content
stringlengths
5
1.05M
money = int(input()) money = 1000 - money fh = money // 500 money = money - fh * 500 oh = money // 100 money = money - oh * 100 fy = money // 50 money = money - fy * 50 ten = money // 10 money = money - ten * 10 five = money // 5 money = money - five * 5 one = money money = money - one print(fh + oh + fy + ten + five + one)
import torch from PIL import Image from torchvision import transforms as T import cv2 from torchvision.models.detection import * from loguru import logger import numpy as np import pickle COCO_INSTANCE_CATEGORY_NAMES = [ '__background__', 'person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light', 'fire hydrant', 'N/A', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow', 'elephant', 'bear', 'zebra', 'giraffe', 'N/A', 'backpack', 'umbrella', 'N/A', 'N/A', 'handbag', 'tie', 'suitcase', 'frisbee', 'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard', 'tennis racket', 'bottle', 'N/A', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple', 'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch', 'potted plant', 'bed', 'N/A', 'dining table', 'N/A', 'N/A', 'toilet', 'N/A', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone', 'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'N/A', 'book', 'clock', 'vase', 'scissors', 'teddy bear', 'hair drier', 'toothbrush' ] def get_prediction(img, threshold, model): img = Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB)) transform = T.Compose([T.ToTensor()]) img = transform(img) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") img = img.to(device) pred = model([img]) if torch.cuda.is_available(): pred_class = [COCO_INSTANCE_CATEGORY_NAMES[i] for i in list(pred[0]['labels'].cuda().data.cpu().numpy())] pred_boxes = [[(i[0], i[1]), (i[2], i[3])] for i in list(pred[0]['boxes'].detach().cpu().numpy())] pred_score = list(pred[0]['scores'].detach().cpu().numpy()) else: pred_class = [COCO_INSTANCE_CATEGORY_NAMES[i] for i in list(pred[0]['labels'].numpy())] pred_boxes = [[(i[0], i[1]), (i[2], i[3])] for i in list(pred[0]['boxes'].detach().numpy())] pred_score = list(pred[0]['scores'].detach().numpy()) try: pred_t = [pred_score.index(x) for x in pred_score if x > threshold][-1] except IndexError: return None, None else: pred_boxes = pred_boxes[:pred_t+1] pred_class = pred_class[:pred_t+1] return pred_boxes, pred_class def object_detection_api(img, model, rect_th=15, text_th=7, text_size=5, threshold=0.8): boxes, pred_cls = get_prediction(img, threshold, model) if boxes is None and pred_cls is None: return img for i in range(len(boxes)): # Draw Rectangle with the coordinates cv2.rectangle(img, boxes[i][0], boxes[i][1], color=(0, 255, 0), thickness=rect_th) # Write the prediction class cv2.putText(img, pred_cls[i], boxes[i][0], cv2.FONT_HERSHEY_SIMPLEX, text_size, (0, 255, 0), thickness=text_th) return img
# -*- coding: utf-8 -*- import torch as th import torch.nn as nn from leibniz.nn.layer.hyperbolic import BasicBlock, Bottleneck class HyperBasic(nn.Module): extension = 1 least_required_dim = 1 def __init__(self, dim, step, ix, tx, relu, conv, reduction=16): super(HyperBasic, self).__init__() self.dim = dim self.step = step self.ix = ix self.tx = tx self.input = BasicBlock(dim, 2 * dim, step, relu, conv, reduction=reduction) self.output = BasicBlock(4 * dim, dim, step, relu, conv, reduction=reduction) def forward(self, x): input = self.input(x) velo = input[:, :self.dim] theta = input[:, self.dim:] step = self.step * velo y1 = (x + th.tanh(theta)) * th.exp(step * th.sin(theta)) - th.tanh(theta) y2 = (x + th.tanh(theta)) * th.exp(- step * th.cos(theta)) - th.tanh(theta) y3 = (x - th.tanh(theta)) * th.exp(step * th.sin(theta)) + th.tanh(theta) y4 = (x - th.tanh(theta)) * th.exp(- step * th.cos(theta)) + th.tanh(theta) ys = th.cat((y1, y2, y3, y4), dim=1) return x + self.output(ys) class HyperBottleneck(nn.Module): extension = 4 least_required_dim = 1 def __init__(self, dim, step, ix, tx, relu, conv, reduction=16): super(HyperBottleneck, self).__init__() self.dim = dim self.step = step self.ix = ix self.tx = tx self.input = Bottleneck(dim, 2 * dim, step, relu, conv, reduction=reduction) self.output = Bottleneck(4 * dim, dim, step, relu, conv, reduction=reduction) def forward(self, x): input = self.input(x) velo = input[:, :self.dim] theta = input[:, self.dim:] step = self.step * velo y1 = (x + th.tanh(theta)) * th.exp(step * th.sin(theta)) - th.tanh(theta) y2 = (x + th.tanh(theta)) * th.exp(- step * th.cos(theta)) - th.tanh(theta) y3 = (x - th.tanh(theta)) * th.exp(step * th.sin(theta)) + th.tanh(theta) y4 = (x - th.tanh(theta)) * th.exp(- step * th.cos(theta)) + th.tanh(theta) ys = th.cat((y1, y2, y3, y4), dim=1) return x + self.output(ys)
"""The proxy component."""
""" # lint-amnesty, pylint: disable=django-not-configured Mobile API """
import turtle filename = "decoded_wavepattern.txt" #filename = "all about you cutted - decoded.txt" drawStamps = True drawRightLine = False def min(a, b): if (a < b): return a return b def drawgrid(): for i in range(int(len_vert / step_mark * 2)): a.forward(step_mark) a.left(90) a.forward(len_mark) a.left(180) a.forward(len_mark * 2) a.left(180) a.forward(len_mark) a.right(90) a = turtle.Turtle() a.shape("arrow") turtle.screensize(1500, 1000) turtle.getscreen().bgcolor("black") a.pencolor("white") len_vert = 490 len_hor = 1900 len_mark = 5 step_mark = 20 #draw coordinate system a.speed(100) a.pensize(1) a.penup() a.setpos(0 - len_hor / 2, 0) a.pendown() a.forward(len_hor) a.stamp() a.setpos(0 - len_hor / 2, 0) a.left(90) a.forward(len_vert) a.stamp() a.back(len_vert * 2) #drawgrid() a.setpos(0 - len_hor / 2, 0) a.right(90) #drawgrid() file = open(filename, "r") l = turtle.Turtle() r = turtle.Turtle() l.pencolor("white") r.pencolor("white") l.setpos(0 - len_hor / 2, 0) r.setpos(0 - len_hor / 2, 0) l.speed(200) r.speed(200) l.pencolor("red") r.pencolor("green") l.shape("triangle") r.shape("triangle") l.shapesize(0.3, 0.3, 0.3) r.shapesize(0.3, 0.3, 0.3) valueGap = 5 valuesPerLine = 8 numValues = int(len_hor / valueGap) sizeAmplitudeFactor = 0.01 text = "" for i in range(int(numValues / valuesPerLine + 1)): text += file.readline() endidx = 0 for i in range(numValues): startidx = min(text.find("+", endidx), text.find("-", endidx)) endidx = text.find("\t", startidx) try: l.setpos(i * valueGap - len_hor / 2, int(text[startidx:endidx]) * sizeAmplitudeFactor) startidx = min(text.find("+", endidx), text.find("-", endidx)) endidx = text.find("\t", startidx) if (drawRightLine): r.setpos(i * valueGap - len_hor / 2, int(text[startidx:endidx]) * sizeAmplitudeFactor) if (drawStamps): l.stamp() r.stamp() except: break file.close() #mainloop() print("drawing 440hz line") ##draw 440hz wave a.penup() a.setpos(0 - len_hor / 2, 0) a.speed(200) a.pencolor("blue") a.pendown() file = open("wavepattern_440hz.txt", "r") text = "" for i in range(int(numValues / valuesPerLine + 1)): text += file.readline() endidx = 0 for i in range(numValues): startidx = min(text.find("+", endidx), text.find("-", endidx)) endidx = text.find("\t", startidx) try: a.setpos(i * valueGap - len_hor / 2, int(text[startidx:endidx]) * sizeAmplitudeFactor) startidx = min(text.find("+", endidx), text.find("-", endidx)) endidx = text.find("\t", startidx) #r.setpos(i * valueGap - len_hor / 2, - int(text[startidx:endidx]) * sizeAmplitudeFactor) except: break file.close() #mainloop() #draw 880hz line print("drawing 880hz line") a.penup() a.setpos(0 - len_hor / 2, 0) a.speed(200) a.pencolor("yellow") a.pendown() file = open("wavepattern_880hz.txt", "r") text = "" for i in range(int(numValues / valuesPerLine + 1)): text += file.readline() endidx = 0 for i in range(numValues): startidx = min(text.find("+", endidx), text.find("-", endidx)) endidx = text.find("\t", startidx) try: a.setpos(i * valueGap - len_hor / 2, int(text[startidx:endidx]) * sizeAmplitudeFactor) startidx = min(text.find("+", endidx), text.find("-", endidx)) endidx = text.find("\t", startidx) #r.setpos(i * valueGap - len_hor / 2, - int(text[startidx:endidx]) * sizeAmplitudeFactor) except: break file.close() mainloop() input()
import os import numpy as np from PIL import Image import torch from torch import nn from torch.nn.modules.conv import _ConvNd from torch.nn.modules.batchnorm import _BatchNorm import torch.nn.init as initer def knn(x, k=20): inner = -2*torch.matmul(x.transpose(2, 1), x) xx = torch.sum(x**2, dim=1, keepdim=True) pairwise_distance = -xx - inner - xx.transpose(2, 1) idx = pairwise_distance.topk(k=k, dim=-1)[1] # (batch_size, num_points, k) return idx def pairwise_distance(x): inner = -2*torch.matmul(x.transpose(2, 1), x) xx = torch.sum(x**2, dim=1, keepdim=True) pdist = -xx - inner - xx.transpose(2, 1) pdist_softmax = torch.nn.functional.softmax(pdist, dim=2) return pdist_softmax def pairwise_distance_mask(x, k=20): # print(x.size()) bs, ch, nump = x.size() inner = -2*torch.matmul(x.transpose(2, 1), x) xx = torch.sum(x**2, dim=1, keepdim=True) pdist = -xx - inner - xx.transpose(2, 1) topk, indices = pdist.topk(k=k, dim=-1) res = torch.autograd.Variable(torch.zeros(bs, nump, nump)).cuda() res = res.scatter(2, indices, topk) pdist_softmax = torch.nn.functional.softmax(pdist, dim=2) return pdist_softmax def pairwise_distance_mask1(x, k=20): # print(x.size()) bs, ch, nump = x.size() inner = -2*torch.matmul(x.transpose(2, 1), x) xx = torch.sum(x**2, dim=1, keepdim=True) pdist = -xx - inner - xx.transpose(2, 1) topk, indices = pdist.topk(k=k, dim=-2) res = torch.autograd.Variable(torch.ones(bs, nump, nump)).cuda() res = res.scatter(1, indices, topk) res = res < 0.00001 res = res.float() # pdist_softmax = torch.nn.functional.softmax(pdist, dim=2) return res def pairwise_distance_mask1_dilate(x, k=20): # print(x.size()) bs, ch, nump = x.size() inner = -2*torch.matmul(x.transpose(2, 1), x) xx = torch.sum(x**2, dim=1, keepdim=True) pdist = -xx - inner - xx.transpose(2, 1) ek = k + k topk, indices = pdist.topk(k=ek, dim=-2) # indices: BxekXN idx_ek = np.array([i for i in range(ek)]) np.random.shuffle(idx_ek) idx_k = idx_ek[:k] indices = indices[:, idx_k, :] res = torch.autograd.Variable(torch.ones(bs, nump, nump)).cuda() res = res.scatter(1, indices, topk) res = res < 0.00001 res = res.float() # pdist_softmax = torch.nn.functional.softmax(pdist, dim=2) return res class AverageMeter(object): """Computes and stores the average and current value""" def __init__(self): self.reset() def reset(self): self.val = 0 self.avg = 0 self.sum = 0 self.count = 0 def update(self, val, n=1): self.val = val self.sum += val * n self.count += n self.avg = self.sum / self.count def step_learning_rate(optimizer, base_lr, epoch, step_epoch, multiplier=0.1, clip=1e-6): """Sets the learning rate to the base LR decayed by 10 every step epochs""" lr = max(base_lr * (multiplier ** (epoch // step_epoch)), clip) for param_group in optimizer.param_groups: param_group['lr'] = lr def poly_learning_rate(optimizer, base_lr, curr_iter, max_iter, power=0.9): """poly learning rate policy""" lr = base_lr * (1 - float(curr_iter) / max_iter) ** power for param_group in optimizer.param_groups: param_group['lr'] = lr def intersectionAndUnion(output, target, K, ignore_index=255): # 'K' classes, output and target sizes are N or N * L or N * H * W, each value in range 0 to K - 1. assert (output.ndim in [1, 2, 3]) assert output.shape == target.shape output = output.reshape(output.size).copy() target = target.reshape(target.size) output[np.where(target == ignore_index)[0]] = 255 intersection = output[np.where(output == target)[0]] area_intersection, _ = np.histogram(intersection, bins=np.arange(K+1)) area_output, _ = np.histogram(output, bins=np.arange(K+1)) area_target, _ = np.histogram(target, bins=np.arange(K+1)) area_union = area_output + area_target - area_intersection return area_intersection, area_union, area_target def intersectionAndUnionGPU(output, target, K, ignore_index=255): # 'K' classes, output and target sizes are N or N * L or N * H * W, each value in range 0 to K - 1. assert (output.dim() in [1, 2, 3]) assert output.shape == target.shape output = output.view(-1) target = target.view(-1) output[target == ignore_index] = ignore_index intersection = output[output == target] # https://github.com/pytorch/pytorch/issues/1382 area_intersection = torch.histc(intersection.float().cpu(), bins=K, min=0, max=K-1) area_output = torch.histc(output.float().cpu(), bins=K, min=0, max=K-1) area_target = torch.histc(target.float().cpu(), bins=K, min=0, max=K-1) area_union = area_output + area_target - area_intersection return area_intersection.cuda(), area_union.cuda(), area_target.cuda() def check_mkdir(dir_name): if not os.path.exists(dir_name): os.mkdir(dir_name) def check_makedirs(dir_name): if not os.path.exists(dir_name): os.makedirs(dir_name) def init_weights(model, conv='kaiming', batchnorm='normal', linear='kaiming', lstm='kaiming'): """ :param model: Pytorch Model which is nn.Module :param conv: 'kaiming' or 'xavier' :param batchnorm: 'normal' or 'constant' :param linear: 'kaiming' or 'xavier' :param lstm: 'kaiming' or 'xavier' """ for m in model.modules(): if isinstance(m, (_ConvNd)): if conv == 'kaiming': initer.kaiming_normal_(m.weight) elif conv == 'xavier': initer.xavier_normal_(m.weight) else: raise ValueError("init type of conv error.\n") if m.bias is not None: initer.constant_(m.bias, 0) elif isinstance(m, _BatchNorm): if batchnorm == 'normal': initer.normal_(m.weight, 1.0, 0.02) elif batchnorm == 'constant': initer.constant_(m.weight, 1.0) else: raise ValueError("init type of batchnorm error.\n") initer.constant_(m.bias, 0.0) elif isinstance(m, nn.Linear): if linear == 'kaiming': initer.kaiming_normal_(m.weight) elif linear == 'xavier': initer.xavier_normal_(m.weight) else: raise ValueError("init type of linear error.\n") if m.bias is not None: initer.constant_(m.bias, 0) elif isinstance(m, nn.LSTM): for name, param in m.named_parameters(): if 'weight' in name: if lstm == 'kaiming': initer.kaiming_normal_(param) elif lstm == 'xavier': initer.xavier_normal_(param) else: raise ValueError("init type of lstm error.\n") elif 'bias' in name: initer.constant_(param, 0) def convert_to_syncbn(model): def recursive_set(cur_module, name, module): if len(name.split('.')) > 1: recursive_set(getattr(cur_module, name[:name.find('.')]), name[name.find('.')+1:], module) else: setattr(cur_module, name, module) from lib.sync_bn import SynchronizedBatchNorm1d, SynchronizedBatchNorm2d, SynchronizedBatchNorm3d for name, m in model.named_modules(): if isinstance(m, nn.BatchNorm1d): recursive_set(model, name, SynchronizedBatchNorm1d(m.num_features, m.eps, m.momentum, m.affine)) elif isinstance(m, nn.BatchNorm2d): recursive_set(model, name, SynchronizedBatchNorm2d(m.num_features, m.eps, m.momentum, m.affine)) elif isinstance(m, nn.BatchNorm3d): recursive_set(model, name, SynchronizedBatchNorm3d(m.num_features, m.eps, m.momentum, m.affine)) def colorize(gray, palette): # gray: numpy array of the label and 1*3N size list palette color = Image.fromarray(gray.astype(np.uint8)).convert('P') color.putpalette(palette) return color
#!/usr/bin/env python3 # -*- coding: utf-8 -*- NAME_LIST = [ 'Dian', 'Nese', 'Falledrick', 'Mae', 'Valhein', 'Dol', 'Earl', 'Cedria', 'Azulei', 'Yun', 'Cybel', 'Ina', 'Foolly', 'Skili', 'Juddol', 'Janver', 'Viska', 'Hirschendy', 'Silka', 'Hellsturn', 'Essa', 'Mykonos', 'Fenton', 'Tyrena', 'Inqoul', 'Mankov', 'Derilia', 'Hexema', 'Wyton', 'Kaedum', 'Gouram', 'Libertia', 'Berasailles', 'Juxta', 'Tae’hr', 'Comtol', 'Gherak', 'Hest', 'Qony', 'Masamka', 'Twyll', 'Tenos', 'Axim', 'Westrynda', 'Saphros', 'Olkham', 'Handok', 'Kemetra', 'Yos', 'Wentingle', 'Ames', 'Molosh', 'Inkov', 'Phasasia', 'Ziedinghal', 'Bregul', 'Eishvack', 'Lora', 'Krenting', 'Symbole', 'Elignoir', 'Keligkrul', 'Qwey', 'Vindinglag', 'Kusakira', 'Weme', 'Fayd', 'Rushvita', 'Vulkor', 'Amers', 'Ortos', 'Vanius', 'Chandellia', 'Lilikol', 'Catca', 'Cormus', 'Yuela', 'Ariban', 'Tryton', 'Fesscha', 'Opalul', 'Zakzos', 'Hortimer', 'Anklos', 'Dushasiez', 'Polop', 'Mektal', 'Orinphus', 'Denatra', 'Elkazzi', 'Dyne', 'Domos', 'Letryal', 'Manniv', 'Sylestia', 'Esnol', 'Fasafuros', 'Ghanfer', 'Kahnite', 'Sweyda', 'Uylis', 'Retenia', 'Bassos', 'Arkensval', 'Impelos', 'Grandius', 'Fulcrux', 'Lassahein', 'Edsveda', 'Earakun', 'Fous', 'Maas', 'Basenphal', 'Jubidya', 'Divya', 'Kosunten', 'Ordayius', 'Dozzer', 'Gangher', 'Escha', 'Manchul', 'Kempos', 'Kulo', 'Urtench', 'Kesta', 'Helahona', 'Ryte', 'Falcia', 'Umannos', 'Urkensvall', 'Fedra', 'Bulkensar', 'Comia', 'Tyul', 'Lasendarl' ] class Race: """Basic characteristics for race""" race = 'Unknown' speed = 30 strength_bonus = 0 dexterity_bonus = 0 constitution_bonus = 0 intelligence_bonus = 0 wisdom_bonus = 0 charisma_bonus = 0 hp_bonus = 0 class Dwarf(Race): """""" race = 'Dwarf' constitution_bonus = 2 class Dragonborn(Race): """""" race = 'Dragonborn' strength_bonus = 2 charisma_bonus = 1 class Elf(Race): """""" race = 'Elf' dexterity_bonus = 2 class Gnome(Race): """""" race = 'Gnome' intelligence_bonus = 2 class HalfElf(Race): """""" race = 'Half-Elf' charisma_bonus = 2 intelligence_bonus = 1 wisdom_bonus = 1 class Halfling(Race): """""" race = 'Halfling' dexterity_bonus = 2 class HalfOrc(Race): """""" race = 'Half-Orc' strength_bonus = 2 constitution_bonus = 1 class Human(Race): """""" race = 'Human' strength_bonus = 1 constitution_bonus = 1 intelligence_bonus = 1 dexterity_bonus = 1 wisdom_bonus = 1 charisma_bonus = 1 class Tiefling(Race): """""" race = 'Tiefling' charisma_bonus = 2 intelligence_bonus = 1 race_list = [ Dwarf, Dragonborn, Elf, Gnome, HalfElf, Halfling, HalfOrc, Human, Tiefling ]
# -*- coding: utf-8 -*- # Generated by Django 1.10.3 on 2017-02-06 22:53 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('docker_registry', '0001_initial'), ] operations = [ migrations.AlterField( model_name='dockerfile', name='cpushare', field=models.IntegerField(blank=True, help_text='CPU shares (relative weight)', null=True), ), migrations.AlterField( model_name='dockerfile', name='memorylimit', field=models.IntegerField(blank=True, help_text='maximum memory usage allowed in KBs', null=True), ), ]
""" Module for processing Rss. Note: The main purpose of this module is to provide support for the RssSpider, its API is subject to change without notice. """ import lxml.etree from six.moves.urllib.parse import urljoin class Rss(object): """Class to parse Rss (type=urlset) and Rss Index (type=rssindex) files""" def __init__(self, xmltext): xmlp = lxml.etree.XMLParser(recover=True, remove_comments=True, resolve_entities=False) self._root = lxml.etree.fromstring(xmltext, parser=xmlp) rt = self._root.tag self.type = self._root.tag.split('}', 1)[1] if '}' in rt else rt def __iter__(self): for elem in self._root.getchildren(): d = {} for el in elem.getchildren(): tag = el.tag name = tag.split('}', 1)[1] if '}' in tag else tag if name == 'link': if 'href' in el.attrib: d.setdefault('alternate', []).append(el.get('href')) else: d[name] = el.text.strip() if el.text else '' if 'loc' in d: yield d
from datetime import datetime from enum import Enum from typing import Iterable, Optional from httpnet._core import Element, Service class SpamFilter(Element): banned_files_checks: Optional[bool] delete_spam: Optional[bool] header_checks: Optional[bool] malware_checks: Optional[bool] modify_subject_on_spam: Optional[bool] spam_checks: Optional[bool] spam_level: Optional[str] use_greylisting: Optional[bool] class MailboxType(Enum): IMAP = 'ImapMailbox' EXCHANGE = 'ExchangeMailbox' FORWARDER = 'Forwarder' def __repr__(self): return f'{self.__class__.__qualname__}.{self.name}' def __str__(self): return self.value class ForwarderType(Enum): INTERNAL = 'internalForwarder' EXTERNAL = 'externalForwarder' def __repr__(self): return f'{self.__class__.__qualname__}.{self.name}' def __str__(self): return self.value class Mailbox(Element): id: Optional[str] account_id: Optional[str] email_address: str email_address_unicode: Optional[str] domain_name: Optional[str] domain_name_unicode: Optional[str] status: Optional[str] spam_filter: Optional[SpamFilter] type: Optional[MailboxType] product_code: Optional[str] forwarder_targets: Optional[Iterable[str]] # only IMAP and Forwarder smtp_forwarder_target: Optional[str] # only IMAP is_admin: Optional[bool] # only IMAP first_name: Optional[str] # only Exchange last_name: Optional[str] # only Exchange exchange_guid: Optional[str] # only Exchange organization_id: Optional[str] # only Exchange forwarder_type: Optional[ForwarderType] # only Forwarder password: Optional[str] storage_quota: int storage_quota_used: Optional[int] paid_until: Optional[datetime] renew_on: Optional[datetime] deletion_scheduled_for: Optional[datetime] restorable_until: Optional[datetime] add_date: Optional[datetime] last_change_date: Optional[datetime] def __init__(self, **kwargs): super().__init__(**kwargs) if self.type == MailboxType.IMAP: if self.forwarder_targets is None: raise ValueError('List of forwarder targets is required for IMAP mailboxes.') elif self.type == MailboxType.EXCHANGE: if self.first_name is None: raise ValueError('First name is required for Exchange mailboxes.') if self.last_name is None: raise ValueError('Last name is required for Exchange mailboxes.') elif self.type == MailboxType.FORWARDER: if self.forwarder_targets is None: raise ValueError('List of forwarder targets is required for Forwarder mailboxes.') class MailboxService(Service[Mailbox]): _find_method_name = 'mailboxesFind' def delete(self, mailbox_id: Optional[str] = None, email_address: Optional[str] = None, exec_date: Optional[datetime] = None) -> Mailbox: parameters = {} if mailbox_id: parameters['mailboxId'] = mailbox_id elif email_address: parameters['emailAddress'] = email_address else: raise ValueError('Either mailbox id or email address are required.') if exec_date is not None: parameters['execDate'] = exec_date.isoformat() response = self._call( method='mailboxDelete', parameters=parameters ) return Mailbox.from_json(response.get('response', {})) def cancel_deletion(self, mailbox_id: Optional[str] = None, email_address: Optional[str] = None) -> Mailbox: parameters = {} if mailbox_id: parameters['mailboxId'] = mailbox_id elif email_address: parameters['emailAddress'] = email_address else: raise ValueError('Either mailbox id or email address are required.') response = self._call( method='mailboxDeletionCancel', parameters=parameters ) return Mailbox.from_json(response.get('response', {})) def restore(self, mailbox_id: Optional[str] = None, email_address: Optional[str] = None) -> Mailbox: parameters = {} if mailbox_id: parameters['mailboxId'] = mailbox_id elif email_address: parameters['emailAddress'] = email_address else: raise ValueError('Either mailbox id or email address are required.') response = self._call( method='mailboxRestore', parameters=parameters ) return Mailbox.from_json(response.get('response', {})) def purge_restorable(self, mailbox_id: Optional[str] = None, email_address: Optional[str] = None) -> None: parameters = {} if mailbox_id: parameters['mailboxId'] = mailbox_id elif email_address: parameters['emailAddress'] = email_address else: raise ValueError('Either mailbox id or email address are required.') self._call( method='mailboxPurgeRestorable', parameters=parameters ) class Organization(Element): id: Optional[str] account_id: Optional[str] comment: Optional[str] name: str status: Optional[str] member_domains: Optional[Iterable[str]] add_date: Optional[datetime] last_change_date: Optional[datetime] class OrganizationService(Service[Organization]): pass class DomainSettings(Element): domainName: str domainNameUnicode: Optional[str] storageQuota: Optional[int] storageQuotaAllocated: Optional[int] mailboxQuota: Optional[int] exchangeMailboxQuota: Optional[int] exchangeStorageQuotaAllocated: Optional[int] exchangeStorageQuota: Optional[int] addDate: Optional[datetime] lastChangeDate: Optional[datetime] class DomainSettingsService(Service[DomainSettings]): pass
class Solution(object): def detectCycle(self, head): """ :type head: ListNode :rtype: ListNode """ slow = fast = head while fast and fast.next: slow = slow.next fast = fast.next.next if slow == fast: break else: return None while head != slow: head = head.next slow = slow.next return head # 大致思路 # 这道题不是那种一看就能知道做法的 # 大致意思是当Fast和Slow重合的时候,他们离开起始Loop的距离 # 和Head离开Loop起始的距离是相等的 # 所以有了以上代码的形式。 # 另外一种解法 # 可以用一个Set来储存遍历过得Node,然后若发现有重复 # 返回那个重复的点。 不过这个需要 O(N)的空间 # 违背了题目的要求。
# BSD 3-Clause License; see https://github.com/scikit-hep/uproot4/blob/main/LICENSE """ This module defines a versionless model for ``TList``. """ from __future__ import absolute_import import struct try: from collections.abc import Sequence except ImportError: from collections import Sequence import uproot _tlist_format1 = struct.Struct(">i") class Model_TList(uproot.model.Model, Sequence): """ A versionless :doc:`uproot.model.Model` for ``TList``. """ def read_members(self, chunk, cursor, context, file): if self.is_memberwise: raise NotImplementedError( """memberwise serialization of {0} in file {1}""".format( type(self).__name__, self.file.file_path ) ) self._bases.append( uproot.models.TObject.Model_TObject.read( chunk, cursor, context, file, self._file, self._parent, concrete=self.concrete, ) ) self._members["fName"] = cursor.string(chunk, context) self._members["fSize"] = cursor.field(chunk, _tlist_format1, context) self._starts = [] self._data = [] self._options = [] self._stops = [] for _ in uproot._util.range(self._members["fSize"]): self._starts.append(cursor.index) item = uproot.deserialization.read_object_any( chunk, cursor, context, file, self._file, self._parent ) self._data.append(item) self._options.append(cursor.bytestring(chunk, context)) self._stops.append(cursor.index) def __repr__(self): if self.class_version is None: version = "" else: version = " (version {0})".format(self.class_version) return "<{0}{1} of {2} items at 0x{3:012x}>".format( self.classname, version, len(self), id(self), ) def __getitem__(self, where): return self._data[where] def __len__(self): return len(self._data) @property def byte_ranges(self): return zip(self._starts, self._stops) def tojson(self): return { "_typename": "TList", "name": "TList", "arr": [x.tojson() for x in self._data], "opt": [], } writable = True def _to_writable_postprocess(self, original): self._data = original._data self._options = original._options def _serialize(self, out, header, name, tobject_flags): import uproot._writing where = len(out) for x in self._bases: x._serialize(out, True, None, tobject_flags) out.append(uproot._writing.serialize_string(self._members["fName"])) out.append(_tlist_format1.pack(self._members["fSize"])) for datum, option in zip(self._data, self._options): uproot.serialization._serialize_object_any(out, datum, None) out.append(option) if header: num_bytes = sum(len(x) for x in out[where:]) version = 5 out.insert(where, uproot.serialization.numbytes_version(num_bytes, version)) uproot.classes["TList"] = Model_TList
from django.shortcuts import render, HttpResponseRedirect, HttpResponse from django.views.generic import ListView, DetailView, CreateView, UpdateView, DeleteView from django.db.models.deletion import ProtectedError from guifw.models.host import Host, FormHost # Create your views here. def multipleDelete(request): # To implement best ways to delete multiple registers # To implement validation checks # Avoid insecures algorithms hostlist=request.GET.getlist('hosts[]') if hostlist: #Host.objects.filter(id__in=hostlist).delete() print "Deleting " + str(hostlist) return HttpResponseRedirect('/guifw/host/list') def usedBy(self): used = [] for use in self.filter_source.all(): used.append(["filter", "Source", use.order, str(use.name), use.id]) for use in self.filter_destiny.all(): used.append(["filter", "Destiny", use.order, str(use.name), use.id]) for use in self.nat_source.all(): used.append(["nat", "Source", use.order, str(use.name), use.id]) for use in self.nat_destiny.all(): used.append(["nat:", "Destiny", use.order, str(use.name), use.id]) for use in self.nat_toip.all(): used.append(["nat", "To", use.order, str(use.name), use.id]) for use in self.shapp_source.all(): used.append(["shapping", "Source", use.order, str(use.name), use.id]) for use in self.shapp_destiny.all(): used.append(["shapping", "Destiny", use.order, str(use.name), use.id]) for use in self.hostset_address.all(): used.append(["hostset","---", "---", str(use.name), use.id]) return used class HostList(ListView): model = Host template_name = 'host_list.html' class HostDetail(DetailView): model = Host template_name = 'host_detail.html' class HostCreate(CreateView): model = Host form_class = FormHost template_name = 'host_form.html' success_url = '/guifw/host/list' class HostUpdate(UpdateView): model = Host form_class = FormHost template_name = 'host_form.html' success_url = '/guifw/host/list' class HostDelete(DeleteView): model = Host success_url = '/guifw/host/list' template_name = 'host_delete.html' def get_context_data(self, **kwargs): context = super(self.__class__, self).get_context_data(**kwargs) context['used'] = usedBy(self.object) return context def delete(self, request, *args, **kwargs): self.object = self.get_object() try: self.object.delete() return HttpResponseRedirect('/guifw/host/list') except ProtectedError as e: result = {'error': str(e)} return render(request,'error.html',result) def post(self, request, *args, **kwargs): if "cancel" in request.POST: self.object = self.get_object() url = self.get_success_url() return HttpResponseRedirect(url) else: return super(HostDelete, self).post(request, *args, **kwargs)
from dataclasses import dataclass from .node_worker_target_type import NodeWorkerTargetType @dataclass class NodeWorkerTarget: targetCount: float targetType: NodeWorkerTargetType # KEEP @staticmethod def per_node(target_count: int) -> 'NodeWorkerTarget': return NodeWorkerTarget(target_count, NodeWorkerTargetType.PER_NODE) @staticmethod def per_vcpus(target_count: float) -> 'NodeWorkerTarget': return NodeWorkerTarget(target_count, NodeWorkerTargetType.PER_VCPU)
import os import sys import unittest from pyshex import ShExEvaluator from CFGraph import CFGraph class ShexEvalTestCase(unittest.TestCase): def test_biolink_shexeval(self) -> None: base_dir = os.path.abspath(os.path.join(os.path.dirname(__file__), '..', 'data')) g = CFGraph() g.load(os.path.join(base_dir, 'validation', 'biolink-model.ttl'), format="turtle") evaluator = ShExEvaluator(g, os.path.join(base_dir, 'schemas', 'meta.shex'), "https://biolink.github.io/biolink-model/ontology/biolink.ttl", "http://bioentity.io/vocab/SchemaDefinition") result = evaluator.evaluate(debug=False) for rslt in result: if not rslt.result: print(f"Error: {rslt.reason}") self.assertTrue(all(r.result for r in result)) if __name__ == '__main__': unittest.main()
import matplotlib.pyplot as plt import numpy as np from optmize import * fig, axes = plt.subplots(nrows=1,ncols=2, figsize=(12,5)) all_data = loadCsv('./test.20.log') all_data = [np.random.normal(0, std, 100) for std in range(6, 10)] #fig = plt.figure(figsize=(8,6)) axes[0].violinplot(all_data, showmeans=False, showmedians=True ) axes[0].set_title('violin plot') axes[1].boxplot(all_data, ) axes[1].set_title('box plot') # adding horizontal grid lines for ax in axes: ax.yaxis.grid(True) ax.set_xticks([y+1 for y in range(len(all_data))], ) ax.set_xlabel('xlabel') ax.set_ylabel('ylabel') plt.setp(axes, xticks=[y+1 for y in range(len(all_data))], xticklabels=['abc', 'pso', 'pso-basic', 'tsfcm'], ) plt.show()
import os import re import numpy as np import pandas as pd def make_features(data,data_size,max_chars_per_sentence,max_length_vocab): char_level_features = np.zeros((data_size,max_chars_per_sentence,max_length_vocab)) for i in range(data_size): count = 0 sent_features = np.zeros((max_chars_per_sentence,max_length_vocab)) chars = list(data[i]) for c in chars: if(count>=max_chars_per_sentence): break elif(c>='a' and c<='z'): feature = np.zeros(max_length_vocab) feature[ord(c)-97] = 1 sent_features[count,:] = feature count+=1 char_level_features[i,:,:] = sent_features return char_level_features
""" Generic recording functionality """ from copy import deepcopy from operator import attrgetter from collections import defaultdict from typing import Optional, Type from .system import SystemInterface class Recorder: """Generic recorder functor. Can be used as an `observer` in conjunction with a `Simulation`. """ def __init__(self): self._results = defaultdict(lambda: defaultdict(list)) self._stores = defaultdict(list) @property def results(self) -> dict: """The recorded results Returns: dict: The recorded results as a dict """ return dict(self._results) def store( self, system: Type[SystemInterface], attribute: str, alias: Optional[str] = None ) -> None: """Register a variable/parameter of a system for storing. Args: system (Type[SystemInterface]): System that owns this variable/parameter attribute (str): A string of the form `x.y.z` pointing to the variable/parameter to be stored alias (Optional[str], optional): A string under which the stored attribute will be available at. Defaults to None. Raises: AttributeError: If the provided `attribute` does not exist on `system` """ attrgetter(attribute)( system ) # Try to access attribute, raises AttributeError if non-existing self._stores[system].append((attribute, alias or attribute)) def __call__(self, time, _): for sys, store_vars in self._stores.items(): self._results[sys]["time"].append(time) for attr_str, key_str in store_vars: val = deepcopy(attrgetter(attr_str)(sys)) self._results[sys][key_str].append( val ) # TODO: Find a better way to handle `sys`
from io import StringIO from pathlib import Path import pytest from .._yaml_api import yaml_dumps, yaml_loads, read_yaml, write_yaml from .._yaml_api import is_yaml_serializable from ..ruamel_yaml.comments import CommentedMap from .util import make_tempdir def test_yaml_dumps(): data = {"a": [1, "hello"], "b": {"foo": "bar", "baz": [10.5, 120]}} result = yaml_dumps(data) expected = "a:\n - 1\n - hello\nb:\n foo: bar\n baz:\n - 10.5\n - 120\n" assert result == expected def test_yaml_dumps_indent(): data = {"a": [1, "hello"], "b": {"foo": "bar", "baz": [10.5, 120]}} result = yaml_dumps(data, indent_mapping=2, indent_sequence=2, indent_offset=0) expected = "a:\n- 1\n- hello\nb:\n foo: bar\n baz:\n - 10.5\n - 120\n" assert result == expected def test_yaml_loads(): data = "a:\n- 1\n- hello\nb:\n foo: bar\n baz:\n - 10.5\n - 120\n" result = yaml_loads(data) # Check that correct loader is used and result is regular dict, not the # custom ruamel.yaml "ordereddict" class assert not isinstance(result, CommentedMap) assert result == {"a": [1, "hello"], "b": {"foo": "bar", "baz": [10.5, 120]}} def test_read_yaml_file(): file_contents = "a:\n- 1\n- hello\nb:\n foo: bar\n baz:\n - 10.5\n - 120\n" with make_tempdir({"tmp.yaml": file_contents}) as temp_dir: file_path = temp_dir / "tmp.yaml" assert file_path.exists() data = read_yaml(file_path) assert len(data) == 2 assert data["a"] == [1, "hello"] def test_read_yaml_file_invalid(): file_contents = "a: - 1\n- hello\nb:\n foo: bar\n baz:\n - 10.5\n - 120\n" with make_tempdir({"tmp.yaml": file_contents}) as temp_dir: file_path = temp_dir / "tmp.yaml" assert file_path.exists() with pytest.raises(ValueError): read_yaml(file_path) def test_read_yaml_stdin(monkeypatch): input_data = "a:\n - 1\n - hello\nb:\n foo: bar\n baz:\n - 10.5\n - 120\n" monkeypatch.setattr("sys.stdin", StringIO(input_data)) data = read_yaml("-") assert len(data) == 2 assert data["a"] == [1, "hello"] def test_write_yaml_file(): data = {"hello": "world", "test": [123, 456]} expected = "hello: world\ntest:\n - 123\n - 456\n" with make_tempdir() as temp_dir: file_path = temp_dir / "tmp.yaml" write_yaml(file_path, data) with Path(file_path).open("r", encoding="utf8") as f: assert f.read() == expected def test_write_yaml_stdout(capsys): data = {"hello": "world", "test": [123, 456]} expected = "hello: world\ntest:\n - 123\n - 456\n\n" write_yaml("-", data) captured = capsys.readouterr() assert captured.out == expected @pytest.mark.parametrize( "obj,expected", [ (["a", "b", 1, 2], True), ({"a": "b", "c": 123}, True), ("hello", True), (lambda x: x, False), ({"a": lambda x: x}, False), ], ) def test_is_yaml_serializable(obj, expected): assert is_yaml_serializable(obj) == expected # Check again to be sure it's consistent assert is_yaml_serializable(obj) == expected
from __future__ import annotations import io import struct import zipfile from dataclasses import dataclass from typing import Optional @dataclass() class SimpleLauncher: launcher: Optional[bytes] shebang: Optional[bytes] data: bytes # Note: zip def parse_simple_launcher(all_data: bytes, verbose: bool=False) -> SimpleLauncher: """ Parse binary data of simple_launcher to SimpleLauncher dataclass. The simple_launcer is used in 'pip' to make console_script in Windows and the project is developped on https://bitbucket.org/vinay.sajip/simple_launcher The 'launcher' and 'shebang' attribute of the result may be None, indicating that the given data is not a valid simple_launcher binary. Note that most of code in this function has forked from pyzzer via Vinay Sajip. https://bitbucket.org/vinay.sajip/pyzzer/src/5d5740cb04308f067d5844a56fbe91e7a27efccc/pyzzer/__init__.py?at=default&fileviewer=file-view-default#__init__.py-112 """ # The MIT License (MIT) # # Copyright (c) 2013 Vinay Sajip. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # # https://bitbucket.org/vinay.sajip/simple_launcher/issues/3/relocatability-of-launchers launcher = shebang = data = None pos = all_data.rfind(b'PK\x05\x06') if pos == -1: return SimpleLauncher(None, None, all_data) launcher = shebang = None try: end_cdr = all_data[pos + 12:pos + 20] cdr_size, cdr_offset = struct.unpack('<LL', end_cdr) arc_pos = pos - cdr_size - cdr_offset data = all_data[arc_pos:] if arc_pos > 0: pos = all_data.rfind(b'#!', 0, arc_pos) if pos >= 0: shebang = all_data[pos:arc_pos] if pos > 0: launcher = all_data[:pos] except Exception as e: if verbose: print(e) return SimpleLauncher(launcher, shebang, data)
def let_to_num (input): result=0 if input=='a': result=1 elif input=='b': result=2 elif input=='c': result=3 elif input=='d': result=4 return result while True: rotors=['b','c','d','e'] init=raw_input() we=let_to_num(input=init)-1 print rotors[we]
# Convert "arbitrary" image files to rgb files (SGI's image format). # Input may be compressed. # The uncompressed file type may be PBM, PGM, PPM, GIF, TIFF, or Sun raster. # An exception is raised if the file is not of a recognized type. # Returned filename is either the input filename or a temporary filename; # in the latter case the caller must ensure that it is removed. # Other temporary files used are removed by the function. import os import tempfile import pipes import imghdr table = {} t = pipes.Template() t.append('fromppm $IN $OUT', 'ff') table['ppm'] = t t = pipes.Template() t.append('(PATH=$PATH:/ufs/guido/bin/sgi; exec pnmtoppm)', '--') t.append('fromppm $IN $OUT', 'ff') table['pnm'] = t table['pgm'] = t table['pbm'] = t t = pipes.Template() t.append('fromgif $IN $OUT', 'ff') table['gif'] = t t = pipes.Template() t.append('tifftopnm', '--') t.append('(PATH=$PATH:/ufs/guido/bin/sgi; exec pnmtoppm)', '--') t.append('fromppm $IN $OUT', 'ff') table['tiff'] = t t = pipes.Template() t.append('rasttopnm', '--') t.append('(PATH=$PATH:/ufs/guido/bin/sgi; exec pnmtoppm)', '--') t.append('fromppm $IN $OUT', 'ff') table['rast'] = t t = pipes.Template() t.append('djpeg', '--') t.append('(PATH=$PATH:/ufs/guido/bin/sgi; exec pnmtoppm)', '--') t.append('fromppm $IN $OUT', 'ff') table['jpeg'] = t uncompress = pipes.Template() uncompress.append('uncompress', '--') class error(Exception): pass def torgb(filename): temps = [] ret = None try: ret = _torgb(filename, temps) finally: for temp in temps[:]: if temp != ret: try: os.unlink(temp) except os.error: pass temps.remove(temp) return ret def _torgb(filename, temps): if filename[-2:] == '.Z': fname = tempfile.mktemp() temps.append(fname) sts = uncompress.copy(filename, fname) if sts: raise error, filename + ': uncompress failed' else: fname = filename try: ftype = imghdr.what(fname) except IOError, msg: if type(msg) == type(()) and len(msg) == 2 and \ type(msg[0]) == type(0) and type(msg[1]) == type(''): msg = msg[1] if type(msg) is not type(''): msg = `msg` raise error, filename + ': ' + msg if ftype == 'rgb': return fname if ftype is None or not table.has_key(ftype): raise error, \ filename + ': unsupported image file type ' + `ftype` temp = tempfile.mktemp() sts = table[ftype].copy(fname, temp) if sts: raise error, filename + ': conversion to rgb failed' return temp
# -*- coding: utf-8 -*- from .FileserveCom import FileserveCom class FilejungleCom(FileserveCom): __name__ = "FilejungleCom" __type__ = "downloader" __version__ = "0.57" __status__ = "testing" __pyload_version__ = "0.5" __pattern__ = r"http://(?:www\.)?filejungle\.com/f/(?P<ID>[^/]+)" __config__ = [("enabled", "bool", "Activated", True)] __description__ = """Filejungle.com downloader plugin""" __license__ = "GPLv3" __authors__ = [("zoidberg", "zoidberg@mujmail.cz")] URLS = [ "http://www.filejungle.com/f/", "http://www.filejungle.com/check_links.php", "http://www.filejungle.com/checkReCaptcha.php", ] LINKCHECK_TR = r'<li>\s*(<div class="col1">.*?)</li>' LINKCHECK_TD = r'<div class="(?:col )?col\d">(?:<.*?>|&nbsp;)*([^<]*)' LONG_WAIT_PATTERN = ( r"<h1>Please wait for (\d+) (\w+)\s*to download the next file\.</h1>" )
import pytest from gaphor import UML from gaphor.diagram.copypaste import copy, paste_link from gaphor.diagram.group import group from gaphor.diagram.tests.fixtures import copy_clear_and_paste_link from gaphor.UML.deployments import ArtifactItem, NodeItem @pytest.fixture def node_with_artifact(diagram, element_factory): node = element_factory.create(UML.Node) artifact = element_factory.create(UML.Artifact) node_item = diagram.create(NodeItem, subject=node) artifact_item = diagram.create(ArtifactItem, subject=artifact) group(node_item, artifact_item) artifact_item.change_parent(node_item) assert artifact_item.parent is node_item return node_item, artifact_item def test_copy_paste_of_nested_item(diagram, element_factory, node_with_artifact): node_item, artifact_item = node_with_artifact buffer = copy({artifact_item}) (new_comp_item,) = paste_link(buffer, diagram, element_factory.lookup) assert new_comp_item.parent is node_item def test_copy_paste_of_item_with_nested_item( diagram, element_factory, node_with_artifact ): node_item, artifact_item = node_with_artifact buffer = copy(set(node_with_artifact)) new_items = paste_link(buffer, diagram, element_factory.lookup) new_node_item = next(i for i in new_items if isinstance(i, NodeItem)) new_comp_item = next(i for i in new_items if isinstance(i, ArtifactItem)) assert new_comp_item.parent is new_node_item def test_copy_remove_paste_of_item_with_nested_item( diagram, element_factory, node_with_artifact ): new_items = copy_clear_and_paste_link( set(node_with_artifact), diagram, element_factory ) new_node_item = next(i for i in new_items if isinstance(i, NodeItem)) new_comp_item = next(i for i in new_items if isinstance(i, ArtifactItem)) assert new_comp_item.parent is new_node_item
# Copyright 2015 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. from buildbot.status import builder as build_results from buildbot.status.base import StatusReceiverMultiService from twisted.internet.defer import inlineCallbacks, returnValue from . import common from .buildbot_gateway import BuildbotGateway BUILD_STATUS_NAMES = { build_results.EXCEPTION: 'EXCEPTION', build_results.FAILURE: 'FAILURE', build_results.RETRY: 'RETRY', build_results.SKIPPED: 'SKIPPED', build_results.SUCCESS: 'SUCCESS', build_results.WARNINGS: 'SUCCESS', # Treat warnings as SUCCESS. } class BuildBucketStatus(StatusReceiverMultiService): """Updates build status on buildbucket.""" def __init__(self, integrator, buildbucket_service, dry_run): """Creates a new BuildBucketStatus. Args: integrator (BuildBucketIntegrator): integrator to notify about status changes. buildbucket_service (DeferredResource): buildbucket API client. dry_run (bool): if True, do not start integrator. """ StatusReceiverMultiService.__init__(self) self.integrator = integrator self.buildbucket_service = buildbucket_service self.dry_run = dry_run self.integrator_starting = None def startService(self): StatusReceiverMultiService.startService(self) if self.dry_run: return buildbot = BuildbotGateway(self.parent) self.integrator.start(buildbot, self.buildbucket_service) self.integrator.poll_builds() self.parent.getStatus().subscribe(self) def stopService(self): self.integrator.stop() StatusReceiverMultiService.stopService(self) # pylint: disable=W0613 def builderAdded(self, name, builder): # Subscribe to this builder. return self def buildStarted(self, builder_name, build): if self.dry_run: return self.integrator.on_build_started(build) def buildFinished(self, builder_name, build, result): if self.dry_run: return assert result in BUILD_STATUS_NAMES status = BUILD_STATUS_NAMES[result] self.integrator.on_build_finished(build, status)
# -*- coding: utf-8 -*- import os import json import csv import argparse import pandas as pd import numpy as np from math import ceil from tqdm import tqdm import pickle import shutil import torch import torch.nn as nn from torch.autograd import Variable from torch.nn import CrossEntropyLoss from torchvision import datasets, models import torch.backends.cudnn as cudnn import torch.nn.functional as F import cv2 from transforms import transforms from models.LoadModel import MainModel from utils.dataset_DCL import collate_fn4train, collate_fn4test, collate_fn4val, dataset from config import LoadConfig, load_data_transformers # from utils.test_tool import set_text, save_multi_img, cls_base_acc # if int(torch.__version__.split('.')[0])< 1 and int(torch.__version__.split('.')[1])< 41: from tensorboardX import SummaryWriter # else: # from torch.utils.tensorboard import SummaryWriter import pdb import time os.environ['CUDA_DEVICE_ORDRE'] = 'PCI_BUS_ID' os.environ['CUDA_VISIBLE_DEVICES'] = '1' def parse_args(): parser = argparse.ArgumentParser(description='dcl parameters') parser.add_argument('--data', dest='dataset', default='ItargeCar', type=str) parser.add_argument('--backbone', dest='backbone', default='resnet50', type=str) parser.add_argument('--b', dest='batch_size', default=8, type=int) parser.add_argument('--nw', dest='num_workers', default=0, type=int) parser.add_argument('--ver', dest='version', default='test', type=str) parser.add_argument('--detail', dest='discribe', default=None, type=str) parser.add_argument('--save', dest='resume', default="/NAS/shenjintong/DCL/net_model/training_descibe_41123_ItargeCar/model_best.pth", type=str) parser.add_argument('--anno', dest='anno', default=None, type=str) parser.add_argument('--result_path', dest='result_path', default="/NAS/shenjintong/Dataset/ItargeCar/Result/DCL/raw_result/", type=str) parser.add_argument('--size', dest='resize_resolution', default=512, type=int) parser.add_argument('--crop', dest='crop_resolution', default=448, type=int) parser.add_argument('--ss', dest='save_suffix', default=None, type=str) parser.add_argument('--acc_report', dest='acc_report', action='store_true') parser.add_argument('--swap_num', default=[7, 7], nargs=2, metavar=('swap1', 'swap2'), type=int, help='specify a range') parser.add_argument('--use_backbone', dest='use_backbone', action='store_false') parser.add_argument('--CAM', dest='CAM', action='store_true') parser.add_argument('--no_bbox', dest='no_bbox', action='store_true') parser.add_argument('--graph', dest='add_stureture_graph', action='store_true') parser.add_argument('--no_loc', dest='no_loc', action='store_true') parser.add_argument('--cv', dest='opencv_save', action='store_true') parser.add_argument('--log_dir', dest='log_dir', default=None, type=str) parser.add_argument('--feature', dest='feature', action='store_true') args = parser.parse_args() return args if __name__ == '__main__': args = parse_args() # args.dataset='ItargeCar_0520' # args.backbone='resnet50' # args.batch_size=1 # args.num_workers=1 # args.version='test' # args.resume="/NAS/shenjintong/DCL/net_model/DCL_0520data_147_129_582_ItargeCar_0520/model_best.pth" # args.detail='feature' # args.resize_resolution=147 # args.crop_resolution=129 # args.anno="/NAS/shenjintong/Tools/mmdnn/pytorch2caffe/inference_set.csv" # args.result_path="/NAS/shenjintong/Tools/mmdnn/pytorch2caffe/" # args.feature=True print(args) print(args.anno) # # todo: debug # args.anno = "/NAS/shenjintong/Dataset/ItargeCar/class_originbox/test_info.csv" # args.resume= "/NAS/shenjintong/DCL/net_model/DCL_512_448_41123_ItargeCar/model_best.pth" # args.CAM=True # args.opencv_save=True Config = LoadConfig(args, args.version) Config.cls_2xmul = True Config.cls_2 = False Config.no_loc = args.no_loc # sw define Config.size=(args.crop_resolution,args.crop_resolution) if args.log_dir: sw_log = args.log_dir sw = SummaryWriter(log_dir=sw_log) transformers = load_data_transformers(args.resize_resolution, args.crop_resolution, args.swap_num) # 由于args.version的作用只是自动选择对应的标记文件进行读取,去除version设置直接使用文件路径输入 if args.anno: dataset_pd = pd.read_csv(args.anno) else: dataset_pd = Config.val_anno if args.version == 'val' else Config.test_anno data_set = dataset(Config,\ anno=dataset_pd,\ swap=transformers["None"],\ totensor=transformers['test_totensor'],\ test=True) dataloader = torch.utils.data.DataLoader(data_set,\ batch_size=args.batch_size,\ shuffle=False,\ num_workers=args.num_workers,\ collate_fn=collate_fn4test) setattr(dataloader, 'total_item_len', len(data_set)) cudnn.benchmark = True model = MainModel(Config) model_dict=model.state_dict() pretrained_dict=torch.load(args.resume).state_dict() # pretrained_dict=torch.load(args.resume) pretrained_dict = {k[7:]: v for k, v in pretrained_dict.items() if k[7:] in model_dict} model_dict.update(pretrained_dict) model.load_state_dict(model_dict) model.cuda() model.train(False) if args.feature: feature = pd.DataFrame(columns=range(len(data_set))) with torch.no_grad(): result=[] val_size = ceil(len(data_set) / dataloader.batch_size) result_gather = {} count_bar = tqdm(total=dataloader.__len__()) for batch_cnt_val, data_val in enumerate(dataloader): args.batch_cnt_val=batch_cnt_val count_bar.update(1) inputs, labels, img_name = data_val inputs = Variable(inputs.cuda()) outputs = model(inputs) outputs_pred = outputs[0] outputs_pred_soft=F.softmax(outputs_pred) # feature # outputs_confidence, outputs_predicted = torch.max(outputs_pred_soft, 1) outputs_confidence, outputs_predicted = torch.max(outputs_pred, 1) result.append(outputs_confidence.cpu().numpy()[0].tolist()) result.append(outputs_predicted.cpu().numpy()[0].tolist()) m_index = pd.MultiIndex.from_product([['cv'], range(10), ['feature', 'index']], names=["me", "image_index", "predicted"]) predicted = pd.DataFrame(result, index=m_index) predicted.columns.names = ['Top1-5'] predicted.to_csv("/NAS/shenjintong/Tools/mmdnn/pytorch2caffe/predicted0.41.csv")
import tqdm import time import os.path as p from itertools import chain import torch import numpy as np import torch.nn.functional as F from datasets import load_from_disk, load_dataset from transformers import TrainingArguments from transformers import AdamW, get_linear_schedule_with_warmup from torch.utils.data import TensorDataset, DataLoader, RandomSampler from retrieval.dense import DenseRetrieval def get_retriever_dataset(args): if args.retriever.dense_train_dataset not in [ "train_dataset", "squad_kor_v1", "bm25_document_questions", "bm25_question_documents", ]: raise FileNotFoundError(f"{args.retriever.dense_train_dataset}은 DenseRetrieval 데이터셋이 아닙니다.") if args.retriever.dense_train_dataset == "squad_kor_v1": train_dataset = load_dataset(args.retriever.dense_train_dataset) else: dataset_path = p.join(args.path.train_data_dir, args.retriever.dense_train_dataset) assert p.exists(dataset_path), f"{args.retriever.dense_train_dataset}이 경로에 존재하지 않습니다." train_dataset = load_from_disk(dataset_path) return train_dataset def epoch_time(start_time, end_time): elapsed_time = end_time - start_time elapsed_mins = int(elapsed_time / 60) elapsed_secs = int(elapsed_time - (elapsed_mins * 60)) return elapsed_mins, elapsed_secs class DprRetrieval(DenseRetrieval): def _exec_embedding(self): p_encoder, q_encoder = self._load_model() train_dataset, eval_dataset = self._load_dataset(eval=True) args = TrainingArguments( output_dir="dense_retrieval", evaluation_strategy="epoch", learning_rate=self.args.retriever.learning_rate, per_device_train_batch_size=self.args.retriever.per_device_train_batch_size, per_device_eval_batch_size=self.args.retriever.per_device_eval_batch_size, num_train_epochs=self.args.retriever.num_train_epochs, weight_decay=self.args.retriever.weight_decay, gradient_accumulation_steps=self.args.retriever.gradient_accumulation_steps, ) p_encoder, q_encoder = self._train(args, train_dataset, p_encoder, q_encoder, eval_dataset) p_embedding = [] for passage in tqdm.tqdm(self.contexts): # wiki passage = self.tokenizer( passage, padding="max_length", truncation=True, max_length=512, return_tensors="pt" ).to("cuda") p_emb = p_encoder(**passage).to("cpu").detach().numpy() p_embedding.append(p_emb) p_embedding = np.array(p_embedding).squeeze() # numpy return p_embedding, q_encoder class BaseTrainMixin: def _load_dataset(self, eval=False): # dataset.features : ['question', 'context', 'answers', ...] datasets = get_retriever_dataset(self.args) # tokenizer_input = self.tokenizer(datasets["train"][1]["context"], padding="max_length", max_length=512, truncation=True) # print("tokenizer:", self.tokenizer.convert_ids_to_tokens(tokenizer_input["input_ids"])) train_dataset = datasets["train"] q_seqs = self.tokenizer( train_dataset["question"], padding="longest", truncation=True, max_length=512, return_tensors="pt" ) p_seqs = self.tokenizer( train_dataset["context"], padding="max_length", truncation=True, max_length=512, return_tensors="pt" ) train_dataset = TensorDataset( p_seqs["input_ids"], p_seqs["attention_mask"], p_seqs["token_type_ids"], q_seqs["input_ids"], q_seqs["attention_mask"], q_seqs["token_type_ids"], ) eval_dataset = None if eval: eval_dataset = datasets["validation"] q_seqs = self.tokenizer( eval_dataset["question"], padding="longest", truncation=True, max_length=512, return_tensors="pt" ) p_seqs = self.tokenizer( eval_dataset["context"], padding="max_length", truncation=True, max_length=512, return_tensors="pt" ) eval_dataset = TensorDataset( p_seqs["input_ids"], p_seqs["attention_mask"], p_seqs["token_type_ids"], q_seqs["input_ids"], q_seqs["attention_mask"], q_seqs["token_type_ids"], ) return train_dataset, eval_dataset def _train(self, training_args, train_dataset, p_model, q_model, eval_dataset): print("TRAINING IN BASE TRAIN MIXIN") train_sampler = RandomSampler(train_dataset) train_dataloader = DataLoader( train_dataset, sampler=train_sampler, batch_size=training_args.per_device_train_batch_size, drop_last=True ) if eval_dataset: eval_sampler = RandomSampler(eval_dataset) eval_dataloader = DataLoader( eval_dataset, sampler=eval_sampler, batch_size=training_args.per_device_eval_batch_size ) optimizer_grouped_parameters = [{"params": p_model.parameters()}, {"params": q_model.parameters()}] optimizer = AdamW(optimizer_grouped_parameters, lr=training_args.learning_rate, eps=training_args.adam_epsilon) t_total = len(train_dataloader) // training_args.gradient_accumulation_steps * training_args.num_train_epochs scheduler = get_linear_schedule_with_warmup( optimizer, num_warmup_steps=training_args.warmup_steps, num_training_steps=t_total ) global_step = 0 p_model.train() q_model.train() p_model.zero_grad() q_model.zero_grad() torch.cuda.empty_cache() for epoch in range(training_args.num_train_epochs): train_loss = 0.0 start_time = time.time() for step, batch in enumerate(train_dataloader): if torch.cuda.is_available(): batch = tuple(t.cuda() for t in batch) p_inputs = {"input_ids": batch[0], "attention_mask": batch[1], "token_type_ids": batch[2]} q_inputs = {"input_ids": batch[3], "attention_mask": batch[4], "token_type_ids": batch[5]} p_outputs = p_model(**p_inputs) q_outputs = q_model(**q_inputs) sim_scores = torch.matmul(q_outputs, torch.transpose(p_outputs, 0, 1)) targets = torch.arange(0, training_args.per_device_train_batch_size).long() if torch.cuda.is_available(): targets = targets.to("cuda") sim_scores = F.log_softmax(sim_scores, dim=1) loss = F.nll_loss(sim_scores, targets) loss = loss / training_args.gradient_accumulation_steps print(f"epoch: {epoch + 1:02} step: {step:02} loss: {loss}", end="\r") train_loss += loss.item() loss.backward() if ((step + 1) % training_args.gradient_accumulation_steps) == 0: optimizer.step() scheduler.step() p_model.zero_grad() q_model.zero_grad() global_step += 1 torch.cuda.empty_cache() end_time = time.time() epoch_mins, epoch_secs = epoch_time(start_time, end_time) print(f"Epoch: {epoch + 1:02} | Time: {epoch_mins}m {epoch_secs}s") print(f"\tTrain Loss: {train_loss / len(train_dataloader):.4f}") if eval_dataset: eval_loss = 0 correct = 0 total = 0 p_model.eval() q_model.eval() with torch.no_grad(): for idx, batch in enumerate(eval_dataloader): if torch.cuda.is_available(): batch = tuple(t.cuda() for t in batch) p_inputs = {"input_ids": batch[0], "attention_mask": batch[1], "token_type_ids": batch[2]} q_inputs = {"input_ids": batch[3], "attention_mask": batch[4], "token_type_ids": batch[5]} p_outputs = p_model(**p_inputs) q_outputs = q_model(**q_inputs) sim_scores = torch.matmul(q_outputs, torch.transpose(p_outputs, 0, 1)) targets = torch.arange(0, training_args.per_device_eval_batch_size).long() if torch.cuda.is_available(): targets = targets.to("cuda") sim_scores = F.log_softmax(sim_scores, dim=1) loss = F.nll_loss(sim_scores, targets) loss = loss / training_args.gradient_accumulation_steps predicts = np.argmax(sim_scores.cpu(), axis=1) for idx, predict in enumerate(predicts): total += 1 if predict == idx: correct += 1 eval_loss += loss.item() print( f"Epoch: {epoch + 1:02}\tEval Loss: {eval_loss / len(eval_dataloader):.4f}\tAccuracy: {correct/total:.4f}" ) p_model.train() q_model.train() return p_model, q_model class Bm25TrainMixin: def _load_dataset(self): # dataset.features : ['query', 'negative_samples', 'label'] dataset = get_retriever_dataset(self.args) corpus_size = len(dataset["negative_samples"][0]) negative_samples = list(chain(*dataset["negative_samples"])) # query q_seqs = self.tokenizer( dataset["query"], padding="longest", truncation=True, max_length=512, return_tensors="pt" ) print("query tokenized:", self.tokenizer.convert_ids_to_tokens(q_seqs["input_ids"][0])) # negative_samples p_seqs = self.tokenizer( negative_samples, padding="longest", truncation=True, max_length=512, return_tensors="pt" ) print("negative_sample tokenized:", self.tokenizer.convert_ids_to_tokens(p_seqs["input_ids"][0])) embedding_size = p_seqs["input_ids"].shape[-1] for k in p_seqs.keys(): p_seqs[k] = p_seqs[k].reshape(-1, corpus_size, embedding_size) train_dataset = TensorDataset( p_seqs["input_ids"], p_seqs["attention_mask"], p_seqs["token_type_ids"], q_seqs["input_ids"], q_seqs["attention_mask"], q_seqs["token_type_ids"], torch.tensor(dataset["label"]), ) return train_dataset def _train(self, training_args, dataset, p_model, q_model): """ Sampling된 데이터 셋으로 학습 """ print("TRAINING IN BM25 TRAIN MIXIN") train_sampler = RandomSampler(dataset) train_dataloader = DataLoader( dataset, sampler=train_sampler, batch_size=training_args.per_device_train_batch_size ) optimizer_grouped_parameters = [{"params": p_model.parameters()}, {"params": q_model.parameters()}] optimizer = AdamW(optimizer_grouped_parameters, lr=training_args.learning_rate, eps=training_args.adam_epsilon) t_total = len(train_dataloader) // training_args.gradient_accumulation_steps * training_args.num_train_epochs scheduler = get_linear_schedule_with_warmup( optimizer, num_warmup_steps=training_args.warmup_steps, num_training_steps=t_total ) global_step = 0 p_model.train() q_model.train() p_model.zero_grad() q_model.zero_grad() torch.cuda.empty_cache() for epoch in range(training_args.num_train_epochs): train_loss = 0.0 start_time = time.time() for step, batch in enumerate(train_dataloader): if torch.cuda.is_available(): batch = tuple(t.cuda() for t in batch) # query p_inputs = { "input_ids": batch[0].squeeze(), "attention_mask": batch[1].squeeze(), "token_type_ids": batch[2].squeeze(), } # context q_inputs = {"input_ids": batch[3], "attention_mask": batch[4], "token_type_ids": batch[5]} label = batch[6] p_outputs = p_model(**p_inputs) q_outputs = q_model(**q_inputs) sim_scores = torch.matmul(q_outputs, torch.transpose(p_outputs, 0, 1)) sim_scores = F.log_softmax(sim_scores, dim=1) loss = F.nll_loss(sim_scores, label) / training_args.gradient_accumulation_steps print(f"epoch: {epoch:02} step: {step:02} loss: {loss}", end="\r") train_loss += loss.item() loss.backward() if ((step + 1) % training_args.gradient_accumulation_steps) == 0: optimizer.step() scheduler.step() p_model.zero_grad() q_model.zero_grad() global_step += 1 torch.cuda.empty_cache() end_time = time.time() epoch_mins, epoch_secs = epoch_time(start_time, end_time) print(f"Epoch: {epoch + 1:02} | Time: {epoch_mins}m {epoch_secs}s") print(f"\tTrain Loss: {train_loss / len(train_dataloader):.4f}") # q_model이 document를 encoding했으므로 if self.args.retriever.dense_train_dataset == "bm25_document_questions": return q_model, p_model return p_model, q_model
import discord from discord.ext import commands import random class administracion(commands.Cog): def __init__(self, bot): self.bot = bot @commands.command(name='info', alises=['info'], brief="[informacion del servidor]") async def info(self, ctx): embed = discord.Embed(title=f"{ctx.guild.name}", description="La casa de los giles", color=discord.Color.blue()) embed.add_field(name="servidor creado", value=f"{ctx.guild.created_at}") embed.add_field(name="Amo del servidor", value=f"{ctx.guild.owner}") embed.add_field(name="Region del servidor", value=f"{ctx.guild.region}") embed.add_field(name="ID del servidor", value=f"{ctx.guild.id}") #experimental embed.set_thumbnail(url=f"{ctx.guild.icon}") await ctx.send(embed=embed) @commands.command(name='say', alises=['say'], brief="[comando solo para admins]") async def say(self, ctx, *, text): message = ctx.message await message.delete() await ctx.send(f"{text}") @commands.command(name='avatar', alises=['avatar'], brief="[ve el avatar tuyo o de los demas]") async def avatar(self, ctx): args = ctx.message.content.split(" ")[1:] embed = discord.Embed() embed.colour = discord.Color.from_rgb(0, 255, 255) if len(args) == 0: embed.title = ctx.author.name embed.set_image(url=ctx.author.avatar_url) await ctx.send(embed=embed) elif len(ctx.message.mentions) > 0: for member in ctx.message.mentions: embed.title = member.name embed.set_image(url=member.avatar_url) await ctx.send(embed=embed) elif args[0] in ("server", "guild"): embed.title = ctx.guild.name embed.set_image(url=ctx.guild.icon_url) await ctx.send(embed=embed) else: embed.title = "avatar" embed.description = f"Muestra tu avatar, de los usuarios mencionados o del servidor." embed.add_field( name="Uso:", value= f"{PREFIX}avatar\n{PREFIX}avatar @user1, @user2, ...\n{PREFIX}avatar server", inline=False) await ctx.send(embed=embed) @commands.command(aliases=['8ball'], brief="[¿quieres saber tu futuro?]") async def _8ball(self, ctx, *, question): response = [ 'En mi opinión, sí', 'Es cierto', 'Es decididamente así', 'Probablemente', 'Buen pronóstico', 'Todo apunta a que sí', 'Sin duda', 'Sí', 'Sí - definitivamente', 'Debes confiar en ello', 'Respuesta vaga, vuelve a intentarlo', 'Pregunta en otro momento', 'Será mejor que no te lo diga ahora', 'No puedo predecirlo ahora', 'Concéntrate y vuelve a preguntar', 'Puede ser', 'No cuentes con ello', 'Mi respuesta es no', 'Mis fuentes me dicen que no', 'Las perspectivas no son buenas', 'Muy dudoso' ] _8ball_embed = discord.Embed(title=' ', description=f" ", color=discord.Color.blue()) _8ball_embed.add_field( name="Comando 8ball | :8ball:", value= f"**Pregunta:** {question}\n**Respuesta:** {random.choice(response)}" ) # Aqui es como quieres que sea su respuesta await ctx.send(embed=_8ball_embed) @commands.command(name="l", help="Muestra un porcentaje de lo L que eres", brief="[Que tan L eres?]") async def calculeL(self, ctx): try: random_porcentaje = random.choice( [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 200]) await ctx.send(f'{ctx.author} es {random_porcentaje}% L ') except NameError as error: await ctx.send(f"Algun error ocurrio ...{error}") finally: print(f"{ctx.author}") @commands.command(name="user", help="Mira la informacion de un miembro", brief="[Mira la informacion de un miembro]") async def some_function_random_ctx(self, ctx, member: discord.Member): try: user_info_embed = discord.Embed(colour=0xff00ff).set_author( name=f"{member}", icon_url=member.avatar_url) user_info_embed.add_field(name=f"Entro a el servidor {ctx.guild}", value=member.joined_at) user_info_embed.add_field(name="Rol mas alto", value=member.top_role) user_info_embed.add_field(name="Creo su cuenta de discord", value=member.created_at) user_info_embed.set_thumbnail(url=member.avatar_url) await ctx.send(embed=user_info_embed) except: await ctx.send("Una excepcion ocurrio...") finally: await ctx.send( "informacion obtenida con exito, si no es asi, puede que haya ocurrido un error." ) @commands.command(name="sabias", alises="sabias", brief="[quieres un dato interesante]") async def sabias(self, ctx): dato = [ 'Los flamencos doblan las piernas en el tobillo no la rodilla', 'La rueda de la fortuna fue inventada para alejar a los americanos del pecado', 'Los perezosos pueden aguantar más tiempo el aliento que los delfines', 'Los Froot Loops son todos del mismo sabor', 'Las manzanas en el supermercado pueden tener hasta un año', 'Los pulpos tienen 3 corazones', 'En las Filipinas, McDonald´s vende spaghetti', 'Hitler fue nominado a un Nobel de la paz', 'Las langostas saborean con los pies', 'El Empire State tiene su propio código postal', 'Las sombras son más oscuras en la luna', 'La Estatua de la Libertad solía ser un faro', 'Las ManhattAnts son una especie de hormigas únicas de Nueva York', 'Los tanques británicos están equipados para hacer té', 'Los elefantes son los únicos animales que no pueden saltar.', 'La palabra [cementerio] significa dormitorio en griego antiguo.', ' Los ojos hacen más ejercicio que las piernas', 'Nuestro aroma es tan único como nuestras huellas digitales', 'Puedes ver un óvulo a simple vista', 'El corazón podría mover un coche', 'Nada es tan inútil como parece', 'Eres el responsable de todo el polvo que se junta en tu casa', ' El calor corporal es más de lo que imaginas', 'La lengua nunca descansa', 'Los hombres y mujeres escuchan de manera diferente', 'Los bebés pueden curar a sus madres en el vientre', ' Para hacer un kilogramo de miel, una abeja debe recorrer 4 millones de flores, pero la miel es un alimento que no se pudre', 'Las primeras almohadas eran de piedra', 'Los primeros despertadores… ¡Eran personas!', 'El cuerpo humano contiene en promedio unos 37 litros de agua', 'Una canilla que gotea desperdicia más de 75 litros de agua por día', 'Se necesitan 200 litros de agua para producir un solo litro de gaseosa cola', 'Una persona puede sobrevivir un mes sin alimentarse, pero puede estar como máximo siete días sin beber agua.', 'sabias que naci por idea de mi novia' ] dato_embed = discord.Embed(title=' ', description=f" ", color=discord.Color.blue()) dato_embed.add_field(name="sabias que", value={random.choice(dato)}) await ctx.send(embed=dato_embed) @commands.command(name="nivel", help="Muestra un nivel de pvp", brief="[Que tan pro eres?]") async def nivel(self, ctx): try: random_porcentaje = random.choice( [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 200]) await ctx.send(f'{ctx.author} eres {random_porcentaje}% bueno en pvp ') except NameError as error: await ctx.send(f"Algun error ocurrio ...{error}") finally: print(f"{ctx.author}") def setup(bot): bot.add_cog(administracion(bot))
print('2020-04-09') class Person: name = '34' __age = 0 def __init__(self, name): self.name = name @staticmethod def getname(): print(Person.name) def setAge(self, age): self.__age = age Person.getname() zhang = Person('张三') print(zhang.name) Person.getname() # p 156
from . import util def get_numbers(lines): return [int(line) for line in lines] def find_invalid(numbers, plen): window = set(numbers[:plen]) for idx, target in enumerate(numbers[plen:]): if not any(target - n != n and target - n in window for n in window): return target window.remove(numbers[idx]) window.add(numbers[plen + idx]) def find_sequence(numbers, target): head = 0 foot = 0 total = 0 while total != target: if total < target: total += numbers[head] head += 1 else: total -= numbers[foot] foot += 1 return numbers[foot:head] def run(): inputlines = util.get_input_lines("09.txt") numbers = get_numbers(inputlines) invalid = find_invalid(numbers, 25) sequence = find_sequence(numbers, invalid) return invalid, min(sequence) + max(sequence)
from datetime import datetime class Utc_Clock(): def __init__(self): pass def get_time(self): now = datetime.now() return now.second + 60* now.minute + 3600 * now.hour utc_clock = Utc_Clock() print("Current cclk: %d " %(utc_clock.get_time()))
from typing import TYPE_CHECKING, Any, Optional, Type, Union, cast from pypika import Case, Table, functions from pypika.functions import DistinctOptionFunction from pypika.terms import ArithmeticExpression from pypika.terms import Function as BaseFunction from tortoise.exceptions import ConfigurationError from tortoise.expressions import F from tortoise.fields.relational import BackwardFKRelation, ForeignKeyFieldInstance, RelationalField from tortoise.query_utils import Q, QueryModifier if TYPE_CHECKING: # pragma: nocoverage from tortoise.models import Model from tortoise.fields.base import Field ############################################################################## # Base ############################################################################## class Function: """ Function/Aggregate base. :param field: Field name :param default_values: Extra parameters to the function. .. attribute:: database_func :annotation: pypika.terms.Function The pypika function this represents. .. attribute:: populate_field_object :annotation: bool = False Enable populate_field_object where we want to try and preserve the field type. """ __slots__ = ("field", "field_object", "default_values") database_func = BaseFunction # Enable populate_field_object where we want to try and preserve the field type. populate_field_object = False def __init__(self, field: Union[str, F, ArithmeticExpression], *default_values: Any) -> None: self.field = field self.field_object: "Optional[Field]" = None self.default_values = default_values def _get_function_field( self, field: "Union[ArithmeticExpression, Field, str]", *default_values ): return self.database_func(field, *default_values) def _resolve_field_for_model(self, model: "Type[Model]", table: Table, field: str) -> dict: joins = [] fields = field.split("__") for iter_field in fields[:-1]: if iter_field not in model._meta.fetch_fields: raise ConfigurationError(f"{field} not resolvable") related_field = cast(RelationalField, model._meta.fields_map[iter_field]) joins.append((table, iter_field, related_field)) model = related_field.related_model related_table: Table = related_field.related_model._meta.basetable if isinstance(related_field, ForeignKeyFieldInstance): # Only FK's can be to same table, so we only auto-alias FK join tables related_table = related_table.as_(f"{table.get_table_name()}__{iter_field}") table = related_table last_field = fields[-1] if last_field in model._meta.fetch_fields: related_field = cast(RelationalField, model._meta.fields_map[last_field]) related_field_meta = related_field.related_model._meta joins.append((table, last_field, related_field)) related_table = related_field_meta.basetable if isinstance(related_field, BackwardFKRelation): if table == related_table: related_table = related_table.as_(f"{table.get_table_name()}__{last_field}") field = related_table[related_field_meta.db_pk_column] else: field_object = model._meta.fields_map[last_field] if field_object.source_field: field = table[field_object.source_field] else: field = table[last_field] if self.populate_field_object: self.field_object = model._meta.fields_map.get(last_field, None) if self.field_object: # pragma: nobranch func = self.field_object.get_for_dialect( model._meta.db.capabilities.dialect, "function_cast" ) if func: field = func(self.field_object, field) return {"joins": joins, "field": field} def resolve(self, model: "Type[Model]", table: Table) -> dict: """ Used to resolve the Function statement for SQL generation. :param model: Model the function is applied on to. :param table: ``pypika.Table`` to keep track of the virtual SQL table (to allow self referential joins) :return: Dict with keys ``"joins"`` and ``"fields"`` """ if isinstance(self.field, str): function = self._resolve_field_for_model(model, table, self.field) function["field"] = self._get_function_field(function["field"], *self.default_values) return function field, field_object = F.resolver_arithmetic_expression(model, self.field) if self.populate_field_object: self.field_object = field_object return {"joins": [], "field": self._get_function_field(field, *self.default_values)} class Aggregate(Function): """ Base for SQL Aggregates. :param field: Field name :param default_values: Extra parameters to the function. :param is_distinct: Flag for aggregate with distinction """ database_func = DistinctOptionFunction def __init__( self, field: Union[str, F, ArithmeticExpression], *default_values: Any, distinct=False, _filter: Optional[Q] = None, ) -> None: super().__init__(field, *default_values) self.distinct = distinct self.filter = _filter def _get_function_field( self, field: "Union[ArithmeticExpression, Field, str]", *default_values ): if self.distinct: return self.database_func(field, *default_values).distinct() return self.database_func(field, *default_values) def _resolve_field_for_model(self, model: "Type[Model]", table: Table, field: str) -> dict: ret = super()._resolve_field_for_model(model, table, field) if self.filter: modifier = QueryModifier() modifier &= self.filter.resolve(model, {}, {}, model._meta.basetable) where_criterion, joins, having_criterion = modifier.get_query_modifiers() ret["field"] = Case().when(where_criterion, ret["field"]).else_(None) return ret ############################################################################## # Standard functions ############################################################################## class Trim(Function): """ Trims whitespace off edges of text. :samp:`Trim("{FIELD_NAME}")` """ database_func = functions.Trim class Length(Function): """ Returns length of text/blob. :samp:`Length("{FIELD_NAME}")` """ database_func = functions.Length class Coalesce(Function): """ Provides a default value if field is null. :samp:`Coalesce("{FIELD_NAME}", {DEFAULT_VALUE})` """ database_func = functions.Coalesce class Lower(Function): """ Converts text to lower case. :samp:`Lower("{FIELD_NAME}")` """ database_func = functions.Lower class Upper(Function): """ Converts text to upper case. :samp:`Upper("{FIELD_NAME}")` """ database_func = functions.Upper ############################################################################## # Aggregate functions ############################################################################## class Count(Aggregate): """ Counts the no of entries for that column. :samp:`Count("{FIELD_NAME}")` """ database_func = functions.Count class Sum(Aggregate): """ Adds up all the values for that column. :samp:`Sum("{FIELD_NAME}")` """ database_func = functions.Sum populate_field_object = True class Max(Aggregate): """ Returns largest value in the column. :samp:`Max("{FIELD_NAME}")` """ database_func = functions.Max populate_field_object = True class Min(Aggregate): """ Returns smallest value in the column. :samp:`Min("{FIELD_NAME}")` """ database_func = functions.Min populate_field_object = True class Avg(Aggregate): """ Returns average (mean) of all values in the column. :samp:`Avg("{FIELD_NAME}")` """ database_func = functions.Avg populate_field_object = True
import unittest,os from deterministic_encryption_utils.encryption.Encryption import Encryption, EncryptionException import tempfile import shutil from deterministic_encryption_utils.encryption.VirtualFile import VirtualFile class TestEncryption(unittest.TestCase): class _SaltProviderMock(object): def getSaltFor(self, absoluteFilePath): if not os.path.exists(absoluteFilePath): raise ValueError('The given path {0} cannot be used to determine a salt.'.format(absoluteFilePath)) return '42' def setUp(self): saltProviderMock = TestEncryption._SaltProviderMock() self.subject = Encryption('abc', saltProviderMock, saltProviderMock) def testEncryptAndDecryptFilename(self): tmpFile = tempfile.NamedTemporaryFile() rootPath = tmpFile.name encryptedFileName = self.subject.encryptFileName(rootPath, os.path.basename(rootPath)) self.assertEqual(os.path.basename(rootPath), self.subject.decryptFileName(encryptedFileName)) def testErrorOnEncryptingNotAbsoluteFilePath(self): with self.assertRaises(EncryptionException) as _: self.subject.encryptFileName(tempfile.mktemp(), 'abc123') def testEncryptAndDecryptFilenameWithUnicode(self): tmpFile = tempfile.NamedTemporaryFile(prefix='ÄÖÜ') rootPath = tmpFile.name encryptedFileName = self.subject.encryptFileName(rootPath, os.path.basename(rootPath)) self.assertEqual(os.path.basename(rootPath), self.subject.decryptFileName(encryptedFileName)) def testEncryptAndDecryptPath(self): rootDir = tempfile.mkdtemp() aFolder = tempfile.mkdtemp(dir=rootDir) aFile = tempfile.NamedTemporaryFile(dir=aFolder, delete=False) path = aFile.name[len(rootDir):] try: encryptedPath = self.subject.encryptPath(rootDir, path) self.assertEqual(len(os.path.split(path)), len(os.path.split(encryptedPath))) self.assertEqual(path, self.subject.decryptPath(encryptedPath)) finally: shutil.rmtree(rootDir) def testEncryptAndDecryptPathWithSymlinks(self): rootDir = tempfile.mkdtemp() aFolder = tempfile.mkdtemp(dir=rootDir) aFile = tempfile.NamedTemporaryFile(dir=aFolder, delete=False) symLink = tempfile.mktemp(dir=aFolder) os.link(aFile.name, symLink) path = symLink[len(rootDir):] try: encryptedPath = self.subject.encryptPath(rootDir, path) self.assertEqual(len(os.path.split(path)), len(os.path.split(encryptedPath))) self.assertEqual(path, self.subject.decryptPath(encryptedPath)) finally: shutil.rmtree(rootDir) def testEncryptAndDecryptContent(self): plainFile = tempfile.NamedTemporaryFile(mode='w+', delete=False) encryptedFile = tempfile.NamedTemporaryFile(mode='w+b', delete=False) try: # fill plain text file with plainFile as f: f.write('abc') plainFileVirtual = VirtualFile(plainFile.name) # fill encrypted file encryptedContent = self.subject.encryptedContent(plainFileVirtual, 0, 4096) with encryptedFile as f: f.write(encryptedContent) # ensure that encrypted file size matches the real size self.assertEqual(os.path.getsize(encryptedFile.name), self.subject.encryptedFileSize(os.path.getsize(plainFile.name))) # ensure that decrypted file size matches the real size encryptedFileVirtual= VirtualFile(encryptedFile.name) self.assertEqual(os.path.getsize(plainFile.name), self.subject.decryptedFileSize(encryptedFileVirtual)) # decrypt content and compare to plaintext decryptedContent = self.subject.decryptedContent(encryptedFileVirtual, 0, 4096) self.assertEqual('abc', decryptedContent.decode()) finally: os.remove(plainFile.name) os.remove(encryptedFile.name) if __name__ == "__main__": #import sys;sys.argv = ['', 'EncryptionTest.testName'] unittest.main()
#!/usr/bin/env python # # Copyright 2011 Rodrigo Ancavil del Pino # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """ Are incorporated the primitive datatypes defined by XML. Array is defined for the use of array of elements and his respective datatype. """ import inspect from tornadows import complextypes def createElementXML(name,type,prefix='xsd'): """ Function used for the creation of xml elements. """ return '<%s:element name="%s" type="%s:%s"/>'%(prefix,name,prefix,type) def createArrayXML(name,type,prefix='xsd',maxoccurs=None): """ Function used for the creation of xml complexElements """ complexType = '<%s:complexType name="%sParams">\n'%(prefix,name) complexType += '<%s:sequence>\n'%prefix if maxoccurs == None: complexType += '<%s:element name="value" type="%s:%s" maxOccurs="unbounded"/>\n'%(prefix,prefix,type) else: complexType += '<%s:element name="value" type="%s:%s" maxOccurs="%d"/>\n'%(prefix,prefix,type,maxoccurs) complexType += '</%s:sequence>\n'%prefix complexType += '</%s:complexType>\n'%prefix complexType += '<%s:element name="%s" type="tns:%sParams"/>\n'%(prefix,name,name) return complexType class Array: """ Create arrays of xml elements. Here an example: @webservices(_params=xmltypes.Array(xmltypes.Integer),_returns=xmltypes.Integer) def function(sefl, list_of_elements): for e in list_of_elements: # Do something with the element return len(list_of_elements) xmltypes.Array(xmltype.Integer) generate an xml element into schema definition: <xsd:element name="arrayOfElement" type="xsd:integer" maxOccurs="unbounded"/> this make the parameter of the function list_of_elements is a python list. if you specify xmltypes.Array(xmltypes.Integer,10), is generated: <xsd:element name="arrayOfElement" type="xsd:integer" maxOccurs="10"/> """ def __init__(self,type,maxOccurs=None): self._type = type self._n = maxOccurs def createArray(self,name): type = None if inspect.isclass(self._type) and not issubclass(self._type,PrimitiveType): type = complextypes.createPythonType2XMLType(self._type.__name__) else: type = self._type.getType(self._type) return createArrayXML(name,type,'xsd',self._n) def createType(self,name): prefix = 'xsd' type = None if inspect.isclass(self._type) and not issubclass(self._type,PrimitiveType): type = complextypes.createPythonType2XMLType(self._type.__name__) else: type = self._type.getType(self._type) maxoccurs = self._n complexType = '' if self._n == None: complexType += '<%s:element name="%s" type="%s:%s" maxOccurs="unbounded"/>\n'%(prefix,name,prefix,type) else: complexType += '<%s:element name="%s" type="%s:%s" maxOccurs="%d"/>\n'%(prefix,name,prefix,type,maxoccurs) return complexType def genType(self,v): value = None if inspect.isclass(self._type) and issubclass(self._type,PrimitiveType): value = self._type.genType(v) elif hasattr(self._type,'__name__'): value = complextypes.convert(self._type.__name__,v) # Convert str to bool if value == 'true': value = True elif value == 'false': value = False return value class PrimitiveType: """ Class father for all derived types. """ pass class Integer(PrimitiveType): """ 1. XML primitive type : integer """ @staticmethod def createElement(name,prefix='xsd'): return createElementXML(name,'integer') @staticmethod def getType(self): return 'integer' @classmethod def genType(self,v): return int(v) class Decimal(PrimitiveType): """ 2. XML primitive type : decimal """ @staticmethod def createElement(name,prefix='xsd'): return createElementXML(name,'decimal') @staticmethod def getType(self): return 'decimal' @classmethod def genType(self,v): return float(v) class Double(PrimitiveType): """ 3. XML primitive type : double """ @staticmethod def createElement(name,prefix='xsd'): return createElementXML(name,'double') @staticmethod def getType(self): return 'double' @classmethod def genType(self,v): return float(v) class Float(PrimitiveType): """ 4. XML primitive type : float """ @staticmethod def createElement(name,prefix='xsd'): return createElementXML(name,'float') @staticmethod def getType(self): return 'float' @classmethod def genType(self,v): return float(v) class Duration(PrimitiveType): """ 5. XML primitive type : duration """ @staticmethod def createElement(name,prefix='xsd'): return createElementXML(name,'duration') @staticmethod def getType(self): return 'duration' @classmethod def genType(self,v): return str(v) class Date(PrimitiveType): """ 6. XML primitive type : date """ @staticmethod def createElement(name,prefix='xsd'): return createElementXML(name,'date') @staticmethod def getType(self): return 'date' @classmethod def genType(self,v): return str(v) class Time(PrimitiveType): """ 7. XML primitive type : time """ @staticmethod def createElement(name,prefix='xsd'): return createElementXML(name,'time') @staticmethod def getType(self): return 'time' @classmethod def genType(self,v): return str(v) class DateTime(PrimitiveType): """ 8. XML primitive type : dateTime """ @staticmethod def createElement(name,prefix='xsd'): return createElementXML(name,'dateTime') @staticmethod def getType(self): return 'dateTime' @classmethod def genType(self,v): return str(v) class String(PrimitiveType): """ 9. XML primitive type : string """ @staticmethod def createElement(name,prefix='xsd'): return createElementXML(name,'string') @staticmethod def getType(self): return 'string' @classmethod def genType(self,v): return str(v) class Boolean(PrimitiveType): """ 10. XML primitive type : boolean """ @staticmethod def createElement(name,prefix='xsd'): return createElementXML(name,'boolean') @staticmethod def getType(self): return 'boolean' @classmethod def genType(self,v): return str(v).lower()
import click import os from tabulate import tabulate import myhacks as myh @click.command() @click.argument("rootdir", required=False) @click.option("--all/--changes", default=False) @click.option("--fetch/--no-fetch", default=False) @click.option("--outputformat", type=click.Choice(myh.OUTPUTS), default="simple") def run_checkGit(rootdir, all, fetch, outputformat): """Output the status of git repos in the projs directory.""" if not rootdir: rootdir = myh.PROJS_DIR repos = myh.find_repos(rootdir) print(f"Found {len(repos)} repos in {rootdir}.") repo_info = myh.compile_repo_info(repos, all=all, fetch=fetch) if len(repo_info) < 1: print("Found no repos that matched specified settings.") print(tabulate(repo_info, headers="keys", tablefmt=outputformat)) if __name__ == "__main__": run_checkGit()
""" This is stochastic_gradient_descent algorithm """ import numpy as np import matplotlib.pyplot as plt """ Creating the data for model and adding Gaussian Noise """ plt.style.use(['ggplot']) X = 2 * np.random.rand(100,1) y = 4 +3 * X+np.random.randn(100,1) plt.plot(X,y,'b.') plt.xlabel("$x$", fontsize=18) plt.ylabel("$y$", rotation=0, fontsize=18) _ =plt.axis([0,2,0,15]) X_b = np.c_[np.ones((100,1)),X] theta_best = np.linalg.inv(X_b.T.dot(X_b)).dot(X_b.T).dot(y) print(theta_best) X_new = np.array([[0],[2]]) X_new_b = np.c_[np.ones((2,1)),X_new] y_predict = X_new_b.dot(theta_best) y_predict plt.plot(X_new,y_predict,'r-') plt.plot(X,y,'b.') plt.xlabel("$x_1$", fontsize=18) plt.ylabel("$y$", rotation=0, fontsize=18) plt.axis([0,2,0,15]) """ Cost Function and Gradients """ def cal_cost(theta,X,y): ''' Calculates the cost for given X and Y. The following shows and example of a single dimensional X theta = Vector of thetas X = Row of X's np.zeros((2,j)) y = Actual y's np.zeros((2,1)) where: j is the no of features ''' m = len(y) predictions = X.dot(theta) cost = (1/2*m) * np.sum(np.square(predictions-y)) return cost """ The stochastic_gradient_descent method """ def stocashtic_gradient_descent(X,y,theta,learning_rate=0.01,iterations=10): ''' X = Matrix of X with added bias units y = Vector of Y theta=Vector of thetas np.random.randn(j,1) learning_rate iterations = no of iterations Returns the final theta vector and array of cost history over no of iterations ''' m = len(y) cost_history = np.zeros(iterations) for it in range(iterations): cost =0.0 for i in range(m): rand_ind = np.random.randint(0,m) X_i = X[rand_ind,:].reshape(1,X.shape[1]) y_i = y[rand_ind].reshape(1,1) prediction = np.dot(X_i,theta) theta = theta -(1/m)*learning_rate*( X_i.T.dot((prediction - y_i))) cost += cal_cost(theta,X_i,y_i) cost_history[it] = cost return theta, cost_history lr =0.5 n_iter = 50 theta = np.random.randn(2,1) X_b = np.c_[np.ones((len(X),1)),X] theta,cost_history = stocashtic_gradient_descent(X_b,y,theta,lr,n_iter) print('Theta0: {:0.3f},\nTheta1: {:0.3f}'.format(theta[0][0],theta[1][0])) print('Final cost/MSE: {:0.3f}'.format(cost_history[-1])) fig,ax = plt.subplots(figsize=(10,8)) ax.set_ylabel('{J(Theta)}',rotation=0) ax.set_xlabel('{Iterations}') theta = np.random.randn(2,1) _=ax.plot(range(n_iter),cost_history,'b.')
# MINLP written by GAMS Convert at 04/21/18 13:51:24 # # Equation counts # Total E G L N X C B # 33 1 0 32 0 0 0 0 # # Variable counts # x b i s1s s2s sc si # Total cont binary integer sos1 sos2 scont sint # 63 48 0 15 0 0 0 0 # FX 0 0 0 0 0 0 0 0 # # Nonzero counts # Total const NL DLL # 125 94 31 0 # # Reformulation has removed 1 variable and 1 equation from pyomo.environ import * model = m = ConcreteModel() m.i1 = Var(within=Integers,bounds=(1,10),initialize=1) m.i2 = Var(within=Integers,bounds=(1,10),initialize=1) m.i3 = Var(within=Integers,bounds=(1,10),initialize=1) m.i4 = Var(within=Integers,bounds=(1,10),initialize=1) m.i5 = Var(within=Integers,bounds=(1,10),initialize=1) m.i6 = Var(within=Integers,bounds=(1,10),initialize=1) m.i7 = Var(within=Integers,bounds=(1,10),initialize=1) m.i8 = Var(within=Integers,bounds=(1,10),initialize=1) m.i9 = Var(within=Integers,bounds=(1,10),initialize=1) m.i10 = Var(within=Integers,bounds=(1,10),initialize=1) m.i11 = Var(within=Integers,bounds=(1,10),initialize=1) m.i12 = Var(within=Integers,bounds=(1,10),initialize=1) m.i13 = Var(within=Integers,bounds=(1,10),initialize=1) m.i14 = Var(within=Integers,bounds=(1,10),initialize=1) m.i15 = Var(within=Integers,bounds=(1,10),initialize=1) m.x16 = Var(within=Reals,bounds=(1,10),initialize=1) m.x17 = Var(within=Reals,bounds=(1,10),initialize=1) m.x18 = Var(within=Reals,bounds=(1,10),initialize=1) m.x19 = Var(within=Reals,bounds=(1,10),initialize=1) m.x20 = Var(within=Reals,bounds=(1,10),initialize=1) m.x21 = Var(within=Reals,bounds=(1,10),initialize=1) m.x22 = Var(within=Reals,bounds=(1,10),initialize=1) m.x23 = Var(within=Reals,bounds=(1,10),initialize=1) m.x24 = Var(within=Reals,bounds=(1,10),initialize=1) m.x25 = Var(within=Reals,bounds=(1,10),initialize=1) m.x26 = Var(within=Reals,bounds=(1,10),initialize=1) m.x27 = Var(within=Reals,bounds=(1,10),initialize=1) m.x28 = Var(within=Reals,bounds=(1,10),initialize=1) m.x29 = Var(within=Reals,bounds=(1,10),initialize=1) m.x30 = Var(within=Reals,bounds=(1,10),initialize=1) m.x32 = Var(within=Reals,bounds=(None,0),initialize=0) m.x33 = Var(within=Reals,bounds=(None,0),initialize=0) m.x34 = Var(within=Reals,bounds=(None,0),initialize=0) m.x35 = Var(within=Reals,bounds=(None,0),initialize=0) m.x36 = Var(within=Reals,bounds=(None,0),initialize=0) m.x37 = Var(within=Reals,bounds=(None,0),initialize=0) m.x38 = Var(within=Reals,bounds=(None,0),initialize=0) m.x39 = Var(within=Reals,bounds=(None,0),initialize=0) m.x40 = Var(within=Reals,bounds=(None,0),initialize=0) m.x41 = Var(within=Reals,bounds=(None,0),initialize=0) m.x42 = Var(within=Reals,bounds=(None,0),initialize=0) m.x43 = Var(within=Reals,bounds=(None,0),initialize=0) m.x44 = Var(within=Reals,bounds=(None,0),initialize=0) m.x45 = Var(within=Reals,bounds=(None,0),initialize=0) m.x46 = Var(within=Reals,bounds=(None,0),initialize=0) m.x47 = Var(within=Reals,bounds=(None,0),initialize=0) m.x48 = Var(within=Reals,bounds=(None,0),initialize=0) m.x49 = Var(within=Reals,bounds=(None,0),initialize=0) m.x50 = Var(within=Reals,bounds=(None,0),initialize=0) m.x51 = Var(within=Reals,bounds=(None,0),initialize=0) m.x52 = Var(within=Reals,bounds=(None,0),initialize=0) m.x53 = Var(within=Reals,bounds=(None,0),initialize=0) m.x54 = Var(within=Reals,bounds=(None,0),initialize=0) m.x55 = Var(within=Reals,bounds=(None,0),initialize=0) m.x56 = Var(within=Reals,bounds=(None,0),initialize=0) m.x57 = Var(within=Reals,bounds=(None,0),initialize=0) m.x58 = Var(within=Reals,bounds=(None,0),initialize=0) m.x59 = Var(within=Reals,bounds=(None,0),initialize=0) m.x60 = Var(within=Reals,bounds=(None,0),initialize=0) m.x61 = Var(within=Reals,bounds=(None,0),initialize=0) m.x62 = Var(within=Reals,bounds=(None,None),initialize=0) m.x63 = Var(within=Reals,bounds=(1E-10,None),initialize=1E-10) m.obj = Objective(expr= m.i1 + m.i2 + m.i3 + m.i4 + m.i5 + m.i6 + m.i7 + m.i8 + m.i9 + m.i10 + m.i11 + m.i12 + m.i13 + m.i14 + m.i15 + m.x16 + m.x17 + m.x18 + m.x19 + m.x20 + m.x21 + m.x22 + m.x23 + m.x24 + m.x25 + m.x26 + m.x27 + m.x28 + m.x29 + m.x30 + 30000*m.x63, sense=minimize) m.c2 = Constraint(expr= m.x32 + m.x33 + m.x34 + m.x35 + m.x36 + m.x37 + m.x38 + m.x39 + m.x40 + m.x41 + m.x42 + m.x43 + m.x44 + m.x45 + m.x46 + m.x47 + m.x48 + m.x49 + m.x50 + m.x51 + m.x52 + m.x53 + m.x54 + m.x55 + m.x56 + m.x57 + m.x58 + m.x59 + m.x60 + m.x61 + m.x62 <= 0) m.c3 = Constraint(expr=-0.48*log(m.i1) - m.x32 <= 0) m.c4 = Constraint(expr=-0.275*log(m.i2) - m.x33 <= 0) m.c5 = Constraint(expr=-0.26*log(m.i3) - m.x34 <= 0) m.c6 = Constraint(expr=-0.215*log(m.i4) - m.x35 <= 0) m.c7 = Constraint(expr=-0.245*log(m.i5) - m.x36 <= 0) m.c8 = Constraint(expr=-0.31*log(m.i6) - m.x37 <= 0) m.c9 = Constraint(expr=-0.34*log(m.i7) - m.x38 <= 0) m.c10 = Constraint(expr=-0.2*log(m.i8) - m.x39 <= 0) m.c11 = Constraint(expr=-0.185*log(m.i9) - m.x40 <= 0) m.c12 = Constraint(expr=-0.495*log(m.i10) - m.x41 <= 0) m.c13 = Constraint(expr=-0.02*log(m.i11) - m.x42 <= 0) m.c14 = Constraint(expr=-0.445*log(m.i12) - m.x43 <= 0) m.c15 = Constraint(expr=-0.455*log(m.i13) - m.x44 <= 0) m.c16 = Constraint(expr=-0.4*log(m.i14) - m.x45 <= 0) m.c17 = Constraint(expr=-0.05*log(m.i15) - m.x46 <= 0) m.c18 = Constraint(expr=-0.13*log(m.x16) - m.x47 <= 0) m.c19 = Constraint(expr=-0.17*log(m.x17) - m.x48 <= 0) m.c20 = Constraint(expr=-0.34*log(m.x18) - m.x49 <= 0) m.c21 = Constraint(expr=-0.07*log(m.x19) - m.x50 <= 0) m.c22 = Constraint(expr=-0.36*log(m.x20) - m.x51 <= 0) m.c23 = Constraint(expr=-0.05*log(m.x21) - m.x52 <= 0) m.c24 = Constraint(expr=-0.325*log(m.x22) - m.x53 <= 0) m.c25 = Constraint(expr=-0.245*log(m.x23) - m.x54 <= 0) m.c26 = Constraint(expr=-0.39*log(m.x24) - m.x55 <= 0) m.c27 = Constraint(expr=-0.36*log(m.x25) - m.x56 <= 0) m.c28 = Constraint(expr=-0.45*log(m.x26) - m.x57 <= 0) m.c29 = Constraint(expr=-0.445*log(m.x27) - m.x58 <= 0) m.c30 = Constraint(expr=-0.165*log(m.x28) - m.x59 <= 0) m.c31 = Constraint(expr=-0.35*log(m.x29) - m.x60 <= 0) m.c32 = Constraint(expr=-0.1*log(m.x30) - m.x61 <= 0) m.c33 = Constraint(expr=-log(m.x63) - m.x62 <= 0)
from rlgym.utils.state_setters import StateSetter from rlgym.utils.state_setters import StateWrapper import random import numpy as np class DefaultState(StateSetter): SPAWN_BLUE_POS = [[-2048, -2560, 17], [2048, -2560, 17], [-256, -3840, 17], [256, -3840, 17], [0, -4608, 17]] SPAWN_BLUE_YAW = [0.25 * np.pi, 0.75 * np.pi, 0.5 * np.pi, 0.5 * np.pi, 0.5 * np.pi] SPAWN_ORANGE_POS = [[2048, 2560, 17], [-2048, 2560, 17], [256, 3840, 17], [-256, 3840, 17], [0, 4608, 17]] SPAWN_ORANGE_YAW = [-0.75 * np.pi, -0.25 * np.pi, -0.5 * np.pi, -0.5 * np.pi, -0.5 * np.pi] def __init__(self): super().__init__() def reset(self, state_wrapper: StateWrapper): """ Modifies state_wrapper values to emulate a randomly selected default kickoff. :param state_wrapper: StateWrapper object to be modified with desired state values. """ # possible kickoff indices are shuffled spawn_inds = [0, 1, 2, 3, 4] random.shuffle(spawn_inds) blue_count = 0 orange_count = 0 for car in state_wrapper.cars: pos = [0,0,0] yaw = 0 # team_num = 0 = blue team if car.team_num == 0: # select a unique spawn state from pre-determined values pos = self.SPAWN_BLUE_POS[spawn_inds[blue_count]] yaw = self.SPAWN_BLUE_YAW[spawn_inds[blue_count]] blue_count += 1 # team_num = 1 = orange team elif car.team_num == 1: # select a unique spawn state from pre-determined values pos = self.SPAWN_ORANGE_POS[spawn_inds[orange_count]] yaw = self.SPAWN_ORANGE_YAW[spawn_inds[orange_count]] orange_count += 1 # set car state values car.set_pos(*pos) car.set_rot(yaw=yaw) car.boost = 0.33
def init_app(app): Api(app)
# # adventure module # # vim: et sw=2 ts=2 sts=2 # for Python3, use: # import urllib.request as urllib2 import urllib2 import random import string import textwrap import time # "directions" are all the ways you can describe going some way; # they are code-visible names for directions for adventure authors direction_names = ["NORTH","SOUTH","EAST","WEST","UP","DOWN","RIGHT","LEFT", "IN","OUT","FORWARD","BACK", "NORTHWEST","NORTHEAST","SOUTHWEST","SOUTHEAST"] direction_list = [ NORTH, SOUTH, EAST, WEST, UP, DOWN, RIGHT, LEFT, IN, OUT, FORWARD, BACK, NORTHWEST, NORTHEAST, SOUTHWEST, SOUTHEAST] = \ range(len(direction_names)) NOT_DIRECTION = None # some old names, for backwards compatibility (NORTH_WEST, NORTH_EAST, SOUTH_WEST, SOUTH_EAST) = \ (NORTHWEST, NORTHEAST, SOUTHWEST, SOUTHEAST) directions = dir_by_name = dict(zip(direction_names, direction_list)) def define_direction (number, name): if name in dir_by_name: exit("%s is already defined as %d" % (name, dir_by_name[name])) dir_by_name[name] = number def lookup_dir (name): return dir_by_name.get(name, NOT_DIRECTION) # add lower-case versions of all names in direction_names for name in direction_names: define_direction(dir_by_name[name], name.lower()) # add common aliases: # maybe the alias mechanism should be a more general # (text-based?) mechanism that works for any command?!!! common_aliases = [ (NORTH, "n"), (SOUTH, "s"), (EAST, "e"), (WEST, "w"), (UP, "u"), (DOWN, "d"), (FORWARD, "fd"), (FORWARD, "fwd"), (FORWARD, "f"), (BACK, "bk"), (BACK, "b"), (NORTHWEST,"nw"), (NORTHEAST,"ne"), (SOUTHWEST,"sw"), (SOUTHEAST, "se") ] for (k,v) in common_aliases: define_direction(k,v) # define the pairs of opposite directions opposite_by_dir = {} def define_opposite_dirs (d1, d2): for dir in (d1, d2): opposite = opposite_by_dir.get(dir) if opposite is not None: exit("opposite for %s is already defined as %s" % (dir, opposite)) opposite_by_dir[d1] = d2 opposite_by_dir[d2] = d1 opposites = [(NORTH, SOUTH), (EAST, WEST), (UP, DOWN), (LEFT, RIGHT), (IN, OUT), (FORWARD, BACK), (NORTHWEST, SOUTHEAST), (NORTHEAST, SOUTHWEST)] for (d1,d2) in opposites: define_opposite_dirs(d1,d2) def opposite_direction (dir): return opposite_by_dir[dir] # registered games registered_games = {} FEEDBACK = 0 TITLE = 1 DESCRIPTION = 2 CONTENTS = 3 DEBUG = 4 class Colors: ''' Colors class: reset all colors with colors.reset two subclasses fg for foreground and bg for background. use as colors.subclass.colorname. i.e. colors.fg.red or colors.bg.green also, the generic bold, disable, underline, reverse, strikethrough, and invisible work with the main class i.e. colors.bold ''' reset='\033[0m' bold='\033[01m' disable='\033[02m' underline='\033[04m' reverse='\033[07m' strikethrough='\033[09m' invisible='\033[08m' class FG: black='\033[30m' red='\033[31m' green='\033[32m' orange='\033[33m' blue='\033[34m' purple='\033[35m' cyan='\033[36m' lightgrey='\033[37m' darkgrey='\033[90m' lightred='\033[91m' lightgreen='\033[92m' yellow='\033[93m' lightblue='\033[94m' pink='\033[95m' lightcyan='\033[96m' class BG: black='\033[40m' red='\033[41m' green='\033[42m' orange='\033[43m' blue='\033[44m' purple='\033[45m' cyan='\033[46m' lightgrey='\033[47m' articles = ['a', 'an', 'the'] # some prepositions to recognize indirect objects in prepositional phrases prepositions = ['aboard', 'about', 'above', 'across', 'after', 'against', 'along' 'among', 'around', 'at', 'atop', 'before', 'behind', 'below', 'beneath', 'beside', 'besides', 'between', 'beyond', 'by', 'for', 'from', 'in', 'including' 'inside', 'into', 'on', 'onto', 'outside', 'over', 'past', 'than' 'through', 'to', 'toward', 'under', 'underneath', 'onto', 'upon', 'with', 'within'] # changes "lock" to "a lock", "apple" to "an apple", etc. # note that no article should be added to proper names; # For now we'll just assume # anything starting with upper case is proper. # Do not add an article to plural nouns. def add_article (name): # simple plural test if len(name) > 1 and name[-1] == 's' and name[-2] != 's': return name # check if there is already an article on the string if name.split()[0] in articles: return name consonants = "bcdfghjklmnpqrstvwxyz" vowels = "aeiou" if name and (name[0] in vowels): article = "an " elif name and (name[0] in consonants): article = "a " else: article = "" return "%s%s" % (article, name) def normalize_input(text): superfluous = articles + ['and'] rest = [] for word in text.split(): word = "".join(l for l in word if l not in string.punctuation) if word not in superfluous: rest.append(word) return ' '.join(rest) def proper_list_from_dict(d): names = d.keys() buf = [] name_count = len(names) for (i,name) in enumerate(names): if i != 0: buf.append(", " if name_count > 2 else " ") if i == name_count-1 and name_count > 1: buf.append("and ") buf.append(add_article(name)) return "".join(buf) # Base is a place to put default inplementations of methods that everything # in the game should support (eg save/restore, how to respond to verbs etc) class Base(object): def __init__(self, name): self.game = None self.name = name self.verbs = {} self.phrases = {} self.vars = {} def flag(self, f): if f in self.vars: return self.vars[f] else: return False def set_flag(self, f): self.vars[f] = True def unset_flag(self, f): if f in self.vars: del self.vars[f] def var(self, var): if var in self.vars: return self.vars[var] else: return None def set_var(self, var, val): self.vars[var] = val def unset_var(self, var): if var in self.vars: del self.vars[var] def add_verb(self, v): self.verbs[' '.join(v.name.split())] = v v.bind_to(self) return v def get_verb(self, verb): c = ' '.join(verb.split()) if c in self.verbs: return self.verbs[c] else: return None def add_phrase(self, phrase, f, requirements = []): if isinstance(f, BaseVerb): f.bind_to(self) self.phrases[' '.join(phrase.split())] = (f, set(requirements)) def get_phrase(self, phrase, things_present): phrase = phrase.strip() things_present = set(things_present) if not phrase in self.phrases: return None p = self.phrases[phrase] if things_present.issuperset(p[1]): return p[0] return None def output(self, text, message_type = 0): self.game.output(text, message_type) class BaseVerb(Base): def __init__(self, function, name): Base.__init__(self, name) self.function = function self.bound_to = None def bind_to(self, obj): self.bound_to = obj def act(self, actor, noun, words): result = True if not self.function(actor, noun, None): result = False # treat 'verb noun1 and noun2..' as 'verb noun1' then 'verb noun2' # treat 'verb noun1, noun2...' as 'verb noun1' then 'verb noun2' # if any of the nouns work on the verb consider the command successful, # even if some of them don't if words: for noun in words: if self.function(actor, noun, None): result = True return result class Die(BaseVerb): def __init__(self, string, name = ""): BaseVerb.__init__(self, None, name) self.string = string def act(self, actor, noun, words): self.bound_to.game.output("%s %s %s" % (actor.name.capitalize(), actor.isare, self.string), FEEDBACK) self.bound_to.game.output("%s %s dead." % (actor.name.capitalize(), actor.isare), FEEDBACK) actor.terminate() return True class Say(BaseVerb): def __init__(self, string, name = ""): BaseVerb.__init__(self, None, name) self.string = string def act(self, actor, noun, words): self.bound_to.game.output(self.string, FEEDBACK) return True class SayOnNoun(Say): def __init__(self, string, noun, name = ""): Say.__init__(self, string, name) self.noun = noun def act(self, actor, noun, words): if self.noun != noun: return False self.bound_to.game.output(self.string, FEEDBACK) return True class SayOnSelf(SayOnNoun): def __init__(self, string, name = ""): SayOnNoun.__init__(self, string, None, name) # Verb is used for passing in an unbound global function to the constructor class Verb(BaseVerb): def __init__(self, function, name = ""): BaseVerb.__init__(self, function, name) # explicitly pass in self to the unbound function def act(self, actor, noun, words): return self.function(self.bound_to, actor, noun, words) def list_prefix(a, b): # is a a prefix of b if not a: return True if not b: return False if a[0] != b[0]: return False return list_prefix(a[1:], b[1:]) def get_noun(words, things): if words[0] in articles: if len(words) > 1: done = False for t in things: n = t.name.split() if list_prefix(n, words[1:]): noun = t.name words = words[len(n)+1:] done = True break if not done: noun = words[1] words = words[2:] else: done = False for t in things: n = t.name.split() if list_prefix(n, words): noun = t.name words = words[len(n):] done = True break if not done: noun = words[0] words = words[1:] return (noun, words) # A class to hold utility methods useful during game development, but # not needed for normal game play. Import the advent_devtools module # to get the full version of the tools. class DevToolsBase(object): def __init__(self): self.game = None def set_game(self, game): self.game = game def debug_output(self, text, level): return def start(self): return global _devtools _devtools = DevToolsBase() def register_devtools(devtools): global _devtools _devtools = devtools # The Game: container for hero, locations, robots, animals etc. class Game(Base): def __init__(self, name="bwx-adventure"): Base.__init__(self, name) self.objects = {} self.fresh_location = False self.player = None self.current_actor = None self.location_list = [] self.robots = {} self.animals = {} global _devtools self.devtools = _devtools self.devtools.set_game(self) self.http_output = False self.http_text = "" self.done = False def set_name(self, name): self.name = name # add a bidirectional connection between points A and B def add_connection(self, connection): connection.game = self if isinstance(connection.way_ab, (list, tuple)): for way in connection.way_ab: connection.point_a.add_exit(connection, way) else: connection.point_a.add_exit(connection, connection.way_ab) # this is messy, need a better way to do this reverse_connection = Connection(connection.name, connection.point_b, connection.point_a, connection.way_ba, connection.way_ab) reverse_connection.game = self if isinstance(connection.way_ba, (list, tuple)): for way in connection.way_ba: connection.point_b.add_exit(reverse_connection, way) else: connection.point_b.add_exit(reverse_connection, connection.way_ba) return connection def new_connection(self, *args): return self.add_connection(Connection(*args)) def connect(self, place_a, place_b, way_ab, way_ba=None): """An easier-to use version of new_connection. It generates a connection name automatically from the two location names and also allows the second direction argument to be omitted. If the second direction is omitted, it defaults to the opposite of the first direction.""" name = place_a.name + "_to_" + place_b.name return self.new_connection(name, place_a, place_b, way_ab, way_ba) # add another location to the game def add_location(self, location): location.game = self self.location_list.append(location) return location def new_location(self, *args): return self.add_location(Location(*args)) # add an actor to the game def add_actor(self, actor): actor.game = self if isinstance(actor, Player): self.player = actor if isinstance(actor, Animal): self.animals[actor.name] = actor if isinstance(actor, Robot): self.robots[actor.name] = actor return actor def new_player(self, location): self.player = Player() self.add_actor(self.player) self.player.set_location(location) return self.player def if_flag(self, flag, s_true, s_false, location = None): return lambda loc: (s_false, s_true)[flag in (location or loc).vars] def if_var(self, v, value, s_true, s_false, location = None): return lambda loc: (s_false, s_true)[v in (location or loc).vars and (location or loc).vars[v] == value] def output(self, text, message_type = 0): if message_type != DEBUG: self.current_actor.set_next_script_response(text) self.print_output(text, message_type) def style_text(self, text, message_type): if False: # trinket.io return text if self.http_output: if (message_type == FEEDBACK): text = "<font color='red'>" + text + '</font>' if (message_type == TITLE): text = "<font color='blue'>" + text + '</font>' if (message_type == DESCRIPTION): pass if (message_type == CONTENTS): text = "<font color='green'>" + text + '</font>' if (message_type == DEBUG): text = "<font color='orange'>" + text + '</font>' return text if (message_type == FEEDBACK): text = Colors.FG.pink + text + Colors.reset if (message_type == TITLE): text = Colors.FG.yellow + Colors.BG.blue + "\n" + text + Colors.reset if (message_type == DESCRIPTION): text = Colors.reset + text if (message_type == CONTENTS): text = Colors.FG.green + text + Colors.reset if (message_type == DEBUG): text = Colors.bold + Colors.FG.black + Colors.BG.orange + "\n" + text + Colors.reset return text # overload this for HTTP output def print_output(self, text, message_type = 0): if self.http_output: self.http_text += self.style_text(text, message_type) + "\n" else: print self.style_text(text, message_type) # checks to see if the inventory in the items list is in the user's inventory def inventory_contains(self, items): if set(items).issubset(set(self.player.inventory.values())): return True return False def entering_location(self, location): if (self.player.location == location and self.fresh_location): return True return False def say(self, s): return lambda game: game.output(s) @staticmethod def register(name, fn): global registered_games registered_games[name] = fn @staticmethod def get_registered_games(): global registered_games return registered_games def run_init(self, update_func = None): # reset this every loop so we don't trigger things more than once self.fresh_location = False self.update_func = update_func self.current_actor = self.player self.devtools.start() def init_scripts(self): actor = self.current_actor script_name = self.var('script_name') if script_name != None: self.devtools.debug_output("script_name: " + script_name, 3) actor.act_load_file(actor, script_name, None) if self.flag('check'): actor.act_check_script(actor, script_name, None) else: actor.act_run_script(actor, script_name, None) recording_name = self.var('start_recording') if recording_name != None: self.devtools.debug_output("recording_name: " + recording_name, 3) actor.act_start_recording(actor, recording_name, None) def run_room(self): actor = self.current_actor if actor == self.player or actor.flag('verbose'): # if the actor moved, describe the room if actor.check_if_moved(): self.output(actor.location.title(actor), TITLE) # cache this as we need to know it for the query to entering_location() self.fresh_location = actor.location.first_time where = actor.location.describe(actor, actor.flag('verbose')) if where: self.output("") self.output(where) self.output("") # See if the animals want to do anything for animal in self.animals.values(): # first check that it is not dead if animal.health >= 0: animal.act_autonomously(actor.location) def run_step(self, cmd = None): self.http_text = "" actor = self.current_actor # has the developer supplied an update function? if self.update_func: self.update_func() # call the update function # check if we're currently running a script user_input = actor.get_next_script_command(); if user_input == None: if cmd != None: user_input = cmd else: # get input from the user try: self.output("") # add a blank line user_input = raw_input("> ") except EOFError: return False # see if the command is for a robot if ':' in user_input: robot_name, command = user_input.split(':') try: actor = self.robots[robot_name] except KeyError: self.output("I don't know anybot named %s" % robot_name, FEEDBACK) return True else: actor = self.player command = user_input self.current_actor = actor # now we're done with punctuation and other superfluous words like articles command = normalize_input(command) # see if we want to quit if command == 'q' or command == 'quit': return False # give the input to the actor in case it's recording a script if not actor.set_next_script_command(command): return True words = command.split() if not words: return True # following the Infocom convention commands are decomposed into # VERB(verb), OBJECT(noun), INDIRECT_OBJECT(indirect). # For example: "hit zombie with hammer" = HIT(verb) ZOMBIE(noun) WITH HAMMER(indirect). # handle 'tell XXX ... " target_name = "" if words[0].lower() == 'tell' and len(words) > 2: (target_name, words) = get_noun(words[1:], actor.location.actors.values()) things = actor.inventory.values() + \ actor.location.contents.values() + \ actor.location.exits.values() + \ list(actor.location.actors.values()) + \ [actor.location] + \ [actor] for c in actor.location.contents.values(): if isinstance(c, Container) and c.is_open: things += c.contents.values() potential_verbs = [] for t in things: potential_verbs += t.verbs.keys() # extract the VERB verb = None potential_verbs.sort(key=lambda key : -len(key)) for v in potential_verbs: vv = v.split() if list_prefix(vv, words): verb = v words = words[len(vv):] if not verb: verb = words[0] words = words[1:] # extract the OBJECT noun = None if words: (noun, words) = get_noun(words, things) # extract INDIRECT (object) in phrase of the form VERB OBJECT PREPOSITION INDIRECT indirect = None if len(words) > 1 and words[0].lower() in prepositions: (indirect, words) = get_noun(words[1:], things) # first check phrases for thing in things: f = thing.get_phrase(command, things) if f: if isinstance(f, BaseVerb): if f.act(actor, noun, words): return True else: f(self, thing) return True # if we have an explicit target of the VERB, do that. # e.g. "tell cat eat foo" -> cat.eat(cat, 'food', []) if target_name: for a in actor.location.actors.values(): if a.name != target_name: continue v = a.get_verb(verb) if v: if v.act(a, noun, words): return True self.output("Huh? %s %s?" % (target_name, verb), FEEDBACK) return True # if we have an INDIRECT object, try it's handle first # e.g. "hit cat with hammer" -> hammer.hit(actor, 'cat', []) if indirect: # try inventory and room contents things = actor.inventory.values() + actor.location.contents.values() for thing in things: if indirect == thing.name: v = thing.get_verb(verb) if v: if v.act(actor, noun, words): return True for a in actor.location.actors.values(): if indirect == a.name: v = a.get_verb(verb) if v: if v.act(a, noun, words): return True # if we have a NOUN, try it's handler next if noun: for thing in things: if noun == thing.name: v = thing.get_verb(verb) if v: if v.act(actor, None, words): return True for a in actor.location.actors.values(): if noun == a.name: v = a.get_verb(verb) if v: if v.act(a, None, words): return True # location specific VERB v = actor.location.get_verb(verb) if v: if v.act(actor, noun, words): return True # handle directional moves of the actor if not noun: if verb in directions: actor.act_go1(actor, verb, None) return True # general actor VERB v = actor.get_verb(verb) if v: if v.act(actor, noun, words): return True # not understood self.output("Huh?", FEEDBACK) return True def run(self , update_func = None): self.run_init(update_func) self.run_room() # just set the stage before we do any scripting self.init_scripts() # now we can set up scripts while True: if self.done: return self.run_room() if self.player.health < 0: self.output ("Better luck next time!") break if not self.run_step(): break self.output("\ngoodbye!\n", FEEDBACK) class Object(Base): # name: short name of this thing # description: full description # fixed: is it stuck or can it be taken def __init__(self, name, desc, fixed=False): Base.__init__(self, name) self.description = desc self.fixed = fixed def describe(self, observer): if isinstance(self.description, str): return self.description else: return self.description(self) class Consumable(Object): def __init__(self, name, desc, verb, replacement = None): Object.__init__(self, name, desc) self.verb = verb verb.bind_to(self) self.consume_term = "consume" self.replacement = replacement def consume(self, actor, noun, words): if not actor.location.replace_object(actor, self.name, self.replacement): return False self.output("%s %s%s %s." % (actor.name.capitalize(), self.consume_term, actor.verborverbs, self.description)) self.verb.act(actor, noun, words) return True class Food(Consumable): def __init__(self, name, desc, verb, replacement = None): Consumable.__init__(self, name, desc, verb, replacement) self.consume_term = "eat" class Drink(Consumable): def __init__(self, name, desc, verb, replacement = None): Consumable.__init__(self, name, desc, verb, replacement) self.consume_term = "drink" class Lockable(Base): def __init__(self, name): Base.__init__(self, name) self.requirements = {} def make_requirement(self, thing): self.requirements[thing.name] = thing self.lock() def lock(self): self.set_flag('locked') def unlock(self): self.unset_flag('locked') def is_locked(self): return self.flag('locked') def try_unlock(self, actor): # first see if the actor is whitelisted if isinstance(self, Location) and actor.allowed_locs: if not self in actor.allowed_locs: return False # now check if we're locked if not self.flag('locked'): return True # check if there are any implicit requirements for this object if len(self.requirements) == 0: self.output("It's locked!") return False # check to see if the requirements are in the inventory if set(self.requirements).issubset(set(actor.inventory)): self.output("You use the %s, the %s unlocks" % \ (proper_list_from_dict(self.requirements), self.name), FEEDBACK) self.unlock() return True self.output("It's locked! You will need %s." % \ proper_list_from_dict(self.requirements), FEEDBACK) return False class Container(Lockable): def __init__(self, name, description): Lockable.__init__(self, name) self.description = description self.first_time = True self.contents = {} self.close() def add_object(self, obj): self.contents[obj.name] = obj obj.game = self.game return obj def new_object(self, name, desc, fixed=False): return self.add_object(Object(name, desc, fixed)) def describe(self, observer, force=False): desc = "" # start with a blank string # add the description if self.first_time or force: desc += self.description self.first_time = False else: desc += add_article(self.name) if not self.is_open(): desc += " The %s is closed." % self.name else: desc += " The %s is open." % self.name # it's open so describe the contents desc += self.describe_contents() return desc def describe_contents(self): desc = "" if not self.contents: return desc # try to make a readable list of the things contents_description = proper_list_from_dict(self.contents) # is it just one thing? if len(self.contents) == 1: desc += self.game.style_text("\nThere is %s in the %s." % \ (contents_description, self.name), CONTENTS) else: desc += self.game.style_text("\nThere are a few things in the %s: %s." % \ (self.name, contents_description), CONTENTS) return desc def open(self, actor): if self.is_open(): self.output("The %s is already open." % self.name) return True if not self.try_unlock(actor): return False self.output("The %s opens." % self.name, FEEDBACK) self.output(self.describe_contents(), CONTENTS) self.unset_flag('closed') def close(self): self.set_flag('closed') def is_open(self): return not self.flag('closed') # A "location" is a place in the game. class Location(Lockable): # name: short name of this location # description: full description # contents: things that are in a location # exits: ways to get out of a location # first_time: is it the first time here? # actors: other actors in the location def __init__(self, name, description, inonat="in"): Lockable.__init__(self, name) self.description = description self.inonat = inonat self.contents = {} self.exits = {} self.first_time = True self.actors = {} def title(self, actor): preamble = "" if (actor != self.game.player): preamble = "%s %s %s the " % (actor.name.capitalize(), actor.isare, self.inonat) return " --=( %s%s )=-- " % (preamble, self.name) def add_object(self, obj): self.contents[obj.name] = obj obj.game = self.game return obj def add_actor(self, actor): actor.set_location(self) return actor def new_object(self, name, desc, fixed=False): return self.add_object(Object(name, desc, fixed)) def description_str(self, d): if isinstance(d, (list, tuple)): desc = "" for dd in d: desc += self.description_str(dd) return desc else: if isinstance(d, str): return self.game.style_text(d, DESCRIPTION) else: return self.description_str(d(self)) def describe(self, observer, force=False): desc = "" # start with a blank string # add the description if self.first_time or force: desc += self.description_str(self.description) self.first_time = False if self.contents: # try to make a readable list of the things contents_description = proper_list_from_dict(self.contents) # is it just one thing? if len(self.contents) == 1: desc += self.game.style_text("\nThere is %s here." % \ contents_description, CONTENTS) else: desc += self.game.style_text("\nThere are a few things here: %s." % \ contents_description, CONTENTS) for k in sorted(self.contents.keys()): c = self.contents[k] if isinstance(c, Container) and c.is_open(): desc += c.describe_contents() if self.actors: for k in sorted(self.actors.keys()): a = self.actors[k] if a.health < 0: deadornot = "lying here dead as a doornail" else: deadornot = "here" if a != observer: desc += self.game.style_text("\n" + add_article(a.describe(a)).capitalize() + \ " " + a.isare + " " + deadornot + ".", CONTENTS) return desc def find_object(self, actor, name): if not name: return None if self.contents: if name in self.contents.keys(): return self.contents for c in self.contents.values(): if isinstance(c, Container) and c.is_open() and name in c.contents.keys(): return c.contents if name in actor.inventory: return actor.inventory return None def replace_object(self, actor, old_name, new_obj): d = self.find_object(actor, old_name) if d == None: return None if not old_name in d.keys(): return None old_obj = d[old_name] del d[old_name] if new_obj: d[new_obj.name] = new_obj return old_obj def add_exit(self, con, way): self.exits[ way ] = con def go(self, actor, way): if not way in self.exits: return None c = self.exits[ way ] # first check if the connection is locked if not c.try_unlock(actor): return None # check if the room on the other side is locked if not c.point_b.try_unlock(actor): return None return c.point_b def debug(self): for key in self.exits: print "exit: %s" % key # A "connection" connects point A to point B. Connections are # always described from the point of view of point A. class Connection(Lockable): # name # point_a # point_b def __init__(self, name, pa, pb, way_ab, way_ba=None): Lockable.__init__(self, name) # way_ba defaults to the opposite of way_ab if way_ba is None: way_ba = ([opposite_direction(way) for way in way_ab] if isinstance(way_ab, (list, tuple)) else opposite_direction(way_ab)) self.point_a = pa self.point_b = pb self.way_ab = way_ab self.way_ba = way_ba # An actor in the game class Actor(Base): # location # inventory # moved # verbs def __init__(self, name): Base.__init__(self, name) self.health = 0 self.location = None self.allowed_locs = None self.inventory = {} self.cap_name = name.capitalize() self.player = False self.isare = "is" self.verborverbs = "s" self.trades = {} # associate each of the known actions with functions self.add_verb(BaseVerb(self.act_take1, 'take')) self.add_verb(BaseVerb(self.act_take1, 'get')) self.add_verb(BaseVerb(self.act_drop1, 'drop')) self.add_verb(BaseVerb(self.act_give, 'give')) self.add_verb(BaseVerb(self.act_inventory, 'inventory')) self.add_verb(BaseVerb(self.act_inventory, 'i')) self.add_verb(BaseVerb(self.act_look, 'look')) self.add_verb(BaseVerb(self.act_examine1, 'examine')) self.add_verb(BaseVerb(self.act_examine1, 'look at')) self.add_verb(BaseVerb(self.act_look, 'l')) self.add_verb(BaseVerb(self.act_go1, 'go')) self.add_verb(BaseVerb(self.act_eat, 'eat')) self.add_verb(BaseVerb(self.act_drink, 'drink')) self.add_verb(BaseVerb(self.act_open, 'open')) self.add_verb(BaseVerb(self.act_list_verbs, 'verbs')) self.add_verb(BaseVerb(self.act_list_verbs, 'commands')) # terminate def terminate(self): self.health = -1 # describe ourselves def describe(self, observer): return self.name # establish where we are "now" def set_location(self, loc): self.game = loc.game # XXX this is a hack do this better if not self.player and self.location: del self.location.actors[self.name] self.location = loc self.moved = True if not self.player: self.location.actors[self.name] = self # confine this actor to a list of locations def set_allowed_locations(self, locs): self.allowed_locs = locs # add something to our inventory def add_to_inventory(self, thing): self.inventory[thing.name] = thing return thing # remove something from our inventory def remove_from_inventory(self, thing): return self.inventory.pop(thing.name, None) # set up a trade def add_trade(self, received_obj, returned_obj, verb): verb.bind_to(self) self.trades[received_obj] = (returned_obj, verb) # receive a given object def receive_item(self, giver, thing): self.add_to_inventory(thing) if thing in self.trades.keys(): (obj, verb) = self.trades[thing] verb.act(giver, thing.name, None) self.location.contents[obj.name] = obj self.remove_from_inventory(obj) # give something to another actor def act_give(self, actor, noun, words): d = actor.location.find_object(actor, noun) if not d: return False thing = d[noun] receiver = self if words: for w in words: if w in self.location.actors.keys(): receiver = self.location.actors[w] break if not receiver: return False receiver.receive_item(actor, thing) del d[thing.name] return True # move a thing from the current location to our inventory def act_take1(self, actor, noun, words): if not noun: return False t = self.location.contents.pop(noun, None) if not t: for c in self.location.contents.values(): if isinstance(c, Container) and c.is_open: t = c.contents.pop(noun, None) if t: self.inventory[noun] = t self.output("%s take%s the %s." % (actor.cap_name, actor.verborverbs, t.name)) return True else: self.output("%s can't take the %s." % (actor.cap_name, noun)) return False # move a thing from our inventory to the current location def act_drop1(self, actor, noun, words): if not noun: return False t = self.inventory.pop(noun, None) if t: self.location.contents[noun] = t return True else: self.output("%s %s not carrying %s." % (self.cap_name, self.isare, add_article(noun)), FEEDBACK) return False def act_look(self, actor, noun, words): self.output(self.location.describe(actor, True)) return True # examine a thing in our inventory or location def act_examine1(self, actor, noun, words): if not noun: return False n = None if noun in self.inventory: n = self.inventory[noun] if noun in self.location.contents: n = self.location.contents[noun] for c in self.location.contents.values(): if isinstance(c, Container) and c.is_open: if noun in c.contents: n = c.contents[noun] if not n: return False self.output("You see " + n.describe(self) + ".") return True # list the things we're carrying def act_inventory(self, actor, noun, words): msg = '%s %s carrying ' % (self.cap_name, self.isare) if self.inventory.keys(): msg += proper_list_from_dict(self.inventory) else: msg += 'nothing' msg += '.' self.output(msg, FEEDBACK) return True # check/clear moved status def check_if_moved(self): status = self.moved self.moved = False return status # try to go in a given direction def act_go1(self, actor, noun, words): if not noun in directions: self.output("Don't know how to go '%s'." % noun, FEEDBACK) return False loc = self.location.go(actor, directions[noun]) if loc == None: self.output("Bonk! %s can't seem to go that way." % self.name, FEEDBACK) return False else: # update where we are self.set_location(loc) return True # eat something def act_eat(self, actor, noun, words): d = actor.location.find_object(actor, noun) if not d: return False t = d[noun] if isinstance(t, Food): t.consume(actor, noun, words) else: self.output("%s can't eat the %s." % (actor.name.capitalize(), noun)) return True # drink something def act_drink(self, actor, noun, words): d = actor.location.find_object(actor, noun) if not d: return False t = d[noun] if isinstance(t, Drink): t.consume(actor, noun, words) else: self.output("%s can't drink the %s." % (actor.name.capitalize(), noun)) return True # open a Container def act_open(self, actor, noun, words): if not noun: return False if not noun in actor.location.contents: return False t = self.location.contents[noun] if isinstance(t, Container): t.open(actor) else: self.output("%s can't open the %s." % (actor.name.capitalize(), noun)) return True def act_list_verbs(self, actor, noun, words): things = (actor.inventory.values() + actor.location.contents.values() + list(actor.location.actors.values()) + [actor.location] + [actor]) result = set() for t in things: for v in t.verbs.keys(): if len(v.split()) > 1: result.add('"' + v + '"') else: result.add(v); for v in t.phrases.keys(): if len(v.split()) > 1: result.add('"' + v + '"') else: result.add(v); self.output(textwrap.fill(" ".join(sorted(result))), FEEDBACK) return True # support for scriptable actors, override these to implement def get_next_script_command(self): return None def set_next_script_command(self, line): return True def set_next_script_response(self, response): return True # Scripts are sequences of instructions for Robots to execute class Script(Base): def __init__(self, name, lines=None, game=None): Base.__init__(self, name) self.game = game self.commands = list() self.responses = list() self.current_response = None self.check_responses = False self.mismatched_responses = -1 self.current_command = -1 self.recording = False self.running = False self.start_time = None self.finish_time = None self.response_errors = 0 self.parse_lines(lines) def parse_lines(self, lines): if lines != None: self.start_recording() for line in lines.split("\n"): if line.startswith("> "): # save the new command, and any accumulated response from previous self.set_next_command(line.strip("> \n")) elif self.current_response != None: # accumulate response lines until the next command self.current_response += line + "\n" else: self.current_response = line + "\n" # if we didn't manage to get "end" go ahead and stop things brute force if self.recording: self.stop_recording() def start_recording(self): assert not self.running assert not self.recording self.current_response = None self.responses = list() self.commands = list() self.recording = True def stop_recording(self): assert self.recording assert not self.running self.current_response = None self.recording = False def start_running(self): assert not self.running assert not self.recording self.current_response = None self.check_responses = False self.running = True self.current_command = 0 self.mismatched_responses = 0 self.start_time = time.time() def start_checking(self): assert self.running assert not self.recording print "check_responses on" self.check_responses = True self.current_response = "" def stop_running(self): assert self.running assert not self.recording self.stop_time = time.time() self.game.devtools.debug_output( "script \"%s\":\n\tcommands: %d\n\tmismatched responses: %d\n\truntime: %f %s\n" % ( self.name, self.current_command, self.mismatched_responses, (self.stop_time - self.start_time) * 1000, "milliseconds"), 0) self.current_response = None self.check_responses = False self.running = False self.current_command = -1 if self.mismatched_responses != 0: assert(not self.game.flag('fail_on_mismatch')) def get_next_command(self): # if we're running a checker, examine the current response vs what's expected if self.current_command >= 1: self.check_response_match(self.current_response, self.responses[self.current_command - 1]) self.current_response = "" if not self.commands: return None while True: line = self.commands[self.current_command].strip() self.current_command += 1 # support comments and/or blank lines within the script line = line.split("#")[0] if line != "": break if line == "end": self.stop_running() return None return line def check_response_match(self, response, expected_response): if self.check_responses: match = "match" level = 2 if response != expected_response: match = "mismatch" level = 0 self.mismatched_responses += 1 self.game.devtools.debug_output( "response %s:\n>>>\n%s\n===\n%s\n<<<\n" % (match, response, expected_response), level) def set_next_command(self, command): if not self.recording: return True # save the accumulated response from the previous command if self.current_response != None: # append the response, trimming the final newline that preceded this command self.responses.append(self.current_response[:-1]) self.current_response = "" # save the current command self.commands.append(command) if command.strip() == "end": self.stop_recording() return False self.current_command += 1 return True def set_next_response(self, response): if self.current_response != None: # strip out color changing chars which may be in there control_chars = False for c in response: if c == '\33': control_chars = True if control_chars: if c == 'm': control_chars = False continue self.current_response += c self.current_response += "\n" def print_script(self): i = 0 for command in self.commands: print "> " + command if command == "end": break print self.responses[i] i = i + 1 def save_file(self): f = open(self.name + ".script", "w") i = 0 for command in self.commands: f.write('> ' + command + '\n') if command != "end": response_lines = self.responses[i].split('\n') for line in response_lines: f.write(line + '\n') i = i + 1 f.close() def load_file(self): f = open(self.name + ".script", "r") self.parse_lines(f.read()) f.close() # Robots are actors which accept commands to perform actions. # They can also record and run scripts. class Robot(Actor): def __init__(self, name): #super(Robot, self).__init__(name ) Actor.__init__(self, name) self.name = name self.scripts = {} self.current_script = None self.script_think_time = 0 self.add_verb(BaseVerb(self.act_start_recording, 'record')) self.add_verb(BaseVerb(self.act_run_script, 'run')) self.add_verb(BaseVerb(self.act_check_script, 'check')) self.add_verb(BaseVerb(self.act_print_script, 'print')) self.add_verb(BaseVerb(self.act_save_file, 'save')) self.add_verb(BaseVerb(self.act_load_file, 'load')) self.add_verb(BaseVerb(self.set_think_time, 'think')) self.add_verb(BaseVerb(self.toggle_verbosity, 'verbose')) self.leader = None self.add_verb(BaseVerb(self.act_follow, 'heel')) self.add_verb(BaseVerb(self.act_follow, 'follow')) self.add_verb(BaseVerb(self.act_stay, 'stay')) def act_follow(self, actor, noun, words=None): if noun == None or noun == "" or noun == "me": self.leader = self.game.player elif noun in self.game.robots: self.leader = self.game.robots[noun] elif noun in self.game.animals: self.leader = self.game.animals[noun] self.output("%s obediently begins following %s" % \ (self.name, self.leader.name) , FEEDBACK) return True def act_stay(self, actor, noun, words=None): if self.leader: self.output("%s obediently stops following %s" % \ (self.name, self.leader.name) , FEEDBACK) self.leader = None return True def toggle_verbosity(self, actor, noun, words): if self.flag('verbose'): self.unset_flag('verbose') self.output("minimal verbosity") else: self.set_flag('verbose') self.output("maximum verbosity") return True def parse_script_name(self, noun): if not noun: script_name = "default" else: script_name = noun return script_name def act_start_recording(self, actor, noun, words): script_name = self.parse_script_name(noun) self.set_flag('verbose') self.game.devtools.debug_output("start recording %s" % script_name, 2) script = Script(script_name, None, self.game) self.scripts[script_name] = script script.start_recording() self.current_script = script return True def act_run_script(self, actor, noun, words): if self.current_script: print "You must stop \"%s\" first." % (self.current_script.name) script_name = self.parse_script_name(noun) if not script_name in self.scripts: print "%s can't find script \"%s\" in its memory." % (self.name, script_name) return True; self.game.devtools.debug_output("start running %s" % script_name, 2) script = self.scripts[script_name] self.current_script = script script.start_running() return True def act_check_script(self, actor, noun, words): if self.act_run_script(actor, noun, words): self.set_flag('verbose') self.current_script.start_checking() self.game.devtools.debug_output("start checking", 2) return True return False def act_print_script(self, actor, noun, words): script_name = self.parse_script_name(noun) if not script_name in self.scripts: print "%s can't find script \"%s\" in its memory." % (self.name, script_name) return True print "----------------------8<-------------------------\n" print "# Paste the following into your game code in order" print "# to be able to run this script in the game:" print "%s_script = Script(\"%s\"," % (script_name, script_name) print "\"\"\"" self.scripts[script_name].print_script() print "\"\"\")" print "\n# Then add the script to a player, or a robot" print "# with code like the following:" print "player.add_script(%s_script)" % script_name print "\n# Now you can run the script from within the game" print "# by typing \"run %s\"" % script_name print "\n---------------------->8-------------------------" return True def act_save_file(self, actor, noun, words): script_name = self.parse_script_name(noun) if not script_name in self.scripts: print "%s can't find script \"%s\" in its memory." % (self.name, script_name) return True self.scripts[script_name].save_file() return True def act_load_file(self, actor, noun, words): script_name = self.parse_script_name(noun) self.scripts[script_name] = Script(script_name, None, self.game) self.scripts[script_name].load_file() return True def add_script(self, script): script.game = self.game self.scripts[script.name] = script def set_think_time(self, actor, noun, words): if noun: t = float(noun) if t >= 0 and t <= 60: self.script_think_time = t return True print "\"think\" requires a number of seconds (0.0000-60.0000) as an argument" return True def get_next_script_command(self): if not self.current_script or not self.current_script.running: return None line = self.current_script.get_next_command() if not line: print "%s %s done running script \"%s\"." % (self.name, self.isare, self.current_script.name) self.current_script = None return None if self.script_think_time > 0: time.sleep(self.script_think_time) line = self.name + ": " + line print "> %s" % line return line def set_next_script_command(self, command): if not self.current_script: return True if not self.current_script.set_next_command(command): print "%s finished recording script \"%s\"." % (self.name, self.current_script.name) self.current_script = None return False return True def set_next_script_response(self, response): if not self.current_script: return True self.current_script.set_next_response(response) return True # Player derives from Robot so that we can record and run scripts as the player class Player(Robot): def __init__(self): # super(Player, self).__init__("you") Robot.__init__(self, "you") self.player = True self.isare = "are" self.verborverbs = "" # Animals are actors which may act autonomously each turn class Animal(Actor): def __init__(self, name): #super(Animal, self).__init__(name ) Actor.__init__(self, name) def act_autonomously(self, observer_loc): self.random_move(observer_loc) def random_move(self, observer_loc): if random.random() > 0.2: # only move 1 in 5 times return # filter out any locked or forbidden locations exits = list() for (d, c) in self.location.exits.items(): if c.is_locked(): continue if c.point_b.is_locked(): continue if self.allowed_locs and not c.point_b in self.allowed_locs: continue exits.append((d ,c)) if not exits: return (exitDir, exitConn) = random.choice(exits) quiet = True if self.game.current_actor == self.game.player: quiet = False if self.game.current_actor.flag('verbose'): quiet = False if not quiet and self.location == observer_loc: self.output("%s leaves the %s, heading %s." % \ (add_article(self.name).capitalize(), observer_loc.name, direction_names[exitDir].lower()), FEEDBACK) self.act_go1(self, direction_names[exitDir], None) if not quiet and self.location == observer_loc: self.output("%s enters the %s via the %s." % (add_article(self.name).capitalize(), observer_loc.name, exitConn.name), FEEDBACK) # A pet is an actor with free will (Animal) that you can also command to do things (Robot) class Pet(Robot, Animal): def __init__(self, name): #super(Pet, self).__init__(name ) Robot.__init__(self, name) def act_autonomously(self, observer_loc): if self.leader: self.set_location(self.leader.location) else: self.random_move(observer_loc) class Share(object): def __init__(self): self.hostname = None self.port = None self.username = None self.password = None self.GLOBAL = 1 self.ADVENTURE = 2 self.PLAYER = 3 self.SESSION = 4 self.game = "" self.player = "" self.session = "" self.key_fns = { self.GLOBAL: self.global_key, self.ADVENTURE: self.adventure_key, self.PLAYER: self.player_key, self.SESSION: self.session_key, } try: f = open("share.info", "r") self.hostname = f.readline().strip() self.port = f.readline().strip() self.username = f.readline().strip() self.password = f.readline().strip() except IOError: pass def set_host(self, hostname, port, username, password): self.hostname = hostname self.port = port self.username = username self.password = password def set_adventure(self, adventure): self.adventure = adventure def set_player(self, player): self.player = player def set_session(self, session): self.session = session def is_available(self): return self.hostname != None def start(self): if not self.is_available(): return password_mgr = urllib2.HTTPPasswordMgrWithDefaultRealm() webdis_url = "http://%s:%s/" % (self.hostname, self.port) password_mgr.add_password(None, webdis_url, self.username, self.password) self.opener = urllib2.build_opener(urllib2.HTTPBasicAuthHandler(password_mgr)) def global_key(self, key): return 'g.' + key def adventure_key(self, key): return 'a.' + self.adventure + '.' + key def player_key(self, key): return 'p.' + self.adventure + '.' + self.player + '.' + key def session_key(self, key): return 's.' + self.adventure + '.' + self.player + '.' + self.session + key def _do(self, domain, cmd, key): assert(domain in self.key_fns) if not self.is_available(): return None k = self.key_fns[domain](key) net_f = self.opener.open('http://%s:%s/%s/%s.raw' % (self.hostname, self.port, cmd, k)) v = net_f.read().split('\n') if len(v) > 1: return v[1].strip() return None def _do1(self, domain, cmd, key, arg1): assert(domain in self.key_fns) if not self.is_available(): return None k = self.key_fns[domain](key) net_f = self.opener.open('http://%s:%s/%s/%s/%s.raw' % (self.hostname, self.port, cmd, k, arg1)) v = net_f.read().split('\n') if len(v) > 1: return v[1] # should be "" return None def _do2(self, domain, cmd, key, arg1, arg2): assert(domain in self.key_fns) if not self.is_available(): return None k = self.key_fns[domain](key) net_f = self.opener.open('http://%s:%s/%s/%s/%s/%s.raw' % (self.hostname, self.port, cmd, k, arg1, arg2)) v = net_f.read().split('\n') if len(v) > 1: return v[1] # should be "" return None # return a list def _do2l(self, domain, cmd, key, arg1, arg2): assert(domain in self.key_fns) if not self.is_available(): return [] k = self.key_fns[domain](key) net_f = self.opener.open('http://%s:%s/%s/%s/%s/%s.raw' % (self.hostname, self.port, cmd, k, arg1, arg2)) v = net_f.read().split('\n') return v # return a list def _do3l(self, domain, cmd, key, arg1, arg2, arg3): assert(domain in self.key_fns) if not self.is_available(): return [] k = self.key_fns[domain](key) net_f = self.opener.open('http://%s:%s/%s/%s/%s/%s/%s.raw' % (self.hostname, self.port, cmd, k, arg1, arg2, arg3)) v = net_f.read().split('\n') return v def delete(self, domain, key): return self._do(domain, "DEL", key) def get(self, domain, key): return self._do(domain, "GET", key) def put(self, domain, key, value): return self._do1(domain, "SET", key, value) def increment(self, domain, key): return self._do(domain, "INCR", key) def decrement(self, domain, key): return self._do(domain, "DECR", key) def push(self, domain, key, value): return self._do1(domain, "LPUSH", key, value) def pop(self, domain, key): return self._do(domain, "LPOP", key) def zadd(self, domain, key, value, score): return self._do2(domain, "ZADD", key, score, value) def zscore(self, domain, key): return self._do(domain, "ZSCORE", key, value) def zdelete_over_rank(self, domain, key, rank): return self._do2(domain, "ZREMRANGEBYRANK", key, rank, "-1") def ztop(self, domain, key, rank): v = self._do2l(domain, "ZREVRANGE", key, "0", rank) v = [x.strip() for x in v[1:]] result = [] for x in xrange(0, len(v)): if x % 2 == 1: result.append(v[x]) return result def ztop_with_scores(self, domain, key, rank): v = self._do3l(domain, "ZREVRANGE", key, "0", rank, "WITHSCORES") v = [x.strip() for x in v[1:]] result = [] for x in xrange(0, len(v)): if x % 4 == 1: p = [v[x]] elif x % 4 == 3: p.append(v[x]) result.append(p) return result def zdelete(self, domain, key, value): return self._do(domain, "ZREM", key, value)
from typing import Iterable def gen_content_block(s: str) -> str: return f"""<div>{s}</div>""" def report(content: Iterable[str]) -> str: result = f""" <!DOCTYPE html> <html> <body> { "".join(gen_content_block(s) for s in content) } </body> </html> """ return result
""" Module containing route for zookeeper journal """ import http.client import json import logging from flask import request, current_app, make_response from journal.main import MAIN # W0611: Unused import # This module import is needed for journal_obj.write from journal import mjournal # pylint: disable=W0611 from journal.main import errors _LOG = logging.getLogger(__name__) @MAIN.route('/<string:txid>/<string:step>', methods=['POST']) def journalview(txid, step): """ Handler for journal write """ payload = request.get_json() journal_obj = current_app.config['journal'] rc = journal_obj.write(txid, step, payload) if rc == 0: return('', http.client.CREATED) else: _LOG.critical('Unsaved journal entry %s:%s', txid, step) raise errors.APIError( '{0} -- {1}##{2}'.format( 'Unsaved Journal entry', txid, step), status_code=http.client.INTERNAL_SERVER_ERROR) @MAIN.route('/status/<string:txid>', methods=['GET']) def journalstatus(txid): """ Handler for journal status """ journal_obj = current_app.config['journal'] (resp, status_code) = journal_obj.status(txid) if resp is not None: resp = json.dumps(resp) output = make_response(resp, status_code) output.headers['Content-Type'] = 'application/json' return output
import random import numpy as np import torch import torch.distributed as dist from torch.utils.data.sampler import Sampler class SubsetSampler(Sampler): """Samples elements sequentially or randomly from a given list of indices, without replacement. Args: indices (list): a list of indices """ def __init__(self, indices, shuffle=True): self.indices = indices self.shuffle = shuffle def __iter__(self): return (self.indices[i] for i in torch.randperm(len(self.indices))) if self.shuffle else iter(self.indices) def __len__(self): return len(self.indices) class DistributedNoExtraSampler(Sampler): r"""Very similar to regular DistributedSampler from pytorch but does not add extra samples if the dataset is not divisible by replicas """ def __init__(self, dataset, num_replicas = None, rank = None, shuffle= True, seed= 0): if num_replicas is None: if not dist.is_available(): raise RuntimeError("Requires distributed package to be available") num_replicas = dist.get_world_size() if rank is None: if not dist.is_available(): raise RuntimeError("Requires distributed package to be available") rank = dist.get_rank() if rank >= num_replicas or rank < 0: raise ValueError( "Invalid rank {}, rank should be in the interval" " [0, {}]".format(rank, num_replicas - 1)) self.dataset = dataset self.num_replicas = num_replicas self.rank = rank self.epoch = 0 self.total_size = len(self.dataset) indices = list(range(self.total_size)) indices = indices[self.rank:self.total_size:self.num_replicas] self.num_samples = len(indices) self.shuffle = shuffle self.seed = seed def __iter__(self): if self.shuffle: # deterministically shuffle based on epoch and seed g = torch.Generator() g.manual_seed(self.seed + self.epoch) indices = torch.randperm(len(self.dataset), generator=g).tolist() else: indices = list(range(len(self.dataset))) # subsample indices = indices[self.rank:self.total_size:self.num_replicas] assert len(indices) == self.num_samples return iter(indices) def __len__(self): return self.num_samples def set_epoch(self, epoch): r""" Sets the epoch for this sampler. When :attr:`shuffle=True`, this ensures all replicas use a different random ordering for each epoch. Otherwise, the next iteration of this sampler will yield the same ordering. Args: epoch (int): Epoch number. """ self.epoch = epoch class MultilabelBalancedRandomSampler(Sampler): """ From: https://github.com/issamemari/pytorch-multilabel-balanced-sampler/blob/master/sampler.py MultilabelBalancedRandomSampler: Given a multilabel dataset of length n_samples and number of classes n_classes, samples from the data with equal probability per class effectively oversampling minority classes and undersampling majority classes at the same time. Note that using this sampler does not guarantee that the distribution of classes in the output samples will be uniform, since the dataset is multilabel and sampling is based on a single class. This does however guarantee that all classes will have at least batch_size / n_classes samples as batch_size approaches infinity """ def __init__(self, labels, indices=None, class_choice="least_sampled"): """ Parameters: ----------- labels: a multi-hot encoding numpy array of shape (n_samples, n_classes) indices: an arbitrary-length 1-dimensional numpy array representing a list of indices to sample only from class_choice: a string indicating how class will be selected for every sample: "least_sampled": class with the least number of sampled labels so far "random": class is chosen uniformly at random "cycle": the sampler cycles through the classes sequentially """ self.labels = labels self.indices = indices if self.indices is None: self.indices = range(len(labels)) self.num_classes = self.labels.shape[1] # List of lists of example indices per class self.class_indices = [] for class_ in range(self.num_classes): lst = np.where(self.labels[:, class_] == 1)[0] lst = lst[np.isin(lst, self.indices)] self.class_indices.append(lst) self.counts = [0] * self.num_classes assert class_choice in ["least_sampled", "random", "cycle"] self.class_choice = class_choice self.current_class = 0 def __iter__(self): self.count = 0 return self def __next__(self): if self.count >= len(self.indices): raise StopIteration self.count += 1 return self.sample() def sample(self): class_ = self.get_class() class_indices = self.class_indices[class_] chosen_index = np.random.choice(class_indices) if self.class_choice == "least_sampled": for class_, indicator in enumerate(self.labels[chosen_index]): if indicator == 1: self.counts[class_] += 1 return chosen_index def get_class(self): if self.class_choice == "random": class_ = random.randint(0, self.labels.shape[1] - 1) elif self.class_choice == "cycle": class_ = self.current_class self.current_class = (self.current_class + 1) % self.labels.shape[1] elif self.class_choice == "least_sampled": min_count = self.counts[0] min_classes = [0] for class_ in range(1, self.num_classes): if self.counts[class_] < min_count: min_count = self.counts[class_] min_classes = [class_] if self.counts[class_] == min_count: min_classes.append(class_) class_ = np.random.choice(min_classes) return class_ def __len__(self): return len(self.indices)
"""Test functions for i_square.py. """ from datetime import datetime import os import pytest from squaredown.i_square import SquareInterface @pytest.fixture(name='square_if') def fixture_square_iface(): """Pytest fixture to initialize and return the SquareInterface object. """ # logger.debug(f'using fixture "{name}"') return SquareInterface() def test_init_square(square_if): """Tests Square Interface initialization. """ # test authentication square = square_if.square_client api_locations = square.locations result = api_locations.list_locations() assert result.is_success() # test results square_locations = os.environ.get('SQUARE_LOCATIONS').split(',') found = False for loc in result.body['locations']: if loc['id'] in square_locations: found = True break assert found def test_decode_order(square_if): """Tests order decoding. """ order = { 'id': '110DevtQKzovAih4SVcVphyeV', 'created_at': '2016-09-04T23:59:33.123Z', 'updated_at': '2016-09-04T23:59:33.123Z', } square_if.decode_order(order) assert isinstance(order['created_at'], datetime) assert isinstance(order['updated_at'], datetime) def test_decode_datetime(square_if): """Tests datetime decoding. """ ref_dt_str = '2016-09-04T23:59:33.123Z' ref_dt = square_if.decode_datetime(ref_dt_str) assert isinstance(ref_dt, datetime) assert ref_dt.isoformat(timespec='milliseconds')[0:23] == ref_dt_str[0:23] assert ref_dt.isoformat(timespec='milliseconds')[-6:] == '+00:00'
# -*- coding: utf-8 -*- """ Astro functions ( """ import os import astropy.io.fits as fits import operator from scipy import (special, log10, array, sqrt, sin, exp, log, average, arange, meshgrid, std) from numpy.random import random_sample import numpy as np def CC(z, H0=67.3, WM=0.315, WV=0.685, v = 0): """ Cosmo calculator given the cosmological parameters z, H0, WM, WV returns the luminosity distance, angular seperation, and possibly many more. Based on http://www.astro.ucla.edu/~wright/CC.python """ c = 299792.458 # velocity of light in km/sec Tyr = 977.8 # coefficent for converting 1/H into Gyr h = H0/100. WR = 4.165E-5/(h*h) # includes 3 massless neutrino species, T0 = 2.72528 WK = 1-WM-WR-WV n = 5000 i = arange(n) if not hasattr(z, '__iter__'): z = np.array([float(z)]) zage_Gyra = np.array([]) for zs in z: az = 1.0 / (1 + zs) a = az * (i + 0.5) / n adot = sqrt(WK+(WM/a)+(WR/(a*a))+(WV*a*a)) age = sum(1./adot) zage = az*age/n zage_Gyr = (Tyr/H0)*zage zage_Gyra = np.append(zage_Gyra, zage_Gyr) if v == 'age': return zage_Gyra DTT, DCMR = 0.0, 0.0 # do integral over a=1/(1+z) from az to 1 in n steps, midpoint rule a = az+(1-az)*(i+0.5)/n adot = sqrt(WK+(WM/a)+(WR/(a*a))+(WV*a*a)) DTT = sum(1./adot) DCMR = sum(1./(a*adot)) DTT = (1.-az)*DTT/n DCMR = (1.-az)*DCMR/n age = DTT+zage age_Gyr = age*(Tyr/H0) DTT_Gyr = (Tyr/H0)*DTT DCMR_Gyr = (Tyr/H0)*DCMR DCMR_Mpc = (c/H0)*DCMR # tangential comoving distance ratio = 1.00 x = sqrt(abs(WK))*DCMR if x > 0.1: if WK > 0: ratio = 0.5*(exp(x)-exp(-x))/x else: ratio = sin(x)/x else: y = x*x if WK < 0: y = -y ratio = 1. + y/6. + y*y/120. DCMT = ratio*DCMR DA = az*DCMT DA_Mpc = (c/H0)*DA kpc_DA = DA_Mpc/206.264806 DA_Gyr = (Tyr/H0)*DA DL = DA/(az*az) DL_Mpc = (c/H0)*DL DL_Gyr = (Tyr/H0)*DL # comoving volume computation ratio = 1.00 x = sqrt(abs(WK))*DCMR if x > 0.1: if WK > 0: ratio = (0.125*(np.exp(2.*x)-np.exp(-2.*x))-x/2.)/(x*x*x/3.) else: ratio = (x/2. - np.sin(2.*x)/4.)/(x*x*x/3.) else: y = x*x if WK < 0: y = -y ratio = 1. + y/5. + (2./105.)*y*y VCM = ratio*DCMR*DCMR*DCMR/3. V_Gpc = 4.*np.pi*((0.001*c/H0)**3)*VCM DL_cm = DL_Mpc * 3.08568E24 if v == 1: print ('\tH_0 = %1.1f' % H0 + ', Omega_M = ' + '%1.2f' % WM + ', Omega_vac = %1.2f' % WV + ', z = ' + '%1.3f' % z) print ('\tIt is now %1.3f' % age_Gyr + ' Gyr since the Big Bang.') print ('\tAge at redshift z was %1.3f' % zage_Gyr + ' Gyr.') print ('\tLight travel time was %1.3f' % DTT_Gyr + ' Gyr.') print ('\tComoving radial distance is \t%1.1f' % DCMR_Mpc + ' Mpc or ' + '%1.1f' % DCMR_Gyr + ' Gly.') print ('\tComoving volume within redshift z ' + '%1.1f' % V_Gpc + ' Gpc^3.') print ('\tAngular size distance D_A is ' + '%1.1f' % DA_Mpc + ' Mpc or %1.1f' % DA_Gyr + ' Gly.') print ('\tAngular scale of %.2f' % kpc_DA + ' kpc/".') print ('\tLuminosity distance D_L is %1.1f' % DL_Mpc + ' Mpc or ' + '%1.4e' % DL_cm + ' cm.') print ('\tDistance modulus, m-M, is %1.2f mag' % (5*log10(DL_Mpc*1e6)-5)) print ('\tK-correction for equal effective wavelength %1.2f' %(-2.5*log10(1+z))) return(DL_Mpc, kpc_DA) elif v == 2: return(DL_Mpc, kpc_DA) else: return(DL_Mpc)
import os import cv2 import numpy as np import time from tools.mytracking_sort import MyTrackingSort if __name__ == '__main__': ## ----------------------------------------- ## Init ## ----------------------------------------- # a. Model mt = MyTrackingSort(lenRecord=30, distance_th=0.005, time_th=0.5) mt.init_sort(max_age=1, min_hits=2) # Video cap = cv2.VideoCapture(vidSrc) while cap.isOpened(): ret, frame = cap.read() ts = time.time() ## --- ## 1 Detection boxes = [] boxes, scores = detection.predict(frame) ## --- ## 2 Tracking ts = time.time() tracker = mt.update(boxes) mt.get_tracker(tracker, ts) trackDict = mt.get_array() ## ----------------------------------------- ## Visualization ## ----------------------------------------- # Visualization Detection for box in boxes: cv2.rectangle(frame, (int(box[0]), int(box[1])), (int(box[2]), int(box[3])),(255,255,0), 2) # Visualization Tracking for objectId in list(trackDict): try: bbox = np.array(trackDict[objectId])[-1,1] except: bbox = np.array(trackDict[objectId])[0,1] # vis tracker bbox cv2.rectangle(frame, (int(bbox[0]), int(bbox[1])), (int(bbox[2]), int(bbox[3])),(255,255,255), 2) # vis id cv2.putText(frame, str(objectId),(int(bbox[0]), int(bbox[1])),0, 5e-3 * 100, (0,255,0),2) arrCentroid = np.array(trackDict[objectId])[:,2] # vis line tracker obj for i,v in enumerate(arrCentroid): if i>1: cv2.line(frame, (int(arrCentroid[i][0]), int(arrCentroid[i][1])), (int(arrCentroid[i-1][0]),int(arrCentroid[i-1][1])), (0, 255, 0), 2) cv2.imshow("Frame", frame) if cv2.waitKey(1) & 0xFF == ord('q'): break cv2.destroyAllWindows()
import unittest from ansiblelint import RulesCollection, Runner from ansiblelints.rules.HardCodePassword import HardCodePassword class TestHardCodePassword(unittest.TestCase): collection = RulesCollection() def setUp(self): self.collection.register(HardCodePassword()) def test_file(self): success = 'testResources/ansible-smell/hardcodepassword.yml' good_runner = Runner(self.collection, success, [], [], []) print(good_runner.run()) print(type(good_runner.run())) print(len(good_runner.run())) self.assertEqual(0, len(good_runner.run()))
import csv import datetime class Backtest(object): def __init__(self, data, brain): self.d = data self.b = brain self.backtest_data = [] self.backtest_data_file = self.d.datadir + '\\' + self.d.tradingpair + str(self.d.timeframe) + '_BACKTEST.csv' self.trade_data = [] self.trade_data_file = self.d.datadir + '\\' + self.d.tradingpair + str(self.d.timeframe) + '_SIMTRADES.csv' pass # Simulate a single moving average combination. Data object needs to be updated with the # required SMA calcs before calling. def ma_sim(self, type, ma_1, ma_2): firstrun = True profit = 0.0 last_trade = 0.0 last_id = self.d.ohlc_last_id # Calculate buy and hold profit / loss using first and last OHLC data frames. buy_hold = self.d.ohlc_data[-1][4] - self.d.ohlc_data[0][4] # Number of days in the OHLC data start_date = datetime.date.fromtimestamp(self.d.ohlc_data[0][0]) end_date = datetime.date.fromtimestamp(self.d.ohlc_data[-1][0]) delta = end_date - start_date if type == 'SMA': print('Backtesting SMA using values: ' + str(ma_1) + '/' + str(ma_2)) else: print('Backtesting EMA using values: ' + str(ma_1) + '/' + str(ma_2)) for frame in self.d.ohlc_data: if firstrun: # Don't do anything for the first frame, since we don't have a prev value. firstrun = False elif frame[0] == last_id: # Stop if there are no further records. break else: decision = self.b.ma_decide_sim(type, ma_1, ma_2, frame[0]) price = decision[2] if decision[0] == 'BUY': last_trade = price self.trade_data.append(decision) elif decision[0] == 'SELL': profit += (price - last_trade) self.trade_data.append(decision) # Calculate profit in excess of buy & hold. vs_buy_hold = profit - buy_hold # Calculate profit per day profit_pday = profit / delta.days result = [str(ma_1) + '/' + str(ma_2), profit, buy_hold, vs_buy_hold, profit_pday] self.backtest_data.append(result) print('Profit: ' + str(profit)) print('Buy & hold: ' + str(buy_hold)) print('vs Buy & hold: ' + str(vs_buy_hold)) return result # Export monte carlo results def export(self): print('Exporting backtest data to CSV.') # Export sim data (overwrite existing data) with open(self.backtest_data_file, 'w', newline='') as f: w = csv.writer(f) w.writerows(self.backtest_data) return # Export detailed trades data, should be used with single SMA pair test def export_trades(self): print('Exporting sim trade data to CSV.') with open(self.trade_data_file, 'w', newline='') as f: w = csv.writer(f) w.writerows(self.trade_data) return # Simulate SMA / EMA strategy for a given data object from ma_min to ma_max (monte carlo sim) def run_ma_sim(self, type, ma_min, ma_max): best_profit = 0.0 best_ma = '' best_profit_pday = 0.0 # Calculate SMA / EMA values upto ma_max if type == 'SMA': for x in range (ma_max): self.d.update_sma(x+1) else: for x in range(ma_max): self.d.update_ema(x+1) for ma_1 in range(ma_min, ma_max): for ma_2 in range(ma_min, ma_max): if ma_1 < ma_2: self.b.sim_open_position = False # Reset open position after each iteration result = self.ma_sim(type, ma_1, ma_2) profit = result[1] if profit > best_profit: best_profit = profit best_ma = str(ma_1) + '/' + str(ma_2) best_profit_pday = result[4] print('Best combo is: ' + best_ma + ' with ' + str(best_profit) + ' profit.') print('..Averaging ' + str(best_profit_pday) + ' profit per day.') self.export() return
from setuptools import setup setup( name="document", version="0.1", packages=["document"], )
''' Roll and dice game ''' import tkinter as tk import random as rd def main(): ''' Main game loop ''' def rolling_dice(): roll.configure(text=rd.choice(dice)) roll.pack() window = tk.Tk() edge = int(window.winfo_screenheight()/2) window.geometry(str(edge) + 'x' + str(edge)) window.title('Dicer') dice = ['⚀', '⚁', '⚂', '⚃', '⚄', '⚅'] roll = tk.Label(window, text=rd.choice(dice), font=('Arial', int(edge/2))) play = tk.Button(window, text='Roll', command=rolling_dice) close = tk.Button(window, text='Close', command=window.destroy) roll.pack(expand=True) play.pack(fill='x') close.pack(fill='x') window.mainloop() if __name__ == '__main__': main()
import datetime import json import socket import redis as redis from channels.generic.websocket import AsyncJsonWebsocketConsumer from djim.models import UserSession, channel, UserList from djim.serializers import usersession_json, user_list_json from utils import const, ipHelper class ChatConsumer(AsyncJsonWebsocketConsumer): USER_SEEION = 'UserSession' pool = redis.ConnectionPool(host='127.0.0.1', port=6379) r = redis.Redis(connection_pool=pool) #建立连接 async def connect(self): self.group_name = 'common' await self.channel_layer.group_add(self.group_name, self.channel_name) #将user信息加入到reids try: print('222') userid = self.scope['url_route']['kwargs']['group_name'] usersession = UserSession() print('333') usersession.name = userid print(userid) usersession.channel_name = self.channel_name print(self.channel_name) usersession.subIP = '127.0.0.1' #print(self.getLocalIP()) print(datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')) UserSession.activeTime = datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S') print(datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')) print(json.dumps(usersession, default=usersession_json)) self.r.hset(self.USER_SEEION, self.channel_name, json.dumps(usersession, default=usersession_json)) await self.accept() except Exception as e: print(e) # 创建连接时调用 #await self.accept() #连接断开 async def disconnect(self, close_code): # 连接关闭时调用 # 将关闭的连接从群组中移除 await self.channel_layer.group_discard(self.group_name, self.channel_name) # 从Redis UserSession中删除当前用户 try: self.r.hdel(self.USER_SEEION, self.channel_name) except: pass await self.close() # Receive message from WebSocket async def receive(self, text_data=None, bytes_data=None): print(text_data) print(bytes_data) print(channel.user_list) if(text_data != None and bytes_data == None): json_text_data = json.loads(text_data) print(text_data) #群发消息 if json_text_data['type'] == str(channel.chat_all): print(self.group_name) content = json_text_data['message'] await self.channel_layer.group_send( self.group_name, { 'sender': json_text_data['sender'], 'message': content, 'accepter': json_text_data['accepter'], 'type': json_text_data['type'], } ) await self.send_json({ 'type': json_text_data['type'], 'message': content }) #获取userlist if json_text_data['type'] == str(channel.user_list): print('user_list') allvalues = self.r.hvals(self.USER_SEEION) lists = [] for item in allvalues: try: json_allvalues_data = json.loads(item) listitem = UserList() listitem.uid = json_allvalues_data['name'] listitem.session = json_allvalues_data['channel_name'] l = json.dumps(listitem, default=user_list_json) print(l) lists.append(l) await self.send_json({ 'type': 'userlist', 'message': lists }) except Exception as e: print(e) #发送单条消息给指定ID if json_text_data['type'] == str(channel.chat_solo): content = json_text_data['message'] channelname = json_text_data['accepter'] if(text_data == None and bytes_data != None): pass if(text_data != None and bytes_data != None): pass def getLocalIP(self): myname = socket.getfqdn(socket.gethostname()) myaddr = socket.gethostname(myname) return myaddr
import uuid from itertools import product from functools import partial import numpy as np import zarr from numcodecs import Blosc from skimage import feature, filters import multiprocessing from scipy.optimize import minimize, basinhopping, differential_evolution from scipy.ndimage import map_coordinates from scipy import spatial from scipy.interpolate import Rbf, RegularGridInterpolator try: import tifffile except: from skimage.external import tifffile from skimage.filters import threshold_otsu from sklearn.neighbors import NearestNeighbors from sklearn.preprocessing import PolynomialFeatures from sklearn.linear_model import LinearRegression import tqdm import time from functools import partial from phathom import utils from phathom.registration import pcloud #from phathom.io import conversion def chunk_coordinates(shape, chunks): """Calculate the global coordaintes for each chunk's starting position Parameters ---------- shape : tuple shape of the image to chunk chunks : tuple shape of each chunk Returns ------- start : list the starting indices of each chunk """ nb_chunks = utils.chunk_dims(shape, chunks) start = [] for indices in product(*tuple(range(n) for n in nb_chunks)): start.append(tuple(i*c for i, c in zip(indices, chunks))) return start def chunk_bboxes(shape, chunks, overlap): """Calculates the bounding box coordinates for each overlapped chunk Parameters ---------- shape : tuple overall shape chunks : tuple tuple containing the shape of each chunk overlap : int int indicating number of voxels to overlap adjacent chunks Returns ------- chunk_coords : list starting indices for each chunk wrt the top-upper-left start : list starting indices for each bbox with overlap stop : list stopping indices for each bbox with overlap """ chunk_coords = chunk_coordinates(shape, chunks) start = [] stop = [] for coord in chunk_coords: start.append(tuple(max(0, s-overlap) for s in coord)) stop.append(tuple(min(e, s+c+overlap) for s,c,e in zip(coord, chunks, shape))) return chunk_coords, start, stop def chunk_generator(z_arr, overlap): """Reads the chunks from a 3D on-disk zarr array Parameters ---------- z_arr : zarr input zarr array overlap : int int indicating number of voxels to overlap adjacent chunks Yields ------ start : tuple starting index of the next chunk in the `z_arr` stop : tuple stopping index of the next chunk in the `z_arr` """ _, starts, stops = chunk_bboxes(z_arr.shape, z_arr.chunks, overlap) for start, stop in zip(starts, stops): yield start, stop def detect_blobs(bbox, z_arr, sigma, min_distance, min_intensity): """Detects blobs in an image using local maxima Parameters ---------- bbox : tuple tuple of two tuples with start-stop indices of chunk z_arr : zarr reference to persistent zarr array sigma : float float for gaussian blurring Returns ------- array (N,3) ndarray of blob coordinates """ start, stop = bbox z0, y0, x0 = start z1, y1, x1 = stop img = z_arr[z0:z1, y0:y1, x0:x1] smoothed = filters.gaussian(img, sigma=sigma, preserve_range=True) if np.any(smoothed > 0): thresh = threshold_otsu(smoothed) else: thresh = 1.0 # Otsu fails if all voxels are black peaks = feature.peak_local_max(smoothed, min_distance=min_distance, threshold_abs=max(min_intensity, thresh)) # Note that using mean here can introduce from chunk artifacts return peaks def detect_blobs_parallel(z_arr, sigma, min_distance, min_intensity, overlap, nb_workers): """Detects blobs in a chunked zarr array in parallel using local maxima Parameters ---------- z_arr : zarr input zarr array sigma : float float for gaussian blurring min_distance : float minimum distance in voxels allowed between blobs min_intensity : float minimum gray-level intensity allowed for blobs overlap : float int indicating how much overlap to include between adjacent chunks nb_workers : int number of parallel processes to use Returns ------- array (N,3) ndarray of blob coordinates """ chunk_coords, starts, _ = chunk_bboxes(z_arr.shape, z_arr.chunks, overlap) detect_blobs_in_chunk = partial(detect_blobs, z_arr=z_arr, sigma=sigma, min_distance=min_distance, min_intensity=min_intensity) chunks = list(chunk_generator(z_arr, overlap)) pts_list = [] with multiprocessing.Pool(nb_workers) as pool: r = list(tqdm.tqdm(pool.imap(detect_blobs_in_chunk, chunks), total=len(chunks))) for i, pts_local in enumerate(r): if len(pts_local) == 0: continue chunk_coord = np.asarray(chunk_coords[i]) start = np.asarray(starts[i]) local_start = chunk_coord - start local_stop = local_start + np.array(z_arr.chunks) idx = np.all(np.logical_and(local_start <= pts_local, pts_local < local_stop), axis=1) pts_trim = pts_local[idx] pts_list.append(pts_trim + start) if len(pts_list) == 0: return np.zeros((0, 3)) else: return np.concatenate(pts_list) def pts_to_img(pts, shape, path): """Saves a set of points into a binary image Parameters ---------- pts: an (N, D) array with N D-dimensional points shape: a tuple describing the overall shape of the image path: path to save the output tiff image Returns ------- img : array An 8-bit image array """ from skimage.external import tifffile img = np.zeros(shape, dtype='uint8') img[tuple(pts.T)] = 255 tifffile.imsave(path, img) return img def mark_pts(arr, pts, cval=None): """Mark a list of points in an array using 3-voxel cubes Parameters ---------- arr : array Input array to modify pts : array Points to mark cval : int, optional fill value, defaults to unique labels Returns ------- arr : array Original array with the blob marked """ for i, pt in enumerate(pts): if cval is None: label = i+1 else: label = cval arr[pt[0], pt[1], pt[2]] = label if 1 < pt[0] < arr.shape[0]-2: if 1 < pt[1] < arr.shape[1]-2: if 1 < pt[2] < arr.shape[2]-2: arr[pt[0]-2:pt[0]+2, pt[1]-2:pt[1]+2, pt[2]-2:pt[2]+2] = cval return arr def estimate_rigid(fixed_inliers, moving_inliers): """Estimate a rigid transformation from fixed to moving points using SVD Parameters ---------- fixed_inliers : array array (N, 3) of fixed coordinates moving_inliers: array array (N, 3) of corresponding moving coordinates Returns ------- t : array translation vector r : array rotation matrix """ # Find centroids fixed_centroid = np.mean(fixed_inliers, axis=0) moving_centroid = np.mean(moving_inliers, axis=0) # Find covariance matrix M = np.zeros((3, 3)) for f, m in zip(fixed_inliers, moving_inliers): M += np.outer(f - fixed_centroid, m - moving_centroid) # Get rigid transformation u, s, vh = np.linalg.svd(M) r = vh.T.dot(u.T) t = moving_centroid - r.dot(fixed_centroid) return t, r def indices_to_um(pts, voxel_dimensions): """Convert indicies to micron units wrt the top-upper-left Parameters ---------- pts : array 2D array (N, D) of ints to convert voxel_dimensions : array 1D array (D,) of floats representing voxel shape """ return np.array([d*pts[:, i] for d, i in zip(voxel_dimensions, range(len(voxel_dimensions)))]).T def um_to_indices(pts_um, voxel_dimensions): """Convert micron units wtf top-upper-left to indices Parameters ---------- pts_um : array 2D array (N, D) of floats in micron to convert voxel_dimensions: array 1D array (D,) of floats representing voxel shape """ return np.array([pts_um[:, i]/d for d, i in zip(voxel_dimensions, range(len(voxel_dimensions)))]).T def rigid_transformation(t, r, pts): """Apply rotation and translation (rigid transformtion) to a set of points Parameters ---------- t : array 1D array representing the translation vector r : array 2D array representing the rotation matrix """ return r.dot(pts.T).T + t def rigid_residuals(t, r, fixed_pts, moving_pts): """Compute the residuals for all points after the rigid transformation Parameters ---------- t : array 1D array (D,) of the translation r : array 2D array (D, D) of the rotation matrix fixed_pts : array 2D array (N, D) of points to transform moving_pts : array 2D array (N, D) of target points """ return moving_pts - rigid_transformation(t, r, fixed_pts) def residuals_to_distances(residuals): """Compute the Euclidean distances given residuals in each dimension Parameters ---------- residuals : array 2D array (N, D) of residuals """ return np.linalg.norm(residuals, axis=-1) def average_distance(distances): """Compute the average Euclidean distance over a sequence of distances Parameters ---------- distances : array 1D array (N,) of distances """ return np.mean(distances) def shape_to_coordinates(shape): """Build an array containing all array indices for a given shape Parameters ---------- shape : array-like array-like containing 3 ints representing the array shape """ indices = np.indices(shape) coords = indices.reshape((indices.shape[0], np.prod(indices.shape[1:]))).T return coords def interpolate(image, coordinates, order=3): """Interpolate an image at a list of coordinates Parameters ---------- image : array array to interpolate coordinates : array 2D array (N, D) of N coordinates to be interpolated order : int polynomial order of the interpolation (default: 3, cubic) """ output = map_coordinates(image, coordinates.T, output=None, order=order, mode='constant', cval=0.0, prefilter=True) return output def mean_square_error(fixed, transformed): """Calculate the nmean squared error between two images Parameters ---------- fixed : array array of first image to be compared transformed : array array of second image to be compared """ idx = np.where(transformed > 0) a = fixed[idx] b = transformed[idx] return np.mean(np.linalg.norm(a-b)) transformation = None def register_slice(moving_img, zslice, output_shape, transformation, batch_size=None, padding=4): """Apply transformation and interpolate for a single z slice in the output Parameters ---------- moving_img : zarr array input image to be interpolated zslice : int index of the z-slice to compute output_shape : tuple shape of the output image transformation : callable mapping from output image coordinates to moving image coordinates batch_size : int, optional number of points to transform at a time. Default, all coordinates padding : int, optional amount of padding to use when extracting pixels for interpolation Returns ------- registered_img : ndarray registered slice from the moving image """ img_shape = np.array(output_shape) local_coords = shape_to_coordinates(img_shape) global_coords = np.hstack((zslice*np.ones((local_coords.shape[0], 1)), local_coords)) if batch_size is None: moving_coords = transformation(pts=global_coords) else: moving_coords = np.empty_like(global_coords) nb_pts = len(global_coords) nb_batches = int(np.ceil(nb_pts/batch_size)) for i in tqdm.tqdm(range(nb_batches)): batch_start = i*batch_size if i == nb_batches-1: batch_stop = nb_pts else: batch_stop = batch_start + batch_size moving_coords[batch_start:batch_stop] = transformation(pts=global_coords[batch_start:batch_stop]) # Find the padded bounding box of the warped chunk coordinates transformed_start = tuple(np.floor(moving_coords.min(axis=0) - padding).astype('int')) transformed_stop = tuple(np.ceil(moving_coords.max(axis=0) + padding).astype('int')) # Read in the available portion data (not indexing outside the moving image boundary) moving_start = tuple(max(0, s) for s in transformed_start) moving_stop = tuple(min(e, s) for e, s in zip(moving_img.shape, transformed_stop)) moving_coords_local = moving_coords - np.array(moving_start) print(moving_start, moving_stop) moving_data = moving_img[moving_start[0]:moving_stop[0], moving_start[1]:moving_stop[1], moving_start[2]:moving_stop[2]] # interpolate the moving data interp_values = interpolate(moving_data, moving_coords_local, order=1) registered_img = np.reshape(interp_values, output_shape) return registered_img def register_chunk(moving_img, chunks, output_img, start, fixed_img, batch_size=None, padding=4): """Apply transformation and interpolate for a single chunk in the output Parameters ---------- moving_img : zarr array zarr array with read access to interpolate chunks : tuple chunk size of the output image (and ideally the fixed image too) output_img : zarr array zarr array with write access for output transformation : callable callable that takes a single "pts" argument start : tuple starting index of the chunk to write batch_size : int, optional number of points to apply the transformation on at once. Default, whole chunk. padding : int, optional number of pixels to borrow from adjacent chunks in `fixed_img`. Default, 4. """ global transformation # zarr.blosc.use_threads = True # Get dimensions chunks = np.array(chunks) img_shape = np.array(output_img.shape) # Find the appropriate global stop coordinate and chunk shape accounting for boundary cases stop = np.minimum(start + chunks, img_shape) chunk_shape = np.array([b-a for a, b in zip(start, stop)]) # Check the target to see if we need to do anything fixed_data = fixed_img[start[0]:stop[0], start[1]:stop[1], start[2]:stop[2]] if not np.any(fixed_data): output_img[start[0]:stop[0], start[1]:stop[1], start[2]:stop[2]] = np.zeros(chunk_shape, output_img.dtype) return # Find all global coordinates in the fixed image for this chunk local_coords = shape_to_coordinates(chunk_shape) global_coords = start + local_coords # Find the coordinates on the moving image to be interpolated if batch_size is None: moving_coords = transformation(pts=global_coords) # This is using multiple cores else: moving_coords = np.empty_like(global_coords) nb_pts = len(global_coords) nb_batches = int(np.ceil(nb_pts/batch_size)) for i in range(nb_batches): batch_start = i*batch_size if i == nb_batches-1: batch_stop = nb_pts else: batch_stop = batch_start + batch_size moving_coords[batch_start:batch_stop] = transformation(pts=global_coords[batch_start:batch_stop]) # Find the padded bounding box of the warped chunk coordinates transformed_start = tuple(np.floor(moving_coords.min(axis=0)-padding).astype('int')) transformed_stop = tuple(np.ceil(moving_coords.max(axis=0)+padding).astype('int')) if np.any(np.asarray(transformed_stop) < 0): # Chunk is outside for some dimension interp_chunk = np.zeros(chunk_shape, output_img.dtype) elif np.any(np.greater(np.asarray(transformed_start), np.asarray(output_img.shape))): # Chunk is outside interp_chunk = np.zeros(chunk_shape, output_img.dtype) else: # Read in the available portion data (not indexing outside the moving image boundary) moving_start = tuple(max(0, s) for s in transformed_start) moving_stop = tuple(min(e, s) for e, s in zip(moving_img.shape, transformed_stop)) moving_coords_local = moving_coords - np.array(moving_start) moving_data = moving_img[moving_start[0]:moving_stop[0], moving_start[1]:moving_stop[1], moving_start[2]:moving_stop[2]] if not np.any(moving_data): # No need to interpolate if moving image is just zeros interp_chunk = np.zeros(chunk_shape, dtype=output_img.dtype) else: # interpolate the moving data interp_values = interpolate(moving_data, moving_coords_local, order=1) interp_chunk = np.reshape(interp_values, chunk_shape) # write results to disk output_img[start[0]:stop[0], start[1]:stop[1], start[2]:stop[2]] = interp_chunk def _register_chunk(args): arr, start_coord, chunks, moving_img, fixed_img, batch_size, padding = args register_chunk(moving_img, chunks, arr, start_coord, fixed_img, batch_size, padding) def register(moving_img, output_img, fixed_img, transform_path, nb_workers, batch_size=None, padding=4): """Transform a moving zarr array for registration Parameters ---------- moving_img: zarr array zarr array with read access to be interpolated output_img : zarr array zarr array with write access for the output transformation : callable function that takes one "pts" argument and warps them nb_workers : int number of processes to work on separate chunks batch_size : int, optional number of points to apply the transformation on at once. Default, whole chunk. padding : int, optional number of pixels to borrow from adjacent chunks in `fixed_img`. Default, 4. """ global transformation # Get transformation transformation = utils.pickle_load(transform_path) start_coords = chunk_coordinates(output_img.shape, output_img.chunks) args_list = [] for i, start_coord in tqdm.tqdm(enumerate(start_coords)): start = np.asarray(start_coord) # args = (moving_img, output_img.chunks, output_img, start, batch_size, padding) args = (output_img, start, output_img.chunks, moving_img, fixed_img, batch_size, padding) args_list.append(args) # register_chunk(*args) with multiprocessing.Pool(processes=nb_workers) as pool: list(tqdm.tqdm(pool.imap_unordered(_register_chunk, args_list), total=len(args_list))) # f = partial(_register_chunk, # moving_img=moving_img, # batch_size=batch_size, # padding=padding) # # utils.pmap_chunks(f, output_img, output_img.chunks, nb_workers) def coherence(n_neighbors, fixed_pts_um, moving_pts_um): """Calculate the cosine similarity between displacement vectors using `n_neighbors` """ nbrs = NearestNeighbors(n_neighbors=n_neighbors+1, algorithm='kd_tree', n_jobs=-1) nbrs.fit(fixed_pts_um) distances, indices = nbrs.kneighbors(fixed_pts_um) cosine_similarity = np.zeros((fixed_pts_um.shape[0], n_neighbors)) for i, idxs in enumerate(indices): displacement = moving_pts_um[i] - fixed_pts_um[i] neighbor_idxs = idxs[1:] fixed_neighbors = fixed_pts_um[neighbor_idxs] moving_neighbors = moving_pts_um[neighbor_idxs] displacement_neighbors = moving_neighbors - fixed_neighbors for j, d in enumerate(displacement_neighbors): cosine_similarity[i, j] = 1 - spatial.distance.cosine(displacement, d) return cosine_similarity.mean(axis=-1) def match_distance(pts1, pts2): """Calculate the distance between matches points""" return np.linalg.norm(pts1-pts2, axis=-1) def fit_polynomial_transform(fixed_keypts, moving_keypts, degree): """Fit a low-order polynomial mapping from fixed to moving keypoints""" fixed_poly = PolynomialFeatures(degree=degree).fit_transform(fixed_keypts) model_z = LinearRegression(fit_intercept=False).fit(fixed_poly, moving_keypts[:, 0]) model_y = LinearRegression(fit_intercept=False).fit(fixed_poly, moving_keypts[:, 1]) model_x = LinearRegression(fit_intercept=False).fit(fixed_poly, moving_keypts[:, 2]) return model_z, model_y, model_x def polynomial_transform(pts, degree, model_z, model_y, model_x): """Apply a low-order polynomial transformation to pts""" poly = PolynomialFeatures(degree=degree).fit_transform(pts) transformed_keypts = np.empty_like(pts) transformed_keypts[:, 0] = model_z.predict(poly) transformed_keypts[:, 1] = model_y.predict(poly) transformed_keypts[:, 2] = model_x.predict(poly) return transformed_keypts def fit_rbf(affine_pts, moving_pts, smooth=0, mode='thin_plate'): rbf_z = Rbf(affine_pts[:, 0], affine_pts[:, 1], affine_pts[:, 2], moving_pts[:, 0], smooth=smooth, function=mode) rbf_y = Rbf(affine_pts[:, 0], affine_pts[:, 1], affine_pts[:, 2], moving_pts[:, 1], smooth=smooth, function=mode) rbf_x = Rbf(affine_pts[:, 0], affine_pts[:, 1], affine_pts[:, 2], moving_pts[:, 2], smooth=smooth, function=mode) return rbf_z, rbf_y, rbf_x def rbf_transform(pts, rbf_z, rbf_y, rbf_x): zi = rbf_z(pts[:, 0], pts[:, 1], pts[:, 2]) yi = rbf_y(pts[:, 0], pts[:, 1], pts[:, 2]) xi = rbf_x(pts[:, 0], pts[:, 1], pts[:, 2]) return np.column_stack([zi, yi, xi]) def nonrigid_transform(pts, affine_transform, rbf_z, rbf_y, rbf_x): affine_pts = affine_transform(pts) return rbf_transform(affine_pts, rbf_z, rbf_y, rbf_x) TRANSFORMS = {} GRIDS = {} def wrg_transform(my_uuid, start, end): transform = TRANSFORMS[my_uuid] grid = GRIDS[my_uuid] return transform(grid[start:end]) def warp_regular_grid(np_pts, z, y, x, transform, n_processes=1, chunk_size=250): Z, Y, X = np.meshgrid(z, y, x, indexing='ij') grid = np.column_stack([Z.ravel(), Y.ravel(), X.ravel()]) if n_processes == 1: values = transform(grid) else: my_uuid = uuid.uuid4() TRANSFORMS[my_uuid] = transform GRIDS[my_uuid] = grid try: n_grid = len(grid) my_chunk_size = min((n_grid + n_processes - 1) // n_processes, chunk_size) starts = np.arange(0, n_grid, my_chunk_size) ends = np.concatenate((starts[1:], [n_grid])) with multiprocessing.Pool(n_processes) as pool: futures = [] for start, end in zip(starts, ends): future = pool.apply_async(transform, (grid[start:end],)) futures.append(future) values = [] for future in tqdm.tqdm(futures): values.append(future.get()) finally: del TRANSFORMS[my_uuid] del GRIDS[my_uuid] values = np.concatenate(values) grid_shape = values.shape[-1] * (np_pts,) # If same # for each values_z = np.reshape(values[:, 0], grid_shape) values_y = np.reshape(values[:, 1], grid_shape) values_x = np.reshape(values[:, 2], grid_shape) return values_z, values_y, values_x def fit_grid_interpolator(z, y, x, values): interp_z = RegularGridInterpolator((z, y, x), values[0]) # Could be useful to use map_coordinates here instead interp_y = RegularGridInterpolator((z, y, x), values[1]) interp_x = RegularGridInterpolator((z, y, x), values[2]) return interp_z, interp_y, interp_x def interpolator(pts, interp): interp_z, interp_y, interp_x = interp values_z = interp_z(pts) values_y = interp_y(pts) values_x = interp_x(pts) return np.column_stack([values_z, values_y, values_x]) class MapCoordinatesInterpolator: def __init__(self, values, shape, order=1): self.values = values self.shape = shape self.order = order def __call__(self, pts): # pts must be (n, 3) # scale pixel coordinates to grid coordinates coords = tuple(pts[:, i]/(self.shape[i]-1)*(self.values.shape[i]-1) for i in range(pts.shape[-1])) coords = np.asarray(coords) results = map_coordinates(self.values, coords, order=self.order) return results def fit_map_interpolator(values, shape, order=1): interp_z = MapCoordinatesInterpolator(values[0], shape, order) interp_y = MapCoordinatesInterpolator(values[1], shape, order) interp_x = MapCoordinatesInterpolator(values[2], shape, order) return interp_z, interp_y, interp_x def main2(): import os import zarr from precomputed_tif.zarr_stack import ZarrStack from phathom import io from phathom.utils import pickle_load working_dir = '/home/jswaney/coregistration' # Open images fixed_zarr_path = 'fixed/zarr_stack/1_1_1' moving_zarr_path = 'moving/zarr_stack/1_1_1' fixed_img = io.zarr.open(os.path.join(working_dir, fixed_zarr_path), mode='r') moving_img = io.zarr.open(os.path.join(working_dir, moving_zarr_path), mode='r') # Load the coordinate interpolator interpolator_path = 'map_interpolator.pkl' interpolator = pickle_load(os.path.join(working_dir, interpolator_path)) # Create a new zarr array for the registered image nonrigid_zarr_path = 'moving/registered/1_1_1' nonrigid_img = io.zarr.new_zarr(os.path.join(working_dir, nonrigid_zarr_path), fixed_img.shape, fixed_img.chunks, fixed_img.dtype) # Warp the entire moving image nb_workers = 1 batch_size = None padding = 2 register(moving_img, nonrigid_img, fixed_img, os.path.join(working_dir, interpolator_path), nb_workers, batch_size=batch_size, padding=padding) def main(): # Working directory # project_path = '/media/jswaney/Drive/Justin/coregistration/whole_brain/' project_path = '/home/jswaney/coregistration/' # Input images voxel_dimensions = (2.0, 1.6, 1.6) fixed_zarr_path = project_path + 'fixed/zarr_stack/1_1_1' moving_zarr_path = project_path + 'moving/zarr_stack/1_1_1' # registered_zarr_path = project_path + 'registered_affine.zarr' # preview_zarr_path = project_path + 'registered_preview.zarr' # preview_tif_path = project_path + 'registered_preview.tif' # Caching intermediate data fixed_pts_path = project_path + 'fixed_blobs.npy' moving_pts_path = project_path + 'moving_blobs_1200.npy' # fixed_pts_img_path = project_path + 'fixed_pts.tif' # moving_pts_img_path = project_path + 'moving_pts.tif' # fixed_matches_img_path = project_path + 'fixed_matches.tif' # moving_matches_img_path = project_path + 'moving_matches.tif' fixed_features_path = project_path + 'fixed_features.npy' moving_features_path = project_path + 'moving_features.npy' # fixed_idx_path = project_path + 'fixed_idx.npy' # moving_idx_path = project_path + 'moving_idx.npy' # Processing nb_workers = 48 overlap = 8 # Keypoints sigma = (1.2, 2.0, 2.0) min_distance = 3 min_intensity = 600 # Coarse registration niter = 100 # Nuclei matching prominence_thresh = 0.2 max_distance = 300 max_feat_dist = 1.0 dist_thresh = None # Transform estimation (RANSAC) min_samples = 12 residual_threshold = 2 # Interpolation batch_size = 10000 # Output compression = 1 # ---------------------------------- # t0 = time.time() # print('opening input images') # fixed_store = zarr.NestedDirectoryStore(fixed_zarr_path) # moving_store = zarr.NestedDirectoryStore(moving_zarr_path) # fixed_img = zarr.open(fixed_store, mode='r') # moving_img = zarr.open(moving_store, mode='r') # print('detecting keypoints') # t1 = time.time() # fixed_pts = detect_blobs_parallel(fixed_img, sigma, min_distance, min_intensity, nb_workers, overlap) # moving_pts = detect_blobs_parallel(moving_img, sigma, min_distance, min_intensity, nb_workers, overlap) # t2 = time.time() # print(' found {} keypoints in fixed image'.format(len(fixed_pts))) # print(' found {} keypoints in moving image'.format(len(moving_pts))) # print(' Took {0:.2f} seconds'.format(t2-t1)) # # print('saving blob locations') # np.save(fixed_pts_path, fixed_pts) # np.save(moving_pts_path, moving_pts) # print('saving blob images') # fixed_blob_arr = mark_pts(np.zeros(fixed_img.shape, dtype='uint8'), fixed_pts) # moving_blob_arr = mark_pts(np.zeros(moving_img.shape, dtype='uint8'), moving_pts) # conversion.imsave(fixed_pts_img_path, fixed_blob_arr, compress=1) # conversion.imsave(moving_pts_img_path, moving_blob_arr, compress=1) print('loading precalculated keypoints') fixed_pts = np.load(fixed_pts_path) moving_pts = np.load(moving_pts_path) fixed_pts_um = np.asarray(voxel_dimensions) * fixed_pts moving_pts_um = np.asarray(voxel_dimensions) * moving_pts print('extracting features') t1 = time.time() fixed_features = pcloud.geometric_features(fixed_pts_um, nb_workers) moving_features = pcloud.geometric_features(moving_pts_um, nb_workers) t2 = time.time() print(' Took {0:.2f} seconds'.format(t2 - t1)) print('saving features') np.save(fixed_features_path, fixed_features) np.save(moving_features_path, moving_features) # print('loading precalculated features') # fixed_features = np.load(fixed_features_path) # moving_features = np.load(moving_features_path) # print('performing coarse registration') # # print(fixed_img.shape, fixed_pts.shape, fixed_features.shape) # print(moving_img.shape, moving_pts.shape, moving_features.shape) # print('transforming the fixed point cloud') # t1 = time.time() # # def transform_pts(theta, pts_um): # r = rotation_matrix(theta) # fixed_coords_um_zeroed = pts_um - pts_um.mean(axis=0) # rotated_coords_um_zeroed = rigid_transformation(np.zeros(3), r, fixed_coords_um_zeroed) # transformed_coords_um = rotated_coords_um_zeroed + moving_centroid_um # return transformed_coords_um # # transformed_pts_um = transform_pts(thetas, fixed_pts_um) # t2 = time.time() # print(' Took {0:.2f} seconds'.format(t2-t1)) # print('matching points') # t1 = time.time() # fixed_idx, moving_idx = pcloud.match_pts(transformed_pts_um, # moving_pts_um, # fixed_features, # moving_features, # max_feat_dist, # prominence_thresh, # max_distance, # nb_workers) # print(' found {} matches for {} cells'.format(len(fixed_idx), len(fixed_pts))) # # print('saving matching indices') # np.save(fixed_idx_path, fixed_idx) # np.save(moving_idx_path, moving_idx) # print('Loading cached matches') # fixed_idx = np.load(fixed_idx_path) # moving_idx = np.load(moving_idx_path) # print('Extracting matched points...') # fixed_matches = fixed_pts[fixed_idx] # moving_matches = moving_pts[moving_idx] # coarse_error = np.linalg.norm(moving_pts_um[moving_idx]-transformed_pts_um[fixed_idx], axis=-1).mean() # print('Coarse registration error: {} voxels'.format(coarse_error)) # print('Saving match images') # fixed_matches_img = label_pts(np.zeros(fixed_img.shape, dtype='uint16'), fixed_matches) # moving_matches_img = label_pts(np.zeros(moving_img.shape, dtype='uint16'), moving_matches) # conversion.imsave(fixed_matches_img_path, fixed_matches_img, compress=1) # conversion.imsave(moving_matches_img_path, moving_matches_img, compress=1) # pcloud.plot_pts(fixed_pts, moving_pts, candid1=fixed_matches, candid2=moving_matches) # print('estimating affine transformation with RANSAC') # t1 = time.time() # ransac, inlier_idx = pcloud.estimate_affine(fixed_matches, # moving_matches, # min_samples=min_samples, # residual_threshold=residual_threshold) # transformed_matches = pcloud.register_pts(fixed_matches, ransac) # average_residual = np.linalg.norm(transformed_matches - moving_matches, axis=-1).mean() # t2 = time.time() # print(' {} matches before RANSAC'.format(len(fixed_matches))) # print(' {} matches remain after RANSAC'.format(len(inlier_idx))) # print(' Ave. residual: {0:.1f} voxels'.format(average_residual)) # print(' Took {0:.2f} seconds'.format(t2 - t1)) # print('estimating non-rigid transformation with RBFs') # nb_samples = 1000 # # sample_idx = np.random.choice(len(fixed_matches), nb_samples, replace=False) # fixed_sample = fixed_matches[sample_idx] # moving_sample = moving_matches[sample_idx] # # correspondence_sample = np.hstack((fixed_sample, moving_sample)) # # from scipy.interpolate import Rbf # # rbf_z = Rbf(correspondence_sample[:, 0], # fixed z # correspondence_sample[:, 1], # fixed y # correspondence_sample[:, 2], # fixed x # correspondence_sample[:, 3], # moving z (output) # function='thin-plate', # epsilon=None, # smooth=0) # # rbf_y = Rbf(correspondence_sample[:, 0], # fixed z # correspondence_sample[:, 1], # fixed y # correspondence_sample[:, 2], # fixed x # correspondence_sample[:, 4], # moving y (output) # function='thin-plate', # epsilon=None, # smooth=0) # # rbf_x = Rbf(correspondence_sample[:, 0], # fixed z # correspondence_sample[:, 1], # fixed y # correspondence_sample[:, 2], # fixed x # correspondence_sample[:, 5], # moving x (output) # function='thin-plate', # epsilon=None, # smooth=0) # # zm = rbf_z(correspondence_sample[:, 0], correspondence_sample[:, 1], correspondence_sample[:, 2]) # ym = rbf_y(correspondence_sample[:, 0], correspondence_sample[:, 1], correspondence_sample[:, 2]) # xm = rbf_x(correspondence_sample[:, 0], correspondence_sample[:, 1], correspondence_sample[:, 2]) # ave_keypt_resid = np.linalg.norm(np.vstack([zm, ym, xm]).T - moving_sample, axis=-1).mean() # print('RBF average residual at keypoints: {0:.1f} voxels'.format(ave_keypt_resid)) # # zm = rbf_z(fixed_matches[:,0], fixed_matches[:,1], fixed_matches[:,2]) # ym = rbf_y(fixed_matches[:,0], fixed_matches[:,1], fixed_matches[:,2]) # xm = rbf_x(fixed_matches[:,0], fixed_matches[:,1], fixed_matches[:,2]) # ave_test_resid = np.linalg.norm(np.vstack([zm, ym, xm]).T - moving_matches, axis=-1).mean() # print('RBF average residual on test set: {0:.1f} voxels'.format(ave_test_resid)) # z = np.linspace(0, fixed_img.shape[0], 10) # y = np.linspace(0, fixed_img.shape[1], 10) # x = np.linspace(0, fixed_img.shape[2], 10) # X, Y, Z = np.meshgrid(x, y, z) # # zm = rbf_z(Z, Y, X) # ym = rbf_y(Z, Y, X) # xm = rbf_x(Z, Y, X) # # print(X.shape, xm.shape) # print(zm.max(), ym.max(), xm.max()) # # fig = plt.figure() # ax = fig.gca(projection='3d') # ax.view_init(0, 0) # ax.quiver(X, Y, Z, xm, ym, zm, length=0.1) # plt.show() # fixed_inliers = fixed_matches[inlier_idx] # moving_inliers = moving_matches[inlier_idx] # pcloud.plot_pts(fixed_pts, moving_pts, candid1=fixed_inliers, candid2=moving_inliers) # print('registering the moving image') # t1 = time.time() # output_img = zarr.open(registered_zarr_path, # mode='w', # shape=fixed_img.shape, # chunks=fixed_img.chunks, # dtype=fixed_img.dtype, # compressor=Blosc(cname='zstd', clevel=1, shuffle=Blosc.BITSHUFFLE)) # transformation = partial(pcloud.register_pts, linear_model=ransac) # register(moving_img, fixed_img, output_img, transformation, nb_workers, batch_size) # t2 = time.time() # print(' Took {0:.2f} seconds'.format(t2 - t1)) # # print('downsamplingx the registered zarr array') # t1 = time.time() # conversion.downsample_zarr(output_img, (4, 4, 4), preview_zarr_path, 44) # t2 = time.time() # print(' Took {0:.2f} seconds'.format(t2 - t1)) # # print('converting zarr to tiffs') # t1 = time.time() # conversion.zarr_to_tifs(preview_zarr_path, preview_tif_path, nb_workers, compression) # t2 = time.time() # print(' Took {0:.2f} seconds'.format(t2 - t1)) # # t3 = time.time() # print('Total time: {0:.2f} seconds'.format(t3-t0)) if __name__ == '__main__': main2()
from django.conf.urls import patterns, url urlpatterns = patterns( 'api.views', url(r'^get_All_SugRec/$', 'get_All_SugRec', name='get_All_SugRec'), )
import sys check_type = int(sys.argv[1]) input_file = sys.argv[2] output_file = sys.argv[3] if check_type == 0: integer_file = sys.argv[4] # Check insertion code input_arr = [] integers = [] with open(input_file) as f: content = f.readlines() content = [x.strip() for x in content] for c in content: if c != "page over" and c != "file over": input_arr.append(int(c)) if c == "file over": break with open(integer_file) as f: content = f.readlines() integers = [int(x.strip()) for x in content] integers.sort() integer_pointer = 0 for p in range(len(input_arr)): if integers[integer_pointer] <= input_arr[p]: input_arr.insert(p, integers[integer_pointer]) integer_pointer += 1 # Pages now holds inserted array # print ("Desired File: ") # print (input_arr) output_arr = [] with open(output_file) as f: content = f.readlines() content = [x.strip() for x in content] for c in content: if c != "page over" and c != "file over": output_arr.append(int(c)) if c == "file over": break # print ("Output File: ") # print (output_arr) problem = False problem_index = 0 for index in range(len(input_arr)): if input_arr[index] != output_arr[index]: print ("{0}".format(index)) problem = True problem_index = index if not problem: print ("Insertion worked good") else: print ("Problem in insertion at index {0}".format(problem_index)) else: # Check merge sort code print ("Checking merge sort {0} with {1}".format(input_file, output_file)) array = [] with open(input_file) as f: content = f.readlines() content = [x.strip() for x in content] for c in content: if c != "page over" and c != "file over": array.append(int(c)) array.sort() print (array) with open(output_file) as f: content = f.readlines() content = [x.strip() for x in content] output_array = [] for c in content: if c != "page over" and c != "file over": output_array.append(int(c)) if c == "file over": break print (output_array) problem = False for index in range(len(array)): if array[index] != output_array[index]: problem = True print ("Expected {0}, found {1}".format(array[index], output_array[index])) if not problem: print ("Success!")
from gpiozero import Servo from time import sleep servo = Servo(11) while True: servo.mid() sleep(0.5) servo.min() sleep(0.5) servo.max() sleep(0.5)
import pytest from wowDB import WowDB from wowapi.exceptions import * from dbConnect import config from PIL import Image, ImageChops import io locale = 'en_US' region = 'us' realm = 'Arathor' bnetcred = config('settings.ini', 'bnetcred') client_id = bnetcred['client_id'] client_secret = bnetcred['client_secret'] class TestwowDB(): def test_init(self): '''Test init constructor with existing inputs''' wow = WowDB(locale, region, realm, client_id, client_secret) assert wow.locale == locale assert wow.region == region assert wow.realm == realm assert wow.realm_slug == 'arathor' assert wow.connected_realm_id == 1138 @pytest.mark.parametrize( "locale,region,realm,client_id,client_secret,expected", [ (locale,region,realm,'',client_secret,pytest.raises(WowApiOauthException)), (locale,region,realm,client_id,'',pytest.raises(WowApiOauthException)), ('',region,realm,client_id,client_secret,pytest.raises(ValueError)), (locale,'',realm,client_id,client_secret,pytest.raises(ValueError)), (locale,region,'',client_id,client_secret,pytest.raises(ValueError)) ]) def test_init_missing_server_info_client_cred(self, locale, region, realm, client_id, client_secret, expected): '''Test init constructor for missing locale, region or realm.''' with expected: assert WowDB(locale, region, realm, client_id, client_secret) is not None @pytest.mark.parametrize( "locale,region,realm,client_id,client_secret,expected", [ (locale,region,realm,'blah',client_secret,pytest.raises(WowApiOauthException)), (locale,region,realm,client_id,'blah',pytest.raises(WowApiOauthException)), ('blah',region,realm,client_id,client_secret,pytest.raises(WowApiException)), (locale,'blah',realm,client_id,client_secret,pytest.raises(WowApiException)), (locale,region,'blah',client_id,client_secret,pytest.raises(WowApiException)) ]) def test_init_bad_server_info_client_cred(self, locale, region, realm, client_id, client_secret, expected): '''Test init constructor for missing locale, region or realm.''' with expected: assert WowDB(locale, region, realm, client_id, client_secret) is not None def test_findItemName(self): '''Test getting the item name corresponding to a given item ID''' wow = WowDB(locale, region, realm, client_id, client_secret) item_name = wow.findItemName(19019) assert item_name == 'Thunderfury, Blessed Blade of the Windseeker' @pytest.mark.parametrize( "item_id,expected", [ (10000000,pytest.raises(WowApiException)), ('blah',pytest.raises(WowApiException)) ]) def test_bad_findItemName(self, item_id, expected): '''Test getting the item name with an invalid item ID''' wow = WowDB(locale, region, realm, client_id, client_secret) with expected: assert wow.findItemName(item_id) is not None def test_findItemPic(self): '''Test getting the item pic corresponding to a give item ID''' wow = WowDB(locale, region, realm, client_id, client_secret) ba = wow.findItemPic(19019) image1 = Image.open(io.BytesIO(ba)) image2 = Image.open('test_picture.jpg') diff = ImageChops.difference(image1, image2) assert not diff.getbbox() @pytest.mark.parametrize( "item_id,expected", [ (10000000,pytest.raises(WowApiException)), ('blah',pytest.raises(WowApiException)) ]) def test_bad_findItemPic(self, item_id, expected): '''Test getting the item pic with an invalid item ID''' wow = WowDB(locale, region, realm, client_id, client_secret) with expected: assert wow.findItemPic(item_id) is not None def test_findAuctions(self): '''Test getting auction house results''' wow = WowDB(locale, region, realm, client_id, client_secret) data = wow.findAuctions() assert 'id' in data[0].keys() # def test_sortListings(self): # '''Test sorting auction house results''' # wow = WowDB(locale, region, realm, client_id, client_secret) # data = wow.findAuctions() # sorted_list = wow.sortListings(data) # # assert all (k in sorted_list[0] for k in ( # # 'item_id', # # 'quantity', # # 'avg_unit_price', # # 'std_dev', # # 'high_price', # # 'low_price', # # 'num' # # )) # for i in range(len(sorted_list) - 1): # assert sorted_list[i]['item_id'] < sorted_list[i+1]['item_id']
# Made by Mr. Have fun! Version 0.2 import sys from com.l2jserver import Config from com.l2jserver.gameserver.model.quest import State from com.l2jserver.gameserver.model.quest import QuestState from com.l2jserver.gameserver.model.quest.jython import QuestJython as JQuest qn = "292_CrushBrigands" GOBLIN_NECKLACE = 1483 GOBLIN_PENDANT = 1484 GOBLIN_LORD_PENDANT = 1485 SUSPICIOUS_MEMO = 1486 SUSPICIOUS_CONTRACT = 1487 class Quest (JQuest) : def __init__(self,id,name,descr): JQuest.__init__(self,id,name,descr) self.questItemIds = [GOBLIN_NECKLACE, GOBLIN_PENDANT, GOBLIN_LORD_PENDANT, SUSPICIOUS_CONTRACT, SUSPICIOUS_MEMO] def onAdvEvent (self,event,npc, player) : htmltext = event st = player.getQuestState(qn) if not st : return if event == "30532-03.htm" : st.set("cond","1") st.setState(State.STARTED) st.playSound("ItemSound.quest_accept") elif event == "30532-06.htm" : st.takeItems(SUSPICIOUS_MEMO,-1) st.exitQuest(1) st.playSound("ItemSound.quest_finish") return htmltext def onTalk (self,npc,player): htmltext = "<html><body>You are either not on a quest that involves this NPC, or you don't meet this NPC's minimum quest requirements.</body></html>" st = player.getQuestState(qn) if not st : return htmltext npcId = npc.getNpcId() id = st.getState() if npcId != 30532 and id != State.STARTED : return htmltext if id == State.CREATED : st.set("cond","0") if npcId == 30532 : if st.getInt("cond")==0 : if player.getRace().ordinal() != 4 : htmltext = "30532-00.htm" st.exitQuest(1) elif player.getLevel() >= 5 : htmltext = "30532-02.htm" return htmltext else: htmltext = "30532-01.htm" st.exitQuest(1) else : neckl=st.getQuestItemsCount(GOBLIN_NECKLACE) penda=st.getQuestItemsCount(GOBLIN_PENDANT) lordp=st.getQuestItemsCount(GOBLIN_LORD_PENDANT) smemo=st.getQuestItemsCount(SUSPICIOUS_MEMO) scont=st.getQuestItemsCount(SUSPICIOUS_CONTRACT) if neckl==penda==lordp==smemo==scont==0 : htmltext = "30532-04.htm" else : st.takeItems(GOBLIN_NECKLACE,-1) st.takeItems(GOBLIN_PENDANT,-1) st.takeItems(GOBLIN_LORD_PENDANT,-1) if scont == 0 : if smemo == 1 : htmltext = "30532-08.htm" elif smemo >= 2 : htmltext = "30532-09.htm" else : htmltext = "30532-05.htm" else : htmltext = "30532-10.htm" st.takeItems(SUSPICIOUS_CONTRACT,-1) st.giveItems(57,12*neckl+36*penda+33*lordp+100*scont) elif npcId == 30533 : if st.getQuestItemsCount(SUSPICIOUS_CONTRACT)==0 : htmltext = "30533-01.htm" else : htmltext = "30533-02.htm" st.giveItems(57,st.getQuestItemsCount(SUSPICIOUS_CONTRACT)*120) st.takeItems(SUSPICIOUS_CONTRACT,-1) return htmltext def onKill(self,npc,player,isPet): st = player.getQuestState(qn) if not st : return if st.getState() != State.STARTED : return npcId = npc.getNpcId() if npcId in [20322, 20323]: item = GOBLIN_NECKLACE if npcId in [20324, 20327]: item = GOBLIN_PENDANT if npcId == 20528 : item = GOBLIN_LORD_PENDANT if st.getInt("cond") : n = st.getRandom(10) if n > 5 : st.giveItems(item,1) st.playSound("ItemSound.quest_itemget") elif n > 4 : if st.getQuestItemsCount(SUSPICIOUS_CONTRACT) == 0 : if st.getQuestItemsCount(SUSPICIOUS_MEMO) < 3 : st.giveItems(SUSPICIOUS_MEMO,1) st.playSound("ItemSound.quest_itemget") else : st.giveItems(SUSPICIOUS_CONTRACT,1) st.takeItems(SUSPICIOUS_MEMO,-1) st.playSound("ItemSound.quest_middle") st.set("cond","2") return QUEST = Quest(292,qn,"Crush Brigands") QUEST.addStartNpc(30532) QUEST.addTalkId(30532) QUEST.addTalkId(30533) QUEST.addKillId(20322) QUEST.addKillId(20323) QUEST.addKillId(20324) QUEST.addKillId(20327) QUEST.addKillId(20528)
import logic.game as game import os import asyncio async def main(print_foo=print, input_foo=input): print_foo('Welcome to Macau Game!') how_many_players = int(input_foo('How many players will play?: ')) if how_many_players < 2: raise Exception('Wrong number of players entered!') how_many_cards = int(input_foo('How many cards on start?: ')) if how_many_cards < 3: raise Exception('Wrong number of starting cards entered!') how_many_deck = round(0.5 + ((how_many_players * how_many_cards) * 2) / 52) print_foo(f'Game will be played with {how_many_deck} decks.') names = [] for index in range(1, how_many_players + 1): name = input_foo(f'Enter name for player#{index} : ') names.append(name) game_state = game.GameState() game_state.deck, game_state.table, game_state.players = game.prepare_game(names, how_many_deck, how_many_cards) os.system('cls||clear') await game.play_game(game_state) if __name__ == '__main__': asyncio.run(main())
import torch import torch.nn as nn from . import common from .ResNet import ResNet def build_model(args): return MSResNet(args) class conv_end(nn.Module): def __init__(self, in_channels=3, out_channels=3, kernel_size=5, ratio=2): super(conv_end, self).__init__() modules = [ common.default_conv(in_channels, out_channels, kernel_size), nn.PixelShuffle(ratio) ] self.uppath = nn.Sequential(*modules) def forward(self, x): return self.uppath(x) class MSResNet(nn.Module): def __init__(self, args): super(MSResNet, self).__init__() self.rgb_range = args.rgb_range self.mean = self.rgb_range / 2 self.n_resblocks = args.n_resblocks self.n_feats = args.n_feats self.kernel_size = args.kernel_size self.n_scales = args.n_scales self.body_models = nn.ModuleList([ ResNet(args, 3, 3), ]) for _ in range(1, self.n_scales): # self.body_models += [ResNet(args, 6, 3)] self.body_models.insert(0, ResNet(args, 6, 3)) self.conv_end_models = nn.ModuleList([None]) for _ in range(1, self.n_scales): self.conv_end_models += [conv_end(3, 12)] def forward(self, input_pyramid): scales = range(self.n_scales-1, -1, -1) # 0: fine, 2: coarse for s in scales: input_pyramid[s] = input_pyramid[s] - self.mean output_pyramid = [None] * self.n_scales input_s = input_pyramid[-1] for s in scales: # [2, 1, 0] output_pyramid[s] = self.body_models[s](input_s) if s > 0: up_feat = self.conv_end_models[s](output_pyramid[s]) input_s = torch.cat((input_pyramid[s-1], up_feat), 1) for s in scales: output_pyramid[s] = output_pyramid[s] + self.mean return output_pyramid
#!/usr/bin/env python import random import dijkstra import goal import math as np import pygame class PRMGenerator: """ Class used to hold methods and variables that are important for the global path planning problem. This class generates the roadmap and finds the shortest path to the the goals by determining intermediate goals for the boids to be attracted to """ def __init__( self, _startPos, _endPos, _obstacleList, _xSize, _ySize, _subGoalNumber, _screen ): """ Creates a new instance of the PRMGenerator. Intializes key variables used in the generation of the global planner. @param _startPos The starting position of the boids @param _endPos The final goal position of the boids @param _obstacleList The list of obstacles that the global planner needs to avoid @param _xSize The size of the x component of the screen @param _ySize The size of the y component of the screen @param _subGoalNumber The initial number of sample points for the global planner @param _screen The PyGame screen that the PRMGenerator will draw to """ ## List of obstacles self.obstacleList = _obstacleList ## Position of the first goal self.startPos = _startPos ## Position of the last goal self.endPos = _endPos ## PyGame screen that is will be drawn on self.screen = _screen ## Horizontal size of the PyGame screen self.xSize = _xSize ## Vertical size of the PyGame screen self.ySize = _ySize ## Distance that the PRM is willing to check when ## connecting sample points self.adjacentThresh = 80 ## Maximum number of sample points that can be connected self.numNext = 20 ## Number of initial sample points self.subGoalNumber = _subGoalNumber ## Initial positions of the sample points self.subGoalPositionList = [self.startPos] + \ self.generatePositionList(self.subGoalNumber) + \ [self.endPos] ## The global roadmap. It will be a graph ## represented as a dictionary self.roadmap = dict() ## Holds the positions of the intermediate goals that were selected ## by the global path planner self.gPosList = list() ## Indexes of the goal positions self.goalNodes = list() ## Dictionary (for easy access) that holds the weights for the nodes self.omegaDict = dict() self.filterSubGoal() self.initOmega(self.subGoalPositionList) def norm(self, p1, p2): """ Gets the distance between p1 and p2 @param p1 The first point @param p2 The second point @return The Eulidean distance from p1 to p2 """ return np.sqrt(pow(p1[0] - p2[0], 2) + pow(p1[1] - p2[1], 2)) def generatePositionList(self, num): """ Generates the random positions for the sample points @param num The number of points to generate @return A list of random subgoals (sample points) """ return [ ( self.getRandom(0, self.xSize), self.getRandom(0, self.ySize) ) for _ in range(num) ] def initOmega(self, posList): """ Initiates the omega function which holds the node weights @param posList The list of positions for the sample points """ omega = lambda p: ( sum( map( lambda ob: self.norm(p, ob.getPoint(p)), self.obstacleList ) ) ) for p in posList: self.omegaDict[p] = omega(p) def filterSubGoal(self): """ Filters out sample points that are inside of obstacles or otherwise inadequate """ delList = list() for i in range(len(self.subGoalPositionList)): for obst in self.obstacleList: if obst.dynamic is False: dist = self.norm( obst.getPoint(self.subGoalPositionList[i]), self.subGoalPositionList[i] ) if (dist < 10): delList += [i] self.subGoalPositionList = [ self.subGoalPositionList[j] for j in range( len(self.subGoalPositionList) ) if not j in delList ] def findNeighbors(self, point): """ Finds suitable neighbours for a sample point """ minList = list() obList = filter( lambda ob: self.norm( point, ob.avgPoint ) < self.adjacentThresh + ob.maxDist, self.obstacleList ) sGoalList = filter( lambda g: self.norm(point, g[1]) < self.adjacentThresh, enumerate(self.subGoalPositionList) ) searchList = filter( lambda p: not any( filter( lambda ob: ob.detectCollision( point, p[1] ), obList ) ), sGoalList ) normList = dict() maxVal = self.xSize * self.ySize for i, j in searchList: normList[i] = self.norm(point, j) for _ in range(self.numNext): try: minPos = [ (i, j) for i, j in searchList if normList[i] == min(normList.values()) ][0] minList += [minPos] normList[minPos[0]] = maxVal except IndexError: print 'balls' return minList def getRandom(self, p, q): """ Gets a random number and cathes the ValueError if the two numbers are the same @param p Lower bound for the random number @param q upper bound for the random number @return A random number """ try: return random.randint(int(p), int(q)) except ValueError: return int(p) def generate(self, subGoalRadius): """ Generates a series of random points that will become the roadmap and connects them and weights them into a graph. If the goal and the starting point are not connected, more points are added. The roadmap is then searched for the shortest weighted distance which become the intermediate goals. @param subGoalRadius The radius of the intermediate goals @return A list of sub goals from the roadmap connecting the starting point and the end goal """ self.roadmap = dict() currentPos = 0 self.dontDraw = list() while len(self.gPosList) <= 1: for i, j in enumerate(self.subGoalPositionList): # adds the neighbours for a certain vertex to the its sub # dictionary neighbours are decided by linear distance if i >= currentPos: self.roadmap[i] = dict() for p, q in self.findNeighbors(j): self.roadmap[i][p] = ( 1000 * self.norm(j, q) / min( self.omegaDict[j], self.omegaDict[q] ) ) try: self.roadmap[p][i] = self.roadmap[i][p] except KeyError: pass self.screen.fill( (255, 255, 255) ) self.draw() map( lambda o: o.draw(), self.obstacleList ) pygame.display.flip() for e in pygame.event.get(): if e.type is pygame.QUIT: exit() self.goalNodes = dijkstra.shortestPath( self.roadmap, 0, len(self.subGoalPositionList) - 1 ) self.gPosList = map( lambda k: self.subGoalPositionList[k], self.goalNodes ) if len(self.gPosList) == 1: currentPos = len(self.subGoalPositionList) - 1 self.dontDraw += [ currentPos, currentPos - 1, currentPos + 1, ] newPosList = self.generatePositionList( int(self.subGoalNumber / 2) + 1 ) self.initOmega(newPosList) self.subGoalPositionList[1: -1] += newPosList self.filterSubGoal() #print self.roadmap retList = map( lambda p: goal.CircleGoal( subGoalRadius, p, self.screen ), self.gPosList ) retList[-1].radius = 1 * subGoalRadius return retList def getShortestPath(self, roadmap, fromNode, toNode): return dijkstra.shortestPath( roadmap, fromNode, toNode ) def draw(self): """ Draws the graph """ map( lambda circ: pygame.draw.circle( self.screen, (100, 100, 100), circ, 5 ), self.subGoalPositionList ) for k in self.roadmap.keys(): for p in self.roadmap[k].keys(): if not k in self.dontDraw and not p in self.dontDraw: pygame.draw.line( self.screen, (0, 0, 0), self.subGoalPositionList[k], self.subGoalPositionList[p] ) def drawPath(self): """ Draws the selected shortest path """ pygame.draw.lines( self.screen, # (255, 255, 255), (0, 255, 0), False, self.gPosList, 2 ) """ for gPos in self.gPosList: pygame.draw.circle( self.screen, (255, 0, 255), gPos, 20, 2 ) """
import argparse def get_args(): parser = argparse.ArgumentParser() parser.add_argument('--key', required=True, help='Slack webhook key') parser.add_argument('--cpu', required=True, type=float, help='Limitation for cpu use percentage') parser.add_argument('--ram', required=True, type=float, help='Limitation for ram use percentage') parser.add_argument('--interval', required=True, type=float, help='Checking loop time') parser.add_argument('--url', required=False, type=str, help='check state target url') args = parser.parse_args() return args
# I took this very simple app from the gunicorn website. # It's how they suggested getting startd def app(environ, start_response): data = b"Hello, World!\n" start_response("200 OK", [("Content-Type", "text/plain"), ("Content-Length", str(len(data)))]) return iter([data])
# -------------------------------------------------------- # Domain adpatation training # Copyright (c) 2019 valeo.ai # # Written by Tuan-Hung Vu # -------------------------------------------------------- import os import sys from pathlib import Path import os.path as osp import numpy as np import torch import torch.backends.cudnn as cudnn import torch.nn.functional as F import torch.optim as optim from tensorboardX import SummaryWriter from torch import nn from torchvision.utils import make_grid from tqdm import tqdm import copy from advent.model.discriminator import get_fc_discriminator from advent.model.conv_abstract import get_conv_abstract from advent.utils.func import adjust_learning_rate, adjust_learning_rate_discriminator from advent.utils.func import loss_calc, bce_loss, mse_loss, reg_loss_calc_ign from advent.utils.loss import entropy_loss from advent.utils.simclr_loss import NTXentLoss from advent.utils.func import prob_2_entropy from advent.utils.viz_segmask import colorize_mask import random def train_advent(model, trainloader, targetloader, cfg): ''' UDA training with advent ''' # Create the model and start the training. input_size_source = cfg.TRAIN.INPUT_SIZE_SOURCE input_size_target = cfg.TRAIN.INPUT_SIZE_TARGET device = cfg.GPU_ID num_classes = cfg.NUM_CLASSES viz_tensorboard = os.path.exists(cfg.TRAIN.TENSORBOARD_LOGDIR) if viz_tensorboard: writer = SummaryWriter(log_dir=cfg.TRAIN.TENSORBOARD_LOGDIR) # SEGMNETATION NETWORK model.train() model.to(device) cudnn.benchmark = True cudnn.enabled = True # DISCRIMINATOR NETWORK # feature-level d_aux = get_fc_discriminator(num_classes=num_classes) d_aux.train() d_aux.to(device) # seg maps, i.e. output, level d_main = get_fc_discriminator(num_classes=num_classes) d_main.train() d_main.to(device) # OPTIMIZERS # segnet's optimizer optimizer = optim.SGD(model.optim_parameters(cfg.TRAIN.LEARNING_RATE), lr=cfg.TRAIN.LEARNING_RATE, momentum=cfg.TRAIN.MOMENTUM, weight_decay=cfg.TRAIN.WEIGHT_DECAY) # discriminators' optimizers optimizer_d_aux = optim.Adam(d_aux.parameters(), lr=cfg.TRAIN.LEARNING_RATE_D, betas=(0.9, 0.99)) optimizer_d_main = optim.Adam(d_main.parameters(), lr=cfg.TRAIN.LEARNING_RATE_D, betas=(0.9, 0.99)) # interpolate output segmaps interp = nn.Upsample(size=(input_size_source[1], input_size_source[0]), mode='bilinear', align_corners=True) interp_target = nn.Upsample(size=(input_size_target[1], input_size_target[0]), mode='bilinear', align_corners=True) # labels for adversarial training source_label = 0 target_label = 1 trainloader_iter = enumerate(trainloader) targetloader_iter = enumerate(targetloader) for i_iter in tqdm(range(cfg.TRAIN.EARLY_STOP + 1)): # reset optimizers optimizer.zero_grad() optimizer_d_aux.zero_grad() optimizer_d_main.zero_grad() # adapt LR if needed adjust_learning_rate(optimizer, i_iter, cfg) adjust_learning_rate_discriminator(optimizer_d_aux, i_iter, cfg) adjust_learning_rate_discriminator(optimizer_d_main, i_iter, cfg) # UDA Training # only train segnet. Don't accumulate grads in disciminators for param in d_aux.parameters(): param.requires_grad = False for param in d_main.parameters(): param.requires_grad = False # train on source _, batch = trainloader_iter.__next__() images_source, labels, _, _ = batch pred_src_aux, pred_src_main = model(images_source.cuda(device)) if cfg.TRAIN.MULTI_LEVEL: pred_src_aux = interp(pred_src_aux) loss_seg_src_aux = loss_calc(pred_src_aux, labels, device) else: loss_seg_src_aux = 0 pred_src_main = interp(pred_src_main) loss_seg_src_main = loss_calc(pred_src_main, labels, device) loss = (cfg.TRAIN.LAMBDA_SEG_MAIN * loss_seg_src_main + cfg.TRAIN.LAMBDA_SEG_AUX * loss_seg_src_aux) loss.backward() # adversarial training ot fool the discriminator _, batch = targetloader_iter.__next__() images, _, _, _ = batch pred_trg_aux, pred_trg_main = model(images.cuda(device)) if cfg.TRAIN.MULTI_LEVEL: pred_trg_aux = interp_target(pred_trg_aux) d_out_aux = d_aux(prob_2_entropy(F.softmax(pred_trg_aux))) loss_adv_trg_aux = bce_loss(d_out_aux, source_label) else: loss_adv_trg_aux = 0 pred_trg_main = interp_target(pred_trg_main) d_out_main = d_main(prob_2_entropy(F.softmax(pred_trg_main))) loss_adv_trg_main = bce_loss(d_out_main, source_label) loss = (cfg.TRAIN.LAMBDA_ADV_MAIN * loss_adv_trg_main + cfg.TRAIN.LAMBDA_ADV_AUX * loss_adv_trg_aux) loss = loss loss.backward() # Train discriminator networks # enable training mode on discriminator networks for param in d_aux.parameters(): param.requires_grad = True for param in d_main.parameters(): param.requires_grad = True # train with source if cfg.TRAIN.MULTI_LEVEL: pred_src_aux = pred_src_aux.detach() d_out_aux = d_aux(prob_2_entropy(F.softmax(pred_src_aux))) loss_d_aux = bce_loss(d_out_aux, source_label) loss_d_aux = loss_d_aux / 2 loss_d_aux.backward() pred_src_main = pred_src_main.detach() d_out_main = d_main(prob_2_entropy(F.softmax(pred_src_main))) loss_d_main = bce_loss(d_out_main, source_label) loss_d_main = loss_d_main / 2 loss_d_main.backward() # train with target if cfg.TRAIN.MULTI_LEVEL: pred_trg_aux = pred_trg_aux.detach() d_out_aux = d_aux(prob_2_entropy(F.softmax(pred_trg_aux))) loss_d_aux = bce_loss(d_out_aux, target_label) loss_d_aux = loss_d_aux / 2 loss_d_aux.backward() else: loss_d_aux = 0 pred_trg_main = pred_trg_main.detach() d_out_main = d_main(prob_2_entropy(F.softmax(pred_trg_main))) loss_d_main = bce_loss(d_out_main, target_label) loss_d_main = loss_d_main / 2 loss_d_main.backward() optimizer.step() if cfg.TRAIN.MULTI_LEVEL: optimizer_d_aux.step() optimizer_d_main.step() current_losses = {'loss_seg_src_aux': loss_seg_src_aux, 'loss_seg_src_main': loss_seg_src_main, 'loss_adv_trg_aux': loss_adv_trg_aux, 'loss_adv_trg_main': loss_adv_trg_main, 'loss_d_aux': loss_d_aux, 'loss_d_main': loss_d_main} print_losses(current_losses, i_iter) if i_iter % cfg.TRAIN.SAVE_PRED_EVERY == 0 and i_iter != 0: print('taking snapshot ...') print('exp =', cfg.TRAIN.SNAPSHOT_DIR) snapshot_dir = Path(cfg.TRAIN.SNAPSHOT_DIR) torch.save(model.state_dict(), snapshot_dir / f'model_{i_iter}.pth') torch.save(d_aux.state_dict(), snapshot_dir / f'model_{i_iter}_D_aux.pth') torch.save(d_main.state_dict(), snapshot_dir / f'model_{i_iter}_D_main.pth') if i_iter >= cfg.TRAIN.EARLY_STOP - 1: break sys.stdout.flush() # Visualize with tensorboard if viz_tensorboard: log_losses_tensorboard(writer, current_losses, i_iter) if i_iter % cfg.TRAIN.TENSORBOARD_VIZRATE == cfg.TRAIN.TENSORBOARD_VIZRATE - 1: draw_in_tensorboard(writer, images, i_iter, pred_trg_main, num_classes, 'T') draw_in_tensorboard(writer, images_source, i_iter, pred_src_main, num_classes, 'S') def train_adaptseg(model, trainloader, targetloader, cfg): ''' UDA training with advent ''' # Create the model and start the training. input_size_source = cfg.TRAIN.INPUT_SIZE_SOURCE input_size_target = cfg.TRAIN.INPUT_SIZE_TARGET device = cfg.GPU_ID num_classes = cfg.NUM_CLASSES viz_tensorboard = os.path.exists(cfg.TRAIN.TENSORBOARD_LOGDIR) if viz_tensorboard: writer = SummaryWriter(log_dir=cfg.TRAIN.TENSORBOARD_LOGDIR) # SEGMNETATION NETWORK model.train() model.to(device) cudnn.benchmark = True cudnn.enabled = True # DISCRIMINATOR NETWORK # feature-level d_aux = get_fc_discriminator(num_classes=num_classes) d_aux.train() d_aux.to(device) # seg maps, i.e. output, level d_main = get_fc_discriminator(num_classes=num_classes) d_main.train() d_main.to(device) # OPTIMIZERS # segnet's optimizer optimizer = optim.SGD(model.optim_parameters(cfg.TRAIN.LEARNING_RATE), lr=cfg.TRAIN.LEARNING_RATE, momentum=cfg.TRAIN.MOMENTUM, weight_decay=cfg.TRAIN.WEIGHT_DECAY) # discriminators' optimizers optimizer_d_aux = optim.Adam(d_aux.parameters(), lr=cfg.TRAIN.LEARNING_RATE_D, betas=(0.9, 0.99)) optimizer_d_main = optim.Adam(d_main.parameters(), lr=cfg.TRAIN.LEARNING_RATE_D, betas=(0.9, 0.99)) # interpolate output segmaps interp = nn.Upsample(size=(input_size_source[1], input_size_source[0]), mode='bilinear', align_corners=True) interp_target = nn.Upsample(size=(input_size_target[1], input_size_target[0]), mode='bilinear', align_corners=True) # labels for adversarial training source_label = 0 target_label = 1 trainloader_iter = enumerate(trainloader) targetloader_iter = enumerate(targetloader) for i_iter in tqdm(range(cfg.TRAIN.EARLY_STOP + 1)): # reset optimizers optimizer.zero_grad() optimizer_d_aux.zero_grad() optimizer_d_main.zero_grad() # adapt LR if needed adjust_learning_rate(optimizer, i_iter, cfg) adjust_learning_rate_discriminator(optimizer_d_aux, i_iter, cfg) adjust_learning_rate_discriminator(optimizer_d_main, i_iter, cfg) # UDA Training # only train segnet. Don't accumulate grads in disciminators for param in d_aux.parameters(): param.requires_grad = False for param in d_main.parameters(): param.requires_grad = False # train on source _, batch = trainloader_iter.__next__() images_source, labels, _, _ = batch pred_src_main = model(images_source.cuda(device)) if cfg.TRAIN.MULTI_LEVEL: pred_src_aux = interp(pred_src_aux) loss_seg_src_aux = loss_calc(pred_src_aux, labels, device) else: loss_seg_src_aux = 0 pred_src_main = interp(pred_src_main) loss_seg_src_main = loss_calc(pred_src_main, labels, device) loss = (cfg.TRAIN.LAMBDA_SEG_MAIN * loss_seg_src_main + cfg.TRAIN.LAMBDA_SEG_AUX * loss_seg_src_aux) loss.backward() # adversarial training ot fool the discriminator _, batch = targetloader_iter.__next__() images, _, _, _ = batch pred_trg_main = model(images.cuda(device)) if cfg.TRAIN.MULTI_LEVEL: pred_trg_aux = interp_target(pred_trg_aux) d_out_aux = d_aux(F.softmax(pred_trg_aux)) loss_adv_trg_aux = mse_loss(d_out_aux, source_label) else: loss_adv_trg_aux = 0 pred_trg_main = interp_target(pred_trg_main) d_out_main = d_main(F.softmax(pred_trg_main)) loss_adv_trg_main = mse_loss(d_out_main, source_label) loss = (cfg.TRAIN.LAMBDA_ADV_MAIN * loss_adv_trg_main + cfg.TRAIN.LAMBDA_ADV_AUX * loss_adv_trg_aux) loss = loss loss.backward() # Train discriminator networks # enable training mode on discriminator networks for param in d_aux.parameters(): param.requires_grad = True for param in d_main.parameters(): param.requires_grad = True # train with source if cfg.TRAIN.MULTI_LEVEL: pred_src_aux = pred_src_aux.detach() d_out_aux = d_aux(F.softmax(pred_src_aux)) loss_d_aux = mse_loss(d_out_aux, source_label) loss_d_aux = loss_d_aux / 2 loss_d_aux.backward() pred_src_main = pred_src_main.detach() d_out_main = d_main(F.softmax(pred_src_main)) loss_d_main = mse_loss(d_out_main, source_label) loss_d_main = loss_d_main / 2 loss_d_main.backward() # train with target if cfg.TRAIN.MULTI_LEVEL: pred_trg_aux = pred_trg_aux.detach() d_out_aux = d_aux(F.softmax(pred_trg_aux)) loss_d_aux = mse_loss(d_out_aux, target_label) loss_d_aux = loss_d_aux / 2 loss_d_aux.backward() else: loss_d_aux = 0 pred_trg_main = pred_trg_main.detach() d_out_main = d_main(F.softmax(pred_trg_main)) loss_d_main = mse_loss(d_out_main, target_label) loss_d_main = loss_d_main / 2 loss_d_main.backward() optimizer.step() if cfg.TRAIN.MULTI_LEVEL: optimizer_d_aux.step() optimizer_d_main.step() current_losses = {'loss_seg_src_aux': loss_seg_src_aux, 'loss_seg_src_main': loss_seg_src_main, 'loss_adv_trg_aux': loss_adv_trg_aux, 'loss_adv_trg_main': loss_adv_trg_main, 'loss_d_aux': loss_d_aux, 'loss_d_main': loss_d_main} print_losses(current_losses, i_iter) if i_iter % cfg.TRAIN.SAVE_PRED_EVERY == 0 and i_iter != 0: print('taking snapshot ...') print('exp =', cfg.TRAIN.SNAPSHOT_DIR) snapshot_dir = Path(cfg.TRAIN.SNAPSHOT_DIR) torch.save(model.state_dict(), snapshot_dir / f'model_{i_iter}.pth') torch.save(d_aux.state_dict(), snapshot_dir / f'model_{i_iter}_D_aux.pth') torch.save(d_main.state_dict(), snapshot_dir / f'model_{i_iter}_D_main.pth') if i_iter >= cfg.TRAIN.EARLY_STOP - 1: break sys.stdout.flush() # Visualize with tensorboard if viz_tensorboard: log_losses_tensorboard(writer, current_losses, i_iter) if i_iter % cfg.TRAIN.TENSORBOARD_VIZRATE == cfg.TRAIN.TENSORBOARD_VIZRATE - 1: draw_in_tensorboard(writer, images, i_iter, pred_trg_main, num_classes, 'T') draw_in_tensorboard(writer, images_source, i_iter, pred_src_main, num_classes, 'S') def train_adaptseg_w_trans(model, trainloader, targetloader, cfg): ''' UDA training with advent ''' # Create the model and start the training. input_size_source = cfg.TRAIN.INPUT_SIZE_SOURCE input_size_target = cfg.TRAIN.INPUT_SIZE_TARGET device = cfg.GPU_ID num_classes = cfg.NUM_CLASSES viz_tensorboard = os.path.exists(cfg.TRAIN.TENSORBOARD_LOGDIR) if viz_tensorboard: writer = SummaryWriter(log_dir=cfg.TRAIN.TENSORBOARD_LOGDIR) # SEGMNETATION NETWORK model.train() model.to(device) cudnn.benchmark = True cudnn.enabled = True # DISCRIMINATOR NETWORK # feature-level d_aux = get_fc_discriminator(num_classes=num_classes) d_aux.train() d_aux.to(device) # seg maps, i.e. output, level d_main = get_fc_discriminator(num_classes=num_classes) d_main.train() d_main.to(device) # OPTIMIZERS # segnet's optimizer optimizer = optim.SGD(model.optim_parameters(cfg.TRAIN.LEARNING_RATE), lr=cfg.TRAIN.LEARNING_RATE, momentum=cfg.TRAIN.MOMENTUM, weight_decay=cfg.TRAIN.WEIGHT_DECAY) # discriminators' optimizers optimizer_d_aux = optim.Adam(d_aux.parameters(), lr=cfg.TRAIN.LEARNING_RATE_D, betas=(0.9, 0.99)) optimizer_d_main = optim.Adam(d_main.parameters(), lr=cfg.TRAIN.LEARNING_RATE_D, betas=(0.9, 0.99)) # interpolate output segmaps interp = nn.Upsample(size=(input_size_source[1], input_size_source[0]), mode='bilinear', align_corners=True) interp_target = nn.Upsample(size=(input_size_target[1], input_size_target[0]), mode='bilinear', align_corners=True) # labels for adversarial training source_label = 0 target_label = 1 trainloader_iter = enumerate(trainloader) targetloader_iter = enumerate(targetloader) criterion = nn.MSELoss() for i_iter in tqdm(range(cfg.TRAIN.EARLY_STOP + 1)): # reset optimizers optimizer.zero_grad() optimizer_d_aux.zero_grad() optimizer_d_main.zero_grad() # adapt LR if needed adjust_learning_rate(optimizer, i_iter, cfg) adjust_learning_rate_discriminator(optimizer_d_aux, i_iter, cfg) adjust_learning_rate_discriminator(optimizer_d_main, i_iter, cfg) # UDA Training # only train segnet. Don't accumulate grads in disciminators for param in d_aux.parameters(): param.requires_grad = False for param in d_main.parameters(): param.requires_grad = False # train on source _, batch = trainloader_iter.__next__() images_source, labels, _, _ = batch pred_src_main, _ = model(images_source.cuda(device)) if cfg.TRAIN.MULTI_LEVEL: pred_src_aux = interp(pred_src_aux) loss_seg_src_aux = loss_calc(pred_src_aux, labels, device) else: loss_seg_src_aux = 0 pred_src_main = interp(pred_src_main) loss_seg_src_main = loss_calc(pred_src_main, labels, device) loss = (cfg.TRAIN.LAMBDA_SEG_MAIN * loss_seg_src_main + cfg.TRAIN.LAMBDA_SEG_AUX * loss_seg_src_aux) loss.backward() # adversarial training ot fool the discriminator _, batch = targetloader_iter.__next__() images, images_aug, _, _, _ = batch pred_trg_main, _ = model(images_aug.cuda(device)) pred_trg_main_real, _ = model(images.cuda(device)) if cfg.TRAIN.MULTI_LEVEL: pred_trg_aux = interp_target(pred_trg_aux) d_out_aux = d_aux(F.softmax(pred_trg_aux)) loss_adv_trg_aux = mse_loss(d_out_aux, source_label) else: loss_adv_trg_aux = 0 pred_trg_main = interp_target(pred_trg_main) pred_trg_main_real = interp_target(pred_trg_main_real) d_out_main = d_main(F.softmax(pred_trg_main)) loss_adv_trg_main = mse_loss(d_out_main, source_label) loss = (cfg.TRAIN.LAMBDA_ADV_MAIN * loss_adv_trg_main + cfg.TRAIN.LAMBDA_ADV_AUX * loss_adv_trg_aux) loss = loss loss.backward() # Train discriminator networks # enable training mode on discriminator networks for param in d_aux.parameters(): param.requires_grad = True for param in d_main.parameters(): param.requires_grad = True # train with source if cfg.TRAIN.MULTI_LEVEL: pred_src_aux = pred_src_aux.detach() d_out_aux = d_aux(F.softmax(pred_src_aux)) loss_d_aux = mse_loss(d_out_aux, source_label) loss_d_aux = loss_d_aux / 2 loss_d_aux.backward() pred_src_main = pred_src_main.detach() d_out_main = d_main(F.softmax(pred_src_main)) loss_d_main = mse_loss(d_out_main, source_label) loss_d_main = loss_d_main / 2 loss_d_main.backward() # train with target if cfg.TRAIN.MULTI_LEVEL: pred_trg_aux = pred_trg_aux.detach() d_out_aux = d_aux(F.softmax(pred_trg_aux)) loss_d_aux = mse_loss(d_out_aux, target_label) loss_d_aux = loss_d_aux / 2 loss_d_aux.backward() else: loss_d_aux = 0 pred_trg_main = pred_trg_main.detach() d_out_main = d_main(F.softmax(pred_trg_main)) loss_d_main = mse_loss(d_out_main, target_label) loss_d_main = loss_d_main / 2 loss_d_main.backward() # import pdb # pdb.set_trace() loss_consistency = 10 * criterion(F.softmax(pred_trg_main_real), F.softmax(pred_trg_main).detach()) loss_consistency.backward() optimizer.step() if cfg.TRAIN.MULTI_LEVEL: optimizer_d_aux.step() optimizer_d_main.step() current_losses = {'loss_seg_src_aux': loss_seg_src_aux, 'loss_seg_src_main': loss_seg_src_main, 'loss_adv_trg_aux': loss_adv_trg_aux, 'loss_adv_trg_main': loss_adv_trg_main, 'loss_d_aux': loss_d_aux, 'loss_d_main': loss_d_main, 'loss_consistency': loss_consistency} print_losses(current_losses, i_iter) if i_iter % cfg.TRAIN.SAVE_PRED_EVERY == 0 and i_iter != 0: print('taking snapshot ...') print('exp =', cfg.TRAIN.SNAPSHOT_DIR) snapshot_dir = Path(cfg.TRAIN.SNAPSHOT_DIR) torch.save(model.state_dict(), snapshot_dir / f'model_{i_iter}.pth') torch.save(d_aux.state_dict(), snapshot_dir / f'model_{i_iter}_D_aux.pth') torch.save(d_main.state_dict(), snapshot_dir / f'model_{i_iter}_D_main.pth') if i_iter >= cfg.TRAIN.EARLY_STOP - 1: break sys.stdout.flush() # Visualize with tensorboard if viz_tensorboard: log_losses_tensorboard(writer, current_losses, i_iter) if i_iter % cfg.TRAIN.TENSORBOARD_VIZRATE == 0: draw_in_tensorboard_trans(writer, images_aug, images, i_iter, pred_trg_main, pred_trg_main_real, num_classes, 'T') draw_in_tensorboard(writer, images_source, i_iter, pred_src_main, num_classes, 'S') def label_generator(pred_trg, cls_thresh_tot, cfg, i_iter, tot_iter): import math device = cfg.GPU_ID ### ### output_main = F.softmax(pred_trg,dim=1) amax_output = torch.argmax(output_main, dim=1).type(torch.uint8) pred_label_trainIDs = amax_output.clone() pred_label = amax_output.clone() conf, _ = torch.max(output_main, dim=1) conf_dict = {k:[] for k in range(cfg.NUM_CLASSES)} pred_cls_num = torch.zeros(cfg.NUM_CLASSES) for idx_cls in range(cfg.NUM_CLASSES): idx_temp = pred_label == idx_cls pred_cls_num[idx_cls] = pred_cls_num[idx_cls] + torch.sum(idx_temp) if idx_temp.any(): conf_cls_temp = conf[idx_temp].type(torch.float32) len_cls_temp = len(conf_cls_temp) conf_cls = conf_cls_temp[0:len_cls_temp:16] conf_dict[idx_cls].extend(conf_cls) cls_thresh = torch.ones(cfg.NUM_CLASSES).type(torch.float32) cls_sel_size = torch.zeros(cfg.NUM_CLASSES).type(torch.float32) tgt_dict_tot = {} for idx_cls in range(cfg.NUM_CLASSES): if conf_dict[idx_cls] != None: # conf_dict[idx_cls].sort(reverse=True) # sort in descending order conf_dict[idx_cls], _ = torch.sort(torch.FloatTensor(conf_dict[idx_cls]), descending=True) len_cls = len(conf_dict[idx_cls]) iter_ratio = 1.0-float(i_iter / (tot_iter+1)) coeff = 0.2 * (iter_ratio ** 0.5) cls_sel_size[idx_cls] = int(math.floor(len_cls * coeff)) len_cls_thresh = int(cls_sel_size[idx_cls]) if len_cls_thresh != 0: cls_thresh[idx_cls] = conf_dict[idx_cls][len_cls_thresh-1] conf_dict[idx_cls] = None cls_thresh_tot_ = torch.where(cls_thresh_tot==1.0, cls_thresh, 0.9 * cls_thresh_tot + 0.1 * cls_thresh) cls_thresh_mask = (cls_thresh == 1.0) * (cls_thresh_tot!=1.0) cls_thresh_tot = torch.where(cls_thresh_mask==1.0, cls_thresh_tot, cls_thresh_tot_) weighted_prob = output_main / cls_thresh_tot.to(device).unsqueeze(0).unsqueeze(2).unsqueeze(3) weighted_pred_trainIDs = torch.argmax(weighted_prob, dim=1).type(torch.uint8) weighted_conf, _ = torch.max(weighted_prob, dim=1) weighted_pred_trainIDs[weighted_conf < 1] = 255 return weighted_pred_trainIDs, cls_thresh_tot def train_selfself(model, trainloader, targetloader, cfg): ''' UDA training with advent ''' # Create the model and start the training. input_size_source = cfg.TRAIN.INPUT_SIZE_SOURCE input_size_target = cfg.TRAIN.INPUT_SIZE_TARGET device = cfg.GPU_ID num_classes = cfg.NUM_CLASSES viz_tensorboard = os.path.exists(cfg.TRAIN.TENSORBOARD_LOGDIR) if viz_tensorboard: writer = SummaryWriter(log_dir=cfg.TRAIN.TENSORBOARD_LOGDIR) # SEGMNETATION NETWORK model.train() model.to(device) # Model clone model_runner = copy.deepcopy(model) model_runner.eval() model_runner.to(device) conv3x3_tgt = get_conv_abstract(cfg) conv3x3_tgt.train() conv3x3_tgt.to(device) d_main = get_fc_discriminator(num_classes=num_classes) d_main.train() d_main.to(device) tgt_dict_tot = {} cudnn.benchmark = True cudnn.enabled = True # OPTIMIZERS params = list(model.parameters()) + list(conv3x3_tgt.parameters()) optimizer = optim.SGD(params, lr=cfg.TRAIN.LEARNING_RATE, momentum=cfg.TRAIN.MOMENTUM, weight_decay=cfg.TRAIN.WEIGHT_DECAY) # interpolate output segmaps interp = nn.Upsample(size=(input_size_source[1], input_size_source[0]), mode='bilinear', align_corners=True) interp_target = nn.Upsample(size=(input_size_target[1], input_size_target[0]), mode='bilinear', align_corners=True) cls_thresh = torch.ones(num_classes).type(torch.float32) optimizer_d_main = optim.Adam(d_main.parameters(), lr=cfg.TRAIN.LEARNING_RATE_D, betas=(0.9, 0.99)) # for round in range(3): trainloader_iter = enumerate(trainloader) targetloader_iter = enumerate(targetloader) source_label = 0 target_label = 1 for i_iter in tqdm(range(len(targetloader))): # reset optimizers optimizer.zero_grad() optimizer_d_main.zero_grad() # adapt LR if needed adjust_learning_rate(optimizer, i_iter, cfg) adjust_learning_rate_discriminator(optimizer_d_main, i_iter, cfg) # train on source _, batch = trainloader_iter.__next__() images_source, labels, _, _ = batch pred_src_main, _ = model(images_source.cuda(device)) pred_src_main = interp(pred_src_main) loss_seg_src_main = loss_calc(pred_src_main, labels, device) loss = cfg.TRAIN.LAMBDA_SEG_MAIN * loss_seg_src_main loss.backward() # adversarial training ot fool the discriminator _, batch = targetloader_iter.__next__() images, images_rev, _, _, name, name_next = batch pred_trg_main, feat_trg_main = model(images.cuda(device)) pred_trg_main = interp_target(pred_trg_main) with torch.no_grad(): pred_trg_main_run, feat_trg_main_run = model_runner(images.cuda(device)) pred_trg_main_run = interp_target(pred_trg_main_run) ##### Label generator for target ##### label_trg, cls_thresh = label_generator(pred_trg_main_run, cls_thresh, cfg, i_iter) ##### CE loss for trg # MRKLD + Ign Region loss_seg_trg_main = reg_loss_calc_ign(pred_trg_main, label_trg, device) loss_tgt_seg = cfg.TRAIN.LAMBDA_SEG_MAIN * loss_seg_trg_main loss_tgt_selfsup, tgt_dict_tot = classSimCLR(feat_trg_main, label_trg, conv3x3_tgt, tgt_dict_tot, device) loss = loss_tgt_seg + 0.1 * loss_tgt_selfsup loss.backward() ##### Discriminator ##### for param in d_main.parameters(): param.requires_grad = False pred_trg_main_rev, _ = model(images_rev.cuda(device)) pred_trg_main_rev = interp_target(pred_trg_main_rev) d_out_main = d_main(F.softmax(pred_trg_main_rev)) loss_adv_trg_main = mse_loss(d_out_main, source_label) loss = cfg.TRAIN.LAMBDA_ADV_MAIN * loss_adv_trg_main loss = loss loss.backward() for param in d_main.parameters(): param.requires_grad = True pred_src_main = pred_src_main.detach() d_out_main = d_main(F.softmax(pred_src_main)) loss_d_main_src = mse_loss(d_out_main, source_label) loss_d_main = loss_d_main_src / 2 loss_d_main.backward() pred_trg_main = pred_trg_main.detach() d_out_main = d_main(F.softmax(pred_trg_main)) loss_d_main_trg = mse_loss(d_out_main, source_label) loss_d_main = loss_d_main_trg / 2 loss_d_main.backward() pred_trg_main_rev = pred_trg_main_rev.detach() d_out_main = d_main(F.softmax(pred_trg_main_rev)) loss_d_main_trg_rev = mse_loss(d_out_main, target_label) loss_d_main = loss_d_main_trg_rev / 2 loss_d_main.backward() ##### Contrastive loss for trg # Contrastive loss () optimizer.step() optimizer_d_main.step() if i_iter+1 % 500 == 0: model_runner = copy.deepcopy(model) # for param_fol, param_run in zip(model.parameters(), model_runner.parameters()): # param_run.data = param_fol.data current_losses = {'loss_seg_trg_main': loss_seg_trg_main, 'loss_seg_src_main': loss_seg_src_main, 'loss_tgt_selfsup': loss_tgt_selfsup, 'loss_adv_trg_main': loss_adv_trg_main, 'loss_d_main_src': loss_d_main_src, 'loss_d_main_trg': loss_d_main_trg, 'loss_d_main_trg_rev': loss_d_main_trg_rev } print_losses(current_losses, i_iter) if i_iter % cfg.TRAIN.SAVE_PRED_EVERY == 0 and i_iter != 0: print('taking snapshot ...') print('exp =', cfg.TRAIN.SNAPSHOT_DIR) snapshot_dir = Path(cfg.TRAIN.SNAPSHOT_DIR) torch.save(model.state_dict(), snapshot_dir / f'model_{i_iter}.pth') torch.save(model_runner.state_dict(), snapshot_dir / f'model_{i_iter}_run.pth') torch.save(d_main.state_dict(), snapshot_dir / f'model_{i_iter}_D.pth') if i_iter >= cfg.TRAIN.EARLY_STOP - 1: break sys.stdout.flush() # Visualize with tensorboard if viz_tensorboard: log_losses_tensorboard(writer, current_losses, i_iter) if i_iter % cfg.TRAIN.TENSORBOARD_VIZRATE == 0: # draw_in_tensorboard_trg(writer, images, images_rev, label_trg, i_iter, pred_trg_main, pred_trg_main_rev, num_classes, 'T') draw_in_tensorboard(writer, images, i_iter, pred_trg_main, num_classes, 'T') # draw_in_tensorboard(writer, images_source, i_iter, pred_src_main, num_classes, 'S') #TODO: self-training here !!! def train_self_domain_swarp(model, trainloader, targetloader, cfg): ''' UDA training with advent ''' # Create the model and start the training. input_size_source = cfg.TRAIN.INPUT_SIZE_SOURCE input_size_target = cfg.TRAIN.INPUT_SIZE_TARGET device = cfg.GPU_ID num_classes = cfg.NUM_CLASSES viz_tensorboard = os.path.exists(cfg.TRAIN.TENSORBOARD_LOGDIR) if viz_tensorboard: writer = SummaryWriter(log_dir=cfg.TRAIN.TENSORBOARD_LOGDIR) # SEGMNETATION NETWORK model.train() model.to(device) # Model clone model_runner = copy.deepcopy(model) model_runner.eval() model_runner.to(device) # conv3x3_tgt = get_conv_abstract(cfg) # conv3x3_tgt.train() # conv3x3_tgt.to(device) # d_main = get_fc_discriminator(num_classes=num_classes) # d_main.train() # d_main.to(device) tgt_dict_tot = {} cudnn.benchmark = True cudnn.enabled = True # OPTIMIZERS # params = list(model.parameters()) + list(conv3x3_tgt.parameters()) optimizer = optim.SGD(model.parameters(), lr=cfg.TRAIN.LEARNING_RATE, momentum=cfg.TRAIN.MOMENTUM, weight_decay=cfg.TRAIN.WEIGHT_DECAY) # interpolate output segmaps interp = nn.Upsample(size=(input_size_source[1], input_size_source[0]), mode='bilinear', align_corners=True) interp_target = nn.Upsample(size=(input_size_target[1], input_size_target[0]), mode='bilinear', align_corners=True) cls_thresh = torch.ones(num_classes).type(torch.float32) # optimizer_d_main = optim.Adam(d_main.parameters(), lr=cfg.TRAIN.LEARNING_RATE_D, # betas=(0.9, 0.99)) # for round in range(3): trainloader_iter = enumerate(trainloader) targetloader_iter = enumerate(targetloader) source_label = 0 target_label = 1 tot_iter = len(targetloader) for i_iter in tqdm(range(tot_iter)): # reset optimizers optimizer.zero_grad() # optimizer_d_main.zero_grad() # adapt LR if needed adjust_learning_rate(optimizer, i_iter, cfg) # adjust_learning_rate_discriminator(optimizer_d_main, i_iter, cfg) # train on source _, batch = trainloader_iter.__next__() images_source, labels, _, _ = batch pred_src_main, _ = model(images_source.cuda(device)) pred_src_main = interp(pred_src_main) loss_seg_src_main = loss_calc(pred_src_main, labels, device) loss = cfg.TRAIN.LAMBDA_SEG_MAIN * loss_seg_src_main loss.backward() # adversarial training ot fool the discriminator _, batch = targetloader_iter.__next__() images, images_rev, _, _, name, name_next = batch pred_trg_main, feat_trg_main = model(images.cuda(device)) pred_trg_main = interp_target(pred_trg_main) with torch.no_grad(): pred_trg_main_run, feat_trg_main_run = model_runner(images.cuda(device)) pred_trg_main_run = interp_target(pred_trg_main_run) ##### Label generator for target ##### label_trg, cls_thresh = label_generator(pred_trg_main_run, cls_thresh, cfg, i_iter, tot_iter) ##### CE loss for trg # MRKLD + Ign Region loss_seg_trg_main = reg_loss_calc_ign(pred_trg_main, label_trg, device) loss_tgt_seg = cfg.TRAIN.LAMBDA_SEG_MAIN * loss_seg_trg_main ##### Domain swarping #### feat_tgt_swarped, tgt_dict_tot, tgt_label = DomainSwarping(feat_trg_main, label_trg, tgt_dict_tot, device) ignore_mask = tgt_label == 255 feat_tgt_swarped = ~ignore_mask*feat_tgt_swarped + ignore_mask*feat_trg_main pred_tgt_swarped = model.classifier_(feat_tgt_swarped) pred_tgt_swarped = interp_target(pred_tgt_swarped) loss_seg_trg_swarped = reg_loss_calc_ign(pred_tgt_swarped, label_trg, device) loss_tgt_seg_swarped = cfg.TRAIN.LAMBDA_SEG_MAIN * loss_seg_trg_swarped loss_tgt = loss_tgt_seg + loss_tgt_seg_swarped loss_tgt.backward() optimizer.step() current_losses = {'loss_seg_trg_main': loss_seg_trg_main, 'loss_seg_src_main': loss_seg_src_main, 'loss_seg_trg_swarped': loss_seg_trg_swarped } print_losses(current_losses, i_iter) if i_iter % cfg.TRAIN.SAVE_PRED_EVERY == 0 and i_iter != 0: print('taking snapshot ...') print('exp =', cfg.TRAIN.SNAPSHOT_DIR) snapshot_dir = Path(cfg.TRAIN.SNAPSHOT_DIR) torch.save(model.state_dict(), snapshot_dir / f'model_{i_iter}.pth') torch.save(model_runner.state_dict(), snapshot_dir / f'model_{i_iter}_run.pth') if i_iter >= cfg.TRAIN.EARLY_STOP - 1: break sys.stdout.flush() # Visualize with tensorboard if viz_tensorboard: log_losses_tensorboard(writer, current_losses, i_iter) if i_iter % cfg.TRAIN.TENSORBOARD_VIZRATE == 0: # draw_in_tensorboard_trg(writer, images, images_rev, label_trg, i_iter, pred_trg_main, pred_trg_main_rev, num_classes, 'T') draw_in_tensorboard(writer, images, label_trg, i_iter, pred_trg_main, pred_tgt_swarped, num_classes, 'T') # draw_in_tensorboard(writer, images_source, i_iter, pred_src_main, num_classes, 'S') def classSimCLR(tgt_feat_warped_cat, tgt_label, conv3x3_tgt, tgt_dict_tot, device): tgt_feat_warped_cat_abs = conv3x3_tgt(tgt_feat_warped_cat) # fnt_tgt_feat_warped_cat_abs = tgt_feat_warped_cat_abs[:,:tgt_feat_warped_cat_abs.size(1)//2,:,:] ##### class-wise Simclr ##### tgt_label = F.interpolate(tgt_label.unsqueeze(0).float(), (tgt_feat_warped_cat.size(2), tgt_feat_warped_cat.size(3)), mode='nearest') tgt_label = tgt_label.long() tgt_unique = torch.unique(tgt_label) tgt_dict = {} tgt_dict_tot_temp = {} m = nn.AdaptiveAvgPool2d(1) for label_ele in tgt_unique.tolist(): if not label_ele == 255: cls_mask = tgt_label == label_ele masked_tgt = cls_mask * tgt_feat_warped_cat_abs avg_masked_tgt = m(masked_tgt) * (cls_mask.size(2) * cls_mask.size(3) / cls_mask.sum()) tgt_dict[label_ele] = avg_masked_tgt # if label_ele in tgt_dict_tot: # tgt_dict_tot[label_ele] = 0.99 * tgt_dict_tot[label_ele] + 0.01 * tgt_dict[label_ele] # else: # tgt_dict_tot[label_ele] = tgt_dict[label_ele] if not label_ele in tgt_dict_tot: tgt_dict_tot[label_ele] = tgt_dict[label_ele] tgt_dict_tot_temp[label_ele] = tgt_dict_tot[label_ele] if label_ele in tgt_dict_tot: tgt_dict_tot[label_ele] = 0.99 * tgt_dict_tot[label_ele] + 0.01 * tgt_dict[label_ele] tgt_dict = dict(sorted(tgt_dict.items())) tgt_list = [] for key, value in tgt_dict.items(): tgt_list.append(value) try: tgt_cat = torch.cat(tgt_list,dim=0).squeeze().to(device) tgt_cat = F.normalize(tgt_cat, dim=1) tgt_dict_tot_temp = dict(sorted(tgt_dict_tot_temp.items())) tgt_tot_temp_list = [] for key, value in tgt_dict_tot_temp.items(): tgt_tot_temp_list.append(value) tgt_dict_temp_cat = torch.cat(tgt_tot_temp_list,dim=0).squeeze().to(device) tgt_dict_temp_cat = F.normalize(tgt_dict_temp_cat, dim=1) batch_size = tgt_dict_temp_cat.size(0) simloss_xent = NTXentLoss(device, batch_size=batch_size, temperature=0.5, use_cosine_similarity=True) cls_sim_loss = simloss_xent(tgt_dict_temp_cat.detach(), tgt_cat) cls_sim_loss = cls_sim_loss except: cls_sim_loss = 0 # return src_feat_embedding_loss, tgt_feat_embedding_loss, cls_sim_loss return cls_sim_loss, tgt_dict_tot def DomainSwarping(tgt_feat_warped_cat, tgt_label, tgt_dict_tot, device): alpha_list = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9] alpha = random.choice(alpha_list) tgt_label = F.interpolate(tgt_label.unsqueeze(0).float(), (tgt_feat_warped_cat.size(2), tgt_feat_warped_cat.size(3)), mode='nearest') tgt_label = tgt_label.long() tgt_unique = torch.unique(tgt_label) tgt_dict = {} tgt_dict_tot_temp = {} m = nn.AdaptiveAvgPool2d(1) new_masked_tgt_init = 0 for label_ele in tgt_unique.tolist(): if not label_ele == 255: cls_mask = tgt_label == label_ele masked_tgt = cls_mask * tgt_feat_warped_cat avg_masked_tgt = m(masked_tgt) * (cls_mask.size(2) * cls_mask.size(3) / cls_mask.sum()) tgt_dict[label_ele] = avg_masked_tgt if not label_ele in tgt_dict_tot: print('new class info inserted') tgt_dict_tot[label_ele] = tgt_dict[label_ele] # new_masked_tgt = alpha * tgt_dict_tot[label_ele] + (1-alpha) * masked_tgt new_masked_tgt = tgt_dict_tot[label_ele] new_masked_tgt_init += cls_mask * new_masked_tgt tgt_dict_tot[label_ele] = alpha * tgt_dict_tot[label_ele] + (1-alpha) * tgt_dict[label_ele] tgt_dict_tot[label_ele] = tgt_dict_tot[label_ele].detach() return new_masked_tgt_init, tgt_dict_tot, tgt_label def draw_in_tensorboard_trg(writer, images, images_rev, label_trg, i_iter, pred_main, pred_trg_main_rev, num_classes, type_): grid_image = make_grid(images[:3].clone().cpu().data, 3, normalize=True) writer.add_image(f'Image - {type_}', grid_image, i_iter) grid_image = make_grid(images_rev[:3].clone().cpu().data, 3, normalize=True) writer.add_image(f'images_rev - {type_}', grid_image, i_iter) grid_image = make_grid(torch.from_numpy(np.array(colorize_mask(np.asarray( np.argmax(F.softmax(pred_main).cpu().data[0].numpy().transpose(1, 2, 0), axis=2), dtype=np.uint8)).convert('RGB')).transpose(2, 0, 1)), 3, normalize=False, range=(0, 255)) writer.add_image(f'Prediction - {type_}', grid_image, i_iter) grid_image = make_grid(torch.from_numpy(np.array(colorize_mask(np.asarray( np.argmax(F.softmax(pred_trg_main_rev).cpu().data[0].numpy().transpose(1, 2, 0), axis=2), dtype=np.uint8)).convert('RGB')).transpose(2, 0, 1)), 3, normalize=False, range=(0, 255)) writer.add_image(f'Prediction_rev - {type_}', grid_image, i_iter) grid_image = make_grid(torch.from_numpy(np.array(colorize_mask(np.asarray(label_trg.cpu().squeeze(), dtype=np.uint8)).convert('RGB')).transpose(2, 0, 1)), 3, normalize=False, range=(0, 255)) writer.add_image(f'Labels_IAST - {type_}', grid_image, i_iter) def draw_in_tensorboard(writer, images, label_trg, i_iter, pred_main, pred_main_swarp, num_classes, type_): grid_image = make_grid(images[:3].clone().cpu().data, 3, normalize=True) writer.add_image(f'Image - {type_}', grid_image, i_iter) pred_main_cat = torch.cat((pred_main, pred_main_swarp), dim=-1) grid_image = make_grid(torch.from_numpy(np.array(colorize_mask(np.asarray( np.argmax(F.softmax(pred_main_cat).cpu().data[0].numpy().transpose(1, 2, 0), axis=2), dtype=np.uint8)).convert('RGB')).transpose(2, 0, 1)), 3, normalize=False, range=(0, 255)) writer.add_image(f'Prediction_main_swarp - {type_}', grid_image, i_iter) grid_image = make_grid(torch.from_numpy(np.array(colorize_mask(np.asarray(label_trg.cpu().squeeze(), dtype=np.uint8)).convert('RGB')).transpose(2, 0, 1)), 3, normalize=False, range=(0, 255)) writer.add_image(f'Labels_IAST - {type_}', grid_image, i_iter) # grid_image = make_grid(torch.from_numpy(np.array(colorize_mask(np.asarray( # np.argmax(F.softmax(pred_main_tgt).cpu().data[0].numpy().transpose(1, 2, 0), # axis=2), dtype=np.uint8)).convert('RGB')).transpose(2, 0, 1)), 3, # normalize=False, range=(0, 255)) # writer.add_image(f'Prediction_swarped - {type_}', grid_image, i_iter) # output_sm = F.softmax(pred_main).cpu().data[0].numpy().transpose(1, 2, 0) # output_ent = np.sum(-np.multiply(output_sm, np.log2(output_sm)), axis=2, # keepdims=False) # grid_image = make_grid(torch.from_numpy(output_ent), 3, normalize=True, # range=(0, np.log2(num_classes))) # writer.add_image(f'Entropy - {type_}', grid_image, i_iter) def draw_in_tensorboard_trans(writer, images, images_real, i_iter, pred_main, pred_main_real, num_classes, type_): grid_image = make_grid(images[:3].clone().cpu().data, 3, normalize=True) writer.add_image(f'Image - {type_}', grid_image, i_iter) grid_image = make_grid(images_real[:3].clone().cpu().data, 3, normalize=True) writer.add_image(f'Image_real - {type_}', grid_image, i_iter) grid_image = make_grid(torch.from_numpy(np.array(colorize_mask(np.asarray( np.argmax(F.softmax(pred_main).cpu().data[0].numpy().transpose(1, 2, 0), axis=2), dtype=np.uint8)).convert('RGB')).transpose(2, 0, 1)), 3, normalize=False, range=(0, 255)) writer.add_image(f'Prediction - {type_}', grid_image, i_iter) grid_image = make_grid(torch.from_numpy(np.array(colorize_mask(np.asarray( np.argmax(F.softmax(pred_main_real).cpu().data[0].numpy().transpose(1, 2, 0), axis=2), dtype=np.uint8)).convert('RGB')).transpose(2, 0, 1)), 3, normalize=False, range=(0, 255)) writer.add_image(f'Prediction_real - {type_}', grid_image, i_iter) # output_sm = F.softmax(pred_main).cpu().data[0].numpy().transpose(1, 2, 0) # output_ent = np.sum(-np.multiply(output_sm, np.log2(output_sm)), axis=2, # keepdims=False) # grid_image = make_grid(torch.from_numpy(output_ent), 3, normalize=True, # range=(0, np.log2(num_classes))) # writer.add_image(f'Entropy - {type_}', grid_image, i_iter) def print_losses(current_losses, i_iter): list_strings = [] for loss_name, loss_value in current_losses.items(): list_strings.append(f'{loss_name} = {to_numpy(loss_value):.3f} ') full_string = ' '.join(list_strings) tqdm.write(f'iter = {i_iter} {full_string}') def log_losses_tensorboard(writer, current_losses, i_iter): for loss_name, loss_value in current_losses.items(): writer.add_scalar(f'data/{loss_name}', to_numpy(loss_value), i_iter) def to_numpy(tensor): if isinstance(tensor, (int, float)): return tensor else: return tensor.data.cpu().numpy() def train_domain_adaptation(model, trainloader, targetloader, cfg): if cfg.TRAIN.DA_METHOD == 'AdvEnt': train_advent(model, trainloader, targetloader, cfg) elif cfg.TRAIN.DA_METHOD == 'AdaptSeg': train_adaptseg(model, trainloader, targetloader, cfg) elif cfg.TRAIN.DA_METHOD == 'AdaptSeg_w_trans': train_adaptseg_w_trans(model, trainloader, targetloader, cfg) elif cfg.TRAIN.DA_METHOD == 'self_domain_swarp': train_self_domain_swarp(model, trainloader, targetloader, cfg) else: raise NotImplementedError(f"Not yet supported DA method {cfg.TRAIN.DA_METHOD}")
#!/usr/bin/env python """ Functions and objects to deal with meteoroids orbits """ __author__ = "Hadrien A.R. Devillepoix, Trent Jansen-Sturgeon " __copyright__ = "Copyright 2016-2017, Desert Fireball Network" __license__ = "MIT" __version__ = "1.0" import numpy as np from numpy.linalg import norm import matplotlib.pyplot as plt from astropy import units as u from astropy.time import Time from astropy.coordinates import HCRS, ITRS, GCRS from astropy.utils.iers import IERS_A, IERS_A_URL, IERS from astropy.utils.data import download_file from trajectory_utilities import ECEF2LLH, \ EarthPosition, HCRS2HCI, HCI2ECI_pos, \ OrbitalElements2PosVel, ECI2ECEF_pos try: iers_a_file = download_file(IERS_A_URL, cache=True) iers_a = IERS_A.open(iers_a_file) IERS.iers_table = iers_a except: print('IERS_A_URL is temporarily unavailable') pass AU = 1*u.au.to(u.m) SMA_JUPITER = 5.20336301 * u.au def tisserand_wrt_jupiter(a, e, i): ''' Calculate the Tisserrand criterion with respect to Jupiter ''' T_j = (SMA_JUPITER / a + 2 * np.cos(i) * np.sqrt(a / SMA_JUPITER * (1 - e**2))) return T_j # Conversion vector AU_Deg2m_Rad = np.vstack((AU, 1, np.pi / 180 * np.ones((4, 1)))) Planets = {'Mercury': np.vstack((0.387099, 0.205636, 7.004979, 29.127030, 48.330766, 252.250324)), 'Venus': np.vstack((0.723336, 0.006777, 3.394676, 54.922625, 76.679843, 181.979100)), 'Earth': np.vstack((1.000003, 0.016711, -0.000015, 102.937682, 0.000000, 100.464572)), 'Mars': np.vstack((1.523710, 0.093394, 1.849691, -73.503169, 49.559539, -4.553432)), 'Jupiter': np.vstack((5.202887, 0.048386, 1.304397, -85.745429, 100.473909, 34.396441)), 'Saturn': np.vstack((9.536676,0.053862,2.485992,-21.063546,113.662424,49.954244)), 'Uranus': np.vstack((19.189165,0.047257,0.772638,96.937351,74.016925,313.238105)), 'Neptune': np.vstack((30.069923,0.008590,1.770043,-86.819463,131.784226,-55.120030))} class OrbitObject(object): """ Solar system object osculating orbit """ def __init__(self, orbit_type, a, e, i, omega, Omega, theta, ra_corr=np.nan*u.rad, dec_corr=np.nan*u.rad, v_g=np.nan*u.m/u.second): self.semi_major_axis = a.to(u.au) self.eccentricity = e self.inclination = i.to(u.deg) self.argument_periapsis = omega.to(u.deg) self.longitude_ascending_node = Omega.to(u.deg) self.longitude_perihelion = (self.longitude_ascending_node + self.argument_periapsis) % (360 * u.deg) self.true_anomaly = theta.to(u.deg) self.orbit_type = orbit_type self.perihelion = (1 - self.eccentricity) * self.semi_major_axis self.aphelion = (1 + self.eccentricity) * self.semi_major_axis self.corr_radiant_ra = (ra_corr.to(u.deg)) % (360 * u.deg) self.corr_radiant_dec = dec_corr.to(u.deg) radiant = HCRS(ra=self.corr_radiant_ra, dec=self.corr_radiant_dec, distance=1.0*u.au) ecpliptic_radiant = HCRS2HCI(np.vstack(radiant.cartesian.xyz.value)) self.ecliptic_latitude = np.rad2deg(np.arcsin(ecpliptic_radiant[2] / norm(ecpliptic_radiant)))*u.deg self.velocity_g = v_g.to(u.m / u.second) self.T_j = self.tisserand_criterion_wrt_jupiter() def tisserand_criterion_wrt_jupiter(self): ''' Calculate the Tisserrand criterion with respect to Jupiter ''' return tisserand_wrt_jupiter(self.semi_major_axis, self.eccentricity, self.inclination) def __str__(self): return str("Semi-major axis: " + str(self.semi_major_axis) + "\n" + "Eccentricity: " + str(self.eccentricity) + "\n" + "Inclination: " + str(self.inclination) + "\n" + "Argument of Periapsis: " + str(self.argument_periapsis) + "\n" + "Longitude of Ascending Node: " + str(self.longitude_ascending_node) + "\n" + "True Anomaly: " + str(self.true_anomaly) + "\n\n" + "Ra_corrected: " + str(self.corr_radiant_ra) + "\n" + "Dec_corrected: " + str(self.corr_radiant_dec) + "\n" + "Vel_g: " + str(self.velocity_g)) ''' Function delibaretely outside of native StateVector class to allow multithreaded call ''' def random_compute_orbit_ceplecha(sv): sv.randomize_velocity_vector() sv.computeOrbit(orbit_computation_method='Ceplecha') return sv def random_compute_orbit_integration_EOE(sv): sv.randomize_velocity_vector() sv.computeOrbit(orbit_computation_method='integrate_EOE') return sv def random_compute_orbit_integration_posvel(sv): sv.randomize_velocity_vector() sv.computeOrbit(orbit_computation_method='integrate_posvel') return sv def PlotOrbitalElements(COE, t_jd, t_soi, Sol): Colour = ['b', 'g', 'r', 'c', 'm', 'y', 'k'] i = 2 #FIXME error plt.figure() plt.subplot(321) plt.plot(t_jd, COE[0] / AU, Colour[i]) plt.axvline(x=t_soi[0], color='b'); plt.grid() plt.xlabel("Time (JD)"); plt.ylabel("Semi-major Axis (AU)") # plt.axvline(x=t_soi[1], color='k') # plt.axvline(x=t_soi[2], color='c') plt.subplot(322) plt.plot(t_jd, COE[1], Colour[i]) plt.axvline(x=t_soi[0], color='b'); plt.grid() plt.xlabel("Time (JD)"); plt.ylabel("Eccentricity") # plt.axvline(x=t_soi[1], color='k') # plt.axvline(x=t_soi[2], color='c') plt.subplot(323) plt.plot(t_jd, COE[2] * 180 / np.pi, Colour[i]) plt.axvline(x=t_soi[0], color='b'); plt.grid() plt.xlabel("Time (JD)"); plt.ylabel("Inclination (deg)") # plt.axvline(x=t_soi[1], color='k') # plt.axvline(x=t_soi[2], color='c') plt.subplot(324) plt.plot(t_jd, COE[3] * 180 / np.pi, Colour[i]) plt.axvline(x=t_soi[0], color='b'); plt.grid() plt.xlabel("Time (JD)"); plt.ylabel("Argument of Periapsis (deg)") # plt.axvline(x=t_soi[1], color='k') # plt.axvline(x=t_soi[2], color='c') plt.subplot(325) plt.plot(t_jd, COE[4] * 180 / np.pi, Colour[i]) plt.axvline(x=t_soi[0], color='b'); plt.grid() plt.xlabel("Time (JD)"); plt.ylabel("Longitude of the Ascending Node (deg)") # plt.axvline(x=t_soi[1], color='k') # plt.axvline(x=t_soi[2], color='c') plt.subplot(326) plt.plot(t_jd, COE[5] * 180 / np.pi, Colour[i]) plt.axvline(x=t_soi[0], color='b'); plt.grid() plt.xlabel("Time (JD)"); plt.ylabel("True Anomaly (deg)") # plt.axvline(x=t_soi[1], color='k') # plt.axvline(x=t_soi[2], color='c') if Sol != 'NoSol': plt.subplot(321) plt.axhline(Sol.semi_major_axis.value, color='g') plt.subplot(322) plt.axhline(Sol.eccentricity, color='g') plt.subplot(323) plt.axhline(Sol.inclination.value, color='g') plt.subplot(324) plt.axhline(Sol.argument_periapsis.value, color='g') plt.subplot(325) plt.axhline(Sol.longitude_ascending_node.value, color='g') plt.subplot(326) plt.axhline(Sol.true_anomaly.value, color='g') plt.show() def PlotOrbit3D(OrbObjList, t0=2457535.0, Sol='NoSol'): from mpl_toolkits.mplot3d import Axes3D ''' 3D Orbit Plot''' fig = plt.figure() ax = fig.add_subplot(111, projection='3d') for OrbObj in OrbObjList: COE = np.vstack((OrbObj.semi_major_axis.value, OrbObj.eccentricity, OrbObj.inclination.value, OrbObj.argument_periapsis.value, OrbObj.longitude_ascending_node.value, OrbObj.true_anomaly.value)) * AU_Deg2m_Rad COE = COE + np.vstack((np.zeros((5, 100)), np.linspace(0, 2 * np.pi, 100))) [Pos_HCI, Vel_HCI] = OrbitalElements2PosVel(COE, 'Sun', 'Classical') ax.plot(Pos_HCI[0]/AU, Pos_HCI[1]/AU, Pos_HCI[2]/AU, color='r', label='Determined Orbit') ''' Plot the planets''' for Planet in Planets: COE = Planets[Planet] * AU_Deg2m_Rad COEs = COE + np.vstack((np.zeros((5, 200)), np.linspace(0, 2 * np.pi, 200))) [pos, vel] = OrbitalElements2PosVel(COEs, 'Sun', 'Classical') ax.plot(pos[0]/AU, pos[1]/AU, pos[2]/AU, color='b') # t_yr = t0 + np.linspace(0, 365.25, 100) # pos_earth = EarthPosition(t_yr) # ax.plot(pos_earth[0]/AU, pos_earth[1]/AU, pos_earth[2]/AU, # color='b', linewidth=2.0, label='Earth') ''' Plot the solution (if given) ''' if Sol != 'NoSol': Sol_oe = np.vstack((Sol.semi_major_axis.value, Sol.eccentricity, Sol.inclination.value, Sol.argument_periapsis.value, Sol.longitude_ascending_node.value, Sol.true_anomaly.value)) * AU_Deg2m_Rad Sol_oe = Sol_oe + np.vstack((np.zeros((5, 100)), np.linspace(0, 2 * np.pi, 100))) [pos, vel] = OrbitalElements2PosVel(Sol_oe, 'Sun', 'Classical') ax.plot(pos[0]/AU, pos[1]/AU, pos[2]/AU, color='g', label='Published Orbit') plt.legend() ax.set_xlim([-5, 5]) ax.set_ylim([-5, 5]) ax.set_zlim([-5, 5]) plt.show() def PlotPerts(Pert): PPert = np.vstack(Pert).T; t = PPert[0] plt.figure(figsize=(16,9)) t_rel = t - np.max(t) # Days plt.plot(t_rel, PPert[1], '-b', linewidth=3.0, label='Earth') plt.plot(t_rel, PPert[2], '--k', linewidth=3.0, label='Moon') plt.plot(t_rel, PPert[3], '-.r', linewidth=3.0, label='Sun') PertJ2 = PPert[4][~np.isnan(PPert[4])] plt.plot(t_rel[~np.isnan(PPert[4])], PertJ2, ':g', linewidth=3.0, label='J2') PertDrag = PPert[5][~np.isnan(PPert[5])] plt.plot(t_rel[~np.isnan(PPert[5])], PertDrag, '-.c', linewidth=3.0, label='Drag') plt.yscale('log'); plt.grid(True); plt.legend(loc='best') plt.xlabel('Relative Time [days]'); plt.ylabel('Perturbation Acceleration [m/s^2]') plt.show() def PlotIntStep(t): dt=[] for k in range(len(t)-1): dt.append((t[k+1] - t[k]) * 24*60*60) plt.figure(figsize=(16,9)) t_rel = t - np.max(t) # Days plt.plot(t_rel[1:], abs(np.array(dt))) plt.yscale('log'); plt.grid(True)#; plt.legend() plt.xlabel('Relative Time [days]'); plt.ylabel('Timestep [sec]') plt.show() def ThirdBodyPerturbation(Pos, rho, mu): ''' Pos is the position of the meteoroid (m) rho is the position of the third body (m) mu is the standard gravitational parameter of the third body (m3/s2) ''' # Battin's scalar formula for vector difference q = np.dot(Pos.T, (Pos - 2 * rho) / (np.dot(rho.T, rho))) f = (3 * q + 3 * q**2 + q**3) / (1 + (1 + q)**1.5) # Third body perturbation acceleration (with indirect term) u = -mu * (Pos + f * rho) / ((norm(Pos - rho))**3) return u def NRLMSISE_00(pos, time, pos_type='eci'): ''' Courtesy of Ellie Sansom ''' """ Inputs: inertial position and time Outputs: [altitude, temp, atm_pres, atm density, sos, dyn_vis] """ from nrlmsise_00_header import nrlmsise_input, nrlmsise_output, nrlmsise_flags from nrlmsise_00 import gtd7 time = Time(time, format='jd', scale='utc') # Convert ECI to LLH coordinates if pos_type == 'eci': Pos_LLH = ECEF2LLH(ECI2ECEF_pos(pos, time)) elif pos_type == 'ecef': Pos_LLH = ECEF2LLH(pos) elif pos_type == 'llh': Pos_LLH = pos else: print('NRLMSISE_00 error: Invalid pos_type') exit() g_lat = np.rad2deg(Pos_LLH[0][0]) g_long = np.rad2deg(Pos_LLH[1][0]) alt = Pos_LLH[2][0] # Break up time into year, day of year, and seconds of the day yDay = time.yday.split(':'); yr = float(yDay[0]); doy = float(yDay[1]) sec = float(yDay[2]) * 60*60 + float(yDay[3]) * 60 + float(yDay[4]) # Assign our variables into the nrmsise inputs Input = nrlmsise_input(yr, doy, sec, alt/1000, g_lat, g_long) Output = nrlmsise_output(); Flags = nrlmsise_flags() # Switches for i in range(1, 24): Flags.switches[i]=1 # GTD7 atmospheric model subroutine gtd7(Input, Flags, Output) # Temperature at alt [deg K] T = Output.t[1] # Molecular number densities [m-3] He = Output.d[0] # He O = Output.d[1] # O N2 = Output.d[2] # N2 O2 = Output.d[3] # O2 Ar = Output.d[4] # Ar H = Output.d[6] # H N = Output.d[7] # N # ano_O = Output.d[8] # Anomalous oxygen sum_mass = He + O + N2 + O2 + Ar + H + N # Molar mass He_mass = 4.0026 # g/mol O_mass = 15.9994 # g/mol N2_mass = 28.013 # g/mol O2_mass = 31.998 # g/mol Ar_mass = 39.948 # g/mol H_mass = 1.0079 # g/mol N_mass = 14.0067 # g/mol # Molecular weight of air [kg/mol] mol_mass_air = (He_mass * He + O_mass * O + N2_mass * N2 + O2_mass * O2 + Ar_mass * Ar + H_mass * H + N_mass * N) / (1000 * sum_mass) # Total mass density [kg*m-3] po = Output.d[5] * 1000 Ru = 8.3144621 # Universal gas constant [J/(K*mol)] R = Ru / mol_mass_air # Individual gas constant [J/(kg*K)] #287.058 # Ideal gas law atm_pres = po * T * R # Speed of sound in atm sos = 331.3 * np.sqrt(1 + T / 273.15) # Dynamic viscosity (http://en.wikipedia.org/wiki/Viscosity) C = 120 #Sutherland's constant for air [deg K] mu_ref = 18.27e-6 # Reference viscosity [[mu_Pa s] * e-6] T_ref = 291.15 # Reference temperature [deg K] dyn_vis = mu_ref * (T_ref + C) / (T + C) * (T / T_ref)**1.5 return T, atm_pres, po, sos, dyn_vis # def compute_infinity_radiant(stateVec): # ''' This method computing the apparent radiant, it doesn't consider the zenith attraction ''' # Pos_geo = stateVec.position # Vel_geo = stateVec.vel_xyz # t0 = stateVec.epoch # # Compute radiant (apparent ORIGIN of meteoroid) # Vel_eci = ECEF2ECI(Pos_geo, Vel_geo, t0)[1] # ra_eci = np.arctan2(-Vel_eci[1], -Vel_eci[0]) # dec_eci = np.arcsin(-Vel_eci[2] / norm(Vel_eci)) # # ^-- redundant information. Already have it in metadata # return ra_eci, dec_eci def compute_cartesian_velocities_from_radiant(stateVec): ''' Turn apparent ecef radiant and velocity into cartesian velocity component ''' vel_geo = -(stateVec.velocity_inf * np.vstack((np.cos(np.deg2rad(stateVec.ra_ecef_inf)) * np.cos(np.deg2rad(stateVec.dec_ecef_inf)), np.sin(np.deg2rad(stateVec.ra_ecef_inf)) * np.cos(np.deg2rad(stateVec.dec_ecef_inf)), np.sin(np.deg2rad(stateVec.dec_ecef_inf))))) return vel_geo def SimilarityCriterion(COE1, COE2, method='SH'): ''' Southworth & Hawkins similarity criterion (1963); or Drummond's similarity criterion (1981); or Jopek's similarity criterion (1993). ''' if type(COE1) == np.ndarray: a1 = COE1[0]/AU; a2 = COE2[0]/AU # [AU] e1 = COE1[1]; e2 = COE2[1] # [] i1 = COE1[2]; i2 = COE2[2] # [rad] w1 = COE1[3]; w2 = COE2[3] # [rad] W1 = COE1[4]; W2 = COE2[4] # [rad] else: a1 = COE1.semi_major_axis.value; a2 = COE2.semi_major_axis.value # [AU] e1 = COE1.eccentricity; e2 = COE2.eccentricity # [] i1 = COE1.inclination.to(u.rad).value; i2 = COE2.inclination.to(u.rad).value # [rad] w1 = COE1.argument_periapsis.to(u.rad).value; w2 = COE2.argument_periapsis.to(u.rad).value # [rad] W1 = COE1.longitude_ascending_node.to(u.rad).value; W2 = COE2.longitude_ascending_node.to(u.rad).value # [rad] q1 = a1 * (1 - e1) # [AU] q2 = a2 * (1 - e2) # [AU] # Angle between the orbital planes (I21) var = (2 * np.sin((i2 - i1) / 2))**2 + np.sin(i1) * np.sin(i2) * (2 * np.sin((W2 - W1) / 2))**2 I21 = 2 * np.arcsin(np.sqrt(var) / 2) if method == 'SH': # Difference between orbits longitude of perihelion (pi21) pi21 = w2 - w1 + 2 * np.arcsin(np.cos((i2 + i1) / 2) * np.sin((W2 - W1) / 2) / np.cos(I21 / 2)) Similarity2 = (e2 - e1)**2 + (q2 - q1)**2 + var + (((e2 + e1) / 2) * (2 * np.sin(pi21 / 2)))**2 Similarity = np.sqrt(Similarity2) elif method == 'D': # Angle between the orbital lines of apsides (theta21) # l1 = W1 + np.arcsin(np.cos(i1) * np.tan(w1)); b1 = np.arcsin(np.sin(i1) * np.sin(w1)) # l2 = W2 + np.arcsin(np.cos(i2) * np.tan(w2)); b2 = np.arcsin(np.sin(i2) * np.sin(w2)) l1 = W1 + np.arctan(np.cos(i1) * np.tan(w1)); b1 = np.arcsin(np.sin(i1) * np.sin(w1)) l2 = W2 + np.arctan(np.cos(i2) * np.tan(w2)); b2 = np.arcsin(np.sin(i2) * np.sin(w2)) theta21 = np.arccos(np.sin(b1) * np.sin(b2) + np.cos(b1) * np.cos(b2) * np.cos(l2 - l1)) Similarity2 = ((e2 - e1) / (e2 + e1))**2 + ((q2 - q1) / (q2 + q1))**2 + \ (I21 / np.pi)**2 + ((e2 + e1) / 2)**2 * (theta21 / np.pi)**2 Similarity = np.sqrt(Similarity2) elif method == 'H': # Difference between orbits longitude of perihelion (pi21) pi21 = w2 - w1 + 2 * np.arcsin(np.cos((i2 + i1) / 2) * np.sin((W2 - W1) / 2) / np.cos(I21 / 2)) Similarity2 = (e2 - e1)**2 + ((q2 - q1) / (q2 + q1))**2 + var + \ (((e2 + e1) / 2) * (2 * np.sin(pi21 / 2)))**2 Similarity = np.sqrt(Similarity2) return Similarity def generate_ephemeris(pos_hci, t_jd): # Save the datetime ephem_dict = {'datetime': Time(t_jd, format='jd', scale='utc').isot} ephem_dict['MJD'] = Time(t_jd, format='jd', scale='utc').mjd # distance to sun ephem_dict['distance_to_sun'] = norm(pos_hci, axis=0) / 1000 #km # Convert to eci coordinates pos_eci = HCI2ECI_pos(pos_hci, t_jd) ephem_dict['pos_eci_x'] = pos_eci[0] ephem_dict['pos_eci_y'] = pos_eci[1] ephem_dict['pos_eci_z'] = pos_eci[2] pos_hcrs = HCI2HCRS(pos_hci) # Calculate phase angle ephem_dict['phase_angle'] = np.rad2deg(np.arccos(np.sum(pos_hcrs * pos_eci, axis=0) / (norm(pos_hcrs, axis=0) * norm(pos_eci, axis=0)))) # Calculate elongation angle pos_sun = pos_eci - pos_hcrs ephem_dict['elongation_angle'] = np.rad2deg(np.arccos(np.sum(pos_sun * pos_eci, axis=0) / (norm(pos_sun, axis=0) * norm(pos_eci, axis=0)))) # Calculate ephemeris dist = norm(pos_eci, axis=0) #m ephem_dict['ra'] = np.rad2deg(np.arctan2(pos_eci[1], pos_eci[0]))%360 #deg ephem_dict['dec'] = np.rad2deg(np.arcsin(pos_eci[2] / dist)) #deg ephem_dict['distance_to_earth'] = norm(pos_eci, axis=0) / 1000 #km return ephem_dict
user = { 'basket': [1, 2, 3], 'greet': 'hello', 'age': 20 } user2 = { 'basket': [10, 20, 30], 'greet': 'hello', 'age': 30 } print(user['basket']) print(user2['basket']) print(user.get('name')) # None print(user.get('name', 'Elena')) # default = 'Elena'; print: Elena checker = 'basket' in user2.keys() print(checker) # True print(30 in user2.values()) # True # dict_items([('basket', [1, 2, 3]), ('greet', 'hello'), ('age', 20)]) print(user.items()) user3 = user2 # user3 points in the same ref like user2 user3.clear() print(user3) # {} print(user2) # {} user4 = user.copy() user4.clear() print(user4) # {} print(user) # {'basket': [1, 2, 3], 'greet': 'hello', 'age': 20} print(user.pop('age')) # 20 print(user) # {'basket': [1, 2, 3], 'greet': 'hello'} user.popitem() print(user) # {'basket': [1, 2, 3]} user.update({'age': 90}) print(user) # {'basket': [1, 2, 3], 'age': 90} user.update({'name': 'Elena'}) print(user) # {'basket': [1, 2, 3], 'age': 90, 'name': 'Elena'}
import requests def get_quotes(): url ='http://quotes.stormconsultancy.co.uk/random.json' response = requests.get(url) quote =response.json() return quote
# -*- coding: utf-8 -*- """create cities table Revision ID: 333c6c0afa8f Revises: 3741581c7fc4 Create Date: 2017-10-08 15:29:44.416140 """ # revision identifiers, used by Alembic. revision = '333c6c0afa8f' down_revision = '3741581c7fc4' branch_labels = None depends_on = None from alembic import op import sqlalchemy as sa from sqlalchemy.sql import table, column from sqlalchemy import String, Integer def downgrade(): op.drop_table('cities') def upgrade(): op.create_table( 'cities', sa.Column('id', sa.Integer(), nullable=False), sa.Column('symbol_code', sa.Integer(), nullable=False), sa.Column('name', sa.String(length=100), nullable=False), sa.Column('search_heb', sa.String(length=100), nullable=False), sa.Column('search_eng', sa.String(length=100), nullable=True), sa.Column('search_priority', sa.Integer(), nullable=False), sa.PrimaryKeyConstraint('id'), sa.UniqueConstraint('search_heb') ) cities_table = table('cities', column('search_priority', Integer()), column('search_heb', String()), column('name', String()), column('symbol_code', Integer()), ) op.bulk_insert(cities_table, [{"search_priority": 1, "search_heb": u"לא רשום", "symbol_code": 0, "name": u"לא רשום"}, {"search_priority": 0, "search_heb": u"שחר", "symbol_code": 7, "name": u"שחר"}, {"search_priority": 0, "search_heb": u"תירוש", "symbol_code": 10, "name": u"תירוש"}, {"search_priority": 1, "search_heb": u"ניר ח\"ן", "symbol_code": 11, "name": u"ניר ח\"ן"}, {"search_priority": 0, "search_heb": u"חצבה", "symbol_code": 13, "name": u"חצבה"}, {"search_priority": 0, "search_heb": u"נועם", "symbol_code": 15, "name": u"נועם"}, {"search_priority": 1, "search_heb": u"בית ניר", "symbol_code": 16, "name": u"בית ניר"}, {"search_priority": 1, "search_heb": u"שדה משה", "symbol_code": 18, "name": u"שדה משה"}, {"search_priority": 1, "search_heb": u"באר אורה", "symbol_code": 21, "name": u"באר אורה"}, {"search_priority": 1, "search_heb": u"מקווה ישראל", "symbol_code": 22, "name": u"מקווה ישראל"}, {"search_priority": 0, "search_heb": u"אמציה", "symbol_code": 23, "name": u"אמציה"}, {"search_priority": 0, "search_heb": u"לכיש", "symbol_code": 24, "name": u"לכיש"}, {"search_priority": 1, "search_heb": u"ראש פינה", "symbol_code": 26, "name": u"ראש פינה"}, {"search_priority": 1, "search_heb": u"שדות מיכה", "symbol_code": 27, "name": u"שדות מיכה"}, {"search_priority": 1, "search_heb": u"מזכרת בתיה", "symbol_code": 28, "name": u"מזכרת בתיה"}, {"search_priority": 1, "search_heb": u"יסוד המעלה", "symbol_code": 29, "name": u"יסוד המעלה"}, {"search_priority": 0, "search_heb": u"אופקים", "symbol_code": 31, "name": u"אופקים"}, {"search_priority": 0, "search_heb": u"עוצם", "symbol_code": 32, "name": u"עוצם"}, {"search_priority": 1, "search_heb": u"בת שלמה", "symbol_code": 33, "name": u"בת שלמה"}, {"search_priority": 0, "search_heb": u"גדות", "symbol_code": 35, "name": u"גדות"}, {"search_priority": 1, "search_heb": u"שדה דוד", "symbol_code": 36, "name": u"שדה דוד"}, {"search_priority": 0, "search_heb": u"איתן", "symbol_code": 37, "name": u"איתן"}, {"search_priority": 1, "search_heb": u"כרי דשא", "symbol_code": 38, "name": u"כרי דשא"}, {"search_priority": 0, "search_heb": u"גפן", "symbol_code": 39, "name": u"גפן"}, {"search_priority": 0, "search_heb": u"אליכין", "symbol_code": 41, "name": u"אליכין"}, {"search_priority": 0, "search_heb": u"מטולה", "symbol_code": 43, "name": u"מטולה"}, {"search_priority": 0, "search_heb": u"זוהר", "symbol_code": 44, "name": u"זוהר"}, {"search_priority": 0, "search_heb": u"יבנאל", "symbol_code": 46, "name": u"יבנאל"}, {"search_priority": 1, "search_heb": u"כפר תבור", "symbol_code": 47, "name": u"כפר תבור"}, {"search_priority": 0, "search_heb": u"מנחמיה", "symbol_code": 48, "name": u"מנחמיה"}, {"search_priority": 0, "search_heb": u"אילניה", "symbol_code": 49, "name": u"אילניה"}, {"search_priority": 0, "search_heb": u"לוזית", "symbol_code": 52, "name": u"לוזית"}, {"search_priority": 0, "search_heb": u"עתלית", "symbol_code": 53, "name": u"עתלית"}, {"search_priority": 0, "search_heb": u"נוגה", "symbol_code": 55, "name": u"נוגה"}, {"search_priority": 1, "search_heb": u"כנרת )קבוצה(", "symbol_code": 57, "name": u"כנרת )קבוצה("}, {"search_priority": 0, "search_heb": u"מצפה", "symbol_code": 58, "name": u"מצפה"}, {"search_priority": 0, "search_heb": u"נחושה", "symbol_code": 59, "name": u"נחושה"}, {"search_priority": 1, "search_heb": u"דגניה א'", "symbol_code": 62, "name": u"דגניה א'"}, {"search_priority": 1, "search_heb": u"כנרת )מושבה(", "symbol_code": 63, "name": u"כנרת )מושבה("}, {"search_priority": 1, "search_heb": u"יד רמב\"ם", "symbol_code": 64, "name": u"יד רמב\"ם"}, {"search_priority": 0, "search_heb": u"מגדל", "symbol_code": 65, "name": u"מגדל"}, {"search_priority": 1, "search_heb": u"מרחביה )קיבוץ(", "symbol_code": 66, "name": u"מרחביה )קיבוץ("}, {"search_priority": 1, "search_heb": u"אור הנר", "symbol_code": 67, "name": u"אור הנר"}, {"search_priority": 1, "search_heb": u"ניר עוז", "symbol_code": 69, "name": u"ניר עוז"}, {"search_priority": 0, "search_heb": u"אשדוד", "symbol_code": 70, "name": u"אשדוד"}, {"search_priority": 0, "search_heb": u"אשבול", "symbol_code": 71, "name": u"אשבול"}, {"search_priority": 1, "search_heb": u"גן שמואל", "symbol_code": 72, "name": u"גן שמואל"}, {"search_priority": 1, "search_heb": u"עין הוד", "symbol_code": 74, "name": u"עין הוד"}, {"search_priority": 1, "search_heb": u"כפר גלעדי", "symbol_code": 76, "name": u"כפר גלעדי"}, {"search_priority": 1, "search_heb": u"איילת השחר", "symbol_code": 77, "name": u"איילת השחר"}, {"search_priority": 1, "search_heb": u"קרית ענבים", "symbol_code": 78, "name": u"קרית ענבים"}, {"search_priority": 1, "search_heb": u"דגניה ב'", "symbol_code": 79, "name": u"דגניה ב'"}, {"search_priority": 0, "search_heb": u"נהלל", "symbol_code": 80, "name": u"נהלל"}, {"search_priority": 2, "search_heb": u"עין חרוד )מאוחד(", "symbol_code": 82, "name": u"עין חרוד )מאוחד("}, {"search_priority": 1, "search_heb": u"תל יוסף", "symbol_code": 84, "name": u"תל יוסף"}, {"search_priority": 1, "search_heb": u"כפר יחזקאל", "symbol_code": 85, "name": u"כפר יחזקאל"}, {"search_priority": 0, "search_heb": u"גבע", "symbol_code": 86, "name": u"גבע"}, {"search_priority": 2, "search_heb": u"כרם בן שמן", "symbol_code": 88, "name": u"כרם בן שמן"}, {"search_priority": 2, "search_heb": u"עין חרוד )איחוד(", "symbol_code": 89, "name": u"עין חרוד )איחוד("}, {"search_priority": 0, "search_heb": u"חפצי-בה", "symbol_code": 90, "name": u"חפצי-בה"}, {"search_priority": 0, "search_heb": u"גיניגר", "symbol_code": 92, "name": u"גיניגר"}, {"search_priority": 0, "search_heb": u"בלפוריה", "symbol_code": 94, "name": u"בלפוריה"}, {"search_priority": 1, "search_heb": u"בית אלפא", "symbol_code": 95, "name": u"בית אלפא"}, {"search_priority": 0, "search_heb": u"יגור", "symbol_code": 96, "name": u"יגור"}, {"search_priority": 1, "search_heb": u"מרחביה )מושב(", "symbol_code": 97, "name": u"מרחביה )מושב("}, {"search_priority": 1, "search_heb": u"כפר מל\"ל", "symbol_code": 98, "name": u"כפר מל\"ל"}, {"search_priority": 1, "search_heb": u"מצפה רמון", "symbol_code": 99, "name": u"מצפה רמון"}, {"search_priority": 1, "search_heb": u"מאיר שפיה", "symbol_code": 102, "name": u"מאיר שפיה"}, {"search_priority": 1, "search_heb": u"תל עדשים", "symbol_code": 103, "name": u"תל עדשים"}, {"search_priority": 0, "search_heb": u"מזרע", "symbol_code": 104, "name": u"מזרע"}, {"search_priority": 1, "search_heb": u"כפר גדעון", "symbol_code": 106, "name": u"כפר גדעון"}, {"search_priority": 1, "search_heb": u"כפר סילבר", "symbol_code": 107, "name": u"כפר סילבר"}, {"search_priority": 2, "search_heb": u"כפר חסידים א'", "symbol_code": 112, "name": u"כפר חסידים א'"}, {"search_priority": 0, "search_heb": u"אדירים", "symbol_code": 113, "name": u"אדירים"}, {"search_priority": 0, "search_heb": u"חופית", "symbol_code": 115, "name": u"חופית"}, {"search_priority": 1, "search_heb": u"רמת ישי", "symbol_code": 122, "name": u"רמת ישי"}, {"search_priority": 0, "search_heb": u"שריד", "symbol_code": 126, "name": u"שריד"}, {"search_priority": 1, "search_heb": u"רמת רחל", "symbol_code": 127, "name": u"רמת רחל"}, {"search_priority": 1, "search_heb": u"גת רימון", "symbol_code": 128, "name": u"גת רימון"}, {"search_priority": 1, "search_heb": u"משמר העמק", "symbol_code": 130, "name": u"משמר העמק"}, {"search_priority": 1, "search_heb": u"כפר ברוך", "symbol_code": 132, "name": u"כפר ברוך"}, {"search_priority": 0, "search_heb": u"גבת", "symbol_code": 133, "name": u"גבת"}, {"search_priority": 0, "search_heb": u"יפעת", "symbol_code": 134, "name": u"יפעת"}, {"search_priority": 1, "search_heb": u"רמת דוד", "symbol_code": 135, "name": u"רמת דוד"}, {"search_priority": 1, "search_heb": u"עין שמר", "symbol_code": 139, "name": u"עין שמר"}, {"search_priority": 1, "search_heb": u"כפר יהושע", "symbol_code": 140, "name": u"כפר יהושע"}, {"search_priority": 0, "search_heb": u"ברק", "symbol_code": 141, "name": u"ברק"}, {"search_priority": 1, "search_heb": u"שדה יעקב", "symbol_code": 142, "name": u"שדה יעקב"}, {"search_priority": 1, "search_heb": u"בית זרע", "symbol_code": 143, "name": u"בית זרע"}, {"search_priority": 1, "search_heb": u"גן שלמה", "symbol_code": 144, "name": u"גן שלמה"}, {"search_priority": 0, "search_heb": u"גדיש", "symbol_code": 145, "name": u"גדיש"}, {"search_priority": 0, "search_heb": u"דבורה", "symbol_code": 146, "name": u"דבורה"}, {"search_priority": 1, "search_heb": u"גבעת ברנר", "symbol_code": 147, "name": u"גבעת ברנר"}, {"search_priority": 1, "search_heb": u"תל מונד", "symbol_code": 154, "name": u"תל מונד"}, {"search_priority": 1, "search_heb": u"באר טוביה", "symbol_code": 155, "name": u"באר טוביה"}, {"search_priority": 0, "search_heb": u"עיינות", "symbol_code": 156, "name": u"עיינות"}, {"search_priority": 1, "search_heb": u"עין ורד", "symbol_code": 157, "name": u"עין ורד"}, {"search_priority": 0, "search_heb": u"נען", "symbol_code": 158, "name": u"נען"}, {"search_priority": 1, "search_heb": u"בית חנן", "symbol_code": 159, "name": u"בית חנן"}, {"search_priority": 0, "search_heb": u"חולדה", "symbol_code": 160, "name": u"חולדה"}, {"search_priority": 0, "search_heb": u"חירות", "symbol_code": 162, "name": u"חירות"}, {"search_priority": 0, "search_heb": u"תימורים", "symbol_code": 163, "name": u"תימורים"}, {"search_priority": 0, "search_heb": u"מלאה", "symbol_code": 164, "name": u"מלאה"}, {"search_priority": 1, "search_heb": u"ניר יפה", "symbol_code": 165, "name": u"ניר יפה"}, {"search_priority": 1, "search_heb": u"גן יבנה", "symbol_code": 166, "name": u"גן יבנה"}, {"search_priority": 1, "search_heb": u"עין החורש", "symbol_code": 167, "name": u"עין החורש"}, {"search_priority": 1, "search_heb": u"כפר יונה", "symbol_code": 168, "name": u"כפר יונה"}, {"search_priority": 1, "search_heb": u"כפר יעבץ", "symbol_code": 170, "name": u"כפר יעבץ"}, {"search_priority": 0, "search_heb": u"פרדסיה", "symbol_code": 171, "name": u"פרדסיה"}, {"search_priority": 2, "search_heb": u"גבעת חיים )מאוחד(", "symbol_code": 173, "name": u"גבעת חיים )מאוחד("}, {"search_priority": 0, "search_heb": u"נטעים", "symbol_code": 174, "name": u"נטעים"}, {"search_priority": 0, "search_heb": u"אביחיל", "symbol_code": 175, "name": u"אביחיל"}, {"search_priority": 0, "search_heb": u"אפיקים", "symbol_code": 176, "name": u"אפיקים"}, {"search_priority": 1, "search_heb": u"כפר ביל\"ו", "symbol_code": 177, "name": u"כפר ביל\"ו"}, {"search_priority": 1, "search_heb": u"רמת יוחנן", "symbol_code": 178, "name": u"רמת יוחנן"}, {"search_priority": 1, "search_heb": u"אבן יהודה", "symbol_code": 182, "name": u"אבן יהודה"}, {"search_priority": 0, "search_heb": u"ירקונה", "symbol_code": 183, "name": u"ירקונה"}, {"search_priority": 1, "search_heb": u"רמת הכובש", "symbol_code": 184, "name": u"רמת הכובש"}, {"search_priority": 0, "search_heb": u"נעורים", "symbol_code": 186, "name": u"נעורים"}, {"search_priority": 1, "search_heb": u"כפר הס", "symbol_code": 187, "name": u"כפר הס"}, {"search_priority": 3, "search_heb": u"אשדות יעקב )מאוחד(", "symbol_code": 188, "name": u"אשדות יעקב )מאוחד("}, {"search_priority": 1, "search_heb": u"כפר פינס", "symbol_code": 189, "name": u"כפר פינס"}, {"search_priority": 1, "search_heb": u"כפר ויתקין", "symbol_code": 190, "name": u"כפר ויתקין"}, {"search_priority": 1, "search_heb": u"הדר עם", "symbol_code": 191, "name": u"הדר עם"}, {"search_priority": 1, "search_heb": u"כפר החורש", "symbol_code": 192, "name": u"כפר החורש"}, {"search_priority": 1, "search_heb": u"כפר חיים", "symbol_code": 193, "name": u"כפר חיים"}, {"search_priority": 1, "search_heb": u"משמר השרון", "symbol_code": 194, "name": u"משמר השרון"}, {"search_priority": 0, "search_heb": u"קדימה-צורן", "symbol_code": 195, "name": u"קדימה-צורן"}, {"search_priority": 0, "search_heb": u"גיבתון", "symbol_code": 196, "name": u"גיבתון"}, {"search_priority": 0, "search_heb": u"מעברות", "symbol_code": 197, "name": u"מעברות"}, {"search_priority": 0, "search_heb": u"צופית", "symbol_code": 198, "name": u"צופית"}, {"search_priority": 3, "search_heb": u"אשדות יעקב )איחוד(", "symbol_code": 199, "name": u"אשדות יעקב )איחוד("}, {"search_priority": 1, "search_heb": u"בית ינאי", "symbol_code": 200, "name": u"בית ינאי"}, {"search_priority": 1, "search_heb": u"בית עובד", "symbol_code": 202, "name": u"בית עובד"}, {"search_priority": 0, "search_heb": u"אלישיב", "symbol_code": 204, "name": u"אלישיב"}, {"search_priority": 0, "search_heb": u"חגלה", "symbol_code": 205, "name": u"חגלה"}, {"search_priority": 1, "search_heb": u"רמות השבים", "symbol_code": 206, "name": u"רמות השבים"}, {"search_priority": 1, "search_heb": u"גבעת ח\"ן", "symbol_code": 207, "name": u"גבעת ח\"ן"}, {"search_priority": 1, "search_heb": u"מוצא עילית", "symbol_code": 208, "name": u"מוצא עילית"}, {"search_priority": 1, "search_heb": u"בית צבי", "symbol_code": 212, "name": u"בית צבי"}, {"search_priority": 0, "search_heb": u"משמרות", "symbol_code": 213, "name": u"משמרות"}, {"search_priority": 1, "search_heb": u"כפר הרא\"ה", "symbol_code": 217, "name": u"כפר הרא\"ה"}, {"search_priority": 1, "search_heb": u"גני עם", "symbol_code": 218, "name": u"גני עם"}, {"search_priority": 1, "search_heb": u"חיבת ציון", "symbol_code": 219, "name": u"חיבת ציון"}, {"search_priority": 1, "search_heb": u"כפר ביאליק", "symbol_code": 220, "name": u"כפר ביאליק"}, {"search_priority": 1, "search_heb": u"עין עירון", "symbol_code": 223, "name": u"עין עירון"}, {"search_priority": 1, "search_heb": u"שושנת העמקים", "symbol_code": 224, "name": u"שושנת העמקים"}, {"search_priority": 1, "search_heb": u"גן השומרון", "symbol_code": 225, "name": u"גן השומרון"}, {"search_priority": 1, "search_heb": u"גני תקווה", "symbol_code": 229, "name": u"גני תקווה"}, {"search_priority": 0, "search_heb": u"מעש", "symbol_code": 230, "name": u"מעש"}, {"search_priority": 0, "search_heb": u"שפיים", "symbol_code": 232, "name": u"שפיים"}, {"search_priority": 1, "search_heb": u"כפר ידידיה", "symbol_code": 233, "name": u"כפר ידידיה"}, {"search_priority": 0, "search_heb": u"ביצרון", "symbol_code": 234, "name": u"ביצרון"}, {"search_priority": 1, "search_heb": u"חבצלת השרון", "symbol_code": 235, "name": u"חבצלת השרון"}, {"search_priority": 1, "search_heb": u"שער העמקים", "symbol_code": 237, "name": u"שער העמקים"}, {"search_priority": 1, "search_heb": u"גן חיים", "symbol_code": 239, "name": u"גן חיים"}, {"search_priority": 1, "search_heb": u"יקנעם עילית", "symbol_code": 240, "name": u"יקנעם עילית"}, {"search_priority": 1, "search_heb": u"יקנעם )מושבה(", "symbol_code": 241, "name": u"יקנעם )מושבה("}, {"search_priority": 1, "search_heb": u"בית השיטה", "symbol_code": 242, "name": u"בית השיטה"}, {"search_priority": 0, "search_heb": u"נתיבות", "symbol_code": 246, "name": u"נתיבות"}, {"search_priority": 0, "search_heb": u"רשפון", "symbol_code": 247, "name": u"רשפון"}, {"search_priority": 1, "search_heb": u"בית שערים", "symbol_code": 248, "name": u"בית שערים"}, {"search_priority": 1, "search_heb": u"כפר סירקין", "symbol_code": 249, "name": u"כפר סירקין"}, {"search_priority": 0, "search_heb": u"הזורע", "symbol_code": 250, "name": u"הזורע"}, {"search_priority": 1, "search_heb": u"ביתן אהרן", "symbol_code": 252, "name": u"ביתן אהרן"}, {"search_priority": 0, "search_heb": u"חולתה", "symbol_code": 253, "name": u"חולתה"}, {"search_priority": 1, "search_heb": u"כפר המכבי", "symbol_code": 254, "name": u"כפר המכבי"}, {"search_priority": 1, "search_heb": u"כפר חיטים", "symbol_code": 255, "name": u"כפר חיטים"}, {"search_priority": 3, "search_heb": u"ניר דוד )תל עמל(", "symbol_code": 256, "name": u"ניר דוד )תל עמל("}, {"search_priority": 0, "search_heb": u"נופך", "symbol_code": 257, "name": u"נופך"}, {"search_priority": 1, "search_heb": u"שדה נחום", "symbol_code": 259, "name": u"שדה נחום"}, {"search_priority": 0, "search_heb": u"גינוסר", "symbol_code": 262, "name": u"גינוסר"}, {"search_priority": 0, "search_heb": u"מסדה", "symbol_code": 263, "name": u"מסדה"}, {"search_priority": 1, "search_heb": u"שער הגולן", "symbol_code": 264, "name": u"שער הגולן"}, {"search_priority": 1, "search_heb": u"בית יוסף", "symbol_code": 265, "name": u"בית יוסף"}, {"search_priority": 1, "search_heb": u"כפר שמריהו", "symbol_code": 267, "name": u"כפר שמריהו"}, {"search_priority": 1, "search_heb": u"טירת צבי", "symbol_code": 268, "name": u"טירת צבי"}, {"search_priority": 0, "search_heb": u"מולדת", "symbol_code": 269, "name": u"מולדת"}, {"search_priority": 1, "search_heb": u"עין השופט", "symbol_code": 270, "name": u"עין השופט"}, {"search_priority": 1, "search_heb": u"מעוז חיים", "symbol_code": 272, "name": u"מעוז חיים"}, {"search_priority": 1, "search_heb": u"עין גב", "symbol_code": 273, "name": u"עין גב"}, {"search_priority": 1, "search_heb": u"כפר מנחם", "symbol_code": 274, "name": u"כפר מנחם"}, {"search_priority": 1, "search_heb": u"צור משה", "symbol_code": 276, "name": u"צור משה"}, {"search_priority": 0, "search_heb": u"אושה", "symbol_code": 278, "name": u"אושה"}, {"search_priority": 0, "search_heb": u"חניתה", "symbol_code": 280, "name": u"חניתה"}, {"search_priority": 1, "search_heb": u"פקיעין חדשה", "symbol_code": 281, "name": u"פקיעין חדשה"}, {"search_priority": 1, "search_heb": u"שבי ציון", "symbol_code": 282, "name": u"שבי ציון"}, {"search_priority": 1, "search_heb": u"שדה ורבורג", "symbol_code": 284, "name": u"שדה ורבורג"}, {"search_priority": 0, "search_heb": u"אלונים", "symbol_code": 285, "name": u"אלונים"}, {"search_priority": 1, "search_heb": u"מעלה החמישה", "symbol_code": 286, "name": u"מעלה החמישה"}, {"search_priority": 1, "search_heb": u"תל יצחק", "symbol_code": 287, "name": u"תל יצחק"}, {"search_priority": 1, "search_heb": u"בית יהושע", "symbol_code": 288, "name": u"בית יהושע"}, {"search_priority": 1, "search_heb": u"עין המפרץ", "symbol_code": 289, "name": u"עין המפרץ"}, {"search_priority": 1, "search_heb": u"מעין צבי", "symbol_code": 290, "name": u"מעין צבי"}, {"search_priority": 0, "search_heb": u"שרונה", "symbol_code": 292, "name": u"שרונה"}, {"search_priority": 1, "search_heb": u"שדה יואב", "symbol_code": 293, "name": u"שדה יואב"}, {"search_priority": 0, "search_heb": u"אילון", "symbol_code": 294, "name": u"אילון"}, {"search_priority": 1, "search_heb": u"כפר רופין", "symbol_code": 295, "name": u"כפר רופין"}, {"search_priority": 1, "search_heb": u"נווה איתן", "symbol_code": 296, "name": u"נווה איתן"}, {"search_priority": 1, "search_heb": u"כפר מסריק", "symbol_code": 297, "name": u"כפר מסריק"}, {"search_priority": 0, "search_heb": u"מסילות", "symbol_code": 298, "name": u"מסילות"}, {"search_priority": 0, "search_heb": u"דליה", "symbol_code": 300, "name": u"דליה"}, {"search_priority": 1, "search_heb": u"בית עוזיאל", "symbol_code": 301, "name": u"בית עוזיאל"}, {"search_priority": 0, "search_heb": u"דפנה", "symbol_code": 302, "name": u"דפנה"}, {"search_priority": 0, "search_heb": u"דן", "symbol_code": 303, "name": u"דן"}, {"search_priority": 1, "search_heb": u"שדה אליהו", "symbol_code": 304, "name": u"שדה אליהו"}, {"search_priority": 0, "search_heb": u"גשר", "symbol_code": 305, "name": u"גשר"}, {"search_priority": 1, "search_heb": u"שדמות דבורה", "symbol_code": 306, "name": u"שדמות דבורה"}, {"search_priority": 0, "search_heb": u"הזורעים", "symbol_code": 307, "name": u"הזורעים"}, {"search_priority": 0, "search_heb": u"מחניים", "symbol_code": 308, "name": u"מחניים"}, {"search_priority": 0, "search_heb": u"נהורה", "symbol_code": 309, "name": u"נהורה"}, {"search_priority": 1, "search_heb": u"כפר גליקסון", "symbol_code": 310, "name": u"כפר גליקסון"}, {"search_priority": 1, "search_heb": u"גן שורק", "symbol_code": 311, "name": u"גן שורק"}, {"search_priority": 1, "search_heb": u"נווה ים", "symbol_code": 312, "name": u"נווה ים"}, {"search_priority": 0, "search_heb": u"אפק", "symbol_code": 313, "name": u"אפק"}, {"search_priority": 0, "search_heb": u"נגבה", "symbol_code": 315, "name": u"נגבה"}, {"search_priority": 1, "search_heb": u"כפר נטר", "symbol_code": 316, "name": u"כפר נטר"}, {"search_priority": 1, "search_heb": u"בית אורן", "symbol_code": 317, "name": u"בית אורן"}, {"search_priority": 0, "search_heb": u"עמיעוז", "symbol_code": 318, "name": u"עמיעוז"}, {"search_priority": 0, "search_heb": u"עמיר", "symbol_code": 319, "name": u"עמיר"}, {"search_priority": 1, "search_heb": u"כפר ורבורג", "symbol_code": 320, "name": u"כפר ורבורג"}, {"search_priority": 1, "search_heb": u"בית הלל", "symbol_code": 322, "name": u"בית הלל"}, {"search_priority": 1, "search_heb": u"שאר ישוב", "symbol_code": 324, "name": u"שאר ישוב"}, {"search_priority": 0, "search_heb": u"מצובה", "symbol_code": 325, "name": u"מצובה"}, {"search_priority": 2, "search_heb": u"בית יצחק-שער חפר", "symbol_code": 326, "name": u"בית יצחק-שער חפר"}, {"search_priority": 1, "search_heb": u"שדות ים", "symbol_code": 327, "name": u"שדות ים"}, {"search_priority": 0, "search_heb": u"עזוז", "symbol_code": 328, "name": u"עזוז"}, {"search_priority": 1, "search_heb": u"שדה נחמיה", "symbol_code": 329, "name": u"שדה נחמיה"}, {"search_priority": 0, "search_heb": u"אלומות", "symbol_code": 330, "name": u"אלומות"}, {"search_priority": 1, "search_heb": u"ניר צבי", "symbol_code": 331, "name": u"ניר צבי"}, {"search_priority": 1, "search_heb": u"קבוצת יבנה", "symbol_code": 334, "name": u"קבוצת יבנה"}, {"search_priority": 1, "search_heb": u"רמת השופט", "symbol_code": 335, "name": u"רמת השופט"}, {"search_priority": 0, "search_heb": u"דורות", "symbol_code": 336, "name": u"דורות"}, {"search_priority": 0, "search_heb": u"איבים", "symbol_code": 338, "name": u"איבים"}, {"search_priority": 1, "search_heb": u"רמת צבי", "symbol_code": 339, "name": u"רמת צבי"}, {"search_priority": 1, "search_heb": u"גת )קיבוץ(", "symbol_code": 340, "name": u"גת )קיבוץ("}, {"search_priority": 0, "search_heb": u"גברעם", "symbol_code": 342, "name": u"גברעם"}, {"search_priority": 0, "search_heb": u"חמדיה", "symbol_code": 343, "name": u"חמדיה"}, {"search_priority": 0, "search_heb": u"מענית", "symbol_code": 344, "name": u"מענית"}, {"search_priority": 1, "search_heb": u"כפר סאלד", "symbol_code": 345, "name": u"כפר סאלד"}, {"search_priority": 1, "search_heb": u"גליל ים", "symbol_code": 346, "name": u"גליל ים"}, {"search_priority": 0, "search_heb": u"מנרה", "symbol_code": 347, "name": u"מנרה"}, {"search_priority": 1, "search_heb": u"ניר עם", "symbol_code": 348, "name": u"ניר עם"}, {"search_priority": 0, "search_heb": u"ניצן", "symbol_code": 351, "name": u"ניצן"}, {"search_priority": 0, "search_heb": u"גבולות", "symbol_code": 352, "name": u"גבולות"}, {"search_priority": 1, "search_heb": u"בית זיד", "symbol_code": 353, "name": u"בית זיד"}, {"search_priority": 0, "search_heb": u"רביבים", "symbol_code": 354, "name": u"רביבים"}, {"search_priority": 0, "search_heb": u"חורשים", "symbol_code": 355, "name": u"חורשים"}, {"search_priority": 0, "search_heb": u"הגושרים", "symbol_code": 356, "name": u"הגושרים"}, {"search_priority": 1, "search_heb": u"כפר בלום", "symbol_code": 357, "name": u"כפר בלום"}, {"search_priority": 1, "search_heb": u"יד מרדכי", "symbol_code": 358, "name": u"יד מרדכי"}, {"search_priority": 0, "search_heb": u"ניצנים", "symbol_code": 359, "name": u"ניצנים"}, {"search_priority": 1, "search_heb": u"גבעת ניל\"י", "symbol_code": 360, "name": u"גבעת ניל\"י"}, {"search_priority": 0, "search_heb": u"רוחמה", "symbol_code": 362, "name": u"רוחמה"}, {"search_priority": 1, "search_heb": u"חפץ חיים", "symbol_code": 363, "name": u"חפץ חיים"}, {"search_priority": 1, "search_heb": u"כפר אוריה", "symbol_code": 364, "name": u"כפר אוריה"}, {"search_priority": 1, "search_heb": u"בית קשת", "symbol_code": 365, "name": u"בית קשת"}, {"search_priority": 0, "search_heb": u"שמיר", "symbol_code": 366, "name": u"שמיר"}, {"search_priority": 1, "search_heb": u"עין העמק", "symbol_code": 367, "name": u"עין העמק"}, {"search_priority": 0, "search_heb": u"ביריה", "symbol_code": 368, "name": u"ביריה"}, {"search_priority": 2, "search_heb": u"גלעד )אבן יצחק(", "symbol_code": 369, "name": u"גלעד )אבן יצחק("}, {"search_priority": 0, "search_heb": u"גזר", "symbol_code": 370, "name": u"גזר"}, {"search_priority": 0, "search_heb": u"כדורי", "symbol_code": 371, "name": u"כדורי"}, {"search_priority": 1, "search_heb": u"רמות נפתלי", "symbol_code": 372, "name": u"רמות נפתלי"}, {"search_priority": 1, "search_heb": u"בית הלוי", "symbol_code": 373, "name": u"בית הלוי"}, {"search_priority": 0, "search_heb": u"חוקוק", "symbol_code": 374, "name": u"חוקוק"}, {"search_priority": 0, "search_heb": u"מגל", "symbol_code": 375, "name": u"מגל"}, {"search_priority": 0, "search_heb": u"עברון", "symbol_code": 376, "name": u"עברון"}, {"search_priority": 0, "search_heb": u"המעפיל", "symbol_code": 377, "name": u"המעפיל"}, {"search_priority": 1, "search_heb": u"משגב עם", "symbol_code": 378, "name": u"משגב עם"}, {"search_priority": 0, "search_heb": u"גאולים", "symbol_code": 379, "name": u"גאולים"}, {"search_priority": 1, "search_heb": u"להבות הבשן", "symbol_code": 380, "name": u"להבות הבשן"}, {"search_priority": 0, "search_heb": u"מכמורת", "symbol_code": 382, "name": u"מכמורת"}, {"search_priority": 1, "search_heb": u"עין הנצי\"ב", "symbol_code": 383, "name": u"עין הנצי\"ב"}, {"search_priority": 0, "search_heb": u"עמיעד", "symbol_code": 385, "name": u"עמיעד"}, {"search_priority": 1, "search_heb": u"בני דרור", "symbol_code": 386, "name": u"בני דרור"}, {"search_priority": 1, "search_heb": u"כפר מונש", "symbol_code": 387, "name": u"כפר מונש"}, {"search_priority": 1, "search_heb": u"כפר קיש", "symbol_code": 388, "name": u"כפר קיש"}, {"search_priority": 0, "search_heb": u"בצרה", "symbol_code": 389, "name": u"בצרה"}, {"search_priority": 0, "search_heb": u"רגבה", "symbol_code": 390, "name": u"רגבה"}, {"search_priority": 0, "search_heb": u"קדמה", "symbol_code": 392, "name": u"קדמה"}, {"search_priority": 0, "search_heb": u"גלאון", "symbol_code": 393, "name": u"גלאון"}, {"search_priority": 0, "search_heb": u"שובל", "symbol_code": 394, "name": u"שובל"}, {"search_priority": 1, "search_heb": u"משמר הנגב", "symbol_code": 395, "name": u"משמר הנגב"}, {"search_priority": 0, "search_heb": u"נבטים", "symbol_code": 396, "name": u"נבטים"}, {"search_priority": 0, "search_heb": u"חצרים", "symbol_code": 397, "name": u"חצרים"}, {"search_priority": 0, "search_heb": u"שרשרת", "symbol_code": 398, "name": u"שרשרת"}, {"search_priority": 0, "search_heb": u"בארי", "symbol_code": 399, "name": u"בארי"}, {"search_priority": 1, "search_heb": u"אבן שמואל", "symbol_code": 400, "name": u"אבן שמואל"}, {"search_priority": 1, "search_heb": u"ניר יצחק", "symbol_code": 402, "name": u"ניר יצחק"}, {"search_priority": 0, "search_heb": u"אורים", "symbol_code": 403, "name": u"אורים"}, {"search_priority": 1, "search_heb": u"נווה אילן", "symbol_code": 405, "name": u"נווה אילן"}, {"search_priority": 0, "search_heb": u"חצור-אשדוד", "symbol_code": 406, "name": u"חצור-אשדוד"}, {"search_priority": 0, "search_heb": u"דברת", "symbol_code": 407, "name": u"דברת"}, {"search_priority": 1, "search_heb": u"נאות מרדכי", "symbol_code": 408, "name": u"נאות מרדכי"}, {"search_priority": 0, "search_heb": u"יחיעם", "symbol_code": 409, "name": u"יחיעם"}, {"search_priority": 1, "search_heb": u"קרית שלמה", "symbol_code": 412, "name": u"קרית שלמה"}, {"search_priority": 0, "search_heb": u"צאלים", "symbol_code": 413, "name": u"צאלים"}, {"search_priority": 0, "search_heb": u"קלחים", "symbol_code": 414, "name": u"קלחים"}, {"search_priority": 0, "search_heb": u"שוקדה", "symbol_code": 415, "name": u"שוקדה"}, {"search_priority": 1, "search_heb": u"מעין ברוך", "symbol_code": 416, "name": u"מעין ברוך"}, {"search_priority": 0, "search_heb": u"יקום", "symbol_code": 417, "name": u"יקום"}, {"search_priority": 1, "search_heb": u"בני ציון", "symbol_code": 418, "name": u"בני ציון"}, {"search_priority": 0, "search_heb": u"סעד", "symbol_code": 419, "name": u"סעד"}, {"search_priority": 1, "search_heb": u"משאבי שדה", "symbol_code": 421, "name": u"משאבי שדה"}, {"search_priority": 1, "search_heb": u"חרב לאת", "symbol_code": 422, "name": u"חרב לאת"}, {"search_priority": 0, "search_heb": u"העוגן", "symbol_code": 423, "name": u"העוגן"}, {"search_priority": 0, "search_heb": u"גבים", "symbol_code": 424, "name": u"גבים"}, {"search_priority": 0, "search_heb": u"משמרת", "symbol_code": 425, "name": u"משמרת"}, {"search_priority": 1, "search_heb": u"עין כרמל", "symbol_code": 426, "name": u"עין כרמל"}, {"search_priority": 1, "search_heb": u"כפר גלים", "symbol_code": 427, "name": u"כפר גלים"}, {"search_priority": 1, "search_heb": u"ברור חיל", "symbol_code": 428, "name": u"ברור חיל"}, {"search_priority": 1, "search_heb": u"אלוני אבא", "symbol_code": 429, "name": u"אלוני אבא"}, {"search_priority": 2, "search_heb": u"בית לחם הגלילית", "symbol_code": 430, "name": u"בית לחם הגלילית"}, {"search_priority": 0, "search_heb": u"דלתון", "symbol_code": 431, "name": u"דלתון"}, {"search_priority": 0, "search_heb": u"שמרת", "symbol_code": 432, "name": u"שמרת"}, {"search_priority": 0, "search_heb": u"נחשולים", "symbol_code": 433, "name": u"נחשולים"}, {"search_priority": 0, "search_heb": u"החותרים", "symbol_code": 434, "name": u"החותרים"}, {"search_priority": 1, "search_heb": u"נצר סרני", "symbol_code": 435, "name": u"נצר סרני"}, {"search_priority": 1, "search_heb": u"עין דור", "symbol_code": 436, "name": u"עין דור"}, {"search_priority": 0, "search_heb": u"רשפים", "symbol_code": 437, "name": u"רשפים"}, {"search_priority": 0, "search_heb": u"שלוחות", "symbol_code": 439, "name": u"שלוחות"}, {"search_priority": 0, "search_heb": u"יסודות", "symbol_code": 440, "name": u"יסודות"}, {"search_priority": 0, "search_heb": u"גדעונה", "symbol_code": 442, "name": u"גדעונה"}, {"search_priority": 1, "search_heb": u"כפר הנשיא", "symbol_code": 443, "name": u"כפר הנשיא"}, {"search_priority": 0, "search_heb": u"רגבים", "symbol_code": 444, "name": u"רגבים"}, {"search_priority": 1, "search_heb": u"רמות מנשה", "symbol_code": 445, "name": u"רמות מנשה"}, {"search_priority": 0, "search_heb": u"אודים", "symbol_code": 446, "name": u"אודים"}, {"search_priority": 0, "search_heb": u"נורדיה", "symbol_code": 447, "name": u"נורדיה"}, {"search_priority": 1, "search_heb": u"בני עטרות", "symbol_code": 448, "name": u"בני עטרות"}, {"search_priority": 0, "search_heb": u"נחלים", "symbol_code": 449, "name": u"נחלים"}, {"search_priority": 1, "search_heb": u"בארות יצחק", "symbol_code": 450, "name": u"בארות יצחק"}, {"search_priority": 0, "search_heb": u"יזרעאל", "symbol_code": 452, "name": u"יזרעאל"}, {"search_priority": 0, "search_heb": u"יפתח", "symbol_code": 453, "name": u"יפתח"}, {"search_priority": 0, "search_heb": u"סער", "symbol_code": 454, "name": u"סער"}, {"search_priority": 0, "search_heb": u"שורש", "symbol_code": 456, "name": u"שורש"}, {"search_priority": 0, "search_heb": u"גזית", "symbol_code": 457, "name": u"גזית"}, {"search_priority": 1, "search_heb": u"רמת רזיאל", "symbol_code": 460, "name": u"רמת רזיאל"}, {"search_priority": 1, "search_heb": u"טל שחר", "symbol_code": 462, "name": u"טל שחר"}, {"search_priority": 0, "search_heb": u"געתון", "symbol_code": 463, "name": u"געתון"}, {"search_priority": 0, "search_heb": u"הראל", "symbol_code": 464, "name": u"הראל"}, {"search_priority": 0, "search_heb": u"צובה", "symbol_code": 465, "name": u"צובה"}, {"search_priority": 1, "search_heb": u"בית דגן", "symbol_code": 466, "name": u"בית דגן"}, {"search_priority": 1, "search_heb": u"קרית עקרון", "symbol_code": 469, "name": u"קרית עקרון"}, {"search_priority": 1, "search_heb": u"אבו גוש", "symbol_code": 472, "name": u"אבו גוש"}, {"search_priority": 1, "search_heb": u"אבו סנאן", "symbol_code": 473, "name": u"אבו סנאן"}, {"search_priority": 0, "search_heb": u"דחי", "symbol_code": 475, "name": u"דחי"}, {"search_priority": 0, "search_heb": u"אכסאל", "symbol_code": 478, "name": u"אכסאל"}, {"search_priority": 1, "search_heb": u"בית ג'ן", "symbol_code": 480, "name": u"בית ג'ן"}, {"search_priority": 0, "search_heb": u"מגאר", "symbol_code": 481, "name": u"מגאר"}, {"search_priority": 0, "search_heb": u"בועיינה-נוג'ידאת", "symbol_code": 482, "name": u"בועיינה-נוג'ידאת"}, {"search_priority": 0, "search_heb": u"בענה", "symbol_code": 483, "name": u"בענה"}, {"search_priority": 0, "search_heb": u"ג'ולס", "symbol_code": 485, "name": u"ג'ולס"}, {"search_priority": 2, "search_heb": u"ג'ש )גוש חלב(", "symbol_code": 487, "name": u"ג'ש )גוש חלב("}, {"search_priority": 0, "search_heb": u"דבוריה", "symbol_code": 489, "name": u"דבוריה"}, {"search_priority": 1, "search_heb": u"דייר אל-אסד", "symbol_code": 490, "name": u"דייר אל-אסד"}, {"search_priority": 1, "search_heb": u"דייר חנא", "symbol_code": 492, "name": u"דייר חנא"}, {"search_priority": 1, "search_heb": u"דייר ראפאת", "symbol_code": 493, "name": u"דייר ראפאת"}, {"search_priority": 1, "search_heb": u"דאלית אל-כרמל", "symbol_code": 494, "name": u"דאלית אל-כרמל"}, {"search_priority": 0, "search_heb": u"חורפיש", "symbol_code": 496, "name": u"חורפיש"}, {"search_priority": 1, "search_heb": u"טייבה )בעמק(", "symbol_code": 497, "name": u"טייבה )בעמק("}, {"search_priority": 0, "search_heb": u"טורעאן", "symbol_code": 498, "name": u"טורעאן"}, {"search_priority": 0, "search_heb": u"יפיע", "symbol_code": 499, "name": u"יפיע"}, {"search_priority": 0, "search_heb": u"ירכא", "symbol_code": 502, "name": u"ירכא"}, {"search_priority": 0, "search_heb": u"כאבול", "symbol_code": 504, "name": u"כאבול"}, {"search_priority": 2, "search_heb": u"כאוכב אבו אל-היג'א", "symbol_code": 505, "name": u"כאוכב אבו אל-היג'א"}, {"search_priority": 1, "search_heb": u"כפר יאסיף", "symbol_code": 507, "name": u"כפר יאסיף"}, {"search_priority": 1, "search_heb": u"כפר כמא", "symbol_code": 508, "name": u"כפר כמא"}, {"search_priority": 1, "search_heb": u"כפר כנא", "symbol_code": 509, "name": u"כפר כנא"}, {"search_priority": 1, "search_heb": u"כפר מנדא", "symbol_code": 510, "name": u"כפר מנדא"}, {"search_priority": 0, "search_heb": u"עילוט", "symbol_code": 511, "name": u"עילוט"}, {"search_priority": 1, "search_heb": u"כפר מצר", "symbol_code": 512, "name": u"כפר מצר"}, {"search_priority": 1, "search_heb": u"עין ראפה", "symbol_code": 514, "name": u"עין ראפה"}, {"search_priority": 1, "search_heb": u"מג'ד אל-כרום", "symbol_code": 516, "name": u"מג'ד אל-כרום"}, {"search_priority": 0, "search_heb": u"מזרעה", "symbol_code": 517, "name": u"מזרעה"}, {"search_priority": 0, "search_heb": u"מעיליא", "symbol_code": 518, "name": u"מעיליא"}, {"search_priority": 0, "search_heb": u"משהד", "symbol_code": 520, "name": u"משהד"}, {"search_priority": 1, "search_heb": u"עין נקובא", "symbol_code": 521, "name": u"עין נקובא"}, {"search_priority": 0, "search_heb": u"נחף", "symbol_code": 522, "name": u"נחף"}, {"search_priority": 0, "search_heb": u"ניין", "symbol_code": 523, "name": u"ניין"}, {"search_priority": 0, "search_heb": u"נאעורה", "symbol_code": 524, "name": u"נאעורה"}, {"search_priority": 0, "search_heb": u"סאג'ור", "symbol_code": 525, "name": u"סאג'ור"}, {"search_priority": 0, "search_heb": u"סולם", "symbol_code": 526, "name": u"סולם"}, {"search_priority": 0, "search_heb": u"שזור", "symbol_code": 527, "name": u"שזור"}, {"search_priority": 0, "search_heb": u"עוזייר", "symbol_code": 528, "name": u"עוזייר"}, {"search_priority": 0, "search_heb": u"אעבלין", "symbol_code": 529, "name": u"אעבלין"}, {"search_priority": 0, "search_heb": u"עיילבון", "symbol_code": 530, "name": u"עיילבון"}, {"search_priority": 0, "search_heb": u"עראבה", "symbol_code": 531, "name": u"עראבה"}, {"search_priority": 1, "search_heb": u"עין מאהל", "symbol_code": 532, "name": u"עין מאהל"}, {"search_priority": 0, "search_heb": u"עספיא", "symbol_code": 534, "name": u"עספיא"}, {"search_priority": 0, "search_heb": u"פסוטה", "symbol_code": 535, "name": u"פסוטה"}, {"search_priority": 1, "search_heb": u"פקיעין )בוקייעה(", "symbol_code": 536, "name": u"פקיעין )בוקייעה("}, {"search_priority": 0, "search_heb": u"פוריידיס", "symbol_code": 537, "name": u"פוריידיס"}, {"search_priority": 0, "search_heb": u"שעב", "symbol_code": 538, "name": u"שעב"}, {"search_priority": 0, "search_heb": u"רומאנה", "symbol_code": 539, "name": u"רומאנה"}, {"search_priority": 0, "search_heb": u"ריחאניה", "symbol_code": 540, "name": u"ריחאניה"}, {"search_priority": 1, "search_heb": u"ג'סר א-זרקא", "symbol_code": 541, "name": u"ג'סר א-זרקא"}, {"search_priority": 0, "search_heb": u"ריינה", "symbol_code": 542, "name": u"ריינה"}, {"search_priority": 0, "search_heb": u"ראמה", "symbol_code": 543, "name": u"ראמה"}, {"search_priority": 1, "search_heb": u"עין אל-אסד", "symbol_code": 546, "name": u"עין אל-אסד"}, {"search_priority": 1, "search_heb": u"טמרה )יזרעאל(", "symbol_code": 547, "name": u"טמרה )יזרעאל("}, {"search_priority": 1, "search_heb": u"גנות הדר", "symbol_code": 549, "name": u"גנות הדר"}, {"search_priority": 1, "search_heb": u"ניר בנים", "symbol_code": 553, "name": u"ניר בנים"}, {"search_priority": 0, "search_heb": u"שדמה", "symbol_code": 555, "name": u"שדמה"}, {"search_priority": 1, "search_heb": u"בוסתן הגליל", "symbol_code": 559, "name": u"בוסתן הגליל"}, {"search_priority": 1, "search_heb": u"בית אלעזרי", "symbol_code": 562, "name": u"בית אלעזרי"}, {"search_priority": 1, "search_heb": u"משמר דוד", "symbol_code": 563, "name": u"משמר דוד"}, {"search_priority": 0, "search_heb": u"רבדים", "symbol_code": 564, "name": u"רבדים"}, {"search_priority": 0, "search_heb": u"אזור", "symbol_code": 565, "name": u"אזור"}, {"search_priority": 1, "search_heb": u"גבעת שמש", "symbol_code": 566, "name": u"גבעת שמש"}, {"search_priority": 0, "search_heb": u"צרעה", "symbol_code": 567, "name": u"צרעה"}, {"search_priority": 0, "search_heb": u"מעונה", "symbol_code": 570, "name": u"מעונה"}, {"search_priority": 1, "search_heb": u"בית גמליאל", "symbol_code": 571, "name": u"בית גמליאל"}, {"search_priority": 1, "search_heb": u"בית העמק", "symbol_code": 572, "name": u"בית העמק"}, {"search_priority": 0, "search_heb": u"מבקיעים", "symbol_code": 573, "name": u"מבקיעים"}, {"search_priority": 1, "search_heb": u"גשר הזיו", "symbol_code": 574, "name": u"גשר הזיו"}, {"search_priority": 0, "search_heb": u"יסעור", "symbol_code": 575, "name": u"יסעור"}, {"search_priority": 0, "search_heb": u"כברי", "symbol_code": 576, "name": u"כברי"}, {"search_priority": 1, "search_heb": u"יד בנימין", "symbol_code": 577, "name": u"יד בנימין"}, {"search_priority": 0, "search_heb": u"סאסא", "symbol_code": 578, "name": u"סאסא"}, {"search_priority": 2, "search_heb": u"כפר ראש הנקרה", "symbol_code": 579, "name": u"כפר ראש הנקרה"}, {"search_priority": 1, "search_heb": u"כרם מהר\"ל", "symbol_code": 580, "name": u"כרם מהר\"ל"}, {"search_priority": 1, "search_heb": u"כפר הנגיד", "symbol_code": 582, "name": u"כפר הנגיד"}, {"search_priority": 0, "search_heb": u"זיקים", "symbol_code": 584, "name": u"זיקים"}, {"search_priority": 0, "search_heb": u"לביא", "symbol_code": 585, "name": u"לביא"}, {"search_priority": 0, "search_heb": u"מגידו", "symbol_code": 586, "name": u"מגידו"}, {"search_priority": 0, "search_heb": u"סביון", "symbol_code": 587, "name": u"סביון"}, {"search_priority": 1, "search_heb": u"בני ראם", "symbol_code": 588, "name": u"בני ראם"}, {"search_priority": 0, "search_heb": u"בצת", "symbol_code": 589, "name": u"בצת"}, {"search_priority": 1, "search_heb": u"נווה אור", "symbol_code": 590, "name": u"נווה אור"}, {"search_priority": 0, "search_heb": u"עשרת", "symbol_code": 591, "name": u"עשרת"}, {"search_priority": 1, "search_heb": u"בני דרום", "symbol_code": 592, "name": u"בני דרום"}, {"search_priority": 0, "search_heb": u"ערוגות", "symbol_code": 593, "name": u"ערוגות"}, {"search_priority": 0, "search_heb": u"צפריה", "symbol_code": 594, "name": u"צפריה"}, {"search_priority": 1, "search_heb": u"לוחמי הגיטאות", "symbol_code": 595, "name": u"לוחמי הגיטאות"}, {"search_priority": 0, "search_heb": u"מלכיה", "symbol_code": 596, "name": u"מלכיה"}, {"search_priority": 0, "search_heb": u"פלמחים", "symbol_code": 597, "name": u"פלמחים"}, {"search_priority": 1, "search_heb": u"בית קמה", "symbol_code": 598, "name": u"בית קמה"}, {"search_priority": 0, "search_heb": u"פרוד", "symbol_code": 599, "name": u"פרוד"}, {"search_priority": 0, "search_heb": u"נירים", "symbol_code": 602, "name": u"נירים"}, {"search_priority": 0, "search_heb": u"אלקוש", "symbol_code": 603, "name": u"אלקוש"}, {"search_priority": 1, "search_heb": u"בית עריף", "symbol_code": 604, "name": u"בית עריף"}, {"search_priority": 1, "search_heb": u"כפר שמאי", "symbol_code": 605, "name": u"כפר שמאי"}, {"search_priority": 0, "search_heb": u"מזור", "symbol_code": 606, "name": u"מזור"}, {"search_priority": 0, "search_heb": u"מירון", "symbol_code": 607, "name": u"מירון"}, {"search_priority": 1, "search_heb": u"כפר חושן", "symbol_code": 609, "name": u"כפר חושן"}, {"search_priority": 0, "search_heb": u"סתריה", "symbol_code": 610, "name": u"סתריה"}, {"search_priority": 0, "search_heb": u"צרופה", "symbol_code": 612, "name": u"צרופה"}, {"search_priority": 0, "search_heb": u"ציפורי", "symbol_code": 613, "name": u"ציפורי"}, {"search_priority": 0, "search_heb": u"שומרה", "symbol_code": 614, "name": u"שומרה"}, {"search_priority": 0, "search_heb": u"קדרון", "symbol_code": 615, "name": u"קדרון"}, {"search_priority": 0, "search_heb": u"רינתיה", "symbol_code": 616, "name": u"רינתיה"}, {"search_priority": 0, "search_heb": u"ברקאי", "symbol_code": 617, "name": u"ברקאי"}, {"search_priority": 0, "search_heb": u"חדיד", "symbol_code": 618, "name": u"חדיד"}, {"search_priority": 1, "search_heb": u"בית גוברין", "symbol_code": 619, "name": u"בית גוברין"}, {"search_priority": 1, "search_heb": u"משואות יצחק", "symbol_code": 620, "name": u"משואות יצחק"}, {"search_priority": 1, "search_heb": u"עין צורים", "symbol_code": 622, "name": u"עין צורים"}, {"search_priority": 0, "search_heb": u"יראון", "symbol_code": 623, "name": u"יראון"}, {"search_priority": 0, "search_heb": u"ג'לג'וליה", "symbol_code": 627, "name": u"ג'לג'וליה"}, {"search_priority": 0, "search_heb": u"ג'ת", "symbol_code": 628, "name": u"ג'ת"}, {"search_priority": 1, "search_heb": u"כפר ברא", "symbol_code": 633, "name": u"כפר ברא"}, {"search_priority": 1, "search_heb": u"כפר קאסם", "symbol_code": 634, "name": u"כפר קאסם"}, {"search_priority": 0, "search_heb": u"מוקייבלה", "symbol_code": 635, "name": u"מוקייבלה"}, {"search_priority": 0, "search_heb": u"צנדלה", "symbol_code": 636, "name": u"צנדלה"}, {"search_priority": 0, "search_heb": u"ערערה", "symbol_code": 637, "name": u"ערערה"}, {"search_priority": 0, "search_heb": u"קלנסווה", "symbol_code": 638, "name": u"קלנסווה"}, {"search_priority": 0, "search_heb": u"מצר", "symbol_code": 648, "name": u"מצר"}, {"search_priority": 0, "search_heb": u"מייסר", "symbol_code": 649, "name": u"מייסר"}, {"search_priority": 0, "search_heb": u"אבטין", "symbol_code": 652, "name": u"אבטין"}, {"search_priority": 1, "search_heb": u"כפר קרע", "symbol_code": 654, "name": u"כפר קרע"}, {"search_priority": 1, "search_heb": u"שייח' דנון", "symbol_code": 658, "name": u"שייח' דנון"}, {"search_priority": 1, "search_heb": u"שער אפרים", "symbol_code": 661, "name": u"שער אפרים"}, {"search_priority": 0, "search_heb": u"חוסן", "symbol_code": 662, "name": u"חוסן"}, {"search_priority": 1, "search_heb": u"טירת יהודה", "symbol_code": 663, "name": u"טירת יהודה"}, {"search_priority": 2, "search_heb": u"כרם בן זמרה", "symbol_code": 664, "name": u"כרם בן זמרה"}, {"search_priority": 0, "search_heb": u"תקומה", "symbol_code": 665, "name": u"תקומה"}, {"search_priority": 0, "search_heb": u"עומר", "symbol_code": 666, "name": u"עומר"}, {"search_priority": 0, "search_heb": u"ברעם", "symbol_code": 667, "name": u"ברעם"}, {"search_priority": 0, "search_heb": u"מפלסים", "symbol_code": 668, "name": u"מפלסים"}, {"search_priority": 1, "search_heb": u"משמר איילון", "symbol_code": 670, "name": u"משמר איילון"}, {"search_priority": 1, "search_heb": u"בית נקופה", "symbol_code": 672, "name": u"בית נקופה"}, {"search_priority": 1, "search_heb": u"כפר טרומן", "symbol_code": 673, "name": u"כפר טרומן"}, {"search_priority": 0, "search_heb": u"לימן", "symbol_code": 674, "name": u"לימן"}, {"search_priority": 0, "search_heb": u"הבונים", "symbol_code": 675, "name": u"הבונים"}, {"search_priority": 1, "search_heb": u"עין השלושה", "symbol_code": 676, "name": u"עין השלושה"}, {"search_priority": 0, "search_heb": u"הסוללים", "symbol_code": 677, "name": u"הסוללים"}, {"search_priority": 0, "search_heb": u"מעגן", "symbol_code": 678, "name": u"מעגן"}, {"search_priority": 0, "search_heb": u"אביאל", "symbol_code": 679, "name": u"אביאל"}, {"search_priority": 0, "search_heb": u"אומץ", "symbol_code": 680, "name": u"אומץ"}, {"search_priority": 1, "search_heb": u"גבעת שמואל", "symbol_code": 681, "name": u"גבעת שמואל"}, {"search_priority": 0, "search_heb": u"אליקים", "symbol_code": 682, "name": u"אליקים"}, {"search_priority": 1, "search_heb": u"גבע כרמל", "symbol_code": 683, "name": u"גבע כרמל"}, {"search_priority": 0, "search_heb": u"היוגב", "symbol_code": 684, "name": u"היוגב"}, {"search_priority": 0, "search_heb": u"בניה", "symbol_code": 685, "name": u"בניה"}, {"search_priority": 1, "search_heb": u"נווה ימין", "symbol_code": 686, "name": u"נווה ימין"}, {"search_priority": 1, "search_heb": u"עין איילה", "symbol_code": 687, "name": u"עין איילה"}, {"search_priority": 0, "search_heb": u"עלמה", "symbol_code": 688, "name": u"עלמה"}, {"search_priority": 0, "search_heb": u"מגדים", "symbol_code": 689, "name": u"מגדים"}, {"search_priority": 1, "search_heb": u"כפר אחים", "symbol_code": 690, "name": u"כפר אחים"}, {"search_priority": 0, "search_heb": u"שפיר", "symbol_code": 692, "name": u"שפיר"}, {"search_priority": 1, "search_heb": u"נתיב הל\"ה", "symbol_code": 693, "name": u"נתיב הל\"ה"}, {"search_priority": 1, "search_heb": u"מעגן מיכאל", "symbol_code": 694, "name": u"מעגן מיכאל"}, {"search_priority": 0, "search_heb": u"מגן", "symbol_code": 695, "name": u"מגן"}, {"search_priority": 1, "search_heb": u"כפר חב\"ד", "symbol_code": 696, "name": u"כפר חב\"ד"}, {"search_priority": 0, "search_heb": u"בארותיים", "symbol_code": 697, "name": u"בארותיים"}, {"search_priority": 0, "search_heb": u"בורגתה", "symbol_code": 698, "name": u"בורגתה"}, {"search_priority": 1, "search_heb": u"ניר ישראל", "symbol_code": 699, "name": u"ניר ישראל"}, {"search_priority": 0, "search_heb": u"חצב", "symbol_code": 700, "name": u"חצב"}, {"search_priority": 0, "search_heb": u"ארבל", "symbol_code": 701, "name": u"ארבל"}, {"search_priority": 0, "search_heb": u"האון", "symbol_code": 702, "name": u"האון"}, {"search_priority": 1, "search_heb": u"גבעת עוז", "symbol_code": 703, "name": u"גבעת עוז"}, {"search_priority": 0, "search_heb": u"נחשונים", "symbol_code": 705, "name": u"נחשונים"}, {"search_priority": 0, "search_heb": u"גיאה", "symbol_code": 706, "name": u"גיאה"}, {"search_priority": 1, "search_heb": u"כפר דניאל", "symbol_code": 707, "name": u"כפר דניאל"}, {"search_priority": 0, "search_heb": u"עמקה", "symbol_code": 708, "name": u"עמקה"}, {"search_priority": 0, "search_heb": u"תפרח", "symbol_code": 709, "name": u"תפרח"}, {"search_priority": 1, "search_heb": u"בית זית", "symbol_code": 710, "name": u"בית זית"}, {"search_priority": 0, "search_heb": u"עזריה", "symbol_code": 711, "name": u"עזריה"}, {"search_priority": 1, "search_heb": u"בן עמי", "symbol_code": 712, "name": u"בן עמי"}, {"search_priority": 0, "search_heb": u"רעים", "symbol_code": 713, "name": u"רעים"}, {"search_priority": 0, "search_heb": u"ארז", "symbol_code": 714, "name": u"ארז"}, {"search_priority": 1, "search_heb": u"להבות חביבה", "symbol_code": 715, "name": u"להבות חביבה"}, {"search_priority": 0, "search_heb": u"אייל", "symbol_code": 716, "name": u"אייל"}, {"search_priority": 0, "search_heb": u"חגור", "symbol_code": 717, "name": u"חגור"}, {"search_priority": 0, "search_heb": u"ירחיב", "symbol_code": 718, "name": u"ירחיב"}, {"search_priority": 1, "search_heb": u"תל קציר", "symbol_code": 719, "name": u"תל קציר"}, {"search_priority": 1, "search_heb": u"ניר גלים", "symbol_code": 720, "name": u"ניר גלים"}, {"search_priority": 1, "search_heb": u"שדה אילן", "symbol_code": 721, "name": u"שדה אילן"}, {"search_priority": 0, "search_heb": u"מגשימים", "symbol_code": 722, "name": u"מגשימים"}, {"search_priority": 1, "search_heb": u"בית הגדי", "symbol_code": 723, "name": u"בית הגדי"}, {"search_priority": 0, "search_heb": u"הודיה", "symbol_code": 726, "name": u"הודיה"}, {"search_priority": 1, "search_heb": u"תלמי יחיאל", "symbol_code": 727, "name": u"תלמי יחיאל"}, {"search_priority": 1, "search_heb": u"משמר השבעה", "symbol_code": 729, "name": u"משמר השבעה"}, {"search_priority": 0, "search_heb": u"אליפלט", "symbol_code": 730, "name": u"אליפלט"}, {"search_priority": 0, "search_heb": u"מישר", "symbol_code": 731, "name": u"מישר"}, {"search_priority": 1, "search_heb": u"משמר הירדן", "symbol_code": 732, "name": u"משמר הירדן"}, {"search_priority": 1, "search_heb": u"גן יאשיה", "symbol_code": 734, "name": u"גן יאשיה"}, {"search_priority": 1, "search_heb": u"רמות מאיר", "symbol_code": 735, "name": u"רמות מאיר"}, {"search_priority": 0, "search_heb": u"גילת", "symbol_code": 736, "name": u"גילת"}, {"search_priority": 0, "search_heb": u"עולש", "symbol_code": 737, "name": u"עולש"}, {"search_priority": 0, "search_heb": u"דור", "symbol_code": 738, "name": u"דור"}, {"search_priority": 1, "search_heb": u"שדה עוזיהו", "symbol_code": 739, "name": u"שדה עוזיהו"}, {"search_priority": 0, "search_heb": u"אשתאול", "symbol_code": 740, "name": u"אשתאול"}, {"search_priority": 0, "search_heb": u"שואבה", "symbol_code": 741, "name": u"שואבה"}, {"search_priority": 1, "search_heb": u"מסילת ציון", "symbol_code": 742, "name": u"מסילת ציון"}, {"search_priority": 1, "search_heb": u"כפר שמואל", "symbol_code": 743, "name": u"כפר שמואל"}, {"search_priority": 1, "search_heb": u"תלמי יפה", "symbol_code": 744, "name": u"תלמי יפה"}, {"search_priority": 0, "search_heb": u"גמזו", "symbol_code": 745, "name": u"גמזו"}, {"search_priority": 0, "search_heb": u"ברכיה", "symbol_code": 746, "name": u"ברכיה"}, {"search_priority": 1, "search_heb": u"בית שקמה", "symbol_code": 747, "name": u"בית שקמה"}, {"search_priority": 0, "search_heb": u"מסלול", "symbol_code": 748, "name": u"מסלול"}, {"search_priority": 0, "search_heb": u"פטיש", "symbol_code": 749, "name": u"פטיש"}, {"search_priority": 0, "search_heb": u"פדויים", "symbol_code": 750, "name": u"פדויים"}, {"search_priority": 1, "search_heb": u"בית מאיר", "symbol_code": 751, "name": u"בית מאיר"}, {"search_priority": 0, "search_heb": u"תעוז", "symbol_code": 752, "name": u"תעוז"}, {"search_priority": 0, "search_heb": u"ינוב", "symbol_code": 753, "name": u"ינוב"}, {"search_priority": 0, "search_heb": u"גורן", "symbol_code": 755, "name": u"גורן"}, {"search_priority": 1, "search_heb": u"בית עזרא", "symbol_code": 756, "name": u"בית עזרא"}, {"search_priority": 0, "search_heb": u"מצליח", "symbol_code": 757, "name": u"מצליח"}, {"search_priority": 1, "search_heb": u"יד חנה", "symbol_code": 758, "name": u"יד חנה"}, {"search_priority": 0, "search_heb": u"יציץ", "symbol_code": 759, "name": u"יציץ"}, {"search_priority": 1, "search_heb": u"בן זכאי", "symbol_code": 760, "name": u"בן זכאי"}, {"search_priority": 0, "search_heb": u"שובה", "symbol_code": 761, "name": u"שובה"}, {"search_priority": 0, "search_heb": u"בטחה", "symbol_code": 762, "name": u"בטחה"}, {"search_priority": 0, "search_heb": u"שתולים", "symbol_code": 763, "name": u"שתולים"}, {"search_priority": 1, "search_heb": u"כפר מרדכי", "symbol_code": 764, "name": u"כפר מרדכי"}, {"search_priority": 1, "search_heb": u"משגב דב", "symbol_code": 765, "name": u"משגב דב"}, {"search_priority": 0, "search_heb": u"קוממיות", "symbol_code": 766, "name": u"קוממיות"}, {"search_priority": 0, "search_heb": u"פורת", "symbol_code": 767, "name": u"פורת"}, {"search_priority": 0, "search_heb": u"כרמיה", "symbol_code": 768, "name": u"כרמיה"}, {"search_priority": 1, "search_heb": u"ניר עציון", "symbol_code": 769, "name": u"ניר עציון"}, {"search_priority": 1, "search_heb": u"מבוא ביתר", "symbol_code": 771, "name": u"מבוא ביתר"}, {"search_priority": 0, "search_heb": u"אמונים", "symbol_code": 772, "name": u"אמונים"}, {"search_priority": 0, "search_heb": u"עמיקם", "symbol_code": 773, "name": u"עמיקם"}, {"search_priority": 0, "search_heb": u"צוריאל", "symbol_code": 774, "name": u"צוריאל"}, {"search_priority": 1, "search_heb": u"יד נתן", "symbol_code": 775, "name": u"יד נתן"}, {"search_priority": 0, "search_heb": u"מחסיה", "symbol_code": 776, "name": u"מחסיה"}, {"search_priority": 0, "search_heb": u"נחשון", "symbol_code": 777, "name": u"נחשון"}, {"search_priority": 0, "search_heb": u"תרום", "symbol_code": 778, "name": u"תרום"}, {"search_priority": 0, "search_heb": u"עמינדב", "symbol_code": 779, "name": u"עמינדב"}, {"search_priority": 0, "search_heb": u"אורה", "symbol_code": 780, "name": u"אורה"}, {"search_priority": 1, "search_heb": u"אבן ספיר", "symbol_code": 783, "name": u"אבן ספיר"}, {"search_priority": 1, "search_heb": u"בית נחמיה", "symbol_code": 784, "name": u"בית נחמיה"}, {"search_priority": 0, "search_heb": u"אחיהוד", "symbol_code": 785, "name": u"אחיהוד"}, {"search_priority": 1, "search_heb": u"כפר זיתים", "symbol_code": 786, "name": u"כפר זיתים"}, {"search_priority": 1, "search_heb": u"גבעת יערים", "symbol_code": 787, "name": u"גבעת יערים"}, {"search_priority": 0, "search_heb": u"זיתן", "symbol_code": 788, "name": u"זיתן"}, {"search_priority": 0, "search_heb": u"רנן", "symbol_code": 789, "name": u"רנן"}, {"search_priority": 0, "search_heb": u"משען", "symbol_code": 791, "name": u"משען"}, {"search_priority": 1, "search_heb": u"נתיב השיירה", "symbol_code": 792, "name": u"נתיב השיירה"}, {"search_priority": 0, "search_heb": u"גבעתי", "symbol_code": 793, "name": u"גבעתי"}, {"search_priority": 0, "search_heb": u"עגור", "symbol_code": 794, "name": u"עגור"}, {"search_priority": 0, "search_heb": u"יערה", "symbol_code": 795, "name": u"יערה"}, {"search_priority": 0, "search_heb": u"צלפון", "symbol_code": 796, "name": u"צלפון"}, {"search_priority": 0, "search_heb": u"אחיעזר", "symbol_code": 797, "name": u"אחיעזר"}, {"search_priority": 0, "search_heb": u"יגל", "symbol_code": 798, "name": u"יגל"}, {"search_priority": 0, "search_heb": u"זכריה", "symbol_code": 799, "name": u"זכריה"}, {"search_priority": 1, "search_heb": u"בית חנניה", "symbol_code": 800, "name": u"בית חנניה"}, {"search_priority": 0, "search_heb": u"חמד", "symbol_code": 801, "name": u"חמד"}, {"search_priority": 1, "search_heb": u"גבעת כ\"ח", "symbol_code": 802, "name": u"גבעת כ\"ח"}, {"search_priority": 0, "search_heb": u"יושיביה", "symbol_code": 803, "name": u"יושיביה"}, {"search_priority": 0, "search_heb": u"אחיסמך", "symbol_code": 804, "name": u"אחיסמך"}, {"search_priority": 0, "search_heb": u"ישעי", "symbol_code": 805, "name": u"ישעי"}, {"search_priority": 1, "search_heb": u"עין יהב", "symbol_code": 806, "name": u"עין יהב"}, {"search_priority": 0, "search_heb": u"חניאל", "symbol_code": 807, "name": u"חניאל"}, {"search_priority": 1, "search_heb": u"ניר אליהו", "symbol_code": 808, "name": u"ניר אליהו"}, {"search_priority": 0, "search_heb": u"נחם", "symbol_code": 809, "name": u"נחם"}, {"search_priority": 0, "search_heb": u"עופר", "symbol_code": 810, "name": u"עופר"}, {"search_priority": 0, "search_heb": u"יכיני", "symbol_code": 811, "name": u"יכיני"}, {"search_priority": 0, "search_heb": u"שלומי", "symbol_code": 812, "name": u"שלומי"}, {"search_priority": 1, "search_heb": u"עין יעקב", "symbol_code": 813, "name": u"עין יעקב"}, {"search_priority": 0, "search_heb": u"תלמים", "symbol_code": 814, "name": u"תלמים"}, {"search_priority": 0, "search_heb": u"זבדיאל", "symbol_code": 815, "name": u"זבדיאל"}, {"search_priority": 0, "search_heb": u"זנוח", "symbol_code": 816, "name": u"זנוח"}, {"search_priority": 0, "search_heb": u"עזריקם", "symbol_code": 817, "name": u"עזריקם"}, {"search_priority": 0, "search_heb": u"זרחיה", "symbol_code": 818, "name": u"זרחיה"}, {"search_priority": 0, "search_heb": u"אביגדור", "symbol_code": 819, "name": u"אביגדור"}, {"search_priority": 0, "search_heb": u"חלץ", "symbol_code": 820, "name": u"חלץ"}, {"search_priority": 0, "search_heb": u"אחוזם", "symbol_code": 821, "name": u"אחוזם"}, {"search_priority": 0, "search_heb": u"מטע", "symbol_code": 822, "name": u"מטע"}, {"search_priority": 1, "search_heb": u"בר גיורא", "symbol_code": 823, "name": u"בר גיורא"}, {"search_priority": 1, "search_heb": u"כוכב מיכאל", "symbol_code": 824, "name": u"כוכב מיכאל"}, {"search_priority": 1, "search_heb": u"נס הרים", "symbol_code": 825, "name": u"נס הרים"}, {"search_priority": 0, "search_heb": u"עוזה", "symbol_code": 826, "name": u"עוזה"}, {"search_priority": 1, "search_heb": u"נווה מבטח", "symbol_code": 827, "name": u"נווה מבטח"}, {"search_priority": 0, "search_heb": u"ישרש", "symbol_code": 828, "name": u"ישרש"}, {"search_priority": 0, "search_heb": u"מבטחים", "symbol_code": 829, "name": u"מבטחים"}, {"search_priority": 0, "search_heb": u"ירוחם", "symbol_code": 831, "name": u"ירוחם"}, {"search_priority": 0, "search_heb": u"נורית", "symbol_code": 833, "name": u"נורית"}, {"search_priority": 0, "search_heb": u"גנות", "symbol_code": 836, "name": u"גנות"}, {"search_priority": 0, "search_heb": u"עזריאל", "symbol_code": 837, "name": u"עזריאל"}, {"search_priority": 0, "search_heb": u"פדיה", "symbol_code": 838, "name": u"פדיה"}, {"search_priority": 0, "search_heb": u"פתחיה", "symbol_code": 839, "name": u"פתחיה"}, {"search_priority": 0, "search_heb": u"כיסופים", "symbol_code": 840, "name": u"כיסופים"}, {"search_priority": 0, "search_heb": u"אלישמע", "symbol_code": 841, "name": u"אלישמע"}, {"search_priority": 0, "search_heb": u"געש", "symbol_code": 842, "name": u"געש"}, {"search_priority": 0, "search_heb": u"מרגליות", "symbol_code": 843, "name": u"מרגליות"}, {"search_priority": 1, "search_heb": u"נחל עוז", "symbol_code": 844, "name": u"נחל עוז"}, {"search_priority": 1, "search_heb": u"כפר עזה", "symbol_code": 845, "name": u"כפר עזה"}, {"search_priority": 0, "search_heb": u"שפר", "symbol_code": 846, "name": u"שפר"}, {"search_priority": 1, "search_heb": u"בית רבן", "symbol_code": 848, "name": u"בית רבן"}, {"search_priority": 0, "search_heb": u"דבירה", "symbol_code": 849, "name": u"דבירה"}, {"search_priority": 0, "search_heb": u"אחיטוב", "symbol_code": 850, "name": u"אחיטוב"}, {"search_priority": 1, "search_heb": u"ניצני עוז", "symbol_code": 851, "name": u"ניצני עוז"}, {"search_priority": 0, "search_heb": u"גונן", "symbol_code": 852, "name": u"גונן"}, {"search_priority": 0, "search_heb": u"גאליה", "symbol_code": 853, "name": u"גאליה"}, {"search_priority": 0, "search_heb": u"רחוב", "symbol_code": 854, "name": u"רחוב"}, {"search_priority": 0, "search_heb": u"שעלבים", "symbol_code": 856, "name": u"שעלבים"}, {"search_priority": 1, "search_heb": u"כפר אביב", "symbol_code": 857, "name": u"כפר אביב"}, {"search_priority": 1, "search_heb": u"נווה ירק", "symbol_code": 858, "name": u"נווה ירק"}, {"search_priority": 0, "search_heb": u"כסלון", "symbol_code": 859, "name": u"כסלון"}, {"search_priority": 1, "search_heb": u"שדה אליעזר", "symbol_code": 861, "name": u"שדה אליעזר"}, {"search_priority": 1, "search_heb": u"גני יוחנן", "symbol_code": 862, "name": u"גני יוחנן"}, {"search_priority": 0, "search_heb": u"גינתון", "symbol_code": 863, "name": u"גינתון"}, {"search_priority": 0, "search_heb": u"בקוע", "symbol_code": 864, "name": u"בקוע"}, {"search_priority": 0, "search_heb": u"שיבולים", "symbol_code": 865, "name": u"שיבולים"}, {"search_priority": 0, "search_heb": u"יטבתה", "symbol_code": 866, "name": u"יטבתה"}, {"search_priority": 1, "search_heb": u"אלוני יצחק", "symbol_code": 868, "name": u"אלוני יצחק"}, {"search_priority": 1, "search_heb": u"גבעת השלושה", "symbol_code": 870, "name": u"גבעת השלושה"}, {"search_priority": 0, "search_heb": u"עינת", "symbol_code": 871, "name": u"עינת"}, {"search_priority": 1, "search_heb": u"גאולי תימן", "symbol_code": 872, "name": u"גאולי תימן"}, {"search_priority": 0, "search_heb": u"שלווה", "symbol_code": 873, "name": u"שלווה"}, {"search_priority": 1, "search_heb": u"מגדל העמק", "symbol_code": 874, "name": u"מגדל העמק"}, {"search_priority": 1, "search_heb": u"בית חירות", "symbol_code": 877, "name": u"בית חירות"}, {"search_priority": 1, "search_heb": u"עין שריד", "symbol_code": 880, "name": u"עין שריד"}, {"search_priority": 0, "search_heb": u"אורנים", "symbol_code": 882, "name": u"אורנים"}, {"search_priority": 1, "search_heb": u"שדה בוקר", "symbol_code": 885, "name": u"שדה בוקר"}, {"search_priority": 0, "search_heb": u"איתנים", "symbol_code": 886, "name": u"איתנים"}, {"search_priority": 1, "search_heb": u"כפר הרי\"ף", "symbol_code": 888, "name": u"כפר הרי\"ף"}, {"search_priority": 2, "search_heb": u"כפר חסידים ב'", "symbol_code": 889, "name": u"כפר חסידים ב'"}, {"search_priority": 2, "search_heb": u"כפר הנוער הדתי", "symbol_code": 890, "name": u"כפר הנוער הדתי"}, {"search_priority": 0, "search_heb": u"עבדון", "symbol_code": 892, "name": u"עבדון"}, {"search_priority": 1, "search_heb": u"מדרשת רופין", "symbol_code": 897, "name": u"מדרשת רופין"}, {"search_priority": 3, "search_heb": u"שבלי - אום אל-גנם", "symbol_code": 913, "name": u"שבלי - אום אל-גנם"}, {"search_priority": 0, "search_heb": u"ישע", "symbol_code": 916, "name": u"ישע"}, {"search_priority": 1, "search_heb": u"עצמון שגב", "symbol_code": 917, "name": u"עצמון שגב"}, {"search_priority": 1, "search_heb": u"גבעת ישעיהו", "symbol_code": 919, "name": u"גבעת ישעיהו"}, {"search_priority": 1, "search_heb": u"שער מנשה", "symbol_code": 921, "name": u"שער מנשה"}, {"search_priority": 0, "search_heb": u"רכסים", "symbol_code": 922, "name": u"רכסים"}, {"search_priority": 1, "search_heb": u"נווה אבות", "symbol_code": 926, "name": u"נווה אבות"}, {"search_priority": 2, "search_heb": u"אבו עמרה )שבט(", "symbol_code": 932, "name": u"אבו עמרה )שבט("}, {"search_priority": 2, "search_heb": u"אבו סריחאן )שבט(", "symbol_code": 935, "name": u"אבו סריחאן )שבט("}, {"search_priority": 1, "search_heb": u"מסעודין אל-עזאזמה", "symbol_code": 939, "name": u"מסעודין אל-עזאזמה"}, {"search_priority": 1, "search_heb": u"סואעד )חמרייה(", "symbol_code": 942, "name": u"סואעד )חמרייה("}, {"search_priority": 1, "search_heb": u"בסמת טבעון", "symbol_code": 944, "name": u"בסמת טבעון"}, {"search_priority": 1, "search_heb": u"חוג'ייראת )ד'הרה(", "symbol_code": 948, "name": u"חוג'ייראת )ד'הרה("}, {"search_priority": 1, "search_heb": u"הוזייל )שבט(", "symbol_code": 956, "name": u"הוזייל )שבט("}, {"search_priority": 2, "search_heb": u"עוקבי )בנו עוקבה(", "symbol_code": 957, "name": u"עוקבי )בנו עוקבה("}, {"search_priority": 2, "search_heb": u"אבו עבדון )שבט(", "symbol_code": 958, "name": u"אבו עבדון )שבט("}, {"search_priority": 1, "search_heb": u"אפיניש )שבט(", "symbol_code": 959, "name": u"אפיניש )שבט("}, {"search_priority": 1, "search_heb": u"אסד )שבט(", "symbol_code": 960, "name": u"אסד )שבט("}, {"search_priority": 2, "search_heb": u"אבו רוקייק )שבט(", "symbol_code": 961, "name": u"אבו רוקייק )שבט("}, {"search_priority": 0, "search_heb": u"טובא-זנגריה", "symbol_code": 962, "name": u"טובא-זנגריה"}, {"search_priority": 1, "search_heb": u"אעצם )שבט(", "symbol_code": 963, "name": u"אעצם )שבט("}, {"search_priority": 1, "search_heb": u"קודייראת א-צאנע)שבט(", "symbol_code": 964, "name": u"קודייראת א-צאנע)שבט("}, {"search_priority": 1, "search_heb": u"אטרש )שבט(", "symbol_code": 965, "name": u"אטרש )שבט("}, {"search_priority": 2, "search_heb": u"אבו רובייעה )שבט(", "symbol_code": 966, "name": u"אבו רובייעה )שבט("}, {"search_priority": 2, "search_heb": u"אבו ג'ווייעד )שבט(", "symbol_code": 967, "name": u"אבו ג'ווייעד )שבט("}, {"search_priority": 2, "search_heb": u"אבו קורינאת )שבט(", "symbol_code": 968, "name": u"אבו קורינאת )שבט("}, {"search_priority": 1, "search_heb": u"עטאוונה )שבט(", "symbol_code": 969, "name": u"עטאוונה )שבט("}, {"search_priority": 2, "search_heb": u"תראבין א-צאנע )שבט(", "symbol_code": 970, "name": u"תראבין א-צאנע )שבט("}, {"search_priority": 1, "search_heb": u"קוואעין )שבט(", "symbol_code": 972, "name": u"קוואעין )שבט("}, {"search_priority": 0, "search_heb": u"זרזיר", "symbol_code": 975, "name": u"זרזיר"}, {"search_priority": 1, "search_heb": u"ג'נאביב )שבט(", "symbol_code": 976, "name": u"ג'נאביב )שבט("}, {"search_priority": 0, "search_heb": u"כעביה-טבאש-חג'אג'רה", "symbol_code": 978, "name": u"כעביה-טבאש-חג'אג'רה"}, {"search_priority": 1, "search_heb": u"ח'ואלד )שבט(", "symbol_code": 986, "name": u"ח'ואלד )שבט("}, {"search_priority": 2, "search_heb": u"סואעד )כמאנה( )שבט(", "symbol_code": 989, "name": u"סואעד )כמאנה( )שבט("}, {"search_priority": 1, "search_heb": u"ראס עלי", "symbol_code": 990, "name": u"ראס עלי"}, {"search_priority": 0, "search_heb": u"חמאם", "symbol_code": 993, "name": u"חמאם"}, {"search_priority": 1, "search_heb": u"מנשית זבדה", "symbol_code": 994, "name": u"מנשית זבדה"}, {"search_priority": 1, "search_heb": u"רומת הייב", "symbol_code": 997, "name": u"רומת הייב"}, {"search_priority": 1, "search_heb": u"ביר אל-מכסור", "symbol_code": 998, "name": u"ביר אל-מכסור"}, {"search_priority": 1, "search_heb": u"מבשרת ציון", "symbol_code": 1015, "name": u"מבשרת ציון"}, {"search_priority": 1, "search_heb": u"אור עקיבא", "symbol_code": 1020, "name": u"אור עקיבא"}, {"search_priority": 0, "search_heb": u"חרוצים", "symbol_code": 1024, "name": u"חרוצים"}, {"search_priority": 0, "search_heb": u"שדרות", "symbol_code": 1031, "name": u"שדרות"}, {"search_priority": 1, "search_heb": u"קרית מלאכי", "symbol_code": 1034, "name": u"קרית מלאכי"}, {"search_priority": 1, "search_heb": u"נצאצרה )שבט(", "symbol_code": 1041, "name": u"נצאצרה )שבט("}, {"search_priority": 2, "search_heb": u"אבו עמאר )שבט(", "symbol_code": 1042, "name": u"אבו עמאר )שבט("}, {"search_priority": 0, "search_heb": u"גיזו", "symbol_code": 1043, "name": u"גיזו"}, {"search_priority": 0, "search_heb": u"יעף", "symbol_code": 1044, "name": u"יעף"}, {"search_priority": 0, "search_heb": u"שתולה", "symbol_code": 1045, "name": u"שתולה"}, {"search_priority": 0, "search_heb": u"אוהד", "symbol_code": 1046, "name": u"אוהד"}, {"search_priority": 0, "search_heb": u"חזון", "symbol_code": 1047, "name": u"חזון"}, {"search_priority": 1, "search_heb": u"בית חשמונאי", "symbol_code": 1050, "name": u"בית חשמונאי"}, {"search_priority": 1, "search_heb": u"תלמי אליהו", "symbol_code": 1051, "name": u"תלמי אליהו"}, {"search_priority": 0, "search_heb": u"קטורה", "symbol_code": 1052, "name": u"קטורה"}, {"search_priority": 1, "search_heb": u"עין חצבה", "symbol_code": 1053, "name": u"עין חצבה"}, {"search_priority": 1, "search_heb": u"תל שבע", "symbol_code": 1054, "name": u"תל שבע"}, {"search_priority": 2, "search_heb": u"עין כרם-בי\"ס חקלאי", "symbol_code": 1056, "name": u"עין כרם-בי\"ס חקלאי"}, {"search_priority": 1, "search_heb": u"נווה זוהר", "symbol_code": 1057, "name": u"נווה זוהר"}, {"search_priority": 1, "search_heb": u"שדה ניצן", "symbol_code": 1058, "name": u"שדה ניצן"}, {"search_priority": 0, "search_heb": u"כסיפה", "symbol_code": 1059, "name": u"כסיפה"}, {"search_priority": 0, "search_heb": u"לקיה", "symbol_code": 1060, "name": u"לקיה"}, {"search_priority": 1, "search_heb": u"נצרת עילית", "symbol_code": 1061, "name": u"נצרת עילית"}, {"search_priority": 0, "search_heb": u"מעלות-תרשיחא", "symbol_code": 1063, "name": u"מעלות-תרשיחא"}, {"search_priority": 0, "search_heb": u"אמירים", "symbol_code": 1064, "name": u"אמירים"}, {"search_priority": 0, "search_heb": u"זמרת", "symbol_code": 1065, "name": u"זמרת"}, {"search_priority": 1, "search_heb": u"בני עי\"ש", "symbol_code": 1066, "name": u"בני עי\"ש"}, {"search_priority": 0, "search_heb": u"דוב\"ב", "symbol_code": 1067, "name": u"דוב\"ב"}, {"search_priority": 0, "search_heb": u"אדמית", "symbol_code": 1068, "name": u"אדמית"}, {"search_priority": 0, "search_heb": u"רם-און", "symbol_code": 1069, "name": u"רם-און"}, {"search_priority": 0, "search_heb": u"אביעזר", "symbol_code": 1070, "name": u"אביעזר"}, {"search_priority": 1, "search_heb": u"נווה מיכאל", "symbol_code": 1071, "name": u"נווה מיכאל"}, {"search_priority": 1, "search_heb": u"גן הדרום", "symbol_code": 1072, "name": u"גן הדרום"}, {"search_priority": 1, "search_heb": u"בית ברל", "symbol_code": 1076, "name": u"בית ברל"}, {"search_priority": 1, "search_heb": u"גבעת שפירא", "symbol_code": 1077, "name": u"גבעת שפירא"}, {"search_priority": 0, "search_heb": u"צפרירים", "symbol_code": 1079, "name": u"צפרירים"}, {"search_priority": 0, "search_heb": u"מבועים", "symbol_code": 1080, "name": u"מבועים"}, {"search_priority": 1, "search_heb": u"אבן מנחם", "symbol_code": 1081, "name": u"אבן מנחם"}, {"search_priority": 0, "search_heb": u"מעגלים", "symbol_code": 1082, "name": u"מעגלים"}, {"search_priority": 0, "search_heb": u"תושיה", "symbol_code": 1083, "name": u"תושיה"}, {"search_priority": 3, "search_heb": u"בן שמן )כפר נוער(", "symbol_code": 1084, "name": u"בן שמן )כפר נוער("}, {"search_priority": 1, "search_heb": u"כרם שלום", "symbol_code": 1085, "name": u"כרם שלום"}, {"search_priority": 2, "search_heb": u"כרם יבנה )ישיבה(", "symbol_code": 1094, "name": u"כרם יבנה )ישיבה("}, {"search_priority": 1, "search_heb": u"כפר מימון", "symbol_code": 1095, "name": u"כפר מימון"}, {"search_priority": 1, "search_heb": u"מרכז שפירא", "symbol_code": 1098, "name": u"מרכז שפירא"}, {"search_priority": 1, "search_heb": u"צוקי ים", "symbol_code": 1102, "name": u"צוקי ים"}, {"search_priority": 1, "search_heb": u"גני הדר", "symbol_code": 1103, "name": u"גני הדר"}, {"search_priority": 3, "search_heb": u"פוריה - כפר עבודה", "symbol_code": 1104, "name": u"פוריה - כפר עבודה"}, {"search_priority": 3, "search_heb": u"פוריה - נווה עובד", "symbol_code": 1105, "name": u"פוריה - נווה עובד"}, {"search_priority": 0, "search_heb": u"אומן", "symbol_code": 1108, "name": u"אומן"}, {"search_priority": 0, "search_heb": u"חבר", "symbol_code": 1110, "name": u"חבר"}, {"search_priority": 0, "search_heb": u"יודפת", "symbol_code": 1112, "name": u"יודפת"}, {"search_priority": 1, "search_heb": u"צור הדסה", "symbol_code": 1113, "name": u"צור הדסה"}, {"search_priority": 1, "search_heb": u"שריגים )לי-און(", "symbol_code": 1114, "name": u"שריגים )לי-און("}, {"search_priority": 0, "search_heb": u"אביבים", "symbol_code": 1115, "name": u"אביבים"}, {"search_priority": 0, "search_heb": u"יעל", "symbol_code": 1117, "name": u"יעל"}, {"search_priority": 0, "search_heb": u"אדרת", "symbol_code": 1123, "name": u"אדרת"}, {"search_priority": 1, "search_heb": u"נאות הכיכר", "symbol_code": 1124, "name": u"נאות הכיכר"}, {"search_priority": 0, "search_heb": u"אלמגור", "symbol_code": 1125, "name": u"אלמגור"}, {"search_priority": 0, "search_heb": u"אילות", "symbol_code": 1126, "name": u"אילות"}, {"search_priority": 1, "search_heb": u"מעלה גלבוע", "symbol_code": 1127, "name": u"מעלה גלבוע"}, {"search_priority": 1, "search_heb": u"מי עמי", "symbol_code": 1128, "name": u"מי עמי"}, {"search_priority": 0, "search_heb": u"גרופית", "symbol_code": 1129, "name": u"גרופית"}, {"search_priority": 2, "search_heb": u"כפר רוזנואלד )זרעית(", "symbol_code": 1130, "name": u"כפר רוזנואלד )זרעית("}, {"search_priority": 0, "search_heb": u"שניר", "symbol_code": 1132, "name": u"שניר"}, {"search_priority": 0, "search_heb": u"ורדון", "symbol_code": 1133, "name": u"ורדון"}, {"search_priority": 1, "search_heb": u"יד השמונה", "symbol_code": 1134, "name": u"יד השמונה"}, {"search_priority": 0, "search_heb": u"צוחר", "symbol_code": 1136, "name": u"צוחר"}, {"search_priority": 1, "search_heb": u"קרית יערים", "symbol_code": 1137, "name": u"קרית יערים"}, {"search_priority": 0, "search_heb": u"יעד", "symbol_code": 1138, "name": u"יעד"}, {"search_priority": 0, "search_heb": u"כרמיאל", "symbol_code": 1139, "name": u"כרמיאל"}, {"search_priority": 2, "search_heb": u"מדרשת בן גוריון", "symbol_code": 1140, "name": u"מדרשת בן גוריון"}, {"search_priority": 1, "search_heb": u"מבוא מודיעים", "symbol_code": 1141, "name": u"מבוא מודיעים"}, {"search_priority": 1, "search_heb": u"נס עמים", "symbol_code": 1143, "name": u"נס עמים"}, {"search_priority": 0, "search_heb": u"אלומה", "symbol_code": 1145, "name": u"אלומה"}, {"search_priority": 0, "search_heb": u"עלומים", "symbol_code": 1146, "name": u"עלומים"}, {"search_priority": 0, "search_heb": u"נטועה", "symbol_code": 1147, "name": u"נטועה"}, {"search_priority": 1, "search_heb": u"צור נתן", "symbol_code": 1148, "name": u"צור נתן"}, {"search_priority": 0, "search_heb": u"עזר", "symbol_code": 1149, "name": u"עזר"}, {"search_priority": 0, "search_heb": u"צופר", "symbol_code": 1150, "name": u"צופר"}, {"search_priority": 0, "search_heb": u"פארן", "symbol_code": 1151, "name": u"פארן"}, {"search_priority": 0, "search_heb": u"אשלים", "symbol_code": 1152, "name": u"אשלים"}, {"search_priority": 0, "search_heb": u"כישור", "symbol_code": 1153, "name": u"כישור"}, {"search_priority": 0, "search_heb": u"מלכישוע", "symbol_code": 1154, "name": u"מלכישוע"}, {"search_priority": 1, "search_heb": u"מגן שאול", "symbol_code": 1155, "name": u"מגן שאול"}, {"search_priority": 0, "search_heb": u"סמר", "symbol_code": 1156, "name": u"סמר"}, {"search_priority": 0, "search_heb": u"אחווה", "symbol_code": 1157, "name": u"אחווה"}, {"search_priority": 0, "search_heb": u"יהל", "symbol_code": 1158, "name": u"יהל"}, {"search_priority": 0, "search_heb": u"שכניה", "symbol_code": 1160, "name": u"שכניה"}, {"search_priority": 0, "search_heb": u"רהט", "symbol_code": 1161, "name": u"רהט"}, {"search_priority": 1, "search_heb": u"בית רימון", "symbol_code": 1162, "name": u"בית רימון"}, {"search_priority": 0, "search_heb": u"מורן", "symbol_code": 1163, "name": u"מורן"}, {"search_priority": 0, "search_heb": u"שילת", "symbol_code": 1165, "name": u"שילת"}, {"search_priority": 1, "search_heb": u"כפר רות", "symbol_code": 1166, "name": u"כפר רות"}, {"search_priority": 0, "search_heb": u"קיסריה", "symbol_code": 1167, "name": u"קיסריה"}, {"search_priority": 1, "search_heb": u"הוואשלה )שבט(", "symbol_code": 1169, "name": u"הוואשלה )שבט("}, {"search_priority": 1, "search_heb": u"סייד )שבט(", "symbol_code": 1170, "name": u"סייד )שבט("}, {"search_priority": 0, "search_heb": u"לוטם", "symbol_code": 1171, "name": u"לוטם"}, {"search_priority": 0, "search_heb": u"תובל", "symbol_code": 1172, "name": u"תובל"}, {"search_priority": 0, "search_heb": u"לפידות", "symbol_code": 1173, "name": u"לפידות"}, {"search_priority": 0, "search_heb": u"מנוף", "symbol_code": 1174, "name": u"מנוף"}, {"search_priority": 0, "search_heb": u"עידן", "symbol_code": 1175, "name": u"עידן"}, {"search_priority": 0, "search_heb": u"ספיר", "symbol_code": 1176, "name": u"ספיר"}, {"search_priority": 0, "search_heb": u"טללים", "symbol_code": 1177, "name": u"טללים"}, {"search_priority": 0, "search_heb": u"מורשת", "symbol_code": 1178, "name": u"מורשת"}, {"search_priority": 0, "search_heb": u"קורנית", "symbol_code": 1179, "name": u"קורנית"}, {"search_priority": 0, "search_heb": u"צביה", "symbol_code": 1180, "name": u"צביה"}, {"search_priority": 0, "search_heb": u"טל-אל", "symbol_code": 1181, "name": u"טל-אל"}, {"search_priority": 1, "search_heb": u"אלון הגליל", "symbol_code": 1182, "name": u"אלון הגליל"}, {"search_priority": 0, "search_heb": u"כליל", "symbol_code": 1183, "name": u"כליל"}, {"search_priority": 0, "search_heb": u"מתת", "symbol_code": 1184, "name": u"מתת"}, {"search_priority": 0, "search_heb": u"פלך", "symbol_code": 1185, "name": u"פלך"}, {"search_priority": 0, "search_heb": u"הושעיה", "symbol_code": 1186, "name": u"הושעיה"}, {"search_priority": 1, "search_heb": u"עיר אובות", "symbol_code": 1187, "name": u"עיר אובות"}, {"search_priority": 0, "search_heb": u"אשחר", "symbol_code": 1188, "name": u"אשחר"}, {"search_priority": 1, "search_heb": u"מצפה נטופה", "symbol_code": 1190, "name": u"מצפה נטופה"}, {"search_priority": 1, "search_heb": u"בר יוחאי", "symbol_code": 1191, "name": u"בר יוחאי"}, {"search_priority": 0, "search_heb": u"ערערה-בנגב", "symbol_code": 1192, "name": u"ערערה-בנגב"}, {"search_priority": 2, "search_heb": u"ניצנה )קהילת חינוך(", "symbol_code": 1195, "name": u"ניצנה )קהילת חינוך("}, {"search_priority": 1, "search_heb": u"מחנה יתיר", "symbol_code": 1196, "name": u"מחנה יתיר"}, {"search_priority": 1, "search_heb": u"נאות סמדר", "symbol_code": 1197, "name": u"נאות סמדר"}, {"search_priority": 0, "search_heb": u"כרמים", "symbol_code": 1198, "name": u"כרמים"}, {"search_priority": 0, "search_heb": u"עדי", "symbol_code": 1199, "name": u"עדי"}, {"search_priority": 0, "search_heb": u"מודיעין-מכבים-רעות", "symbol_code": 1200, "name": u"מודיעין-מכבים-רעות"}, {"search_priority": 0, "search_heb": u"כמון", "symbol_code": 1201, "name": u"כמון"}, {"search_priority": 0, "search_heb": u"מכמנים", "symbol_code": 1202, "name": u"מכמנים"}, {"search_priority": 0, "search_heb": u"הררית", "symbol_code": 1203, "name": u"הררית"}, {"search_priority": 0, "search_heb": u"גילון", "symbol_code": 1204, "name": u"גילון"}, {"search_priority": 0, "search_heb": u"מנות", "symbol_code": 1205, "name": u"מנות"}, {"search_priority": 0, "search_heb": u"גיתה", "symbol_code": 1206, "name": u"גיתה"}, {"search_priority": 0, "search_heb": u"לבון", "symbol_code": 1207, "name": u"לבון"}, {"search_priority": 0, "search_heb": u"הילה", "symbol_code": 1208, "name": u"הילה"}, {"search_priority": 0, "search_heb": u"חרשים", "symbol_code": 1209, "name": u"חרשים"}, {"search_priority": 0, "search_heb": u"כחל", "symbol_code": 1210, "name": u"כחל"}, {"search_priority": 0, "search_heb": u"קדרים", "symbol_code": 1211, "name": u"קדרים"}, {"search_priority": 0, "search_heb": u"עמוקה", "symbol_code": 1212, "name": u"עמוקה"}, {"search_priority": 0, "search_heb": u"צבעון", "symbol_code": 1213, "name": u"צבעון"}, {"search_priority": 0, "search_heb": u"טפחות", "symbol_code": 1214, "name": u"טפחות"}, {"search_priority": 1, "search_heb": u"גורנות הגליל", "symbol_code": 1219, "name": u"גורנות הגליל"}, {"search_priority": 0, "search_heb": u"אבירים", "symbol_code": 1220, "name": u"אבירים"}, {"search_priority": 0, "search_heb": u"צורית", "symbol_code": 1221, "name": u"צורית"}, {"search_priority": 1, "search_heb": u"מצפה אבי\"ב", "symbol_code": 1222, "name": u"מצפה אבי\"ב"}, {"search_priority": 1, "search_heb": u"שדי אברהם", "symbol_code": 1223, "name": u"שדי אברהם"}, {"search_priority": 1, "search_heb": u"כוכב יאיר", "symbol_code": 1224, "name": u"כוכב יאיר"}, {"search_priority": 0, "search_heb": u"רביד", "symbol_code": 1225, "name": u"רביד"}, {"search_priority": 0, "search_heb": u"יובלים", "symbol_code": 1226, "name": u"יובלים"}, {"search_priority": 0, "search_heb": u"יתד", "symbol_code": 1227, "name": u"יתד"}, {"search_priority": 0, "search_heb": u"רקפת", "symbol_code": 1228, "name": u"רקפת"}, {"search_priority": 0, "search_heb": u"כלנית", "symbol_code": 1229, "name": u"כלנית"}, {"search_priority": 0, "search_heb": u"לבנים", "symbol_code": 1230, "name": u"לבנים"}, {"search_priority": 1, "search_heb": u"פרי גן", "symbol_code": 1231, "name": u"פרי גן"}, {"search_priority": 0, "search_heb": u"יבול", "symbol_code": 1232, "name": u"יבול"}, {"search_priority": 0, "search_heb": u"שקף", "symbol_code": 1233, "name": u"שקף"}, {"search_priority": 1, "search_heb": u"קבועה )שבט(", "symbol_code": 1234, "name": u"קבועה )שבט("}, {"search_priority": 0, "search_heb": u"שורשים", "symbol_code": 1235, "name": u"שורשים"}, {"search_priority": 0, "search_heb": u"נירית", "symbol_code": 1236, "name": u"נירית"}, {"search_priority": 1, "search_heb": u"תלמי יוסף", "symbol_code": 1237, "name": u"תלמי יוסף"}, {"search_priority": 0, "search_heb": u"סופה", "symbol_code": 1238, "name": u"סופה"}, {"search_priority": 0, "search_heb": u"חולית", "symbol_code": 1239, "name": u"חולית"}, {"search_priority": 1, "search_heb": u"עין הבשור", "symbol_code": 1240, "name": u"עין הבשור"}, {"search_priority": 0, "search_heb": u"דקל", "symbol_code": 1241, "name": u"דקל"}, {"search_priority": 1, "search_heb": u"נתיב העשרה", "symbol_code": 1242, "name": u"נתיב העשרה"}, {"search_priority": 0, "search_heb": u"קציר", "symbol_code": 1243, "name": u"קציר"}, {"search_priority": 0, "search_heb": u"תמרת", "symbol_code": 1244, "name": u"תמרת"}, {"search_priority": 0, "search_heb": u"סלמה", "symbol_code": 1245, "name": u"סלמה"}, {"search_priority": 0, "search_heb": u"עראמשה", "symbol_code": 1246, "name": u"עראמשה"}, {"search_priority": 0, "search_heb": u"חריש", "symbol_code": 1247, "name": u"חריש"}, {"search_priority": 0, "search_heb": u"אליפז", "symbol_code": 1248, "name": u"אליפז"}, {"search_priority": 0, "search_heb": u"הרדוף", "symbol_code": 1249, "name": u"הרדוף"}, {"search_priority": 1, "search_heb": u"עין תמר", "symbol_code": 1251, "name": u"עין תמר"}, {"search_priority": 0, "search_heb": u"כורזים", "symbol_code": 1252, "name": u"כורזים"}, {"search_priority": 0, "search_heb": u"אמנון", "symbol_code": 1253, "name": u"אמנון"}, {"search_priority": 0, "search_heb": u"נטף", "symbol_code": 1254, "name": u"נטף"}, {"search_priority": 0, "search_heb": u"לוטן", "symbol_code": 1255, "name": u"לוטן"}, {"search_priority": 0, "search_heb": u"אשרת", "symbol_code": 1256, "name": u"אשרת"}, {"search_priority": 0, "search_heb": u"חנתון", "symbol_code": 1257, "name": u"חנתון"}, {"search_priority": 0, "search_heb": u"מסד", "symbol_code": 1258, "name": u"מסד"}, {"search_priority": 1, "search_heb": u"נווה שלום", "symbol_code": 1259, "name": u"נווה שלום"}, {"search_priority": 0, "search_heb": u"רתמים", "symbol_code": 1260, "name": u"רתמים"}, {"search_priority": 1, "search_heb": u"הר עמשא", "symbol_code": 1261, "name": u"הר עמשא"}, {"search_priority": 0, "search_heb": u"צוקים", "symbol_code": 1262, "name": u"צוקים"}, {"search_priority": 1, "search_heb": u"כפר ורדים", "symbol_code": 1263, "name": u"כפר ורדים"}, {"search_priority": 1, "search_heb": u"כרמי יוסף", "symbol_code": 1264, "name": u"כרמי יוסף"}, {"search_priority": 0, "search_heb": u"שומריה", "symbol_code": 1265, "name": u"שומריה"}, {"search_priority": 0, "search_heb": u"שחרות", "symbol_code": 1266, "name": u"שחרות"}, {"search_priority": 0, "search_heb": u"שיטים", "symbol_code": 1267, "name": u"שיטים"}, {"search_priority": 0, "search_heb": u"מיתר", "symbol_code": 1268, "name": u"מיתר"}, {"search_priority": 0, "search_heb": u"להבים", "symbol_code": 1271, "name": u"להבים"}, {"search_priority": 0, "search_heb": u"חלוץ", "symbol_code": 1272, "name": u"חלוץ"}, {"search_priority": 1, "search_heb": u"גן נר", "symbol_code": 1274, "name": u"גן נר"}, {"search_priority": 0, "search_heb": u"אבטליון", "symbol_code": 1275, "name": u"אבטליון"}, {"search_priority": 0, "search_heb": u"אשבל", "symbol_code": 1276, "name": u"אשבל"}, {"search_priority": 1, "search_heb": u"באר מילכה", "symbol_code": 1278, "name": u"באר מילכה"}, {"search_priority": 1, "search_heb": u"נווה חריף", "symbol_code": 1279, "name": u"נווה חריף"}, {"search_priority": 1, "search_heb": u"ניצני סיני", "symbol_code": 1280, "name": u"ניצני סיני"}, {"search_priority": 0, "search_heb": u"מירב", "symbol_code": 1282, "name": u"מירב"}, {"search_priority": 1, "search_heb": u"תל תאומים", "symbol_code": 1283, "name": u"תל תאומים"}, {"search_priority": 0, "search_heb": u"נופית", "symbol_code": 1284, "name": u"נופית"}, {"search_priority": 0, "search_heb": u"כרכום", "symbol_code": 1285, "name": u"כרכום"}, {"search_priority": 0, "search_heb": u"שגב-שלום", "symbol_code": 1286, "name": u"שגב-שלום"}, {"search_priority": 0, "search_heb": u"שני", "symbol_code": 1287, "name": u"שני"}, {"search_priority": 1, "search_heb": u"גבעת אלה", "symbol_code": 1288, "name": u"גבעת אלה"}, {"search_priority": 0, "search_heb": u"זמר", "symbol_code": 1290, "name": u"זמר"}, {"search_priority": 0, "search_heb": u"כמהין", "symbol_code": 1291, "name": u"כמהין"}, {"search_priority": 0, "search_heb": u"ג'דיידה-מכר", "symbol_code": 1292, "name": u"ג'דיידה-מכר"}, {"search_priority": 1, "search_heb": u"גבעת אבני", "symbol_code": 1293, "name": u"גבעת אבני"}, {"search_priority": 1, "search_heb": u"אור הגנוז", "symbol_code": 1294, "name": u"אור הגנוז"}, {"search_priority": 0, "search_heb": u"יאנוח-ג'ת", "symbol_code": 1295, "name": u"יאנוח-ג'ת"}, {"search_priority": 0, "search_heb": u"כסרא-סמיע", "symbol_code": 1296, "name": u"כסרא-סמיע"}, {"search_priority": 1, "search_heb": u"כפר חנניה", "symbol_code": 1297, "name": u"כפר חנניה"}, {"search_priority": 0, "search_heb": u"אתגר", "symbol_code": 1298, "name": u"אתגר"}, {"search_priority": 0, "search_heb": u"שעורים", "symbol_code": 1299, "name": u"שעורים"}, {"search_priority": 0, "search_heb": u"חורה", "symbol_code": 1303, "name": u"חורה"}, {"search_priority": 0, "search_heb": u"שוהם", "symbol_code": 1304, "name": u"שוהם"}, {"search_priority": 0, "search_heb": u"אלעד", "symbol_code": 1309, "name": u"אלעד"}, {"search_priority": 0, "search_heb": u"לפיד", "symbol_code": 1310, "name": u"לפיד"}, {"search_priority": 0, "search_heb": u"אבשלום", "symbol_code": 1311, "name": u"אבשלום"}, {"search_priority": 1, "search_heb": u"פוריה עילית", "symbol_code": 1313, "name": u"פוריה עילית"}, {"search_priority": 1, "search_heb": u"נווה זיו", "symbol_code": 1314, "name": u"נווה זיו"}, {"search_priority": 0, "search_heb": u"מתן", "symbol_code": 1315, "name": u"מתן"}, {"search_priority": 0, "search_heb": u"אל-עריאן", "symbol_code": 1316, "name": u"אל-עריאן"}, {"search_priority": 0, "search_heb": u"דמיידה", "symbol_code": 1317, "name": u"דמיידה"}, {"search_priority": 1, "search_heb": u"מבואות ים", "symbol_code": 1318, "name": u"מבואות ים"}, {"search_priority": 1, "search_heb": u"בת חפר", "symbol_code": 1319, "name": u"בת חפר"}, {"search_priority": 1, "search_heb": u"עין חוד", "symbol_code": 1320, "name": u"עין חוד"}, {"search_priority": 0, "search_heb": u"ח'ואלד", "symbol_code": 1321, "name": u"ח'ואלד"}, {"search_priority": 0, "search_heb": u"הודיות", "symbol_code": 1322, "name": u"הודיות"}, {"search_priority": 1, "search_heb": u"בת הדר", "symbol_code": 1323, "name": u"בת הדר"}, {"search_priority": 0, "search_heb": u"ארסוף", "symbol_code": 1324, "name": u"ארסוף"}, {"search_priority": 1, "search_heb": u"כפר זוהרים", "symbol_code": 1325, "name": u"כפר זוהרים"}, {"search_priority": 0, "search_heb": u"בסמ\"ה", "symbol_code": 1326, "name": u"בסמ\"ה"}, {"search_priority": 1, "search_heb": u"מעלה עירון", "symbol_code": 1327, "name": u"מעלה עירון"}, {"search_priority": 0, "search_heb": u"יתיר", "symbol_code": 1329, "name": u"יתיר"}, {"search_priority": 1, "search_heb": u"אחוזת ברק", "symbol_code": 1330, "name": u"אחוזת ברק"}, {"search_priority": 0, "search_heb": u"כמאנה", "symbol_code": 1331, "name": u"כמאנה"}, {"search_priority": 0, "search_heb": u"חוסנייה", "symbol_code": 1332, "name": u"חוסנייה"}, {"search_priority": 1, "search_heb": u"נוף איילון", "symbol_code": 1333, "name": u"נוף איילון"}, {"search_priority": 1, "search_heb": u"ראס אל-עין", "symbol_code": 1334, "name": u"ראס אל-עין"}, {"search_priority": 2, "search_heb": u"ערב אל נעים", "symbol_code": 1335, "name": u"ערב אל נעים"}, {"search_priority": 0, "search_heb": u"אירוס", "symbol_code": 1336, "name": u"אירוס"}, {"search_priority": 0, "search_heb": u"שמשית", "symbol_code": 1337, "name": u"שמשית"}, {"search_priority": 0, "search_heb": u"כדיתה", "symbol_code": 1338, "name": u"כדיתה"}, {"search_priority": 0, "search_heb": u"אל-עזי", "symbol_code": 1339, "name": u"אל-עזי"}, {"search_priority": 1, "search_heb": u"מרחב עם", "symbol_code": 1340, "name": u"מרחב עם"}, {"search_priority": 1, "search_heb": u"רוח מדבר", "symbol_code": 1341, "name": u"רוח מדבר"}, {"search_priority": 2, "search_heb": u"אבו קרינאת )יישוב(", "symbol_code": 1342, "name": u"אבו קרינאת )יישוב("}, {"search_priority": 0, "search_heb": u"מכחול", "symbol_code": 1343, "name": u"מכחול"}, {"search_priority": 1, "search_heb": u"גבעות בר", "symbol_code": 1344, "name": u"גבעות בר"}, {"search_priority": 1, "search_heb": u"צור יצחק", "symbol_code": 1345, "name": u"צור יצחק"}, {"search_priority": 1, "search_heb": u"תראבין א-צאנע)ישוב(", "symbol_code": 1346, "name": u"תראבין א-צאנע)ישוב("}, {"search_priority": 1, "search_heb": u"קצר א-סר", "symbol_code": 1347, "name": u"קצר א-סר"}, {"search_priority": 1, "search_heb": u"ביר הדאג'", "symbol_code": 1348, "name": u"ביר הדאג'"}, {"search_priority": 0, "search_heb": u"דריג'את", "symbol_code": 1349, "name": u"דריג'את"}, {"search_priority": 1, "search_heb": u"אום בטין", "symbol_code": 1358, "name": u"אום בטין"}, {"search_priority": 1, "search_heb": u"אל סייד", "symbol_code": 1359, "name": u"אל סייד"}, {"search_priority": 0, "search_heb": u"מולדה", "symbol_code": 1360, "name": u"מולדה"}, {"search_priority": 1, "search_heb": u"בת חן", "symbol_code": 1361, "name": u"בת חן"}, {"search_priority": 1, "search_heb": u"בני נצרים", "symbol_code": 1363, "name": u"בני נצרים"}, {"search_priority": 0, "search_heb": u"שלומית", "symbol_code": 1364, "name": u"שלומית"}, {"search_priority": 0, "search_heb": u"אליאב", "symbol_code": 1365, "name": u"אליאב"}, {"search_priority": 0, "search_heb": u"נווה", "symbol_code": 1366, "name": u"נווה"}, {"search_priority": 0, "search_heb": u"כחלה", "symbol_code": 1367, "name": u"כחלה"}, {"search_priority": 1, "search_heb": u"בני דקלים", "symbol_code": 1368, "name": u"בני דקלים"}, {"search_priority": 0, "search_heb": u"נטע", "symbol_code": 1369, "name": u"נטע"}, {"search_priority": 1, "search_heb": u"מצפה אילן", "symbol_code": 1370, "name": u"מצפה אילן"}, {"search_priority": 1, "search_heb": u"גני טל", "symbol_code": 1371, "name": u"גני טל"}, {"search_priority": 1, "search_heb": u"נצר חזני", "symbol_code": 1372, "name": u"נצר חזני"}, {"search_priority": 1, "search_heb": u"שלווה במדבר", "symbol_code": 1373, "name": u"שלווה במדבר"}, {"search_priority": 1, "search_heb": u"כרמי קטיף", "symbol_code": 1374, "name": u"כרמי קטיף"}, {"search_priority": 1, "search_heb": u"אבו תלול", "symbol_code": 1375, "name": u"אבו תלול"}, {"search_priority": 1, "search_heb": u"באר גנים", "symbol_code": 1376, "name": u"באר גנים"}, {"search_priority": 1, "search_heb": u"בת חצור", "symbol_code": 1401, "name": u"בת חצור"}, {"search_priority": 1, "search_heb": u"חצרות חולדה", "symbol_code": 1402, "name": u"חצרות חולדה"}, {"search_priority": 1, "search_heb": u"חצרות יסף", "symbol_code": 1404, "name": u"חצרות יסף"}, {"search_priority": 1, "search_heb": u"חצרות כ\"ח", "symbol_code": 1405, "name": u"חצרות כ\"ח"}, {"search_priority": 1, "search_heb": u"חצר בארותיים", "symbol_code": 1409, "name": u"חצר בארותיים"}, {"search_priority": 1, "search_heb": u"מחנה הילה", "symbol_code": 1411, "name": u"מחנה הילה"}, {"search_priority": 2, "search_heb": u"מחנה תל נוף", "symbol_code": 1412, "name": u"מחנה תל נוף"}, {"search_priority": 1, "search_heb": u"מחנה יהודית", "symbol_code": 1413, "name": u"מחנה יהודית"}, {"search_priority": 1, "search_heb": u"מחנה מרים", "symbol_code": 1414, "name": u"מחנה מרים"}, {"search_priority": 1, "search_heb": u"מחנה יפה", "symbol_code": 1415, "name": u"מחנה יפה"}, {"search_priority": 1, "search_heb": u"מחנה יוכבד", "symbol_code": 1416, "name": u"מחנה יוכבד"}, {"search_priority": 1, "search_heb": u"מחנה עדי", "symbol_code": 1417, "name": u"מחנה עדי"}, {"search_priority": 1, "search_heb": u"מחנה טלי", "symbol_code": 1418, "name": u"מחנה טלי"}, {"search_priority": 1, "search_heb": u"ניצן ב'", "symbol_code": 1419, "name": u"ניצן ב'"}, {"search_priority": 0, "search_heb": u"תנובות", "symbol_code": 2002, "name": u"תנובות"}, {"search_priority": 1, "search_heb": u"תלמי אלעזר", "symbol_code": 2003, "name": u"תלמי אלעזר"}, {"search_priority": 0, "search_heb": u"כנות", "symbol_code": 2006, "name": u"כנות"}, {"search_priority": 1, "search_heb": u"שדה יצחק", "symbol_code": 2008, "name": u"שדה יצחק"}, {"search_priority": 0, "search_heb": u"יובל", "symbol_code": 2009, "name": u"יובל"}, {"search_priority": 2, "search_heb": u"כפר בן נון", "symbol_code": 2010, "name": u"כפר בן נון"}, {"search_priority": 0, "search_heb": u"ינון", "symbol_code": 2011, "name": u"ינון"}, {"search_priority": 0, "search_heb": u"אורות", "symbol_code": 2012, "name": u"אורות"}, {"search_priority": 2, "search_heb": u"בן שמן )מושב(", "symbol_code": 2013, "name": u"בן שמן )מושב("}, {"search_priority": 0, "search_heb": u"גבעולים", "symbol_code": 2014, "name": u"גבעולים"}, {"search_priority": 1, "search_heb": u"שדי חמד", "symbol_code": 2015, "name": u"שדי חמד"}, {"search_priority": 0, "search_heb": u"רוויה", "symbol_code": 2016, "name": u"רוויה"}, {"search_priority": 2, "search_heb": u"גבעת חיים )איחוד(", "symbol_code": 2018, "name": u"גבעת חיים )איחוד("}, {"search_priority": 1, "search_heb": u"אשל הנשיא", "symbol_code": 2021, "name": u"אשל הנשיא"}, {"search_priority": 0, "search_heb": u"להב", "symbol_code": 2023, "name": u"להב"}, {"search_priority": 1, "search_heb": u"אום אל-קוטוף", "symbol_code": 2024, "name": u"אום אל-קוטוף"}, {"search_priority": 0, "search_heb": u"ירדנה", "symbol_code": 2026, "name": u"ירדנה"}, {"search_priority": 1, "search_heb": u"מדרך עוז", "symbol_code": 2029, "name": u"מדרך עוז"}, {"search_priority": 0, "search_heb": u"מנוחה", "symbol_code": 2030, "name": u"מנוחה"}, {"search_priority": 1, "search_heb": u"בית חלקיה", "symbol_code": 2033, "name": u"בית חלקיה"}, {"search_priority": 1, "search_heb": u"חצור הגלילית", "symbol_code": 2034, "name": u"חצור הגלילית"}, {"search_priority": 0, "search_heb": u"עדנים", "symbol_code": 2035, "name": u"עדנים"}, {"search_priority": 0, "search_heb": u"ברקת", "symbol_code": 2038, "name": u"ברקת"}, {"search_priority": 1, "search_heb": u"קרית יערים)מוסד(", "symbol_code": 2039, "name": u"קרית יערים)מוסד("}, {"search_priority": 1, "search_heb": u"עין גדי", "symbol_code": 2042, "name": u"עין גדי"}, {"search_priority": 0, "search_heb": u"בחן", "symbol_code": 2043, "name": u"בחן"}, {"search_priority": 0, "search_heb": u"מלילות", "symbol_code": 2044, "name": u"מלילות"}, {"search_priority": 0, "search_heb": u"נחלה", "symbol_code": 2045, "name": u"נחלה"}, {"search_priority": 0, "search_heb": u"סגולה", "symbol_code": 2046, "name": u"סגולה"}, {"search_priority": 1, "search_heb": u"ניר משה", "symbol_code": 2047, "name": u"ניר משה"}, {"search_priority": 1, "search_heb": u"ניר עקיבא", "symbol_code": 2048, "name": u"ניר עקיבא"}, {"search_priority": 1, "search_heb": u"שדה צבי", "symbol_code": 2049, "name": u"שדה צבי"}, {"search_priority": 1, "search_heb": u"תלמי ביל\"ו", "symbol_code": 2050, "name": u"תלמי ביל\"ו"}, {"search_priority": 0, "search_heb": u"רווחה", "symbol_code": 2051, "name": u"רווחה"}, {"search_priority": 0, "search_heb": u"אביטל", "symbol_code": 2052, "name": u"אביטל"}, {"search_priority": 0, "search_heb": u"פרזון", "symbol_code": 2053, "name": u"פרזון"}, {"search_priority": 0, "search_heb": u"מיטב", "symbol_code": 2054, "name": u"מיטב"}, {"search_priority": 0, "search_heb": u"מאור", "symbol_code": 2055, "name": u"מאור"}, {"search_priority": 1, "search_heb": u"שדי תרומות", "symbol_code": 2057, "name": u"שדי תרומות"}, {"search_priority": 1, "search_heb": u"פעמי תש\"ז", "symbol_code": 2059, "name": u"פעמי תש\"ז"}, {"search_priority": 0, "search_heb": u"ברוש", "symbol_code": 2060, "name": u"ברוש"}, {"search_priority": 0, "search_heb": u"תדהר", "symbol_code": 2061, "name": u"תדהר"}, {"search_priority": 0, "search_heb": u"תאשור", "symbol_code": 2062, "name": u"תאשור"}, {"search_priority": 0, "search_heb": u"דישון", "symbol_code": 2063, "name": u"דישון"}, {"search_priority": 0, "search_heb": u"זרועה", "symbol_code": 2064, "name": u"זרועה"}, {"search_priority": 1, "search_heb": u"טירת כרמל", "symbol_code": 2100, "name": u"טירת כרמל"}, {"search_priority": 0, "search_heb": u"דימונה", "symbol_code": 2200, "name": u"דימונה"}, {"search_priority": 1, "search_heb": u"קרית טבעון", "symbol_code": 2300, "name": u"קרית טבעון"}, {"search_priority": 1, "search_heb": u"אור יהודה", "symbol_code": 2400, "name": u"אור יהודה"}, {"search_priority": 0, "search_heb": u"נשר", "symbol_code": 2500, "name": u"נשר"}, {"search_priority": 1, "search_heb": u"באר יעקב", "symbol_code": 2530, "name": u"באר יעקב"}, {"search_priority": 0, "search_heb": u"גדרה", "symbol_code": 2550, "name": u"גדרה"}, {"search_priority": 0, "search_heb": u"ערד", "symbol_code": 2560, "name": u"ערד"}, {"search_priority": 0, "search_heb": u"אילת", "symbol_code": 2600, "name": u"אילת"}, {"search_priority": 1, "search_heb": u"בית שמש", "symbol_code": 2610, "name": u"בית שמש"}, {"search_priority": 1, "search_heb": u"קרית אונו", "symbol_code": 2620, "name": u"קרית אונו"}, {"search_priority": 1, "search_heb": u"קרית גת", "symbol_code": 2630, "name": u"קרית גת"}, {"search_priority": 1, "search_heb": u"ראש העין", "symbol_code": 2640, "name": u"ראש העין"}, {"search_priority": 1, "search_heb": u"רמת השרון", "symbol_code": 2650, "name": u"רמת השרון"}, {"search_priority": 0, "search_heb": u"יבנה", "symbol_code": 2660, "name": u"יבנה"}, {"search_priority": 1, "search_heb": u"אום אל-פחם", "symbol_code": 2710, "name": u"אום אל-פחם"}, {"search_priority": 0, "search_heb": u"טירה", "symbol_code": 2720, "name": u"טירה"}, {"search_priority": 0, "search_heb": u"טייבה", "symbol_code": 2730, "name": u"טייבה"}, {"search_priority": 1, "search_heb": u"זבארגה )שבט(", "symbol_code": 2742, "name": u"זבארגה )שבט("}, {"search_priority": 1, "search_heb": u"קרית שמונה", "symbol_code": 2800, "name": u"קרית שמונה"}, {"search_priority": 0, "search_heb": u"ירושלים", "symbol_code": 3000, "name": u"ירושלים"}, {"search_priority": 0, "search_heb": u"חברון", "symbol_code": 3400, "name": u"חברון"}, {"search_priority": 1, "search_heb": u"כפר עציון", "symbol_code": 3488, "name": u"כפר עציון"}, {"search_priority": 1, "search_heb": u"נתיב הגדוד", "symbol_code": 3555, "name": u"נתיב הגדוד"}, {"search_priority": 0, "search_heb": u"אלמוג", "symbol_code": 3556, "name": u"אלמוג"}, {"search_priority": 0, "search_heb": u"קדומים", "symbol_code": 3557, "name": u"קדומים"}, {"search_priority": 0, "search_heb": u"תומר", "symbol_code": 3558, "name": u"תומר"}, {"search_priority": 0, "search_heb": u"אלקנה", "symbol_code": 3560, "name": u"אלקנה"}, {"search_priority": 1, "search_heb": u"מגדל עוז", "symbol_code": 3561, "name": u"מגדל עוז"}, {"search_priority": 0, "search_heb": u"תקוע", "symbol_code": 3563, "name": u"תקוע"}, {"search_priority": 1, "search_heb": u"כוכב השחר", "symbol_code": 3564, "name": u"כוכב השחר"}, {"search_priority": 0, "search_heb": u"רימונים", "symbol_code": 3565, "name": u"רימונים"}, {"search_priority": 0, "search_heb": u"יפית", "symbol_code": 3566, "name": u"יפית"}, {"search_priority": 0, "search_heb": u"סלעית", "symbol_code": 3567, "name": u"סלעית"}, {"search_priority": 0, "search_heb": u"ריחן", "symbol_code": 3568, "name": u"ריחן"}, {"search_priority": 1, "search_heb": u"מבוא דותן", "symbol_code": 3569, "name": u"מבוא דותן"}, {"search_priority": 0, "search_heb": u"אריאל", "symbol_code": 3570, "name": u"אריאל"}, {"search_priority": 1, "search_heb": u"שבי שומרון", "symbol_code": 3571, "name": u"שבי שומרון"}, {"search_priority": 1, "search_heb": u"כפר תפוח", "symbol_code": 3572, "name": u"כפר תפוח"}, {"search_priority": 0, "search_heb": u"חלמיש", "symbol_code": 3573, "name": u"חלמיש"}, {"search_priority": 1, "search_heb": u"בית אל", "symbol_code": 3574, "name": u"בית אל"}, {"search_priority": 1, "search_heb": u"בית חורון", "symbol_code": 3575, "name": u"בית חורון"}, {"search_priority": 1, "search_heb": u"מצפה יריחו", "symbol_code": 3576, "name": u"מצפה יריחו"}, {"search_priority": 1, "search_heb": u"שדמות מחולה", "symbol_code": 3578, "name": u"שדמות מחולה"}, {"search_priority": 1, "search_heb": u"אלון מורה", "symbol_code": 3579, "name": u"אלון מורה"}, {"search_priority": 0, "search_heb": u"ארגמן", "symbol_code": 3598, "name": u"ארגמן"}, {"search_priority": 0, "search_heb": u"מחולה", "symbol_code": 3599, "name": u"מחולה"}, {"search_priority": 0, "search_heb": u"קליה", "symbol_code": 3601, "name": u"קליה"}, {"search_priority": 1, "search_heb": u"ראש צורים", "symbol_code": 3602, "name": u"ראש צורים"}, {"search_priority": 1, "search_heb": u"הר גילה", "symbol_code": 3603, "name": u"הר גילה"}, {"search_priority": 1, "search_heb": u"אלון שבות", "symbol_code": 3604, "name": u"אלון שבות"}, {"search_priority": 0, "search_heb": u"משואה", "symbol_code": 3605, "name": u"משואה"}, {"search_priority": 0, "search_heb": u"גלגל", "symbol_code": 3606, "name": u"גלגל"}, {"search_priority": 0, "search_heb": u"ייט\"ב", "symbol_code": 3607, "name": u"ייט\"ב"}, {"search_priority": 1, "search_heb": u"מעלה אפרים", "symbol_code": 3608, "name": u"מעלה אפרים"}, {"search_priority": 0, "search_heb": u"חמרה", "symbol_code": 3609, "name": u"חמרה"}, {"search_priority": 1, "search_heb": u"מצפה שלם", "symbol_code": 3610, "name": u"מצפה שלם"}, {"search_priority": 1, "search_heb": u"קרית ארבע", "symbol_code": 3611, "name": u"קרית ארבע"}, {"search_priority": 0, "search_heb": u"בקעות", "symbol_code": 3612, "name": u"בקעות"}, {"search_priority": 0, "search_heb": u"גיתית", "symbol_code": 3613, "name": u"גיתית"}, {"search_priority": 0, "search_heb": u"מכורה", "symbol_code": 3614, "name": u"מכורה"}, {"search_priority": 0, "search_heb": u"פצאל", "symbol_code": 3615, "name": u"פצאל"}, {"search_priority": 1, "search_heb": u"מעלה אדומים", "symbol_code": 3616, "name": u"מעלה אדומים"}, {"search_priority": 0, "search_heb": u"עופרה", "symbol_code": 3617, "name": u"עופרה"}, {"search_priority": 0, "search_heb": u"אלעזר", "symbol_code": 3618, "name": u"אלעזר"}, {"search_priority": 0, "search_heb": u"רועי", "symbol_code": 3619, "name": u"רועי"}, {"search_priority": 0, "search_heb": u"נירן", "symbol_code": 3620, "name": u"נירן"}, {"search_priority": 1, "search_heb": u"מעלה שומרון", "symbol_code": 3637, "name": u"מעלה שומרון"}, {"search_priority": 1, "search_heb": u"כפר אדומים", "symbol_code": 3638, "name": u"כפר אדומים"}, {"search_priority": 1, "search_heb": u"ורד יריחו", "symbol_code": 3639, "name": u"ורד יריחו"}, {"search_priority": 1, "search_heb": u"קרני שומרון", "symbol_code": 3640, "name": u"קרני שומרון"}, {"search_priority": 0, "search_heb": u"שילה", "symbol_code": 3641, "name": u"שילה"}, {"search_priority": 0, "search_heb": u"חיננית", "symbol_code": 3643, "name": u"חיננית"}, {"search_priority": 1, "search_heb": u"גבעון החדשה", "symbol_code": 3644, "name": u"גבעון החדשה"}, {"search_priority": 1, "search_heb": u"בית הערבה", "symbol_code": 3645, "name": u"בית הערבה"}, {"search_priority": 0, "search_heb": u"חמדת", "symbol_code": 3646, "name": u"חמדת"}, {"search_priority": 0, "search_heb": u"יקיר", "symbol_code": 3647, "name": u"יקיר"}, {"search_priority": 0, "search_heb": u"מתתיהו", "symbol_code": 3648, "name": u"מתתיהו"}, {"search_priority": 0, "search_heb": u"שקד", "symbol_code": 3649, "name": u"שקד"}, {"search_priority": 0, "search_heb": u"אפרת", "symbol_code": 3650, "name": u"אפרת"}, {"search_priority": 1, "search_heb": u"מעלה מכמש", "symbol_code": 3651, "name": u"מעלה מכמש"}, {"search_priority": 1, "search_heb": u"בית אריה", "symbol_code": 3652, "name": u"בית אריה"}, {"search_priority": 1, "search_heb": u"מעלה עמוס", "symbol_code": 3653, "name": u"מעלה עמוס"}, {"search_priority": 0, "search_heb": u"ברקן", "symbol_code": 3654, "name": u"ברקן"}, {"search_priority": 0, "search_heb": u"ניל\"י", "symbol_code": 3655, "name": u"ניל\"י"}, {"search_priority": 0, "search_heb": u"כרמל", "symbol_code": 3656, "name": u"כרמל"}, {"search_priority": 0, "search_heb": u"מעון", "symbol_code": 3657, "name": u"מעון"}, {"search_priority": 0, "search_heb": u"עטרת", "symbol_code": 3658, "name": u"עטרת"}, {"search_priority": 0, "search_heb": u"פסגות", "symbol_code": 3659, "name": u"פסגות"}, {"search_priority": 0, "search_heb": u"עמנואל", "symbol_code": 3660, "name": u"עמנואל"}, {"search_priority": 1, "search_heb": u"מבוא חורון", "symbol_code": 3709, "name": u"מבוא חורון"}, {"search_priority": 0, "search_heb": u"ברכה", "symbol_code": 3710, "name": u"ברכה"}, {"search_priority": 0, "search_heb": u"ענב", "symbol_code": 3712, "name": u"ענב"}, {"search_priority": 0, "search_heb": u"נעמ\"ה", "symbol_code": 3713, "name": u"נעמ\"ה"}, {"search_priority": 0, "search_heb": u"עלמון", "symbol_code": 3715, "name": u"עלמון"}, {"search_priority": 0, "search_heb": u"חרמש", "symbol_code": 3717, "name": u"חרמש"}, {"search_priority": 0, "search_heb": u"תלם", "symbol_code": 3719, "name": u"תלם"}, {"search_priority": 1, "search_heb": u"שערי תקווה", "symbol_code": 3720, "name": u"שערי תקווה"}, {"search_priority": 0, "search_heb": u"אשכולות", "symbol_code": 3722, "name": u"אשכולות"}, {"search_priority": 1, "search_heb": u"פני חבר", "symbol_code": 3723, "name": u"פני חבר"}, {"search_priority": 0, "search_heb": u"נגוהות", "symbol_code": 3724, "name": u"נגוהות"}, {"search_priority": 1, "search_heb": u"נווה דניאל", "symbol_code": 3725, "name": u"נווה דניאל"}, {"search_priority": 0, "search_heb": u"נוקדים", "symbol_code": 3726, "name": u"נוקדים"}, {"search_priority": 1, "search_heb": u"עלי זהב", "symbol_code": 3727, "name": u"עלי זהב"}, {"search_priority": 1, "search_heb": u"גבעת זאב", "symbol_code": 3730, "name": u"גבעת זאב"}, {"search_priority": 0, "search_heb": u"טנא", "symbol_code": 3743, "name": u"טנא"}, {"search_priority": 0, "search_heb": u"ברוכין", "symbol_code": 3744, "name": u"ברוכין"}, {"search_priority": 1, "search_heb": u"מצדות יהודה", "symbol_code": 3745, "name": u"מצדות יהודה"}, {"search_priority": 1, "search_heb": u"קרית נטפים", "symbol_code": 3746, "name": u"קרית נטפים"}, {"search_priority": 0, "search_heb": u"דולב", "symbol_code": 3747, "name": u"דולב"}, {"search_priority": 0, "search_heb": u"עתניאל", "symbol_code": 3748, "name": u"עתניאל"}, {"search_priority": 0, "search_heb": u"יצהר", "symbol_code": 3749, "name": u"יצהר"}, {"search_priority": 1, "search_heb": u"אלפי מנשה", "symbol_code": 3750, "name": u"אלפי מנשה"}, {"search_priority": 0, "search_heb": u"מגדלים", "symbol_code": 3751, "name": u"מגדלים"}, {"search_priority": 1, "search_heb": u"מעלה לבונה", "symbol_code": 3752, "name": u"מעלה לבונה"}, {"search_priority": 0, "search_heb": u"אספר", "symbol_code": 3754, "name": u"אספר"}, {"search_priority": 0, "search_heb": u"סוסיה", "symbol_code": 3756, "name": u"סוסיה"}, {"search_priority": 0, "search_heb": u"אדורה", "symbol_code": 3759, "name": u"אדורה"}, {"search_priority": 0, "search_heb": u"אורנית", "symbol_code": 3760, "name": u"אורנית"}, {"search_priority": 0, "search_heb": u"איתמר", "symbol_code": 3762, "name": u"איתמר"}, {"search_priority": 1, "search_heb": u"גבע בנימין", "symbol_code": 3763, "name": u"גבע בנימין"}, {"search_priority": 0, "search_heb": u"חגי", "symbol_code": 3764, "name": u"חגי"}, {"search_priority": 0, "search_heb": u"עלי", "symbol_code": 3765, "name": u"עלי"}, {"search_priority": 1, "search_heb": u"כרמי צור", "symbol_code": 3766, "name": u"כרמי צור"}, {"search_priority": 0, "search_heb": u"נחליאל", "symbol_code": 3767, "name": u"נחליאל"}, {"search_priority": 0, "search_heb": u"פדואל", "symbol_code": 3768, "name": u"פדואל"}, {"search_priority": 1, "search_heb": u"הר אדר", "symbol_code": 3769, "name": u"הר אדר"}, {"search_priority": 0, "search_heb": u"חשמונאים", "symbol_code": 3770, "name": u"חשמונאים"}, {"search_priority": 0, "search_heb": u"סנסנה", "symbol_code": 3777, "name": u"סנסנה"}, {"search_priority": 1, "search_heb": u"עץ אפרים", "symbol_code": 3778, "name": u"עץ אפרים"}, {"search_priority": 1, "search_heb": u"כוכב יעקב", "symbol_code": 3779, "name": u"כוכב יעקב"}, {"search_priority": 1, "search_heb": u"ביתר עילית", "symbol_code": 3780, "name": u"ביתר עילית"}, {"search_priority": 0, "search_heb": u"קדר", "symbol_code": 3781, "name": u"קדר"}, {"search_priority": 0, "search_heb": u"רותם", "symbol_code": 3782, "name": u"רותם"}, {"search_priority": 0, "search_heb": u"שמעה", "symbol_code": 3784, "name": u"שמעה"}, {"search_priority": 0, "search_heb": u"משכיות", "symbol_code": 3785, "name": u"משכיות"}, {"search_priority": 0, "search_heb": u"אבנת", "symbol_code": 3786, "name": u"אבנת"}, {"search_priority": 0, "search_heb": u"נעלה", "symbol_code": 3787, "name": u"נעלה"}, {"search_priority": 0, "search_heb": u"טלמון", "symbol_code": 3788, "name": u"טלמון"}, {"search_priority": 0, "search_heb": u"נופים", "symbol_code": 3790, "name": u"נופים"}, {"search_priority": 0, "search_heb": u"צופים", "symbol_code": 3791, "name": u"צופים"}, {"search_priority": 1, "search_heb": u"אבני חפץ", "symbol_code": 3793, "name": u"אבני חפץ"}, {"search_priority": 1, "search_heb": u"בת עין", "symbol_code": 3794, "name": u"בת עין"}, {"search_priority": 0, "search_heb": u"רבבה", "symbol_code": 3795, "name": u"רבבה"}, {"search_priority": 1, "search_heb": u"כפר האורנים", "symbol_code": 3796, "name": u"כפר האורנים"}, {"search_priority": 1, "search_heb": u"מודיעין עילית", "symbol_code": 3797, "name": u"מודיעין עילית"}, {"search_priority": 0, "search_heb": u"רחלים", "symbol_code": 3822, "name": u"רחלים"}, {"search_priority": 1, "search_heb": u"גני מודיעין", "symbol_code": 3823, "name": u"גני מודיעין"}, {"search_priority": 0, "search_heb": u"חיפה", "symbol_code": 4000, "name": u"חיפה"}, {"search_priority": 0, "search_heb": u"בוקעאתא", "symbol_code": 4001, "name": u"בוקעאתא"}, {"search_priority": 0, "search_heb": u"אלי-עד", "symbol_code": 4002, "name": u"אלי-עד"}, {"search_priority": 0, "search_heb": u"אל-רום", "symbol_code": 4003, "name": u"אל-רום"}, {"search_priority": 1, "search_heb": u"כפר חרוב", "symbol_code": 4004, "name": u"כפר חרוב"}, {"search_priority": 0, "search_heb": u"חספין", "symbol_code": 4005, "name": u"חספין"}, {"search_priority": 0, "search_heb": u"קשת", "symbol_code": 4006, "name": u"קשת"}, {"search_priority": 0, "search_heb": u"יונתן", "symbol_code": 4007, "name": u"יונתן"}, {"search_priority": 1, "search_heb": u"מעלה גמלא", "symbol_code": 4008, "name": u"מעלה גמלא"}, {"search_priority": 0, "search_heb": u"שעל", "symbol_code": 4009, "name": u"שעל"}, {"search_priority": 0, "search_heb": u"אודם", "symbol_code": 4010, "name": u"אודם"}, {"search_priority": 1, "search_heb": u"אבני איתן", "symbol_code": 4011, "name": u"אבני איתן"}, {"search_priority": 0, "search_heb": u"אניעם", "symbol_code": 4012, "name": u"אניעם"}, {"search_priority": 0, "search_heb": u"אורטל", "symbol_code": 4013, "name": u"אורטל"}, {"search_priority": 0, "search_heb": u"נטור", "symbol_code": 4014, "name": u"נטור"}, {"search_priority": 1, "search_heb": u"בני יהודה", "symbol_code": 4015, "name": u"בני יהודה"}, {"search_priority": 1, "search_heb": u"אלוני הבשן", "symbol_code": 4017, "name": u"אלוני הבשן"}, {"search_priority": 0, "search_heb": u"מיצר", "symbol_code": 4019, "name": u"מיצר"}, {"search_priority": 1, "search_heb": u"גבעת יואב", "symbol_code": 4021, "name": u"גבעת יואב"}, {"search_priority": 0, "search_heb": u"גשור", "symbol_code": 4022, "name": u"גשור"}, {"search_priority": 0, "search_heb": u"קלע", "symbol_code": 4024, "name": u"קלע"}, {"search_priority": 1, "search_heb": u"קדמת צבי", "symbol_code": 4025, "name": u"קדמת צבי"}, {"search_priority": 0, "search_heb": u"חד-נס", "symbol_code": 4026, "name": u"חד-נס"}, {"search_priority": 0, "search_heb": u"כנף", "symbol_code": 4028, "name": u"כנף"}, {"search_priority": 0, "search_heb": u"נמרוד", "symbol_code": 4035, "name": u"נמרוד"}, {"search_priority": 0, "search_heb": u"קצרין", "symbol_code": 4100, "name": u"קצרין"}, {"search_priority": 1, "search_heb": u"מרום גולן", "symbol_code": 4101, "name": u"מרום גולן"}, {"search_priority": 1, "search_heb": u"מג'דל שמס", "symbol_code": 4201, "name": u"מג'דל שמס"}, {"search_priority": 0, "search_heb": u"מסעדה", "symbol_code": 4203, "name": u"מסעדה"}, {"search_priority": 1, "search_heb": u"מבוא חמה", "symbol_code": 4204, "name": u"מבוא חמה"}, {"search_priority": 0, "search_heb": u"אפיק", "symbol_code": 4301, "name": u"אפיק"}, {"search_priority": 1, "search_heb": u"נווה אטי\"ב", "symbol_code": 4303, "name": u"נווה אטי\"ב"}, {"search_priority": 0, "search_heb": u"נוב", "symbol_code": 4304, "name": u"נוב"}, {"search_priority": 0, "search_heb": u"ע'ג'ר", "symbol_code": 4501, "name": u"ע'ג'ר"}, {"search_priority": 1, "search_heb": u"עין קנייא", "symbol_code": 4502, "name": u"עין קנייא"}, {"search_priority": 1, "search_heb": u"עין זיוון", "symbol_code": 4503, "name": u"עין זיוון"}, {"search_priority": 1, "search_heb": u"נאות גולן", "symbol_code": 4551, "name": u"נאות גולן"}, {"search_priority": 1, "search_heb": u"רמת מגשימים", "symbol_code": 4701, "name": u"רמת מגשימים"}, {"search_priority": 0, "search_heb": u"רמות", "symbol_code": 4702, "name": u"רמות"}, {"search_priority": 2, "search_heb": u"תל אביב -יפו", "symbol_code": 5000, "name": u"תל אביב - יפו"}, {"search_priority": 1, "search_heb": u"באקה אל-גרביה", "symbol_code": 6000, "name": u"באקה אל-גרביה"}, {"search_priority": 1, "search_heb": u"בני ברק", "symbol_code": 6100, "name": u"בני ברק"}, {"search_priority": 1, "search_heb": u"בת ים", "symbol_code": 6200, "name": u"בת ים"}, {"search_priority": 0, "search_heb": u"גבעתיים", "symbol_code": 6300, "name": u"גבעתיים"}, {"search_priority": 0, "search_heb": u"הרצליה", "symbol_code": 6400, "name": u"הרצליה"}, {"search_priority": 0, "search_heb": u"חדרה", "symbol_code": 6500, "name": u"חדרה"}, {"search_priority": 0, "search_heb": u"חולון", "symbol_code": 6600, "name": u"חולון"}, {"search_priority": 0, "search_heb": u"טבריה", "symbol_code": 6700, "name": u"טבריה"}, {"search_priority": 1, "search_heb": u"קרית אתא", "symbol_code": 6800, "name": u"קרית אתא"}, {"search_priority": 1, "search_heb": u"כפר סבא", "symbol_code": 6900, "name": u"כפר סבא"}, {"search_priority": 0, "search_heb": u"לוד", "symbol_code": 7000, "name": u"לוד"}, {"search_priority": 0, "search_heb": u"אשקלון", "symbol_code": 7100, "name": u"אשקלון"}, {"search_priority": 1, "search_heb": u"נס ציונה", "symbol_code": 7200, "name": u"נס ציונה"}, {"search_priority": 0, "search_heb": u"נצרת", "symbol_code": 7300, "name": u"נצרת"}, {"search_priority": 0, "search_heb": u"נתניה", "symbol_code": 7400, "name": u"נתניה"}, {"search_priority": 0, "search_heb": u"סח'נין", "symbol_code": 7500, "name": u"סח'נין"}, {"search_priority": 0, "search_heb": u"עכו", "symbol_code": 7600, "name": u"עכו"}, {"search_priority": 0, "search_heb": u"עפולה", "symbol_code": 7700, "name": u"עפולה"}, {"search_priority": 1, "search_heb": u"פרדס חנה-כרכור", "symbol_code": 7800, "name": u"פרדס חנה-כרכור"}, {"search_priority": 1, "search_heb": u"פתח תקווה", "symbol_code": 7900, "name": u"פתח תקווה"}, {"search_priority": 0, "search_heb": u"צפת", "symbol_code": 8000, "name": u"צפת"}, {"search_priority": 1, "search_heb": u"קרית מוצקין", "symbol_code": 8200, "name": u"קרית מוצקין"}, {"search_priority": 1, "search_heb": u"ראשון לציון", "symbol_code": 8300, "name": u"ראשון לציון"}, {"search_priority": 0, "search_heb": u"רחובות", "symbol_code": 8400, "name": u"רחובות"}, {"search_priority": 0, "search_heb": u"רמלה", "symbol_code": 8500, "name": u"רמלה"}, {"search_priority": 1, "search_heb": u"רמת גן", "symbol_code": 8600, "name": u"רמת גן"}, {"search_priority": 0, "search_heb": u"רעננה", "symbol_code": 8700, "name": u"רעננה"}, {"search_priority": 0, "search_heb": u"שפרעם", "symbol_code": 8800, "name": u"שפרעם"}, {"search_priority": 0, "search_heb": u"טמרה", "symbol_code": 8900, "name": u"טמרה"}, {"search_priority": 1, "search_heb": u"באר שבע", "symbol_code": 9000, "name": u"באר שבע"}, {"search_priority": 0, "search_heb": u"נהריה", "symbol_code": 9100, "name": u"נהריה"}, {"search_priority": 1, "search_heb": u"בית שאן", "symbol_code": 9200, "name": u"בית שאן"}, {"search_priority": 1, "search_heb": u"זכרון יעקב", "symbol_code": 9300, "name": u"זכרון יעקב"}, {"search_priority": 0, "search_heb": u"יהוד-מונוסון", "symbol_code": 9400, "name": u"יהוד-מונוסון"}, {"search_priority": 1, "search_heb": u"קרית ביאליק", "symbol_code": 9500, "name": u"קרית ביאליק"}, {"search_priority": 1, "search_heb": u"קרית ים", "symbol_code": 9600, "name": u"קרית ים"}, {"search_priority": 1, "search_heb": u"הוד השרון", "symbol_code": 9700, "name": u"הוד השרון"}, {"search_priority": 1, "search_heb": u"בנימינה-גבעת עדה", "symbol_code": 9800, "name": u"בנימינה-גבעת עדה"}] , multiinsert=False )
# test_bsddb3_database.py # Copyright 2019 Roger Marsh # Licence: See LICENCE (BSD licence) """bsddb3_database tests""" import unittest import os try: from .. import bsddb3_database except ImportError: # Not ModuleNotFoundError for Pythons earlier than 3.6 bsddb3_database = None class Bsddb3Database(unittest.TestCase): def tearDown(self): logdir = "___memlogs_memory_db" if os.path.exists(logdir): for f in os.listdir(logdir): if f.startswith("log."): os.remove(os.path.join(logdir, f)) os.rmdir(logdir) def test__assumptions(self): msg = "Failure of this test invalidates all other tests" self.assertRaisesRegex( TypeError, "".join( ( "__init__\(\) missing 1 required positional argument: ", "'specification'", ) ), bsddb3_database.Database, ) self.assertIsInstance( bsddb3_database.Database({}), bsddb3_database.Database, ) def test_open_database(self): self.assertEqual(bsddb3_database.Database({}).open_database(), None) if __name__ == "__main__": runner = unittest.TextTestRunner loader = unittest.defaultTestLoader.loadTestsFromTestCase if bsddb3_database is not None: runner().run(loader(Bsddb3Database))
""" utils.py ======== Utility functions Created by Maxim Ziatdinov (email: maxim.ziatdinov@ai4microscopy.com) """ from typing import Union, Dict import jax import jax.numpy as jnp import numpy as onp def enable_x64(): """Use double (x64) precision for jax arrays""" jax.config.update("jax_enable_x64", True) def get_keys(seed: int = 0): """ Simple wrapper for jax.random.split to get rng keys for model inference and prediction """ rng_key_1, rng_key_2 = jax.random.split(jax.random.PRNGKey(seed)) return rng_key_1, rng_key_2 def split_in_batches(X_new: Union[onp.ndarray, jnp.ndarray], batch_size: int = 100, dim: int = 0): """ Splits array into batches along the first or second dimensions """ if dim not in [0, 1]: raise NotImplementedError("'dim' must be equal to 0 or 1") num_batches = jax.numpy.floor_divide(X_new.shape[dim], batch_size) X_split = [] for i in range(num_batches): if dim == 0: X_i = X_new[i*batch_size:(i+1)*batch_size] else: X_i = X_new[:, i*batch_size:(i+1)*batch_size] X_split.append(X_i) X_i = X_new[(i+1)*batch_size:] if dim == 0 else X_new[:, (i+1)*batch_size:] if X_i.shape[dim] > 0: X_split.append(X_i) return X_split def get_haiku_dict(kernel_params: Dict[str, jnp.ndarray]) -> Dict[str, Dict[str, jnp.ndarray]]: """ Extracts weights and biases from viDKL dictionary into a separate dictionary compatible with haiku's .apply() method """ all_weights = {} all_biases = {} for key, val in kernel_params.items(): if key.startswith('feature_extractor'): name_split = key.split('/') name_new = name_split[1] + '/' + name_split[2][:-2] if name_split[2][-1] == 'b': all_biases[name_new] = val else: all_weights[name_new] = val nn_params = {} for (k, v1), (_, v2) in zip(all_weights.items(), all_biases.items()): nn_params[k] = {"w": v1, "b": v2} return nn_params
#!/usr/bin/env python3 import serial import sys import os import subprocess import hashlib import datetime import time import numpy as np dev = serial.Serial("/dev/ttyUSB0", 115200,timeout=10) def benchmarkBinary(binary): print("Flashing {}..".format(binary)) subprocess.run(["st-flash", "write", binary, "0x8000000"], stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL) print("Flashed, now running benchmarks..".format(binary)) state = 'waiting' marker = b'' # This parses test vector output starting with a number of leading '=', # and expects a hashtag '#' after the test vector output. while True: x = dev.read() if x == b'' and state == 'waiting': print("timed out while waiting for the markers") return benchmarkBinary(binary) if state == 'waiting': if x == b'=': marker += x continue # If we saw at least 5 equal signs, assume we've probably started elif marker.count(b'=') > 5: state = 'beginning' vector = [] print(" .. found output marker..") if state == 'beginning': if x == b'=': continue else: state = 'reading' elif state == 'reading': if x == b'#': break else: vector.append(x) lines =b''.join(vector).decode("ISO-8859-1"); lines = lines.split("\n"); # sometimes the output markers end up as the first line of the output file if "=" in lines[0]: return [int(lines[2]), int(lines[5]), int(lines[8])]; else: return [int(lines[1]), int(lines[4]), int(lines[7])]; def printStats(l): print("AVG: {:,}, MIN: {:,}, MAX: {:,}".format(int(np.mean(l)), min(l), max(l))) def printResults(binary, data): print(f"#{binary}") print(data) keygen = [item[0] for item in data] enc = [item[1] for item in data] dec = [item[2] for item in data] print("keygen") printStats(keygen) print("enc") printStats(enc) print("dec") printStats(dec) def doBenchmarks(): binaries = ["benchmark-lightsaber.bin", "benchmark-saber.bin", "benchmark-firesaber.bin", "stack-lightsaber.bin", "stack-saber.bin", "stack-firesaber.bin" ] for binary in binaries: results = [] subprocess.run(["make", binary], stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL) for i in range(1): results.append(benchmarkBinary(binary)) printResults(binary, results) doBenchmarks()
import pathlib import os import sys import shutil import json from subprocess import check_output, run, CalledProcessError import time from tempfile import TemporaryDirectory os.chdir('..') repo_dir = pathlib.Path('.') root_files = list(repo_dir.glob('root/**/*.json')) translation_files = set(repo_dir.glob('translation/**/*.json')) git_branch_name = "complete_translations" threshold = 99 complete_translations = set() def chunks(l, n): for i in range(0, len(l), n): yield l[i:i+n] def split_name(file): if not '_' in file.stem: return (None, None) return file.stem.split('_') def calculate_completion(root_file, translation_file): root_data = json.loads(root_file.read_text()) tr_data = json.loads(translation_file.read_text()) return (len(root_data), len(tr_data)) uid_mapping = {} long_id_mapping = {} for file in root_files: uid, muids = split_name(file) if not uid: continue if uid not in uid_mapping: uid_mapping[uid] = [] uid_mapping[uid].append(file) long_id_mapping[file.stem] = file for file in sorted(translation_files): uid, muids = split_name(file) if uid not in uid_mapping: print(f'Could not find root file for {file.relative_to(repo_dir)}', file=sys.stderr) continue if len(uid_mapping[uid]) > 1: print(f'Multiple potential root files for {file.relative_to(repo_dir)}', file=sys.stderr) root_file = uid_mapping[uid][0] root_count, tr_count = calculate_completion(root_file, file) completion = int(0.5+100 * tr_count / root_count) assert root_count > 0 if completion >= threshold or root_count - tr_count <= 1: complete_translations.add(file.name) files = {'meta': [], 'root': []} files['meta'] = [str(p) for p in repo_dir.glob('*.json')] for folder in repo_dir.glob('[!.]*'): files[folder.name] = [] for file in folder.glob('**/*.json'): if folder.name == 'translation' and file.name not in complete_translations: continue if file.stat().st_size <= 4: continue files[folder.name].append(str(file.relative_to(repo_dir))) try: check_output(['git', 'checkout', 'master']) check_output(['git', 'stash', 'push', '--include-untracked', '-m', 'preserving master']) try: check_output(['git', 'checkout', git_branch_name]) except CalledProcessError: print('Attempting to create branch') try: check_output(f'true | git mktree | xargs git commit-tree | xargs git branch {git_branch_name}', shell=True) check_output(['git', 'checkout', git_branch_name]) except CalledProcessError: raise ValueError(f'Could not checkout branch {git_branch_name}') check_output(['git', 'commit', '--allow-empty', '--only', '-m', f'Created {git_branch_name}']) for folder, files_to_add in files.items(): for chunk in chunks(files_to_add, 1000): check_output(' '.join(['git', 'checkout', 'master', '--', *chunk]), shell=True) time.sleep(0.1) try: check_output(['git', 'commit', '-a', '-m', f'Added updated files in {folder}']) except CalledProcessError: pass finally: check_output(['git', 'checkout', 'master']) check_output(['git', 'stash', 'pop'])
# -*- encoding: UTF-8 -*- # Standard imports from os import path, makedirs, remove from dataclasses import dataclass # Third party imports import json from github import Github, AuthenticatedUser from github.GithubException import BadCredentialsException, GithubException from rich.prompt import Prompt # Application imports from app.entities.email import Email from app.logger import console # Singleton AUTH_FILE = "tmp/auth.json" LOGIN_AUTH_METHOD = "login" TOKEN_AUTH_METHOD = "token" @dataclass class GithubService: github: Github = None user : AuthenticatedUser = None def configurated(self): return path.isfile(AUTH_FILE) def authenticated(self): try: return bool(self.user) and bool(self.user.login) except BadCredentialsException as exception: return False async def configure(self) -> bool: directory = path.dirname(AUTH_FILE) if directory and not path.isdir(directory) and makedirs(directory) and not path.isdir(directory): makedirs(directory) # XXX Login authentication method could be used on self-hosted instances # but this method is no longer an option on github.com # https://github.com/PyGithub/PyGithub/issues/1851 method = Prompt.ask("Choice your authentication method", # choices=[LOGIN_AUTH_METHOD, TOKEN_AUTH_METHOD], choices=[TOKEN_AUTH_METHOD], default=TOKEN_AUTH_METHOD) if LOGIN_AUTH_METHOD == method: login = Prompt.ask("Enter your login") password = Prompt.ask("Enter your password", password=True) auth = { "login": login, "password": password } else: token = Prompt.ask("Enter your token", password=True) auth = { "token": token } auth["method"] = method with open(AUTH_FILE, "w") as file: file.write(json.dumps(auth)) return True async def authenticate(self) -> bool: if not self.configurated(): return False with open(AUTH_FILE) as file: self.login_or_token = json.loads(file.read()) try: if LOGIN_AUTH_METHOD == self.login_or_token.get("method"): self.github = Github(self.login_or_token.get("login"), self.login_or_token.get("password")) else: self.github = Github(self.login_or_token.get(self.login_or_token.get("method"))) self.user = self.github.get_user() self.user.login except BadCredentialsException as exception: console.print("{:<40s} [red]{:<10s}[/red]".format("Signing in to Github:", "fail")) console.print("{:<40s} {:<10s}".format("Cleaning the cached authentication file:", "done")) remove(AUTH_FILE) return False except GithubException as exception: console.print("[red]{:<40s} {:<10s}[/red]".format("Error:", exception.data.get("message"))) remove(AUTH_FILE) return False return True async def search_email(self, email: Email): if not self.authenticated() and not await self.authenticate(): exit(1) users = self.github.search_users("{} in:email".format(email.address)) for user in users: email.user = user return True return False async def create_repository(self, name, *, private=False): if not self.authenticated() and not await self.authenticate(): exit(1) return self.user.create_repo(name, private=private) async def get_repo(self, name: str): if not self.authenticated() and not await self.authenticate(): exit(1) return self.user.get_repo(name) # return self.github.get_repo(name)
# PyAlgoTrade # # Copyright 2011-2014 Gabriel Martin Becedillas Ruiz # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ .. moduleauthor:: Gabriel Martin Becedillas Ruiz <gabriel.becedillas@gmail.com> """ import unittest import os from pyalgotrade.barfeed import yahoofeed from pyalgotrade.barfeed import sqlitefeed from pyalgotrade import bar from pyalgotrade import dataseries from pyalgotrade import marketsession import common import feed_test class TemporarySQLiteFeed: def __init__(self, dbFilePath, frequency, maxLen=dataseries.DEFAULT_MAX_LEN): if os.path.exists(dbFilePath): raise Exception("File exists") self.__dbFilePath = dbFilePath self.__frequency = frequency self.__feed = None self.__maxLen = maxLen def __enter__(self): self.__feed = sqlitefeed.Feed(self.__dbFilePath, self.__frequency, maxLen=self.__maxLen) def __exit__(self, exc_type, exc_val, exc_tb): self.__feed.getDatabase().disconnect() # This is for the feed to release the file and get it deleted. self.__feed = None os.remove(self.__dbFilePath) def getFeed(self): return self.__feed class SQLiteFeedTestCase(unittest.TestCase): dbName = "SQLiteFeedTestCase.sqlite" def testBaseFeedInterface(self): tmpFeed = TemporarySQLiteFeed(SQLiteFeedTestCase.dbName, bar.Frequency.DAY) with tmpFeed: # Load bars using a Yahoo! feed. yahooFeed = yahoofeed.Feed() yahooFeed.addBarsFromCSV("orcl", common.get_data_file_path("orcl-2000-yahoofinance.csv"), marketsession.USEquities.timezone) yahooFeed.addBarsFromCSV("orcl", common.get_data_file_path("orcl-2001-yahoofinance.csv"), marketsession.USEquities.timezone) # Fill the database using the bars from the Yahoo! feed. sqliteFeed = tmpFeed.getFeed() sqliteFeed.getDatabase().addBarsFromFeed(yahooFeed) # Load the SQLite feed and process all bars. sqliteFeed.loadBars("orcl") feed_test.tstBaseFeedInterface(self, sqliteFeed) def testLoadDailyBars(self): tmpFeed = TemporarySQLiteFeed(SQLiteFeedTestCase.dbName, bar.Frequency.DAY) with tmpFeed: # Load bars using a Yahoo! feed. yahooFeed = yahoofeed.Feed() yahooFeed.addBarsFromCSV("orcl", common.get_data_file_path("orcl-2000-yahoofinance.csv"), marketsession.USEquities.timezone) yahooFeed.addBarsFromCSV("orcl", common.get_data_file_path("orcl-2001-yahoofinance.csv"), marketsession.USEquities.timezone) # Fill the database using the bars from the Yahoo! feed. sqliteFeed = tmpFeed.getFeed() sqliteFeed.getDatabase().addBarsFromFeed(yahooFeed) # Load the SQLite feed and process all bars. sqliteFeed.loadBars("orcl") for bars in sqliteFeed: pass # Check that both dataseries have the same bars. yahooDS = yahooFeed["orcl"] sqliteDS = sqliteFeed["orcl"] self.assertEqual(len(yahooDS), len(sqliteDS)) for i in xrange(len(yahooDS)): self.assertEqual(yahooDS[i].getDateTime(), sqliteDS[i].getDateTime()) self.assertEqual(yahooDS[i].getOpen(), sqliteDS[i].getOpen()) self.assertEqual(yahooDS[i].getHigh(), sqliteDS[i].getHigh()) self.assertEqual(yahooDS[i].getLow(), sqliteDS[i].getLow()) self.assertEqual(yahooDS[i].getClose(), sqliteDS[i].getClose()) self.assertEqual(yahooDS[i].getAdjClose(), sqliteDS[i].getAdjClose()) def testBounded(self): tmpFeed = TemporarySQLiteFeed(SQLiteFeedTestCase.dbName, bar.Frequency.DAY, maxLen=2) with tmpFeed: # Load bars using a Yahoo! feed. yahooFeed = yahoofeed.Feed(maxLen=1) yahooFeed.addBarsFromCSV("orcl", common.get_data_file_path("orcl-2000-yahoofinance.csv"), marketsession.USEquities.timezone) yahooFeed.addBarsFromCSV("orcl", common.get_data_file_path("orcl-2001-yahoofinance.csv"), marketsession.USEquities.timezone) # Fill the database using the bars from the Yahoo! feed. sqliteFeed = tmpFeed.getFeed() sqliteFeed.getDatabase().addBarsFromFeed(yahooFeed) # Load the SQLite feed and process all bars. sqliteFeed.loadBars("orcl") for bars in sqliteFeed: pass barDS = sqliteFeed["orcl"] self.assertEqual(len(barDS), 2) self.assertEqual(len(barDS.getDateTimes()), 2) self.assertEqual(len(barDS.getCloseDataSeries()), 2) self.assertEqual(len(barDS.getCloseDataSeries().getDateTimes()), 2) self.assertEqual(len(barDS.getOpenDataSeries()), 2) self.assertEqual(len(barDS.getHighDataSeries()), 2) self.assertEqual(len(barDS.getLowDataSeries()), 2) self.assertEqual(len(barDS.getAdjCloseDataSeries()), 2)
""" Pay to delegated puzzle or hidden puzzle In this puzzle program, the solution must choose either a hidden puzzle or a delegated puzzle on a given public key. The given public key is morphed by adding an offset from the hash of the hidden puzzle and itself, giving a new so-called "synthetic" public key which has the hidden puzzle hidden inside of it. If the hidden puzzle path is taken, the hidden puzzle and original public key will be revealed which proves that it was hidden there in the first place. This roughly corresponds to bitcoin's taproot. Note: p2_delegated_puzzle_or_hidden_puzzle is essentially the "standard coin" in chia. DEFAULT_HIDDEN_PUZZLE_HASH from this puzzle is used with calculate_synthetic_secret_key in the wallet's standard pk_to_sk finder. This is important because it allows sign_coin_spends to function properly via the following mechanism: - A 'standard coin' coin exists in the blockchain with some puzzle hash. - The user's wallet contains a primary sk/pk pair which are used to derive to one level a set of auxiliary sk/pk pairs which are used for specific coins. These can be used for signing in AGG_SIG_ME, but the standard coin uses a key further derived from one of these via calculate_synthetic_secret_key as described in https://chialisp.com/docs/standard_transaction. Therefore, when a wallet needs to find a secret key for signing based on a public key, it needs to try repeating this derivation as well and see if the BLSPublicKey (pk) associated with any of the derived secret keys matches the pk requested by the coin. - Python code previously appeared which was written like: delegated_puzzle_solution = Program.to((1, condition_args)) solutions = Program.to([[], delegated_puzzle_solution, []]) In context, delegated_puzzle_solution here is any *chialisp program*, here one simply quoting a list of conditions, and the following argument is the arguments to this program, which here are unused. Secondly, the actual arguments to the p2_delegated_puzzle_or_hidden_puzzle are given. The first argument determines whether a hidden or revealed puzzle is used. If the puzzle is hidden, then what is required is a signature given a specific synthetic key since the key cannot be derived inline without the puzzle. In that case, the first argument is this key. In most cases, the puzzle will be revealed, and this argument will be the nil object, () (represented here by an empty python list). The second and third arguments are a chialisp program and its corresponding arguments, which will be run inside the standard coin puzzle. This interacts with sign_coin_spend in that the AGG_SIG_ME condition added by the inner puzzle asks the surrounding system to provide a signature over the provided program with a synthetic key whose derivation is within. Any wallets which intend to use standard coins in this way must try to resolve a public key to a secret key via this derivation. """ import hashlib from hsms.bls12_381 import BLSPublicKey, BLSSecretExponent from hsms.streamables import bytes32, Program from .load_clvm import load_clvm from .p2_conditions import puzzle_for_conditions DEFAULT_HIDDEN_PUZZLE = Program.from_bytes( bytes.fromhex("ff0980") ) # this puzzle `(=)` always fails DEFAULT_HIDDEN_PUZZLE_HASH = DEFAULT_HIDDEN_PUZZLE.tree_hash() MOD = load_clvm("p2_delegated_puzzle_or_hidden_puzzle.cl") SYNTHETIC_MOD = load_clvm("calculate_synthetic_public_key.cl") def calculate_synthetic_offset( public_key: BLSPublicKey, hidden_puzzle_hash: bytes32 ) -> BLSSecretExponent: blob = hashlib.sha256(bytes(public_key) + hidden_puzzle_hash).digest() offset = Program.to(blob).as_int() assert offset == int(Program.to(blob)) return BLSSecretExponent.from_int(offset) def calculate_synthetic_public_key( public_key: BLSPublicKey, hidden_puzzle_hash: bytes32 ) -> BLSPublicKey: r = SYNTHETIC_MOD.run([bytes(public_key), hidden_puzzle_hash]) return BLSPublicKey.from_bytes(r.as_atom()) def calculate_synthetic_secret_key( secret_key: BLSSecretExponent, hidden_puzzle_hash: bytes32 ) -> BLSSecretExponent: public_key = secret_key.public_key() synthetic_offset = calculate_synthetic_offset(public_key, hidden_puzzle_hash) synthetic_secret_key = secret_key + synthetic_offset return synthetic_secret_key def puzzle_for_synthetic_public_key(synthetic_public_key: BLSPublicKey) -> Program: return MOD.curry(bytes(synthetic_public_key)) def puzzle_for_public_key_and_hidden_puzzle_hash( public_key: BLSPublicKey, hidden_puzzle_hash: bytes32 ) -> Program: synthetic_public_key = calculate_synthetic_public_key( public_key, hidden_puzzle_hash ) return puzzle_for_synthetic_public_key(synthetic_public_key) def puzzle_for_public_key_and_hidden_puzzle( public_key: BLSPublicKey, hidden_puzzle: Program ) -> Program: return puzzle_for_public_key_and_hidden_puzzle_hash( public_key, hidden_puzzle.tree_hash() ) def puzzle_for_pk(public_key: BLSPublicKey) -> Program: return puzzle_for_public_key_and_hidden_puzzle_hash( public_key, DEFAULT_HIDDEN_PUZZLE_HASH ) def solution_for_delegated_puzzle( delegated_puzzle: Program, solution: Program ) -> Program: return Program.to([[], delegated_puzzle, solution]) def solution_for_hidden_puzzle( hidden_public_key: BLSPublicKey, hidden_puzzle: Program, solution_to_hidden_puzzle: Program, ) -> Program: return Program.to([hidden_public_key, hidden_puzzle, solution_to_hidden_puzzle]) def solution_for_conditions(conditions) -> Program: delegated_puzzle = puzzle_for_conditions(conditions) return solution_for_delegated_puzzle(delegated_puzzle, Program.to(0))
import os import shutil from .helpers import build_in_container def deploy_layer(runtime, env): print('Beginning deployment...') os.chdir('.layer') print('Building layer...') error = build_in_container(runtime) if error: os.chdir('..') shutil.rmtree('.layer') exit() print('Deploying layer...') error = os.system(f'sls deploy --stage {env}') if error: print("\033[91mDeployment failed!\033[0m") else: print(f"\033[92mDeployment to {env} complete!\033[0m")
# AUTOGENERATED BY NBDEV! DO NOT EDIT! __all__ = ["index", "modules", "custom_doc_links", "git_url"] index = {"sparsify": "neighbors.ipynb", "hstack": "neighbors.ipynb", "vstack": "neighbors.ipynb", "stack": "neighbors.ipynb", "NMSLibSklearnWrapper": "neighbors.ipynb", "FastCosineNN": "neighbors.ipynb", "FastJaccardNN": "neighbors.ipynb", "FastL2NN": "neighbors.ipynb", "FastKLDivNN": "neighbors.ipynb"} modules = ["neighbors.py"] doc_url = "https://AlanGanem.github.io/NMSLearn/nmslearn/" git_url = "https://github.com/AlanGanem/nmslearn/tree/master/" def custom_doc_links(name): return None
"""empty message Revision ID: 623662ea0e7e Revises: d1edb3cadec8 Create Date: 2020-11-24 16:34:02.327556 """ import sqlalchemy_utils from alembic import op import sqlalchemy as sa # revision identifiers, used by Alembic. revision = '623662ea0e7e' down_revision = 'd1edb3cadec8' branch_labels = None depends_on = None def upgrade(): # ### commands auto generated by Alembic - please adjust! ### op.add_column('email_log', sa.Column('mailbox_id', sa.Integer(), nullable=True)) op.create_foreign_key(None, 'email_log', 'mailbox', ['mailbox_id'], ['id'], ondelete='cascade') # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.drop_constraint(None, 'email_log', type_='foreignkey') op.drop_column('email_log', 'mailbox_id') # ### end Alembic commands ###
'''Backup a cluster''' from logging import getLogger import click from hazelsync.cli import with_cluster log = getLogger('hazelsync') @click.command() @click.argument('name') def stream(name): '''Pull some data to ease the backup speed''' with with_cluster(name) as cluster: log.info("Running hazel stream for %s", name) cluster.stream()
from __future__ import annotations from typing import TYPE_CHECKING, List, Optional from PyQt5 import QtCore, QtGui, QtWidgets from electroncash import address from electroncash.address import Address, AddressError from electroncash.avalanche.delegation import ( Delegation, DelegationBuilder, WrongDelegatorKeyError, ) from electroncash.avalanche.primitives import Key, PublicKey from electroncash.avalanche.proof import LimitedProofId, Proof, ProofBuilder from electroncash.avalanche.serialize import DeserializationError from electroncash.bitcoin import is_private_key from electroncash.constants import PROOF_DUST_THRESHOLD from electroncash.i18n import _ from electroncash.uint256 import UInt256 from .password_dialog import PasswordDialog if TYPE_CHECKING: from electroncash.wallet import Deterministic_Wallet # We generate a few deterministic private keys to pre-fill some widgets, so the user # does not need to use an external tool or a dummy wallet to generate keys. # TODO: don't always use the same keys, increment the index as needed (requires saving # the index or the generated keys to the wallet file) _PROOF_MASTER_KEY_INDEX = 0 _DELEGATED_KEY_INDEX = 1 def get_privkey_suggestion( wallet: Deterministic_Wallet, key_index: int = 0, pwd: Optional[str] = None, ) -> str: """Get a deterministic private key derived from a BIP44 path that is not used by the wallet to generate addresses. Return it in WIF format, or return an empty string on failure (pwd dialog cancelled). """ # Use BIP44 change_index 2, which is not used by any application. privkey_index = (2, key_index) if wallet.has_password() and pwd is None: raise RuntimeError("Wallet password required") return wallet.export_private_key_for_index(privkey_index, pwd) class CachedWalletPasswordWidget(QtWidgets.QWidget): """A base class for widgets that may prompt the user for a wallet password and remember that password for later reuse. The password can also be specified in the constructor. In this case, there is no need to prompt the user for it. """ def __init__( self, wallet: Deterministic_Wallet, pwd: Optional[str] = None, parent: QtWidgets.QWidget = None, ): super().__init__(parent) self._pwd = pwd self.wallet = wallet @property def pwd(self) -> Optional[str]: """Return wallet password. Open a dialog to ask for the wallet password if necessary, and cache it. Keep asking until the user provides the correct pwd or clicks cancel. If the password dialog is cancelled, return None. """ if self._pwd is not None: return self._pwd while self.wallet.has_password(): password = PasswordDialog(parent=self).run() if password is None: # dialog cancelled return try: self.wallet.check_password(password) self._pwd = password # success return self._pwd except Exception as e: QtWidgets.QMessageBox.critical(self, "Invalid password", str(e)) class Link(QtWidgets.QPushButton): def __init__(self, text="", parent=None): super().__init__(text, parent) stylesheet = """ QPushButton { color: blue; border: none; font-weight: bold; font-size: 14px; text-align: center; } QPushButton:disabled { color: gray; } """ self.setStyleSheet(stylesheet) size_policy = QtWidgets.QSizePolicy() size_policy.setHorizontalPolicy(QtWidgets.QSizePolicy.Fixed) self.setSizePolicy(size_policy) class AvaProofWidget(CachedWalletPasswordWidget): def __init__( self, utxos: List[dict], wallet: Deterministic_Wallet, receive_address: Optional[Address] = None, parent: QtWidgets.QWidget = None, ): """ :param utxos: List of UTXOs to be used as stakes :param parent: """ CachedWalletPasswordWidget.__init__(self, wallet, parent=parent) # This is enough width to show a whole compressed pubkey. self.setMinimumWidth(750) # Enough height to show the entire proof without scrolling. self.setMinimumHeight(680) self.utxos = utxos self.excluded_utxos: List[dict] = [] self.wallet = wallet layout = QtWidgets.QVBoxLayout() self.setLayout(layout) layout.addWidget(QtWidgets.QLabel("Proof sequence")) self.sequence_sb = QtWidgets.QSpinBox() self.sequence_sb.setMinimum(0) layout.addWidget(self.sequence_sb) layout.addSpacing(10) expiration_layout = QtWidgets.QHBoxLayout() layout.addLayout(expiration_layout) expiration_left_sublayout = QtWidgets.QVBoxLayout() expiration_layout.addLayout(expiration_left_sublayout) expiration_left_sublayout.addWidget(QtWidgets.QLabel("Expiration date")) self.calendar = QtWidgets.QDateTimeEdit() self.calendar.setToolTip("Date and time at which the proof will expire") expiration_left_sublayout.addWidget(self.calendar) expiration_right_sublayout = QtWidgets.QVBoxLayout() expiration_layout.addLayout(expiration_right_sublayout) expiration_right_sublayout.addWidget( QtWidgets.QLabel("Expiration POSIX timestamp") ) # Use a QDoubleSpinbox with precision set to 0 decimals, because # QSpinBox is limited to the int32 range (January 19, 2038) self.timestamp_widget = QtWidgets.QDoubleSpinBox() self.timestamp_widget.setDecimals(0) # date range: genesis block to Wed Jun 09 3554 16:53:20 GMT self.timestamp_widget.setRange(1231006505, 50**10) self.timestamp_widget.setSingleStep(86400) self.timestamp_widget.setToolTip( "POSIX time, seconds since 1970-01-01T00:00:00" ) expiration_right_sublayout.addWidget(self.timestamp_widget) layout.addSpacing(10) layout.addWidget(QtWidgets.QLabel("Master private key (WIF)")) self.master_key_edit = QtWidgets.QLineEdit() self.master_key_edit.setToolTip( "Private key that controls the proof. This is the key that signs the " "delegation or signs the avalanche votes." ) # Suggest a private key to the user. He can change it if he wants. self.master_key_edit.setText(self._get_privkey_suggestion()) layout.addWidget(self.master_key_edit) layout.addSpacing(10) layout.addWidget( QtWidgets.QLabel("Master public key (computed from master private key)") ) self.master_pubkey_view = QtWidgets.QLineEdit() self.master_pubkey_view.setReadOnly(True) layout.addWidget(self.master_pubkey_view) layout.addSpacing(10) layout.addWidget(QtWidgets.QLabel("Payout address")) self.payout_addr_edit = QtWidgets.QLineEdit() self.payout_addr_edit.setToolTip( "Address to which staking rewards could be sent, in the future" ) if receive_address is not None: self.payout_addr_edit.setText(receive_address.to_ui_string()) layout.addWidget(self.payout_addr_edit) layout.addSpacing(10) self.utxos_wigdet = QtWidgets.QTableWidget(len(utxos), 4) self.utxos_wigdet.setHorizontalHeaderLabels( ["txid", "vout", "amount (sats)", "block height"] ) self.utxos_wigdet.verticalHeader().setVisible(False) self.utxos_wigdet.setSelectionMode(QtWidgets.QTableWidget.NoSelection) self.utxos_wigdet.horizontalHeader().setSectionResizeMode( 0, QtWidgets.QHeaderView.Stretch ) layout.addWidget(self.utxos_wigdet) for i, utxo in enumerate(utxos): txid_item = QtWidgets.QTableWidgetItem(utxo["prevout_hash"]) self.utxos_wigdet.setItem(i, 0, txid_item) vout_item = QtWidgets.QTableWidgetItem(str(utxo["prevout_n"])) self.utxos_wigdet.setItem(i, 1, vout_item) amount_item = QtWidgets.QTableWidgetItem(str(utxo["value"])) if utxo["value"] < PROOF_DUST_THRESHOLD: amount_item.setForeground(QtGui.QColor("red")) amount_item.setToolTip( _( "The minimum threshold for a coin in an avalanche proof is " "1,000,000 XEC." ) ) self.utxos_wigdet.setItem(i, 2, amount_item) height_item = QtWidgets.QTableWidgetItem(str(utxo["height"])) if utxo["height"] <= 0: # TODO: make the height cell editable, for users to fill the block # height manually. height_item.setForeground(QtGui.QColor("red")) height_item.setToolTip( _( "Unconfirmed coins will not be included because the height of the" "block for each coin is required to generate the proof." ) ) self.utxos_wigdet.setItem(i, 3, height_item) self.generate_button = QtWidgets.QPushButton("Generate proof") layout.addWidget(self.generate_button) self.generate_button.clicked.connect(self._on_generate_clicked) self.proof_display = QtWidgets.QTextEdit() self.proof_display.setReadOnly(True) layout.addWidget(self.proof_display) self.generate_dg_button = Link("Generate a delegation for this proof") self.generate_dg_button.setEnabled(False) layout.addWidget(self.generate_dg_button) # Connect signals self.calendar.dateTimeChanged.connect(self.on_datetime_changed) self.timestamp_widget.valueChanged.connect(self.on_timestamp_changed) self.master_key_edit.textChanged.connect(self.update_master_pubkey) self.generate_dg_button.clicked.connect(self.open_dg_dialog) # Init widgets now = QtCore.QDateTime.currentDateTime() self.calendar.setDateTime(now.addYears(1)) self.dg_dialog = None self.update_master_pubkey(self.master_key_edit.text()) def _get_privkey_suggestion(self) -> str: """Get a private key to pre-fill the master key field. Return it in WIF format, or return an empty string on failure (pwd dialog cancelled). """ if not self.wallet.is_deterministic() or not self.wallet.can_export(): return "" wif_pk = "" if not self.wallet.has_password() or self.pwd is not None: wif_pk = get_privkey_suggestion( self.wallet, key_index=_PROOF_MASTER_KEY_INDEX, pwd=self.pwd ) return wif_pk def on_datetime_changed(self, dt: QtCore.QDateTime): """Set the timestamp from a QDateTime""" was_blocked = self.blockSignals(True) self.timestamp_widget.setValue(dt.toSecsSinceEpoch()) self.blockSignals(was_blocked) def on_timestamp_changed(self, timestamp: float): """Set the calendar date from POSIX timestamp""" timestamp = int(timestamp) was_blocked = self.blockSignals(True) self.calendar.setDateTime(QtCore.QDateTime.fromSecsSinceEpoch(timestamp)) self.blockSignals(was_blocked) def update_master_pubkey(self, master_wif: str): if is_private_key(master_wif): master_pub = Key.from_wif(master_wif).get_pubkey() pubkey_str = master_pub.to_hex() self.master_pubkey_view.setText(pubkey_str) def _on_generate_clicked(self): proof = self._build() if proof is not None: self.proof_display.setText(f'<p style="color:black;"><b>{proof}</b></p>') reply = QtWidgets.QMessageBox.question( self, "Freeze coins", "Spending coins that are used as stakes in a proof will invalidate " "the proof. Do you want to freeze the corresponding coins to avoid " "accidentally spending them?", defaultButton=QtWidgets.QMessageBox.Yes, ) utxos_to_freeze = [u for u in self.utxos if u not in self.excluded_utxos] if reply == QtWidgets.QMessageBox.Yes: self.wallet.set_frozen_coin_state(utxos_to_freeze, freeze=True) self.generate_dg_button.setEnabled(proof is not None) def _build(self) -> Optional[str]: master_wif = self.master_key_edit.text() if not is_private_key(master_wif): QtWidgets.QMessageBox.critical( self, "Invalid private key", "Could not parse private key." ) return master = Key.from_wif(master_wif) try: payout_address = Address.from_string(self.payout_addr_edit.text()) except AddressError as e: QtWidgets.QMessageBox.critical(self, "Invalid payout address", str(e)) return payout_script = payout_address.to_script() if self.wallet.has_password() and self.pwd is None: self.proof_display.setText( '<p style="color:red;">Password dialog cancelled!</p>' ) return proofbuilder = ProofBuilder( sequence=self.sequence_sb.value(), expiration_time=self.calendar.dateTime().toSecsSinceEpoch(), master=master, payout_script_pubkey=payout_script, ) self.excluded_utxos = [] for utxo in self.utxos: if utxo["height"] <= 0: # ignore unconfirmed coins self.excluded_utxos.append(utxo) continue address = utxo["address"] if not isinstance(utxo["address"], Address): # utxo loaded from JSON file (serialized) address = Address.from_string(address) priv_key = self.wallet.export_private_key(address, self.pwd) proofbuilder.add_utxo( txid=UInt256.from_hex(utxo["prevout_hash"]), vout=utxo["prevout_n"], amount=utxo["value"], height=utxo["height"], wif_privkey=priv_key, is_coinbase=utxo["coinbase"], ) num_utxos_in_proof = len(self.utxos) - len(self.excluded_utxos) if num_utxos_in_proof <= 0: QtWidgets.QMessageBox.critical( self, _("No valid stake"), _("No valid stake left after excluding unconfirmed coins."), ) return if len(self.excluded_utxos) > 0: QtWidgets.QMessageBox.warning( self, _("Excluded stakes"), f"{len(self.excluded_utxos)}" + " " + _( "coins have been excluded from the proof because they are " "unconfirmed or do not have a block height specified." ), ) return proofbuilder.build().to_hex() def open_dg_dialog(self): if self.dg_dialog is None: self.dg_dialog = AvaDelegationDialog(self.wallet, self.pwd, self) self.dg_dialog.set_proof(self.proof_display.toPlainText()) self.dg_dialog.set_master(self.master_key_edit.text()) self.dg_dialog.show() class AvaProofDialog(QtWidgets.QDialog): def __init__( self, utxos: List[dict], wallet: Deterministic_Wallet, receive_address: Optional[Address] = None, parent: Optional[QtWidgets.QWidget] = None, ): super().__init__(parent) self.setWindowTitle("Build avalanche proof") layout = QtWidgets.QVBoxLayout() self.setLayout(layout) self.proof_widget = AvaProofWidget(utxos, wallet, receive_address, self) layout.addWidget(self.proof_widget) buttons_layout = QtWidgets.QHBoxLayout() layout.addLayout(buttons_layout) self.ok_button = QtWidgets.QPushButton("OK") buttons_layout.addWidget(self.ok_button) self.dismiss_button = QtWidgets.QPushButton("Dismiss") buttons_layout.addWidget(self.dismiss_button) self.ok_button.clicked.connect(self.accept) self.dismiss_button.clicked.connect(self.reject) class AvaDelegationWidget(CachedWalletPasswordWidget): def __init__( self, wallet: Deterministic_Wallet, pwd: Optional[str] = None, parent: Optional[QtWidgets.QWidget] = None, ): super().__init__(wallet, pwd, parent) self.setMinimumWidth(750) self.setMinimumHeight(580) layout = QtWidgets.QVBoxLayout() self.setLayout(layout) self.tab_widget = QtWidgets.QTabWidget() layout.addWidget(self.tab_widget) layout.addSpacing(10) self.proof_edit = QtWidgets.QTextEdit() self.proof_edit.setAcceptRichText(False) self.proof_edit.setToolTip( "Enter a proof in hexadecimal format. A delegation will be generated for " "this proof. Specify the proof master key as the delegator key below." ) self.tab_widget.addTab(self.proof_edit, "From a proof") self.ltd_id_edit = QtWidgets.QLineEdit() self.ltd_id_edit.setToolTip( "Enter the proof ID of the proof to be delegated. A delegation will be " "generated for the proof corresponding to this ID. " "You need to provide this proof's master key as the delegator key (below)." ) self.tab_widget.addTab(self.ltd_id_edit, "From a Limited Proof ID") self.dg_edit = QtWidgets.QTextEdit() self.dg_edit.setAcceptRichText(False) self.dg_edit.setToolTip( "Enter an existing delegation to which you want to add another level. " "Enter the private key corresponding to this existing delegation's " "delegated key as the new delegator key, and specify a new delegated key." ) self.tab_widget.addTab(self.dg_edit, "From an existing delegation") layout.addWidget(QtWidgets.QLabel("Delegator key (WIF)")) self.delegator_key_edit = QtWidgets.QLineEdit() self.delegator_key_edit.setToolTip( "Master key of the proof, or private key for the last level of an " "existing delegation." ) layout.addWidget(self.delegator_key_edit) layout.addSpacing(10) layout.addWidget(QtWidgets.QLabel("Delegated public key")) delegated_key_layout = QtWidgets.QHBoxLayout() self.pubkey_edit = QtWidgets.QLineEdit() self.pubkey_edit.setToolTip("The public key to delegate the proof to.") delegated_key_layout.addWidget(self.pubkey_edit) generate_key_button = QtWidgets.QPushButton("Generate key") delegated_key_layout.addWidget(generate_key_button) layout.addLayout(delegated_key_layout) layout.addSpacing(10) self.generate_button = QtWidgets.QPushButton("Generate delegation") layout.addWidget(self.generate_button) self.dg_display = QtWidgets.QTextEdit() self.dg_display.setReadOnly(True) layout.addWidget(self.dg_display) # Signals self.dg_edit.textChanged.connect(self.on_delegation_pasted) generate_key_button.clicked.connect(self.on_generate_key_clicked) self.generate_button.clicked.connect(self.on_generate_clicked) def set_proof(self, proof_hex: str): self.proof_edit.setText(proof_hex) def set_master(self, master_wif: str): self.delegator_key_edit.setText(master_wif) def on_delegation_pasted(self): """Deserialize the delegation to be used as a base delegation to which a level is to be added. Find the delegated pubkey and check whether this is an auxiliary key from this wallet. If it is, prefill the Delegator key field with the private key. """ try: dg = Delegation.from_hex(self.dg_edit.toPlainText()) except DeserializationError: return dg_pubkey = dg.get_delegated_public_key() # Mind the type difference between PublicKey returned by # Delegation.get_delegated_public_key and PublicKey used by Wallet. idx = self.wallet.get_auxiliary_pubkey_index( address.PublicKey.from_pubkey(dg_pubkey.keydata), self.pwd, ) if idx is not None: self.delegator_key_edit.setText( self.wallet.export_private_key_for_index((2, idx), self.pwd) ) def on_generate_key_clicked(self): """Open a dialog to show a private/public key pair to be used as delegated key. Fill the delegated public key widget with the resulting public key. """ if not self.wallet.is_deterministic() or not self.wallet.can_export(): return wif_pk = "" if not self.wallet.has_password() or self.pwd is not None: wif_pk = get_privkey_suggestion( self.wallet, key_index=_DELEGATED_KEY_INDEX, pwd=self.pwd, ) if not wif_pk: # This should only happen if the pwd dialog was cancelled self.pubkey_edit.setText("") return QtWidgets.QMessageBox.information( self, "Delegated key", f"Please save the following private key:<br><b>{wif_pk}</b><br><br>" f"You will need it to use your delegation with a Bitcoin ABC node.", ) self.pubkey_edit.setText(Key.from_wif(wif_pk).get_pubkey().to_hex()) def on_generate_clicked(self): dg_hex = self._build() if dg_hex is not None: self.dg_display.setText(f'<p style="color:black;"><b>{dg_hex}</b></p>') def _build(self) -> Optional[str]: delegator_wif = self.delegator_key_edit.text() if not is_private_key(delegator_wif): QtWidgets.QMessageBox.critical( self, "Invalid private key", "Could not parse private key." ) return delegator = Key.from_wif(delegator_wif) try: delegated_pubkey = PublicKey.from_hex(self.pubkey_edit.text()) except DeserializationError: QtWidgets.QMessageBox.critical( self, "Invalid delegated pubkey", "Could not parse delegated public key.", ) return active_tab_widget = self.tab_widget.currentWidget() if active_tab_widget is self.ltd_id_edit: try: ltd_id = LimitedProofId.from_hex(self.ltd_id_edit.text()) except DeserializationError: QtWidgets.QMessageBox.critical( self, "Invalid limited ID", "Could not parse limited ID (not a 32 bytes hex string).", ) return dgb = DelegationBuilder(ltd_id, delegator.get_pubkey()) elif active_tab_widget is self.proof_edit: try: proof = Proof.from_hex(self.proof_edit.toPlainText()) except DeserializationError: QtWidgets.QMessageBox.critical( self, "Invalid proof", "Could not parse proof. Check the format.", ) return dgb = DelegationBuilder.from_proof(proof) elif active_tab_widget is self.dg_edit: try: dg = Delegation.from_hex(self.dg_edit.toPlainText()) except DeserializationError: QtWidgets.QMessageBox.critical( self, "Invalid delegation", "Could not parse delegation. Check the format.", ) return dgb = DelegationBuilder.from_delegation(dg) else: # This should never happen, so we want to hear about it. Catch fire. raise RuntimeError("Indeterminate active tab.") try: dgb.add_level(delegator, delegated_pubkey) except WrongDelegatorKeyError: QtWidgets.QMessageBox.critical( self, "Wrong delegator key", "The provided delegator key does not match the proof master key or " "the previous delegated public key (if adding a level to an existing " "delegation).", ) return return dgb.build().to_hex() def get_delegation(self) -> str: """Return delegation, as a hexadecimal string. An empty string means the delegation building failed. """ return self.dg_display.toPlainText() class AvaDelegationDialog(QtWidgets.QDialog): def __init__( self, wallet: Deterministic_Wallet, pwd: Optional[str] = None, parent: Optional[QtWidgets.QWidget] = None, ): super().__init__(parent) self.setWindowTitle("Build avalanche delegation") layout = QtWidgets.QVBoxLayout() self.setLayout(layout) self.dg_widget = AvaDelegationWidget(wallet, pwd, parent) layout.addWidget(self.dg_widget) buttons_layout = QtWidgets.QHBoxLayout() layout.addLayout(buttons_layout) self.ok_button = QtWidgets.QPushButton("OK") buttons_layout.addWidget(self.ok_button) self.dismiss_button = QtWidgets.QPushButton("Dismiss") buttons_layout.addWidget(self.dismiss_button) self.ok_button.clicked.connect(self.accept) self.dismiss_button.clicked.connect(self.reject) def set_proof(self, proof_hex: str): self.dg_widget.set_proof(proof_hex) def set_master(self, master_wif: str): self.dg_widget.set_master(master_wif)
# coding: UTF-8 """ Simple load balancing with pypar (based on demo3.py from pypar demo package) Felix Richter <felix.richter2@uni-rostock.de> """ import sys import time import numpy import pypar PYPAR_WORKTAG = 1 PYPAR_DIETAG = 2 def mprint(txt): """ Print message txt with indentation following the node's rank """ import pypar pre = " " * 8 * pypar.rank() if type(txt) != type('dummy'): txt = txt.__str__() pat = "-%d-" print pre + (pat % pypar.rank()) + txt class PyparWork(object): """Abstract base class for ant work to be balanced""" def __init__(self): pass def uplink(self, balancer, myid, numprocs, node): self.balancer = balancer self.pypar_id = myid self.pypar_numprocs = numprocs self.pypar_node = node def getNumWorkItems(self): pass def handleWorkResult(self, result, status): pass def calcWorkResult(self, worknum): pass def masterBeforeWork(self): """Master node calls this before sending out the work""" pass def slaveBeforeWork(self): """Slave nodes call this before receiving work""" pass def masterAfterWork(self): """Master node calls this after receiving the last work result""" pass def slaveAfterWork(self): """Slave nodes call this after sending the last work result""" pass def msgprint(self, txt): pre = " " * 8 * self.pypar_id if type(txt) != type('dummy'): txt = txt.__str__() pat = "-%d-" print pre + (pat % self.pypar_id) + txt class PyparBalancer(object): """The Load Balancer Class Initialize it with a PyparWork-derived class instance which describes the actual work to do. debug == True - more status messages """ def __init__(self, work, debug = False): self.numprocs = pypar.size() # Number of processes as specified by mpirun self.myid = pypar.rank() # Id of of this process (myid in [0, numproc-1]) self.node = pypar.get_processor_name() # Host name on which current process is running self.debug= debug self.work = work # Added by Ole Nielsen, 15 May 2008 if self.numprocs < 2: msg = 'PyparBalancer must run on at least 2 processes' msg += ' for the Master Slave paradigm to make sense.' raise Exception, msg self.work.uplink(self, self.myid, self.numprocs, self.node) self.numworks = self.work.getNumWorkItems() print "PyparBalancer initialised on proc %d of %d on node %s" %(self.myid, self.numprocs, self.node) def master(self): numcompleted = 0 #--- start slaves distributing the first work slot for i in range(0, min(self.numprocs-1, self.numworks)): work = i slave= i+1 pypar.send(work, destination=slave, tag=PYPAR_WORKTAG) print '[MASTER ]: sent first work "%s" to node %d' %(work, slave) # dispatch the remaining work slots on dynamic load-balancing policy # the quicker to do the job, the more jobs it takes for work in range(self.numprocs-1, self.numworks): result, status = pypar.receive(source=pypar.any_source, tag=PYPAR_WORKTAG, return_status=True) print '[MASTER ]: received result from node %d' %(status.source, ) #print result numcompleted += 1 pypar.send(work, destination=status.source, tag=PYPAR_WORKTAG) if self.debug: print '[MASTER ]: sent work "%s" to node %d' %(work, status.source) self.work.handleWorkResult(result, status) # all works have been dispatched out print '[MASTER ]: ToDo : %d' %self.numworks print '[MASTER ]: Done : %d' %numcompleted # I've still to take into the remaining completions while (numcompleted < self.numworks): result, status = pypar.receive(source=pypar.any_source, tag=PYPAR_WORKTAG, return_status=True) print '[MASTER ]: received (final) result from node %d' % (status.source, ) print result numcompleted += 1 print '[MASTER ]: %d completed' %numcompleted self.work.handleWorkResult(result, status) print '[MASTER ]: about to terminate slaves' # Tell slaves to stop working for i in range(1, self.numprocs): pypar.send('#', destination=i, tag=PYPAR_DIETAG) if self.debug: print '[MASTER ]: sent DIETAG to node %d' %(i,) def slave(self): if self.debug: print '[SLAVE %d]: I am processor %d of %d on node %s' % (self.myid, self.myid, self.numprocs, self.node) if self.debug: print '[SLAVE %d]: Entering work loop' % (self.myid,) while True: result, status = pypar.receive(source=0, tag=pypar.any_tag, return_status=True) print '[SLAVE %d]: received work with tag %d from node %d'\ %(self.myid, status.tag, status.source) if (status.tag == PYPAR_DIETAG): print '[SLAVE %d]: received termination from node %d' % (self.myid, 0) return else: worknum = result if self.debug: print '[SLAVE %d]: work number is %s' % (self.myid, worknum) myresult = self.work.calcWorkResult(worknum) pypar.send(myresult, destination=0) if self.debug: print '[SLAVE %d]: sent result to node %d' % (self.myid, 0) def run(self): if self.myid == 0: self.work.masterBeforeWork() self.master() self.work.masterAfterWork() else: self.work.slaveBeforeWork() self.slave() self.work.slaveAfterWork() pypar.finalize() if self.myid != 0: sys.exit() # und schluss. class PyparDemoWork(PyparWork): """Example PyparWork implementation""" def __init__(self): import numpy self.worklist = numpy.arange(0.0,20.0) self.resultlist = numpy.zeros_like(self.worklist) def getNumWorkItems(self): return len(self.worklist) def calcWorkResult(self, worknum): return [worknum, self.worklist[worknum] + 1] def handleWorkResult(self, result, status): self.resultlist[result[0]] = result[1] def masterBeforeWork(self): print self.worklist def slaveBeforeWork(self): pass def masterAfterWork(self): print self.resultlist def slaveAfterWork(self): pass if __name__ == "__main__": print "-----------------------" print "::: PyParBalancer TEST " print "-----------------------" # create instance of work class pyparwork = PyparDemoWork() # create instance of balancer class, # initialize with work class balancer = PyparBalancer(pyparwork, True) # run it balancer.run()
import os, os.path import errno import json def mkdir_p(path): try: os.makedirs(path) except OSError as e: if e.errno == errno.EEXIST and os.path.isdir(path): pass else: raise def load_json(path): data = {} try: with open(path) as f: data = json.load(f) print(f'{path} successfully loaded') except: print('Could not load json') return data def save_json(path, data): mkdir_p(os.path.dirname(path)) with open(path, 'w') as f: json.dump(data, f) def load_cog(bot, cog): try: bot.load_extension(f'cogs.{cog}') print(f'Loaded extension {cog}.') return True except Exception as e: print(f'Failed to load extension {cog}.', file=sys.stderr) traceback.print_exc() return False def unload_cog(bot, cog): try: bot.unload_extension(f'cogs.{cog}') print(f'Unloaded extension {cog}.') return True except Exception as e: print(f'Failed to unload extension {cog}.', file=sys.stderr) traceback.print_exc() return False
import numpy as np import numba as nb import linoplib def jacobi(A, v0, f, nu_1=1): """If for some reason you want to use the original Jacobi solver (not the weighted version), it's implemented here. As I understand it, there's no reason you'd want this for solving Av=f. """ return weighted_jacobi(A, v0, f, 1, nu_1) @nb.jit(nopython=True) def weighted_jacobi(A, v0, f, w, nu_1): """Weighted Jacobi solver. Parameters ---------- A : np.ndarray Linear differential operator (Av = f). v0 : np.ndarray Initial guess for the solution to (Av = f) f : np.ndarray Forcing function (Av = f) w : float Jacobi weighting factor. Usually set to 2/3. nu_1 : int, optional Number of iterations to carry out. Returns ------- np.ndarray 1D array containing the solution. """ v = v0.copy() diag = np.diag(A) D = np.diag(diag) Q = D-A for _ in range(nu_1): v = (1-w)*v + w*(f + Q@v)/diag return v @nb.jit(nopython=True) def VMG(A, v0, f, w, nu_1=10, nu_2=10, depth=-1): """V-cycle multigrid solver. Solves Av = f. Parameters ---------- A : np.ndarray Linear differential operator (Av = f). v0 : np.ndarray Initial guess for the solution to (Av = f) f : np.ndarray Forcing function (Av = f) w : float Jacobi weighting factor. Usually set to 2/3 nu_1 : int, optional Number of jacobi iterations before each coarsening grid spacing step. nu_2 : int, optional Number of jacobi iterations at each de-coarsening grid spacing step. depth : int, optional Number of grid coarsening steps to take. Leave as -1 except for debugging. Returns ------- np.ndarray 1D array containing the solution. """ N = v0.shape[0] v = weighted_jacobi(A, v0, f, w, nu_1=nu_1) if depth != 0 and (N-1) % 2 == 0 and (N-1) > 8: I_h2h = linoplib.prolongation(N) I_2hh = linoplib.full_weighting(N) A_2h = I_2hh@A@I_h2h v_2h = np.zeros(int((N-1)/2)) f_2h = I_2hh@(f-A@v) v_2h = VMG(A_2h, v_2h, f_2h, w, nu_1, nu_2, depth-1) v += I_h2h@v_2h v = weighted_jacobi(A, v, f, w, nu_1=nu_2) return v @nb.jit(nopython=True) def FMG(A, v0, f, w, nu_0=1, nu_1=10, nu_2=10): """Full multigrid solver. Solves Av = f. Parameters ---------- A : np.ndarray Linear differential operator (Av = f). v0 : np.ndarray Initial guess for the solution to (Av = f) f : np.ndarray Forcing function (Av = f) w : float Jacobi weighting factor. Usually set to 2/3 nu_0 : int, optional Number of times to call the VMG method at each grid spacing step. nu_1 : int, optional Number of jacobi iterations before each coarsening grid spacing step. nu_2 : int, optional Number of jacobi iterations at each de-coarsening grid spacing step. Returns ------- np.ndarray 1D array containing the solution. """ N = v0.shape[0] if (N-1) % 2 != 0 or (N-1) <= 8: v = np.zeros(N) else: I_h2h = linoplib.prolongation(N) I_2hh = linoplib.full_weighting(N) A_2h = I_2hh@A@I_h2h v_2h = np.zeros(int((N-1)/2)) f_2h = I_2hh@(f-A@v0) v_2h = FMG(A_2h, v_2h, f_2h, w, nu_0, nu_1, nu_2) v = v0 + I_h2h@v_2h for _ in range(nu_0): v = VMG(A, v, f, w, nu_1, nu_2, depth=-1) return v def direct(A, v0, f): """Directly solve Av=f by calling numpy. """ return np.linalg.inv(A)@f def error(A, v, f): """Compute the error, given A, v, and f. """ return f-A@v
# Copyright 2018-present Kensho Technologies, LLC. import codecs import datetime from os import path import random import re import sys from .animals import get_animal_generation_commands from .events import get_event_generation_commands from .species import get_species_generation_commands # https://packaging.python.org/guides/single-sourcing-package-version/ # #single-sourcing-the-version def read_file(filename): """Read and return text from the file specified by `filename`, in the project root directory.""" # intentionally *not* adding an encoding option to open # see here: # https://github.com/pypa/virtualenv/issues/201#issuecomment-3145690 top_level_directory = path.dirname(path.dirname(path.dirname(path.abspath(__file__)))) with codecs.open(path.join(top_level_directory, 'graphql_compiler', filename), 'r') as f: return f.read() def find_version(): """Return current version of package.""" version_file = read_file('__init__.py') version_match = re.search(r'^__version__ = ["\']([^"\']*)["\']', version_file, re.M) if version_match: return version_match.group(1) raise RuntimeError('Unable to find version string.') def main(): """Print a list of SQL commands to generate the testing database.""" random.seed(0) module_path = path.relpath(__file__) current_datetime = datetime.datetime.now().isoformat() log_message = ('# Auto-generated output from `{path}`.\n' '# Do not edit directly!\n' '# Generated on {datetime} from compiler version {version}.\n\n') sys.stdout.write( log_message.format(path=module_path, datetime=current_datetime, version=find_version())) sql_command_generators = [ get_event_generation_commands, get_species_generation_commands, get_animal_generation_commands, ] for sql_command_generator in sql_command_generators: sql_command_list = sql_command_generator() sys.stdout.write('\n'.join(sql_command_list)) sys.stdout.write('\n') if __name__ == '__main__': main()
from __future__ import absolute_import from __future__ import division from __future__ import unicode_literals from __future__ import print_function import os from torch.utils.data import Dataset import numpy as np import json from dataloaders.rawvideo_util import RawVideoExtractor class DiDeMo_DataLoader(Dataset): def __init__( self, subset, data_path, features_path, tokenizer, max_words=30, feature_framerate=1.0, max_frames=100, image_resolution=224, frame_order=0, slice_framepos=0, ): self.data_path = data_path self.features_path = features_path self.feature_framerate = feature_framerate self.max_words = max_words self.max_frames = max_frames self.tokenizer = tokenizer # 0: ordinary order; 1: reverse order; 2: random order. self.frame_order = frame_order assert self.frame_order in [0, 1, 2] # 0: cut from head frames; 1: cut from tail frames; 2: extract frames uniformly. self.slice_framepos = slice_framepos assert self.slice_framepos in [0, 1, 2] self.subset = subset assert self.subset in ["train", "val", "test"] video_id_path_dict = {} video_id_path_dict["train"] = os.path.join(self.data_path, "train_list.txt") video_id_path_dict["val"] = os.path.join(self.data_path, "val_list.txt") video_id_path_dict["test"] = os.path.join(self.data_path, "test_list.txt") video_json_path_dict = {} video_json_path_dict["train"] = os.path.join(self.data_path, "train_data.json") video_json_path_dict["val"] = os.path.join(self.data_path, "val_data.json") video_json_path_dict["test"] = os.path.join(self.data_path, "test_data.json") with open(video_id_path_dict[self.subset], 'r') as fp: video_ids = [itm.strip() for itm in fp.readlines()] caption_dict = {} with open(video_json_path_dict[self.subset], 'r') as f: json_data = json.load(f) for itm in json_data: description = itm["description"] times = itm["times"] video = itm["video"] if video not in video_ids: continue # each video is split into 5-second temporal chunks # average the points from each annotator start_ = np.mean([t_[0] for t_ in times]) * 5 end_ = (np.mean([t_[1] for t_ in times]) + 1) * 5 if video in caption_dict: caption_dict[video]["start"].append(start_) caption_dict[video]["end"].append(end_) caption_dict[video]["text"].append(description) else: caption_dict[video] = {} caption_dict[video]["start"] = [start_] caption_dict[video]["end"] = [end_] caption_dict[video]["text"] = [description] for k_ in caption_dict.keys(): caption_dict[k_]["start"] = [0] # trick to save time on obtaining each video length # [https://github.com/LisaAnne/LocalizingMoments/blob/master/README.md]: # Some videos are longer than 30 seconds. These videos were truncated to 30 seconds during annotation. caption_dict[k_]["end"] = [31] caption_dict[k_]["text"] = [" ".join(caption_dict[k_]["text"])] video_dict = {} for root, dub_dir, video_files in os.walk(self.features_path): for video_file in video_files: video_id_ = video_file if video_id_ not in video_ids: continue file_path_ = os.path.join(root, video_file) video_dict[video_id_] = file_path_ self.caption_dict = caption_dict self.video_dict = video_dict video_ids = list(set(video_ids) & set(self.caption_dict.keys()) & set(self.video_dict.keys())) # Get all captions self.iter2video_pairs_dict = {} for video_id in self.caption_dict.keys(): if video_id not in video_ids: continue caption = self.caption_dict[video_id] n_caption = len(caption['start']) for sub_id in range(n_caption): self.iter2video_pairs_dict[len(self.iter2video_pairs_dict)] = (video_id, sub_id) self.rawVideoExtractor = RawVideoExtractor(framerate=feature_framerate, size=image_resolution) self.SPECIAL_TOKEN = {"CLS_TOKEN": "<|startoftext|>", "SEP_TOKEN": "<|endoftext|>", "MASK_TOKEN": "[MASK]", "UNK_TOKEN": "[UNK]", "PAD_TOKEN": "[PAD]"} def __len__(self): return len(self.iter2video_pairs_dict) def _get_text(self, video_id, sub_id): caption = self.caption_dict[video_id] k = 1 r_ind = [sub_id] starts = np.zeros(k, dtype=np.long) ends = np.zeros(k, dtype=np.long) pairs_text = np.zeros((k, self.max_words), dtype=np.long) pairs_mask = np.zeros((k, self.max_words), dtype=np.long) pairs_segment = np.zeros((k, self.max_words), dtype=np.long) for i in range(k): ind = r_ind[i] start_, end_ = caption['start'][ind], caption['end'][ind] words = self.tokenizer.tokenize(caption['text'][ind]) starts[i], ends[i] = start_, end_ words = [self.SPECIAL_TOKEN["CLS_TOKEN"]] + words total_length_with_CLS = self.max_words - 1 if len(words) > total_length_with_CLS: words = words[:total_length_with_CLS] words = words + [self.SPECIAL_TOKEN["SEP_TOKEN"]] input_ids = self.tokenizer.convert_tokens_to_ids(words) input_mask = [1] * len(input_ids) segment_ids = [0] * len(input_ids) while len(input_ids) < self.max_words: input_ids.append(0) input_mask.append(0) segment_ids.append(0) assert len(input_ids) == self.max_words assert len(input_mask) == self.max_words assert len(segment_ids) == self.max_words pairs_text[i] = np.array(input_ids) pairs_mask[i] = np.array(input_mask) pairs_segment[i] = np.array(segment_ids) return pairs_text, pairs_mask, pairs_segment, starts, ends def _get_rawvideo(self, idx, s, e): video_mask = np.zeros((len(s), self.max_frames), dtype=np.long) max_video_length = [0] * len(s) # Pair x L x T x 3 x H x W video = np.zeros((len(s), self.max_frames, 1, 3, self.rawVideoExtractor.size, self.rawVideoExtractor.size), dtype=np.float) video_path = self.video_dict[idx] try: for i in range(len(s)): start_time = int(s[i]) end_time = int(e[i]) start_time = start_time if start_time >= 0. else 0. end_time = end_time if end_time >= 0. else 0. if start_time > end_time: start_time, end_time = end_time, start_time elif start_time == end_time: end_time = end_time + 1 cache_id = "{}_{}_{}".format(video_path, start_time, end_time) # Should be optimized by gathering all asking of this video raw_video_data = self.rawVideoExtractor.get_video_data(video_path, start_time, end_time) raw_video_data = raw_video_data['video'] if len(raw_video_data.shape) > 3: raw_video_data_clip = raw_video_data # L x T x 3 x H x W raw_video_slice = self.rawVideoExtractor.process_raw_data(raw_video_data_clip) if self.max_frames < raw_video_slice.shape[0]: if self.slice_framepos == 0: video_slice = raw_video_slice[:self.max_frames, ...] elif self.slice_framepos == 1: video_slice = raw_video_slice[-self.max_frames:, ...] else: sample_indx = np.linspace(0, raw_video_slice.shape[0] - 1, num=self.max_frames, dtype=int) video_slice = raw_video_slice[sample_indx, ...] else: video_slice = raw_video_slice video_slice = self.rawVideoExtractor.process_frame_order(video_slice, frame_order=self.frame_order) slice_len = video_slice.shape[0] max_video_length[i] = max_video_length[i] if max_video_length[i] > slice_len else slice_len if slice_len < 1: pass else: video[i][:slice_len, ...] = video_slice else: print("video path: {} error. video id: {}, start: {}, end: {}".format(video_path, idx, start_time, end_time)) except Exception as excep: print("video path: {} error. video id: {}, start: {}, end: {}, Error: {}".format(video_path, idx, s, e, excep)) pass # raise e for i, v_length in enumerate(max_video_length): video_mask[i][:v_length] = [1] * v_length return video, video_mask def __getitem__(self, feature_idx): video_id, sub_id = self.iter2video_pairs_dict[feature_idx] pairs_text, pairs_mask, pairs_segment, starts, ends = self._get_text(video_id, sub_id) video, video_mask = self._get_rawvideo(video_id, starts, ends) return pairs_text, pairs_mask, pairs_segment, video, video_mask
'''Faça um programa para imprimir: 1 1 2 1 2 3 ..... 1 2 3 ... n para um n informado pelo usuário. Use uma função que receba um valor n inteiro imprima até a n-ésima linha.''' print('-----DESAFIO 100-----') def imprimir(valor): if isinstance(valor, int): x = 1 while x <= valor: y = 1 texto='' while y <= x: texto += str(y) + ' ' y += 1 print (texto) x += 1 x=int(input("numero: ")) imprimir(x)
# Generated by Django 3.0.5 on 2020-06-14 16:22 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('submission', '0045_auto_20200607_1710'), ] operations = [ migrations.AlterField( model_name='submission', name='state', field=models.CharField(default='submitted', max_length=26), ), ]
def bubble(lst,size,a=0,b=0): if a == size: return lst else: if b == size: return bubble(lst,size,a+1,a+1) if lst[a]>lst[b]: lst[a],lst[b] = lst[b],lst[a] return bubble(lst,size,a,b+1) def findmed(lst): tmp = lst.copy() tmp = bubble(tmp,len(tmp)) if len(tmp)%2==0: return (tmp[len(tmp)//2-1]+tmp[len(tmp)//2])/2 else: return tmp[len(tmp)//2] l = [e for e in input("Enter Input : ").split()] if l[0] == 'EX': Ans = "minHeap and maxHeap" print("Extra Question : What is a suitable sort algorithm?") print(" Your Answer : "+Ans) else: l=list(map(int, l)) lst = [] for i in l: lst.append(i) print("list = ",lst," : median = ","{:.1f}".format(findmed(lst)),sep="")
file = open("input", "r") good_passwords = 0 for line in file.readlines(): counts, char, word = line.strip().split() count_low, count_high = counts.split("-") char = char[0] num = word.count(char) if num>=int(count_low) and num <=int(count_high): good_passwords+=1 print(good_passwords)
import os from typing import ( Any, Sequence, List ) def ensure_list(value: Any) -> List: # if isinstance(value, Sequence) and not isinstance(value, str): if hasattr(value, '__iter__') and not isinstance(value, str): return list(value) else: return [value] def files_exist(files: Sequence[str]) -> bool: return len(files) != 0 and all([os.path.exists(f) for f in files]) def hash_dict(obj: dict): from hashlib import md5 obj = {k: obj[k] for k in sorted(obj)} return md5(str(obj).encode()).hexdigest() def set_property(obj, name, prop_function): """Add property :obj:`prop_function` to :obj:`obj`. :obj:`prop_function` must be a function taking only one argument, i.e., :obj:`obj`. Args: obj (object): object on which the property has to be added. name (str): the name of the property. prop_function (function): function taking only :obj:`obj` as argument. """ class_name = obj.__class__.__name__ new_class = type(class_name, (obj.__class__,), {name: property(prop_function)}) obj.__class__ = new_class
from typing import Tuple import math import torch import torchaudio from torch import Tensor __all__ = [ 'get_mel_banks', 'inverse_mel_scale', 'inverse_mel_scale_scalar', 'mel_scale', 'mel_scale_scalar', 'spectrogram', 'fbank', 'mfcc', 'vtln_warp_freq', 'vtln_warp_mel_freq', 'resample_waveform', ] # numeric_limits<float>::epsilon() 1.1920928955078125e-07 EPSILON = torch.tensor(torch.finfo(torch.float).eps) # 1 milliseconds = 0.001 seconds MILLISECONDS_TO_SECONDS = 0.001 # window types HAMMING = 'hamming' HANNING = 'hanning' POVEY = 'povey' RECTANGULAR = 'rectangular' BLACKMAN = 'blackman' WINDOWS = [HAMMING, HANNING, POVEY, RECTANGULAR, BLACKMAN] def _get_epsilon(device, dtype): return EPSILON.to(device=device, dtype=dtype) def _next_power_of_2(x: int) -> int: r"""Returns the smallest power of 2 that is greater than x """ return 1 if x == 0 else 2 ** (x - 1).bit_length() def _get_strided(waveform: Tensor, window_size: int, window_shift: int, snip_edges: bool) -> Tensor: r"""Given a waveform (1D tensor of size ``num_samples``), it returns a 2D tensor (m, ``window_size``) representing how the window is shifted along the waveform. Each row is a frame. Args: waveform (Tensor): Tensor of size ``num_samples`` window_size (int): Frame length window_shift (int): Frame shift snip_edges (bool): If True, end effects will be handled by outputting only frames that completely fit in the file, and the number of frames depends on the frame_length. If False, the number of frames depends only on the frame_shift, and we reflect the data at the ends. Returns: Tensor: 2D tensor of size (m, ``window_size``) where each row is a frame """ assert waveform.dim() == 1 num_samples = waveform.size(0) strides = (window_shift * waveform.stride(0), waveform.stride(0)) if snip_edges: if num_samples < window_size: return torch.empty((0, 0), dtype=waveform.dtype, device=waveform.device) else: m = 1 + (num_samples - window_size) // window_shift else: reversed_waveform = torch.flip(waveform, [0]) m = (num_samples + (window_shift // 2)) // window_shift pad = window_size // 2 - window_shift // 2 pad_right = reversed_waveform if pad > 0: # torch.nn.functional.pad returns [2,1,0,1,2] for 'reflect' # but we want [2, 1, 0, 0, 1, 2] pad_left = reversed_waveform[-pad:] waveform = torch.cat((pad_left, waveform, pad_right), dim=0) else: # pad is negative so we want to trim the waveform at the front waveform = torch.cat((waveform[-pad:], pad_right), dim=0) sizes = (m, window_size) return waveform.as_strided(sizes, strides) def _feature_window_function(window_type: str, window_size: int, blackman_coeff: float, device: torch.device, dtype: int, ) -> Tensor: r"""Returns a window function with the given type and size """ if window_type == HANNING: return torch.hann_window(window_size, periodic=False, device=device, dtype=dtype) elif window_type == HAMMING: return torch.hamming_window(window_size, periodic=False, alpha=0.54, beta=0.46, device=device, dtype=dtype) elif window_type == POVEY: # like hanning but goes to zero at edges return torch.hann_window(window_size, periodic=False, device=device, dtype=dtype).pow(0.85) elif window_type == RECTANGULAR: return torch.ones(window_size, device=device, dtype=dtype) elif window_type == BLACKMAN: a = 2 * math.pi / (window_size - 1) window_function = torch.arange(window_size, device=device, dtype=dtype) # can't use torch.blackman_window as they use different coefficients return (blackman_coeff - 0.5 * torch.cos(a * window_function) + (0.5 - blackman_coeff) * torch.cos(2 * a * window_function)).to(device=device, dtype=dtype) else: raise Exception('Invalid window type ' + window_type) def _get_log_energy(strided_input: Tensor, epsilon: Tensor, energy_floor: float) -> Tensor: r"""Returns the log energy of size (m) for a strided_input (m,*) """ device, dtype = strided_input.device, strided_input.dtype log_energy = torch.max(strided_input.pow(2).sum(1), epsilon).log() # size (m) if energy_floor == 0.0: return log_energy return torch.max( log_energy, torch.tensor(math.log(energy_floor), device=device, dtype=dtype)) def _get_waveform_and_window_properties(waveform: Tensor, channel: int, sample_frequency: float, frame_shift: float, frame_length: float, round_to_power_of_two: bool, preemphasis_coefficient: float) -> Tuple[Tensor, int, int, int]: r"""Gets the waveform and window properties """ channel = max(channel, 0) assert channel < waveform.size(0), ('Invalid channel %d for size %d' % (channel, waveform.size(0))) waveform = waveform[channel, :] # size (n) window_shift = int(sample_frequency * frame_shift * MILLISECONDS_TO_SECONDS) window_size = int(sample_frequency * frame_length * MILLISECONDS_TO_SECONDS) padded_window_size = _next_power_of_2(window_size) if round_to_power_of_two else window_size assert 2 <= window_size <= len(waveform), ('choose a window size %d that is [2, %d]' % (window_size, len(waveform))) assert 0 < window_shift, '`window_shift` must be greater than 0' assert padded_window_size % 2 == 0, 'the padded `window_size` must be divisible by two.' \ ' use `round_to_power_of_two` or change `frame_length`' assert 0. <= preemphasis_coefficient <= 1.0, '`preemphasis_coefficient` must be between [0,1]' assert sample_frequency > 0, '`sample_frequency` must be greater than zero' return waveform, window_shift, window_size, padded_window_size def _get_window(waveform: Tensor, padded_window_size: int, window_size: int, window_shift: int, window_type: str, blackman_coeff: float, snip_edges: bool, raw_energy: bool, energy_floor: float, dither: float, remove_dc_offset: bool, preemphasis_coefficient: float) -> Tuple[Tensor, Tensor]: r"""Gets a window and its log energy Returns: (Tensor, Tensor): strided_input of size (m, ``padded_window_size``) and signal_log_energy of size (m) """ device, dtype = waveform.device, waveform.dtype epsilon = _get_epsilon(device, dtype) # size (m, window_size) strided_input = _get_strided(waveform, window_size, window_shift, snip_edges) if dither != 0.0: # Returns a random number strictly between 0 and 1 x = torch.max(epsilon, torch.rand(strided_input.shape, device=device, dtype=dtype)) rand_gauss = torch.sqrt(-2 * x.log()) * torch.cos(2 * math.pi * x) strided_input = strided_input + rand_gauss * dither if remove_dc_offset: # Subtract each row/frame by its mean row_means = torch.mean(strided_input, dim=1).unsqueeze(1) # size (m, 1) strided_input = strided_input - row_means if raw_energy: # Compute the log energy of each row/frame before applying preemphasis and # window function signal_log_energy = _get_log_energy(strided_input, epsilon, energy_floor) # size (m) if preemphasis_coefficient != 0.0: # strided_input[i,j] -= preemphasis_coefficient * strided_input[i, max(0, j-1)] for all i,j offset_strided_input = torch.nn.functional.pad( strided_input.unsqueeze(0), (1, 0), mode='replicate').squeeze(0) # size (m, window_size + 1) strided_input = strided_input - preemphasis_coefficient * offset_strided_input[:, :-1] # Apply window_function to each row/frame window_function = _feature_window_function( window_type, window_size, blackman_coeff, device, dtype).unsqueeze(0) # size (1, window_size) strided_input = strided_input * window_function # size (m, window_size) # Pad columns with zero until we reach size (m, padded_window_size) if padded_window_size != window_size: padding_right = padded_window_size - window_size strided_input = torch.nn.functional.pad( strided_input.unsqueeze(0), (0, padding_right), mode='constant', value=0).squeeze(0) # Compute energy after window function (not the raw one) if not raw_energy: signal_log_energy = _get_log_energy(strided_input, epsilon, energy_floor) # size (m) return strided_input, signal_log_energy def _subtract_column_mean(tensor: Tensor, subtract_mean: bool) -> Tensor: # subtracts the column mean of the tensor size (m, n) if subtract_mean=True # it returns size (m, n) if subtract_mean: col_means = torch.mean(tensor, dim=0).unsqueeze(0) tensor = tensor - col_means return tensor def spectrogram(waveform: Tensor, blackman_coeff: float = 0.42, channel: int = -1, dither: float = 0.0, energy_floor: float = 1.0, frame_length: float = 25.0, frame_shift: float = 10.0, min_duration: float = 0.0, preemphasis_coefficient: float = 0.97, raw_energy: bool = True, remove_dc_offset: bool = True, round_to_power_of_two: bool = True, sample_frequency: float = 16000.0, snip_edges: bool = True, subtract_mean: bool = False, window_type: str = POVEY) -> Tensor: r"""Create a spectrogram from a raw audio signal. This matches the input/output of Kaldi's compute-spectrogram-feats. Args: waveform (Tensor): Tensor of audio of size (c, n) where c is in the range [0,2) blackman_coeff (float, optional): Constant coefficient for generalized Blackman window. (Default: ``0.42``) channel (int, optional): Channel to extract (-1 -> expect mono, 0 -> left, 1 -> right) (Default: ``-1``) dither (float, optional): Dithering constant (0.0 means no dither). If you turn this off, you should set the energy_floor option, e.g. to 1.0 or 0.1 (Default: ``0.0``) energy_floor (float, optional): Floor on energy (absolute, not relative) in Spectrogram computation. Caution: this floor is applied to the zeroth component, representing the total signal energy. The floor on the individual spectrogram elements is fixed at std::numeric_limits<float>::epsilon(). (Default: ``1.0``) frame_length (float, optional): Frame length in milliseconds (Default: ``25.0``) frame_shift (float, optional): Frame shift in milliseconds (Default: ``10.0``) min_duration (float, optional): Minimum duration of segments to process (in seconds). (Default: ``0.0``) preemphasis_coefficient (float, optional): Coefficient for use in signal preemphasis (Default: ``0.97``) raw_energy (bool, optional): If True, compute energy before preemphasis and windowing (Default: ``True``) remove_dc_offset (bool, optional): Subtract mean from waveform on each frame (Default: ``True``) round_to_power_of_two (bool, optional): If True, round window size to power of two by zero-padding input to FFT. (Default: ``True``) sample_frequency (float, optional): Waveform data sample frequency (must match the waveform file, if specified there) (Default: ``16000.0``) snip_edges (bool, optional): If True, end effects will be handled by outputting only frames that completely fit in the file, and the number of frames depends on the frame_length. If False, the number of frames depends only on the frame_shift, and we reflect the data at the ends. (Default: ``True``) subtract_mean (bool, optional): Subtract mean of each feature file [CMS]; not recommended to do it this way. (Default: ``False``) window_type (str, optional): Type of window ('hamming'|'hanning'|'povey'|'rectangular'|'blackman') (Default: ``'povey'``) Returns: Tensor: A spectrogram identical to what Kaldi would output. The shape is (m, ``padded_window_size // 2 + 1``) where m is calculated in _get_strided """ waveform, window_shift, window_size, padded_window_size = _get_waveform_and_window_properties( waveform, channel, sample_frequency, frame_shift, frame_length, round_to_power_of_two, preemphasis_coefficient) if len(waveform) < min_duration * sample_frequency: # signal is too short return torch.empty(0) strided_input, signal_log_energy = _get_window( waveform, padded_window_size, window_size, window_shift, window_type, blackman_coeff, snip_edges, raw_energy, energy_floor, dither, remove_dc_offset, preemphasis_coefficient) # size (m, padded_window_size // 2 + 1, 2) fft = torch.rfft(strided_input, 1, normalized=False, onesided=True) # Convert the FFT into a power spectrum power_spectrum = torch.max(fft.pow(2).sum(2), EPSILON).log() # size (m, padded_window_size // 2 + 1) power_spectrum[:, 0] = signal_log_energy power_spectrum = _subtract_column_mean(power_spectrum, subtract_mean) return power_spectrum def inverse_mel_scale_scalar(mel_freq: float) -> float: return 700.0 * (math.exp(mel_freq / 1127.0) - 1.0) def inverse_mel_scale(mel_freq: Tensor) -> Tensor: return 700.0 * ((mel_freq / 1127.0).exp() - 1.0) def mel_scale_scalar(freq: float) -> float: return 1127.0 * math.log(1.0 + freq / 700.0) def mel_scale(freq: Tensor) -> Tensor: return 1127.0 * (1.0 + freq / 700.0).log() def vtln_warp_freq(vtln_low_cutoff: float, vtln_high_cutoff: float, low_freq: float, high_freq: float, vtln_warp_factor: float, freq: Tensor) -> Tensor: r"""This computes a VTLN warping function that is not the same as HTK's one, but has similar inputs (this function has the advantage of never producing empty bins). This function computes a warp function F(freq), defined between low_freq and high_freq inclusive, with the following properties: F(low_freq) == low_freq F(high_freq) == high_freq The function is continuous and piecewise linear with two inflection points. The lower inflection point (measured in terms of the unwarped frequency) is at frequency l, determined as described below. The higher inflection point is at a frequency h, determined as described below. If l <= f <= h, then F(f) = f/vtln_warp_factor. If the higher inflection point (measured in terms of the unwarped frequency) is at h, then max(h, F(h)) == vtln_high_cutoff. Since (by the last point) F(h) == h/vtln_warp_factor, then max(h, h/vtln_warp_factor) == vtln_high_cutoff, so h = vtln_high_cutoff / max(1, 1/vtln_warp_factor). = vtln_high_cutoff * min(1, vtln_warp_factor). If the lower inflection point (measured in terms of the unwarped frequency) is at l, then min(l, F(l)) == vtln_low_cutoff This implies that l = vtln_low_cutoff / min(1, 1/vtln_warp_factor) = vtln_low_cutoff * max(1, vtln_warp_factor) Args: vtln_low_cutoff (float): Lower frequency cutoffs for VTLN vtln_high_cutoff (float): Upper frequency cutoffs for VTLN low_freq (float): Lower frequency cutoffs in mel computation high_freq (float): Upper frequency cutoffs in mel computation vtln_warp_factor (float): Vtln warp factor freq (Tensor): given frequency in Hz Returns: Tensor: Freq after vtln warp """ assert vtln_low_cutoff > low_freq, 'be sure to set the vtln_low option higher than low_freq' assert vtln_high_cutoff < high_freq, 'be sure to set the vtln_high option lower than high_freq [or negative]' l = vtln_low_cutoff * max(1.0, vtln_warp_factor) h = vtln_high_cutoff * min(1.0, vtln_warp_factor) scale = 1.0 / vtln_warp_factor Fl = scale * l # F(l) Fh = scale * h # F(h) assert l > low_freq and h < high_freq # slope of left part of the 3-piece linear function scale_left = (Fl - low_freq) / (l - low_freq) # [slope of center part is just "scale"] # slope of right part of the 3-piece linear function scale_right = (high_freq - Fh) / (high_freq - h) res = torch.empty_like(freq) outside_low_high_freq = torch.lt(freq, low_freq) | torch.gt(freq, high_freq) # freq < low_freq || freq > high_freq before_l = torch.lt(freq, l) # freq < l before_h = torch.lt(freq, h) # freq < h after_h = torch.ge(freq, h) # freq >= h # order of operations matter here (since there is overlapping frequency regions) res[after_h] = high_freq + scale_right * (freq[after_h] - high_freq) res[before_h] = scale * freq[before_h] res[before_l] = low_freq + scale_left * (freq[before_l] - low_freq) res[outside_low_high_freq] = freq[outside_low_high_freq] return res def vtln_warp_mel_freq(vtln_low_cutoff: float, vtln_high_cutoff: float, low_freq, high_freq: float, vtln_warp_factor: float, mel_freq: Tensor) -> Tensor: r""" Args: vtln_low_cutoff (float): Lower frequency cutoffs for VTLN vtln_high_cutoff (float): Upper frequency cutoffs for VTLN low_freq (float): Lower frequency cutoffs in mel computation high_freq (float): Upper frequency cutoffs in mel computation vtln_warp_factor (float): Vtln warp factor mel_freq (Tensor): Given frequency in Mel Returns: Tensor: ``mel_freq`` after vtln warp """ return mel_scale(vtln_warp_freq(vtln_low_cutoff, vtln_high_cutoff, low_freq, high_freq, vtln_warp_factor, inverse_mel_scale(mel_freq))) def get_mel_banks(num_bins: int, window_length_padded: int, sample_freq: float, low_freq: float, high_freq: float, vtln_low: float, vtln_high: float, vtln_warp_factor: float) -> Tuple[Tensor, Tensor]: """ Returns: (Tensor, Tensor): The tuple consists of ``bins`` (which is melbank of size (``num_bins``, ``num_fft_bins``)) and ``center_freqs`` (which is center frequencies of bins of size (``num_bins``)). """ assert num_bins > 3, 'Must have at least 3 mel bins' assert window_length_padded % 2 == 0 num_fft_bins = window_length_padded / 2 nyquist = 0.5 * sample_freq if high_freq <= 0.0: high_freq += nyquist assert (0.0 <= low_freq < nyquist) and (0.0 < high_freq <= nyquist) and (low_freq < high_freq), \ ('Bad values in options: low-freq %f and high-freq %f vs. nyquist %f' % (low_freq, high_freq, nyquist)) # fft-bin width [think of it as Nyquist-freq / half-window-length] fft_bin_width = sample_freq / window_length_padded mel_low_freq = mel_scale_scalar(low_freq) mel_high_freq = mel_scale_scalar(high_freq) # divide by num_bins+1 in next line because of end-effects where the bins # spread out to the sides. mel_freq_delta = (mel_high_freq - mel_low_freq) / (num_bins + 1) if vtln_high < 0.0: vtln_high += nyquist assert vtln_warp_factor == 1.0 or ((low_freq < vtln_low < high_freq) and (0.0 < vtln_high < high_freq) and (vtln_low < vtln_high)), \ ('Bad values in options: vtln-low %f and vtln-high %f, versus low-freq %f and high-freq %f' % (vtln_low, vtln_high, low_freq, high_freq)) bin = torch.arange(num_bins).unsqueeze(1) left_mel = mel_low_freq + bin * mel_freq_delta # size(num_bins, 1) center_mel = mel_low_freq + (bin + 1.0) * mel_freq_delta # size(num_bins, 1) right_mel = mel_low_freq + (bin + 2.0) * mel_freq_delta # size(num_bins, 1) if vtln_warp_factor != 1.0: left_mel = vtln_warp_mel_freq(vtln_low, vtln_high, low_freq, high_freq, vtln_warp_factor, left_mel) center_mel = vtln_warp_mel_freq(vtln_low, vtln_high, low_freq, high_freq, vtln_warp_factor, center_mel) right_mel = vtln_warp_mel_freq(vtln_low, vtln_high, low_freq, high_freq, vtln_warp_factor, right_mel) center_freqs = inverse_mel_scale(center_mel) # size (num_bins) # size(1, num_fft_bins) mel = mel_scale(fft_bin_width * torch.arange(num_fft_bins)).unsqueeze(0) # size (num_bins, num_fft_bins) up_slope = (mel - left_mel) / (center_mel - left_mel) down_slope = (right_mel - mel) / (right_mel - center_mel) if vtln_warp_factor == 1.0: # left_mel < center_mel < right_mel so we can min the two slopes and clamp negative values bins = torch.max(torch.zeros(1), torch.min(up_slope, down_slope)) else: # warping can move the order of left_mel, center_mel, right_mel anywhere bins = torch.zeros_like(up_slope) up_idx = torch.gt(mel, left_mel) & torch.le(mel, center_mel) # left_mel < mel <= center_mel down_idx = torch.gt(mel, center_mel) & torch.lt(mel, right_mel) # center_mel < mel < right_mel bins[up_idx] = up_slope[up_idx] bins[down_idx] = down_slope[down_idx] return bins, center_freqs def fbank(waveform: Tensor, blackman_coeff: float = 0.42, channel: int = -1, dither: float = 0.0, energy_floor: float = 1.0, frame_length: float = 25.0, frame_shift: float = 10.0, high_freq: float = 0.0, htk_compat: bool = False, low_freq: float = 20.0, min_duration: float = 0.0, num_mel_bins: int = 23, preemphasis_coefficient: float = 0.97, raw_energy: bool = True, remove_dc_offset: bool = True, round_to_power_of_two: bool = True, sample_frequency: float = 16000.0, snip_edges: bool = True, subtract_mean: bool = False, use_energy: bool = False, use_log_fbank: bool = True, use_power: bool = True, vtln_high: float = -500.0, vtln_low: float = 100.0, vtln_warp: float = 1.0, window_type: str = POVEY) -> Tensor: r"""Create a fbank from a raw audio signal. This matches the input/output of Kaldi's compute-fbank-feats. Args: waveform (Tensor): Tensor of audio of size (c, n) where c is in the range [0,2) blackman_coeff (float, optional): Constant coefficient for generalized Blackman window. (Default: ``0.42``) channel (int, optional): Channel to extract (-1 -> expect mono, 0 -> left, 1 -> right) (Default: ``-1``) dither (float, optional): Dithering constant (0.0 means no dither). If you turn this off, you should set the energy_floor option, e.g. to 1.0 or 0.1 (Default: ``0.0``) energy_floor (float, optional): Floor on energy (absolute, not relative) in Spectrogram computation. Caution: this floor is applied to the zeroth component, representing the total signal energy. The floor on the individual spectrogram elements is fixed at std::numeric_limits<float>::epsilon(). (Default: ``1.0``) frame_length (float, optional): Frame length in milliseconds (Default: ``25.0``) frame_shift (float, optional): Frame shift in milliseconds (Default: ``10.0``) high_freq (float, optional): High cutoff frequency for mel bins (if <= 0, offset from Nyquist) (Default: ``0.0``) htk_compat (bool, optional): If true, put energy last. Warning: not sufficient to get HTK compatible features (need to change other parameters). (Default: ``False``) low_freq (float, optional): Low cutoff frequency for mel bins (Default: ``20.0``) min_duration (float, optional): Minimum duration of segments to process (in seconds). (Default: ``0.0``) num_mel_bins (int, optional): Number of triangular mel-frequency bins (Default: ``23``) preemphasis_coefficient (float, optional): Coefficient for use in signal preemphasis (Default: ``0.97``) raw_energy (bool, optional): If True, compute energy before preemphasis and windowing (Default: ``True``) remove_dc_offset (bool, optional): Subtract mean from waveform on each frame (Default: ``True``) round_to_power_of_two (bool, optional): If True, round window size to power of two by zero-padding input to FFT. (Default: ``True``) sample_frequency (float, optional): Waveform data sample frequency (must match the waveform file, if specified there) (Default: ``16000.0``) snip_edges (bool, optional): If True, end effects will be handled by outputting only frames that completely fit in the file, and the number of frames depends on the frame_length. If False, the number of frames depends only on the frame_shift, and we reflect the data at the ends. (Default: ``True``) subtract_mean (bool, optional): Subtract mean of each feature file [CMS]; not recommended to do it this way. (Default: ``False``) use_energy (bool, optional): Add an extra dimension with energy to the FBANK output. (Default: ``False``) use_log_fbank (bool, optional):If true, produce log-filterbank, else produce linear. (Default: ``True``) use_power (bool, optional): If true, use power, else use magnitude. (Default: ``True``) vtln_high (float, optional): High inflection point in piecewise linear VTLN warping function (if negative, offset from high-mel-freq (Default: ``-500.0``) vtln_low (float, optional): Low inflection point in piecewise linear VTLN warping function (Default: ``100.0``) vtln_warp (float, optional): Vtln warp factor (only applicable if vtln_map not specified) (Default: ``1.0``) window_type (str, optional): Type of window ('hamming'|'hanning'|'povey'|'rectangular'|'blackman') (Default: ``'povey'``) Returns: Tensor: A fbank identical to what Kaldi would output. The shape is (m, ``num_mel_bins + use_energy``) where m is calculated in _get_strided """ device, dtype = waveform.device, waveform.dtype waveform, window_shift, window_size, padded_window_size = _get_waveform_and_window_properties( waveform, channel, sample_frequency, frame_shift, frame_length, round_to_power_of_two, preemphasis_coefficient) if len(waveform) < min_duration * sample_frequency: # signal is too short return torch.empty(0, device=device, dtype=dtype) # strided_input, size (m, padded_window_size) and signal_log_energy, size (m) strided_input, signal_log_energy = _get_window( waveform, padded_window_size, window_size, window_shift, window_type, blackman_coeff, snip_edges, raw_energy, energy_floor, dither, remove_dc_offset, preemphasis_coefficient) # size (m, padded_window_size // 2 + 1, 2) fft = torch.rfft(strided_input, 1, normalized=False, onesided=True) power_spectrum = fft.pow(2).sum(2).unsqueeze(1) # size (m, 1, padded_window_size // 2 + 1) if not use_power: power_spectrum = power_spectrum.pow(0.5) # size (num_mel_bins, padded_window_size // 2) mel_energies, _ = get_mel_banks(num_mel_bins, padded_window_size, sample_frequency, low_freq, high_freq, vtln_low, vtln_high, vtln_warp) mel_energies = mel_energies.to(device=device, dtype=dtype) # pad right column with zeros and add dimension, size (1, num_mel_bins, padded_window_size // 2 + 1) mel_energies = torch.nn.functional.pad(mel_energies, (0, 1), mode='constant', value=0).unsqueeze(0) # sum with mel fiterbanks over the power spectrum, size (m, num_mel_bins) mel_energies = (power_spectrum * mel_energies).sum(dim=2) if use_log_fbank: # avoid log of zero (which should be prevented anyway by dithering) mel_energies = torch.max(mel_energies, _get_epsilon(device, dtype)).log() # if use_energy then add it as the last column for htk_compat == true else first column if use_energy: signal_log_energy = signal_log_energy.unsqueeze(1) # size (m, 1) # returns size (m, num_mel_bins + 1) if htk_compat: mel_energies = torch.cat((mel_energies, signal_log_energy), dim=1) else: mel_energies = torch.cat((signal_log_energy, mel_energies), dim=1) mel_energies = _subtract_column_mean(mel_energies, subtract_mean) return mel_energies def _get_dct_matrix(num_ceps: int, num_mel_bins: int) -> Tensor: # returns a dct matrix of size (num_mel_bins, num_ceps) # size (num_mel_bins, num_mel_bins) dct_matrix = torchaudio.functional.create_dct(num_mel_bins, num_mel_bins, 'ortho') # kaldi expects the first cepstral to be weighted sum of factor sqrt(1/num_mel_bins) # this would be the first column in the dct_matrix for torchaudio as it expects a # right multiply (which would be the first column of the kaldi's dct_matrix as kaldi # expects a left multiply e.g. dct_matrix * vector). dct_matrix[:, 0] = math.sqrt(1 / float(num_mel_bins)) dct_matrix = dct_matrix[:, :num_ceps] return dct_matrix def _get_lifter_coeffs(num_ceps: int, cepstral_lifter: float) -> Tensor: # returns size (num_ceps) # Compute liftering coefficients (scaling on cepstral coeffs) # coeffs are numbered slightly differently from HTK: the zeroth index is C0, which is not affected. i = torch.arange(num_ceps) return 1.0 + 0.5 * cepstral_lifter * torch.sin(math.pi * i / cepstral_lifter) def mfcc( waveform: Tensor, blackman_coeff: float = 0.42, cepstral_lifter: float = 22.0, channel: int = -1, dither: float = 0.0, energy_floor: float = 1.0, frame_length: float = 25.0, frame_shift: float = 10.0, high_freq: float = 0.0, htk_compat: bool = False, low_freq: float = 20.0, num_ceps: int = 13, min_duration: float = 0.0, num_mel_bins: int = 23, preemphasis_coefficient: float = 0.97, raw_energy: bool = True, remove_dc_offset: bool = True, round_to_power_of_two: bool = True, sample_frequency: float = 16000.0, snip_edges: bool = True, subtract_mean: bool = False, use_energy: bool = False, vtln_high: float = -500.0, vtln_low: float = 100.0, vtln_warp: float = 1.0, window_type: str = POVEY) -> Tensor: r"""Create a mfcc from a raw audio signal. This matches the input/output of Kaldi's compute-mfcc-feats. Args: waveform (Tensor): Tensor of audio of size (c, n) where c is in the range [0,2) blackman_coeff (float, optional): Constant coefficient for generalized Blackman window. (Default: ``0.42``) cepstral_lifter (float, optional): Constant that controls scaling of MFCCs (Default: ``22.0``) channel (int, optional): Channel to extract (-1 -> expect mono, 0 -> left, 1 -> right) (Default: ``-1``) dither (float, optional): Dithering constant (0.0 means no dither). If you turn this off, you should set the energy_floor option, e.g. to 1.0 or 0.1 (Default: ``0.0``) energy_floor (float, optional): Floor on energy (absolute, not relative) in Spectrogram computation. Caution: this floor is applied to the zeroth component, representing the total signal energy. The floor on the individual spectrogram elements is fixed at std::numeric_limits<float>::epsilon(). (Default: ``1.0``) frame_length (float, optional): Frame length in milliseconds (Default: ``25.0``) frame_shift (float, optional): Frame shift in milliseconds (Default: ``10.0``) high_freq (float, optional): High cutoff frequency for mel bins (if <= 0, offset from Nyquist) (Default: ``0.0``) htk_compat (bool, optional): If true, put energy last. Warning: not sufficient to get HTK compatible features (need to change other parameters). (Default: ``False``) low_freq (float, optional): Low cutoff frequency for mel bins (Default: ``20.0``) num_ceps (int, optional): Number of cepstra in MFCC computation (including C0) (Default: ``13``) min_duration (float, optional): Minimum duration of segments to process (in seconds). (Default: ``0.0``) num_mel_bins (int, optional): Number of triangular mel-frequency bins (Default: ``23``) preemphasis_coefficient (float, optional): Coefficient for use in signal preemphasis (Default: ``0.97``) raw_energy (bool, optional): If True, compute energy before preemphasis and windowing (Default: ``True``) remove_dc_offset (bool, optional): Subtract mean from waveform on each frame (Default: ``True``) round_to_power_of_two (bool, optional): If True, round window size to power of two by zero-padding input to FFT. (Default: ``True``) sample_frequency (float, optional): Waveform data sample frequency (must match the waveform file, if specified there) (Default: ``16000.0``) snip_edges (bool, optional): If True, end effects will be handled by outputting only frames that completely fit in the file, and the number of frames depends on the frame_length. If False, the number of frames depends only on the frame_shift, and we reflect the data at the ends. (Default: ``True``) subtract_mean (bool, optional): Subtract mean of each feature file [CMS]; not recommended to do it this way. (Default: ``False``) use_energy (bool, optional): Add an extra dimension with energy to the FBANK output. (Default: ``False``) vtln_high (float, optional): High inflection point in piecewise linear VTLN warping function (if negative, offset from high-mel-freq (Default: ``-500.0``) vtln_low (float, optional): Low inflection point in piecewise linear VTLN warping function (Default: ``100.0``) vtln_warp (float, optional): Vtln warp factor (only applicable if vtln_map not specified) (Default: ``1.0``) window_type (str, optional): Type of window ('hamming'|'hanning'|'povey'|'rectangular'|'blackman') (Default: ``"povey"``) Returns: Tensor: A mfcc identical to what Kaldi would output. The shape is (m, ``num_ceps``) where m is calculated in _get_strided """ assert num_ceps <= num_mel_bins, 'num_ceps cannot be larger than num_mel_bins: %d vs %d' % (num_ceps, num_mel_bins) # The mel_energies should not be squared (use_power=True), not have mean subtracted # (subtract_mean=False), and use log (use_log_fbank=True). # size (m, num_mel_bins + use_energy) feature = fbank(waveform=waveform, blackman_coeff=blackman_coeff, channel=channel, dither=dither, energy_floor=energy_floor, frame_length=frame_length, frame_shift=frame_shift, high_freq=high_freq, htk_compat=htk_compat, low_freq=low_freq, min_duration=min_duration, num_mel_bins=num_mel_bins, preemphasis_coefficient=preemphasis_coefficient, raw_energy=raw_energy, remove_dc_offset=remove_dc_offset, round_to_power_of_two=round_to_power_of_two, sample_frequency=sample_frequency, snip_edges=snip_edges, subtract_mean=False, use_energy=use_energy, use_log_fbank=True, use_power=True, vtln_high=vtln_high, vtln_low=vtln_low, vtln_warp=vtln_warp, window_type=window_type) if use_energy: # size (m) signal_log_energy = feature[:, num_mel_bins if htk_compat else 0] # offset is 0 if htk_compat==True else 1 mel_offset = int(not htk_compat) feature = feature[:, mel_offset:(num_mel_bins + mel_offset)] # size (num_mel_bins, num_ceps) dct_matrix = _get_dct_matrix(num_ceps, num_mel_bins) # size (m, num_ceps) feature = feature.matmul(dct_matrix) if cepstral_lifter != 0.0: # size (1, num_ceps) lifter_coeffs = _get_lifter_coeffs(num_ceps, cepstral_lifter).unsqueeze(0) feature *= lifter_coeffs # if use_energy then replace the last column for htk_compat == true else first column if use_energy: feature[:, 0] = signal_log_energy if htk_compat: energy = feature[:, 0].unsqueeze(1) # size (m, 1) feature = feature[:, 1:] # size (m, num_ceps - 1) if not use_energy: # scale on C0 (actually removing a scale we previously added that's # part of one common definition of the cosine transform.) energy *= math.sqrt(2) feature = torch.cat((feature, energy), dim=1) feature = _subtract_column_mean(feature, subtract_mean) return feature def _get_LR_indices_and_weights(orig_freq: float, new_freq: float, output_samples_in_unit: int, window_width: float, lowpass_cutoff: float, lowpass_filter_width: int, device: torch.device, dtype: int) -> Tuple[Tensor, Tensor]: r"""Based on LinearResample::SetIndexesAndWeights where it retrieves the weights for resampling as well as the indices in which they are valid. LinearResample (LR) means that the output signal is at linearly spaced intervals (i.e the output signal has a frequency of ``new_freq``). It uses sinc/bandlimited interpolation to upsample/downsample the signal. The reason why the same filter is not used for multiple convolutions is because the sinc function could sampled at different points in time. For example, suppose a signal is sampled at the timestamps (seconds) 0 16 32 and we want it to be sampled at the timestamps (seconds) 0 5 10 15 20 25 30 35 at the timestamp of 16, the delta timestamps are 16 11 6 1 4 9 14 19 at the timestamp of 32, the delta timestamps are 32 27 22 17 12 8 2 3 As we can see from deltas, the sinc function is sampled at different points of time assuming the center of the sinc function is at 0, 16, and 32 (the deltas [..., 6, 1, 4, ....] for 16 vs [...., 2, 3, ....] for 32) Example, one case is when the ``orig_freq`` and ``new_freq`` are multiples of each other then there needs to be one filter. A windowed filter function (i.e. Hanning * sinc) because the ideal case of sinc function has infinite support (non-zero for all values) so instead it is truncated and multiplied by a window function which gives it less-than-perfect rolloff [1]. [1] Chapter 16: Windowed-Sinc Filters, https://www.dspguide.com/ch16/1.htm Args: orig_freq (float): The original frequency of the signal new_freq (float): The desired frequency output_samples_in_unit (int): The number of output samples in the smallest repeating unit: num_samp_out = new_freq / Gcd(orig_freq, new_freq) window_width (float): The width of the window which is nonzero lowpass_cutoff (float): The filter cutoff in Hz. The filter cutoff needs to be less than samp_rate_in_hz/2 and less than samp_rate_out_hz/2. lowpass_filter_width (int): Controls the sharpness of the filter, more == sharper but less efficient. We suggest around 4 to 10 for normal use Returns: (Tensor, Tensor): A tuple of ``min_input_index`` (which is the minimum indices where the window is valid, size (``output_samples_in_unit``)) and ``weights`` (which is the weights which correspond with min_input_index, size (``output_samples_in_unit``, ``max_weight_width``)). """ assert lowpass_cutoff < min(orig_freq, new_freq) / 2 output_t = torch.arange(0., output_samples_in_unit, device=device, dtype=dtype) / new_freq min_t = output_t - window_width max_t = output_t + window_width min_input_index = torch.ceil(min_t * orig_freq) # size (output_samples_in_unit) max_input_index = torch.floor(max_t * orig_freq) # size (output_samples_in_unit) num_indices = max_input_index - min_input_index + 1 # size (output_samples_in_unit) max_weight_width = num_indices.max() # create a group of weights of size (output_samples_in_unit, max_weight_width) j = torch.arange(max_weight_width, device=device, dtype=dtype).unsqueeze(0) input_index = min_input_index.unsqueeze(1) + j delta_t = (input_index / orig_freq) - output_t.unsqueeze(1) weights = torch.zeros_like(delta_t) inside_window_indices = delta_t.abs().lt(window_width) # raised-cosine (Hanning) window with width `window_width` weights[inside_window_indices] = 0.5 * (1 + torch.cos(2 * math.pi * lowpass_cutoff / lowpass_filter_width * delta_t[inside_window_indices])) t_eq_zero_indices = delta_t.eq(0.0) t_not_eq_zero_indices = ~t_eq_zero_indices # sinc filter function weights[t_not_eq_zero_indices] *= torch.sin( 2 * math.pi * lowpass_cutoff * delta_t[t_not_eq_zero_indices]) / (math.pi * delta_t[t_not_eq_zero_indices]) # limit of the function at t = 0 weights[t_eq_zero_indices] *= 2 * lowpass_cutoff weights /= orig_freq # size (output_samples_in_unit, max_weight_width) return min_input_index, weights def _lcm(a: int, b: int) -> int: return abs(a * b) // math.gcd(a, b) def _get_num_LR_output_samples(input_num_samp: int, samp_rate_in: float, samp_rate_out: float) -> int: r"""Based on LinearResample::GetNumOutputSamples. LinearResample (LR) means that the output signal is at linearly spaced intervals (i.e the output signal has a frequency of ``new_freq``). It uses sinc/bandlimited interpolation to upsample/downsample the signal. Args: input_num_samp (int): The number of samples in the input samp_rate_in (float): The original frequency of the signal samp_rate_out (float): The desired frequency Returns: int: The number of output samples """ # For exact computation, we measure time in "ticks" of 1.0 / tick_freq, # where tick_freq is the least common multiple of samp_rate_in and # samp_rate_out. samp_rate_in = int(samp_rate_in) samp_rate_out = int(samp_rate_out) tick_freq = _lcm(samp_rate_in, samp_rate_out) ticks_per_input_period = tick_freq // samp_rate_in # work out the number of ticks in the time interval # [ 0, input_num_samp/samp_rate_in ). interval_length_in_ticks = input_num_samp * ticks_per_input_period if interval_length_in_ticks <= 0: return 0 ticks_per_output_period = tick_freq // samp_rate_out # Get the last output-sample in the closed interval, i.e. replacing [ ) with # [ ]. Note: integer division rounds down. See # http://en.wikipedia.org/wiki/Interval_(mathematics) for an explanation of # the notation. last_output_samp = interval_length_in_ticks // ticks_per_output_period # We need the last output-sample in the open interval, so if it takes us to # the end of the interval exactly, subtract one. if last_output_samp * ticks_per_output_period == interval_length_in_ticks: last_output_samp -= 1 # First output-sample index is zero, so the number of output samples # is the last output-sample plus one. num_output_samp = last_output_samp + 1 return num_output_samp def resample_waveform(waveform: Tensor, orig_freq: float, new_freq: float, lowpass_filter_width: int = 6) -> Tensor: r"""Resamples the waveform at the new frequency. This matches Kaldi's OfflineFeatureTpl ResampleWaveform which uses a LinearResample (resample a signal at linearly spaced intervals to upsample/downsample a signal). LinearResample (LR) means that the output signal is at linearly spaced intervals (i.e the output signal has a frequency of ``new_freq``). It uses sinc/bandlimited interpolation to upsample/downsample the signal. https://ccrma.stanford.edu/~jos/resample/Theory_Ideal_Bandlimited_Interpolation.html https://github.com/kaldi-asr/kaldi/blob/master/src/feat/resample.h#L56 Args: waveform (Tensor): The input signal of size (c, n) orig_freq (float): The original frequency of the signal new_freq (float): The desired frequency lowpass_filter_width (int, optional): Controls the sharpness of the filter, more == sharper but less efficient. We suggest around 4 to 10 for normal use. (Default: ``6``) Returns: Tensor: The waveform at the new frequency """ device, dtype = waveform.device, waveform.dtype assert waveform.dim() == 2 assert orig_freq > 0.0 and new_freq > 0.0 min_freq = min(orig_freq, new_freq) lowpass_cutoff = 0.99 * 0.5 * min_freq assert lowpass_cutoff * 2 <= min_freq base_freq = math.gcd(int(orig_freq), int(new_freq)) input_samples_in_unit = int(orig_freq) // base_freq output_samples_in_unit = int(new_freq) // base_freq window_width = lowpass_filter_width / (2.0 * lowpass_cutoff) first_indices, weights = _get_LR_indices_and_weights( orig_freq, new_freq, output_samples_in_unit, window_width, lowpass_cutoff, lowpass_filter_width, device, dtype) assert first_indices.dim() == 1 # TODO figure a better way to do this. conv1d reaches every element i*stride + padding # all the weights have the same stride but have different padding. # Current implementation takes the input and applies the various padding before # doing a conv1d for that specific weight. conv_stride = input_samples_in_unit conv_transpose_stride = output_samples_in_unit num_channels, wave_len = waveform.size() window_size = weights.size(1) tot_output_samp = _get_num_LR_output_samples(wave_len, orig_freq, new_freq) output = torch.zeros((num_channels, tot_output_samp), device=device, dtype=dtype) # eye size: (num_channels, num_channels, 1) eye = torch.eye(num_channels, device=device, dtype=dtype).unsqueeze(2) for i in range(first_indices.size(0)): wave_to_conv = waveform first_index = int(first_indices[i].item()) if first_index >= 0: # trim the signal as the filter will not be applied before the first_index wave_to_conv = wave_to_conv[..., first_index:] # pad the right of the signal to allow partial convolutions meaning compute # values for partial windows (e.g. end of the window is outside the signal length) max_unit_index = (tot_output_samp - 1) // output_samples_in_unit end_index_of_last_window = max_unit_index * conv_stride + window_size current_wave_len = wave_len - first_index right_padding = max(0, end_index_of_last_window + 1 - current_wave_len) left_padding = max(0, -first_index) if left_padding != 0 or right_padding != 0: wave_to_conv = torch.nn.functional.pad(wave_to_conv, (left_padding, right_padding)) conv_wave = torch.nn.functional.conv1d( wave_to_conv.unsqueeze(0), weights[i].repeat(num_channels, 1, 1), stride=conv_stride, groups=num_channels) # we want conv_wave[:, i] to be at output[:, i + n*conv_transpose_stride] dilated_conv_wave = torch.nn.functional.conv_transpose1d( conv_wave, eye, stride=conv_transpose_stride).squeeze(0) # pad dilated_conv_wave so it reaches the output length if needed. dialated_conv_wave_len = dilated_conv_wave.size(-1) left_padding = i right_padding = max(0, tot_output_samp - (left_padding + dialated_conv_wave_len)) dilated_conv_wave = torch.nn.functional.pad( dilated_conv_wave, (left_padding, right_padding))[..., :tot_output_samp] output += dilated_conv_wave return output
"""Define weapons and their stats""" class Weapon: def __init__(self): self.name = 'Undefined Weapon' self.description = 'Undefined' self.damage = 0 self.value = 0 raise NotImplementedError("Not a real Weapon!") def __str__(self): return self.name class Rock(Weapon): def __init__(self): self.name = "Rock" self.description = "A fist-sized rock, suitable for bludgeoning." self.damage = 5 self.value = 1 class Dagger(Weapon): def __init__(self): self.name = "Dagger" self.description = "A small dagger with some rust. " \ "Somewhat more dangerous than a rock." self.damage = 10 self.value = 20 class RustySword(Weapon): def __init__(self): self.name = "Rusty sword" self.description = "This sword is showing its age, " \ "but still has some fight in it." self.damage = 20 self.value = 50 class HeavyAxe(Weapon): def __init__(self): self.name = "Heavy Axe" self.description = "It's an axe, and it's heavy." \ "What more do you want?" self.damage = 40 self.value = 75
from .client import ( AnsaClient, get_grpc_connection_options ) from .AnsaGRPC_pb2_grpc import ( LassoAnsaDriverServicer, LassoAnsaDriverStub ) __all__ = [ 'AnsaClient', 'get_grpc_connection_options', "LassoAnsaDriverStub", "LassoAnsaDriverServicer"]
import os from matplotlib import pyplot as plt import numpy as np from mpl_toolkits.mplot3d import Axes3D fig = plt.figure() ax = fig.add_subplot(111, projection='3d') filename = 'part3.npy' x=np.linspace(-1.2,0.6,50) y=np.linspace(-0.07,0.07,50) X,Y = np.meshgrid(x,y) if os.path.exists(filename): data = np.load(filename) ax.plot_wireframe(X,Y,data) plt.ylim([-0.07,0.07]) plt.xlim([-1.2,0.6]) plt.xlabel('position') plt.ylabel('velocity') plt.legend() plt.show()
from pydataset import data import time import sys sys.path.insert(1, '../') import fastg3.ncrisp as g3ncrisp df = data("diamonds") xparams = { 'carat':{ 'type': 'numerical', 'predicate': 'absolute_distance', 'params': [0.05] }, 'x':{ 'type': 'numerical', 'predicate': 'absolute_distance', 'params': [0.05] }, 'y':{ 'type': 'numerical', 'predicate': 'absolute_distance', 'params': [0.05] }, 'cut':{ 'type': 'categorical', 'predicate': 'equality' }, 'color':{ 'type': 'categorical', 'predicate': 'equality' }, 'clarity':{ 'type': 'categorical', 'predicate': 'equality' } } yparams = { 'price':{ 'type': 'numerical', 'predicate': 'absolute_distance', 'params': [10] } } if __name__ == '__main__': # Creates an interface with C++ object; errors will be return if any parameter is wrong VPE = g3ncrisp.create_vpe_instance(df, xparams, yparams, blocking=True, opti_ordering=True, join_type="auto", verbose=True) # Finds all violating pairs start = time.time() vps = VPE.enum_vps() ellapsed = time.time()-start print(f'Diamond dataset contains {len(df.index)} rows.') print(f'{len(vps)} violating pairs found in {"{:.3f}".format(ellapsed)}s.')
import sklearn from sklearn import datasets from sklearn import svm from sklearn import metrics from sklearn.neighbors import KNeighborsClassifier cancer=datasets.load_breast_cancer() # Features print(cancer.feature_names) # Labels print(cancer.target_names) # Splitting Data x = cancer.data # All of the features y = cancer.target # All of the labels x_train, x_test, y_train, y_test = sklearn.model_selection.train_test_split(x, y, test_size=0.2) # First five instances print(x_train[:5], y_train[:5]) classes=['malignant', 'benign'] #Clasifier clf= svm.SVC(kernel="linear", C=2) #Worst, many variance depending of n_neighbors #clf=KNeighborsClassifier(n_neighbors=13) clf.fit(x_train, y_train) # Predict y_pred=clf.predict(x_test) # Accuracy acc=metrics.accuracy_score(y_test, y_pred) print(acc)
from django.core.exceptions import ObjectDoesNotExist from django.db import models from django.utils.translation import gettext_lazy as _ from .location import Location class LocationTracker(models.Model): class Status(models.TextChoices): ACTIVE = "AC", _("Active") INACTIVE = "IN", _("Inactive") MISSING = "MI", _("Missing") DECOMMISSIONED = "DE", _("Decommissioned") bike = models.ForeignKey("Bike", on_delete=models.PROTECT, null=True, blank=True) device_id = models.CharField(default=None, null=False, blank=True, max_length=255) last_reported = models.DateTimeField(default=None, null=True, blank=True) battery_voltage = models.FloatField(default=None, null=True, blank=True) tracker_type = models.ForeignKey( "LocationTrackerType", on_delete=models.PROTECT, null=True, blank=True ) tracker_status = models.CharField( max_length=2, choices=Status.choices, default=Status.INACTIVE ) internal = models.BooleanField( default=False, help_text="""Internal trackers don't publish their locations to the enduser. They are useful for backup trackers with lower accuracy e.g. wifi trackers.""", ) def current_geolocation(self): if not self.id: return None try: return Location.objects.filter( tracker=self, reported_at__isnull=False ).latest("reported_at") except ObjectDoesNotExist: return None def __str__(self): return str(self.device_id)
import pathlib import matplotlib.pyplot as plt import networkx as nx import numpy as np import pandas as pd from fa2 import ForceAtlas2 from matplotlib.collections import LineCollection from ccgowl.data.make_synthetic_data import standardize from ccgowl.evaluation.cluster_metrics import spectral_clustering from ccgowl.models.ccgowl import CCGOWLModel from ccgowl.simulations.simulation import Simulation from ccgowl.simulations.utils import convert_to_df_with_labels, pairs_in_clusters, compute_true_group, normalize_dfs from ccgowl.visualization.curved_edges import curved_edges def read_stock_data(): proj_root_path = pathlib.Path.cwd().parent.parent data_path = 'data/raw/s_&_p/data.csv' sector_path = 'data/raw/s_&_p/info.csv' data_full_path = proj_root_path / data_path sectors_full_path = proj_root_path / sector_path data = pd.read_csv(data_full_path, index_col=0) info = pd.read_csv(sectors_full_path) data = standardize(data) stock_names = info['V1'] sectors = info['V2'] data.columns = [f'{comp}/{gic}' for comp, gic in zip(stock_names, sectors)] return data, data.columns class StockData(Simulation): def __init__(self, model, model_params): self.data, self.info = read_stock_data() _, self.p = self.data.shape self.sample_cov = np.cov(self.data.T) self.model = model(self.data.values, *model_params) self.true_groups = pd.DataFrame() self.predicted_groups = pd.DataFrame() def run(self): np.random.seed(680) self.model.fit() theta_hat = self.model.theta_hat y_true_clusters_df = compute_true_group(theta_hat, self.info) K = len(np.unique(y_true_clusters_df.values[np.tril_indices(self.p, -1)].tolist())) theta_clusters = spectral_clustering(theta=theta_hat, K=K) theta_clusters = [int(cluster) for cluster in theta_clusters] theta_mat_clusters = np.zeros((self.p, self.p)) theta_mat_clusters[np.tril_indices(self.p, -1)] = theta_clusters clusters_df = convert_to_df_with_labels(self.info, theta_mat_clusters.copy()) y_true_clusters_df = normalize_dfs(y_true_clusters_df, self.info, self.p) clusters_df = normalize_dfs(clusters_df, self.info, self.p) self.true_groups = pairs_in_clusters(y_true_clusters_df, K) self.predicted_groups = pairs_in_clusters(clusters_df, K) def plot_results(self): df_true = self.true_groups df_pred = self.predicted_groups carac_dict = dict(zip(['Consumer Discretionary', 'Consumer Staples', 'Energy', 'Financials', 'Health Care', 'Industrials', 'Information Technology', 'Materials', 'Telecommunications Services', 'Utilities', 'No Group'], ['red', 'blue', 'gray', 'yellow', 'black', 'skyblue', 'orange', 'yellowgreen', 'pink', 'cyan', 'purple'])) df_filtered = df_pred.loc[(df_pred['I'] != df_pred['J']) & (df_pred['Group'] != 10)] df_filtered.drop_duplicates(['I', 'J'], inplace=True) df_true = df_pred.loc[(df_true['I'] != df_true['J']) & (df_true['Group'] != 10)] df_true.drop_duplicates(['I', 'J'], inplace=True) G = nx.from_pandas_edgelist(df_filtered, 'I', 'J', create_using=nx.Graph()) unique_sectors_in_cluster = list(np.unique(list(df_true['I']) + list(df_true['J']))) carac = pd.DataFrame({ 'ID': unique_sectors_in_cluster, 'myvalue': [carac_dict[entry.split('/')[1]] for entry in unique_sectors_in_cluster], }) carac = carac.set_index('ID') carac = carac.reindex(G.nodes()) j = 0 for i, row in carac.iterrows(): if pd.isna(row['myvalue']): carac.iloc[j, 0] = carac_dict[i.split('/')[1]] j += 1 forceatlas2 = ForceAtlas2( # Behavior alternatives outboundAttractionDistribution=True, # Dissuade hubs linLogMode=False, # NOT IMPLEMENTED adjustSizes=False, # Prevent overlap (NOT IMPLEMENTED) edgeWeightInfluence=1.0, # Performance jitterTolerance=1.0, # Tolerance barnesHutOptimize=True, barnesHutTheta=1.2, multiThreaded=False, # NOT IMPLEMENTED # Tuning scalingRatio=2.0, strongGravityMode=False, gravity=1.0, # Log verbose=True) pos = forceatlas2.forceatlas2_networkx_layout(G, pos=None, iterations=50) curves = curved_edges(G, pos) lc = LineCollection(curves, color=(0.0, 0.0, 0.0), alpha=0.1, linewidths=5.0, linestyles='solid') plt.figure(figsize=(20, 20)) plt.gca().add_collection(lc) nx.draw_networkx_nodes(G, pos, node_size=800, alpha=0.9, node_color=list(carac['myvalue'])) plt.tick_params(axis='both', which='both', bottom=False, left=False, labelbottom=False, labelleft=False) plt.show() if __name__ == '__main__': stock_sim = StockData(CCGOWLModel, [0.4, 0.0001]) stock_sim.run() stock_sim.plot_results()
# -*- coding: utf-8 -*- from pyramid.exceptions import ConfigurationError from oereb_client import __version__ class Index(object): def __init__(self, request): """Entry point for index rendering. Args: request (pyramid.request.Request): The request instance. """ self.request_ = request self.config_ = request.registry.settings.get('oereb_client', {}) self.validate_() def validate_(self): if not isinstance(self.config_, dict): raise ConfigurationError('Configuration needs to be a dictionary, got {0} instead'.format( type(self.config_) )) if not isinstance(self.config_.get('application'), dict): raise ConfigurationError('Missing "application" configuration') if 'title' not in self.config_.get('application'): raise ConfigurationError('Missing application title') if 'logo_canton' not in self.config_.get('application'): raise ConfigurationError('Missing cantonal logo') if 'languages' not in self.config_.get('application'): raise ConfigurationError('Missing available languages') if 'default_language' not in self.config_.get('application'): raise ConfigurationError('Missing default language') if not isinstance(self.config_.get('view'), dict): raise ConfigurationError('Missing "view" configuration') if 'map_x' not in self.config_.get('view'): raise ConfigurationError('Missing map_x in view configuration') if 'map_y' not in self.config_.get('view'): raise ConfigurationError('Missing map_y in view configuration') if 'map_zoom' not in self.config_.get('view'): raise ConfigurationError('Missing map_zoom in view configuration') if 'resolutions' not in self.config_.get('view'): raise ConfigurationError('Missing resolutions in view configuration') if not isinstance(self.config_.get('base_layer'), dict): raise ConfigurationError('Missing "base_layer" configuration') if not isinstance(self.config_.get('availability'), dict): raise ConfigurationError('Missing "availability" configuration') if not ( isinstance(self.config_.get('search'), list) or isinstance(self.config_.get('search'), str) ): raise ConfigurationError('Missing "search" configuration') if not isinstance(self.config_.get('support'), dict): raise ConfigurationError('Missing "support" configuration') def is_debug_(self): """ Returns true if requested in debug mode. Returns: bool: True if requested in debug mode. """ local = self.request_.application_url.startswith('http://localhost') debug = self.request_.params.get('debug') == 'true' return local and debug def get_google_analytics_(self): """ Returns the configuration for Google Analytics. Returns: str or None: The Google Analytics configuration. """ return self.config_.get('google_analytics', None) def get_custom_css_url_(self): """ Returns the URL of the custom CSS file. Returns: str or None: The URL of the custom CSS file. """ return self.config_.get('custom_css_url', None) def get_application_config_(self): """ Reads the application configuration and applies default values. Returns: dict: The application configuration. """ cfg = self.config_.get('application', {}) if 'icon' not in cfg: cfg.update({ 'icon': self.request_.static_url('oereb_client:static/images/favicon.png') }) if 'logo_oereb' not in cfg: cfg.update({ 'logo_oereb': [ { 'Language': 'en', 'URL': self.request_.static_url('oereb_client:static/images/logo_oereb_de.jpg') }, { 'Language': 'de', 'URL': self.request_.static_url('oereb_client:static/images/logo_oereb_de.jpg') }, { 'Language': 'fr', 'URL': self.request_.static_url('oereb_client:static/images/logo_oereb_fr.jpg') }, { 'Language': 'it', 'URL': self.request_.static_url('oereb_client:static/images/logo_oereb_it.jpg') }, { 'Language': 'rm', 'URL': self.request_.static_url('oereb_client:static/images/logo_oereb_rm.jpg') } ] }) return cfg def get_service_url_(self): service_url = self.config_.get('service_url', None) if service_url is not None: if service_url[-1] != '/': service_url += '/' return service_url return self.request_.route_url( '{0}/index'.format(self.request_.route_prefix) ) def get_search_url_(self): search = self.config_.get('search', None) if isinstance(search, str): return search return self.request_.route_url( '{0}/search'.format(self.request_.route_prefix) ) def get_config(self): """ Returns the JSON-encoded configuration. Returns: str: The JSON-encoded configuration. """ return { 'test_instance_notice': self.config_.get('test_instance_notice', None), 'application_url': self.request_.route_url( '{0}/index'.format(self.request_.route_prefix) ), 'service_url': self.get_service_url_(), 'search_url': self.get_search_url_(), 'application': self.get_application_config_(), 'version': __version__, 'view': self.config_.get('view', {}), 'base_layer': self.config_.get('base_layer', {}), 'availability': self.config_.get('availability', {}), 'search': self.config_.get('search', {}), 'support': self.config_.get('support', {}), 'external_viewer': self.config_.get('external_viewer', {}) } def get_title(self): title = None if 'lang' in self.request_.params: for item in self.config_['application']['title']: if item['Language'] == self.request_.params.get('lang'): title = item['Text'] break elif item['Language'] == self.config_['application']['default_language']: title = item['Text'] if title is None: title = self.config_['application']['title'][0]['Text'] return title def render(self): """ Returns the dictionary with rendering parameters. Returns: dict: Dictionary with rendering parameters. """ return { 'debug': self.is_debug_(), 'google_analytics': self.get_google_analytics_(), 'custom_css_url': self.get_custom_css_url_(), 'config': self.get_config(), 'title': self.get_title() }
import re import settings def main(): try: from github import Github from github.GithubException import BadCredentialsException except ImportError: print('No github module found, try running pip install pygithub') return g = Github(settings.ACCESS_TOKEN) try: org = g.get_organization(settings.ORGANIZATION_NAME) except BadCredentialsException: print('Bad credentials. Go to https://github.com/settings/tokens ,') print('generate new token there and put in local_settings.py ACCESS_TOKEN') return for repo in org.get_repos(): in_scope = repo.name in settings.PROJECT_REPOS if settings.PROJECT_REPOS and not in_scope: continue for pull in repo.get_pulls(): print('[%s]' % repo.name, pull.title, pull.html_url) if in_progress(pull): print('\t', green('in progress')) continue mistakes = check(pull) if not mistakes: print('\t', green('OK')) for m in mistakes: print('\t-', red(m)) #import bpython; bpython.embed(locals()) #return def in_progress(pull): return 'in progress' in pull.body.lower() def check(pull): mistakes = [] if settings.JIRA_PROJECT not in pull.title: # TODO check for numbers mistakes.append('There are no issue mentioned in title') if len(pull.body) < 20: mistakes.append('Description of changes made in PR should be present') if not pull.mergeable: mistakes.append('Has merge conflicts') if reviews_approved(pull) < 1: mistakes.append('PR should be reviewed and approved by at least one team member') if not last_commit_built_successfully(pull): mistakes.append('There are unsuccessfull travis checks in last PR commit') if not has_test_confirmation(pull): mistakes.append('Should have comment "Tested [when] on build #[number]"') return mistakes def last_commit_built_successfully(pull): last_commit = list(pull.get_commits())[-1] status = last_commit.get_combined_status() return status.state == 'success' def reviews_approved(pull): approvals = 0 for review in pull.get_reviews(): if review.state == 'APPROVED': approvals += 1 return approvals def has_test_confirmation(pull): return True # TODO: implement this somehow for c in pull.get_comments(): text = c.body # if 'Tested' in text and 'on build #' in text: if 'tested' in text or 'Tested' in text: return True return False NONE_COLOR = "\033[0m" RED_COLOR = "\033[31m" GREEN_COLOR = "\033[92m" def red(s): return RED_COLOR + s + NONE_COLOR def green(s): return GREEN_COLOR + s + NONE_COLOR if __name__ == '__main__': main()