content
stringlengths
5
1.05M
"""Log likelihood constructors: the heart of blueice. """ from collections import OrderedDict from copy import deepcopy from functools import wraps import numpy as np from multihist import Histdd from scipy import stats from scipy.special import gammaln from tqdm import tqdm from .exceptions import NotPreparedException, InvalidParameterSpecification, InvalidParameter from .model import Model from .parallel import create_models_ipyparallel, compute_many from .pdf_morphers import MORPHERS from .utils import combine_dicts, inherit_docstring_from from . import inference __all__ = ['LogLikelihoodBase', 'BinnedLogLikelihood', 'UnbinnedLogLikelihood', 'LogLikelihoodSum'] ## # Decorators for methods which have to be run after prepare or set_data ## def _needs_preparation(f): @wraps(f) def wrapper(self, *args, **kwargs): if not self.is_prepared: if not len(self.shape_parameters): # preparation is going to be trivial, just do it self.prepare() else: raise NotPreparedException("%s requires you to first prepare the likelihood function using prepare()" % f.__name__) return f(self, *args, **kwargs) return wrapper def _needs_data(f): @wraps(f) def wrapper(self, *args, **kwargs): if not self.is_data_set: raise NotPreparedException("%s requires you to first set the data using set_data()" % f.__name__) return f(self, *args, **kwargs) return wrapper class LogLikelihoodBase: """Log likelihood function with several rate and/or shape parameters likelihood_config options: unphysical_behaviour outlier_likelihood parallelize_models: True (default) or False block_during_paralellization: True or False (default) """ def __init__(self, pdf_base_config, likelihood_config=None, **kwargs): """ :param pdf_base_config: dictionary with configuration passed to the Model :param likelihood_config: dictionary with options for LogLikelihood itself :param kwargs: Overrides for pdf_base_config, not likelihood config! :return: """ self.pdf_base_config = combine_dicts(pdf_base_config, kwargs, deep_copy=True) if likelihood_config is None: likelihood_config = {} self.config = likelihood_config self.config.setdefault('morpher', 'GridInterpolator') # Base model: no variations of any settings self.base_model = Model(self.pdf_base_config) self.source_name_list = [s.name for s in self.base_model.sources] self.source_allowed_negative = [s.config.get("allow_negative",False) for s in self.base_model.sources] self.source_apply_efficiency = np.array([s.config.get("apply_efficiency", False) for s in self.base_model.sources]) self.source_efficiency_names = np.array([s.config.get("efficiency_name", "efficiency") for s in self.base_model.sources]) self.rate_parameters = OrderedDict() # sourcename_rate -> logprior self.shape_parameters = OrderedDict() # settingname -> (anchors, logprior, base_z). # where anchors is dict: representative number -> actual setting # From here on representative number will be called 'z-score'. # base_value is the default z-score that will be used. # We'll take care of sorting the keys in self.prepare() self.is_prepared = False self.is_data_set = False self._has_non_numeric = False # If there are NO shape parameters: self.ps = None # ps of the data # If there are shape parameters: self.anchor_models = OrderedDict() # dictionary mapping model zs -> actual model # Interpolators created by morphers. These map zs to... self.mus_interpolator = None # rates for each source self.ps_interpolator = None # (source, event) p-values (unbinned), or pmf grid (binned) # number of events per bin observed in Monte Carlo / calibration data that gave rise to the model. self.n_model_events_interpolator = lambda x: None self.n_model_events = None def prepare(self, n_cores=1, ipp_client=None): """Prepares a likelihood function with shape parameters for use. This will compute the models for each shape parameter anchor value combination. """ if len(self.shape_parameters): self.morpher = MORPHERS[self.config['morpher']](self.config.get('morpher_config', {}), self.shape_parameters) zs_list = self.morpher.get_anchor_points(bounds=self.get_bounds()) # Create the configs for each new model configs = [] for zs in zs_list: config = deepcopy(self.pdf_base_config) for i, (setting_name, (anchors, _, _)) in enumerate(self.shape_parameters.items()): # Translate from zs to settings using the anchors dict. Maybe not all settings are numerical. config[setting_name] = anchors[zs[i]] if ipp_client is None and n_cores != 1: # We have to compute in parallel: must have delayed computation on config['delay_pdf_computation'] = True configs.append(config) # Create the new models if n_cores == 1: models = [Model(c) for c in tqdm(configs, desc="Computing/loading models on one core")] elif ipp_client is not None: models = create_models_ipyparallel(configs, ipp_client, block=self.config.get('block_during_paralellization', False)) else: models = [Model(c) for c in tqdm(configs, desc="Preparing model computation tasks")] hashes = set() for m in models: for s in m.sources: hashes.add(s.hash) compute_many(hashes, n_cores) # Reload models so computation takes effect models = [Model(c) for c in tqdm(configs, desc="Loading computed models")] # Add the new models to the anchor_models dict for zs, model in zip(zs_list, models): self.anchor_models[tuple(zs)] = model # Build the interpolator for the rates of each source. self.mus_interpolator = self.morpher.make_interpolator(f=lambda m: m.expected_events(), extra_dims=[len(self.source_name_list)], anchor_models=self.anchor_models) self.is_data_set = False self.is_prepared = True @_needs_preparation def set_data(self, d): """Prepare the dataset d for likelihood function evaluation :param d: Dataset, must be an indexable object that provides the measurement dimensions For example, if your models are on 's1' and 's2', d must be something for which d['s1'] and d['s2'] give the s1 and s2 values of your events as numpy arrays. """ self._data = d self.is_data_set = True def add_rate_parameter(self, source_name, log_prior=None): """Add a rate parameter names source_name + "_rate_multiplier" to the likelihood function.. The values of this parameter will MULTIPLY the expected rate of events for the source. The rates of sources can also vary due to shape parameters. :param source_name: Name of the source for which you want to vary the rate :param log_prior: prior logpdf function on rate multiplier (not on rate itself!) """ self.rate_parameters[source_name] = log_prior def add_shape_parameter(self, setting_name, anchors, log_prior=None, base_value=None): """Add a shape parameter to the likelihood function :param setting_name: Name of the setting to vary :param anchors: a list/tuple/array of setting values (if they are numeric) OR a dictionary with some numerical value -> setting values (for non-numeric settings). :param base_value: for non-numeric settings, the number which represents the base model value of the setting. For example, if you have LCE maps with varying reflectivities, use add_shape_variation('s1_relative_ly_map', {0.98: 'lce_98%.pklz', 0.99: 'lce_99%.pklz, ...}) then the argument s1_relative_ly_map of the likelihood function takes values between 0.98 and 0.99. """ is_numeric = isinstance(self.pdf_base_config.get(setting_name), (float, int)) if not isinstance(anchors, dict): # Convert anchors list to a dictionary if not is_numeric: raise InvalidParameterSpecification("When specifying anchors only by setting values, " "base setting must have a numerical default.") anchors = {z: z for z in anchors} if not is_numeric: self._has_non_numeric = True if not is_numeric and base_value is None: raise InvalidParameterSpecification("For non-numeric settings, you must specify what number will represent " "the default value (the base model setting)") if is_numeric and base_value is not None: raise InvalidParameterSpecification("For numeric settings, base_value is an unnecessary argument.") self.shape_parameters[setting_name] = (anchors, log_prior, base_value) def get_bounds(self, parameter_name=None): """Return bounds on the parameter parameter_name""" if parameter_name is None: return [self.get_bounds(p) for p in self.shape_parameters.keys()] if parameter_name in self.shape_parameters: anchor_settings = list(self.shape_parameters[parameter_name][0].keys()) return min(anchor_settings), max(anchor_settings) elif parameter_name.endswith('_rate_multiplier'): for source_name, allow_negative in zip(self.source_name_list,self.source_allowed_negative): if parameter_name.startswith(source_name) and allow_negative==True: return float('-inf'), float('inf') return 0, float('inf') else: raise InvalidParameter("Non-existing parameter %s" % parameter_name) @_needs_data def __call__(self, livetime_days=None, compute_pdf=False, full_output=False, **kwargs): """Evaluate the likelihood function. Pass any values for parameters as keyword arguments. For values not passed, their base values will be assumed. For rate uncertainties, pass sourcename_rate_multiplier. :param lifetime_days: lifetime in days to use, will affect rates of all sources. :param full_output: instead of returning just the loglikelihood, return also the adjusted mus and ps as well. :param compute_pdf: compute new PDFs instead of interpolating the PDF at the requested parameters. """ result = 0 rate_multipliers, shape_parameter_settings = self._kwargs_to_settings(**kwargs) if len(self.shape_parameters): if compute_pdf: if self._has_non_numeric: raise NotImplementedError("compute_pdf only works for numerical values") mus, ps, n_model_events = self._compute_single_pdf(**kwargs) else: # We can use the interpolators. They require the settings to come in order: zs = [] for setting_name, (_, log_prior, _) in self.shape_parameters.items(): z = shape_parameter_settings[setting_name] zs.append(z) # Test if the z value is out of range; if so, return -inf (since we can't extrapolate) minbound, maxbound = self.get_bounds(setting_name) if not minbound <= z <= maxbound: return -float('inf') if log_prior is not None: result += log_prior(z) # The RegularGridInterpolators want numpy arrays: give it to them... zs = np.asarray(zs) mus = self.mus_interpolator(zs) ps = self.ps_interpolator(zs) n_model_events = self.n_model_events_interpolator(zs) else: # No shape parameters mus = self.base_model.expected_events() ps = self.ps n_model_events = self.n_model_events # Apply the rate multipliers for source_i, source_name in enumerate(self.source_name_list): mult = rate_multipliers[source_i] mus[source_i] *= mult log_prior = self.rate_parameters.get(source_name, None) if log_prior is not None: result += log_prior(mult) # Apply the lifetime scaling if livetime_days is not None: mus *= livetime_days / self.pdf_base_config['livetime_days'] # Apply efficiency to those sources that use it: if True in self.source_apply_efficiency: effs = [] for sae, sen in zip(self.source_apply_efficiency, self.source_efficiency_names): if sae: # if that particular efficiency is not in the shape parameters, apply 1 effs.append(shape_parameter_settings.get(sen, 1)) mus[self.source_apply_efficiency] *= np.array(effs) # Check for negative rates. Depending on the config, either error or return -float('inf') as loglikelihood # If any source is allowed to be negative, check the sources one by one if not any(self.source_allowed_negative): if not np.all((mus >= 0) & (mus < float('inf'))): if self.config.get('unphysical_behaviour') == 'error': raise ValueError("Unphysical rates: %s" % str(mus)) else: return -float('inf') else: if (not any(mus < float('inf'))) or (np.sum(mus) < 0): if self.config.get('unphysical_behaviour') == 'error': raise ValueError("Unphysical rates: %s" % str(mus)) else: return -float('inf') for mu,allowed_negative in zip(mus,self.source_allowed_negative): if not (0 <= mu) and (not allowed_negative): if self.config.get('unphysical_behaviour') == 'error': raise ValueError("Unphysical rates: %s" % str(mus)) else: return -float('inf') # Perform fits to background calibration data if needed: # Currently only performed (analytically) for Binned likelihood via the Beeston-Barlow method mus, ps = self.adjust_expectations(mus, ps, n_model_events) # Get the loglikelihood. At last! result += self._compute_likelihood(mus, ps) if full_output: return result, mus, ps else: return result def adjust_expectations(self, mus, ps, n_model_events): """Adjust uncertain (mus, pmfs) based on the observed data. If the density is derived from a finite-statistics sample (n_model_events array of events per bin), we can take into account this uncertainty by modifying the likelihood function. For a binned likelihood, this means adding the expected number of events for each bin for each source as nuisance parameters constrained by Poisson terms around the number of events observed in the model. While these nuisance parameters could be optimized numerically along with the main parameters, for a given value of the main parameters these per-bin nuisance parameters can often be estimated analytically, as shown by Beeston & Barlow (1993). """ return mus, ps def _kwargs_to_settings(self, **kwargs): """Return shape parameters, rate_multipliers from kwargs. shape_parmeters is a dict mapping setting name -> value | representative number rate_multipliers is a list of rate multipliers for each source in self.source_name_list """ # Validate the kwargs: must be either shape parameters, or <known_source>_rate_multiplier for k in kwargs.keys(): if k in self.shape_parameters: continue if k.endswith('_rate_multiplier'): s_name = k[:-16] if s_name in self.source_name_list: continue raise InvalidParameter("%s is not a known shape or rate parameter!" % k) shape_parameter_settings = dict() for setting_name, (_, _, base_value) in self.shape_parameters.items(): z = kwargs.get(setting_name) if z is None: # Parameter was not given: get the default value of (the number representing) this shape parameter base_setting = self.pdf_base_config.get(setting_name) is_numeric = isinstance(base_setting, (float, int)) if is_numeric: assert base_value is None z = base_setting else: z = base_value if not isinstance(z, (int, float)): raise ValueError("Arguments to likelihood function must be numeric, not %s" % type(z)) shape_parameter_settings[setting_name] = z rate_multipliers = [] for source_i, source_name in enumerate(self.source_name_list): rate_multipliers.append(kwargs.get(source_name + '_rate_multiplier', 1)) return rate_multipliers, shape_parameter_settings ## # Convenience functions for uncertainties. # Adding more general priors is the user's responsibility # (either provide prior argument to add_x_parameter, or wrap the loglikelihood function) ## def add_rate_uncertainty(self, source_name, fractional_uncertainty): """Adds a rate parameter to the likelihood function with Gaussian prior""" self.add_rate_parameter(source_name, log_prior=stats.norm(1, fractional_uncertainty).logpdf) def add_shape_uncertainty(self, setting_name, fractional_uncertainty, anchor_zs=(-2, -1, 0, 1, 2), base_value=None): """Adds a shape parameter to the likelihood function, with Gaussian prior around the default value. :param fractional_uncertainty: Relative uncertainty on the default value. Other parameters as in add_shape_parameter. """ # Call add_shape_parameter without a prior first, then inject the prior later. # It's a bit of a hack, but there is some validation / default-setting code for base_value we don't want to # replicate. self.add_shape_parameter(setting_name, anchor_zs, base_value=base_value) anchors, log_prior, base_value = self.shape_parameters[setting_name] self.shape_parameters[setting_name] = (anchors, stats.norm(base_value, base_value * fractional_uncertainty).logpdf, base_value) def _compute_single_model(self, **kwargs): """Return a model formed using the base config, using kwargs as overrides""" _, shape_parameter_settings = self._kwargs_to_settings(**kwargs) config = combine_dicts(self.pdf_base_config, shape_parameter_settings, deep_copy=True) config['never_save_to_cache'] = True return Model(config, **shape_parameter_settings) ## # Methods to override ## def _compute_likelihood(self, *args, **kwargs): raise NotImplementedError def _compute_single_pdf(self, **kwargs): """Return likelihood arguments for a single newly computed model, formed using the base config, using kwargs as overrides. Returns mus, ps, n_model_events """ raise NotImplementedError class UnbinnedLogLikelihood(LogLikelihoodBase): @inherit_docstring_from(LogLikelihoodBase) def set_data(self, d): LogLikelihoodBase.set_data(self, d) if len(self.shape_parameters): self.ps_interpolator = self.morpher.make_interpolator(f=lambda m: m.score_events(d), extra_dims=[len(self.source_name_list), len(d)], anchor_models=self.anchor_models) else: self.ps = self.base_model.score_events(d) @inherit_docstring_from(LogLikelihoodBase) def _compute_single_pdf(self, **kwargs): model = self._compute_single_model(**kwargs) mus = model.expected_events() ps = model.score_events(self._data) return mus, ps, None def _compute_likelihood(self, mus, pdf_values_at_events): return extended_loglikelihood(mus, pdf_values_at_events, outlier_likelihood=self.config.get('outlier_likelihood', 1e-12)) class BinnedLogLikelihood(LogLikelihoodBase): def __init__(self, pdf_base_config, likelihood_config=None, **kwargs): LogLikelihoodBase.__init__(self, pdf_base_config, likelihood_config, **kwargs) pdf_base_config['pdf_interpolation_method'] = 'piecewise' self.model_statistical_uncertainty_handling = self.config.get('model_statistical_uncertainty_handling') @inherit_docstring_from(LogLikelihoodBase) def prepare(self, *args): LogLikelihoodBase.prepare(self, *args) self.ps, self.n_model_events = self.base_model.pmf_grids() if len(self.shape_parameters): self.ps_interpolator = self.morpher.make_interpolator(f=lambda m: m.pmf_grids()[0], extra_dims=list(self.ps.shape), anchor_models=self.anchor_models) if self.model_statistical_uncertainty_handling is not None: self.n_model_events_interpolator = self.morpher.make_interpolator(f=lambda m: m.pmf_grids()[1], extra_dims=list(self.ps.shape), anchor_models=self.anchor_models) @inherit_docstring_from(LogLikelihoodBase) def set_data(self, d): LogLikelihoodBase.set_data(self, d) # Bin the data in the analysis space dimnames, bins = zip(*self.base_model.config['analysis_space']) self.data_events_per_bin = Histdd(bins=bins, axis_names=dimnames) self.data_events_per_bin.add(*self.base_model.to_analysis_dimensions(d)) @inherit_docstring_from(LogLikelihoodBase) def _compute_single_pdf(self, **kwargs): model = self._compute_single_model(**kwargs) mus = model.expected_events() ps, n_model_events = model.pmf_grids() return mus, ps, n_model_events @_needs_data @inherit_docstring_from(LogLikelihoodBase) def adjust_expectations(self, mus, pmfs, n_model_events): # Avoid mutating the arrays we're also going to return mus = mus.copy() pmfs = pmfs.copy() if self.model_statistical_uncertainty_handling == 'bb_single': source_i = self.config.get('bb_single_source') if source_i is None: raise ValueError("You need to specify bb_single_source to use bb_single_source expectation adjustment") source_i = self.base_model.get_source_i(source_i) assert pmfs.shape == n_model_events.shape # Get the number of events expected for the sources we will NOT adjust counts_per_bin = pmfs.copy() for i, (mu, _x) in enumerate(zip(mus, counts_per_bin)): if i != source_i: _x *= mu else: _x *= 0. u_bins = np.sum(counts_per_bin, axis=0) a_bins = n_model_events[source_i] p_calibration = mus[source_i] / n_model_events[source_i].sum() w_calibration = pmfs[source_i] / a_bins * n_model_events[source_i].sum() A_bins_1, A_bins_2 = beeston_barlow_roots(a_bins, w_calibration * p_calibration, u_bins, self.data_events_per_bin.histogram) assert np.all(A_bins_1 <= 0) # it seems(?) the 1st root is always negative # For U=0, the solution above is singular; we need to use a special case instead A_bins_special = (self.data_events_per_bin.histogram + a_bins) / (1. + p_calibration) A_bins = np.choose(u_bins == 0, [A_bins_2, A_bins_special]) assert np.all(0 <= A_bins) pmfs[source_i] = A_bins * w_calibration pmfs[source_i] /= pmfs[source_i].sum() mus[source_i] = (A_bins * w_calibration).sum() * p_calibration return mus, pmfs def _compute_likelihood(self, mus, pmfs): """Return binned Poisson log likelihood :param mus: numpy array with expected rates for each source :param pmfs: array (sources, *analysis_space) of PMFs for each source in each bin """ expected_counts = pmfs.copy() for mu, _p_bin_source in zip(mus, expected_counts): _p_bin_source *= mu # Works because of numpy view magic... expected_total = np.sum(expected_counts, axis=0) observed_counts = self.data_events_per_bin.histogram ret = observed_counts * np.log(expected_total) - expected_total - gammaln(observed_counts + 1.).real return np.sum(ret) def extended_loglikelihood(mu, ps, outlier_likelihood=0.0): """Evaluate an extended unbinned likelihood function :param mu: array of n_sources: expected number of events :param ps: array of (n_sources, n_events): pdf value for each source and event :param outlier_likelihood: if an event has p=0, give it this likelihood (instead of 0, which makes the whole loglikelihood infinite) :return: ln(likelihood) """ p_events = np.nansum(mu[:, np.newaxis] * ps, axis=0) if outlier_likelihood != 0: # Replace all likelihoods which are not positive numbers (i.e. 0, negative, or nan) with outlier_likelihood p_events[True ^ (p_events > 0)] = outlier_likelihood return -mu.sum() + np.sum(np.log(p_events)) def beeston_barlow_root1(a, p, U, d): """Solution to the Beeston-Barlow equations for a single finite-statics source and several infinite-statistics sources. This is the WRONG root, as far as we can tell -- DO NOT USE IT!! We retained it only to keep checking that it is the wrong root. It will be removed soon, when we are more confident. """ return ((-U*p - U + a*p + d*p - np.sqrt(U**2*p**2 + 2*U**2*p + U**2 + 2*U*a*p**2 + 2*U*a*p - 2*U*d*p**2 - 2*U*d*p + a**2*p**2 + 2*a*d*p**2 + d**2*p**2))/(2*p*(p + 1))) def beeston_barlow_root2(a, p, U, d): """Solution to the Beeston-Barlow equations for a single finite-statics source and several infinite-statistics sources. This is the 'right' root, as far as we can tell anyway.""" return ((-U*p - U + a*p + d*p + np.sqrt(U**2*p**2 + 2*U**2*p + U**2 + 2*U*a*p**2 + 2*U*a*p - 2*U*d*p**2 - 2*U*d*p + a**2*p**2 + 2*a*d*p**2 + d**2*p**2))/(2*p*(p + 1))) def beeston_barlow_roots(a, p, U, d): return beeston_barlow_root1(a, p, U, d), beeston_barlow_root2(a, p, U, d) class LogLikelihoodSum(object): """Class that takes a list of likelihoods to be minimized together, and provides an interface to the inference methods and evaluation similar to likelihoods. Note that the pfd_base_config is a bit of a fudge; only storing guesses from the last likelihood. As different guesses for different likelihoods should be a cause for concern, the safest method is to pass manual guesses to the minimization. The likelihood_weights allows you to weight terms in the likelihood-- useful for Asimov estimation (I think) as well as if you have multiple subvolumes, in which case each subvolume constraint term gets a (1/N) weight to avoid overconstraining the total llh """ def __init__(self, likelihood_list, likelihood_weights=None): self.likelihood_list = [] self.rate_parameters = dict() self.shape_parameters = dict() self.source_list = [] # DOES NOT EXIST IN LF! # in order to pass to confidence interval: self.pdf_base_config = {} # might also have to be fudged # These weights are useful if you need to split the constraints # among multiple sub-volumes in analysis space. self.likelihood_weights = likelihood_weights if likelihood_weights is None: self.likelihood_weights = [1 for _ in likelihood_list] self.likelihood_parameters = [] for ll in likelihood_list: self.likelihood_list.append(ll) self.rate_parameters.update(ll.rate_parameters) self.shape_parameters.update(ll.shape_parameters) parameter_names = [] for rate_parameter_name in ll.rate_parameters.keys(): parameter_names.append(rate_parameter_name + '_rate_multiplier') base_value = ll.pdf_base_config.get(rate_parameter_name) if base_value is not None: self.pdf_base_config[rate_parameter_name] = base_value for shape_parameter_name in ll.shape_parameters.keys(): parameter_names.append(shape_parameter_name) base_value = ll.pdf_base_config.get(shape_parameter_name) if base_value is not None: self.pdf_base_config[shape_parameter_name] = base_value self.likelihood_parameters.append(parameter_names) def __call__(self, compute_pdf=False, livetime_days=None, **kwargs): ret = 0. for i, (ll, parameter_names, ll_weight) in enumerate( zip(self.likelihood_list, self.likelihood_parameters, self.likelihood_weights)): pass_kwargs = {k: v for k, v in kwargs.items() if k in parameter_names} livetime = livetime_days if isinstance(livetime_days, list): livetime = livetime_days[i] ret += ll_weight * ll(compute_pdf=compute_pdf, livetime_days=livetime, **pass_kwargs) return ret def split_results(self, result_dict): ret = [] for i,parameter_names in enumerate(self.likelihood_parameters): ret.append({k: v for k, v in result_dict.items() if k in parameter_names}) return ret def get_bounds(self, parameter_name=None): """Return bounds on the parameter parameter_name,""" if parameter_name is None: return [self.get_bounds(p) for p in self.shape_parameters] if parameter_name in self.shape_parameters.keys(): bounds = [] for ll in self.likelihood_list: if parameter_name in ll.shape_parameters.keys(): bounds.append(ll.get_bounds(parameter_name)) bounds = np.array(bounds) ret= np.max(bounds[:,0]), np.min(bounds[:,1]) if ret[1] <= ret[0]: raise InvalidParameterSpecification("lower bound %s higher than upper bound!" % parameter_name) return ret elif parameter_name.endswith('_rate_multiplier'): return 0, float('inf') else: raise InvalidParameter("Non-existing parameter %s" % parameter_name) class LogAncillaryLikelihood(object): """Ancillary (constraint) analytical likelihoods""" def __init__(self, func, parameter_list, config=None, func_kwargs=None): """ :param func: python function taking an _OrderedDict_ of (named) input values, plus func_kwargs extra arguments. i.e. func({parameters:config[parameter]}, **func_kwargs) :param parameter_list: list of names of parameters for which a dict is pulled from the config. :param config: df config containing default values for parameters :param func_kwargs: other parameters to pass to function """ if config is None: config = dict() if func_kwargs is None: func_kwargs = dict() self.rate_parameters = dict() self.shape_parameters = dict() self.source_list = [] # DOES NOT EXIST IN LF! # in order to pass to confidence interval self.pdf_base_config = config # might also have to be fudged self.func = func self.func_kwargs = func_kwargs for parameter_name in parameter_list: self.shape_parameters.update(OrderedDict([(parameter_name,(None,None,None))])) def get_bounds(self, parameter_name=None): if parameter_name is None: return [self.get_bounds(p) for p in self.shape_parameters] if parameter_name in self.shape_parameters.keys(): # other likelihoods can be more constrictive. return -np.inf, np.inf else: raise InvalidParameter("Non-existing parameter %s" % parameter_name) def __call__(self, **kwargs): # Use an ordered dict here, so function can rely on order of arguments pass_kwargs = OrderedDict() for parameter_name in self.shape_parameters: pass_kwargs[parameter_name] = self.pdf_base_config[parameter_name] pass_kwargs.update(kwargs) return self.func(pass_kwargs, **self.func_kwargs) # Add the inference methods from .inference for methodname in inference.__all__: for q in (LogLikelihoodBase, LogLikelihoodSum, LogAncillaryLikelihood): setattr(q, methodname, getattr(inference, methodname))
# -*- coding: utf-8 -*- import os import io import unittest from testfixtures import TempDirectory from .. import fs from .. import localfs from ..utils import TemporaryFilename class test_localfs(unittest.TestCase): def setUp(self): self.dir = TempDirectory() def tearDown(self): self.dir.cleanup() def test_mode(self): # label exist not exist read write position # r - error - error start # r+ - error - - start # w truncate create error - - # w+ truncate create - - - # x error create error - - # x+ error create - - - # a - create error - end # a+ - create - - end with TemporaryFilename(self.dir.path, suffix=".txt") as filename: # Doesn't exist self.assertRaises(fs.Missing, self._check_r, filename, "123") self._check_w(filename, "123") # Exist self._check_r(filename, "456") self._check_content(filename, "123") with TemporaryFilename(self.dir.path, suffix=".txt") as filename: # Doesn't exist self.assertRaises(fs.Missing, self._check_rp, filename, "123") self._check_w(filename, "123") # Exist self._check_rp(filename, "456") self._check_content(filename, "456") with TemporaryFilename(self.dir.path, suffix=".txt") as filename: # Doesn't exist self._check_w(filename, "123") self._check_content(filename, "123") # Exist self._check_w(filename, "456") self._check_content(filename, "456") with TemporaryFilename(self.dir.path, suffix=".txt") as filename: # Doesn't exist self._check_wp(filename, "123") self._check_content(filename, "123") # Exist self._check_wp(filename, "456") self._check_content(filename, "456") with TemporaryFilename(self.dir.path, suffix=".txt") as filename: # Doesn't exist self._check_a(filename, "123") self._check_content(filename, "123") # Exist self._check_a(filename, "456") self._check_content(filename, "123456") with TemporaryFilename(self.dir.path, suffix=".txt") as filename: # Doesn't exist self._check_ap(filename, "123") self._check_content(filename, "123") # Exist self._check_ap(filename, "456") self._check_content(filename, "123456") try: with TemporaryFilename(self.dir.path, suffix=".txt") as filename: # Doesn't exist self._check_x(filename, "123") self._check_content(filename, "123") # Exist self.assertRaises(IOError, self._check_x, filename, "456") with TemporaryFilename(self.dir.path, suffix=".txt") as filename: # Doesn't exist self._check_xp(filename, "123") self._check_content(filename, "123") # Exist self.assertRaises(IOError, self._check_xp, filename, "456") except ValueError: pass # Python 2 does not have x def _check_w(self, filename, word): with localfs.Path(filename, mode="w").open() as f: f.write(word) f.seek(0) self.assertRaises(IOError, f.read) def _check_wp(self, filename, word): with localfs.Path(filename, mode="w+").open() as f: f.write(word) f.seek(0) self.assertEqual(word, f.read()) def _check_x(self, filename, word): with localfs.Path(filename, mode="x").open() as f: f.write(word) f.seek(0) self.assertRaises(IOError, f.read) def _check_xp(self, filename, word): with localfs.Path(filename, mode="x+").open() as f: f.write(word) f.seek(0) self.assertEqual(word, f.read()) def _check_a(self, filename, word): with localfs.Path(filename, mode="a").open() as f: f.write(word) f.seek(0) self.assertRaises(IOError, f.read) def _check_ap(self, filename, word): with localfs.Path(filename, mode="a+").open() as f: fptr = f.tell() n = len(word) f.write(word) try: # Python 2: seek from current f.seek(-n, 1) except io.UnsupportedOperation: # Python 3: seek from beginning f.seek(fptr, 0) self.assertEqual(word, f.read(n)) def _check_r(self, filename, word): with localfs.Path(filename, mode="r").open() as f: self.assertRaises(IOError, f.write, word) f.read() def _check_rp(self, filename, word): with localfs.Path(filename, mode="r+").open() as f: f.write(word) f.seek(0) self.assertEqual(word, f.read(len(word))) def _check_content(self, filename, word): filename = str(filename) if os.path.isfile(filename): with localfs.Path(filename, mode="r").open() as f: b = f.read() == word else: b = None == word self.assertTrue(b) def test_suite(): """Test suite including all test suites""" testSuite = unittest.TestSuite() testSuite.addTest(test_localfs("test_mode")) return testSuite if __name__ == "__main__": import sys mysuite = test_suite() runner = unittest.TextTestRunner() if not runner.run(mysuite).wasSuccessful(): sys.exit(1)
from __future__ import absolute_import from __future__ import unicode_literals import json from django import forms from django.utils.translation import ugettext as _ from corehq import toggles from corehq.apps.userreports.models import DataSourceConfiguration, \ StaticDataSourceConfiguration from corehq.apps.userreports.ui.widgets import JsonWidget from corehq.util.python_compatibility import soft_assert_type_text import six class ReportDataSourceField(forms.ChoiceField): def __init__(self, domain, *args, **kwargs): self.domain = domain standard_sources = DataSourceConfiguration.by_domain(self.domain) custom_sources = list(StaticDataSourceConfiguration.by_domain(domain)) available_data_sources = standard_sources + custom_sources if toggles.AGGREGATE_UCRS.enabled(domain): from corehq.apps.aggregate_ucrs.models import AggregateTableDefinition available_data_sources += AggregateTableDefinition.objects.filter(domain=self.domain) super(ReportDataSourceField, self).__init__( choices=[(src.data_source_id, src.display_name) for src in available_data_sources], *args, **kwargs ) class JsonField(forms.CharField): widget = JsonWidget expected_type = None default_null_values = (None, '', ()) def __init__(self, expected_type=None, null_values=None, *args, **kwargs): self.expected_type = expected_type self.null_values = null_values if null_values is not None else self.default_null_values super(JsonField, self).__init__(*args, **kwargs) def prepare_value(self, value): if isinstance(value, six.string_types): soft_assert_type_text(value) try: return json.loads(value) except ValueError: return value else: return value def to_python(self, value): val = super(JsonField, self).to_python(value) try: return json.loads(val) except: raise forms.ValidationError(_('Please enter valid JSON. This is not valid: {}'.format(value))) def validate(self, value): if value in self.null_values and self.required: raise forms.ValidationError(self.error_messages['required']) if self.expected_type and not isinstance(value, self.expected_type): raise forms.ValidationError(_('Expected {} but was {}'.format(self.expected_type, type(value))))
# -*- coding: utf-8 -*- ''' :codeauthor: Jayesh Kariya <jayeshk@saltstack.com> ''' # Import Python libs from __future__ import absolute_import, print_function, unicode_literals # Import Salt Testing Libs from tests.support.mixins import LoaderModuleMockMixin from tests.support.unit import skipIf, TestCase from tests.support.mock import NO_MOCK, NO_MOCK_REASON, MagicMock, patch # Import Salt Libs import salt.states.boto_asg as boto_asg @skipIf(NO_MOCK, NO_MOCK_REASON) class BotoAsgTestCase(TestCase, LoaderModuleMockMixin): ''' Test cases for salt.states.boto_asg ''' # 'present' function tests: 1 def setup_loader_modules(self): return {boto_asg: {}} maxSize = None def test_present(self): ''' Test to ensure the autoscale group exists. ''' name = 'myasg' launch_config_name = 'mylc' availability_zones = ['us-east-1a', 'us-east-1b'] min_size = 1 max_size = 1 ret = {'name': name, 'result': None, 'changes': {}, 'comment': ''} mock = MagicMock(side_effect=[False, {'min_size': 2}, ['']]) with patch.dict(boto_asg.__salt__, {'boto_asg.get_config': mock}): with patch.dict(boto_asg.__opts__, {'test': True}): comt = 'Autoscale group set to be created.' ret.update({'comment': comt}) with patch.dict(boto_asg.__salt__, {'config.option': MagicMock(return_value={})}): self.assertDictEqual( boto_asg.present( name, launch_config_name, availability_zones, min_size, max_size ), ret ) def magic_side_effect(value): if isinstance(value, int): if value == 1: return 4 return value return '' comt = 'Autoscale group set to be updated.' ret.update({'comment': comt, 'result': None}) ret.update({'changes': {'new': {'min_size': 4}, 'old': {'min_size': 2}}}) utils_ordered_mock = MagicMock( side_effect=magic_side_effect ) with patch.dict(boto_asg.__salt__, {'config.option': MagicMock(return_value={})}): with patch.dict(boto_asg.__utils__, {'boto3.ordered': utils_ordered_mock}): call_ret = boto_asg.present( name, launch_config_name, availability_zones, min_size, max_size ) self.assertDictEqual(call_ret, ret) with patch.dict(boto_asg.__salt__, {'config.option': MagicMock(return_value={})}): with patch.dict(boto_asg.__utils__, {'boto3.ordered': MagicMock(return_value='')}): comt = 'Autoscale group present. ' ret.update({'comment': comt, 'result': True}) ret.update({'changes': {}}) self.assertDictEqual( boto_asg.present( name, launch_config_name, availability_zones, min_size, max_size ), ret ) # 'absent' function tests: 1 def test_absent(self): ''' Test to ensure the named autoscale group is deleted. ''' name = 'myasg' ret = {'name': name, 'result': None, 'changes': {}, 'comment': ''} mock = MagicMock(side_effect=[True, False]) with patch.dict(boto_asg.__salt__, {'boto_asg.get_config': mock}): with patch.dict(boto_asg.__opts__, {'test': True}): comt = ('Autoscale group set to be deleted.') ret.update({'comment': comt}) self.assertDictEqual(boto_asg.absent(name), ret) comt = ('Autoscale group does not exist.') ret.update({'comment': comt, 'result': True}) self.assertDictEqual(boto_asg.absent(name), ret)
import pytest from xclingo import XclingoControl, XclingoContext class TestXclingo: def assert_test_case(self, datadir, test_case, auto_tracing): xcontrol = XclingoControl( n_solutions=0, n_explanations=0, auto_trace=auto_tracing, ) xcontrol.add('base', [], (datadir / f'{test_case}.lp').read_text()) xcontrol.ground() result = xcontrol._default_output() expected = (datadir / f'expected_{test_case}.txt').read_text() assert expected == result def test_count_aggregate(self, datadir): self.assert_test_case(datadir, 'count_aggregate', 'none') self.assert_test_case(datadir, 'ignore_shows', 'all')
from selenium import webdriver url = "http://www.naver.com/" browser = webdriver.PhantomJS() browser.implicitly_wait(3) browser.get(url) browser.save_screenshot("website.png") browser.quit()
#!/usr/bin/env python2.7 # vim : set fileencoding=utf-8 expandtab noai ts=4 sw=4 filetype=python : """ stitch help <cmd> Shows extensive help of the command <cmd>. """ from __future__ import print_function import stitch.datastore def options(parser): """The query command has no options""" parser.add_argument('query') def execute(): """Show specific help for a command""" query = stitch.datastore.env.args.get("query") print("The Query \"\"\""+ query+ "\"\"\" returns:") res = stitch.datastore.query(query) print(stitch.datastore.yaml.dump(res))
#!/usr/bin/env python # This script downloads the most trending 10 wallpapers from a subreddit and saves it to a folder. """ Copyright (c) 2021 ShankarCodes. All rights reserved. You may use, distribute and modify this code under the terms of the BSD 3-Clause "New" or "Revised" License. You should have received a copy of the BSD-3-Clause License with this file. If not visit https://opensource.org/licenses/BSD-3-Clause Homepage: https://github.com/ShankarCodes/scripts """ # Make sure to create a .env file which contains # ID=<your app id> # SECRET=<your app secret> # NAME=<your username> # PASSWORD=<your reddit password> # USER_AGENT=<your user agent, for example MyWallpaperDownloader> # List of sum subreddits for wallpapers. # Remove or add your own subreddits here import time import grequests import json import praw from dotenv import load_dotenv, find_dotenv import os import requests from mimetypes import MimeTypes import traceback NUMBER_TOP = 10 NUMBER_CONCURRENT_CONNECTIONS = 8 TIME_FILTER = 'day' SAVE_PATH = 'saves' subreddits = [ 'SpacePorn', 'EarthPorn', 'wallpapers', 'BotanicalPorn', 'CityPorn', 'WeatherPorn', 'SkyPorn', 'LakePorn', 'VillagePorn', 'BeachPorn', 'WaterPorn', 'ExposurePorn', 'ImaginaryLandscapes', 'ImaginaryTechnology', 'futureporn', 'lightpainting' ] # subreddits = [ # 'EarthPorn' # ] # Imports load_dotenv(find_dotenv()) # Get credentials client_id = os.environ.get('ID') secret = os.environ.get('SECRET') username = os.environ.get('NAME') password = os.environ.get('PASSWORD') user_agent = os.environ.get('USER_AGENT') assert client_id is not None assert secret is not None assert username is not None assert password is not None assert user_agent is not None mime = MimeTypes() def exception_handler(request, exception): print('-'*50) print(f'Request Failed!') print(request) print(exception) print('-'*50) class WallpaperDownloader: def __init__(self): self.reddit = praw.Reddit(client_id=client_id, client_secret=secret, password=password, user_agent=user_agent, username=username) self.cache = {} try: with open(os.path.join(SAVE_PATH, 'cache.json'), 'r') as cache_file: self.cache = json.load(cache_file) except Exception as e: print('Error while reading cache file') def get_trending_submissions(self, subreddit_name, limit=NUMBER_TOP): try: #return [submission for submission in self.reddit.subreddit(subreddit_name).hot(limit=limit) if not submission.is_self] # Gets the top posts as specified by TIME_FILTER return [submission for submission in self.reddit.subreddit(subreddit_name).top(limit=limit, time_filter=TIME_FILTER) if not submission.is_self] except Exception as e: print(e) return [] def generate_download_list(self, submissions): dl_list = [] for submission in submissions: # Check if submission has not yet been downloaded if submission.id not in self.cache: typ = mime.guess_type(submission.url)[0] if typ is not None: if typ.startswith('image'): # Add the extension to the list. dl_list += [(submission, typ.split('/')[-1])] else: print( f'Unknown type for submission url: {submission.url}') else: print(f'Unknown type for submission url: {submission.url}') else: # Id is there in cache, check if that file is present or not. if not os.path.exists(os.path.join(SAVE_PATH, self.cache[submission.id]['filename'])): print(f'File is not present but cache found for submission {submission.id}, Downloading') typ = mime.guess_type(submission.url)[0] if typ is not None: if typ.startswith('image'): # Add the extension to the list. dl_list += [(submission, typ.split('/')[-1])] else: print( f'Unknown type for submission url: {submission.url}') else: print(f'Unknown type for submission url: {submission.url}') else: print(f'Cache found for submission {submission.id}, Not downloading') for dl in dl_list: print(f'To download:{dl[0].url}') return dl_list def download(self, url_list): try: all_requests = (grequests.get(u[0].url) for u in url_list) responses = grequests.map(all_requests, size=NUMBER_CONCURRENT_CONNECTIONS, exception_handler=exception_handler) for dl_tuple, response in zip(url_list, responses): if response is None: continue submission = dl_tuple[0] extension = dl_tuple[1] try: # Clean file name fn = ''.join([i for i in submission.title if i.isalnum() or i in '.-_ ()[]'])[:254] try: with open(os.path.join(SAVE_PATH, f'{fn}.{extension}'), 'wb') as save_file: save_file.write(response.content) except Exception as e: print('Error while saving the file to the filesystem') print('Continuing') continue if self.cache.get(submission.id) is None: self.cache[submission.id] = {} try: self.cache[submission.id]['url'] = submission.url self.cache[submission.id]['title'] = submission.title self.cache[submission.id]['link'] = 'https://reddit.com' + \ submission.permalink self.cache[submission.id]['filename'] = f'{fn}.{extension}' self.cache[submission.id]['author'] = submission.author.name self.cache[submission.id]['author_id'] = submission.author.id except Exception as e: print('Error while adding submission to cache') try: self.cache[submission.id]['created'] = submission.created_utc except Exception as e: print('Cannot get created time') try: self.cache[submission.id]['score'] = submission.score except Exception as e: print('Cannot get score') try: self.cache[submission.id]['upvote_ratio'] = submission.upvote_ratio except Exception as e: print('Cannot get upvote_ration') except Exception as e: traceback.print_exc() del self.cache[submission.id] print('Error saving file') except Exception as e: print(e) print('Error while getting images') finally: with open(os.path.join(SAVE_PATH, 'cache.json'), 'w') as cache_file: json.dump(self.cache, cache_file, indent=4, sort_keys=True) def download_wallpapers(): walldl = WallpaperDownloader() print('Downloading') submissions = [] for subreddit in subreddits: print(f'Downloading from subreddit') submissions += walldl.get_trending_submissions(subreddit) dl_list = walldl.generate_download_list(submissions) walldl.download(dl_list) def main(): download_wallpapers() if __name__ == '__main__': main()
cid = input('Em que cidade você mora? ') # .strip() ci = cid.split() print(f'Essa cidade tem Santo no começo do nome? \033[1;37m{"SANTO" in ci[0].upper()}\033[m') print(f'Essa cidade tem Santo no começo do nome? \033[0;36m{"SANTO" == cid[:5].upper()}\033[m')
# https://docs.python.org/3/library/functions.html abs(x) all(iterable) any(iterable) ascii(object) bin(x) bool(?x) breakpoint(*args, **kws) bytearray(?source, ?encoding, ?errors) bytes(?source, ?encoding, ?errors) callable(object) chr(i) @classmethod() compile(source, filename, mode, flags=0, dont_inherit=False, optimize=-1) complex(?real, ?imag) delattr(object, name) dict(**kwarg) | dict(mapping|iterable, **kwarg) dir(?object) divmod(a, b) enumerate(iterable, start=0) eval(expression, ?globals, ?locals) exec(object, ?globals, ?locals) filter(function, iterable) float(?x) format(value, ?format_spec) frozenset(iterable) getattr(object, name, ?default) globals() hasattr(object, name) hash(object) help(object) hex(x) id(object) input(?prompt) int(?x, ?base=10) isinstance(object, classinfo) issubclass(object, classinfo) iter(object[, sentinel) len(s) list(iterable) locals() map(function, iterable, ...) max(iterable, *, ?key, ?default) | max(arg1, arg2, *args, ?key) memoryview(object) min(iterable, *, ?key, ?default) | min(arg1, arg2, *args, ?key) next(iterator, ?default) object() oct(x) open(file, mode='r|w|x|a|b|t|+', buffering=-1, encoding=None, errors=None, newline=None, closefd=True, opener=None) mode= 'r' # open for reading (default) 'w' # open for writing, truncating the file first 'x' # open for exclusive creation, failing if the file already exists 'a' # open for writing, appending to the end of the file if it exists 'b' # binary mode 't' # text mode (default) '+' # open for updating (reading and writing) encoding= locale.getpreferredencoding(False) # default encoding (platform-dependent): 'cp1252' ord(c) pow(base, exp, ?mod) print(*objects, sep=' ', end='\n', file=sys.stdout, flush=False) property(fget=None, fset=None, fdel=None, doc=None) range(stop=0) | range(start=0, stop=0, ?step=1) repr(object) reversed(seq) round(number, ?ndigits) set(?iterable) setattr(object, name, value) slice(stop) | slice(start, stop, ?step) sorted(iterable, *, key=None, reverse=False) @staticmethod() str(object='') | str(object=b'', encoding='utf-8', errors='strict') sum(iterable, /, start=0) super(?type, ?object_or_type]) tuple(?iterable) type(?iterable|object) | type(name, bases, dict, **kwds) vars(?object) zip(*iterables) __import__(name, globals=None, locals=None, fromlist=(), level=0))
from pathlib import Path from setuptools import setup, find_packages long_description = Path('README.rst').read_text('utf-8') try: from sagenet import __author__, __email__ except ImportError: # Deps not yet installed __author__ = __maintainer__ ='Elyas Heidari' __email__ = 'eheidari@student.ethz.ch' __version__ = '0.1.2' setup(name='sagenet', version = "0.1.2", description='Spatial reconstruction of dissociated single-cell data', long_description=long_description, long_description_content_type="text/markdown", url='https://github.com/MarioniLab/sagenet', author=__author__, author_email=__email__, license='MIT', platforms=["Linux", "MacOSX"], packages=find_packages(), zip_safe=False, # download_url="https://github.com/MarioniLab/sagenet/archive/refs/tags/SageNet_v0.1.0.1.tar.gz", project_urls={ "Documentation": "https://sagenet.readthedocs.io/en/latest", "Source Code": "https://github.com/MarioniLab/sagenet", }, install_requires=[l.strip() for l in Path("requirements.txt").read_text("utf-8").splitlines()], classifiers=[ "Development Status :: 5 - Production/Stable", "Intended Audience :: Science/Research", "Natural Language :: English", "License :: OSI Approved :: BSD License", "Operating System :: POSIX :: Linux", "Operating System :: MacOS :: MacOS X", "Typing :: Typed", # "Programming Language :: Python :: 3", # "Programming Language :: Python :: 3.6", "Programming Language :: Python :: 3.7", "Programming Language :: Python :: 3.8", "Programming Language :: Python :: 3.9", "Environment :: Console", "Framework :: Jupyter", "Intended Audience :: Science/Research", "Topic :: Scientific/Engineering :: Bio-Informatics", "Topic :: Scientific/Engineering :: Visualization", ], doc=[ 'sphinx', 'sphinx_rtd_theme', 'sphinx_autodoc_typehints', 'typing_extensions; python_version < "3.8"', ], keywords=sorted( [ "single-cell", "bio-informatics", "spatial transcriptomics", "spatial data analysis", "single-cell data analysis", ] ), )
#!/usr/bin/python # -*- coding: iso-8859-1 -*- import libsbml, sys, re, numpy def clean_formula(formula): for s in ['(',')','*','/','+','-',',']: formula = formula.replace(s,' %s '%s) for i in range(3): formula = formula.replace(" "," ") match = re.search(r'\de - ',formula) # e.g. 10e-05 cannot be 10e - 05 if match: my_digit = match.group(0)[0] formula = formula.replace(match.group(0),my_digit+'e-') split_formula = formula.split(' ') n_split_formula = [] for i in split_formula: try: i = float(i) # try to convert '1' to '1.0' i = str(i) n_split_formula.append(i) except: n_split_formula.append(i) formula = ' '.join(n_split_formula) return formula def find_and_replace(pattern, dest_str, repl_str): re_comp = re.compile(r'%s(?=\W|$)'%(pattern)) # not followed by alphanumeric [a-zA-Z0-9_] or (|) is at end of string ($) return re_comp.sub(repl_str, dest_str) # substitute pattern with repl_str in dest_str if found class my_model: """class for sbml model import """ def __init__(self, filename): self._m = self._import_model_from_file(filename) # the sbml model instance self.species_values, self.species, self.species_names = self._get_species() self.parameter_values, self.parameters, self.parameter_names = self._get_parameters() self.rule_list = [rule.getId() for rule in self._m.getListOfRules()] self.rules = dict([(rule.getId(), clean_formula( rule.getFormula() ) ) for rule in self._m.getListOfRules()]) # if a species is just an assignment/rule, then don't keep it as species in list if self.rules: for i in self.rules: if i in self.species: self.species.remove(i) self.event_ass_lists = [event.getListOfEventAssignments() for event in self._m.getListOfEvents()] self.events = dict([ (event.getId(),event) for event in self._m.getListOfEvents()]) # print self.events # for event in self.event_ass_lists[0]: # print event.getVariable() # print libsbml.formulaToString(event.getMath()) # self.event_triggers = [event.getTrigger().getMath() for event in self._m.getListOfEvents()] # print libsbml.formulaToString(self.event_triggers[0]) # sys.exit(1) self.reaction_list = [reaction.getId() for reaction in self._m.getListOfReactions()] self.reaction_names = dict([(reaction.getId(),reaction.getName()) for reaction in self._m.getListOfReactions()]) self.reactions = dict([(reaction.getId(), clean_formula( reaction.getKineticLaw().getFormula() ) ) for reaction in self._m.getListOfReactions()]) # dict of reaction ids, formulas still with functions in it self.kinetic_laws = dict([(reaction.getId(),reaction.getKineticLaw()) for reaction in self._m.getListOfReactions()]) # dict of reaction ids, kinetic law objects for reaction_id in self.reactions: self.reactions[reaction_id] = self.function_definition_replace(self.reactions[reaction_id],self.kinetic_laws[reaction_id]) # replace functions with function formulas self.reactions[reaction_id] = self.parameter_replace(reaction_id,self.reactions[reaction_id]) # replace local parameter names in formulas with unique names if self.rules: self.reactions[reaction_id] = self.rules_replace(reaction_id,self.reactions[reaction_id]) # replace rules in formulas with rule formulas self._species2pos = dict( zip(self.species, range(self.species.__len__() ) ) ) # species_1: 0, species_2: 1. self.N = self._get_stoich_mat() # build stoichiometric matrix self.diff_equations = self.get_diff_equations() def rules_replace(self,reaction_id,reaction_formula): # replace rules in formulas with rule expressions formula = reaction_formula for i in range(5): # do this 5 levels deep for rule in self._m.getListOfRules(): var = rule.getVariable() formula = find_and_replace(var, formula, '( ' + rule.getFormula() + ' )') formula = clean_formula(formula) return formula def parameter_replace(self,reaction_id,reaction_formula): # replace parameter names in formulas with unique names formula = reaction_formula for i in self.parameters: try: rct, p = i.split('__') if reaction_id == rct: formula = find_and_replace(p, formula, i) except: pass return formula def get_diff_equations(self): """ get the differential equations in dict with species names as keys and the diff eqs as strings """ self.diff_equations = dict([(i,'') for i in self.species]) for s in self._m.getListOfSpecies(): # if s.getConstant() or s.getBoundaryCondition(): if s.getConstant(): self.diff_equations[s.getId()] = '0' # constant species will have 0 - no change over time - on the right hand side of the diff_equation for j,r in enumerate( self._m.getListOfReactions() ): modes = [('-','Reactants'), ('+','Products')] for sign,direction in modes: for sr in getattr(r,'getListOf'+direction)(): s=self._m.getSpecies(sr.getSpecies()) if s.getBoundaryCondition() or s.getConstant(): # right hand side of const species remain 0 continue self.diff_equations[sr.getSpecies()] = self.diff_equations[sr.getSpecies()] + ' ' + sign + ' ' + str(sr.getStoichiometry()) + ' * (' + self.reactions[r.getId()]+ ' ) ' self.diff_equations[sr.getSpecies()] = clean_formula(self.diff_equations[sr.getSpecies()]) self.diff_equations[sr.getSpecies()] = self.diff_equations[sr.getSpecies()].strip() # get rid of whitespace leading and lagging for s,eq in self.diff_equations.items(): # for empty species if eq == '': self.diff_equations[s] = '0' return self.diff_equations def _get_stoich_mat(self): """ get the stoichiometric matrix (including constant and boundary condition species) constant and boundary condition species rows are zeros """ N = numpy.zeros( (len(self.species),self._m.getNumReactions()) ) for i,r in enumerate( self._m.getListOfReactions() ): modes = [(-1,'Reactants'), (+1,'Products')] for sign,direction in modes: for sr in getattr(r,'getListOf'+direction)(): s=self._m.getSpecies(sr.getSpecies()) if s.getBoundaryCondition() or s.getConstant(): # keep entry 0 for const./boundery species, although in/outflux might be specified continue j=self._species2pos[sr.getSpecies()] N[j,i] = sign*sr.getStoichiometry() return N def function_definition_replace( self,formula,kinetic_law ): """ Replace the function definitions in the formulas with the actual formulas. Replace also parameters in function definitions with actual parameters. """ for fd in self._m.getListOfFunctionDefinitions(): children = [kinetic_law.getMath().getChild(x) for x in range(kinetic_law.getMath().getNumChildren())] for child in children: if fd.getId() == child.getName(): # if the function is in the formula arg_list = [child.getChild(y).getName() for y in range(child.getNumChildren())] # list of function arguments var_list = dict( zip ([fd.getArgument(x).getName() for x in range(fd.getNumArguments())], arg_list)) # dict of function variables as keys, function arguments as values matchstring = "\s*"+fd.getId()+"\s*\("+ ",".join([".*"]*len(var_list)) +"\)\s*" match = re.search(matchstring,formula) fd_formula = ' ' + libsbml.formulaToString(fd.getBody()) + ' ' # clean formula a bit fd_formula = clean_formula(fd_formula) # clean formula a bit for arg in var_list: # replace variables with arguments in new formulas fd_formula = find_and_replace(' '+arg, fd_formula, ' '+var_list[arg]) formula = formula.replace(match.group(0), fd_formula) # replace the function with function_definition return formula def _import_model_from_file(self,filename): """read the sbml file (check for errors) and return the model instance""" reader = libsbml.SBMLReader() self._document = reader.readSBML(filename) if self._document.getNumErrors(): self._document.printErrors() return None else: self._m = self._document.getModel() return self._m def _get_parameters(self): """ get dictionary of parameter values and compartmets - """ self.parameter_values = {} self.parameter_names = {} self.parameters = [] # get all the global (in model) and local (in reactions) parameters for p in self._m.getListOfParameters(): # global parameters self.parameters.append( p.getId() ) self.parameter_names[p.getId()] = p.getName() self.parameter_values[p.getId()] = p.getValue() for reaction in self._m.getListOfReactions(): # local parameters (assign new name) rname = reaction.getId() # rformula = reaction.getKineticLaw().getFormula() for p in reaction.getKineticLaw().getListOfParameters(): newname = rname+"__"+p.getId() self.parameter_names[newname] = p.getName() self.parameter_values[newname] = p.getValue() self.parameters.append( newname ) for compartment in self._m.getListOfCompartments(): # compartments self.parameter_values[ compartment.getId() ] = compartment.getSize() self.parameter_names[ compartment.getId() ] = compartment.getName() self.parameters.append( compartment.getId() ) return self.parameter_values, self.parameters, self.parameter_names def _get_species(self): """get all species in the model""" self.species = [] self.species_values = {} self.species_names = {} for sbmlspecies in self._m.getListOfSpecies(): self.species_names[ sbmlspecies.getId() ] = sbmlspecies.getName() self.species_values[ sbmlspecies.getId() ] = sbmlspecies.getInitialConcentration() self.species.append( sbmlspecies.getId() ) return self.species_values, self.species, self.species_names
# TODO: avoid import everything from _mnncengine._nn for visable control from _mnncengine._nn import * import _mnncengine._expr as _F import _mnncengine._nn as _nn # old call: load_module_from_file(file_name, for_training) # new call: load_module_from_file(file_name, dynamic=False, shape_mutable=True) # support two by args and kwargs def load_module_from_file(file_name, *args, **kwargs): old_call = len(args) > 0 #for_training m = _F.load_as_dict(file_name) inputs_outputs = _F.get_inputs_and_outputs(m) inputs = [] for key in inputs_outputs[0].keys(): inputs.append(inputs_outputs[0][key] if old_call else key) outputs = [] for key in inputs_outputs[1].keys(): outputs.append(inputs_outputs[1][key] if old_call else key) if old_call: for_training = args[0] module = _nn.load_module(inputs, outputs, for_training) else: dynamic = kwargs.get('dynamic', False) shape_mutable = kwargs.get('shape_mutable', True) module = _nn.load_module_from_file(inputs, outputs, file_name, dynamic, shape_mutable) return module class Module(_nn._Module): def __init__(self): super(Module, self).__init__() self._children = {} self._vars = {} def forward(self, x): raise NotImplementedError def __call__(self, x): raise NotImplementedError("__call__ not implemented, please use 'forward' method in subclasses") def __setattr__(self, name, value): self.__dict__[name] = value def remove_from(dicts): if name in dicts: del dicts[name] if isinstance(value, (Module, _nn._Module)): remove_from(self._children) value.set_name(name) self._children[name] = value self._register_submodules([value]) return if isinstance(value, _F.Var): value.name = name if name in self._vars: self._vars[name].replace(value) else: self._vars[name] = value self._add_parameter(value)
#!/usr/bin/env python from __future__ import absolute_import, division, print_function __metaclass__ = type import os from memsource import Memsource def get_action(module_params): """Get action to do based on module.params""" trimmed_list = { k: v for k, v in module_params.items() if v is not None and k not in get_default_argspec().keys() and k != "state" } if module_params.get("state") == "absent": action = "delete" elif not module_params.get("uid"): action = "create" elif list(trimmed_list.keys()) == ["uid"]: action = "read" else: action = "update" return action def get_memsource_client(module_params): """Return a memsource client instance""" if os.environ.get("MEMSOURCE_TOKEN"): # TO BE IMPLEMENTED in python-memsource memsource_client = None elif module_params.get("memsource_token"): # TO BE IMPLEMENTED in python-memsource memsource_client = None elif os.environ.get("MEMSOURCE_USERNAME") and os.environ.get("MEMSOURCE_PASSWORD"): memsource_client = Memsource( os.environ.get("MEMSOURCE_USERNAME"), os.environ.get("MEMSOURCE_PASSWORD") ) elif module_params.get("memsource_username") and module_params.get( "memsource_password" ): memsource_client = Memsource( module_params.get("memsource_username"), module_params.get("memsource_password"), ) else: memsource_client = None return memsource_client def get_default_argspec(): """ Provides default argument spec for the options documented in the memsource doc fragment. """ return dict( memsource_username=dict(type="str"), memsource_password=dict(type="str", no_log=True), memsource_token=dict(type="str", no_log=True), )
from django.test import TestCase from ted_project.factories import UserFactory, FaceFactory, PictureFactory class TestFaceModel(TestCase): def setUp(self): self.face = FaceFactory(name='test_name') def test_Face_attributes(self): self.assertEqual(self.face.name, 'test_name') class TestPictureModel(TestCase): def setUp(self): self.picture = PictureFactory(url='test.url') def test_picture_attributes(self): self.assertEqual(self.picture.face.name, 'test_name') self.assertEqual(self.picture.url, 'test.url')
import os.path import argparse import torch import torch.nn as nn import torch.optim as optim from torch.utils.data import DataLoader, random_split from config.ConfigDataset import ConfigDataset from config.ConfigHyperparams import ConfigHyperparams from config.ConfigCheckpoints import ConfigCheckpoints from config.ConfigEEGNet import ConfigEEGNet from model.eegnet_pt import EEGNet class EEGNetTrain(): def __init__(self, config_dataset: ConfigDataset, config_hyperparams: ConfigHyperparams, config_checkpoints: ConfigCheckpoints, config_eegnet: ConfigEEGNet) -> None: # Dataset config self.config_dataset = config_dataset # Hyperparams self.config_hyperparams = config_hyperparams # Checkpoints self.checkpoint_epoch = None self.checkpoint_loss = None self.config_checkpoints = config_checkpoints # EEGNet hyperparams self.config_eegnet = config_eegnet self.loss = nn.CrossEntropyLoss() self.optimizer = optim.Adam(self.config_eegnet.get_model().parameters(), lr=self.config_hyperparams.learning_rate) self.checkpoint_restart() self.dataset_prepare(config_hyperparams.batch_size, config_hyperparams.num_workers) # Set training device if torch.cuda.is_available(): self.config_eegnet.get_model().cuda() def dataset_prepare(self, batch_size:int = 32, num_workers: int = 2) -> None: # Data load dataset = self.config_dataset.make_dataset() # Split into train and validation sets length = dataset.__len__() len_train = int(length * 0.8) len_test = int(length * 0.1) len_val = length - len_train - len_test train_data, test_data, val_data = random_split(dataset, [len_train, len_test, len_val]) self.train_loader = DataLoader(dataset=train_data, batch_size=batch_size, num_workers=num_workers) self.test_loader = DataLoader(dataset=test_data, batch_size=batch_size, num_workers=num_workers) self.val_loader = DataLoader(dataset=val_data, batch_size=batch_size, num_workers=num_workers) def fit(self) -> None: print(self.config_eegnet.get_model()) losses_train = list() if self.config_hyperparams.overfit_on_batch: batch0 = self.train_loader.__iter__().next() if self.config_hyperparams.overfit_on_batch: batches_to_train_on = 1 else: batches_to_train_on = self.train_loader.__len__() # Restore epoch from checkpoint data if not self.config_checkpoints.start_fresh: print(f"Continue from epoch: {self.checkpoint_epoch}. Validation loss: {self.checkpoint_loss:.2f}") epoch_start = self.checkpoint_epoch + 1 else: epoch_start = 0 for epoch in range(epoch_start, self.config_hyperparams.epochs_max): batch_counter = 1 for batch in self.train_loader: if self.config_hyperparams.overfit_on_batch: batch = batch0 print(f"\rEpoch: {epoch} training step 1/6: Batch: {batch_counter}/{batches_to_train_on}", end="") # Manipulate shape of x, y to become suitable for Conv1d() x, y = batch x = x.permute(0, 2, 1) y = y.max(1)[1] # For CrossEntropyLoss() if torch.cuda.is_available(): x = x.cuda() # 1. Forward propagation print(f"\rEpoch: {epoch} training step 2/6: Batch: {batch_counter}/{batches_to_train_on}", end="") l = self.config_eegnet.get_model()(x) # 2. Compute loss print(f"\rEpoch: {epoch} training step 3/6: Batch: {batch_counter}/{batches_to_train_on}", end="") if torch.cuda.is_available(): y = y.cuda() J = self.loss(l, y) # 3. Zero the gradients print(f"\rEpoch: {epoch} training step 4/6: Batch: {batch_counter}/{batches_to_train_on}", end="") self.config_eegnet.get_model().zero_grad() # 4. Backward propagation print(f"\rEpoch: {epoch} training step 5/6: Batch: {batch_counter}/{batches_to_train_on}", end="") J.backward() # 5. Step in the optimizer print(f"\rEpoch: {epoch} training step 6/6: Batch: {batch_counter}/{batches_to_train_on}", end="") self.optimizer.step() losses_train.append(J.item()) if self.config_hyperparams.overfit_on_batch: break batch_counter += 1 loss_validation = self.validate() print(f"\tTrain loss: {torch.Tensor(losses_train).mean():.2f}", end="\t") print(f"Validation loss: {loss_validation:.2f}") # Save model state after an epoch if self.config_checkpoints.has_to_save_checkpoint(epoch): self.checkpoint_save(epoch, loss_validation) return def validate(self) -> float: losses_val = list() for batch in self.val_loader: x, y = batch x = x.permute(0, 2, 1) y = y.max(1)[1] if torch.cuda.is_available(): x = x.cuda() y = y.cuda() # 1. Forward propagation with torch.no_grad(): l = self.config_eegnet.get_model()(x) # 2. Compute loss J = self.loss(l, y) losses_val.append(J.item()) return torch.Tensor(losses_val).mean() def checkpoint_save(self, epoch: int, loss_val: float) -> None: checkpoint_data = { "epoch" : epoch, "loss" : loss_val, "model" : self.config_eegnet.get_model().state_dict(), "optimizer" : self.optimizer.state_dict() } checkpoint_file = f"{self.config_eegnet.get_model().__class__.__name__}-epoch-{epoch}.pt.tar" torch.save(checkpoint_data, checkpoint_file) def checkpoint_load(self, checkpoint_filepath: str) -> tuple: # https://pytorch.org/tutorials/recipes/recipes/saving_and_loading_a_general_checkpoint.html checkpoint_data = torch.load(checkpoint_filepath) self.config_eegnet.get_model().load_state_dict(checkpoint_data["model"]) self.optimizer.load_state_dict(checkpoint_data["optimizer"]) epoch, loss = checkpoint_data["epoch"], checkpoint_data["loss"] return epoch, loss def checkpoint_restart(self): if not self.config_checkpoints.start_fresh: print("Loading checkpoint...", end="") # Find last checkpoint file checkpoint_file = None for file in os.scandir(): if file.is_file() and file.name.endswith(".pt.tar"): if checkpoint_file is None: checkpoint_file = file elif file.stat().st_mtime > checkpoint_file.stat().st_mtime: checkpoint_file = file if checkpoint_file is None: self.config_checkpoints.start_fresh = True print("no checkpoints found") return self.checkpoint_epoch, self.checkpoint_loss = self.checkpoint_load(checkpoint_file.path) self.config_eegnet.get_model().train() print("ok") # Add commandline arguments def parser_add_cmdline_arguments(): parser = argparse.ArgumentParser(description="Train EEGNet for the 1s duration EEG sample") # Datasets datasets = parser.add_argument_group("Datasets", "Select and manipulate datasets") datasets.add_argument("dataset", choices=["5f", "cla", "halt", "freeform", "nomt"], default="cla", help="BCI EEG dataset to work with. More info: https://doi.org/10.6084/m9.figshare.c.3917698.v1\n" "5f - 5F set. 5 finger gestures\n" "cla - CLA set. 3 gestures\n" "halt - HaLT set. 5 gestures\n" "freeform - FREEFORM set\n" "nomt - NoMT set") datasets.add_argument("--no_download", action="store_false", help="Don't download dataset files. Default: False") datasets_options = datasets.add_mutually_exclusive_group() datasets_options.add_argument("--dataset_merge", action="store_false", help="Merge data from all subjects into a single dataset. Default: True") datasets_options.add_argument("--dataset_subjects", nargs='+', type=int, metavar="n", help="Merge data from specific test subjects into a single dataset. " "Takes zero-based single index or a zero-based list of indices") # Checkpoints checkpoints = parser.add_argument_group("Checkpoints", "Manipulate model chekpoints behaviour") checkpoints.add_argument("--start_fresh", action="store_true", help="Ignores checkpoints. Default: False") checkpoints2 = checkpoints.add_mutually_exclusive_group() checkpoints2.add_argument("--no_checkpoints", action="store_true", help="Make no checkpoints. Default: False") checkpoints2.add_argument("--checkpoint_every_epoch", type=int, metavar="val", default=1, help="Save model to checkpoint every 'val' epochs. Default: 1") # Hyperparams hyperparams = parser.add_argument_group("Hyperparams", "Set neuralnet training hyperparams") hyperparams.add_argument("--learning_rate", type=float, metavar="val", default=1e-2, help="Set learning rate. Default: 1e-2", ) hyperparams.add_argument("--epochs_max", type=int, metavar="val", default=10, help="Set maximum number of training epochs. Default: 10") hyperparams.add_argument("--batch_size", type=int, metavar="val", default=32, help="Set training batch size. Default: 32") hyperparams.add_argument("--num_workers", type=int, metavar="val", default=2, help="Set number of CPU worker threads to prepare dataset batches. Default: 2") hyperparams.add_argument("--overfit_on_batch", action="store_true", help="Test if model overfits on a single batch of training data") # EEGNet hyperparams eegnet_hyperparams = parser.add_argument_group("EEGNet hyperparams") eegnet_hyperparams.add_argument("--eegnet_nb_classes", type=int, metavar="Classes", default=4, help="Number of classification categories. Default=4") eegnet_hyperparams.add_argument("--eegnet_kernel_length", type=int, metavar="Krnl_Length", default=63, help="Length of temporal convolution in first layer. We found " "that setting this to be half the sampling rate worked " "well in practice. For the SMR dataset in particular " "since the data was high-passed at 4Hz we used a kernel " "length of 31. " "Must be odd number!", ) eegnet_hyperparams.add_argument("--eegnet_channels", type=int, metavar="Chnls", default=64, help="Number of channels in the EEG data. Default: 64") eegnet_hyperparams.add_argument("--eegnet_samples", type=int, metavar="Freq", default=128, help="Sample frequency (Hz) in the EEG data. Default: 128Hz", ) eegnet_hyperparams.add_argument("--eegnet_f1", type=int, metavar="F1", default=8, help="Number of temporal filters. Default: 8") eegnet_hyperparams.add_argument("--eegnet_d", type=int, metavar="D", default=2, help="Number of spatial filters to learn within each temporal convolution. Default: 2") eegnet_hyperparams.add_argument("--eegnet_dropout_rate", type=float, metavar="dr", default=0.5, help="Dropout rate in Block 1") return parser.parse_args() ''' # Entry point ''' # Commandline arguments args = parser_add_cmdline_arguments() # Dataset config if args.dataset_merge: config_dataset = ConfigDataset(dataset_type=args.dataset, download=args.no_download, dataset_subjects=None) else: config_dataset = ConfigDataset(dataset_type=args.dataset, download=args.no_download, dataset_subjects=args.dataset_subjects) config_hyperparams = ConfigHyperparams(epochs_max=args.epochs_max, learning_rate=args.learning_rate, batch_size=args.batch_size, num_workers=args.num_workers, overfit_on_batch=args.overfit_on_batch) config_checkpoints = ConfigCheckpoints(checkpoint_every_epoch=args.checkpoint_every_epoch, start_fresh=args.start_fresh, no_checkpoints=args.no_checkpoints) config_eegnet = ConfigEEGNet(nb_classes=args.eegnet_nb_classes, channels=args.eegnet_channels, samples=args.eegnet_samples, kernel_length=args.eegnet_kernel_length, f1=args.eegnet_f1, d=args.eegnet_d, dropout_rate=args.eegnet_dropout_rate) trainer = EEGNetTrain(config_dataset, config_hyperparams, config_checkpoints, config_eegnet) trainer.fit()
# %% import helper as hp # Set FIRED base Folder (location where you downloaded the dataset) hp.FIRED_BASE_FOLDER = "/Volumes/Data/NILM_Datasets/FIRED" # hp.FIRED_BASE_FOLDER = "~/FIRED" # load 1Hz power data of the television for complete recording range television = hp.getPower("television", 1) print(television) # %% # load 2 hours of 50Hz power data of powermeter09 (Fridge) of day 2020.08.03 startTs, stopTs = hp.getRecordingRange("2020.08.03 17:25:00", "2020.08.03 19:25:00") fridge = hp.getMeterPower("powermeter09", 50, startTs=startTs, stopTs=stopTs) #Plotting the data is straightforward: import matplotlib.pyplot as plt import numpy as np from datetime import datetime import matplotlib.dates as mdates # Generate timestamps start = fridge["timestamp"] end = start+(len(fridge["data"])/fridge["samplingrate"]) timestamps = np.linspace(start, end, len(fridge["data"])) dates = [datetime.fromtimestamp(ts) for ts in timestamps] # Plot fig, ax = plt.subplots() ax.plot(dates, fridge["data"]["p"], label="active power") ax.plot(dates, fridge["data"]["q"], label="reactive power") # format plot ax.set(xlabel='Time of day', ylabel='Power [W/var]', title='Fridge') ax.xaxis.set_major_formatter(mdates.DateFormatter('%H:%M')) plt.setp(ax.get_xticklabels(), ha="center", rotation=35) plt.legend() plt.show() # %% smartmeter = hp.getMeterPower(hp.getSmartMeter(), 50, startTs=startTs, stopTs=stopTs) # Plot fig, axes = plt.subplots(3, sharex=True, title='Fridge') for i,ax in enumerate(axes): ax.plot(dates, smartmeter[i]["data"]["p"], label="active power") ax.plot(dates, smartmeter[i]["data"]["q"], label="reactive power") # format plot axes[0].set(title='Fridge') axes[1].set(ylabel='Power [W/var]') axes[-1].set(xlabel='Time of day') axes[-1].xaxis.set_major_formatter(mdates.DateFormatter('%H:%M')) plt.setp(axes[-1].get_xticklabels(), ha="center", rotation=35) plt.legend() plt.show() # %% # Data is now loaded on the fly over rsync hp.RSYNC_ALLOWED = True # load two seconds of high freq data powermeter09 (Fridge) startTs, stopTs = hp.getRecordingRange("2020.08.03 17:34:02", "2020.08.03 17:34:04") fridge = hp.getMeterVI("powermeter09", startTs=startTs, stopTs=stopTs) # Generate timestamps start = fridge["timestamp"] end = start+(len(fridge["data"])/fridge["samplingrate"]) timestamps = np.linspace(start, end, len(fridge["data"])) dates = [datetime.fromtimestamp(ts) for ts in timestamps] # Plot fig, ax = plt.subplots() ax.plot(dates, fridge["data"]["i"], label="current") # format plot ax.set(xlabel='Time of day', ylabel='Current [mA]', title='Fridge') plt.setp(ax.get_xticklabels(), ha="center", rotation=35) plt.show()
def calc_bmi(x,y): ans = y/(x*x) return ans x = 2 y = 80 if ans < 18: print("痩せ気味") elif 18 <= ans < 25: print("普通") elif ans >= 25: print("太り気味")
from typing import Union, Set from src.api import APITask, APISection from src.core.errors import TaskError from src.core.models import Task, Section, Project from src.utils import Colors class TaskManager: def __init__(self, token: str, project: Project): self.project = project self.api_section = APISection(token) self.api = APITask(token) def create(self, task_name: str, task_description: str, section_name: str): if len(task_name) < 3: raise TaskError("Task name must be at least three characters") section: Section = self.api_section.fetch_by_name(section_name, self.project.id) if not section: print(Colors.wrap(Colors.RED, "Section not found")) exit(145) task: Task = Task( name=task_name, description=task_description, project_id=self.project.id ) task.section_id = section.id self.api.create(task) print(Colors.wrap(Colors.GREEN, "Task added successfully")) def update(self, task: Task): print(Task(task)) name: str = str( input(Colors.wrap(Colors.YELLOW, "[?] Type name (Enter to skip):")) ) if name and len(name): task.name = name description: str = str( input(Colors.wrap(Colors.YELLOW, "[?] Type description (Enter to skip): ")) ) if description and len(description): task.description = description self.api.update(task) print(Colors.wrap(Colors.GREEN, "Task updated successfully")) def move(self, task_id: int, section_id: int): task: Task = self.api.move(task_id, section_id) print(task) print(Colors.wrap(Colors.GREEN, "Task moved successfully")) def complete(self, task_name: str): task: Task = self.fetch(task_name) if task: updated_task: Task = self.api.complete(task.id) print(updated_task) print(Colors.wrap(Colors.GREEN, "Task completed successfully")) else: print(Colors.wrap(Colors.RED, "Task not found")) def fetch(self, name_or_id: Union[int, str]) -> Union[Task, None]: try: task_id: int = int(name_or_id) task: Task = self.api.fetch_by_id(task_id) return task except ValueError: task_name: str = str(name_or_id) task: Task = self.api.fetch_by_name(task_name, self.project.id) return task def list_all(self, section_name: str, task_status: str, listing_format="long"): tasks = self.__get_tasks_by_section(section_name, task_status) if tasks and len(tasks): for task in tasks: if listing_format == "short": task.show_summary() else: print(task) print( Colors.wrap(Colors.CYAN, "Total number of tasks {}".format(len(tasks))) ) else: print(Colors.wrap(Colors.RED, "No task is found in this project")) def __get_tasks_by_section(self, section_name: str, task_status: str): """Get all tasks based on section name""" if section_name != "all": section: Section = self.api_section.fetch_by_name( section_name, self.project.id ) if not section: print(Colors.wrap(Colors.RED, "Section not found")) exit(48) return self.api.fetch_all_by_section(section.id, task_status) else: return self.api.fetch_all(self.project.id, task_status)
import pathlib import yaml import os import logging logger = logging.getLogger(__name__) with open("settings.yaml", "r", encoding="utf-8") as f: settings = yaml.safe_load(f) # check for required directories required_directories = [] required_directories.append(settings["OUTPUT_DIR_MP3_FILES"]) for each_dir in required_directories: if not os.path.isdir(pathlib.Path(each_dir)): os.makedirs(pathlib.Path(each_dir)) logger.warning(f"{each_dir} had to be created")
# Imports from . import * from ..utils import misc from ..utils import pubtools from ..parsing.grammars import frontiers class FrontiersParser(Parser): '''Parser designed to interact with Frontiers ''' def parse_document(self, document): '''Extract and parse references from a document. Args: document (str) : raw text of document Returns: list of parsed references ''' # Extract raw reference strings raw_refs = self.extract_refs(document) # Parse reference strings parsed_refs = [] for raw_ref in raw_refs: parsed_ref = self.parse_ref(raw_ref) ref_info = { 'raw' : repr(raw_ref), 'ref' : parsed_ref, } parsed_refs.append(ref_info) # Return parsed references return parsed_refs def extract_refs(self, html): '''Extract references from document. Args: html (str) : Document full text Return: refs : List of references ''' # Parse HTML html_parse = BS(html) # Get references refs = html_parse.findAll( 'div', {'class' : re.compile('references', re.I)} ) # Return references return refs def parse_ref(self, ref): '''Parse a raw reference. ''' # Get text from BeautifulSoup object ref_txt = ''.join(ref.findAll(text=True)) # Extract reference parsed_ref = frontiers.scan(frontiers.reference, ref_txt) # Get first match, if any if parsed_ref: parsed_ref = parsed_ref[0] # Get DOI doi_link = ref.find( 'a', href=re.compile('dx\.doi\.org') ) if doi_link: try: doi_href = doi_link['href'] doi_short = re.sub('(?:http://)?dx\.doi\.org/', '', doi_href) parsed_ref['doi'] = doi_short except: pass # Get PubMed ID pmid_text = ref.find( text=re.compile('pubmed abstract', re.I) ) if pmid_text: try: pmid_link = pmid_text.findParent('a') pmid_href = pmid_link['href'] pmid_match = re.search('termtosearch=(\d+)', pmid_href, re.I) pmid = pmid_match.groups()[0] parsed_ref['pmid'] = pmid except: pass # Return reference return parsed_ref
# Quebrando um número '''Crie um programa que leia um número Real qualquer pelo teclado e mostre na tela a sua porção inteira Ex: O número 6,127 tem a parte inteira 6''' from math import trunc num = float(input('Digite um número qualquer: ')) print('O valor digitado foi \033[7;40m''{}\033[m e a sua porção inteira é \033[1;36m''{}'.format(num, trunc(num)))
""" %% %% Construction du point P(t) d'une courbe de Bézier pour %% la valeur t du paramètre, par l'algorithme de Casteljau. %% %% Données : XP, YP, ZP coordonnées des points de contrôle %% t valeur du paramètre %% %% Résultats : x,y,z coordonnées du point P(t) dans R^3 %% """ import numpy as np def cast3d(t,XP,YP,ZP): m = (np.shape(XP)[0]) - 1 xx = XP.copy() yy = YP.copy() zz = ZP.copy() for kk in range(0,m): xxx = xx.copy() yyy = yy.copy() zzz = zz.copy() for k in range(kk,m): xx[k+1] = (1-t)*xxx[k]+t*xxx[k+1] yy[k+1] = (1-t)*yyy[k]+t*yyy[k+1] zz[k+1] = (1-t)*zzz[k]+t*zzz[k+1] x=xx[m] y=yy[m] z=zz[m] return(x,y,z)
"""Manual test all examples.""" # Import local modules from photoshop.api import Application from pathlib import Path root = Path(__file__).parent.parent.parent.joinpath("examples") for script_file in root.glob("*.py"): try: exec(script_file.read_text()) except Exception as err: print(f"Test failed: {script_file}", str(err), end="\n") # Clear up and close all documents. app = Application() while app.documents.length: app.activeDocument.close()
print("Hallo Python-Welt") # Kommentarzeile ''' Kommentarblock ''' ''' Datentypen (Datenarten) in Python: Bezeichnung | Fachbegriff | Abkürzung | Beispiele ============================================================================================================ Ganzzahl | Integer | int | 23, 42, -10, 0 ------------------------------------------------------------------------------------------------------------ Fließkommazahlen | Float | float | 3.14, -1.6, 0.0, 23.0, 1.666 ------------------------------------------------------------------------------------------------------------ Zeichenketten | String | str | "Hallo", "23", "0.0", "Du bist ein guter Mensch." ''' message = "Guten Tag, wie geht es Dir?" print(message) message = "Super, dass Du die Motivation hast, Python zu lernen." print(message) print(type(message)) # gibt den Datentyp von message aus - str (String) x = 23 # Variablenname: x Variablenwert: 23 Variablentyp: Int (Integer) y = 42 # Variablenname: y Variablenwert: 42 Variablentyp: Int (Integer) # Variablenname immer mit einem Kleinbuchstaben beginnen. sum = x + y print(sum) print(x + y) print(sum + sum) x = 0 y = 13 sum = x + y print(sum) firstName = "ada" lastName = "lovelace" fullName = firstName + " " + lastName # hier werden drei Strings aneinander gehängt # Das + Zeichen ist hier keine Addition. Sondern die Strings werden # aneinander gehängt. print(fullName) print("Ada Lovelace schrieb in den 40er-Jahren des 19. Jahrhunderts das erste Computerprogramm der Welt.") print("Gemessen an dem Stand der Forschung der damaligen Zeit ist ihr Werk visionär.") print(fullName.upper()) # fullName in Grossbuchstaben ausgeben print(fullName.lower()) # fullName in Kleinbuchstaben ausgeben x = 3.14 # Variablenname: x Variablenwert: 3.14 Variablentyp: float print(type(x)) print(x) # Warum ist das ein Fehler: # print("Hallo " + 23) # Warum ist das kein Fehler: print("Hallo " + str(23)) #Hilfe print(type(23)) print(type(str(23))) # addieren x = 1 + 2 # subtrahieren x = 10 - 5 # multiplizieren x = 4 * 4 # potenzieren x = 3 ** 3 print(x) # dividieren x = 20 / 10 x = 10.0 / 3.0 print(x) # 3.3333333 x = 10 / 3 print(x) # 3.3333333 Python wandelt die Ganzzahlen (int) in Fließkommazalen (float) um # Fachausdruck für Typumwandlung: "casten" # Was passiert wenn ich eine float-Zahl wie 3.14 in eine int-Zahl umwandle (caste)? print("Achtung:") print(int(3.9)) print("Hier wird aus der float-Zahl 3.14 die Ganzahl 3.") print("Der Teil links hinter den Komma wir einfach abgeschnitten. - Es wird nicht gerundet!!!") print(2 + 3 * 4) # Punkt vor Strichrechnung print((2 + 3) * 4) # Klammerrechnung # Sonderzeichen # Tabulator \t Newline \n print("/tHallo\n\n") message = "\n\n\t1.Zeile\n2.Zeile\n\t3.Zeile\n4.Zeile" print(message) print("\n\n\t" + "1.Zeile" + "\n" + "2.Zeile" + "\n\t" + "3.Zeile" + "\n" + "4.Zeile") message = "1.Zeile\n\t2.Zweile\n\t\t2.Zeile\n\t\t\t3.Zeile\n\t\t\t\t4.Zeile" print(message)
from .base import CustomTestClass import json class TestContactUs(CustomTestClass): def setUp(self) -> None: self.base_data = { "name": "Test", "email": "testuser@example.com", "query": "This is a test query blah blah blah blah blah blah blah blah blah blah blah blah blah", } def test_contact_us(self): response = self.client.post( self.base_url + "/api/contact-us", data=json.dumps(self.base_data), ) self.assertEqual(response.status_code, 201) def test_invalid_data(self): data = self.base_data.copy() data.update({"extra_field": True}) response = self.client.post(self.base_url + "/api/contact-us", data=data) self.assertEqual(response.status_code, 400) data = self.base_data.copy() data["email"] = "invalidaddr@123" response = self.client.post(self.base_url + "/api/contact-us", data=data) self.assertEqual(response.status_code, 400)
from defusedxml.lxml import fromstring from lxml import etree from six.moves import range from six.moves.urllib.parse import urlparse from zeep import ns from zeep.exceptions import XMLSyntaxError from zeep.parser import absolute_location class NamePrefixGenerator(object): def __init__(self, prefix='_value_'): self._num = 1 self._prefix = prefix def get_name(self): retval = '%s%d' % (self._prefix, self._num) self._num += 1 return retval class UniqueNameGenerator(object): def __init__(self): self._unique_count = {} def create_name(self, name): if name in self._unique_count: self._unique_count[name] += 1 return '%s__%d' % (name, self._unique_count[name]) else: self._unique_count[name] = 0 return name class ImportResolver(etree.Resolver): """Custom lxml resolve to use the transport object""" def __init__(self, transport): self.transport = transport def resolve(self, url, pubid, context): if urlparse(url).scheme in ('http', 'https'): content = self.transport.load(url) return self.resolve_string(content, context) def parse_xml(content, transport, base_url=None): parser = etree.XMLParser(remove_comments=True, resolve_entities=False) parser.resolvers.add(ImportResolver(transport)) try: return fromstring(content, parser=parser, base_url=base_url) except etree.XMLSyntaxError as exc: raise XMLSyntaxError("Invalid XML content received (%s)" % exc.message) def load_external(url, transport, base_url=None): if base_url: url = absolute_location(url, base_url) response = transport.load(url) return parse_xml(response, transport, base_url) def max_occurs_iter(max_occurs, items=None): assert max_occurs is not None generator = range(0, max_occurs if max_occurs != 'unbounded' else 2**31-1) if items is not None: for i, sub_kwargs in zip(generator, items): yield sub_kwargs else: for i in generator: yield i def create_prefixed_name(qname, schema): if not qname: return if schema and qname.namespace: prefix = schema.get_shorthand_for_ns(qname.namespace) if prefix: return '%s:%s' % (prefix, qname.localname) elif qname.namespace in ns.NAMESPACE_TO_PREFIX: prefix = ns.NAMESPACE_TO_PREFIX[qname.namespace] return '%s:%s' % (prefix, qname.localname) if qname.namespace: return qname.text return qname.localname
#!/usr/bin/env python3 # -*- coding: utf-8 -*- from os import path from yaml import safe_load from ao.model.render import Render from unittest import TestCase, expectedFailure from pytest import mark class RenderTest(TestCase): @staticmethod def parse_yaml(filename): filepath = path.join(path.dirname(__file__), 'fixtures/{}.yaml'.format(filename)) with open(filepath, 'r') as stream: return safe_load(stream.read()) def test__01__render__pass(self): # prepare directory = path.join(path.dirname(__file__),"../../data/templates") data = RenderTest.parse_yaml("render") # run - test should fail if any exception occurs try: render = Render(directory=directory) dirpath = render.getDirectory() version = render.getVersion() templates = render.getTemplates() result = render.render( data=data, template_name="action") except Exception as exc: self.fail("Failed with {}".format(str(exc))) # check self.assertEqual(dirpath, directory) self.assertIsNotNone(version) self.assertIsNotNone(templates) self.assertIsNotNone(result)
# /* # * Copyright (C) 2020 ACTUAL Systems, Inc. # * # * http://www.actualhq.com # * # * In collaboration with UNICEF/Giga: https://gigaconnect.org # * # * Licensed under the Apache License, Version 2.0 (the "License"); # * you may not use this file except in compliance with the License. # * You may obtain a copy of the License at # * # * http://www.apache.org/licenses/LICENSE-2.0 # * # * Unless required by applicable law or agreed to in writing, software # * distributed under the License is distributed on an "AS IS" BASIS, # * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # * See the License for the specific language governing permissions and # * limitations under the License. # */ def pause(): programPause = input("Press the <ENTER> key to continue...") import argparse #For input arguments import sys import io sys.path.insert(0, "./") import numpy as np import pandas as pd from computeBandwidth import computeBandwidth from findNumberOfNeighbors import findNumberOfNeighbors from computeSchoolCensus import computeSchoolCensus from computeCosts import computeCosts from consolidateSchools import consolidateSchools import time #Analysis Config sensitivity = 0 clipping = 0 #Set up inputs parser = argparse.ArgumentParser() parser.add_argument("-c", "--Country", help="Country for Analysis", action="store") args = parser.parse_args() #Import School DataFrame #country = 'Kenya' #country = 'Sierra Leone' pjDefault = 1 if args.Country == 'Honduras': schoolDataPath = 'Honduras Data/HN_School_DN_2G_3G_4G.xlsx' popDataPath = 'Honduras Data/hnd_ppp_2020_UNadj.tif' import projectInputsHonduras as pjIn pjDefault = 0 if args.Country == 'Rwanda': schoolDataPath = 'Rwanda Data/RW_connectivity_GIGA_GSMA_DistanceNodes.xlsx' popDataPath = 'Rwanda Data/rwa_ppp_2020_UNadj.tif' import projectInputsRwanda as pjIn pjDefault = 0 if args.Country == 'Kenya': schoolDataPath = 'Kenya Data/Primary Schools list GPS Coordinates 2020_Tusome Data_14Feb2020_ITU.xlsx' popDataPath = 'Kenya Data/ken_ppp_2020_UNadj.tif' if args.Country == 'Sierra Leone': schoolDataPath = 'Sierra Leone Data/sl_school_connectivity.xlsx' popDataPath = 'Sierra Leone Data/sle_ppp_2020_UNadj.tif' print("Country:", args.Country) print("Loading from file", schoolDataPath) schoolData = pd.read_excel(schoolDataPath) #Add columns to DF for computed values schoolData['Number of Pupils'] = '' schoolData['Number of Teachers'] = '' schoolData['Number of Classrooms'] = '' schoolData['Schools Within 10 km'] = '' schoolData['Schools Within 1 km'] = '' schoolData['Distance to Nearest School'] = '' schoolData['Population Within 1 km'] = '' schoolData['Population Within 10 km'] = '' schoolData['Local Population'] = '' schoolData['Local Households'] = '' schoolData['Bandwidth'] = '' schoolData['Overnight Comms Cost'] = '' schoolData['Annual Comms Cost'] = '' schoolData['Overnight Power Cost'] = '' schoolData['Annual Power Cost'] = '' schoolData['Overnight Cost'] = '' schoolData['Annual Cost'] = '' schoolData['Tech'] = '' #Import project global data print("Importing Project Config") if (pjDefault == 1): import projectInputs as pjIn import techInputs as techIn dictionaries = ["configuration","usage", "EMIS"] techTypes = ['fiber','cell2G','cell3G','cell4G','WISP','satellite'] #=======Drop schools that are within range of each other (assume same school building) radiusSameSchool = 10 #m schoolData = consolidateSchools(schoolData,radiusSameSchool,1) #=======Compute population of each school #Compute number of schools within a given radius of each school print("Computing populations for each school") radius = 10 #km verbose_schooldata = 0 nearestSchoolData = findNumberOfNeighbors(schoolData,radius,verbose_schooldata) schoolData['Schools Within 10 km'] = nearestSchoolData['numPoints'] schoolData['Distance to Nearest School'] = nearestSchoolData['nearestNeighbor'] #Compute population around school verbose_census = 0 #Figure students in each school studentPopRatio = pjIn.demo['schoolAgeFraction'] * pjIn.demo['schoolEnrollmentFraction'] if 'num_students' in schoolData.columns: schoolData['Number of Pupils'] = schoolData['num_students'] else: schoolData['Population Within 10 km'] = computeSchoolCensus(schoolData,radius,popDataPath,verbose_census) schoolData['Number of Pupils'] = np.ceil(studentPopRatio * schoolData['Population Within 10 km'] /(schoolData['Schools Within 10 km']+1)) schoolData['Number of Teachers'] = np.ceil(schoolData['Number of Pupils']/pjIn.demo['studentTeacherRatio']) #Edge Cases schoolData['Number of Teachers'][schoolData['Number of Teachers'] < 1] = 1 #Should be at least 1 teacher.... schoolData['Number of Teachers'][schoolData['Number of Pupils'] == 0] = 0 #Unless there are no students schoolData['Number of Classrooms'] = np.ceil(schoolData['Number of Teachers'] * pjIn.demo['teacherClassroomRatio']) print(schoolData['Number of Pupils'].describe()) print(schoolData['Number of Teachers'].describe()) #Compute local population (within 1 km) who will come to the school for internet radiusLocalInternet = 1 #km verbose_localpop = 0 nearestSchoolInternetData = findNumberOfNeighbors(schoolData,radiusLocalInternet,verbose_localpop) schoolData['Schools Within 1 km'] = np.maximum(1,nearestSchoolInternetData['numPoints']) #Divide population among local schools to not overcount bandwidth needs schoolData['Population Within 1 km'] = computeSchoolCensus(schoolData,radiusLocalInternet,popDataPath,verbose_localpop) schoolData['Local Population'] = schoolData['Population Within 1 km']/schoolData['Schools Within 1 km'] schoolData['Local Households'] = np.floor(schoolData['Local Population']/pjIn.demo['peoplePerHousehold']) print(schoolData['Local Population'].describe()) #=======Compute Bandwidth print("Computing Bandwidth") for schoolIndex in schoolData.index: #for schoolIndex in range(10): print("Computing BW for:",schoolIndex) verbose = 0 finalTechSelection = 0 result = [] specificSchoolData = schoolData.iloc[schoolIndex] #Compute bandwidth BWNom = computeBandwidth(specificSchoolData,pjIn,verbose) schoolData['Bandwidth'][schoolIndex] = BWNom #=======Figure out correct tech option -- to revise later schoolData['Tech'][((schoolData['Bandwidth'] < techIn.cell4G['speed']) & (schoolData['Tech'] == '') & (schoolData['Type of Cell Coverage'] == '4G'))] = 'cell4G' schoolData['Tech'][(schoolData['Distance to Nearest Fiber'] < 10) & (schoolData['Tech'] == '')] = 'fiber' schoolData['Tech'][((schoolData['Distance to Nearest Fiber'] >= 10) & (schoolData['Distance to Nearest Fiber'] < 20))] = 'WISP' schoolData['Tech'][((schoolData['Bandwidth'] < techIn.cell2G['speed']) & (schoolData['Tech'] == '') & (schoolData['Type of Cell Coverage'] == '2G'))] = 'cell2G' schoolData['Tech'][((schoolData['Bandwidth'] < techIn.cell3G['speed']) & (schoolData['Tech'] == '') & (schoolData['Type of Cell Coverage'] == '3G'))] = 'cell3G' schoolData['Tech'][(schoolData['Tech'] == '')] = 'satellite' print(schoolData['Tech'].describe()) #=======Compute Costs verbose_costs = 1 schoolData['Overnight Comms Cost'], schoolData['Annual Comms Cost'], schoolData['Overnight Power Cost'], schoolData['Annual Power Cost'] = computeCosts(schoolData,pjIn,techIn,techTypes,verbose_costs) schoolData['Overnight Cost'] = schoolData['Overnight Comms Cost'] + schoolData['Overnight Power Cost'] schoolData['Annual Cost'] = schoolData['Annual Comms Cost'] + schoolData['Annual Power Cost'] #print(schoolData['Overnight Cost']) schoolData.to_csv("school_output.csv") # if sensitivity == 1: # verbose = 0 # # for dicts in dictionaries: # for key, value in getattr(pjIn,dicts).items(): # if isinstance(value, list): # # ########## # #Run for nominal # BWNom = computePerformance(specificSchoolData,pjIn,verbose) # # # ########## # #Run for max input value # holdvalue = value[0] # value[0] = holdvalue * (1 + value[2]) # BWMaxInput = computePerformance(specificSchoolData,pjIn,verbose) # # ########## # #Run for min input value # value[0] = holdvalue * (1 - value[1]) # # #Inputs should not be negative - clip and store # if value[0] < 0: # value[0] = 0 # # BWMinInput = computePerformance(specificSchoolData,pjIn,verbose) # # #Return value from placeholder # value[0] = holdvalue # # # # ##########Computation. Handle nan (ex. if project returns nothing) # # if np.isnan(BWMinInput): # BWMax = BWMaxInput # BWMin = -1 # else: # BWMax = np.maximum(BWMaxInput,BWMinInput) # BWMin = np.minimum(BWMaxInput,BWMinInput) # # # result = result + [key,BWNom,BWMin,BWMax,(BWMax-BWMin)] # #resultDF.append(result) # result = np.reshape(result,(-1,5)) # # # resultDF = pd.DataFrame(result, columns=['Variable','BWNom','BWMin','BWMax','BWRange']) # resultDF['BWNom'] = pd.to_numeric(resultDF['BWNom'], errors='ignore') # resultDF['BWMin'] = pd.to_numeric(resultDF['BWMin'], errors='ignore') # resultDF['BWMax'] = pd.to_numeric(resultDF['BWMax'], errors='ignore') # resultDF['BWRange'] = pd.to_numeric(resultDF['BWRange'], errors='ignore') # pd.options.display.float_format = '{:.2f}'.format # # # resultDF = resultDF.sort_values(by=['BWRange'],ascending=False) # #print(resultDF) #Plot # # Y = np.arange(len(resultDF.index)) # range = list(resultDF["BWRange"].astype(np.float)) # range = np.array(range) # start = list(resultDF["BWMin"].astype(np.float)) # start = np.array(start) # # plt.barh(Y,range, left=start) #plt.show()
import os import textwrap import yaml from cloudmesh.common.util import readfile class Converter: def __init__(self, filename=None, template=None): # data/catalog/azure/bot_services.yaml" if not os.path.exists(filename): raise ValueError("file can not be found") self.content = readfile(filename) self.template_form = None if template is not None: self.template_form = readfile(template) self.data = yaml.safe_load(self.content) self.data["edit_url"] = "https://github.com/laszewsk/nist/blob/main/catalog/" + \ str(filename).split("catalog/")[1] day, month, year = str(self.data["modified"]).split("-") import calendar self.data["label"] = "wrong" self.data["title"] = self.data["name"] self.data["year"] = year self.data["month"] = calendar.month_abbr[int(month)].lower() self.data["url"] = self.data["documentation"] if "http" not in self.data["url"]: raise ValueError("url not found") def dedent(self, text): return textwrap.dedent(text).strip() + "\n" def template(self): return self.dedent(self.template_form.format(**self.data)) def bibtex(self): bibtex_entry = """ @misc{{{id}, title={{{title}}}, name={{{name}}}, author={{{author}}}, howpubllished={{Web Page}}, month = {month}, year = {{{year}}}, url = {{{url}}} }} """ return self.dedent(bibtex_entry.format(**self.data)) def hugo_markdown(self): for entry in ["tags", "categories"]: self.data[entry] = "\n".join(["- " + value for value in self.data[entry]]) # description: {description} # author: {author} markdown_entry = textwrap.dedent(""" --- date: {modified} title: {title} tags: {tags} categories: {categories} linkTitle: MISSING draft: False github_url: {edit_url} --- {{{{% pageinfo %}}}} {description} {{{{% /pageinfo %}}}} ## Description {description} ## Version {version} ## Documentation {documentation} ## SLA {sla} ## Data {data} """) return self.dedent(markdown_entry.format(**self.data)) def markdown(self): self.data["tags"] = ", ".join(self.data["tags"]) self.data["categories"] = ", ".join(self.data["categories"]) markdown_entry = """ # {title} * Author: {author} * Version: {version} * Modified: {modified} * Created: {created} * <{documentation}> * Tags: {tags} * Categories: {categories} ## Description {description} ## SLA {sla} ## Data {data} """ return self.dedent(markdown_entry.format(**self.data))
#!/usr/bin/python import requests import json # Import modules for CGI handling import cgi, cgitb # Create instance of FieldStorage form = cgi.FieldStorage() # Get data from fields user_title = form.getvalue('search_title') print "Content-type: text/html\n\n"; # Setting attributes to send to Wikipedia API baseurl = 'http://en.wikipedia.org/w/api.php' search_atts = {} search_atts['action'] = 'query' search_atts['list'] = 'search' search_atts['srwhat'] = 'text' search_atts['format'] = 'json' search_atts['srsearch'] = user_title search_resp = requests.get(baseurl, params = search_atts) search_data = search_resp.json() title = search_data["query"]["search"][0]["title"] # Make the title with no space which will be needed for making a url link to send for summary title_w_no_space = "" for i in title: if i==" ": title_w_no_space = title_w_no_space + "_" else: title_w_no_space = title_w_no_space + i # Getting related topics using the result given by Wikipedia API topics = [] for key in search_data["query"]["search"]: topics.append (key["title"]) topics = topics [1:len(topics)] # Summarizing the content: # setting attributes for to send to Smmry API link_for_smmry = 'https://en.wikipedia.org/wiki/' + title_w_no_space smmry_base_url = 'http://api.smmry.com/' #smmry_atts = {} #smmry_atts ['SM_URL'] = 'https://en.wikipedia.org/wiki/Guyana' #smmry_atts ['SM_API_KEY'] = '6F297A53E3' # represents your registered API key. # Optional, X represents the webpage to summarize. #smmry_atts ['SM_LENGTH'] = N # Optional, N represents the number of sentences returned, default is 7 #smmry_atts ['SM_KEYWORD_COUNT'] = N # Optional, N represents how many of the top keywords to return #smmry_atts ['SM_QUOTE_AVOID'] # Optional, summary will not include quotations #smmry_atts ['SM_WITH_BREAK'] # Optional, summary will contain string [BREAK] between each sentence api_key_link = '&SM_API_KEY=6F297A53E3&SM_URL=' api_lenght = 'SM_LENGTH=7&SM_WITH_BREAK' #print api_key_link api_link = smmry_base_url + api_lenght + api_key_link + link_for_smmry #smmry_resp = requests.get('http://api.smmry.com/&SM_API_KEY=6F297A53E3&SM_URL=https://en.wikipedia.org/wiki/Guyana') smmry_resp = requests.get(api_link) smmry_data = smmry_resp.json() content= '<p>Try adding another key word.</p><a style="color:white;" id="backbtn" href="#" onclick="myFunction()" >Go back.</a>' try: content = smmry_data['sm_api_content'] except: pass content_with_non_ascii = "" for word in content: if ord(word) < 128: content_with_non_ascii+=word else: content_with_non_ascii+= "?" if len(content_with_non_ascii) >0: content = content_with_non_ascii # replacing "[BREAK]"s with a new line while "[BREAK]" in content: length = len (content) break_position = content.find("[BREAK]") content = content [0:break_position] + "<br><br>" + content [break_position+7: length] print '<div id="all-cont-alt"><div class="select-nav"><div id="nav-top-main"><a id="backbtn" href="#" onclick="myFunction()" ><i style=" position: relative;margin-left: 25px;background-color: #00cfb9;padding: 13px;top: 74px;border-radius: 16px;color: #ffffff;text-align: left;" class= "fa fa-chevron-left fa-2x"></i></a><h1>Geddit</h1></div></div>' print '<div id="loaddddd"></div><div id="contentss">' print '<h1 id="user-title">' print user_title print "</h1>" print content print '</div></div>' print '<h3 class="related">Related Topics</h3>' print '<div id="rel-holder">' for key in topics: if all(ord(c) < 128 for c in key): print '<h5 class="related-topics" onclick="relatedFunction();">' print key print '</h5>' else: pass print '</div>'
import requests import json import os from dotenv import load_dotenv load_dotenv(verbose=True) class RestClient: def __init__(self): self.base_url = os.getenv("BASE_URL") self.token = None def auth(self): if (self.token): return self.token url = f"{self.base_url}/oauth/token" payload = { 'client_id': os.getenv('CLIENT_ID'), 'grant_type': 'password', 'username': os.getenv('USER_NAME'), 'password': os.getenv('PASSWORD') } files = [] headers = {} response = requests.request("POST", url, headers=headers, data=payload, files=files) print(response.text) self.token = json.loads(response.text)['access_token'] return self.token def get_collection(self, collection): url = f"{self.base_url}/{collection}" payload = {} headers = {'Authorization': f'Bearer {self.auth()}'} result = [] while True: response = requests.request("GET", url, headers=headers, data=payload) print(response.text) resp_json = json.loads(response.text) result.extend(resp_json["_items"]) if not 'next' in resp_json['_links']: break url = f"{self.base_url}/{resp_json['_links']['next']['href']}" return result # print(json.dumps(result, indent=4, sort_keys=True)) def post_collection(self, collection, list): url = f"{self.base_url}/{collection}" print(f"Trying to post to {url}") payload = list headers = { 'Authorization': f'Bearer {self.auth()}', 'Content-Type': 'application/json' } # print(json.dumps(payload, indent=4, sort_keys=True)) response = requests.request("POST", url, headers=headers, data=json.dumps(payload)) print(response.text) return [obj["_id"] for obj in json.loads(response.text)["_items"]] def delete_collection(self, collection): print(f"Deleting {collection}") for obj in self.get_collection(collection): url = f"{self.base_url}/{collection}/{obj['_id']}" headers = { 'Authorization': f'Bearer {self.auth()}', 'If-Match': obj['_etag'] } response = requests.request("DELETE", url, headers=headers, data={}) if response.text: print(response.text)
import os from django.contrib.gis.db import models from django.conf import settings class Layer(models.Model): name = models.CharField(max_length=50,unique=True) def __unicode__(self): return u"%s" % (self.name) class Feature(models.Model): fid = models.AutoField(primary_key=True) layer = models.ForeignKey(Layer) geom = models.PolygonField(srid=4326) objects = models.GeoManager() def __unicode__(self): return u"Feature %d of layer %s" % (self.fid, self.layer) class Attribute(models.Model): key = models.CharField(max_length=50) value = models.TextField() feature = models.ForeignKey(Feature) def __unicode__(self): return u"%s::%s" % (self.key,self.value) rastdir = os.path.abspath(os.path.join(settings.MEDIA_ROOT, "xyquery_rasters")) if not os.path.exists(rastdir): os.mkdir(rastdir) class Raster(models.Model): layer = models.ForeignKey(Layer) filepath = models.FilePathField(path=rastdir, recursive=True) def __unicode__(self): return u"Raster layer %s" % (self.layer)
''' Read and write data to a Lego Mindstorm NXT brick using serial bluetooth connection. You'll need to modify __init__ for unix style serial port identification in order to use this on Linux. Blue enables raw byte transfer TypeBlue utilizes NXT mailbox number for type identification. Usage: 1. Enable a bluetooth serial port to accept connection requests from NXT. 2. Find and connect computer from NXT bluetooth menu. Note serial port number; store in comport_num. 3. From python try this code, note the try finally and make sure the connection is established so that you are not waiting all the time for timeouts! It is a real pain getting the comport back from a dropped connection. import blueNXT try: b = blueNXT.TypeBlue(comport_num) b.put('Hello NXT!') b.putall(False, True, 1, 'two') b.get() finally: b.close() 4. Write an interface to remote control your robots and share! ''' __author__ = 'Justin Shaw' import sys import serial import struct import time class Blue: ''' A bluetooth connection to a Lego NXT brick ''' huh = struct.pack('h', 2432) # don't really know what this is def __init__(self, comport=9, filename=None, mode='r', timeout=10): ''' comport - integer com number for serial port filename and mode are for debug ''' if filename is None: self.s = serial.Serial('COM%d' % comport, timeout=timeout) else: self.s = open(filename, mode) def get(self): ''' Return payload, payload Get next message from NXT, return un-molested payload i.e. bytes. Use get_int() for integers and get_bool() for booleans ''' sz = self.s.read(2) payload = None box = None if len(sz) == 2: sz = struct.unpack('h', sz)[0] # print 'sz', sz if 0 < sz < 1000: msg = self.s.read(sz) # print 'msg', msg dat = msg[:4] # for c in dat: # print ord(c) # print struct.unpack('h', msg[:2]) box = ord(dat[2]) + 1 payload = msg[4:-1] return payload, box def put(self, payload, box=1): ''' Send a raw message to NXT payload -- bytes to send box -- 1 to 10, which mail box on NXT to place message in ''' # sz msg----> 0 # 0123456789 ... n payload += chr(0) pl_sz = len(payload) sz = pl_sz + 4 header = struct.pack('h2sbb', sz, self.huh, box - 1, pl_sz) out = struct.pack('6s%ds' % pl_sz, header, payload) # print 'out', out dat = out[2:6] # for c in dat: # print ord(c) # print # self.s.write('\x11\x00\x80\t\x00\r<0123456789>\x00') self.s.write(out) def __del__(self): try: self.close() except: pass def close(self): self.s.close() class TypeBlue(Blue): ''' Use mailbox number for type information: 1 -- string 2 -- int 3 -- bool else -- string ''' def get(self): ''' Get a message off port. Determine type from box number: 1 -- string 2 -- int 3 -- bool ''' msg, box = Blue.get(self) if box == 2: out = struct.unpack('i', msg)[0] elif box == 3: out = not not(ord(msg)) else: out = msg return out def put(self, val): ''' Put a message on port. Use box to indicate type: 1 -- string 2 -- int 3 -- bool ''' if type(val) == type(''): msg = val box = 1 elif type(val) == type(0): msg = struct.pack('i', val) box = 2 elif type(val) == type(False): msg = struct.pack('b', not not val) box = 3 return Blue.put(self, msg, box) def putall(self, *vals): ''' Send several values to NXT ''' for v in vals: self.put(v) def Blue__test__(): ''' Test that the formats are consistant by reading and writing to a file. No real bluetooth required. ''' # read b = Blue(filename='text.dat') target = '<0123456789>' for i in range(10): msg, box = b.get() assert msg == target, '%s != %s' % (msg, target) # write b = Blue(filename='junk', mode='wb') b.put(target, 2) b = Blue(filename='junk') got, box = b.get() assert box == 2 assert got == target, '%s != %s' % (got, target) b = Blue(filename='num.dat') # type b = TypeBlue(filename='junk', mode='wb') b.put(target) b.put(1) b.put(False) b = TypeBlue(filename='junk') got = b.get() assert got == target got = b.get() assert got == 1 got = b.get() assert got == False def tblue(): ''' Real bluetooth test. ''' try: b = TypeBlue('COM10') for i in range(20): ## only uncomment these if you have the NXT code sending data! # print b.get() # print b.get() # print b.get() # b.put(42) # b.put(False) b.put('HERE % d' % i) b.put(i) if i < 10: b.put(False) else: b.put(True) time.sleep(.25) finally: del b # tblue() # Blue__test__()
import ctypes so10 = ctypes.CDLL("./so10.so") def c_array(values): ArrayType = ctypes.c_double * len(values) return ArrayType(*values) so10.average.restype = ctypes.c_double v1 = [] print(so10.average(c_array(v1), len(v1))) v2 = [1] print(so10.average(c_array(v2), len(v2))) v3 = [1, 2] print(so10.average(c_array(v3), len(v3))) v4 = [1, 2, 3, 4] print(so10.average(c_array(v4), len(v4)))
N,i=int(input()),1 while N>1: if N%2: N=3*N+1 else: N//=2 i+=1 print(i)
# uncompyle6 version 3.7.4 # Python bytecode 3.7 (3394) # Decompiled from: Python 3.7.9 (tags/v3.7.9:13c94747c7, Aug 17 2020, 18:58:18) [MSC v.1900 64 bit (AMD64)] # Embedded file name: T:\InGame\Gameplay\Scripts\Server\situations\situation_simple.py # Compiled at: 2017-05-24 04:11:51 # Size of source mod 2**32: 10990 bytes from sims4.tuning.tunable import TunableList, TunableTuple from situations.situation import Situation from situations.tunable import TunableSituationPhase, TunableSituationCondition import alarms, clock, interactions.utils.exit_condition_manager, services, sims4.log logger = sims4.log.Logger('Situations') class SituationSimple(Situation): INSTANCE_TUNABLES = {'_phases':TunableList(tunable=TunableSituationPhase(description='\n Situation reference.\n ')), '_exit_conditions':TunableList(description='\n A list of condition groups of which if any are satisfied, the group is satisfied.\n ', tunable=TunableTuple(conditions=TunableList(description='\n A list of conditions that all must be satisfied for the\n group to be considered satisfied.\n ', tunable=TunableSituationCondition(description='\n A condition for a situation or single phase.\n '))))} def __init__(self, *args, **kwargs): (super().__init__)(*args, **kwargs) self._phase = None self._phase_index = -1 self._exit_condition_manager = interactions.utils.exit_condition_manager.ConditionalActionManager() self._phase_exit_condition_manager = interactions.utils.exit_condition_manager.ConditionalActionManager() self._phase_duration_alarm_handle = None def _destroy(self): self._remove_exit_conditions() self._remove_phase_exit_conditions() super()._destroy() def _initialize_situation_jobs(self): initial_phase = self.get_initial_phase_type() for job_tuning in initial_phase.jobs_gen(): self._add_job_type(job_tuning[0], job_tuning[1]) def start_situation(self): super().start_situation() self._attach_exit_conditions() self._transition_to_next_phase() def _load_situation_states_and_phases(self): super()._load_situation_states_and_phases() self._attach_exit_conditions() self._load_phase() def _save_custom(self, seed): super()._save_custom(seed) remaining_time = 0 if self._phase_duration_alarm_handle is None else self._phase_duration_alarm_handle.get_remaining_time().in_minutes() seed.add_situation_simple_data(self._phase_index, remaining_time) return seed @classmethod def should_load_after_time_jump(cls, seed): elapsed_time = services.current_zone().time_elapsed_since_last_save().in_minutes() if elapsed_time > seed.duration_override: return False seed.duration_override -= elapsed_time return True def on_time_jump(self): elapsed_time = services.current_zone().time_elapsed_since_last_save() while True: if self._phase_duration_alarm_handle is None: break phase_duration = self._phase_duration_alarm_handle.get_remaining_time() if elapsed_time > phase_duration: elapsed_time -= phase_duration self._transition_to_next_phase() else: phase_duration -= elapsed_time self._remove_phase_exit_conditions() self._attach_phase_exit_conditions(duration_override=(phase_duration.in_minutes())) break return True @classmethod def _verify_tuning_callback(cls): super()._verify_tuning_callback() if len(cls._phases) == 0: logger.error('Simple Situation {} has no tuned phases.', cls, owner='sscholl') if cls._phases[(len(cls._phases) - 1)].get_duration() != 0: logger.error('Situation {} last phase does not have a duration of 0.', cls, owner='sscholl') @classmethod def get_tuned_jobs(cls): job_list = [] initial_phase = cls.get_initial_phase_type() for job in initial_phase.jobs_gen(): job_list.append(job[0]) return job_list @classmethod def get_initial_phase_type(cls): return cls._phases[0] @classmethod def get_phase(cls, index): if cls._phases == None or index >= len(cls._phases): return return cls._phases[index] def _transition_to_next_phase(self, conditional_action=None): new_index = self._phase_index + 1 new_phase = self.get_phase(new_index) logger.debug('Transitioning from phase {} to phase {}', self._phase_index, new_index) self._remove_phase_exit_conditions() self._phase_index = new_index self._phase = new_phase self._attach_phase_exit_conditions() for job_type, role_state_type in new_phase.jobs_gen(): self._set_job_role_state(job_type, role_state_type) client = services.client_manager().get_first_client() if client: output = sims4.commands.AutomationOutput(client.id) if output: output('SituationPhaseTransition; Phase:{}'.format(new_index)) def _load_phase(self): seedling = self._seed.situation_simple_seedling logger.debug('Loading phase {}', seedling.phase_index) self._phase_index = seedling.phase_index self._phase = self.get_phase(self._phase_index) self._attach_phase_exit_conditions(seedling.remaining_phase_time) def get_phase_state_name_for_gsi(self): return str(self._phase_index) def _attach_phase_exit_conditions(self, duration_override=None): self._phase_exit_condition_manager.attach_conditions(self, self._phase.exit_conditions_gen(), self._transition_to_next_phase) duration = duration_override if duration_override is not None else self._phase.get_duration() if duration != 0: self._phase_duration_alarm_handle = alarms.add_alarm(self, clock.interval_in_sim_minutes(duration), self._transition_to_next_phase) def _remove_phase_exit_conditions(self): self._phase_exit_condition_manager.detach_conditions(self) if self._phase_duration_alarm_handle is not None: alarms.cancel_alarm(self._phase_duration_alarm_handle) self._phase_duration_alarm_handle = None def _attach_exit_conditions(self): self._remove_exit_conditions() self._exit_condition_manager.attach_conditions(self, self.exit_conditions_gen(), self._situation_ended_callback) def _remove_exit_conditions(self): self._exit_condition_manager.detach_conditions(self) def exit_conditions_gen(self): for ec in self._exit_conditions: yield ec def _situation_ended_callback(self, conditional_action=None): logger.debug('Situation exit condition met: {}', self) self._self_destruct()
import os import numpy as np from datetime import datetime from math import * # import jdutil import bisect import pdb from taskinit import * try: from astropy.io import fits as pyfits except: try: import pyfits except ImportError: raise ImportError('Neither astropy nor pyfits exists in this CASA installation') # from astropy.constants import R_sun, au def read_horizons(ephemfile=None): # inputs: # ephemfile: # OBSERVER output from JPL Horizons for topocentric coordinates with for example # target=Sun, observer=VLA=-5 # extra precision, quantities 1,17,20, REFRACTION # routine goes through file to find $$SOE which is start of ephemeris and ends with $$EOE # outputs: a Python dictionary containing the following: # timestr: date and time as a string # time: modified Julian date # ra: right ascention, in rad # dec: declination, in rad # rastr: ra in string # decstr: dec in string # p0: solar p angle, CCW with respect to the celestial north pole # delta: distance from the disk center to the observer, in AU # delta_dot: time derivative of delta, in the light of sight direction. Negative means it is moving toward the observer # if not ephemfile or ephemfile.isspace(): raise ValueError, 'Please specify input ephem file!' if not os.path.isfile(ephemfile): raise ValueError, 'The specified input ephem file does not exist!' # initialize the return dictionary ephem0 = dict.fromkeys(['time', 'timestr', 'ra', 'dec', 'rastr', 'decstr', 'delta', 'delta_dot', 'p0']) f = open(ephemfile, 'rU') # force the universal newline mode lines = f.readlines() f.close() nline = len(lines) for i in range(nline): line = lines[i] if line[0:5] == '$$SOE': # start recording istart = i + 1 if line[0:5] == '$$EOE': # end recording iend = i newlines = lines[istart:iend] nrec = len(newlines) ephem_ = [] for j in range(nrec): line = newlines[j] dt = datetime.strptime(line[1:18], '%Y-%b-%d %H:%M') newdtstr = dt.strftime('%Y-%m-%dT%H:%M') ephem0['timestr'] = newdtstr mjd = qa.quantity(newdtstr) # jd=jdutil.datetime_to_jd(dt) # mjd=jdutil.jd_to_mjd(jd) ephem0['time'] = mjd ephem0['rastr'] = line[23:36] ephem0['decstr'] = line[37:50] ephem0['ra'] = {'unit': 'rad', 'value': radians( (long(line[23:25]) + long(line[26:28]) / 60. + float(line[29:36]) / 3600.) * 15.)} # in rad ephem0['dec'] = {'unit': 'rad', 'value': radians( long(line[38:40]) + long(line[41:43]) / 60. + float(line[44:50]) / 3600.)} # in rad ephem0['p0'] = {'unit': 'deg', 'value': float(line[51:59])} ephem0['delta'] = {'unit': 'au', 'value': float(line[70:86])} ephem0['delta_dot'] = {'unit': 'km/s', 'value': float(line[88:98])} if line[37] == '-': ephem0['dec']['value'] = -ephem0['dec']['value'] ephem_.append(ephem0.copy()) # convert list of dictionary to a dictionary of arrays times = [ep['time']['value'] for ep in ephem_] ras = [ep['ra']['value'] for ep in ephem_] decs = [ep['dec']['value'] for ep in ephem_] p0s = [ep['p0']['value'] for ep in ephem_] deltas = [ep['delta']['value'] for ep in ephem_] ephem = {'times': times, 'ras': ras, 'decs': decs, 'p0s': p0s, 'deltas': deltas} return ephem def read_msinfo(msfile=None, msinfofile=None): # read MS information # msinfo = dict.fromkeys(['msfile', 'scans', 'fieldids', 'btimes', 'btimestr', 'inttimes', 'ras', 'decs']) ms.open(msfile) scans = ms.getscansummary() scanids = sorted(scans.keys(), key=lambda x: int(x)) nscanid = len(scanids) btimes = [] btimestr = [] etimes = [] fieldids = [] inttimes = [] dirs = [] ras = [] decs = [] for i in range(nscanid): btimes.append(scans[scanids[i]]['0']['BeginTime']) etimes.append(scans[scanids[i]]['0']['EndTime']) fieldid = scans[scanids[i]]['0']['FieldId'] fieldids.append(fieldid) dir = ms.getfielddirmeas('PHASE_DIR', fieldid) dirs.append(dir) ras.append(dir['m0']) decs.append(dir['m1']) inttimes.append(scans[scanids[i]]['0']['IntegrationTime']) ms.close() btimestr = [qa.time(qa.quantity(btimes[i], 'd'), form='fits', prec=10)[0] for i in range(nscanid)] msinfo['msfile'] = msfile msinfo['scans'] = scans msinfo['fieldids'] = fieldids msinfo['btimes'] = btimes msinfo['btimestr'] = btimestr msinfo['inttimes'] = inttimes msinfo['ras'] = ras msinfo['decs'] = decs if msinfofile: np.savez(msinfofile, msfile=msfile, scans=scans, fieldids=fieldids, btimes=btimes, btimestr=btimestr, inttimes=inttimes, ras=ras, decs=decs) return msinfo def ephem_to_helio(msinfo=None, ephem=None, reftime=None, polyfit=None): ## 1. Take a solar ms database, read the scan and field information, find out the pointings (in RA and DEC) ## 2. Compare with the ephemeris of the solar disk center (in RA and DEC) ## 3. Generate VLA pointings in heliocentric coordinates ## inputs: ## msinfo: CASA MS information, output from read_msinfo ## ephem: solar ephem, output from read_horizons ## reftime: list of reference times (e.g., used for imaging) # CASA standard time format, either a single time (e.g., '2012/03/03/12:00:00' ## or a time range (e.g., '2012/03/03/12:00:00~2012/03/03/13:00:00'. If the latter, ## take the midpoint of the timerange for reference. If no date specified, take ## the date of the first scan # polyfit: ONLY works for MS database with only one source with continously tracking; not recommanded unless scan length is too long and want to have very high accuracy ## return value: ## helio: a list of VLA pointing information ## reftimestr: reference time, in FITS format string ## reftime: reference time, in mjd format ## ra: actual RA of VLA pointing at the reference time (interpolated) ## dec: actual DEC of VLA pointing at the reference time (interpolated) ## # CASA knows only RA and DEC of the closest field (e.g. in clean) # ## ra_fld: right ascention of the CASA reference pointing direction ## dec_fld: declination of the CASA reference pointing direction ## raoff: RA offset of the actual VLA pointing to solar center ## decoff: DEC offset of the actual VLA pointing to solar center ## refx: heliocentric X offset of the actual VLA pointing to solar center ## refy: heliocentric Y offset of the actual VLA pointing to solar center ######## Example ######### # msfile='sun_C_20140910T221952-222952.10s.cal.ms' # ephemfile='horizons_sun_20140910.radecp' # ephem=vla_prep.read_horizons(ephemfile=ephemfile) # msinfo=vla_prep.read_msinfo(msfile=msfile) # polyfit=0 # reftime = '22:25:20~22:25:40' if not ephem: raise ValueError, 'Please provide information of the MS database!' if not msinfo: raise ValueError, 'Please provide information of the MS database!' if isinstance(msinfo, str): try: msinfo0 = np.load(msinfo) except: raise ValueError, 'The specified input msinfo file does not exist!' elif isinstance(msinfo, dict): msinfo0 = msinfo else: raise ValueError, 'msinfo should be either a numpy npz or a dictionary' print 'msinfo is derived from: ', msinfo0['msfile'] scans = msinfo0['scans'] fieldids = msinfo0['fieldids'] btimes = msinfo0['btimes'] inttimes = msinfo0['inttimes'] ras = msinfo0['ras'] decs = msinfo0['decs'] ra_rads = [ra['value'] for ra in ras] dec_rads = [dec['value'] for dec in decs] # fit 2nd order polynomial fits to the RAs and DECs # if polyfit: cra = np.polyfit(btimes, ra_rads, 2) cdec = np.polyfit(btimes, dec_rads, 2) # find out pointing direction according to the input time or timerange # if not reftime: raise ValueError, 'Please specify a reference time for pointing/imaging!' if isinstance(reftime, str): reftime = [reftime] if (not isinstance(reftime, list)): print 'input "reftime" is not a valid list. Abort...' nreftime = len(reftime) helio = [] for reftime0 in reftime: helio0 = dict.fromkeys( ['reftimestr', 'reftime', 'ra', 'dec', 'ra_fld', 'dec_fld', 'raoff', 'decoff', 'refx', 'refy', 'p0']) helio0['reftimestr'] = reftime0 if '~' in reftime0: # if reftime0 is specified as a timerange [tbg0, tend0] = reftime0.split('~') tbg_d = qa.getvalue(qa.convert(qa.totime(tbg0), 'd'))[0] tend_d = qa.getvalue(qa.convert(qa.totime(tend0), 'd'))[0] tdur_s = (tend_d - tbg_d) * 3600. * 24. # if no date is specified, add up the date of the first scan if tend_d < 1.: if tend_d >= tbg_d: tend_d += int(btimes[0]) else: tend_d += int(btimes[0]) + 1 if tbg_d < 1.: tbg_d += int(btimes[0]) tref_d = (tbg_d + tend_d) / 2. else: # if reftime0 is specified as a single value tref_d = qa.getvalue(qa.convert(qa.totime(reftime0), 'd')) # if no date is specified, add up the date of the first scan if tref_d < 1.: tref_d += int(btimes[0]) tbg_d = tref_d # use the intergration time ind = bisect.bisect_left(btimes, tref_d) tdur_s = inttims[ind - 1] helio0['reftime'] = tref_d helio0['date-obs'] = qa.time(qa.quantity(tbg_d, 'd'), form='fits', prec=10)[0] helio0['exptime'] = tdur_s # find out RA and DEC coords according to the reference time # if polyfit, then use the 2nd order polynomial coeffs ind = bisect.bisect_left(btimes, tref_d) if ind > 1: dt = tref_d - btimes[ind - 1] if ind < len(btimes): scanlen = btimes[ind] - btimes[ind - 1] (ra_b, ra_e) = (ras[ind - 1]['value'], ras[ind]['value']) (dec_b, dec_e) = (decs[ind - 1]['value'], decs[ind]['value']) if ind >= len(btimes): scanlen = btimes[ind - 1] - btimes[ind - 2] (ra_b, ra_e) = (ras[ind - 2]['value'], ras[ind - 1]['value']) (dec_b, dec_e) = (decs[ind - 2]['value'], decs[ind - 1]['value']) if ind == 1: # only one scan exists (e.g., imported from AIPS) ra_b = ras[ind - 1]['value'] ra_e = ra_b dec_b = decs[ind - 1]['value'] dec_e = dec_b scanlen = 10. # radom value dt = 0. if ind < 1: raise ValueError, 'Reference time does not fall into the scan list!' if polyfit: ra = cra[0] * tref_d ** 2. + cra[1] * tref_d + cra[2] dec = cdec[0] * tref_d ** 2. + cdec[1] * tref_d + cdec[2] # if not, use linearly interpolated RA and DEC at the beginning of this scan and next scan else: ra = ra_b + (ra_e - ra_b) / scanlen * dt dec = dec_b + (dec_e - dec_b) / scanlen * dt if ra < 0: ra += 2. * np.pi if ra_b < 0: ra_b += 2. * np.pi # compare with ephemeris from JPL Horizons time0s = ephem['times'] ra0s = ephem['ras'] dec0s = ephem['decs'] p0s = ephem['p0s'] delta0s = ephem['deltas'] ind = bisect.bisect_left(time0s, tref_d) dt0 = time0s[ind] - time0s[ind - 1] dt_ref = tref_d - time0s[ind - 1] dra0 = ra0s[ind] - ra0s[ind - 1] ddec0 = dec0s[ind] - dec0s[ind - 1] dp0 = p0s[ind] - p0s[ind - 1] ddelta0 = delta0s[ind] - delta0s[ind - 1] ra0 = ra0s[ind - 1] + dra0 / dt0 * dt_ref dec0 = dec0s[ind - 1] + ddec0 / dt0 * dt_ref p0 = p0s[ind - 1] + dp0 / dt0 * dt_ref delta0 = delta0s[ind - 1] + ddelta0 / dt0 * dt_ref if ra0 < 0: ra0 += 2. * np.pi # RA and DEC offset in arcseconds decoff = degrees((dec - dec0)) * 3600. raoff = degrees((ra - ra0) * cos(dec)) * 3600. # Convert into heliocentric offsets prad = -radians(p0) refx = (-raoff) * cos(prad) - decoff * sin(prad) refy = (-raoff) * sin(prad) + decoff * cos(prad) helio0['ra'] = ra # ra of the actual pointing helio0['dec'] = dec # dec of the actual pointing helio0['ra_fld'] = ra_b # ra of the field, used as the reference in e.g., clean helio0['dec_fld'] = dec_b # dec of the field, used as the refenrence in e.g., clean helio0['raoff'] = raoff helio0['decoff'] = decoff helio0['refx'] = refx helio0['refy'] = refy helio0['p0'] = p0 # helio['r_sun']=np.degrees(R_sun.value/(au.value*delta0))*3600. #in arcsecs helio.append(helio0) return helio def getbeam(imagefile=None, beamfile=None): if not imagefile: raise ValueError, 'Please specify input images' bmaj = [] bmin = [] bpa = [] beamunit = [] bpaunit = [] chans = [] nimg = len(imagefile) for n in range(nimg): img = imagefile[n] if not os.path.exists(img): raise ValueError, 'The input image does not exist!' ia.open(img) sum = ia.summary() bmaj_ = [] bmin_ = [] bpa_ = [] if sum.has_key('perplanebeams'): # beam vary with frequency nbeams = sum['perplanebeams']['nChannels'] beams = sum['perplanebeams']['beams'] chans_ = [key[1:] for key in beams.keys()] chans_.sort(key=float) for chan in chans_: bmaj0 = beams['*' + chan]['*0']['major']['value'] bmaj_.append(bmaj0) bmin0 = beams['*' + chan]['*0']['minor']['value'] bmin_.append(bmin0) bpa0 = beams['*' + chan]['*0']['positionangle']['value'] bpa_.append(bpa0) beamunit_ = beams['*' + chans_[0]]['*0']['major']['unit'] bpaunit_ = beams['*' + chans_[0]]['*0']['positionangle']['unit'] if sum.has_key('restoringbeam'): # only one beam bmaj_.append(sum['restoringbeam']['major']['value']) bmin_.append(sum['restoringbeam']['minor']['value']) bpa_.append(sum['restoringbeam']['positionangle']['value']) beamunit_ = sum['restoringbeam']['major']['unit'] bpaunit_ = sum['restoringbeam']['positionangle']['unit'] nbeams = 1 chans_ = [0] bmaj.append(bmaj_) bmin.append(bmin_) bpa.append(bpa_) beamunit.append(beamunit_) bpaunit.append(bpaunit_) chans.append(chans_) if beamfile: # write beams to ascii file print 'Writing beam info to ascii file...' f = open(beamfile, 'w') f.write('CHANNEL No., BMAJ (' + beamunit[0] + '), BMIN (' + beamunit[0] + '), BPA (' + bpaunit[0] + ')') f.write("\n") for n in range(nimg): f.write('----For image: ' + imagefile[n] + '----') f.write('\n') chans_ = chans[n] for i in range(len(chans_)): f.write(str(chans_[i]) + ', ' + str(bmaj[n][i]) + ', ' + str(bmin[n][i]) + ', ' + str(bpa[n][i])) f.write("\n") f.close() return bmaj, bmin, bpa, beamunit, bpaunit def imreg(imagefile=None, fitsfile=None, beamfile=None, helio=None, offsetfile=None, toTb=None, scl100=None, verbose=False): if not imagefile: raise ValueError, 'Please specify input image' if not helio: raise ValueError, 'Please specify input coordinate info for image registration. Use ephem_to_helio to derive that info' if not fitsfile: fitsfile = [img + '.fits' for img in imagefile] # if len(imagefile) != len(helio): # raise ValueError, 'Number of input images does not equal to number of helio coord headers!' if len(imagefile) != len(fitsfile): raise ValueError, 'Number of input images does not equal to number of output fits files!' # get restoring beam info (bmajs, bmins, bpas, beamunits, bpaunits) = getbeam(imagefile=imagefile, beamfile=beamfile) nimg = len(imagefile) if verbose: print str(nimg) + ' images to process...' for n in range(nimg): if verbose: print 'processing image #' + str(n) img = imagefile[n] fitsf = fitsfile[n] hel = helio[n] bmaj = bmajs[n] bmin = bmins[n] beamunit = beamunits[n] if not os.path.exists(img): raise ValueError, 'Please specify input image' if os.path.exists(fitsf): raise ValueError, 'Specified fits file already exists!' else: p0 = hel['p0'] ia.open(img) imr = ia.rotate(pa=str(-p0) + 'deg') imr.tofits(fitsf, history=False) imr.close() sum = ia.summary() ia.close() # construct the standard fits header # RA and DEC of the reference pixel crpix1 and crpix2 (imra, imdec) = (sum['refval'][0], sum['refval'][1]) # find out the difference of the image center to the CASA reference center # RA and DEC difference in arcseconds ddec = degrees((imdec - hel['dec_fld'])) * 3600. dra = degrees((imra - hel['ra_fld']) * cos(hel['dec_fld'])) * 3600. # Convert into image heliocentric offsets prad = -radians(hel['p0']) dx = (-dra) * cos(prad) - ddec * sin(prad) dy = (-dra) * sin(prad) + ddec * cos(prad) if offsetfile: try: offset = np.load(offsetfile) except: raise ValueError, 'The specified offsetfile does not exist!' reftimes_d = offset['reftimes_d'] xoffs = offset['xoffs'] yoffs = offset['yoffs'] timg_d = hel['reftime'] ind = bisect.bisect_left(reftimes_d, timg_d) xoff = xoffs[ind - 1] yoff = yoffs[ind - 1] else: xoff = hel['refx'] yoff = hel['refy'] if verbose: print 'offset of image phase center to visibility phase center (arcsec): ', dx, dy print 'offset of visibility phase center to solar disk center (arcsec): ', xoff, yoff (crval1, crval2) = (xoff + dx, yoff + dy) # update the fits header to heliocentric coordinates hdu = pyfits.open(fitsf, mode='update') header = hdu[0].header (cdelt1, cdelt2) = ( -header['cdelt1'] * 3600., header['cdelt2'] * 3600.) # Original CDELT1, 2 are for RA and DEC in degrees header['cdelt1'] = cdelt1 header['cdelt2'] = cdelt2 header['cunit1'] = 'arcsec' header['cunit2'] = 'arcsec' header['crval1'] = crval1 header['crval2'] = crval2 header['ctype1'] = 'HPLN-TAN' header['ctype2'] = 'HPLT-TAN' header['date-obs'] = hel['date-obs'] try: # this works for pyfits version of CASA 4.7.0 but not CASA 4.6.0 header.update('exptime', hel['exptime']) header.update('p_angle', hel['p0']) except: # this works for astropy.io.fits header.append(('exptime', hel['exptime'])) header.append(('p_angle', hel['p0'])) # header.update('comment', 'Fits header updated to heliocentric coordinates by Bin Chen') # update intensity units, i.e. to brightness temperature? if toTb: data = hdu[0].data # remember the data order is reversed due to the FITS convension dim = data.ndim sz = data.shape keys = header.keys() values = header.values() # which axis is frequency? faxis = keys[values.index('FREQ')][-1] faxis_ind = dim - int(faxis) if header['BUNIT'].lower() == 'jy/beam': header['BUNIT'] = 'K' for i in range(sz[faxis_ind]): nu = header['CRVAL' + faxis] + header['CDELT' + faxis] * (i + 1 - header['CRPIX' + faxis]) if header['CUNIT' + faxis] == 'KHz': nu *= 1e3 if header['CUNIT' + faxis] == 'MHz': nu *= 1e6 if header['CUNIT' + faxis] == 'GHz': nu *= 1e9 if len(bmaj) > 1: # multiple (per-plane) beams bmajtmp = bmaj[i] bmintmp = bmin[i] else: # one single beam bmajtmp = bmaj[0] bmintmp = bmin[0] if beamunit == 'arcsec': bmaj0 = np.radians(bmajtmp / 3600.) bmin0 = np.radians(bmajtmp / 3600.) if beamunit == 'arcmin': bmaj0 = np.radians(bmajtmp / 60.) bmin0 = np.radians(bmintmp / 60.) if beamunit == 'deg': bmaj0 = np.radians(bmajtmp) bmin0 = np.radians(bmintmp) if beamunit == 'rad': bmaj0 = bmajtmp bmin0 = bmintmp beam_area = bmaj0 * bmin0 * np.pi / (4. * log(2.)) k_b = qa.constants('k')['value'] c_l = qa.constants('c')['value'] factor = 2. * k_b * nu ** 2 / c_l ** 2 # SI unit jy_to_si = 1e-26 # print nu/1e9, beam_area, factor factor2 = 1. if scl100: factor2 = 100. if faxis == '3': data[:, i, :, :] *= jy_to_si / beam_area / factor * factor2 if faxis == '4': data[i, :, :, :] *= jy_to_si / beam_area / factor * factor2 hdu.flush() hdu.close()
#!/usr/bin/env python3 import setuptools import os with open("README.md", "r") as fh: long_description = fh.read() setuptools.setup( name="dev-container", version="0.2", author="Marcel Hollerbach", author_email="mail@bu5hm4n.de", description="A small bin tool that will spin up a docker for you. The docker will be picked from your CI tools, and can be used instead of the host system", long_description=long_description, long_description_content_type="text/markdown", url="https://github.com/marcelhollerbach/dev-container", packages=setuptools.find_packages(), classifiers=[ "Development Status :: 4 - Beta", "Programming Language :: Python :: 3", "License :: OSI Approved :: Apache Software License", "Operating System :: OS Independent", ], python_requires='>=3.6', license="Apache 2.0", scripts=['dev-container'], install_requires=['pyyaml'] )
"""Contains the class object. Used to create two-dimensional thermal objects, and apply some methods. It does not include the compute method. """ from ... import mats import os import copy import numpy as np class Object: """Object class. This class creates a two-dimensional thermal object. It includes two methods to apply and remove fields. """ def __init__(self, amb_temperature, material='Cu', dx=0.01, dy=0.01, dt=0.1, size=(10, 10), file_name=None, boundaries=(0, 0, 0, 0), Q=[], Q0=[], initial_state=False, materials_path=False): """Thermal object initialization. `amb_temperature` is the ambient temperature of the whole system. `materials` is the background material present in `material_path`. `dx`, `dy` are the space steps along the x- and y-axis, respectively. `dt` is the time step. `file_name` is the file name where the temperature is saved. `boundaries` is a list of four entries that define the boundary condition for temperature (left, right, bottom, top). If 0 the boundary condition is insulation. `initial_state` is the initial state of the materials. True if there are an applied field and False if them field is absent. `materials_path` is absolute path of the materials database. If false, then the materials database is the standard heatrapy database. `Q` is a list of fixed heat source coefficient and `Q0` is a list of temperature dependent heat source coefficient. """ # check the validity of inputs boundaries = tuple(boundaries) Q = list(Q) Q0 = list(Q0) cond01 = isinstance(amb_temperature, float) cond01 = cond01 or isinstance(amb_temperature, int) cond05 = isinstance(dx, int) or isinstance(dx, float) cond06 = isinstance(dt, int) or isinstance(dt, float) cond07 = isinstance(file_name, str) cond07 = cond07 or (file_name is None) cond08 = isinstance(boundaries, tuple) cond09 = isinstance(Q, list) cond10 = isinstance(Q0, list) cond11 = isinstance(initial_state, bool) condition = cond01 and cond05 condition = condition and cond06 and cond07 and cond08 and cond09 condition = condition and cond10 and cond11 if not condition: raise ValueError self.materials = [material] self.materials_name = [material] self.boundaries = boundaries self.amb_temperature = amb_temperature if materials_path is False: tadi = os.path.dirname(os.path.realpath(__file__)) + \ '/../../database/' + self.materials[0] + '/' + 'tadi.txt' tadd = os.path.dirname(os.path.realpath(__file__)) + \ '/../../database/' + self.materials[0] + '/' + 'tadd.txt' cpa = os.path.dirname(os.path.realpath(__file__)) + \ '/../../database/' + self.materials[0] + '/' + 'cpa.txt' cp0 = os.path.dirname(os.path.realpath(__file__)) + \ '/../../database/' + self.materials[0] + '/' + 'cp0.txt' k0 = os.path.dirname(os.path.realpath(__file__)) + \ '/../../database/' + self.materials[0] + '/' + 'k0.txt' ka = os.path.dirname(os.path.realpath(__file__)) + \ '/../../database/' + self.materials[0] + '/' + 'ka.txt' rho0 = os.path.dirname(os.path.realpath(__file__)) + \ '/../../database/' + self.materials[0] + '/' + 'rho0.txt' rhoa = os.path.dirname(os.path.realpath(__file__)) + \ '/../../database/' + self.materials[0] + '/' + 'rhoa.txt' lheat0 = os.path.dirname(os.path.realpath(__file__)) + \ '/../../database/' + self.materials[0] + '/' + 'lheat0.txt' lheata = os.path.dirname(os.path.realpath(__file__)) + \ '/../../database/' + self.materials[0] + '/' + 'lheata.txt' self.materials[0] = mats.CalMatPro( tadi, tadd, cpa, cp0, k0, ka, rho0, rhoa, lheat0, lheata) else: tadi = materials_path + self.materials[0] + '/' + 'tadi.txt' tadd = materials_path + self.materials[0] + '/' + 'tadd.txt' cpa = materials_path + self.materials[0] + '/' + 'cpa.txt' cp0 = materials_path + self.materials[0] + '/' + 'cp0.txt' k0 = materials_path + self.materials[0] + '/' + 'k0.txt' ka = materials_path + self.materials[0] + '/' + 'ka.txt' rho0 = materials_path + self.materials[0] + '/' + 'rho0.txt' rhoa = materials_path + self.materials[0] + '/' + 'rhoa.txt' lheat0 = materials_path + self.materials[0] + '/' + 'lheat0.txt' lheata = materials_path + self.materials[0] + '/' + 'lheata.txt' self.materials[0] = mats.CalMatPro( tadi, tadd, cpa, cp0, k0, ka, rho0, rhoa, lheat0, lheata) self.materials_index = [None] self.size = size self.file_name = file_name self.dx = dx self.dy = dy self.dt = dt self.temperature = [] self.latent_heat = [] self.lheat = [] self.Cp = [] self.rho = [] self.Q = [] self.Q0 = [] self.k = [] self.materials_index = [] self.state = [] for i in range(self.size[0]): self.state.append([]) self.materials_index.append([]) self.temperature.append([]) self.latent_heat.append([]) self.lheat.append([]) self.Cp.append([]) self.rho.append([]) self.Q.append([0. for i in range(self.size[1])]) self.Q0.append([0. for i in range(self.size[1])]) self.k.append([]) for j in range(self.size[1]): self.materials_index[-1].append(0) self.temperature[-1].append([amb_temperature, amb_temperature]) self.state[-1].append(initial_state) if initial_state: value = self.materials[self.materials_index[i][j]] self.Cp[-1].append(value.cpa(self.amb_temperature)) value = self.materials[self.materials_index[i][j]] self.rho[-1].append(value.rhoa(self.amb_temperature)) value = self.materials[self.materials_index[i][j]] self.k[-1].append(value.ka(self.amb_temperature)) self.latent_heat[-1].append( self.materials[self.materials_index[i][j]].lheata() ) self.lheat[-1].append([]) value = self.materials[self.materials_index[i][j]] for lh in value.lheata(): if self.temperature[i][j][1] < lh[0] and lh[1] > 0.: self.lheat[-1].append([lh[0], 0.]) if self.temperature[i][j][1] > lh[0] and lh[1] > 0.: self.lheat[-1].append([lh[0], lh[1]]) if self.temperature[i][j][1] < lh[0] and lh[1] < 0.: self.lheat[-1].append([lh[0], -lh[1]]) if self.temperature[i][j][1] > lh[0] and lh[1] < 0.: self.lheat[-1].append([lh[0], 0.]) else: value = self.materials[self.materials_index[i][j]] self.Cp[-1].append(value.cp0(self.amb_temperature)) value = self.materials[self.materials_index[i][j]] self.rho[-1].append(value.rho0(self.amb_temperature)) value = self.materials[self.materials_index[i][j]] self.k[-1].append(value.k0(self.amb_temperature)) self.latent_heat[-1].append( self.materials[self.materials_index[i][j]].lheat0() ) self.lheat[-1].append([]) value = self.materials[self.materials_index[i][j]] for lh in value.lheat0(): if self.temperature[i][j][1] < lh[0] and lh[1] > 0.: self.lheat[-1].append([lh[0], 0.]) if self.temperature[i][j][1] > lh[0] and lh[1] > 0.: self.lheat[-1].append([lh[0], lh[1]]) if self.temperature[i][j][1] < lh[0] and lh[1] < 0.: self.lheat[-1].append([lh[0], -lh[1]]) if self.temperature[i][j][1] > lh[0] and lh[1] < 0.: self.lheat[-1].append([lh[0], 0.]) if Q != []: self.Q = Q if Q0 != []: self.Q0 = Q0 self.time_passed = 0. self.Q_ref = copy.copy(self.Q) self.Q0_ref = copy.copy(self.Q0) if file_name: line = 'time(s)' for i in range(size[0]): for j in range(size[1]): line = line + ',T[' + str(i) + '][' + str(j) + '] (K)' line = line + '\n' f = open(self.file_name, 'a') f.write(line) f.close() def activate(self, initial_point, final_point, shape='square'): """Activation of the material. Activates a given piece of material. If `shape` is `'square'`, then the `initial_point` is the tuple (x,y) of the bottom left point and the `final_point` is the tuple (x,y) of the top right point. If the shape is `'circle'`, the `initial_point` is the tuple (x,y) of the center of the circle and `final_point` is its radius. """ # check the validity of inputs if isinstance(shape, str): if shape == 'square': value = isinstance(initial_point, tuple) if value and isinstance(final_point, tuple): condition = len(initial_point) == 2 condition = condition and len(final_point) == 2 else: condition = False elif shape == 'circle': value = isinstance(final_point, int) value = value or isinstance(final_point, float) value = value and isinstance(initial_point, tuple) if value: condition = len(initial_point) == 2 else: condition = False else: condition = False else: condition = False if not condition: raise ValueError if shape == 'square': initial_point_x = int(initial_point[0]) initial_point_y = int(initial_point[1]) final_point_x = int(final_point[0]) final_point_y = int(final_point[1]) for i in range(initial_point_x, final_point_x): for j in range(initial_point_y, final_point_y): if self.state[i][j] is False: value = self.temperature[i][j][0] self.temperature[i][j][0] = value + \ self.materials[self.materials_index[i][j]].tadi( self.temperature[i][j][0]) value = self.materials_index[i][j] self.rho[i][j] = self.materials[value].rhoa( self.temperature[i][j][0]) self.Cp[i][j] = self.materials[value].cpa( self.temperature[i][j][0]) self.k[i][j] = self.materials[value].ka( self.temperature[i][j][0]) self.lheat[i][j] = [] valh = self.materials[value].lheata() self.latent_heat[i][j] = valh for lh in self.latent_heat[i][j]: cond = self.temperature[i][j][0] < lh[0] if cond and lh[1] > 0.: self.lheat[i][j].append([lh[0], 0.]) cond = self.temperature[i][j][0] > lh[0] if cond and lh[1] > 0.: self.lheat[i][j].append([lh[0], lh[1]]) cond = self.temperature[i][j][0] < lh[0] if cond and lh[1] < 0.: self.lheat[i][j].append([lh[0], -lh[1]]) cond = self.temperature[i][j][0] > lh[0] if cond and lh[1] < 0.: self.lheat[i][j].append([lh[0], 0.]) self.state[i][j] = True else: message = 'point ({:d},{:d})'.format(i, j) message = message + ' already activated' print(message) if shape == 'circle': initial_point_x = int(initial_point[0]) initial_point_y = int(initial_point[1]) radius = int(final_point) for i in range(self.size[0]): for j in range(self.size[1]): value = (i-initial_point_x)**2+(j-initial_point_y)**2 length = np.sqrt(value) if length <= radius: if self.state[i][j] is False: value = self.temperature[i][j][0] index_value = self.materials_index[i][j] self.temperature[i][j][0] = value + \ self.materials[index_value].tadi( self.temperature[i][j][0]) self.rho[i][j] = self.materials[index_value].rhoa( self.temperature[i][j][0]) self.Cp[i][j] = self.materials[index_value].cpa( self.temperature[i][j][0]) self.k[i][j] = self.materials[index_value].ka( self.temperature[i][j][0]) self.lheat[i][j] = [] valh = self.materials[index_value].lheata() self.latent_heat[i][j] = valh for lh in self.latent_heat[i][j]: value = self.temperature[i][j][0] < lh[0] if value and lh[1] > 0.: self.lheat[i][j].append([lh[0], 0.]) value = self.temperature[i][j][0] > lh[0] if value and lh[1] > 0.: self.lheat[i][j].append([lh[0], lh[1]]) value = self.temperature[i][j][0] < lh[0] if value and lh[1] < 0.: self.lheat[i][j].append([lh[0], -lh[1]]) value = self.temperature[i][j][0] > lh[0] if value and lh[1] < 0.: self.lheat[i][j].append([lh[0], 0.]) self.state[i][j] = True else: message = 'point ({:d},{:d})'.format(i, j) message = message + ' already activated' print(message) def deactivate(self, initial_point, final_point, shape='square'): """Deactivation of the material. Deactivates a given piece of material. If `shape` is `'square'`, then the `initial_point` is the tuple (x,y) of the bottom left point and the `final_point` is the tuple (x,y) of the top right point. If the shape is `'circle'`, the `initial_point` is the tuple (x,y) of the center of the circle and `final_point` is its radius. """ # check the validity of inputs if isinstance(shape, str): if shape == 'square': value = isinstance(initial_point, tuple) if value and isinstance(final_point, tuple): condition = len(initial_point) == 2 condition = condition and len(final_point) == 2 else: condition = False elif shape == 'circle': value = isinstance(final_point, int) value = value or isinstance(final_point, float) value = value and isinstance(initial_point, tuple) if value: condition = len(initial_point) == 2 else: condition = False else: condition = False else: condition = False if not condition: raise ValueError if shape == 'square': initial_point_x = int(initial_point[0]) initial_point_y = int(initial_point[1]) final_point_x = int(final_point[0]) final_point_y = int(final_point[1]) for i in range(initial_point_x, final_point_x): for j in range(initial_point_y, final_point_y): if self.state[i][j] is True: value = self.temperature[i][j][0] self.temperature[i][j][0] = value - \ self.materials[self.materials_index[i][j]].tadd( self.temperature[i][j][0]) value = self.materials_index[i][j] self.rho[i][j] = self.materials[value].rho0( self.temperature[i][j][0]) self.Cp[i][j] = self.materials[value].cp0( self.temperature[i][j][0]) self.k[i][j] = self.materials[value].k0( self.temperature[i][j][0]) self.lheat[i][j] = [] valh = self.materials[value].lheat0() self.latent_heat[i][j] = valh for lh in self.latent_heat[i][j]: cond = self.temperature[i][j][0] < lh[0] if cond and lh[1] > 0.: self.lheat[i][j].append([lh[0], 0.]) cond = self.temperature[i][j][0] > lh[0] if cond and lh[1] > 0.: self.lheat[i][j].append([lh[0], lh[1]]) cond = self.temperature[i][j][0] < lh[0] if cond and lh[1] < 0.: self.lheat[i][j].append([lh[0], -lh[1]]) cond = self.temperature[i][j][0] > lh[0] if cond and lh[1] < 0.: self.lheat[i][j].append([lh[0], 0.]) self.state[i][j] = False else: message = 'point ({:d},{:d})'.format(i, j) message = message + ' already deactivated' print(message) if shape == 'circle': initial_point_x = int(initial_point[0]) initial_point_y = int(initial_point[1]) radius = int(final_point) for i in range(self.size[0]): for j in range(self.size[1]): value = (i-initial_point_x)**2+(j-initial_point_y)**2 length = np.sqrt(value) if length <= radius: if self.state[i][j] is False: value = self.temperature[i][j][0] index_value = self.materials_index[i][j] self.temperature[i][j][0] = value - \ self.materials[index_value].tadd( self.temperature[i][j][0]) self.rho[i][j] = self.materials[index_value].rho0( self.temperature[i][j][0]) self.Cp[i][j] = self.materials[index_value].cp0( self.temperature[i][j][0]) self.k[i][j] = self.materials[index_value].k0( self.temperature[i][j][0]) self.lheat[i][j] = [] valh = self.materials[index_value].lheat0() self.latent_heat[i][j] = valh for lh in self.latent_heat[i][j]: value = self.temperature[i][j][0] < lh[0] if value and lh[1] > 0.: self.lheat[i][j].append([lh[0], 0.]) value = self.temperature[i][j][0] > lh[0] if value and lh[1] > 0.: self.lheat[i][j].append([lh[0], lh[1]]) value = self.temperature[i][j][0] < lh[0] if value and lh[1] < 0.: self.lheat[i][j].append([lh[0], -lh[1]]) value = self.temperature[i][j][0] > lh[0] if value and lh[1] < 0.: self.lheat[i][j].append([lh[0], 0.]) self.state[i][j] = False else: message = 'point ({:d},{:d})'.format(i, j) message = message + ' already deactivated' print(message) def square(self, material='Gd', initial_point=(3, 3), length=(3, 3), state=False, materials_path=False): """Material adding with rectangle shape. Adds a new material with a rectangle shape, where `initial_point` is the bottom left (x,y) tuple, `length` is the length along the two axis, state is the initial state of the material and `materials_path` is the absolute path of the materials database. """ # check the validity of inputs value = isinstance(initial_point, tuple) if value and isinstance(length, tuple): cond1 = len(initial_point) == 2 cond1 = cond1 and len(length) == 2 else: cond1 = False cond2 = isinstance(material, str) cond3 = isinstance(state, bool) cond4 = isinstance(materials_path, str) or materials_path is False if not cond1 and cond2 and cond3 and cond4: raise ValueError initial_point_x = int(initial_point[0]) initial_point_y = int(initial_point[1]) final_point_x = initial_point_x + int(length[0]) final_point_y = initial_point_y + int(length[1]) if material in self.materials_name: index = self.materials_name.index(material) else: index = len(self.materials) self.materials_name.append(material) if materials_path is False: value = self.materials_name[index] tadi = os.path.dirname(os.path.realpath(__file__)) + \ '/../../database/' + value + '/' + 'tadi.txt' tadd = os.path.dirname(os.path.realpath(__file__)) + \ '/../../database/' + value + '/' + 'tadd.txt' cpa = os.path.dirname(os.path.realpath(__file__)) + \ '/../../database/' + value + '/' + 'cpa.txt' cp0 = os.path.dirname(os.path.realpath(__file__)) + \ '/../../database/' + value + '/' + 'cp0.txt' k0 = os.path.dirname(os.path.realpath(__file__)) + \ '/../../database/' + value + '/' + 'k0.txt' ka = os.path.dirname(os.path.realpath(__file__)) + \ '/../../database/' + value + '/' + 'ka.txt' rho0 = os.path.dirname(os.path.realpath(__file__)) + \ '/../../database/' + value + '/' + 'rho0.txt' rhoa = os.path.dirname(os.path.realpath(__file__)) + \ '/../../database/' + value + '/' + 'rhoa.txt' lheat0 = os.path.dirname(os.path.realpath(__file__)) + \ '/../../database/' + value + '/' + 'lheat0.txt' lheata = os.path.dirname(os.path.realpath(__file__)) + \ '/../../database/' + value + '/' + 'lheata.txt' self.materials.append(mats.CalMatPro( tadi, tadd, cpa, cp0, k0, ka, rho0, rhoa, lheat0, lheata)) else: value = self.materials_name[index] tadi = materials_path + value + '/' + 'tadi.txt' tadd = materials_path + value + '/' + 'tadd.txt' cpa = materials_path + value + '/' + 'cpa.txt' cp0 = materials_path + value + '/' + 'cp0.txt' k0 = materials_path + value + '/' + 'k0.txt' ka = materials_path + value + '/' + 'ka.txt' rho0 = materials_path + value + '/' + 'rho0.txt' rhoa = materials_path + value + '/' + 'rhoa.txt' lheat0 = materials_path + value + '/' + 'lheat0.txt' lheata = materials_path + value + '/' + 'lheata.txt' self.materials.append(mats.CalMatPro( tadi, tadd, cpa, cp0, k0, ka, rho0, rhoa, lheat0, lheata)) for i in range(initial_point_x, final_point_x): for j in range(initial_point_y, final_point_y): if state is False: self.state[i][j] = False self.materials_index[i][j] = index self.rho[i][j] = self.materials[index].rho0( self.temperature[i][j][0]) self.Cp[i][j] = self.materials[index].cp0( self.temperature[i][j][0]) self.k[i][j] = self.materials[index].k0( self.temperature[i][j][0]) self.lheat[i][j] = [] valh = self.materials[index].lheat0() self.latent_heat[i][j] = valh for lh in self.latent_heat[i][j]: if self.temperature[i][j][0] < lh[0] and lh[1] > 0: self.lheat[i][j].append([lh[0], 0.]) if self.temperature[i][j][0] > lh[0] and lh[1] > 0: self.lheat[i][j].append([lh[0], lh[1]]) if self.temperature[i][j][0] < lh[0] and lh[1] < 0: self.lheat[i][j].append([lh[0], -lh[1]]) if self.temperature[i][j][0] > lh[0] and lh[1] < 0: self.lheat[i][j].append([lh[0], 0.]) else: self.state[i][j] = True self.materials_index[i][j] = index self.rho[i][j] = self.materials[index].rhoa( self.temperature[i][j][0]) self.Cp[i][j] = self.materials[index].cpa( self.temperature[i][j][0]) self.k[i][j] = self.materials[index].ka( self.temperature[i][j][0]) self.lheat[i][j] = [] valh = self.materials[index].lheata() self.latent_heat[i][j] = valh for lh in self.latent_heat[i][j]: if self.temperature[i][j][0] < lh[0] and lh[1] > 0: self.lheat[i][j].append([lh[0], 0.]) if self.temperature[i][j][0] > lh[0] and lh[1] > 0: self.lheat[i][j].append([lh[0], lh[1]]) if self.temperature[i][j][0] < lh[0] and lh[1] < 0: self.lheat[i][j].append([lh[0], -lh[1]]) if self.temperature[i][j][0] > lh[0] and lh[1] < 0: self.lheat[i][j].append([lh[0], 0.]) def circle(self, material='Gd', initial_point=(3, 3), radius=3, state=False, materials_path=False): """Material adding with circle shape. Adds a new material with a circle shape, where `initial_point` is the (x,y) tuple of the center of the circle, `radius` is the radius of the circle, state is the initial state of the material and `materials_path` is the absolute path of the materials database. """ # check the validity of inputs if isinstance(initial_point, tuple): cond1 = len(initial_point) == 2 else: cond1 = False cond2 = isinstance(radius, int) or isinstance(radius, float) cond3 = isinstance(material, str) cond4 = isinstance(state, bool) cond5 = isinstance(materials_path, str) or materials_path is False if not cond1 and cond2 and cond3 and cond4 and cond5: raise ValueError initial_point_x = int(initial_point[0]) initial_point_y = int(initial_point[1]) if material in self.materials_name: index = self.materials_name.index(material) else: index = len(self.materials) self.materials_name.append(material) if materials_path is False: value = self.materials_name[index] tadi = os.path.dirname(os.path.realpath(__file__)) + \ '/../../database/' + value + '/' + 'tadi.txt' tadd = os.path.dirname(os.path.realpath(__file__)) + \ '/../../database/' + value + '/' + 'tadd.txt' cpa = os.path.dirname(os.path.realpath(__file__)) + \ '/../../database/' + value + '/' + 'cpa.txt' cp0 = os.path.dirname(os.path.realpath(__file__)) + \ '/../../database/' + value + '/' + 'cp0.txt' k0 = os.path.dirname(os.path.realpath(__file__)) + \ '/../../database/' + value + '/' + 'k0.txt' ka = os.path.dirname(os.path.realpath(__file__)) + \ '/../../database/' + value + '/' + 'ka.txt' rho0 = os.path.dirname(os.path.realpath(__file__)) + \ '/../../database/' + value + '/' + 'rho0.txt' rhoa = os.path.dirname(os.path.realpath(__file__)) + \ '/../../database/' + value + '/' + 'rhoa.txt' lheat0 = os.path.dirname(os.path.realpath(__file__)) + \ '/../../database/' + value + '/' + 'lheat0.txt' lheata = os.path.dirname(os.path.realpath(__file__)) + \ '/../../database/' + value + '/' + 'lheata.txt' self.materials.append(mats.CalMatPro( tadi, tadd, cpa, cp0, k0, ka, rho0, rhoa, lheat0, lheata)) else: value = self.materials_name[index] tadi = materials_path + value + '/' + 'tadi.txt' tadd = materials_path + value + '/' + 'tadd.txt' cpa = materials_path + value + '/' + 'cpa.txt' cp0 = materials_path + value + '/' + 'cp0.txt' k0 = materials_path + value + '/' + 'k0.txt' ka = materials_path + value + '/' + 'ka.txt' rho0 = materials_path + value + '/' + 'rho0.txt' rhoa = materials_path + value + '/' + 'rhoa.txt' lheat0 = materials_path + value + '/' + 'lheat0.txt' lheata = materials_path + value + '/' + 'lheata.txt' self.materials.append(mats.CalMatPro( tadi, tadd, cpa, cp0, k0, ka, rho0, rhoa, lheat0, lheata)) for i in range(self.size[0]): for j in range(self.size[1]): length = np.sqrt((i-initial_point_x)**2+(j-initial_point_y)**2) if length <= radius: if state is False: self.state[i][j] = False self.materials_index[i][j] = index self.rho[i][j] = self.materials[index].rho0( self.temperature[i][j][0]) self.Cp[i][j] = self.materials[index].cp0( self.temperature[i][j][0]) self.k[i][j] = self.materials[index].k0( self.temperature[i][j][0]) self.lheat[i][j] = [] valh = self.materials[index].lheat0() self.latent_heat[i][j] = valh for lh in self.latent_heat[i][j]: if self.temperature[i][j][0] < lh[0] and lh[1] > 0: self.lheat[i][j].append([lh[0], 0.]) if self.temperature[i][j][0] > lh[0] and lh[1] > 0: self.lheat[i][j].append([lh[0], lh[1]]) if self.temperature[i][j][0] < lh[0] and lh[1] < 0: self.lheat[i][j].append([lh[0], -lh[1]]) if self.temperature[i][j][0] > lh[0] and lh[1] < 0: self.lheat[i][j].append([lh[0], 0.]) else: self.state[i][j] = True self.materials_index[i][j] = index self.rho[i][j] = self.materials[index].rhoa( self.temperature[i][j][0]) self.Cp[i][j] = self.materials[index].cpa( self.temperature[i][j][0]) self.k[i][j] = self.materials[index].ka( self.temperature[i][j][0]) self.lheat[i][j] = [] valh = self.materials[index].lheata() self.latent_heat[i][j] = valh for lh in self.latent_heat[i][j]: if self.temperature[i][j][0] < lh[0] and lh[1] > 0: self.lheat[i][j].append([lh[0], 0.]) if self.temperature[i][j][0] > lh[0] and lh[1] > 0: self.lheat[i][j].append([lh[0], lh[1]]) if self.temperature[i][j][0] < lh[0] and lh[1] < 0: self.lheat[i][j].append([lh[0], -lh[1]]) if self.temperature[i][j][0] > lh[0] and lh[1] < 0: self.lheat[i][j].append([lh[0], 0.]) def power_add(self, initial_point, final_point, power, shape='square', power_type='Q'): """Power adding. Adds a power matrix to the thermal object. If `shape` is `'square'`, then the `initial_point` is the tuple (x,y) of the bottom left point and the `final_point` is the tuple (x,y) of the top right point. If the `shape` is `'circle'`, the `initial_point` is the tuple (x,y) of the center of the circle and `final_point` is its radius. `power` is the value of the power to add, and `power_type` is the type of power to be introduced, which has the value `'Q'` if it is temperature dependent and `'Q0'` if it is temperature independent. """ # check the validity of inputs if isinstance(shape, str): if shape == 'square': value = isinstance(initial_point, tuple) if value and isinstance(final_point, tuple): cond1 = len(initial_point) == 2 cond1 = cond1 and len(final_point) == 2 else: cond1 = False elif shape == 'circle': value = isinstance(final_point, int) value = value or isinstance(final_point, float) value = value and isinstance(initial_point, tuple) if value: cond1 = len(initial_point) == 2 else: cond1 = False else: cond1 = False else: cond1 = False cond2 = isinstance(power, int) or isinstance(power, float) if isinstance(power_type, str): if power_type == 'Q' or power_type == 'Q0': cond3 = True else: cond3 = False else: cond3 = False if not cond1 and cond2 and cond3: raise ValueError if power_type == 'Q': if shape == 'square': initial_point_x = int(initial_point[0]) initial_point_y = int(initial_point[1]) final_point_x = int(final_point[0]) final_point_y = int(final_point[1]) for i in range(initial_point_x, final_point_x): for j in range(initial_point_y, final_point_y): self.Q[i][j] = power if shape == 'circle': initial_point_x = int(initial_point[0]) initial_point_y = int(initial_point[1]) radius = int(final_point) for i in range(self.size[0]): for j in range(self.size[1]): value = (i-initial_point_x)**2+(j-initial_point_y)**2 length = np.sqrt(value) if length <= radius: self.Q[i][j] = power if power_type == 'Q0': if shape == 'square': initial_point_x = int(initial_point[0]) initial_point_y = int(initial_point[1]) final_point_x = int(final_point[0]) final_point_y = int(final_point[1]) for i in range(initial_point_x, final_point_x): for j in range(initial_point_y, final_point_y): self.Q0[i][j] = power if shape == 'circle': initial_point_x = int(initial_point[0]) initial_point_y = int(initial_point[1]) radius = int(final_point) for i in range(self.size[0]): for j in range(self.size[1]): value = (i-initial_point_x)**2+(j-initial_point_y)**2 length = np.sqrt(value) if length <= radius: self.Q0[i][j] = power def power_reset(self, power_type='Q'): """Power reset. Resets the power matrix with `power_type` `'Q'` or `'Q0'`, which corresponds to the power temperature dependent and temperature independent, respectively. """ # check the validity of inputs if isinstance(power_type, str): if power_type == 'Q' or power_type == 'Q0': condition = True else: condition = False else: condition = False if not condition: raise ValueError self.Q = [] self.Q0 = []
import re from docxtpl import DocxTemplate, RichText from docx.shared import Pt ####test Result including checkpoint and HLA def checkPoint(TMBFileName, NeoStatisFileName, MMRFileName, POLFileName): with open(TMBFileName,'r',encoding='utf-8') as snv: line = snv.readlines()[1] line = line.strip('\n').split('\t') nonsys_num = int(line[1]) sys_num = int(line[2]) if line[3] == '-': kaks = 'N/A' else: kaks = round(float(line[3]), 2) tmb_result = round(float(line[6]),2) with open(NeoStatisFileName,'r',encoding='utf-8') as neo: line = neo.readline() line = line.strip('\n').split('\t') neo_num = int(line[1]) with open(MMRFileName,'r',encoding='utf-8') as mmr: mmr_Benign = 1 for line in mmr: line = line.strip('\n').split('\t') if line[4] != "良性": mmr_Benign = 0 break with open(POLFileName, 'r', encoding='utf-8') as pol: pol_Benign = 1 for line in pol: line = line.strip('\n').split('\t') if line[4] != "良性": pol_Benign = 0 break ######################TMB if tmb_result >= 9 : tmb_mean = '高' elif tmb_result < 3: tmb_mean = '低' else: tmb_mean = '中' # if nonsys_num >= 248: nonsys_mean = '高' tmb_des = "本检测得到的TMB结果高于平均值" tmb_status = "TMB_H(>248个非同义突变位点)" elif nonsys_num < 143: nonsys_mean = '低' tmb_des = "本检测得到的TMB结果低于平均值" tmb_status = "TMB_L(0-143个非同义突变位点)" else: nonsys_mean = '中' tmb_des = "本检测得到的TMB结果位于中位数附近" tmb_status = "TMB_M(143-248个非同义突变位点)" # if sys_num >= 100: sys_mean = '高' elif sys_num < 57: sys_mean = '低' else: sys_mean = '中' # if kaks == 'N/A': kaks_mean = 'N/A' kaks_des = '' elif kaks >= 3: kaks_mean = '较高' kaks_des = '*非同义突变/同义突变比值(A/S ratio)是一种衡量肿瘤进化保守性的指标,这一指标越大代表肿瘤的增殖能力越高,本次检测从样本中测量到的A/S ratio大于3.0,反映样本中的肿瘤细胞的增殖能力处于较高状态;' elif kaks < 2.5: kaks_mean = '较低' kaks_des='*非同义突变/同义突变比值(A/S ratio)是一种衡量肿瘤进化保守性的指标,这一指标越大代表肿瘤的增殖能力越高,本次检测从样本中测量到的A/S ratio小于2.5,反映样本中的肿瘤细胞的增殖能力处于较低状态;' else: kaks_mean = '中性' kaks_des='*非同义突变/同义突变比值(A/S ratio)是一种衡量肿瘤进化保守性的指标,这一指标越大代表肿瘤的增殖能力越高,本次检测从样本中测量到的A/S ratio大于2.5小于3.0,反映样本中的肿瘤细胞的增殖能力处于中性状态;' # if mmr_Benign == 1: mmr_result = "未发现致病/可能致病突变" mmr_mean = "正常" else: mmr_result = "发现致病/可能致病突变" mmr_mean = "异常" # if pol_Benign == 1: pol_result = "未发现致病/可能致病突变" pol_mean = "正常" else: pol_result = "发现致病/可能致病突变" pol_mean = "异常" content = { 'tmb_result': str(tmb_result)+'/Mb', 'tmb_mean':tmb_mean, 'nonsys_num':str(nonsys_num)+'个', 'nonsys_mean':nonsys_mean, 'sys_num':str(sys_num)+'个', 'sys_mean':sys_mean, 'kaks_value':kaks, 'kaks_mean':kaks_mean, 'mmr_result':mmr_result, 'mmr_mean':mmr_mean, 'pol_result':pol_result, 'pol_mean':pol_mean, 'neo_num':str(neo_num)+'个', 'tmb_des':tmb_des, 'tmb_status':tmb_status } #print (content) return content def separateHLA(HLA): HLA_A = [] HLA_B = [] HLA_C = [] for item in HLA: item = item[4:] ###delete HLA- if re.match('^A', item) is not None: HLA_A.append(item) if re.match('^B', item) is not None: HLA_B.append(item) if re.match('^C', item) is not None: HLA_C.append(item) content ={ 'cols':['\n'.join(HLA_A),'\n'.join(HLA_B),'\n'.join(HLA_C)], 'value':{'A':HLA_A,'B':HLA_B,'C':HLA_C} } return content def getHeterozy(HLA): if len(HLA) == 1: return 'isozy' ##纯合 elif len(HLA) == 0: return 'NA' #无 else: return 'heterozy' #杂合 def getMean(normal,tumor): mean = RichText('注:人群的HLA-I分型存在广泛的多态性,本报告所列举的HLA-I分型结果由基因测序获得') B62 = ['B*15:02', 'B*15:12', 'B*15:13', 'B*46:01', 'B*52:01'] B44 = ['B*18:01', 'B*37:01', 'B*40:01', 'B*40:02', 'B*40:06', 'B*44:02', 'B*44:03', 'B*45:01'] PD1 = ['B*15:01'] + B62 + B44 #### if getHeterozy(normal['A']) =='heterozy' and getHeterozy(normal['B']) =='heterozy' and getHeterozy(normal['C']) =='heterozy': mean.add('\n*本次检测从正常体细胞检测到所有的等位基因都处于杂合状态,最新研究显示相较于至少一个位置的等位基因为纯合状态的患者,全部为杂合状态的患者在接受anti-PD-1药物治疗时生存期中位数更长(Chowell ') mean.add('et al., Science)',italic=True) if getHeterozy(tumor['A']) =='heterozy' and getHeterozy(tumor['B'])=='heterozy' and getHeterozy(tumor['C'])=='heterozy' : mean.add('\n*40%的非小细胞肺癌患者的肿瘤样本中检测到HLA-I的杂合性缺失,这与亚克隆的新抗原负载高相关(McGranahan ') mean.add('et al., Cell',italic=True) mean.add('),而本次检测未发现肿瘤样本和正常体细胞中存在HLA-I的分型差异') if getHeterozy(normal['A']) =='isozy' or getHeterozy(normal['B'])=='isozy' or getHeterozy(normal['C'])=='isozy' : mean.add('\n*本次检测从正常细胞中检测到存在至少一个等位基因为纯合状态,根据最新研究显示相较于所有等位基因都处于杂合状态的患者,至少一个等位基因为纯合状态的患者在接受anti-PD-1药物治疗时生存期中位数较短(Chowell ') mean.add('et al., Science)',italic=True) ### if len(set(normal['B']) & set(B62))>0 and len(set(tumor['B']) & set(B62))>0: mean.add('\n*最新研究显示携带有HLA-B62 supertype的等位基因的患者接受anti-PD-1治疗的预后较差(Chowell ') mean.add('et al., Science',italic=True) mean.add('),本次检测从正常细胞和肿瘤组织中都检测到HLA-B62 supertype中的等位基因') elif len(set(normal['B']) & set(B62))==0 and len(set(tumor['B']) & set(B62))>0: mean.add('\n*最新研究显示携带有HLA-B62 supertype的等位基因的患者接受anti-PD-1治疗的预后较差(Chowell ') mean.add('et al., Science',italic=True) mean.add('),本次检测从肿瘤组织中检测到HLA-B62 supertype中的等位基因') elif len(set(normal['B']) & set(B62))>0 and len(set(tumor['B']) & set(B62))==0: mean.add('\n*最新研究显示携带有HLA-B62 supertype的等位基因的患者接受anti-PD-1治疗的预后较差(Chowell ') mean.add('et al., Science',italic=True) mean.add('),本次检测从正常细胞中检测到HLA-B62 supertype中的等位基因') ### if 'B*15:01' in normal['B'] and 'B*15:01' in tumor['B']: mean.add('\n*最新研究显示携带有HLA-B62 supertype的B*15:01等位基因的患者接受anti-PD-1治疗的预后较差,这可能是因为B*15:01 的分子结构会影响T细胞对肿瘤细胞的识别能力(Chowell ') mean.add('et al., Science',italic=True) mean.add('),本次检测从正常组织和肿瘤组织中都检测到B*15:01') elif not 'B*15:01' in normal['B'] and 'B*15:01' in tumor['B']: mean.add('\n*最新研究显示携带有HLA-B62 supertype的B*15:01等位基因的患者接受anti-PD-1治疗的预后较差,这可能是因为B*15:01 的分子结构会影响T细胞对肿瘤细胞的识别能力(Chowell ') mean.add('et al., Science',italic=True) mean.add('),本次检测从肿瘤组织中检测到B*15:01') elif 'B*15:01' in normal['B'] and not 'B*15:01' in tumor['B']: mean.add('\n*最新研究显示携带有HLA-B62 supertype的B*15:01等位基因的患者接受anti-PD-1治疗的预后较差,这可能是因为B*15:01 的分子结构会影响T细胞对肿瘤细胞的识别能力(Chowell ') mean.add('et al., Science',italic=True) mean.add('),本次检测从正常细胞中检测到B*15:01') ### if len(set(normal['B']) & set(B44))>0 and len(set(tumor['B']) & set(B44))>0: mean.add('\n*最新研究显示携带有HLA-B44 supertype的等位基因的患者接受anti-PD-1治疗的生存期中位数更长(Chowell ') mean.add('et al., Science',italic=True) mean.add('),本次检测从正常细胞和肿瘤组织中都检测到HLA-B44 supertype中的等位基因') elif len(set(normal['B']) & set(B44))==0 and len(set(tumor['B']) & set(B44))>0: mean.add('\n*最新研究显示携带有HLA-B44 supertype的等位基因的患者接受anti-PD-1治疗的生存期中位数更长(Chowell ') mean.add('et al., Science',italic=True) mean.add('),本次检测从肿瘤组织中检测到HLA-B44 supertype中的等位基因') elif len(set(normal['B']) & set(B44))>0 and len(set(tumor['B']) & set(B44))>0: mean.add('\n*最新研究显示携带有HLA-B44 supertype的等位基因的患者接受anti-PD-1治疗的生存期中位数更长(Chowell ') mean.add('et al., Science',italic=True) mean.add('),本次检测从正常细胞中检测到HLA-B44 supertype中的等位基因') ##### if len(set(normal['B']) & set(PD1))==0 and len(set(tumor['B']) & set(PD1))==0: mean.add('\n*本次检测未发现任何已知的影响anti-PD-1治疗预后的HLA等位基因') ### #mean='\n'.join(mean) return mean def HLA(HLAFileName): with open(HLAFileName,'r',encoding='utf-8') as hla: line = hla.readlines() normal = line[0].strip('\n').split(',') tumor = line[1].strip('\n').split(',') normal = separateHLA(normal) tumor = separateHLA(tumor) mean = getMean(normal['value'],tumor['value']) content={ 'hla_contents':[ {'label':'正常细胞中的HLA-I分型:','cols':normal['cols']}, {'label':'肿瘤组织中的HLA-I分型:','cols':tumor['cols']} ], 'hla_mean':mean } return content
#!/usr/bin/env python # Copyright 2013 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for endpoints.py.""" from tests.common.lib import endpointstest import webtest from protorpc import message_types from titan.common.lib.google.apputils import basetest from titan import endpoints class EndpointsTest(endpointstest.EndpointsTestCase): def CreateWsgiApplication(self): """Returns the wsgi application for the service endpoint testing.""" return endpoints.EndpointsApplication([GoodService], restricted=False) def testEndpointsApplication(self): # You do not want to copy this test; it is specifically for the internal # behavior of the endpoints application. # # Verify that the object correctly delegates all behavior except middleware. app = webtest.TestApp(self._endpoints_application) internal_discovery_url = '/_ah/spi/BackendService.getApiConfigs' response = app.post( internal_discovery_url, '{}', content_type='application/json', headers={'X-Appengine-Peer': 'apiserving'}) self.assertEqual(200, response.status_int) # Verify error behavior copied from apiserving.api_server. self.assertRaises( TypeError, endpoints.EndpointsApplication, protocols='foo') def testServices(self): # Verify that the service method returns the correct message type # (defaults to VoidMessage) service = self.GetServiceStub(GoodService) self.assertEquals(message_types.VoidMessage(), service.foo()) # This also happens to verify that the decorator delegation works. @endpoints.api(name='titan', version='v1') class GoodService(endpoints.Service): @endpoints.method(name='foo.bar', path='foo/asdf') def foo(self, unused_request): return message_types.VoidMessage() if __name__ == '__main__': basetest.main()
from pathlib import Path from . import cdfread, cdfwrite from .cdf_factory import CDF from .epochs import CDFepoch as cdfepoch # noqa: F401 try: # This is an optional dependency for astropy time conversions from .epochs_astropy import CDFAstropy as cdfastropy except: pass try: # Another optional dependency for XArray <-> cdf conversions from .xarray_to_cdf import xarray_to_cdf from .cdf_to_xarray import cdf_to_xarray except: pass __all__ = ['CDF', 'xarray_to_cdf', 'cdf_to_xarray']
#coding: utf-8 #------------------------------------------------------------ # Um programa que recebe qualquer coisa, retornando o seu # tipo primitivo e todas informações sobre o dado recebido. #------------------------------------------------------------ # Dissecando uma variável - Exercício #004 #------------------------------------------------------------ from time import sleep e = input('Digite algo: ') print(f'O tipo primitivo desse valor é {type(e)}') sleep(1) print('''\nSe você digita um número, o tipo primitivo também retorna str ?') Você pode verificar se o dado é um número e outras coisas mais.\n''') sleep(4) print('Só tem espaços? {}'.format(e.isspace())) print('É um número? {}'.format(e.isnumeric())) print('É alfabético ? {}'.format(e.isalpha())) print('É alfanumérico? {}'.format(e.isalnum())) print('Está em minúsculo? {}'.format(e.islower())) print('Está em maiúsculo? {}'.format(e.isupper()))
# coding: utf8 # try something like import os raise RuntimeError("remove this line to use!") # connect to pycon-tech (django) database pg=DAL('postgres://postgres:saraza@localhost/pycon2010') # configure path to common/talkdata PATH = "C:\\PuTTY\\2010\\" def index(): return dict(message="hello from pycontech.py") def navbar(): # import django navbar rows = pg.executesql("SELECT id, name, url, parent_id FROM navbar_navbarentry ORDER BY parent_id, \"order\"") db(db.navbar.id>0).delete() for row in rows: db.navbar.insert( id=row[0], title=row[1], url=row[2], parent_id=row[3], ) response.view = "generic.html" return dict(rows=rows) def flatpages(): # import django flatpages rows = pg.executesql("SELECT id, url, title, content FROM django_flatpage ORDER BY id") db(db.plugin_flatpage.id>0).delete() for row in rows: parts = row[1].split("/") controller = parts[2] function = parts[3] or 'index' arg = parts[4:] and parts[4] or '' db.plugin_flatpage.insert( id=row[0], controller=controller, function=function, arg=arg, title=row[2], body=row[3], lang="es", format='HTML', ) response.view = "generic.html" return dict(rows=rows) def users(): # import django auth_users, gmaps_address and usermgr_profile into auth_user sql = """ select a.id, a.first_name, a.last_name, a.email, a.date_joined, p.url, p.affiliation, p.bio, p.location, p.email_ok, p.listing_ok, p.sponsor_ok, g.latitude, g.longitude from auth_user a left join usermgr_userprofile p on p.user_id=a.id left join gmaps_gaddress g on g.name=a.username order by a.id """ rows = pg.executesql(sql) # remove old users db(db.auth_user.id>0).delete() for row in rows: db.auth_user.insert( id=row[0], first_name=row[1], last_name=row[2], email=row[3], created_on=row[4], personal_home_page=row[5], company_home_page=row[5], company_name=row[6], resume=row[7], address=row[8], confirmed=row[9], include_in_delegate_listing=row[10], sponsors=row[11], latitude=row[12], longitude=row[13], country="Argentina", #!!!!! ) response.view = "generic.html" return dict(rows=rows) def talks(): # import pycontech event/schedule/scheduledevent into activity # change FROM order to import events with no proposals # (keynotes, plenary, lightning, etc.) sql = """ select e.id, COALESCE(p.title, e._title), COALESCE(p.duration, e._duration), COALESCE(p.summary, e._summary), p.description, p.submitter_id, p.level, p.categories, se.start, se.room_id, e.type from propmgr_proposal p left join schedule_event e on p.id = e.proposal_id left join schedule_scheduledevent se on se.event_id = e.id """ rows = pg.executesql(sql) levels = {'B': "Beginner",'I':"Intermediate", 'A':"Advanced", None: ''} types = {"E": 'talk', "P": 'plenary', "B": 'break', None: 'talk'} # remove old talks db(db.activity.id>0).delete() for row in rows: event_id, title, duration, summary, description, submitter_id, level_id, categories, start, room_id, event_type = row autor = db.auth_user[submitter_id] authors = autor and "%s %s" % (autor.first_name, autor.last_name) or '' status = start and 'accepted' or 'pending' activity_id = db.activity.insert( authors=authors, title=title, duration=duration, abstract=summary, description=description, created_by=submitter_id, level=levels[level_id], scheduled_datetime=start, scheduled_room=room_id, status=status, categories=categories and categories.split(", ") or [], confirmed=True, type=types[event_type], ) # insert author(s): if submitter_id: # todo: pycon-tech sometime doesn't have authors!? db.author.insert(user_id=submitter_id, activity_id=activity_id) # activate speaker flag (for speaker page): q = db.auth_user.id==submitter_id q &= db.auth_user.speaker==False r = db(q).update(speaker=True) response.view = "generic.html" return dict(rows=rows) def sponsors(): # import sponsorship_websitelogo into sponsors sql = """ select s.id, s.name, s.level, s.index, s.logo, s.url, s.alt from sponsorship_websitelogo s where s.visible=True order by s.level, s.index """ rows = pg.executesql(sql) # change the mapping according your event: levels = {"8:Organizer": "Organizer", "7:Thanks": "Agradecimiento Especial", "3:Gold": "Sponsor Oro", "4:Silver": "Sponsor Plata", "5:Bronze": "Sponsor Bronce", "51:Bronze": "Sponsor Bronce", "52:Pyme": "Sponsor Pyme", "9:Colaborator": "Colaborador",} # remove old sponsors db(db.sponsor.id>0).delete() for row in rows: # Manual uploads (programatically read and store the logo image) filename = row[4] stream = open(os.path.join(PATH, filename),'rb') logo = db.sponsor.logo.store(stream, filename) # do the work: db.sponsor.insert( id=row[0], name=row[1], level=levels[row[2]], number=row[3], logo=logo, url=row[5], alt=row[6], ) response.view = "generic.html" return dict(rows=rows)
from lettuce import * from selenium import webdriver @before.all def setup_browser(): print("starting browser") world.browser = webdriver.Firefox() world.browser.implicitly_wait(3) @after.all def teardown_browser_and_server(total): print("terminating browser") world.browser.quit()
#!/usr/bin/env python __author__ = 'Florian Hase' #======================================================================== import os import copy import time import uuid import pickle import subprocess import numpy as np import multiprocessing from gryffin.utilities import Logger from gryffin.utilities.decorators import thread class DescriptorGenerator(Logger): eta = 1e-3 max_iter = 10**3 def __init__(self, config): self.config = config self.is_generating = False self.exec_name = '%s/descriptor_generator/generation_process.py' % self.config.get('home') # define registers self.auto_gen_descs = {} self.comp_corr_coeffs = {} self.gen_descs_cov = {} self.min_corrs = {} self.reduced_gen_descs = {} self.weights = {} self.sufficient_indices = {} if self.config.get('num_cpus') == 'all': self.num_cpus = multiprocessing.cpu_count() else: self.num_cpus = int(self.config.get('num_cpus')) @thread def single_generate(self, descs, objs, feature_index, result_dict=None): # collect all relevant properties sim_dict = {} for prop in dir(self): if callable(getattr(self, prop)) or prop.startswith(('__', 'W', 'config')): continue sim_dict[prop] = getattr(self, prop) sim_dict['num_samples'] = descs.shape[0] sim_dict['num_descs'] = descs.shape[1] sim_dict['descs'] = descs sim_dict['objs'] = objs sim_dict['grid_descs'] = self.config.feature_descriptors[feature_index] identifier = str(uuid.uuid4())[:8] config_name = '%s/descriptor_generation_%d_%s.pkl' % (self.config.get('scratch_dir'), feature_index, identifier) with open(config_name, 'wb') as content: pickle.dump(sim_dict, content) subprocess.call('python %s %s' % (self.exec_name, config_name), shell=True) print('SUBMITTED DESC GENERATION') results_name = '%s/completed_descriptor_generation_%d_%s.pkl' % (self.config.get('scratch_dir'), feature_index, identifier) # wait for results to be written while not os.path.isfile(results_name): time.sleep(0.05) current_size = 0 while current_size != os.path.getsize(results_name): current_size = os.path.getsize(results_name) time.sleep(0.05) time.sleep(0.2) try: with open(results_name, 'rb') as content: results = pickle.load(content) except EOFError: time.sleep(2) with open(results_name, 'rb') as content: results = pickle.load(content) self.min_corrs[feature_index] = results['min_corrs'] self.auto_gen_descs[feature_index] = results['auto_gen_descs'] self.comp_corr_coeffs[feature_index] = results['comp_corr_coeffs'] self.gen_descs_cov[feature_index] = results['gen_descs_cov'] self.reduced_gen_descs[feature_index] = results['reduced_gen_descs'] self.weights[feature_index] = results['weights'] self.sufficient_indices[feature_index] = results['sufficient_indices'] result_dict[feature_index] = results['reduced_gen_descs'] os.remove(config_name) os.remove(results_name) @thread def generate(self, obs_params, obs_objs): import time start = time.time() self.is_generating = True result_dict = {} feature_types = self.config.feature_types feature_descriptors = self.config.feature_descriptors for feature_index, feature_options in enumerate(self.config.feature_options): if feature_types[feature_index] == 'continuous': self.weights[feature_index] = None self.reduced_gen_descs[feature_index] = None result_dict[feature_index] = None continue if feature_descriptors[feature_index] is None: self.weights[feature_index] = None self.reduced_gen_descs[feature_index] = None result_dict[feature_index] = None continue if feature_descriptors[feature_index].shape[1] == 1: self.weights[feature_index] = np.array([[1.]]) self.reduced_gen_descs[feature_index] = feature_descriptors[feature_index] result_dict[feature_index] = feature_descriptors[feature_index] continue sampled_params = obs_params[:, feature_index].astype(np.int32) sampled_descriptors = feature_descriptors[feature_index][sampled_params] sampled_objs = np.reshape(obs_objs, (len(obs_objs), 1)) self.single_generate(sampled_descriptors, sampled_objs, feature_index, result_dict) # avoid parallel execution if not desired if self.num_cpus == 1: if feature_types[feature_index] == 'continuous': continue while not feature_index in result_dict: time.sleep(0.1) for feature_index in range(len(self.config.feature_options)): if feature_types[feature_index] == 'continuous': continue while not feature_index in result_dict: time.sleep(0.1) gen_feature_descriptors = [result_dict[feature_index] for feature_index in range(len(result_dict.keys()))] self.gen_feature_descriptors = gen_feature_descriptors self.is_generating = False end = time.time() self.desc_gen_time = end - start def get_descriptors(self): while self.is_generating: time.sleep(0.1) if hasattr(self, 'gen_feature_descriptors'): print('[TIME: ', self.desc_gen_time, ' (descriptor generation)') return self.gen_feature_descriptors else: return self.config.feature_descriptors def get_summary(self): summary = {} feature_types = self.config.feature_types # If we have not generated new descriptors if not hasattr(self, 'gen_feature_descriptors'): for feature_index in range(len(self.config.feature_options)): contribs = {} if feature_types[feature_index] == 'continuous': continue feature_descriptors = self.config.feature_descriptors[feature_index] if feature_descriptors is None: continue for desc_index in range(feature_descriptors.shape[1]): desc_summary_dict = {} desc_summary_dict['relevant_given_descriptors'] = np.arange(len(feature_descriptors[:, desc_index])) desc_summary_dict['given_descriptor_contributions'] = np.ones(len(feature_descriptors[:, desc_index])) contribs['descriptor_%d' % desc_index] = copy.deepcopy(desc_summary_dict) summary['feature_%d' % feature_index] = copy.deepcopy(contribs) return summary # If we have generated new descriptors for feature_index in range(len(self.config.feature_options)): if feature_types[feature_index] == 'continuous': continue weights = self.weights[feature_index] sufficient_indices = self.sufficient_indices[feature_index] print('sufficient_indices', sufficient_indices) if weights is None: continue if len(sufficient_indices) == 0: continue # normalize weights normed_weights = np.empty(weights.shape) for index, weight_elements in enumerate(weights): normed_weights[index] = weight_elements / np.sum(np.abs(weight_elements)) # identify contributing indices contribs = {} for new_desc_index in sufficient_indices: desc_summary_dict = {} relevant_weights = normed_weights[new_desc_index] sorting_indices = np.argsort(np.abs(relevant_weights)) cumulative_sum = np.cumsum(np.abs(relevant_weights[sorting_indices])) include_indices = np.where(cumulative_sum > 0.1)[0] relevant_given_descriptors = sorting_indices[include_indices] desc_summary_dict['relevant_given_descriptors'] = relevant_given_descriptors desc_summary_dict['given_descriptor_contributions'] = weights[new_desc_index] contribs['descriptor_%d' % new_desc_index] = copy.deepcopy(desc_summary_dict) summary['feature_%d' % feature_index] = copy.deepcopy(contribs) return summary
"""This module contains the general information for FabricFcMonSrcEpOperation ManagedObject.""" from ...ucscmo import ManagedObject from ...ucsccoremeta import UcscVersion, MoPropertyMeta, MoMeta from ...ucscmeta import VersionMeta class FabricFcMonSrcEpOperationConsts(): ADMIN_STATE_DISABLED = "disabled" ADMIN_STATE_ENABLED = "enabled" ADMIN_STATE_REMOTE_TRIGGER = "remoteTrigger" ADMIN_STATE_REMOVE = "remove" DIRECTION_BOTH = "both" DIRECTION_RX = "rx" DIRECTION_TX = "tx" TRIGGER_STATUS_TRIGGER_ACKED = "trigger-acked" TRIGGER_STATUS_TRIGGER_FAILED = "trigger-failed" TRIGGER_STATUS_TRIGGERED = "triggered" TRIGGER_STATUS_UNKNOWN = "unknown" class FabricFcMonSrcEpOperation(ManagedObject): """This is FabricFcMonSrcEpOperation class.""" consts = FabricFcMonSrcEpOperationConsts() naming_props = set([u'name']) mo_meta = MoMeta("FabricFcMonSrcEpOperation", "fabricFcMonSrcEpOperation", "remoper-mon-src-[name]", VersionMeta.Version151a, "InputOutput", 0x1ff, [], ["admin", "ext-lan-config", "ext-lan-policy"], [u'fabricFcEstcEpOperation', u'fabricFcSanEpOperation', u'fabricFcSanPcOperation', u'fabricVsan', u'vnicFc'], [u'faultInst'], ["Add", "Get", "Remove", "Set"]) prop_meta = { "admin_state": MoPropertyMeta("admin_state", "adminState", "string", VersionMeta.Version151a, MoPropertyMeta.READ_WRITE, 0x2, None, None, None, ["disabled", "enabled", "remoteTrigger", "remove"], []), "child_action": MoPropertyMeta("child_action", "childAction", "string", VersionMeta.Version151a, MoPropertyMeta.INTERNAL, None, None, None, r"""((deleteAll|ignore|deleteNonPresent),){0,2}(deleteAll|ignore|deleteNonPresent){0,1}""", [], []), "direction": MoPropertyMeta("direction", "direction", "string", VersionMeta.Version151a, MoPropertyMeta.READ_WRITE, 0x4, None, None, None, ["both", "rx", "tx"], []), "dn": MoPropertyMeta("dn", "dn", "string", VersionMeta.Version151a, MoPropertyMeta.READ_ONLY, 0x8, 0, 256, None, [], []), "last_modified": MoPropertyMeta("last_modified", "lastModified", "string", VersionMeta.Version151a, MoPropertyMeta.READ_ONLY, None, None, None, r"""([0-9]){4}-([0-9]){2}-([0-9]){2}T([0-9]){2}:([0-9]){2}:([0-9]){2}((\.([0-9]){3})){0,1}""", [], []), "name": MoPropertyMeta("name", "name", "string", VersionMeta.Version151a, MoPropertyMeta.NAMING, 0x10, None, None, r"""[\-\.:_a-zA-Z0-9]{1,16}""", [], []), "remote_error_code": MoPropertyMeta("remote_error_code", "remoteErrorCode", "uint", VersionMeta.Version151a, MoPropertyMeta.READ_ONLY, None, None, None, None, [], []), "remote_error_descr": MoPropertyMeta("remote_error_descr", "remoteErrorDescr", "string", VersionMeta.Version151a, MoPropertyMeta.READ_ONLY, None, 0, 510, None, [], []), "rn": MoPropertyMeta("rn", "rn", "string", VersionMeta.Version151a, MoPropertyMeta.READ_ONLY, 0x20, 0, 256, None, [], []), "session": MoPropertyMeta("session", "session", "uint", VersionMeta.Version151a, MoPropertyMeta.READ_WRITE, 0x40, None, None, None, [], ["1-255"]), "status": MoPropertyMeta("status", "status", "string", VersionMeta.Version151a, MoPropertyMeta.READ_WRITE, 0x80, None, None, r"""((removed|created|modified|deleted),){0,3}(removed|created|modified|deleted){0,1}""", [], []), "transport": MoPropertyMeta("transport", "transport", "string", VersionMeta.Version151a, MoPropertyMeta.READ_ONLY, None, None, None, r"""((defaultValue|unknown|ether|dce|fc),){0,4}(defaultValue|unknown|ether|dce|fc){0,1}""", [], []), "trigger_status": MoPropertyMeta("trigger_status", "triggerStatus", "string", VersionMeta.Version151a, MoPropertyMeta.READ_WRITE, 0x100, None, None, None, ["trigger-acked", "trigger-failed", "triggered", "unknown"], []), "type": MoPropertyMeta("type", "type", "string", VersionMeta.Version151a, MoPropertyMeta.READ_ONLY, None, None, None, r"""((defaultValue|unknown|lan|san|ipc),){0,4}(defaultValue|unknown|lan|san|ipc){0,1}""", [], []), } prop_map = { "adminState": "admin_state", "childAction": "child_action", "direction": "direction", "dn": "dn", "lastModified": "last_modified", "name": "name", "remoteErrorCode": "remote_error_code", "remoteErrorDescr": "remote_error_descr", "rn": "rn", "session": "session", "status": "status", "transport": "transport", "triggerStatus": "trigger_status", "type": "type", } def __init__(self, parent_mo_or_dn, name, **kwargs): self._dirty_mask = 0 self.name = name self.admin_state = None self.child_action = None self.direction = None self.last_modified = None self.remote_error_code = None self.remote_error_descr = None self.session = None self.status = None self.transport = None self.trigger_status = None self.type = None ManagedObject.__init__(self, "FabricFcMonSrcEpOperation", parent_mo_or_dn, **kwargs)
# -*- coding: utf-8 -*- # Generated by Django 1.11.1 on 2017-11-27 01:10 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('common', '0003_address_label'), ] operations = [ migrations.AlterField( model_name='taskmonitor', name='task_state', field=models.CharField(choices=[('started', 'started'), ('failed', 'failed'), ('succeeded', 'succeeded')], max_length=200, null=True), ), ]
from q35_test import ( Q35Project_2_6_0 ) proj = Q35Project_2_6_0()
from os import listdir from os.path import isfile, join import json from PIL import Image import os memes = [] invalid_images = [] mypath = "memes/3" onlyfiles = [f for f in listdir(mypath) if isfile(join(mypath, f))] for file in onlyfiles: try: temp = {} with Image.open('./'+mypath+'/'+file) as img: width, height = img.size temp['id'] = file.split('.')[0] temp['path'] = mypath+'/'+file temp['width'] = width temp['height'] = height memes.append(temp) except: print(file, 'is not a valid image !') invalid_images.append('./'+mypath+'/'+file) # delete file for invalid in invalid_images: os.remove(invalid) print(invalid ," removed") f = open('3.json', 'w') f.write(json.dumps(memes)) f.close()
from typing import List class Solution: def singleNumber(self, nums: List[int]) -> int: ones , twos, threes = 0 , 0, 0 for n in nums: twos |= (ones & n) ones ^= n threes = ones & twos ones &= ~threes # remove the threes from the ones twos &= ~threes # remove the threes from the twos print(f'{ones} , {twos}, {threes}') return ones s = Solution() ip = [1,1,1,2] ans = s.singleNumber(ip) print(ans)
""" –––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– Tools for creation or conversion of lists from/to desired classification (the default is ISO 3166-1) © econcz, 2021 –––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– This project was inspired by **[pycountry](https://pypi.org/project/pycountry/)** and **[pycountry-convert](https://pypi.org/project/pycountry-convert/)** modules and is a port of the **Stata package** **[pyconvertu](https://ideas.repec.org/c/boc/bocode/s458892.html)** *(Stata module to convert a string variable into a classification from the default or user-provided JSON file with the help of Python 3)* written in Python 3 and ADO. The tools can, for example, be used together with **[pandas](https://pypi.org/project/pandas/)** to process **pandas.DataFrame()**, `data`, `index`, and / or `columns`. Parameters: ––––––––––– `source_file` : *raw str* or *unicode*, optional Relative or absolute path to the user-defined JSON file. `from_list` : *sequence* of *iterable* Input data. `to_classification` : *str* or *unicode* 'name_en' (English name), 'name_fr' (French name), 'iso3' (ISO 3166-1 alpha-3), 'iso2' (ISO 3166-1 alpha-2), or 'isoN' (ISO 3166-1 numeric). `from_classification` : *str* or *unicode* 'name_en' (English name), 'name_fr' (French name), 'iso3' (ISO 3166-1 alpha-3), 'iso2' (ISO 3166-1 alpha-2), or 'isoN' (ISO 3166-1 numeric). `source_file` (if defined) replaces the default classification (ISO 3166-1). The file must contain a list of dictionaries where `regex` is a compulsory key in each one. The default JSON file was prepared with the help of **[json](https://docs.python.org/3/library/json.html)** module: ``` [ { "regex": "^(.*afgh.*|\\s*AFG\\s*|\\s*AF\\s*|\\s*4\\s*)$", "name_en": "Afghanistan", # classification A "name_fr": "Afghanistan (l')", # classification B "iso3": "AFG", # ... "iso2": "AF", "isoN": "4" }, ... { "metadata": { "name_en": "English short name", "name_fr": "French short name", "iso3": "alpha-3 code", "iso2": "alpha-2 code", "isoN": "numeric" } }, { "sources": [ "[...](ISO 3166 COUNTRY CODES)", "[...](ALTERNATIVE NAMES)" ] } ] ``` Returns: –––––––– `l` : *list* Processed data. """ import json import os import re import sys # User-defined Functions def convert( source_file=r'' + sys.modules['pyconvertu'].__file__.replace( '__init__.py', 'classification.json' ), from_list=[], to_classification='', *args, **kwargs ): """ Converts a list of strings (from_list) to classification (to_classification) based on a JSON file (source_file). """ try: # load classification with open(os.path.expanduser(source_file)) as f: classification = list(filter( lambda d: not d.get('metadata') and not d.get('sources'), json.load(f) )) # convert list return list(map( lambda s: (lambda l, s: l[1].get(to_classification) if len(l) > 1 else l[0] )( [s] + list(filter( lambda d: re.search( r'' + d.get('regex') + r'', s, flags=re.I|re.M ), classification )), str(s) ), from_list )) except: return {} def classification( source_file=r'' + sys.modules['pyconvertu'].__file__.replace( '__init__.py', 'classification.json' ), from_classification='', *args, **kwargs ): """ Creates a list of strings from classification (from_classification) based on a JSON file (source_file). """ try: # load classification with open(os.path.expanduser(source_file)) as f: classification = list(filter( lambda d: not d.get('metadata') and not d.get('sources'), json.load(f) )) # create list l = list(map( lambda d: d.get(from_classification), classification )) l.sort() return l except: return {} def info( source_file=r'' + sys.modules['pyconvertu'].__file__.replace( '__init__.py', 'classification.json' ), *args, **kwargs ): """ Returns a list based on a JSON file (source_file). """ try: # load classification metadata with open(os.path.expanduser(source_file)) as f: metadata = list(filter( lambda d: d.get('metadata') or d.get('sources'), json.load(f) )) # create list return list(map( lambda d: str(d), metadata )) except: return {}
num=int(input("Enter number :")) count=0 for i in range(1,num+1): if (num%i==0): count=count+1 if count==2: print(num,"is a prime number") else: print(num,"is not a prime number") # n=int(input("Enter number :")) # count=0 # i=1 # while(i<=n): # if n%i==0: # count=count+1 # i=i+1 # if count==2: # print("prime number") # else: # print("not prime number")
# Ivan Carvalho # Solution to https://www.urionlinejudge.com.br/judge/problems/view/1553 # encoding : utf-8 def frequente(conjunto,numero): return len([j for j in [conjunto.count(i) for i in set(conjunto)] if j>= numero]) while True: a,b = [int(i) for i in raw_input().split(" ")] if a != 0 and b != 0 : print frequente([int(j) for j in raw_input().split(" ")],b) else: break
# -*- coding: utf-8 -*- import yaml import sys import numpy as np import pandas as pd from time import time from sklearn.pipeline import make_pipeline from sklearn.metrics import roc_auc_score from sklearn.cross_validation import KFold, LeaveOneLabelOut from collections import OrderedDict from multiprocessing import Pool from functools import partial # local import from classif import updateMeta, baggingIterator def from_yaml_to_func(method,params): prm = dict() if params!=None: for key,val in params.items(): prm[key] = eval(str(val)) return eval(method)(**prm) def makeCV(kfolds,X,Labels,User,Meta,clf,opts): users = np.unique(User) toPredData=[] Gauc = [] for train_users,test_users in kfolds[1]: allProb = 0 test_index = np.array([True if u in set(users[test_users]) else False for u in User]) if 'bagging' in opts: bagging = baggingIterator(opts,[users[i] for i in train_users]) else: bagging = [[-1]] for bag in bagging: bagUsers = np.array([True if u in set(bag) else False for u in User]) train_index = np.logical_xor(np.negative(test_index), bagUsers) try: # train updateMeta(clf,Meta[train_index]) clf.fit(X[train_index,:,:],Labels[train_index]) # predict prob = [] for ut in np.unique(users[test_users]): updateMeta(clf,Meta[User==ut,...]) prob.extend(clf.predict(X[User==ut,...])) prob = np.array(prob) allProb += prob/len(bagging) except: print(kfolds[0]) print([users[i] for i in train_users]) print(bag) continue # save & return predictions = OrderedDict() predictions['user']=User[test_index] predictions['label'] = Labels[test_index] predictions['prediction']=allProb if 'leak' in opts: predictions['prediction'] += opts['leak']['coeff']*(1-Meta[test_index,-1]) predictions = pd.DataFrame(predictions) Gauc.append(roc_auc_score(predictions.label,predictions.prediction)) toPredData.append(predictions) predData = pd.concat(toPredData) Sauc = [roc_auc_score(predData.loc[predData.user==i].label,predData.loc[predData.user==i].prediction) for i in np.unique(predData.user)] print('Rep %d: gAUC (mean of folds) %0.5f, sAUC %0.5f (%0.5f)' % (kfolds[0],np.mean(Gauc),np.mean(Sauc),np.std(Sauc))) return [Gauc,Sauc] # load parameters file yml = yaml.load(open(sys.argv[1])) # imports for pkg, functions in yml['imports'].items(): stri = 'from ' + pkg + ' import ' + ','.join(functions) exec(stri) # parse pipe function from parameters pipe = [] for item in yml['pipeline']: for method,params in item.items(): pipe.append(from_yaml_to_func(method,params)) # create pipeline clf = make_pipeline(*pipe) opts=yml['MetaPipeline'] if opts is None: opts = {} # load files X = np.load('./preproc/epochs.npy') Labels,User = np.load('./preproc/infos.npy') Meta = np.load('./preproc/meta_leak.npy') if 'leak' in opts else np.load('./preproc/meta.npy') users=np.unique(User) # parallel CV np.random.seed(5) folds = yml['CrossVal']['folds'] repetitions = yml['CrossVal']['repetitions'] cores = yml['CrossVal']['cores'] kfolds = [[i,KFold(len(users),folds,shuffle=True)] for i in range(repetitions)] np.random.seed(432432) t = time() pMakeCV = partial(makeCV,X=X,Labels=Labels,User=User,Meta=Meta,clf=clf,opts=opts) # pool function is able to process only 1 argument, so the rest has to be set fixed pool = Pool(processes = cores) # define number of cores results = pool.map(pMakeCV,kfolds,chunksize=1) # apply parallel processing pool.close() # close parallel processes after execution (frees memory) print("Done in " + str(time()-t) + " second") # calculating performance gAUC = np.concatenate([i[0] for i in results]) # mean of folds sAUC = [np.mean(i[1]) for i in results] indAUC = np.array([i[1] for i in results]) indAUC = np.mean(indAUC,axis=0) print('Global AUC : %.5f (%.5f)' % (np.mean(gAUC),np.std(gAUC))) print('Subject AUC : %.5f (%.5f)' % (np.mean(sAUC),np.std(sAUC))) # writing it down import os comment = yml['CrossVal']['comments'] path = yml['CrossVal']['path'] pipelineSteps = [str(clf.steps[i][1]).replace('\n','').replace(' ','') for i in range(len(clf.steps))] if not os.path.isfile(path): fd = open(path,'w') fd.write('comment;folds;reps;gAUC mean;gAUC std;sAUC mean;sAUC std;user'+ ";user".join(map(str,list(map(int,users)))) + ';leak;bagging;pipeline\n') fd.close() fd = open(path,'a') leakStr = 'on' if 'leak' in opts else 'off' bagStr = '-'.join([str(opts['bagging']['bag_size']),str(opts['bagging']['models'])]) if 'bagging' in opts else 'off' toWrite = [comment] + list(map(str,[folds,repetitions,np.mean(gAUC),np.std(gAUC),np.mean(sAUC),np.std(sAUC)])) + [str(i) for i in indAUC] + [leakStr,bagStr] + pipelineSteps fd.write(';'.join(toWrite) + '\n') fd.close()
from __future__ import absolute_import from __future__ import division from __future__ import print_function import math import functools import tensorflow as tf from tensorflow_probability.python.bijectors import identity as identity_bijector from tensorflow_probability.python.distributions import Distribution from tensorflow_probability.python.internal import assert_util from tensorflow_probability.python.internal import dtype_util from tensorflow_probability.python.internal import reparameterization from tensorflow_probability.python.internal import special_math from tensorflow_probability.python.internal import prefer_static from tensorflow_probability.python.internal import tensor_util __all__ = [ "SkewGeneralizedNormal", ] class SkewGeneralizedNormal(Distribution): ''' The skew-generalized normal distribution. Also known as the generalized Gaussian distribution of the second type. This implementation is based on the distribution described as the generalized normal version 2 defined in the Wikipedia article: https://en.wikipedia.org/wiki/Generalized_normal_distribution accessed January 2019. Quantile, survival, log_survival, and all other essential functions were derived and defined by Daniel Luria, legally Daniel Maryanovsky, of vAIral, Kabbalah AI, and formerly of Lofty AI, MariaDB, and Locbit Inc. The distribution returns NaN when evaluating probability of points outside its support ''' def __init__(self, loc, scale, peak, validate_args=False, allow_nan_stats=True, name="SkewGeneralizedNormal"): parameters = dict(locals()) with tf.name_scope(name) as name: dtype = dtype_util.common_dtype([loc, scale, peak], dtype_hint=tf.float32) loc = tf.convert_to_tensor(loc, name="loc", dtype=dtype) scale = tf.convert_to_tensor(scale, name="scale", dtype=dtype) peak = tf.convert_to_tensor(peak, name="peak", dtype=dtype) with tf.control_dependencies([tf.assert_positive(scale)] if validate_args else []): self._loc = tf.identity(loc) self._scale = tf.identity(scale) self._peak = tf.identity(peak) tf.debugging.assert_same_float_dtype( [self._loc, self._scale, self._peak] ) super().__init__( dtype=dtype, reparameterization_type=reparameterization.FULLY_REPARAMETERIZED, validate_args=validate_args, allow_nan_stats=allow_nan_stats, parameters=parameters, graph_parents=[self._loc, self._scale, self._peak], name=name) @staticmethod def _param_shapes(sample_shape): return dict( zip(("loc", "scale", "peak"), ([tf.convert_to_tensor(sample_shape, dtype=tf.int32)] * 3))) @classmethod def _params_event_ndims(cls): return dict(loc=0, scale=0, peak=0) @property def loc(self): """Distribution parameter for the mean.""" return self._loc @property def scale(self): """Distribution parameter for scale.""" return self._scale @property def peak(self): """Distribution parameter related to mode and skew.""" return self._peak def _batch_shape_tensor(self, loc=None, scale=None, peak=None): return functools.reduce(prefer_static.broadcast_shape, ( prefer_static.shape(self.loc if loc is None else loc), prefer_static.shape(self.scale if scale is None else scale), prefer_static.shape(self.peak if peak is None else peak))) def _batch_shape(self): return functools.reduce(tf.broadcast_static_shape, ( self.loc.shape, self.scale.shape, self.peak.shape)) def _event_shape_tensor(self): return tf.constant([], dtype=tf.int32) def _event_shape(self): return tf.TensorShape([]) #- def _sample_n(self, n, seed=None): shape = tf.concat([[n], self.batch_shape_tensor()], 0) sampled = tf.random.uniform( shape=shape, minval=0., maxval=1., dtype=self.loc.dtype, seed=seed) return self._quantile(sampled) def _n_log_prob(self, x): return self._n_log_unnormalized_prob(x) - self._n_log_normalization() def _log_prob(self, x): log_smpe = tf.math.log(self.scale - (self.peak * (x - self.loc))) return self._n_log_prob(self._y(x)) - log_smpe def _prob(self, x): prob = tf.exp(self._log_prob(x)) return tf.where(tf.math.is_nan(prob), tf.zeros_like(prob), prob) def _log_cdf(self, x): return special_math.log_ndtr(self._y(x)) def _y(self, x): inv_peak = (-1./self.peak) inv_offset = 1. - self.peak * (x - self.loc) / self.scale return inv_peak * tf.math.log(inv_offset) def _cdf(self, x): return special_math.ndtr(self._y(x)) def _log_survival_function(self, x): return special_math.log_ndtr(-self._y(x)) def _survival_function(self, x): return special_math.ndtr(-self._y(x)) def _n_log_unnormalized_prob(self, x): return -0.5 * tf.square(x) # def _n_log_normalization(self): return 0.5 * math.log(2. * math.pi) + 1. def _mean(self): broadcast_ones = tf.ones_like(self.scale) esp = (tf.exp(tf.square(self.peak) / 2.) - 1.) mean = self.loc - (self.scale*esp/self.peak) return mean * broadcast_ones def _quantile(self, p): quantile_z = (1. - tf.exp(-self.peak * tf.math.ndtri(p)))/self.peak return self._inv_z(quantile_z) def _stddev(self): broadcast_ones = tf.ones_like(self.loc) root_sq_offset = tf.sqrt(tf.exp(tf.square(self.peak)) - 1.) exp_square_peak = tf.exp(tf.square(self.peak)/2) scale_q = self.scale/tf.abs(self.peak) return scale_q * exp_square_peak * root_sq_offset * broadcast_ones def _variance(self): return tf.square(self._stddev()) def _mode(self): broad_ones = tf.ones_like(self.scale) unit_mode = ((1. - tf.exp(-tf.square(self.peak)))*self.scale)/self.peak return (unit_mode + self.loc) * broad_ones def _z(self, x): """Standardize input `x` to a unit normal.""" with tf.name_scope("standardize"): return (x - self.loc) / self.scale def _inv_z(self, z): """Reconstruct input `x` from a its normalized version.""" with tf.name_scope("reconstruct"): return z * self.scale + self.loc def _default_event_space_bijector(self): return identity_bijector.Identity(validate_args=self.validate_args) def _parameter_control_dependencies(self, is_init): assertions = [] if is_init: # _batch_shape() will raise error if it can statically prove that `loc`, # `scale`, and `peak` have incompatible shapes. # taken from generalized_normal try: self._batch_shape() except ValueError: raise ValueError( 'Arguments `loc`, `scale` and `peak` must have compatible shapes; ' 'loc.shape={}, scale.shape={}, peak.shape={}.'.format( self.loc.shape, self.scale.shape, self.peak.shape)) if not self.validate_args: assert not assertions # Should never happen. return [] if is_init != tensor_util.is_ref(self.scale): assertions.append(assert_util.assert_positive( self.scale, message='Argument `scale` must be positive.')) if is_init != tensor_util.is_ref(self.peak): assertions.append(assert_util.assert_positive( self.power, message='Argument `peak` must be positive.')) return assertions
#!/usr/bin/env python import numpy as np import h5py import matplotlib.pyplot as plt from matplotlib import gridspec from os import path import parameters as param import argparse # Configure Command Line interface controller = dict(tf="target following controller", oa="obstacle avoidance controller") parser = argparse.ArgumentParser(description='Plot the final weights and show it in a Window') parser.add_argument('controller', choices=controller, default='oa', help="tf - target following, oa - obstacle avoidance") parser.add_argument('-n', '--noShow', help='Do not show the resulting Plot in a window', action="store_true") parser.add_argument('dir', help='Base directory of the experiment eg. ./data/session_xyz', default=param.default_dir) args = parser.parse_args() print "Using", controller[args.controller] is_oa = args.controller == 'oa' if is_oa: h5f = h5py.File(path.join(args.dir, param.training_file_oa), 'r') w_tf = np.array(h5f['w_tf'], dtype=float) w_l = w_tf[:, 0] w_r = w_tf[:, 1] w_i = range(0, w_l.shape[0]) w_p = np.array(h5f['w_oa'], dtype=float) else: h5f = h5py.File(path.join(args.dir, param.training_file_tf), 'r') w_tf = np.array(h5f['w_tf'], dtype=float) w_l = w_tf[:, 0] w_r = w_tf[:, 1] w_i = range(0, w_l.shape[0]) episode_steps = np.array(h5f["episode_steps"], dtype=float) episode_completed = np.array(h5f['episode_completed'], dtype=bool) rewards = np.array(h5f['reward'], dtype=float) angle_to_target = np.array(h5f['angle_to_target'], dtype=float) xlim = w_r.shape[0] fig = plt.figure() gs = gridspec.GridSpec(1, 1) ax1 = plt.subplot(gs[0]) values_x = np.array(range(episode_steps.size)) success_y = episode_steps[episode_completed] success_x = values_x[episode_completed] failures_y = episode_steps[~episode_completed] failures_x = values_x[~episode_completed] ax1.scatter(success_x, success_y, marker='^', color='g') ax1.scatter(failures_x, failures_y, marker='x', color='r') ax1.set_ylabel("Duration") ax1.set_xlabel("Episode") fig.tight_layout() if is_oa: plt.savefig(path.join(args.dir, "success_oa.png")) else: plt.savefig(path.join(args.dir, "success_tf.png")) if not args.noShow: plt.show()
# bfs_kbacon.py """Volume 2A: Breadth-First Search (Kevin Bacon). <Name> <Class> <Date> """ # Problems 1-4: Implement the following class class Graph(object): """A graph object, stored as an adjacency dictionary. Each node in the graph is a key in the dictionary. The value of each key is a list of the corresponding node's neighbors. Attributes: dictionary: the adjacency list of the graph. """ def __init__(self, adjacency): """Store the adjacency dictionary as a class attribute.""" self.dictionary = adjacency # Problem 1 def __str__(self): """String representation: a sorted view of the adjacency dictionary. Example: >>> test = {'A':['B'], 'B':['A', 'C',], 'C':['B']} >>> print(Graph(test)) A: B B: A; C C: B """ raise NotImplementedError("Problem 1 Incomplete") # Problem 2 def traverse(self, start): """Begin at 'start' and perform a breadth-first search until all nodes in the graph have been visited. Return a list of values, in the order that they were visited. Inputs: start: the node to start the search at. Returns: the list of visited nodes (in order of visitation). Raises: ValueError: if 'start' is not in the adjacency dictionary. Example: >>> test = {'A':['B'], 'B':['A', 'C',], 'C':['B']} >>> Graph(test).traverse('B') ['B', 'A', 'C'] """ raise NotImplementedError("Problem 2 Incomplete") # Problem 3 (Optional) def DFS(self, start): """Begin at 'start' and perform a depth-first search until all nodes in the graph have been visited. Return a list of values, in the order that they were visited. If 'start' is not in the adjacency dictionary, raise a ValueError. Inputs: start: the node to start the search at. Returns: the list of visited nodes (in order of visitation) """ raise NotImplementedError("Problem 3 Incomplete") # Problem 4 def shortest_path(self, start, target): """Begin at the node containing 'start' and perform a breadth-first search until the node containing 'target' is found. Return a list containg the shortest path from 'start' to 'target'. If either of the inputs are not in the adjacency graph, raise a ValueError. Inputs: start: the node to start the search at. target: the node to search for. Returns: A list of nodes along the shortest path from start to target, including the endpoints. Example: >>> test = {'A':['B', 'F'], 'B':['A', 'C'], 'C':['B', 'D'], ... 'D':['C', 'E'], 'E':['D', 'F'], 'F':['A', 'E', 'G'], ... 'G':['A', 'F']} >>> Graph(test).shortest_path('A', 'G') ['A', 'F', 'G'] """ raise NotImplementedError("Problem 4 Incomplete") # Problem 5: Write the following function def convert_to_networkx(dictionary): """Convert 'dictionary' to a networkX object and return it.""" raise NotImplementedError("Problem 5 Incomplete") # Helper function for problem 6 def parse(filename="movieData.txt"): """Generate an adjacency dictionary where each key is a movie and each value is a list of actors in the movie. """ # open the file, read it in, and split the text by '\n' with open(filename, 'r') as movieFile: moviesList = movieFile.read().split('\n') graph = dict() # for each movie in the file, for movie in moviesList: # get movie name and list of actors names = movie.split('/') title = names[0] graph[title] = [] # add the actors to the dictionary for actor in names[1:]: graph[title].append(actor) return graph # Problems 6-8: Implement the following class class BaconSolver(object): """Class for solving the Kevin Bacon problem.""" # Problem 6 def __init__(self, filename="movieData.txt"): """Initialize the networkX graph and with data from the specified file. Store the graph as a class attribute. Also store the collection of actors in the file as an attribute. """ raise NotImplementedError("Problem 6 Incomplete") # Problem 6 def path_to_bacon(self, start, target="Bacon, Kevin"): """Find the shortest path from 'start' to 'target'.""" raise NotImplementedError("Problem 6 Incomplete") # Problem 7 def bacon_number(self, start, target="Bacon, Kevin"): """Return the Bacon number of 'start'.""" raise NotImplementedError("Problem 7 Incomplete") # Problem 7 def average_bacon(self, target="Bacon, Kevin"): """Calculate the average Bacon number in the data set. Note that actors are not guaranteed to be connected to the target. Inputs: target (str): the node to search the graph for """ raise NotImplementedError("Problem 7 Incomplete") # =========================== END OF FILE =============================== #
# Function bribe: # takes a queue and a ID k # and moves k to the front of the queue if found # else, do nothing def bribe(queue, k): for entry in queue: if k == entry[1]: sav=entry queue.remove(entry) queue.insert(0,entry) return None N = int(input("Enter N: ")) tuplist = [] print("Enter ID: ") for i in range(1,N+1): inp = input() entry = (i,inp) tuplist.append(entry) for x in tuplist: print(x) k = input("Enter k: ") bribe(tuplist, k) for x in tuplist: print(x)
from __future__ import print_function, absolute_import from pygments.lexer import RegexLexer from pygments.lexer import words from pygments.token import Literal, Text from .completer import KubectlCompleter class KubectlLexer(RegexLexer): """Provides highlighting for commands, subcommands, arguments, and options. """ completer = KubectlCompleter() tokens = { 'root': [ (words( tuple(['kubectl', 'clear', 'exit']), prefix=r'\b', suffix=r'\b'), Literal.String), # (words( # tuple(completer.all_commands), # prefix=r'\b', # suffix=r'\b'), # Name.Class), # (words( # tuple(completer.all_args), # prefix=r'\b', # suffix=r'\b'), # Name.Class), # (words( # tuple(completer.all_opts), # prefix=r'', # suffix=r'\b'), # Keyword), # (words( # tuple(completer.global_opts), # prefix=r'', # suffix=r'\b'), # Keyword), # Everything else (r'.*\n', Text), ] }
# Generated by Django 3.2.11 on 2022-01-09 02:05 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('web', '0001_initial'), ] operations = [ migrations.RemoveField( model_name='class', name='cCode', ), migrations.AlterField( model_name='class', name='id', field=models.CharField(max_length=4, primary_key=True, serialize=False, verbose_name='課程代碼'), ), ]
from flask import Flask, jsonify, render_template import test, stats, os app = Flask(__name__) cache = {} @app.route('/') def hello_world(): return 'Hello World!' @app.route('/r/<string:subreddit>') def episodes(subreddit): seasonsAndEpisodes = _getEpisodes(subreddit) return render_template('index.html', result=seasonsAndEpisodes, subreddit=subreddit) @app.route('/api/r/<string:subreddit>', methods=['GET']) def get_episodes(subreddit): seasonsAndEpisodes = _getEpisodes(subreddit) seasons = [season.serialize() for season in seasonsAndEpisodes] result = {"seasons": seasons, "subreddit": subreddit} return jsonify(result) def _getEpisodes(subreddit): if subreddit in cache: return cache[subreddit] episodes = test.getValidData(subreddit) seasonsAndEpisodes = stats.extractSeasonsAndEpisodes(episodes) cache[subreddit] = seasonsAndEpisodes return seasonsAndEpisodes if __name__ == '__main__': port = int(os.environ.get('PORT', 33507)) app.run(debug=True, host='0.0.0.0', port=port)
import pathlib from setuptools import setup, find_packages import crypto_factory as cf # The directory containing this file HERE = pathlib.Path(__file__).parent # The text of the README.md file README = (HERE / "README.md").read_text() # Requirements list REQUIRED_PKGS = (HERE / "requirements.txt").read_text().split() # This call to setup() does all the work setup( name=cf.__title__, version=cf.__version__, author=cf.__author__, author_email=cf.__email__, description=cf.__summary__, long_description=README, long_description_content_type="text/markdown", # long_description_content_type="text/x-rst", url=cf.__uri__, license=cf.__license__, packages=find_packages(exclude=("tests", "private", )), include_package_data=True, platforms='any', # zip_safe=False, python_requires='>=3.4', install_requires=REQUIRED_PKGS, test_suite="tests", keywords='cryptography factory-design', classifiers=[ "Development Status :: 4 - Beta", "License :: OSI Approved :: MIT License", "Operating System :: OS Independent", "Programming Language :: Python :: 3", "Programming Language :: Python :: 3.4", "Programming Language :: Python :: 3.5", "Programming Language :: Python :: 3.6", "Programming Language :: Python :: 3.7", "Topic :: Security :: Cryptography", "Topic :: Software Development :: Libraries :: Python Modules", ], project_urls={ 'Documentation': 'https://' + cf.__title__.lower() + '.readthedocs.io/en/latest/', 'Releases': 'https://pypi.org/project/' + cf.__title__, 'Source': cf.__uri__, 'Tracker': cf.__uri__ + '/issues', }, )
def prvo_tisoc_mestno_fibonacijevo(): a = 1 b = 1 index = 2 while len(str(b)) < 1000: c = a a = b b = b + c index += 1 return index print(prvo_tisoc_mestno_fibonacijevo()) 4782
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('djangobb_forum', '0010_remove_topic_views'), ] operations = [ migrations.AlterModelTable( name='attachment', table='slimbb_attachment', ), migrations.AlterModelTable( name='ban', table='slimbb_ban', ), migrations.AlterModelTable( name='category', table='slimbb_category', ), migrations.AlterModelTable( name='forum', table='slimbb_forum', ), migrations.AlterModelTable( name='post', table='slimbb_post', ), migrations.AlterModelTable( name='posttracking', table='slimbb_posttracking', ), migrations.AlterModelTable( name='profile', table='slimbb_profile', ), migrations.AlterModelTable( name='report', table='slimbb_report', ), migrations.AlterModelTable( name='topic', table='slimbb_topic', ), ]
# -*- coding: utf-8 -*- import argparse import common import logging logger = logging.getLogger(__name__) def main(): parser = argparse.ArgumentParser(add_help=True) subparsers = parser.add_subparsers(dest="func") grs_subparser = subparsers.add_parser("generate_report_from_shelve") grs_subparser.add_argument('--shelve', action='store', dest="shelve") imp_subparser = subparsers.add_parser("import_hierarchy_into_magna") imp_subparser.add_argument('--host', action='store', dest="server") imp_subparser.add_argument('--port', action='store', type=int, dest="port", default=8080) imp_subparser.add_argument('--module', action='store', dest="module") imp_subparser.add_argument('--project_id', action='store', type=int, dest="project_id") args = parser.parse_args() if args.func == "generate_report_from_shelve": from ngta.util import generate_report_from_shelve generate_report_from_shelve(args.shelve) elif args.func == "import_hierarchy_into_magna": from magna.client import RestClient client = RestClient("http://%s:%s/magna/api/rest/" % (args.server, args.port)) client.export_hierarchy_to_magna(args.module, args.project_id) if __name__ == "__main__": logging.basicConfig( level=logging.DEBUG, format='%(asctime)-15s [%(levelname)-8s] - %(message)s' ) main()
import os import tempfile import pytest from docker import errors from docker.context import ContextAPI from docker.tls import TLSConfig from .base import BaseAPIIntegrationTest class ContextLifecycleTest(BaseAPIIntegrationTest): def test_lifecycle(self): assert ContextAPI.get_context().Name == "default" assert not ContextAPI.get_context("test") assert ContextAPI.get_current_context().Name == "default" dirpath = tempfile.mkdtemp() ca = tempfile.NamedTemporaryFile( prefix=os.path.join(dirpath, "ca.pem"), mode="r") cert = tempfile.NamedTemporaryFile( prefix=os.path.join(dirpath, "cert.pem"), mode="r") key = tempfile.NamedTemporaryFile( prefix=os.path.join(dirpath, "key.pem"), mode="r") # create context 'test docker_tls = TLSConfig( client_cert=(cert.name, key.name), ca_cert=ca.name) ContextAPI.create_context( "test", tls_cfg=docker_tls) # check for a context 'test' in the context store assert any([ctx.Name == "test" for ctx in ContextAPI.contexts()]) # retrieve a context object for 'test' assert ContextAPI.get_context("test") # remove context ContextAPI.remove_context("test") with pytest.raises(errors.ContextNotFound): ContextAPI.inspect_context("test") # check there is no 'test' context in store assert not ContextAPI.get_context("test") ca.close() key.close() cert.close() def test_context_remove(self): ContextAPI.create_context("test") assert ContextAPI.inspect_context("test")["Name"] == "test" ContextAPI.remove_context("test") with pytest.raises(errors.ContextNotFound): ContextAPI.inspect_context("test")
# Generated by Django 3.1.6 on 2021-04-08 16:15 import bookwyrm.models.fields from django.db import migrations class Migration(migrations.Migration): dependencies = [ ("bookwyrm", "0067_denullify_list_item_order"), ] operations = [ migrations.AlterField( model_name="listitem", name="order", field=bookwyrm.models.fields.IntegerField(), ), migrations.AlterUniqueTogether( name="listitem", unique_together={("order", "book_list"), ("book", "book_list")}, ), ]
# -*- coding: utf-8 -*- """ xueqiu.sheet ~~~~~~~~~~~~ This module contains stock sheet languages. :copyright: (c) 2019 by 1dot75cm. :license: MIT, see LICENSE for more details. """ income_lang_us = dict( sd='开始日期', ed='结束日期', report_date='报告日期', report_name='报告名称', report_annual='报告年度', report_type_code='报告代码', revenue='营业收入', othr_revenues='其他收入', total_revenue='营业总收入', sales_cost='营业成本', gross_profit='营业毛利润', marketing_selling_etc='市场销售管理费用', rad_expenses='研发费用', net_interest_expense='净利息费用', interest_income='利息收入', interest_expense='利息支出', total_operate_expenses_si='营业支出特殊科目总计', total_operate_expenses='营业支出总计', operating_income='营业利润', share_of_earnings_of_affiliate='子公司股权权益收入', income_from_co_before_tax_si='税前营业收入特殊科目', income_from_co_before_it='税前利润', income_tax='所得税', income_from_co='税后利润', net_income='净利润', preferred_dividend='优先股股息', net_income_atms_interest='归属于少数股东的净利润', net_income_atcss='归属于母公司股东的净利润', total_compre_income='综合收益总额', total_compre_income_atms='归属于少数股东的综合收益', total_compre_income_atcss='归属于母公司股东的综合收益', total_basic_earning_common_ps='基本每股收益', total_dlt_earnings_common_ps='稀释每股收益') income_lang_hk = dict( sd='开始日期', ed='结束日期', report_date='报告日期', report_name='报告名称', month_num='月数', tto='总营业额', slgcost='销售成本', gp='毛利', otiog='其他收入及收益', sr_ta='营业收入合计', slgdstexp='销售及分销开支', admexp='行政开支', otopeexp='其他经营开支', topeexp='经营开支总额', rshdevexp='研发开支费用', tipmcgpvs='减值拨备', depaz='折旧摊销', opeploinclfincost='扣除融资成本前的经营利润', fcgcost='融资成本', opeplo='经营利润', nosplitems='非经营特殊项目', jtctletiascom='联营合营公司', plobtx='税前利润', tx='所得税', txexcliotx='所得税外税金', npdsubu='非持续经营业务利润', plocyr='税后利润', amteqyhdcom='公司股东权益', amtmiint='少数股东权益', ploashh='股东应得权益', otcphio='其他全面收入', tcphio='全面收入总额', cmnshdiv='普通股股息', beps_aju='基本每股收益', deps_aju='摊薄每股收益', divdbups_ajupd='每股股息') income_lang_cn = dict( report_date='报告日期', report_name='报告名称', total_revenue='营业总收入', revenue='营业收入', income_from_chg_in_fv='公允价值变动收益', invest_income='投资收益', invest_incomes_from_rr='联营合营企业', exchg_gain='汇兑收益', operating_costs='营业总成本', operating_cost='营业成本', operating_taxes_and_surcharge='营业税附加税', sales_fee='销售费用', manage_fee='管理费用', financing_expenses='财务费用', asset_impairment_loss='资产减值损失', op='营业利润', non_operating_income='营业外收入', non_operating_payout='营业外支出', profit_total_amt='利润总额', income_tax_expenses='所得税费', net_profit='净利润', net_profit_atsopc='归属母公司所有者的净利润', minority_gal='少数股东损益', net_profit_after_nrgal_atsolc='扣非净利润', basic_eps='基本每股收益', dlt_earnings_per_share='稀释每股收益', othr_compre_income='其他综合收益', othr_compre_income_atms='少数股东的其他综合收益', othr_compre_income_atoopc='归属于母公司所有者的其他综合收益', total_compre_income='综合收益总额', total_compre_income_atsopc='归属于母公司股东的综合收益总额', total_compre_income_atms='少数股东的综合收益总额') balance_lang_us = dict( sd='开始日期', ed='结束日期', report_date='报告日期', report_name='报告名称', report_annual='报告年度', report_type_code='报告代码', cce='现金和现金等价物', st_invest='短期投资', total_cash='总现金', net_receivables='应收账款', inventory='库存', dt_assets_current_assets='流动资产递延所得税', prepaid_expense='预付款', current_assets_special_subject='流动资产特殊项目', total_current_assets='流动资产合计', gross_property_plant_and_equip='固定资产总额', accum_depreciation='固定资产折旧', net_property_plant_and_equip='固定资产净额', equity_and_othr_invest='股权投资和长期投资', goodwill='商誉', net_intangible_assets='无形资产净额', accum_amortization='累计摊销', dt_assets_noncurrent_assets='非流动资产递延所得税', nca_si='非流动资产特殊项目', total_noncurrent_assets='非流动资产合计', total_assets_special_subject='资产特殊科目', total_assets='总资产', st_debt='短期借款', accounts_payable='应付账款', income_tax_payable='应缴所得税', accrued_liab='应计负债', deferred_revenue_current_liab='流动负债递延收入', current_liab_si='流动负债特殊科目', total_current_liab='流动负债合计', lt_debt='长期借款', deferred_tax_liab='递延所得税负债', dr_noncurrent_liab='非流动负债递延收入', noncurrent_liab_si='非流动负债特殊科目', total_noncurrent_liab='非流动负债合计', total_liab_si='负债合计特殊科目', total_liab='负债合计', asset_liab_ratio='资产负债率', preferred_stock='优先股', common_stock='普通股', add_paid_in_capital='额外实收资本', retained_earning='未分配利润', treasury_stock='库存股', accum_othr_compre_income='累计损益', total_holders_equity_si='归属于母公司股东权益特殊项目', total_holders_equity='归属于母公司股东权益合计', minority_interest='少数股东权益', total_equity_special_subject='权益特殊项目', total_equity='股东权益合计') balance_lang_hk = dict( sd='开始日期', ed='结束日期', report_date='报告日期', report_name='报告名称', month_num='月数', cceq='现金和现金等价物', fina='金融资产', trrb='应收账款', iv='存货', otca='其他流动资产', ca='流动资产合计', fxda='固定资产', inv='投资', iga='无形资产', otnca='其他非流动资产', otnc='', tnca='非流动资产合计', ta='总资产', trpy='应付账款', stdt='短期借款', otstdt='其他短期负债', clia='流动负债合计', ncalia='净流动负债', diftatclia='总资产减流动负债', ltdt='长期借款', otltlia='其他长期负债', tnclia='非流动负债合计', tlia='总负债', nalia='净资产', ta_tlia='负债率', numtsh='总股本', shpm='股份溢价', rpaculo='保留利润', caprx='资本储备', otrx='其他储备', trx='总储备', shhfd='股东权益', miint='少数股东权益', teqy='总权益') balance_lang_cn = dict( report_date='报告日期', report_name='报告名称', currency_funds='货币资金', ar_and_br='应收票据及应收账款', tradable_fnncl_assets='交易性金融资产', bills_receivable='应收票据', account_receivable='应收账款', pre_payment='预付款项', contractual_assets='合同资产', interest_receivable='应收利息', dividend_receivable='应收股利', othr_receivables='其他应收款', inventory='存货', nca_due_within_one_year='1年内到期的非流动资产', current_assets_si='流动资产特殊项目', othr_current_assets='其他流动资产', total_current_assets='流动资产合计', salable_financial_assets='可供出售金融资产', saleable_finacial_assets='saleable_finacial_assets', held_to_maturity_invest='持有到期投资', lt_receivable='长期应收款', lt_equity_invest='长期股权投资', invest_property='投资性房地产', fixed_asset='固定资产', construction_in_process='在建工程', intangible_assets='无形资产', dev_expenditure='开发支出', goodwill='商誉', lt_deferred_expense='长期待摊费用', dt_assets='递延所得税资产', noncurrent_assets_si='非流动资产特殊项目', othr_noncurrent_assets='其他非流动资产', total_noncurrent_assets='非流动资产合计', total_assets='资产合计', st_loan='短期借款', tradable_fnncl_liab='交易性金融负债', bp_and_ap='应付票据及应付账款', accounts_payable='应付账款', bill_payable='应付票据', pre_receivable='预收款项', contract_liabilities='合同负债', payroll_payable='应付职工薪酬', tax_payable='应缴税费', interest_payable='应付利息', dividend_payable='应付股利', othr_payables='其他应付款', noncurrent_liab_due_in1y='1年内到期的非流动负债', current_liab_si='流动负债特殊项目', othr_current_liab='其他流动负债', total_current_liab='流动负债合计', lt_loan='长期借款', bond_payable='应付债券', lt_payable='长期应付款', special_payable='专项应付款', estimated_liab='预计负债', dt_liab='递延所得税负债', noncurrent_liab_si='非流动负债特殊项目', othr_non_current_liab='其他非流动负债', total_noncurrent_liab='非流动负债合计', total_liab='负债合计', asset_liab_ratio='负债率', shares='股本', capital_reserve='资本公积', treasury_stock='库存股', earned_surplus='盈余公积', undstrbtd_profit='未分配利润', total_quity_atsopc='归属于母公司股东权益合计', minority_equity='少数股东权益', total_holders_equity='股东权益合计', total_liab_and_holders_equity='负债和股东权益总计') cash_flow_lang_us = dict( sd='开始日期', ed='结束日期', report_date='报告日期', report_name='报告名称', report_annual='报告年度', report_type_code='报告代码', net_cash_provided_by_oa='经营活动产生的现金流量净额', net_cash_used_in_ia='投资活动产生的现金流量净额', payment_for_property_and_equip='物业设备资金', net_cash_used_in_fa='筹资活动产生的现金流量净额', effect_of_exchange_chg_on_cce='汇率对现金的影响', cce_at_boy='期初现金余额', cce_at_eoy='期末现金余额', increase_in_cce='现金净增加额', depreciation_and_amortization='折旧与摊销', operating_asset_and_liab_chg='营运资金变动', purs_of_invest='投资购买', common_stock_issue='股票发行', repur_of_common_stock='股份回购', dividend_paid='支付股息') cash_flow_lang_hk = dict( sd='开始日期', ed='结束日期', report_date='报告日期', report_name='报告名称', month_num='月数', nocf='经营活动产生的现金流量净额', depaz='折旧摊销', intrc='已收利息', intp='已付利息', divrc='已收股息', divp='已派股息', txprf='退回或已缴税项', adtfxda='增添固定资产', icinv='投资增加', dsfxda='出售固定资产', dcinv='投资减少', ncfrldpty_invact='与关联人的现金流量_投资活动', ninvcf='投资活动产生的现金流量净额', nicln='新增贷款', lnrpa='偿还贷款', fxdiodtinstr='定息或债券融资', eqyfin='股本融资', ncfrldpty_finact='与关联人的现金流量_融资活动', rpafxdiodtinstr='偿还定息或债券融资', nfcgcf='融资活动产生的现金流量净额', ncfdchexrateot='汇率影响', icdccceq='现金净增加额', cceqbegyr='期初现金余额', cceqeyr='期末现金余额') cash_flow_lang_cn = dict( report_date='报告日期', report_name='报告名称', #经营活动产生的现金流量 cash_received_of_sales_service='销售商品提供劳务收到的现金', refund_of_tax_and_levies='返还税费', cash_received_of_othr_oa='收到其他与经营活动有关的现金', sub_total_of_ci_from_oa='经营活动现金流入小计', goods_buy_and_service_cash_pay='购买商品接受劳务支付的现金', cash_paid_to_employee_etc='支付职工薪酬', payments_of_all_taxes='支付各项税费', othrcash_paid_relating_to_oa='支付其他与经营活动有关的现金', sub_total_of_cos_from_oa='经营活动现金流出小计', ncf_from_oa='经营活动现金流量净额', #投资活动产生的现金流量 cash_received_of_dspsl_invest='收回投资获得的现金', invest_income_cash_received='投资收益获得的现金', net_cash_of_disposal_assets='处置固定资产无形资产和其他长期资产收回的现金净额', net_cash_of_disposal_branch='处置子公司收到的现金净额', cash_received_of_othr_ia='收到其他与投资活动有关的现金', sub_total_of_ci_from_ia='投资活动现金流入小计', cash_paid_for_assets='购买固定资产无形资产和其他长期资产支付的现金', invest_paid_cash='投资支付的现金', net_cash_amt_from_branch='取得子公司支付的现金净额', othrcash_paid_relating_to_ia='支付其他与投资活动有关的现金', sub_total_of_cos_from_ia='投资活动现金流出小计', ncf_from_ia='投资活动产生的现金流量净额', #筹资活动产生的现金流量 cash_received_of_absorb_invest='吸收投资收到的现金', cash_received_from_investor='子公司吸收少数股东投资收到的现金', cash_received_of_borrowing='取得借款收到的现金', cash_received_from_bond_issue='发行债券收到的现金', cash_received_of_othr_fa='收到其他与筹资活动有关的现金', sub_total_of_ci_from_fa='筹资活动现金流入小计', cash_pay_for_debt='偿还债务支付的现金', cash_paid_of_distribution='分配股利利润利息支付的现金', branch_paid_to_minority_holder='子公司支付给少数股东的股利', othrcash_paid_relating_to_fa='支付其他与筹资活动有关的现金', sub_total_of_cos_from_fa='筹资活动现金流出小计', ncf_from_fa='筹资活动产生的现金流量净额', effect_of_exchange_chg_on_cce='汇率变动对现金的影响', net_increase_in_cce='现金及现金等价物净增加额', initial_balance_of_cce='期初现金余额', final_balance_of_cce='期末现金余额') indicator_lang_us = dict( sd='开始日期', ed='结束日期', report_date='报告日期', report_name='报告名称', report_annual='报告年度', report_type_code='报告代码', #每股指标 basic_eps='基本每股收益', eps_dlt='稀释每股收益', nav_ps='每股净资产', ncf_from_oa_ps='每股现金流', capital_reserve='每股公积金', oips='每股总营收', revenue_ps='每股营收', #营运能力 operating_cycle='营业周期', inventory_turnover_days='存货周转天数', inventory_turnover='存货周转率', receivable_turnover_days='应收账款周转天数', account_receivable_turnover='应收账款周转率', current_asset_turnover='流动资产周转率', fixed_asset_turnover_ratio='固定资产周转率', total_capital_turnover='总资产周转率', #盈利能力 roe_avg='净资产收益率', net_interest_of_ta='总资产收益率', net_sales_rate='销售净利率', gross_selling_rate='销售毛利率', sales_cost_rate='销售成本率', np_to_revenue='净利润/总营收', income_tax_to_total_profit='所得税/利润总额', ncf_from_oa_to_revenue='经营活动现金流量净额/营业收入', #成长能力(相对年初) nag_respond_boy='每股净资产%', assets_relative_boy_growth='总资产%', equity_atsopc_growth_boy='归母股东权益%', #财务风险 asset_liab_ratio='资产负债率', current_ratio='流动比率', quick_ratio='速动比率', equity_ratio='产权比率', equity_multiplier='权益乘数', flow_assets_to_total_assets='流动资产/总资产', noncurrent_assets_to_ta='非流动资产/总资产', flow_debt_to_total_debt='流动负债/总负债', noncurrent_liab_to_total_liab='非流动负债/总负债', equity_atsopc_to_total_liab='归母股东权益/总负债') indicator_lang_cn = dict( report_date='报告日期', report_name='报告名称', #关键指标 total_revenue='营业收入', operating_income_yoy='营收同比增长', net_profit_atsopc='净利润', net_profit_atsopc_yoy='净利润同比增长', net_profit_after_nrgal_atsolc='扣非净利润', np_atsopc_nrgal_yoy='扣非净利润同比增长', #每股指标 basic_eps='每股收益', np_per_share='每股净资产', capital_reserve='每股资本公积', undistri_profit_ps='每股未分配利润', operate_cash_flow_ps='每股经营现金流', #盈利能力 avg_roe='净资产收益率', ore_dlt='净资产收益率摊薄', net_interest_of_total_assets='总资产报酬率', rop='人力投入回报率', gross_selling_rate='销售毛利率', net_selling_rate='销售净利率', #财务风险 asset_liab_ratio='资产负债率', current_ratio='流动比率', quick_ratio='速动比率', equity_multiplier='权益乘数', equity_ratio='产权比率', holder_equity='股东权益比率', ncf_from_oa_to_total_liab='现金流量比率', #运营能力 inventory_turnover_days='存货周转天数', receivable_turnover_days='应收账款周转天数', accounts_payable_turnover_days='应付账款周转天数', cash_cycle='现金循环周期', operating_cycle='营业周期', total_capital_turnover='总资产周转率', inventory_turnover='存货周转率', account_receivable_turnover='应收账款周转率', accounts_payable_turnover='应付账款周转率', current_asset_turnover_rate='流动资产周转率', fixed_asset_turnover_ratio='固定资产周转率') f10_indicator_bs = dict( currency='currency', report_date='report_date', pb='pb', operating_income_yoy='revenue_yoy', net_profit_atsopc_yoy='net_profit_yoy', total_shares='total_shares', market_capital='market_capital') f10_indicator_us = dict( pe_ttm='pe_ttm', eps_dlt='eps', nav_ps='navps', total_revenue='total_revenue', net_profit_atsopc='net_profit', gross_selling_rate='gross_selling_rate', net_sales_rate='net_sales_rate', roe_avg='roe_avg', asset_liab_ratio='asset_liab_ratio') f10_indicator_hk = dict( refccomty='', pe_lyr='pe_lyr', beps_anrpt='eps', navps='navps', tto='total_revenue', plocyr='net_profit', float_shares='float_shares', float_market_capital='float_market_capital') f10_indicator_cn = dict( pe_ttm='pe_ttm', basic_eps='eps', np_per_share='navps', total_revenue='total_revenue', net_profit_atsopc='net_profit', gross_selling_rate='gross_selling_rate', net_selling_rate='net_selling_rate', avg_roe='roe_avg', asset_liab_ratio='asset_liab_ratio', dividend='dividend', dividend_yield='dividend_yield', float_shares='float_shares', float_market_capital='float_market_capital') margin = dict( tdate='日期', close='收盘-沪深300', zdf='涨跌幅', zdf3='涨跌幅3日', zdf5='涨跌幅5日', zdf10='涨跌幅10日', rzye='融资余额', rzyezb='融资余额占比', rzmre='融资买入额', rzmre3='融资买入额3日', rzmre5='融资买入额5日', rzmre10='融资买入额10日', rzche='融资偿还额', rzche3='融资偿还额3日', rzche5='融资偿还额5日', rzche10='融资偿还额10日', rzjmre='融资净买入额', rzjmre3='融资净买入额3日', rzjmre5='融资净买入额5日', rzjmre10='融资净买入额10日', rqye='融券余额', rqyl='融券余量', rqmcl='融券卖出量', rqmcl3='融券卖出量3日', rqmcl5='融券卖出量5日', rqmcl10='融券卖出量10日', rqchl='融券偿还量', rqchl3='融券偿还量3日', rqchl5='融券偿还量5日', rqchl10='融券偿还量10日', rqjmcl='融券净卖出量', rqjmcl3='融券净卖出量3日', rqjmcl5='融券净卖出量5日', rqjmcl10='融券净卖出量10日', rzrqye='融资融券余额', rzrqyecz='融资融券余额差值') hsgt = dict( DetailDate='日期', DRZJLR='当日资金流入', DRYE='当日余额', LSZJLR='历史资金累计流入', DRCJJME='当日成交净买额', MRCJE='买入成交额', MCCJE='卖出成交额', LCG='领涨股', LCGCode='代码', LCGZDF='领涨股涨跌幅', SSEChange='指数', SSEChangePrecent='涨跌幅') hsgt_hold = dict( HDDATE='日期', SCODE='代码', SNAME='名称', CLOSEPRICE='收盘价', ZDF='涨跌幅', SHAREHOLDSUM='持股数量', ShareHoldSumChg='持股数量变化', SHAREHOLDPRICE='持股市值', SHARESRATE='持股占A股比例', SHAREHOLDPRICEONE='持股市值变化1日', SHAREHOLDPRICEFIVE='持股市值变化5日', SHAREHOLDPRICETEN='持股市值变化10日') income_lang = dict( cn=income_lang_cn, hk=income_lang_hk, us=income_lang_us) balance_lang = dict( cn=balance_lang_cn, hk=balance_lang_hk, us=balance_lang_us) cash_flow_lang = dict( cn=cash_flow_lang_cn, hk=cash_flow_lang_hk, us=cash_flow_lang_us) indicator_lang = dict( cn=indicator_lang_cn, hk=None, us=indicator_lang_us) f10_indicator_ks = dict( base=f10_indicator_bs, cn=f10_indicator_cn, hk=f10_indicator_hk, us=f10_indicator_us) spindices = dict( #规模 cssp50='5457821', #标普中国A50指数RMB csp100='5457815', #标普中国A100指数RMB csp200='5457817', #标普中国A200指数RMB csp300='5457819', #标普中国A300指数RMB csp500eur='92030324', #标普中国500指数EUR csp500usd='92030325', #标普中国500指数USD spncschp='92366266', #标普新中国行业指数(A股上限15%)HKD spncscup='92366265', #标普新中国行业指数(A股上限15%)USD spcsxahp='92352459', #标普新中国行业指数(除A股)HKD spcsxaup='92351698', #标普新中国行业指数(除A股)USD #跨境 spcqxtd='5475402', #标普大中华bmi指数(除台湾)usd spcqhktd='2322750', #标普全大中华国内bmi指数usd* spcqhkd='5475375', #标普中国和香港bmi指数usd sptcqhkd='2311038', #标普全中国+香港bmi指数usd* djchos50='1798569', #道琼斯中国离岸50指数 sphcmshp='92030268', #标普香港中国中小盘指数 spcqlhd='5475384', #标普香港上市中概股bmi指数usd spacncp='92026363', #标普沪港通北向指数* spcrd30='5458359', #标普中国港股30指数rmb splc50up='92029778', #标普美国中概股50指数usd splc50cp='92029775', #标普美国中概股50指数rmb #沪深港通 spac50cp='92029744', #标普直通中国a50指数 spahkup='92319823', #标普直通香港指数usd* spahkhp='92319825', #标普直通香港指数hkd* spahkcp='92319821', #标普直通香港指数rmb* spacaup='92319465', #标普直通中国a股指数usd* spacahp='92319479', #标普直通中国a股指数hkd* spacacp='92319464', #标普直通中国a股指数rmb* #大盘股 scrtcn='5520649', #标普中国bmi指数usd spcqxsd='5475393', #标普中国(除ab股)bmi指数usd spcqbmi='2286509', #标普中国a股bmi指数rmb* spcqabbmi='2300040', #标普中国a股+b股bmi指数* sptcqbmi='2288328', #标普全中国国内bmi指数usd* spccashr='785146', #标普中国a股综合指数 spcaxfup='92353802', #标普中国a股大中盘指数usd spncshp='92315890', #标普新中国行业指数hkd spncsup='92279260', #标普新中国行业指数 djchn88='100587981', #道琼斯中国88指数 hksplc25='5475858', #s&p/hkex大盘股指数hkd #小盘股 hkspgem='5475857', #s&p/hkex创业板指数hkd spcveup='92332999', #标普中国a股创业指数 cspsc='5458461', #标普中国a股小盘指数 #风格 csp100v='5474417', #标普中国a100价值 csp100g='5474411', #标普中国a100成长 csp100pv='5474415', #标普中国a100纯价值 csp100pg='5474413', #标普中国a100纯成长 csp200v='5474425', #标普中国a200价值 csp200g='5474419', #标普中国a200成长 csp200pv='5474423', #标普中国a200纯价值 csp200pg='5474421', #标普中国a200纯成长 csp300v='5474433', #标普中国a300价值 csp300g='5474427', #标普中国a300成长 csp300pv='5474431', #标普中国a300纯价值 csp300pg='5474429', #标普中国a300纯成长 cspscv='5474441', #标普中国a股小盘价值 cspscg='5474435', #标普中国a股小盘成长 cspscpv='5474439', #标普中国a股小盘纯价值 cspscpg='5474437', #标普中国a股小盘纯成长 #策略 sp5mv='1405830', #标普500最小波动 sp5ceup='92364883', #标普500碳效率 spgrcuu='5475709', #标普500碳效率精选 sp5lvi='5475134', #标普500低波 sp5lveup低波增强 sp5lvhd='1159383', #标普500低波红利 spxcldep='92279581', #标普500低碳低波红利 spxltbup='92033433', #标普500低波目标贝塔Low Vol Target Beta sp5hbi='5475130', #标普500高贝 spxhbdup='92320842', #标普500高贝高股息 sp500mup='92024474', #标普500动量 spxvmoup='92330652', #标普500动量价值 spxhmvsr='92364852', #标普500动量价值行业轮动 spxevup='92028698', #标普500增强价值 spxqup='91920515', #标普500质量 spxqhdup='92351466', #标普500质量高股息 spxqvmup='92321176', #标普500质量价值动量多因子 spxhdup='92031893', #标普500红利 spdaudp='5458465', #标普500红利贵族 sp4lvi='1159360', #标普400低波 sp4lvhd='92346564', #标普400低波红利 SPMLHUP sp4hbi='92321164', #标普400高贝 spmmup='92346586', #标普400动量 spmvmoup='92367079', #标普400动量价值 sp4evup='92346588', #标普400增强价值 SPMEVUP spmqup='92346566', #标普400质量 spdamcup='92025036', #标普400红利贵族 sp6lvi='1159363', #标普600低波 sp6lvhd='92317231', #标普600低波红利 SPC6LHUP sp6hbi='92321165', #标普600高贝 sp6mup='92347267', #标普600动量 spsvmoup='92367088', #标普600动量价值 sp6evup='92347280', #标普600增强价值 sp6qup='92330656', #标普600质量 sphyda='2325', #标普高收益红利贵族 spgdaup='1692178', #S&P Global Dividend Aristocrats spgtgdo='5475766', #S&P Global Dividend Opportunities djhksd='3231529', #道琼斯香港精选红利30 spahlvcp='92321367', #标普港股通低波红利 cspsadrp='5625108', #标普中国a股红利 spcadmcp='92349977', #标普中国a股红利动量* spcalvcp='92353636', #标普中国a股低波 spcalhcp='92353014', #标普中国a股低波红利 spcaqcp='92353632', #标普中国a股质量 spcqvcp='92340542', #标普中国a股质量价值 spcaevcp='92353637', #标普中国a股增强价值 spacevup='92331490', #标普沪港深中国增强价值usd spacevhp='92331485', #标普沪港深中国增强价值hkd spacevcp='92331483', #标普沪港深中国增强价值rmb #美国 djiew='92321353', #道琼斯工业平均等权重指数 djiyw='92033439', #道琼斯工业平均股息加权指数 djia='1720081', #道琼斯工业平均指数* djta='100003017', #道琼斯运输平均指数* djua='100003020', #道琼斯公用事业平均指数* djca='100003008', #道琼斯综合指数* sp50='92033453', #标普50* sp100='2431', #标普100* sp100ew='2429', #标普100等权重* spx='340', #标普500 spxhkd='92025788', #标普500hkd spxcnyp='92346676', #标普500rmb spxew='370', #标普500等权重* spxrevw='37003713', #标普500收入加权 sp400='410', #标普中盘400* sp400ew='388', #标普中盘400等权重 sp400revw='37001111',#标普中盘400收入加权 sp600='2239', #标普小盘600* sp600ew='2037', #标普小盘600等权重 sp600revw='37002215',#标普小盘600收入加权 sp900='857', #标普900 sp1000='1608', #标普1000* sp1500='1636', #标普1500* spcmi='2750', #标普全指除sp500 sptmi='2762', #标普综指=spcmi+sp500 #美国风格 sp500g='2029', #标普500成长 sp500v='2034', #标普500价值 sp500pg='2030', #标普500纯成长 sp500pv='2032', #标普500纯价值 sp400g='1973', #标普400成长 sp400v='1979', #标普400价值 sp400pg='1975', #标普400纯成长 sp400pv='1977', #标普400纯价值 sp600g='2240', #标普600成长 sp600v='2246', #标普600价值 sp600pg='2242', #标普600纯成长 sp600pv='2244', #标普600纯价值 sp900g='1833', #标普900成长 sp900v='1839', #标普900价值 sp900pg='1835', #标普900纯成长 sp900pv='1837', #标普900纯价值 sp1000g='1609', #标普1000成长 sp1000v='1615', #标普1000价值 sp1000pg='1611', #标普1000纯成长 sp1000pv='1613', #标普1000纯价值 sp1500g='1637', #标普1500成长 sp1500v='1643', #标普1500价值 sp1500pg='1639', #标普1500纯成长 sp1500pv='1641', #标普1500纯价值 #美国行业 spxxttsp='92030239', #标普500除通信服务和信息技术 spxxcmup='92354017', #标普500除通讯服务 spxxtsup='92354012', #标普500除信息技术 spxxhcp='92030260', #标普500除医疗保健 spxxcsp='92030248', #标普500除主要消费 spxxcdp='92030257', #标普500除可选消费 spxxtp='92035472', #标普500除烟草Tobacco spxxfu='92035480', #标普500除金融(new) spxxfisp='92319291', #标普500除金融 spxxfinp='92030250', #标普500除金融房地产 spxxretp='92319292', #标普500除房地产 spxxindp='92030244', #标普500除工业 spxxmp='92030242', #标普500除材料 spxxegp='92030243', #标普500除能源 spxxutip='92030247', #标普500除公用事业 spx450up='92354118', #标普500通信服务和信息技术 spxtels='339', #标普500通信服务 spxinft='307', #标普500信息技术* spxhlth='253', #标普500医疗保健 spxcons='213', #标普500主要消费 spxcond='139', #标普500可选消费 spxre='2436', #标普500房地产 spxf='279', #标普500金融 spxindu='81', #标普500工业 spxmatr='41', #标普500材料 spxe='25', #标普500能源 spxutil='356', #标普500公用事业 spsvcp='92351609', #标普500通信服务35/20 spsvitp='92289034', #标普500信息技术35/20 spsvhcp='92289037', #标普500医疗保健35/20 spsvcsp='92289046', #标普500主要消费35/20 spsvcdp='92289028', #标普500可选消费35/20 spsvrep='92289031', #标普500房地产35/20 spsvfp='92289026', #标普500金融35/20 spsvip='92289040', #标普500工业35/20 spsvmp='92289021', #标普500材料35/20 spsvep='92289029', #标普500能源35/20 spsvulp='92320816', #标普500公用事业35/20 spsvutp='92289023', #标普500公用事业&电信35/20 spxtelsew='379', #标普500等权通信服务 spxinftew='378', #标普500等权信息技术 spxhlthew='376', #标普500等权医疗保健* spxconsew='375', #标普500等权主要消费 spxcondew='374', #标普500等权可选消费 spxreew='92029326', #标普500等权房地产 spxfew='377', #标普500等权金融 spxinduew='373', #标普500等权工业 spxmatrew='372', #标普500等权材料 spxeew='371', #标普500等权能源 spxutilewp='381', #标普500等权公用事业plus spxutilew='380', #标普500等权公用事业 spsdcsup='92353697', #标普通讯服务25/20 spsdtup='92354040', #标普信息技术25/20 spsdvup='92354034', #标普医疗保健25/20 spsdrup='92354025', #标普主要消费25/20 spsdyup='92354031', #标普可选消费25/20 spsdreup='92354028', #标普房地产25/20 spsdmup='92354043', #标普金融25/20 spsdiup='92354046', #标普工业25/20 spsdbup='92354049', #标普材料25/20 spsdeup='92354052', #标普能源25/20 spsduup='92354037', #标普公用事业25/20 spsucsup='92352997', #标普通讯服务上限20 spsutp='16362', #标普信息技术上限20 spsuhcp='16353', #标普医疗保健上限20 spsucsp='16344', #标普主要消费上限20 spsucdp='16341', #标普可选消费上限20 spsurp='92033394', #标普房地产上限20 spsufp='16350', #标普金融上限20 spsuip='16356', #标普工业上限20 spsump='16359', #标普材料上限20 spsuep='16347', #标普能源上限20 spsuup='16365', #标普公用事业上限20 ixcpr='92351596', #标普通讯服务 ixt='57246', #标普信息技术 ixv='57250', #标普医疗保健 ixr='57244', #标普主要消费 ixy='57252', #标普可选消费 ixre='92030233', #标普房地产 ixm='57242', #标普金融 ixi='57240', #标普工业 ixb='57236', #标普材料 ixe='57238', #标普能源 ixu='57248', #标普公用事业 spsite='2361', #标普电信 spsiad='2327', #标普航空航天国防 djintcup='92361671', #道琼斯国际互联网 spsiin='92247637', #标普互联网 spsiss='57168', #标普软件与服务 spsisc='2359', #标普半导体 spsich='2333', #标普计算机硬件 spsibi='2331', #标普生物科技 spsiph='2355', #标普制药 spsihe='2339', #标普医疗保健设备 spsihp='2343', #标普医疗保健服务 spsifbup='2337', #标普食品饮料 spsire='2357', #标普零售业 spsiins='57092', #标普保险 spsibk='57088', #标普银行 spsirbk='57096', #标普区域银行 spsicm='57090', #标普资本市场 spsiho='2341', #标普建筑商 spsimm='2347', #标普金属采矿 spsitn='2363', #标普交通运输 spsiop='2351', #标普石油和天然气勘探和生产 spsios='2353', #标普石油和天然气设备和服务 )
#! /usr/bin/python3 import numpy import scipy import matplotlib.pyplot as plt import random import datetime import os import sys import time import math import argparse import matplotlib.pyplot as plt import FastPID import ArduinoPID import AutoPID import refpid import process def randomtest(seed, steps, turns, pid, name, bits, sign) : random.seed(a=seed) results = numpy.array([]) results.resize((turns,)) outdir = 'randomtest-seed-{}'.format(seed) for test_num in range (turns) : kp = round(random.uniform(0, 255), 3) ki = round(random.uniform(0, kp), 3) kd = round(random.uniform(0, ki), 3) pid.configure(kp, ki, kd, bits, sign) reference = refpid.refpid(kp, ki, kd, bits, sign) ref = process.Process(reference, steps, turns) dut = process.Process(pid, steps, turns) ref.run() dut.run() # Check for fit errf = numpy.square(numpy.subtract(ref.output, dut.output)) err = numpy.cumsum(errf) / numpy.arange(1, ref.output.size+1, dtype=float) chi2 = numpy.sum(errf) / ref.output.size results[test_num,] = chi2 if chi2 > 1000 : if not os.path.isdir(outdir) : os.mkdir(outdir) outfile = os.path.join(outdir, "{}-p{}-i{}-d{}.png".format(name, kp, ki, kd)) setline = plt.plot(ref.setpoint, '', label='Setpoint') refline = plt.plot(ref.output, '', label='Reference') outline = plt.plot(dut.output, '', label='Output/Feedback') plt.legend(['Setpoint', 'Reference', 'Out/Feedback']) plt.xlabel('Time (Seconds)') plt.ylabel('Codes') plt.title('{} vs. Reference (p={} i={} d={})'.format(name, kp, ki, kd)) plt.savefig(outfile) plt.close() best = numpy.amin(results) worst = numpy.amax(results) med = numpy.median(results) print ("Best: {} Worst: {} Median: {}".format(best,worst,med)) plt.hist(results) outfile = os.path.join(outdir, "{}-histogram.png".format(name)) plt.savefig(outfile) plt.show() def main() : parser = argparse.ArgumentParser(description="Run PID tests") parser.add_argument('test', help='The test to execute.', choices=['reference', 'random', 'load']) parser.add_argument('-p', help='Kp', type=float, default=1) parser.add_argument('-i', help='Ki', type=float, default=0) parser.add_argument('-d', help='Kd', type=float, default=0) parser.add_argument('-n', help='Number of steps to simulate.', type=int, default=100) parser.add_argument('-t', help='Number of random turns to test.', type=int, default=100) parser.add_argument('--obits', help='Number of output bits.', type=int, default=16) parser.add_argument('--osign', help='Signedness of the output.', type=int, default=0) parser.add_argument('--pid', help='PID implementation to use.', choices=['FastPID', 'ArduinoPID', 'AutoPID'], default='FastPID') parser.add_argument('--seed', help='Random seed to use.', default=int(time.time())) args = parser.parse_args() if args.pid == 'FastPID' : pid = FastPID elif args.pid == 'ArduinoPID' : pid = ArduinoPID else: pid = AutoPID if not pid.configure(args.p, args.i, args.d, args.obits, args.osign) : print ('Error configuring the PID.') exit(-1) if args.test == 'reference' : # Test the PID against the reference implementation. reference = refpid.refpid(args.p, args.i, args.d, args.obits, bool(args.osign)) ref = process.Process(reference, 100, args.n) dut = process.Process(pid, 100, args.n) ref.run() dut.run() setline = plt.plot(ref.setpoint, '', label='Setpoint') refline = plt.plot(ref.output, '--', label='Reference') outline = plt.plot(dut.output, '', label='Output/Feedback') plt.legend(['Setpoint', 'Reference', 'Out/Feedback']) plt.xlabel('Time (Seconds)') plt.ylabel('Codes') plt.title('{} vs. Reference (p={} i={} d={})'.format(args.pid, args.p, args.i, args.d)) plt.show() if args.test == 'random' : # Test random parameters vs. the reference implementation. Look for outliers. randomtest(args.seed, args.n, args.t, pid, args.pid, args.obits, bool(args.osign)) if args.test == 'load' : factory_f = process.DifferentialFactory(lambda x : math.log(x *.1) * 0.1 ) dut = process.Process(pid, 100, args.n) x = numpy.arange(0, args.n) dut.run() fig, ax1 = plt.subplots() ax1.set_xlabel('Step') ax1.set_ylabel('Setpoint (green), Feedback (red)') ax1.tick_params('y', color='r') ax1.plot(x, dut.setpoint, 'g--', dut.feedback, 'r') ax3 = ax1.twinx() ax3.set_ylabel('Output (blue)') ax3.plot(x, dut.output) #fig.tight_layout() plt.show() pass if __name__ == '__main__' : main()
#!/usr/bin/python import sys, re basewords = [] #default list answers = [] #list of possible codes #print help for the lame guyz outside def printHelp(case): if case == 1: print "Use from terminal/cmd with one parameter: list of the words separate by enter." if case == 2: print "Input format: \"yourword\" \"likeness\" (without qoutes)" #narrow the answers list def narrowList(): global answers global basewords print "You can choose from these words: " + str(basewords) # all remained words print "" print "The answer is in these words: " + str(answers) # possible asnwers print "" result = raw_input("Result(word likeness): ") #prompt to input the last tries word and its likeness # check the input if not inputCheck(result): printHelp(2) return False # set the word and the likeness value from the user input if " " in result: temp_list = result.split(" ") word = temp_list[0] likeness = int(temp_list[1]) else: word = result likeness = 0 # delete all appereance of the input word from the answers list answers = filter(lambda a: a != word, answers) basewords = filter(lambda a: a != word, basewords) # if the likeness is 0, just deleted the word from the list, nothing else to do if likeness == 0: return # if likeness not 0 lets continue for answer in answers: like = 0 # if a letter equals, increase this by one for i in range(0,len(answer)): if(answer[i] == word[i]): like += 1 # after get all of the equals return and the like is the same or bigger then the likeness let it in the list. # else delete it if like < likeness: answers = filter(lambda a: a != answer, answers) # check is the user input correct..never trust in ppl.except urself. except if ur name anuka. meh never trust in anuka def inputCheck(inp): global basewords if " " in inp: l = inp.split(" ") if l[0] not in basewords: return False r = re.match("[a-zA-Z]* [0-9]*", inp) if not r: return False r = re.match("[a-zA-Z]*", inp) if not r: return False return True def main(file): global basewords global answers # open the word file for read try: f = open(file, "r") except: print "Cannot open %s." % file sys.exit() # fill up basewords list without the new line character for line in f: basewords.append(line.replace("\n", "")) answers = basewords # atm the possible answer is the default list printHelp(2) while True: narrowList() # lets start narrowing the our answer list # if only 1 answer left no more trying if len(answers) == 1: print "Congratulation! The solution is: %s" % (answers[0]) break print "The possible answers are: " + str(answers) sys.exit() if __name__ == "__main__": if len(sys.argv) != 2: printHelp(1) sys.exit() main(sys.argv[1])
import heapq import collections class Node(object): def __init__(self, int, str): self.freq = int self.word = str # 自定义less than comparator # freq不同的话正常比较 # freq相同时,看word, 词典序小的排在前面 def __lt__(self, other): if self.freq != other.freq: return self.freq < other.freq return self.word > other.word class test(object): def __init__(self, int, str): self.freq = int self.word = str def __lt__(self, other): if self.freq != other.freq: return self.freq < other.freq return self.word > other.word class Solution: """ @param words: an array of string @param k: An integer @return: an array of string """ def topKFrequentWords(self, words, k): # write your code here if not words or k <= 0: return [] map = collections.defaultdict(int)# https://www.jianshu.com/p/bbd258f99fd3 ans = [] for word in words: map[word] += 1 heap = [] for word, freq in map.items(): heapq.heappush(heap, Node(freq, word)) if len(heap) > k: heapq.heappop(heap) while heap: ans.append(heapq.heappop(heap).word) ans.reverse() return ans map = {} map['1'] = 2 map['1'] += 1 print(map.get("1")) print(map) # # map = {4: 2, 2: 3} # # map = sorted(map.items(), key=lambda kv: (kv[0], kv[1])) # print()
#!/usr/bin/env python # -*- coding: UTF-8 -*- # to use for example with ipython -pylab # run /home/pierre/Python/Production/Energy_budget/all_terms_loop_days_review.py # run /scratch/augier/Python/Production/Energy_budget/all_terms_loop_days_review.py # compute some terms of the spectral energy budget. # The memory is used just as needed. # import basic modules... import os, sys, resource import numpy as np # import homemade module to load data and perform spharm transform import treat_simul_shtns22 as treat_simul # import function time in module time for timming functions from time import time # import module for saving... ####import pickle import cPickle as pickle import matplotlib.pyplot as plt def cumsum_inv(a): return a[::-1].cumsum()[::-1] SAVE = 1 season = 'summer' #season = 'winter' name_simul = 'AFES_T639' #name_simul = 'AFES_T1279' name_simul = 'ECMWF_T1279' #name_simul = 'ECMWF_T159' Osim = treat_simul.treat_simul(name_simul=name_simul) ####print resource.getrusage(resource.RUSAGE_SELF).ru_maxrss plevs = Osim.plevs nz = len(plevs) p00 = 1000 # hPa A = (p00/plevs)**Osim.khi cosLATS = Osim.cosLATS sinLATS = np.sin(Osim.LATS*np.pi/180) fCor0 = 2*Osim.Omega f_LATS = fCor0*sinLATS beta3D_small, nb_lev_beta = Osim.load_beta_ps_mean() beta3D = np.ones([nz, Osim.nlat, Osim.nlon], dtype=np.float32) beta3D[0:nb_lev_beta] = beta3D_small Osim.load_meanT_coefAPE(season=season) Coef_APE_Theta = Osim.Coef_APE_Theta zeros_lm = Osim.init_array_SH(0.) # For these files, we use the notations of the resubmitted version of the paper # A new formulation of the spectral energy budget of the atmosphere... # the tendencies P_TKhOp_l = np.zeros([nz,Osim.lmax+1]) P_TKvOp_l = np.zeros([nz,Osim.lmax+1]) P_TKrot_l = np.zeros([nz,Osim.lmax+1]) P_TAhOp_l = np.zeros([nz,Osim.lmax+1]) P_TAvOp_l = np.zeros([nz,Osim.lmax+1]) P_Lcori_l = np.zeros([nz,Osim.lmax+1]) P_Lcalt_l = np.zeros([nz,Osim.lmax+1]) P_Conv__l = np.zeros([nz,Osim.lmax+1]) P_Conv2_l = np.zeros([nz,Osim.lmax+1]) P_DKh___l = np.zeros([nz,Osim.lmax+1]) # the vertical fluxes F_Kpres_l = np.zeros([nz,Osim.lmax+1]) F_Kturb_l = np.zeros([nz,Osim.lmax+1]) F_Aturb_l = np.zeros([nz,Osim.lmax+1]) list_ens_tendencies = [] for ip in range(nz): ens_tendencies = treat_simul.ensemble_variables('ensemble tendency terms') ens_tendencies.ddata['P_TKhOp_l'] = np.zeros([Osim.lmax+1]) ens_tendencies.ddata['P_TKvOp_l'] = np.zeros([Osim.lmax+1]) ens_tendencies.ddata['P_TKrot_l'] = np.zeros([Osim.lmax+1]) ens_tendencies.ddata['P_TAhOp_l'] = np.zeros([Osim.lmax+1]) ens_tendencies.ddata['P_TAvOp_l'] = np.zeros([Osim.lmax+1]) ens_tendencies.ddata['P_Lcori_l'] = np.zeros([Osim.lmax+1]) ens_tendencies.ddata['P_Lcalt_l'] = np.zeros([Osim.lmax+1]) ens_tendencies.ddata['P_Conv__l'] = np.zeros([Osim.lmax+1]) ens_tendencies.ddata['P_Conv2_l'] = np.zeros([Osim.lmax+1]) ens_tendencies.ddata['P_DKh___l'] = np.zeros([Osim.lmax+1]) ens_tendencies.ddata['P_Conv_'] = 0. ens_tendencies.ddata['P_DKh__'] = 0. list_ens_tendencies.append(ens_tendencies) list_ens_vert_fluxes = [] for ip in range(nz): ens_vert_fluxes = treat_simul.ensemble_variables('ensemble vertical fluxes terms') ens_vert_fluxes.ddata['F_Kpres_l'] = np.zeros([Osim.lmax+1]) ens_vert_fluxes.ddata['F_Kturb_l'] = np.zeros([Osim.lmax+1]) ens_vert_fluxes.ddata['F_Aturb_l'] = np.zeros([Osim.lmax+1]) list_ens_vert_fluxes.append(ens_vert_fluxes) def hour_max(day): if day==11: h = 8 else: h = 24 return h delta_hour = 2 if name_simul[:4]=='AFES': if Osim.computer=='pierre-KTH': days = [5,11,15] elif Osim.computer=='KTH': days = [4,5,8,11,12,13,14,15] elif name_simul=='ECMWF_T1279': days = [1, 5, 10, 15, 20, 25] elif name_simul=='ECMWF_T159': days = [5] #delta_hour = 24 #days = [4,5,8,11] #days = [4] def hours_day_namesimul(day, name_simul): if name_simul[:4]=='AFES': hours = np.arange(1, hour_max(day)+1, delta_hour) elif name_simul[:5]=='ECMWF': hours = [12] return hours nbtot = 0 for day in days: hours = hours_day_namesimul(day, name_simul) nbtot += len(hours) nb_to_do = nbtot+0 # "deepcopy"... nb_instants_computed = 0 for day in days: for ip in range(nz): list_ens_tendencies[ip].reset_to_zeros() list_ens_vert_fluxes[ip].reset_to_zeros() hours = hours_day_namesimul(day, name_simul) nb_instants_computed_day = 0 for hour in hours: t1_1time = time() # For each time, we compute (in this order) the values of: # F_Kpres_l[ip, il], P_Conv__l[ip, il] # F_Aturb_l[ip, il], P_TAvOp_l[ip, il], P_Conv2_l[ip, il] # P_TAhOp_l[ip, il] # P_TKhOp_l[ip, il], P_TKrot_l[ip, il], P_DKh___l[ip, il] # P_TKvOp_l[ip, il], F_Kturb_l[ip, il] # P_Lcori_l[ip, il] # We first list the things that we have to do: # load omega3D, Phi3D, TT3D # compute omegab3D_lm, Phib3D_lm, TTb3D_lm # del(Phib3D, oob3D) # compute F_Kpres_l[ip, il], # P_Conv__l[ip, il] # del(Phib3D_lm), del(Tb3D_lm) # compute Thetabp3D from T3D, then Thetabp3D_lm # del(T3D) # compute dp_Thetabp3D # compute F_Aturb_l[ip, il], # P_TAvOp_l[ip, il] # del(dp_Thetabp3D) # load uu3D, vv3D # compute d3D # compute P_TAhOp_l[ip, il] # del(Thetabp3D, Thetabp3D_lm, d3D) # compute uub3D, vvb3D # del(uu3D, vv3D) # compute divhuub3D_lm, rothuub3D_lm # compute P_TKhOp_l[ip, il], # P_TKrot_l[ip, il], # P_DKh___l[ip, il] # compute dp_uub3D # P_TKvOp_l[ip, il], F_Kturb_l[ip, il] # del(omega3D, dp_uub3D) # compute P_Lcori_l[ip, il] # P_Lcalt_l[ip, il] # del(uub3D, vvb3D, divhuub3D_lm, rothuub3D_lm) # Then, the computations: # load oo3D, Phi3D, T3D print 'load oo3D, Phi3D, T3D' t1 = time() oo3D = Osim.load_var3D(name_var='o', day=day, hour=hour, season=season) # en Pa/s Phi3D = Osim.load_var3D(name_var='Phi', day=day, hour=hour, season=season) TT3D = Osim.load_var3D(name_var='T', day=day, hour=hour, season=season) t2 = time() print '(loaded in {0:3.2f} s)'.format(t2-t1) Phib3D = Phi3D Phib3D[0:nb_lev_beta] = Phi3D[0:nb_lev_beta] * beta3D_small del(Phi3D) TTb3D = np.empty(TT3D.shape) TTb3D[nb_lev_beta:nz] = TT3D[nb_lev_beta:nz] TTb3D[0:nb_lev_beta] = TT3D[0:nb_lev_beta] * beta3D_small print '1 SH3D transform, compute oob3D_lm', sys.stdout.flush() t1 = time() oob3D_lm = np.empty([nz, Osim.nlm], dtype=complex) for ip in range(nz): oob3D_lm[ip] = Osim.SH_from_spat(oo3D[ip]*beta3D[ip]) # we use an analytical result for levels above the surface... if ip>=nb_lev_beta: oob3D_lm[ip, 0] = 0. oo3D[ip] = Osim.spat_from_SH(oob3D_lm[ip]) t2 = time() print '(done in {0:3.2f} s)'.format(t2-t1) # compute Phib3D_lm, TTb3D_lm print'2 SH3D transforms, compute Phib3D_lm, TTb3D_lm', sys.stdout.flush() t1 = time() Phib3D_lm = np.zeros([nz, Osim.nlm], dtype=complex) TTb3D_lm = np.zeros([nz, Osim.nlm], dtype=complex) for ip in range(nz): Phib3D_lm[ip] = Osim.SH_from_spat(Phib3D[ip]) TTb3D_lm[ip] = Osim.SH_from_spat(TTb3D[ip]) t2 = time() print '(done in {0:3.2f} s)'.format(t2-t1) # del(Phib3D) del(Phib3D) # compute F_Kpres_l[ip, il], # P_Conv__l[ip, il] print 'compute F_Kpres_l, P_Conv__l', sys.stdout.flush() t1 = time() for ip in range(nz): # spectrum of vertical pressure flux F_Kpres_l[ip] = -Osim.cospectrum_from_2fieldsSH(oob3D_lm[ip], Phib3D_lm[ip]) # spectrum of conversion P_Conv__l[ip] = -Osim.cospectrum_from_2fieldsSH(oob3D_lm[ip], TTb3D_lm[ip])*Osim.R/(plevs[ip]*100) t2 = time() print '(done in {0:3.2f} s)'.format(t2-t1) # del(Phib3D_lm), del(TTb3D_lm) del(Phib3D_lm) del(TTb3D_lm) # compute Thetabp3D from T3D, then Thetabp3D_lm from TTb3D print 'compute Thetabp3D and dp_Thetabp3D', sys.stdout.flush() t1 = time() TTbp3D = np.empty([nz, Osim.nlat, Osim.nlon]) for ip in range(nz): TTbp3D[ip] = (TT3D[ip]-Osim.mean_field_representative(TT3D[ip], ip))*beta3D[ip] del(TT3D) Thetabp3D = np.empty([nz, Osim.nlat, Osim.nlon]) for ip in range(nz): Thetabp3D[ip] = A[ip]*TTbp3D[ip] # compute dp_Thetabp3D ## compute vertical derivative of Theta ## one part is done analytically dp_TTbp3D = Osim.vertical_derivative_f(TTbp3D) del(TTbp3D) dp_Thetabp3D = np.empty([nz, Osim.nlat, Osim.nlon]) for ip in range(nz): dp_Thetabp3D[ip] = -Osim.khi*Thetabp3D[ip]/plevs[ip] + A[ip]*dp_TTbp3D[ip] del(dp_TTbp3D) t2 = time() print '(done in {0:3.2f} s)'.format(t2-t1) # compute Thetabp3D_lm print'1 SH3D transforms, compute Thetabp3D_lm', sys.stdout.flush() t1 = time() Thetabp3D_lm = np.zeros([nz, Osim.nlm], dtype=complex) for ip in range(nz): Thetabp3D_lm[ip] = Osim.SH_from_spat(Thetabp3D[ip]) Thetabp3D_lm[ip,0] = 0. t2 = time() print '(done in {0:3.2f} s)'.format(t2-t1) # compute F_Aturb_l[ip, il], # P_TAvOp_l[ip, il] print 'compute F_Aturb_l, P_TAvOp_l, P_Conv2_l', sys.stdout.flush() t1 = time() for ip in range(nz): dp_Thetabp_lm = Osim.SH_from_spat(dp_Thetabp3D[ip]) ooThetabp_lm = Osim.SH_from_spat(oo3D[ip]*Thetabp3D[ip]) oodp_Thetabp_lm = Osim.SH_from_spat(oo3D[ip]*dp_Thetabp3D[ip]) F_Aturb_l[ip] = -Osim.cospectrum_from_2fieldsSH( Thetabp3D_lm[ip], ooThetabp_lm )*Coef_APE_Theta[ip]/2 P_TAvOp_l[ip] = ( +Osim.cospectrum_from_2fieldsSH( dp_Thetabp_lm, ooThetabp_lm) -Osim.cospectrum_from_2fieldsSH( Thetabp3D_lm[ip], oodp_Thetabp_lm) )*Coef_APE_Theta[ip]/2/100 TTbp_lm = Thetabp3D_lm[ip]/A[ip] P_Conv2_l[ip] = -Osim.cospectrum_from_2fieldsSH(oob3D_lm[ip], TTbp_lm)*Osim.R/(plevs[ip]*100) t2 = time() print '(done in {0:3.2f} s)'.format(t2-t1) del(dp_Thetabp3D) # load uu3D, vv3D print 'load uu3D, vv3D' t1 = time() uu3D = Osim.load_var3D(name_var='u', day=day, hour=hour, season=season) vv3D = Osim.load_var3D(name_var='v', day=day, hour=hour, season=season) t2 = time() print '(done in {0:3.2f} s)'.format(t2-t1) # compute P_TAhOp_l[ip, il] print 'compute P_TAhOp_l', sys.stdout.flush() t1 = time() for ip in range(nz): hdiv_lm, hrot_lm = Osim.hdivrotSH_from_uuvv(uu3D[ip], vv3D[ip]) hdiv = Osim.spat_from_SH(hdiv_lm) grad_Thetabp_lon, grad_Thetabp_lat = Osim.gradf_from_fSH(Thetabp3D_lm[ip]) temp_AhOp = ( -uu3D[ip]*grad_Thetabp_lon - vv3D[ip]*grad_Thetabp_lat -hdiv*Thetabp3D[ip]/2 ) temp_AhOp_lm= Osim.SH_from_spat(temp_AhOp) P_TAhOp_l[ip] = Osim.cospectrum_from_2fieldsSH( Thetabp3D_lm[ip], temp_AhOp_lm )*Osim.Coef_APE_Theta[ip] t2 = time() print '(done in {0:3.2f} s)'.format(t2-t1) # del(Thetabp3D, Thetabp3D_lm) del(Thetabp3D) del(Thetabp3D_lm) # compute uub3D, vvb3D and del(uu3D, vv3D) uub3D = uu3D uub3D[0:nb_lev_beta] = uu3D[0:nb_lev_beta] * beta3D_small del(uu3D) vvb3D = vv3D vvb3D[0:nb_lev_beta] = vv3D[0:nb_lev_beta] * beta3D_small del(vv3D) # compute divhuub3D_lm, rothuub3D_lm print'1 vectorial SH3D transform, compute divhuub3D_lm, rothuub3D_lm', sys.stdout.flush() t1 = time() divhuub3D_lm = np.zeros([nz, Osim.nlm], dtype=complex) rothuub3D_lm = np.zeros([nz, Osim.nlm], dtype=complex) for ip in range(nz): divhuub3D_lm[ip], rothuub3D_lm[ip] = Osim.hdivrotSH_from_uuvv( uub3D[ip], vvb3D[ip]) t2 = time() print '(done in {0:3.2f} s)'.format(t2-t1) # compute dp_uub3D and dp_vvb3D print 'compute dp_uub3D and dp_vvb3D', sys.stdout.flush() t1 = time() dp_uub3D = Osim.vertical_derivative_f(uub3D) dp_vvb3D = Osim.vertical_derivative_f(vvb3D) t2 = time() print '(done in {0:3.2f} s)'.format(t2-t1) # compute P_TKvOp_l, F_Kturb_l print 'compute P_TKvOp_l, F_Kturb_l', sys.stdout.flush() t1 = time() for ip in range(nz): divhdp_uub_lm, rothdp_uub_lm = Osim.hdivrotSH_from_uuvv( dp_uub3D[ip], dp_vvb3D[ip]) divhoouub_lm, rothoouub_lm = Osim.hdivrotSH_from_uuvv( oo3D[ip]*uub3D[ip], oo3D[ip]*vvb3D[ip]) divhoodp_uub_lm, rothoodp_uub_lm = Osim.hdivrotSH_from_uuvv( oo3D[ip]*dp_uub3D[ip], oo3D[ip]*dp_vvb3D[ip]) F_Kturb_l[ip] = -Osim.cospectrum_from_2divrotSH( divhuub3D_lm[ip], rothuub3D_lm[ip], divhoouub_lm, rothoouub_lm )/2 P_TKvOp_l[ip] = ( +Osim.cospectrum_from_2divrotSH( divhdp_uub_lm, rothdp_uub_lm, divhoouub_lm, rothoouub_lm) -Osim.cospectrum_from_2divrotSH( divhuub3D_lm[ip], rothuub3D_lm[ip], divhoodp_uub_lm, rothoodp_uub_lm) )/2/100 t2 = time() print '(done in {0:3.2f} s)'.format(t2-t1) del(dp_uub3D) del(dp_vvb3D) del(oo3D) # compute P_TKhOp_l[ip, il], # P_TKrot_l[ip, il], # P_DKh___l[ip, il] print 'compute P_TKhOp_l, P_TKrot_l, P_DKh___l', sys.stdout.flush() t1 = time() for ip in range(nz): rothuub = Osim.spat_from_SH(rothuub3D_lm[ip]) divhuub = Osim.spat_from_SH(divhuub3D_lm[ip]) temp_KhOp_lon = -rothuub*vvb3D[ip] + divhuub*uub3D[ip]/2 temp_KhOp_lat = +rothuub*uub3D[ip] + divhuub*vvb3D[ip]/2 divhtemp_KhOp_lm, rothtemp_KhOp_lm = Osim.hdivrotSH_from_uuvv( temp_KhOp_lon, temp_KhOp_lat) temp2_AhOp_lm = Osim.SH_from_spat( uub3D[ip]*uub3D[ip] +vvb3D[ip]*vvb3D[ip]) P_TKhOp_l[ip] = ( -Osim.cospectrum_from_2divrotSH( divhuub3D_lm[ip], rothuub3D_lm[ip], divhtemp_KhOp_lm, rothtemp_KhOp_lm) +Osim.cospectrum_from_2fieldsSH( divhuub3D_lm[ip], temp2_AhOp_lm )/2 ) uub_rot, vvb_rot = Osim.uuvv_from_hdivrotSH(zeros_lm, rothuub3D_lm[ip]) temp_KhOp_lon = -rothuub*vvb_rot temp_KhOp_lat = +rothuub*uub_rot divhtemp_KhOp_lm, rothtemp_KhOp_lm = Osim.hdivrotSH_from_uuvv( temp_KhOp_lon, temp_KhOp_lat) P_TKrot_l[ip] = -Osim.cospectrum_from_2divrotSH( zeros_lm, rothuub3D_lm[ip], zeros_lm, rothtemp_KhOp_lm) t2 = time() print '(done in {0:3.2f} s)'.format(t2-t1) # compute P_Lcori_l[ip, il] # P_Lcalt_l[ip, il] print 'compute P_Lcori_l, P_Lcalt_l', sys.stdout.flush() t1 = time() for ip in range(nz): Fcor_lon = -f_LATS*vvb3D[ip] Fcor_lat = +f_LATS*uub3D[ip] divhFcor_lm, rothFcor_lm = Osim.hdivrotSH_from_uuvv( Fcor_lon, Fcor_lat) P_Lcori_l[ip] = -Osim.cospectrum_from_2divrotSH( divhuub3D_lm[ip], rothuub3D_lm[ip], divhFcor_lm, rothFcor_lm) psi_lm = -Osim.r_a**2/Osim.l2_idx*rothuub3D_lm[ip] chi_lm = -Osim.r_a**2/Osim.l2_idx*divhuub3D_lm[ip] grad_psi_lon, grad_psi_lat = Osim.gradf_from_fSH(psi_lm) grad_chi_lon, grad_chi_lat = Osim.gradf_from_fSH(chi_lm) divhuub = Osim.spat_from_SH(divhuub3D_lm[ip]) rothuub = Osim.spat_from_SH(rothuub3D_lm[ip]) temp_rot = sinLATS*divhuub + cosLATS*grad_chi_lat/Osim.r_a temp_div = sinLATS*rothuub + cosLATS*grad_psi_lat/Osim.r_a temp_rot_lm = Osim.SH_from_spat(temp_rot) temp_div_lm = Osim.SH_from_spat(temp_div) P_Lcalt_l[ip] = fCor0*( Osim.cospectrum_from_2fieldsSH(psi_lm, temp_rot_lm) - Osim.cospectrum_from_2fieldsSH(chi_lm, temp_div_lm) ) t2 = time() print '(done in {0:3.2f} s)'.format(t2-t1) # del(uub3D, vvb3D, divhuub3D_lm, rothuub3D_lm) del(uub3D) del(vvb3D) del(divhuub3D_lm) del(rothuub3D_lm) print 'build the ensemble and add for the time average' for ip in range(nz): ens_tendencies = treat_simul.ensemble_variables('ensemble tendency terms') ens_tendencies.ddata['P_TKhOp_l'] = P_TKhOp_l[ip] ens_tendencies.ddata['P_TKvOp_l'] = P_TKvOp_l[ip] ens_tendencies.ddata['P_TKrot_l'] = P_TKrot_l[ip] ens_tendencies.ddata['P_TAhOp_l'] = P_TAhOp_l[ip] ens_tendencies.ddata['P_TAvOp_l'] = P_TAvOp_l[ip] ens_tendencies.ddata['P_Lcori_l'] = P_Lcori_l[ip] ens_tendencies.ddata['P_Lcalt_l'] = P_Lcalt_l[ip] ens_tendencies.ddata['P_Conv__l'] = P_Conv__l[ip] ens_tendencies.ddata['P_Conv2_l'] = P_Conv2_l[ip] ens_tendencies.ddata['P_DKh___l'] = P_DKh___l[ip] ens_tendencies.ddata['P_Conv_'] = P_Conv__l[ip].sum() ens_tendencies.ddata['P_DKh__'] = P_DKh___l[ip].sum() list_ens_tendencies[ip] += ens_tendencies ens_vert_fluxes = treat_simul.ensemble_variables('ensemble vertical fluxes terms') ens_vert_fluxes.ddata['F_Kpres_l'] = F_Kpres_l[ip] ens_vert_fluxes.ddata['F_Kturb_l'] = F_Kturb_l[ip] ens_vert_fluxes.ddata['F_Aturb_l'] = F_Aturb_l[ip] list_ens_vert_fluxes[ip] += ens_vert_fluxes nb_instants_computed_day += 1 nb_instants_computed += 1 nb_to_do = nb_to_do - 1 t2_1time = time() print '1 time treated in {0:3.2f} s'.format(t2_1time-t1_1time) if nb_instants_computed%(nbtot/100.)<1.: print 'day =', day, 'hour =', hour, ' completed: {0:3.0f}% done'.format(nb_instants_computed/float(nbtot)*100.) if not nb_to_do==0: print 'there are still {0} instants to treat'.format(nb_to_do) print 'approximative time left: {0:5.0f} s'.format((t2_1time-t1_1time)*nb_to_do) else: print 'computation completed...' for ip in range(nz): list_ens_tendencies[ip] = list_ens_tendencies[ip]/nb_instants_computed_day # il faut calculer la liste list_ens_cumul_tend list_ens_cumul_tend = [] for ip in range(nz): ens_tendencies = list_ens_tendencies[ip] ens_vert_fluxes = list_ens_vert_fluxes[ip] Pi_TKhOp_l = cumsum_inv(ens_tendencies.ddata['P_TKhOp_l']) Pi_TKvOp_l = cumsum_inv(ens_tendencies.ddata['P_TKvOp_l']) Pi_TKrot_l = cumsum_inv(ens_tendencies.ddata['P_TKrot_l']) Pi_TAhOp_l = cumsum_inv(ens_tendencies.ddata['P_TAhOp_l']) Pi_TAvOp_l = cumsum_inv(ens_tendencies.ddata['P_TAvOp_l']) Pi_Lcori_l = cumsum_inv(ens_tendencies.ddata['P_Lcori_l']) Pi_Lcalt_l = cumsum_inv(ens_tendencies.ddata['P_Lcalt_l']) cumu_Con_l = cumsum_inv(ens_tendencies.ddata['P_Conv__l']) cumu_Co2_l = cumsum_inv(ens_tendencies.ddata['P_Conv2_l']) cumu_DKh_l = cumsum_inv(ens_tendencies.ddata['P_DKh___l']) cumu_FKp_l = cumsum_inv(ens_vert_fluxes.ddata['F_Kpres_l']) cumu_FKt_l = cumsum_inv(ens_vert_fluxes.ddata['F_Kturb_l']) cumu_FAt_l = cumsum_inv(ens_vert_fluxes.ddata['F_Aturb_l']) ens_cumul_tend = treat_simul.ensemble_variables('ensemble flux terms') ens_cumul_tend.ddata['Pi_TKhOp_l'] = Pi_TKhOp_l ens_cumul_tend.ddata['Pi_TKvOp_l'] = Pi_TKvOp_l ens_cumul_tend.ddata['Pi_TKrot_l'] = Pi_TKrot_l ens_cumul_tend.ddata['Pi_TAhOp_l'] = Pi_TAhOp_l ens_cumul_tend.ddata['Pi_TAvOp_l'] = Pi_TAvOp_l ens_cumul_tend.ddata['Pi_Lcori_l'] = Pi_Lcori_l ens_cumul_tend.ddata['Pi_Lcalt_l'] = Pi_Lcalt_l ens_cumul_tend.ddata['cumu_Con_l'] = cumu_Con_l ens_cumul_tend.ddata['cumu_Co2_l'] = cumu_Co2_l ens_cumul_tend.ddata['cumu_DKh_l'] = cumu_DKh_l ens_cumul_tend.ddata['cumu_FKp_l'] = cumu_FKp_l ens_cumul_tend.ddata['cumu_FKt_l'] = cumu_FKt_l ens_cumul_tend.ddata['cumu_FAt_l'] = cumu_FAt_l list_ens_cumul_tend.append(ens_cumul_tend) if SAVE: name_directory_save = Osim.path_dir+'/Statistics/Dyn_days_review' if name_simul=='ECMWF_T1279': name_directory_save = name_directory_save+season if not os.path.exists(name_directory_save): os.mkdir(name_directory_save) name_save = 'T'+str(Osim.lmax)+'_dyn_day'+str(day)+'.pickle' dico_save = dict([ ['list_ens_tendencies', list_ens_tendencies], ['list_ens_vert_fluxes', list_ens_vert_fluxes], ['list_ens_cumul_tend', list_ens_cumul_tend], ['name_save', name_save] ]) f = open(name_directory_save+'/'+name_save, 'w') pickle.dump(dico_save, f, pickle.HIGHEST_PROTOCOL) f.close() print '\nday = '+str(day)+' is done' print 'nb_instants_computed_day =', nb_instants_computed_day print '\n'
import matplotlib.pyplot as plt def draw_graph(final): if final <= 1: raise ValueError("specify number bigger than 1") fibonacci = [1, 1] for _ in range(final - 2): fibonacci.append(fibonacci[-1] + fibonacci[-2]) ys = [fibonacci[x + 1] / fibonacci[x] for x in range(len(fibonacci) - 1)] plt.plot(range(final - 1), ys) plt.xlabel("No.") plt.ylabel("Ratio") plt.title("Ratio between consecutive Fibonacci numbers") if __name__ == '__main__': draw_graph(100) plt.show()
class Plugin: """ A plugin is an extension to the core behavior of bonobo. If you're writing transformations, you should not need to use this interface. For examples, you can read bonobo.plugins.console.ConsoleOutputPlugin, or bonobo.plugins.jupyter.JupyterOutputPlugin that respectively permits an interactive output on an ANSI console and a rich output in a jupyter notebook. Note that you most probably won't instanciate them by yourself at runtime, as it's the default behaviour of bonobo to use them if your in a compatible context (aka an interactive terminal for the console plugin, or a jupyter notebook for the notebook plugin.) Warning: THE PLUGIN API IS PRE-ALPHA AND WILL EVOLVE BEFORE 1.0, DO NOT RELY ON IT BEING STABLE! """ def register(self, dispatcher): """ :param dispatcher: whistle.EventDispatcher """ pass def unregister(self, dispatcher): """ :param dispatcher: whistle.EventDispatcher """ pass
""" Collection of Buffer objects with general functionality """ import numpy as np class Buffer(object): """ Abstract class for different kinds of data buffers. Minimum API should have a "push" and "clear" method """ def push(self, value): """ Pushes a new @value to the buffer Args: value: Value to push to the buffer """ raise NotImplementedError def clear(self): raise NotImplementedError class RingBuffer(Buffer): """ Simple RingBuffer object to hold values to average (useful for, e.g.: filtering D component in PID control) Note that the buffer object is a 2D numpy array, where each row corresponds to individual entries into the buffer Args: dim (int): Size of entries being added. This is, e.g.: the size of a state vector that is to be stored length (int): Size of the ring buffer """ def __init__(self, dim, length): # Store input args self.dim = dim self.length = length # Variable so that initial average values are accurate self._size = 0 # Save pointer to end of buffer self.ptr = self.length - 1 # Construct ring buffer self.buf = np.zeros((length, dim)) def push(self, value): """ Pushes a new value into the buffer Args: value (int or float or array): Value(s) to push into the array (taken as a single new element) """ # Increment pointer, then add value (also increment size if necessary) self.ptr = (self.ptr + 1) % self.length self.buf[self.ptr] = np.array(value) if self._size < self.length: self._size += 1 def clear(self): """ Clears buffer and reset pointer """ self.buf = np.zeros((self.length, self.dim)) self.ptr = self.length - 1 self._size = 0 @property def current(self): """ Gets the most recent value pushed to the buffer Returns: float or np.array: Most recent value in buffer """ return self.buf[self.ptr] @property def average(self): """ Gets the average of components in buffer Returns: float or np.array: Averaged value of all elements in buffer """ return np.mean(self.buf[: self._size], axis=0) class DeltaBuffer(Buffer): """ Simple 2-length buffer object to streamline grabbing delta values between "current" and "last" values Constructs delta object. Args: dim (int): Size of numerical arrays being inputted init_value (None or Iterable): Initial value to fill "last" value with initially. If None (default), last array will be filled with zeros """ def __init__(self, dim, init_value=None): # Setup delta object self.dim = dim self.last = np.zeros(self.dim) if init_value is None else np.array(init_value) self.current = np.zeros(self.dim) def push(self, value): """ Pushes a new value into the buffer; current becomes last and @value becomes current Args: value (int or float or array): Value(s) to push into the array (taken as a single new element) """ self.last = self.current self.current = np.array(value) def clear(self): """ Clears last and current value """ self.last, self.current = np.zeros(self.dim), np.zeros(self.dim) @property def delta(self, abs_value=False): """ Returns the delta between last value and current value. If abs_value is set to True, then returns the absolute value between the values Args: abs_value (bool): Whether to return absolute value or not Returns: float or np.array: difference between current and last value """ return self.current - self.last if not abs_value else np.abs(self.current - self.last) @property def average(self): """ Returns the average between the current and last value Returns: float or np.array: Averaged value of all elements in buffer """ return (self.current + self.last) / 2.0 class DelayBuffer(RingBuffer): """ Modified RingBuffer that returns delayed values when polled """ def get_delayed_value(self, delay): """ Returns value @delay increments behind most recent value. Args: delay (int): How many steps backwards from most recent value to grab value. Note that this should not be greater than the buffer's length Returns: np.array: delayed value """ # First make sure that the delay is valid assert delay < self.length, "Requested delay must be less than buffer's length!" # Grab delayed value return self.buf[(self.ptr - delay) % self.length]
import datetime import logging from datetime import timedelta import homeassistant.helpers.config_validation as cv import requests import voluptuous as vol from homeassistant.components.sensor import PLATFORM_SCHEMA from homeassistant.const import (CONF_USERNAME, CONF_PASSWORD, CONF_NAME, CONF_MONITORED_VARIABLES) from homeassistant.helpers.entity import Entity from homeassistant.util import Throttle _LOGGER = logging.getLogger(__name__) CONF_METER_ID = 'energy_meter_id' CONF_GENERATION = 'check_generation' DEFAULT_NAME = 'Tauron AMIPlus' MIN_TIME_BETWEEN_UPDATES = datetime.timedelta(seconds=60) ZONE = 'zone' CONSUMPTION_DAILY = 'consumption_daily' CONSUMPTION_MONTHLY = 'consumption_monthly' CONSUMPTION_YEARLY = 'consumption_yearly' GENERATION_DAILY = 'generation_daily' GENERATION_MONTHLY = 'generation_monthly' GENERATION_YEARLY = 'generation_yearly' SENSOR_TYPES = { ZONE: [timedelta(minutes=1), None], CONSUMPTION_DAILY: [timedelta(hours=1), 'kWh', 'sum', ('generation', 'OZEValue')], CONSUMPTION_MONTHLY: [timedelta(hours=1), 'kWh', 'sum', ('generation', 'OZEValue')], CONSUMPTION_YEARLY: [timedelta(hours=1), 'kWh', 'sum', ('generation', 'OZEValue')], GENERATION_DAILY: [timedelta(hours=1), 'kWh', 'OZEValue', ('consumption', 'sum')], GENERATION_MONTHLY: [timedelta(hours=1), 'kWh', 'OZEValue', ('consumption', 'sum')], GENERATION_YEARLY: [timedelta(hours=1), 'kWh', 'OZEValue', ('consumption', 'sum')] } TARIFF_G12 = 'G12' PLATFORM_SCHEMA = PLATFORM_SCHEMA.extend({ vol.Required(CONF_USERNAME): cv.string, vol.Required(CONF_PASSWORD): cv.string, vol.Required(CONF_METER_ID): cv.string, vol.Required(CONF_MONITORED_VARIABLES, default=[]): vol.All(cv.ensure_list, [vol.In(SENSOR_TYPES)]), vol.Optional(CONF_NAME, default=DEFAULT_NAME): cv.string, vol.Optional(CONF_GENERATION, default=False): cv.boolean, }) def setup_platform(hass, config, add_entities, discovery_info=None): name = config.get(CONF_NAME) username = config.get(CONF_USERNAME) password = config.get(CONF_PASSWORD) meter_id = config.get(CONF_METER_ID) generation = config.get(CONF_GENERATION) dev = [] for variable in config[CONF_MONITORED_VARIABLES]: dev.append(TauronAmiplusSensor(name, username, password, meter_id, generation, variable)) add_entities(dev, True) def calculate_configuration(username, password, meter_id, days_before=2): payload_login = { "username": username, "password": password, "service": "https://elicznik.tauron-dystrybucja.pl" } session = requests.session() session.request("POST", TauronAmiplusSensor.url_login, data=payload_login, headers=TauronAmiplusSensor.headers) session.request("POST", TauronAmiplusSensor.url_login, data=payload_login, headers=TauronAmiplusSensor.headers) config_date = (datetime.datetime.now() - datetime.timedelta(days_before)) payload = { "dane[chartDay]": config_date.strftime('%d.%m.%Y'), "dane[paramType]": "day", "dane[smartNr]": meter_id, "dane[chartType]": 1 } response = session.request("POST", TauronAmiplusSensor.url_charts, data={**TauronAmiplusSensor.payload_charts, **payload}, headers=TauronAmiplusSensor.headers) json_data = response.json() zones = json_data['dane']['zone'] parsed_zones = [] for zone in zones: start = datetime.time(hour=int(zone['start'][11:])) stop = datetime.time(hour=int(zone['stop'][11:])) parsed_zones.append({'start': start, 'stop': stop}) calculated_zones = [] for i in range(0, len(parsed_zones)): next_i = (i + 1) % len(parsed_zones) start = datetime.time(parsed_zones[i]['stop'].hour) stop = datetime.time(parsed_zones[next_i]['start'].hour) calculated_zones.append({'start': start, 'stop': stop}) power_zones = {1: parsed_zones, 2: calculated_zones} tariff = json_data['dane']['chart'][0]['Taryfa'] return power_zones, tariff, config_date.strftime('%d.%m.%Y, %H:%M') class TauronAmiplusSensor(Entity): url_login = "https://logowanie.tauron-dystrybucja.pl/login" url_charts = "https://elicznik.tauron-dystrybucja.pl/index/charts" headers = { 'cache-control': "no-cache", } payload_charts = { "dane[cache]": 0, "dane[chartType]": 2 } def __init__(self, name, username, password, meter_id, generation, sensor_type): self.client_name = name self.username = username self.password = password self.meter_id = meter_id self.additional_param_enabled = generation or sensor_type.startswith("generation") self.sensor_type = sensor_type self.unit = SENSOR_TYPES[sensor_type][1] configuration = calculate_configuration(username, password, meter_id) self.power_zones = configuration[0] self.mode = configuration[1] self.power_zones_last_update = configuration[2] self.power_zones_last_update_tech = datetime.datetime.now() - datetime.timedelta(days=1) self.data = None self.params = {} self._state = None self.update = Throttle(SENSOR_TYPES[sensor_type][0])(self._update) if not sensor_type == ZONE: self.state_param = SENSOR_TYPES[sensor_type][2] self.additional_param_name = SENSOR_TYPES[sensor_type][3][0] self.additional_param = SENSOR_TYPES[sensor_type][3][1] @property def name(self): return '{} {}'.format(self.client_name, self.sensor_type) @property def state(self): return self._state @property def device_state_attributes(self): _params = {'tariff': self.mode, 'updated': self.power_zones_last_update, **self.params} return _params @property def unit_of_measurement(self): return self.unit @property def icon(self): return 'mdi:counter' def _update(self): self.update_configuration() if self.sensor_type == ZONE: self.update_zone() elif self.sensor_type.endswith("daily"): self.update_values_daily() elif self.sensor_type.endswith("monthly"): self.update_values_monthly() elif self.sensor_type.endswith("yearly"): self.update_values_yearly() def get_session(self): payload_login = { "username": self.username, "password": self.password, "service": "https://elicznik.tauron-dystrybucja.pl" } session = requests.session() session.request("POST", TauronAmiplusSensor.url_login, data=payload_login, headers=TauronAmiplusSensor.headers) session.request("POST", TauronAmiplusSensor.url_login, data=payload_login, headers=TauronAmiplusSensor.headers) return session def update_configuration(self): now_datetime = datetime.datetime.now() if (now_datetime - datetime.timedelta(days=1)) >= self.power_zones_last_update_tech and now_datetime.hour >= 10: config = calculate_configuration(self.username, self.password, self.meter_id, 1) self.power_zones = config[0] self.mode = config[1] self.power_zones_last_update = config[2] self.power_zones_last_update_tech = now_datetime def update_zone(self): if self.mode == TARIFF_G12: parsed_zones = self.power_zones[1] now_time = datetime.datetime.now().time() if len(list(filter(lambda x: x['start'] <= now_time < x['stop'], parsed_zones))) > 0: self._state = 1 else: self._state = 2 self.params = {} for power_zone in self.power_zones: pz_name = 'zone{} '.format(power_zone) pz = str(list(map(lambda x: x['start'].strftime('%H:%M') + ' - ' + x['stop'].strftime('%H:%M'), self.power_zones[power_zone]))).replace('[', '').replace(']', '').replace("'", '') self.params[pz_name] = pz else: self._state = 1 def update_values_daily(self): session = self.get_session() payload = { "dane[chartDay]": (datetime.datetime.now() - datetime.timedelta(1)).strftime('%d.%m.%Y'), "dane[paramType]": "day", "dane[smartNr]": self.meter_id, "dane[checkOZE]": "on" if self.additional_param_enabled else "off" } response = session.request("POST", TauronAmiplusSensor.url_charts, data={**TauronAmiplusSensor.payload_charts, **payload}, headers=TauronAmiplusSensor.headers) correct_data = False if response.status_code == 200 and response.text.startswith('{"name"') and response.json()['isFull']: correct_data = True else: session = self.get_session() payload = { "dane[chartDay]": (datetime.datetime.now() - datetime.timedelta(2)).strftime('%d.%m.%Y'), "dane[paramType]": "day", "dane[smartNr]": self.meter_id, "dane[checkOZE]": "on" if self.additional_param_enabled else "off" } response = session.request("POST", TauronAmiplusSensor.url_charts, data={**TauronAmiplusSensor.payload_charts, **payload}, headers=TauronAmiplusSensor.headers) if response.status_code == 200 and response.text.startswith('{"name"'): correct_data = True if correct_data: json_data = response.json() self._state = round(float(json_data[self.state_param]), 3) if self.mode == TARIFF_G12: values = json_data['dane']['chart'] z1 = list(filter(lambda x: x['Zone'] == '1', values)) z2 = list(filter(lambda x: x['Zone'] == '2', values)) sum_z1 = round(sum(float(val['EC']) for val in z1), 3) sum_z2 = round(sum(float(val['EC']) for val in z2), 3) day = values[0]['Date'] self.params = {'zone1': sum_z1, 'zone2': sum_z2, 'day': day} if self.additional_param_enabled: self.params = {**self.params, self.additional_param_name: round(float(json_data[self.additional_param]), 3)} def update_values_monthly(self): session = self.get_session() payload = { "dane[chartMonth]": datetime.datetime.now().month, "dane[chartYear]": datetime.datetime.now().year, "dane[paramType]": "month", "dane[smartNr]": self.meter_id, "dane[checkOZE]": "on" if self.additional_param_enabled else "off" } response = session.request("POST", TauronAmiplusSensor.url_charts, data={**TauronAmiplusSensor.payload_charts, **payload}, headers=TauronAmiplusSensor.headers) if response.status_code == 200 and response.text.startswith('{"name"'): json_data = response.json() self._state = round(float(json_data[self.state_param]), 3) self.params = {} if self.mode == TARIFF_G12: values = json_data['dane']['chart'] z1 = list(filter(lambda x: 'tariff1' in x, values)) z2 = list(filter(lambda x: 'tariff2' in x, values)) sum_z1 = round(sum(float(val['tariff1']) for val in z1), 3) sum_z2 = round(sum(float(val['tariff2']) for val in z2), 3) self.params = {'zone1': sum_z1, 'zone2': sum_z2} if self.additional_param_enabled: self.params = {**self.params, self.additional_param_name: round(float(json_data[self.additional_param]), 3)} def update_values_yearly(self): session = self.get_session() payload = { "dane[chartYear]": datetime.datetime.now().year, "dane[paramType]": "year", "dane[smartNr]": self.meter_id, "dane[chartType]": 2, "dane[checkOZE]": "on" if self.additional_param_enabled else "off" } response = session.request("POST", TauronAmiplusSensor.url_charts, data={**TauronAmiplusSensor.payload_charts, **payload}, headers=TauronAmiplusSensor.headers) if response.status_code == 200 and response.text.startswith('{"name"'): json_data = response.json() self._state = round(float(json_data[self.state_param]), 3) self.params = {} if self.mode == TARIFF_G12: values = json_data['dane']['chart'] z1 = list(filter(lambda x: 'tariff1' in x, values)) z2 = list(filter(lambda x: 'tariff2' in x, values)) sum_z1 = round(sum(float(val['tariff1']) for val in z1), 3) sum_z2 = round(sum(float(val['tariff2']) for val in z2), 3) self.params = {'zone1': sum_z1, 'zone2': sum_z2} if self.additional_param_enabled: self.params = {**self.params, self.additional_param_name: round(float(json_data[self.additional_param]), 3)}
# Generated by Django 2.2.6 on 2019-12-27 21:54 from django.conf import settings from django.db import migrations, models import django.db.models.deletion import django.utils.timezone class Migration(migrations.Migration): dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ('contracts', '0003_auto_20191226_1856'), ] operations = [ migrations.CreateModel( name='UserContractualPartyAssociation', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('valid_from', models.DateTimeField(default=django.utils.timezone.now)), ('valid_to', models.DateTimeField(null=True)), ('association_type', models.CharField(choices=[('Administrator', 'Administrator'), ('Collaborator', 'Collaborator')], max_length=32)), ], ), migrations.AddField( model_name='contractualparty', name='created_by', field=models.ForeignKey(default=1, on_delete=django.db.models.deletion.PROTECT, to=settings.AUTH_USER_MODEL), preserve_default=False, ), migrations.DeleteModel( name='ContractualPartyAssociation', ), migrations.AddField( model_name='usercontractualpartyassociation', name='cp', field=models.ForeignKey(on_delete=django.db.models.deletion.PROTECT, to='contracts.ContractualParty'), ), migrations.AddField( model_name='usercontractualpartyassociation', name='user', field=models.ForeignKey(on_delete=django.db.models.deletion.PROTECT, to=settings.AUTH_USER_MODEL), ), ]
""" Copyright (C) 2019 Authors of gHHC This file is part of "hyperbolic_hierarchical_clustering" http://github.com/nmonath/hyperbolic_hierarchical_clustering Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import os import time import numpy as np import tensorflow as tf from ghhc.util.eval_dp import eval_dp from ghhc.util.io import mkdir_p from absl import logging tf.enable_eager_execution() def squared_norm(x, axis=1, keepdims=True): """Squared L2 Norm of x.""" return tf.reduce_sum(tf.pow(x, 2), axis=axis, keepdims=keepdims) def squared_euclidean_cdist(x, y): """Squared euclidean distance Computed as: ||x||^2 + ||y||^2 - 2 x^T y. Args: x: N by D matrix y: M by D matrix :returns matrix (N by M) such that result[i,j] = || x[i,:] - y[j,;] ||^2 """ norms = squared_norm(x, axis=1, keepdims=True) + tf.transpose(squared_norm(y, axis=1, keepdims=True)) dot = 2.0*tf.matmul(x, y, transpose_b=True) return norms - dot def poincare_cdist(x, y): """Poincare distance Args: x: N by D matrix y: M by D matrix :returns matrix (N by M) such that result[i,j] = ppoincare dist(x[i,:], y[j,:]) """ numerator = squared_euclidean_cdist(x, y) denom = (1.0 - squared_norm(x)) * (1.0 - tf.transpose(squared_norm(y, axis=1, keepdims=True))) arccosh_arg = 1.0 + 2.0 * numerator / denom res = tf.math.acosh(1e-8 + arccosh_arg) return res def squared_euclidean_dist(x, y): """Squared euclidean distance Computed as: ||x||^2 + ||y||^2 - 2 x^T y. Args: x: N by D matrix y: N by D matrix :returns vector (N by 1) such that the ith element is || x[i,:] - y[i,;] ||^2 """ norms = squared_norm(x, axis=1, keepdims=True) + squared_norm(y, axis=1, keepdims=True) dot = 2*tf.reduce_sum(tf.multiply(x, y), axis=1, keepdims=True) return norms - dot def poincare_dist(x, y): """Poincare distance between x and y. Args: x: N by D matrix y: N by D matrix :returns vector (N by 1) such that the ith element is poincare dist(x[i,:], y[i,:]) """ numerator = squared_euclidean_dist(x, y) denom = (1.0 - squared_norm(x)) * (1.0 - squared_norm(y)) arccosh_arg = 1.0 + 2.0 * numerator / denom res = tf.math.acosh(arccosh_arg) return res def poincare_norm(x, axis=1, keepdims=True): """Squared poincare norm of x.""" return 2.0*tf.math.atanh(tf.linalg.norm(x, axis=axis, keepdims=keepdims)) def parent_order_penalty(p, c, marg): """Penalty for parents to have smaller norm than children.""" return tf.maximum(0.0, poincare_norm(p) - poincare_norm(c) + marg) + 1.0 def parent_order_penalty_cdist(p, c, marg): """Penalty for parents to have smaller norm than children.""" return tf.maximum(0.0, tf.transpose(poincare_norm(p)) - poincare_norm(c) + marg) + 1.0 class gHHCTree(tf.keras.Model): """Object for a ghhc tree.""" def __init__(self, init_tree=None, gamma=0.25, config=None, projection=None): super(gHHCTree, self).__init__() self.internals = tf.get_variable('internals', initializer=init_tree) self.max_norm = 0.8 self.internals_so_far = 0 self.gamma = gamma self.config = config self.projection = None self.cached_pairs = None if projection is not None: self.projection = projection else: self.projection = lambda x: x def project(self, x_i, x_j, x_k): return self.projection(x_i), self.projection(x_j), self.projection(x_k) def clip(self): tf.assign(self.internals, tf.clip_by_norm(self.internals, self.max_norm, axes=[1])) def p_par_broadcast(self, x_i): return self.p_par_to_broadcast(x_i, self.internals) def p_par_to_broadcast(self, x_i, nodes): dists = poincare_cdist(x_i, nodes) res = tf.multiply(dists, parent_order_penalty_cdist(nodes, x_i, self.gamma)) return res def p_par_to(self, x_i, nodes): dists = poincare_dist(x_i, nodes) res = tf.multiply(dists, parent_order_penalty(nodes, x_i, self.gamma)) return res def p_par_to_batched_np(self, x_i, nodes, batch_size=1000): dists = np.zeros((x_i.shape[0], nodes.shape[0]), np.float32) for i in range(0, x_i.shape[0], batch_size): logging.log_every_n_seconds(logging.INFO,'p_par_to_batched_np processed %s of %s', 5, i, x_i.shape[0]) for j in range(0, nodes.shape[0], batch_size): dists[i:(i+batch_size), j:(j+batch_size)] = self.p_par_to_broadcast(x_i[i:(i + batch_size), :], nodes[j:(j + batch_size), :]).numpy() return dists def compute_loss(self, x_i, x_j, x_k): x_i, x_j, x_k = self.project(x_i, x_j, x_k) x_i_dists = self.p_par_to_broadcast(x_i, self.internals) x_j_dists = self.p_par_to_broadcast(x_j, self.internals) x_k_dists = self.p_par_to_broadcast(x_k, self.internals) max_dists_ij = tf.maximum(x_i_dists, x_j_dists) gumbel_ij_noise = tf.log(-tf.log(tf.random_uniform(tf.shape(max_dists_ij)))) gumbel_ijk_noise = tf.log(-tf.log(tf.random_uniform(tf.shape(max_dists_ij)))) max_dists_ijk = tf.maximum(x_k_dists, max_dists_ij) lca_ij_softmax = tf.nn.softmax(-max_dists_ij+gumbel_ij_noise, axis=1) lca_ij_idx = tf.argmin(max_dists_ij, axis=1) offset = np.zeros_like(max_dists_ij) offset[np.arange(offset.shape[0]), lca_ij_idx] = 1000 max_dists_ijk += offset lca_ijk_softmax = tf.nn.softmax(-max_dists_ijk + gumbel_ijk_noise, axis=1) logits1 = lca_ij_softmax * x_i_dists - lca_ijk_softmax * x_i_dists logits2 = lca_ij_softmax * x_j_dists - lca_ijk_softmax * x_j_dists logits3 = lca_ijk_softmax * x_k_dists - lca_ij_softmax * x_k_dists per_ex_loss = tf.nn.sigmoid_cross_entropy_with_logits(labels=tf.zeros_like(logits1), logits=logits1) \ + tf.nn.sigmoid_cross_entropy_with_logits(labels=tf.zeros_like(logits2), logits=logits2) \ + tf.nn.sigmoid_cross_entropy_with_logits(labels=tf.zeros_like(logits3), logits=logits3) loss = tf.reduce_sum(per_ex_loss) return loss def p_par_assign_to_internal(self, children, parents, proj_child=True): if proj_child: children = self.projection(children) internal_norm = tf.norm(parents, axis=1, keepdims=True) internal_ordering = tf.argsort(-tf.squeeze(internal_norm)).numpy() back_to_orig = tf.argsort(internal_ordering) parents = parents[internal_ordering,:] children = children[internal_ordering,:] dists = self.p_par_to_batched_np(children, parents) dists[np.tril_indices_from(dists)] = np.Inf np.fill_diagonal(dists, np.Inf) dists = dists[back_to_orig,:][:,back_to_orig] assignments = np.argmin(dists, axis=1) mindists = np.min(dists, axis=1) assignments[mindists == np.Inf] = -1 return assignments def p_par_assign_to(self, children, parents, exclude_diag=False, proj_child=True): if proj_child: children = self.projection(children) dists = self.p_par_to_batched_np(children, parents) children_norm = tf.norm(children, axis=1, keepdims=True) internal_norm = tf.norm(parents, axis=1, keepdims=True) eligible = tf.less(-children_norm + tf.transpose(internal_norm), 0).numpy() dists[eligible == False] = np.Inf if exclude_diag: np.fill_diagonal(dists, np.Inf) assignments = np.argmin(dists, axis=1) mindists = np.min(dists, axis=1) assignments[mindists == np.Inf] = -1 return assignments def write_tsv(self, filename, leaves, pids=None, lbls=None, update_cache=True): logging.info('Writing tree tsv to %s' % filename) logging.info('num leaves %s' % leaves.shape[0]) logging.info('pids is None? %s' % (pids is None)) logging.info('lbls is None? %s' % (lbls is None)) internals = self.internals.numpy() leaf_to_par_assign = self.p_par_assign_to(leaves, internals) internal_to_par_assign = self.p_par_assign_to_internal(internals, internals, proj_child=False) self.cached_pairs = np.concatenate([ np.expand_dims(np.arange(internal_to_par_assign.shape[0]),1), np.expand_dims(internal_to_par_assign,1)],axis=1) self.cached_pairs = self.cached_pairs[self.cached_pairs[:,1]!=-1] with open(filename + '.internals', 'w') as fouti: with open(filename + '.leaves', 'w') as foutl: with open(filename, 'w') as fout: i = -1 pid = 'int_%s' % i best_pid = 'best_int_%s' % i par_id = 'None' fout.write('%s\t%s\tNone\n' % (pid, par_id)) fout.write('%s\t%s\tNone\n' % (best_pid, pid)) fouti.write('%s\t%s\tNone\n' % (pid, par_id)) fouti.write('%s\t%s\tNone\n' % (best_pid, pid)) for i in range(leaf_to_par_assign.shape[0]): logging.log_every_n_seconds(logging.INFO,'Wrote %s leaves' % i,5) pid = 'pt_%s' % i if pids is None else pids[i] lbl = pid if lbls is None else lbls[i] par_id = 'best_int_%s' % leaf_to_par_assign[i] fout.write('%s\t%s\t%s\n' % (pid, par_id, lbl)) foutl.write('%s\t%s\t%s\n' % (pid, par_id, lbl)) for i in range(internal_to_par_assign.shape[0]): logging.log_every_n_seconds(logging.INFO,'Wrote %s internals' % i,5) pid = 'int_%s' % i par_id = 'int_%s' % internal_to_par_assign[i] best_pid = 'best_int_%s' % i fout.write('%s\t%s\tNone\n' % (pid, par_id)) fout.write('%s\t%s\tNone\n' % (best_pid, par_id)) fouti.write('%s\t%s\tNone\n' % (pid, par_id)) fouti.write('%s\t%s\tNone\n' % (best_pid, par_id)) def plot_tree(self, leaves, filename): internals = self.internals.numpy() leaf_to_par_assign = self.p_par_assign_to(leaves, internals) internal_to_par_assign = self.p_par_assign_to_internal(internals, internals, proj_child=False) import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt fig, ax = plt.subplots(figsize=(10, 10)) ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) ax.spines['bottom'].set_visible(False) ax.spines['left'].set_visible(False) ax.tick_params(axis='x', which='both', bottom='off', top='off', color='white') ax.tick_params(axis='y', which='both', left='off', right='off', color='white') # plt.scatter(0, 0, label='root', marker='^', zorder=2) # plt.annotate('root', xy=(0,0), size=3) for idx in range(internals.shape[0]): plt.scatter(internals[idx, 0], internals[idx, 1], label='int_%s' % idx, s=100, marker='^', zorder=2) # plt.annotate('int_%s' % idx, xy=(internals[idx,0], internals[idx,1]), size=5) for idx in range(internals.shape[0]): if internal_to_par_assign[idx] != -1: plt.plot([internals[idx,0], internals[internal_to_par_assign[idx],0]], [internals[idx,1], internals[internal_to_par_assign[idx],1]], linewidth=2, c='k', zorder=1) # else: # plt.plot([internals[idx, 0], 0], # [internals[idx, 1], 0], linewidth=1, # c='k', zorder=1) for idx in range(leaves.shape[0]): plt.scatter(leaves[idx, 0], leaves[idx, 1], s=100, label='%s' % idx, marker='o', zorder=2) # plt.annotate('pt_%s' % idx, xy=(leaves[idx, 0], leaves[idx, 1]), size=5) for idx in range(leaves.shape[0]): if leaf_to_par_assign[idx] != -1: # print('gpid %s lpid %s' % (grinch_par_id, leaf_to_par_assign[idx])) plt.plot([leaves[idx, 0], internals[leaf_to_par_assign[idx], 0]], [leaves[idx, 1], internals[leaf_to_par_assign[idx], 1]], linewidth=2, c='k', zorder=1) # else: # plt.plot([leaves[idx, 0], 0], # [leaves[idx, 1], 0], linewidth=1, # c='k', zorder=1) plt.xlim([-1.1, 1.1]) plt.ylim([-1.1, 1.1]) circle = plt.Circle((0, 0), 1, color='r',linewidth=5, fill=False) ax.add_artist(circle) plt.axis('off') plt.savefig(filename) def structure_loss(self): res = tf.reduce_sum(self.child_parent_norm_loss(self.cached_pairs)) # logging.log_every_n(logging.INFO,'cp res: %s', 10,res ) return res def child_parent_norm_loss(self, pairs): internal_norms = poincare_norm(self.internals) children = tf.gather(internal_norms, pairs[:,0]) parents = tf.gather(internal_norms, pairs[:,1]) logits1 = tf.nn.relu(parents - children + self.gamma) min_norm = tf.argmin(internal_norms).numpy()[0] logging.log_every_n(logging.INFO,'min_norm %s %s',500,min_norm,internal_norms[min_norm]) max_norm = tf.argmax(internal_norms).numpy()[0] logging.log_every_n(logging.INFO, 'max_norm %s %s', 500, max_norm, internal_norms[max_norm]) return tf.reduce_sum(logits1) def rsgd_or_sgd(grads_and_vars, rsgd=True): if rsgd: res = [] for g,v in grads_and_vars: scale = ((1.0 - tf.reduce_sum(tf.multiply(v,v),axis=1,keepdims=True)) ** 2) / 4.0 res.append((scale*g, v)) return res else: return grads_and_vars class gHHCInference(object): def __init__(self, ghhcTree, optimizer, config, dev_set, dev_lbls): self.ghhcTree = ghhcTree self.optimizer = optimizer self.config = config self.dev_set = dev_set self.dev_lbls = dev_lbls self.best_dev_dp_score = 0.0 self.best_dev_iter = 0.0 self.last_dev_dp_score = 0.0 self.last_dev_iter = 0.0 self.checkpoint_prefix = self.config.checkpoint_dir + "/ckpt" self.ckpt = tf.train.Checkpoint(optimizer=optimizer, model=ghhcTree, optimizer_step=tf.train.get_or_create_global_step()) def update(self, c1, c2, par_id, gp_id, steps=100): for i in range(steps): with tf.GradientTape() as tape: loss = self.ghhcTree.pull_close_par_gp(c1, c2, par_id, gp_id) grads = tape.gradient(loss, self.ghhcTree.trainable_variables) self.optimizer.apply_gradients(rsgd_or_sgd(zip(grads, self.ghhcTree.trainable_variables)), global_step=tf.train.get_or_create_global_step()) self.ghhcTree.clip() def episode_inference(self, x_i, x_j, x_k, dataset, batch_size=1000, examples_so_far=0): time_so_far = 0.0 loss_so_far = 0.0 struct_loss_so_far = 0.0 for idx in range(0, x_i.shape[0], batch_size): if self.config.struct_prior is not None and idx+examples_so_far > 0: if self.ghhcTree.cached_pairs is None: self.dev_eval(idx + examples_so_far) if (idx + examples_so_far) % self.config.struct_prior_every == 0: for idx2 in range(self.config.num_struct_prior_batches): start_time = time.time() logging.log_every_n(logging.INFO, '[STRUCTURE] Processed %s of %s batches || Avg. Loss %s || Avg Time %s' % (idx2, 100, struct_loss_so_far / max(idx2, 1), time_so_far / max(idx2, 1)),100) with tf.GradientTape() as tape: sloss = self.ghhcTree.structure_loss() struct_loss_so_far += sloss.numpy() grads = tape.gradient(sloss, self.ghhcTree.trainable_variables) self.optimizer.apply_gradients(rsgd_or_sgd(zip(grads, self.ghhcTree.trainable_variables)), global_step=tf.train.get_or_create_global_step()) self.ghhcTree.clip() end_time = time.time() time_so_far += end_time - start_time logging.log(logging.INFO, '[STRUCTURE] Processed %s of %s batches || Avg. Loss %s || Avg Time %s' % (self.config.num_struct_prior_batches, 100, struct_loss_so_far / max(self.config.num_struct_prior_batches, 1), time_so_far / max(self.config.num_struct_prior_batches, 1))) if (idx + examples_so_far) % self.config.dev_every == 0: self.dev_eval(idx + examples_so_far) elif (idx + examples_so_far ) % self.config.save_every == 0: self.ckpt.save(self.checkpoint_prefix) self.config.last_model = tf.train.latest_checkpoint(self.config.checkpoint_dir) self.config.save_config(self.config.exp_out_dir, filename='config.json') start_time = time.time() if idx % 100 == 0 and idx > 0: logging.info('Processed %s of %s batches || Avg. Loss %s || Avg Time %s' % (idx, x_i.shape[0], loss_so_far/idx, time_so_far / max(idx,1))) with tf.GradientTape() as tape: bx_i = dataset[x_i[idx:(idx + batch_size)], :] bx_j = dataset[x_j[idx:(idx + batch_size)], :] bx_k = dataset[x_k[idx:(idx + batch_size)], :] loss = self.ghhcTree.compute_loss(bx_i, bx_j, bx_k) loss_so_far += loss.numpy() grads = tape.gradient(loss, self.ghhcTree.trainable_variables) self.optimizer.apply_gradients(rsgd_or_sgd(zip(grads, self.ghhcTree.trainable_variables)), global_step=tf.train.get_or_create_global_step()) self.ghhcTree.clip() end_time = time.time() time_so_far += end_time - start_time logging.info('Processed %s of %s batches || Avg. Loss %s || Avg Time %s' % (x_i.shape[0], x_i.shape[0], loss_so_far / x_i.shape[0], time_so_far / max(x_i.shape[0], 1))) # save model at the end of training self.ckpt.save(self.checkpoint_prefix) self.config.last_model = tf.train.latest_checkpoint(self.config.checkpoint_dir) # record the last model in the config. self.config.save_config(self.config.exp_out_dir, filename='config.json') return x_i.shape[0] def dev_eval(self, steps): if self.dev_set is not None: start_dev = time.time() mkdir_p(os.path.join(self.config.exp_out_dir, 'dev')) filename = os.path.join(self.config.exp_out_dir, 'dev', 'dev_tree_%s.tsv' % steps) self.ghhcTree.write_tsv(filename,self.dev_set,lbls=self.dev_lbls) dp = eval_dp(filename, os.path.join(self.config.exp_out_dir, 'dev', 'dev_score_%s.tsv' % steps), self.config.threads, self.config.dev_points_file) logging.info('DEV EVAL @ %s minibatches || %s DP' % (steps,dp)) end_dev = time.time() logging.info('Finished Dev Eval in %s seconds' % (end_dev-start_dev)) if self.config.save_dev_pics: filename = os.path.join(self.config.exp_out_dir, 'dev', 'dev_tree_%s.png' % steps) self.ghhcTree.plot_tree(self.dev_set, filename) # record the best dev score to try to understand if we end up doing worse, not used at inference time # last model is used at inference. self.best_dev_dp_score = max(self.best_dev_dp_score,dp) self.best_dev_iter = steps if self.best_dev_dp_score == dp else self.best_dev_iter self.last_dev_dp_score = dp self.last_dev_iter = steps # save every time we run this eval self.ckpt.save(self.checkpoint_prefix) self.config.last_model = tf.train.latest_checkpoint(self.config.checkpoint_dir) if self.best_dev_dp_score == dp: self.config.best_model = tf.train.latest_checkpoint(self.config.checkpoint_dir) self.config.save_config(self.config.exp_out_dir, filename='config.json') return dp else: return 0.0 def inference(self, indexes, dataset, batch_size=1000, episode_size=5000): batches_so_far = 0 curr_idx = 0 episode_size = self.config.episode_size if self.config.shuffle: indexes = indexes[np.random.permutation(indexes.shape[0]), :] for i in range(self.config.num_iterations): if curr_idx > indexes.shape[0]: logging.info('Restarting....') curr_idx = 0 if self.config.shuffle: indexes = indexes[np.random.permutation(indexes.shape[0]), :] logging.info('Starting iteration %s of %s' % (i, self.config.num_iterations)) batches_so_far += self.episode_inference(indexes[curr_idx:(curr_idx+episode_size), 0], indexes[curr_idx:(curr_idx+episode_size), 1], indexes[curr_idx:(curr_idx+episode_size), 2], dataset, batch_size, examples_so_far=batches_so_far)
#!/usr/bin/python #Lyapunov: a library for integrating nonlinear dynamical systems #Copyright (C) 2013-2018 John Wendell Hall # #The author may be reached at jackwhall7@gmail.com. import time import lyapunov import numpy import matplotlib.pyplot as plt class MassSpringDemo(object): """ Mass spring damper system. k = b = m = 1.0 No disturbances or control. """ def __init__(self): self.state = 0.0, (1.0, 1.0) self.u = lambda : 0.0 state = lyapunov.state_property(xname="_state") def __call__(self): x, v = self._state return (v, -v - x + self.u()) def print_two_steps(system = MassSpringDemo()): """ System must make use of lyapunov.State. """ t_in = [0.1, 0.2] stepper = lyapunov.euler(system, t_in) print("No Events - mass spring damper system") print("Step 0:") print("time", system.state.t, "| state ", system.state.x) print("slope", system()) stepper.next() print("Step 1:") print("time", system.state.t, "| state ", system.state.x) print("slope", system()) stepper.next() print("Step 2:") print("time", system.state.t, "| state ", system.state.x) print("slope", system()) class SubsystemDemo(lyapunov.ParallelSystems): """A mass-spring-damper controlled by a PID.""" def __init__(self): self.plant = MassSpringDemo() self.control = lyapunov.PID(Ki=1) self.reference = lyapunov.StepSignal(step_time=4.0) self.control.y = lambda: self.plant.state[1] self.control.r = lambda: self.reference.value self.plant.u = self.control.u lyapunov.ParallelSystems.__init__(self, [self.reference, self.control, self.plant]) def run_subsystem_demo(): system = SubsystemDemo() record = lyapunov.Recorder(system) stepper = lyapunov.adams_bashforth3(system, numpy.linspace(0.0, 8.0, 100)) #stepper = lyapunov.cash_karp(system, 8.0) print("\nMass-Spring-Damper w/PID control") print("initial state", system.state) start = time.clock() count = 0 for t, events in stepper: if events: stepper.step_across() system.reference.update() record.log(events) print("time elapsed", time.clock() - start) x_out = numpy.array(record.x) plt.figure() plt.plot(x_out[:,0], x_out[:,1]) plt.show() if __name__ == "__main__": run_subsystem_demo()
from fractions import Fraction c = 1 while True: line = input() if line.strip() == "-1": break j, X = line.split() if float(X) == 1.0: print("Case "+str(c)+": 1/1") c+=1 continue if float(X) == 0.0: print("Case "+str(c)+": 0/1") c+=1 continue j = int(j) if j==0: print("Case "+str(c)+": "+str(Fraction(str(X)))) c+=1 continue k = len(X[2:])-j repeating = X[2+k:] for i in range(11): X = X + repeating numerator = int(10**(j+k) * float(X)) - int(10**k * float(X)) denominator = 10**(j+k) - 10**k f = Fraction(numerator,denominator) print("Case "+str(c)+": "+str(f.numerator)+"/"+str(f.denominator)) c+=1
# author: @netmanchris # -*- coding: utf-8 -*- """ This module contains functions for working with the access point information capabilities of the HPE IMC WSM Module using the RESTful API """ # This section imports required libraries import json import requests from pyhpeimc.auth import HEADERS def get_ap_info_all(auth, url): """ function takes no input to RESTFUL call to HP IMC :param auth: requests auth object #usually auth.creds from auth pyhpeimc.auth.class :param url: base url of IMC RS interface #usually auth.url from pyhpeimc.auth.authclass :return: list of dictionaries where each element of the list represents a single wireless access point which has been discovered in the HPE IMC WSM module :rtype: list >>> from pyhpeimc.auth import * >>> from pyhpeimc.wsm.apinfo import * >>> auth = IMCAuth("http://", "10.101.0.203", "8080", "admin", "admin") >>> all_ap_info = get_ap_info_all(auth.creds, auth.url) >>> assert type(all_ap_info) is list >>> assert len(all_ap_info[0]) == 19 >>> assert 'acDevId' in all_ap_info[0] >>> assert 'acIpAddress' in all_ap_info[0] >>> assert 'acLabel' in all_ap_info[0] >>> assert 'apAlias' in all_ap_info[0] >>> assert 'connectType' in all_ap_info[0] >>> assert 'hardwareVersion' in all_ap_info[0] >>> assert 'ipAddress' in all_ap_info[0] >>> assert 'isFit' in all_ap_info[0] >>> assert 'label' in all_ap_info[0] >>> assert 'location' in all_ap_info[0] >>> assert 'macAddress' in all_ap_info[0] >>> assert 'onlineClientCount' in all_ap_info[0] >>> assert 'onlineStatus' in all_ap_info[0] >>> assert 'serialId' in all_ap_info[0] >>> assert 'softwareVersion' in all_ap_info[0] >>> assert 'ssids' in all_ap_info[0] >>> assert 'status' in all_ap_info[0] >>> assert 'type' in all_ap_info[0] >>> assert 'sysName' in all_ap_info[0] """ f_url = url + "/imcrs/wlan/apInfo/queryApBasicInfo" response = requests.get(f_url, auth=auth, headers=HEADERS) try: if response.status_code == 200: if len(response.text) > 0: return json.loads(response.text)['apBasicInfo'] except requests.exceptions.RequestException as error: return "Error:\n" + str(error) + " get_ap_info_all: An Error has occured" def get_ap_info(ipaddress, auth, url): """ function takes input of ipaddress to RESTFUL call to HP IMC :param ipaddress: The current IP address of the Access Point at time of query. :param auth: requests auth object #usually auth.creds from auth pyhpeimc.auth.class :param url: base url of IMC RS interface #usually auth.url from pyhpeimc.auth.authclass :return: Dictionary object with the details of the target access point :rtype: dict >>> from pyhpeimc.auth import * >>> from pyhpeimc.wsm.apinfo import * >>> auth = IMCAuth("http://", "10.101.0.203", "8080", "admin", "admin") >>> ap_info = get_ap_info('10.101.0.170',auth.creds, auth.url) >>> assert type(ap_info) is dict >>> assert len(ap_info) == 20 >>> assert 'acDevId' in ap_info >>> assert 'acIpAddress' in ap_info >>> assert 'acLabel' in ap_info >>> assert 'apAlias' in ap_info >>> assert 'connectType' in ap_info >>> assert 'hardwareVersion' in ap_info >>> assert 'ipAddress' in ap_info >>> assert 'isFit' in ap_info >>> assert 'label' in ap_info >>> assert 'location' in ap_info >>> assert 'locationList' in ap_info >>> assert 'macAddress' in ap_info >>> assert 'onlineClientCount' in ap_info >>> assert 'serialId' in ap_info >>> assert 'softwareVersion' in ap_info >>> assert 'ssids' in ap_info >>> assert 'status' in ap_info >>> assert 'sysName' in ap_info >>> assert 'type' in ap_info """ get_ap_info_url = "/imcrs/wlan/apInfo/queryApBasicInfoByCondition?ipAddress=" + str(ipaddress) f_url = url + get_ap_info_url response = requests.get(f_url, auth=auth, headers=HEADERS) try: if response.status_code == 200: if len(response.text) > 0: return json.loads(response.text)['apBasicInfo'] except requests.exceptions.RequestException as error: return "Error:\n" + str(error) + " get_ap_info_all: An Error has occured"
# Generated by Django 2.2.7 on 2019-11-13 12:49 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('sitecampus', '0001_initial'), ] operations = [ migrations.AlterField( model_name='autor', name='semestre', field=models.CharField(choices=[('1', '2019/1'), ('2', '2018/2'), ('3', '2018/1'), ('4', '2017/2')], max_length=1), ), ]
print 'a' print '\t\tHermit' print 'i know , they are \'great\' '
# Copyright (C) 2019-2021 Ruhr West University of Applied Sciences, Bottrop, Germany # AND Elektronische Fahrwerksysteme GmbH, Gaimersheim Germany # # This Source Code Form is subject to the terms of the Apache License 2.0 # If a copy of the APL2 was not distributed with this # file, You can obtain one at https://www.apache.org/licenses/LICENSE-2.0.txt. from typing import Tuple from collections import OrderedDict import numpy as np import torch import torch.distributions.constraints as constraints import pyro import pyro.distributions as dist from netcal.scaling import AbstractLogisticRegression class BetaCalibrationDependent(AbstractLogisticRegression): """ This calibration method uses a multivariate variant of a Beta distribution to obtain a calibration mapping by means of the confidence as well as additional features. This method is originally proposed by [1]_. This calibration scheme tries to model several dependencies in the variables given by the input ``X``. It is necessary to provide all data in input parameter ``X`` as an NumPy array of shape ``(n_samples, n_features)``, whereas the confidence must be the first feature given in the input array. The ground-truth samples ``y`` must be an array of shape ``(n_samples,)`` consisting of binary labels :math:`y \\in \\{0, 1\\}`. Those labels indicate if the according sample has matched a ground truth box :math:`\\text{m}=1` or is a false prediction :math:`\\text{m}=0`. **Mathematical background:** For confidence calibration in classification tasks, a confidence mapping :math:`g` is applied on top of a miscalibrated scoring classifier :math:`\\hat{p} = h(x)` to deliver a calibrated confidence score :math:`\\hat{q} = g(h(x))`. For detection calibration, we can also use the additional box regression output which we denote as :math:`\\hat{r} \\in [0, 1]^J` with :math:`J` as the number of dimensions used for the box encoding (e.g. :math:`J=4` for x position, y position, width and height). Therefore, the calibration map is not only a function of the confidence score, but also of :math:`\\hat{r}`. To define a general calibration map for binary problems, we use the logistic function and the combined input :math:`s = (\\hat{p}, \\hat{r})` of size K by .. math:: g(s) = \\frac{1}{1 + \\exp(-z(s))} , According to [1]_, we can interpret the logit :math:`z` as the logarithm of the posterior odds .. math:: z(s) = \\log \\frac{f(\\text{m}=1 | s)}{f(\\text{m}=0 | s)} \\approx \\log \\frac{f(s | \\text{m}=1)}{f(s | \\text{m}=1)} = \\ell r(s) For a multivariate probability density function :math:`f(s|\\text{m})`, we use a variant of the beta distribution described in [2]_ and given by .. math:: f(s|\\text{m}) = \\frac{1}{B(\\alpha_0, ..., \\alpha_K)} \\frac{\\prod^K_{k=1} \\lambda_k^{\\alpha_k}(s_k^\\ast)^{\\alpha_k - 1} \\Big(\\frac{s_k^\\ast}{s_k}\\Big)^2} {\\Big[1 + \\sum^K_{k=1} \\lambda_k s_k^\\ast\\Big]^{\\sum^K_{k=0} \\alpha_k} } with shape parameters :math:`\\alpha_k, \\beta_k > 0`, :math:`\\forall k \\in \\{0, ..., K \\}`. For notation easyness, we denote :math:`\\lambda_k=\\frac{\\beta_k}{\\beta_0}` and :math:`s^\\ast=\\frac{s}{1-s}`. Inserting this density function into this framework with :math:`\\alpha_k^+`, :math:`\\beta_k^+` and :math:`\\alpha_k^-`, :math:`\\beta_k^-` as the distribution parameters for :math:`\\text{m}=1` and :math:`\\text{m}=0`, respectively, we get a likelihood ratio of .. math:: \\ell r(s) &= \\sum^K_{k=1} \\alpha_k^+ \\log(\\lambda_k^+) - \\alpha_k^- \\log(\\lambda_k^-) \\\\ &+ \\sum^K_{k=1} (\\alpha_k^+ - \\alpha_k^-) \\log(s^\\ast) \\\\ &+ \\sum^K_{k=0} \\alpha_k^- \\log\\Bigg[\\sum^K_{j=1} \\lambda_j^- s^\\ast_j\\Bigg] \\\\ &- \\sum^K_{k=0} \\alpha_k^+ \\log\\Bigg[\\sum^K_{j=1} \\lambda_j^+ s^\\ast_j\\Bigg] \\\\ &+ c , where and :math:`c=\\log B(\\alpha_0^-, ..., \\alpha_k^-) - \\log B(\\alpha_0^+, ..., \\alpha^+_k)`. This is optimized by an Adam optimizer with a learning rate of 1e-3 and a batch size of 256 for 1000 iterations (default). Parameters ---------- method : str, default: "momentum" Method that is used to obtain a calibration mapping: - 'mle': Maximum likelihood estimate without uncertainty using a convex optimizer. - 'momentum': MLE estimate using Momentum optimizer for non-convex optimization. - 'variational': Variational Inference with uncertainty. - 'mcmc': Markov-Chain Monte-Carlo sampling with uncertainty. momentum_epochs : int, optional, default: 1000 Number of epochs used by momentum optimizer. mcmc_steps : int, optional, default: 20 Number of weight samples obtained by MCMC sampling. mcmc_chains : int, optional, default: 1 Number of Markov-chains used in parallel for MCMC sampling (this will result in mcmc_steps * mcmc_chains samples). mcmc_warmup_steps : int, optional, default: 100 Warmup steps used for MCMC sampling. vi_epochs : int, optional, default: 1000 Number of epochs used for ELBO optimization. independent_probabilities : bool, optional, default: False Boolean for multi class probabilities. If set to True, the probability estimates for each class are treated as independent of each other (sigmoid). use_cuda : str or bool, optional, default: False Specify if CUDA should be used. If str, you can also specify the device number like 'cuda:0', etc. References ---------- .. [1] Fabian Küppers, Jan Kronenberger, Amirhossein Shantia and Anselm Haselhoff: "Multivariate Confidence Calibration for Object Detection." The IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops. .. [2] Libby, David L., and Melvin R. Novick: "Multivariate generalized beta distributions with applications to utility assessment" Journal of Educational Statistics 7.4, pp. 271-294, 1982 .. [3] Fabian Küppers, Jan Kronenberger, Jonas Schneider and Anselm Haselhoff: "Bayesian Confidence Calibration for Epistemic Uncertainty Modelling." 2021 IEEE Intelligent Vehicles Symposium (IV), 2021 """ def __init__(self, *args, method: str = 'momentum', **kwargs): """ Create an instance of `BetaCalibrationDependent`. Detailed parameter description given in class docs. """ # an instance of this class is definitely of type detection if 'detection' in kwargs and kwargs['detection'] == False: print("WARNING: On BetaCalibrationDependent, attribute \'detection\' must be True.") kwargs['detection'] = True super().__init__(*args, method=method, **kwargs) # ------------------------------------------------- @property def intercept(self) -> float: """ Getter for intercept of dependent beta calibration. """ if self._sites is None: raise ValueError("Intercept is None. You have to call the method 'fit' first.") return self._sites['bias']['values'] @property def alphas(self) -> Tuple[np.ndarray, np.ndarray]: """ Getter for alpha values of dependent beta calibration. """ if self._sites is None: raise ValueError("Weights is None. You have to call the method 'fit' first.") index_2 = self.num_features + 1 index_3 = index_2 + self.num_features + 1 weights = self._sites['weights']['values'] return weights[:index_2], weights[index_2:index_3] @property def betas(self) -> Tuple[np.ndarray, np.ndarray]: """ Getter for beta values of dependent beta calibration. """ if self._sites is None: raise ValueError("Weights is None. You have to call the method 'fit' first.") index_1 = 2 * (self.num_features + 1) index_2 = index_1 + self.num_features + 1 weights = self._sites['weights']['values'] return weights[index_1:index_2], weights[index_2:] # ------------------------------------------------- def prepare(self, X: np.ndarray) -> torch.Tensor: """ Preprocessing of input data before called at the beginning of the fit-function. Parameters ---------- X : np.ndarray, shape=(n_samples, [n_classes]) or (n_samples, [n_box_features]) NumPy array with confidence values for each prediction on classification with shapes 1-D for binary classification, 2-D for multi class (softmax). On detection, this array must have 2 dimensions with number of additional box features in last dim. Returns ------- torch.Tensor Prepared data vector X as torch tensor. """ assert self.detection, "Detection mode must be enabled for dependent beta calibration." if len(X.shape) == 1: X = np.reshape(X, (-1, 1)) # clip seperately due to numerical stability data = np.clip(X, self.epsilon, 1. - self.epsilon) / np.clip((1. - X), self.epsilon, 1. - self.epsilon) return torch.tensor(data) def prior(self): """ Prior definition of the weights used for log regression. This function has to set the variables 'self.weight_prior_dist', 'self.weight_mean_init' and 'self.weight_stddev_init'. """ # number of weights num_weights = 4 * (self.num_features + 1) self._sites = OrderedDict() # initial values for mean, scale and prior dist init_mean = torch.ones(num_weights).uniform_(1. + self.epsilon, 2.) init_scale = torch.ones(num_weights) prior = dist.Normal(init_mean, 10 * init_scale, validate_args=True) # we have constraints on the weights to be positive # this is usually solved by defining constraints on the MLE optimizer # however, on MCMC and VI this is not possible # instead, we are using a "shifted" LogNormal to obtain only positive samples if self.method in ['variational', 'mcmc']: # for this purpose, we need to transform the prior mean first and set the # distribution to be a LogNormal init_mean = torch.log(torch.exp(init_mean) - 1) prior = dist.LogNormal(init_mean, 10 * init_scale, validate_args=True) # set properties for "weights": weights must be positive self._sites['weights'] = { 'values': None, 'constraint': constraints.greater_than(self.epsilon), 'init': { 'mean': init_mean, 'scale': init_scale }, 'prior': prior } # set properties for "bias" self._sites['bias'] = { 'values': None, 'constraint': constraints.real, 'init': { 'mean': torch.ones(1) * self.epsilon, 'scale': torch.ones(1) }, 'prior': dist.Normal(torch.zeros(1), 10 * torch.ones(1), validate_args=True), } def model(self, X: torch.Tensor = None, y: torch.Tensor = None) -> torch.Tensor: """ Definition of the log regression model. Parameters ---------- X : torch.Tensor, shape=(n_samples, n_log_regression_features) Input data that has been prepared by "self.prepare" function call. y : torch.Tensor, shape=(n_samples, [n_classes]) Torch tensor with ground truth labels. Either as label vector (1-D) or as one-hot encoded ground truth array (2-D) (for multiclass MLE only). Returns ------- torch.Tensor, shape=(n_samples, [n_classes]) Logit of the log regression model. """ # get indices of weights index_1 = self.num_features+1 index_2 = index_1 + self.num_features+1 index_3 = index_2 + self.num_features+1 # sample from prior - on MLE, this weight will be set as conditional bias = pyro.sample("bias", self._sites['bias']['prior']) weights = pyro.sample("weights", self._sites['weights']['prior']) # on MCMC or VI, use samples obtained by a "shifted" LogNormal # the "shifted" +1 term guarantees positive samples only if self.method in ['variational', 'mcmc']: weights = torch.log(weights + 1) assert (weights >= 0).all().item() == True, "Negative weights are not allowed." # on MCMC sampling, extreme values might occur and can cause an 'inf' # this will result in invalid prob values - catch infs and set to log of max value weights[torch.isinf(weights)] = torch.log(torch.tensor(torch.finfo(weights.dtype).max)) # the first dimension of the given input data is the "independent" sample dimension with pyro.plate("data", X.shape[0]): # clip values to range (0, inf] alpha_pos = torch.clamp(weights[:index_1], self.epsilon, np.infty) alpha_neg = torch.clamp(weights[index_1:index_2], self.epsilon, np.infty) beta_pos = torch.clamp(weights[index_2:index_3], self.epsilon, np.infty) beta_neg = torch.clamp(weights[index_3:], self.epsilon, np.infty) # lambdas are ratio between all betas and beta_0 lambda_pos = beta_pos[1:] / beta_pos[0] lambda_neg = beta_neg[1:] / beta_neg[0] log_lambdas_upper = alpha_pos[1:] * torch.log(lambda_pos) - alpha_neg[1:] * torch.log(lambda_neg) # parameter differences differences_alpha_upper = alpha_pos[1:] - alpha_neg[1:] log_values_upper = torch.log(X) # calculate upper part upper_part = torch.sum(log_lambdas_upper + (differences_alpha_upper * log_values_upper), dim=1) # start with summation of alphas for lower part of equation sum_alpha_pos = torch.sum(alpha_pos) sum_alpha_neg = torch.sum(alpha_neg) # calculate lower part log_sum_lower_pos = torch.log(1. + torch.sum(lambda_pos * X, dim=1)) log_sum_lower_neg = torch.log(1. + torch.sum(lambda_neg * X, dim=1)) lower_part = (sum_alpha_neg * log_sum_lower_neg) - (sum_alpha_pos * log_sum_lower_pos) # combine both parts and bias to logits logit = torch.squeeze(bias + upper_part + lower_part) # if MLE, (slow) sampling is not necessary. However, this is needed for 'variational' and 'mcmc' if self.method in ['variational', 'mcmc']: probs = torch.sigmoid(logit) pyro.sample("obs", dist.Bernoulli(probs=probs, validate_args=True), obs=y) return logit
from typing import Container from . import LINE_NUMBER_KEY from ._base import Filter class SequenceLengthFilter(Filter): def __init__(self, min_length: int): self.min_length = min_length def test_value(self, inp: dict) -> bool: return inp['length'] >= self.min_length class LineNumberFilter(Filter): def __init__(self, line_numbers: Container[int]): self.line_numbers = line_numbers def test_value(self, inp: dict) -> bool: return inp[LINE_NUMBER_KEY] in self.line_numbers
from argparse import Namespace default_args = Namespace( alpha=0.99, arch='nba', batch_size=256, clip_loss_delta=1.0, clip_norm=3.0, clip_norm_type='global', continuous_target_update=True, debugging_folder='logs/', device='cpu', double_q=True, dropout=0.5, e=0.1, evaluate=False, exp_eps_segments='[(0, 1),(10000, 0.5),(15000,0)], 0', experiment_type='corridor', game='FrozenLake-v0', gamma=0.99, initial_lr=0.001, initial_random_steps=10000, layer_norm=False, lr_annealing_steps=80000000, lstm_size=50, max_global_steps=80000000, mlp_hiddens=[50], n_emulator_runners=8, n_emulators_per_emulator_runner=4, n_steps=5, optimizer='adam', prioritized=True, prioritized_alpha=0.4, prioritized_beta0=0.6, prioritized_eps=0.001, random_start=True, replay_buffer_size=1000000, resume=False, rom_path='./atari_roms', single_life_episodes=False, stochastic=True, target_update_freq=10000, target_update_tau=0.001, use_exp_replay=True, visualize=False, ) custom_args = Namespace(**{**vars(default_args), **vars(Namespace( e = 0, alpha = 0.01, ))}) def main(): import skynet.train skynet.train.main(custom_args) if __name__ == '__main__': main()
"""This file contains various wrappers and functions that ease the code digestion and programming in general. :platform: linux .. moduleauthor:: Ivan Syzonenko <is2k@mtmail.mtsu.edu> """ __license__ = "MIT" __docformat__ = 'reStructuredText' import os import multiprocessing as mp import hashlib from shutil import copy2 as cp2 # import heapq import shutil import pickle from typing import NoReturn from gen_mdp import get_mdp from gmx_wrappers import gmx_grompp, gmx_trjconv, gmx_trjcat, gmx_mdrun, gmx_mdrun_mpi, gmx_mdrun_mpi_with_sched def get_digest(in_str: str) -> str: """Computes digest of the input string. Args: :param str in_str: typically list of seeds concatenated with _. like s_0_1_5 Returns: :return: blake2 hash of the in_str. We use short version, but you can use full version - slightly slower, but less chances of name collision. :rtype: str """ # return hashlib.md5(in_str.encode()).hexdigest() # if you have python older than 3.6 - use md5 or update python return hashlib.blake2s(in_str.encode()).hexdigest() def create_core_mapping(ncores: int = mp.cpu_count(), nseeds: int = 1) -> list: """Tries to map cores evenly among tasks. Args: :param int ncores: number of cores available :param int nseeds: number of seeds used in current run Returns: :return: list of tuples, each tuple consist of (cores number, task identifier) :rtype: list """ ncores = ncores if ncores > 0 else 1 nseeds = nseeds if nseeds > 0 else 1 print('I will use {} cores for {} seeds'.format(ncores, nseeds)) even = ncores // nseeds remainder = ncores % nseeds sched_arr = list() if even: cur_sched = [(even+1, i) if i < remainder else (even, i) for i in range(nseeds)] sched_arr.append(cur_sched) else: seeds_range_iter = iter(range(nseeds)) tot_batches = nseeds//ncores remainder = nseeds-tot_batches*ncores tot_batches = tot_batches if not remainder else tot_batches+1 # if we can`t divide tasks evenly, we need one more batch for i in range(tot_batches): if i < tot_batches-1: cur_sched = [(1, 0)]*ncores else: cur_sched = [(1, 0) if i < remainder else (0, 0) for i in range(ncores)] free_cores = ncores - sum(i for i, j in cur_sched) if free_cores: cur_sched = [(j[0]+1, 0) if i < free_cores else (j[0], 0) for i, j in enumerate(cur_sched)] sched_arr.append(cur_sched) for i, cur_sched in enumerate(sched_arr): for j, cornum_seed in enumerate(cur_sched): if cornum_seed[0]: cur_seed = next(seeds_range_iter) sched_arr[i][j] = (cornum_seed[0], cur_seed) print('Seed {} will be run on {} cores.'.format(cur_seed, cornum_seed[0])) return sched_arr def get_previous_runs_info(check_dir: str) -> list: """Scans direcotory for prior results and outputs the list of filenames. Args: :param str check_dir: directory to scan for prior trajectories Returns: :return: list of filenames .xtc or .gro :rtype: list """ # filenames_found = os.walk(check_dir).__next__()[2] filenames_found = [f.split("/")[-1] for f in os.listdir(check_dir)] # filenames_found = [f.path.split("/")[-1] for f in os.scandir(check_dir)] filenames_found_important = [f for f in filenames_found if f.split('.')[1] in ['xtc', 'gro']] del filenames_found print('Found files: {} with .gro and .xtc'.format(len(filenames_found_important))) return filenames_found_important def check_precomputed_noize(an_file: str): """Checks whether file with precomputed ambient noise exists. Tries to read correct number of metrics, in case of error throws and exception Otherwise returns dict{metric_name: noise_value} Args: :param str an_file: ambient noise filename to check :param list metr_order: order of metric names (should be correct sequence) Returns: :return: dict{metric_name: noise_value} :rtype: dict or None """ if an_file in os.walk(".").__next__()[2]: print(an_file, ' was found. Reading... ') with open(an_file, 'r') as f: noize_arr = f.readlines() try: res_arr = [res.strip().split(' : ') for res in noize_arr] err_node = dict() for metr, val in res_arr: err_node[metr.strip()] = float(val.strip()) except Exception as e: print(e) return None return err_node return None def make_a_step(work_dir: str, cur_seed: int, seed_dirs: dict, top_file: str, ndx_file: str, seed_digest_filename: str, old_name_digest: str, past_dir: str, ncores: int = 1) -> NoReturn: """Version for the case when you use one machine, for example, local computer or one remote server. Generates the actual MD simulation by first - setting the simulation with grommp, then using several mdruns, and finally conctatenating the result into the one file. Args: :param str work_dir: path to the directory where seed dirs reside :param int cur_seed: current seed value used for MD production :param dict seed_dirs: dict which contains physical path to the directory where simulation with particular seed is performed :param str top_file: .top - topology of the current conformation :param str ndx_file: .ndx - index of the protein atoms of the current conformation :param str seed_digest_filename: digest for a current MD simulation, used to store files in the past :param str old_name_digest: digest for a prior MD simulation :param str past_dir: path to the directory with prior computations :param int ncores: number of cores to use for this task """ # global extra_past old_name = os.path.join(past_dir, old_name_digest) if not os.path.exists(old_name+'.gro'): # old_name = os.path.join(extra_past, old_name_digest) # if not os.path.exists(old_name + '.gro'): raise Exception("make_a_step: did not find {} in {} ".format(old_name_digest, past_dir)) gmx_grompp(work_dir, cur_seed, top_file, old_name) new_name = os.path.join(past_dir, seed_digest_filename) gmx_mdrun(work_dir, cur_seed, new_name + '.gro', ncores) gmx_trjconv(f=os.path.join(seed_dirs[cur_seed], 'md.xtc'), o='{}.xtc'.format(new_name), n=ndx_file, s=os.path.join(seed_dirs[cur_seed], 'md.tpr'), pbc='mol', b=1) try: cp2(os.path.join(seed_dirs[cur_seed], 'md.edr'), '{}.edr'.format(new_name)) except: print('Error when tried to copy energy file. Maybe you do not produce them ? Then comment this line.') os.remove(os.path.join(seed_dirs[cur_seed], 'md.xtc')) def make_a_step2(work_dir: str, cur_seed: int, seed_dirs: dict, top_file: str, ndx_file: str, seed_digest_filename: str, old_name_digest: str, past_dir: str, hostname: list, ncores: int) -> NoReturn: """Version for the case when you use cluster and have hostnames. Generates the actual MD simulation by first - setting the simulation with grommp, then using several mdruns, and finally conctatenating the result into the one file. Args: :param str work_dir: path to the directory where seed dirs reside :param int cur_seed: current seed value used for MD production :param dict seed_dirs: dict which contains physical path to the directory where simulation with particular seed is performed :param str top_file: .top - topology of the current conformation :param str ndx_file: .ndx - index of the protein atoms of the current conformation :param str seed_digest_filename: digest for a current MD simulation, used to store files in the past :param str old_name_digest: digest for a prior MD simulation :param str past_dir: path to the directory with prior computations :param list hostname: hostname(s) to use for MD simulation :param int ncores: number of cores to use for this task """ # global extra_past old_name = os.path.join(past_dir, old_name_digest) if not os.path.exists(old_name + '.gro'): # old_name = os.path.join(extra_past, old_name_digest) # if not os.path.exists(old_name + '.gro'): raise Exception("make_a_step2: did not find {} in {}".format(old_name_digest, past_dir)) gmx_grompp(work_dir, cur_seed, top_file, old_name) new_name = os.path.join(past_dir, seed_digest_filename) gmx_mdrun_mpi(work_dir, cur_seed, new_name + '.gro', hostname, ncores) gmx_trjconv(f=os.path.join(seed_dirs[cur_seed], 'md.xtc'), o='{}.xtc'.format(new_name), n=ndx_file, s=os.path.join(seed_dirs[cur_seed], 'md.tpr'), pbc='mol', b=1) try: cp2(os.path.join(seed_dirs[cur_seed], 'md.edr'), '{}.edr'.format(new_name)) except: print('Error when tried to copy energy file. Maybe you do not produce them ? Then comment this line.') os.remove(os.path.join(seed_dirs[cur_seed], 'md.xtc')) def make_a_step3(work_dir: str, cur_seed: int, seed_dirs: dict, top_file: str, ndx_file: str, seed_digest_filename: str, old_name_digest: str, past_dir: str, ncores: int, ntomp: int = 1) -> NoReturn: """Version for the case when you use scheduler and have many cores, but no hostnames. Generates the actual MD simulation by first - setting the simulation with grommp, then using several mdruns, and finally conctatenating the result into the one file. Args: :param str work_dir: path to the directory where seed dirs reside :param int cur_seed: current seed value used for MD production :param dict seed_dirs: dict which contains physical path to the directory where simulation with particular seed is performed :param str top_file: .top - topology of the current conformation :param str ndx_file: .ndx - index of the protein atoms of the current conformation :param str seed_digest_filename: digest for a current MD simulation, used to store files in the past :param str old_name_digest: digest for a prior MD simulation :param str past_dir: path to the directory with prior computations :param int ncores: number of cores to use for this task :param int ntomp: number of OMP threads to use during the simulation """ # global extra_past old_name = os.path.join(past_dir, old_name_digest) if not os.path.exists(old_name + '.gro'): # old_name = os.path.join(extra_past, old_name_digest) # if not os.path.exists(old_name + '.gro'): raise Exception("make_a_step3: did not find {} in {}".format(old_name_digest, past_dir)) gmx_grompp(work_dir, cur_seed, top_file, old_name) new_name = os.path.join(past_dir, seed_digest_filename) # gmx_mdrun_mpi(work_dir, cur_seed, new_name + '.gro', hostname, ncores) gmx_mdrun_mpi_with_sched(work_dir, cur_seed, new_name + '.gro', ncores, ntomp) gmx_trjconv(f=os.path.join(seed_dirs[cur_seed], 'md.xtc'), o='{}.xtc'.format(new_name), n=ndx_file, s=os.path.join(seed_dirs[cur_seed], 'md.tpr'), pbc='mol', b=1) try: cp2(os.path.join(seed_dirs[cur_seed], 'md.edr'), '{}.edr'.format(new_name)) except: print('Error when tried to copy energy file. Maybe you do not produce them ? Then comment this line.') os.remove(os.path.join(seed_dirs[cur_seed], 'md.xtc')) def get_seed_dirs(work_dir: str, list_with_cur_seeds: list, simulation_temp: int, sd: dict = None) -> dict: """Create directories with unique names for simulation with specified seeds and puts .mdp, config files for the MD simulation. Args: :param str work_dir: path to work directory, where all seed directories reside :param list list_with_cur_seeds: list of seed currently used :param int simulation_temp: simulation temperature used to generate proper .mdp file :param dict sd: Not used anymore, but left for sime time as deprecated. sd - previous seed deers Returns: :return: dictionary with seed dir paths :rtype dict """ if not sd: sd = dict() for seed in list_with_cur_seeds: seed_dir = os.path.join(work_dir, str(seed)) sd[seed] = seed_dir if not os.path.exists(seed_dir): os.makedirs(seed_dir) with open(os.path.join(sd[seed], 'md.mdp'), 'w') as f: f.write(get_mdp(seed, simulation_temp)) return sd def rm_seed_dirs(seed_dirs: dict) -> NoReturn: """Removes seed directory and all it's content Args: :param dict seed_dirs: dict which contains physical path to the directory where simulation with particular seed is performed Removes old working directories to save disc space. """ for seed_dir in seed_dirs.values(): if os.path.exists(seed_dir): shutil.rmtree(seed_dir, ignore_errors=True) def get_new_seeds(old_seeds: list, seed_num: int = 4) -> list: """Returns next seed sequence. Args: :param list old_seeds: list of previous seeds :param int seed_num: number of unique seeds in the current run Returns: :return: list of new seeds :rtype list """ max_seeds = 64000 # change this if you want more exploration if min(old_seeds) + seed_num > max_seeds: return None return [seed + seed_num for seed in old_seeds] def trjcat_many(hashed_names: list, past_dir: str, out_name: str) -> NoReturn: """Concatenates many trajectories into one file. Args: :param list hashed_names: .xtc filenames to concatenate :param str past_dir: path to the directory with prior computations :param str out_name: single output filename Returns: Generates one file with many frames. """ wave = 100 tot_chunks = int((len(hashed_names) + 1) / wave) print('wave={}, tot_chunks={}'.format(wave, tot_chunks)) gmx_trjcat(f=[os.path.join(past_dir, hashed_name) + '.xtc' for hashed_name in hashed_names[:wave]], o='./combinded_traj.xtc', n='./prot_dir/prot.ndx', cat=True, vel=False, sort=False, overwrite=True) for i in range(wave, len(hashed_names), wave): os.rename('./combinded_traj.xtc', './combinded_traj_prev.xtc') gmx_trjcat(f=[" ./combinded_traj_prev.xtc "] + [os.path.join(past_dir, hashed_name) + '.xtc' for hashed_name in hashed_names[i:i+wave]], o='./combinded_traj.xtc', n='./prot_dir/prot.ndx', cat=True, vel=False, sort=False, overwrite=True) if int(i / wave) % 10 == 0: print('{}/{} ({:.1f}%)'.format(int(i / wave), tot_chunks, 100 * int(i / wave) / tot_chunks)) if os.path.exists('./combinded_traj_prev.xtc'): os.remove('./combinded_traj_prev.xtc') os.rename('./combinded_traj.xtc', out_name) def general_bak(fname: str, state: tuple) -> NoReturn: """Stores variables in the picke with the specific name Args: :param str fname: filename for the pickle :param tuple state: variables to store Returns: Generates a file with pickled data. """ if os.path.exists(os.path.join(os.getcwd(), fname)): try: os.rename(os.path.join(os.getcwd(), fname), os.path.join(os.getcwd(), fname + '_prev')) except Exception as e: # print(e) os.remove(os.path.join(os.getcwd(), fname)) os.rename(os.path.join(os.getcwd(), fname), os.path.join(os.getcwd(), fname + '_prev')) with open(fname, 'wb') as f: pickle.dump(state, f) def general_rec(fname: str) -> tuple: """Reads pickle content from the file. Args: :param str fname: pickle filename Returns: :return: state from the pickle :rtype: tuple """ with open(fname, 'rb') as f: state = pickle.load(f) return state def main_state_backup(state: tuple) -> NoReturn: """Just a wrapper around the general_bak Args: :param tuple state: (visited_queue, open_queue, main_dict) """ general_bak('small.pickle', state) def supp_state_backup(state: tuple) -> NoReturn: """Just a wrapper around the general_bak Args: :param tuple state: (tol_error, seed_list, seed_dirs, seed_change_counter, skipped_counter, cur_metric_name, cur_metric, counter_since_seed_changed, guiding_metric, greed_mult, best_so_far_name, best_so_far, greed_count) """ general_bak('big.pickle', state) def main_state_recover() -> tuple: """Just a wrapper around the general_rec Returns: :return: state from the pickle """ return general_rec('small.pickle') def supp_state_recover() -> tuple: """Just a wrapper around the general_rec Returns: :return: state from the pickle """ return general_rec('big.pickle')
""" python3 predict.py <test_file> <output_file> python3 predict.py "../resource/asnlib/publicdata/test_review.json" "prediction.json" spark-submit predict.py <test_file> <output_file> """ import sys import time import json from pyspark import SparkConf, SparkContext, StorageLevel import support import platform system_type = platform.system() if system_type == 'Linux': print(system_type) # for run on vocareum import os os.environ['PYSPARK_PYTHON'] = '/usr/local/bin/python3.6' os.environ['PYSPARK_DRIVER_PYTHON'] = '/usr/local/bin/python3.6' train_file = "../resource/asnlib/publicdata/train_review.json" test_file = sys.argv[1] model_file = "model.json" output_file = sys.argv[2] elif system_type == 'Darwin': print(system_type) # run for local macos test_file = "file:///Users/markduan/duan/USC_course/USC_APDS/INF553/project/data/test_review.json" output_file = "../predict/prediction_als.json" train_file = "file:///Users/markduan/duan/USC_course/USC_APDS/INF553/project/data/train_review.json" als_model_file = "/Users/markduan/duan/USC_course/USC_APDS/INF553/project/model/als.json" agm_train_file = "/Users/markduan/duan/USC_course/USC_APDS/INF553/project/model/agm_train.json" business_avg_file = "/Users/markduan/duan/USC_course/USC_APDS/INF553/project/data/business_avg.json" else: print('wrong system type.') sys.exit() # # for tuning # N_NEIGHBORS_ITEMBASED = int(sys.argv[1]) # DEFAULT_OUTPUT = None # WEIGHT = float(sys.argv[2]) def predictICF(corated, target_bid, model): """ corated - {bid: star, ...} """ if corated == None: return None corated.pop(target_bid, None) bid_cor = list(corated.keys()) collect = [] for b in bid_cor: pair = None if b < target_bid: pair = (b, target_bid) else: pair = (target_bid, b) # if b == target_bid: # print('same:', pair) w = model.get(pair) if w != None: # pair may not have a value in the model # when b == target_bid, pair have no value, too collect.append((pair, w, b)) # else: # collect.append((pair, 0, b)) # print(collect) collect.sort(key=lambda x: x[1], reverse=True) if len(collect) < N_NEIGHBORS_ITEMBASED: return None neighbors = collect[:N_NEIGHBORS_ITEMBASED] sum_w = 0 n = 0 for p, w, b in neighbors: star = corated[b] n += star * w sum_w += w if sum_w == 0: return None else: return n /sum_w # predict_stars = n / sum_w # origin_n = Decimal(str(predict_stars)) # ans_n = origin_n.quantize(Decimal('0'), rounding=ROUND_HALF_UP) # return float(ans_n) def loadAlsModel(model_file): with open(model_file, 'r', encoding='utf-8') as fp: model = json.load(fp) user_feature = model[0] product_feature = model[1] als_model = support.Als() als_model.setModel(user_feature, product_feature) return als_model def outputResultToFile(prediction, output_file): with open(output_file, 'w', encoding='utf-8') as fp: for item in prediction: t = { 'user_id': item[0][0], 'business_id': item[0][1], 'stars': item[1] } fp.write(json.dumps(t)) fp.write('\n') def dealwithNone(v, bid, business_avg): if v != None: return v b_avg = business_avg.get(bid, business_avg['UNK']) return b_avg def normalX(x): if x == None: return x if x > 5.0: x = 5.0 elif x < 0.0: x = 0.0 else: x = x return x def predictAlsOrTrain(uid, bid, als_model, train_data): res1 = train_data.get((uid, bid)) res2 = als_model.predict(uid, bid) res = None if res1 != None and res2 != None: res = res1 * 0.3 + res2 * 0.7 elif res1 == None and res2 != None: res = res2 elif res1 != None and res2 == None: res = res1 else: res = None res = normalX(res2) return res def predict(): conf = SparkConf() \ .setAppName("project") \ .setMaster("local[*]") \ .set("spark.driver.memory","4g") sc = SparkContext(conf=conf) sc.setLogLevel("ERROR") business_avg = support.getAvg(business_avg_file) agm_train_l = support.readRenameTable(agm_train_file) train_data = sc.parallelize(agm_train_l).map(lambda x: (tuple(x[0]), [x[1]])) \ .reduceByKey(lambda x, y: x + y) \ .mapValues(lambda vs: support.meanList(vs)) \ .collectAsMap() # without none als_model = loadAlsModel(als_model_file) prediction = sc.textFile(test_file) \ .map(json.loads) \ .map(lambda x: (x['user_id'], x['business_id'])) \ .map(lambda x: (x, predictAlsOrTrain(x[0], x[1], als_model, train_data))) \ .map(lambda x: (x[0], dealwithNone(x[1], x[0][1], business_avg))) \ .collect() outputResultToFile(prediction, output_file) if __name__ == "__main__": t_start = time.time() predict() t_end = time.time() print('time: %fs' % (t_end-t_start))
#!/usr/bin/env python3 # coding:utf-8 # 倒推 peaches = 4 # 第 5 只猴子分完桃,起码剩 4 个桃子 while peaches < 5000: # 答案不唯一,暂且在 5000 以内搜索 tmp = peaches for i in range(5): # 5 只猴子 tmp = tmp / 4 * 5 + 1 # 从第 5 只猴子倒推至第 1 只 if tmp % 1 == 0: print("Sum = %d" % tmp) break else: peaches += 4 # 5 只猴子分完桃,剩余桃子必是 4 的倍数
import bakefont3 as bf3 import bakefont3.encode import unicodedata from PIL import Image import numpy as np class Saveable: def __init__(self, data): self.data = data def bytes(self): return self.data def save(self, filename): with open(filename, 'wb') as fp: fp.write(self.data) class _default_cb: def __init__(self): pass def stage(self, msg): pass def step(self, current, total): pass def info(self, msg): pass class pack: def getFontID(self, name): for index, font in enumerate(self.fonts): if name == font[0]: return index raise ValueError def getModeID(self, fontmode): name, size, antialias = fontmode if isinstance(name, str): name = self.getFontID(name) for index, mode in enumerate(self.modes): if (name, size, antialias) == mode: return index raise ValueError def __init__(self, fonts, tasks, sizes, cb=_default_cb()): self.data = None self.image = None self.size = (0, 0, 0) """ :param fonts: a mapping font name => font face :param tasks: a list of (mode, charset name, charset) tuples, where mode is a tuple (font name, size, antialias?) :param sizes: a (possibly infinite) sequence of sizes to try :param cb: a callback object with methods `stage(self, msg)` and `step(self, current, total)`, `info(self, msg)`. """ # capture args just once if they're generated fonts = dict(fonts) tasks = list(tasks) # --------------------------------------------------------------------- cb.stage("Processing Parameters") # --------------------------------------------------------------------- seen = set() for name in fonts: assert isinstance(name, str) # implements freetype-py interface assert hasattr(fonts[name], "family_name") assert fonts[name].is_scalable if fonts[name] in seen: print("warning: two different font names share the same font face object") else: seen.add(fonts[name]) del seen for fontmode, setname, charset in tasks: # don't clobber charset in case its a generator assert isinstance(fontmode, tuple) assert isinstance(setname, str) name, size, antialias = fontmode assert isinstance(name, str) assert 1 < size < 255 assert name in fonts, "font mode references a missing font name" # convert parameters for use in lookup tables # construct a mapping font ID => (font name, font face) fontlist = [] for name in fonts: fontlist.append((name, fonts[name])) self.fonts = fontlist # construct a mapping fontmode ID => (font ID, size, antialias?) modelist = [] for mode, _, _ in tasks: name, size, antialias = mode fontID = self.getFontID(name) mode = (fontID, size, antialias) if mode not in modelist: modelist.append(mode) modelist = sorted(modelist) # by ascending fontID, size self.modes = modelist # construct a concrete list of tasks # (modeID, name, set(characters)) _tasks = [] seen = set() for mode, name, charset in tasks: modeID = self.getModeID(mode) pair = (modeID, name) task = (modeID, name, set(charset)) _tasks.append(task) if pair in seen: raise KeyError("task contains a duplicate (mode, charname) pair (%d, %s)" % (modeID, name)) else: seen.add((modeID, name)) tasks = _tasks # construct a mapping fontmode ID => superset of characters # used by *all* tasks sharing that fontmode modeChars = {} # and a table (fontmode ID, charsetname, charset) modeTable = [] for modeID, name, charset in tasks: assert (modeID, name, charset) not in modeTable modeTable.append((modeID, name, charset)) if not modeChars.get(modeID): modeChars[modeID] = set() modeChars[modeID] = modeChars[modeID].union(charset) self.modeTable = modeTable # for each modeChars charset, create a mapping codepoint => rendered glyph # --------------------------------------------------------------------- cb.stage("Rendering Glyphs") # --------------------------------------------------------------------- count = 0 numglyphs = 0 for modeID, charset in modeChars.items(): numglyphs += len(charset) modeGlyphs = dict() for modeID, charset in modeChars.items(): glyphset = dict() fontID, size, antialias = self.modes[modeID] fontname, face = self.fonts[fontID] size_fp = int(size * 64.0) # convert to fixed point 26.6 format dpi = 72 # typographic DPI where 1pt = 1px face.set_char_size(size_fp, 0, dpi, 0) for char in charset: cb.step(count, numglyphs); count += 1 if isinstance(char, str) and len(char) == 1: codepoint = ord(char) elif isinstance(char, int) and 0 <= char <= 2**32: codepoint = char else: raise TypeError("Invalid codepoint in charset") if face.get_char_index(codepoint): render = bf3.Render(face, codepoint, antialias) glyphset[codepoint] = bf3.Glyph(codepoint, render) else: print("notice: font %s doesn't include codepoint %#x / %s (%s)" % (repr(fontname), codepoint, repr(chr(codepoint)), unicodedata.name(chr(codepoint), "unknown name"))) modeGlyphs[modeID] = glyphset self.modeGlyphs = modeGlyphs # make a list of all glyph objects, for fitting allGlyphs = [] for _, glyphset in modeGlyphs.items(): for _, glyph in glyphset.items(): allGlyphs.append(glyph) self.allGlyphs = allGlyphs # --------------------------------------------------------------------- cb.stage("Fitting Glyphs") # --------------------------------------------------------------------- # sort by height for packing - good heuristic allGlyphs.sort(key=lambda glyph: glyph.render.height, reverse=True) # estimate area for best-case smallest area with 100% packing efficiency minVolume = 0 for glyph in allGlyphs: minVolume += glyph.render.width * glyph.render.height; # attempt a fit for each size count = 0 for size in sizes: cb.step(0, len(allGlyphs)) width, height, depth = size volume = width * height * depth if minVolume > volume: cb.info("Early discard for size %s" % repr(size)) continue # skip this size if _fit(size, allGlyphs, cb): self.size = size break else: cb.info("No fit for size %s" % repr(size)) continue # --------------------------------------------------------------------- cb.stage("Composing Texture Atlas") # --------------------------------------------------------------------- if self.size[0]: self.image = _image(self.size, allGlyphs) # --------------------------------------------------------------------- cb.stage("Generating binary") # --------------------------------------------------------------------- if self.size[0]: self.data = Saveable(b''.join(bakefont3.encode.all(self, cb))) # --------------------------------------------------------------------- cb.stage("Done") # --------------------------------------------------------------------- def _fit(size, glyphs, cb): if not glyphs: return True width, height, depth = size cube = bf3.Cube(0, 0, 0, width, height, depth) spaces = bf3.TernaryTree(cube) count = 0 num = len(glyphs) for glyph in glyphs: cb.step(count, num); count+=1 if glyph.render.width and glyph.render.height: fit = spaces.fit(glyph.render) if not fit: return False glyph.x0 = fit.x0 glyph.y0 = fit.y0 glyph.z0 = fit.z0 glyph.x1 = fit.x0 + glyph.render.width glyph.y1 = fit.y0 + glyph.render.height glyph.z1 = fit.z0 + glyph.render.depth # because we don't want people to think their image is broken, # make sure the alpha channel has the most information # by swapping red and alpha if depth == 4 and glyph.z0 == 0: glyph.z0 = 3 glyph.z1 = 4 elif depth == 4 and glyph.z0 == 3: glyph.z0 = 0 glyph.z1 = 1 return True def _image(size, glyphs): width, height, depth = size # create a greyscale image for each channel i.e. z-layer if depth == 4: mode = 'RGBA' channels = [ Image.new("L", (width, height), 0), Image.new("L", (width, height), 0), Image.new("L", (width, height), 0), Image.new("L", (width, height), 0), ] elif depth == 3: mode = 'RGB' channels = [ Image.new("L", (width, height), 0), Image.new("L", (width, height), 0), Image.new("L", (width, height), 0), ] elif depth == 1: # greyscale channels = [ Image.new("L", (width, height), 0), ] else: raise ValueError("Invalid depth for image (expected 1, 3, 4) got %d" % depth) for g in glyphs: if not g.render.image: continue channels[g.z0].paste(g.render.image, (g.x0, g.y0, g.x1, g.y1)) if depth == 1: return channels[0] # merge into a RGB or RGBA image # convert each channel to a numpy array img8 = [None] * depth for i in range(0, depth): data = channels[i].getdata() img = np.fromiter(data, np.uint8) img = np.reshape(img, (channels[i].height, channels[i].width)) img8[i] = img # merge each channel into a RGBA image if depth == 4: image = np.stack((img8[0], img8[1], img8[2], img8[3]), axis=-1) elif depth == 3: image = np.stack((img8[0], img8[1], img8[2]), axis=-1) return Image.fromarray(image, mode=mode)
from nnunet.training.loss_functions.dice_loss import CrossentropyND from nnunet.training.network_training.nnUNetTrainer import nnUNetTrainer class nnUNetTrainerCE(nnUNetTrainer): def __init__(self, plans_file, fold, output_folder=None, dataset_directory=None, batch_dice=True, stage=None, unpack_data=True, deterministic=True, fp16=False): super(nnUNetTrainerCE, self).__init__(plans_file, fold, output_folder, dataset_directory, batch_dice, stage, unpack_data, deterministic, fp16) self.loss = CrossentropyND()
from .agents import (DefaultGymAgent, RandomAgent, BalancedRandomAgent, MinimaxAgent, BaseMonteCarloAgent, HumanInputAgent, DQNAgent2L_56x5, DQNAgent4L_56x5, DQNAgent2L_56x5_2_sep, DQNAgent2L_17x5_2, DQNAgent2L_17x5_2_sep, DoubleAgent)
# Taken from http://www2.census.gov/geo/docs/maps-data/maps/reg_div.txt census_regions = { "CT": "NORTHEAST", "ME": "NORTHEAST", "MA": "NORTHEAST", "NH": "NORTHEAST", "RI": "NORTHEAST", "VT": "NORTHEAST", "NJ": "NORTHEAST", "NY": "NORTHEAST", "PA": "NORTHEAST", "IL": "MIDWEST", "IN": "MIDWEST", "MI": "MIDWEST", "OH": "MIDWEST", "WI": "MIDWEST", "IA": "MIDWEST", "KS": "MIDWEST", "MN": "MIDWEST", "MO": "MIDWEST", "NE": "MIDWEST", "ND": "MIDWEST", "SD": "MIDWEST", "DE": "SOUTH", "DC": "SOUTH", "FL": "SOUTH", "GA": "SOUTH", "MD": "SOUTH", "NC": "SOUTH", "SC": "SOUTH", "VA": "SOUTH", "WV": "SOUTH", "AL": "SOUTH", "KY": "SOUTH", "MS": "SOUTH", "TN": "SOUTH", "AR": "SOUTH", "LA": "SOUTH", "OK": "SOUTH", "TX": "SOUTH", "AZ": "WEST", "CO": "WEST", "ID": "WEST", "MT": "WEST", "NV": "WEST", "NM": "WEST", "UT": "WEST", "WY": "WEST", "AK": "WEST", "CA": "WEST", "HI": "WEST", "OR": "WEST", "WA": "WEST", }
import numpy as np import scipy.special as sp from scipy.stats import norm import matplotlib.pyplot as pl # Gaussian Process Regression with Censored Data Using # Expectation Propagation # Perry Groot, Peter Lucas l = 1.0 s = 0.2 n = 2000 f = np.linspace(0.0, 2.0, n+1) sqrt2 = np.sqrt(2.0) sqrtpi = np.sqrt(np.pi) cdf_integral_all = 0.5 * sp.erf(1.0/(sqrt2 * s)) + 0.5 + s / (sqrt2 * sqrtpi) * np.exp(-1.0/(2*s**2)) cdf_integral = l * sp.erf(l/(sqrt2 * s)) + s / (sqrt2 * sqrtpi) * (np.exp(-l**2/(2*s**2)) - 1.0) print(cdf_integral, cdf_integral_all, cdf_integral / cdf_integral_all) fig, ax = pl.subplots() cdf = norm.cdf((l - f) / s) ax.plot(f, cdf) print(np.trapz(cdf, f)) print(np.trapz(cdf[0:n//2], f[0:n//2]) / np.trapz(cdf, f))
"""Contains functions for doing the inverse and forward normal mode transforms. Copyright (C) 2013, Joshua More and Michele Ceriotti This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http.//www.gnu.org/licenses/>. Classes: nm_trans: Uses matrix multiplication to do normal mode transformations. nm_rescale: Uses matrix multiplication to do ring polymer contraction or expansion. nm_fft: Uses fast-Fourier transforms to do normal modes transformations. Functions: mk_nm_matrix: Makes a matrix to transform between the normal mode and bead representations. mk_rs_matrix: Makes a matrix to transform between one number of beads and another. Higher normal modes in the case of an expansion are set to zero. """ __all__ = ['nm_trans', 'nm_rescale', 'nm_fft'] import numpy as np from ipi.utils.messages import verbosity, info def mk_nm_matrix(nbeads): """Gets the matrix that transforms from the bead representation to the normal mode representation. If we return from this function a matrix C, then we transform between the bead and normal mode representation using q_nm = C . q_b, q_b = C.T . q_nm Args: nbeads: The number of beads. """ b2nm = np.zeros((nbeads,nbeads)) b2nm[0,:] = np.sqrt(1.0) for j in range(nbeads): for i in range(1, nbeads/2+1): b2nm[i,j] = np.sqrt(2.0)*np.cos(2*np.pi*j*i/float(nbeads)) for i in range(nbeads/2+1, nbeads): b2nm[i,j] = np.sqrt(2.0)*np.sin(2*np.pi*j*i/float(nbeads)) if (nbeads%2) == 0: b2nm[nbeads/2,0:nbeads:2] = 1.0 b2nm[nbeads/2,1:nbeads:2] = -1.0 return b2nm/np.sqrt(nbeads) def mk_rs_matrix(nb1, nb2): """Gets the matrix that transforms a path with nb1 beads into one with nb2 beads. If we return from this function a matrix T, then we transform between the system with nb1 bead and the system of nb2 beads using q_2 = T . q_1 Args: nb1: The initial number of beads. nb2: The final number of beads. """ if (nb1 == nb2): return np.identity(nb1,float) elif (nb1 > nb2): b1_nm = mk_nm_matrix(nb1) nm_b2 = mk_nm_matrix(nb2).T #builds the "reduction" matrix that picks the normal modes we want to keep b1_b2 = np.zeros((nb2, nb1), float) b1_b2[0,0] = 1.0 for i in range(1, nb2/2+1): b1_b2[i,i] = 1.0 b1_b2[nb2-i, nb1-i] = 1.0 if (nb2 % 2 == 0): #if we are contracting down to an even number of beads, then we have to #pick just one of the last degenerate modes to match onto the single #stiffest mode in the new path b1_b2[nb2/2, nb1-nb2/2] = 0.0 rs_b1_b2 = np.dot(nm_b2, np.dot(b1_b2, b1_nm)) return rs_b1_b2*np.sqrt(float(nb2)/float(nb1)) else: return mk_rs_matrix(nb2, nb1).T*(float(nb2)/float(nb1)) class nm_trans: """Helper class to perform beads <--> normal modes transformation. Attributes: _b2nm: The matrix to transform between the bead and normal mode representations. _nm2b: The matrix to transform between the normal mode and bead representations. """ def __init__(self, nbeads): """Initializes nm_trans. Args: nbeads: The number of beads. """ self._b2nm = mk_nm_matrix(nbeads) self._nm2b = self._b2nm.T def b2nm(self, q): """Transforms a matrix to the normal mode representation. Args: q: A matrix with nbeads rows, in the bead representation. """ return np.dot(self._b2nm,q) def nm2b(self, q): """Transforms a matrix to the bead representation. Args: q: A matrix with nbeads rows, in the normal mode representation. """ return np.dot(self._nm2b,q) class nm_rescale: """Helper class to rescale a ring polymer between different number of beads. Attributes: _b1tob2: The matrix to transform between a ring polymer with 'nbeads1' beads and another with 'nbeads2' beads. _b2tob1: The matrix to transform between a ring polymer with 'nbeads2' beads and another with 'nbeads1' beads. """ def __init__(self, nbeads1, nbeads2): """Initializes nm_rescale. Args: nbeads1: The initial number of beads. nbeads2: The rescaled number of beads. """ self._b1tob2 = mk_rs_matrix(nbeads1,nbeads2) self._b2tob1 = self._b1tob2.T*(float(nbeads1)/float(nbeads2)) def b1tob2(self, q): """Transforms a matrix from one value of beads to another. Args: q: A matrix with nbeads1 rows, in the bead representation. """ return np.dot(self._b1tob2,q) def b2tob1(self, q): """Transforms a matrix from one value of beads to another. Args: q: A matrix with nbeads2 rows, in the bead representation. """ return np.dot(self._b2tob1,q) class nm_fft: """Helper class to perform beads <--> normal modes transformation using Fast Fourier transforms. Attributes: fft: The fast-Fourier transform function to transform between the bead and normal mode representations. ifft: The inverse fast-Fourier transform function to transform between the normal mode and bead representations. qdummy: A matrix to hold a copy of the bead positions to transform them to the normal mode representation. qnmdummy: A matrix to hold a copy of the normal modes to transform them to the bead representation. nbeads: The number of beads. natoms: The number of atoms. """ def __init__(self, nbeads, natoms): """Initializes nm_trans. Args: nbeads: The number of beads. natoms: The number of atoms. """ self.nbeads = nbeads self.natoms = natoms try: import pyfftw info("Import of PyFFTW successful", verbosity.medium) self.qdummy = pyfftw.n_byte_align_empty((nbeads, 3*natoms), 16, 'float32') self.qnmdummy = pyfftw.n_byte_align_empty((nbeads//2+1, 3*natoms), 16, 'complex64') self.fft = pyfftw.FFTW(self.qdummy, self.qnmdummy, axes=(0,), direction='FFTW_FORWARD') self.ifft = pyfftw.FFTW(self.qnmdummy, self.qdummy, axes=(0,), direction='FFTW_BACKWARD') except ImportError: #Uses standard numpy fft library if nothing better #is available info("Import of PyFFTW unsuccessful, using NumPy library instead", verbosity.medium) self.qdummy = np.zeros((nbeads,3*natoms), dtype='float32') self.qnmdummy = np.zeros((nbeads//2+1,3*natoms), dtype='complex64') def dummy_fft(self): self.qnmdummy = np.fft.rfft(self.qdummy, axis=0) def dummy_ifft(self): self.qdummy = np.fft.irfft(self.qnmdummy, n=self.nbeads, axis=0) self.fft = lambda: dummy_fft(self) self.ifft = lambda: dummy_ifft(self) def b2nm(self, q): """Transforms a matrix to the normal mode representation. Args: q: A matrix with nbeads rows and 3*natoms columns, in the bead representation. """ if self.nbeads == 1: return q self.qdummy[:] = q self.fft() if self.nbeads == 2: return self.qnmdummy.real/np.sqrt(self.nbeads) nmodes = self.nbeads/2 self.qnmdummy /= np.sqrt(self.nbeads) qnm = np.zeros(q.shape) qnm[0,:] = self.qnmdummy[0,:].real if self.nbeads % 2 == 0: self.qnmdummy[1:-1,:] *= np.sqrt(2) (qnm[1:nmodes,:], qnm[self.nbeads:nmodes:-1,:]) = (self.qnmdummy[1:-1,:].real, self.qnmdummy[1:-1,:].imag) qnm[nmodes,:] = self.qnmdummy[nmodes,:].real else: self.qnmdummy[1:,:] *= np.sqrt(2) (qnm[1:nmodes+1,:], qnm[self.nbeads:nmodes:-1,:]) = (self.qnmdummy[1:,:].real, self.qnmdummy[1:,:].imag) return qnm def nm2b(self, qnm): """Transforms a matrix to the bead representation. Args: qnm: A matrix with nbeads rows and 3*natoms columns, in the normal mode representation. """ if self.nbeads == 1: return qnm if self.nbeads == 2: self.qnmdummy[:] = qnm self.ifft() return self.qdummy*np.sqrt(self.nbeads) nmodes = self.nbeads/2 odd = self.nbeads - 2*nmodes # 0 if even, 1 if odd qnm_complex = np.zeros((nmodes+1, len(qnm[0,:])), complex) qnm_complex[0,:] = qnm[0,:] if not odd: (qnm_complex[1:-1,:].real, qnm_complex[1:-1,:].imag) = (qnm[1:nmodes,:], qnm[self.nbeads:nmodes:-1,:]) qnm_complex[1:-1,:] /= np.sqrt(2) qnm_complex[nmodes,:] = qnm[nmodes,:] else: (qnm_complex[1:,:].real, qnm_complex[1:,:].imag) = (qnm[1:nmodes+1,:], qnm[self.nbeads:nmodes:-1,:]) qnm_complex[1:,:] /= np.sqrt(2) self.qnmdummy[:] = qnm_complex self.ifft() return self.qdummy*np.sqrt(self.nbeads)
### Import required modules ### import numpy from mpl_toolkits.basemap import Basemap import matplotlib.pyplot as plt #import cdms2 ### Define globals ### res='c' area_threshold = 1.0 # Zoom out for PSA h = 12000 #height of satellite, lon_central = 235 lat_central = -60 ### Plot the map ### #map = Basemap(projection='spaeqd',boundinglat=-40,lon_0=180,resolution='l') # Polar Azimuthal Equidistant Projection #map = Basemap(projection='splaea',boundinglat=-10,lon_0=90,resolution='l') # Polar Lambert Azimuthal Projection map = Basemap(projection='nsper',lon_0=lon_central,lat_0=lat_central,satellite_height=h*1000.,resolution=res,area_thresh=area_threshold) #plot coastlines, draw label meridians and parallels. map.drawcoastlines() map.drawparallels(numpy.arange(-90,90,30),labels=[1,0,0,0],color='grey',dashes=[1,3]) map.drawmeridians(numpy.arange(0,360,30),labels=[0,0,0,1],color='grey',dashes=[1,3]) ## Simple plot (no data) ## # fill continents 'coral' (with zorder=0), color wet areas 'aqua' map.drawmapboundary(fill_color='#99ffff') map.fillcontinents(color='#cc9966',lake_color='#99ffff') ### More complex plot ## # #fin = cdms2.open(,'r') #tVar = fin(variable_list[row,col],time=(timmean[0],timmean[1]),squeeze=1) #tVar_lon = tVar.getLongitude()[:] #tVar_lat = tVar.getLatitude()[:] # #tVar = tVar - 273.16 # ## make 2-d grid of lons, lats #lons, lats = np.meshgrid(longitudes,latitudes) # ##set desired contour levels #clevs = np.arange(960,1061,5) # ## compute native x,y coordinates of grid. #x, y = m(lons, lats) # #CS2 = m.contourf(x,y,slp,clevs,cmap=plt.cm.RdBu_r,animated=True) # #plt.show() plt.savefig('/work/dbirving/processed/spatial_maps/Antarctica_zoomed_out.eps')
from app.routes.inventory import inventory # Silence flake8 by referencing otherwise unused imports __all__ = ['inventory']
from . import pkcs7, spc, oids, ctl def guarded_ber_decode(data, asn1_spec=None): from pyasn1.codec.ber import decoder as ber_decoder from signify.exceptions import ParseError from signify import _print_type try: result, rest = ber_decoder.decode(data, asn1Spec=asn1_spec) except Exception as e: raise ParseError("Error while parsing %s BER: %s" % (_print_type(asn1_spec), e)) if rest: raise ParseError("Extra information after parsing %s BER" % _print_type(asn1_spec)) return result def guarded_der_decode(data, asn1_spec=None): from pyasn1.codec.der import decoder as der_decoder from signify.exceptions import ParseError from signify import _print_type try: result, rest = der_decoder.decode(data, asn1Spec=asn1_spec) except Exception as e: raise ParseError("Error while parsing %s DER: %s" % (_print_type(asn1_spec), e)) if rest: raise ParseError("Extra information after parsing %s DER" % _print_type(asn1_spec)) return result