content
stringlengths
5
1.05M
# -*- coding: utf-8 -*- import re import unittest.mock as mock from django import test from django.utils import timezone import testutils.factories as factories import app.definitions.models as models import app.revisioner.tasks.v1.core as coretasks import app.inspector.engines.mysql_inspector as engine class MySQLInspectorInterfaceTests(test.TestCase): """Tests to ensure that the engine follows the subscribed interface. """ def setUp(self): """Get ready for some tests... """ self.connection = { 'host': 'localhost', 'username': 'admin', 'password': '1234567890', 'port': 3306, 'database': 'acme', } self.engine = engine.MySQLInspector(**self.connection) def test_has_indexes_sql(self): """It should have `indexes_sql` attribute defined. """ assert isinstance(engine.MySQLInspector.indexes_sql, str) def test_has_definitions_sql(self): """It should have `definitions_sql` attribute defined. """ assert isinstance(engine.MySQLInspector.definitions_sql, str) @mock.patch.object(engine.MySQLInspector, 'get_first', return_value={'version': '5.7.0'}) def test_get_tables_and_views_sql(self, get_first): """It should create the proper `tables_and_views_sql` where clause. """ sch = ['one', 'two', 'three'] sql = self.engine.get_tables_and_views_sql(sch) exc = ''' WHERE t.table_schema NOT IN (%s, %s, %s) ''' self.assertIn( ''.join(exc.split()).strip(), ''.join(sql.split()).strip(), ) @mock.patch.object(engine.MySQLInspector, 'get_first', return_value={'version': '5.7.0'}) def test_get_tables_and_views_sql_ordered(self, get_first): """The Revisioner depends on the data coming in a specific order. """ sch = ['one', 'two', 'three'] sql = self.engine.get_tables_and_views_sql(sch).replace('\n', '') exc = 'ORDER BY c.table_schema, c.table_name, c.ordinal_position' self.assertEqual(exc, sql[-len(exc):]) @mock.patch.object(engine.MySQLInspector, 'get_first', return_value={'version': '5.7.0'}) def test_get_indexes_sql(self, get_first): """It should create the proper `indexes_sql` where clause. """ sch = ['one', 'two'] sql = self.engine.get_indexes_sql(sch) exc = ''' WHERE t.table_schema NOT IN (%s, %s) ''' self.assertIn( ''.join(exc.split()).strip(), ''.join(sql.split()).strip(), ) def test_cursor_kwargs(self): """Snapshot test for cursor kwargs. """ assert self.engine.cursor_kwargs == { 'cursor_class': self.engine.dictcursor } def test_sys_schemas(self): """It should have the expected system table schemas. """ assert set(self.engine.sys_schemas) == { 'information_schema', 'mysql', 'performance_schema', 'sys', } def test_has_indexes(self): """It should have indexes. """ assert engine.MySQLInspector.has_indexes() @mock.patch.object(engine.MySQLInspector, 'get_first', return_value={'version': '9.6.0'}) def test_get_db_version(self, get_first): """It should implement MySQL.get_db_version() """ self.assertEqual(self.engine.get_db_version(), '9.6.0') @mock.patch.object(engine.MySQLInspector, 'get_db_version', return_value='10.1.2') def test_version(self, get_db_version): """It should implement MySQL.version """ self.assertEqual(self.engine.version, '10.1.2') def test_connect_kwargs(self): """It should have the connect timeout parameter. """ assert self.engine.connect_kwargs == { 'host': 'localhost', 'user': 'admin', 'password': '1234567890', 'port': 3306, 'database': 'acme', 'connect_timeout': 5, } def test_get_last_commit_time_for_table(self): """It should implement MySQL.get_last_commit_time_for_table """ self.assertEqual(self.engine.get_last_commit_time_for_table('public', 'accounts'), None) class MySQLInspectorIntegrationTestMixin(object): """Test cases that hit a live database spun up via Docker. """ hostname = None schema_count = 3 def get_connection(self): return { 'host': self.hostname, 'username': 'metamapper_ro', 'password': '340Uuxwp7Mcxo7Khy', 'port': 3306, 'database': 'employees', } def get_inspector(self): return engine.MySQLInspector(**self.get_connection()) def test_verify_connection(self): """It can connect to MySQL using the provided credentials. """ self.assertTrue( self.get_inspector().verify_connection(), 'Host: %s' % self.hostname, ) def test_tables_and_views(self): """It should return the correct table and view response. """ records = self.get_inspector().get_tables_and_views() schemas = set() table_items = [] table_types = set() column_items = [] for record in records: schemas.add((record['schema_object_id'], record['table_schema'])) # It should have unique table identities. self.assertTrue(record['table_object_id']) self.assertTrue(record['table_object_id'] not in table_items) table_items.append(record['table_object_id']) table_types.add(record['table_type']) # It should have unique column identities. for column in record['columns']: self.assertTrue(column['column_object_id']) self.assertTrue(column['column_object_id'] not in column_items) column_items.append(column['column_object_id']) # Each schema should have a unique identity. self.assertEqual(len(schemas), self.schema_count) self.assertEqual(table_types, {'base table', 'view'}) def test_indexes(self): """It should return the correct index response. """ records = self.get_inspector().get_indexes() schemas = set() index_items = [] for record in records: schemas.add((record['schema_object_id'], record['schema_name'])) # It should have unique index identities. self.assertTrue(record['index_object_id']) self.assertTrue(record['index_object_id'] not in index_items) index_items.append(record['index_object_id']) # Each schema should have a unique identity. self.assertEqual(len(schemas), self.schema_count) def test_get_db_version(self): """It should return the correct version. """ self.assertTrue( re.match(self.version_regexp, self.get_inspector().get_db_version()), 'Host: %s' % self.hostname, ) def test_initial_revisioner_run(self): """It should be able to commit the initial run to the metastore. """ datastore = factories.DatastoreFactory(engine='mysql', **self.get_connection()) run = datastore.run_history.create( workspace_id=datastore.workspace_id, started_at=timezone.now(), ) coretasks.start_run(run.id) run.refresh_from_db() self.assertTrue(run.finished_at is not None) self.assertEqual(datastore.schemas.count(), self.schema_count) column = models.Column.objects.get(name='emp_no', table__name='employees') self.assertEqual(column.db_comment, 'The employee identification number') @test.tag('mysql', 'inspector') class MySQLFivePointSixIntegrationTests(MySQLInspectorIntegrationTestMixin, test.TestCase): """Integration tests for MySQL v5.6 """ hostname = 'mysql-5.6' version_regexp = r'5\.6\.[0-9]{1,3}' @test.tag('mysql', 'inspector') class MySQLFivePointSevenIntegrationTests(MySQLInspectorIntegrationTestMixin, test.TestCase): """Integration tests for MySQL v5.7 """ hostname = 'mysql-5.7' version_regexp = r'5\.7\.[0-9]{1,3}' @test.tag('mysql', 'inspector') class MySQLEightPointZeroIntegrationTests(MySQLInspectorIntegrationTestMixin, test.TestCase): """Integration tests for MySQL v8.0 """ hostname = 'mysql-8.0' version_regexp = r'8\.0\.[0-9]{1,3}'
# -*- coding: utf-8 -*- # # Copyright (c) 2021 HopeBayTech. # # This file is part of Tera. # See https://github.com/HopeBayMobile for further info. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # See CFFI docs at https://cffi.readthedocs.org/en/latest/ from _pyhcfs import ffi, lib import os import errno import inspect import sys error_msg = { -2: "Unsupported meta version", } def str_error_msg(name, ret_val): msg = "" if ret_val == -1: msg = name + ': ' + os.strerror(ffi.errno) else: msg = name + ": " + error_msg[ret_val] return msg def __convert_struct_field(s, fields): for field, fieldtype in fields: if fieldtype.type.kind == 'primitive': yield (field, getattr(s, field)) else: yield (field, convert_to_python(getattr(s, field))) def convert_to_python(s): type = ffi.typeof(s) if type.kind == 'struct': return dict(__convert_struct_field(s, type.fields)) elif type.kind == 'array': if type.item.kind == 'primitive': if type.item.cname == 'char': return ffi.string(s) else: return [s[i] for i in range(type.length)] else: return [convert_to_python(s[i]) for i in range(type.length)] elif type.kind == 'primitive': return int(s) else: return s def list_volume(fsmgr_path): """ Return list of hcfs external volumes """ ptr_ret_entry = ffi.new("PORTABLE_DIR_ENTRY **") ret_num = ffi.new("uint64_t *") ret = lib.list_volume(fsmgr_path, ptr_ret_entry, ret_num) if ret < 0: print( 'Error:', str_error_msg( inspect.stack()[0][3], ret), file=sys.stderr) return ret response = [] for x in range(ret_num[0]): entry = ptr_ret_entry[0][x] response += [(entry.inode, entry.d_type, ffi.string(entry.d_name))] return response def parse_meta(meta_path): """ Get data from hcfs metafile cdef: #define D_ISDIR 0 #define D_ISREG 1 #define D_ISLNK 2 #define D_ISFIFO 3 #define D_ISSOCK 4 int32_t parse_meta(char *meta_path, RET_META *meta); @Input meta_path: A string contains local path of metafile @Output result: 0 on success, negative integer on error. @Output file_type: defined in fuseop.h @Output child_number: number of childs if it is a folder, not used if file_type is not D_ISDIR. """ meta = ffi.new("RET_META *") lib.parse_meta(meta_path, meta) ret = convert_to_python(meta[0]) if ret['result'] < 0: ret['error_msg'] = str_error_msg(inspect.stack()[0][3], ret['result']) print('Error:', ret['error_msg'], file=sys.stderr) return ret def list_dir_inorder(meta_path="", offset=(0, 0), limit=1000): """ int32_t list_dir_inorder(const char *meta_path, const int64_t page_pos, const int32_t start_el, const int32_t limit, int64_t *end_page_pos, int32_t *end_el_no, iint32_t *num_children, PORTABLE_DIR_ENTRY *file_list); """ ret = { 'result': -1, 'offset': (0, 0), 'child_list': [], 'num_child_walked': 0 } if limit <= 0 or offset[0] < 0 or offset[1] < 0: return ret end_page_pos = ffi.new("int64_t *") end_el_no = ffi.new("int32_t *") num_child_walked = ffi.new("int32_t *") file_list = ffi.new("PORTABLE_DIR_ENTRY []", limit) ret_code = lib.list_dir_inorder( meta_path, offset[0], offset[1], limit, end_page_pos, end_el_no, num_child_walked, file_list) ret['result'] = ret_code ret['offset'] = (end_page_pos[0], end_el_no[0]) if ret['result'] >= 0: ret['num_child_walked'] = num_child_walked[0] ret['child_list'] = [ convert_to_python(file_list[i]) for i in range(ret['num_child_walked'])] else: ret['error_msg'] = str_error_msg(inspect.stack()[0][3], ret['result']) print('Error:', ret['error_msg'], file=sys.stderr) return ret def get_external_vol(tmp_meta): return list_external_vol(tmp_meta) def get_vol_usage(meta_path=""): ret = { 'result': -1, 'usage': 0 } vol_usage = ffi.new("int64_t *", 0) ret_code = lib.get_vol_usage(meta_path, vol_usage) ret['result'] = ret_code ret['usage'] = vol_usage[0] if ret['result'] < 0: ret['error_msg'] = str_error_msg(inspect.stack()[0][3], ret['result']) print('Error:', ret['error_msg'], file=sys.stderr) return ret def list_file_blocks(meta_path=""): ret = { 'result': -1, 'ret_num': 0, 'block_list': [], } block_list = ffi.new("PORTABLE_BLOCK_NAME **") ret_num = ffi.new("int64_t *") inode = ffi.new("int64_t *") ret_code = lib.list_file_blocks(meta_path, block_list, ret_num, inode) ret['result'] = ret_code if ret['result'] < 0: ret['error_msg'] = str_error_msg(inspect.stack()[0][3], ret['result']) print('Error:', ret['error_msg'], file=sys.stderr) ret['ret_num'] = ret_num[0] for x in range(ret_num[0]): ret['block_list'] += [ 'data_{0}_{1}_{2}'.format( inode[0], block_list[0][x].block_num, block_list[0][x].block_seq)] return ret
# Copyright (c) 2012-2013 Mitch Garnaat http://garnaat.org/ # Copyright 2012-2013 Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the # "Software"), to deal in the Software without restriction, including # without limitation the rights to use, copy, modify, merge, publish, dis- # tribute, sublicense, and/or sell copies of the Software, and to permit # persons to whom the Software is furnished to do so, subject to the fol- # lowing conditions: # # The above copyright notice and this permission notice shall be included # in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS # OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABIL- # ITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT # SHALL THE AUTHOR BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, # WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS # IN THE SOFTWARE. # import os from botocore.vendored import requests import logging from six.moves import configparser from botocore.compat import json logger = logging.getLogger(__name__) DEFAULT_METADATA_SERVICE_TIMEOUT = 1 METADATA_SECURITY_CREDENTIALS_URL = ( 'http://169.254.169.254/latest/meta-data/iam/security-credentials/' ) class _RetriesExceededError(Exception): """Internal exception used when the number of retries are exceeded.""" pass class Credentials(object): """ Holds the credentials needed to authenticate requests. In addition the Credential object knows how to search for credentials and how to choose the right credentials when multiple credentials are found. :ivar access_key: The access key part of the credentials. :ivar secret_key: The secret key part of the credentials. :ivar token: The security token, valid only for session credentials. :ivar method: A string which identifies where the credentials were found. Valid values are: iam_role|env|config|boto. """ def __init__(self, access_key=None, secret_key=None, token=None): self.access_key = access_key self.secret_key = secret_key self.token = token self.method = None self.profiles = [] def retrieve_iam_role_credentials(url=METADATA_SECURITY_CREDENTIALS_URL, timeout=None, num_attempts=1): if timeout is None: timeout = DEFAULT_METADATA_SERVICE_TIMEOUT d = {} try: r = _get_request(url, timeout, num_attempts) if r.content: fields = r.content.decode('utf-8').split('\n') for field in fields: if field.endswith('/'): d[field[0:-1]] = retrieve_iam_role_credentials( url + field, timeout, num_attempts) else: val = _get_request( url + field, timeout=timeout, num_attempts=num_attempts).content.decode('utf-8') if val[0] == '{': val = json.loads(val) d[field] = val else: logger.debug("Metadata service returned non 200 status code " "of %s for url: %s, content body: %s", r.status_code, url, r.content) except _RetriesExceededError: logger.debug("Max number of attempts exceeded (%s) when " "attempting to retrieve data from metadata service.", num_attempts) return d def _get_request(url, timeout, num_attempts): for i in range(num_attempts): try: response = requests.get(url, timeout=timeout) except (requests.Timeout, requests.ConnectionError) as e: logger.debug("Caught exception wil trying to retrieve credentials " "from metadata service: %s", e, exc_info=True) else: if response.status_code == 200: return response raise _RetriesExceededError() def search_iam_role(session, **kwargs): credentials = None timeout = session.get_config_variable('metadata_service_timeout') num_attempts = session.get_config_variable('metadata_service_num_attempts') retrieve_kwargs = {} if timeout is not None: retrieve_kwargs['timeout'] = float(timeout) if num_attempts is not None: retrieve_kwargs['num_attempts'] = int(num_attempts) metadata = retrieve_iam_role_credentials(**retrieve_kwargs) if metadata: for role_name in metadata: credentials = Credentials(metadata[role_name]['AccessKeyId'], metadata[role_name]['SecretAccessKey'], metadata[role_name]['Token']) credentials.method = 'iam-role' logger.info('Found IAM Role: %s', role_name) return credentials def search_environment(**kwargs): """ Search for credentials in explicit environment variables. """ session = kwargs.get('session') credentials = None access_key = session.get_config_variable('access_key', ('env',)) secret_key = session.get_config_variable('secret_key', ('env',)) token = session.get_config_variable('token', ('env',)) if access_key and secret_key: credentials = Credentials(access_key, secret_key, token) credentials.method = 'env' logger.info('Found credentials in Environment variables.') return credentials def search_credentials_file(**kwargs): """ Search for a credential file used by original EC2 CLI tools. """ credentials = None if 'AWS_CREDENTIAL_FILE' in os.environ: full_path = os.path.expanduser(os.environ['AWS_CREDENTIAL_FILE']) try: lines = map(str.strip, open(full_path).readlines()) except IOError: logger.warn('Unable to load AWS_CREDENTIAL_FILE (%s).', full_path) else: config = dict(line.split('=', 1) for line in lines if '=' in line) access_key = config.get('AWSAccessKeyId') secret_key = config.get('AWSSecretKey') if access_key and secret_key: credentials = Credentials(access_key, secret_key) credentials.method = 'credentials-file' logger.info('Found credentials in AWS_CREDENTIAL_FILE.') return credentials def search_file(**kwargs): """ If there is are credentials in the configuration associated with the session, use those. """ credentials = None session = kwargs.get('session') access_key = session.get_config_variable('access_key', methods=('config',)) secret_key = session.get_config_variable('secret_key', methods=('config',)) token = session.get_config_variable('token', ('config',)) if access_key and secret_key: credentials = Credentials(access_key, secret_key, token) credentials.method = 'config' logger.info('Found credentials in config file.') return credentials def search_boto_config(**kwargs): """ Look for credentials in boto config file. """ credentials = access_key = secret_key = None if 'BOTO_CONFIG' in os.environ: paths = [os.environ['BOTO_CONFIG']] else: paths = ['/etc/boto.cfg', '~/.boto'] paths = [os.path.expandvars(p) for p in paths] paths = [os.path.expanduser(p) for p in paths] cp = configparser.RawConfigParser() cp.read(paths) if cp.has_section('Credentials'): if cp.has_option('Credentials', 'aws_access_key_id'): access_key = cp.get('Credentials', 'aws_access_key_id') if cp.has_option('Credentials', 'aws_secret_access_key'): secret_key = cp.get('Credentials', 'aws_secret_access_key') if access_key and secret_key: credentials = Credentials(access_key, secret_key) credentials.method = 'boto' logger.info('Found credentials in boto config file.') return credentials AllCredentialFunctions = [search_environment, search_credentials_file, search_file, search_boto_config, search_iam_role] _credential_methods = (('env', search_environment), ('config', search_file), ('credentials-file', search_credentials_file), ('boto', search_boto_config), ('iam-role', search_iam_role)) def get_credentials(session): credentials = None for cred_method, cred_fn in _credential_methods: credentials = cred_fn(session=session) if credentials: break return credentials
"""Bastionification utility. A bastion (for another object -- the 'original') is an object that has the same methods as the original but does not give access to its instance variables. Bastions have a number of uses, but the most obvious one is to provide code executing in restricted mode with a safe interface to an object implemented in unrestricted mode. The bastionification routine has an optional second argument which is a filter function. Only those methods for which the filter method (called with the method name as argument) returns true are accessible. The default filter method returns true unless the method name begins with an underscore. There are a number of possible implementations of bastions. We use a 'lazy' approach where the bastion's __getattr__() discipline does all the work for a particular method the first time it is used. This is usually fastest, especially if the user doesn't call all available methods. The retrieved methods are stored as instance variables of the bastion, so the overhead is only occurred on the first use of each method. Detail: the bastion class has a __repr__() discipline which includes the repr() of the original object. This is precomputed when the bastion is created. """ __all__ = ["BastionClass", "Bastion"] from types import MethodType class BastionClass: """Helper class used by the Bastion() function. You could subclass this and pass the subclass as the bastionclass argument to the Bastion() function, as long as the constructor has the same signature (a get() function and a name for the object). """ def __init__(self, get, name): """Constructor. Arguments: get - a function that gets the attribute value (by name) name - a human-readable name for the original object (suggestion: use repr(object)) """ self._get_ = get self._name_ = name def __repr__(self): """Return a representation string. This includes the name passed in to the constructor, so that if you print the bastion during debugging, at least you have some idea of what it is. """ return "<Bastion for %s>" % self._name_ def __getattr__(self, name): """Get an as-yet undefined attribute value. This calls the get() function that was passed to the constructor. The result is stored as an instance variable so that the next time the same attribute is requested, __getattr__() won't be invoked. If the get() function raises an exception, this is simply passed on -- exceptions are not cached. """ attribute = self._get_(name) self.__dict__[name] = attribute return attribute def Bastion(object, filter = lambda name: name[:1] != '_', name=None, bastionclass=BastionClass): """Create a bastion for an object, using an optional filter. See the Bastion module's documentation for background. Arguments: object - the original object filter - a predicate that decides whether a function name is OK; by default all names are OK that don't start with '_' name - the name of the object; default repr(object) bastionclass - class used to create the bastion; default BastionClass """ raise RuntimeError, "This code is not secure in Python 2.2 and later" # Note: we define *two* ad-hoc functions here, get1 and get2. # Both are intended to be called in the same way: get(name). # It is clear that the real work (getting the attribute # from the object and calling the filter) is done in get1. # Why can't we pass get1 to the bastion? Because the user # would be able to override the filter argument! With get2, # overriding the default argument is no security loophole: # all it does is call it. # Also notice that we can't place the object and filter as # instance variables on the bastion object itself, since # the user has full access to all instance variables! def get1(name, object=object, filter=filter): """Internal function for Bastion(). See source comments.""" if filter(name): attribute = getattr(object, name) if type(attribute) == MethodType: return attribute raise AttributeError, name def get2(name, get1=get1): """Internal function for Bastion(). See source comments.""" return get1(name) if name is None: name = repr(object) return bastionclass(get2, name) def _test(): """Test the Bastion() function.""" class Original: def __init__(self): self.sum = 0 def add(self, n): self._add(n) def _add(self, n): self.sum = self.sum + n def total(self): return self.sum o = Original() b = Bastion(o) testcode = """if 1: b.add(81) b.add(18) print "b.total() =", b.total() try: print "b.sum =", b.sum, except: print "inaccessible" else: print "accessible" try: print "b._add =", b._add, except: print "inaccessible" else: print "accessible" try: print "b._get_.func_defaults =", map(type, b._get_.func_defaults), except: print "inaccessible" else: print "accessible" \n""" exec testcode print '='*20, "Using rexec:", '='*20 import rexec r = rexec.RExec() m = r.add_module('__main__') m.b = b r.r_exec(testcode) if __name__ == '__main__': _test()
""" tests for ocd functions. """ # pylint: disable=E1101 # pylint: disable=unused-argument # pylint: disable=unused-variable # pylint: disable=missing-docstring # pylint: disable=redefined-outer-name import random import torch import pytest import numpy as np from ocd import OCD @pytest.fixture(scope='module') def fix_seed(): seed = len('ocd testing') random.seed(seed) np.random.seed(seed) torch.manual_seed(seed) if torch.cuda.is_available: torch.cuda.manual_seed_all(seed) torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False @pytest.fixture(scope='module') def expected_edit_dist_mask(): mask = [[[0, 0, 0, 0, 1], [0, 0, 0, 0, 1], [0, 0, 0, 0, 1], [0, 0, 0, 0, 1], [0, 0, 0, 0, 1]], [[0, 0, 1, 1, 1], [0, 0, 1, 1, 1], [0, 0, 1, 1, 1], [0, 0, 1, 1, 1], [0, 0, 1, 1, 1]], [[0, 0, 0, 1, 1], [0, 0, 0, 1, 1], [0, 0, 0, 1, 1], [0, 0, 0, 1, 1], [0, 0, 0, 1, 1]]] return mask @pytest.fixture(scope='module') def expected_q_values(): q_values = [[[0.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0], [-1.0, 0.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0], [-2.0, -1.0, -1.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0], [-3.0, -2.0, -2.0, -2.0, -3.0, -3.0, -3.0, -3.0, -3.0, -3.0, -3.0], [-3.0, -3.0, -2.0, -3.0, -3.0, -3.0, -3.0, -3.0, -3.0, -3.0, -3.0], [-4.0, -4.0, -3.0, -3.0, -4.0, -4.0, -4.0, -4.0, -4.0, -4.0, -4.0], [-4.0, -4.0, -4.0, -4.0, -3.0, -4.0, -4.0, -4.0, -4.0, -4.0, -4.0], [-4.0, -4.0, -4.0, -4.0, -4.0, -3.0, -4.0, -4.0, -4.0, -4.0, -4.0], [-4.0, -4.0, -4.0, -4.0, -4.0, -4.0, -4.0, -4.0, -4.0, -3.0, -4.0]], [[0.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0], [-1.0, 0.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0], [-2.0, -1.0, -1.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0], [-3.0, -2.0, -2.0, -2.0, -3.0, -3.0, -3.0, -3.0, -3.0, -3.0, -3.0], [-4.0, -3.0, -3.0, -3.0, -3.0, -4.0, -4.0, -4.0, -4.0, -4.0, -4.0], [-4.0, -4.0, -4.0, -4.0, -4.0, -3.0, -4.0, -4.0, -4.0, -4.0, -4.0], [-5.0, -5.0, -5.0, -5.0, -5.0, -4.0, -5.0, -5.0, -5.0, -4.0, -5.0], [-5.0, -5.0, -5.0, -5.0, -5.0, -5.0, -5.0, -5.0, -5.0, -4.0, -5.0], [-6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -5.0, -6.0]]] return q_values @pytest.fixture(scope='module') def expected_policy(): policy = [[1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.50, 0.50, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.3333, 0.3333, 0.3333, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.250, 0.250, 0.250, 0.250, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.50, 0.0, 0.0, 0.0, 0.50, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0]] return policy def test__mask(fix_seed, expected_edit_dist_mask): seq = [[1, 2, 3, 4], [5, 4, 6, 4], [3, 2, 4, 0]] end_symbol_id = 4 seq = torch.LongTensor(seq) mask = OCD.sequence_mask(seq, end_symbol_id) expected_mask = [[0, 0, 0, 0], [0, 0, 1, 1], [0, 0, 0, 1]] assert mask.tolist() == expected_mask edit_dist_mask = OCD.edit_distance_mask(seq, end_symbol_id) assert edit_dist_mask.tolist() == expected_edit_dist_mask def test_edit_q_values(fix_seed, expected_q_values): """ vocabulary = {'S':0, 'U':1, 'N':2, 'D':3, 'A':4 , 'Y':5, 'T':6, 'R':7, 'P':8, '</s>': 9, '<pad>': 10} """ vocab_size = 11 end_symbol_id = 9 # batch_y = {'SUNDAY</s><pad><pad>', 'SUNDAY</s><pad><pad>'} gold_y = [[0, 1, 2, 3, 4, 5, 9, 10, 10], [0, 1, 2, 3, 4, 5, 9, 10, 10]] sampled = {'SATURDAY</s>', 'SATRAPY</s>U'} sampled_y = [[0, 4, 6, 1, 7, 3, 4, 5, 9], [0, 4, 6, 7, 4, 8, 5, 9, 1]] q_values = OCD.edit_distance_q_values(torch.LongTensor(sampled_y), torch.LongTensor(gold_y), end_symbol_id, vocab_size) assert q_values.tolist() == expected_q_values def test_policy(fix_seed, expected_q_values, expected_policy): optimal_pi = OCD.compute_optimal_pi(torch.FloatTensor(expected_q_values)) assert (np.round(optimal_pi.tolist()[1], 4) == expected_policy).all() def test_loss(fix_seed, expected_q_values): optimal_pi = OCD.compute_optimal_pi(torch.FloatTensor(expected_q_values)) model_log_probs = torch.nn.functional.log_softmax(torch.randn_like(optimal_pi), dim=2) b_sz, seq_len, vocab_size = model_log_probs.size() sampled_y_mask = torch.zeros(b_sz, seq_len).byte() loss = OCD.loss(optimal_pi, model_log_probs, sampled_y_mask) assert round(loss.item(), 4) == 20.7344 def test_forward(fix_seed, expected_q_values): optimal_pi = OCD.compute_optimal_pi(torch.FloatTensor(expected_q_values)) model_scores = torch.randn_like(optimal_pi) gold_y = [[0, 1, 2, 3, 4, 5, 9, 10, 10], [0, 1, 2, 3, 4, 5, 9, 10, 10]] ocd = OCD(vocab_size=11, end_symbol_id=9) loss = ocd(model_scores, torch.LongTensor(gold_y)) assert round(loss.item(), 4) == 8.0762
from PIL import Image import torch import torch.nn as nn import torch.optim as optim import torchvision.transforms as transforms import torchvision.models as models import torchvision.utils as utils import matplotlib.pyplot as plt import sys import os import json from google.cloud import storage import random experiment=" Vaporwave Dark BKG" simpName="vaporwave-dark-bkg" bucketUrlPrefix='https://storage.googleapis.com/alpha-flake-output/' f = open('paradata.json') jblob = json.load(f) class VGG_19(nn.Module): def __init__(self): super(VGG_19, self).__init__() # model used: VGG19 (like in the paper) # everything after the 28th layer is technically not needed self.model = models.vgg19(pretrained=True).features[:30] # better results when changing the MaxPool layers to AvgPool (-> paper) for i, _ in enumerate(self.model): # Indicies of the MaxPool layers -> replaced by AvgPool with same parameters if i in [4, 9, 18, 27]: self.model[i] = nn.AvgPool2d(kernel_size=2, stride=2, padding=0) def forward(self, x): features = [] for i, layer in enumerate(self.model): x = layer(x) # indicies of the conv layers after the now AvgPool layers if i in [0, 5, 10, 19, 28]: features.append(x) return features def load_img(path_to_image, img_size): transform = transforms.Compose([ transforms.Resize((img_size, img_size)), transforms.ToTensor(), ]) img = Image.open(path_to_image) img = transform(img).unsqueeze(0) #print("\n\n\n",dir(img),"\n\n\n") return img def transfer_style(iterations, optimizer, alpha, beta, generated_image, content_image, style_image, show_images=False): for iter in range(iterations+1): generated_features = model(generated_image) content_features = model(content_image) style_features = model(style_image) content_loss = 0 style_loss = 0 for generated_feature, content_feature, style_feature in zip(generated_features, content_features, style_features): batch_size, n_feature_maps, height, width = generated_feature.size() # in paper it is 1/2*((g - c)**2) ... but it is easies this way because I don't have to worry about dimensions ... and it workes as well content_loss += (torch.mean((generated_feature - content_feature) ** 2)) # batch_size is one ... so it isn't needed. I still inclueded it for better understanding. G = torch.mm((generated_feature.view(batch_size*n_feature_maps, height*width)), (generated_feature.view(batch_size*n_feature_maps, height*width)).t()) A = torch.mm((style_feature.view(batch_size*n_feature_maps, height*width)), (style_feature.view(batch_size*n_feature_maps, height*width)).t()) # different in paper!! E_l = ((G - A)**2) # w_l ... one divided by the number of active layers with a non-zero loss-weight -> directly from the paper (technically isn't needed) w_l = 1/5 style_loss += torch.mean(w_l*E_l) # I found little difference when changing the alpha and beta values ... still kept it in for better understanding of paper total_loss = alpha * content_loss + beta * style_loss optimizer.zero_grad() total_loss.backward() optimizer.step() if iter % 100 == 0: print('-'*15) print(f'\n{iter} \nTotal Loss: {total_loss.item()} \n Content Loss: {content_loss} \t Style Loss: {style_loss}') print('-'*15) # show image if show_images == True: plt.figure(figsize=(10, 10)) plt.imshow(generated_image.permute(0, 2, 3, 1)[0].cpu().detach().numpy()) plt.show() return generated_image #if iter % 500 == 0: #utils.save_image(generated, f'./gen_{iter}.png') if __name__ == '__main__': print(sys.argv) content_path=sys.argv[1] style_path=sys.argv[2] job_uuid=sys.argv[3] out_path=job_uuid + ".png" basedContent=os.path.basename(content_path) basedStyle=os.path.basename(style_path) device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') #2560 - 2048 content_img = load_img(content_path, 2048).to(device) style_img = load_img(style_path, 2048).to(device) model = VGG_19().to(device) # freeze parameters for param in model.parameters(): param.requires_grad = False # generated image (init) is the content image ... could also be noise # requires_grad because the network itself is frozen ... the thing we are changine is this generated_init = content_img.clone().requires_grad_(True) iterations = random.randint(200,1000) # the real difference is visibale whe changing the learning rate ... 1e-2 is rather high -> heavy changes to content image lr = 1e-2 # I found no real difference when changing these values...this is why I keep them at 1 alpha = 1 beta = 1 optimizer = optim.Adam([generated_init], lr=lr) generated_image = transfer_style(iterations=iterations, optimizer=optimizer, alpha=alpha, beta=beta, generated_image=generated_init, content_image=content_img, style_image=style_img, show_images=False # only true in jupyter notebook ) utils.save_image(generated_image, out_path) # Success - Save Everything => : client = storage.Client() bucket = client.get_bucket('alpha-flake-output') bucketRoot = 'experiment-'+simpName+'/'+job_uuid+'/' fOut = bucketRoot + job_uuid + ".png" fContent = "shared/flake-bbg/" + basedContent fStyle = "shared/vaporwave/" + basedStyle blob = bucket.blob(fOut) blob.upload_from_filename(filename=out_path) blob = bucket.blob(fContent) if not blob.exists(): blob.upload_from_filename(filename=content_path) blob = bucket.blob(fStyle) if not blob.exists(): blob.upload_from_filename(filename=style_path) newDat={ 'experiment':experiment, 'nst':{ 'iterations':str(iterations), 'alpha':str(alpha), 'beta':str(beta), 'learn rate':str(lr), 'image prompt':bucketUrlPrefix + fContent, 'style prompt':bucketUrlPrefix + fStyle, 'model':'vgg16' }, 'url': bucketUrlPrefix + fOut, 'uuid':job_uuid } jblob['data'].append(newDat) with open('paradata.json', 'w', encoding='utf-8') as ff: json.dump(jblob, ff, ensure_ascii=False, indent=4) blob = bucket.blob('experiment-viewer/paradata.json') blob.cache_control="no-store" blob.upload_from_filename('./paradata.json')
"""Define utilities."""
# generated from catkin/cmake/template/order_packages.context.py.in source_root_dir = "/home/graspinglab/Autonomous_racing/Paresh-Soni-F110-2020/Ros-Lab/soni_ws/src" whitelisted_packages = "".split(';') if "" != "" else [] blacklisted_packages = "".split(';') if "" != "" else [] underlay_workspaces = "/home/graspinglab/catkin_ws/devel;/opt/ros/kinetic".split(';') if "/home/graspinglab/catkin_ws/devel;/opt/ros/kinetic" != "" else []
import glob import inspect import logging import os import unittest from pathlib import Path from securify.solidity import compile_cfg from securify.staticanalysis import static_analysis def make_test_case(path_src): def test_case(self: unittest.TestCase): cfg, ast, *_ = compile_cfg(path_src) result = static_analysis.analyze_cfg(cfg, logger=logging).facts_out compliant_output = result["patternCompliance"] violation_output = result["patternViolation"] conflict_output = result["patternConflict"] def exists(actual, e): actual = {a[2] for a in actual if a[0].strip() == "PASS"} self.assertTrue(len(actual) > 0, e) def not_exists(actual, e): actual = {a[2] for a in actual if a[0].strip() == "PASS"} self.assertTrue(len(actual) == 0, e) if "unsafe" in path_src: exists(violation_output, "Violations") not_exists(conflict_output, "Conflict") else: exists(compliant_output, "Compliance") not_exists(violation_output, "Compliance") not_exists(conflict_output, "Conflict") return test_case class TestPatternsPass(unittest.TestCase): base_path = os.path.dirname(os.path.abspath(__file__)) + "**/" frame = inspect.currentframe() for filename in glob.iglob(f'{base_path}**/*.sol', recursive=True): path = Path(filename) test_name = str(path.relative_to(Path(os.path.abspath(__file__)).parent)) \ .replace(".sol", "") \ .replace("\\", ".") \ .replace("/", ".") frame.f_locals[f'test_{test_name}'] = make_test_case(str(path))
__author__ = 'Sergey Osipov <Serega.Osipov@gmail.com>' import numpy as np def get_photon_energy(wavelengths): """ computes the energy of the photon of a given wavelength :param wavelengths: [m] :return: J = W*s """ plank_constant = 6.62606957 * 10**-34 # J*s speed_of_light = 299792458 # m*s^-1 nu = speed_of_light / wavelengths # s^-1 E = plank_constant * nu # J = W*s return E def integrate_spectral_flux(wavelengths, spectral_flux, wl_min=0, wl_max=np.inf): """ Integrate spectral flux in wavelength :param wavelengths: um :param spectral_flux: as returned from disort (my impl) [W * m^-2 * um^-1] :return: W m^-2 """ ind = np.logical_and(wavelengths >= wl_min, wavelengths <= wl_max) broadband_flux = np.trapz(spectral_flux[ind], wavelengths[ind], axis=0) return broadband_flux
from django.db import models from server_delta_app import models as server_delta_app_models, managers class SourceIncomeModel(server_delta_app_models.BaseModel): """ Model that represent the customer debt registered in app """ class Meta: db_table = "source_income" value = models.DecimalField(max_digits=10, decimal_places=2) description = models.CharField(max_length=1000) customer_dossier = models.ForeignKey(server_delta_app_models.CustomerDossierModel, on_delete=models.CASCADE, related_name='sources_income') objects = managers.SourceIncomeManager()
# -*- coding: UTF-8 -*- # !/usr/bin/python # @time :2019/7/27 22:15 # @author :Mo # @function :test func_recursive from tookit_sihui.ml_common.func_recursive.func_recursive import gen_syn_sentences if __name__=="__main__": org_data = ["[你][喜欢|喜爱|爱][虾米|啥子|什么]", "[1|11][2|22][3|33][44|444]", "大漠帝国"] syn_sentences = gen_syn_sentences(org_data) # syn_sentences = sorted(syn_sentences) print(syn_sentences) gg = 0 # 测试结果 # ['你喜欢虾米', '你喜爱虾米', '你爱虾米', '你喜欢啥子', '你喜爱啥子', '你爱啥子', '你喜欢什么', '你喜爱什么', '你爱什么', '12344', '112344', '122344', '1122344', '123344', '1123344', '1223344', '11223344', '123444', '1123444', '1223444', '11223444', '1233444', '11233444', '12233444', '112233444', '大漠帝国']
# Copyright (c) 2012 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. import os from telemetry.core import browser_credentials from telemetry.core import extension_dict from telemetry.core import tab_list from telemetry.core import temporary_http_server from telemetry.core import wpr_modes from telemetry.core import wpr_server from telemetry.core.chrome import browser_backend class Browser(object): """A running browser instance that can be controlled in a limited way. To create a browser instance, use browser_finder.FindBrowser. Be sure to clean up after yourself by calling Close() when you are done with the browser. Or better yet: browser_to_create = FindBrowser(options) with browser_to_create.Create() as browser: ... do all your operations on browser here """ def __init__(self, backend, platform): self._browser_backend = backend self._http_server = None self._wpr_server = None self._platform = platform self._tabs = tab_list.TabList(backend.tab_list_backend) self._extensions = None if backend.supports_extensions: self._extensions = extension_dict.ExtensionDict( backend.extension_dict_backend) self.credentials = browser_credentials.BrowserCredentials() self._platform.SetFullPerformanceModeEnabled(True) def __enter__(self): return self def __exit__(self, *args): self.Close() @property def platform(self): return self._platform @property def browser_type(self): return self._browser_backend.browser_type @property def is_content_shell(self): """Returns whether this browser is a content shell, only.""" return self._browser_backend.is_content_shell @property def supports_extensions(self): return self._browser_backend.supports_extensions @property def supports_tab_control(self): return self._browser_backend.supports_tab_control @property def tabs(self): return self._tabs @property def extensions(self): """Returns the extension dictionary if it exists.""" if not self.supports_extensions: raise browser_backend.ExtensionsNotSupportedException( 'Extensions not supported') return self._extensions @property def supports_tracing(self): return self._browser_backend.supports_tracing def StartTracing(self): return self._browser_backend.StartTracing() def StopTracing(self): return self._browser_backend.StopTracing() def GetTraceResultAndReset(self): """Returns the result of the trace, as TraceResult object.""" return self._browser_backend.GetTraceResultAndReset() def Close(self): """Closes this browser.""" self._platform.SetFullPerformanceModeEnabled(False) if self._wpr_server: self._wpr_server.Close() self._wpr_server = None if self._http_server: self._http_server.Close() self._http_server = None self._browser_backend.Close() self.credentials = None @property def http_server(self): return self._http_server def SetHTTPServerDirectory(self, path): if path: abs_path = os.path.abspath(path) if self._http_server and self._http_server.path == path: return else: abs_path = None if self._http_server: self._http_server.Close() self._http_server = None if not abs_path: return self._http_server = temporary_http_server.TemporaryHTTPServer( self._browser_backend, abs_path) def SetReplayArchivePath(self, archive_path): if self._wpr_server: self._wpr_server.Close() self._wpr_server = None if not archive_path: return None if self._browser_backend.wpr_mode == wpr_modes.WPR_OFF: return use_record_mode = self._browser_backend.wpr_mode == wpr_modes.WPR_RECORD if not use_record_mode: assert os.path.isfile(archive_path) self._wpr_server = wpr_server.ReplayServer( self._browser_backend, archive_path, use_record_mode, self._browser_backend.WEBPAGEREPLAY_HOST, self._browser_backend.webpagereplay_local_http_port, self._browser_backend.webpagereplay_local_https_port, self._browser_backend.webpagereplay_remote_http_port, self._browser_backend.webpagereplay_remote_https_port) def GetStandardOutput(self): return self._browser_backend.GetStandardOutput()
#!/usr/bin/env python ################# FROM FRANK ################################### import os,sys from dcnn_base import DCNN_CONFIG from dcnn_main import DCNN from dcnn_logger import setup_script_logging #FB from dcnn_utils import file_looper,get_args,dict2str,expandvars #FB __version__= "2020-07-06-001" #################################################### #============================================== # USER SETTINGS 4 Magic # ============================================== basedir = None data_meg = 'meg_rawdata/Philly' fnconfig = 'config_CTF_Philly.yaml' pattern = '-raw.fif' verbose = True do_label_ica = False do_label_check = True do_performance_check = False # -- do_log2file = True def run(fnconfig=None,basedir=None,data_meg=None,data_train=None,pattern='-raw.fif', verbose=False,do_label_ica=False,do_label_check=False,log2file=False): # ToDo run for list of files or search in subdirs # -- init config CLS cfg = DCNN_CONFIG(verbose=verbose) cfg.load(fname=fnconfig) #-- init dcnn CLS dcnn = DCNN(**cfg.config) # init object with config details #--- if basedir: # FB test dcnn.path.basedir = basedir if data_meg: dcnn.path.data_meg = data_meg # input directory if data_train: dcnn.path.data_train = data_train # input directory dcnn.verbose = True dcnn.get_info() # ========================================================== # run ICA auto labelling # ========================================================== if do_label_ica: #path_in = os.path.join(cfg.config['path']['basedir'],cfg.config['path']['data_meg']) path_in = dcnn.path.data_meg # -- looper catch error via try/exception setup log2file for fnraw in file_looper(rootdir=path_in,pattern=pattern,version=__version__,verbose=verbose,logoverwrite=True,log2file=log2file): #logger.info(fnraw) # -- read raw data and apply noise reduction dcnn.meg.update(fname=fnraw) # -- apply ICA on chops, label ICs save results to disk # ToDo store chop-times, ECG,EOG in raw.annotations # - chop: make use of annotations in get_chop_times_indices() fgdcnn = dcnn.label_ica(save=True) if verbose: dcnn.get_info() # ========================================================== # check ICA auto labelling # ========================================================== npz_pattern = pattern.split(".",-1)[0] +"-gdcnn.npz" if do_label_check: path_in = dcnn.path.data_train from mne.report import Report report = Report(title='Check IC labels') for fname in file_looper(rootdir=path_in, pattern=npz_pattern,version=__version__,verbose=verbose,log2file=log2file,logoverwrite=False): dcnn.load_gdcnn(fname) # check IC labels (and apply corrections) #dcnn.check_labels(save=True) fnreport ="test_report" # check IC labels (and apply corrections) name = os.path.basename(fname[:-4]) print ('>>> working on %s' % name) figs, captions = dcnn.plot_ica_traces(fname) report.add_figs_to_section(figs, captions=captions, section=name, replace=True) report.save(fnreport + '.h5', overwrite=True) report.save(fnreport + '.html', overwrite=True, open_browser=True) #dcnn.check_labels(save=True, path_out=cfg.config['path']['data_train']) #if verbose: # ToDo set verbose level True,2,3 # logger.debug("dcnn ica chop dump.\n{}\n{}\n\n".format( dcnn.ica.chop, dict2str(dcnn.ica.chop.dump()) )) # logger.debug("dcnn ica n_chop.\n{}\n\n".format(dcnn.ica.chop.n_chop)) # logger.debug("dcnn ica topo data.\n{}\n\n".format(dcnn.ica.topo.data)) # logger.debug("dcnn ica topo img.\n{}\n\n".format(dcnn.ica.topo.images)) # ========================================================== # ICA performance plot # ========================================================== if do_performance_check: path_in = cfg.config['path']['data_train'] for fname in file_looper(rootdir=path_in, pattern=npz_pattern,version=__version__,verbose=verbose,log2file=log2file,logoverwrite=False): dcnn.load_gdcnn(fname) # ToDo plot performance, save to report if __name__ == "__main__": # -- get parameter / flags from cmd line argv = sys.argv opt, parser = get_args(argv,version=__version__) if len(argv) < 2: parser.print_help() sys.exit(-1) #flog= "dcnn_"+os.getenv("USER","test")+".log" logger = setup_script_logging(name="DCNN",opt=opt,logfile=False,version=__version__,level="DEBUG") try: if opt.jd: # JD settings opt.config = fnconfig opt.pattern = pattern opt.verbose = verbose opt.do_label_ica = do_label_ica opt.do_label_check = do_label_check opt.log2file = do_log2file elif opt.fb: # call from shell #opt.basedir = "$JUMEG_PATH_LOCAL_DATA"+"/gDCNN" #opt.data_meg = "data_examples" #opt.data_train = "$JUMEG_PATH_LOCAL_DATA"+"/exp/dcnn/ica_labeled/Juelich" #-- 4D opt.pattern = "*int-raw.fif" #"*.c,rfDC_bcc,nr-raw.fif" opt.config = "config_4D_Juelich.yaml" # ToDo trouble with # 205399_MEG94T_121220_1322_2_c,rfDC_EC_bcc-raw-gdcnn.npz # eog / ICs found ??? opt.ica = do_label_ica opt.check = do_label_check opt.log2file = do_log2file if opt.verbose: # show cmd line parameter # https://stackoverflow.com/questions/39978186/python-print-all-argparse-arguments-including-defaults/39978305 msg=["DCNN input parameter:"] for k,v in sorted(vars(opt).items()): msg.append(" -> {0:12}: {1}".format(k,v)) logger.info("\n".join(msg) ) run(fnconfig=opt.config,basedir=opt.basedir,data_meg=opt.data_meg,data_train=opt.data_train,pattern=opt.pattern, verbose=opt.verbose,do_label_ica=opt.ica,do_label_check=opt.check,log2file=opt.log2file) except: logger.exception("ERROR in DCNNN")
# -*- coding: utf-8 -*- from __future__ import unicode_literals import re import xml.etree.ElementTree from config import ConfigSectionMap def dust_from_xml(root): """ get arrivals from xml which contains arrival items (n different routes) for specified bus station :param root: root node of xml response :return: arrival list (this, next) """ try: # find matching route pm25 = None pm10 = None body = root[1] # <body> if int(body.find('totalCount').text) > 0: item = body.find('items')[0] pm10 = item.find('pm10Value').text pm25 = item.find('pm25Value').text except xml.etree.ElementTree.ParseError as e: print("XML error", str(e)) print(xml.etree.ElementTree.tostring(root)) return (pm10, pm25) def dust_view(dusts): """ create bus arrival view from arrivals :param arrivals: (arrival, arrival, arrival...) :return: string "arrival_str/arrival_str/arrival_str..." """ view = "" for index, element in enumerate(dusts): if index != 0: view += '/' view += str(element) return view
""" NSL-KDD https://www.unb.ca/cic/datasets/nsl.html http://205.174.165.80/CICDataset/NSL-KDD/Dataset/ """ import pandas as pd import os from pyzhmh import __dirname__, download_one_file, unpack_one_file __dirname__ = __dirname__() NSL_KDD_URL = "http://205.174.165.80/CICDataset/NSL-KDD/Dataset/NSL-KDD.zip" NSL_KDD_FILES = [ 'KDDTest+.txt', 'KDDTest-21.txt', 'KDDTrain+.txt', 'KDDTrain+_20Percent.txt' ] NSL_KDD_CACHE = os.path.join(__dirname__, 'data') if not os.path.exists(NSL_KDD_CACHE): os.makedirs(NSL_KDD_CACHE) def load_naslkdd_data(index: int = 3): if index < 0 or index > len(NSL_KDD_FILES) - 1: return None fullname = os.path.join(NSL_KDD_CACHE, 'NSL-KDD.zip') if download_one_file(fullname, {'url': NSL_KDD_URL}): try: for item in NSL_KDD_FILES: os.stat(os.path.join(NSL_KDD_CACHE, item)) except OSError: # 有文件不存在 unpack_one_file(fullname, NSL_KDD_CACHE) # 读取 return pd.read_csv(os.path.join(NSL_KDD_CACHE, NSL_KDD_FILES[index]), header=None)
"""Necessary constants for MQTT.""" NUMBER_OF_PARTITION = 10
#!/usr/bin/env python # # Copyright 2011 Rodrigo Ancavil del Pino # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import tornado.ioloop from tornadows import soaphandler from tornadows import webservices from tornadows import xmltypes from tornadows import complextypes from tornadows.soaphandler import webservice import datetime # This dictionary emulate a documental repository repo = {} class Document(complextypes.ComplexType): number = int theme = str author = str text = str created = datetime.date class Message(complextypes.ComplexType): doc = Document msg = str class Repository(soaphandler.SoapHandler): """ Service of repository, store documents (Document) """ @webservice(_params=Message,_returns=str) def save(self, msg): global repo repo[msg.doc.number] = msg.doc return 'Save document number : %d'%msg.doc.number @webservice(_params=int,_returns=Message) def find(self, num): global repo response = Message() try: doc = Document() d = repo[num] doc.number = d.number doc.theme = d.theme doc.author = d.author doc.text = d.text doc.created = d.created response.doc = doc response.msg = 'OK' except: response.doc = Document() response.msg = 'Document number %d dont exist'%num return response if __name__ == '__main__': service = [('RepositoryService',Repository)] app = webservices.WebService(service).listen(8080) tornado.ioloop.IOLoop.instance().start()
import numpy as np from manimlib.animation.animation import Animation from manimlib.constants import * from manimlib.mobject.svg.tex_mobject import TexMobject from manimlib.scene.scene import Scene class RearrangeEquation(Scene): def construct( self, start_terms, end_terms, index_map, path_arc=np.pi, start_transform=None, end_transform=None, leave_start_terms=False, transform_kwargs={}, ): transform_kwargs["path_func"] = path start_mobs, end_mobs = self.get_mobs_from_terms(start_terms, end_terms) if start_transform: start_mobs = start_transform(Mobject(*start_mobs)).split() if end_transform: end_mobs = end_transform(Mobject(*end_mobs)).split() unmatched_start_indices = set(range(len(start_mobs))) unmatched_end_indices = set(range(len(end_mobs))) unmatched_start_indices.difference_update( [n % len(start_mobs) for n in index_map]) unmatched_end_indices.difference_update( [n % len(end_mobs) for n in list(index_map.values())]) mobject_pairs = [ (start_mobs[a], end_mobs[b]) for a, b in index_map.items() ] + [(Point(end_mobs[b].get_center()), end_mobs[b]) for b in unmatched_end_indices] if not leave_start_terms: mobject_pairs += [(start_mobs[a], Point(start_mobs[a].get_center())) for a in unmatched_start_indices] self.add(*start_mobs) if leave_start_terms: self.add(Mobject(*start_mobs)) self.wait() self.play( *[Transform(*pair, **transform_kwargs) for pair in mobject_pairs]) self.wait() def get_mobs_from_terms(self, start_terms, end_terms): """ Need to ensure that all image mobjects for a tex expression stemming from the same string are point-for-point copies of one and other. This makes transitions much smoother, and not look like point-clouds. """ num_start_terms = len(start_terms) all_mobs = np.array( TexMobject(start_terms).split() + TexMobject(end_terms).split()) all_terms = np.array(start_terms + end_terms) for term in set(all_terms): matches = all_terms == term if sum(matches) > 1: base_mob = all_mobs[list(all_terms).index(term)] all_mobs[matches] = [ base_mob.copy().replace(target_mob) for target_mob in all_mobs[matches] ] return all_mobs[:num_start_terms], all_mobs[num_start_terms:] class FlipThroughSymbols(Animation): CONFIG = { "start_center": ORIGIN, "end_center": ORIGIN, } def __init__(self, tex_list, **kwargs): mobject = TexMobject(self.curr_tex).shift(start_center) Animation.__init__(self, mobject, **kwargs) def interpolate_mobject(self, alpha): new_tex = self.tex_list[np.ceil(alpha * len(self.tex_list)) - 1] if new_tex != self.curr_tex: self.curr_tex = new_tex self.mobject = TexMobject(new_tex).shift(self.start_center) if not all(self.start_center == self.end_center): self.mobject.center().shift((1 - alpha) * self.start_center + alpha * self.end_center)
# -*- coding: utf-8 -*- ''' :codeauthor: :email:`Gareth J. Greenaway <gareth@saltstack.com>` :codeauthor: :email:`David Murphy <dmurphy@saltstack.com>` ''' # Import Python libs from __future__ import absolute_import, print_function, unicode_literals import os import shutil import datetime import time # Import Salt Testing libs from tests.support.helpers import destructiveTest from tests.support.unit import TestCase, skipIf from tests.support.paths import TMP from tests.support.mixins import LoaderModuleMockMixin from tests.support.mock import ( NO_MOCK, NO_MOCK_REASON, MagicMock, patch ) # Import Salt libs import salt.utils.platform import salt.utils.files import salt.modules.gpg as gpg GPG_TEST_KEY_PASSPHRASE = 'testkeypassphrase' GPG_TEST_KEY_ID = '7416F045' GPG_TEST_PUB_KEY = """-----BEGIN PGP PUBLIC KEY BLOCK----- mQGNBFz1dx4BDACph7J5nuWE+zb9rZqTaL8akAnPAli2j6Qtk7BTDzTM9Kq80U2P O3QRAFBQDODsgmrBTWgeZeNhN6Snz2WrZ8pC0RMK+mCmEt5S49ydWtvWl/xtzPfg sy8h8OrIjSH1G0NQv9vdBpg2Y9vXLNDCZAqH0/Sh/wCkHT80c4i8TU09UZfx96S6 fFVmB7nHu/ztgiIkC6Fr04WGHlkd50g8r8CFPvwKOTD+rfoMsGppmAC1+y8ajfik B+tEL88Rv2s4hLU78nQ3iGtdVRSs5Ip0x4O/PYZIDEd8KuBMo+flSzOZj2HCbUzN MHiTXIbL8hBlwku9LGO7Itks4v2vfDh57JRHykwzGnvOlgXtSSvbayWLohNXtzWq WtsMKrsrsIUprg1jhIVHnMSZZXMMizlni6MT5vbil2Bgn1g7diNscDnfCD6vlWUH FRS1XkFFZ5ozu0+lC/5UaTcrjhH8/hQBNJwjsDSPsyKYQm+t7PXqq4SlI3Er7JJW esK0diZ6reeebl0AEQEAAbQhdGVzdGtleSA8cGFja2FnaW5nQHNhbHRzdGFjay5j b20+iQHOBBMBCgA4AhsDBQsJCAcCBhUKCQgLAgQWAgMBAh4BAheAFiEEjS1DixNC naoZrRFuvMeUg3QW8EUFAlz1ekoACgkQvMeUg3QW8EVm1gv/Z5CCqFoF8IXpa3g0 G+9C4gRS0h+tEYtjebAgxBn/dqk6cSNIb1BGDM/sSWxK5/jweN8CF/ojVgP1CFrX igULnL3g5351L+8feU2ImP2OML438/GcOOJ+iwTKUBRuqxqK8NwcRuuN6YmbjtUw JSD2+60DlWfGsInyenwGkgBAM44Y6dSAXKsm6dJ/IGVTQIsHE5mKRykrRZ1jyXxw i1CF8fEyG6fNNb8I8Oiyj52xdYMxBvGmgPpFlF1jRoU+OViGFeUiZ49XFlC8GNCf boWfXg+PCwZeWUeJ/s6a6iC5HG7iC0XYRiqhzymP8ctrwwm5dPT4ebYNfUSqq8i0 /YG6JGdsQZrq0i0FuceUSfOKVeFvSm+AkCG3kLxxgM925fqBetWiAJRCDYdmy8uc jm618584hqa/yFMOfwVoLqq8mVg84wyGU6gXo6hXCa/008PITFZD47ILuN/Z8iLm 8Or/aJD5Tq+Wg3r2Di9+Ku8/gcn3bVxwFRjiVPrFwJkyjfMFuQGNBFz1dx4BDADU Ynz0efLmaKqZIjfxwDf7iVqwcD9b8cMXIv2aa3Y56QDVJBXU5952LiU8XuzBBPq+ 4FYQ78UmxSv3Rk6LKb9P2ih2L1PaJuQ1ZkNrQLqab3olpAu/Xe3raGLgCOU0RKJw EPF3RcKu8ALuRcovfwzXWg8w19QRUPewZdVC4VgslKp8mNLECvdUxxVIDQWf06RZ uCAfbqdiYReE62QT7NR4lAa1RpfU7Nt149OcQEP8VKTAZgTYyuwhRXFbrDD3Zp58 k5H0nKHNX+w1Ayih/YUk2b3etaBhlcTVAy/73TPfrd3Gl8dtzJZNtUD/eLWdGfP9 mCghmyAqbiQngH2eAMeifIYornynZFVBPBlvnwy7Iouq0V6tIVyNPGp0jcy1j2XT NRBJyFbvam3hmrRW8A/VOJQ1W7LOKaM/5lh/BarrSLKn0xlL97GTmuSqlS+WrmyM kU182TUYyUD7Rs3mydnMVS/N4aRxu4ITaTm9vieZLmAPR9vPgo+GwdHEkwm797kA EQEAAYkBtgQYAQoAIAIbDBYhBI0tQ4sTQp2qGa0RbrzHlIN0FvBFBQJc9XqkAAoJ ELzHlIN0FvBFlyEL/jVhm2PFj2mCLuKE5/nV4JvxY4Qu4+NCFiEdYK+zUoD36gEJ 3VjHL5dydHuZWcvm+XLW1PseNx2awVs47mjv2iZOLwY6BtfAFWhWEFmBEe6fTFXz KkDWRst4gm0b0B7S3byoABwcyYNS6RkTfUApK4zdYErbfOLoT+Xa08YQKLVK7fmE KBnBnnHUvktYTEvhwv9BID+qLnTVSQcjRcXbDQAYm14c7Nyb/SyxcUaUkCk41MVY +vzNQlFrVc4h2np41X8JbmrsQb37E7lE+h32sJFBU03SGf0vT7SXXQj+UD/DEGay Gt/8aRa5FGrcJyM5mTdbSgvCp0EjTrdokK5GHwM23cbSTo+nN9BNhIBRc4929SaJ DVRqOIoJ+eHZdf3gIkMPOA3fBbMYzW65LIxt/p49tHD0c/nioZETycEgGuuYbnrn IfXHFqiCAxkobIHqUg/BSu1cs8GNgE7BVUXy8JThuzmVdh4Pvd3YN1ouoPyVuDrk ylirh0aqUQdSeIuJTg== =yF8M -----END PGP PUBLIC KEY BLOCK----- """ GPG_TEST_PRIV_KEY = """-----BEGIN PGP PRIVATE KEY BLOCK----- lQWFBFz1dx4BDACph7J5nuWE+zb9rZqTaL8akAnPAli2j6Qtk7BTDzTM9Kq80U2P O3QRAFBQDODsgmrBTWgeZeNhN6Snz2WrZ8pC0RMK+mCmEt5S49ydWtvWl/xtzPfg sy8h8OrIjSH1G0NQv9vdBpg2Y9vXLNDCZAqH0/Sh/wCkHT80c4i8TU09UZfx96S6 fFVmB7nHu/ztgiIkC6Fr04WGHlkd50g8r8CFPvwKOTD+rfoMsGppmAC1+y8ajfik B+tEL88Rv2s4hLU78nQ3iGtdVRSs5Ip0x4O/PYZIDEd8KuBMo+flSzOZj2HCbUzN MHiTXIbL8hBlwku9LGO7Itks4v2vfDh57JRHykwzGnvOlgXtSSvbayWLohNXtzWq WtsMKrsrsIUprg1jhIVHnMSZZXMMizlni6MT5vbil2Bgn1g7diNscDnfCD6vlWUH FRS1XkFFZ5ozu0+lC/5UaTcrjhH8/hQBNJwjsDSPsyKYQm+t7PXqq4SlI3Er7JJW esK0diZ6reeebl0AEQEAAf4HAwIqiZQqEMAZQ/+u0gE6tBcp52lUhE9fjORqgsY6 C5klAfrnrQyHXYkfjjQMWErSDR5FHeOxOPdZNnhVTBRaUIypLd+Os/YWl5lVO223 znbfK8GJIwHbDFQBSxtkC3WtD8cCqtKXvzApZzqeOhgNcaFJE956ZNlZfsCf0qsm 6xpEq07YiRVga6jJvjIFiPv7wMtdQQ67pEP4/tavLl+yuf6oJko2FjuG3RxrTf/C CB4tyHCsRwgV7ouEdoSVhjFiDSS5xeWWLPRaXu4ceL0AjClHmdlMJtcpbyXKoh3U uG5Cnwv9gXh24Qc6uuTWX61u7EhFLUWmKMFOI8dA+INYS8cXU8t6TU6XeV/01c7N Q1O6QUCOx5VRbWRQuuvQN4f1gZm5QqN2jpNWjoUp2GSoxcHycEVSweEr+TmaouDA ZOo12gx6dppkiwqS7Feq28qdpiZZPfdl/CvuWHxveNU9OVlexJ6A5PLep053qY+3 OlkvvkOxwmkJk2A3ITb1XngQkZCQDxAqCG6xMYjGIblKqqLqV1/q3pQ1nNbq5/iM OtoxB7O7kZcyk7fQodk8EUz/ehTAZ5K8EWUETmiH9YlKTBbw8YMYEnuKfUFW6xqT ROqurJfBlYmZEOxQ3oDVLZSfJQ3g/SXAOTKprB9GKyahM026Y+gfqR7yfwA8ifrH E+HV4u7n/UjaUgu45LRGLGZQ7slmm79uYcVhBodQ0/eWcow7roHpOCFWTgyY3uhS xdfuqgkEF8BGjQFaI4VNVeY+3+SM989BagAFuDlJw33fDoFSTPt9C+sqP1t1IvLv 9Eajn55MhO6gUptO3ViFPQE/EkiOrmaAJglu1LHEF/ssqWb/1+RGqF6N0OkKC+gx iuuTgWl4wfxUsyh2JqIcj+xHRSf3G9OVJYkXaYsSNQ2eoSRlEzzu7Cxi83/qt6Dm S+ST4wHl2VypfkhbNMq0W1aR8Kubi2Ixvk31ZDyk0uecRf3kNjVwD84WPjDedBsh 5rtCZO5kCAyWooCG41il09HfV9NCTjACCeO+dl4FO5aaLS0JSCBLVtORtwDCCZz+ QhS9CeXC+ook7sIaaiT0xWSnPmhEYE6roqwj4Lq3vvXIgHZjxeJizlGO0OSdTPBw 9wQ5ij/8G6MEGap4thvTohsFGUxHK2xx8Z089kGdmKd4piY/kjtX7AFtLEc0YiDa w7PTlrqJA9FRta7g/aYVCKBk8G+8dxiErErFgm6RBxnQiJ/lLUAVsJv1cAQ8oyCK GyDzGXEFk9eQtKGczF4CK8NhOMc9HabnQnzxcMGiVXEn/E3bDqocfeOAWEYft8zJ sy96EJAk581uZ4CiKOcQW+Zv3N8O7ogdtCF0ZXN0a2V5IDxwYWNrYWdpbmdAc2Fs dHN0YWNrLmNvbT6JAc4EEwEKADgCGwMFCwkIBwIGFQoJCAsCBBYCAwECHgECF4AW IQSNLUOLE0KdqhmtEW68x5SDdBbwRQUCXPV6SgAKCRC8x5SDdBbwRWbWC/9nkIKo WgXwhelreDQb70LiBFLSH60Ri2N5sCDEGf92qTpxI0hvUEYMz+xJbErn+PB43wIX +iNWA/UIWteKBQucveDnfnUv7x95TYiY/Y4wvjfz8Zw44n6LBMpQFG6rGorw3BxG 643piZuO1TAlIPb7rQOVZ8awifJ6fAaSAEAzjhjp1IBcqybp0n8gZVNAiwcTmYpH KStFnWPJfHCLUIXx8TIbp801vwjw6LKPnbF1gzEG8aaA+kWUXWNGhT45WIYV5SJn j1cWULwY0J9uhZ9eD48LBl5ZR4n+zprqILkcbuILRdhGKqHPKY/xy2vDCbl09Ph5 tg19RKqryLT9gbokZ2xBmurSLQW5x5RJ84pV4W9Kb4CQIbeQvHGAz3bl+oF61aIA lEINh2bLy5yObrXznziGpr/IUw5/BWguqryZWDzjDIZTqBejqFcJr/TTw8hMVkPj sgu439nyIubw6v9okPlOr5aDevYOL34q7z+ByfdtXHAVGOJU+sXAmTKN8wWdBYYE XPV3HgEMANRifPR58uZoqpkiN/HAN/uJWrBwP1vxwxci/ZprdjnpANUkFdTn3nYu JTxe7MEE+r7gVhDvxSbFK/dGTospv0/aKHYvU9om5DVmQ2tAuppveiWkC79d7eto YuAI5TREonAQ8XdFwq7wAu5Fyi9/DNdaDzDX1BFQ97Bl1ULhWCyUqnyY0sQK91TH FUgNBZ/TpFm4IB9up2JhF4TrZBPs1HiUBrVGl9Ts23Xj05xAQ/xUpMBmBNjK7CFF cVusMPdmnnyTkfScoc1f7DUDKKH9hSTZvd61oGGVxNUDL/vdM9+t3caXx23Mlk21 QP94tZ0Z8/2YKCGbICpuJCeAfZ4Ax6J8hiiufKdkVUE8GW+fDLsii6rRXq0hXI08 anSNzLWPZdM1EEnIVu9qbeGatFbwD9U4lDVbss4poz/mWH8FqutIsqfTGUv3sZOa 5KqVL5aubIyRTXzZNRjJQPtGzebJ2cxVL83hpHG7ghNpOb2+J5kuYA9H28+Cj4bB 0cSTCbv3uQARAQAB/gcDAgUPU1tmC3CS/x0qZYicVcMiU5wop6fnbnNkEfUQip8V qpL64/GpP6X7sJiY2BCo0/5AMPDKlTwPxogMQ6NduZ2AbvJybGC7AQULMkd4Y4H1 nwrDk5HWO5dLVoXRSVw9Dm6oaV4bi6wno9yapkq7AVRnvtNEza47gxmV2iwRoU5H 5ciQTU6nd1TkFNhD4ZwZ25CMqffvbrE2Ie6RsBUr9HlxYIint91rVLkkBGhw8W4t KushxAZpBOQB0Rqtuak/q+/xyDnvNvU/A9GeKpRrxzwAbIdtW0VjPulDk1tThGDA kmuxSJ1yxUb+CzA/5YoMXto1OqjUI2hO108xgTVl5hpmckBnwsPtbjrtDYFAqwfq qF9YAVQ3RfMn3ThZ2oXg+FJMcwd9uVJn2/LZd81Nc6g4UogD1sD2ye2vqDGTEztK BAdthEcufnUP5UrEixE8CPzAJOjuC5ROU57FXCaSSUfIwXO3UoxvNWcuXDC7RVDz nsv/Hg2j0pSeFht2NO6Pom+4XHY+LHImPTfXamN6IDsTRJGQW8R7Y131fjPQMn7I 0WjyIiqD4eLo5KQYjL+0bE0JiLRaJnlfbu1uoV3sgi8bwG6WlnLh7eKDErA2P0Zs r0KX5yGR5Ih2CAMfMmqqYrkEYmNxNbLvL5ie9F35MnvRbqyY/9pl0p1Eah7uGnuK or13bg801HoZJLBTr4sJTqkwuUztloVyBdM6T5hal+rxX37Wnj1PgD0e0Ydqo6hJ 7WJ/Zjd+0qk90VoiGNRre7tMBYDQ3w3wS+tSta3kxTKj5I4hLZncN+pt9F6o+tgd YAhWO93DzWjMMUV/jkKTJqwAFAuRlnTwzbBS70N2Z8jrGczV05RV9OH7DRr34noF O7/Bn0iDpKZdbArtkJZyu4B+MUp/RRiuxn7iWOM2tEjDhUuyHXYYFppFB8fG7r52 VcxH/Sc3VcXB0l2KywrAG2oZfiE8M4NPHuiIHFpcjeK2VLrP2iGLvdlL4IsvtFIU uLiFi7r0egEi/Ge8ebRF7TtjmhL5Jzi9bbUGuvxSIGZU1HCECq+hHVy45XwKrRTo AzDIwNjBFmZzL7FI7X16W/6Y11VVmXEmDt9dmmu78bT0z2Bq0Q7K9C7Eq2qzW65z +4fntFF8BWDs3l5yPKLjg+wlgPPXieHgrUQpZOYCsFJqig3xFZSu1ZMzYdlvyNSF KAgMPZfi37kAUo8ZiH27SZAA/aTK6b69oEQ6I7CsMJZLRp/gzYvn4NN/DIK3fuYc jsKB6OR3gWmU7EDf/1EZkO0YK2YiwkSrDALJdUo7ArYR2KIZTUEG9rxDBUD8IyIz PGdh7sBG4PhOxpQ+SiZyzLzZAJjviQG2BBgBCgAgAhsMFiEEjS1DixNCnaoZrRFu vMeUg3QW8EUFAlz1eqQACgkQvMeUg3QW8EWXIQv+NWGbY8WPaYIu4oTn+dXgm/Fj hC7j40IWIR1gr7NSgPfqAQndWMcvl3J0e5lZy+b5ctbU+x43HZrBWzjuaO/aJk4v BjoG18AVaFYQWYER7p9MVfMqQNZGy3iCbRvQHtLdvKgAHBzJg1LpGRN9QCkrjN1g Stt84uhP5drTxhAotUrt+YQoGcGecdS+S1hMS+HC/0EgP6oudNVJByNFxdsNABib Xhzs3Jv9LLFxRpSQKTjUxVj6/M1CUWtVziHaenjVfwluauxBvfsTuUT6HfawkUFT TdIZ/S9PtJddCP5QP8MQZrIa3/xpFrkUatwnIzmZN1tKC8KnQSNOt2iQrkYfAzbd xtJOj6c30E2EgFFzj3b1JokNVGo4ign54dl1/eAiQw84Dd8FsxjNbrksjG3+nj20 cPRz+eKhkRPJwSAa65hueuch9ccWqIIDGShsgepSD8FK7VyzwY2ATsFVRfLwlOG7 OZV2Hg+93dg3Wi6g/JW4OuTKWKuHRqpRB1J4i4lO =WRTN -----END PGP PRIVATE KEY BLOCK----- """ try: import gnupg # pylint: disable=import-error,unused-import HAS_GPG = True except ImportError: HAS_GPG = False @destructiveTest @skipIf(NO_MOCK, NO_MOCK_REASON) @skipIf(not salt.utils.platform.is_linux(), 'These tests can only be run on linux') class GpgTestCase(TestCase, LoaderModuleMockMixin): ''' Validate the gpg module ''' def setup_loader_modules(self): return {gpg: {'__salt__': {}}} @skipIf(not HAS_GPG, 'GPG Module Unavailable') def setUp(self): super(GpgTestCase, self).setUp() self.gpghome = os.path.join(TMP, 'gpghome') if not os.path.isdir(self.gpghome): # left behind... Don't fail because of this! os.makedirs(self.gpghome) self.gpgfile_pub = os.path.join(TMP, 'gpgfile.pub') with salt.utils.files.fopen(self.gpgfile_pub, 'wb') as fp: fp.write(salt.utils.stringutils.to_bytes(GPG_TEST_PUB_KEY)) self.gpgfile_priv = os.path.join(TMP, 'gpgfile.priv') with salt.utils.files.fopen(self.gpgfile_priv, 'wb') as fp: fp.write(salt.utils.stringutils.to_bytes(GPG_TEST_PRIV_KEY)) self.user = 'salt' @skipIf(not HAS_GPG, 'GPG Module Unavailable') def tearDown(self): if os.path.isfile(self.gpgfile_pub): os.remove(self.gpgfile_pub) shutil.rmtree(self.gpghome, ignore_errors=True) super(GpgTestCase, self).tearDown() @skipIf(not HAS_GPG, 'GPG Module Unavailable') def test_list_keys(self): ''' Test gpg.list_keys ''' _user_mock = {u'shell': u'/bin/bash', u'workphone': u'', u'uid': 0, u'passwd': u'x', u'roomnumber': u'', u'gid': 0, u'groups': [ u'root' ], u'home': u'/root', u'fullname': u'root', u'homephone': u'', u'name': u'root'} _list_result = [{u'dummy': u'', u'keyid': u'xxxxxxxxxxxxxxxx', u'expires': u'2011188692', u'sigs': [], u'subkeys': [[u'xxxxxxxxxxxxxxxx', u'e', u'xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx']], u'length': u'4096', u'ownertrust': u'-', u'sig': u'', u'algo': u'1', u'fingerprint': u'xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx', u'date': u'1506612692', u'trust': u'-', u'type': u'pub', u'uids': [u'GPG Person <person@example.com>']}] _expected_result = [{u'keyid': u'xxxxxxxxxxxxxxxx', u'uids': [u'GPG Person <person@example.com>'], u'created': '2017-09-28', u'expires': '2033-09-24', u'keyLength': u'4096', u'ownerTrust': u'Unknown', u'fingerprint': u'xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx', u'trust': u'Unknown'}] mock_opt = MagicMock(return_value='root') with patch.dict(gpg.__salt__, {'user.info': MagicMock(return_value=_user_mock)}): with patch.dict(gpg.__salt__, {'config.option': mock_opt}): with patch.object(gpg, '_list_keys', return_value=_list_result): self.assertEqual(gpg.list_keys(), _expected_result) @skipIf(not HAS_GPG, 'GPG Module Unavailable') def test_get_key(self): ''' Test gpg.get_key ''' _user_mock = {u'shell': u'/bin/bash', u'workphone': u'', u'uid': 0, u'passwd': u'x', u'roomnumber': u'', u'gid': 0, u'groups': [ u'root' ], u'home': u'/root', u'fullname': u'root', u'homephone': u'', u'name': u'root'} _list_result = [{u'dummy': u'', u'keyid': u'xxxxxxxxxxxxxxxx', u'expires': u'2011188692', u'sigs': [], u'subkeys': [[u'xxxxxxxxxxxxxxxx', u'e', u'xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx']], u'length': u'4096', u'ownertrust': u'-', u'sig': u'', u'algo': u'1', u'fingerprint': u'xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx', u'date': u'1506612692', u'trust': u'-', u'type': u'pub', u'uids': [u'GPG Person <person@example.com>']}] _expected_result = {u'fingerprint': u'xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx', u'keyid': u'xxxxxxxxxxxxxxxx', u'uids': [u'GPG Person <person@example.com>'], u'created': u'2017-09-28', u'trust': u'Unknown', u'ownerTrust': u'Unknown', u'expires': u'2033-09-24', u'keyLength': u'4096'} mock_opt = MagicMock(return_value='root') with patch.dict(gpg.__salt__, {'user.info': MagicMock(return_value=_user_mock)}): with patch.dict(gpg.__salt__, {'config.option': mock_opt}): with patch.object(gpg, '_list_keys', return_value=_list_result): ret = gpg.get_key('xxxxxxxxxxxxxxxx') self.assertEqual(ret, _expected_result) @skipIf(not HAS_GPG, 'GPG Module Unavailable') def test_delete_key(self): ''' Test gpg.delete_key ''' _user_mock = {u'shell': u'/bin/bash', u'workphone': u'', u'uid': 0, u'passwd': u'x', u'roomnumber': u'', u'gid': 0, u'groups': [ u'root' ], u'home': self.gpghome, u'fullname': u'root', u'homephone': u'', u'name': u'root'} _list_result = [{'dummy': u'', 'keyid': u'xxxxxxxxxxxxxxxx', 'expires': u'2011188692', 'sigs': [], 'subkeys': [[u'xxxxxxxxxxxxxxxx', u'e', u'xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx']], 'length': u'4096', 'ownertrust': u'-', 'sig': u'', 'algo': u'1', 'fingerprint': u'xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx', 'date': u'1506612692', 'trust': u'-', 'type': u'pub', 'uids': [u'GPG Person <person@example.com>']}] _expected_result = {u'res': True, u'message': u'Secret key for xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx deleted\nPublic key for xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx deleted'} mock_opt = MagicMock(return_value='root') with patch.dict(gpg.__salt__, {'user.info': MagicMock(return_value=_user_mock)}): with patch.dict(gpg.__salt__, {'config.option': mock_opt}): with patch.object(gpg, '_list_keys', return_value=_list_result): with patch('salt.modules.gpg.gnupg.GPG.delete_keys', MagicMock(return_value='ok')): ret = gpg.delete_key('xxxxxxxxxxxxxxxx', delete_secret=True) self.assertEqual(ret, _expected_result) @skipIf(not HAS_GPG, 'GPG Module Unavailable') def test_search_keys(self): ''' Test gpg.search_keys ''' _user_mock = {'shell': '/bin/bash', 'workphone': '', 'uid': 0, 'passwd': 'x', 'roomnumber': '', 'gid': 0, 'groups': [ 'root' ], 'home': self.gpghome, 'fullname': 'root', 'homephone': '', 'name': 'root'} _search_result = [{u'keyid': u'xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx', u'uids': [u'GPG Person <person@example.com>'], u'expires': u'', u'sigs': [], u'length': u'1024', u'algo': u'17', u'date': int(time.mktime(datetime.datetime(2004, 11, 13).timetuple())), u'type': u'pub'}] _expected_result = [{u'uids': [u'GPG Person <person@example.com>'], 'created': '2004-11-13', u'keyLength': u'1024', u'keyid': u'xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx'}] mock_opt = MagicMock(return_value='root') with patch.dict(gpg.__salt__, {'user.info': MagicMock(return_value=_user_mock)}): with patch.dict(gpg.__salt__, {'config.option': mock_opt}): with patch.object(gpg, '_search_keys', return_value=_search_result): ret = gpg.search_keys('person@example.com') self.assertEqual(ret, _expected_result) @skipIf(not HAS_GPG, 'GPG Module Unavailable') def test_gpg_import_pub_key(self): config_user = MagicMock(return_value='salt') user_info = MagicMock(return_value={'name': 'salt', 'home': self.gpghome, 'uid': 1000}) with patch.dict(gpg.__salt__, {'config.option': config_user}): with patch.dict(gpg.__salt__, {'user.info': user_info}): ret = gpg.import_key(None, self.gpgfile_pub, 'salt', self.gpghome) self.assertEqual(ret['res'], True) @skipIf(not HAS_GPG, 'GPG Module Unavailable') def test_gpg_import_priv_key(self): config_user = MagicMock(return_value='salt') user_info = MagicMock(return_value={'name': 'salt', 'home': self.gpghome, 'uid': 1000}) with patch.dict(gpg.__salt__, {'config.option': config_user}): with patch.dict(gpg.__salt__, {'user.info': user_info}): ret = gpg.import_key(None, self.gpgfile_priv, 'salt', self.gpghome) self.assertEqual(ret['res'], True) @skipIf(not HAS_GPG, 'GPG Module Unavailable') def test_gpg_sign(self): config_user = MagicMock(return_value='salt') user_info = MagicMock(return_value={'name': 'salt', 'home': self.gpghome, 'uid': 1000}) pillar_mock = MagicMock(return_value={'gpg_passphrase': GPG_TEST_KEY_PASSPHRASE}) with patch.dict(gpg.__salt__, {'config.option': config_user}): with patch.dict(gpg.__salt__, {'user.info': user_info}): with patch.dict(gpg.__salt__, {'pillar.get': pillar_mock}): ret = gpg.import_key(None, self.gpgfile_priv, 'salt', self.gpghome) self.assertEqual(ret['res'], True) gpg_text_input = 'The quick brown fox jumped over the lazy dog' gpg_sign_output = gpg.sign(config_user, GPG_TEST_KEY_ID, gpg_text_input, None, None, True, self.gpghome) self.assertIsNotNone(gpg_sign_output)
import requests from requests.compat import urlencode from errors import TwitchAPIError from utils import join_urls class TwitchSubscribeClient: """Streamer event subscriptions manager. Allows to subscribe to streamer's updates. Subscribable events: * Streamer starts following some channe;; * Streamer got followed by someone; * Streamer's stream changed; * TODO: Streamer profile changed (seems, subscribing that requires TSL certs configure. To investigate). """ BASE_URL = 'https://api.twitch.tv/helix/' WEBHOOKS_HUB_ENDPOINT = join_urls('webhooks', 'hub') LEASE_SECONDS = 1000 REQUEST_TIMEOUT_SECONDS = 90 class RequestMode: SUBSCRIBE = 'subscribe' UNSUBSCRIBE = 'unsubscribe' def __init__(self, streamer_name: str, client_id: str, access_token: str, session_id: str, callback_url: str): """SubscriptionClient constructor. :param streamer_name: Favorite streamer's name. :param client_id: Twitch App client id. :param access_token: Access token. :param session_id: unique socket session id. """ self._client_id = client_id self._access_token = access_token self._session_id = session_id self._callback_url = callback_url self.streamer_id = self._get_user_id(streamer_name) def subscribe_to_all_events(self) -> None: """Subscribe to all available events.""" # TODO: make asyncrohous via async/await. self.subscribe_following() self.subscribe_followed_by() self.subscribe_stream_changed() # User changes subscrbtiotion requires TSL/SSL certs installed (https). # self.subscribe_user_changed() def unsubscribe_from_all_events(self) -> None: """Revoke subscription from all events.""" # TODO: Implement events unsubscription for production. ... def subscribe_following(self) -> requests.Response: """Subscribe the "Streamer starts following someone" event.""" topic_url = join_urls(self.BASE_URL, 'users/follows') params = dict(to_id=self.streamer_id) return self._subscribe(topic_url, params) def subscribe_followed_by(self) -> requests.Response: """Subscribe the "Streamer is followed by someone" event.""" topic_url = join_urls(self.BASE_URL, 'users/follows') params = dict(from_id=self.streamer_id) return self._subscribe(topic_url, params) def subscribe_stream_changed(self) -> requests.Response: """Subscribe stream changes events.""" topic_url = join_urls(self.BASE_URL, 'streams') params = dict(user_id=self.streamer_id) return self._subscribe(topic_url, params) def subscribe_user_changed(self) -> requests.Response: """Subscribe "user changed" event. TODO: This will not work, when callback server uses unsecure connection.""" topic_url = join_urls(self.BASE_URL, 'users') params = dict(id=self.streamer_id) return self._subscribe(topic_url, params) def _subscribe(self, topic_url: str, params: dict) -> requests.Response: """Subscribe certain topic with the given params. :param: topic_url. Twitch topic url. :param: params. Subscription params. :return: Obtained response: """ return self._webhooks_hub_request( topic_url, self.RequestMode.SUBSCRIBE, params=params ) def _unsubscribe(self, topic_url: str, params: dict) -> requests.Response: """Unsubscribe topic. :param: topic_url. Subscribing topic url. :param: params. Subscription params. :return: Received response. """ return self._webhooks_hub_request( topic_url, self.RequestMode.UNSUBSCRIBE, params=params ) def _webhooks_hub_request(self, topic_url: str, mode: str, params: dict=None, method: str='POST') -> requests.Response: """Send request to Twitch Webhooks Hub. :param: topic_url: Subscribing topic url. :param mode: Suscription mode. :param params: Subscription params. :param method: Request method. :return: Received response. """ url = join_urls(self.BASE_URL, self.WEBHOOKS_HUB_ENDPOINT) urlencoded_params = urlencode(params) cb_url = join_urls( self._callback_url, self._session_id ) return requests.request(method, url, data={ 'hub.mode': mode, 'hub.topic': f'{topic_url}?{urlencoded_params}', 'hub.callback': cb_url, 'hub.lease_seconds': self.LEASE_SECONDS # TODO: support hub.secret for production # "hub.secret":"s3cRe7", }, headers=self._headers) @property def _bearer_token(self) -> str: return f'Bearer {self._access_token}' @property def _headers(self) -> dict: return { 'Authorization': self._bearer_token, 'Client-ID': self._client_id } def _get_user_id(self, username: str) -> requests.Response: """Get streamer's ID by username. :param: username. :return: Obtained streamer's ID. """ response = self._base_request(f'users/?login={username}') # Raise corresponding error, if error code returned. response.raise_for_status() try: user_id = response.json()['data'][0]['id'] except IndexError: raise TwitchAPIError('Failed to obtain user id.') return user_id def _base_request(self, endpoint: str, method: str='GET', params: dict=None): if params is None: params = '' else: params = '?' + urlencode(params) url = join_urls(self.BASE_URL, endpoint, params) response = requests.request(method, url, headers=self._headers, timeout=self.REQUEST_TIMEOUT_SECONDS) # Raise corresponding error, if error code returned. response.raise_for_status() return response
# -*- coding: utf-8 -*- import pickle import traceback from copy import deepcopy from inspect import signature from pathlib import Path import joblib from joblib._store_backends import concurrency_safe_rename, concurrency_safe_write from .hashing import CodeObj from .proxy_backend import Factory, HashProxy def _concurrency_safe_write(to_write, filename, write_func): """Writes an object into a file in a concurrency-safe way.""" try: temporary_filename = concurrency_safe_write(to_write, filename, write_func) except: print("Something went wrong before moving the file.!") traceback.print_exc() concurrency_safe_rename(temporary_filename, filename) def get_map_filename(memory): return Path(memory.location) / "_process_proxy_map" def load_hash_map(memory): map_filename = get_map_filename(memory) if not map_filename.is_file(): return {} with map_filename.open("rb") as f: return pickle.load(f) def get_processed_hash(key, func, var, memory): if not hasattr(memory.store_backend, "_process_proxy_hash_map"): memory.store_backend._process_proxy_hash_map = load_hash_map(memory) else: if key in memory.store_backend._process_proxy_hash_map: return memory.store_backend._process_proxy_hash_map[key] # Update the mapping before giving up and calculating the result. memory.store_backend._process_proxy_hash_map = load_hash_map(memory) if key in memory.store_backend._process_proxy_hash_map: return memory.store_backend._process_proxy_hash_map[key] # Key was not found, so we have to evaluate the function in order to determine the # resulting hash. processed_hash = memory.get_hash(func(var)) # Reload the map in case it changed in the meantime. memory.store_backend._process_proxy_hash_map = load_hash_map(memory) # Add the new hash to the map. # NOTE - this will leave a small window of time where concurrent access may result # in new hashes to not be recorded. memory.store_backend._process_proxy_hash_map[key] = processed_hash # Save the updated mapping. def write_func(to_write, dest_filename): with open(dest_filename, "wb") as f: pickle.dump(to_write, f, protocol=-1) _concurrency_safe_write( memory.store_backend._process_proxy_hash_map, get_map_filename(memory), write_func, ) def get_function_hash(func): # Ensure that the hash can be calculated, i.e. that there are no mutable # objects present in the default arguments. Copy the object since some # object (e.g. immutabledict) will cache the hash resulting from calling # `hash()` (e.g. in a '_hash' attribute), and since the output of Python's # `hash()` function is not constant across sessions, this causes Joblib's # hash to change as well (which we do not want). hash(deepcopy(signature(func))) # Finally, calculate the hash using Joblib because the inbuilt hash() # function changes its output in between runs. return joblib.hashing.hash(signature(func)) + joblib.hashing.hash( CodeObj(func.__code__).hashable() ) def process_proxy(output, functions, memory): """Lazily apply deterministic `functions` to `output`. Note that the functions should not contain closure variables, since these will not (currently) influence the functions hash value. Args: output (N-tuple): Tuple of return values. May consist of `HashProxy` instances. functions (N-tuple of callable): Deterministic functions to apply to `output`. The i-th function will be applied to the i-th output. Returns: tuple of HashProxy: Lazily applied functions onto output. Raises: ValueError: If `len(output) != len(functions)`. """ if len(output) != len(functions): raise ValueError( "Expected the same number of outputs and functions. " f"Got {len(output)} and {len(functions)}." ) processed = [] for var, func in zip(output, functions): lazy_hash_key = memory.get_hash(var) + get_function_hash(func) processed_hash = get_processed_hash(lazy_hash_key, func, var, memory) processed.append( HashProxy( Factory(lambda: func(var)), hash_func=memory.get_hash, hash_value=processed_hash, ) ) return tuple(processed) def get_attribute(attribute): """Reimplementation of operator.attrgetter that can be used with `signature`.""" def _get_attr(obj): return getattr(obj, attribute) return _get_attr class EstimatorHashProxy(HashProxy): """Lazy Estimator proxy containing a pre-calculated hash value.""" __slots__ = "predict" def __init__(self, *args, predict_proxy, **kwargs): super().__init__(*args, **kwargs) self.predict = predict_proxy def get_proxied_estimator(estimator, memory): """Enable lazy retrieval of `estimator.predict`.""" # Turn into lazy object with a cached hash value. def get_estimator(): return estimator return EstimatorHashProxy( Factory(get_estimator), memory.get_hash, hash_value=memory.get_hash(estimator), predict_proxy=process_proxy( (estimator,), (get_attribute("predict"),), memory=memory, )[0], )
from torch import nn from torchvision.models.resnet import Bottleneck, BasicBlock import torch from neuralpredictors.utils import eval_state def get_module_output(model, input_shape, neural_set): """ Gets the output dimensions of the convolutional core by passing an input image through all convolutional layers :param core: convolutional core of the DNN, which final dimensions need to be passed on to the readout layer :param input_shape: the dimensions of the input :return: output dimensions of the core """ initial_device = "cuda" if next(iter(model.parameters())).is_cuda else "cpu" device = "cuda" if torch.cuda.is_available() else "cpu" with eval_state(model): with torch.no_grad(): input = torch.zeros(1, *input_shape[1:]).to(device) output = model.to(device)(input, neural_set=neural_set) model.to(initial_device) return output[0].shape def freeze_params(model, to_freeze=None, not_to_freeze=None): for name, param in model.named_parameters(): if to_freeze: freeze = False for freeze_key in to_freeze: if freeze_key in name: freeze = True elif not_to_freeze: freeze = True for un_freeze_key in not_to_freeze: if un_freeze_key in name: freeze = False else: raise Exception( "Please provide either to_freeze or not_to_freeze arguments!" ) if freeze and param.requires_grad: param.requires_grad = False def freeze_mtl_shared_block(model, multi, tasks): if multi: if "v1" in tasks: for param in model.module.mtl_vgg_core.v1_block.parameters(): param.requires_grad = False if "v4" in tasks: for param in model.module.mtl_vgg_core.v4_block.parameters(): param.requires_grad = False else: if "v1" in tasks: for param in model.mtl_vgg_core.v1_block.parameters(): param.requires_grad = False if "v4" in tasks: for param in model.mtl_vgg_core.v4_block.parameters(): param.requires_grad = False def weight_reset(m, advanced_init=False, zero_init_residual=False): if ( isinstance(m, nn.Conv1d) or isinstance(m, nn.Conv2d) or isinstance(m, nn.Linear) or isinstance(m, nn.Conv3d) or isinstance(m, nn.ConvTranspose1d) or isinstance(m, nn.ConvTranspose2d) or isinstance(m, nn.ConvTranspose3d) or isinstance(m, nn.BatchNorm1d) or isinstance(m, nn.BatchNorm2d) or isinstance(m, nn.BatchNorm3d) or isinstance(m, nn.GroupNorm) ): m.reset_parameters() if advanced_init and isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight, mode="fan_out", nonlinearity="relu") elif advanced_init and isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) if zero_init_residual and isinstance(m, Bottleneck): nn.init.constant_(m.bn3.weight, 0) elif zero_init_residual and isinstance(m, BasicBlock): nn.init.constant_(m.bn2.weight, 0) def get_model_parameters(model): total_parameters = 0 for layer in list(model.parameters()): layer_parameter = 1 for l in list(layer.size()): layer_parameter *= l total_parameters += layer_parameter return total_parameters def reset_params(model, reset=None): model = model.module if isinstance(model, nn.DataParallel) else model if reset == "all": print(f"Resetting all parameters") model.apply(weight_reset) elif reset: print(f"Resetting {reset}") for name in reset: block, layer = name.split(".")[0], int(name.split(".")[1]) getattr(model, block)[layer].apply(weight_reset)
import os SECRET_KEY = '1234' MIDDLEWARE_CLASSES = tuple() WITH_WQDB = os.environ.get('WITH_WQDB', False) if WITH_WQDB: WQ_APPS = ( 'wq.db.rest', 'wq.db.rest.auth', ) else: WQ_APPS = tuple() INSTALLED_APPS = ( 'django.contrib.contenttypes', 'django.contrib.auth', 'data_wizard', ) + WQ_APPS + ( 'tests.file_app', 'tests.data_app', 'tests.naturalkey_app', 'tests.eav_app', ) DATABASES = { 'default': { 'ENGINE': 'django.contrib.gis.db.backends.postgis', 'NAME': 'data_wizard_test', 'USER': 'postgres', } } ROOT_URLCONF = "tests.urls" MEDIA_ROOT = os.path.join(os.path.dirname(__file__), 'media') CELERY_RESULT_BACKEND = BROKER_URL = 'redis://localhost/0' if WITH_WQDB: from wq.db.default_settings import * # noqa
import os import argparse import pandas as pd from datetime import datetime import torch import torch.nn as nn from torch.utils.data import DataLoader from detection.engine import train_one_epoch, evaluate from src.model import FasterRCNN from src.dataset import SVHN_Dataset from src.transforms import train_transform from src.utils import * cur_time = datetime.today().strftime('%Y-%m-%d-%H-%M-%S') parser = argparse.ArgumentParser() parser.add_argument( '--save_root', type=str, default=f'./checkpoint/{cur_time}', help='save root' ) parser.add_argument( '--folder', type=str, default='./train', help='train image folder' ) parser.add_argument( '--optimizer', type=str, default='AdamW', help='optimizer') parser.add_argument( '--lr', type=float, default=1e-4, help='initial_learning_rate' ) parser.add_argument( '--weight_decay', type=float, default=5e-4, help='weight decay' ) parser.add_argument( '--step_size', type=int, default=1, help='learning decay period' ) parser.add_argument( '--gamma', type=float, default=0.9, help='learning rate decay factor' ) parser.add_argument( '--max_epochs', type=int, default=20, help='maximum epochs' ) parser.add_argument( '--batch_size', type=int, default=4, help='batch size' ) parser.add_argument( '--num_workers', type=int, default=4, help='number of workers' ) parser.add_argument( '--num_classes', type=int, default=11, help='number of classes' ) parser.add_argument( '--cuda', type=int, default=0, help='cuda' ) args = parser.parse_args() if __name__ == '__main__': train_data = pd.read_csv('train_data.csv') valid_data = pd.read_csv('valid_data.csv') train_set = SVHN_Dataset(args.folder, train_data, train_transform) valid_set = SVHN_Dataset(args.folder, valid_data, train_transform) print(f'train: {len(train_set)}, valid: {len(valid_set)}') train_dataloader = DataLoader( train_set, batch_size=args.batch_size, shuffle=True, collate_fn=collate_fn, num_workers=args.num_workers ) valid_dataloader = DataLoader( valid_set, batch_size=args.batch_size, shuffle=False, collate_fn=collate_fn, num_workers=args.num_workers ) model = FasterRCNN(args.num_classes) device = get_device(args.cuda) model.to(device) if args.optimizer == 'Adam': optimizer = torch.optim.Adam( model.parameters(), lr=args.lr, weight_decay=args.weight_decay ) elif args.optimizer == 'AdamW': optimizer = torch.optim.AdamW( model.parameters(), lr=args.lr, weight_decay=args.weight_decay ) elif args.optimizer == 'SGD': optimizer = torch.optim.SGD( model.parameters(), lr=args.lr, weight_decay=args.weight_decay ) lr_scheduler = torch.optim.lr_scheduler.StepLR( optimizer, step_size=args.step_size, gamma=args.gamma) model.save(args.save_root, 0) save_json_file(vars(args), os.path.join(args.save_root, 'config.json')) for ep in range(1, args.max_epochs+1): train_one_epoch( model, optimizer, train_dataloader, device, ep, print_freq=10 ) lr_scheduler.step() with torch.no_grad(): evaluate(model, valid_dataloader, device=device) model.save(args.save_root, ep)
# # All or portions of this file Copyright (c) Amazon.com, Inc. or its affiliates or # its licensors. # # For complete copyright and license terms please see the LICENSE at the root of this # distribution (the "License"). All use of this software is governed by the License, # or, if provided, by the license below or the license accompanying this file. Do not # remove or modify any license notices. This file is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # from __future__ import print_function import CloudCanvas import datetime import leaderboard_utils import boto3 import random import json from boto3.dynamodb.conditions import Key class ReservoirSampler: def __init__(self, stat): self.sample = [] self.stat = stat ''' if the sample is out of sync enough to warrant a reload ''' def is_expired(self): return False ''' get the current sample ''' def get_sample(self): if self.is_expired(): print("reloading sample set") self.reload_sample() return self.sample ''' recreate the sample (load from AWS, or regenerate on the fly) ''' def reload_sample(self): pass def get_full_dataset_size(self): return 0 class OnTheFlyReservoirSampler(ReservoirSampler): def __init__(self, stat, size = 200): ReservoirSampler.__init__(self, stat) self.expiration_time = datetime.datetime.now() + datetime.timedelta(minutes = 5) self.full_dataset_size = 0 self.size = size try: self.record_table = boto3.resource('dynamodb').Table(CloudCanvas.get_setting("MainTable")) except Exception as e: raise Exception("Error getting table reference") self.reload_sample() def is_expired(self): return datetime.datetime.now() > self.expiration_time def reload_sample(self): self.expiration_time = datetime.datetime.now() + datetime.timedelta(minutes = 5) self.sample = [] try: response = self.record_table.scan() for item in response.get("Items", []): score = leaderboard_utils.generate_score_dict(item, self.stat) if score: self.add_to_sample(score) while "LastEvaluatedKey" in response: response = self.record_table.scan(ExclusiveStartKey=response['LastEvaluatedKey']) for item in response.get("Items", []): score = leaderboard_utils.generate_score_dict(item, self.stat) if score: self.add_to_sample(score) except Exception as e: raise Exception("Error fetching scores from table") self.sample = leaderboard_utils.sort_leaderboard(self.sample, self.stat) def add_to_sample(self, score): self.full_dataset_size = self.full_dataset_size + 1 if len(self.sample) < self.size: self.sample.append(score) elif random.random() < (1.0 / float(len(self.sample))): self.sample.pop(random.randint(0, len(self.sample) - 1)) self.sample.append(score) def get_full_dataset_size(self): return self.full_dataset_size class DynamoDBBackedReservoirSampler(ReservoirSampler): def __init__(self, stat): ReservoirSampler.__init__(self, stat) self.leaderboard_table = boto3.resource('dynamodb').Table(CloudCanvas.get_setting("LeaderboardTable")) self.info_table = boto3.resource('dynamodb').Table(CloudCanvas.get_setting("LeaderboardInfo")) self.reload_sample() def reload_sample(self): try: new_sample = [] response = self.leaderboard_table.query( KeyConditionExpression=Key('type').eq('{}_sample'.format(self.stat)) ) for entry in response.get("Items", []): new_sample.append(self.generate_score_dict(entry)) while "LastEvaluatedKey" in response: response = self.leaderboard_table.query( KeyConditionExpression=Key('type').eq('{}_sample'.format(self.stat)) ) for entry in response.get("Items", []): new_sample.append(self.generate_score_dict(entry)) high_score = json.loads(self.get_leaderboard_info("high_score")) if high_score: high_score = self.generate_score_dict(high_score) if not high_score["user"] in [entry["user"] for entry in new_sample]: new_sample.append(high_score) except Exception as e: raise Exception("Error loading {} leaderboard".format(self.stat)) self.sample = leaderboard_utils.sort_leaderboard(new_sample, self.stat) self.expiration_time = datetime.datetime.now() + datetime.timedelta(seconds = 30) def generate_score_dict(self, entry): return { "user": entry["user"], "stat": self.stat, "value": entry["value"] } def is_expired(self): return datetime.datetime.now() > self.expiration_time def get_full_dataset_size(self): return self.get_leaderboard_info("population") def get_leaderboard_info(self, info): response = self.info_table.get_item(Key = {"stat": self.stat, "type": info }) if not response.get("Item", {}): raise Exception("Error retrieving leaderboard info for {}".format(self.stat)) return response["Item"]["value"]
import firebase_admin from firebase_admin import credentials from firebase_admin import messaging import flask def firebase_send_notify(title: str, body: str, data: dict = None, topic: str = 'all', target_token: str = None): cred = credentials.Certificate(flask.current_app.config.get('FIREBASE_CERTIFICATE')) default_app = firebase_admin.initialize_app(cred) # noqa # This registration token comes from the client FCM SDKs. # registration_token = flask.current_app.config.get('FIREBASE_REGISTERATION_TOKEN') data = data if data else {} # See documentation on defining a message payload. message = messaging.Message( # android=messaging.AndroidConfig( # ttl=datetime.timedelta(seconds=3600), # priority='normal', # ), android=None, apns=None, webpush=None, data={ 'click_action': 'FLUTTER_NOTIFICATION_CLICK', }, notification=messaging.Notification(title=title, body=body), # notification=None, fcm_options=None, topic=topic, token=target_token, # condition=None, ) # Send a message to the device corresponding to the provided # registration token. response = messaging.send(message) # Response is a message ID string. print('Successfully sent message:', response)
from distutils.core import setup from Cython.Build import cythonize setup( name='Great Circle v2', ext_modules=cythonize("great_circle_v2.pyx"), )
# Generated by Django 3.0.8 on 2020-09-27 20:27 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('MainComponent', '0010_auto_20200927_2327'), ] operations = [ migrations.AlterField( model_name='avaibleinternship', name='id', field=models.AutoField(primary_key=True, serialize=False), ), ]
from .data import ITestData from .dataset import ITestDataset __all__ = ['ITestData', 'ITestDataset']
from protocols.forms import forms from core.utils import TIME_UNITS class ElectrophoreseForm(forms.VerbForm): name = "Electrophorese" slug = "electrophorese" has_machine = True model = forms.CharField(required = False, label='machine_model') min_voltage = forms.IntegerField(required = False) max_voltage = forms.IntegerField(required = False) voltage_units = forms.CharField(initial ='volts')
import pytest from hades_logs.parsing import parse_vlan as parse, ParsingError def test_correct_untagged(): assert parse('"2hades-unauth"') == "hades-unauth (untagged)" def test_correct_untagged_unstriped(): assert parse("2Wu5") == "Wu5 (untagged)" def test_correct_tagged(): assert parse("1toothstone") == "toothstone (tagged)" def test_bad_taggedness_raises_parsingerror(): with pytest.raises(ParsingError): parse('"3some-vlan"') def test_empty_name_raises_parsingerror(): with pytest.raises(ParsingError): parse('"2"')
import bisect import random class Solution(object): def __init__(self, w): """ :type w: List[int] """ self.prefix = w[:] for i in range(1, len(w)): self.prefix[i] += self.prefix[i-1] self.MAX = self.prefix[-1] def pickIndex(self): """ :rtype: int """ return bisect.bisect(self.prefix, random.randrange(self.MAX)) # Your Solution object will be instantiated and called as such: # obj = Solution(w) # param_1 = obj.pickIndex()
""" Handles webhooks from payment backend """ import time from django.http import HttpResponse from .models import Order from .reports import send_ticket_pdf_email from .tickets import create_tickets_for_order # pylint: disable=W0703 # Broad exception: Any error should cause orders to be deleted # Largely based on the boutique ado project class StripeWHHandler: """ Handles stripe webhooks """ def __init__(self, request): self.request = request @staticmethod def handle_event(event): """ Handle a generic/unknown/unexpected webhook event """ return HttpResponse( content=f'Unhandled webhook received: {event["type"]}', status=200 ) def handle_payment_intent_succeeded(self, event): """ Handle the payment_intent.succeeded webhook from Stripe """ intent = event.data.object pid = intent.id basket = intent.metadata.basket #save_to_profile = intent.metadata.save_to_profile billing_details = intent.charges.data[0].billing_details order_total = round(intent.charges.data[0].amount / 100, 2) # Update profile information if save_info was checked profile=None order_exists = False attempt = 1 while attempt <= 5: try: order = Order.objects.get( full_name__iexact=billing_details.name, email__iexact=billing_details.email, phone_number__iexact=billing_details.phone, order_total=order_total, original_basket=basket, stripe_pid=pid, ) order_exists = True break except Order.DoesNotExist: attempt += 1 time.sleep(1) if order_exists: send_ticket_pdf_email(self.request, order) return HttpResponse( content=f'Webhook received: {event["type"]} | SUCCESS: Verified \ order already in database', status=200) order = None try: order = Order.objects.create( full_name=billing_details.name, user_profile=profile, email=billing_details.email, phone_number=billing_details.phone, original_basket=basket, stripe_pid=pid, ) create_tickets_for_order(order) except Exception as error: if order: order.delete() return HttpResponse( content=f'Webhook received: {event["type"]} | ERROR: {error}', status=500) send_ticket_pdf_email(self.request, order) return HttpResponse( content=f'Webhook received: {event["type"]} | SUCCESS: Created order in webhook', status=200) @staticmethod def handle_payment_intent_payment_failed(event): """ Handle the payment_intent.payment_failed webhook from Stripe """ return HttpResponse( content=f'Webhook received: {event["type"]}', status=200 )
import gym import numpy as np import math import cv2 from gym.spaces.box import Box def resize(src, new_size): src = src.astype("float32") H, W, C = src.shape new_H, new_W = new_size dst = np.zeros((new_H, new_W, C)) ratio_h = H / new_H ratio_w = W / new_W for i in range(new_H): src_y = ratio_h * i y = math.floor(src_y) v = src_y - y if y < 0: y = 0 v = 0 elif y >= H - 1: y = H - 2 v = 1 for j in range(new_W): src_x = ratio_w * j x = math.floor(src_x) u = src_x - x if x < 0: x = 0 u = 0 elif x >= W - 1: x = W - 2 u = 1 dst[i][j] = (1-v) * (1-u) * src[y][x] + v * (1-u) * src[y+1][x] \ + (1-v) * u * src[y][x+1] + v * u * src[y+1][x+1] return dst.astype("uint8") # Taken from https://github.com/openai/universe-starter-agent def create_atari_env(env_id): env = gym.make(env_id) env = AtariRescale42x42(env) env = NormalizedEnv(env) return env def _process_frame42(frame): frame = frame[34:34 + 160, :160] # Resize by half, then down to 42x42 (essentially mipmapping). If # we resize directly we lose pixels that, when mapped to 42x42, # aren't close enough to the pixel boundary. frame = cv2.resize(frame, (80, 80)) frame = cv2.resize(frame, (42, 42)) frame = frame.mean(2, keepdims=True) frame = frame.astype(np.float32) frame *= (1.0 / 255.0) frame = np.moveaxis(frame, -1, 0) return frame class AtariRescale42x42(gym.ObservationWrapper): def __init__(self, env=None): super(AtariRescale42x42, self).__init__(env) self.observation_space = Box(0.0, 1.0, [1, 42, 42]) def observation(self, observation): return _process_frame42(observation) class NormalizedEnv(gym.ObservationWrapper): def __init__(self, env=None): super(NormalizedEnv, self).__init__(env) self.state_mean = 0 self.state_std = 0 self.alpha = 0.9999 self.num_steps = 0 def observation(self, observation): self.num_steps += 1 self.state_mean = self.state_mean * self.alpha + \ observation.mean() * (1 - self.alpha) self.state_std = self.state_std * self.alpha + \ observation.std() * (1 - self.alpha) unbiased_mean = self.state_mean / (1 - pow(self.alpha, self.num_steps)) unbiased_std = self.state_std / (1 - pow(self.alpha, self.num_steps)) return (observation - unbiased_mean) / (unbiased_std + 1e-8)
import unittest from year2021.python.day6.day6_func import * class TestDay6(unittest.TestCase): def test_correct_spawn_80(self): # Arrange fishes = [0, 1, 1, 2, 1, 0, 0, 0, 0] spawn = FishSpawn() # Act numberOfFishes80Days = spawn.spawn(fishes, 80) # Assert self.assertEqual(5934, numberOfFishes80Days) def test_correct_spawn_18(self): # Arrange fishes = [0, 1, 1, 2, 1, 0, 0, 0, 0] spawn = FishSpawn() # Act numberOfFishes18Days = spawn.spawn(fishes, 18) # Assert self.assertEqual(26, numberOfFishes18Days) def test_correct_init(self): # Arrange inputString = "3,4,3,1,2" # Act fishes = FishCreator.initFishes(inputString) # Arrange self.assertEqual([0, 1, 1, 2, 1, 0, 0, 0, 0], fishes) def test_correct_lanternfish_count_same(self): # Arrange fishes = [0, 1, 1, 2, 1, 0, 0, 0, 0] spawn = FishSpawn() # Act numberOfFishes18Days = spawn.spawn(fishes, 18) numberOfFishes80Days = spawn.spawn(fishes, 80) # Assert self.assertEqual(26, numberOfFishes18Days) self.assertEqual(5934, numberOfFishes80Days)
# -*- coding: utf-8 -*- from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals from color import generateColorFunction def on(msg): return generateColorFunction('green')(msg) def off(msg): return generateColorFunction('red')(msg) def notice(msg): return generateColorFunction('purple')(msg) def hint(msg): return generateColorFunction('yellow')(msg) def success(msg): return generateColorFunction('green')(msg) def warn(msg): return generateColorFunction('yellow')(msg) def error(msg): return generateColorFunction('red')(msg) def system(msg): return generateColorFunction('light-red')(msg) def exit(msg): return generateColorFunction('red')(msg) def breakpoint(msg): return generateColorFunction('yellow')(msg) def signal(msg): return generateColorFunction('bold,red')(msg) def prompt(msg): return generateColorFunction('bold,red')(msg)
"""packer_builder/specs/builders/vmware.py""" def vmware_builder(**kwargs): """VMware specific builder specs.""" # Setup vars from kwargs builder_spec = kwargs['data']['builder_spec'] distro = kwargs['data']['distro'] vagrant_box = kwargs['data']['vagrant_box'] builder_spec.update({ 'type': 'vmware-iso', 'disk_adapter_type': '{{ user `disk_adapter_type` }}', 'disk_type_id': 0, 'version': '10', 'vmx_data': { 'ethernet0.pciSlotNumber': '32' }, 'vmx_remove_ethernet_interfaces': True }) # Define OS type map for distro to guest OS type os_type_map = {'alpine': 'other3xlinux-64', 'centos': 'centos-64', 'debian': 'debian8-64', 'fedora': 'fedora-64', 'freenas': 'FreeBSD-64', 'ubuntu': 'ubuntu-64'} # Lookup distro OS type guest_os_type = os_type_map[distro] # If FreeNAS, add storage devices if Vagrant to ensure we can provision if distro == 'freenas' and vagrant_box: builder_spec.update( {'disk_additional_size': ['{{ user `disk_size` }}']}) builder_spec.update({'guest_os_type': guest_os_type}) return builder_spec
import pyparsing as pp import base64 def parse_receipt( text ): ''' Given a plist-based receipt from Apple's storeKit return a native python datastructure. ''' # Set up our grammar identifier = pp.Literal('"').suppress() + pp.Word(pp.alphanums+"-_") + pp.Literal('"').suppress() value = pp.Literal('"').suppress() + pp.Word(pp.alphanums+"-_/=+ '}{:.") + pp.Literal('"').suppress() cmplx = pp.Forward() expr = pp.Group( identifier + pp.Literal("=").suppress() + pp.Combine( value|cmplx ) + pp.Literal(";").suppress() ) gram = "{" + pp.OneOrMore( expr ) + "}" cmplx << gram scope = {} for tok in gram.parseString(text): if len(tok) == 2: k = tok[0] if k == 'purchase-info': # recurse v = parse_receipt( base64.b64decode( tok[1] ) ) else: v = tok[1] scope[k] = v else: if tok not in ( '{', '}' ): print "shenanigans", tok return scope if __name__ == '__main__': import sys inp = open(sys.argv[1]).read() data = parse_receipt( inp ) from pprint import pprint pprint( data )
"""Generate a prediction for a given salient2's submodel and a given deadline date Example: $ python src/models/salient2/predict_keras.py -d 20200107 -sn d2wk_cop_sst_20170201 $ python src/models/salient2/predict_keras.py -d 20200121 -sn d2wk_cop_sst_mei_20190731 -r us Named args: --deadline_date (-d): official deadline for submission. --submodel_name (-sn): string consisting of the ground truth variable ids used for training and the date of the last training example a submodel_name consists of a concatenation of 3 strings, one of each of the category below: ground truth variables : "d2wk_cop_sst" suffixes: "", "mei", "mjo", "mei_mjo" end_date: "20060726", "20070725", "20080730", "20090729", "20100727", "20110726", "20120731", "20130730", "20140729", "20150728", "20160727", "20170201", "20180725" or "20190731" examples of submodel_name are: "d2wk_cop_sst_20060726", "d2wk_cop_sst_mei_20060726" --region (-r): string consisting of the spatial region on which to train the model; either 'us' to use U.S. continental bounding box for the output data or 'contest' to use the frii contest region bounding box (default). """ import re import os import glob import keras import pickle import argparse import itertools import subprocess import numpy as np import pandas as pd from os.path import isfile from netCDF4 import Dataset from datetime import datetime, timedelta from pkg_resources import resource_filename from subseasonal_toolkit.utils.experiments_util import pandas2hdf from subseasonal_toolkit.utils.general_util import make_directories, printf from subseasonal_toolkit.utils.experiments_util import get_target_date as get_target_date_eval from subseasonal_toolkit.models.salient2.salient2_util import ONE_DAY, ONE_WEEK, WEEKS, dir_train_data, dir_predict_data, dir_train_results, dir_submodel_forecasts, year_fraction, get_target_date def read_with_lock(filename): """Open an hdf file with a lock and read. Args: filename (str): path of hdf file to be read with a lock. Returns: openned pandas dataframe. """ #with FileLock(filename+'lock'): # df = pd.read_hdf(filename) df = pd.read_hdf(filename) subprocess.call(f"rm {filename}lock", shell=True) return df def generate_windows(x): """generates a sliding window over the data of length window_size. Args: x: array of input features used the NN Returns: reshaped array of input features so that each example is a concatenation of the past 10 weeks of data. """ window_size = 10 result = [] for i in range(x.shape[0]+1-window_size): result.append(x[i:i+window_size, ...]) return np.stack(result) def compile_input(submodel_name, datestr): """Compile input data to be used by NN. Args: submodel_name (str): string consisting of the ground truth variable ids used for training and the date of the last training example. datestr (str): YYMMDD string of submission date. Returns: input_data: array of input features used generate predictions by the NNs. """ #mei and mjo indices are not included by default i_mei = "mei" in submodel_name i_mjo = "mjo" in submodel_name #get gt_var: gt_var = submodel_name[:-9] if "mei" in gt_var: gt_var = gt_var[:gt_var.index("_mei")] if "mjo" in gt_var: gt_var = gt_var[:gt_var.index("_mjo")] #target_date refers to submission date as in original salient scripts target_date = datetime.strptime(datestr, '%Y%m%d') # load date data date_data_file = os.path.join(dir_train_data, "date.pickle") date_vectors = pickle.load(open(date_data_file, 'rb')) date_vectors_all = sorted([d[0] for d in date_vectors]) end_date_sn = datetime.strptime(submodel_name[-8:], '%Y%m%d') date_vectors = [d for d in date_vectors_all if (d.astype(object).year<=end_date_sn.year) and (d.astype(object).month<=end_date_sn.month) and (d.astype(object).day<=end_date_sn.day)] last_i = len(date_vectors) # load training data # load sst data if "sst" in submodel_name: training_sst_data_file = os.path.join(dir_train_data, "sst.pickle") training_sst_vectors_all = pickle.load(open(training_sst_data_file, 'rb')) # load time data if i_mei: mei_data_file = os.path.join(dir_train_data, "mei.pickle") training_mei_vectors_all = pickle.load(open(mei_data_file, 'rb')) # load time data if i_mjo: mjo_data_file = os.path.join(dir_train_data, "mjo.pickle") training_mjo_vectors_all = pickle.load(open(mjo_data_file, 'rb')) # load time data training_time_data_file = os.path.join(dir_train_data, "time.pickle") training_time_vectors = pickle.load(open(training_time_data_file, 'rb')) training_time_vectors_all = np.reshape(training_time_vectors,(training_time_vectors.shape[0],1)) # account for early train stop submodels if "sst" in submodel_name: training_sst_vectors = training_sst_vectors_all[:last_i,:] training_time_vectors = training_time_vectors_all[:last_i,:] ## Load input data to generate a prediction #input predict data is organized in models/salient2/predict-data directories named #after the center values (Wednesdays) of the submission week if target_date.weekday() == 1: target_date_predict_data = target_date + ONE_DAY datestr_predict_data = datetime.strftime(target_date_predict_data, "%Y%m%d") elif target_date.weekday() == 2: target_date_predict_data = target_date datestr_predict_data = datetime.strftime(target_date_predict_data, "%Y%m%d") else: printf(f"{target_date} is an invalid submission date. \ Submission date should be a Tuesday for contest gt_ids or a Wednesday for U.S. and east gt_ids.") #****************************************************************************** # set input dates vector corresponding to the submission date #****************************************************************************** date_vectors_all = [d.astype(datetime) for d in date_vectors_all] date_vectors_all = [datetime(d.year, d.month, d.day) for d in date_vectors_all] # need input data up through prior Saturday (weekday #5) input_end_date = target_date_predict_data - timedelta(days=((target_date_predict_data.weekday() - 5) % 7)) input_end_date = datetime(input_end_date.year, input_end_date.month, input_end_date.day) input_start_date = input_end_date - ONE_WEEK * WEEKS + ONE_DAY # Create input dates vector consisting of center values (Wednesdays) of the relevant weeks input_start_date = input_start_date + 3*ONE_DAY input_end_date = input_end_date - 3*ONE_DAY # Get input start and end indices if input_end_date in date_vectors_all: input_start_date_index = date_vectors_all.index(input_start_date) input_end_date_index = date_vectors_all.index(input_end_date) # load sst data if "sst" in submodel_name: sst_data_file = os.path.join(dir_predict_data, "d2wk_cop_sst", datestr_predict_data, "sst.pickle") if isfile(sst_data_file): sst_vectors = pickle.load(open(sst_data_file, 'rb')) # input dates vector always contain wednesdays regardless of output starting on a Wednesday or Tuesday else: sst_vectors = training_sst_vectors_all[input_start_date_index:input_end_date_index+1,:] sst_vectors = (sst_vectors - np.amin(training_sst_vectors)) * 1./(np.amax(training_sst_vectors) - np.amin(training_sst_vectors)) data_min, data_max = np.amin(training_sst_vectors), np.amax(training_sst_vectors) #Load mei data if i_mei: mei_data_file = os.path.join(dir_predict_data, "d2wk_cop_sst", datestr_predict_data, "mei.pickle") if isfile(mei_data_file): mei_vectors = pickle.load(open(mei_data_file, 'rb')) # input dates vector always contain wednesdays regardless of output starting on a Wednesday or Tuesday else: mei_vectors = training_mei_vectors_all[input_start_date_index:input_end_date_index+1,:] mei_vectors = (mei_vectors - data_min) * 1./(data_max - data_min) #Load mjo data if i_mjo: mjo_data_file = os.path.join(dir_predict_data, "d2wk_cop_sst", datestr_predict_data, "mjo.pickle") if isfile(mjo_data_file): mjo_vectors = pickle.load(open(mjo_data_file, 'rb')) # input dates vector always contain wednesdays regardless of output starting on a Wednesday or Tuesday else: mjo_vectors = training_mjo_vectors_all[input_start_date_index:input_end_date_index+1,:] mjo_vectors = (mjo_vectors - data_min) * 1./(data_max - data_min) # compile input data if "sst" in submodel_name: input_data = sst_vectors if i_mei: input_data = np.concatenate((input_data, mei_vectors), axis=1) if i_mjo: input_data = np.concatenate((input_data, mjo_vectors), axis=1) return input_data def add_i_time(input_data, submodel_name, datestr, i_time=False): """add i_time feature to input data to be used by NN. Args: input_data (float): array of input features used generate predictions by the NNs. submodel_name (str): string consisting of the ground truth variable ids used for training and the date of the last training example. datestr (str): YYMMDD string of submission date. i_time (bool): if True, include time vector as an input feature (default: False). Returns: input_data: array of input features used generate predictions by the NNs. """ #get input start and end date target_date = datetime.strptime(datestr, '%Y%m%d') #input predict data is organized in models/salient2/predict-data directories named #after the center values (Wednesdays) of the submission week if target_date.weekday() == 1: target_date_predict_data = target_date + ONE_DAY datestr_predict_data = datetime.strftime(target_date_predict_data, "%Y%m%d") elif target_date.weekday() == 2: target_date_predict_data = target_date datestr_predict_data = datetime.strftime(target_date_predict_data, "%Y%m%d") else: printf(f"{target_date} is an invalid submission date. \ Submission date should be a Tuesday for contest gt_ids or a Wednesday for U.S. and east gt_ids.") # need input data up through prior Saturday (weekday #5) input_end_date = target_date_predict_data - timedelta(days=((target_date_predict_data.weekday() - 5) % 7)) input_end_date = datetime(input_end_date.year, input_end_date.month, input_end_date.day) input_start_date = input_end_date - ONE_WEEK * WEEKS + ONE_DAY # Create input dates vector consisting of center values (Wednesdays) of the relevant weeks input_start_date = input_start_date + 3*ONE_DAY input_end_date = input_end_date - 3*ONE_DAY #load time data if i_time: time_vectors = np.zeros((WEEKS, 1)) day = input_start_date for i in range(time_vectors.shape[0]): time_vectors[i, 0] = year_fraction(day) day += ONE_WEEK # compile input data if i_time: input_data = np.concatenate((input_data, time_vectors), axis=1) return input_data def main(): #""" #example usage to generate original salient2 forecasts # python src/models/salient2/predict_keras.py -d 20200811 -sn d2wk_cop_sst_20170201 # input arguments parser = argparse.ArgumentParser() parser.add_argument('-d', '--date', help='Submission date') parser.add_argument('-sn', '--submodel_name', default='d2wk_cop_sst_mei_mjo_20190731') parser.add_argument('--region', '-r', default='contest') args = parser.parse_args() # set args submodel_name = args.submodel_name target_date, datestr = get_target_date('Generate predictions', args.date) region = args.region # define usa flag usa = region == 'us' # Setup directory where the submodel's weights are saved. dir_weights = os.path.join(dir_train_results, submodel_name, f"{region}_{submodel_name}") # map locations with points of interest mask_f = os.path.join("data", "masks", "us_mask.nc") mask_ds = Dataset(mask_f) if usa else Dataset(mask_f.replace("us_", "fcstrodeo_")) mask_lat = mask_ds.variables['lat'][:] mask_lon = mask_ds.variables['lon'][:] points_idx = np.where(mask_ds.variables['mask'][:]) points = np.array((points_idx[0], points_idx[1])).T # Import and run models model_names = glob.glob(os.path.join(dir_weights, "k_model_*.h5")) N_models = len(model_names) # set grid cells num_of_gc = 862 if usa else 514 # Create empty template array for predictions to be generated precip_wk34_predictions = np.zeros((N_models,num_of_gc)) precip_wk56_predictions = np.zeros((N_models,num_of_gc)) temp_wk34_predictions = np.zeros((N_models,num_of_gc)) temp_wk56_predictions = np.zeros((N_models,num_of_gc)) # Compile input data input_data_all = compile_input(submodel_name, datestr) # Generate predictions for each of the top 10 selected NN members in the ensemble for i in range(N_models): # Load NN ensemble member model_name = model_names[i] model = keras.models.load_model(model_name) # If NN was trained on time as an input feature, add time to the compile input data result = re.search('time(.*).h5', model_name) input_set = int(result.group(1)) input_data = add_i_time(input_data_all, submodel_name, datestr, i_time=bool(input_set)) input_data = generate_windows(input_data) # Generate predictions prediction_i = model.predict(input_data) # predictions for a 2-week target period are the accumulation of precip # the mean temperature over the target period prediction_i = np.reshape(prediction_i,(8,num_of_gc)) precip_wk34_predictions[i,:] = np.sum(prediction_i[0:2,:], axis=0) precip_wk56_predictions[i,:] = np.sum(prediction_i[2:4,:], axis=0) temp_wk34_predictions[i,:] = np.mean(prediction_i[4:6,:], axis=0) temp_wk56_predictions[i,:] = np.mean(prediction_i[6:8,:], axis=0) # sum precip predictions and average temp predictions over the 2-week target period # clip precip predictions to zero since precipitations cannot be negative precip_wk34_prediction = np.mean(precip_wk34_predictions, axis=0) precip_wk34_prediction = precip_wk34_prediction.clip(0) precip_wk56_prediction = np.mean(precip_wk56_predictions, axis=0) precip_wk56_prediction = precip_wk56_prediction.clip(0) temp_wk34_prediction = np.mean(temp_wk34_predictions, axis=0) temp_wk56_prediction = np.mean(temp_wk56_predictions, axis=0) # Get target date objects deadline_date = datetime.strptime(datestr, '%Y%m%d') target_date_34w = get_target_date_eval(datestr, "34w") target_date_56w = get_target_date_eval(datestr, "56w") # Get target date strings target_date_str_34w = datetime.strftime(target_date_34w, '%Y%m%d') target_date_str_56w = datetime.strftime(target_date_56w, '%Y%m%d') # Get lat, lon and pred template arrays template_f = resource_filename("subseasonal_toolkit", os.path.join("models", "salient2", "data", "apcp_week34_template.nc")) template_ds = Dataset(template_f) template_lat = template_ds.variables["lat"][:] template_lon = template_ds.variables["lon"][:] template_var = template_ds.variables["apcp_week34"][:] # Determine variables, horizons and corresponding predictions to be saved gt_vars = ["precip", "tmp2m"] horizons = ["34w", "56w"] predictions = [precip_wk34_prediction, precip_wk56_prediction, temp_wk34_prediction, temp_wk56_prediction] gt_prefix = f"{region}_" tasks = [f"{gt_prefix}{g}_{t}" for g, t in itertools.product(gt_vars, horizons)] # Format predictions to standard pandas contest prediction format. for task, prediction in zip(tasks, predictions): out_dir = os.path.join(dir_submodel_forecasts, submodel_name, task) make_directories(out_dir) pred_file = os.path.join(dir_train_data, f"{region}_latlons.h5") pred = read_with_lock(pred_file) #pred = pd.read_hdf(pred_file) if "34w" in task: pred["start_date"] = target_date_34w out_file = os.path.join(out_dir, f"{task}-{target_date_str_34w}.h5") elif "56" in task: pred["start_date"] = target_date_56w out_file = os.path.join(out_dir, f"{task}-{target_date_str_56w}.h5") if usa: pred["pred"] = prediction else: pred["pred"] = np.nan a = template_var # save predictions into array for loc in range(len(prediction)): index = points[loc] a[tuple(index)] = prediction[loc] for i in range(len(pred)): lat_i = np.argwhere(template_lat == pred["lat"].iloc[i])[0][0] lon_i = np.argwhere(template_lon == pred["lon"].iloc[i])[0][0] pred["pred"].iloc[i] = a[lat_i, lon_i] # Save prediction files if pred.isnull().values.sum()==0: pandas2hdf(pred, out_file, format='table') if __name__ == '__main__': main()
import contextlib import logging import re import traceback from datetime import datetime as dt from functools import wraps from typing import Optional import pandas as pd from influxdb.exceptions import InfluxDBClientError from app.models import Series from app.vendors.influx import InfluxDB from config import resolve_config @contextlib.contextmanager def create_influx(): """ Contextmanager that will create and teardown a session. """ config = resolve_config() influx = InfluxDB(host=config.INFLUXDB_HOST, database=config.INFLUXDB_DATABASE) yield influx influx.close() def provide_influx(func): @wraps(func) def wrapper(*args, **kwargs): influx_name = "influx" func_params = func.__code__.co_varnames session_in_args = influx_name in func_params and func_params.index( influx_name ) < len(args) session_in_kwargs = influx_name in kwargs if session_in_kwargs or session_in_args: return func(*args, **kwargs) else: with create_influx() as influx: kwargs[influx_name] = influx return func(*args, **kwargs) return wrapper @provide_influx def init_influx_db(database: str, influx: InfluxDB = None) -> None: influx.database.create(database) @provide_influx def get_all_pairs(influx: InfluxDB = None) -> list: pairs = influx.measurement.all() pairs = [re.match("[A-Z]+", m["name"])[0] for m in pairs] pairs = [p for p in set(pairs) if p[:4] != "TEST"] return pairs @provide_influx def get_candles( pair: str, timeframe: str, limit: int, last_timestamp: Optional[int] = None, influx: InfluxDB = None, ) -> Series: measurement = pair + timeframe if not last_timestamp: last_timestamp = 9000000000 q = f""" SELECT * FROM ( SELECT median(close) AS close, median(high) AS high, median(low) AS low, median(open) AS open, median(volume) AS volume FROM {measurement} WHERE ("exchange" = 'binance' OR "exchange" = 'bitfinex' OR "exchange" = 'poloniex' OR "exchange" = 'bittrex') GROUP BY time({timeframe}) FILL(none) ) WHERE time < {last_timestamp}s ORDER BY time DESC LIMIT {limit} """ result = influx.query(q, epoch="s") df = pd.DataFrame(result.get_points(measurement=measurement)) if df.shape[0] == 0: return Series(pair=pair, timeframe=timeframe) candles = Series( pair=pair, timeframe=timeframe, time=df.time.values[::-1], open=df.open.values[::-1], close=df.close.values[::-1], high=df.high.values[::-1], low=df.low.values[::-1], volume=df.volume.values[::-1], ) return candles @provide_influx def check_last_timestamp( measurement: str, minus: int = 10, influx: InfluxDB = None ) -> int: """ Returns timestamp of last point in measurement. """ result = influx.query( f"SELECT * FROM {measurement} ORDER BY time DESC LIMIT 1;", epoch="s" ) df = pd.DataFrame(result.get_points(measurement=measurement)) if df.shape == (0, 0): # Return something old enough return 1518176375 return int(df.time.values) - minus @provide_influx def check_exchanges(pair: str, influx: InfluxDB = None) -> list: result = influx.measurement.tag_values(measurement=f"{pair}1h", key="exchange") return list(result) @provide_influx def insert_candles( candles: list, time_precision: str = None, influx: InfluxDB = None ) -> bool: """ Inserts point into a given measurement. """ result = influx.write_points(candles, time_precision=time_precision) return result @provide_influx def downsample(pair: str, from_tf: str, to_tf: str, influx: InfluxDB = None) -> None: time_now = dt.now().strftime("%Y-%m-%dT%H:%M:%SZ") query = f""" SELECT first(open) AS open, max(high) AS high, min(low) AS low, last(close) AS close, sum(volume) AS volume INTO {pair}{to_tf} FROM {pair}{from_tf} WHERE time <= '{time_now}' GROUP BY time({to_tf}), * """ try: influx.query(query) except InfluxDBClientError: logging.error( f"FAILED %s downsample %s error: \n %s", to_tf, pair, traceback.format_exc() ) def downsample_all_timeframes(pair): downsample(pair, from_tf="30m", to_tf="1h") downsample(pair, from_tf="1h", to_tf="2h") downsample(pair, from_tf="1h", to_tf="3h") downsample(pair, from_tf="1h", to_tf="4h") downsample(pair, from_tf="1h", to_tf="6h") downsample(pair, from_tf="1h", to_tf="12h") downsample(pair, from_tf="1h", to_tf="24h")
#!/usr/bin/env python ###################################################################### # Software License Agreement (BSD License) # # Copyright (c) 2010, Rice University # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following # disclaimer in the documentation and/or other materials provided # with the distribution. # * Neither the name of the Rice University nor the names of its # contributors may be used to endorse or promote products derived # from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS # FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE # COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, # INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, # BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT # LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN # ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. ###################################################################### # Author: Mark Moll, Ioan Sucan, Luis G. Torres from os.path import exists import os import sqlite3 import sys from optparse import OptionParser plottingEnabled = True try: import matplotlib matplotlib.use('pdf') from matplotlib import __version__ as matplotlibversion from matplotlib.backends.backend_pdf import PdfPages import matplotlib.pyplot as plt import numpy as np from math import floor except ImportError: print('Matplotlib or Numpy was not found; disabling plotting capabilities...') plottingEnabled = False # Given a text line, split it into tokens (by space) and return the token # at the desired index. Additionally, test that some expected tokens exist. # Return None if they do not. def readLogValue(filevar, desired_token_index, expected_tokens): start_pos = filevar.tell() tokens = filevar.readline().split() for token_index in expected_tokens: if not tokens[token_index] == expected_tokens[token_index]: # undo the read, if we failed to parse. filevar.seek(start_pos) return None return tokens[desired_token_index] def readOptionalLogValue(filevar, desired_token_index, expected_tokens={}): return readLogValue(filevar, desired_token_index, expected_tokens) def readRequiredLogValue(name, filevar, desired_token_index, expected_tokens={}): result = readLogValue(filevar, desired_token_index, expected_tokens) if result is None: raise Exception("Unable to read " + name) return result def ensurePrefix(line, prefix): if not line.startswith(prefix): raise Exception("Expected prefix " + prefix + " was not found") return line def readOptionalMultilineValue(filevar): start_pos = filevar.tell() line = filevar.readline() if not line.startswith("<<<|"): filevar.seek(start_pos) return None value = '' line = filevar.readline() while not line.startswith('|>>>'): value = value + line line = filevar.readline() if line is None: raise Exception("Expected token |>>> missing") return value def readRequiredMultilineValue(filevar): ensurePrefix(filevar.readline(), "<<<|") value = '' line = filevar.readline() while not line.startswith('|>>>'): value = value + line line = filevar.readline() if line is None: raise Exception("Expected token |>>> missing") return value def readBenchmarkLog(dbname, filenames, moveitformat): """Parse benchmark log files and store the parsed data in a sqlite3 database.""" conn = sqlite3.connect(dbname) if sys.version_info[0] < 3: conn.text_factory = lambda x: unicode(x, 'utf-8', 'ignore') c = conn.cursor() c.execute('PRAGMA FOREIGN_KEYS = ON') # create all tables if they don't already exist c.executescript("""CREATE TABLE IF NOT EXISTS experiments (id INTEGER PRIMARY KEY AUTOINCREMENT, name VARCHAR(512), totaltime REAL, timelimit REAL, memorylimit REAL, runcount INTEGER, version VARCHAR(128), hostname VARCHAR(1024), cpuinfo TEXT, date DATETIME, seed INTEGER, setup TEXT); CREATE TABLE IF NOT EXISTS plannerConfigs (id INTEGER PRIMARY KEY AUTOINCREMENT, name VARCHAR(512) NOT NULL, settings TEXT); CREATE TABLE IF NOT EXISTS enums (name VARCHAR(512), value INTEGER, description TEXT, PRIMARY KEY (name, value)); CREATE TABLE IF NOT EXISTS runs (id INTEGER PRIMARY KEY AUTOINCREMENT, experimentid INTEGER, plannerid INTEGER, FOREIGN KEY (experimentid) REFERENCES experiments(id) ON DELETE CASCADE, FOREIGN KEY (plannerid) REFERENCES plannerConfigs(id) ON DELETE CASCADE); CREATE TABLE IF NOT EXISTS progress (runid INTEGER, time REAL, PRIMARY KEY (runid, time), FOREIGN KEY (runid) REFERENCES runs(id) ON DELETE CASCADE)""") for filename in filenames: print('Processing ' + filename) logfile = open(filename, 'r') start_pos = logfile.tell() libname = readOptionalLogValue(logfile, 0, {1 : "version"}) if libname is None: libname = "OMPL" logfile.seek(start_pos) version = readOptionalLogValue(logfile, -1, {1 : "version"}) if version is None: # set the version number to make Planner Arena happy version = "0.0.0" version = ' '.join([libname, version]) expname = readRequiredLogValue("experiment name", logfile, -1, {0 : "Experiment"}) # optional experiment properties nrexpprops = int(readOptionalLogValue(logfile, 0, \ {-2: "experiment", -1: "properties"}) or 0) expprops = {} for _ in range(nrexpprops): entry = logfile.readline().strip().split('=') nameAndType = entry[0].split(' ') expprops[nameAndType[0]] = (entry[1], nameAndType[1]) # adding columns to experiments table c.execute('PRAGMA table_info(experiments)') columnNames = [col[1] for col in c.fetchall()] for name in sorted(expprops.keys()): # only add column if it doesn't exist if name not in columnNames: c.execute('ALTER TABLE experiments ADD %s %s' % (name, expprops[name][1])) hostname = readRequiredLogValue("hostname", logfile, -1, {0 : "Running"}) date = ' '.join(ensurePrefix(logfile.readline(), "Starting").split()[2:]) if moveitformat: expsetup = readRequiredLogValue("goal name", logfile, -1, {0: "Goal", 1: "name"}) cpuinfo = None rseed = 0 timelimit = float(readRequiredLogValue("time limit", logfile, 0, \ {-3 : "seconds", -2 : "per", -1 : "run"})) memorylimit = 0 else: expsetup = readRequiredMultilineValue(logfile) cpuinfo = readOptionalMultilineValue(logfile) rseed = int(readRequiredLogValue("random seed", logfile, 0, \ {-2 : "random", -1 : "seed"})) timelimit = float(readRequiredLogValue("time limit", logfile, 0, \ {-3 : "seconds", -2 : "per", -1 : "run"})) memorylimit = float(readRequiredLogValue("memory limit", logfile, 0, \ {-3 : "MB", -2 : "per", -1 : "run"})) nrrunsOrNone = readOptionalLogValue(logfile, 0, \ {-3 : "runs", -2 : "per", -1 : "planner"}) nrruns = -1 if nrrunsOrNone != None: nrruns = int(nrrunsOrNone) totaltime = float(readRequiredLogValue("total time", logfile, 0, \ {-3 : "collect", -2 : "the", -1 : "data"})) numEnums = 0 numEnumsOrNone = readOptionalLogValue(logfile, 0, {-2 : "enum"}) if numEnumsOrNone != None: numEnums = int(numEnumsOrNone) for _ in range(numEnums): enum = logfile.readline()[:-1].split('|') c.execute('SELECT * FROM enums WHERE name IS "%s"' % enum[0]) if c.fetchone() is None: for j in range(len(enum) - 1): c.execute('INSERT INTO enums VALUES (?,?,?)', \ (enum[0], j, enum[j + 1])) # Creating entry in experiments table experimentEntries = [None, expname, totaltime, timelimit, memorylimit, nrruns, version, hostname, cpuinfo, date, rseed, expsetup] for name in sorted(expprops.keys()): # sort to ensure correct order experimentEntries.append(expprops[name][0]) c.execute('INSERT INTO experiments VALUES (' + ','.join( '?' for i in experimentEntries) + ')', experimentEntries) experimentId = c.lastrowid numPlanners = int(readRequiredLogValue("planner count", logfile, 0, {-1 : "planners"})) for _ in range(numPlanners): plannerName = logfile.readline()[:-1] print('Parsing data for ' + plannerName) # read common data for planner numCommon = int(logfile.readline().split()[0]) settings = '' for j in range(numCommon): settings = settings + logfile.readline() + ';' # find planner id c.execute('SELECT id FROM plannerConfigs WHERE (name=? AND settings=?)', \ (plannerName, settings,)) p = c.fetchone() if p is None: c.execute('INSERT INTO plannerConfigs VALUES (?,?,?)', \ (None, plannerName, settings,)) plannerId = c.lastrowid else: plannerId = p[0] # get current column names c.execute('PRAGMA table_info(runs)') columnNames = [col[1] for col in c.fetchall()] # read properties and add columns as necessary numProperties = int(logfile.readline().split()[0]) propertyNames = ['experimentid', 'plannerid'] for j in range(numProperties): field = logfile.readline().split() propertyType = field[-1] propertyName = '_'.join(field[:-1]) if propertyName not in columnNames: c.execute('ALTER TABLE runs ADD %s %s' % (propertyName, propertyType)) propertyNames.append(propertyName) # read measurements insertFmtStr = 'INSERT INTO runs (' + ','.join(propertyNames) + \ ') VALUES (' + ','.join('?'*len(propertyNames)) + ')' numRuns = int(logfile.readline().split()[0]) runIds = [] for j in range(numRuns): values = tuple([experimentId, plannerId] + \ [None if not x or x == 'nan' or x == 'inf' else x \ for x in logfile.readline().split('; ')[:-1]]) c.execute(insertFmtStr, values) # extract primary key of each run row so we can reference them # in the planner progress data table if needed runIds.append(c.lastrowid) nextLine = logfile.readline().strip() # read planner progress data if it's supplied if nextLine != '.': # get current column names c.execute('PRAGMA table_info(progress)') columnNames = [col[1] for col in c.fetchall()] # read progress properties and add columns as necesary numProgressProperties = int(nextLine.split()[0]) progressPropertyNames = ['runid'] for i in range(numProgressProperties): field = logfile.readline().split() progressPropertyType = field[-1] progressPropertyName = "_".join(field[:-1]) if progressPropertyName not in columnNames: c.execute('ALTER TABLE progress ADD %s %s' % \ (progressPropertyName, progressPropertyType)) progressPropertyNames.append(progressPropertyName) # read progress measurements insertFmtStr = 'INSERT INTO progress (' + \ ','.join(progressPropertyNames) + ') VALUES (' + \ ','.join('?'*len(progressPropertyNames)) + ')' numRuns = int(logfile.readline().split()[0]) for j in range(numRuns): dataSeries = logfile.readline().split(';')[:-1] for dataSample in dataSeries: values = tuple([runIds[j]] + \ [None if not x or x == 'nan' or x == 'inf' else x \ for x in dataSample.split(',')[:-1]]) try: c.execute(insertFmtStr, values) except sqlite3.IntegrityError: print('Ignoring duplicate progress data. Consider increasing ' 'ompl::tools::Benchmark::Request::timeBetweenUpdates.') logfile.readline() logfile.close() conn.commit() c.close() def plotAttribute(cur, planners, attribute, typename): """Create a plot for a particular attribute. It will include data for all planners that have data for this attribute.""" labels = [] measurements = [] nanCounts = [] if typename == 'ENUM': cur.execute('SELECT description FROM enums where name IS "%s"' % attribute) descriptions = [t[0] for t in cur.fetchall()] numValues = len(descriptions) for planner in planners: cur.execute('SELECT %s FROM runs WHERE plannerid = %s AND %s IS NOT NULL' \ % (attribute, planner[0], attribute)) measurement = [t[0] for t in cur.fetchall() if t[0] != None] if measurement: cur.execute('SELECT count(*) FROM runs WHERE plannerid = %s AND %s IS NULL' \ % (planner[0], attribute)) nanCounts.append(cur.fetchone()[0]) labels.append(planner[1]) if typename == 'ENUM': scale = 100. / len(measurement) measurements.append([measurement.count(i)*scale for i in range(numValues)]) else: measurements.append(measurement) if not measurements: print('Skipping "%s": no available measurements' % attribute) return plt.clf() ax = plt.gca() if typename == 'ENUM': width = .5 measurements = np.transpose(np.vstack(measurements)) colsum = np.sum(measurements, axis=1) rows = np.where(colsum != 0)[0] heights = np.zeros((1, measurements.shape[1])) ind = range(measurements.shape[1]) for i in rows: plt.bar(ind, measurements[i], width, bottom=heights[0], \ color=matplotlib.cm.hot(int(floor(i * 256 / numValues))), \ label=descriptions[i]) heights = heights + measurements[i] xtickNames = plt.xticks([x+width/2. for x in ind], labels, rotation=30) ax.set_ylabel(attribute.replace('_', ' ') + ' (%)') box = ax.get_position() ax.set_position([box.x0, box.y0, box.width * 0.8, box.height]) props = matplotlib.font_manager.FontProperties() props.set_size('small') ax.legend(loc='center left', bbox_to_anchor=(1, 0.5), prop=props) elif typename == 'BOOLEAN': width = .5 measurementsPercentage = [sum(m) * 100. / len(m) for m in measurements] ind = range(len(measurements)) plt.bar(ind, measurementsPercentage, width) xtickNames = plt.xticks([x + width / 2. for x in ind], labels, rotation=30) ax.set_ylabel(attribute.replace('_', ' ') + ' (%)') else: if int(matplotlibversion.split('.')[0]) < 1: plt.boxplot(measurements, notch=0, sym='k+', vert=1, whis=1.5) else: plt.boxplot(measurements, notch=0, sym='k+', vert=1, whis=1.5, bootstrap=1000) ax.set_ylabel(attribute.replace('_', ' ')) xtickNames = plt.setp(ax, xticklabels=labels) plt.setp(xtickNames, rotation=25) ax.set_xlabel('Motion planning algorithm') ax.yaxis.grid(True, linestyle='-', which='major', color='lightgrey', alpha=0.5) if max(nanCounts) > 0: maxy = max([max(y) for y in measurements]) for i in range(len(labels)): x = i + width / 2 if typename == 'BOOLEAN' else i + 1 ax.text(x, .95*maxy, str(nanCounts[i]), horizontalalignment='center', size='small') plt.show() def plotProgressAttribute(cur, planners, attribute): """Plot data for a single planner progress attribute. Will create an average time-plot with error bars of the attribute over all runs for each planner.""" import numpy.ma as ma plt.clf() ax = plt.gca() ax.set_xlabel('time (s)') ax.set_ylabel(attribute.replace('_', ' ')) plannerNames = [] for planner in planners: cur.execute("""SELECT count(progress.%s) FROM progress INNER JOIN runs ON progress.runid = runs.id AND runs.plannerid=%s AND progress.%s IS NOT NULL""" \ % (attribute, planner[0], attribute)) if cur.fetchone()[0] > 0: plannerNames.append(planner[1]) cur.execute("""SELECT DISTINCT progress.runid FROM progress INNER JOIN runs WHERE progress.runid=runs.id AND runs.plannerid=?""", (planner[0],)) runids = [t[0] for t in cur.fetchall()] timeTable = [] dataTable = [] for r in runids: # Select data for given run cur.execute('SELECT time, %s FROM progress WHERE runid = %s ORDER BY time' % \ (attribute, r)) (time, data) = zip(*(cur.fetchall())) timeTable.append(time) dataTable.append(data) # It's conceivable that the sampling process may have # generated more samples for one run than another; in this # case, truncate all data series to length of shortest # one. fewestSamples = min(len(time[:]) for time in timeTable) times = np.array(timeTable[0][:fewestSamples]) dataArrays = np.array([data[:fewestSamples] for data in dataTable]) filteredData = ma.masked_array(dataArrays, np.equal(dataArrays, None), dtype=float) means = np.mean(filteredData, axis=0) stddevs = np.std(filteredData, axis=0, ddof=1) # plot average with error bars plt.errorbar(times, means, yerr=2*stddevs, errorevery=max(1, len(times) // 20)) ax.legend(plannerNames) if plannerNames: plt.show() else: plt.clf() def plotStatistics(dbname, fname): """Create a PDF file with box plots for all attributes.""" print("Generating plots...") conn = sqlite3.connect(dbname) c = conn.cursor() c.execute('PRAGMA FOREIGN_KEYS = ON') c.execute('SELECT id, name FROM plannerConfigs') planners = [(t[0], t[1].replace('geometric_', '').replace('control_', '')) \ for t in c.fetchall()] c.execute('PRAGMA table_info(runs)') colInfo = c.fetchall()[3:] pp = PdfPages(fname) for col in colInfo: if col[2] == 'BOOLEAN' or col[2] == 'ENUM' or \ col[2] == 'INTEGER' or col[2] == 'REAL': plotAttribute(c, planners, col[1], col[2]) pp.savefig(plt.gcf()) c.execute('PRAGMA table_info(progress)') colInfo = c.fetchall()[2:] for col in colInfo: plotProgressAttribute(c, planners, col[1]) pp.savefig(plt.gcf()) plt.clf() pagey = 0.9 pagex = 0.06 c.execute("""SELECT id, name, timelimit, memorylimit FROM experiments""") experiments = c.fetchall() for experiment in experiments: c.execute("""SELECT count(*) FROM runs WHERE runs.experimentid = %d GROUP BY runs.plannerid""" % experiment[0]) numRuns = [run[0] for run in c.fetchall()] numRuns = numRuns[0] if len(set(numRuns)) == 1 else ','.join(numRuns) plt.figtext(pagex, pagey, 'Experiment "%s"' % experiment[1]) plt.figtext(pagex, pagey-0.05, 'Number of averaged runs: %d' % numRuns) plt.figtext(pagex, pagey-0.10, "Time limit per run: %g seconds" % experiment[2]) plt.figtext(pagex, pagey-0.15, "Memory limit per run: %g MB" % experiment[3]) plt.show() pp.savefig(plt.gcf()) pp.close() def saveAsMysql(dbname, mysqldump): # See http://stackoverflow.com/questions/1067060/perl-to-python import re print("Saving as MySQL dump file...") conn = sqlite3.connect(dbname) mysqldump = open(mysqldump, 'w') # make sure all tables are dropped in an order that keepd foreign keys valid c = conn.cursor() c.execute("SELECT name FROM sqlite_master WHERE type='table'") table_names = [str(t[0]) for t in c.fetchall()] c.close() last = ['experiments', 'planner_configs'] for table in table_names: if table.startswith("sqlite"): continue if not table in last: mysqldump.write("DROP TABLE IF EXISTS `%s`;\n" % table) for table in last: if table in table_names: mysqldump.write("DROP TABLE IF EXISTS `%s`;\n" % table) for line in conn.iterdump(): process = False for nope in ('BEGIN TRANSACTION', 'COMMIT', \ 'sqlite_sequence', 'CREATE UNIQUE INDEX', 'CREATE VIEW'): if nope in line: break else: process = True if not process: continue line = re.sub(r"[\n\r\t ]+", " ", line) m = re.search('CREATE TABLE ([a-zA-Z0-9_]*)(.*)', line) if m: name, sub = m.groups() sub = sub.replace('"', '`') line = '''CREATE TABLE IF NOT EXISTS %(name)s%(sub)s''' line = line % dict(name=name, sub=sub) # make sure we use an engine that supports foreign keys line = line.rstrip("\n\t ;") + " ENGINE = InnoDB;\n" else: m = re.search('INSERT INTO "([a-zA-Z0-9_]*)"(.*)', line) if m: line = 'INSERT INTO %s%s\n' % m.groups() line = line.replace('"', r'\"') line = line.replace('"', "'") line = re.sub(r"([^'])'t'(.)", "\\1THIS_IS_TRUE\\2", line) line = line.replace('THIS_IS_TRUE', '1') line = re.sub(r"([^'])'f'(.)", "\\1THIS_IS_FALSE\\2", line) line = line.replace('THIS_IS_FALSE', '0') line = line.replace('AUTOINCREMENT', 'AUTO_INCREMENT') mysqldump.write(line) mysqldump.close() def computeViews(dbname, moveitformat): conn = sqlite3.connect(dbname) c = conn.cursor() c.execute('PRAGMA FOREIGN_KEYS = ON') c.execute('PRAGMA table_info(runs)') if moveitformat: s0 = """SELECT plannerid, plannerConfigs.name AS plannerName, experimentid, solved, total_time FROM plannerConfigs INNER JOIN experiments INNER JOIN runs ON plannerConfigs.id=runs.plannerid AND experiments.id=runs.experimentid""" # kinodynamic paths cannot be simplified (or least not easily), # so simplification_time may not exist as a database column elif 'simplification_time' in [col[1] for col in c.fetchall()]: s0 = """SELECT plannerid, plannerConfigs.name AS plannerName, experimentid, solved, time + simplification_time AS total_time FROM plannerConfigs INNER JOIN experiments INNER JOIN runs ON plannerConfigs.id=runs.plannerid AND experiments.id=runs.experimentid""" else: s0 = """SELECT plannerid, plannerConfigs.name AS plannerName, experimentid, solved, time AS total_time FROM plannerConfigs INNER JOIN experiments INNER JOIN runs ON plannerConfigs.id=runs.plannerid AND experiments.id=runs.experimentid""" s1 = """SELECT plannerid, plannerName, experimentid, AVG(solved) AS avg_solved, AVG(total_time) AS avg_total_time FROM (%s) GROUP BY plannerid, experimentid""" % s0 s2 = """SELECT plannerid, experimentid, MIN(avg_solved) AS avg_solved, avg_total_time FROM (%s) GROUP BY plannerName, experimentid ORDER BY avg_solved DESC, avg_total_time ASC""" % s1 c.execute('DROP VIEW IF EXISTS bestPlannerConfigsPerExperiment') c.execute('CREATE VIEW IF NOT EXISTS bestPlannerConfigsPerExperiment AS %s' % s2) s1 = """SELECT plannerid, plannerName, AVG(solved) AS avg_solved, AVG(total_time) AS avg_total_time FROM (%s) GROUP BY plannerid""" % s0 s2 = """SELECT plannerid, MIN(avg_solved) AS avg_solved, avg_total_time FROM (%s) GROUP BY plannerName ORDER BY avg_solved DESC, avg_total_time ASC""" % s1 c.execute('DROP VIEW IF EXISTS bestPlannerConfigs') c.execute('CREATE VIEW IF NOT EXISTS bestPlannerConfigs AS %s' % s2) conn.commit() c.close() if __name__ == "__main__": usage = """%prog [options] [<benchmark.log> ...]""" parser = OptionParser(usage) parser.add_option("-d", "--database", dest="dbname", default="benchmark.db", \ help="Filename of benchmark database [default: %default]") parser.add_option("-a", "--append", action="store_true", dest="append", default=False, \ help="Append data to database (as opposed to overwriting an existing database)") parser.add_option("-v", "--view", action="store_true", dest="view", default=False, \ help="Compute the views for best planner configurations") if plottingEnabled: parser.add_option("-p", "--plot", dest="plot", default=None, \ help="Create a PDF of plots") parser.add_option("-m", "--mysql", dest="mysqldb", default=None, \ help="Save SQLite3 database as a MySQL dump file") parser.add_option("--moveit", action="store_true", dest="moveit", default=False, \ help="Log files are produced by MoveIt!") (options, args) = parser.parse_args() if not options.append and exists(options.dbname) and args: os.remove(options.dbname) if args: readBenchmarkLog(options.dbname, args, options.moveit) # If we update the database, we recompute the views as well options.view = True if options.view: computeViews(options.dbname, options.moveit) if plottingEnabled and options.plot: plotStatistics(options.dbname, options.plot) if options.mysqldb: saveAsMysql(options.dbname, options.mysqldb)
########################################################################### # # Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ########################################################################### from django.core.management.base import BaseCommand, CommandError from django.conf import settings from starthinker_ui.recipe.scripts import Script from starthinker_ui.recipe.colab import script_to_colab class Command(BaseCommand): help = 'Generate Templates For Colab' def handle(self, *args, **kwargs): with open('%s/tutorials/deploy_colab.md' % settings.UI_ROOT, 'w') as readme_file: readme_file.write('# Using Scripts As A Colab Notebook\n') readme_file.write('\n') readme_file.write( 'All StarThinker recipes and solutions can be run from [Google Collaboratory](https://colab.research.google.com/github/google/starthinker/blob/master). ' ) readme_file.write( 'Also visit the [Solution Gallery](google.github.io/starthinker/) or click a link below to deploy a notebook.\n' ) readme_file.write('\n') readme_file.write('## List Of Notebooks\n') for script in Script.get_scripts(): if script.get_open_source(): readme_file.write('* [%s](%s) - %s\n' % (script.get_name(), script.get_link_colab(), script.get_description())) readme_file.write('---\n') readme_file.write( '&copy; 2019 Google Inc. - Apache License, Version 2.0\n') for script in Script.get_scripts(): if script.get_open_source(): print('Writing: %s/colabs/%s.ipynb' % (settings.UI_ROOT, script.get_tag())) with open('%s/colabs/%s.ipynb' % (settings.UI_ROOT, script.get_tag()), 'w') as colab_file: colab_file.write( script_to_colab( script.get_name(), script.get_description(), script.get_instructions(), script.get_tasks(), ))
import pytest from easel.site.defaults import Defaults from easel.site.errors import MenuConfigError from easel.site.menus import LinkPage, LinkURL, Spacer def test__LinkPage__valid() -> None: config = { "label": "TestLinkPage", "links-to": "/test-link-page", } link_page = LinkPage(**config) repr(link_page) assert link_page.label == "TestLinkPage" assert link_page.links_to == "/test-link-page" assert link_page.url == "/test-link-page" def test__LinkPage__normalize_page_path() -> None: normalized_page_path = "/test-link-page" config_00 = { "label": "TestLinkPage", "links-to": "./contents/pages/test-link-page", } config_01 = { "label": "TestLinkPage", "links-to": "./pages/test-link-page", } config_01 = { "label": "TestLinkPage", "links-to": "./test-link-page", } link_page_00 = LinkPage(**config_00) link_page_01 = LinkPage(**config_01) link_page_02 = LinkPage(**config_01) assert link_page_00.links_to == normalized_page_path assert link_page_01.links_to == normalized_page_path assert link_page_02.links_to == normalized_page_path def test__LinkPage__missing_config() -> None: config_01 = { "label": "TestLinkPage", } config_02 = { "links-to": "/test-link-page", } with pytest.raises(MenuConfigError): LinkPage() with pytest.raises(MenuConfigError): LinkPage(**config_01) with pytest.raises(MenuConfigError): LinkPage(**config_02) def test__LinkURL__valid() -> None: config = { "label": "TestLinkURL", "url": "www.test-link-url.com", } link_url = LinkURL(**config) repr(link_url) assert link_url.label == "TestLinkURL" assert link_url.url == "www.test-link-url.com" def test__LinkURL__missing_config() -> None: config_01 = { "label": "TestLinkPage", } config_02 = { "url": "www.test-link-url.com", } with pytest.raises(MenuConfigError): LinkURL() with pytest.raises(MenuConfigError): LinkURL(**config_01) with pytest.raises(MenuConfigError): LinkURL(**config_02) def test__Spacer__valid() -> None: config = { "label": "TestSpacer", "size": Defaults.DEFAULT_SIZE, } spacer = Spacer(**config) repr(spacer) assert spacer.label == "TestSpacer" assert spacer.size == Defaults.DEFAULT_SIZE def test__Spacer__valid_default() -> None: spacer_default = Spacer() repr(spacer_default) assert spacer_default.label == None assert spacer_default.size == None def test__Spacer__invalid_size() -> None: config_01 = { "size": "invalid-size", } with pytest.raises(MenuConfigError): Spacer(**config_01)
from rest_framework import routers from .api import * router = routers.DefaultRouter() router.register('terms', TermsViewSet) router.register('marks', MarksViewSet) router.register('control_types', ControlTypesViewSet) router.register('records', RecordsViewSet) urlpatterns = router.urls
""" Vorter XSPRESS3 class Python class for Vortex using EPICS area detector IOC. :platform: Unix :synopsis: Python class for Vortex with xspress3 .. moduleauthor:: Douglas Araujo<douglas.araujo@lnls.br> Luciano Carneiro Guedes<luciano.guedes@lnls.br> """ from py4syn.epics.StandardDevice import StandardDevice from py4syn.epics.ICountable import ICountable from epics import PV from time import sleep, time class VortexXspress3(StandardDevice, ICountable): """ Class to control Vortex via EPICS. Examples -------- """ RESPONSE_TIMEOUT = 15 WAIT_ACQUIRING = 0.005 def onAcquireChange(self, value, **kw): self._done = (value == 0) def __init__(self, mnemonic, pv): """ **Constructor** See :class:`py4syn.epics.StandardDevice` Parameters ---------- mnemonic : `string` A mnemonic for the detector pv : `string` Base name of the EPICS process variable """ super().__init__(mnemonic) self.pvAcquire = PV(pv + ':Acquire') self.pvStatus = PV(pv + ':Acquire_RBV', callback=self.onAcquireChange) self.pvAcquireTime = PV(pv + ':AcquireTime') self.pvClear = PV(pv + ':ERASE') self.pvMcaCounters = [] self.pvStatusScan = PV(pv + ':Acquire_RBV.SCAN') self.pvStatusScan.put(9) # Channels 1-4 for i in range(1, 5): for j in range(1, 5): self.pvMcaCounters.append(PV('{}:C{}_ROI{}:Value_RBV'.format(pv, j, i))) self.pvClear.put(1, wait=True) def close(self): """ Stops an ongoing acquisition, if any, and puts the EPICS IOC in idle state. """ self._done = 1 def getIntensity(self, channel=1): return self.pvMcaCounters[channel-1].get() def getValue(self, **kwargs): if(kwargs): count = 0 value = self.getIntensity(kwargs['channel']) while (value==0 and count<3): sleep(.05) value = self.getIntensity(kwargs['channel']) count += 1 return value def setCountTime(self, t): """ Sets the image acquisition time. Parameters ---------- t : `float` Acquisition time """ self.pvAcquireTime.put(t, wait=True) def getAcquireTime(self): return self.pvAcquireTime.get() def setPresetValue(self, channel, val): """ Dummy method to set initial counter value. """ pass def startCount(self): """ Starts acquiring """ if not self._done: raise RuntimeError('Already counting') self.pvClear.put(1, wait=True) # clear the ROI value before start a new acquire self.pvAcquire.put(1) self._done = 0 # force the confirmation that the detector has already received acquire function def stopCount(self): """ Stops acquiring. This method simply calls :meth:`close`. See: :meth:`close` """ self.pvAcquire.put(0) self.close() def canMonitor(self): """ Returns false indicating that vortex cannot be used as a counter monitor. """ return False def canStopCount(self): """ Returns true indicating that vortex has a stop command. """ return True def isCounting(self): """ Returns true if the detector is acquiring, or false otherwise. Returns ------- `bool` """ return not self._done def wait(self): """ Blocks until the acquisition completes. """ while not self._done: sleep(self.WAIT_ACQUIRING) sleep(0.2)
from django.apps import AppConfig class PicturesConfig(AppConfig): name = 'pictures'
##################FILE NAME: INTERIOR.py######################## #================================================================ # author: Nitish Anand & Jozef Stuijt | # :Master Student, | # :Process and Energy Departmemt, | # :TU Delft, | # :The Netherlands | # | # email : nitish.ug2@gmail.com | # | # Description: MOC Routine: position and velocity calculator. | # : Refer Thesis or Zucrow & Hoffman for the | # : derivation of equation | # MODULE Function: | # a. InteriorPoint() | # b. InteriorPoint_Prop() | # c. AxialPoint_Prop() | # d. Inv_Wall_pnt() | # e. FlowProp() | # f. EulerPredictorCorrector() | # g. Direct_Wall_pnt() | #================================================================ # # ShortHands # EPC: Euler Predictor Corrector # PisS: PLUS is simple # MisS: MINUS is simple from srcMOC.CLASSES import * import time import pdb import math as calc from srcMOC.MASSCALC import * try: # check if import possible related to cluster import matplotlib.pyplot as plt # for plotting routines imprtplt = True except ImportError: print('\nWarining: Plotting module import unsuccesful\n') imprtplt = False #import matplotlib.pyplot as plt import sys #---------------------------------------------------------------------------------------------# # # Main code to compute the flow property of the third point from two points(P:Plus,M:Minus) # includes euler corrector predictor step # def InteriorPoint(paramP1,paramM1,IN,PisS=0,MisS=0,EPC1=1): # WORKS COMPLETELY FINE: COMPLIMETS THE SOLUTION OF BOOK Ex: 12.5 ZH-Vol2 # Added to read display #try:INFile = sys.argv[1] #except:INFile = 'MOC_Config.in' #IN = ReadUserInput(INFile) #disp = IN['PlotResults'] try: IN['File_Name_Plot'] disp = True except KeyError: disp = False #disp = IN['PlotResults'] #if (disp!='YES' and disp!='NO'): # raise IOError('Invalid Input: PlotResults') # sys.exit() flag = 0; #Check if Point on AXIS if abs(abs(paramP1.y)-abs(paramM1.y))<1e-5: param1=AxisPoint_Prop(paramP1,paramM1,IN) else: param1=InteriorPoint_Prop(paramP1,paramM1,IN,'p',PisS,MisS) # Check: Euler Predictor Corrector Yes/No if EPC1==1: param2 = EulerPredCorr(paramP1,paramM1,param1,IN) else: param2 = param1 # PLOTTING ROUTINE: Red: Positive Characteristics, Green: Negative Characterisitcs # Jozef: Added plot toggle #if (disp == 'YES'): if (disp and imprtplt): plt.figure(0) if (paramP1.y>0 or paramM1.y>0 or param2.y>0): plt.plot([paramP1.x,param2.x],[paramP1.y,param2.y],'r') plt.plot([paramM1.x,param2.x],[paramM1.y,param2.y],'g') return param2 #---------------------------------------------------------------------------------------------# # # calcualtes the flow properties of the 3rd point (intersection of 2 characterisitcs) # def InteriorPoint_Prop(paramP,paramM,IN,flag='c',PisS=0,MisS=0): NozTyp = str(IN['NozzleType']) param = Points() paramP.ThermoProp(IN) # For now always PLANAR if NozTyp == 'PLANAR': delta = 0 else: delta = 1 paramP.theta = calc.atan(paramP.v/paramP.u) try:paramP.alpha = calc.asin(paramP.a/paramP.V) except: #print('*** Error: Mach less than 1 ***\nCHECK INPUT VARIABLE') #pdb.set_trace() raise ValueError('Mach less than 1 ***\nCHECK INPUT VARIABLE') #Check if PLUS Characterisitcs is Simple Wave if PisS == 0: paramP.lam = calc.tan(paramP.theta+paramP.alpha) else: paramP.lam = calc.tan(0+paramP.alpha) paramP.Q = paramP.u**2 - paramP.a**2 paramP.R1 = (2*paramP.u*paramP.v) - (paramP.Q*paramP.lam) #If Axial Point if abs(paramP.y)<=1e-9: paramP.S = 0 else: paramP.S = delta*(paramP.a**2 * paramP.v)/paramP.y paramM.ThermoProp(IN) paramM.theta = calc.atan(paramM.v/paramM.u) paramM.alpha = calc.asin(paramM.a/paramM.V) #Check if MINUS Characterisitcs is Simple Wave if MisS == 0: paramM.lam = calc.tan(paramM.theta-paramM.alpha) else: paramM.lam = calc.tan(0-paramM.alpha) paramM.Q = paramM.u**2 - paramM.a**2 paramM.R1 = (2*paramM.u*paramM.v) - (paramM.Q*paramM.lam) #If Axial Point if abs(paramM.y)<=1e-9: paramM.S=0 else: paramM.S = delta*(paramM.a**2 * paramM.v)/paramM.y #Calculate Interior Point using P and M Point if abs(paramM.y)<=1e-9: param.x=paramM.x param.y = (paramP.lam*(param.x-paramP.x))+paramP.y elif abs(paramP.y)<=1e-9: param.x=paramP.x param.y=(paramM.lam*(param.x-paramM.x))+paramM.y else: [param.x,param.y] = Intersection([paramM.x,paramM.y],[paramP.x,paramP.y],[paramM.lam,paramP.lam]) #Calculating U and V for solution point paramP.T = paramP.S*(param.x-paramP.x)+(paramP.Q*paramP.u)+(paramP.R1*paramP.v) paramM.T = paramM.S*(param.x-paramM.x)+(paramM.Q*paramM.u)+(paramM.R1*paramM.v) if abs(paramM.Q)<=1e-9: param.u = paramP.u param.v = 0 elif abs(paramP.Q)<=1e-9: param.u = paramM.u param.v = 0 else: if abs(paramP.y)<=1e-9: param.v=0 elif abs(paramM.y)<=1e-9: param.v=0 else: if abs(((paramP.T*paramM.Q)-(paramM.T*paramP.Q)))<=1e-9: param.v = 0 elif abs(((paramM.T*paramP.Q)-(paramP.T*paramM.Q)))<=1e-9: param.v=0 else: param.v = ((paramP.T*paramM.Q)-(paramM.T*paramP.Q))/((paramM.Q*paramP.R1)-(paramP.Q*paramM.R1)) param.u = (paramM.T - (paramM.R1*param.v))/paramM.Q #Return x,y,u,v for solution point return param #---------------------------------------------------------------------------------------------# # # Calculates the flow properties of the Axis Point # def AxisPoint_Prop(paramP,paramM,IN): NozTyp = str(IN['NozzleType']) if NozTyp == 'PLANAR': delta = 0 else: delta = 1 param = Points() # PLUS Characteristics paramP.ThermoProp(IN) paramP.theta = calc.atan(paramP.v/paramP.u) paramP.alpha = calc.asin(paramP.a/paramP.V) paramP.lam = calc.tan(paramP.theta+paramP.alpha) paramP.Q = paramP.u**2 - paramP.a**2 paramP.R1 = (2*paramP.u*paramP.v) - (paramP.Q*paramP.lam) paramP.S = delta*(paramP.a**2 * paramP.v)/paramP.y # MINUS Characteristics paramM.ThermoProp(IN) paramM.theta = calc.atan(paramM.v/paramM.u) paramM.alpha = calc.asin(paramM.a/paramM.V) paramM.lam = calc.tan(paramM.theta-paramM.alpha) paramM.Q = paramM.u**2 - paramM.a**2 paramM.R1 = (2*paramM.u*paramM.v) - (paramM.Q*paramM.lam) paramM.S = delta*(paramM.a**2 * paramM.v)/paramM.y # Calculating x , y , u , v for AXIAL Solution Point [param.x,param.y] =Intersection([paramM.x,paramM.y],[paramP.x,paramP.y],[paramM.lam,paramP.lam]) param.y=0 paramM.T = paramM.S*(param.x-paramM.x)+(paramM.Q*paramM.u)+(paramM.R1*paramM.v) param.v=0 param.u = (paramM.T)/paramM.Q return param #---------------------------------------------------------------------------------------------# # # Inverse Wall Point calcualtor for the inital Nozzle expansion area [Kernel Region] # def Inv_Wall_pnt(wall,pt33,pt11,wall_ang,IN): Corr_v=float(IN['tolerance_v']) flagv=0 flagu=0 pt2 =Points() pt4 = Points() pt44 = Points() pt44.x = pt33.x #Determining PLUS/MINUS Characterisitcs if (pt33.y)<0: C = 'n' else: C = 'p' # Ref: Zucrow and Hoffman #Finding point on line pt1 & pt3 #Convergence Criteria : du $ dv < Corr_v while (abs(pt2.v-flagv)<Corr_v) & (abs(pt2.u-flagu)<Corr_v): lam31 = (pt33.y-pt11.y)/(pt33.x-pt11.x) pt2.u = pt33.u pt2.v = pt33.v lam42 =FlowProp(pt2,1,C,IN) [pt2.x,pt2.y]=Intersection([pt33.x,pt33.y],[wall.x,wall.y],[lam31,lam42]) #Rasing Error: Important to Move On to next Point in the MAIN.py(Ln:129) if pt2.x > pt11.x: raise NameError('BeyondPointp33xIWP') flagv=pt2.v flagu=pt2.u #Interpolate the U and V value pt2.u=Inter(pt33.x,pt11.x,pt33.u,pt11.u,pt2.x) pt2.v=Inter(pt33.x,pt11.x,pt33.v,pt11.v,pt2.x) #Now Finding properties at the WALL(4) pt4.m = lam42 pt4.x = wall.x pt4.y = wall.y # Special FlowProp Calculator (since, Not all value has to be calcualted) pt2 = FlowProp(pt2,2,C,IN) if C=='p': factor = 1 else: factor = -1 T = pt2.S*(pt4.x-pt2.x)+(pt2.Q*pt2.u)+(pt2.R1*pt2.v) pt4.u= T/(pt2.Q+(pt2.R1*calc.tan(calc.radians(factor*wall_ang)))) pt4.v=calc.tan(calc.radians(factor*wall_ang))*pt4.u flagu=0 flagv=0 #RETURN: Wall velocities return pt4.u,pt4.v,pt2 #---------------------------------------------------------------------------------------------# # # Calcualtes flow properties (limited) # - Used in Inv Wall Points where calc of all prop is not required def FlowProp(paramP,flag,Ctype,IN): paramP.ThermoProp(IN) NozTyp = str(IN['NozzleType']) if NozTyp == 'PLANAR': delta = 0 else: delta = 1 paramP.theta = calc.atan(paramP.v/paramP.u) paramP.alpha = calc.asin(paramP.a/paramP.V) if Ctype == 'p': paramP.lam = calc.tan(paramP.theta+paramP.alpha) else: paramP.lam = calc.tan(paramP.theta-paramP.alpha) if flag == 1: return paramP.lam elif flag ==2: paramP.Q = paramP.u**2 - paramP.a**2 paramP.R1 = (2*paramP.u*paramP.v) - (paramP.Q*paramP.lam) if abs(paramP.v)<1e-9: paramP.S = 0 else: paramP.S = delta*(paramP.a**2 * paramP.v)/paramP.y return paramP #---------------------------------------------------------------------------------------------# # # UNDER INVESTIGATION: Scrapped Code!! # NOT USED IN MAIN CODE def Direct_Wall_pnt(wall1,pt2d,wall_ang,IN): import math as calc import EulerPredCorr as EPC import matplotlib.pyplot as plt Corr_v=float(IN['tolerance_v']) pt4 =Points() if (pt2d.y)<0: C = 'n' else: C = 'p' lam42 = FlowProp(pt2d,2,C,IN) pt4.m = lam42 pt4.x = wall1.x pt4.y = wall1.y if C=='p': factor = 1 else: factor = -1 T = pt2d.S*(pt4.x-pt2d.x)+(pt2d.Q*pt2d.u)+(pt2d.R1*pt2d.v) pt4.u= T/(pt2d.Q+(pt2d.R1*calc.tan(calc.radians(factor*wall_ang)))) pt4.v=calc.tan(calc.radians(factor*wall_ang))*pt4.u Corr = int(IN['Corr_n_inv']) plt.figure(0) plt.title("Figure 0") plt.plot(pt4.x,pt4.y,'>r') return pt4.u,pt4.v,pt2d #---------------------------------------------------------------------------------------------# # # EulerPredCorr() # -Takes care of the corrector step in EPC def EulerPredCorr(paramP,paramM,param6,IN): #Property Calculator for InteriorPoint[Corrector] #-----------------------------------------------------------------------------------------# def LocalProp(paramP,paramM,P,M): NozTyp = str(IN['NozzleType']) if NozTyp == 'PLANAR': delta = 0 else: delta = 1 param =Points() #PLUS Characterisitcs paramP.ThermoProp(IN) paramM.ThermoProp(IN) paramP.theta = calc.atan(paramP.v/paramP.u) paramP.alpha = calc.asin(paramP.a/paramP.V) paramP.lam = calc.tan(paramP.theta+paramP.alpha) paramP.Q = paramP.u**2 - paramP.a**2 paramP.R1 = (2*paramP.u*paramP.v) - (paramP.Q*paramP.lam) if abs(paramP.y)<=1e-9: paramP.S = 0 else: paramP.S = delta*(paramP.a**2 * paramP.v)/paramP.y #MINUS Characterisitcs paramM.theta = calc.atan(paramM.v/paramM.u) paramM.alpha = calc.asin(paramM.a/paramM.V) paramM.lam = calc.tan(paramM.theta-paramM.alpha) paramM.Q = paramM.u**2 - paramM.a**2 paramM.R1 = (2*paramM.u*paramM.v) - (paramM.Q*paramM.lam) if abs(paramM.y)<=1e-9: paramM.S=0 else: paramM.S = delta*(paramM.a**2 * paramM.v)/paramM.y #Intersection of Points if abs(paramM.y)<=1e-9: param.x=paramM.x param.y = (paramP.lam*(param.x-paramP.x))+paramP.y elif abs(paramP.y)<=1e-9: param.x=paramP.x param.y=(paramM.lam*(param.x-paramM.x))+paramM.y else: [param.x,param.y] =Intersection([M.x,M.y],[P.x,P.y],[paramM.lam,paramP.lam]) paramP.T = paramP.S*(param.x-paramP.x)+(paramP.Q*P.u)+(paramP.R1*P.v) paramM.T = paramM.S*(param.x-paramM.x)+(paramM.Q*M.u)+(paramM.R1*M.v) if abs(paramM.Q)<=1e-9: param.u = P.u param.v = 0 elif abs(paramP.Q)<=1e-9: param.u = M.u param.v = 0 else: if abs(paramP.y)<=1e-9: param.v=0 elif abs(paramM.y)<=1e-9: param.v=0 else: if abs(((paramP.T*paramM.Q)-(paramM.T*paramP.Q)))<=1e-9: param.v = 0 elif abs(((paramM.T*paramP.Q)-(paramP.T*paramM.Q)))<=1e-9: param.v=0 else: param.v = ((paramP.T*paramM.Q)-(paramM.T*paramP.Q))/((paramM.Q*paramP.R1)-(paramP.Q*paramM.R1)) param.u = (paramM.T - (paramM.R1*param.v))/paramM.Q return param #Property Calculator for AxisPoint[Corrector] #-----------------------------------------------------------------------------------------# def LocalAxisProp(paramP,paramM,P,M): NozTyp = str(IN['NozzleType']) if NozTyp == 'PLANAR': delta = 0 else: delta = 1 param = Points() #PLUS Characterisitcs paramP.ThermoProp(IN) paramM.ThermoProp(IN) paramP.theta = calc.atan(paramP.v/paramP.u) paramP.alpha = calc.asin(paramP.a/paramP.V) paramP.lam = calc.tan(paramP.theta+paramP.alpha) paramP.Q = paramP.u**2 - paramP.a**2 paramP.R1 = (2*paramP.u*paramP.v) - (paramP.Q*paramP.lam) paramP.S = delta*(paramP.a**2 * paramP.v)/paramP.y #MINUS Characteristics paramM.theta = calc.atan(paramM.v/paramM.u) paramM.alpha = calc.asin(paramM.a/paramM.V) paramM.lam = calc.tan(paramM.theta-paramM.alpha) paramM.Q = paramM.u**2 - paramM.a**2 paramM.R1 = (2*paramM.u*paramM.v) - (paramM.Q*paramM.lam) paramM.S = delta*(paramM.a**2 * paramM.v)/paramM.y #Intersection of Points [param.x,param.y] =Intersection([M.x,M.y],[P.x,P.y],[paramM.lam,paramP.lam]) paramP.T = paramP.S*(param.x-paramP.x)+(paramP.Q*P.u)+(paramP.R1*P.v) paramM.T = paramM.S*(param.x-paramM.x)+(paramM.Q*M.u)+(paramM.R1*M.v) param.v = 0 param.u = (paramM.T - (paramM.R1*param.v))/paramM.Q return param #MAIN CODE START HERE Corr_n = 1000 tol_x = float(IN['tolerance_x']) tol_v = float(IN['tolerance_v']) paramP2 =Points() paramM2 =Points() param5 = Points() for i in range(0,int(Corr_n)): #[CHECK]: velocity Convergence if (abs(param5.y-param6.y)<tol_x)&(abs(param5.u-param6.u)<tol_v)&(abs(param5.v-param6.v)<tol_v): break else: param5 = param6 # Finding average properties [PLUS] paramP2.x = paramP.x paramP2.u = (paramP.u+param5.u)/2 paramP2.v = (paramP.v+param5.v)/2 paramP2.y = (paramP.y+param5.y)/2 # Finding average properties [MINUS] paramM2.x = paramM.x paramM2.u = (paramM.u+param5.u)/2 paramM2.v = (paramM.v+param5.v)/2 paramM2.y = (paramM.y+param5.y)/2 #[CHECK]: Spacial Convergence if abs(abs(paramP.y)-abs(paramM.y))<1e-5: param6 = LocalAxisProp(paramP2,paramM2,paramP,paramM) else: param6 = LocalProp(paramP2,paramM2,paramP,paramM) param6.ThermoProp(IN) return param6 ## ## END ##
from engine import TetrisEngine width, height = 10, 20 # standard tetris friends rules env = TetrisEngine(width, height) # Reset the environment state, character, features = env.clear() def agent(): print("Please enter the rotation and column for the current tetromino:") rotation = int(input().strip()) column = int(input().strip()) print("Rotating to {} and moving to {}".format(rotation, column)) return rotation, column done = False while not done: # Get an action from a theoretical AI agent print(str(env)) print("Current tetromino / character is {}.".format(character)) print("The current features are: {}".format(features)) rotation, column = agent() # Sim step takes action and returns results features, reward, done, _ = env.step((rotation, column))
# Generated by Django 3.1.3 on 2020-12-05 06:47 import cloudinary.models from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('hood', '0001_initial'), ] operations = [ migrations.AddField( model_name='business', name='business_profile', field=cloudinary.models.CloudinaryField(blank=True, max_length=255, null=True, verbose_name='avatar'), ), migrations.AddField( model_name='neighbourhood', name='image', field=cloudinary.models.CloudinaryField(blank=True, max_length=255, null=True, verbose_name='Profile pic'), ), migrations.AddField( model_name='post', name='image', field=cloudinary.models.CloudinaryField(blank=True, max_length=255, null=True, verbose_name='image'), ), migrations.AlterField( model_name='profile', name='image', field=cloudinary.models.CloudinaryField(default='profile.jpg', max_length=255, verbose_name='Profile pic'), ), migrations.AlterField( model_name='user', name='avatar', field=cloudinary.models.CloudinaryField(blank=True, max_length=255, null=True, verbose_name='avatar'), ), ]
import math from .utils import clamp def linear(t): return t def quadratic(t): return t * t def bezier(t): return t * t * (3.0 - (2.0 * t)) def parametric(t): t2 = t * t return t2 / (2.0 * (t2 - t) + 1.0) def spring(mass=1.0, stiffness=100.0, damping=10.0, velocity=0): # Ported from https://webkit.org/demos/spring/ w0 = math.sqrt(stiffness / mass) zeta = damping / (2.0 * math.sqrt(stiffness * mass)) if zeta < 1.0: wd = w0 * math.sqrt(1 - zeta * zeta) A = 1.0 B = (zeta * w0 - velocity) / wd else: wd = 0.0 A = 1.0 B = w0 - velocity def solve(t): if zeta < 1.0: t = math.exp(-t * zeta * w0) * (A * math.cos(wd * t) + B * math.sin(wd * t)) else: t = (A + B * t) * math.exp(-t * w0) return 1 - t return solve class Animation: def __init__(self, curve, duration=0.15, delay=0.0): self.curve = curve self.duration = duration self.delay = delay def interpolate(self, t): return self.curve(clamp((t - self.delay) / self.duration, 0.0, 1.0)) def finished(self, t): return t >= (self.duration + self.delay) def __call__(self, old_value, new_value, modifier): return AnimationExecutor(self, old_value, new_value, modifier) class AnimationExecutor: def __init__(self, animation, old_value, new_value, modifier): self.animation = animation self.old_value = old_value.copy() self.new_value = new_value.copy() self.modifier = modifier self.t = 0.0 def step(self, dt): self.t += dt pct = self.animation.interpolate(self.t) value = self.old_value.interpolate(self.new_value, pct) self.modifier(value) def finished(self): return self.animation.finished(self.t)
#!/usr/bin/env python3 """ Compare Pipfile.lock packages and versions against a requirements.txt. Raises AssertionError if packages and versions do not exactly match in both. """ import json import re from typing import List import sys """ Copyright 2020 James Williams Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ def get_requirements(file_path: str, is_piplock: bool = False) -> List[str]: """Return a requirements.txt or Pipfile.lock as a list. Pipfile.lock files are parsed and returned in requirements.txt format. """ with open(file_path) as req_file: if is_piplock: # Dict of {package: {version: xxx ...}} package_info = json.loads(req_file.read())["default"] packages = [] for name, info in package_info.items(): try: # Standard 'package[extras]==version ; markers' package = name if info.get("extras"): package += f"[{','.join(info['extras'])}]" package += info["version"] if info.get("markers"): package += f" ; {info['markers']}" packages.append(package) except KeyError: # Package installed from git url = info["git"] branch = info["ref"] egg = name # TODO raises NameError if used directly? # TODO the egg may be incorrect here in certain cases # TODO branch may be undefined packages.append(f"git+{url}@{branch}#egg={egg}") # TODO check if other ways of installing packages are missed else: # Could possibly contain lines such as '-i https://pypi.org/simple' all_lines = req_file.read().splitlines() # Match anything that is either a normal or git installed package is_package = re.compile(r"[A-Za-z0-9-\[\]]+==\d+|git\+[htps]+.+") packages = [line for line in all_lines if is_package.match(line)] return packages def compare(reqs_1: List[str], reqs_2: List[str]): """Compare 2 requirements.txt files (lists) and exit if they don't match. Lines that don't match are printed to stderr. """ diff_lock = "\n".join(list(set(reqs_1) - set(reqs_2))) diff_pip = "\n".join(list(set(reqs_2) - set(reqs_1))) if diff_lock or diff_pip: err_msg = "Requirements files do not match.\n\n" if diff_lock: err_msg += f"Found in Pipfile.lock:\n{diff_lock}\n\n" if diff_pip: err_msg += f"Found in requirements.txt:\n{diff_pip}" sys.stderr.write(err_msg) sys.exit(1) if __name__ == "__main__": lockfile = get_requirements("Pipfile.lock", is_piplock=True) pip = get_requirements("requirements.txt") compare(lockfile, pip)
### ## * << Haru Free PDF Library 2.0.0 >> -- outline_demo_jp.c ## * ## * Copyright (c) 1999-2006 Takeshi Kanno <takeshi_kanno@est.hi-ho.ne.jp> ## * ## * Permission to use, copy, modify, distribute and sell this software ## * and its documentation for any purpose is hereby granted without fee, ## * provided that the above copyright notice appear in all copies and ## * that both that copyright notice and this permission notice appear ## * in supporting documentation. ## * It is provided "as is" without express or implied warranty. ## * ## ## port to python by Li Jun ## http://groups.google.com/group/pythoncia import os, sys from ctypes import * up=2 def setlibpath(up): import sys path=os.path.normpath(os.path.split(os.path.realpath(__file__))[0]+'\..'*up) if path not in sys.path: sys.path.append(path) setlibpath(up) from haru import * from haru.c_func import * from haru.hpdf_errorcode import * for i in dir(): if 'CreateOutLine' in i: print i @HPDF_Error_Handler(None, HPDF_UINT, HPDF_UINT, c_void_p) def error_handler (error_no, detail_no, user_data): global pdf printf ("ERROR: %s, detail_no=%u\n", error_detail[error_no], detail_no) HPDF_Free (pdf) sys.exit(1) def print_page (page, page_num): HPDF_Page_SetWidth (page, 200) HPDF_Page_SetHeight (page, 300) HPDF_Page_BeginText (page) HPDF_Page_MoveTextPos (page, 50, 250) buf="Page:%d" % page_num HPDF_Page_ShowText (page, buf) HPDF_Page_EndText (page) def main(): global pdf page=[None for i in range(4)] outline=[None for i in range(4)] fname=os.path.realpath(sys.argv[0]) fname=fname[:fname.rfind('.')]+'.pdf' try: f = open ("mbtext/sjis.txt", "rb") except: printf ("error: cannot open 'mbtext/sjis.txt'\n") return 1 SAMP_TXT=f.read(2048) f.close () pdf = HPDF_New (error_handler, NULL) if (not pdf): printf ("error: cannot create PdfDoc object\n") return 1 # declaration for using Japanese encoding. HPDF_UseJPEncodings (pdf) # create default-font font = HPDF_GetFont (pdf, "Helvetica", NULL) # Set page mode to use outlines. HPDF_SetPageMode(pdf, HPDF_PAGE_MODE_USE_OUTLINE) # Add 3 pages to the document. page[0] = HPDF_AddPage (pdf) HPDF_Page_SetFontAndSize (page[0], font, 20) print_page(page[0], 1) page[1] = HPDF_AddPage (pdf) HPDF_Page_SetFontAndSize (page[1], font, 20) print_page(page[1], 2) page[2] = HPDF_AddPage (pdf) HPDF_Page_SetFontAndSize (page[2], font, 20) print_page(page[2], 3) # create outline root. root = HPDF_CreateOutLine (pdf, NULL, "OutlineRoot", NULL) HPDF_Outline_SetOpened (root, HPDF_TRUE) outline[0] = HPDF_CreateOutLine (pdf, root, "page1", NULL) outline[1] = HPDF_CreateOutLine (pdf, root, "page2", NULL) # create outline with test which is encoding outline[2] = HPDF_CreateOutLine (pdf, root, SAMP_TXT, HPDF_GetEncoder (pdf, "90ms-RKSJ-H")) # create destination objects on each pages # and link it to outline items. dst = HPDF_Page_CreateDestination (page[0]) HPDF_Destination_SetXYZ(dst, 0, HPDF_Page_GetHeight(page[0]), 1) HPDF_Outline_SetDestination(outline[0], dst) # HPDF_Catalog_SetOpenAction(dst) dst = HPDF_Page_CreateDestination (page[1]) HPDF_Destination_SetXYZ(dst, 0, HPDF_Page_GetHeight(page[1]), 1) HPDF_Outline_SetDestination(outline[1], dst) dst = HPDF_Page_CreateDestination (page[2]) HPDF_Destination_SetXYZ(dst, 0, HPDF_Page_GetHeight(page[2]), 1) HPDF_Outline_SetDestination(outline[2], dst) # save the document to a file HPDF_SaveToFile (pdf, fname) # clean up HPDF_Free (pdf) return 0 main()
#%% import os import sys try: os.chdir('/Volumes/GoogleDrive/My Drive/python_code/connectome_tools/') print(os.getcwd()) except: pass from pymaid_creds import url, name, password, token import pymaid import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt # allows text to be editable in Illustrator plt.rcParams['pdf.fonttype'] = 42 plt.rcParams['ps.fonttype'] = 42 rm = pymaid.CatmaidInstance(url, token, name, password) adj = pd.read_csv('VNC_interaction/data/brA1_axon-dendrite.csv', header = 0, index_col = 0) adj.columns = adj.columns.astype(int) #convert column names to int for easier indexing inputs = pd.read_csv('VNC_interaction/data/brA1_input_counts.csv', index_col = 0) inputs = pd.DataFrame(inputs.values, index = inputs.index, columns = ['axon_input', 'dendrite_input']) pairs = pd.read_csv('VNC_interaction/data/pairs-2020-10-26.csv', header = 0) # import pairs # %% from connectome_tools.process_matrix import Adjacency_matrix, Promat from datetime import date dVNC = pymaid.get_skids_by_annotation('mw dVNC') pre_dVNC = pymaid.get_skids_by_annotation('mw pre-dVNC') A1 = pymaid.get_skids_by_annotation('mw A1 neurons paired') A1_MN = pymaid.get_skids_by_annotation('mw A1 MN') A1_ascending = pymaid.get_skids_by_annotation('mw A1 neurons paired ascending') dSEZ = pymaid.get_skids_by_annotation('mw dSEZ') RGN = pymaid.get_skids_by_annotation('mw RGN') dVNC_to_A1 = pymaid.get_skids_by_annotation('mw dVNC to A1') br = pymaid.get_skids_by_annotation('mw brain neurons') A1_local = list(np.setdiff1d(A1, A1_ascending)) # all A1 without A1_ascending pruned_index = list(np.setdiff1d(adj.index, A1_local)) adj = adj.loc[pruned_index, pruned_index] # remove all local A1 skids from adjacency matrix VNC_adj = Adjacency_matrix(adj.values, adj.index, pairs, inputs,'axo-dendritic') # %% # paths from each A1 ascending neuron from tqdm import tqdm threshold = 0.01 hops = 3 A1_ascending = A1_ascending + Promat.get_paired_skids(2511238, pairs) # added A00c A4 as well A1_ascending_pairs = Promat.extract_pairs_from_list(A1_ascending, pairs)[0] ascending_pair_paths = [] for index in tqdm(range(0, len(A1_ascending_pairs))): ds_ascending = VNC_adj.downstream_multihop(list(A1_ascending_pairs.loc[index]), threshold, min_members = 0, hops=hops) ascending_pair_paths.append(ds_ascending) #A00c_path = VNC_adj.downstream_multihop(Promat.get_paired_skids(2511238, pairs), threshold, min_members=0, hops=hops) # added A00c A4 in (connectivity with A1 sensories/basins) #ascending_pair_paths.append(A00c_path) # %% # plotting ascending paths all_type_layers,all_type_layers_skids = VNC_adj.layer_id(ascending_pair_paths, A1_ascending_pairs.leftid, br) dVNC_A1_type_layers,_ = VNC_adj.layer_id(ascending_pair_paths, A1_ascending_pairs.leftid, dVNC_to_A1) dVNC_type_layers,_ = VNC_adj.layer_id(ascending_pair_paths, A1_ascending_pairs.leftid, dVNC) predVNC_type_layers,_ = VNC_adj.layer_id(ascending_pair_paths, A1_ascending_pairs.leftid, pre_dVNC) dSEZ_type_layers,_ = VNC_adj.layer_id(ascending_pair_paths, A1_ascending_pairs.leftid, dSEZ) RGN_type_layers,_ = VNC_adj.layer_id(ascending_pair_paths, A1_ascending_pairs.leftid, RGN) valid_ascendings = ~(all_type_layers.iloc[:, 0]==0) all_type_layers = all_type_layers[valid_ascendings] # remove all ascendings with no strong brain connections dVNC_A1_type_layers = dVNC_A1_type_layers[valid_ascendings] dVNC_type_layers = dVNC_type_layers[valid_ascendings] predVNC_type_layers = predVNC_type_layers[valid_ascendings] dSEZ_type_layers = dSEZ_type_layers[valid_ascendings] RGN_type_layers = RGN_type_layers[valid_ascendings] fig, axs = plt.subplots( 1, 4, figsize=(6, 4) ) ax = axs[0] annotations = all_type_layers.astype(int).astype(str) annotations[annotations=='0']='' sns.heatmap(all_type_layers, annot = annotations, fmt = 's', cmap = 'Greens', ax = ax, cbar = False) ax.set_yticks([]) ax.set_ylabel('Individual A1 Ascendings') ax.set(title='Pathway') ax = axs[1] annotations = dVNC_A1_type_layers.astype(int).astype(str) annotations[annotations=='0']='' sns.heatmap(dVNC_A1_type_layers, annot = annotations, fmt = 's', cmap = 'Purples', ax = ax, cbar = False) ax.set_yticks([]) ax.set_ylabel('') ax.set(title='dVNC to A1') ax = axs[2] annotations = dVNC_type_layers.astype(int).astype(str) annotations[annotations=='0']='' sns.heatmap(dVNC_type_layers, annot = annotations, fmt = 's', cmap = 'Reds', ax = ax, cbar = False) ax.set_yticks([]) ax.set_ylabel('') ax.set(title='dVNC') ax = axs[3] annotations = predVNC_type_layers.astype(int).astype(str) annotations[annotations=='0']='' sns.heatmap(predVNC_type_layers, annot = annotations, fmt = 's', cmap = 'Blues', ax = ax, cbar = False) ax.set_yticks([]) ax.set_ylabel('') ax.set(title='pre-dVNC') plt.savefig(f'VNC_interaction/plots/Threshold-{threshold}_individual_ascending_paths_hops-{hops}.pdf', bbox_inches='tight') # %% # plot by individual ascending plt.rcParams['font.size'] = 5 # split plot types by ascending pair asc_pairs_order = [21250110, 4206755, 4595609, 2511238, 8059283, # direct to dVNCs 3571478, 10929797, 3220616, 10949382, 8057753, 2123422, 4555763, 7766016] # indirect to dVNCs layer_types = [all_type_layers, dVNC_type_layers, dVNC_A1_type_layers, dSEZ_type_layers, RGN_type_layers] col = ['Greens', 'Reds', 'Oranges', 'Purples', 'GnBu'] #asc_pairs = all_type_layers.index #layer_types = [all_type_layers, dVNC_type_layers, dSEZ_type_layers, RGN_type_layers] #col = ['Greens', 'Reds', 'Purples', 'Oranges'] asc_list = [] for pair in asc_pairs_order: mat = np.zeros(shape=(len(layer_types), len(all_type_layers.columns))) for i, layer_type in enumerate(layer_types): mat[i, :] = layer_type.loc[pair] asc_list.append(mat) # loop through pairs to plot for i, asc in enumerate(asc_list): data = pd.DataFrame(asc, index = ['Total', 'dVNC', 'dVNC-A1', 'dSEZ', 'RGN']) #data = pd.DataFrame(asc, index = ['Total', 'dVNC', 'dSEZ', 'RGN']).iloc[:, 0:2] mask_list = [] for i_iter in range(0, len(data.index)): mask = np.full((len(data.index),len(data.columns)), True, dtype=bool) mask[i_iter, :] = [False]*len(data.columns) mask_list.append(mask) fig, axs = plt.subplots( 1, 1, figsize=(.5, .6) ) for j, mask in enumerate(mask_list): if((j == 0)): vmax = 500 if((j == 2)): vmax = 30 if((j in [1,3,4])): vmax = 60 ax = axs annotations = data.astype(int).astype(str) annotations[annotations=='0']='' sns.heatmap(data, annot = annotations, fmt = 's', mask = mask, cmap=col[j], vmax = vmax, cbar=False, ax = ax) plt.savefig(f'VNC_interaction/plots/individual_asc_paths/{i}_asc-{asc_pairs_order[i]}_Threshold-{threshold}_individual-path.pdf', bbox_inches='tight') plt.rcParams['font.size'] = 6 #%% # summary plots for main figure dVNC_direct = [21250110, 4206755, 4595609, 2511238, 8059283] dVNC_indirect = [3571478, 10929797, 3220616, 10949382, 8057753, 2123422, 4555763, 7766016] asc_types_name = ['dVNC-direct', 'dVNC-indirect'] asc_types = [dVNC_direct, dVNC_indirect] asc_types = [[Promat.get_paired_skids(x, pairs) for x in sublist] for sublist in asc_types] # convert leftid's to both skids from each pair asc_types = [sum(x, []) for x in asc_types] # unlist nested lists # multihop downstream type_paths = [] for index in tqdm(range(0, len(asc_types))): ds_asc = VNC_adj.downstream_multihop(list(asc_types[index]), threshold, min_members = 0, hops=hops) type_paths.append(ds_asc) #%% # summary plot continued # identifying different cell types in ascending pathways all_type_layers_types,all_type_layers_skids_types = VNC_adj.layer_id(type_paths, asc_types_name, br) # include all neurons to get total number of neurons per layer dVNC_type_layers_types,_ = VNC_adj.layer_id(type_paths, asc_types_name, dVNC) dVNC_A1_type_layers_types,_ = VNC_adj.layer_id(type_paths, asc_types_name, dVNC_to_A1) dSEZ_type_layers_types,_ = VNC_adj.layer_id(type_paths, asc_types_name, dSEZ) RGN_type_layers_types,_ = VNC_adj.layer_id(type_paths, asc_types_name, RGN) # split plot types by dVNC pair layer_types_types = [all_type_layers_types, dVNC_type_layers_types, dVNC_A1_type_layers_types, dSEZ_type_layers_types, RGN_type_layers_types] col = ['Greens', 'Reds', 'Oranges', 'Purples', 'GnBu'] asc_list_types = [] for types in asc_types_name: mat = np.zeros(shape=(len(layer_types_types), len(all_type_layers_types.columns))) for i, layer_type in enumerate(layer_types_types): mat[i, :] = layer_type.loc[types] asc_list_types.append(mat) plt.rcParams['font.size'] = 5 # loop through pairs to plot for i, asc in enumerate(asc_list_types): data = pd.DataFrame(asc, index = ['Total', 'dVNC', 'dVNC-A1', 'dSEZ', 'RGN']) #data = pd.DataFrame(asc, index = ['Total', 'dVNC', 'dSEZ', 'RGN']).iloc[:, 0:2] mask_list = [] for i_iter in range(0, len(data.index)): mask = np.full((len(data.index),len(data.columns)), True, dtype=bool) mask[i_iter, :] = [False]*len(data.columns) mask_list.append(mask) fig, axs = plt.subplots( 1, 1, figsize=(.5, .6) ) for j, mask in enumerate(mask_list): if((j == 0)): vmax = 800 if((j in [2,4])): vmax = 60 if((j in [1,3])): vmax = 100 ax = axs annotations = data.astype(int).astype(str) annotations[annotations=='0']='' sns.heatmap(data, annot = annotations, fmt = 's', mask = mask, cmap=col[j], vmax = vmax, cbar=False, ax = ax) plt.savefig(f'VNC_interaction/plots/individual_asc_paths/Type_{i}_asc-{asc_types_name[i]}_Threshold-{threshold}_individual-path.pdf', bbox_inches='tight') #%% # export ds-ascending brain neurons def readable_df(skids_list): max_length = max([len(x) for x in skids_list]) df = pd.DataFrame() for i, layer in enumerate(skids_list): skids = list(layer) if(len(layer)==0): skids = [''] if(len(skids) != max_length): skids = skids + ['']*(max_length-len(skids)) df[f'Layer {i}'] = skids return(df) all_type_layers_skids.columns = [int(x) for x in all_type_layers_skids.columns] asc_all_layers_readable = [] for column in all_type_layers_skids.columns: readable = readable_df(all_type_layers_skids.loc[:,column]) asc_all_layers_readable.append(readable) pd.concat(asc_all_layers_readable).to_csv(f'VNC_interaction/plots/individual_asc_paths/all_paths_ascending_Threshold-{threshold}.csv') # %% # ascending paths upstream of particular dVNC paths from tqdm import tqdm # setting up paramters for downstream_multihop from dVNC to A1 adj_A1 = pd.read_csv('VNC_interaction/data/axon-dendrite.csv', header = 0, index_col = 0) inputs_A1 = pd.read_csv('VNC_interaction/data/input_counts.csv', index_col = 0) inputs_A1 = pd.DataFrame(inputs_A1.values, index = inputs_A1.index, columns = ['axon_input', 'dendrite_input']) A1_adj = Adjacency_matrix(adj_A1.values, adj_A1.index, pairs, inputs_A1,'axo-dendritic') threshold = 0.01 source_dVNC, ds_dVNC = A1_adj.downstream(dVNC, threshold, exclude=dVNC) edges, ds_dVNC_cleaned = A1_adj.edge_threshold(source_dVNC, ds_dVNC, threshold, direction='downstream') edges[edges.overthres==True] source_dVNC_cleaned = np.unique(edges[edges.overthres==True].upstream_pair_id) source_dVNC_pairs = A1_adj.adj_inter.loc[(slice(None), source_dVNC_cleaned), :].index source_dVNC_pairs = [x[2] for x in source_dVNC_pairs] source_dVNC_pairs = Promat.extract_pairs_from_list(source_dVNC_pairs, pairs)[0] source_dVNC_pair_paths = [] for index in tqdm(range(0, len(source_dVNC_pairs))): ds_dVNC = A1_adj.downstream_multihop(list(source_dVNC_pairs.loc[index]), threshold, min_members = 0, hops=5) source_dVNC_pair_paths.append(ds_dVNC) # identifying ascending neurons of interest order = [16, 0, 2, 11, 1, 5, 7, 12, 13, 8, 3, 9, 10, 15, 4, 6, 14] group1 = [0,1,2,3] group2 = [4, 5, 6, 7, 8] group3 = [9, 10] group4 = [11,12,13] ascending_layers,ascending_skids = A1_adj.layer_id(source_dVNC_pair_paths, source_dVNC_pairs.leftid, A1_ascending) ascending_layers = ascending_layers.iloc[order, :] ascending_skids = ascending_skids.T.iloc[order, :] ascending_skids_allhops = [] for index in ascending_skids.index: skids_allhops = [x for sublist in ascending_skids.loc[index].values for x in sublist if x!=''] ascending_skids_allhops.append(skids_allhops) # %% # identifying ascending_paths based on ascending IDs in dVNC paths # not yet complete all_ascending_layers,all_ascending_layers_skids = VNC_adj.layer_id(ascending_pair_paths, A1_ascending_pairs.leftid, br) all_ascending_layers_skids.columns = [int(x) for x in all_ascending_layers_skids.columns] left_skids_list = [] ascending_dVNC_paths = [] for ascending_skids in ascending_skids_allhops: left_skids = Promat.extract_pairs_from_list(ascending_skids, pairs)[0].leftid.values path = all_ascending_layers_skids.loc[:, left_skids].values path_combined = [] for layers in path: layers = [x for sublist in layers for x in sublist] #if(len(layers)>1): # path_combined.append(np.concatenate(layers)) #if(len(layers)==1): # path_combined.append(layers) path_combined.append(layers) ascending_dVNC_paths.append(path_combined) left_skids_list.append(left_skids) # identify neuron types all_layers,_ = VNC_adj.layer_id(ascending_dVNC_paths, range(0, len(ascending_dVNC_paths)), VNC_adj.adj.index) # include all neurons to get total number of neurons per layer dVNC_A1_layers,dVNC_A1_layers_skids = VNC_adj.layer_id(ascending_dVNC_paths, range(0, len(ascending_dVNC_paths)), dVNC_to_A1) dVNC_layers,_ = VNC_adj.layer_id(ascending_dVNC_paths, range(0, len(ascending_dVNC_paths)), dVNC) pre_dVNC_layers,_ = VNC_adj.layer_id(ascending_dVNC_paths, range(0, len(ascending_dVNC_paths)), pre_dVNC) # ordered source dVNC pairs in same way source_dVNC_pairs_ordered = source_dVNC_pairs.loc[order, :] source_dVNC_pairs_ordered = source_dVNC_pairs_ordered.reset_index(drop=True) dVNC_A1_layers_skids.columns = source_dVNC_pairs_ordered.leftid contains_origin_list = [] for column in dVNC_A1_layers_skids.columns: path = dVNC_A1_layers_skids.loc[:, column] contains_origin = [True if x==column else False for sublist in path for x in sublist] contains_origin_list.append(sum(contains_origin)) # %%
""" Author: D. van Gent License: MIT Description: Simple Python implementation of the Ubiquiti device discovery protocol. The protocol was "reverse engineered" by capturing traffic from the "WiFiman" Android app, payload decoding is best-effort and not guaranteed to be correct. Usage: python3 ubnt-discover.py {ip-address} (default is to broadcast on 255.255.255.255) """ import socket import sys from ipaddress import IPv4Address def ubnt_discover(addr): ''' Send discovery packets to Ubnt device ''' with socket.socket(socket.AF_INET, socket.SOCK_DGRAM) as sock: sock.setsockopt(socket.SOL_SOCKET, socket.SO_BROADCAST, 1) sock.settimeout(3) for i in range(0, 3): # send sequential packets to UBNT device port = 10001 if i else 5678 # switch ports, this mimics "WiFiman" app behavior sock.sendto(i.to_bytes(4, byteorder='little'), (addr, port)) reply, srcaddr = sock.recvfrom(1024) dvc_data = [] offset = 4 # data fields start at position 4 in the reply while offset < len(reply): ftype, dlength = reply[offset], reply[offset + 2] # field type, payload length offset += 3 dvc_data.append((ftype, reply[offset:offset + dlength])) offset += dlength return dvc_data, srcaddr[0] if __name__ == '__main__': addr = sys.argv[1] if len(sys.argv) == 2 else '255.255.255.255' dvc_data, dvc_addr = ubnt_discover(addr) print(f' Reply from: {dvc_addr}') # decode the fields fields = { None: ('Unknown', lambda d: ' '.join(f'{b:02x}' for b in d)), 0x01: ('HW addr', lambda d: ':'.join(f'{b:02x}' for b in d)), 0x02: ('Address', lambda d: f"{':'.join(f'{b:02x}' for b in d[0:6])} \ ({IPv4Address(d[6:10])})"), 0x03: ('Firmware', lambda d: d.decode()), 0x0a: ('Uptime', lambda d: f"{int.from_bytes(d, byteorder='big')} seconds"), 0x0b: ('Hostname', lambda d: d.decode()), 0x0c: ('Model', lambda d: d.decode()) } for field, data in dvc_data: name, decode = fields.get(field, fields[None]) print(f'{name:>11s}: {decode(data)}') # Just for fun: grab the first global/WAN IP # This could be useful for dynamic DNS updates (through the API of your domain provider) for f, d in dvc_data: if f == 0x02: ip = IPv4Address(d[6:10]) if ip.is_global: print(f' WAN IP: {ip}') break
import asyncio import time async def count(): print("one") await asyncio.sleep(1) print("two") async def main(): await asyncio.gather(count(), count(), count()) start = time.time() asyncio.run(main()) print(time.time() - start)
import datetime import json import logging import random from sqlalchemy import func from trafficdb.blueprint.api import PAGE_LIMIT from trafficdb.models import * from .fixtures import ( create_fake_link_aliases, create_fake_links, create_fake_observations, ) from .util import ApiTestCase as TestCase, API_PREFIX, strip_url log = logging.getLogger(__name__) class TestLinkAliases(TestCase): @classmethod def create_fixtures(cls): create_fake_links(link_count=100) create_fake_link_aliases(alias_count=200) def test_all_link_aliass(self): log.info('Querying all link aliases') n_aliases = 0 n_pages = 0 # Response should look like a JSON document of the following form: # { # "aliases": [ # { # id: <string>, # linkId: <string>, # linkUrl: <url>, # } # ], # "page": { # "count": <number>, # ?"next": <url>, # }, # } # Get all data one page at a time url = API_PREFIX + '/aliases/' while url is not None: # Check we're not looping "forever" assert n_pages < 20 log.info('GET {0}'.format(url)) response = self.client.get(url) self.assertEqual(response.status_code, 200) self.assertIsNot(response.json, None) self.assertIn('aliases', response.json) self.assertIn('page', response.json) aliases = response.json['aliases'] page = response.json['page'] log.info('Got {0} aliases'.format(len(aliases))) log.info('Page structure: {0}'.format(page)) # Check each alias for v in aliases: self.assertIn('id', v) self.assertIn('linkId', v) self.assertIn('linkUrl', v) n_aliases += len(aliases) self.assertTrue(page['count'] == len(aliases)) n_pages += 1 if 'next' in page: url = strip_url(page['next']) else: url = None log.info('Got information on {0} alias(es)'.format(n_aliases)) self.assertEqual(n_aliases, 200) def test_redirect(self): # Non-canonical links URL should re-direct url = API_PREFIX + '/aliases' log.info('GET {0}'.format(url)) response = self.client.get(url) self.assertEqual(response.status_code, 301) def test_empty_document(self): log.info('Querying page beyond alias maximum') # rationale: using "Z" should be "above" any # random link alias in the db given the ordering used by Postgres. response = self.get_link_aliases(from_='Z') page, aliases = self.parse_link_aliases_response(response) self.assertEqual(len(aliases), 0) self.assertNotIn('next', page) def test_integer_from(self): # In the case of aliases, names can be just about anything and # so they could be an integer. log.info('Querying page with integer from') response = self.get_link_aliases(from_=0) page, aliases = self.parse_link_aliases_response(response) def test_negative_count(self): request_count = -3 log.info('Querying {0} aliases'.format(request_count)) response = self.get_link_aliases(count=request_count) # -ve counts should return bad request self.assertEqual(response.status_code, 400) def test_non_number_count(self): request_count = 'one' log.info('Querying {0} aliases'.format(request_count)) response = self.get_link_aliases(count=request_count) # non-numeric counts should return bad request self.assertEqual(response.status_code, 400) def test_small_counts(self): request_count = max(1,PAGE_LIMIT >> 1) assert PAGE_LIMIT > request_count log.info('Querying {0} aliases'.format(request_count)) response = self.get_link_aliases(count=request_count) page, aliases = self.parse_link_aliases_response(response) self.assertEqual(len(aliases), request_count) self.assertEqual(len(aliases), page['count']) def test_huge_counts(self): log.info('Querying 100 aliases (should be truncated)') request_count = PAGE_LIMIT * 4 log.info('Querying {0} aliases'.format(request_count)) response = self.get_link_aliases(count=request_count) page, aliases = self.parse_link_aliases_response(response) self.assertEqual(len(aliases), page['count']) self.assertTrue(len(aliases) == PAGE_LIMIT) def test_non_json_resolve_body(self): response = self.client.post(API_PREFIX + '/aliases/resolve', data='not a json document', content_type='application/json') self.assert_400(response) def test_empty_json_resolve_body(self): response = self.client.post(API_PREFIX + '/aliases/resolve', data='{}', content_type='application/json') self.assert_400(response) def test_bad_alias_list_resolve_body_1(self): response = self.client.post(API_PREFIX + '/aliases/resolve', data='{"aliases": 3}', content_type='application/json') self.assert_400(response) def test_bad_alias_list_resolve_body_1(self): response = self.client.post(API_PREFIX + '/aliases/resolve', data='{"aliases": ["one", 3]}', content_type='application/json') self.assert_400(response) def test_bad_content_type_resolve_body(self): response = self.client.post(API_PREFIX + '/aliases/resolve', data='{"aliases": []}', content_type='text/plain') self.assert_400(response) def test_empty_resolve(self): response = self.make_resolve_link_aliases_request([]) self.assert_200(response) self.assertIn('resolutions', response.json) resolutions = response.json['resolutions'] self.assertEqual(len(resolutions), 0) def gen_alias_names(self, good_count=3, bad_count=3): good_alias_names = set(r[0] for r in db.session.query(LinkAlias.name)) bad_alias_names = set('_bad_alias_{0}'.format(x) for x in range(bad_count)) alias_names = random.sample(good_alias_names, good_count) + list(bad_alias_names) random.shuffle(alias_names) return dict((n, n in good_alias_names) for n in alias_names) def test_simple_resolve(self): alias_name_map = self.gen_alias_names() query_names = list(alias_name_map.keys()) log.info('Querying aliases: {0}'.format(query_names)) response = self.make_resolve_link_aliases_request(query_names) self.assert_200(response) self.assertIn('resolutions', response.json) resolutions = response.json['resolutions'] log.info('Resolutions: {0}'.format(resolutions)) self.assertEqual(len(resolutions), len(query_names)) for name, res in zip(query_names, resolutions): res_name, res_link = res self.assertEqual(name, res_name) if alias_name_map[name]: # good link self.assertIsNotNone(res_link) self.assertIn('id', res_link) self.assertIn('url', res_link) else: # bad link self.assertIsNone(res_link) def test_single_good_resolve(self): alias_name_map = self.gen_alias_names(good_count=1, bad_count=0) query_names = list(alias_name_map.keys()) log.info('Querying aliases: {0}'.format(query_names)) response = self.make_resolve_link_aliases_request(query_names) self.assert_200(response) self.assertIn('resolutions', response.json) resolutions = response.json['resolutions'] log.info('Resolutions: {0}'.format(resolutions)) self.assertEqual(len(resolutions), len(query_names)) for name, res in zip(query_names, resolutions): res_name, res_link = res self.assertEqual(name, res_name) if alias_name_map[name]: # good link self.assertIsNotNone(res_link) self.assertIn('id', res_link) self.assertIn('url', res_link) else: # bad link self.assertIsNone(res_link) def test_single_bad_resolve(self): alias_name_map = self.gen_alias_names(good_count=0, bad_count=1) query_names = list(alias_name_map.keys()) log.info('Querying aliases: {0}'.format(query_names)) response = self.make_resolve_link_aliases_request(query_names) self.assert_200(response) self.assertIn('resolutions', response.json) resolutions = response.json['resolutions'] log.info('Resolutions: {0}'.format(resolutions)) self.assertEqual(len(resolutions), len(query_names)) for name, res in zip(query_names, resolutions): res_name, res_link = res self.assertEqual(name, res_name) if alias_name_map[name]: # good link self.assertIsNotNone(res_link) self.assertIn('id', res_link) self.assertIn('url', res_link) else: # bad link self.assertIsNone(res_link) def test_too_big_resolve(self): alias_name_map = self.gen_alias_names(good_count=PAGE_LIMIT, bad_count=PAGE_LIMIT) query_names = list(alias_name_map.keys()) log.info('Querying aliases: {0}'.format(query_names)) response = self.make_resolve_link_aliases_request(query_names) self.assert_400(response) ALIASES_PATH = API_PREFIX + '/aliases/' class TestMutation(TestCase): @classmethod def create_fixtures(cls): create_fake_links(link_count=20) def new_alias_request(self, link_data): return self.client.patch(ALIASES_PATH, data=json.dumps(link_data), content_type='application/json') def test_empty_body_request(self): response = self.client.patch(ALIASES_PATH, data='', content_type='application/json') self.assert_400(response) def test_non_json_body_request(self): response = self.client.patch(ALIASES_PATH, data='not json', content_type='application/json') self.assert_400(response) def test_no_content_type_body_request(self): response = self.client.patch(ALIASES_PATH, data='{}') self.assert_400(response) def test_empty_request(self): response = self.new_alias_request({}) self.assert_200(response) def verify_create(self, create, response): self.assert_200(response) self.assertIn('create', response.json) create_resp = response.json['create'] self.assertEqual(create_resp['count'], len(create)) # Verify by resolving response = self.make_resolve_link_aliases_request( list(cr['name'] for cr in create) ) self.assert_200(response) self.assertIn('resolutions', response.json) resolutions = response.json['resolutions'] self.assertEqual(len(resolutions), len(create)) # What do we expect? expected = {} for cr in create: expected[cr['name']] = cr['link'] log.info('resolutions: {0}'.format(resolutions)) log.info('expected: {0}'.format(expected)) for r_n, r_l in resolutions: self.assertIn(r_n, expected) self.assertEqual(r_l['id'], expected[r_n]) def test_create_single(self): create = [ dict(name='new-alias', link=self.get_some_link_id()), ] log.info('Sending create request: {0}'.format(create)) response = self.new_alias_request(dict(create=create)) self.verify_create(create, response) def test_create_multiple_identical(self): create = [ dict(name='new-alias-1', link=self.get_some_link_id()), dict(name='new-alias-1', link=self.get_some_link_id()), dict(name='new-alias-1', link=self.get_some_link_id()), ] log.info('Sending create request: {0}'.format(create)) response = self.new_alias_request(dict(create=create)) self.assert_400(response) def test_create_multiple(self): create = [ dict(name='new-alias-1', link=self.get_some_link_id()), dict(name='new-alias-2', link=self.get_some_link_id()), dict(name='new-alias-3', link=self.get_some_link_id()), ] log.info('Sending create request: {0}'.format(create)) response = self.new_alias_request(dict(create=create)) self.verify_create(create, response)
from meuusuario import * from bancodedados import salvar_usuario def novopoder(usuario, usuario2): _ = True while _: novo_poder = input('Digite seu novo poder [Administrador] ou [Usuario] : ') if verificapoder(novo_poder): if usuario2 == 'Administrador': usuario.nomeclass = novo_poder salvar_usuario(vcon, usuario, '5') print('\n' * 150) print('poder alterado com sucesso!') return usuario else: print('Acesso negado!') continue def deletar(conexao, usuario, usuario2): if usuario2.nomeclass == "Administrador": c=conexao.cursor() c.execute(f'DELETE FROM usuariosdb WHERE ID = "{usuario.id}"') conexao.commit() print('\n' * 150) print('Usuário deletado com sucesso!') else: print('Acesso negado!') def editar(usuario, usuario2): if usuario.nomeclass == 'Administrador': usuario_modificado = usuario2 _ = True while _: botao_editar_admin = input(''' | [1] Editar Usuario | | [2] Editar Senha | | [3] Editar Nome | | [4] Editar e-mail | | [5] Editar poder | | [6] Deletar usuario| | [7] Voltar | -------------------- Escolha uma [opção] do menu: ''') if botao_editar_admin not in '123456': print('Opção inválida! Tente novamente.') continue elif botao_editar_admin == '1': usuario_modificado = novousuario(usuario_modificado) return usuario_modificado elif botao_editar_admin == '2': usuario_modificado = forcenovasenha(usuario_modificado, usuario) return usuario_modificado elif botao_editar_admin == '3': usuario_modificado = novonome(usuario_modificado) return usuario_modificado elif botao_editar_admin == '4': usuario_modificado = novoemail(usuario_modificado) return usuario_modificado elif botao_editar_admin == '5': usuario_modificado = novopoder(usuario_modificado, usuario.nomeclass) return usuario_modificado elif botao_editar_admin == '6': deletar(vcon, usuario_modificado, usuario) break elif botao_editar_admin == '7': return usuario_modificado else: print('Acesso negado!')
from nornir import InitNornir from nornir.plugins.tasks.networking import netmiko_send_command from nornir.plugins.functions.text import print_result nr = InitNornir() result = nr.run(task=netmiko_send_command, command_string="show arp") print_result(result) #Nornir checks for hosts.yaml file. Based on that yaml file python executes specified command
from .. import fields, manager, model from ..interaction import GenericInteraction EVENT_TYPES_WITH_BLANK_VALUE = ( "lead_deleted", "lead_restored", "contact_deleted", "contact_restored", "company_deleted", "company_restored", "customer_deleted", "entity_merged", "task_added", "task_deleted", "task_completed", ) EVENT_TYPE_LEAD_STATUS_CHANGE = "lead_status_changed" class _EventValueField(fields._UnEditableField): def on_get_instance(self, instance, value): """ value here is what we have in value_after/value_before field For example [ { "note": { "id": 42743871 } } ], """ if instance.type in EVENT_TYPES_WITH_BLANK_VALUE: return None if instance.type == EVENT_TYPE_LEAD_STATUS_CHANGE: return value[0]["lead_status"] class Event: value_after = _EventValueField("value_after") value_before = _EventValueField("value_before") class EventsInteraction(GenericInteraction): path = "events" class Event(model.Model): type = fields._Field("type") entity_id = fields._UnEditableField("entity_id") entity_type = fields._UnEditableField("entity_type") created_by = fields._Link("created_by", "User") created_at = fields._DateTimeField("created_at") account_id = fields._UnEditableField("account_id") value_after = _EventValueField("value_after") value_before = _EventValueField("value_before") objects = manager.Manager(EventsInteraction())
import os import sys import json from flask import Flask from flask import request from prediction import Prediction app = Flask(__name__) prediction = "" aijson = "" @app.route("/model") def model(): return json.dumps(aijson) @app.route("/health") def hello(): return "aibuildpack-api" @app.route('/', methods = ['POST']) def new_data(): # CODE req = request.get_data() input = json.loads(req) target = prediction.get_prediction(input) return { "prediction" : target.tolist() } if __name__ == "__main__": aijson = json.load(sys.stdin) prediction = Prediction(aijson) if os.environ.get('VCAP_SERVICES') is None: # running locally PORT = 8080 DEBUG = True else: # running on CF PORT = int(os.getenv("PORT")) DEBUG = False app.run(host='0.0.0.0', port=PORT, debug=DEBUG)
# Step by Step Logic Gate Solver. Execute input_equation() to start the program! def input_equation(): print("Enter equation without whitespaces") equation = input() var = [] for character in equation: if(character.isalpha): if(character not in var): var.append(character) answer = fill_variable(var, equation) print("The answer is:", answer) def fill_variable(var, equation): print("The variables are the following") for v in var: if(v.isalpha()): print(v) equation_n = equation for v in var: if(v.isalpha()): print("Enter the value of:", v) temp = input() equation_n = equation_n.replace(v, temp) return calculate(equation_n) def calculate(equation): print("Calculating now") equation = list(equation) equation = solve_complement(equation) equation = solve_and(equation) equation = solve_or(equation) return equation def solve_complement(equation): unsolve = True while(unsolve): if("'" in equation): ind = equation.index("'") if(equation [ ind - 1 ] == '1'): equation [ ind - 1 ] = 0 equation.pop(ind) else: equation [ ind - 1] = 1 equation.pop(ind) else: print("Solved Complements") print(equation) unsolve = False return equation def solve_and(equation): unsolve = True while(unsolve): if("." in equation): ind = equation.index(".") if(equation[ind - 1] == '1'): if(equation[ind + 1] == '1'): equation[ ind ] = '1' equation.pop(ind - 1), equation.pop(ind) else: equation[ ind ] = '0' equation.pop(ind - 1), equation.pop(ind) else: equation[ ind ] = '0' equation.pop(ind - 1) equation.pop(ind) else: print("Solved AND") print(equation) unsolve = False return equation def solve_or(equation): unsolve = True while(unsolve): if("+" in equation): ind = equation.index("+") if(equation[ind - 1] == '0'): if(equation[ind + 1] == '0'): equation[ ind ] = '0' equation.pop(ind - 1), equation.pop(ind) else: equation [ ind ] = '1' equation.pop(ind - 1) equation.pop(ind) else: equation[ ind ] = '1' equation.pop(ind - 1) equation.pop(ind) else: print("Solved OR") print(equation) unsolve = False return equation input_equation()
# Generated by Django 3.1.5 on 2021-10-12 18:06 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('classes', '0004_auto_20211009_1840'), ('code_analysis', '0017_auto_20211008_2219'), ] operations = [ migrations.AddField( model_name='solution', name='course', field=models.ForeignKey(null=True, on_delete=django.db.models.deletion.CASCADE, to='classes.course'), ), ]
# dummy/proxy tz module import utime from utime import mktime, localtime TZ = 1 # UTC+1 def isdst(ts): return bool(utime.localtime(ts)[8]) def utcoffset(ts=None): if ts is None: ts = utime.time() offset = TZ * 3600 if isdst(ts): offset += 3600 return offset
import numpy as np from numpy import pi import logging import h5py from numpy import pi import logging, os from .Diagnostics import * from .Saving import * class Model(object): """ Python class that represents the barotropic quasigeostrophic pseudospectral model in a doubly periodic domain. Physical parameters observe SI units. Parameters ----------- nx: integer (optional) Number of grid points in the x-direction. The number of modes is nx/2+1. ny: integer (optional) Number of grid points in the y-direction. If None, then ny=nx. L: float (optional) Domain size. dt: float (optional) Time step for time integration. twrite: integer (optional) Print model status to screen every twrite time steps. tmax: float (optional) Total time of simulation. U: float (optional) Uniform zonal flow use_filter: bool (optional) If True, then uses exponential spectral filter. nu4: float (optional) Fouth-order hyperdiffusivity of potential vorticity. nu: float (optional) Diffusivity of potential vorticity. mu: float (optional) Linear drag of potential vorticity. passive_scalar: bool (optional) If True, then calculates passive scalar solution. nu4c: float (optional) Fouth-order hyperdiffusivity of passive scalar. nuc: float (optional) Diffusivity of passive scalar. muc: float (optional) Linear drag of passive scalar. dealias: bool (optional) If True, then dealias solution using 2/3 rule. save_to_disk: bool (optional) If True, then save parameters and snapshots to disk. overwrite: bool (optional) If True, then overwrite extant files. tsave_snapshots: integer (optional) Save snapshots every tsave_snapshots time steps. tdiags: integer (optional) Calculate diagnostics every tdiags time steps. path: string (optional) Location for saving output files. """ def __init__( self, nx=128, ny=None, L=5e5, dt=10000., twrite=1000, tswrite=10, tmax=250000., use_filter = True, U = .0, nu4=5.e9, nu = 0, mu = 0, beta = 0, passive_scalar = False, nu4c = 5.e9, nuc = 0, muc = 0, dealias = False, save_to_disk=False, overwrite=True, tsave_snapshots=10, tdiags = 10, path = 'output/', use_mkl=False, nthreads=1): self.nx = nx self.ny = nx self.L = L self.W = L self.dt = dt self.twrite = twrite self.tswrite = tswrite self.tmax = tmax self.tdiags = tdiags self.passive_scalar = passive_scalar self.dealias = dealias self.U = U self.beta = beta self.nu4 = nu4 self.nu = nu self.mu = mu self.nu4c = nu4c self.nuc = nuc self.muc = muc self.save_to_disk = save_to_disk self.overwrite = overwrite self.tsnaps = tsave_snapshots self.path = path self.use_filter = use_filter self.use_mkl = use_mkl self.nthreads = nthreads self._initialize_logger() self._initialize_grid() self._allocate_variables() self._initialize_filter() self._initialize_etdrk4() self._initialize_time() initialize_save_snapshots(self, self.path) save_setup(self, ) self.cflmax = .5 self._initialize_fft() self._initialize_diagnostics() def _allocate_variables(self): """ Allocate variables so that variable addresses are close in memory. """ self.dtype_real = np.dtype('float64') self.dtype_cplx = np.dtype('complex128') self.shape_real = (self.ny, self.nx) self.shape_cplx = (self.ny, self.nx//2+1) # vorticity self.q = np.zeros(self.shape_real, self.dtype_real) self.qh = np.zeros(self.shape_cplx, self.dtype_cplx) self.qh0 = np.zeros(self.shape_cplx, self.dtype_cplx) self.qh1 = np.zeros(self.shape_cplx, self.dtype_cplx) # stream function self.p = np.zeros(self.shape_real, self.dtype_real) self.ph = np.zeros(self.shape_cplx, self.dtype_cplx) def run_with_snapshots(self, tsnapstart=0., tsnapint=432000.): """ Run the model for prescribed time and yields to user code. Parameters ---------- tsnapstart : float The timestep at which to begin yielding. tstapint : int (number of time steps) The interval at which to yield. """ tsnapints = np.ceil(tsnapint/self.dt) while(self.t < self.tmax): self._step_forward() if self.t>=tsnapstart and (self.tc%tsnapints)==0: yield self.t return def run(self): """ Run the model until the end (`tmax`). The algorithm is: 1) Save snapshots (i.e., save the initial condition). 2) Take a tmax/dt steps forward. 3) Save diagnostics. """ # save initial conditions if self.save_to_disk: if self.passive_scalar: save_snapshots(self,fields=['t','q','c']) else: save_snapshots(self,fields=['t','q']) # run the model while(self.t < self.tmax): self._step_forward() # save diagnostics if self.save_to_disk: save_diagnostics(self) def _step_forward(self): """ Step solutions forwards. The algorithm is: 1) Take one time step with ETDRK4 scheme. 2) Incremente diagnostics. 3) Print status. 4) Save snapshots. """ self._step_etdrk4() increment_diagnostics(self,) self._print_status() save_snapshots(self,fields=['t','q','c']) def _initialize_time(self): """ Initialize model clock and other time variables. """ self.t=0 # time self.tc=0 # time-step number ### initialization routines, only called once at the beginning ### def _initialize_grid(self): """ Create spatial and spectral grids and normalization constants. """ self.x,self.y = np.meshgrid( np.arange(0.5,self.nx,1.)/self.nx*self.L, np.arange(0.5,self.ny,1.)/self.ny*self.W ) self.dk = 2.*pi/self.L self.dl = 2.*pi/self.L # wavenumber grids self.nl = self.ny self.nk = self.nx//2+1 self.ll = self.dl*np.append( np.arange(0.,self.nx/2), np.arange(-self.nx/2,0.) ) self.kk = self.dk*np.arange(0.,self.nk) self.k, self.l = np.meshgrid(self.kk, self.ll) self.ik = 1j*self.k self.il = 1j*self.l # physical grid spacing self.dx = self.L / self.nx self.dy = self.W / self.ny # constant for spectral normalizations self.M = self.nx*self.ny # isotropic wavenumber^2 grid # the inversion is not defined at kappa = 0 self.wv2 = self.k**2 + self.l**2 self.wv = np.sqrt( self.wv2 ) self.wv4 = self.wv2**2 iwv2 = self.wv2 != 0. self.wv2i = np.zeros_like(self.wv2) self.wv2i[iwv2] = self.wv2[iwv2]**-1 def _initialize_background(self): raise NotImplementedError( 'needs to be implemented by Model subclass') def _initialize_inversion_matrix(self): raise NotImplementedError( 'needs to be implemented by Model subclass') def _initialize_forcing(self): raise NotImplementedError( 'needs to be implemented by Model subclass') def _initialize_filter(self): """Set up spectral filter or dealiasing.""" if self.use_filter: cphi=0.65*pi wvx=np.sqrt((self.k*self.dx)**2.+(self.l*self.dy)**2.) self.filtr = np.exp(-23.6*(wvx-cphi)**4.) self.filtr[wvx<=cphi] = 1. self.logger.info(' Using filter') elif self.dealias: self.filtr = np.ones_like(self.wv2) self.filtr[self.nx/3:2*self.nx/3,:] = 0. self.filtr[:,self.ny/3:2*self.ny/3] = 0. self.logger.info(' Dealiasing with 2/3 rule') else: self.filtr = np.ones_like(self.wv2) self.logger.info(' No dealiasing; no filter') def _do_external_forcing(self): pass def _initialize_logger(self): """ Initialize logger. """ self.logger = logging.getLogger(__name__) fhandler = logging.StreamHandler() formatter = logging.Formatter('%(levelname)s: %(message)s') fhandler.setFormatter(formatter) if not self.logger.handlers: self.logger.addHandler(fhandler) self.logger.setLevel(10) # this prevents the logger from propagating into the ipython notebook log self.logger.propagate = False self.logger.info(' Logger initialized') def _step_etdrk4(self): """ Take one step forward using an exponential time-dfferencing method with a Runge-Kutta 4 scheme. Rereferences ------------ See Cox and Matthews, J. Comp. Physics., 176(2):430-455, 2002. Kassam and Trefethen, IAM J. Sci. Comput., 26(4):1214-233, 2005. """ self.qh0 = self.qh.copy() Fn0 = -self.jacobian_psi_q() self.qh = (self.expch_h*self.qh0 + Fn0*self.Qh)*self.filtr self.qh1 = self.qh.copy() if self.passive_scalar: self.ch0 = self.ch.copy() Fn0c = -self.jacobian_psi_c() self.ch = (self.expch_hc*self.ch0 + Fn0c*self.Qhc)*self.filtr self.ch1 = self.ch.copy() self._calc_derived_fields() c1 = self._calc_ep_c() self._invert() k1 = self._calc_ep_psi() Fna = -self.jacobian_psi_q() self.qh = (self.expch_h*self.qh0 + Fna*self.Qh)*self.filtr if self.passive_scalar: Fnac = -self.jacobian_psi_c() self.ch = (self.expch_hc*self.ch0 + Fnac*self.Qhc)*self.filtr self._calc_derived_fields() c2 = self._calc_ep_c() self._invert() k2 = self._calc_ep_psi() Fnb = -self.jacobian_psi_q() self.qh = (self.expch_h*self.qh1 + ( 2.*Fnb - Fn0 )*self.Qh)*self.filtr if self.passive_scalar: Fnbc = -self.jacobian_psi_c() self.ch = (self.expch_hc*self.ch1 + ( 2.*Fnbc - Fn0c )*self.Qhc)*self.filtr self._calc_derived_fields() c3 = self._calc_ep_c() self._invert() k3 = self._calc_ep_psi() Fnc = -self.jacobian_psi_q() self.qh = (self.expch*self.qh0 + Fn0*self.f0 + 2.*(Fna+Fnb)*self.fab\ + Fnc*self.fc)*self.filtr if self.passive_scalar: Fncc = -self.jacobian_psi_c() self.ch = (self.expchc*self.ch0 + Fn0c*self.f0c+ 2.*(Fnac+Fnbc)*self.fabc\ + Fncc*self.fcc)*self.filtr self._calc_derived_fields() c4 = self._calc_ep_c() self.cvar += self.dt*(c1 + 2*(c2+c3) + c4)/6. # invert self._invert() # calcuate q self.q = self.ifft(self.qh).real if self.passive_scalar: self.c = self.ifft(self.ch).real k4 = self._calc_ep_psi() self.Ke += self.dt*(k1 + 2*(k2+k3) + k4)/6. def _initialize_etdrk4(self): """ Compute coefficients of the exponential time-dfferencing method with a Runge-Kutta 4 scheme. Rereferences ------------ See Cox and Matthews, J. Comp. Physics., 176(2):430-455, 2002. Kassam and Trefethen, IAM J. Sci. Comput., 26(4):1214-233, 2005. """ # # coefficients for q-equation # # the exponent for the linear part c = np.zeros((self.nl,self.nk),self.dtype_cplx) c += -self.nu4*self.wv4 - self.nu*self.wv2 - self.mu - 1j*self.k*self.U c += self.beta*self.ik*self.wv2i ch = c*self.dt self.expch = np.exp(ch) self.expch_h = np.exp(ch/2.) self.expch2 = np.exp(2.*ch) M = 32. # number of points for line integral in the complex plane rho = 1. # radius for complex integration r = rho*np.exp(2j*np.pi*((np.arange(1.,M+1))/M)) # roots for integral LR = ch[...,np.newaxis] + r[np.newaxis,np.newaxis,...] LR2 = LR*LR LR3 = LR2*LR self.Qh = self.dt*(((np.exp(LR/2.)-1.)/LR).mean(axis=-1)) self.f0 = self.dt*( ( ( -4. - LR + ( np.exp(LR)*( 4. - 3.*LR + LR2 ) ) )/ LR3 ).mean(axis=-1) ) self.fab = self.dt*( ( ( 2. + LR + np.exp(LR)*( -2. + LR ) )/ LR3 ).mean(axis=-1) ) self.fc = self.dt*( ( ( -4. -3.*LR - LR2 + np.exp(LR)*(4.-LR) )/ LR3 ).mean(axis=-1) ) if self.passive_scalar: # # coefficients for c-equation # # the exponent for the linear part c = np.zeros((self.nl,self.nk),self.dtype_cplx) c += -self.nu4c*self.wv4 - self.nuc*self.wv2 - self.muc ch = c*self.dt self.expchc = np.exp(ch) self.expch_hc = np.exp(ch/2.) self.expch2c = np.exp(2.*ch) r = rho*np.exp(2j*np.pi*((np.arange(1.,M+1))/M)) # roots for integral LR = ch[...,np.newaxis] + r[np.newaxis,np.newaxis,...] LR2 = LR*LR LR3 = LR2*LR self.Qhc = self.dt*(((np.exp(LR/2.)-1.)/LR).mean(axis=-1)) self.f0c = self.dt*( ( ( -4. - LR + ( np.exp(LR)*( 4. - 3.*LR + LR2 ) ) )/ LR3 ).mean(axis=-1) ) self.fabc = self.dt*( ( ( 2. + LR + np.exp(LR)*( -2. + LR ) )/ LR3 ).mean(axis=-1) ) self.fcc = self.dt*( ( ( -4. -3.*LR - LR2 + np.exp(LR)*(4.-LR) )/ LR3 ).mean(axis=-1) ) def jacobian_psi_q(self): """ Compute the advective term–––the Jacobian between psi and q. Returns ------- complex array of floats The Fourier transform of Jacobian(psi,q) """ self.u, self.v = self.ifft(-self.il*self.ph).real, self.ifft(self.ik*self.ph).real q = self.ifft(self.qh).real return self.ik*self.fft(self.u*q) + self.il*self.fft(self.v*q) def jacobian_psi_c(self): """ Compute the advective term of the passive scalar equation–––the Jacobian between psi and c. Returns ------- complex array of floats The Fourier transform of Jacobian(psi,c) """ self.c = self.ifft(self.ch).real return self.ik*self.fft(self.u*self.c) + self.il*self.fft(self.v*self.c) def _invert(self): """ Calculate the streamfunction given the potential vorticity. """ # invert for psi self.ph = -self.wv2i*(self.qh) # physical space self.p = self.ifft(self.ph) def set_q(self,q): """ Initialize the potential vorticity. Parameters ---------- q: an array of floats of dimension (nx,ny): The potential vorticity in physical space. """ self.q = q self.qh = self.fft(self.q) self._invert() self.Ke = self._calc_ke_qg() def set_c(self,c): """ Initialize the potential vorticity. Parameters ---------- c: an array of floats of dimension (nx,ny): The passive scalar in physical space. """ self.c = c self.ch = self.fft(self.c) self.cvar = self.spec_var(self.ch) def _initialize_fft(self): """ Define the two-dimensional FFT methods. """ # need to fix bug in mkl_fft.irfft2 if self.use_mkl: #import mkl #mkl.set_num_threads(self.nthreads) #import mkl_fft #self.fft = (lambda x : mkl_fft.rfft2(x)) #self.ifft = (lambda x : mkl_fft.irfft2(x)) pass else: pass self.fft = (lambda x : np.fft.rfft2(x)) self.ifft = (lambda x : np.fft.irfft2(x)) def _print_status(self): """ Print out the the model status. Step: integer Number of time steps completed Time: float The elapsed time. P: float The percentage of simulation completed. Ke: float The geostrophic kinetic energy. CFL: float The CFL number. """ self.tc += 1 self.t += self.dt if (self.tc % self.twrite)==0: self.ke = self._calc_ke_qg() self.cfl = self._calc_cfl() self.logger.info('Step: %i, Time: %4.3e, P: %4.3e , Ke: %4.3e, CFL: %4.3f' , self.tc,self.t, self.t/self.tmax, self.ke, self.cfl ) assert self.cfl<self.cflmax, self.logger.error('CFL condition violated') def _calc_ke_qg(self): """ Compute geostrophic kinetic energy, Ke. """ return 0.5*self.spec_var(self.wv*self.ph) def _calc_ens(self): """ Compute geostrophic potential enstrophy. """ return 0.5*self.spec_var(self.qh) def _calc_ep_psi(self): """ Compute dissipation of Ke """ lap2psi = self.ifft(self.wv4*self.ph) lapq = self.ifft(-self.wv2*self.qh) return self.nu4*(self.q*lap2psi).mean() - self.nu*(self.p*lapq).mean()\ + self.mu*(self.p*self.q).mean() def _calc_ep_c(self): """ Compute dissipation of C2 """ return -2*self.nu4c*(self.lapc**2).mean() - 2*self.nu*self.gradC2\ - 2*self.muc*self.C2 def _calc_chi_c(self): """ Compute dissipation of gradC2 """ lap2c = self.ifft(self.wv4*self.ch) return 2*self.nu4c*(lap2c*self.lapc).mean() - 2*self.nu*(self.lapc**2).mean()\ - 2*self.muc*self.gradC2 def _calc_chi_q(self): """" Calculates dissipation of geostrophic potential enstrophy, S. """ return -self.nu4*self.spec_var(self.wv2*self.qh) def spec_var(self, ph): """ Compute variance of a variable `p` from its Fourier transform `ph` """ var_dens = 2. * np.abs(ph)**2 / self.M**2 # only half of coefs [0] and [nx/2+1] due to symmetry in real fft2 var_dens[:,0] *= 0.5 var_dens[:,-1] *= 0.5 # remove mean var_dens[0,0] = 0 return var_dens.sum() def _calc_cfl(self): """ Compute the CFL number. """ # avoid destruction by fftw self.u = self.ifft(-self.il*self.ph) self.v = self.ifft(self.ik*self.ph) return np.abs(np.hstack([self.u, self.v])).max()*self.dt/self.dx def _initialize_diagnostics(self): """ Initialize the diagnostics dictionary with each diganostic and an entry. """ self.diagnostics = dict() add_diagnostic(self,'time', description='Time', units='seconds', types = 'scalar', function = (lambda self: self.t) ) add_diagnostic(self, 'ke_qg', description='Quasigeostrophic Kinetic Energy', units=r'm^2 s^{-2}', types = 'scalar', function = (lambda self: self._calc_ke_qg()) ) add_diagnostic(self, 'Ke', description='Quasigeostrophic Kinetic Energy, from energy equation', units=r'm^2 s^{-2}', types = 'scalar', function = (lambda self: self.Ke) ) add_diagnostic(self,'ens', description='Quasigeostrophic Potential Enstrophy', units=r's^{-2}', types = 'scalar', function = (lambda self: 0.5*(self.q**2).mean()) ) add_diagnostic(self, 'ep_psi', description='The hyperviscous dissipation of QG kinetic energy', units=r'$m^2 s^{-3}$', types = 'scalar', function = (lambda self: self._calc_ep_psi()) ) add_diagnostic(self, 'chi_q', description='The hyperviscous dissipation of QG kinetic energy', units=r'$s^{-3}$', types = 'scalar', function = (lambda self: self._calc_chi_q()) ) add_diagnostic(self, 'C2', description='Passive tracer variance', units=r'[scalar]^2', types = 'scalar', function = (lambda self: self.C2) ) add_diagnostic(self, 'cvar', description='Passive tracer variance, from variance equation', units=r'[scalar]^2', types = 'scalar', function = (lambda self: self.cvar) ) add_diagnostic(self, 'gradC2', description='Gradient of Passive tracer variance', units=r'[scalar]^2 / m^2', types = 'scalar', function = (lambda self: self.gradC2) ) add_diagnostic(self, 'Gamma_c', description='Rate of generation of passive tracer gradient variance', units=r'[scalar]^2 / (m^2 s)', types = 'scalar', function = (lambda self: self.Gamma_c) ) add_diagnostic(self, 'ep_c', description='The dissipation of tracer variance', units=r'$s^{-3}$', types = 'scalar', function = (lambda self: self._calc_ep_c()) ) add_diagnostic(self, 'chi_c', description='The dissipation of tracer gradient variance', units=r'$s^{-3}$', types = 'scalar', function = (lambda self: self._calc_chi_c()) ) def _calc_derived_fields(self): """ Compute derived fields necessary for model diagnostics. """ if self.passive_scalar: self.C2 = self.spec_var(self.ch) self.gradC2 = self.spec_var(self.wv*self.ch) self.lapc = self.ifft(-self.wv2*self.ch) self.Gamma_c = 2*(self.lapc*self.ifft(self.jacobian_psi_c())).mean() else: self.C2, self.gradC2, self.cvar = 0., 0., 0. self.c, self.ch = 0., 0. self.lapc, self.Gamma_c = np.array([0.]), 0.
# Generated by Django 3.1.2 on 2020-12-24 14:21 from django.db import migrations import phonenumber_field.modelfields class Migration(migrations.Migration): dependencies = [ ('apis', '0021_auto_20201218_2020'), ] operations = [ migrations.AlterField( model_name='userapimodel', name='phone_number', field=phonenumber_field.modelfields.PhoneNumberField(default='+12125552368', max_length=128, region=None), ), ]
#!/usr/bin/python """ meta.py Another "thin waist" of the interpreter. It can be happen at compile time! We are following the code <-> data pattern, and this is the "data" module. id_kind and asdl are the "code" modules. Usage: from osh.meta import Id, Kind, ast, ID_SPEC """ from asdl import py_meta from asdl import asdl_ as asdl from core import id_kind from core import util class Id(object): """Token and op type. The evaluator must consider all Ids. NOTE: We add a bunch of class attributes that are INSTANCES of this class, e.g. Id.Lit_Chars. """ def __init__(self, enum_value): self.enum_value = enum_value def __repr__(self): return IdName(self) class Kind(object): """A coarser version of Id, used to make parsing decisions.""" # TODO: The Kind type should be folded into ASDL. It can't print itself, # which is inconsistent with Id. pass class _AsdlModule(object): """Dummy object to copy attributes onto.""" pass _ID_TO_KIND = {} # int -> Kind def LookupKind(id_): return _ID_TO_KIND[id_.enum_value] _ID_NAMES = {} # int -> string def IdName(id_): return _ID_NAMES[id_.enum_value] # Keep one instance of each Id, to save memory and enable comparison by # OBJECT IDENTITY. # Do NOT create any any more instances of them! Always used IdInstance(). # TODO: Fold Id into ASDL, which will enforce uniqueness? _ID_INSTANCES = {} # int -> Id def IdInstance(i): return _ID_INSTANCES[i] # # Instantiate osh/types.asdl # f = util.GetResourceLoader().open('osh/types.asdl') _asdl_module, _type_lookup = asdl.LoadSchema(f, {}) # no app_types types = _AsdlModule() if 0: py_meta.MakeTypes(_asdl_module, types, _type_lookup) else: # Exported for the generated code to use TYPES_TYPE_LOOKUP = _type_lookup # Get the types from elsewhere from _devbuild.gen import types_asdl py_meta.AssignTypes(types_asdl, types) f.close() # Id -> bool_arg_type_e BOOL_ARG_TYPES = {} # type: dict # Used by test_builtin.py TEST_UNARY_LOOKUP = {} TEST_BINARY_LOOKUP = {} TEST_OTHER_LOOKUP = {} # # Instantiate the spec # ID_SPEC = id_kind.IdSpec(Id, Kind, _ID_NAMES, _ID_INSTANCES, _ID_TO_KIND, BOOL_ARG_TYPES) id_kind.AddKinds(ID_SPEC) id_kind.AddBoolKinds(ID_SPEC, Id, types.bool_arg_type_e) # must come second id_kind.SetupTestBuiltin(Id, Kind, ID_SPEC, TEST_UNARY_LOOKUP, TEST_BINARY_LOOKUP, TEST_OTHER_LOOKUP, types.bool_arg_type_e) # Debug _kind_sizes = ID_SPEC.kind_sizes APP_TYPES = {'id': asdl.UserType(Id)} # # Instantiate osh/osh.asdl # f = util.GetResourceLoader().open('osh/osh.asdl') _asdl_module, _type_lookup = asdl.LoadSchema(f, APP_TYPES) ast = _AsdlModule() if 0: py_meta.MakeTypes(_asdl_module, ast, _type_lookup) else: # Exported for the generated code to use OSH_TYPE_LOOKUP = _type_lookup # Get the types from elsewhere from _devbuild.gen import osh_asdl py_meta.AssignTypes(osh_asdl, ast) f.close() # # Instantiate core/runtime.asdl # f = util.GetResourceLoader().open('core/runtime.asdl') _asdl_module, _type_lookup = asdl.LoadSchema(f, APP_TYPES) runtime = _AsdlModule() if 0: py_meta.MakeTypes(_asdl_module, runtime, _type_lookup) else: # Exported for the generated code to use RUNTIME_TYPE_LOOKUP = _type_lookup # Get the types from elsewhere from _devbuild.gen import runtime_asdl py_meta.AssignTypes(runtime_asdl, runtime) f.close() # # Redirect Tables associated with IDs # # These might be osh specific. # REDIR_DEFAULT_FD = { # filename Id.Redir_Less: 0, # cat <input.txt means cat 0<input.txt Id.Redir_Great: 1, Id.Redir_DGreat: 1, Id.Redir_Clobber: 1, Id.Redir_LessGreat: 1, # TODO: What does echo <>foo do? # descriptor Id.Redir_GreatAnd: 1, # echo >&2 means echo 1>&2 Id.Redir_LessAnd: 0, # echo <&3 means echo 0<&3, I think Id.Redir_TLess: 0, # here word # here docs included Id.Redir_DLess: 0, Id.Redir_DLessDash: 0, } redir_arg_type_e = types.redir_arg_type_e REDIR_ARG_TYPES = { # filename Id.Redir_Less: redir_arg_type_e.Path, Id.Redir_Great: redir_arg_type_e.Path, Id.Redir_DGreat: redir_arg_type_e.Path, Id.Redir_Clobber: redir_arg_type_e.Path, Id.Redir_LessGreat: redir_arg_type_e.Path, # descriptor Id.Redir_GreatAnd: redir_arg_type_e.Desc, Id.Redir_LessAnd: redir_arg_type_e.Desc, Id.Redir_TLess: redir_arg_type_e.Here, # here word # note: here docs aren't included }
import sys from PyQt5.QtWidgets import QApplication, QWidget from PyQt5.uic.Compiler.qtproxies import QtGui import pyqtgraph.opengl as gl import numpy as np from pyqtgraph import Vector class ChartWidget3D(QWidget): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.w = gl.GLViewWidget() self.w.opts["elevation"]=90 self.w.opts["azimuth"]=0 self.w.opts['distance'] = 500 # self.w.setWindowOpacity(0) # self.w.show() # self.w.setBackgroundColor((88,88,88)) self.w.setParent(self) self.w.move(0,0) # self.show() def setData(self,img): data=np.array(img.convert("L")) w,h=data.shape step=np.random.randint(100,255)/w/255 for row in range(w): lines = [] for col in range(h): g = [row, col, data[row][col]] lines.append(g) # colors.append(img.getpixel((row,col))) # _r/=255 _r=row*step color=(1-_r,.1,_r,.3) plt = gl.GLLinePlotItem(pos=np.array(lines),color=color, width=1, antialias=True) self.w.addItem(plt) # plt=gl.GLScatterPlotItem(pos=np.array(line), color=color, size=2, pxMode=False) # self.w.addItem(plt) self.w.opts['center']= Vector(w//2,h/2) # self.gx = gl.GLGridItem() # self.gx.setSize(255,w,1) # self.gx.rotate(90, 0, 1, 0) # self.gx.translate(0, h//2, 255//2) # self.w.addItem(self.gx) # # self.gy = gl.GLGridItem() # self.gy.setSize(h,255 , 1) # self.gy.rotate(90, 1, 0, 0) # self.gy.translate(w//2,0, 255//2) # self.w.addItem(self.gy) # # # self.gz = gl.GLGridItem() # self.gz.setSize(w, h, 1) # self.gz.translate(w//2, h//2, 0) # self.w.addItem(self.gz) # data = data.T # w,h=data.shape # for row in range(w): # line=[] # # for col in range(h): # g=[col,row,data[row][col]] # line.append(g) # # colors.append(img.getpixel((row,col))) # plt = gl.GLLinePlotItem(pos=np.array(line), color=(0.,1.,0.,1), width=1, antialias=True) # self.w.addItem(plt) def resizeEvent(self, event: QtGui.QResizeEvent) -> None: self.w.setFixedWidth(self.width()) self.w.setFixedHeight(self.height()) if __name__ == '__main__': app=QApplication(sys.argv) cw=ChartWidget3D() cw.show() app.exit(app.exec_())
""" Cisco_IOS_XR_wdsysmon_fd_oper This module contains a collection of YANG definitions for Cisco IOS\-XR wdsysmon\-fd package operational data. This module contains definitions for the following management objects\: system\-monitoring\: Processes operational data Copyright (c) 2013\-2018 by Cisco Systems, Inc. All rights reserved. """ from collections import OrderedDict from ydk.types import Entity, EntityPath, Identity, Enum, YType, YLeaf, YLeafList, YList, LeafDataList, Bits, Empty, Decimal64 from ydk.filters import YFilter from ydk.errors import YError, YModelError from ydk.errors.error_handler import handle_type_error as _handle_type_error class SystemMonitoring(Entity): """ Processes operational data .. attribute:: cpu_utilization Processes CPU utilization information **type**\: list of :py:class:`CpuUtilization <ydk.models.cisco_ios_xr.Cisco_IOS_XR_wdsysmon_fd_oper.SystemMonitoring.CpuUtilization>` """ _prefix = 'wdsysmon-fd-oper' _revision = '2015-11-09' def __init__(self): super(SystemMonitoring, self).__init__() self._top_entity = None self.yang_name = "system-monitoring" self.yang_parent_name = "Cisco-IOS-XR-wdsysmon-fd-oper" self.is_top_level_class = True self.has_list_ancestor = False self.ylist_key_names = [] self._child_classes = OrderedDict([("cpu-utilization", ("cpu_utilization", SystemMonitoring.CpuUtilization))]) self._leafs = OrderedDict() self.cpu_utilization = YList(self) self._segment_path = lambda: "Cisco-IOS-XR-wdsysmon-fd-oper:system-monitoring" self._is_frozen = True def __setattr__(self, name, value): self._perform_setattr(SystemMonitoring, [], name, value) class CpuUtilization(Entity): """ Processes CPU utilization information .. attribute:: node_name (key) Node name **type**\: str **pattern:** ([a\-zA\-Z0\-9\_]\*\\d+/){1,2}([a\-zA\-Z0\-9\_]\*\\d+) .. attribute:: total_cpu_one_minute Total CPU utilization in past 1 minute **type**\: int **range:** 0..4294967295 .. attribute:: total_cpu_five_minute Total CPU utilization in past 5 minute **type**\: int **range:** 0..4294967295 .. attribute:: total_cpu_fifteen_minute Total CPU utilization in past 15 minute **type**\: int **range:** 0..4294967295 .. attribute:: process_cpu Per process CPU utilization **type**\: list of :py:class:`ProcessCpu <ydk.models.cisco_ios_xr.Cisco_IOS_XR_wdsysmon_fd_oper.SystemMonitoring.CpuUtilization.ProcessCpu>` """ _prefix = 'wdsysmon-fd-oper' _revision = '2015-11-09' def __init__(self): super(SystemMonitoring.CpuUtilization, self).__init__() self.yang_name = "cpu-utilization" self.yang_parent_name = "system-monitoring" self.is_top_level_class = False self.has_list_ancestor = False self.ylist_key_names = ['node_name'] self._child_classes = OrderedDict([("process-cpu", ("process_cpu", SystemMonitoring.CpuUtilization.ProcessCpu))]) self._leafs = OrderedDict([ ('node_name', (YLeaf(YType.str, 'node-name'), ['str'])), ('total_cpu_one_minute', (YLeaf(YType.uint32, 'total-cpu-one-minute'), ['int'])), ('total_cpu_five_minute', (YLeaf(YType.uint32, 'total-cpu-five-minute'), ['int'])), ('total_cpu_fifteen_minute', (YLeaf(YType.uint32, 'total-cpu-fifteen-minute'), ['int'])), ]) self.node_name = None self.total_cpu_one_minute = None self.total_cpu_five_minute = None self.total_cpu_fifteen_minute = None self.process_cpu = YList(self) self._segment_path = lambda: "cpu-utilization" + "[node-name='" + str(self.node_name) + "']" self._absolute_path = lambda: "Cisco-IOS-XR-wdsysmon-fd-oper:system-monitoring/%s" % self._segment_path() self._is_frozen = True def __setattr__(self, name, value): self._perform_setattr(SystemMonitoring.CpuUtilization, ['node_name', u'total_cpu_one_minute', u'total_cpu_five_minute', u'total_cpu_fifteen_minute'], name, value) class ProcessCpu(Entity): """ Per process CPU utilization .. attribute:: process_name Process name **type**\: str .. attribute:: process_id Process ID **type**\: int **range:** 0..4294967295 .. attribute:: process_cpu_one_minute Process CPU utilization in percent for past 1 minute **type**\: int **range:** 0..4294967295 **units**\: percentage .. attribute:: process_cpu_five_minute Process CPU utilization in percent for past 5 minute **type**\: int **range:** 0..4294967295 **units**\: percentage .. attribute:: process_cpu_fifteen_minute Process CPU utilization in percent for past 15 minute **type**\: int **range:** 0..4294967295 **units**\: percentage """ _prefix = 'wdsysmon-fd-oper' _revision = '2015-11-09' def __init__(self): super(SystemMonitoring.CpuUtilization.ProcessCpu, self).__init__() self.yang_name = "process-cpu" self.yang_parent_name = "cpu-utilization" self.is_top_level_class = False self.has_list_ancestor = True self.ylist_key_names = [] self._child_classes = OrderedDict([]) self._leafs = OrderedDict([ ('process_name', (YLeaf(YType.str, 'process-name'), ['str'])), ('process_id', (YLeaf(YType.uint32, 'process-id'), ['int'])), ('process_cpu_one_minute', (YLeaf(YType.uint32, 'process-cpu-one-minute'), ['int'])), ('process_cpu_five_minute', (YLeaf(YType.uint32, 'process-cpu-five-minute'), ['int'])), ('process_cpu_fifteen_minute', (YLeaf(YType.uint32, 'process-cpu-fifteen-minute'), ['int'])), ]) self.process_name = None self.process_id = None self.process_cpu_one_minute = None self.process_cpu_five_minute = None self.process_cpu_fifteen_minute = None self._segment_path = lambda: "process-cpu" self._is_frozen = True def __setattr__(self, name, value): self._perform_setattr(SystemMonitoring.CpuUtilization.ProcessCpu, [u'process_name', u'process_id', u'process_cpu_one_minute', u'process_cpu_five_minute', u'process_cpu_fifteen_minute'], name, value) def clone_ptr(self): self._top_entity = SystemMonitoring() return self._top_entity
#!/usr/bin/env python # coding: utf-8 # In[2]: import nltk from nltk import word_tokenize import spacy import en_core_web_sm from commonregex import CommonRegex import glob from nltk.corpus import wordnet import sys import os import errno import argparse nltk.download('wordnet') def openfiles(filename): with open(filename,'r') as file: data=file.read() return data def redact_text(data, lst): if(len(lst)!=0): for n in lst: data=data.replace(n, "█"*len(n)) return data def find_names(data): names=[] nlp=en_core_web_sm.load() nltext=nlp(data) for word in nltext.ents: if word.label_=="PERSON": names.append(word.text) size=len(names) stats=("The number of unique names replaced in the given file is %d \n" %size) return names,stats def find_locs(data): locs=[] nlp=en_core_web_sm.load() nltext=nlp(data) for word in nltext.ents: if word.label_=="GPE" or word.label_=="LOC": locs.append(word.text) size=len(locs) stats=("The number of unique locations replaced in the given file is %d \n" %size) return locs, stats def find_dates(data): data1=CommonRegex(data) date5=[] if data1.dates!=0: for n in data1.dates: date5.append(n) for n in date5: data=data.replace(n, "█"*len(n)) size=len(date5) stats=("The number of unique dates replaced in the given file is %d \n" %size) return date5, stats def find_address(data): addresses=[] data1=CommonRegex(data) if data1.street_addresses!=0: for n in data1.street_addresses: addresses.append(n) size=len(addresses) stats=("The number of unique addresses replaced in the given file is %d \n" %size) return addresses, stats def find_numbers(data): numbers=[] data1=CommonRegex(data) if data1.phones!=0: for n in data1.phones: numbers.append(n) size=len(numbers) stats=("The number of unique phone numbers replaced in the given file is %d \n" %size) return numbers, stats def concepts(data, word): synonyms=[] for n in wordnet.synsets(word): for l in n.lemmas(): synonyms.append(l.name()) synonyms.append(word) return synonyms def conc_red(data, syns, word): j=0 tokens=nltk.word_tokenize(data) for i in range(0,len(tokens)): for k in range(0,len(syns)): if (tokens[i].lower()==syns[k].lower()): tokens[i]=("█"*len(tokens[i])) j+=1 data1=' '.join(map(str, tokens)) stats=("The number of words related to %s replaced in the given file is %d \n" %(word, j)) return data1, stats def concepts_gen(data): gen=['he','she','him','her','his','hers','male','female','man','woman','men','women','He','She','Him','Her','His','Hers','Male','Female','Man','Woman','Men','Women','HE','SHE','HIM','HER','HIS','HERS','MALE','FEMALE','MAN','WOMAN','MEN','WOMEN', 'Mr.', 'Mrs.', 'Ms.'] tokens=nltk.word_tokenize(data) k=0 for i in range(0,len(tokens)): for j in range(0,len(gen)): if tokens[i]==gen[j]: tokens[i]=("█"*len(tokens[i])) k+=1 data=' '.join(map(str, tokens)) stats=("The number of gender based pronouns replaced in the given file is %d \n" %k) return data,stats def stats_display(names, locs, date5, address, conceptstxt, nums, gens, i, opt, name): stats=("This is the stats for the document for the file named %s.redacted.txt\n"%(name)) stats+=names stats+=locs stats+=date5 stats+=address stats+=conceptstxt stats+=nums stats+=gens if (opt=="stdout"): print(stats) elif(opt=="store"): textfile = ('./stats/stats%d.txt'%i) if not os.path.exists(os.path.dirname(textfile)): try: os.makedirs(os.path.dirname(textfile)) except OSError as exc: if exc.errno != errno.EEXIST: raise with open(textfile, "w") as f: f.write(stats) def file_output(data, k, file): text=data textfile = ('./%s %s.redacted.txt' %(file, k)) with open(textfile, "w+") as f: f.write(data) f.close() if __name__ == '__main__': parser=argparse.ArgumentParser() parser.add_argument("--input", required=True, action="store", type=glob.glob, nargs = '+') parser.add_argument("--names", action="store_true") parser.add_argument("--dates", action="store_true") parser.add_argument("--addresses", action="store_true") parser.add_argument("--gender", action="store_true") parser.add_argument("--numbers", action="store_true") parser.add_argument("--locations", action="store_true") parser.add_argument("--concepts", type=str) parser.add_argument("--stats",choices=( "stdout", "store")) parser.add_argument("--output", action="store") args=parser.parse_args() files=[] for i in args.input: files.extend(i) print(files) for i in range(0,len(files)): filename=(files[i]) data=openfiles(filename) if args.names==True: (names, namestxt)=find_names(data) data=redact_text(data, names) else: namestxt=("No unique names redacted\n") if args.dates==True: (dates, datetxt)=find_dates(data) data=redact_text(data, dates) else: datetxt=("No unique dates redacted\n") if args.addresses==True: (address, addtxt)=find_address(data) data=redact_text(data, address) else: addtxt=("No unique addresses redacted\n") if args.gender==True: (data, protxt)=concepts_gen(data) else: protxt=("No unique pronouns redacted\n") if args.numbers==True: (nums, numtxt)=find_numbers(data) (data)=redact_text(data, nums) else: numtxt=("No unique phone numbers redacted\n") if args.locations==True: (loc, loctxt)=find_locs(data) (data)=redact_text(data, loc) else: loctxt=("No unique locations redacted\n") if args.concepts: word=args.concepts syn=concepts(data, word) (data, contxt)=conc_red(data, syn, word) else: contxt=("No unique concept words redacted\n") if args.stats: opt=args.stats stats_display(namestxt, loctxt, datetxt, addtxt, contxt, numtxt, protxt, i, opt, filename) if args.output: path=args.output name=filename file_output(data, name, path) i+=1
import datetime import time import numpy as np import tensorflow as tf import sys import os from data_utils import Data from char_cnn import CharConvNet if __name__ == '__main__': #execfile("config.py") with open('config.py', 'r') as source_file: exec(source_file.read()) #print "Loading data ....", train_data = Data(data_source = config.train_data_source, alphabet = config.alphabet, l0 = config.l0, batch_size = config.batch_size, no_of_classes = config.no_of_classes) train_data.loadData() dev_data = Data(data_source = config.dev_data_source, alphabet = config.alphabet, l0 = config.l0, batch_size = config.batch_size, no_of_classes = config.no_of_classes) dev_data.loadData() num_batches_per_epoch = int(train_data.getLength() / config.batch_size) + 1 num_batch_dev = dev_data.getLength() #print "Loaded" #print "Training ===>" with tf.Graph().as_default(): session_conf = tf.ConfigProto(allow_soft_placement = True, log_device_placement = False) sess = tf.Session(config = session_conf) with sess.as_default(): char_cnn = CharConvNet(conv_layers = config.model.conv_layers, fully_layers = config.model.fully_connected_layers, l0 = config.l0, alphabet_size = config.alphabet_size, no_of_classes = config.no_of_classes, th = config.model.th) global_step = tf.Variable(0, trainable=False) boundaries = [] br = config.training.base_rate values = [br] for i in range(1, 10): values.append(br / (2 ** i)) boundaries.append(15000 * i) values.append(br / (2 ** (i + 1))) print(values) print(boundaries) learning_rate = tf.train.piecewise_constant(global_step, boundaries, values) #learning_rate = tf.train.exponential_decay(config.training.base_rate, # global_step, # config.training.decay_step, # config.training.decay_rate, # staircase=True) #optimizer = tf.train.MomentumOptimizer(learning_rate, config.training.momentum) optimizer = tf.train.AdamOptimizer(learning_rate) grads_and_vars = optimizer.compute_gradients(char_cnn.loss) train_op = optimizer.apply_gradients(grads_and_vars, global_step = global_step) # Keep track of gradient values and sparsity (optional) grad_summaries = [] for g, v in grads_and_vars: if g is not None: grad_hist_summary = tf.summary.histogram("{}/grad/hist".format(v.name), g) sparsity_summary = tf.summary.histogram("{}/grad/sparsity".format(v.name), tf.nn.zero_fraction(g)) grad_summaries.append(grad_hist_summary) grad_summaries.append(sparsity_summary) grad_summaries_merged = tf.summary.merge(grad_summaries) # Output directory for models and summaries timestamp = str(int(time.time())) out_dir = os.path.abspath(os.path.join(os.path.curdir, "runs", timestamp)) print("Writing to {}\n".format(out_dir)) # Summaries for loss and accuracy loss_summary = tf.summary.scalar("loss", char_cnn.loss) acc_summary = tf.summary.scalar("accuracy", char_cnn.accuracy) # Train Summaries train_summary_op = tf.summary.merge([loss_summary, acc_summary, grad_summaries_merged]) train_summary_dir = os.path.join(out_dir, "summaries", "train") train_summary_writer = tf.summary.FileWriter(train_summary_dir, sess.graph) # Dev summaries dev_summary_op = tf.summary.merge([loss_summary, acc_summary]) dev_summary_dir = os.path.join(out_dir, "summaries", "dev") dev_summary_writer = tf.summary.FileWriter(dev_summary_dir, sess.graph) # Checkpoint directory. Tensorflow assumes this directory already exists so we need to create it checkpoint_dir = os.path.abspath(os.path.join(out_dir, "checkpoints")) checkpoint_prefix = os.path.join(checkpoint_dir, "model") if not os.path.exists(checkpoint_dir): os.makedirs(checkpoint_dir) saver = tf.train.Saver(tf.global_variables()) #sess.run(tf.initialize_all_variables()) sess.run(tf.global_variables_initializer()) def train_step(x_batch, y_batch): """ A single training step """ feed_dict = { char_cnn.input_x: x_batch, char_cnn.input_y: y_batch, char_cnn.dropout_keep_prob: config.training.p } _, step, summaries, loss, accuracy = sess.run( [train_op, global_step, train_summary_op, char_cnn.loss, char_cnn.accuracy], feed_dict) time_str = datetime.datetime.now().isoformat() print("{}: step {}, loss {:g}, acc {:g}".format(time_str, step, loss, accuracy)) train_summary_writer.add_summary(summaries, step) def dev_step(x_batch, y_batch, writer=None): """ Evaluates model on a dev set """ feed_dict = { char_cnn.input_x: x_batch, char_cnn.input_y: y_batch, char_cnn.dropout_keep_prob: 1.0 # Disable dropout } step, summaries, loss, accuracy = sess.run( [global_step, dev_summary_op, char_cnn.loss, char_cnn.accuracy], feed_dict) time_str = datetime.datetime.now().isoformat() print("{}: step {}, loss {:g}, acc {:g}".format(time_str, step, loss, accuracy)) if writer: writer.add_summary(summaries, step) # Passing global_step to minimize() will increment it at each step. # Training loop. For each batch...\ for e in range(config.training.epoches): train_data.shuffleData() for k in range(num_batches_per_epoch): batch_x, batch_y = train_data.getBatchToIndices(k) train_step(batch_x, batch_y) current_step = tf.train.global_step(sess, global_step) if current_step % config.training.evaluate_every == 0: xin, yin = dev_data.getBatchToIndices() print("\nEvaluation:") dev_step(xin, yin, writer=dev_summary_writer) print("") if current_step % config.training.checkpoint_every == 0: path = saver.save(sess, checkpoint_prefix, global_step=current_step) print("Saved model checkpoint to {}\n".format(path))
"""This module contains a plugin to test a node's remote shutdown functionality.""" from teatime import Context, Issue, NodeType, Severity from teatime.plugins.base import IPFSRPCPlugin class Shutdown(IPFSRPCPlugin): """Attempt to list all active P2P listeners. Severity: Critical Endpoint: https://docs.ipfs.io/reference/http/api/#api-v0-shutdown Anyone can shut down the IPFS daemon. This plugin has shut down the node. This is the highest possible threat to availability. Why would you leave this enabled? Are you insane? """ INTRUSIVE = True # damn right it is def _check(self, context: Context): if context.node_type != NodeType.IPFS: return payload = self.get_rpc_json( target=context.target, route="/api/v0/shutdown", raw=True ) context.report.add_issue( Issue( title="Exposed Shutdown Endpoint", description=( "Anyone can shut down the IPFS daemon. This plugin has shut down the node. " "This is the highest possible threat to availability." ), severity=Severity.CRITICAL, raw_data=payload, ) )
#! /usr/bin/env python #adam-does# moves a certain class of files so that it's not in the way screwing up pipeline scripts, but keeping them somewhere in case I need them #adam-use# for example, after running the stellar suppression you can remove the *OCF.fits files so they don't confuse the processing of the *OCFR.fits files. But you can save the *OCF.fits files in case you add more stellar rings in later. #adam-example# ipython -i -- adam_backup_and_rm_files.py /u/ki/awright/data/MACS0416-24/W-C-RC/SCIENCE/*OCF.fits import sys sys.path.append('/u/ki/awright/InstallingSoftware/pythons/') from import_tools import * SUBARUDIR="/u/ki/awright/data/" backup_main="/u/ki/awright/data/backup_files/" files2backup=imagetools.ArgCleaner(sys.argv) fl0= files2backup[0] backup_from_dir=fl0[:fl0.rfind('/')] if os.path.isdir(backup_from_dir): if backup_from_dir.startswith(SUBARUDIR): backup_locators=backup_from_dir.replace(SUBARUDIR,'').split('/') try: backup_locators.remove('') except ValueError: pass backup_datetime="%.2i-%.2i-%.4i_at_%.2i-%.2i" % (tm_mon,tm_mday,tm_year,tm_hour,tm_min) backup_location=backup_main+'_'.join(backup_locators)+"_"+backup_datetime os.mkdir(backup_location) num_copied=0 for fl in files2backup: if os.path.islink(fl): raise Exception('cannot do this backup, at least one file (%s) is a symlink\nmust copy link dest to links filename in order to do this!') for fl in files2backup: print 'mv %s %s' % (fl,backup_location) out=os.system('mv %s %s' % (fl,backup_location)) if out==0: num_copied+=1 else: raise Exception('attempt to copy this file: %s has failed!' % (fl)) print "\n\nbacked up %s files from %s to %s\none example is: %s" % (num_copied,backup_from_dir,backup_location,fl0) else: raise Exception('directory youre backing up (%s) isnt within the SUBARUDIR (%s) directory' % (backup_from_dir,SUBARUDIR)) else: raise Exception('directory youre backing up (%s) doesnt exist!' % (backup_from_dir))
from .button import Button from ..decorators import stere_performer, use_after, use_before from ..field import Field @stere_performer('select', consumes_arg=True) class Dropdown(Field): """Represents a dropdown menu. If the "option" argument is provided with a field, use that as the dropdown item. Else, assume a standard HTML Dropdown and use the option tag. """ def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) # If no option arg is given, assume Dropdown is a standard HTML one. if kwargs.get('option') is None: self.option = Button('tag', 'option') else: self.option = kwargs.get('option') @property def options(self): """Searches for all the elements that are an option in the dropdown. Returns: list """ self.option._element.parent_locator = self.find() return [item for item in self.option.find_all()] @use_after @use_before def select(self, value): """Searches for an option by its html content, then clicks the one that matches. Arguments: value (str): The option value to select. Raises: ValueError: The provided value could not be found in the dropdown. """ found_options = [] for option in self.options: found_options.append(option.html) if option.html == value: option.click() break else: raise ValueError( f'{value} was not found. Found values are: {found_options}')
#coding:utf-8 from multiprocessing.connection import Client import socket, threading """IPC通信(送信用)コンソール """ print("IPC Connector (Client)") def main(port): while True: command = input(f"localhost:{port}> ") try: data = str(command).encode() length = len(data) client.sendall(length.to_bytes(4, byteorder='big')) client.sendall(data) data = client.recv(4) length = int.from_bytes(data, "big") data = client.recv(length) msg = data.decode() print(msg) except BaseException as err: print(f"error happend.\n{err}") if __name__ == "__main__": print("address> localhost") port = input("port> ") if port == "": print("please insert a port.") input("Enter to exit...") exit() client = socket.socket(socket.AF_INET, socket.SOCK_STREAM) try: client.connect(("localhost", int(port))) print(f"connect [localhost:{port}]!") except BaseException as err: print(f"error happend.\n{err}") input("Enter to exit...") exit() main(port)
import html # clean up html strings (such as &amp) import json # interact with the Tribe Events API from datetime import datetime # convert utc time to datetime from city_scrapers_core.constants import BOARD from city_scrapers_core.items import Meeting from city_scrapers_core.spiders import CityScrapersSpider # remove html encoding and convert to a string object def clean(my_json_string): return str(html.unescape(my_json_string)) class PaDevelopmentSpider(CityScrapersSpider): name = "pa_development" agency = "PA Department of Community & Economic Development" timezone = "America/New_York" allowed_domains = ["dced.pa.gov"] start_urls = ["https://dced.pa.gov/wp-json/tribe/events/v1/events"] def parse(self, response): events = json.loads(response.text)["events"] for item in events: meeting = Meeting( title=self._parse_title(item), description=self._parse_description(item), classification=self._parse_classification(item), start=self._parse_start(item), end=self._parse_end(item), all_day=self._parse_all_day(item), time_notes=self._parse_time_notes(item), location=self._parse_location(item), links=self._parse_links(item), source=self._parse_source(item), ) meeting["status"] = self._get_status(meeting) meeting["id"] = self._get_id(meeting) yield meeting def _parse_title(self, item): """Parse or generate meeting title.""" return clean(item["title"]) def _parse_description(self, item): """Parse or generate meeting description.""" return clean(item["description"]) def _parse_classification(self, item): """Parse or generate classification from allowed options.""" return BOARD def _parse_start(self, item): """Parse start datetime as a naive datetime object.""" start_time = datetime.strptime(item["start_date"], "%Y-%m-%d %H:%M:%S") return start_time def _parse_end(self, item): """Parse end datetime as a naive datetime object. Added by pipeline if None""" return datetime.strptime(item["end_date"], "%Y-%m-%d %H:%M:%S") def _parse_time_notes(self, item): """Parse any additional notes on the timing of the meeting""" return "" def _parse_all_day(self, item): """Parse or generate all-day status. Defaults to False.""" return item["all_day"] def _get_street(self, item): try: return clean(item["venue"]["address"]) except KeyError: return "" def _get_city(self, item): try: return clean(item["venue"]["city"]) except KeyError: return "" def _get_state(self, item): try: return clean(item["venue"]["state"]) except KeyError: return "" def _get_zip(self, item): try: return clean(item["venue"]["zip"]) except KeyError: return "" def _parse_location(self, item): """Parse or generate location.""" address = self._get_street(item) address += ", " + self._get_city(item) address += ", " + self._get_state(item) address += ", " + self._get_zip(item) return { "address": address, "name": clean(item["venue"]["venue"]), } def _parse_links(self, item): """Parse or generate links.""" return [{"href": "", "title": ""}] def _parse_source(self, item): """Parse or generate source.""" url = item["url"] return url
import re from datetime import datetime from functools import total_ordering from typing import Dict, List, Optional, Tuple from rich.highlighter import RegexHighlighter from rich.theme import Theme class TaskHighlighter(RegexHighlighter): """Apply style to [Task]s.""" base_style = "task." highlights = [ r"(?P<symbols>[(){}\[\]<>:@+-])", r"\W(?P<numbers>\d+)", r"(?P<quote>'.*?')", r"(?P<quote>\".*?\")", r"profile:(?P<profile>\w*)", ] TaskTheme = Theme( { "task.symbols": "bold", "task.numbers": "bold blue", "task.quote": "#FF8700", "task.profile": "bold cyan", } ) @total_ordering class Task: def __init__( self, msg: str, *, complete: bool = None, priority: str = None, date_created: datetime = None, date_completed: datetime = None, ) -> None: self.msg = msg.strip() if not self.msg: raise ValueError("Task message must not be empty.") self.complete = complete or False self.priority = priority or "" self.date_created = date_created or None self.date_completed = date_completed or None if self.date_completed and not self.complete: raise ValueError("Only completed task can have completion date!") @property def priority(self): return self._priority @priority.setter def priority(self, value): if re.fullmatch(r"[A-Z]?", value) is None: raise ValueError(f"{value!r} is not a valid priority! ([A-Z]?)") self._priority = value @property def contexts(self): return self.get_tags(self.msg, "@") @property def projects(self): return self.get_tags(self.msg, "+") @property def keywords(self): return self.get_keywords(self.msg) def __contains__(self, value): return value in self.to_string() def __eq__(self, other): return self.comparison_tuple(self) == self.comparison_tuple(other) def __hash__(self): return hash(self.comparison_tuple(self)) def __lt__(self, other): return self.comparison_tuple(self) < self.comparison_tuple(other) def __repr__(self): params = ( "msg", "complete", "priority", "date_created", "date_completed", ) args = ", ".join( f"{param}={getattr(self, param)!r}" for param in params if getattr(self, param) is not None ) return f"Task({args})" def __str__(self): return self.to_string() def contains_term(self, term, sep="/"): return any(subterm in self for subterm in term.split(sep)) def to_string( # noqa: C901 too complex self, hide_contexts: bool = False, hide_projects: bool = False, hide_keywords: bool = False, ): parts = [] if self.complete: parts.append("x") if self.priority: parts.append(f"({self.priority})") if self.date_completed: parts.append(self.date_completed.strftime(r"%Y-%m-%d")) if self.date_created: parts.append(self.date_created.strftime(r"%Y-%m-%d")) msg = self.msg if hide_contexts: for context in self.contexts: msg = msg.replace(f"@{context}", "").replace(" ", " ", 1) if hide_projects: for project in self.projects: msg = msg.replace(f"+{project}", "").replace(" ", " ", 1) if hide_keywords: for key, value in self.keywords.items(): msg = msg.replace(f"{key}:{value}", "").replace(" ", " ", 1) parts.append(msg) return " ".join(parts) @classmethod def comparison_tuple(cls, task): return ( task.complete is not False, task.complete, task.priority == "", task.priority, ( task.date_created is None, task.date_created, ), ( task.date_completed is None, task.date_completed, ), task.msg, ) @classmethod def from_string(cls, string): complete, remainder = cls.get_match_and_remainder( r"([xX]) (.*)", string ) priority, remainder = cls.get_match_and_remainder( r"\((\S)\) (.*)", remainder ) if complete: try: date_completed, remainder = cls.get_date(remainder) except ValueError: raise ValueError( f'Unable to parse completion date in "{string}"!' ) from None else: date_completed = None try: date_created, remainder = cls.get_date(remainder) except ValueError: raise ValueError( f'Unable to parse completion date in "{string}"!' ) from None return cls( remainder, complete=bool(complete), priority=priority, date_created=date_created, date_completed=date_completed, ) @staticmethod def get_match_and_remainder( expr: str, string: str ) -> Tuple[Optional[str], str]: match = re.match(expr, string) if match: return match.group(1), match.group(2) return (None, string) @classmethod def get_date(cls, string: str) -> Tuple[Optional[datetime], str]: expr = r"([0-9]{4})-([0-9]{2})-([0-9]{2}) (.*)" date, remainder = cls.get_match_and_remainder(expr, string) if date is not None: return datetime.strptime(date, r"%Y-%m-%d"), remainder return None, remainder @staticmethod def get_tags(string: str, tag: str) -> List[str]: tags = [] for word in string.split(): if word.startswith(tag): tags.append(word[1:]) return tags @staticmethod def get_keywords(string: str) -> Dict[str, str]: keywords: Dict[str, str] = {} expr = re.compile(r"([^:\s]+):([^:\s]+)") for word in string.split(): match = expr.match(word) if match: keywords[match.group(1)] = match.group(2) return keywords
#!/usr/bin/env python3 import os import datetime from pydblite import Base #db openen via losse functie SCRIPT_DIR = os.path.dirname(os.path.realpath(__file__)) def sort_high_scores(elem): return (int(elem['score']), elem['duration'], elem['date']) def update_user_table(user_id, first_name): db = Base(os.path.join(SCRIPT_DIR, 'users.db')) db.create('user_id', 'first_name', mode="open") if ((len(db(user_id=user_id)) == 0) or (len(db(user_id=user_id, first_name=first_name)) == 0)): db.insert(user_id=user_id, first_name=first_name) db.commit() def get_user_name(user_id): db = Base(os.path.join(SCRIPT_DIR, 'users.db')) db.create('user_id', 'first_name', mode="open") user = db(user_id=user_id) if not user: return None user = user.pop() return user['first_name'] def set_high_score(first_name, user_id, rounds, duration): rounds = int(rounds) print('h.set_high_score') print(first_name, user_id, rounds, duration) update_user_table(user_id, first_name) db = Base(os.path.join(SCRIPT_DIR, 'high_scores.db')) db.create('user_id', 'score', 'duration', 'date', mode="open") db.insert(user_id=user_id, score=rounds, duration=duration, date=datetime.datetime.now()) db.commit() def get_high_scores(user_id=None): print('get_high_scores') db = Base(os.path.join(SCRIPT_DIR, 'high_scores.db')) db.create('user_id', 'score', 'duration', 'date', mode="open") global_top = [ { 'user_id': r['user_id'], 'user': get_user_name(r['user_id']), 'date': r['date'].strftime('%d-%m-%Y'), 'duration': str(r['duration']).split('.')[0], 'score': r['score'], } for r in sorted([ r for r in db ], key=sort_high_scores) ] return { 'my_top': [r for r in global_top if r['user_id'] == user_id][:5], 'global_top': global_top[:5], } def get_print_high_scores(): #TODO niet als str returnen maar als dict voor de website. voor printen ff via join() doen return [ '{user} {score:02} {duration} {date}'.format( user=r['user'], score=r['score'], date=r['date'], duration=r['duration'], ) for r in get_high_scores()['global_top'] ] def print_high_scores(): for score in get_print_high_scores(): print(score) if __name__ == '__main__': print_high_scores()
import os from glob import glob import pandas as pd """A test to check if images are placed correctly""" psychic_learners_dir = os.path.split(os.getcwd())[0] image_folder = os.path.join(psychic_learners_dir, 'data', 'image', 'v1_train_nodups_240x240') train_df = pd.read_csv(os.path.join(psychic_learners_dir, 'data', 'train_split.csv')) for big_category in glob(os.path.join(image_folder, '*')): if not os.path.isdir(big_category): continue for small_category in glob(os.path.join(big_category, '*')): if not os.path.isdir(small_category): continue category = int(os.path.split(small_category)[-1]) df = train_df.loc[train_df['Category'] == category] df['image_names'] = df['abs_image_path'].map(lambda x: os.path.split(x)[-1]) print(df['image_names']) break for image in glob(os.path.join(small_category, '*.jpg')): image_name = os.path.split(image)[-1] if image_name not in df['image_names']: print('{} placed in wrong category {}'.format(image_name, category)) else: print('correct')
from avidaspatial import * from patch_analysis import * import sys import shapely as shp from shapely.geometry import MultiPoint from descartes.patch import PolygonPatch import pandas as pd df = pd.read_csv("all_task_locs.csv") env_id = sys.argv[1] task_id=0 if len(sys.argv) > 2: task_id = int(sys.argv[2]) draw_points = "hotspots" if len(sys.argv) > 3: draw_points = sys.argv[3] env = parse_environment_file("../config/env"+env_id+".cfg", (60,60)) env = convert_world_to_phenotype(env) env.grid, n = assign_ranks_by_cluster(env.grid, 100) #length = get_pallete_length(hotspots) #palette = sns.hls_palette(length, s=1) #env.task_palette = palette #print(len(env.task_palette)) #print(len(env.resource_palette)) env.resource_palette = sns.hls_palette(n, s=1, l=.5) #env.resource_palette = [[0,0,0]] + env.resource_palette env.task_palette = [(0,0,0), (0,0,0)] print(n) #paired_environment_phenotype_grid(env, hotspots, palette=env.task_palette) plot_world(env, palette=env.resource_palette) plt.gca().xaxis.set_major_locator(plt.NullLocator()) plt.gca().yaxis.set_major_locator(plt.NullLocator()) ax = plt.gca() colors = ["black", "black", "red", "pink", "yellow", "green", "cyan", "black", "white"] #["black", "black"] + sns.color_palette("husl", 7)#["black", "red", "orange", "yellow", "green", "cyan", "blue", "magenta", "white"] print(colors) ids = list(range(9,4,-1)) if task_id != 0: ids = [task_id] patch_handles = [] if draw_points == "hotspots": for task_id in ids: hotspots = load_grid_data(str(task_id)+"_"+env_id+"_hotspots.csv", "int", delim=",") hotspots = agg_grid(hotspots, mode) ones = [] for y in range(len(hotspots)): for x in range(len(hotspots[y])): if hotspots[y][x] == 0: hotspots[y][x] = -1 else: ones.append((x,y)) patches = traverse_core(ones, 60) to_remove = [] for i in range(len(patches)): if len(patches[i]) < 30: to_remove.append(i) continue patches[i] = MultiPoint(patches[i]) for i in reversed(to_remove): patches.pop(i) patch = 0 for p in patches: if p.convex_hull.geom_type == "Polygon": data = p.convex_hull else: #p.convex_hull.geom_type == "LineString": data = p.convex_hull.buffer(.5) patch = PolygonPatch(data, facecolor='white', lw=3, edgecolor=colors[task_id-1], alpha=1, fill=False, zorder=2, label=task_id) ax.add_patch(patch) patch_handles.append(patch) elif draw_points == "points": points = df[df.task == int(task_id)][df.environment == int(env_id)] plt.plot(points.x, points.y, ".", color=colors[task_id-1]) elif draw_points == "paths": pathfile = open("paths_"+str(task_id-1)+"_"+str(env_id)+".dat") lines = pathfile.readlines()[10:15] colors = sns.color_palette("bone", len(lines)) for i,line in enumerate(lines): nums = eval(line.strip()) (xs, ys) = zip(*nums) ax.add_line(plt.Line2D(xs, ys, linewidth=2, color=colors[i])) pathfile.close() #plt.show() name = "all" if len(ids)>1 else str(task_id) name += "_" + draw_points #legend = plt.legend(handles = patch_handles, bbox_to_anchor=(0.5, -0.01), # loc=9, borderaxespad=0., frameon=True, ncol=9) #legend.get_frame().set_facecolor('lightgrey') plt.savefig(str(env_id)+"_" + name+".png", bbox_inches = 'tight', pad_inches = 0)
from settings import Settings, SETTINGS from ufrc.main import UFRC def get_file(settings: Settings): ufrc = UFRC() ufrc.connect(settings.username, settings.password) ufrc.get("temp.txt") if __name__ == "__main__": get_file(SETTINGS)
# -*- coding: utf-8 -*- # Generated by Django 1.10.7 on 2017-08-05 04:42 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('accounts', '0002_auto_20170803_1446'), ] operations = [ migrations.AlterField( model_name='user', name='picture', field=models.ImageField(blank=True, default='img/default.png', height_field='height_field', null=True, upload_to='', verbose_name='profile picture', width_field='width_field'), ), ]
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations import django_countries.fields class Migration(migrations.Migration): dependencies = [ ('conventions', '__first__'), ] operations = [ migrations.CreateModel( name='Payment', fields=[ ('id', models.AutoField(auto_created=True, serialize=False, primary_key=True, verbose_name='ID')), ('sum_paid', models.IntegerField()), ('paid_via', models.CharField(help_text='How was the payment made?', max_length=50)), ('payment_time', models.DateTimeField(auto_now=True, verbose_name='Time the ticket was paid.')), ], options={ 'verbose_name_plural': 'Payments', 'verbose_name': 'Payment', }, bases=(models.Model,), ), migrations.CreateModel( name='Person', fields=[ ('id', models.AutoField(auto_created=True, serialize=False, primary_key=True, verbose_name='ID')), ('name', models.CharField(max_length=100)), ], options={ }, bases=(models.Model,), ), migrations.CreateModel( name='Ticket', fields=[ ('id', models.AutoField(auto_created=True, serialize=False, primary_key=True, verbose_name='ID')), ('first_name', models.CharField(null=True, max_length=100)), ('last_name', models.CharField(null=True, max_length=100)), ('email', models.EmailField(null=True, max_length=75)), ('address', models.CharField(help_text='home address', max_length=500)), ('country', django_countries.fields.CountryField(max_length=2)), ('date_of_birth', models.DateField(null=True)), ('sum_paid', models.PositiveSmallIntegerField(default=0)), ('status', models.PositiveSmallIntegerField(help_text='Status of payment.', default=0, choices=[(1, 'ordered'), (2, 'paid'), (0, 'cancelled')])), ('order_time', models.DateTimeField(help_text='Time the ticket was ordered', auto_now_add=True)), ('comments', models.TextField(blank='True')), ], options={ }, bases=(models.Model,), ), migrations.CreateModel( name='TicketPool', fields=[ ('id', models.AutoField(auto_created=True, serialize=False, primary_key=True, verbose_name='ID')), ('name', models.CharField(max_length=50)), ('description', models.TextField()), ('max_tickets', models.PositiveSmallIntegerField()), ('convention', models.ForeignKey(to='conventions.Convention')), ], options={ 'verbose_name_plural': 'ticket pools', 'verbose_name': 'ticket pool', }, bases=(models.Model,), ), migrations.CreateModel( name='TicketType', fields=[ ('id', models.AutoField(auto_created=True, serialize=False, primary_key=True, verbose_name='ID')), ('name', models.CharField(max_length=20)), ('price', models.PositiveSmallIntegerField(default=0)), ('currency', models.CharField(max_length=3, choices=[('EUR', '€'), ('NOK', 'NOK'), ('USD', 'US $'), ('LTL', 'LTL')])), ('max_tickets', models.PositiveSmallIntegerField(null=True, blank=True)), ('description', models.CharField(help_text='Short description of the ticket type.', blank=True, max_length=200)), ('ticket_pool', models.ForeignKey(to='tickets.TicketPool')), ], options={ }, bases=(models.Model,), ), migrations.AddField( model_name='ticket', name='ticket_type', field=models.ForeignKey(to='tickets.TicketType', related_name='tickets'), preserve_default=True, ), migrations.AddField( model_name='payment', name='ticket', field=models.ForeignKey(to='tickets.Ticket'), preserve_default=True, ), ]
from core.advbase import * from module.bleed import Bleed from slot.a import * from slot.d import * def module(): return Patia class Patia(Adv): a1 = ('bt',0.35) a3 = ('primed_crit_chance', 0.10, 5) conf = {} conf['slots.a'] = Resounding_Rendition()+Brothers_in_Arms() conf['slots.poison.a'] = Valiant_Crown()+The_Fires_of_Hate() conf['acl'] = """ #Patia will almost never run out of trickery stacks `dragon.act("c3 s end"), s=1 and self.slots.tmp.d.trickery <= 1 `s3, not self.s3_buff `s1 `s2 `s4 """ coab = ['Blade','Bow','Tobias'] share = ['Karl'] def prerun(self): self.bleed = Bleed('g_bleed',0).reset() def s1_proc(self, e): Teambuff(f'{e.name}_defense', 0.25, 15, 'defense').on() def s2_proc(self, e): Bleed(e.name, 1.46).on() if __name__ == '__main__': from core.simulate import test_with_argv test_with_argv(None, *sys.argv)
import sys from fastapi import APIRouter, HTTPException, Request from fastapi.templating import Jinja2Templates from linebot import LineBotApi, WebhookHandler from linebot.exceptions import InvalidSignatureError from linebot.models import * from . import message_event, user_event sys.path.append(".") import config line_bot_api = LineBotApi(config.LINE_CHANNEL_ACCESS_TOKEN) handler = WebhookHandler(config.LINE_CHANNEL_SECRET) line_app = APIRouter() templates = Jinja2Templates(directory="templates") @line_app.post("/callback") async def callback(request: Request) -> str: """LINE Bot Webhook Callback Args: request (Request): Request Object. Raises: HTTPException: Signature 驗證失敗 Returns: str: OK """ signature = request.headers["X-Line-Signature"] body = await request.body() # handle webhook body try: handler.handle(body.decode(), signature) except InvalidSignatureError: raise HTTPException(status_code=400, detail="Missing Parameter") return "OK" @handler.add(FollowEvent) def handle_follow(event): """事件 - 新使用者加入Bot Args: event (LINE Event Object): Refer to https://developers.line.biz/en/reference/messaging-api/#follow-event """ user_event.handle_follow(event=event) @handler.add(UnfollowEvent) def handle_unfollow(event): """事件 - 新使用者封鎖Bot Args: event (LINE Event Object): Refer to https://developers.line.biz/en/reference/messaging-api/#unfollow-event """ user_event.handle_unfollow(event=event) @handler.add(MessageEvent, message=(TextMessage)) def handle_message(event): """事件 - 訊息 Args: event (LINE Event Object): Refer to https://developers.line.biz/en/reference/messaging-api/#message-event """ message_event.handle_message(event=event)
# -*- coding: utf-8 -*- """Handles the instrospection of REST Framework Views and ViewSets.""" import inspect import itertools import re import yaml import importlib from .compat import OrderedDict, strip_tags, get_pagination_attribures from abc import ABCMeta, abstractmethod from django.http import HttpRequest from django.contrib.admindocs.utils import trim_docstring from django.utils.encoding import smart_text import rest_framework from rest_framework import viewsets from rest_framework.compat import apply_markdown try: from rest_framework.fields import CurrentUserDefault except ImportError: # FIXME once we drop support of DRF 2.x . CurrentUserDefault = None from rest_framework.utils import formatting from django.utils import six try: import django_filters except ImportError: django_filters = None def get_view_description(view_cls, html=False, docstring=None): if docstring is not None: view_cls = type( view_cls.__name__ + '_fake', (view_cls,), {'__doc__': docstring}) return rest_framework.settings.api_settings \ .VIEW_DESCRIPTION_FUNCTION(view_cls, html) def get_default_value(field): default_value = getattr(field, 'default', None) if rest_framework.VERSION >= '3.0.0': from rest_framework.fields import empty if default_value == empty: default_value = None if callable(default_value): if CurrentUserDefault is not None and isinstance(default_value, CurrentUserDefault): default_value.user = None default_value = default_value() return default_value class IntrospectorHelper(object): __metaclass__ = ABCMeta @staticmethod def strip_yaml_from_docstring(docstring): """ Strips YAML from the docstring. """ split_lines = trim_docstring(docstring).split('\n') cut_off = None for index in range(len(split_lines) - 1, -1, -1): line = split_lines[index] line = line.strip() if line == '---': cut_off = index break if cut_off is not None: split_lines = split_lines[0:cut_off] return "\n".join(split_lines) @staticmethod def strip_params_from_docstring(docstring): """ Strips the params from the docstring (ie. myparam -- Some param) will not be removed from the text body """ params_pattern = re.compile(r' -- ') split_lines = trim_docstring(docstring).split('\n') cut_off = None for index, line in enumerate(split_lines): line = line.strip() if params_pattern.search(line): cut_off = index break if cut_off is not None: split_lines = split_lines[0:cut_off] return "\n".join(split_lines) @staticmethod def get_serializer_name(serializer): if serializer is None: return None if rest_framework.VERSION >= '3.0.0': from rest_framework.serializers import ListSerializer assert serializer != ListSerializer, "uh oh, what now?" if isinstance(serializer, ListSerializer): serializer = serializer.child if inspect.isclass(serializer): return serializer.__name__ return serializer.__class__.__name__ @staticmethod def get_summary(callback, docstring=None): """ Returns the first sentence of the first line of the class docstring """ description = get_view_description( callback, html=False, docstring=docstring) \ .split("\n")[0].split(".")[0] description = IntrospectorHelper.strip_yaml_from_docstring( description) description = IntrospectorHelper.strip_params_from_docstring( description) description = strip_tags(get_view_description( callback, html=True, docstring=description)) return description class BaseViewIntrospector(object): __metaclass__ = ABCMeta def __init__(self, callback, path, pattern, user): self.callback = callback self.path = path self.pattern = pattern self.user = user def get_yaml_parser(self): parser = YAMLDocstringParser(self) return parser @abstractmethod def __iter__(self): pass def get_iterator(self): return self.__iter__() def get_description(self): """ Returns the first sentence of the first line of the class docstring """ return IntrospectorHelper.get_summary(self.callback) def get_docs(self): return get_view_description(self.callback) class BaseMethodIntrospector(object): __metaclass__ = ABCMeta ENUMS = [ 'choice', 'multiple choice', ] PRIMITIVES = { 'integer': ['int32', 'int64'], 'number': ['float', 'double'], 'string': ['string', 'byte', 'date', 'date-time'], 'boolean': ['boolean'], } def __init__(self, view_introspector, method): self.method = method self.parent = view_introspector self.callback = view_introspector.callback self.path = view_introspector.path self.user = view_introspector.user @property def is_array_response(self): """ Support definition of array responses with the 'many' attr """ return self.get_yaml_parser().object.get('many') def get_module(self): return self.callback.__module__ def check_yaml_methods(self, yaml_methods): missing_set = set() for key in yaml_methods: if key not in self.parent.methods(): missing_set.add(key) if missing_set: raise Exception( "methods %s in class docstring are not in view methods %s" % (list(missing_set), list(self.parent.methods()))) def get_yaml_parser(self): parser = YAMLDocstringParser(self) parent_parser = YAMLDocstringParser(self.parent) self.check_yaml_methods(parent_parser.object.keys()) new_object = {} new_object.update(parent_parser.object.get(self.method, {})) new_object.update(parser.object) parser.object = new_object return parser def get_extra_serializer_classes(self): return self.get_yaml_parser().get_extra_serializer_classes( self.callback) def ask_for_serializer_class(self): if hasattr(self.callback, 'get_serializer_class'): view = self.create_view() parser = self.get_yaml_parser() mock_view = parser.get_view_mocker(self.callback) view = mock_view(view) if view is not None: if parser.should_omit_serializer(): return None try: serializer_class = view.get_serializer_class() except AssertionError as e: if "should either include a `serializer_class` attribute, or override the `get_serializer_class()` method." in str(e): # noqa serializer_class = None else: raise return serializer_class def create_view(self): view = self.callback() if not hasattr(view, 'kwargs'): view.kwargs = dict() if hasattr(self.parent.pattern, 'default_args'): view.kwargs.update(self.parent.pattern.default_args) view.request = HttpRequest() view.request.user = self.user view.request.method = self.method return view def get_serializer_class(self): parser = self.get_yaml_parser() serializer = parser.get_serializer_class(self.callback) if serializer is None: serializer = self.ask_for_serializer_class() return serializer def get_response_serializer_class(self): parser = self.get_yaml_parser() serializer = parser.get_response_serializer_class(self.callback) if serializer is None: serializer = self.get_serializer_class() return serializer def get_request_serializer_class(self): parser = self.get_yaml_parser() serializer = parser.get_request_serializer_class(self.callback) if serializer is None: serializer = self.get_serializer_class() return serializer def get_summary(self): # If there is no docstring on the method, get class docs return IntrospectorHelper.get_summary( self.callback, self.get_docs() or self.parent.get_description()) def get_nickname(self): """ Returns the APIView's nickname """ return rest_framework.settings.api_settings \ .VIEW_NAME_FUNCTION(self.callback, self.method).replace(' ', '_') def get_notes(self): """ Returns the body of the docstring trimmed before any parameters are listed. First, get the class docstring and then get the method's. The methods will always inherit the class comments. """ docstring = "" class_docs = get_view_description(self.callback) class_docs = IntrospectorHelper.strip_yaml_from_docstring(class_docs) class_docs = IntrospectorHelper.strip_params_from_docstring(class_docs) method_docs = self.get_docs() if class_docs is not None: docstring += class_docs + " \n" if method_docs is not None: method_docs = formatting.dedent(smart_text(method_docs)) method_docs = IntrospectorHelper.strip_yaml_from_docstring( method_docs ) method_docs = IntrospectorHelper.strip_params_from_docstring( method_docs ) docstring += '\n' + method_docs docstring = docstring.strip() return do_markdown(docstring) def get_parameters(self): """ Returns parameters for an API. Parameters are a combination of HTTP query parameters as well as HTTP body parameters that are defined by the DRF serializer fields """ params = [] path_params = self.build_path_parameters() body_params = self.build_body_parameters() form_params = self.build_form_parameters() query_params = self.build_query_parameters() if django_filters is not None: query_params.extend( self.build_query_parameters_from_django_filters()) if path_params: params += path_params if self.get_http_method() not in ["GET", "DELETE", "HEAD"]: params += form_params if not form_params and body_params is not None: params.append(body_params) if query_params: params += query_params return params def get_http_method(self): return self.method @abstractmethod def get_docs(self): return '' def retrieve_docstring(self): """ Attempts to fetch the docs for a class method. Returns None if the method does not exist """ method = str(self.method).lower() if not hasattr(self.callback, method): return None return get_view_description(getattr(self.callback, method)) def build_body_parameters(self): serializer = self.get_request_serializer_class() serializer_name = IntrospectorHelper.get_serializer_name(serializer) if serializer_name is None: return return { 'name': serializer_name, 'type': serializer_name, 'paramType': 'body', } def build_path_parameters(self): """ Gets the parameters from the URL """ url_params = re.findall('/{([^}]*)}', self.path) params = [] for param in url_params: params.append({ 'name': param, 'type': 'string', 'paramType': 'path', 'required': True }) return params def build_query_parameters(self): params = [] docstring = self.retrieve_docstring() or '' docstring += "\n" + get_view_description(self.callback) if docstring is None: return params split_lines = docstring.split('\n') for line in split_lines: param = line.split(' -- ') if len(param) == 2: params.append({'paramType': 'query', 'name': param[0].strip(), 'description': param[1].strip(), 'type': 'string'}) return params def build_query_parameters_from_django_filters(self): """ introspect ``django_filters.FilterSet`` instances. """ params = [] filter_class = getattr(self.callback, 'filter_class', None) if (filter_class is not None and issubclass(filter_class, django_filters.FilterSet)): for name, filter_ in filter_class.base_filters.items(): data_type = 'string' parameter = { 'paramType': 'query', 'name': name, 'description': filter_.label, } normalize_data_format(data_type, None, parameter) multiple_choices = filter_.extra.get('choices', {}) if multiple_choices: parameter['enum'] = [choice[0] for choice in itertools.chain(multiple_choices)] parameter['type'] = 'enum' params.append(parameter) return params def build_form_parameters(self): """ Builds form parameters from the serializer class """ data = [] serializer_class = self.get_request_serializer_class() if serializer_class is None: return data serializer = serializer_class() fields = serializer.get_fields() read_only_fields = getattr(getattr(serializer, 'Meta', None), 'read_only_fields', []) for name, field in fields.items(): if getattr(field, 'read_only', False) or name in read_only_fields: continue data_type, data_format = get_data_type(field) or ('string', 'string') if data_type == 'hidden': continue # guess format # data_format = 'string' # if data_type in self.PRIMITIVES: # data_format = self.PRIMITIVES.get(data_type)[0] choices = [] if data_type in BaseMethodIntrospector.ENUMS: if isinstance(field.choices, list): choices = [k for k, v in field.choices] elif isinstance(field.choices, dict): choices = [k for k, v in field.choices.items()] if choices: # guest data type and format data_type, data_format = get_primitive_type(choices[0]) or ('string', 'string') f = { 'paramType': 'form', 'name': name, 'description': getattr(field, 'help_text', '') or '', 'type': data_type, 'format': data_format, 'required': getattr(field, 'required', False), 'defaultValue': get_default_value(field), } # Swagger type is a primitive, format is more specific if f['type'] == f['format']: del f['format'] # defaultValue of null is not allowed, it is specific to type if f['defaultValue'] is None: del f['defaultValue'] # Min/Max values max_value = getattr(field, 'max_value', None) min_value = getattr(field, 'min_value', None) if max_value is not None and data_type == 'integer': f['minimum'] = min_value if max_value is not None and data_type == 'integer': f['maximum'] = max_value # ENUM options if choices: f['enum'] = choices data.append(f) return data def get_primitive_type(var): if isinstance(var, bool): return 'boolean', 'boolean' elif isinstance(var, int): return 'integer', 'int32' elif isinstance(var, float): return 'number', 'float' elif isinstance(var, six.string_types): return 'string', 'string' else: return 'string', 'string' # 'default' def get_data_type(field): # (in swagger 2.0 we might get to use the descriptive types.. from rest_framework import fields if isinstance(field, fields.BooleanField): return 'boolean', 'boolean' elif hasattr(fields, 'NullBooleanField') and isinstance(field, fields.NullBooleanField): return 'boolean', 'boolean' # elif isinstance(field, fields.URLField): # return 'string', 'string' # 'url' # elif isinstance(field, fields.SlugField): # return 'string', 'string', # 'slug' elif isinstance(field, fields.ChoiceField): return 'choice', 'choice' # elif isinstance(field, fields.EmailField): # return 'string', 'string' # 'email' # elif isinstance(field, fields.RegexField): # return 'string', 'string' # 'regex' elif isinstance(field, fields.DateField): return 'string', 'date' elif isinstance(field, fields.DateTimeField): return 'string', 'date-time' # 'datetime' # elif isinstance(field, fields.TimeField): # return 'string', 'string' # 'time' elif isinstance(field, fields.IntegerField): return 'integer', 'int64' # 'integer' elif isinstance(field, fields.FloatField): return 'number', 'float' # 'float' # elif isinstance(field, fields.DecimalField): # return 'string', 'string' #'decimal' # elif isinstance(field, fields.ImageField): # return 'string', 'string' # 'image upload' # elif isinstance(field, fields.FileField): # return 'string', 'string' # 'file upload' # elif isinstance(field, fields.CharField): # return 'string', 'string' elif rest_framework.VERSION >= '3.0.0': if isinstance(field, fields.HiddenField): return 'hidden', 'hidden' elif isinstance(field, fields.ListField): return 'array', 'array' else: return 'string', 'string' else: return 'string', 'string' class APIViewIntrospector(BaseViewIntrospector): def __iter__(self): for method in self.methods(): yield APIViewMethodIntrospector(self, method) def methods(self): return self.callback().allowed_methods class WrappedAPIViewIntrospector(BaseViewIntrospector): def __iter__(self): for method in self.methods(): yield WrappedAPIViewMethodIntrospector(self, method) def methods(self): return self.callback().allowed_methods def get_notes(self): class_docs = get_view_description(self.callback) class_docs = IntrospectorHelper.strip_yaml_from_docstring( class_docs) class_docs = IntrospectorHelper.strip_params_from_docstring( class_docs) return get_view_description( self.callback, html=True, docstring=class_docs) def do_markdown(docstring): # Markdown is optional if apply_markdown: return apply_markdown(docstring) else: return docstring.replace("\n\n", "<br/>") class APIViewMethodIntrospector(BaseMethodIntrospector): def get_docs(self): """ Attempts to retrieve method specific docs for an endpoint. If none are available, the class docstring will be used """ return self.retrieve_docstring() class WrappedAPIViewMethodIntrospector(BaseMethodIntrospector): def get_docs(self): """ Attempts to retrieve method specific docs for an endpoint. If none are available, the class docstring will be used """ return get_view_description(self.callback) def get_module(self): from rest_framework_swagger.decorators import wrapper_to_func func = wrapper_to_func(self.callback) return func.__module__ def get_notes(self): return self.parent.get_notes() def get_yaml_parser(self): parser = YAMLDocstringParser(self) return parser class ViewSetIntrospector(BaseViewIntrospector): """Handle ViewSet introspection.""" def __init__(self, callback, path, pattern, user, patterns=None): super(ViewSetIntrospector, self).__init__(callback, path, pattern, user) if not issubclass(callback, viewsets.ViewSetMixin): raise Exception("wrong callback passed to ViewSetIntrospector") self.patterns = patterns or [pattern] def __iter__(self): methods = self._resolve_methods() for method in methods: yield ViewSetMethodIntrospector(self, methods[method], method) def methods(self): stuff = [] for pattern in self.patterns: if pattern.callback: stuff.extend(self._resolve_methods(pattern).values()) return stuff def _resolve_methods(self, pattern=None): from .decorators import closure_n_code, get_closure_var if pattern is None: pattern = self.pattern callback = pattern.callback try: x = closure_n_code(callback) while getattr(x.code, 'co_name') != 'view': # lets unwrap! callback = get_closure_var(callback) x = closure_n_code(callback) freevars = x.code.co_freevars except (AttributeError, IndexError): raise RuntimeError( 'Unable to use callback invalid closure/function ' + 'specified.') else: return x.closure[freevars.index('actions')].cell_contents class ViewSetMethodIntrospector(BaseMethodIntrospector): def __init__(self, view_introspector, method, http_method): super(ViewSetMethodIntrospector, self) \ .__init__(view_introspector, method) self.http_method = http_method.upper() @property def is_array_response(self): """ ViewSet.list methods always return array responses """ return (self.method == 'list' or super(ViewSetMethodIntrospector, self).is_array_response) def get_http_method(self): return self.http_method def get_docs(self): """ Attempts to retrieve method specific docs for an endpoint. If none are available, the class docstring will be used """ return self.retrieve_docstring() def create_view(self): view = super(ViewSetMethodIntrospector, self).create_view() if not hasattr(view, 'action'): setattr(view, 'action', self.method) view.request.method = self.http_method return view def build_query_parameters(self): parameters = super(ViewSetMethodIntrospector, self) \ .build_query_parameters() view = self.create_view() page_size, page_query_param, page_size_query_param = get_pagination_attribures(view) if self.method == 'list' and page_size: data_type = 'integer' if page_query_param: parameters.append({ 'paramType': 'query', 'name': page_query_param, 'description': None, }) normalize_data_format(data_type, None, parameters[-1]) if page_size_query_param: parameters.append({ 'paramType': 'query', 'name': page_size_query_param, 'description': None, }) normalize_data_format(data_type, None, parameters[-1]) return parameters def multi_getattr(obj, attr, default=None): """ Get a named attribute from an object; multi_getattr(x, 'a.b.c.d') is equivalent to x.a.b.c.d. When a default argument is given, it is returned when any attribute in the chain doesn't exist; without it, an exception is raised when a missing attribute is encountered. """ attributes = attr.split(".") for i in attributes: try: obj = getattr(obj, i) except AttributeError: if default: return default else: raise return obj def normalize_data_format(data_type, data_format, obj): """ sets 'type' on obj sets a valid 'format' on obj if appropriate uses data_format only if valid """ if data_type == 'array': data_format = None flatten_primitives = [ val for sublist in BaseMethodIntrospector.PRIMITIVES.values() for val in sublist ] if data_format not in flatten_primitives: formats = BaseMethodIntrospector.PRIMITIVES.get(data_type, None) if formats: data_format = formats[0] else: data_format = None if data_format == data_type: data_format = None obj['type'] = data_type if data_format is None and 'format' in obj: del obj['format'] elif data_format is not None: obj['format'] = data_format class YAMLDocstringParser(object): """ Docstring parser powered by YAML syntax This parser allows you override some parts of automatic method inspection behaviours which are not always correct. See the following documents for more information about YAML and Swagger: - https://github.com/wordnik/swagger-core/wiki - http://www.yaml.org/spec/1.2/spec.html - https://github.com/wordnik/swagger-codegen/wiki/Creating-Swagger-JSON-from-YAML-files 1. Control over parameters ============================================================================ Define parameters and its properties in docstrings: parameters: - name: some_param description: Foobar long description goes here required: true type: integer paramType: form minimum: 10 maximum: 100 - name: other_foo paramType: query - name: avatar type: file It is possible to override parameters discovered by method inspector by defining: `parameters_strategy` option to either `merge` or `replace` To define different strategies for different `paramType`'s use the following syntax: parameters_strategy: form: replace query: merge By default strategy is set to `merge` Sometimes method inspector produces wrong list of parameters that you might not won't to see in SWAGGER form. To handle this situation define `paramTypes` that should be omitted omit_parameters: - form 2. Control over serializers ============================================================================ Once in a while you are using different serializers inside methods but automatic method inspector cannot detect this. For that purpose there is two explicit parameters that allows you to discard serializer detected by method inspector OR replace it with another one serializer: some.package.FooSerializer omit_serializer: true 3. Custom Response Class ============================================================================ If your view is not using serializer at all but instead outputs simple data type such as JSON you may define custom response object in method signature like follows: type: name: required: true type: string url: required: false type: url 4. Response Messages (Error Codes) ============================================================================ If you'd like to share common response errors that your APIView might throw you can define them in docstring using following format: responseMessages: - code: 401 message: Not authenticated - code: 403 message: Insufficient rights to call this procedure 5. Different models for reading and writing operations ============================================================================ Since REST Framework won't output write_only fields in responses as well as does not require read_only fields to be provided it is worth to automatically register 2 separate models for reading and writing operations. Discovered serializer will be registered with `Write` or `Read` prefix. Response Class will be automatically adjusted if serializer class was detected by method inspector. You can also refer to this models in your parameters: parameters: - name: CigarSerializer type: WriteCigarSerializer paramType: body SAMPLE DOCSTRING: ============================================================================ --- # API Docs # Note: YAML always starts with `---` type: name: required: true type: string url: required: false type: url created_at: required: true type: string format: date-time serializer: .serializers.FooSerializer omit_serializer: false parameters_strategy: merge omit_parameters: - path parameters: - name: name description: Foobar long description goes here required: true type: string paramType: form - name: other_foo paramType: query - name: other_bar paramType: query - name: avatar type: file responseMessages: - code: 401 message: Not authenticated """ PARAM_TYPES = ['header', 'path', 'form', 'body', 'query'] yaml_error = None def __init__(self, method_introspector): self.method_introspector = method_introspector self.object = self.load_obj_from_docstring( docstring=self.method_introspector.get_docs()) if self.object is None: self.object = {} def load_obj_from_docstring(self, docstring): """Loads YAML from docstring""" split_lines = trim_docstring(docstring).split('\n') # Cut YAML from rest of docstring for index, line in enumerate(split_lines): line = line.strip() if line.startswith('---'): cut_from = index break else: return None yaml_string = "\n".join(split_lines[cut_from:]) yaml_string = formatting.dedent(yaml_string) try: return yaml.load(yaml_string) except yaml.YAMLError as e: self.yaml_error = e return None def _load_class(self, cls_path, callback): """ Dynamically load a class from a string """ if not cls_path or not callback or not hasattr(callback, '__module__'): return None package = None if '.' not in cls_path: # within current module/file class_name = cls_path module_path = self.method_introspector.get_module() else: # relative or fully qualified path import class_name = cls_path.split('.')[-1] module_path = ".".join(cls_path.split('.')[:-1]) if cls_path.startswith('.'): # relative lookup against current package # ..serializers.FooSerializer package = self.method_introspector.get_module() class_obj = None # Try to perform local or relative/fq import try: module = importlib.import_module(module_path, package=package) class_obj = getattr(module, class_name, None) except ImportError: pass # Class was not found, maybe it was imported to callback module? # from app.serializers import submodule # serializer: submodule.FooSerializer if class_obj is None: try: module = importlib.import_module( self.method_introspector.get_module()) class_obj = multi_getattr(module, cls_path, None) except (ImportError, AttributeError): raise Exception("Could not find %s, looked in %s" % (cls_path, module)) return class_obj def get_serializer_class(self, callback): """ Retrieves serializer class from YAML object """ serializer = self.object.get('serializer', None) try: return self._load_class(serializer, callback) except (ImportError, ValueError): pass return None def get_extra_serializer_classes(self, callback): """ Retrieves serializer classes from pytype YAML objects """ parameters = self.object.get('parameters', []) serializers = [] for parameter in parameters: serializer = parameter.get('pytype', None) if serializer is not None: try: serializer = self._load_class(serializer, callback) serializers.append(serializer) except (ImportError, ValueError): pass return serializers def get_request_serializer_class(self, callback): """ Retrieves request serializer class from YAML object """ serializer = self.object.get('request_serializer', None) try: return self._load_class(serializer, callback) except (ImportError, ValueError): pass return None def get_response_serializer_class(self, callback): """ Retrieves response serializer class from YAML object """ serializer = self.object.get('response_serializer', None) if isinstance(serializer, list): serializer = serializer[0] try: return self._load_class(serializer, callback) except (ImportError, ValueError): pass return None def get_response_type(self): """ Docstring may define custom response class """ return self.object.get('type', None) def get_consumes(self): """ Retrieves media type supported as input """ return self.object.get('consumes', []) def get_produces(self): """ Retrieves media type supported as output """ return self.object.get('produces', []) def get_response_messages(self): """ Retrieves response error codes from YAML object """ messages = [] response_messages = self.object.get('responseMessages', []) for message in response_messages: messages.append({ 'code': message.get('code', None), 'message': message.get('message', None), 'responseModel': message.get('responseModel', None), }) return messages def get_view_mocker(self, callback): view_mocker = self.object.get('view_mocker', lambda a: a) if isinstance(view_mocker, six.string_types): view_mocker = self._load_class(view_mocker, callback) return view_mocker def get_parameters(self, callback): """ Retrieves parameters from YAML object """ params = [] fields = self.object.get('parameters', []) for field in fields: param_type = field.get('paramType', None) if param_type not in self.PARAM_TYPES: param_type = 'form' # Data Type & Format # See: # https://github.com/wordnik/swagger-core/wiki/1.2-transition#wiki-additions-2 # https://github.com/wordnik/swagger-core/wiki/Parameters data_type = field.get('type', 'string') pytype = field.get('pytype', None) if pytype is not None: try: serializer = self._load_class(pytype, callback) data_type = IntrospectorHelper.get_serializer_name( serializer) except (ImportError, ValueError): pass if param_type in ['path', 'query', 'header']: if data_type not in BaseMethodIntrospector.PRIMITIVES: data_type = 'string' # Data Format data_format = field.get('format', None) f = { 'paramType': param_type, 'name': field.get('name', None), 'description': field.get('description', ''), 'required': field.get('required', False), } normalize_data_format(data_type, data_format, f) if field.get('defaultValue', None) is not None: f['defaultValue'] = field.get('defaultValue', None) # Allow Multiple Values &f=1,2,3,4 if field.get('allowMultiple'): f['allowMultiple'] = True if f['type'] == 'array': items = field.get('items', {}) elt_data_type = items.get('type', 'string') elt_data_format = items.get('type', 'format') f['items'] = { } normalize_data_format(elt_data_type, elt_data_format, f['items']) uniqueItems = field.get('uniqueItems', None) if uniqueItems is not None: f['uniqueItems'] = uniqueItems # Min/Max are optional if 'minimum' in field and data_type == 'integer': f['minimum'] = str(field.get('minimum', 0)) if 'maximum' in field and data_type == 'integer': f['maximum'] = str(field.get('maximum', 0)) # enum options enum = field.get('enum', []) if enum: f['enum'] = enum # File support if f['type'] == 'file': f['paramType'] = 'body' params.append(f) return params def discover_parameters(self, inspector): """ Applies parameters strategy for parameters discovered from method and docstring """ parameters = [] docstring_params = self.get_parameters(inspector.callback) method_params = inspector.get_parameters() # paramType may differ, overwrite first # so strategy can be applied for meth_param in method_params: for doc_param in docstring_params: if doc_param['name'] == meth_param['name']: if 'paramType' in doc_param: meth_param['paramType'] = doc_param['paramType'] for param_type in self.PARAM_TYPES: if self.should_omit_parameters(param_type): continue parameters += self._apply_strategy( param_type, method_params, docstring_params ) # PATCH requests expects all fields except path fields to be optional if inspector.get_http_method() == "PATCH": for param in parameters: if param['paramType'] != 'path': param['required'] = False return parameters def should_omit_parameters(self, param_type): """ Checks if particular parameter types should be omitted explicitly """ return param_type in self.object.get('omit_parameters', []) def should_omit_serializer(self): """ Checks if serializer should be intentionally omitted """ return self.object.get('omit_serializer', False) def _apply_strategy(self, param_type, method_params, docstring_params): """ Applies strategy for subset of parameters filtered by `paramType` """ strategy = self.get_parameters_strategy(param_type=param_type) method_params = self._filter_params( params=method_params, key='paramType', val=param_type ) docstring_params = self._filter_params( params=docstring_params, key='paramType', val=param_type ) if strategy == 'replace': return docstring_params or method_params elif strategy == 'merge': return self._merge_params( method_params, docstring_params, key='name', ) return [] @staticmethod def _filter_params(params, key, val): """ Returns filter function for parameters structure """ def filter_by(o): return o.get(key, None) == val return filter(filter_by, params) @staticmethod def _merge_params(params1, params2, key): """ Helper method. Merges parameters lists by key """ import itertools merged = OrderedDict() for item in itertools.chain(params1, params2): merged[item[key]] = item return [val for (_, val) in merged.items()] def get_parameters_strategy(self, param_type=None): """ Get behaviour strategy for parameter types. It can be either `merge` or `replace`: - `merge` overwrites duplicate parameters signatures discovered by inspector with the ones defined explicitly in docstring - `replace` strategy completely overwrites parameters discovered by inspector with the ones defined explicitly in docstring. Note: Strategy can be defined per `paramType` so `path` parameters can use `merge` strategy while `form` parameters will use `replace` strategy. Default strategy: `merge` """ default = 'merge' strategy = self.object.get('parameters_strategy', default) if hasattr(strategy, 'get') and param_type is not None: strategy = strategy.get(param_type, default) if strategy not in ['merge', 'replace']: strategy = default return strategy
import numpy as np from pygamoo import Player from copy import deepcopy class ClonalSelection(Player): def __init__(self, num, obj_queue, repair_queue, cmd_exchange, npop, nvars, bounds, host, port, player_parm): self.nclone = player_parm['nclone'] self.mutate_args = tuple(player_parm['mutate_args']) super(ClonalSelection, self).__init__(num, obj_queue, repair_queue, cmd_exchange, npop, nvars, bounds, host, port) def step(self, pop, pop_eval, pattern): temp_pop = deepcopy(pop) temp_pop_eval = deepcopy(pop_eval) arg_sort = temp_pop_eval.argsort() indices = [] better = [] better_eval = [] evaluation_counter = 0 for rank, arg in enumerate(arg_sort): clone_num = max(int(self.nclone / (rank + 1) + 0.5), 1) clones = np.array([self._mutate(temp_pop[arg], pattern) for _ in range(clone_num)]) clones = np.unique(clones, axis=0) clones = clones[np.any(clones != pop[arg], axis=1)] if clones.shape[0] > 0: if self.repair_rpc is not None: clones = self.evaluate_call(clones, self.repair_rpc) clones_eval = self.evaluate_call(clones, self.obj_rpc) evaluation_counter += clones.shape[0] argmin = clones_eval.argmin() if clones_eval[argmin] < temp_pop_eval[arg]: indices.append(arg) better.append(clones[argmin]) better_eval.append(clones_eval[argmin]) if len(better) > 0: better = np.stack(better) better_eval = np.stack(better_eval) temp_pop[indices] = better temp_pop_eval[indices] = better_eval return temp_pop, temp_pop_eval, evaluation_counter def _mutate(self, ind, pattern): a, b, sigma = self.mutate_args r = np.random.random() if r < a: ind = self._uniform_mutate(ind, pattern, self.bounds) elif r < b: ind = self._gaussian_mutate(ind, pattern, self.bounds, sigma) else: ind = self._bound_mutate(ind, pattern, self.bounds) return ind @staticmethod def _uniform_mutate(individual, pattern, bounds): ind = individual.copy() if np.sum(pattern) == 0: return ind indx = np.where(pattern)[0] k = np.random.choice(indx) a = bounds[k][0] b = bounds[k][1] ind[k] = np.random.uniform(a, b) return ind @staticmethod def _bound_mutate(individual, pattern, bounds): ind = individual.copy() if np.sum(pattern) == 0: return ind indx = np.where(pattern)[0] k = np.random.choice(indx) a = bounds[k][0] b = bounds[k][1] r = np.random.random() r2 = np.random.uniform(0, 1) if r < 0.5: ind[k] = a + (ind[k] - a) * r2 else: ind[k] = (b - ind[k]) * r2 + ind[k] return ind @staticmethod def _gaussian_mutate(individual, pattern, bounds, sigma): ind = individual.copy() if np.sum(pattern) == 0: return ind indx = np.where(pattern)[0] k = np.random.choice(indx) a = bounds[k][0] b = bounds[k][1] ran = sigma * (b - a) * np.random.randn() + ind[k] if a <= ran <= b: ind[k] = ran return ind
#! /vagrant/analysis/py36env/bin/python3.6 import psycopg2 from contextlib import contextmanager from pprint import pprint def connect(): """ :return: """ return psycopg2.connect("dbname=forum") @contextmanager def get_cursor(): conn = connect() cursor = conn.cursor() try: yield cursor except: raise else: conn.commit() finally: cursor.close() conn.close() def set_url_popularity(cur): cur.execute(''' CREATE TEMPORARY TABLE url_hits AS ( SELECT path, COUNT (path) AS total FROM log WHERE path is DISTINCT FROM '/' GROUP BY path ORDER BY total DESC ) ''') def set_article_popularity(cur): cur.execute(''' CREATE TEMPORARY TABLE article_hits AS ( SELECT title, total, articles.author AS author_id FROM url_hits LEFT JOIN articles ON POSITION(articles.slug IN url_hits.path) > 0 ) ''') def set_authors_popularity(cur): cur.execute(''' CREATE TEMPORARY TABLE authors_popularity AS ( SELECT name, total FROM article_hits LEFT JOIN authors ON author_id = authors.id ) ''') def set_requests_by_day(cur): cur.execute(''' CREATE TEMPORARY TABLE total_requests_per_day AS ( SELECT log.time::DATE as time, COUNT(log.time::DATE) AS hits -- Loses timezone information FROM log GROUP BY log.time::DATE ) ''') def get_most_popular_articles(cur, top=3): cur.execute(''' SELECT * FROM article_hits LIMIT %s; ''', (top, )) return cur.fetchall() def get_most_popular_authors(cur, top=3): cur.execute(''' SELECT * FROM authors_popularity LIMIT %s ''', (top,)) return cur.fetchall() def get_largest_error_frequency_by_day(cur, top=1): cur.execute(''' WITH total_errors_per_day AS ( SELECT log.time::DATE as time, COUNT(log.time::DATE) AS hits -- Loses timezone information FROM log WHERE log.status ~ '4[0-9]{2}' GROUP BY log.time::DATE ) SELECT total_errors_per_day.time as time, total_errors_per_day.hits/total_requests_per_day.hits::FLOAT as percentage_errors FROM total_errors_per_day LEFT JOIN total_requests_per_day ON total_requests_per_day.time = total_errors_per_day.time WHERE total_errors_per_day.hits/total_requests_per_day.hits::FLOAT > 0.01 ''') return cur.fetchall() if __name__ == '__main__': with get_cursor() as cur: print('Testing database access. Getting first ten rows from table log.') cur.execute('SELECT * FROM log LIMIT 10;') data = cur.fetchall() pprint(data) set_url_popularity(cur) set_article_popularity(cur) set_authors_popularity(cur) set_requests_by_day(cur) print('Most popular articles:') pprint(get_most_popular_articles(cur)) print('Most popular authors:') pprint(get_most_popular_authors(cur)) print('Largest day with errors:') pprint(get_largest_error_frequency_by_day(cur))
import argparse import os import matplotlib.pyplot as plt import numpy as np import pandas as pd parser = argparse.ArgumentParser(description='Display an opt_tools hist.') parser.add_argument('hist_file', type=str, nargs='+', help="Paths to the history files to be displayed.") parser.add_argument('--smooth', help="Smoothing for objective function.", type=int, default=3) parser.add_argument('--logscale', help="Log scale graphs.", action="store_true") parser.add_argument('--xaxis', help="time|iter", type=str, default="time") args = parser.parse_args() hs = [pd.read_pickle(hf) for hf in args.hist_file] plt.figure() for h, f in zip(hs, args.hist_file): fn = os.path.splitext(os.path.split(f)[-1])[0] plt.subplot(311) idx = h.t / 3600 if args.xaxis == "time" else h.i # plt.plot(idx, np.convolve(h.f, np.ones(args.smooth) / args.smooth, 'same'), label=fn, alpha=0.5) smooth = np.ones(args.smooth) / args.smooth plt.plot(np.convolve(idx, smooth, 'valid'), np.convolve(h.f, smooth, 'valid'), label=fn, alpha=0.5) # plt.plot(idx, h.f, label=fn) plt.subplot(312) plt.plot(idx, h.learning_rate) plt.ylabel("Learning rate") plt.yscale('log') plt.subplot(313) plt.plot(idx, h.minibatch_size) plt.ylabel("Minibatch size") plt.yscale('log') plt.subplot(311) plt.ylabel("LML bound") plt.legend() plt.subplot(313) plt.xlabel("Time (hrs)") if args.logscale: plt.xscale('log') plt.figure() for h in hs: if 'lml' in h.columns: f = h[~(h.lml == 0.0) & ~np.isnan(h.lml)] plt.plot(f.t / 3600, f.lml, '-') else: plt.plot([]) plt.xlabel("Time (hrs)") plt.ylabel("LML bound") plt.figure() for i, h in enumerate(hs): try: # f = h[~h.err.isnull()].filter(regex="model.kern.convrbf.basek*") ss = h[~h.err.isnull()] f = ss.filter(regex=".*(lengthscales)") if f.shape[1] > 0: plt.plot(f, color="C%i" % i) f = ss.filter(regex=".*(variance)") plt.plot(f, color="C%i" % i, alpha=0.5) # f = h.filter(regex="model.kern.convrbf.basek*") # plt.plot(h.t, f[~f.acc.isnull()]) except: pass plt.xlabel("Time (hrs)") plt.ylabel("Some hyperparameters") # plt.figure() # for i, h in enumerate(hs): # p = h[~h.acc.isnull()] # plt.plot(p.t / 3600, p.filter(regex="variance*"), color="C%i" % i) plt.figure() for h in hs: p = h[~h.acc.isnull()] plt.plot(p.t / 3600, p.err) # plt.ylim(0.01, 0.03) plt.xlabel("Time (hrs)") plt.ylabel("Error") if args.logscale: plt.xscale('log') plt.figure() for h in hs: p = h[~h.acc.isnull()] plt.plot(p.t / 3600, p.nlpp) # plt.ylim(0.03, 0.08) plt.xlabel("Time (hrs)") plt.ylabel("nlpp") if args.logscale: plt.xscale('log') plt.figure() for h in hs: plt.plot(h.t / h.tt) plt.xlabel("Record") plt.ylabel("Proportion of time optimising") def reshape_patches_for_plot(patches): n_patch, dimx, dimy = patches.shape n_rows = int(np.floor(np.sqrt(n_patch))) n_cols = int(np.ceil(n_patch / n_rows)) image = np.empty((n_rows * dimx + n_rows - 1, n_cols * dimy + n_cols - 1)) image.fill(np.nan) for count, p in enumerate(patches): i = count // n_cols j = count % n_cols image[i * (dimx + 1):i * (dimx + 1) + dimx, j * (dimy + 1):j * (dimy + 1) + dimy] = p return image, n_rows, n_cols patches_fig = plt.figure() qm_fig = plt.figure() w_fig = plt.figure() for i, h in enumerate(hs): if not np.any(["conv" in cn or "basekern" in cn for cn in h.columns]): continue nsbplt = int(np.ceil(len(hs) ** 0.5)) plt.figure(patches_fig.number) plt.subplot(nsbplt, nsbplt, i + 1) Zend = h[~h.acc.isnull()].iloc[-1]['model.Z' if 'model.Z' in h.columns else 'model.Z1'] patch_size = int(Zend.shape[-1] ** 0.5) qmu = h[~h.acc.isnull()]['model.q_mu'].iloc[-1] if qmu.shape[1] == 1: qm = np.vstack(h[~h.acc.isnull()]['model.q_mu'].iloc[-1]).flatten() s = np.argsort(qm) else: s = np.arange(len(Zend)) try: patch_image, n_rows, n_cols = reshape_patches_for_plot(1 - Zend.reshape(-1, patch_size, patch_size)[s, :, :]) plt.imshow(patch_image, cmap="gray") plt.clim(-0.25, 1.25) plt.colorbar() except: pass if qmu.shape[1] == 1: plt.figure(qm_fig.number) plt.subplot(nsbplt, nsbplt, i + 1) plt.imshow(np.hstack((qm[s], np.zeros(n_rows * n_cols - len(qm)))).reshape(n_rows, n_cols)) plt.colorbar() plt.figure(w_fig.number) plt.subplot(nsbplt, nsbplt, i + 1) Wseries = h[~h.acc.isnull()].iloc[-1].filter(regex=".*.W") if len(Wseries) >= 1 or len(Wseries) == 2352: patch_weights = Wseries[0].flatten() patch_h = int(np.ceil(patch_weights.shape[-1] ** 0.5)) if patch_h ** 2.0 != patch_weights.shape[-1]: patch_h = int(np.ceil((patch_weights.shape[-1] / 3) ** 0.5)) patch_w = int(patch_weights.shape[-1] / patch_h) plt.imshow(patch_weights.reshape(3, patch_h, patch_h).transpose(1, 0, 2).reshape(patch_h, patch_w)) else: plt.imshow(patch_weights.reshape(patch_h, patch_h)) plt.colorbar() plt.show()
import uuid from datetime import datetime from flask import current_app from api import db, bcrypt class User(db.Model): __tablename__ = "users" id = db.Column(db.Integer, primary_key=True) uuid = db.Column(db.String(255), unique=True, nullable=False) first_name = db.Column(db.String(120), nullable=False) last_name = db.Column(db.String(120), nullable=False) email = db.Column(db.String(255), nullable=False, unique=True, index=True) phone = db.Column(db.String(20), nullable=False) password = db.Column(db.String(255)) active = db.Column(db.Boolean, default=False, nullable=False) app_role = db.Column(db.String(10), default="Read") rank = db.Column(db.String(50), default="Volunteer") first_aid = db.Column(db.String(50), default="CFR") updated_at = db.Column( db.DateTime, default=datetime.utcnow, onupdate=datetime.utcnow ) created_at = db.Column(db.DateTime, default=datetime.utcnow) def __init__(self, first_name, last_name, email, phone, password, active): self.uuid = str(uuid.uuid4()) self.first_name = first_name self.last_name = last_name self.email = email self.phone = phone self.password = bcrypt.generate_password_hash( password, current_app.config["BCRYPT_LOG_ROUNDS"] ).decode() self.active = active def verify_password(self, password): return bcrypt.check_password_hash(self.password, password) def activate(self): self.active = True db.session.commit() return True def update(self, data): self.first_name = data["first_name"] self.last_name = data["last_name"] self.email = data["email"] self.phone = data["phone"] self.active = data["active"] self.app_role = data["app_role"] self.rank = data["rank"] self.first_aid = data["first_aid"] db.session.commit() return True def create_user(first_name, last_name, email, phone, password, active): user = User(first_name, last_name, email, phone, password, active) db.session.add(user) db.session.commit() return user def get_user_by_email(email): return User.query.filter_by(email=email).first() def get_all_users(): return User.query.all() def get_user_by_uuid(uuid): return User.query.filter_by(uuid=uuid).first()
import socket import logging import sys from threading import Thread HOST = "127.0.0.1" PORT = 8080 ADDR = (HOST, PORT) BUFFERSIZE = 4096 def print_chat(text): """Imprime a mensagem de maneira bonita""" sys.stdout.write("\u001b[1L\u001b[1A\u001b[1B\u001b[1000D") sys.stdout.write(text) sys.stdout.write("\u001b[1B\u001b[1000D\u001b[7C") sys.stdout.flush() def receive(): """Recebe e imprime as mensagens dos outros usuário""" while True: try: data = sock.recv(BUFFERSIZE) print_chat(str(data, "utf-8")) except Exception as e: logging.info("Erro de conexão") logging.error(e) break def send(): """Envia a mensagem para o servidor""" while True: msg = input("Você > ") data = "{}".format(msg) sock.send(bytes(data, "utf-8")) if __name__ == '__main__': sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) user_name = input("Username: ") # Cria uma conexão com o servidor e se apresenta sock.connect(ADDR) sock.send(bytes(user_name, "utf-8")) logging.info("Conectado ao servidor.") # Cria e inicia as threads para receber e enviar mensagens # dessa maneira, o usuário não fica bloqueado enquanto envia ou recebe mensagens thread_send = Thread(target=send) thread_recv = Thread(target=receive) thread_send.start() thread_recv.start()
import zmq import threading import queue import time import random class Router(): """ Router Limited to localhost """ def __init__(self, routes, CURVE=False): self.routes = routes # self.connectionTimeout = 2000 self.connectionTimeout = 1800 self.protocol = 'tcp' self.serverSockets = {} self.clientSockets = {} self.CURVE = CURVE self.termination = False self.latency_range = [800, 1200] self.drop_msg_prob = 0.95 self.drop_msg_period = 1000 * 10 # 10 seconds in milliseconds # self.drop_msg_period = 1000 * 5 # 10 seconds in milliseconds self.last_drop_msg_time = None self.use_latency = False self.use_drop_msg = True if self.CURVE: self.createServerSocket = self._createServerSocket_CURVE self.createClientSocket = self._createClientSocket_CURVE else: self.createServerSocket = self._createServerSocket_simple self.createClientSocket = self._createClientSocket_simple self.changeTime = time.time() + 75 def start(self): for routeID in range(len(self.routes)): self.createServerSocket(routeID) self.createClientSocket(routeID) msgQueue = queue.Queue() server_thread = threading.Thread(target=self.run_server, args=[routeID, msgQueue]) client_thread = threading.Thread(target=self.run_client, args=[routeID, msgQueue]) server_thread.start() client_thread.start() def run_server(self, routeID, msgQueue): serverSocket = self.serverSockets[routeID] while not self.termination: try: msg = serverSocket.recv_multipart() except Exception as e: continue msgQueue.put([msg, time.time()]) def run_client(self, routeID, msgQueue): clientSocket = self.clientSockets[routeID] serverSocket = self.serverSockets[routeID] changed = False while not self.termination: try: msg, arrival_time = msgQueue.get(timeout=self.connectionTimeout/1000) except Exception as e: continue delay = self.compute_latency(arrival_time) if delay > 0: print("total delay:", delay) time.sleep(delay) if self.toDropMsg(): print("Dropping Msg!") continue clientID = msg[0] clientSocket.send_multipart(msg[1:]) try: RESP = clientSocket.recv() except Exception as e: continue serverSocket.send_multipart([clientID, RESP]) if self.changeTime <= time.time() and not changed: changed = True self.connectionTimeout = 1000 clientSocket.RCVTIMEO = self.connectionTimeout serverSocket.RCVTIMEO = self.connectionTimeout self.use_drop_msg = False print("CHANGED!!!") def compute_latency(self, arrival_time): if self.use_latency: latency = random.uniform(self.latency_range[0], self.latency_range[1]) current_time = time.time() delay = arrival_time + latency/1000 - current_time return delay else: return 0 def toDropMsg(self): if not self.use_drop_msg: return False toDrop = False if self.last_drop_msg_time is None: self.last_drop_msg_time = time.time() if time.time() - self.last_drop_msg_time > self.drop_msg_period / 1000: self.last_drop_msg_time = time.time() if random.random() < self.drop_msg_prob: toDrop = True return toDrop def _createServerSocket_simple(self, routeID): context = zmq.Context() socket = context.socket(zmq.ROUTER) socket.RCVTIMEO = self.connectionTimeout port = self.routes[routeID][0] addr = "{0}://*:{1}".format(self.protocol, port) socket.bind(addr) self.serverSockets[routeID] = socket return socket def _createClientSocket_simple(self, routeID): context = zmq.Context() socket = context.socket(zmq.DEALER) routeID_bin = str.encode(chr(routeID)) socket.setsockopt(zmq.IDENTITY, routeID_bin) IP, port = '127.0.0.1', self.routes[routeID][1] addr = "{0}://{1}:{2}".format(self.protocol, IP, port) socket.RCVTIMEO = self.connectionTimeout socket.connect(addr) socket.connect(addr) self.clientSockets[routeID] = socket return socket def _createServerSocket_CURVE(self): pass def _createClientSocket_CURVE(self): pass def terminate(self): self.termination = True def createRouter(raftConfigs): servers = {} routes = [] for raftParams in raftConfigs: for k,v in raftParams['servers'].items(): if k not in servers: servers[k] = v for raftParams in raftConfigs: input_port = servers[raftParams['serverID']][-1] output_port = raftParams['port'] routes.append([input_port, output_port]) router_instance = Router(routes) return router_instance
""" Convenience interface for NSDictionary/NSMutableDictionary """ __all__ = () from objc._convenience_mapping import addConvenienceForBasicMapping from objc._convenience import container_wrap, container_unwrap, addConvenienceForClass from objc._objc import lookUpClass import sys, os, collections.abc NSDictionary = lookUpClass("NSDictionary") NSMutableDictionary = lookUpClass("NSMutableDictionary") addConvenienceForBasicMapping("NSDictionary", True) addConvenienceForBasicMapping("NSMutableDictionary", False) def _all_contained_in(inner, outer): """ Return True iff all items in ``inner`` are also in ``outer``. """ for v in inner: if v not in outer: return False return True def nsdict__len__(self): return self.count() def nsdict__iter__(self): return iter(self.keyEnumerator()) class nsdict_view(collections.abc.Set): __slots__ = () def __eq__(self, other): if not isinstance(other, collections.abc.Set): return NotImplemented if len(self) == len(other): return _all_contained_in(self, other) else: return False def __ne__(self, other): if not isinstance(other, collections.abc.Set): return NotImplemented if len(self) == len(other): return not _all_contained_in(self, other) else: return True def __lt__(self, other): if not isinstance(other, collections.abc.Set): return NotImplemented if len(self) < len(other): return _all_contained_in(self, other) else: return False def __le__(self, other): if not isinstance(other, collections.abc.Set): return NotImplemented if len(self) <= len(other): return _all_contained_in(self, other) else: return False def __gt__(self, other): if not isinstance(other, collections.abc.Set): return NotImplemented if len(self) > len(other): return _all_contained_in(other, self) else: return False def __ge__(self, other): if not isinstance(other, collections.abc.Set): return NotImplemented if len(self) >= len(other): return _all_contained_in(other, self) else: return False def __and__(self, other): if not isinstance(other, collections.abc.Set): return NotImplemented result = set(self) result.intersection_update(other) return result def __rand__(self, other): if not isinstance(other, collections.abc.Set): return NotImplemented result = set(self) result.intersection_update(other) return result def __or__(self, other): if not isinstance(other, collections.abc.Set): return NotImplemented result = set(self) result.update(other) return result def __ror__(self, other): if not isinstance(other, collections.abc.Set): return NotImplemented result = set(self) result.update(other) return result def __sub__(self, other): if not isinstance(other, collections.abc.Set): return NotImplemented result = set(self) result.difference_update(other) return result def __rsub__(self, other): if not isinstance(other, collections.abc.Set): return NotImplemented result = set(other) result.difference_update(self) return result def __xor__(self, other): if not isinstance(other, collections.abc.Set): return NotImplemented result = set(self) result.symmetric_difference_update(other) return result def __rxor__(self, other): if not isinstance(other, collections.abc.Set): return NotImplemented result = set(self) result.symmetric_difference_update(other) return result class nsdict_keys(nsdict_view): __slots__ = ("__value",) def __init__(self, value): self.__value = value def __repr__(self): keys = list(self.__value) return "<nsdict_keys({0})>".format(keys) def __len__(self): return len(self.__value) def __iter__(self): return iter(self.__value) def __contains__(self, value): return value in self.__value class nsdict_values(nsdict_view): __slots__ = ("__value",) def __init__(self, value): self.__value = value def __repr__(self): values = list(self) values.sort() return "<nsdict_values({0})>".format(values) def __len__(self): return len(self.__value) def __iter__(self): return iter(self.__value.objectEnumerator()) def __contains__(self, value): for v in iter(self): if value == v: return True return False class nsdict_items(nsdict_view): __slots__ = ("__value",) def __init__(self, value): self.__value = value def __repr__(self): values = list(self) values.sort() return "<nsdict_items({0})>".format(values) def __len__(self): return len(self.__value) def __iter__(self): for k in self.__value: yield (k, self.__value[k]) def __contains__(self, value): for v in iter(self): if value == v: return True return False collections.abc.KeysView.register(nsdict_keys) collections.abc.ValuesView.register(nsdict_values) collections.abc.ItemsView.register(nsdict_items) collections.abc.Mapping.register(NSDictionary) collections.abc.MutableMapping.register(NSMutableDictionary) if int(os.uname()[2].split(".")[0]) <= 10: # Limited functionality on OSX 10.6 and earlier def nsdict_fromkeys(cls, keys, value=None): keys = [container_wrap(k) for k in keys] values = [container_wrap(value)] * len(keys) return NSDictionary.dictionaryWithObjects_forKeys_(values, keys) # XXX: 'nsdict_fromkeys' doesn't work on OSX 10.5 def nsmutabledict_fromkeys(cls, keys, value=None): value = container_wrap(value) result = NSMutableDictionary.alloc().init() for k in keys: result[container_wrap(k)] = value return result else: def nsdict_fromkeys(cls, keys, value=None): keys = [container_wrap(k) for k in keys] values = [container_wrap(value)] * len(keys) return cls.dictionaryWithObjects_forKeys_(values, keys) def nsmutabledict_fromkeys(cls, keys, value=None): value = container_wrap(value) result = cls.alloc().init() for k in keys: result[container_wrap(k)] = value return result def nsdict_new(cls, *args, **kwds): if len(args) == 0: pass elif len(args) == 1: d = dict() if isinstance(args[0], collections.abc.Mapping): items = args[0].items() else: items = args[0] for k, v in items: d[container_wrap(k)] = container_wrap(v) for k, v in kwds.items(): d[container_wrap(k)] = container_wrap(v) return cls.dictionaryWithDictionary_(d) else: raise TypeError("dict expected at most 1 arguments, got {0}".format(len(args))) if kwds: d = dict() for k, v in kwds.items(): d[container_wrap(k)] = container_wrap(v) return cls.dictionaryWithDictionary_(d) return cls.dictionary() def nsdict__eq__(self, other): if not isinstance(other, collections.abc.Mapping): return False return self.isEqualToDictionary_(other) def nsdict__ne__(self, other): return not nsdict__eq__(self, other) def nsdict__lt__(self, other): return NotImplemented def nsdict__le__(self, other): return NotImplemented def nsdict__ge__(self, other): return NotImplemented def nsdict__gt__(self, other): return NotImplemented addConvenienceForClass( "NSDictionary", ( ("keys", lambda self: nsdict_keys(self)), ("values", lambda self: nsdict_values(self)), ("items", lambda self: nsdict_items(self)), ), ) addConvenienceForClass( "NSDictionary", ( ("__new__", staticmethod(nsdict_new)), ("fromkeys", classmethod(nsdict_fromkeys)), ("__eq__", nsdict__eq__), ("__ne__", nsdict__ne__), ("__lt__", nsdict__lt__), ("__le__", nsdict__le__), ("__gt__", nsdict__gt__), ("__ge__", nsdict__ge__), ("__len__", nsdict__len__), ("__iter__", nsdict__iter__), ), ) addConvenienceForClass( "NSMutableDictionary", ( ("__new__", staticmethod(nsdict_new)), ("fromkeys", classmethod(nsdict_fromkeys)), ("clear", lambda self: self.removeAllObjects()), ), )
import sys n = int(sys.stdin.readline()) for _ in range(n): n, k = sys.stdin.readline().strip().split() n, k = int(n), int(k) if n % 2 == 0: # even if n < k or (k % 2 == 1 and n < 2 * k): print("NO") else: print("YES") if k % 2 == 0: digits = ["1"] * (k-1) + [str(n - (k - 1))] else: digits = ["2"] * (k-1) + [str(n - 2 * (k-1))] print(" ".join(digits)) else: # odd if k % 2 == 0 or k > n: print("NO") else: print("YES") digits = ["1"] * (k-1) + [str(n - (k - 1))] print(" ".join(digits))
# -*- coding: utf-8 -*- from conans import ConanFile, tools import os class TestPackageConan(ConanFile): def test(self): if not tools.cross_building(self.settings): self.run("some_tool --version")
# OpenWeatherMap API Key weather_api_key = "6edbbe4fc8bc867709594d77824c6aed" # Google API Key g_key = "AIzaSyC-8Y9a59V9dNpKTAOE3bwfTVS8kcMqANE"
import logging from abc import ABCMeta, abstractmethod import torch from torch import nn from quati import constants logger = logging.getLogger(__name__) class Model(torch.nn.Module): __metaclass__ = ABCMeta def __init__(self, fields_tuples): super().__init__() # Default fields and embeddings self.fields_dict = dict(fields_tuples) self.target_field = self.fields_dict['target'] # Building flag self.is_built = False # Loss function has to be defined later! self._loss = None @property def nb_classes(self): pad_shift = int(constants.PAD in self.target_field.vocab.stoi) return len(self.target_field.vocab) - pad_shift # remove pad index @abstractmethod def forward(self, *args, **kwargs): raise NotImplementedError def load(self, path): logger.info("Loading model weights from {}".format(path)) self.load_state_dict( torch.load(str(path), map_location=lambda storage, loc: storage) ) def save(self, path): logger.info("Saving model weights to {}".format(path)) torch.save(self.state_dict(), str(path)) def build_loss(self, loss_weights=None): if loss_weights is not None: loss_weights = torch.tensor(loss_weights).float() self._loss = nn.NLLLoss(weight=loss_weights, ignore_index=constants.TARGET_PAD_ID) def loss(self, pred, gold): # (bs, ts, nb_classes) -> (bs*ts, nb_classes) predicted = pred.reshape(-1, self.nb_classes) # (bs, ts, ) -> (bs*ts, ) gold = gold.reshape(-1) return self._loss(predicted, gold) def predict_probas(self, batch): log_probs = self.forward(batch) probs = torch.exp(log_probs) # assume log softmax in the output return probs def predict_classes(self, batch): classes = torch.argmax(self.predict_probas(batch), -1) return classes
from enum import Enum class Color(Enum): NoColor = 0 Red = 1 Green = 2 Blue = 3 Yellow = 4 @classmethod def get_from(cls, color_string: str): if color_string == 'rouge': return Color.Red elif color_string == 'vert': return Color.Green elif color_string == 'bleu': return Color.Blue elif color_string == 'orange': return Color.Yellow else: return Color.NoColor
# Copyright 2013-2022 Lawrence Livermore National Security, LLC and other # Spack Project Developers. See the top-level COPYRIGHT file for details. # # SPDX-License-Identifier: (Apache-2.0 OR MIT) import sys from spack.package import * class AutodockVina(MakefilePackage): """AutoDock Vina is an open-source program for doing molecular docking""" homepage = "http://vina.scripps.edu/" url = "https://github.com/ccsb-scripps/AutoDock-Vina/archive/refs/tags/v1.2.3.tar.gz" version('1.2.3', sha256='22f85b2e770b6acc363429153b9551f56e0a0d88d25f747a40d2f55a263608e0') version('1.2.2', sha256='b9c28df478f90d64dbbb5f4a53972bddffffb017b7bb58581a1a0034fff1b400') version('1.2.1', sha256='2d8d9871a5a95265c03c621c0584d9f06b202303116e6c87e23c935f7b694f74') version('1.2.0', sha256='9c9a85766b4d124d7c1d92e767aa8b4580c6175836b8aa2c28f88a9c40a5b90e') version('1.1.2', sha256='65422b2240c75d40417872a48e98043e7a7c435300dc8490af0c1f752f1ca4a2', url='https://github.com/ccsb-scripps/AutoDock-Vina/archive/refs/tags/v1.1.2-boost-new.tar.gz') depends_on('boost@1.50.0:1.75.0 +filesystem +program_options +serialization +system +thread', when='@1.1.2') depends_on('boost@1.54.0: +filesystem +program_options +serialization +system +thread', when='@1.2.0:') @property def build_directory(self): if sys.platform == "darwin": return join_path('build', 'mac', 'release') else: return join_path('build', 'linux', 'release') def edit(self, spec, prefix): with working_dir(self.build_directory): makefile = FileFilter('Makefile') makefile.filter('BOOST_INCLUDE = .*', 'BOOST_INCLUDE = %s' % self.spec['boost'].prefix.include) makefile.filter('C_PLATFORM=.*', 'C_PLATFORM=-pthread') makefile.filter('GPP=.*', 'GPP=%s' % spack_cxx) def build(self, spec, prefix): with working_dir(self.build_directory): make() def install(self, spec, prefix): with working_dir(self.build_directory): mkdirp(prefix.bin) install('vina', prefix.bin) install('vina_split', prefix.bin)
import pytest from tuneit.graph import Graph, Node, Key class String(str): def __init__(self, val): self.__name__ = val self.__label__ = val self.__dot_attrs__ = {} def __iter__(self): raise TypeError def test_graph(): a = Graph() a["foo"] = String("bar") b = Node("foo2") b.value = (a["foo"], "bar", {"one": 1}) with pytest.raises(KeyError): Node("foo", (a["foo"], "bar")) assert isinstance(a["foo"], Node) assert "foo" in a assert "foo" in list(a) assert isinstance(a["foo"].value, str) and a["foo"].key == "foo" assert isinstance(a["foo"].value, str) and a["foo"].value == "bar" assert a["foo"] == Node("foo", a) assert a["foo"] == "bar" assert a["foo"] == Key(a["foo"]) assert str(a["foo"]) == "bar" assert a["foo"] != a assert a[a["foo"]] == a["foo"] assert a["foo"] in a assert repr(a).startswith("Graph") assert repr(a["foo"]).startswith("Node") assert repr(Key(a["foo"])).startswith("Key") assert a == a.backend assert a.visualize() with pytest.raises(KeyError): a.visualize(end="bar") with pytest.raises(KeyError): a.visualize(start="bar") assert b.graph.visualize(end=b).source == b.visualize().source assert b.visualize().source == b.visualize(start="foo").source assert b.visualize().source != b.visualize(start=a["foo2"]).source def test_dict_methods(): a = Graph(dict(one=1, two=2, three=3)) assert a.get("one", None) == 1 assert a.get("four", None) == None b = a.copy() assert a == b assert b.pop("one") == 1 assert "one" not in b assert "one" in a b.update(a) assert a == b