content
stringlengths
5
1.05M
import os from app import DATA_DIR from app.bq_service import BigQueryService from app.file_storage import FileStorage from app.bot_communities.tokenizers import Tokenizer #, SpacyTokenizer from app.bot_communities.token_analyzer import summarize_token_frequencies from pandas import DataFrame if __name__ == "__main__": file_storage = FileStorage(dirpath="bot_retweet_graphs/bot_min/0.8/n_communities/2/analysis_v2") bq_service = BigQueryService() tokenizer = Tokenizer() results = [dict(row) for row in list(bq_service.fetch_bot_community_profiles(n_communities=2))] print("FETCHED", len(results), "RECORDS") for i, row in enumerate(results): row["profile_tokens"] = [] row["profile_tags"] = [] if row["user_descriptions"]: #print("--------------") #print("COMMUNITY", row["community_id"], i, row["bot_id"], row["screen_names"]) #print(row["user_descriptions"]) # we want unique tokens here because otherwise someone changing their description (multiple descriptions) will have a greater influence over the counts # but then it makes TF/IDF not possible because the doc counts are the same as the token counts # really we are just counting number of users who have these tokens... tokens = list(set(tokenizer.custom_stems(row["user_descriptions"]))) row["profile_tokens"] = tokens #print("TOKENS:", tokens) tags = list(set(tokenizer.hashtags(row["user_descriptions"]))) row["profile_tags"] = tags #print("TAGS:", tags) print("--------------") print("BOT PROFILES:") profiles_df = DataFrame(results) print(profiles_df.head()) # SAVE AND UPLOAD PROFILES local_profiles_filepath = os.path.join(file_storage.local_dirpath, "community_profiles.csv") gcs_profiles_filepath = os.path.join(file_storage.gcs_dirpath, "community_profiles.csv") profiles_df.to_csv(local_profiles_filepath) file_storage.upload_file(local_profiles_filepath, gcs_profiles_filepath) for community_id, filtered_df in profiles_df.groupby(["community_id"]): print("--------------") print(f"COMMUNITY {community_id}:", len(filtered_df)) local_community_dirpath = os.path.join(file_storage.local_dirpath, f"community_{community_id}") gcs_community_dirpath = os.path.join(file_storage.gcs_dirpath, f"community_{community_id}") if not os.path.exists(local_community_dirpath): os.makedirs(local_community_dirpath) tokens_df = summarize_token_frequencies(filtered_df["profile_tokens"].tolist()) print(tokens_df.head()) # SAVE AND UPLOAD PROFILE TOKENS local_tokens_filepath = os.path.join(local_community_dirpath, "profile_tokens.csv") gcs_tokens_filepath = os.path.join(gcs_community_dirpath, "profile_tokens.csv") tokens_df.to_csv(local_tokens_filepath) file_storage.upload_file(local_tokens_filepath, gcs_tokens_filepath) token_records = tokens_df[tokens_df["count"] > 1].to_dict("records") bq_service.upload_bot_community_profile_tokens(community_id=community_id, records=token_records) tags_df = summarize_token_frequencies(filtered_df["profile_tags"].tolist()) print(tags_df.head()) # SAVE AND UPLOAD PROFILE TAGS local_tags_filepath = os.path.join(local_community_dirpath, "profile_tags.csv") gcs_tags_filepath = os.path.join(gcs_community_dirpath, "profile_tags.csv") tags_df.to_csv(local_tags_filepath) file_storage.upload_file(local_tags_filepath, gcs_tags_filepath) tag_records = tags_df[tags_df["count"] > 1].to_dict("records") bq_service.upload_bot_community_profile_tags(community_id=community_id, records=tag_records)
word_count = {} with open("./Beginner Guide to Python.txt") as fin: for line in fin: line = line[:-1] words = line.split() for word in words: if word not in word_count: word_count[word] = 0 word_count[word] += 1 print( sorted( word_count.items(), key=lambda x: x[1], reverse=True )[:10] )
from collections import namedtuple import torch from torch.nn import LSTMCell, Module, Linear from editor_code.copy_editor.vocab import base_plus_copy_indices from gtd.ml.torch.seq_batch import SequenceBatch from gtd.ml.torch.source_encoder import MultiLayerSourceEncoder from gtd.ml.torch.utils import NamedTupleLike from gtd.ml.torch.utils import GPUVariable import numpy as np EncoderInput = namedtuple('EncoderInput', ['input_words', 'output_words', 'token_embedder']) """ Args: input_words (list[MultiVocabIndices]) output_words (list[MultiVocabIndices]) token_embedder (DynamicMultiVocabTokenEmbedder) """ class EncoderOutput(namedtuple('EncoderOutput', ['input_embeds', 'agenda', 'token_embedder']), NamedTupleLike): pass """ Args: input_embeds (list[SequenceBatch]): list of SequenceBatch elements of shape (batch_size, seq_length, hidden_size) agenda (Variable): of shape (batch_size, agenda_dim) - VAE latent variable for reconstructing target sequence token_embedder (DynamicMultiVocabTokenEmbedder) """ class Encoder(Module): def __init__(self, word_dim, agenda_dim, hidden_dim, num_layers, num_inputs, dropout_prob, use_vae, kappa=0, use_target=True): """Construct Encoder. Args: word_dim (int) agenda_dim (int) hidden_dim (int) num_layers (int) num_inputs (int) """ super(Encoder, self).__init__() self.agenda_dim = agenda_dim self.source_encoder = MultiLayerSourceEncoder(2 * word_dim, hidden_dim, num_layers, dropout_prob=dropout_prob, rnn_cell_factory=LSTMCell) self.target_encoder = MultiLayerSourceEncoder(2 * word_dim, hidden_dim, num_layers, dropout_prob=0.0, rnn_cell_factory=LSTMCell) self.agenda_maker = AgendaMaker(self.source_encoder.hidden_dim * num_inputs, self.agenda_dim) self.output_agenda_maker = AgendaMaker(self.source_encoder.hidden_dim, self.agenda_dim) self.use_vae = use_vae self.vae_wrap = VMFVAEWrapper(kappa) self.use_target = use_target def preprocess(self, input_batches, output_seqs, token_embedder, volatile=False): """Preprocess. Args: input_batches (list[list[list[unicode]]]): a batch of input sequence lists Each sequence list has one sequence per "input channel" output_seqs (list[list[unicode]]): a batch of output sequences (targets) token_embedder (DynamicMultiVocabTokenEmbedder) volatile (bool): whether to make Variables volatile (don't track gradients) Returns: EncoderInput """ dynamic_vocabs = token_embedder.dynamic_vocabs base_vocab = token_embedder.base_vocab indices_list = [] for channel_seqs in zip(*input_batches): # channel_seqs is a batch of sequences, where all the sequences come from one "input channel" multi_vocab_indices = base_plus_copy_indices(list(channel_seqs), dynamic_vocabs, base_vocab, volatile=volatile) indices_list.append(multi_vocab_indices) output_indices = base_plus_copy_indices(output_seqs, dynamic_vocabs, base_vocab, volatile=volatile) return EncoderInput(indices_list, output_indices, token_embedder) def make_embedding(self, encoder_input, words_list, encoder): """Encoder for a single `channel' """ channel_word_embeds = encoder_input.token_embedder.embed_seq_batch(words_list) source_encoder_output = encoder(channel_word_embeds.split()) channel_embeds_list = source_encoder_output.combined_states channel_embeds = SequenceBatch.cat(channel_embeds_list) # the final hidden states in both the forward and backward direction, concatenated channel_embeds_final = torch.cat(source_encoder_output.final_states, 1) # (batch_size, hidden_dim) return channel_embeds, channel_embeds_final def target_out(self, encoder_input): output_embeds, output_embeds_final = self.make_embedding(encoder_input, encoder_input.output_words, self.target_encoder) return self.output_agenda_maker(output_embeds_final) def ctx_code_out(self, encoder_input): all_channel_embeds = [] all_channel_embeds_final = [] for channel_words in encoder_input.input_words: channel_embeds, channel_embeds_final = self.make_embedding(encoder_input, channel_words, self.source_encoder) all_channel_embeds.append(channel_embeds) all_channel_embeds_final.append(channel_embeds_final) input_embeds_final = torch.cat(all_channel_embeds_final, 1) # (batch_size, hidden_dim * num_channels) context_agenda = self.agenda_maker(input_embeds_final) return context_agenda, all_channel_embeds def forward(self, encoder_input, train_mode=True): """Encode. Args: encoder_input (EncoderInput) Returns: EncoderOutput, cost (0 in this case) """ context_agenda, all_channel_embeds = self.ctx_code_out(encoder_input) if self.use_vae and train_mode: if self.use_target: target_agenda = self.target_out(encoder_input) vae_agenda, vae_loss = self.vae_wrap(context_agenda+target_agenda, True) else: vae_agenda, vae_loss = self.vae_wrap(context_agenda, True) else: vae_agenda = context_agenda / torch.sqrt(torch.sum(context_agenda**2.0, dim=1)).expand_as(context_agenda) vae_loss = GPUVariable(torch.zeros(1)) return EncoderOutput(all_channel_embeds, vae_agenda, encoder_input.token_embedder), vae_loss class AgendaMaker(Module): def __init__(self, source_dim, agenda_dim): super(AgendaMaker, self).__init__() self.linear = Linear(source_dim, agenda_dim) def forward(self, source_embed): """Create agenda vector from source text embedding and edit embedding. Args: source_embed (Variable): of shape (batch_size, source_dim) Returns: agenda (Variable): of shape (batch_size, agenda_dim) """ return self.linear(source_embed) class GaussianVAEWrapper(Module): def __init__(self, vae_wt): super(GaussianVAEWrapper, self).__init__() self.vae_wt = vae_wt def kl_penalty(self, agenda): """ Computes KL penalty given encoder output """ batch_size, agenda_dim = agenda.size() return self.vae_wt * 0.5 * torch.sum(torch.pow(agenda, 2)) / batch_size def forward(self, source_embed, add_noise=True): means = torch.zeros(source_embed.size()) std = torch.ones(source_embed.size()) noise = GPUVariable(torch.normal(means=means, std=std)) # unit Gaussian if add_noise: return source_embed + noise, self.kl_penalty(source_embed) else: return source_embed, 0 class VMFVAEWrapper(Module): def __init__(self, kappa): super(VMFVAEWrapper, self).__init__() self.kappa = kappa def kl_penalty(self, agenda): # igoring this for simplicity since we don't need the KL penalty. batch_size, id_dim = agenda.size() return GPUVariable(torch.zeros(1)) def sample_vMF(self, mu, kappa): """vMF sampler in pytorch. Args: mu (Tensor): of shape (batch_size, 2*word_dim) kappa (Float): controls dispersion. kappa of inf is no dispersion. """ batch_size, id_dim = mu.size() result_list = [] for i in range(batch_size): munorm = mu[i].norm().expand(id_dim) # sample offset from center (on sphere) with spread kappa w = self._sample_weight(kappa, id_dim) wtorch = GPUVariable(w * torch.ones(id_dim)) # sample a point v on the unit sphere that's orthogonal to mu v = self._sample_orthonormal_to(mu[i] / munorm, id_dim) # compute new point scale_factr = torch.sqrt(GPUVariable(torch.ones(id_dim)) - torch.pow(wtorch, 2)) orth_term = v * scale_factr muscale = mu[i] * wtorch / munorm sampled_vec = (orth_term + muscale) result_list.append(sampled_vec) return torch.stack(result_list, 0) def renormalize_norm(self, mu): """ Args: mu (Tensor): of shape (batch_size, 2*word_dim) """ batch_size, id_dim = mu.size() result_list = [] for i in range(batch_size): munorm = mu[i].norm().expand(id_dim) sampled_vec = mu[i] / munorm result_list.append(sampled_vec) return torch.stack(result_list, 0) def _sample_weight(self, kappa, dim): """Rejection sampling scheme for sampling distance from center on surface of the sphere. """ dim = dim - 1 # since S^{n-1} b = dim / (np.sqrt(4. * kappa ** 2 + dim ** 2) + 2 * kappa) # b= 1/(sqrt(4.* kdiv**2 + 1) + 2 * kdiv) x = (1. - b) / (1. + b) c = kappa * x + dim * np.log(1 - x ** 2) # dim * (kdiv *x + np.log(1-x**2)) while True: z = np.random.beta(dim / 2., dim / 2.) # concentrates towards 0.5 as d-> inf w = (1. - (1. + b) * z) / (1. - (1. - b) * z) u = np.random.uniform(low=0, high=1) if kappa * w + dim * np.log(1. - x * w) - c >= np.log( u): # thresh is dim *(kdiv * (w-x) + log(1-x*w) -log(1-x**2)) return w def _sample_orthonormal_to(self, mu, dim): """Sample point on sphere orthogonal to mu. """ v = GPUVariable(torch.randn(dim)) rescale_value = mu.dot(v) / mu.norm() proj_mu_v = mu * rescale_value.expand(dim) ortho = v - proj_mu_v ortho_norm = torch.norm(ortho) return ortho / ortho_norm.expand_as(ortho) def forward(self, source_embed, add_noise=True): if add_noise: return self.sample_vMF(source_embed, self.kappa), self.kl_penalty(source_embed) else: return self.renormalize_norm(source_embed), 0
# generated with make_mock.py E2BIG = 7 EACCES = 13 EADDRINUSE = 98 EADDRNOTAVAIL = 99 EADV = 68 EAFNOSUPPORT = 97 EAGAIN = 11 EALREADY = 114 EBADE = 52 EBADF = 9 EBADFD = 77 EBADMSG = 74 EBADR = 53 EBADRQC = 56 EBADSLT = 57 EBFONT = 59 EBUSY = 16 ECHILD = 10 ECHRNG = 44 ECOMM = 70 ECONNABORTED = 103 ECONNREFUSED = 111 ECONNRESET = 104 EDEADLK = 35 EDEADLOCK = 35 EDESTADDRREQ = 89 EDOM = 33 EDOTDOT = 73 EDQUOT = 122 EEXIST = 17 EFAULT = 14 EFBIG = 27 EHOSTDOWN = 112 EHOSTUNREACH = 113 EIDRM = 43 EILSEQ = 84 EINPROGRESS = 115 EINTR = 4 EINVAL = 22 EIO = 5 EISCONN = 106 EISDIR = 21 EISNAM = 120 EL2HLT = 51 EL2NSYNC = 45 EL3HLT = 46 EL3RST = 47 ELIBACC = 79 ELIBBAD = 80 ELIBEXEC = 83 ELIBMAX = 82 ELIBSCN = 81 ELNRNG = 48 ELOOP = 40 EMFILE = 24 EMLINK = 31 EMSGSIZE = 90 EMULTIHOP = 72 ENAMETOOLONG = 36 ENAVAIL = 119 ENETDOWN = 100 ENETRESET = 102 ENETUNREACH = 101 ENFILE = 23 ENOANO = 55 ENOBUFS = 105 ENOCSI = 50 ENODATA = 61 ENODEV = 19 ENOENT = 2 ENOEXEC = 8 ENOLCK = 37 ENOLINK = 67 ENOMEM = 12 ENOMSG = 42 ENONET = 64 ENOPKG = 65 ENOPROTOOPT = 92 ENOSPC = 28 ENOSR = 63 ENOSTR = 60 ENOSYS = 38 ENOTBLK = 15 ENOTCONN = 107 ENOTDIR = 20 ENOTEMPTY = 39 ENOTNAM = 118 ENOTSOCK = 88 ENOTTY = 25 ENOTUNIQ = 76 ENXIO = 6 EOPNOTSUPP = 95 EOVERFLOW = 75 EPERM = 1 EPFNOSUPPORT = 96 EPIPE = 32 EPROTO = 71 EPROTONOSUPPORT = 93 EPROTOTYPE = 91 ERANGE = 34 EREMCHG = 78 EREMOTE = 66 EREMOTEIO = 121 ERESTART = 85 EROFS = 30 ESHUTDOWN = 108 ESOCKTNOSUPPORT = 94 ESPIPE = 29 ESRCH = 3 ESRMNT = 69 ESTALE = 116 ESTRPIPE = 86 ETIME = 62 ETIMEDOUT = 110 ETOOMANYREFS = 109 ETXTBSY = 26 EUCLEAN = 117 EUNATCH = 49 EUSERS = 87 EWOULDBLOCK = 11 EXDEV = 18 EXFULL = 54 errorcode = {1: 'EPERM', 2: 'ENOENT', 3: 'ESRCH', 4: 'EINTR', 5: 'EIO', 6: 'ENXIO', 7: 'E2BIG', 8: 'ENOEXEC', 9: 'EBADF', 10: 'ECHILD', 11: 'EAGAIN', 12: 'ENOMEM', 13: 'EACCES', 14: 'EFAULT', 15: 'ENOTBLK', 16: 'EBUSY', 17: 'EEXIST', 18: 'EXDEV', 19: 'ENODEV', 20: 'ENOTDIR', 21: 'EISDIR', 22: 'EINVAL', 23: 'ENFILE', 24: 'EMFILE', 25: 'ENOTTY', 26: 'ETXTBSY', 27: 'EFBIG', 28: 'ENOSPC', 29: 'ESPIPE', 30: 'EROFS', 31: 'EMLINK', 32: 'EPIPE', 33: 'EDOM', 34: 'ERANGE', 35: 'EDEADLOCK', 36: 'ENAMETOOLONG', 37: 'ENOLCK', 38: 'ENOSYS', 39: 'ENOTEMPTY', 40: 'ELOOP', 42: 'ENOMSG', 43: 'EIDRM', 44: 'ECHRNG', 45: 'EL2NSYNC', 46: 'EL3HLT', 47: 'EL3RST', 48: 'ELNRNG', 49: 'EUNATCH', 50: 'ENOCSI', 51: 'EL2HLT', 52: 'EBADE', 53: 'EBADR', 54: 'EXFULL', 55: 'ENOANO', 56: 'EBADRQC', 57: 'EBADSLT', 59: 'EBFONT', 60: 'ENOSTR', 61: 'ENODATA', 62: 'ETIME', 63: 'ENOSR', 64: 'ENONET', 65: 'ENOPKG', 66: 'EREMOTE', 67: 'ENOLINK', 68: 'EADV', 69: 'ESRMNT', 70: 'ECOMM', 71: 'EPROTO', 72: 'EMULTIHOP', 73: 'EDOTDOT', 74: 'EBADMSG', 75: 'EOVERFLOW', 76: 'ENOTUNIQ', 77: 'EBADFD', 78: 'EREMCHG', 79: 'ELIBACC', 80: 'ELIBBAD', 81: 'ELIBSCN', 82: 'ELIBMAX', 83: 'ELIBEXEC', 84: 'EILSEQ', 85: 'ERESTART', 86: 'ESTRPIPE', 87: 'EUSERS', 88: 'ENOTSOCK', 89: 'EDESTADDRREQ', 90: 'EMSGSIZE', 91: 'EPROTOTYPE', 92: 'ENOPROTOOPT', 93: 'EPROTONOSUPPORT', 94: 'ESOCKTNOSUPPORT', 95: 'EOPNOTSUPP', 96: 'EPFNOSUPPORT', 97: 'EAFNOSUPPORT', 98: 'EADDRINUSE', 99: 'EADDRNOTAVAIL', 100: 'ENETDOWN', 101: 'ENETUNREACH', 102: 'ENETRESET', 103: 'ECONNABORTED', 104: 'ECONNRESET', 105: 'ENOBUFS', 106: 'EISCONN', 107: 'ENOTCONN', 108: 'ESHUTDOWN', 109: 'ETOOMANYREFS', 110: 'ETIMEDOUT', 111: 'ECONNREFUSED', 112: 'EHOSTDOWN', 113: 'EHOSTUNREACH', 114: 'EALREADY', 115: 'EINPROGRESS', 116: 'ESTALE', 117: 'EUCLEAN', 118: 'ENOTNAM', 119: 'ENAVAIL', 120: 'EISNAM', 121: 'EREMOTEIO', 122: 'EDQUOT'}
import numpy as np """ How to use? example 1: # J = [[-1,0,0],[0,2,1],[0,0,2]] # make_problem_Jordan_normal_form(J) example2: J = [[-1,0,0,0],[0,2,1,0],[0,0,2,1],[0,0,0,2]] make_problem_Jordan_normal_form(J,difficulty=8) """ """ テキトーな n*n ユニモジュラ行列を1つ得る (単位行列に対して、行or列変形をランダムに繰り返すというアルゴリズム) difficulty: ユニモジュラ行列の「複雑度」(基本変形の最大回数) """ def random_unimodular(n,difficulty): from random import randint, sample if difficulty==None: difficulty = n*3 A = np.eye(n,n) for _ in range(difficulty): # j-th のベクトルを c 倍して i-th に足す i,j = sample(range(n), 2) c, = sample([-2,-1,1,2], 1) if randint(0,1)==0: #行基本変形 A[i] += c*A[j] else: #列基本変形 A[:, i:i+1] += c*A[:, j:j+1] #unimodularを確認 assert abs(np.linalg.det(A) - 1) < 1e-5 return np.matrix(A) """ np.matrix形式の行列 A を 整数成分のリスト形式に変換 """ def mat2intlist(A): return np.round(A).astype(int).tolist() """ 行列 P,Q,J(ジョルダン標準形),A の情報を texのコメント形式で出力 """ def show_info(P,Q,J,A): print("情報") x = "P^{-1}" print(f"% P={mat2intlist(P)}") print(f"% Q={x}={mat2intlist(Q)}") print(f"% J={J}") print(f"% A = PJQ = {mat2intlist(A)}") print() """ 問題をtexとして出力 """ def show_problem(A): print("問題") print(f"${mat2tex(A)}$\nのジョルダン標準形を求めよ。\n") """ 解答をtexとして出力 """ def show_ans(P,Q,J,A): print("答え") print(f"\\[\n{mat2tex(Q)}{mat2tex(A)}{mat2tex(P)}={mat2tex(J)}\\]\n") """ 行列 A をtex形式に変換した文字列を返す """ def mat2tex(A): res = "\\begin{pmatrix}\n" for line in mat2intlist(A): res += " & ".join(map(str,line)) + " \\\\\n" res += "\\end{pmatrix}\n" return res """ ジョルダン標準形が J になるような行列の問題を生成する A = PJP^{-1}となる つまり、広義固有空間の基底は P の縦ベクトルたちからなる difficulty: 問題の難しさ(大きいほど難しい)デフォルトは 3*n """ def make_problem_Jordan_normal_form(J,difficulty=None): n = len(J) P = random_unimodular(n,difficulty) Q = np.linalg.inv(P) A = P@np.matrix(J)@Q # P,Q,A は整数行列であることを確認 assert np.all(np.abs(P@Q - np.eye(n)) < 1e-5) assert np.all(np.abs(P - np.round(P)) < 1e-5) assert np.all(np.abs(Q - np.round(Q)) < 1e-5) assert np.all(np.abs(A - np.round(A)) < 1e-5) show_info(P,Q,J,A) show_problem(A) show_ans(P,Q,J,A)
import ast import os import collections from nltk import pos_tag def flat(_list): """ [(1,2), (3,4)] -> [1, 2, 3, 4]""" return sum([list(item) for item in _list], []) def is_verb(word): """return True if word is a verb, base form""" return word is not None and pos_tag([word])[0][1] == 'VB' def is_special(name): """__some_name__ -> True""" return isinstance(name, str) and name.startswith('__') and name.endswith('__') def process_files(dirname, files): """generate trees from files in the list""" processed = 0 trees = [] for file in files: if not file.endswith('.py'): continue filename = os.path.join(dirname, file) with open(filename, 'r', encoding='utf-8') as attempt_handler: main_file_content = attempt_handler.read() try: tree = ast.parse(main_file_content) except SyntaxError as e: print(e) continue trees.append(tree) return trees def get_trees(path): """generate trees from files in given path""" trees = [] for dirname, dirs, files in os.walk(path, topdown=True): dir_trees = process_files(dirname, files) trees += dir_trees return trees def get_verbs_from_function_name(function_name): """return list of all verbs (base form) in function name""" return [word for word in function_name.split('_') if is_verb(word)] def get_names(tree): """return list of all names in a tree""" return [node.id for node in ast.walk(tree) if isinstance(node, ast.Name)] def get_function_names(tree): """return list of all function names in a tree""" return [node.name.lower() for node in ast.walk(tree) if isinstance(node, ast.FunctionDef)] def get_all_names(path): """return list of all names in python files in specified path""" trees = get_trees(path) names = [f for f in flat([get_names(t) for t in trees]) if not is_special(f)] return names def get_top_names(path, top_size=10): """return most common names in python files in specified path""" names = get_all_names(path) return collections.Counter(names).most_common(top_size) def get_all_function_names(path): """return list of all function names inpython files in specified path""" trees = get_trees(path) function_names = [f for f in flat([get_function_names(t) for t in trees]) if not is_special(f)] return function_names def get_top_function_names(path, top_size=10): """return most common function names in python files in specified path""" function_names = get_all_function_names(path) return collections.Counter(function_names).most_common(top_size) def get_top_function_verbs(path, top_size=10): """return most common verbs in function names in python files in specified path""" function_names = get_all_function_names(path) verbs = flat([get_verbs_from_function_name(function_name) for function_name in function_names]) return collections.Counter(verbs).most_common(top_size) if __name__ == '__main__': words = [] projects = [ 'django', 'flask', 'pyramid', 'reddit', 'requests', 'sqlalchemy', ] for project in projects: path = os.path.join('.', project) words += get_top_function_verbs(path) top_size = 200 print('total %s words, %s unique' % (len(words), len(set(words)))) for word, occurence in collections.Counter(words).most_common(top_size): print(word, occurence)
import logging def config_log(level): logging.basicConfig( format='%(asctime)s %(name)s %(levelname)s %(message)s', level=level.upper())
import random import numpy as np from .arena import Arena from .deliverylogger import DeliveryLogger from .drone import Drone class PackageGenerator: def __init__(self): self.coordinate_pool = self.define_coordinate_pool() self.pool_size = self.coordinate_pool.shape[0] self.package_weights = [0.5, 0.75, 1] self.rng = {} self.delivery_loggers = {} def define_coordinate_pool(self): arena = Arena(0) z = arena.min_z return np.array([ [2.6, 0.6, z], [2.4, 3.4, z], [0.6, 2.2, z], [1.4, 3.2, z], [1., 1.6, z], [3.6, 0.6, z], [3.2, 3.2, z], [3.4, 1.4, z] ]) def initialize_swarm(self, swarm_id, seed): self.rng[swarm_id] = random.Random() self.rng[swarm_id].seed(seed) self.delivery_loggers[swarm_id] = DeliveryLogger() return True def generate_number(self, swarm_id, lower_limit, upper_limit): return self.rng[swarm_id].randint(lower_limit, upper_limit) def generate_hash(self, swarm_id): return self.rng[swarm_id].getrandbits(128) def get_package(self, swarm_id): if self.delivery_loggers[swarm_id].log_is_full(swarm_id): return None rand = self.generate_number(swarm_id, 0, self.pool_size - 1) weightIndex = self.generate_number(swarm_id, 0, len(self.package_weights)-1) weight = self.package_weights[weightIndex] id = self.generate_hash(swarm_id) package = {'id': str(id), 'coordinates': self.coordinate_pool[rand].tolist(), 'weight': weight, 'drone': None, 'picked': False} self.delivery_loggers[swarm_id].add_package(swarm_id, package) return package def pickup(self, swarm_id, package_id, drone: Drone): success = self.delivery_loggers[swarm_id].pickup(swarm_id, package_id, drone) return success def deliver(self, swarm_id, package_id, drone: Drone): success = self.delivery_loggers[swarm_id].deliver(swarm_id, package_id, drone) return success def print_deliveries(self, swarm_id): success = self.delivery_loggers[swarm_id].print_deliveries() return success
from rest_framework import serializers from ..models import Officer from accounts.models import User from accounts.api.serializers import AccountSerializer, AccountCreateSerializer, AccountLoginSerializer from django.contrib.auth import get_user_model from django.db.models import Q from ..models import Officer # class OfficerSerializer(serializers.ModelSerializer): # class Meta: # model = Officer # fields = ['account', 'id', 'activity'] class OfficerSerializer(serializers.ModelSerializer): account = AccountSerializer() class Meta: model = Officer fields = ['account'] class OfficerCreateSerializer(serializers.ModelSerializer): # email_confirm = serializers.EmailField(label='Confirm Email') account = AccountCreateSerializer() class Meta: model = Officer fields = ['account'] def create(self, validated_data): account_data = validated_data.pop('account') # print(account_data) account = User.objects.create(**account_data) officer = Officer.objects.create(account=account, **validated_data) return officer class OfficerLoginSerializer(serializers.ModelSerializer): account = AccountLoginSerializer() class Meta: model = Officer fields = ['account'] """"""
a = 100 b = 10 c = 5 over
def main(): x=2 y=6 print(plus(x,y)) def plus(x,y): return x+y if __name__ == "__main__": main()
"""Test dataset building and splitting.""" import pytest import torch from gcn_prot.data import get_datasets, get_longest def test_longest(graph_path): """Test get longest length in directory.""" assert 189 == get_longest(graph_path) def test_get_dataset(data_path): """Test splitting with default size of datasets.""" train, test, valid = get_datasets( data_path=data_path, nb_nodes=185, task_type="classification", nb_classes=2, split=None, k_fold=None, seed=1234, ) assert 164 == len(train) assert 24 == len(test) assert 48 == len(valid) def test_gaussian_augmentation(data_path): """Test splitting with default size of datasets.""" train, valid, test = get_datasets( data_path=data_path, nb_nodes=185, task_type="classification", nb_classes=2, split=None, augment=2, k_fold=None, seed=1234, ) assert 164 * 2 == len(train) assert 48 * 2 == len(test) assert 24 == len(valid) def test_gaussian_augmentation_label(data_path): """Test splitting with default size of datasets.""" train, valid, test = get_datasets( data_path=data_path, nb_nodes=185, task_type="classification", nb_classes=2, split=None, augment=3, augmented_label="0", k_fold=None, seed=1234, ) assert 164 + (57 * 2) == len(train) assert 24 + (25 * 2) == len(test) assert 24 == len(valid) def test_indexing(data_path): """Test random access the generated graph dataset.""" train, _, _ = get_datasets( data_path=data_path, nb_nodes=185, task_type="classification", nb_classes=2, split=None, k_fold=None, seed=1234, ) prot = train[0] prot_dims = [len(tr) for tr in prot] # v, c, m, y assert prot_dims == [185, 185, 185, 2] def test_dataloading_batch(data_path): """Test transformation of input.""" train, _, _ = get_datasets( data_path=data_path, nb_nodes=185, task_type="classification", nb_classes=2, split=None, k_fold=None, seed=1234, ) trainloader = torch.utils.data.DataLoader( train, shuffle=False, batch_size=25, drop_last=False ) for batch in trainloader: batch_dims = [len(tr) for tr in batch] break v = batch[0] assert batch_dims == [25, 25, 25, 2] assert v.shape == torch.Size([25, 185, 29]) @pytest.mark.skip(reason="have to figure out how it works.") def test_kfold(data_path): """Test kfold splitting.""" train, test, valid = get_datasets( data_path=data_path, nb_nodes=185, task_type="classification", nb_classes=2, split=None, k_fold=[7, 1, 2], seed=1234, ) assert 164 == len(train) assert 24 == len(test) assert 48 == len(valid)
#!/usr/bin/env python3 # @Time : 17-9-8 23:48 # @Author : Wavky Huang # @Contact : master@wavky.com # @File : io.py """ Process input and output """ import calendar import json import os import pickle from datetime import date from urllib import request from mhcalendar.time_elements import Schedule, Holiday, Month, dec_float CONFIG_DIR = os.path.join(os.path.expanduser('~'), '.mhcalendar') def exist(path): return os.path.exists(path) def prepare(): """ Create config folder if not exist, cache holidays if not exist or out of date, and initialize schedule cache. """ _check_config_path() # TODO: Maybe we can prepare holiday data for specific year if not _check_holiday_cache(): holidays = update_holiday_schedule() or [] Cache.cache_holidays(holidays) _init_schedule_cache() def _check_config_path(): """ Create config folder if not exist """ if not exist(CONFIG_DIR): os.makedirs(CONFIG_DIR) def _check_holiday_cache(): holiday_cache = Cache.restore_holidays() if holiday_cache and len(holiday_cache) > 0: thisyear = date.today().year if holiday_cache[0].year == str(thisyear): return True return False def _init_schedule_cache(): schedule_cache = Cache.restore_schedule() if not schedule_cache: today = date.today() month = Month(today.year, today.month) schedule = Schedule(None, month) Cache.cache_schedule(schedule) class Cache: HOLIDAY_CACHE_NAME = 'holiday.cache' SCHEDULE_CACHE_NAME = 'schedule.cache' @classmethod def cache_holidays(cls, holidays): _check_config_path() path = os.path.join(CONFIG_DIR, Cache.HOLIDAY_CACHE_NAME) try: with open(path, 'w') as file: json.dump(holidays, file) except: print("Failure to open cache file:", path) @classmethod def cache_schedule(cls, schedule): _check_config_path() path = os.path.join(CONFIG_DIR, Cache.SCHEDULE_CACHE_NAME) try: with open(path, 'wb') as file: pickle.dump(schedule, file) except: print("Failure to open cache file:", path) @classmethod def restore_holidays(cls): """ :return: Holiday list or None if no cache is found """ path = os.path.join(CONFIG_DIR, Cache.HOLIDAY_CACHE_NAME) if exist(path): try: with open(path, 'r') as file: jslist = json.load(file) if jslist and isinstance(jslist, list): holidays = [] for item in jslist: holiday = Holiday(*item) holidays.append(holiday) return holidays else: return None except: print("Failure to open cache file:", path) else: return None @classmethod def restore_schedule(cls): """ :return: Schedule object or None if no cache is found """ path = os.path.join(CONFIG_DIR, Cache.SCHEDULE_CACHE_NAME) if exist(path): try: with open(path, 'rb') as file: schedule = pickle.load(file) return schedule if isinstance(schedule, Schedule) else None except: print("Failure to open cache file:", path) else: return None class MHCalendarDrawer: """ Output a monthly calendar. """ def __init__(self, width=14): """ :param width: minimum width is limited to 12, and MUST BE set as EVEN """ self.width = 12 if width < 12 else width self.hr_line = '-' * (width + 1) * 7 + '-' self.seperator = '|' + ('-' * width + '|') * 7 self.blank_line = str(' ' * ((width + 1) * 7 + 1)) def __separate_line(self, week: str, end=''): week = list(week) distance_to_end = self.width * 7 + 8 - len(week) week += list(' ' * distance_to_end) week[::self.width + 1] = list('|' * 8) return ''.join(week) + end def __pipe(self, start, width, *texts, seperator='|', end=''): """ The real name is Pile In piPE :P :param start: offset to start :param width: pipe's width :param texts: text to fill into a pipe :param seperator: seperator before and after, not count in pipe's width :return: a bamboo... """ elements = [' ' * start, seperator] for t in texts: lent = len(t) if lent < width: t += ' ' * (width - lent) t += seperator elements.append(t) elements.append(end) return ''.join(elements) def __packup_week_schedule(self, week): first_weekday = week[0].date.weekday() start_index = first_weekday * (self.width + 1) pipes = list() holidays = ['* Holiday *'.center(self.width) if week[i].holiday is not None else ' ' * self.width for i in range(len(week))] schedule_hours = ['Sched: {}'.format(week[i].scheduled_work_hours) if not week[i].is_dayoff else '-' for i in range(len(week))] overtime_hours = ['OT: {}'.format(week[i].overtime) if not week[i].is_dayoff else '-' for i in range(len(week))] checkin_hours = ['Checkin: {}'.format(week[i].checkin_manhour) if not week[i].is_dayoff else '-' for i in range(len(week))] dayoff = ['Dayoff: {}'.format('Yes' if week[i].is_dayoff else 'No') for i in range(len(week))] done = ['Done: {}'.format('Yes' if week[i].is_past else 'No') for i in range(len(week))] pipes.append(self.__separate_line(self.__pipe(start_index, self.width, *holidays), '\n')) pipes.append(self.__separate_line(self.__pipe(start_index, self.width, *schedule_hours), '\n')) pipes.append(self.__separate_line(self.__pipe(start_index, self.width, *overtime_hours), '\n')) pipes.append(self.__separate_line(self.__pipe(start_index, self.width, *checkin_hours), '\n')) pipes.append(self.__separate_line(self.__pipe(start_index, self.width, *dayoff), '\n')) pipes.append(self.__separate_line(self.__pipe(start_index, self.width, *done), '\n')) return pipes def __decorate_today(self, month, week_line): if month.today: day = date.today().day index = week_line.find(' ' + str(day) + ' ') if index > 0: week_line = list(week_line) week_line[index - 1] = '[' r_offset = 3 if day < 10 else 4 week_line[index + r_offset] = ']' week_line = ''.join(week_line) return week_line def __print_holiday(self, schedule): holidays = schedule.month.holidays if holidays and len(holidays): for holiday in holidays: print('{year}.{month}.{day} {name}' .format(year=holiday.year, month=holiday.month, day=holiday.day, name=holiday.name)) def __print_today(self, schedule): day = schedule.month.today day_name = date.today().strftime('%A') if day: holiday = '** {} **'.format(day.holiday.name) if day.holiday else '' checkin_or_dayoff = '\t Checkin: {}'.format(day.checkin_manhour) if not day.is_dayoff else '\t Day off' print('Today:', str(day.date), day_name, holiday, '\t Schedule(OT):', day.scheduled_work_hours, '({})'.format(day.overtime), checkin_or_dayoff) else: print('today:', date.today(), day_name) def __print_manhour_expect(self, schedule): workdays = len(schedule.month.days) - len(schedule.dayoff_list) salary = schedule.job.required_manhour * schedule.job.hourly_pay print('Expecting:', 'Manhour/Workdays = {0}/{1}d'.format(schedule.job.required_manhour, workdays), '\t Salary = {}'.format(salary)) def __print_manhour_fornow(self, schedule): print('For now: ', 'Checkin manhour = {}'.format(schedule.checkin_manhour), '\t Remaining manhour = {}'.format(schedule.manhour_remain), '\t Overtime = {}'.format(schedule.overhours), '\t Salary = {}'.format(schedule.checkin_manhour * dec_float(schedule.job.hourly_pay))) def __print_manhour_absence(self, schedule): if schedule.manhour_absence > 0: print('These manhour can not be scheduled on this month:', schedule.manhour_absence) def draw(self, schedule: Schedule): cal = str(calendar.month(schedule.month.index['year'], schedule.month.index['month'], self.width)) cal_lines = [' ' + w for w in cal.splitlines() if w != ''] title = cal_lines.pop(0) day_of_week = cal_lines.pop(0) cal_weeks = cal_lines print('', title, self.hr_line, day_of_week, self.__separate_line(self.hr_line), sep='\n') for i in range(len(cal_weeks)): print(self.__separate_line(self.__decorate_today(schedule.month, cal_weeks[i]))) print(*self.__packup_week_schedule(schedule.month.weeks[i]), sep='', end='') print(self.__separate_line(self.hr_line)) print('(Sched = Schedule, OT = Overtime)') self.__print_holiday(schedule) print('') self.__print_today(schedule) self.__print_manhour_expect(schedule) self.__print_manhour_fornow(schedule) self.__print_manhour_absence(schedule) def update_holiday_schedule(): """ request new schedule list of holidays this year. :return: new list of Holiday or None for update failure. """ url = "http://calendar-service.net/cal?start_year={year}&start_mon=1&end_year={year}&end_mon=12\ &year_style=normal&month_style=numeric&wday_style=en&format=csv&holiday_only=1".format(year=date.today().year) print('Accessing network to request holiday data...') print('url: ' + url) try: with request.urlopen(url) as f: content = [line.decode('EUC-JP').replace('\n', '') for line in f.readlines()] del content[0] content = [line.split(',') for line in content] holidays = [Holiday(*line) for line in content] print('Success.') return holidays except: print("Holiday schedule request failure.") return None
import os import itertools import glob import re import torch from torch.utils.data import Dataset import torchvision import torchvision.transforms as transforms import torchvision.transforms.functional as F import PIL from PIL import Image import cv2 import numpy as np import matplotlib.pyplot as plt import flow_utils import pdb SINTEL_DIM = (1024, 436) CHAIRS_DIM = (512, 384) THINGS_DIM = (960, 540) KITTI_DIM = (1241, 376) KITTI_COARSE_DIM = (77, 23) class MaskToTensor(object): def __call__(self, x): return to_tensor(x) def to_tensor(mask): mask = mask[:, :, None] return torch.from_numpy(mask.transpose((2, 0, 1))).byte() def kitti_invalid_mask(image): image = np.array(image) mask = np.zeros(image.shape, dtype=np.uint8) mask[:, :, 2] = 255 * np.ones(image.shape[:2], dtype=np.uint8) return np.all(mask == image, axis=2).astype(np.uint8) class InpaintNaNs(object): def __call__(self, x): if isinstance(x, Image.Image): x = np.array(x) nanmask = np.isnan(x) if not np.any(nanmask): x = Image.fromarray(x) return x x = cv2.inpaint(x, nanmask.astype(np.uint8), 2, cv2.INPAINT_TELEA) x = Image.fromarray(x) else: nanmask = np.isnan(x) if not np.any(nanmask): return x tx = x[:, :, 0] tx = cv2.inpaint(tx, nanmask[:, :, 0].astype(np.uint8), 2, cv2.INPAINT_TELEA) ty = x[:, :, 1] ty = cv2.inpaint(ty, nanmask[:, :, 1].astype(np.uint8), 2, cv2.INPAINT_TELEA) x = np.stack((tx, ty), axis=-1) return x class RandomOrderFlip(object): def __init__(self, p=0.5): self.p = p self.draw() def draw(self): self.flip = np.random.random() def __call__(self, image1, image2): # self.draw() if self.flip < self.p: return image2, image1, -1 else: return image1, image2, 1 class RandomHorizontalFlip(object): def __init__(self, p=0.5): self.p = p self.draw() def draw(self): self.flip = np.random.random() def __call__(self, x): if self.flip < self.p: if isinstance(x, Image.Image): x = F.hflip(x) else: x = np.fliplr(x) x = x + 0 # hack x[:, :, 0] = -x[:, :, 0] # negate horizontal displacement return x class ScaledCenterCrop(object): def __init__(self, input_size, output_size): w, h = input_size tw, th = output_size self.i = int(round((h - th) / 2.)) self.j = int(round((w - tw) / 2.)) self.w = tw self.h = th def new_params(self): return None def correct_calibration(self, K, scale): dx = self.j * scale dy = self.i * scale K[0, -1] = K[0, -1] - dx K[1, -1] = K[1, -1] - dy return K def __call__(self, x, scale): i = self.i * scale j = self.j * scale h = self.h * scale w = self.w * scale if isinstance(x, Image.Image): # PIL image return F.crop(x, i, j, h, w) else: # numpy array return x[i:i+h, j:j+w] class ScaledRandomCrop(object): def __init__(self, input_size, output_size): self.input_size = input_size self.output_size = output_size self.new_params() def get_params(self, input_size, output_size): w, h = input_size tw, th = output_size if w == tw and h == th: return 0, 0, h, w elif w == tw and h > th: i = np.random.randint(0, h-th) return i, 0, th, tw elif w > tw and h == th: j = np.random.randint(0, w-tw) return 0, j, th, tw else: i = np.random.randint(0, h-th) j = np.random.randint(0, w-tw) return i, j, th, tw def new_params(self): self.i, self.j, self.h, self.w = self.get_params(self.input_size, self.output_size) def correct_calibration(self, K, scale): dx = self.j * scale dy = self.i * scale K[0, -1] = K[0, -1] - dx K[1, -1] = K[1, -1] - dy return K def __call__(self, x, scale): i = self.i * scale j = self.j * scale h = self.h * scale w = self.w * scale if isinstance(x, Image.Image): # PIL image return F.crop(x, i, j, h, w) else: # numpy array return x[i:i+h, j:j+w] class RandomCrop(object): def __init__(self, input_size, output_size): self.input_size = input_size self.output_size = output_size self.new_params() def get_params(self, input_size, output_size): w, h = input_size tw, th = output_size if w == tw and h == th: return 0, 0, h, w elif w == tw and h > th: i = np.random.randint(0, h-th) return i, 0, th, tw elif w > tw and h == th: j = np.random.randint(0, w-tw) return 0, j, th, tw else: i = np.random.randint(0, h-th) j = np.random.randint(0, w-tw) return i, j, th, tw def new_params(self): self.i, self.j, self.h, self.w = self.get_params(self.input_size, self.output_size) def __call__(self, x): if isinstance(x, Image.Image): # PIL image return F.crop(x, self.i, self.j, self.h, self.w) else: # numpy array return x[self.i:self.i+self.h, self.j:self.j+self.w] class CenterCrop(object): def __init__(self, input_size, output_size): w, h = input_size tw, th = output_size self.i = int(round((h - th) / 2.)) self.j = int(round((w - tw) / 2.)) self.w = tw self.h = th def new_params(self): return None def __call__(self, x): if isinstance(x, Image.Image): # PIL image return F.crop(x, self.i, self.j, self.h, self.w) else: # numpy array return x[self.i:self.i+self.h, self.j:self.j+self.w] def imshow(img): img = img / 2 + 0.5 # unnormalize npimg = img.numpy() plt.imshow(np.transpose(npimg, (1, 2, 0))) plt.show() def pil_loader(path): # open path as file to avoid ResourceWarning (https://github.com/python-pillow/Pillow/issues/835) with open(path, 'rb') as f: img = Image.open(f) return img.convert('RGB') def flowshow(flow): # npflow = flow.numpy() # npflow = np.transpose(npflow, (1, 2, 0)) img = flow_utils.compute_flow_image(flow) plt.imshow(img) plt.show() def write_flow(name, flow): with open(name, 'wb') as f: f.write('PIEH'.encode('utf-8')) np.array([flow.shape[1], flow.shape[0]], dtype=np.int32).tofile(f) flow = flow.astype(np.float32) flow.tofile(f) def flow_loader(path): TAG_FLOAT = 202021.25 with open(path, "rb") as f: tag = np.fromfile(f, np.float32, count=1) assert tag[0] == TAG_FLOAT, 'Flow number %r incorrect. Invalid .flo file' % tag w = np.fromfile(f, np.int32, count=1)[0] h = np.fromfile(f, np.int32, count=1)[0] data = np.fromfile(f, np.float32, count=2*w*h) flow = np.reshape(data, (int(h), int(w), 2)) return flow def pfm_loader(path): file = open(path, 'rb') color = None width = None height = None scale = None endian = None header = file.readline().rstrip().decode("utf-8") if header == 'PF': color = True elif header == 'Pf': color = False else: raise Exception('Not a PFM file.') dim_match = re.match(r'^(\d+)\s(\d+)\s$', file.readline().decode("utf-8")) if dim_match: width, height = map(int, dim_match.groups()) else: raise Exception('Malformed PFM header.') scale = float(file.readline().rstrip().decode("utf-8")) if scale < 0: # little-endian endian = '<' scale = -scale else: endian = '>' # big-endian data = np.fromfile(file, endian + 'f') shape = (height, width, 3) if color else (height, width) data = np.reshape(data, shape) data = np.flipud(data) return data, scale def flow_png_loader(path): flow_raw = cv2.imread(path, -1) # convert BGR to RG flow = flow_raw[:, :, 2:0:-1].astype(np.float32) # scaling flow = flow - 32768. flow = flow / 64. # clip flow[np.abs(flow) < 1e-10] = 1e-10 # invalid mask invalid_mask = (flow_raw[:, :, 0] == 0) flow[invalid_mask, :] = 0 # valid mask valid_mask = (flow_raw[:, :, 0] == 1).astype(np.uint8) return flow, valid_mask class Sintel(Dataset): def __init__(self, root, split='train', passes=['final'], data_augmentation=True, transform=None, target_transform=None, pyramid_levels=[0], flow_scale=1, crop_dim=(384, 768), hflip=-1): super(Sintel, self).__init__() pyramid_levels = sorted(pyramid_levels) if split == 'test': root = os.path.join(root, 'test') else: root = os.path.join(root, 'training') self.transform = transform self.target_transform = target_transform if data_augmentation: self.flip_transform = RandomHorizontalFlip(hflip) self.crop_transform = RandomCrop(SINTEL_DIM, crop_dim[::-1]) else: self.flip_transform = RandomHorizontalFlip(-1) self.crop_transform = CenterCrop(SINTEL_DIM, crop_dim[::-1]) dim = (crop_dim[0] // 2**pyramid_levels[0], crop_dim[1] // 2**pyramid_levels[0]) self.first_level_resize = transforms.Resize(dim) self.pyramid_transforms = [] for l in pyramid_levels: dim = (crop_dim[0] // 2**l, crop_dim[1] // 2**l) self.pyramid_transforms.append(flow_utils.ResizeFlow(dim)) self.scale_transform = flow_utils.ScaleFlow(flow_scale) passdirs = [os.path.join(root, p) for p in passes] self.dataset = list(itertools.chain(*[self.make_dataset(p) for p in passdirs])) def __getitem__(self, idx): image1_path, image2_path, flow_path = self.dataset[idx] image1 = pil_loader(image1_path) image2 = pil_loader(image2_path) image1 = self.crop_transform(image1) image2 = self.crop_transform(image2) image1 = self.flip_transform(image1) image2 = self.flip_transform(image2) image1 = self.first_level_resize(image1) image2 = self.first_level_resize(image2) if self.transform is not None: image1 = self.transform(image1) image2 = self.transform(image2) flow0 = flow_loader(flow_path) flow0 = self.crop_transform(flow0) flow0 = self.flip_transform(flow0) flow0 = self.scale_transform(flow0) flow_levels = [] for pt in self.pyramid_transforms: flow = pt(flow0) flow_levels.append(flow) if self.target_transform is not None: flow_levels = [self.target_transform(flow) for flow in flow_levels] self.crop_transform.new_params() self.flip_transform.draw() return image1, image2, flow_levels def __len__(self): return len(self.dataset) def make_dataset(self, passdir): dataset = [] flowdir = os.path.join(os.path.dirname(passdir), 'flow') for seqid in sorted(os.listdir(passdir)): seqdir = os.path.join(passdir, seqid) for sd, _, fnames in sorted(os.walk(seqdir)): for f1, f2 in zip(sorted(fnames), sorted(fnames)[1:]): image1 = os.path.join(sd, f1) image2 = os.path.join(sd, f2) flow = os.path.join(flowdir, seqid, f1.split('.')[0] + '.flo') dataset.append((image1, image2, flow)) return dataset class SintelSR(Dataset): def __init__(self, root, split='train', passes=['final'], transform=None, input_scale=2, target_scale=1, crop_dim=(384, 768)): super(SintelSR, self).__init__() if split == 'test': root = os.path.join(root, 'test') else: root = os.path.join(root, 'training') self.transform = transform self.crop_transform = transforms.RandomCrop(crop_dim) self.input_resize = None if input_scale != 1: input_dim = (crop_dim[0] // input_scale, crop_dim[1] // input_scale) self.input_resize = transforms.Resize(input_dim) self.target_resize = None if target_scale != 1: target_dim = (crop_dim[0] // target_scale, crop_dim[1] // target_scale) self.target_resize = transforms.Resize(target_dim) self.tensor_transform = transforms.ToTensor() passdirs = [os.path.join(root, p) for p in passes] self.dataset = list(itertools.chain(*[self.make_dataset(p) for p in passdirs])) def __len__(self): return len(self.dataset) def __getitem__(self, idx): image_path = self.dataset[idx] image = pil_loader(image_path) image = self.crop_transform(image) input_image = image target_image = image if self.input_resize is not None: input_image = self.input_resize(input_image) if self.target_resize is not None: target_image = self.target_resize(target_image) if self.transform is not None: input_image = self.transform(input_image) target_image = self.transform(target_image) input_image = self.tensor_transform(input_image) target_image = 2 * self.tensor_transform(target_image) - 1 return input_image, target_image def make_dataset(self, passdir): dataset = [] for seqid in sorted(os.listdir(passdir)): seqdir = os.path.join(passdir, seqid) fnames = sorted(glob.glob(seqdir + '/*.png')) dataset.extend(fnames) return dataset class FlyingChairs(Dataset): def __init__(self, root, transform=None, target_transform=None, pyramid_levels=[0], flow_scale=1, crop_dim=(384, 448)): super(FlyingChairs, self).__init__() pyramid_levels = sorted(pyramid_levels) self.transform = transform self.target_transform = target_transform self.crop_transform = RandomCrop(CHAIRS_DIM, crop_dim[::-1]) dim = (crop_dim[0] // 2**pyramid_levels[0], crop_dim[1] // 2**pyramid_levels[0]) self.first_level_resize = transforms.Resize(dim) self.pyramid_transforms = [] for l in pyramid_levels: dim = (crop_dim[0] // 2**l, crop_dim[1] // 2**l) self.pyramid_transforms.append(flow_utils.ResizeFlow(dim)) self.scale_transform = flow_utils.ScaleFlow(flow_scale) self.dataset = self.make_dataset(root) def __getitem__(self, idx): image1_path, image2_path, flow_path = self.dataset[idx] image1 = pil_loader(image1_path) image2 = pil_loader(image2_path) image1 = self.crop_transform(image1) image2 = self.crop_transform(image2) image1 = self.first_level_resize(image1) image2 = self.first_level_resize(image2) if self.transform is not None: image1 = self.transform(image1) image2 = self.transform(image2) flow0 = flow_loader(flow_path) flow0 = self.crop_transform(flow0) flow0 = self.scale_transform(flow0) flow_levels = [] for pt in self.pyramid_transforms: flow = pt(flow0) flow_levels.append(flow) if self.target_transform is not None: flow_levels = [self.target_transform(flow) for flow in flow_levels] self.crop_transform.new_params() return image1, image2, flow_levels def __len__(self): return len(self.dataset) def make_dataset(self, root): fnames = sorted(glob.glob(root + '/*.ppm')) images1 = fnames[::2] images2 = fnames[1::2] flows = [f.split('img')[0] + 'flow.flo' for f in images1] dataset = list(zip(images1, images2, flows)) return dataset class FlyingChairsSR(Dataset): def __init__(self, root, transform=None, input_scale=2, target_scale=1, crop_dim=(384, 448)): super(FlyingChairsSR, self).__init__() self.transform = transform self.crop_transform = transforms.RandomCrop(crop_dim) self.input_resize = None if input_scale != 1: input_dim = (crop_dim[0] // input_scale, crop_dim[1] // input_scale) self.input_resize = transforms.Resize(input_dim) self.target_resize = None if target_scale != 1: target_dim = (crop_dim[0] // target_scale, crop_dim[1] // target_scale) self.target_resize = transforms.Resize(target_dim) self.tensor_transform = transforms.ToTensor() self.dataset = self.make_dataset(root) def __len__(self): return len(self.dataset) def __getitem__(self, idx): image_path = self.dataset[idx] image = pil_loader(image_path) image = self.crop_transform(image) input_image = image target_image = image if self.input_resize is not None: input_image = self.input_resize(input_image) if self.target_resize is not None: target_image = self.target_resize(target_image) if self.transform is not None: input_image = self.transform(input_image) target_image = self.transform(target_image) input_image = self.tensor_transform(input_image) target_image = 2 * self.tensor_transform(target_image) - 1 return input_image, target_image def make_dataset(self, root): return sorted(glob.glob(root + '/*.ppm')) class FlyingThings(Dataset): def __init__(self, root, split='train', partition=['A', 'B', 'C'], transform=None, target_transform=None, pyramid_levels=[0], flow_scale=1, crop_dim=(384, 768)): super(FlyingThings, self).__init__() pyramid_levels = sorted(pyramid_levels) self.transform = transform self.target_transform = target_transform self.nanfilter_transform = InpaintNaNs() self.crop_transform = RandomCrop(THINGS_DIM, crop_dim[::-1]) dim = (crop_dim[0] // 2**pyramid_levels[0], crop_dim[1] // 2**pyramid_levels[0]) self.first_level_resize = transforms.Resize(dim) self.pyramid_transforms = [] for l in pyramid_levels: dim = (crop_dim[0] // 2**l, crop_dim[1] // 2**l) self.pyramid_transforms.append(flow_utils.ResizeFlow(dim)) self.scale_transform = flow_utils.ScaleFlow(flow_scale) self.dataset = self.make_dataset(root, split, partition) def __getitem__(self, idx): image1_path, image2_path, flow_path = self.dataset[idx] image1 = pil_loader(image1_path) image2 = pil_loader(image2_path) image1 = self.nanfilter_transform(image1) image2 = self.nanfilter_transform(image2) image1 = self.crop_transform(image1) image2 = self.crop_transform(image2) image1 = self.first_level_resize(image1) image2 = self.first_level_resize(image2) if self.transform is not None: image1 = self.transform(image1) image2 = self.transform(image2) flow0, _ = pfm_loader(flow_path) # add pfm loader flow0 = flow0[:, :, :2] flow0 = self.nanfilter_transform(flow0) flow0 = self.crop_transform(flow0) flow0 = self.scale_transform(flow0) flow_levels = [] for pt in self.pyramid_transforms: flow = pt(flow0) flow_levels.append(flow) if self.target_transform is not None: flow_levels = [self.target_transform(flow) for flow in flow_levels] self.crop_transform.new_params() return image1, image2, flow_levels def __len__(self): return len(self.dataset) def make_dataset(self, root, split, partition): image_pairs = self.image_paths(root, split, partition) image1, image2 = zip(*image_pairs) flows = self.flow_paths(root, split, partition) dataset = list(zip(image1, image2, flows)) return dataset def image_paths(self, root, split, partition): root = os.path.join(root, 'frames_finalpass') if split == 'test': root = os.path.join(root, 'TEST') else: root = os.path.join(root, 'TRAIN') image_pairs = [] for part in partition: part_path = os.path.join(root, part) for subseq_path in sorted(glob.glob(part_path + '/*')): # future direction for camera in ['left', 'right']: camera_path = os.path.join(subseq_path, camera) fnames = sorted(glob.glob(camera_path + '/*.png')) subseq_pairs = list(zip(fnames, fnames[1:])) image_pairs.extend(subseq_pairs) # past direction for camera in ['left', 'right']: camera_path = os.path.join(subseq_path, camera) fnames = sorted(glob.glob(camera_path + '/*.png')) subseq_pairs = list(zip(fnames[1:], fnames)) image_pairs.extend(subseq_pairs) return image_pairs def flow_paths(self, root, split, partition): root = os.path.join(root, 'optical_flow') if split == 'test': root = os.path.join(root, 'TEST') else: root = os.path.join(root, 'TRAIN') flows = [] for part in partition: part_path = os.path.join(root, part) for subseq_path in sorted(glob.glob(part_path + '/*')): direction_path = os.path.join(subseq_path, 'into_future') for camera in ['left', 'right']: camera_path = os.path.join(direction_path, camera) fnames = sorted(glob.glob(camera_path + '/*.pfm')) flows.extend(fnames[:-1]) direction_path = os.path.join(subseq_path, 'into_past') for camera in ['left', 'right']: camera_path = os.path.join(direction_path, camera) fnames = sorted(glob.glob(camera_path + '/*.pfm')) flows.extend(fnames[1:]) return flows class KITTIFlow(Dataset): def __init__(self, root, split='train', transform=None, target_transform=None, pyramid_levels=[0], flow_scale=1, crop_dim=(320, 896)): super(KITTIFlow, self).__init__() pyramid_levels = sorted(pyramid_levels) self.split = split if self.split == 'test': root = os.path.join(root, 'testing') else: root = os.path.join(root, 'training') self.transform = transform self.target_transform = target_transform self.flow_to_tensor = flow_utils.ToTensor() self.mask_to_tensor = MaskToTensor() self.crop_transform = RandomCrop(KITTI_DIM, crop_dim[::-1]) dim = (crop_dim[0] // 2**pyramid_levels[0], crop_dim[1] // 2**pyramid_levels[0]) self.first_level_resize = transforms.Resize(dim) self.scale_transform = flow_utils.ScaleFlow(flow_scale) self.pyramid_transforms = [] for l in pyramid_levels: self.pyramid_transforms.append(flow_utils.ResizeSparseFlow(2**l)) self.dataset = self.make_dataset(root, split) def __getitem__(self, idx): image1_path, image2_path, flow_path = self.dataset[idx] image1 = pil_loader(image1_path) image2 = pil_loader(image2_path) # NOTE: Hack for dealing with different sizes between samples self.crop_transform.input_size = image1.size self.crop_transform.new_params() image1 = self.crop_transform(image1) image2 = self.crop_transform(image2) image1 = self.first_level_resize(image1) image2 = self.first_level_resize(image2) if self.transform is not None: image1 = self.transform(image1) image2 = self.transform(image2) if self.split == 'test': return image1, image2 flow0, valid_mask0 = flow_png_loader(flow_path) flow0 = self.crop_transform(flow0) valid_mask0 = self.crop_transform(valid_mask0) flow0 = self.scale_transform(flow0) flow_levels = [] mask_levels = [] for pt in self.pyramid_transforms: flow, mask = pt(flow0, valid_mask0) flow_levels.append(flow) mask_levels.append(mask) flow_levels = [self.flow_to_tensor(flow) for flow in flow_levels] mask_levels = [self.mask_to_tensor(mask) for mask in mask_levels] if self.target_transform is not None: flow_levels = [self.target_transform(flow) for flow in flow_levels] return image1, image2, flow_levels, mask_levels def __len__(self): return len(self.dataset) def make_dataset(self, root, split): imagedir = os.path.join(root, 'image_2') fnames = sorted(glob.glob(imagedir + '/*.png')) images1 = fnames[::2] images2 = fnames[1::2] flowdir = os.path.join(root, 'flow_noc') flows = sorted(glob.glob(flowdir + '/*.png')) dataset = [] if split == 'test': dataset = list(zip(images1, images2)) else: dataset = list(zip(images1, images2, flows)) return dataset class KITTIFlowSR(Dataset): def __init__(self, root, split='train', transform=None, input_scale=2, target_scale=1, crop_dim=(320, 896)): super(KITTIFlowSR, self).__init__() if split == 'test': root = os.path.join(root, 'test') else: root = os.path.join(root, 'training') self.transform = transform self.crop_transform = transforms.RandomCrop(crop_dim) self.input_resize = None if input_scale != 1: input_dim = (crop_dim[0] // input_scale, crop_dim[1] // input_scale) self.input_resize = transforms.Resize(input_dim) self.target_resize = None if target_scale != 1: target_dim = (crop_dim[0] // target_scale, crop_dim[1] // target_scale) self.target_resize = transforms.Resize(target_dim) self.tensor_transform = transforms.ToTensor() self.dataset = self.make_dataset(root) def __len__(self): return len(self.dataset) def __getitem__(self, idx): image_path = self.dataset[idx] image = pil_loader(image_path) image = self.crop_transform(image) input_image = image target_image = image if self.input_resize is not None: input_image = self.input_resize(input_image) if self.target_resize is not None: target_image = self.target_resize(target_image) if self.transform is not None: input_image = self.transform(input_image) target_image = self.transform(target_image) input_image = self.tensor_transform(input_image) target_image = 2 * self.tensor_transform(target_image) - 1 return input_image, target_image def make_dataset(self, root): imagedir = os.path.join(root, 'image_2') dataset = sorted(glob.glob(imagedir + '/*.png')) return dataset class KITTIDerot(Dataset): def __init__(self, root, sequences=[0, 1, 2, 3, 4, 5], transform=None, input_scale=None, frame_offset=None, pyramid_levels=[0], crop_dim=(20, 56), data_augmentation=True, fflip=-1, return_id=False): super(KITTIDerot, self).__init__() if frame_offset is None: frame_offset = [1, 2, 3] self.return_id = return_id self.pyramid_levels = sorted(pyramid_levels) if input_scale is None: input_scale = self.pyramid_levels[-1] self.input_scale = input_scale self.transform = transform if data_augmentation: self.flow_flip_transform = RandomOrderFlip(fflip) self.crop_transform = ScaledRandomCrop(KITTI_COARSE_DIM, crop_dim[::-1]) else: self.flow_flip_transform = RandomOrderFlip(-1) self.crop_transform = ScaledCenterCrop(KITTI_COARSE_DIM, crop_dim[::-1]) self.flow_to_tensor = flow_utils.ToTensor() self.mask_to_tensor = MaskToTensor() self.dataset = self.make_dataset(root, sequences, self.pyramid_levels, input_scale, frame_offset) def __getitem__(self, idx): image1_path, image2_path, mask_path, calib_paths, t, subseq_id, pair_id = self.dataset[idx] image1 = pil_loader(image1_path) image2 = pil_loader(image2_path) mask = kitti_invalid_mask(pil_loader(mask_path)) image1, image2, sign_flip = self.flow_flip_transform(image1, image2) t = sign_flip * t Ks = [] for cp in calib_paths: Ks.append(np.fromfile(cp, sep=' ').reshape((3, 3))) Ks = Ks[::-1] flow_levels = [] for l in range(len(self.pyramid_levels)): flow_shape = (image1.size[1] * 2**l, image1.size[0] * 2**l, 2) if np.linalg.norm(t) < np.finfo(np.float32).eps: flow = np.zeros(flow_shape) flow_levels.append(flow) continue # calibration K = Ks[l] # epipole e = np.dot(K, t) e = e / (e[2] + np.finfo(np.float32).eps) e = e[:2] # epipole matrix E = e[None, None, :] E = np.tile(E, (flow_shape[0], flow_shape[1], 1)) # init pixel map px, py = np.meshgrid(np.arange(flow_shape[1]), np.arange(flow_shape[0])) X = np.stack((px, py), axis=2) # flow map flow = E - X fmag = np.sqrt(np.sum(np.multiply(flow, flow), axis=2)) flow = np.divide(flow, np.stack((fmag, fmag), axis=2)) # flip if forward translation flow = -np.sign(t[2]) * flow # append flow_levels.append(flow) # apply crops self.crop_transform.new_params() image1 = self.crop_transform(image1, 2**(4-self.input_scale)) image2 = self.crop_transform(image2, 2**(4-self.input_scale)) mask = self.crop_transform(mask, 2**(4-self.input_scale)) Ks = [self.crop_transform.correct_calibration(K, 2**l) for l, K in enumerate(Ks)] flow_levels = [self.crop_transform(flow, 2**l) for l, flow in enumerate(flow_levels)] flow_levels = flow_levels[::-1] # convert to tensor flow_levels = [self.flow_to_tensor(flow) for flow in flow_levels] mask = self.mask_to_tensor(mask) image1 = F.to_tensor(image1) image2 = F.to_tensor(image2) # remove blue pixels if sign_flip < 0: image1[:, mask[0]] = 0 else: image2[:, mask[0]] = 0 # optional input image transform if self.transform is not None: image1 = F.to_tensor(self.transform(F.to_pil_image(image1))) image2 = F.to_tensor(self.transform(F.to_pil_image(image2))) if self.return_id: return image1, image2, flow_levels, Ks[-1], t, subseq_id, pair_id else: return image1, image2, flow_levels, Ks[-1], t def __len__(self): return len(self.dataset) def make_dataset(self, root, sequences, pyramid_levels, input_scale, frame_offset): input_scale = 2**input_scale window_fids = [0] + frame_offset dataset = [] for s in sequences: scaledir = os.path.join(root, "%02d" % s, 'subsequences', "%dx" % input_scale) subseqdirs = sorted(glob.glob(scaledir + '/*/')) for subseq in subseqdirs: # all images in folder fnames = sorted(glob.glob(subseq + '/*.png')) nimages = len(fnames) # select relevant frames fnames = [fnames[i] for i in window_fids] npairs = len(fnames[1:]) fmasks = fnames[1:] ftrans = os.path.join(subseq, 'translations.txt') translations = np.fromfile(ftrans, sep=' ').reshape((nimages,3)) fcalibs = [] for f in fnames[1:]: pcalibs = [] for p in pyramid_levels: pyrdir = os.path.join(root, "%02d" % s, 'subsequences', "%dx" % 2**p) refdir = os.path.join(pyrdir, subseq.split('/')[-2]) pcalibs.append(os.path.join(refdir, 'scaled_calibration.txt')) fcalibs.append(tuple(pcalibs)) subseq_id = os.path.basename(os.path.dirname(fnames[0])) pair_ids = ['0{:d}'.format(i) for i in frame_offset] pairs = list(zip([fnames[0]]*npairs, fnames[1:], fmasks, fcalibs, translations[frame_offset, :], [subseq_id]*npairs, pair_ids)) dataset.extend(pairs) return dataset
import unittest import numpy as np import openmdao.api as om from openmdao.utils.assert_utils import assert_check_partials from openaerostruct.aerodynamics.lift_drag import LiftDrag from openaerostruct.utils.testing import run_test, get_default_surfaces class Test(unittest.TestCase): def test(self): surfaces = get_default_surfaces() comp = LiftDrag(surface=surfaces[0]) run_test(self, comp) def test_derivs_with_sideslip(self): surfaces = get_default_surfaces() # Use Tail since it is not symmetric. comp = LiftDrag(surface=surfaces[1]) prob = om.Problem() prob.model.add_subsystem("comp", comp) prob.setup(force_alloc_complex=True) prob["comp.alpha"] = 3.0 prob["comp.beta"] = 15.0 rng = np.random.default_rng(0) prob["comp.sec_forces"] = 10.0 * rng.random(prob["comp.sec_forces"].shape) prob.run_model() check = prob.check_partials(compact_print=True, method="cs", step=1e-40) assert_check_partials(check) if __name__ == "__main__": unittest.main()
# Copyright (c) Microsoft. All rights reserved. # Licensed under the MIT license. See LICENSE.md file in the project root # for full license information. # ============================================================================== # Make sure the binaries can be imported import os import sys sys.path.append(os.path.join(os.path.dirname(__file__), 'Release')) sys.path.append(os.path.join(os.path.dirname(__file__), 'RelWithDebInfo')) __this_file_directory = os.path.dirname(os.path.abspath(__file__)) def package_dir(): """Return the path containing this ell module """ import os return os.path.join(os.path.dirname(__file__)) # The SWIG generated wrappers are divided into pseudo-namespace sub packages. from . import data from . import math from . import model from . import nodes from . import neural from . import trainers from . import platform try: from .rpi_magic import init_magics init_magics() except ImportError: pass # we're in regular Python, not Jupyter # must come after we initialize rpi_magic. from . import util del os del sys
from dataclasses import dataclass from .t_event import TEvent __NAMESPACE__ = "http://www.omg.org/spec/BPMN/20100524/MODEL" @dataclass class Event(TEvent): class Meta: name = "event" namespace = "http://www.omg.org/spec/BPMN/20100524/MODEL"
# Copyright (c) 2013, Noah Jacob and contributors # For license information, please see license.txt from __future__ import unicode_literals import frappe from frappe.utils import flt def execute(filters=None): columns, data = [], [] date=[] labels = "" if filters.get('filter_based_on') =='Date Range': date.append(filters.get('from_date')) date.append(filters.get('to_date')) from_year = (date[0].split("-"))[0] to_year = (date[1].split("-"))[0] labels = from_year if from_year == to_year else from_year + "-" + to_year else: get_fiscal_year(date,filters) labels = filters.get("fiscal_year") columns = get_columns(labels) validate_dates(date) asset = get_data(filters.company,'Asset',date) liability = get_data(filters.company,'Liability',date) data.extend(asset) asset_data = data[-2] data.extend(liability) liability_data = data[-2] get_total_profit_loss(data) profit_loss_data = data[-2] report_summary = get_report_summary(asset_data,liability_data,profit_loss_data) chart = get_chart_data(filters,columns,asset,liability) return columns, data,None, chart,report_summary def get_chart_data(filters,columns,asset,liability): labels = [d.get("label") for d in columns[1:]] asset_data, liability_data = [], [] if asset: asset_data.append(asset[-2].get("amount")) if liability: liability_data.append(liability[-2].get("amount")) datasets = [] if asset_data: datasets.append({'name': ('Assets'), 'values': asset_data}) if liability_data: datasets.append({'name': ('Liabilities'), 'values': liability_data}) chart = { "data": { 'labels': labels, 'datasets': datasets } } if filters.chart_type == "Bar": chart["type"] = "bar" else: chart["type"] = "line" return chart def get_report_summary(asset,liability,profit_loss): return [ { "value": asset['amount'], "label": "Total Asset", "datatype": "Currency", "currency": "₹" }, { "value": liability['amount'], "label": "Total Liability", "datatype": "Currency", "currency": "₹" }, { "value":profit_loss['amount'], "label": "Provisional Profit/Loss ", "indicator": "Green" if profit_loss['amount'] > 0 else "Red" , "datatype": "Currency", "currency": "₹" } ] def validate_dates(date): if date[0] > date[1]: frappe.throw("Starting Date cannot be greater than ending date") def get_fiscal_year(date,filters): dates = frappe.db.sql("""SELECT from_date,to_date FROM `tabFiscal Year` WHERE period = %(fiscal_year)s """,filters,as_dict = 1)[0] date.append(dates.get('from_date')) date.append(dates.get('to_date')) def get_data(company,account_type,date): accounts = get_accounts(company,account_type,date) data = [] indent = 0 for d in accounts: if d.parent_account == None or d.parent_account == data[-1]['account']: data_add(data,d,indent) indent = indent +1 else: for n in data: if n['account'] == d.parent_account: indent = n['indent'] + 1 data_add(data,d,indent) break indent = indent + 1 root_type = "Assets" if account_type == "Asset" else "Liabilities" get_account_balances(company,data,root_type,date) return data def get_account_balances(company,accounts,root_type,date): data = [] for a in accounts: if not a['has_value']: amount = get_balance(company,a['account'],date) amount = abs(amount) if amount else 0.0 a['amount'] = amount for d in reversed(data): if d['parent_account'] == root_type: d['amount'] +=flt(amount) data[0]['amount']+=flt(amount) break else: d['amount'] +=flt(amount) data.append(a) else: data.append(a) total_credit_debit = { 'account':'Total ' + accounts[0]['account_type'] + (' (' + "Debit" + ')' if accounts[0]['account_type'] == 'Asset' else ' ('+'Credit' +')'), 'amount':accounts[0]['amount'] } accounts.append(total_credit_debit) accounts.append({}) def get_total_profit_loss(data): total_debit = data[0]['amount'] total_credit = data[-2]['amount'] total_profit_loss = total_debit - total_credit total_credit += total_profit_loss data.append({'account':'Provisonal Profit/Loss(Credit)','amount':total_profit_loss}) data.append({'account':'Total(Credit)','amount':total_credit}) def get_balance(company,name,date): return frappe.db.sql("""SELECT sum(debit_amount) - sum(credit_amount) as total FROM `tabGL Entry` WHERE company = %s and account = %s and posting_date>= %s and posting_date<= %s """,(company,name,date[0],date[1]),as_dict = 1)[0]['total'] def data_add(data,account,indent): data.append({ "account":account.name, "parent_account":account.parent_account, "account_type":account.account_type, "has_value":account.is_group, "indent":indent, "amount":0.0 }) def get_accounts(company,account_type,date): return frappe.db.sql("""SELECT name,parent_account,lft,is_group,account_type FROM tabAccount WHERE company = %s and account_type = %s ORDER BY lft""",(company,account_type),as_dict = 1) def get_columns(labels): columns = [ { "fieldname": "account", "label": "Account", "fieldtype": "Link", "options": "Account", "width": 400 }, { "fieldname": 'amount', "label": labels, "fieldtype": "Currency", "options": "currency", "width": 500 } ] return columns
from typing import Iterable, Optional from crowdin_api.api_resources.abstract.resources import BaseResource from crowdin_api.api_resources.labels.types import LabelsPatchRequest class LabelsResource(BaseResource): """ Resource for Labels. Link to documentation: https://support.crowdin.com/api/v2/#tag/Labels """ def get_labels_path(self, projectId: int, labelId: Optional[int] = None): if labelId: return f"projects/{projectId}/labels/{labelId}" return f"projects/{projectId}/labels" def list_labels( self, projectId: int, page: Optional[int] = None, offset: Optional[int] = None, limit: Optional[int] = None, ): """ List Labels. Link to documentation: https://support.crowdin.com/api/v2/#operation/api.projects.labels.getMany """ return self.requester.request( method="get", path=self.get_labels_path(projectId=projectId), params=self.get_page_params(page=page, offset=offset, limit=limit), ) def add_label(self, projectId: int, title: str): """ Add Label. Link to documentation: https://support.crowdin.com/api/v2/#operation/api.projects.labels.post """ return self.requester.request( method="post", path=self.get_labels_path(projectId=projectId), request_data={"title": title}, ) def get_label(self, projectId: int, labelId: int): """ Get Label. Link to documentation: https://support.crowdin.com/api/v2/#operation/api.projects.labels.get """ return self.requester.request( method="get", path=self.get_labels_path(projectId=projectId, labelId=labelId), ) def delete_label(self, projectId: int, labelId: int): """ Delete Label. Link to documentation: https://support.crowdin.com/api/v2/#operation/api.projects.labels.delete """ return self.requester.request( method="delete", path=self.get_labels_path(projectId=projectId, labelId=labelId), ) def edit_label(self, projectId: int, labelId: int, data: Iterable[LabelsPatchRequest]): """ Edit Label. Link to documentation: https://support.crowdin.com/api/v2/#operation/api.projects.labels.patch """ return self.requester.request( method="patch", path=self.get_labels_path(projectId=projectId, labelId=labelId), request_data=data, ) def assign_label_to_strings(self, projectId: int, labelId: int, stringIds: Iterable[int]): """ Assign Label to Strings. Link to documentation: https://support.crowdin.com/api/v2/#operation/api.projects.labels.strings.post """ return self.requester.request( method="post", request_data={"stringIds": stringIds}, path=self.get_labels_path(projectId=projectId, labelId=labelId), ) def unassign_label_from_strings(self, projectId: int, labelId: int, stringIds: Iterable[int]): """ Unassign Label from Strings. Link to documentation: https://support.crowdin.com/api/v2/#operation/api.projects.labels.strings.deleteMany """ return self.requester.request( method="delete", params={"stringIds": ",".join(str(stringId) for stringId in stringIds)}, path=self.get_labels_path(projectId=projectId, labelId=labelId), )
#!/usr/bin/env python # -*- coding: UTF-8 -*- """Planet aggregator library. This package is a library for developing web sites or software that aggregate RSS, CDF and Atom feeds taken from elsewhere into a single, combined feed. """ __version__ = "1.0~pre1" __authors__ = [ "Scott James Remnant <scott@netsplit.com>", "Jeff Waugh <jdub@perkypants.org>" ] __license__ = "Python" # Modules available without separate import import cache import feedparser import htmltmpl try: import logging except: import compat_logging as logging # Limit the effect of "from planet import *" __all__ = ("cache", "feedparser", "htmltmpl", "logging", "Planet", "Channel", "NewsItem") import os import md5 import time import dbhash # Version information (for generator headers) VERSION = ("Planet/%s +http://www.planetplanet.org" % __version__) # Default User-Agent header to send when retreiving feeds USER_AGENT = VERSION + " " + feedparser.USER_AGENT # Default cache directory CACHE_DIRECTORY = "cache" # Default number of items to display from a new feed NEW_FEED_ITEMS = 2 # Useful common date/time formats TIMEFMT_ISO = "%Y-%m-%dT%H:%M:%S+00:00" TIMEFMT_822 = "%a, %d %b %Y %H:%M:%S +0000" # Log instance to use here log = logging.getLogger("planet") class Planet: """A set of channels. This class represents a set of channels for which the items will be aggregated together into one combined feed. Properties: user_agent User-Agent header to fetch feeds with. cache_directory Directory to store cached channels in. new_feed_items Number of items to display from a new feed. """ def __init__(self): self._channels = [] self.user_agent = USER_AGENT self.cache_directory = CACHE_DIRECTORY self.new_feed_items = NEW_FEED_ITEMS def channels(self, hidden=0, sorted=1): """Return the list of channels.""" channels = [] for channel in self._channels: if hidden or not channel.has_key("hidden"): channels.append((channel.name, channel)) if sorted: channels.sort() return [ c[-1] for c in channels ] def subscribe(self, channel): """Subscribe the planet to the channel.""" self._channels.append(channel) def unsubscribe(self, channel): """Unsubscribe the planet from the channel.""" self._channels.remove(channel) def items(self, hidden=0, sorted=1, max_items=0, max_days=0): """Return an optionally filtered list of items in the channel. The filters are applied in the following order: If hidden is true then items in hidden channels and hidden items will be returned. If sorted is true then the item list will be sorted with the newest first. If max_items is non-zero then this number of items, at most, will be returned. If max_days is non-zero then any items older than the newest by this number of days won't be returned. Requires sorted=1 to work. The sharp-eyed will note that this looks a little strange code-wise, it turns out that Python gets *really* slow if we try to sort the actual items themselves. Also we use mktime here, but it's ok because we discard the numbers and just need them to be relatively consistent between each other. """ items = [] for channel in self.channels(hidden=hidden, sorted=0): for item in channel._items.values(): if hidden or not item.has_key("hidden"): items.append((time.mktime(item.date), item.order, item)) # Sort the list if sorted: items.sort() items.reverse() # Apply max_items filter if len(items) and max_items: items = items[:max_items] # Apply max_days filter if len(items) and max_days: max_count = 0 max_time = items[0][0] - max_days * 84600 for item in items: if item[0] > max_time: max_count += 1 else: items = items[:max_count] break return [ i[-1] for i in items ] class Channel(cache.CachedInfo): """A list of news items. This class represents a list of news items taken from the feed of a website or other source. Properties: url URL of the feed. url_etag E-Tag of the feed URL. url_modified Last modified time of the feed URL. hidden Channel should be hidden (True if exists). name Name of the feed owner, or feed title. next_order Next order number to be assigned to NewsItem updated Correct UTC-Normalised update time of the feed. last_updated Correct UTC-Normalised time the feed was last updated. id An identifier the feed claims is unique (*). title One-line title (*). link Link to the original format feed (*). tagline Short description of the feed (*). info Longer description of the feed (*). modified Date the feed claims to have been modified (*). author Name of the author (*). publisher Name of the publisher (*). generator Name of the feed generator (*). category Category name (*). copyright Copyright information for humans to read (*). license Link to the licence for the content (*). docs Link to the specification of the feed format (*). language Primary language (*). errorreportsto E-Mail address to send error reports to (*). image_url URL of an associated image (*). image_link Link to go with the associated image (*). image_title Alternative text of the associated image (*). image_width Width of the associated image (*). image_height Height of the associated image (*). Properties marked (*) will only be present if the original feed contained them. Note that the optional 'modified' date field is simply a claim made by the item and parsed from the information given, 'updated' (and 'last_updated') are far more reliable sources of information. Some feeds may define additional properties to those above. """ IGNORE_KEYS = ("links", "contributors", "textinput", "cloud", "categories", "url", "url_etag", "url_modified") def __init__(self, planet, url): if not os.path.isdir(planet.cache_directory): os.makedirs(planet.cache_directory) cache_filename = cache.filename(planet.cache_directory, url) cache_file = dbhash.open(cache_filename, "c", 0666) cache.CachedInfo.__init__(self, cache_file, url, root=1) self._items = {} self._planet = planet self._expired = [] self.url = url self.url_etag = None self.url_modified = None self.name = None self.updated = None self.last_updated = None self.next_order = "0" self.cache_read() self.cache_read_entries() def has_item(self, id_): """Check whether the item exists in the channel.""" return self._items.has_key(id_) def get_item(self, id_): """Return the item from the channel.""" return self._items[id_] # Special methods __contains__ = has_item def items(self, hidden=0, sorted=0): """Return the item list.""" items = [] for item in self._items.values(): if hidden or not item.has_key("hidden"): items.append((time.mktime(item.date), item.order, item)) if sorted: items.sort() items.reverse() return [ i[-1] for i in items ] def __iter__(self): """Iterate the sorted item list.""" return iter(self.items(sorted=1)) def cache_read_entries(self): """Read entry information from the cache.""" keys = self._cache.keys() for key in keys: if key.find(" ") != -1: continue if self.has_key(key): continue item = NewsItem(self, key) self._items[key] = item def cache_write(self, sync=1): """Write channel and item information to the cache.""" for item in self._items.values(): item.cache_write(sync=0) for item in self._expired: item.cache_clear(sync=0) cache.CachedInfo.cache_write(self, sync) self._expired = [] def update(self): """Download the feed to refresh the information. This does the actual work of pulling down the feed and if it changes updates the cached information about the feed and entries within it. """ info = feedparser.parse(self.url, etag=self.url_etag, modified=self.url_modified, agent=self._planet.user_agent) if not info.has_key("status"): log.info("Updating feed <%s>", self.url) elif info.status == 301 or info.status == 302: log.warning("Feed has moved from <%s> to <%s>", self.url, info.url) os.link(cache.filename(self._planet.cache_directory, self.url), cache.filename(self._planet.cache_directory, info.url)) self.url = info.url elif info.status == 304: log.info("Feed <%s> unchanged", self.url) return elif info.status >= 400: log.error("Error %d while updating feed <%s>", info.status, self.url) return else: log.info("Updating feed <%s>", self.url) self.url_etag = info.has_key("etag") and info.etag or None self.url_modified = info.has_key("modified") and info.modified or None if self.url_etag is not None: log.debug("E-Tag: %s", self.url_etag) if self.url_modified is not None: log.debug("Last Modified: %s", time.strftime(TIMEFMT_ISO, self.url_modified)) self.update_info(info.feed) self.update_entries(info.entries) self.cache_write() def update_info(self, feed): """Update information from the feed. This reads the feed information supplied by feedparser and updates the cached information about the feed. These are the various potentially interesting properties that you might care about. """ for key in feed.keys(): if key in self.IGNORE_KEYS or key + "_parsed" in self.IGNORE_KEYS: # Ignored fields pass elif feed.has_key(key + "_parsed"): # Ignore unparsed date fields pass elif key.endswith("_detail"): # Ignore detail fields pass elif key.endswith("_parsed"): # Date fields if feed[key] is not None: self.set_as_date(key[:-len("_parsed")], feed[key]) elif key == "image": # Image field: save all the information if feed[key].has_key("url"): self.set_as_string(key + "_url", feed[key].url) if feed[key].has_key("link"): self.set_as_string(key + "_link", feed[key].link) if feed[key].has_key("title"): self.set_as_string(key + "_title", feed[key].title) if feed[key].has_key("width"): self.set_as_string(key + "_width", str(feed[key].width)) if feed[key].has_key("height"): self.set_as_string(key + "_height", str(feed[key].height)) else: # String fields try: self.set_as_string(key, feed[key]) except KeyboardInterrupt: raise except: log.exception("Ignored '%s' of <%s>, unknown format", key, self.url) def update_entries(self, entries): """Update entries from the feed. This reads the entries supplied by feedparser and updates the cached information about them. It's at this point we update the 'updated' timestamp and keep the old one in 'last_updated', these provide boundaries for acceptable entry times. If this is the first time a feed has been updated then most of the items will be marked as hidden, according to Planet.new_feed_items. If the feed does not contain items which, according to the sort order, should be there; those items are assumed to have been expired from the feed or replaced and are removed from the cache. """ if not len(entries): return self.last_updated = self.updated self.updated = time.gmtime() new_items = [] feed_items = [] for entry in entries: # Try really hard to find some kind of unique identifier if entry.has_key("id"): entry_id = cache.utf8(entry.id) elif entry.has_key("link"): entry_id = cache.utf8(entry.link) elif entry.has_key("title"): entry_id = (self.url + "/" + md5.new(cache.utf8(entry.title)).hexdigest()) elif entry.has_key("summary"): entry_id = (self.url + "/" + md5.new(cache.utf8(entry.summary)).hexdigest()) else: log.error("Unable to find or generate id, entry ignored") continue # Create the item if necessary and update if self.has_item(entry_id): item = self._items[entry_id] else: item = NewsItem(self, entry_id) self._items[entry_id] = item new_items.append(item) item.update(entry) feed_items.append(entry_id) # Hide excess items the first time through if self.last_updated is None and self._planet.new_feed_items \ and len(feed_items) > self._planet.new_feed_items: item.hidden = "yes" log.debug("Marked <%s> as hidden (new feed)", entry_id) # Assign order numbers in reverse new_items.reverse() for item in new_items: item.order = self.next_order = str(int(self.next_order) + 1) # Check for expired or replaced items feed_count = len(feed_items) log.debug("Items in Feed: %d", feed_count) for item in self.items(sorted=1): if feed_count < 1: break elif item.id in feed_items: feed_count -= 1 else: del(self._items[item.id]) self._expired.append(item) log.debug("Removed expired or replaced item <%s>", item.id) def get_name(self, key): """Return the key containing the name.""" for key in ("name", "title"): if self.has_key(key) and self.key_type(key) != self.NULL: return self.get_as_string(key) return "" class NewsItem(cache.CachedInfo): """An item of news. This class represents a single item of news on a channel. They're created by members of the Channel class and accessible through it. Properties: id Channel-unique identifier for this item. date Corrected UTC-Normalised update time, for sorting. order Order in which items on the same date can be sorted. hidden Item should be hidden (True if exists). title One-line title (*). link Link to the original format text (*). summary Short first-page summary (*). content Full HTML content. modified Date the item claims to have been modified (*). issued Date the item claims to have been issued (*). created Date the item claims to have been created (*). expired Date the item claims to expire (*). author Name of the author (*). publisher Name of the publisher (*). category Category name (*). comments Link to a page to enter comments (*). license Link to the licence for the content (*). source_name Name of the original source of this item (*). source_link Link to the original source of this item (*). Properties marked (*) will only be present if the original feed contained them. Note that the various optional date fields are simply claims made by the item and parsed from the information given, 'date' is a far more reliable source of information. Some feeds may define additional properties to those above. """ IGNORE_KEYS = ("categories", "contributors", "enclosures", "links", "guidislink", "date") def __init__(self, channel, id_): cache.CachedInfo.__init__(self, channel._cache, id_) self._channel = channel self.id = id_ self.date = None self.order = None self.content = None self.cache_read() def update(self, entry): """Update the item from the feedparser entry given.""" for key in entry.keys(): if key in self.IGNORE_KEYS or key + "_parsed" in self.IGNORE_KEYS: # Ignored fields pass elif entry.has_key(key + "_parsed"): # Ignore unparsed date fields pass elif key.endswith("_detail"): # Ignore detail fields pass elif key.endswith("_parsed"): # Date fields if entry[key] is not None: self.set_as_date(key[:-len("_parsed")], entry[key]) elif key == "source": # Source field: save both url and value if entry[key].has_key("value"): self.set_as_string(key + "_name", entry[key].value) if entry[key].has_key("url"): self.set_as_string(key + "_link", entry[key].url) elif key == "content": # Content field: concatenate the values value = "" for item in entry[key]: value += cache.utf8(item.value) self.set_as_string(key, value) else: # String fields try: self.set_as_string(key, entry[key]) except KeyboardInterrupt: raise except: log.exception("Ignored '%s' of <%s>, unknown format", key, self.id) # Generate the date field if we need to self.get_date("date") def get_date(self, key): """Get (or update) the date key. We check whether the date the entry claims to have been changed is since we last updated this feed and when we pulled the feed off the site. If it is then it's probably not bogus, and we'll sort accordingly. If it isn't then we bound it appropriately, this ensures that entries appear in posting sequence but don't overlap entries added in previous updates and don't creep into the next one. """ if self.has_key(key) and self.key_type(key) != self.NULL: return self.get_as_date(key) for other_key in ("modified", "issued", "created"): if self.has_key(other_key): date = self.get_as_date(other_key) break else: date = None if date is not None: if date > self._channel.updated: date = self._channel.updated elif date < self._channel.last_updated: date = self._channel.updated else: date = self._channel.updated self.set_as_date(key, date) return date def get_content(self, key): """Return the key containing the content.""" for key in ("content", "tagline", "summary"): if self.has_key(key) and self.key_type(key) != self.NULL: return self.get_as_string(key) return ""
""" По данному натуральном n вычислите сумму 1²+2²+3²+...+n². Формат ввода Вводится натуральное число. Формат вывода Выведите ответ на задачу. """ n = int(input()) k = 0 for i in range(n+1): k += i ** 2 print(k)
#!/usr/bin/env python import logging from scanpy_scripts.wrapper_utils import ( ScanpyArgParser, comma_separated_list, read_input_object, write_output_object, ) def main(argv=None): argparser = ScanpyArgParser(argv, 'Run Louvain clustering on data with neighborhood graph computed') argparser.add_input_object() argparser.add_output_object() argparser.add_argument('--output-text-file', default=None, help='File name in which to store text format set of clusters') argparser.add_argument('--flavor', choices=['vtraag', 'igraph'], default='vtraag', help='Choose between two packages for computing the clustering.' '"vtraag" is much more powerful, and the default.') argparser.add_argument('--resolution', type=float, default=1.0, help='For the default flavor "vtraag", you can provide a resolution ' '(higher resolution means finding more and smaller clusters). ' 'Default: 1.0') argparser.add_argument('--restrict-to', type=comma_separated_list('restrict-to', str), default=None, help='Restrict the clustering to the categories within the key for ' 'sample annotation, tuple needs to contain (obs key, list of ' 'categories).') argparser.add_argument('--key-added', default='louvain', help='Key under which to add the cluster labels. Default: louvain') argparser.add_argument('--use-weights', action='store_true', default=False, help='Use weights from knn graph.') argparser.add_argument('-s', '--random-seed', type=int, default=0, help='The seed used to initialise optimisation. Default: 0') args = argparser.args logging.debug(args) import scanpy.api as sc adata = read_input_object(args.input_object_file, args.input_format) if args.restrict_to is not None: args.restrict_to = (args.restrict_to[0], args.restrict_to[1:]) sc.tl.louvain(adata, flavor=args.flavor, resolution=args.resolution, restrict_to=args.restrict_to, key_added=args.key_added, use_weights=args.use_weights, random_state=args.random_seed) write_output_object(adata, args.output_object_file, args.output_format) if args.output_text_file: adata.obs[[args.key_added]].reset_index(level=0).rename(columns={'index':'cells'}).to_csv( args.output_text_file, sep='\t', index=None) logging.info('Done') return 0 if __name__ == '__main__': main()
""" Alex Martelli's Borg non-pattern - not a singleton See: http://www.aleax.it/5ep.html """ import logging # import en_core_web_lg import en_core_web_md from gamechangerml.src.utilities.borg import Borg logger = logging.getLogger(__name__) class SpacyConfig(Borg): def __init__(self): Borg.__init__(self) def _set_config(self, val): self._value = val def _get_config(self): return getattr(self, "_value", None) config = property(_get_config, _set_config) def _log_metadata(nlp): logger.info( "{} version {} vector width = {}".format( nlp.meta["vectors"]["name"], nlp.meta["version"], nlp.meta["vectors"]["width"], ) ) def _load_spacy_name(model_name, disable): if model_name == "spacy-large": nlp = en_core_web_md.load(disable=disable) _log_metadata(nlp) logger.info("disabled components {}".format(str(disable))) else: raise ValueError("model not supported: {}".format(model_name)) return nlp def _set_nlp(model_name, disable=None): """ Load the spaCy model """ if disable is None: disable = list() c = SpacyConfig() if c.config is None: nlp = _load_spacy_name(model_name, disable) c.config = {"nlp": nlp} return c else: logger.info("using existing language model") return c def get_lg_nlp(): """ Loads the `en_core_web_lg` model with the full pipeline. Returns: spacy.lang.en.English """ try: c = _set_nlp("spacy-large", disable=None) return c.config["nlp"] except ValueError as e: logger.exception("{}: {}".format(type(e), str(e)), exc_info=True) raise e def get_lg_vectors(): """ Load the `en_core_web_lg` model with the `ner`, `parser`, and `tagger` pipeline components disabled. Embedding vectors remain; smaller faster. Returns: spacy.lang.en.English """ try: c = _set_nlp("spacy-large", disable=["ner", "parser", "tagger"]) return c.config["nlp"] except ValueError as e: logger.exception("{}: {}".format(type(e), str(e)), exc_info=True) raise e def spacy_vector_width(nlp): return nlp.meta["vectors"]["width"]
import unittest class MainTestCase(unittest.TestCase): def test_two_and_two(self): four = 2 + 2 self.assertEqual(four, 4) self.assertNotEqual(four, 5) self.assertNotEqual(four, 6) self.assertNotEqual(four, 22) if __name__ == '__main__': unittest.main()
#NODE. THIS GETS THE FILE NAME FROM THE SERVER AND SENDS THE FILE BACK import socket s = socket.socket() host = socket.gethostname() port = 7013 s.bind((host,port)) s.listen(5) print("<<-NODE IS UP->>") while True: connection, address = s.accept() #Accepts the connection from the server print("Node is connected to:",address) nameFile = connection.recv(1024) #Gets the file name from the client-->Server-->Node print nameFile file = open(nameFile, 'rb') #Opens the file reading = file.read(1024) #First 1024 bytes print("Sending %s to server",nameFile) while(reading): connection.send(reading) #sends them to the node --> Server -->Client reading = file.read(1024) file.close() print("File has been sent to the server") connection.close() s.close()
import asyncio import logging import random import threading from typing import Callable, Optional import discord from system import database, spigotmc color_error = 0xfa5858 color_processing = 0x12a498 color_success = 0xdaa520 class Message: def __init__(self, message: discord.Message, has_premium: bool, loading_emoji: str, run_later: Optional[Callable] = None): self.user = message.author self.spigot_user = message.content self.channel = message.channel self.run_later = run_later self.loading_emoji = loading_emoji self.response = None self.has_premium = has_premium self.no_buyer = False self.spigot_already_linked = False self.code_received = False self.done = False self.error = False async def update(self) -> None: if self.response is not None: await self.response.delete() await asyncio.sleep(.5) if self.done: color = color_success title = self.user.name + "'s promotion is completed" content = self.user.name + " has been successfully promoted to premium ✅" if self.run_later is not None: self.run_later(self.user, True) elif self.error: color = color_error title = self.user.name + "'s promotion has been cancelled" content = "An error occurred. Please try it again." elif self.has_premium: color = color_error title = self.user.name + "'s promotion has been cancelled" content = "You already have the premium role 👀" elif self.spigot_already_linked: color = color_error title = self.user.name + "'s promotion has been cancelled" content = self.spigot_user + " is already linked to a discord account 🤨" elif self.no_buyer: color = color_error title = self.user.name + "'s promotion has been cancelled" content = self.spigot_user + " hasn't purchased the plugin 😭" elif self.code_received: color = color_processing title = "Verifying " + self.user.name content = "The verification code has been sent. Check your SpigotMC inbox 📫\n\n" \ "https://www.spigotmc.org/conversations/" else: color = color_processing title = "Verifying " + self.user.name content = "Your verification is processing. Please wait " + self.loading_emoji embed = discord.Embed(description=content, colour=color) embed.set_author(name=title, icon_url=self.user.avatar_url) self.response = await self.channel.send(embed=embed) if color == color_error: asyncio.create_task(self.__delete_response__()) async def __delete_response__(self) -> None: await asyncio.sleep(10) await self.response.delete() if self.run_later is not None: self.run_later(self.user, False) class Process: def __init__(self, client: discord.Client, message: discord.Message, run_later: Optional[Callable], run_after_browsing: Callable, premium_role: discord.Role, forum_credentials: spigotmc.Credentials, database_credentials: database.Credentials, loading_emoji: str, logger: logging, has_premium: bool = False): self.client = client self.message = Message(message, has_premium, loading_emoji, run_later) self.run_after_browsing = run_after_browsing self.user = message.author self.spigot = message.content self.guild = message.guild self.premium_role = premium_role self.forum_credentials = forum_credentials self.code = random.randint(100000, 999999) self.database = database.Database(database_credentials) self.logger = logger async def start(self) -> None: self.logger.info("Starting " + self.user.name + "'s promotion") await self.message.update() if self.database.is_discord_user_linked(self.user.id): # Skip process, user has already been linked -> re-link await self.__apply_premium__() self.__stop__() elif self.database.is_spigot_name_linked(self.spigot): self.message.spigot_already_linked = True await self.message.update() self.__stop__() else: # Run check in another thread to avoid blocking the main thread threading.Thread(target=asyncio.run, args=(self.__check_premium__(),)).start() async def incoming_message(self, message: discord.Message) -> None: if self.message.code_received: if message.content == str(self.code): self.database.link(self.spigot, self.user) await self.__apply_premium__() def __stop__(self) -> None: self.database.connection.close() self.logger.info(self.user.name + "'s promotion has been finished") async def __apply_premium__(self) -> None: await self.user.add_roles(self.premium_role) self.message.done = True await self.message.update() self.__stop__() async def __check_premium__(self) -> None: forum = spigotmc.ForumAPI(self.forum_credentials, self.forum_credentials.google_chrome_location, self.logger) forum.debug("start " + self.spigot + "'s verification") try: # thread-blocking if forum.is_user_premium(self.spigot): forum.send_message(self.spigot, self.forum_credentials.title, self.forum_credentials.content.format(code=self.code, discord=self.user.name + "#" + self.user.discriminator)) self.message.code_received = True else: self.message.no_buyer = True forum.debug("done") except Exception as e: forum.debug("an error occurred: " + str(e)) self.message.error = True # close browser forum.close() # go back to main thread await self.__complete_browsing__() async def __complete_browsing__(self) -> None: self.client.loop.create_task(self.message.update()) # add bigger delay to avoid SpigotMC's message cooldown await asyncio.sleep(20) self.client.loop.create_task(self.run_after_browsing())
# config.py --- # # Description: # Author: Goncalo Pais # Date: 28 Jun 2019 # https://arxiv.org/abs/1904.01701 # # Instituto Superior Técnico (IST) # Code: import argparse arg_lists = [] parser = argparse.ArgumentParser() def add_argument_group(name): arg = parser.add_argument_group(name) arg_lists.append(arg) return arg def str2bool(v): return v.lower() in ("true", "1") # ----------------------------------------------------------------------------- # Data data_arg = add_argument_group("Data") data_arg.add_argument( "--data_pre", type=str, default="data", help="" "prefix for the dump folder locations") data_arg.add_argument( "--data_tr", type=str, default="sun3d", help="" "name of the dataset for train") data_arg.add_argument( "--data_va", type=str, default="sun3d", help="" "name of the dataset for valid") data_arg.add_argument( "--data_te", type=str, default="sun3d", help="" "name of the dataset for test") # ----------------------------------------------------------------------------- # Network net_arg = add_argument_group("Network") net_arg.add_argument( "--net_depth", type=int, default=12, help="" "number of layers") net_arg.add_argument( "--net_nchannel", type=int, default=128, help="" "number of channels in a layer") net_arg.add_argument( "--net_act_pos", type=str, default="post", choices=["pre", "mid", "post"], help="" "where the activation should be in case of resnet") net_arg.add_argument( "--net_gcnorm", type=str2bool, default=True, help="" "whether to use context normalization for each layer") net_arg.add_argument( "--net_batchnorm", type=str2bool, default=True, help="" "whether to use batch normalization") net_arg.add_argument( "--net_bn_test_is_training", type=str2bool, default=False, help="" "is_training value for testing") net_arg.add_argument( "--net_concat_post", type=str2bool, default=False, help="" "retrieve top k values or concat from different layers") net_arg.add_argument( "--gpu_options", type=str, default='gpu', choices=['gpu', 'cpu'], help="choose which gpu or cpu") net_arg.add_argument( "--gpu_number", type=str, default='0', help="choose which gpu number") # ----------------------------------------------------------------------------- # Loss loss_arg = add_argument_group("loss") loss_arg.add_argument( "--loss_decay", type=float, default=0.0, help="" "l2 decay") loss_arg.add_argument( "--loss_classif", type=float, default=0.5, help="" "weight of the classification loss") loss_arg.add_argument( "--loss_reconstruction", type=float, default=0.01, help="" "weight of the essential loss") loss_arg.add_argument( "--loss_reconstruction_init_iter", type=int, default=20000, help="" "initial iterations to run only the classification loss") # ----------------------------------------------------------------------------- # Training train_arg = add_argument_group("Train") train_arg.add_argument( "--run_mode", type=str, default="train", help="" "run_mode") train_arg.add_argument( "--train_batch_size", type=int, default=16, help="" "batch size") train_arg.add_argument( "--train_max_tr_sample", type=int, default=10000, help="" "number of max training samples") train_arg.add_argument( "--train_max_va_sample", type=int, default=1000, help="" "number of max validation samples") train_arg.add_argument( "--train_max_te_sample", type=int, default=1000, help="" "number of max test samples") train_arg.add_argument( "--train_lr", type=float, default=1e-5, help="" "learning rate") train_arg.add_argument( "--train_epoch", type=int, default=3750, help="" "training iterations to perform") train_arg.add_argument( "--train_step", type=int, default=200, help="" "training iterations to perform") train_arg.add_argument( "--res_dir", type=str, default="./logs", help="" "base directory for results") train_arg.add_argument( "--log_dir", type=str, default="logs_lie", help="" "save directory name inside results") train_arg.add_argument( "--test_log_dir", type=str, default="", help="" "which directory to test inside results") train_arg.add_argument( "--val_intv", type=int, default=5, help="" "validation interval") train_arg.add_argument( "--report_intv", type=int, default=100, help="" "summary interval") net_arg.add_argument( "--loss_function", type=str, default='l1', choices=['l1', 'l2', 'wls', 'gm', 'l05'], help="choose which loss function") # ----------------------------------------------------------------------------- # Data Augmentation d_aug = add_argument_group('Augmentation') d_aug.add_argument("--data_aug", type=str2bool, default=False, help="Perform data Augmentation") d_aug.add_argument("--aug_cl", type=str2bool, default=True, help="Perform Curriculum Learning") d_aug.add_argument("--aug_dir", type=str, default="augmentented", help="save directory name inside results") # ----------------------------------------------------------------------------- # Visualization vis_arg = add_argument_group('Visualization') vis_arg.add_argument( "--tqdm_width", type=int, default=79, help="" "width of the tqdm bar") vis_arg.add_argument( "--reg_flag", type=str2bool, default=False, help="Refine transformation") test_arg = add_argument_group('Test') test_arg.add_argument( "--reg_function", type=str, default='fast', choices=['fast', 'global'], help="Registration function: global or fast") test_arg.add_argument( "--representation", type=str, default='lie', choices=['lie', 'quat', 'linear'], help="Type of Representation") def setup_dataset(dataset_name): dataset_name = dataset_name.split(".") data_dir = [] for name in dataset_name: if 'sun3d' == name: data_dir.append(name) assert data_dir return data_dir def get_config(): config, unparsed = parser.parse_known_args() # Setup the dataset related things for _mode in ["tr", "va", "te"]: data_dir = setup_dataset( getattr(config, "data_" + _mode)) setattr(config, "data_dir_" + _mode, data_dir) # setattr(config, "data_geom_type_" + _mode, geom_type) # setattr(config, "data_vis_th_" + _mode, vis_th) return config, unparsed def print_usage(): parser.print_usage()
from unittest import TestCase from analyzer import Pattern my_pattern = Pattern(name="my pattern", score=0.9, regex="[re]") my_pattern_dict = {"name": "my pattern", "regex": "[re]", "score": 0.9} class TestPattern(TestCase): def test_to_dict(self): expected = my_pattern_dict actual = my_pattern.to_dict() assert expected == actual def test_from_dict(self): expected = my_pattern actual = Pattern.from_dict(my_pattern_dict) assert expected.name == actual.name assert expected.score == actual.score assert expected.regex == actual.regex
#!/usr/bin/env python # -*- coding: utf-8 -*- import scanpy as sc import matplotlib.pyplot as plt from matplotlib.path import Path as mpl_path import matplotlib.patches as patches import seaborn as sns import matplotlib.pyplot as plt from matplotlib.transforms import Affine2D import numpy as np import pandas as pd def build_flux_mat(df, senders=None, receivers=None, piv_kws={"aggfunc":"size"}, dtype=int): flux = df.pivot_table(index="celltype_a", columns="celltype_b", fill_value=0, **piv_kws).astype(int) possible_cts = flux.columns.union(flux.index) missing_cols = possible_cts.difference(flux.columns) missing_rows = possible_cts.difference(flux.index) for col in missing_cols: flux[col] = 0 for row in missing_rows: flux.loc[row, :] = 0 flux = flux.reindex(flux.columns) if senders is not None: flux.loc[~flux.index.isin(senders), :] = 0 if receivers is not None: flux.loc[:, ~flux.columns.isin(receivers)] = 0 return flux.astype(dtype) def rot_mat(a): return np.array([np.cos(a), -np.sin(a), np.sin(a), np.cos(a)]).reshape(2, 2) def rectangular_ideogram( ax, start, end, thickness=0.2, angle=0, origin_offset=0, facecolor=None, edgecolor=None, label="", label_ha="left" ): start, end = start, end xy = (start, 0) width = end - start height = thickness # Rectange(angle=angle) is about xy, so we need to compute offsets ourself transform = Affine2D().rotate_deg_around(0, 0, angle) + Affine2D().translate(origin_offset, 0) + ax.transData patch = patches.Rectangle(xy, width, height, facecolor=facecolor, edgecolor=edgecolor, transform=transform) ax.add_patch(patch) ax.text((end+start)/2, thickness, s=label, transform=transform, fontsize=6, ha=label_ha) def chord( ax, start1=-1, end1=-2, start2=1, end2=2, angle1=0, angle2=0, x_offset=0, chordwidth=0.7, facecolor=None, edgecolor=None ): assert start1 <= 0 assert end1 <= 0 angle1 *= np.pi / 180 angle2 *= np.pi / 180 x1, y1 = abs(start1) * np.cos(angle1) - x_offset, abs(start1) * np.sin(angle1) x2, y2 = abs(start2) * np.cos(angle2) + x_offset, abs(start2) * np.sin(angle2) x3, y3 = abs(end2) * np.cos(angle2) + x_offset, abs(end2) * np.sin(angle2) x4, y4 = abs(end1) * np.cos(angle1) - x_offset, abs(end1) * np.sin(angle1) codes = [ mpl_path.MOVETO, mpl_path.CURVE4, mpl_path.CURVE4, mpl_path.CURVE4, mpl_path.LINETO, mpl_path.CURVE4, mpl_path.CURVE4, mpl_path.CURVE4, mpl_path.LINETO, ] inner_rad = (start2 - start1) / 2 outer_rad = (end2 - end1) / 2 A = (angle2 + angle1) / 2 L = 4 * np.tan(A/4) / 3 verts = [ (x1, y1), (x1 + inner_rad * L * np.sin(angle1), y1 - inner_rad * L * np.cos(angle1)), (x2 - inner_rad * L * np.sin(angle2), y2 + inner_rad * L * np.cos(angle2)), (x2, y2), (x3, y3), (x3 - outer_rad * L * np.sin(angle2), y3 + outer_rad * L * np.cos(angle2)), (x4 + outer_rad * L * np.sin(angle1), y4 - outer_rad * L * np.cos(angle1)), (x4, y4), (x1, y1) ] path = mpl_path(verts, codes) patch = patches.PathPatch(path, facecolor=facecolor, edgecolor=edgecolor, alpha=0.4) ax.add_patch(patch) def sankey( ax, flux_df, angle1=-150, angle2=-30, row_palette=sns.mpl_palette("tab10", 5), col_palette=sns.mpl_palette("tab20", 12), sender_length=1, receiver_length=1, rect_thickness=0.1, split_dist=0., pad=0.01, add_labels=True, add_edges=False, norm=True ): ax.set_xlim(-1.1, 1.1) ax.set_ylim(-1.1, 0.1) ax.set_axis_off() m, n = flux_df.shape senders = np.linspace(0, sender_length, m+1) receivers = np.linspace(0, receiver_length, n+1) for i, j, c, l in zip(senders, senders[1:], row_palette, flux_df.index): l = l if add_labels else "" rectangular_ideogram( ax, i, j, angle=angle1, origin_offset=-split_dist, thickness=-rect_thickness, facecolor=c, label=l, label_ha="right", edgecolor="none" if not add_edges else "0.2" ) for i, j, c, l in zip(receivers, receivers[1:], col_palette, flux_df.columns): l = l if add_labels else "" rectangular_ideogram( ax, i, j, angle=angle2, origin_offset=split_dist, thickness=rect_thickness, facecolor=c, label=l, label_ha="left", edgecolor="none" if not add_edges else "0.2" ) sender_props = receiver_props = flux_df if norm: sender_props = flux_df / flux_df.sum(axis=1).values[:,None] receiver_props = flux_df / flux_df.sum(axis=0) start_pos = dict(zip(flux_df.index, senders)) start_pos.update(dict(zip(flux_df.columns, receivers))) for i, s in enumerate(flux_df.index): sender_scale = senders[i+1] - senders[i] for j, r in enumerate(flux_df.columns): receiver_scale = receivers[j+1] - receivers[j] sp = sender_props.loc[s,r] rp = receiver_props.loc[s,r] if (sp == 0) or (rp == 0): continue chord( ax, start1=-start_pos[s], end1=-start_pos[s] - sp * sender_scale, start2=start_pos[r], end2=start_pos[r] + rp * receiver_scale, angle1=angle1, angle2=angle2, x_offset=split_dist, #y_offset=0, facecolor=row_palette[i], edgecolor="none" if not add_edges else "0.2" ) start_pos[s] += sp*sender_scale start_pos[r] += rp*receiver_scale return
class Solution: def lengthOfLongestSubstring(self, s: str) -> int: my_dict = dict() temp = [] for i in range(len(s)): if s[i] not in temp: temp.append(s[i]) else: temp_str = ''.join(temp) # temp.clear() temp = temp[temp.index(s[i])+1:] temp.append(s[i]) my_dict[temp_str] = len(temp_str) temp_str = ''.join(temp) my_dict[temp_str] = len(temp_str) return max(my_dict.values())
# Copyright 2019-present, GraphQL Foundation # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from casing import snake from license import C_LICENSE_COMMENT class Printer(object): '''Printer for a simple list of types to be visited by the C visitor. ''' def __init__(self): self._types = [] def start_file(self): print(C_LICENSE_COMMENT + '/** @generated */') print('#define FOR_EACH_CONCRETE_TYPE(MACRO) \\') def start_type(self, name): self._types.append(name) def field(self, type, name, nullable, plural): pass def end_type(self, name): pass def end_file(self): print(' \\\n'.join('MACRO(%s, %s)' % (name, snake(name)) for name in self._types)) def start_union(self, name): pass def union_option(self, option): pass def end_union(self, name): pass
## An implementation of a Parallel Oblivious Unpredictable Function (POUF) # Stanislaw Jarecki, Xiaomin Liu: Fast Secure Computation of Set Intersection. # Published in SCN 2010: 418-435 from petlib.ec import EcGroup import pytest def POUF_setup(nid=713): """Parameters for the group""" G = EcGroup(nid) g = G.generator() o = G.order() return (G, g, o) def POUF_keyGen(params): """Generate the secret key k""" G, g, o = params return o.random() def POUF_blind(params, messages): """Blind the messages input to the POUF""" G, g, o = params hi = [G.hash_to_point(m) for m in messages] ai = [o.random() for _ in messages] yi = [a * h for a,h in zip(ai, hi)] return ai, yi def POUF_mac(params, k, yi): """ Apply the unpredctable function to the messages """ return [k * y for y in yi] def POUF_unblind(params, ai, zi): """ Unblind the messages to recover the raw outputs of the POUF """ G, g, o = params xi = [a.mod_inverse(o) * z for a,z in zip(ai, zi)] return xi ### ----------- TESTS --------------- def test_setup(): params = POUF_setup() k = POUF_keyGen(params) assert k def test_blind(): params = POUF_setup() ai, yi = POUF_blind(params, [b"1", b"2"]) assert len(ai) == 2 assert len(yi) == 2 def test_mac(): params = POUF_setup() k = POUF_keyGen(params) ai, yi = POUF_blind(params, [b"1", b"2"]) zi = POUF_mac(params, k, yi) assert len(zi) == len(ai) def test_unblind(): params = POUF_setup() G, g, o = params k = POUF_keyGen(params) ai, yi = POUF_blind(params, [b"1", b"2"]) zi = POUF_mac(params, k, yi) # Make sure unblinding works fi = POUF_unblind(params, ai, zi) hi = [G.hash_to_point(m) for m in [b"1", b"2"]] assert fi == [k * h for h in hi]
# Copyright 2014 Pants project contributors (see CONTRIBUTORS.md). # Licensed under the Apache License, Version 2.0 (see LICENSE). from pants_test.pants_run_integration_test import PantsRunIntegrationTest class TestScalaLibraryIntegrationTest(PantsRunIntegrationTest): def test_bundle(self): pants_run = self.run_pants(['compile', 'testprojects/src/scala/org/pantsbuild/testproject/javasources']) self.assert_success(pants_run)
import io, gzip, boto3 from urllib.parse import urlparse def stream(url): s3 = boto3.resource('s3') _, bucket_name, key = urlparse(url).path.split('/', 2) obj = s3.Object( bucket_name=bucket_name, key=key ) buffer = io.BytesIO(obj.get()["Body"].read()) if key.endswith('.gz'): return gzip.open(buffer, 'rt') else: return buffer
""" Configures access to BingAds API and where to store results """ def data_dir() -> str: """The directory where result data is written to""" return '/tmp/bingads/' def first_date() -> str: """The first day from which on data will be downloaded""" return '2015-01-01' def developer_token() -> str: """The developer token that is used to access the BingAds API""" return '012345679ABCDEF' def environment() -> str: """The deployment environment""" return 'production' def oauth2_client_id() -> str: """The Oauth client id obtained from the BingAds developer center""" return 'abc1234-1234-1234-abc-abcd1234' def oauth2_client_secret() -> str: """The Oauth client secret obtained from the BingAds developer center""" return 'ABCDefgh!1234567890' def oauth2_refresh_token() -> str: """The Oauth refresh token returned from the adwords-downloader-refresh-oauth2-token script""" return 'ABCDefgh!1234567890ABCDefgh!1234567890ABCDefgh!1234567890ABCDefgh!1234567890ABCDefgh!1234567890ABCDefgh!1234567890ABCDefgh!1234567890' def timeout() -> int: """The maximum amount of time (in milliseconds) that you want to wait for the report download""" return 3600000 def total_attempts_for_single_day() -> int: """The attempts to download a single day (ad and keyword performance) in case of HTTP errors or timeouts""" return 5 def retry_timeout_interval() -> int: """number of seconds to wait before trying again to download a single day""" return 10 def output_file_version() -> str: """A suffix that is added to output files, denoting a version of the data format""" return 'v4'
from ..requestsender import Wrapper class Stickers(object): __slots__ = ['fosscord', 's', 'edited_s', 'main_url', 'log'] def __init__(self, fosscord, s, main_url, log): #s is the requests session object self.fosscord = fosscord self.main_url = main_url+'/' if not main_url.endswith('/') else main_url self.s = s header_mods = {'remove': ['Authorization', 'X-Super-Properties', 'X-Debug-Options']} self.edited_s = Wrapper.edited_req_session(s, header_mods) self.log = log def get_stickers(self, country_code, locale): country_code = country_code.upper() u = '{}sticker-packs?country_code={}&locale={}' url = u.format(self.fosscord, country_code, locale) return Wrapper.send_request(self.s, 'get', url, log=self.log) def get_sticker_file(self, sticker_id): #this is an apng u = '{}stickers/{}.png?size=512' url = u.format(self.main_url, sticker_id) return Wrapper.send_request(self.edited_s, 'get', url, log=self.log) def get_sticker_pack(self, sticker_pack_id): u = '{}sticker-packs/{}' url = u.format(self.fosscord, sticker_pack_id) return Wrapper.send_request(self.s, 'get', url, log=self.log)
import logger import os class Trial: def __init__(self, name="Default_Trial", trial=["tailSetAngle(50, 1)", "tailSetAngle(20, 1.5)", "tailSetAngle(50, 2)", "tailSetAngle(20, 2.5)", "tailSetAngle(50, 3)", "tailSetAngle(20, 3.5)", "tailSetAngle(50, 4)", "tailSetAngle(20, 4.5)", "tailSetAngle(50, 5)", "tailSetAngle(20, 5.5)", "tailSetAngle(-20, 6)", "audioPlay('track004.mp3', 7)", "audioStop(30)"], DEBUG=False): self.name = name self.execStack = list( map(lambda n: "self.lastOutput = Trial." + n, trial)) self._DEBUG = DEBUG self.lastOutput = None i = 0 csvExists = os.path.isfile("logs/" + name + str(i) + ".csv") while (csvExists == True): i = i + 1 csvExists = os.path.isfile("logs/" + name + str(i) + ".csv") self.logger = logger.Logger("logs/" + name + str(i) + ".csv") def getName(self): return self.name def isDone(self): # checks to see if the trial is over if len(self.execStack) == 0: return (True) return (False) def popNextLine(self): # runs next command in execStack if self.isDone(): return exec(self.execStack.pop(0)) return self.lastOutput def popAllLines(self): # runs everything in the execStack output = [] for i in range(len(self.execStack)): output.append(Trial.popNextLine(self)) return output def tailGetAngle(time): # Note this is comm sendable return (time, "Robot Servo 0 getAngle") def tailSetAngle(angle, time): # Note this is comm sendable return (time, "Robot Servo 0 setAngle " + str(angle)) def tailGoLimp(time): # Not this is com sendable return (time, "Robot Servo 0 goLimp") def coverGetAngle(time): # Note this is comm sendable return (time, "Robot Servo 1 getAngle") def coverSetAngle(angle, time): # Note this is comm sendable return (time, "Robot Servo 1 setAngle " + str(angle)) def tailGoLimp(time): # Not this is com sendable return (time, "Robot Servo 1 goLimp") def audioSetVolume(percent, time): # Note this is comm sendable return (time, "Robot Audio setVolume " + str(percent)) def audioPlay(fileName, time): # Note this is comm sendable return (time, "Robot Audio play " + fileName) def audioIsPlaying(time): # Note this is comm sendable return (time, "Robot Audio isPlaying") def audioPause(time): # Note this is comm sendable return (time, "Robot Audio pause") def audioResume(time): # Note this is comm sendable return (time, "Robot Audio resume") def audioIsPaused(time): # Note this is comm sendable return (time, "Robot Audio isPaused") def audioStop(time): # Note this is comm sendable return (time, "Robot Audio stop") def audioIsStopped(time): # Note this is comm sendable return (time, "Robot Audio isStopped") def audioGetFileName(time): # Note this is comm sendable return (time, "Robot Audio getFileName") def audioSetVolume(percent, time): # Note this is comm sendable return (time, "Robot Audio setVolume " + str(percent) + "%") def tailMotion(self, positionList, startTime, rate): pass # This doesn't work # Note this is not comm sendable. # Adds the list of comm sendable functions that would create the intended motion to the stack then does runNextLine @staticmethod def advancedTailMotion(WIP): pass # Note this is not comm sendable # Adds the list of comm sendable functions that would create the intended motion to the stack then does runNextLine
""" categories: Types,str description: UnicodeDecodeError not raised when expected cause: Unknown workaround: Unknown """ try: print(repr(str(b"\xa1\x80", 'utf8'))) print('Should not get here') except UnicodeDecodeError: print('UnicodeDecodeError')
# -*- coding: utf-8 -*- from entityClasses import Message, Action, ActionType from dbWrapper import RobertLogMSSQL from cn_utility import num_cn2digital, extract_cn_time import re import datetime import config import urllib import config import cn_utility import warning class ActionCenter: #SQL rlSQL = RobertLogMSSQL(host=config.db_server,user=config.db_user,pwd=config.db_pwd,db="robertlog") #Action List FeedKeywords = {u"吃了",u"喂了", u"喂奶", u"吃奶"} ReportsKeywords = {u"报告", u"总结", u"情况"} WeeklyReportsKeywords = {u"一周报告", u"一周总结", u"一周情况", u"本周总结"} NotesKeywords = {u"备注", u"笔记"} mLKeywords = {u"ml",u"毫升"} MinKeywords = {u"分钟"} ADKeywords = {u"AD",u"吃药", u"ad",u"喂药"} PoopKeywords = {u"拉屎",u"大便", } BathKeywords = {u"洗澡"} RemoveKeywords = {u"撤销", u"删除"} FallSleepKeywords = {u"睡着"}#, u"睡觉"} WakeUpKeywords = {u"醒了", u"睡醒"} ListImageKeywords = {u"看照片"} ListSleepTimeKeywords = {u"几点睡",u"睡多久", u"睡了多久"} DebugMsgKeywords = {u"调试消息"} EatCaKeywords = {u"补钙", u"钙片"} ComFoodKeywords = [u"辅食"] ComFoodListKeywords = {u"食谱"} users_can_write = {"fake_weichat_id"} user_mapping = {"fake_weichat_id" : "Mom"} actiontype_skip_log = {ActionType.UnKnown, ActionType.Reports, ActionType.WeeklyReports,\ ActionType.Remove, ActionType.NoPermission, ActionType.ListImage, \ ActionType.SleepTime, ActionType.DebugMsg, ActionType.RemoveSpecific, \ ActionType.ErrStatus, ActionType.ComFoodList} def check_strList(self, str, listStr): for s in listStr: if str.find(s) >= 0 : return True return False def DetectAction(self, msg): action = Action(msg) num2d = num_cn2digital() ect = extract_cn_time() content = num2d.replace_cn_digital(msg.RawContent) t = ect.extract_time(content) if t is not None and len(t) > 0: action.TimeStamp = t[0] content = ect.remove_time(content) if self.check_strList(msg.RawContent, self.NotesKeywords): action.Type = ActionType.Notes action.Detail = msg.RawContent for k in self.NotesKeywords: action.Detail = action.Detail.lstrip(k) elif self.check_strList(msg.RawContent, self.ListSleepTimeKeywords): action.Type = ActionType.SleepTime self.get_latest_sleep(action, num2d, ect) elif self.check_strList(msg.RawContent, self.ADKeywords): action.Type = ActionType.AD elif self.check_strList(msg.RawContent, self.EatCaKeywords): action.Type = ActionType.EatCa elif self.check_strList(msg.RawContent, self.ComFoodListKeywords): action.Type = ActionType.ComFoodList elif self.check_strList(msg.RawContent, self.ComFoodKeywords): action.Type = ActionType.ComFood start = content.index(self.ComFoodKeywords[0]) detail = content[start+2:].strip() action.Detail = detail elif self.check_strList(content, self.FeedKeywords): #feed action.Type = ActionType.Feed action.Status = Action.Active nums = re.findall(r"\d+",content) if len(nums) > 0: if self.check_strList(content, self.MinKeywords): action.Detail = "母乳:" + nums[0] + u"分钟" else: action.Detail = "奶瓶:" + nums[0] + "mL" elif self.check_strList(msg.RawContent, self.WeeklyReportsKeywords): action.Type = ActionType.WeeklyReports elif self.check_strList(msg.RawContent, self.RemoveKeywords): action.Type = ActionType.Remove elif self.check_strList(msg.RawContent, self.ReportsKeywords): #reports action.Type = ActionType.Reports action.Status = Action.Active elif self.check_strList(msg.RawContent, self.PoopKeywords): action.Type = ActionType.Poop elif self.check_strList(msg.RawContent, self.BathKeywords): action.Type = ActionType.Bath elif self.check_strList(msg.RawContent, self.FallSleepKeywords): lastAct = self.rlSQL.GetSleepStatus() if lastAct.Type == ActionType.WakeUp: action.Type = ActionType.FallSleep else: action.Type = ActionType.ErrStatus action.Detail = "重复的睡觉,上一次是:" action.Detail += lastAct.TimeStamp.strftime( "%H:%M") elif self.check_strList(msg.RawContent, self.WakeUpKeywords): lastAct = self.rlSQL.GetSleepStatus() if lastAct.Type == ActionType.FallSleep: action.Type = ActionType.WakeUp self.get_latest_sleep(action, num2d, ect) else: action.Type = ActionType.ErrStatus action.Detail = "重复的睡醒,上一次是:" action.Detail += lastAct.TimeStamp.strftime( "%H:%M") elif self.check_strList(msg.RawContent, self.DebugMsgKeywords): action.Type = ActionType.DebugMsg elif self.check_strList(msg.RawContent, self.ListImageKeywords): action.Type = ActionType.ListImage files = cn_utility.listimgfiles(config.ImageRoot, 7) action.ImageList = [] for f in files: action.ImageList.append((f[5:16], \ "http://<yourhost>.eastasia.cloudapp.azure.com/robert_image?name="+f)) #TODO::load from config else: action.Type = ActionType.UnKnown try: int(msg.RawContent) msgs = self.rlSQL.GetMsgFromUser(msg.FromUser, 2) if self.check_strList(msgs[1].RawContent, self.RemoveKeywords): action.Type = ActionType.RemoveSpecific except ValueError: pass if action.FromUser not in self.users_can_write and action.Type not in \ {ActionType.Reports, ActionType.WeeklyReports, ActionType.ListImage}: action.Type = ActionType.NoPermission return action def get_latest_sleep(self, action, num2d, ect): sleep = self.rlSQL.GetLastFallSleep() if not sleep: action.Type = ActionType.UnKnown else: #check previous time pre_content = num2d.replace_cn_digital(sleep.RawContent) sleep_t = ect.extract_time(pre_content, sleep.TimeStamp) if sleep_t is None or len(sleep_t) <= 0: sleep_t = sleep.TimeStamp else: sleep_t = sleep_t[0] delta_minutes = int((action.TimeStamp - sleep_t).total_seconds()/60) action.Detail = "从{0}到{1},睡了{2}小时{3}分钟".format(sleep_t.strftime( "%H:%M"), \ action.TimeStamp.strftime( "%H:%M"), int(delta_minutes/60), delta_minutes%60) ImageFileTemplate = config.ImageRoot + r"{0}_{1}.jpg" def process_img_post(self, msg): timag_name = "D:\\tmp\\{0}_{1}.jpg".format(msg.TimeStamp.strftime("%Y_%m_%d_%H_%M"), msg.MediaId[:6]) img_name = self.ImageFileTemplate.format(msg.TimeStamp.strftime("%Y_%m_%d_%H_%M"), msg.MediaId[:6]) urllib.request.urlretrieve(msg.PicUrl, timag_name) cn_utility.reshapimg(timag_name, img_name) return "收到照片" def GenResponse(self, action): response = "抱歉没听懂." if action.Type == ActionType.Feed: response = "收到,萝卜在{1}吃了{0}".format(action.Detail, action.TimeStamp.strftime( "%H:%M")) elif action.Type == ActionType.Reports: response = "统计结果:" cur = datetime.datetime.utcnow() + datetime.timedelta(days=2) actions = self.rlSQL.GetActionReports(30) actions.sort(key=lambda a:a.TimeStamp) lastmilk = sleepstatus = None for a in actions: if a.Status == Action.Deleted: continue if a.Type == ActionType.FallSleep: sleepstatus = a continue elif a.Type == ActionType.WakeUp: sleepstatus = a elif a.Type == ActionType.Feed: lastmilk = a if a.Type not in self.actiontype_skip_log : if a.TimeStamp.day != cur.day: cur = a.TimeStamp response += "\n{0}日(第{1}天)记录:\n".format(cur.strftime("%m-%d"), \ config.get_days_to_birth(cur)) response += (a.GenBrief() + "\n") tnow = cn_utility.GetNowForUTC8() if sleepstatus.Type == ActionType.FallSleep: #is sleeping response += (sleepstatus.GenBrief() + "\n") else : delta_minutes = int((tnow - sleepstatus.TimeStamp).total_seconds()/60) if delta_minutes > 150: response += "\n醒了{0}小时{1}分钟了,该睡了".format(int(delta_minutes/60), delta_minutes%60) delta_minutes = int((tnow - lastmilk.TimeStamp).total_seconds()/60) if delta_minutes > 150: response += "\n上次喂奶是{0}小时{1}分钟前:{2}".format(int(delta_minutes/60), delta_minutes%60, lastmilk.GenBrief()) elif action.Type == ActionType.WeeklyReports: response = "统计结果: \n" cur = datetime.datetime.utcnow() + datetime.timedelta(days=2) actions = self.rlSQL.GetActionReports(300) milk = 0 breast = 0 breastNum = 0 poop = 0 sleep = 0 daysShown = 0 for a in actions: if a.Status == Action.Deleted: continue if a.TimeStamp.day != cur.day and (milk !=0 or breast !=0): response += "{0}日:奶瓶{1}mL,母乳{2}次共{3}分钟,睡觉{5}小时{6}分钟,大便{4}次\n".format(\ cur.strftime("%m-%d"), milk, breastNum, breast, poop, int(sleep/60), sleep%60) milk = 0 breast = 0 poop = 0 breastNum = 0 sleep = 0 daysShown += 1 if daysShown >= 8 : break cur = a.TimeStamp if a.Type == ActionType.Feed: nums = re.findall(r"\d+",a.Detail) if len(nums) > 0: d = int(nums[0]) if a.Detail.find("母乳") >= 0: breast += d breastNum += 1 elif a.Detail.find("奶瓶") >= 0: milk += d elif a.Type == ActionType.Poop: poop += 1 elif a.Type == ActionType.WakeUp: ect = extract_cn_time() sleep += ect.extract_time_delta(a.Detail) #print(cur, sleep, a.Detail) elif a.Type == ActionType.Notes: #response += "{0}日{1}\n".format(cur.strftime("%m-%d"),a.GenBrief()) pass if (milk !=0 or breast !=0) and daysShown < 7: response += "{0}日:奶瓶{1}mL,母乳{2}次共{3}分钟,睡觉{5}小时{6}分钟,大便{4}次\n".format(\ cur.strftime("%m-%d"), milk, breastNum, breast, poop, int(sleep/60), sleep%60) elif action.Type == ActionType.Remove: response = "请输入要删除的项目序号\n" actions = self.rlSQL.GetActionReports(6) actions.sort(key=lambda a:a.TimeStamp) for a in actions: if a.Status == Action.Deleted: continue response += "序号:{0} 内容:{1},{2}\n".format(\ a.ActionID, self.user_mapping.get(a.FromUser, a.FromUser), a.GenBrief()) elif action.Type == ActionType.RemoveSpecific: self.rlSQL.DeleteAction(int(action.message.RawContent)) response ="已删除一条记录.\n" elif action.Type == ActionType.ListImage: return action.ImageList elif action.Type == ActionType.DebugMsg: msg_list = self.rlSQL.GetLastNumMsg(30) response = "List:\n" for m in msg_list: response +="[{0}] {1}:{2} \n".format(m.TimeStamp.strftime( "%H:%M"), self.user_mapping.get(m.FromUser, m.FromUser), m.RawContent) elif action.Type == ActionType.NoPermission: response = "抱歉您没有权限,可以尝试 '总结' 或 '一周总结' 查看萝卜成长状态。" elif action.Type == ActionType.ComFoodList: foodList = self.rlSQL.GetActionList( ActionType.ComFood, 80) foodList.sort(key=lambda a:a.TimeStamp) cur = datetime.datetime.utcnow() + datetime.timedelta(days=2) for f in foodList: if f.TimeStamp.day != cur.day: #a new day response += "\n[{0}] {1} ".format(f.TimeStamp.strftime("%m-%d"), f.Detail) cur = f.TimeStamp else: response += f.Detail #f.GenBrief() else: response = action.GenBrief() response += warning.GetWarnings(self.rlSQL) return response def Receive(self, raw_str): msg = Message(raw_str) self.rlSQL.LogMessage(msg) if msg.MsgType == "image": return self.process_img_post(msg) action = self.DetectAction(msg) if action.Type not in self.actiontype_skip_log : self.rlSQL.AppendAction(action) else: pass return self.GenResponse(action)
from collections import Counter inputs = [] with open('day01.input') as f: inputs = [int(x) for x in f.readlines()] def most_common(xs): return Counter(xs).most_common(1)[0][0] def part1(ns): return most_common([n * (2020-n) for n in ns]) def part2(ns): return most_common([a*b*c for a in ns for b in ns for c in ns if a+b+c == 2020]) print(part1(inputs)) print(part2(inputs))
# -*- coding: utf-8 -*- """ Module to train the GNN. """ # Python Standard import logging # External dependencies import numpy as np import torch from sklearn.metrics import roc_auc_score # Internals from .symbols import DEVICE def train(model, dataset, n_epoch, learning_rate): """ Training function for a GNN. Parameters ---------- model : torch.nn.Module Model to train. dataset : ProteinDataset Dataset to work on. n_epoch : int Number of epochs. Returns ------- losses : list of float List of the losses for each epoch. """ optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate) scheduler = torch.optim.lr_scheduler.ExponentialLR(optimizer, gamma=0.9) losses = [] train_step = make_train_step(model, optimizer) for epoch in range(1, n_epoch + 1): logging.info("Epoch %2d/%d", epoch, n_epoch) for _, xdata, ydata in dataset: loss = train_step(xdata, ydata) scheduler.step() logging.info(" -> loss = %f", loss) losses.append(loss) return losses def evaluate(model, dataset): """ Evaluate a model on a given dataset and return the mean AUC. """ aucs = [] with torch.no_grad(): for idx, (name, xdata, target) in enumerate(dataset): ydata = model.forward(xdata) try: aucs.append(roc_auc_score(target[0].cpu().numpy(), ydata.cpu().numpy())) except ValueError: logging.warning(" Complex %s discarded because no positive sample." % name) return np.array(aucs).mean() if len(aucs) else np.nan def make_train_step(model, optimizer): """ Builds function that performs a step in the train loop. Extracted from: https://towardsdatascience.com/understanding-pytorch-with-an-example-a-step-by-step-tutorial-81fc5f8c4e8e#58f2 """ def train_step(xdata, ydata): # Zeroes gradients optimizer.zero_grad() # Sets model to TRAIN mode model.train() # Makes predictions yhat = model(xdata) loss_fn = torch.nn.BCEWithLogitsLoss( weight=ydata[1].to(DEVICE) ) # Computes loss loss = loss_fn(yhat, torch.squeeze(ydata[0]).to(DEVICE)) # Computes gradients loss.backward() # Updates parameters optimizer.step() # Returns the loss return loss.item() # Returns the function that will be called inside the train loop return train_step
from django.test import TestCase from survey.models import SurveyOrderModel class SurveyOrderTest(TestCase): def setUp(self): SurveyOrderModel.objects.create( customer_faktura_id=1234, ) def test_blank_survey_created(self): obj = SurveyOrderModel.objects.get(customer_faktura_id=1234) self.assertTrue(obj) # def test_finish_survey_order_without_address_success(self): # obj = SurveyOrderModel.objects.get(customer_faktura_id=1234) # obj.number_of_collars = '$1$2' # obj.animal_species = 'wolf' # obj.battery_size = '$2D$3D' # obj.belt_shape = '' # obj.nom_collar_circumference = '2' # obj.vhf_beacon_frequency = 'Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut l' # obj.mortality_sensor = 1 # obj.utc_lmt = 'utc' # obj.globalstar = True #
#!/usr/bin/env python # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import os from os import path import test_inventory import unittest TARGET_DIR = path.join(os.getcwd(), 'tests', 'inventory') from osa_toolkit import manage as mi def setUpModule(): test_inventory.make_config() def tearDownModule(): os.remove(test_inventory.USER_CONFIG_FILE) class TestExportFunction(unittest.TestCase): def setUp(self): self.inv = test_inventory.get_inventory() def tearDown(self): test_inventory.cleanup() def test_host_is_present(self): host_inv = mi.export_host_info(self.inv)['hosts'] self.assertIn('aio1', host_inv.keys()) def test_groups_added(self): host_inv = mi.export_host_info(self.inv)['hosts'] self.assertIn('groups', host_inv['aio1'].keys()) def test_variables_added(self): host_inv = mi.export_host_info(self.inv)['hosts'] self.assertIn('hostvars', host_inv['aio1'].keys()) def test_number_of_hosts(self): host_inv = mi.export_host_info(self.inv)['hosts'] self.assertEqual(len(self.inv['_meta']['hostvars']), len(host_inv)) def test_all_information_added(self): all_info = mi.export_host_info(self.inv)['all'] self.assertIn('provider_networks', all_info) def test_all_lb_information(self): all_info = mi.export_host_info(self.inv)['all'] inv_all = self.inv['all']['vars'] self.assertEqual(inv_all['internal_lb_vip_address'], all_info['internal_lb_vip_address']) class TestRemoveIpfunction(unittest.TestCase): def setUp(self): self.inv = test_inventory.get_inventory() def tearDown(self): test_inventory.cleanup() def test_ips_removed(self): mi.remove_ip_addresses(self.inv) mi.remove_ip_addresses(self.inv, TARGET_DIR) hostvars = self.inv['_meta']['hostvars'] for host, variables in hostvars.items(): has_networks = 'container_networks' in variables if variables.get('is_metal', False): continue self.assertFalse(has_networks) def test_inventory_item_removed(self): inventory = self.inv # Make sure we have log_hosts in the original inventory self.assertIn('log_hosts', inventory) mi.remove_inventory_item("log_hosts", inventory) mi.remove_inventory_item("log_hosts", inventory, TARGET_DIR) # Now make sure it's gone self.assertIn('log_hosts', inventory) def test_metal_ips_kept(self): mi.remove_ip_addresses(self.inv) hostvars = self.inv['_meta']['hostvars'] for host, variables in hostvars.items(): has_networks = 'container_networks' in variables if not variables.get('is_metal', False): continue self.assertTrue(has_networks) def test_ansible_host_vars_removed(self): mi.remove_ip_addresses(self.inv) hostvars = self.inv['_meta']['hostvars'] for host, variables in hostvars.items(): has_host = 'ansible_host' in variables if variables.get('is_metal', False): continue self.assertFalse(has_host) def test_multiple_calls(self): """Removal should fail silently if keys are absent.""" mi.remove_ip_addresses(self.inv) mi.remove_ip_addresses(self.inv) if __name__ == '__main__': unittest.main(catchbreak=True)
# -*- coding: utf-8 -*- """ Code is generated by ucloud-model, DO NOT EDIT IT. """ import pytest import logging from ucloud.core import exc from ucloud.testing import env, funcs, op, utest logger = logging.getLogger(__name__) scenario = utest.Scenario(687) @pytest.mark.skipif(env.is_ut(), reason=env.get_skip_reason()) def test_set_687(client, variables): scenario.initial(variables) scenario.variables["VPC_name_1"] = "VPC_api_test_1" scenario.variables["remark"] = "remark_api_test" scenario.variables["tag"] = "tag_api_test" scenario.variables["Subnet_name_1_1"] = "subnet_1_1" scenario.variables["subnet_netmask"] = 24 scenario.variables["project_id"] = "org-achi1o" scenario.run(client) @scenario.step( max_retries=0, retry_interval=0, startup_delay=0, fast_fail=False, validators=lambda variables: [ ("str_eq", "RetCode", 0), ("str_eq", "Action", "GetProjectListResponse"), ], action="GetProjectList", ) def get_project_list_00(client, variables): d = {} try: resp = client.uaccount().get_project_list(d) except exc.RetCodeException as e: resp = e.json() variables["project_list"] = utest.value_at_path(resp, "ProjectSet") return resp @scenario.step( max_retries=0, retry_interval=0, startup_delay=2, fast_fail=False, validators=lambda variables: [("str_eq", "RetCode", 0)], action="CreateVPC", ) def create_vpc_01(client, variables): d = { "Tag": variables.get("tag"), "Remark": variables.get("remark"), "Region": variables.get("Region"), "Network": ["172.16.16.0/20"], "Name": variables.get("VPC_name_1"), } try: resp = client.vpc().create_vpc(d) except exc.RetCodeException as e: resp = e.json() variables["VPCId_1"] = utest.value_at_path(resp, "VPCId") return resp @scenario.step( max_retries=0, retry_interval=0, startup_delay=2, fast_fail=False, validators=lambda variables: [("str_eq", "RetCode", 0)], action="CreateSubnet", ) def create_subnet_02(client, variables): d = { "VPCId": variables.get("VPCId_1"), "Tag": variables.get("tag"), "SubnetName": variables.get("Subnet_name_1_1"), "Subnet": "172.16.17.0", "Remark": variables.get("remark"), "Region": variables.get("Region"), "Netmask": variables.get("subnet_netmask"), } try: resp = client.vpc().create_subnet(d) except exc.RetCodeException as e: resp = e.json() variables["SubnetId_1_1"] = utest.value_at_path(resp, "SubnetId") return resp @scenario.step( max_retries=3, retry_interval=1, startup_delay=2, fast_fail=False, validators=lambda variables: [ ("str_eq", "RetCode", 0), ("str_eq", "Action", "UpdateSubnetAttributeResponse"), ], action="UpdateSubnetAttribute", ) def update_subnet_attribute_03(client, variables): d = { "Tag": "qa", "SubnetId": variables.get("SubnetId_1_1"), "Region": variables.get("Region"), } try: resp = client.vpc().update_subnet_attribute(d) except exc.RetCodeException as e: resp = e.json() return resp @scenario.step( max_retries=0, retry_interval=0, startup_delay=2, fast_fail=False, validators=lambda variables: [("str_eq", "RetCode", 0)], action="DescribeSubnet", ) def describe_subnet_04(client, variables): d = { "SubnetId": variables.get("SubnetId_1_1"), "Region": variables.get("Region"), "Offset": 1, "Limit": 1, } try: resp = client.vpc().describe_subnet(d) except exc.RetCodeException as e: resp = e.json() return resp @scenario.step( max_retries=0, retry_interval=0, startup_delay=0, fast_fail=False, action="CreateVPC", ) def create_vpc_05(client, variables): d = { "Region": variables.get("Region"), "Network": ["192.168.16.0/20"], "Name": "vpc_2", } try: resp = client.vpc().create_vpc(d) except exc.RetCodeException as e: resp = e.json() variables["VPCId_2"] = utest.value_at_path(resp, "VPCId") return resp @scenario.step( max_retries=0, retry_interval=0, startup_delay=2, fast_fail=False, validators=lambda variables: [("str_eq", "RetCode", 0)], action="CreateSubnet", ) def create_subnet_06(client, variables): d = { "VPCId": variables.get("VPCId_2"), "SubnetName": "Subnet_2_1", "Subnet": "192.168.17.0", "Region": variables.get("Region"), "Netmask": variables.get("subnet_netmask"), } try: resp = client.vpc().create_subnet(d) except exc.RetCodeException as e: resp = e.json() variables["SubnetId_2_1"] = utest.value_at_path(resp, "SubnetId") return resp @scenario.step( max_retries=3, retry_interval=1, startup_delay=2, fast_fail=False, validators=lambda variables: [ ("str_eq", "RetCode", 0), ("str_eq", "Action", "CreateSubnetResponse"), ], action="CreateSubnet", ) def create_subnet_07(client, variables): d = { "VPCId": variables.get("VPCId_2"), "Tag": "Subnet_2_2", "SubnetName": "Subnet_2_2", "Subnet": "192.168.18.0", "Region": variables.get("Region"), "Netmask": variables.get("subnet_netmask"), } try: resp = client.vpc().create_subnet(d) except exc.RetCodeException as e: resp = e.json() variables["SubnetId_2_2"] = utest.value_at_path(resp, "SubnetId") return resp @scenario.step( max_retries=0, retry_interval=0, startup_delay=2, fast_fail=False, validators=lambda variables: [ ("str_eq", "RetCode", 0), ("str_eq", "DataSet.0.VPCId", variables.get("VPCId_1")), ("str_eq", "DataSet.0.VPCName", variables.get("VPC_name_1")), ("str_eq", "DataSet.0.SubnetId", variables.get("SubnetId_1_1")), ("str_eq", "DataSet.0.SubnetName", variables.get("Subnet_name_1_1")), ("str_eq", "DataSet.0.Tag", "qa"), ("str_eq", "DataSet.0.Remark", variables.get("remark")), ("str_eq", "DataSet.0.SubnetType", 2), ("str_eq", "DataSet.0.Netmask", 24), ], action="DescribeSubnet", ) def describe_subnet_08(client, variables): d = { "VPCId": variables.get("VPCId_1"), "SubnetId": variables.get("SubnetId_1_1"), "Region": variables.get("Region"), } try: resp = client.vpc().describe_subnet(d) except exc.RetCodeException as e: resp = e.json() return resp @scenario.step( max_retries=0, retry_interval=0, startup_delay=0, fast_fail=False, validators=lambda variables: [("str_eq", "RetCode", 0)], action="AllocateVIP", ) def allocate_vip_09(client, variables): d = { "Zone": variables.get("Zone"), "VPCId": variables.get("VPCId_1"), "SubnetId": variables.get("SubnetId_1_1"), "Remark": "vip_tag1", "Region": variables.get("Region"), "Name": "vip_api_auto", } try: resp = client.unet().allocate_vip(d) except exc.RetCodeException as e: resp = e.json() variables["VIPId_1"] = utest.value_at_path(resp, "VIPSet.0.VIPId") return resp @scenario.step( max_retries=0, retry_interval=0, startup_delay=2, fast_fail=False, validators=lambda variables: [ ("str_eq", "RetCode", 0), ("str_eq", "VIPSet.0.VPCId", variables.get("VPCId_1")), ("str_eq", "VIPSet.0.VIPId", variables.get("VIPId_1")), ("str_eq", "VIPSet.0.SubnetId", variables.get("SubnetId_1_1")), ], action="DescribeVIP", ) def describe_vip_10(client, variables): d = { "Zone": variables.get("Zone"), "VPCId": variables.get("VPCId_1"), "SubnetId": variables.get("SubnetId_1_1"), "Region": variables.get("Region"), } try: resp = client.unet().describe_vip(d) except exc.RetCodeException as e: resp = e.json() variables["VIP_ip_1"] = utest.value_at_path(resp, "DataSet.0") return resp @scenario.step( max_retries=0, retry_interval=0, startup_delay=0, fast_fail=False, validators=lambda variables: [ ("str_eq", "RetCode", 0), ("str_eq", "TotalCount", 1), ("str_eq", "DataSet.0.ResourceId", variables.get("VIPId_1")), ("str_eq", "DataSet.0.IP", variables.get("VIP_ip_1")), ], action="DescribeSubnetResource", ) def describe_subnet_resource_11(client, variables): d = { "SubnetId": variables.get("SubnetId_1_1"), "Region": variables.get("Region"), "Offset": 0, "Limit": 20, } try: resp = client.vpc().describe_subnet_resource(d) except exc.RetCodeException as e: resp = e.json() return resp @scenario.step( max_retries=3, retry_interval=1, startup_delay=0, fast_fail=False, validators=lambda variables: [("str_eq", "RetCode", 0)], action="ReleaseVIP", ) def release_vip_12(client, variables): d = { "Zone": variables.get("Zone"), "VIPId": variables.get("VIPId_1"), "Region": variables.get("Region"), } try: resp = client.unet().release_vip(d) except exc.RetCodeException as e: resp = e.json() return resp @scenario.step( max_retries=3, retry_interval=1, startup_delay=1, fast_fail=False, validators=lambda variables: [("str_eq", "RetCode", 0)], action="DeleteSubnet", ) def delete_subnet_13(client, variables): d = { "SubnetId": variables.get("SubnetId_1_1"), "Region": variables.get("Region"), } try: resp = client.vpc().delete_subnet(d) except exc.RetCodeException as e: resp = e.json() return resp @scenario.step( max_retries=3, retry_interval=1, startup_delay=1, fast_fail=False, validators=lambda variables: [("str_eq", "RetCode", 0)], action="DeleteSubnet", ) def delete_subnet_14(client, variables): d = { "SubnetId": variables.get("SubnetId_2_1"), "Region": variables.get("Region"), } try: resp = client.vpc().delete_subnet(d) except exc.RetCodeException as e: resp = e.json() return resp @scenario.step( max_retries=3, retry_interval=1, startup_delay=1, fast_fail=False, validators=lambda variables: [("str_eq", "RetCode", 0)], action="DeleteSubnet", ) def delete_subnet_15(client, variables): d = { "SubnetId": variables.get("SubnetId_2_2"), "Region": variables.get("Region"), } try: resp = client.vpc().delete_subnet(d) except exc.RetCodeException as e: resp = e.json() return resp @scenario.step( max_retries=3, retry_interval=1, startup_delay=0, fast_fail=False, validators=lambda variables: [ ("str_eq", "RetCode", 0), ("str_eq", "Action", "AddVPCNetworkResponse"), ], action="AddVPCNetwork", ) def add_vpc_network_16(client, variables): d = { "VPCId": variables.get("VPCId_1"), "Region": variables.get("Region"), "Network": ["10.100.96.0/20"], } try: resp = client.vpc().add_vpc_network(d) except exc.RetCodeException as e: resp = e.json() return resp @scenario.step( max_retries=3, retry_interval=1, startup_delay=2, fast_fail=False, validators=lambda variables: [ ("str_eq", "RetCode", 0), ("str_eq", "Action", "DescribeVPCResponse"), ], action="DescribeVPC", ) def describe_vpc_17(client, variables): d = { "VPCIds": [variables.get("VPCId_1")], "Region": variables.get("Region"), } try: resp = client.vpc().describe_vpc(d) except exc.RetCodeException as e: resp = e.json() return resp @scenario.step( max_retries=0, retry_interval=0, startup_delay=0, fast_fail=False, validators=lambda variables: [("str_eq", "RetCode", 0)], action="CreateVPCIntercom", ) def create_vpc_intercom_18(client, variables): d = { "VPCId": variables.get("VPCId_1"), "Region": variables.get("Region"), "DstVPCId": variables.get("VPCId_2"), "DstRegion": variables.get("Region"), "DstProjectId": funcs.search_value( variables.get("project_list"), "IsDefault", True, "ProjectId" ), } try: resp = client.vpc().create_vpc_intercom(d) except exc.RetCodeException as e: resp = e.json() return resp @scenario.step( max_retries=0, retry_interval=0, startup_delay=2, fast_fail=False, validators=lambda variables: [ ("str_eq", "RetCode", 0), ("str_eq", "DataSet.0.VPCId", variables.get("VPCId_2")), ], action="DescribeVPCIntercom", ) def describe_vpc_intercom_19(client, variables): d = {"VPCId": variables.get("VPCId_1"), "Region": variables.get("Region")} try: resp = client.vpc().describe_vpc_intercom(d) except exc.RetCodeException as e: resp = e.json() return resp @scenario.step( max_retries=0, retry_interval=0, startup_delay=2, fast_fail=False, validators=lambda variables: [("str_eq", "RetCode", 0)], action="DeleteVPCIntercom", ) def delete_vpc_intercom_20(client, variables): d = { "VPCId": variables.get("VPCId_1"), "Region": variables.get("Region"), "DstVPCId": variables.get("VPCId_2"), "DstRegion": variables.get("Region"), "DstProjectId": funcs.search_value( variables.get("project_list"), "IsDefault", True, "ProjectId" ), } try: resp = client.vpc().delete_vpc_intercom(d) except exc.RetCodeException as e: resp = e.json() return resp @scenario.step( max_retries=3, retry_interval=1, startup_delay=2, fast_fail=False, validators=lambda variables: [("str_eq", "RetCode", 0)], action="DeleteVPC", ) def delete_vpc_21(client, variables): d = {"VPCId": variables.get("VPCId_1"), "Region": variables.get("Region")} try: resp = client.vpc().delete_vpc(d) except exc.RetCodeException as e: resp = e.json() return resp @scenario.step( max_retries=3, retry_interval=1, startup_delay=2, fast_fail=False, action="DeleteVPC", ) def delete_vpc_22(client, variables): d = {"VPCId": variables.get("VPCId_2"), "Region": variables.get("Region")} try: resp = client.vpc().delete_vpc(d) except exc.RetCodeException as e: resp = e.json() return resp
# generated by datamodel-codegen: # filename: openapi.yaml # timestamp: 2021-12-31T02:51:28+00:00 from __future__ import annotations from datetime import datetime from enum import Enum from typing import Annotated, Any, List, Optional from pydantic import BaseModel, Extra, Field class ResourceNotFoundException(BaseModel): __root__: Any class ResourceInUseException(ResourceNotFoundException): pass class InvalidArgumentException(ResourceNotFoundException): pass class ConcurrentModificationException(ResourceNotFoundException): pass class InvalidRequestException(ResourceNotFoundException): pass class InvalidApplicationConfigurationException(ResourceNotFoundException): pass class CodeValidationException(ResourceNotFoundException): pass class LimitExceededException(ResourceNotFoundException): pass class TooManyTagsException(ResourceNotFoundException): pass class CreateApplicationSnapshotResponse(BaseModel): pass class UnsupportedOperationException(ResourceNotFoundException): pass class DeleteApplicationResponse(CreateApplicationSnapshotResponse): pass class DeleteApplicationSnapshotResponse(CreateApplicationSnapshotResponse): pass class UnableToDetectSchemaException(ResourceNotFoundException): pass class ResourceProvisionedThroughputExceededException(ResourceNotFoundException): pass class ServiceUnavailableException(ResourceNotFoundException): pass class StartApplicationResponse(CreateApplicationSnapshotResponse): pass class StopApplicationResponse(CreateApplicationSnapshotResponse): pass class TagResourceResponse(CreateApplicationSnapshotResponse): pass class UntagResourceResponse(CreateApplicationSnapshotResponse): pass class ApplicationName(BaseModel): __root__: Annotated[ str, Field(max_length=128, min_length=1, regex='[a-zA-Z0-9_.-]+') ] class ApplicationVersionId(BaseModel): __root__: Annotated[int, Field(ge=1.0, le=999999999.0)] class ConditionalToken(BaseModel): __root__: Annotated[ str, Field(max_length=512, min_length=1, regex='[a-zA-Z0-9-_+/=]+') ] class ResourceARN(BaseModel): __root__: Annotated[str, Field(max_length=2048, min_length=1, regex='arn:.*')] class Id(BaseModel): __root__: Annotated[ str, Field(max_length=50, min_length=1, regex='[a-zA-Z0-9_.-]+') ] class CodeContentType(Enum): PLAINTEXT = 'PLAINTEXT' ZIPFILE = 'ZIPFILE' class ApplicationDescription(BaseModel): __root__: Annotated[str, Field(max_length=1024, min_length=0)] class RuntimeEnvironment(Enum): SQL_1_0 = 'SQL-1_0' FLINK_1_6 = 'FLINK-1_6' FLINK_1_8 = 'FLINK-1_8' FLINK_1_11 = 'FLINK-1_11' ZEPPELIN_FLINK_1_0 = 'ZEPPELIN-FLINK-1_0' class RoleARN(ResourceARN): pass class ApplicationStatus(Enum): DELETING = 'DELETING' STARTING = 'STARTING' STOPPING = 'STOPPING' READY = 'READY' RUNNING = 'RUNNING' UPDATING = 'UPDATING' AUTOSCALING = 'AUTOSCALING' FORCE_STOPPING = 'FORCE_STOPPING' MAINTENANCE = 'MAINTENANCE' ROLLING_BACK = 'ROLLING_BACK' ROLLED_BACK = 'ROLLED_BACK' class Timestamp(BaseModel): __root__: datetime class ApplicationMode(Enum): STREAMING = 'STREAMING' INTERACTIVE = 'INTERACTIVE' class ApplicationMaintenanceWindowStartTime(BaseModel): __root__: Annotated[ str, Field(max_length=5, min_length=5, regex='([01][0-9]|2[0-3]):[0-5][0-9]') ] class ApplicationMaintenanceWindowEndTime(ApplicationMaintenanceWindowStartTime): pass class ApplicationMaintenanceConfigurationUpdate(BaseModel): """ Describes the updated maintenance configuration for the application. """ ApplicationMaintenanceWindowStartTimeUpdate: ApplicationMaintenanceWindowStartTime class ApplicationRestoreType(Enum): SKIP_RESTORE_FROM_SNAPSHOT = 'SKIP_RESTORE_FROM_SNAPSHOT' RESTORE_FROM_LATEST_SNAPSHOT = 'RESTORE_FROM_LATEST_SNAPSHOT' RESTORE_FROM_CUSTOM_SNAPSHOT = 'RESTORE_FROM_CUSTOM_SNAPSHOT' class SnapshotName(BaseModel): __root__: Annotated[ str, Field(max_length=256, min_length=1, regex='[a-zA-Z0-9_.-]+') ] class ApplicationRestoreConfiguration(BaseModel): """ Specifies the method and snapshot to use when restarting an application using previously saved application state. """ ApplicationRestoreType: ApplicationRestoreType SnapshotName: Optional[SnapshotName] = None class BooleanObject(BaseModel): __root__: bool class ApplicationSummary(BaseModel): """ Provides application summary information, including the application Amazon Resource Name (ARN), name, and status. """ ApplicationName: ApplicationName ApplicationARN: ResourceARN ApplicationStatus: ApplicationStatus ApplicationVersionId: ApplicationVersionId RuntimeEnvironment: RuntimeEnvironment ApplicationMode: Optional[ApplicationMode] = None class ApplicationSummaries(BaseModel): __root__: List[ApplicationSummary] class ApplicationVersionSummary(BaseModel): """ The summary of the application version. """ ApplicationVersionId: ApplicationVersionId ApplicationStatus: ApplicationStatus class ApplicationVersionSummaries(BaseModel): __root__: List[ApplicationVersionSummary] class ArtifactType(Enum): UDF = 'UDF' DEPENDENCY_JAR = 'DEPENDENCY_JAR' class AuthorizedUrl(BaseModel): __root__: Annotated[str, Field(max_length=2048, min_length=1)] class BasePath(BaseModel): __root__: Annotated[ str, Field(max_length=1024, min_length=1, regex="[a-zA-Z0-9/!-_.*'()]+") ] class BucketARN(ResourceARN): pass class RecordRowDelimiter(BaseModel): __root__: Annotated[str, Field(max_length=1024, min_length=1)] class RecordColumnDelimiter(RecordRowDelimiter): pass class CSVMappingParameters(BaseModel): """ <p>For a SQL-based Kinesis Data Analytics application, provides additional mapping information when the record format uses delimiters, such as CSV. For example, the following sample records use CSV format, where the records use the <i>'\n'</i> as the row delimiter and a comma (",") as the column delimiter: </p> <p> <code>"name1", "address1"</code> </p> <p> <code>"name2", "address2"</code> </p> """ RecordRowDelimiter: RecordRowDelimiter RecordColumnDelimiter: RecordColumnDelimiter class ConfigurationType(Enum): DEFAULT = 'DEFAULT' CUSTOM = 'CUSTOM' class CheckpointInterval(BaseModel): __root__: Annotated[int, Field(ge=1.0)] class MinPauseBetweenCheckpoints(BaseModel): __root__: Annotated[int, Field(ge=0.0)] class CheckpointConfiguration(BaseModel): """ Describes an application's checkpointing configuration. Checkpointing is the process of persisting application state for fault tolerance. For more information, see <a href="https://ci.apache.org/projects/flink/flink-docs-release-1.8/concepts/programming-model.html#checkpoints-for-fault-tolerance"> Checkpoints for Fault Tolerance</a> in the <a href="https://ci.apache.org/projects/flink/flink-docs-release-1.8/">Apache Flink Documentation</a>. """ ConfigurationType: ConfigurationType CheckpointingEnabled: Optional[BooleanObject] = None CheckpointInterval: Optional[CheckpointInterval] = None MinPauseBetweenCheckpoints: Optional[MinPauseBetweenCheckpoints] = None class CheckpointConfigurationDescription(BaseModel): """ Describes checkpointing parameters for a Flink-based Kinesis Data Analytics application. """ ConfigurationType: Optional[ConfigurationType] = None CheckpointingEnabled: Optional[BooleanObject] = None CheckpointInterval: Optional[CheckpointInterval] = None MinPauseBetweenCheckpoints: Optional[MinPauseBetweenCheckpoints] = None class CheckpointConfigurationUpdate(BaseModel): """ Describes updates to the checkpointing parameters for a Flink-based Kinesis Data Analytics application. """ ConfigurationTypeUpdate: Optional[ConfigurationType] = None CheckpointingEnabledUpdate: Optional[BooleanObject] = None CheckpointIntervalUpdate: Optional[CheckpointInterval] = None MinPauseBetweenCheckpointsUpdate: Optional[MinPauseBetweenCheckpoints] = None class LogStreamARN(ResourceARN): pass class CloudWatchLoggingOptionDescription(BaseModel): """ Describes the Amazon CloudWatch logging option. """ CloudWatchLoggingOptionId: Optional[Id] = None LogStreamARN: LogStreamARN RoleARN: Optional[RoleARN] = None class CloudWatchLoggingOptionUpdate(BaseModel): """ Describes the Amazon CloudWatch logging option updates. """ CloudWatchLoggingOptionId: Id LogStreamARNUpdate: Optional[LogStreamARN] = None class CloudWatchLoggingOptionUpdates(BaseModel): __root__: List[CloudWatchLoggingOptionUpdate] class TextContent(BaseModel): __root__: Annotated[str, Field(max_length=102400, min_length=0)] class ZipFileContent(BaseModel): __root__: Annotated[str, Field(max_length=52428800, min_length=0)] class CodeMD5(BaseModel): __root__: Annotated[str, Field(max_length=128, min_length=128)] class CodeSize(BaseModel): __root__: Annotated[int, Field(ge=0.0, le=52428800.0)] class UrlType(Enum): FLINK_DASHBOARD_URL = 'FLINK_DASHBOARD_URL' ZEPPELIN_UI_URL = 'ZEPPELIN_UI_URL' class SessionExpirationDurationInSeconds(BaseModel): __root__: Annotated[int, Field(ge=1800.0, le=43200.0)] class DatabaseARN(ResourceARN): pass class S3ContentBaseLocation(BaseModel): """ The S3 bucket that holds the application information. """ BucketARN: BucketARN BasePath: Optional[BasePath] = None class DeployAsApplicationConfiguration(BaseModel): """ The information required to deploy a Kinesis Data Analytics Studio notebook as an application with durable state.. """ S3ContentLocation: S3ContentBaseLocation class S3ContentBaseLocationDescription(S3ContentBaseLocation): """ The description of the S3 base location that holds the application. """ pass class DeployAsApplicationConfigurationDescription(BaseModel): """ The configuration information required to deploy an Amazon Data Analytics Studio notebook as an application with durable state. """ S3ContentLocationDescription: S3ContentBaseLocationDescription class S3ContentBaseLocationUpdate(BaseModel): """ The information required to update the S3 base location that holds the application. """ BucketARNUpdate: BucketARN BasePathUpdate: Optional[BasePath] = None class DeployAsApplicationConfigurationUpdate(BaseModel): """ Updates to the configuration information required to deploy an Amazon Data Analytics Studio notebook as an application with durable state.. """ S3ContentLocationUpdate: S3ContentBaseLocationUpdate class RecordFormatType(Enum): JSON = 'JSON' CSV = 'CSV' class DestinationSchema(BaseModel): """ Describes the data format when records are written to the destination in a SQL-based Kinesis Data Analytics application. """ RecordFormatType: RecordFormatType class FileKey(RecordRowDelimiter): pass class JobPlanDescription(BaseModel): __root__: str class FlinkRunConfiguration(BaseModel): """ Describes the starting parameters for a Flink-based Kinesis Data Analytics application. """ AllowNonRestoredState: Optional[BooleanObject] = None class InAppStreamName(BaseModel): __root__: Annotated[str, Field(max_length=32, min_length=1, regex='[^-\\s<>&]*')] class InAppStreamNames(BaseModel): __root__: List[InAppStreamName] class InAppTableName(BaseModel): __root__: Annotated[str, Field(max_length=32, min_length=1)] class KinesisStreamsInput(BaseModel): """ Identifies a Kinesis data stream as the streaming source. You provide the stream's Amazon Resource Name (ARN). """ ResourceARN: ResourceARN class KinesisFirehoseInput(KinesisStreamsInput): """ For a SQL-based Kinesis Data Analytics application, identifies a Kinesis Data Firehose delivery stream as the streaming source. You provide the delivery stream's Amazon Resource Name (ARN). """ pass class KinesisStreamsInputDescription(BaseModel): """ For a SQL-based Kinesis Data Analytics application, describes the Kinesis data stream that is configured as the streaming source in the application input configuration. """ ResourceARN: ResourceARN RoleARN: Optional[RoleARN] = None class KinesisFirehoseInputDescription(KinesisStreamsInputDescription): """ Describes the Amazon Kinesis Data Firehose delivery stream that is configured as the streaming source in the application input configuration. """ pass class InputLambdaProcessor(KinesisStreamsInput): """ An object that contains the Amazon Resource Name (ARN) of the AWS Lambda function that is used to preprocess records in the stream in a SQL-based Kinesis Data Analytics application. """ pass class InputLambdaProcessorDescription(KinesisStreamsInputDescription): """ For a SQL-based Kinesis Data Analytics application, an object that contains the Amazon Resource Name (ARN) of the AWS Lambda function that is used to preprocess records in the stream. """ pass class InputLambdaProcessorUpdate(BaseModel): """ For a SQL-based Kinesis Data Analytics application, represents an update to the <a>InputLambdaProcessor</a> that is used to preprocess the records in the stream. """ ResourceARNUpdate: ResourceARN class InputParallelismCount(BaseModel): __root__: Annotated[int, Field(ge=1.0, le=64.0)] class InputParallelismUpdate(BaseModel): """ For a SQL-based Kinesis Data Analytics application, provides updates to the parallelism count. """ CountUpdate: InputParallelismCount class InputProcessingConfigurationUpdate(BaseModel): """ For a SQL-based Kinesis Data Analytics application, describes updates to an <a>InputProcessingConfiguration</a>. """ InputLambdaProcessorUpdate: InputLambdaProcessorUpdate class RecordEncoding(BaseModel): __root__: Annotated[str, Field(max_length=5, min_length=5, regex='UTF-8')] class InputStartingPosition(Enum): NOW = 'NOW' TRIM_HORIZON = 'TRIM_HORIZON' LAST_STOPPED_POINT = 'LAST_STOPPED_POINT' class KinesisStreamsInputUpdate(InputLambdaProcessorUpdate): """ When you update the input configuration for a SQL-based Kinesis Data Analytics application, provides information about a Kinesis stream as the streaming source. """ pass class KinesisFirehoseInputUpdate(InputLambdaProcessorUpdate): """ For a SQL-based Kinesis Data Analytics application, when updating application input configuration, provides information about a Kinesis Data Firehose delivery stream as the streaming source. """ pass class RecordRowPath(BaseModel): __root__: Annotated[ str, Field(max_length=65535, min_length=1, regex='^(?=^\\$)(?=^\\S+$).*$') ] class JSONMappingParameters(BaseModel): """ For a SQL-based Kinesis Data Analytics application, provides additional mapping information when JSON is the record format on the streaming source. """ RecordRowPath: RecordRowPath class KinesisAnalyticsARN(ResourceARN): pass class KinesisFirehoseOutput(KinesisStreamsInput): """ For a SQL-based Kinesis Data Analytics application, when configuring application output, identifies a Kinesis Data Firehose delivery stream as the destination. You provide the stream Amazon Resource Name (ARN) of the delivery stream. """ pass class KinesisFirehoseOutputDescription(KinesisStreamsInputDescription): """ For a SQL-based Kinesis Data Analytics application's output, describes the Kinesis Data Firehose delivery stream that is configured as its destination. """ pass class KinesisFirehoseOutputUpdate(InputLambdaProcessorUpdate): """ For a SQL-based Kinesis Data Analytics application, when updating an output configuration using the <a>UpdateApplication</a> operation, provides information about a Kinesis Data Firehose delivery stream that is configured as the destination. """ pass class KinesisStreamsOutput(KinesisStreamsInput): """ When you configure a SQL-based Kinesis Data Analytics application's output, identifies a Kinesis data stream as the destination. You provide the stream Amazon Resource Name (ARN). """ pass class KinesisStreamsOutputDescription(KinesisStreamsInputDescription): """ For an SQL-based Kinesis Data Analytics application's output, describes the Kinesis data stream that is configured as its destination. """ pass class KinesisStreamsOutputUpdate(InputLambdaProcessorUpdate): """ When you update a SQL-based Kinesis Data Analytics application's output configuration using the <a>UpdateApplication</a> operation, provides information about a Kinesis data stream that is configured as the destination. """ pass class LambdaOutput(KinesisStreamsInput): """ When you configure a SQL-based Kinesis Data Analytics application's output, identifies an AWS Lambda function as the destination. You provide the function Amazon Resource Name (ARN) of the Lambda function. """ pass class LambdaOutputDescription(KinesisStreamsInputDescription): """ For a SQL-based Kinesis Data Analytics application's output, describes the AWS Lambda function that is configured as its destination. """ pass class LambdaOutputUpdate(InputLambdaProcessorUpdate): """ When you update an SQL-based Kinesis Data Analytics application's output configuration using the <a>UpdateApplication</a> operation, provides information about an AWS Lambda function that is configured as the destination. """ pass class ListSnapshotsInputLimit(BaseModel): __root__: Annotated[int, Field(ge=1.0, le=50.0)] class NextToken(BaseModel): __root__: Annotated[str, Field(max_length=512, min_length=1)] class ListApplicationVersionsInputLimit(ListSnapshotsInputLimit): pass class ListApplicationsInputLimit(ListSnapshotsInputLimit): pass class LogLevel(Enum): INFO = 'INFO' WARN = 'WARN' ERROR = 'ERROR' DEBUG = 'DEBUG' class MappingParameters(BaseModel): """ When you configure a SQL-based Kinesis Data Analytics application's input at the time of creating or updating an application, provides additional mapping information specific to the record format (such as JSON, CSV, or record fields delimited by some delimiter) on the streaming source. """ JSONMappingParameters: Optional[JSONMappingParameters] = None CSVMappingParameters: Optional[CSVMappingParameters] = None class MavenArtifactId(SnapshotName): pass class MavenGroupId(SnapshotName): pass class MavenVersion(SnapshotName): pass class MetricsLevel(Enum): APPLICATION = 'APPLICATION' TASK = 'TASK' OPERATOR = 'OPERATOR' PARALLELISM = 'PARALLELISM' class ObjectVersion(ApplicationDescription): pass class OutputDescription(BaseModel): """ For a SQL-based Kinesis Data Analytics application, describes the application output configuration, which includes the in-application stream name and the destination where the stream data is written. The destination can be a Kinesis data stream or a Kinesis Data Firehose delivery stream. """ OutputId: Optional[Id] = None Name: Optional[InAppStreamName] = None KinesisStreamsOutputDescription: Optional[KinesisStreamsOutputDescription] = None KinesisFirehoseOutputDescription: Optional[KinesisFirehoseOutputDescription] = None LambdaOutputDescription: Optional[LambdaOutputDescription] = None DestinationSchema: Optional[DestinationSchema] = None class OutputUpdate(BaseModel): """ For a SQL-based Kinesis Data Analytics application, describes updates to the output configuration identified by the <code>OutputId</code>. """ OutputId: Id NameUpdate: Optional[InAppStreamName] = None KinesisStreamsOutputUpdate: Optional[KinesisStreamsOutputUpdate] = None KinesisFirehoseOutputUpdate: Optional[KinesisFirehoseOutputUpdate] = None LambdaOutputUpdate: Optional[LambdaOutputUpdate] = None DestinationSchemaUpdate: Optional[DestinationSchema] = None class OutputUpdates(BaseModel): __root__: List[OutputUpdate] class Parallelism(CheckpointInterval): pass class ParallelismPerKPU(CheckpointInterval): pass class ParsedInputRecordField(JobPlanDescription): pass class ParsedInputRecord(BaseModel): __root__: List[ParsedInputRecordField] class ProcessedInputRecord(JobPlanDescription): pass class PropertyMap(BaseModel): pass class Config: extra = Extra.allow class PropertyGroup(BaseModel): """ Property key-value pairs passed into an application. """ PropertyGroupId: Id PropertyMap: PropertyMap class PropertyKey(AuthorizedUrl): pass class PropertyValue(AuthorizedUrl): pass class RawInputRecord(JobPlanDescription): pass class RecordColumnName(BaseModel): __root__: Annotated[str, Field(max_length=256, min_length=1, regex='[^-\\s<>&]*')] class RecordColumnMapping(BaseModel): __root__: Annotated[str, Field(max_length=65535, min_length=0)] class RecordColumnSqlType(BaseModel): __root__: Annotated[str, Field(max_length=100, min_length=1)] class RecordColumn(BaseModel): """ <p>For a SQL-based Kinesis Data Analytics application, describes the mapping of each data element in the streaming source to the corresponding column in the in-application stream.</p> <p>Also used to describe the format of the reference data source.</p> """ Name: RecordColumnName Mapping: Optional[RecordColumnMapping] = None SqlType: RecordColumnSqlType class S3ReferenceDataSource(BaseModel): """ <p>For a SQL-based Kinesis Data Analytics application, identifies the Amazon S3 bucket and object that contains the reference data.</p> <p>A Kinesis Data Analytics application loads reference data only once. If the data changes, you call the <a>UpdateApplication</a> operation to trigger reloading of data into your application. </p> """ BucketARN: Optional[BucketARN] = None FileKey: Optional[FileKey] = None class S3ReferenceDataSourceDescription(BaseModel): """ For a SQL-based Kinesis Data Analytics application, provides the bucket name and object key name that stores the reference data. """ BucketARN: BucketARN FileKey: FileKey ReferenceRoleARN: Optional[RoleARN] = None class S3ReferenceDataSourceUpdate(BaseModel): """ For a SQL-based Kinesis Data Analytics application, describes the Amazon S3 bucket name and object key name for an in-application reference table. """ BucketARNUpdate: Optional[BucketARN] = None FileKeyUpdate: Optional[FileKey] = None class RunConfigurationUpdate(BaseModel): """ Describes the updates to the starting parameters for a Kinesis Data Analytics application. """ FlinkRunConfiguration: Optional[FlinkRunConfiguration] = None ApplicationRestoreConfiguration: Optional[ApplicationRestoreConfiguration] = None class SecurityGroupId(JobPlanDescription): pass class SecurityGroupIds(BaseModel): __root__: Annotated[List[SecurityGroupId], Field(max_items=5, min_items=1)] class SnapshotStatus(Enum): CREATING = 'CREATING' READY = 'READY' DELETING = 'DELETING' FAILED = 'FAILED' class SubnetId(JobPlanDescription): pass class SubnetIds(BaseModel): __root__: Annotated[List[SubnetId], Field(max_items=16, min_items=1)] class TagKey(BaseModel): __root__: Annotated[str, Field(max_length=128, min_length=1)] class TagValue(BaseModel): __root__: Annotated[str, Field(max_length=256, min_length=0)] class Tag(BaseModel): """ A key-value pair (the value is optional) that you can define and assign to AWS resources. If you specify a tag that already exists, the tag value is replaced with the value that you specify in the request. Note that the maximum number of application tags includes system tags. The maximum number of user-defined application tags is 50. For more information, see <a href="https://docs.aws.amazon.com/kinesisanalytics/latest/java/how-tagging.html">Using Tagging</a>. """ Key: TagKey Value: Optional[TagValue] = None class TagKeys(BaseModel): __root__: Annotated[List[TagKey], Field(max_items=200, min_items=1)] class VpcId(JobPlanDescription): pass class VpcConfigurationUpdate(BaseModel): """ Describes updates to the VPC configuration used by the application. """ VpcConfigurationId: Id SubnetIdUpdates: Optional[SubnetIds] = None SecurityGroupIdUpdates: Optional[SecurityGroupIds] = None class ZeppelinMonitoringConfiguration(BaseModel): """ Describes configuration parameters for Amazon CloudWatch logging for a Kinesis Data Analytics Studio notebook. For more information about CloudWatch logging, see <a href="https://docs.aws.amazon.com/kinesisanalytics/latest/java/monitoring-overview.html">Monitoring</a>. """ LogLevel: LogLevel class ZeppelinMonitoringConfigurationDescription(BaseModel): """ The monitoring configuration for Apache Zeppelin within a Kinesis Data Analytics Studio notebook. """ LogLevel: Optional[LogLevel] = None class ZeppelinMonitoringConfigurationUpdate(BaseModel): """ Updates to the monitoring configuration for Apache Zeppelin within a Kinesis Data Analytics Studio notebook. """ LogLevelUpdate: LogLevel class CreateApplicationPresignedUrlResponse(BaseModel): AuthorizedUrl: Optional[AuthorizedUrl] = None class CreateApplicationPresignedUrlRequest(BaseModel): ApplicationName: ApplicationName UrlType: UrlType SessionExpirationDurationInSeconds: Optional[ SessionExpirationDurationInSeconds ] = None class CreateApplicationSnapshotRequest(BaseModel): ApplicationName: ApplicationName SnapshotName: SnapshotName class DeleteApplicationRequest(BaseModel): ApplicationName: ApplicationName CreateTimestamp: Timestamp class DeleteApplicationCloudWatchLoggingOptionRequest(BaseModel): ApplicationName: ApplicationName CurrentApplicationVersionId: Optional[ApplicationVersionId] = None CloudWatchLoggingOptionId: Id ConditionalToken: Optional[ConditionalToken] = None class DeleteApplicationInputProcessingConfigurationResponse(BaseModel): ApplicationARN: Optional[ResourceARN] = None ApplicationVersionId: Optional[ApplicationVersionId] = None class DeleteApplicationInputProcessingConfigurationRequest(BaseModel): ApplicationName: ApplicationName CurrentApplicationVersionId: ApplicationVersionId InputId: Id class DeleteApplicationOutputResponse( DeleteApplicationInputProcessingConfigurationResponse ): pass class DeleteApplicationOutputRequest(BaseModel): ApplicationName: ApplicationName CurrentApplicationVersionId: ApplicationVersionId OutputId: Id class DeleteApplicationReferenceDataSourceResponse( DeleteApplicationInputProcessingConfigurationResponse ): pass class DeleteApplicationReferenceDataSourceRequest(BaseModel): ApplicationName: ApplicationName CurrentApplicationVersionId: ApplicationVersionId ReferenceId: Id class DeleteApplicationSnapshotRequest(BaseModel): ApplicationName: ApplicationName SnapshotName: SnapshotName SnapshotCreationTimestamp: Timestamp class DeleteApplicationVpcConfigurationResponse( DeleteApplicationInputProcessingConfigurationResponse ): pass class DeleteApplicationVpcConfigurationRequest(BaseModel): ApplicationName: ApplicationName CurrentApplicationVersionId: Optional[ApplicationVersionId] = None VpcConfigurationId: Id ConditionalToken: Optional[ConditionalToken] = None class DescribeApplicationRequest(BaseModel): ApplicationName: ApplicationName IncludeAdditionalDetails: Optional[BooleanObject] = None class DescribeApplicationSnapshotRequest(BaseModel): ApplicationName: ApplicationName SnapshotName: SnapshotName class DescribeApplicationVersionRequest(BaseModel): ApplicationName: ApplicationName ApplicationVersionId: ApplicationVersionId class ListApplicationSnapshotsRequest(BaseModel): ApplicationName: ApplicationName Limit: Optional[ListSnapshotsInputLimit] = None NextToken: Optional[NextToken] = None class ListApplicationVersionsResponse(BaseModel): ApplicationVersionSummaries: Optional[ApplicationVersionSummaries] = None NextToken: Optional[NextToken] = None class ListApplicationVersionsRequest(BaseModel): ApplicationName: ApplicationName Limit: Optional[ListApplicationVersionsInputLimit] = None NextToken: Optional[NextToken] = None class ListApplicationsResponse(BaseModel): ApplicationSummaries: ApplicationSummaries NextToken: Optional[ApplicationName] = None class ListApplicationsRequest(BaseModel): Limit: Optional[ListApplicationsInputLimit] = None NextToken: Optional[ApplicationName] = None class ListTagsForResourceRequest(BaseModel): ResourceARN: KinesisAnalyticsARN class RollbackApplicationRequest(BaseModel): ApplicationName: ApplicationName CurrentApplicationVersionId: ApplicationVersionId class StopApplicationRequest(BaseModel): ApplicationName: ApplicationName Force: Optional[BooleanObject] = None class UntagResourceRequest(BaseModel): ResourceARN: KinesisAnalyticsARN TagKeys: TagKeys class UpdateApplicationMaintenanceConfigurationRequest(BaseModel): ApplicationName: ApplicationName ApplicationMaintenanceConfigurationUpdate: ApplicationMaintenanceConfigurationUpdate class CloudWatchLoggingOption(BaseModel): """ Provides a description of Amazon CloudWatch logging options, including the log stream Amazon Resource Name (ARN). """ LogStreamARN: LogStreamARN class CloudWatchLoggingOptionDescriptions(BaseModel): __root__: List[CloudWatchLoggingOptionDescription] class InputProcessingConfiguration(BaseModel): """ For a SQL-based Kinesis Data Analytics application, describes a processor that is used to preprocess the records in the stream before being processed by your application code. Currently, the only input processor available is <a href="https://docs.aws.amazon.com/lambda/">AWS Lambda</a>. """ InputLambdaProcessor: InputLambdaProcessor class InputProcessingConfigurationDescription(BaseModel): """ For a SQL-based Kinesis Data Analytics application, provides the configuration information about an input processor. Currently, the only input processor available is <a href="https://docs.aws.amazon.com/lambda/">AWS Lambda</a>. """ InputLambdaProcessorDescription: Optional[InputLambdaProcessorDescription] = None class Output(BaseModel): """ <p> Describes a SQL-based Kinesis Data Analytics application's output configuration, in which you identify an in-application stream and a destination where you want the in-application stream data to be written. The destination can be a Kinesis data stream or a Kinesis Data Firehose delivery stream. </p> <p/> """ Name: InAppStreamName KinesisStreamsOutput: Optional[KinesisStreamsOutput] = None KinesisFirehoseOutput: Optional[KinesisFirehoseOutput] = None LambdaOutput: Optional[LambdaOutput] = None DestinationSchema: DestinationSchema class OutputDescriptions(BaseModel): __root__: List[OutputDescription] class VpcConfiguration(BaseModel): """ Describes the parameters of a VPC used by the application. """ SubnetIds: SubnetIds SecurityGroupIds: SecurityGroupIds class VpcConfigurationDescription(BaseModel): """ Describes the parameters of a VPC used by the application. """ VpcConfigurationId: Id VpcId: VpcId SubnetIds: SubnetIds SecurityGroupIds: SecurityGroupIds class ApplicationSnapshotConfiguration(BaseModel): """ Describes whether snapshots are enabled for a Flink-based Kinesis Data Analytics application. """ SnapshotsEnabled: BooleanObject class VpcConfigurations(BaseModel): __root__: List[VpcConfiguration] class RunConfigurationDescription(BaseModel): """ Describes the starting properties for a Kinesis Data Analytics application. """ ApplicationRestoreConfigurationDescription: Optional[ ApplicationRestoreConfiguration ] = None FlinkRunConfigurationDescription: Optional[FlinkRunConfiguration] = None class ApplicationSnapshotConfigurationDescription(ApplicationSnapshotConfiguration): """ Describes whether snapshots are enabled for a Flink-based Kinesis Data Analytics application. """ pass class VpcConfigurationDescriptions(BaseModel): __root__: List[VpcConfigurationDescription] class ApplicationSnapshotConfigurationUpdate(BaseModel): """ Describes updates to whether snapshots are enabled for a Flink-based Kinesis Data Analytics application. """ SnapshotsEnabledUpdate: BooleanObject class VpcConfigurationUpdates(BaseModel): __root__: List[VpcConfigurationUpdate] class ApplicationMaintenanceConfigurationDescription(BaseModel): """ The details of the maintenance configuration for the application. """ ApplicationMaintenanceWindowStartTime: ApplicationMaintenanceWindowStartTime ApplicationMaintenanceWindowEndTime: ApplicationMaintenanceWindowEndTime class GlueDataCatalogConfiguration(BaseModel): """ The configuration of the Glue Data Catalog that you use for Apache Flink SQL queries and table API transforms that you write in an application. """ DatabaseARN: DatabaseARN class CatalogConfiguration(BaseModel): """ The configuration parameters for the default AWS Glue database. You use this database for SQL queries that you write in a Kinesis Data Analytics Studio notebook. """ GlueDataCatalogConfiguration: GlueDataCatalogConfiguration class GlueDataCatalogConfigurationDescription(GlueDataCatalogConfiguration): """ The configuration of the Glue Data Catalog that you use for Apache Flink SQL queries and table API transforms that you write in an application. """ pass class CatalogConfigurationDescription(BaseModel): """ The configuration parameters for the default AWS Glue database. You use this database for Apache Flink SQL queries and table API transforms that you write in a Kinesis Data Analytics Studio notebook. """ GlueDataCatalogConfigurationDescription: GlueDataCatalogConfigurationDescription class GlueDataCatalogConfigurationUpdate(BaseModel): """ Updates to the configuration of the Glue Data Catalog that you use for SQL queries that you write in a Kinesis Data Analytics Studio notebook. """ DatabaseARNUpdate: Optional[DatabaseARN] = None class CatalogConfigurationUpdate(BaseModel): """ Updates to """ GlueDataCatalogConfigurationUpdate: GlueDataCatalogConfigurationUpdate class CloudWatchLoggingOptions(BaseModel): __root__: List[CloudWatchLoggingOption] class S3ContentLocation(BaseModel): """ For a Kinesis Data Analytics application provides a description of an Amazon S3 object, including the Amazon Resource Name (ARN) of the S3 bucket, the name of the Amazon S3 object that contains the data, and the version number of the Amazon S3 object that contains the data. """ BucketARN: BucketARN FileKey: FileKey ObjectVersion: Optional[ObjectVersion] = None class S3ApplicationCodeLocationDescription(S3ContentLocation): """ Describes the location of an application's code stored in an S3 bucket. """ pass class S3ContentLocationUpdate(BaseModel): """ Describes an update for the Amazon S3 code content location for an application. """ BucketARNUpdate: Optional[BucketARN] = None FileKeyUpdate: Optional[FileKey] = None ObjectVersionUpdate: Optional[ObjectVersion] = None class Tags(BaseModel): __root__: Annotated[List[Tag], Field(max_items=200, min_items=1)] class MavenReference(BaseModel): """ The information required to specify a Maven reference. You can use Maven references to specify dependency JAR files. """ GroupId: MavenGroupId ArtifactId: MavenArtifactId Version: MavenVersion class CustomArtifactConfiguration(BaseModel): """ Specifies dependency JARs, as well as JAR files that contain user-defined functions (UDF). """ ArtifactType: ArtifactType S3ContentLocation: Optional[S3ContentLocation] = None MavenReference: Optional[MavenReference] = None class CustomArtifactConfigurationDescription(BaseModel): """ Specifies a dependency JAR or a JAR of user-defined functions. """ ArtifactType: Optional[ArtifactType] = None S3ContentLocationDescription: Optional[S3ContentLocation] = None MavenReferenceDescription: Optional[MavenReference] = None class CustomArtifactsConfigurationDescriptionList(BaseModel): __root__: Annotated[ List[CustomArtifactConfigurationDescription], Field(max_items=50) ] class CustomArtifactsConfigurationList(BaseModel): __root__: Annotated[List[CustomArtifactConfiguration], Field(max_items=50)] class SnapshotDetails(BaseModel): """ Provides details about a snapshot of application state. """ SnapshotName: SnapshotName SnapshotStatus: SnapshotStatus ApplicationVersionId: ApplicationVersionId SnapshotCreationTimestamp: Optional[Timestamp] = None class InputStartingPositionConfiguration(BaseModel): """ Describes the point at which the application reads from the streaming source. """ InputStartingPosition: Optional[InputStartingPosition] = None class S3Configuration(BaseModel): """ For a SQL-based Kinesis Data Analytics application, provides a description of an Amazon S3 data source, including the Amazon Resource Name (ARN) of the S3 bucket and the name of the Amazon S3 object that contains the data. """ BucketARN: BucketARN FileKey: FileKey class ParsedInputRecords(BaseModel): __root__: List[ParsedInputRecord] class ProcessedInputRecords(BaseModel): __root__: List[ProcessedInputRecord] class RawInputRecords(BaseModel): __root__: List[RawInputRecord] class PropertyGroups(BaseModel): __root__: Annotated[List[PropertyGroup], Field(max_items=50)] class MonitoringConfiguration(BaseModel): """ Describes configuration parameters for Amazon CloudWatch logging for an application. For more information about CloudWatch logging, see <a href="https://docs.aws.amazon.com/kinesisanalytics/latest/java/monitoring-overview.html">Monitoring</a>. """ ConfigurationType: ConfigurationType MetricsLevel: Optional[MetricsLevel] = None LogLevel: Optional[LogLevel] = None class ParallelismConfiguration(BaseModel): """ Describes parameters for how a Flink-based Kinesis Data Analytics application executes multiple tasks simultaneously. For more information about parallelism, see <a href="https://ci.apache.org/projects/flink/flink-docs-release-1.8/dev/parallel.html">Parallel Execution</a> in the <a href="https://ci.apache.org/projects/flink/flink-docs-release-1.8/">Apache Flink Documentation</a>. """ ConfigurationType: ConfigurationType Parallelism: Optional[Parallelism] = None ParallelismPerKPU: Optional[ParallelismPerKPU] = None AutoScalingEnabled: Optional[BooleanObject] = None class MonitoringConfigurationDescription(BaseModel): """ Describes configuration parameters for CloudWatch logging for an application. """ ConfigurationType: Optional[ConfigurationType] = None MetricsLevel: Optional[MetricsLevel] = None LogLevel: Optional[LogLevel] = None class ParallelismConfigurationDescription(BaseModel): """ Describes parameters for how a Flink-based Kinesis Data Analytics application executes multiple tasks simultaneously. """ ConfigurationType: Optional[ConfigurationType] = None Parallelism: Optional[Parallelism] = None ParallelismPerKPU: Optional[ParallelismPerKPU] = None CurrentParallelism: Optional[Parallelism] = None AutoScalingEnabled: Optional[BooleanObject] = None class MonitoringConfigurationUpdate(BaseModel): """ Describes updates to configuration parameters for Amazon CloudWatch logging for an application. """ ConfigurationTypeUpdate: Optional[ConfigurationType] = None MetricsLevelUpdate: Optional[MetricsLevel] = None LogLevelUpdate: Optional[LogLevel] = None class ParallelismConfigurationUpdate(BaseModel): """ Describes updates to parameters for how an application executes multiple tasks simultaneously. """ ConfigurationTypeUpdate: Optional[ConfigurationType] = None ParallelismUpdate: Optional[Parallelism] = None ParallelismPerKPUUpdate: Optional[ParallelismPerKPU] = None AutoScalingEnabledUpdate: Optional[BooleanObject] = None class InputParallelism(BaseModel): """ For a SQL-based Kinesis Data Analytics application, describes the number of in-application streams to create for a given streaming source. """ Count: Optional[InputParallelismCount] = None class RecordFormat(BaseModel): """ For a SQL-based Kinesis Data Analytics application, describes the record format and relevant mapping information that should be applied to schematize the records on the stream. """ RecordFormatType: RecordFormatType MappingParameters: Optional[MappingParameters] = None class RecordColumns(BaseModel): __root__: Annotated[List[RecordColumn], Field(max_items=1000, min_items=1)] class InputSchemaUpdate(BaseModel): """ Describes updates for an SQL-based Kinesis Data Analytics application's input schema. """ RecordFormatUpdate: Optional[RecordFormat] = None RecordEncodingUpdate: Optional[RecordEncoding] = None RecordColumnUpdates: Optional[RecordColumns] = None class InputUpdate(BaseModel): """ For a SQL-based Kinesis Data Analytics application, describes updates to a specific input configuration (identified by the <code>InputId</code> of an application). """ InputId: Id NamePrefixUpdate: Optional[InAppStreamName] = None InputProcessingConfigurationUpdate: Optional[ InputProcessingConfigurationUpdate ] = None KinesisStreamsInputUpdate: Optional[KinesisStreamsInputUpdate] = None KinesisFirehoseInputUpdate: Optional[KinesisFirehoseInputUpdate] = None InputSchemaUpdate: Optional[InputSchemaUpdate] = None InputParallelismUpdate: Optional[InputParallelismUpdate] = None class InputUpdates(BaseModel): __root__: List[InputUpdate] class SnapshotSummaries(BaseModel): __root__: List[SnapshotDetails] class Outputs(BaseModel): __root__: List[Output] class SqlRunConfiguration(BaseModel): """ Describes the starting parameters for a SQL-based Kinesis Data Analytics application. """ InputId: Id InputStartingPositionConfiguration: InputStartingPositionConfiguration class AddApplicationCloudWatchLoggingOptionResponse(BaseModel): ApplicationARN: Optional[ResourceARN] = None ApplicationVersionId: Optional[ApplicationVersionId] = None CloudWatchLoggingOptionDescriptions: Optional[ CloudWatchLoggingOptionDescriptions ] = None class AddApplicationCloudWatchLoggingOptionRequest(BaseModel): ApplicationName: ApplicationName CurrentApplicationVersionId: Optional[ApplicationVersionId] = None CloudWatchLoggingOption: CloudWatchLoggingOption ConditionalToken: Optional[ConditionalToken] = None class AddApplicationInputProcessingConfigurationResponse(BaseModel): ApplicationARN: Optional[ResourceARN] = None ApplicationVersionId: Optional[ApplicationVersionId] = None InputId: Optional[Id] = None InputProcessingConfigurationDescription: Optional[ InputProcessingConfigurationDescription ] = None class AddApplicationInputProcessingConfigurationRequest(BaseModel): ApplicationName: ApplicationName CurrentApplicationVersionId: ApplicationVersionId InputId: Id InputProcessingConfiguration: InputProcessingConfiguration class AddApplicationOutputResponse(BaseModel): ApplicationARN: Optional[ResourceARN] = None ApplicationVersionId: Optional[ApplicationVersionId] = None OutputDescriptions: Optional[OutputDescriptions] = None class AddApplicationOutputRequest(BaseModel): ApplicationName: ApplicationName CurrentApplicationVersionId: ApplicationVersionId Output: Output class AddApplicationVpcConfigurationResponse(BaseModel): ApplicationARN: Optional[ResourceARN] = None ApplicationVersionId: Optional[ApplicationVersionId] = None VpcConfigurationDescription: Optional[VpcConfigurationDescription] = None class AddApplicationVpcConfigurationRequest(BaseModel): ApplicationName: ApplicationName CurrentApplicationVersionId: Optional[ApplicationVersionId] = None VpcConfiguration: VpcConfiguration ConditionalToken: Optional[ConditionalToken] = None class DeleteApplicationCloudWatchLoggingOptionResponse( AddApplicationCloudWatchLoggingOptionResponse ): pass class DescribeApplicationSnapshotResponse(BaseModel): SnapshotDetails: SnapshotDetails class DiscoverInputSchemaRequest(BaseModel): ResourceARN: Optional[ResourceARN] = None ServiceExecutionRole: RoleARN InputStartingPositionConfiguration: Optional[ InputStartingPositionConfiguration ] = None S3Configuration: Optional[S3Configuration] = None InputProcessingConfiguration: Optional[InputProcessingConfiguration] = None class ListApplicationSnapshotsResponse(BaseModel): SnapshotSummaries: Optional[SnapshotSummaries] = None NextToken: Optional[NextToken] = None class ListTagsForResourceResponse(BaseModel): Tags: Optional[Tags] = None class TagResourceRequest(BaseModel): ResourceARN: KinesisAnalyticsARN Tags: Tags class UpdateApplicationMaintenanceConfigurationResponse(BaseModel): ApplicationARN: Optional[ResourceARN] = None ApplicationMaintenanceConfigurationDescription: Optional[ ApplicationMaintenanceConfigurationDescription ] = None class CodeContent(BaseModel): """ Specifies either the application code, or the location of the application code, for a Flink-based Kinesis Data Analytics application. """ TextContent: Optional[TextContent] = None ZipFileContent: Optional[ZipFileContent] = None S3ContentLocation: Optional[S3ContentLocation] = None class ApplicationCodeConfiguration(BaseModel): """ Describes code configuration for an application. """ CodeContent: Optional[CodeContent] = None CodeContentType: CodeContentType class CodeContentDescription(BaseModel): """ Describes details about the code of a Kinesis Data Analytics application. """ TextContent: Optional[TextContent] = None CodeMD5: Optional[CodeMD5] = None CodeSize: Optional[CodeSize] = None S3ApplicationCodeLocationDescription: Optional[ S3ApplicationCodeLocationDescription ] = None class ApplicationCodeConfigurationDescription(BaseModel): """ Describes code configuration for an application. """ CodeContentType: CodeContentType CodeContentDescription: Optional[CodeContentDescription] = None class CodeContentUpdate(BaseModel): """ Describes an update to the code of an application. Not supported for Apache Zeppelin. """ TextContentUpdate: Optional[TextContent] = None ZipFileContentUpdate: Optional[ZipFileContent] = None S3ContentLocationUpdate: Optional[S3ContentLocationUpdate] = None class ApplicationCodeConfigurationUpdate(BaseModel): """ Describes code configuration updates for an application. This is supported for a Flink-based Kinesis Data Analytics application or a SQL-based Kinesis Data Analytics application. """ CodeContentTypeUpdate: Optional[CodeContentType] = None CodeContentUpdate: Optional[CodeContentUpdate] = None class FlinkApplicationConfiguration(BaseModel): """ Describes configuration parameters for a Flink-based Kinesis Data Analytics application or a Studio notebook. """ CheckpointConfiguration: Optional[CheckpointConfiguration] = None MonitoringConfiguration: Optional[MonitoringConfiguration] = None ParallelismConfiguration: Optional[ParallelismConfiguration] = None class EnvironmentProperties(BaseModel): """ Describes execution properties for a Flink-based Kinesis Data Analytics application. """ PropertyGroups: PropertyGroups class ZeppelinApplicationConfiguration(BaseModel): """ The configuration of a Kinesis Data Analytics Studio notebook. """ MonitoringConfiguration: Optional[ZeppelinMonitoringConfiguration] = None CatalogConfiguration: Optional[CatalogConfiguration] = None DeployAsApplicationConfiguration: Optional[DeployAsApplicationConfiguration] = None CustomArtifactsConfiguration: Optional[CustomArtifactsConfigurationList] = None class FlinkApplicationConfigurationDescription(BaseModel): """ Describes configuration parameters for a Flink-based Kinesis Data Analytics application. """ CheckpointConfigurationDescription: Optional[ CheckpointConfigurationDescription ] = None MonitoringConfigurationDescription: Optional[ MonitoringConfigurationDescription ] = None ParallelismConfigurationDescription: Optional[ ParallelismConfigurationDescription ] = None JobPlanDescription: Optional[JobPlanDescription] = None class EnvironmentPropertyDescriptions(BaseModel): """ Describes the execution properties for an Apache Flink runtime. """ PropertyGroupDescriptions: Optional[PropertyGroups] = None class ZeppelinApplicationConfigurationDescription(BaseModel): """ The configuration of a Kinesis Data Analytics Studio notebook. """ MonitoringConfigurationDescription: ZeppelinMonitoringConfigurationDescription CatalogConfigurationDescription: Optional[CatalogConfigurationDescription] = None DeployAsApplicationConfigurationDescription: Optional[ DeployAsApplicationConfigurationDescription ] = None CustomArtifactsConfigurationDescription: Optional[ CustomArtifactsConfigurationDescriptionList ] = None class FlinkApplicationConfigurationUpdate(BaseModel): """ Describes updates to the configuration parameters for a Flink-based Kinesis Data Analytics application. """ CheckpointConfigurationUpdate: Optional[CheckpointConfigurationUpdate] = None MonitoringConfigurationUpdate: Optional[MonitoringConfigurationUpdate] = None ParallelismConfigurationUpdate: Optional[ParallelismConfigurationUpdate] = None class EnvironmentPropertyUpdates(EnvironmentProperties): """ Describes updates to the execution property groups for a Flink-based Kinesis Data Analytics application or a Studio notebook. """ pass class ZeppelinApplicationConfigurationUpdate(BaseModel): """ Updates to the configuration of Kinesis Data Analytics Studio notebook. """ MonitoringConfigurationUpdate: Optional[ ZeppelinMonitoringConfigurationUpdate ] = None CatalogConfigurationUpdate: Optional[CatalogConfigurationUpdate] = None DeployAsApplicationConfigurationUpdate: Optional[ DeployAsApplicationConfigurationUpdate ] = None CustomArtifactsConfigurationUpdate: Optional[ CustomArtifactsConfigurationList ] = None class SourceSchema(BaseModel): """ For a SQL-based Kinesis Data Analytics application, describes the format of the data in the streaming source, and how each data element maps to corresponding columns created in the in-application stream. """ RecordFormat: RecordFormat RecordEncoding: Optional[RecordEncoding] = None RecordColumns: RecordColumns class InputDescription(BaseModel): """ Describes the application input configuration for a SQL-based Kinesis Data Analytics application. """ InputId: Optional[Id] = None NamePrefix: Optional[InAppStreamName] = None InAppStreamNames: Optional[InAppStreamNames] = None InputProcessingConfigurationDescription: Optional[ InputProcessingConfigurationDescription ] = None KinesisStreamsInputDescription: Optional[KinesisStreamsInputDescription] = None KinesisFirehoseInputDescription: Optional[KinesisFirehoseInputDescription] = None InputSchema: Optional[SourceSchema] = None InputParallelism: Optional[InputParallelism] = None InputStartingPositionConfiguration: Optional[ InputStartingPositionConfiguration ] = None class ReferenceDataSourceDescription(BaseModel): """ For a SQL-based Kinesis Data Analytics application, describes the reference data source configured for an application. """ ReferenceId: Id TableName: InAppTableName S3ReferenceDataSourceDescription: S3ReferenceDataSourceDescription ReferenceSchema: Optional[SourceSchema] = None class ReferenceDataSourceUpdate(BaseModel): """ When you update a reference data source configuration for a SQL-based Kinesis Data Analytics application, this object provides all the updated values (such as the source bucket name and object key name), the in-application table name that is created, and updated mapping information that maps the data in the Amazon S3 object to the in-application reference table that is created. """ ReferenceId: Id TableNameUpdate: Optional[InAppTableName] = None S3ReferenceDataSourceUpdate: Optional[S3ReferenceDataSourceUpdate] = None ReferenceSchemaUpdate: Optional[SourceSchema] = None class ReferenceDataSourceUpdates(BaseModel): __root__: List[ReferenceDataSourceUpdate] class SqlRunConfigurations(BaseModel): __root__: List[SqlRunConfiguration] class RunConfiguration(BaseModel): """ Describes the starting parameters for an Kinesis Data Analytics application. """ FlinkRunConfiguration: Optional[FlinkRunConfiguration] = None SqlRunConfigurations: Optional[SqlRunConfigurations] = None ApplicationRestoreConfiguration: Optional[ApplicationRestoreConfiguration] = None class DiscoverInputSchemaResponse(BaseModel): InputSchema: Optional[SourceSchema] = None ParsedInputRecords: Optional[ParsedInputRecords] = None ProcessedInputRecords: Optional[ProcessedInputRecords] = None RawInputRecords: Optional[RawInputRecords] = None class StartApplicationRequest(BaseModel): ApplicationName: ApplicationName RunConfiguration: Optional[RunConfiguration] = None class Input(BaseModel): """ When you configure the application input for a SQL-based Kinesis Data Analytics application, you specify the streaming source, the in-application stream name that is created, and the mapping between the two. """ NamePrefix: InAppStreamName InputProcessingConfiguration: Optional[InputProcessingConfiguration] = None KinesisStreamsInput: Optional[KinesisStreamsInput] = None KinesisFirehoseInput: Optional[KinesisFirehoseInput] = None InputParallelism: Optional[InputParallelism] = None InputSchema: SourceSchema class InputDescriptions(BaseModel): __root__: List[InputDescription] class ReferenceDataSource(BaseModel): """ For a SQL-based Kinesis Data Analytics application, describes the reference data source by providing the source information (Amazon S3 bucket name and object key name), the resulting in-application table name that is created, and the necessary schema to map the data elements in the Amazon S3 object to the in-application table. """ TableName: InAppTableName S3ReferenceDataSource: Optional[S3ReferenceDataSource] = None ReferenceSchema: SourceSchema class ReferenceDataSourceDescriptions(BaseModel): __root__: List[ReferenceDataSourceDescription] class SqlApplicationConfigurationDescription(BaseModel): """ Describes the inputs, outputs, and reference data sources for a SQL-based Kinesis Data Analytics application. """ InputDescriptions: Optional[InputDescriptions] = None OutputDescriptions: Optional[OutputDescriptions] = None ReferenceDataSourceDescriptions: Optional[ReferenceDataSourceDescriptions] = None class ApplicationConfigurationDescription(BaseModel): """ Describes details about the application code and starting parameters for a Kinesis Data Analytics application. """ SqlApplicationConfigurationDescription: Optional[ SqlApplicationConfigurationDescription ] = None ApplicationCodeConfigurationDescription: Optional[ ApplicationCodeConfigurationDescription ] = None RunConfigurationDescription: Optional[RunConfigurationDescription] = None FlinkApplicationConfigurationDescription: Optional[ FlinkApplicationConfigurationDescription ] = None EnvironmentPropertyDescriptions: Optional[EnvironmentPropertyDescriptions] = None ApplicationSnapshotConfigurationDescription: Optional[ ApplicationSnapshotConfigurationDescription ] = None VpcConfigurationDescriptions: Optional[VpcConfigurationDescriptions] = None ZeppelinApplicationConfigurationDescription: Optional[ ZeppelinApplicationConfigurationDescription ] = None class SqlApplicationConfigurationUpdate(BaseModel): """ Describes updates to the input streams, destination streams, and reference data sources for a SQL-based Kinesis Data Analytics application. """ InputUpdates: Optional[InputUpdates] = None OutputUpdates: Optional[OutputUpdates] = None ReferenceDataSourceUpdates: Optional[ReferenceDataSourceUpdates] = None class ApplicationConfigurationUpdate(BaseModel): """ Describes updates to an application's configuration. """ SqlApplicationConfigurationUpdate: Optional[ SqlApplicationConfigurationUpdate ] = None ApplicationCodeConfigurationUpdate: Optional[ ApplicationCodeConfigurationUpdate ] = None FlinkApplicationConfigurationUpdate: Optional[ FlinkApplicationConfigurationUpdate ] = None EnvironmentPropertyUpdates: Optional[EnvironmentPropertyUpdates] = None ApplicationSnapshotConfigurationUpdate: Optional[ ApplicationSnapshotConfigurationUpdate ] = None VpcConfigurationUpdates: Optional[VpcConfigurationUpdates] = None ZeppelinApplicationConfigurationUpdate: Optional[ ZeppelinApplicationConfigurationUpdate ] = None class ApplicationDetail(BaseModel): """ Describes the application, including the application Amazon Resource Name (ARN), status, latest version, and input and output configurations. """ ApplicationARN: ResourceARN ApplicationDescription: Optional[ApplicationDescription] = None ApplicationName: ApplicationName RuntimeEnvironment: RuntimeEnvironment ServiceExecutionRole: Optional[RoleARN] = None ApplicationStatus: ApplicationStatus ApplicationVersionId: ApplicationVersionId CreateTimestamp: Optional[Timestamp] = None LastUpdateTimestamp: Optional[Timestamp] = None ApplicationConfigurationDescription: Optional[ ApplicationConfigurationDescription ] = None CloudWatchLoggingOptionDescriptions: Optional[ CloudWatchLoggingOptionDescriptions ] = None ApplicationMaintenanceConfigurationDescription: Optional[ ApplicationMaintenanceConfigurationDescription ] = None ApplicationVersionUpdatedFrom: Optional[ApplicationVersionId] = None ApplicationVersionRolledBackFrom: Optional[ApplicationVersionId] = None ConditionalToken: Optional[ConditionalToken] = None ApplicationVersionRolledBackTo: Optional[ApplicationVersionId] = None ApplicationMode: Optional[ApplicationMode] = None class Inputs(BaseModel): __root__: List[Input] class ReferenceDataSources(BaseModel): __root__: List[ReferenceDataSource] class AddApplicationInputResponse(BaseModel): ApplicationARN: Optional[ResourceARN] = None ApplicationVersionId: Optional[ApplicationVersionId] = None InputDescriptions: Optional[InputDescriptions] = None class AddApplicationInputRequest(BaseModel): ApplicationName: ApplicationName CurrentApplicationVersionId: ApplicationVersionId Input: Input class AddApplicationReferenceDataSourceResponse(BaseModel): ApplicationARN: Optional[ResourceARN] = None ApplicationVersionId: Optional[ApplicationVersionId] = None ReferenceDataSourceDescriptions: Optional[ReferenceDataSourceDescriptions] = None class AddApplicationReferenceDataSourceRequest(BaseModel): ApplicationName: ApplicationName CurrentApplicationVersionId: ApplicationVersionId ReferenceDataSource: ReferenceDataSource class CreateApplicationResponse(BaseModel): ApplicationDetail: ApplicationDetail class DescribeApplicationResponse(CreateApplicationResponse): pass class DescribeApplicationVersionResponse(BaseModel): ApplicationVersionDetail: Optional[ApplicationDetail] = None class RollbackApplicationResponse(CreateApplicationResponse): pass class UpdateApplicationResponse(CreateApplicationResponse): pass class UpdateApplicationRequest(BaseModel): ApplicationName: ApplicationName CurrentApplicationVersionId: Optional[ApplicationVersionId] = None ApplicationConfigurationUpdate: Optional[ApplicationConfigurationUpdate] = None ServiceExecutionRoleUpdate: Optional[RoleARN] = None RunConfigurationUpdate: Optional[RunConfigurationUpdate] = None CloudWatchLoggingOptionUpdates: Optional[CloudWatchLoggingOptionUpdates] = None ConditionalToken: Optional[ConditionalToken] = None class SqlApplicationConfiguration(BaseModel): """ Describes the inputs, outputs, and reference data sources for a SQL-based Kinesis Data Analytics application. """ Inputs: Optional[Inputs] = None Outputs: Optional[Outputs] = None ReferenceDataSources: Optional[ReferenceDataSources] = None class ApplicationConfiguration(BaseModel): """ Specifies the creation parameters for a Kinesis Data Analytics application. """ SqlApplicationConfiguration: Optional[SqlApplicationConfiguration] = None FlinkApplicationConfiguration: Optional[FlinkApplicationConfiguration] = None EnvironmentProperties: Optional[EnvironmentProperties] = None ApplicationCodeConfiguration: Optional[ApplicationCodeConfiguration] = None ApplicationSnapshotConfiguration: Optional[ApplicationSnapshotConfiguration] = None VpcConfigurations: Optional[VpcConfigurations] = None ZeppelinApplicationConfiguration: Optional[ZeppelinApplicationConfiguration] = None class CreateApplicationRequest(BaseModel): ApplicationName: ApplicationName ApplicationDescription: Optional[ApplicationDescription] = None RuntimeEnvironment: RuntimeEnvironment ServiceExecutionRole: RoleARN ApplicationConfiguration: Optional[ApplicationConfiguration] = None CloudWatchLoggingOptions: Optional[CloudWatchLoggingOptions] = None Tags: Optional[Tags] = None ApplicationMode: Optional[ApplicationMode] = None
# Copyright 2010 Google Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Datastore model definitions.""" __author__ = 'Ka-Ping Yee <kpy@google.com>' from google.appengine.ext import db import datetime import random class Config(db.Model): """Stores a configuration setting.""" value = db.StringProperty() @staticmethod def get(name): config = Config.get_by_key_name(name) return config and config.value or None @staticmethod def set(name, value): Config(key_name=name, value=value).put() @staticmethod def get_or_generate(name): """Generates a random value if the setting does not already exist. Use this to initialize secret keys.""" # TODO(kpy): Use memcache to avoid expensive random number generation. value = ''.join('%02x' % random.randrange(256) for i in range(32)) return Config.get_or_insert(key_name=name, value=value).value class Location(db.Model): location = db.GeoPtProperty() location_time = db.DateTimeProperty() tags = db.StringListProperty() class Member(db.Model): """Represents a user who has registered and authorized this app. key_name: user.user_id()""" user = db.UserProperty() nickname = db.StringProperty() # nickname to show with the user's location tags = db.StringListProperty() # list of groups this user has joined stop_times = db.ListProperty(datetime.datetime) # membership ending times latitude_key = db.StringProperty() # OAuth access token key latitude_secret = db.StringProperty() # OAuth access token secret location = db.GeoPtProperty() # user's geolocation location_time = db.DateTimeProperty() # time that location was recorded # NOTE: tags and stop_times are parallel arrays! # INVARIANT: len(tags) == len(stop_times) def get_stop_time(self, tag): """Gets the stop time for a particular tag.""" return self.stop_times[self.tags.index(tag)] def remove_tag(self, tag): """Removes a tag from self.tags, preserving the invariant.""" if tag in self.tags: index = self.tags.index(tag) self.tags[index:index + 1] = [] self.stop_times[index:index + 1] = [] @staticmethod def get_for_tag(tag, now): """Gets all active members of the given tag.""" members = Member.all().filter('tags =', tag).fetch(1000) results = [] for member in members: tag_index = member.tags.index(tag) stop_time = member.stop_times[tag_index] if stop_time > now: results.append(member) return results @staticmethod def create(user): """Creates a Member object for a user.""" return Member(key_name=user.user_id(), user=user) @staticmethod def get(user): """Gets the Member object for a user.""" if user: return Member.get_by_key_name(user.user_id()) @staticmethod def join(user, tag, stop_time): """Transactionally adds a tag for a user.""" def work(): member = Member.get(user) member.remove_tag(tag) member.tags.append(tag) member.stop_times.append(stop_time) member.put() db.run_in_transaction(work) @staticmethod def quit(user, tag): """Transactionally removes a tag for a user.""" def work(): member = Member.get(user) member.remove_tag(tag) member.put() db.run_in_transaction(work) def clean(self, now): """Transactionally removes all expired tags for this member.""" def work(): member = db.get(self.key()) index = 0 while index < len(member.tags): if member.stop_times[index] <= now: # We don't bother to update member_count here; # update_tagstats will eventually take care of it. member.remove_tag(member.tags[index]) else: index += 1 member.put() return member # Before starting a transaction, test if cleaning is needed. if self.stop_times and min(self.stop_times) <= now: return db.run_in_transaction(work) return self def set_location(self, location, now): """Transactionally sets the location for this member.""" def work(): member = db.get(self.key()) member.location = location member.location_time = now member.put() db.run_in_transaction(work) class TagStat(db.Model): """Contains periodically updated statistics about a particular tag. key_name: tag""" update_time = db.DateTimeProperty(auto_now=True) member_count = db.IntegerProperty(default=0) centroid = db.GeoPtProperty() # centroid of member locations radius = db.FloatProperty() # RMS member distance from centroid @staticmethod def get(tag): return TagStat.get_by_key_name(tag)
#!/usr/bin/env python # -*- coding: utf-8 -*- import json from alipay.aop.api.response.AlipayResponse import AlipayResponse class AlipayEbppDetectReportQueryResponse(AlipayResponse): def __init__(self): super(AlipayEbppDetectReportQueryResponse, self).__init__() self._audit_done = None self._audit_pass = None self._err_msg = None self._out_biz_no = None @property def audit_done(self): return self._audit_done @audit_done.setter def audit_done(self, value): self._audit_done = value @property def audit_pass(self): return self._audit_pass @audit_pass.setter def audit_pass(self, value): self._audit_pass = value @property def err_msg(self): return self._err_msg @err_msg.setter def err_msg(self, value): self._err_msg = value @property def out_biz_no(self): return self._out_biz_no @out_biz_no.setter def out_biz_no(self, value): self._out_biz_no = value def parse_response_content(self, response_content): response = super(AlipayEbppDetectReportQueryResponse, self).parse_response_content(response_content) if 'audit_done' in response: self.audit_done = response['audit_done'] if 'audit_pass' in response: self.audit_pass = response['audit_pass'] if 'err_msg' in response: self.err_msg = response['err_msg'] if 'out_biz_no' in response: self.out_biz_no = response['out_biz_no']
MutableSet = None try: from collections import MutableSet except ImportError: # Python 2.4 pass from theano.compat.python2x import OrderedDict import types def check_deterministic(iterable): # Most places where OrderedSet is used, theano interprets any exception # whatsoever as a problem that an optimization introduced into the graph. # If I raise a TypeError when the DestoryHandler tries to do something # non-deterministic, it will just result in optimizations getting ignored. # So I must use an assert here. In the long term we should fix the rest of # theano to use exceptions correctly, so that this can be a TypeError. if iterable is not None: assert isinstance(iterable, ( list, tuple, OrderedSet, types.GeneratorType, basestring)) if MutableSet is not None: # Copyright (C) 2009 Raymond Hettinger # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the # "Software"), to deal in the Software without restriction, including # without limitation the rights to use, copy, modify, merge, publish, # distribute, sublicense, and/or sell copies of the Software, and to permit # persons to whom the Software is furnished to do so, subject to the # following conditions: # The above copyright notice and this permission notice shall be included # in all copies or substantial portions of the Software. # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS # OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. # IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY # CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, # TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE # SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ## {{{ http://code.activestate.com/recipes/576696/ (r5) import collections import weakref class Link(object): # This make that we need to use a different pickle protocol # then the default. Othewise, there is pickling errors __slots__ = 'prev', 'next', 'key', '__weakref__' def __getstate__(self): # weakref.proxy don't pickle well, so we use weakref.ref # manually and don't pickle the weakref. # We restore the weakref when we unpickle. ret = [self.prev(), self.next()] try: ret.append(self.key) except AttributeError: pass return ret def __setstate__(self, state): self.prev = weakref.ref(state[0]) self.next = weakref.ref(state[1]) if len(state) == 3: self.key = state[2] class OrderedSet(collections.MutableSet): 'Set the remembers the order elements were added' # Big-O running times for all methods are the same as for regular sets. # The internal self.__map dictionary maps keys to links in a doubly linked list. # The circular doubly linked list starts and ends with a sentinel element. # The sentinel element never gets deleted (this simplifies the algorithm). # The prev/next links are weakref proxies (to prevent circular references). # Individual links are kept alive by the hard reference in self.__map. # Those hard references disappear when a key is deleted from an OrderedSet. # Added by IG-- pre-existing theano code expected sets # to have this method def update(self, iterable): check_deterministic(iterable) self |= iterable def __init__(self, iterable=None): # Checks added by IG check_deterministic(iterable) self.__root = root = Link() # sentinel node for doubly linked list root.prev = root.next = weakref.ref(root) self.__map = {} # key --> link if iterable is not None: self |= iterable def __len__(self): return len(self.__map) def __contains__(self, key): return key in self.__map def add(self, key): # Store new key in a new link at the end of the linked list if key not in self.__map: self.__map[key] = link = Link() root = self.__root last = root.prev link.prev, link.next, link.key = last, weakref.ref(root), key last().next = root.prev = weakref.ref(link) def union(self, s): check_deterministic(s) n = self.copy() for elem in s: if elem not in n: n.add(elem) return n def intersection_update(self, s): l = [] for elem in self: if elem not in s: l.append(elem) for elem in l: self.remove(elem) return self def difference_update(self, s): check_deterministic(s) for elem in s: if elem in self: self.remove(elem) return self def copy(self): n = OrderedSet() n.update(self) return n def discard(self, key): # Remove an existing item using self.__map to find the link which is # then removed by updating the links in the predecessor and successors. if key in self.__map: link = self.__map.pop(key) link.prev().next = link.next link.next().prev = link.prev def __iter__(self): # Traverse the linked list in order. root = self.__root curr = root.next() while curr is not root: yield curr.key curr = curr.next() def __reversed__(self): # Traverse the linked list in reverse order. root = self.__root curr = root.prev() while curr is not root: yield curr.key curr = curr.prev() def pop(self, last=True): if not self: raise KeyError('set is empty') if last: key = next(reversed(self)) else: key = next(iter(self)) self.discard(key) return key def __repr__(self): if not self: return '%s()' % (self.__class__.__name__,) return '%s(%r)' % (self.__class__.__name__, list(self)) def __eq__(self, other): # Note that we implement only the comparison to another # `OrderedSet`, and not to a regular `set`, because otherwise we # could have a non-symmetric equality relation like: # my_ordered_set == my_set and my_set != my_ordered_set if isinstance(other, OrderedSet): return len(self) == len(other) and list(self) == list(other) elif isinstance(other, set): # Raise exception to avoid confusion. raise TypeError( 'Cannot compare an `OrderedSet` to a `set` because ' 'this comparison cannot be made symmetric: please ' 'manually cast your `OrderedSet` into `set` before ' 'performing this comparison.') else: return NotImplemented ## end of http://code.activestate.com/recipes/576696/ }}} else: # Python 2.4 class OrderedSet(object): """ An implementation of OrderedSet based on the keys of an OrderedDict. """ def __init__(self, iterable=None): self.data = OrderedDict() if iterable is not None: self.update(iterable) def update(self, container): check_deterministic(container) for elem in container: self.add(elem) def add(self, key): self.data[key] = None def __len__(self): return len(self.data) def __contains__(self, key): return key in self.data def discard(self, key): if key in self.data: del self.data[key] def remove(self, key): if key in self.data: del self.data[key] else: raise KeyError(key) def __iter__(self): return self.data.__iter__() def __reversed__(self): return self.data.__reversed__() def pop(self, last=True): raise NotImplementedError() def __eq__(self, other): # Note that we implement only the comparison to another # `OrderedSet`, and not to a regular `set`, because otherwise we # could have a non-symmetric equality relation like: # my_ordered_set == my_set and my_set != my_ordered_set if isinstance(other, OrderedSet): return len(self) == len(other) and list(self) == list(other) elif isinstance(other, set): # Raise exception to avoid confusion. raise TypeError( 'Cannot compare an `OrderedSet` to a `set` because ' 'this comparison cannot be made symmetric: please ' 'manually cast your `OrderedSet` into `set` before ' 'performing this comparison.') else: return NotImplemented # NB: Contrary to the other implementation above, we do not override # the `__del__` method. On one hand, this is not needed since this # implementation does not add circular references. Moreover, one should # not clear the underlying dictionary holding the data as soon as the # ordered set is cleared from memory, because there may still be # pointers to this dictionary. if __name__ == '__main__': print list(OrderedSet('abracadaba')) print list(OrderedSet('simsalabim')) print OrderedSet('boom') == OrderedSet('moob') print OrderedSet('boom') == 'moob'
# -*- coding: utf-8 -*- """ Created on Wed Aug 12 18:24:12 2020 @author: omar.elfarouk """ import pandas import numpy import seaborn import scipy import matplotlib.pyplot as plt data = pandas.read_csv('gapminder.csv', low_memory=False) #setting variables you will be working with to numeric data['internetuserate'] = pandas.to_numeric(data['internetuserate'], errors='coerce') data['urbanrate'] = pandas.to_numeric(data['urbanrate'], errors='coerce') data['incomeperperson'] = pandas.to_numeric(data['incomeperperson'], errors='coerce') data['alcconsumption'] = pandas.to_numeric(data['alcconsumption'], errors='coerce') data['incomeperperson'] = pandas.to_numeric(data['incomeperperson'], errors='coerce') data['suicideper100th'] = pandas.to_numeric(data['suicideper100th'], errors='coerce') data['incomeperperson']=data['incomeperperson'].replace(' ', numpy.nan) data['alcconsumption']=data['alcconsumption'].replace(' ', numpy.nan) data['suicideper100th']=data['suicideper100th'].replace(' ', numpy.nan) #Plotting figure #scat1 = seaborn.regplot(x="incomeperperson", y="alcconsumption", fit_reg=True, data=data) #plt.xlabel('incomeperperson') #plt.ylabel('Alcoholuse') #plt.title('Scatterplot for the Association Between income per personand Alcohol usage') #scat2 = seaborn.regplot(x="incomeperperson", y="suicideper100th", fit_reg=True, data=data) #plt.xlabel('Income per Person') #plt.ylabel('suicideper100th') #plt.title('Scatterplot for the Association Between Income per Person and Suicide Rate') scat3 = seaborn.regplot(x="alcconsumption", y="suicideper100th", fit_reg=True, data=data) plt.xlabel('Alcohol usage') plt.ylabel('suicideper100th') plt.title('Scatterplot for the Association Between Alcohol usage and Suicide Rate') #Cleaning data data_clean=data.dropna() #Applying pearson correlation print ('association between Income per person and Alcohole isage') print (scipy.stats.pearsonr(data_clean['incomeperperson'], data_clean['alcconsumption'])) print ('association between incomeperperson and suscide rate ') print (scipy.stats.pearsonr(data_clean['incomeperperson'], data_clean['suicideper100th'])) print ('association between Alcohol usage and suscide rate ') print (scipy.stats.pearsonr(data_clean['alcconsumption'], data_clean['suicideper100th']))
"""Tests for the classifiers of p1-FP.""" import pytest import numpy as np from lab.classifiers.p1fp import KerasP1FPClassifierC try: from lab.classifiers.p1fp import P1FPClassifierC except ImportError: USE_TFLEARN = False else: USE_TFLEARN = True if USE_TFLEARN: @pytest.mark.slow def test_p1fpclassifierc(train_test_sizes): """Test that it performs classification.""" x_train, x_test, y_train, y_test = train_test_sizes classifier = P1FPClassifierC(n_epoch=1) classifier.fit(x_train, y_train) prediction = classifier.predict(x_test) assert prediction.shape == (y_test.size, ) assert np.all(np.isin(np.unique(prediction), np.unique(y_train))) prob_prediction = classifier.predict_proba(x_test) assert prob_prediction.shape == (y_test.size, np.unique(y_test).size) @pytest.mark.slow def test_keras_p1fpclassifierc(train_test_sizes): """Test that it performs classification.""" x_train, x_test, y_train, y_test = train_test_sizes classifier = KerasP1FPClassifierC( n_features=5000, n_classes=3, epochs=10) classifier.fit(x_train, y_train) assert classifier.score(x_test, y_test) > 0.8
# Copyright 2021 VMware, Inc. # SPDX-License-Identifier: Apache-2.0 import uuid from unittest.mock import MagicMock import pytest import salt import saltext.vmware.modules.esxi as esxi_mod import saltext.vmware.states.esxi as esxi @pytest.fixture def dry_run(): setattr(esxi, "__opts__", {"test": True}) yield setattr(esxi, "__opts__", {"test": False}) @pytest.fixture def user_add_error(): esxi.__salt__["vmware_esxi.add_user"] = MagicMock( side_effect=salt.exceptions.SaltException("add error") ) @pytest.fixture def user_update_error(): esxi.__salt__["vmware_esxi.update_user"] = MagicMock( side_effect=salt.exceptions.SaltException("update error") ) @pytest.fixture def user_remove_error(): esxi.__salt__["vmware_esxi.remove_user"] = MagicMock( side_effect=salt.exceptions.SaltException("remove error") ) def test_user_present_absent(patch_salt_globals): """ Test scenarios for user_present state run """ user_name = "A{}".format(uuid.uuid4()) random_user = "Random{}".format(uuid.uuid4()) password = "Secret@123" # create a new user ret = esxi.user_present(name=user_name, password=password) assert ret["result"] for host in ret["changes"]: assert ret["changes"][host]["new"]["name"] == user_name # update the user ret = esxi.user_present(name=user_name, password=password, description="new desc") assert ret["result"] for host in ret["changes"]: assert ret["changes"][host]["new"]["name"] == user_name assert ret["changes"][host]["new"]["description"] == "new desc" # Remove the user ret = esxi.user_absent(name=user_name) assert ret["result"] for host in ret["changes"]: assert ret["changes"][host][user_name] is True # Remove a non-existent user ret = esxi.user_absent(name=random_user) assert ret["result"] is None assert not ret["changes"] def test_user_add_error(patch_salt_globals, user_add_error): """ Test scenarios for user add error """ user_name = "A{}".format(uuid.uuid4()) password = "Secret@123" ret = esxi.user_present(name=user_name, password=password) assert ret["result"] is False assert not ret["changes"] assert "add error" in ret["comment"] def test_user_remove_error(patch_salt_globals, user_remove_error): """ Test scenarios for user remove error """ # Remove the user user_name = "A{}".format(uuid.uuid4()) password = "Secret@123" ret = esxi.user_present(name=user_name, password=password) assert ret["result"] is True ret = esxi.user_absent(name=user_name) assert ret["result"] is False assert not ret["changes"] assert "remove error" in ret["comment"] def test_user_update_error(patch_salt_globals, user_update_error): """ Test scenarios for user remove error """ # Remove the user user_name = "A{}".format(uuid.uuid4()) password = "Secret@123" ret = esxi.user_present(name=user_name, password=password) assert ret["result"] is True ret = esxi.user_present(name=user_name, password=password) assert ret["result"] is False assert not ret["changes"] assert "update error" in ret["comment"] def test_user_present_absent_dry_run(vmware_datacenter, service_instance, dry_run): """ Test scenarios for vmware_esxi.user_present state run with test=True """ user_name = "A{}".format(uuid.uuid4()) random_user = "Random{}".format(uuid.uuid4()) password = "Secret@123" # create a new user ret = esxi.user_present(name=user_name, password=password) assert ret["result"] is None assert not ret["changes"] assert ret["comment"].split()[6] # update the user ret = esxi.user_present(name=user_name, password=password, description="new desc") assert ret["result"] is None assert not ret["changes"] assert ret["comment"].split()[11] # Remove the user ret = esxi_mod.add_user( user_name=user_name, password=password, service_instance=service_instance ) ret = esxi.user_absent(name=user_name) assert ret["result"] is None assert not ret["changes"] assert "will be deleted" in ret["comment"] # Remove a non-existent user ret = esxi.user_absent(name=random_user) assert ret["result"] is None assert not ret["changes"] assert "will be deleted on 0 host" in ret["comment"]
from unittest import TestCase from neo.Prompt.InputParser import InputParser class TestInputParser(TestCase): input_parser = InputParser() def test_simple_whitespace_separation(self): command, arguments = self.input_parser.parse_input("this is a simple test") self.assertEqual(command, "this") self.assertEqual(arguments, ["is", "a", "simple", "test"]) def test_keeping_double_quoted_strings_together(self): command, arguments = self.input_parser.parse_input("this \"is a simple\" test") self.assertEqual(command, "this") self.assertEqual(arguments, ["\"is a simple\"", "test"]) def test_keeping_single_quoted_strings_together(self): command, arguments = self.input_parser.parse_input("this 'is a simple' test") self.assertEqual(command, "this") self.assertEqual(arguments, ["'is a simple'", "test"]) def test_keeping_bracket_elements_together(self): command, arguments = self.input_parser.parse_input("this [is a simple] test") self.assertEqual(command, "this") self.assertEqual(arguments, ["[is a simple]", "test"]) def test_keeping_brackets_and_strings_together(self): command, arguments = self.input_parser.parse_input("this [is \"a simple\"] test") self.assertEqual(command, "this") self.assertEqual(arguments, ["[is \"a simple\"]", "test"]) def test_unmatched_brackets(self): command, arguments = self.input_parser.parse_input("this [is \"a simple\" test") self.assertEqual(command, "this") self.assertEqual(arguments, ["[is \"a simple\" test"]) def test_unmatched_single_quotes(self): command, arguments = self.input_parser.parse_input("this is 'a simple test") self.assertEqual(command, "this") self.assertEqual(arguments, ["is", "'a", "simple", "test"]) def test_unmatched_double_quotes(self): command, arguments = self.input_parser.parse_input("this is \"a simple test") self.assertEqual(command, "this") self.assertEqual(arguments, ["is", "\"a", "simple", "test"]) def test_nested_lists(self): command, arguments = self.input_parser.parse_input('sc build_run sc.py False False False 0210 01 2 ["notused",["helloworld"]]') self.assertEqual(command, "sc") self.assertEqual(arguments, ['build_run', 'sc.py', 'False', 'False', 'False', '0210', '01', '2', '["notused",["helloworld"] ]']) def test_nested_lists_2(self): command, arguments = self.input_parser.parse_input('test ["notused",["helloworld", 1, ["a", 1]]]') self.assertEqual(command, "test") self.assertEqual(arguments, ['["notused",["helloworld", 1, ["a", 1] ]]']) def test_python_bytearrays(self): command, arguments = self.input_parser.parse_input("testinvoke bytearray(b'S\xefB\xc8\xdf!^\xbeZ|z\xe8\x01\xcb\xc3\xac/\xacI)') b'\xaf\x12\xa8h{\x14\x94\x8b\xc4\xa0\x08\x12\x8aU\nci[\xc1\xa5'") self.assertEqual(command, "testinvoke") self.assertEqual(arguments, ["bytearray(b'S\xefB\xc8\xdf!^\xbeZ|z\xe8\x01\xcb\xc3\xac/\xacI)')", "b'\xaf\x12\xa8h{\x14\x94\x8b\xc4\xa0\x08\x12\x8aU\nci[\xc1\xa5'"]) def test_python_bytearrays_in_lists(self): command, arguments = self.input_parser.parse_input("testinvoke f8d448b227991cf07cb96a6f9c0322437f1599b9 transfer [bytearray(b'S\xefB\xc8\xdf!^\xbeZ|z\xe8\x01\xcb\xc3\xac/\xacI)'), bytearray(b'\xaf\x12\xa8h{\x14\x94\x8b\xc4\xa0\x08\x12\x8aU\nci[\xc1\xa5'), 1000]") self.assertEqual(command, "testinvoke") self.assertEqual(arguments, ["f8d448b227991cf07cb96a6f9c0322437f1599b9", "transfer", "[bytearray(b'S\xefB\xc8\xdf!^\xbeZ|z\xe8\x01\xcb\xc3\xac/\xacI)'), bytearray(b'\xaf\x12\xa8h{\x14\x94\x8b\xc4\xa0\x08\x12\x8aU\nci[\xc1\xa5'), 1000]"]) def test_attribute_spacing(self): command, arguments = self.input_parser.parse_input('wallet send neo Ae7bSUtT5Qvpkh7473q9FsxT4tSv5KK6dt 100 --tx-attr=[{"usage": 0x90,"data":"my brief description"}]') self.assertEqual(command, "wallet") self.assertEqual(arguments, ['send', 'neo', 'Ae7bSUtT5Qvpkh7473q9FsxT4tSv5KK6dt', '100', '--tx-attr=[{"usage": 0x90,"data":"my brief description"}]'])
# Generated by Django 2.1.1 on 2018-09-19 19:26 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('resume', '0001_initial'), ] operations = [ migrations.AddField( model_name='userprofile', name='alt_phone', field=models.CharField(blank=True, max_length=15, null=True), ), ]
# # PySNMP MIB module TIMETRA-SAS-IEEE8021-CFM-MIB (http://snmplabs.com/pysmi) # ASN.1 source file:///Users/davwang4/Dev/mibs.snmplabs.com/asn1/TIMETRA-SAS-IEEE8021-CFM-MIB # Produced by pysmi-0.3.4 at Mon Apr 29 21:14:14 2019 # On host DAVWANG4-M-1475 platform Darwin version 18.5.0 by user davwang4 # Using Python version 3.7.3 (default, Mar 27 2019, 09:23:15) # OctetString, Integer, ObjectIdentifier = mibBuilder.importSymbols("ASN1", "OctetString", "Integer", "ObjectIdentifier") NamedValues, = mibBuilder.importSymbols("ASN1-ENUMERATION", "NamedValues") ConstraintsUnion, SingleValueConstraint, ValueRangeConstraint, ConstraintsIntersection, ValueSizeConstraint = mibBuilder.importSymbols("ASN1-REFINEMENT", "ConstraintsUnion", "SingleValueConstraint", "ValueRangeConstraint", "ConstraintsIntersection", "ValueSizeConstraint") dot1agCfmMepEntry, = mibBuilder.importSymbols("IEEE8021-CFM-MIB", "dot1agCfmMepEntry") ObjectGroup, NotificationGroup, ModuleCompliance = mibBuilder.importSymbols("SNMPv2-CONF", "ObjectGroup", "NotificationGroup", "ModuleCompliance") Counter32, Bits, ModuleIdentity, MibScalar, MibTable, MibTableRow, MibTableColumn, IpAddress, Gauge32, iso, Counter64, Integer32, MibIdentifier, ObjectIdentity, NotificationType, TimeTicks, Unsigned32 = mibBuilder.importSymbols("SNMPv2-SMI", "Counter32", "Bits", "ModuleIdentity", "MibScalar", "MibTable", "MibTableRow", "MibTableColumn", "IpAddress", "Gauge32", "iso", "Counter64", "Integer32", "MibIdentifier", "ObjectIdentity", "NotificationType", "TimeTicks", "Unsigned32") TruthValue, TextualConvention, DisplayString = mibBuilder.importSymbols("SNMPv2-TC", "TruthValue", "TextualConvention", "DisplayString") timetraSASModules, timetraSASObjs, timetraSASConfs = mibBuilder.importSymbols("TIMETRA-SAS-GLOBAL-MIB", "timetraSASModules", "timetraSASObjs", "timetraSASConfs") timetraSASIEEE8021CfmMIBModule = ModuleIdentity((1, 3, 6, 1, 4, 1, 6527, 6, 2, 1, 1, 11)) timetraSASIEEE8021CfmMIBModule.setRevisions(('1910-01-01 00:00',)) if mibBuilder.loadTexts: timetraSASIEEE8021CfmMIBModule.setLastUpdated('0902280000Z') if mibBuilder.loadTexts: timetraSASIEEE8021CfmMIBModule.setOrganization('Alcatel') tmnxSASDot1agMIBObjs = MibIdentifier((1, 3, 6, 1, 4, 1, 6527, 6, 2, 2, 2, 11)) tmnxSASDot1agMIBConformance = MibIdentifier((1, 3, 6, 1, 4, 1, 6527, 6, 2, 2, 1, 7)) tmnxSASDot1agCfmMep = MibIdentifier((1, 3, 6, 1, 4, 1, 6527, 6, 2, 2, 2, 11, 1)) tmnxSASDot1agNotificationsPrefix = MibIdentifier((1, 3, 6, 1, 4, 1, 6527, 6, 2, 2, 2, 11, 2)) tmnxSASDot1agNotifications = MibIdentifier((1, 3, 6, 1, 4, 1, 6527, 6, 2, 2, 2, 11, 2, 1)) tmnxDot1agCfmMepExtnTable = MibTable((1, 3, 6, 1, 4, 1, 6527, 6, 2, 2, 2, 11, 1, 1), ) if mibBuilder.loadTexts: tmnxDot1agCfmMepExtnTable.setStatus('current') tmnxDot1agCfmMepExtnEntry = MibTableRow((1, 3, 6, 1, 4, 1, 6527, 6, 2, 2, 2, 11, 1, 1, 1), ) dot1agCfmMepEntry.registerAugmentions(("TIMETRA-SAS-IEEE8021-CFM-MIB", "tmnxDot1agCfmMepExtnEntry")) tmnxDot1agCfmMepExtnEntry.setIndexNames(*dot1agCfmMepEntry.getIndexNames()) if mibBuilder.loadTexts: tmnxDot1agCfmMepExtnEntry.setStatus('current') tmnxDot1agCfmMepSendAisOnPortDown = MibTableColumn((1, 3, 6, 1, 4, 1, 6527, 6, 2, 2, 2, 11, 1, 1, 1, 1), TruthValue().clone('false')).setMaxAccess("readcreate") if mibBuilder.loadTexts: tmnxDot1agCfmMepSendAisOnPortDown.setStatus('current') tmnxDot1agCfmMepControlSapTag = MibTableColumn((1, 3, 6, 1, 4, 1, 6527, 6, 2, 2, 2, 11, 1, 1, 1, 2), Unsigned32().subtype(subtypeSpec=ValueRangeConstraint(0, 4096))).setMaxAccess("readcreate") if mibBuilder.loadTexts: tmnxDot1agCfmMepControlSapTag.setStatus('current') tmnxSASDot1agCfmCompliances = MibIdentifier((1, 3, 6, 1, 4, 1, 6527, 6, 2, 2, 1, 7, 1)) tmnxSASDot1agCfmGroups = MibIdentifier((1, 3, 6, 1, 4, 1, 6527, 6, 2, 2, 1, 7, 2)) tmnxSASDot1agCfmComplianceV2v0 = ModuleCompliance((1, 3, 6, 1, 4, 1, 6527, 6, 2, 2, 1, 7, 1, 2)).setObjects(("TIMETRA-SAS-IEEE8021-CFM-MIB", "tmnxSASDot1agCfmMepGroupV2v0")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): tmnxSASDot1agCfmComplianceV2v0 = tmnxSASDot1agCfmComplianceV2v0.setStatus('current') tmnxSASDot1agCfmMepGroupV2v0 = ObjectGroup((1, 3, 6, 1, 4, 1, 6527, 6, 2, 2, 1, 7, 2, 1)).setObjects(("TIMETRA-SAS-IEEE8021-CFM-MIB", "tmnxDot1agCfmMepSendAisOnPortDown")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): tmnxSASDot1agCfmMepGroupV2v0 = tmnxSASDot1agCfmMepGroupV2v0.setStatus('current') tmnxSASDot1agCfmMepGroupV4v0 = ObjectGroup((1, 3, 6, 1, 4, 1, 6527, 6, 2, 2, 1, 7, 2, 2)).setObjects(("TIMETRA-SAS-IEEE8021-CFM-MIB", "tmnxDot1agCfmMepSendAisOnPortDown"), ("TIMETRA-SAS-IEEE8021-CFM-MIB", "tmnxDot1agCfmMepControlSapTag")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): tmnxSASDot1agCfmMepGroupV4v0 = tmnxSASDot1agCfmMepGroupV4v0.setStatus('current') mibBuilder.exportSymbols("TIMETRA-SAS-IEEE8021-CFM-MIB", tmnxSASDot1agNotifications=tmnxSASDot1agNotifications, tmnxDot1agCfmMepExtnEntry=tmnxDot1agCfmMepExtnEntry, tmnxSASDot1agCfmCompliances=tmnxSASDot1agCfmCompliances, tmnxSASDot1agNotificationsPrefix=tmnxSASDot1agNotificationsPrefix, tmnxSASDot1agCfmMep=tmnxSASDot1agCfmMep, tmnxDot1agCfmMepControlSapTag=tmnxDot1agCfmMepControlSapTag, tmnxDot1agCfmMepSendAisOnPortDown=tmnxDot1agCfmMepSendAisOnPortDown, tmnxSASDot1agCfmMepGroupV2v0=tmnxSASDot1agCfmMepGroupV2v0, tmnxSASDot1agCfmMepGroupV4v0=tmnxSASDot1agCfmMepGroupV4v0, tmnxSASDot1agMIBObjs=tmnxSASDot1agMIBObjs, tmnxSASDot1agMIBConformance=tmnxSASDot1agMIBConformance, PYSNMP_MODULE_ID=timetraSASIEEE8021CfmMIBModule, timetraSASIEEE8021CfmMIBModule=timetraSASIEEE8021CfmMIBModule, tmnxDot1agCfmMepExtnTable=tmnxDot1agCfmMepExtnTable, tmnxSASDot1agCfmGroups=tmnxSASDot1agCfmGroups, tmnxSASDot1agCfmComplianceV2v0=tmnxSASDot1agCfmComplianceV2v0)
from minerva.proxy.checker import Checker from minerva.proxy.scraper import Scraper
import komand from .schema import RetrieveInput, RetrieveOutput, Component # Custom imports below class Retrieve(komand.Action): def __init__(self): super(self.__class__, self).__init__( name='retrieve', description=Component.DESCRIPTION, input=RetrieveInput(), output=RetrieveOutput()) def run(self, params={}): client = self.connection.client # try: client.session_create() except Exception as e: raise Exception("Unable to connect to OTRS webservice! Please check your connection information and \ that you have properly configured OTRS webservice. Information on configuring the webservice can be found\ in the Connection help") clean_data = {} try: ticket = client.ticket_get_by_id(params.get("ticket_id"), articles=True, attachments=True, dynamic_fields=True) ticket_data = ticket.to_dct() clean_data = komand.helper.clean(ticket_data) except Exception as e: self.logger.error("Ticket may not exist, please check to make sure the ticket exists ", e) raise # Type formatting for other actions try: cleaned_articles = [] articles = clean_data["Ticket"]["Article"] for article in articles: if "IsVisibleForCustomer" in article: article["IsVisibleForCustomer"] = int(article["IsVisibleForCustomer"]) if "TicketID" in article: article["TicketID"] = int(article["TicketID"]) if "NoAgentNotify" in article: article["NoAgentNotify"] = int(article["NoAgentNotify"]) cleaned_articles.append(article) if "Attachment" in article: cleaned_attachment = [] for attachment in article["Attachment"]: attachment["FilesizeRaw"] = int(attachment["FilesizeRaw"]) cleaned_attachment.append(attachment) article["Attachment"] = cleaned_attachment clean_data["Ticket"]["Article"] = cleaned_articles self.logger.info(clean_data) if clean_data["Ticket"].get("DynamicField"): clean_df = [] dynamicfields = clean_data["Ticket"].pop("DynamicField") for dynamicfield in dynamicfields: # check if value is a str or in and convert to a list of strings if "Value" in dynamicfield: if isinstance(dynamicfield["Value"], (str, int)): dynamicfield["Value"] = [str(dynamicfield["Value"])] clean_df.append(dynamicfield) clean_data["Ticket"]["DynamicField"] = clean_df except Exception as e: self.logger.error("Ticket {} missing Article data! Unable to format data".format(str(params.get("ticket_id"))), e) raise try: clean_data["Ticket"]["TicketID"] = int(clean_data["Ticket"]["TicketID"]) except Exception as e: self.logger.error("Ticket {} missing Ticket ID!".format(str(params.get("ticket_id"))), e) raise return clean_data
from __future__ import print_function import ping import socket class Traceroute: def __init__(self, dest_addr, timeout=2, max_ttl=30, counts=4): self.ping = ping.Ping() self.dest_addr = dest_addr self.timeout = timeout self.max_ttl = max_ttl self.counts = counts self.traceroute() def traceroute(self): # logica do traceroute for ttl in range(1, self.max_ttl): rtt = [] address = "?" for counter in range(1, self.counts): try: delay, addr, is_final, reached = self.ping.prepare_ping(self.dest_addr, self.timeout, ttl) if not addr[0] == "*": # se nao ocorreu timeout address = addr[0] rtt.append(delay) except socket.gaierror as e: print ("failed. (socket error: '%s')" % e[1]) break print ("".join(["#", str(ttl), " -> (", address, ") "]), *rtt) if is_final: # chegou ao destino final break if __name__ == '__main__': Traceroute("netvasco.com.br")
"""fix affaire abandon default value Revision ID: 5a8069c68433 Revises: ee79f1259c77 Create Date: 2021-09-06 16:28:58.437853 """ from alembic import op import sqlalchemy as sa # revision identifiers, used by Alembic. revision = '5a8069c68433' down_revision = 'ee79f1259c77' branch_labels = None depends_on = None def upgrade(): # ### commands auto generated by Alembic - please adjust! ### op.alter_column('affaire', 'abandon', existing_type=sa.BOOLEAN(), nullable=False) # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.alter_column('affaire', 'abandon', existing_type=sa.BOOLEAN(), nullable=True) # ### end Alembic commands ###
SCHEMA_VERSION = "0.1" # The key to store / obtain cluster metadata. CLUSTER_METADATA_KEY = b"CLUSTER_METADATA" # The name of a json file where usage stats will be written. USAGE_STATS_FILE = "usage_stats.json" USAGE_STATS_HEADS_UP_MESSAGE = ( "Usage stats collection will be enabled by default in the next release. " "See https://github.com/ray-project/ray/issues/20857 for more details." )
# coding: utf-8 import marisa_trie import pickle import math #tf_trie = marisa_trie.Trie() #tf_trie.load('my_trie_copy.marisa') #data = open('tf_trie.txt', 'rb') data = open('tf_trie.txt', 'rb') tf_trie = pickle.load(data) isf_data = open('isf_trie.txt', 'rb') #isf_data = open('isf_trie.pickle', 'rb') isf_trie = pickle.load(isf_data) words = [u"ワイン", u"ロゼ", u"ロゼワイン", u"ビール", u"ヱビスビール", u"ヱビス", u"ワ", u"リング"] for word in words: print word + str(1.0 * tf_trie[word][0][0] * 1.0 / isf_trie[word][0][0]) print tf_trie[word][0][0] print isf_trie[word][0][0] def extract_segmented_substrings(word): substrings = [] for i in range(len(word)): for j in range(i+1, len(word) + 1): substrings.append(word[i:j]) return substrings compound_words = [u'プログラマーコンテスト', u'ロゼワイン', u'ヱビスビール', u'クラフトビール', u'ワインバーグ', u'スマホケース', u'フレーバードワイン', u'スパークリングワイン', u'スパイスライス', u'メタリックタトゥーシール', u'コリアンダースパイシーサラダ', u'デイジーダック', u'ドイトンコーヒー', u'ワンタッチタープテント', u'タピオカジュース', u'ロックフェス', u'ロープライス', u'ガソリンスタンド', u'コピペブログ', u'マイクロソフトオフィス', u'ブラキッシュレッド', u'ウォーターサーバ', u'ハッシュドビーフソース', u'ワンダースワン', u'トンコツラーメン', u'トラッキングスパム', u'ジャンクフード', u'アンチョビパスタ', u'グーグルマップ', u'ソーシャルネットワーキングサービス', u'ライブドアニュース', u'サントリービール', u'カスタマーサービス', u'グリーンスムージーダイエット', u'マジリスペクト', u'ユーザカンファレンス'] for word in compound_words: substrings = extract_segmented_substrings(word) print substrings for string in substrings: if string in tf_trie and string in isf_trie: print string + str(1.0 * tf_trie[string][0][0] * 1.0 / isf_trie[string][0][0])
import time import os import youtube_dl import cheesepi as cp import Task logger = cp.config.get_logger(__name__) class Dash(Task.Task): # construct the process and perform pre-work def __init__(self, dao, spec): Task.Task.__init__(self, dao, spec) self.spec['taskname'] = "dash" if not 'source' in spec: self.spec['source'] = "http://www.youtube.com/watch?v=_OBlgSz8sSM" # actually perform the measurements, no arguments required def run(self): logger.info("Dash download: %s @ %f, PID: %d" % (self.spec['source'], time.time(), os.getpid())) self.measure() # measure and record funtion def measure(self): self.spec['start_time'] = cp.utils.now() self.perform() self.spec['end_time'] = cp.utils.now() #print "Output: %s" % op_output #logger.debug(op_output) if not 'download_speed' in self.spec: self.spec['download_speed'] = self.spec['downloaded'] /(self.spec['end_time']-self.spec['start_time']) self.dao.write_op(self.spec['taskname'], self.spec) def perform(self): ydl_opts = { 'format': 'bestaudio/best', 'postprocessors': [{ 'key': 'FFmpegExtractAudio', 'preferredcodec': 'mp3', 'preferredquality': '192', }], 'logger': logger, 'progress_hooks': [self.callback], } with youtube_dl.YoutubeDL(ydl_opts) as ydl: try: ydl.download([self.spec['source']]) except Exception as e: logger.error("Problem with Dash download: "+str(e)) #self.spec['status'] = "error" pass def callback(self, stats): #logger.info(stats) if stats['status'] == 'finished': #print stats if 'downloaded_bytes' in stats: self.spec['downloaded'] = stats['downloaded_bytes'] else: self.spec['downloaded'] = stats['total_bytes'] if 'elapsed' in stats: self.spec['download_speed'] = self.spec['downloaded'] / stats['elapsed'] try: # avoid cluttering the filesystem os.remove(stats['filename']) pass except Exception as e: logger.error("Problem removing Dash.py Youtube file %s: %s" % (stats['filename'], str(e))) if __name__ == "__main__": #general logging here? unable to connect etc dao = cp.config.get_dao() spec = {'source':'http://www.youtube.com/watch?v=_OBlgSz8sSM'} dash_task = Dash(dao, spec) dash_task.run()
import logging import multiprocessing import time from rpi.logging.listener import LoggingListener from rpi.network.server import Server # from rpi.sensors.accelerometer import Accelerometer from rpi.sensors.accelerometer_i2c import Accelerometer from rpi.sensors.pressure import Pressure from rpi.sensors.thermometer import Thermometer from shared.customlogging.errormanager import ErrorManager from shared.customlogging.handler import CustomQueueHandler if __name__ == '__main__': queue = multiprocessing.Queue(-1) # Central queue for the logs logListen = LoggingListener(queue) # Start worker which will actually log everything logListen.start() # Setup logging for main process and all child processes h = CustomQueueHandler(queue) root = logging.getLogger() root.addHandler(h) root.setLevel(logging.INFO) # Next lines starts all of the other processes and monitor them in case they quit processClassesList = [Server, Thermometer, Pressure, Accelerometer] processes = dict() for processClass in processClassesList: p = processClass() p.start() processes[processClass] = p em = ErrorManager(__name__) while True: time.sleep(5) for processClass, process in processes.items(): if not process.is_alive(): em.error('The process for {} exited! Trying to restart it...'.format(processClass.__name__), processClass.__name__) p = processClass() p.start() processes[processClass] = p else: em.resolve('{} started successfully'.format(processClass.__name__), processClass.__name__, False)
from collections import Counter, defaultdict import itertools import math as m test = """3,4,3,1,2""" def part1(data, daymax=80): for day in range(daymax): n = [] for i in range(len(data)): if data[i] == 0: data[i] = 6 n.append(8) else: data[i] -= 1 data.extend(n) return len(data) def part2(_data, daymax=80): data = defaultdict(int) for d in _data: data[d] += 1 for day in range(daymax): new = defaultdict(int) new[8] = data[0] new[6] += data[0] for i in range(1, 9): new[i-1] += data.get(i, 0) data = new return sum(data.values()) def prep(data): return [int(x) for x in data.split(',')] if __name__ == '__main__': print("part1 test", part2(prep(test), daymax=80)) print("part1 real", part2(prep(open('in06.txt').read()))) print("part2 test", part2(prep(test), daymax=256)) print("part2 real", part2(prep(open('in06.txt').read()), daymax=256))
classTemplate = \ """/* * This file is generated. Please do not modify it manually. * If you want to update this file, run the generator again. * */ package {package}; {imports} public class Alias implements AliasInterface {{ @Override public Map<String, String> getFileMap() {{ return File.FILE_PATH_MAP; }} {propClass} {enumClasses} }} """ propClassTemplate = \ """ public static class File {{ {propNames} public static final Map<String, String> FILE_PATH_MAP; static {{ Map<String, String> {fileMapVar} = new HashMap<>(); {propFilesMap} FILE_PATH_MAP = Collections.unmodifiableMap({fileMapVar}); }} }} """ enumClassTemplate = \ """ public enum Ref{filename} {{ {enums} }} """
import mailer as m import consoleLogger as cl import fileLogger as fl ''' Created by: Richard Payne Created on: 05/08/17 Desc: Takes string from connection and extracts username, password and IP address of the attempted login. ''' def format(ip, usr, pw): ip = ip usr = usr.rsplit() pw = pw.rsplit() if not usr and not pw: pass elif not usr: pass elif not pw: pw = "No password provided." m.send(ip, str(usr[0]), pw) cl.log(ip, str(usr[0]), pw) fl.log(str(usr[0]), pw) else: m.send(ip, str(usr[0]), str(pw[0])) cl.log(ip, str(usr[0]), str(pw[0])) fl.log(str(usr[0]), str(pw[0]))
import logging from collections import OrderedDict, defaultdict from decimal import Decimal as D from django.conf import settings from django.contrib.postgres.fields import ArrayField from django.core.exceptions import ObjectDoesNotExist, MultipleObjectsReturned from django.db import models from django.utils import timezone from zazi.core import rounding, time as timing from zazi.core.base import BaseModel from zazi.core.utils import generate_id from .enums import \ LoanStatus, LoanTransactionType, LoanProductType, \ PaymentPlatform, LoanInterestMethod, LoanTransactionStatus, \ LoanInterestRateAccrualSchedule, LoanAllocationItem, LoanProfileStatus #---------------- logger = logging.getLogger(__name__) #---------------- class LoanProduct(BaseModel): name = models.CharField(max_length=25) product_id = models.CharField(max_length=25, default=generate_id, null=True) payment_platform = models.PositiveSmallIntegerField(choices=PaymentPlatform.choices()) product_type = models.PositiveSmallIntegerField(choices=LoanProductType.choices()) max_loan_limit = models.DecimalField(max_digits=18, decimal_places=4, default=0) # Interest interest_method = models.PositiveSmallIntegerField(choices=LoanInterestMethod.choices()) interest_rate = models.PositiveSmallIntegerField(default=0) interest_rate_accrual_schedule = models.PositiveSmallIntegerField(choices=LoanInterestRateAccrualSchedule.choices()) @property def allocation_order(self): return [ LoanAllocationItem.LIABILITY, LoanAllocationItem.PENALTY, LoanAllocationItem.FEES, LoanAllocationItem.INTEREST, LoanAllocationItem.PRINCIPAL ] #---------------- class LoanProfile(BaseModel): profile_id = models.CharField(max_length=25, default=generate_id) effective_loan_limit = models.DecimalField(max_digits=18, decimal_places=4, default=0) user_account = models.ForeignKey('users.UserAccount', models.SET_NULL, null=True, related_name='loan_profile') # risk_classification = models.PositiveSmallIntegerField(choices=LoanRiskClassification.choices()) status = models.PositiveSmallIntegerField(choices=LoanProfileStatus.choices()) def __str__(self): return f"LoanProfile {self.profile_id} for user {self.user_account.user.username}" def as_dict(self): try: identity = self.user_account.identities.get() except ObjectDoesNotExist as e: logger.exception(e) identity = None except MultipleObjectsReturned as e: logger.exception(e) identity = self.user_account.identities.first() return { 'profile_id': self.profile_id, 'user_account': self.user_account.as_dict(), 'identity': (identity and identity.as_dict()), 'loan_limit': self.loan_limit, 'loan_accounts': [ l.as_dict() for l in self.loan_accounts.filter(status=LoanStatus.ACTIVE) ] } @property def loan_limit(self): return self.effective_loan_limit @property def outstanding_balance(self): return sum( loan_account.outstanding_balance for loan_account in self.loan_accounts.all()) class LoanApplication(BaseModel): application_id = models.CharField(max_length=25, default=generate_id) loan_profile = models.ForeignKey('LoanProfile', models.SET_NULL, null=True) payment_platform = models.PositiveSmallIntegerField(choices=PaymentPlatform.choices()) amount = models.DecimalField(decimal_places=2, max_digits=7) applied_at = models.DateTimeField() approved = models.NullBooleanField() approved_at = models.DateTimeField(null=True) approved_by = models.ForeignKey('users.UserAccount', models.SET_NULL, null=True) def as_dict(self): return OrderedDict( application_id=self.application_id, loan_profile=self.loan_profile.profile_id if self.loan_profile_id else None, payment_platform=self.payment_platform, amount=self.amount, applied_at=self.applied_at, approved=self.approved, approved_at=self.approved_at, approved_by=self.approved_by.account_id if self.approved_by_id else None) #---------------- class LoanAccount(BaseModel): account_id = models.CharField(max_length=25, default=generate_id) product = models.ForeignKey('LoanProduct', models.SET_NULL, null=True) #---------------- loan_profile = models.ForeignKey('LoanProfile', models.SET_NULL, null=True, related_name='loan_accounts') #---------------- amount_disbursed = models.DecimalField(max_digits=18, decimal_places=4, default=D('0.0'), blank=True) date_disbursed = models.DateTimeField(null=True, blank=True) #---------------- last_repayment_date = models.DateTimeField(null=True, blank=True) last_interest_accrual_date = models.DateTimeField(null=True, blank=True) last_balance_update_date = models.DateTimeField(null=True) status = models.PositiveSmallIntegerField(choices=LoanStatus.choices(), default=LoanStatus.PENDING_DISBURSEMENT) is_active = models.BooleanField(default=False) def __str__(self): return "Loan Account: %s" % self.account_id @property def outstanding_balance(self): try: return self\ .current_balance\ .outstanding_balance except AttributeError: return D('0.0') @property def current_balance(self): try: return self\ .account_balances\ .filter(is_current=True)\ .get() except ObjectDoesNotExist as e: logger.exception(e) return None except MultipleObjectsReturned as e: logger.exception(e) self.account_balances\ .filter(is_current=True)\ .update(is_current=False) latest = self\ .account_balances\ .latest('balance_as_at') latest.is_current = True latest.save() return latest def get_repayment_items(self): return { LoanAllocationItem.LIABILITY: self.current_balance.liability_balance, LoanAllocationItem.PRINCIPAL: self.current_balance.principal_balance, LoanAllocationItem.PENALTY: self.current_balance.penalties_balance, LoanAllocationItem.FEES: self.current_balance.fees_balance, LoanAllocationItem.INTEREST: self.current_balance.interest_balance } def reset_account_balances(self, save=False): self.last_repayment_date = None self.last_interest_accrual_date = None if save: self.save() @property def disbursed_less_than_90_days_ago(self): """ """ return timing._90_days_ago() < self.date_disbursed @property def disbursed_less_than_60_days_ago(self): """ """ return timing._60_days_ago() < self.date_disbursed @property def disbursed_less_than_30_days_ago(self): """ """ return timing._30_days_ago() < self.date_disbursed @property def disbursed_more_than_90_days_ago(self): """ """ return timing._90_days_ago() > self.date_disbursed @property def disbursed_more_than_60_days_ago(self): """ """ return timing._60_days_ago() > self.date_disbursed @property def disbursed_more_than_30_days_ago(self): """ """ return timing._30_days_ago() > self.date_disbursed def has_cleared_balance(self): return self.outstanding_balance <= D('0.0') #--------------- def pay_off_account(self, save=False): # make entries to the ledger if self.has_cleared_balance: self.status = LoanStatus.PAID_OFF self.last_repayment_date = timezone.now() if save: self.save() #--------------- def as_dict(self): current_balance = self.current_balance _dict = dict( account_id=self.account_id, loan_limit=self.loan_profile.loan_limit, date_disbursed=self.date_disbursed, status=self.status, is_active=self.is_active) try: _dict.update(current_balance=current_balance.as_dict()) except AttributeError as e: logger.exception(e) return _dict class LoanTransaction(BaseModel): transaction_id = models.CharField(max_length=30, unique=True, default=generate_id) transaction_type = models.PositiveSmallIntegerField(choices=LoanTransactionType.choices(), null=True) loan_account = models.ForeignKey('LoanAccount', models.CASCADE, null=True, related_name='loan_transactions') amount = models.DecimalField(decimal_places=2, max_digits=7, default=D('0.0')) initiated_at = models.DateTimeField(null=True) processed_at = models.DateTimeField(null=True) posted_at = models.DateTimeField(null=True) status = models.PositiveSmallIntegerField(choices=LoanTransactionStatus.choices(), null=True) def __str__(self): return f"LoanTransaction: {LoanTransactionType(self.transaction_type).get_text()} of {self.amount} on account {self.loan_account}" class LoanAccountBalance(BaseModel): entry_id = models.CharField(max_length=25, default=generate_id) loan_account = models.ForeignKey('LoanAccount', models.CASCADE, related_name='account_balances') previous_balance = models.ForeignKey('self', models.SET_NULL, null=True) principal_paid_bf = models.DecimalField(max_digits=18, decimal_places=2, default=D('0.0'), blank=True) interest_paid_bf = models.DecimalField(max_digits=18, decimal_places=2, default=D('0.0'), blank=True) fees_paid_bf = models.DecimalField(max_digits=18, decimal_places=2, default=D('0.0'), blank=True) penalties_paid_bf = models.DecimalField(max_digits=18, decimal_places=2, default=D('0.0'), blank=True) principal_due_bf = models.DecimalField(max_digits=18, decimal_places=2, default=D('0.0'), blank=True) interest_accrued_bf = models.DecimalField(max_digits=18, decimal_places=2, default=D('0.0'), blank=True) fees_accrued_bf = models.DecimalField(max_digits=18, decimal_places=2, default=D('0.0'), blank=True) penalties_accrued_bf = models.DecimalField(max_digits=18, decimal_places=2, default=D('0.0'), blank=True) liability_credit_balance_bf = models.DecimalField(max_digits=18, decimal_places=2, default=D('0.0'), blank=True) liability_debit_balance_bf = models.DecimalField(max_digits=18, decimal_places=2, default=D('0.0'), blank=True) principal_paid = models.DecimalField(max_digits=18, decimal_places=2, default=D('0.0'), blank=True) interest_paid = models.DecimalField(max_digits=18, decimal_places=2, default=D('0.0'), blank=True) fees_paid = models.DecimalField(max_digits=18, decimal_places=2, default=D('0.0'), blank=True) penalties_paid = models.DecimalField(max_digits=18, decimal_places=2, default=D('0.0'), blank=True) principal_due = models.DecimalField(max_digits=18, decimal_places=2, default=D('0.0'), blank=True) interest_accrued = models.DecimalField(max_digits=18, decimal_places=2, default=D('0.0'), blank=True) fees_accrued = models.DecimalField(max_digits=18, decimal_places=2, default=D('0.0'), blank=True) penalties_accrued = models.DecimalField(max_digits=18, decimal_places=2, default=D('0.0'), blank=True) liability_credit_balance = models.DecimalField(max_digits=18, decimal_places=2, default=D('0.0'), blank=True) liability_debit_balance = models.DecimalField(max_digits=18, decimal_places=2, default=D('0.0'), blank=True) balance_as_at = models.DateTimeField(null=True) is_current = models.NullBooleanField(null=True) class Meta: db_table = 'loan_account_balance' def __str__(self): return f"Loan Account Balance for {self.loan_account} as at {self.balance_as_at} UTC" @property def outstanding_balance(self): outstanding_loan_balance = ( (self.principal_balance + self.fees_balance) + self.interest_balance + self.penalties_balance ) return outstanding_loan_balance @property def principal_balance(self): principal_balance = ( (self.principal_due_bf + self.principal_due) - (self.principal_paid_bf + self.principal_paid)) return principal_balance - self.liability_balance @property def fees_balance(self): return ( (self.fees_accrued_bf + self.fees_accrued) - (self.fees_paid_bf + self.fees_paid)) @property def interest_balance(self): return ( (self.interest_accrued_bf + self.interest_accrued) - (self.interest_paid_bf + self.interest_paid)) @property def penalties_balance(self): return ( (self.penalties_accrued_bf + self.penalties_accrued) - (self.penalties_paid_bf + self.penalties_paid)) @property def liability_balance(self): return ( (self.liability_credit_balance_bf + self.liability_credit_balance) + (self.liability_debit_balance_bf + self.liability_debit_balance)) def as_dict(self): return OrderedDict( entry_id=self.entry_id, loan_account=self.loan_account.account_id, previous_balance=self.previous_balance.entry_id if self.previous_balance_id else None, outstanding_balance=self.outstanding_balance, liability_balance=self.liability_balance, principal_paid=(self.principal_paid_bf + self.principal_paid), interest_paid=(self.interest_paid_bf + self.interest_paid), fees_paid=(self.fees_paid_bf + self.fees_paid), penalties_paid=(self.penalties_paid_bf + self.penalties_paid), principal_due=(self.principal_due_bf + self.principal_due), interest_accrued=(self.interest_accrued_bf + self.interest_accrued), fees_accrued=(self.fees_accrued_bf + self.fees_accrued), penalties_accrued=(self.penalties_accrued_bf + self.penalties_accrued), balance_as_at=timezone.localtime(self.balance_as_at))
import psutil from multiprocessing import Pool from tqdm import tqdm import numpy as np import xarray as xr def track_events(class_masks_xarray, minimum_time_length=5, tc_drop_threshold=250, ar_drop_threshold=250, future_lookup_range=1): """track AR and TC events across time Keyword arguments: class_masks_xarray -- the class masks as xarray, 0==Background, 1==TC, 2 ==AR minimum_time_length -- the minimum number of time stamps an event ought to persist to be considered tc_dop_threshold -- the pixel threshold below which TCs are droped ar_dop_threshold -- the pixel threshold below which ARs are droped future_lookup_range -- across how many time stamps events get stitched together """ class_masks = class_masks_xarray.values # per timestamp, assign ids to connected components global identify_components # make function visible to pool def identify_components(time): """Returns an event mask with ids assigned to the connected components at time""" class_mask = class_masks[time] # class masks of assigned time stamp # data structure for ids of connected components event_mask = np.zeros(np.shape(class_mask)).astype(np.int) next_id = 1 for i in range(np.shape(class_mask)[0]): for j in range(np.shape(class_mask)[1]): class_type = class_mask[i][j] if class_type != 0 and event_mask[i][j] == 0: # label connected component with new id with BFS frontier = [(i, j)] event_mask[i, j] = next_id while len(frontier) > 0: element = frontier.pop(0) row = element[0] col = element[1] for neighbor_row in range(row-1, row+2): neighbor_row = neighbor_row % event_mask.shape[0] for neighbor_col in range(col-1, col+2): neighbor_col = neighbor_col % event_mask.shape[1] if class_mask[neighbor_row][neighbor_col] != class_type: # don't propagate to other type continue if event_mask[neighbor_row][neighbor_col] == 0: # not yet considered event_mask[neighbor_row][neighbor_col] = next_id frontier.append((neighbor_row, neighbor_col)) next_id = next_id + 1 return event_mask # paralelize call to identify_components print('identifying connected components..', flush=True) pool = Pool(psutil.cpu_count(logical=False)) event_masks = np.array(pool.map( identify_components, range(len(class_masks)))).astype(np.int) def size_is_smaller_threshold(mask, i, j, threshold): """Returns True iff the size of the connected component that (i, j) is part of is smaller threshold""" visited = np.full(mask.shape, False) component_class = mask[i][j] frontier = [(i, j)] visited[i][j] = True count = 1 while len(frontier) > 0: element = frontier.pop(0) row = element[0] col = element[1] for neighbor_row in range(row-1, row+2): neighbor_row = neighbor_row % mask.shape[0] for neighbor_col in range(col-1, col+2): neighbor_col = neighbor_col % mask.shape[1] if visited[neighbor_row][neighbor_col] == True: continue if mask[neighbor_row][neighbor_col] == component_class: visited[neighbor_row][neighbor_col] = True frontier.append((neighbor_row, neighbor_col)) count = count + 1 if count >= threshold: return False return True def drop_threshold(class_mask, i, j): """Returns the minimal size a connected component containting [i, j] must have to not get removed""" if class_mask[i][j] == 1: #TC return tc_drop_threshold if class_mask[i][j] == 2: #AR return ar_drop_threshold def label_component(mask, i, j, new_label, threshold=None): """Labels a connected component Labels the connected component at pixel [i, j] in mask as part of a component with new_label If a threshold is given: If the size of the connected component <= threshold: set the component to background (0) Return True if the componend was set to new_label, False if it was set to background""" # apply thresholding if threshold != None and size_is_smaller_threshold(mask, i, j, threshold): label_component(mask, i, j, 0) # set component to background return False old_label = mask[i][j] if old_label == 0: return False frontier = [(i, j)] mask[i, j] = new_label while len(frontier) > 0: element = frontier.pop(0) row = element[0] col = element[1] for neighbor_row in range(row-1, row+2): neighbor_row = neighbor_row % mask.shape[0] for neighbor_col in range(col-1, col+2): neighbor_col = neighbor_col % mask.shape[1] if mask[neighbor_row][neighbor_col] == old_label: mask[neighbor_row][neighbor_col] = new_label frontier.append((neighbor_row, neighbor_col)) return True print('tracking components across time..', flush=True) event_ids_per_time = [set() for x in range(len(event_masks))] # per time stamp and per id, have a pixel pointing to each connected component pixels_per_event_id_per_time = [{} for x in range(len(event_masks))] # one pixel per event Id new_event_index = 1000 for time in tqdm(range(len(event_masks))): class_mask = class_masks[time] event_mask = event_masks[time] for i in range(np.shape(event_mask)[0]): for j in range(np.shape(event_mask)[1]): id = event_mask[i][j] # ignore background if id == 0: continue # label new components if id < 1000: above_threshold = label_component(event_mask, i, j, new_event_index, drop_threshold(class_mask, i, j)) if above_threshold: id = new_event_index new_event_index = new_event_index + 1 event_ids_per_time[time].add(id) pixels_per_event_id_per_time[time][id] = [(i, j)] else: label_component(class_mask, i, j, 0) # set component class to background continue # component removed, don't propagate across time # label components in next time stamp(s) that are already present in this time stamp for future_time in range(time+1, min(time+1+future_lookup_range, len(event_masks))): future_event_mask = event_masks[future_time] future_class_mask = class_masks[future_time] if class_mask[i][j] == future_class_mask[i][j] \ and future_event_mask[i][j] < 100 \ and future_event_mask[i][j] != 0: # not removed yet above_threshold = label_component(future_event_mask, i, j, id, drop_threshold(class_mask, i, j)) if above_threshold: event_ids_per_time[future_time].add(id) if id in pixels_per_event_id_per_time[future_time].keys(): # id was already in other connected component for this time stamp # add another pixel so that all connected components with this id are ponited to pixels_per_event_id_per_time[future_time][id].append((i, j)) else: pixels_per_event_id_per_time[future_time][id] = [(i, j)] else: # [i,j] removed from event_masks, also remove from class_masks label_component(future_class_mask, i, j, 0) # removing connected components appearing less than minimum_time_length # finding time stamps per id times_per_event_id = {} for time in range(len(event_ids_per_time)): for id in event_ids_per_time[time]: if id in times_per_event_id: times_per_event_id[id].append(time) else: times_per_event_id[id] = [time] # finding ids_for_removal i.e. ids occuring shorter than minimum_time_length ids_for_removal = set() for id in times_per_event_id.keys(): times = times_per_event_id[id] if len(times) < minimum_time_length: ids_for_removal.add(id) # removing ids_for_removal for id in ids_for_removal: for time in times_per_event_id[id]: for pixel in pixels_per_event_id_per_time[time][id]: label_component(event_masks[time], pixel[0], pixel[1], 0) label_component(class_masks[time], pixel[0], pixel[1], 0) event_ids_per_time[time].discard(id) del pixels_per_event_id_per_time[time][id] del times_per_event_id[id] # counting ARs and TCs num_tcs = 0 num_ars = 0 for id in times_per_event_id.keys(): time = times_per_event_id[id][0] pixel = pixels_per_event_id_per_time[time][id][0] if class_masks[time][pixel[0]][pixel[1]] == 1: num_tcs = num_tcs + 1 else: num_ars = num_ars + 1 print('num TCs: ' + str(num_tcs)) print('num ARs: ' + str(num_ars)) event_masks_xarray = xr.DataArray(event_masks, coords=class_masks_xarray.coords, attrs=class_masks_xarray.attrs) return event_masks_xarray
from typing import List import pydantic class EnvConstants(pydantic.BaseSettings): """Environment constants. Constants should be set in .env file with keys matching variable names at root of project. """ API_KEY_TABLE_NAME: str FIREHOSE_TABLE_NAME: str SENTRY_DSN: str SENTRY_ENVIRONMENT: str EMAILS_ENABLED: bool AWS_REGION: str = "us-east-1" HUBSPOT_API_KEY: str HUBSPOT_ENABLED: bool # Hubspot portal id differs between environments. We have a separate # hubspot portal for our dev environment. HUBSPOT_PORTAL_ID: str # GUID of hubspot form used for API signup HUBSPOT_REG_FORM_GUID: str EMAIL_BLOCKLIST: List[str] class Config: env_file = ".env" env_file_encoding = "utf-8" class Config: Constants: EnvConstants = None @staticmethod def init(): Config.Constants = EnvConstants()
import distutils.spawn import os from pathlib import Path from pytest import fixture from pytest_ngrok.install import install_bin from pytest_ngrok.manager import NgrokContextManager try: from .django import * # noqa except ImportError: pass def pytest_addoption(parser): parser.addoption( '--ngrok-bin', default=distutils.spawn.find_executable('ngrok'), help='path to ngrok [%default]' ) parser.addoption( '--ngrok-no-install', action='store_true', default=False, help='Disable fetch ngrok binary from remote' ) REMOTE_URL = 'https://bin.equinox.io/c/4VmDzA7iaHb/ngrok-stable-linux-amd64.zip' @fixture(scope='session') def ngrok_install_url(): # TODO verify return REMOTE_URL @fixture(scope='session') def ngrok_allow_install(request): """ Allow install ngrok from remote. Default: True """ return not request.config.getoption('--ngrok-no-install', False) @fixture(scope='session') def ngrok_bin(request): """ Path to ngrok-bin. by default - $HOME/.local/bin/ngrok """ ngrok_path = request.config.getoption('--ngrok-bin') if not ngrok_path: ngrok_path = os.path.join(Path.home(), '.local', 'bin', 'ngrok') return ngrok_path @fixture(scope='function') def ngrok(ngrok_bin, ngrok_install_url, ngrok_allow_install): """ Usage: ``` def test_ngrok_context_manager(ngrok, httpserver): httpserver.expect_request("/foobar").respond_with_data("ok") with ngrok(httpserver.port) as remote_url: assert 'ngrok.io' in str(remote_url) _test_url = str(remote_url) + '/foobar' assert urlopen(_test_url).read() == b'ok' pytest.raises(HTTPError, urlopen, _test_url) ``` """ if not os.path.exists(ngrok_bin): if ngrok_allow_install: install_bin(ngrok_bin, remote_url=ngrok_install_url) else: raise OSError("Ngrok %s bin not found!" % ngrok_bin) managers = [] def _wrap(port=None): manager = NgrokContextManager(ngrok_bin, port) managers.append(manager) return manager() yield _wrap for m in managers: m.stop()
#!/usr/bin/env python """ Make the lg1 file for GOES-R type resolution overlaid on TEMPO with GEOS-R parking spot """ import numpy as np from numpy import radians, degrees from math import radians, cos, sin, asin, sqrt, tan, atan from netCDF4 import Dataset from mpl_toolkits.basemap import Basemap import matplotlib.pyplot as plt from matplotlib import cm, colors from geopy import distance, point from dateutil.parser import parse as isoparser from datetime import timedelta def haversine(lat1, lon1, lat2, lon2): """ Calculate the great circle distance between two points on the earth (specified in decimal degrees) """ # convert decimal degrees to radians lon1, lat1, lon2, lat2 = map(radians, [lon1, lat1, lon2, lat2]) # haversine formula dlon = lon2 - lon1 dlat = lat2 - lat1 a = sin(dlat/2)**2 + cos(lat1) * cos(lat2) * sin(dlon/2)**2 c = 2 * asin(sqrt(a)) r = 6371 # Radius of earth in kilometers. Use 3956 for miles return c * r def set_basemap(projection,clon,clat,elon,elat,lon_0=128.2,satellite_height=35785831.0): # Default is GEMS # GEO disk parked at 128.2E # ----------------------- m = Basemap(projection=projection,lon_0=lon_0,resolution=None, rsphere=(6378137.00,6356752.3142), satellite_height = satellite_height) cX, cY, cBOX,cbox = getCoords(m,clon,clat,'CENTER Coordinates') eX, eY, eBOX,ebox = getCoords(m,elon,elat,'EDGE Coordinates') # Plot Map # -------- m = Basemap(projection=projection,lon_0=lon_0,resolution='l', rsphere=(6378137.00,6356752.3142), satellite_height = satellite_height, llcrnrx=ebox[0], llcrnry=ebox[1], urcrnrx=ebox[2], urcrnry=ebox[3]) return m def map_(fig,m,data,cmap,minval,maxval,title,norm=None,format=None,elon=None,elat=None, fill_color=None,bluemarble=None): if (m.projection == 'lcc'): if (bluemarble is not None): m.warpimage(image=bluemarble) else: m.bluemarble() im = m.pcolormesh(elon,elat,data,latlon=True,cmap=cmap,vmin=minval,vmax=maxval,norm=norm) im.set_rasterized(True) elif (m.projection == 'geos'): im = m.imshow(data,cmap=cmap,vmin=minval,vmax=maxval,norm=norm) m.drawcoastlines(color='white') m.drawcountries(color='white') m.drawstates(color='white') meridian = np.arange(-125.,60.,5.) parallels = np.arange(-10.,80.,5.) m.drawparallels(parallels) # draw parallels m.drawmeridians(meridian) # draw meridians meridian = np.delete(meridian,len(meridian)*0.5) for i in np.arange(len(meridian)): plt.annotate(np.str(meridian[i]),xy=m(meridian[i],20),xycoords='data') for i in np.arange(len(parallels)): plt.annotate(np.str(parallels[i]),xy=m(110,parallels[i]),xycoords='data') if (m.projection == 'geos'): if (fill_color is None): fill_color = 'k' #'0.90' m.drawmapboundary(color='k',fill_color=fill_color,linewidth=2.0) plt.title(title, fontsize=20) return im def getCoords(m,lon,lat,name): # No undefs # --------- I = (lon<1e14)&(lat<1e14) X, Y = m(lon[I],lat[I]) J = (X<1e30)&(Y<1e30) X, Y = X[J], Y[J] XA, YA, XB, YB = m.llcrnrx, m.llcrnry, m.urcrnrx, m.urcrnry DX, DY = XB-XA, YB-YA XC, YC = (XA+XB)/2, (YA+YB)/2 Xa,Ya,Xb,Yb = (X.min(),Y.min(),X.max(),Y.max()) xa,ya,xb,yb = (X.min()-XC,Y.min()-YC,X.max()-XC,Y.max()-YC) xa_ = (xa)/DX xb_ = (xb)/DX ya_ = (ya)/DY yb_ = (yb)/DY BBOX = (Xa, Ya, Xb, Yb) Bbox = (xa,ya,xb,yb) bbox = (xa_,ya_,xb_,yb_) print print name print 'Native Bounding box: ', BBOX print 'Recentered Bounding box: ', Bbox print 'Normalized Bounding box: ', bbox return (X,Y,BBOX,Bbox) #--- def scanTimes(nNS,nEW,tBeg): """ Calculate TEMPO scantimes. """ tScan = np.array([tBeg + i * timedelta(seconds=2.85) for i in np.arange(nEW) ]) tScan = tScan[-1::-1] # flip times return np.tile(tScan,(nNS,1)) #--- def writeNC(elon,elat,clon,clat,pixel_top,pixel_bottom,pixel_right,pixel_left,DT,fname): # Save to netcdf file ncOut = Dataset(fname,'w',format='NETCDF4_CLASSIC') ncOut.institution = 'NASA/Goddard Space Flight Center' ncOut.source = 'Global Model and Assimilation Office' ncOut.history = 'Created from make_lg1_tempo_cld.py' ncOut.references = 'none' ncOut.comment = "This file contains TEMPO geolocation information for cloud modeling" ncOut.contact = "Patricia Castellanos <patricia.castellanos@nasa.gov>" ncOut.conventions = 'CF' ncOut.sat_lat = 0.0 ncOut.sat_lon = lon_0 ncOut.sat_alt = satellite_height*1e-3 ncOut.Earth_radius = rsphere[0]*1e-3 ncOut.Earth_flattening = (rsphere[0] - rsphere[1])/rsphere[0] ncOut.NCO = '0.2.1' nNS,nEW = clon.shape ns = ncOut.createDimension('ns',nNS) ew = ncOut.createDimension('ew',nEW) ns_e = ncOut.createDimension('ns_e',nNS+1) ew_e = ncOut.createDimension('ew_e',nEW+1) pc = ncOut.createDimension('pix_corner',4) time = ncOut.createDimension('time',1) # clat varobj = ncOut.createVariable('clat','f4',('ns','ew',)) varobj.long_name = 'pixel center latitude' varobj.units = 'degrees_north' varobj.missing_value = 1e15 varobj[:] = clat #clon varobj = ncOut.createVariable('clon','f4',('ns','ew',)) varobj.long_name = 'pixel center longitude' varobj.units = 'degrees_east' varobj.missing_value = 1e15 varobj[:] = clon # elat varobj = ncOut.createVariable('elat','f4',('ns_e','ew_e',)) varobj.long_name = 'latitude at pixel edge' varobj.units = 'degrees_north' varobj.missing_value = 1e15 varobj[:] = elat # elon varobj = ncOut.createVariable('elon','f4',('ns_e','ew_e',)) varobj.long_name = 'longitude at pixel edge' varobj.units = 'degrees_east' varobj.missing_value = 1e15 varobj[:] = elon # GRADS ew varobj = ncOut.createVariable('ew','f4',('ew',)) varobj.long_name = 'pseudo longitude' varobj.units = 'degrees_east' #varobj[:] = np.linspace(lonmin,lonmax,nEW) varobj[:] = clon[0.5*nNS,:] # GRADS ew varobj = ncOut.createVariable('ns','f4',('ns',)) varobj.long_name = 'pseudo latitude' varobj.units = 'degrees_north' #varobj[:] = np.linspace(latmin,latmax,nNS) varobj[:] = clat[:,0.5*nEW] # pixel size varobj = ncOut.createVariable('pix_size','f4',('pix_corner','ns','ew',)) varobj.long_name = 'pixel size' varobj.units = 'km' varobj.missing_value = 1e15 varobj[0,:,:] = pixel_top varobj[1,:,:] = pixel_right varobj[2,:,:] = pixel_bottom varobj[3,:,:] = pixel_left # time varobj = ncOut.createVariable('time','f4',('time',)) varobj.long_name = 'time' varobj.units = 'hours since 2006-06-01 12:00:00' varobj.time_increment = int(10000) varobj.begin_date = int(20060601) varobj.begin_time = int(120000) # scanTime varobj = ncOut.createVariable('scanTime','f4',('ew',)) varobj.units = "seconds since 0001-01-01 00:00:00.0" varobj[:] = DT ncOut.close() #--- if __name__ == '__main__': outFile = 'goes-r.lg1.cld.invariant.' inFile = 'tempo.lg1.cld.invariant.' layout = '41' projection = 'geos' lon_0 = -75 lat_0 = 0.0 satellite_height = 35785831.0 rsphere = (6378137.00,6356752.3142) #------- ## End of User Input #------- m = Basemap(projection=projection,lon_0=lon_0,resolution=None, rsphere=(6378137.00,6356752.3142), satellite_height = satellite_height) # Read in TEMPO ntiles = int(layout[0])*int(layout[1]) for tile in range(ntiles): print 'Reading file',inFile + layout + str(tile) + '.nc4' ncTempo = Dataset(inFile + layout + str(tile) + '.nc4') clon = ncTempo.variables['clon'][:] clat = ncTempo.variables['clat'][:] pixel_top = np.squeeze(ncTempo.variables['pix_size'][0,:,:]) pixel_right = np.squeeze(ncTempo.variables['pix_size'][1,:,:]) pixel_bottom = np.squeeze(ncTempo.variables['pix_size'][2,:,:]) pixel_left = np.squeeze(ncTempo.variables['pix_size'][3,:,:]) if not hasattr(clon,'mask'): print 'tile',tile clon = np.ma.array(clon,mask=np.zeros(clon.shape).astype(bool)) if not hasattr(clat,'mask'): clat = np.ma.array(clat,mask=np.zeros(clat.shape).astype(bool)) if not hasattr(pixel_top,'mask'): pixel_top = np.ma.array(pixel_top,mask=np.zeros(pixel_top.shape).astype(bool)) if not hasattr(pixel_right,'mask'): pixel_right = np.ma.array(pixel_right,mask=np.zeros(pixel_right.shape).astype(bool)) if not hasattr(pixel_bottom,'mask'): pixel_bottom = np.ma.array(pixel_bottom,mask=np.zeros(pixel_bottom.shape).astype(bool)) if not hasattr(pixel_left,'mask'): pixel_left = np.ma.array(pixel_left,mask=np.zeros(pixel_left.shape).astype(bool)) if tile == 0: PP_bottom = np.ma.array(pixel_bottom,mask=np.zeros(pixel_bottom.shape).astype(bool)) else: PP_bottom = np.ma.append(PP_bottom,pixel_bottom,axis=1) X, Y = m(clon,clat) I = (X == 1e30) | (Y == 1e30) X.mask[I] = True Y.mask[I] = True clon.mask = X.mask | Y.mask clat.mask = X.mask | Y.mask pixel_top.mask = X.mask | Y.mask pixel_bottom.mask = X.mask | Y.mask pixel_left.mask = X.mask | Y.mask pixel_right.mask = X.mask | Y.mask elon = ncTempo.variables['elon'][:] elat = ncTempo.variables['elat'][:] if not hasattr(elon,'mask'): elon = np.ma.array(elon,mask=np.zeros(elon.shape).astype(bool)) if not hasattr(elat,'mask'): elat = np.ma.array(elat,mask=np.zeros(elat.shape).astype(bool)) if tile == 0: EElon = np.ma.array(elon,mask=np.zeros(elon.shape).astype(bool)) else: EElon = np.ma.append(EElon[:,0:-1],elon,axis=1) X, Y = m(elon,elat) I = (X == 1e30) | (Y == 1e30) X.mask[I] = True Y.mask[I] = True elon.mask = X.mask | Y.mask elat.mask = X.mask | Y.mask mask_1 = elon.mask[0:-1,0:-1] mask_2 = elon.mask[0:-1,1:] mask_3 = elon.mask[1:,0:-1] mask_4 = elon.mask[1:,1:] clon.mask = mask_1 | mask_2 | mask_3 | mask_4 clat.mask = mask_1 | mask_2 | mask_3 | mask_4 pixel_top.mask = mask_1 | mask_2 | mask_3 | mask_4 pixel_bottom.mask = mask_1 | mask_2 | mask_3 | mask_4 pixel_left.mask = mask_1 | mask_2 | mask_3 | mask_4 pixel_right.mask = mask_1 | mask_2 | mask_3 | mask_4 DT = ncTempo.variables['scanTime'][:] print 'writing file',outFile + layout + str(tile) + '.nc4' writeNC (elon, elat, clon, clat, pixel_top, pixel_bottom, pixel_right, pixel_left, DT, fname = outFile + layout + str(tile) + '.nc4') if tile == 0: P_bottom = pixel_bottom P_right = pixel_right Elon = elon Elat = elat else: P_bottom = np.ma.append(P_bottom,pixel_bottom,axis=1) P_right = np.ma.append(P_right,pixel_right,axis=1) Elon = np.ma.append(Elon[:,0:-1],elon,axis=1) Elat = np.ma.append(Elat[:,0:-1],elat,axis=1) ncTempo.close() # --- # Make some plots # --- pixel_bottom = P_bottom pixel_right = P_right elon = Elon elat = Elat lon_0 = -100 nNS = pixel_bottom.shape[0] nEW = pixel_bottom.shape[1] # Discrete colorbar cmap = cm.jet # extract all colors from the .jet map cmaplist = [cmap(i) for i in range(cmap.N)] # create the new map cmap = cmap.from_list('Custom cmap', cmaplist, cmap.N) # -- # EW # -- # define the bins and normalize bounds = np.arange(0,10,1) norm = colors.BoundaryNorm(bounds, cmap.N) cmap.set_bad(color='w',alpha=0) m = set_basemap(projection,clon,clat,elon,elat,lon_0=lon_0,satellite_height=35785831.0) fig = plt.figure() fig.set_size_inches(18.5, 10.5) im = map_(fig,m,pixel_bottom,cmap,bounds.min(),bounds.max(),'EW Pixel Size [km] nX = {}'.format(nEW),elon=elon,elat=elat,norm=norm) ax = plt.gca() #[left, bottom, width, height] cbaxes = fig.add_axes([0.91, 0.147, 0.02, 0.73]) fig.colorbar(im,ax=ax, cax = cbaxes) plt.savefig('goes-r_EW_pixelsize_nX={}.png'.format(nEW), transparent='true') plt.close(fig) # -- # NS # -- # define the bins and normalize bounds = np.arange(0,5.5,0.5) norm = colors.BoundaryNorm(bounds, cmap.N) cmap.set_bad(color='w',alpha=0) fig = plt.figure() fig.set_size_inches(18.5, 10.5) im = map_(fig,m,pixel_right,cmap,bounds.min(),bounds.max(),'NS Pixel Size [km] nY = {}'.format(nNS),elon=elon,elat=elat,norm=norm) ax = plt.gca() #[left, bottom, width, height] cbaxes = fig.add_axes([0.91, 0.147, 0.02, 0.73]) fig.colorbar(im,ax=ax, cax = cbaxes) plt.savefig('goes-r_NS_pixelsize_nY={}.png'.format(nNS), transparent='true') plt.close(fig)
my_grades = { "linguagens": 630, "humanas" : 660, "natureza" : 660, "matematica" : 830, "redacao" : 800 } matematica_aplicada = { "curso" : "Matemática Aplicada", "corte" : 720.96, "linguagens" : 3, "humanas" : 1, "natureza" : 4, "matematica" : 5, "redacao" : 1 } estatistica = { "curso" : "Estatística", "corte" : 742.91, "linguagens" : 2, "humanas" : 1, "natureza" : 3, "matematica" : 5, "redacao" : 3 } ufrj_majors = [matematica_aplicada, estatistica]
def solveMeFirst(a,b): return a + b
powers = [31] channels = [26] sinks = [1] testbed = "fbk" start_epoch = 1 active_epochs = 200 full_epochs = 15 #num_senderss = [0,1,2,5,10,20] num_senderss = [1,20] period = 1 n_tx_s = 3 dur_s = 10 n_tx_t = 3 dur_t = 8 n_tx_a = 3 dur_a = 8 payload = 2 longskips = [0] n_emptys = [(2,2,4,6)] ccas = [(-15, 80)] nodemaps=["all"] #nodemaps=["all", "n7_MWO", "n13_MWO", "n42_MWO", "n7_12_20_31_37_49_WIFI4"] chmap = "nomap" boot_chop = "hop3" #chmap = "nohop" #boot_chop = "nohop" logging = True seed = 123
# -*- coding: utf-8 -*- """Top-level package for Python Business Objects import.""" __author__ = """Hugo van den Berg""" __email__ = 'hugo.van.den.berg@brabantwater.nl' __version__ = '0.1.0'
# -*- coding: utf-8 -*- """ Created on Wed Sep 11 15:55:15 2019 @author: tsd """ import torch from .tokenization_albert import AlbertTokenizer from .preprocessing_funcs import save_as_pickle, load_pickle from .ALBERT import AlbertForSequenceClassification import logging logging.basicConfig(format='%(asctime)s [%(levelname)s]: %(message)s', \ datefmt='%m/%d/%Y %I:%M:%S %p', level=logging.INFO) logger = logging.getLogger('__file__') class XLNet_infer(object): def __init__(self,): super(XLNet_infer, self).__init__() logger.info("Loading fine-tuned XLNet...") self.args = load_pickle("./data/args.pkl") self.net = AlbertForSequenceClassification.from_pretrained('albert-base-v2', num_labels=self.args.num_classes) self.tokenizer = AlbertTokenizer.from_pretrained('albert-base-v2', do_lower_case=False) logger.info("Done!") def classify(self, text=None): if text is not None: logger.info("Classifying text...") text = self.tokenizer.tokenize(text) text = self.tokenizer.convert_tokens_to_ids(text[:(self.args.tokens_length-1)]).long().unsqueeze(0) self.net.eval() with torch.no_grad(): outputs, _ = self.net(text) _, predicted = torch.max(outputs.data, 1) print("Predicted label: %d" % predicted.item()) else: while True: text = input("Input text to classify: \n") if text in ["quit", "exit"]: break logger.info("Classifying text...") text = self.tokenizer.tokenize(text) text = self.tokenizer.convert_tokens_to_ids(text[:(self.args.tokens_length-1)]).long().unsqueeze(0) self.net.eval() with torch.no_grad(): outputs, _ = self.net(text) _, predicted = torch.max(outputs.data, 1) print("Predicted label: %d" % predicted.item())
#!/usr/bin/env python from __future__ import print_function import numpy as np import cv2 as cv from tests_common import NewOpenCVTests class UMat(NewOpenCVTests): def test_umat_construct(self): data = np.random.random([512, 512]) # UMat constructors data_um = cv.UMat(data) # from ndarray data_sub_um = cv.UMat(data_um, [128, 256], [128, 256]) # from UMat data_dst_um = cv.UMat(128, 128, cv.CV_64F) # from size/type # test continuous and submatrix flags assert data_um.isContinuous() and not data_um.isSubmatrix() assert not data_sub_um.isContinuous() and data_sub_um.isSubmatrix() # test operation on submatrix cv.multiply(data_sub_um, 2., dst=data_dst_um) assert np.allclose(2. * data[128:256, 128:256], data_dst_um.get()) def test_umat_handle(self): a_um = cv.UMat(256, 256, cv.CV_32F) _ctx_handle = cv.UMat.context() # obtain context handle _queue_handle = cv.UMat.queue() # obtain queue handle _a_handle = a_um.handle(cv.ACCESS_READ) # obtain buffer handle _offset = a_um.offset # obtain buffer offset def test_umat_matching(self): img1 = self.get_sample("samples/data/right01.jpg") img2 = self.get_sample("samples/data/right02.jpg") orb = cv.ORB_create() img1, img2 = cv.UMat(img1), cv.UMat(img2) ps1, descs_umat1 = orb.detectAndCompute(img1, None) ps2, descs_umat2 = orb.detectAndCompute(img2, None) self.assertIsInstance(descs_umat1, cv.UMat) self.assertIsInstance(descs_umat2, cv.UMat) self.assertGreater(len(ps1), 0) self.assertGreater(len(ps2), 0) bf = cv.BFMatcher(cv.NORM_HAMMING, crossCheck=True) res_umats = bf.match(descs_umat1, descs_umat2) res = bf.match(descs_umat1.get(), descs_umat2.get()) self.assertGreater(len(res), 0) self.assertEqual(len(res_umats), len(res)) def test_umat_optical_flow(self): img1 = self.get_sample("samples/data/right01.jpg", cv.IMREAD_GRAYSCALE) img2 = self.get_sample("samples/data/right02.jpg", cv.IMREAD_GRAYSCALE) # Note, that if you want to see performance boost by OCL implementation - you need enough data # For example you can increase maxCorners param to 10000 and increase img1 and img2 in such way: # img = np.hstack([np.vstack([img] * 6)] * 6) feature_params = dict(maxCorners=239, qualityLevel=0.3, minDistance=7, blockSize=7) p0 = cv.goodFeaturesToTrack(img1, mask=None, **feature_params) p0_umat = cv.goodFeaturesToTrack(cv.UMat(img1), mask=None, **feature_params) self.assertEqual(p0_umat.get().shape, p0.shape) p0 = np.array(sorted(p0, key=lambda p: tuple(p[0]))) p0_umat = cv.UMat(np.array(sorted(p0_umat.get(), key=lambda p: tuple(p[0])))) self.assertTrue(np.allclose(p0_umat.get(), p0)) _p1_mask_err = cv.calcOpticalFlowPyrLK(img1, img2, p0, None) _p1_mask_err_umat0 = map(cv.UMat.get, cv.calcOpticalFlowPyrLK(img1, img2, p0_umat, None)) _p1_mask_err_umat1 = map(cv.UMat.get, cv.calcOpticalFlowPyrLK(cv.UMat(img1), img2, p0_umat, None)) _p1_mask_err_umat2 = map(cv.UMat.get, cv.calcOpticalFlowPyrLK(img1, cv.UMat(img2), p0_umat, None)) # # results of OCL optical flow differs from CPU implementation, so result can not be easily compared # for p1_mask_err_umat in [p1_mask_err_umat0, p1_mask_err_umat1, p1_mask_err_umat2]: # for data, data_umat in zip(p1_mask_err, p1_mask_err_umat): # self.assertTrue(np.allclose(data, data_umat)) if __name__ == '__main__': NewOpenCVTests.bootstrap()
""" Class Hierarchy G{classtree: BaseController} Package tree G{packagetree: controller} Import Graph G{importgraph: controller} """ from cluster_tool import KubernetesTool from controller_param import ControllerParam class BaseController: def __init__(self,controller_id,config_path): self.controller_id = controller_id """ @type: C{string} """ self.config_path = config_path """ @type: C{string} """ self.controller_param = None """ @type: L{ControllerParam} """ self.tool = KubernetesTool() """ @type: L{KubernetesTool} """ def get_controller_id(self): return self.controller_id def get_config_path(self): return self.config_path def get_controller_param(self): return self.controller_param def get_tool(self): return self.tool def start(self): self.tool.create_replication_controller(self.config_path) def stop(self): self.tool.delete_replication_controller(self.controller_id) def expand(self,new_replicas): self.tool.resize_replication_controller(self.controller_id,new_replicas) def shrink(self,new_replicas): self.tool.resize_replication_controller(self.controller_id,new_replicas) class ApacheController(BaseController): def __init__(self): print "[ApacheController] init ..." self.create_controller_param() print "[ApacheController] OK" def create_controller_param(self): controller_id = 'apache-controller' config_path = 'json/apache-controller.json' BaseController.__init__(self,controller_id,config_path) # init controller_param self.controller_param = ControllerParam(controller_id,1,"apache-pod",None) def start(self): print "[ApacheController] start..." BaseController.start(self) class MysqlController(BaseController): def __init__(self): print "[MysqlController] init ..." self.create_controller_param() print "[MysqlController] OK" def create_controller_param(self): controller_id = 'mysql-controller' config_path = 'json/mysql-controller.json' BaseController.__init__(self,controller_id,config_path) def start(self): print "[MysqlController] start..." BaseController.start(self) class RobustController(BaseController): def __init__(self): print "[RobustController] init ..." self.create_controller_param() print "[RobustController] OK" def create_controller_param(self): controller_id = 'robust-controller' config_path = 'json/robust-controller.json' BaseController.__init__(self,controller_id,config_path) def start(self): print "[RobustController] start..." BaseController.start(self) class ControllerTesting(ApacheController,MysqlController,RobustController): pass
from ._node import Node __all__ = ['List'] class EmptyError(ValueError): """ Raised when a list is empty. """ class NotEmptyError(ValueError): """ Raised when a list not is empty. """ class List: """ Doubly linked list. >>> a = List.from_iterable([1, 2, 3]) >>> print(a) [1, 2, 3] >>> 1 in a True >>> print(a) [1, 2, 3] >>> 5 in a False >>> print(a) [1, 2, 3] """ def __init__(self): self.head = None self.tail = None self.size = 0 @classmethod def from_iterable(cls, iterable): """ Alternate constructor for `List`. Gets data from a single `iterable` argument. >>> a = List.from_iterable([1, 2, 3]) >>> print(a) [1, 2, 3] >>> b = List.from_iterable(('Hello', 'World')) >>> print(b) ['Hello', 'World'] """ new_list = cls() new_list.extend(iterable) return new_list def __repr__(self): """ Return an unambiguous representation of an object. """ return (f'{self.__class__.__name__}(' f'head={self.head!r}, tail={self.tail!r})') def __str__(self): """ Return elements of the list as a string. """ return f'{[element for element in self]}' def __iter__(self): """ Traverse the list in forward direction. """ node = self.head while node: yield node.data node = node.next_node def __reversed__(self): """ Traverse the list in reverse direction. """ node = self.tail while node: yield node.data node = node.prev_node def __len__(self): return self.size def __contains__(self, data): """ Check if the list contains an element with a given data. """ for node in self._nodes(): if node.data == data: self._rearrange(node) return True return False def __eq__(self, iterable): """ Check if list is equal to `iterable`. """ if len(self) != len(iterable): return False for element, other_element in zip(self, iterable): if element != other_element: return False return True def append(self, data): """ Insert an element to the end of the list. >>> a = List() >>> a.append(1) >>> a.append(2) >>> print(a) [1, 2] """ new_node = Node(data) if self.tail: self._insert_after(self.tail, new_node) else: self._insert_first(new_node) def prepend(self, data): """ Insert an element to the beginning of the list. >>> a = List() >>> a.prepend(1) >>> a.prepend(0) >>> print(a) [0, 1] """ new_node = Node(data) if self.head: self._insert_before(self.head, new_node) else: self._insert_first(new_node) def _insert_first(self, new_node): """ Insert a node into the empty list. Raise `NotEmptyError` if the list is not empty. """ if self.size > 0: raise NotEmptyError('List must be empty') self.head = new_node self.tail = new_node self.size += 1 def _insert_before(self, existing_node, new_node): """ Insert a node before a given node. """ new_node.next_node = existing_node if existing_node is self.head: new_node.prev_node = None self.head = new_node else: new_node.prev_node = existing_node.prev_node existing_node.prev_node.next_node = new_node existing_node.prev_node = new_node self.size += 1 def _insert_after(self, existing_node, new_node): """ Insert a node after a given one. """ new_node.prev_node = existing_node if existing_node is self.tail: new_node.next_node = None self.tail = new_node else: new_node.next_node = existing_node.next_node existing_node.next_node.prev_node = new_node existing_node.next_node = new_node self.size += 1 def extend(self, iterable): """ Insert items from `iterable` to the end of the list. >>> a = List() >>> b = [1, 2, 3] >>> a.extend(b) >>> print(a) [1, 2, 3] """ for item in iterable: self.append(item) def is_empty(self): """ Check if list is empty. """ return len(self) == 0 def pop_back(self): """ Remove the last element of the list. >>> a = List.from_iterable([1, 2, 3]) >>> print(a) [1, 2, 3] >>> a.pop_back() >>> print(a) [1, 2] """ if self.is_empty(): raise EmptyError('List must not be empty') if self.size == 1: self._remove_last() else: self.tail = self.tail.prev_node self.tail.next_node = None self.size -= 1 def pop_front(self): """ Remove the first element of the list. >>> a = List.from_iterable([1, 2, 3]) >>> print(a) [1, 2, 3] >>> a.pop_front() >>> print(a) [2, 3] """ if self.is_empty(): raise EmptyError('List must not be empty') if self.size == 1: self._remove_last() else: self.head = self.head.next_node self.head.prev_node = None self.size -= 1 def erase(self, data): """ Erase all elements of the list that contain a given data. >>> a = List.from_iterable([1, 2, 3, 3, 3, 4]) >>> print(a) [1, 2, 3, 3, 3, 4] >>> a.erase(3) >>> print(a) [1, 2, 4] """ for node in self._nodes(): next_node = node.next_node if node.data == data: self._remove(node) node = next_node def _remove(self, node): """ Remove a given node from the list. """ if node is self.head: self.pop_front() elif node is self.tail: self.pop_back() else: node.next_node.prev_node = node.prev_node node.prev_node.next_node = node.next_node self.size -= 1 def _remove_last(self): """ Remove the only node in the list. """ if self.size > 1: raise ValueError('List has more than one node') self.head = None self.tail = None self.size = 0 def _rearrange(self, node): """ Apply self-organizing method. """ return def _nodes(self): """ Traverse the list _nodes in forward direction. """ node = self.head while node: yield node node = node.next_node
# ===================================================================================== # Copyright (c) 2010-2012, G. Fiori, G. Iannaccone, University of Pisa # # This file is released under the BSD license. # See the file "license.txt" for information on usage and # redistribution of this file, and for a DISCLAIMER OF ALL WARRANTIES. # ===================================================================================== from numpy import * from NanoTCAD_ViDESmod import * from section import * import sys import types writeout("\n") writeout("-------------------------------------------------------------------\n") writeout(" NanoTCAD ViDES ") writeout(" Version 1.5 (rel-1-6)") writeout(" Last Modified 19 May 2016") writeout(" Copyright (C) 2004-2016 \n") writeout("-------------------------------------------------------------------\n") writeout("\n") NEmax = 5e3; DIGIT_PRECISION = 20; max_number_of_cores_on_a_server = 8; # I check if mpi4py is installed on the machine or not try: from mpi4py import MPI mpi4py_loaded = True sizeMPI = MPI.COMM_WORLD.Get_size() except ImportError: mpi4py_loaded = False # I check if scipy is installed # This is needed for graphene_TOB try: from scipy.optimize import newton newton_loaded = True except ImportError: newton_loaded = False # I check if pylab is installed on the machine or not try: if (mpi4py_loaded): if (sizeMPI <= max_number_of_cores_on_a_server): from pylab import * pylab_loaded = True else: from pylab import * pylab_loaded = True # except ImportError: except Exception: pylab_loaded = False writeout("pylab not installed on this machine or not set up correctly DISPLAY variable") # definition of constants kboltz = 1.3807e-23 hbar = 1.05459e-34 m0 = 9.1095e-31 q = 1.60219e-19 eps0 = 8.85e-12 # Slater-Costner parameter for sp3d5s* tight-binding Hamiltonian in Si thop_Si = array( [-1.95933, -4.24135, -1.52230, 3.02562, 3.15565, -2.28485, -0.80993, 4.10364, -1.51801, -1.35554, 2.38479, -1.68136, 2.58880, -1.81400]); onsite_Si = array([-2.15168, 4.22925, 4.22925, 4.22925, 13.78950, 13.78950, 13.78950, 13.78950, 13.78950, 19.11650]); def MPIze(channel): if (mpi4py_loaded): del channel.E; channel.E = zeros(int(NEmax)); Eupper_save = channel.Eupper; Elower_save = channel.Elower; vt = kboltz * channel.Temp / q; sizeMPI = MPI.COMM_WORLD.Get_size() if (mpi4py_loaded): rank = MPI.COMM_WORLD.Get_rank() channel.rank = rank; # I compute the maximum and the minimum # of the energy interval if ((channel.Eupper > 900) & (channel.Elower < -900)): Eupper = max(max(channel.mu1, max(-channel.Phi)), channel.mu2) + 0.5 * channel.gap() + 10 * vt; Elower = min(min(channel.mu1, min(-channel.Phi)), channel.mu2) - 0.5 * channel.gap() - 10 * vt; else: Eupper = channel.Eupper; Elower = channel.Elower; # string="Eupper and Elower %s %s " %(Eupper,Elower) # if (rank==0): writeout(string) E = arange(Elower, Eupper, channel.dE); arraydim = size(E) / sizeMPI; excess = size(E) - sizeMPI * arraydim if (rank < excess): channel.Elower = E[rank * (arraydim + 1)]; channel.Eupper = E[(rank + 1) * (arraydim + 1) - 1]; else: channel.Elower = E[(rank - excess) * arraydim + excess * (arraydim + 1)]; if (rank == (sizeMPI - 1)): channel.Eupper = E[size(E) - 1]; else: channel.Eupper = E[(rank - excess + 1) * arraydim - 1 + excess * (arraydim + 1)]; # string="Inizio rank %s %s %s" %(rank,channel.Elower,channel.Eupper) # writeout(string) channel.charge_T(); # writeout("Finito rank "),rank,channel.Elower,channel.Eupper; # I send the charge and the transmission coefficient if (rank != 0): temp = array(channel.charge); MPI.COMM_WORLD.Send([temp, MPI.DOUBLE], dest=0, tag=11); del temp; NPE = zeros(1, int); NPE[0] = int(ceil((channel.Eupper - channel.Elower) / channel.dE)) + 1; # size(arange(channel.Elower,channel.Eupper,channel.dE)); # int((channel.Eupper-channel.Elower)/channel.dE); # size(nonzero(channel.E)); temp = array(channel.T[:NPE[0]]); temp2 = array(channel.E[:NPE[0]]); # NPE[0]=size(temp); MPI.COMM_WORLD.Send([NPE, MPI.INT], dest=0, tag=10); MPI.COMM_WORLD.Send([temp, MPI.DOUBLE], dest=0, tag=12); MPI.COMM_WORLD.Send([temp2, MPI.DOUBLE], dest=0, tag=14); # writeout("Spedito rank "),rank del temp; del temp2; else: channel.charge = array(channel.charge); NNEE = int(ceil((channel.Eupper - channel.Elower) / channel.dE)) + 1; # size(arange(channel.Elower,channel.Eupper,channel.dE)); # NNEE=((channel.Eupper-channel.Elower)/channel.dE); # size(nonzero(channel.E)); channel.T = array(channel.T[:NNEE]); channel.E = array(channel.E[:NNEE]); for i in range(1, sizeMPI): temp = empty(size(channel.charge), dtype=double); MPI.COMM_WORLD.Recv([temp, MPI.DOUBLE], source=i, tag=11); channel.charge = channel.charge + temp; del temp; NPE = empty(1, int); MPI.COMM_WORLD.Recv([NPE, MPI.INT], source=i, tag=10); temp = empty(NPE[0], dtype=double); MPI.COMM_WORLD.Recv([temp, MPI.DOUBLE], source=i, tag=12); temp2 = empty(NPE[0], dtype=double); MPI.COMM_WORLD.Recv([temp2, MPI.DOUBLE], source=i, tag=14); channel.T = concatenate((channel.T, temp)); channel.E = concatenate((channel.E, temp2)); del temp; del temp2; # writeout("Preso rank "),i channel.charge = MPI.COMM_WORLD.bcast(channel.charge, root=0) channel.T = MPI.COMM_WORLD.bcast(channel.T, root=0) channel.E = MPI.COMM_WORLD.bcast(channel.E, root=0) channel.Eupper = Eupper_save; channel.Elower = Elower_save; # MPI.Finalize(); else: writeout("*********************************") writeout("MPI not installed on this machine") writeout("*********************************") return; def MPIze_kt(channel): if (mpi4py_loaded): kmin_save = channel.kmin; kmax_save = channel.kmax; vt = kboltz * channel.Temp / q; sizeMPI = MPI.COMM_WORLD.Get_size() if (mpi4py_loaded): rank = MPI.COMM_WORLD.Get_rank() channel.rank = rank; # I compute the maximum and the minimum # of the wave-vector kt kt_max = channel.kmax; kt_min = channel.kmin; if (rank == 0): writeout("kt_max, kt_min"), kt_max, kt_min k = arange(kt_min, kt_max, channel.dk); arraydim = size(k) / sizeMPI; channel.kmin = k[rank * arraydim]; if (rank == (sizeMPI - 1)): channel.kmax = k[size(k) - 1]; else: channel.kmax = k[(rank + 1) * arraydim - 1]; channel.charge_T(); NE = size(channel.E); # I send the charge and the transmission coefficient if (rank != 0): temp = array(channel.charge); MPI.COMM_WORLD.Send([temp, MPI.DOUBLE], dest=0, tag=11); del temp; temp = array(channel.T); MPI.COMM_WORLD.Send([temp, MPI.DOUBLE], dest=0, tag=12); del temp; else: channel.charge = array(channel.charge); channel.T = array(channel.T); for i in range(1, sizeMPI): temp = empty(size(channel.charge), dtype=double); MPI.COMM_WORLD.Recv([temp, MPI.DOUBLE], source=i, tag=11); channel.charge = channel.charge + temp; del temp; temp = empty(NE, dtype=double); MPI.COMM_WORLD.Recv([temp, MPI.DOUBLE], source=i, tag=12); channel.T = channel.T + temp; del temp; channel.charge = MPI.COMM_WORLD.bcast(channel.charge, root=0) channel.T = MPI.COMM_WORLD.bcast(channel.T, root=0) channel.kmin = kmin_save; channel.kmax = kmax_save; # MPI.Finalize(); else: writeout("*********************************") writeout("MPI not installed on this machine") writeout("*********************************") return; def set_gate(interface, gate): interface.boundary_conditions[gate.index] = gate.Ef; def solve_init(grid, interface, channel): # I get the rank if (mpi4py_loaded): channel.rank = MPI.COMM_WORLD.Get_rank() # I set the rank if (mpi4py_loaded): rank = MPI.COMM_WORLD.Get_rank() interface.rank = rank; else: interface.rank = 0; # I first give an estimation of the density of states # when computing the flat band potential in the regions # where the fixed_charge is not equal to zero, assuming # full ionization # I save the temperature, mu1, mu2, the potential, n, Nc, Eupper, Elower # temp_save=channel.Temp; mu1_save = channel.mu1; mu2_save = channel.mu2; Nc_save = channel.Nc; Eupper_save = channel.Eupper; Elower_save = channel.Elower; boundary_conditions_save = copy(interface.boundary_conditions); normpoisson_save = interface.normpoisson; interface.normpoisson = 1e-3; # I impose a low-temperature, so to compute the LDOS, instead of the # LDOS multiplied by the Fermi-Dirac name = grid.__class__.__name__; name_channel = channel.__class__.__name__; if (name == "grid3D"): if (name_channel == "multilayer_graphene"): channel.Nc = 8; x_save = channel.x y_save = channel.y z_save = channel.z channel.atoms_coordinates(); else: channel.Nc = 6; channel.Phi = zeros(channel.n * channel.Nc); channel.mu1 = 0; channel.mu2 = 0; vt = kboltz * channel.Temp / q; channel.Eupper = channel.gap() + 10 * vt; channel.Elower = 0; # I compute the NEGF # if (interface.modespace=="yes"): # channel.mode_charge_T(); # else: # if (interface.MPI=="yes"): # MPIze(channel); # else: channel.charge_T(); # N1D=abs(sum(channel.charge))/(6*channel.Nc)/(3*channel.acc)*1e9; Ec = channel.gap() * 0.5; N1D = sum(abs(channel.charge)) / (6 * channel.n) / (4 * channel.acc) * 1e9 * exp(Ec / vt); # return N1D # I compute the mean z: if atoms have a z-coordinate > zmean => I impose the electrochemical potential mu2 # if atoms have a z-coordinate < zmean => I impose the electrochemical potential mu1 zmean = (grid.zmin + grid.zmax) * 0.5; indexS = nonzero((abs(interface.fixed_charge) > 1e-20) & (grid.z3D < zmean)); indexD = nonzero((abs(interface.fixed_charge) > 1e-20) & (grid.z3D >= zmean)); potential = zeros(grid.Np); argoS = (abs(interface.fixed_charge[indexS]) * grid.surf[indexS, 5] / N1D); argoD = (abs(interface.fixed_charge[indexD]) * grid.surf[indexD, 5] / N1D); potential[indexS] = (vt * (log(exp(argoS) - 1)) + Ec) * sign(interface.fixed_charge[indexS]) + mu1_save; potential[indexD] = (vt * (log(exp(argoD) - 1)) + Ec) * sign(interface.fixed_charge[indexD]) + mu2_save; interface.boundary_conditions[indexS] = potential[indexS]; interface.boundary_conditions[indexD] = potential[indexD]; solve_Poisson(grid, interface); elif (name == "grid2D"): channel.Nc = 8; channel.Phi = zeros(channel.n * channel.Nc); channel.mu1 = 0; channel.mu2 = 0; vt = kboltz * channel.Temp / q; channel.Eupper = channel.gap() + 10 * vt; channel.Elower = 0; # I compute the NEGF # if (interface.modespace=="yes"): # channel.mode_charge_T(); # else: # if (interface.MPI_kt=="yes"): # MPIze_kt(channel); # else: channel.charge_T(); Ec = channel.gap() * 0.5; N1D = sum(abs(channel.charge)) / (8 * channel.n) / (8 * channel.acc) * 1e9 * exp(Ec / vt); # I compute the mean z: if atoms have a z-coordinate > zmean => I impose the electrochemical potential mu2 # if atoms have a z-coordinate < zmean => I impose the electrochemical potential mu1 ymean = (grid.ymin + grid.ymax) * 0.5; indexS = nonzero((abs(interface.fixed_charge) > 1e-20) & (grid.y2D < ymean)); indexD = nonzero((abs(interface.fixed_charge) > 1e-20) & (grid.y2D >= ymean)); potential = zeros(grid.Np); argoS = (abs(interface.fixed_charge[indexS]) / N1D); argoD = (abs(interface.fixed_charge[indexD]) / N1D); potential[indexS] = (vt * (log(exp(argoS) - 1)) + Ec) * sign(interface.fixed_charge[indexS]) + mu1_save; potential[indexD] = (vt * (log(exp(argoD) - 1)) + Ec) * sign(interface.fixed_charge[indexD]) + mu2_save; # potential[indexS]=Ec; # potential[indexD]=Ec; interface.boundary_conditions[indexS] = potential[indexS]; interface.boundary_conditions[indexD] = potential[indexD]; solve_Poisson(grid, interface); # going back to the old values channel.Nc = Nc_save channel.mu2 = mu2_save; channel.mu1 = mu1_save; channel.Eupper = Eupper_save; channel.Elower = Elower_save; interface.boundary_conditions = boundary_conditions_save; interface.normpoisson = normpoisson_save; if (name_channel == "multilayer_graphene"): channel.x = x_save channel.y = y_save channel.z = z_save del x_save, y_save, z_save # deleting the save variables del mu1_save, mu2_save, Nc_save, Eupper_save, Elower_save, boundary_conditions_save; return; def solve_self_consistent(grid, interface, channel): normad = 1e30; # Phiold=1.0*interface.Phi; interface.Phiold = interface.Phi.copy(); counter = 1; if (mpi4py_loaded): rank = MPI.COMM_WORLD.Get_rank() else: rank = 0; while (normad > interface.normd): # I pass the potential in correspondence of the # atoms of the material for which I compute the NEGF channel.Phi = interface.Phi[grid.swap] # I compute the NEGF # channel.Phi=zeros(size(grid.swap)); # savetxt("Phi.before",interface.Phi[grid.swap]); if (interface.modespace == "yes"): channel.mode_charge_T(); else: if (interface.MPI == "yes"): MPIze(channel); elif (interface.MPI_kt == "yes"): MPIze_kt(channel); else: channel.charge_T(); # savetxt("Phi.temp2",interface.Phi); # a=[channel.E,channel.T]; # savetxt("T.temp",transpose(a)); if (rank == 0): writeout("--------------------------------------------") string = " CURRENT = %s A/m" % (channel.current()); writeout(string); writeout("--------------------------------------------") # I pass back the free_charge term to # the 3D domain interface.free_charge[grid.swap] = channel.charge if (rank == 0): savetxt("ncar.ini", interface.free_charge); savetxt("Phi.ini", interface.Phi); # I solve Poisson solve_Poisson(grid, interface); # normad=sqrt(sum((interface.Phiold-interface.Phi)**2)); # Phiold=zeros(grid.Np); normad = max(abs(interface.Phiold - interface.Phi)) interface.Phi = interface.Phi + (interface.underel) * (interface.Phiold - interface.Phi) del interface.Phiold; # del Phiold; # Phiold=1.0*interface.Phi; interface.Phiold = interface.Phi.copy(); if (rank == 0): print() string = "Iteration # %s; ||Phi-Phiold||2 = %s" % (counter, normad) if (rank == 0): writeout(string) if (rank == 0): print() counter = counter + 1; if (counter > 600): return; def solve_Poisson(grid, interface): name = grid.__class__.__name__; if (name == "grid3D"): solvePoisson(grid, interface); elif (name == "grid2D"): solvePoisson2D(grid, interface); elif (name == "grid1D"): solvePoisson1D(grid, interface); interface.Phi = array(interface.Phi) return; def nonuniformgrid(argu): # This is a wrapper for the nonuniformgridmod function # so to convert both the argument and the output to numpy arrays # I convert the argument in an array argarr = array(argu); out = nonuniformgridmod(argarr); # I return a pyarray outarr = array(out); return outarr; # Fermi-Dirac Function def Fermi(x): return 1 / (1 + exp(x)); def delete_class(class_obj): del_class(class_obj); del class_obj; return; # This is the class for the nanotube class nanotube: acc = 0.144; def __init__(self, n, L): self.Nc = int(4 * (floor((floor(L / nanotube.acc) - 1) / 3)) + 2); self.n = n; self.Phi = zeros(n * self.Nc); self.Eupper = 1000.0; self.Elower = -1000.0; self.dE = 1e-3; self.thop = -2.7; self.eta = 1e-5; self.mu1 = 0; self.mu2 = 0; self.Temp = 300; self.contact = "doped"; self.E = zeros(int(NEmax)); self.T = zeros(int(NEmax)); self.charge = zeros(self.n * self.Nc); self.Nmodes = n; self.x = zeros(n * self.Nc); self.y = zeros(n * self.Nc); self.z = zeros(n * self.Nc); self.L = int(self.Nc / 2 + ((self.Nc - 1) - self.Nc * 0.5) * 0.5) * nanotube.acc; self.atoms_coordinates(); self.rank = 0; def gap(self): return abs(2 * self.acc * self.thop * pi / (self.n * sqrt(3) * self.acc)); def atoms_coordinates(self): CNT_atoms_coordinates(self); self.x = array(self.x); self.y = array(self.y); self.z = array(self.z); return; def charge_T(self): CNT_charge_T(self); self.E = array(self.E); self.T = array(self.T); self.charge = array(self.charge); return; def mode_charge_T(self): CNTmode_charge_T(self); self.E = array(self.E); self.T = array(self.T); self.charge = array(self.charge); return def current(self): vt = kboltz * self.Temp / q; E = self.E; T = self.T; arg = 2 * q * q / (2 * pi * hbar) * T * (Fermi((E - self.mu1) / vt) - Fermi((E - self.mu2) / vt)) * self.dE; return sum(arg); # This is the class for the nanoribbon class GNRphonon: def __init__(self, dimer): self.N = 1000; # number of points qx (longitudinal direction) while (((((self.N) - 1) % (dimer / 2)) != 0) | (((self.N) % 2) == 0)): (self.N) += 1; self.dimer = dimer; # numero dimer lines self.rank = 0; self.phi = 0.0; # channel potential (midgap) self.numberAC = 2; # number of AC modes of different simmetry considered (=2: LA+TA, =1: only LA) self.Ecutoff = 1.0; # cutoff energy self.delta = 2; # integer: it specifies the sampling along the kx direction self.deltak = 0; self.kyE = zeros(dimer); # transverse electron wavevector self.qy = zeros(dimer); # transverse phonon wavevector self.kx = zeros(self.N); # longitudinal electron wavevector self.qx = zeros(self.N); # longitudinal phonon wavevector self.qx0 = 0.0; # fixed value for qx (computation of graphene branches) self.qy0 = 0.0; # fixed value for qy (computation of graphene branches) self.kxup = 0; # maximum value for kx (computation of rates) self.kxdown = 0; # minimum value for kx (computation of rates) self.dim1 = self.N; self.dim2 = dimer; self.dim3 = 6; self.mmin = 0; self.mmax = dimer - 1; self.kxmin = 0; self.kxmax = 0; self.Phi_r1 = 39.87 * 10.0; # first neighbors self.Phi_ti1 = 17.28 * 10.0; self.Phi_to1 = 9.89 * 10.0; self.Phi_r2 = 7.29 * 10.0; # second neighbors self.Phi_ti2 = -4.61 * 10.0; self.Phi_to2 = -0.82 * 10.0; self.Phi_r3 = -2.64 * 10.0; # third neighbors self.Phi_ti3 = 3.31 * 10.0; self.Phi_to3 = 0.58 * 10.0; self.Phi_r4 = 0.10 * 10.0; # fourth neighbors self.Phi_ti4 = 0.79 * 10.0; self.Phi_to4 = -0.52 * 10.0; self.energyE = zeros((self.dim1, (2 * self.dim2))) # GNR electron curves self.energyP2D = zeros((self.dim1, (self.dim2 * self.dim3))) # GNR phonon subbranches self.minAC = zeros((self.dim2, 3)); # minimum of the acoustic subbranches self.Egraphene = zeros(self.dim3); # graphene self.rateAA = zeros((self.dim1, self.dim2)); self.rateAE = zeros((self.dim1, self.dim2)); self.rateOA = zeros((self.dim1, self.dim2)); self.rateOE = zeros((self.dim1, self.dim2)); self.Dac = 4.5 * (1.60219e-19); # deformation potential value (eV) self.temp = 300; # temperature (K) self.thop = 2.7; # hopping parameter (eV) self.aCC = 0.144e-9; # lattice constant (m) def electron_GNR(self): electron_GNR(self); self.kx = array(self.kx); self.kyE = array(self.kyE); self.energyE = array(self.energyE); return; def phonon_GNR(self): phonon_GNR(self); self.qx = array(self.qx); self.qy = array(self.qy); self.energyP2D = array(self.energyP2D); return; def phonon_graphene(self): phonon_graphene(self); self.Egraphene = array(self.Egraphene); return; def rateACABS(self): rateACABS(self); self.rateAA = array(self.rateAA); return; def rateACEM(self): rateACEM(self); self.rateAE = array(self.rateAE); return; def rateOPTABS(self): rateOPTABS(self); self.rateOA = array(self.rateOA); return; def rateOPTEM(self): rateOPTEM(self); self.rateOE = array(self.rateOE); return; # This is the class for the nanoribbon class nanoribbon: acc = 0.144; def __init__(self, n, L): self.Nc = int(4 * (int((int(L / nanoribbon.acc) - 1) / 3)) + 2); self.n = n; self.Phi = zeros(n * self.Nc); self.Eupper = 1000.0; self.Elower = -1000.0; self.dE = 1e-3; self.thop = -2.7; self.eta = 1e-5; self.mu1 = 0; self.mu2 = 0; self.Temp = 300; self.contact = "doped"; self.E = zeros(int(NEmax)); self.T = zeros(int(NEmax)); self.charge = zeros(self.n * self.Nc); self.defects = "no"; self.roughness = "no"; self.rank = 0; self.atoms_coordinates(); def atoms_coordinates(self): GNR_atoms_coordinates(self); self.x = array(self.x); self.y = array(self.y); self.z = array(self.z); return; def gap(self): return GNRgap(self); def charge_T(self): GNR_charge_T(self); self.E = array(self.E); self.T = array(self.T); self.charge = array(self.charge); return; def current(self): vt = kboltz * self.Temp / q; E = array(self.E); T = array(self.T); arg = 2 * q * q / (2 * pi * hbar) * T * (Fermi((E - self.mu1) / vt) - Fermi((E - self.mu2) / vt)) * self.dE return sum(arg); # This is the class for the graphene class graphene: acc = 0.144; n = 1; def __init__(self, L): self.Nc = int(4 * (floor((floor(L / graphene.acc) - 1) / 3))); self.Phi = zeros(self.Nc); self.Ei = zeros(self.Nc); self.Eupper = 1000.0; self.Elower = -1000.0; self.delta = sqrt(3) * graphene.acc; self.kmax = pi / self.delta; self.kmin = 0; self.dk = 0.1; self.dE = 1e-3; self.thop = -2.7; self.eta = 1e-8; self.mu1 = 0.0; self.mu2 = 0.0; self.Temp = 300; self.E = zeros(int(NEmax)); self.T = zeros(int(NEmax)); self.charge = zeros(self.Nc); self.rank = 0; self.atoms_coordinates(); self.gap(); self.T2D = "no" def atoms_coordinates(self): GNR_atoms_coordinates(self); self.y = array(self.z); self.x = zeros(size(self.y)); del self.z; return; def gap(self): return 0; def charge_T(self): # Number of slices and atoms slices = self.Nc; atoms = 1; # I define the vector of the k-wave vector kvect = arange(self.kmin, self.kmax, self.dk) # I start defining the Hamiltonian for the graphene flake h = zeros((2 * slices, 3), dtype=complex); h[0][0] = 1; for i in range(1, slices + 1): h[i][0] = i h[i][1] = i kk = 1; for ii in range(slices + 1, 2 * slices): if ((ii % 2) == 1): h[ii][0] = kk; h[ii][1] = kk + 1; h[ii][2] = self.thop; kk = kk + 1; # I then compute the charge and the T for each energy and k and perform the integral i = 0; k = self.kmin; H = Hamiltonian(atoms, slices) if (self.T2D == "yes"): EE = arange(self.Elower, self.Eupper, self.dE); kvect = arange(self.kmin, self.kmax + self.dk, self.dk); X, Y = meshgrid(EE, kvect); Z = zeros((size(EE), size(kvect))) while (k <= (self.kmax + self.dk * 0.5)): if (self.rank == 0): writeout("----------------------------------") string = " kx range: [%s,%s] " % (self.kmin, self.kmax); if (self.rank == 0): writeout(string) string = " iteration %s " % i; if (self.rank == 0): writeout(string); if (self.rank == 0): writeout("----------------------------------") flaggo = 0; kk = 1; # I fill the Hamiltonian for the actual wavevector k in the cycle for ii in range(slices + 1, 2 * slices): if ((ii % 2) == 0): h[ii][0] = kk; h[ii][1] = kk + 1; if ((flaggo % 2) == 0): h[ii][2] = self.thop + self.thop * exp(k * self.delta * 1j); else: h[ii][2] = self.thop + self.thop * exp(-k * self.delta * 1j); flaggo = flaggo + 1; kk = kk + 1; H.Eupper = self.Eupper; H.Elower = self.Elower; H.rank = self.rank; H.H = h H.dE = self.dE; H.Phi = self.Phi; H.Ei = -self.Phi; H.eta = self.eta; H.mu1 = self.mu1; H.mu2 = self.mu2; H.Egap = self.gap(); # I then compute T and the charge for the actual kx H.charge_T() # I sum up all the contribution if (i == 0): self.E = H.E; # the factor 2 is because I integrate over kx>0 self.T = H.T * (2 * self.dk / (2 * pi)); self.charge = H.charge * (2 * self.dk / (2 * pi)); else: # the factor 2 is because I integrate over kx>0 self.T = self.T + H.T * (2 * self.dk / (2 * pi)); self.charge = self.charge + H.charge * (2 * self.dk / (2 * pi)); if (self.T2D == "yes"): Z[:, i] = H.T[:size(EE)]; k = k + self.dk i = i + 1; if (self.T2D == "yes"): plt.imshow(Z, interpolation='bilinear', cmap=cm.gray, origin='lower', extent=[self.kmin, self.kmax, self.Elower, self.Eupper]) show() del H; self.E = array(self.E); self.T = array(self.T) * 1e9; self.charge = array(self.charge) * 1e9; del kvect, h; return; def current(self): vt = kboltz * self.Temp / q; E = array(self.E); T = array(self.T); arg = 2 * q * q / (2 * pi * hbar) * T * (Fermi((E - self.mu1) / vt) - Fermi((E - self.mu2) / vt)) * self.dE return sum(arg); # This is the class for the graphene bilayer class bilayer_graphene: acc = 0.144; acc_p = 0.35; n = 2; def __init__(self, L): self.Nc = int(4 * (floor((floor(L / bilayer_graphene.acc) - 1) / 3))); self.n = 2; self.Phi = zeros(bilayer_graphene.n * self.Nc); self.Ei = zeros(bilayer_graphene.n * self.Nc); self.Eupper = 1000.0; self.Elower = -1000.0; self.delta = sqrt(3) * bilayer_graphene.acc; self.kmax = pi / self.delta; self.kmin = 0; self.dk = 0.1; self.dE = 1e-3; self.thop = -2.7; self.tp = -0.35; self.eta = 1e-8; self.mu1 = 0.0; self.mu2 = 0.0; self.Temp = 300; self.E = zeros(int(NEmax)); self.T = zeros(int(NEmax)); self.charge = zeros(bilayer_graphene.n * self.Nc); self.rank = 0; self.atoms_coordinates(); self.gap(); self.T2D = "no" def atoms_coordinates(self): n_save = self.n; self.n = 1; GNR_atoms_coordinates(self); ydown = array(self.z); yup = ydown - self.acc * 0.5; NN = size(ydown); kkk = 0; self.y = zeros(2 * NN); for i in range(0, NN): self.y[kkk] = ydown[i]; self.y[kkk + 1] = yup[i]; kkk = kkk + 2; self.x = zeros(size(self.y)); i = linspace(0, size(self.y) - 1, size(self.y)) i_even = nonzero((i % 2) == 0); i_odd = nonzero((i % 2) == 1); self.x[i_even] = 0; self.x[i_odd] = bilayer_graphene.acc_p; del self.z, i, i_even, i_odd; self.n = n_save; return; def gap(self): # This is an rough exstimation of # the Energy gap: for sure this is # the largest attainable value, within # the pz tight-binding model return abs(self.tp); def charge_T(self): # Number of slices and atoms slices = self.Nc; atoms = self.n; # I define the vector of the k-wave vector kvect = arange(self.kmin, self.kmax, self.dk) # I start defining the Hamiltonian for the bilayer graphene h = zeros((4 * slices + 2 * (slices / 4) - 2, 3), dtype=complex); h[0][0] = 1; for i in range(1, 2 * slices + 1): h[i][0] = i h[i][1] = i h[i][2] = 0.0; # I then compute the charge and the T for each energy # and k and perform the integral i = 0; k = self.kmin; H = Hamiltonian(atoms, slices) if (self.T2D == "yes"): EE = arange(self.Elower, self.Eupper, self.dE); kvect = arange(self.kmin, self.kmax + self.dk, self.dk); X, Y = meshgrid(EE, kvect); Z = zeros((size(EE), size(kvect))) while (k <= (self.kmax + self.dk * 0.5)): if (self.rank == 0): writeout("----------------------------------") string = " kx range: [%s,%s] " % (self.kmin, self.kmax); if (self.rank == 0): writeout(string); string = " k: %s " % k; if (self.rank == 0): writeout(string); if (self.rank == 0): writeout("----------------------------------") # ------------------------------------------------- # BEGINNING OF THE HAMILTONIAN DEFINITION # FOR THE GRAPHENE BILAYER # ------------------------------------------------- # I work on the bottom graphene layer kk = 1; flaggo = 0; for ii in range(2 * slices + 1, 3 * slices): if ((ii % 2) == 1): h[ii][0] = kk; h[ii][1] = kk + 2; h[ii][2] = self.thop; kk = kk + 2; else: h[ii][0] = kk; h[ii][1] = kk + 2; if ((flaggo % 2) == 0): h[ii][2] = self.thop + self.thop * exp(k * self.delta * 1j); else: h[ii][2] = self.thop + self.thop * exp(-k * self.delta * 1j); kk = kk + 2; flaggo = flaggo + 1; # I work on the top graphene layer kk = 2; flaggo = 1; for ii in range(3 * slices, 4 * slices - 1): if ((ii % 2) == 0): h[ii][0] = kk; h[ii][1] = kk + 2; h[ii][2] = self.thop; kk = kk + 2; else: h[ii][0] = kk; h[ii][1] = kk + 2; if ((flaggo % 2) == 0): h[ii][2] = self.thop + self.thop * exp(k * self.delta * 1j); else: h[ii][2] = self.thop + self.thop * exp(-k * self.delta * 1j); kk = kk + 2; flaggo = flaggo + 1; # I now work on the perpendicular hopping parameter kk = 3; for ii in range(4 * slices - 1, 4 * slices + int(slices / 2) - 2): h[ii][0] = kk; h[ii][1] = kk + 3; h[ii][2] = self.tp; kk = kk + 4; # ------------------------------------------------- # END OF THE HAMILTONIAN # ------------------------------------------------- H.Eupper = self.Eupper; H.Elower = self.Elower; H.H = h H.rank = self.rank; H.dE = self.dE; H.Phi = self.Phi; ind_even = arange(0, size(H.Phi), 2); ind_odd = ind_even + 1; H.Ei[ind_even] = -(self.Phi[ind_even] + self.Phi[ind_odd]) * 0.5; H.Ei[ind_odd] = -(self.Phi[ind_even] + self.Phi[ind_odd]) * 0.5; H.Ei_flag = "no" H.eta = self.eta; H.mu1 = self.mu1; H.mu2 = self.mu2; H.Egap = self.gap(); # return H.H # I then compute T and the charge for the actual kx H.charge_T() # I sum up all the contribution if (i == 0): self.E = H.E; # the factor 2 is because I integrate over kx>0 self.T = H.T * (2 * self.dk / (2 * pi)); self.charge = H.charge * (2 * self.dk / (2 * pi)); # self.charge=H.charge; else: # The spin is taken into account in the integral for the current # the factor 2 is because I integrate over kx>0 self.T = self.T + H.T * (2 * self.dk / (2 * pi)); # 2 because I take into account # that I integrate over kx>0 self.charge = self.charge + H.charge * (2 * self.dk / (2 * pi)); if (self.T2D == "yes"): Z[:, i] = H.T[:size(EE)]; k = k + self.dk i = i + 1; if (self.T2D == "yes"): plt.imshow(Z, interpolation='bilinear', cmap=cm.gray, origin='lower', extent=[self.kmin, self.kmax, self.Elower, self.Eupper]) show() del H; self.E = array(self.E); self.T = array(self.T) * 1e9; self.charge = array(self.charge) * 1e9; # self.charge=array(self.charge); del kvect, h; return; def current(self): vt = kboltz * self.Temp / q; E = array(self.E); T = array(self.T); arg = 2 * q * q / (2 * pi * hbar) * T * (Fermi((E - self.mu1) / vt) - Fermi((E - self.mu2) / vt)) * self.dE return sum(arg); # This is the class for the general Hamiltonian class Hamiltonian: def __init__(self, n, Nc): self.Nc = Nc; self.n = n; self.x = zeros(n * self.Nc); self.y = zeros(n * self.Nc); self.z = zeros(n * self.Nc); self.Phi = zeros(n * self.Nc); self.Ei = zeros(n * self.Nc); self.Eupper = 1000.0; self.Elower = -1000.0; self.dE = 0.001; self.eta = 1e-8; self.mu1 = 0; self.mu2 = 0; self.Temp = 300; self.E = zeros(int(NEmax)); self.T = zeros(int(NEmax)); self.charge = zeros(n * self.Nc); self.Egap = 0; self.rank = 0; # if this flag is set to "yes" then Ei=-Phi self.Ei_flag = "yes" # The +1 will be then replaced by the number of orbitals per atoms in the nearest neighbourgh approximation # self.H=zeros((((Nc*n)*(Nc*n+1)/2),2+100+10)); def current(self): vt = kboltz * self.Temp / q; E = array(self.E); T = array(self.T); arg = 2 * q * q / (2 * pi * hbar) * T * (Fermi((E - self.mu1) / vt) - Fermi((E - self.mu2) / vt)) * self.dE return sum(arg); def charge_T(self): if (self.Ei_flag == "yes"): self.Ei = -self.Phi; H_charge_T(self); self.E = array(self.E); self.T = array(self.T); self.charge = array(self.charge); def gap(self): return 0.5; # This is the class for the zincblend structures # This is the class for the zincblend structures class Zincblend: def __init__(self, material, sqci, tilt, edge, zmax): self.material = material if self.material == 'Si': self.aux = [-2.15168, 4.22925, 19.11650, 13.78950, -1.95933, -4.24135, -1.52230, 3.02562, 3.15565, -2.28485, -0.80993, 4.10364, -1.51801, -1.35554, 2.38479, -1.68136, 2.58880, -1.81400, ] self.skparameters = array(self.aux, dtype=float) self.a0 = 5.431 self.flag = 0 if self.material == 'Ge': self.aux = [-1.95617, 5.30970, 19.29600, 13.58060, -1.39456, -3.56680, -2.01830, 2.73135, 2.68638, -2.64779, -1.12312, 4.28921, -1.73707, -2.00115, 2.10953, -1.32941, 2.56261, -1.95120 ] self.skparameters = array(self.aux, dtype=float) self.a0 = 5.6575 self.flag = 0 if self.material == 'InAs': self.aux = [-5.500420, 4.151070, -0.581930, 6.971630, 19.710590, 19.941380, 13.031690, 13.307090, -1.694350, -4.210450, -2.426740, -1.159870, 2.598230, 2.809360, 2.067660, 0.937340, -2.268370, -2.293090, -0.899370, -0.488990, 4.310640, -1.288950, -1.731410, -1.978420, 2.188860, 2.456020, -1.584610, 2.717930, -0.505090 ] self.skparameters = array(self.aux, dtype=float) self.a0 = 6.0583 self.flag = 1 self.sqci = sqci; self.tilt = tilt; self.edge = edge; self.zmax = zmax; layers = int(4 * self.zmax / (self.a0) + 1) if (rank == 0): writeout("prima="), layers if layers % 4 == 1: layers -= 1 elif layers % 4 == 2: layers -= 2 elif layers % 4 == 3: layers += 1 if layers % 4 != 0: writeout("INTERRUPT AT WIRE"), material, parameters[0][i] writeout("NUMBER OF SLICES NOT MULTIPLE OF 4") quit() layers += 8 self.L = (self.a0 / 4) * (layers - 1) self.n_aux = int((4 * self.edge / self.a0) * (4 * self.edge / self.a0)) + 10; # forse se ci si leva il +10 non cambia nulla (provare) self.Nc_aux = int((4 * self.zmax / self.a0)) + 10; self.zmax = self.L self.atoms = zeros(1); self.slices = zeros(1); self.max = zeros(1); self.rank = 0; self.deltae = 20.0; self.ics = zeros(self.n_aux * self.Nc_aux); self.ipsilon = zeros(self.n_aux * self.Nc_aux); self.zeta = zeros(self.n_aux * self.Nc_aux); self.H_aux = zeros((self.Nc_aux * self.n_aux) * ((self.Nc_aux * self.n_aux + 1) / 2) * (2 + 100)); self.H = zeros((((self.Nc_aux * self.n_aux) * (self.Nc_aux * self.n_aux + 1) / 2), 2 + 100)); self.Zinc(); self.n = int(self.atoms[0]); self.Nc = int(self.slices[0]); self.x = self.ics; self.y = self.ipsilon; self.z = self.zeta; self.Phi = zeros(self.n * self.Nc); self.Ei = zeros(self.n * self.Nc); self.Eupper = 1000.0; self.Elower = -1000.0; self.dE = 0.001; self.eta = 1e-8; self.mu1 = 0; self.mu2 = 0; self.Temp = 300; self.E = zeros(int(NEmax)); self.T = zeros(int(NEmax)); self.charge = zeros(self.n * self.Nc); self.Egap = 0; def gap(self): return 0; def current(self): vt = kboltz * self.Temp / q; E = array(self.E); T = array(self.T); arg = 2 * q * q / (2 * pi * hbar) * T * (Fermi((E - self.mu1) / vt) - Fermi((E - self.mu2) / vt)) * self.dE return sum(arg); def charge_T(self): H_charge_T(self); self.E = array(self.E); self.T = array(self.T); self.charge = array(self.charge); return; def Zinc(self): writeout(self.skparameters) # quit() Zinc(self); # self.zeta = array(self.zeta); # ics1 = [] # ipsilon1 = [] # zeta1 = [] # i = 0 # j = 0 # k = 0 # temp = self.zeta[0]- self.a0 # zeta1.append(temp) # aux = [] # for ln in self.zeta: # if (self.zeta[i]- self.a0) == temp: # #temp = self.zeta[i]- self.a0 # i = i + 1 # j = j + 1 # else: # zeta1.append(self.zeta[i]- self.a0) # temp = self.zeta[i]- self.a0 # i = i + 1 # aux.append(j) # j=1; # # print aux # print self.zeta # for i in range (100): # print zeta1 # print 'slices =', int(self.slices[0]) # print 'atoms =', int(self.atoms[0]) # zeta2 = [] # for i in range (int(self.slices[0])): # for j in range(int(self.atoms[0])): # zeta2.append(zeta1[i]) # # print 'ECCOLO' # print zeta2 # self.zeta = zeta2 # print self.zeta H_back = [] i = 0 j = 0 bound = int(self.max[0] / 102) writeout(bound) for i in range(bound): row = [] for j in range(102): row.append(self.H_aux[j + 102 * i]) H_back.append(row) # print row del row # print H_back[40] new = array(H_back, dtype=complex) self.H = new # print self.H[17] # quit() return; def ciccione(vettore, n, Nc, z, a0): ics1 = [] ipsilon1 = [] zeta1 = [] i = 0 j = 0 k = 0 temp = z[0] - a0 z1 = []; z1.append(temp) aux = [] for ln in arange(0, n * Nc): if (z[i] - a0) == temp: # temp = self.zeta[i]- self.a0 i = i + 1 j = j + 1 else: z1.append(z[i] - a0) temp = z[i] - a0 i = i + 1 aux.append(j) j = 1; # TODO: the following sum is equal to the total number of # atoms, really present in the simulated nanowire # # Ntot_atoms=sum(aux[:Nc]) # # array2 = [] for i in range(Nc): k = 0; if (aux[i] == n): for j in arange(sum(aux[:i]), sum(aux[:i]) + n): array2.append(vettore[j]) else: for j in arange(sum(aux[:i]), sum(aux[:i]) + aux[i]): array2.append(vettore[j]); for j in arange(sum(aux[:i]) + aux[i], sum(aux[:i]) + n): array2.append(0) return array(array2, dtype=float); # This is the class for graphene within the top-of-the-barrier model class graphene_TOB: if (newton_loaded == "false"): print ("scipy not installed") print ("Cannot go on") exit(0); def __init__(self, C1, C2, Vg1, Vg2, Vds, pot_ini): self.Vg1 = Vg1; self.Vg2 = Vg2; self.Vds = Vds; self.mu1 = 0; self.mu2 = -Vds; self.Temp = 300; self.thop = 2.7 self.acc = 0.144e-9 self.Pot_c = pot_ini; self.C1 = C1; self.C2 = C2; def current(self): vF = 3 * self.acc * self.thop * q / 2 / hbar; E = linspace(-3, 3, 6000) dE = E[1] - E[0]; T = 2 * q * abs(E + self.Pot_c) / pi / hbar / vF vt = kboltz * self.Temp / q; arg = 2 * q * q / (2 * pi * hbar) * T * (Fermi((E - self.mu1) / vt) - Fermi((E - self.mu2) / vt)) * dE; return sum(arg) def rho(self): vF = 3 * self.acc * self.thop * q / 2 / hbar; return 0.5 * (-2 * (kboltz * self.Temp) ** 2 / pi / hbar ** 2 / vF ** 2 * Fermi_Integrals(1, ( self.mu1 + self.Pot_c) / (kboltz * self.Temp / q)) + 2 * ( kboltz * self.Temp) ** 2 / pi / hbar ** 2 / vF ** 2 * Fermi_Integrals(1, -( self.mu1 + self.Pot_c) / (kboltz * self.Temp / q))) + 0.5 * ( -2 * (kboltz * self.Temp) ** 2 / pi / hbar ** 2 / vF ** 2 * Fermi_Integrals(1, ( self.mu2 + self.Pot_c) / (kboltz * self.Temp / q)) + 2 * ( kboltz * self.Temp) ** 2 / pi / hbar ** 2 / vF ** 2 * Fermi_Integrals(1, -( self.mu2 + self.Pot_c) / (kboltz * self.Temp / q))) def charge_I(self): Pot_c = self.Pot_c; Vg1 = self.Vg1; Vg2 = self.Vg2; C1 = self.C1; C2 = self.C2; Temp = self.Temp; mu1 = self.mu1; mu2 = self.mu2; self.Pot_c = newton(eq1, self.Pot_c, fprime=None, args=(Vg1, Vg2, C1, C2, Temp, mu1, mu2), tol=1e-15, maxiter=10000) Id = self.current(); return self.Pot_c, Id, self.rho() def eq1(Pot_c, Vg1, Vg2, C1, C2, Temp, mu1, mu2): vF = 3 * 0.144e-9 * q * 2.7 / 2 / hbar; charge_S = -2 * (kboltz * Temp) ** 2 / pi / hbar ** 2 / vF ** 2 * Fermi_Integrals(1, (mu1 + Pot_c) / ( kboltz * Temp / q)) + 2 * (kboltz * Temp) ** 2 / pi / hbar ** 2 / vF ** 2 * Fermi_Integrals(1, -( mu1 + Pot_c) / (kboltz * Temp / q)); charge_D = -2 * (kboltz * Temp) ** 2 / pi / hbar ** 2 / vF ** 2 * Fermi_Integrals(1, (mu2 + Pot_c) / ( kboltz * Temp / q)) + 2 * (kboltz * Temp) ** 2 / pi / hbar ** 2 / vF ** 2 * Fermi_Integrals(1, -( mu2 + Pot_c) / (kboltz * Temp / q)); charge = (charge_S + charge_D) * 0.5 return C1 * (Vg1 - Pot_c) + C2 * (Vg2 - Pot_c) + q * charge; class grid3D: def __init__(self, *args): # I initialize the rank if (mpi4py_loaded): rank = MPI.COMM_WORLD.Get_rank() else: rank = 0; # args is a tuple and len(args) return # the number of arguments # the number of arguments can be either 3 or 6 # if 3, the first three inputs are the grid along the # x,y,z axis # if 6, the first three inputs are the grid along the # x,y,z axis, while the last three inputs are the x-y-z # coordinates of the atoms if (len(args) > 3): xg = around(args[0], 5); yg = around(args[1], 5); zg = around(args[2], 5); xC = around(args[3], 5); yC = around(args[4], 5); zC = around(args[5], 5); npC = size(xC); else: xg = around(args[0], 5); yg = around(args[1], 5); zg = around(args[2], 5); npC = 0; # I create the grid if (npC != 0): # find the unique values for xC,yC and zC uxC = unique(xC); uyC = unique(yC); uzC = unique(zC); # I find the only the additional values which are in xg and not in uxC # the same for the other axis exg = intersect1d(setxor1d(xg, uxC), xg); eyg = intersect1d(setxor1d(yg, uyC), yg); ezg = intersect1d(setxor1d(zg, uzC), zg); if (npC != 0): x = unique(concatenate((uxC, xg), 0)); y = unique(concatenate((uyC, yg), 0)); z = unique(concatenate((uzC, zg), 0)); else: x = xg; y = yg; z = zg; # I start to compute the volume associated to each grid point X, Y = meshgrid(x, y); # Number of points nx = size(x); ny = size(y); nxy = nx * ny; nz = size(z); Np = nxy * nz; string = "Number of grid points %s " % Np if (rank == 0): writeout(string) #################################################################################### # I create the Volume elements using the sorted grid xd = avervect(x); yd = avervect(y); zd = avervect(z); X, Y = meshgrid(x, y); X, Z = meshgrid(x, z); XD, ZD = meshgrid(xd, zd); surfxz = XD * ZD; YD, ZD = meshgrid(yd, zd); surfyz = YD * ZD; XD, YD = meshgrid(xd, yd); surfxy = XD * YD; # The volumes for the sorted grid are finally computed a, b = meshgrid((XD * YD).flatten(), zd); dVes = abs((a * b).flatten()); if (rank == 0): writeout("Volumes computed") #################################################################################### # I create the dist vectors dists = zeros((Np, 6)); # I take care of dists[:,1] i = arange(0, nx); ip1 = i + 1; ip1[nx - 1] = nx - 1; xdistp = x[ip1] - x[i]; dists[:, 1] = meshgrid(meshgrid(xdistp, y)[0].flatten(), z)[0].flatten(); del ip1, xdistp; # I take care of dists[:,0] im1 = i - 1; im1[0] = 0; xdistm = x[i] - x[im1]; dists[:, 0] = meshgrid(meshgrid(xdistm, y)[0].flatten(), z)[0].flatten(); del i, im1, xdistm; # I take care of dists[:,3] j = arange(0, ny); jp1 = j + 1; jp1[ny - 1] = ny - 1; ydistp = y[jp1] - y[j]; dists[:, 3] = meshgrid(meshgrid(x, ydistp)[1].flatten(), z)[0].flatten(); del jp1, ydistp; # I take care of dists[:,2] jm1 = j - 1; jm1[0] = 0; ydistm = y[j] - y[jm1]; dists[:, 2] = meshgrid(meshgrid(x, ydistm)[1].flatten(), z)[0].flatten(); del j, jm1, ydistm; # I take care of dists[:,5] k = arange(0, nz); kp1 = k + 1; kp1[nz - 1] = nz - 1; zdistp = z[kp1] - z[k]; dists[:, 5] = meshgrid(meshgrid(x, y)[1].flatten(), zdistp)[1].flatten(); del kp1, zdistp; # I take care of dists[:,4] km1 = k - 1; km1[0] = 0; zdistm = z[k] - z[km1]; dists[:, 4] = meshgrid(meshgrid(x, y)[1].flatten(), zdistm)[1].flatten(); del k, km1, zdistm; #################################################################################### # Now I work on the surfaces surfs = zeros((Np, 6)); # surf 0 XD, YD = meshgrid(xd, yd) ##YD[:,0]=0; a, b = meshgrid(YD.flatten(), zd) surfs[:, 0] = abs((a * b).flatten()); # surf 1 XD, YD = meshgrid(xd, yd) ##YD[:,nx-1]=0; a, b = meshgrid(YD.flatten(), zd) surfs[:, 1] = abs((a * b).flatten()); # surf 2 XD, YD = meshgrid(xd, yd) ##XD[0,:]=0; a, b = meshgrid(XD.flatten(), zd) surfs[:, 2] = abs((a * b).flatten()); # surf 3 XD, YD = meshgrid(xd, yd) ##XD[ny-1,:]=0; a, b = meshgrid(XD.flatten(), zd) surfs[:, 3] = abs((a * b).flatten()); # surf 4 XD, YD = meshgrid(xd, yd) a, b = meshgrid((XD * YD).flatten(), z) surfs[:, 4] = abs(a.flatten()); ##surfs[0:nx*ny-1,4]=0; # surf 5 XD, YD = meshgrid(xd, yd) a, b = meshgrid((XD * YD).flatten(), z) surfs[:, 5] = abs(a.flatten()); ##surfs[(nz-1)*(nx*ny):nz*nx*ny,5]=0; if (rank == 0): writeout("Surfaces created") #################################################################################### # Now I have to go back to the unsorted grid. # I create the sorted and unsorted coordinates # vectors as a function of the index # sorted positions x3Ds = meshgrid(meshgrid(x, y)[0].flatten(), z)[0].flatten(); y3Ds = meshgrid(meshgrid(x, y)[1].flatten(), z)[0].flatten(); z3Ds = meshgrid(meshgrid(x, y)[1].flatten(), z)[1].flatten(); # unsorted positions if (npC != 0): xtemp = unique(concatenate((uxC, xg), 0)); ytemp = unique(concatenate((uyC, yg), 0)); ztemp = unique(concatenate((uzC, zg), 0)); if (rank == 0): writeout("I work on the swap array"); NpC = size(xC); swap = array(arange(0, NpC), int); for i in range(0, NpC): ixC = nonzero(xtemp == xC[i])[0][0]; iyC = nonzero(ytemp == yC[i])[0][0]; izC = nonzero(ztemp == zC[i])[0][0]; ii = ixC + iyC * nx + izC * nx * ny; swap[i] = ii; #################################################################################### # I now fill the attributes of the istance of the grid class self.x3D = x3Ds; self.y3D = y3Ds self.z3D = z3Ds self.dVe = dVes; self.surf = surfs; self.dist = dists; self.nx = nx; self.ny = ny; self.nz = nz; self.Np = Np; self.gridx = x; self.gridy = y; self.gridz = z; if (npC != 0): self.swap = swap; self.xmin = min(x); self.xmax = max(x); self.ymin = min(y); self.ymax = max(y); self.zmin = min(z); self.zmax = max(z); return; class grid2D: def __init__(self, *args): # I initialize the rank if (mpi4py_loaded): rank = MPI.COMM_WORLD.Get_rank() else: rank = 0; # args is a tuple and len(args) return # the number of arguments # the number of arguments can be either 2 or 4 # if 2, the first two inputs are the grid along the # x,y axis # if 4, the first two inputs are the grid along the # x,y axis, while the last two inputs are the x-y # coordinates of the atoms if (len(args) > 2): xg = around(args[0], 5); yg = around(args[1], 5); xC = around(args[2], 5); yC = around(args[3], 5); npC = size(xC); else: xg = around(args[0], 5); yg = around(args[1], 5); npC = 0; # I create the grid if (npC != 0): # find the unique values for xC,yC and zC uxC = unique(xC); uyC = unique(yC); # I find the only the additional values which are in xg and not in uxC # the same for the other axis exg = intersect1d(setxor1d(xg, uxC), xg); eyg = intersect1d(setxor1d(yg, uyC), yg); if (npC != 0): x = unique(concatenate((uxC, xg), 0)); y = unique(concatenate((uyC, yg), 0)); else: x = xg; y = yg; # Number of points nx = size(x); ny = size(y); nxy = nx * ny; Np = nxy; string = "Number of grid points %s " % Np if (rank == 0): writeout(string) #################################################################################### # I create the Volume elements using the sorted grid xd = avervect(x); yd = avervect(y); X, Y = meshgrid(x, y); XD, YD = meshgrid(xd, yd); surfxy = XD * YD; if (rank == 0): writeout("Volumes computed") #################################################################################### # I create the dist vectors dists = zeros((Np, 4)); # I take care of dists[:,1] i = arange(0, nx); ip1 = i + 1; ip1[nx - 1] = nx - 1; xdistp = x[ip1] - x[i]; dists[:, 1] = meshgrid(xdistp, y)[0].flatten(); del ip1, xdistp; # I take care of dists[:,0] im1 = i - 1; im1[0] = 0; xdistm = x[i] - x[im1]; dists[:, 0] = meshgrid(xdistm, y)[0].flatten() del i, im1, xdistm; # I take care of dists[:,3] j = arange(0, ny); jp1 = j + 1; jp1[ny - 1] = ny - 1; ydistp = y[jp1] - y[j]; dists[:, 3] = meshgrid(x, ydistp)[1].flatten() del jp1, ydistp; # I take care of dists[:,2] jm1 = j - 1; jm1[0] = 0; ydistm = y[j] - y[jm1]; dists[:, 2] = meshgrid(x, ydistm)[1].flatten(); del j, jm1, ydistm; #################################################################################### # Now I work on the surface XD, YD = meshgrid(xd, yd) surfs = (XD * YD).flatten(); if (rank == 0): writeout("Surface created") #################################################################################### # Now I have to go back to the unsorted grid. # I create the sorted and unsorted coordinates # vectors as a function of the index # sorted positions x2Ds = meshgrid(x, y)[0].flatten(); y2Ds = meshgrid(x, y)[1].flatten(); # unsorted positions if (npC != 0): xtemp = unique(concatenate((uxC, xg), 0)); ytemp = unique(concatenate((uyC, yg), 0)); if (rank == 0): writeout("I work on the swap array"); NpC = size(xC); swap = array(arange(0, NpC), int); for i in range(0, NpC): ixC = nonzero(xtemp == xC[i])[0][0]; iyC = nonzero(ytemp == yC[i])[0][0]; ii = ixC + iyC * nx; swap[i] = ii; #################################################################################### # I now fill the attributes of the istance of the grid class self.x2D = x2Ds; self.y2D = y2Ds self.surf = surfs; self.dist = dists; self.nx = nx; self.ny = ny; self.Np = Np; self.gridx = x; self.gridy = y; if (npC != 0): self.swap = swap; self.xmin = min(x); self.xmax = max(x); self.ymin = min(y); self.ymax = max(y); return; class grid1D: def __init__(self, *args): # I initialize the rank if (mpi4py_loaded): rank = MPI.COMM_WORLD.Get_rank() else: rank = 0; # args is a tuple and len(args) return # the number of arguments # the number of arguments can be either 1 or 2 # if 1, the first input is the grid along the # x axis # if 2, the first input is the grid along the # x axis, while the second input is the x # coordinates of the atoms if (len(args) > 1): xg = around(args[0], 5); xC = around(args[1], 5); # attenzione: modificato il 28/5/2011 npC = size(xC); else: xg = around(args[0], 5); npC = 0; # I create the grid if (npC != 0): # find the unique values for xC uxC = unique(xC); # I find the only the additional values which are in xg and not in uxC exg = intersect1d(setxor1d(xg, uxC), xg); if (npC != 0): x = unique(concatenate((uxC, xg), 0)); else: x = xg; # Number of points nx = size(x); Np = nx; if (rank == 0): print(("Number of grid points ", Np)) #################################################################################### # I create the dist vectors dists = zeros((Np, 4)); # I take care of dists[:,1] i = arange(0, nx); ip1 = i + 1; ip1[nx - 1] = nx - 1; xdistp = x[ip1] - x[i]; dists[:, 1] = xdistp; del ip1, xdistp; # I take care of dists[:,0] im1 = i - 1; im1[0] = 0; xdistm = x[i] - x[im1]; dists[:, 0] = xdistm; del i, im1, xdistm; #################################################################################### # Now I have to go back to the unsorted grid. # I create the sorted and unsorted coordinates # vectors as a function of the index if (npC != 0): xtemp = unique(concatenate((uxC, xg), 0)); if (rank == 0): print("I work on the swap array"); NpC = size(xC); swap = array(arange(0, NpC), int); for i in range(0, NpC): ixC = nonzero(xtemp == xC[i])[0][0]; ii = ixC; swap[i] = ii; #################################################################################### # I now fill the attributes of the istance of the grid class self.x = x; self.dist = dists; self.nx = nx; self.Np = Np; self.gridx = x; if (npC != 0): self.swap = swap; self.xmin = min(x); self.xmax = max(x); return; class region: def __init__(self, *args): self.name = "none"; self.geometry = "hex"; self.eps = 3.9; self.rho = 0; if (args[0] == "hex"): if (len(args) > 5): self.xmin = args[1]; self.xmax = args[2]; self.ymin = args[3]; self.ymax = args[4]; self.zmin = args[5]; self.zmax = args[6]; elif ((len(args) > 3) & (len(args) <= 5)): self.xmin = args[1]; self.xmax = args[2]; self.ymin = args[3]; self.ymax = args[4]; elif (len(args) <= 3): self.xmin = args[1]; self.xmax = args[2]; def set_material(self, material): if (material.lower() == "sio2"): self.eps = 3.9; self.mel = 0.5; self.met = 0.5; self.Egap = 8.05; self.chi = 0.95; self.mhole = 0.42 if (material.lower() == "si"): self.eps = 11.8; self.mel = 0.916; self.met = 0.19; self.Egap = 1.124519; self.chi = 4.05; self.mhole = 0.549; class gate: def __init__(self, *args): self.geometry = "hex"; self.Ef = 0; self.wf = 4.1; if (args[0] == "hex"): if (len(args) > 5): self.xmin = args[1]; self.xmax = args[2]; self.ymin = args[3]; self.ymax = args[4]; self.zmin = args[5]; self.zmax = args[6]; elif ((len(args) > 3) & (len(args) <= 5)): self.xmin = args[1]; self.xmax = args[2]; self.ymin = args[3]; self.ymax = args[4]; elif (len(args) <= 3): self.xmin = args[1]; self.xmax = args[2]; if (args[0] == "cyl"): self.xc = args[1]; self.yc = args[2]; self.radius = args[3]; self.geometry = "cyl" if (args[0] == "trapz"): self.xmin = args[1]; self.xmax = args[2]; self.y1 = args[3]; self.z1 = args[4]; self.y2 = args[5]; self.z2 = args[6]; self.y3 = args[7]; self.z3 = args[8]; self.y4 = args[9]; self.z4 = args[10]; self.geometry = "trapz" class interface3D: def __init__(self, *args): # I set the rank if (mpi4py_loaded): rank = MPI.COMM_WORLD.Get_rank() self.rank = rank; else: self.rank = 0; # I compute the number of arguments (classes) Narg = size(args); # I first find the index of the class grid igrid = -10; for i in range(0, Narg): name = args[i].__class__.__name__ if (name == "grid3D"): igrid = i; # If no grid class is specified I exit if (igrid == -10): writeout("ERROR: grid not passed to structure") return; # I create the arrays to be used self.eps = zeros(args[igrid].Np); # I create the vector, where the boundary conditions # are specified: # if 2000 : inner point # if 1001 : Neumann 1 # if 1002 : Neumann 2 # if 1003 : Neumann 3 # if 1004 : Neumann 4 # if 1005 : Neumann 5 # if 1006 : Neumann 6 # if <= 1000: Fermi level of the gate # I start defining all the points as inner points self.boundary_conditions = 2000 * ones(args[igrid].Np); ############################################################################################### # Now I impose the Neumann Boundary conditions on # the surfaces delimiting the 3D domain ############################################################################################### # I take care of Neumann1 indexNeu1 = nonzero(args[igrid].x3D == min(args[igrid].gridx)); self.boundary_conditions[indexNeu1] = 1001; # I take care of Neumann2 indexNeu2 = nonzero(args[igrid].x3D == max(args[igrid].gridx)); self.boundary_conditions[indexNeu2] = 1002; # I take care of Neumann3 indexNeu3 = nonzero(args[igrid].y3D == min(args[igrid].gridy)); self.boundary_conditions[indexNeu3] = 1003; # I take care of Neumann4 indexNeu4 = nonzero(args[igrid].y3D == max(args[igrid].gridy)); self.boundary_conditions[indexNeu4] = 1004 # I take care of Neumann5 and Neumann6 indexNeu5 = nonzero(args[igrid].z3D == min(args[igrid].gridz)); self.boundary_conditions[indexNeu5] = 1005; indexNeu6 = nonzero(args[igrid].z3D == max(args[igrid].gridz)); self.boundary_conditions[indexNeu6] = 1006; ############################################################################################### # I check to which class the args belongs to # and I proceed accordingly ############################################################################################### for i in range(0, Narg): name = args[i].__class__.__name__ # I check if the class is a gate if (name == "gate"): # I check if the geometry is an hexahedron if (args[i].geometry == "hex"): # I find the indexes of the 3D grid which belongs to the gate # with hex geometry index = nonzero((args[i].xmin <= args[igrid].x3D) & (args[i].xmax >= args[igrid].x3D) & (args[i].ymin <= args[igrid].y3D) & (args[i].ymax >= args[igrid].y3D) & (args[i].zmin <= args[igrid].z3D) & (args[i].zmax >= args[igrid].z3D)); self.boundary_conditions[index] = args[i].Ef; args[i].index = index; if (args[i].geometry == "trapz"): # I find the indexes of the 2D grid which belongs to the gate # with trapezoidal geometry if (args[i].y2 == args[i].y1): m1 = (args[i].z2 - args[i].z1) / (args[i].y2 - args[i].y1 + 1e-3) else: m1 = (args[i].z2 - args[i].z1) / (args[i].y2 - args[i].y1) if (args[i].y3 == args[i].y2): m2 = (args[i].z3 - args[i].z2) / (args[i].y3 - args[i].y2 + 1e-3) else: m2 = (args[i].z3 - args[i].z2) / (args[i].y3 - args[i].y2) if (args[i].y4 == args[i].y3): m3 = (args[i].z4 - args[i].z3) / (args[i].y4 - args[i].y3 + 1e-3) else: m3 = (args[i].z4 - args[i].z3) / (args[i].y4 - args[i].y3) if (args[i].y4 == args[i].y1): m4 = (args[i].z4 - args[i].z1) / (args[i].y4 - args[i].y1 + 1e-3) else: m4 = (args[i].z4 - args[i].z1) / (args[i].y4 - args[i].y1) index = nonzero((args[igrid].z3D >= (m1 * (args[igrid].y3D - args[i].y1) + args[i].z1)) & (args[igrid].z3D >= (m2 * (args[igrid].y3D - args[i].y2) + args[i].z2)) & (args[igrid].z3D <= (m3 * (args[igrid].y3D - args[i].y3) + args[i].z3)) & (args[igrid].z3D <= (m2 * (args[igrid].y3D - args[i].y1) + args[i].z1)) & (args[i].xmin <= args[igrid].x3D) & (args[i].xmax >= args[igrid].x3D)); self.boundary_conditions[index] = args[i].Ef; args[i].index = index; elif (name == "region"): if (args[i].geometry == "hex"): # I find the indexes of the 3D grid which belongs to the gate # with hex geometry index = nonzero((args[i].xmin <= args[igrid].x3D) & (args[i].xmax >= args[igrid].x3D) & (args[i].ymin <= args[igrid].y3D) & (args[i].ymax >= args[igrid].y3D) & (args[i].zmin <= args[igrid].z3D) & (args[i].zmax >= args[igrid].z3D)); self.eps[index] = args[i].eps; elif (name == "grid3D"): # dummy line name; else: writeout("ERROR: Unrecognized input") return; ############################################################################################### # I fill the field of the interface class ############################################################################################### # self.boundary already filled # self.eps already filled self.Phiold = zeros(args[igrid].Np) self.Phi = zeros(args[igrid].Np); self.normpoisson = 1e-3; self.tolldomn = 1e-1; self.underel = 0; self.free_charge = zeros(args[igrid].Np); self.fixed_charge = zeros(args[igrid].Np); self.normd = 5e-2; self.modespace = "no" self.MPI = "no" self.MPI_kt = "no" return; class interface2D: def __init__(self, *args): # I set the rank if (mpi4py_loaded): rank = MPI.COMM_WORLD.Get_rank() self.rank = rank; else: self.rank = 0; # I compute the number of arguments (classes) Narg = size(args); # I first find the index of the class grid igrid = -10; for i in range(0, Narg): name = args[i].__class__.__name__ if (name == "grid2D"): igrid = i; # If no grid class is specified I exit if (igrid == -10): writeout("ERROR: grid not passed to structure") return; # I create the arrays to be used self.eps = zeros(args[igrid].Np); # I create the vector, where the boundary conditions # are specified: # if 2000 : inner point # if 1001 : Neumann 1 # if 1002 : Neumann 2 # if 1003 : Neumann 3 # if 1004 : Neumann 4 # if <= 1000: Fermi level of the gate # I start defining all the points as inner points self.boundary_conditions = 2000 * ones(args[igrid].Np); ############################################################################################### # Now I impose the Neumann Boundary conditions on # the surfaces delimiting the 3D domain ############################################################################################### # I take care of Neumann1 indexNeu1 = nonzero(args[igrid].x2D == min(args[igrid].gridx)); self.boundary_conditions[indexNeu1] = 1001; # I take care of Neumann2 indexNeu2 = nonzero(args[igrid].x2D == max(args[igrid].gridx)); self.boundary_conditions[indexNeu2] = 1002; # I take care of Neumann3 indexNeu3 = nonzero(args[igrid].y2D == min(args[igrid].gridy)); self.boundary_conditions[indexNeu3] = 1003; # I take care of Neumann4 indexNeu4 = nonzero(args[igrid].y2D == max(args[igrid].gridy)); self.boundary_conditions[indexNeu4] = 1004 ############################################################################################### # I check to which class the args belongs to # and I proceed accordingly ############################################################################################### for i in range(0, Narg): name = args[i].__class__.__name__ # I check if the class is a gate if (name == "gate"): # I check if the geometry is an hexahedron if (args[i].geometry == "hex"): # I find the indexes of the 2D grid which belongs to the gate # with hex geometry index = nonzero((args[i].xmin <= args[igrid].x2D) & (args[i].xmax >= args[igrid].x2D) & (args[i].ymin <= args[igrid].y2D) & (args[i].ymax >= args[igrid].y2D)); self.boundary_conditions[index] = args[i].Ef; args[i].index = index; # I check if the geometry is an cylindrical if (args[i].geometry == "cyl"): # I find the indexes of the 2D grid which belongs to the gate # with cyl geometry index = nonzero(((args[i].xc - args[igrid].x2D) ** 2 + (args[i].yc - args[igrid].y2D) ** 2) < ( args[i].radius) ** 2); self.boundary_conditions[index] = args[i].Ef; args[i].index = index; elif (name == "region"): if (args[i].geometry == "hex"): # I find the indexes of the 2D grid which belongs to the gate # with hex geometry index = nonzero((args[i].xmin <= args[igrid].x2D) & (args[i].xmax >= args[igrid].x2D) & (args[i].ymin <= args[igrid].y2D) & (args[i].ymax >= args[igrid].y2D)); self.eps[index] = args[i].eps; elif (name == "grid2D"): # dummy line name; else: writeout("ERROR: Unrecognized input") return; ############################################################################################### # I fill the field of the interface class ############################################################################################### # self.boundary already filled # self.eps already filled self.Phiold = zeros(args[igrid].Np) self.Phi = zeros(args[igrid].Np); self.normpoisson = 1e-3; self.tolldomn = 1e-1; self.underel = 0; self.free_charge = zeros(args[igrid].Np); self.fixed_charge = zeros(args[igrid].Np); self.normd = 5e-2; self.modespace = "no" self.MPI = "no" self.MPI_kt = "no" return; class interface1D: def __init__(self, *args): # I set the rank if (mpi4py_loaded): rank = MPI.COMM_WORLD.Get_rank() self.rank = rank; else: self.rank = 0; # I compute the number of arguments (classes) Narg = size(args); # I first find the index of the class grid igrid = -10; for i in range(0, Narg): name = args[i].__class__.__name__ if (name == "grid1D"): igrid = i; # If no grid class is specified I exit if (igrid == -10): print("ERROR: grid not passed to structure") return; # I create the arrays to be used self.eps = zeros(args[igrid].Np); self.mel = zeros(args[igrid].Np); self.met = zeros(args[igrid].Np); self.chi = zeros(args[igrid].Np); self.Egap = zeros(args[igrid].Np); self.fixed_charge = zeros(args[igrid].Np); self.mhole = zeros(args[igrid].Np); # I create the vector, where the boundary conditions # are specified: # if 2000 : inner point # if 1001 : Neumann 1 # if 1002 : Neumann 2 # if <= 1000: Fermi level of the gate # I start defining all the points as inner points self.boundary_conditions = 2000 * ones(args[igrid].Np); ############################################################################################### # Now I impose the Neumann Boundary conditions on # the surfaces delimiting the 3D domain ############################################################################################### # I take care of Neumann1 indexNeu1 = nonzero(args[igrid].x == min(args[igrid].gridx)); self.boundary_conditions[indexNeu1] = 1001; # I take care of Neumann2 indexNeu2 = nonzero(args[igrid].x == max(args[igrid].gridx)); self.boundary_conditions[indexNeu2] = 1002; ############################################################################################### # I check to which class the args belongs to # and I proceed accordingly ############################################################################################### for i in range(0, Narg): name = args[i].__class__.__name__ # I check if the class is a gate if (name == "gate"): # I check if the geometry is an hexahedron if (args[i].geometry == "hex"): # I find the indexes of the 2D grid which belongs to the gate # with hex geometry index = nonzero((args[i].xmin <= args[igrid].x) & (args[i].xmax >= args[igrid].x)); self.boundary_conditions[index] = args[i].Ef; args[i].index = index; elif (name == "region"): if (args[i].geometry == "hex"): dist = avervect(args[igrid].x) * 1e-9; # I find the indexes of the 2D grid which belongs to the gate # with hex geometry index = nonzero((args[i].xmin <= args[igrid].x) & (args[i].xmax >= args[igrid].x)); self.eps[index] = args[i].eps; self.mel[index] = args[i].mel; self.met[index] = args[i].met; self.chi[index] = args[i].chi; self.Egap[index] = args[i].Egap; self.fixed_charge[index] = args[i].rho * dist[index]; self.mhole[index] = args[i].mhole; elif (name == "grid1D"): # dummy line name; else: print("ERROR: Unrecognized input") return; ############################################################################################### # I fill the field of the interface class ############################################################################################### # self.boundary already filled # self.eps already filled self.Phiold = zeros(args[igrid].Np) self.Phi = zeros(args[igrid].Np); self.normpoisson = 1e-3; self.tolldomn = 1e-1; self.underel = 0; self.free_charge = zeros(args[igrid].Np); self.normd = 5e-2; self.modespace = "no" self.MPI = "no" self.MPI_kt = "no" return; def dope_reservoir(grid, interface, channel, molar_fraction, bbox): #bbox is the bounding box of the reservoir name = grid.__class__.__name__; if (name == "grid3D"): xmin = bbox[0]; xmax = bbox[1]; ymin = bbox[2]; ymax = bbox[3]; zmin = bbox[4]; zmax = bbox[5]; index = nonzero((xmin <= grid.x3D[grid.swap]) & (xmax >= grid.x3D[grid.swap]) & (ymin <= grid.y3D[grid.swap]) & (ymax >= grid.y3D[grid.swap]) & (zmin <= grid.z3D[grid.swap]) & (zmax >= grid.z3D[grid.swap])) interface.fixed_charge[grid.swap[index]] = molar_fraction; elif (name == "grid2D"): xmin = bbox[0]; xmax = bbox[1]; ymin = bbox[2]; ymax = bbox[3]; index = nonzero((xmin <= grid.x2D[grid.swap]) & (xmax >= grid.x2D[grid.swap]) & (ymin <= grid.y2D[grid.swap]) & (ymax >= grid.y2D[grid.swap])) interface.fixed_charge[grid.swap[index]] = molar_fraction / channel.delta * 1e9; elif (name == "grid1D"): xmin = bbox[0]; xmax = bbox[1]; index = nonzero((xmin <= grid.x[grid.swap]) & (xmax >= grid.x[grid.swap])); interface.fixed_charge[grid.swap[index]] = molar_fraction / (channel.deltaz * channel.deltay) * 1e18; # MODIFICATO IL 6/6/2011: aggiunto il deltay e deltaz return index; class Device: def __init__(self): self.Nregions = 1; self.regions = []; self.E = zeros(int(NEmax)); def test(self): return self.E; def test_var_args(farg, *args): writeout("formal arg:"), size(args) for arg in args: writeout("another arg:"), arg def avervect(x): # This function compute the length of # the Voronoi segment of a one-dimensional array x nx = size(x); xd = zeros(nx); xini = x[0]; xd[0] = abs(x[0] - x[1]) * 0.5; for i in range(1, nx - 1): xd[i] = abs((x[i + 1] - x[i - 1]) * 0.5); xd[nx - 1] = abs(x[nx - 1] - x[nx - 2]) * 0.5 return xd; def save_format_xyz(outputfile, x, y, z, atom): if sys.version > '3': import subprocess; else: import subprocess out = [x * 10, y * 10, z * 10] fp = open(outputfile, "w"); fp.write(str(size(x))); fp.write("\n"); fp.write("\n"); for i in range(0, size(x)): string = "%s %s %s %s" % (atom, out[0][i], out[1][i], out[2][i]); fp.write(string); fp.write(" "); fp.write("\n"); fp.close() return; """def convert_pdb(filename,thop): fp=open(filename,"r"); hh=[]; atoms=0; i=0; x=[]; y=[]; z=[]; h=[]; h.append([1,0,0]); for line in fp: hh.append(line); atoms=atoms+(hh[i].split()).count('HETATM'); if (((hh[i].split()).count('HETATM')==1)|((hh[i].split()).count('ATOM')==1)): x.append((hh[i].split())[5]); y.append((hh[i].split())[6]); z.append((hh[i].split())[7]); h.append([int((hh[i].split())[1]),int((hh[i].split())[1]),0]); if ((hh[i].split()).count('CONECT')==1): a=(hh[i].split()); NPV=size(a)-1 for j in range(0,NPV): a1=int(a[1]); if (a1<int(a[j+1])): h.append([a1,int(a[j+1]),thop]) if ((hh[i].split()).count('CRYST1')==1): a=(hh[i].split()); if (double(a[1])>=100): deltax=0.0; else: deltax=double(a[1])/10.0; if (double(a[2])>=100): deltay=0.0; else: deltay=double(a[2])/10.0; if (double(a[3])>=100): deltaz=0.0; else: deltaz=double(a[3])/10.0; i=i+1; fp.close() H=array(h,dtype(complex)); x=array(x,dtype(float))/10.0; y=array(y,dtype(float))/10.0; z=array(z,dtype(float))/10.0; return H,x,y,z,deltax,deltay,deltaz;""" def create_H_from_xyz(x, y, z, orbitals, onsite, thop, d_bond, Nbond): # WE ASSUME THAT: # # 1) TRANSPORT IS IN THE Z DIRECTION # 2) THE STRUCTURE IS COMPOSED BY THE SAME TYPE OF ATOMS # 3) ALONG THE Z-DIRECTION THE STRUCTURE IS PERIODIC WITH PERIOD EQUAL TO 4 SLICES # # I find the minimum and maximum coordinates at the border # so to take care of the passivation of the atoms at the borders xmin = min(x); xmax = max(x); ymin = min(y); ymax = max(y); zmin = min(z); zmax = max(z); # I compute the number of slices (ASSUMPTION 2) Nc = int(size(unique(z))); # I have already computed n at the beginning # n=int(size(nonzero(z==zmin))); # I compute the number of atoms in the first 4 slices temp = unique(z); Natom_slices = size(nonzero(z <= temp[3])); del temp; # I check the maximum number of atoms on each slice; u = unique(z); Nuz = size(u); n = -1; for i in range(0, Nuz): nnew = size(nonzero(z == u[i])); if (nnew >= n): n = nnew; del i; # Now I start doing though stuff # I fill x,y and z with dummy atoms # If it is a dummy atom, the coordinate is equal to dummy_coord dummy_coord = 10000; xa = []; ya = []; za = []; k = 0; for i in range(0, Nuz): # print ya nnew = size(nonzero(z == u[i])); for j in range(0, nnew): xa.append(x[k]); ya.append(y[k]); za.append(z[k]); k = k + 1; if (nnew < n): for j in range(nnew, n): xa.append(dummy_coord); ya.append(dummy_coord); za.append(dummy_coord); # k=k+1; del x, y, z, u, i x = array(xa, dtype(float)); y = array(ya, dtype(float)); z = array(za, dtype(float)); # del xa,ya,za Np = size(x); Ncol_max = 10; NN = zeros((Np, Ncol_max), dtype(int)); border = [] # I first find the Nearest Neighbour for i in range(0, Np): ind = nonzero((sqrt((x - x[i]) ** 2 + (y - y[i]) ** 2 + (z - z[i]) ** 2) <= d_bond) & ( sqrt((x - x[i]) ** 2 + (y - y[i]) ** 2 + (z - z[i]) ** 2) > 1e-10))[0]; if (size(ind) > Ncol_max): print() writeout("ERROR IN create_H_from_xyz subroutine in NanoTCAD_ViDES.py file") writeout("Use a larger value for Ncol_max") print() exit(0); # print i NN[i, 0] = i + 1; NN[i, 1:size(ind) + 1] = ind + 1; NPV = size(nonzero(NN[i, :])) - 1; if (NPV < Nbond): border.append(i); # Now I work on the Hamiltonian atoms = 0; i = 0; h = []; # I fill the h list with the number of orbitals ll = [orbitals, 0]; fill = zeros(orbitals ** 2); h.append(ll + list(fill)) del ll, i # I take care of the diagonal elements for i in range(0, Np): if ((x[i] < dummy_coord)): if (orbitals > 1): # (ASSUMPTION 1) if i in border: xfn = zeros(4); yfn = zeros(4); zfn = zeros(4); if (z[i] == zmin): NPV = size(nonzero(NN[i + 4 * n, :])) - 1; xfn = x[NN[i + n * 4, 1:NPV + 1] - 1]; yfn = y[NN[i + n * 4, 1:NPV + 1] - 1]; zfn = z[NN[i + n * 4, 1:NPV + 1] - 1]; xp = x[i + n * 4]; yp = y[i + n * 4]; zp = z[i + n * 4]; elif (z[i] == zmax): NPV = size(nonzero(NN[i - 4 * n, :])) - 1; xfn = x[NN[i - n * 4, 1:NPV + 1] - 1]; yfn = y[NN[i - n * 4, 1:NPV + 1] - 1]; zfn = z[NN[i - n * 4, 1:NPV + 1] - 1]; xp = x[i - n * 4]; yp = y[i - n * 4]; zp = z[i - n * 4]; else: NPV = size(nonzero(NN[i, :])) - 1; xfn = x[NN[i, 1:NPV + 1] - 1]; yfn = y[NN[i, 1:NPV + 1] - 1]; zfn = z[NN[i, 1:NPV + 1] - 1]; xp = x[i]; yp = y[i]; zp = z[i]; deltae = 20.0; tempM = Sipassivation(xp, yp, zp, NPV, xfn, yfn, zfn, deltae); # print tempM # print x[i],y[i],z[i] # print xfn # print yfn # print zfn # exit(0); B = zeros((10, 10)); B[:4, :4] = tempM.reshape(4, 4); h.append([i + 1, i + 1] + list((diag(onsite) + B).flatten())); # h.append([i+1,i+1]+list((diag(onsite)).flatten())); del B, tempM, xfn, yfn, zfn; else: h.append([i + 1, i + 1] + list((diag(onsite)).flatten())); else: h.append([i + 1, i + 1] + list(fill)); else: # If the atom is dummy then I mark it with the 77777 value # Right now it works only for one orbital h.append([i + 1, i + 1] + list(77777 * ones(orbitals ** 2))); # I take care of the off-diagonal elements for i in range(0, Np): NPV = size(nonzero(NN[i, :])) - 1; for j in range(0, NPV): a1 = int(NN[i, 0]); if (a1 < int(NN[i, j + 1])): if (orbitals > 1): # I compute the cosine module = sqrt(((double(x[a1 - 1]) - double(x[int(NN[i, j + 1]) - 1])) ** 2) + ( double(y[a1 - 1]) - double(y[int(NN[i, j + 1]) - 1])) ** 2 + ( double(z[a1 - 1]) - double(z[int(NN[i, j + 1]) - 1])) ** 2); cosx = (-double(x[a1 - 1]) + double(x[int(NN[i, j + 1]) - 1])) / module; cosy = (-double(y[a1 - 1]) + double(y[int(NN[i, j + 1]) - 1])) / module; cosz = (-double(z[a1 - 1]) + double(z[int(NN[i, j + 1]) - 1])) / module; # print a1,int(NN[i,j+1]),cosx,cosy,cosz,module # input=hstack((array([cosx,cosy,cosy]),thop)); # print input # matrix_thop=Simatrix(input); matrix_thop = Simatrix(cosx, cosy, cosz, thop); # print matrix_thop # print "----------------" h.append([a1, int(NN[i, j + 1])] + list(matrix_thop)); else: h.append([a1, int(NN[i, j + 1]), thop]) H = array(h, dtype=complex); return H, n, Nc, x, y, z; def get_xyz_from_file(filename): fp = open(filename, "r"); xa = [] ya = [] za = [] for line in fp: if (size(line.split()) > 3): xa.append((line.split())[1]); ya.append((line.split())[2]); za.append((line.split())[3]); x = array(xa, dtype(float)); y = array(ya, dtype(float)); z = array(za, dtype(float)); del xa, ya, za return x, y, z; def convert_pdb(filename, orbitals, thop): # ASSUMPTION: ALL THE ATOMS ARE OF THE SAME MATERIAL # I first read the atoms coordinates hh = []; deltax = 0; deltay = 0; deltaz = 0; x = []; y = []; z = []; i = 0; fp = open(filename, "r"); for line in fp: hh.append(line); if (((hh[i].split()).count('HETATM') == 1) | ((hh[i].split()).count('ATOM') == 1)): # ATOM_TYPE=(hh[i].split())[2]; x.append((hh[i].split())[5]); y.append((hh[i].split())[6]); z.append((hh[i].split())[7]); i = i + 1; fp.close() del hh; # Now I work on the Hamiltonian hh = []; atoms = 0; i = 0; h = []; # I fill the h list with the number of orbitals ll = [orbitals, 0]; fill = zeros(orbitals ** 2); h.append(ll + list(fill)) del ll # I fill the rest of the h list fp = open(filename, "r"); for line in fp: hh.append(line); atoms = atoms + (hh[i].split()).count('HETATM'); if (((hh[i].split()).count('HETATM') == 1) | ((hh[i].split()).count('ATOM') == 1)): if (orbitals > 1): h.append([int((hh[i].split())[1]), int((hh[i].split())[1])] + list((diag(onsite)).flatten())); else: h.append([int((hh[i].split())[1]), int((hh[i].split())[1])] + list(fill)); if ((hh[i].split()).count('CONECT') == 1): a = (hh[i].split()); NPV = size(a) - 1 for j in range(0, NPV): a1 = int(a[1]); if (a1 < int(a[j + 1])): if (orbitals > 1): # I compute the cosine module = sqrt(((double(x[a1 - 1]) - double(x[int(a[j + 1]) - 1])) ** 2) + ( double(y[a1 - 1]) - double(y[int(a[j + 1]) - 1])) ** 2 + ( double(z[a1 - 1]) - double(z[int(a[j + 1]) - 1])) ** 2); cosx = (double(x[a1 - 1]) - double(x[int(a[j + 1]) - 1])) / module; cosy = (double(y[a1 - 1]) - double(y[int(a[j + 1]) - 1])) / module; cosz = (double(z[a1 - 1]) - double(z[int(a[j + 1]) - 1])) / module; cosx = 1; cosy = 1; cosz = 1; input = hstack((array([cosx, cosy, cosy]), thop)); matrix_thop = Simatrix(input); h.append([a1, int(a[j + 1])] + list(matrix_thop)); else: h.append([a1, int(a[j + 1]), thop]) if ((hh[i].split()).count('CRYST1') == 1): a = (hh[i].split()); if (double(a[1]) >= 100): deltax = 0.0; else: deltax = double(a[1]) / 10.0; if (double(a[2]) >= 100): deltay = 0.0; else: deltay = double(a[2]) / 10.0; if (double(a[3]) >= 100): deltaz = 0.0; else: deltaz = double(a[3]) / 10.0; i = i + 1; fp.close() H = array(h, dtype(complex)); x = array(x, dtype(float)) / 10.0; y = array(y, dtype(float)) / 10.0; z = array(z, dtype(float)) / 10.0; return H, x, y, z, deltax, deltay, deltaz; def Hamiltonian_per(H, x, y, z, deltax, deltay, deltaz, aCC, thop, k): Np = size(x); Hnew = H.copy(); conn_per = [] for ii in range(0, Np): xc = x[ii]; yc = y[ii]; zc = z[ii]; # Here I compare with 1.05*aCC in order to take into account numerical tollerances indp = nonzero(sqrt((x - xc + deltax) ** 2 + (y - yc + deltay) ** 2 + (z - zc + deltaz) ** 2) < aCC * 1.05)[ 0] + 1; indm = nonzero(sqrt((x - xc - deltax) ** 2 + (y - yc - deltay) ** 2 + (z - zc - deltaz) ** 2) < aCC * 1.05)[ 0] + 1; if (size(indp) > 0): for j in range(0, size(indp)): conn_per.append([ii + 1, indp[j]]); if (size(indm) > 0): for j in range(0, size(indm)): conn_per.append([ii + 1, indm[j]]); del ii Nconn = len(conn_per); for ii in range(Nconn): ind = nonzero((H[:, 0] == conn_per[ii][0]) & (H[:, 1] == conn_per[ii][1]))[0] if (size(ind) > 0): if (deltax > 0): segno = sign(x[int(abs(H[ind, 0])) - 1] - x[int(abs(H[ind, 1])) - 1]); Hnew[ind, 2] = H[ind, 2] + thop * exp(-segno * k * deltax * 1j); elif (deltay > 0): segno = sign(y[int(abs(H[ind, 0])) - 1] - y[int(abs(H[ind, 1])) - 1]); Hnew[ind, 2] = H[ind, 2] + thop * exp(-segno * k * deltay * 1j); else: segno = sign(z[int(abs(H[ind, 0])) - 1] - z[int(abs(H[ind, 1])) - 1]); Hnew[ind, 2] = H[ind, 2] + thop * exp(-segno * k * deltaz * 1j); else: if (conn_per[ii][0] < conn_per[ii][1]): if (deltax > 0): segno = sign(x[conn_per[ii][0] - 1] - x[conn_per[ii][1] - 1]); temp = array([conn_per[ii][0], conn_per[ii][1], thop * exp(-segno * k * deltax * 1j)]); elif (deltay > 0): segno = sign(y[conn_per[ii][0] - 1] - y[conn_per[ii][1] - 1]); temp = array([conn_per[ii][0], conn_per[ii][1], thop * exp(-segno * k * deltay * 1j)]); else: segno = sign(z[conn_per[ii][0] - 1] - z[conn_per[ii][1] - 1]); temp = array([conn_per[ii][0], conn_per[ii][1], thop * exp(-segno * k * deltaz * 1j)]); Hnew = vstack([Hnew, temp]); del ii return Hnew class nanoribbon_fast_ohmic: acc = 0.144; def __init__(self, n, L): self.Nc = int(4 * (floor((floor(L / nanoribbon_fast_ohmic.acc) - 1) / 3))); self.n = n; self.Phi = zeros(n * self.Nc); self.Eupper = 1000.0; self.Elower = -1000.0; self.dE = 1e-3; self.thop = -2.7; self.eta = 1e-8; self.mu1 = 0; self.mu2 = 0; self.Temp = 300; self.E = zeros(int(NEmax)); self.T = zeros(int(NEmax)); self.charge = zeros(self.n * self.Nc); self.rank = 0; self.atoms_coordinates(); self.defects_list = [] self.onsite_E = -1.5; def atoms_coordinates(self): GNR_atoms_coordinates(self); self.x = array(self.x); self.y = array(self.y); self.z = array(self.z); return; def gap(self): return GNRgap(self); def charge_T(self): M = self.Nc; N = self.n; t = self.thop; Energy = 0.0 Ene = 0.0 p = 0.0 d = 0.0 orbitals = [1, 0] hamiltonian = [] zeroes = [0, 0, 0, 0] ene = [Energy, 0, 0, Ene] coupling1 = [t, 0, 0, p] coupling2 = [t * 1.12, 0, 0, p] orbitals = orbitals + zeroes hamiltonian.append(orbitals) for j in range(M): for i in range(N): n = i + 1 + j * N p = [n, n] p = p + ene hamiltonian.append(p) for j in range(1, M - 1, +4): for i in range(1, N): n = i + 1 + j * N m = i + (j + 1) * N p = [n, m] p = p + coupling1 hamiltonian.append(p) # hamiltonian.append([m, n, t, p, d]) for j in range(3, M - 1, +4): for i in range(0, N - 1): n = i + 1 + j * N m = i + 2 + (j + 1) * N p = [n, m] p = p + coupling1 hamiltonian.append(p) # hamiltonian.append([m, n, t, p, d]) # nell'if ripristinare il fattore t*1.12 for j in range(0, M - 1, +4): for i in range(N): n = i + 1 + j * N m = i + 1 + (j + 1) * N if i == 0: p = [n, m] p = p + coupling2 hamiltonian.append(p) # hamiltonian.append([m, n, t*1.12, p, d]) else: p = [n, m] p = p + coupling1 hamiltonian.append(p) # hamiltonian.append([m, n, t, p, d]) for j in range(1, M - 1, +4): for i in range(N): n = i + 1 + j * N m = i + 1 + (j + 1) * N p = [n, m] p = p + coupling1 hamiltonian.append(p) # hamiltonian.append([m, n, t, p, d]) # nell'if ripristinare il fattore t*1.12 for j in range(2, M - 1, +4): for i in range(N): n = i + 1 + j * N m = i + 1 + (j + 1) * N if i == (N - 1): p = [n, m] p = p + coupling2 hamiltonian.append(p) # hamiltonian.append([m, n, t*1.12, p, d]) else: p = [n, m] p = p + coupling1 hamiltonian.append(p) # hamiltonian.append([m, n, t, p, d]) for j in range(3, M - 1, +4): for i in range(N): n = i + 1 + j * N m = i + 1 + (j + 1) * N p = [n, m] p = p + coupling1 hamiltonian.append(p) # hamiltonian.append([m, n, t, p, d]) H = Hamiltonian(N, M) # I work on the defects ind = array(self.defects_list, dtype=int); H.H = array(hamiltonian, dtype=complex) H.H[ind, 2] = self.onsite_E; H.Eupper = self.Eupper; H.Elower = self.Elower; H.rank = self.rank; H.dE = self.dE; H.Phi = self.Phi; H.Ei = -self.Phi; H.eta = self.eta; H.mu1 = self.mu1; H.mu2 = self.mu2; H.Egap = self.gap(); H.charge_T() self.E = array(H.E); self.T = array(H.T); self.charge = array(H.charge); del hamiltonian, H return; def current(self): vt = kboltz * self.Temp / q; E = array(self.E); T = array(self.T); arg = 2 * q * q / (2 * pi * hbar) * T * (Fermi((E - self.mu1) / vt) - Fermi((E - self.mu2) / vt)) * self.dE return sum(arg); # This is the class for the solution of the 1D drift-diffusion class multisubband1D: def __init__(self, nx, ny, Neig): self.ny = ny; self.nx = nx; self.x = zeros(nx); self.y = zeros(ny); self.Phi = zeros(nx * self.ny); self.Ei = zeros(nx * self.ny); self.Egap = zeros(nx * self.ny); self.Temp = 300; self.charge = zeros(nx * self.ny); self.rank = 0; self.Neig = Neig; self.Psi = zeros((nx * ny, Neig)); self.eig = zeros((ny, Neig)); self.mass = zeros((nx, ny)); self.mu = 100e-4 * ones(self.ny); self.genric = zeros(self.ny); self.n1d = zeros(self.ny); self.ecs = zeros(self.ny); self.charge_left_contact = 0; self.charge_right_contact = 0; self.tolljay = 1e-3; # This is the class for the solution of the QM 1D class QM1D: def __init__(self, nx, Neig, gridx, p=None, charge_T=None): if charge_T is not None: self.charge_T = types.MethodType(charge_T, self); self.nx = nx; self.x = zeros(nx); self.ny = 1; ny = 1; self.Phi = zeros(nx * self.ny); self.Ei = zeros(nx * self.ny); self.Temp = 300; self.charge = zeros(nx * self.ny); self.rank = 0; self.Neig = Neig; self.Psi = zeros((nx * ny, Neig)); self.eig = zeros((ny, Neig)); if p is not None: self.Egap = p.Egap; self.massl = p.mel self.masst = p.met; self.massh = p.mhole self.chi = p.chi self.mass = p.mel; else: self.Egap = zeros(nx * self.ny) self.massl = zeros(nx * self.ny) self.masst = zeros(nx * self.ny) self.massh = zeros(nx * self.ny) self.chi = zeros(nx * self.ny) self.mass = zeros(nx * self.ny) self.Ef = 0; self.x = gridx; self.ecs = zeros(self.ny); def charge_T(self): del self.charge self.charge = zeros(self.nx * self.ny); self.Ei = -self.Phi; # I compute the confined electrons dist = avervect(self.x) # self.Ei=4.05-self.Phi-self.chi-self.Egap*0.5 self.mass = self.massl; solve_schroedinger_1D(self); vt = self.Temp * kboltz / q; for i in range(0, self.Neig): self.charge = self.charge - 2 * dist * 1e-9 * ( self.Psi[:, i]) ** 2 * self.masst * m0 * kboltz * self.Temp / pi / hbar ** 2 * log( 1 + exp(-(self.eig[0, i] - self.Ef) / vt)); self.mass = self.masst; solve_schroedinger_1D(self); vt = self.Temp * kboltz / q; for i in range(0, self.Neig): self.charge = self.charge - 4 * dist * 1e-9 * ( self.Psi[:, i]) ** 2 * self.massl * m0 * kboltz * self.Temp / pi / hbar ** 2 * log( 1 + exp(-(self.eig[0, i] - self.Ef) / vt)); # I now add the holes for i in range(0, size(self.charge)): self.charge[i] = self.charge[i] + dist[i] * 1e-9 * (2 / sqrt(pi)) * 2 * ( vt / (2 * pi) * (self.massh[i] * m0 / hbar) * (q / hbar)) ** 1.5 * fphalf( (self.Ei[i] - self.Egap[i] * 0.5 - self.Ef) / vt) return; def current(self): return 0;
# Copyright (c) 2013, Frappe and contributors # For license information, please see license.txt from __future__ import unicode_literals import frappe OUTBOUND_SUFFIX = "Outbound" KARIGAR_SUFFIX = "Karigar" INBOUND_SUFFIX = "Inbound" SPACE = " " def execute(filters=None): columns, data = [], [] #items_code_start item_list = [] if filters.get("group_wise") == "Item": columns = get_columns(filters) if filters and filters.get("item_filter"): item_list = [filters.get("item_filter")] else: item_list = get_all_items_list() # print "sur_len",len(item_list) for item in item_list: # print "sur_item",item item_row_pass_through_data = get_item_row_pass_through_data(item) # forming item ow day data for all procces 3 wh data.append(item_row_pass_through_data) if filters.get("group_wise") == "Item Group": columns = get_columns(filters) item_group_list = [] if filters and filters.get("ig_filter"): item_group_list = [filters.get("ig_filter")] else: item_group_list = get_all_item_group_list() # print "sur_len",len(item_list) for item_group in item_group_list: item_group_row_pass_through_data = get_item_group_row_pass_through_data(item_group) data.append(item_group_row_pass_through_data) return columns, data #for single item column names will be choosed according to item choosed ,choosen item will be querying against manufacture method child doc to fetch method name #fetched method will be qerying against mmd to get unique processs (asumming each item has one method) def get_columns(filters): columns = [] column_process_list = get_process_list_for_columns(filters) #for single item column_keys_list = get_process_column_key_list (column_process_list) range_temp = 3 + (len(column_keys_list) ) for col in range(range_temp): columns.append("") columns[0] = { "label": "Item", "fieldname": "item_code", "options":"Item", "fieldtype": "Link", "width": 160 } columns[1] = { "label": "Item Group", "fieldname": "item_group", "options": "Item Group", "fieldtype": "Link", "width": 160 } columns[2] = { "label": "Manufacturing Method", "fieldname": "manufacturing_method", "options": "Pch Manufacturing Method", "fieldtype": "Link", "width": 160 } last_col = 2 for column_key in column_keys_list: columns[last_col + 1] = { "label": column_key, "fieldname": column_key, "width": 160 } last_col += 1 #print "columns",columns return columns #return processes in process order ac to item from Pch Manufacturing Method Details def get_process_ac_to_item(item) : method_name = frappe.db.get_value("Pch Manufacturing Method Child", {"item_made": item},"parent") #print "method_name", method_name process_dic = frappe.db.sql("""select DISTINCT pch_process from `tabPch Manufacturing Method Details` where pch_method=%s order by process_order """,(method_name), as_dict=1) process_list = [] for process in process_dic: process_list.append(process["pch_process"]) return process_list #return processes from glbal processes doctype where item_group is input def get_process_ac_to_item_group(item_group): process_dic = frappe.db.sql(""" SELECT gpc.pch_process,gpc.pch_process_order FROM `tabPch Global Process Child` gpc,`tabPch Global Process` gp WHERE gp.item_group= %s and gp.name = gpc.parent order by gpc.pch_process_order; """,(item_group), as_dict=1) process_list = [] for process in process_dic: process_list.append(process["pch_process"]) return process_list #for single item def get_process_list_for_columns( filters ): process_list = [] if filters.get("group_wise") == "Item": if filters.get("item_filter"): process_list = get_process_ac_to_item(filters.get("item_filter")) # for one item else: process_list = get_global_process_order_list() if filters.get("group_wise") == "Item Group": if filters.get("ig_filter"): process_list = get_process_ac_to_item_group(filters.get("ig_filter")) else: process_list = get_global_process_order_list() return process_list def get_global_process_order_list(): process_dic = frappe.db.sql(""" SELECT gpc.pch_process,gpc.pch_process_order FROM `tabPch Global Process Child` gpc,`tabPch Global Process` gp WHERE gp.is_global=1 and gp.name = gpc.parent order by gpc.pch_process_order; """, as_dict=1) process_list=[] for process in process_dic: process_list.append(process["pch_process"]) return process_list def get_item_group_mrec_data(item_group,process_name): mrec_dic = frappe.db.sql(""" SELECT sum(units_s_r) as sum_units_s_r FROM `tabPch Manufacturing Record` WHERE item_group=%s and start_process=(select name from `tabPch Manufacturing Method Details` where pch_process =%s and item_group_mmd = %s limit 1); """, (item_group,process_name,item_group),as_dict=1) #print "mrec_dic",mrec_dic return mrec_dic[0]["sum_units_s_r"] if mrec_dic[0]["sum_units_s_r"] else "NO DATA" #code here #prepare process label as key value as data here def get_item_row_pass_through_data(item): method_name = frappe.db.get_value("Pch Manufacturing Method Child", {"item_made": item}, "parent") process_list_for_item = get_process_ac_to_item(item) item_process_column_key_list = get_process_column_key_list(process_list_for_item) parent_row_dic = {"item_code": item, "manufacturing_method": method_name} mrec_dic = frappe.db.sql(""" SELECT manufacturing_record_type,units_s_r, start_process ,end_process ,item_group FROM `tabPch Manufacturing Record` WHERE item_made = %s and manufacturing_method = %s and docstatus = 1 ORDER BY creation asc""", (item, method_name ), as_dict=1) # from process_column_bind_list i will get data all column names along with process asingned for that column is_differend_end_process = 0 process_wise_data_dics = {} #print "mrec_dic", mrec_dic for mrec in mrec_dic : #new code start ..below are the code for one transaction wee need to sum all transaction using dictionary tommorow process_wise_data_dics["item_group"] = mrec.get("item_group") start_process_karigar_key = get_process_name(mrec.get("start_process")) + SPACE + KARIGAR_SUFFIX end_process_karigar_key = get_process_name(mrec.get("end_process")) + SPACE + KARIGAR_SUFFIX end_process_inbound_key = get_process_name(mrec.get("end_process")) + SPACE + INBOUND_SUFFIX end_process_outbound_key = get_process_name(mrec.get("end_process")) + SPACE + OUTBOUND_SUFFIX if mrec.get("manufacturing_record_type") == "Send Material for Manufacturing": if process_wise_data_dics.get(start_process_karigar_key) : process_wise_data_dics[start_process_karigar_key] += mrec.get("units_s_r") else: process_wise_data_dics[start_process_karigar_key] = mrec.get("units_s_r") if mrec.get("manufacturing_record_type") == "Receive Material from Manufacturing": if process_wise_data_dics.get(end_process_inbound_key) : process_wise_data_dics[end_process_inbound_key] += mrec.get("units_s_r") else: process_wise_data_dics[end_process_inbound_key] = mrec.get("units_s_r") if mrec.get("start_process") != mrec.get("end_process"): in_between_s_and_e_process_data = get_in_between_s_and_e_process_data(start_process_karigar_key, end_process_inbound_key, item_process_column_key_list, mrec.get("units_s_r")) for column_key,key_val in in_between_s_and_e_process_data.items(): if process_wise_data_dics.get(column_key): process_wise_data_dics[column_key] += key_val else: process_wise_data_dics[column_key] = key_val if mrec.get("manufacturing_record_type") == "Send Materials to Internal Storage WH": if process_wise_data_dics.get(end_process_outbound_key) : process_wise_data_dics[end_process_outbound_key] += mrec.get("units_s_r") else: process_wise_data_dics[end_process_outbound_key] = mrec.get("units_s_r") parent_row_dic.update(process_wise_data_dics) # new code end return parent_row_dic def get_item_group_row_pass_through_data(item_group) : parent_ig_row_dic = {"item_group":item_group} process_list_for_item_group = get_process_ac_to_item_group(item_group) # each item group have one process order defined item_group_process_column_key_list = get_process_column_key_list(process_list_for_item_group) item_list_ac_to_item_group = get_item_list_ac_to_item_group(item_group) item_row_data_list = [] #we will get list of all calculated item row data per item group here for item in item_list_ac_to_item_group: item_row_pass_through_data = get_item_row_pass_through_data(item) item_row_data_list.append(item_row_pass_through_data) ig_process_wise_data_dics = {} #this dic contains some of all col keys values across all item in that item group for ig_process_key in item_group_process_column_key_list : #ig_col_key loop for item_row_data in item_row_data_list : # each item row key if item_row_data.get(ig_process_key): if ig_process_wise_data_dics.get(ig_process_key): ig_process_wise_data_dics[ig_process_key] += item_row_data.get(ig_process_key) else: ig_process_wise_data_dics[ig_process_key] = item_row_data.get(ig_process_key) parent_ig_row_dic.update(ig_process_wise_data_dics) return parent_ig_row_dic def get_process_name(mmd_id): method_name = frappe.db.get_value("Pch Manufacturing Method Details", {"name": mmd_id}, "pch_process") return method_name def get_process_column_key_list(process_list): process_column_key_list = [] for process in process_list: PROCESS_LABEL = process #print "PROCESS_LABEL",PROCESS_LABEL outbound_label = PROCESS_LABEL + SPACE + OUTBOUND_SUFFIX process_column_key_list.append(outbound_label) karigar_label = PROCESS_LABEL + SPACE + KARIGAR_SUFFIX process_column_key_list.append(karigar_label) inbound_label = PROCESS_LABEL + SPACE + INBOUND_SUFFIX process_column_key_list.append(inbound_label) return process_column_key_list def get_in_between_s_and_e_process_data(start_process_karigar_key,end_process_inbound_key,item_process_column_key_list,units_s_r) : temp_dic={} isvalid= 0 for column_key in item_process_column_key_list : if column_key == end_process_inbound_key: isvalid = 0 break if isvalid ==0 : if column_key == start_process_karigar_key: isvalid = 1 else: #if start process column key comes t_dic = {column_key: units_s_r} temp_dic.update(t_dic) return temp_dic def get_all_items_list(): mrec_dic = frappe.db.sql(""" SELECT DISTINCT item_made FROM `tabPch Manufacturing Record` WHERE docstatus = 1 and item_made IS NOT NULL ORDER BY creation desc""", as_dict=1) item_list = [] for mrec in mrec_dic: item_list.append(mrec["item_made"]) return item_list def get_all_item_group_list(): mrec_dic = frappe.db.sql(""" SELECT DISTINCT item_group FROM `tabPch Manufacturing Record` WHERE docstatus = 1 and item_made IS NOT NULL and item_group IS NOT NULL ORDER BY creation desc""", as_dict=1) item_list = [] for mrec in mrec_dic: item_list.append(mrec["item_group"]) return item_list def get_item_list_ac_to_item_group(item_group): mrec_dic = frappe.db.sql(""" SELECT DISTINCT item_made FROM `tabPch Manufacturing Record` WHERE docstatus = 1 and item_made IS NOT NULL and item_group = %s ORDER BY creation desc""", (item_group), as_dict=1) item_list = [] for mrec in mrec_dic: item_list.append(mrec["item_made"]) return item_list
def not_gate(bit): assert bit in (0, 1), "Only 0 or 1" if bit: return 0 return 1 def and_gate(bit1, bit2): assert bit1 in (0, 1) and bit2 in (0, 1), "Only 0 or 1" return bit1 * bit2 def or_gate(bit1, bit2): assert bit1 in (0, 1) and bit2 in (0, 1), "Only 0 or 1" if 1 in (bit1, bit2): return 1 return 0 def xor_gate(bit1, bit2): assert bit1 in (0, 1) and bit2 in (0, 1), "Only 0 or 1" if bit1 != bit2: return 1 return 0
"""Test module for the Templates plugin.""" import unittest import os import cProfile, pstats import test_project test_project.TEST_SETTINGS += """ from modelmanager.plugins import templates from modelmanager.plugins.templates import TemplatesDict as _TemplatesDict from modelmanager import utils @utils.propertyplugin class params(_TemplatesDict): template_patterns = ['param.txt'] """ TEST_TEMPLATES = {'input/test_param.txt': ("Test parameters\n{n:d} {d:f}", "Test parameters\n 1 1.1 "), 'input/test_config.pr': ("parameters {test}\n{time}\n{n:d}", "parameters XYZ \n2000-01-01\n1")} class TestTemplates(test_project.ProjectTestCase): def setUp(self): super(TestTemplates, self).setUp() self.assertTrue(hasattr(self.project, 'templates')) self.templates = self.project.templates os.mkdir(os.path.join(self.project.projectdir, 'input')) os.mkdir(os.path.join(self.templates.resourcedir, 'input')) for p, (tmplt, tfile) in TEST_TEMPLATES.items(): with open(os.path.join(self.templates.resourcedir, p), 'w') as f: f.write(tmplt) with open(os.path.join(self.project.projectdir, p), 'w') as f: f.write(tfile) return def test_get_template(self): for i in ['param', 'config', 'input/*config*']: tmplt = self.templates.get_template(i) self.assertIn(os.path.relpath(tmplt.filepath, self.projectdir), TEST_TEMPLATES) self.assertEqual(len(self.templates.get_templates('input/*')), 2) def test_read_values(self): self.assertEqual(self.templates('n'), 1) self.assertEqual(self.templates('d'), 1.1) self.assertEqual(self.templates('test'), "XYZ") self.assertRaises(KeyError, self.templates, "unknown") config = self.templates['config'] # return value only self.assertEqual(config.read_values('test'), 'XYZ') # return dict d = config.read_values('test', 'time') self.assertEqual(d['time'], '2000-01-01') self.assertRaises(KeyError, config.read_values, 'unknown') def test_write_values(self): self.templates(n=100) self.assertEqual(self.templates('n'), 100) self.templates(d=1.111) self.assertEqual(self.templates('d'), 1.111) self.templates(test='Somelongstr') self.assertEqual(self.templates('test'), "Somelongstr") self.assertRaises(KeyError, self.templates, unknown=1) param = self.templates['param'] self.assertRaises(KeyError, param.write_values, unknown=1) def test_subset(self): self.assertEqual(self.templates('n', templates='config'), 1) self.templates(n=2, templates=['config']) self.assertEqual(self.templates('n', templates='param'), 1) self.assertEqual(self.templates('n', templates='config'), 2) # value from template listed first is returned self.assertEqual(self.templates("n", templates=['config', 'param']), 2) def test_templates_dict(self): self.assertEqual(self.project.params['n'], 1) print(self.project.params) self.project.params['n'] = 3 self.assertEqual(self.templates('n', templates='param'), 3) if __name__ == '__main__': cProfile.run('unittest.main()', 'pstats') # print profile stats ordered by time pstats.Stats('pstats').strip_dirs().sort_stats('time').print_stats(5)
# -*- coding: utf-8 -*- # Код основан на пакете esia-connector # https://github.com/eigenmethod/esia-connector # Лицензия: # https://github.com/eigenmethod/esia-connector/blob/master/LICENSE.txt # Copyright (c) 2015, Septem Capital import base64 import datetime import json import os import tempfile import pytz import requests from .exceptions import CryptoBackendError, HttpError, IncorrectJsonError def make_request(url, method='GET', headers=None, data=None, verify=True): """ Выполняет запрос по заданному URL и возвращает dict на основе JSON-ответа :param str url: URL-адрес :param str method: (optional) HTTP-метод запроса, по умолчанию GET :param dict headers: (optional) массив HTTP-заголовков, по умолчанию None :param dict data: (optional) массив данных передаваемых в запросе, по умолчанию None :param boolean verify: optional, производить ли верификацию ssl-сертификата при запросае :return: dict на основе JSON-ответа :rtype: dict :raises HttpError: если выбрасыватеся исключение requests.HTTPError :raises IncorrectJsonError: если JSON-ответ не может быть корректно прочитан """ try: response = requests.request( method, url, headers=headers, data=data, verify=verify) response.raise_for_status() return json.loads(response.content) except requests.HTTPError as e: raise HttpError(e) except ValueError as e: raise IncorrectJsonError(e) def smime_sign(certificate_file, private_key_file, data, backend='m2crypto'): """ Подписывает данные в формате SMIME с использование sha256. В качестве бэкенда используется либо вызов openssl, либо библиотека M2Crypto :param str certificate_file: путь к сертификату :param str private_key_file: путь к приватному ключу :param str data: подписываемые данные :param str backend: (optional) бэкенд, используемый для подписи (m2crypto|openssl) :raises CryptoBackendError: если неверно указан backend :return: открепленная подпись :rtype: str """ if backend == 'm2crypto' or backend is None: from M2Crypto import SMIME, BIO if not isinstance(data, bytes): data = bytes(data) signer = SMIME.SMIME() signer.load_key(private_key_file, certificate_file) p7 = signer.sign( BIO.MemoryBuffer(data), flags=SMIME.PKCS7_DETACHED, algo='sha256') signed_message = BIO.MemoryBuffer() p7.write_der(signed_message) return signed_message.read() elif backend == 'openssl': source_file = tempfile.NamedTemporaryFile(mode='w', delete=False) source_file.write(data) source_file.close() source_path = source_file.name destination_file = tempfile.NamedTemporaryFile(mode='wb', delete=False) destination_file.close() destination_path = destination_file.name cmd = ( 'openssl smime -sign -md sha256 -in {f_in} -signer {cert} -inkey ' '{key} -out {f_out} -outform DER') os.system(cmd.format( f_in=source_path, cert=certificate_file, key=private_key_file, f_out=destination_path, )) signed_message = open(destination_path, 'rb').read() os.unlink(source_path) os.unlink(destination_path) return signed_message else: raise CryptoBackendError( 'Unknown cryptography backend. Use openssl or m2crypto value.') def csp_sign(thumbprint, password, data): """ Подписывает данные с использованием ГОСТ Р 34.10-2012 открепленной подписи. В качестве бэкенда используется утилита cryptcp из ПО КриптоПРО CSP. :param str thumbprint: SHA1 отпечаток сертификата, связанного с зкарытым ключем :param str password: пароль для контейнера закрытого ключа :param str data: подписываемые данные """ tmp_dir = tempfile.gettempdir() source_file = tempfile.NamedTemporaryFile( mode='w', delete=False, dir=tmp_dir) source_file.write(data) source_file.close() source_path = source_file.name destination_path = source_path + '.sgn' cmd = ( "cryptcp -signf -norev -dir {tmp_dir} -der -strict -cert -detached " "-thumbprint {thumbprint} -pin {password} {f_in} 2>&1 >/dev/null") os.system(cmd.format( tmp_dir=tmp_dir, thumbprint=thumbprint, password=password, f_in=source_path )) signed_message = open(destination_path, 'rb').read() os.unlink(source_path) os.unlink(destination_path) return signed_message def sign_params(params, settings, backend='csp'): """ Подписывает параметры запроса и добавляет в params ключ client_secret. Подпись основывается на полях: `scope`, `timestamp`, `client_id`, `state`. :param dict params: параметры запроса :param EsiaSettings settings: настройки модуля ЕСИА :param str backend: (optional) бэкенд используемый для подписи (m2crypto|openssl|csp) :raises CryptoBackendError: если неверно указан backend :return: подписанные параметры запроса :rtype: dict """ plaintext = params.get('scope', '') + params.get('timestamp', '') + \ params.get('client_id', '') + params.get('state', '') if backend == 'csp': raw_client_secret = csp_sign( settings.csp_cert_thumbprint, settings.csp_container_pwd, plaintext) else: raw_client_secret = smime_sign( settings.certificate_file, settings.private_key_file, plaintext, backend) params.update( client_secret=base64.urlsafe_b64encode( raw_client_secret).decode('utf-8'), ) return params def get_timestamp(): """ Возвращает текущую дату и время в строковом представлении с указанем зоны в формате пригодном для использования при взаимодействии с ЕСИА :return: текущая дата и время :rtype: str """ return datetime.datetime.now(pytz.utc).\ strftime('%Y.%m.%d %H:%M:%S %z').strip()
# 24 from math import factorial n = list(range(10)) f = [] left = 1000000 for i in range(9): if left % factorial(9 - i) == 0: f += [n.pop(int(left / factorial(9 - i)) - 1)] else: f += [n.pop(int(left / factorial(9 - i)))] left = left % factorial(9 - i) f += n print(f)
import argparse import cv2 import os import shutil import subprocess import sys def check_for_ffmpeg(): with open(os.devnull, 'w') as devnull: try: ret = subprocess.call(['ffmpeg', '-version'], stdout=devnull) except OSError: ret = 1 if ret != 0: print 'ffmpeg not installed' sys.exit(1) check_for_ffmpeg() parser = argparse.ArgumentParser('combine videos') parser.add_argument('videos', nargs='+', help='video files to combine') parser.add_argument('--output', '-o', default='output.mp4', help='filename to output to (default: output.mp4)') parser.add_argument('--frame-rate', '-f', type=int, default=30, help='video frame rate (default: 30)') args = parser.parse_args() cwd = os.getcwd() videos = [os.path.abspath(v) for v in args.videos] captures = [cv2.VideoCapture(v) for v in videos] width = int(captures[0].get(cv2.CAP_PROP_FRAME_WIDTH)) height = int(captures[0].get(cv2.CAP_PROP_FRAME_HEIGHT)) size = (width, height) os.mkdir('tmp') comb = 'combined.mp4' out_file = os.path.join('tmp', comb) fourcc = cv2.VideoWriter_fourcc(*'MP4V') out = cv2.VideoWriter(out_file, fourcc, args.frame_rate, size) # Combine video frames while True: comb_frame = None num_finished = 0 for v in captures: ret, frame = v.read() if not ret: num_finished += 1 continue frame = cv2.resize(frame, size) if comb_frame is None: comb_frame = frame.copy() else: alpha = 0.75 comb_frame = cv2.addWeighted(comb_frame, alpha, frame, alpha, 0) if num_finished == len(captures): break out.write(comb_frame) for v in captures: v.release() out.release() # Combine the audio os.chdir('tmp') # Extract audio fns = [] for v in videos: fn, ext = os.path.splitext(v) fn = os.path.basename(fn) fns.append(fn) ret = subprocess.call('ffmpeg -i "{}" -ab 160k -ac 2 -ar 44100 -vn "{}.wav"' .format(v, fn), shell=True) if ret != 0: sys.exit(1) # Combine audio inputs = ''.join(' -i "{}.wav"'.format(fn) for fn in fns) output_wav = 'output.wav' ret = subprocess.call('ffmpeg {} -filter_complex amix=inputs={} {}' .format(inputs, len(videos), output_wav), shell=True) if ret != 0: sys.exit(1) # Replace audio on video ret = subprocess.call('ffmpeg -i {} -i {} -c:v copy -map 0:v:0 -map 1:a:0 {}' .format(comb, output_wav, args.output), shell=True) if ret != 0: sys.exit(1) os.chdir(cwd) os.rename(os.path.join('tmp', args.output), args.output) # Clean up shutil.rmtree('tmp')
""" remote_method decorator """ from zorp.registry import registry def func_name(func): """ Return func's fully-qualified name """ if hasattr(func, "__module__"): return "{}.{}".format(func.__module__, func.__name__) return func.__name__ def remote_method(name=None, use_registry=registry): """ Register the decorated function Use the function's own name if none is supplied """ if callable(name): # Allow calling without arguments use_registry.put(func_name(name), name) return name def wrap(func): """ Function wrapper """ use_registry.put(name or func_name(func), func) return func return wrap
import redis from django.conf import settings from .models import Product # Connect to redis conn = redis.Redis(host=settings.REDIS_HOST, port=settings.REDIS_PORT, db=settings.REDIS_DB) class Recommend(object): def get_product_id(self, id): return f'product:{id}:pruchased_with' def products_bought(self, products): product_ids = [product.id for product in products] for product_id in product_ids: for with_id in product_ids: # get the other products bought with each product if product_id != with_id: # Increment score for product purchased together conn.zincrby(self.get_product_id(product_id), 1, with_id) def suggest_products_for(self, products, max_results=5): product_ids = [product.id for product in products] if len(products) == 1: #only a product suggestions = conn.zrange( self.get_product_id(product_ids[0]), 0, -1, desc=True)[:max_results] else: # Not a single product, generate a temporary key flat_ids = ''.join([str(id) for id in product_ids]) temp_key = f'temp_{flat_ids}' # Store the resulting sorted set in a temporary_key keys = [self.get_product_id(id) for id in product_ids] conn.zunionstore(temp_key, keys) # Remove ids for the products the recommendation is for conn.zrem(temp_key, *product_ids) # get the product ids by their score, descendant sort suggestions = conn.zrange(temp_key, 0, -1, desc=True)[:max_results] #remove the temporary key conn.delete(temp_key) suggested_products_ids = [int(id) for id in suggestions] #get suggested products and sort by order of appearance suggested_products = list(Product.objects.filter(id__in=suggested_products_ids)) suggested_products.sort(key=lambda x: suggested_products_ids.index(x.id)) return suggested_products def clear_purchases(self): for id in Product.objects.values_list('id', flat=True): conn.delete(self.get_product_id(id))
#-*-coding:utf-8-*- import librosa import numpy as np import random import os , time import soundfile from multiprocessing import Pool sample_rate = 16000 pitch_shift1, pitch_shift2 = 0.01 , 5.0 time_stretch1, time_stretch2 = 0.05, 0.25 augmentation_num = 10 def audio_augmentation(wav_file): print("original wav file: ", wav_file) y, sr = librosa.load(wav_file, sr=sample_rate) for j in range(augmentation_num): rd1 = random.uniform(pitch_shift1, pitch_shift2) ii = random.choice((-1, 1)) rd2 = random.uniform(time_stretch1, time_stretch2) rd2 = 1.0 + ii * rd2 y_ps = librosa.effects.pitch_shift(y, sr, n_steps = rd1) y_ts = librosa.effects.time_stretch(y, rate = rd2) dir_path, wav_file_name = os.path.split(wav_file) wav_name = wav_file_name.split('.')[0] ps_wav = os.path.join(dir_path, wav_name + '_ps_' + str(j) + '.wav') ts_wav = os.path.join(dir_path, wav_name + '_ts_' + str(j) + '.wav') print("pitch_shift: ", ps_wav) print("time_stretch: ", ts_wav) # librosa.output.write_wav(ps_wav, y_ps, sample_rate) # librosa.output.write_wav(ts_wav, y_ts, sample_rate) soundfile.write(ps_wav, y_ps, sample_rate) soundfile.write(ts_wav, y_ts, sample_rate) return if __name__ == "__main__": import sys from datasets import create_audio_lists_recursive train_audio_dir_path = "/data/Speech/XunFei/BabyCry/train" all_wav_list = create_audio_lists_recursive(train_audio_dir_path) random.shuffle(all_wav_list) all_file_len = len(all_wav_list) print('all wav file len:',all_file_len) print('start wav data augmentation ...') # multi processes with Pool(20) as p: p.map(audio_augmentation, all_wav_list) # single process # for i in range(all_file_len): # audio_file = all_wav_list[i] # audio_augmentation(audio_file) # if (i % 100 == 0): # now = time.localtime() # now_time = time.strftime("%Y-%m-%d %H:%M:%S", now) # print('time:', now_time) # print('predict num:', i) print('wav data augmentation done ...')
#!/usr/bin/env python3 """ Copyright 2018 Twitter, Inc. Licensed under the Apache License, Version 2.0 http://www.apache.org/licenses/LICENSE-2.0 """ """ This script can be used to add license headers to all the source files of a project. It is designed to be safe, so do not worry and try it out! Works with languages with nonempty value in MAP_LANGUAGE_TO_COMMENT_CHARS """ import argparse import datetime import itertools import logging import os import sys import shutil import subprocess import tempfile """ The License Header """ LICENSE_HEADER = """ Copyright {} Twitter, Inc. Licensed under the Apache License, Version 2.0 http://www.apache.org/licenses/LICENSE-2.0 """.format(datetime.datetime.now().year).split("\n") # Comment out non-source extensions e.g. .md MAP_EXTENTION_TO_LANGUAGE = \ { '.C': 'C++', '.H': 'C++', '.PL': 'Perl', '.R': 'R', '._js': 'JavaScript', '.adb': 'Ada', '.apacheconf': 'ApacheConf', '.applescript': 'AppleScript', '.asm': 'Assembly', '.asp': 'ASP', '.aux': 'TeX', '.aw': 'PHP', '.b': 'Brainfuck', '.bas': 'Visual Basic', '.bats': 'Shell', '.bf': 'Brainfuck', '.bib': 'TeX', '.builder': 'Ruby', '.c': 'C', '.c++': 'C++', '.clj': 'Clojure', '.cmake': 'CMake', '.coffee': 'CoffeeScript', '.cpp': 'C++', '.cs': 'C#', '.css': 'CSS', '.csx': 'C#', '.ctp': 'PHP', '.cu': 'Cuda', '.cxx': 'C++', '.dfm': 'Pascal', '.diff': 'Diff', '.dtx': 'TeX', '.el': 'Emacs Lisp', '.elm': 'Elm', '.emacs': 'Emacs Lisp', '.erb': 'HTML+ERB', '.f': 'FORTRAN', '.f90': 'FORTRAN', '.frm': 'Visual Basic', '.frx': 'Visual Basic', '.gemspec': 'Ruby', '.go': 'Go', '.god': 'Ruby', '.gyp': 'Python', '.h++': 'C++', '.hh': 'C++', '.hpp': 'C++', '.hs': 'Haskell', '.hsc': 'Haskell', '.htm': 'HTML', '.html': 'HTML', '.http': 'HTTP', '.hxx': 'C++', '.ino': 'Arduino', '.ins': 'TeX', '.io': 'Io', '.irbrc': 'Ruby', '.java': 'Java', '.jinja': 'HTML+Django', '.jl': 'Julia', '.js': 'JavaScript', # '.json': 'JSON', '.jsp': 'Java Server Pages', '.jsx': 'JavaScript', '.kt': 'Kotlin', '.ktm': 'Kotlin', '.kts': 'Kotlin', '.less': 'Less', '.lisp': 'Common Lisp', '.ll': 'LLVM', '.lpr': 'Pascal', '.ltx': 'TeX', '.lua': 'Lua', '.m': 'Objective-C', '.mak': 'Makefile', '.matlab': 'Matlab', # '.md': 'Markdown', '.mkii': 'TeX', '.mkiv': 'TeX', '.mkvi': 'TeX', '.ml': 'OCaml', '.mm': 'Objective-C', '.mspec': 'Ruby', '.mustache': 'HTML+Django', # '.nginxconf': 'Nginx', '.nqp': 'Perl', '.numpy': 'NumPy', '.pas': 'Pascal', '.perl': 'Perl', '.ph': 'Perl', '.php': 'PHP', '.php3': 'PHP', '.php4': 'PHP', '.php5': 'PHP', '.phpt': 'PHP', '.phtml': 'HTML+PHP', '.pl': 'Perl', '.plx': 'Perl', '.pm6': 'Perl', '.pod': 'Perl', '.podspec': 'Ruby', '.prg': 'xBase', '.psgi': 'Perl', '.py': 'Python', '.pyt': 'Python', '.pytb': 'Python traceback', '.pyw': 'Python', '.pyx': 'Cython', '.r': 'R', '.rb': 'Ruby', '.rbuild': 'Ruby', '.rbw': 'Ruby', '.rbx': 'Ruby', # '.rest': 'reStructuredText', '.rs': 'Rust', # '.rst': 'reStructuredText', '.ru': 'Ruby', '.sage': 'Sage', '.sass': 'Sass', '.scala': 'Scala', '.scss': 'SCSS', '.sh': 'Shell', '.sql': 'SQL', '.sty': 'TeX', '.tcc': 'C++', '.tex': 'TeX', '.thor': 'Ruby', '.tmux': 'Shell', '.toc': 'TeX', '.tpp': 'C++', '.ts': 'TypeScript', '.vb': 'Visual Basic', '.vba': 'Visual Basic', '.vbs': 'Visual Basic', '.vim': 'VimL', '.w': 'C', '.watchr': 'Ruby', '.wsgi': 'Python', '.xhtml': 'HTML', # '.xml': 'XML', '.xpy': 'Python', # '.yaml': 'YAML', # '.yml': 'YAML', } """ The keys in MAP_LANGUAGE_TO_COMMENT_CHARS make an exhaustive list of the values in MAP_EXTENTION_TO_LANGUAGE. Please keep both of them in sync. The values in the list are the characters used to prepare the License Header as a comment block. First elemenet starts a block comment Second element is prepended to the lines in comment body Third element ends a block comment EXAMPLE (Scala): For a comment like below /** * A * block * comment */ Set the following in MAP_LANGUAGE_TO_COMMENT_CHARS 'Scala': ['/**', ' * ', ' */'] """ MAP_LANGUAGE_TO_COMMENT_CHARS = \ { 'ASP': ['', '\' ', ''], 'Ada': [], # TODO 'ApacheConf': [], # TODO 'AppleScript': ['', '-- ', ''], 'Arduino': [], # TODO 'Assembly': ['', '; ', ''], 'Brainfuck': [], # TODO 'C': ['/*', ' * ', ' */'], 'C#': ['/*', ' ', '*/'], 'C++': ['/*', ' *', ' */'], 'CMake': ['', '# ', ''], 'CSS': ['/*', '', '*/'], 'Clojure': ['', '; ', ''], 'CoffeeScript': ['###', '', '###'], 'Common Lisp': ['', '; ', ''], 'Cuda': [], # TODO 'Cython': ['"""', '', '"""'], 'Diff': [], # TODO 'Elm': [], # TODO 'Emacs Lisp': ['', '; ', ''], 'FORTRAN': [], # TODO 'Go': ['', '//', ''], 'HTML': ['<!--', '', ' --!>'], 'HTML+Django': ['<!--', '', ' --!>'], 'HTML+ERB': ['<!--', '', ' --!>'], 'HTML+PHP': ['<!--', '', ' --!>'], 'HTTP': [], # TODO 'Haskell': ['', '-- ', ''], 'Io': [], # TODO 'JSON': ['', '// ', ''], 'Java': ['', '// ', ''], 'Java Server Pages': ['', '// ', ''], 'JavaScript': ['', '// ', ''], 'Julia': ['###', ' ', '###'], 'Kotlin': ['/**', ' * ', ' */'], 'LLVM': [], # TODO 'Less': ['/*', '', '*/'], 'Lua': ['--[=====[', '', '--]=====]'], 'Makefile': ['', '# ', ''], 'Markdown': ['<!--', '', ' --!>'], 'Matlab': [], # TODO 'Nginx': [], # TODO 'NumPy': ['"""', '', '"""'], 'OCaml': ['(*', '', ' *)'], 'Objective-C': ['', '// ', ''], 'PHP': ['<!--', '', ' --!>'], 'Pascal': [], # TODO 'Perl': ['', '# ', ''], 'Python': ['"""', '', '"""'], 'Python traceback': [], # TODO 'R': ['', '# ', ''], 'Ruby': ['', '# ', ''], 'Rust': ['', '// ', ''], 'SCSS': ['/*', '', '*/'], 'SQL': ['', '-- ', ''], 'Sage': [], # TODO 'Sass': ['/*', '', '*/'], 'Scala': ['/**', ' * ', ' */'], 'Shell': ['', '# ', ''], 'TeX': ['', '% ', ''], 'TypeScript': ['/**', ' * ', ' */'], 'VimL': [], # TODO 'Visual Basic': [], # TODO 'XML': ['<!--', '', ' --!>'], 'YAML': ['', '# ', ''], 'reStructuredText': ['', '.. ', ''], 'xBase': [], # TODO } """ Argument Parsing """ class FullPaths(argparse.Action): """Expand user- and relative-paths""" def __call__(self, parser, namespace, values, option_string=None): setattr(namespace, self.dest, os.path.abspath(os.path.expanduser(values))) def is_dir(dirname): """Checks if a path is an actual directory""" if not os.path.isdir(dirname): msg = "{0} is not a directory".format(dirname) raise argparse.ArgumentTypeError(msg) else: return dirname """ Utility """ def query_yes_no(question, default="yes"): """Ask a yes/no question via input() and return their answer. "question" is a string that is presented to the user. "default" is the presumed answer if the user just hits <Enter>. It must be "yes" (the default), "no" or None (meaning an answer is required of the user). The "answer" return value is True for "yes" or False for "no". """ valid = {"yes": True, "y": True, "ye": True, "no": False, "n": False} if default is None: prompt = " [y/n] " elif default == "yes": prompt = " [Y/n] " elif default == "no": prompt = " [y/N] " else: raise ValueError("invalid default answer: '%s'" % default) while True: sys.stdout.write(question + prompt) choice = input().lower() if default is not None and choice == '': return valid[default] elif choice in valid: return valid[choice] else: sys.stdout.write("Please respond with 'yes' or 'no' " "(or 'y' or 'n').\n") class color(object): PURPLE = '\033[95m' CYAN = '\033[96m' DARKCYAN = '\033[36m' BLUE = '\033[94m' GREEN = '\033[92m' YELLOW = '\033[93m' RED = '\033[91m' BOLD = '\033[1m' UNDERLINE = '\033[4m' END = '\033[0m' def apply_changes(source_path, skip_log=False): files_with_extensions = [] for root, directories, filenames in os.walk(source_path): if ".git" in root.split("/"): continue for filename in filenames: path_to_file = os.path.join(root, filename) _, file_extension = os.path.splitext(path_to_file) files_with_extensions.append((path_to_file, file_extension)) source_files = [] not_source_files = [] for file in files_with_extensions: if file[1] in MAP_EXTENTION_TO_LANGUAGE: source_files.append(file) else: not_source_files.append(file) if not skip_log: logging.info("Not making any changes to the following files. The script does not recognize them as a source file") for file in not_source_files: logging.info('\t - ' + file[0][len(source_path):]) # print("All the source files") # for file in source_files: # print('\t -', file[0][len(source_path):]) """ Detect if License Headers exist Check first 50 lines for keywords "Copyright" and "License" both. If found, remove the file from source_files """ files_with_headers = [] files_without_headers = [] for file in source_files: with open(file[0]) as f: first_50_lines = "".join([x.strip() for x in itertools.islice(f, 50)]) first_50_lines = first_50_lines.lower() if "copyright" in first_50_lines and "license" in first_50_lines: files_with_headers.append(file) else: files_without_headers.append(file) if not skip_log: print("\nFound {} source file(s) with existing License headers".format(len(files_with_headers))) logging.info("\nFound {} source file(s) with existing License headers".format(len(files_with_headers))) for file in files_with_headers: logging.info("\t " + file[0][len(source_path):]) """ Prepare comment block for each language """ languages = {} # key: Language Name # value: list of files for file in files_without_headers: lang = MAP_EXTENTION_TO_LANGUAGE[file[1]] try: languages[lang].append(file) except KeyError: languages[lang] = [file] map_language_to_block_comment = {} for lang in languages: try: characters = MAP_LANGUAGE_TO_COMMENT_CHARS[lang] except KeyError: print("ERROR: Language '{}' not found in MAP_LANGUAGE_TO_COMMENT_CHARS. Please Keep both dictionaries in sync".format(lang)) continue if len(characters) != 3: print("ERROR: Language '{}' does not have the required 3 block comment characters. Check MAP_LANGUAGE_TO_COMMENT_CHARS".format(lang)) continue comments = [] if characters[0] != "": comments.append(characters[0] + LICENSE_HEADER[0]) for line in LICENSE_HEADER[1:-1]: comments.append(characters[1] + line) comments.append(characters[-1] + LICENSE_HEADER[-1]) map_language_to_block_comment[lang] = "\n".join(comments) if map_language_to_block_comment and not skip_log: logging.info("\n\nList of languages and their block comments\n") for lang in map_language_to_block_comment: logging.info(lang + "\n") logging.info(map_language_to_block_comment[lang] + "\n") """ Make the changes Exceptional cases: - If the first two bytes of the file are "#!", skip the first line """ for file in files_without_headers: with open(file[0]) as f: file_text = f.read() lang = MAP_EXTENTION_TO_LANGUAGE[file[1]] comment = map_language_to_block_comment[lang] new_file_text = "" if file_text[:2] == "#!": lines = file_text.split("\n", 1) lines.insert(1, comment) new_file_text = "\n".join(lines) else: new_file_text = comment + "\n" + file_text with open(file[0], 'w') as f: f.write(new_file_text) if not skip_log: print("{} source file(s) need to be updated".format(len(files_without_headers))) logging.info("{} source file(s) need to be updated".format(len(files_without_headers))) def get_current_branch(path): # Save current working directory cur_dir = os.getcwd() os.chdir(path) cur_branch = "" try: output = subprocess.check_output(["git", "branch"]).decode("utf-8") for line in output.split("\n"): if line[:2] == "* ": cur_branch = line[2:] break except Exception as e: print("Error in get_current_branch function", e) print("Are you the repository is tracked by git?") return cur_branch def entry(): """ Parse arguments """ parser = argparse.ArgumentParser(description="Recursively add license headers to source files") parser.add_argument('source_dir', help="Path to the root of the directory containing source files", action=FullPaths, type=is_dir) args = parser.parse_args() print("Path detected :", color.BOLD + args.source_dir + color.END) current_branch = get_current_branch(args.source_dir) if current_branch: print("Branch detected -", color.BOLD + current_branch, color.END, "\n") """ Enable logging to a file """ # f = tempfile.NamedTemporaryFile(delete=False, suffix=".log") # f.close() # LOG_FILENAME = f.name LOG_FILENAME = "header-" + datetime.datetime.now().isoformat() + ".log" logging.basicConfig(filename=LOG_FILENAME, level=logging.DEBUG, format="%(message)s") print(color.YELLOW + "* Please make sure that the source directory is tracked by git.") print("* Create a new branch before proceeding ahead.") print("* Make sure you do not have any uncommitted changes in your repository.") print("It will later enable you to run 'git checkout -- .' and revert all the changes made by this script." + color.END) if not query_yes_no("Proceed ahead? (Don't worry, this won't make changes yet)", default="no"): print("Aborted!") sys.exit(1) """ Make a temporary copy of the source directory and make changes there """ tempdir = tempfile.mkdtemp() shutil.rmtree(tempdir) # shutil.copytree mandates the destination to not exist print(color.BOLD, "\nCreating a copy of the project at\n") print("\t", color.GREEN, tempdir, color.END) shutil.copytree(args.source_dir, tempdir) apply_changes(tempdir) print(color.BOLD, "\nApplied changes to the copy of the project\n", color.END) print("1. Make sure to run `git diff` in the following directory and verify the diff.\n") print("\t$ cd", tempdir) print("\t$ git diff\n") print("2. Review the detailed log file - " + color.BOLD + os.getcwd() + "/" + LOG_FILENAME, color.END) print("3. Run the unit tests and build the project.") print("\nIf everything looks good in the copy of the project, proceed ahead.") print("Changes will now be made to " + color.BOLD + args.source_dir + color.END) if not query_yes_no("Want to continue?", default="no"): print("Aborted!") sys.exit(1) apply_changes(args.source_dir, skip_log=True) print(color.GREEN + "\nFinished running the script!") print("You can do `git checkout -- .` to revert all the unstaged changes") print("`git checkout -- <path>` can also undo a specific file or multiple files in a directory" + color.END) if __name__ == '__main__': # Clear screen os.system('clear') entry()
from .models import PREVIEW_FLAG class ContentModelAdminMixin(object): """Enables staff preview of non-live objects, in combination with ContentModelQuerySet.live(request). Note the view must pass a request to this method or the preview won't work, and the mixin needs to come before admin.ModelAdmin in the parent classes. Requires Django 1.7. """ def view_on_site(self, obj): url = obj.get_absolute_url() if not obj.live: return url + '?%s=1' % PREVIEW_FLAG return url
from PyQt5.QtWidgets import QWidget, QHBoxLayout, QGroupBox, QPushButton, QComboBox, QSizePolicy class ImageControlsWidget(QWidget): def __init__(self): super().__init__() self.classes = [] self.init_ui() def init_ui(self): prevButton = QPushButton("Previous") nextButton = QPushButton("Next") classSelect = QComboBox(self) classSelect.addItem("Test") classSelect.activated[str].connect(self.combo_changed) prevButton.clicked.connect(self.clicked_prev) nextButton.clicked.connect(self.clicked_next) self.setSizePolicy(QSizePolicy.Ignored, QSizePolicy.Fixed) hbox = QHBoxLayout() hbox.addWidget(prevButton) hbox.addWidget(nextButton) hbox.addWidget(classSelect) self.setLayout(hbox) def clicked_prev(self): print("Clicked prev button.") def clicked_next(self): print("Clicked next button.") def combo_changed(self, text): print(text)
import argparse import cv2 # construct the argument parser and parse the arguments ap = argparse.ArgumentParser() ap.add_argument('-i', '--image', required=True, help= 'Path to the image') args = vars(ap.parse_args()) # load the image, grab its dimensions and show it image = cv2.imread(args['image']) (h, w) = image.shape[:2] cv2.imshow('Original', image) # images are just numpy arrays. The top-left pixel can be found at (0, 0) (b, g, r) = image[0, 0] print("Pixel at (0, 0) - Red: {r}, Green: {g}, Blue: {b}".format(r=r, g= g, b=b)) # lt's change the value of the pixel at (0, 0) and make it red image[0, 0] = (0, 0 , 255) (b, g, r) = image[0, 0] print('Pixel at (0, 0) - Red: {r}, Green: {g}, Blue: {b}'.format(r=r, g=g, b=b)) # compute the center of the image, which is simply the width and height # divided by two (cx, cy) = (w // 2, h //2 ) # since we are using the numpy arrays, we can apply slicing and grab large chunks # of the image -- let's grab the top-left corner tl = image[0:cy, 0:cx] cv2.imshow('Top-Left Corner', tl) # in similar fashion, let's grab the top-right, bottom-right, and bottom-left # corners and display them tr = image[0:cy, cx:w] br = image[cy:h, cx:w] bl = image[cy:h, 0:cx] cv2.imshow('Top-Right Corner', tr) cv2.imshow('Bottom-Right Corner', br) cv2.imshow('Bottom-Left Corner', bl) # now let's make the top-left corner of the original image green image[0:cy, 0:cx] = (0, 255, 0) # show updated image cv2.imshow('Updated', image) # Exercise - What is the approximate value of pixel located at point x=111 # and y = 225 (b1, g1 ,r1) = image[225, 111] print(f'Pixel at (111, 255) - Red: {r1}, Green: {g1}, Blue: {b1}') cv2.waitKey(0)
import atexit from math import sin, cos from numpy import array from pycuda import driver from pycuda import gpuarray from _axpy import daxpy n = 10000 a = 3.4 def detach(context): context.pop() context.detach() # initialise CUDA driver.init() device = driver.Device(0) context = device.make_context(flags=driver.ctx_flags.SCHED_YIELD) context.set_cache_config(driver.func_cache.PREFER_L1) context.push() atexit.register(detach, context) # initialise data and calculate reference values on CPU x = array([sin(i) * 2.3 for i in range(n)], float) y = array([cos(i) * 1.1 for i in range(n)], float) y_ref = a * x + y # allocate + copy initial values x_ = gpuarray.to_gpu(x) y_ = gpuarray.to_gpu(y) # calculate axpy on GPU daxpy(n, a, x_.gpudata, y_.gpudata) # copy result back to host and print with reference print(' initial: {0} {1} {2} {3} {4} {5}'.format( y[0], y[1], y[2], y[3], y[-2], y[-1])) y_.get(y) print('reference: {0} {1} {2} {3} {4} {5}'.format( y_ref[0], y_ref[1], y_ref[2], y_ref[3], y_ref[-2], y_ref[-1])) print(' result: {0} {1} {2} {3} {4} {5}'.format( y[0], y[1], y[2], y[3], y[-2], y[-1]))
""" Enum of available ONS indexes """ from enum import Enum from dp_conceptual_search.config import CONFIG class Index(Enum): ONS = CONFIG.SEARCH.search_index DEPARTMENTS = CONFIG.SEARCH.departments_search_index
from hlwtadmin.models import Artist, GigFinderUrl, GigFinder, ConcertAnnouncement, Venue, Location, Organisation, Country, Concert, RelationConcertConcert, RelationConcertOrganisation, RelationConcertArtist, Location, ConcertannouncementToConcert from django.core.management.base import BaseCommand, CommandError from datetime import datetime class Command(BaseCommand): def add_arguments(self, parser): pass def handle(self, *args, **options): for concertannouncement in ConcertAnnouncement.objects.filter(concert__isnull=True).exclude(ignore=True): #for concertannouncement in ConcertAnnouncement.objects.filter(concert__isnull=True).exclude(ignore=True).filter(raw_venue__organisation__location__pk=34789): print("concertannouncement\thttp://hlwtadmin.herokuapp.com/hlwtadmin/concertannouncement/" + str(concertannouncement.pk) + "\trelated venue\thttp://hlwtadmin.herokuapp.com/hlwtadmin/venue/" + str(concertannouncement.raw_venue.pk) if concertannouncement.raw_venue else "---") ca2c = ConcertannouncementToConcert(concertannouncement) ca2c.automate() concertannouncement.save()
import logging import os from flask import Flask, jsonify, redirect, request from flask_cors import CORS from flasgger import Swagger from ensembl.production.metadata.config import MetadataConfig from ensembl.production.core.models.hive import HiveInstance from ensembl.production.core.exceptions import HTTPRequestError app_path = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) static_path = os.path.join(app_path, 'static') template_path = os.path.join(app_path, 'templates') app = Flask(__name__, static_url_path='/static/metadata', static_folder=static_path, template_folder=template_path, instance_relative_config=True) app.config.from_object(MetadataConfig) CORS(app) Swagger(app, template_file='swagger.yml') hive = None def get_hive(): global hive if hive is None: if app.config["HIVE_URI"] is None: raise RuntimeError('Undefined environment variable: HIVE_URI') else: hive = HiveInstance(app.config["HIVE_URI"]) return hive @app.route('/', methods=['GET']) def info(): return jsonify(app.config['SWAGGER']) @app.route('/jobs', methods=['POST']) def submit_job(): if request.is_json: request.json["metadata_uri"] = app.config["METADATA_URI"] app.logger.debug('Submitting metadata job %s', request.json) try: analysis = app.config["HIVE_ANALYSIS"] job = get_hive().create_job(analysis, request.json) except ValueError as e: raise HTTPRequestError(str(e), 404) results = {"job_id": job.job_id} return jsonify(results), 201 else: error_msg = 'Could not handle input of type %s', request.headers['Content-Type'] app.logger.error(error_msg) raise HTTPRequestError(error_msg) @app.route('/jobs', methods=['GET']) def jobs(): app.logger.info('Retrieving jobs') analysis = app.config['HIVE_ANALYSIS'] return jsonify(get_hive().get_all_results(analysis, child=False)) @app.route('/jobs/<int:job_id>', methods=['GET']) def job_result(job_id): fmt = request.args.get('format') app.logger.debug('Format %s', fmt) if fmt == 'email': email = request.args.get('email') return job_email(email, job_id) elif fmt == 'failures': return failure(job_id) elif fmt is None: app.logger.info('Retrieving job with ID %s', job_id) try: result = get_hive().get_result_for_job_id(job_id, child=True) except ValueError as e: raise HTTPRequestError(str(e), 404) return jsonify(result) else: raise HTTPRequestError("Format " + fmt + " not valid") def job_email(email, job_id): app.logger.info('Retrieving job with ID %s for %s', job_id, email) try: results = get_hive().get_result_for_job_id(job_id, child=True) if results['status'] == 'complete': results['subject'] = 'Metadata load for database %s is successful' % (results['output']['database_uri']) results['body'] = "Metadata load for database %s is successful\n" % (results['output']['database_uri']) results['body'] += "Load took %s" % (results['output']['runtime']) elif results['status'] == 'failed': job_failure = get_hive().get_job_failure_msg_by_id(job_id, child=True) results['subject'] = 'Metadata load for %s failed' % (results['input']['database_uri']) results['body'] = 'Metadata load failed with following message:\n' results['body'] += '%s' % job_failure.msg except ValueError as e: raise HTTPRequestError(str(e), 404) results['output'] = None return jsonify(results) def failure(job_id): app.logger.info('Retrieving failure for job with ID %s', job_id) try: job_failure = get_hive().get_job_failure_msg_by_id(job_id, child=True) except ValueError as e: raise HTTPRequestError(str(e), 404) return jsonify({"msg": job_failure.msg}) @app.route('/jobs/<int:job_id>', methods=['DELETE']) def delete_job(job_id): try: job = get_hive().get_job_by_id(job_id) get_hive().delete_job(job, child=True) except ValueError as e: raise HTTPRequestError(str(e), 404) return jsonify({"id": job_id}) @app.errorhandler(HTTPRequestError) def handle_bad_request_error(e): app.logger.error(str(e)) return jsonify(error=str(e)), e.status_code if __name__ == "__main__": app.run(debug=True)
# (C) British Crown Copyright 2011 - 2018, Met Office # # This file is part of cartopy. # # cartopy is free software: you can redistribute it and/or modify it under # the terms of the GNU Lesser General Public License as published by the # Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # cartopy is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public License # along with cartopy. If not, see <https://www.gnu.org/licenses/>. from __future__ import (absolute_import, division, print_function) from matplotlib.backends.backend_agg import FigureCanvasAgg import matplotlib.pyplot as plt import matplotlib.ticker as mticker try: from unittest import mock except ImportError: import mock import pytest import cartopy.crs as ccrs from cartopy.mpl.geoaxes import GeoAxes from cartopy.mpl.gridliner import LATITUDE_FORMATTER, LONGITUDE_FORMATTER from cartopy.tests.mpl import MPL_VERSION, ImageTesting @pytest.mark.natural_earth @ImageTesting(['gridliner1']) def test_gridliner(): ny, nx = 2, 4 plt.figure(figsize=(10, 10)) ax = plt.subplot(nx, ny, 1, projection=ccrs.PlateCarree()) ax.set_global() ax.coastlines() ax.gridlines() ax = plt.subplot(nx, ny, 2, projection=ccrs.OSGB()) ax.set_global() ax.coastlines() ax.gridlines() ax = plt.subplot(nx, ny, 3, projection=ccrs.OSGB()) ax.set_global() ax.coastlines() ax.gridlines(ccrs.PlateCarree(), color='blue', linestyle='-') ax.gridlines(ccrs.OSGB()) ax = plt.subplot(nx, ny, 4, projection=ccrs.PlateCarree()) ax.set_global() ax.coastlines() ax.gridlines(ccrs.NorthPolarStereo(), alpha=0.5, linewidth=1.5, linestyle='-') ax = plt.subplot(nx, ny, 5, projection=ccrs.PlateCarree()) ax.set_global() ax.coastlines() osgb = ccrs.OSGB() ax.set_extent(tuple(osgb.x_limits) + tuple(osgb.y_limits), crs=osgb) ax.gridlines(osgb) ax = plt.subplot(nx, ny, 6, projection=ccrs.NorthPolarStereo()) ax.set_global() ax.coastlines() ax.gridlines(alpha=0.5, linewidth=1.5, linestyle='-') ax = plt.subplot(nx, ny, 7, projection=ccrs.NorthPolarStereo()) ax.set_global() ax.coastlines() osgb = ccrs.OSGB() ax.set_extent(tuple(osgb.x_limits) + tuple(osgb.y_limits), crs=osgb) ax.gridlines(osgb) ax = plt.subplot(nx, ny, 8, projection=ccrs.Robinson(central_longitude=135)) ax.set_global() ax.coastlines() ax.gridlines(ccrs.PlateCarree(), alpha=0.5, linewidth=1.5, linestyle='-') delta = 1.5e-2 plt.subplots_adjust(left=0 + delta, right=1 - delta, top=1 - delta, bottom=0 + delta) def test_gridliner_specified_lines(): xs = [0, 60, 120, 180, 240, 360] ys = [-90, -60, -30, 0, 30, 60, 90] ax = mock.Mock(_gridliners=[], spec=GeoAxes) gl = GeoAxes.gridlines(ax, xlocs=xs, ylocs=ys) assert isinstance(gl.xlocator, mticker.FixedLocator) assert isinstance(gl.ylocator, mticker.FixedLocator) assert gl.xlocator.tick_values(None, None).tolist() == xs assert gl.ylocator.tick_values(None, None).tolist() == ys # The tolerance on this test is particularly high because of the high number # of text objects. A new testing strategy is needed for this kind of test. if MPL_VERSION >= '2.0': grid_label_image = 'gridliner_labels' else: grid_label_image = 'gridliner_labels_1.5' @pytest.mark.natural_earth @ImageTesting([grid_label_image]) def test_grid_labels(): plt.figure(figsize=(8, 10)) crs_pc = ccrs.PlateCarree() crs_merc = ccrs.Mercator() crs_osgb = ccrs.OSGB() ax = plt.subplot(3, 2, 1, projection=crs_pc) ax.coastlines() ax.gridlines(draw_labels=True) # Check that adding labels to Mercator gridlines gives an error. # (Currently can only label PlateCarree gridlines.) ax = plt.subplot(3, 2, 2, projection=ccrs.PlateCarree(central_longitude=180)) ax.coastlines() with pytest.raises(TypeError): ax.gridlines(crs=crs_merc, draw_labels=True) ax.set_title('Known bug') gl = ax.gridlines(crs=crs_pc, draw_labels=True) gl.xlabels_top = False gl.ylabels_left = False gl.xlines = False ax = plt.subplot(3, 2, 3, projection=crs_merc) ax.coastlines() ax.gridlines(draw_labels=True) # Check that labelling the gridlines on an OSGB plot gives an error. # (Currently can only draw these on PlateCarree or Mercator plots.) ax = plt.subplot(3, 2, 4, projection=crs_osgb) ax.coastlines() with pytest.raises(TypeError): ax.gridlines(draw_labels=True) ax = plt.subplot(3, 2, 4, projection=crs_pc) ax.coastlines() gl = ax.gridlines( crs=crs_pc, linewidth=2, color='gray', alpha=0.5, linestyle='--') gl.xlabels_bottom = True gl.ylabels_right = True gl.xlines = False gl.xlocator = mticker.FixedLocator([-180, -45, 45, 180]) gl.xformatter = LONGITUDE_FORMATTER gl.yformatter = LATITUDE_FORMATTER gl.xlabel_style = {'size': 15, 'color': 'gray'} gl.xlabel_style = {'color': 'red'} gl.xpadding = 10 gl.ypadding = 15 # trigger a draw at this point and check the appropriate artists are # populated on the gridliner instance FigureCanvasAgg(plt.gcf()).draw() assert len(gl.xlabel_artists) == 4 assert len(gl.ylabel_artists) == 5 assert len(gl.ylabel_artists) == 5 assert len(gl.xline_artists) == 0 ax = plt.subplot(3, 2, 5, projection=crs_pc) ax.set_extent([-20, 10.0, 45.0, 70.0]) ax.coastlines() ax.gridlines(draw_labels=True) ax = plt.subplot(3, 2, 6, projection=crs_merc) ax.set_extent([-20, 10.0, 45.0, 70.0], crs=crs_pc) ax.coastlines() ax.gridlines(draw_labels=True) # Increase margins between plots to stop them bumping into one another. plt.subplots_adjust(wspace=0.25, hspace=0.25)
# -*- encoding:ascii -*- from mako import runtime, filters, cache UNDEFINED = runtime.UNDEFINED __M_dict_builtin = dict __M_locals_builtin = locals _magic_number = 8 _modified_time = 1434060690.119963 _enable_loop = True _template_filename = '/home/cairisuser/CAIRIS-web/cairis/cairis/templates/index.mako' _template_uri = 'index.mako' _source_encoding = 'ascii' _exports = ['innerTree', 'printIcon'] def render_body(context,**pageargs): __M_caller = context.caller_stack._push_frame() try: __M_locals = __M_dict_builtin(pageargs=pageargs) body = context.get('body', UNDEFINED) title = context.get('title', UNDEFINED) def printIcon(nav): return render_printIcon(context.locals_(__M_locals),nav) def innerTree(navObjects): return render_innerTree(context.locals_(__M_locals),navObjects) navList = context.get('navList', UNDEFINED) hasattr = context.get('hasattr', UNDEFINED) __M_writer = context.writer() # SOURCE LINE 1 __M_writer(u'<!DOCTYPE html>\r\n<html>\r\n<head lang="en">\r\n\r\n <meta charset="UTF-8">\r\n <title>') # SOURCE LINE 6 __M_writer(unicode(title)) __M_writer(u'</title>\r\n <meta content=\'width=device-width, initial-scale=1, maximum-scale=1, user-scalable=no\' name=\'viewport\'>\r\n <!-- Bootstrap 3.3.2 -->\r\n <link href="bootstrap/css/bootstrap.min.css" rel="stylesheet" type="text/css" />\r\n <!-- Font Awesome Icons -->\r\n <link href="https://maxcdn.bootstrapcdn.com/font-awesome/4.3.0/css/font-awesome.min.css" rel="stylesheet" type="text/css" />\r\n <!-- Ionicons -->\r\n <link href="http://code.ionicframework.com/ionicons/2.0.0/css/ionicons.min.css" rel="stylesheet" type="text/css" />\r\n <!-- Theme style -->\r\n <link href="dist/css/AdminLTE.min.css" rel="stylesheet" type="text/css" />\r\n <!-- AdminLTE Skins. We have chosen the skin-blue for this starter\r\n page. However, you can choose any other skin. Make sure you\r\n apply the skin class to the body tag so the changes take effect.\r\n -->\r\n <link href="dist/css/skins/skin-blue.min.css" rel="stylesheet" type="text/css" />\r\n\r\n <!-- HTML5 Shim and Respond.js IE8 support of HTML5 elements and media queries -->\r\n <!-- WARNING: Respond.js doesn\'t work if you view the page via file:// -->\r\n <!--[if lt IE 9]>\r\n <script src="https://oss.maxcdn.com/libs/html5shiv/3.7.0/html5shiv.js"></script>\r\n <script src="https://oss.maxcdn.com/libs/respond.js/1.3.0/respond.min.js"></script>\r\n <![endif]-->\r\n</head>\r\n<body class="skin-blue">\r\n<div class="wrapper">\r\n\r\n <!-- Main Header -->\r\n <header class="main-header">\r\n\r\n <!-- Logo -->\r\n <a href="#" class="logo">CAIRIS</a>\r\n\r\n <!-- Header Navbar -->\r\n <nav class="navbar navbar-static-top" role="navigation">\r\n <!-- Sidebar toggle button-->\r\n <a href="#" class="sidebar-toggle" data-toggle="offcanvas" role="button">\r\n <span class="sr-only">Toggle navigation</span>\r\n </a>\r\n <!-- Navbar Right Menu -->\r\n <div class="navbar-custom-menu">\r\n <ul class="nav navbar-nav">\r\n <!-- Messages: style can be found in dropdown.less-->\r\n <!-- Tasks Menu -->\r\n <li class="dropdown tasks-menu">\r\n <!-- Menu Toggle Button -->\r\n <a href="#" class="dropdown-toggle" data-toggle="dropdown">\r\n <i class="fa fa-flag-o"></i>\r\n <span class="label label-danger">9</span>\r\n </a>\r\n <ul class="dropdown-menu">\r\n <li class="header">You have 9 tasks</li>\r\n <li>\r\n <!-- Inner menu: contains the tasks -->\r\n <ul class="menu">\r\n <li><!-- Task item -->\r\n <a href="#">\r\n <!-- Task title and progress text -->\r\n <h3>\r\n Design some buttons\r\n <small class="pull-right">20%</small>\r\n </h3>\r\n <!-- The progress bar -->\r\n <div class="progress xs">\r\n <!-- Change the css width attribute to simulate progress -->\r\n <div class="progress-bar progress-bar-aqua" style="width: 20%" role="progressbar" aria-valuenow="20" aria-valuemin="0" aria-valuemax="100">\r\n <span class="sr-only">20% Complete</span>\r\n </div>\r\n </div>\r\n </a>\r\n </li><!-- end task item -->\r\n </ul>\r\n </li>\r\n <li class="footer">\r\n <a href="#">View all tasks</a>\r\n </li>\r\n </ul>\r\n </li>\r\n </ul>\r\n </div>\r\n </nav>\r\n </header>\r\n\r\n <aside class="main-sidebar">\r\n <!-- sidebar - sidebar.less -->\r\n <section class="sidebar">\r\n <div id="sidebar-scrolling">\r\n <ul class="sidebar-menu">\r\n <li class="header">MENU</li>\r\n <!-- Optionally, you can add icons to the links -->\r\n') # SOURCE LINE 95 for nav in navList: # SOURCE LINE 96 if hasattr(nav, 'navObjects'): # SOURCE LINE 97 __M_writer(u' <li class="treeview">\r\n <a href="') # SOURCE LINE 98 __M_writer(unicode(nav.href)) __M_writer(u'">') __M_writer(unicode(printIcon(nav))) __M_writer(u'<span>') __M_writer(unicode(nav.text)) __M_writer(u'</span><i class="fa fa-angle-left pull-right"></i>\r\n </a>\r\n <ul class="treeview-menu">\r\n ') # SOURCE LINE 101 __M_writer(unicode(innerTree(navObjects=nav.navObjects))) __M_writer(u'\r\n </ul>\r\n </li>\r\n') # SOURCE LINE 104 else: # SOURCE LINE 105 __M_writer(u' <li><a href="') __M_writer(unicode(nav.href)) __M_writer(u'">') __M_writer(unicode(printIcon(nav))) __M_writer(u'<span>') __M_writer(unicode(nav.text)) __M_writer(u'</span>\r\n </a></li>\r\n') pass pass # SOURCE LINE 109 __M_writer(u' </ul>\r\n </div>\r\n </section>\r\n </aside>\r\n\r\n <!-- Content Wrapper. Contains page content -->\r\n <div class="content-wrapper">\r\n <!-- Content Header (Page header) -->\r\n <section class="content-header">\r\n <h1>\r\n Page Header\r\n <small>Optional description</small>\r\n </h1>\r\n <ol class="breadcrumb">\r\n <li><a href="#"><i class="fa fa-dashboard"></i> Level</a></li>\r\n <li class="active">Here</li>\r\n </ol>\r\n </section>\r\n <!-- Main content -->\r\n <section class="content">\r\n <!-- Your Page Content Here -->\r\n\r\n ') # SOURCE LINE 131 __M_writer(unicode(body)) __M_writer(u'\r\n\r\n </section><!-- /.content -->\r\n </div><!-- /.content-wrapper -->\r\n\r\n <!-- rightnav -->\r\n <div id="rightnavGear" class="no-print"\r\n style="position: fixed; top: 100px; right: 0px; border-radius: 5px 0px 0px 5px; padding: 10px 15px; font-size: 16px; z-index: 99999; cursor: pointer; color: rgb(60, 141, 188); box-shadow: rgba(0, 0, 0, 0.0980392) 0px 1px 3px; background: rgb(255, 255, 255);">\r\n <i class="fa fa-gear"></i></div>\r\n <div id="rightnavMenu" class="no-print"\r\n style="padding: 10px; position: fixed; top: 100px; right: -250px; border: 0px solid rgb(221, 221, 221); width: 250px; z-index: 99999; box-shadow: rgba(0, 0, 0, 0.0980392) 0px 1px 3px; background: rgb(255, 255, 255);">\r\n <h4 class="text-light-blue" style="margin: 0 0 5px 0; border-bottom: 1px solid #ddd; padding-bottom: 15px;">\r\n Options</h4>\r\n </div>\r\n <footer class="main-footer">\r\n <!-- To the right -->\r\n <div class="pull-right hidden-xs">\r\n Anything you want\r\n </div>\r\n <!-- Default to the left -->\r\n <strong>Copyright &copy; 2015 <a href="#">Company</a>.</strong> All rights reserved.\r\n </footer>\r\n\r\n</div>\r\n<!-- REQUIRED JS SCRIPTS -->\r\n<!-- jQuery 2.1.3 -->\r\n<script src="plugins/jQuery/jQuery-2.1.3.min.js"></script>\r\n<!-- Bootstrap 3.3.2 JS -->\r\n<script src="bootstrap/js/bootstrap.min.js" type="text/javascript"></script>\r\n<!-- AdminLTE App -->\r\n<script src="dist/js/app.min.js" type="text/javascript"></script>\r\n<!-- Slimscroll App -->\r\n<script src="plugins/slimScroll/jquery.slimscroll.js" type="text/javascript"></script>\r\n<!-- Script for the right nav -->\r\n<script>\r\n $(document).ready(function(){\r\n $(\'#rightnavGear\').click(function(){\r\n var navGear = $(\'#rightnavGear\');\r\n var navMenu = $(\'#rightnavMenu\');\r\n if (!navGear.hasClass("open")) {\r\n navGear.animate({"right": "250px"});\r\n navMenu.animate({"right": "0"});\r\n navGear.addClass("open");\r\n } else {\r\n navGear.animate({"right": "0"});\r\n navMenu.animate({"right": "-250px"});\r\n navGear.removeClass("open");\r\n }\r\n });\r\n });\r\n</script>\r\n<script>\r\n $(window).load(function(){\r\n $(\'#sidebar-scrolling\').slimScroll({\r\n height: $(\'.main-sidebar\').height() - 20\r\n });\r\n });\r\n</script>\r\n</body>\r\n</html>\r\n') # SOURCE LINE 196 __M_writer(u'\r\n') return '' finally: context.caller_stack._pop_frame() def render_innerTree(context,navObjects): __M_caller = context.caller_stack._push_frame() try: __M_writer = context.writer() # SOURCE LINE 191 __M_writer(u'\r\n') # SOURCE LINE 192 for row in navObjects: # SOURCE LINE 193 __M_writer(u'<li><a href="') __M_writer(unicode(row.href)) __M_writer(u'">') __M_writer(unicode(row.text)) __M_writer(u'\r\n</a></li>\r\n') pass return '' finally: context.caller_stack._pop_frame() def render_printIcon(context,nav): __M_caller = context.caller_stack._push_frame() try: hasattr = context.get('hasattr', UNDEFINED) __M_writer = context.writer() # SOURCE LINE 197 __M_writer(u'\r\n') # SOURCE LINE 198 if hasattr(nav, 'icon'): # SOURCE LINE 199 __M_writer(u"<i class='") __M_writer(unicode(nav.icon)) __M_writer(u"'></i>\r\n") pass return '' finally: context.caller_stack._pop_frame()
#!/usr/bin/python # -*- coding: utf-8 -*- # # Copyright (C) 2019 Huawei # GNU General Public License v3.0+ (see COPYING or # https://www.gnu.org/licenses/gpl-3.0.txt) from __future__ import absolute_import, division, print_function __metaclass__ = type ############################################################################### # Documentation ############################################################################### ANSIBLE_METADATA = {'metadata_version': '1.1', 'status': ["preview"], 'supported_by': 'community'} DOCUMENTATION = ''' --- module: hwc_vpc_eip description: - elastic ip management. short_description: Creates a resource of Vpc/EIP in Huawei Cloud version_added: '2.9' author: Huawei Inc. (@huaweicloud) requirements: - keystoneauth1 >= 3.6.0 options: state: description: - Whether the given object should exist in Huawei Cloud. type: str choices: ['present', 'absent'] default: 'present' filters: description: - A list of filters to apply when deciding whether existing resources match and should be altered. The item of filters is the name of input options. type: list required: true timeouts: description: - The timeouts for each operations. type: dict suboptions: create: description: - The timeouts for create operation. type: str default: '5m' update: description: - The timeouts for update operation. type: str default: '5m' type: description: - Specifies the EIP type. The value can be 5_telcom, 5_union, 5_bgp, or 5_sbgp. - CN Northeast-Dalian is 5_telcom and 5_union. - CN South-Guangzhou is 5_sbgp. - CN East-Shanghai2 is 5_sbgp. - CN North-Beijing1 is 5_bgp and 5_sbgp. - AP-Hong Kong is 5_bgp. type: str required: true dedicated_bandwidth: description: - Specifies the dedicated bandwidth object. type: complex required: false suboptions: charge_mode: description: - Specifies whether the bandwidth is billed by traffic or by bandwidth size. The value can be bandwidth or traffic. If this parameter is left blank or is null character string, default value bandwidth is used. For IPv6 addresses, the default parameter value is bandwidth outside China and is traffic in China. type: str required: true name: description: - Specifies the bandwidth name. The value is a string of 1 to 64 characters that can contain letters, digits, underscores C(_), hyphens (-), and periods (.). type: str required: true size: description: - Specifies the bandwidth size. The value ranges from 1 Mbit/s to 2000 Mbit/s by default. (The specific range may vary depending on the configuration in each region. You can see the bandwidth range of each region on the management console.) The minimum unit for bandwidth adjustment varies depending on the bandwidth range. The details are as follows. - The minimum unit is 1 Mbit/s if the allowed bandwidth size ranges from 0 to 300 Mbit/s (with 300 Mbit/s included). - The minimum unit is 50 Mbit/s if the allowed bandwidth size ranges 300 Mbit/s to 1000 Mbit/s (with 1000 Mbit/s included). - The minimum unit is 500 Mbit/s if the allowed bandwidth size is greater than 1000 Mbit/s. type: int required: true enterprise_project_id: description: - Specifies the enterprise project ID. type: str required: false ip_version: description: - The value can be 4 (IPv4 address) or 6 (IPv6 address). If this parameter is left blank, an IPv4 address will be assigned. type: str required: false ipv4_address: description: - Specifies the obtained IPv4 EIP. The system automatically assigns an EIP if you do not specify it. type: str required: false port_id: description: - Specifies the port ID. This parameter is returned only when a private IP address is bound with the EIP. type: str required: false shared_bandwidth_id: description: - Specifies the ID of shared bandwidth. type: str required: false extends_documentation_fragment: hwc ''' EXAMPLES = ''' # create an eip and bind it to a port - name: create vpc hwc_network_vpc: cidr: "192.168.100.0/24" name: "ansible_network_vpc_test" register: vpc - name: create subnet hwc_vpc_subnet: gateway_ip: "192.168.100.32" name: "ansible_network_subnet_test" dhcp_enable: True vpc_id: "{{ vpc.id }}" filters: - "name" cidr: "192.168.100.0/26" register: subnet - name: create a port hwc_vpc_port: subnet_id: "{{ subnet.id }}" ip_address: "192.168.100.33" filters: - "name" - "network_id" - "ip_address" register: port - name: create an eip and bind it to a port hwc_vpc_eip: type: "5_bgp" dedicated_bandwidth: charge_mode: "traffic" name: "ansible_test_dedicated_bandwidth" size: 1 port_id: "{{ port.id }}" filters: - "type" - "dedicated_bandwidth" ''' RETURN = ''' type: description: - Specifies the EIP type. The value can be 5_telcom, 5_union, 5_bgp, or 5_sbgp. - CN Northeast-Dalian: 5_telcom and 5_union. - CN South-Guangzhou: 5_sbgp. - CN East-Shanghai2: 5_sbgp. - CN North-Beijing1: 5_bgp and 5_sbgp. - AP-Hong Kong: 5_bgp. type: str returned: success dedicated_bandwidth: description: - Specifies the dedicated bandwidth object. type: complex returned: success contains: charge_mode: description: - Specifies whether the bandwidth is billed by traffic or by bandwidth size. The value can be bandwidth or traffic. If this parameter is left blank or is null character string, default value bandwidth is used. For IPv6 addresses, the default parameter value is bandwidth outside China and is traffic in China. type: str returned: success name: description: - Specifies the bandwidth name. The value is a string of 1 to 64 characters that can contain letters, digits, underscores C(_), hyphens (-), and periods (.). type: str returned: success size: description: - Specifies the bandwidth size. The value ranges from 1 Mbit/s to 2000 Mbit/s by default. (The specific range may vary depending on the configuration in each region. You can see the bandwidth range of each region on the management console.) The minimum unit for bandwidth adjustment varies depending on the bandwidth range. The details are as follows:. - The minimum unit is 1 Mbit/s if the allowed bandwidth size ranges from 0 to 300 Mbit/s (with 300 Mbit/s included). - The minimum unit is 50 Mbit/s if the allowed bandwidth size ranges 300 Mbit/s to 1000 Mbit/s (with 1000 Mbit/s included). - The minimum unit is 500 Mbit/s if the allowed bandwidth size is greater than 1000 Mbit/s. type: int returned: success id: description: - Specifies the ID of dedicated bandwidth. type: str returned: success enterprise_project_id: description: - Specifies the enterprise project ID. type: str returned: success ip_version: description: - The value can be 4 (IPv4 address) or 6 (IPv6 address). If this parameter is left blank, an IPv4 address will be assigned. type: int returned: success ipv4_address: description: - Specifies the obtained IPv4 EIP. The system automatically assigns an EIP if you do not specify it. type: str returned: success port_id: description: - Specifies the port ID. This parameter is returned only when a private IP address is bound with the EIP. type: str returned: success shared_bandwidth_id: description: - Specifies the ID of shared bandwidth. type: str returned: success create_time: description: - Specifies the time (UTC time) when the EIP was assigned. type: str returned: success ipv6_address: description: - Specifies the obtained IPv6 EIP. type: str returned: success private_ip_address: description: - Specifies the private IP address bound with the EIP. This parameter is returned only when a private IP address is bound with the EIP. type: str returned: success ''' from ansible.module_utils.hwc_utils import ( Config, HwcClientException, HwcClientException404, HwcModule, are_different_dicts, build_path, get_region, is_empty_value, navigate_value, wait_to_finish) def build_module(): return HwcModule( argument_spec=dict( state=dict(default='present', choices=['present', 'absent'], type='str'), filters=dict(required=True, type='list', elements='str'), timeouts=dict(type='dict', options=dict( create=dict(default='5m', type='str'), update=dict(default='5m', type='str'), ), default=dict()), type=dict(type='str', required=True), dedicated_bandwidth=dict(type='dict', options=dict( charge_mode=dict(type='str', required=True), name=dict(type='str', required=True), size=dict(type='int', required=True) )), enterprise_project_id=dict(type='str'), ip_version=dict(type='int'), ipv4_address=dict(type='str'), port_id=dict(type='str'), shared_bandwidth_id=dict(type='str') ), supports_check_mode=True, ) def main(): """Main function""" module = build_module() config = Config(module, "vpc") try: resource = None if module.params['id']: resource = True else: v = search_resource(config) if len(v) > 1: raise Exception("find more than one resources(%s)" % ", ".join([ navigate_value(i, ["id"]) for i in v])) if len(v) == 1: resource = v[0] module.params['id'] = navigate_value(resource, ["id"]) result = {} changed = False if module.params['state'] == 'present': if resource is None: if not module.check_mode: create(config) changed = True current = read_resource(config, exclude_output=True) expect = user_input_parameters(module) if are_different_dicts(expect, current): if not module.check_mode: update(config) changed = True result = read_resource(config) result['id'] = module.params.get('id') else: if resource: if not module.check_mode: delete(config) changed = True except Exception as ex: module.fail_json(msg=str(ex)) else: result['changed'] = changed module.exit_json(**result) def user_input_parameters(module): return { "dedicated_bandwidth": module.params.get("dedicated_bandwidth"), "enterprise_project_id": module.params.get("enterprise_project_id"), "ip_version": module.params.get("ip_version"), "ipv4_address": module.params.get("ipv4_address"), "port_id": module.params.get("port_id"), "shared_bandwidth_id": module.params.get("shared_bandwidth_id"), "type": module.params.get("type"), } def create(config): module = config.module client = config.client(get_region(module), "vpc", "project") timeout = 60 * int(module.params['timeouts']['create'].rstrip('m')) opts = user_input_parameters(module) params = build_create_parameters(opts) r = send_create_request(module, params, client) obj = async_wait_create(config, r, client, timeout) module.params['id'] = navigate_value(obj, ["publicip", "id"]) def update(config): module = config.module client = config.client(get_region(module), "vpc", "project") timeout = 60 * int(module.params['timeouts']['update'].rstrip('m')) opts = user_input_parameters(module) params = build_update_parameters(opts) if params: r = send_update_request(module, params, client) async_wait_update(config, r, client, timeout) def delete(config): module = config.module client = config.client(get_region(module), "vpc", "project") if module.params["port_id"]: module.params["port_id"] = "" update(config) send_delete_request(module, None, client) url = build_path(module, "publicips/{id}") def _refresh_status(): try: client.get(url) except HwcClientException404: return True, "Done" except Exception: return None, "" return True, "Pending" timeout = 60 * int(module.params['timeouts']['create'].rstrip('m')) try: wait_to_finish(["Done"], ["Pending"], _refresh_status, timeout) except Exception as ex: module.fail_json(msg="module(hwc_vpc_eip): error " "waiting for api(delete) to " "be done, error= %s" % str(ex)) def read_resource(config, exclude_output=False): module = config.module client = config.client(get_region(module), "vpc", "project") res = {} r = send_read_request(module, client) res["read"] = fill_read_resp_body(r) return update_properties(module, res, None, exclude_output) def _build_query_link(opts): query_params = [] v = navigate_value(opts, ["ip_version"]) if v: query_params.append("ip_version=" + str(v)) v = navigate_value(opts, ["enterprise_project_id"]) if v: query_params.append("enterprise_project_id=" + str(v)) query_link = "?marker={marker}&limit=10" if query_params: query_link += "&" + "&".join(query_params) return query_link def search_resource(config): module = config.module client = config.client(get_region(module), "vpc", "project") opts = user_input_parameters(module) identity_obj = _build_identity_object(module, opts) query_link = _build_query_link(opts) link = "publicips" + query_link result = [] p = {'marker': ''} while True: url = link.format(**p) r = send_list_request(module, client, url) if not r: break for item in r: item = fill_list_resp_body(item) if not are_different_dicts(identity_obj, item): result.append(item) if len(result) > 1: break p['marker'] = r[-1].get('id') return result def build_create_parameters(opts): params = dict() v = expand_create_bandwidth(opts, None) if not is_empty_value(v): params["bandwidth"] = v v = navigate_value(opts, ["enterprise_project_id"], None) if not is_empty_value(v): params["enterprise_project_id"] = v v = expand_create_publicip(opts, None) if not is_empty_value(v): params["publicip"] = v return params def expand_create_bandwidth(d, array_index): v = navigate_value(d, ["dedicated_bandwidth"], array_index) sbwid = navigate_value(d, ["shared_bandwidth_id"], array_index) if v and sbwid: raise Exception("don't input shared_bandwidth_id and " "dedicated_bandwidth at same time") if not (v or sbwid): raise Exception("must input shared_bandwidth_id or " "dedicated_bandwidth") if sbwid: return { "id": sbwid, "share_type": "WHOLE"} return { "charge_mode": v["charge_mode"], "name": v["name"], "share_type": "PER", "size": v["size"]} def expand_create_publicip(d, array_index): r = dict() v = navigate_value(d, ["ipv4_address"], array_index) if not is_empty_value(v): r["ip_address"] = v v = navigate_value(d, ["ip_version"], array_index) if not is_empty_value(v): r["ip_version"] = v v = navigate_value(d, ["type"], array_index) if not is_empty_value(v): r["type"] = v return r def send_create_request(module, params, client): url = "publicips" try: r = client.post(url, params) except HwcClientException as ex: msg = ("module(hwc_vpc_eip): error running " "api(create), error: %s" % str(ex)) module.fail_json(msg=msg) return r def async_wait_create(config, result, client, timeout): module = config.module path_parameters = { "publicip_id": ["publicip", "id"], } data = { key: navigate_value(result, path) for key, path in path_parameters.items() } url = build_path(module, "publicips/{publicip_id}", data) def _query_status(): r = None try: r = client.get(url, timeout=timeout) except HwcClientException: return None, "" try: s = navigate_value(r, ["publicip", "status"]) return r, s except Exception: return None, "" try: return wait_to_finish( ["ACTIVE", "DOWN"], None, _query_status, timeout) except Exception as ex: module.fail_json(msg="module(hwc_vpc_eip): error " "waiting for api(create) to " "be done, error= %s" % str(ex)) def build_update_parameters(opts): params = dict() v = navigate_value(opts, ["ip_version"], None) if not is_empty_value(v): params["ip_version"] = v v = navigate_value(opts, ["port_id"], None) if v is not None: params["port_id"] = v if not params: return params params = {"publicip": params} return params def send_update_request(module, params, client): url = build_path(module, "publicips/{id}") try: r = client.put(url, params) except HwcClientException as ex: msg = ("module(hwc_vpc_eip): error running " "api(update), error: %s" % str(ex)) module.fail_json(msg=msg) return r def async_wait_update(config, result, client, timeout): module = config.module url = build_path(module, "publicips/{id}") def _query_status(): r = None try: r = client.get(url, timeout=timeout) except HwcClientException: return None, "" try: s = navigate_value(r, ["publicip", "status"]) return r, s except Exception: return None, "" try: return wait_to_finish( ["ACTIVE", "DOWN"], None, _query_status, timeout) except Exception as ex: module.fail_json(msg="module(hwc_vpc_eip): error " "waiting for api(update) to " "be done, error= %s" % str(ex)) def send_delete_request(module, params, client): url = build_path(module, "publicips/{id}") try: r = client.delete(url, params) except HwcClientException as ex: msg = ("module(hwc_vpc_eip): error running " "api(delete), error: %s" % str(ex)) module.fail_json(msg=msg) return r def send_read_request(module, client): url = build_path(module, "publicips/{id}") r = None try: r = client.get(url) except HwcClientException as ex: msg = ("module(hwc_vpc_eip): error running " "api(read), error: %s" % str(ex)) module.fail_json(msg=msg) return navigate_value(r, ["publicip"], None) def fill_read_resp_body(body): result = dict() result["bandwidth_id"] = body.get("bandwidth_id") result["bandwidth_name"] = body.get("bandwidth_name") result["bandwidth_share_type"] = body.get("bandwidth_share_type") result["bandwidth_size"] = body.get("bandwidth_size") result["create_time"] = body.get("create_time") result["enterprise_project_id"] = body.get("enterprise_project_id") result["id"] = body.get("id") result["ip_version"] = body.get("ip_version") result["port_id"] = body.get("port_id") result["private_ip_address"] = body.get("private_ip_address") result["public_ip_address"] = body.get("public_ip_address") result["public_ipv6_address"] = body.get("public_ipv6_address") result["status"] = body.get("status") result["tenant_id"] = body.get("tenant_id") result["type"] = body.get("type") return result def update_properties(module, response, array_index, exclude_output=False): r = user_input_parameters(module) if not exclude_output: v = navigate_value(response, ["read", "create_time"], array_index) r["create_time"] = v v = r.get("dedicated_bandwidth") v = flatten_dedicated_bandwidth(response, array_index, v, exclude_output) r["dedicated_bandwidth"] = v v = navigate_value(response, ["read", "enterprise_project_id"], array_index) r["enterprise_project_id"] = v v = navigate_value(response, ["read", "ip_version"], array_index) r["ip_version"] = v v = navigate_value(response, ["read", "public_ip_address"], array_index) r["ipv4_address"] = v if not exclude_output: v = navigate_value(response, ["read", "public_ipv6_address"], array_index) r["ipv6_address"] = v v = navigate_value(response, ["read", "port_id"], array_index) r["port_id"] = v if not exclude_output: v = navigate_value(response, ["read", "private_ip_address"], array_index) r["private_ip_address"] = v v = r.get("shared_bandwidth_id") v = flatten_shared_bandwidth_id(response, array_index, v, exclude_output) r["shared_bandwidth_id"] = v v = navigate_value(response, ["read", "type"], array_index) r["type"] = v return r def flatten_dedicated_bandwidth(d, array_index, current_value, exclude_output): v = navigate_value(d, ["read", "bandwidth_share_type"], array_index) if not (v and v == "PER"): return current_value result = current_value if not result: result = dict() if not exclude_output: v = navigate_value(d, ["read", "bandwidth_id"], array_index) if v is not None: result["id"] = v v = navigate_value(d, ["read", "bandwidth_name"], array_index) if v is not None: result["name"] = v v = navigate_value(d, ["read", "bandwidth_size"], array_index) if v is not None: result["size"] = v return result if result else current_value def flatten_shared_bandwidth_id(d, array_index, current_value, exclude_output): v = navigate_value(d, ["read", "bandwidth_id"], array_index) v1 = navigate_value(d, ["read", "bandwidth_share_type"], array_index) return v if (v1 and v1 == "WHOLE") else current_value def send_list_request(module, client, url): r = None try: r = client.get(url) except HwcClientException as ex: msg = ("module(hwc_vpc_eip): error running " "api(list), error: %s" % str(ex)) module.fail_json(msg=msg) return navigate_value(r, ["publicips"], None) def _build_identity_object(module, all_opts): filters = module.params.get("filters") opts = dict() for k, v in all_opts.items(): opts[k] = v if k in filters else None result = dict() v = expand_list_bandwidth_id(opts, None) result["bandwidth_id"] = v v = navigate_value(opts, ["dedicated_bandwidth", "name"], None) result["bandwidth_name"] = v result["bandwidth_share_type"] = None v = navigate_value(opts, ["dedicated_bandwidth", "size"], None) result["bandwidth_size"] = v result["create_time"] = None v = navigate_value(opts, ["enterprise_project_id"], None) result["enterprise_project_id"] = v result["id"] = None v = navigate_value(opts, ["ip_version"], None) result["ip_version"] = v v = navigate_value(opts, ["port_id"], None) result["port_id"] = v result["private_ip_address"] = None v = navigate_value(opts, ["ipv4_address"], None) result["public_ip_address"] = v result["public_ipv6_address"] = None result["status"] = None result["tenant_id"] = None v = navigate_value(opts, ["type"], None) result["type"] = v return result def expand_list_bandwidth_id(d, array_index): v = navigate_value(d, ["dedicated_bandwidth"], array_index) sbwid = navigate_value(d, ["shared_bandwidth_id"], array_index) if v and sbwid: raise Exception("don't input shared_bandwidth_id and " "dedicated_bandwidth at same time") return sbwid def fill_list_resp_body(body): result = dict() result["bandwidth_id"] = body.get("bandwidth_id") result["bandwidth_name"] = body.get("bandwidth_name") result["bandwidth_share_type"] = body.get("bandwidth_share_type") result["bandwidth_size"] = body.get("bandwidth_size") result["create_time"] = body.get("create_time") result["enterprise_project_id"] = body.get("enterprise_project_id") result["id"] = body.get("id") result["ip_version"] = body.get("ip_version") result["port_id"] = body.get("port_id") result["private_ip_address"] = body.get("private_ip_address") result["public_ip_address"] = body.get("public_ip_address") result["public_ipv6_address"] = body.get("public_ipv6_address") result["status"] = body.get("status") result["tenant_id"] = body.get("tenant_id") result["type"] = body.get("type") return result if __name__ == '__main__': main()
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('contenttypes', '0002_remove_content_type_name'), ] operations = [ migrations.CreateModel( name='ImportedObjects', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('created', models.DateTimeField(verbose_name='date created', auto_now=True)), ('modified', models.DateTimeField(verbose_name='last modified', auto_now_add=True)), ('object_pk', models.IntegerField(db_index=True)), ('old_object_pk', models.CharField(db_index=True, max_length=255)), ('content_type', models.ForeignKey(to='contenttypes.ContentType')), ], options={ 'abstract': False, 'ordering': ('-modified', '-created'), }, ), ]