content
stringlengths
5
1.05M
#!/usr/bin/env python # -*- coding:utf-8 -*- import json from logger import Logger import xiaomi_data_json import twilio_sms import i_email import schedule # pip install schedule import socket import sys import os import net_reconnect import ding_talk_robot import datetime import global_config as gl name = "MiGatewayMonitor" version = "v1.0.2.191008" # 全局消息 globalMiData = {} def get_gateway_heart(): SENDERIP = "0.0.0.0" MYPORT = 9898 MYGROUP = '224.0.0.50' sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM, socket.IPPROTO_UDP) # allow multiple sockets to use the same PORT number sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) # Bind to the port that we know will receive multicast data sock.bind((SENDERIP, MYPORT)) # tell the kernel that we are a multicast socket # sock.setsockopt(socket.IPPROTO_IP, socket.IP_MULTICAST_TTL, 255) # Tell the kernel that we want to add ourselves to a multicast group # The address for the multicast group is the third param status = sock.setsockopt(socket.IPPROTO_IP, socket.IP_ADD_MEMBERSHIP, socket.inet_aton(MYGROUP) + socket.inet_aton(SENDERIP)) # 设置61秒超时,防止阻塞网络检测等 sock.settimeout(61) data, addr = sock.recvfrom(1024) data_str = str(data, encoding='utf-8') sock.close() return data_str # 检测程序 def mi_run(): udp_group_data = get_gateway_heart() # print(udp_group_data) global globalMiData # 通过sid分组 udp_group_data_json = json.loads(udp_group_data) # 增加时间戳 udp_group_data_json["time"] = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S") globalMiData[data_json.get_custom(udp_group_data,'sid')] = udp_group_data_json print(globalMiData) # send_ding_talk(globalMiData) model = data_json.get_model(udp_group_data) if model == 'sensor_wleak.aq1': # 水浸传感器 cmd = data_json.get_cmd(udp_group_data) if cmd == 'report': # 只处理上报数据 data = data_json.get_data(udp_group_data) # 获取状态数据 status = data_json.get_custom(data, 'status') if status == 'leak': # 发生水浸则发送短信 info = '水浸传感器报警' send_all_msg(info) # send message info = 'leak lou shui bao jing' print(info) sms.send_sms(gl.sms_send1, info) sms.send_sms(gl.sms_send2, info) elif status == 'no_leak': # 报警但是并没有发生水浸 info = '水浸传感器报警解除' send_all_msg(info) # send message info = 'no_leak bao jing jie chu' print(info) sms.send_sms(gl.sms_send2, info) sms.send_sms(gl.sms_send2, info) else: pass else: pass else: # 其他传感器 pass # 发送邮件 def send_family_email(email_content): receivers = gl.email_send # 接收邮件,可设置为你的QQ邮箱或者其他邮箱 mail_tile = '家庭卫士 ' + version mail = i_email.iEmail() bRet = mail.send_mail(receivers, email_content, mail_tile) if bRet: print("邮件发送成功") else: print("邮件发送失败") # 发送钉钉 def send_ding_talk(text): dingTalkRobot = ding_talk_robot.iDingTalkRobot() dingTalkRobot.sendText(text) # 发送消息:邮件、钉钉、短信等 def send_all_msg(text): send_family_email(text) send_ding_talk(text) # 重启程序 def restart_program(): python = sys.executable os.execl(python, python, *sys.argv) print("restart_program") # 网络检测 def netCheck(): bRet = net_reconnect.is_reachable("www.baidu.com") | net_reconnect.is_reachable("www.baidu.com") # print(bRet) if (bRet): print("network ok") else: info = '网络异常,重启程序...' print(info) send_all_msg(info) # 重启程序 restart_program() def sendMiData(): global globalMiData send_ding_talk(globalMiData); def sendHeartbeatData(): global globalMiData info = '家庭卫士程序心跳包\n' + json.dumps(globalMiData) send_all_msg(info) sys.stdout = Logger() data_json = xiaomi_data_json.xiaomi_data_json sms = twilio_sms.sms_client # mail = i_email.iEmail() # dingTalkRobot = ding_talk_robot.iDingTalkRobot() if __name__ == '__main__': info = '家庭卫士程序启动' print(info) send_all_msg(info) # 定时任务1 schedule.every().day.at("13:10").do(sendHeartbeatData) # 定时任务2 # schedule.every(10).seconds.do(netCheck) schedule.every(30).minutes.do(netCheck) # 定时任务3 schedule.every().day.at("8:55").do(sendMiData) schedule.every().day.at("18:05").do(sendMiData) while True: schedule.run_pending() try: mi_run() except Exception as e: print('mi_run Error:', e)
from .authenticator import Authenticator from .websocket_client import WebSocketClient from .constants import ( API_URL, WEB_BASE_URL, WS_BASE_URL, START_SPLASH_TEXT, END_SPLASH_TEXT, codes, ) from .tester import Tester from .web_server import WebServer from .logger import logger class LocalServer: """ Main class for the local server """ def __init__(self): self.status_code = codes.INTERNAL_SETUP if "_is_from_test" not in self.__dict__: self._is_from_test = False # WebSocket client self.ws_client = WebSocketClient(self, WS_BASE_URL) # WebServer self.web_server = WebServer(self) # User authentication self.authenticator = Authenticator(self) # Runs tests for the system self.tester = Tester(self) # for testing, do not touch @property def status_code_name(self): return codes.to_name(self.status_code) def run(self): """ Method for starting the system Runs all the tests Authenticates with a user Establishes Websocket connection :return: Nothing """ print(START_SPLASH_TEXT) logger.info("Starting Local Server") # Start the Web Server try: self.set_status(codes.WEBSERVER_SETUP) self.web_server.start() except: logger.error("COULD NOT START THE WEBSERVER") self.set_status(codes.WEBSERVER_SETUP_ERROR) # tests system self.tester.establish_successful_tests() # work on the authenticator if not self.authenticator.is_authenticated: self.authenticator.authenticate() self.ws_client.establish_connection() def stop(self, code=None): """ Stops the system :param code: Code or reason for the shut down :return: None """ logger.info("SHUTTING DOWN...") self.web_server.stop() logger.debug("good bye <3") print(END_SPLASH_TEXT) # exit(code) def set_status(self, code): """ Sets the internal status code :param code: int of the status code :return: None """ self.status_code = code
quantity = 3 item = 'widgets' price = 4995.345 myorder = "I want {} pieces of {} for ${:,.2f}." print(myorder.format(quantity, item, price)) >>>I want 3 pieces of widgets for $4,995.35. # : is for formatting codes # $ is outside of {} # ,.2f means comma thousand separator, 2 decimal float16 number # String has to be ' ' quotes in definition, input # Can be in all one line with ".format()" call to function. print("User {} is {} years old.".format("Tom", 17)) >>>User Tom is 17 years old.
def combinationSum(candidates: list[int], target: int) -> list[list[int]]: solutions = set() checked = set() stack = [] def recur(total): seq = tuple(sorted(stack[:])) if seq in checked: return checked.add(seq) if total == target: solutions.add(seq) return elif total > target: return else: for i in candidates: stack.append(i) recur(total + i) stack.pop() recur(0) return [list(x) for x in solutions]
import numpy as np import tensorflow as tf class Model(object): def __init__(self, batch_size, num_rollouts, entTotal, relTotal, embedding_size, weight_decay, learning_rate): self.batch_size = batch_size self.num_rollouts = num_rollouts # neg_size == num_rollouts - 1 when negative sampling self.weight_decay = weight_decay self.learning_rate = learning_rate self.entTotal = entTotal self.relTotal = relTotal self.embedding_size = embedding_size self.optimizer = tf.train.AdamOptimizer(learning_rate) self.input_def() self.embedding_def() self.loss_def() self.predict_def() def get_all_instance(self, in_batch=False): return [self.batch_h, self.batch_t, self.batch_r] def get_predict_instance(self): return [self.predict_h, self.predict_t, self.predict_r] def input_def(self): self.batch_h = tf.placeholder(tf.int32, [self.batch_size * self.num_rollouts, 2]) self.batch_t = tf.placeholder(tf.int32, [self.batch_size * self.num_rollouts, 2]) self.batch_r = tf.placeholder(tf.int32, [self.batch_size * self.num_rollouts, 2]) self.predict_h = tf.placeholder(tf.int32, [None]) self.predict_t = tf.placeholder(tf.int32, [None]) self.predict_r = tf.placeholder(tf.int32, [None]) def embedding_def(self): pass def loss_def(self): pass def predict_def(self): pass class DistMult(Model): def _calc(self, h, t, r): return h * r * t def embedding_def(self): # TODO: align with generator, vocab? self.ent_embeddings = tf.get_variable(name="ent_embeddings", shape=[self.entTotal, self.embedding_size]) self.rel_embeddings = tf.get_variable(name="rel_embeddings", shape=[self.relTotal, self.embedding_size]) self.parameter_lists = {"ent_embeddings": self.ent_embeddings, "rel_embeddings": self.rel_embeddings} def loss_def(self): # Obtaining the initial configuration of the model # To get positive triples and negative triples for training # To get labels for the triples, positive triples as 1 and negative triples as -1 h, t, r = self.get_all_instance() # Embedding entities and relations of triples e_h = tf.nn.embedding_lookup(self.ent_embeddings, h) e_t = tf.nn.embedding_lookup(self.ent_embeddings, t) e_r = tf.nn.embedding_lookup(self.rel_embeddings, r) # Calculating score functions for all positive triples and negative triples res = tf.reduce_sum(self._calc(e_h, e_t, e_r), -1, keep_dims=False) # max. E[log(1 - D)] + E[log D] = min. - E[log sigma(-res)] - E[log sigma(res)] = min. - E[log sigma(y * res)] loss_func = - tf.reduce_mean(tf.tanh(res[:, 0] - res[:, 1])) regul_func = tf.reduce_mean(e_h ** 2) + tf.reduce_mean(e_t ** 2) + tf.reduce_mean(e_r ** 2) # Calculating loss to get what the framework will optimize self.loss = loss_func + self.weight_decay * regul_func self.train_op = self.optimizer.minimize(self.loss) def predict_def(self): predict_h, predict_t, predict_r = self.get_predict_instance() predict_h_e = tf.nn.embedding_lookup(self.ent_embeddings, predict_h) predict_t_e = tf.nn.embedding_lookup(self.ent_embeddings, predict_t) predict_r_e = tf.nn.embedding_lookup(self.rel_embeddings, predict_r) # min E[log(1 - D)] -> max. E[log D] -> reward func. # self.predict = tf.log(tf.nn.sigmoid(tf.reduce_sum(self._calc(predict_h_e, predict_t_e, predict_r_e), 1))) self.predict = tf.reduce_sum(self._calc(predict_h_e, predict_t_e, predict_r_e), -1)
""" Read esri filegdb and keep original objectid """ from arcgis.features import FeatureLayerCollection import fiona import geopandas as gpd import pandas as pd from tohydamogml.config import COLNAME_OID from shapely.geometry import Point, LineString import pyproj import warnings def read_featureserver(url, layer_index): """Read featureservice with arcgis. Query the featureset to return everything. Return geopandas dataframe or pandas dataframe""" collection = FeatureLayerCollection(url) wkid = collection.properties['spatialReference']['wkid'] featureset = collection.layers[int(layer_index)] if featureset.properties.geometryField is not None: fieldnames = [field['name'] for field in featureset.properties.fields] if COLNAME_OID in fieldnames: col = COLNAME_OID else: cols = [name for name in fieldnames if name.startswith(COLNAME_OID)] if len(cols) == 0: raise ValueError(f"Can't find column starting with '{COLNAME_OID}', thus unable to query dataset") else: col = cols[0] query_all = featureset.query(where=f'{col}>=0') try: geojson = query_all.to_geojson gdf = gpd.read_file(geojson) if type(gdf.crs) == pyproj.crs.crs.CRS: if not gdf.crs.srs.endswith(str(wkid)): gdf = gdf.set_crs(wkid, allow_override=True) elif gdf.crs is not None: if gdf.crs['init'] != wkid: gdf = gdf.to_crs(epsg=wkid) else: raise warnings.warn("Check CRS") else: gdf.crs = f'EPSG:{wkid}' except: # For some reason, the geojson created from the esri dataset doesn't always get read by geopandas/fiona. # If the geojson method fails, a manual operation is used to create the geodataframe anyway. sdf = query_all.sdf sdf['geometry'] = sdf.apply(lambda x: LineString([Point(xy[0], xy[1]) for xy in x['SHAPE']['paths'][0]]), axis=1) gdf = gpd.GeoDataFrame(sdf) gdf.crs = 'EPSG:'+str(wkid) gdf[COLNAME_OID] = gdf[col].astype(int) return gdf else: #Code adjusted from read_filegdb, but might not be needed query_all = featureset.query(where=f'{COLNAME_OID}>=0') json = query_all.to_geojson df = pd.read_json(json) #Doesn't unpack properly! Under df['features'] are all features in another dict df[COLNAME_OID] = df[COLNAME_OID].astype(int) return df def read_filegdb(filegdb, layer): """Read filegdb with fiona to get original objectid. Return geopandas dataframe or pandas dataframe""" if layer in fiona.listlayers(filegdb): features = _yield_features(filegdb, layer) if next(features)["geometry"] is not None: gdf = gpd.GeoDataFrame.from_features(features, crs=get_crs(filegdb, layer)) gdf[COLNAME_OID] = gdf[COLNAME_OID].astype(int) return gdf else: df = pd.DataFrame.from_records(_yield_table(filegdb, layer)) df[COLNAME_OID] = df[COLNAME_OID].astype(int) return df else: raise ValueError(f"layer '{layer}' not in layer list: {fiona.listlayers(filegdb)}") def _yield_features(path, layer, colname_oid=COLNAME_OID): """Read filegdb with fiona to get original objectid""" with fiona.open(path, 'r', layer=layer) as f: for feature in f: feature['properties'][colname_oid] = feature['id'] yield feature def _yield_table(path, layer, colname_oid=COLNAME_OID): """Read filegdb table with fiona to get original objectid""" with fiona.open(path, 'r', layer=layer) as f: for feature in f: feature['properties'][colname_oid] = feature['id'] yield feature['properties'] def get_crs(path, layer): with fiona.open(path, 'r', layer=layer) as f: if type(f.crs) == dict: if 'init' in f.crs.keys(): return f.crs['init'] return None if __name__ == '__main__': a = read_featureserver('https://maps.brabantsedelta.nl/arcgis/rest/services/Extern/Kunstwerken/FeatureServer', '14') mask = gpd.read_file(r"c:\local\TKI_WBD\aanvullende_data\Aa_of_Weerijs_v2.shp") gdf = a[a.intersects(mask.unary_union)] gdf.to_file(r'c:\Users\908367\Box\BH8519 WBD DHYDRO\BH8519 WBD DHYDRO WIP\04_GIS\kopie_server\Cat_A_Waterloop_Aa_of_Weerijs.shp') gdf.to_file(r'c:\Users\908367\Box\BH8519 WBD DHYDRO\BH8519 WBD DHYDRO WIP\04_GIS\kopie_server\Cat_A_Waterloop_Aa_of_Weerijs.gpkg', driver='GPKG')
# Print statements with syntax errors (fixed). print('Hello, world!') print('This is a series') print('of print statements.') print('The end!') print("But not really!") print("Here's another print statement!") print("And here's another one!") print("This will be the last one of these initial print statements.")
import os from flask import Flask, render_template, request import luigi from luigi.contrib.gcs import GCSTarget, GCSClient import subprocess from merge_video import MergeVideoAndAudio app = Flask(__name__) @app.route('/') def hello_world(): target = os.environ.get('TARGET', 'World') return 'Hello {}!\n'.format(target) # http://localhost:8080/merge_video?youtube_id=asdf&text_id=pg_12 @app.route('/merge_video', methods=['GET']) def merge_video(): youtube_id = request.args.get('youtube_id') youtube_link = f'https://www.youtube.com/watch?v={youtube_id}' text_id = request.args.get('text_id') # --scheduler-url # https://luigi.readthedocs.io/en/latest/central_scheduler.html # $luigid --background --pidfile <PATH_TO_PIDFILE> --logdir <PATH_TO_LOGDIR> --state-path <PATH_TO_STATEFILE> scheduler_url = os.environ.get('SCHEDULER', 'http://127.0.0.1:8082') #if not num: luigi.run(['detect.MergeVideoAndAudio', '--gs-path-video', youtube_link, #'gs://amvideotest/Welcome_to_Adam_Does_Movies.mp4', # 'gs://amvideotest/battlefield1.mp4', # '--text-generator','markov', '--text-generator-source', 'gs://amvideotest/source/pg/pg345.txt', #'gs://amvideotest/source/pg/pg345.txt', '--workers', '1', '--scheduler-url', scheduler_url]) return f'Completed youtube_link: {youtube_link}\ntext_id: {text_id}' if __name__ == "__main__": app.run(debug=True,host='0.0.0.0',port=int(os.environ.get('PORT', 8080)))
""" Snake, but multiplayer Created by sheepy0125 2022-02-21 Client join state code """ ### Setup ### from multiplayer_snake.shared.common import pygame, Logger, hisock from multiplayer_snake.shared.config_parser import parse from multiplayer_snake.shared.shared_game import SharedGame from multiplayer_snake.shared.pygame_tools import GlobalPygame from multiplayer_snake.client.states.state import BaseState, update_state from multiplayer_snake.client.snake import ClientSnakePlayer CONFIG = parse() GUI_CONFIG = CONFIG["gui"] ### States ### class GameState(BaseState): def __init__(self, client: hisock.client.ThreadedHiSockClient): super().__init__(identifier="game") self.key_enum = { pygame.K_w: "up", pygame.K_s: "down", pygame.K_a: "left", pygame.K_d: "right", pygame.K_UP: "up", pygame.K_DOWN: "up", pygame.K_LEFT: "left", pygame.K_RIGHT: "right", } self.client = client self.snake = ClientSnakePlayer() self.other_snake = ClientSnakePlayer() self.grid = Grid() self.update_called = False @client.on("update") def update(data: dict): """Called every frame""" self.our_position = data["position"] self.our_direction = data["direction"] self.other_position = data["other_position"] self.other_direction = data["other_direction"] self.tail_length = data["tail_length"] self.update_called = True def handle_event(self, event: pygame.event.EventType): # Get keyboard input if event.type == pygame.KEYDOWN: key_pressed = pygame.key.get_pressed() if key_pressed in self.key_enum: self.next_move = self.key_enum[key_pressed] def update(self): if not self.update_called: return self.update_called = False # Our snake self.snake.update(self.our_position, self.our_direction, self.tail_length) def draw(self): GlobalPygame.window.fill("black") # Grid self.grid.draw() GlobalPygame.window.blit(self.grid.grid_surf, (0, 0)) # Draw the snakes self.snake.draw() self.other_snake.draw() def close(self): self.client.close(emit_leave=True) class Grid: """ A simple grid that uses the information stored in the :class:`SharedGame` class """ def __init__(self): self.grid_surf = pygame.Surface( (SharedGame.window_width, SharedGame.window_height) ) def draw(self): # Draw lines onto the surface for row in range(0, SharedGame.height): pygame.draw.line( self.grid_surf, GUI_CONFIG["colors"]["grid"]["line"], (row * SharedGame.grid_snap, 0), (row * SharedGame.grid_snap, SharedGame.window_height), ) for column in range(0, SharedGame.width): pygame.draw.line( self.grid_surf, GUI_CONFIG["colors"]["grid"]["line"], (0, column * SharedGame.grid_snap), (SharedGame.window_width, column * SharedGame.grid_snap), )
class Clock: DEFAULT_TIME = '00:00:00' IS_AM = 0 IS_PM = 1 IS_24H = 2 COUNTDOWN_TIMER = 0 COUNTDOWN_TO_TIME = 1 ELAPSED_TIME = 2 def __init__(self, index, clock_info, client=None): self.index = index self._initialize_with_clock_info( name=clock_info.get('clockName'), time=clock_info.get('clockTime'), clock_type=clock_info.get('clockType'), display_type=clock_info.get('clockIsPM'), is_overrun=clock_info.get('clockOverrun'), duration=clock_info.get('clockDuration'), end_time=clock_info.get('clockEndTime'), state=clock_info.get('clockState'), ) self.client = client def _initialize_with_clock_info( self, name=None, time=None, clock_type=None, display_type=None, is_overrun=False, duration=None, end_time=None, state=False ): self.name = name self.time = time or self.DEFAULT_TIME self.clock_type = clock_type or self.COUNTDOWN_TIMER self.display_type = display_type or self.IS_24H self.is_overrun = is_overrun self.duration = duration or self.DEFAULT_TIME self.end_time = end_time or self.DEFAULT_TIME self.state = state @property def settings(self): return { 'clockIndex': self.index, 'clockTime': self.time, 'clockName': self.name, 'clockType': self.clock_type, 'clockIsPM': self.display_type, 'clockOverrun': self.is_overrun, } def update(self, new_settings): if self.client: command = {'action': 'clockUpdate'} settings = self.settings settings.update(new_settings) command.update(settings) return self.client.async_send(command, expect_response=False) def set_time(self, time): if self.client: return self.update({'clockTime': time}) def start(self): if self.client: command = { 'action': 'clockStart', 'clockIndex': self.index, } return self.client.async_send(command, expect_response=False) def stop(self): if self.client: command = { 'action': 'clockStop', 'clockIndex': self.index, } return self.client.async_send(command, expect_response=False) def reset(self): if self.client: command = { 'action': 'clockReset', 'clockIndex': self.index, } return self.client.async_send(command, expect_response=False) def __repr__(self): return f'<Clock: {self.name} | {self.index}>'
import os import pytest import mkdocs_jupyter from mkdocs_jupyter.config import settings pytestmark = [pytest.mark.pkg] def test_import(): assert mkdocs_jupyter.__version__ is not None assert mkdocs_jupyter.__version__ != "0.0.0" assert len(mkdocs_jupyter.__version__) > 0 def test_assets_included(): mkdocs_html = os.path.join(settings.templates_dir, "mkdocs_html") assert os.path.exists(os.path.join(mkdocs_html, "conf.json")) assert os.path.exists(os.path.join(mkdocs_html, "notebook.html.j2")) html_assets = os.path.join(mkdocs_html, "assets") assert os.path.exists(os.path.join(html_assets, "clipboard.umd.js")) assert os.path.exists(os.path.join(html_assets, "mkdocs-jupyter.css")) assert os.path.exists(os.path.join(html_assets, "mkdocs-jupyter.css.map")) assert os.path.exists(os.path.join(html_assets, "mkdocs-jupyter.js")) # assert os.path.exists(os.path.join(html_assets, "mkdocs-jupyter.js.map")) mkdocs_md = os.path.join(settings.templates_dir, "mkdocs_md") assert os.path.exists(os.path.join(mkdocs_md, "conf.json")) assert os.path.exists(os.path.join(mkdocs_md, "md-no-codecell.md.j2"))
class RawArgs: def __init__(self, cols_features, col_treatment, col_outcome, col_propensity, col_cate, col_recommendation, min_propensity, max_propensity, verbose, uplift_model_params, enable_ipw, propensity_model_params, index_name, partition_name, runner, conditionally_skip): self.cols_features = cols_features self.col_treatment = col_treatment self.col_outcome = col_outcome self.col_propensity = col_propensity self.col_cate = col_cate self.col_recommendation = col_recommendation self.min_propensity = min_propensity self.max_propensity = max_propensity self.verbose = verbose self.uplift_model_params = uplift_model_params self.enable_ipw = enable_ipw self.propensity_model_params = propensity_model_params self.index_name = index_name self.partition_name = partition_name self.runner = runner self.conditionally_skip = conditionally_skip
import os import ersa_utils class BasicProcess(object): """ Process block is a basic running module for this repo, it will run the process by checking if function has been ran before, or be forced to re-run the process again """ def __init__(self, name, path, func=None): """ :param name:name of the process, this will be used for the state file name :param path: path to where the state file will be stored :param func: process function, if None then it will be child class's process() function """ self.name = name self.path = path if func is None: self.func = self.process else: self.func = func self.state_file = os.path.join(self.path, '{}_state.txt'.format(self.name)) def process(self, **kwargs): raise NotImplementedError() def run(self, force_run=False, **kwargs): """ Run the process :param force_run: if True, then the process will run no matter it has completed before :param kwargs: :return: """ # check if state file exists state_exist = os.path.exists(self.state_file) # run the function if force run or haven't run before if force_run or state_exist == 0: print(('Start running {}'.format(self.name))) # write state log as incomplete with open(self.state_file, 'w') as f: f.write('Incomplete\n') # run the process self.func(**kwargs) # write state log as complete with open(self.state_file, 'w') as f: f.write('Finished\n') else: # if haven't run before, run the process if not self.check_finish(): self.func(**kwargs) # write state log as complete with open(self.state_file, 'w') as f: f.write('Finished\n') return self def check_finish(self): """ check if state file exists :return: True if it has finished """ state_exist = os.path.exists(self.state_file) if state_exist: with open(self.state_file, 'r') as f: a = f.readlines() if a[0].strip() == 'Finished': return True return False class ValueComputeProcess(BasicProcess): """ Compute value for the given function, save value Return the value if already exists """ def __init__(self, name, path, save_path, func=None): """ :param name:name of the process, this will be used for the state file name :param path: path to where the state file will be stored :param save_path: path to save the computed value :param func: process function, if None then it will be child class's process() function """ self.save_path = save_path self.val = None super().__init__(name, path, func) def run(self, force_run=False, **kwargs): """ Run the process :param force_run: if True, then the process will run no matter it has completed before :param kwargs: :return: """ # check if state file exists state_exist = os.path.exists(self.state_file) # run the function if force run or haven't run before if force_run or state_exist == 0: print(('Start running {}'.format(self.name))) # write state log as incomplete with open(self.state_file, 'w') as f: f.write('Incomplete\n') # run the process self.val = self.func(**kwargs) # write state log as complete with open(self.state_file, 'w') as f: f.write('Finished\n') ersa_utils.save_file(self.save_path, self.val) else: # if haven't run before, run the process if not self.check_finish(): self.val = self.func(**kwargs) ersa_utils.save_file(self.save_path, self.val) # if already exists, load the file self.val = ersa_utils.load_file(self.save_path) # write state log as complete with open(self.state_file, 'w') as f: f.write('Finished\n') return self
import asyncio import datetime from typing import Dict, Union, List, Any import pandas as pd import numpy as np from math import nan from .errors import QuikLuaException class ParamWatcher: """ A special class that decides which params have to be updated based on given interval and time passed since last update. """ def __init__(self): self.lock = asyncio.Lock() self._watched = pd.DataFrame(columns=['dt', 'key']) self._watched['dt'] = self._watched['dt'].astype(np.float) def subscribed(self, param_tuple_list): dt_now = datetime.datetime.now().timestamp() for (class_code, sec_code, param, update_interval) in param_tuple_list: param = param.lower() idx_key = '__'.join((class_code, sec_code, param)) self._watched.at[idx_key, 'dt'] = dt_now self._watched.at[idx_key, 'key'] = (class_code, sec_code, param) self._watched.at[idx_key, 'upd_int'] = update_interval pass def unsubscribed(self, param_tuple_list): for (class_code, sec_code, param) in param_tuple_list: param = param.lower() idx_key = '__'.join((class_code, sec_code, param)) try: del self._watched[idx_key] except KeyError: # All good, index was deleted pass def get_update_candidates(self): if len(self._watched) == 0: return [] last_upd = self._watched['dt'] + self._watched['upd_int'] dt_now = datetime.datetime.now().timestamp() return self._watched[last_upd < dt_now] def set_candidate_updates(self, candidates): if len(self._watched) == 0: return dt_now = datetime.datetime.now().timestamp() self._watched.loc[candidates.index, 'dt'] = dt_now class ParamCache: """ Current parameters (bid/ask/quotes, etc) cache table It can store and parse everything that returned by getParamEx2() RPC Values are parsed depending on their types. Missing values marked as None (for stings, dates, times) or nan (for numeric). """ def __init__(self, class_code: str, sec_code: str, params_list: List[str]): self.class_code = class_code self.sec_code = sec_code if params_list is None or len(params_list) == 0: raise ValueError(f'params_list is empty') self.params = {p.lower(): None for p in params_list} # type: Dict[str, Any] def process_param(self, param_key: str, param_ex_api_response: dict): """ Fills the parameter cache based on getParamEx2() RPC response :param param_key: param field name, must be `params_list` in constructor :param param_ex_api_response: as {'param_ex': {'param_type': '1', 'result': '1', 'param_image': '152 420', 'param_value': '152420.000000'}} :return: """ key = param_key.lower() assert key in self.params, f'Param key {key} is not requested at ParamCache constructor' assert 'param_ex' in param_ex_api_response, f'Expected to get getParamEx2() RPC response format, got ({param_ex_api_response})' res = param_ex_api_response['param_ex'] if res['param_type'] == '1' or res['param_type'] == '2': # Float or Int (but parse as floats) if res['result'] == '1': # Request was successful self.params[key] = float(res['param_value']) else: self.params[key] = nan elif res['param_type'] == '3' or res['param_type'] == '4': # String or enumerable if res['result'] == '1': # Request was successful self.params[key] = res['param_image'] else: self.params[key] = None elif res['param_type'] == '5': # Time if res['result'] == '1' and res['param_image']: # Request was successful t_str = res['param_image'] if ':' not in t_str: raise QuikLuaException(f'Unknown param time format {key}: {t_str}') t_tok = t_str.split(':') self.params[key] = datetime.time(int(t_tok[0]), int(t_tok[1]), int(t_tok[2])) else: self.params[key] = None elif res['param_type'] == '6': # Date if res['result'] == '1' and res['param_image']: # Request was successful self.params[key] = datetime.datetime.strptime(res['param_image'], '%d.%m.%Y') else: self.params[key] = None elif res['param_type'] == '0': # Highly likely it's unknown param_type raise QuikLuaException(f'({self.class_code},{self.sec_code}): getParamEx2() unknown or invalid param key: {param_key}') else: # Unexpected param type raise QuikLuaException(f'({self.class_code},{self.sec_code}): getParamEx2() returned unknown param type: {param_ex_api_response}') class HistoryCache: """In-memory history quote cache for speed up Quik historical data fetching""" def __init__(self, class_code, sec_code, interval, cache_update_min_interval_sec=0.2): self.class_code = class_code self.sec_code = sec_code self.interval = interval self._data = None self._last_quote = datetime.datetime(1900, 1, 1) self.ds_uuid = None self._lock = asyncio.Lock() self._last_update = None self._cache_update_interval_sec = cache_update_min_interval_sec def process_history(self, quotes_df): assert isinstance(quotes_df, pd.DataFrame), 'quotes_df must be a Pandas DataFrame' assert isinstance(quotes_df.index, pd.DatetimeIndex), 'quotes_df must have DatetimeIndex' assert quotes_df.index.is_monotonic_increasing, 'quotes_df must be sorted by date ascending' if self._data is None: if len(quotes_df) > 0: self._data = quotes_df self._last_quote = quotes_df.index[-1] self._last_update = datetime.datetime.now() else: if len(quotes_df) > 0: # Update data and rewrite overlapping records in old data self._data = quotes_df.combine_first(self._data) self._last_quote = quotes_df.index[-1] self._last_update = datetime.datetime.now() @property def data(self): return self._data @property def last_bar_date(self): return self._last_quote @property def lock(self): return self._lock @property def can_update(self): if self._last_update is None: # Cache is new, let it update return True else: # Permit cache update only if self._cache_update_interval_sec passed return (datetime.datetime.now() - self._last_update).total_seconds() > self._cache_update_interval_sec
import discord from dotenv import load_dotenv import logging import os from discord.ext import commands extensions = [ "cogs.clan_battle", "cogs.help" ] load_dotenv() DISCORD_BOT_TOKEN = os.getenv('DISCORD_BOT_TOKEN') formatter = '%(levelname)s : %(asctime)s : %(message)s' logging.basicConfig(filename='logs/bot.log', level=logging.INFO, format=formatter) bot = commands.Bot(command_prefix="ちぇる") bot.remove_command("help") if __name__ == '__main__': for extension in extensions: bot.load_extension(extension) @bot.event async def on_ready(): logging.info(f"Name: {bot.user.name}") logging.info(f"ID: {bot.user.id}") await bot.change_presence(activity=discord.Game(name="「ちぇるへるぷ」でヘルプが見れます。")) @bot.event async def on_command_error(ctx: commands.Context, exception): logging.error(f"ctx.message.content: {ctx.message.content}") logging.error(f"ctx.args: {ctx.args}") logging.error(f"ctx.command_failed: {ctx.command_failed}") if not ctx.command: return await ctx.channel.send(exception) bot.run(DISCORD_BOT_TOKEN)
# Module version version_info = (0, 6, 0) # Module version stage suffix map _specifier_ = {'alpha': 'a', 'beta': 'b', 'candidate': 'rc', 'final': ''} # Module version accessible using ipyspeck.__version__ __version__ = '%s.%s.%s'%(version_info[0], version_info[1], version_info[2])
# DROP TABLES staging_events_table_drop = "drop table if exists s_songplay_event;" staging_songs_table_drop = "drop table if exists s_song;" songplay_table_drop = "drop table if exists f_songplay;" user_table_drop = "drop table if exists d_user;" song_table_drop = "drop table if exists d_song;" artist_table_drop = "drop table if exists d_artist;" time_table_drop = "drop table if exists d_time;" # CREATE TABLES # songplay_id is always 64 characters (hex digest of sha256 hash) staging_events_table_create= (""" create table if not exists s_songplay_event ( songplay_id varchar(64), artist text, auth text, first_name text, item_in_session integer, last_name text, gender char(1), length decimal, level text, location text, method text, page text, registration decimal, session_id integer, song text, status smallint, timestamp text, year smallint, week smallint, month smallint, day smallint, hour smallint, weekday smallint, user_agent text, user_id text ); """) staging_songs_table_create = (""" create table if not exists s_song ( artist_id varchar(18), artist_location varchar(96), artist_latitude decimal, artist_longitude decimal, artist_name varchar(256), duration decimal, num_songs smallint, song_id varchar(18), title varchar(256), year smallint ); """) songplay_table_create = (""" create table if not exists f_songplay ( songplay_id text primary key not null, start_time text not null references d_time(start_time), user_id text not null references d_user(user_id), artist_id text references d_artist(artist_id), song_id text references d_song(song_id), level text, session_id text, location text, user_agent text ); """) user_table_create = (""" create table if not exists d_user ( user_id text primary key not null, first_name text, last_name text, gender text, level text ); """) song_table_create = (""" create table if not exists d_song ( song_id text primary key not null, title text, artist_id text, year text, duration text ); create index idx_song_title on d_song(title); """) artist_table_create = (""" create table if not exists d_artist ( artist_id text primary key not null, name text, location text, latitude text, longitude text ); create index idx_artist_name on d_artist(name); """) time_table_create = (""" create table if not exists d_time ( start_time text primary key not null, hour text, day text, week text, month text, year text, weekday text ); """) # STAGING TABLES staging_events_copy = (""" insert into s_songplay_event ( songplay_id, artist, auth, first_name, item_in_session, last_name, gender, length, level, location, method, page, registration, session_id, song, status, timestamp, year, week, month, day, hour, weekday, user_agent, user_id ) values (%s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s) on conflict do nothing; """) staging_songs_copy = (""" insert into s_song ( artist_id, artist_latitude, artist_location, artist_longitude, artist_name, duration, num_songs, song_id, title, year ) values (%s, %s, %s, %s, %s, %s, %s, %s, %s, %s) on conflict do nothing; """) # FINAL TABLES songplay_table_insert = (""" insert into f_songplay (songplay_id, start_time, user_id, artist_id, song_id, level, session_id, location, user_agent) select songplay_id, timestamp, user_id, (select artist_id from d_artist d where d.name = artist limit 1) as artist_id, (select song_id from d_song d where d.artist_id = artist_id and d.title = song limit 1), level, session_id, location, user_agent from s_songplay_event; """) user_table_insert = (""" insert into d_user (user_id, first_name, last_name, gender, level) select distinct(user_id), first_name, last_name, gender, level from s_songplay_event on conflict do nothing; """) song_table_insert = (""" insert into d_song (song_id, title, artist_id, year, duration) select distinct(song_id), title, artist_id, year, duration from s_song on conflict do nothing; """) artist_table_insert = (""" insert into d_artist (artist_id, name, location, latitude, longitude) select distinct(artist_id), artist_name, artist_location, artist_latitude, artist_longitude from s_song on conflict do nothing; """) time_table_insert = (""" insert into d_time (start_time, year, week, month, day, hour, weekday) select distinct(timestamp), year, week, month, day, hour, weekday from s_songplay_event on conflict do nothing; """) # QUERY LISTS create_table_queries = [staging_events_table_create, staging_songs_table_create, user_table_create, song_table_create, artist_table_create, time_table_create, songplay_table_create] drop_table_queries = [staging_events_table_drop, staging_songs_table_drop, songplay_table_drop, user_table_drop, song_table_drop, artist_table_drop, time_table_drop] copy_table_queries = [staging_events_copy, staging_songs_copy] insert_table_queries = [user_table_insert, song_table_insert, artist_table_insert, time_table_insert, songplay_table_insert]
''' Created on Sep 6, 2021 @author: mhindle ''' import numpy as np import numbers from typing import Tuple, List, Dict, Union, Set import itertools from collections import defaultdict import pandas as pd class JointAllellicDistribution(object): def __init__(self, snp_ordered, chromosome2snp=None, pseudocount = 1, surround_size=1): self.pseudocount = pseudocount self.frequency: Dict[Tuple[str,int],Dict[Tuple[str,int],Dict[Tuple[str,int],int]]] = dict() self.n_observations: Dict[Tuple[str,str,str]] = defaultdict(int) self.surround_size = surround_size self.window_size = (surround_size*2)+1 self.snp_ordered = snp_ordered self.chromosome2snp = chromosome2snp def getWindow(self, targetSnp): ''' targetSnp is the snp around which to extract the symetric window of +- window_size ''' targetpos = self.snp_ordered.index(targetSnp) startpos_snp = targetpos-self.surround_size if startpos_snp < 0: startpos_snp = 0 endpos_snp = targetpos+self.surround_size+1 if endpos_snp >= len(self.snp_ordered): endpos_snp = len(self.snp_ordered)-1 snpWindow = self.snp_ordered[startpos_snp:endpos_snp] if self.chromosome2snp is not None: targetchr = self.chromosome2snp[targetSnp] return([snpId for snpId in snpWindow if self.chromosome2snp[snpId] == targetchr]) return(snpWindow) def getCountTable(self, observedstates: dict, targetSnp): all_obs = [(snpid,observedstates[snpid]) for snpid in self.getWindow(targetSnp)] def copypastefunc(x): return([(snpid,state) if snpid != targetSnp else (targetSnp, x) for snpid,state in all_obs]) for state, query in enumerate(list(map(copypastefunc, [0,1,2]))): #print("%s == %s" % (state, query)) workinghash = self.frequency for item in query: workinghash = workinghash[item] if "obs" in workinghash: yield workinghash["obs"] #it should be the result else: print("query %s" % query) print("first %s" % self.frequency[query[0]]) print("workinghash %s" % workinghash) print("item %s" % "_".join(map(str,item))) raise Exception("incomplete traversal of nested hash: final %s state %s" % (workinghash, state)) def countJointFrq(self, table, mask, column_names: List[str], conditions_index=[0,1,2,9]): column_names = np.array(column_names) subset = table[np.all(mask,axis=1),:] for values in list(itertools.product(conditions_index, repeat=self.window_size)): conditions = list(zip(column_names, values)) nine_truth = np.ones((subset.shape[0],1), dtype=bool) rows_that_meet = np.logical_and.reduce([nine_truth if value == 9 else np.equal(subset[:,column_names == snp],value) for snp,value in conditions]) keys = list(zip(column_names, values)) obs = np.count_nonzero(rows_that_meet) self.recurse_set_dict(self.frequency, keys, obs) if 9 not in values: # only count complete real value arrays self.n_observations[tuple(column_names)] += (obs+self.pseudocount) # this we keep track of how many observations there have been for these three snps def recurse_set_dict(self, d, queue, value): f = queue.pop(0) if len(queue) > 0: if f not in d: d[f] = dict() self.recurse_set_dict(d[f], queue, value) else: if f not in d: d[f] = dict() if "obs" not in d[f]: d[f]["obs"] = value+self.pseudocount # we record the observations for this state combo elif d[f]["obs"] != value+self.pseudocount: raise Exception("overwriting value %s with %s " % (d[f]["obs"], value)) def countJointFrqAll(self, table:pd.DataFrame, mask=None): ''' table expect pandas Dataframe with columns as snpids and rows being observations mask expect numpy bool matrix but will deal with pandas bool Dataframe ''' if mask is None: mask = np.ones(table.shape,dtype=bool) elif mask is pd.DataFrame: mask = mask.to_numpy(dtype=bool) for targetSnp in self.snp_ordered: snp_window = self.getWindow(targetSnp) indexofsnps = [x in snp_window for x in table.columns] self.countJointFrq(table.loc[:,snp_window].to_numpy(dtype=int), mask[:,indexofsnps], snp_window)
import numpy as np import scipy.stats as stats import pylab as pl h = sorted({2.083, 0.315, 1.00e-03, 3.27, 0.929, 2.251, 0.867, 2.727, 0.156, 0.023, 0.081, 6.157, 2.764, 0.586, 1.374, 0.025, 4.015, 0.064, 0.777, 1.783, 0.347, 0.782, 0.391, 3.807, 0.569, 0.344, 0.434, 4.266, 1.031, 0.954, 5.396, 0.216, 1.217, 4.754, 1.205, 0.881, 0.257, 0.122, 5.127, 0.706, 1.893, 5.18, 0.308, 1.319, 0.039, 2.313, 0.985, 1.528, 2.533, 1.235, 0.477, 2.756, 1.206, 1.2, 1.444, 0.941, 3.186, 1.521, 3.631, 2.742, 0.425, 0.551, 0.751, 0.697, 0.333, 2.139, 1.05, 0.041, 0.413, 1.679, 0.773, 0.212, 0.115, 0.081, 1.647, 0.97, 1.12, 0.002, 0.114, 6.603, 0.293, 0.358, 1.031, 0.226, 1.00E-0, 3.388, 1.68, 1.682, 0.055, 0.91, 0.81, 0.915, 0.774, 4.572, 4.081, 1.403, 1.204, 0.181, 1.526, 0.22}) #sorted fit = stats.norm.pdf(h, np.mean(h), np.std(h)) # this is a fitting indeed pl.plot(h, fit, '-o') pl.hist(h, normed=True, bins=np.arange(0, 7, .2)) # use this to draw histogram of your data pl.show() # use may also need add this
import random import logging import unittest from unittest import mock from talkgenerator.schema import slide_schemas from talkgenerator import generator from talkgenerator.slide import powerpoint_slide_creator from talkgenerator.util import os_util class TestTalkGenerator(unittest.TestCase): def setUp(self): random.seed(1) self.default_args = mock.Mock() self.default_args.configure_mock(topic="cat") self.default_args.configure_mock(num_slides=3) self.default_args.configure_mock(schema="default") self.default_args.configure_mock(title=None) self.default_args.configure_mock(parallel=True) self.default_args.configure_mock( output_folder=os_util.to_actual_file("../output/test/") ) self.default_args.configure_mock(open_ppt=False) self.default_args.configure_mock(save_ppt=True) self.default_args.configure_mock(int_seed=123) def test_serial(self): self.default_args.configure_mock(parallel=False) ppt, _, _ = generator.generate_presentation_using_cli_arguments( self.default_args ) self.assertEqual(3, len(ppt.slides)) def test_to_dictionary(self): _, slide_deck, _ = generator.generate_presentation( schema="default", slides=3, topic="cat", title=None, presenter=None, parallel=True, int_seed=123, save_ppt=False, open_ppt=False, print_logs=False, ) slides_dict = slide_deck.to_slide_deck_dictionary() logging.info(slides_dict) self.assertIsNotNone(slides_dict) def test_all_slide_generators(self): basic_presentation_context = { "topic": "dog", "seed": "cat", "presenter": "An O. Nymous", "title": "Mock title", } presentation = powerpoint_slide_creator.create_new_powerpoint() for slide_generator in slide_schemas.all_slide_generators: logging.info("Testing Slide Generator: {}".format(slide_generator)) random.seed(123) slide, _ = slide_generator.generate( basic_presentation_context, [] ) slide.create_powerpoint_slide(presentation) if __name__ == "__main__": unittest.main()
# Copyright (C) 2019 Google Inc. # Licensed under http://www.apache.org/licenses/LICENSE-2.0 <see LICENSE file> """ Model for labels association table.""" from sqlalchemy import orm from sqlalchemy.orm import validates from ggrc import db from ggrc.models import mixins from ggrc.models import reflection from ggrc.models.mixins import base from ggrc.fulltext.mixin import Indexed class Label(base.ContextRBAC, mixins.Base, db.Model, Indexed): """Represent object labels""" __tablename__ = 'labels' _fulltext_attrs = [ 'name', 'object_type', ] @validates('name') def validate_name(self, key, value): """Validates and cleans name that has leading/trailing spaces""" # pylint: disable=unused-argument,no-self-use return value if value is None else value.strip() name = db.Column(db.String, nullable=False) object_type = db.Column(db.String) _api_attrs = reflection.ApiAttributes("name") _extra_table_args = [ db.UniqueConstraint('name', 'object_type'), ] @classmethod def indexed_query(cls): return super(Label, cls).indexed_query().options( orm.Load(cls).load_only("name", "object_type"), )
from django.utils.translation import ugettext_lazy as _ HTTP_STATUS_CODES = ( # Infomational (100, _('Continue')), (101, _('Switching Protocols')), (102, _('Processing (WebDAV)')), # Success (200, _('OK')), (201, _('Created')), (202, _('Accepted')), (203, _('Non-Authoritative Information')), (204, _('No Content')), (205, _('Reset Content')), (206, _('Partial Content')), (207, _('Multi-Status (WebDAV)')), # Redirection (300, _('Multiple Choices')), (301, _('Moved Permanently')), (302, _('Found')), (303, _('See Other')), (304, _('Not Modified')), (305, _('Use Proxy')), (306, _('Switch Proxy')), # No longer used (307, _('Temporary Redirect')), # Client Error (400, _('Bad Request')), (401, _('Unauthorized')), (402, _('Payment Required')), (403, _('Forbidden')), (404, _('Not Found')), (405, _('Method Not Allowed')), (406, _('Not Acceptable')), (407, _('Proxy Authentication Required')), (408, _('Request Timeout')), (409, _('Conflict')), (410, _('Gone')), (411, _('Length Required')), (412, _('Precondition Failed')), (413, _('Request Entity Too Large')), (414, _('Request-URI Too Long')), (415, _('Unsupported Media Type')), (416, _('Requested Range Not Satisfiable')), (417, _('Expectation Failed')), (418, _('I\'m a teapot')), # April Fools (422, _('Unprocessable Entity (WebDAV)')), (423, _('Locked (WebDAV)')), (424, _('Failed Dependency (WebDAV)')), (425, _('Unordered Collection')), (426, _('Upgrade Required')), (449, _('Retry With')), # Server Error (500, _('Internal Server Error')), (501, _('Not Implemented')), (502, _('Bad Gateway')), (503, _('Service Unavailable')), (504, _('Gateway Timeout')), (505, _('HTTP Version Not Supported')), (506, _('Variant Also Negotiates')), (507, _('Insufficient Storage (WebDAV)')), (509, _('Bandwidth Limit Exceeded')), (510, _('Not Extended')), ) from request.router import patterns browsers = patterns(('Unknown', {}), # Browsers (r'AOL (?P<version>[\d+\.\d+]+)', 'AOL'), (r'Mozilla/(?P<mozilla_version>[-.\w]+) \(compatible; ( ?)MSIE (?P<msie_version>[-.\w]+);( ?)( ?)America Online Browser (?P<version>[-.\w]+);', 'AOL'), (r'Camino/(?P<version>[-.\w]+)', 'Camino'), (r'Chrome/(?P<version>[-.\w]+)', 'Google Chrome'), (r'Firefox(/(?P<version>[-.\w]+)?)', 'Firefox'), (r'Mozilla/(?P<mozilla_version>[-.\w]+) \(compatible; ( ?)MSIE (?P<version>[-.\w]+);( ?)( ?)(Win|Mac)', 'Internet Explorer'), (r'Konqueror/(?P<version>[-.\w]+)', 'Konqueror'), (r'Opera( |/)(?P<version>[-.\w]+)', 'Opera'), (r'OmniWeb(/(?P<version>[-.\w]+)?)', 'OmniWeb'), (r'Safari/(?P<version>[-.\w]+)', 'Safari'), (r'(Netscape([\d]?)|Navigator)/(?P<version>[-.\w]+)', 'Netscape'), (r'Wget/(?P<version>[-.\w]+)', 'Wget'), (r'Minefield(/(?P<version>[-.\w]+)?)', 'Firefox'), # Firefox nightly trunk builds (r'Shiretoko(/(?P<version>[-.\w]+)?)', 'Firefox'), # Firefox testing browser (r'GranParadiso(/(?P<version>[-.\w]+)?)', 'Firefox'), # Firefox testing browser (r'Iceweasel(/(?P<version>[-.\w]+)?)', 'Firefox'), # Debian re-branded firefox # RSS Reader (r'(NetNewsWire|NewsGatorOnline)/(?P<version>[-.\w]+)', 'NetNewsWire'), (r'Feedfetcher-Google', 'Google Reader'), # Bots (r'Googlebot', 'Google'), (r'Yahoo! Slurp', 'Yahoo'), (r'msnbot', 'MSN Bot'), (r'(Baiduspider|BaiduImagespider)', 'Baiduspider'), (r'Ask Jeeves', 'Ask Jeeves'), (r'FollowSite', 'FollowSite'), (r'WebAlta Crawler', 'WebAlta Crawler'), (r'ScoutJet', 'ScoutJet'), (r'SurveyBot', 'domaintools.com'), (r'Gigabot', 'Gigabot'), (r'Speedy Spider', 'entireweb'), (r'discobot', 'Discovery Engine'), (r'Purebot(/(?P<version>[-.\w]+)?);', 'Purity search'), (r'Yandex(/(?P<version>[-.\w]+)?)', 'Yandex'), (r'PostRank(/(?P<version>[-.\w]+)?)', 'PostRank'), (r'Mozilla/(?P<mozilla_version>[-.\w]+) \(compatible; DotBot/(?P<version>[-.\w]+); http://www.dotnetdotcom.org/, crawler@dotnetdotcom.org\)', 'Dotbot'), (r'IrssiUrlLog(/(?P<version>[-.\w]+)?)', 'irssi'), (r'Linguee Bot \(http://www.linguee.com/bot; bot@linguee.com\)', 'Linguee'), (r'Sphider', 'Sphider'), # Other (r'Mediapartners-Google', 'Google Ads'), (r'Apple-PubSub', 'Apple-PubSub'), (r'Python-urllib', 'Python'), ) engines = patterns(None, (r'^https?:\/\/([\.\w]+)?yahoo.*(?:&|\?)p=(?P<keywords>[\+-_\w]+)', 'Yahoo'), (r'^https?:\/\/([\.\w]+)?google.*(?:&|\?)q=(?P<keywords>[\+-_\w]+)', 'Google'), (r'^https?:\/\/([\.\w]+)?bing.*(?:&|\?)q=(?P<keywords>[\+-_\w]+)', 'Bing'), )
from __main__ import db #from app import db class Prospect(db.Model): id = db.Column(db.Integer, primary_key=True) name = db.Column(db.String(120), nullable=True) email = db.Column(db.String(120), nullable=False) gender = db.Column(db.String(20), nullable=False) age = db.Column(db.Integer, nullable=False) for_event = db.Column(db.String(120), nullable=False) def __repr__(self): return '<Prospect %r>' % self.name def to_dict(self): return { 'email': self.email, 'age': self.age, 'gender': self.gender, 'name': self.name, 'for_event': self.for_event }
import unittest from unittest.mock import Mock import json from pathlib import Path from chris.types import CUBEAddress, CUBEToken from caw.login.store import AbstractSecretStore, KeyringSecretStore, PlaintextSecretStore, use_keyring from caw.login.manager import LoginManager from tempfile import NamedTemporaryFile class TestSecretStore(unittest.TestCase): def can_save_clear(self, store: AbstractSecretStore): store.set('http://localhost:8910/api/v1/', 'abcdefg') stored = store.get('http://localhost:8910/api/v1/') self.assertEqual(stored, 'abcdefg', msg='Stored secret does not match what was originally set.') store.clear('http://localhost:8910/api/v1/') self.assertIsNone(store.get('http://localhost:8910/api/v1/'), msg='store.clear did not work.') @unittest.skipUnless(use_keyring, 'keyring not supported') def test_keyring(self): self.can_save_clear(KeyringSecretStore({})) def test_plaintext(self): self.can_save_clear(PlaintextSecretStore({})) class TestLoginManager(unittest.TestCase): def setUp(self) -> None: with NamedTemporaryFile(suffix='.json', delete=True) as self.savefile: pass self.savefile = Path(self.savefile.name) self.store: Mock = Mock(spec=AbstractSecretStore) wrapper = Mock(return_value=self.store, spec=AbstractSecretStore.__init__) self.lm = LoginManager(wrapper, self.savefile) # type: ignore def getJson(self) -> dict: """ Load the file written to by the ``LoginManager``. """ with self.savefile.open('r') as f: return json.load(f) def test_default_address(self): self.lm.login(CUBEAddress('https://example.com/api/v1/'), CUBEToken('berry')) self.store.set.assert_called_once_with(CUBEAddress('https://example.com/api/v1/'), CUBEToken('berry')) content = self.getJson() self.assertIn('defaultAddress', content, msg='Login manager did not set the CUBE address as default.') self.assertEqual(content['defaultAddress'], 'https://example.com/api/v1/', msg='Default address is incorrect.') self.store.get = Mock(return_value='berry') self.assertEqual(self.lm.get(), CUBEToken('berry'), msg='Retrieved password for default CUBE address is incorrect.') self.lm.logout() self.store.clear.assert_called_once_with('https://example.com/api/v1/') self.assertNotIn('defaultAddress', self.getJson(), msg='Default address not removed after logout.')
# RESPUESTA 1 paso 1 import constante def gcl(x_n): m = 232 # modulus a = 1013904223 # multiplier c = 1664525 # increment x = ((a * x_n) + c) % m return x x_n = constante.SEMILLA for _ in range(6): x_n = gcl(x_n) print(x_n)
import re from typing import List class SentenceTokenizer: PERIOD = "。" PERIOD_SPECIAL = "__PERIOD__" PATTERNS = [ re.compile(r"(.*?)"), re.compile(r"「.*?」"), ] @staticmethod def conv_period(item) -> str: return item.group(0).replace(SentenceTokenizer.PERIOD, SentenceTokenizer.PERIOD_SPECIAL) def tokenize(self, document) -> List[str]: for pattern in SentenceTokenizer.PATTERNS: document = re.sub(pattern, self.conv_period, document) result = [] for line in document.split("\n"): line = line.rstrip() line = line.replace("\n", "") line = line.replace("\r", "") line = line.replace("。", "。\n") sentences = line.split("\n") for sentence in sentences: if not sentence: continue period_special = SentenceTokenizer.PERIOD_SPECIAL period = SentenceTokenizer.PERIOD sentence = sentence.replace(period_special, period) result.append(sentence) return result
# SPDX-FileCopyrightText: 2018 Mikey Sklar for Adafruit Industries # # SPDX-License-Identifier: MIT # Mindfulness Bracelet sketch for Adafruit Gemma. Briefly runs # vibrating motor (connected through transistor) at regular intervals. import time import board from digitalio import DigitalInOut, Direction # vibrating disc mini motor disc connected on D2 vibrating_disc = DigitalInOut(board.D1) vibrating_disc.direction = Direction.OUTPUT on_time = 2 # Vibration motor run time, in seconds interval = 60 # Time between reminders, in seconds start_time = time.monotonic() while True: timer = time.monotonic() - start_time if timer >= interval and timer <= (interval + on_time): vibrating_disc.value = True elif timer >= (interval + on_time): vibrating_disc.value = False start_time = time.monotonic()
from torchutils.callbacks.callbacks import *
# -*- coding: utf-8 -*- from cadnano.extras.math.vector import normalToPlane, normalizeV3, applyMatrix3, applyMatrix4 from cadnano.extras.math.matrix3 import getNormalMatrix from cadnano.extras.math.face import Face class Solid(object): def __init__(self, name): self.name = name self.vertices = [] self.faces = [] self.face_vertex_uvs = [[]] # end def def addFace(self, v1, v2, v3, normal=None): """ List vertices using right hand rule so that unit normal will point out of the surface vertices are given by index into vertices list Args: v1 (Vector3): v2 (Vector3): v3 (Vector3): normal (Vector3): face normal """ # for v in vertices: # if v is not in self.vertices: # self.addVertex(v) vrts = self.vertices if normal is None: normal = normalToPlane(vrts[v1], vrts[v2], vrts[v3]) self.faces.append(Face(normal, v1, v2, v3)) # end def def addVertex(self, vertex): """ Add a vertex to the Solid Args: vertex (Vector3): """ self.vertices.append(vertex) # end def def applyMatrix(self, matrix4): normal_matrix = getNormalMatrix(matrix4) verts = self.vertices for i in range(len(verts)): vertex = verts[i] verts[i] = applyMatrix4(matrix4, vertex) faces = self.faces for i in range(len(faces)): face = faces[i] normal = normalizeV3(applyMatrix3(normal_matrix, face.normal)) faces[i] = Face(normal, face.v1, face.v2, face.v3) def computeFaceNormals(self): vrts = self.vertices for i in range(len(self.faces)): face = self.faces[i] normal = normalToPlane(vrts[face.v1], vrts[face.v2], vrts[face.v3]) self.faces[i] = Face(normal, face.v1, face.v2, face.v3) # end for # end class
#!/usr/bin/env python import argparse import sys from collections import defaultdict DEFAULT_OUT = "stackcollapse-merged.txt" def merge(files, dst): data = defaultdict(lambda: 0) for file in files: with open(file, "r") as fp: for line in fp.readlines(): stack, hits = line.rsplit(" ", 1) hits = int(hits) data[stack] += hits with open(dst, "w") as fp: for stack, hits in data.items(): print(stack, hits, file=fp) def main(): parser = argparse.ArgumentParser(sys.argv[0]) parser = argparse.ArgumentParser( description="merge multiple stackcollapes into a single one" ) parser.add_argument( "files", metavar="FILE", type=str, nargs="+", help="a stackcollapse file" ) parser.add_argument( "-o", "--out", default=DEFAULT_OUT, help=f"write resulting stackcollapse to this file (default: {DEFAULT_OUT})", ) opts = parser.parse_args(sys.argv[1:]) merge(opts.files, opts.out) if __name__ == "__main__": main()
# 023 # Ask the user to type in the first line of a nursery rhyme and display # the length of the string. Ask for a starting number and an # ending number and then display just that section of the text # (remember Python starts counting from 0 and not 1). rhyme = list() while True: try: if not rhyme: rhyme = input('Please enter the first line of a nursery ' 'rhyme: ') print(f'There are {len(rhyme)} characters in that line') from_to = input('Please type in the starting character' 'you want to the final character: ') from_to = from_to.split(' ') for index, value in enumerate(from_to): from_to[index] = int(value) print(rhyme[from_to[0] - 1:from_to[1] + 1]) break except Exception as e: print(e)
from __future__ import division import math class RunningMean: """Compute running mean. This class computes running mean. Recoded from https://www.johndcook.com/blog/skewness_kurtosis/ Example ------- >>> from RunningMean import RunningMean >>> s = RunningMean() >>> s.mean() 0.0 >>> s.count() 0 >>> print(s([1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0])) 5.0 >>> s.mean() 5.0 >>> s.count() 9 >>> print(s.clear()) 0.0 >>> s.mean() 0.0 >>> s.count() 0 >>> print(s(100)) 100.0 >>> print(s([0.0])) 50.0 """ def __init__(self): self.clear() def __call__(self, input): """Update running mean with input Parameters ---------- input : list or scalar Returns ------- self Modified self object """ try: for scalar in input: self.update(scalar) except TypeError: self.update(input) return self def __str__(self): return "{}".format(self.mean()) def clear(self): """Clear state and running mean. Returns ------- self Modified self object """ self.n = 0 self.M1 = 0.0 return self def update(self, input): """Update running mean with input Parameters ---------- input : scalar Returns ------- self Modified self object """ self.n += 1 delta = float(input) - self.M1 delta_n = delta / self.n self.M1 += delta_n return self def count(self): """Return count. Returns ------- int Number of data points received. """ return self.n def mean(self): """Return running mean. Returns ------- float Running mean. """ return self.M1 if __name__ == "__main__": import doctest import sys (failure_count, test_count) = doctest.testmod() sys.exit(failure_count)
#! /usr/bin/env python """HistToGNU.py Convert saved binary pickle of histograms to gnu plot output Usage: %(program)s [options] [histogrampicklefile ...] reads pickle filename from options if not specified writes to stdout """ globalOptions = """ set grid set xtics 5 set xrange [0.0:100.0] """ dataSetOptions = "smooth unique" import sys from spambayes.Options import options from spambayes.safepickle import pickle_read, pickle_write program = sys.argv[0] def usage(code, msg=''): """Print usage message and sys.exit(code).""" if msg: print >> sys.stderr, msg print >> sys.stderr print >> sys.stderr, __doc__ % globals() sys.exit(code) def loadHist(path): """Load the histogram pickle object""" return pickle_read(path) def outputHist(hist, f=sys.stdout): """Output the Hist object to file f""" hist.fill_buckets() for i in range(len(hist.buckets)): n = hist.buckets[i] f.write("%.3f %d\n" % ( (100.0 * i) / hist.nbuckets, n)) def plot(files): """given a list of files, create gnu-plot file""" import cStringIO cmd = cStringIO.StringIO() cmd.write(globalOptions) args = [] for file in files: args.append("""'-' %s title "%s" """ % (dataSetOptions, file)) cmd.write('plot %s\n' % ",".join(args)) for file in files: outputHist(loadHist(file), cmd) cmd.write('e\n') cmd.write('pause 100\n') print cmd.getvalue() def main(): import getopt try: opts, args = getopt.getopt(sys.argv[1:], '', []) except getopt.error, msg: usage(1, msg) if not args and options["TestDriver", "save_histogram_pickles"]: args = [] for f in ('ham', 'spam'): fname = "%s_%shist.pik" % (options["TestDriver", "pickle_basename"], f) args.append(fname) if args: plot(args) else: print "could not locate any files to plot" if __name__ == "__main__": main()
import sys import harold_packaging_example.util.utils as utils def main(): for arg in sys.argv[1:]: print(utils.translate(arg)) if __name__ == '__main__': main()
import base64 import io from fdk import response import json import logging import oci from .base import BaseDispatch from .dispatch import Dispatcher from .service import SlackService, Agent, Channel from .text import Text LOG = logging.getLogger(__name__) SERVICE = None TOKEN = None TEAM = None NAMESPACE, BUCKET = None, None def init(cfg): global SERVICE, TOKEN, TEAM, NAMESPACE, BUCKET if TEAM is None: TEAM = load_secret(cfg, 'TEAM') if SERVICE is None: SERVICE = SlackService(team=TEAM, bot_oauth=load_secret(cfg, 'BOT_OAUTH'), user_oauth=load_secret(cfg, 'USER_OAUTH')) if TOKEN is None: TOKEN = load_secret(cfg, 'TOKEN') if NAMESPACE is None: NAMESPACE = cfg['NAMESPACE'] if BUCKET is None: BUCKET = cfg['BUCKET'] def load_secret(cfg, setting): """If we have KMS_KEY and KMS_EP defined, use those to decrypt the given secret Otherwise, pull the value out as plaintext.""" value = cfg.get(setting) if value is None: return value # Retrieve key OCID and endpoint key = cfg.get("KMS_KEY") endpoint = cfg.get("KMS_EP") if key is None and endpoint is None: return value # Create decryption client signer = oci.auth.signers.get_resource_principals_signer() client = oci.key_management.KmsCryptoClient({}, endpoint, signer=signer) # The plaintext is returned as base64-encoded data. Decrypt it (providing a byte sequence) # and then produce a UTF-8 string from the result. return base64.b64decode(client.decrypt(oci.key_management.models.DecryptDataDetails( key_id=key, ciphertext=value)).data.plaintext).decode("utf-8") class Bot(BaseDispatch): pass def handle(ctx, data: io.BytesIO, bot_class=Bot): init(ctx.Config()) try: args = json.loads(data.getvalue()) LOG.debug('args are %s', {k: args[k] for k in args if k != 'token'}) token = args.get('token') if token != TOKEN: return response.Response(ctx, status_code=401) if args.get('challenge') is not None: return response.Response(ctx, status_code=200, response_data=args['challenge']) team = args.get('team_id') if team != TEAM: return response.Response(ctx, status_code=404) if SERVICE is None: return response.Response(ctx, status_code=404) if args.get('type') == 'event_callback': event = args.get('event', {}) if event.get('type') == 'app_mention': pass elif event.get('type') == 'message' and event.get('subtype') is None: text = Text.parse(event.get('text', ''), srv=SERVICE) text.ts = event.get('ts') sender = Agent(id=event.get('user')) channel = Channel(id=event.get('channel')) if event.get('channel_type') == 'group': channel = channel.replace(is_private=True) elif event.get('channel_type') == 'im': channel = channel.replace(is_im=True) receivers = [Agent(id=rcv, is_bot=True) for rcv in args.get('authed_users', [])] rp = oci.auth.signers.get_resource_principals_signer() dispatcher = Dispatcher(srv=SERVICE, default=bot_class, factory=bot_class.load, signer=rp, namespace=NAMESPACE, bucket=BUCKET) dispatcher.dispatch(sender=sender, channel=channel, receivers=receivers, text=text) except Exception as e: LOG.exception("Problem during dispatch: %r", e) return response.Response(ctx, status_code=500) return response.Response(ctx, status_code=200)
from django.contrib import admin from animals.models import Animal, Breed, Pet class AnimalAdmin(admin.ModelAdmin): list_display = ('name', 'scientific_name',) search_fields = ('name', 'scientific_name',) ordering = ('name',) class BreedAdmin(admin.ModelAdmin): list_display = ('name', 'animal',) search_fields = ('name',) list_filter = ('animal__name',) ordering = ('name',) class PetAdmin(admin.ModelAdmin): list_display = ('name', 'animal', 'breed', 'birthday',) search_fields = ('name', 'birthday', 'breed__name', 'breed__animal__name') list_filter = ('breed__animal__name',) ordering = ('name',) def animal(self, obj): return obj.breed.animal animal.admin_order_field = 'breed__animal' admin.site.register(Animal, AnimalAdmin) admin.site.register(Breed, BreedAdmin) admin.site.register(Pet, PetAdmin)
# ------------------------------------------------------------------------------ # Copyright 2020 Forschungszentrum Jülich GmbH and Aix-Marseille Université # "Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements; and to You under the Apache License, # Version 2.0. " # # Forschungszentrum Jülich # Institute: Institute for Advanced Simulation (IAS) # Section: Jülich Supercomputing Centre (JSC) # Division: High Performance Computing in Neuroscience # Laboratory: Simulation Laboratory Neuroscience # Team: Multi-scale Simulation and Design # ------------------------------------------------------------------------------ from EBRAINS_RichEndpoint.steering.steering_menu_cli import SteeringMenuCLI from EBRAINS_RichEndpoint.Application_Companion.common_enums import Response class SteeringMenuCLIHandler: ''' Manages the Menu related functionality. NOTE: It is a POC as of now, and later will be extended to may be a separate process/thread. ''' def __init__(self) -> None: self.__steering_menu_cli = SteeringMenuCLI() self.__current_choice = None @property def current_selection(self): return self.__current_choice def display_steering_menu(self): print('\n'+'*' * 33, flush=True) print('*\t Steering Menu \t\t*') print('*' * 33) index = 1 for item in self.__steering_menu_cli.steering_menu_items: print(f'{index}. {self.__steering_menu_cli.steering_menu[item]} ') index += 1 print('\n') def get_user_choice(self): choice = input("please enter the choice number [1-3]: ") self.__current_choice = self.__convert_str_to_int(choice) return self.current_selection def __convert_str_to_int(self, val_str): try: val_int = int(val_str) return val_int except ValueError: return Response.ERROR def parse_user_choice(self, user_choice): if user_choice in self.__steering_menu_cli.steering_menu_items: return user_choice else: return Response.ERROR def get_menu_item(self, item): if item in self.__steering_menu_cli.steering_menu_items: return self.__steering_menu_cli.steering_menu[item] else: return Response.ERROR
class Empleado(object): puesto = "" def factory(clase): if clase == "Maestro": return Maestro() elif clase == "Vendedor": return Vendedor() elif clase == "Repatidor": return Repartidor() class Maestro(Empleado): puesto = "Maestro" def mensaje(self): return "Hola soy un Maestro" class Vendedor(Empleado): puesto = "Vendedor" def mensaje(self): return "Hola soy un Vendedor" class Repartidor(Empleado): puesto = "Repartidor" def mensaje(self): return "Hola soy un Repartidor" '''Entrada''' vend = Empleado.factory('Vendedor') print("Clase: {0}\n{1}".format(vend.puesto, vend.mensaje())) ''' Salida Esperada: Clase: Vendedor Hola soy un Vendedor '''
#!/usr/bin/env python import math import random import scanpy.api as sc import numpy as np from granatum_sdk import Granatum def main(): gn = Granatum() adata = gn.ann_data_from_assay(gn.get_import("assay")) num_cells_to_sample = gn.get_arg("num_cells_to_sample") random_seed = gn.get_arg("random_seed") np.random.seed(random_seed) num_cells_before = adata.shape[0] num_genes_before = adata.shape[1] if num_cells_to_sample > 0 and num_cells_to_sample < 1: num_cells_to_sample = round(num_cells_before * num_cells_to_sample) else: num_cells_to_sample = round(num_cells_to_sample) if num_cells_to_sample > num_cells_before: num_cells_to_sample = num_cells_before if num_cells_to_sample < 1: num_cells_to_sample = 1 sampled_cells_idxs = np.sort(np.random.choice(num_cells_before, num_cells_to_sample, replace=False)) adata = adata[sampled_cells_idxs, :] gn.add_result( "\n".join( [ "The assay before down-sampling has **{}** cells and {} genes.".format( num_cells_before, num_genes_before ), "", "The assay after down-sampling has **{}** cells and {} genes.".format(adata.shape[0], adata.shape[1]), ] ), type="markdown", ) gn.export(gn.assay_from_ann_data(adata), "Down-sampled Assay", dynamic=False) gn.commit() if __name__ == "__main__": main()
''' /******************************************************************************* * Copyright 2016-2019 Exactpro (Exactpro Systems Limited) * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. ******************************************************************************/ ''' from sklearn.feature_extraction.text import TfidfVectorizer from nltk.stem.snowball import SnowballStemmer from sklearn.feature_extraction import text from collections import OrderedDict from exactpro.cleaner import ClearData from exactpro.my_multithread import Multithreaded from sklearn import feature_selection from sklearn.feature_selection import SelectKBest import pandas from pathlib import Path from werkzeug.utils import secure_filename from exactpro.model import Model from exactpro.config_parser import SettingProvider from exactpro.model import Insert # calculation of: # THE TOP OF THE MOST FREQUENTLY USED TERMS # THE TOP OF THE MOST SIGNIFICANT TERMS # STAT INFO class StatInfo: # STAT INFO info calculation def get_statInfo(self, data, orig_data): try: # data type convertion for correct stat processing comments_ser = data['Comments'].apply(float) attachments_ser = data['Attachments'].apply(float) return {'total': str(orig_data['Issue_key'].count()), 'filtered': str(data['Issue_key'].count()), 'commentStat': {'max': str(comments_ser.max()), 'min': str(comments_ser.min()), 'mean': str(round(comments_ser.mean(), 3)), 'std': str(round(comments_ser.std(), 3)) }, 'attachmentStat': { 'max': str(attachments_ser.max()), 'min': str(attachments_ser.min()), 'mean': str(round(attachments_ser.mean(), 3)), 'std': str(round(attachments_ser.std(), 3)) }, 'ttrStat': { 'max': str(data['ttr'].max()), 'min': str(data['ttr'].min()), 'mean': str(round(data['ttr'].mean(), 3)), 'std': str(round(data['ttr'].std(), 3)) } } except KeyError: raise # THE TOP OF THE MOST FREQUENTLY USED TERMS info calculation def friquency_stat(self, data, sw=text.ENGLISH_STOP_WORDS): try: self.tfidf = StemmedTfidfVectorizer(norm='l2', sublinear_tf=True, min_df=1, stop_words=sw, analyzer='word', max_features=1000) self.multithreaded = Multithreaded() self.clear_data = ClearData() # description cleaning self.parall_data = self.multithreaded.parallelize(data['Description_tr'], self.clear_data.clean_descr) tfs = self.tfidf.fit_transform(self.parall_data) # train_bug = tfs.todense() # use it for sparse matrix self.idf = self.tfidf.idf_ # words coefficient self.voc_feat = dict(zip(self.tfidf.get_feature_names(), self.idf)) self.voc_feat_s = OrderedDict((k, v) for k, v in sorted(self.voc_feat.items(), key=lambda x: x[1], reverse=True)) return list(self.voc_feat_s.keys())[:100] # returns the first 100 words from the calculated list except Exception as e: raise Exception(str(e)) def top_terms(self, data, metric, field, sw=text.ENGLISH_STOP_WORDS): try: chi2 = feature_selection.chi2 tfidf = StemmedTfidfVectorizer(norm='l2', sublinear_tf=True, min_df=1, stop_words=sw, analyzer='word', max_features=1000) # StemmedTfidfVectorizer(norm='l2', sublinear_tf=True, min_df=1, stop_words=SW, analyzer='word', max_features = 1000, ngram_range=(2, 3)) # stemming + bigram # TfidfVectorizer(tokenizer=LemmaTokenizer(), norm='l2',sublinear_tf=True, min_df=10, max_df=0.5,stop_words=SW, analyzer='word', ngram_range=(2, 3)) # lemmatization + bigram # TfidfVectorizer(tokenizer=LemmaTokenizer(), norm='l2', sublinear_tf=True, min_df=10, max_df=0.5, stop_words=SW, analyzer='word') # lemmatization # StemmedTfidfVectorizer(norm='l2', sublinear_tf=True, min_df=1, stop_words=SW, analyzer='word', max_features = 1000) # stemming with additional settings # StemmedTfidfVectorizer(norm='l2', stop_words=SW, analyzer='word') # stemming self.bidata = pandas.get_dummies(data, prefix=[field], columns=[field]) # data binarisation self.multithreaded = Multithreaded() self.clear_data = ClearData() self.parall_data = self.multithreaded.parallelize(self.bidata['Description_tr'], self.clear_data.clean_descr) self.tfs = tfidf.fit_transform(self.parall_data) self.y = self.bidata[metric] self.selector = SelectKBest(score_func=chi2, k='all') # select the most significant terms self.selector.fit_transform(self.tfs, self.y) self.X_new = dict(zip(tfidf.get_feature_names(), self.selector.scores_)) self.temp_dict = OrderedDict((k, v) for k, v in sorted(self.X_new.items(), key=lambda x: x[1], reverse=True)) return list(self.temp_dict.keys())[:20] except Exception as e: raise Exception(str(e)) def get_topPriority(self, frame, field, sw): if field.split()[0] == 'Priority': return StatInfo.top_terms(self, frame, 'Priority_' + ' '.join(e for e in field.split()[1:]), 'Priority', sw) if field.split()[0] == 'Resolution': return StatInfo.top_terms(self, frame, 'Resolution_' + ' '.join(e for e in field.split()[1:]), 'Resolution', sw) # saving of finished calculations for significance top # reason: building the top of terms is too resource-consuming task def save_significanceTop(self, data, reference_to, significance_top, sw=text.ENGLISH_STOP_WORDS): if reference_to in significance_top.keys(): return significance_top[reference_to] else: significance_top[reference_to] = StatInfo.get_topPriority(self, data, reference_to, sw) return significance_top[reference_to] def max_data(self, frame, fields, resolution): try: self.count = 0 self.model = Model() self.setting_provader = SettingProvider('single_mod.ini') self.insert = Insert() self.dictionary = {} while self.count < frame.shape[0]: self.my_list = {} self.my_list['Summary'] = (frame['Summary'][self.count]) self.my_list['Priority'] = (frame['Priority'][self.count]) self.ttr = self.model.proc_text(frame['Description'][self.count], self.setting_provader.get_setting('single_mod.ini'.split('.')[0], 'ttr_col_class', False).split(','), 'ttr', str(Path(__file__).parents[2])+'/model/') self.my_list['ttr'] = (max(self.ttr, key=self.ttr.get)) for el in resolution: self.rez = self.model.proc_text(frame['Description'][self.count], self.setting_provader.get_setting('single_mod.ini'.split('.')[0], el+'_col_class', False).split(','), secure_filename(el), str(Path(__file__).parents[2])+'/model/') self.my_list[el] = (max(self.rez, key=self.rez.get)) self.area_prob = {} for area in fields: self.tmp = self.model.proc_text(frame['Description'][self.count], self.setting_provader.get_setting('single_mod.ini'.split('.')[0], 'binary_col_class', False).split(','), secure_filename(area), str(Path(__file__).parents[2])+'/model/') self.area_prob.update({area: float(self.tmp['1'])}) self.my_list['area_of_testing'] = [k for k, v in self.area_prob.items() if v > 0.5] if [k for k, v in self.area_prob.items() if v > 0.5] else 'no idea' self.dictionary[frame['Issue_key'][self.count]] = self.my_list self.count = self.count + 1 return self.dictionary except FileNotFoundError: raise except Exception: raise def mean_std_data(self, frame, fields, resolution): try: self.count = 0 self.model = Model() self.setting_provader = SettingProvider('single_mod.ini') self.resolution_fin = {el: {el: [], 'not_'+el: []} for el in resolution} self.ttr_fin = {k: [] for k in self.setting_provader.get_setting('single_mod.ini'.split('.')[0], 'ttr_col_class', False).split(',')} self.area_fin = {field: [] for field in fields} while self.count < frame.shape[0]: self.ttr = self.model.proc_text(frame['Description'][self.count], self.setting_provader.get_setting('single_mod.ini'.split('.')[0], 'ttr_col_class', False).split(','), 'ttr', str(Path(__file__).parents[2])+'/model/') for key in self.ttr_fin: self.ttr_fin[key].append(self.ttr[key]) for el in resolution: self.rez = self.model.proc_text(frame['Description'][self.count], ['not_'+el, el], el, str(Path(__file__).parents[2])+'/model/') self.resolution_fin[el][el].append(self.rez[el]) self.resolution_fin[el]['not_'+el].append(self.rez['not_'+el]) for area in fields: self.tmp = self.model.proc_text(frame['Description'][self.count], self.setting_provader.get_setting('single_mod.ini'.split('.')[0], 'binary_col_class', False).split(','), area, str(Path(__file__).parents[2])+'/model/') self.area_fin[area].append(float(self.tmp['1'])) self.count = self.count + 1 StatInfo.print_mean_std(self, self.resolution_fin) StatInfo.print_mean_std(self, self.ttr_fin) StatInfo.print_mean_std(self, self.area_fin) except FileNotFoundError: raise except Exception: raise def print_mean_std(self, obj): import numpy for el in obj: if isinstance(obj[el], list): print(el+'\nmean: '+str(numpy.mean(obj[el]))+'\n'+'std: '+str(numpy.std(obj[el]))) elif isinstance(obj[el], dict): StatInfo.print_mean_std(self, obj[el]) else: print(el+'\nfor {} only one value'.format(el)) class StemmedTfidfVectorizer(TfidfVectorizer): def build_analyzer(self): analyzer = super(TfidfVectorizer, self).build_analyzer() return lambda doc: (SnowballStemmer("english").stem(w) for w in analyzer(doc))
from turtle import Screen from snake import Snake from food import Food from scoreboard import Scoreboard import time WIDTH = 600 HEIGHT = 600 COLLISION_SEG_SIZE = 15 X_COLLISION = WIDTH/2 - COLLISION_SEG_SIZE Y_COLLISION = HEIGHT/2 - COLLISION_SEG_SIZE # Set up game screen: screen = Screen() screen.setup(width=WIDTH,height=HEIGHT) screen.bgcolor("black") screen.title("Snake") screen.tracer(0) # Set up Turtle game objects: snake = Snake() food = Food(WIDTH, HEIGHT) score = Scoreboard(HEIGHT) # Setup screen listener functions screen.listen() screen.onkey(snake.up, 'Up') screen.onkey(snake.down, 'Down') screen.onkey(snake.right, 'Right') screen.onkey(snake.left, 'Left') def game_over(): """Reset the Snake Game""" score.game_over() snake.reset() game_is_on = True # Basic game loop, refresh every 0.1 second while game_is_on: screen.update() time.sleep(0.1) snake.move() # detect collision with food compare two turtles if snake.head.distance(food) < COLLISION_SEG_SIZE: food.refresh() snake.extend() score.increase_score() # detect colison with walls: if (snake.head.xcor() > X_COLLISION or snake.head.xcor() < -X_COLLISION or snake.head.ycor() > Y_COLLISION or snake.head.ycor() < -Y_COLLISION): game_over() # detect colision with tail for segment in snake.snake_segments[1:]: if snake.head.distance(segment) < COLLISION_SEG_SIZE: game_over() screen.exitonclick()
__version__ = '0.9' from ._vulkan import *
import logging from datetime import datetime, timedelta from typing import Any, Optional, Union from privex.helpers.exceptions import CacheNotFound from privex.helpers.settings import DEFAULT_CACHE_TIMEOUT from privex.helpers.cache.CacheAdapter import CacheAdapter log = logging.getLogger(__name__) class MemoryCache(CacheAdapter): """ A very basic cache adapter which implements :class:`.CacheAdapter` - stores the cache in memory using the static attribute :py:attr:`.__CACHE` As the cache is simply stored in memory, any python object can be cached without needing any form of serialization. Fully supports cache expiration. **Basic Usage**:: >>> from time import sleep >>> c = MemoryCache() >>> c.set('test:example', 'hello world', timeout=60) >>> c.get('test:example') 'hello world' >>> sleep(60) >>> c.get('test:example', 'NOT FOUND') 'NOT FOUND' """ __CACHE = {} def get(self, key: str, default: Any = None, fail: bool = False) -> Any: key = str(key) c = self.__CACHE if key in c: log.debug('Cache key "%s" found in __CACHE. Checking expiry...', key) vc = c[key] if str(vc['timeout']) != 'never' and vc['timeout'] < datetime.utcnow(): log.debug('Cache key "%s" has expired. Removing from cache.') del c[key] if fail: raise CacheNotFound(f'Cache key "{key}" was expired.') return default log.debug('Cache key "%s" is valid and not expired. Returning value "%s"', key, vc) return vc['value'] if fail: raise CacheNotFound(f'Cache key "{key}" was not found.') log.debug('Cache key "%s" was not found in __CACHE. Returning default value.', key) return default def set(self, key: str, value: Any, timeout: Optional[int] = DEFAULT_CACHE_TIMEOUT): key, timeout = str(key), int(timeout) c = self.__CACHE log.debug('Setting cache key "%s" to value "%s" with timeout %s', key, value, timeout) c[key] = dict(value=value, timeout=datetime.utcnow() + timedelta(seconds=timeout)) return c[key] def get_or_set(self, key: str, value: Union[Any, callable], timeout: int = DEFAULT_CACHE_TIMEOUT) -> Any: key, timeout = str(key), int(timeout) try: k = self.get(key, fail=True) except CacheNotFound: k = value(key) if callable(value) else value self.set(key=key, value=k, timeout=timeout) return k def remove(self, *key: str) -> bool: removed = 0 for k in key: k = str(k) if k in self.__CACHE: del self.__CACHE[k] removed += 1 return removed == len(key) def update_timeout(self, key: str, timeout: int = DEFAULT_CACHE_TIMEOUT) -> Any: key, timeout = str(key), int(timeout) v = self.get(key=key, fail=True) self.__CACHE[key]['timeout'] = datetime.utcnow() + timedelta(seconds=timeout) return v
import os import shutil FILE_DIR = os.path.dirname(os.path.realpath(__file__)) ROOT_DIR = os.path.abspath(os.path.join(FILE_DIR, "..")) shutil.rmtree(os.path.join(ROOT_DIR, "build"), ignore_errors = True) shutil.rmtree(os.path.join(ROOT_DIR, "dist"), ignore_errors = True) shutil.rmtree(os.path.join(ROOT_DIR, "happy.egg-info"), ignore_errors = True)
import functools import urllib.parse import tornado.web from monstro.forms import forms from monstro.views import mixins __all__ = ( 'View', 'RedirectView', 'TemplateView', 'ListView', 'DetailView', 'FormView', 'CreateView', 'UpdateView', 'DeleteView' ) class View(tornado.web.RequestHandler): authenticators = () @staticmethod def authenticated(argument=None): def decorator(method): @functools.wraps(method) async def wrapper(self, *args, **kwargs): for authenticator in await self.get_authenticators(): self.session = await authenticator.authenticate(self) if self.session: break else: if callable(argument) or argument is None: raise tornado.web.HTTPError(401) redirect_url = argument if isinstance(argument, str) and '?' not in argument: if urllib.parse.urlparse(argument).scheme: next_url = self.request.full_url() else: next_url = self.request.uri redirect_url = '{}?{}'.format( argument, urllib.parse.urlencode(dict(next=next_url)) ) return self.redirect(redirect_url) return await method(self, *args, **kwargs) return wrapper return decorator(argument) if callable(argument) else decorator def initialize(self): self.session = None self.request.GET = {} self.request.POST = {} async def get_authenticators(self): return self.authenticators async def prepare(self): for key, value in self.request.query_arguments.items(): self.request.GET[key] = value[0].decode('utf-8') for key, value in self.request.body_arguments.items(): self.request.POST[key] = value[0].decode('utf-8') class RedirectView(mixins.RedirectResponseMixin, tornado.web.RequestHandler): async def prepare(self): return self.redirect(await self.get_redirect_url(), self.permanent) class TemplateView(View): template_name = None async def get_template_name(self): assert self.template_name, ( 'TemplateView requires either a definition of ' '"template_name" or an implementation of "get_template_name()"' ) return self.template_name async def get_context(self, **kwargs): return kwargs async def get(self, *args, **kwargs): self.render( await self.get_template_name(), **await self.get_context() ) class ListView(mixins.ListResponseMixin, TemplateView): context_object_name = 'pagination' async def get_context(self, **kwargs): context = {self.context_object_name: await self.paginate()} context.update(kwargs) return context class DetailView(mixins.DetailResponseMixin, TemplateView): context_object_name = 'object' async def get_context(self, **kwargs): context = {self.context_object_name: await self.get_object()} context.update(kwargs) return context class FormView(mixins.RedirectResponseMixin, TemplateView): form_class = None permanent = False async def get_form_class(self): assert self.form_class, ( 'FormView requires either a definition of ' '"form_class" or an implementation of "get_form_class()"' ) return self.form_class async def get_form_kwargs(self): return {'data': self.request.POST} async def get_form(self): return (await self.get_form_class())(**await self.get_form_kwargs()) # pylint:disable=E1102 async def get_context(self, **kwargs): context = await super().get_context() context.update(kwargs) context.setdefault('form', await self.get_form()) return context async def post(self, *args, **kwargs): form = await self.get_form() if await form.is_valid(): return await self.form_valid(form) return await self.form_invalid(form) async def form_valid(self, form): # pylint: disable=W0613 return self.redirect(await self.get_redirect_url(), self.permanent) async def form_invalid(self, form): context = await self.get_context(form=form) self.render(self.template_name, **context) class CreateView(mixins.ModelResponseMixin, FormView): async def get_form_class(self): if self.form_class: # pragma: no cover return self.form_class Meta = type('Meta', (), {'model': await self.get_model()}) return type('ModelForm', (forms.ModelForm,), {'Meta': Meta}) async def form_valid(self, form): await form.save() return await super().form_valid(form) class UpdateView(mixins.DetailResponseMixin, CreateView): # pylint:disable=R0901 async def get_form_kwargs(self): kwargs = await super().get_form_kwargs() kwargs['instance'] = await self.get_object() return kwargs class DeleteView(mixins.RedirectResponseMixin, mixins.DetailResponseMixin, View): async def delete(self, *args, **kwargs): await (await self.get_object()).delete() return self.redirect(await self.get_redirect_url(), self.permanent)
import os import pandas as pd import numpy as np import glob def load_abs_data(): """ Loads the data from the ABSdata.csv file. """ # print current directory df = pd.read_csv('Utilities/DataframeCode/ABSdata.csv') x = df['X'].values x = x.reshape(-1, 1) t = df['T'].values t = t.reshape(-1, 1) assert (x.shape == (20, 1)) assert (t.shape == (20, 1)) return x, t def make_directory_if_not_exists(directory_path): """ Creates a directory if it does not exist. The directory path is relative to the current working directory. """ if not os.path.exists(directory_path): os.makedirs(directory_path) def save_df_to_csv(df, width, depths, optimizer, learning_rate): """ Saves a dataframe to a csv file. The file is saved based on the width, optimizer, and learning rate. """ directory_path = f'Results/Width-{width}/{optimizer}' make_directory_if_not_exists(directory_path) full_path = f'{directory_path}/{optimizer}-LearningRate-{learning_rate}.csv' df.replace(to_replace=np.nan, value=' ', inplace=True) df.insert(len(df.columns), ' ', [' ' for _ in range(len(depths) * 2 + 1)], True) df.to_csv(full_path, index=True) def combine_all_dfs_to_csv(width, optimizers): """ Combines all the dataframes for a given width and optimizer into one dataframe. The dataframe is saved to the Results' directory as 'AllData.csv' in the directory for the width. """ def get_combined_optimizer_csvs(optimizer): optimizer_csvs = glob.glob(f'Results/Width-{width}/{optimizer}/{optimizer}-LearningRate-*.csv') df_holder = [] for filename in optimizer_csvs: df = pd.read_csv(filename) df_holder.append(df) return pd.concat(df_holder, axis=1) final = pd.concat([get_combined_optimizer_csvs(optimizer) for optimizer in optimizers], axis=0) final.to_csv(f'Results/Width-{width}/All-Results.csv', index=False)
# # level1_sum.py # programmers_training # # Created by Chanwoo Noh on 2018. 09. 09.. # Copyright © 2018년 Chanwoo Noh. All rights reserved. # def solution(a, b): sum = 0 if a > b : a,b=b,a while a <= b : sum += a a+=1 return sum # ... or more simply # def solution(a, b): # answer = 0 # if a > b: (a,b) = (b,a) # return sum(range(a,b+1))
from .attribute import * from .buffer_description import * from .shader import * from .shader_program import *
@cookery.action('') def do(subject): print('in do action with subject:', subject) return subject @cookery.action('(.*)') def echo(subject, text): return text @cookery.subject('in', r'(.+)') def file(path): print('opening file:', repr(path)) f = open(path, 'r') return f.read()
import unittest from collections import OrderedDict from robot.utils import DotDict from robot.utils.asserts import (assert_equal, assert_false, assert_not_equal, assert_raises, assert_true) class TestDotDict(unittest.TestCase): def setUp(self): self.dd = DotDict([('z', 1), (2, 'y'), ('x', 3)]) def test_init(self): assert_true(DotDict() == DotDict({}) == DotDict([])) assert_true(DotDict(a=1) == DotDict({'a': 1}) == DotDict([('a', 1)])) assert_true(DotDict({'a': 1}, b=2) == DotDict({'a': 1, 'b': 2}) == DotDict([('a', 1), ('b', 2)])) assert_raises(TypeError, DotDict, None) def test_get(self): assert_equal(self.dd[2], 'y') assert_equal(self.dd.x, 3) assert_raises(KeyError, self.dd.__getitem__, 'nonex') assert_raises(AttributeError, self.dd.__getattr__, 'nonex') def test_equality(self): assert_true(self.dd == self.dd) assert_false(self.dd != self.dd) assert_true(self.dd == DotDict(self.dd)) assert_false(self.dd != DotDict(self.dd)) assert_false(self.dd == DotDict()) assert_true(self.dd != DotDict()) def test_equality_with_normal_dict(self): assert_equal(self.dd, {'z': 1, 2: 'y', 'x': 3}) def test_hash(self): assert_raises(TypeError, hash, self.dd) def test_set(self): self.dd.x = 42 self.dd.new = 43 self.dd[2] = 44 self.dd['n2'] = 45 assert_equal(self.dd, {'z': 1, 2: 44, 'x': 42, 'new': 43, 'n2': 45}) def test_del(self): del self.dd.x del self.dd[2] self.dd.pop('z') assert_equal(self.dd, {}) assert_raises(KeyError, self.dd.__delitem__, 'nonex') assert_raises(AttributeError, self.dd.__delattr__, 'nonex') def test_same_str_and_repr_format_as_with_normal_dict(self): D = {'foo': 'bar', '"\'': '"\'', '\n': '\r', 1: 2, (): {}, True: False} for d in {}, {'a': 1}, D: for formatter in str, repr: result = formatter(DotDict(d)) assert_equal(eval(result, {}), d) def test_is_ordered(self): assert_equal(list(self.dd), ['z', 2, 'x']) self.dd.z = 'new value' self.dd.a_new_item = 'last' self.dd.pop('x') assert_equal(list(self.dd.items()), [('z', 'new value'), (2, 'y'), ('a_new_item', 'last')]) self.dd.x = 'last' assert_equal(list(self.dd.items()), [('z', 'new value'), (2, 'y'), ('a_new_item', 'last'), ('x', 'last')]) def test_order_does_not_affect_equality(self): d = dict(a=1, b=2, c=3, d=4, e=5, f=6, g=7) od1 = OrderedDict(sorted(d.items())) od2 = OrderedDict(reversed(list(od1.items()))) dd1 = DotDict(sorted(d.items())) dd2 = DotDict(reversed(list(dd1.items()))) for d1, d2 in [(dd1, dd2), (dd1, d), (dd2, d), (dd1, od1), (dd2, od2)]: assert_equal(d1, d2) assert_equal(d2, d1) for d1, d2 in [(dd1, od2), (dd2, od1)]: assert_equal(d1, d2) assert_equal(d2, d1) assert_not_equal(od1, od2) class TestNestedDotDict(unittest.TestCase): def test_nested_dicts_are_converted_to_dotdicts_at_init(self): leaf = {'key': 'value'} d = DotDict({'nested': leaf, 'deeper': {'nesting': leaf}}, nested2=leaf) assert_equal(d.nested.key, 'value') assert_equal(d.deeper.nesting.key, 'value') assert_equal(d.nested2.key, 'value') def test_dicts_inside_lists_are_converted(self): leaf = {'key': 'value'} d = DotDict(list=[leaf, leaf, [leaf]], deeper=[leaf, {'deeper': leaf}]) assert_equal(d.list[0].key, 'value') assert_equal(d.list[1].key, 'value') assert_equal(d.list[2][0].key, 'value') assert_equal(d.deeper[0].key, 'value') assert_equal(d.deeper[1].deeper.key, 'value') def test_other_list_like_items_are_not_touched(self): value = ({'key': 'value'}, [{}]) d = DotDict(key=value) assert_equal(d.key[0]['key'], 'value') assert_false(hasattr(d.key[0], 'key')) assert_true(isinstance(d.key[0], dict)) assert_true(isinstance(d.key[1][0], dict)) def test_items_inserted_outside_init_are_not_converted(self): d = DotDict() d['dict'] = {'key': 'value'} d['list'] = [{}] assert_equal(d.dict['key'], 'value') assert_false(hasattr(d.dict, 'key')) assert_true(isinstance(d.dict, dict)) assert_true(isinstance(d.list[0], dict)) def test_dotdicts_are_not_recreated(self): value = DotDict(key=1) d = DotDict(key=value) assert_true(d.key is value) assert_equal(d.key.key, 1) def test_lists_are_not_recreated(self): value = [{'key': 1}] d = DotDict(key=value) assert_true(d.key is value) assert_equal(d.key[0].key, 1) if __name__ == '__main__': unittest.main()
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """Creates a simple TVM modules.""" import argparse import os import logging from PIL import Image import numpy as np def preprocess_image(image_file): resized_image = Image.open(image_file).resize((224, 224)) image_data = np.asarray(resized_image).astype("float32") # after expand_dims, we have format NCHW image_data = np.expand_dims(image_data, axis=0) image_data[:, :, :, 0] = 2.0 / 255.0 * image_data[:, :, :, 0] - 1 image_data[:, :, :, 1] = 2.0 / 255.0 * image_data[:, :, :, 1] - 1 image_data[:, :, :, 2] = 2.0 / 255.0 * image_data[:, :, :, 2] - 1 return image_data def build_inputs(): x = preprocess_image("lib/cat.png") print("x", x.shape) with open("lib/input.bin", "wb") as fp: fp.write(x.astype(np.float32).tobytes()) if __name__ == "__main__": build_inputs()
# -*- coding: utf-8 -*- """Test the compute_current_source_density function. For each supported file format, implement a test. """ # Authors: Alex Rockhill <aprockhill@mailbox.org> # # License: BSD (3-clause) import os.path as op import numpy as np import pytest from numpy.testing import assert_allclose from scipy.io import loadmat from scipy import linalg from mne.channels import make_dig_montage from mne import create_info, EvokedArray, pick_types, Epochs from mne.io import read_raw_fif, RawArray from mne.io.constants import FIFF from mne.utils import object_diff, run_tests_if_main from mne.datasets import testing from mne.preprocessing import compute_current_source_density data_path = op.join(testing.data_path(download=False), 'preprocessing') eeg_fname = op.join(data_path, 'test_eeg.mat') coords_fname = op.join(data_path, 'test_eeg_pos.mat') csd_fname = op.join(data_path, 'test_eeg_csd.mat') io_path = op.join(op.dirname(__file__), '..', '..', 'io', 'tests', 'data') raw_fname = op.join(io_path, 'test_raw.fif') @pytest.fixture(scope='function', params=[testing._pytest_param()]) def evoked_csd_sphere(): """Get the MATLAB EEG data.""" data = loadmat(eeg_fname)['data'] coords = loadmat(coords_fname)['coords'] * 1e-3 csd = loadmat(csd_fname)['csd'] sphere = np.array((0, 0, 0, 0.08500060886258405)) # meters sfreq = 256 # sampling rate # swap coordinates' shape pos = np.rollaxis(coords, 1) # swap coordinates' positions pos[:, [0]], pos[:, [1]] = pos[:, [1]], pos[:, [0]] # invert first coordinate pos[:, [0]] *= -1 dists = np.linalg.norm(pos, axis=-1) assert_allclose(dists, sphere[-1], rtol=1e-2) # close to spherical, meters # assign channel names to coordinates ch_names = [str(ii) for ii in range(len(pos))] dig_ch_pos = dict(zip(ch_names, pos)) montage = make_dig_montage(ch_pos=dig_ch_pos, coord_frame='head') # create info info = create_info(ch_names=ch_names, sfreq=sfreq, ch_types='eeg') # make Evoked object evoked = EvokedArray(data=data, info=info, tmin=-1) evoked.set_montage(montage) return evoked, csd, sphere def test_csd_matlab(evoked_csd_sphere): """Test replication of the CSD MATLAB toolbox.""" evoked, csd, sphere = evoked_csd_sphere evoked_csd = compute_current_source_density(evoked, sphere=sphere) assert_allclose(linalg.norm(csd), 0.00177, atol=1e-5) # If we don't project onto the sphere, we get 1e-12 accuracy here, # but it's a bad assumption for real data! # Also, we divide by (radius ** 2) to get to units of V/m², unclear # why this isn't done in the upstream implementation evoked_csd_data = evoked_csd.data * sphere[-1] ** 2 assert_allclose(evoked_csd_data, csd, atol=2e-7) with pytest.raises(ValueError, match=('CSD already applied, ' 'should not be reapplied')): compute_current_source_density(evoked_csd, sphere=sphere) # 1e-5 here if we don't project... assert_allclose(evoked_csd_data.sum(), 0.02455, atol=2e-3) def test_csd_degenerate(evoked_csd_sphere): """Test degenerate conditions.""" evoked, csd, sphere = evoked_csd_sphere warn_evoked = evoked.copy() warn_evoked.info['bads'].append(warn_evoked.ch_names[3]) with pytest.raises(ValueError, match='Either drop.*or interpolate'): compute_current_source_density(warn_evoked) with pytest.raises(TypeError, match='must be an instance of'): compute_current_source_density(None) fail_evoked = evoked.copy() with pytest.raises(ValueError, match='Zero or infinite position'): for ch in fail_evoked.info['chs']: ch['loc'][:3] = np.array([0, 0, 0]) compute_current_source_density(fail_evoked, sphere=sphere) with pytest.raises(ValueError, match='Zero or infinite position'): fail_evoked.info['chs'][3]['loc'][:3] = np.inf compute_current_source_density(fail_evoked, sphere=sphere) with pytest.raises(ValueError, match='No EEG channels found.'): fail_evoked = evoked.copy() fail_evoked.set_channel_types({ch_name: 'ecog' for ch_name in fail_evoked.ch_names}) compute_current_source_density(fail_evoked, sphere=sphere) with pytest.raises(TypeError, match='lambda2'): compute_current_source_density(evoked, lambda2='0', sphere=sphere) with pytest.raises(ValueError, match='lambda2 must be between 0 and 1'): compute_current_source_density(evoked, lambda2=2, sphere=sphere) with pytest.raises(TypeError, match='stiffness must be'): compute_current_source_density(evoked, stiffness='0', sphere=sphere) with pytest.raises(ValueError, match='stiffness must be non-negative'): compute_current_source_density(evoked, stiffness=-2, sphere=sphere) with pytest.raises(TypeError, match='n_legendre_terms must be'): compute_current_source_density(evoked, n_legendre_terms=0.1, sphere=sphere) with pytest.raises(ValueError, match=('n_legendre_terms must be ' 'greater than 0')): compute_current_source_density(evoked, n_legendre_terms=0, sphere=sphere) with pytest.raises(ValueError, match='sphere must be'): compute_current_source_density(evoked, sphere=-0.1) with pytest.raises(ValueError, match=('sphere radius must be ' 'greater than 0')): compute_current_source_density(evoked, sphere=(-0.1, 0., 0., -1.)) with pytest.raises(TypeError): compute_current_source_density(evoked, copy=2, sphere=sphere) # gh-7859 raw = RawArray(evoked.data, evoked.info) epochs = Epochs( raw, [[0, 0, 1]], tmin=0, tmax=evoked.times[-1] - evoked.times[0], baseline=None, preload=False, proj=False) epochs.drop_bad() assert len(epochs) == 1 assert_allclose(epochs.get_data()[0], evoked.data) with pytest.raises(RuntimeError, match='Computing CSD requires.*preload'): compute_current_source_density(epochs) epochs.load_data() raw = compute_current_source_density(raw) assert not np.allclose(raw.get_data(), evoked.data) evoked = compute_current_source_density(evoked) assert_allclose(raw.get_data(), evoked.data) epochs = compute_current_source_density(epochs) assert_allclose(epochs.get_data()[0], evoked.data) def test_csd_fif(): """Test applying CSD to FIF data.""" raw = read_raw_fif(raw_fname).load_data() raw.info['bads'] = [] picks = pick_types(raw.info, meg=False, eeg=True) assert 'csd' not in raw orig_eeg = raw.get_data('eeg') assert len(orig_eeg) == 60 raw_csd = compute_current_source_density(raw) assert 'eeg' not in raw_csd new_eeg = raw_csd.get_data('csd') assert not (orig_eeg == new_eeg).any() # reset the only things that should change, and assert objects are the same assert raw_csd.info['custom_ref_applied'] == FIFF.FIFFV_MNE_CUSTOM_REF_CSD raw_csd.info['custom_ref_applied'] = 0 for pick in picks: ch = raw_csd.info['chs'][pick] assert ch['coil_type'] == FIFF.FIFFV_COIL_EEG_CSD assert ch['unit'] == FIFF.FIFF_UNIT_V_M2 ch.update(coil_type=FIFF.FIFFV_COIL_EEG, unit=FIFF.FIFF_UNIT_V) raw_csd._data[pick] = raw._data[pick] assert object_diff(raw.info, raw_csd.info) == '' run_tests_if_main()
import requests import re import json from bs4 import BeautifulSoup import ssl import time from modules.helper import rnd, write_to_json_file FID_URL = "https://accounts.ea.com/connect/auth?response_type=code&client_id=ORIGIN_SPA_ID&display=originXWeb/login&locale=en_US&release_type=prod&redirect_uri=https://www.origin.com/views/login.html" LOGIN_URL = "https://accounts.ea.com/connect/auth?client_id=ORIGIN_JS_SDK&response_type=token&redirect_uri=nucleus:rest&prompt=none&release_type=prod" class OriginAPI: def __init__(self, username, password): self.username = username self.password = password self.user_agent = "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/68.0.3440.106 Safari/537.36" self.cid = rnd() def _get(self, url, params=None, headers={}): headers["User-Agent"] = self.user_agent return requests.get(url, params=params, headers=headers, verify=False, allow_redirects=False) def _post(self, url, data=None, headers={}): headers["User-Agent"] = self.user_agent return requests.post(url, data=data, headers=headers, verify=False) def _authed_get(self, url, headers={}): headers["User-Agent"] = self.user_agent headers["Authorization"] = f"Bearer {self.access_token['access_token']}" return requests.get(url, headers=headers, verify=False) def _authed_get2(self, url, headers={}): headers["User-Agent"] = self.user_agent headers["authtoken"] = self.access_token["access_token"] return requests.get(url, headers=headers, verify=False) def _fid(self): res = self._get(FID_URL) if res.status_code == 302: self.fid = re.search("(?<=fid=)[a-zA-Z0-9]+?(?=&|$)", res.headers["Location"]).group(0) return res.headers["Location"] def _jsession_id(self, location): res = self._get(location) if res.status_code == 302: self.jsession_id = re.search("(?<=JSESSIONID=)[\S]+?(?=;)", res.headers["Set-Cookie"]).group(0) return f"https://signin.ea.com{res.headers['Location']}" def _auth_page(self, location): res = self._get(location, headers={ "Cookie": f"JSESSIONID={self.jsession_id}" }) if res.status_code == 302: self.jsession = re.search("(?<=JSESSIONID=)[\S]+?(?=;)", res.headers["Set-Cookie"]).group(0) return res.headers["Location"] def _post_auth(self, location): res = self._post(location, data={ "email": self.username, "password": self.password, "_eventId": "submit", "cid": self.cid, "showAgeUp": "true", "googleCaptchaResponse": "", "_rememberMe": "on" }, headers={ "Cookie": f"JSESSIONID={self.jsession_id}" }) if res.status_code == 200: file = open("data//responses//origin_auth.txt", "w") file.write(res.text) # print(res.text) return re.search("(?<=window\.location = \")\S+(?=\";)", res.text).group(0) def _sid(self, location): res = self._get(location) if res.status_code == 302: self.sid = re.search("(?<=sid=)[\S]+?(?=;)", res.headers["Set-Cookie"]).group(0) self.code = re.search("(?<=code=)[\S]+?(?=&|$)", res.headers["Location"]).group(0) return res.headers["Location"] def _access_token(self): res = self._get(LOGIN_URL, headers={ "Cookie": f"sid={self.sid}" }) js = json.loads(res.text) if res.status_code == 200: self.access_token = { "access_token": js["access_token"], "token_type": js["token_type"] } def search(self, user): res = self._authed_get2(f"https://api1.origin.com/xsearch/users?userId={self.my_uid}&searchTerm={user}&start=0") return json.loads(res.text) def get_users(self, user_ids): res = self._authed_get2(f"https://api1.origin.com/atom/users?userIds={','.join(user_ids)}") return BeautifulSoup(res.text, features="xml") def get_uid(self, username): searched = self.search(username) userids = [] i = 0 if searched["infoList"] is None: return -1 for entry in searched["infoList"]: if i is 5: break userids.append(entry["friendUserId"]) i += 1 users = self.get_users(userids) for user in users.users: if user.EAID.string == username: return user.userId.string def get_auth_code(self, access_token, client_id): auth_code_url = f"https://accounts.ea.com/connect/auth?access_token={access_token}&client_id={client_id}&response_type=code&release_type=prod" code = self._get(auth_code_url).headers["Location"] code = code.split("code=")[1] return code def me(self): return json.loads(self._authed_get("https://gateway.ea.com/proxy/identity/pids/me").text) def auth(self): location = self._fid() location = self._jsession_id(location) self._auth_page(location) location = self._post_auth(location) location = self._sid(location) self._access_token() user_data = self.me() self.my_uid = user_data["pid"]["pidId"] user_data["pid"] = self.my_uid user_data['access_token'] = self.access_token return self.access_token, self.my_uid
import os from flask import Flask from flask.ext.sqlalchemy import SQLAlchemy ALLOWED_EXTENSIONS = set(['txt', 'pdf', 'png', 'jpg', 'jpeg', 'gif']) app = Flask(__name__) app.config['UPLOAD_FOLDER'] = os.path.realpath('.') + '/my_app/static/uploads' app.config['SQLALCHEMY_DATABASE_URI'] = 'sqlite:////tmp/test.db' app.config['WTF_CSRF_SECRET_KEY'] = 'random key for form' db = SQLAlchemy(app) app.secret_key = 'some_random_key' from my_app.catalog.views import catalog app.register_blueprint(catalog) db.create_all()
__author__ = 'Rodochenko' import datetime class rtsDailyOption: def __init__(self, strike, opt_type, code, date, value): self.strike = strike self.code = code self.mat_date = self.get_mat_date_from_code(self) self.opt_type = opt_type self.date = date self.value = value def get_mat_date_from_code(self): code = self.code call_month_codes = ['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L'] put_month_codes = ['M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X'] mat_date_month = "00" if code[-2] in call_month_codes: # retrieving month code mat_date_month = str(call_month_codes.index(code[-2]) + 1) elif code[-2] in put_month_codes: mat_date_month = str(put_month_codes.index(code[-2]) + 1) mat_date_year = "0000" if code[-1] == 1: mat_date_year = "2011" elif code[-1] == 2: mat_date_year = "2012" mat_date_day = "15" mat_day_moment_string = mat_date_year + mat_date_month + mat_date_day return mat_day_moment_string def get_maturity_from_code(code): """getting expiration date from FORTS code""" call_month_codes = ['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L'] put_month_codes = ['M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X'] mat_date_month = "00" if code[-2] in call_month_codes: # retrieving month code mat_date_month = str(call_month_codes.index(code[-2]) + 1) if len(mat_date_month)<2: mat_date_month = '0' + mat_date_month elif code[-2] in put_month_codes: mat_date_month = str(put_month_codes.index(code[-2]) + 1).format() if len(mat_date_month)<2: mat_date_month = '0' + mat_date_month mat_date_year = "0000" if code[-1] == '1': mat_date_year = "2011" elif code[-1] == '2': mat_date_year = "2012" elif code[-1] == '3': mat_date_year = "2012" elif code[-1] == '4': mat_date_year = "2014" elif code[-1] == '5': mat_date_year = "2015" mat_date_day = "15" mat_day_moment_string = mat_date_year + mat_date_month + mat_date_day return mat_day_moment_string def get_time_to_expiration(current_date_day, maturity_day): days_in_the_year = 248 try: date0 = datetime.datetime.strptime(current_date_day, "%Y%m%d") date1 = datetime.datetime.strptime(maturity_day, "%Y%m%d") date_dif = date1-date0 value = str(float(date_dif.days)/days_in_the_year) except: value = 0 return value
# coding=utf-8 """ Cookbook Repository Management """ from oslo_log import log as logging import svn.remote LOG = logging.getLogger(__name__) class SVNRepo: """ Cookbook Repository Object Model """ def __init__(self, url, user="default", pwd="default", ): """ Connects to a remote svn server :param user: username :param pwd: password :param url: url """ self.r = svn.remote.RemoteClient(url, username=user, password=pwd) self.version = self.get_version() def list_cookbooks(self, rp=None): """ :return: List of all cookbooks in repo """ cookbooks = [] entries = self.r.list(rel_path=rp) for filename in entries: if self.check_cookbook(filename): cookbooks.append(filename.replace("/", "")) return cookbooks def check_cookbook(self, name): """check if the item is a cookbook""" LOG.info("checking %s" % name) check = False # check if the item is a directory res = self.info(rel_path=name) if res['entry_kind'] == 'dir': # check if the item has a recipes directory if "recipes/" in self.r.list(rel_path=name): check = True LOG.debug("Cookbook found: %s" % name) if not check: LOG.debug("Not a cookbook: %s" % name) return check def download_cookbooks(self, local_path='/tmp/cookbooks'): """ Downloads all remote cookbooks to a local path :param local_path: path to download to :return: operation result """ return self.r.run_command("export", [self.r.url, local_path, "--trust-server-cert", "--force"]) def info(self, rel_path=None): return self.r.info(rel_path=rel_path) def get_version(self): vers = 'Unknown' for l in self.r.run_command("info", [self.r.url, "--trust-server-cert"]): if "Revision:" in l: vers = l.split(":")[1].strip() return vers
#An odd number is an integer which is not a multiple of two #An even number is an integer which is "evenly divisible" by two def check_number(number): if number % 2 != 0: solution = 'Weird' elif number % 2 == 0 and number in range(2, 5): solution = 'Not Wierd' elif number % 2 == 0 and number in range(6, 20): solution = 'Weird' elif number % 2 == 0 and number > 20: solution = 'Not Weird' return solution number = int(input('Enter the number: ')) print(check_number(number))
# -*- coding: utf-8 -*- """ Created on Tue Mar 24 17:11:22 2020 @author: chens """ #from os.path import dirname import numpy as np import geoist as gi import geoist.others.fetch_data as data from geoist.others.fetch_data import _retrieve_file as downloadurl from geoist.others.fetch_data import usgs_catalog from geoist.catalog import QCreport as qc from geoist.catalog import QCmulti as cp from geoist.catalog import Catalogue as cat from geoist.catalog import Exploration as exp from geoist.catalog import MapTools as mapt from geoist.catalog import Selection as sel from geoist.catalog import Seismicity as sem from geoist.catalog import Declusterer as declus from geoist.catalog import Smoothing as sm from geoist.catalog import CatUtils as ct ## 下载CENC地震目录 # pathname = dirname(__file__) # print(pathname) url = data.ispec_catalog_url print(url) filename = '2020-03-25CENC-M4.7.dat' localpath = downloadurl(url+filename, filename) print(localpath) #文件路径 ## 下载USGS地震目录 ## 参考:https://earthquake.usgs.gov/fdsnws/event/1/ usgsfile = 'usgscat2.csv' localpath2 = usgs_catalog(usgsfile, '2014-01-01', '2014-01-02') #, '-90','90','-180','180',minmag = '5') print(localpath2) dbusgs = cat.Database(usgsfile) dbusgs.Import0(localpath2) dbusgs.Info() ## 建立地震目录数据库 catname = 'CENCM4.7' db2 = cat.Database(catname) header = ['Year', 'Month','Day','Hour','Minute','Second','Latitude','Longitude', 'Depth','MagType','MagSize','Log'] db2.Import0(localpath, Header = header, Delimiter= ' ', flag = False) db2.Info() db2.SetField('LocCode','CENC') db2.SetField('MagCode','CENC4.7') #地震筛选 # Search Area (China) using internal filter lon = [70, 135] lat = [15, 55] db2.Filter('Latitude',lat[0],Opr='>=') db2.Filter('Latitude',lat[1],Opr='<=') db2.Filter('Longitude',lon[0],Opr='>=') db2.Filter('Longitude',lon[1],Opr='<=') db2.Info() #二维时间序列图 exp.MagTimePlot(db2) exp.MagTimeBars(db2) exp.RateDensityPlot(db2) # G-R关系 enum, mbin =exp.GetKeyHisto(db2,'MagSize',Bnum=20, Norm=False) minc= (max(mbin)-min(mbin))/10. #拟合b值 a,b = sem.MfdOptimize(enum, mbin, minc, max(mbin)) print('b-value=',b) #复发概率 sem.MfdPlot(a,b, max(mbin),Enum=enum, Ecum=np.cumsum(enum[::-1])[::-1], Mbin=mbin, Minc=[minc]) ## 去余震 dbm, log1 = declus.WindowSearch(db2, WinFun= declus.GardnerKnopoff, WinScale=1) dbm.Info() ## 震中分布图 x1,y1,z1 = exp.GetHypocenter(db2) x2,y2,z2 = exp.GetHypocenter(dbm) cfg = {'Bounds': [70., 15., 135., 55.], 'FigSize': [16., 12.], 'Background': ['none',[0.9,0.8,0.6],[0.5,0.8,1.]], 'Grid': [10., 10.]} M = mapt.GeoMap(cfg) M.BasePlot() M.DrawBounds() M.DrawGrid() #震中分布图 M.PointPlot(x1, y1, Set=['o','g',5,1], Label='全部') M.PointPlot(x2, y2, Set=['*','r',2,1], Label='去余震') M.Legend() M.Title('中国及邻区震中分布图') M.Show() #平滑地震目录 p = [(90.,20.),(90.,40.),(105.,40.),(105.,20.),(90.,20.)] db3 = sel.AreaSelect(db2,p) P = ct.Polygon() P.Load(p) db3.Info() wkt = ct.XYToWkt(P.x, P.y) xsm, ysm, asm = sm.SmoothMFD(db3, 1., wkt, Delta=0.5) cfg1 = {'Bounds': [90., 20., 105., 40.], 'FigSize': [10., 12.], 'Background': ['none',[0.9,0.8,0.6],[0.5,0.8,1.]], 'Grid': [5., 5.]} m1 = mapt.GeoMap(cfg1) m1.BasePlot() m1.MeshPlot(xsm, ysm, asm) #m1.AreaPlot(P.x, P.y, Set=['y',0.5,'k',1]) #m1.PointPlot(xsm, ysm, Set=['o','b',2,1], Label='Grid') m1.PointPlot(x1, y1, Set=['o','g',5,1], Label='全部') m1.DrawGrid() m1.Title('川滇地区地震目录高斯平滑') m1.Show() ## 得到系统路径和记录日志 #print(gi.EXAMPLES_PATH, gi.DATA_PATH, gi.TEMP_PATH) nwcat = qc.pathname+'\\mwcat1900utc.csv' print(qc.pathname+'\\cn-cat-mw.txt') qc.pathname = gi.TEMP_PATH qc.network = catname qc.start_year = '1970' qc.end_year = '2020' qc.time_window = 2.0 qc.dist_window = 15.0 ##gi.__verison__ gi.log.info(catname+'/catalog qctest') ## 地震目录质量检测 pathname,prefix = qc.create_figures_new(qc.qcinit(), db2) ## 生成HTML报告 qc.generate_html(pathname,prefix,qc.to_show) ## 地震目录对比 dbm.Header['Name'] = 'CENCm' db2.Header['Name'] = 'CENC4.7' ## 建立地震目录数据库 catname = 'cnmw' localpath = qc.pathname+'\\mwcat1900utc.csv' db6 = cat.Database(catname) header = ['Year', 'Month','Day','Hour','Minute','Second','Latitude','Longitude','MagSize','Depth','Log'] db6.Import0(localpath, Header = header, Delimiter= ',', flag = False) db6.SetField('MagType', 'Mw') db6.Info() outputname = cp.create_figures_new(db = [db2, db6], pathname = gi.TEMP_PATH, startyear = 1970 , endyear = 2015, dhrs = 8) ## 生成HTML报告 no_output_matches = True cp.generate_html(outputname, no_output_matches)
CONFIG_PATH = "/home/lfhohmann/gcp-weather-and-forecast-scraper/config.yaml" GOOGLE_DB_TABLE = "google_forecast" GOOGLE_URL = "https://www.google.com/search?hl=en&lr=lang_en&ie=UTF-8&q=weather" GOOGLE_HEADER = { "User-Agent": "Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:89.0) Gecko/20100101 Firefox/89.0", "Language": "en-US,en;q=0.5", } WUNDERGROUND_DB_TABLE = "wunderground_pws" WUNDERGROUND_DB_SHORT_TABLE = "wunderground_pws_short" WUNDERGROUND_URL = "https://www.wunderground.com/dashboard/pws/" WUNDERGROUND_HEADER = { "User-Agent": "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/44.0.2403.157 Safari/537.36", "Language": "en-US,en;q=0.5", }
from collections import OrderedDict import logging from pyspark.sql.dataframe import DataFrame from pyspark.sql.session import SparkSession from typeguard import typechecked from .logging_utils import _format_sql from .settings import complete_settings_dict, ComparisonColumn from .ordered_set import OrderedSet logger = logging.getLogger(__name__) def _add_left_right(columns_to_retain, name): columns_to_retain.add(name + "_l") columns_to_retain.add(name + "_r") return columns_to_retain def _add_unique_id_and_source_dataset( cols_set: OrderedSet, uid_name: str, sd_name: str, retain_source_dataset_col: bool ): if retain_source_dataset_col: cols_set.add(f"{sd_name}_l") cols_set.add(f"{uid_name}_l") cols_set.add(f"{sd_name}_r") cols_set.add(f"{uid_name}_r") else: cols_set.add(f"{uid_name}_l") cols_set.add(f"{uid_name}_r") return cols_set def _get_select_expression_gammas( settings: dict, retain_source_dataset_col: bool, retain_tf_cols: bool ): """Get a select expression which picks which columns to keep in df_gammas Args: settings (dict): A `splink` settings dictionary retain_source_dataset: whether to retain the source dataset columns retain_tf_cols: whether to retain the individual term frequency columns Returns: str: A select expression """ # Use ordered dict as an ordered set - i.e. to make sure we don't have duplicate cols to retain select_columns = OrderedSet() uid = settings["unique_id_column_name"] sds = settings["source_dataset_column_name"] select_columns = _add_unique_id_and_source_dataset( select_columns, uid, sds, retain_source_dataset_col ) for col in settings["comparison_columns"]: cc = ComparisonColumn(col) if settings["retain_matching_columns"]: for col_name in cc.columns_used: select_columns = _add_left_right(select_columns, col_name) if col["term_frequency_adjustments"]: if retain_tf_cols: select_columns = _add_left_right(select_columns, f"tf_{cc.name}") select_columns.add(col["case_expression"]) for c in settings["additional_columns_to_retain"]: select_columns = _add_left_right(select_columns, c) if "blocking_rules" in settings: if len(settings["blocking_rules"]) > 0: select_columns.add("match_key") return ", ".join(select_columns) def _retain_source_dataset_column(settings_dict, df): # Want to retain source dataset column in all cases # except when link type is dedupe only # and the column does not exist in the data if settings_dict["link_type"] != "dedupe_only": return True source_dataset_colname = settings_dict.get( "source_dataset_column_name", "source_dataset" ) if f"{source_dataset_colname}_l" in df.columns: return True else: return False def _retain_tf_columns(settings_dict, df): # If all necessary TF columns are in the data, # make sure they are retained tf_cols = [ f"tf_{cc['col_name']}" if "col_name" in cc else f"tf_{cc['custom_name']}" for cc in settings_dict["comparison_columns"] if cc["term_frequency_adjustments"] ] cols = OrderedSet() [_add_left_right(cols, c) for c in tf_cols] return all([col in df.columns for col in cols]) def _sql_gen_add_gammas( settings: dict, df_comparison: DataFrame, table_name: str = "df_comparison", ): """Build SQL statement that adds gamma columns to the comparison dataframe Args: settings (dict): `splink` settings dict unique_id_col (str, optional): Name of the unique id column. Defaults to "unique_id". table_name (str, optional): Name of the comparison df. Defaults to "df_comparison". Returns: str: A SQL string """ retain_source_dataset = _retain_source_dataset_column(settings, df_comparison) retain_tf_cols = _retain_tf_columns(settings, df_comparison) select_cols_expr = _get_select_expression_gammas( settings, retain_source_dataset, retain_tf_cols ) sql = f""" select {select_cols_expr} from {table_name} """ return sql @typechecked def add_gammas( df_comparison: DataFrame, settings_dict: dict, spark: SparkSession, unique_id_col: str = "unique_id", ): """Compute the comparison vectors and add them to the dataframe. See https://imai.fas.harvard.edu/research/files/linkage.pdf for more details of what is meant by comparison vectors Args: df_comparison (spark dataframe): A Spark dataframe containing record comparisons, with records compared using the convention col_name_l, col_name_r settings_dict (dict): The `splink` settings dictionary spark (Spark session): The Spark session object Returns: Spark dataframe: A dataframe containing new columns representing the gammas of the model """ settings_dict = complete_settings_dict(settings_dict, spark) sql = _sql_gen_add_gammas(settings_dict, df_comparison) logger.debug(_format_sql(sql)) df_comparison.createOrReplaceTempView("df_comparison") df_gammas = spark.sql(sql) return df_gammas
# Simple unit testing for prime servers. Run with -h for details. # # Tested with Python 3.6 # # Eli Bendersky [http://eli.thegreenplace.net] # This code is in the public domain. import argparse import itertools import logging import math import queue import random import socket import subprocess import sys import threading import time # The port number the server will listen on. PORTNUM = 8070 def is_prime(num): if num == 2: return True elif num < 2 or num % 2 == 0: return False else: upto = int(math.sqrt(num)) + 1 for i in range(3, upto, 2): if num % i == 0: return False return True def server_runner(path, args, stop_event): """Runs the server as a subprocess until stop is requested. Run this function in a separate thread! path is the path to the server to run, with the given args. If 'path' ends with .js, node is prepended. The args have to be a (possibly empty) iterable. stop_event is a threading.Event object; when it's set, the subprocess is killed and this function returns. """ if path.endswith('.js'): runcmd = ['node', path] elif path.endswith('.py'): runcmd = ['python', path] else: runcmd = path runcmd.extend(args) logging.info('server_runner: executing subprocess "{0}"'.format(runcmd)) proc = subprocess.Popen(runcmd) logging.info('server_runner waiting for stop event') stop_event.wait() logging.info('server_runner sending kill to subprocess') proc.terminate() try: proc.wait(timeout=0.2) except subprocess.TimeoutExpired: logging.info('server_runner: subprocess did not die within timeout') def client_thread_runner(port, nums=[]): """Client. """ tid = threading.current_thread().ident sockobj = socket.socket(socket.AF_INET, socket.SOCK_STREAM) sockobj.settimeout(1.0 * len(nums)) sockobj.connect(('localhost', port)) logging.info('Client {0} connected to server'.format(tid)) for num in nums: sockobj.send(bytes(str(num), encoding='ascii')) logging.info('Client {0} sent "{1}"'.format(tid, num)) reply = sockobj.recv(20) logging.info('Client {0} received "{1}"'.format(tid, reply)) if is_prime(num): assert b'prime' in reply else: assert b'composite' in reply sockobj.shutdown(socket.SHUT_RDWR) sockobj.close() def test_main(): argparser = argparse.ArgumentParser('Server test') argparser.add_argument('server_path', help='path to the server executable') argparser.add_argument('-n', '--num-clients', default=4, type=int, help='number of clients to launch simultaneously; ') args = argparser.parse_args() assert args.num_clients >= 1 logging.basicConfig( level=logging.DEBUG, format='%(levelname)s:%(asctime)s:%(message)s') # Launch the server in a thread, listening on the port. stop_event = threading.Event() server_thread = threading.Thread( target=server_runner, args=(args.server_path, [str(PORTNUM)], stop_event)) server_thread.start() time.sleep(0.2) threads = [] # Generate some pseudo-random numbers, with guaranteed repetition to hit # the caches. nums = [random.randint(20, 1990) // 2 for i in range(8)] nums.extend(nums[0:2]) for i in range(args.num_clients): tester_thread = threading.Thread( target=client_thread_runner, args=(PORTNUM, nums)) tester_thread.start() threads.append(tester_thread) for thread in threads: thread.join() stop_event.set() if __name__ == '__main__': test_main()
#Program - Enter a point that is #in a sphere of a chosen radius #and find the magnetic field on it import math r= float(input("Radius:")) ri=int(r) while r>ri: ri=ri+1 x= float(input("x-coordinate:")) while x>r or x<-r: print ("x-coordinate cannot be larger than radius") x= float(input("x-coordinate:")) y= float(input("y-coordinate:")) while y>r or y<-r: print ("y-coordinate cannot be larger than radius") y= float(input("y-coordinate:")) z= float(input("z-coordinate:")) while z>r or z<-r: print ("z-coordinate cannot be larger than radius") z= float(input("z-coordinate:")) rij=math.sqrt(((x)**2)+((y)**2)+((z)**2)) while rij>r: print ("point is outside the circle") x=float(input("x-coordinate:")) while x>r or x<-r: print ("x-coordinate cannot be larger than radius") x=float(input("x-coordinate:")) y=float(input("y-coordinate:")) while y>r or y<-r: print ("y-coordinate cannot be larger than radius") y=float(input("y-coordinate:")) z=float(input("z-coordinate:")) while z>r or z<-r: print ("z-coordinate cannot be larger than radius") z=float(input("z-coordinate:")) rij=math.sqrt(((x)**2)+((y)**2)+((z)**2)) print ('Point:(',x,',',y,',',z,')') while x<0: x=x*(-1) while y<0: y=y*(-1) while z<0: z=z*(-1) xone=ri-x yone=ri-y zone=ri-z xtwo=(-1)*(x+ri) ytwo=(-1)*(y+ri) ztwo=(-1)*(z+ri) totalx=0 totaly=0 totalz=0 while xone>=xtwo: while yone>=ytwo: while zone>=ztwo: if xone==0 and yone==0 and zone==0: zone=zone-1 else: rij=math.sqrt(((xone)**2)+((yone)**2)+((zone)**2)) rijc=math.sqrt(((x+xone)**2)+((y+yone)**2)+((z+zone)**2)) if rijc>r: zone=zone-1 else: Hx=((3*xone*zone)/((rij)**5)) Hy=((3*yone*zone)/((rij)**5)) Hz=(((2*((zone)**2))-((xone)**2)-((yone)**2))/((rij)**5)) totalx=totalx+Hx totaly=totaly+Hy totalz=totalz+Hz zone=zone-1 yone=yone-1 zone=ri+z xone=xone-1 yone=ri+y H=math.sqrt(((totalx)**2)+((totaly)**2)+((totalz)**2)) if H<(10**(-15)): print ("total H: 0.0") else: print ("total H:",H) print(totalx) print(totaly) print(totalz)
# Easy to use offline chat archive. # # Author: Peter Odding <peter@peterodding.com> # Last Change: August 1, 2018 # URL: https://github.com/xolox/python-chat-archive """ Usage: chat-archive [OPTIONS] [COMMAND] Easy to use offline chat archive that can gather chat message history from Google Talk, Google Hangouts, Slack and Telegram. Supported commands: - The 'sync' command downloads new chat messages from supported chat services and stores them in the local archive (an SQLite database). - The 'search' command searches the chat messages in the local archive for the given keyword(s) and lists matching messages. - The 'list' command lists all messages in the local archive. - The 'stats' command shows statistics about the local archive. - The 'unknown' command searches for conversations that contain messages from an unknown sender and allows you to enter the name of a new contact to associate with all of the messages from an unknown sender. Conversations involving multiple unknown sender are not supported. Supported options: -C, --context=COUNT Print COUNT messages of output context during 'chat-archive search'. This works similarly to 'grep -C'. The default value of COUNT is 3. -f, --force Retry synchronization of conversations where errors were previously encountered. This option is currently only relevant to the Google Hangouts backend, because I kept getting server errors when synchronizing a few specific conversations and I didn't want to keep seeing each of those errors during every synchronization run :-). -c, --color=CHOICE, --colour=CHOICE Specify whether ANSI escape sequences for text and background colors and text styles are to be used or not, depending on the value of CHOICE: - The values 'always', 'true', 'yes' and '1' enable colors. - The values 'never', 'false', 'no' and '0' disable colors. - When the value is 'auto' (this is the default) then colors will only be enabled when an interactive terminal is detected. -l, --log-file=LOGFILE Save logs at DEBUG verbosity to the filename given by LOGFILE. This option was added to make it easy to capture the log output of an initial synchronization that will be downloading thousands of messages. -p, --profile=FILENAME Enable profiling of the chat-archive application to make it possible to analyze performance problems. Python profiling data will be saved to FILENAME every time database changes are committed (making it possible to inspect the profile while the program is still running). -v, --verbose Increase logging verbosity (can be repeated). -q, --quiet Decrease logging verbosity (can be repeated). -h, --help Show this message and exit. """ # Standard library modules. import getopt import html import logging import os import sys # External dependencies. import coloredlogs from humanfriendly import coerce_boolean, compact, concatenate, format_path, format_size, parse_path, pluralize from humanfriendly.prompts import prompt_for_input from humanfriendly.terminal import HTMLConverter, connected_to_terminal, find_terminal_size, output, usage, warning from property_manager import lazy_property, mutable_property from sqlalchemy import func from verboselogs import VerboseLogger # Modules included in our package. from chat_archive import ChatArchive from chat_archive.emoji import normalize_emoji from chat_archive.html import HTMLStripper, text_to_html from chat_archive.html.keywords import KeywordHighlighter from chat_archive.html.redirects import RedirectStripper from chat_archive.models import Contact, Conversation, Message from chat_archive.utils import utc_to_local FORMATTING_TEMPLATES = dict( conversation_delimiter='<span style="color: green">{text}</span>', conversation_name='<span style="font-weight: bold; color: #FCE94F">{text}</span>', keyword_highlight='<span style="color: black; background-color: yellow">{text}</span>', message_backend='<span style="color: #C4A000">({text})</span>', message_contacts='<span style="color: blue">{text}</span>', message_delimiter='<span style="color: #555753">{text}</span>', message_timestamp='<span style="color: green">{text}</span>', ) """The formatting of output, specified as HTML with placeholders.""" UNKNOWN_CONTACT_LABEL = "Unknown" """The label for contacts without a name or email address (a string).""" # Initialize a logger for this module. logger = VerboseLogger(__name__) def main(): """Command line interface for the ``chat-archive`` program.""" # Enable logging to the terminal. coloredlogs.install() # Parse the command line options. program_opts = dict() command_name = None try: options, arguments = getopt.gnu_getopt( sys.argv[1:], "C:fl:c:p:vqh", [ "context=", "force", "log-file=", "color=", "colour=", "profile=", "verbose", "quiet", "help", ], ) for option, value in options: if option in ("-C", "--context"): program_opts["context"] = int(value) elif option in ("-f", "--force"): program_opts["force"] = True elif option in ("-l", "--log-file"): handler = logging.FileHandler(parse_path(value)) handler.setFormatter( logging.Formatter( fmt="%(asctime)s %(name)s[%(process)d] %(levelname)s %(message)s", datefmt="%Y-%m-%d %H:%M:%S" ) ) handler.setLevel(logging.DEBUG) logging.root.addHandler(handler) logging.root.setLevel(logging.NOTSET) elif option in ("-c", "--color", "--colour"): mapping = dict(always=True, never=False) program_opts["use_colors"] = mapping[value] if value in mapping else coerce_boolean(value) elif option in ("-p", "--profile"): program_opts["profile_file"] = parse_path(value) elif option in ("-v", "--verbose"): coloredlogs.increase_verbosity() elif option in ("-q", "--quiet"): coloredlogs.decrease_verbosity() elif option in ("-h", "--help"): usage(__doc__) sys.exit(0) else: assert False, "Unhandled option!" # Make sure the operator provided a command. if not arguments: usage(__doc__) sys.exit(0) except Exception as e: warning("Failed to parse command line arguments: %s", e) sys.exit(1) try: # We extract any search keywords from the command line arguments before # initializing an instance of the UserInterface class, to enable # initialization of the KeywordHighlighter class. if arguments[0] == "search": program_opts["keywords"] = arguments[1:] # Initialize the chat archive. with UserInterface(**program_opts) as program: # Validate the requested command. command_name = arguments.pop(0) method_name = "%s_cmd" % command_name if not hasattr(program, method_name): warning("Error: Invalid command name '%s'!", command_name) sys.exit(1) # Execute the requested command. command_fn = getattr(program, method_name) command_fn(arguments) except KeyboardInterrupt: logger.notice("Interrupted by Control-C ..") sys.exit(1) except Exception: logger.exception("Aborting due to unexpected exception!") sys.exit(1) class UserInterface(ChatArchive): """The Python API for the command line interface for the ``chat-archive`` program.""" @mutable_property def context(self): """The number of messages of output context to print during searches (defaults to 3).""" return 3 @mutable_property(cached=True) def use_colors(self): """Whether to output ANSI escape sequences for text colors and styles (a boolean).""" return connected_to_terminal() @lazy_property def html_to_ansi(self): """ An :class:`~humanfriendly.terminal.HTMLConverter` object that uses :func:`.normalize_emoji()` as a text pre-processing callback. """ return HTMLConverter(callback=normalize_emoji) @lazy_property def redirect_stripper(self): """An :class:`.RedirectStripper` object.""" return RedirectStripper() @lazy_property def html_to_text(self): """An :class:`.HTMLStripper` object.""" return HTMLStripper() @lazy_property def keyword_highlighter(self): """A :class:`.KeywordHighlighter` object based on :attr:`keywords`.""" return KeywordHighlighter(highlight_template=FORMATTING_TEMPLATES["keyword_highlight"], keywords=self.keywords) @mutable_property def keywords(self): """A list of strings with search keywords.""" return [] @mutable_property def timestamp_format(self): """The format of timestamps (defaults to ``%Y-%m-%d %H:%M:%S``).""" return "%Y-%m-%d %H:%M:%S" def list_cmd(self, arguments): """List all messages in the local archive.""" self.render_messages(self.session.query(Message).order_by(Message.timestamp)) def search_cmd(self, arguments): """Search the chat messages in the local archive for the given keyword(s).""" results = self.search_messages(arguments) if self.context > 0: results = self.gather_context(results) self.render_messages(results) def stats_cmd(self, arguments): """Show some statistics about the local chat archive.""" logger.info("Statistics about %s:", format_path(self.database_file)) logger.info(" - Number of contacts: %i", self.num_contacts) logger.info(" - Number of conversations: %i", self.num_conversations) logger.info(" - Number of messages: %i", self.num_messages) logger.info(" - Database file size: %s", format_size(os.path.getsize(self.database_file))) logger.info( " - Size of %s: %s", pluralize(self.num_messages, "plain text chat message"), format_size(self.session.query(func.coalesce(func.sum(func.length(Message.text)), 0)).scalar()), ) logger.info( " - Size of %s: %s", pluralize(self.num_html_messages, "HTML formatted chat message"), format_size(self.session.query(func.coalesce(func.sum(func.length(Message.html)), 0)).scalar()), ) def sync_cmd(self, arguments): """Download new chat messages from the supported services.""" self.synchronize(*arguments) def unknown_cmd(self, arguments): """ Find private conversations with messages from an unknown sender and interactively prompt the operator to provide a name for a new contact to associate the messages with. """ logger.info("Searching for private conversations with unknown sender ..") for conversation in self.session.query(Conversation).filter(Conversation.is_group_conversation == False): if conversation.have_unknown_senders: logger.info("Private conversation %i includes messages from unknown senders:", conversation.id) self.render_messages(conversation.messages[:10]) full_name = prompt_for_input("Name for new contact (leave empty to skip): ") if full_name: words = full_name.split() kw = dict(account=conversation.account, first_name=words.pop(0)) if words: kw["last_name"] = " ".join(words) contact = Contact(**kw) self.session.add(contact) for message in conversation.messages: if not message.sender: message.sender = contact self.commit_changes() def generate_html(self, name, text): """ Generate HTML based on a named format string. :param name: The name of an HTML format string in :data:`FORMATTING_TEMPLATES` (a string). :param text: The text to interpolate (a string). :returns: The generated HTML (a string). This method does not escape the `text` given to it, in other words it is up to the caller to decide whether embedded HTML is allowed or not. """ template = FORMATTING_TEMPLATES[name] return template.format(text=text) def gather_context(self, messages): """Enhance search results with context (surrounding messages).""" related = [] for msg in messages: # Gather older messages. older_query = msg.older_messages.order_by(Message.timestamp.desc()).limit(self.context) logger.debug("Querying older messages: %s", older_query) for other_msg in reversed(older_query.all()): if other_msg not in related: related.append(other_msg) yield other_msg # Yield one of the given messages. if msg not in related: related.append(msg) yield msg # Gather newer messages. newer_query = msg.newer_messages.order_by(Message.timestamp).limit(self.context) logger.debug("Querying newer messages: %s", newer_query) for other_msg in newer_query.all(): if other_msg not in related: related.append(other_msg) yield other_msg def render_messages(self, messages): """Render the given message(s) on the terminal.""" previous_conversation = None previous_message = None # Render a horizontal bar as a delimiter between conversations. num_rows, num_columns = find_terminal_size() conversation_delimiter = self.generate_html("conversation_delimiter", "─" * num_columns) for i, msg in enumerate(messages): if msg.conversation != previous_conversation: # Mark context switches between conversations. logger.verbose("Rendering conversation #%i ..", msg.conversation.id) self.render_output(conversation_delimiter) self.render_output(self.render_conversation_summary(msg.conversation)) self.render_output(conversation_delimiter) elif previous_message and self.keywords: # Mark gaps in conversations. This (find_distance()) is a rather # heavy check so we only do this when rendering search results. distance = msg.find_distance(previous_message) if distance > 0: message_delimiter = "── %s omitted " % pluralize(distance, "message") message_delimiter += "─" * int(num_columns - len(message_delimiter)) self.render_output(self.generate_html("message_delimiter", message_delimiter)) # We convert the message metadata and the message text separately, # to avoid that a chat message whose HTML contains a single <p> tag # causes two newlines to be emitted in between the message metadata # and the message text. message_metadata = self.prepare_output( " ".join( [ self.render_timestamp(msg.timestamp), self.render_backend(msg.conversation.account.backend), self.render_contacts(msg), ] ) ) message_contents = self.normalize_whitespace(self.prepare_output(self.render_text(msg))) output(message_metadata + " " + message_contents) # Keep track of the previous conversation and message. previous_conversation = msg.conversation previous_message = msg def normalize_whitespace(self, text): """ Normalize the whitespace in a chat message before rendering on the terminal. :param text: The chat message text (a string). :returns: The normalized text (a string). This method works as follows: - First leading and trailing whitespace is stripped from the text. - When the resulting text consists of a single line, it is processed using :func:`~humanfriendly.text.compact()` and returned. - When the resulting text contains multiple lines the text is prefixed with a newline character, so that the chat message starts on its own line. This ensures that messages requiring vertical alignment render properly (for example a table drawn with ``|`` and ``-`` characters). """ # Check for multi-line chat messages. stripped = text.strip() if "\n" in stripped: # When the message contains "significant" newline # characters we start the message on its own line. return "\n" + stripped else: # When the message doesn't contain significant newline characters # we compact all whitespace in the message. I added this when I # found that quite a few of the HTML fragments in my personal chat # archive contain very inconsistent whitespace, which bothered me # when I viewed them on the terminal. return compact(text) def render_conversation_summary(self, conversation): """Render a summary of which conversation a message is part of.""" # Gather the names of the participants in the conversation, but exclude the # operator's name from private conversations (we can safely assume they # know who they are 😇). participants = sorted( set( contact.unambiguous_name if conversation.is_group_conversation else (contact.full_name or UNKNOWN_CONTACT_LABEL) for contact in conversation.participants if conversation.is_group_conversation or not self.is_operator(contact) ) ) parts = [ self.get_backend_name(conversation.account.backend), "group" if conversation.is_group_conversation else "private", "chat", ] if conversation.name: parts.append(self.generate_html("conversation_name", html.escape(conversation.name))) parts.append("with") participants_html = concatenate(map(html.escape, participants)) if conversation.is_group_conversation: parts.append(pluralize(len(participants), "participant")) parts.append("(%s)" % participants_html) else: parts.append(self.generate_html("conversation_name", participants_html)) if conversation.account.name_is_significant: parts.append("in %s account" % conversation.account.name) return " ".join(parts) def render_contacts(self, message): """Render a human friendly representation of a message's contact(s).""" contacts = [self.get_contact_name(message.sender)] if message.conversation.is_group_conversation and message.recipient: # In Google Talk group chats can contain private messages between # individuals. This is how we represent those messages. contacts.append(self.get_contact_name(message.recipient)) return self.generate_html("message_contacts", "%s:" % " → ".join(contacts)) def prepare_output(self, text): """ Prepare text for rendering on the terminal. :param text: The HTML text to render (a string). :returns: The rendered text (a string). When :attr:`use_colors` is :data:`True` this method first uses :attr:`keyword_highlighter` to highlight search matches in the given text and then it converts the string from HTML to ANSI escape sequences using :attr:`html_to_ansi`. When :attr:`use_colors` is :data:`False` then :attr:`html_to_text` is used to convert the given HTML to plain text. In this case keyword highlighting is skipped. """ # Log the HTML encoded output to enable debugging of issues in # the HTML to ANSI conversion process (it's rather nontrivial). logger.debug("Rendering HTML output: %r", text) if self.use_colors: if self.keywords: text = self.keyword_highlighter(text) logger.debug("HTML with keywords highlighted: %r", text) text = self.html_to_ansi(text) logger.debug("Text with ANSI escape sequences: %r", text) else: text = self.html_to_text(text) logger.debug("HTML converted to plain text: %r", text) return text def render_output(self, text): """ Render text on the terminal. :param text: The HTML text to render (a string). Refer to :func:`prepare_output()` for details about how `text` is converted from HTML to text with ANSI escape sequences. """ output(self.prepare_output(text)) def get_contact_name(self, contact): """ Get a short string describing a contact (preferably their first name, but if that is not available then their email address will have to do). If no useful information is available :data:`UNKNOWN_CONTACT_LABEL` is returned so as to explicitly mark the absence of more information. """ if contact: if contact.first_name: return html.escape(contact.first_name) for email_address in contact.email_addresses: return html.escape(email_address.value) return UNKNOWN_CONTACT_LABEL def render_text(self, message): """Prepare the text of a chat message for rendering on the terminal.""" return self.redirect_stripper(message.html or text_to_html(message.text, callback=normalize_emoji)) def render_timestamp(self, value): """Render a human friendly representation of a timestamp.""" return self.generate_html("message_timestamp", utc_to_local(value).strftime(self.timestamp_format)) def render_backend(self, value): """Render a human friendly representation of a chat message backend.""" return self.generate_html("message_backend", value)
import pygame from time import sleep from random import randrange pygame.init()
# Copyright (c) 2021 ralabo.jp # This software is released under the MIT License. # see https://opensource.org/licenses/mit-license.php # ==================================================== from common import com, TargetDomain from flow.flow_item import FlowItem class FlowDependMachineSection(object): """ machine_type, section_index, domain に依存する制御を行うクラス flow = FlowDependMachineSection() """ machine_types = ['ToyCar','ToyTrain','fan', 'gearbox','pump','slider','valve'] section_indices = ['00','01','02','03','04','05'] targets = ['source', 'target'] def __init__(self, f_target): self.f_target = f_target pass class _Item(FlowItem): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) def items(self): """ generate a tuple of (machine_type, section_index, domain) """ target = '*' # ignore target usable_machine_types = com.param['limit']['usable_machine_types'] for machine_type in self.machine_types: if usable_machine_types and machine_type not in usable_machine_types: continue # skip for section_index in self.section_indices: if com.mode: # dev_mode if section_index not in ['00','01','02']: continue # skip yield self._Item(machine_type, section_index, target) def domain(self, machine_type, section_index, target): target = '*' # ignore target return TargetDomain(machine_type, section_index, target)
import itertools import json import os import random import sys from os.path import isdir, isfile, join, basename from math import cos, pi, sin, sqrt, acos from tqdm import tqdm import multiprocessing import scipy.io as sio import numpy as np import cv2 from cv2 import resize as resize_, imread from joblib import Parallel, delayed import progressbar as pb # python3 import pickle # from .libs import * # safe dictionary copy from copy import deepcopy as dc random.seed(0) import ref # transform annotation to array format def ann_to_array(H, d, max_len=1): # junction_order = H.get('junction_order', 'off_cell_center') region_size = H['region_size'] inp_h = inp_w = H['image_size'] grid_h = grid_w = H['grid_size'] assert region_size == inp_h // grid_h junctions = d['junction'] theta = d['theta_bin'] num_junc = len(junctions) junction_residual = np.zeros((grid_h, grid_w, max_len, 2), dtype=np.float) junction_flags = np.zeros((grid_h, grid_w, max_len), dtype=np.int32) theta_bin = np.zeros( (grid_h, grid_w, max_len, H['num_bin']), dtype=np.int32) theta_bin_residual = np.zeros( (grid_h, grid_w, max_len, H['num_bin']), dtype=np.float) focus_range = 0.5 #H['focus_size'] for h in range(grid_h): for w in range(grid_w): ccx, ccy = w + 0.5, h + 0.5 cell_center_w, cell_center_h = ccx * region_size, ccy * region_size unsorted_junctions = [] for idx, (jx, jy) in enumerate(junctions): #px, py = jx / float(region_size), jy /float(region_size) if abs(jx - cell_center_w) <= focus_range * region_size and abs(jy - cell_center_h) <= focus_range * region_size: ox, oy = jx - cell_center_w, jy - cell_center_h th = theta[idx] unsorted_junctions += [(ox, oy, th)] if len(unsorted_junctions) == 0: continue unsorted_junctions = unsorted_junctions[:max_len] #print (unsorted_junctions[0][:2]) sorted_junctions = sorted( unsorted_junctions, key=lambda x: x[0]**2 + x[1]**2) num_keep = min(max_len, len(sorted_junctions)) for idx_sorted in range(num_keep): ox, oy, th = sorted_junctions[idx_sorted] junction_residual[h, w, idx_sorted, :] = np.array((ox, oy), dtype=np.float32) order_th = len(th) if H['num_classes'] > 2: junction_flags[h, w, idx_sorted] = min(order_th - 1, 5) else: junction_flags[h, w, idx_sorted] = 1 for _, tt in enumerate(th): bin_idx, bin_residual = tt bin_idx = int(bin_idx) theta_bin[h, w, idx_sorted, bin_idx] = 1 theta_bin_residual[h, w, idx_sorted, bin_idx] = float(bin_residual) output = {} output['junction'] = junction_residual output['junction_flags'] = junction_flags output['theta_bin_conf'] = theta_bin output['theta_bin_residual'] = theta_bin_residual return output ## Calculate the bin index and residual of junction angles. def make_bin(bn, ths): bin_num = bn bin_width = 360. / float(bin_num) bin_max_width = 4 centers = np.array( [i * bin_width for i in range(bin_num)] + [360.], dtype=np.float32) th_bin = [None for _ in ths] for cnt0, th in enumerate(ths): bin_t = [None for _ in th] for cnt, angle in enumerate(th): #assert scale <= line_max_len, "scale should be smaller than max length of lines." idx = round(float(angle) / bin_width) idx = int(idx) idx1 = idx if idx != bin_num else 0 bin_t[cnt] = (idx1, angle - centers[idx]) th_bin[cnt0] = bin_t return th_bin def dist(p1, p2): return sqrt((p1[0] - p2[0])**2 + (p1[1] - p2[1])**2) def lineangle(p1, p2): """ p1 -> p2 """ x1, y1 = p1 x2, y2 = p2 dist = sqrt((x1 - x2)**2 + (y1 - y2)**2) if y1 < y2: theta = acos((x2 - x1) / dist) else: theta = acos((x1 - x2) / dist) return theta / pi * 180. # Resize image and annotation to input size of network. def resize_and_transform(H, d, max_len = 1): num_bin = H['num_bin'] inp_h = inp_w = H['image_size'] img, junctions, points = d['img'], d['junction'], d['points'] cur_h, cur_w = img.shape[:2] if cur_h == 0 or cur_w == 0: print("{} {} {}"%(d['imgname'], cur_h, cur_w)) sw, sh = float(inp_w) / float(cur_w), float(inp_h) / float(cur_h) try: resized_img = resize_(img, (inp_h, inp_w), cv2.INTER_CUBIC) d['junction'] = [(sw * x, sh * y) for x, y in junctions] d['points'] = [(sw * x, sh * y) for x, y in points] except ValueError: print("cannot resize ", d['imgname']) raise ValueError ntheta = resize_theta(d['theta'], (sw, sh)) d['theta'] = ntheta d['theta_bin'] = make_bin(num_bin, ntheta) d['img'] = resized_img output = ann_to_array(H, d) output['imgname'] = d['imgname'] output['image'] = resized_img return output # when resizing image, the junction angles should be # calculated again. def resize_theta(ths, scale_param, with_conf=False): new_ths = [None for _ in ths] for cnt0, th in enumerate(ths): bin_t = [None for _ in th] if with_conf: for cnt, (t, conf_t) in enumerate(th): x = cos(t * pi / 180.) * scale_param[0] y = sin(t * pi / 180.) * scale_param[1] dist = sqrt(x**2 + y**2) if abs(y) <= 0.001: nt = 180. if x < 0 else 0. elif y > 0: nt = acos(x / dist) / pi * 180. else: nt = 360. - acos(x / dist) / pi * 180. bin_t[cnt] = (nt, conf_t) else: for cnt, t in enumerate(th): x = cos(t * pi / 180.) * scale_param[0] y = sin(t * pi / 180.) * scale_param[1] dist = sqrt(x**2 + y**2) if abs(y) <= 0.001: nt = 180. if x < 0 else 0. elif y > 0: nt = acos(x / dist) / pi * 180. else: nt = 360. - acos(x / dist) / pi * 180. bin_t[cnt] = nt new_ths[cnt0] = bin_t return new_ths def resize_points(pts, scale_param): sx, sy = scale_param points = [None for _ in pts] for idx, (x, y) in enumerate(pts): points[idx] = (x * sx, y * sy) return points ### make crop augmentation. def make_crop(d, bbox, suffix): d_crop = dc(d) (x0, y0, x1, y1) = bbox I = d['img'] junction = d['junction'] theta = d['theta'] d_crop['img'] = I[y0:y1, x0:x1, :] d_crop['imgname'] = "{}_{}.jpg".format(d['imgname'][:-4], suffix[0]) new_junction = [] new_theta = [] for pp, ths in zip(junction, theta): x, y = pp if x >= x0 and x < x1 and y >= y0 and y < y1: new_junction += [(x - x0, y - y0)] new_theta += [ths] d_crop['points'] = [(x - x0, y - y0) for x, y in d['points']] d_crop['junction'] = new_junction d_crop['theta'] = new_theta return d_crop # make mirror augmentation. def make_mirror(d, axis=1): I = d['img'] h, w = I.shape[:2] d_mirror = dc(d) suffix = 'mr' if axis == 2 else 'ud' d_mirror['imgname'] = "{}_{}.jpg".format(d['imgname'][:-4], suffix) if axis == 2: d_mirror['img'] = I[:, ::-1, :] d_mirror['junction'] = [(w - x, y) for x, y in d['junction']] d_mirror['points'] = [(w - x, y) for x, y in d['points']] d_mirror['theta'] = [[180. - th if th < 180. else 540. - th for th in point_th] for point_th in d['theta']] elif axis == 1: d_mirror['img'] = I[::-1, :, :] d_mirror['junction'] = [(x, h - y) for x, y in d['junction']] d_mirror['points'] = [(x, h - y) for x, y in d['points']] d_mirror['theta'] = [[360. - th for th in point_th] for point_th in d['theta']] return(d_mirror) # Transform the raw data and augment, store it. def save_ann(H, d, save_dir, max_len = 1, split='train'): grid_h = grid_w = H['grid_size'] image_h = image_w = H['image_size'] num_bin = H['num_bin'] I = d['img'] if len(I.shape) < 3: raise return if I.shape[2] == 4: I = I[:, :, :3] td = dc(d) td['img'] = I td['theta'] = theta = [[ x for x, _ in th] for th in d['theta']] annlist = [] annlist += [td] if split != 'test': annlist += [make_mirror(td, axis=1), make_mirror(td, axis=2)] h, w = I.shape[:2] junction = td['junction'] crop_list = [] if h > w: x0, x1 = 0, w y0, y1 = 0, w crop_list += [(x0, y0, x1, y1, 'top')] y0, y1 = int((h - w) / 2.), int((h-w)/ 2.) + w crop_list += [(x0, y0, x1, y1, 'middle')] y0, y1 = h - w, h crop_list += [(x0, y0, x1, y1, 'bottom')] elif w > h: y0, y1 = 0, h x0, x1 = 0, h crop_list += [(x0, y0, x1, y1, 'left')] x0, x1 = int((w - h) / 2.), int( (w - h)/2. ) + h crop_list += [(x0, y0, x1, y1, 'middle')] x0, x1 = w - h, w crop_list += [(x0, y0, x1, y1, 'right')] else: x0, y0 = int(h * 0.25), int(h * 0.25) x1, y1 = int(h * 0.75), int(h * 0.75) crop_list += [(x0, y0, x1, y1, 'center')] annlist += [make_crop(td, (x0, y0, x1, y1), suffix) for x0, y0, x1, y1, suffix in crop_list] outputs = [resize_and_transform(H, t) for t in annlist] for fn in outputs: junc_flags = fn['junction_flags'] num_junc = np.sum(junc_flags.astype(float)) if split != 'test' and num_junc <= 5: continue imgname = fn['imgname'] dir_to_save = join(save_dir, "{}_{}_{}".format(image_h, grid_h, num_bin)) if not isdir(dir_to_save): os.mkdir(dir_to_save) with open('{}/{}.pickle'.format(dir_to_save, imgname[:-4]), 'wb') as handle: pickle.dump(fn, handle, protocol=pickle.HIGHEST_PROTOCOL) cv2.imwrite(join(dir_to_save, fn['imgname']), fn['image']) ## load the pickle files. def loading(fn, src_dir): with open(src_dir / fn, 'rb') as handle: d = pickle.load(handle, encoding='latin1') return d # Junction label augmentation cannot be easily done online. # Precompute the label, store locally. debug = False def load_data_and_save(H, src_dir, save_dir, filenames, split='train', use_mp=True): print("src_dir: {} save_dir: {}".format(src_dir, save_dir)) bar = pb.ProgressBar(widgets=[ '[ ', pb.Bar(), ' ][ ', pb.Timer(), ' ]'], max_value=pb.UnknownLength) def loadDataset(): return Parallel(n_jobs=1)(delayed(loading)(f, src_dir) for f in bar(filenames)) if not debug: print("== loading raw data ==") anno = loadDataset() total_num = len(anno) print("== {} raw images data loaded ==".format(total_num)) cpu_num = multiprocessing.cpu_count() cpu_num = min(30, cpu_num) bar = pb.ProgressBar(widgets=[ '[ ', pb.Bar(), ' ][ ', pb.Timer(), ' ]'], max_value=pb.UnknownLength) if use_mp: Parallel(n_jobs=cpu_num)(delayed(save_ann)(H, d, save_dir, split=split) for d in bar(anno)) # max_len default to 1. else: print("== single process processing") for d in anno: # max_len default to 1. save_ann(H, d, save_dir, split=split) image_h, grid_h, num_bin = H['image_size'], H['grid_size'], H['num_bin'] prefix = str(join(save_dir, "{}_{}_{}".format(image_h, grid_h, num_bin))) if split=='test': print("### finished test split") return 0 train_name = prefix + "_train.txt" val_name = prefix + "_val.txt" test_name = prefix + "_test.txt" dirname = prefix def valid_pickle_file(x): return x.endswith('.jpg') and isfile("{}/{}.pickle".format(dirname, x[:-4])) imgnames = [x for x in os.listdir(dirname) if valid_pickle_file(x)] train, val, test = [], [], [] def read_list_from_file(f_): with open(f_, 'r') as h: filelist = h.read().splitlines() filelist = [x[:-4] for x in filelist] return filelist def write_list_to_file(f_, filelist): with open(f_, 'w') as h: for l in filelist: h.write("{}\n".format(l)) trainImgs = read_list_from_file(ref.data_root / 'v1.1/train.txt') testImgs = read_list_from_file(ref.data_root / 'v1.1/test.txt') random.shuffle(trainImgs) trainImgs = trainImgs[200:] valImgs = trainImgs[:200] print("train: {} | val: {} | test: {}".format(len(trainImgs), len(valImgs), len(testImgs))) for f in imgnames: if '_' in f: prefix_ = f.split('_')[0] if prefix_ in trainImgs: train += [f] if prefix_ in valImgs: val += [f] else: prefix_ = f[:-4] if prefix_ in trainImgs: train += [f] if prefix_ in valImgs: val += [f] if prefix_ in testImgs: test += [f] print("train: {} | val: {} | test: {}".format(len(train), len(val), len(test))) write_list_to_file(train_name, train) write_list_to_file(val_name, val) def create_dataset(H, split, use_mp = True): import time src_dir = ref.data_root / 'pointlines' save_dir = ref.junc_data_root / 'processed' with open(ref.data_root / 'v1.1/{}.txt'.format(split), 'r') as f: filelst = f.read().splitlines() filelst = [x[:-4] + '.pkl' for x in filelst] print(" #{split} images: {0}".format(len(filelst), split=split)) start = time.time() load_data_and_save(H, src_dir=src_dir, save_dir=save_dir, filenames=filelst, use_mp = use_mp) print(" Elasped time: {:.2f}".format(time.time() - start))
"""Unit test for the toppra.dracula.run_topp() wrapper.""" import glob import os import unittest import numpy as np import toppra.dracula as tdrac class TestRunTopp(unittest.TestCase): """Test RunTopp().""" # setup test data only once as they aren't modified glob_regex = os.path.join( os.path.dirname(os.path.abspath(__file__)), "test_data", "test_waypts_jnt_*.txt", ) paths = sorted(glob.glob(glob_regex)) waypts_list = [np.loadtxt(path) for path in paths] @staticmethod def _gen_limits(waypts): """Generate maximum vlim and alim arrays given waypts. Assume the last 7-dof belong to a cobot. The rest is filled with 3. """ n_dof = waypts.shape[1] v_max = 3 * np.ones((n_dof, 2)) # init with 3 a_max = 3 * np.ones((n_dof, 2)) # init with 3 v_max[-7:, 0] = -tdrac.V_MAX # fill 7-dof limits v_max[-7:, 1] = tdrac.V_MAX a_max[-7:, 0] = -tdrac.A_MAX a_max[-7:, 1] = tdrac.A_MAX v_max[:-7, 0] *= -1 a_max[:-7, 0] *= -1 return v_max, a_max def test_run_topp_spline_static_data(self): """Test run_topp_spline() using static test data.""" print("Starting test_run_topp_spline_static_data") for coeff in [1, 0.5, 0.12]: print(f"Testing with limit reduction coefficient: {coeff}...") for i, waypts in enumerate(self.waypts_list): print(f"Testing waypoints file {i}...") v_max, a_max = TestRunTopp._gen_limits(waypts) tdrac.run_topp_spline( waypts, coeff * v_max, coeff * a_max, verify_lims=True, ) def test_run_topp_const_accel_static_data(self): """Test run_topp_const_accel() using static test data.""" print("Starting test_run_topp_const_accel_static_data") for coeff in [1, 0.5, 0.12]: print(f"Testing with limit reduction coefficient: {coeff}...") for i, waypts in enumerate(self.waypts_list): print(f"Testing waypoints file {i}...") v_max, a_max = TestRunTopp._gen_limits(waypts) tdrac.run_topp_const_accel( waypts, coeff * v_max, coeff * a_max, cmd_rate=1000, verify_lims=True, ) @staticmethod def test_run_topp_spline_random_data(): """Test run_topp_spline() using randoms.""" # 2000 waypts supported but can be commented out for speed if needed n_dof = 7 vlim = np.asarray([1] * n_dof) alim = np.asarray([2] * n_dof) vlim = np.vstack([-vlim, vlim]).T alim = np.vstack([-alim, alim]).T for n_waypts in [2, 20, 50, 200]: # , 2000]: print(f"Testing {n_waypts} random waypoints...") waypts = np.random.rand(n_waypts, n_dof) tdrac.run_topp_spline(waypts, vlim, alim, verify_lims=True) if __name__ == "__main__": unittest.main() # import matplotlib.pyplot as plt # # test using static test data # v_max = np.vstack([-V_MAX, V_MAX]).T # a_max = np.vstack([-A_MAX, A_MAX]).T # # two sets of vlims, alims, two reduction coefficients (safety factor) # for coeff in [1, 0.5, 0.2, 0.1, 0.05]: # print(f"limit reduction coefficient: {coeff}") # for i in range(5): # print(f"testing waypoints file {i}...") # waypts = np.loadtxt( # f"/src/toppra/tests/dracula/test_waypts_jnt_{i}.txt" # ) # (33, 7) # _ = run_topp( # waypts, coeff * v_max, coeff * a_max, verify_lims=True # ) # assert no throw # # test using randoms # # 2000 is supported but commented out for speed # for n in [2, 20, 50, 200]: # , 2000]: # print(f"Testing {n} random waypoints with no truncation...") # topp_breaks_count_final, _, _ = run_topp_random(n, False) # # Plotting # csplcp = copy.deepcopy(cspl) # s_sampled = np.linspace(0, csplcp.x[-1], 100) # fig, axs = plt.subplots(1, 4, sharex=True, figsize=[18, 4]) # for i in range(csplcp.c.shape[2]): # axs[0].plot( # s_sampled, csplcp(s_sampled)[:, i], # label="J{:d}".format(i + 1) # ) # axs[1].plot( # s_sampled, csplcp(s_sampled, 1)[:, i], # label="J{:d}".format(i + 1) # ) # axs[2].plot( # s_sampled, csplcp(s_sampled, 2)[:, i], # label="J{:d}".format(i + 1) # ) # axs[3].plot( # s_sampled, csplcp(s_sampled, 3)[:, i], # label="J{:d}".format(i + 1) # ) # axs[0].set_xlabel("Time (s)") # axs[0].set_ylabel("Joint position (rad)") # axs[1].set_xlabel("Time (s)") # axs[1].set_ylabel("Joint velocity (rad/s)") # axs[2].set_xlabel("Time (s)") # axs[2].set_ylabel("Joint acceleration (rad/s^2)") # axs[3].set_xlabel("Time (s)") # axs[3].set_ylabel("Joint jerk (rad/s^3)") # axs[0].legend() # axs[1].legend() # axs[2].legend() # axs[3].legend() # plt.tight_layout() # fig.suptitle("original") # # plt.show() # s_sampled2 = np.linspace(0, cspl.x[-1], 100) # fig, axs = plt.subplots(1, 4, sharex=True, figsize=[18, 4]) # for i in range(cspl.c.shape[2]): # axs[0].plot( # s_sampled2, cspl(s_sampled2)[:, i], # label="J{:d}".format(i + 1) # ) # axs[1].plot( # s_sampled2, cspl(s_sampled2, 1)[:, i], # label="J{:d}".format(i + 1) # ) # axs[2].plot( # s_sampled2, cspl(s_sampled2, 2)[:, i], # label="J{:d}".format(i + 1) # ) # axs[3].plot( # s_sampled2, cspl(s_sampled2, 3)[:, i], # label="J{:d}".format(i + 1) # ) # axs[0].set_xlabel("Time (s)") # axs[0].set_ylabel("Joint position (rad)") # axs[1].set_xlabel("Time (s)") # axs[1].set_ylabel("Joint velocity (rad/s)") # axs[2].set_xlabel("Time (s)") # axs[2].set_ylabel("Joint acceleration (rad/s^2)") # axs[3].set_xlabel("Time (s)") # axs[3].set_ylabel("Joint jerk (rad/s^3)") # axs[0].legend() # axs[1].legend() # axs[2].legend() # axs[3].legend() # plt.tight_layout() # fig.suptitle("new") # plt.show() # more debugging plots from code files # if debug_active: # print("yay we made an instance") # X = instance.compute_feasible_sets() # K = instance.compute_controllable_sets(0, 0) # _, sd_vec, _ = instance.compute_parameterization(0, 0) # X = np.sqrt(X) # K = np.sqrt(K) # plt.plot(X[:, 0], c="green", label="Feasible sets") # plt.plot(X[:, 1], c="green") # plt.plot(K[:, 0], "--", c="red", label="Controllable sets") # plt.plot(K[:, 1], "--", c="red") # plt.plot(sd_vec, label="Velocity profile") # plt.title("Path-position path-velocity plot") # plt.xlabel("Path position") # plt.ylabel("Path velocity square") # plt.legend() # plt.tight_layout() # plt.show() # if debugging: # plt.figure() # s_sampled = np.linspace(0, csplcp.x[-1], 100) # fig, axs = plt.subplots(1, 4, sharex=True, figsize=[18, 4]) # for i in range(csplcp.c.shape[2]): # axs[0].plot( # s_sampled, # csplcp(s_sampled)[:, i], label="J{:d}".format(i + 1) # ) # axs[1].plot( # s_sampled, # csplcp(s_sampled, 1)[:, i], # label="J{:d}".format(i + 1), # ) # axs[2].plot( # s_sampled, # csplcp(s_sampled, 2)[:, i], # label="J{:d}".format(i + 1), # ) # axs[3].plot( # s_sampled, # csplcp(s_sampled, 3)[:, i], # label="J{:d}".format(i + 1), # ) # axs[0].set_xlabel("Time (s)") # axs[0].set_ylabel("Joint position (rad)") # axs[1].set_xlabel("Time (s)") # axs[1].set_ylabel("Joint velocity (rad/s)") # axs[2].set_xlabel("Time (s)") # axs[2].set_ylabel("Joint acceleration (rad/s^2)") # axs[3].set_xlabel("Time (s)") # axs[3].set_ylabel("Joint jerk (rad/s^3)") # axs[0].legend() # axs[1].legend() # axs[2].legend() # axs[3].legend() # plt.tight_layout() # fig.suptitle("original") # plt.show() # s_sampled2 = np.linspace(0, cspl.x[-1], 100) # fig, axs = plt.subplots(1, 4, sharex=True, figsize=[18, 4]) # for i in range(cspl.c.shape[2]): # axs[0].plot( # s_sampled2, # cspl(s_sampled2)[:, i], label="J{:d}".format(i + 1) # ) # axs[1].plot( # s_sampled2, # cspl(s_sampled2, 1)[:, i], # label="J{:d}".format(i + 1), # ) # axs[2].plot( # s_sampled2, # cspl(s_sampled2, 2)[:, i], # label="J{:d}".format(i + 1), # ) # axs[3].plot( # s_sampled2, # cspl(s_sampled2, 3)[:, i], # label="J{:d}".format(i + 1), # ) # axs[0].set_xlabel("Time (s)") # axs[0].set_ylabel("Joint position (rad)") # axs[1].set_xlabel("Time (s)") # axs[1].set_ylabel("Joint velocity (rad/s)") # axs[2].set_xlabel("Time (s)") # axs[2].set_ylabel("Joint acceleration (rad/s^2)") # axs[3].set_xlabel("Time (s)") # axs[3].set_ylabel("Joint jerk (rad/s^3)") # axs[0].legend() # axs[1].legend() # axs[2].legend() # axs[3].legend() # plt.tight_layout() # fig.suptitle("new") # plt.show()
#!/usr/bin/env python3 # -*- coding: utf-8 -*- __author__ = 'ipetrash' from _utils import parse, print_stats, URL_DS3 print(URL_DS3) rows = parse(URL_DS3) print_stats(rows) """ https://darksouls.fandom.com/ru/wiki/Боссы_(Dark_Souls_III) NAME | HEALTH | SOULS ----------------------------------------------+--------+------- Гигант Йорм | 27822 | 36000 Демон-принц | 21135 | 100000 Отец Ариандель и сестра Фриде | 18877 | 72000 Мидир Пожиратель Тьмы | 15895 | 150000 Проклятое Великое древо | 15405 | 7000 Рыцарь-раб Гаэль | 14895 | 120000 Лотрик, младший принц и Лориан, старший принц | 13529 | 85000 Безымянный король | 11677 | 80000 Душа пепла | 10766 | 100000 Оцейрос, Снедаемый король | 8087 | 58000 Древняя виверна | 7873 | 70000 Верховный повелитель Вольнир | 7052 | 22000 Хранитель могилы чемпиона и великий волк | 6984 | 60000 Старый король демонов | 5301 | 25000 Танцовщица Холодной долины | 5111 | 60000 Понтифик Саливан | 5106 | 28000 Чемпион Гундир | 4956 | 60000 Олдрик, пожиратель богов | 4727 | 50000 Доспехи драконоборца | 4581 | 64000 Дьяконы глубин | 4099 | 13000 Копье церкви | 3379 | 80000 Хранители Бездны | 3096 | 18000 Знаток кристальных чар | 2723 | 8000 Вордт из Холодной долины | 1328 | 3000 Судия Гундир | 1037 | 3000 """
from django.db import transaction, OperationalError from django.db.models import F, Q from django.conf import settings from django.utils import timezone from celery import shared_task import os import shutil import string, random from datetime import timedelta import oj from main.judge import run_judge_in_docker, JudgeError from main.models import Submit from main.utils.string_utils import generate_noise from main.utils.directory import remkdir class CheckConditionError(Exception): """自定义错误,用于条件检查错误时。""" pass @shared_task(autoretry_for=(OperationalError, CheckConditionError, JudgeError), retry_kwargs={'countdown': 10, 'max_retries': 3}) def judge_submit(submit_pk): submit = Submit.objects.get(pk=submit_pk) problem = submit.problem # 准备文件夹与映射关系 judge_dir = os.path.join(settings.JUDGE_BASE_DIR, '%s_%s' % (str(submit.id), generate_noise(6))) remkdir(judge_dir) submit.copy_code_to_dir(judge_dir) problem.prepare_problem_dir(judge_dir) docker_judge_dir = '/' + generate_noise(8) volumes = {judge_dir: {'bind': docker_judge_dir, 'mode': 'ro'}} default_check = bool(not problem.compare_file) ta_check_file = '' if default_check else os.path.join(docker_judge_dir, 'compare.py') # 更新状态为判题中 with transaction.atomic(): submit.refresh_from_db() if submit.judge_status in [Submit.JUDGE_COMPLETED, Submit.JUDGE_FAILED]: raise CheckConditionError('Submit has already been judged.') submit.judge_status = Submit.JUDGE_JUDGING submit.save() try: (compile_status, results) = run_judge_in_docker( image=settings.JUDGE_DOCKER_IMAGE, src_path=os.path.join(docker_judge_dir, submit.codefile_name), compiler=submit.get_compiler_name(), test_case_dir=docker_judge_dir, sample_num=problem.testdata_num, mem_limit=problem.memory_limit, time_limit=problem.time_limit, volumes=volumes, max_wait_time=max(60, problem.time_limit * problem.testdata_num + 30), default_check=default_check, ta_check_file=ta_check_file,) shutil.rmtree(judge_dir) except JudgeError as e: shutil.rmtree(judge_dir) submit.judge_status = Submit.JUDGE_PENDING submit.save() raise e except Exception as e: shutil.rmtree(judge_dir) submit.judge_status = Submit.JUDGE_FAILED submit.save() raise e with transaction.atomic(): submit.refresh_from_db() if submit.judge_status != Submit.JUDGE_JUDGING: raise CheckConditionError('Submit is not in JUDGING state.') # 更新 Submit 状态和结果 if compile_status == oj.consts.COMPILE_OK: submit.compile_status = Submit.COMPILE_OK submit.run_results = [list(tp) for tp in results] total = len(submit.run_results) accepted = len([status for (status, _, _) in submit.run_results if status == oj.consts.ACCEPTED]) if total == 0: submit.score = 0.0 else: submit.score = 100.0 * (accepted / total) elif compile_status == oj.consts.COMPILE_ERROR: submit.compile_status = Submit.COMPILE_ERROR submit.error_message = results.replace('\x00', '') submit.score = 0.0 submit.judge_status = Submit.JUDGE_COMPLETED submit.save() # 更新 Problem 统计数据 problem.submit_cnt = F('submit_cnt') + 1 if submit.score == 100.0: problem.accept_cnt = F('accept_cnt') + 1 problem.save() @shared_task def auto_cancel_unfinished_submits(): past_time = timezone.now() - timedelta(seconds=3600) unfinished_submits = Submit.objects.filter(Q(judge_status=Submit.JUDGE_PENDING) | Q(judge_status=Submit.JUDGE_JUDGING))\ .filter(create_time__lte=past_time) for submit in unfinished_submits: submit.judge_status = Submit.JUDGE_FAILED submit.save()
import os import pickle import numpy as np np.random.seed(1000) from utils.generic_utils import load_dataset_at from keras.preprocessing.text import Tokenizer from keras.preprocessing.sequence import pad_sequences def load_embedding_matrix(embedding_path, word_index, max_nb_words, embedding_dim, print_error_words=True): if not os.path.exists('data/embedding_matrix max words %d embedding dim %d.npy' % (max_nb_words, embedding_dim)): embeddings_index = {} error_words = [] f = open(embedding_path, encoding='utf8') for line in f: values = line.split() word = values[0] try: coefs = np.asarray(values[1:], dtype='float32') embeddings_index[word] = coefs except Exception: error_words.append(word) f.close() if len(error_words) > 0: print("%d words were not added." % (len(error_words))) if print_error_words: print("Words are : \n", error_words) print('Preparing embedding matrix.') # prepare embedding matrix nb_words = min(max_nb_words, len(word_index)) embedding_matrix = np.zeros((nb_words, embedding_dim)) for word, i in word_index.items(): if i >= nb_words: continue embedding_vector = embeddings_index.get(word) if embedding_vector is not None: # words not found in embedding index will be all-zeros. embedding_matrix[i] = embedding_vector np.save('data/embedding_matrix max words %d embedding dim %d.npy' % (max_nb_words, embedding_dim), embedding_matrix) print('Saved embedding matrix') else: embedding_matrix = np.load('data/embedding_matrix max words %d embedding dim %d.npy' % (max_nb_words, embedding_dim)) print('Loaded embedding matrix') return embedding_matrix def create_ngram_set(input_list, ngram_value=2): return set(zip(*[input_list[i:] for i in range(ngram_value)])) def add_ngram(sequences, token_indice, ngram_range=2): new_sequences = [] for input_list in sequences: new_list = input_list[:] for i in range(len(new_list) - ngram_range + 1): for ngram_value in range(2, ngram_range + 1): ngram = tuple(new_list[i:i + ngram_value]) if ngram in token_indice: new_list.append(token_indice[ngram]) new_sequences.append(new_list) return new_sequences def prepare_tokenized_data(texts, max_nb_words, max_sequence_length, ngram_range=1): if not os.path.exists('data/tokenizer.pkl'): tokenizer = Tokenizer(nb_words=max_nb_words) tokenizer.fit_on_texts(texts) with open('data/tokenizer.pkl', 'wb') as f: pickle.dump(tokenizer, f) print('Saved tokenizer.pkl') else: with open('data/tokenizer.pkl', 'rb') as f: tokenizer = pickle.load(f) print('Loaded tokenizer.pkl') sequences = tokenizer.texts_to_sequences(texts) word_index = tokenizer.word_index print('Found %s unique 1-gram tokens.' % len(word_index)) ngram_set = set() for input_list in sequences: for i in range(2, ngram_range + 1): set_of_ngram = create_ngram_set(input_list, ngram_value=i) ngram_set.update(set_of_ngram) # Dictionary mapping n-gram token to a unique integer. # Integer values are greater than max_features in order # to avoid collision with existing features. start_index = max_nb_words + 1 token_indice = {v: k + start_index for k, v in enumerate(ngram_set)} indice_token = {token_indice[k]: k for k in token_indice} word_index.update(token_indice) max_features = np.max(list(indice_token.keys())) + 1 print('Now there are:', max_features, 'features') # Augmenting X_train and X_test_mat with n-grams features sequences = add_ngram(sequences, token_indice, ngram_range) print('Average sequence length: {}'.format(np.mean(list(map(len, sequences)), dtype=int))) print('Max sequence length: {}'.format(np.max(list(map(len, sequences))))) data = pad_sequences(sequences, maxlen=max_sequence_length) return (data, word_index) # def __load_embeddings(dataset_prefix, verbose=False): # # embedding_path = npy_path # change to numpy data format (which contains the preloaded embedding matrix) # if os.path.exists(embedding_path): # # embedding matrix exists, no need to create again. # print("Loading embedding matrix for dataset \'%s\'" % (dataset_prefix)) # embedding_matrix = np.load(embedding_path) # return embedding_matrix # # with open(txt_path, 'r', encoding='utf8') as f: # header = f.readline() # splits = header.split(' ') # # vocab_size = int(splits[0]) # embedding_size = int(splits[1]) # # embeddings_index = {} # error_words = [] # # for line in f: # values = line.split() # word = values[0] # try: # coefs = np.asarray(values[1:], dtype='float32') # embeddings_index[word] = coefs # except Exception: # error_words.append(word) # # if len(error_words) > 0: # print("%d words were not added." % (len(error_words))) # if verbose: # print("Words are : \n", error_words) # # if verbose: print('Preparing embedding matrix.') # # embedding_matrix = np.zeros((vocab_size, embedding_size)) # # for key, vector in embeddings_index.items(): # if vector is not None: # # words not found in embedding index will be all-zeros. # key = int(key) # embedding_matrix[key] = vector # # if verbose: print('Saving embedding matrix for dataset \'%s\'' % (dataset_prefix)) # # np.save(embedding_path, embedding_matrix) # return embedding_matrix
from setuptools import setup, find_packages setup(name='kfinny.finnpie', version='1', description='A simple library for packaging useful RE functions', url='https://github.com/kfinny/finnpie', author='Kevin Finnigin', author_email='kevin@finnigin.net', license='MIT', packages=find_packages(), zip_safe=False)
# # SPDX-FileCopyrightText: Copyright (c) 1993-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import re import pickle import numpy as np import onnx import tensorrt as trt import torch try: import tensorflow.compat.v1 as tf tf.disable_v2_behavior() except ImportError as err: sys.stderr.write("""Error: Failed to import tensorflow module ({})\n""".format(err)) sys.exit() TRT_LOGGER = trt.Logger(trt.Logger.INFO) """ Attentions Keys """ WQ = "self_query_kernel" BQ = "self_query_bias" WK = "self_key_kernel" BK = "self_key_bias" WV = "self_value_kernel" BV = "self_value_bias" WQKV = "self_qkv_kernel" BQKV = "self_qkv_bias" """ Transformer Keys """ W_AOUT = "attention_output_dense_kernel" B_AOUT = "attention_output_dense_bias" AOUT_LN_BETA = "attention_output_layernorm_beta" AOUT_LN_GAMMA = "attention_output_layernorm_gamma" W_MID = "intermediate_dense_kernel" B_MID = "intermediate_dense_bias" W_LOUT = "output_dense_kernel" B_LOUT = "output_dense_bias" LOUT_LN_BETA = "output_layernorm_beta" LOUT_LN_GAMMA = "output_layernorm_gamma" """ Squad Output Keys """ SQD_W = "squad_output_weights" SQD_B = "squad_output_bias" def load_tf_weights(inputbase, config): """ Load the weights from the tensorflow checkpoint """ weights_dict = dict() try: reader = tf.train.NewCheckpointReader(inputbase) tensor_dict = reader.get_variable_to_shape_map() # There might be training-related variables in the checkpoint that can be discarded param_names = [key for key in sorted(tensor_dict) if "adam" not in key and "global_step" not in key and "pooler" not in key] count = len(param_names) TRT_LOGGER.log(TRT_LOGGER.INFO, "Found {:} entries in weight map".format(count)) for pn in param_names: toks = pn.lower().split("/") if "encoder" in pn: assert ("layer" in pn) l = (re.findall("\d+", pn))[0] outname = "l{}_".format(l) + "_".join(toks[3:]) else: outname = "_".join(toks) tensor = reader.get_tensor(pn) shape = tensor.shape if pn.find("kernel") != -1: weights_dict[outname + "_notrans"] = trt.Weights(np.ascontiguousarray(tensor).flatten()) TRT_LOGGER.log(TRT_LOGGER.VERBOSE, "Transposing {}\n".format(np)) tensor = np.transpose(tensor) shape = tensor.shape flat_tensor = tensor.flatten() shape_str = "{} ".format(len(shape)) + " ".join([str(d) for d in shape]) weights_dict[outname] = trt.Weights(flat_tensor) TRT_LOGGER.log(TRT_LOGGER.VERBOSE, "Original name: {:}, TensorRT name: {:}, shape: {:}".format(pn, outname, shape_str)) N = config.num_attention_heads H = config.head_size additional_dict = dict() for key, value in weights_dict.items(): pos = key.find(BQ) if pos != -1: hidden_size = value.size prefix = key[:pos] Bq_ = value Bk_ = weights_dict[prefix + BK] Bv_ = weights_dict[prefix + BV] Wq_ = weights_dict[prefix + WQ] Wk_ = weights_dict[prefix + WK] Wv_ = weights_dict[prefix + WV] mat_size = hidden_size * hidden_size wcount = 3 * mat_size Wall = np.zeros(wcount, np.float32) bcount = 3 * hidden_size Ball = np.zeros(bcount, np.float32) Wall[0:mat_size] = Wq_.numpy()[0:mat_size] Wall[mat_size:2*mat_size] = Wk_.numpy()[0:mat_size] Wall[2*mat_size:3*mat_size] = Wv_.numpy()[0:mat_size] Ball[0:hidden_size] = Bq_.numpy()[0:hidden_size] Ball[hidden_size:2*hidden_size] = Bk_.numpy()[0:hidden_size] Ball[2*hidden_size:3*hidden_size] = Bv_.numpy()[0:hidden_size] if config.use_int8 and getattr(config, 'interleaved', False): Wall = np.ascontiguousarray(Wall.reshape((3, N, H, N, H)), dtype=np.float32) Ball = np.ascontiguousarray(Ball.reshape((3, N, H)), dtype=np.float32) else: Wall = np.ascontiguousarray(Wall.reshape((3, N, H, N, H)).transpose((1, 0, 2, 3, 4)), dtype=np.float32) Ball = np.ascontiguousarray(Ball.reshape((3, N, H)).transpose((1, 0, 2)), dtype=np.float32) additional_dict[prefix + WQKV] = trt.Weights(Wall) additional_dict[prefix + BQKV] = trt.Weights(Ball) additional_dict[prefix + WQKV + "_notrans"] = trt.Weights(np.ascontiguousarray(Wall.T)) except Exception as error: TRT_LOGGER.log(TRT_LOGGER.ERROR, str(error)) weights_dict.update(additional_dict) return weights_dict def onnx_to_trt_name(onnx_name): """ Converting variables in the onnx checkpoint to names corresponding to the naming convention used in the TF version, expected by the builder """ qkv_strings = {'key', 'value', 'query', 'query_key_value'} onnx_name = onnx_name.lower() toks = [t.strip('_') for t in onnx_name.split('.')] if toks[0] == 'bert': #embeddings or encoder if toks[1] == 'encoder': #transformer # Token conversions for sparse checkpoints if toks[-2] == 'dense_act': toks[-2] = 'dense' elif toks[-3] == 'dense_act': if toks[-2] == 'input_quantizer': toks[-2] = 'input' elif toks[-2] == 'weight_quantizer': toks[-2] = 'kernel' toks[-3] = 'dense' elif toks[-2].startswith('matmul'): toks[-2] = { 'matmul_q_quantizer': 'qv_a_input_quantizer', 'matmul_k_quantizer': 'qv_b_input_quantizer', 'matmul_v_quantizer': 'av_b_input_quantizer', 'matmul_a_quantizer': 'av_a_input_quantizer', }[toks[-2].replace('input_', '')] # Token conversions for all checkpoints if toks[-2] == 'layernorm': #bias->beta, weight->gamma toks[-1] = 'beta' if toks[-1] == 'bias' else 'gamma' elif (toks[-2] == 'dense' or toks[-2] in qkv_strings) and toks[-1] == 'weight': toks[-1] = 'kernel' elif (toks[-3] == 'dense' or toks[-3] in qkv_strings) and toks[-1] == 'amax': if toks[-2] == 'weight_quantizer': toks[-2] = 'kernel' elif toks[-2] == 'input_quantizer': toks[-2] = 'input' if 'final_input_quantizer' not in toks[2]: ind = toks.index('layers')+1 if 'layers' in toks else 3 toks = toks[ind:] toks[0] = 'l{}'.format(int(toks[0])) else: if toks[-2] == 'layernorm': #bias->beta, weight->gamma toks[-1] = 'beta' if toks[-1] == 'bias' else 'gamma' else: #embeddings: drop "_weight" suffix if toks[-1] == 'amax': toks[-2] = 'amax' toks = toks[:-1] elif 'qa' in onnx_name: name = 'cls_squad_output_bias' if toks[-1] == 'bias' else 'cls_squad_output_weights' return name else: print("Encountered unknown case:", onnx_name) assert(False) parsed = '_'.join(toks) return parsed def get_onnx_weight_dict(tensor_dict, config): N = config.num_attention_heads H = config.head_size hidden_size = config.hidden_size weights_dict = dict() for outname, tensor in tensor_dict.items(): if outname.find("_amax") != -1: weights_dict[outname] = tensor elif outname.find(BQ) != -1: prefix = outname[:outname.find(BQ)] Wqkv = np.zeros((3, hidden_size, hidden_size), np.float32) Bqkv = np.zeros((3, hidden_size), np.float32) Wqkv[0,:,:] = tensor_dict[prefix + WQ] Wqkv[1,:,:] = tensor_dict[prefix + WK] Wqkv[2,:,:] = tensor_dict[prefix + WV] Bqkv[0,:] = tensor Bqkv[1,:] = tensor_dict[prefix + BK] Bqkv[2,:] = tensor_dict[prefix + BV] if config.use_int8 and getattr(config, 'interleaved', False): Wqkv = np.ascontiguousarray(Wqkv.reshape((3, N, H, N, H))) Bqkv = np.ascontiguousarray(Bqkv.reshape((3, N, H))) else: Wqkv = np.ascontiguousarray(Wqkv.reshape((3, N, H, N, H)).transpose((1,0,2,3,4))) Bqkv = np.ascontiguousarray(Bqkv.reshape((3, N, H)).transpose((1,0,2))) weights_dict[prefix + WQKV] = trt.Weights(Wqkv) weights_dict[prefix + BQKV] = trt.Weights(Bqkv) weights_dict[prefix + WQKV + "_notrans"] = trt.Weights(np.ascontiguousarray(Wqkv.T)) elif outname.find(BK) != -1 or outname.find(BV) != -1 or outname.find(WQ) != -1 or outname.find(WK) != -1 or outname.find(WV) != -1: pass else: flat_tensor = np.ascontiguousarray(tensor).flatten() weights_dict[outname] = trt.Weights(flat_tensor) if outname.find("kernel") != -1: tensor = np.transpose(tensor) weights_dict[outname + "_notrans"] = trt.Weights(np.ascontiguousarray(tensor).flatten()) TRT_LOGGER.log(TRT_LOGGER.INFO, "Found {:} entries in weight map".format(len(weights_dict))) return weights_dict def load_onnx_weights_and_quant(path, config): """ Load the weights from the onnx checkpoint """ model = onnx.load(path) weights = model.graph.initializer tensor_dict = dict((onnx_to_trt_name(w.name), np.frombuffer(w.raw_data, np.int8).reshape(w.dims)) if w.name.split('_')[-1] == 'mask' else (onnx_to_trt_name(w.name), np.frombuffer(w.raw_data, np.float32).reshape(w.dims)) for w in weights) return get_onnx_weight_dict(tensor_dict, config) def load_pytorch_weights_and_quant(path, config): """ Load the weights from the pytorch checkpoint """ state_dict = torch.load(path, map_location='cpu')["model"] tensor_dict = {onnx_to_trt_name(name):val.numpy() for name, val in state_dict.items()} return get_onnx_weight_dict(tensor_dict, config) def load_megatron_pickle_weights(path, config): N = config.num_attention_heads H = config.head_size with open(path, 'rb') as f: tensor_dict = pickle.load(f) weight_dict = {} for name, tensor in tensor_dict.items(): if 'scale' in name: continue name = (onnx_to_trt_name(name) .replace('embedding_', 'embeddings_') .replace('tokentype_', 'token_type_') .replace('_av', '_self_av') .replace('_qv', '_self_qv') .replace('query_key_value', 'self_qkv')) if name.endswith('self_qkv_kernel'): tensor = np.ascontiguousarray(tensor.reshape((3, N, H, N, H))).astype(np.float32) weight_dict[name] = trt.Weights(tensor) elif name.endswith('self_qkv_bias'): tensor = np.ascontiguousarray(tensor.reshape((3, N, H))).astype(np.float32) weight_dict[name] = trt.Weights(tensor) elif name == 'l{}_output_layernorm_output_quantizer_amax'.format(config.num_hidden_layers-1): weight_dict['bert_encoder_final_input_quantizer_amax'] = tensor elif name.endswith('_amax'): weight_dict[name] = tensor if name.endswith('_qkv_input_amax'): weight_dict[name.replace('_qkv_input_amax', '_query_input_amax')] = tensor weight_dict[name.replace('_qkv_input_amax', '_key_input_amax')] = tensor weight_dict[name.replace('_qkv_input_amax', '_value_input_amax')] = tensor else: flat_tensor = np.ascontiguousarray(tensor).flatten().astype(np.float32) weight_dict[name] = trt.Weights(flat_tensor) TRT_LOGGER.log(TRT_LOGGER.INFO, "Found {:} entries in weight map".format(len(weight_dict))) return weight_dict
# -*- coding: utf-8 -*- """Test that samplers can be executed.""" import unittest from typing import ClassVar, Type import numpy import torch from pykeen.datasets import Nations from pykeen.sampling import BasicNegativeSampler, BernoulliNegativeSampler, NegativeSampler from pykeen.training.schlichtkrull_sampler import GraphSampler, _compute_compressed_adjacency_list from pykeen.triples import SLCWAInstances, TriplesFactory def _array_check_bounds( array: torch.LongTensor, low: int, high: int, ) -> bool: """Check if all elements lie in bounds.""" return (low <= array).all() and (array < high).all() class _NegativeSamplingTestCase: """A test case for quickly defining common tests for samplers.""" #: The batch size batch_size: int #: The random seed seed: int #: The triples factory triples_factory: TriplesFactory #: The sLCWA instances slcwa_instances: SLCWAInstances #: Class of negative sampling to test negative_sampling_cls: ClassVar[Type[NegativeSampler]] #: The negative sampler instance, initialized in setUp negative_sampler: NegativeSampler #: A positive batch positive_batch: torch.LongTensor def setUp(self) -> None: """Set up the test case with a triples factory and model.""" self.batch_size = 16 self.seed = 42 self.num_negs_per_pos = 10 self.triples_factory = Nations().training self.slcwa_instances = self.triples_factory.create_slcwa_instances() self.negative_sampler = self.negative_sampling_cls(triples_factory=self.triples_factory) self.scaling_negative_sampler = self.negative_sampling_cls( triples_factory=self.triples_factory, num_negs_per_pos=self.num_negs_per_pos, ) random = numpy.random.RandomState(seed=self.seed) batch_indices = random.randint(low=0, high=self.slcwa_instances.num_instances, size=(self.batch_size,)) self.positive_batch = self.slcwa_instances.mapped_triples[batch_indices] def test_sample(self) -> None: # Generate negative sample negative_batch = self.negative_sampler.sample(positive_batch=self.positive_batch) # check shape assert negative_batch.shape == self.positive_batch.shape # check bounds: heads assert _array_check_bounds(negative_batch[:, 0], low=0, high=self.triples_factory.num_entities) # check bounds: relations assert _array_check_bounds(negative_batch[:, 1], low=0, high=self.triples_factory.num_relations) # check bounds: tails assert _array_check_bounds(negative_batch[:, 2], low=0, high=self.triples_factory.num_entities) # Check that all elements got corrupted assert (negative_batch != self.positive_batch).any(dim=1).all() # Generate scaled negative sample scaled_negative_batch = self.scaling_negative_sampler.sample( positive_batch=self.positive_batch, ) assert scaled_negative_batch.shape[0] == self.positive_batch.shape[0] * self.num_negs_per_pos assert scaled_negative_batch.shape[1] == self.positive_batch.shape[1] class BasicNegativeSamplerTest(_NegativeSamplingTestCase, unittest.TestCase): """Test the basic negative sampler.""" negative_sampling_cls = BasicNegativeSampler def test_sample_basic(self): """Test if relations and half of heads and tails are not corrupted.""" # Generate negative samples negative_batch = self.negative_sampler.sample(positive_batch=self.positive_batch) # test that the relations were not changed assert (self.positive_batch[:, 1] == negative_batch[:, 1]).all() # Test that half of the subjects and half of the objects are corrupted half_size = self.positive_batch.shape[0] // 2 num_subj_corrupted = (self.positive_batch[:, 0] != negative_batch[:, 0]).sum() num_obj_corrupted = (self.positive_batch[:, 2] != negative_batch[:, 2]).sum() assert num_obj_corrupted - 1 <= num_subj_corrupted assert num_subj_corrupted - 1 <= num_obj_corrupted assert num_subj_corrupted - 1 <= self.positive_batch.shape[0] assert half_size - 1 <= num_subj_corrupted class BernoulliNegativeSamplerTest(_NegativeSamplingTestCase, unittest.TestCase): """Test the Bernoulli negative sampler.""" negative_sampling_cls = BernoulliNegativeSampler def test_sample_bern(self): """Test if relations are not corrupted.""" # Generate negative sample for additional tests negative_batch = self.negative_sampler.sample(positive_batch=self.positive_batch) # test that the relations were not changed assert (self.positive_batch[:, 1] == negative_batch[:, 1]).all() class GraphSamplerTest(unittest.TestCase): """Test the GraphSampler.""" def setUp(self) -> None: """Set up the test case with a triples factory.""" self.triples_factory = Nations().training self.num_samples = 20 self.num_epochs = 10 self.graph_sampler = GraphSampler(triples_factory=self.triples_factory, num_samples=self.num_samples) def test_sample(self) -> None: """Test drawing samples from GraphSampler.""" for e in range(self.num_epochs): # sample a batch batch_indices = [] for j in self.graph_sampler: batch_indices.append(j) batch = torch.stack(batch_indices) # check shape assert batch.shape == (self.num_samples,) # get triples triples_batch = self.triples_factory.mapped_triples[batch] # check connected components # super inefficient components = [{int(e)} for e in torch.cat([triples_batch[:, i] for i in (0, 2)]).unique()] for h, _, t in triples_batch: h, t = int(h), int(t) s_comp_ind = [i for i, c in enumerate(components) if h in c][0] o_comp_ind = [i for i, c in enumerate(components) if t in c][0] # join if s_comp_ind != o_comp_ind: s_comp = components.pop(max(s_comp_ind, o_comp_ind)) o_comp = components.pop(min(s_comp_ind, o_comp_ind)) so_comp = s_comp.union(o_comp) components.append(so_comp) else: pass # already joined if len(components) < 2: break # check that there is only a single component assert len(components) == 1 class AdjacencyListCompressionTest(unittest.TestCase): """Unittest for utility method.""" def setUp(self) -> None: """Set up the test case with a triples factory.""" self.triples_factory = Nations().training def test_compute_compressed_adjacency_list(self): """Test method _compute_compressed_adjacency_list .""" degrees, offsets, comp_adj_lists = _compute_compressed_adjacency_list(triples_factory=self.triples_factory) triples = self.triples_factory.mapped_triples uniq, cnt = torch.unique(torch.cat([triples[:, i] for i in (0, 2)]), return_counts=True) assert (degrees == cnt).all() assert (offsets[1:] == torch.cumsum(cnt, dim=0)[:-1]).all() assert (offsets < comp_adj_lists.shape[0]).all() # check content of comp_adj_lists for i in range(self.triples_factory.num_entities): start = offsets[i] stop = start + degrees[i] adj_list = comp_adj_lists[start:stop] # check edge ids edge_ids = adj_list[:, 0] adjacent_edges = set(int(a) for a in ((triples[:, 0] == i) | (triples[:, 2] == i)).nonzero().flatten()) assert adjacent_edges == set(map(int, edge_ids))
import pytest def test_merge_call_order(rebase_remotes, mocker): mocker.patch.object(rebase_remotes, 'git', return_value=1) rr = rebase_remotes target_branch = 'test' rr.merge(target_branch) calls = [ mocker.call('checkout {}'.format(target_branch), ignore_err=True), mocker.call('merge --no-ff {}'.format('br1'), interrupt_if_err=False), mocker.call('merge --no-ff {}'.format('br2'), interrupt_if_err=False), ] rr.git.assert_has_calls(calls, any_order=False) def test_merge_fail_checkout(rebase_remotes, mocker): mocker.patch.object(rebase_remotes, 'git', return_value=0) rr = rebase_remotes target_branch = 'test' calls = [ mocker.call('checkout {}'.format(target_branch), ignore_err=True), ] with pytest.raises(SystemExit): rr.merge(target_branch) rr.git.assert_has_calls(calls, any_order=False) def test_merge_not_result(rebase_remotes, mocker): mocker.patch.object(rebase_remotes, 'git', return_value=1) rr = rebase_remotes result = rr.merge('test') assert not result
from ..builder import HEADS from .posenc_cascade_roi_head import PositionalEncodingCascadeRoIHead from mmdet.core import bbox2roilist import torch @HEADS.register_module() class SpatialRelationCascadeRoIHead(PositionalEncodingCascadeRoIHead): def _bbox_forward(self, stage, x, rois, n_imgs=1): """Box head forward function used in both training and testing.""" bbox_roi_extractor = self.bbox_roi_extractor[stage] bbox_head = self.bbox_head[stage] x = self.add_positional_encoding(x[:bbox_roi_extractor.num_inputs]) bbox_feats, bbox_spatial_feats = bbox_roi_extractor(x, rois) cls_score, bbox_pred = bbox_head(bbox_feats, bbox_spatial_feats, n_imgs=n_imgs) bbox_results = dict( cls_score=cls_score, bbox_pred=bbox_pred, bbox_feats=bbox_feats) return bbox_results def _bbox_forward_train(self, stage, x, sampling_results, gt_bboxes, gt_labels, rcnn_train_cfg): """Run forward function and calculate loss for box head in training.""" roilist = bbox2roilist([res.bboxes for res in sampling_results]) if roilist[0].size(0) != roilist[-1].size(0): bbox_results = self._bbox_forward(stage, x, roilist) rois = torch.cat(roilist, dim=0) else: rois = torch.cat(roilist, dim=0) bbox_results = self._bbox_forward(stage, x, rois, n_imgs=len(roilist)) bbox_targets = self.bbox_head[stage].get_targets( sampling_results, gt_bboxes, gt_labels, rcnn_train_cfg) loss_bbox = self.bbox_head[stage].loss(bbox_results['cls_score'], bbox_results['bbox_pred'], rois, *bbox_targets) bbox_results.update( loss_bbox=loss_bbox, rois=rois, bbox_targets=bbox_targets) return bbox_results
# -*- coding: utf-8 -*- """ These functions actually aren't really used in the code for now.' """ import numpy as np import scipy from scipy.stats import truncnorm from scipy.interpolate import NearestNDInterpolator from scipy.interpolate.ndgriddata import _ndim_coords_from_arrays def ltruncnorm(loc, scale, size, random_state=None): """ Truncated normal random numbers, cut off at locations less than 0. Parameters ----------- loc : float Center coordinate of gaussian distribution scale : float Std deviation scale size : int Number of random numbers to generate random_state : None or numpy.random.RandomState Random number seeding object, or None. Returns --------- out : array shaped (size) Output samples """ if scale == 0: return np.ones(size) * loc xmin = -loc / scale t = truncnorm(xmin, 1e6) s = t.rvs(size=size, random_state=random_state) s = s * scale + loc return s class NearestManhattanInterpolator(NearestNDInterpolator): """ NearestManhattanInterpolator(x, y) Nearest-neighbour interpolation in N dimensions using Manhatten p=1 norm. .. versionadded:: 0.9 Methods ------- __call__ Parameters ---------- x : (Npoints, Ndims) ndarray of floats Data point coordinates. y : (Npoints,) ndarray of float or complex Data values. """ def __call__(self, *args): """ Evaluate interpolator at given points. Parameters ---------- xi : ndarray of float, shape (..., ndim) Points where to interpolate data at. """ xi = _ndim_coords_from_arrays(args, ndim=self.points.shape[1]) xi = self._check_call_shape(xi) xi = self._scale_x(xi) dist, i = self.tree.query(xi, p=1) return self.values[i] def vectorized_choice(p, n, items=None): """ Randomly choose integers Parameters ------------ p : array Weights on choices n : int Number of choices items : array Choices """ s = p.cumsum(axis=1) r = np.random.rand(p.shape[0], n, 1) q = np.expand_dims(s, 1) >= r k = q.argmax(axis=-1) if items is not None: k = np.asarray(items)[k] return k p = np.ones((20, 5)) #p[:, 1] = 0 p = p / np.sum(p, axis=1)[:, None] n = 4 out = vectorized_choice(p, n)
from pokermodules.convenience_hole import add_margins, range_plot, top_hands_pct from sys import argv fc2 = 1326 p = float(argv[1]) print "Top", p, 'pct of hands =', fc2 * (p / 100.0), 'hands' thp = top_hands_pct(p) t = {'pairs':0, 'suited':0, 'unsuited':0} mul = {'pairs':6, 'suited':4, 'unsuited':12} for h in thp: if h[0] == h[1]: t['pairs'] += 1 elif 's' in h: t['suited'] += 1 else: t['unsuited'] += 1 running_tot = 0 for k in 'pairs suited unsuited'.split(): print t[k], k, '*', mul[k], '=', t[k] * mul[k] running_tot += t[k] * mul[k] print "Actual number", running_tot, '=', round(running_tot / float(fc2), 4) * 100 print add_margins(range_plot(thp))
from pypy.lang.smalltalk import shadow, constants from pypy.lang.smalltalk import constants def bootstrap_class(instsize, w_superclass=None, w_metaclass=None, name='?', format=shadow.POINTERS, varsized=False): from pypy.lang.smalltalk import model w_class = model.W_PointersObject(w_metaclass, 0) # a dummy placeholder for testing s = shadow.ClassShadow(w_class) s.methoddict = {} if w_superclass is not None: s.s_superclass = w_superclass.as_class_get_shadow() s.name = name s.instance_size = instsize s.instance_kind = format s.instance_varsized = varsized or format != shadow.POINTERS s.invalid = False w_class._shadow = s return w_class # ___________________________________________________________________________ # Core Bootstrapping Objects classtable = {} def create_classtable(): def define_core_cls(name, w_superclass, w_metaclass): assert name.startswith('w_') shadow = bootstrap_class(instsize=0, # XXX w_superclass=w_superclass, w_metaclass=w_metaclass, name=name[2:]) classtable[name] = shadow return shadow # A complete minimal setup (including Behavior) would look like this # # class: superclass: metaclass: # ------------------- ------------------- ------------------- # Object *nil Object class # Behavior Object Behavior class # ClassDescription Behavior ClassDescription class # Class ClassDescription Class class # Metaclass ClassDescription Metaclass class # Object class *Class *Metaclass # Behavior class Object class *Metaclass # ClassDescription cl Behavior class *Metaclass # Class class ClassDescription cl *Metaclass # Metaclass class ClassDescription cl *Metaclass # Class Name Super class name cls_nm_tbl = [ ["w_Object", "w_ProtoObject"], # there is not ProtoObject in mini.image ["w_Behavior", "w_Object"], ["w_ClassDescription", "w_Behavior"], ["w_Class", "w_ClassDescription"], ["w_Metaclass", "w_ClassDescription"], ] define_core_cls("w_ProtoObjectClass", None, None) w_ProtoObjectClass = classtable["w_ProtoObjectClass"] define_core_cls("w_ProtoObject", None, w_ProtoObjectClass) for (cls_nm, super_cls_nm) in cls_nm_tbl: meta_nm = cls_nm + "Class" meta_super_nm = super_cls_nm + "Class" w_metacls = define_core_cls(meta_nm, classtable[meta_super_nm], None) define_core_cls(cls_nm, classtable[super_cls_nm], w_metacls) w_Class = classtable["w_Class"] w_Metaclass = classtable["w_Metaclass"] w_ProtoObjectClass.as_class_get_shadow().s_superclass = \ w_Class.as_class_get_shadow() # at this point, all classes that still lack a w_class are themselves # metaclasses for nm, w_cls_obj in classtable.items(): if w_cls_obj.w_class is None: w_cls_obj.w_class = w_Metaclass create_classtable() def copy_in_globals_classes_known_to_the_vm(): for name in constants.classes_in_special_object_table: name = 'w_' + name globals()[name] = classtable[name] # ___________________________________________________________________________ # Other classes def define_cls(cls_nm, supercls_nm, instvarsize=0, format=shadow.POINTERS, varsized=False): assert cls_nm.startswith("w_") meta_nm = cls_nm + "Class" meta_super_nm = supercls_nm + "Class" w_Metaclass = classtable["w_Metaclass"] w_meta_cls = classtable[meta_nm] = \ bootstrap_class(0, # XXX classtable[meta_super_nm], w_Metaclass, name=meta_nm[2:]) w_cls = classtable[cls_nm] = \ bootstrap_class(instvarsize, classtable[supercls_nm], w_meta_cls, format=format, varsized=varsized, name=cls_nm[2:]) define_cls("w_Magnitude", "w_Object") define_cls("w_Character", "w_Magnitude", instvarsize=1) define_cls("w_Number", "w_Magnitude") define_cls("w_Integer", "w_Number") define_cls("w_SmallInteger", "w_Integer") define_cls("w_Float", "w_Number", format=shadow.BYTES) define_cls("w_Collection", "w_Object") define_cls("w_SequencableCollection", "w_Collection") define_cls("w_ArrayedCollection", "w_SequencableCollection") define_cls("w_Array", "w_ArrayedCollection", varsized=True) define_cls("w_String", "w_ArrayedCollection", format=shadow.BYTES) define_cls("w_UndefinedObject", "w_Object") define_cls("w_Boolean", "w_Object") define_cls("w_True", "w_Boolean") define_cls("w_False", "w_Boolean") define_cls("w_ByteArray", "w_ArrayedCollection", format=shadow.BYTES) define_cls("w_MethodDict", "w_Object", instvarsize=2, varsized=True) define_cls("w_CompiledMethod", "w_ByteArray", format=shadow.COMPILED_METHOD) define_cls("w_MethodContext", "w_Object") define_cls("w_ContextPart", "w_Object") define_cls("w_MethodContext", "w_ContextPart") define_cls("w_BlockContext", "w_ContextPart", instvarsize=constants.BLKCTX_TEMP_FRAME_START) copy_in_globals_classes_known_to_the_vm()
import requests import pandas as pd import json csv_csi = pd.read_csv('1_CSI.dat', skiprows=4, names=['TIMESTAMP', 'RECORD', 'Temp_Enc', 'Batt_Volt', 'RH_Enc']) csv_fws = pd.read_csv('1_FWS.dat', skiprows=4, names=['TIMESTAMP', 'RECORD', 'AirTemp', 'Humidity', 'Baro', 'Lat_deg', 'Lat_min', 'Long_deg', 'Long_min']) csv_sonde = pd.read_csv('1_SONDE1.dat', skiprows=4, names=['TIMESTAMP', 'RECORD', 'Temp_C', 'SpCond_mS', 'Sal', 'TDS_ppt', 'pH', 'ORP_mV', 'DO_percent', 'DO_ppm', 'Turb_NTU', 'Chl_ppb', 'PC_ppb']) csi = pd.DataFrame(csv_csi) csijson = csi.to_json(orient='records', force_ascii=False) fws = pd.DataFrame(csv_fws) sonde = pd.DataFrame(csv_sonde) allconcat = pd.concat([csi,fws,sonde],axis=1) csvcsifws = pd.merge(csi, fws) csvall = pd.merge(csvcsifws,sonde) sizelen = [len(fws), len(csi), len(sonde)] sizelen.sort(reverse=True) for index, row in csi.iterrows(): print(index, row['TIMESTAMP'], row['RECORD']) print("csi %s" % len(csi)) print("fws %s" % len(fws)) print("sonde %s" % len(sonde)) # for index, row in csi.iterrows(): # print(index) # print(row)
from collections import defaultdict from sys import argv import pandas as pd import re import string import numpy as np from sklearn.cluster import DBSCAN from collections import Counter script, strain_name = argv table1_df = pd.read_csv('%s_table1.csv' % strain_name, sep='\t') table1_df['product'].fillna('None', inplace=True) #This first portion will create the distance matrix def score_match(table, index_gene1, index_gene2): score = 0 gene1_category = table1_df.category.loc[index_gene1] gene2_category = table1_df.category.loc[index_gene2] if gene1_category == 'hypothetical' or gene2_category == 'hypothetical': if gene1_category == gene2_category: score = score + 1 elif gene1_category != gene2_category: score = score + 2 else: if gene1_category == gene2_category: score = score + 5 gene1_best_BGC = table1_df.best_hit_BGC.loc[index_gene1] gene2_best_BGC = table1_df.best_hit_BGC.loc[index_gene2] if gene1_best_BGC != 'None' and gene2_best_BGC != 'None': if gene1_best_BGC == gene2_best_BGC: score = score + 2 gene1_best_hit_pos = re.search(r'^\D*([0-9]*)',table1_df.best_hit_gene_loc.loc[index_gene1]) gene2_best_hit_pos = re.search(r'^\D*([0-9]*)',table1_df.best_hit_gene_loc.loc[index_gene2]) dif_best_hit_pos = abs(abs((int(gene2_best_hit_pos.group(1)) - int(gene1_best_hit_pos.group(1)))) - abs((index_gene2-index_gene1))) if dif_best_hit_pos == 0: score = score + 3 elif dif_best_hit_pos == 1: score = score + 2 elif dif_best_hit_pos == 2: score = score + 1 else: score = score + 1 return score for index,row in table1_df.iterrows(): scores = [] for gene in range(0,len(table1_df)): scores.append(score_match(table1_df,gene,index)) if index == 0: A = np.vstack([scores]) else: A = np.vstack([A,scores]) #This second portion will run dbscan to create a subclusters possibilities def repeated(db_arrays,db): for i in range(0,len(db_arrays)-1): if np.array_equal(db_arrays[i],db) == False: continue else: return True break def parse_db(db): D = defaultdict(list) for i,item in enumerate(db): D[item].append(i) D = {k:v for k,v in D.items() if len(v)>1} return D def find_category(categories,col5): if 'biosynthetic' in categories: col5.append('biosynthetic') else: if len(categories) > 1: category = re.search(r'^\[\(\'(\S*)\'',str(Counter(categories).most_common(1))).group(1) col5.append('%s'%category) else: col5.append('%s'%categories[0]) count = 0 for itn in range(1,len(A)): db = DBSCAN(eps=itn, min_samples=2).fit_predict(A) if itn == 1: db_arrays = np.vstack([db]) else: db_arrays = np.vstack([db_arrays,db]) if repeated(db_arrays,db) == True: continue else: subcluster_dict = parse_db(db) col1 = [] col2 = [] col3 = [] col4 = [] col5 = [] for key, value in subcluster_dict.iteritems(): col1.append(strain_name) col2.append(string.ascii_uppercase[subcluster_dict.keys().index(key)]) col3.append(len(value)) categories = [] genes = [] for item in value: categories.append(table1_df.category.loc[item]) genes.append(table1_df.locus_tag.loc[item]) genes = ','.join(genes) col4.append(genes) find_category(categories,col5) frames = {'BGC':col1, 'subcluster':col2, 'CDSs':col3, 'loci':col4, 'category':col5} count = count + 1 table2_df = pd.DataFrame(frames, index=None) table2_df.to_csv('%s_table2_%d.csv' % (strain_name,count), sep='\t', index=False)
import sys import os import argparse import torch import logging import time from tqdm import tqdm from image import * from Models.lightUnetPlusPlus import lightUnetPlusPlus def predict(model, threshold, device, dataset, output_paths, color): with tqdm(desc=f'Prediction', unit=' img') as progress_bar: for i, (image, _) in enumerate(dataset): image = image[0, ...] #ground_truth = ground_truth[0, ...] image = image.to(device) #ground_truth = ground_truth.to(device) with torch.no_grad(): mask_predicted = model(image) placeholder_path(output_paths[i]) save_predicted_mask(mask_predicted, device, color=color, filename=(output_paths[i]+"/predicted.png"), threshold=threshold) progress_bar.update() if __name__ == '__main__': t_start = time.time() current_path = sys.argv[0] current_path = current_path.replace("predict.py", "") # Hyperparameters batch_size = 1 num_classes = 2 n_channels = 6 # Arg parse parser = argparse.ArgumentParser() parser.add_argument("--input", "-i", help="path to the input directory, containing instance directories, each instance directory should contain before.png and after.png 650x650 images") parser.add_argument("--output", "-o", help="path to the output directory, where the change masks will be saved, can be the same as the input directory") parser.add_argument("--threshold", "-t", type=float, help="a value between 0 and 1, to classify each pixel, if not given the mask pixels will have continuous values between the two classes") parser.add_argument("--color", "-c", help="background color of the generated masks, can be 'red', 'blue' or 'black'") args = parser.parse_args() # Setup of log and device logging.basicConfig(level=logging.INFO, format='%(levelname)s: %(message)s') device = torch.device('cpu' if not torch.cuda.is_available() else 'cuda') logging.info(f'Using {device}') instance_names = [i for i in os.walk(args.input)][0][1] dataset, output_paths = load_dataset_predict(args.input, args.output, instance_names, batch_size) logging.info(f'Data loaded : {len(output_paths)} instances found') # Network creation, uncomment the one you want to use # model = BasicUnet(n_channels= n_channels, n_classes=num_classes) # model = modularUnet(n_channels=n_channels, n_classes=num_classes, depth=2) # model = unetPlusPlus(n_channels=n_channels, n_classes=num_classes) model = lightUnetPlusPlus(n_channels=n_channels, n_classes=num_classes) model.to(device) model.load_state_dict(torch.load('Weights/last.pth',map_location=torch.device(device))) model.eval() logging.info(f'Model loaded\n') try: predict(model=model, threshold=args.threshold, device=device, dataset=dataset, output_paths=output_paths, color=args.color) except KeyboardInterrupt: logging.info(f'Interrupted by Keyboard') finally: t_end = time.time() print("\nDone in " + str(int((t_end - t_start))) + " sec")
# Beam In Vessel Test import sys import numpy as np import matplotlib.pyplot as plt import sys import os sys.path.append(os.path.join('../')) from lib.BeamDynamicsTools.Boundary import Boundary from lib.BeamDynamicsTools.Bfield import Bfield, BfieldTF, BfieldVF from lib.BeamDynamicsTools.Trajectory import Trajectory from lib.BeamDynamicsTools.Beam import Beam from lib.BeamDynamicsTools.Ellipse import Ellipse import pylab as pl # ------------------------------------------------------------------------------ # Input Sigma Matrix S1 = np.matrix([ [1.502802755999999818e+01, -1.284540872159999791e+00, 0.000000000000000000e+00, 0.000000000000000000e+00, 0.000000000000000000e+00, 0.000000000000000000e+00], [-1.284540872159999791e+00, 1.759299135999999919e+01, 0.000000000000000000e+00, 0.000000000000000000e+00, 0.000000000000000000e+00, 0.000000000000000000e+00], [0.000000000000000000e+00, 0.000000000000000000e+00, 2.312744280999999802e+01, - 1.934440661508000048e+01, 0.000000000000000000e+00, 0.000000000000000000e+00], [0.000000000000000000e+00, 0.000000000000000000e+00, -1.934440661508000048e+01, 1.971182403999999977e+01, 0.000000000000000000e+00, 0.000000000000000000e+00], [0.000000000000000000e+00, 0.000000000000000000e+00, 0.000000000000000000e+00, 0.000000000000000000e+00, 4.679517649000000290e+01, 8.473947224080001206e+01], [0.000000000000000000e+00, 0.000000000000000000e+00, 0.000000000000000000e+00, 0.000000000000000000e+00, 8.473947224080001206e+01, 1.572014440000000093e+02]], float) # ------------------------------------------------------------------------------ # Define Boundary # Boundary(Rb,Zb) #Rb = [ 0.2 , 0.25, 0.4 , 0.6 , 0.8 , 0.8 , 0.6 , 0.4 , 0.25, 0.2 ] #Zb = [-0.55,-0.6 ,-0.6 ,-0.5 ,-0.2 , 0.2 , 0.5 , 0.6 , 0.6 , 0.55] Rb = [0.2, 2.0, 2.0, 0.2] Zb = [2.0, 2.0, -2.0, -2.0] Vessel = Boundary(Rb, Zb, cw=-1) Vessel.Plot2D(0) # class Trajectory(self,Vessel,B,dS=1e-3,r0=[1.5,0.0,0.5],v0=[-1.0,0.0,0.0],a0=[0.0,0.0,0.0],A0=2,T0=0.9,Nmax=10000): #T = Trajectory(Vessel,B) ax = Vessel.Figure3D(1) Vessel.Plot3D(ax) B0 = [0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4] if True: # Inputs for 4 B-field settings In = np.array([0.0, 1600.0, 3120, 4450.0]) # Bn = np.array([ 0.0, 0.00969697, 0.01890909, 0.0269697 ]) Bn = np.array([0.0, 0.05818182, 0.11345455, 0.16181818]) if False: # Inputs for Fine poloidal sweep In = np.array([ 0.0000, 620.00, 1110.0, 1600.0, 1780.0, 2400.0, 3000.0, 3120.0, 3470.0, 4000.0, 4450.0, 4800.0]) Bn = np.array([ 0.0000000000, 0.0225454545, 0.0403636364, 0.0581818182, 0.0647272727, 0.0872727273, 0.1090909091, 0.1134545455, 0.1261818182, 0.1454545455, 0.1618181818, 0.1745454545]) if True: Angle = [] Coordinates = [] Path = '../output/' # ------------------------------------------------------------------------------ # Calculate Trajectories for i in range(len(Bn)): B = BfieldTF(B0=Bn[i]) Bv = BfieldVF(B0=0.00000) T = Trajectory(Vessel, B, Bv, M0=0.511e6, Method='LeapFrog') AIMSBeam = Beam(T, S1) AIMSBeam.Trace() # ------------------------------------------------------------------------------ # Save beam and target parameters if False: np.savetxt(Path + 'Curvature_I_' + str(int(In[i])) + '.txt', T.k) np.savetxt(Path + 'SCoord_I_' + str(int(In[i])) + '.txt', T.s) np.savetxt(Path + 'GradB_I_' + str(int(In[i])) + '.txt', T.gradB) np.savetxt(Path + 'GradBk_I_' + str(int(In[i])) + '.txt', T.gradBn) np.savetxt(Path + 'GradBn_I_' + str(int(In[i])) + '.txt', T.gradBk) np.savetxt(Path + 'TargetBasis_I_' + str(int(In[i])) + '.txt', T.target.TargetBasis) np.savetxt(Path + 'SigmaBasis_I_' + str(int(In[i])) + '.txt', T.target.SigmaBasis) np.savetxt(Path + 'SigmaFinal_I_' + str(int(In[i])) + '.txt', AIMSBeam.Target.Sigma) Angle.append([T.target.VAngle, T.target.HAngle]) Coordinates.append([T.target.R, T.target.Z, T.target.Phi]) # ------------------------------------------------------------------------------ # Plot Trajectories T.Plot3D(ax) T.target.Plot3D plt.figure(10) T.Plot2D() plt.figure(11) T.Plot2D('top') plt.figure(10) Vessel.Border() plt.xlim(0.2, 1.4) plt.ylim(-0.7, 0.5) plt.xlabel('R [m]') plt.ylabel('Z [m]') plt.title('Poloidal Projection') plt.figure(11) Vessel.Border('top') plt.xlim(0, 1.2) plt.ylim(-0.6, 0.6) plt.xlabel('x [m]') plt.ylabel('y [m]') plt.title('Midplane Projection') # np.savetxt(Path+'TargetAngle_Vert_Horiz.txt',Angle) # np.savetxt(Path+'TargetCoordinates.txt',Coordinates) plt.show()
# Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the 'License'); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an 'AS IS' BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Pipeline code for PythonML activation to GA.""" import datetime import warnings from googleapiclient import discovery from googleapiclient.http import MediaFileUpload import httplib2 import numpy as np from oauth2client.service_account import ServiceAccountCredentials from google.oauth2 import service_account import params import pandas as pd from google.cloud import bigquery import pkl_predictions GA_ACCOUNT_ID = params.GA_ACCOUNT_ID GA_PROPERTY_ID = params.GA_PROPERTY_ID GA_DATASET_ID = params.GA_DATASET_ID GA_IMPORT_METHOD = params.GA_IMPORT_METHOD BQ_READ_QUERY = params.BQ_READ_QUERY MODEL_FILE_NAME = params.MODEL_FILE_NAME SERVICE_ACCOUNT_FILE = "svc_key.json" CLOUD_SCOPES = ["https://www.googleapis.com/auth/cloud-platform"] CSV_LOCATION = "output.csv" GA_SCOPES = [ "https://www.googleapis.com/auth/analytics.readonly", "https://www.googleapis.com/auth/analytics.edit", "https://www.googleapis.com/auth/analytics" ] GA_API_NAME = "analytics" GA_API_VERSION = "v3" warnings.simplefilter(action="ignore", category=FutureWarning) def authorize_ga_api(): """Fetches the GA API obj. Returns: ga_api: GA API obj. """ ga_credentials = ServiceAccountCredentials.from_json_keyfile_name( SERVICE_ACCOUNT_FILE, GA_SCOPES) http = ga_credentials.authorize(http=httplib2.Http()) ga_api = discovery.build(GA_API_NAME, GA_API_VERSION, http=http) return ga_api def read_from_bq(): """Reads the prediction query from Bigquery using BQML. Returns: dataframe: BQML model results dataframe. """ credentials = service_account.Credentials.from_service_account_file( SERVICE_ACCOUNT_FILE, scopes=["https://www.googleapis.com/auth/cloud-platform"]) bq_client = bigquery.Client(credentials=credentials, project=credentials.project_id) #bq_client = bigquery.Client() query_job = bq_client.query(BQ_READ_QUERY) results = query_job.result() dataframe = results.to_dataframe() return dataframe def prepare_csv(df): """Converts results dataframe to CSV. Args: df: final results dataframe for GA export. """ csv_string = df.to_csv(index=False) with open(CSV_LOCATION, "w+") as f: f.write(csv_string) def write_to_ga_via_di(ga_api): """Write the prediction results into GA via data import. Args: ga_api: Google Analytics Management API object. """ media = MediaFileUpload(CSV_LOCATION, mimetype="application/octet-stream", resumable=False) ga_api.management().uploads().uploadData( accountId=GA_ACCOUNT_ID, webPropertyId=GA_PROPERTY_ID, customDataSourceId=GA_DATASET_ID, media_body=media).execute() def delete_ga_prev_uploads(ga_api): """Delete previous GA data import files. Args: ga_api: Google Analytics Management API object. """ response = ga_api.management().uploads().list( accountId=GA_ACCOUNT_ID, webPropertyId=GA_PROPERTY_ID, customDataSourceId=GA_DATASET_ID).execute() uploads = response["items"] cids = [upload["id"] for upload in uploads[1:]] delete_request_body = {"customDataImportUids": cids} ga_api.management().uploads().deleteUploadData( accountId=GA_ACCOUNT_ID, webPropertyId=GA_PROPERTY_ID, customDataSourceId=GA_DATASET_ID, body=delete_request_body).execute() def main(): """Code to trigger workflow. """ try: dataframe = read_from_bq() print("Read the input data from BQ.") processed_df = pkl_predictions.preprocess(dataframe) print("Pre-processed the input data.") results_df = pkl_predictions.get_predictions(MODEL_FILE_NAME, processed_df) print("Fetched prediction results.") if GA_IMPORT_METHOD == "di": print("Uploading to GA via DI.....") prepare_csv(results_df) ga_api = authorize_ga_api() write_to_ga_via_di(ga_api) delete_ga_prev_uploads(ga_api) print("Upload via DI complete.") elif GA_IMPORT_METHOD == "mp": write_to_ga_via_mp(output_df) else: raise Exception("GA Import method not found.") timestamp_utc = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S") print("{0},SUCCESS".format(timestamp_utc)) except Exception as e: timestamp_utc = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S") print("{0},ERROR,{1}".format(timestamp_utc, str(e))) main()
from enum import Flag, auto class Context(Flag): """ Used to express either the data or program execution context. """ BATCH = auto() STREAMING = auto() ONLINE = auto() def __str__(self): return self.name __repr__ = __str__
class Solution: def solve(self, nums, k): if not nums: return 0 ans = 1 cur_sum = 0 maxes = [] j = -1 for i in range(len(nums)): while maxes and maxes[0][1] < i: heappop(maxes) if j < i: heappush(maxes, [-nums[i],i]) while j < len(nums)-1 and max(-maxes[0][0], nums[j+1])*(j+1-i+1)-(cur_sum+nums[j+1]) <= k: cur_sum += nums[j+1] heappush(maxes, [-nums[j+1],j+1]) j += 1 ans = max(ans, j-i+1) cur_sum -= nums[i] return ans
from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import cv2 class Debugger(object): def __init__(self, down_ratio=4): self.imgs = {} colors = [(color_list[_]).astype(np.uint8) \ for _ in range(len(color_list))] self.colors = np.array(colors, dtype=np.uint8).reshape(len(colors), 1, 1, 3) self.dim_scale = 1 self.names = class_name self.down_ratio=down_ratio def add_img(self, img, img_id='default', revert_color=False): if revert_color: img = 255 - img self.imgs[img_id] = img.copy() def add_blend_img(self, back, fore, img_id='blend', trans=0.7): if fore.shape[0] != back.shape[0] or fore.shape[0] != back.shape[1]: fore = cv2.resize(fore, (back.shape[1], back.shape[0])) if len(fore.shape) == 2: fore = fore.reshape(fore.shape[0], fore.shape[1], 1) self.imgs[img_id] = (back * (1. - trans) + fore * trans) self.imgs[img_id][self.imgs[img_id] > 255] = 255 self.imgs[img_id][self.imgs[img_id] < 0] = 0 self.imgs[img_id] = self.imgs[img_id].astype(np.uint8).copy() def gen_colormap(self, img, output_res=None): img = img.copy() c, h, w = img.shape[0], img.shape[1], img.shape[2] if output_res is None: output_res = (h * self.down_ratio, w * self.down_ratio) img = img.transpose(1, 2, 0).reshape(h, w, c, 1).astype(np.float32) colors = np.array( self.colors, dtype=np.float32).reshape(-1, 3)[:c].reshape(1, 1, c, 3) color_map = (img * colors).max(axis=2).astype(np.uint8) color_map = cv2.resize(color_map, (output_res[0], output_res[1])) return color_map def add_coco_bbox(self, bbox, cat, conf=1, show_txt=True, img_id='default'): bbox = np.array(bbox, dtype=np.int32) cat = int(cat) c = self.colors[cat][0][0].tolist() txt = '{}{:.3f}'.format(self.names[cat], conf) font = cv2.FONT_HERSHEY_SIMPLEX cat_size = cv2.getTextSize(txt, font, 0.5, 2)[0] cv2.rectangle( self.imgs[img_id], (bbox[0], bbox[1]), (bbox[2], bbox[3]), c, 2) if show_txt: cv2.rectangle(self.imgs[img_id], (bbox[0], bbox[1] - cat_size[1] - 2), (bbox[0] + cat_size[0], bbox[1] - 2), c, -1) cv2.putText(self.imgs[img_id], txt, (bbox[0], bbox[1] - 2), font, 0.5, (0, 0, 0), thickness=1, lineType=cv2.LINE_AA) def show_all_imgs(self): for i, v in self.imgs.items(): cv2.imshow('helmet detector', v) if cv2.waitKey(1) == 27: import sys sys.exit(0) class_name = [ 'head','helmet', ] color_list = np.array( [ 0.667, 0.000, 1.000, 0.929, 0.694, 0.125, ] ).astype(np.float32) color_list = color_list.reshape((-1, 3)) * 255
from hypernets.reader.spectrum import Spectrum class Spectra(object): def __init__(self, filename, line=None, plt=None): self.index = 0 self.offset = 0 self.line = line self.plt = plt with open(filename, 'rb') as fd: self.data = fd.read() self.update() def next_spectrum(self, event): # TODO : boundary self.index += 1 self.offset += self.current_spectrum.total self.update() def prev_spectrum(self, event): # TODO : ensure positivity self.index -= 1 self.offset -= self.current_spectrum.total # different when spec BOTH self.update() def update(self): self.current_spectrum = Spectrum(self.data[self.offset:]) # not optim if self.line is not None and self.plt is not None: self.line.set_xdata(range(len(self.current_spectrum.counts))) self.line.set_ydata(self.current_spectrum.counts) self.plt.draw()
# -*- coding: utf-8 -*- import io import re import tempfile import unittest from collections import OrderedDict from datetime import datetime, date from fractions import Fraction from os.path import getsize import six from mock import patch import cloudinary.utils from cloudinary import CL_BLANK from cloudinary.utils import build_list_of_dicts, json_encode, encode_unicode_url, base64url_encode, \ patch_fetch_format, cloudinary_scaled_url, chain_transformations, generate_transformation_string, build_eager from test.helper_test import TEST_IMAGE, REMOTE_TEST_IMAGE from test.test_api import API_TEST_TRANS_SCALE100, API_TEST_TRANS_SCALE100_STR, API_TEST_TRANS_SEPIA_STR, \ API_TEST_TRANS_SEPIA DEFAULT_ROOT_PATH = 'http://res.cloudinary.com/test123/' DEFAULT_UPLOAD_PATH = DEFAULT_ROOT_PATH + 'image/upload/' DEFAULT_FETCH_PATH = DEFAULT_ROOT_PATH + 'image/fetch/' VIDEO_UPLOAD_PATH = DEFAULT_ROOT_PATH + 'video/upload/' TEST_ID = 'test' FETCH_URL = "http://cloudinary.com/images/logo.png" IMAGE_VERSION = "1234" IMAGE_VERSION_STR = "v" + IMAGE_VERSION DEFAULT_VERSION_STR = 'v1' TEST_FOLDER = 'folder/test' class TestUtils(unittest.TestCase): crop_transformation = {'crop': 'crop', 'width': 100} crop_transformation_str = 'c_crop,w_100' raw_transformation = "c_fill,e_grayscale,q_auto" custom_function_wasm = {"function_type": "wasm", "source": "blur.wasm"} custom_function_wasm_str = "wasm:blur.wasm" custom_function_remote = { "function_type": "remote", "source": "https://df34ra4a.execute-api.us-west-2.amazonaws.com/default/cloudinaryFn"} custom_function_remote_str = \ "remote:aHR0cHM6Ly9kZjM0cmE0YS5leGVjdXRlLWFwaS51cy13ZXN0LTIuYW1hem9uYXdzLmNvbS9kZWZhdWx0L2Nsb3VkaW5hcnlGbg==" def setUp(self): cloudinary.config(cloud_name="test123", cname=None, # for these tests without actual upload, we ignore cname api_key="a", api_secret="b", secure_distribution=None, private_cdn=False) def __test_cloudinary_url(self, public_id=TEST_ID, options=None, expected_url=None, expected_options=None): if expected_options is None: expected_options = {} if options is None: options = {} url, options = cloudinary.utils.cloudinary_url(public_id, **options) self.assertEqual(expected_url, url) self.assertEqual(expected_options, options) def test_cloud_name(self): """should use cloud_name from config""" self.__test_cloudinary_url(options={}, expected_url=DEFAULT_UPLOAD_PATH + "test") def test_cloud_name_options(self): """should allow overriding cloud_name in options""" self.__test_cloudinary_url(options={"cloud_name": "test321"}, expected_url="http://res.cloudinary.com/test321/image/upload/test") def test_secure_distribution(self): """should use default secure distribution if secure=True""" self.__test_cloudinary_url(options={"secure": True}, expected_url="https://res.cloudinary.com/test123/image/upload/test") def test_secure_distribution_overwrite(self): """should allow overwriting secure distribution if secure=True""" self.__test_cloudinary_url(options={"secure": True, "secure_distribution": "something.else.com"}, expected_url="https://something.else.com/test123/image/upload/test") def test_secure_distibution(self): """should take secure distribution from config if secure=True""" cloudinary.config().secure_distribution = "config.secure.distribution.com" self.__test_cloudinary_url(options={"secure": True}, expected_url="https://config.secure.distribution.com/test123/image/upload/test") def test_secure_akamai(self): """should default to akamai if secure is given with private_cdn and no secure_distribution""" self.__test_cloudinary_url(options={"secure": True, "private_cdn": True}, expected_url="https://test123-res.cloudinary.com/image/upload/test") def test_secure_non_akamai(self): """should not add cloud_name if private_cdn and secure non akamai secure_distribution""" self.__test_cloudinary_url( options={"secure": True, "private_cdn": True, "secure_distribution": "something.cloudfront.net"}, expected_url="https://something.cloudfront.net/image/upload/test") def test_http_private_cdn(self): """should not add cloud_name if private_cdn and not secure""" self.__test_cloudinary_url(options={"private_cdn": True}, expected_url="http://test123-res.cloudinary.com/image/upload/test") def test_format(self): """should use format from options""" self.__test_cloudinary_url(options={"format": "jpg"}, expected_url=DEFAULT_UPLOAD_PATH + "test.jpg") def test_crop(self): """should always use width and height from options""" self.__test_cloudinary_url( options={"width": 100, "height": 100}, expected_url=DEFAULT_UPLOAD_PATH + "h_100,w_100/test", expected_options={"width": 100, "height": 100}) self.__test_cloudinary_url( options={"width": 100, "height": 100, "crop": "crop"}, expected_url=DEFAULT_UPLOAD_PATH + "c_crop,h_100,w_100/test", expected_options={"width": 100, "height": 100}) def test_html_width_height_on_crop_fit_limit(self): """should not pass width and height to html in case of fit or limit crop""" self.__test_cloudinary_url(options={"width": 100, "height": 100, "crop": "limit"}, expected_url=DEFAULT_UPLOAD_PATH + "c_limit,h_100,w_100/test") self.__test_cloudinary_url(options={"width": 100, "height": 100, "crop": "fit"}, expected_url=DEFAULT_UPLOAD_PATH + "c_fit,h_100,w_100/test") def test_html_width_height_on_angle(self): """should not pass width and height to html in case angle was used""" self.__test_cloudinary_url(options={"width": 100, "height": 100, "crop": "scale", "angle": "auto"}, expected_url=DEFAULT_UPLOAD_PATH + "a_auto,c_scale,h_100,w_100/test") def test_various_options(self): """should use x, y, radius, prefix, gravity and quality from options""" self.__test_cloudinary_url( options={"x": 1, "y": 2, "opacity": 20, "radius": 3, "gravity": "center", "quality": 0.4, "prefix": "a"}, expected_url=DEFAULT_UPLOAD_PATH + "g_center,o_20,p_a,q_0.4,r_3,x_1,y_2/test") self.__test_cloudinary_url(options={"gravity": "auto", "width": 0.5, "crop": "crop"}, expected_url=DEFAULT_UPLOAD_PATH + "c_crop,g_auto,w_0.5/test") def test_radius(self): cases = ( ({"radius": 10}, "r_10"), ({"radius": "10"}, "r_10"), ({"radius": "$v", "variables": [("$v", 10)]}, "$v_10,r_$v"), ({"radius": [10, 20]}, "r_10:20"), ({"radius": "10:20"}, "r_10:20"), ({"radius": "10:$v", "variables": [("$v", 20)]}, "$v_20,r_10:$v"), ({"radius": [10, 20, 30]}, "r_10:20:30"), ({"radius": "10:20:30"}, "r_10:20:30"), ({"radius": "10:$v:30", "variables": [("$v", 20)]}, "$v_20,r_10:$v:30"), ({"radius": [10, 20, 30, 40]}, "r_10:20:30:40"), ({"radius": "10:20:30:40"}, "r_10:20:30:40"), ({"radius": "10:$v:30:40", "variables": [("$v", 20)]}, "$v_20,r_10:$v:30:40"), ) for options, expected_part_url in cases: self.__test_cloudinary_url(options=options, expected_url=DEFAULT_UPLOAD_PATH + expected_part_url + "/test") wrong_options = ( {"radius": []}, {"radius": ()}, {"radius": [10, 20, 30, 40, 50]}, ) for options in wrong_options: with self.assertRaises(ValueError): cloudinary.utils.cloudinary_url("test", **options) def test_should_support_auto_width(self): """should support auto width""" self.__test_cloudinary_url(options={"width": "auto:20", "crop": 'fill'}, expected_url=DEFAULT_UPLOAD_PATH + "c_fill,w_auto:20/test", expected_options={'responsive': True}) self.__test_cloudinary_url(options={"width": "auto:20:350", "crop": 'fill'}, expected_url=DEFAULT_UPLOAD_PATH + "c_fill,w_auto:20:350/test", expected_options={'responsive': True}) self.__test_cloudinary_url(options={"width": "auto:breakpoints", "crop": 'fill'}, expected_url=DEFAULT_UPLOAD_PATH + "c_fill,w_auto:breakpoints/test", expected_options={'responsive': True}) self.__test_cloudinary_url(options={"width": "auto:breakpoints_100_1900_20_15", "crop": 'fill'}, expected_url=DEFAULT_UPLOAD_PATH + "c_fill,w_auto:breakpoints_100_1900_20_15/test", expected_options={'responsive': True}) self.__test_cloudinary_url(options={"width": "auto:breakpoints:json", "crop": 'fill'}, expected_url=DEFAULT_UPLOAD_PATH + "c_fill,w_auto:breakpoints:json/test", expected_options={'responsive': True}) def test_original_width_and_height(self): """should support original width and height""" self.__test_cloudinary_url(options={"crop": "crop", "width": "ow", "height": "oh"}, expected_url=DEFAULT_UPLOAD_PATH + "c_crop,h_oh,w_ow/test") def test_support_a_percent_value(self): """quality support a percent value""" self.__test_cloudinary_url( options={"x": 1, "y": 2, "radius": 3, "gravity": "center", "quality": 80, "prefix": "a"}, expected_url=DEFAULT_UPLOAD_PATH + "g_center,p_a,q_80,r_3,x_1,y_2/test") self.__test_cloudinary_url( options={"x": 1, "y": 2, "radius": 3, "gravity": "center", "quality": "80:444", "prefix": "a"}, expected_url=DEFAULT_UPLOAD_PATH + "g_center,p_a,q_80:444,r_3,x_1,y_2/test") def test_should_support_auto_value(self): """quality should support auto value""" self.__test_cloudinary_url( options={"x": 1, "y": 2, "radius": 3, "gravity": "center", "quality": "auto", "prefix": "a"}, expected_url=DEFAULT_UPLOAD_PATH + "g_center,p_a,q_auto,r_3,x_1,y_2/test") self.__test_cloudinary_url( options={"x": 1, "y": 2, "radius": 3, "gravity": "center", "quality": "auto:good", "prefix": "a"}, expected_url=DEFAULT_UPLOAD_PATH + "g_center,p_a,q_auto:good,r_3,x_1,y_2/test") self.__test_cloudinary_url( options={"width": 100, "height": 100, "crop": 'crop', "gravity": "auto:ocr_text"}, expected_url=DEFAULT_UPLOAD_PATH + "c_crop,g_auto:ocr_text,h_100,w_100/test", expected_options={"width": 100, "height": 100}) self.__test_cloudinary_url( options={"width": 100, "height": 100, "crop": 'crop', "gravity": "ocr_text"}, expected_url=DEFAULT_UPLOAD_PATH + "c_crop,g_ocr_text,h_100,w_100/test", expected_options={"width": 100, "height": 100}) self.__test_cloudinary_url( options={"width": 100, "height": 100, "crop": 'crop', "gravity": "ocr_text:adv_ocr"}, expected_url=DEFAULT_UPLOAD_PATH + "c_crop,g_ocr_text:adv_ocr,h_100,w_100/test", expected_options={"width": 100, "height": 100}) def test_transformation_simple(self): """should support named transformation""" self.__test_cloudinary_url(options={"transformation": "blip"}, expected_url=DEFAULT_UPLOAD_PATH + "t_blip/test") def test_transformation_array(self): """should support array of named transformations""" self.__test_cloudinary_url(options={"transformation": ["blip", "blop"]}, expected_url=DEFAULT_UPLOAD_PATH + "t_blip.blop/test") def test_base_transformations(self): """should support base transformation""" self.__test_cloudinary_url( options={"transformation": {"x": 100, "y": 100, "crop": "fill"}, "crop": "crop", "width": 100}, expected_url=DEFAULT_UPLOAD_PATH + "c_fill,x_100,y_100/c_crop,w_100/test", expected_options={"width": 100}) def test_base_transformation_array(self): """should support array of base transformations""" options = {"transformation": [{"x": 100, "y": 100, "width": 200, "crop": "fill"}, {"radius": 10}], "crop": "crop", "width": 100} result, options = cloudinary.utils.cloudinary_url("test", **options) self.assertEqual(options, {"width": 100}) self.assertEqual(result, DEFAULT_UPLOAD_PATH + "c_fill,w_200,x_100,y_100/r_10/c_crop,w_100/test") def test_no_empty_transformation(self): """should not include empty transformations""" self.__test_cloudinary_url(options={"transformation": [{}, {"x": 100, "y": 100, "crop": "fill"}, {}]}, expected_url=DEFAULT_UPLOAD_PATH + "c_fill,x_100,y_100/test") def test_raw_transformation(self): """should include raw_transformation""" self.__test_cloudinary_url(options={"transformation": {"width": 100, "raw_transformation": "g_north_west"}}, expected_url=DEFAULT_UPLOAD_PATH + "w_100,g_north_west/test") self.__test_cloudinary_url(options={"transformation": {"raw_transformation": "g_north_west"}}, expected_url=DEFAULT_UPLOAD_PATH + "g_north_west/test") self.__test_cloudinary_url(options={"transformation": {"width": 100, "raw_transformation": ""}}, expected_url=DEFAULT_UPLOAD_PATH + "w_100/test") def test_chain_transformations(self): """Should support chaining transformations at the end""" options = {"effect": "art:incognito", "format": "png"} chained_transformations = [ {"x": 100, "y": 100, "width": 200, "crop": "fill"}, {"radius": 10}, {"raw_transformation": self.raw_transformation} ] actual_options = chain_transformations(options, chained_transformations) actual_transformation_str = generate_transformation_string(**actual_options)[0] self.assertEqual("e_art:incognito/c_fill,w_200,x_100,y_100/r_10/" + self.raw_transformation, actual_transformation_str) # Should support chaining transformations, when default options have no transformations actual_options = chain_transformations({}, chained_transformations) actual_transformation_str = generate_transformation_string(**actual_options)[0] self.assertEqual("c_fill,w_200,x_100,y_100/r_10/" + self.raw_transformation, actual_transformation_str) # Should handle empty list of chained transformations actual_options = chain_transformations(options, []) actual_transformation_str = generate_transformation_string(**actual_options)[0] self.assertEqual("e_art:incognito", actual_transformation_str) # Should handle empty options and empty list of chained transformations actual_options = chain_transformations({}, []) actual_transformation_str = generate_transformation_string(**actual_options)[0] self.assertEqual("", actual_transformation_str) # Should remove transformation options from resulting options actual_options = chain_transformations(dict(width=200, height=100), chained_transformations) self.assertNotIn("width", actual_options) self.assertNotIn("height", actual_options) actual_transformation_str = generate_transformation_string(**actual_options)[0] self.assertEqual("h_100,w_200/c_fill,w_200,x_100,y_100/r_10/c_fill,e_grayscale,q_auto", actual_transformation_str) # Should chain transformations with a fetch option options["type"] = "fetch" patch_fetch_format(options) actual_options = chain_transformations(options, chained_transformations) # format should be removed when we use fetch self.assertNotIn("format", actual_options) actual_transformation_str = generate_transformation_string(**actual_options)[0] # Should use url format as a fetch_format self.assertEqual("e_art:incognito,f_png/c_fill,w_200,x_100,y_100/r_10/" + self.raw_transformation, actual_transformation_str) options["fetch_format"] = "gif" actual_options = chain_transformations(options, chained_transformations) actual_transformation_str = generate_transformation_string(**actual_options)[0] # Should use fetch_format self.assertEqual("e_art:incognito,f_gif/c_fill,w_200,x_100,y_100/r_10/" + self.raw_transformation, actual_transformation_str) def test_size(self): """should support size""" options = {"size": "10x10", "crop": "crop"} result, options = cloudinary.utils.cloudinary_url("test", **options) self.assertEqual(options, {"width": "10", "height": "10"}) self.assertEqual(result, DEFAULT_UPLOAD_PATH + "c_crop,h_10,w_10/test") def test_type(self): """should use type from options""" self.__test_cloudinary_url(options={"type": "facebook"}, expected_url=DEFAULT_ROOT_PATH + "image/facebook/test") def test_resource_type(self): """should use resource_type from options""" self.__test_cloudinary_url(options={"resource_type": "raw"}, expected_url=DEFAULT_ROOT_PATH + "raw/upload/test") def test_ignore_http(self): """should ignore http links only if type is not given or is asset""" options = {} result, options = cloudinary.utils.cloudinary_url("http://test", **options) self.assertEqual(options, {}) self.assertEqual(result, "http://test") options = {"type": "fetch"} result, options = cloudinary.utils.cloudinary_url("http://test", **options) self.assertEqual(options, {}) self.assertEqual(result, DEFAULT_ROOT_PATH + "image/fetch/http://test") def test_fetch(self): """should escape fetch urls""" options = {"type": "fetch"} result, options = cloudinary.utils.cloudinary_url("http://blah.com/hello?a=b", **options) self.assertEqual(options, {}) self.assertEqual(result, DEFAULT_ROOT_PATH + "image/fetch/http://blah.com/hello%3Fa%3Db") def test_http_escape(self): """should escape http urls""" options = {"type": "youtube"} result, options = cloudinary.utils.cloudinary_url("http://www.youtube.com/watch?v=d9NF2edxy-M", **options) self.assertEqual(options, {}) self.assertEqual(result, DEFAULT_ROOT_PATH + "image/youtube/http://www.youtube.com/watch%3Fv%3Dd9NF2edxy-M") def test_cname(self): """should support extenal cname""" self.__test_cloudinary_url(options={"cname": "hello.com"}, expected_url="http://hello.com/test123/image/upload/test") def test_cname_subdomain(self): """should support extenal cname with cdn_subdomain on""" self.__test_cloudinary_url(options={"cname": "hello.com", "cdn_subdomain": True}, expected_url="http://a2.hello.com/test123/image/upload/test") def test_background(self): """should support background""" self.__test_cloudinary_url(options={"background": "red"}, expected_url=DEFAULT_UPLOAD_PATH + "b_red/test") self.__test_cloudinary_url(options={"background": "#112233"}, expected_url=DEFAULT_UPLOAD_PATH + "b_rgb:112233/test") def test_default_image(self): """should support default_image""" self.__test_cloudinary_url(options={"default_image": "default"}, expected_url=DEFAULT_UPLOAD_PATH + "d_default/test") def test_angle(self): """should support angle""" self.__test_cloudinary_url(options={"angle": 12}, expected_url=DEFAULT_UPLOAD_PATH + "a_12/test") def test_overlay(self): """should support overlay""" self.__test_cloudinary_url(options={"overlay": "text:hello"}, expected_url=DEFAULT_UPLOAD_PATH + "l_text:hello/test") # Should not pass width height to HTML with overlay self.__test_cloudinary_url(options={"overlay": "text:hello", "height": 100, "width": 100}, expected_url=DEFAULT_UPLOAD_PATH + "h_100,l_text:hello,w_100/test") self.__test_cloudinary_url( options={"overlay": {"font_family": "arial", "font_size": 20, "text": "hello"}, "height": 100, "width": 100}, expected_url=DEFAULT_UPLOAD_PATH + "h_100,l_text:arial_20:hello,w_100/test") def test_fetch_overlay(self): """should support overlay""" self.__test_cloudinary_url( options={"overlay": "fetch:" + REMOTE_TEST_IMAGE}, expected_url=( DEFAULT_UPLOAD_PATH + "l_fetch:aHR0cDovL2Nsb3VkaW5hcnkuY29tL2ltYWdlcy9vbGRfbG9nby5wbmc=/" + "test")) self.__test_cloudinary_url( options={ "overlay": { "url": "https://upload.wikimedia.org/wikipedia/commons/2/2b/고창갯벌.jpg"}}, expected_url=( DEFAULT_UPLOAD_PATH + "l_fetch:" "aHR0cHM6Ly91cGxvYWQud2lraW1lZGlhLm9yZy93aWtpcGVkaWEvY29" "tbW9ucy8yLzJiLyVFQSVCMyVBMCVFQyVCMCVCRCVFQSVCMCVBRiVFQiVCMiU4Qy5qcGc=/" "test")) def test_underlay(self): """should support underlay""" self.__test_cloudinary_url(options={"underlay": "text:hello"}, expected_url=DEFAULT_UPLOAD_PATH + "u_text:hello/test") # Should not pass width height to HTML with underlay self.__test_cloudinary_url(options={"underlay": "text:hello", "height": 100, "width": 100}, expected_url=DEFAULT_UPLOAD_PATH + "h_100,u_text:hello,w_100/test") def test_custom_function(self): # should support custom function from string options = {"custom_function": self.custom_function_wasm_str} self.__test_cloudinary_url( options=options, expected_url=DEFAULT_UPLOAD_PATH + "fn_" + self.custom_function_wasm_str + "/test" ) # should support custom function from dictionary options = {"custom_function": self.custom_function_wasm} self.__test_cloudinary_url( options=options, expected_url=DEFAULT_UPLOAD_PATH + "fn_" + self.custom_function_wasm_str + "/test" ) # should encode custom function source for remote function options = {"custom_function": self.custom_function_remote} self.__test_cloudinary_url( options=options, expected_url=DEFAULT_UPLOAD_PATH + "fn_" + self.custom_function_remote_str + "/test" ) def test_custom_pre_function_wasm_str(self): # should support custom pre function from string options = {"custom_pre_function": self.custom_function_wasm_str} self.__test_cloudinary_url( options=options, expected_url=DEFAULT_UPLOAD_PATH + "fn_pre:" + self.custom_function_wasm_str + "/test" ) def test_custom_pre_function_wasm_dictionary(self): # should support custom pre function from dictionary options = {"custom_pre_function": self.custom_function_wasm} self.__test_cloudinary_url( options=options, expected_url=DEFAULT_UPLOAD_PATH + "fn_pre:" + self.custom_function_wasm_str + "/test" ) def test_custom_pre_function_remote(self): # should encode custom function source for remote function options = {"custom_pre_function": self.custom_function_remote} self.__test_cloudinary_url( options=options, expected_url=DEFAULT_UPLOAD_PATH + "fn_pre:" + self.custom_function_remote_str + "/test" ) def test_fetch_format(self): """should support format for fetch urls""" self.__test_cloudinary_url( public_id="http://cloudinary.com/images/logo.png", options={"format": "jpg", "type": "fetch"}, expected_url=DEFAULT_ROOT_PATH + "image/fetch/f_jpg/http://cloudinary.com/images/logo.png" ) def test_effect(self): """should support effect""" self.__test_cloudinary_url(options={"effect": "sepia"}, expected_url=DEFAULT_UPLOAD_PATH + "e_sepia/test") def test_effect_with_dict(self): """should support effect with dict""" self.__test_cloudinary_url(options={"effect": {"sepia": -10}}, expected_url=DEFAULT_UPLOAD_PATH + "e_sepia:-10/test") def test_effect_with_array(self): """should support effect with array""" self.__test_cloudinary_url(options={"effect": ["sepia", 10]}, expected_url=DEFAULT_UPLOAD_PATH + "e_sepia:10/test") def test_keyframe_interval(self): """should support keyframe_interval""" test_values = ( (10, "ki_10.0"), (0.05, "ki_0.05"), (3.45, "ki_3.45"), (300, "ki_300.0"), ("10", "ki_10"), ) for value, expected in test_values: self.__test_cloudinary_url(options={"resource_type": "video", "keyframe_interval": value}, expected_url=VIDEO_UPLOAD_PATH + expected + "/test") with self.assertRaises(ValueError): cloudinary.utils.cloudinary_url("test", keyframe_interval=-1) def test_streaming_profile(self): """should support streaming_profile""" self.__test_cloudinary_url(options={"streaming_profile": "some-profile"}, expected_url=DEFAULT_UPLOAD_PATH + "sp_some-profile/test") def test_density(self): """should support density""" self.__test_cloudinary_url(options={"density": 150}, expected_url=DEFAULT_UPLOAD_PATH + "dn_150/test") def test_page(self): """should support page""" self.__test_cloudinary_url(options={"page": 3}, expected_url=DEFAULT_UPLOAD_PATH + "pg_3/test") def test_border(self): """should support border""" self.__test_cloudinary_url(options={"border": {"width": 5}}, expected_url=DEFAULT_UPLOAD_PATH + "bo_5px_solid_black/test") self.__test_cloudinary_url(options={"border": {"width": 5, "color": "#ffaabbdd"}}, expected_url=DEFAULT_UPLOAD_PATH + "bo_5px_solid_rgb:ffaabbdd/test") self.__test_cloudinary_url(options={"border": "1px_solid_blue"}, expected_url=DEFAULT_UPLOAD_PATH + "bo_1px_solid_blue/test") def test_flags(self): """should support flags""" self.__test_cloudinary_url(options={"flags": "abc"}, expected_url=DEFAULT_UPLOAD_PATH + "fl_abc/test") self.__test_cloudinary_url(options={"flags": ["abc", "def"]}, expected_url=DEFAULT_UPLOAD_PATH + "fl_abc.def/test") def test_dpr(self): """should support dpr (device pixel radio)""" self.__test_cloudinary_url(options={"dpr": "2.0"}, expected_url=DEFAULT_UPLOAD_PATH + "dpr_2.0/test") def test_folder_version(self): """should add version if public_id contains / """ self.__test_cloudinary_url(public_id="folder/test", expected_url=DEFAULT_UPLOAD_PATH + "v1/folder/test") self.__test_cloudinary_url(public_id="folder/test", options={"version": 123}, expected_url=DEFAULT_UPLOAD_PATH + "v123/folder/test") self.__test_cloudinary_url(public_id="v1234/test", expected_url=DEFAULT_UPLOAD_PATH + "v1234/test") def test_force_version(self): """Should not set default version v1 to resources stored in folders if force_version is set to False""" self.__test_cloudinary_url(TEST_FOLDER, expected_url=DEFAULT_UPLOAD_PATH + DEFAULT_VERSION_STR + "/" + TEST_FOLDER) self.__test_cloudinary_url(TEST_FOLDER, options={"force_version": False}, expected_url=DEFAULT_UPLOAD_PATH + TEST_FOLDER) # Explicitly set version is always passed self.__test_cloudinary_url(TEST_ID, options={"force_version": False, "version": IMAGE_VERSION}, expected_url=DEFAULT_UPLOAD_PATH + IMAGE_VERSION_STR + "/" + TEST_ID) self.__test_cloudinary_url(TEST_FOLDER, options={"force_version": False, "version": IMAGE_VERSION}, expected_url=DEFAULT_UPLOAD_PATH + IMAGE_VERSION_STR + "/" + TEST_FOLDER) # Should use force_version from config cloudinary.config(force_version=False) self.__test_cloudinary_url(TEST_FOLDER, expected_url=DEFAULT_UPLOAD_PATH + TEST_FOLDER) # Should override config with options self.__test_cloudinary_url(TEST_FOLDER, options={"force_version": True}, expected_url=DEFAULT_UPLOAD_PATH + DEFAULT_VERSION_STR + "/" + TEST_FOLDER) def test_shorten(self): self.__test_cloudinary_url(options={"shorten": True}, expected_url=DEFAULT_ROOT_PATH + "iu/test") self.__test_cloudinary_url(options={"shorten": True, "type": "private"}, expected_url=DEFAULT_ROOT_PATH + "image/private/test") def test_signed_url(self): self.__test_cloudinary_url( public_id="image.jpg", options={"version": 1234, "transformation": {"crop": "crop", "width": 10, "height": 20}, "sign_url": True}, expected_url=DEFAULT_UPLOAD_PATH + "s--Ai4Znfl3--/c_crop,h_20,w_10/v1234/image.jpg") self.__test_cloudinary_url( public_id="image.jpg", options={"version": 1234, "sign_url": True}, expected_url=DEFAULT_UPLOAD_PATH + "s----SjmNDA--/v1234/image.jpg") self.__test_cloudinary_url( public_id="image.jpg", options={"transformation": {"crop": "crop", "width": 10, "height": 20}, "sign_url": True}, expected_url=DEFAULT_UPLOAD_PATH + "s--Ai4Znfl3--/c_crop,h_20,w_10/image.jpg") self.__test_cloudinary_url( public_id="image.jpg", options={"type": "authenticated", "transformation": {"crop": "crop", "width": 10, "height": 20}, "sign_url": True}, expected_url=DEFAULT_ROOT_PATH + "image/authenticated/s--Ai4Znfl3--/c_crop,h_20,w_10/image.jpg") self.__test_cloudinary_url( public_id="http://google.com/path/to/image.png", options={"version": 1234, "type": "fetch", "sign_url": True}, expected_url=DEFAULT_ROOT_PATH + "image/fetch/s--hH_YcbiS--/v1234/http://google.com/path/to/image.png") def test_disallow_url_suffix_in_non_upload_types(self): with self.assertRaises(ValueError): cloudinary.utils.cloudinary_url("test", url_suffix="hello", private_cdn=True, type="facebook") def test_disallow_url_suffix_with_slash_or_dot(self): with self.assertRaises(ValueError): cloudinary.utils.cloudinary_url("test", url_suffix="hello/world", private_cdn=True) with self.assertRaises(ValueError): cloudinary.utils.cloudinary_url("test", url_suffix="hello.world", private_cdn=True) def test_support_url_suffix_for_private_cdn(self): self.__test_cloudinary_url(options={"url_suffix": "hello", "private_cdn": True}, expected_url="http://test123-res.cloudinary.com/images/test/hello") self.__test_cloudinary_url(options={"url_suffix": "hello", "angle": 0, "private_cdn": True}, expected_url="http://test123-res.cloudinary.com/images/a_0/test/hello") def test_put_format_after_url_suffix(self): self.__test_cloudinary_url(options={"url_suffix": "hello", "private_cdn": True, "format": "jpg"}, expected_url="http://test123-res.cloudinary.com/images/test/hello.jpg") def test_not_sign_the_url_suffix(self): url, options = cloudinary.utils.cloudinary_url("test", format="jpg", sign_url=True) expected_signature = re.search(r's--[0-9A-Za-z_-]{8}--', url) self.__test_cloudinary_url( options={"url_suffix": "hello", "private_cdn": True, "format": "jpg", "sign_url": True}, expected_url="http://test123-res.cloudinary.com/images/" + expected_signature.group(0) + "/test/hello.jpg") url, options = cloudinary.utils.cloudinary_url("test", format="jpg", angle=0, sign_url=True) expected_signature = re.search(r's--[0-9A-Za-z_-]{8}--', url) self.__test_cloudinary_url( options={"url_suffix": "hello", "private_cdn": True, "format": "jpg", "angle": 0, "sign_url": True}, expected_url="http://test123-res.cloudinary.com/images/" + expected_signature.group( 0) + "/a_0/test/hello.jpg") def test_support_url_suffix_for_raw_uploads(self): self.__test_cloudinary_url(options={"url_suffix": "hello", "private_cdn": True, "resource_type": "raw"}, expected_url="http://test123-res.cloudinary.com/files/test/hello") def test_support_use_root_path_for_shared_cdn(self): self.__test_cloudinary_url(options={"use_root_path": True, "private_cdn": False}, expected_url=DEFAULT_ROOT_PATH + "test") self.__test_cloudinary_url(options={"use_root_path": True, "private_cdn": False, "angle": 0}, expected_url=DEFAULT_ROOT_PATH + "a_0/test") def test_support_use_root_path_for_private_cdn(self): self.__test_cloudinary_url(options={"use_root_path": True, "private_cdn": True}, expected_url="http://test123-res.cloudinary.com/test") self.__test_cloudinary_url(options={"use_root_path": True, "private_cdn": True, "angle": 0}, expected_url="http://test123-res.cloudinary.com/a_0/test") def test_support_use_root_path_together_with_url_suffix_for_private_cdn(self): self.__test_cloudinary_url(options={"use_root_path": True, "url_suffix": "hello", "private_cdn": True}, expected_url="http://test123-res.cloudinary.com/test/hello") def test_disallow_use_root_path_if_not_image_upload(self): with self.assertRaises(ValueError): cloudinary.utils.cloudinary_url("test", use_root_path=True, private_cdn=True, type="facebook") with self.assertRaises(ValueError): cloudinary.utils.cloudinary_url("test", use_root_path=True, private_cdn=True, resource_type="raw") def test_support_cdn_subdomain_with_secure_on_if_using_shared_domain(self): self.__test_cloudinary_url(options={"secure": True, "cdn_subdomain": True}, expected_url="https://res-2.cloudinary.com/test123/image/upload/test") def test_support_secure_cdn_subdomain_false_override_with_secure(self): self.__test_cloudinary_url(options={"secure": True, "cdn_subdomain": True, "secure_cdn_subdomain": False}, expected_url="https://res.cloudinary.com/test123/image/upload/test") def test_support_secure_cdn_subdomain_true_override_with_secure(self): self.__test_cloudinary_url( options={"secure": True, "cdn_subdomain": True, "secure_cdn_subdomain": True, "private_cdn": True}, expected_url="https://test123-res-2.cloudinary.com/image/upload/test") def test_escape_public_id(self): """ should escape public_ids """ tests = { "a b": "a%20b", "a+b": "a%2Bb", "a%20b": "a%20b", "a-b": "a-b", "a??b": "a%3F%3Fb" } for source, target in tests.items(): result, options = cloudinary.utils.cloudinary_url(source) self.assertEqual(DEFAULT_UPLOAD_PATH + "" + target, result) def test_escape_public_id_with_non_ascii_characters(self): self.__test_cloudinary_url(u"ß", expected_url=DEFAULT_UPLOAD_PATH + "%C3%9F") def test_responsive_width(self): """should support responsive width""" options = {"width": 100, "height": 100, "crop": "crop", "responsive_width": True} result, options = cloudinary.utils.cloudinary_url("test", **options) self.assertEqual(options, {"responsive": True}) self.assertEqual(result, DEFAULT_UPLOAD_PATH + "c_crop,h_100,w_100/c_limit,w_auto/test") cloudinary.config(responsive_width_transformation={"width": "auto", "crop": "pad"}) options = {"width": 100, "height": 100, "crop": "crop", "responsive_width": True} result, options = cloudinary.utils.cloudinary_url("test", **options) self.assertEqual(options, {"responsive": True}) self.assertEqual(result, DEFAULT_UPLOAD_PATH + "c_crop,h_100,w_100/c_pad,w_auto/test") def test_norm_range_value(self): # should parse integer range values self.assertEqual(cloudinary.utils.norm_range_value("200"), "200") # should parse float range values self.assertEqual(cloudinary.utils.norm_range_value("200.0"), "200.0") # should parse a percent range value self.assertEqual(cloudinary.utils.norm_range_value("20p"), "20p") self.assertEqual(cloudinary.utils.norm_range_value("20P"), "20p") self.assertEqual(cloudinary.utils.norm_range_value("20%"), "20p") self.assertEqual(cloudinary.utils.norm_range_value("p"), None) def test_norm_auto_range_value(self): """Should parse both auto and values supported by norm_range_value""" self.assertEqual("auto", cloudinary.utils.norm_auto_range_value("auto")) self.assertEqual(None, cloudinary.utils.norm_auto_range_value("non_auto")) # Should handle regular norm_range_value values self.assertEqual(cloudinary.utils.norm_auto_range_value("20P"), "20p") def test_fps(self): """ Should support a single number, a list of mixed type and a string, including open-ended and closed ranges""" fps_test_values = ( ('24-29.97', 'fps_24-29.97'), (24, 'fps_24'), (24.973, 'fps_24.973'), ('24', 'fps_24'), ('-24', 'fps_-24'), ('$v', 'fps_$v'), ((24, 29.97), 'fps_24-29.97'), (['24', '$v'], 'fps_24-$v') ) for value, expected in fps_test_values: self.__test_cloudinary_url(public_id="video_id", options={'resource_type': 'video', 'fps': value}, expected_url=VIDEO_UPLOAD_PATH + expected + "/video_id") def test_video_codec(self): # should support a string value self.__test_cloudinary_url(public_id="video_id", options={'resource_type': 'video', 'video_codec': 'auto'}, expected_url=VIDEO_UPLOAD_PATH + "vc_auto/video_id") # should support a hash value self.__test_cloudinary_url(public_id="video_id", options={'resource_type': 'video', 'video_codec': {'codec': 'h264', 'profile': 'basic', 'level': '3.1'}}, expected_url=VIDEO_UPLOAD_PATH + "vc_h264:basic:3.1/video_id") def test_audio_codec(self): # should support a string value self.__test_cloudinary_url(public_id="video_id", options={'resource_type': 'video', 'audio_codec': 'acc'}, expected_url=VIDEO_UPLOAD_PATH + "ac_acc/video_id") def test_bit_rate(self): # should support an integer value self.__test_cloudinary_url(public_id="video_id", options={'resource_type': 'video', 'bit_rate': 2048}, expected_url=VIDEO_UPLOAD_PATH + "br_2048/video_id") # should support "<integer>k" self.__test_cloudinary_url(public_id="video_id", options={'resource_type': 'video', 'bit_rate': '44k'}, expected_url=VIDEO_UPLOAD_PATH + "br_44k/video_id") # should support "<integer>m" self.__test_cloudinary_url(public_id="video_id", options={'resource_type': 'video', 'bit_rate': '1m'}, expected_url=VIDEO_UPLOAD_PATH + "br_1m/video_id") def test_audio_frequency(self): # should support an integer value self.__test_cloudinary_url(public_id="video_id", options={'resource_type': 'video', 'audio_frequency': 44100}, expected_url=VIDEO_UPLOAD_PATH + "af_44100/video_id") def test_video_sampling(self): # should support an integer value self.__test_cloudinary_url(public_id="video_id", options={'resource_type': 'video', 'video_sampling': 20}, expected_url=VIDEO_UPLOAD_PATH + "vs_20/video_id") # should support an string value in the a form of \"<float>s\" self.__test_cloudinary_url(public_id="video_id", options={'resource_type': 'video', 'video_sampling': "2.3s"}, expected_url=VIDEO_UPLOAD_PATH + "vs_2.3s/video_id") def test_start_offset(self): # should support decimal seconds self.__test_cloudinary_url(public_id="video_id", options={'resource_type': 'video', 'start_offset': 2.63}, expected_url=VIDEO_UPLOAD_PATH + "so_2.63/video_id") self.__test_cloudinary_url(public_id="video_id", options={'resource_type': 'video', 'start_offset': '2.63'}, expected_url=VIDEO_UPLOAD_PATH + "so_2.63/video_id") # should support percents of the video length as "<number>p" self.__test_cloudinary_url(public_id="video_id", options={'resource_type': 'video', 'start_offset': '35p'}, expected_url=VIDEO_UPLOAD_PATH + "so_35p/video_id") # should support percents of the video length as "<number>%" self.__test_cloudinary_url(public_id="video_id", options={'resource_type': 'video', 'start_offset': '35%'}, expected_url=VIDEO_UPLOAD_PATH + "so_35p/video_id") # should support auto self.__test_cloudinary_url(public_id="video_id", options={'resource_type': 'video', 'start_offset': 'auto'}, expected_url=VIDEO_UPLOAD_PATH + "so_auto/video_id") def test_end_offset(self): # should support decimal seconds self.__test_cloudinary_url(public_id="video_id", options={'resource_type': 'video', 'end_offset': 2.63}, expected_url=VIDEO_UPLOAD_PATH + "eo_2.63/video_id") self.__test_cloudinary_url(public_id="video_id", options={'resource_type': 'video', 'end_offset': '2.63'}, expected_url=VIDEO_UPLOAD_PATH + "eo_2.63/video_id") # should support percents of the video length as "<number>p" self.__test_cloudinary_url(public_id="video_id", options={'resource_type': 'video', 'end_offset': '35p'}, expected_url=VIDEO_UPLOAD_PATH + "eo_35p/video_id") # should support percents of the video length as "<number>%" self.__test_cloudinary_url(public_id="video_id", options={'resource_type': 'video', 'end_offset': '35%'}, expected_url=VIDEO_UPLOAD_PATH + "eo_35p/video_id") def test_duration(self): # should support decimal seconds self.__test_cloudinary_url(public_id="video_id", options={'resource_type': 'video', 'duration': 2.63}, expected_url=VIDEO_UPLOAD_PATH + "du_2.63/video_id") self.__test_cloudinary_url(public_id="video_id", options={'resource_type': 'video', 'duration': '2.63'}, expected_url=VIDEO_UPLOAD_PATH + "du_2.63/video_id") # should support percents of the video length as "<number>p" self.__test_cloudinary_url(public_id="video_id", options={'resource_type': 'video', 'duration': '35p'}, expected_url=VIDEO_UPLOAD_PATH + "du_35p/video_id") # should support percents of the video length as "<number>%" self.__test_cloudinary_url(public_id="video_id", options={'resource_type': 'video', 'duration': '35%'}, expected_url=VIDEO_UPLOAD_PATH + "du_35p/video_id") def test_offset(self): test_cases = { 'eo_3.21,so_2.66': '2.66..3.21', 'eo_3.22,so_2.67': (2.67, 3.22), 'eo_70p,so_35p': ('35%', '70%'), 'eo_71p,so_36p': ('36p', '71p'), 'eo_70.5p,so_35.5p': ['35.5p', '70.5p'] } for transformation, offset in test_cases.items(): self.__test_cloudinary_url( public_id="video_id", options={'resource_type': 'video', 'offset': offset}, expected_url=VIDEO_UPLOAD_PATH + transformation + "/video_id") def test_user_agent(self): with patch('cloudinary.USER_PLATFORM', ''): agent = cloudinary.get_user_agent() six.assertRegex(self, agent, r'^CloudinaryPython\/\d\.\d+\.\d+ \(Python \d\.\d+\.\d+\)$') platform = 'MyPlatform/1.2.3 (Test code)' with patch('cloudinary.USER_PLATFORM', platform): result = cloudinary.get_user_agent() self.assertEqual(result, platform + ' ' + agent) def test_aspect_ratio(self): self.__test_cloudinary_url( public_id="test", options={"aspect_ratio": "1.0"}, expected_url=DEFAULT_UPLOAD_PATH + "ar_1.0/test") self.__test_cloudinary_url( public_id="test", options={"aspect_ratio": "3:2"}, expected_url=DEFAULT_UPLOAD_PATH + "ar_3:2/test") self.__test_cloudinary_url( public_id="test", options={"aspect_ratio": Fraction(3.0 / 4)}, expected_url=DEFAULT_UPLOAD_PATH + "ar_3:4/test") def test_overlay_options(self): tests = [ ({'public_id': "logo"}, "logo"), ({'public_id': "folder/logo"}, "folder:logo"), ({'public_id': "logo", 'type': "private"}, "private:logo"), ({'public_id': "logo", 'format': "png"}, "logo.png"), ({'resource_type': "video", 'public_id': "cat"}, "video:cat"), ({'text': "Hello World, Nice to meet you?", 'font_family': "Arial", 'font_size': "18"}, "text:Arial_18:Hello%20World%252C%20Nice%20to%20meet%20you%3F"), ({'text': "Hello World, Nice to meet you?", 'font_family': "Arial", 'font_size': "18", 'font_weight': "bold", 'font_style': "italic", 'letter_spacing': 4, 'line_spacing': 3}, "text:Arial_18_bold_italic_letter_spacing_4_line_spacing_3:Hello%20World" "%252C%20Nice%20to%20meet%20you%3F"), ({'resource_type': "subtitles", 'public_id': "sample_sub_en.srt"}, "subtitles:sample_sub_en.srt"), ({'text': "Hello World, Nice to meet you?", 'font_family': "Arial", 'font_size': "18", 'font_antialiasing': "best", 'font_hinting': "medium"}, "text:Arial_18_antialias_best_hinting_medium:Hello%20World%252C%20Nice%20to%20meet%20you%3F"), ({'resource_type': "subtitles", 'public_id': "sample_sub_he.srt", 'font_family': "Arial", 'font_size': 40}, "subtitles:Arial_40:sample_sub_he.srt"), ({'url': "https://upload.wikimedia.org/wikipedia/commons/2/2b/고창갯벌.jpg"}, "fetch:aHR0cHM6Ly91cGxvYWQud2lraW1lZGlhLm9yZy93aWtpcGVkaWEvY29" "tbW9ucy8yLzJiLyVFQSVCMyVBMCVFQyVCMCVCRCVFQSVCMCVBRiVFQiVCMiU4Qy5qcGc=") ] for options, expected in tests: result = cloudinary.utils.process_layer(options, "overlay") self.assertEqual(expected, result) def test_overlay_error_1(self): """ Must supply font_family for text in overlay """ with self.assertRaises(ValueError): cloudinary.utils.cloudinary_url( "test", overlay=dict(text="text", font_style="italic")) def test_overlay_error_2(self): """ Must supply public_id for for non-text underlay """ with self.assertRaises(ValueError): cloudinary.utils.cloudinary_url("test", underlay=dict(resource_type="video")) def test_translate_if(self): all_operators = "if_" all_operators += "w_eq_0_and" all_operators += "_h_ne_0_or" all_operators += "_ar_lt_0_and" all_operators += "_pc_gt_0_and" all_operators += "_fc_lte_0_and" all_operators += "_w_gte_0" all_operators += ",e_grayscale" condition = "width = 0 && height != 0 || aspect_ratio < 0 && page_count > 0 " \ "and face_count <= 0 and width >= 0" options = {"if": condition, "effect": "grayscale"} transformation, options = cloudinary.utils.generate_transformation_string(**options) self.assertEqual({}, options) self.assertEqual(all_operators, transformation) def test_merge(self): a = {"foo": "foo", "bar": "foo"} b = {"foo": "bar"} self.assertIsNone(cloudinary.utils.merge(None, None)) self.assertDictEqual(a, cloudinary.utils.merge(a, None)) self.assertDictEqual(a, cloudinary.utils.merge(None, a)) self.assertDictEqual({"foo": "bar", "bar": "foo"}, cloudinary.utils.merge(a, b)) self.assertDictEqual(a, cloudinary.utils.merge(b, a)) def test_array_should_define_a_set_of_variables(self): options = { "if": "face_count > 2", "variables": [["$z", 5], ["$foo", "$z * 2"]], "crop": "scale", "width": "$foo * 200" } transformation, options = cloudinary.utils.generate_transformation_string(**options) self.assertEqual('if_fc_gt_2,$z_5,$foo_$z_mul_2,c_scale,w_$foo_mul_200', transformation) def test_dollar_key_should_define_a_variable(self): options = {"transformation": [{"$foo": 10}, {"if": "face_count > 2"}, {"crop": "scale", "width": "$foo * 200 / face_count"}, {"if": "end"}]} transformation, options = cloudinary.utils.generate_transformation_string(**options) self.assertEqual('$foo_10/if_fc_gt_2/c_scale,w_$foo_mul_200_div_fc/if_end', transformation) def test_should_sort_defined_variable(self): options = {"$second": 1, "$first": 2} transformation, options = cloudinary.utils.generate_transformation_string(**options) self.assertEqual('$first_2,$second_1', transformation) def test_should_place_defined_variables_before_ordered(self): options = {"variables": [["$z", 5], ["$foo", "$z * 2"]], "$second": 1, "$first": 2} transformation, options = cloudinary.utils.generate_transformation_string(**options) self.assertEqual('$first_2,$second_1,$z_5,$foo_$z_mul_2', transformation) def test_should_support_text_values(self): public_id = "sample" options = {"effect": "$efname:100", "$efname": "!blur!"} url, options = cloudinary.utils.cloudinary_url(public_id, **options) self.assertEqual(DEFAULT_UPLOAD_PATH + "$efname_!blur!,e_$efname:100/sample", url) def test_should_support_string_interpolation(self): public_id = "sample" options = { "crop": "scale", "overlay": { "text": "$(start)Hello $(name)$(ext), $(no ) $( no)$(end)", "font_family": "Arial", "font_size": "18" } } url, options = cloudinary.utils.cloudinary_url(public_id, **options) self.assertEqual( DEFAULT_UPLOAD_PATH + "c_scale,l_text:Arial_18:$(start)" "Hello%20$(name)$(ext)%252C%20%24%28no%20%29" "%20%24%28%20no%29$(end)/sample", url) def test_encode_context(self): self.assertEqual("", cloudinary.utils.encode_context({})) self.assertEqual("a=b", cloudinary.utils.encode_context({"a": "b"})) # using OrderedDict for tests consistency self.assertEqual("a=b|c=d", cloudinary.utils.encode_context(OrderedDict((("a", "b"), ("c", "d"))))) # test that special characters are unchanged self.assertEqual("a=!@#$%^&*()_+<>?,./", cloudinary.utils.encode_context({"a": "!@#$%^&*()_+<>?,./"})) # check value escaping self.assertEqual(r"a=b\|\|\=|c=d\=a\=\|", cloudinary.utils.encode_context(OrderedDict((("a", "b||="), ("c", "d=a=|"))))) # check fallback self.assertEqual("not a dict", cloudinary.utils.encode_context("not a dict")) def test_build_list_of_dicts(self): dict_data = {"one": 1, "two": 2, "three": 3} list_of_dict_data = [dict_data] # should convert a dict to a list of dict self.assertListEqual(list_of_dict_data, build_list_of_dicts(dict_data)) # should leave as is a list of dict self.assertListEqual(list_of_dict_data, build_list_of_dicts(list_of_dict_data)) # should convert a JSON string representing dict to a list of dict string_data = '{"one": 1, "two": 2, "three": 3}' self.assertListEqual(list_of_dict_data, build_list_of_dicts(string_data)) # should convert a JSON string representing a list of dict to a list of dict string_array_data = '[{"one": 1, "two": 2, "three": 3}]' self.assertListEqual(list_of_dict_data, build_list_of_dicts(string_array_data)) # should return an empty list on None self.assertListEqual([], build_list_of_dicts(None)) # should return an empty list on [] self.assertListEqual([], build_list_of_dicts([])) # should raise a ValueError on invalid values invalid_values = ["", [[]], ["not_a_dict"], [7357], {"not", "a dict"}] for invalid_value in invalid_values: with self.assertRaises(ValueError): build_list_of_dicts(invalid_value) def test_json_encode(self): # should encode simple values self.assertEqual('[]', json_encode(list())) self.assertEqual('{}', json_encode(dict())) self.assertEqual('[{"k":"v"}]', json_encode([{"k": "v"}, ])) # should encode date and datetime to ISO format self.assertEqual('{"t":"2019-02-22T16:20:57"}', json_encode({"t": datetime(2019, 2, 22, 16, 20, 57)})) self.assertEqual('{"t":"2019-02-22"}', json_encode({"t": date(2019, 2, 22)})) # should raise Exception on unsupported values with self.assertRaises(TypeError) as te: json_encode({"t": self}) self.assertIn("is not JSON serializable", str(te.exception)) def test_encode_unicode_url(self): self.assertEqual("string", encode_unicode_url("string")) self.assertEqual("encoded", encode_unicode_url(u"encoded")) def test_base64url_encode(self): self.assertEqual("YWQ_Lix4MDl-IUAhYQ==", base64url_encode("ad?.,x09~!@!a")) def test_is_remote_url(self): self.assertFalse(cloudinary.utils.is_remote_url(TEST_IMAGE)) remote_urls = [ "ftp://ftp.cloudinary.com/images/old_logo.png", "http://cloudinary.com/images/old_logo.png", "https://cloudinary.com/images/old_logo.png", "s3://s3-us-west-2.amazonaws.com/cloudinary/images/old_logo.png", "gs://cloudinary/images/old_logo.png", "data:image/gif;charset=utf8;base64,R0lGODlhAQABAIAAAAAAAP///yH5BAEAAAAALAAAAAABAAEAAAIBRAA7", "data:image/gif;param1=value1;param2=value2;base64," + "R0lGODlhAQABAIAAAAAAAP///yH5BAEAAAAALAAAAAABAAEAAAIBRAA7", CL_BLANK ] for url in remote_urls: self.assertTrue(cloudinary.utils.is_remote_url(url)) def test_file_io_size(self): """Should return correct file size""" test_data = b"Test data" test_data_len = len(test_data) with tempfile.NamedTemporaryFile() as temp_file: temp_file.write(test_data) actual_size = cloudinary.utils.file_io_size(temp_file) filesystem_size = getsize(temp_file.name) self.assertEqual(test_data_len, filesystem_size) self.assertEqual(test_data_len, actual_size) with io.BytesIO() as temp_stream: temp_stream.write(test_data) actual_size = cloudinary.utils.file_io_size(temp_stream) self.assertEqual(test_data_len, actual_size) with tempfile.NamedTemporaryFile() as empty_file: actual_size = cloudinary.utils.file_io_size(empty_file) self.assertEqual(0, actual_size) def test_cloudinary_scaled_url(self): """Should correctly handle format and fetch_format with and without custom transformation""" image_format = "jpg" fetch_format = "gif" resp_w = 99 resp_trans = "c_scale,w_{}".format(resp_w) effect = "sepia" options = {"format": image_format, "type": "fetch", "fetch_format": fetch_format} # Without custom transformation actual_url = cloudinary_scaled_url(FETCH_URL, resp_w, {}, options) self.assertEqual("{p}f_{ff}/{t}/{fu}".format(p=DEFAULT_FETCH_PATH, ff=fetch_format, t=resp_trans, fu=FETCH_URL), actual_url) # With custom transformation actual_url = cloudinary_scaled_url(FETCH_URL, resp_w, self.crop_transformation, options) self.assertEqual("{p}c_crop,f_{f},w_100/{t}/{fu}".format(p=DEFAULT_FETCH_PATH, f=image_format, t=resp_trans, fu=FETCH_URL), actual_url) # Add base transformation options["effect"] = effect actual_url = cloudinary_scaled_url(FETCH_URL, resp_w, {}, options) self.assertEqual("{p}e_{e},f_{ff}/{t}/{fu}".format(p=DEFAULT_FETCH_PATH, e=effect, ff=fetch_format, t=resp_trans, fu=FETCH_URL), actual_url) # Should ignore base transformation actual_url = cloudinary_scaled_url(FETCH_URL, resp_w, self.crop_transformation, options) self.assertEqual("{p}c_crop,f_{f},w_100/{t}/{fu}".format(p=DEFAULT_FETCH_PATH, f=image_format, t=resp_trans, fu=FETCH_URL), actual_url) # Should include raw transformation from base options options["raw_transformation"] = self.raw_transformation actual_url = cloudinary_scaled_url(FETCH_URL, resp_w, {}, options) self.assertEqual("{p}e_{e},f_{ff},{rt}/{t}/{fu}".format(p=DEFAULT_FETCH_PATH, e=effect, ff=fetch_format, rt=self.raw_transformation, t=resp_trans, fu=FETCH_URL), actual_url) def test_build_eager(self): test_data = [ ["should support strings", [API_TEST_TRANS_SCALE100_STR, API_TEST_TRANS_SEPIA_STR + "/jpg"], "{}|{}/jpg".format(API_TEST_TRANS_SCALE100_STR, API_TEST_TRANS_SEPIA_STR)], ["should concatenate transformations using pipe", [API_TEST_TRANS_SCALE100, API_TEST_TRANS_SEPIA], "{}|{}".format(API_TEST_TRANS_SCALE100_STR, API_TEST_TRANS_SEPIA_STR)], ["should support transformations with multiple components", [{"transformation": [API_TEST_TRANS_SCALE100, API_TEST_TRANS_SEPIA]}, API_TEST_TRANS_SEPIA], "{}/{}|{}".format(API_TEST_TRANS_SCALE100_STR, API_TEST_TRANS_SEPIA_STR, API_TEST_TRANS_SEPIA_STR)], ["should concatenate format at the end of the transformation", ([dict(API_TEST_TRANS_SCALE100, **{"format": "gif"}), API_TEST_TRANS_SEPIA]), "{}/gif|{}".format(API_TEST_TRANS_SCALE100_STR, API_TEST_TRANS_SEPIA_STR)], ["should support an empty format", ([dict(API_TEST_TRANS_SCALE100, **{"format": ""}), API_TEST_TRANS_SEPIA]), "{}/|{}".format(API_TEST_TRANS_SCALE100_STR, API_TEST_TRANS_SEPIA_STR)], ["should treat a null format as none", ([dict(API_TEST_TRANS_SCALE100, **{"format": None}), API_TEST_TRANS_SEPIA]), "{}|{}".format(API_TEST_TRANS_SCALE100_STR, API_TEST_TRANS_SEPIA_STR)], ["should concatenate format at the end of the transformation", [dict(API_TEST_TRANS_SCALE100, **{"format": "gif"}), dict(API_TEST_TRANS_SEPIA, **{"format": "jpg"})], "{}/gif|{}/jpg".format(API_TEST_TRANS_SCALE100_STR, API_TEST_TRANS_SEPIA_STR)], ["should support transformations with multiple components and format", [{"transformation": [API_TEST_TRANS_SCALE100, API_TEST_TRANS_SEPIA], "format": "gif"}, API_TEST_TRANS_SEPIA], "{}/{}/gif|{}".format(API_TEST_TRANS_SCALE100_STR, API_TEST_TRANS_SEPIA_STR, API_TEST_TRANS_SEPIA_STR)], ] for message, value, expected in test_data: self.assertEqual(expected, build_eager(value), message) if __name__ == '__main__': unittest.main()
#!/usr/bin/env python # -*- coding: utf-8 -*- # Copyright 1999-2020 Alibaba Group Holding Ltd. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np from ... import opcodes as OperandDef from ...core import TilesError from ...serialize import KeyField, BoolField from ...utils import check_chunks_unknown_shape from ..operands import TensorOperand, TensorOperandMixin from ..datasource import tensor as astensor from ..array_utils import as_same_device, device from ..core import TensorOrder from .ravel import ravel class TensorIsIn(TensorOperand, TensorOperandMixin): _op_type_ = OperandDef.ISIN _element = KeyField('element') _test_elements = KeyField('test_elements') _assume_unique = BoolField('assume_unique') _invert = BoolField('invert') def __init__(self, assume_unique=None, invert=None, dtype=None, **kw): dtype = np.dtype(bool) if dtype is None else dtype super().__init__(_assume_unique=assume_unique, _invert=invert, dtype=dtype, **kw) @property def element(self): return self._element @property def test_elements(self): return self._test_elements @property def assume_unique(self): return self._assume_unique @property def invert(self): return self._invert def _set_inputs(self, inputs): super()._set_inputs(inputs) self._element = self._inputs[0] self._test_elements = self._inputs[1] def __call__(self, element, test_elements): element, test_elements = astensor(element), ravel(astensor(test_elements)) return self.new_tensor([element, test_elements], element.shape, order=TensorOrder.C_ORDER) @classmethod def tile(cls, op): in_tensor = op.element test_elements = op.test_elements out_tensor = op.outputs[0] if len(test_elements.chunks) != 1: check_chunks_unknown_shape([test_elements], TilesError) test_elements = test_elements.rechunk(len(test_elements))._inplace_tile() test_elements_chunk = test_elements.chunks[0] out_chunks = [] for c in in_tensor.chunks: chunk_op = op.copy().reset_key() out_chunk = chunk_op.new_chunk([c, test_elements_chunk], shape=c.shape, index=c.index, order=out_tensor.order) out_chunks.append(out_chunk) new_op = op.copy() return new_op.new_tensors([in_tensor, test_elements], out_tensor.shape, order=out_tensor.order, chunks=out_chunks, nsplits=in_tensor.nsplits) @classmethod def execute(cls, ctx, op): (element, test_elements), device_id, xp = as_same_device( [ctx[c.key] for c in op.inputs], device=op.device, ret_extra=True) with device(device_id): ctx[op.outputs[0].key] = xp.isin(element, test_elements, assume_unique=op.assume_unique, invert=op.invert) def isin(element, test_elements, assume_unique=False, invert=False): """ Calculates `element in test_elements`, broadcasting over `element` only. Returns a boolean array of the same shape as `element` that is True where an element of `element` is in `test_elements` and False otherwise. Parameters ---------- element : array_like Input tensor. test_elements : array_like The values against which to test each value of `element`. This argument is flattened if it is a tensor or array_like. See notes for behavior with non-array-like parameters. assume_unique : bool, optional If True, the input tensors are both assumed to be unique, which can speed up the calculation. Default is False. invert : bool, optional If True, the values in the returned tensor are inverted, as if calculating `element not in test_elements`. Default is False. ``mt.isin(a, b, invert=True)`` is equivalent to (but faster than) ``mt.invert(mt.isin(a, b))``. Returns ------- isin : Tensor, bool Has the same shape as `element`. The values `element[isin]` are in `test_elements`. See Also -------- in1d : Flattened version of this function. Notes ----- `isin` is an element-wise function version of the python keyword `in`. ``isin(a, b)`` is roughly equivalent to ``mt.array([item in b for item in a])`` if `a` and `b` are 1-D sequences. `element` and `test_elements` are converted to tensors if they are not already. If `test_elements` is a set (or other non-sequence collection) it will be converted to an object tensor with one element, rather than a tensor of the values contained in `test_elements`. This is a consequence of the `tensor` constructor's way of handling non-sequence collections. Converting the set to a list usually gives the desired behavior. Examples -------- >>> import mars.tensor as mt >>> element = 2*mt.arange(4).reshape((2, 2)) >>> element.execute() array([[0, 2], [4, 6]]) >>> test_elements = [1, 2, 4, 8] >>> mask = mt.isin(element, test_elements) >>> mask.execute() array([[ False, True], [ True, False]]) >>> element[mask].execute() array([2, 4]) >>> mask = mt.isin(element, test_elements, invert=True) >>> mask.execute() array([[ True, False], [ False, True]]) >>> element[mask] array([0, 6]) Because of how `array` handles sets, the following does not work as expected: >>> test_set = {1, 2, 4, 8} >>> mt.isin(element, test_set).execute() array([[ False, False], [ False, False]]) Casting the set to a list gives the expected result: >>> mt.isin(element, list(test_set)).execute() array([[ False, True], [ True, False]]) """ op = TensorIsIn(assume_unique, invert) return op(element, test_elements)
from __future__ import print_function import math, random class AsymmetricCrypto: def __init__(self): pass def gcd(self, a, b): if b==0: return a return self.gcd(b,a%b) def isPrime(self, n): if n==2: return True if n%2==0: return False i = 3 while i*i<=n: if n%i==0: return False i+=2 return True def generate_large_prime(self): while True: p = random.randint(10001,1000001) if self.isPrime(p)==True: return p def rsa_generate_public_key(self): p = self.generate_large_prime() q = self.generate_large_prime() n = p*q phi = (p-1)*(q-1) e = None while True: e = random.randint(2,phi-1) if self.gcd(e,phi)==1: break return (n, e, p, q) def get_num_list(self, plaintext): return [ord(ch) for ch in plaintext ] def rsa_util_encrypt(self, num, public_key): n = public_key[0] e = public_key[1] return pow(num, e, n) def rsa_encrypt(self, plaintext, public_key=None): if public_key==None: public_key = self.rsa_generate_public_key() num_list = self.get_num_list(plaintext) cipher_nums = [] for num in num_list: cipher_num = self.rsa_util_encrypt(num, public_key) cipher_nums.append(cipher_num) return public_key, cipher_nums def rsa_util_decrypt(self, cipher_num, private_key, public_key): n = public_key[0] d = private_key return pow(cipher_num, d, n) def multiplicative_inverse(self, a, n): if self.gcd(a, n)!=1: return None r1 = n r2 = a p1 = 0 p2 = 1 while r1>1: q = r1//r2 r = r1 - q*r2 r1 = r2 r2 = r p = p1 - q*p2 p1 = p2 p2 = p return p1%n def get_private_key(self, public_key): n = public_key[0] e = public_key[1] p = public_key[2] q = public_key[3] phi = (p-1)*(q-1) d = self.multiplicative_inverse(e, phi) return d def rsa_decrypt(self, cipher_nums, public_key=None, private_key=None): if public_key==None: return "Please Provide a public key!!" if private_key==None: return "Please Provide a private Key!!" plain_nums = [] for cipher_num in cipher_nums: plain_num = self.rsa_util_decrypt(cipher_num, private_key, public_key) plain_nums.append(plain_num) plain_text = [ chr(plain_num) for plain_num in plain_nums ] return "".join(plain_text), plain_nums def knapsack_generate_keys(self, n=8): ## first create a superincreasing sequence of length 'n' seed = random.randint(2,10) super_sequence = [seed] for i in range(n-1): sum_so_far = sum(super_sequence) element = random.randint(sum_so_far+1, 2*sum_so_far) super_sequence.append(element) ## now select a random integer q such that q > sum(super_sequence) q = random.randint(sum(super_sequence)+1, 2*sum(super_sequence)) ## now select another random integer 'r' such that gcd(q,r) = 1 r = 2 while True: r = random.randint(2,q-1) if self.gcd(q,r) == 1: break ## Finally, calculate beta - the public key beta = tuple( (r*super_sequence[i])%q for i in range(n) ) ## making beta as a tuple, as tuples are immutable private_key = (super_sequence, q, r) return beta, private_key ##The below function finds alpha as a part of decryption def getalpha(self, c, w): w = w[::-1] alpha = [] for number in w: if number > c: alpha.append(0) else: alpha.append(1) c = c - number return alpha[::-1] def knapsack_encrypt(self, plaintext, public_key): ciphertext = [] for character in plaintext: binary = bin(ord(character)) binary = binary[0]+binary[2:] l = len(binary) binary = (8-l)*"0"+binary binary = list(map(int,binary)) # now, binary is an 8 element list, containing bits of binary representation of the character # ciphertext 'c' is calculated now c = sum([ binary[i]*public_key[i] for i in range(len(public_key)) ]) ciphertext.append(c) return ciphertext def knapsack_decrypt(self, ciphertext, private_key): #First, we calculate the integer 's' , which has the property that: # r*s = 1 mod q #unpack private key super_sequence, q, r = private_key s = self.multiplicative_inverse(r, q) # finding c' = modified ciphertext modified_ciphertext = [ (ciphertext[i]*s)%q for i in range(len(ciphertext)) ] decrypted_text = [] ## Now, for each modified ciphertext, we will find the actual alpha sequence i = 0 for c in modified_ciphertext: alpha = self.getalpha(c,super_sequence) alpha = "".join(map(str, alpha)) decrypted_text.append(chr(int(alpha,2))) i+=1 return "".join(decrypted_text)
# Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import mock from karborclient.tests.unit import base from karborclient.tests.unit.v1 import fakes cs = fakes.FakeClient() mock_request_return = ({}, {'verification': {}}) class VerificationsTest(base.TestCaseShell): @mock.patch('karborclient.common.http.HTTPClient.json_request') def test_list_verifications_with_marker_limit(self, mock_request): mock_request.return_value = mock_request_return cs.verifications.list(marker=1234, limit=2) mock_request.assert_called_with( 'GET', '/verifications?limit=2&marker=1234', headers={}) @mock.patch('karborclient.common.http.HTTPClient.json_request') def test_list_verifications_with_sort_key_dir(self, mock_request): mock_request.return_value = mock_request_return cs.verifications.list(sort_key='id', sort_dir='asc') mock_request.assert_called_with( 'GET', '/verifications?' 'sort_dir=asc&sort_key=id', headers={}) @mock.patch('karborclient.common.http.HTTPClient.json_request') def test_list_verifications_with_invalid_sort_key(self, mock_request): self.assertRaises(ValueError, cs.verifications.list, sort_key='invalid', sort_dir='asc') @mock.patch('karborclient.common.http.HTTPClient.json_request') def test_create_verification(self, mock_request): mock_request.return_value = mock_request_return cs.verifications.create('586cc6ce-e286-40bd-b2b5-dd32694d9944', '2220f8b1-975d-4621-a872-fa9afb43cb6c', '{}') mock_request.assert_called_with( 'POST', '/verifications', data={ 'verification': { 'checkpoint_id': '2220f8b1-975d-4621-a872-fa9afb43cb6c', 'parameters': '{}', 'provider_id': '586cc6ce-e286-40bd-b2b5-dd32694d9944' }}, headers={}) @mock.patch('karborclient.common.http.HTTPClient.json_request') def test_show_verification(self, mock_request): mock_request.return_value = mock_request_return cs.verifications.get('1') mock_request.assert_called_with( 'GET', '/verifications/1', headers={}) @mock.patch('karborclient.common.http.HTTPClient.json_request') def test_show_verification_with_headers(self, mock_request): mock_request.return_value = mock_request_return cs.verifications.get('1', session_id='fake_session_id') mock_request.assert_called_with( 'GET', '/verifications/1', headers={'X-Configuration-Session': 'fake_session_id'})
from gpiozero import Button button = Button(2) button2 = Button(3) button.wait_for_press() button2.wait_for_press() print("Never gonna give you up never gonna let you down never gonna run around and desert you never gonna make you cry never gonna say goodbye never gonna tell a lie and hurt you")
# pylint: disable=redefined-outer-name # pylint: disable=unused-argument # pylint: disable=unused-variable import json from pathlib import Path from typing import Dict import pytest import yaml from service_integration.osparc_config import MetaConfig, RuntimeConfig @pytest.fixture def labels(tests_data_dir: Path, labels_fixture_name: str) -> Dict[str, str]: data = yaml.safe_load((tests_data_dir / "docker-compose-meta.yml").read_text()) service_name = { "legacy": "dy-static-file-server", "service-sidecared": "dy-static-file-server-dynamic-sidecar", "compose-sidecared": "dy-static-file-server-dynamic-sidecar-compose-spec", } labels_annotations = data["services"][service_name[labels_fixture_name]]["build"][ "labels" ] # patch -> replaces some environs if compose_spec := labels_annotations.get("simcore.service.compose-spec"): if compose_spec == "${DOCKER_COMPOSE_SPECIFICATION}": labels_annotations["simcore.service.compose-spec"] = json.dumps( yaml.safe_load((tests_data_dir / "compose-spec.yml").read_text()) ) return labels_annotations @pytest.mark.parametrize( "labels_fixture_name", ["legacy", "service-sidecared", "compose-sidecared"] ) def test_load_from_labels( labels: Dict[str, str], labels_fixture_name: str, tmp_path: Path ): meta_cfg = MetaConfig.from_labels_annotations(labels) runtime_cfg = RuntimeConfig.from_labels_annotations(labels) print(meta_cfg.json(exclude_unset=True, indent=2)) print(runtime_cfg.json(exclude_unset=True, indent=2)) # create yamls from config for model in (runtime_cfg, meta_cfg): config_path = ( tmp_path / f"{model.__class__.__name__.lower()}-{labels_fixture_name}.yml" ) with open(config_path, "wt") as fh: data = json.loads( model.json(exclude_unset=True, by_alias=True, exclude_none=True) ) yaml.safe_dump(data, fh, sort_keys=False) # reload from yaml and compare new_model = model.__class__.from_yaml(config_path) assert new_model == model
from django.contrib import admin from .models import GenericContainerPlugin, CompareTwoThingsPlugin, GenericListPlugin, ImageWithThumbnailPlugin, HostService #from .models import RenderableTextPlugin, GenericContainerPlugin, CompareTwoThingsPlugin, GenericListPlugin, ImageWithThumbnailPlugin, HostService admin.site.register(HostService) #admin.site.register(ImageWithThumbnailPlugin) #admin.site.register(RenderableTextPlugin) #admin.site.register(CompareTwoThingsPlugin) #admin.site.register(GenericContainerPlugin) #admin.site.register(GenericListPlugin)
import networkx as nx import ndlib.models.ModelConfig as mc import ndlib.models.CompositeModel as gc import ndlib.models.compartments as ns import time from ndlib.utils import multi_runs import matplotlib as mpl import matplotlib.pyplot as plt import numpy as np # Network Definition for initialinfect in [1]: for itercount in [6, 7, 8, 9, 10, 11, 12, 13, 14]: start_time = time.time() N = 20000 connections = 6 iterations = 30 executions = 1000 print('-----Generating Barabasi-Albert graph with {} nodes-----'.format(N)) g = nx.barabasi_albert_graph(N, connections) # Model Selection print('-----Configuring Model-----') model = gc.CompositeModel(g) # Model Statuses model.add_status("Susceptible") model.add_status("Exposed") model.add_status("Symptomatic") #model.add_status("Asymptomatic") model.add_status("Infected") model.add_status("Removed") #----------------------------------------------------- #DISEASE DATA r0 = 3.1 disease_length = 14 people_total = 12 * disease_length chance_of_infection = r0 / people_total infect_chance = chance_of_infection #print(infect_chance) #----------------------------------------------------- # Compartment Definition c1_1 = ns.NodeStochastic(infect_chance, triggering_status="Infected") c1_3 = ns.NodeStochastic(infect_chance, triggering_status="Symptomatic") c2_1 = ns.NodeStochastic((1 - 0.5**(1/11))) c3 = ns.NodeStochastic((1 - 0.5**(1/14))) c4 = ns.CountDown('Testing Timer', iterations = itercount) # Rule Definition model.add_rule("Susceptible","Exposed",c1_1) model.add_rule("Susceptible","Exposed",c1_3) model.add_rule("Exposed","Symptomatic",c2_1) model.add_rule("Symptomatic","Removed",c3) model.add_rule("Infected","Removed",c4) # Model Configuration config = mc.Configuration() config.add_model_parameter('fraction_infected', initialinfect/N) model.set_initial_status(config) # Simulation print('-----Doing {} simulation(s) on {} day test-----'.format(executions,itercount)) trends = multi_runs(model, execution_number = executions, iteration_number = iterations, infection_sets=None) stop_time = time.time() total_time = stop_time - start_time print('\n----- Total Time: {} seconds ----'.format(total_time)) print('-----Plotting Results-----') #print(iterations) #print(trends) from ndlib.viz.mpl.DiffusionTrend import DiffusionTrend daydata = [] fig = () ax = () for n in range(0, executions): if (trends[n]['trends']['node_count'][0][-1] != (N - initialinfect)): daydata.append(N-trends[n]['trends']['node_count'][0][-1]) print(daydata) fig = plt.hist(daydata) stdev = np.std(daydata) mean = np.mean(daydata) plt.title("Infected at Day {}".format(iterations), fontsize = 24) plt.xlabel("Infected Population", fontsize = 24) plt.ylabel("Number of Simulations", fontsize = 24) plt.figtext(0.85, 0.80, 'Outbreaks: {:.0f}\nMean: {:.3f}\nStDev: {:.3f}'.format(len(daydata), mean, stdev), fontsize = 24, bbox = dict(boxstyle = 'round', facecolor = 'white')) plt.tight_layout() plt.savefig("Histogram4/(HIST)Patient 0 Test: {} Days Test, {} Days Total, {} Initial.png".format(itercount, iterations, initialinfect)) plt.clf() viz = DiffusionTrend(model, trends) name = ("Histogram4/(COUNT)Patient 0 Test: {} Days Test, {} Days Total, {} Initial.png".format(itercount, iterations, initialinfect)) viz.plot(filename = name, percentile = 90, itercount = executions, timereq = total_time)
#!/usr/bin/env python import os from app import create_app from flask_script import Manager, Shell, Server from flask_migrate import Migrate, MigrateCommand app = create_app(os.getenv('FLASK_CONFIG') or 'default') manager = Manager(app) def make_shell_context(): return dict(app=app, db=db, User=User, Role=Role, Photo=Photo) manager.add_command("shell", Shell(make_context=make_shell_context)) manager.add_command("runserver", Server(host='0.0.0.0')) if __name__ == '__main__': manager.run()
def evaluate(self): if self.getMapper().getName() == self.mate._("evaluation:versioned:testee"): comparison_test = self.mate.getTestByMapperName(self.getName(), self.mate._("evaluation:versioned:base")) testee_result = self.getRunResults() comparison_result = comparison_test.getRunResults() if testee_result.correct < comparison_result.correct: self.warn("Less correct reads than base %s"%comparison_test.getMapper().getTitle())
""" # Sample code to perform I/O: name = input() # Reading input from STDIN print('Hi, %s.' % name) # Writing output to STDOUT # Warning: Printing unwanted or ill-formatted data to output will cause the test cases to fail """ # Write your code here t = int(input()) for _ in range(t): n, l = map(int, input().strip().split()) a = [] for _ in range(n): xl, xr = map(int, input().strip().split()) if xr - xl <= l: # 1 ≤ Xl ≤ Xr ≤ 10^6 a.append((xl, xr)) a.sort() ln = len(a) for i in range(ln - 1): max_right = a[i][0] + l curr_right = a[i][1] if curr_right == max_right: print('Yes') break elif curr_right > max_right: continue else: for j in range(i + 1, ln): if a[j][0] <= curr_right and a[j][1] <= max_right: curr_right = max(curr_right, a[j][1]) if curr_right == max_right: print('Yes') break else: print('No')
import numpy as np import multiprocessing as mp import scipy.stats as stats import os os.environ['OMP_NUM_THREADS'] = str(1) import statsmodels.sandbox.stats.multicomp as mc import h5py import nibabel as nib from importlib import reload import tools import argparse # Excluding 084 subjNums = ['013','014','016','017','018','021','023','024','026','027','028','030','031','032','033', '034','035','037','038','039','040','041','042','043','045','046','047','048','049','050', '053','055','056','057','058','062','063','066','067','068','069','070','072','074','075', '076','077','081','085','086','087','088','090','092','093','094','095','097','098','099', '101','102','103','104','105','106','108','109','110','111','112','114','115','117','119', '120','121','122','123','124','125','126','127','128','129','130','131','132','134','135', '136','137','138','139','140','141'] projectdir = '/home/ti61/f_mc1689_1/SRActFlow/' # Using final partition networkdef = np.loadtxt(projectdir + 'data/network_partition.txt') networkorder = np.asarray(sorted(range(len(networkdef)), key=lambda k: networkdef[k])) networkorder.shape = (len(networkorder),1) # network mappings for final partition set networkmappings = {'fpn':7, 'vis1':1, 'vis2':2, 'smn':3, 'aud':8, 'lan':6, 'dan':5, 'con':4, 'dmn':9, 'pmulti':10, 'none1':11, 'none2':12} networks = networkmappings.keys() xticks = {} reorderednetworkaffil = networkdef[networkorder] for net in networks: netNum = networkmappings[net] netind = np.where(reorderednetworkaffil==netNum)[0] tick = np.max(netind) xticks[tick] = net ## General parameters/variables nParcels = 360 nSubjs = len(subjNums) glasserfile2 = projectdir + 'data/Q1-Q6_RelatedParcellation210.LR.CorticalAreas_dil_Colors.32k_fs_RL.dlabel.nii' glasser2 = nib.load(glasserfile2).get_data() glasser2 = np.squeeze(glasser2) sortednets = np.sort(list(xticks.keys())) orderednetworks = [] for net in sortednets: orderednetworks.append(xticks[net]) networkpalette = ['royalblue','slateblue','paleturquoise','darkorchid','limegreen', 'lightseagreen','yellow','orchid','r','peru','orange','olivedrab'] networkpalette = np.asarray(networkpalette) OrderedNetworks = ['VIS1','VIS2','SMN','CON','DAN','LAN','FPN','AUD','DMN','PMM','VMM','ORA'] parser = argparse.ArgumentParser('./main.py', description='Run decoding analyses to identify sets of regions involved for different task components') parser.add_argument('--outfilename', type=str, default="", help='Prefix output filenames (Default: analysis1') parser.add_argument('--decoder', type=str, default="similarity", help='decoding approach [similarity, logistic, svm') parser.add_argument('--ID', type=str, default="rule", help='condition/information to decode [rules,colorStim,oriStim,constantStim,pitchStim]') parser.add_argument('--nproc', type=int, default=20, help='number of processes to run in parallel (default: 20)') parser.add_argument('--motor_mapping', action='store_true', help="Include motor output activations") def run(args): args outfilename = args.outfilename decoder = args.decoder ID = args.ID nproc = args.nproc outdir = '/home/ti61/f_mc1689_1/SRActFlow/data/results/MAIN/LayerID_Revision/' outfilename = outdir + ID + '_' + decoder if ID=='rules': nStims = 12 data_task = np.zeros((len(glasser2),nStims,len(subjNums))) rules = ['Logic','Sensory','Motor'] rois = np.arange(nParcels) scount = 0 for subj in subjNums: rulecount = 0 for rule in rules: data_task[:,rulecount:(rulecount+4),scount] = tools.loadInputActivity(subj,rule) rulecount += 4 scount += 1 if ID in ['colorStim', 'oriStim', 'constantStim', 'pitchStim']: nStims = 4 data_task = np.zeros((len(glasser2),nStims,len(subjNums))) if ID in ['colorStim','oriStim']: rois = np.where((networkdef==networkmappings['vis1']) | (networkdef==networkmappings['vis2']))[0] elif ID in ['constantStim','pitchStim']: rois = np.where(networkdef==networkmappings['aud'])[0] scount = 0 for subj in subjNums: data_task[:,:,scount] = tools.loadInputActivity(subj,ID) scount += 1 distances_baseline_allrules, rmatch, rmismatch, confusion_mats = tools.conditionDecodings(data_task, rois, motorOutput=False, ncvs=1, effects=True, confusion=True, decoder=decoder, nproc=nproc) statistics_allrules = np.zeros((len(rois),3)) # acc, q, acc_thresh for roicount in range(len(rois)): ntrials = distances_baseline_allrules.shape[1] p = stats.binom_test(np.mean(distances_baseline_allrules[roicount,:])*ntrials,n=ntrials,p=1/float(nStims)) if np.mean(distances_baseline_allrules[roicount,:])>1/float(nStims): p = p/2.0 else: p = 1.0-p/2.0 statistics_allrules[roicount,0] = np.mean(distances_baseline_allrules[roicount,:]) statistics_allrules[roicount,1] = p h0, qs = mc.fdrcorrection0(statistics_allrules[:,1]) for roicount in range(len(rois)): statistics_allrules[roicount,1] = qs[roicount] statistics_allrules[roicount,2] = h0[roicount]*statistics_allrules[roicount,0] # Count number of significant ROIs for LH decoding sig_ind = np.where(statistics_allrules[:,1]<0.05)[0] print('Number of ROIs significant for all 12 rules:', sig_ind.shape[0]) print('Accuracies:', statistics_allrules[sig_ind,0]) #### Map back to surface # Put all data into a single matrix (since we only run a single classification) inputStim = np.zeros((glasser2.shape[0],3)) roicount = 0 for roi in rois: vertex_ind = np.where(glasser2==roi+1)[0] inputStim[vertex_ind,0] = statistics_allrules[roicount,0] inputStim[vertex_ind,1] = statistics_allrules[roicount,1] inputStim[vertex_ind,2] = statistics_allrules[roicount,2] roicount += 1 np.savetxt(outfilename + '.csv', np.where(statistics_allrules[:,1]<0.05)[0], delimiter=',') #### # Write file to csv and run wb_command np.savetxt(outfilename + '.csv', inputStim,fmt='%s') wb_command = 'wb_command -cifti-convert -from-text ' + outfilename + '.csv ' + glasserfile2 + ' ' + outfilename + '.dscalar.nii' + ' -reset-scalars' os.system(wb_command) if __name__ == '__main__': args = parser.parse_args() run(args)
x = 2 y = 3 z = x + y print(z)