-John Smith-Exam 2-2001A.pdf', etc." "A file must be a full match (except the extension) to be added.") add_parser.add_argument( "-f", "--force", action="store_true", dest="force", default=False, help="Disable checks to skip operation if a similar exam already exists") add_no_confirm_option(add_parser) # edit command edit_parser = subparsers.add_parser("edit", help="Edit individual exam in the database") edit_parser.add_argument( type=int, action="store", dest="id", default=None, help="Exam ID") add_exam_fields_options(edit_parser) edit_parser.add_argument( "-H", "--hashes", type=str, nargs="+", action="store", dest="hashes", default=None, help="Exam file hashes (will match partial hash start)") add_no_confirm_option(edit_parser) # remove command remove_parser = subparsers.add_parser("remove", help="Remove exams from the database") remove_parser.add_argument( type=int, nargs="+", action="store", dest="exam_ids", help="Exam IDs to remove") add_no_confirm_option(remove_parser) # hash command hash_parser = subparsers.add_parser("hash", help="Hash PDF files and add them to database") hash_parser.add_argument( type=str, nargs="*", action="store", dest="files", help="PDF files to hash") hash_parser.add_argument( "--gc", action="store_true", dest="gc", default=False, help="Set to garbage collect unused hashes") # list command list_parser = subparsers.add_parser("list", help="List exams") list_parser.add_argument( "-c", "--course", type=str, action="store", dest="course", default=None, help="Exam course code (DDD-NNNN format, where D is the department and N the class number)") list_parser.add_argument( "-a", "--author", type=str, action="store", dest="author", default=None, help="Exam author name") list_parser.add_argument( "-y", "--year", type=int, action="store", dest="year", default=None, help="Exam year") list_parser.add_argument( "-s", "--semester", type=str, action="store", dest="semester", default=None, help="Exam semester (accepted values: W, S, F, A, E, H)") list_parser.add_argument( "-H", "--show-hashes", action="store_true", dest="show_hashes", default=False, help="Set to show file hashes for each exam") # rewrite command rewrite_parser = subparsers.add_parser("rewrite", help="Read and rewrite database JSON files") def main(): args = parser.parse_args() # load database db = Database(args.db_path) try: db.load() except DatabaseError as e: print(f"Database error: {e.args[0]}") exit(1) # perform action helper = DatabaseHelper(db) try: if args.command == "add": if args.batch: helper.batch_add_exam(args.batch, force=args.force) elif args.batch_regex: helper.regex_batch_add_exam(args.files[0], args.batch_regex, force=args.force, confirm=args.confirm) else: helper.add_exam(args.course, args.author, args.year, args.semester, args.title, args.files, args.course_name, force=args.force, confirm=args.confirm) elif args.command == "edit": helper.edit_exam(args.id, args.course, args.author, args.year, args.semester, args.title, args.course_name, args.hashes, confirm=args.confirm) elif args.command == "remove": helper.remove_exams(args.exam_ids, args.confirm) elif args.command == "hash": helper.hash_files(args.files) if args.gc: helper.garbarge_collect() elif args.command == "list": helper.list_exams(args.course, args.author, args.year, args.semester, args.show_hashes) elif args.command == "rewrite": # no-op, load then save database pass except DatabaseError as e: print(f"Database error: {e.args[0]}") exit(1) else: db.save() if __name__ == '__main__': main()
#!/usr/bin/env python import numpy as np import matplotlib.mlab as mlab import matplotlib.pyplot as plt x = [21,22,23,4,5,6,77,8,9,10,31,32,33,34,35,36,37,18,49,50,100] num_bins = 5 n, bins, patches = plt.hist(x, num_bins, facecolor='blue', alpha=0.5) plt.show()
ANYBLOCK_MINUTE_AGG_DATA = { 'minute_bucket': {'buckets': [ {'key_as_string': '2021-10-22 08:21', 'key': 1634890860000, 'doc_count': 129, 'avgGasMin': {'value': 68135881075.89922}}, {'key_as_string': '2021-10-22 08:22', 'key': 1634890920000, 'doc_count': 1431, 'avgGasMin': {'value': 53474229167.313065}}, {'key_as_string': '2021-10-22 08:23', 'key': 1634890980000, 'doc_count': 1154, 'avgGasMin': {'value': 58339753373.4558}}, {'key_as_string': '2021-10-22 08:24', 'key': 1634891040000, 'doc_count': 2034, 'avgGasMin': {'value': 50850212010.623405}}, {'key_as_string': '2021-10-22 08:25', 'key': 1634891100000, 'doc_count': 685, 'avgGasMin': {'value': 56162807162.2511}}, {'key_as_string': '2021-10-22 08:26', 'key': 1634891160000, 'doc_count': 1409, 'avgGasMin': {'value': 50257151345.425125}}, {'key_as_string': '2021-10-22 08:27', 'key': 1634891220000, 'doc_count': 1353, 'avgGasMin': {'value': 56984724851.223946}}, {'key_as_string': '2021-10-22 08:28', 'key': 1634891280000, 'doc_count': 1115, 'avgGasMin': {'value': 60951365588.26457}}, {'key_as_string': '2021-10-22 08:29', 'key': 1634891340000, 'doc_count': 448, 'avgGasMin': {'value': 73265356340.99107}}, {'key_as_string': '2021-10-22 08:30', 'key': 1634891400000, 'doc_count': 1169, 'avgGasMin': {'value': 69580203498.75534}}, {'key_as_string': '2021-10-22 08:31', 'key': 1634891460000, 'doc_count': 880, 'avgGasMin': {'value': 65513321690.40114}}, {'key_as_string': '2021-10-22 08:32', 'key': 1634891520000, 'doc_count': 879, 'avgGasMin': {'value': 66162217315.27759}}, {'key_as_string': '2021-10-22 08:33', 'key': 1634891580000, 'doc_count': 1238, 'avgGasMin': {'value': 58550840044.47334}}, {'key_as_string': '2021-10-22 08:34', 'key': 1634891640000, 'doc_count': 754, 'avgGasMin': {'value': 59942899486.002655}}, {'key_as_string': '2021-10-22 08:35', 'key': 1634891700000, 'doc_count': 703, 'avgGasMin': {'value': 61471394121.12376}}, {'key_as_string': '2021-10-22 08:36', 'key': 1634891760000, 'doc_count': 931, 'avgGasMin': {'value': 58100635475.92589}}, {'key_as_string': '2021-10-22 08:37', 'key': 1634891820000, 'doc_count': 1667, 'avgGasMin': {'value': 60605478821.61068}}, {'key_as_string': '2021-10-22 08:38', 'key': 1634891880000, 'doc_count': 1331, 'avgGasMin': {'value': 58973958574.04433}}, {'key_as_string': '2021-10-22 08:39', 'key': 1634891940000, 'doc_count': 567, 'avgGasMin': {'value': 58446003675.82363}}, {'key_as_string': '2021-10-22 08:40', 'key': 1634892000000, 'doc_count': 853, 'avgGasMin': {'value': 59449708098.34115}}, {'key_as_string': '2021-10-22 08:41', 'key': 1634892060000, 'doc_count': 1090, 'avgGasMin': {'value': 64930326844.1789}}, {'key_as_string': '2021-10-22 08:42', 'key': 1634892120000, 'doc_count': 535, 'avgGasMin': {'value': 67590469518.00561}}, {'key_as_string': '2021-10-22 08:43', 'key': 1634892180000, 'doc_count': 891, 'avgGasMin': {'value': 64634446410.420876}}, {'key_as_string': '2021-10-22 08:44', 'key': 1634892240000, 'doc_count': 674, 'avgGasMin': {'value': 71032697589.07863}}, {'key_as_string': '2021-10-22 08:45', 'key': 1634892300000, 'doc_count': 960, 'avgGasMin': {'value': 68639741361.99167}}, {'key_as_string': '2021-10-22 08:46', 'key': 1634892360000, 'doc_count': 1093, 'avgGasMin': {'value': 65490351297.72644}}, {'key_as_string': '2021-10-22 08:47', 'key': 1634892420000, 'doc_count': 885, 'avgGasMin': {'value': 68430186896.47118}}, {'key_as_string': '2021-10-22 08:48', 'key': 1634892480000, 'doc_count': 959, 'avgGasMin': {'value': 72626010357.08238}}, {'key_as_string': '2021-10-22 08:49', 'key': 1634892540000, 'doc_count': 658, 'avgGasMin': {'value': 74761446538.49088}}, {'key_as_string': '2021-10-22 08:50', 'key': 1634892600000, 'doc_count': 804, 'avgGasMin': {'value': 74816062909.62563}}, {'key_as_string': '2021-10-22 08:51', 'key': 1634892660000, 'doc_count': 869, 'avgGasMin': {'value': 68546417774.591484}}, {'key_as_string': '2021-10-22 08:52', 'key': 1634892720000, 'doc_count': 764, 'avgGasMin': {'value': 76314294216.25131}}, {'key_as_string': '2021-10-22 08:53', 'key': 1634892780000, 'doc_count': 704, 'avgGasMin': {'value': 77738963700.23154}}, {'key_as_string': '2021-10-22 08:54', 'key': 1634892840000, 'doc_count': 925, 'avgGasMin': {'value': 81939003269.3081}}, {'key_as_string': '2021-10-22 08:55', 'key': 1634892900000, 'doc_count': 415, 'avgGasMin': {'value': 92267225327.56868}}, {'key_as_string': '2021-10-22 08:56', 'key': 1634892960000, 'doc_count': 1395, 'avgGasMin': {'value': 73272395530.44803}}, {'key_as_string': '2021-10-22 08:57', 'key': 1634893020000, 'doc_count': 1337, 'avgGasMin': {'value': 59864221440.795815}}, {'key_as_string': '2021-10-22 08:58', 'key': 1634893080000, 'doc_count': 625, 'avgGasMin': {'value': 70126002063.1872}}, {'key_as_string': '2021-10-22 08:59', 'key': 1634893140000, 'doc_count': 1152, 'avgGasMin': {'value': 63373701814.328125}}, {'key_as_string': '2021-10-22 09:00', 'key': 1634893200000, 'doc_count': 713, 'avgGasMin': {'value': 69898977722.02664}}, {'key_as_string': '2021-10-22 09:01', 'key': 1634893260000, 'doc_count': 1350, 'avgGasMin': {'value': 55824486614.157776}}, {'key_as_string': '2021-10-22 09:02', 'key': 1634893320000, 'doc_count': 1032, 'avgGasMin': {'value': 65995156476.00291}}, {'key_as_string': '2021-10-22 09:03', 'key': 1634893380000, 'doc_count': 0, 'avgGasMin': {'value': None}}, {'key_as_string': '2021-10-22 09:04', 'key': 1634893440000, 'doc_count': 853, 'avgGasMin': {'value': 69733239130.09496}}, {'key_as_string': '2021-10-22 09:05', 'key': 1634893500000, 'doc_count': 480, 'avgGasMin': {'value': 75507886086.31459}}, {'key_as_string': '2021-10-22 09:06', 'key': 1634893560000, 'doc_count': 928, 'avgGasMin': {'value': 71178325609.48167}}, {'key_as_string': '2021-10-22 09:07', 'key': 1634893620000, 'doc_count': 1284, 'avgGasMin': {'value': 63354990033.1176}}, {'key_as_string': '2021-10-22 09:08', 'key': 1634893680000, 'doc_count': 767, 'avgGasMin': {'value': 68934012129.87483}}, {'key_as_string': '2021-10-22 09:09', 'key': 1634893740000, 'doc_count': 924, 'avgGasMin': {'value': 60570865579.67966}}, {'key_as_string': '2021-10-22 09:10', 'key': 1634893800000, 'doc_count': 808, 'avgGasMin': {'value': 54730003709.49505}}, {'key_as_string': '2021-10-22 09:11', 'key': 1634893860000, 'doc_count': 793, 'avgGasMin': {'value': 61156687147.75662}}, {'key_as_string': '2021-10-22 09:12', 'key': 1634893920000, 'doc_count': 930, 'avgGasMin': {'value': 71012849621.8043}}, {'key_as_string': '2021-10-22 09:13', 'key': 1634893980000, 'doc_count': 898, 'avgGasMin': {'value': 61332431775.412025}}, {'key_as_string': '2021-10-22 09:14', 'key': 1634894040000, 'doc_count': 494, 'avgGasMin': {'value': 65544940406.18219}}, {'key_as_string': '2021-10-22 09:15', 'key': 1634894100000, 'doc_count': 1067, 'avgGasMin': {'value': 62775822838.15558}}, {'key_as_string': '2021-10-22 09:16', 'key': 1634894160000, 'doc_count': 1132, 'avgGasMin': {'value': 56120401780.516785}}, {'key_as_string': '2021-10-22 09:17', 'key': 1634894220000, 'doc_count': 1464, 'avgGasMin': {'value': 50130807544.32923}}, {'key_as_string': '2021-10-22 09:18', 'key': 1634894280000, 'doc_count': 1113, 'avgGasMin': {'value': 58455164505.05481}}, {'key_as_string': '2021-10-22 09:19', 'key': 1634894340000, 'doc_count': 419, 'avgGasMin': {'value': 73177058329.70645}}, {'key_as_string': '2021-10-22 09:20', 'key': 1634894400000, 'doc_count': 912, 'avgGasMin': {'value': 66653118380.26864}}, {'key_as_string': '2021-10-22 09:21', 'key': 1634894460000, 'doc_count': 132, 'avgGasMin': {'value': 62583250801.257576}}]} } ANYBLOCK_HOUR_AGG_DATA = {'hour_bucket': {'buckets': [ {'key_as_string': '2021-10-19 09:00:00', 'key': 1634677200000, 'doc_count': 21312, 'avgGasHour': {'value': 128609148597.81198}}, {'key_as_string': '2021-10-19 10:00:00', 'key': 1634680800000, 'doc_count': 51046, 'avgGasHour': {'value': 106046536123.98033}}, {'key_as_string': '2021-10-19 11:00:00', 'key': 1634684400000, 'doc_count': 51390, 'avgGasHour': {'value': 96298327219.7446}}, {'key_as_string': '2021-10-20 12:00:00', 'key': 1634688000000, 'doc_count': 47705, 'avgGasHour': {'value': 82949475547.78291}}, {'key_as_string': '2021-10-20 01:00:00', 'key': 1634691600000, 'doc_count': 52216, 'avgGasHour': {'value': 71954552231.77655}}, {'key_as_string': '2021-10-20 02:00:00', 'key': 1634695200000, 'doc_count': 49461, 'avgGasHour': {'value': 73729363299.80168}}, {'key_as_string': '2021-10-20 03:00:00', 'key': 1634698800000, 'doc_count': 49777, 'avgGasHour': {'value': 70843359178.92155}}, {'key_as_string': '2021-10-20 04:00:00', 'key': 1634702400000, 'doc_count': 62096, 'avgGasHour': {'value': 68633037229.229065}}, {'key_as_string': '2021-10-20 05:00:00', 'key': 1634706000000, 'doc_count': 53930, 'avgGasHour': {'value': 57285349713.77369}}, {'key_as_string': '2021-10-20 06:00:00', 'key': 1634709600000, 'doc_count': 47129, 'avgGasHour': {'value': 60660921007.97214}}, {'key_as_string': '2021-10-20 07:00:00', 'key': 1634713200000, 'doc_count': 52334, 'avgGasHour': {'value': 57231938121.359344}}, {'key_as_string': '2021-10-20 08:00:00', 'key': 1634716800000, 'doc_count': 55418, 'avgGasHour': {'value': 57852333057.37024}}, {'key_as_string': '2021-10-20 09:00:00', 'key': 1634720400000, 'doc_count': 48818, 'avgGasHour': {'value': 57692391242.17033}}, {'key_as_string': '2021-10-20 10:00:00', 'key': 1634724000000, 'doc_count': 48752, 'avgGasHour': {'value': 55517683905.113}}, {'key_as_string': '2021-10-20 11:00:00', 'key': 1634727600000, 'doc_count': 46157, 'avgGasHour': {'value': 62063161856.74955}}, {'key_as_string': '2021-10-20 12:00:00', 'key': 1634731200000, 'doc_count': 52856, 'avgGasHour': {'value': 65053463155.662155}}, {'key_as_string': '2021-10-20 01:00:00', 'key': 1634734800000, 'doc_count': 55183, 'avgGasHour': {'value': 78284792502.60052}}, {'key_as_string': '2021-10-20 02:00:00', 'key': 1634738400000, 'doc_count': 54349, 'avgGasHour': {'value': 145158063644.64172}}, {'key_as_string': '2021-10-20 03:00:00', 'key': 1634742000000, 'doc_count': 57141, 'avgGasHour': {'value': 144049130859.45502}}, {'key_as_string': '2021-10-20 04:00:00', 'key': 1634745600000, 'doc_count': 56502, 'avgGasHour': {'value': 145216649270.29474}}, {'key_as_string': '2021-10-20 05:00:00', 'key': 1634749200000, 'doc_count': 55978, 'avgGasHour': {'value': 118768161158.30257}}, {'key_as_string': '2021-10-20 06:00:00', 'key': 1634752800000, 'doc_count': 59864, 'avgGasHour': {'value': 91634074112.87233}}, {'key_as_string': '2021-10-20 07:00:00', 'key': 1634756400000, 'doc_count': 49747, 'avgGasHour': {'value': 116518113577.62349}}, {'key_as_string': '2021-10-20 08:00:00', 'key': 1634760000000, 'doc_count': 48167, 'avgGasHour': {'value': 122562894010.7537}}, {'key_as_string': '2021-10-20 09:00:00', 'key': 1634763600000, 'doc_count': 55740, 'avgGasHour': {'value': 87340609528.22296}}, {'key_as_string': '2021-10-20 10:00:00', 'key': 1634767200000, 'doc_count': 53604, 'avgGasHour': {'value': 92236205568.716}}, {'key_as_string': '2021-10-20 11:00:00', 'key': 1634770800000, 'doc_count': 46958, 'avgGasHour': {'value': 95961859983.37193}}, {'key_as_string': '2021-10-21 12:00:00', 'key': 1634774400000, 'doc_count': 45975, 'avgGasHour': {'value': 175510950626.2469}}, {'key_as_string': '2021-10-21 01:00:00', 'key': 1634778000000, 'doc_count': 53404, 'avgGasHour': {'value': 98646447171.46677}}, {'key_as_string': '2021-10-21 02:00:00', 'key': 1634781600000, 'doc_count': 57307, 'avgGasHour': {'value': 82982317140.85931}}, {'key_as_string': '2021-10-21 03:00:00', 'key': 1634785200000, 'doc_count': 58239, 'avgGasHour': {'value': 87932574597.74727}}, {'key_as_string': '2021-10-21 04:00:00', 'key': 1634788800000, 'doc_count': 56245, 'avgGasHour': {'value': 76149225896.83566}}, {'key_as_string': '2021-10-21 05:00:00', 'key': 1634792400000, 'doc_count': 52593, 'avgGasHour': {'value': 66794596644.02105}}, {'key_as_string': '2021-10-21 06:00:00', 'key': 1634796000000, 'doc_count': 50254, 'avgGasHour': {'value': 68584199168.770485}}, {'key_as_string': '2021-10-21 07:00:00', 'key': 1634799600000, 'doc_count': 52662, 'avgGasHour': {'value': 74093194393.5105}}, {'key_as_string': '2021-10-21 08:00:00', 'key': 1634803200000, 'doc_count': 56055, 'avgGasHour': {'value': 70875795767.52893}}, {'key_as_string': '2021-10-21 09:00:00', 'key': 1634806800000, 'doc_count': 48973, 'avgGasHour': {'value': 78291452674.4224}}, {'key_as_string': '2021-10-21 10:00:00', 'key': 1634810400000, 'doc_count': 54487, 'avgGasHour': {'value': 74190310367.98138}}, {'key_as_string': '2021-10-21 11:00:00', 'key': 1634814000000, 'doc_count': 56060, 'avgGasHour': {'value': 85341007596.41272}}, {'key_as_string': '2021-10-21 12:00:00', 'key': 1634817600000, 'doc_count': 58082, 'avgGasHour': {'value': 78661573194.15747}}, {'key_as_string': '2021-10-21 01:00:00', 'key': 1634821200000, 'doc_count': 55588, 'avgGasHour': {'value': 93190974309.3877}}, {'key_as_string': '2021-10-21 02:00:00', 'key': 1634824800000, 'doc_count': 57909, 'avgGasHour': {'value': 98395441364.02623}}, {'key_as_string': '2021-10-21 03:00:00', 'key': 1634828400000, 'doc_count': 54955, 'avgGasHour': {'value': 122117944923.87564}}, {'key_as_string': '2021-10-21 04:00:00', 'key': 1634832000000, 'doc_count': 51953, 'avgGasHour': {'value': 297610331514.54034}}, {'key_as_string': '2021-10-21 05:00:00', 'key': 1634835600000, 'doc_count': 53669, 'avgGasHour': {'value': 125452941952.27438}}, {'key_as_string': '2021-10-21 06:00:00', 'key': 1634839200000, 'doc_count': 47957, 'avgGasHour': {'value': 110303017723.39642}}, {'key_as_string': '2021-10-21 07:00:00', 'key': 1634842800000, 'doc_count': 51274, 'avgGasHour': {'value': 107972688875.16872}}, {'key_as_string': '2021-10-21 08:00:00', 'key': 1634846400000, 'doc_count': 49324, 'avgGasHour': {'value': 99975925578.08195}}, {'key_as_string': '2021-10-21 09:00:00', 'key': 1634850000000, 'doc_count': 48910, 'avgGasHour': {'value': 99688685379.98743}}, {'key_as_string': '2021-10-21 10:00:00', 'key': 1634853600000, 'doc_count': 52831, 'avgGasHour': {'value': 80309199059.89757}}, {'key_as_string': '2021-10-21 11:00:00', 'key': 1634857200000, 'doc_count': 52476, 'avgGasHour': {'value': 73593371533.68233}}, {'key_as_string': '2021-10-22 12:00:00', 'key': 1634860800000, 'doc_count': 47731, 'avgGasHour': {'value': 186850208605.2955}}, {'key_as_string': '2021-10-22 01:00:00', 'key': 1634864400000, 'doc_count': 48950, 'avgGasHour': {'value': 89257706752.80869}}, {'key_as_string': '2021-10-22 02:00:00', 'key': 1634868000000, 'doc_count': 53172, 'avgGasHour': {'value': 75746856454.40625}}, {'key_as_string': '2021-10-22 03:00:00', 'key': 1634871600000, 'doc_count': 49497, 'avgGasHour': {'value': 74944458968.99258}}, {'key_as_string': '2021-10-22 04:00:00', 'key': 1634875200000, 'doc_count': 61439, 'avgGasHour': {'value': 77660922014.95834}}, {'key_as_string': '2021-10-22 05:00:00', 'key': 1634878800000, 'doc_count': 44808, 'avgGasHour': {'value': 79378527233.8227}}, {'key_as_string': '2021-10-22 06:00:00', 'key': 1634882400000, 'doc_count': 43334, 'avgGasHour': {'value': 74253499759.39934}}, {'key_as_string': '2021-10-22 07:00:00', 'key': 1634886000000, 'doc_count': 57603, 'avgGasHour': {'value': 68793691171.71289}}, {'key_as_string': '2021-10-22 08:00:00', 'key': 1634889600000, 'doc_count': 60075, 'avgGasHour': {'value': 65178481428.598465}}, {'key_as_string': '2021-10-22 09:00:00', 'key': 1634893200000, 'doc_count': 30141, 'avgGasHour': {'value': 63167919678.08699}}]}}
# -*- coding: utf-8 -*- import logging import os from astropy.io import fits from astropy.io.registry import IORegistryError from astropy.table import Column, Table from .database import get_filters logging.basicConfig(level=logging.getLevelName( os.getenv('LOG_LEVEL', 'WARNING'))) LOGGER = logging.getLogger(__name__) def get_filter_meta_table(): """Generate a table with meta information about HELP filters This function generates an astropy.table.Table containing the information about the filters used in HELP, except their transmission profile. Returns ------- astropy.table.Table """ # List of filter attributes to put in the table attributes = ['filter_id', 'description', 'band_name', 'facility', 'instrument', 'mean_wavelength', 'min_wavelength', 'max_wavelength', 'att_ebv', 'notes'] all_filters = get_filters() table_columns = [] for attribute in attributes: table_columns.append(Column( name=attribute, data=[getattr(_, attribute) for _ in all_filters] )) return Table(table_columns) def export_to_cigale(directory): """Export the HELP filter database to CIGALE compatible files. This function export the filter transmission profiles to files (one per filter) that can be imported in CIGALE and be used in SED fitting. Parameters ---------- directory: str Directory in which to save the filter files. """ for filt in get_filters(): with open("{}/{}.dat".format(directory, filt.filter_id), 'w') as out: out.write("# {}\n".format(filt.filter_id)) out.write("# energy\n") out.write("# {}".format(filt.description)) Table(filt.response.T).write(out, format="ascii.no_header") def export_to_eazy(analysed_table): """Export the HELP filter database to be used with EAZY. This function export the filter transmission profiles to be used by EAZY for photometric redshift computation. As EAZY needs to associate to each column in the catalogue the index of the filter in the database, we are exporting it for a given table that will be analysed. This table must be in the format used within HELP. It create three files <analysed_table>.res containing the responses of the filters in analysed_table, <analysed_table>.translate associating the aperture flux and error columns to their corresponding filter, and <analysed_table>.info containing additional information about the filters. Parameters ---------- analysed_table: str The table that will be processed with EAZY. The aperture fluxes must be labelled f_ap_<filter> and the associated errors ferr_ap_<filter>. """ response_filename = "{}.res".format(os.path.splitext(analysed_table)[0]) translate_filename = "{}.translate".format( os.path.splitext(analysed_table)[0]) info_filename = "{}.info".format(os.path.splitext(analysed_table)[0]) if os.path.exists(response_filename): raise IOError("{} file exists.".format(response_filename)) if os.path.exists(translate_filename): raise IOError("{} file exists.".format(translate_filename)) if os.path.exists(info_filename): raise IOError("{} file exists.".format(info_filename)) # If the table is a FITS file, we use astropy.io.fits so that we can deal # with huge files without loading them in memory. # TODO: Find a way to deal with not readable ascii files if analysed_table.endswith(".fits") or analysed_table.endswith(".fit"): with fits.open(analysed_table) as hdulist: column_names = hdulist[1].columns.names else: try: catalogue = Table.read(analysed_table) except IORegistryError: catalogue = Table.read(analysed_table, format='ascii') column_names = catalogue.colnames # EAZY uses aperture fluxes. catalogue_bands = [col[5:] for col in column_names if col.startswith('f_ap_')] with open(response_filename, 'w') as filter_responses, \ open(translate_filename, 'w') as translate_table, \ open(info_filename, 'w') as info_file: for idx_band, band in enumerate(catalogue_bands): filt = get_filters(band) if filt is None: # The band is not in HELP filter database LOGGER.error("Filter %s is not in the database.", band) else: filt_nb_points = len(filt.response[0]) filter_responses.write( "{:>8d} {}, {}, mean_lambda={}, att/ebv={}\n".format( filt_nb_points, band, filt.description, filt.mean_wavelength, filt.att_ebv)) for idx, row in enumerate(filt.response.T): filter_responses.write( "{:>8d} {:>10.2f} {:>12.8g}\n".format( idx+1, row[0], row[1]) ) translate_table.write("f_ap_{} F{}\n".format( band, idx_band + 1)) translate_table.write("ferr_ap_{} E{}\n".format( band, idx_band + 1)) info_file.write( "{:>3d} {}, {}, mean_lambda={}, att/ebv={}\n".format( idx_band + 1, band, filt.description, filt.mean_wavelength, filt.att_ebv)) def correct_galactic_extinction(catalogue, inplace=False): """Correct photometric catalogue for galactic extinction. This function takes a photometric catalogue in the HELP format and correct the fluxes and magnitudes for the galactic extinction given the E(B-V) value associated with each source. The catalogue must have an ebv column and the fluxes and magnitudes columns are identified using the HELP column format (f_<filter>, ferr_filter, f_ap_<filter>, ...). Column associated with filters that are not in the HELP database will not be corrected and an error message will be logged with the name of the missing filters. Parameters ---------- catalogue: astropy.table.Table The catalogue to be corrected. inplace: boolean If inplace is set to True, the function will not make a copy of the input catalogue. This will save some memory space at the expense of modifying the input catalogue. Returns ------- astropy.table.Table The corrected catalogue. """ if not inplace: catalogue = catalogue.copy() try: ebv = catalogue['ebv'] except KeyError: raise KeyError("The catalogue is missing the ebv column.") # Instead of logging an error message for each missing band and problematic # column, lets just log a summary. missing_band, prob_columns = set(), set() for column in catalogue.colnames: band = None if column.startswith('f_ap_') or column.startswith('m_ap_'): band = column[5:] elif column.startswith('ferr_ap_') or column.startswith('merr_ap_'): band = column[8:] elif column.startswith('f_') or column.startswith('m_'): band = column[2:] elif column.startswith('ferr_') or column.startswith('merr_'): band = column[5:] if band is None: LOGGER.debug("Column %s is not associated with any band", column) else: filt = get_filters(band) if filt is None: missing_band.add(band) prob_columns.add(column) else: att = filt.att_ebv * ebv if column.startswith("f"): catalogue[column] *= 10**(att/2.5) elif column.startswith("merr"): # Error in magnitude is not affected by extinction. pass else: catalogue[column] -= att if len(missing_band) > 0: LOGGER.error("The filters are missing in the database: %s.\n" "The are present in these columns: %s.", ", ".join(sorted(missing_band)), ", ".join(sorted(prob_columns))) return catalogue
from spikeforest import SFMdaRecordingExtractor, SFMdaSortingExtractor, mdaio from spikeforest_analysis import bandpass_filter import mlprocessors as mlpr from mountaintools import client as mt import numpy as np import json class FilterTimeseries(mlpr.Processor): NAME = 'FilterTimeseries' VERSION = '0.1.0' CONTAINER = None recording_directory = mlpr.Input(description='Recording directory', optional=False, directory=True) timeseries_out = mlpr.Output(description='Filtered timeseries file (.mda)') def run(self): rx = SFMdaRecordingExtractor(dataset_directory=self.recording_directory, download=True) rx2 = bandpass_filter(recording=rx, freq_min=300, freq_max=6000, freq_wid=1000) if not mdaio.writemda32(rx2.get_traces(), self.timeseries_out): raise Exception('Unable to write output file.') class ComputeUnitDetail(mlpr.Processor): NAME = 'ComputeUnitDetail' VERSION = '0.1.0' CONTAINER = None recording_dir = mlpr.Input(description='Recording directory', optional=False, directory=True) firings = mlpr.Input(description='Input firings.mda file') unit_id = mlpr.IntegerParameter(description='Unit ID') json_out = mlpr.Output(description='Output .json file') def run(self): recording = SFMdaRecordingExtractor(dataset_directory=self.recording_directory, download=True) sorting = SFMdaSortingExtractor(firings_file=self.firings) waveforms0 = _get_random_spike_waveforms(recording=recording, sorting=sorting, unit=self.unit_id) channel_ids = recording.get_channel_ids() avg_waveform = np.median(waveforms0, axis=2) ret = dict( channel_ids = channel_ids, average_waveform = avg_waveform.tolist() ) with open(self.json_out, 'w') as f: json.dump(ret, f) def _get_random_spike_waveforms(*, recording, sorting, unit, max_num=50, channels=None, snippet_len=100): st = sorting.get_unit_spike_train(unit_id=unit) num_events = len(st) if num_events > max_num: event_indices = np.random.choice( range(num_events), size=max_num, replace=False) else: event_indices = range(num_events) spikes = recording.get_snippets(reference_frames=st[event_indices].astype(int), snippet_len=snippet_len, channel_ids=channels) if len(spikes) > 0: spikes = np.dstack(tuple(spikes)) else: spikes = np.zeros((recording.get_num_channels(), snippet_len, 0)) return spikes
import scrapy from baidutie.items import BaidutieItem class DutieSpider(scrapy.Spider): name = 'dutie' # 2、检查修改允许的域 allowed_domains = ['baidu.com'] # 1、修改起始url start_urls = ['https://tieba.baidu.com/f?kw=%E6%96%B9%E8%88%9F%E7%94%9F%E5%AD%98%E8%BF%9B%E5%8C%96'] def parse(self, response): # 3、编写解析方法 # 获取所有节点 node_list = response.xpath('//*[@id="thread_list"]/li') # 遍历节点列表,提取数据name、link for node in node_list: # 实例化 item = BaidutieItem() item['name'] = node.xpath('./div/div[2]/div[1]/div[1]/a/text()').extract_first() item['link'] = response.urljoin(node.xpath('./div/div[2]/div[1]/div[1]/a/@href').extract_first()) yield item # 模拟翻页 # 获取下一页url part_url = response.xpath('//*[@id="frs_list_pager"]/a[@class="next pagination-item "]/@href | //*[@id="frs_list_pager"]/a[@class="next pagination-item"]/@href').extract_first() print(part_url) # 判断终止条件 if part_url != None: next_url = response.urljoin(part_url) # 构建请求对象,并返回yield给引擎 yield scrapy.Request( url=next_url, callback=self.parse )
import asyncio import datetime as dt import random import typing as t from enum import Enum from twitchio.ext import commands from carberretta import Config HACK_COST = 100 class GameState(Enum): __slots__ = ("STOPPED", "WAITING", "RUNNING") STOPPED = 0 WAITING = 1 RUNNING = 2 class HackGame: __slots__ = ("state", "bot", "participants") def __init__(self, bot: commands.Bot) -> None: self.state = GameState.STOPPED self.bot = bot self.participants: t.List[str] = [] async def start(self, ctx: commands.bot.Context) -> None: self.state = GameState.WAITING await ctx.send( f"A hacking squad is being set up; use {Config.PREFIX}hack to join!" ) self.bot.scheduler.add_job( self.run, next_run_time=dt.datetime.utcnow() + dt.timedelta(seconds=60), args=[ctx], ) async def run(self, ctx: commands.bot.Context) -> None: if len(self.participants) < 3: await self.bot.db.executemany( "UPDATE economy SET Credits = Credits + ? WHERE User = ?", ((HACK_COST, p) for p in self.participants), ) await ctx.send( "The hack was cancelled as not enough users joined the squad. " "Those users that did have been refunded." ) return await self.reset() self.state = GameState.RUNNING pool = await self.bot.db.field( "SELECT Credits FROM economy WHERE User = 'bank'" ) await ctx.send( f"The hack has started! The total up for grabs is {pool:,} credits. " "Who will show their elite hacking skills and get the goods?" ) await asyncio.sleep(random.randint(10, 30)) winners: t.List[str] = [] odds = min(len(self.participants) * 10, 75) for user in self.participants: if random.randint(1, 100) <= odds: winners.append(user) await self.bot.db.execute( "UPDATE economy SET Credits = Credits - ? WHERE User = 'bank'", pool, ) if not winners: await ctx.send( "The hack is complete; nobody managed to get anything!" ) return await self.reset() winnings = pool // len(self.participants) await self.bot.db.executemany( "UPDATE economy SET Credits = Credits + ? WHERE User = ?", ((winnings, w) for w in winners), ) await ctx.send( f"The hack is complete! The following users got their {winnings:,} " f"credit share: {', '.join(winners)}" ) await self.reset() async def reset(self) -> None: self.state = GameState.STOPPED self.participants = [] async def try_add_participant(self, ctx: commands.bot.Context) -> None: if ctx.author.name in self.participants: return await ctx.send( f"{ctx.author.name}, you are already good to go." ) bal: int = await self.bot.db.field( "SELECT Credits FROM economy WHERE User = ?", ctx.author.name ) if bal < 100: return await ctx.send( f"{ctx.author.name}, you need at least {HACK_COST:,} " f"credits to hack; you have {bal:,}." ) await self.bot.db.execute( "UPDATE economy SET Credits = Credits - ? WHERE User = ?", HACK_COST, ctx.author.name, ) self.participants.append(ctx.author.name) await ctx.send( f"Welcome to the squad {ctx.author.name}! The {HACK_COST:,} " "credits needed for the hacking equipment has been taken from " "your balance." ) class Fun: def __init__(self, bot: commands.Bot) -> None: self.bot = bot self.hackgame = HackGame(bot) @commands.command(name="dice", aliases=["roll"]) async def dice_command( self, ctx: commands.bot.Context, sides: int = 6 ) -> None: if not 0 < sides < 101: return await ctx.send( f"{ctx.author.name}, you can only roll dice of between " "1 and 100 sides inclusive." ) await ctx.send( f"{ctx.author.name}, you rolled a {random.randint(1, sides)}." ) @commands.command(name="hug", aliases=["cuddle"]) async def hug_command( self, ctx: commands.bot.Context, recipient: str ) -> None: users = await self.bot.db.column("SELECT User FROM economy") if recipient.strip("@").lower() not in users: return await ctx.send( f"{ctx.author.name}, I don't know who you're trying to hug." ) await ctx.send(f"{ctx.author.name} hugged {recipient.strip('@')}!") @commands.command(name="coinflip", aliases=["coin", "flip"]) async def coinflip_command( self, ctx: commands.bot.Context, bet: int, guess: str ) -> None: bal: int = await self.bot.db.field( "SELECT Credits FROM economy WHERE User = ?", ctx.author.name ) if bet < 1: return await ctx.send( f"{ctx.author.name}, you must bet at least 1 credit." ) if bet > bal: return await ctx.send( f"{ctx.author.name}, you do not have enough credits to make " f"that bet; you only have {bal:,}." ) if (guess := guess.lower()) not in ("heads", "tails", "h", "t"): return await ctx.send( f"{ctx.author.name}, you need to guess either 'heads' or 'tails'." ) if guess[0] != random.choice("ht"): await ctx.send( f"Too bad {ctx.author.name}, you were wrong! {bet:,} credits " "have been added to the bank." ) await self.bot.db.execute( "UPDATE economy SET Credits = Credits - ? WHERE User = ?", bet, ctx.author.name, ) return await self.bot.db.execute( "UPDATE economy SET Credits = Credits + ? WHERE User = 'bank'", bet, ) await ctx.send( f"Congratulations {ctx.author.name}, you were right! " f"You've won {bet*2:,} credits!" ) await self.bot.db.execute( "UPDATE economy SET Credits = Credits + ? WHERE User = ?", bet, ctx.author.name, ) @commands.command(name="hack") async def hack_command(self, ctx: commands.bot.Context) -> None: if self.hackgame.state == GameState.RUNNING: return await ctx.send( f"{ctx.author.name}, a hack is already in progress!" ) if self.hackgame.state == GameState.WAITING: return await self.hackgame.try_add_participant(ctx) if self.hackgame.state == GameState.STOPPED: if ( await self.bot.db.field( "SELECT Credits FROM economy WHERE User = 'bank'" ) < 500 ): return await ctx.send( "The bank does not have enough credits to be worth hacking." ) await self.hackgame.start(ctx) await self.hackgame.try_add_participant(ctx) def prepare(bot: commands.Bot) -> None: bot.add_cog(Fun(bot))
num = [[], []] for c in range(0, 7): valor = int(input(f'Digite o {c+1}º valor: ')) if valor % 2 == 0: num[0].append(valor) if valor % 2 != 0: num[1].append(valor) num[0].sort(), num[1].sort() print(f'Os números PARES foram: {num[0]}') print(f'Os números IMPARES foram: {num[1]}')
#!/usr/bin/env python # coding: utf-8 # file="text_euc2.txt" # dat = open(file, "rb").read() import sys # filename=sys.argv[1] dat = open(filename).read().encode('euc-jp') dat=bytes(dat) l=len(dat) i=0 put_index=0 imgs=[] print("const int TEXT_LENGTH = %d;" % (int(l/2)+1)) print("byte[] text_data = {") while(True): dh=dat[i] i+=1 if dh<0x80: # ascii print("0x00,0x%02x," % dh, end="") put_index+=1 if dh>=0xA0: dl=dat[i] i+=1 ku=dh-0xa0 ten=dl-0xa0 print("0x%02x,0x%02x," % (ku,ten),end="") put_index+=1 if put_index%8==0: print() if i>l-1: break print("};")
# -*- coding: utf-8 -*- # Form implementation generated from reading ui file 'D:\Masterprojekt\03_Production\Maya\scripts\assetIO\assetIOWidget.ui' # # Created: Wed May 30 10:05:54 2018 # by: pyside2-uic running on PySide2 2.0.0~alpha0 # # WARNING! All changes made in this file will be lost! from PySide2 import QtCore, QtGui, QtWidgets class Ui_AssetIO(object): def setupUi(self, AssetIO): AssetIO.setObjectName("AssetIO") AssetIO.resize(574, 474) self.centralwidget = QtWidgets.QWidget(AssetIO) self.centralwidget.setObjectName("centralwidget") self.verticalLayout_2 = QtWidgets.QVBoxLayout(self.centralwidget) self.verticalLayout_2.setContentsMargins(0, 0, 0, 0) self.verticalLayout_2.setObjectName("verticalLayout_2") self.assetIO_tabWidget = QtWidgets.QTabWidget(self.centralwidget) self.assetIO_tabWidget.setEnabled(True) self.assetIO_tabWidget.setStyleSheet("QTabBar::tab { height: 25px; width: 100%; }") self.assetIO_tabWidget.setObjectName("assetIO_tabWidget") self.exportTab = QtWidgets.QWidget() self.exportTab.setObjectName("exportTab") self.verticalLayout_3 = QtWidgets.QVBoxLayout(self.exportTab) self.verticalLayout_3.setObjectName("verticalLayout_3") self.export_assetDetails_grpBox = QtWidgets.QGroupBox(self.exportTab) self.export_assetDetails_grpBox.setTitle("") self.export_assetDetails_grpBox.setObjectName("export_assetDetails_grpBox") self.verticalLayout_10 = QtWidgets.QVBoxLayout(self.export_assetDetails_grpBox) self.verticalLayout_10.setObjectName("verticalLayout_10") self.exportAssetName_layout = QtWidgets.QHBoxLayout() self.exportAssetName_layout.setObjectName("exportAssetName_layout") self.eportAssetName_label = QtWidgets.QLabel(self.export_assetDetails_grpBox) self.eportAssetName_label.setMargin(0) self.eportAssetName_label.setObjectName("eportAssetName_label") self.exportAssetName_layout.addWidget(self.eportAssetName_label) self.exportAssetName_input = QtWidgets.QLineEdit(self.export_assetDetails_grpBox) self.exportAssetName_input.setMinimumSize(QtCore.QSize(250, 0)) self.exportAssetName_input.setObjectName("exportAssetName_input") self.exportAssetName_layout.addWidget(self.exportAssetName_input) self.exportAssetName_browseButton = QtWidgets.QPushButton(self.export_assetDetails_grpBox) self.exportAssetName_browseButton.setObjectName("exportAssetName_browseButton") self.exportAssetName_layout.addWidget(self.exportAssetName_browseButton) self.verticalLayout_10.addLayout(self.exportAssetName_layout) self.exportCategory_layout = QtWidgets.QHBoxLayout() self.exportCategory_layout.setObjectName("exportCategory_layout") self.exportCategory_label = QtWidgets.QLabel(self.export_assetDetails_grpBox) self.exportCategory_label.setObjectName("exportCategory_label") self.exportCategory_layout.addWidget(self.exportCategory_label) self.exportCategory_CB = QtWidgets.QComboBox(self.export_assetDetails_grpBox) self.exportCategory_CB.setObjectName("exportCategory_CB") self.exportCategory_layout.addWidget(self.exportCategory_CB) self.exportCategoryAdd_button = QtWidgets.QPushButton(self.export_assetDetails_grpBox) self.exportCategoryAdd_button.setObjectName("exportCategoryAdd_button") self.exportCategory_layout.addWidget(self.exportCategoryAdd_button) self.verticalLayout_10.addLayout(self.exportCategory_layout) self.exportFrameSel_layout = QtWidgets.QHBoxLayout() self.exportFrameSel_layout.setObjectName("exportFrameSel_layout") self.exportFrameSel_checkbox = QtWidgets.QCheckBox(self.export_assetDetails_grpBox) self.exportFrameSel_checkbox.setChecked(True) self.exportFrameSel_checkbox.setObjectName("exportFrameSel_checkbox") self.exportFrameSel_layout.addWidget(self.exportFrameSel_checkbox) self.export_breakRef_chkbox = QtWidgets.QCheckBox(self.export_assetDetails_grpBox) self.export_breakRef_chkbox.setObjectName("export_breakRef_chkbox") self.exportFrameSel_layout.addWidget(self.export_breakRef_chkbox) self.verticalLayout_10.addLayout(self.exportFrameSel_layout) self.verticalLayout_3.addWidget(self.export_assetDetails_grpBox) self.exportDescription_grpBox = QtWidgets.QGroupBox(self.exportTab) self.exportDescription_grpBox.setObjectName("exportDescription_grpBox") self.verticalLayout_7 = QtWidgets.QVBoxLayout(self.exportDescription_grpBox) self.verticalLayout_7.setObjectName("verticalLayout_7") self.exportDescription_textEdit = QtWidgets.QTextEdit(self.exportDescription_grpBox) self.exportDescription_textEdit.setObjectName("exportDescription_textEdit") self.verticalLayout_7.addWidget(self.exportDescription_textEdit) self.verticalLayout_3.addWidget(self.exportDescription_grpBox) self.exportButtons_grpBox = QtWidgets.QGroupBox(self.exportTab) self.exportButtons_grpBox.setTitle("") self.exportButtons_grpBox.setObjectName("exportButtons_grpBox") self.horizontalLayout_5 = QtWidgets.QHBoxLayout(self.exportButtons_grpBox) self.horizontalLayout_5.setObjectName("horizontalLayout_5") self.exportAll_button = QtWidgets.QPushButton(self.exportButtons_grpBox) self.exportAll_button.setObjectName("exportAll_button") self.horizontalLayout_5.addWidget(self.exportAll_button) self.exportSelected_button = QtWidgets.QPushButton(self.exportButtons_grpBox) self.exportSelected_button.setObjectName("exportSelected_button") self.horizontalLayout_5.addWidget(self.exportSelected_button) self.verticalLayout_3.addWidget(self.exportButtons_grpBox) self.assetIO_tabWidget.addTab(self.exportTab, "") self.importTab = QtWidgets.QWidget() self.importTab.setObjectName("importTab") self.verticalLayout = QtWidgets.QVBoxLayout(self.importTab) self.verticalLayout.setObjectName("verticalLayout") self.importSearch_layout = QtWidgets.QHBoxLayout() self.importSearch_layout.setObjectName("importSearch_layout") self.importCategory_label = QtWidgets.QLabel(self.importTab) self.importCategory_label.setObjectName("importCategory_label") self.importSearch_layout.addWidget(self.importCategory_label) self.importCategory_cBox = QtWidgets.QComboBox(self.importTab) self.importCategory_cBox.setObjectName("importCategory_cBox") self.importSearch_layout.addWidget(self.importCategory_cBox) spacerItem = QtWidgets.QSpacerItem(40, 20, QtWidgets.QSizePolicy.Expanding, QtWidgets.QSizePolicy.Minimum) self.importSearch_layout.addItem(spacerItem) self.importSearch_label = QtWidgets.QLabel(self.importTab) self.importSearch_label.setObjectName("importSearch_label") self.importSearch_layout.addWidget(self.importSearch_label) self.importSearch_lineEdit = QtWidgets.QLineEdit(self.importTab) self.importSearch_lineEdit.setObjectName("importSearch_lineEdit") self.importSearch_layout.addWidget(self.importSearch_lineEdit) self.verticalLayout.addLayout(self.importSearch_layout) self.importBrowser_layout = QtWidgets.QHBoxLayout() self.importBrowser_layout.setObjectName("importBrowser_layout") self.importList = QtWidgets.QListWidget(self.importTab) self.importList.setObjectName("importList") self.importBrowser_layout.addWidget(self.importList) self.importProperties_grpBox = QtWidgets.QGroupBox(self.importTab) self.importProperties_grpBox.setMinimumSize(QtCore.QSize(150, 0)) self.importProperties_grpBox.setObjectName("importProperties_grpBox") self.verticalLayout_4 = QtWidgets.QVBoxLayout(self.importProperties_grpBox) self.verticalLayout_4.setObjectName("verticalLayout_4") self.importProperties_icon = QtWidgets.QLabel(self.importProperties_grpBox) self.importProperties_icon.setText("") self.importProperties_icon.setPixmap(QtGui.QPixmap("assetDefaultIcon.png")) self.importProperties_icon.setAlignment(QtCore.Qt.AlignCenter) self.importProperties_icon.setObjectName("importProperties_icon") self.verticalLayout_4.addWidget(self.importProperties_icon) self.importProperties_layout = QtWidgets.QFormLayout() self.importProperties_layout.setObjectName("importProperties_layout") self.importPropertiesName_label = QtWidgets.QLabel(self.importProperties_grpBox) self.importPropertiesName_label.setObjectName("importPropertiesName_label") self.importProperties_layout.setWidget(0, QtWidgets.QFormLayout.LabelRole, self.importPropertiesName_label) self.importPropertiesName_display = QtWidgets.QLabel(self.importProperties_grpBox) self.importPropertiesName_display.setObjectName("importPropertiesName_display") self.importProperties_layout.setWidget(0, QtWidgets.QFormLayout.FieldRole, self.importPropertiesName_display) self.importPropertiesCategory_label = QtWidgets.QLabel(self.importProperties_grpBox) self.importPropertiesCategory_label.setObjectName("importPropertiesCategory_label") self.importProperties_layout.setWidget(1, QtWidgets.QFormLayout.LabelRole, self.importPropertiesCategory_label) self.importPropertiesCategory_display = QtWidgets.QLabel(self.importProperties_grpBox) self.importPropertiesCategory_display.setObjectName("importPropertiesCategory_display") self.importProperties_layout.setWidget(1, QtWidgets.QFormLayout.FieldRole, self.importPropertiesCategory_display) self.importPropertiesDescription_label = QtWidgets.QLabel(self.importProperties_grpBox) self.importPropertiesDescription_label.setObjectName("importPropertiesDescription_label") self.importProperties_layout.setWidget(3, QtWidgets.QFormLayout.LabelRole, self.importPropertiesDescription_label) self.importPropertiesDescription_textEdit = QtWidgets.QTextEdit(self.importProperties_grpBox) self.importPropertiesDescription_textEdit.setReadOnly(True) self.importPropertiesDescription_textEdit.setObjectName("importPropertiesDescription_textEdit") self.importProperties_layout.setWidget(3, QtWidgets.QFormLayout.FieldRole, self.importPropertiesDescription_textEdit) self.importPropertiesMod_label = QtWidgets.QLabel(self.importProperties_grpBox) self.importPropertiesMod_label.setObjectName("importPropertiesMod_label") self.importProperties_layout.setWidget(2, QtWidgets.QFormLayout.LabelRole, self.importPropertiesMod_label) self.importPropertiesMod_display = QtWidgets.QLabel(self.importProperties_grpBox) self.importPropertiesMod_display.setObjectName("importPropertiesMod_display") self.importProperties_layout.setWidget(2, QtWidgets.QFormLayout.FieldRole, self.importPropertiesMod_display) self.verticalLayout_4.addLayout(self.importProperties_layout) self.importProperties_chkbox_layout = QtWidgets.QHBoxLayout() self.importProperties_chkbox_layout.setObjectName("importProperties_chkbox_layout") self.importProperties_locator_checkbox = QtWidgets.QCheckBox(self.importProperties_grpBox) self.importProperties_locator_checkbox.setObjectName("importProperties_locator_checkbox") self.importProperties_chkbox_layout.addWidget(self.importProperties_locator_checkbox) self.importProperties_selectable_checkbox = QtWidgets.QCheckBox(self.importProperties_grpBox) self.importProperties_selectable_checkbox.setEnabled(False) self.importProperties_selectable_checkbox.setObjectName("importProperties_selectable_checkbox") self.importProperties_chkbox_layout.addWidget(self.importProperties_selectable_checkbox) self.verticalLayout_4.addLayout(self.importProperties_chkbox_layout) self.importBrowser_layout.addWidget(self.importProperties_grpBox) self.verticalLayout.addLayout(self.importBrowser_layout) self.importButtons_layout = QtWidgets.QHBoxLayout() self.importButtons_layout.setObjectName("importButtons_layout") self.importImport_button = QtWidgets.QPushButton(self.importTab) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Maximum, QtWidgets.QSizePolicy.Fixed) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.importImport_button.sizePolicy().hasHeightForWidth()) self.importImport_button.setSizePolicy(sizePolicy) self.importImport_button.setObjectName("importImport_button") self.importButtons_layout.addWidget(self.importImport_button) self.importReference_button = QtWidgets.QPushButton(self.importTab) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Minimum, QtWidgets.QSizePolicy.Fixed) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.importReference_button.sizePolicy().hasHeightForWidth()) self.importReference_button.setSizePolicy(sizePolicy) self.importReference_button.setObjectName("importReference_button") self.importButtons_layout.addWidget(self.importReference_button) self.verticalLayout.addLayout(self.importButtons_layout) self.assetIO_tabWidget.addTab(self.importTab, "") self.ManageTab = QtWidgets.QWidget() self.ManageTab.setObjectName("ManageTab") self.verticalLayout_6 = QtWidgets.QVBoxLayout(self.ManageTab) self.verticalLayout_6.setObjectName("verticalLayout_6") self.manage_dupliRemove_layout = QtWidgets.QHBoxLayout() self.manage_dupliRemove_layout.setObjectName("manage_dupliRemove_layout") self.manage_duplicateSel_btn = QtWidgets.QPushButton(self.ManageTab) self.manage_duplicateSel_btn.setObjectName("manage_duplicateSel_btn") self.manage_dupliRemove_layout.addWidget(self.manage_duplicateSel_btn) self.manage_deleteSel_btn = QtWidgets.QPushButton(self.ManageTab) self.manage_deleteSel_btn.setObjectName("manage_deleteSel_btn") self.manage_dupliRemove_layout.addWidget(self.manage_deleteSel_btn) self.verticalLayout_6.addLayout(self.manage_dupliRemove_layout) self.manage_referenceObjects_list = QtWidgets.QListWidget(self.ManageTab) self.manage_referenceObjects_list.setObjectName("manage_referenceObjects_list") self.verticalLayout_6.addWidget(self.manage_referenceObjects_list) self.assetIO_tabWidget.addTab(self.ManageTab, "") self.verticalLayout_2.addWidget(self.assetIO_tabWidget) AssetIO.setCentralWidget(self.centralwidget) self.menubar = QtWidgets.QMenuBar(AssetIO) self.menubar.setGeometry(QtCore.QRect(0, 0, 574, 21)) self.menubar.setObjectName("menubar") AssetIO.setMenuBar(self.menubar) self.retranslateUi(AssetIO) self.assetIO_tabWidget.setCurrentIndex(0) QtCore.QMetaObject.connectSlotsByName(AssetIO) def retranslateUi(self, AssetIO): AssetIO.setWindowTitle(QtWidgets.QApplication.translate("AssetIO", "Asset IO", None, -1)) self.eportAssetName_label.setText(QtWidgets.QApplication.translate("AssetIO", "Asset Name", None, -1)) self.exportAssetName_browseButton.setText(QtWidgets.QApplication.translate("AssetIO", "Browse", None, -1)) self.exportCategory_label.setText(QtWidgets.QApplication.translate("AssetIO", "Category", None, -1)) self.exportCategoryAdd_button.setText(QtWidgets.QApplication.translate("AssetIO", "Add", None, -1)) self.exportFrameSel_checkbox.setText(QtWidgets.QApplication.translate("AssetIO", "Auto Frame Selected", None, -1)) self.export_breakRef_chkbox.setText(QtWidgets.QApplication.translate("AssetIO", "Break References", None, -1)) self.exportDescription_grpBox.setTitle(QtWidgets.QApplication.translate("AssetIO", "Description", None, -1)) self.exportAll_button.setText(QtWidgets.QApplication.translate("AssetIO", "Export All", None, -1)) self.exportSelected_button.setText(QtWidgets.QApplication.translate("AssetIO", "Export Selected", None, -1)) self.assetIO_tabWidget.setTabText(self.assetIO_tabWidget.indexOf(self.exportTab), QtWidgets.QApplication.translate("AssetIO", "Export", None, -1)) self.importCategory_label.setText(QtWidgets.QApplication.translate("AssetIO", "Category Filter", None, -1)) self.importSearch_label.setText(QtWidgets.QApplication.translate("AssetIO", "Search", None, -1)) self.importProperties_grpBox.setTitle(QtWidgets.QApplication.translate("AssetIO", "Properties", None, -1)) self.importPropertiesName_label.setText(QtWidgets.QApplication.translate("AssetIO", "Name", None, -1)) self.importPropertiesName_display.setText(QtWidgets.QApplication.translate("AssetIO", "-", None, -1)) self.importPropertiesCategory_label.setText(QtWidgets.QApplication.translate("AssetIO", "Category", None, -1)) self.importPropertiesCategory_display.setText(QtWidgets.QApplication.translate("AssetIO", "-", None, -1)) self.importPropertiesDescription_label.setText(QtWidgets.QApplication.translate("AssetIO", "Description", None, -1)) self.importPropertiesMod_label.setText(QtWidgets.QApplication.translate("AssetIO", "Last Modified", None, -1)) self.importPropertiesMod_display.setText(QtWidgets.QApplication.translate("AssetIO", "-", None, -1)) self.importProperties_locator_checkbox.setText(QtWidgets.QApplication.translate("AssetIO", "Group to Locator", None, -1)) self.importProperties_selectable_checkbox.setText(QtWidgets.QApplication.translate("AssetIO", "Selectable", None, -1)) self.importImport_button.setText(QtWidgets.QApplication.translate("AssetIO", "Import", None, -1)) self.importReference_button.setText(QtWidgets.QApplication.translate("AssetIO", "Reference", None, -1)) self.assetIO_tabWidget.setTabText(self.assetIO_tabWidget.indexOf(self.importTab), QtWidgets.QApplication.translate("AssetIO", "Import", None, -1)) self.manage_duplicateSel_btn.setText(QtWidgets.QApplication.translate("AssetIO", "Duplicate Selected", None, -1)) self.manage_deleteSel_btn.setText(QtWidgets.QApplication.translate("AssetIO", "Delete Selected", None, -1)) self.assetIO_tabWidget.setTabText(self.assetIO_tabWidget.indexOf(self.ManageTab), QtWidgets.QApplication.translate("AssetIO", "Manage", None, -1))
#!/usr/bin/env python # -*- coding: utf-8 -*- # # Copyright (c) 2021 Idiap Research Institute, http://www.idiap.ch/ # Written by Bastian Schnell <bastian.schnell@idiap.ch> # import torch.nn as nn class Pooling(nn.Module): def __init__(self, batch_first): super().__init__() self.batch_first = batch_first def extra_repr(self): return "batch_first={}".format(self.batch_first) def get_output_length(self, seq_lengths_input): return seq_lengths_input.fill_(1) def select_inputs(self, input_, **kwargs): return input_, kwargs.pop("seq_lengths_input", None) class SelectLastPooling(Pooling): def __init__(self, batch_first): super(SelectLastPooling, self).__init__(batch_first) def forward(self, input_): input_, lengths = input_ batch_dim = 0 if self.batch_first else 1 batch_size = input_.shape[batch_dim] if lengths is None: time_dim = 1 if self.batch_first else 0 seq_len_indices = [input_.shape[time_dim] - 1] * batch_size else: seq_len_indices = [length - 1 for length in lengths] batch_indices = [i for i in range(batch_size)] if self.batch_first: return input_[batch_indices, seq_len_indices].unsqueeze(dim=1) else: return input_[seq_len_indices, batch_indices].unsqueeze(dim=0) class MeanPooling(Pooling): def __init__(self, batch_first): super().__init__(batch_first) self.time_dim = 1 if batch_first else 0 def forward(self, input_): input_, lengths = input_ input_sum = input_.sum(self.time_dim, keepdim=True) batch_dim = len(lengths) missing_dims = [1] * max(0, input_sum.ndim - 2) if self.batch_first: lengths = lengths.view(batch_dim, 1, *missing_dims).float() else: lengths = lengths.view(1, batch_dim, *missing_dims).float() input_mean = input_sum / lengths return input_mean
from discord.ext import commands import discord import json from discord.utils import get from discord import Embed import os.path from os import path ## # This is a helper function to playlist.py to manage the JSON file I/O ## def logUpdate(ctx, songName): #automatically logs all songs played by a user in a textfile named their name. user_file = os.path.join("SongLog",str(ctx.author.id)) user_file = str(user_file) + ".txt" user_write = open(user_file,"a") user_write.write(str(songName) + "\n") user_write.close() def playlist_read(listname,ctx): userpath = os.path.join("Playlist",str(ctx.author.id)) userpath = str(userpath) + ".json" i = 1 try: with open(userpath,"r") as fileRead: data = json.load(fileRead) specific = data[listname] final = "" for item in specific: final += str(i) + ": " + item + "\n" i = i + 1 return final except Exception as error: return "Failed-Process" print (error) def list_playlist(ctx): #function to list all of the users playlists. userpath = os.path.join("Playlist",str(ctx.author.id)) userpath = str(userpath) + ".json" i = 1 final = "" try: with open(userpath,"r") as file_read: data = json.load(file_read) for key in data: final+= str(i) + ": " + key + "\n" i = i + 1 return final except Exception as error: return "Failed-Process" def new_playlist(ctx,playlist_name,now_playing): #function to create a new playlist in the JSON file or make a JSON file if none exists for the user userpath = os.path.join("Playlist",str(ctx.author.id)) userpath = str(userpath) + ".json" if path.exists(userpath): with open(userpath,"r") as read_file: data = json.load(read_file) temp = [now_playing] data[playlist_name] = temp dataFinal = json.dumps(data, indent = 1) help_newplaylist(ctx,dataFinal) else: dataStart = {playlist_name:[now_playing]} with open(userpath,"w") as write_file: json.dump(dataStart,write_file) def help_newplaylist(ctx,data): #has no safety checks to write. needs to be done before hand only a helper function for within the doc userpath = os.path.join("Playlist",str(ctx.author.id)) userpath = str(userpath) + ".json" file = open(userpath,"w") file.write(data) file.close() #with open(userpath,"w") as write_file: Alternative way to open the file. #json.dump(data,write_file) This will not work as intended. def delete_playlist(ctx,playlist_name): userpath = os.path.join("Playlist",str(ctx.author.id)) userpath = str(userpath) + ".json" if path.exists(userpath): with open(userpath,"r") as read_file: data = json.load(read_file) try: data.pop(playlist_name) dataFinal = json.dumps(data, indent = 1) help_newplaylist(ctx,dataFinal) return "Done" except Exception as error: return "Not-Found" else: return "No-Playlists" def delete_from_playlist(ctx, playlist_name,selection): userpath = os.path.join("Playlist",str(ctx.author.id)) userpath = str(userpath) + ".json" if path.exists(userpath): with open(userpath,"r") as read_file: try: data = json.load(read_file) data[playlist_name].pop(selection - 1) dataFinal = json.dumps(data, indent = 1) help_newplaylist(ctx,dataFinal) return "Done" except Exception as error: return "Not-Found" else: return "No-Playlists" def add_to_playlist(ctx,playlist_name,now_playing) -> bool: # Reads json, finds playlists and add song then uses help_newplaylist to write back. userpath = os.path.join("Playlist",str(ctx.author.id)) userpath = str(userpath) + ".json" if path.exists(userpath): try: with open(userpath,"r") as read_file: data = json.load(read_file) temp = [now_playing] data[playlist_name] += temp dataFinal = json.dumps(data, indent = 1) help_newplaylist(ctx,dataFinal) return True except Exception as error: return False def play_playlist(ctx,playlist_name): # loads songs from a playlist to be parsed by the calling function userpath = os.path.join("Playlist",str(ctx.author.id)) userpath = str(userpath) + ".json" if path.exists(userpath): with open(userpath,"r") as read_file: # using with auto closes the file after. data = json.load(read_file) if playlist_name in data: songlist = data[playlist_name] return songlist else: return False #return false if playlist doesnt exist which will be caught by music.py and output playlist doesnt exist. else: return False #same as above comment def rename_playlist(ctx,raw_input) -> bool: userpath = os.path.join("Playlist",str(ctx.author.id)) userpath = str(userpath) + ".json" splitNames = raw_input.split(',') try: if splitNames[0] is not None and splitNames[1] is not None: data = "" specific = "" try: with open(userpath,"r") as fileRead: data = json.load(fileRead) specific = data[splitNames[0]] with open(userpath,"w") as fileRead: data.pop(splitNames[0]) #pop off old playlist data[splitNames[1]] = specific #store the same data as a new list. dataFinal = json.dumps(data, indent = 1) help_newplaylist(ctx,dataFinal) return "Success" except Exception as error: print(error) return "No-List" except Exception as error: return "Invalid-Input"
""" GRIB - Contouring with Gradient Shading """ # (C) Copyright 2017- ECMWF. # # This software is licensed under the terms of the Apache Licence Version 2.0 # which can be obtained at http://www.apache.org/licenses/LICENSE-2.0. # # In applying this licence, ECMWF does not waive the privileges and immunities # granted to it by virtue of its status as an intergovernmental organisation # nor does it submit to any jurisdiction. # import metview as mv # get data use_mars = False if use_mars: # retrieve data from MARS t = mv.retrieve( class_="era5", stream="moda", levtype="sfc", param="2t", date=20200101, time=0, grid=[1, 1], ) else: # read data from GRIB file filename = "era5_t2_jan.grib" if mv.exist(filename): t = mv.read(filename) else: t = mv.gallery.load_dataset(filename) # define coastlines coast = mv.mcoast(map_grid="off", map_label="off") # define view view = mv.geoview( map_projection="robinson", subpage_y_position=14, subpage_y_length=86, coastlines=coast, page_frame="off", subpage_frame="off", ) # define contouring cont = mv.mcont( legend="on", contour="off", contour_level_selection_type="level_list", contour_level_list=[-45, -20, 0, 20, 45], contour_label="off", contour_shade="on", contour_shade_colour_method="gradients", contour_shade_method="area_fill", contour_gradients_colour_list=[ "RGB(0.1532,0.1187,0.5323)", "RGB(0.5067,0.7512,0.8188)", "RGB(0.9312,0.9313,0.9275)", "RGB(0.9523,0.7811,0.3104)", "RGB(0.594,0.104,0.104)", ], contour_gradients_step_list=20, ) # define legend legend = mv.mlegend( legend_box_mode="positional", legend_text_font_size=0.4, legend_box_y_position=1, legend_box_y_length=1.5, legend_entry_border="off", legend_label_frequency=10, ) # define title title = mv.mtext( text_line_1="ERA5 T2 Monthly Mean 2020 January 0UTC", text_font_size=0.6 ) # define the output plot file mv.setoutput(mv.pdf_output(output_name="gradient_shading")) # generate plot mv.plot(view, t, cont, title, legend)
import sys from faster_solution import run_faster_version def run(): args = sys.argv run_faster_version(args) if __name__ == '__main__': run()
#! /usr/bin/env python # A tiny framework that makes it easy to write Test Data Builders in Python # Port of Java make-it-easy by Nat Pryce # Copyright (C) 2013 Dori Reuveni # E-mail: dorireuv AT gmail DOT com from setuptools import setup import os import re __version__ = __author__ = __license__ = '' fh = open(os.path.join(os.path.dirname(__file__), 'make_it_easy', '__init__.py')) try: for line in fh: if re.match('^__[a-z_]+__.*', line): exec(line) finally: if fh: fh.close() params = dict( name='make-it-easy', version=__version__, packages=['make_it_easy'], author=__author__, author_email='dorireuv@gmail.com', description='A tiny framework that makes it easy to write Test Data Builders in Python', long_description=open(os.path.join(os.path.dirname(__file__), 'README.rst')).read(), keywords=['testing', 'test', 'tdd', 'unittest', 'builder', 'goos'], url='https://www.github.com/dorireuv/make-it-easy', license=__license__, classifiers=[ 'Programming Language :: Python', 'Programming Language :: Python :: 2', 'Programming Language :: Python :: 2.6', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.2', 'Programming Language :: Python :: 3.3', 'Operating System :: OS Independent', 'Intended Audience :: Developers', 'Development Status :: 5 - Production/Stable', 'Topic :: Software Development :: Libraries', 'Topic :: Software Development :: Libraries :: Python Modules', 'Topic :: Software Development :: Testing', 'License :: OSI Approved :: Apache Software License', ], tests_require=['PyHamcrest'], test_suite='tests', ) setup(**params)
''' We parse each document of each file from our data set ''' ''' This results in text files with ID name and text content ''' from nltk.corpus import stopwords from nltk.stem import PorterStemmer import nltk import re from numpy import zeros import numpy as np import math import sys import os # Turns xml parsed file into separate documents def docsToFiles(foldername, language): backup = {} folder_path = './DOCUMENTS/' input_path = './' + foldername for filename in os.listdir(input_path): with open(input_path + '/' + filename) as in_file: lines = [[line.rstrip('\n')] for line in in_file] for line in lines: if '<doc id=' in line[0]: elements = line[0].split(' ') docID = elements[1][4:-1] url = elements[2][5:-1] flt = [] backup[docID] = url # print(elements) elif '</doc>' in line[0]: with open(folder_path + docID + '.txt', 'w') as f: flt = re.sub(r'[^\w\s]', '', str(flt)) f.write(flt) docID = None else: if docID and line[0] != '': sl = [] sl.extend(line) s = re.sub(r'[^\w\s]', '', sl[0]) tokens = nltk.word_tokenize(s.lower()) new = [w for w in tokens if not w in stopwords.words(language)] stemmer = PorterStemmer() final = [stemmer.stem(word) for word in new] flt.extend(final) return backup # Creation of posting list (index_dic), lenght of document memory (Ndic), # position of words in vectors (posDic) # Index file is saved without word countings in each file def indexing(backup): index_dic = {} Ndic = {} posDic = {} position = 0 folder_path = './DOCUMENTS/' for k in backup.keys(): docID = k with open(folder_path + docID + '.txt', 'r') as inputs: line = inputs.read().split(' ') Ndic[docID] = len(line) for token in line: if token not in index_dic.keys(): index_dic[token] = {docID: 1} posDic[token] = position position += 1 else: if docID in index_dic[token].keys(): index_dic[token][docID] += 1 else: index_dic[token][docID] = 1 with open('index.txt', 'w') as index_output, open('positions.txt', 'w') as position_output: for k, v in index_dic.items(): word, IDs = k, str([id for id in v.keys()]) IDs = re.sub(r'[^\w\s]', '', IDs) index_output.write(word + ' ' + IDs + '\n') for k, v in posDic.items(): word, pos = k, str(v) position_output.write(word + ' ' + pos + '\n') return Ndic, index_dic, posDic # Creation of a vector space (matrix) containing all documents vectors def doc_vector(ind, back, pos, docLen): mapping = {} matrix = zeros(shape=(len(back.keys()), len(ind.keys()))) pointer = 0 for i in back.keys(): file_words = set() for k, v in ind.items(): if i in v.keys(): file_words.add(k) for j in file_words: tf = ind[j][i] / docLen[i] idf = math.log(len(back.keys())/(len(ind[j]))) matrix[pointer][pos[j]] = tf * idf mapping[i] = pointer pointer += 1 with open('vectorSpace.txt', 'w') as vec, open('mapping.txt', 'w') as mapp: np.savetxt(vec, matrix, fmt='%.6f') for key, val in mapping.items(): docID, row = str(key), str(val) mapp.write(docID + ' ' + row + '\n') if __name__ == '__main__': if len(sys.argv) != 2: print('Wrong number of arguments. You must run the program with the following command:\n \ python generator.py <parsed xml folder>') sys.exit(0) backup = docsToFiles(sys.argv[1], 'english') docLenghts, index, positions = indexing(backup) doc_vector(index, backup, positions, docLenghts)
# Generated by Django 2.2.5 on 2020-07-11 13:19 import django.contrib.postgres.fields.jsonb from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('authentication', '0003_auto_20200711_1617'), ] operations = [ migrations.AlterField( model_name='customuser', name='rights', field=django.contrib.postgres.fields.jsonb.JSONField(default=dict), ), ]
import logging import ibmsecurity.utilities.tools logger = logging.getLogger(__name__) def get(isamAppliance, directory_name, check_mode=False, force=False): """ Retrieving the list of suffixes for a particular federated directory """ return isamAppliance.invoke_get("Retrieving the list of suffixes for a particular federated directory", "/isam/runtime_components/federated_directories/{0}/suffix/v1".format( directory_name)) def add(isamAppliance, directory_name, suffix, use_ssl=False, client_cert_label=None, check_mode=False, force=False): """ Create a new suffix in a particular federated directory """ if force is True or _check(isamAppliance, directory_name, suffix) is False: if check_mode is True: return isamAppliance.create_return_object(changed=True) else: return isamAppliance.invoke_post( "Create a new suffix in a particular federated directory", "/isam/runtime_components/federated_directories/{0}/suffix/v1".format(directory_name), { 'suffix': suffix }) return isamAppliance.create_return_object() def delete(isamAppliance, directory_name, suffix_name, check_mode=False, force=False): """ Remove an existing suffix from a federated directory """ if force is True or _check(isamAppliance, directory_name, suffix_name) is True: if check_mode is True: return isamAppliance.create_return_object(changed=True) else: return isamAppliance.invoke_delete( "Remove an existing suffix from a federated directory", "/isam/runtime_components/federated_directories/{0}/suffix/{1}/v1".format(directory_name, suffix_name)) return isamAppliance.create_return_object() def _check(isamAppliance, directory_name, suffix): """ Check if federated directory suffix exists - will return true if any match is found :param isamAppliance: :param directory_name: :param suffix: :return: """ ret_obj = get(isamAppliance, directory_name) for suffix_obj in ret_obj['data']: if isinstance(suffix, list): # Add passes a list for new_suffix in suffix: if new_suffix['id'] == suffix_obj['id']: return True else: # Update passes just suffix_name if suffix_obj['id'] == suffix: return True return False def compare(isamAppliance1, isamAppliance2, directory_name): """ Compare snmp objects between two appliances """ ret_obj1 = get(isamAppliance1, directory_name) ret_obj2 = get(isamAppliance2, directory_name) return ibmsecurity.utilities.tools.json_compare(ret_obj1, ret_obj2, deleted_keys=[])
from django import template from ...product.templatetags.product_prices import BasePriceNode, parse_price_tag register = template.Library() class CartItemPriceNode(BasePriceNode): def get_currency_for_item(self, item): return item.cart.currency def get_price(self, cartitem, currency, **kwargs): return cartitem.get_price(currency=currency, **kwargs) class CartItemUnitPriceNode(BasePriceNode): def get_currency_for_item(self, item): return item.cart.currency def get_price(self, cartitem, currency, **kwargs): return cartitem.get_unit_price(currency=currency, **kwargs) @register.tag def cartitem_price(parser, token): try: return CartItemPriceNode(*parse_price_tag(parser, token)) except (ImportError, NotImplementedError): pass return '' @register.tag def cartitem_unit_price(parser, token): try: return CartItemUnitPriceNode(*parse_price_tag(parser, token)) except (ImportError, NotImplementedError): pass return ''
import numpy as np import numba as nb import warnings from numba.core.errors import NumbaDeprecationWarning, NumbaPerformanceWarning, NumbaWarning warnings.simplefilter('ignore', category=NumbaDeprecationWarning) warnings.simplefilter('ignore', category=NumbaPerformanceWarning) warnings.simplefilter('ignore', category=NumbaWarning) @nb.jit(parallel=True) def FoBaGreedy(A, y, tau, args = [100,5,1,True]): """ Forward-Backward greedy algorithm for sparse regression. For more details see: Zhang, Tong. 'Adaptive Forward-Backward Greedy Algorithm for Sparse Learning with Linear Models', NIPS, 2008 For relearn option, see github code for: Thaler et al. 'Sparse identification of truncation errors,' JCP, 2019 Inputs: A,y : from linear system Ax=y tau : sparsity parameter args : method specific arguments including: maxit_f : max forward iterations maxit_b : max backward iterations per backward call backwards_freq : frequency of backwards method calls relearn : see lines 48-59 Returns: x : Sparse approximation to A^{-1}y delta_tau : minimal change in tau to affect result """ maxit_f, maxit_b, backwards_freq, relearn = args n,d = A.shape F = {} F[0] = set() x = {} x[0] = np.zeros((d,1)) k = 0 delta = {} # We initially assume delta_tau is infinite and lower as needed delta_tau = np.inf for forward_iter in range(maxit_f): k = k+1 # forward step zero_coeffs = np.where(x[k-1] == 0)[0] err_after_addition = [] residual = y - A.dot(x[k-1]) for i in zero_coeffs: if relearn: F_trial = F[k-1].union({i}) x_added = np.zeros((d,1)) x_added[list(F_trial)] = np.linalg.lstsq(A[:, list(F_trial)], y, rcond=None)[0] else: # Per figure 3 line 8 in Zhang, do not retrain old variables. # Only look for optimal alpha, which is solving for new x if # and only if columns of $A$ are orthogonal alpha = A[:,i].T.dot(residual)/np.linalg.norm(A[:,i])**2 x_added = np.copy(x[k-1]) x_added[i] = alpha err_after_addition.append(np.linalg.norm(A.dot(x_added)-y)) i = zero_coeffs[np.argmin(err_after_addition)] F[k] = F[k-1].union({i}) x[k] = np.zeros((d,1)) x[k][list(F[k])] = np.linalg.lstsq(A[:, list(F[k])], y, rcond=None)[0] # If improvement is sufficiently small, return last estimate delta[k] = np.linalg.norm(A.dot(x[k-1]) - y)**2 - np.linalg.norm(A.dot(x[k]) - y)**2 if delta[k] <= tau: return x[k-1], delta_tau # Otherwise, how much larger would tolerance need to be to stop? delta_tau = np.min([delta_tau, delta[k]-tau]) # backward step, do once every backwards_freq forward stdelta_tau if forward_iter % backwards_freq == 0 and forward_iter > 0: dk = delta[k] for backward_iter in range(maxit_b): non_zeros = np.where(x[k] != 0)[0] err_after_simplification = [] for j in non_zeros: if relearn: F_trial = F[k].difference({j}) x_simple = np.zeros((d,1)) x_simple[list(F_trial)] = np.linalg.lstsq(A[:, list(F_trial)], y, rcond=None)[0] else: x_simple = np.copy(x[k]) x_simple[j] = 0 err_after_simplification.append(np.linalg.norm(A.dot(x_simple) - y)**2) j = np.argmin(err_after_simplification) # check for break condition on backward step # how much does error increase when subtracting a term? delta_p = err_after_simplification[j] - np.linalg.norm(A.dot(x[k]) - y)**2 # Original cutoff from paper is based on improvement of kth term if delta_p > 0.5*delta[k]: break # Optionally, we can use the improvement from the last term added # if delta_p > 0.5*dk: break k = k-1; F[k] = F[k+1].difference({j}) x[k] = np.zeros((d,1)) x[k][list(F[k])] = np.linalg.lstsq(A[:, list(F[k])], y, rcond=None)[0] if k == 0: break if np.count_nonzero(x[k]) == x[k].size: break return x[k], delta_tau @nb.jit(nopython=True) def STRidge(A, y, tau, args=1e-5): """ Sequential Threshold Ridge Regression algorithm for finding sparse approximation to x = A^{-1}y. If not none, C is symmetric positive definite weight matrix. Inputs: A,y : from linear system Ax=y tau : sparsity parameter args : method specific arguments including: lam : ridge penalty Returns: x : Sparse approximation to A^{-1}y delta_tau : minimal change in tau to affect result """ m,n = A.shape lam = args # Solve least squares problem x = np.linalg.solve(A.T @ A + lam*np.eye(n), A.T @ y) # Threshold G = np.where(np.abs(x) > tau)[0] # Set of active terms Gc = np.where(np.abs(x) <= tau)[0] # Complimentary set (to be removed) if len(G) != 0: delta_tau = np.min(np.abs(x[G])) - tau else: delta_tau = np.inf if len(Gc) == 0: # No terms have been removed return x, delta_tau else: # Terms were removed xG, delta_tau_tilde = STRidge(A[:,G], y, tau, args) for j in range(len(G)): x[G[j]] = xG[j] for j in Gc: x[j] = 0 delta_tau = np.min(np.array([delta_tau, delta_tau_tilde])) return x, delta_tau
from time import time class PID: def __init__(self, Kp, Ki, Kd, max_integral, min_interval = 0.001, set_point = 0.0, last_time = None): self._Kp = Kp self._Ki = Ki self._Kd = Kd self._min_interval = min_interval self._max_integral = max_integral self._set_point = set_point self._last_time = last_time if last_time is not None else time() self._p_value = 0.0 self._i_value = 0.0 self._d_value = 0.0 self._d_time = 0.0 self._d_error = 0.0 self._last_error = 0.0 self._output = 0.0 def update(self, cur_value, cur_time = None): if cur_time is None: cur_time = time() error = self._set_point - cur_value d_time = cur_time - self._last_time d_error = error - self._last_error if d_time >= self._min_interval: self._p_value = error self._i_value = min(max(error * d_time, -self._max_integral), self._max_integral) self._d_value = d_error / d_time if d_time > 0 else 0.0 self._output = self._p_value * self._Kp + self._i_value * self._Ki + self._d_value * self._Kd self._d_time = d_time self._d_error = d_error self._last_time = cur_time self._last_error = error return self._output def reset(self, last_time = None, set_point = 0.0): self._set_point = set_point self._last_time = last_time if last_time is not None else time() self._p_value = 0.0 self._i_value = 0.0 self._d_value = 0.0 self._d_time = 0.0 self._d_error = 0.0 self._last_error = 0.0 self._output = 0.0 def assign_set_point(self, set_point): self._set_point = set_point def get_set_point(self): return self._set_point def update_pid_factor(self, Kp, Ki, Kd): #print 'pid factor updated: Kp=%f, Ki=%f, Kd=%f' % (Kp, Ki, Kd) self._Kp = Kp self._Ki = Ki self._Kd = Kd # def get_p_value(self): # return self._p_value # def get_i_value(self): # return self._i_value # def get_d_value(self): # return self._d_value # def get_delta_time(self): # return self._d_time # def get_delta_error(self): # return self._d_error # def get_last_error(self): # return self._last_error # def get_last_time(self): # return self._last_time # def get_output(self): # return self._output
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi SDK Generator. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from .. import _utilities from . import outputs from ._enums import * __all__ = [ 'GetJobTemplateResult', 'AwaitableGetJobTemplateResult', 'get_job_template', 'get_job_template_output', ] @pulumi.output_type class GetJobTemplateResult: def __init__(__self__, arn=None, job_executions_retry_config=None): if arn and not isinstance(arn, str): raise TypeError("Expected argument 'arn' to be a str") pulumi.set(__self__, "arn", arn) if job_executions_retry_config and not isinstance(job_executions_retry_config, dict): raise TypeError("Expected argument 'job_executions_retry_config' to be a dict") pulumi.set(__self__, "job_executions_retry_config", job_executions_retry_config) @property @pulumi.getter def arn(self) -> Optional[str]: return pulumi.get(self, "arn") @property @pulumi.getter(name="jobExecutionsRetryConfig") def job_executions_retry_config(self) -> Optional['outputs.JobExecutionsRetryConfigProperties']: return pulumi.get(self, "job_executions_retry_config") class AwaitableGetJobTemplateResult(GetJobTemplateResult): # pylint: disable=using-constant-test def __await__(self): if False: yield self return GetJobTemplateResult( arn=self.arn, job_executions_retry_config=self.job_executions_retry_config) def get_job_template(job_template_id: Optional[str] = None, opts: Optional[pulumi.InvokeOptions] = None) -> AwaitableGetJobTemplateResult: """ Job templates enable you to preconfigure jobs so that you can deploy them to multiple sets of target devices. """ __args__ = dict() __args__['jobTemplateId'] = job_template_id if opts is None: opts = pulumi.InvokeOptions() if opts.version is None: opts.version = _utilities.get_version() __ret__ = pulumi.runtime.invoke('aws-native:iot:getJobTemplate', __args__, opts=opts, typ=GetJobTemplateResult).value return AwaitableGetJobTemplateResult( arn=__ret__.arn, job_executions_retry_config=__ret__.job_executions_retry_config) @_utilities.lift_output_func(get_job_template) def get_job_template_output(job_template_id: Optional[pulumi.Input[str]] = None, opts: Optional[pulumi.InvokeOptions] = None) -> pulumi.Output[GetJobTemplateResult]: """ Job templates enable you to preconfigure jobs so that you can deploy them to multiple sets of target devices. """ ...
import logging from util import unique class LineupMapList(list): def __init__(self, *args, **kwargs): super(LineupMapList, self).__init__(*args, **kwargs) def unique_channels(self, channel_filter=None): return unique((channel for lineup_map in self for channel in lineup_map.channels if channel_filter is None or channel_filter.pass_channel(lineup_map.lineup, channel)), lambda c: c.get_unique_id()) def unique_stations(self, channel_filter=None): return unique((channel.station for channel in self.unique_channels(channel_filter)), lambda s: s.station_id)
# Generated by Django 3.1.5 on 2021-05-01 13:46 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('blog', '0006_auto_20210501_1930'), ] operations = [ migrations.RemoveField( model_name='blog', name='catagories', ), migrations.AddField( model_name='blog', name='catagories', field=models.ManyToManyField(null=True, to='blog.Catagory'), ), ]
""" Composition-based decision tree for anomaly detection ------------------------------- CDT detector. :authors: Ines Ben Kraiem & Geoffrey Roman-Jimenez :copyright: Copyright 2020 SIG Research Group, IRIT, Toulouse-France. """ import numpy as np import uuid import itertools import copy from helper import convert_label_RCIS def gini_impurity(classes, nclasses): # calculation of probabilities (or fractions of observations) prob = [0.0 for _ in range(nclasses)] N = len(classes) for obs in classes: prob[obs] += 1/N return sum([ p* (1-p) for p in prob]) class node_tree(): def __init__(self, observations, classes, gini, parent, split_rule): """ Definition of node. Parameters ---------- observations : set The set of observations considered in this node classes : list The list of classes corresponding to observations. gini : float gini index of the current node parent : object node-parent of the current node split_rule : ..... """ self.observations = observations self.classes = classes self.gini = gini self.parent = parent self.split_rule = split_rule self.id = uuid.uuid1() def dict(self): d = {"observations": self.observations, "classes": self.classes, "gini": self.gini, "id":self.id, "parent": self.parent, "split_rule": self.split_rule} return d def list_of_all_possible_composition(observations): # Calculate all the compositions of the observations that have a class 'anomaly'. listofcomposition = [] for o in observations: for i, j in itertools.combinations(range(len(o) + 1), 2): if len(o[i:j])>1 and not o[i:j] in listofcomposition: listofcomposition.append(o[i:j]) return sorted(listofcomposition, key=len) def islistinlist(s, l): if len(s) > len(l): return False else: return True in [ s == sl for sl in [ l[index:index+len(s)] for index in range(len(l)-len(s)+1) ] ] class composition_tree(): def __init__(self, nclasses=2, iteration_max=10000, epsilon = 1e-6, inter_type=0): self.nclasses = nclasses self.queue = [] self.tree = [] self.root = None self.epsilon = epsilon self.iteration_max = iteration_max self.inter_type = inter_type self.window_size = None self.nblabels = None def split(self, node): # Split the node in [node true, node false] by maximizing the gain of Gini. observations = node.observations classes = node.classes parent = node.id gini_origin = node.gini gini_true = 0 gini_false = 0 best_composition = None observations_true, observations_false = [], [] classes_true, classes_false = [], [] observations_with_anomaly = [o for o, c in zip(observations, classes) if c!=0] classes_with_anomaly = [c for c in classes if c!=0] gain_gini_max = 0 for composition in list_of_all_possible_composition(observations_with_anomaly): # split the nodes according to the presence or not of the composition _classes_true = [ c for o, c in zip(observations, classes) if islistinlist(composition, o) ] _gini_true = gini_impurity(_classes_true, self.nclasses) _classes_false = [ c for o, c in zip(observations, classes) if not islistinlist(composition, o) ] _gini_false = gini_impurity(_classes_false, self.nclasses) N, N_true, N_false = len(classes), len(_classes_true), len(_classes_false) gain_gini = gini_origin-(((N_true/N)*_gini_true)+((N_false/N)*_gini_false)) if gain_gini > gain_gini_max: gain_gini_max = gain_gini gini_true = _gini_true gini_false = _gini_false best_composition = composition observations_true = [ o for o in observations if islistinlist(composition, o) ] observations_false = [ o for o in observations if not islistinlist(composition, o) ] classes_true = _classes_true classes_false = _classes_false gain_gini = gain_gini_max split_rule_true = {"composition": best_composition, "condition": True} split_rule_false = {"composition": best_composition, "condition": False } node_true = node_tree(observations_true, classes_true, gini_true, parent, split_rule_true) node_false = node_tree(observations_false, classes_false, gini_false, parent, split_rule_false) return [node_true, node_false], gain_gini def fit(self, observations, classes): """ Fit CDT to the time series data. Parameters ---------- observations : dictionary {number: np.array} list containing the windowed labeled time series data. classes : dictionary {number: np.array} list containing the classes corresponding to each observation (window). """ gini = gini_impurity(classes, self.nclasses) self.root = node_tree(observations, classes, gini, 0, None) self.window_size = min([len(o) for o in observations]) self.nblabels = len(set([ l for o in observations for l in o])) self.queue = [self.root] self.tree = [self.root] # Tree construction n=0 while not len(self.queue) == 0 and n < self.iteration_max: node = self.queue.pop(0) splitted_nodes, gain_gini = self.split(node) for _node in splitted_nodes: if len(_node.classes) > 0 and _node.gini > self.epsilon: self.queue.append(_node) if len(_node.classes) > 0: self.tree.append(_node) n+=1 def rules_per_class(self): leaves = self.get_leaves() branches = [(l.classes, self.get_branch(l)) for l in leaves] rules_per_class = [[] for _ in range(self.nclasses)] for i, (classes, branch) in enumerate(branches): if not len(classes) == 0: setclasses =[x for i, x in enumerate(classes) if i == classes.index(x)] c = max(setclasses, key = classes.count) listofrule = [n for n in branch if n.split_rule] rules_per_class[c].append(listofrule) return rules_per_class def get_parent(self, node): for _node in self.tree: if _node.id == node.parent: return _node def get_childrens(self, node): childrens = [] for _node in self.tree: if _node != self.root and _node.parent == node.id: childrens.append(_node) return childrens def get_leaves(self): leaves = [] for node in self.tree: if node.gini <= self.epsilon: leaves.append(node) else: childrens = self.get_childrens(node) if len(childrens) == 0: leaves.append(node) return leaves def get_branch(self, leaf): branch = [] node = leaf while node != self.root: branch.append(node) node = self.get_parent(node) return branch def class_of_node(self, node): # vote majoritaire dans une feuille impure setclasses =[x for i, x in enumerate(node.classes) if i == node.classes.index(x)] c = max( setclasses, key = node.classes.count) return c def which_leaf(self, observation): """ Classify a new observation. Parameters ---------- observation : list a windowed observation from a test datasets. Returns ------- leaf : ..... class_of_leaf: 0 (normal) or 1 (anomaly) """ _leaf = self.root childrens = self.get_childrens(_leaf) while not len(childrens) == 0: for children in childrens: rule = children.split_rule checkrule = rule["condition"] is islistinlist(rule["composition"], observation) if checkrule: _leaf = children childrens = self.get_childrens(_leaf) class_of_leaf = self.class_of_node(_leaf) leaf = _leaf return leaf, class_of_leaf def anomaly_rules(self): """ extrat and simplify rules from CDT. Returns ------- rpc : dictionary rules per class. """ rpc = self.rules_per_class() rpc = [[[{"split_rule": { "composition": [convert_label_RCIS(c) for c in r.split_rule["composition"]], "condition": r.split_rule["condition"] }, "classes":[r.classes.count(0), r.classes.count(1)] } for r in rb] for rb in rules] for rules in rpc] return rpc
from gennav.planners.base import Planner # noqa: F401 from gennav.planners.potential_field import PotentialField # noqa: F401 from gennav.planners.prm import PRM, PRMStar # noqa: F401 from gennav.planners.rrt import RRG, RRT, InformedRRTstar, RRTConnect # noqa: F401
from django.urls import path from . import admin urlpatterns = [ path("generic_inline_admin/admin/", admin.site.urls), ]
#!/usr/local/bin/python3 import sys import sqlite3 import configparser # read dbpath from config file config = configparser.ConfigParser() config.read('sstt.config') dbpath = config.get('database','dbpath',fallback='sstt.db') conn = sqlite3.connect(dbpath) conn.row_factory = sqlite3.Row conn.execute(""" create table if not exists tbl_times (id integer primary key not null, status text default 'A', project text not null, start datetime default current_timestamp, end datetime default null); """) # ok so we need 2 arguments: # project_name & command (start|stop) if len(sys.argv) < 2: print("Missing arguments") sys.exit(-1) cmd = sys.argv[1].upper() try: project = sys.argv[2] except: project = "-" if cmd == "START": # do we have an open project called that already? if so ignore start command print("starting: ", project) conn.execute("""insert into tbl_times (project) values (?)""",[project]) conn.commit() elif cmd == "STOP": # do we have an open project called that? if so close it res = conn.execute("""select id from tbl_times where project=? and end is null order by id desc limit 1""",[project]) row = res.fetchone() if row != None: print("Stopping: ", project) conn.execute("""update tbl_times set end=current_timestamp where id=?""",[row[0]]) conn.commit() elif cmd == "REPORT": # do a report on all projects grouped by project for row in conn.execute(""" select project, strftime('%Y-%m',start) yr_mon, round(sum(julianday(end) - julianday(start))*24*60,0) as mins from tbl_times group by yr_mon,project """): t = divmod(row['mins'],60) print("%s: %s - %d:%d hrs" % (row['yr_mon'],row['project'],t[0],t[1])) elif cmd == "LIST": # show listing of all items in given project print() for row in conn.execute("""select id,status,project,start,end from tbl_times where project=? order by id""",[project]): print(" > %d | %s | %s | %s | %s" % (row['id'],row['status'],row['start'],row['end'],row['project'])) print() elif cmd == "PROJECTS": # show listing of all project names print() for row in conn.execute("""select distinct project from tbl_times order by project"""): print(" > %s" % (row['project'])) print()
src = Split(''' yts_main.c ''') component = aos_component('testcase', src) component.add_global_includes('include') component.add_comp_deps('test/yunit') if aos_global_config.compiler == 'gcc': component.add_cflags( "-Wall" ) component.add_cflags( "-Werror")
import struct import textwrap import secrets import logging from shellerate import encoder; from binascii import unhexlify, hexlify; from shellerate import strings; # First version with clear text decoder stub: https://www.virustotal.com/#/file/7b25b33a1527d2285ebdefd327bc72b6d932c140489e8bfb7424bef115aa2ecd/detection class Xority(encoder.Encoder): def __init__(self, shellcode): super(Xority, self).__init__(shellcode) self.debug=True; # val is the hex representation of the register without 0x # calc_xor_key("d2b00bcd") -> 62bbc61f def calc_xor_key(self, val): key = "" a=strings.split(val) b=[] b.append(self.xor_str(a[0], secrets.token_hex(1))) b.append(self.xor_str(a[1], secrets.token_hex(1))) b.append(self.xor_str(a[2], secrets.token_hex(1))) b.append(self.xor_str(a[3], secrets.token_hex(1))) return ''.join(b) def encode(self, output_format="c"): padded_shellcode = strings.pad(self.shellcode()) output = "" for c in textwrap.wrap(padded_shellcode, 16): val=strings.from_char_to_hexcode(c) key=self.calc_xor_key(val) encoded=self.xor_str(val, key) logging.debug("V: %s" %val) logging.debug("K: %s" %key.zfill(8)) logging.debug("E: %s" %encoded.zfill(8)) output+=key.zfill(8) output+=encoded.zfill(8) mark=secrets.token_hex(4) output+=mark output+=mark a=strings.split(output) if output_format == "c": return ''.join('\\x'+x.zfill(2) for x in a) if output_format == "asm": o = ''.join('0x'+x.zfill(2)+', ' for x in a) if output_format == "raw": return ''.join(x.zfill(2) for x in a) return o[:-2] def payload(self, output_format="c"): stub_raw = "eb225e8d3e31c031db31c931d28b1c0604048b140631d339cb740e891f83c7040404ebe9e8d9ffffff" if output_format == "raw": return stub_raw + self.encode("raw") a=strings.split(stub_raw) if output_format == "c": stub=''.join('\\x'+x.zfill(2) for x in a) if output_format == "asm": stub = ''.join('0x'+x.zfill(2)+', ' for x in a) return stub +self.encode(output_format)
import caffe import matplotlib.pyplot as plt import numpy as np from collections import defaultdict plt.rcParams['font.size'] = 20 # plt.rcParams['xtick.labelzie'] = 18 def make_2d(data): return np.reshape(data, (data.shape[0], -1)) caffe.set_mode_gpu() caffe.set_device(0) caffe_root = '/home/moritz/Repositories/caffe_lp/' model_root = 'examples/low_precision/imagenet/models/' snapshot_root = '/media/moritz/Data/ILSVRC2015/Snapshots/' # prototxt_file = caffe_root + model_root + 'VGG16_deploy_vis.prototxt' # prototxt_file = caffe_root + model_root + 'LP_VGG16_0_7_vis.prototxt' # prototxt_file = caffe_root + model_root + 'LP_VGG16_1_6_vis.prototxt' # prototxt_file = caffe_root + model_root + 'LP_VGG16_2_5_vis.prototxt' # prototxt_file = caffe_root + model_root + 'LP_VGG16_0_15_vis.prototxt' # prototxt_file = caffe_root + model_root + 'LP_VGG16_1_14_vis.prototxt' # prototxt_file = caffe_root + model_root + 'LP_VGG16_2_13_vis.prototxt' # prototxt_file = caffe_root + model_root + 'LP_VGG16_3_12_vis.prototxt' prototxt_file = caffe_root + model_root + 'LP_VGG16_5_10_vis.prototxt' # weights_file = '/home/moritz/Downloads/VGG16_tmp/' + 'LP_VGG16.caffemodel.h5' # weights_file = '/home/moritz/Downloads/VGG16_tmp/' + 'HP_VGG16.caffemodel' weights_file = '/home/moritz/Downloads/VGG16_tmp/' + 'converted_hp_weights.caffemodel' net = caffe.Net(prototxt_file, weights_file, caffe.TEST) print('Doing forward pass...') net.forward() print('Done.') # %matplotlib inline print("All params in the net: {}".format(net.params.keys())) print("All blobs in the net: {}".format(net.blobs.keys())) # Extract the data data = net.blobs['data'].data labels = net.blobs['label'].data print('Input data shape: {}'.format(data.shape)) # Build a translation dictionary for the labels that converts label to text trans_dict = {0.: 'Left', 1.: 'Center', 2.: 'Right', 3.: 'Not Visible'} # Pick out four images to process show_data = [0, 2, 3, 1] # plt.figure(1, figsize=(8, 8)) # for iter_num, d_idx in enumerate(show_data): # plt.subplot(2, 2, iter_num + 1) # plt.imshow(data[d_idx, 0, :, :], interpolation='nearest', cmap='gray') # # plt.title(trans_dict[labels[d_idx]]) # plt.colorbar() # plt.draw() print 'Start plotting the weights' binwidth = 0.001 bd = 5 ad = 10 ymax = 100 x_min = -0.5 x_max = 0.5 nb_bins = 100 if 'LP' in prototxt_file: hp = False l_idx1 = 'conv_lp_1' l_idx2 = 'conv_lp_3' l_idx3 = 'conv_lp_6' l_idx4 = 'conv_lp_8' l_idx5 = 'conv_lp_11' l_idx6 = 'conv_lp_13' l_idx7 = 'conv_lp_15' l_idx8 = 'conv_lp_18' l_idx9 = 'conv_lp_20' l_idx10 = 'conv_lp_22' l_idx11 = 'conv_lp_25' l_idx12 = 'conv_lp_27' l_idx13 = 'conv_lp_29' l_idx14 = 'fc_lp_32' l_idx15 = 'fc_lp_34' l_idx16 = 'fc_lp_36' else: hp = True l_idx1 = 'conv1_1' l_idx2 = 'conv1_2' l_idx3 = 'conv2_1' l_idx4 = 'conv2_2' l_idx5 = 'conv3_1' l_idx6 = 'conv3_2' l_idx7 = 'conv3_3' l_idx8 = 'conv4_1' l_idx9 = 'conv4_2' l_idx10 = 'conv4_3' l_idx11 = 'conv5_1' l_idx12 = 'conv5_2' l_idx13 = 'conv5_3' l_idx14 = 'fc6' l_idx15 = 'fc7' l_idx16 = 'fc8' print hp # hp = True if hp: # plt.figure(2, figsize=(16, 8)) # plt.subplot(2, 4, 1) # plt.title('High precision Weight Matrix {}'.format(l_idx1)) # plt.imshow(make_2d(net.params[l_idx1][0].data), interpolation='nearest', aspect='auto') # plt.colorbar() # plt.draw() # plt.subplot(2, 4, 2) # plt.title('High precision Weight Matrix {}'.format(l_idx2)) # plt.imshow(make_2d(net.params[l_idx2][0].data), interpolation='nearest', aspect='auto') # plt.colorbar() # plt.draw() # plt.subplot(2, 4, 3) # plt.title('High precision Weight Matrix {}'.format(l_idx3)) # plt.imshow(make_2d(net.params[l_idx3][0].data), interpolation='nearest', aspect='auto') # plt.colorbar() # plt.draw() # plt.subplot(2, 4, 4) # plt.title('High precision Weight Matrix {}'.format(l_idx4)) # plt.imshow(make_2d(net.params[l_idx4][0].data), interpolation='nearest', aspect='auto') # plt.colorbar() # plt.draw() # plt.subplot(2, 4, 5) # plt.title('High precision Weight Matrix {}'.format(l_idx1)) # show_data = net.params[l_idx1][0].data.flatten() # # plt.hist(show_data, bins=np.arange(x_min, x_max, binwidth)) # plt.hist(show_data, nb_bins) # # plt.ylim([0, ymax]) # plt.draw() # plt.subplot(2, 4, 6) # plt.title('High precision Weight Matrix {}'.format(l_idx2)) # show_data = net.params[l_idx2][0].data.flatten() # # plt.hist(show_data, bins=np.arange(x_min, x_max, binwidth)) # plt.hist(show_data, nb_bins) # # plt.ylim([0, ymax]) # plt.draw() # plt.subplot(2, 4, 7) # plt.title('High precision Weight Matrix {}'.format(l_idx3)) # show_data = net.params[l_idx3][0].data.flatten() # # plt.hist(show_data, bins=np.arange(x_min, x_max, binwidth)) # plt.hist(show_data, nb_bins) # # plt.ylim([0, ymax]) # plt.draw() # plt.subplot(2, 4, 8) # plt.title('High precision Weight Matrix {}'.format(l_idx4)) # show_data = net.params[l_idx4][0].data.flatten() # # plt.hist(show_data, bins=np.arange(x_min, x_max, binwidth)) # plt.hist(show_data, nb_bins) # # plt.ylim([0, ymax]) # plt.draw() # plt.show() # plt.figure(3, figsize=(16, 8)) # plt.subplot(2, 4, 1) # plt.title('High precision Weight Matrix {}'.format(l_idx5)) # plt.imshow(make_2d(net.params[l_idx5][0].data), interpolation='nearest', aspect='auto') # plt.colorbar() # plt.draw() # plt.subplot(2, 4, 2) # plt.title('High precision Weight Matrix {}'.format(l_idx6)) # plt.imshow(make_2d(net.params[l_idx6][0].data), interpolation='nearest', aspect='auto') # plt.colorbar() # plt.draw() # plt.subplot(2, 4, 3) # plt.title('High precision Weight Matrix {}'.format(l_idx7)) # plt.imshow(make_2d(net.params[l_idx7][0].data), interpolation='nearest', aspect='auto') # plt.colorbar() # plt.draw() # plt.subplot(2, 4, 4) # plt.title('High precision Weight Matrix {}'.format(l_idx8)) # plt.imshow(make_2d(net.params[l_idx8][0].data), interpolation='nearest', aspect='auto') # plt.colorbar() # plt.draw() # plt.subplot(2, 4, 5) # plt.title('High precision Weight Matrix {}'.format(l_idx5)) # show_data = net.params[l_idx5][0].data.flatten() # # plt.hist(show_data, bins=np.arange(x_min, x_max, binwidth)) # plt.hist(show_data, nb_bins) # # plt.ylim([0, ymax]) # plt.draw() # plt.subplot(2, 4, 6) # plt.title('High precision Weight Matrix {}'.format(l_idx6)) # show_data = net.params[l_idx6][0].data.flatten() # # plt.hist(show_data, bins=np.arange(x_min, x_max, binwidth)) # plt.hist(show_data, nb_bins) # # plt.ylim([0, ymax]) # plt.draw() # plt.subplot(2, 4, 7) # plt.title('High precision Weight Matrix {}'.format(l_idx7)) # show_data = net.params[l_idx7][0].data.flatten() # # plt.hist(show_data, bins=np.arange(x_min, x_max, binwidth)) # plt.hist(show_data, nb_bins) # # plt.ylim([0, ymax]) # plt.draw() # plt.subplot(2, 4, 8) # plt.title('High precision Weight Matrix {}'.format(l_idx8)) # show_data = net.params[l_idx8][0].data.flatten() # # plt.hist(show_data, bins=np.arange(x_min, x_max, binwidth)) # plt.hist(show_data, nb_bins) # # plt.ylim([0, ymax]) # plt.draw() # plt.tight_layout() # plt.show() # plt.figure(4, figsize=(16, 8)) # plt.subplot(2, 4, 1) # plt.title('High precision Weight Matrix {}'.format(l_idx9)) # plt.imshow(make_2d(net.params[l_idx9][0].data), interpolation='nearest', aspect='auto') # plt.colorbar() # plt.draw() # plt.subplot(2, 4, 2) # plt.title('High precision Weight Matrix {}'.format(l_idx10)) # plt.imshow(make_2d(net.params[l_idx10][0].data), interpolation='nearest', aspect='auto') # plt.colorbar() # plt.draw() # plt.subplot(2, 4, 3) # plt.title('High precision Weight Matrix {}'.format(l_idx11)) # plt.imshow(make_2d(net.params[l_idx11][0].data), interpolation='nearest', aspect='auto') # plt.colorbar() # plt.draw() # plt.subplot(2, 4, 4) # plt.title('High precision Weight Matrix {}'.format(l_idx12)) # plt.imshow(make_2d(net.params[l_idx12][0].data), interpolation='nearest', aspect='auto') # plt.colorbar() # plt.draw() # plt.subplot(2, 4, 5) # plt.title('High precision Weight Matrix {}'.format(l_idx9)) # show_data = net.params[l_idx9][0].data.flatten() # # plt.hist(show_data, bins=np.arange(x_min, x_max, binwidth)) # plt.hist(show_data, nb_bins) # # plt.ylim([0, ymax]) # plt.draw() # plt.subplot(2, 4, 6) # plt.title('High precision Weight Matrix {}'.format(l_idx10)) # show_data = net.params[l_idx10][0].data.flatten() # # plt.hist(show_data, bins=np.arange(x_min, x_max, binwidth)) # plt.hist(show_data, nb_bins) # # plt.ylim([0, ymax]) # plt.draw() # plt.subplot(2, 4, 7) # plt.title('High precision Weight Matrix {}'.format(l_idx11)) # show_data = net.params[l_idx11][0].data.flatten() # # plt.hist(show_data, bins=np.arange(x_min, x_max, binwidth)) # plt.hist(show_data, nb_bins) # # plt.ylim([0, ymax]) # plt.draw() # plt.subplot(2, 4, 8) # plt.title('High precision Weight Matrix {}'.format(l_idx12)) # show_data = net.params[l_idx12][0].data.flatten() # # plt.hist(show_data, bins=np.arange(x_min, x_max, binwidth)) # plt.hist(show_data, nb_bins) # # plt.ylim([0, ymax]) # plt.draw() # plt.show() plt.figure(5, figsize=(16, 8)) plt.subplot(2, 4, 1) plt.title('{}'.format(l_idx13)) plt.imshow(make_2d(net.params[l_idx13][0].data), interpolation='nearest', aspect='auto') plt.colorbar() plt.draw() plt.subplot(2, 4, 2) plt.title('{}'.format(l_idx14)) plt.imshow(make_2d(net.params[l_idx14][0].data), interpolation='nearest', aspect='auto') plt.colorbar() plt.draw() plt.subplot(2, 4, 3) plt.title('{}'.format(l_idx15)) plt.imshow(make_2d(net.params[l_idx15][0].data), interpolation='nearest', aspect='auto') plt.colorbar() plt.draw() plt.subplot(2, 4, 4) plt.title('{}'.format(l_idx16)) plt.imshow(make_2d(net.params[l_idx16][0].data), interpolation='nearest', aspect='auto') plt.colorbar() plt.draw() plt.subplot(2, 4, 5) plt.title('{}'.format(l_idx13)) show_data = net.params[l_idx13][0].data.flatten() # plt.hist(show_data, bins=np.arange(x_min, x_max, binwidth)) plt.hist(show_data, nb_bins) # plt.ylim([0, ymax]) plt.draw() plt.subplot(2, 4, 6) plt.title('{}'.format(l_idx14)) show_data = net.params[l_idx14][0].data.flatten() # plt.hist(show_data, bins=np.arange(x_min, x_max, binwidth)) plt.hist(show_data, nb_bins) # plt.ylim([0, ymax]) plt.draw() plt.subplot(2, 4, 7) plt.title('{}'.format(l_idx15)) show_data = net.params[l_idx15][0].data.flatten() # plt.hist(show_data, bins=np.arange(x_min, x_max, binwidth)) plt.hist(show_data, nb_bins) # plt.ylim([0, ymax]) plt.draw() plt.subplot(2, 4, 8) plt.title('{}'.format(l_idx16)) show_data = net.params[l_idx16][0].data.flatten() # plt.hist(show_data, bins=np.arange(x_min, x_max, binwidth)) plt.hist(show_data, nb_bins) # plt.ylim([0, ymax]) plt.draw() plt.tight_layout() plt.show() else: # 'conv_lp_1', 'conv_lp_3', 'conv_lp_6', 'conv_lp_8', 'conv_lp_11', 'conv_lp_13', 'conv_lp_15', # 'conv_lp_18', 'conv_lp_20', 'conv_lp_22', 'conv_lp_25', 'conv_lp_27', 'conv_lp_29', 'fc_lp_32', # 'fc_lp_34', 'fc_lp_36'] # All blobs in the net: ['data', 'label', 'label_data_1_split_0', 'label_data_1_split_1', # 'conv_lp_1', 'act_lp_2', 'conv_lp_3', 'act_lp_4', 'pool_5', 'conv_lp_6', 'act_lp_7', # 'conv_lp_8', 'act_lp_9', 'pool_10', 'conv_lp_11', 'act_lp_12', 'conv_lp_13', 'act_lp_14', # 'conv_lp_15', 'act_lp_16', 'pool_17', 'conv_lp_18', 'act_lp_19', 'conv_lp_20', 'act_lp_21', # 'conv_lp_22', 'act_lp_23', 'pool_24', 'conv_lp_25', 'act_lp_26', 'conv_lp_27', 'act_lp_28', # 'conv_lp_29', 'act_lp_30', 'pool_31', 'fc_lp_32', 'act_lp_33', 'fc_lp_34', 'act_lp_35', # 'fc_lp_36', 'fc_lp_36_fc_lp_36_0_split_0', 'fc_lp_36_fc_lp_36_0_split_1', 'accuracy', 'loss' # plt.figure(2, figsize=(16, 8)) # plt.subplot(2, 4, 1) # plt.title('Rounded Weight Matrix {}'.format(l_idx1)) # plt.imshow(make_2d(net.params[l_idx1][1].data), interpolation='nearest', aspect='auto') # plt.colorbar() # plt.draw() # plt.subplot(2, 4, 2) # plt.title('Rounded Weight Matrix {}'.format(l_idx2)) # plt.imshow(make_2d(net.params[l_idx2][1].data), interpolation='nearest', aspect='auto') # plt.colorbar() # plt.draw() # plt.subplot(2, 4, 3) # plt.title('Rounded Weight Matrix {}'.format(l_idx3)) # plt.imshow(make_2d(net.params[l_idx3][1].data), interpolation='nearest', aspect='auto') # plt.colorbar() # plt.draw() # plt.subplot(2, 4, 4) # plt.title('Rounded Weight Matrix {}'.format(l_idx4)) # plt.imshow(make_2d(net.params[l_idx4][1].data), interpolation='nearest', aspect='auto') # plt.colorbar() # plt.draw() # plt.subplot(2, 4, 5) # plt.title('rounded weight matrix {}'.format(l_idx1)) # show_data = net.params[l_idx1][1].data.flatten() # # plt.hist(show_data, bins=np.arange(x_min, x_max, binwidth)) # plt.hist(show_data, nb_bins) # # plt.ylim([0, ymax]) # plt.draw() # plt.subplot(2, 4, 6) # plt.title('rounded weight matrix {}'.format(l_idx2)) # show_data = net.params[l_idx2][1].data.flatten() # # plt.hist(show_data, bins=np.arange(x_min, x_max, binwidth)) # plt.hist(show_data, nb_bins) # # plt.ylim([0, ymax]) # plt.draw() # plt.subplot(2, 4, 7) # plt.title('rounded weight matrix {}'.format(l_idx3)) # show_data = net.params[l_idx3][1].data.flatten() # # plt.hist(show_data, bins=np.arange(x_min, x_max, binwidth)) # plt.hist(show_data, nb_bins) # # plt.ylim([0, ymax]) # plt.draw() # plt.subplot(2, 4, 8) # plt.title('rounded weight matrix {}'.format(l_idx4)) # show_data = net.params[l_idx4][1].data.flatten() # # plt.hist(show_data, bins=np.arange(x_min, x_max, binwidth)) # plt.hist(show_data, nb_bins) # # plt.ylim([0, ymax]) # plt.draw() # plt.show() # plt.figure(3, figsize=(16, 8)) # plt.subplot(2, 4, 1) # plt.title('Rounded Weight Matrix {}'.format(l_idx5)) # plt.imshow(make_2d(net.params[l_idx5][1].data), interpolation='nearest', aspect='auto') # plt.colorbar() # plt.draw() # plt.subplot(2, 4, 2) # plt.title('Rounded Weight Matrix {}'.format(l_idx6)) # plt.imshow(make_2d(net.params[l_idx6][1].data), interpolation='nearest', aspect='auto') # plt.colorbar() # plt.draw() # plt.subplot(2, 4, 3) # plt.title('Rounded Weight Matrix {}'.format(l_idx7)) # plt.imshow(make_2d(net.params[l_idx7][1].data), interpolation='nearest', aspect='auto') # plt.colorbar() # plt.draw() # plt.subplot(2, 4, 4) # plt.title('Rounded Weight Matrix {}'.format(l_idx8)) # plt.imshow(make_2d(net.params[l_idx8][1].data), interpolation='nearest', aspect='auto') # plt.colorbar() # plt.draw() # plt.subplot(2, 4, 5) # plt.title('rounded weight matrix {}'.format(l_idx5)) # show_data = net.params[l_idx5][1].data.flatten() # # plt.hist(show_data, bins=np.arange(x_min, x_max, binwidth)) # plt.hist(show_data, nb_bins) # # plt.ylim([0, ymax]) # plt.draw() # plt.subplot(2, 4, 6) # plt.title('rounded weight matrix {}'.format(l_idx6)) # show_data = net.params[l_idx6][1].data.flatten() # # plt.hist(show_data, bins=np.arange(x_min, x_max, binwidth)) # plt.hist(show_data, nb_bins) # # plt.ylim([0, ymax]) # plt.draw() # plt.subplot(2, 4, 7) # plt.title('rounded weight matrix {}'.format(l_idx7)) # show_data = net.params[l_idx7][1].data.flatten() # # plt.hist(show_data, bins=np.arange(x_min, x_max, binwidth)) # plt.hist(show_data, nb_bins) # # plt.ylim([0, ymax]) # plt.draw() # plt.subplot(2, 4, 8) # plt.title('rounded weight matrix {}'.format(l_idx8)) # show_data = net.params[l_idx8][1].data.flatten() # # plt.hist(show_data, bins=np.arange(x_min, x_max, binwidth)) # plt.hist(show_data, nb_bins) # # plt.ylim([0, ymax]) # plt.draw() # plt.show() # plt.figure(4, figsize=(16, 8)) # plt.subplot(2, 4, 1) # plt.title('Rounded Weight Matrix {}'.format(l_idx9)) # plt.imshow(make_2d(net.params[l_idx9][1].data), interpolation='nearest', aspect='auto') # plt.colorbar() # plt.draw() # plt.subplot(2, 4, 2) # plt.title('Rounded Weight Matrix {}'.format(l_idx10)) # plt.imshow(make_2d(net.params[l_idx10][1].data), interpolation='nearest', aspect='auto') # plt.colorbar() # plt.draw() # plt.subplot(2, 4, 3) # plt.title('Rounded Weight Matrix {}'.format(l_idx11)) # plt.imshow(make_2d(net.params[l_idx11][1].data), interpolation='nearest', aspect='auto') # plt.colorbar() # plt.draw() # plt.subplot(2, 4, 4) # plt.title('Rounded Weight Matrix {}'.format(l_idx12)) # plt.imshow(make_2d(net.params[l_idx12][1].data), interpolation='nearest', aspect='auto') # plt.colorbar() # plt.draw() # plt.subplot(2, 4, 5) # plt.title('rounded weight matrix {}'.format(l_idx9)) # show_data = net.params[l_idx9][1].data.flatten() # # plt.hist(show_data, bins=np.arange(x_min, x_max, binwidth)) # plt.hist(show_data, nb_bins) # # plt.ylim([0, ymax]) # plt.draw() # plt.subplot(2, 4, 6) # plt.title('rounded weight matrix {}'.format(l_idx10)) # show_data = net.params[l_idx10][1].data.flatten() # # plt.hist(show_data, bins=np.arange(x_min, x_max, binwidth)) # plt.hist(show_data, nb_bins) # # plt.ylim([0, ymax]) # plt.draw() # plt.subplot(2, 4, 7) # plt.title('rounded weight matrix {}'.format(l_idx11)) # show_data = net.params[l_idx11][1].data.flatten() # # plt.hist(show_data, bins=np.arange(x_min, x_max, binwidth)) # plt.hist(show_data, nb_bins) # # plt.ylim([0, ymax]) # plt.draw() # plt.subplot(2, 4, 8) # plt.title('rounded weight matrix {}'.format(l_idx12)) # show_data = net.params[l_idx12][1].data.flatten() # # plt.hist(show_data, bins=np.arange(x_min, x_max, binwidth)) # plt.hist(show_data, nb_bins) # # plt.ylim([0, ymax]) # plt.draw() # plt.show() plt.figure(5, figsize=(16, 8)) plt.subplot(2, 4, 1) plt.title('{}'.format(l_idx13)) plt.imshow(make_2d(net.params[l_idx13][1].data), interpolation='nearest', aspect='auto') plt.colorbar() plt.draw() plt.subplot(2, 4, 2) plt.title('{}'.format(l_idx14)) plt.imshow(make_2d(net.params[l_idx14][1].data), interpolation='nearest', aspect='auto') plt.colorbar() plt.draw() plt.subplot(2, 4, 3) plt.title('{}'.format(l_idx15)) plt.imshow(make_2d(net.params[l_idx15][1].data), interpolation='nearest', aspect='auto') plt.colorbar() plt.draw() plt.subplot(2, 4, 4) plt.title('{}'.format(l_idx16)) plt.imshow(make_2d(net.params[l_idx16][1].data), interpolation='nearest', aspect='auto') plt.colorbar() plt.draw() plt.subplot(2, 4, 5) plt.title('{}'.format(l_idx13)) show_data = net.params[l_idx13][1].data.flatten() # plt.hist(show_data, bins=np.arange(x_min, x_max, binwidth)) plt.hist(show_data, nb_bins) # plt.ylim([0, ymax]) plt.draw() plt.subplot(2, 4, 6) plt.title('{}'.format(l_idx14)) show_data = net.params[l_idx14][1].data.flatten() # plt.hist(show_data, bins=np.arange(x_min, x_max, binwidth)) plt.hist(show_data, nb_bins) # plt.ylim([0, ymax]) plt.draw() plt.subplot(2, 4, 7) plt.title('{}'.format(l_idx15)) show_data = net.params[l_idx15][1].data.flatten() # plt.hist(show_data, bins=np.arange(x_min, x_max, binwidth)) plt.hist(show_data, nb_bins) # plt.ylim([0, ymax]) plt.draw() plt.subplot(2, 4, 8) plt.title('{}'.format(l_idx16)) show_data = net.params[l_idx16][1].data.flatten() # plt.hist(show_data, bins=np.arange(x_min, x_max, binwidth)) plt.hist(show_data, nb_bins) # plt.ylim([0, ymax]) plt.draw() plt.tight_layout() plt.show() # plt.figure(8) # plt.hist(show_data, 20) # plt.title('Rounded weight distribution 1000 Class Classifier') # plt.draw() # plt.show()
# -*- coding: utf-8 -*- # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging from django.forms.models import model_to_dict from networkapi import settings from networkapi.admin_permission import AdminPermission from networkapi.ambiente.models import Ambiente from networkapi.ambiente.models import AmbienteError from networkapi.ambiente.models import AmbienteNotFoundError from networkapi.auth import has_perm from networkapi.distributedlock import distributedlock from networkapi.distributedlock import LOCK_ENVIRONMENT from networkapi.equipamento.models import Equipamento from networkapi.exception import InvalidValueError from networkapi.filterequiptype.models import FilterEquipType from networkapi.grupo.models import GrupoError from networkapi.infrastructure.xml_utils import dumps_networkapi from networkapi.infrastructure.xml_utils import loads from networkapi.infrastructure.xml_utils import XMLError from networkapi.rest import RestResource from networkapi.util import is_valid_int_greater_zero_param from networkapi.util import is_valid_string_maxsize from networkapi.util import is_valid_string_minsize from networkapi.vlan.models import Vlan from networkapi.vlan.models import VlanError from networkapi.vlan.models import VlanNameDuplicatedError from networkapi.vlan.models import VlanNumberNotAvailableError class VlanAllocateResource(RestResource): log = logging.getLogger('VlanAllocateResource') def handle_post(self, request, user, *args, **kwargs): """Handles POST requests to create new VLAN without add NetworkIPv4. URLs: /vlan/no-network/ """ self.log.info('Create new VLAN without add NetworkIPv4') try: # Commons Validations # User permission if not has_perm(user, AdminPermission.VLAN_MANAGEMENT, AdminPermission.WRITE_OPERATION): self.log.error( u'User does not have permission to perform the operation.') return self.not_authorized() # Business Validations # Load XML data xml_map, attrs_map = loads(request.raw_post_data) # XML data format networkapi_map = xml_map.get('networkapi') if networkapi_map is None: msg = u'There is no value to the networkapi tag of XML request.' self.log.error(msg) return self.response_error(3, msg) vlan_map = networkapi_map.get('vlan') if vlan_map is None: msg = u'There is no value to the vlan tag of XML request.' self.log.error(msg) return self.response_error(3, msg) # Get XML data environment = vlan_map.get('environment_id') name = vlan_map.get('name') description = vlan_map.get('description') vrf = vlan_map.get('vrf') # Name must NOT be none and 50 is the maxsize if not is_valid_string_minsize(name, 3) or not is_valid_string_maxsize(name, 50): self.log.error(u'Parameter name is invalid. Value: %s.', name) raise InvalidValueError(None, 'name', name) # Description can NOT be greater than 200 if not is_valid_string_minsize(description, 3, False) or not is_valid_string_maxsize(description, 200, False): self.log.error( u'Parameter description is invalid. Value: %s.', description) raise InvalidValueError(None, 'description', description) # vrf can NOT be greater than 100 if not is_valid_string_maxsize(vrf, 100, False): self.log.error( u'Parameter vrf is invalid. Value: %s.', vrf) raise InvalidValueError(None, 'vrf', vrf) # Environment try: # Valid environment ID if not is_valid_int_greater_zero_param(environment): self.log.error( u'Parameter environment_id is invalid. Value: %s.', environment) raise InvalidValueError( None, 'environment_id', environment) # Find environment by ID to check if it exist env = Ambiente.get_by_pk(environment) except AmbienteNotFoundError, e: self.log.error(u'The environment parameter does not exist.') return self.response_error(112) # Business Rules # New Vlan vlan = Vlan() vlan.nome = name vlan.descricao = description vlan.ambiente = env # Check if environment has min/max num_vlan value or use the value # thas was configured in settings if (vlan.ambiente.min_num_vlan_1 and vlan.ambiente.max_num_vlan_1) or (vlan.ambiente.min_num_vlan_2 and vlan.ambiente.max_num_vlan_2): min_num_01 = vlan.ambiente.min_num_vlan_1 if vlan.ambiente.min_num_vlan_1 and vlan.ambiente.max_num_vlan_1 else vlan.ambiente.min_num_vlan_2 max_num_01 = vlan.ambiente.max_num_vlan_1 if vlan.ambiente.min_num_vlan_1 and vlan.ambiente.max_num_vlan_1 else vlan.ambiente.max_num_vlan_2 min_num_02 = vlan.ambiente.min_num_vlan_2 if vlan.ambiente.min_num_vlan_2 and vlan.ambiente.max_num_vlan_2 else vlan.ambiente.min_num_vlan_1 max_num_02 = vlan.ambiente.max_num_vlan_2 if vlan.ambiente.min_num_vlan_2 and vlan.ambiente.max_num_vlan_2 else vlan.ambiente.max_num_vlan_1 else: min_num_01 = settings.MIN_VLAN_NUMBER_01 max_num_01 = settings.MAX_VLAN_NUMBER_01 min_num_02 = settings.MIN_VLAN_NUMBER_02 max_num_02 = settings.MAX_VLAN_NUMBER_02 # To avoid allocation same vlan number twice for different environments in same equipments # Lock all environments related to this environment when allocating vlan number # select all equipments from this environment that are not part of a filter # and them selects all environments from all these equipments and # lock them out filtered_equipment_type_ids = list() env_filter = None try: env_filter = env.filter.id except: pass for fet in FilterEquipType.objects.filter(filter=env_filter): filtered_equipment_type_ids.append(fet.equiptype.id) filtered_environment_equips = Equipamento.objects.filter(equipamentoambiente__ambiente=env).exclude( tipo_equipamento__in=filtered_equipment_type_ids) # select all environments from the equips that were not filtered locks_list = list() environments_list = Ambiente.objects.filter( equipamentoambiente__equipamento__in=filtered_environment_equips).distinct().order_by('id') for environment in environments_list: lock = distributedlock(LOCK_ENVIRONMENT % environment.id) lock.__enter__() locks_list.append(lock) # Persist try: vlan.create_new(user, min_num_01, max_num_01, min_num_02, max_num_02 ) except Exception, e: # release all the locks if failed for lock in locks_list: lock.__exit__('', '', '') raise e for lock in locks_list: lock.__exit__('', '', '') vlan_map = dict() vlan_map['vlan'] = model_to_dict(vlan) # Return XML return self.response(dumps_networkapi(vlan_map)) except InvalidValueError, e: return self.response_error(269, e.param, e.value) except XMLError, x: self.log.error(u'Error reading the XML request.') return self.response_error(3, x) except GrupoError: return self.response_error(1) except AmbienteNotFoundError: return self.response_error(112) except VlanNameDuplicatedError: return self.response_error(108) except VlanNumberNotAvailableError: return self.response_error(109, min_num_01, max_num_01, min_num_02, max_num_02) except (VlanError, AmbienteError): return self.response_error(1)
from django import forms from django.contrib.auth.forms import AuthenticationForm, ReadOnlyPasswordHashField, UserChangeForm, UserCreationForm from django.core.exceptions import ValidationError, ObjectDoesNotExist from django.utils.translation import ugettext, ugettext_lazy as _ from .models import User class UserLoginForm(AuthenticationForm): username = forms.CharField(label=_('Username:'), required=True) password = forms.CharField(label=_('Password:'), widget=forms.PasswordInput) def clean_password(self): username = self.cleaned_data.get('username') password = self.cleaned_data.get('password') valid = True try: user = User.objects.get(username=username) if not user.check_password(password): valid = False except ObjectDoesNotExist: valid = False if not valid: raise ValidationError(_('Wrong password. Try again...')) return password def confirm_login_allowed(self, user): if not user.is_active: raise forms.ValidationError( self.error_messages['inactive'], code='inactive', ) class CreateUserForm(forms.ModelForm): password = forms.CharField(label='Password', widget=forms.PasswordInput) class Meta(UserCreationForm.Meta): model = User fields = ('username','password','email','active','staff','admin') def clean_username(self): username = self.cleaned_data['username'] try: User.objects.get(username=username) except ObjectDoesNotExist: return username raise ValidationError(_('Username already exists')) def save(self, commit=True): user = super(CreateUserForm, self).save(commit=False) user.set_password(self.cleaned_data["password"]) if commit: user.save() return user class ChangeUserForm(forms.ModelForm): password = ReadOnlyPasswordHashField() class Meta(UserChangeForm.Meta): model = User fields = ('username','email', 'password', 'active','staff','admin') def clean_password(self): # Regardless of what the user provides, return the initial value. # This is done here, rather than on the field, because the # field does not have access to the initial value return self.initial["password"]
import sys, os, inspect from JumpScale import j home = os.curdir # Default if 'JSBASE' in os.environ: home = os.environ['JSBASE'] elif 'JSJAIL' in os.environ: home = os.environ['JSJAIL'] elif os.name == 'posix': # home = os.path.expanduser("~/") home="/opt/jumpscale" elif os.name == 'nt': # Contributed by Jeff Bauer if 'HOMEPATH' in os.environ: if 'HOMEDRIVE' in os.environ: home = os.environ['HOMEDRIVE'] + os.environ['HOMEPATH'] else: home = os.environ['HOMEPATH'] # if not 'JSBASE' in os.environ: # print "WARNING: did not find JSBASE env environment, please set and point to your sandbox" def pathToUnicode(path): """ Convert path to unicode. Use the local filesystem encoding. Will return path unmodified if path already is unicode. @param path: path to convert to unicode @type path: basestring @return: unicode path @rtype: unicode """ if isinstance(path, unicode): return path return path.decode(sys.getfilesystemencoding()) class Dirs(object): """Utility class to configure and store all relevant directory paths""" def __init__(self): '''jumpscale sandbox base folder''' self.__initialized = False ##bool import sys if os.path.exists("library.zip"): self.frozen=True else: self.frozen=False iswindows=os.name=="nt" self.baseDir=home self.baseDir=self.baseDir.replace("\\","/") '''Application installation base folder (basedir/apps)''' self.appDir = os.path.abspath(".") '''Configuration file folder (appdir/cfg)''' if 'JSBASE' in os.environ: self.cfgDir=os.path.join(os.path.realpath("%s/../"%self.baseDir),"%s_data"%os.path.basename(self.baseDir.rstrip("/")),"cfg") elif 'JSJAIL' in os.environ: self.cfgDir=os.path.join(os.path.realpath("%s/../"%self.baseDir),"%s"%os.path.basename(self.baseDir.rstrip("/")),"cfg") else: self.cfgDir = os.path.join(self.baseDir,"cfg") self._createDir(self.cfgDir) tpath = os.path.join(self.cfgDir,"debug") self._createDir(tpath) tpath = os.path.join(self.cfgDir,"debug","protecteddirs") self._createDir(tpath) tpath = os.path.join(self.cfgDir,"grid") self._createDir(tpath) tpath = os.path.join(self.cfgDir,"hrd") self._createDir(tpath) '''Var folder (basedir/var)''' if self.frozen: self.varDir = "/var/jumpscale" elif 'JSBASE' in os.environ: self.varDir=os.path.join(os.path.realpath("%s/../"%self.baseDir),"%s_data"%os.path.basename(self.baseDir),"var") else: self.varDir = os.path.join(self.baseDir,"var") self._createDir(self.varDir) '''Temporary file folder (appdir/tmp)''' if iswindows or self.frozen: self.tmpDir = os.path.join(self.varDir,"tmp") else: self.tmpDir = "/tmp/jumpscale" self._createDir(self.tmpDir) if iswindows or self.frozen: self.libDir = os.path.join(self.baseDir,"library.zip") else: self.libDir = os.path.join(self.baseDir,"lib") self._createDir(self.libDir) self.libExtDir = os.path.join(self.baseDir,"libext") self._createDir(os.path.join(self.baseDir,"libext")) if self.libDir in sys.path: sys.path.pop(sys.path.index(self.libDir)) sys.path.insert(0,self.libDir) pythonzip = os.path.join(self.libDir, 'python.zip') if os.path.exists(pythonzip): if pythonzip in sys.path: sys.path.pop(sys.path.index(pythonzip)) sys.path.insert(0,pythonzip) if self.libExtDir in sys.path: sys.path.pop(sys.path.index(self.libExtDir)) sys.path.insert(2,self.libExtDir) self.logDir = os.path.join(self.varDir,"log") self._createDir(self.logDir) self.packageDir = os.path.join(self.varDir,"jpackages") self._createDir(self.packageDir) # self.homeDir = pathToUnicode(os.path.join(home, ".jsbase")) self.pidDir = os.path.join(self.varDir,"log") if 'JSBASE' in os.environ: self.binDir = os.path.join(self.baseDir, 'bin') else: self.binDir = "/usr/local/bin" if self.frozen: self.codeDir=os.path.join(self.varDir,"code") else: self.codeDir="/opt/code" self._createDir(self.codeDir) self.hrdDir = os.path.join(self.cfgDir,"hrd") self._createDir(self.hrdDir) self.configsDir = os.path.join(self.cfgDir,"jsconfig") self._createDir(self.configsDir) self.jsLibDir = self._getLibPath() if self.jsLibDir not in sys.path: sys.path.append(self.jsLibDir) def replaceTxtDirVars(self,txt,additionalArgs={}): """ replace $base,$vardir,$cfgdir,$bindir,$codedir,$tmpdir,$logdir,$appdir with props of this class """ txt=txt.replace("$base",self.baseDir) txt=txt.replace("$appdir",self.appDir) txt=txt.replace("$codedir",self.codeDir) txt=txt.replace("$vardir",self.varDir) txt=txt.replace("$cfgdir",self.cfgDir) txt=txt.replace("$bindir",self.binDir) txt=txt.replace("$logdir",self.logDir) txt=txt.replace("$tmpdir",self.tmpDir) txt=txt.replace("$libdir",self.libDir) txt=txt.replace("$jslibdir",self.jsLibDir) txt=txt.replace("$jslibextdir",self.libExtDir) txt=txt.replace("$jsbindir",self.binDir) txt=txt.replace("$nodeid",str(j.application.whoAmI.nid)) for key,value in additionalArgs.iteritems(): txt=txt.replace("$%s"%key,str(value)) return txt def replaceFilesDirVars(self,path,recursive=True, filter=None,additionalArgs={}): if j.system.fs.isFile(path): paths=[path] else: paths=j.system.fs.listFilesInDir(path,recursive,filter) for path in paths: content=j.system.fs.fileGetContents(path) content2=self.replaceTxtDirVars(content,additionalArgs) if content2<>content: j.system.fs.writeFile(filename=path,contents=content2) def _createDir(self,path): if not os.path.exists(path): os.makedirs(path) def init(self,reinit=False): """Initializes all the configured directories if needed If a folder attribute is None, set its value to the corresponding default path. @returns: Initialization success @rtype: bool """ if reinit==False and self.__initialized == True: return True if j.system.platformtype.isWindows() : self.codeDir=os.path.join(self.baseDir, 'code') self.loadProtectedDirs() self.deployDefaultFilesInSandbox() self.__initialized = True return True def _getParent(self, path): """ Returns the parent of the path: /dir1/dir2/file_or_dir -> /dir1/dir2/ /dir1/dir2/ -> /dir1/ @todo why do we have 2 implementations which are almost the same see getParentDirName() """ parts = path.split(os.sep) if parts[-1] == '': parts=parts[:-1] parts=parts[:-1] if parts==['']: return os.sep return os.sep.join(parts) def _getLibPath(self): parent = self._getParent libDir=parent(parent(__file__)) libDir=os.path.abspath(libDir).rstrip("/") return libDir def getPathOfRunningFunction(self,function): return inspect.getfile(function) def loadProtectedDirs(self): protectedDirsDir = os.path.join(self.cfgDir, 'debug', 'protecteddirs') if not os.path.exists(protectedDirsDir): self._createDir(protectedDirsDir) _listOfCfgFiles = j.system.fs.listFilesInDir(protectedDirsDir, filter='*.cfg') _protectedDirsList = [] for _cfgFile in _listOfCfgFiles: _cfg = open(_cfgFile, 'r') _dirs = _cfg.readlines() for _dir in _dirs: _dir = _dir.replace('\n', '').strip() if j.system.fs.isDir(_dir): # npath=j.system.fs.pathNormalize(_dir) if _dir not in _protectedDirsList: _protectedDirsList.append(_dir) self.protectedDirs = _protectedDirsList def addProtectedDir(self,path,name="main"): if j.system.fs.isDir(path): path=j.system.fs.pathNormalize(path) configfile=os.path.join(self.cfgDir, 'debug', 'protecteddirs',"%s.cfg"%name) if not j.system.fs.exists(configfile): j.system.fs.writeFile(configfile,"") content=j.system.fs.fileGetContents(configfile) if path not in content.split("\n"): content+="%s\n"%path j.system.fs.writeFile(configfile,content) self.loadProtectedDirs() def removeProtectedDir(self,path): path=j.system.fs.pathNormalize(path) protectedDirsDir = os.path.join(self.cfgDir, 'debug', 'protecteddirs') _listOfCfgFiles = j.system.fs.listFilesInDir(protectedDirsDir, filter='*.cfg') for _cfgFile in _listOfCfgFiles: _cfg = open(_cfgFile, 'r') _dirs = _cfg.readlines() out="" found=False for _dir in _dirs: _dir = _dir.replace('\n', '').strip() if _dir==path: #found, need to remove found=True else: out+="%s\n"%_dir if found: j.system.fs.writeFile(_cfgFile,out) self.loadProtectedDirs() def checkInProtectedDir(self,path): path=j.system.fs.pathNormalize(path) for item in self.protectedDirs : if path.find(item)!=-1: return True return False def deployDefaultFilesInSandbox(self): iswindows=os.name=="nt" if self.frozen or iswindows: return if 'JSJAIL' in os.environ: return #@todo P3 let it work for windows as well bindest=j.system.fs.joinPaths(self.baseDir,"bin") utilsdest=j.system.fs.joinPaths(self.baseDir,"utils") cfgdest=self.cfgDir if not os.path.exists(bindest) or not os.path.exists(utilsdest) or not os.path.exists(cfgdest): cfgsource=j.system.fs.joinPaths(self.jsLibDir,"core","_defaultcontent","cfg") binsource=j.system.fs.joinPaths(self.jsLibDir,"core","_defaultcontent","linux","bin") utilssource=j.system.fs.joinPaths(self.jsLibDir,"core","_defaultcontent","linux","utils") j.system.fs.copyDirTree(binsource,bindest) j.system.fs.copyDirTree(utilssource,utilsdest) j.system.fs.copyDirTree(cfgsource,cfgdest,overwriteFiles=False) ipythondir = j.system.fs.joinPaths(os.environ['HOME'], '.ipython') j.system.fs.removeDirTree(ipythondir) j.packages.reloadconfig() def __str__(self): return str(self.__dict__) #@todo P3 implement (thisnis not working) __repr__=__str__
from ....Classes.Arc1 import Arc1 from ....Classes.SurfLine import SurfLine def get_surface_active(self, alpha=0, delta=0): """Return the full winding surface Parameters ---------- self : SlotW22 A SlotW22 object alpha : float float number for rotation (Default value = 0) [rad] delta : complex complex number for translation (Default value = 0) Returns ------- surf_wind: Surface Surface corresponding to the Winding Area """ # get the name of the lamination st = self.get_name_lam() # Create curve list curve_list = self.build_geometry()[1:-1] curve_list.append( Arc1( begin=curve_list[-1].get_end(), end=curve_list[0].get_begin(), radius=-abs(curve_list[-1].get_end()), is_trigo_direction=False, ) ) # Create surface if self.is_outwards(): Zmid = self.get_Rbo() + self.H0 + self.H2 / 2 else: Zmid = self.get_Rbo() - self.H0 - self.H2 / 2 surface = SurfLine( line_list=curve_list, label="Wind_" + st + "_R0_T0_S0", point_ref=Zmid ) # Apply transformation surface.rotate(alpha) surface.translate(delta) return surface
def cadena(): while True: try: text= input("Ingrese las notas separadas por coma: ") text = text.split(sep=",") for i,a in enumerate(text): text[i]=int(text[i].strip()) break except: print("Ingrese solo números") return text notas = cadena() print(f"notas: {notas}")
import numpy as np import pandas as pd import copy import os import sklearn # from scipy.stats import pearsonr # from sklearn.ensemble import RandomForestClassifier from sklearn.preprocessing import RobustScaler from sklearn.impute import SimpleImputer from sklearn.pipeline import Pipeline # from sklearn.metrics import confusion_matrix import featuretools as ft # from sklearn.ensemble import RandomForestRegressor import utils_original as utils from numpy import mean import os # def run(dates, labels, auto_human_20feature_matrix): # pipeline_preprocessing = [("imputer", # SimpleImputer()), # ("scaler", RobustScaler(with_centering=True))] # StandardScaler # splitter = utils.TimeSeriesSplitByDate(dates=dates, earliest_date=pd.Timestamp('1/1/2008')) # predict 2004 2008 2012 # all_X = auto_human_20feature_matrix.values # rf_regressor = RandomForestRegressor( # n_estimators=200, # random_state=50 # ) # pipeline_reg = Pipeline(pipeline_preprocessing + [('rf_reg', rf_regressor)]) # # regression_score, a, b = utils.fit_and_score(np.array(X), labels, splitter, pipeline_reg) # regression_score, a, b = utils.fit_and_score(all_X, labels, splitter, pipeline_reg) # print(regression_score, mean(regression_score)) # return regression_score def loadData(es, DATA_DIR): label_country_Olympics = os.path.join(DATA_DIR, "num_medals_by_country_labels2016.csv") label_df1 = pd.read_csv(label_country_Olympics, parse_dates=['Olympics Date'], usecols=['Number of Medals', 'Olympics Date', 'Country', 'Olympic Games ID'], encoding='utf-8') label_country = os.path.join(DATA_DIR, "cleaned_new_dictionary.csv") label_df2 = pd.read_csv(label_country, encoding='utf-8') label_summer = os.path.join(DATA_DIR, "summer2016.csv") label_df3 = pd.read_csv(label_summer, usecols=['Year', 'City', 'Sport', 'Athlete', 'Country', 'Gender', 'Medal', 'Age', 'Height', 'Weight'], encoding='gbk') # label_df1 # label_df2 # label_df3 # label_df.sort_values(['Olympics Date', 'Country'], inplace=True) cutoff_times = label_df1[['Country', 'Olympics Date']].rename(columns={'Country': 'Code', 'Olympics Date': 'time'}) dates = label_df1['Olympics Date'] labels = label_df1['Number of Medals'] return label_df1, label_df2, label_df3, cutoff_times, dates, labels def auto_human_features(): auto_feature_matrix_encoded = auto_10features() auto_feature_matrix_encoded.drop(auto_feature_matrix_encoded.columns[[0]], axis = 1, inplace = True) human_10feature_names, human_10features = human_10eatures() auto_human_20feature_matrix = copy.deepcopy(auto_feature_matrix_encoded) for i in range(len(human_10feature_names)): auto_human_20feature_matrix.insert(auto_human_20feature_matrix.shape[1], human_10feature_names[i], human_10features[i]) return auto_human_20feature_matrix def autoFeatures(es, cutoff_times): agg_primitives = ['Sum', 'Max', 'Min', 'Mean', 'Count', 'Num_Unique', 'Mode', 'Trend', 'Skew'] trans_primitives = ['Absolute', 'Percentile'] feature_matrix, features = ft.dfs( entityset = es, target_entity = "countries", # parameter 1 trans_primitives = trans_primitives, agg_primitives = agg_primitives, # parameter 2 max_depth = 2, # parameter 3 cutoff_time = cutoff_times, # parameter 4 verbose = True ) print("{} features generated automatically".format(len(features))) feature_matrix_encoded, features_encoded = ft.encode_features(feature_matrix, features) return feature_matrix_encoded, features_encoded def human_features(): label_df = pd.read_csv("features/human/human_feature_past_medal_avg_num.csv", encoding='utf-8') mean_medal_num = [] for f in label_df.past_medal_avg_num: mean_medal_num.append(f) label_df = pd.read_csv("features/human/human_feature_athlete_num.csv", encoding='utf-8') athlete_num = [] for f in label_df.athlete_num: athlete_num.append(f) label_df = pd.read_csv("features/human/human_feature_women_athlete_num.csv", encoding='utf-8') women_athlete_num = [] for f in label_df.women_athlete_num: women_athlete_num.append(f) label_df = pd.read_csv("features/human/human_feature_men_athlete_num.csv", encoding='utf-8') men_athlete_num = [] for f in label_df.men_athlete_num: men_athlete_num.append(f) label_df = pd.read_csv("features/human/human_feature_historic_gold_modal_num.csv", encoding='utf-8') historic_gold_modal_num = [] for f in label_df.historic_gold_modal_num: historic_gold_modal_num.append(f) label_df = pd.read_csv("features/human/human_feature_historic_silver_modal_num.csv", encoding='utf-8') historic_silver_modal_num = [] for f in label_df.historic_silver_modal_num: historic_silver_modal_num.append(f) label_df = pd.read_csv("features/human/human_feature_historic_bronze_modal_num.csv", encoding='utf-8') historic_bronze_modal_num = [] for f in label_df.historic_bronze_modal_num: historic_bronze_modal_num.append(f) label_df = pd.read_csv("features/human/human_feature_historic_Aquatics_modal_num.csv", encoding='utf-8') historic_Aquatics_modal_num = [] for f in label_df.historic_Aquatics_modal_num: historic_Aquatics_modal_num.append(f) label_df = pd.read_csv("features/human/human_feature_historic_Athletics_modal_num.csv", encoding='utf-8') historic_Athletics_modal_num = [] for f in label_df.historic_Athletics_modal_num: historic_Athletics_modal_num.append(f) label_df = pd.read_csv("features/human/human_feature_historic_Gymnastics_modal_num.csv", encoding='utf-8') historic_Gymnastics_modal_num = [] for f in label_df.historic_Gymnastics_modal_num: historic_Gymnastics_modal_num.append(f) label_df = pd.read_csv("features/human/human_feature_man_woman_ratio.csv", encoding='utf-8') man_woman_ratio = [] for f in label_df.man_woman_ratio_total: man_woman_ratio.append(f) label_df = pd.read_csv("features/human/human_feature_man_ratio.csv", encoding='utf-8') man_ratio = [] for f in label_df.man_ratio_total: man_ratio.append(f) label_df = pd.read_csv("features/human/human_feature_woman_ratio.csv", encoding='utf-8') woman_ratio = [] for f in label_df.woman_ratio_total: woman_ratio.append(f) label_df = pd.read_csv("features/human/human_feature_athlete_age_min.csv", encoding='utf-8') athlete_age_min = [] for f in label_df.athlete_age_min: athlete_age_min.append(f) label_df = pd.read_csv("features/human/human_feature_athlete_age_max.csv", encoding='utf-8') athlete_age_max = [] for f in label_df.athlete_age_max: athlete_age_max.append(f) label_df = pd.read_csv("features/human/human_feature_athlete_age_mean.csv", encoding='utf-8') athlete_age_mean = [] for f in label_df.athlete_age_mean: athlete_age_mean.append(f) # , all_human_feature_names =['human_<MEAN(COUNT(medals_won.Medal))>','human_<SUM(medaling_athletes.NUM_UNIQUE(athletes.Athelete))>','human_<COUNT(medaling_athletes WHERE athlete.Gender = Women)>', 'human_<COUNT(medaling_athletes WHERE athlete.Gender = Men)>', 'human_<COUNT(countries_at_plympicgames WHERE medals_won.Medal = Gold)>', 'human_<COUNT(countries_at_plympicgames WHERE medals_won.Medal = Silver)>', 'human_<COUNT(countries_at_plympicgames WHERE medals_won.Medal = Bronze)>', 'human_<COUNT(medals_won.Medal WHERE sports.Sport = Aquatics)>', 'human_<COUNT(medals_won.Medal WHERE sports.Sport = Athletics)>', 'human_<COUNT(medals_won.Medal WHERE sports.Sport = Gymnastics)>', 'human_<RATIO(COUNT(athletes WHERE Gender = Men), COUNT(athletes WHERE Gender = Women))>', 'human_<RATIO(COUNT(athletes WHERE Gender = Men), COUNT(athletes.Athelete))>', 'human_<RATIO(COUNT(athletes WHERE Gender = Women), COUNT(athletes.Athelete))>','human_<MIN(atheletes.Age)>', 'human_<MAX(atheletes.Age)>', 'human_<MEAN(atheletes.Age)>'] all_human_features = [mean_medal_num, athlete_num, women_athlete_num, men_athlete_num, historic_gold_modal_num, historic_silver_modal_num, historic_bronze_modal_num, historic_Aquatics_modal_num, historic_Athletics_modal_num, historic_Gymnastics_modal_num, man_woman_ratio, man_ratio, woman_ratio, athlete_age_min, athlete_age_max, athlete_age_mean] select_human_feature_names =['COUNT(medals_won.Medal WHERE sports.Sport = Gymnastics)', 'MIN(atheletes.Age)', 'MAX(atheletes.Age)', 'MEAN(atheletes.Age)', 'COUNT(medaling_athletes WHERE athlete.Gender = Women)', 'RATIO(COUNT(athletes WHERE Gender = Men), COUNT(athletes WHERE Gender = Women))', 'RATIO(COUNT(athletes WHERE Gender = Women), COUNT(athletes.Athelete))', 'SUM(medaling_athletes.NUM_UNIQUE(athletes.Athelete))', 'COUNT(medaling_athletes WHERE athlete.Gender = Men)' ] select_human_features = [historic_Gymnastics_modal_num, athlete_age_min, athlete_age_max, athlete_age_mean, women_athlete_num, man_woman_ratio, woman_ratio, athlete_num, men_athlete_num] return select_human_feature_names, select_human_features
#! /usr/bin/env python # by caozj # Jun 5, 2019 # 3:42:21 PM import os import time import random import argparse import numpy as np import tensorflow as tf import Cell_BLAST as cb import scscope as DeepImpute import utils def parse_args(): parser = argparse.ArgumentParser() parser.add_argument("-i", "--input", dest="input", type=str, required=True) parser.add_argument("-g", "--genes", dest="genes", type=str, required=True) parser.add_argument("-o", "--output", dest="output", type=str, required=True) parser.add_argument("--n-latent", dest="n_latent", type=int, default=10) parser.add_argument("--n-epochs", dest="n_epochs", type=int, default=1000) parser.add_argument("-s", "--seed", dest="seed", type=int, default=None) parser.add_argument("-d", "--device", dest="device", type=str, default=None) parser.add_argument("--clean", dest="clean", type=str, default=None) cmd_args = parser.parse_args() output_path = os.path.dirname(cmd_args.output) if not os.path.exists(output_path): os.makedirs(output_path) os.environ["CUDA_VISIBLE_DEVICES"] = utils.pick_gpu_lowest_memory() \ if cmd_args.device is None else cmd_args.device return cmd_args def main(cmd_args): dataset = cb.data.ExprDataSet.read_dataset( cmd_args.input, sparsify=True ).normalize() if cmd_args.clean is not None: dataset = utils.clean_dataset(dataset, cmd_args.clean) if cmd_args.genes is not None: dataset = dataset[:, dataset.uns[cmd_args.genes]] dataset = dataset.exprs.log1p().toarray() start_time = time.time() model = DeepImpute.train( dataset, cmd_args.n_latent, max_epoch=cmd_args.n_epochs, random_seed=cmd_args.seed ) latent, _imputed_val, _batch_effect = DeepImpute.predict(dataset, model) cb.data.write_hybrid_path( time.time() - start_time, "//".join([cmd_args.output, "time"]) ) cb.data.write_hybrid_path( latent, "//".join([cmd_args.output, "latent"]) ) if __name__ == "__main__": main(parse_args()) print("Done!")
# Use this command if numpy import fails: sudo apt-get install python-dev libatlas-base-dev # If this doesn't work, uninstall both numpy and scipy. Thonny will keep an older default version of numpy. # Install an older version of scipy that corresponds to the correct version of numpy. from guizero import App, PushButton, Slider, Text, ButtonGroup, Picture, Box, CheckBox import sys import time import subprocess import os DEBUG_MODE = False #CONT_REALTIME_MONITORING = False def gui_open_rr_hr(): app.destroy() #os.system("cmd /c py final.py -u") process = subprocess.run('python3 scripts/run_rr_hr.py -u', shell=True) def gui_open_hrv_hr(): app.destroy() process = subprocess.run('python3 scripts/run_hrv_hr.py -u', shell=True) def gui_go_to_connect(): print("Connecting...") start_menu_box.hide() connect_menu_box.show() start_footer_box.hide() other_footer_box.show() connect_menu_text2.hide() # Connection function connect_menu_text.after(1000, gui_check_connection) def gui_go_to_manual(): start_menu_box.hide() manual_menu_box.show() start_footer_box.hide() other_footer_box.show() def gui_check_connection(): connect_menu_text.value = "Connected!" connect_menu_text2.show() def gui_go_back_to_menu(): connect_menu_box.hide() manual_menu_box.hide() if connect_menu_text.value == "Connected!": connect_menu_text.value = "Connecting to MyVitals..." start_menu_box.show() other_footer_box.hide() start_footer_box.show() app = App(title="BioRadar (Prototype)", width=480, height=320, bg="#141414") if not DEBUG_MODE: app.full_screen = True start_menu_box = Box(app, width="fill") pad_1 = Box(start_menu_box, width="fill", height=20) box_1 = Box(start_menu_box, width="fill") pad_1_2 = Box(box_1, width=140, height=1, align="left") picture = Picture(box_1, image="images/brlogo.png", width=51, height=40, align="left") # W:H = 1.277 pad_1_2 = Box(box_1, width=10, height=1, align="left") message = Text(box_1, text="BioRadar", color="#FFFFFF", size=20, align="left") pad_2 = Box(start_menu_box, width="fill", height=40) message = Text(start_menu_box, text="Select how you want to monitor your vitals.", color="#FFFFFF", size=15) pad_3 = Box(start_menu_box, width="fill", height=18) button1 = PushButton(start_menu_box, text="Online mode", command=gui_go_to_connect) button1.bg = "#6ED3A9" pad_4 = Box(start_menu_box, width="fill", height=10) button2 = PushButton(start_menu_box, text="Manual mode", command=gui_go_to_manual) button2.bg = "#6ED3A9" start_menu_box.hide() connect_menu_box = Box(app, width="fill") pad_1 = Box(connect_menu_box, width="fill", height=100) connect_menu_text = Text(connect_menu_box, text="Connecting to MyVitals...", color="#FFFFFF", size=20) pad_2 = Box(connect_menu_box, width="fill", height=30) connect_menu_text2 = Text(connect_menu_box, text="Waiting for online commands...", color="#FFFFFF", size=16) connect_menu_box.hide() # Manual mode manual_menu_box = Box(app, width="fill") pad = Box(manual_menu_box, width="fill", height=20) manual_menu_text = Text(manual_menu_box, text="Manual Mode", color="#FFFFFF", size=20) pad = Box(manual_menu_box, width="fill", height=50) button_box = Box(manual_menu_box, width=460, height=90) button1 = PushButton(button_box, text="Respiration Rate\nHeart Rate", command=gui_open_rr_hr, align="left") pad = Box(button_box, width=10, height=90, align="left") button2 = PushButton(button_box, text="Heart Rate Variability\nHeart Rate*", command=gui_open_hrv_hr, align="right") button1.text_size = 16 button2.text_size = 16 button1.bg = "#6ED3A9" button2.bg = "#6ED3A9" pad = Box(manual_menu_box, width="fill", height=30) pad = Box(manual_menu_box, width="fill", height=6) txt = Text(manual_menu_box, text="* You will need to hold your breath for 10 seconds for\nheart rate variability measurements.", color="#C8C8C8", size=11) # Footers start_footer_box = Box(app, width="fill", align="bottom") fyp_text = Text(start_footer_box, text=" © 2021 Final-Year Project, SEECS, NUST", color="#C8C8C8", size=11, align="left") exit_button = PushButton(start_footer_box, text="Exit", align="right", command=exit) exit_button.bg = "#6ED3A9" start_footer_box.hide() other_footer_box = Box(app, width="fill", align="bottom") exit_button = PushButton(other_footer_box, text="Exit", align="right", command=exit) exit_button.bg = "#6ED3A9" back_button = PushButton(other_footer_box, text="Back", align="right", command=gui_go_back_to_menu) back_button.bg = "#6ED3A9" app.display()
import roslib; roslib.load_manifest('hrl_fabric_based_tactile_sensor') import rospy from hrl_msgs.msg import FloatArray import hrl_lib.util as ut import hrl_fabric_based_tactile_sensor.adc_publisher_node as apn from m3skin_ros.msg import RawTaxelArray from geometry_msgs.msg import Transform from m3skin_ros.srv import None_TransformArray, None_TransformArrayResponse from m3skin_ros.srv import None_String class Fabric_Skin_Patch(): def __init__(self): self.n_taxels_x = 5 self.n_taxels_y = 3 self.taxel_dim_x = 0.05 self.taxel_dim_y = 0.05 self.link_name = '/fabric_skin_link' self.tar = None_TransformArrayResponse() for i in range(self.n_taxels_x): for j in range(self.n_taxels_y): t = Transform() t.translation.x = i*self.taxel_dim_x t.translation.y = j*self.taxel_dim_y t.translation.z = 0. t.rotation.x = 0 t.rotation.y = 0 t.rotation.z = 0 t.rotation.w = 1 self.tar.data.append(t) def local_coord_frames_cb(self, req): return self.tar def link_name_cb(self, req): return self.link_name if __name__ == '__main__': dev_name = '/dev/ttyACM0' baudrate = 115200 serial_dev = apn.setup_serial(dev_name, baudrate) raw_data_pub = rospy.Publisher('/fabric_skin/taxels/raw_data', RawTaxelArray) fsp = Fabric_Skin_Patch() d = ut.load_pickle('taxel_registration_dict.pkl') fsp.link_name = d['tf_name'] fsp.tar = d['transform_array_response'] rospy.Service('/fabric_skin/taxels/srv/local_coord_frames', None_TransformArray, fsp.local_coord_frames_cb) rospy.Service('/fabric_skin/taxels/srv/link_name', None_String, fsp.link_name_cb) rospy.init_node('fabric_skin_driver_node') for i in range(10): ln = serial_dev.readline() rospy.loginfo('Started publishing data') rta = RawTaxelArray() while not rospy.is_shutdown(): rta.val_z = apn.get_adc_data(serial_dev)[0:15] raw_data_pub.publish(rta) serial_dev.close()
import ply.lex as lex tokens = ( 'ID', 'NUM', 'HEXNUM', 'JNS', 'LOAD', 'STORE', 'ADD', 'SUBT', 'SUBTI', 'INPUT', 'OUTPUT', 'HALT', 'SKIPCOND', 'JUMP', 'CLEAR', 'ADDI', 'JUMPI', 'LOADI', 'STOREI', 'PUSH', 'POP', 'INCR', 'DECR', 'SHIFTL', 'SHIFTR', 'STOREX', 'LOADX', 'STOREY', 'LOADY', 'NEWLINE', 'DEC', 'HEX', 'LABEL', ) reserved = { 'JnS': 'JNS', 'Load': 'LOAD', 'LoadI': 'LOADI', 'Store': 'STORE', 'StoreI': 'STOREI', 'Add': 'ADD', 'AddI': 'ADDI', 'Subt': 'SUBT', 'SubtI': 'SUBTI', 'Input': 'INPUT', 'Output': 'OUTPUT', 'Skipcond': 'SKIPCOND', 'Jump': 'JUMP', 'JumpI': 'JUMPI', 'Clear': 'CLEAR', 'Halt': 'HALT', 'DEC': 'DEC', 'HEX': 'HEX', 'StoreX': 'STOREX', 'StoreY': 'STOREY', 'LoadX': 'LOADX', 'LoadY': 'LOADY', 'Push': 'PUSH', 'Pop': 'POP', 'ShiftL': 'SHIFTL', 'ShiftR': 'SHIFTR', 'Incr': 'INCR', 'Decr': 'DECR', } t_JNS = r'JnS' t_LOAD = r'Load' t_LOADI = r'LoadI' t_STORE = r'Store' t_STOREI = r'StoreI' t_ADD = r'Add' t_ADDI = r'AddI' t_SUBT = r'Subt' t_INPUT = r'Input' t_OUTPUT = r'Output' t_SKIPCOND = r'Skipcond' t_JUMP = r'Jump' t_JUMPI = r'JumpI' t_CLEAR = r'Clear' t_HALT = r'Halt' t_PUSH = r'Push' t_POP = r'Pop' t_SHIFTL = r'ShiftL' t_SHIFTR = r'ShiftR' t_STOREX = r'StoreX' t_STOREY = r'StoreY' t_DEC = r'DEC' t_HEX = r'HEX' t_ignore = ' \t' def t_NEWLINE(t): r'\n\s*' t.lexer.lineno += 1 # lineno represents memory address if not hasattr(t.lexer, 'line_number'): t.lexer.line_number = 2 else: t.lexer.line_number += t.value.count('\n') return t def t_LABEL(t): r'[A-Za-z_]+,' return t def t_ID(t): r'[A-Za-z_]+' if t.value in reserved: t.type = reserved[t.value] return t def t_HEXNUM(t): r'0x[0-9A-F]+' t.value = int(t.value, 16) return t def t_NUM(t): r'[0-9]+' t.value = int(t.value) return t lexer = lex.lex()
/anaconda3/lib/python3.7/abc.py
def shape(A): num_rows = len(A) num_cols=len(A[0]) if A else 0 return num_rows, num_cols A=[ [1,2,3], [3,4,5], [4,5,6], [6,7,8] ] print(shape(A))
class AnsibleHostModel: def __init__(self, name: str, ip: str): self.name: str = name self.ip: str = ip def __eq__(self, other) -> bool: return (self.name == other.name and self.ip == other.ip) def __lt__(self, other) -> bool: pass class AnsibleOrderedHostModel(AnsibleHostModel): """ Sortable variant of AnsibleHostModel """ def __lt__(self, other) -> bool: return self.name < other.name
import os import unittest import http.client import warnings from google.cloud import firestore from retirable_resources import RetirableResourceManager firestore_project = "foo" firestore_host = "localhost" firestore_port = 8080 class FirestoreEmulatorTest: def setUp(self): self.__set_environ() warnings.filterwarnings("ignore", category=ResourceWarning, message="unclosed") def __set_environ(self): self._original_environ = {} self._original_environ["FIRESTORE_EMULATOR_HOST"] = os.environ.get( "FIRESTORE_EMULATOR_HOST" ) self._original_environ["GCLOUD_PROJECT"] = os.environ.get("GCLOUD_PROJECT") os.environ["FIRESTORE_EMULATOR_HOST"] = f"{firestore_host}:{firestore_port}" os.environ["GCLOUD_PROJECT"] = firestore_project def __restore_environ(self): for k, v in self._original_environ.items(): if v is not None: os.environ[k] = v def __clear_firebase(self): conn = http.client.HTTPConnection(firestore_host, firestore_port) conn.request( "DELETE", f"/emulator/v1/projects/{firestore_project}/databases/(default)/documents", ) response = conn.getresponse() response.read() if response.status != 200: raise Exception( f"unable to delete database: {response.status} {response.reason}" ) response.close() conn.close() def tearDown(self): self.__clear_firebase() self.__restore_environ() class RetirableResourceManagerTest(FirestoreEmulatorTest, unittest.TestCase): def setUp(self): super().setUp() self.client = firestore.Client() self.r = RetirableResourceManager('foo/bar', client = self.client) def tearDown(self): self.client.close() super().tearDown()
from catsleep.cat import config as cfg if __name__ == '__main__': conf = cfg.Config() try: print('user configurations:') print(conf.get_user_config()) except Exception as e: print('default configurations:') print(conf.get_default_config())
''' Given a string S, you are allowed to convert it to a palindrome by adding characters in front of it. Find and return the shortest palindrome you can find by performing this transformation. For example: Given "aacecaaa", return "aaacecaaa". Given "abcd", return "dcbabcd". Credits: Special thanks to @ifanchu for adding this problem and creating all test cases. Thanks to @Freezen for additional test cases. ''' class Solution: # @param {string} s # @return {string} def shortestPalindrome(self, s): if not s: return s new_s = s + '#' + s[::-1] n = len(new_s) arr = [0 for i in xrange(n)] for i in xrange(1, n): index = arr[i-1] while index > 0 and new_s[index] != new_s[i]: index = arr[index-1] arr[i] = index + (1 if new_s[index] == new_s[i] else 0) return s[arr[n-1]:][::-1] + s # Reference: https://leetcode.com/discuss/36807/c-8-ms-kmp-based-o-n-time-%26-o-n-memory-solution
from django.core.urlresolvers import reverse from rest_framework import serializers from django_gravatar.templatetags import gravatar from profiles.models import Profile class UserProfileSerializer(serializers.ModelSerializer): absolute_url = serializers.SerializerMethodField() avatar = serializers.SerializerMethodField() class Meta: model = Profile fields = ('id', 'username', 'absolute_url', 'avatar',) def get_absolute_url(self, obj): return reverse("api-profile-detail", args=[obj.username]) def get_avatar(self, obj): return gravatar.get_gravatar_url(obj.email)
# log.py # # """ log module to set standard format of logging. """ from meds.utils.file import cdir from meds.utils.join import j import logging.handlers import logging import os LEVELS = { 'debug': logging.DEBUG, 'info': logging.INFO, 'warning': logging.WARNING, 'warn': logging.WARNING, 'error': logging.ERROR, 'critical': logging.CRITICAL } #: ERASE_LINE = '\033[2K' BOLD='\033[1m' GRAY='\033[99m' RED = '\033[91m' YELLOW = '\033[93m' GREEN = '\033[92m' BLUE = '\033[94m' BLA = '\033[95m' ENDC = '\033[0m' #: homedir = os.path.expanduser("~") curdir = os.getcwd() try: hostname = socket.getfqdn() except: hostname = "localhost" logdir = homedir + os.sep + "meds.logs" + os.sep #: datefmt = '%H:%M:%S' format_large = "%(asctime)-8s %(message)-8s %(module)s.%(lineno)s %(threadName)-10s" format = "%(message)-8s" class Formatter(logging.Formatter): def format(self, record): target = str(record.msg) if not target: target = " " if target[0] in [">", ]: target = "%s%s%s%s" % (BLUE, target[0], ENDC, target[1:]) elif target[0] in ["<", ]: target = "%s%s%s%s" % (GREEN, target[0], ENDC, target[1:]) elif target[0] in ["!", ]: target = "%s%s%s%s" % (BLUE, target[0], ENDC, target[1:]) elif target[0] in ["#", ]: target = "%s%s%s%s" % (BLA, target[0], ENDC, target[1:]) elif target[0] in ["^", ]: target = "%s%s%s%s" % (YELLOW, target[0], ENDC, target[1:]) elif target[0] in ["-", ]: target = "%s%s%s%s" % (BOLD, target[0], ENDC, target[1:]) elif target[0] in ["&", ]: target = "%s%s%s%s" % (RED, target[0], ENDC, target[1:]) record.msg = target return logging.Formatter.format(self, record) class FormatterClean(logging.Formatter): def format(self, record): target = str(record.msg) if not target: target = " " if target[0] in [">", "<", "!", "#", "^", "-", "&"]: target = target[2:] record.msg = target return logging.Formatter.format(self, record) def log(level, error): l = LEVELS.get(str(level).lower(), logging.NOTSET) logging.log(l, error) def loglevel(loglevel="error", colors=True): logger = logging.getLogger("") if colors: formatter = Formatter(format, datefmt=datefmt) else: formatter = FormatterClean(format, datefmt=datefmt) level = LEVELS.get(str(loglevel).lower(), logging.NOTSET) filehandler = None logger.setLevel(level) if logger.handlers: for handler in logger.handlers: logger.removeHandler(handler) if not os.path.exists(logdir): cdir(logdir) try: filehandler = logging.handlers.TimedRotatingFileHandler(j(logdir, "meds.log"), 'midnight') except Exception as ex: logging.error(ex) ch = logging.StreamHandler() ch.setLevel(level) if colors: ch.setFormatter(formatter) else: ch.setFormatter(formatter) logger.addHandler(ch) if filehandler: ch.setFormatter(formatter) filehandler.setLevel(level) logger.addHandler(filehandler) global enabled enabled = True return logger
from __future__ import (absolute_import, division, print_function) __metaclass__ = type import yaml from ansible.plugins.action import ActionBase from ansible.errors import AnsibleActionFail from ansible.utils.vars import isidentifier from ansible.plugins.filter.core import combine from ansible.plugins.loader import lookup_loader from ansible_collections.arista.avd.plugins.module_utils.strip_empties import strip_null_from_data class ActionModule(ActionBase): def run(self, tmp=None, task_vars=None): if task_vars is None: task_vars = {} result = super().run(tmp, task_vars) del tmp # tmp no longer has any effect root_key = "" if self._task.args: if "root_key" in self._task.args: n = self._task.args.get("root_key") n = self._templar.template(n) if not isidentifier(n): raise AnsibleActionFail(f"The argument 'root_key' value of '{n}' is not valid. Keys must start with a letter or underscore character, " "and contain only letters, numbers and underscores.") root_key = n if "templates" in self._task.args: t = self._task.args.get("templates") if isinstance(t, list): template_list = t else: raise AnsibleActionFail("The argument 'templates' is not a list") else: raise AnsibleActionFail("The argument 'templates' must be set") else: raise AnsibleActionFail("The argument 'templates' must be set") output = {} template_lookup_module = lookup_loader.get('ansible.builtin.template', loader=self._loader, templar=self._templar) template_vars = task_vars for template_item in template_list: template = template_item.get('template') if not template: raise AnsibleActionFail("Invalid template data") template_options = template_item.get('options', {}) list_merge = template_options.get('list_merge', 'append') strip_empty_keys = template_options.get('strip_empty_keys', True) if root_key: template_vars[root_key] = output else: template_vars = combine(task_vars, output, recursive=True) template_output = template_lookup_module.run([template], template_vars) template_output_data = yaml.safe_load(template_output[0]) if strip_empty_keys: template_output_data = strip_null_from_data(template_output_data) if template_output_data: output = combine(output, template_output_data, recursive=True, list_merge=list_merge) if root_key: result['ansible_facts'] = {root_key: output} else: result['ansible_facts'] = output return result
""" One Away There are three types of edits that can be performed on strings: insert a character, remove a character, or replace a character. Given two strings, write a function to check if they are one edit (or zero edits) away. Example: pale, ple -> true pales, pale -> true pale, bale -> true pale, bake -> false """ # Time: O(n) # Space: O(1) # If the string lengths are equal, check for number of replacements needed. If the difference in string lengths is one, count # the number of times each letter appears for each string separately in hash tables, and then count the number of letters that # have different counts. If the differece in string lengths is greater than one, then return false. class Solution: def is_one_away(self, string1: str, string2: str) -> bool: length_diff = abs(len(string1) - len(string2)) if length_diff > 1: return False count_diff = 0 if length_diff == 1: freq_table_1 = [0] * 128 freq_table_2 = [0] * 128 for c in string1: freq_table_1[ord(c)] += 1 for c in string2: freq_table_2[ord(c)] += 1 for i in range(len(freq_table_1)): if freq_table_1[i] != freq_table_2[i]: count_diff += 1 if count_diff > 1: return False else: for i in range(len(string1)): if string1[i] != string2[i]: count_diff += 1 if count_diff > 1: return False return True
from unittest import mock from ... import * from .common import known_langs, mock_which from bfg9000 import options as opts from bfg9000.file_types import (HeaderDirectory, HeaderFile, MsvcPrecompiledHeader, ObjectFile, SourceFile) from bfg9000.iterutils import merge_dicts from bfg9000.path import Path, Root from bfg9000.tools.msvc import MsvcBuilder class TestMsvcCompiler(CrossPlatformTestCase): def __init__(self, *args, **kwargs): super().__init__(clear_variables=True, *args, **kwargs) def setUp(self): with mock.patch('bfg9000.shell.which', mock_which): self.compiler = MsvcBuilder(self.env, known_langs['c++'], ['cl'], 'version').compiler def test_call(self): extra = self.compiler._always_flags self.assertEqual(self.compiler('in', 'out'), [self.compiler] + extra + ['/c', 'in', '/Foout']) self.assertEqual( self.compiler('in', 'out', flags=['flags']), [self.compiler] + extra + ['flags', '/c', 'in', '/Foout'] ) self.assertEqual( self.compiler('in', 'out', 'out.d'), [self.compiler] + extra + ['/showIncludes', '/c', 'in', '/Foout'] ) self.assertEqual( self.compiler('in', 'out', 'out.d', ['flags']), [self.compiler] + extra + ['flags', '/showIncludes', '/c', 'in', '/Foout'] ) def test_default_name(self): src = SourceFile(Path('file.cpp', Root.srcdir), 'c++') self.assertEqual(self.compiler.default_name(src, None), 'file') def test_output_file(self): fmt = self.env.target_platform.object_format self.assertEqual(self.compiler.output_file('file', None), ObjectFile(Path('file.obj'), fmt, 'c++')) def test_flags_empty(self): self.assertEqual(self.compiler.flags(opts.option_list()), ['/MD']) def test_flags_include_dir(self): p = self.Path('/path/to/include') self.assertEqual(self.compiler.flags(opts.option_list( opts.include_dir(HeaderDirectory(p)) )), ['/I' + p, '/MD']) self.assertEqual(self.compiler.flags(opts.option_list( opts.include_dir(HeaderDirectory(p)) ), mode='pkg-config'), ['-I' + p]) def test_flags_define(self): self.assertEqual(self.compiler.flags(opts.option_list( opts.define('NAME') )), ['/DNAME', '/MD']) self.assertEqual(self.compiler.flags(opts.option_list( opts.define('NAME') ), mode='pkg-config'), ['-DNAME']) self.assertEqual(self.compiler.flags(opts.option_list( opts.define('NAME', 'value') )), ['/DNAME=value', '/MD']) self.assertEqual(self.compiler.flags(opts.option_list( opts.define('NAME', 'value') ), mode='pkg-config'), ['-DNAME=value']) def test_flags_std(self): self.assertEqual(self.compiler.flags(opts.option_list( opts.std('c++14') )), ['/std:c++14', '/MD']) def test_flags_static(self): self.assertEqual(self.compiler.flags(opts.option_list( opts.static() )), ['/MT']) self.assertEqual(self.compiler.flags( opts.option_list(), opts.option_list(opts.static()), ), ['/MT']) def test_flags_debug(self): self.assertEqual(self.compiler.flags(opts.option_list( opts.debug() )), ['/Zi', '/MDd']) self.assertEqual(self.compiler.flags(opts.option_list( opts.debug(), opts.static() )), ['/Zi', '/MTd']) self.assertEqual(self.compiler.flags( opts.option_list(), opts.option_list(opts.debug()), ), ['/MDd']) self.assertEqual(self.compiler.flags( opts.option_list(opts.static()), opts.option_list(opts.debug()), ), ['/MTd']) def test_flags_warning(self): self.assertEqual(self.compiler.flags(opts.option_list( opts.warning('disable') )), ['/w', '/MD']) self.assertEqual(self.compiler.flags(opts.option_list( opts.warning('all') )), ['/W3', '/MD']) self.assertEqual(self.compiler.flags(opts.option_list( opts.warning('extra') )), ['/W4', '/MD']) self.assertEqual(self.compiler.flags(opts.option_list( opts.warning('error') )), ['/WX', '/MD']) self.assertEqual(self.compiler.flags(opts.option_list( opts.warning('all', 'extra', 'error') )), ['/W3', '/W4', '/WX', '/MD']) with self.assertRaises(ValueError): self.compiler.flags(opts.option_list(opts.warning('unknown'))) def test_flags_optimize(self): self.assertEqual(self.compiler.flags(opts.option_list( opts.optimize('disable') )), ['/Od', '/MD']) self.assertEqual(self.compiler.flags(opts.option_list( opts.optimize('size') )), ['/O1', '/MD']) self.assertEqual(self.compiler.flags(opts.option_list( opts.optimize('speed') )), ['/O2', '/MD']) self.assertEqual(self.compiler.flags(opts.option_list( opts.optimize('linktime') )), ['/GL', '/MD']) self.assertEqual(self.compiler.flags(opts.option_list( opts.optimize('speed', 'linktime') )), ['/O2', '/GL', '/MD']) def test_flags_include_pch(self): p = self.Path('/path/to/header.hpp') self.assertEqual(self.compiler.flags(opts.option_list(opts.pch( MsvcPrecompiledHeader(p, p, 'header', 'native', 'c++') ))), ['/Yuheader', '/MD']) def test_flags_sanitize(self): self.assertEqual(self.compiler.flags(opts.option_list( opts.sanitize() )), ['/RTC1', '/MD']) def test_flags_string(self): self.assertEqual(self.compiler.flags(opts.option_list('-v')), ['-v', '/MD']) def test_flags_invalid(self): with self.assertRaises(TypeError): self.compiler.flags(opts.option_list(123)) def test_parse_flags(self): default = { 'debug': None, 'defines': [], 'extra': [], 'includes': [], 'nologo': None, 'pch': {'create': None, 'use': None}, 'runtime': None, 'warnings': {'as_error': None, 'level': None} } def assertFlags(flags, extra={}): self.assertEqual(self.compiler.parse_flags(flags), merge_dicts(default, extra)) assertFlags([]) assertFlags(['/un', 'known'], {'extra': ['/un', 'known']}) assertFlags(['/nologo'], {'nologo': True}) assertFlags(['/Dfoo'], {'defines': ['foo']}) assertFlags(['/Idir'], {'includes': ['dir']}) assertFlags(['/Z7'], {'debug': 'old'}) assertFlags(['/Zi'], {'debug': 'pdb'}) assertFlags(['/ZI'], {'debug': 'edit'}) assertFlags(['/W0'], {'warnings': {'level': '0'}}) assertFlags(['/Wall'], {'warnings': {'level': 'all'}}) assertFlags(['/WX'], {'warnings': {'as_error': True}}) assertFlags(['/WX-'], {'warnings': {'as_error': False}}) assertFlags(['/w'], {'warnings': {'level': '0'}}) assertFlags(['/Yufoo'], {'pch': {'use': 'foo'}}) assertFlags(['/Ycfoo'], {'pch': {'create': 'foo'}}) class TestMsvcPchCompiler(TestMsvcCompiler): def setUp(self): with mock.patch('bfg9000.shell.which', mock_which): self.compiler = MsvcBuilder(self.env, known_langs['c++'], ['cl'], 'version').pch_compiler def test_call(self): extra = self.compiler._always_flags self.assertEqual(self.compiler('in', ['out_pch', 'out']), [self.compiler] + extra + ['/c', 'in', '/Foout', '/Fpout_pch']) self.assertEqual( self.compiler('in', ['out_pch', 'out'], flags=['flags']), [self.compiler] + extra + ['flags', '/c', 'in', '/Foout', '/Fpout_pch'] ) self.assertEqual( self.compiler('in', ['out_pch', 'out'], 'out.d'), [self.compiler] + extra + ['/showIncludes', '/c', 'in', '/Foout', '/Fpout_pch'] ) self.assertEqual( self.compiler('in', ['out_pch', 'out'], 'out.d', ['flags']), [self.compiler] + extra + ['flags', '/showIncludes', '/c', 'in', '/Foout', '/Fpout_pch'] ) def test_default_name(self): hdr = HeaderFile(Path('file.hpp', Root.srcdir), 'c++') self.assertEqual(self.compiler.default_name(hdr, None), 'file.hpp') def test_output_file(self): fmt = self.env.target_platform.object_format out = MsvcPrecompiledHeader( Path('hdr.pch'), Path('src.obj'), 'hdr.h', fmt, 'c++' ) self.assertEqual(self.compiler.output_file('hdr.h', AttrDict( pch_source=SourceFile(Path('src.c'), 'c') )), [out, out.object_file])
#!/usr/bin/python """ __version__ = "$Revision: 1.27 $" __date__ = "$Date: 2004/10/03 18:16:55 $" """ from PythonCard import dialog, model import os, sys import wx import minimalDialog class Dialogs(model.Background): def on_initialize(self, event): self.fitToComponents(None, 5) def on_listDialogs_select(self, event): name = event.stringSelection handlers = { 'alert':self.on_buttonAlert_mouseClick, 'color':self.on_buttonColor_mouseClick, 'directory':self.on_buttonDir_mouseClick, 'file':self.on_buttonFile_mouseClick, 'find':self.on_buttonFind_mouseClick, 'font':self.on_buttonFont_mouseClick, 'message':self.on_buttonMessage_mouseClick, 'multiple choice':self.on_buttonMultipleChoice_mouseClick, 'scrolled message':self.on_buttonScrolledMessage_mouseClick, 'single choice':self.on_buttonSingleChoice_mouseClick, 'open file':self.on_buttonOpenFile_mouseClick, 'save file':self.on_buttonSaveFile_mouseClick, 'text entry':self.on_buttonTextEntry_mouseClick, 'minimal':self.on_buttonMinimalDialog_mouseClick, } # call the appropriate handler handlers[name](None) def on_buttonMultipleChoice_mouseClick(self, event): result = dialog.multipleChoiceDialog(self, "message", "title", ['one', 'two', 'three']) self.components.fldResults.text = "multipleChoiceDialog result:\naccepted: %s\nSelection: %s" % (result.accepted, result.selection) def on_buttonSingleChoice_mouseClick(self, event): result = dialog.singleChoiceDialog(self, "message", "title", ['one', 'two', 'three']) self.components.fldResults.text = "singleChoiceDialog result:\naccepted: %s\nSelection: %s" % (result.accepted, result.selection) def on_buttonFind_mouseClick(self, event): result = dialog.findDialog(self) self.components.fldResults.text = "findDialog result:\naccepted: %s\nText: %s\nWhole word only: %s\nCase sensitive: %s" % (result.accepted, result.searchText, result.wholeWordsOnly, result.caseSensitive) def on_buttonColor_mouseClick(self, event): result = dialog.colorDialog(self) self.components.fldResults.text = "colorDialog result:\naccepted: %s\nColor: %s" % (result.accepted, result.color) def on_buttonFont_mouseClick(self, event): result = dialog.fontDialog(self) self.components.fldResults.text = "fontDialog result:\naccepted: %s\nColor: %s\nFont: %s" % (result.accepted, result.color, result.font) def on_buttonFile_mouseClick(self, event): wildcard = "JPG files (*.jpg;*.jpeg)|*.jpeg;*.JPG;*.JPEG;*.jpg|GIF files (*.gif)|*.GIF;*.gif|All Files (*.*)|*.*" # wildcard = '*.py' result = dialog.fileDialog(self, 'Open', '', '', wildcard ) self.components.fldResults.text = "fileDialog result:\naccepted: %s\npaths: %s" % (result.accepted, result.paths) def on_buttonOpenFile_mouseClick(self, event): wildcard = "JPG files (*.jpg;*.jpeg)|*.jpeg;*.JPG;*.JPEG;*.jpg|GIF files (*.gif)|*.GIF;*.gif|All Files (*.*)|*.*" # wildcard = '*.py' result = dialog.openFileDialog(wildcard=wildcard) self.components.fldResults.text = "openFileDialog result:\naccepted: %s\npaths: %s" % (result.accepted, result.paths) def on_buttonSaveFile_mouseClick(self, event): wildcard = "JPG files (*.jpg;*.jpeg)|*.jpeg;*.JPG;*.JPEG;*.jpg|GIF files (*.gif)|*.GIF;*.gif|All Files (*.*)|*.*" # wildcard = '*.py' result = dialog.saveFileDialog(wildcard=wildcard) self.components.fldResults.text = "saveFileDialog result:\naccepted: %s\npaths: %s" % (result.accepted, result.paths) def on_buttonDir_mouseClick(self, event): result = dialog.directoryDialog(self, 'Choose a directory', 'a') self.components.fldResults.text = "directoryDialog result:\naccepted: %s\npath: %s" % (result.accepted, result.path) """ You can pass in a specific icon (default is wx.ICON_INFORMATION) as well as the buttons (default is wx.OK | wx.CANCEL) wx.ICON_EXCLAMATION # Shows an exclamation mark icon. wx.ICON_HAND # Shows an error icon. wx.ICON_ERROR # Shows an error icon - the same as wxICON_HAND. wx.ICON_QUESTION # Shows a question mark icon. wx.ICON_INFORMATION # Shows an information (i) icon. wx.OK # Show an OK button. wx.CANCEL # Show a Cancel button. wx.YES_NO # Show Yes and No buttons. wx.YES_DEFAULT # Used with wx.YES_NO, makes Yes button the default - which is the default behaviour. wx.NO_DEFAULT # Used with wx.YES_NO, makes No button the default. """ def on_buttonMessage_mouseClick(self, event): """ result = dialog.messageDialog(self, 'a message', 'a title', wx.ICON_ERROR | wx.YES_NO) """ result = dialog.messageDialog(self, 'a message', 'a title', wx.ICON_INFORMATION | wx.YES_NO | wx.NO_DEFAULT | wx.CANCEL) #result = dialog.messageDialog(self, 'a message', 'a title') self.components.fldResults.text = "messageDialog result:\naccepted: %s\nreturnedString: %s" % (result.accepted, result.returnedString) # you can pass in an additional aStyle parameter # of wx.TE_PASSWORD or wx.TE_MULTILINE def on_buttonTextEntry_mouseClick(self, event): result = dialog.textEntryDialog(self, 'What is your favorite language?', 'A window title', 'Python') """ result = dialog.textEntryDialog(self, 'What is your favorite language?', 'A window title', 'Python', wx.TE_MULTILINE) """ self.components.fldResults.text = "textEntryDialog result:\naccepted: %s\nreturnedString: %s\ntext: %s" % (result.accepted, result.returnedString, result.text) def on_buttonScrolledMessage_mouseClick(self, event): base, ext = os.path.splitext(os.path.split(sys.argv[0])[-1]) filename = base + ".py" if os.path.exists(filename): f = open(filename, "r") msg = f.read() else: msg = "Can't find the file dialogs.py" result = dialog.scrolledMessageDialog(self, msg, filename) self.components.fldResults.text = "scrolledMessageDialog result:\naccepted: %s" % (result.accepted) def on_buttonAlert_mouseClick(self, event): result = dialog.alertDialog(self, 'a message', 'a title') self.components.fldResults.text = "alertDialog result:\naccepted: %s\nreturnedString: %s" % (result.accepted, result.returnedString) def on_buttonMinimalDialog_mouseClick(self, event): result = minimalDialog.minimalDialog(self, 'hello minimal') self.components.fldResults.text = "minimalDialog result:\naccepted: %s\ntext: %s" % (result.accepted, result.text) if __name__ == '__main__': app = model.Application(Dialogs) app.MainLoop()
__author__ = 'demi' # Question 9: Deep Reverse # Define a procedure, deep_reverse, that takes as input a list, # and returns a new list that is the deep reverse of the input list. # This means it reverses all the elements in the list, and if any # of those elements are lists themselves, reverses all the elements # in the inner list, all the way down. # Note: The procedure must not change the input list. # The procedure is_list below is from Homework 6. It returns True if # p is a list and False if it is not. def is_list(p): return isinstance(p, list) def deep_reverse(l): if is_list(l): length = len(l) newlist = [i for i in l] i = 0 half = int(length/2) while (i < half): first = l[i] last = l[length - i - 1] first = deep_reverse(first) last = deep_reverse(last) newlist[i] = last newlist[length - i - 1] = first i += 1 if length % 2 != 0 and is_list(newlist[half]): newlist[half] = deep_reverse(newlist[half]) return newlist return l #For example, p = [1, [2, 3], [4, 5]] print(deep_reverse(p)) #>>> [[5, 4], [3, 2], 1] # print(p) # p = [1, [2, 3, [4, [5, 6]]]] # print(deep_reverse(p)) # #>>> [[[[6, 5], 4], 3, 2], 1] # print(p) # #>>> [1, [2, 3, [4, [5, 6]]]] # # q = [1, [2,3], 4, [5,6]] # print(deep_reverse(q)) # #>>> [ [6,5], 4, [3, 2], 1] # print(q) #>>> [1, [2,3], 4, [5,6]]
test_data = [3,4,3,1,2] data = [3,4,1,2,1,2,5,1,2,1,5,4,3,2,5,1,5,1,2,2,2,3,4,5,2,5,1,3,3,1,3,4,1,5,3,2,2,1,3,2,5,1,1,4,1,4,5,1,3,1,1,5,3,1,1,4,2,2,5,1,5,5,1,5,4,1,5,3,5,1,1,4,1,2,2,1,1,1,4,2,1,3,1,1,4,5,1,1,1,1,1,5,1,1,4,1,1,1,1,2,1,4,2,1,2,4,1,3,1,2,3,2,4,1,1,5,1,1,1,2,5,5,1,1,4,1,2,2,3,5,1,4,5,4,1,3,1,4,1,4,3,2,4,3,2,4,5,1,4,5,2,1,1,1,1,1,3,1,5,1,3,1,1,2,1,4,1,3,1,5,2,4,2,1,1,1,2,1,1,4,1,1,1,1,1,5,4,1,3,3,5,3,2,5,5,2,1,5,2,4,4,1,5,2,3,1,5,3,4,1,5,1,5,3,1,1,1,4,4,5,1,1,1,3,1,4,5,1,2,3,1,3,2,3,1,3,5,4,3,1,3,4,3,1,2,1,1,3,1,1,3,1,1,4,1,2,1,2,5,1,1,3,5,3,3,3,1,1,1,1,1,5,3,3,1,1,3,4,1,1,4,1,1,2,4,4,1,1,3,1,3,2,2,1,2,5,3,3,1,1] max_days = 80 #data = test_data class Fish(): def __init__(self, starting_count = 8) -> None: self.counter = starting_count self.first_time = True def decrement_and_spawn(self): self.counter -= 1 if self.counter < 0: self.counter = 6 return True return False fishes = [Fish(timer) for timer in data] new_fish = [] for day_num in range(max_days): for fish in fishes: if fish.decrement_and_spawn(): new_fish.append(Fish()) fishes.extend(new_fish) new_fish.clear() print(len(fishes))
import asyncio from typing import Union, List from abc import ABCMeta, abstractmethod __all__ = ["AbstractApp"] class AbstractApp(metaclass=ABCMeta): def __init__( self, host: Union[str, None] = None, port: Union[str, int, None] = None, loop: "asyncio.AbstractEventLoop" = None, limit: int = 10, ): self._host = host or "localhost" self._port = port or 8000 self._loop = loop or asyncio.get_event_loop() self._limit = limit @abstractmethod async def run_server(self): pass
#!/usr/bin/python def rest_server(dummy,state): from bottle import route, run, get, post, request, static_file, abort from subprocess import call from datetime import datetime import set_time import config as conf import os basedir = os.path.dirname(__file__) wwwdir = basedir+'/www/' @route('/') def docroot(): return static_file('index.html',wwwdir) @route('/<filepath:path>') def servfile(filepath): return static_file(filepath,wwwdir) @route('/curtemp') def curtemp(): return str(state['temp']) @get('/settemp') def settemp(): return str(state['settemp']) @get('/setsteamtemp') def setsteamtemp(): return str(state['setsteamtemp']) @post('/settemp') def post_settemp(): try: settemp = float(request.forms.get('settemp')) if settemp >= 10 and settemp <= 110 : state['settemp'] = settemp state['settemp_orig'] = settemp return str(settemp) else: pass # abort(400,'Set temp out of range 10-110.') except: pass # abort(400,'Invalid number for set temp.') @post('/setsteamtemp') def post_setsteamtemp(): try: setsteamtemp = float(request.forms.get('setsteamtemp')) if setsteamtemp >= 110 and setsteamtemp <= 150 : state['setsteamtemp'] = setsteamtemp return str(setsteamtemp) else: pass # abort(400,'Set temp out of range 110-150.') except: pass # abort(400,'Invalid number for set temp.') @post('/getclienttime') def post_clienttime(): try: clienttime = float(request.forms.get('getclienttime'))/1000 ctv = datetime.fromtimestamp(clienttime) set_time.set_time((ctv.year, ctv.month, ctv.day, ctv.hour, ctv.minute, ctv.second, 0)) except: pass # abort(400,'Could not synchronize time') @post('/TimerOnMo') def post_TimerOnMo(): TimerOnMo = request.forms.get('TimerOnMo') try: datetime.strptime(TimerOnMo,'%H:%M') except: pass # abort(400,'Invalid time format.') state['TimerOnMo'] = TimerOnMo return str(TimerOnMo) @post('/TimerOnTu') def post_TimerOnTu(): TimerOnTu = request.forms.get('TimerOnTu') try: datetime.strptime(TimerOnTu,'%H:%M') except: pass # abort(400,'Invalid time format.') state['TimerOnTu'] = TimerOnTu return str(TimerOnTu) @post('/TimerOnWe') def post_TimerOnWe(): TimerOnWe = request.forms.get('TimerOnWe') try: datetime.strptime(TimerOnWe,'%H:%M') except: pass # abort(400,'Invalid time format.') state['TimerOnWe'] = TimerOnWe return str(TimerOnWe) @post('/TimerOnTh') def post_TimerOnTh(): TimerOnTh = request.forms.get('TimerOnTh') try: datetime.strptime(TimerOnTh,'%H:%M') except: pass # abort(400,'Invalid time format.') state['TimerOnTh'] = TimerOnTh return str(TimerOnTh) @post('/TimerOnFr') def post_TimerOnFr(): TimerOnFr = request.forms.get('TimerOnFr') try: datetime.strptime(TimerOnFr,'%H:%M') except: pass # abort(400,'Invalid time format.') state['TimerOnFr'] = TimerOnFr return str(TimerOnFr) @post('/TimerOnSa') def post_TimerOnSa(): TimerOnSa = request.forms.get('TimerOnSa') try: datetime.strptime(TimerOnSa,'%H:%M') except: pass # abort(400,'Invalid time format.') state['TimerOnSa'] = TimerOnSa return str(TimerOnSa) @post('/TimerOnSu') def post_TimerOnSu(): TimerOnSu = request.forms.get('TimerOnSu') try: datetime.strptime(TimerOnSu,'%H:%M') except: pass # abort(400,'Invalid time format.') state['TimerOnSu'] = TimerOnSu return str(TimerOnSu) @post('/TimerOffMo') def post_TimerOffMo(): TimerOffMo = request.forms.get('TimerOffMo') try: datetime.strptime(TimerOffMo,'%H:%M') except: pass # abort(400,'Invalid time format.') state['TimerOffMo'] = TimerOffMo return str(TimerOffMo) @post('/TimerOffTu') def post_TimerOffTu(): TimerOffTu = request.forms.get('TimerOffTu') try: datetime.strptime(TimerOffTu,'%H:%M') except: pass # abort(400,'Invalid time format.') state['TimerOffTu'] = TimerOffTu return str(TimerOffTu) @post('/TimerOffWe') def post_TimerOffWe(): TimerOffWe = request.forms.get('TimerOffWe') try: datetime.strptime(TimerOffWe,'%H:%M') except: pass # abort(400,'Invalid time format.') state['TimerOffWe'] = TimerOffWe return str(TimerOffWe) @post('/TimerOffTh') def post_TimerOffTh(): TimerOffTh = request.forms.get('TimerOffTh') try: datetime.strptime(TimerOffTh,'%H:%M') except: pass # abort(400,'Invalid time format.') state['TimerOffTh'] = TimerOffTh return str(TimerOffTh) @post('/TimerOffFr') def post_TimerOffFr(): TimerOffFr = request.forms.get('TimerOffFr') try: datetime.strptime(TimerOffFr,'%H:%M') except: pass # abort(400,'Invalid time format.') state['TimerOffFr'] = TimerOffFr return str(TimerOffFr) @post('/TimerOffSa') def post_TimerOffSa(): TimerOffSa = request.forms.get('TimerOffSa') try: datetime.strptime(TimerOffSa,'%H:%M') except: pass # abort(400,'Invalid time format.') state['TimerOffSa'] = TimerOffSa return str(TimerOffSa) @post('/TimerOffSu') def post_TimerOffSu(): TimerOffSu = request.forms.get('TimerOffSu') try: datetime.strptime(TimerOffSu,'%H:%M') except: pass # abort(400,'Invalid time format.') state['TimerOffSu'] = TimerOffSu return str(TimerOffSu) @get('/allstats') def allstats(): return dict(state) @route('/restart') def restart(): call(["reboot"]) return ''; @route('/shutdown') def shutdown(): call(["shutdown","-h","now"]) return ''; @get('/healthcheck') def healthcheck(): return 'OK' run(host='0.0.0.0',port=conf.port,server='auto')
# Copyright 2018-2021 Jakub Kuczys (https://github.com/jack1142) # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import collections.abc import re import typing from redbot import VersionInfo from strictyaml import Regex from strictyaml.exceptions import YAMLSerializationError, YAMLValidationError from strictyaml.utils import is_string from strictyaml.yamllocation import YAMLChunk __all__ = ("PythonVersion", "RedVersion") if typing.TYPE_CHECKING: # TODO: stub strictyaml # this is awful workaround (along with the ignore missing imports in mypy.ini) ScalarValidator = object else: from strictyaml import ScalarValidator class PythonVersion(ScalarValidator): REGEX = re.compile(r"(\d+)\.(\d+)\.(\d+)") def __init__(self) -> None: self._matching_message = "when expecting Python version (MAJOR.MINOR.MICRO)" def validate_scalar(self, chunk: YAMLChunk) -> typing.List[int]: match = self.REGEX.fullmatch(chunk.contents) if match is None: raise YAMLValidationError( self._matching_message, "found non-matching string", chunk ) return [int(group) for group in match.group(1, 2, 3)] def to_yaml(self, data: typing.Any) -> str: if isinstance(data, collections.abc.Sequence): if len(data) != 3: raise YAMLSerializationError( f"expected a sequence of 3 elements, got {len(data)} elements" ) for item in data: if not isinstance(item, int): raise YAMLSerializationError( f"expected int, got '{item}' of type '{type(item).__name__}'" ) if item < 0: raise YAMLSerializationError( f"expected non-negative int, got {item}" ) return ".".join(str(segment) for segment in data) if is_string(data): # we just validated that it's a string version_string = typing.cast(str, data) if self.REGEX.fullmatch(version_string) is None: raise YAMLSerializationError( "expected Python version (MAJOR.MINOR.MICRO)," f" got '{version_string}'" ) return version_string raise YAMLSerializationError( "expected string or sequence," f" got '{data}' of type '{type(data).__name__}'" ) def RedVersion() -> Regex: return Regex(VersionInfo._VERSION_STR_PATTERN.pattern)
import hashlib from Crypto.Hash import MD2, MD4 from hashlib import md5 class CryptographerMD2: def __init__(self): pass def encrypt(self, plain_text): if type(plain_text) == str: plain_text = plain_text.encode('utf-8') cipher = MD2.new(plain_text) cipher_text = cipher.hexdigest() return cipher_text class CryptographerMD4: def __init__(self): pass def encrypt(self, plain_text): if type(plain_text) == str: plain_text = plain_text.encode('utf-8') cipher = MD4.new(plain_text) cipher_text = cipher.hexdigest() return cipher_text class CryptographerMD5: def __init__(self): pass def encrypt(self, plain_text): if type(plain_text) == str: plain_text = plain_text.encode('utf-8') cipher = md5(plain_text) cipher_text = cipher.hexdigest() return cipher_text class CryptographerRIPEMD: def __init__(self): pass def encrypt(self, plain_text): if type(plain_text) == str: plain_text = plain_text.encode('utf-8') cipher = hashlib.new('ripemd160') cipher.update(plain_text) cipher_text = cipher.hexdigest() return cipher_text class CryptographerWHIRLPOOL: def __init__(self): pass def encrypt(self, plain_text): if type(plain_text) == str: plain_text = plain_text.encode('utf-8') cipher = hashlib.new('whirlpool') cipher.update(plain_text) cipher_text = cipher.hexdigest() return cipher_text class CryptographerSHA1: def __init__(self): pass def encrypt(self, plain_text): if type(plain_text) == str: plain_text = plain_text.encode('utf-8') msg = hashlib.sha1(plain_text) return msg.hexdigest() class CryptographerSHA224: def __init__(self): pass def encrypt(self, plain_text): if type(plain_text) == str: plain_text = plain_text.encode('utf-8') msg = hashlib.sha224(plain_text) return msg.hexdigest() class CryptographerSHA256: def __init__(self): pass def encrypt(self, plain_text): is_string = False if type(plain_text) == str: plain_text = plain_text.encode('utf-8') msg = hashlib.sha256(plain_text) return msg.hexdigest() class CryptographerSHA384: def __init__(self): pass def encrypt(self, plain_text): if type(plain_text) == str: plain_text = plain_text.encode('utf-8') msg = hashlib.sha384(plain_text) return msg.hexdigest() class CryptographerSHA512: def __init__(self): pass def encrypt(self, plain_text): if type(plain_text) == str: plain_text = plain_text.encode('utf-8') msg = hashlib.sha512(plain_text) return msg.hexdigest()
import torch import data as Data import model as Model import argparse import logging import core.logger as Logger import core.metrics as Metrics from tensorboardX import SummaryWriter import os import numpy as np if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument('-c', '--config', type=str, default='config/sr_sr3_16_128.json', help='JSON file for configuration') parser.add_argument('-p', '--phase', type=str, choices=['train', 'val'], help='Run either train(training) or val(generation)', default='train') parser.add_argument('-gpu', '--gpu_ids', type=str, default=None) parser.add_argument('-debug', '-d', action='store_true') # parse configs args = parser.parse_args() opt = Logger.parse(args) # Convert to NoneDict, which return None for missing key. opt = Logger.dict_to_nonedict(opt) # logging torch.backends.cudnn.enabled = True torch.backends.cudnn.benchmark = True Logger.setup_logger(None, opt['path']['log'], 'train', level=logging.INFO, screen=True) Logger.setup_logger('val', opt['path']['log'], 'val', level=logging.INFO) logger = logging.getLogger('base') logger.info(Logger.dict2str(opt)) tb_logger = SummaryWriter(log_dir=opt['path']['tb_logger']) # dataset for phase, dataset_opt in opt['datasets'].items(): if phase == 'train' and args.phase != 'val': train_set = Data.create_dataset(dataset_opt, phase) train_loader = Data.create_dataloader( train_set, dataset_opt, phase) elif phase == 'val': val_set = Data.create_dataset(dataset_opt, phase) val_loader = Data.create_dataloader( val_set, dataset_opt, phase) logger.info('Initial Dataset Finished') # model diffusion = Model.create_model(opt) logger.info('Initial Model Finished') # Train current_step = diffusion.begin_step current_epoch = diffusion.begin_epoch n_iter = opt['train']['n_iter'] if opt['path']['resume_state']: logger.info('Resuming training from epoch: {}, iter: {}.'.format( current_epoch, current_step)) diffusion.set_new_noise_schedule( opt['model']['beta_schedule'][opt['phase']], schedule_phase=opt['phase']) if opt['phase'] == 'train': while current_step < n_iter: current_epoch += 1 for _, train_data in enumerate(train_loader): current_step += 1 if current_step > n_iter: break diffusion.feed_data(train_data) diffusion.optimize_parameters() # log if current_step % opt['train']['print_freq'] == 0: logs = diffusion.get_current_log() message = '<epoch:{:3d}, iter:{:8,d}> '.format( current_epoch, current_step) for k, v in logs.items(): message += '{:s}: {:.4e} '.format(k, v) tb_logger.add_scalar(k, v, current_step) logger.info(message) # validation if current_step % opt['train']['val_freq'] == 0: avg_psnr = 0.0 idx = 0 result_path = '{}/{}'.format(opt['path'] ['results'], current_epoch) os.makedirs(result_path, exist_ok=True) diffusion.set_new_noise_schedule( opt['model']['beta_schedule']['val'], schedule_phase='val') for _, val_data in enumerate(val_loader): idx += 1 diffusion.feed_data(val_data) diffusion.test(continous=False) visuals = diffusion.get_current_visuals() sr_img = Metrics.tensor2img(visuals['SR']) # uint8 hr_img = Metrics.tensor2img(visuals['HR']) # uint8 lr_img = Metrics.tensor2img(visuals['LR']) # uint8 fake_img = Metrics.tensor2img(visuals['INF']) # uint8 # generation Metrics.save_img( hr_img, '{}/{}_{}_hr.png'.format(result_path, current_step, idx)) Metrics.save_img( sr_img, '{}/{}_{}_sr.png'.format(result_path, current_step, idx)) Metrics.save_img( lr_img, '{}/{}_{}_lr.png'.format(result_path, current_step, idx)) Metrics.save_img( fake_img, '{}/{}_{}_inf.png'.format(result_path, current_step, idx)) tb_logger.add_image( 'Iter_{}'.format(current_step), np.transpose(np.concatenate( (fake_img, sr_img, hr_img), axis=1), [2, 0, 1]), idx) avg_psnr += Metrics.calculate_psnr( sr_img, hr_img) avg_psnr = avg_psnr / idx diffusion.set_new_noise_schedule( opt['model']['beta_schedule']['train'], schedule_phase='train') # log logger.info('# Validation # PSNR: {:.4e}'.format(avg_psnr)) logger_val = logging.getLogger('val') # validation logger logger_val.info('<epoch:{:3d}, iter:{:8,d}> psnr: {:.4e}'.format( current_epoch, current_step, avg_psnr)) # tensorboard logger tb_logger.add_scalar('psnr', avg_psnr, current_step) if current_step % opt['train']['save_checkpoint_freq'] == 0: logger.info('Saving models and training states.') diffusion.save_network(current_epoch, current_step) # save model logger.info('End of training.') else: logger.info('Begin Model Evaluation.') avg_psnr = 0.0 avg_ssim = 0.0 idx = 0 result_path = '{}'.format(opt['path']['results']) os.makedirs(result_path, exist_ok=True) for _, val_data in enumerate(val_loader): idx += 1 diffusion.feed_data(val_data) diffusion.test(continous=True) visuals = diffusion.get_current_visuals() hr_img = Metrics.tensor2img(visuals['HR']) # uint8 lr_img = Metrics.tensor2img(visuals['LR']) # uint8 fake_img = Metrics.tensor2img(visuals['INF']) # uint8 sr_img_mode = 'grid' if sr_img_mode == 'single': # single img series sr_img = visuals['SR'] # uint8 sample_num = sr_img.shape[0] for iter in range(0, sample_num): Metrics.save_img( Metrics.tensor2img(sr_img[iter]), '{}/{}_{}_sr_{}.png'.format(result_path, current_step, idx, iter)) else: # grid img sr_img = Metrics.tensor2img(visuals['SR']) # uint8 Metrics.save_img( sr_img, '{}/{}_{}_sr_process.png'.format(result_path, current_step, idx)) Metrics.save_img( Metrics.tensor2img(visuals['SR'][-1]), '{}/{}_{}_sr.png'.format(result_path, current_step, idx)) Metrics.save_img( hr_img, '{}/{}_{}_hr.png'.format(result_path, current_step, idx)) Metrics.save_img( lr_img, '{}/{}_{}_lr.png'.format(result_path, current_step, idx)) Metrics.save_img( fake_img, '{}/{}_{}_inf.png'.format(result_path, current_step, idx)) # generation avg_psnr += Metrics.calculate_psnr( Metrics.tensor2img(visuals['SR'][-1]), hr_img) avg_ssim += Metrics.calculate_ssim( Metrics.tensor2img(visuals['SR'][-1]), hr_img) avg_psnr = avg_psnr / idx avg_ssim = avg_ssim / idx # log logger.info('# Validation # PSNR: {:.4e}'.format(avg_psnr)) logger.info('# Validation # SSIM: {:.4e}'.format(avg_ssim)) logger_val = logging.getLogger('val') # validation logger logger_val.info('<epoch:{:3d}, iter:{:8,d}> psnr: {:.4e}, ssim:{:.4e}'.format( current_epoch, current_step, avg_psnr, avg_ssim))
__author__ = "Lukas McClelland <lumcclel@cisco.com>" from unicon.plugins.iosxe.statemachine import IosXESingleRpStateMachine class IosXECat8kSingleRpStateMachine(IosXESingleRpStateMachine): def create(self): super().create()
#!/usr/bin/env python # -*- coding: utf-8 -*- # 3rd party imports import numpy as np # Local imports from .c_4_grad import c_4_grad from .gradient import gradient from .avg_4sc import avg_4sc from .ts_vec_xyz import ts_vec_xyz __author__ = "Louis Richard" __email__ = "louisr@irfu.se" __copyright__ = "Copyright 2020-2021" __license__ = "MIT" __version__ = "2.3.7" __status__ = "Prototype" def st_diff(r_mms, b_mms, lmn): r"""Computes velocity of the structure using spatio-temporal derivative method [13]_ [14]_ as .. math:: \\mathbf{V}_{str}^{\\mathbf{LMN}} = -\\textrm{d}_t \\mathbf{B}^{\\mathbf{LMN}}\\left [\\nabla^{\\mathbf{LMN}} \\mathbf{B}^{\\mathbf{LMN}}\\right]^T \\left [ \\mathbf{S}^{\\mathbf{LMN}}\\right ]^{-1} where :math:`\\mathbf{B}^{\\mathbf{LMN}}`, :math:`\\nabla^{\\mathbf{ LMN}}\\mathbf{B}^{\\mathbf{LMN}}`, :math:`\\mathbf{S}^{\\mathbf{LMN}}` and :math:`\\mathbf{V}_{str}^{\\mathbf{LMN}}` are namely the magnetic field, its gradient, its rotation rate tensor and the velocity of the structure in the LMN coordinates system. Parameters ---------- r_mms : list of xarray.DataArray Spacecraft positions. b_mms : list of xarray.DataArray Background magnetic field. lmn : ndarray Structure coordinates system. Returns ------- v_str : xarray.DataArray Velocity of the structure in its coordinates system. References ---------- .. [13] Shi, Q. Q., Shen, C., Pu, Z. Y., Dunlop, M. W., Zong, Q. G., Zhang, H., et al. (2005), Dimensional analysis of observed structures using multipoint magnetic field measurements: Application to Cluster. Geophysical Research Letters, 32, L12105. doi : https://doi.org/10.1029/2005GL022454. .. [14] Shi, Q. Q., Shen, C., Dunlop, M. W., Pu, Z. Y., Zong, Q. G., Liu, Z. X., et al. (2006), Motion of observed structures calculated from multi‐point magnetic field measurements: Application to Cluster. Geophysical Research Letters, 33, L08109. doi : https://doi.org/10.1029/2005GL025073. """ # Compute magnetic field at the center of mass of the tetrahedron b_xyz = avg_4sc(b_mms) # Gradient of the magnetic field grad_b = c_4_grad(r_mms, b_mms) # Time derivative of the magnetic field at the center of mass of the # tetrahedron db_dt = gradient(b_xyz) # Transform gradient to LMN frame l_grad_b = np.matmul(grad_b.data, lmn[:, 0]) m_grad_b = np.matmul(grad_b.data, lmn[:, 1]) n_grad_b = np.matmul(grad_b.data, lmn[:, 2]) # Compute velocity of the structure using MDD v_str = np.zeros(db_dt.shape) v_str[:, 0] = np.sum(db_dt * l_grad_b, axis=1) v_str[:, 0] /= np.linalg.norm(l_grad_b, axis=1) ** 2 v_str[:, 1] = np.sum(db_dt * m_grad_b, axis=1) v_str[:, 1] /= np.linalg.norm(m_grad_b, axis=1) ** 2 v_str[:, 2] = np.sum(db_dt * n_grad_b, axis=1) v_str[:, 2] /= np.linalg.norm(n_grad_b, axis=1) ** 2 # To time series v_str_xyz = ts_vec_xyz(b_xyz.time.data, -v_str) return v_str_xyz
import tensorflow as tf from tensorflow import keras from modeling import building_model def training(model, train_data, train_labels, epochs, early_stop=False, patience=10): if early_stop: early_stop = keras.callbacks.EarlyStopping(monitor='val_loss', patience=patience) history = model.fit( train_data, train_labels, epochs=epochs, validation_split=0.2, verbose=1, callbacks=[early_stop] ) else: history = model.fit( train_data, train_labels, epochs=epochs, validation_split=0.2, verbose=1, callbacks=[] ) return history
from pytensor.ops.array_ops import * from pytensor.ops.embedding_ops import * from pytensor.ops.loss_ops import * from pytensor.ops.lstm_ops import * from pytensor.ops.math_ops import * from pytensor.ops.rnn_ops import * from pytensor.ops.rnn_util_ops import *
class EPL_Team: def __init__(self,name,slogan="No Slogan",title=0): self.name = name self.slogan = slogan self.title = title def increaseTitle(self): self.title += 1 def changeSong(self,song): self.slogan = song def showClubInfo(self): final = "" final += "Name: "+self.name +"\n" final += "Song: "+self.slogan+"\n" final += "Total No of title: "+str(self.title) return final manu = EPL_Team('Manchester United', 'Glory Glory Man United') chelsea = EPL_Team('Chelsea') print('===================') print(manu.showClubInfo()) print('##################') manu.increaseTitle() print(manu.showClubInfo()) print('===================') print(chelsea.showClubInfo()) chelsea.changeSong('Keep the blue flag flying high') print(chelsea.showClubInfo())
# coding: utf-8 import datetime import numpy as np import pytest from ..tests import test_platform_base from ...types.state import State from ...platform import MovingPlatform, FixedPlatform from ...models.transition.linear import ConstantVelocity, CombinedLinearGaussianTransitionModel from ...sensor.radar.radar import RadarBearingRange from ...types.array import StateVector, CovarianceMatrix def get_3d_expected(i): if i == 0: # static platform or X velocity return np.array([[0, 0, 0], [1, 0, 0], [0, 1, 0], [-1, 0, 0], [0, -1, 0], [0, 0, 1], [0, 0, -1]]) elif i == 1: # y-axis motion return np.array([[0, 0, 0], [0, 1, 0], [-1, 0, 0], [0, -1, 0], [1, 0, 0], [0, 0, 1], [0, 0, -1]]) elif i == 2: # negative x-axis motion return np.array([[0, 0, 0], [-1, 0, 0], [0, -1, 0], [1, 0, 0], [0, 1, 0], [0, 0, 1], [0, 0, -1]]) elif i == 3: # negative y-axis motion return np.array([[0, 0, 0], [0, -1, 0], [1, 0, 0], [0, 1, 0], [-1, 0, 0], [0, 0, 1], [0, 0, -1]]) elif i == 4: # x-y motion return np.array([[0, 0, 0], [1/np.sqrt(2), 1/np.sqrt(2), 0], [-1/np.sqrt(2), 1/np.sqrt(2), 0], [-1/np.sqrt(2), -1/np.sqrt(2), 0], [1/np.sqrt(2), -1/np.sqrt(2), 0], [0, 0, 1], [0, 0, -1]]) elif i == 5: # neg x- neg y motion return np.array([[0, 0, 0], [-1/np.sqrt(2), -1/np.sqrt(2), 0], [1/np.sqrt(2), -1/np.sqrt(2), 0], [1/np.sqrt(2), 1/np.sqrt(2), 0], [-1/np.sqrt(2), 1/np.sqrt(2), 0], [0, 0, 1], [0, 0, -1]]) elif i == 6: # pos x- neg y motion return np.array([[0, 0, 0], [1/np.sqrt(2), -1/np.sqrt(2), 0], [1/np.sqrt(2), 1/np.sqrt(2), 0], [-1/np.sqrt(2), 1/np.sqrt(2), 0], [-1/np.sqrt(2), -1/np.sqrt(2), 0], [0, 0, 1], [0, 0, -1]]) elif i == 7: # neg x- pos y motion return np.array([[0, 0, 0], [-1/np.sqrt(2), 1/np.sqrt(2), 0], [-1/np.sqrt(2), -1/np.sqrt(2), 0], [1/np.sqrt(2), -1/np.sqrt(2), 0], [1/np.sqrt(2), 1/np.sqrt(2), 0], [0, 0, 1], [0, 0, -1]]) elif i == 8: # "z vel" return np.array([[0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 0, -1], [0, -1, 0], [-1, 0, 0], [1, 0, 0]]) elif i == 9: # "-z vel" return np.array([[0, 0, 0], [0, 0, -1], [0, 1, 0], [0, 0, 1], [0, -1, 0], [1, 0, 0], [-1, 0, 0]]) elif i == 10: # "y.z vel" return np.array([[0, 0, 0], [0, 1/np.sqrt(2), 1/np.sqrt(2)], [-1, 0, 0], [0, -1/np.sqrt(2), -1/np.sqrt(2)], [1, 0, 0], [0, -1/np.sqrt(2), 1/np.sqrt(2)], [0, 1/np.sqrt(2), -1/np.sqrt(2)]]) elif i == 11: # "y.-z vel" return np.array([[0, 0, 0], [0, 1/np.sqrt(2), -1/np.sqrt(2)], [-1, 0, 0], [0, -1/np.sqrt(2), 1/np.sqrt(2)], [1, 0, 0], [0, 1/np.sqrt(2), 1/np.sqrt(2)], [0, -1/np.sqrt(2), -1/np.sqrt(2)]]) elif i == 12: # "-y.z vel" return np.array([[0, 0, 0], [0, -1/np.sqrt(2), 1/np.sqrt(2)], [1, 0, 0], [0, 1/np.sqrt(2), -1/np.sqrt(2)], [-1, 0, 0], [0, 1/np.sqrt(2), 1/np.sqrt(2)], [0, -1/np.sqrt(2), -1/np.sqrt(2)]]) elif i == 13: # "-y.-z vel" return np.array([[0, 0, 0], [0, -1/np.sqrt(2), -1/np.sqrt(2)], [1, 0, 0], [0, 1/np.sqrt(2), 1/np.sqrt(2)], [-1, 0, 0], [0, -1/np.sqrt(2), 1/np.sqrt(2)], [0, 1/np.sqrt(2), -1/np.sqrt(2)]]) elif i == 14: # x.z vel return np.array([[0, 0, 0], [1/np.sqrt(2), 0, 1/np.sqrt(2)], [0, 1, 0], [-1/np.sqrt(2), 0, -1/np.sqrt(2)], [0, -1, 0], [-1/np.sqrt(2), 0, 1/np.sqrt(2)], [1/np.sqrt(2), 0, -1/np.sqrt(2)]]) elif i == 15: # -x.z vel return np.array([[0, 0, 0], [-1/np.sqrt(2), 0, 1/np.sqrt(2)], [0, -1, 0], [1/np.sqrt(2), 0, -1/np.sqrt(2)], [0, 1, 0], [1/np.sqrt(2), 0, 1/np.sqrt(2)], [-1/np.sqrt(2), 0, -1/np.sqrt(2)]]) elif i == 16: # x.-z vel return np.array([[0, 0, 0], [1/np.sqrt(2), 0, -1/np.sqrt(2)], [0, 1, 0], [-1/np.sqrt(2), 0, 1/np.sqrt(2)], [0, -1, 0], [1/np.sqrt(2), 0, 1/np.sqrt(2)], [-1/np.sqrt(2), 0, -1/np.sqrt(2)]]) elif i == 17: # -x,-z vel return np.array([[0, 0, 0], [-1/np.sqrt(2), 0, -1/np.sqrt(2)], [0, -1, 0], [1/np.sqrt(2), 0, 1/np.sqrt(2)], [0, 1, 0], [-1/np.sqrt(2), 0, 1/np.sqrt(2)], [1/np.sqrt(2), 0, -1/np.sqrt(2)]]) elif i == 18: # x.y.z vel a = np.cos(np.arctan2(1, np.sqrt(2)) * -1) b = np.sin(np.arctan2(1, np.sqrt(2)) * -1) / np.sqrt(2) return np.array([[0, 0, 0], [1/np.sqrt(3), 1/np.sqrt(3), 1/np.sqrt(3)], [-1/np.sqrt(2), 1/np.sqrt(2), 0], [-1/np.sqrt(3), -1/np.sqrt(3), -1/np.sqrt(3)], [1/np.sqrt(2), -1/np.sqrt(2), 0], [b, b, a], [-b, -b, -a]]) elif i == 19: # -x.-y.-z vel a = np.cos(np.arctan2(-1, np.sqrt(2)) * -1) b = np.sin(np.arctan2(-1, np.sqrt(2)) * -1) / np.sqrt(2) return np.array([[0, 0, 0], [-1/np.sqrt(3), -1/np.sqrt(3), -1/np.sqrt(3)], [1/np.sqrt(2), -1/np.sqrt(2), 0], [1/np.sqrt(3), 1/np.sqrt(3), 1/np.sqrt(3)], [-1/np.sqrt(2), 1/np.sqrt(2), 0], [-b, -b, a], [b, b, -a]]) @pytest.fixture def radars_2d(): # Generate 5 radar models for testing purposes noise_covar = CovarianceMatrix(np.array([[0.015, 0], [0, 0.1]])) measurement_mapping = np.array([0, 2]) # Create 5 simple radar sensor objects radar1 = RadarBearingRange( ndim_state=4, position_mapping=measurement_mapping, noise_covar=noise_covar, ) radar2 = RadarBearingRange( ndim_state=4, position_mapping=measurement_mapping, noise_covar=noise_covar ) radar3 = RadarBearingRange( ndim_state=4, position_mapping=measurement_mapping, noise_covar=noise_covar ) radar4 = RadarBearingRange( ndim_state=4, position_mapping=measurement_mapping, noise_covar=noise_covar ) radar5 = RadarBearingRange( ndim_state=4, position_mapping=measurement_mapping, noise_covar=noise_covar ) return [radar1, radar2, radar3, radar4, radar5] @pytest.fixture def radars_3d(): # Generate 7 radar models for testing purposes noise_covar = CovarianceMatrix(np.array([[0.015, 0], [0, 0.1]])) measurement_mapping = np.array([0, 2, 4]) # Create 5 simple radar sensor objects radar1 = RadarBearingRange( ndim_state=6, position_mapping=measurement_mapping, noise_covar=noise_covar ) radar2 = RadarBearingRange( ndim_state=6, position_mapping=measurement_mapping, noise_covar=noise_covar ) radar3 = RadarBearingRange( ndim_state=6, position_mapping=measurement_mapping, noise_covar=noise_covar ) radar4 = RadarBearingRange( ndim_state=6, position_mapping=measurement_mapping, noise_covar=noise_covar ) radar5 = RadarBearingRange( ndim_state=6, position_mapping=measurement_mapping, noise_covar=noise_covar ) radar6 = RadarBearingRange( ndim_state=6, position_mapping=measurement_mapping, noise_covar=noise_covar ) radar7 = RadarBearingRange( ndim_state=6, position_mapping=measurement_mapping, noise_covar=noise_covar ) return [radar1, radar2, radar3, radar4, radar5, radar6, radar7] @pytest.fixture(scope='session') def mounting_offsets_2d(): # Generate sensor mounting offsets for testing purposes offsets = [[0, 0], [1, 0], [0, 1], [-1, 0], [0, -1]] return [StateVector(offset) for offset in offsets] @pytest.fixture(scope='session') def mounting_offsets_3d(): # Generate sensor mounting offsets for testing purposes offsets = [[0, 0, 0], [1, 0, 0], [0, 1, 0], [-1, 0, 0], [0, -1, 0], [0, 0, 1], [0, 0, -1]] return [StateVector(offset) for offset in offsets] @pytest.fixture(params=[MovingPlatform, FixedPlatform], ids=['MovingPlatform', 'FixedPlatform']) def platform_type(request): return request.param @pytest.fixture(params=[True, False], ids=["Moving", "Static"]) def move(request): return request.param @pytest.fixture(params=[True, False], ids=["Add", "Initialise"]) def add_sensor(request): return request.param testdata_2d = [ StateVector([0, 0, 0, 0]), StateVector([10, 0, 0, 0]), StateVector([0, 1, 0, 0]), StateVector([0, 0, 0, 1]), StateVector([0, -1, 0, 0]), StateVector([0, 0, 0, -1]), StateVector([0, 1, 0, 1]), StateVector([0, -1, 0, -1]), StateVector([0, 1, 0, -1]), StateVector([0, -1, 0, 1]) ] expected_2d = [ # static platform or X velocity np.array([[0, 0], [1, 0], [0, 1], [-1, 0], [0, -1]]), # static platform or X velocity np.array([[0, 0], [1, 0], [0, 1], [-1, 0], [0, -1]]), # static platform or X velocity np.array([[0, 0], [1, 0], [0, 1], [-1, 0], [0, -1]]), # y-axis motion np.array([[0, 0], [0, 1], [-1, 0], [0, -1], [1, 0]]), # negative x-axis motion np.array([[0, 0], [-1, 0], [0, -1], [1, 0], [0, 1]]), # negative y-axis motion np.array([[0, 0], [0, -1], [1, 0], [0, 1], [-1, 0]]), # x-y motion np.array([[0, 0], [1/np.sqrt(2), 1/np.sqrt(2)], [-1/np.sqrt(2), 1/np.sqrt(2)], [-1/np.sqrt(2), -1/np.sqrt(2)], [1/np.sqrt(2), -1/np.sqrt(2)]]), # neg x- neg y motion np.array([[0, 0], [-1/np.sqrt(2), -1/np.sqrt(2)], [1/np.sqrt(2), -1/np.sqrt(2)], [1/np.sqrt(2), 1/np.sqrt(2)], [-1/np.sqrt(2), 1/np.sqrt(2)]]), # pos x- neg y motion np.array([[0, 0], [1/np.sqrt(2), -1/np.sqrt(2)], [1/np.sqrt(2), 1/np.sqrt(2)], [-1/np.sqrt(2), 1/np.sqrt(2)], [-1/np.sqrt(2), -1/np.sqrt(2)]]), # neg x- pos y motion np.array([[0, 0], [-1/np.sqrt(2), 1/np.sqrt(2)], [-1/np.sqrt(2), -1/np.sqrt(2)], [1/np.sqrt(2), -1/np.sqrt(2)], [1/np.sqrt(2), 1/np.sqrt(2)]]) ] @pytest.mark.parametrize( 'state, expected', zip(testdata_2d, expected_2d), ids=["Static", "pos offset", "x vel", "y vel", "-x vel", "-y vel", "x,y vel", "-x,-y vel", "x,-y vel", "-x,y vel"]) def test_2d_platform(state, expected, move, radars_2d, mounting_offsets_2d, add_sensor): # Define time related variables timestamp = datetime.datetime.now() # Define transition model and position for platform model_1d = ConstantVelocity(0.0) # zero noise so pure movement trans_model = CombinedLinearGaussianTransitionModel( [model_1d] * (radars_2d[0].ndim_state // 2)) platform_state = State(state, timestamp) # This defines the position_mapping to the platforms state vector (i.e. x and y) mounting_mapping = np.array([0, 2]) # create a platform with the simple radar mounted for sensor, offset in zip(radars_2d, mounting_offsets_2d): sensor.mounting_offset = offset if add_sensor: platform = MovingPlatform( states=platform_state, transition_model=trans_model, sensors=[], position_mapping=mounting_mapping ) for sensor in radars_2d: platform.add_sensor(sensor) else: platform = MovingPlatform( states=platform_state, transition_model=trans_model, sensors=radars_2d, position_mapping=mounting_mapping ) if move: # Move the platform platform.move(timestamp + datetime.timedelta(seconds=2)) sensor_positions_test(expected, platform) testdata_3d = [ (StateVector([0, 0, 0, 0, 0, 0]), get_3d_expected(0)), (StateVector([10, 0, 0, 0, 0, 0]), get_3d_expected(0)), (StateVector([0, 1, 0, 0, 0, 0]), get_3d_expected(0)), (StateVector([0, 0, 0, 1, 0, 0]), get_3d_expected(1)), (StateVector([0, -1, 0, 0, 0, 0]), get_3d_expected(2)), (StateVector([0, 0, 0, -1, 0, 0]), get_3d_expected(3)), (StateVector([0, 1, 0, 1, 0, 0]), get_3d_expected(4)), (StateVector([0, -1, 0, -1, 0, 0]), get_3d_expected(5)), (StateVector([0, 1, 0, -1, 0, 0]), get_3d_expected(6)), (StateVector([0, -1, 0, 1, 0, 0]), get_3d_expected(7)), (StateVector([0, 0, 0, 0, 0, 1]), get_3d_expected(8)), (StateVector([0, 0, 0, 0, 0, -1]), get_3d_expected(9)), (StateVector([0, 0, 0, 1, 0, 1]), get_3d_expected(10)), (StateVector([0, 0, 0, 1, 0, -1]), get_3d_expected(11)), (StateVector([0, 0, 0, -1, 0, 1]), get_3d_expected(12)), (StateVector([0, 0, 0, -1, 0, -1]), get_3d_expected(13)), (StateVector([0, 1, 0, 0, 0, 1]), get_3d_expected(14)), (StateVector([0, -1, 0, 0, 0, 1]), get_3d_expected(15)), (StateVector([0, 1, 0, 0, 0, -1]), get_3d_expected(16)), (StateVector([0, -1, 0, 0, 0, -1]), get_3d_expected(17)), (StateVector([0, 1, 0, 1, 0, 1]), get_3d_expected(18)), (StateVector([0, -1, 0, -1, 0, -1]), get_3d_expected(19)) ] @pytest.mark.parametrize('state, expected', testdata_3d, ids=[ "Static", "pos offset", "x vel", "y vel", "-x vel", "-y vel", "x,y vel", "-x,-y vel", "x,-y vel", "-x,y vel", "z vel", "-z vel", "y.z vel", "y.-z vel", "-y.z vel", "-y.-z vel", "x.z vel", "-x.z vel", "x.-z vel", "-x,-z vel", "x,y,z vel", "-x,-y,-z vel" ]) def test_3d_platform(state, expected, move, radars_3d, mounting_offsets_3d, add_sensor): # Define time related variables timestamp = datetime.datetime.now() # Define transition model and position for platform model_1d = ConstantVelocity(0.0) # zero noise so pure movement trans_model = CombinedLinearGaussianTransitionModel( [model_1d] * (radars_3d[0].ndim_state // 2)) platform_state = State(state, timestamp) # This defines the position_mapping to the platforms state vector (i.e. x and y) mounting_mapping = np.array([0, 2, 4]) # create a platform with the simple radar mounted for sensor, offset in zip(radars_3d, mounting_offsets_3d): sensor.mounting_offset = offset if add_sensor: platform = MovingPlatform( states=platform_state, transition_model=trans_model, sensors=[], position_mapping=mounting_mapping ) for sensor, offset in zip(radars_3d, mounting_offsets_3d): platform.add_sensor(sensor) else: platform = MovingPlatform( states=platform_state, transition_model=trans_model, sensors=radars_3d, position_mapping=mounting_mapping ) if move: # Move the platform platform.move(timestamp + datetime.timedelta(seconds=2)) sensor_positions_test(expected, platform) @pytest.fixture(scope='session') def rotation_offsets_2d(): # Generate sensor mounting offsets for testing purposes offsets = [[0, 0, 0], [0, 0, np.pi / 4], [0, 0, -np.pi / 4], [0, 0, np.pi / 2], [0, 0, -np.pi / 2]] return [StateVector(offset) for offset in offsets] @pytest.fixture(scope='session') def rotation_offsets_3d(): # Generate sensor rotation offsets for testing purposes offsets = [[0, 0, 0], [np.pi / 4, 0, 0], [0, np.pi / 4, 0], [-np.pi / 4, 0, 0], [0, -np.pi / 4, 0], [0, 0, np.pi / 4], [0, 0, -np.pi / 4]] return [StateVector(offset) for offset in offsets] def expected_orientations_3d(): pi = np.pi offset_3d_movement = np.arctan(1 / np.sqrt(2)) return [np.array([[0., 0., 0.], [pi/4, 0., 0.], [0., pi/4, 0.], [-pi/4, 0., 0.], [0., -pi/4, 0.], [0., 0., pi/4], [0., 0., -pi/4]]), np.array([[0., pi/2, 0.], [pi/4, pi/2, 0.], [0., 3*pi/4, 0.], [-pi/4, pi/2, 0.], [0., pi/4, 0.], [0., pi/2, pi/4], [0., pi/2, -pi/4]]), np.array([[0., 0., pi/2], [pi/4, 0., pi/2], [0., pi/4, pi/2], [-pi/4, 0., pi/2], [0., -pi/4, pi/2], [0., 0., 3*pi/4], [0., 0., pi/4]]), np.array([[0., 0., 0.], [pi/4, 0., 0.], [0., pi/4, 0.], [-pi/4, 0., 0.], [0., -pi/4, 0.], [0., 0., pi/4], [0., 0., -pi/4]]), np.array([[0., pi/2, 0.], [pi/4, pi/2, 0.], [0., 3*pi/4, 0.], [-pi/4, pi/2, 0.], [0., pi/4, 0.], [0., pi/2, pi/4], [0., pi/2, -pi/4]]), np.array([[0., 0., pi/2], [pi/4, 0., pi/2], [0., pi/4, pi/2], [-pi/4, 0., pi/2], [0., -pi/4, pi/2], [0., 0., 3*pi/4], [0., 0., pi/4]]), np.array([[0., pi/4, 0.], [pi/4, pi/4, 0.], [0., pi/2, 0.], [-pi/4, pi/4, 0.], [0., 0., 0.], [0., pi/4, pi/4], [0., pi/4, -pi/4]]), np.array([[0., pi/4, pi/2], [pi/4, pi/4, pi/2], [0., pi/2, pi/2], [-pi/4, pi/4, pi/2], [0., 0., pi/2], [0., pi/4, 3*pi/4], [0., pi/4, pi/4]]), np.array([[0., offset_3d_movement, pi/4], [pi/4, offset_3d_movement, pi/4], [0., pi/4+offset_3d_movement, pi/4], [-pi/4, offset_3d_movement, pi/4], [0., -pi/4+offset_3d_movement, pi/4], [0., offset_3d_movement, pi/2], [0., offset_3d_movement, 0.]]), np.array([[0., 0., pi], [pi/4, 0., pi], [0., pi/4, pi], [-pi/4, 0., pi], [0., -pi/4, pi], [0., 0., 5*pi/4], [0., 0., 3*pi/4]]), np.array([[0., 0., -pi/2], [pi/4, 0., -pi/2], [0., pi/4, -pi/2], [-pi/4, 0., -pi/2], [0., -pi/4, -pi/2], [0., 0., -pi/4], [0., 0., -3*pi/4]]), np.array([[0., -pi/2, 0.], [pi/4, -pi/2, 0.], [0., -pi/4, 0.], [-pi/4, -pi/2, 0.], [0., -3*pi/4, 0.], [0., -pi/2, pi/4], [0., -pi/2, -pi/4]]), np.array([[0., 0., pi], [pi/4, 0., pi], [0., pi/4, pi], [-pi/4, 0., pi], [0., -pi/4, pi], [0., 0., 5*pi/4], [0., 0., 3*pi/4]]), np.array([[0., 0., -pi/2], [pi/4, 0., -pi/2], [0., pi/4, -pi/2], [-pi/4, 0., -pi/2], [0., -pi/4, -pi/2], [0., 0., -pi/4], [0., 0., -3*pi/4]]), np.array([[0., -pi/2, 0.], [pi/4, -pi/2, 0.], [0., -pi/4, 0.], [-pi/4, -pi/2, 0.], [0., -3*pi/4, 0.], [0., -pi/2, pi/4], [0., -pi/2, -pi/4]]), np.array([[0., -pi/4, pi], [pi/4, -pi/4, pi], [0., 0., pi], [-pi/4, -pi/4, pi], [0., -pi/2, pi], [0., -pi/4, 5*pi/4], [0., -pi/4, 3*pi/4]]), np.array([[0., -pi/4, -pi/2], [pi/4, -pi/4, -pi/2], [0., 0., -pi/2], [-pi/4, -pi/4, -pi/2], [0., -pi/2, -pi/2], [0., -pi/4, -pi/4], [0., -pi/4, -3*pi/4]])] def expected_orientations_2d(): pi = np.pi return [ np.array([[0., 0., 0.], [0., 0., pi/4], [0., 0., -pi/4], [0., 0., pi/2], [0., 0., -pi/2]]), np.array([[0., 0., pi/2], [0., 0., 3 * pi/4], [0., 0., pi/4], [0., 0., pi], [0., 0., 0.]]), np.array([[0., 0., 0.], [0., 0., pi/4], [0., 0., -pi/4], [0., 0., pi/2], [0., 0., -pi/2]]), np.array([[0., 0., pi/2], [0., 0., 3 * pi/4], [0., 0., pi/4], [0., 0., pi], [0., 0., 0.]]), np.array([[0., 0., pi/4], [0., 0., pi/2], [0., 0., 0.], [0., 0., 3 * pi/4], [0., 0., -pi/4]]), np.array([[0., 0., pi], [0., 0., 5*pi/4], [0., 0., 3 * pi/4], [0., 0., 3 * pi/2], [0., 0., pi/2]]), np.array([[0., 0., -pi/2], [0., 0., -pi/4], [0., 0., -3 * pi/4], [0., 0., 0.], [0., 0., -pi]]), np.array([[0., 0., pi], [0., 0., 5 * pi/4], [0., 0., 3 * pi/4], [0., 0., 3 * pi/2], [0., 0., pi/2]]), np.array([[0., 0., -pi/2], [0., 0., -pi/4], [0., 0., -3 * pi/4], [0., 0., 0.], [0., 0., -pi]]), np.array([[0., 0., -3 * pi/4], [0., 0., -pi/2], [0., 0., -pi], [0., 0., -pi/4], [0., 0., -5 * pi/4]]) ] @pytest.mark.parametrize('state, expected_platform_orientation, expected_sensor_orientations', zip(*zip(*test_platform_base.orientation_tests_2d), expected_orientations_2d())) def test_rotation_offsets_2d(state, expected_platform_orientation, expected_sensor_orientations, move, radars_2d, rotation_offsets_2d): # Define time related variables timestamp = datetime.datetime.now() # Define transition model and position for platform model_1d = ConstantVelocity(0.0) # zero noise so pure movement trans_model = CombinedLinearGaussianTransitionModel( [model_1d] * (radars_2d[0].ndim_state // 2)) platform_state = State(state, timestamp) # This defines the position_mapping to the platforms state vector (i.e. x and y) mounting_mapping = np.array([0, 2]) # create a platform with the simple radar mounted for sensor, offset in zip(radars_2d, rotation_offsets_2d): sensor.rotation_offset = offset platform = MovingPlatform( states=platform_state, transition_model=trans_model, sensors=radars_2d, position_mapping=mounting_mapping ) if move: # Move the platform platform.move(timestamp + datetime.timedelta(seconds=2)) assert np.allclose(platform.orientation, expected_platform_orientation) assert np.allclose(all_sensor_orientations(platform), expected_sensor_orientations) @pytest.mark.parametrize('state, expected_platform_orientation, expected_sensor_orientations', zip(*zip(*test_platform_base.orientation_tests_3d), expected_orientations_3d())) def test_rotation_offsets_3d(state, expected_platform_orientation, expected_sensor_orientations, move, radars_3d, rotation_offsets_3d): # Define time related variables timestamp = datetime.datetime.now() # Define transition model and position for platform model_1d = ConstantVelocity(0.0) # zero noise so pure movement trans_model = CombinedLinearGaussianTransitionModel( [model_1d] * (radars_3d[0].ndim_state // 2)) platform_state = State(state, timestamp) # This defines the position_mapping to the platforms state vector (i.e. x and y) mounting_mapping = np.array([0, 2, 4]) # create a platform with the simple radar mounted for sensor, offset in zip(radars_3d, rotation_offsets_3d): sensor.rotation_offset = offset platform = MovingPlatform( states=platform_state, transition_model=trans_model, sensors=radars_3d, position_mapping=mounting_mapping ) if move: # Move the platform platform.move(timestamp + datetime.timedelta(seconds=2)) assert np.allclose(platform.orientation, expected_platform_orientation) assert np.allclose(all_sensor_orientations(platform), expected_sensor_orientations) def all_sensor_orientations(platform): sensor_orientations = np.concatenate([sensor.orientation for sensor in platform.sensors], axis=1) return sensor_orientations.T def all_sensor_positions(platform): sensor_positions = np.concatenate([sensor.position for sensor in platform.sensors], axis=1) return sensor_positions.T def test_defaults(radars_3d, platform_type, add_sensor): platform_state = State(state_vector=StateVector([0, 1, 2, 1, 4, 1]), timestamp=datetime.datetime.now()) platform_args = {} if platform_type is MovingPlatform: platform_args['transition_model'] = None if add_sensor: platform = platform_type(states=platform_state, sensors=[], position_mapping=[0, 2, 4], **platform_args) for sensor in radars_3d: platform.add_sensor(sensor) else: platform = platform_type(states=platform_state, sensors=radars_3d, position_mapping=[0, 2, 4], **platform_args) for sensor in radars_3d: assert np.array_equal(sensor.mounting_offset, StateVector([0, 0, 0])) assert np.array_equal(sensor.rotation_offset, StateVector([0, 0, 0])) assert np.array_equal(sensor.position, platform.position) assert np.array_equal(sensor.orientation, platform.orientation) def sensor_positions_test(expected_offset, platform): """ This function asserts that the sensor positions on the platform have been correctly updated when the platform has been moved or sensor mounted on the platform. :param expected_offset: nD array of expected sensor position post rotation :param platform: platform object :return: """ radar_position = all_sensor_positions(platform) platform_position = platform.position expected_radar_position = expected_offset + platform_position.T assert np.allclose(expected_radar_position, radar_position)
#!/usr/bin/env python3 from __future__ import print_function import argparse import io import os import subprocess import sys import tempfile import time from contextlib import ExitStack from functools import partial from threading import Thread import pysam class VariantCallingError (RuntimeError): """Exception class for issues with samtools and varscan subprocesses.""" def __init__(self, message=None, call='', error=''): self.message = message self.call = call.strip() self.error = error.strip() def __str__(self): if self.message is None: return '' if self.error: msg_header = '"{0}" failed with:\n{1}\n\n'.format( self.call, self.error ) else: msg_header = '{0} failed.\n' 'No further information about this error is available.\n\n'.format( self.call ) return msg_header + self.message class VarScanCaller (object): def __init__(self, ref_genome, bam_input_files, max_depth=None, min_mapqual=None, min_basequal=None, threads=1, verbose=False, quiet=True ): self.ref_genome = ref_genome self.bam_input_files = bam_input_files self.max_depth = max_depth self.min_mapqual = min_mapqual self.min_basequal = min_basequal self.threads = threads self.verbose = verbose self.quiet = quiet with pysam.FastaFile(ref_genome) as ref_fa: self.ref_contigs = ref_fa.references self.ref_lengths = ref_fa.lengths self.pileup_engine = ['samtools', 'mpileup'] self.varcall_engine = ['varscan', 'somatic'] self.requires_stdout_redirect = False self.TemporaryContigVCF = partial( tempfile.NamedTemporaryFile, mode='wb', suffix='', delete=False, dir=os.getcwd() ) self.tmpfiles = [] def _get_pysam_pileup_args(self): param_dict = {} if self.max_depth is not None: param_dict['max_depth'] = self.max_depth if self.min_mapqual is not None: param_dict['min_mapping_quality'] = self.min_mapqual if self.min_basequal is not None: param_dict['min_base_quality'] = self.min_basequal param_dict['compute_baq'] = False param_dict['stepper'] = 'samtools' return param_dict def varcall_parallel(self, normal_purity=None, tumor_purity=None, min_coverage=None, min_var_count=None, min_var_freq=None, min_hom_freq=None, p_value=None, somatic_p_value=None, threads=None, verbose=None, quiet=None ): if not threads: threads = self.threads if verbose is None: verbose = self.verbose if quiet is None: quiet = self.quiet # mapping of method parameters to varcall engine command line options varcall_engine_option_mapping = [ ('--normal-purity', normal_purity), ('--tumor-purity', tumor_purity), ('--min-coverage', min_coverage), ('--min-reads2', min_var_count), ('--min-var-freq', min_var_freq), ('--min-freq-for-hom', min_hom_freq), ('--p-value', p_value), ('--somatic-p-value', somatic_p_value), ('--min-avg-qual', self.min_basequal) ] varcall_engine_options = [] for option, value in varcall_engine_option_mapping: if value is not None: varcall_engine_options += [option, str(value)] pileup_engine_options = ['-B'] if self.max_depth is not None: pileup_engine_options += ['-d', str(self.max_depth)] if self.min_mapqual is not None: pileup_engine_options += ['-q', str(self.min_mapqual)] if self.min_basequal is not None: pileup_engine_options += ['-Q', str(self.min_basequal)] # Create a tuple of calls to samtools mpileup and varscan for # each contig. The contig name is stored as the third element of # that tuple. # The calls are stored in the reverse order of the contig list so # that they can be popped off later in the original order calls = [( self.pileup_engine + pileup_engine_options + [ '-r', contig + ':', '-f', self.ref_genome ] + self.bam_input_files, self.varcall_engine + [ '-', '{out}', '--output-vcf', '1', '--mpileup', '1' ] + varcall_engine_options, contig ) for contig in self.ref_contigs[::-1]] if verbose: print('Starting variant calling ..') # launch subprocesses and monitor their status subprocesses = [] error_table = {} tmp_io_started = [] tmp_io_finished = [] self.tmpfiles = [] def enqueue_stderr_output(out, stderr_buffer): for line in iter(out.readline, b''): # Eventually we are going to print the contents of # the stderr_buffer to sys.stderr so we can # decode things here using its encoding. # We do a 'backslashreplace' just to be on the safe side. stderr_buffer.write(line.decode(sys.stderr.encoding, 'backslashreplace')) out.close() try: while subprocesses or calls: while calls and len(subprocesses) < threads: # There are still calls waiting for execution and we # have unoccupied threads so we launch a new combined # call to samtools mpileup and the variant caller. # pop the call arguments from our call stack call = calls.pop() # get the name of the contig that this call is going # to work on contig = call[2] # Based on the contig name, generate a readable and # file system-compatible prefix and use it to create # a named temporary file, to which the call output # will be redirected. # At the moment we create the output file we add it to # the list of all temporary output files so that we can # remove it eventually during cleanup. call_out = self.TemporaryContigVCF( prefix=''.join( c if c.isalnum() else '_' for c in contig ) + '_', ) # maintain a list of variant call outputs # in the order the subprocesses got launched tmp_io_started.append(call_out.name) if self.requires_stdout_redirect: # redirect stdout to the temporary file just created stdout_p2 = call_out stderr_p2 = subprocess.PIPE else: # variant caller wants to write output to file directly stdout_p2 = subprocess.PIPE stderr_p2 = subprocess.STDOUT call[1][call[1].index('{out}')] = call_out.name call_out.close() # for reporting purposes, join the arguments for the # samtools and the variant caller calls into readable # strings c_str = (' '.join(call[0]), ' '.join(call[1])) error_table[c_str] = [io.StringIO(), io.StringIO()] # start the subprocesses p1 = subprocess.Popen( call[0], stdout=subprocess.PIPE, stderr=subprocess.PIPE ) p2 = subprocess.Popen( call[1], stdin=p1.stdout, stdout=stdout_p2, stderr=stderr_p2 ) # subprocess bookkeeping subprocesses.append((c_str, p1, p2, call_out, contig)) # make sure our newly launched call does not block # because its buffers fill up p1.stdout.close() t1 = Thread( target=enqueue_stderr_output, args=(p1.stderr, error_table[c_str][0]) ) t2 = Thread( target=enqueue_stderr_output, args=( p2.stderr if self.requires_stdout_redirect else p2.stdout, error_table[c_str][1] ) ) t1.daemon = t2.daemon = True t1.start() t2.start() if verbose: print( 'Calling variants for contig: {0}' .format(call[2]) ) # monitor all running calls to see if any of them are done for call, p1, p2, ofo, contig in subprocesses: p1_stat = p1.poll() p2_stat = p2.poll() if p1_stat is not None or p2_stat is not None: # There is an outcome for this process! # Lets see what it is if p1_stat or p2_stat: print() print( error_table[call][0].getvalue(), error_table[call][1].getvalue(), file=sys.stderr ) raise VariantCallingError( 'Variant Calling for contig {0} failed.' .format(contig), call='{0} | {1}'.format(call[0], call[1]) ) if p1_stat == 0 and p2_stat is None: # VarScan is not handling the no output from # samtools mpileup situation correctly so maybe # that's the issue here last_words = error_table[call][1].getvalue( ).splitlines()[-4:] if len(last_words) < 4 or any( not msg.startswith('Input stream not ready') for msg in last_words ): break # lets give this process a bit more time # VarScan is waiting for input it will never # get, stop it. p2.terminate() subprocesses.remove((call, p1, p2, ofo, contig)) ofo.close() break if p2_stat == 0: # Things went fine. # maintain a list of variant call outputs # that finished successfully (in the order # they finished) tmp_io_finished.append(ofo.name) if verbose: print() print('Contig {0} finished.'.format(contig)) if not quiet: print() print( 'stderr output from samtools mpileup/' 'bcftools:'.upper(), file=sys.stderr ) print( error_table[call][0].getvalue(), error_table[call][1].getvalue(), file=sys.stderr ) # Discard the collected stderr output from # the call, remove the call from the list of # running calls and close its output file. del error_table[call] subprocesses.remove((call, p1, p2, ofo, contig)) # Closing the output file is important or we # may hit the file system limit for open files # if there are lots of contigs. ofo.close() break # wait a bit in between monitoring cycles time.sleep(2) finally: for call, p1, p2, ofo, contig in subprocesses: # make sure we do not leave running subprocesses behind for proc in (p1, p2): try: proc.terminate() except Exception: pass # close currently open files ofo.close() # store the files with finished content in the order that # the corresponding jobs were launched self.tmpfiles = [f for f in tmp_io_started if f in tmp_io_finished] # Make sure remaining buffered stderr output of # subprocesses does not get lost. # Currently, we don't screen this output for real errors, # but simply rewrite everything. if not quiet and error_table: print() print( 'stderr output from samtools mpileup/bcftools:'.upper(), file=sys.stderr ) for call, errors in error_table.items(): print(' | '.join(call), ':', file=sys.stderr) print('-' * 20, file=sys.stderr) print('samtools mpileup output:', file=sys.stderr) print(errors[0].getvalue(), file=sys.stderr) print('varscan somatic output:', file=sys.stderr) print(errors[1].getvalue(), file=sys.stderr) def _add_ref_contigs_to_header(self, header): for chrom, length in zip(self.ref_contigs, self.ref_lengths): header.add_meta( 'contig', items=[('ID', chrom), ('length', length)] ) def _add_filters_to_header(self, header): varscan_fpfilters = { 'VarCount': 'Fewer than {min_var_count2} variant-supporting reads', 'VarFreq': 'Variant allele frequency below {min_var_freq2}', 'VarAvgRL': 'Average clipped length of variant-supporting reads < ' '{min_var_len}', 'VarReadPos': 'Relative average read position < {min_var_readpos}', 'VarDist3': 'Average distance to effective 3\' end < {min_var_dist3}', 'VarMMQS': 'Average mismatch quality sum for variant reads > ' '{max_var_mmqs}', 'VarMapQual': 'Average mapping quality of variant reads < {min_var_mapqual}', 'VarBaseQual': 'Average base quality of variant reads < {min_var_basequal}', 'Strand': 'Strand representation of variant reads < {min_strandedness}', 'RefAvgRL': 'Average clipped length of ref-supporting reads < ' '{min_ref_len}', 'RefReadPos': 'Relative average read position < {min_ref_readpos}', 'RefDist3': 'Average distance to effective 3\' end < {min_ref_dist3}', 'RefMapQual': 'Average mapping quality of reference reads < ' '{min_ref_mapqual}', 'RefBaseQual': 'Average base quality of ref-supporting reads < ' '{min_ref_basequal}', 'RefMMQS': 'Average mismatch quality sum for ref-supporting reads > ' '{max_ref_mmqs}', 'MMQSdiff': 'Mismatch quality sum difference (var - ref) > ' '{max_mmqs_diff}', 'MinMMQSdiff': 'Mismatch quality sum difference (var - ref) < ' '{max_mmqs_diff}', 'MapQualDiff': 'Mapping quality difference (ref - var) > {max_mapqual_diff}', 'MaxBAQdiff': 'Average base quality difference (ref - var) > ' '{max_basequal_diff}', 'ReadLenDiff': 'Average supporting read length difference (ref - var) > ' '{max_relative_len_diff}', } for filter_id, description in varscan_fpfilters.items(): header.filters.add(filter_id, None, None, description) def _add_indel_info_flag_to_header(self, header): header.info.add( 'INDEL', 0, 'Flag', 'Indicates that the variant is an INDEL' ) def _compile_common_header(self, varcall_template, no_filters=False): # fix the header generated by VarScan # by adding reference and contig information common_header = pysam.VariantHeader() common_header.add_meta('reference', value=self.ref_genome) self._add_ref_contigs_to_header(common_header) if not no_filters: # add filter info self._add_filters_to_header(common_header) # change the source information common_header.add_meta('source', value='varscan.py') # declare an INDEL flag for record INFO fields self._add_indel_info_flag_to_header(common_header) # take the remaining metadata from the template header produced by # VarScan with pysam.VariantFile(varcall_template, 'r') as original_data: varscan_header = original_data.header for sample in varscan_header.samples: common_header.samples.add(sample) common_header.merge(varscan_header) return common_header def pileup_masker(self, mask): def apply_mask_on_pileup(piled_items): for item, status in zip(piled_items, mask): if status: yield item return apply_mask_on_pileup def get_allele_specific_pileup_column_stats( self, allele, pile_column, ref_fetch ): # number of reads supporting the given allele on # forward and reverse strand, and in total var_reads_plus = var_reads_minus = 0 var_supp_read_mask = [] for base in pile_column.get_query_sequences(): if base == allele: # allele supporting read on + strand var_reads_plus += 1 var_supp_read_mask.append(True) elif base.upper() == allele: # allele supporting read on - strand var_reads_minus += 1 var_supp_read_mask.append(True) else: var_supp_read_mask.append(False) var_reads_total = var_reads_plus + var_reads_minus if var_reads_total == 0: # No stats without reads! return None var_supp_only = self.pileup_masker(var_supp_read_mask) # average mapping quality of the reads supporting the # given allele avg_mapping_quality = sum( mq for mq in var_supp_only( pile_column.get_mapping_qualities() ) ) / var_reads_total # for the remaining stats we need access to complete # read information piled_reads = [ p for p in var_supp_only(pile_column.pileups) ] assert len(piled_reads) == var_reads_total sum_avg_base_qualities = 0 sum_dist_from_center = 0 sum_dist_from_3prime = 0 sum_clipped_length = 0 sum_unclipped_length = 0 sum_num_mismatches_as_fraction = 0 sum_mismatch_qualities = 0 for p in piled_reads: sum_avg_base_qualities += sum( p.alignment.query_qualities ) / p.alignment.infer_query_length() sum_clipped_length += p.alignment.query_alignment_length unclipped_length = p.alignment.infer_read_length() sum_unclipped_length += unclipped_length read_center = p.alignment.query_alignment_length / 2 sum_dist_from_center += 1 - abs( p.query_position - read_center ) / read_center if p.alignment.is_reverse: sum_dist_from_3prime += p.query_position / unclipped_length else: sum_dist_from_3prime += 1 - p.query_position / unclipped_length sum_num_mismatches = 0 for qpos, rpos in p.alignment.get_aligned_pairs(): if qpos is not None and rpos is not None: if p.alignment.query_sequence[qpos] != ref_fetch( rpos, rpos + 1 ).upper(): # ref bases can be lowercase! sum_num_mismatches += 1 sum_mismatch_qualities += p.alignment.query_qualities[ qpos ] sum_num_mismatches_as_fraction += ( sum_num_mismatches / p.alignment.query_alignment_length ) avg_basequality = sum_avg_base_qualities / var_reads_total avg_pos_as_fraction = sum_dist_from_center / var_reads_total avg_num_mismatches_as_fraction = ( sum_num_mismatches_as_fraction / var_reads_total ) avg_sum_mismatch_qualities = sum_mismatch_qualities / var_reads_total avg_clipped_length = sum_clipped_length / var_reads_total avg_distance_to_effective_3p_end = ( sum_dist_from_3prime / var_reads_total ) return ( avg_mapping_quality, avg_basequality, var_reads_plus, var_reads_minus, avg_pos_as_fraction, avg_num_mismatches_as_fraction, avg_sum_mismatch_qualities, avg_clipped_length, avg_distance_to_effective_3p_end ) def _postprocess_variant_records(self, invcf, min_var_count2, min_var_count2_lc, min_var_freq2, max_somatic_p, max_somatic_p_depth, min_ref_readpos, min_var_readpos, min_ref_dist3, min_var_dist3, min_ref_len, min_var_len, max_relative_len_diff, min_strandedness, min_strand_reads, min_ref_basequal, min_var_basequal, max_basequal_diff, min_ref_mapqual, min_var_mapqual, max_mapqual_diff, max_ref_mmqs, max_var_mmqs, min_mmqs_diff, max_mmqs_diff, **args): # set FILTER field according to Varscan criteria # multiple FILTER entries must be separated by semicolons # No filters applied should be indicated with MISSING # since posterior filters are always applied to just one sample, # a better place to store the info is in the FT genotype field: # can be PASS, '.' to indicate that filters have not been applied, # or a semicolon-separated list of filters that failed # unfortunately, gemini does not support this field with ExitStack() as io_stack: normal_reads, tumor_reads = ( io_stack.enter_context( pysam.Samfile(fn, 'rb')) for fn in self.bam_input_files ) refseq = io_stack.enter_context(pysam.FastaFile(self.ref_genome)) pileup_args = self._get_pysam_pileup_args() for record in invcf: if any(len(allele) > 1 for allele in record.alleles): # skip indel postprocessing for the moment yield record continue # get pileup for genomic region affected by this variant if record.info['SS'] == '2': # a somatic variant => generate pileup from tumor data pile = tumor_reads.pileup( record.chrom, record.start, record.stop, **pileup_args ) sample_of_interest = 'TUMOR' elif record.info['SS'] in ['1', '3']: # a germline or LOH variant => pileup from normal data pile = normal_reads.pileup( record.chrom, record.start, record.stop, **pileup_args ) sample_of_interest = 'NORMAL' else: # TO DO: figure out if there is anything interesting to do # for SS status codes 0 (reference) and 5 (unknown) yield record continue # apply false-positive filtering a la varscan fpfilter # find the variant site in the pileup columns for pile_column in pile: if pile_column.reference_pos == record.start: break # extract required information # overall read depth at the site read_depth = pile_column.get_num_aligned() assert read_depth > 0 # no multiallelic sites in varscan assert len(record.alleles) == 2 if record.samples[sample_of_interest]['RD'] > 0: ref_stats, alt_stats = [ self.get_allele_specific_pileup_column_stats( allele, pile_column, partial( pysam.FastaFile.fetch, refseq, record.chrom ) ) for allele in record.alleles ] else: ref_stats = None alt_stats = self.get_allele_specific_pileup_column_stats( record.alleles[1], pile_column, partial(pysam.FastaFile.fetch, refseq, record.chrom) ) ref_count = 0 if ref_stats: ref_count = ref_stats[2] + ref_stats[3] if ref_stats[1] < min_ref_basequal: record.filter.add('RefBaseQual') if ref_count >= 2: if ref_stats[0] < min_ref_mapqual: record.filter.add('RefMapQual') if ref_stats[4] < min_ref_readpos: record.filter.add('RefReadPos') # ref_stats[5] (avg_num_mismatches_as_fraction # is not a filter criterion in VarScan fpfilter if ref_stats[6] > max_ref_mmqs: record.filter.add('RefMMQS') if ref_stats[7] < min_ref_len: # VarScan fpfilter does not apply this filter # for indels, but there is no reason # not to do it. record.filter.add('RefAvgRL') if ref_stats[8] < min_ref_dist3: record.filter.add('RefDist3') if alt_stats: alt_count = alt_stats[2] + alt_stats[3] if ( alt_count < min_var_count2_lc ) or ( read_depth >= max_somatic_p_depth and alt_count < min_var_count2 ): record.filter.add('VarCount') if alt_count / read_depth < min_var_freq2: record.filter.add('VarFreq') if alt_stats[1] < min_var_basequal: record.filter.add('VarBaseQual') if alt_count > min_strand_reads: if ( alt_stats[2] / alt_count < min_strandedness ) or ( alt_stats[3] / alt_count < min_strandedness ): record.filter.add('Strand') if alt_stats[2] + alt_stats[3] >= 2: if alt_stats[0] < min_var_mapqual: record.filter.add('VarMapQual') if alt_stats[4] < min_var_readpos: record.filter.add('VarReadPos') # alt_stats[5] (avg_num_mismatches_as_fraction # is not a filter criterion in VarScan fpfilter if alt_stats[6] > max_var_mmqs: record.filter.add('VarMMQS') if alt_stats[7] < min_var_len: # VarScan fpfilter does not apply this filter # for indels, but there is no reason # not to do it. record.filter.add('VarAvgRL') if alt_stats[8] < min_var_dist3: record.filter.add('VarDist3') if ref_count >= 2 and alt_count >= 2: if (ref_stats[0] - alt_stats[0]) > max_mapqual_diff: record.filter.add('MapQualDiff') if (ref_stats[1] - alt_stats[1]) > max_basequal_diff: record.filter.add('MaxBAQdiff') mmqs_diff = alt_stats[6] - ref_stats[6] if mmqs_diff < min_mmqs_diff: record.filter.add('MinMMQSdiff') if mmqs_diff > max_mmqs_diff: record.filter.add('MMQSdiff') if ( 1 - alt_stats[7] / ref_stats[7] ) > max_relative_len_diff: record.filter.add('ReadLenDiff') else: # No variant-supporting reads for this record! # This can happen in rare cases because of # samtools mpileup issues, but indicates a # rather unreliable variant call. record.filter.add('VarCount') record.filter.add('VarFreq') yield record def _indel_flagged_records(self, vcf): for record in vcf: record.info['INDEL'] = True yield record def _merge_generator(self, vcf1, vcf2): try: record1 = next(vcf1) except StopIteration: for record2 in vcf2: yield record2 return try: record2 = next(vcf2) except StopIteration: yield record1 for record1 in vcf1: yield record1 return while True: if (record1.start, record1.stop) < (record2.start, record2.stop): yield record1 try: record1 = next(vcf1) except StopIteration: yield record2 for record2 in vcf2: yield record2 return else: yield record2 try: record2 = next(vcf2) except StopIteration: yield record1 for record1 in vcf1: yield record1 return def merge_and_postprocess(self, snps_out, indels_out=None, no_filters=False, **filter_args): temporary_data = self.tmpfiles self.tmpfiles = [] temporary_snp_files = [f + '.snp.vcf' for f in temporary_data] temporary_indel_files = [f + '.indel.vcf' for f in temporary_data] for f in temporary_data: try: os.remove(f) except Exception: pass def noop_gen(data, **kwargs): for d in data: yield d if no_filters: apply_filters = noop_gen else: apply_filters = self._postprocess_variant_records output_header = self._compile_common_header( temporary_snp_files[0], no_filters ) if indels_out is None: with open(snps_out, 'w') as o: o.write(str(output_header).format(**filter_args)) for snp_f, indel_f in zip( temporary_snp_files, temporary_indel_files ): with pysam.VariantFile(snp_f, 'r') as snp_invcf: # fix the input header on the fly # to avoid Warnings from htslib about missing contig # info self._add_ref_contigs_to_header(snp_invcf.header) self._add_filters_to_header(snp_invcf.header) self._add_indel_info_flag_to_header(snp_invcf.header) with pysam.VariantFile(indel_f, 'r') as indel_invcf: # fix the input header on the fly # to avoid Warnings from htslib about missing # contig info self._add_ref_contigs_to_header(indel_invcf.header) self._add_filters_to_header(indel_invcf.header) self._add_indel_info_flag_to_header( indel_invcf.header ) for record in apply_filters( self._merge_generator( snp_invcf, self._indel_flagged_records(indel_invcf) ), **filter_args ): o.write(str(record)) try: os.remove(snp_f) except Exception: pass try: os.remove(indel_f) except Exception: pass else: with open(snps_out, 'w') as o: o.write(str(output_header).format(**filter_args)) for f in temporary_snp_files: with pysam.VariantFile(f, 'r') as invcf: # fix the input header on the fly # to avoid Warnings from htslib about missing # contig info and errors because of undeclared # filters self._add_ref_contigs_to_header(invcf.header) self._add_filters_to_header(invcf.header) for record in apply_filters( invcf, **filter_args ): o.write(str(record)) try: os.remove(f) except Exception: pass with open(indels_out, 'w') as o: o.write(str(output_header)) for f in temporary_indel_files: with pysam.VariantFile(f, 'r') as invcf: # fix the input header on the fly # to avoid Warnings from htslib about missing # contig info and errors because of undeclared # filters self._add_ref_contigs_to_header(invcf.header) self._add_filters_to_header(invcf.header) self._add_indel_info_flag_to_header(invcf.header) for record in apply_filters( self._indel_flagged_records(invcf), **filter_args ): o.write(str(record)) try: os.remove(f) except Exception: pass def varscan_call(ref_genome, normal, tumor, output_path, **args): """Preparse arguments and orchestrate calling and postprocessing.""" if args.pop('split_output'): if '%T' in output_path: out = ( output_path.replace('%T', 'snp'), output_path.replace('%T', 'indel') ) else: out = ( output_path + '.snp', output_path + '.indel' ) else: out = (output_path, None) instance_args = { k: args.pop(k) for k in [ 'max_depth', 'min_mapqual', 'min_basequal', 'threads', 'verbose', 'quiet' ] } varscan_somatic_args = { k: args.pop(k) for k in [ 'normal_purity', 'tumor_purity', 'min_coverage', 'min_var_count', 'min_var_freq', 'min_hom_freq', 'somatic_p_value', 'p_value' ] } v = VarScanCaller(ref_genome, [normal, tumor], **instance_args) v.varcall_parallel(**varscan_somatic_args) v.merge_and_postprocess(*out, **args) if __name__ == '__main__': p = argparse.ArgumentParser() p.add_argument( 'ref_genome', metavar='reference_genome', help='the reference genome (in fasta format)' ) p.add_argument( '--normal', metavar='BAM_file', required=True, help='the BAM input file of aligned reads from the normal sample' ) p.add_argument( '--tumor', metavar='BAM_file', required=True, help='the BAM input file of aligned reads from the tumor sample' ) p.add_argument( '-o', '--ofile', required=True, metavar='OFILE', dest='output_path', help='Name of the variant output file. With --split-output, the name ' 'may use the %%T replacement token or will be used as the ' 'basename for the two output files to be generated (see ' '-s|--split-output below).' ) p.add_argument( '-s', '--split-output', dest='split_output', action='store_true', default=False, help='indicate that separate output files for SNPs and indels ' 'should be generated (original VarScan behavior). If specified, ' '%%T in the --ofile file name will be replaced with "snp" and ' '"indel" to generate the names of the SNP and indel output ' 'files, respectively. If %%T is not found in the file name, it ' 'will get interpreted as a basename to which ".snp"/".indel" ' 'will be appended.' ) p.add_argument( '-t', '--threads', type=int, default=1, help='level of parallelism' ) p.add_argument( '-v', '--verbose', action='store_true', help='be verbose about progress' ) p.add_argument( '-q', '--quiet', action='store_true', help='suppress output from wrapped tools' ) call_group = p.add_argument_group('Variant calling parameters') call_group.add_argument( '--normal-purity', dest='normal_purity', type=float, default=1.0, help='Estimated purity of the normal sample (default: 1.0)' ) call_group.add_argument( '--tumor-purity', dest='tumor_purity', type=float, default=1.0, help='Estimated purity of the tumor sample (default: 1.0)' ) call_group.add_argument( '--max-pileup-depth', dest='max_depth', type=int, default=8000, help='Maximum depth of generated pileups (samtools mpileup -d option; ' 'default: 8000)' ) call_group.add_argument( '--min-basequal', dest='min_basequal', type=int, default=13, help='Minimum base quality at the variant position to use a read ' '(default: 13)' ) call_group.add_argument( '--min-mapqual', dest='min_mapqual', type=int, default=0, help='Minimum mapping quality required to use a read ' '(default: 0)' ) call_group.add_argument( '--min-coverage', dest='min_coverage', type=int, default=8, help='Minimum site coverage required in the normal and in the tumor ' 'sample to call a variant (default: 8)' ) call_group.add_argument( '--min-var-count', dest='min_var_count', type=int, default=2, help='Minimum number of variant-supporting reads required to call a ' 'variant (default: 2)' ) call_group.add_argument( '--min-var-freq', dest='min_var_freq', type=float, default=0.1, help='Minimum variant allele frequency for calling (default: 0.1)' ) call_group.add_argument( '--min-hom-freq', dest='min_hom_freq', type=float, default=0.75, help='Minimum variant allele frequency for homozygous call ' '(default: 0.75)' ) call_group.add_argument( '--p-value', dest='p_value', type=float, default=0.99, help='P-value threshold for heterozygous call (default: 0.99)' ) call_group.add_argument( '--somatic-p-value', dest='somatic_p_value', type=float, default=0.05, help='P-value threshold for somatic call (default: 0.05)' ) filter_group = p.add_argument_group('Posterior variant filter parameters') filter_group.add_argument( '--no-filters', dest='no_filters', action='store_true', help='Disable all posterior variant filters. ' 'If specified, all following options will be ignored' ) filter_group.add_argument( '--min-var-count2', dest='min_var_count2', type=int, default=4, help='Minimum number of variant-supporting reads (default: 4)' ) filter_group.add_argument( '--min-var-count2-lc', dest='min_var_count2_lc', type=int, default=2, help='Minimum number of variant-supporting reads when depth below ' '--somatic-p-depth (default: 2)' ) filter_group.add_argument( '--min-var-freq2', dest='min_var_freq2', type=float, default=0.05, help='Minimum variant allele frequency (default: 0.05)' ) filter_group.add_argument( '--max-somatic-p', dest='max_somatic_p', type=float, default=0.05, help='Maximum somatic p-value (default: 0.05)' ) filter_group.add_argument( '--max-somatic-p-depth', dest='max_somatic_p_depth', type=int, default=10, help='Depth required to run --max-somatic-p filter (default: 10)' ) filter_group.add_argument( '--min-ref-readpos', dest='min_ref_readpos', type=float, default=0.1, help='Minimum average relative distance of site from the ends of ' 'ref-supporting reads (default: 0.1)' ) filter_group.add_argument( '--min-var-readpos', dest='min_var_readpos', type=float, default=0.1, help='Minimum average relative distance of site from the ends of ' 'variant-supporting reads (default: 0.1)' ) filter_group.add_argument( '--min-ref-dist3', dest='min_ref_dist3', type=float, default=0.1, help='Minimum average relative distance of site from the effective ' '3\'end of ref-supporting reads (default: 0.1)' ) filter_group.add_argument( '--min-var-dist3', dest='min_var_dist3', type=float, default=0.1, help='Minimum average relative distance of site from the effective ' '3\'end of variant-supporting reads (default: 0.1)' ) filter_group.add_argument( '--min-ref-len', dest='min_ref_len', type=int, default=90, help='Minimum average trimmed length of reads supporting the ref ' 'allele (default: 90)' ) filter_group.add_argument( '--min-var-len', dest='min_var_len', type=int, default=90, help='Minimum average trimmed length of reads supporting the variant ' 'allele (default: 90)' ) filter_group.add_argument( '--max-len-diff', dest='max_relative_len_diff', type=float, default=0.25, help='Maximum average relative read length difference (ref - var; ' 'default: 0.25)' ) filter_group.add_argument( '--min-strandedness', dest='min_strandedness', type=float, default=0.01, help='Minimum fraction of variant reads from each strand ' '(default: 0.01)' ) filter_group.add_argument( '--min-strand-reads', dest='min_strand_reads', type=int, default=5, help='Minimum allele depth required to run --min-strandedness filter ' '(default: 5)' ) filter_group.add_argument( '--min-ref-basequal', dest='min_ref_basequal', type=int, default=15, help='Minimum average base quality for the ref allele (default: 15)' ) filter_group.add_argument( '--min-var-basequal', dest='min_var_basequal', type=int, default=15, help='Minimum average base quality for the variant allele ' '(default: 15)' ) filter_group.add_argument( '--max-basequal-diff', dest='max_basequal_diff', type=int, default=50, help='Maximum average base quality diff (ref - var; default: 50)' ) filter_group.add_argument( '--min-ref-mapqual', dest='min_ref_mapqual', type=int, default=15, help='Minimum average mapping quality of reads supporting the ref ' 'allele (default: 15)' ) filter_group.add_argument( '--min-var-mapqual', dest='min_var_mapqual', type=int, default=15, help='Minimum average mapping quality of reads supporting the variant ' 'allele (default: 15)' ) filter_group.add_argument( '--max-mapqual-diff', dest='max_mapqual_diff', type=int, default=50, help='Maximum average mapping quality difference (ref - var; ' 'default: 50)' ) filter_group.add_argument( '--max-ref-mmqs', dest='max_ref_mmqs', type=int, default=100, help='Maximum mismatch quality sum of reads supporting the ref ' 'allele (default: 100)' ) filter_group.add_argument( '--max-var-mmqs', dest='max_var_mmqs', type=int, default=100, help='Maximum mismatch quality sum of reads supporting the variant ' 'allele (default: 100)' ) filter_group.add_argument( '--min-mmqs-diff', dest='min_mmqs_diff', type=int, default=0, help='Minimum mismatch quality sum difference (var - ref; default: 0)' ) filter_group.add_argument( '--max-mmqs-diff', dest='max_mmqs_diff', type=int, default=50, help='Maximum mismatch quality sum difference (var - ref; default: 50)' ) args = vars(p.parse_args()) varscan_call(**args)
''' Created on 2021-04-21 see https://stackoverflow.com/a/66110795/1497139 ''' import time from watchdog.observers import Observer from watchdog.events import PatternMatchingEventHandler import sys class Watcher: ''' watch the given path with the given callback ''' def __init__(self, path,patterns=["*.pdf","*.jpg"],debug=False): ''' construct me for the given path Args: path(str): the directory to observer patterns(list): a list of wildcard patterns debug(bool): True if debugging should be switched on ''' self.observer = Observer() self.path = path self.patterns=patterns self.debug=debug def run(self,callback,sleepTime=1,limit=sys.maxsize): ''' run me Args: callback(func): the function to trigger when a file appears sleepTime(float): how often to check for incoming files - default: 1.0 secs limit(float): the maximum time to run the server default: unlimited ''' event_handler = Handler(callback,patterns=self.patterns,debug=self.debug) self.observer.schedule(event_handler, self.path, recursive=True) self.observer.start() runTime=0 try: while runTime<limit: time.sleep(sleepTime) runTime+=sleepTime except Exception as ex: self.observer.stop() if self.debug: print("Error %s " % str(ex)) # don't # we won't terminate if we do # self.observer.join() class Handler(PatternMatchingEventHandler): ''' handle changes for a given wildcard pattern ''' def __init__(self,callback,patterns,debug=False): ''' construct me Args: callback: the function to call patterns: the patterns to trigger on debug(bool): if True print debug output ''' self.callback=callback self.debug=debug # Set the patterns for PatternMatchingEventHandler PatternMatchingEventHandler.__init__( self, patterns=patterns, ignore_directories=True, case_sensitive=False, ) def on_any_event(self, event): if self.debug: print( "[{}] noticed: [{}] on: [{}] ".format( time.asctime(), event.event_type, event.src_path ) ) if "modified" == event.event_type: self.callback(event.src_path)
import matplotlib.pyplot as plt import numpy as np from bandit import Bandit if __name__ == '__main__': k = 5 avg_reward1 = [] estimated_q = [] actual_q = [] action_values = np.random.uniform(low=-10, high=0, size=(k,)) for epsilon in ([0.01, .1, 1, 10]): bdt = Bandit(k, epsilon, action_values) bdt.play(1000) avg_best_reward = bdt.best_avg_reward avg_reward1 = bdt.avg_reward estimated_q = bdt.Q actual_q = action_values print("Actual average value-action"f'{actual_q}') print("Estimated average value-action"f'{estimated_q}') plt.plot(avg_reward1, label=f"epsilon='{epsilon}'") plt.xlabel("Steps") plt.ylabel("Average Reward") plt.title("5-armed Bandit Testbed") plt.plot(avg_best_reward, linestyle='-.', label="best reward") plt.legend() plt.show()
import click from ocrd.cli.ocrd_tool import ocrd_tool_cli from ocrd.cli.workspace import workspace_cli from ocrd.cli.generate_swagger import generate_swagger_cli from ocrd.cli.process import process_cli # TODO server CLI disabled # from ocrd.cli.server import server_cli from ocrd.cli.bashlib import bashlib_cli @click.group() @click.version_option() def cli(): """ CLI to OCR-D """ cli.add_command(ocrd_tool_cli) cli.add_command(workspace_cli) cli.add_command(generate_swagger_cli) cli.add_command(process_cli) # TODO server CLI disabled # cli.add_command(server_cli) cli.add_command(bashlib_cli)
# Copyright 2018 Comcast Cable Communications Management, LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """TODO: Add module docstring.""" from datetime import datetime, timedelta from dateutil.tz import tzlocal import responses from sampledata import forward_zone from vinyldns.record import RecordType, AData from vinyldns.serdes import to_json_string from vinyldns.batch_change import AddRecordChange, DeleteRecordSetChange, BatchChange, BatchChangeRequest, \ DeleteRecordSet, AddRecord, BatchChangeSummary, ListBatchChangeSummaries, \ ValidationError def check_validation_errors_are_same(a, b): assert a.error_type == b.error_type assert a.message == b.message def check_single_changes_are_same(a, b): assert a.zone_id == b.zone_id assert a.zone_name == b.zone_name assert a.record_name == b.record_name assert a.input_name == b.input_name assert a.type == b.type assert a.status == b.status assert a.id == b.id assert a.system_message == b.system_message assert a.record_change_id == b.record_change_id assert a.record_set_id == b.record_set_id if a.type == 'Add': assert a.ttl == b.ttl assert a.record_data == b.record_data if a.validation_errors: for l, r in zip(a.validation_errors, b.validation_errors): check_validation_errors_are_same(l, r) def check_batch_changes_are_same(a, b): assert a.user_id == b.user_id assert a.user_name == b.user_name assert a.comments == b.comments assert a.created_timestamp == b.created_timestamp assert a.status == b.status assert a.id == b.id assert a.owner_group_id == b.owner_group_id assert a.owner_group_name == b.owner_group_name assert a.approval_status == b.approval_status assert a.reviewer_id == b.reviewer_id assert a.reviewer_user_name == b.reviewer_user_name assert a.review_comment == b.review_comment assert a.review_timestamp == b.review_timestamp assert a.scheduled_time == b.scheduled_time for l, r in zip(a.changes, b.changes): check_single_changes_are_same(l, r) def test_create_batch_change(mocked_responses, vinyldns_client): ar = AddRecord('foo.baa.com', RecordType.A, 100, AData('1.2.3.4')) drs = DeleteRecordSet('baz.bar.com', RecordType.A) arc = AddRecordChange(forward_zone.id, forward_zone.name, 'foo', 'foo.bar.com', RecordType.A, 200, AData('1.2.3.4'), 'Complete', 'id1', [], 'system-message', 'rchangeid1', 'rsid1') drc = DeleteRecordSetChange(forward_zone.id, forward_zone.name, 'baz', 'baz.bar.com', RecordType.A, 'Complete', 'id2', [], 'system-message', 'rchangeid2', 'rsid2') # Python 2/3 compatibility try: tomorrow = datetime.now().astimezone() + timedelta(1) except TypeError: tomorrow = datetime.now(tzlocal()).astimezone(tzlocal()) + timedelta(1) bc = BatchChange('user-id', 'user-name', datetime.utcnow(), [arc, drc], 'bcid', 'Scheduled', 'PendingReview', comments='batch change test', owner_group_id='owner-group-id', scheduled_time=tomorrow) mocked_responses.add( responses.POST, 'http://test.com/zones/batchrecordchanges', body=to_json_string(bc), status=200 ) r = vinyldns_client.create_batch_change( BatchChangeRequest( changes=[ar, drs], comments='batch change test', owner_group_id='owner-group-id', scheduled_time=tomorrow )) check_batch_changes_are_same(r, bc) def test_get_batch_change(mocked_responses, vinyldns_client): arc = AddRecordChange(forward_zone.id, forward_zone.name, 'foo', 'foo.bar.com', RecordType.A, 200, AData('1.2.3.4'), 'Complete', 'id1', [], 'system-message', 'rchangeid1', 'rsid1') drc = DeleteRecordSetChange(forward_zone.id, forward_zone.name, 'baz', 'baz.bar.com', RecordType.A, 'Complete', 'id2', [], 'system-message', 'rchangeid2', 'rsid2') bc = BatchChange('user-id', 'user-name', datetime.utcnow(), [arc, drc], 'bcid', 'Complete', 'AutoApproved', comments='batch change test', owner_group_id='owner-group-id') mocked_responses.add( responses.GET, 'http://test.com/zones/batchrecordchanges/bcid', body=to_json_string(bc), status=200 ) r = vinyldns_client.get_batch_change('bcid') check_batch_changes_are_same(r, bc) def test_approve_batch_change(mocked_responses, vinyldns_client): arc = AddRecordChange(forward_zone.id, forward_zone.name, 'foo', 'foo.bar.com', RecordType.A, 200, AData('1.2.3.4'), 'PendingReview', 'id1', [], 'system-message', 'rchangeid1', 'rsid1') drc = DeleteRecordSetChange(forward_zone.id, forward_zone.name, 'baz', 'baz.bar.com', RecordType.A, 'PendingReview', 'id2', [], 'system-message', 'rchangeid2', 'rsid2') bc = BatchChange('user-id', 'user-name', datetime.utcnow(), [arc, drc], 'bcid', 'Complete', 'ManuallyApproved', comments='batch change test', owner_group_id='owner-group-id', reviewer_id='admin-id', reviewer_user_name='admin', review_comment='looks good', review_timestamp=datetime.utcnow()) mocked_responses.add( responses.POST, 'http://test.com/zones/batchrecordchanges/bcid/approve', body=to_json_string(bc), status=200 ) r = vinyldns_client.approve_batch_change('bcid', 'looks good') check_batch_changes_are_same(r, bc) def test_reject_batch_change(mocked_responses, vinyldns_client): error_message = "Zone Discovery Failed: zone for \"foo.bar.com\" does not exist in VinylDNS. \ If zone exists, then it must be connected to in VinylDNS." error = ValidationError('ZoneDiscoveryError', error_message) arc = AddRecordChange(forward_zone.id, forward_zone.name, 'reject', 'reject.bar.com', RecordType.A, 200, AData('1.2.3.4'), 'PendingReview', 'id1', [error], 'system-message', 'rchangeid1', 'rsid1') drc = DeleteRecordSetChange(forward_zone.id, forward_zone.name, 'reject2', 'reject2.bar.com', RecordType.A, 'Complete', 'id2', [], 'system-message', 'rchangeid2', 'rsid2') bc = BatchChange('user-id', 'user-name', datetime.utcnow(), [arc, drc], 'bcid', 'Rejected', 'Rejected', comments='batch change test', owner_group_id='owner-group-id', reviewer_id='admin-id', reviewer_user_name='admin', review_comment='not good', review_timestamp=datetime.utcnow()) mocked_responses.add( responses.POST, 'http://test.com/zones/batchrecordchanges/bcid/reject', body=to_json_string(bc), status=200 ) r = vinyldns_client.reject_batch_change('bcid', 'not good') check_batch_changes_are_same(r, bc) def test_list_batch_change_summaries(mocked_responses, vinyldns_client): bcs1 = BatchChangeSummary('user-id', 'user-name', datetime.utcnow(), 10, 'id1', 'Complete', 'AutoApproved', comments='comments', owner_group_id='owner-group-id') bcs2 = BatchChangeSummary('user-id2', 'user-name2', datetime.utcnow(), 20, 'id2', 'Complete', 'AutoApproved', comments='comments2') lbcs = ListBatchChangeSummaries([bcs1, bcs2], 'start', 'next', 50) mocked_responses.add( responses.GET, 'http://test.com/zones/batchrecordchanges?startFrom=start&maxItems=50', body=to_json_string(lbcs), status=200 ) r = vinyldns_client.list_batch_change_summaries('start', 50) assert r.start_from == lbcs.start_from assert r.next_id == lbcs.next_id assert r.max_items == lbcs.max_items assert r.ignore_access == lbcs.ignore_access assert r.approval_status == lbcs.approval_status for l, r in zip(r.batch_changes, lbcs.batch_changes): assert l.user_id == r.user_id assert l.user_name == r.user_name assert l.comments == r.comments assert l.created_timestamp == r.created_timestamp assert l.total_changes == r.total_changes assert l.status == r.status assert l.id == r.id assert l.owner_group_id == r.owner_group_id
""" Authors: Pratik Bhatu. Copyright: Copyright (c) 2021 Microsoft Research Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import numpy as np import onnx from onnx import helper from onnx.mapping import TENSOR_TYPE_TO_NP_TYPE from onnx import TensorProto import pytest # Athos DIR import sys, os import optparse sys.path.append(os.path.join(os.path.dirname(__file__), "..", "..", "..")) from tests.utils import ( ONNXConfig, Compiler, assert_almost_equal, make_onnx_graph, run_onnx, Frontend, ) @pytest.mark.parametrize( "a_shape", [ ((4, 4, 4, 4)), # Normal[[2, 2], []] pytest.param( (2, 2), marks=pytest.mark.skip(reason="non 4/5D input not handled"), ), ], ) @pytest.mark.parametrize("dtype", [np.single]) @pytest.mark.parametrize( "Op", [ pytest.param("Neg", marks=pytest.mark.skip(reason="Neg not implemented")), pytest.param("Floor", marks=pytest.mark.skip(reason="Floor not implemented")), pytest.param( "Identity", marks=pytest.mark.skip(reason="Identity not implemented") ), ], ) def test_uop(test_dir, backend, Op, a_shape, dtype): a = dtype(np.random.randn(*a_shape)) if Op == "Neg": out = np.negative(a) elif Op == "Floor": out = np.floor(a) elif Op == "Identity": out = np.negative(a) node = helper.make_node( Op, inputs=["a"], outputs=["out"], ) graph = make_onnx_graph( node, inputs=[a], outputs=[out], tensors=[], tensor_names=[], name=Op + "_test", ) expected_output = run_onnx(graph, [a]) config = ONNXConfig(backend).parse_io(graph) compiler = Compiler(graph, config, test_dir, Frontend.ONNX) mpc_output = compiler.compile_and_run([a]) assert_almost_equal( model_output=expected_output, mpc_tensor=mpc_output, precision=2 ) return @pytest.mark.parametrize( "a_shape, axes, keepdims", [ pytest.param( (3, 2, 2), None, 1, # marks=pytest.mark.skip(reason="axes can't be none. keepdims has to be 0"), id="default_axes_keepdims", ), pytest.param( (3, 2, 2), [1], 0, marks=pytest.mark.skip(reason="axes length has to be 2"), id="do_not_keepdims", ), pytest.param( (3, 2, 2), [1], 1, marks=pytest.mark.skip(reason="keepdims has to be 0"), id="keepdims", ), pytest.param( (3, 2, 2, 4), [1, 2], 0, marks=pytest.mark.skip(reason="segfault"), id="reduce_nc", ), pytest.param((3, 2, 2, 4), [2, 3], 0, id="reduce_hw"), pytest.param( (3, 2, 2), [-2], 1, marks=pytest.mark.skip(reason="don't support negative axes"), id="negative_axes_keepdims", ), ], ) @pytest.mark.parametrize("dtype", [np.single]) def test_reducemean(test_dir, backend, a_shape, axes, keepdims, dtype): Op = "ReduceMean" a = dtype(np.random.randn(*a_shape)) out = np.mean( a, axis=(None if axes is None else tuple(axes)), keepdims=keepdims == 1 ) kwargs = {"name": Op, "inputs": ["a"], "outputs": ["out"], "keepdims": keepdims} if axes is not None: kwargs["axes"] = axes node = helper.make_node(Op, **kwargs) graph = make_onnx_graph( node, inputs=[a], outputs=[out], tensors=[], tensor_names=[], name=Op + "_test", ) expected_output = run_onnx(graph, [a]) config = ONNXConfig(backend).parse_io(graph) compiler = Compiler(graph, config, test_dir, Frontend.ONNX) mpc_output = compiler.compile_and_run([a]) assert_almost_equal( model_output=expected_output, mpc_tensor=mpc_output, precision=2 ) return @pytest.mark.parametrize( "a_shape, start, end", [ pytest.param( (4, 4, 4, 4), None, None, marks=pytest.mark.skip(reason="bug in addOutputs"), ), pytest.param( (2, 2), None, None, marks=pytest.mark.skip(reason="bug in addOutputs"), ), ], ) @pytest.mark.parametrize("dtype", [np.single]) def test_shape(test_dir, backend, a_shape, start, end, dtype): Op = "Shape" a = dtype(np.random.randn(*a_shape)) out = np.array(a.shape[start:end]).astype(np.int64) kwargs = {} if start is not None: kwargs["start"] = start if end is not None: kwargs["end"] = end node = onnx.helper.make_node(Op, inputs=["a"], outputs=["out"], **kwargs) graph = make_onnx_graph( node, inputs=[a], outputs=[out], tensors=[], tensor_names=[], name=Op + "_test", ) expected_output = run_onnx(graph, [a]) config = ONNXConfig(backend).parse_io(graph) compiler = Compiler(graph, config, test_dir, Frontend.ONNX) mpc_output = compiler.compile_and_run([a]) assert_almost_equal( model_output=expected_output, mpc_tensor=mpc_output, precision=2 ) return @pytest.mark.parametrize( "a_shape, kernel_shape, pads, strides, auto_pad, output_shape", [ pytest.param( [1, 3, 32], [2], [0, 0], [1], "NOTSET", [1, 3, 31], id="averagepool_1d_default", marks=pytest.mark.skip( reason="bug helper_processPool: list index out of range" ), ), pytest.param( [1, 3, 32, 32], [2, 2], [0, 0, 0, 0], [1, 1], "NOTSET", [1, 3, 31, 31], id="averagepool_2d_default", ), pytest.param( [1, 3, 28, 28], [3, 3], [2, 2, 2, 2], [1, 1], "NOTSET", [1, 3, 30, 30], id="averagepool_2d_pads1", marks=pytest.mark.skip(reason="bug correctness issue. 23% mismatch"), ), pytest.param( [1, 1, 5, 5], [5, 5], [2, 2, 2, 2], [1, 1], "NOTSET", [1, 1, 5, 5], id="averagepool_2d_pads2", marks=pytest.mark.skip(reason="bug correctness issue. 80-90% mismatch"), ), pytest.param( [1, 1, 5, 5], [3, 3], None, [2, 2], "SAME_UPPER", [1, 1, 3, 3], id="averagepool_2d_same_upper", marks=pytest.mark.skip(reason="non explicit padding not supported"), ), pytest.param( [1, 3, 32, 32], [2, 2], None, [1, 1], "SAME_LOWER", [1, 3, 32, 32], id="averagepool_2d_same_lower", marks=pytest.mark.skip(reason="non explicit padding not supported"), ), pytest.param( [1, 3, 32, 32], [5, 5], [0, 0, 0, 0], [3, 3], "NOTSET", [1, 3, 10, 10], id="averagepool_2d_strides", ), pytest.param( [1, 3, 32, 32, 32], [2, 2, 2], [0, 0, 0, 0, 0, 0], [1, 1, 1], "NOTSET", [1, 3, 31, 31, 31], id="averagepool_3d_default", marks=pytest.mark.skip(reason="averagepool_3d not supported"), ), ], ) # we dont support ceil_mode, count_include_pad @pytest.mark.parametrize("dtype", [np.single]) def test_avgpool( test_dir, backend, a_shape, kernel_shape, pads, strides, auto_pad, output_shape, dtype, ): Op = "AveragePool" a = np.random.randn(*a_shape).astype(dtype) # Only need this for its shape out = np.zeros(output_shape).astype(dtype) kwargs = { "inputs": ["a"], "outputs": ["output"], "kernel_shape": kernel_shape, "strides": strides, } if auto_pad is "NOTSET": kwargs["pads"] = pads else: kwargs["auto_pad"] = auto_pad node = onnx.helper.make_node(Op, **kwargs) graph = make_onnx_graph( node, inputs=[a], outputs=[out], tensors=[], tensor_names=[], name=Op + "_test", ) expected_output = run_onnx(graph, [a]) config = ONNXConfig(backend).parse_io(graph) compiler = Compiler(graph, config, test_dir, Frontend.ONNX) mpc_output = compiler.compile_and_run([a]) assert_almost_equal( model_output=expected_output, mpc_tensor=mpc_output, precision=2 ) return @pytest.mark.parametrize( "a_shape, kernel_shape, pads, strides, auto_pad, output_shape", [ pytest.param( [1, 3, 32], [2], [0, 0], [1], "NOTSET", [1, 3, 31], id="maxpool_1d_default", marks=pytest.mark.skip( reason="bug helper_processPool: list index out of range" ), ), pytest.param( [1, 3, 32, 32], [2, 2], [0, 0, 0, 0], [1, 1], "NOTSET", [1, 3, 31, 31], id="maxpool_2d_default", ), pytest.param( [1, 3, 28, 28], [3, 3], [2, 2, 2, 2], [1, 1], "NOTSET", [1, 3, 30, 30], id="maxpool_2d_pads1", marks=pytest.mark.skip(reason="bug correctness issue. 1.8% mismatch"), ), pytest.param( [1, 1, 5, 5], [5, 5], [2, 2, 2, 2], [1, 1], "NOTSET", [1, 1, 5, 5], id="maxpool_2d_pads2", ), pytest.param( [1, 1, 5, 5], [3, 3], None, [2, 2], "SAME_UPPER", [1, 1, 3, 3], id="maxpool_2d_same_upper", marks=pytest.mark.skip(reason="non explicit padding not supported"), ), pytest.param( [1, 3, 32, 32], [2, 2], None, [1, 1], "SAME_LOWER", [1, 3, 32, 32], id="maxpool_2d_same_lower", marks=pytest.mark.skip(reason="non explicit padding not supported"), ), pytest.param( [1, 3, 32, 32], [5, 5], [0, 0, 0, 0], [3, 3], "NOTSET", [1, 3, 10, 10], id="maxpool_2d_strides", ), pytest.param( [1, 3, 32, 32, 32], [2, 2, 2], [0, 0, 0, 0, 0, 0], [1, 1, 1], "NOTSET", [1, 3, 31, 31, 31], id="maxpool_3d_default", marks=pytest.mark.skip(reason="maxpool_3d not supported"), ), ], ) @pytest.mark.parametrize("dtype", [np.single]) def test_maxpool( test_dir, backend, a_shape, kernel_shape, pads, strides, auto_pad, output_shape, dtype, ): Op = "MaxPool" a = np.random.randn(*a_shape).astype(dtype) # Only need this for its shape out = np.zeros(output_shape).astype(dtype) kwargs = { "inputs": ["a"], "outputs": ["output"], "kernel_shape": kernel_shape, "strides": strides, } if auto_pad is "NOTSET": kwargs["pads"] = pads else: kwargs["auto_pad"] = auto_pad node = onnx.helper.make_node(Op, **kwargs) graph = make_onnx_graph( node, inputs=[a], outputs=[out], tensors=[], tensor_names=[], name=Op + "_test", ) expected_output = run_onnx(graph, [a]) config = ONNXConfig(backend).parse_io(graph) compiler = Compiler(graph, config, test_dir, Frontend.ONNX) mpc_output = compiler.compile_and_run([a]) assert_almost_equal( model_output=expected_output, mpc_tensor=mpc_output, precision=2 ) return @pytest.mark.parametrize( "a_shape", [ ((1, 3, 5, 5)), ], ) @pytest.mark.parametrize("dtype", [np.single]) def test_global_avgpool(test_dir, backend, a_shape, dtype): a = dtype(np.random.randn(*a_shape)) out = np.mean(a, axis=tuple(range(2, np.ndim(a))), keepdims=True) Op = "GlobalAveragePool" node = helper.make_node( Op, inputs=[ "a", ], outputs=["out"], ) graph = make_onnx_graph( node, inputs=[a], outputs=[out], tensors=[], tensor_names=[], name=Op + "_test", ) expected_output = run_onnx(graph, [a]) config = ONNXConfig(backend).parse_io(graph) compiler = Compiler(graph, config, test_dir, Frontend.ONNX) mpc_output = compiler.compile_and_run([a]) assert_almost_equal( model_output=expected_output, mpc_tensor=mpc_output, precision=2 ) return @pytest.mark.parametrize( "from_type, to_type", [ pytest.param("FLOAT", "FLOAT", id="cast_identity"), pytest.param("FLOAT", "FLOAT16", id="cast_f32_f16"), pytest.param("FLOAT", "DOUBLE", id="cast_f32_d"), pytest.param("FLOAT16", "FLOAT", id="cast_f16_f32"), pytest.param("FLOAT16", "DOUBLE", id="cast_f16_d"), pytest.param("DOUBLE", "FLOAT", id="cast_d_f32"), pytest.param("DOUBLE", "FLOAT16", id="cast_d_f16"), pytest.param("FLOAT", "STRING", id="cast_f32_string"), pytest.param("STRING", "FLOAT", id="cast_string_f32"), ], ) @pytest.mark.parametrize( "compile_time", [ pytest.param(True), pytest.param( False, marks=pytest.mark.skip( reason="""we don't support runtime casting. Only casts of constants at compile time are supported and no-ops casts (Identity)""" ), ), ], ) @pytest.mark.skip(reason="[cast] Bug in add_outputs() - KeyError: 'output'") def test_cast(test_dir, backend, from_type, to_type, compile_time): Op = "Cast" shape = (3, 4) if "STRING" != from_type: input = np.random.random_sample(shape).astype( TENSOR_TYPE_TO_NP_TYPE[getattr(TensorProto, from_type)] ) if "STRING" == to_type: # Converting input to str, then give it object dtype for generating script ss = [] for i in input.flatten(): s = str(i).encode("utf-8") su = s.decode("utf-8") ss.append(su) output = np.array(ss).astype(object).reshape([3, 4]) else: output = input.astype(TENSOR_TYPE_TO_NP_TYPE[getattr(TensorProto, to_type)]) else: input = np.array( [ "0.47892547", "0.48033667", "0.49968487", "0.81910545", "0.47031248", "0.816468", "0.21087195", "0.7229038", "NaN", "INF", "+INF", "-INF", ], dtype=np.dtype(object), ).reshape([3, 4]) output = input.astype(TENSOR_TYPE_TO_NP_TYPE[getattr(TensorProto, to_type)]) node = onnx.helper.make_node( Op, inputs=["input"], outputs=["output"], to=getattr(TensorProto, to_type), ) if compile_time == True: graph = make_onnx_graph( node, inputs=[], outputs=[output], tensors=[input], tensor_names=["input"], name=Op + "_test", ) expected_output = run_onnx(graph, []) else: graph = make_onnx_graph( node, inputs=[input], outputs=[output], tensors=[], tensor_names=[], name=Op + "_test", ) expected_output = run_onnx(graph, [input]) config = ONNXConfig(backend).parse_io(graph) compiler = Compiler(graph, config, test_dir, Frontend.ONNX) if compile_time == True: mpc_output = compiler.compile_and_run([]) else: mpc_output = compiler.compile_and_run([input]) assert_almost_equal( model_output=expected_output, mpc_tensor=mpc_output, precision=2 ) return @pytest.mark.parametrize( "shape, attribute", [ pytest.param((3, 4), "value", id="constant_tensor"), pytest.param((1), "value_float", id="constant_float_scalar"), pytest.param((20), "value_floats", id="constant_floats"), pytest.param((1), "value_int", id="constant_int_scalar"), pytest.param((20), "value_ints", id="constant_ints"), pytest.param( (3, 4), "sparse_value", marks=pytest.mark.skip(reason="We don't support sparse tensors"), ), pytest.param( (1), "value_string", marks=pytest.mark.skip(reason="We don't support string tensors"), ), pytest.param( (20), "value_strings", marks=pytest.mark.skip(reason="We don't support string tensors"), ), ], ) @pytest.mark.skip( reason="""[constant] onnxsim gives runtime error. Issue is it doesn't support opset version 13 of this node. Need to fix onnxoptimize upstream""" ) def test_constant(test_dir, backend, shape, attribute): Op = "Constant" kwargs = {} print("Shape = ", shape) if attribute == "value": values = np.random.randn(*shape).astype(np.float32) kwargs[attribute] = onnx.helper.make_tensor( name="const_tensor", data_type=onnx.TensorProto.FLOAT, dims=values.shape, vals=values.flatten().astype(float), ) elif attribute == "value_float": values = np.random.randn(1).astype(np.float32) kwargs[attribute] = values[0] elif attribute == "value_floats": values = np.random.randn(*shape).astype(np.float32) kwargs[attribute] = values.flatten().astype(float) elif attribute == "value_int": values = np.array(np.random.randint(-(2 ** 32 - 1), 2 ** 32 - 1)).astype( np.int64 ) kwargs[attribute] = int(values) elif attribute == "value_ints": values = np.random.randint(-(2 ** 32 - 1), 2 ** 32 - 1, shape).astype(np.int32) print(values) kwargs[attribute] = values.flatten().astype(int) kwargs["inputs"] = [] kwargs["outputs"] = ["values"] node = helper.make_node(Op, **kwargs) graph = make_onnx_graph( node, inputs=[], outputs=[values], tensors=[], tensor_names=[], name=Op + "_test", ) expected_output = run_onnx(graph, []) config = ONNXConfig(backend).parse_io(graph) compiler = Compiler(graph, config, test_dir, Frontend.ONNX) mpc_output = compiler.compile_and_run([]) assert_almost_equal( model_output=expected_output, mpc_tensor=mpc_output, precision=2 ) return
import json from http import HTTPStatus from json.decoder import JSONDecodeError import jwt import requests from flask import request, current_app, jsonify, g from jwt import InvalidSignatureError, DecodeError, InvalidAudienceError from requests.exceptions import ( SSLError, ConnectionError, InvalidURL, HTTPError ) from api.errors import ( AuthorizationError, InvalidInputError, PulsediveKeyError, PulsediveSSLError, UnexpectedPulsediveError ) NO_AUTH_HEADER = 'Authorization header is missing' WRONG_AUTH_TYPE = 'Wrong authorization type' WRONG_PAYLOAD_STRUCTURE = 'Wrong JWT payload structure' WRONG_JWT_STRUCTURE = 'Wrong JWT structure' WRONG_AUDIENCE = 'Wrong configuration-token-audience' KID_NOT_FOUND = 'kid from JWT header not found in API response' WRONG_KEY = ('Failed to decode JWT with provided key. ' 'Make sure domain in custom_jwks_host ' 'corresponds to your SecureX instance region.') JWKS_HOST_MISSING = ('jwks_host is missing in JWT payload. Make sure ' 'custom_jwks_host field is present in module_type') WRONG_JWKS_HOST = ('Wrong jwks_host in JWT payload. Make sure domain follows ' 'the visibility.<region>.cisco.com structure') def set_ctr_entities_limit(payload): try: ctr_entities_limit = int(payload['CTR_ENTITIES_LIMIT']) assert ctr_entities_limit > 0 except (KeyError, ValueError, AssertionError): ctr_entities_limit = current_app.config['CTR_DEFAULT_ENTITIES_LIMIT'] current_app.config['CTR_ENTITIES_LIMIT'] = ctr_entities_limit def get_public_key(jwks_host, token): expected_errors = ( ConnectionError, InvalidURL, JSONDecodeError, HTTPError, ) try: response = requests.get(f"https://{jwks_host}/.well-known/jwks") response.raise_for_status() jwks = response.json() public_keys = {} for jwk in jwks['keys']: kid = jwk['kid'] public_keys[kid] = jwt.algorithms.RSAAlgorithm.from_jwk( json.dumps(jwk) ) kid = jwt.get_unverified_header(token)['kid'] return public_keys.get(kid) except expected_errors: raise AuthorizationError(WRONG_JWKS_HOST) def get_jwt(): """ Get Authorization token and validate its signature against the public key from /.well-known/jwks endpoint. """ expected_errors = { KeyError: WRONG_PAYLOAD_STRUCTURE, AssertionError: JWKS_HOST_MISSING, InvalidSignatureError: WRONG_KEY, DecodeError: WRONG_JWT_STRUCTURE, InvalidAudienceError: WRONG_AUDIENCE, TypeError: KID_NOT_FOUND, } token = get_auth_token() try: jwks_payload = jwt.decode(token, options={'verify_signature': False}) assert 'jwks_host' in jwks_payload jwks_host = jwks_payload.get('jwks_host') key = get_public_key(jwks_host, token) aud = request.url_root payload = jwt.decode( token, key=key, algorithms=['RS256'], audience=[aud.rstrip('/')] ) set_ctr_entities_limit(payload) return payload['key'] except tuple(expected_errors) as error: message = expected_errors[error.__class__] raise AuthorizationError(message) def get_auth_token(): """ Parse the incoming request's Authorization header and validate it. """ expected_errors = { KeyError: NO_AUTH_HEADER, AssertionError: WRONG_AUTH_TYPE } try: scheme, token = request.headers['Authorization'].split() assert scheme.lower() == 'bearer' return token except tuple(expected_errors) as error: raise AuthorizationError(expected_errors[error.__class__]) def get_json(schema): """ Parse the incoming request's data as JSON. Validate it against the specified schema. Note. This function is just an example of how one can read and check anything before passing to an API endpoint, and thus it may be modified in any way, replaced by another function, or even removed from the module. """ data = request.get_json(force=True, silent=True, cache=False) message = schema.validate(data) if message: raise InvalidInputError(message) return data def perform_request(params): headers = { 'User-Agent': current_app.config['USER_AGENT'] } url = current_app.config['API_URL'] response = requests.get(url, params=params, headers=headers) if response.status_code == HTTPStatus.OK: return response.json() elif response.status_code in current_app.config['NOT_CRITICAL_ERRORS']: return {} raise UnexpectedPulsediveError(response) def jsonify_data(data): return jsonify({'data': data}) def jsonify_errors(error): return jsonify({'errors': [error]}) def format_docs(docs): return {'count': len(docs), 'docs': docs} def jsonify_result(): result = {'data': {}} if g.get('sightings'): result['data']['sightings'] = format_docs(g.sightings) if g.get('indicators'): result['data']['indicators'] = format_docs(g.indicators) if g.get('judgements'): result['data']['judgements'] = format_docs(g.judgements) if g.get('verdicts'): result['data']['verdicts'] = format_docs(g.verdicts) if g.get('relationships'): result['data']['relationships'] = format_docs(g.relationships) if g.get('errors'): result['errors'] = g.errors if not result['data']: del result['data'] return jsonify(result) def key_error_handler(func): def wrapper(*args, **kwargs): try: result = func(*args, **kwargs) except KeyError: raise PulsediveKeyError return result return wrapper def ssl_error_handler(func): def wrapper(*args, **kwargs): try: return func(*args, **kwargs) except SSLError as error: raise PulsediveSSLError(error) return wrapper
class PPU: pass
# import cv2 import deepul.pytorch_util as ptu import numpy as np import scipy.ndimage import torch.nn as nn import torch.utils.data import torchvision from PIL import Image as PILImage from torchvision import transforms as transforms from .hw4_utils.hw4_models import GoogLeNet from .utils import * CLASSES = ("plane", "car", "bird", "cat", "deer", "dog", "frog", "horse", "ship", "truck") import math import sys import numpy as np softmax = None model = None device = torch.device("cuda:0") def plot_gan_training(losses, title, fname): plt.figure() n_itr = len(losses) xs = np.arange(n_itr) plt.plot(xs, losses, label="loss") plt.legend() plt.title(title) plt.xlabel("Training Iteration") plt.ylabel("Loss") savefig(fname) def q1_gan_plot(data, samples, xs, ys, title, fname): plt.figure() plt.hist(samples, bins=50, density=True, alpha=0.7, label="fake") plt.hist(data, bins=50, density=True, alpha=0.7, label="real") plt.plot(xs, ys, label="discrim") plt.legend() plt.title(title) savefig(fname) ###################### ##### Question 1 ##### ###################### def q1_data(n=20000): assert n % 2 == 0 gaussian1 = np.random.normal(loc=-1, scale=0.25, size=(n // 2,)) gaussian2 = np.random.normal(loc=0.5, scale=0.5, size=(n // 2,)) data = (np.concatenate([gaussian1, gaussian2]) + 1).reshape([-1, 1]) scaled_data = (data - np.min(data)) / (np.max(data) - np.min(data) + 1e-8) return 2 * scaled_data - 1 def visualize_q1_dataset(): data = q1_data() plt.hist(data, bins=50, alpha=0.7, label="train data") plt.legend() plt.show() def q1_save_results(part, fn): data = q1_data() losses, samples1, xs1, ys1, samples_end, xs_end, ys_end = fn(data) # loss plot plot_gan_training(losses, "Q1{} Losses".format(part), "results/q1{}_losses.png".format(part)) # samples q1_gan_plot(data, samples1, xs1, ys1, "Q1{} Epoch 1".format(part), "results/q1{}_epoch1.png".format(part)) q1_gan_plot(data, samples_end, xs_end, ys_end, "Q1{} Final".format(part), "results/q1{}_final.png".format(part)) ###################### ##### Question 2 ##### ###################### def calculate_is(samples): assert type(samples[0]) == np.ndarray assert len(samples[0].shape) == 3 model = GoogLeNet().to(ptu.device) model.load_state_dict(torch.load("deepul/deepul/hw4_utils/classifier.pt")) softmax = nn.Sequential(model, nn.Softmax(dim=1)) bs = 100 softmax.eval() with torch.no_grad(): preds = [] n_batches = int(math.ceil(float(len(samples)) / float(bs))) for i in range(n_batches): sys.stdout.write(".") sys.stdout.flush() inp = ptu.FloatTensor(samples[(i * bs) : min((i + 1) * bs, len(samples))]) pred = ptu.get_numpy(softmax(inp)) preds.append(pred) preds = np.concatenate(preds, 0) kl = preds * (np.log(preds) - np.log(np.expand_dims(np.mean(preds, 0), 0))) kl = np.mean(np.sum(kl, 1)) return np.exp(kl) def load_q2_data(): train_data = torchvision.datasets.CIFAR10( "./data", transform=torchvision.transforms.ToTensor(), download=True, train=True ) return train_data def visualize_q2_data(): train_data = load_q2_data() imgs = train_data.data[:100] show_samples(imgs, title=f"CIFAR-10 Samples") def q2_save_results(fn): train_data = load_q2_data() train_data = train_data.data.transpose((0, 3, 1, 2)) / 255.0 train_losses, samples = fn(train_data) print("Inception score:", calculate_is(samples.transpose([0, 3, 1, 2]))) plot_gan_training(train_losses, "Q2 Losses", "results/q2_losses.png") show_samples(samples[:100] * 255.0, fname="results/q2_samples.png", title=f"CIFAR-10 generated samples") ###################### ##### Question 3 ##### ###################### def load_q3_data(): transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.5,), (0.5,))]) train_data = torchvision.datasets.MNIST(root="./data", train=True, download=True, transform=transform) test_data = torchvision.datasets.MNIST(root="./data", train=False, download=True, transform=transform) return train_data, test_data def visualize_q3_data(): train_data, _ = load_q3_data() imgs = train_data.data[:100] show_samples(imgs.reshape([100, 28, 28, 1]) * 255.0, title=f"MNIST samples") def plot_q3_supervised(pretrained_losses, random_losses, title, fname): plt.figure() xs = np.arange(len(pretrained_losses)) plt.plot(xs, pretrained_losses, label="bigan") xs = np.arange(len(random_losses)) plt.plot(xs, random_losses, label="random init") plt.legend() plt.title(title) savefig(fname) def q3_save_results(fn): train_data, test_data = load_q3_data() gan_losses, samples, reconstructions, pretrained_losses, random_losses = fn(train_data, test_data) plot_gan_training(gan_losses, "Q3 Losses", "results/q3_gan_losses.png") plot_q3_supervised( pretrained_losses, random_losses, "Linear classification losses", "results/q3_supervised_losses.png" ) show_samples(samples * 255.0, fname="results/q3_samples.png", title="BiGAN generated samples") show_samples( reconstructions * 255.0, nrow=20, fname="results/q3_reconstructions.png", title=f"BiGAN reconstructions" ) print("BiGAN final linear classification loss:", pretrained_losses[-1]) print("Random encoder linear classification loss:", random_losses[-1])
""" Copyright (c) 2021, FireEye, Inc. Copyright (c) 2021 Giorgio Severi """ import os import shap import joblib import tensorflow as tf import torch.nn as nn import torch.nn.functional as F import numpy as np from tensorflow.keras.models import Model from tensorflow.keras.optimizers import SGD from tensorflow.keras.models import load_model from tensorflow.keras.layers import Dense, BatchNormalization, Activation, Input, Dropout from sklearn.preprocessing import StandardScaler, KBinsDiscretizer class EmberNN(object): def __init__(self, n_features, aug_noise=False, aug_flip=False, epochs=10, batch_size=512): self.n_features = n_features self.normal = StandardScaler() self.model = self.build_model() self.exp = None self.aug_noise = aug_noise self.aug_flip = aug_flip self.batch_size = batch_size self.epochs = epochs lr = 0.1 momentum = 0.9 decay = 0.000001 opt = SGD(lr=lr, momentum=momentum, decay=decay) self.model.compile(loss='binary_crossentropy', optimizer=opt, metrics=['accuracy']) def fit(self, X, y): # if not self.discretize: X = self.normal.fit_transform(X) y_ori = y.copy() x_ori = X.copy() aug_size = 10 # X10 data size if self.aug_noise and self.aug_flip: aug_size = 5 if self.aug_noise: for _ in range(aug_size): X = np.vstack([X, x_ori + np.random.normal(0, 0.1, x_ori.shape)]) y = np.append(y, y_ori) if self.aug_flip: for _ in range(aug_size): x_trans = x_ori.copy() idx = np.arange(self.n_features) for i in range(len(x_trans)): np.random.shuffle(idx) for j in range(int(0.01 * self.n_features)): # flip 1% of features x_trans[i][idx[j]] = x_ori[np.random.randint(0, len(x_trans))][idx[j]] X = np.vstack([X, x_trans]) y = np.append(y, y_ori) # elif self.aug_flip: # X = self.normal.fit_transform(X) # # flip_mask = np.random.random(X.shape) < 0.1 # flip 1% of features # # rand_indices = np.random.randint(0, len(X), X.shape) # # X = (1 - flip_mask) * X + flip_mask * X[rand_indices, np.arange(self.n_features)] # else: # X = self.discretizer.fit_transform(X) self.model.fit(X, y, batch_size=self.batch_size, epochs=self.epochs) def predict(self, X): # if not self.discretize or self.aug_flip: X = self.normal.transform(X) # else: # X = self.discretizer.transform(X) return self.model.predict(X, batch_size=self.batch_size) def build_model(self): input1 = Input(shape=(self.n_features,)) dense1 = Dense(2000, activation='relu')(input1) norm1 = BatchNormalization()(dense1) drop1 = Dropout(0.5)(norm1) dense2 = Dense(1000, activation='relu')(drop1) norm2 = BatchNormalization()(dense2) drop2 = Dropout(0.5)(norm2) dense3 = Dense(100, activation='relu')(drop2) norm3 = BatchNormalization()(dense3) drop3 = Dropout(0.5)(norm3) dense4 = Dense(1)(drop3) out = Activation('sigmoid')(dense4) model = Model(inputs=[input1], outputs=[out]) return model def explain(self, X_back, X_exp, n_samples=100): if self.exp is None: self.exp = shap.GradientExplainer(self.model, self.normal.transform(X_back)) return self.exp.shap_values(self.normal.transform(X_exp), nsamples=n_samples) def save(self, save_path, file_name='ember_nn'): # Save the trained scaler so that it can be reused at test time joblib.dump(self.normal, os.path.join(save_path, file_name + '_scaler.pkl')) save_model = self.model save_model.save(os.path.join(save_path, file_name + '.h5')) def load(self, save_path, file_name): # Load the trained scaler self.normal = joblib.load(os.path.join(save_path, file_name + '_scaler.pkl')) self.model = load_model(os.path.join(save_path, file_name + '.h5'))
import os import unittest import shutil from jtalks.Tomcat import Tomcat, TomcatNotFoundException class TomcatTest(unittest.TestCase): def setUp(self): os.mkdir('test_tomcat') def tearDown(self): shutil.rmtree('test_tomcat') def test_move_war_to_webapps_should_actually_moves_it(self): # given tmpfile = file('test_tomcat/tomcat-test-project.tmp', 'w') os.mkdir('test_tomcat/webapps') # when dst_filename = Tomcat('test_tomcat').move_to_webapps(tmpfile.name, 'tomcat-test-project') # then self.assertEqual('test_tomcat/webapps/tomcat-test-project.war', dst_filename) self.assertTrue(os.path.exists(dst_filename)) def test_move_war_deletes_prev_app_dir(self): # given tmpdir = os.path.join('test_tomcat', 'webapps', 'tomcat-test-project', 'tmpdir') os.makedirs(tmpdir) tmpfile = file('test_tomcat/tomcat-test-project', 'w') # when Tomcat('test_tomcat').move_to_webapps(tmpfile.name, 'tomcat-test-project') # then: self.assertFalse(os.path.exists(tmpdir), 'Tomcat did not remove previous app folder from webapps') def test_move_war_to_webapps_raises_if_tomcat_location_is_wrong(self): tomcat = Tomcat('./') self.assertRaises(TomcatNotFoundException, tomcat.move_to_webapps, 'src_filepath', 'appname') def test_start(self): os.makedirs('test_tomcat/bin') file('test_tomcat/bin/startup.sh', 'w').write('echo test > test_tomcat/test; sleep 5 &') Tomcat('test_tomcat').start() self.assertEqual('test\n', file('test_tomcat/test').readline())
import time import json import asyncio import websockets from config import host, port from config import nginx_log_file_path from tail_f import tail_f from handle import handle # async def handle_server(websocket, path): @asyncio.coroutine def handle_server(websocket, path): request_count = 0 logfile = open(nginx_log_file_path) lines = tail_f(logfile) log_dicts = handle(lines) start = time.time() for log_dict in log_dicts: # await websocket.send(str(log_dict)) request_count += 1 during_time = time.time() - start log_dict.update({ 'request_per_second': round( (request_count / during_time), 2 ) }) yield from websocket.send(str(json.dumps(log_dict))) start_server = websockets.serve(handle_server, host, int(port)) asyncio.get_event_loop().run_until_complete(start_server) asyncio.get_event_loop().run_forever()
from django.contrib import admin from .models import Spectacle, Movie, Play, Show admin.site.register(Spectacle) admin.site.register(Movie) admin.site.register(Play) admin.site.register(Show)
from flask import Flask, request from flask_restful import Api, Resource import sqlite3 app = Flask(__name__) api = Api(app) class Paperopoli(Resource): def get(self): return {'ciao': 'mondo'} api.add_resource(Paperopoli, '/personaggi') if __name__ == '__main__': app.run(debug=True)
#!/usr/bin/env python __author__ = 'Florian Hase' #======================================================================== import os, uuid import numpy as np import matplotlib as mpl mpl.use('Agg') import matplotlib.pyplot as plt from threading import Thread from Utilities.file_logger import FileLogger from Utilities.misc import Printer #======================================================================== class Analyzer(Printer): ANALYZED_EXPERIMENTS = [] def __init__(self, settings, verbose = True): Printer.__init__(self, 'ANALYZER', color = 'grey') self.settings = settings self.verbose = verbose def _analyze(self, request, observations): # print(observations) # get all the losses losses = {} for element in observations: elem_losses = element['loss'] for key, value in elem_losses.items(): if not key in losses: losses[key] = [] losses[key].append(value) plt.clf() for key, loss_list in losses.items(): domain = np.arange(len(loss_list)) + 1 loss_list = np.array(loss_list) # plt.plot(domain, loss_list, ls = '', marker = 'o', color = 'w', markersize = 10) # plt.plot(domain, loss_list, ls = '', marker = 'o', color = 'k', alpha = 0.8, markersize = 10) plt.plot(domain, loss_list, ls = '', marker = 'o', alpha = 0.5, markersize = 10, label = key) plt.legend() plt.xlabel('# experiments') file_name = '%s/%s.png' % (self.settings['scratch_dir'], str(uuid.uuid4())) plt.savefig(file_name, bbox_to_inches = 'tight') exp_dict = {'request_details': request, 'observations': observations, 'progress_file': file_name, 'status': 'new'} self.ANALYZED_EXPERIMENTS.append(exp_dict) def analyze(self, request, observations): analysis_thread = Thread(target = self._analyze, args = (request, observations)) analysis_thread.start() def get_analyzed_experiments(self): analyzed_experiments = [] for exp_dict in self.ANALYZED_EXPERIMENTS: if exp_dict['status'] == 'new': analyzed_experiments.append(exp_dict) exp_dict['status'] = 'fetched' return analyzed_experiments
import os from urllib.parse import urlparse from ruamel import yaml def get_db_instance_dict(db_url, tags): url_components = urlparse(db_url) host = url_components.hostname port = url_components.port username = url_components.username password = url_components.password database_instance = """\ - server: {host} user: {username} pass: '{password}' port: {port} tags: {tags} options: replication: true galera_cluster: true extra_status_metrics: true extra_innodb_metrics: true extra_performance_metrics: true schema_size_metrics: false disable_innodb_metrics: false """.format(host=host, username=username, password=password, port=port, tags=tags) return database_instance def get_database_url_with_index(index): return os.environ.get('DB_URL_{}'.format(index), None) def get_database_tags_with_index(index): tag_environment_key = 'DB_TAGS_{}'.format(index) return os.environ[tag_environment_key].split(',') def get_database_instances(): instances = [] database_number = 1 while get_database_url_with_index(database_number): db = get_database_url_with_index(database_number) tags = get_database_tags_with_index(database_number) instances += [get_db_instance_dict(db, tags)] database_number += 1 return instances if __name__ == "__main__": instances = "\n".join(get_database_instances()) yaml_dict = """\ init_config: instances: {instances} """.format(instances=instances) with open('/etc/datadog-agent/conf.d/mysql.d/conf.yaml', 'w') as outfile: data = yaml.round_trip_load(yaml_dict, preserve_quotes=True) yaml.round_trip_dump(data, outfile)
import config import os,time from slack import WebClient def log(func): def wrapper(*args, **kw): start = time.time() run_func= func(*args, **kw) end = time.time() print('%s executed in %s ms' % (func.__name__, (end - start) * 1000)) return run_func return wrapper class Channel: def __init__(self,channelID,name=None): self.name =None self.ChannelID=channelID self.Members=[] self.Private =False class CPrePareInfo: def __init__(self,slack_web_client,QQBot): self.slack_web_client = slack_web_client self.QQBot = QQBot self.global_userList={} self.global_channels_List={} #{'channelID':{'name':'truename','member':[],'private':'True'}} self.global_QQ_UserID={} self.global_QQID_displayName={} self.__needAlert_userList={}#{'needAlertChannelID':{'member':['wang','x','b']},'needAlertChannelID':{'member':['wang','x','b']}} def getQQID(self,name,display_name): dict={'name':name,'display_name':display_name} try: dict['QQ'] = self.global_QQ_UserID[name] self.global_QQID_displayName[dict['QQ']] = display_name except: pass return dict @log def getUserList(self): response = self.slack_web_client.users_list() #print(response) if response['ok'] : for a in response['members']: #print(a['id'],a['name']) self.global_userList[a['id']] = self.getQQID(a['name'],a['profile']['display_name']) @property def needAlert_userList(self): return self.__needAlert_userList def getchannelID_byName(self,name): for a in self.global_channels_List: if self.global_channels_List[a].name == name: return a return '' @log def getchannelName(self,channelID): a= self.slack_web_client.conversations_info(channel=channelID) if a['ok']==False: return if channelID not in self.global_channels_List: self.global_channels_List[a['channel']['id']] =Channel(channelID) self.global_channels_List[a['channel']['id']].name = a['channel']['name'] self.global_channels_List[channelID].Private = a['channel']['is_private'] @log def getchannelMembers(self,channelID): a = self.slack_web_client.conversations_members(channel=channelID) if a['ok'] ==False: return #print(a) needlist=[] for userId in a['members']: self.global_channels_List[channelID].Members.append(userId) if 'QQ' in self.global_userList[userId]: needlist.append(self.global_userList[userId]['QQ']) if len(needlist)>0: self.__needAlert_userList[channelID]=needlist @log def getchannels_info(self,channelID): self.getchannelName(channelID) self.getchannelMembers(channelID) @log def getMemberName(self,userID): if userID in prepareInfo.global_userList: return self.global_userList[userID]['name'] responseInfo = slack_web_client.users_info(user='U024UBGRR62') if responseInfo.get('ok',False): d = responseInfo.data['user'] print(d['real_name']) self.global_userList[userID] = self.getQQID(d['real_name'],d['name']) return d['real_name'] return 'NoName' @log def getChannels_list(self): responsePrivate=self.slack_web_client.conversations_list(types='public_channel,private_channel') #print(responsePrivate) for a in responsePrivate['channels']: self.global_channels_List[a['id']] =Channel(a['id'], a['name']) self.getchannels_info(a['id']) @log def get_group_member_list(self): a = self.QQBot.get_group_member_list(group_id=config.group_id) print("get_group_member_list ",a) for b in a: self.global_QQ_UserID[b['card']] =b['user_id'] def findName_byQQId(self,QQId): if QQId in self.global_QQID_displayName: return self.global_QQID_displayName[QQId] return 'None' @log def autoloadaaa(self): try: if len(self.global_userList)==0: self.getUserList() if len(self.global_channels_List)==0: self.getChannels_list() except Exception as inst: print(inst) pass if __name__ == "__main__": slack_web_client = WebClient(token=os.environ['SLACK_BOT_TOKEN']) prepareInfo =CPrePareInfo(slack_web_client,None) #prepareInfo.autoloadaaa() try: prepareInfo.getchannels_info('CUV4HHNSH') except Exception as inst: print(inst)
""" Data structure for implementing experience replay Author: Patrick Emami, Modified by: Sri Ramana """ from collections import deque import random import numpy as np from copy import deepcopy class ReplayBuffer(object): def __init__(self, buffer_size, min_hlen = 0, random_seed=123): """ The right side of the deque contains the most recent experiences """ self.buffer_size = buffer_size self.min_hlen = min_hlen self.count = 0 self.ncount = 0 self.buffer = deque() self.oa_batch = {} self.oa2_batch = {} self.seq = [] self.a_batch = {} self.r_batch = {} random.seed(random_seed) def add(self, traj): if self.count < self.buffer_size: self.AppendData(traj) # self.buffer.append(traj) # self.count += 1 else: self.AppendData(traj) self.RemoveFirst(self.ncount) # self.buffer.popleft() # self.buffer.append(traj) ''' def makeHistory(self, traj): hist = {} for id, seq in traj: hist[id] = [] oa[id] = [] r[id] = [] for j, val in enumerate(seq): o, a ,r = val oa = np.concatenate([o,a], axis =1) ''' def RemoveFirst(self, count): if not self.oa_batch: return else: print "Removing Shit", count assert(len(self.oa2_batch[0]) >= self.buffer_size) for key in self.oa_batch: del self.oa_batch[key][:count] del self.oa2_batch[key][:count] del self.a_batch[key][:count] del self.r_batch[key][:count] del self.seq[:count] self.count -= count def AppendData(self, traj): #oa_batch, oa2_batch, seq = self.MergeData([_[0] for _ in traj], True) #a_batch, _, _ = self.MergeData([_[1] for _ in traj]) #r_batch, _, _ = self.MergeData([_[2] for _ in traj]) oa_batch, a_batch, r_batch = traj oa2_batch = {} length = 0 cnt = 0 oa_copy = {} for key in oa_batch: data = oa_batch[key] oa2_batch[cnt] = deepcopy(data)[self.min_hlen + 1:] oa_copy[cnt] = deepcopy(data)[self.min_hlen:-1] length = len(data) - 1 cnt += 1 seq = (np.arange(self.min_hlen, length) + 1).tolist() ''' if not self.oa_batch: self.oa_batch = oa_batch self.oa2_batch = oa2_batch self.a_batch = a_batch self.r_batch = r_batch self.seq = seq else: ''' cnt = 0 for key in oa_batch: if cnt not in self.oa_batch: self.oa_batch[cnt] = [] self.oa2_batch[cnt] = [] self.a_batch[cnt] = [] self.r_batch[cnt] = [] self.oa_batch[cnt] += oa_copy[cnt] self.oa2_batch[cnt] += oa2_batch[cnt] self.a_batch[cnt] += a_batch[key][self.min_hlen:-1] self.r_batch[cnt] += r_batch[key][self.min_hlen:-1] cnt += 1 self.seq += seq self.count += len(seq) self.ncount = len(seq) def MergeData(self, batch, next = False): new_batch = {} next_batch = {} seq = [] length = None for b in batch: cnt = 0 for key in b: length = len(b[key]) if cnt not in new_batch: new_batch[cnt] = deepcopy(b[key])[:-1] #new_batch[cnt].pop(-1) if next: next_batch[cnt] = deepcopy(b[key])[1:] #next_batch[cnt].pop(-1) else: #data1 = deepcopy(b[key]) #data2 = deepcopy(b[key]) #data1.pop(-1) new_batch[cnt] += deepcopy(b[key])[:-1] if next: #data2.pop(0) next_batch[cnt] += deepcopy(b[key])[1:] cnt += 1 seq = np.arange(length).tolist()*len(batch) return new_batch, next_batch, seq def size(self): return self.count def sample_batch(self, batch_size): batch = [] if self.count < batch_size: #batch = random.sample(self.buffer, self.count) index = np.random.choice(self.count, self.count) else: #batch = random.sample(self.buffer, batch_size) index = np.random.choice(self.count, batch_size) index = index.tolist() oa_batch = {} a_batch = {} r_batch = {} oa2_batch = {} for key in self.oa_batch: oa_batch[key] = [self.oa_batch[key][i] for i in index] a_batch[key] = [self.a_batch[key][i] for i in index] r_batch[key] = [self.r_batch[key][i] for i in index] oa2_batch[key] = [self.oa2_batch[key][i] for i in index] print len(self.seq), self.count seq = [self.seq[i] for i in index] return oa_batch, a_batch, r_batch, oa2_batch, seq ''' oa_batch, oa2_batch, seq = self.MergeData([_[0] for _ in batch], True) a_batch, _, _ = self.MergeData([_[1] for _ in batch]) r_batch, _, _ = self.MergeData([_[2] for _ in batch]) return oa_batch, a_batch, r_batch, oa2_batch, seq ''' ''' s_batch = np.array([_[0] for _ in batch]) a_batch = np.array([_[1] for _ in batch]) r_batch = np.array([_[2] for _ in batch]) t_batch = np.array([_[3] for _ in batch]) s2_batch = np.array([_[4] for _ in batch]) return s_batch, a_batch, r_batch, t_batch, s2_batch ''' #return batch def clear(self): self.deque.clear() self.count = 0
from __future__ import absolute_import from lltk.corpus.corpus import Corpus,load_corpus from lltk.text.text import Text import os """ class LitHist(Corpus): TEXT_CLASS=Text PATH_TXT = 'lithist/_txt_lithist' PATH_XML = 'lithist/_xml_lithist' PATH_METADATA = 'lithist/corpus-metadata.LitHist.txt' def __init__(self): super(LitHist,self).__init__('LitHist',path_txt=self.PATH_TXT,path_xml=self.PATH_XML,path_metadata=self.PATH_METADATA) self.path = os.path.dirname(__file__) """ from lltk.corpus.corpus import CorpusMeta,name2corpus import os def lithist_load_corpus(name,medium={},genre={}): if name=='Chadwyck': c=load_corpus(name) c._texts = [t for t in c.texts() if t.year>1500 and t.year<1900] elif name=='ChadwyckPoetry': c=load_corpus(name) #c._texts = [t for t in c.texts() if t.meta['posthumous']=='False' and t.year>1500 and t.year<2000] elif name=='ChadwyckDrama': c=load_corpus(name) #c._texts = [t for t in c.texts() if t.meta['posthumous']=='False' and t.year>1500 and t.year<2000] elif name=='ECCO_TCP_in_Sections': c=load_corpus('ECCO_TCP').sections c._texts = [t for t in c.texts() if t.year>=1700 and t.year<1800] elif name=='ECCO_TCP': c=load_corpus('ECCO_TCP') c._texts = [t for t in c.texts() if t.year>=1700 and t.year<1800] elif name=='EEBO_TCP_in_Sections': c=load_corpus('EEBO_TCP').sections c._texts = [t for t in c.texts() if t.year>=1500 and t.year<1700] elif name=='EEBO_TCP': c=load_corpus('EEBO_TCP') c._texts = [t for t in c.texts() if t.year>=1500 and t.year<1700] else: c=load_corpus(name) if medium: c._texts=[t for t in c.texts() if t.medium in medium] if genre: c._texts=[t for t in c.texts() if t.genre in genre] return c class LitHist(CorpusMeta): CORPORA=[ 'Chadwyck','ChadwyckPoetry','ChadwyckDrama', 'ECCO_TCP','EEBO_TCP', #,'ECCO_TCP_in_Sections','EEBO_TCP_in_Sections' (too many files) 'Sellers', # 'TedJDH' (replicated in Sellers + ECCO_TCP) 'DialNarr', #LitLab (too noisy), 'MarkMark','Chicago','GildedAge', 'COHA','COCA','CLMET','OldBailey','EnglishDialogues', 'Spectator'] def __init__(self, name_meta='LitHist',corpora=None): if not corpora: corpora=[lithist_load_corpus(c) for c in self.CORPORA] corpora=[x for x in corpora if x is not None] #print(corpora) super(LitHist,self).__init__(name=name_meta,corpora=corpora) self.path=os.path.join(self.path,'lithist') class LitHistProse(LitHist): #CORPORA = [x for x in LitHist.CORPORA if not x in {'ChadwyckPoetry','ChadwyckDrama'}] CORPORA=[ 'Chadwyck', #'ECCO_TCP','EEBO_TCP', #, 'ECCO_TCP_in_Sections','EEBO_TCP_in_Sections', # (too many files) 'Sellers', # 'TedJDH' (replicated in Sellers + ECCO_TCP) 'MarkMark','Chicago', 'COHA','Spectator'] def __init__(self,name='LitHistProse',corpora=None): #super(LitHist,self).__init__(name=name,corpora=None) if not corpora: corpora=[lithist_load_corpus(c,medium='Prose') for c in self.CORPORA] corpora=[x for x in corpora if x is not None] # and len(x.texts())>0] #print(corpora) super(LitHist,self).__init__(name=name,corpora=corpora) # filter for prose #print(len(self.texts())) self._texts = [t for t in self.texts() if t.medium=='Prose'] #print(len(self.texts())) self.path=os.path.join(self.path,'lithist') class LitHistAuthors(CorpusMeta): CORPORA={'Chadwyck','ChadwyckPoetry','ChadwyckDrama','COHA','ECCO_TCP','EEBO_TCP'} #,'Sellers','CLMET','Spectator','Chicago','MarkMark'} YEAR_AUTHOR_30_MIN=1500 def __init__(self, name='LitHistAuthors',corpora=None): if not corpora: corpora=[] for name in self.CORPORA: c=load_corpus(name) if c is None: continue c._texts = [t for t in c.texts() if t.year_author_is_30>self.YEAR_AUTHOR_30_MIN] corpora.append(c) super(LitHistAuthors,self).__init__(name=name,corpora=corpora) self.path=os.path.join(self.path,'lithist') class LitHistHathi(CorpusMeta): CORPORA=LitHist.CORPORA + ['HathiEngLit','HathiBio'] def __init__(self, name_meta='LitHistHathi',corpora=None): if not corpora: corpora=[lithist_load_corpus(c) for c in self.CORPORA] corpora=[x for x in corpora if x is not None] #print(corpora) super().__init__(name=name_meta,corpora=corpora)
# # Copyright (c) 2019. JetBrains s.r.o. # Use of this source code is governed by the MIT license that can be found in the LICENSE file. # import pytest from lets_plot.plot.core import FeatureSpecArray, DummySpec from lets_plot.plot.scale_convenience import * @pytest.mark.parametrize('scale_spec, expected', [ (xlim(), {'dummy-feature': True}), (ylim(), {'dummy-feature': True}), ]) def test_scale_spec_dummy(scale_spec, expected): _check(expected, scale_spec.as_dict()) @pytest.mark.parametrize('scale_spec, expected', [ (xlim(-1, 1), { 'aesthetic': 'x', 'limits': [-1, 1], }), (xlim(None, 1), { 'aesthetic': 'x', 'limits': [None, 1], }), (xlim(-1, None), { 'aesthetic': 'x', 'limits': [-1, None], }), (xlim(-1), { 'aesthetic': 'x', 'limits': [-1], }), ]) def test_scale_spec_continuous_x(scale_spec, expected): # print('---------') # print(expected) # print(scale_spec.as_dict()) _check(expected, scale_spec.as_dict()) @pytest.mark.parametrize('scale_spec, expected', [ (ylim(-1, 1), { 'aesthetic': 'y', 'limits': [-1, 1], }), (ylim(None, 1), { 'aesthetic': 'y', 'limits': [None, 1], }), (ylim(-1, None), { 'aesthetic': 'y', 'limits': [-1, None], }), (ylim(-1), { 'aesthetic': 'y', 'limits': [-1], }), ]) def test_scale_spec_continuous_y(scale_spec, expected): # print('---------') # print(expected) # print(scale_spec.as_dict()) _check(expected, scale_spec.as_dict()) @pytest.mark.parametrize('scale_spec, expected', [ (xlim('a', 'b'), { 'aesthetic': 'x', 'limits': ['a', 'b'], 'discrete': True }), (xlim(1, 'b'), { 'aesthetic': 'x', 'limits': [1, 'b'], 'discrete': True }), ]) def test_scale_spec_discrete_x(scale_spec, expected): # print('---------') # print(expected) # print(scale_spec.as_dict()) _check(expected, scale_spec.as_dict()) @pytest.mark.parametrize('scale_spec, expected', [ (ylim('a', 'b'), { 'aesthetic': 'y', 'limits': ['a', 'b'], 'discrete': True }), (ylim(1, 'b'), { 'aesthetic': 'y', 'limits': [1, 'b'], 'discrete': True }), ]) def test_scale_spec_discrete_y(scale_spec, expected): # print('---------') # print(expected) # print(scale_spec.as_dict()) _check(expected, scale_spec.as_dict()) @pytest.mark.parametrize('spec, expected_x, expected_y', [ (lims([-1, 1], [-2, 2]), {'limits': [-1, 1]}, {'limits': [-2, 2]}), (lims((-1, 1), (-2, 2)), {'limits': [-1, 1]}, {'limits': [-2, 2]}), (lims(None, [-2, 2]), None, {'limits': [-2, 2]}), (lims([-1, 1], None), {'limits': [-1, 1]}, None), (lims(None, None), None, None), (lims(['a', 'b', 'c'], ['d', 'e', 'f']), {'limits': ['a', 'b', 'c'], 'discrete': True}, {'limits': ['d', 'e', 'f'], 'discrete': True}), ]) def test_scale_spec_lims_all(spec, expected_x, expected_y): # print('---------') # print(expected_x) # print(expected_y) # print(spec.as_dict()) if expected_x is None and expected_y is None: assert isinstance(spec, DummySpec) elif expected_x is None: _check({'aesthetic': 'y', **expected_y}, spec.as_dict()) elif expected_y is None: _check({'aesthetic': 'x', **expected_x}, spec.as_dict()) else: assert isinstance(spec, FeatureSpecArray) assert len(spec.elements()) == 2 scale_x = spec.elements()[0] _check({'aesthetic': 'x', **expected_x}, scale_x.as_dict()) scale_y = spec.elements()[1] _check({'aesthetic': 'y', **expected_y}, scale_y.as_dict()) def _check(expected, actual): for key in set(expected) | set(actual): if key in expected: assert actual[key] == expected[key] else: assert actual[key] is None
"""Console script for {{cookiecutter.pkg_name}}.""" {% if cookiecutter.command_line_interface|lower == 'y' -%} import typer main = typer.Typer() @main.command() def run() -> None: """Main entrypoint.""" typer.secho("{{ cookiecutter.project_slug }}", fg=typer.colors.BRIGHT_WHITE) typer.secho("=" * len("{{ cookiecutter.project_slug }}"), fg=typer.colors.BRIGHT_WHITE) typer.secho( "{{ cookiecutter.project_short_description }}", fg=typer.colors.BRIGHT_WHITE, ) if __name__ == "__main__": main() # pragma: no cover {%- endif %}
#!/usr/bin/env python3 import argparse import datetime import glob import inspect import os import subprocess import yaml from collections import defaultdict class SafeDict(dict): def __missing__(self, key): return '' def get_script_dir(): return os.path.dirname(inspect.getabsfile(get_script_dir)) SCRIPTDIR = get_script_dir() parser = argparse.ArgumentParser(description='Convert a batch config to a collection of run scripts') parser.add_argument('config', type=str, help='config file' ) parser.add_argument('outdir', type=str, help='directory of output') parser.add_argument('-v', '--verbose', action='store_true', default=False) args = parser.parse_args() SCRIPT_PREAMBLE = '''#!/bin/sh # don't allow unset variables set -o nounset # be verbose as we execute set -x TIMESTAMP=`date +'%Y%m%d_%H%M%S'` # make sure python log files are in order export PYTHONUNBUFFERED=true ''' SCRIPT_PARAMS = ''' SCRIPTDIR={scriptdir} SCRATCHDIR={scratchdir} BENCH_TARGETS={bench_targets} BENCH_CORE={bench_core} ENVIRONMENT={environment} EXEC_SPEC={exec_spec} CODESPEED_URL={codespeed_url} CODESPEED_DB={ocamlspeed_dir}/data/data.db ARCHIVE_DIR={ocamlspeed_dir}/artifacts/ GITHUB_USER={github_user} GITHUB_REPO={github_repo} BRANCH={branch} FIRST_COMMIT={first_commit} MAX_HASHES={max_hashes} OCAML_VERSION={ocaml_version} RUN_PATH_TAG={run_path_tag} CONFIGURE_OPTIONS="{configure_options}" OCAMLRUNPARAM="{ocamlrunparam}" CODESPEED_NAME={codespeed_name} ''' SCRIPT_BODY = ''' RUNDIR=${SCRATCHDIR}/${RUN_PATH_TAG} RUN_STAGES=setup,bench,archive,upload # needed to get the path to include a dune binary # NB: a full eval $(opam config env) breaks the sandmark build in a strange way... eval $(opam config env | grep ^PATH=) mkdir -p ${ARCHIVE_DIR} ## STAGES: ## - get local copy of git repo ## - setup target codespeed db to see project ## - run backfill script to do it cd $SCRIPTDIR ## get local copy of git repo REPO=${GITHUB_USER}__${GITHUB_REPO} if [ ! -d ${REPO} ]; then git clone https://github.com/${GITHUB_USER}/${GITHUB_REPO}.git ${REPO} fi ## setup target codespeed db to see project sqlite3 ${CODESPEED_DB} "INSERT INTO codespeed_project (name,repo_type,repo_path,repo_user,repo_pass,commit_browsing_url,track,default_branch) SELECT '${CODESPEED_NAME}', 'G', 'https://github.com/${GITHUB_USER}/${GITHUB_REPO}', '${GITHUB_USER}', '', 'https://github.com/${GITHUB_USER}/${GITHUB_REPO}/commit/{commitid}',1,'${BRANCH}' WHERE NOT EXISTS(SELECT 1 FROM codespeed_project WHERE name = '${CODESPEED_NAME}')" ## run backfill script ./run_sandmark_backfill.py --run_stages ${RUN_STAGES} --branch ${BRANCH} --main_branch ${BRANCH} --repo ${REPO} --repo_pull --repo_reset_hard --use_repo_reference --max_hashes ${MAX_HASHES} --incremental_hashes --commit_choice_method from_hash=${FIRST_COMMIT} --executable_spec=${EXEC_SPEC} --environment ${ENVIRONMENT} --sandmark_comp_fmt https://github.com/${GITHUB_USER}/${GITHUB_REPO}/archive/{tag}.tar.gz --sandmark_tag_override ${OCAML_VERSION} --sandmark_iter 1 --sandmark_pre_exec="'taskset --cpu-list "${BENCH_CORE}" setarch `uname -m` --addr-no-randomize'" --sandmark_run_bench_targets ${BENCH_TARGETS} --archive_dir ${ARCHIVE_DIR} --codespeed_url ${CODESPEED_URL} --configure_options="${CONFIGURE_OPTIONS}" --ocamlrunparam="${OCAMLRUNPARAM}" --upload_project_name ${CODESPEED_NAME} -v ${RUNDIR} ''' def shell_exec(cmd, verbose=args.verbose, check=False, stdout=None, stderr=None): if verbose: print('+ %s'%cmd) return subprocess.run(cmd, shell=True, check=check, stdout=stdout, stderr=stderr) outdir = os.path.abspath(args.outdir) if args.verbose: print('making directory: %s'%outdir) shell_exec('mkdir -p %s'%outdir) global_conf = { 'scriptdir': SCRIPTDIR, 'bench_targets': 'run_orun' } # read in yaml config with open(args.config, 'r') as stream: try: conf = yaml.safe_load(stream) except yaml.YAMLError as exc: print('YAMLError: %s'%exc) sys.exit(1) # output the script for run_conf in conf['tracked_branches']: fname = os.path.join(outdir, '%s.sh'%run_conf['codespeed_name']) with open(fname, 'w') as outfile: outfile.write(SCRIPT_PREAMBLE) conf_str = SCRIPT_PARAMS.format_map(SafeDict(**{**global_conf, **conf, **run_conf})) outfile.write(conf_str) outfile.write(SCRIPT_BODY) shell_exec('chmod +x %s'%fname)