content
stringlengths
5
1.05M
from prediction_flow.pytorch.nn import Interest import torch def test_gru_interest_evolution(): interests = Interest( input_size=3, gru_type='GRU', gru_dropout=0, att_hidden_layers=[8], att_dropout=0, att_batchnorm=False, att_activation=None) query = torch.tensor([[1, 1, 1], [0.1, 0.2, 0.3]], dtype=torch.float) keys = torch.tensor([ [[0.1, 0.2, 0.3], [1, 2, 3], [0.4, 0.2, 1], [0.0, 0.0, 0.0]], [[0.1, 0.2, 0.3], [1, 2, 3], [0.4, 0.2, 1], [0.5, 0.5, 0.5]] ], dtype=torch.float) keys_length = torch.tensor([3, 4]) output, _ = interests(query, keys, keys_length) assert output.size()[0] == 2 assert output.size()[1] == 3 def test_aigru_interest_evolution(): interests = Interest( input_size=3, gru_type='AIGRU', gru_dropout=0, att_hidden_layers=[8], att_dropout=0, att_batchnorm=False, att_activation=None) query = torch.tensor([[1, 1, 1], [0.1, 0.2, 0.3]], dtype=torch.float) keys = torch.tensor([ [[0.1, 0.2, 0.3], [1, 2, 3], [0.4, 0.2, 1], [0.0, 0.0, 0.0]], [[0.1, 0.2, 0.3], [1, 2, 3], [0.4, 0.2, 1], [0.5, 0.5, 0.5]] ], dtype=torch.float) keys_length = torch.tensor([3, 4]) output, _ = interests(query, keys, keys_length) assert output.size()[0] == 2 assert output.size()[1] == 3 def test_agru_interest_evolution(): interests = Interest( input_size=3, gru_type='AGRU', gru_dropout=0, att_hidden_layers=[8], att_dropout=0, att_batchnorm=False, att_activation=None) query = torch.tensor([[1, 1, 1], [0.1, 0.2, 0.3]], dtype=torch.float) keys = torch.tensor([ [[0.1, 0.2, 0.3], [1, 2, 3], [0.4, 0.2, 1], [0.0, 0.0, 0.0]], [[0.1, 0.2, 0.3], [1, 2, 3], [0.4, 0.2, 1], [0.5, 0.5, 0.5]] ], dtype=torch.float) keys_length = torch.tensor([3, 4]) output, _ = interests(query, keys, keys_length) assert output.size()[0] == 2 assert output.size()[1] == 3 def test_augru_interest_evolution(): interests = Interest( input_size=3, gru_type='AUGRU', gru_dropout=0, att_hidden_layers=[8], att_dropout=0, att_batchnorm=False, att_activation=None) query = torch.tensor([[1, 1, 1], [0.1, 0.2, 0.3]], dtype=torch.float) keys = torch.tensor([ [[0.1, 0.2, 0.3], [1, 2, 3], [0.4, 0.2, 1], [0.0, 0.0, 0.0]], [[0.1, 0.2, 0.3], [1, 2, 3], [0.4, 0.2, 1], [0.5, 0.5, 0.5]] ], dtype=torch.float) keys_length = torch.tensor([3, 4]) output, _ = interests(query, keys, keys_length) assert output.size()[0] == 2 assert output.size()[1] == 3 def test_neg_sampling(): interests = Interest( input_size=3, gru_type='AUGRU', gru_dropout=0, att_hidden_layers=[8], att_dropout=0, att_batchnorm=False, att_activation=None, use_negsampling=True) query = torch.tensor( [[1, 1, 1], [0.1, 0.2, 0.3], [0.3, 0.4, 0.5]], dtype=torch.float) keys = torch.tensor([ [[0.1, 0.2, 0.3], [1, 2, 3], [0.4, 0.2, 1], [0.0, 0.0, 0.0]], [[0.1, 0.2, 0.3], [1, 2, 3], [0.4, 0.2, 1], [0.5, 0.5, 0.5]], [[0.1, 0.2, 0.3], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]] ], dtype=torch.float) neg_keys = torch.tensor([ [[0.3, 0.2, 0.1], [3, 2, 1], [1, 0.2, 0.4], [0.0, 0.0, 0.0]], [[0.3, 0.2, 0.1], [3, 2, 1], [1, 0.2, 0.4], [0.5, 0.5, 0.5]], [[0.3, 0.2, 0.1], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]] ], dtype=torch.float) keys_length = torch.tensor([3, 4, 1]) output, _ = interests(query, keys, keys_length, neg_keys) assert output.size()[0] == 3 assert output.size()[1] == 3
import torch import torch.nn as nn import torch.nn.functional as F import numpy as np class ScaledDotProductAttention(nn.Module): """Scaled dot-product attention mechanism.""" def __init__(self, attention_dropout=0.0): super(ScaledDotProductAttention, self).__init__() self.dropout = nn.Dropout(attention_dropout) self.softmax = nn.Softmax(dim=2) def forward(self, query, key, value, batch_type=None, drop_out=None, scale=None, mask=None): """前向传播. Args: q: Queries张量,形状为[B, L_q, D_q] k: Keys张量,形状为[B, L_k, D_k] v: Values张量,形状为[B, L_v, D_v],一般来说就是k scale: 缩放因子,一个浮点标量 attn_mask: Masking张量,形状为[B, L_q, L_k] Returns: 上下文张量和attetention张量 """ scores = torch.matmul(query, key.transpose(-2, -1)) / \ np.sqrt(query.size(-1)) # (batch, n_head, seq_len_q, seq_len_v) if mask is not None: scores = scores.masked_fill(mask == 0, -1e9) p_attn = F.softmax(scores, dim=-1) # if drop_out is not None: # p_attn = drop_out(p_attn) # (batch, n_head, seq_len_q, dim) return torch.matmul(p_attn, value), p_attn class MultiHeadAttention(nn.Module): def __init__(self, model_dim=512, num_heads=8, dropout=0.0): super(MultiHeadAttention, self).__init__() self.dim_per_head = model_dim // num_heads self.num_heads = num_heads self.linear_k = nn.Linear(model_dim, self.dim_per_head * num_heads) self.linear_v = nn.Linear(model_dim, self.dim_per_head * num_heads) self.linear_q = nn.Linear(model_dim, self.dim_per_head * num_heads) self.dot_product_attention = ScaledDotProductAttention(dropout) self.linear_final = nn.Linear(model_dim, model_dim) self.dropout = nn.Dropout(dropout) # multi-head attention之后需要做layer norm self.layer_norm = nn.LayerNorm(model_dim) def forward(self, key, value, query, batch_type=None, attn_mask=None): # 残差连接 residual = query dim_per_head = self.dim_per_head num_heads = self.num_heads batch_size = key.size(0) # linear projection key = self.linear_k(key) value = self.linear_v(value) query = self.linear_q(query) # split by heads key = key.view(batch_size * num_heads, -1, dim_per_head) value = value.view(batch_size * num_heads, -1, dim_per_head) query = query.view(batch_size * num_heads, -1, dim_per_head) if attn_mask: attn_mask = attn_mask.repeat(num_heads, 1, 1) # scaled dot product attention scale = 1 # scale = (key.size(-1) // num_heads) ** -0.5 context, attention = self.dot_product_attention( query, key, value, batch_type, scale, attn_mask) # concat heads context = context.view(batch_size, -1, dim_per_head * num_heads) # final linear projection output = self.linear_final(context) # dropout output = self.dropout(output) # add residual and norm layer output = self.layer_norm(residual + output) return output, attention
import logging import sys logging.basicConfig(level=logging.INFO, stream=sys.stdout, format='[%(asctime)s] %(name)s|%(levelname)-8s|%(message)s', datefmt='%Y-%m-%d %H:%M:%S')
# Generated by Django 4.0.1 on 2022-02-10 11:55 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('Organizations', '0005_alter_mprovider_service_and_more'), ('Market', '0004_initial'), ] operations = [ migrations.AlterField( model_name='cashbox', name='service', field=models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='service_cashbox', to='Organizations.service', verbose_name='Service'), ), migrations.AlterField( model_name='product', name='service', field=models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='service_product', to='Organizations.service', verbose_name='Service'), ), migrations.AlterField( model_name='productorder', name='service', field=models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='service_product_order', to='Organizations.service', verbose_name='Service'), ), migrations.AlterField( model_name='purchaserequest', name='service', field=models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='service_purchase_request', to='Organizations.service', verbose_name='Service'), ), migrations.AlterField( model_name='saleorder', name='service', field=models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='service_sale_order', to='Organizations.service', verbose_name='Service'), ), migrations.AlterField( model_name='saleproduct', name='service', field=models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='service_sale_product', to='Organizations.service', verbose_name='Service'), ), migrations.AlterField( model_name='workdone', name='service', field=models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='service_work_done', to='Organizations.service', verbose_name='Service'), ), ]
from django.urls import path from django.urls import include, path from . import views urlpatterns = [ path('', views.node_labels, name='node-labels-list'), path('<str:app>/<str:model>/', views.neomodel_list_view, name='neomodel-list'), path('<str:app>/<str:model>/<str:node_id>/change/', views.neomodel_change_view, name='neomodel-change'), path('<str:app>/<str:model>/add/', views.neomodel_change_view, name='neomodel-add'), ]
# -*- coding: utf-8 -*- # Copyright (C) 2020. Huawei Technologies Co., Ltd. All rights reserved. # This program is free software; you can redistribute it and/or modify # it under the terms of the MIT License. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # MIT License for more details. """This is a class for RandomHorizontalFlipWithBoxes.""" import random from vega.common import ClassFactory, ClassType @ClassFactory.register(ClassType.TRANSFORM) class RandomHorizontalFlipWithBoxes(object): """Applies RandomHorizontalFlip to 'img' and target.""" def __init__(self, prob=0.5): self.prob = prob def __call__(self, image, target): """Call function of RandomHorizontalFlip.""" if random.random() < self.prob: height, width = image.shape[-2:] image = image.flip(-1) bbox = target["boxes"] bbox[:, [0, 2]] = width - bbox[:, [2, 0]] target["boxes"] = bbox return image, target
import unittest from numpy.random import seed from Statistics.Statistics import Statistics import random import statistics class MyTestCase(unittest.TestCase): def setUp(self) -> None: seed(5) self.testData = [] for i in range(0, 10): num = random.randint(0, 15) self.testData.append(num) self.mean_value = statistics.mean(self.testData) self.median_value = statistics.median(self.testData) self.mode_value = statistics.mode(self.testData) self.variance_value = statistics.variance(self.testData) self.standard_deviation_value=statistics.stdev(self.testData) self.statistics = Statistics() def test_instantiate_calculator(self): self.assertIsInstance(self.statistics, Statistics) def test_mean_calculator(self): mean = self.statistics.stats_mean(self.testData) self.assertEqual(mean, self.mean_value) def test_median_calculator(self): median = self.statistics.stats_median(self.testData) self.assertEqual(median, self.median_value) def test_mode_calculator(self): mode = self.statistics.stats_mode(self.testData) self.assertEqual(mode, self.mode_value) def test_median_calculator(self): median = self.statistics.stats_median(self.testData) self.assertEqual(median, self.median_value) def test_mode_calculator(self): mode = self.statistics.stats_mode(self.testData) self.assertEqual(mode, self.mode_value) def test_variance_calculator(self): variance = self.statistics.stats_variance(self.testData) self.assertEqual(variance, round((self.variance_value),1)) def test_standard_deviation_calculator(self): standard_deviation = self.statistics.stats_standard_deviation(self.testData) self.assertEqual(standard_deviation, round((self.standard_deviation_value),1)) if __name__ == '__main__': unittest.main()
import sys import subprocess import json #print('Running parseCoreMembers.py') deployment=sys.argv[1] #print('Deployment is ' + deployment) blob=subprocess.check_output('gcloud compute instances list --format=json', shell=True) instances=json.loads(blob) #print(json.dumps(j, indent=4, sort_keys=True)) output='' for instance in instances: if instance['name'].startswith(deployment): externalIP=instance['networkInterfaces'][0]['accessConfigs'][0]['natIP'] output=output+externalIP+':5000,' output=output[:-1] print(output)
#!/usr/bin/env python # -*- coding: utf-8 -*- from requests.compat import urlparse try: from .helpers import url_join except: from crawlib.helpers import url_join class BaseUrlEncoder(object): """Base Url Encoder. Provide functional interface to create url. """ domain = None def __init__(self): result = urlparse(self.domain) self.domain = "%s://%s" % (result.scheme, result.netloc) def url_join(self, *parts): return url_join(self.domain, *parts) def get_url(self, *args, **kwargs): """An example method, takes argument and return url. """ return self.domain if __name__ == "__main__": def test_urlencoder(): class PythonOrgUrlEncoder(BaseUrlEncoder): domain = "https://www.python.org" urlencoder = PythonOrgUrlEncoder() assert urlencoder.url_join("/about/") == "https://www.python.org/about" test_urlencoder()
# Copyright 2019 The iqt Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License from random import uniform class ModelParameters: """Defines the model parameters of different stock price models. Parameters ---------- all_s0 : float The initial asset value. all_time : int The amount of time to simulate for. all_delta : float The rate of time. (e.g. 1/252 = daily, 1/12 = monthly) all_sigma : float The volatility of the stochastic processes. gbm_mu : float The annual drift factor for geometric brownian motion. jumps_lambda : float, default 0.0 The probability of a jump happening at each point in time. jumps_sigma : float, default 0.0 The volatility of the jump size. jumps_mu : float, default 0.0 The average jump size. cir_a : float, default 0.0 The rate of mean reversion for Cox Ingersoll Ross. cir_mu : float, default 0.0 The long run average interest rate for Cox Ingersoll Ross. all_r0 : float, default 0.0 The starting interest rate value. cir_rho : float, default 0.0 The correlation between the wiener processes of the Heston model. ou_a : float, default 0.0 The rate of mean reversion for Ornstein Uhlenbeck. ou_mu : float, default 0.0 The long run average interest rate for Ornstein Uhlenbeck. heston_a : float, default 0.0 The rate of mean reversion for volatility in the Heston model. heston_mu : float, default 0.0 The long run average volatility for the Heston model. heston_vol0 : float, default 0.0 The starting volatility value for the Heston model. """ def __init__(self, all_s0: float, all_time: int, all_delta: float, all_sigma: float, gbm_mu: float, jumps_lambda: float = 0.0, jumps_sigma: float = 0.0, jumps_mu: float = 0.0, cir_a: float = 0.0, cir_mu: float = 0.0, all_r0: float = 0.0, cir_rho: float = 0.0, ou_a: float = 0.0, ou_mu: float = 0.0, heston_a: float = 0.0, heston_mu: float = 0.0, heston_vol0: float = 0.0) -> None: self.all_s0 = all_s0 self.all_time = all_time self.all_delta = all_delta self.all_sigma = all_sigma self.gbm_mu = gbm_mu self.lamda = jumps_lambda self.jumps_sigma = jumps_sigma self.jumps_mu = jumps_mu self.cir_a = cir_a self.cir_mu = cir_mu self.all_r0 = all_r0 self.cir_rho = cir_rho self.ou_a = ou_a self.ou_mu = ou_mu self.heston_a = heston_a self.heston_mu = heston_mu self.heston_vol0 = heston_vol0 def default(base_price: float, t_gen: int, delta: float) -> 'ModelParameters': """Creates a basic model parameter set with key parameters specified default parameters. Parameters ---------- base_price : float The base price to use for price generation. t_gen : int The number of bars to generate. delta : float The time delta to use. Returns ------- `ModelParameters` The default model parameters to use. """ return ModelParameters( all_s0=base_price, all_r0=0.5, all_time=t_gen, all_delta=delta, all_sigma=0.125, gbm_mu=0.058, jumps_lambda=0.00125, jumps_sigma=0.001, jumps_mu=-0.2, cir_a=3.0, cir_mu=0.5, cir_rho=0.5, ou_a=3.0, ou_mu=0.5, heston_a=0.25, heston_mu=0.35, heston_vol0=0.06125 ) def random(base_price: float, t_gen: int, delta: float) -> 'ModelParameters': """Creates a random model parameter set with key parameters specified default parameters. Parameters ---------- base_price : float The base price to use for price generation. t_gen : int The number of bars to generate. delta : int The time delta to use. Returns ------- `ModelParameters` The random model parameters to use. """ return ModelParameters( all_s0=base_price, all_r0=0.5, all_time=t_gen, all_delta=delta, all_sigma=uniform(0.1, 0.8), gbm_mu=uniform(-0.3, 0.6), jumps_lambda=uniform(0.0071, 0.6), jumps_sigma=uniform(-0.03, 0.04), jumps_mu=uniform(-0.2, 0.2), cir_a=3.0, cir_mu=0.5, cir_rho=0.5, ou_a=3.0, ou_mu=0.5, heston_a=uniform(1, 5), heston_mu=uniform(0.156, 0.693), heston_vol0=0.06125 )
import tensorflow as tf from models.conv_resblock_denoising_unet import ConvResblockDenoisingUnet from training.train_loop import TrainLoop separator = ConvResblockDenoisingUnet(1025, 100) lr_schedule = tf.keras.optimizers.schedules.ExponentialDecay( initial_learning_rate=0.0002, decay_steps=4000, decay_rate=0.5) optimizer = tf.keras.optimizers.Adam(learning_rate=lr_schedule) training = TrainLoop(separator, batch_size=16, max_epochs=20, optimizer=optimizer) if __name__ == '__main__': history = training.compile_and_fit(validation_freq=5, verbose=2) training.evaluate() training.save_model() training.save_weights()
import mysql.connector mydb=mysql.connector.connect( host="35.200.219.211", user="upendar", password="Upendar@123", database="mydb_upendar" ) print(mydb) mycursor=mydb.cursor() mycursor.execute("drop table emp") sql="create table emp (name varchar(200), address varchar(300))" mycursor.execute(sql) mycursor.execute("show tables") for y in mycursor: print(y) sql="insert into emp (name,address) values('upendar', 'banglore')" mycursor.execute(sql) mydb.commit() mycursor.execute("select * from emp") myresult=mycursor.fetchall() for i in myresult: print(i) sql="select * from employee" mycursor.execute(sql) for i in mycursor: print(i) sql="select a.* \ b.* \ from employee as a\ inner join emp as b\ on a.name=b.name" mycursor.execute(sql) for i in mycursor: print(i)
import time from fractions import gcd from random import randrange def factor2(num): # Algoritmo Las Vegas que factoriza un numero N = p*q, p y q primos start = time.process_time() a = randrange(1, num) # Inicializo a con un valor en Gnum print ("choosen a = ", a) p = gcd(a, num) # Compruebo si son coprimos. Si el resultado es distinto a 1 habremos obtenido p if (p != 1): print ("Time elapsed: ", (time.process_time() - start), " seconds") return (p, int(num/p)) print ("coprime") for r in range(1, num): if pow(a, r, num) == 1: # Si se cumple que a^r = 1 (mod p*q) print ("r = ", r) if r % 2 == 0: # Comprobamos si r es par print ("r is even") x = pow(a, int(r/2), num) if x != num - 1: # Comprobamos si x + 1 = 0 (mod p*q) p = gcd(x - 1, num) q = int(num/p) print ("Time elapsed: ", (time.process_time() - start), " seconds") return (p, q) else: print ("x + 1 = 0 (Mod n)") break else: print ("r is odd") break print ("Time elapsed: ", (time.process_time() - start), " seconds") return False
#!/usr/bin/env python3 import click import tempfile from click import Choice from typing import Optional import mlflow import torch import cleartext.utils as utils from cleartext import PROJ_ROOT from cleartext.data import WikiSmall, WikiLarge from cleartext.pipeline import Pipeline # arbitrary choices EOS_TOKEN = '<eos>' SOS_TOKEN = '<sos>' PAD_TOKEN = '<pad>' UNK_TOKEN = '<unk>' # fixed choices MIN_FREQ = 2 NUM_SAMPLES = 4 CLIP = 1 MODELS_ROOT = PROJ_ROOT / 'models' @click.command() @click.argument('dataset', default='wikismall', type=str) @click.option('--num_epochs', '-e', default=10, type=int, help='Number of epochs') @click.option('--max_examples', '-n', required=False, type=int, help='Max number of training examples') @click.option('--batch_size', '-b', default=32, type=int, help='Batch size') @click.option('--embed_dim', '-d', default='50', type=Choice(['50', '100', '200', '300']), help='Embedding dimension') @click.option('--src_vocab', '-s', required=False, type=int, help='Max source vocabulary size') @click.option('--trg_vocab', '-t', required=False, type=int, help='Max target vocabulary size') @click.option('--rnn_units', '-r', default=100, type=int, help='Number of RNN units') @click.option('--attn_units', '-a', default=100, type=int, help='Number of attention units') @click.option('--dropout', '-p', default=0.3, type=float, help='Dropout probability') @click.option('--alpha', default=0.5, type=float, help='Beam search regularization') @click.option('--seed', required=False, type=str, help='Random seed') def main(dataset: str, num_epochs: int, max_examples: Optional[int], batch_size: int, embed_dim: str, src_vocab: Optional[int], trg_vocab: Optional[int], rnn_units: int, attn_units: int, dropout: float, alpha: float, seed: Optional[str] = None) -> None: # parse/validate arguments if dataset.lower() == 'wikismall': dataset = WikiSmall elif dataset.lower() == 'wikilarge': dataset = WikiLarge else: raise ValueError(f'Unknown dataset "{dataset}"') src_vocab = src_vocab if src_vocab else None trg_vocab = trg_vocab if trg_vocab else None seed = int(seed) if seed else None # initialize pipeline pipeline = Pipeline() print(f'Using {pipeline.device}') print() # load data print(f'Loading {dataset.__name__} data') train_len, _, _ = pipeline.load_data(dataset, max_examples) print(f'Loaded {train_len} training examples') print() # load embeddings print(f'Loading {embed_dim}-dimensional GloVe vectors') src_vocab_size, trg_vocab_size = pipeline.load_vectors(int(embed_dim), src_vocab, trg_vocab) print(f'Source vocabulary size: {src_vocab_size}') print(f'Target vocabulary size: {trg_vocab_size}') print() # prepare data pipeline.prepare_data(batch_size, seed) # build model and prepare optimizer and loss print('Building model') if seed is not None: torch.manual_seed(seed) trainable, total = pipeline.build_model(rnn_units, attn_units, dropout) print(f'Trainable parameters: {trainable} | Total parameters: {total}') print() # run training loop print(f'Training model for {num_epochs} epochs') epoch = pipeline.train(num_epochs) # reload last checkpoint (without losing dataset) pl_dict = torch.load(pipeline.root / f'model{pipeline.model_index:02}.pt', map_location=pipeline.device) pipeline.model.load_state_dict(pl_dict['model_state_dict']) pipeline.model.to(pipeline.device) # evaluate and save/print results print('\nEvaluating model') train_loss, valid_loss, test_loss, bleu = pipeline.evaluate(alpha=alpha) mlflow.log_metrics({ 'train_loss': train_loss, 'valid_loss': valid_loss, 'test_loss': test_loss, 'bleu_score': bleu }, step=epoch) utils.print_loss(train_loss, 'Train') utils.print_loss(valid_loss, 'Valid') utils.print_loss(test_loss, 'Test') print(f'\tBLEU score:\t{bleu:.3f}\t') # Generate and print samples examples = pipeline.test_data[:NUM_SAMPLES] sources, targets = zip(*((e.src, e.trg) for e in examples)) outputs = [pipeline.beam_search(s, 10, 30) for s in sources] source_print = [] target_print = [] output_print = [] for i in range(len(examples)): source_out = '> ' + ' '.join(sources[i]) target_out = '= ' + ' '.join(targets[i]) output_out = '< ' + ' '.join(outputs[i]) source_print.append(source_out) target_print.append(target_out) output_print.append(output_out) print(source_out) print(target_out) print(output_out) # save sample outputs _, path = tempfile.mkstemp(prefix='samples-', suffix='.txt') with open(path, 'w') as f: for source_out, target_out, output_out in zip(source_print, target_print, output_print): f.write(source_out + '\n') f.write(target_out + '\n') f.write(output_out + '\n') mlflow.log_artifact(path, 'samples') if __name__ == '__main__': main()
# Link: https://leetcode.com/contest/weekly-contest-278/problems/all-divisions-with-the-highest-score-of-a-binary-array/ # Time: O(N) # Space: O(N) # Score: 4 / 4 from typing import List def max_score_indices(nums: List[int]): zero_total = one_total = 0 for num in nums: if num == 0: zero_total += 1 else: one_total += 1 if not zero_total: return [len(nums)] if not one_total: return [0] max_score = max(zero_total, one_total) last_score = [one_total] last_zero_score = 0 for i in range(1, len(nums)): if nums[i - 1] == 0: last_score.append(last_score[i - 1] + (last_zero_score + 1)) else: last_score.append((last_score[i - 1] - 1) + last_zero_score) max_score = max(last_score[i], max_score) last_score.append(zero_total) return [i for i, num in enumerate(last_score) if num == max_score] def main(): nums = [0, 0, 0] print(max_score_indices(nums)) if __name__ == "__main__": main()
#!/usr/bin/env python # -*- coding: utf-8 -*- # Author: Liz M. Huancapaza Hilasaca # Copyright (c) 2020 # E-mail: lizhh@usp.br import numpy as np from sklearn.manifold import Isomap from vx.com.py.projection.Projection import * class ISOMAPP(Projection): def __init__(self, X=None, p=2): super().__init__(X,p) def execute(self): #X = self.X X = np.array(self.X) X2 = Isomap(n_components=self.p).fit_transform(X) return X2.tolist();
# This file is intentionally in a directory that is not located in sys.path. # That causes the python runtime to return an absolute path for __file__. import os def get_root_dir(): absDir = os.path.dirname(__file__) rootDir = os.path.normpath(absDir + "../../../..") return rootDir
# Copyright (c) 2012 John Reese # Licensed under the MIT License from __future__ import absolute_import, division import Queue import sys import select import threading import time from pyranha import async_ui_message from pyranha.dotfiles import Dotfile from pyranha.irc.client import IRC from pyranha.engine.network import Network from pyranha.logging import log class Engine(threading.Thread): def __init__(self): super(Engine, self).__init__() self.running = True self.commands = Queue.Queue() def async_command(self, command, network=None, params=None): """Send an asynchronous command to engine thread, for the given network with the given parameters. This is generally meant to be called from the UI thread, but can also be used to queue a command from the engine. A network value of '*' will send the command to all networks that are currently connected.""" self.commands.put((command, network, params)) def next_command(self, block=False, timeout=None): """Get the next command from the queue, return a three-tuple with the command, network, and parameters. If the queue is empty and block is false, None will be returned for all values.""" try: command, network, params = self.commands.get(block=block) return command, network, params except Queue.Empty: return None, None, None def run(self): self.irc = IRC() self.irc.add_global_handler(event='all_events', handler=self.process_events, priority=-1) self.network_config = Dotfile('networks', use_defaults=False) self.connections = {} self.networks = {} log.info('starting engine') irc_thread = threading.Thread(target=self.process_irc) irc_thread.start() command_thread = threading.Thread(target=self.process_commands) command_thread.start() while command_thread.is_alive(): command_thread.join() log.debug('command_thread stopped') while irc_thread.is_alive(): irc_thread.join() log.debug('irc_thread stopped') async_ui_message('stopped') def process_irc(self): while self.running: try: self.irc.process_once(timeout=1) except Exception as e: log.exception('exception in process_irc: {0}'.format(e)) def process_commands(self): while self.running: try: command, network, params = self.next_command(block=True) log.info('processing command {0} from {1} with parameters {2}'.format(command, network, params)) method = 'command_' + command if hasattr(self, method): getattr(self, method)(network, params) else: log.warning('method {0} not found, command discarded'.format(method)) except Exception as e: log.exception('exception processing command: {0}'.format(e)) def process_events(self, conn, event): try: network = self.connections[conn] if event.eventtype() != 'all_raw_messages': network.notify(event) except Exception as e: log.exception('exception during dispatch: {0}'.format(e)) def command_connect(self, name, params, explicit=True): if name is None: for name in self.network_config: self.command_connect(name, params, explicit=False) elif name in self.network_config: if explicit or self.network_config[name]['connect']: network = Network(name, self.network_config[name], self.irc) connection = network.connect() self.networks[name] = network self.connections[connection] = network else: log.warning('network {0} not found in configuration, could not connect'.format(name)) def command_send(self, network, (channel, message)): log.debug('send message to {0} {1}: {2}'.format(network, channel, message)) self.command_raw(network.name, message) def command_raw(self, network, params): if network == '*': log.info('sending raw command to all networks: {0}'.format(params)) for network in self.networks.values(): network.raw(params) else: network = self.networks[network] log.info('sending raw command to {0}: {1}'.format(network.name, params)) network.raw(params) def command_stop(self, network, params): for network in self.networks.values(): log.info('disconnecting {0}...'.format(network.name)) network.disconnect() time.sleep(1) self.running = False
import asyncio import json import logging from asyncio.queues import Queue import colorlog from chia.util.config import load_config from chia.util.default_root import DEFAULT_ROOT_PATH from monitor.collectors.rpc_collector import RpcCollector from monitor.collectors.ws_collector import WsCollector from monitor.db import ChiaEvent, async_session from monitor.exporter import ChiaExporter from monitor.notifier import Notifier chia_config = load_config(DEFAULT_ROOT_PATH, "config.yaml") def initilize_logging(): handler = colorlog.StreamHandler() log_date_format = "%Y-%m-%dT%H:%M:%S" handler.setFormatter( colorlog.ColoredFormatter( "%(asctime)s.%(msecs)03d %(log_color)s%(levelname)-6s%(reset)s %(message)s", datefmt=log_date_format, reset=True, )) logger = colorlog.getLogger() logger.addHandler(handler) logger.setLevel(logging.INFO) async def persist_event(event: ChiaEvent): async with async_session.begin() as db_session: db_session.add(event) await db_session.commit() async def aggregator(exporter: ChiaExporter, notifier: Notifier) -> None: rpc_collector = None ws_collector = None event_queue = Queue() try: rpc_collector = await RpcCollector.create(DEFAULT_ROOT_PATH, chia_config, event_queue) except Exception as e: logging.exception(f"Failed to create RPC collector. Continuing without it. {e}") try: ws_collector = await WsCollector.create(DEFAULT_ROOT_PATH, chia_config, event_queue) except Exception as e: logging.warning(f"Failed to create WebSocket collector. Continuing without it. {e}") if rpc_collector and ws_collector: logging.info("🚀 Starting monitoring loop!") asyncio.create_task(rpc_collector.task()) asyncio.create_task(ws_collector.task()) asyncio.create_task(notifier.task()) while True: try: event = await event_queue.get() exporter.process_event(event) await persist_event(event) except asyncio.CancelledError: break else: logging.error("Failed to create any collector.") logging.info("🛑 Shutting down!") if rpc_collector: await rpc_collector.close() if ws_collector: await ws_collector.close() if __name__ == "__main__": initilize_logging() with open("config.json") as f: config = json.load(f) status_url = config["notifications"]["status_service_url"] alert_url = config["notifications"]["alert_service_url"] status_interval_minutes = config["notifications"]["status_interval_minutes"] notifier = Notifier(status_url, alert_url, status_interval_minutes) exporter = ChiaExporter() try: asyncio.run(aggregator(exporter, notifier)) except KeyboardInterrupt: logging.info("👋 Bye!")
from django.contrib.contenttypes.models import ContentType from django.db import models from glitter.exceptions import GlitterUnpublishedException from glitter.models import Version from glitter.page import Glitter from .managers import GlitterManager class GlitterMixin(models.Model): published = models.BooleanField(default=True, db_index=True) current_version = models.ForeignKey('glitter.Version', blank=True, null=True, editable=False) objects = GlitterManager() class Meta: default_permissions = ('add', 'change', 'delete', 'edit', 'publish') abstract = True def get_latest_version(self): """ Get the latest version for the page. """ content_type = ContentType.objects.get_for_model(self) latest_version = Version.objects.filter( content_type=content_type, object_id=self.id ).exclude(version_number=None).first() return latest_version @property def is_published(self): """ Return a boolean if the object is fully published and visible. Glitter objects need to be published and have a current version to be visible to end users. """ return self.published and self.current_version_id is not None class GlitterDetailMixin(object): def post(self, request, *args, **kwargs): # By default detail views don't allow POST requests, however forms are usable as blocks. # So we allow POST requests, which does the same as GET. return self.get(request, *args, **kwargs) def get_object(self, queryset=None): obj = super().get_object(queryset) version = self.kwargs.get('version') if version: self.glitter = Glitter(page_version=version, request=self.request) else: # If an object isn't viewable by end users - staff might still be able to edit the # object. Raise an exception and let middleware deal with it. if not obj.published or not obj.current_version: raise GlitterUnpublishedException(obj=obj) self.glitter = Glitter(page_version=obj.current_version, request=self.request) self.glitter_columns = self.glitter.render() return obj def get_template_names(self): return [self.glitter.version.template_name] def get_context_data(self, **kwargs): context = super().get_context_data(**kwargs) obj = self.get_object() edit = self.kwargs.get('edit_mode') columns = self.glitter.render(edit_mode=edit) context['glitter'] = self.glitter context['columns'] = columns context['edit_mode'] = edit context[obj._meta.model_name] = obj return context
import jittor as jt from jittor import nn, models if jt.has_cuda: jt.flags.use_cuda = 1 # jt.flags.use_cuda class QueryEncoder(nn.Module): def __init__(self, out_dim=128): super(QueryEncoder, self).__init__() self.dim = out_dim self.resnet = models.resnet50(pretrained=False) self.resnet.conv1 = nn.Conv2d(4, 64, kernel_size=7, stride=2, padding=3, bias=False) fc_features = self.resnet.fc.in_features self.resnet.fc = nn.Sequential( nn.BatchNorm1d(fc_features*1), nn.Linear(fc_features*1, self.dim), ) def execute(self, input): embeddings = self.resnet(input) embeddings = jt.normalize(embeddings, p=2, dim=1) return embeddings class RenderingEncoder(nn.Module): def __init__(self, out_dim=128): super(RenderingEncoder, self).__init__() self.dim = out_dim self.resnet = models.resnet18(pretrained=False) self.resnet.conv1 = nn.Conv2d(1, 64, kernel_size=7, stride=2, padding=3, bias=False) fc_features = self.resnet.fc.in_features self.resnet.fc = nn.Sequential( nn.BatchNorm1d(fc_features*1), nn.Linear(fc_features*1, self.dim), ) def execute(self, inputs): embeddings = self.resnet(inputs) embeddings = jt.normalize(embeddings, p=2, dim=1) return embeddings class Attention(nn.Module): ''' Revised from pytorch version: <https://github.com/IBM/pytorch-seq2seq/blob/master/LICENSE> ''' """ Applies attention mechanism on the `context` using the `query`. **Thank you** to IBM for their initial implementation of :class:`Attention`. Here is their `License <https://github.com/IBM/pytorch-seq2seq/blob/master/LICENSE>`__. Args: dimensions (int): Dimensionality of the query and context. attention_type (str, optional): How to compute the attention score: * dot: :math:`score(H_j,q) = H_j^T q` * general: :math:`score(H_j, q) = H_j^T W_a q` Example: >>> attention = Attention(256) >>> query = torch.randn(5, 1, 256) >>> context = torch.randn(5, 5, 256) >>> output, weights = attention(query, context) >>> output.size() torch.Size([5, 1, 256]) >>> weights.size() torch.Size([5, 1, 5]) """ def __init__(self, dimensions, attention_type='general'): super(Attention, self).__init__() if attention_type not in ['dot', 'general']: raise ValueError('Invalid attention type selected.') self.attention_type = attention_type if self.attention_type == 'general': self.linear_in = nn.Linear(dimensions, dimensions, bias=False) self.linear_out = nn.Linear(dimensions * 2, dimensions, bias=False) self.softmax = nn.Softmax(dim=-1) self.tanh = nn.Tanh() def execute(self, query, context): """ Args: query (:class:`torch.FloatTensor` [batch size, output length, dimensions]): Sequence of queries to query the context. context (:class:`torch.FloatTensor` [batch size, query length, dimensions]): Data overwhich to apply the attention mechanism. Returns: :class:`tuple` with `output` and `weights`: * **output** (:class:`torch.LongTensor` [batch size, output length, dimensions]): Tensor containing the attended features. * **weights** (:class:`torch.FloatTensor` [batch size, output length, query length]): Tensor containing attention weights. """ batch_size, output_len, dimensions = query.size() query_len = context.size(1) if self.attention_type == "general": query = query.view(batch_size * output_len, dimensions) query = self.linear_in(query) query = query.view(batch_size, output_len, dimensions) # TODO: Include mask on PADDING_INDEX? # (batch_size, output_len, dimensions) * (batch_size, query_len, dimensions) -> # (batch_size, output_len, query_len) # attention_scores = nn.bmm(query, context.transpose(1, 2).contiguous()) attention_scores = nn.bmm(query, context.transpose(0, 2, 1)) # Compute weights across every context sequence attention_scores = attention_scores.view(batch_size * output_len, query_len) attention_weights = self.softmax(attention_scores) attention_weights = attention_weights.view(batch_size, output_len, query_len) # (batch_size, output_len, query_len) * (batch_size, query_len, dimensions) -> # (batch_size, output_len, dimensions) mix = nn.bmm(attention_weights, context) # concat -> (batch_size * output_len, 2*dimensions) combined = jt.concat((mix, query), dim=2) combined = combined.view(batch_size * output_len, 2 * dimensions) # Apply linear_out on every 2nd dimension of concat # output -> (batch_size, output_len, dimensions) output = self.linear_out(combined).view(batch_size, output_len, dimensions) output = self.tanh(output) return output, attention_weights class RetrievalNet(nn.Module): ''' QueryEncoder RenderingEncoder Attention ''' def __init__(self, cfg): super(RetrievalNet, self).__init__() self.dim = cfg.models.z_dim self.size = cfg.data.pix_size self.view_num = cfg.data.view_num self.query_encoder = QueryEncoder(self.dim) self.rendering_encoder = RenderingEncoder(self.dim) self.attention = Attention(self.dim) def execute(self, query, rendering): query_ebd = self.get_query_ebd(query) bs = query_ebd.shape[0] rendering = rendering.view(-1, 1, self.size, self.size) rendering_ebds = self.get_rendering_ebd(rendering).view(-1, self.view_num, self.dim) #(shape, image, ebd) -> (bs, bs, 128) query_ebd = query_ebd.unsqueeze(0).repeat(bs, 1, 1) # query_ebd: bs, bs, dim # rendering_ebds: bs, 12, dim _, weights = self.attention_query(query_ebd, rendering_ebds) # weights: bxxbsx12 # rendering_ebds: bsx12x128 # queried_rendering_ebd: bsxbsx128 (shape, model, 128) # reference to https://pytorchnlp.readthedocs.io/en/latest/_modules/torchnlp/nn/attention.html#Attentionl queried_rendering_ebd = nn.bmm(weights, rendering_ebds) return query_ebd, queried_rendering_ebd def get_query_ebd(self, inputs): return self.query_encoder(inputs) def get_rendering_ebd(self, inputs): return self.rendering_encoder(inputs) def attention_query(self, ebd, pool_ebd): return self.attention(ebd, pool_ebd) if __name__ == '__main__': import yaml import argparse with open('./configs/pix3d.yaml', 'r') as f: config = yaml.load(f) def dict2namespace(config): namespace = argparse.Namespace() for key, value in config.items(): if isinstance(value, dict): new_value = dict2namespace(value) else: new_value = value setattr(namespace, key, new_value) return namespace config = dict2namespace(config) models = RetrievalNet(config) img = jt.random([2,4,224,224]).stop_grad() mask = jt.random([2,12,224,224]).stop_grad() # mm = models.resnet50(pretrained=False) # # print(mm) # a = mm(img) outputs = models(img, mask)
__author__ = 'fausto' from models.algorithm.minimax import Heuristic import random class HeuristicTestMe(Heuristic): def heuristic(self, board): return random.randrange(-20, 20) def eval(self, old_value, new_value): #Lembre-se, uma heuristica tem que ser min, e o outro deve ser max return old_value > new_value # isso representa o max class HeuristicTestChallenger(Heuristic): def __init__(self, color): Heuristic.__init__(color) def heuristic(self, board): return random.randrange(-20, 20) def eval(self, old_value, new_value): #Lembre-se, uma heuristica tem que ser min, e o outro deve ser max return old_value < new_value # isso representa o min
# -*- coding: utf-8 -*- import scrapy from scrapy.linkextractors import LinkExtractor from scrapy.spiders import CrawlSpider, Rule from ..utils import extract_CN_from_content from ..items import ScrapySpiderItem import re class A406Spider(CrawlSpider): name = '406' allowed_domains = ['ynfq.gov.cn'] start_urls = [ 'http://www.ynfq.gov.cn/fqxrmzf/zdlygk2/zfcg78/index.html' ] czxx = "http://www.ynfq.gov.cn/eportal/ui?pageId=56343&currentPage={}&moduleId=37611fb90c864677be6f51b5eef91191&staticRequest=yes" for n in range(19): url = czxx.format(n+1) start_urls.append(url) fpgz = "http://www.ynfq.gov.cn/fqxrmzf/zdlygk2/fpgzxx57/47aa6026-{}.html" for n in range(5): url = fpgz.format(n+1) start_urls.append(url) acjd = "http://www.ynfq.gov.cn/fqxrmzf/xxgk72/zcjd96/be2d9e09-{}.html" for n in range(3): url = acjd.format(n+1) start_urls.append(url) czyjs = "http://www.ynfq.gov.cn/eportal/ui?pageId=56153&currentPage={}&moduleId=be2d9e0953dc4ef791b001eb738f805b&staticRequest=yes" for n in range(15): url = czyjs.format(n+1) start_urls.append(url) rules = ( Rule(LinkExtractor(allow=r'/fqxrmzf/[a-z]+\d+/[a-z]+\d+/index\.html'), follow=True), Rule(LinkExtractor(allow=r'/fqxrmzf/.*/\d+/index\.html'), callback='parse_item', follow=True), # Rule(LinkExtractor(allow=r'Items/'), callback='parse_item', follow=True), # Rule(LinkExtractor(allow=r'Items/'), callback='parse_item', follow=True), ) def parse_item(self, response): item = ScrapySpiderItem() item['url'] = response.url date = response.xpath('//*[@id="xilan_tab"]/tbody/tr[5]/td/text()').extract_first() date = re.search(r"(\d{4}-\d{2}-\d{2})", date).groups()[0] item['date'] = date title = response.xpath('//h1[@id="jiuctit"]/text()').extract_first() item['title'] = title contents = response.xpath('//div[@class="cont_len"]').extract() item['contents'] = extract_CN_from_content(contents) return item
from ann import * def rel_error(x, y): """ returns relative error """ return np.max(np.abs(x - y) / (np.maximum(1e-8, np.abs(x) + np.abs(y)))) def eval_numerical_gradient(f, x, verbose=True, h=0.00001): """ a naive implementation of numerical gradient of f at x - f should be a function that takes a single argument - x is the point (numpy array) to evaluate the gradient at """ fx = f(x) # evaluate function value at original point grad = np.zeros_like(x) # iterate over all indexes in x it = np.nditer(x, flags=['multi_index'], op_flags=['readwrite']) while not it.finished: # evaluate function at x+h ix = it.multi_index oldval = x[ix] x[ix] = oldval + h # increment by h fxph = f(x) # evalute f(x + h) x[ix] = oldval - h fxmh = f(x) # evaluate f(x - h) x[ix] = oldval # restore # compute the partial derivative with centered formula grad[ix] = (fxph - fxmh) / (2 * h) # the slope if verbose: print ix, grad[ix] it.iternext() # step to next dimension return grad def eval_numerical_gradient_array(f, x, df, h=1e-5): """ Evaluate a numeric gradient for a function that accepts a numpy array and returns a numpy array. """ grad = np.zeros_like(x) it = np.nditer(x, flags=['multi_index'], op_flags=['readwrite']) while not it.finished: ix = it.multi_index oldval = x[ix] x[ix] = oldval + h pos = f(x).copy() x[ix] = oldval - h neg = f(x).copy() x[ix] = oldval grad[ix] = np.sum((pos - neg) * df) / (2 * h) it.iternext() return grad def test_affine_forward(): num_inputs = 2 input_dim = 4 output_dim = 3 input_size = num_inputs * input_dim weight_size = output_dim * input_dim x = np.linspace(-0.1, 0.5, num=input_size).reshape(num_inputs, input_dim) w = np.linspace(-0.2, 0.3, num=weight_size).reshape(input_dim, output_dim) b = np.linspace(-0.3, 0.1, num=output_dim) out, _ = affine_forward(x, w, b) correct_out = np.array([[-0.24103896, -0.03584416, 0.16935065], [-0.23480519, 0.03272727, 0.30025974]]) # Compare your output with ours. The error should be around 1e-9. print 'Testing affine_forward function:' print 'difference: ', rel_error(out, correct_out) print def test_affine_backward(): x = np.random.randn(10, 6) w = np.random.randn(6, 5) b = np.random.randn(5) dout = np.random.randn(10, 5) dx_num = eval_numerical_gradient_array(lambda x: affine_forward(x, w, b)[0], x, dout) dw_num = eval_numerical_gradient_array(lambda w: affine_forward(x, w, b)[0], w, dout) db_num = eval_numerical_gradient_array(lambda b: affine_forward(x, w, b)[0], b, dout) _, cache = affine_forward(x, w, b) dx, dw, db = affine_backward(dout, cache) # The error should be around 1e-10 print 'Testing affine_backward function:' print 'dx error: ', rel_error(dx_num, dx) print 'dw error: ', rel_error(dw_num, dw) print 'db error: ', rel_error(db_num, db) print def test_relu_forward(): x = np.linspace(-0.5, 0.5, num=12).reshape(3, 4) out, _ = relu_forward(x) correct_out = np.array([[0., 0., 0., 0., ], [0., 0., 0.04545455, 0.13636364, ], [0.22727273, 0.31818182, 0.40909091, 0.5, ]]) # Compare your output with ours. The error should be around 1e-8 print 'Testing relu_forward function:' print 'difference: ', rel_error(out, correct_out) print def test_relu_backward(): x = np.random.randn(10, 10) dout = np.random.randn(*x.shape) dx_num = eval_numerical_gradient_array(lambda x: relu_forward(x)[0], x, dout) _, cache = relu_forward(x) dx = relu_backward(dout, cache) # The error should be around 1e-12 print 'Testing relu_backward function:' print 'dx error: ', rel_error(dx_num, dx) print def test_L2_loss(): x = np.array([3.5, 1.2, 4.0]) y = np.array([3.3, 1.4, 4.1]) h = 0.00001 correct_out = 0.015 correct_dx = np.array([0.066666667, -0.066666667, -0.033333334]) loss, dx = L2_loss(x, y) # The error should be around 1e-12 print 'Testing L2_loss function:' print 'loss error: ', rel_error(correct_out, loss) print 'dx error: ', rel_error(correct_dx, dx) print def test_ANN_predict(): net = ANN([3], 2) net.params['b0'][:] = (np.arange(3, dtype=np.float64) + 3.).reshape(net.params['b0'].shape) net.params['b1'][:] = (np.arange(1, dtype=np.float64) + 4.).reshape(net.params['b1'].shape) net.params['W0'] = (np.arange(6, dtype=np.float64) + 1.).reshape(net.params['W0'].shape) net.params['W1'] = (np.arange(3, dtype=np.float64) + 7.).reshape(net.params['W1'].shape) x = np.array([[1., 2.], [3., 4.], [5., 6.]]) y = np.array([[396.], [740.], [1084.]]) y_hat = net.predict(x) print 'Testing ANN.predict function:' print 'prediction error:', rel_error(y, y_hat)
from enum import Enum class RiscvRegister(Enum): """This class is obsolete because we are no longer using Renode. It may be possible to support RISC-V in the future, but that would require some work to make it work with Qemu. """ # Can't write to register 0 because it is not writable # ZERO = 0 RA = 1 SP = 2 GP = 3 TP = 4 FP = 8 PC = 32 SSTATUS = 321 SIE = 325 STVEC = 326 SSCRATCH = 385 SEPC = 386 SCAUSE = 387 STVAL = 388 SIP = 389 MSTATUS = 833 MISA = 834 MEDELEG = 835 MIDELEG = 836 MIE = 837 MTVEC = 838 MSCRATCH = 897 MEPC = 898 MCAUSE = 899 MTVAL = 900 MIP = 901 PRIV = 4161 # The XN registers are the generic names for the 32 basic registers # in the RISC-V architecture. We leave them out because their # specialized names are more informative, and to avoid giving too much # weight to a specific set of registers over others. # X0 = 0 # X1 = 1 # X2 = 2 # X3 = 3 # X4 = 4 # X5 = 5 # X6 = 6 # X7 = 7 # X8 = 8 # X9 = 9 # X10 = 10 # X11 = 11 # X12 = 12 # X13 = 13 # X14 = 14 # X15 = 15 # X16 = 16 # X17 = 17 # X18 = 18 # X19 = 19 # X20 = 20 # X21 = 21 # X22 = 22 # X23 = 23 # X24 = 24 # X25 = 25 # X26 = 26 # X27 = 27 # X28 = 28 # X29 = 29 # X30 = 30 # X31 = 31 T0 = 5 T1 = 6 T2 = 7 T3 = 28 T4 = 29 T5 = 30 T6 = 31 S0 = 8 S1 = 9 S2 = 18 S3 = 19 S4 = 20 S5 = 21 S6 = 22 S7 = 23 S8 = 24 S9 = 25 S10 = 26 S11 = 27 A0 = 10 A1 = 11 A2 = 12 A3 = 13 A4 = 14 A5 = 15 A6 = 16 A7 = 17 F0 = 33 F1 = 34 F2 = 35 F3 = 36 F4 = 37 F5 = 38 F6 = 39 F7 = 40 F8 = 41 F9 = 42 F10 = 43 F11 = 44 F12 = 45 F13 = 46 F14 = 47 F15 = 48 F16 = 49 F17 = 50 F18 = 51 F19 = 52 F20 = 53 F21 = 54 F22 = 55 F23 = 56 F24 = 57 F25 = 58 F26 = 59 F27 = 60 F28 = 61 F29 = 62 F30 = 63 F31 = 64 class A9Register(Enum): """Represents the register file in an ARM Cortex-A9 processor.""" sp = 13 lr = 14 pc = 15 cpsr = 25 r0 = 0 r1 = 1 r2 = 2 r3 = 3 r4 = 4 r5 = 5 r6 = 6 r7 = 7 r8 = 8 r9 = 9 r10 = 10 r11 = 11 r12 = 12 # R13 = 13 # R14 = 14 # R15 = 15 # also some floating point registers fpscr = 16 fpsid = 17 fpexc = 18 s0 = 32 s1 = 33 s2 = 34 s3 = 35 s4 = 36 s5 = 37 s6 = 38 s7 = 39 s8 = 40 s9 = 41 s10 = 42 s11 = 43 s12 = 44 s13 = 45 s14 = 46 s15 = 47 s16 = 48 s17 = 49 s18 = 50 s19 = 51 s20 = 52 s21 = 53 s22 = 54 s23 = 55 s24 = 56 s25 = 57 s26 = 58 s27 = 59 s28 = 60 s29 = 61 s30 = 62 s31 = 63 # must specify which class of register to search def nameLookup(cls, regStr): for r in cls: if r.name == regStr: return r return None
# Copyright (c) 2019, Nordic Semiconductor ASA # All rights reserved. # # Redistribution and use in source and binary forms, with or without modification, # are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form, except as embedded into a Nordic # Semiconductor ASA integrated circuit in a product or a software update for # such product, must reproduce the above copyright notice, this list of # conditions and the following disclaimer in the documentation and/or other # materials provided with the distribution. # # 3. Neither the name of Nordic Semiconductor ASA nor the names of its # contributors may be used to endorse or promote products derived from this # software without specific prior written permission. # # 4. This software, with or without modification, must only be used with a # Nordic Semiconductor ASA integrated circuit. # # 5. Any software provided in binary form under this license must not be reverse # engineered, decompiled, modified and/or disassembled. # # THIS SOFTWARE IS PROVIDED BY NORDIC SEMICONDUCTOR ASA "AS IS" AND ANY EXPRESS # OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES # OF MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL NORDIC SEMICONDUCTOR ASA OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE # GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) # HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT # LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT # OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import setuptools DISTRIBUTION_NAME = 'nrf802154_sniffer' REQUIREMENTS = [ 'pyserial' ] setuptools.setup( name=DISTRIBUTION_NAME, description='Wireshark extcap and firmware that can be used with nRF52840 chip as 802.15.4 sniffer.', author='Nordic Semiconductor', url='https://github.com/NordicPlayground/nRF-802.15.4-sniffer/', install_requires=REQUIREMENTS, include_package_data=True, packages=['nrf802154_sniffer'], package_data={ 'nrf802154_sniffer': ['nrf802154_sniffer.hex'] } )
import pytest import hail as hl from ..helpers import resource, startTestHailContext, stopTestHailContext, fails_local_backend, fails_service_backend setUpModule = startTestHailContext tearDownModule = stopTestHailContext def assert_c_king_same_as_hail_king(c_king_path, hail_king_mt): actual = hail_king_mt.entries() expected = hl.import_table(c_king_path, types={'Kinship': hl.tfloat}, key=['ID1', 'ID2']) expected = expected.rename({'ID1': 's_1', 'ID2': 's', 'Kinship': 'phi'}) expected = expected.key_by('s_1', 's') expected = expected.annotate(actual=actual[expected.key]) expected = expected.select( expected=expected.phi, actual=expected.actual.phi, diff=expected.phi - expected.actual.phi ) expected = expected.annotate( # KING prints 4 significant digits; but there are several instances # where we calculate 0.XXXX5 whereas KING outputs 0.XXXX failure=hl.abs(expected.diff) > 0.00006) expected = expected.filter(expected.failure) assert expected.count() == 0, expected.collect() @fails_service_backend() @fails_local_backend() def test_king_small(): plink_path = resource('balding-nichols-1024-variants-4-samples-3-populations') mt = hl.import_plink(bed=f'{plink_path}.bed', bim=f'{plink_path}.bim', fam=f'{plink_path}.fam') kinship = hl.king(mt.GT) assert_c_king_same_as_hail_king( resource('balding-nichols-1024-variants-4-samples-3-populations.kin0'), kinship) @pytest.mark.unchecked_allocator @fails_service_backend() @fails_local_backend() def test_king_large(): plink_path = resource('fastlmmTest') mt = hl.import_plink(bed=f'{plink_path}.bed', bim=f'{plink_path}.bim', fam=f'{plink_path}.fam', reference_genome=None) kinship = hl.king(mt.GT) assert_c_king_same_as_hail_king(resource('fastlmmTest.kin0.bgz'), kinship) @fails_service_backend() @fails_local_backend() def test_king_filtered_entries_no_error(): plink_path = resource('balding-nichols-1024-variants-4-samples-3-populations') mt = hl.import_plink(bed=f'{plink_path}.bed', bim=f'{plink_path}.bim', fam=f'{plink_path}.fam') mt = mt.filter_entries(hl.rand_bool(0.5)) hl.king(mt.GT)._force_count_rows()
lista = ['lucas', 'kessia'] #list tupla = ('lucas', 'kessia') #tuple dicionario = {'nome': 'Késsia', 'idade': 18} #dict conjunto = {'Késsia', 'lucas'} #conjunto (set) não salva dados repetidos, tem busca rápida -------------------------------------------------------------------------------------------------- #saber se o item esta ou não if 'kessia' in tupla: print ('Késsia está na tupla') ------------------------------------------------------------------------------------------------------ #o melhor para buscas #encontrar algum item dntro do dicionario print (dicionario ['nome']) ------------------------------------------------------------------------------------------- #paa add itens ao dicionario dicionario [endereço] = 'rua Maria da Graça' --------------------------------------------------------------------------------------- #como começar vazio lista = [] tupla = () dicionario = {} conjunto = set {}
#!/usr/bin/env python import random class BullsAndCows(): def __init__(self, size): digits = ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9'] self.__secret = '' for _ in range(size): rnd = random.choice(digits) self.__secret += rnd digits.remove(rnd) print('The secret number is: %s' % self.__secret) def compare(self, guess): bulls_cows = [0, 0] for i in range(len(self.__secret)): if guess[i] == self.__secret[i]: bulls_cows[0]+=1; elif guess[i] in self.__secret: bulls_cows[1]+=1; return bulls_cows
""" Copyright 2019 Samsung SDS Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ from brightics.function.statistics.mann_whitney_test import mann_whitney_test from brightics.common.datasets import load_iris import unittest import pandas as pd import numpy as np class MannWhitneyTest(unittest.TestCase): def setUp(self): print("*** Mann Whitney UnitTest Start ***") self.testdata = load_iris() def tearDown(self): print("*** Mann Whitney UnitTest End ***") def test(self): mann_whitney_res = mann_whitney_test(self.testdata, response_col='sepal_length', factor_col='species') res = mann_whitney_res['result'] self.assertEqual(res['setosa_versicolor']['Statistics'], 168.5) self.assertAlmostEqual(res['setosa_versicolor']['P value'], 4.172913572970345e-14) self.assertEqual(res['setosa_virginica']['Statistics'], 38.5) self.assertAlmostEqual(res['setosa_virginica']['P value'], 3.198349534698269e-17) self.assertEqual(res['versicolor_virginica']['Statistics'], 526.0) self.assertAlmostEqual(res['versicolor_virginica']['P value'], 2.9345032053320985e-07)
import os from random import shuffle from elasticsearch_dsl.connections import connections from django.core.management import call_command from django.test import TestCase from faker import Faker from series_tiempo_ar_api.apps.dump.generator.xlsx.generator import generate, sort_key from series_tiempo_ar_api.apps.dump.models import GenerateDumpTask, DumpFile from series_tiempo_ar_api.apps.dump.tasks import enqueue_write_xlsx_task from series_tiempo_ar_api.libs.utils.utils import index_catalog samples_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), 'samples') class XLSXGeneratorTests(TestCase): fake = Faker() index = fake.word() @classmethod def setUpClass(cls): super(XLSXGeneratorTests, cls).setUpClass() GenerateDumpTask.objects.all().delete() DumpFile.objects.all().delete() path = os.path.join(samples_dir, 'distribution_daily_periodicity.json') index_catalog('catalog_one', path, index=cls.index) path = os.path.join(samples_dir, 'leading_nulls_distribution.json') index_catalog('catalog_two', path, index=cls.index) call_command('generate_dump') def test_xlsx_dumps_generated(self): task = GenerateDumpTask.objects.create() generate(task) self.assertTrue(DumpFile.objects.filter(file_type=DumpFile.TYPE_XLSX).count()) def test_xlsx_dumps_by_catalog(self): enqueue_write_xlsx_task() self.assertEqual(DumpFile.objects.filter(file_type=DumpFile.TYPE_XLSX, node=None).count(), len(DumpFile.FILENAME_CHOICES)) self.assertEqual(DumpFile.objects.filter(file_type=DumpFile.TYPE_XLSX, node__catalog_id='catalog_one').count(), len(DumpFile.FILENAME_CHOICES)) self.assertEqual(DumpFile.objects.filter(file_type=DumpFile.TYPE_XLSX, node__catalog_id='catalog_two').count(), len(DumpFile.FILENAME_CHOICES)) def tearDown(self) -> None: elastic = connections.get_connection() if elastic.indices.exists(self.index): elastic.indices.delete(self.index) class SheetSortTests(TestCase): class MockSheet: def __init__(self, name): self.name = name def __eq__(self, other): return self.name == other.name def test_sort_common_case(self): sheets = self.init_sheets( ['anual-1', 'trimestral-1', 'mensual-1', 'diaria-1', 'semestral-1', 'diaria-2'] ) shuffle(sheets) sheets.sort(key=sort_key) expected = self.init_sheets(['anual-1', 'semestral-1', 'trimestral-1', 'mensual-1', 'diaria-1', 'diaria-2']) self.assertListEqual(sheets, expected) def test_sort(self): sheets = self.init_sheets([ 'anual-1', 'trimestral-1', 'mensual-1', 'diaria-1', 'semestral-1' ]) shuffle(sheets) sheets.sort(key=sort_key) self.assertListEqual(sheets, self.init_sheets(['anual-1', 'semestral-1', 'trimestral-1', 'mensual-1', 'diaria-1'])) def test_sort_pages(self): sheets = self.init_sheets([ 'anual-1', 'diaria-1', 'diaria-2', 'anual-2', 'semestral-1' ]) shuffle(sheets) sheets.sort(key=sort_key) self.assertListEqual(sheets, self.init_sheets(['anual-1', 'anual-2', 'semestral-1', 'diaria-1', 'diaria-2'])) def init_sheets(self, names): return [self.MockSheet(name) for name in names]
from .synergies import * class Champion: @classmethod def list(champion): return champion.__subclasses__() @Demon @Blademaster class Aatrox(Champion): tier = 3 weight = 0.1 @Wild @Sorcerer class Ahri(Champion): tier = 2 weight = 0.7 @Ninja @Assassin class Akali(Champion): tier = 4 weight = 0.7 @Glacial @Elementalist class Anivia(Champion): tier = 5 weight = 0.7 @Glacial @Ranger class Ashe(Champion): tier = 3 weight = 0.85 @Dragon @Sorcerer class AurelionSol(Champion): tier = 4 weight = 1 @Robot @Brawler class Blitzcrank(Champion): tier = 2 weight = 0.7 @Demon @Elementalist class Brand(Champion): tier = 4 weight = 0.85 @Glacial @Guardian class Braum(Champion): tier = 2 weight = 0.4 @Void @Brawler class ChoGath(Champion): tier = 4 weight = 0.55 @Imperial @Knight class Darius(Champion): tier = 1 weight = 0.7 @Imperial @Blademaster class Draven(Champion): tier = 4 weight = 1 @Demon @Shapeshifter class Elise(Champion): tier = 2 weight = 0.25 @Demon @Assassin class Evelynn(Champion): tier = 3 weight = 0.4 @Noble @Blademaster class Fiora(Champion): tier = 1 weight = 0.4 @Pirate @Blademaster @Gunslinger class Gangplank(Champion): tier = 3 weight = 0.25 @Noble @Knight class Garen(Champion): tier = 1 weight = 1 @Wild @Yordle @Shapeshifter class Gnar(Champion): tier = 4 weight = 1 @Pirate @Gunslinger class Graves(Champion): tier = 1 weight = 0.1 @Phantom @Sorcerer class Karthus(Champion): tier = 5 weight = 0.4 @Void @Sorcerer class Kassadin(Champion): tier = 1 weight = 0.55 @Imperial @Assassin class Katarina(Champion): tier = 3 weight = 0.7 @Noble @Knight class Kayle(Champion): tier = 5 weight = 0.85 @Ninja @Yordle @Elementalist class Kennen(Champion): tier = 3 weight = 0.55 @Void @Assassin class KhaZix(Champion): tier = 1 weight = 0.55 @Phantom @Ranger class Kindred(Champion): tier = 4 weight = 0.85 @Noble @Guardian class Leona(Champion): tier = 4 weight = 0.4 @Glacial @Elementalist class Lissandra(Champion): tier = 2 weight = 0.55 @Noble @Gunslinger class Lucian(Champion): tier = 2 weight = 0.7 @Yordle @Sorcerer class Lulu(Champion): tier = 2 weight = 0.85 @Pirate @Gunslinger class MissFortune(Champion): tier = 5 weight = 0.55 @Phantom @Knight class Mordekaiser(Champion): tier = 1 weight = 0.55 @Demon @Sorcerer class Morgana(Champion): tier = 3 weight = 0.55 @Wild @Shapeshifter class Nidalee(Champion): tier = 1 weight = 0.85 @Yordle @Knight class Poppy(Champion): tier = 3 weight = 0.25 @Pirate @Assassin class Pyke(Champion): tier = 2 weight = 1 @Void @Brawler class RekSai(Champion): tier = 2 weight = 0.25 @Wild @Assassin class Rengar(Champion): tier = 3 weight = 0.55 @Glacial @Knight class Sejuani(Champion): tier = 4 weight = 1 @Ninja @Blademaster class Shen(Champion): tier = 2 weight = 0.4 @Dragon @Shapeshifter class Shyvana(Champion): tier = 3 weight = 0.55 @Demon @Imperial @Shapeshifter class Swain(Champion): tier = 5 weight = 0.85 @Yordle @Gunslinger class Tristana(Champion): tier = 1 weight = 0.7 # @Pirate # @Sorcerer # class TwistedFate(Champion): # tier = 2 @Demon @Ranger class Varus(Champion): tier = 2 weight = 0.7 @Noble @Ranger class Vayne(Champion): tier = 1 weight = 0.55 @Yordle @Sorcerer class Veigar(Champion): tier = 3 weight = 0.55 @Glacial @Brawler class Volibear(Champion): tier = 3 weight = 0.7 @Wild @Brawler class Warwick(Champion): tier = 1 weight = 0.55 @Exile @Blademaster class Yasuo(Champion): tier = 5 weight = 0.55 @Ninja @Assassin class Zed(Champion): tier = 2 weight = 0.4
#!/usr/bin/env python import O365 as o365 import json # O365 logging #import logging #logging.basicConfig(level=logging.DEBUG) # Running this triggers a manual copy-paste into browser, login, copy-paste # back. It should only need to be done once. See README for more. with open("conf.json", "r") as f: data = json.load(f) creds = (data['ClientID'], data['ClientSecret']) acct = o365.Account(credentials=creds, tenant_id=data['TenantID']) scopes = ['calendar', 'basic'] result = acct.authenticate(scopes=scopes, tenant_id=data['TenantID'])
# # Copyright (c) 2019 Intel Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # The TorchVision implementation in https://github.com/pytorch/vision/blob/master/torchvision/models/resnet.py # has 2 issues in the implementation of the BasicBlock and Bottleneck modules, which impact our ability to # collect activation statistics and run quantization: # 1. Re-used ReLU modules # 2. Element-wise addition as a direct tensor operation # Here we provide an implementation of both classes that fixes these issues, and we provide the same API to create # ResNet and ResNeXt models as in the TorchVision implementation. # We reuse the original implementation as much as possible. from collections import OrderedDict import torch.nn as nn from torchvision.models.resnet import ResNet, BasicBlock, Bottleneck, _resnet class EltwiseAdd(nn.Module): def __init__(self, inplace=False): """Element-wise addition""" super().__init__() self.inplace = inplace def forward(self, *input): res = input[0] if self.inplace: for t in input[1:]: res += t else: for t in input[1:]: res = res + t return res __all__ = ['ResNet', 'resnet18', 'resnet34', 'resnet50', 'resnet101', 'resnet152', 'resnext50_32x4d', 'resnext101_32x8d', 'wide_resnet50_2', 'wide_resnet101_2', 'DistillerBottleneck'] class DistillerBasicBlock(BasicBlock): def __init__(self, *args, **kwargs): # Initialize torchvision version super(DistillerBasicBlock, self).__init__(*args, **kwargs) # Remove original relu in favor of numbered modules delattr(self, 'relu') self.relu1 = nn.ReLU(inplace=True) self.relu2 = nn.ReLU(inplace=True) self.add = EltwiseAdd(inplace=True) # Replace '+=' operator with inplace module # Trick to make the modules accessible in their topological order modules = OrderedDict() modules['conv1'] = self.conv1 modules['bn1'] = self.bn1 modules['relu1'] = self.relu1 modules['conv2'] = self.conv2 modules['bn2'] = self.bn2 if self.downsample is not None: modules['downsample'] = self.downsample modules['add'] = self.add modules['relu2'] = self.relu2 self._modules = modules def forward(self, x): identity = x out = self.conv1(x) out = self.bn1(out) out = self.relu1(out) out = self.conv2(out) out = self.bn2(out) if self.downsample is not None: identity = self.downsample(x) out = self.add(out, identity) out = self.relu2(out) return out class DistillerBottleneck(Bottleneck): def __init__(self, *args, **kwargs): # Initialize torchvision version super(DistillerBottleneck, self).__init__(*args, **kwargs) # Remove original relu in favor of numbered modules delattr(self, 'relu') self.relu1 = nn.ReLU(inplace=True) self.relu2 = nn.ReLU(inplace=True) self.relu3 = nn.ReLU(inplace=True) self.add = EltwiseAdd(inplace=True) # Replace '+=' operator with inplace module # Trick to make the modules accessible in their topological order modules = OrderedDict() modules['conv1'] = self.conv1 modules['bn1'] = self.bn1 modules['relu1'] = self.relu1 modules['conv2'] = self.conv2 modules['bn2'] = self.bn2 modules['relu2'] = self.relu2 modules['conv3'] = self.conv3 modules['bn3'] = self.bn3 if self.downsample is not None: modules['downsample'] = self.downsample modules['add'] = self.add modules['relu3'] = self.relu3 self._modules = modules def forward(self, x): identity = x out = self.conv1(x) out = self.bn1(out) out = self.relu1(out) out = self.conv2(out) out = self.bn2(out) out = self.relu2(out) out = self.conv3(out) out = self.bn3(out) if self.downsample is not None: identity = self.downsample(x) out = self.add(out, identity) out = self.relu3(out) return out def resnet18(pretrained=False, progress=True, **kwargs): """Constructs a ResNet-18 model. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr """ return _resnet('resnet18', DistillerBasicBlock, [2, 2, 2, 2], pretrained, progress, **kwargs) def resnet34(pretrained=False, progress=True, **kwargs): """Constructs a ResNet-34 model. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr """ return _resnet('resnet34', DistillerBasicBlock, [3, 4, 6, 3], pretrained, progress, **kwargs) def resnet50(pretrained=False, progress=True, **kwargs): """Constructs a ResNet-50 model. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr """ return _resnet('resnet50', DistillerBottleneck, [3, 4, 6, 3], pretrained, progress, **kwargs) def resnet101(pretrained=False, progress=True, **kwargs): """Constructs a ResNet-101 model. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr """ return _resnet('resnet101', DistillerBottleneck, [3, 4, 23, 3], pretrained, progress, **kwargs) def resnet152(pretrained=False, progress=True, **kwargs): """Constructs a ResNet-152 model. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr """ return _resnet('resnet152', DistillerBottleneck, [3, 8, 36, 3], pretrained, progress, **kwargs) def resnext50_32x4d(pretrained=False, progress=True, **kwargs): """Constructs a ResNeXt-50 32x4d model. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr """ kwargs['groups'] = 32 kwargs['width_per_group'] = 4 return _resnet('resnext50_32x4d', DistillerBottleneck, [3, 4, 6, 3], pretrained, progress, **kwargs) def resnext101_32x8d(pretrained=False, progress=True, **kwargs): """Constructs a ResNeXt-101 32x8d model. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr """ kwargs['groups'] = 32 kwargs['width_per_group'] = 8 return _resnet('resnext101_32x8d', DistillerBottleneck, [3, 4, 23, 3], pretrained, progress, **kwargs) def wide_resnet50_2(pretrained=False, progress=True, **kwargs): """Constructs a Wide ResNet-50-2 model. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr """ kwargs['width_per_group'] = 64 * 2 return _resnet('wide_resnet50_2', DistillerBottleneck, [3, 4, 6, 3], pretrained, progress, **kwargs) def wide_resnet101_2(pretrained=False, progress=True, **kwargs): """Constructs a Wide ResNet-101-2 model. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr """ kwargs['width_per_group'] = 64 * 2 return _resnet('wide_resnet101_2', DistillerBottleneck, [3, 4, 23, 3], pretrained, progress, **kwargs)
def fib(N): if N == 0: return 0 if N == 1: return 1 return fib(N - 1) + fib(N - 2) cache = {0: 0, 1: 1} def fib_mem(N, cache): if N == 0: return 0 if N == 1: return 1 if cache[N] != 0: return cache[N] res = fib_mem(N - 1, cache) + fib_mem(N - 2, cache) cache[N] = res return res def fib_dp(N): if N == 0: return 0 if N == 1: return 1 dp = [0 for _ in range(0, N + 1)] dp[1] = 1 for i in range(2, N + 1): dp[i] = dp[i - 1] + dp[i - 2] return dp[N] def fib_dp_efficient(N): if N == 0: return 0 if N == 1: return 1 last_last = 0 last = 1 current = 0 for i in range(2, N + 1): current = last + last_last last_last = last last = current return current N = 10 cache = [0 for _ in range(0, N + 1)] print(fib(N)) print(fib_mem(N, cache)) print(fib_dp(N)) print(fib_dp_efficient(N))
""" Copyright (c) 2022 Huawei Technologies Co.,Ltd. openGauss is licensed under Mulan PSL v2. You can use this software according to the terms and conditions of the Mulan PSL v2. You may obtain a copy of Mulan PSL v2 at: http://license.coscl.org.cn/MulanPSL2 THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT, MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE. See the Mulan PSL v2 for more details. """ ''' -- @testpoint:创建联合唯一约束,并定义其中一列是序列型 ''' import sys import unittest sys.path.append(sys.path[0] + "/../") from testcase.utils.Logger import Logger from testcase.utils.Constant import Constant from testcase.utils.CommonSH import CommonSH logger = Logger() commonsh = CommonSH('dbuser') constant = Constant() class Privategrant(unittest.TestCase): def setUp(self): logger.info('------------------------Opengauss_Function_DML_Upsert_Case0118开始执行-----------------------------') def test_sysadmin_user_permission(self): # 建表指定id列为唯一约束且name列为数组类型 sql_cmd1 = commonsh.execut_db_sql(''' drop table if exists test_4; create table test_4(name char[] ,id int unique ,address nvarchar2(50)) ;''') logger.info(sql_cmd1) self.assertIn(constant.CREATE_TABLE_SUCCESS, sql_cmd1) # 常规insert插入一条数据 # 使用insert..update..EXCLUDED语句,原数据(array['c','d','a'],3,'tianjin1')更改为(array['c','d','a'],3,YUNNAN)并新增一条数据(array['c','d'],4,'dalian1') # 使用insert..update..EXCLUDED语句,两条数据主键均重复,更改后的数据为(array['c','d','e'],3,'YUNNAN1')和(array['c','d','g'],4,'DAQING') sql_cmd2 = commonsh.execut_db_sql('''insert into test_4 values(array['c','d','a'],3,'tianjin1'); explain analyse insert into test_4 values(array['c','d','e'],3,'yunnan'),(array['c','d'],4,'dalian1') ON duplicate key update address=upper(EXCLUDED.address); explain analyze insert into test_4 values(array['c','d','e'],3,'yunnan1'),(array['c','d','g'],4,'daqing') ON duplicate key update address=upper(EXCLUDED.address),name=EXCLUDED.name;''') logger.info(sql_cmd2) self.assertIn(constant.INSERT_SUCCESS_MSG, sql_cmd2) # 清理表数据 sql_cmd3 = commonsh.execut_db_sql('''truncate test_4;''') logger.info(sql_cmd3) self.assertIn(constant.TRUNCATE_SUCCESS_MSG, sql_cmd3) # 常规insert插入一条数据 sql_cmd4 = commonsh.execut_db_sql('''insert into test_4 values(array['c','d','a'],3,'tianjin1'); explain analyze insert into test_4 values(array['c','d','e'],3,'yunnan1'),(array['c','d','g'],4,'daqing') ON duplicate key update address=char_length(excluded.address); explain analyze insert into test_4 values(array['c','d','e'],3,'yunnan1'),(array['c','d','g'],4,'daqing1') ON duplicate key update address=test_4.name; truncate test_4;''') logger.info(sql_cmd4) self.assertIn(constant.INSERT_SUCCESS_MSG, sql_cmd4) self.assertIn(constant.TRUNCATE_SUCCESS_MSG, sql_cmd4) # 使用insert..update..语句,update后跟values,数据更改为(array['c','d','e'],3,array['c','d','g']) sql_cmd5 = commonsh.execut_db_sql('''explain analyze insert into test_4 values(array['c','d','e'],3,'yunnan1'),(array['c','d','g'],3,'daqing1') ON duplicate key update address=values(name);''') logger.info(sql_cmd5) self.assertIn('QUERY PLAN', sql_cmd5) # 清理环境 def tearDown(self): logger.info('----------this is teardown-------') # 删除表 sql_cmd6 = commonsh.execut_db_sql(''' drop table test_4;''') logger.info(sql_cmd6) logger.info('------------------------Opengauss_Function_DML_Upsert_Case0118执行结束--------------------------')
from django.conf import settings from django.core.exceptions import ImproperlyConfigured class Config(object): def __init__(self, **kwargs): self.CLIENT_ID = kwargs.get("CLIENT_ID", "") self.CLIENT_SECRET = kwargs.get("CLIENT_SECRET", "") self.REDIRECT_URI = kwargs.get("REDIRECT_URI", "") self.ACCEPT_TYPE = kwargs.get("ACCEPT_TYPE", "") self.SCOPES = kwargs.get("SCOPES", "") self.defaults = kwargs def __getattr_(self, name): try: return getattr(settings, name) except AttributeError: if name not in self.defaults: raise ImproperlyConfigured( '[Django-Github-OAuth] Missing setting {0}'.format(name)) conf = Config( CLIENT_ID=settings.GITHUB_CLIENT_ID, CLIENT_SECRET=settings.GITHUB_CLIENT_SECRET, REDIRECT_URI=settings.GITHUB_REDIRECT_URI, SCOPES=settings.GITHUB_SCOPES, ACCEPT_TYPE=settings.GITHUB_ACCEPT_TYPE, )
#!/usr/bin/env python3 # pylint: skip-file # type: ignore import numpy as np import math from tqdm import tqdm from typing import cast import seaborn as sns import matplotlib.pyplot as plt from selfdrive.car.honda.interface import CarInterface from selfdrive.car.honda.values import CAR from selfdrive.controls.lib.vehicle_model import VehicleModel, create_dyn_state_matrices from selfdrive.locationd.kalman.models.car_kf import CarKalman, ObservationKind, States T_SIM = 5 * 60 # s DT = 0.01 CP = CarInterface.get_params(CAR.CIVIC) VM = VehicleModel(CP) x, y = 0, 0 # m, m psi = math.radians(0) # rad # The state is x = [v, r]^T # with v lateral speed [m/s], and r rotational speed [rad/s] state = np.array([[0.0], [0.0]]) ts = np.arange(0, T_SIM, DT) speeds = 10 * np.sin(2 * np.pi * ts / 200.) + 25 angle_offsets = math.radians(1.0) * np.ones_like(ts) angle_offsets[ts > 60] = 0 steering_angles = cast(np.ndarray, np.radians(5 * np.cos(2 * np.pi * ts / 100.))) xs = [] ys = [] psis = [] yaw_rates = [] speed_ys = [] kf_states = [] kf_ps = [] kf = CarKalman() for i, t in tqdm(list(enumerate(ts))): u = speeds[i] sa = steering_angles[i] ao = angle_offsets[i] A, B = create_dyn_state_matrices(u, VM) state += DT * (A.dot(state) + B.dot(sa + ao)) x += u * math.cos(psi) * DT y += (float(state[0]) * math.sin(psi) + u * math.sin(psi)) * DT psi += float(state[1]) * DT kf.predict_and_observe(t, ObservationKind.CAL_DEVICE_FRAME_YAW_RATE, [float(state[1])]) kf.predict_and_observe(t, ObservationKind.CAL_DEVICE_FRAME_XY_SPEED, [[u, float(state[0])]]) kf.predict_and_observe(t, ObservationKind.STEER_ANGLE, [sa]) kf.predict_and_observe(t, ObservationKind.ANGLE_OFFSET_FAST, [0]) kf.predict(t) speed_ys.append(float(state[0])) yaw_rates.append(float(state[1])) kf_states.append(kf.x.copy()) kf_ps.append(kf.P.copy()) xs.append(x) ys.append(y) psis.append(psi) xs = np.asarray(xs) ys = np.asarray(ys) psis = np.asarray(psis) speed_ys = np.asarray(speed_ys) kf_states = np.asarray(kf_states) kf_ps = np.asarray(kf_ps) palette = sns.color_palette() def plot_with_bands(ts, state, label, ax, idx=1, converter=None): mean = kf_states[:, state].flatten() stds = np.sqrt(kf_ps[:, state, state].flatten()) if converter is not None: mean = converter(mean) stds = converter(stds) sns.lineplot(ts, mean, label=label, ax=ax) ax.fill_between(ts, mean - stds, mean + stds, alpha=.2, color=palette[idx]) print(kf.x) sns.set_context("paper") f, axes = plt.subplots(6, 1) sns.lineplot(ts, np.degrees(steering_angles), label='Steering Angle [deg]', ax=axes[0]) plot_with_bands(ts, States.STEER_ANGLE, 'Steering Angle kf [deg]', axes[0], converter=np.degrees) sns.lineplot(ts, np.degrees(yaw_rates), label='Yaw Rate [deg]', ax=axes[1]) plot_with_bands(ts, States.YAW_RATE, 'Yaw Rate kf [deg]', axes[1], converter=np.degrees) sns.lineplot(ts, np.ones_like(ts) * VM.sR, label='Steer ratio [-]', ax=axes[2]) plot_with_bands(ts, States.STEER_RATIO, 'Steer ratio kf [-]', axes[2]) axes[2].set_ylim([10, 20]) sns.lineplot(ts, np.ones_like(ts), label='Tire stiffness[-]', ax=axes[3]) plot_with_bands(ts, States.STIFFNESS, 'Tire stiffness kf [-]', axes[3]) axes[3].set_ylim([0.8, 1.2]) sns.lineplot(ts, np.degrees(angle_offsets), label='Angle offset [deg]', ax=axes[4]) plot_with_bands(ts, States.ANGLE_OFFSET, 'Angle offset kf deg', axes[4], converter=np.degrees) plot_with_bands(ts, States.ANGLE_OFFSET_FAST, 'Fast Angle offset kf deg', axes[4], converter=np.degrees, idx=2) axes[4].set_ylim([-2, 2]) sns.lineplot(ts, speeds, ax=axes[5]) plt.show()
import logging import random from argparse import ArgumentParser, Namespace import json from typing import Union, List, Tuple, Dict, Optional import math import re import torch from torch import Tensor, nn from torch.utils.data import DataLoader, Sampler, Dataset from torch.utils.data.distributed import T_co import torch.distributed as dist from transformers import PreTrainedTokenizer, AutoTokenizer import pytorch_lightning as pl logger = logging.getLogger(__name__) class DPRReaderDatasetModule(pl.LightningDataModule): def __init__( self, tokenizer: str, args: Namespace, ): super(DPRReaderDatasetModule, self).__init__() self.args = args self.tokenizer_path = tokenizer self.dataset: Dict[str, Optional[List]] = { 'train': None, 'dev': None, 'test': None } def setup(self, stage: Optional[str] = None) -> None: for data_split, data_file in [('train', self.args.train_data), ('dev', self.args.dev_data), ('test', self.args.test_data)]: if data_file is not None: with open(data_file) as f: data = json.load(f) filtered_data = [ d for d in data if len(d['positive_ctxs']) > 0 ] self.dataset[data_split] = filtered_data self.tokenizer = AutoTokenizer.from_pretrained(self.tokenizer_path) self.sep_token = self.tokenizer.sep_token \ if self.tokenizer.sep_token is not None else self.tokenizer.eos_token self.pad_token = self.tokenizer.pad_token def prepare_data(self) -> None: for data_split, data_file in [('train', self.args.train_data), ('dev', self.args.dev_data), ('test', self.args.test_data)]: if data_file is not None: with open(data_file) as f: data = json.load(f) filtered_data = [ d for d in data if len(d['positive_ctxs']) > 0 ] logger.info(f'{data_split.upper()} data size after filtering: {len(filtered_data)}') def train_dataloader(self) -> Union[DataLoader, List[DataLoader], Dict[str, DataLoader]]: if self.dataset['train'] is None: return None return DataLoader( self.dataset['train'], shuffle=False if dist.is_initialized() else True, batch_size=self.args.train_batch_size, num_workers=self.args.num_workers, collate_fn=lambda x: self.collator(x, sample=True) ) def val_dataloader(self) -> Union[DataLoader, List[DataLoader]]: if self.dataset['dev'] is None: return None return DataLoader( self.dataset['dev'], batch_size=self.args.eval_batch_size, num_workers=self.args.num_workers, collate_fn=lambda x: self.collator(x, sample=False) ) def test_dataloader(self) -> Union[DataLoader, List[DataLoader]]: if self.dataset['test'] is None: return None return DataLoader( self.dataset['test'], batch_size=self.args.eval_batch_size, num_workers=self.args.num_workers, collate_fn=lambda x: self.collator(x, sample=False) ) def collator(self, questions_with_ctxs: List[Dict[str, Union[str, List[Dict]]]], sample=False): def normalize_text(text): return re.sub('\s+', ' ', text).strip() def convert_passages_to_string(passages): return [normalize_text(ctx['title']) + f' {self.sep_token} ' + normalize_text(ctx['text']) if self.args.insert_titles else normalize_text(ctx['text']) for ctx in passages] def truncate_question(question): words = [] words_len = 0 for word in question.split(): words_len += len(self.tokenizer.tokenize(word)) if words_len > self.args.max_question_len: break words.append(word) return ' '.join(words) examples = [] valid = [] for question_with_ctxs in questions_with_ctxs: is_valid = torch.ones(1 + self.args.num_negative_ctx + self.args.num_hard_negative_ctx) question = truncate_question(normalize_text(question_with_ctxs['question'])) positives = question_with_ctxs['positive_ctxs'] negatives = question_with_ctxs['negative_ctxs'] hard_negatives = question_with_ctxs['hard_negative_ctxs'] if sample: random.shuffle(positives) random.shuffle(negatives) random.shuffle(hard_negatives) positive_context = positives[0] negatives = negatives[:self.args.num_negative_ctx] if len(negatives) < self.args.num_negative_ctx: for i in range(len(negatives), self.args.num_negative_ctx): is_valid[1 + i] = 0 negatives += [{'title': self.pad_token, 'text': self.pad_token} for _ in range(self.args.num_negative_ctx - len(negatives))] hard_negatives = hard_negatives[:self.args.num_hard_negative_ctx] if len(hard_negatives) < self.args.num_hard_negative_ctx: for i in range(len(hard_negatives), self.args.num_hard_negative_ctx): is_valid[1 + self.args.num_negative_ctx + i] = 0 hard_negatives += [{'title': self.pad_token, 'text': self.pad_token} for _ in range(self.args.num_hard_negative_ctx - len(hard_negatives))] positive_context = convert_passages_to_string([positive_context])[0] negative_ctxs = convert_passages_to_string(negatives) hard_negatives = convert_passages_to_string(hard_negatives) examples.append(self.tokenizer( [question] * (1 + len(negative_ctxs) + len(hard_negatives)), text_pair=[positive_context] + negative_ctxs + hard_negatives, truncation='only_second', padding='max_length', max_length=self.args.max_seq_len, return_tensors='pt' )) valid.append(is_valid.unsqueeze(0)) valid = torch.cat(valid, dim=0) keys = examples[0].keys() examples = {k: torch.cat([example[k].unsqueeze(0) for example in examples], dim=0) for k in keys} return examples, valid.type(torch.bool) @classmethod def add_argparse_args(cls, parent_parser: ArgumentParser, **kwargs) -> Optional[ArgumentParser]: parser = parent_parser.add_argument_group('DPR Datamodule Params') parser.add_argument('--num_workers', default=1, type=int, help="kwarg passed to DataLoader") parser.add_argument('--train_batch_size', default=1, type=int) parser.add_argument('--eval_batch_size', default=1, type=int) parser.add_argument('--train_data', default=None, type=str, help='Path to json wile with training data') parser.add_argument('--dev_data', default=None, type=str, help='Path to json wile with dev data') parser.add_argument('--test_data', default=None, type=str, help='Path to json wile with test data') parser.add_argument('--num_negative_ctx', default=0, type=int, help='Number of negative contexts for each example') parser.add_argument('--num_hard_negative_ctx', default=1, type=int, help='Number of hard negative contexts for each example') parser.add_argument('--max_question_len', default=128, type=int, help='max len of question (should be strictly less than max_seq_len)') parser.add_argument('--max_seq_len', default=256, type=int, help='Maximum number of tokens per passage') parser.add_argument('--insert_titles', action='store_true') return None
""" This module tests the objective function by comparing it to the line example from http://dan.iel.fm/emcee/current/user/line/ """ import pickle from multiprocessing.reduction import ForkingPickler import os import pytest import numpy as np from numpy.linalg import LinAlgError from scipy.optimize import minimize, least_squares from scipy.optimize._numdiff import approx_derivative import scipy.stats as stats from numpy.testing import ( assert_almost_equal, assert_equal, assert_, assert_allclose, ) from refnx.analysis import ( Parameter, Model, Objective, BaseObjective, Transform, Parameters, PDF, ) from refnx.dataset import Data1D, ReflectDataset from refnx.util import ErrorProp as EP from refnx._lib import emcee def line(x, params, *args, **kwds): p_arr = np.array(params) return p_arr[0] + x * p_arr[1] def gauss(x, p0): p = np.array(p0) return p[0] + p[1] * np.exp(-(((x - p[2]) / p[3]) ** 2)) def logp_extra(model, data): return 1.0 class TestObjective(object): def setup_method(self): # Choose the "true" parameters. # Reproducible results! np.random.seed(123) self.m_true = -0.9594 self.b_true = 4.294 self.f_true = 0.534 self.m_ls = -1.1040757010910947 self.b_ls = 5.4405552502319505 # Generate some synthetic data from the model. N = 50 x = np.sort(10 * np.random.rand(N)) y_err = 0.1 + 0.5 * np.random.rand(N) y = self.m_true * x + self.b_true y += np.abs(self.f_true * y) * np.random.randn(N) y += y_err * np.random.randn(N) self.data = Data1D(data=(x, y, y_err)) self.p = Parameter(self.b_ls, "b") | Parameter(self.m_ls, "m") self.model = Model(self.p, fitfunc=line) self.objective = Objective(self.model, self.data) # want b and m self.p[0].vary = True self.p[1].vary = True mod = np.array( [ 4.78166609, 4.42364699, 4.16404064, 3.50343504, 3.4257084, 2.93594347, 2.92035638, 2.67533842, 2.28136038, 2.19772983, 1.99295496, 1.93748334, 1.87484436, 1.65161016, 1.44613461, 1.11128101, 1.04584535, 0.86055984, 0.76913963, 0.73906649, 0.73331407, 0.68350418, 0.65216599, 0.59838566, 0.13070299, 0.10749131, -0.01010195, -0.10010155, -0.29495372, -0.42817431, -0.43122391, -0.64637715, -1.30560686, -1.32626428, -1.44835768, -1.52589881, -1.56371158, -2.12048349, -2.24899179, -2.50292682, -2.53576659, -2.55797996, -2.60870542, -2.7074727, -3.93781479, -4.12415366, -4.42313742, -4.98368609, -5.38782395, -5.44077086, ] ) self.mod = mod def test_model(self): # test that the line data produced by our model is the same as the # test data assert_almost_equal(self.model(self.data.x), self.mod) def test_synthetic_data(self): # test that we create the correct synthetic data by performing a least # squares fit on it assert_(self.data.y_err is not None) x, y, y_err, _ = self.data.data A = np.vstack((np.ones_like(x), x)).T C = np.diag(y_err * y_err) cov = np.linalg.inv(np.dot(A.T, np.linalg.solve(C, A))) b_ls, m_ls = np.dot(cov, np.dot(A.T, np.linalg.solve(C, y))) assert_almost_equal(b_ls, self.b_ls) assert_almost_equal(m_ls, self.m_ls) def test_setp(self): # check that we can set parameters self.p[0].vary = False assert_(len(self.objective.varying_parameters()) == 1) self.objective.setp(np.array([1.23])) assert_equal(self.p[1].value, 1.23) self.objective.setp(np.array([1.234, 1.23])) assert_equal(np.array(self.p), [1.234, 1.23]) def test_pvals(self): assert_equal(self.objective.parameters.pvals, [self.b_ls, self.m_ls]) self.objective.parameters.pvals = [1, 2] assert_equal(self.objective.parameters.pvals, [1, 2.0]) def test_logp(self): self.p[0].range(0, 10) assert_almost_equal(self.objective.logp(), np.log(0.1)) # logp should set parameters self.objective.logp([8, 2]) assert_equal(np.array(self.objective.parameters), [8, 2]) # if we supply a value outside the range it should return -inf assert_equal(self.objective.logp([-1, 2]), -np.inf) def test_logpost(self): # http://dan.iel.fm/emcee/current/user/line/ assert_almost_equal(self.objective.logp(), 0) assert_almost_equal(self.objective.nlpost(), -self.objective.logpost()) # the uncertainties are underestimated in this example... # amendment factor because dfm emcee example does not include 2pi amend = 0.5 * self.objective.npoints * np.log(2 * np.pi) assert_almost_equal(self.objective.logl() + amend, -559.01078135444595) assert_almost_equal( self.objective.logpost() + amend, -559.01078135444595 ) def test_prior_transform(self): self.p[0].bounds = PDF(stats.uniform(-10, 20)) self.p[1].bounds = PDF(stats.norm(loc=5, scale=10)) x = self.objective.prior_transform([0.1, 0.9]) assert_allclose( x, stats.uniform.ppf(0.1, -10, 20), stats.norm.ppf(0.9, loc=5, scale=10), ) def test_chisqr(self): assert_almost_equal(self.objective.chisqr(), 1231.1096772954229) def test_residuals(self): # weighted, with and without transform assert_almost_equal( self.objective.residuals(), (self.data.y - self.mod) / self.data.y_err, ) objective = Objective( self.model, self.data, transform=Transform("lin") ) assert_almost_equal( objective.residuals(), (self.data.y - self.mod) / self.data.y_err ) # unweighted, with and without transform objective = Objective(self.model, self.data, use_weights=False) assert_almost_equal(objective.residuals(), self.data.y - self.mod) objective = Objective( self.model, self.data, use_weights=False, transform=Transform("lin"), ) assert_almost_equal(objective.residuals(), self.data.y - self.mod) def test_masked_dataset(self): residuals = self.objective.residuals() mask = np.full_like(self.objective.data.y, True, bool) mask[1] = False self.objective.data.mask = mask assert_equal(self.objective.residuals().size, residuals.size - 1) def test_logp_extra(self): original_logl = self.objective.logl() self.objective.logp_extra = logp_extra assert_almost_equal(self.objective.logl(), original_logl + 1) def test_objective_pickle(self): # can you pickle the objective function? pkl = pickle.dumps(self.objective) pickle.loads(pkl) # check the ForkingPickler as well. if hasattr(ForkingPickler, "dumps"): pkl = ForkingPickler.dumps(self.objective) pickle.loads(pkl) # can you pickle with an extra function present? self.objective.logp_extra = logp_extra pkl = pickle.dumps(self.objective) pickle.loads(pkl) # check the ForkingPickler as well. if hasattr(ForkingPickler, "dumps"): pkl = ForkingPickler.dumps(self.objective) pickle.loads(pkl) def test_transform_pickle(self): # can you pickle the Transform object? pkl = pickle.dumps(Transform("logY")) pickle.loads(pkl) def test_transform(self): pth = os.path.dirname(os.path.abspath(__file__)) fname = os.path.join(pth, "c_PLP0011859_q.txt") data = ReflectDataset(fname) t = Transform("logY") yt, et = t(data.x, data.y, y_err=data.y_err) assert_equal(yt, np.log10(data.y)) yt, _ = t(data.x, data.y, y_err=None) assert_equal(yt, np.log10(data.y)) EPy, EPe = EP.EPlog10(data.y, data.y_err) assert_equal(yt, EPy) assert_equal(et, EPe) def test_repr_transform(self): p = Transform(None) q = eval(repr(p)) assert p.form == q.form p = Transform("logY") q = eval(repr(p)) assert p.form == q.form def test_lnsigma(self): # check that lnsigma works correctly, by using the emcee line fit # example def logp(theta, x, y, yerr): m, b, lnf = theta if -5.0 < m < 0.5 and 0.0 < b < 10.0 and -10.0 < lnf < 1.0: return 0.0 return -np.inf def logl(theta, x, y, yerr): m, b, lnf = theta model = m * x + b inv_sigma2 = 1.0 / (yerr ** 2 + model ** 2 * np.exp(2 * lnf)) print(inv_sigma2) return -0.5 * ( np.sum((y - model) ** 2 * inv_sigma2 - np.log(inv_sigma2)) ) x, y, yerr, _ = self.data.data theta = [self.m_true, self.b_true, np.log(self.f_true)] bo = BaseObjective(theta, logl, logp=logp, fcn_args=(x, y, yerr)) lnsigma = Parameter( np.log(self.f_true), "lnsigma", bounds=(-10, 1), vary=True ) self.objective.setp(np.array([self.b_true, self.m_true])) self.objective.lnsigma = lnsigma # amendment factor because dfm emcee example does not include 2pi amend = 0.5 * self.objective.npoints * np.log(2 * np.pi) assert_allclose(self.objective.logl() + amend, bo.logl()) def test_base_emcee(self): # check that the base objective works against the emcee example. def logp(theta, x, y, yerr): m, b, lnf = theta if -5.0 < m < 0.5 and 0.0 < b < 10.0 and -10.0 < lnf < 1.0: return 0.0 return -np.inf def logl(theta, x, y, yerr): m, b, lnf = theta model = m * x + b inv_sigma2 = 1.0 / (yerr ** 2 + model ** 2 * np.exp(2 * lnf)) return -0.5 * ( np.sum((y - model) ** 2 * inv_sigma2 - np.log(inv_sigma2)) ) x, y, yerr, _ = self.data.data theta = [self.m_true, self.b_true, np.log(self.f_true)] bo = BaseObjective(theta, logl, logp=logp, fcn_args=(x, y, yerr)) # test that the wrapper gives the same logl as the direct function assert_almost_equal(bo.logl(theta), logl(theta, x, y, yerr)) assert_almost_equal(bo.logl(theta), -bo.nll(theta)) assert_almost_equal(bo.nll(theta), 12.8885352412) # Find the maximum likelihood value. result = minimize(bo.nll, theta) # for repeatable sampling np.random.seed(1) ndim, nwalkers = 3, 100 pos = [ result["x"] + 1e-4 * np.random.randn(ndim) for i in range(nwalkers) ] sampler = emcee.EnsembleSampler(nwalkers, ndim, bo.logpost) state = emcee.State(pos, random_state=np.random.get_state()) sampler.run_mcmc(state, 800) burnin = 200 samples = sampler.get_chain()[burnin:, :, :].reshape((-1, ndim)) samples[:, 2] = np.exp(samples[:, 2]) m_mc, b_mc, f_mc = map( lambda v: (v[1], v[2] - v[1], v[1] - v[0]), zip(*np.percentile(samples, [16, 50, 84], axis=0)), ) assert_allclose(m_mc, (-1.0071664, 0.0809444, 0.0784894), rtol=0.04) assert_allclose(b_mc, (4.5428107, 0.3549174, 0.3673304), rtol=0.04) assert_allclose(f_mc, (0.4610898, 0.0823304, 0.0640812), rtol=0.06) # # smoke test for covariance matrix bo.parameters = np.array(result["x"]) covar1 = bo.covar() uncertainties = np.sqrt(np.diag(covar1)) # covariance from objective._covar should be almost equal to # the covariance matrix from sampling covar2 = np.cov(samples.T) assert_almost_equal(np.sqrt(np.diag(covar2))[:2], uncertainties[:2], 2) # check covariance of self.objective # TODO var_arr = result["x"][:] var_arr[0], var_arr[1], var_arr[2] = var_arr[2], var_arr[1], var_arr[0] # assert_(self.objective.data.weighted) # self.objective.parameters.pvals = var_arr # covar3 = self.objective.covar() # uncertainties3 = np.sqrt(np.diag(covar3)) # assert_almost_equal(uncertainties3, uncertainties) # assert(False) def test_covar(self): # checks objective.covar against optimize.least_squares covariance. path = os.path.dirname(os.path.abspath(__file__)) theoretical = np.loadtxt(os.path.join(path, "gauss_data.txt")) xvals, yvals, evals = np.hsplit(theoretical, 3) xvals = xvals.flatten() yvals = yvals.flatten() evals = evals.flatten() p0 = np.array([0.1, 20.0, 0.1, 0.1]) names = ["bkg", "A", "x0", "width"] bounds = [(-1, 1), (0, 30), (-5.0, 5.0), (0.001, 2)] params = Parameters(name="gauss_params") for p, name, bound in zip(p0, names, bounds): param = Parameter(p, name=name) param.range(*bound) param.vary = True params.append(param) model = Model(params, fitfunc=gauss) data = Data1D((xvals, yvals, evals)) objective = Objective(model, data) # first calculate least_squares jac/hess/covariance matrices res = least_squares( objective.residuals, np.array(params), jac="3-point" ) hess_least_squares = np.matmul(res.jac.T, res.jac) covar_least_squares = np.linalg.inv(hess_least_squares) # now calculate corresponding matrices by hand, to see if the approach # concurs with least_squares objective.setp(res.x) _pvals = np.array(res.x) def residuals_scaler(vals): return np.squeeze(objective.residuals(_pvals * vals)) jac = approx_derivative(residuals_scaler, np.ones_like(_pvals)) hess = np.matmul(jac.T, jac) covar = np.linalg.inv(hess) covar = covar * np.atleast_2d(_pvals) * np.atleast_2d(_pvals).T assert_allclose(covar, covar_least_squares) # check that objective.covar corresponds to the least_squares # covariance matrix, J.T x J objective.setp(res.x) covar_objective = objective.covar() assert_allclose(covar_objective, covar_least_squares) # sometimes the residuals method may not be usable, see if # objective.covar calculated from a scalar works objective.setp(res.x) covar_objective = objective.covar("nll") assert_allclose( np.sqrt(np.diag(covar_objective)), np.sqrt(np.diag(covar_least_squares)), rtol=0.08, ) # now see what happens with a parameter that has no effect on residuals param = Parameter(1.234, name="dummy") param.vary = True params.append(param) from pytest import raises with raises(LinAlgError): objective.covar() @pytest.mark.xfail def test_pymc3(self): # test objective logl against pymc3 # don't run this test if pymc3 is not installed try: import pymc3 as pm except ImportError: return logl = self.objective.logl() from refnx.analysis import pymc3_model from refnx.analysis.objective import _to_pymc3_distribution mod = pymc3_model(self.objective) with mod: pymc_logl = mod.logp( {"p0": self.p[0].value, "p1": self.p[1].value} ) assert_allclose(logl, pymc_logl) # now check some of the distributions with pm.Model(): p = Parameter(1, bounds=(1, 10)) d = _to_pymc3_distribution("a", p) assert_almost_equal(d.distribution.logp(2).eval(), p.logp(2)) assert_(np.isneginf(d.distribution.logp(-1).eval())) q = Parameter(1, bounds=PDF(stats.uniform(1, 9))) d = _to_pymc3_distribution("b", q) assert_almost_equal(d.distribution.logp(2).eval(), q.logp(2)) assert_(np.isneginf(d.distribution.logp(-1).eval())) p = Parameter(1, bounds=PDF(stats.uniform)) d = _to_pymc3_distribution("c", p) assert_almost_equal(d.distribution.logp(0.5).eval(), p.logp(0.5)) p = Parameter(1, bounds=PDF(stats.norm)) d = _to_pymc3_distribution("d", p) assert_almost_equal(d.distribution.logp(2).eval(), p.logp(2)) p = Parameter(1, bounds=PDF(stats.norm(1, 10))) d = _to_pymc3_distribution("e", p) assert_almost_equal(d.distribution.logp(2).eval(), p.logp(2))
#include <bits/stdc++.h> using namespace std; int main(){ ios_base::sync_with_stdio(0); cin.tie(0); cout.tie(0); int n; multiset <long long> s; long long result = 0; cin >> n; for (int i = 0; i < n; i++){ long long x; cin >> x; s.insert(x); } while (s.size() > 1){ long long value_1 = *s.begin(); s.erase(s.begin()); long long value_2 = *s.begin(); s.erase(s.begin()); s.insert(value_1 + value_2); result += value_1 + value_2; } cout << result << endl; return 0; }
import flask from flask import request, render_template, flash, redirect, url_for from flask_login import login_user from ..models import User from ..utils.auth import is_safe_url from ..auth_provider import KnowledgeAuthProvider class DebugAuthProvider(KnowledgeAuthProvider): _registry_keys = ['debug'] def prompt(self): if request.method == 'POST': user = request.form['username'] login_user(User(identifier=user)) flash('Logged in successfully.') next = request.args.get('next') # is_safe_url should check if the url is safe for redirects. # See http://flask.pocoo.org/snippets/62/ for an example. if not is_safe_url(next): return flask.abort(400) return redirect(next or url_for('index.render_feed')) return render_template('auth-login-form.html', skip_password=True) def get_user(self): return User(identifier=request.form['username'])
# Copyright Contributors to the Pyro project. # SPDX-License-Identifier: Apache-2.0 import contextlib import logging import os from collections import defaultdict from queue import LifoQueue import pytest import torch from pyro.infer.enum import iter_discrete_escape, iter_discrete_extend from pyro.ops.indexing import Vindex from pyro.poutine import Trace from pyro.poutine.util import prune_subsample_sites from pyro.util import check_traceenum_requirements # put all funsor-related imports here, so test collection works without funsor try: import funsor import pyro.contrib.funsor from pyro.contrib.funsor.handlers.runtime import _DIM_STACK funsor.set_backend("torch") from pyroapi import distributions as dist from pyroapi import handlers, infer, pyro, pyro_backend except ImportError: pytestmark = pytest.mark.skip(reason="funsor is not installed") logger = logging.getLogger(__name__) # default to 2, which checks that packed but not unpacked shapes match _NAMED_TEST_STRENGTH = int(os.environ.get("NAMED_TEST_STRENGTH", 2)) def assert_ok(model, guide=None, max_plate_nesting=None, **kwargs): """ Assert that enumeration runs... """ with pyro_backend("pyro"): pyro.clear_param_store() if guide is None: guide = lambda **kwargs: None # noqa: E731 q_pyro, q_funsor = LifoQueue(), LifoQueue() q_pyro.put(Trace()) q_funsor.put(Trace()) while not q_pyro.empty() and not q_funsor.empty(): with pyro_backend("pyro"): with handlers.enum(first_available_dim=-max_plate_nesting - 1): guide_tr_pyro = handlers.trace( handlers.queue( guide, q_pyro, escape_fn=iter_discrete_escape, extend_fn=iter_discrete_extend, ) ).get_trace(**kwargs) tr_pyro = handlers.trace( handlers.replay(model, trace=guide_tr_pyro) ).get_trace(**kwargs) with pyro_backend("contrib.funsor"): with handlers.enum(first_available_dim=-max_plate_nesting - 1): guide_tr_funsor = handlers.trace( handlers.queue( guide, q_funsor, escape_fn=iter_discrete_escape, extend_fn=iter_discrete_extend, ) ).get_trace(**kwargs) tr_funsor = handlers.trace( handlers.replay(model, trace=guide_tr_funsor) ).get_trace(**kwargs) # make sure all dimensions were cleaned up assert _DIM_STACK.local_frame is _DIM_STACK.global_frame assert ( not _DIM_STACK.global_frame.name_to_dim and not _DIM_STACK.global_frame.dim_to_name ) assert _DIM_STACK.outermost is None tr_pyro = prune_subsample_sites(tr_pyro.copy()) tr_funsor = prune_subsample_sites(tr_funsor.copy()) _check_traces(tr_pyro, tr_funsor) def _check_traces(tr_pyro, tr_funsor): assert tr_pyro.nodes.keys() == tr_funsor.nodes.keys() tr_pyro.compute_log_prob() tr_funsor.compute_log_prob() tr_pyro.pack_tensors() symbol_to_name = { node["infer"]["_enumerate_symbol"]: name for name, node in tr_pyro.nodes.items() if node["type"] == "sample" and not node["is_observed"] and node["infer"].get("enumerate") == "parallel" } symbol_to_name.update( {symbol: name for name, symbol in tr_pyro.plate_to_symbol.items()} ) if _NAMED_TEST_STRENGTH >= 1: # coarser check: enumeration requirements satisfied check_traceenum_requirements(tr_pyro, Trace()) check_traceenum_requirements(tr_funsor, Trace()) try: # coarser check: number of elements and squeezed shapes for name, pyro_node in tr_pyro.nodes.items(): if pyro_node["type"] != "sample": continue funsor_node = tr_funsor.nodes[name] assert ( pyro_node["packed"]["log_prob"].numel() == funsor_node["log_prob"].numel() ) assert ( pyro_node["packed"]["log_prob"].shape == funsor_node["log_prob"].squeeze().shape ) assert frozenset( f for f in pyro_node["cond_indep_stack"] if f.vectorized ) == frozenset( f for f in funsor_node["cond_indep_stack"] if f.vectorized ) except AssertionError: for name, pyro_node in tr_pyro.nodes.items(): if pyro_node["type"] != "sample": continue funsor_node = tr_funsor.nodes[name] pyro_packed_shape = pyro_node["packed"]["log_prob"].shape funsor_packed_shape = funsor_node["log_prob"].squeeze().shape if pyro_packed_shape != funsor_packed_shape: err_str = "==> (dep mismatch) {}".format(name) else: err_str = name print( err_str, "Pyro: {} vs Funsor: {}".format( pyro_packed_shape, funsor_packed_shape ), ) raise if _NAMED_TEST_STRENGTH >= 2: try: # medium check: unordered packed shapes match for name, pyro_node in tr_pyro.nodes.items(): if pyro_node["type"] != "sample": continue funsor_node = tr_funsor.nodes[name] pyro_names = frozenset( symbol_to_name[d] for d in pyro_node["packed"]["log_prob"]._pyro_dims ) funsor_names = frozenset(funsor_node["funsor"]["log_prob"].inputs) assert pyro_names == frozenset( name.replace("__PARTICLES", "") for name in funsor_names ) except AssertionError: for name, pyro_node in tr_pyro.nodes.items(): if pyro_node["type"] != "sample": continue funsor_node = tr_funsor.nodes[name] pyro_names = frozenset( symbol_to_name[d] for d in pyro_node["packed"]["log_prob"]._pyro_dims ) funsor_names = frozenset(funsor_node["funsor"]["log_prob"].inputs) if pyro_names != funsor_names: err_str = "==> (packed mismatch) {}".format(name) else: err_str = name print( err_str, "Pyro: {} vs Funsor: {}".format( sorted(tuple(pyro_names)), sorted(tuple(funsor_names)) ), ) raise if _NAMED_TEST_STRENGTH >= 3: try: # finer check: exact match with unpacked Pyro shapes for name, pyro_node in tr_pyro.nodes.items(): if pyro_node["type"] != "sample": continue funsor_node = tr_funsor.nodes[name] assert pyro_node["log_prob"].shape == funsor_node["log_prob"].shape assert pyro_node["value"].shape == funsor_node["value"].shape except AssertionError: for name, pyro_node in tr_pyro.nodes.items(): if pyro_node["type"] != "sample": continue funsor_node = tr_funsor.nodes[name] pyro_shape = pyro_node["log_prob"].shape funsor_shape = funsor_node["log_prob"].shape if pyro_shape != funsor_shape: err_str = "==> (unpacked mismatch) {}".format(name) else: err_str = name print( err_str, "Pyro: {} vs Funsor: {}".format(pyro_shape, funsor_shape) ) raise @pytest.mark.parametrize("history", [1, 2, 3]) def test_enum_recycling_chain_iter(history): @infer.config_enumerate def model(): p = torch.tensor([[0.2, 0.8], [0.1, 0.9]]) xs = [0] for t in pyro.markov(range(100), history=history): xs.append(pyro.sample("x_{}".format(t), dist.Categorical(p[xs[-1]]))) assert all(x.dim() <= history + 1 for x in xs[1:]) assert_ok(model, max_plate_nesting=0) @pytest.mark.parametrize("history", [2, 3]) def test_enum_recycling_chain_iter_interleave_parallel_sequential(history): def model(): p = torch.tensor([[0.2, 0.8], [0.1, 0.9]]) xs = [0] for t in pyro.markov(range(10), history=history): xs.append( pyro.sample( "x_{}".format(t), dist.Categorical(p[xs[-1]]), infer={"enumerate": ("sequential", "parallel")[t % 2]}, ) ) assert all(x.dim() <= history + 1 for x in xs[1:]) assert_ok(model, max_plate_nesting=0) @pytest.mark.parametrize("history", [1, 2, 3]) def test_enum_recycling_chain_while(history): @infer.config_enumerate def model(): p = torch.tensor([[0.2, 0.8], [0.1, 0.9]]) xs = [0] c = pyro.markov(history=history) with contextlib.ExitStack() as stack: for t in range(100): stack.enter_context(c) xs.append(pyro.sample("x_{}".format(t), dist.Categorical(p[xs[-1]]))) assert all(x.dim() <= history + 1 for x in xs[1:]) assert_ok(model, max_plate_nesting=0) @pytest.mark.parametrize("history", [1, 2, 3]) def test_enum_recycling_chain_recur(history): @infer.config_enumerate def model(): p = torch.tensor([[0.2, 0.8], [0.1, 0.9]]) x = 0 @pyro.markov(history=history) def fn(t, x): x = pyro.sample("x_{}".format(t), dist.Categorical(p[x])) assert x.dim() <= history + 1 return x if t >= 100 else fn(t + 1, x) return fn(0, x) assert_ok(model, max_plate_nesting=0) @pytest.mark.parametrize("use_vindex", [False, True]) @pytest.mark.parametrize("markov", [False, True]) def test_enum_recycling_dbn(markov, use_vindex): # x --> x --> x enum "state" # y | y | y | enum "occlusion" # \ | \ | \ | # z z z obs @infer.config_enumerate def model(): p = pyro.param("p", torch.ones(3, 3)) q = pyro.param("q", torch.ones(2)) r = pyro.param("r", torch.ones(3, 2, 4)) x = 0 times = pyro.markov(range(100)) if markov else range(11) for t in times: x = pyro.sample("x_{}".format(t), dist.Categorical(p[x])) y = pyro.sample("y_{}".format(t), dist.Categorical(q)) if use_vindex: probs = Vindex(r)[x, y] else: z_ind = torch.arange(4, dtype=torch.long) probs = r[x.unsqueeze(-1), y.unsqueeze(-1), z_ind] pyro.sample( "z_{}".format(t), dist.Categorical(probs), obs=torch.tensor(0.0) ) assert_ok(model, max_plate_nesting=0) def test_enum_recycling_nested(): # (x) # \ # y0---(y1)--(y2) # | | | # z00 z10 z20 # | | | # z01 z11 (z21) # | | | # z02 z12 z22 <-- what can this depend on? # # markov dependencies # ------------------- # x: # y0: x # z00: x y0 # z01: x y0 z00 # z02: x y0 z01 # y1: x y0 # z10: x y0 y1 # z11: x y0 y1 z10 # z12: x y0 y1 z11 # y2: x y1 # z20: x y1 y2 # z21: x y1 y2 z20 # z22: x y1 y2 z21 @infer.config_enumerate def model(): p = pyro.param("p", torch.ones(3, 3)) x = pyro.sample("x", dist.Categorical(p[0])) y = x for i in pyro.markov(range(10)): y = pyro.sample("y_{}".format(i), dist.Categorical(p[y])) z = y for j in pyro.markov(range(10)): z = pyro.sample("z_{}_{}".format(i, j), dist.Categorical(p[z])) assert_ok(model, max_plate_nesting=0) @pytest.mark.xfail(reason="Pyro behavior here appears to be incorrect") @pytest.mark.parametrize("grid_size", [4, 20]) @pytest.mark.parametrize("use_vindex", [False, True]) def test_enum_recycling_grid(grid_size, use_vindex): # x---x---x---x -----> i # | | | | | # x---x---x---x | # | | | | V # x---x---x--(x) j # | | | | # x---x--(x)--x <-- what can this depend on? @infer.config_enumerate def model(): p = pyro.param("p_leaf", torch.ones(2, 2, 2)) x = defaultdict(lambda: torch.tensor(0)) y_axis = pyro.markov(range(grid_size), keep=True) for i in pyro.markov(range(grid_size)): for j in y_axis: if use_vindex: probs = Vindex(p)[x[i - 1, j], x[i, j - 1]] else: ind = torch.arange(2, dtype=torch.long) probs = p[x[i - 1, j].unsqueeze(-1), x[i, j - 1].unsqueeze(-1), ind] x[i, j] = pyro.sample("x_{}_{}".format(i, j), dist.Categorical(probs)) assert_ok(model, max_plate_nesting=0) @pytest.mark.parametrize("max_plate_nesting", [0, 1, 2]) @pytest.mark.parametrize("depth", [3, 5, 7]) @pytest.mark.parametrize("history", [1, 2]) def test_enum_recycling_reentrant_history(max_plate_nesting, depth, history): data = (True, False) for i in range(depth): data = (data, data, False) def model_(**kwargs): @pyro.markov(history=history) def model(data, state=0, address=""): if isinstance(data, bool): p = pyro.param("p_leaf", torch.ones(10)) pyro.sample( "leaf_{}".format(address), dist.Bernoulli(p[state]), obs=torch.tensor(1.0 if data else 0.0), ) else: assert isinstance(data, tuple) p = pyro.param("p_branch", torch.ones(10, 10)) for branch, letter in zip(data, "abcdefg"): next_state = pyro.sample( "branch_{}".format(address + letter), dist.Categorical(p[state]), infer={"enumerate": "parallel"}, ) model(branch, next_state, address + letter) return model(**kwargs) assert_ok(model_, max_plate_nesting=max_plate_nesting, data=data) @pytest.mark.parametrize("max_plate_nesting", [0, 1, 2]) @pytest.mark.parametrize("depth", [3, 5, 7]) def test_enum_recycling_mutual_recursion(max_plate_nesting, depth): data = (True, False) for i in range(depth): data = (data, data, False) def model_(**kwargs): def model_leaf(data, state=0, address=""): p = pyro.param("p_leaf", torch.ones(10)) pyro.sample( "leaf_{}".format(address), dist.Bernoulli(p[state]), obs=torch.tensor(1.0 if data else 0.0), ) @pyro.markov def model1(data, state=0, address=""): if isinstance(data, bool): model_leaf(data, state, address) else: p = pyro.param("p_branch", torch.ones(10, 10)) for branch, letter in zip(data, "abcdefg"): next_state = pyro.sample( "branch_{}".format(address + letter), dist.Categorical(p[state]), infer={"enumerate": "parallel"}, ) model2(branch, next_state, address + letter) @pyro.markov def model2(data, state=0, address=""): if isinstance(data, bool): model_leaf(data, state, address) else: p = pyro.param("p_branch", torch.ones(10, 10)) for branch, letter in zip(data, "abcdefg"): next_state = pyro.sample( "branch_{}".format(address + letter), dist.Categorical(p[state]), infer={"enumerate": "parallel"}, ) model1(branch, next_state, address + letter) return model1(**kwargs) assert_ok(model_, max_plate_nesting=0, data=data) @pytest.mark.parametrize("max_plate_nesting", [0, 1, 2]) def test_enum_recycling_interleave(max_plate_nesting): def model(): with pyro.markov() as m: with pyro.markov(): with m: # error here pyro.sample( "x", dist.Categorical(torch.ones(4)), infer={"enumerate": "parallel"}, ) assert_ok(model, max_plate_nesting=max_plate_nesting) @pytest.mark.parametrize("max_plate_nesting", [0, 1, 2]) @pytest.mark.parametrize("history", [2, 3]) def test_markov_history(max_plate_nesting, history): @infer.config_enumerate def model(): p = pyro.param("p", 0.25 * torch.ones(2, 2)) q = pyro.param("q", 0.25 * torch.ones(2)) x_prev = torch.tensor(0) x_curr = torch.tensor(0) for t in pyro.markov(range(10), history=history): probs = p[x_prev, x_curr] x_prev, x_curr = ( x_curr, pyro.sample("x_{}".format(t), dist.Bernoulli(probs)).long(), ) pyro.sample( "y_{}".format(t), dist.Bernoulli(q[x_curr]), obs=torch.tensor(0.0) ) assert_ok(model, max_plate_nesting=max_plate_nesting)
#!/usr/bin/env python import roadrunner retval = 0 ## event handling functions def onEventTrigger(model, eventIndex, eventId): print("event {} was triggered at time {}".format(eventId, model.getTime())) def onEventAssignment(model, eventIndex, eventId): print("event {} was assignend at time {}".format(eventId, model.getTime())) def testEvents(fileName): r=roadrunner.RoadRunner(fileName) eventIds = r.model.getEventIds() for eid in eventIds: e=r.model.getEvent(eid) e.setOnTrigger(onEventTrigger) e.setOnAssignment(onEventAssignment) r.simulate() ## integration handling functions def onTimeStep(integrator, model, time): """ is called after the internal integrator completes each internal time step. """ print("onTimeStep, time: {}".format(time)) def onEvent(integrator, model, time): """ whenever model event occurs and after it is procesed. """ print("onEvent, time: {}".format(time)) def testMultiStepIntegrator(fname, t0, tf, dt, minStep = -1, maxStep=-1): r=roadrunner.RoadRunner(fname) listener = roadrunner.PyIntegratorListener() listener.setOnTimeStep(onTimeStep) listener.setOnEvent(onEvent) r.getIntegrator().setListener(listener) r.simulateOptions.integratorFlags = roadrunner.SimulateOptions.MULTI_STEP r.simulateOptions.initialTimeStep = dt r.simulateOptions.maximumTimeStep = maxStep r.simulateOptions.minimumTimeStep = minStep r.integrate(t0, tf)
import os.path # import jena import ssdc
""" This module contains a class that bundles several approaches to visualize the results of the variations of the 'SeqClu' algorithm that are contained in the package. NOTE: This class has actually never been used during the research project and therefore needs major modifications to make it compatible with the rest of the framework. """ import time import matplotlib import matplotlib.pyplot as plt import numpy as np from IPython import display import pandas as pd import seaborn as sns from sklearn.manifold import TSNE matplotlib.use("TkAgg") class Visualizer: def __init__(self, classes, distribution, labels, indices, result, data, classDictionary, numPrototypes, numClusters) -> None: self.classes = classes self.distribution = distribution self.labels = labels self.numPrototypes = numPrototypes self.numClasses = numClusters self.indices = indices self.result = result self.data = data self.classDictionary = classDictionary def visualizeInputData(self) -> None: """ This method visualizes the input data in two dimensions. :return: void """ fig = plt.figure(figsize=(10, 10)) plt.title('Raw data') X_embedded = TSNE(random_state=42, n_components=2).fit_transform(self.distribution) # plt.scatter(*X_embedded) pal = sns.color_palette("hls", self.numClasses) # 3 classes, hence 3 colors for i, txt in enumerate(self.labels): plt.scatter(X_embedded.T[0][i], X_embedded.T[1][i], color=pal[self.classDictionary[txt]]) plt.annotate(i, (X_embedded.T[0][i], X_embedded.T[1][i]), color=pal[self.classDictionary[txt]], alpha=0.2) # Color = class, annotation = Sequence ID plt.show() def visualizeClustersAsTSNE(self) -> None: """ This method visualizes the clusters as TSNE-graphs. :return: void """ fig = plt.figure(figsize=(10, 10)) plt.title('Clustered data') X_embedded = TSNE(random_state=42, n_components=2).fit_transform(self.distribution) # plt.scatter(*X_embedded) pal = sns.color_palette("hls", len(set(self.result))) # ann = [x for x,y in enumerate(X)] for i, txt in enumerate(self.indices): plt.scatter(X_embedded.T[0][i], X_embedded.T[1][i], color=pal[self.result[i]]) plt.annotate(txt, (X_embedded.T[0][i], X_embedded.T[1][i]), color=pal[self.result[i]], alpha=0.2) plt.show() # plt.savefig('clus.png') def visualizeClustersAsHeatMaps(self) -> None: """ This method visualizes the clusters as heatmaps. :return: void """ # Show clusters as heatmaps (does not work too great for hand-written data) clusterdata = [[] for x in range(self.numClasses)] for idx, clus in enumerate(self.result): clusterdata[clus].append(idx) for cnum in range(len(clusterdata)): values = [self.distribution[idx] for idx in clusterdata[cnum]] fig = plt.figure(figsize=(10, 5)) df = pd.DataFrame(values, index=clusterdata[cnum]) plt.title('ClusterStore: ' + str(cnum)) ax = sns.heatmap(df, center=0.0, xticklabels=False) ax.set_yticks(np.arange(len(clusterdata[cnum]))) ax.set_yticklabels(clusterdata[cnum]) plt.setp(ax.get_yticklabels(), rotation=0) plt.xlabel('Time ->') plt.ylabel('Trajectory id') plt.show() def simulateClusteringProcess(self) -> None: """ This method makes multiple plots that replay the clustering process step-by-step. :return: void """ # Simulates how the clustering happened # TODO: Fix the extra plots showing up at the end X_embedded_ = TSNE(random_state=42, n_components=2).fit_transform(self.distribution) for end in range(1, len(self.result)): fig = plt.figure(figsize=(18, 10)) X_embedded = X_embedded_[0:end] ann = [x for x, y in enumerate(self.data)][0:end] pal = sns.color_palette("hls", len(set(self.result))) plt.subplot(1, 2, 1) sns.heatmap(self.distribution[0:end], center=0.0) plt.subplot(1, 2, 2) plt.scatter(X_embedded.T[0], X_embedded.T[1], color=[pal[c] for c in self.result[0:end]]) for i, txt in enumerate(ann): plt.scatter(X_embedded.T[0][i], X_embedded.T[1][i], color=pal[self.result[i]]) plt.annotate(txt, (X_embedded.T[0][i], X_embedded.T[1][i]), color=pal[self.result[i]]) display.clear_output(wait=True) display.display(plt.gcf()) time.sleep(0.01) # change the rate of rendering
#!/usr/bin/env python # encoding: utf-8 ''' DNASampleSplitter -- shortdesc DNASampleSplitter is a description It defines classes_and_methods @author: John Carlos Ignacio, Milcah Kigoni, Yaw Nti-Addae @copyright: 2017 Cornell University. All rights reserved. @license: MIT License @contact: yn259@cornell.edu @deffield updated: Updated ''' import sys import os import math import pandas as pd import tempfile from optparse import OptionParser from __builtin__ import str from subprocess import call __all__ = [] __version__ = 0.2 __date__ = '2017-06-20' __updated__ = '2017-06-27' DEBUG = 1 TESTRUN = 0 PROFILE = 0 parents = {} filenames = {} favAlleleHeaders = [] def splitfile(my_file, sample_data, isSample): temp_parents = parents header = '' fj_header = '' with open(my_file) as infile: for line in infile: if line.startswith("# fjFav") or line.startswith("# fjUnfav") or line.startswith("# fjAlt"): favAlleleHeaders.append(line) continue elif line[:2] == '# ': fj_header += line elif header == '': if fj_header == '': fj_header = '# fjFile = PHENOTYPE\n' header_list = line.split('\t') if header_list[0] != '': header_list[0] = '' line = "\t".join(header_list) header = fj_header+line else: lst = line.split('\t') dnarun = lst[0] dnarun_data = sample_data[sample_data.dnarun_name == dnarun] group = list(dnarun_data.dnasample_sample_group)[0] cycle = list(dnarun_data.dnasample_sample_group_cycle)[0] isParent = False for key in temp_parents: value = temp_parents[key] if dnarun in value: name = my_file + "_" + key if isSample: continue if name not in filenames: filename = tempfile.NamedTemporaryFile(delete=False).name filenames[name] = filename f = open(filename, "w") f.write('%s' % header) else: filename = filenames.get(name) f=open(filename, "a+") f.write('%s' % line) isParent = True if isParent: continue if isinstance(group, float) and math.isnan(group): continue elif isSample == 1: # get parent data # filename = tempfile.NamedTemporaryFile(delete=False).name # get file name for genotype data if isinstance(cycle, float) and math.isnan(cycle): # save genotype data to file if my_file + "_" + group not in filenames: filenames[my_file + "_" + group] = filename f = open(filename, "w") f.write('%s' % header) else : filename = filenames.get(my_file + "_" + group) f=open(filename, "a+") f.write('%s' % line) else: # save genotype data to file if my_file + "_" + group+'_'+cycle not in filenames: filenames[my_file + "_" + group+'_'+cycle] = filename f = open(filename, "w") f.write('%s' % header) else : filename = filenames.get(my_file + "_" + group+'_'+cycle) f=open(filename, "a+") f.write('%s' % line) def splitData(samplefile, genofile): # Split sample file # sample_data = pd.read_table(samplefile, dtype='str') group_list = sample_data.dnasample_sample_group.drop_duplicates() for index, item in group_list.iteritems(): if isinstance(item, float): if math.isnan(item): continue elif isinstance(item, str): if not item: continue df = sample_data[sample_data.dnasample_sample_group == item] # store dnaruns of parents in a dictionary par1 = list(set(filter(lambda x: str(x) != 'nan', df.germplasm_par1))) par2 = list(set(filter(lambda x: str(x) != 'nan', df.germplasm_par2))) lst1 = list(sample_data.loc[sample_data.germplasm_name.isin(par1), 'dnarun_name']) lst2 = list(sample_data.loc[sample_data.germplasm_name.isin(par2), 'dnarun_name']) mergedlst = lst1 + lst2 subgroup_list = df.dnasample_sample_group_cycle.drop_duplicates() for idx, sub in subgroup_list.iteritems(): if isinstance(sub, float): if math.isnan(sub): # df.to_csv(samplefile+"_"+item+".txt", index=None, na_rep='', sep="\t", mode="w", line_terminator="\n") if not item in parents and mergedlst: parents.update({item : mergedlst}) continue elif isinstance(sub, str): if not sub: # df.to_csv(samplefile+"_"+item+".txt", index=None, na_rep='', sep="\t", mode="w", line_terminator="\n") continue subkey = item+'_'+sub if not subkey in parents and mergedlst: parents.update({subkey : lst1+lst2}) # df_sub = df[df.dnasample_sample_group_cycle == sub] # df_sub.to_csv(samplefile+"_"+item+"_"+sub+".txt", index=None, na_rep='', sep="\t", mode="w", line_terminator="\n") # Split genotype file based on sample information # splitfile(samplefile, sample_data, 0) splitfile(samplefile, sample_data, 1) splitfile(genofile, sample_data, 0) splitfile(genofile, sample_data, 1) def createProjectFile(samplefile, genofile, jarfile, separator, missing, qtlfile, mapfile, project): sample_data = pd.read_table(samplefile, dtype='str') groups = sample_data.dnasample_sample_group.drop_duplicates() for index, key in groups.iteritems(): if isinstance(key, float) and math.isnan(key): continue df = sample_data[sample_data.dnasample_sample_group == key] subgroup_list = df.dnasample_sample_group_cycle.drop_duplicates() for idx, sub in subgroup_list.iteritems(): if isinstance(sub, float) and math.isnan(sub): name = key elif isinstance(sub, str) and not sub: name = key else: name = key+'_'+sub name = str(name) sfile = filenames.get(samplefile + "_" + name) gfile = filenames.get(genofile + "_" + name) gfile += '.tmp' f = open(gfile, "a+") for fav in favAlleleHeaders: f.write(fav) f.close() cmd = ['java', '-cp',jarfile,'jhi.flapjack.io.cmd.CreateProject','-A','-g',gfile,'-t',sfile,'-p',project,'-n',name,'-S',separator,'-M',missing,'-C'] if qtlfile: cmd += ['-q',qtlfile] if mapfile: cmd += ['-m',mapfile] print(cmd) call(cmd) def createHeader(samplefile, genofile, headerjar): sample_data = pd.read_table(samplefile, dtype='str') groups = sample_data.dnasample_sample_group.drop_duplicates() for index, key in groups.iteritems(): if isinstance(key, float) and math.isnan(key): continue df = sample_data[sample_data.dnasample_sample_group == key] subgroup_list = df.dnasample_sample_group_cycle.drop_duplicates() for idx, sub in subgroup_list.iteritems(): if isinstance(sub, float) and math.isnan(sub): name = key elif isinstance(sub, str) and not sub: name = key else: name = key+'_'+sub name = str(name) sfile = filenames.get(samplefile + "_" + name) gfile = filenames.get(genofile + "_" + name) cmd = ['java','-jar',headerjar,sfile,gfile,gfile+'.tmp'] call(cmd) def main(argv=None): '''Command line options.''' program_name = os.path.basename(sys.argv[0]) program_version = "v0.1" program_build_date = "%s" % __updated__ program_version_string = '%%prog %s (%s)' % (program_version, program_build_date) #program_usage = '''usage: spam two eggs''' # optional - will be autogenerated by optparse program_longdesc = '''''' # optional - give further explanation about what the program does program_license = "Copyright 2017 user_name (organization_name) \ Licensed under the Apache License 2.0\nhttp://www.apache.org/licenses/LICENSE-2.0" if argv is None: argv = sys.argv[1:] try: # setup option parser parser = OptionParser(version=program_version_string, epilog=program_longdesc, description=program_license) parser.add_option("-g", "--geno", dest="genofile", help="set input genotype file path [default: %default]", metavar="FILE") parser.add_option("-s", "--sample", dest="samplefile", help="set input sample file path [default: %default]", metavar="FILE") parser.add_option("-m", "--mapfile", dest="mapfile", help="set input map file path [default: %default]", metavar="FILE") parser.add_option("-q", "--qtlfile", dest="qtlfile", help="set input QTL file path [default: %default]", metavar="FILE") parser.add_option("-j", "--jar", dest="jarfile", help="set Flapjack project creator jar file path [default: %default]", metavar="FILE", default='jars/flapjack.jar') parser.add_option("-J", "--headerjar", dest="headerjar", help="set Flapjack header creator jar file path [default: %default]", metavar="FILE", default='jars/pedigreeheader.jar') parser.add_option("-S", "--separator", dest="separator", help="declare separator for genotypes, \"\" for no separator [default: \"\"]", metavar="STRING", default='') parser.add_option("-M", "--missingGenotype", dest="missing", help="set missing genotype string [default: %default]", metavar="STRING", default='NN') parser.add_option("-v", "--verbose", dest="verbose", action="count", help="set verbosity level [default: %default]") parser.add_option("-p", "--project", dest="project", help="name of output file [default: %default]") # process options (opts, args) = parser.parse_args(argv) if opts.verbose > 0: print("verbosity level = %d" % opts.verbose) if opts.genofile: print("genofile = %s" % opts.genofile) else: sys.stderr.write("No genotype file detected!\n") sys.exit() if opts.samplefile: print("samplefile = %s" % opts.samplefile) else: sys.stderr.write("No sample file detected!\n") sys.exit() if opts.mapfile: print("mapfile = %s" % opts.mapfile) else: sys.stderr.write("No map file detected!\n") if opts.qtlfile: print("qtlfile = %s" % opts.qtlfile) else: sys.stderr.write("No QTL file detected!\n") if opts.jarfile: print("jarfile = %s" % opts.jarfile) else: sys.stderr.write("No Flapjack project creator jar file detected!\n") if opts.headerjar: print("headerjar = %s" % opts.headerjar) else: sys.stderr.write("No Flapjack header creator jar file detected!\n") # MAIN BODY # splitData(samplefile=opts.samplefile, genofile=opts.genofile) createHeader(samplefile=opts.samplefile, genofile=opts.genofile, headerjar=opts.headerjar) createProjectFile(samplefile=opts.samplefile, genofile=opts.genofile, jarfile=opts.jarfile, separator=opts.separator, missing=opts.missing,qtlfile=opts.qtlfile,mapfile=opts.mapfile, project=opts.project) except Exception, e: indent = len(program_name) * " " sys.stderr.write(program_name + ": " + repr(e) + "\n") sys.stderr.write(indent + " for help use --help") return 2 if __name__ == "__main__": # if DEBUG: # sys.argv.append("-h") if TESTRUN: import doctest doctest.testmod() if PROFILE: import cProfile import pstats profile_filename = 'DNASampleSplitter_profile.txt' cProfile.run('main()', profile_filename) statsfile = open("profile_stats.txt", "wb") p = pstats.Stats(profile_filename, stream=statsfile) stats = p.strip_dirs().sort_stats('cumulative') stats.print_stats() statsfile.close() sys.exit(0) sys.exit(main())
## Python script to download a weekly snapshot of the Scottish Fundraising Charity Register # Diarmuid McDonnell # Created: 25 October 2018 # Last edited: captured in Github file history import itertools import json import csv import re import requests import os import os.path import errno import urllib from time import sleep from bs4 import BeautifulSoup as soup from datetime import datetime from downloaddate_function import downloaddate # Run the downloaddate function to get the date 'benefacts_master.py' was executed. ddate = downloaddate() projpath = 'C:/Users/mcdonndz-local/Desktop/github/scotland_charity_data/' datapath = 'C:/Users/mcdonndz-local/Desktop/data/scotland_charity_data/data_raw/' print(projpath) print(datapath) # Create a folder for the download to be saved in # try: os.mkdir(datapath+ddate) except: print('Folder already exists') print(' ') # Whitespace used to make the output window more readable print('>>> Run started') # Header of the output, with the start time. print('\r') fundurl = 'https://www.goodfundraising.scot/fundraising-guarantee/fundraising-guarantee-register-of-charities' headers = {'User-Agent': 'Mozilla/5.0 (Windows NT 6.1) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/68.0.3440.106 Safari/537.36'} # Spoof the user-agent of the request to return the content seen by Chrome. #starttime = datetime.now() # Track how long it takes to scrape data reg = requests.get(fundurl, headers=headers) # Request webpage if reg.status_code==200: # If successfully requested then proceed print(reg.status_code) html_org = reg.text # Get the text elements of the page. soup_org = soup(html_org, 'html.parser') # Parse the text as a BS object. pagedetails = soup_org.find_all('p') #print(pagedetails) # The second element of the list contains charity details chardetails = pagedetails[1] #print(chardetails) data = [x for x in chardetails if not hasattr(x, "name") or not x.name == "br"] print(len(data)) for el in data: print(el) #print(data) regchar = str(len(data)) print(regchar) else: print('Could not request webpage')
import os import tempfile import zipfile import uuid import shutil from misc import Pause class Kit: def __init__(self, name, dir ): self.name = name self.files = {} self.hasError = False self.error = None self.dir = dir self.outputDir = os.path.join(dir, name) self.imageTypeMap = {} if not os.path.exists(self.outputDir): os.makedirs(self.outputDir) def addFile(self, type, filename): if type not in self.files: self.files[type] = [] self.files[type].append(filename) def __str__(self): kstr = self.name + "(" + str(len(self.files)) + ")\n" for type in self.files: for f in self.files[type]: kstr += type + ": " + f + "\n" return kstr def extract(self): """ Extracts each zip file and copies images to the output dir""" with tempfile.TemporaryDirectory() as tmpDir: print() print("Processing ", self.name, " (", tmpDir, ")") print() for type in self.files: for file in self.files[type]: path = os.path.join(self.dir, file) print() print("Extracting: ", file, "(", type ,")") print(" -> File:", path) try: kitzip = zipfile.ZipFile(path) if kitzip.testzip() is None: kitzip.extractall(tmpDir) kitzip.close() self.copyImages(tmpDir, type) else: self.hasError = True self.error = "Zip File Bad" print() print("Error Extracting: ", self.name) print("Zip File has Error!") print() Pause() except Exception as e: self.hasError = True self.error = e print() print(e) print() print("Error Extracting: ", self.name) Pause() self.createManifest() def copyImages(self, tmpDir, type): exts = [".png", ".jpg"] print(" -> Copying Images ...") #counter for renaming for i, (rootpath, subdirs, files) in enumerate(os.walk(tmpDir)): if rootpath == tmpDir: continue for filename in files: # don't copy the folder image if os.path.basename(filename).lower() == "folder": continue # only copy the allowed file types if os.path.splitext(filename)[1].lower() in exts: newName = os.path.join(self.outputDir, filename) if os.path.exists(newName): # Rename the file if conflict using the loop index f = os.path.splitext(newName) newName = f[0]+"-"+str(i)+f[1] shutil.move(os.path.join(rootpath, filename), newName) self.imageTypeMap[newName] = type print(" -> Done! Copied ", len(self.imageTypeMap), "Images") def createManifest(self): print("Creating Manifest ..."); with open(os.path.join(self.outputDir,'package.manifestx'), 'w') as f: f.write('<Manifest vendorid="0" vendorpackageid="0" maintaincopyright="True" dpi="300">\n') f.write('<Groups />\n') f.write('<Entries>\n') for image in os.listdir(self.outputDir): imageType = self.imageTypeMap.get(os.path.join(self.outputDir, image), "embellishment") if imageType != "embellishment" and imageType != "paper": imageType = "embellishment" f.write('<Image ID="'+str(uuid.uuid4())+'" Name="'+image+'" Group="'+imageType+'" />\n') f.write('</Entries>\n') f.write('</Manifest>\n') print("Done! Saved ", os.path.join(self.outputDir,'package.manifestx'))
import os # to hide pygame welcome message os.environ["PYGAME_HIDE_SUPPORT_PROMPT"] = "1" # # game global constants # TITLE = "Kings and Pigs" # map grid size GRID_SIZE = 32 # size of a virtual screen WIDTH = 14 * GRID_SIZE # 448 px HEIGHT = 7 * GRID_SIZE # 224 px # real window size (double size of virtual screen) WINDOW_WIDTH = WIDTH * 2 # 896 px WINDOW_HEIGHT = HEIGHT * 2 # 448 px # game and animations frames per second GAME_FPS = 60 ANIMATION_FPS = 10
# -*- coding: utf-8 -*- """Module containing tools useful for tokenizing text for pre-processing.""" import string from nltk.tokenize import word_tokenize from nltk.corpus import stopwords from nltk.stem.porter import PorterStemmer def tokenize_string(orig_string): """ Create a list of string tokens from the input string. The resulting tokens exhibit the following traits: 1. Case normalized (to lower case) 2. Without punctuation 3. All alphabetic In addition, all English stop words, per NLTK, are removed. Finally, words are "stemmed" to the common root or base (using the Porter Stemming algorithm). :param orig_string: String to extract tokens from. :type orig_string: str :return: List of tokens extracted per the description. :rtype: list """ result = word_tokenize(orig_string.lower()) nopunct_trans = str.maketrans('', '', string.punctuation) result = [word.translate(nopunct_trans) for word in result] result = [word for word in result if word.isalpha()] eng_stop_words = set(stopwords.words('english')) result = [word for word in result if not word in eng_stop_words] porter_stem = PorterStemmer() result = [porter_stem.stem(word) for word in result] return result # vim: set ts=2 sw=2 expandtab:
from __future__ import absolute_import from .nesteddict import NestedDict, ndict from .structurednesteddict import StructuredNestedDict, sndict from . import app __version__ = '0.1.2' __all__ = ( 'ndict', 'NestedDict', 'sn_dict', 'StructuredNestedDict', 'app', )
import torch import torch.nn as nn import pytorch_lightning as pl from typing import List, Tuple class MaxPoolProttrans(pl.LightningModule): """ Model from Steven Combs that uses MaxPool1d instead of Convolutions that seems to work well for sequence-based models with point-mutational data """ def __init__(self, n_residues, n_features=1024, classifier=False, ntasks=1): super().__init__() self.classifier = classifier self.ntasks = ntasks self.layers = nn.Sequential( nn.MaxPool1d(kernel_size=n_residues), nn.BatchNorm1d(n_features), nn.ELU(), nn.Flatten(), nn.Linear(n_features, 512), nn.ELU(), nn.Dropout(p=0.3, inplace=True), nn.Linear(512, 512), nn.ELU(), nn.Dropout(p=0.3, inplace=True), nn.Linear(512, 512), nn.ELU(), nn.Dropout(p=0.3, inplace=True), nn.Linear(512, 512), nn.ELU(), nn.Dropout(p=0.3, inplace=True), nn.Linear(512, 512), nn.ELU(), nn.Dropout(p=0.3, inplace=True), nn.Linear(512, ntasks), ) if classifier: self.sm = nn.LogSoftmax(dim=1) def forward(self, x): if self.classifier: p = self.layers(x) return self.sm(p) else: return self.layers(x) class BatchNorm2DModel(pl.LightningModule): def __init__(self, in_t: torch.Tensor, layer_opt: List[Tuple[int, bool]], n_labels = 1, kernel_size = 5, padding=2, classifier=False): """ layer_opt defines how we construct the layers. is a List of Lists to keep it simple for now. [[n_out_features], [max_pool_booleans]] Both lists should be the same size. Ex: [[L*2, L, L//2, L//4], [False, True, True, False]] If classifier_labels is 0, we do do not add LogSoftMax. If Kernel Size is 5, padding should be 2 If Kernel size is 3, padding should be 1 https://towardsdatascience.com/batch-normalization-and-dropout-in-neural-networks-explained-with-pytorch-47d7a8459bcd """ super().__init__() assert(len(layer_opt[0]) == len(layer_opt[1])) last_lin = 1 features = in_t.shape[1] dim2 = in_t.shape[2] layers_list = [self.get_conv_layer(x[0], x[1], x[2], kernel_size, padding) for x in self.get_layer_mapping(features, layer_opt)] #Now we deal with going to a linear layer. layers_list.append(nn.Flatten()) layers_list.append(self.get_linear_layer(layer_opt[0][-1], n_labels, dim2, sum(layer_opt[1]))) #Account for optional classifier. if classifier: layers_list.append(nn.LogSoftmax(dim=1)) self.layers = nn.Sequential(*layers_list) def forward(self, x): return self.layers(x) # noinspection PyTypeChecker def get_conv_layer(self, features_in, features_out, max_pool = False, kernel_size = 5, padding=2): print(features_in, features_out, kernel_size, max_pool) if not max_pool: return nn.Sequential( nn.Conv1d( features_in, features_out, kernel_size=kernel_size, padding=padding), nn.ELU(), nn.BatchNorm1d(features_out), ) else: return nn.Sequential( nn.Conv1d( features_in, features_out, kernel_size=kernel_size, padding=padding), nn.MaxPool1d(2), nn.ELU(), nn.BatchNorm1d(features_out), ) def get_linear_layer(self, in_features, out_features, original_dim2, n_pools): """ Get the final linear layer accounting for in_features and pooling """ if n_pools != 0: total_features = in_features * (original_dim2//(n_pools * 2)) else: total_features = in_features * original_dim2 return nn.Linear(total_features, out_features) def get_layer_mapping(self, start_features, features_max_pool): """ Create a list of Tuples of in,out,max_pool for layer creation. """ i = 0 f_in = start_features feature_map = [] for x, y in zip(features_max_pool[0], features_max_pool[1]): if i >0: f_in = features_max_pool[0][i-1] feature_map.append((f_in, x, y)) i+=1 return feature_map ####Notes###: #https://towardsdatascience.com/pytorch-basics-how-to-train-your-neural-net-intro-to-cnn-26a14c2ea29 #https://towardsdatascience.com/pytorch-how-and-when-to-use-module-sequential-modulelist-and-moduledict-7a54597b5f17 #https://discuss.pytorch.org/t/linear-layer-input-neurons-number-calculation-after-conv2d/28659/2 #https://towardsdatascience.com/pytorch-layer-dimensions-what-sizes-should-they-be-and-why-4265a41e01fd class GeneralLinearModel(pl.LightningModule): def __init__(self, in_t: torch.Tensor, layer_opt: List[int], n_labels = 1, dropout1=.1, dropout_rest=.5, classifier=False): """ layer_opt defines how we construct the depth and width of layers. is a List Ex: [L*2, L, L//2, L//4] If classifier_labels is 0, we do do not add LogSoftMax. """ super().__init__() features = in_t.shape[1] layers_list = [self.get_linear_layer(x[0], x[1], x[2]) for x in self.get_layer_mapping(features, layer_opt, dropout1, dropout_rest)] layers_list.append(self.get_last_linear_layer(layer_opt[-1], n_labels)) #Account for optional classifier. if classifier: layers_list.append(nn.LogSoftmax(dim=1)) self.layers = nn.Sequential(*layers_list) print("Initialized model") def forward(self, x): return self.layers(x) def get_linear_layer(self, features_in, features_out, dropout_rate): print(features_in, features_out, dropout_rate) return nn.Sequential( nn.Linear( features_in, features_out), nn.ELU(), nn.Dropout(dropout_rate) ) def get_last_linear_layer(self, in_features, out_features): """ Get the final linear layer accounting for in_features and pooling """ return nn.Linear(in_features, out_features) def get_layer_mapping(self, start_features, features, dropout1=.1, dropout_rest=.5): """ Create a list of Tuples of in,out,dropout for layer creation. """ i = 0 f_in = start_features dropout=dropout1 feature_map = [] print(features) for x in features: if i >0: f_in = features[i-1] dropout = dropout_rest feature_map.append((f_in, x, dropout)) i+=1 return feature_map
# app/auth/forms.py from flask_wtf import FlaskForm from wtforms import PasswordField, StringField, SubmitField, ValidationError from wtforms.validators import DataRequired, Email, EqualTo, Length, AnyOf from ..models import Employee class LoginForm(FlaskForm): """ Form for users to login """ id = StringField('Employee ID', validators=[DataRequired()]) password = PasswordField('Password', validators=[DataRequired()]) submit = SubmitField('Login')
# 343. Integer Break # Runtime: 36 ms, faster than 55.89% of Python3 online submissions for Integer Break. # Memory Usage: 14.3 MB, less than 47.74% of Python3 online submissions for Integer Break. class Solution: # Dynamic Programming def integerBreak(self, n: int) -> int: prdct = [0] * (n + 1) prdct[1] = 1 for i in range(2, n + 1): for j in range(1, i): prdct[i] = max(prdct[i], prdct[i - j] * j, j * (i - j)) return prdct[-1]
from datetime import date dados = {} dados['nome'] = str(input('Nome: ')) ano = int(input('Ano de Nascimetno: ')) dados['idade'] = date.today().year - ano dados['ctps'] = int(input('Carteira de trabalho [0 não tem]: ')) if dados['ctps'] == 0: print('-=' * 30) for c, v in dados.items(): print(f'{c} tem o valor {v}') else: dados['contratacao'] = int(input('Ano de Contratação: ')) dados['salario'] = int(input('Salário: R$ ')) dados['aposentadoria'] = (dados['contratacao'] - ano) + 35 print('-=' * 30) for c, v in dados.items(): print(f'{c} tem o valor {v}')
"""Simple module to control the UI interface elements""" # TOOLBAR ICONS _run = r'assets\UI\Icons\toolbar_icons\act_compile.PNG' _runSelected = r'assets\UI\Icons\toolbar_icons\act_compileSel.PNG' _import = r'assets\UI\Icons\toolbar_icons\act_import.PNG' _export = r'assets\UI\Icons\toolbar_icons\act_export.PNG' _refresh = r'assets\UI\Icons\toolbar_icons\act_refresh.PNG' _exportData = r'assets\UI\Icons\toolbar_icons\act_export_result.png' _themeSwitch = r'assets\UI\Icons\toolbar_icons\act_themeSwitch.png' _alerts = r'assets\UI\Icons\toolbar_icons\act_alerts.png' _settings = r'assets\UI\Icons\toolbar_icons\act_settings.png' # INTERFACE ICONS ui_db = r'assets\UI\Icons\interface_icons\ui_database.PNG' ui_tb = r'assets\UI\Icons\interface_icons\ui_table.PNG' ui_data = r'assets\UI\Icons\interface_icons\data_ico.png' ui_field = r'assets\UI\Icons\interface_icons\fields_ico.png' ui_query = r'assets\UI\Icons\interface_icons\query_ico.png' # BRAND ICONS b_mysql = r'assets\UI\Icons\brand_icons\dolphin.png' b_mssql = r'assets\UI\Icons\brand_icons\mssql.png' b_postgreesql = r'assets\UI\Icons\brand_icons\postgre.png' # WINDOW ICONS win_icon = r'assets\UI\Icons\win_icons\icon.ico' ui_folder = r'assets\UI\Icons\interface_icons\folder.png'
import sys from argparse import ArgumentParser from os import stat, mkdir from os.path import isfile, expanduser, isdir from re import compile, match as rmatch, VERBOSE from colorama import Fore, init from requests import get as r_get def download_oui_defs(fpath: str, force_dl=False) -> bool: # file exists and is not older than 1 week if (isfile(fpath) and stat(fpath).st_mtime > 604800) and not force_dl: print(f"{Fore.CYAN}Definitions exist and file is less than one week old, omitting download") return True else: if force_dl: print(f"{Fore.LIGHTRED_EX}Download forced, please wait...") else: print(f"{Fore.CYAN}Definitions not found or too old, downloading file, please wait...") r = r_get("http://standards-oui.ieee.org/oui.txt") if r.status_code == 200: with open(fpath, "wb") as fp: fp.write(r.content) return True else: print(f"{Fore.RED}Couldn't download oui definitions! HTTP status was {r.status_code}") return False def lookup(fpath: str, mac: str) -> bool: vendor = mac[0:8].upper().replace(":", "-") pattern = compile(r"""^[0-9A-F]{2} # match first octett at start of string [-] # match literal - [0-9A-F]{2} # match second otctett [-] # match literal - [0-9A-F]{2} # match third octett .*$ # match until end of string""", flags=VERBOSE) with open(fpath, "rb") as fp_read: for line in fp_read: match = rmatch(pattern, line.decode('utf8')) if match: entry = match.group() entry = entry.split("\t") oui = entry[0].split()[0] name = entry[-1] if vendor == oui: print(f"{Fore.GREEN}{mac} belongs to {name}") return True print(f"{Fore.RED}Couldn't find oui {vendor}") return False if __name__ == "__main__": init(autoreset=True) parser = ArgumentParser(description="oui.py: MAC vendor lookup") parser.add_argument("mac", help="The MAC address to process") parser.add_argument("--force", action="store_true", help="Force download of definitions file") parser.add_argument("--file", help="Override where file is stored and/or use this definition file") args = parser.parse_args() if args.file: f_path = args.file else: if not isdir(expanduser("~/.oui")): mkdir(expanduser("~/.oui")) f_path = expanduser("~/.oui/oui.txt") if not download_oui_defs(f_path, args.force): sys.exit(1) if not lookup(f_path, args.mac): sys.exit(1) sys.exit(0)
import time, pytest, inspect from utils import * def test_outputs(run_brave): run_brave() check_brave_is_running() assert_outputs([]) # Create output, including allowing the ID to be set add_output({'type': 'local', 'id': 99}) assert_outputs([{'type': 'local', 'id': 99, 'uid': 'output99'}]) # Different types of outputs work: add_output({'type': 'image'}) time.sleep(1.5) assert_outputs([{'type': 'local', 'id': 99}, {'type': 'image', 'id': 1}]) # Change state to PAUSED update_output(1, {'state': 'NULL'}) assert_outputs([{'type': 'local', 'id': 99}, {'type': 'image', 'id': 1, 'state': 'NULL'}], check_playing_state=False) # Change state to READY update_output(1, {'state': 'READY'}) assert_outputs([{'type': 'local', 'id': 99}, {'type': 'image', 'id': 1, 'state': 'READY'}], check_playing_state=False) # Change state to NULL update_output(1, {'state': 'PAUSED'}) assert_outputs([{'type': 'local', 'id': 99}, {'type': 'image', 'id': 1, 'state': 'PAUSED'}], check_playing_state=False) # Change state to PLAYING update_output(1, {'state': 'PLAYING'}) time.sleep(1) assert_outputs([{'type': 'local', 'id': 99}, {'type': 'image', 'id': 1}]) # TODO outputs need to support being updated # # Add a property to existing output # update_output(1, {'update_frequency': 5}) # assert_outputs([{'type': 'image', 'id': 1, 'update_frequency': 5}]) # Add a bad property to existing output update_output(1, {'not_real': 100}, 400) assert_outputs([{'type': 'local', 'id': 99}, {'type': 'image', 'id': 1}]) # Add a property to missing output update_output(999, {'update_frequency': 5}, 400) # Removing an existing output works: delete_output(99) assert_outputs([{'type': 'image', 'id': 1}]) # Removing a non-existant output causes a user error delete_output(999, expected_status_code=400) # Does not exist assert_outputs([{'type': 'image', 'id': 1}])
# Copyright © 2020 Hoani Bryson # License: MIT (https://mit-license.org/) # # Packet # # L3aP packet for describing data fields # class Packet(): def __init__(self, category, path=None, payload=None): self.category = category self.paths = [] self.payloads = [] if path != None: self.add(path, payload) def add(self, path, payload=None): self.paths.append(path) if isinstance(payload, tuple) == False and payload != None: self.payloads.append(tuple([payload])) else: self.payloads.append(payload) def unpack(self, codec): return codec.unpack(self)
import traceback import logging import attr from .. import entities, exceptions logger = logging.getLogger(name=__name__) @attr.s class User(entities.BaseEntity): """ User entity """ created_at = attr.ib() updated_at = attr.ib(repr=False) name = attr.ib() last_name = attr.ib() username = attr.ib() avatar = attr.ib(repr=False) email = attr.ib() role = attr.ib() type = attr.ib() org = attr.ib() id = attr.ib() # api _project = attr.ib(repr=False) _client_api = attr.ib(default=None, repr=False) _users = attr.ib(repr=False, default=None) @property def createdAt(self): logger.warning( 'Deprecation Warning - param "createdAt" will be deprecated from version "1.41.0' 'Use "created_at"') return self.created_at @property def updatedAt(self): logger.warning( 'Deprecation Warning - param "updatedAt" will be deprecated from version "1.41.0' 'Use "updated_at"') return self.updated_at @staticmethod def _protected_from_json(_json, project, client_api, users=None): """ Same as from_json but with try-except to catch if error :param _json: platform json :param project: project entity :param client_api: ApiClient entity :param users: Users repository :return: """ try: user = User.from_json(_json=_json, project=project, users=users, client_api=client_api) status = True except Exception: user = traceback.format_exc() status = False return status, user @property def project(self): if self._project is None: raise exceptions.PlatformException(error='2001', message='Missing entity "project".') assert isinstance(self._project, entities.Project) return self._project @classmethod def from_json(cls, _json, project, client_api, users=None): """ Build a User entity object from a json :param _json: _json response from host :param project: project entity :param client_api: ApiClient entity :param users: Users repository :return: User object """ return cls( created_at=_json.get('createdAt', None), name=_json.get('firstName', None), updated_at=_json.get('updatedAt', None), last_name=_json.get('lastName', None), username=_json.get('username', None), avatar=_json.get('avatar', None), email=_json.get('email', None), role=_json.get('role', None), type=_json.get('type', None), org=_json.get('org', None), id=_json.get('id', None), project=project, users=users, client_api=client_api) def to_json(self): """ Returns platform _json format of object :return: platform json format of object """ _json = attr.asdict(self, filter=attr.filters.exclude(attr.fields(User)._project, attr.fields(User).name, attr.fields(User)._client_api, attr.fields(User).users, attr.fields(User).last_name, attr.fields(User).created_at, attr.fields(User).updated_at, )) _json['firstName'] = self.name _json['lastName'] = self.last_name _json['createdAt'] = self.created_at _json['updatedAt'] = self.updated_at return _json
#!/usr/bin/env python # -- encoding: utf-8 -- # # Copyright 2015-2016 Telefónica Investigación y Desarrollo, S.A.U # # This file is part of FI-WARE project. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # # You may obtain a copy of the License at: # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # # See the License for the specific language governing permissions and # limitations under the License. # # For those usages not covered by the Apache version 2.0 License please # contact with opensource@tid.es # import ConfigParser import os import base64 from fiwareglancesync.app.settings.settings import logger_cli __version__ = '1.7.0' # Methods to obtain a list/set, which a default empty. def _get_set(self, section, key): if self.has_option(section, key): value = self.get(section, key).strip() if len(value) == 0: return set() else: return set(x.strip() for x in value.split(',')) else: return set() def _get_list(self, section, key): if self.has_option(section, key): value = self.get(section, key).strip() if len(value) == 0: return list() else: return list(x.strip() for x in value.split(',')) else: return list() # Add the two methods to the class ConfigParser.SafeConfigParser.getset = _get_set ConfigParser.SafeConfigParser.getlist = _get_list default_configuration_file = '/etc/glancesync.conf' class GlanceSyncConfig(object): """Class to read glancesync configuration. Configuration is a file with sections of type [section] and pairs key=value, in the style of OpenStack configuration files. There is a [main] section where the key master_region is mandatory while preferable_order and metadata_condition are optional. Any other sections are target sections. They must include a key credential; all the other parameters are optional. The target section [master] with the credential is mandatory. If the configuration is missing, it can be replaced using environment variables OS_USERNAME, OS_PASSWORD, OS_TENANT_NAME, OS_AUTH_URL and OS_REGION_NAME """ def __init__(self, configuration_path=None, stream=None, override_d=None): """ Init a a instance of the configuration. It can be created from a stream (e.g. a file or a StringIO) or from a configuration file whose path. The resolution order is: *if stream parameter is provided, use the stream *if GLANCESYNC_CONFIG is defined, use it to locate the file *if configuration_path is not None, it is the path of the file *if /etc/glancesync.conf exists, use it *otherwise, create a default configuration using environment variables OS_REGION_NAME, OS_USERNAME, OS_PASSWORD, OS_TENANT_NAME, OS_AUTH_URL Please, be aware that stream priority is over GLANCESYNC_CONFIG, but file is not. :param configuration_path: the path of the configuration file :param stream: a stream object with the configuration :param override_d: an optional dictionary to override options in the configuration file. To override key1 in section sec1, use as key 'sec1.key1'. If the key is not namespaced, DEFAULT section is used. :return: nothing """ self.logger = logger_cli defaults = {'use_keystone_v3': 'False', 'support_obsolete_images': 'True', 'only_tenant_images': 'True', 'list_images_timeout': '30'} if not stream: if 'GLANCESYNC_CONFIG' in os.environ: configuration_path = os.environ['GLANCESYNC_CONFIG'] if configuration_path is None: if os.path.exists(default_configuration_file): configuration_path = default_configuration_file self.targets = dict() self.master_region = None self.preferable_order = None self.max_children = 1 self.images_dir = '/var/lib/glance/images' # Read configuration if it exists if configuration_path is not None or stream is not None: configparser = ConfigParser.SafeConfigParser(defaults) if stream: configparser.readfp(stream) else: configparser.read(configuration_path) else: configparser = None if override_d: if not configparser: configparser = ConfigParser.SafeConfigParser(defaults) for key in override_d.keys(): value = override_d[key] key_parts = key.split('.') if len(key_parts) == 2: configparser.set(key_parts[0], key_parts[1], value) else: configparser.set('DEFAULT', key_parts[0], value) if configparser: if configparser.has_option('main', 'master_region'): self.master_region = configparser.get('main', 'master_region') if configparser.has_option('main', 'preferable_order'): self.preferable_order = configparser.getlist( 'main', 'preferable_order') if configparser.has_option('main', 'max_children'): self.max_children = configparser.getint('main', 'max_children') if configparser.has_option('main', 'images_dir'): self.images_dir = configparser.get('main', 'images_dir') for section in configparser.sections(): if section == 'main' or section == 'DEFAULTS': continue target = dict() target['target_name'] = section self.targets[section] = target if configparser.has_option(section, 'user') and\ configparser.has_option(section, 'password') and\ configparser.has_option(section, 'keystone_url') and\ configparser.has_option(section, 'tenant'): target['user'] = configparser.get(section, 'user').strip() target['tenant'] = configparser.get( section, 'tenant').strip() target['password'] = configparser.get( section, 'password').strip() target['keystone_url'] = configparser.get( section, 'keystone_url').strip() elif configparser.has_option(section, 'credential'): cred = configparser.get(section, 'credential').strip() parts = cred.split(',') target['user'] = parts[0].strip() target['password'] = base64.decodestring(parts[1].strip()) target['keystone_url'] = parts[2].strip() target['tenant'] = parts[3].strip() else: if section != 'master': msg = 'A credential parameter is mandatory for each '\ 'target (or the set: user, password, tenant, '\ 'keystone_url)' self.logger.error(msg) raise Exception(msg) target['forcesyncs'] = configparser.getset( section, 'forcesyncs') target['replace'] = configparser.getset(section, 'replace') target['rename'] = configparser.getset(section, 'rename') target['dontupdate'] = configparser.getset( section, 'dontupdate') target['ignore_regions'] = configparser.getset( section, 'ignore_regions') if configparser.has_option(section, 'metadata_condition'): cond = configparser.get(section, 'metadata_condition') if len(cond.strip()): target['metadata_condition'] = compile( cond, 'metadata_condition', 'eval') target['metadata_set'] = configparser.getset( section, 'metadata_set') target['only_tenant_images'] = configparser.getboolean( section, 'only_tenant_images') # This is only for the mock mode if configparser.has_option(section, 'tenant_id'): target['tenant_id'] = configparser.get( section, 'tenant_id') target['obsolete_syncprops'] = configparser.getset( section, 'obsolete_syncprops') target['support_obsolete_images'] = configparser.getboolean( section, 'support_obsolete_images') target['list_images_timeout'] = configparser.getint( section, 'list_images_timeout') target['use_keystone_v3'] = configparser.getboolean( section, 'use_keystone_v3') # Default configuration if it is not present if self.master_region is None: if 'OS_REGION_NAME' in os.environ: self.master_region = os.environ['OS_REGION_NAME'] else: msg = 'A master region must be set in the '\ 'configuration or OS_REGION_NAME must be defined' self.logger.error(msg) if self.preferable_order is None: self.preferable_order = list() if 'master' not in self.targets: self.targets['master'] = dict() self.targets['master']['target_name'] = 'master' self.targets['master']['replace'] = set() self.targets['master']['rename'] = set() self.targets['master']['dontupdate'] = set() self.targets['master']['forcesyncs'] = set() self.targets['master']['ignore_regions'] = set() self.targets['master']['metadata_set'] = set() self.targets['master']['only_tenant_images'] = True if 'user' not in self.targets['master']: if 'OS_USERNAME' in os.environ: self.targets['master']['user'] = os.environ['OS_USERNAME'] else: msg = 'A username for master target must be provided in '\ 'configuration or OS_USERNAME must be defined' self.logger.error(msg) raise Exception(msg) if 'password' not in self.targets['master']: if 'OS_PASSWORD' in os.environ: self.targets['master']['password'] = os.environ['OS_PASSWORD'] else: msg = 'A password for master target must be provided in '\ 'configuration or OS_PASSWORD must be defined. In the '\ 'configuration file, passwords must be encoded with base64' self.logger.error(msg) raise Exception(msg) if 'keystone_url' not in self.targets['master']: if 'OS_AUTH_URL' in os.environ: self.targets['master']['keystone_url'] =\ os.environ['OS_AUTH_URL'] else: msg = 'A keystone url for master target must be provided in '\ 'configuration or OS_AUTH_URL must be defined.' self.logger.error(msg) raise Exception(msg) if 'tenant' not in self.targets['master']: if 'OS_TENANT_NAME' in os.environ: self.targets['master']['tenant'] = os.environ['OS_TENANT_NAME'] else: msg = 'A tenant name for master target must be provided in '\ 'configuration or OS_TENANT_NAME must be defined.' self.logger.error(msg) raise Exception(msg)
"""Utility functions """ def num_terms(docs): terms = set() for doc in docs: terms.update(set(doc)) return len(terms) def docs_from_document_term_matrix(dtm, vocab=None): """Read dataset from document term document-term matrix Parameters ---------- dtm : array of shape N,V vocab : list of vocabulary words (of length N) Returns ------- docs: variadic array of N entites """ docs = [] for term_counts in dtm: term_counts = enumerate(term_counts) docs.append(_term_counts_to_doc(term_counts, vocab=vocab)) return docs def docs_from_ldac(stream): """Read dataset from LDA-C formated file From David Blei: Under LDA, the words of each document are assumed exchangeable. Thus, each document is succinctly represented as a sparse vector of word counts. The data is a file where each line is of the form: [M] [term_1]:[count] [term_2]:[count] ... [term_N]:[count] where [M] is the number of unique terms in the document, and the [count] associated with each term is how many times that term appeared in the document. Note that [term_1] is an integer which indexes the term; it is not a string. source: http://www.cs.princeton.edu/~blei/lda-c/readme.txt Parameters ---------- stream: file object File yielding unicode strings in LDA-C format. Returns ------- docs: variadic array of N entites """ n_entities = 0 docs = [] for line in stream: line = line.strip().split(' ') if len(line) == 1 and line[0] == '': continue unique_terms = int(line.pop(0)) term_counts = [tc.split(":") for tc in line] term_counts = [(int(t), int(c)) for t, c in term_counts] assert unique_terms == len(term_counts) docs.append(_term_counts_to_doc(term_counts)) n_entities += 1 return docs def reindex_nested(l): """Reindex assignment vector to assigments to consecutive integers For example convert `[[0, 3], [2, 3]]` to `[[0, 2], [3, 1]]` Parameters ---------- l : nested lists with hashable items in second dimensional lists Returns ------- nested with hashable items translated to hashable values """ # Flatten items = set(reduce(lambda x, y: list(x) + list(y), l)) # Map from original value to new value lookup = {t: i for i, t in enumerate(items)} # New nested list return [[lookup[x] for x in table] for table in l] def flatten(l): """Flatten 2 list """ return reduce(lambda x, y: list(x) + list(y), l, []) def ragged_array_to_row_major_form(l): """Convert [[1,2,3], [5,6]] to [1, 2, 3, 5, 6], [0, 3] for serialization """ indices = _cumsum(map(len, l)) indices = [0] + indices[:-1] flat = flatten(l) return flat, indices def row_major_form_to_ragged_array(flat, indices): """Convert [1, 2, 3, 5, 6], [0, 3] to [[1,2,3], [5,6]] for serialization """ endices = indices[1:] + [None] return [flat[start:end] for start, end in zip(indices, endices)] def _cumsum(a): b=a[:] for i in range(1,len(a)): b[i]+=b[i-1] return b def _term_counts_to_doc(term_counts, vocab=None): doc = [] for term_id, count in term_counts: if vocab is not None: doc.extend(count * [vocab[term_id]]) else: doc.extend(count * [term_id]) return doc
import os import numpy as np import random import torch.nn.functional as F from torch.autograd import Variable import torch import torch.utils.data as dataf import torch.nn as nn import matplotlib.pyplot as plt from scipy import io from sklearn.decomposition import PCA # setting parameters DataPath = '/home/hrl/PycharmProjects/untitled/Hyperspectral/Data/FixedTrainSam/Houston/Houston.mat' TRPath = '/home/hrl/PycharmProjects/untitled/Hyperspectral/Data/FixedTrainSam/Houston/TRLabel.mat' TSPath = '/home/hrl/PycharmProjects/untitled/Hyperspectral/Data/FixedTrainSam/Houston/TSLabel.mat' savepath = '/home/hrl/PycharmProjects/untitled/Hyperspectral/Data/FixedTrainSam/W3-DLSection/HU2013/CRNN-0.mat' patchsize = 16 # input spatial size for 2D-CNN batchsize = 64 # select from [16, 32, 64, 128], the best is 64 EPOCH = 200 LR = 0.001 # load data Data = io.loadmat(DataPath) TrLabel = io.loadmat(TRPath) TsLabel = io.loadmat(TSPath) Data = Data['Houston'] Data = Data.astype(np.float32) TrLabel = TrLabel['TRLabel'] TsLabel = TsLabel['TSLabel'] # without dimensionality reduction pad_width = np.floor(patchsize/2) pad_width = np.int(pad_width) # normalization method 2: map to zero mean and one std [m, n, l] = np.shape(Data) # x2 = np.empty((m+pad_width*2, n+pad_width*2, l), dtype='float32') for i in range(l): mean = np.mean(Data[:, :, i]) std = np.std(Data[:, :, i]) Data[:, :, i] = (Data[:, :, i] - mean)/std # x2[:, :, i] = np.pad(Data[:, :, i], pad_width, 'symmetric') # # extract the first principal component # x = np.reshape(Data, (m*n, l)) # pca = PCA(n_components=0.995, copy=True, whiten=False) # x = pca.fit_transform(x) # _, l = x.shape # x = np.reshape(x, (m, n, l)) # # print x.shape # # plt.figure() # # plt.imshow(x) # # plt.show() x = Data # boundary interpolation temp = x[:, :, 0] pad_width = np.floor(patchsize/2) pad_width = np.int(pad_width) temp2 = np.pad(temp, pad_width, 'symmetric') [m2,n2] = temp2.shape x2 = np.empty((m2, n2, l), dtype='float32') for i in range(l): temp = x[:, :, i] pad_width = np.floor(patchsize/2) pad_width = np.int(pad_width) temp2 = np.pad(temp, pad_width, 'symmetric') x2[:, :, i] = temp2 # construct the training and testing set [ind1, ind2] = np.where(TrLabel != 0) TrainNum = len(ind1) TrainPatch = np.empty((TrainNum, l, patchsize, patchsize), dtype='float32') TrainLabel = np.empty(TrainNum) ind3 = ind1 + pad_width ind4 = ind2 + pad_width for i in range(len(ind1)): patch = x2[(ind3[i] - pad_width):(ind3[i] + pad_width), (ind4[i] - pad_width):(ind4[i] + pad_width), :] patch = np.reshape(patch, (patchsize * patchsize, l)) patch = np.transpose(patch) patch = np.reshape(patch, (l, patchsize, patchsize)) TrainPatch[i, :, :, :] = patch patchlabel = TrLabel[ind1[i], ind2[i]] TrainLabel[i] = patchlabel [ind1, ind2] = np.where(TsLabel != 0) TestNum = len(ind1) TestPatch = np.empty((TestNum, l, patchsize, patchsize), dtype='float32') TestLabel = np.empty(TestNum) ind3 = ind1 + pad_width ind4 = ind2 + pad_width for i in range(len(ind1)): patch = x2[(ind3[i] - pad_width):(ind3[i] + pad_width), (ind4[i] - pad_width):(ind4[i] + pad_width), :] patch = np.reshape(patch, (patchsize * patchsize, l)) patch = np.transpose(patch) patch = np.reshape(patch, (l, patchsize, patchsize)) TestPatch[i, :, :, :] = patch patchlabel = TsLabel[ind1[i], ind2[i]] TestLabel[i] = patchlabel # ## data-augmentation # TrainPatch1 = np.zeros_like(TrainPatch) # TrainPatch2 = np.zeros_like(TrainPatch) # TrainPatch3 = np.zeros_like(TrainPatch) # TrainPatch4 = np.zeros_like(TrainPatch) # TrainPatch5 = np.zeros_like(TrainPatch) # # for i in range(TrainPatch.shape[0]): # for j in range(TrainPatch.shape[1]): # TrainPatch1[i, j, ...] = np.rot90(TrainPatch[i, j, ...], 1) # TrainPatch2[i, j, ...] = np.rot90(TrainPatch[i, j, ...], 2) # TrainPatch3[i, j, ...] = np.rot90(TrainPatch[i, j, ...], 3) # TrainPatch4[i, j, ...] = np.flipud(TrainPatch[i, j, ...]) # TrainPatch5[i, j, ...] = np.fliplr(TrainPatch[i, j, ...]) # # # TrainPatch = np.concatenate((TrainPatch, TrainPatch1, TrainPatch2, TrainPatch3, TrainPatch4, TrainPatch5), 0) # TrainLabel = np.concatenate((TrainLabel, TrainLabel, TrainLabel, TrainLabel, TrainLabel, TrainLabel), 0) print('Training size and testing size are:', TrainPatch.shape, 'and', TestPatch.shape) # step3: change data to the input type of PyTorch TrainPatch = torch.from_numpy(TrainPatch) TrainLabel = torch.from_numpy(TrainLabel)-1 TrainLabel = TrainLabel.long() dataset = dataf.TensorDataset(TrainPatch, TrainLabel) train_loader = dataf.DataLoader(dataset, batch_size=batchsize, shuffle=True) TestPatch = torch.from_numpy(TestPatch) TestLabel = torch.from_numpy(TestLabel)-1 TestLabel = TestLabel.long() Classes = len(np.unique(TrainLabel)) OutChannel = 32 class ConvLSTMCell(nn.Module): def __init__(self, input_size, input_dim, hidden_dim, kernel_size, bias): """ Initialize ConvLSTM cell. Parameters ---------- input_size: (int, int) Height and width of input tensor as (height, width). input_dim: int Number of channels of input tensor. hidden_dim: int Number of channels of hidden state. kernel_size: (int, int) Size of the convolutional kernel. bias: bool Whether or not to add the bias. """ super(ConvLSTMCell, self).__init__() self.height, self.width = input_size self.input_dim = input_dim self.hidden_dim = hidden_dim self.kernel_size = kernel_size self.padding = kernel_size[0] // 2, kernel_size[1] // 2 self.bias = bias self.conv = nn.Conv2d(in_channels=self.input_dim + self.hidden_dim, out_channels=4 * self.hidden_dim, kernel_size=self.kernel_size, padding=self.padding, bias=self.bias) def forward(self, input_tensor, cur_state): h_cur, c_cur = cur_state combined = torch.cat([input_tensor, h_cur], dim=1) # concatenate along channel axis combined_conv = self.conv(combined) cc_i, cc_f, cc_o, cc_g = torch.split(combined_conv, self.hidden_dim, dim=1) i = torch.sigmoid(cc_i) f = torch.sigmoid(cc_f + 1.) o = torch.sigmoid(cc_o) g = torch.tanh(cc_g) c_next = f * c_cur + i * g h_next = o * torch.tanh(c_next) return h_next, c_next def init_hidden(self, batch_size): return (Variable(torch.zeros(batch_size, self.hidden_dim, self.height, self.width)).cuda(), Variable(torch.zeros(batch_size, self.hidden_dim, self.height, self.width)).cuda()) class ConvLSTM(nn.Module): def __init__(self, input_size, input_dim, hidden_dim, kernel_size, num_layers, batch_first=False, bias=True, return_all_layers=False): super(ConvLSTM, self).__init__() self._check_kernel_size_consistency(kernel_size) # Make sure that both `kernel_size` and `hidden_dim` are lists having len == num_layers kernel_size = self._extend_for_multilayer(kernel_size, num_layers) hidden_dim = self._extend_for_multilayer(hidden_dim, num_layers) if not len(kernel_size) == len(hidden_dim) == num_layers: raise ValueError('Inconsistent list length.') self.height, self.width = input_size self.input_dim = input_dim self.hidden_dim = hidden_dim self.kernel_size = kernel_size self.num_layers = num_layers self.batch_first = batch_first self.bias = bias self.return_all_layers = return_all_layers cell_list = [] for i in range(0, self.num_layers): cur_input_dim = self.input_dim if i == 0 else self.hidden_dim[i - 1] cell_list.append(ConvLSTMCell(input_size=(self.height, self.width), input_dim=cur_input_dim, hidden_dim=self.hidden_dim[i], kernel_size=self.kernel_size[i], bias=self.bias)) self.cell_list = nn.ModuleList(cell_list) def forward(self, input_tensor, hidden_state=None): """ Parameters ---------- input_tensor: todo 5-D Tensor either of shape (t, b, c, h, w) or (b, t, c, h, w) hidden_state: todo None. todo implement stateful Returns ------- last_state_list, layer_output """ if not self.batch_first: # (t, b, c, h, w) -> (b, t, c, h, w) input_tensor = input_tensor.permute(1, 0, 2, 3, 4) # Implement stateful ConvLSTM if hidden_state is not None: raise NotImplementedError() else: hidden_state = self._init_hidden(batch_size=input_tensor.size(0)) layer_output_list = [] last_state_list = [] seq_len = input_tensor.size(1) cur_layer_input = input_tensor for layer_idx in range(self.num_layers): h, c = hidden_state[layer_idx] output_inner = [] for t in range(seq_len): h, c = self.cell_list[layer_idx](input_tensor=cur_layer_input[:, t, :, :, :], cur_state=[h, c]) output_inner.append(h) layer_output = torch.stack(output_inner, dim=1) cur_layer_input = layer_output layer_output_list.append(layer_output) last_state_list.append([h, c]) if not self.return_all_layers: layer_output_list = layer_output_list[-1:] last_state_list = last_state_list[-1:] return layer_output_list, last_state_list def _init_hidden(self, batch_size): init_states = [] for i in range(self.num_layers): init_states.append(self.cell_list[i].init_hidden(batch_size)) return init_states @staticmethod def _check_kernel_size_consistency(kernel_size): if not (isinstance(kernel_size, tuple) or (isinstance(kernel_size, list) and all([isinstance(elem, tuple) for elem in kernel_size]))): raise ValueError('`kernel_size` must be tuple or list of tuples') @staticmethod def _extend_for_multilayer(param, num_layers): if not isinstance(param, list): param = [param] * num_layers return param class Network(nn.Module): def __init__(self): super(Network, self).__init__() self.CLSTM1 = ConvLSTM(input_size=(patchsize, patchsize), input_dim=1, hidden_dim=[OutChannel], kernel_size=(3, 3), num_layers=1, batch_first=True, bias=True, return_all_layers=False) self.CLSTM2 = ConvLSTM(input_size=(patchsize//2, patchsize//2), input_dim=OutChannel, hidden_dim=[OutChannel*2], kernel_size=(3, 3), num_layers=1, batch_first=True, bias=True, return_all_layers=False) self.fc = nn.Linear(2*l*OutChannel, Classes) self.pool = nn.MaxPool2d(2) self.apool = nn.AdaptiveAvgPool2d(1) def forward(self, x): fx = torch.unsqueeze(x, 2) fo, fc = self.CLSTM1(fx) fo = fo[0].view(fo[0].size(0), l*OutChannel, patchsize, patchsize) fo = self.pool(fo) fo = fo.view(fo.size(0), l, OutChannel, patchsize//2, patchsize//2) fo, fc = self.CLSTM2(fo) fo = fo[0].view(fo[0].size(0), 2*l*OutChannel, patchsize//2, patchsize//2) fo = self.apool(fo) out = fo.view(fo.size(0), -1) out = self.fc(out) return out cnn = Network() print('The structure of the designed network', cnn) # display variable name and shape # for param_tensor in cnn.state_dict(): # print(param_tensor, "\t", cnn.state_dict()[param_tensor].size()) cnn.cuda() optimizer = torch.optim.Adam(cnn.parameters(), lr=LR) # optimize all cnn parameters loss_fun = nn.CrossEntropyLoss() # the target label is not one-hotted BestAcc = 0 # train and test the designed model for epoch in range(EPOCH): for step, (b_x, b_y) in enumerate(train_loader): # gives batch data, normalize x when iterate train_loader # move train data to GPU b_x = b_x.cuda() b_y = b_y.cuda() output = cnn(b_x) cnn.zero_grad() loss = loss_fun(output, b_y) loss.backward() optimizer.step() if step % 50 == 0: cnn.eval() pred_y = np.empty((len(TestLabel)), dtype='float32') number = len(TestLabel) // 50 for i in range(number): temp = TestPatch[i * 50:(i + 1) * 50, :, :, :] temp = temp.cuda() temp2 = cnn(temp) temp3 = torch.max(temp2, 1)[1].squeeze() pred_y[i * 50:(i + 1) * 50] = temp3.cpu() del temp, temp2, temp3 if (i + 1) * 50 < len(TestLabel): temp = TestPatch[(i + 1) * 50:len(TestLabel), :, :, :] temp = temp.cuda() temp2 = cnn(temp) temp3 = torch.max(temp2, 1)[1].squeeze() pred_y[(i + 1) * 50:len(TestLabel)] = temp3.cpu() del temp, temp2, temp3 pred_y = torch.from_numpy(pred_y).long() accuracy = torch.sum(pred_y == TestLabel).type(torch.FloatTensor) / TestLabel.size(0) # test_output = rnn(TestData) # pred_y = torch.max(test_output, 1)[1].cuda().data.squeeze() # accuracy = torch.sum(pred_y == TestDataLabel).type(torch.FloatTensor) / TestDataLabel.size(0) print('Epoch: ', epoch, '| loss: %.4f' % loss.data.cpu().numpy(), '| test accuracy: %.2f' % accuracy) # save the parameters in network if accuracy > BestAcc: torch.save(cnn.state_dict(), 'net_params_AMTCNN_HS.pkl') BestAcc = accuracy cnn.train() # # test each class accuracy # # divide test set into many subsets cnn.load_state_dict(torch.load('net_params_AMTCNN_HS.pkl')) cnn.eval() pred_y = np.empty((len(TestLabel)), dtype='float32') number = len(TestLabel)//50 for i in range(number): temp = TestPatch[i*50:(i+1)*50, :, :] temp = temp.cuda() temp2 = cnn(temp) temp3 = torch.max(temp2, 1)[1].squeeze() pred_y[i*50:(i+1)*50] = temp3.cpu() del temp, temp2, temp3 if (i+1)*50 < len(TestLabel): temp = TestPatch[(i+1)*50:len(TestLabel), :, :] temp = temp.cuda() temp2 = cnn(temp) temp3 = torch.max(temp2, 1)[1].squeeze() pred_y[(i+1)*50:len(TestLabel)] = temp3.cpu() del temp, temp2, temp3 pred_y = torch.from_numpy(pred_y).long() OA = torch.sum(pred_y == TestLabel).type(torch.FloatTensor) / TestLabel.size(0) Classes = np.unique(TestLabel) EachAcc = np.empty(len(Classes)) for i in range(len(Classes)): cla = Classes[i] right = 0 sum = 0 for j in range(len(TestLabel)): if TestLabel[j] == cla: sum += 1 if TestLabel[j] == cla and pred_y[j] == cla: right += 1 EachAcc[i] = right.__float__()/sum.__float__() print(OA) print(EachAcc) del TestPatch, TrainPatch, TrainLabel, b_x, b_y, dataset, train_loader # show the whole image # The whole data is too big to test in one time; So dividing it into several parts part = 50 pred_all = np.empty((m*n, 1), dtype='float32') number = m*n//part for i in range(number): D = np.empty((part, l, patchsize, patchsize), dtype='float32') count = 0 for j in range(i*part, (i+1)*part): row = j//n col = j - row*n row2 = row + pad_width col2 = col + pad_width patch = x2[(row2 - pad_width):(row2 + pad_width), (col2 - pad_width):(col2 + pad_width), :] patch = np.reshape(patch, (patchsize * patchsize, l)) patch = np.transpose(patch) patch = np.reshape(patch, (l, patchsize, patchsize)) D[count, :, :, :] = patch count += 1 temp = torch.from_numpy(D) temp = temp.cuda() temp2 = cnn(temp) temp3 = torch.max(temp2, 1)[1].squeeze() pred_all[i*part:(i+1)*part, 0] = temp3.cpu() del temp, temp2, temp3, D if (i+1)*part < m*n: D = np.empty((m*n-(i+1)*part, l, patchsize, patchsize), dtype='float32') count = 0 for j in range((i+1)*part, m*n): row = j // n col = j - row * n row2 = row + pad_width col2 = col + pad_width patch = x2[(row2 - pad_width):(row2 + pad_width), (col2 - pad_width):(col2 + pad_width), :] patch = np.reshape(patch, (patchsize * patchsize, l)) patch = np.transpose(patch) patch = np.reshape(patch, (l, patchsize, patchsize)) D[count, :, :, :] = patch count += 1 temp = torch.from_numpy(D) temp = temp.cuda() temp2 = cnn(temp) temp3 = torch.max(temp2, 1)[1].squeeze() pred_all[(i + 1) * part:m*n, 0] = temp3.cpu() del temp, temp2, temp3, D pred_all = np.reshape(pred_all, (m, n)) + 1 OA = OA.numpy() pred_y = pred_y.cpu() pred_y = pred_y.numpy() TestDataLabel = TestLabel.cpu() TestDataLabel = TestDataLabel.numpy() io.savemat(savepath, {'PredAll': pred_all, 'OA': OA, 'TestPre': pred_y, 'TestLabel': TestDataLabel}) # print io.loadmat(savepath) plt.figure() plt.imshow(pred_all) plt.show()
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import unittest import numpy as np from op_test import OpTest import paddle.fluid.core as core from paddle import rand import paddle.fluid as fluid from paddle.fluid import compiler, Program, program_guard class TestRandOpError(unittest.TestCase): """ This class test the input type check. """ def test_errors(self): main_prog = Program() start_prog = Program() with program_guard(main_prog, start_prog): def test_Variable(): x1 = fluid.create_lod_tensor( np.zeros((4, 784)), [[1, 1, 1, 1]], fluid.CPUPlace()) rand(x1) self.assertRaises(TypeError, test_Variable) def test_dtype(): dim_1 = fluid.layers.fill_constant([1], "int64", 3) dim_2 = fluid.layers.fill_constant([1], "int32", 5) rand(shape=[dim_1, dim_2], dtype='int32') self.assertRaises(TypeError, test_dtype) def test_shape_list(): rand(shape=[2.]) self.assertRaises(TypeError, test_shape_list) def test_shape_list2(): rand(shape=[2, 3.]) self.assertRaises(TypeError, test_shape_list2) def test_device(): rand(shape=[3, 4], device='device') self.assertRaises(ValueError, test_device) class TestRandOp(unittest.TestCase): """ This class test the common usages of randop. """ def test_run(self): use_cuda = False place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace() exe = fluid.Executor(place) train_program = fluid.Program() startup_program = fluid.Program() with fluid.program_guard(train_program, startup_program): result_1 = rand(shape=[3, 4]) dim_1 = fluid.layers.fill_constant([1], "int64", 3) dim_2 = fluid.layers.fill_constant([1], "int32", 5) result_2 = rand(shape=[dim_1, dim_2]) var_shape = fluid.data(name='var_shape', shape=[2], dtype="int64") result_3 = rand(var_shape) var_shape_int32 = fluid.data( name='var_shape_int32', shape=[2], dtype="int32") result_4 = rand(var_shape_int32) exe.run(startup_program) x1 = np.array([3, 2]).astype('int64') x2 = np.array([4, 3]).astype('int32') ret = exe.run(train_program, feed={"var_shape": x1, "var_shape_int32": x2}, fetch_list=[result_1, result_2, result_3, result_4]) class TestRandOpForDygraph(unittest.TestCase): """ This class test the common usages of randop. """ def test_run(self): use_cuda = False with fluid.dygraph.guard(): rand(shape=[3, 4]) dim_1 = fluid.layers.fill_constant([1], "int64", 3) dim_2 = fluid.layers.fill_constant([1], "int32", 5) rand(shape=[dim_1, dim_2]) var_shape = fluid.dygraph.to_variable(np.array([3, 4])) rand(var_shape) if __name__ == "__main__": unittest.main()
from django.urls import path from django.views.generic import View urlpatterns = [ path("simple/action/", View.as_view(), name="simpleAction"), ]
""" Data structures for Rockstar frontend. """ #----------------------------------------------------------------------------- # Copyright (c) 2013, yt Development Team. # # Distributed under the terms of the Modified BSD License. # # The full license is in the file COPYING.txt, distributed with this software. #----------------------------------------------------------------------------- import numpy as np import stat import glob import os from .fields import \ RockstarFieldInfo from yt.utilities.cosmology import Cosmology from yt.geometry.particle_geometry_handler import \ ParticleIndex from yt.data_objects.static_output import \ Dataset, \ ParticleFile import yt.utilities.fortran_utils as fpu from .definitions import \ header_dt class RockstarBinaryFile(ParticleFile): def __init__(self, ds, io, filename, file_id): with open(filename, "rb") as f: self.header = fpu.read_cattrs(f, header_dt, "=") self._position_offset = f.tell() f.seek(0, os.SEEK_END) self._file_size = f.tell() super(RockstarBinaryFile, self).__init__(ds, io, filename, file_id) class RockstarDataset(Dataset): _index_class = ParticleIndex _file_class = RockstarBinaryFile _field_info_class = RockstarFieldInfo _suffix = ".bin" def __init__(self, filename, dataset_type="rockstar_binary", n_ref = 16, over_refine_factor = 1, units_override=None, unit_system="cgs"): self.n_ref = n_ref self.over_refine_factor = over_refine_factor super(RockstarDataset, self).__init__(filename, dataset_type, units_override=units_override, unit_system=unit_system) def _parse_parameter_file(self): with open(self.parameter_filename, "rb") as f: hvals = fpu.read_cattrs(f, header_dt) hvals.pop("unused") self.dimensionality = 3 self.refine_by = 2 self.unique_identifier = \ int(os.stat(self.parameter_filename)[stat.ST_CTIME]) prefix = ".".join(self.parameter_filename.rsplit(".", 2)[:-2]) self.filename_template = "%s.%%(num)s%s" % (prefix, self._suffix) self.file_count = len(glob.glob(prefix + ".*" + self._suffix)) # Now we can set up things we already know. self.cosmological_simulation = 1 self.current_redshift = (1.0 / hvals['scale']) - 1.0 self.hubble_constant = hvals['h0'] self.omega_lambda = hvals['Ol'] self.omega_matter = hvals['Om'] cosmo = Cosmology(self.hubble_constant, self.omega_matter, self.omega_lambda) self.current_time = cosmo.hubble_time(self.current_redshift).in_units("s") self.periodicity = (True, True, True) self.particle_types = ("halos") self.particle_types_raw = ("halos") self.domain_left_edge = np.array([0.0,0.0,0.0]) self.domain_right_edge = np.array([hvals['box_size']] * 3) nz = 1 << self.over_refine_factor self.domain_dimensions = np.ones(3, "int32") * nz self.parameters.update(hvals) def _set_code_unit_attributes(self): z = self.current_redshift self.length_unit = self.quan(1.0 / (1.0+z), "Mpc / h") self.mass_unit = self.quan(1.0, "Msun / h") self.velocity_unit = self.quan(1.0, "km / s") self.time_unit = self.length_unit / self.velocity_unit @classmethod def _is_valid(self, *args, **kwargs): if not args[0].endswith(".bin"): return False with open(args[0], "rb") as f: header = fpu.read_cattrs(f, header_dt) if header['magic'] == 18077126535843729616: return True return False
a=[7,7,4,8,9] print(sum(a))
# Copyright 2014 Open Source Robotics Foundation, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import os import stat import sys env_file_template = """\ #!/usr/bin/env sh # generated from within catkin_tools/verbs/catkin_build/common.py if [ $# -eq 0 ] ; then /bin/echo "Usage: build_env.sh COMMANDS" /bin/echo "Calling build_env.sh without arguments is not supported anymore." /bin/echo "Instead spawn a subshell and source a setup file manually." exit 1 fi # save original args for later _ARGS=$@ # remove all passed in args, resetting $@, $*, $#, $n shift $# # set the args for the sourced scripts set -- $@ "--extend" # source setup.sh with implicit --extend argument for each direct build depend in the workspace {sources} # execute given args exec $_ARGS """ def generate_env_file(sources, env_file_path): env_file = env_file_template.format(sources='\n'.join(sources)) with open(env_file_path, 'w') as f: f.write(env_file) # Make this file executable os.chmod(env_file_path, stat.S_IXUSR | stat.S_IWUSR | stat.S_IRUSR) return env_file_path def create_build_space(buildspace, package_name): """Creates a build space, if it does not already exist, in the build space :param buildspace: folder in which packages are built :type buildspace: str :param package_name: name of the package this build space is for :type package_name: str :returns: package specific build directory :rtype: str """ package_build_dir = os.path.join(buildspace, package_name) if not os.path.exists(package_build_dir): os.makedirs(package_build_dir) return package_build_dir def get_build_type(package): """Returns the build type for a given package :param package: package object :type package: :py:class:`catkin_pkg.package.Package` :returns: build type of the package, e.g. 'catkin' or 'cmake' :rtype: str """ export_tags = [e.tagname for e in package.exports] if 'build_type' in export_tags: build_type_tag = [e.content for e in package.exports if e.tagname == 'build_type'][0] else: build_type_tag = 'catkin' return build_type_tag def get_python_install_dir(): """Returns the same value as the CMake variable PYTHON_INSTALL_DIR The PYTHON_INSTALL_DIR variable is normally set from the CMake file: catkin/cmake/python.cmake :returns: Python install directory for the system Python :rtype: str """ python_install_dir = 'lib' if os.name != 'nt': python_version_xdoty = str(sys.version_info[0]) + '.' + str(sys.version_info[1]) python_install_dir = os.path.join(python_install_dir, 'python' + python_version_xdoty) python_use_debian_layout = os.path.exists('/etc/debian_version') python_packages_dir = 'dist-packages' if python_use_debian_layout else 'site-packages' python_install_dir = os.path.join(python_install_dir, python_packages_dir) return python_install_dir
#!/usr/bin/python # Copyright 2020 Hewlett Packard Enterprise Development LP # # Licensed under the Apache License, Version 2.0 (the "License"); you may not use this # file except in compliance with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software distributed # under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS # OF ANY KIND, either express or implied. See the License for the specific # language governing permissions and limitations under the License. # author Alok Ranjan (alok.ranjan2@hpe.com) from __future__ import absolute_import, division, print_function __metaclass__ = type ANSIBLE_METADATA = {'metadata_version': '1.1', 'status': ['preview'], 'supported_by': 'community'} DOCUMENTATION = r''' --- author: - HPE Nimble Storage Ansible Team (@ar-india) <nimble-dcs-storage-automation-eng@hpe.com> description: Manage the volume collections on an HPE Nimble Storage group. module: hpe_nimble_volume_collection options: abort_handover: required: False type: bool description: - Abort in-progress handover. If for some reason a previously invoked handover request is unable to complete, this action can be used to cancel it. This operation is not supported for synchronous replication volume collections. agent_hostname: required: False type: str description: - Generic backup agent hostname. agent_password: required: False type: str description: - Generic backup agent password. agent_username: required: False type: str description: - Generic backup agent username. app_cluster: required: False type: str description: - If the application is running within a Windows cluster environment, this is the cluster name. app_id: required: False choices: - inval - exchange - exchange_dag - hyperv - sql2005 - sql2008 - sql2012 - sql2014 - sql2016 - sql2017 type: str description: - Application ID running on the server. app_server: required: False type: str description: - Application server hostname. app_service: required: False type: str description: - If the application is running within a windows cluster environment then this is the instance name of the service running within the cluster environment. app_sync: choices: - none - vss - vmware - generic required: False type: str description: - Application synchronization. change_name: required: False type: str description: - Change name of the existing volume collection. demote: required: False type: bool description: - Release ownership of the specified volume collection. The volumes associated with the volume collection will be set to offline and a snapshot will be created, then full control over the volume collection will be transferred to the new owner. This option can be used following a promote to revert the volume collection back to its prior configured state. This operation does not alter the configuration on the new owner itself, but does require the new owner to be running in order to obtain its identity information. This operation is not supported for synchronous replication volume collections. description: required: False type: str description: - Text description of volume collection. handover: required: False type: bool description: - Gracefully transfer ownership of the specified volume collection. This action can be used to pass control of the volume collection to the downstream replication partner. Ownership and full control over the volume collection will be given to the downstream replication partner. The volumes associated with the volume collection will be set to offline prior to the final snapshot being taken and replicated, thus ensuring full data synchronization as part of the transfer. By default, the new owner will automatically begin replicating the volume collection back to this node when the handover completes. invoke_on_upstream_partner: required: False type: bool description: - Invoke handover request on upstream partner. This operation is not supported for synchronous replication volume vollections. is_standalone_volcoll: required: False type: bool default: False description: - Indicates whether this is a standalone volume collection. metadata: required: False type: dict description: - User defined key-value pairs that augment a volume collection attributes. List of key-value pairs. Keys must be unique and non-empty. When creating an object, values must be non-empty. When updating an object, an empty value causes the corresponding key to be removed. name: required: True type: str description: - Name of the volume collection. no_reverse: required: False type: bool default: False description: - Do not automatically reverse direction of replication. Using this argument will prevent the new owner from automatically replicating the volume collection to this node when the handover completes. override_upstream_down: required: False type: bool description: - Allow the handover request to proceed even if upstream array is down. The default behavior is to return an error when upstream is down. This option is applicable for synchronous replication only. promote: required: False type: bool description: - Take ownership of the specified volume collection. The volumes associated with the volume collection will be set to online and be available for reading and writing. Replication will be disabled on the affected schedules and must be re-configured if desired. Snapshot retention for the affected schedules will be set to the greater of the current local or replica retention values. This operation is not supported for synchronous replication volume collections. prot_template: required: False type: str description: - Name of the protection template whose attributes will be used to create this volume collection. This attribute is only used for input when creating a volume collection and is not outputed. replication_partner: required: False type: str description: - Name of the new volume collection owner. replication_type: choices: - periodic_snapshot - synchronous required: False type: str description: - Type of replication configured for the volume collection. state: required: True choices: - present - absent - create type: str description: - The volume collection operations. validate: required: False type: bool description: - Validate a volume collection with either Microsoft VSS or VMware application synchronization. vcenter_hostname: required: False type: str description: - VMware vCenter hostname. vcenter_username: required: False type: str description: - Application VMware vCenter username. String of up to 80 alphanumeric characters, beginning with a letter. It can include ampersand (@), backslash (\), dash (-), period (.), and underscore (_). vcenter_password: required: False type: str description: - Application VMware vCenter password. A password with few constraints. extends_documentation_fragment: hpe.nimble.hpe_nimble short_description: Manage the HPE Nimble Storage volume collections. version_added: "2.9.0" ''' EXAMPLES = r''' # if state is create , then create a volcoll if not present. Fails if already present. # if state is present, then create a volcoll if not present. Succeed if it already exists. - name: Create volume collection if not present hpe_nimble_volume_collection: host: "{{ host }}" username: "{{ username }}" password: "{{ password }}" name: "{{ name }}" description: "{{ description | default(None)}}" state: "{{ state | default('present') }}" - name: Delete volume collection hpe_nimble_volume_collection: host: "{{ host }}" username: "{{ username }}" password: "{{ password }}" name: "{{ name }}" state: absent - name: Promote volume collection hpe_nimble_volume_collection: host: "{{ host }}" username: "{{ username }}" password: "{{ password }}" name: "{{ name }}" state: present promote: True - name: Demote volume collection hpe_nimble_volume_collection: host: "{{ host }}" username: "{{ username }}" password: "{{ password }}" name: "{{ name }}" state: present demote: True - name: Handover volume collection hpe_nimble_volume_collection: host: "{{ host }}" username: "{{ username }}" password: "{{ password }}" name: "{{ name }}" state: present handover: True - name: Abort handover volume collection hpe_nimble_volume_collection: host: "{{ host }}" username: "{{ username }}" password: "{{ password }}" name: "{{ name }}" state: present abort_handover: True - name: Validate volume collection hpe_nimble_volume_collection: host: "{{ host }}" username: "{{ username }}" password: "{{ password }}" name: "{{ name }}" state: present validate: True ''' RETURN = r''' ''' from ansible.module_utils.basic import AnsibleModule try: from nimbleclient.v1 import client except ImportError: client = None import ansible_collections.hpe.nimble.plugins.module_utils.hpe_nimble as utils def create_volcoll( client_obj, volcoll_name, **kwargs): if utils.is_null_or_empty(volcoll_name): return (False, False, "Create volume collection failed as volume collection is not present.", {}, {}) try: volcoll_resp = client_obj.volume_collections.get(id=None, name=volcoll_name) if utils.is_null_or_empty(volcoll_resp): params = utils.remove_null_args(**kwargs) volcoll_resp = client_obj.volume_collections.create(name=volcoll_name, **params) return (True, True, f"Created volume collection '{volcoll_name}' successfully.", {}, volcoll_resp.attrs) else: return (False, False, f"Volume collection '{volcoll_name}' cannot be created as it is already present in given state.", {}, {}) except Exception as ex: return (False, False, f"Volume collection creation failed | {ex}", {}, {}) def update_volcoll( client_obj, volcoll_resp, **kwargs): if utils.is_null_or_empty(volcoll_resp): return (False, False, "Update volume collection failed as volume collection is not present.", {}, {}) try: volcoll_name = volcoll_resp.attrs.get("name") changed_attrs_dict, params = utils.remove_unchanged_or_null_args(volcoll_resp, **kwargs) if changed_attrs_dict.__len__() > 0: volcoll_resp = client_obj.volume_collections.update(id=volcoll_resp.attrs.get("id"), **params) return (True, True, f"Volume collection '{volcoll_name}' already present. Modified the following attributes '{changed_attrs_dict}'", changed_attrs_dict, volcoll_resp.attrs) else: return (True, False, f"Volume collection '{volcoll_name}' already present in given state.", {}, volcoll_resp.attrs) except Exception as ex: return (False, False, f"Volume collection update failed | {ex}", {}, {}) def delete_volcoll(client_obj, volcoll_name): if utils.is_null_or_empty(volcoll_name): return (False, False, "Delete volume collection failed as volume collection name is null.", {}) try: volcoll_resp = client_obj.volume_collections.get(id=None, name=volcoll_name) if utils.is_null_or_empty(volcoll_resp): return (False, False, f"Volume collection '{volcoll_name}' not present to delete.", {}) else: client_obj.volume_collections.delete(id=volcoll_resp.attrs.get("id")) return (True, True, f"Deleted volume collection '{volcoll_name}' successfully.", {}) except Exception as ex: return (False, False, f"Volume collection deletion failed | {ex}", {}) def promote_volcoll(client_obj, volcoll_name): if utils.is_null_or_empty(volcoll_name): return (False, False, "Promote volume collection failed as volume collection name is null.", {}) try: volcoll_resp = client_obj.volume_collections.get(id=None, name=volcoll_name) if utils.is_null_or_empty(volcoll_resp): return (False, False, f"Volume collection '{volcoll_name}' not present to promote.", {}) else: client_obj.volume_collections.promote(id=volcoll_resp.attrs.get("id")) return (True, True, f"Promoted volume collection '{volcoll_name}' successfully.", {}) except Exception as ex: return (False, False, f"Promote volume collection failed | {ex}", {}) def demote_volcoll( client_obj, volcoll_name, **kwargs): if utils.is_null_or_empty(volcoll_name): return (False, False, "Demote volume collection failed as volume collection name is null.", {}) try: volcoll_resp = client_obj.volume_collections.get(id=None, name=volcoll_name) params = utils.remove_null_args(**kwargs) if utils.is_null_or_empty(volcoll_resp): return (False, False, f"Volume collection '{volcoll_name}' not present to demote.", {}) else: client_obj.volume_collections.demote(id=volcoll_resp.attrs.get("id"), **params) return (True, True, f"Demoted volume collection '{volcoll_name}' successfully.", {}) except Exception as ex: return (False, False, f"Demote volume collection failed | {ex}", {}) def handover_volcoll( client_obj, volcoll_name, **kwargs): if utils.is_null_or_empty(volcoll_name): return (False, False, "Handover of volume collection failed as volume collection name is null.", {}) try: volcoll_resp = client_obj.volume_collections.get(id=None, name=volcoll_name) params = utils.remove_null_args(**kwargs) if utils.is_null_or_empty(volcoll_resp): return (False, False, f"Volume collection '{volcoll_name}' not present for handover.", {}) else: client_obj.volume_collections.handover(id=volcoll_resp.attrs.get("id"), **params) return (True, True, f"Handover of volume collection '{volcoll_name}' done successfully.", {}) except Exception as ex: return (False, False, f"Handover of volume collection failed | {ex}", {}) def abort_handover_volcoll( client_obj, volcoll_name): if utils.is_null_or_empty(volcoll_name): return (False, False, "Abort handover of volume collection failed as volume collection name is null.", {}) try: volcoll_resp = client_obj.volume_collections.get(id=None, name=volcoll_name) if utils.is_null_or_empty(volcoll_resp): return (False, False, f"Volume collection '{volcoll_name}' not present for abort handover.", {}) else: client_obj.volume_collections.abort_handover(id=volcoll_resp.attrs.get("id")) return (True, True, f"Abort handover of volume collection '{volcoll_name}' done successfully.", {}) except Exception as ex: return (False, False, f"Abort handover of volume collection failed | {ex}", {}) def validate_volcoll( client_obj, volcoll_name): if utils.is_null_or_empty(volcoll_name): return (False, False, "Validate volume collection failed as volume collection name is null.", {}, {}) try: volcoll_resp = client_obj.volume_collections.get(id=None, name=volcoll_name) if utils.is_null_or_empty(volcoll_resp): return (False, False, f"Volume collection '{volcoll_name}' not present for validation.", {}, {}) else: volcoll_validate_resp = client_obj.volume_collections.validate(id=volcoll_resp.attrs.get("id")) if hasattr(volcoll_validate_resp, 'attrs'): volcoll_validate_resp = volcoll_validate_resp.attrs return (True, False, f"Validation of volume collection '{volcoll_name}' done successfully.", {}, volcoll_validate_resp) except Exception as ex: return (False, False, f"Validation of volume collection failed | {ex}", {}, {}) def main(): fields = { "state": { "required": True, "choices": ['present', 'absent', 'create' ], "type": "str" }, "prot_template": { "required": False, "type": "str", "no_log": False }, "name": { "required": True, "type": "str", "no_log": False }, "change_name": { "required": False, "type": "str", "no_log": False }, "description": { "required": False, "type": "str", "no_log": False }, "replication_type": { "choices": ['periodic_snapshot', 'synchronous'], "required": False, "type": "str", "no_log": False }, "app_sync": { "choices": ['none', 'vss', 'vmware', 'generic'], "required": False, "type": "str", "no_log": False }, "app_server": { "required": False, "type": "str", "no_log": False }, "app_id": { "required": False, "choices": ['inval', 'exchange', 'exchange_dag', 'hyperv', 'sql2005', 'sql2008', 'sql2012', 'sql2014', 'sql2016', 'sql2017'], "type": "str", "no_log": False }, "app_cluster": { "required": False, "type": "str", "no_log": False }, "app_service": { "required": False, "type": "str", "no_log": False }, "vcenter_hostname": { "required": False, "type": "str", "no_log": False }, "vcenter_username": { "required": False, "type": "str", "no_log": False }, "vcenter_password": { "required": False, "type": "str", "no_log": False }, "agent_hostname": { "required": False, "type": "str", "no_log": False }, "agent_username": { "required": False, "type": "str", "no_log": False }, "agent_password": { "required": False, "type": "str", "no_log": True }, "is_standalone_volcoll": { "required": False, "type": "bool", "no_log": False }, "metadata": { "required": False, "type": "dict", "no_log": False }, "promote": { "required": False, "type": "bool", "no_log": False }, "demote": { "required": False, "type": "bool", "no_log": False }, "handover": { "required": False, "type": "bool", "no_log": False }, "abort_handover": { "required": False, "type": "bool", "no_log": False }, "validate": { "required": False, "type": "bool", "no_log": False }, "replication_partner": { "required": False, "type": "str", "no_log": False }, "invoke_on_upstream_partner": { "required": False, "type": "bool", "no_log": False }, "no_reverse": { "required": False, "type": "bool", "no_log": False }, "override_upstream_down": { "required": False, "type": "bool", "no_log": False } } default_fields = utils.basic_auth_arg_fields() fields.update(default_fields) module = AnsibleModule(argument_spec=fields) if client is None: module.fail_json(msg='Python nimble-sdk could not be found.') hostname = module.params["host"] username = module.params["username"] password = module.params["password"] state = module.params["state"] prot_template = module.params["prot_template"] volcoll_name = module.params["name"] change_name = module.params["change_name"] description = module.params["description"] replication_type = module.params["replication_type"] app_sync = module.params["app_sync"] app_server = module.params["app_server"] app_id = module.params["app_id"] app_cluster = module.params["app_cluster"] app_service = module.params["app_service"] vcenter_hostname = module.params["vcenter_hostname"] vcenter_username = module.params["vcenter_username"] vcenter_password = module.params["vcenter_password"] agent_hostname = module.params["agent_hostname"] agent_username = module.params["agent_username"] agent_password = module.params["agent_password"] is_standalone_volcoll = module.params["is_standalone_volcoll"] metadata = module.params["metadata"] promote = module.params["promote"] demote = module.params["demote"] handover = module.params["handover"] abort_handover = module.params["abort_handover"] validate = module.params["validate"] replication_partner = module.params["replication_partner"] invoke_on_upstream_partner = module.params["invoke_on_upstream_partner"] no_reverse = module.params["no_reverse"] override_upstream_down = module.params["override_upstream_down"] if (username is None or password is None or hostname is None): module.fail_json(msg="Missing variables: hostname, username and password is mandatory.") # defaults return_status = changed = False msg = "No task to run." resp = None try: client_obj = client.NimOSClient( hostname, username, password ) # States. if state == 'present' and promote is True: return_status, changed, msg, changed_attrs_dict = promote_volcoll(client_obj, volcoll_name) elif state == 'present' and demote is True: return_status, changed, msg, changed_attrs_dict = demote_volcoll( client_obj, volcoll_name, invoke_on_upstream_partner=invoke_on_upstream_partner, replication_partner_id=utils.get_replication_partner_id(client_obj, replication_partner)) elif state == 'present' and handover is True: replication_partner_id = utils.get_replication_partner_id(client_obj, replication_partner) if utils.is_null_or_empty(replication_partner_id) is True: module.fail_json(msg="Handover for volume collection failed. Please provide a valid replication partner.") return_status, changed, msg, changed_attrs_dict = handover_volcoll( client_obj, volcoll_name, invoke_on_upstream_partner=invoke_on_upstream_partner, no_reverse=no_reverse, override_upstream_down=override_upstream_down, replication_partner_id=replication_partner_id) elif state == 'present' and abort_handover is True: return_status, changed, msg, changed_attrs_dict = abort_handover_volcoll(client_obj, volcoll_name) elif state == 'present' and validate is True: return_status, changed, msg, changed_attrs_dict, resp = validate_volcoll(client_obj, volcoll_name) elif ((promote is None or promote is False) and (demote is None or demote is False) and (abort_handover is None or abort_handover is False) and (handover is None or handover is False) and (validate is None or validate is False) and (state == "create" or state == "present")): volcoll_resp = client_obj.volume_collections.get(id=None, name=volcoll_name) if utils.is_null_or_empty(volcoll_resp) or state == "create": return_status, changed, msg, changed_attrs_dict, resp = create_volcoll( client_obj, volcoll_name, prottmpl_id=utils.get_prottmpl_id(client_obj, prot_template), description=description, replication_type=replication_type, app_sync=app_sync, app_server=app_server, app_id=app_id, app_cluster=app_cluster, app_service=app_service, vcenter_hostname=vcenter_hostname, vcenter_username=vcenter_username, vcenter_password=vcenter_password, agent_hostname=agent_hostname, agent_username=agent_username, agent_password=agent_password, is_standalone_volcoll=is_standalone_volcoll, metadata=metadata) else: # update op return_status, changed, msg, changed_attrs_dict, resp = update_volcoll( client_obj, volcoll_resp, name=change_name, description=description, app_sync=app_sync, app_server=app_server, app_id=app_id, app_cluster=app_cluster, app_service=app_service, vcenter_hostname=vcenter_hostname, vcenter_username=vcenter_username, vcenter_password=vcenter_password, agent_hostname=agent_hostname, agent_username=agent_username, agent_password=agent_password, metadata=metadata) elif state == "absent": return_status, changed, msg, changed_attrs_dict = delete_volcoll(client_obj, volcoll_name) except Exception as ex: # failed for some reason. msg = str(ex) if return_status: if utils.is_null_or_empty(resp): module.exit_json(return_status=return_status, changed=changed, msg=msg) else: module.exit_json(return_status=return_status, changed=changed, msg=msg, attrs=resp) else: module.fail_json(return_status=return_status, changed=changed, msg=msg) if __name__ == '__main__': main()
# Copyright 2022 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Image classification task definition.""" from absl import logging import tensorflow as tf import tensorflow_model_optimization as tfmot from official.core import task_factory from official.projects.pruning.configs import image_classification as exp_cfg from official.vision.modeling.backbones import mobilenet from official.vision.modeling.layers import nn_blocks from official.vision.tasks import image_classification @task_factory.register_task_cls(exp_cfg.ImageClassificationTask) class ImageClassificationTask(image_classification.ImageClassificationTask): """A task for image classification with pruning.""" _BLOCK_LAYER_SUFFIX_MAP = { nn_blocks.BottleneckBlock: ( 'conv2d/kernel:0', 'conv2d_1/kernel:0', 'conv2d_2/kernel:0', 'conv2d_3/kernel:0', ), nn_blocks.InvertedBottleneckBlock: ('conv2d/kernel:0', 'conv2d_1/kernel:0', 'depthwise_conv2d/depthwise_kernel:0'), mobilenet.Conv2DBNBlock: ('conv2d/kernel:0',), } def build_model(self) -> tf.keras.Model: """Builds classification model with pruning.""" model = super(ImageClassificationTask, self).build_model() if self.task_config.pruning is None: return model pruning_cfg = self.task_config.pruning prunable_model = tf.keras.models.clone_model( model, clone_function=self._make_block_prunable, ) original_checkpoint = pruning_cfg.pretrained_original_checkpoint if original_checkpoint is not None: ckpt = tf.train.Checkpoint(model=prunable_model, **model.checkpoint_items) status = ckpt.read(original_checkpoint) status.expect_partial().assert_existing_objects_matched() pruning_params = {} if pruning_cfg.sparsity_m_by_n is not None: pruning_params['sparsity_m_by_n'] = pruning_cfg.sparsity_m_by_n if pruning_cfg.pruning_schedule == 'PolynomialDecay': pruning_params['pruning_schedule'] = tfmot.sparsity.keras.PolynomialDecay( initial_sparsity=pruning_cfg.initial_sparsity, final_sparsity=pruning_cfg.final_sparsity, begin_step=pruning_cfg.begin_step, end_step=pruning_cfg.end_step, frequency=pruning_cfg.frequency) elif pruning_cfg.pruning_schedule == 'ConstantSparsity': pruning_params[ 'pruning_schedule'] = tfmot.sparsity.keras.ConstantSparsity( target_sparsity=pruning_cfg.final_sparsity, begin_step=pruning_cfg.begin_step, frequency=pruning_cfg.frequency) else: raise NotImplementedError( 'Only PolynomialDecay and ConstantSparsity are currently supported. Not support %s' % pruning_cfg.pruning_schedule) pruned_model = tfmot.sparsity.keras.prune_low_magnitude( prunable_model, **pruning_params) # Print out prunable weights for debugging purpose. prunable_layers = collect_prunable_layers(pruned_model) pruned_weights = [] for layer in prunable_layers: pruned_weights += [weight.name for weight, _, _ in layer.pruning_vars] unpruned_weights = [ weight.name for weight in pruned_model.weights if weight.name not in pruned_weights ] logging.info( '%d / %d weights are pruned.\nPruned weights: [ \n%s \n],\n' 'Unpruned weights: [ \n%s \n],', len(pruned_weights), len(model.weights), ', '.join(pruned_weights), ', '.join(unpruned_weights)) return pruned_model def _make_block_prunable( self, layer: tf.keras.layers.Layer) -> tf.keras.layers.Layer: if isinstance(layer, tf.keras.Model): return tf.keras.models.clone_model( layer, input_tensors=None, clone_function=self._make_block_prunable) if layer.__class__ not in self._BLOCK_LAYER_SUFFIX_MAP: return layer prunable_weights = [] for layer_suffix in self._BLOCK_LAYER_SUFFIX_MAP[layer.__class__]: for weight in layer.weights: if weight.name.endswith(layer_suffix): prunable_weights.append(weight) def get_prunable_weights(): return prunable_weights layer.get_prunable_weights = get_prunable_weights return layer def collect_prunable_layers(model): """Recursively collect the prunable layers in the model.""" prunable_layers = [] for layer in model.layers: if isinstance(layer, tf.keras.Model): prunable_layers += collect_prunable_layers(layer) if layer.__class__.__name__ == 'PruneLowMagnitude': prunable_layers.append(layer) return prunable_layers
import asyncio from asyncio.subprocess import PIPE, create_subprocess_exec from asyncio.tasks import wait_for import os from decouple import config if user := config("PYTHON_USER", cast=str, default=""): from pwd import getpwnam pw = getpwnam(user) gid, uid = pw.pw_gid, pw.pw_uid def change_gid_uid() -> None: os.setgid(gid) os.setuid(uid) else: def change_gid_uid() -> None: pass class PythonAsyncRunner: async def run(self, code: str, timeout: float | None) -> str | None: proc = await create_subprocess_exec( "python", "-c", code, stdout=PIPE, stderr=PIPE, preexec_fn=change_gid_uid) try: out, err = await wait_for(proc.communicate(), timeout) except asyncio.TimeoutError: proc.terminate() await proc.wait() return None buf = out if proc.returncode == 0 else err return buf.decode("utf8")
#YAPI Rewrite - Yet Another Package Manager #Imports import modules.config_import as config_import import modules.installer as installer import gui.interface as interface import modules.search as search import json import sys import os try: os.chdir(os.path.dirname(__file__)) #Change file location if outside of YAPI except: pass #Already in directory of YAPI. if len(sys.argv) != 2: try: config = json.loads(config_import.get_config()) os_platform = config['OS.platform'] cache_boolean = ('True' == config['Cache.keep_cache']) cache_location = config['Cache.cache_location'] search_local = ('True' == config['Search.search_local']) search_url = config['Search.search_url'] remote_location = config['Remote.location'] remote_branch = config['Remote.branch'] file_extension = config['Remote.file_extension'] language_selected = config['Languages.selected'] except: print('Config not able to be imported. Run \"python3 yapi.py config\" to fix the error') #Main Program if len(sys.argv) == 1: result = interface.start() elif len(sys.argv) == 2: if sys.argv[1] == 'config': config_import.update_config() elif len(sys.argv) == 3: if sys.argv[1] == 'search': matches = search.search(search_url, file_extension, search_local, cache_location, sys.argv[2]) for match in matches: print(match) elif sys.argv[1] == 'download': file_name = sys.argv[2] + file_extension file_url = remote_location + os_platform + '/' + remote_branch + '/scripts/' + file_name os.chdir(cache_location) output = installer.get_file(file_url, file_name) elif sys.argv[1] == 'run': file_name = sys.argv[2] + file_extension os.chdir(cache_location) output = installer.run_script(file_name, cache_boolean) elif sys.argv[1] == 'install': output = installer.full_install(sys.argv[2])
# -*- coding: utf-8 -*- from aiida.work.workchain import while_, if_ from base import SiestaBaseWorkChain class SiestaWorkChain(SiestaBaseWorkChain): @classmethod def create_outline(cls): outline = ( cls._initial_setup, cls._validate_pseudo_potentials, cls.should_setup, while_(cls.ready)( *cls.run_scf(cls.decrement) ), cls._scf_results ) return(outline) @classmethod def run_scf(cls, func): sequence = (cls._scf_reset, while_(cls._should_run_scf)(cls._run_scf_cycle, cls._inspect_scf_cycle,), func,) return sequence def should_setup(self): self.ctx.ready = 4 def decrement(self): self.ctx.ready -= 1 def ready(self): if self.ctx.ready > 0: print 'Not Ready' return True print 'Ready' return False
# store information about a pizza being ordered pizza = { 'crust': 'thick', 'toppings': ['mushrooms', 'extra vegan cheese'] } # summarize the order print("You ordered a " + pizza['crust'] + "-crust pizza" + "with the following toppings:") for topping in pizza['toppings']: print("\t" + topping)
import glob from os import path # This file will look in src/cedar/bindings/*.cpp for all binding files # and generate a single file in src/cedar/binding_init.cpp with all the correct # funciton calls to create the builtin modules header = """ // generated by tools/scripts/generate_binding_init.py. DO NOT MODIFY namespace cedar { void bind_stdlib(void); } using namespace cedar; """ with open('src/cedar/binding_init.cpp', 'w') as f: f.write(header) files = [i for i in glob.iglob('src/cedar/bindings/*.cpp')] names = [] for p in files: name = path.splitext(path.basename(p))[0] names.append(name) # declare all the functions for name in names: f.write(f'void bind_{name}(void);\n') f.write('\n\nvoid cedar::bind_stdlib(void) {\n') for name in names: f.write(f'\tbind_{name}();\n') f.write('}\n')
import numpy as np import os import pickle import random import argparse import time import torch import torch.nn as nn import torch.backends.cudnn as cudnn import torchvision.transforms as trn import torchvision.transforms.functional as trnF import torchvision.datasets as dset from torchvision.utils import save_image import torch.nn.functional as F import torchvision.models as models import matplotlib.pyplot as plt from tqdm import tqdm import cv2 as cv from utilization.opencv import * from utils import prepared_dataset parser = argparse.ArgumentParser(description = "Wasserstein between 2 distribution - ImageNet", formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('--in_class', '-in', type=int, default=0, help='Class to have as the target/in distribution.') parser.add_argument("--transform", "-trf", type = str, default = "translation", help = "Transformation that applied to the raw input data") #Optimization options parser.add_argument('--batch_size', '-b', type=int, default=128, help='Batch size.') parser.add_argument('--epochs', '-e', type=int, default=10, help='Number of epochs to train.') parser.add_argument('--learning_rate', '-lr', type=float, default=0.1, help='The initial learning rate.') parser.add_argument('--momentum', type=float, default=0.9, help='Momentum.') #Checkpoints parser.add_argument('--save', '-s', type=str, default='snapshots/baseline', help='Folder to save checkpoints.') parser.add_argument('--load', '-l', type=str, default='', help='Checkpoint path to resume / test.') parser.add_argument('--test', '-t', action='store_true', help='Test only flag.') args = parser.parse_args() state = {k:v for k,v in args._get_kwargs()} print(state) state["Wasserstein"] = 0. state["Wasserstein_cur"] = [] classes = ['acorn', 'airliner', 'ambulance', 'american_alligator', 'banjo', 'barn', 'bikini', 'digital_clock', 'dragonfly', 'dumbbell', 'forklift', 'goblet', 'grand_piano', 'hotdog', 'hourglass', 'manhole_cover', 'mosque', 'nail', 'parking_meter', 'pillow', 'revolver', 'rotary_dial_telephone', 'schooner', 'snowmobile', 'soccer_ball', 'stingray', 'strawberry', 'tank', 'toaster', 'volcano'] def train(model, train_loader, optimizer): model.train() for x, T_x in tqdm(train_loader): x = x.view(-1,3,224,224) T_x = T_x.view(-1,3,224,224) #sanity check assert x.shape[0] == T_x.shape[0] batch_size = x.shape[0] batch = np.concatenate((x,T_x)) batch = torch.FloatTensor(batch).cuda() #forward output = model(batch) #zero gradient in pytorch autograd optimizer.zero_grad() #clip weights for param in model.params_to_update: param.data.clamp_(-0.01,0.01) #calculate loss E(f(x)) - E(f(T_x)) loss = torch.mean(output[:batch_size] - output[batch_size:]) #backward loss.backward() optimizer.step() def test(model, train_loader): model.eval() loss_avg = 0.0 with torch.no_grad(): for x, T_x in train_loader: batch_size = x.shape[0] #forward batch = np.concatenate((x,T_x)) batch = torch.FloatTensor(batch).cuda() output = model(batch) loss = torch.mean(output[:batch_size] - output[batch_size:]) loss_avg += float(loss.data) state["Wasserstein_cur"].append(np.abs(loss_avg/len(train_loader))) if state["Wasserstein_cur"][-1] > state["Wasserstein"]: state["Wasserstein"] = state["Wasserstein_cur"][-1] def data_load(in_class = None, transform = None): path = "/home/giatai/Documents/Python/data/ImageNet_30classes/one_class_train/" + classes[in_class] normalize_transform = trn.Compose([trn.RandomHorizontalFlip(), trn.Resize(256), trn.RandomCrop(224, padding=4), trn.ToTensor(), trn.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])]) data_load = dset.ImageFolder(path, transform = normalize_transform) return prepared_dataset(data_load, in_class, transform) def main(): """ calculate the wasserstein-1 distance between P_x and P_T(x) dataset: 30 classes from ImageNet from paper of Hendrycks self-supervised ood """ train_data = data_load(in_class = args.in_class, transform = args.transform) train_loader = torch.utils.data.DataLoader(train_data, batch_size = args.batch_size, shuffle = True, num_workers = 4, pin_memory = True) #Create model: we use Resnet18 as feature extracting #Check Resnet 18 as initialization in later experiments and save it in a different file def set_parameter_requires_grad(model, feature_extracting): #Fix params if feature_extracting: for param in model.parameters(): param.requires_grad = False model = models.resnet18(pretrained = True) set_parameter_requires_grad(model, True) num_features = model.fc.in_features #replace the fc layer of resnet18 by 2 fc layers with leakyrelu activation functions model.fc = nn.Sequential(nn.Linear(num_features, num_features), nn.LeakyReLU(0.2), nn.Linear(num_features, 1), nn.LeakyReLU(0.2)) #get the gpu ready model.cuda() torch.cuda.manual_seed(1) cudnn.benchmarks = True #optimizer #create a list of trained params model.params_to_update = [] for name, param in model.named_parameters(): if param.requires_grad == True: model.params_to_update.append(param) optimizer = torch.optim.SGD(model.params_to_update, state["learning_rate"],\ momentum = state["momentum"], nesterov = True) print("Beginning Training \n") start_epoch = 0 #Make save directory if not os.path.exists(args.save): os.makedirs(args.save) if not os.path.isdir(args.save): raise Exception("%s is not a dir" %args.save) #restore saved model if desired if args.load != "": for i in range(1000-1,-1,-1): model_name = os.path.join(args.save, "resnet18_inclass_{}_transform_{}_epoch_{i}.pt") if os.path.isfile(model_name): model.load_state_dict(torch.load(model_name)) print("Model restored!!! Epoch:", i) start_epoch = i + 1 break if start_epoch == 0: assert False, "could not resume" #write header for csv file with open(os.path.join(args.save, "_" + classes[args.in_class] + "_" + args.transform + "_" + "wasserstein.csv"), "a") as f: f.write("epoch, Wasserstein_cur, Wasserstein_approx") #main loop for epoch in range(start_epoch, state["epochs"]): state["epoch"] = epoch since = time.time() #run the train function train(model, train_loader, optimizer) test(model, train_loader) #save model torch.save(model.state_dict(), os.path.join( args.save, "resnet18_inclass_{}_transform_{}_epoch_{}.pt".format( str(args.in_class), str(args.transform), str(epoch) ))) #delete previous model to save space prev_path = os.path.join( args.save, "resnet18_inclass_{}_transform_{}_epoch_{}.pt".format( str(args.in_class), str(args.transform), str(epoch - 1) )) if os.path.exists(prev_path): os.remove(prev_path) #show results '''print("Epoch {0:2d} | Time {1:5d} | Was_cur {2:.3f} | Was {3:.3f}".format( epoch + 1, int(time.time() - since), state["Wasserstein_cur"][-1], state["Wasserstein"]))''' with open(os.path.join(args.save, "_" + classes[args.in_class] + "_" + args.transform + "_" + "wasserstein.csv"), "a") as f: f.write("%2d, %8.5f, %8.5f \n" %(epoch+1, state["Wasserstein_cur"][-1], state["Wasserstein"])) if __name__ == "__main__": main()
# License: Apache-2.0 from binning import bin_rare_events from ..util import util from ..transformers.transformer import Transformer from typing import List, Union, Dict import numpy as np import pandas as pd import databricks.koalas as ks import warnings class BinRareEvents(Transformer): """Replace low occurence categories by the value "OTHERS". Use `BinRareEvents` to reduce the cardinality of high cardinal columns. This transformer is also useful to replace unseen categories by a value which is already taken it account by the encoders. Parameters ---------- min_ratio : float Min occurence ratio per category. Examples --------- >>> import pandas as pd >>> from gators.binning import BinRareEvents >>> obj = BinRareEvents(min_ratio=0.5) >>> X = pd.DataFrame({'A': ['a', 'a', 'b'], 'B': ['a', 'b', 'c']}) >>> obj.fit_transform(X) A B 0 a OTHERS 1 a OTHERS 2 OTHERS OTHERS * fit & transform with `koalas` >>> import databricks.koalas as ks >>> from gators.binning import BinRareEvents >>> obj = BinRareEvents(min_ratio=0.5) >>> X = ks.DataFrame({'A': ['a', 'a', 'b'], 'B': ['a', 'b', 'c']}) >>> obj.fit_transform(X) A B 0 a OTHERS 1 a OTHERS 2 OTHERS OTHERS * fit with `pandas` & transform with `NumPy` >>> import pandas as pd >>> from gators.binning import BinRareEvents >>> obj = BinRareEvents(min_ratio=0.5) >>> X = pd.DataFrame({'A': ['a', 'a', 'b'], 'B': ['a', 'b', 'c']}) >>> _ = obj.fit(X) >>> obj.transform_numpy(X.to_numpy()) array([['a', 'OTHERS'], ['a', 'OTHERS'], ['OTHERS', 'OTHERS']], dtype=object) * fit with `koalas` & transform with `NumPy` >>> import databricks.koalas as ks >>> from gators.binning import BinRareEvents >>> obj = BinRareEvents(min_ratio=0.5) >>> X = ks.DataFrame({'A': ['a', 'a', 'b'], 'B': ['a', 'b', 'c']}) >>> _ = obj.fit(X) >>> obj.transform_numpy(X.to_numpy()) array([['a', 'OTHERS'], ['a', 'OTHERS'], ['OTHERS', 'OTHERS']], dtype=object) """ def __init__(self, min_ratio: float): if not isinstance(min_ratio, float): raise TypeError( '''`min_ratio` should be a float.''') Transformer.__init__(self) self.min_ratio = min_ratio self.columns = [] self.idx_columns: np.ndarray = np.array([]) self.categories_to_keep_np: np.ndarray = None self.n_categories_to_keep_np: np.ndarray = None self.categories_to_keep_dict: Dict[str, np.ndarray] = {} def fit(self, X: Union[pd.DataFrame, ks.DataFrame], y=None) -> 'BinRareEvents': """Fit the transformer on the dataframe `X`. Parameters ---------- X : Union[pd.DataFrame, ks.DataFrame]. Input dataframe. y : None None. Returns ------- BinRareEvents Instance of itself. """ self.check_dataframe(X) if object not in X.dtypes.to_numpy(): warnings.warn( '''`X` does not contain object columns: `BinRareEvents` is not needed''') return self self.columns = util.get_datatype_columns( X, datatype=object) self.categories_to_keep_dict = self.compute_categories_to_keep_dict( X=X[self.columns], min_ratio=self.min_ratio, ) self.categories_to_keep_np = self.get_categories_to_keep_np( categories_to_keep_dict=self.categories_to_keep_dict, ) self.n_categories_to_keep_np = self.categories_to_keep_np.shape[0] \ - (self.categories_to_keep_np == None).sum(0) self.idx_columns = util.get_idx_columns( columns=X.columns, selected_columns=self.columns) return self def transform(self, X: Union[pd.DataFrame, ks.DataFrame] ) -> Union[pd.DataFrame, ks.DataFrame]: """Transform the dataframe `X`. Parameters ---------- X : Union[pd.DataFrame, ks.DataFrame]. Input dataframe. Returns ------- Union[pd.DataFrame, ks.DataFrame] Transformed dataframe. """ self.check_dataframe(X) def f(x): name = x.name if name not in self.categories_to_keep_dict: return x return x.mask(~ x.isin(self.categories_to_keep_dict[name]), 'OTHERS') return X.apply(f) def transform_numpy(self, X: np.ndarray) -> np.ndarray: """Transform the NumPy array. Parameters ---------- X : np.ndarray NumPy array. Returns ------- np.ndarray Transformed NumPy array. """ self.check_array(X) if self.idx_columns.size == 0: return X if self.categories_to_keep_np.shape[0] == 0: X[:, self.idx_columns] = 'OTHERS' return X return bin_rare_events( X, self.categories_to_keep_np, self.n_categories_to_keep_np, self.idx_columns, ) @ staticmethod def compute_categories_to_keep_dict( X: Union[pd.DataFrame, ks.DataFrame], min_ratio: float) -> Dict[str, List[str]]: """Compute the category frequency. Parameters ---------- X : Union[pd.DataFrame, ks.DataFrame]. Input dataframe. min_ratio : float Min occurence per category. Returns ------- Dict[str, List[str]]: Categories to keep. """ def f(x): freq = x.astype('object').value_counts( normalize=True).sort_values() freq = freq[freq >= min_ratio] return list(freq.index) mapping = X.apply(f).to_dict() mapping = { key: val if isinstance(val, list) else list(val.values()) for key, val in mapping.items() } return mapping @ staticmethod def get_categories_to_keep_np( categories_to_keep_dict: Dict[str, np.ndarray]) -> np.ndarray: """Get the categories to keep. Parameters ---------- categories_to_keep_dict : Dict[str, np.ndarray]) Categories to keep. Returns ------- np.ndarray Categories to keep. """ max_category = max( [len(val) for val in categories_to_keep_dict.values()]) n_columns = len(categories_to_keep_dict) categories_to_keep_np = np.empty( (max_category, n_columns), dtype='object') for i, val in enumerate(categories_to_keep_dict.values()): categories_to_keep_np[:len(val), i] = val return categories_to_keep_np
from fluent_pages.extensions import page_type_pool from icekit.content_collections.page_type_plugins import ListingPagePlugin from icekit.plugins.location.models import Location from icekit_events.models import EventType import models @page_type_pool.register class AdvancedEventListingPagePlugin(ListingPagePlugin): model = models.AdvancedEventListingPage def get_context(self, request, page, **kwargs): context = super(AdvancedEventListingPagePlugin, self).get_context( request, page, **kwargs) # User-provided constraint data to render in page context['start_date'] = page.parse_start_date(request) context['end_date'] = page.parse_end_date( request, context['start_date']) context['days'] = (context['end_date'] - context['start_date']).days context['primary_types'] = page.parse_primary_types(request) context['secondary_types'] = page.parse_secondary_types(request) context['types'] = page.parse_types(request) context['locations'] = page.parse_locations(request) context['is_home_location'] = page.parse_is_home_location(request) # General event data to render in page context['visible_event_types'] = \ EventType.objects.filter(is_public=True) if getattr(page, 'nearby_locations', None): context['visible_locations'] = page.nearby_locations else: context['visible_locations'] = Location.objects.visible() return context
import ppc_commands ppc_model = 'ppc405gp' funcs = {} ppc_commands.setup_local_functions(ppc_model, funcs) class_funcs = { ppc_model: funcs } ppc_commands.enable_generic_ppc_commands(ppc_model) ppc_commands.enable_4xx_tlb_commands(ppc_model)
def fighter() i01.moveHead(160,87) i01.moveArm("left",31,75,152,10) i01.moveArm("right",3,94,33,16) i01.moveHand("left",161,151,133,127,107,83) i01.moveHand("right",99,130,152,154,145,180) i01.moveTorso(90,90,90)
import logging class SimpleStateMachine(): def __init__(self, starting_state): self.state = [] self.state.append(starting_state) def change(self, new_state): self.state.append(new_state) def back(self): self.state.pop() def get_state(self): if self.state: return self.state[-1] return None def clear(self): self.state.clear() class StateMachine(): def __init__(self): self.state = [] self.temp_state = [] self.prev_state = None def load_states(self, starting_states=None, temp_state=None): from app.engine import title_screen, transitions, general_states, level_up, \ turnwheel, game_over, settings, info_menu, prep, base, trade, promotion, \ status_upkeep, debug_mode, chapter_title, player_choice, feat_choice, \ victory_screen, objective_menu, minimap, roam_state, game_menus, dialog_log from app.engine.overworld import overworld_states from app.events import event_state self.all_states = \ {'title_start': title_screen.TitleStartState, 'title_main': title_screen.TitleMainState, 'title_load': title_screen.TitleLoadState, 'title_restart': title_screen.TitleRestartState, 'title_mode': title_screen.TitleModeState, 'title_new': title_screen.TitleNewState, 'title_new_child': title_screen.TitleNewChildState, 'title_extras': title_screen.TitleExtrasState, 'title_all_saves': title_screen.TitleAllSavesState, 'title_wait': title_screen.TitleWaitState, 'title_save': title_screen.TitleSaveState, 'in_chapter_save': title_screen.TitleSaveState, 'transition_in': transitions.TransitionInState, 'transition_out': transitions.TransitionOutState, 'transition_pop': transitions.TransitionPopState, 'transition_double_pop': transitions.TransitionDoublePopState, 'transition_to': transitions.TransitionToState, 'turn_change': general_states.TurnChangeState, 'initiative_upkeep': general_states.InitiativeUpkeep, 'free': general_states.FreeState, 'option_menu': general_states.OptionMenuState, 'option_child': general_states.OptionChildState, 'settings_menu': settings.SettingsMenuState, 'objective_menu': objective_menu.ObjectiveMenuState, 'unit_menu': game_menus.UnitMenuState, 'info_menu': info_menu.InfoMenuState, 'phase_change': general_states.PhaseChangeState, 'move': general_states.MoveState, 'movement': general_states.MovementState, 'wait': general_states.WaitState, 'canto_wait': general_states.CantoWaitState, 'move_camera': general_states.MoveCameraState, 'dying': general_states.DyingState, 'menu': general_states.MenuState, 'item': general_states.ItemState, 'item_child': general_states.ItemChildState, 'item_discard': general_states.ItemDiscardState, 'targeting': general_states.TargetingState, 'trade': trade.TradeState, 'combat_trade': trade.CombatTradeState, 'weapon_choice': general_states.WeaponChoiceState, 'spell_choice': general_states.SpellChoiceState, 'combat_targeting': general_states.CombatTargetingState, 'item_targeting': general_states.ItemTargetingState, 'combat': general_states.CombatState, 'alert': general_states.AlertState, 'ai': general_states.AIState, 'shop': general_states.ShopState, 'unlock_select': general_states.UnlockSelectState, 'exp': level_up.ExpState, 'promotion_choice': promotion.PromotionChoiceState, 'class_change_choice': promotion.ClassChangeChoiceState, 'promotion': promotion.PromotionState, 'class_change': promotion.ClassChangeState, 'feat_choice': feat_choice.FeatChoiceState, 'turnwheel': turnwheel.TurnwheelState, 'game_over': game_over.GameOverState, 'chapter_title': chapter_title.ChapterTitleState, 'event': event_state.EventState, 'player_choice': player_choice.PlayerChoiceState, 'victory': victory_screen.VictoryState, 'minimap': minimap.MinimapState, 'status_upkeep': status_upkeep.StatusUpkeepState, 'status_endstep': status_upkeep.StatusUpkeepState, 'prep_main': prep.PrepMainState, 'prep_pick_units': prep.PrepPickUnitsState, 'prep_formation': prep.PrepFormationState, 'prep_formation_select': prep.PrepFormationSelectState, 'prep_manage': prep.PrepManageState, 'prep_manage_select': prep.PrepManageSelectState, 'base_manage': prep.PrepManageState, 'base_manage_select': prep.PrepManageSelectState, 'prep_trade_select': prep.PrepTradeSelectState, 'prep_trade': trade.PrepTradeState, 'prep_items': prep.PrepItemsState, 'supply_items': prep.PrepItemsState, 'prep_restock': prep.PrepRestockState, 'prep_market': prep.PrepMarketState, 'base_main': base.BaseMainState, 'base_market_select': base.BaseMarketSelectState, 'base_bexp_select': base.BaseBEXPSelectState, 'base_bexp_allocate': base.BaseBEXPAllocateState, 'base_convos_child': base.BaseConvosChildState, 'base_supports': base.BaseSupportsState, 'base_codex_child': base.BaseCodexChildState, 'base_library': base.BaseLibraryState, 'base_guide': base.BaseGuideState, 'base_records': base.BaseRecordsState, 'free_roam': roam_state.FreeRoamState, 'debug': debug_mode.DebugState, 'overworld': overworld_states.OverworldState, 'overworld_movement': overworld_states.OverworldMovementState, 'overworld_game_option_menu': overworld_states.OverworldGameOptionMenuState, 'overworld_party_option_menu': overworld_states.OverworldPartyOptionMenu, 'overworld_next_level': overworld_states.OverworldLevelTransition, 'dialog_log': dialog_log.DialogLogState } if starting_states: for state_name in starting_states: self.state.append(self.all_states[state_name](state_name)) if temp_state: self.temp_state = temp_state def state_names(self): return [s.name for s in self.state] def change(self, new_state): self.temp_state.append(new_state) def back(self): self.temp_state.append('pop') def clear(self): self.temp_state.append('clear') def refresh(self): # Clears all states except the top one self.state = self.state[-1:] def current(self): if self.state: return self.state[-1].name def exit_state(self, state): if state.processed: state.processed = False state.end() state.finish() def from_transition(self): return self.prev_state in ('transition_out', 'transition_to', 'transition_pop', 'transition_double_pop') def process_temp_state(self): if self.temp_state: logging.debug("Temp State: %s", self.temp_state) for transition in self.temp_state: if transition == 'pop': if self.state: state = self.state[-1] self.exit_state(state) self.state.pop() elif transition == 'clear': for state in reversed(self.state): self.exit_state(state) self.state.clear() else: new_state = self.all_states[transition](transition) self.state.append(new_state) if self.temp_state: logging.debug("State: %s", self.state_names()) self.temp_state.clear() def update(self, event, surf): if not self.state: return None, False state = self.state[-1] repeat_flag = False # Whether we run the state machine again in the same frame # Start if not state.started: state.started = True start_output = state.start() if start_output == 'repeat': repeat_flag = True self.prev_state = state.name # Begin if not repeat_flag and not state.processed: state.processed = True begin_output = state.begin() if begin_output == 'repeat': repeat_flag = True # Take Input if not repeat_flag: input_output = state.take_input(event) if input_output == 'repeat': repeat_flag = True # Update if not repeat_flag: update_output = state.update() if update_output == 'repeat': repeat_flag = True # Draw if not repeat_flag: # Handles transparency of states idx = -1 while True: if self.state[idx].transparent and len(self.state) >= (abs(idx) + 1): idx -= 1 else: break while idx <= -1: surf = self.state[idx].draw(surf) idx += 1 # End if self.temp_state and state.processed: state.processed = False state.end() # Finish self.process_temp_state() # This is where FINISH is taken care of return surf, repeat_flag def save(self): return [state.name for state in self.state], self.temp_state[:] # Needs to be a copy!!!
# Generated by Django 3.0 on 2020-06-01 16:24 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('user', '0007_medicines'), ] operations = [ migrations.RenameModel( old_name='Medicines', new_name='Medicine', ), ]
# coding:utf-8 # --author-- lanhua.zhou from __future__ import print_function import sys import os from PySide2 import QtWidgets, QtGui, QtCore __all__ = ["TextEdit"] class TextEdit(QtWidgets.QTextEdit): def __init__(self, parent=None): super(TextEdit, self).__init__(parent) self.setStyleSheet("TextEdit{font-family:Microsoft YaHei UI;font: bold 12px;color:#66686A}" "TextEdit{border:0px solid; border-bottom:1px solid}") self._tip = u"暂无信息" self._is_inputmethod = False self.installEventFilter(self) def eventFilter(self, obj, event): if QtCore.QEvent.KeyPress == event.type(): self._is_inputmethod = False elif QtCore.QEvent.InputMethod == event.type(): self._is_inputmethod = True return super(TextEdit, self).eventFilter(obj, event) def tip(self): return self._tip() def set_tip(self, tip): self._tip = tip def paintEvent(self, event): super(TextEdit, self).paintEvent(event) _rect = self.rect() _painter = QtGui.QPainter(self) _painter.setRenderHint(QtGui.QPainter.Antialiasing, True) _painter.save() if not self.toPlainText() and not self._is_inputmethod: _painter.drawText(QtCore.QRect(_rect.x() + 5, _rect.y(), _rect.width() - 5, _rect.height()), QtCore.Qt.AlignCenter, self._tip) _painter.restore() if __name__ == '__main__': app = QtWidgets.QApplication(sys.argv) ui = TextEdit() ui.setPlainText("dssd") ui.show() ui.set_tip(u"用户名") sys.exit(app.exec_())
from contextlib import contextmanager import os import shutil import sys import tempfile import unittest from six import StringIO from e_out_of_date.command import main PY2 = sys.version_info[0] == 2 # https://stackoverflow.com/questions/4219717/how-to-assert-output-with-nosetest-unittest-in-python @contextmanager def captured_output(): new_out, new_err = StringIO(), StringIO() old_out, old_err = sys.stdout, sys.stderr try: sys.stdout, sys.stderr = new_out, new_err yield sys.stdout, sys.stderr finally: sys.stdout, sys.stderr = old_out, old_err class TestImplementation(unittest.TestCase): """ Test the core of the command-line tool, which exists in a library """ def setUp(self): self.temp_dir = tempfile.mkdtemp() self.freeze_file = os.path.join(self.temp_dir, 'pip_freeze.out') if PY2: self.assertRegex = self.assertRegexpMatches def tearDown(self): shutil.rmtree(self.temp_dir) def test_bad_types_arg(self): with captured_output() as (out, err): with self.assertRaises(SystemExit) as exit_exception: main([ '--types', 'foobar', ]) self.assertEqual(1, exit_exception.exception.code) self.assertEqual('', out.getvalue()) self.assertEqual('Bad value for --types', err.getvalue().strip()) def test_packages_with_error(self): with open(self.freeze_file, 'w') as freeze: freeze.write('foobar\n') with captured_output() as (out, err): main([ self.freeze_file ]) self.assertEqual('', out.getvalue()) self.assertRegex( err.getvalue().replace('\n', ' '), r'with error:.*foobar' )
#!/usr/bin/env python import os import sys from {{ cookiecutter.project_slug }}.config import get_project_root_path, import_env_vars if __name__ == "__main__": import_env_vars(os.path.join(get_project_root_path(), 'envdir')) os.environ.setdefault("DJANGO_SETTINGS_MODULE", "{{ cookiecutter.project_slug }}.config.settings.dev") from django.core.management import execute_from_command_line execute_from_command_line(sys.argv)
# ----------------------------------------------------------------------------- # QP/Python Library # # Port of Miro Samek's Quantum Framework to Python. The implementation takes # the liberty to depart from Miro Samek's code where the specifics of desktop # systems (compared to embedded systems) seem to warrant a different approach. # # Reference: # Practical Statecharts in C/C++; Quantum Programming for Embedded Systems # Author: Miro Samek, Ph.D. # http://www.state-machine.com/ # # ----------------------------------------------------------------------------- # # Copyright (C) 2008-2014, Autolabel AB # All rights reserved # Author(s): Henrik Bohre (henrik.bohre@autolabel.se) # # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # # - Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # # - Neither the name of Autolabel AB, nor the names of its contributors # may be used to endorse or promote products derived from this # software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS # FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL # THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, # INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) # HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, # STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED # OF THE POSSIBILITY OF SUCH DAMAGE. # ----------------------------------------------------------------------------- """Python port of the Quantum Event Processor""" # Internal QEP constants _QEP_EMPTY_SIG = 0 _QEP_MAX_NEST_DEPTH = 6 # QEP reserved signals ENTRY_SIG = 1 EXIT_SIG = 2 INIT_SIG = 3 TERM_SIG = 4 USER_SIG = 4 class Event(object): """Event base class""" def __init__(self, sig=0): self.sig = sig _QEP_EMPTY_EVENT = Event(_QEP_EMPTY_SIG) _QEP_ENTRY_EVENT = Event(ENTRY_SIG) _QEP_EXIT_EVENT = Event(EXIT_SIG) _QEP_INIT_EVENT = Event(INIT_SIG) _QEP_RESERVED_EVENTS = [ _QEP_EMPTY_EVENT, _QEP_ENTRY_EVENT, _QEP_EXIT_EVENT, _QEP_INIT_EVENT, ] Q_TRAN_NONE_TYPE = 0 Q_TRAN_DYN_TYPE = 1 Q_TRAN_STA_TYPE = 2 QEP_MAX_NEST_DEPTH = 6 class Fsm(object): """Fsm represents a flat state machine with entry/exit actions""" def __init__(self, initial=None): self._state = initial # Current active state # Transition attributes (none/dynamic/static) self.tran_ = Q_TRAN_NONE_TYPE def init(self, e=None): """Performs the first step of FSM initialization by assigning the initial pseudostate to the currently active state of the state machine """ assert self._state != None initial = self._state self.initial(e) # Execute the initial transition assert initial != self._state # The target cannot be initial self._state(self, _QEP_ENTRY_EVENT) def initial(self, e): """Pure virtual initial function""" raise NotImplementedError("Must override this function") def dispatch(self, e): """Processes one event at a time in Run-to-Completion fashion. The argument e is a Event or a class derived from Event. Note: Must be called after Fsm.init().""" s = self._state s(self, e) if (self.tran_ != Q_TRAN_NONE_TYPE): s(self, _QEP_EXIT_EVENT) # Exit the source self._state(self, _QEP_ENTRY_EVENT) # Enter target self.tran_ = Q_TRAN_NONE_TYPE # get ready for next transition def get_state(self): """Returns current active state of a FSM. Note that this should be used only inside state handler functions""" return self._state class Hsm(Fsm): """Hsm represents an hierarchical finite state machine (HSM)""" def __init__(self, initial): Fsm.__init__(self, initial) def top(self, e=None): """the ultimate root of state hierarchy in all HSMs derived from Hsm. This state handler always returns (QSTATE)0, which means that it handles all events.""" return 0 def init(self, e=None): """Performs the first step of HSM initialization by assigning the initial pseudostate to the currently active state of the state machine """ assert self._state != 0 s = Hsm.top # An HSM starts in the top state self._state(self, e) # Take top-most initial transition while True: # Drill into the target... t = self._state path = [t] # Transition path from top to init state t = self.QEP_TRIG_(t, _QEP_EMPTY_SIG) while (t != s): path.insert(0, t) t = self.QEP_TRIG_(t, _QEP_EMPTY_SIG) # Entry path must not overflow assert len(path) <= QEP_MAX_NEST_DEPTH for t in path: # Retrace the entry path in reverse self.QEP_TRIG_(t, ENTRY_SIG) s = self._state if self.QEP_TRIG_(s, INIT_SIG) != 0: break def dispatch(self, e): """Executes state handlers for dispatched signals""" t = self._state path = [None] * QEP_MAX_NEST_DEPTH path[2] = t while (t != 0): # Process the event hierarchically s = t t = s(self, e) # Invoke signal handler if (self.tran_ != Q_TRAN_NONE_TYPE): # transition taken? path[0] = self._state # save the transition target self._state = path[2] # restore current state path[1] = s # save the transition source s = path[2] # Exit current state to the transition source path[1] while s != path[1]: t = self.QEP_TRIG_(s, EXIT_SIG) if t != 0: s = t else: # Find out the superstate s = self.QEP_TRIG_(s, _QEP_EMPTY_SIG) # dynamic transition s = path[2] # save the transition source path = self.exec_tran(path) self.tran_ = Q_TRAN_NONE_TYPE # clear the attribute for next use def is_in(self, state): """Tests if a given state is part of the current active state configuration""" s = self._state while s != state: s = self.QEP_TRIG_(s, _QEP_EMPTY_SIG) if s == 0: return 0 return 1 def exec_tran(self, path): """Helper function to execute HSM transition""" t = path[0] src = path[1] ip = -1 # transition entry path index if (src == t): # (a) check source == target (tran to self) self.QEP_TRIG_(src, EXIT_SIG) # exit the source ip = ip + 1 # enter the target else: # put superstate of target in t t = self.QEP_TRIG_(t, _QEP_EMPTY_SIG) if (src == t): # (b) check source == target->super ip = ip + 1 # enter the target else: # put superstate of source into s s = self.QEP_TRIG_(src, _QEP_EMPTY_SIG) if (s == t): # (c) check source->super == target->super self.QEP_TRIG_(src, EXIT_SIG) ip = ip + 1 else: if (s == path[0]): # (d) check source->super == target self.QEP_TRIG_(src, EXIT_SIG) else: # (e) check rest of source == target->super->super iq = 0 # LCA not found ip = ip + 2 # enter the target path[ip] = t # enter the superstate of target t = self.QEP_TRIG_(t, _QEP_EMPTY_SIG) while (t != 0): ip = ip + 1 path[ip] = t # store the entry path if (t == src): # is it the source iq = 1 # indicate that the LCA is found assert ip < _QEP_MAX_NEST_DEPTH ip = ip - 1 t = 0 else: # it is not the source, keep going up t = self.QEP_TRIG_(t, _QEP_EMPTY_SIG) if (iq == 0): # the LCA not found yet? assert ip < _QEP_MAX_NEST_DEPTH self.QEP_TRIG_(src, EXIT_SIG) # exit the source # (f) check the rest of source->super... # == target->super->super... iq = ip while True: if (s == path[iq]): # is s the LCA? t = s # indicate that the LCA is found ip = iq - 1 # do not enter LCA iq = -1 # terminate the loop else: iq = iq - 1 # lower superstate of target if (iq >= 0): pass else: break if (t == 0): # the LCA not found yet? # (g) check each source->super->... # for each target->super... while True: t = self.QEP_TRIG_(s, EXIT_SIG) # exit s if (t != 0): # exit not handled? s = t # t points to superstate else: # exit action handled s = self.QEP_TRIG_(s, _QEP_EMPTY_SIG) iq = ip while True: if (s == path[iq]): # is the LCA? # do not enter the LCA ip = iq - 1 iq = -1 # break inner loop s = 0 # and the outer loop else: iq = iq - 1 if (iq >= 0): pass else: break if (s != 0): pass else: break # retrace the entry path in reverse (desired) order entry_path = path[:ip + 1] for t in reversed(entry_path): self.QEP_TRIG_(t, ENTRY_SIG) s = path[0] self._state = s while (self.QEP_TRIG_(s, INIT_SIG) == 0): # drill into the target t = self._state path[0] = t ip = 0 t = self.QEP_TRIG_(t, _QEP_EMPTY_SIG) while (t != s): ip = ip + 1 path[ip] = t t = self.QEP_TRIG_(t, _QEP_EMPTY_SIG) assert ip < _QEP_MAX_NEST_DEPTH # retrace the entry path in reverse (correct) order entry_path = path[:ip + 1] for t in reversed(entry_path): self.QEP_TRIG_(t, ENTRY_SIG) s = self._state def INIT(self, target): """Perform init transition""" self._state = target def TRAN(self, target): """Perform normal transition""" self.tran_ = Q_TRAN_DYN_TYPE self._state = target def QEP_TRIG_(self, state, signal): return state(self, _QEP_RESERVED_EVENTS[signal])
import os import shutil import textwrap import pytest import salt.utils.files import salt.utils.platform import salt.utils.stringutils from tests.support.case import ModuleCase from tests.support.helpers import destructiveTest, slowTest @pytest.mark.windows_whitelisted class PyDSLRendererIncludeTestCase(ModuleCase): def setUp(self): self.directory_created = False if salt.utils.platform.is_windows(): if not os.path.isdir("\\tmp"): os.mkdir("\\tmp") self.directory_created = True def tearDown(self): if salt.utils.platform.is_windows(): if self.directory_created: shutil.rmtree("\\tmp") @destructiveTest @slowTest def test_rendering_includes(self): """ This test is currently hard-coded to /tmp to work-around a seeming inability to load custom modules inside the pydsl renderers. This is a FIXME. """ self.run_function("state.sls", ["pydsl.aaa"]) expected = textwrap.dedent( """\ X1 X2 X3 Y1 extended Y2 extended Y3 hello red 1 hello green 2 hello blue 3 """ ) # Windows adds `linefeed` in addition to `newline`. There's also an # unexplainable space before the `linefeed`... if salt.utils.platform.is_windows(): expected = ( "X1 \r\n" "X2 \r\n" "X3 \r\n" "Y1 extended \r\n" "Y2 extended \r\n" "Y3 \r\n" "hello red 1 \r\n" "hello green 2 \r\n" "hello blue 3 \r\n" ) try: with salt.utils.files.fopen("/tmp/output", "r") as f: ret = salt.utils.stringutils.to_unicode(f.read()) finally: os.remove("/tmp/output") self.assertEqual(sorted(ret), sorted(expected))
import uuid from aiohttp import web from aiohttp_session.cookie_storage import EncryptedCookieStorage import aiohttp_session from alignment.discordclient import DiscordClient class DiscordUserHandler: STATE_KEY = 'state' ACCESS_TOKEN_KEY = 'discord-access-token' def __init__(self, cookie_secret, oauth_client_id, oauth_client_secret, redirect_uri, landing='/app', ): self.cookie_secret = cookie_secret self.oauth_client_id = oauth_client_id self.oauth_client_secret = oauth_client_secret self.redirect_uri = redirect_uri self.landing = landing def setup(self, app): aiohttp_session.setup(app, EncryptedCookieStorage(self.cookie_secret)) app.router.add_get('/', self.root) app.router.add_get('/auth', self.auth) app.router.add_get('/me', self.user_info) def discord_client(self, **kwargs): return DiscordClient( client_id=self.oauth_client_id, client_secret=self.oauth_client_secret, **kwargs) async def root(self, request): session = await aiohttp_session.get_session(request) state = str(uuid.uuid4()) session[self.STATE_KEY] = state discord = self.discord_client() params = { 'client_id': self.oauth_client_id, 'scope': 'identify email', 'state': state, } raise web.HTTPFound(discord.get_authorize_url(**params)) async def auth(self, request): if request.query.get('error'): raise web.HTTPUnauthorized(text=request.query.get('error')) session = await aiohttp_session.get_session(request) if not session[self.STATE_KEY] or str( session[self.STATE_KEY]) != request.query.get('state'): raise web.HTTPUnauthorized( text= "state did not match! Try clearing your cookies and try again." ) discord = self.discord_client() token, _resp = await discord.get_access_token( request.query.get('code')) session[self.ACCESS_TOKEN_KEY] = token raise web.HTTPFound(self.landing) async def user_info(self, request): session = await aiohttp_session.get_session(request) token = session[self.ACCESS_TOKEN_KEY] if not token: raise web.HTTPFound('/') discord = self.discord_client(access_token=token) _user, userDict = await discord.user_info() return web.json_response(userDict)
import unittest from ncaabb import team class TestTeam(unittest.TestCase): @classmethod def setUpClass(cls): cls.team_one = team.Team(["Team One", "Region", 1, True, 30, 30]) def test_calculate_rating(self): self.assertNotEqual(self.team_one, self.team_one.calculate_rating()) def test_get_scores(self): ucla = team.Team(["UCLA", "Region", 1, True, 30, 30]) #TODO: .get_scores() looks in wrong directory for the database ucla.get_scores() self.assertTrue(ucla.points_scored, "Error getting points scored") self.assertTrue(ucla.points_allowed, "Error getting points allowed") if __name__ == '__main__': unittest.main()
print ("Oi, esse é o meu primeiro programa!") print (2+2) print(2-2) print(2*3)
# -*- coding: utf-8 -*- """ Created on Wed Mar 4 09:53:57 2020 @author: Gualandi """ import numpy as np from math import sqrt from pyomo.environ import ConcreteModel, Var, Objective, Constraint, SolverFactory from pyomo.environ import maximize, Binary, RangeSet, PositiveReals, ConstraintList # Residenza Collegiali a Pavia Rs = [(45.1882789,9.1600456, 'Del Maino'),(45.2070857,9.1382623, 'Green Campus'), (45.1961107,9.1395709, 'Golgi'),(45.1851618,9.1506323, 'Senatore'), (45.1806049,9.1691651, 'Don Bosco'),(45.1857651,9.1473637, 'CSA'), (45.1802511,9.1591663, 'Borromeo'),(45.1877192,9.1578934, 'Cairoli'), (45.1870975,9.1588276, 'Castiglioni'),(45.1871301,9.1435067, 'Santa Caterina'), (45.1863927,9.15947, 'Ghislieri'),(45.2007148,9.1325475, 'Nuovo'), (45.1787292,9.1635482, 'Cardano'),(45.1864928,9.1560687, 'Fraccaro'), (45.1989668,9.1775168, 'Griziotti'),(45.1838819,9.161318, 'Spallanzani'), (45.1823523,9.1454315, 'Valla'),(45.2007816,9.1341354, 'Volta'), (45.2070857,9.1382623, 'Residence Campus'),(45.2070857,9.1382623, 'Residenza Biomedica')] # INSTANCES TAKE FROM THE TSPLIB: # http://elib.zib.de/pub/mp-testdata/tsp/tsplib/tsp/ ULYSSES = [(38.24, 20.42), (39.57, 26.15), (40.56, 25.32), (36.26, 23.12), (33.48, 10.54), (37.56, 12.19), (38.42, 13.11), (37.52, 20.44), (41.23, 9.10), (41.17, 13.05), (36.08, -5.21), (38.47, 15.13), (38.15, 15.35), (37.51, 15.17), (35.49, 14.32), (39.36, 19.56)] BAVIERA = [(1150.0, 1760.0), (630.0, 1660.0), (40.0, 2090.0), (750.0, 1100.0), (1030.0, 2070.0), (1650.0, 650.0), (1490.0, 1630.0), (790.0, 2260.0), (710.0, 1310.0), (840.0, 550.0), (1170.0, 2300.0), (970.0, 1340.0), (510.0, 700.0), (750.0, 900.0), (1280.0, 1200.0), (230.0, 590.0), (460.0, 860.0), (1040.0, 950.0), (590.0, 1390.0), (830.0, 1770.0), (490.0, 500.0), (1840.0, 1240.0), (1260.0, 1500.0), (1280.0, 790.0), (490.0, 2130.0), (1460.0, 1420.0), (1260.0, 1910.0), (360.0, 1980.0), (750.0, 2030.0)] # Mixed Integre Programming Formulation def TSP(C): # Number of places n, n = C.shape print(n) # Create concrete model model = ConcreteModel() # Set of indices model.I = RangeSet(1, n) model.J = RangeSet(1, n) # Variables model.X = Var(model.I, model.J, within=Binary) model.U = Var(model.I, within=PositiveReals) # Objective Function model.obj = Objective( expr=sum(C[i-1,j-1] * model.X[i,j] for i,j in model.X)) # Constraints on the marginals model.InDegree = Constraint(model.I, rule = lambda m, i: sum(m.X[i,j] for j in m.J) == 1) model.OutDegree = Constraint(model.J, rule = lambda m, j: sum(m.X[i,j] for i in m.I) == 1) # Solve the model sol = SolverFactory('glpk').solve(model, tee=True) # CHECK SOLUTION STATUS # Get a JSON representation of the solution sol_json = sol.json_repn() # Check solution status if sol_json['Solver'][0]['Status'] != 'ok': return None if sol_json['Solver'][0]['Termination condition'] != 'optimal': return None return [(i-1,j-1) for i,j in model.X if model.X[i,j]() > 0.5] def PlotTour(Ps, Ls): # Report solution value import matplotlib.pyplot as plt import numpy as np import pylab as pl from matplotlib import collections as mc lines = [[Ps[i], Ps[j]] for i,j in Ls] lc = mc.LineCollection(lines, linewidths=2) fig, ax = pl.subplots() ax.add_collection(lc) ax.autoscale() ax.margins(0.1) def CostMatrix(Ls): n = len(Ls) C = 100000*np.ones((n,n)) for i, (a,b) in enumerate(Ls): for j, (c,d) in enumerate(Ls[i+1:]): C[i, i+j+1] = sqrt((a-c)**2 + (b-d)**2) C[i+j+1, i] = C[i, i+j+1] return C def RandomTSP(n): from numpy import random return [(x,y) for x,y in zip(random.random(n), random.random(n))] # ----------------------------------------------- # MAIN function # ----------------------------------------------- if __name__ == "__main__": Test = 0 N = 100 # Compute Cost Matrix if Test == 0: Ls = [(a,b) for a,b,_ in Rs] if Test == 1: Ls = ULYSSES if Test == 2: Ls = BAVIERA if Test == 3: Ls = RandomTSP(N) C = CostMatrix(Ls) # Solve problem tour = TSP(C) print(tour) PlotTour(Ls, tour)
from __future__ import absolute_import, division, print_function import argparse import os import torch import torch.distributed as dist import torch.utils.data import _init_paths from config import cfg, update_config from datasets.dataset_factory import get_dataset from logger import Logger from models.model import create_model, load_model, save_model from training.train_factory import train_factory from warmup_scheduler import GradualWarmupScheduler def parse_args(): parser = argparse.ArgumentParser(description='Train keypoints network') # general parser.add_argument('--cfg', help='experiment configure file name', required=True, type=str) parser.add_argument('--local_rank', type=int, default=0) args = parser.parse_args() return args def main(cfg, local_rank): torch.manual_seed(cfg.SEED) torch.backends.cudnn.benchmark = cfg.CUDNN.BENCHMARK Dataset = get_dataset(cfg.SAMPLE_METHOD, cfg.TASK) print('Creating model...') model = create_model(cfg.MODEL.NAME, cfg.MODEL.HEAD_CONV, cfg) num_gpus = torch.cuda.device_count() if cfg.TRAIN.DISTRIBUTE: device = torch.device('cuda:%d' % local_rank) torch.cuda.set_device(local_rank) dist.init_process_group(backend='gloo', init_method='env://', world_size=num_gpus, rank=local_rank) else: device = torch.device('cuda') logger = Logger(cfg) if cfg.TRAIN.OPTIMIZER == 'adam': optimizer = torch.optim.Adam(model.parameters(), cfg.TRAIN.LR) elif cfg.TRAIN.OPTIMIZER == 'sgd': optimizer = torch.optim.SGD(model.parameters(), lr=cfg.TRAIN.LR, momentum=0.9) else: raise NotImplementedError() start_epoch = 0 if cfg.MODEL.INIT_WEIGHTS: model, optimizer, start_epoch = load_model( model, cfg.MODEL.PRETRAINED, optimizer, cfg.TRAIN.RESUME, cfg.TRAIN.LR, cfg.TRAIN.LR_STEP) Trainer = train_factory[cfg.TASK] trainer = Trainer(cfg, local_rank, model, optimizer) cfg.TRAIN.MASTER_BATCH_SIZE if cfg.TRAIN.MASTER_BATCH_SIZE == -1: master_batch_size = cfg.TRAIN.BATCH_SIZE // len(cfg.GPUS) else: master_batch_size = cfg.TRAIN.MASTER_BATCH_SIZE rest_batch_size = (cfg.TRAIN.BATCH_SIZE - master_batch_size) chunk_sizes = [cfg.TRAIN.MASTER_BATCH_SIZE] for i in range(len(cfg.GPUS) - 1): slave_chunk_size = rest_batch_size // (len(cfg.GPUS) - 1) if i < rest_batch_size % (len(cfg.GPUS) - 1): slave_chunk_size += 1 chunk_sizes.append(slave_chunk_size) trainer.set_device(cfg.GPUS, chunk_sizes, device) print('Setting up data...') val_dataset = Dataset(cfg, 'val') val_loader = torch.utils.data.DataLoader( val_dataset, batch_size=1, shuffle=False, num_workers=1, pin_memory=True ) train_dataset = Dataset(cfg, 'train') train_sampler = torch.utils.data.distributed.DistributedSampler(train_dataset, num_replicas=num_gpus, rank=local_rank) train_loader = torch.utils.data.DataLoader( train_dataset, batch_size=cfg.TRAIN.BATCH_SIZE//num_gpus if cfg.TRAIN.DISTRIBUTE else cfg.TRAIN.BATCH_SIZE, shuffle=not cfg.TRAIN.DISTRIBUTE, num_workers=cfg.WORKERS, pin_memory=True, drop_last=True, sampler=train_sampler if cfg.TRAIN.DISTRIBUTE else None ) # scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, 150) scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer) if cfg.TRAIN.WARMUP_EPOCHS: lr_scheduler = GradualWarmupScheduler( optimizer, multiplier=1, total_epoch=cfg.TRAIN.WARMUP_EPOCHS, after_scheduler=scheduler) else: lr_scheduler = scheduler print('Starting training...') best = 0. for epoch in range(start_epoch + 1, cfg.TRAIN.EPOCHS + 1): mark = epoch if cfg.TRAIN.SAVE_ALL_MODEL else 'last' train_sampler.set_epoch(epoch) log_dict_train, _ = trainer.train(epoch, train_loader) logger.write('epoch: {} |'.format(epoch)) for k, v in log_dict_train.items(): logger.scalar_summary('train_{}'.format(k), v, epoch) logger.write('{} {:8f} | '.format(k, v)) if cfg.TRAIN.VAL_INTERVALS > 0 and epoch % cfg.TRAIN.VAL_INTERVALS == 0: if local_rank == 0: save_model(os.path.join(cfg.OUTPUT_DIR, 'model_{}.pth'.format(mark)), epoch, model, optimizer) with torch.no_grad(): log_dict_val, preds = trainer.val(epoch, val_loader) mAP = val_dataset.run_eval(preds, cfg.OUTPUT_DIR) logger.scalar_summary('val_mAP', mAP, epoch) print('mAP is: ', mAP) for k, v in log_dict_val.items(): logger.scalar_summary('val_{}'.format(k), v, epoch) logger.write('{} {:8f} | '.format(k, v)) if mAP > best: best = mAP if local_rank == 0: save_model(os.path.join(cfg.OUTPUT_DIR, 'model_best.pth'), epoch, model) else: if local_rank == 0: save_model(os.path.join(cfg.OUTPUT_DIR, 'model_last.pth'), epoch, model, optimizer) lr_scheduler.step(mAP) logger.write('\n') if epoch in cfg.TRAIN.LR_STEP: if local_rank == 0: save_model(os.path.join(cfg.OUTPUT_DIR, 'model_{}.pth'.format(epoch)), epoch, model, optimizer) lr = cfg.TRAIN.LR * (0.1 ** (cfg.TRAIN.LR_STEP.index(epoch) + 1)) print('Drop LR to', lr) for param_group in optimizer.param_groups: param_group['lr'] = lr logger.close() if __name__ == '__main__': args = parse_args() update_config(cfg, args.cfg) local_rank = args.local_rank main(cfg, local_rank)
""" Example: Shows how to create, train and use a text classifier. """ import urllib3 import feersum_nlu from feersum_nlu.rest import ApiException from examples import feersumnlu_host, feersum_nlu_auth_token # Configure API key authorization: APIKeyHeader configuration = feersum_nlu.Configuration() # configuration.api_key['AUTH_TOKEN'] = feersum_nlu_auth_token configuration.api_key['X-Auth-Token'] = feersum_nlu_auth_token # Alternative auth key header! configuration.host = feersumnlu_host api_client = feersum_nlu.ApiClient(configuration) # Example of how to setup request retries! api_client.rest_client.pool_manager.connection_pool_kw['retries'] = 3 api_instance = feersum_nlu.TextClassifiersApi(api_client) instance_name = 'test_txt_clsfr' create_details = feersum_nlu.TextClassifierCreateDetails(name=instance_name, desc="Test text classifier.", load_from_store=False) # The training samples. labelled_text_sample_list = [] labelled_text_sample_list.append(feersum_nlu.LabelledTextSample( text="I would like to fill in a claim form", label="claim")) labelled_text_sample_list.append(feersum_nlu.LabelledTextSample( text="I had an accident?", label="claim")) labelled_text_sample_list.append(feersum_nlu.LabelledTextSample( text="My wheel was damaged?", label="claim")) labelled_text_sample_list.append(feersum_nlu.LabelledTextSample( text="I would like to get a quote", label="quote")) labelled_text_sample_list.append(feersum_nlu.LabelledTextSample( text="Is it expensive?", label="quote")) labelled_text_sample_list.append(feersum_nlu.LabelledTextSample( text="How much does it cost?", label="quote")) train_details = feersum_nlu.TrainDetails(immediate_mode=True, temperature=1.0, clsfr_algorithm="naive_bayes", # language_model_list=[ # { # "lang_code": "eng", # "lang_model": "glove6B50D_trimmed" # } # ] ) text_input = feersum_nlu.TextInput("I would please like to fill in a claim form.") # claim # [{'label': 'claim', 'probability': 0.9409714994212784}, {'label': 'quote', 'probability': 0.05902850057872078}] # text_input = feersum_nlu.TextInput("How long does it take to get a quote?") # quote # [{'label': 'quote', 'probability': 0.9857254551692076}, {'label': 'claim', 'probability': 0.014274544830793929}] # text_input = feersum_nlu.TextInput("My wheel needs to be replaced?") # claim # [{'label': 'claim', 'probability': 0.7693145563000179}, {'label': 'quote', 'probability': 0.2306854436999817}] # text_input = feersum_nlu.TextInput("Is it expensive to get insurance?") # quote # [{'label': 'quote', 'probability': 0.9692558260098282}, {'label': 'claim', 'probability': 0.030744173990171327}] caller_name = 'example_caller' print() try: # print("Update the model params:") # model_params = feersum_nlu.ModelParams(readonly=False) # api_response = api_instance.text_classifier_set_params(instance_name, model_params, x_caller=caller_name) # print(" type(api_response)", type(api_response)) # print(" api_response", api_response) # print() print("Create the text classifier:") api_response = api_instance.text_classifier_create(create_details) print(" type(api_response)", type(api_response)) print(" api_response", api_response) print() print("Add training samples to the text classifier:") api_response = api_instance.text_classifier_add_training_samples(instance_name, labelled_text_sample_list) print(" type(api_response)", type(api_response)) print(" api_response", api_response) print() print("Get the training samples of the text classifier:") api_response = api_instance.text_classifier_get_training_samples(instance_name, index=0, len=2) print(" type(api_response)", type(api_response)) print(" api_response", api_response) print() api_response = api_instance.text_classifier_get_training_samples(instance_name, index=2, len=2) print(" type(api_response)", type(api_response)) print(" api_response", api_response) print() api_response = api_instance.text_classifier_get_training_samples(instance_name, index=4, len=2) print(" type(api_response)", type(api_response)) print(" api_response", api_response) print() print("Del a training sample by uuid:") uuid_to_delete = api_response[0].uuid api_response = api_instance.text_classifier_del_training_samples(instance_name, [feersum_nlu.LabelledTextSample(uuid=uuid_to_delete)]) print(" type(api_response)", type(api_response)) print(" api_response", api_response) print() print("Add training samples to the text classifier (ignoring duplicates):") api_response = api_instance.text_classifier_add_training_samples(instance_name, labelled_text_sample_list) print(" type(api_response)", type(api_response)) print(" api_response", api_response) print() print("Del ALL the training samples of the text classifier:") api_response = api_instance.text_classifier_del_training_samples_all(instance_name) # api_response = api_instance.text_classifier_del_training_samples(instance_name, # labelled_text_sample_list= # labelled_text_sample_delete_list) print(" type(api_response)", type(api_response)) print(" api_response", api_response) print() print("Add training samples to the text classifier:") api_response = api_instance.text_classifier_add_training_samples(instance_name, labelled_text_sample_list) print(" type(api_response)", type(api_response)) print(" api_response", api_response) print() print("Del ALL testing samples of the text classifier:") api_response = api_instance.text_classifier_del_testing_samples_all(instance_name) # api_response = api_instance.text_classifier_del_testing_samples(instance_name, # labelled_text_sample_list= # labelled_text_sample_testing_list) print(" type(api_response)", type(api_response)) print(" api_response", api_response) print() print("Train the text classifier:") api_response = api_instance.text_classifier_train(instance_name, train_details) print(" type(api_response)", type(api_response)) print(" api_response", api_response) print() print("Get the details of all loaded text classifiers:") api_response = api_instance.text_classifier_get_details_all() print(" type(api_response)", type(api_response)) print(" api_response", api_response) print() print("Get the details of specific named loaded text classifiers:") api_response = api_instance.text_classifier_get_details(instance_name) print(" type(api_response)", type(api_response)) print(" api_response", api_response) print() # Get the classifier's possible labels. Might be inferred from the training data, but guaranteed to be available # after training. print("Get the labels of named loaded text classifiers:") api_response = api_instance.text_classifier_get_labels(instance_name) print(" type(api_response)", type(api_response)) print(" api_response", api_response) print() print("Get some curate details of specific named loaded text classifier:") # Use the same labels as returned in the confusion matrix. label_pair = feersum_nlu.ClassLabelPair(matrix_name='train', true_label='claim', predicted_label='claim') api_response = api_instance.text_classifier_curate(instance_name, label_pair) print(" type(api_response)", type(api_response)) print(" api_response", api_response) print() print("Classify text:") api_response = api_instance.text_classifier_retrieve(instance_name, text_input, x_caller=caller_name) print(" type(api_response)", type(api_response)) print(" api_response", api_response) print() print("Get the model params:") api_response = api_instance.text_classifier_get_params(instance_name) print(" type(api_response)", type(api_response)) print(" api_response", api_response) print() # print("Update the model params:") # model_params = feersum_nlu.ModelParams(threshold=0.9, desc="Examples: Test text classifier.", # long_name='Test Text Classifier', # readonly=True) # api_response = api_instance.text_classifier_set_params(instance_name, model_params) # print(" type(api_response)", type(api_response)) # print(" api_response", api_response) # print() # # print("Get the details of specific named loaded text classifiers:") # api_response = api_instance.text_classifier_get_details(instance_name) # print(" type(api_response)", type(api_response)) # print(" api_response", api_response) # print() print("Delete named loaded text classifier:") api_response = api_instance.text_classifier_del(instance_name) print(" type(api_response)", type(api_response)) print(" api_response", api_response) print() print("Vaporise named loaded text classifier:") api_response = api_instance.text_classifier_vaporise(instance_name) print(" type(api_response)", type(api_response)) print(" api_response", api_response) print() except ApiException as e: print("Exception when calling a text classifier operation: %s\n" % e) except urllib3.exceptions.HTTPError as e: print("Connection HTTPError! %s\n" % e)
import re import os from paths import APP_DIR import os, shutil def copytree(src, dst, symlinks=False, ignore=None): for item in os.listdir(src): s = os.path.join(src, item) d = os.path.join(dst, item) if os.path.isdir(s): shutil.copytree(s, d, symlinks, ignore) else: shutil.copy2(s, d) def get_real_ip(request): try: if request.headers.getlist("X-Forwarded-For"): ip = request.headers.getlist("X-Forwarded-For")[0] elif request.headers.getlist("X-Real-Ip"): ip = request.headers.getlist("X-Real-Ip")[0] else: ip = request.remote_addr return ip except: return "0.0.0.0" def camelCaseSplit(text): """ This function splits camel case into separate words :param text: Input text :return: array of words """ matches = re.finditer('.+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)', text) return [m.group(0) for m in matches] def get_available_submodules(path): ''' :param path: import path for the parent module a.b separated with dots ''' parts = path.split(".") filepath = os.path.join(APP_DIR, *parts) files = os.listdir(filepath) modules = [] for f in files: name, ext = os.path.splitext(f) if ext.lower() == ".py": if not name.startswith("__") and not name.endswith("__"): if name.lower() != "base": modules.append(path + "." + name) return modules def sizeof_fmt(filepath, suffix='B'): num = os.stat(filepath).st_size for unit in ['','Ki','Mi','Gi','Ti','Pi','Ei','Zi']: if abs(num) < 1024.0: return "%3.1f%s%s" % (num, unit, suffix) num /= 1024.0 return "%.1f%s%s" % (num, 'Yi', suffix) import os from datetime import datetime, timedelta import json def json_loads(s): return json.loads(s) #TODO def calc_percent(i, total, max=100): return int(i / total * max) class ProgressBar(): def __init__(self, total, max=100, every=1): self.every = every self.max = max self.value = 0 self.total=total self.eta = None self.last_time = datetime.now() self.timedelta_sum = datetime.now()-self.last_time print("[{}{}] ({}\{}) ETA: {}\n".format( "*" * 1, "." * (self.max - 1), self.value, self.total, self.eta )) def set_max(self, value): self.max = value def set_total(self, total): self.total=total def step(self, value=1): self.value += value if self.value % self.every == 0: perc = calc_percent(self.value, self.total, self.max) self.timedelta_sum += datetime.now()-self.last_time self.last_time = datetime.now() time_avg = self.timedelta_sum/self.value self.eta = time_avg*(self.total-self.value) os.system('cls') print("[{}{}] ({}\{}) ETA: {}\n".format( "*" * perc, "." * (self.max - perc), self.value, self.total, self.eta )) def progress_bar(i, total, max=100): os.system('cls') perc = calc_percent(i, total, max) print("[{}{}] ({}\{})\n".format( "*" * perc, "." * (max - perc), i, total )) # print (perc, max-perc)
from django.conf import settings from django.contrib.sites.models import Site from oscar.apps.checkout.views import PaymentDetailsView as OscarPaymentDetailsView from oscar.apps.payment.exceptions import RedirectRequired from oscar_gocardless import facade class PaymentDetailsView(OscarPaymentDetailsView): def handle_payment(self, order_number, total_incl_tax, **kwargs): # Determine base URL of current site - you could just set this in a # setting if settings.DEBUG: # Determine the localserver's hostname to use when # in testing mode base_url = 'http://%s' % self.request.META['HTTP_HOST'] else: base_url = 'https://%s' % Site.objects.get_current().domain # Payment requires a redirect so we raise a RedirectRequired exception # and oscar's checkout flow will handle the rest. url = facade.BilingFacade(base_url).get_redirect_url(order_number, total_incl_tax, self.request.user) raise RedirectRequired(url)
# -*- coding: utf-8 -*- import tensorflow as tf import os.path class PrefixSaver: def __init__(self, prefix, dir_to_model, name='model', write_meta_graph=False): self.prefix = prefix if not dir_to_model: raise RuntimeError('no folder given where variables should be saved.') if dir_to_model[-1] != '/': dir_to_model += '/' self.dir_to_model = str(dir_to_model) self.name = str(name) # print(self.name) self.write_meta_graph = write_meta_graph self.saver = None def save(self, session, global_step=None): if not self.saver: self.saver = tf.train.Saver(get_op(self.prefix)) if not os.path.isdir(self.dir_to_model): os.mkdir(self.dir_to_model) self.saver.save(session, os.path.join(self.dir_to_model, self.name), global_step) def restore(self, session): if not self.saver: self.saver = tf.train.Saver(get_op(self.prefix)) to_restore = tf.train.get_checkpoint_state(self.dir_to_model) if not to_restore: raise RuntimeError("in folder '{}' no variables found named '{}'.".format(self.dir_to_model,self.name)) self.saver.restore(session, to_restore.model_checkpoint_path) def get_op(prefix=None): """ Returns all variable of the default tensorflow graph with the given prefix. The return value is a dictionary 'NAME_OF_VARIABLE' => 'VARIABLE'. If a prefix is given, the prefix is deleted in 'NAME_OF_VARIABLE'. :rtype: dictionary 'string'=>tensor """ dict = {} if prefix is not None and len(prefix) > 1: if prefix[-1] != '/': prefix += '/' res = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope=prefix) for t in res: key = t.name key = key[len(prefix):] dict[str(key)] = t return dict
"""Test related functionality Adds a Pylons plugin to `nose <http://www.somethingaboutorange.com/mrl/projects/nose/>`_ that loads the Pylons app *before* scanning for doc tests. This can be configured in the projects :file:`setup.cfg` under a ``[nosetests]`` block: .. code-block:: ini [nosetests] with-pylons=development.ini Alternate ini files may be specified if the app should be loaded using a different configuration. """ import os import sys import nose.plugins import pkg_resources from paste.deploy import loadapp import pylons from pylons.i18n.translation import _get_translator pylonsapp = None class PylonsPlugin(nose.plugins.Plugin): """Nose plugin extension For use with nose to allow a project to be configured before nose proceeds to scan the project for doc tests and unit tests. This prevents modules from being loaded without a configured Pylons environment. """ enabled = False enableOpt = 'pylons_config' name = 'pylons' def options(self, parser, env=os.environ): """Add command-line options for this plugin""" env_opt = 'NOSE_WITH_%s' % self.name.upper() env_opt.replace('-', '_') parser.add_option("--with-%s" % self.name, dest=self.enableOpt, type="string", default="", help="Setup Pylons environment with the config file" " specified by ATTR [NOSE_ATTR]") def configure(self, options, conf): """Configure the plugin""" self.config_file = None self.conf = conf if hasattr(options, self.enableOpt): self.enabled = bool(getattr(options, self.enableOpt)) self.config_file = getattr(options, self.enableOpt) def begin(self): """Called before any tests are collected or run Loads the application, and in turn its configuration. """ global pylonsapp path = os.getcwd() sys.path.insert(0, path) pkg_resources.working_set.add_entry(path) self.app = pylonsapp = loadapp('config:' + self.config_file, relative_to=path) # Setup the config and app_globals, only works if we can get # to the config object conf = getattr(pylonsapp, 'config') if conf: pylons.config._push_object(conf) if 'pylons.app_globals' in conf: pylons.app_globals._push_object(conf['pylons.app_globals']) # Initialize a translator for tests that utilize i18n translator = _get_translator(pylons.config.get('lang')) pylons.translator._push_object(translator)
from api import create_app from config import Config application = create_app(Config)
import pytest from scripts.custom import clean_dateTime @pytest.mark.parametrize( "test_input,expected", [ ("2015", "2015"), ("2015-02", "2015-02"), ("201502", "2015-02"), ("2015-02-07", "2015-02-07"), ("20150207", "2015-02-07"), ("2015-02-07T13:28:17", "2015-02-07T13:28:17+02:00"), ("2015-02-07 13:28:17", "2015-02-07T13:28:17+02:00"), ("2015-02-07T13:28:17+05:00", "2015-02-07T13:28:17+05:00"), ("2015-02-07T13:28:17-05:00", "2015-02-07T13:28:17-05:00"), ("Wed, 13 Mar 2075 00:00:00 GMT", "2075-03-13T00:00:00+00:00"), ("201502071740", "2015-02-07T17:40:00+02:00"), ("", ""), ("0010-04-30", "0010-04-30"), ], ) def test_clean_dateTime(test_input, expected): output = clean_dateTime(test_input) assert output == expected