content
stringlengths
5
1.05M
# coding: utf-8 # # Copyright 2014 The Oppia Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS-IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Base class for rich-text components.""" __author__ = 'Sean Lip' import os from extensions import domain import feconf import utils class BaseRichTextComponent(object): """Base class for definitions of rich-text components. This class is not meant to be user-editable. The only methods on it should be get()-type methods. """ # The human-readable name of the rich-text component. Overridden in # subclasses. name = '' # The category the rich-text component falls under in the repository. # Overridden in subclasses. category = '' # A description of the rich-text component. Overridden in subclasses. description = '' # The HTML tag name for the component. Overridden in subclasses. frontend_name = '' # The tooltip for the icon in the rich-text editor. Overridden in # subclasses. tooltip = '' # Customization arg specifications for the component, including their # descriptions, schemas and default values. Overridden in subclasses. _customization_arg_specs = [] # The icon to show in the rich-text editor. This is a representation of the # .png file in this rich-text component folder, generated with the # utils.convert_png_to_data_url() function. Overridden in subclasses. icon_data_url = '' @property def id(self): return self.__class__.__name__ @property def customization_arg_specs(self): return [ domain.CustomizationArgSpec(**cas) for cas in self._customization_arg_specs] @property def html_body(self): """The HTML code containing directives and templates for the component. This contains everything needed to display the component once the necessary attributes are supplied. For rich-text components, this consists of a single directive/template pair. """ js_directives = utils.get_file_contents(os.path.join( feconf.RTE_EXTENSIONS_DIR, self.id, '%s.js' % self.id)) html_templates = utils.get_file_contents(os.path.join( feconf.RTE_EXTENSIONS_DIR, self.id, '%s.html' % self.id)) return '<script>%s</script>\n%s' % (js_directives, html_templates) def to_dict(self): """Gets a dict representing this component. Only the default values for customization args are provided. """ return { 'backend_name': self.name, 'customization_arg_specs': [{ 'name': ca_spec.name, 'description': ca_spec.description, 'default_value': ca_spec.default_value, 'schema': ca_spec.schema, } for ca_spec in self.customization_arg_specs], 'frontend_name': self.frontend_name, 'icon_data_url': self.icon_data_url, 'tooltip': self.tooltip, }
# -*- coding: utf-8 -*- # ------------------------------------------------------------------------------ # # Copyright 2018-2019 Fetch.AI Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # ------------------------------------------------------------------------------ """This module contains the tests for the code-blocks in the skill-guide.md file.""" import filecmp import json import logging import os import shutil import signal import subprocess # nosec import sys import tempfile import time from pathlib import Path import jsonschema from jsonschema import Draft4Validator import pytest from aea import AEA_DIR from aea.cli import cli from aea.configurations.base import DEFAULT_VERSION from ..helper import extract_code_blocks from ...common.click_testing import CliRunner from ...conftest import ( AUTHOR, CLI_LOG_OPTION, CONFIGURATION_SCHEMA_DIR, ROOT_DIR, SKILL_CONFIGURATION_SCHEMA, ) MD_FILE = "docs/skill-guide.md" logger = logging.getLogger(__name__) class TestBuildSkill: """This class contains the tests for the code-blocks in the skill-guide.md file.""" @pytest.fixture(autouse=True) def _start_oef_node(self, network_node): """Start an oef node.""" @classmethod def setup_class(cls): """Setup the test class.""" cls.path = os.path.join(ROOT_DIR, MD_FILE) cls.code_blocks = extract_code_blocks(filepath=cls.path, filter="python") cls.runner = CliRunner() cls.agent_name = "myagent" cls.resource_name = "my_search" cls.skill_id = AUTHOR + "/" + cls.resource_name + ":" + DEFAULT_VERSION cls.cwd = os.getcwd() cls.t = tempfile.mkdtemp() # add packages folder packages_src = os.path.join(cls.cwd, "packages") packages_dst = os.path.join(cls.t, "packages") shutil.copytree(packages_src, packages_dst) cls.schema = json.load(open(SKILL_CONFIGURATION_SCHEMA)) cls.resolver = jsonschema.RefResolver( "file://{}/".format(Path(CONFIGURATION_SCHEMA_DIR).absolute()), cls.schema ) cls.validator = Draft4Validator(cls.schema, resolver=cls.resolver) os.chdir(cls.t) cls.init_result = cls.runner.invoke( cli, [*CLI_LOG_OPTION, "init", "--local", "--author", AUTHOR], standalone_mode=False, ) cls.fetch_result = cls.runner.invoke( cli, [ *CLI_LOG_OPTION, "fetch", "--local", "fetchai/simple_service_registration:0.1.0", ], standalone_mode=False, ) cls.create_result = cls.runner.invoke( cli, [*CLI_LOG_OPTION, "create", "--local", cls.agent_name], standalone_mode=False, ) if cls.create_result.exit_code == 0: os.chdir(Path(cls.t, cls.agent_name)) # scaffold skill cls.result = cls.runner.invoke( cli, [*CLI_LOG_OPTION, "scaffold", "skill", cls.resource_name], standalone_mode=False, ) # add oef connection cls.result = cls.runner.invoke( cli, [*CLI_LOG_OPTION, "add", "--local", "connection", "fetchai/oef:0.1.0"], standalone_mode=False, ) def test_agent_is_fetched(self): """Test that the setup was successful.""" assert self.fetch_result.exit_code == 0, "Agent not fetched, setup incomplete" def test_agent_is_created(self): """Test that the setup was successful.""" assert self.create_result.exit_code == 0, "Agent not created, setup incomplete" def test_read_md_file(self): """Teat that the md file is not empty.""" assert self.code_blocks != [], "File must not be empty." def test_update_skill_and_run(self, pytestconfig): """Test that the resource folder contains scaffold handlers.py module.""" if pytestconfig.getoption("ci"): pytest.skip("Skipping the test since it doesn't work in CI.") # add packages folder packages_src = os.path.join(self.cwd, "packages") packages_dst = os.path.join(os.getcwd(), "packages") shutil.copytree(packages_src, packages_dst) path = Path( self.t, self.agent_name, "skills", self.resource_name, "behaviours.py" ) original = Path(AEA_DIR, "skills", "scaffold", "behaviours.py") assert filecmp.cmp(path, original) with open(path, "w") as file: file.write(self.code_blocks[0]) path = Path( self.t, self.agent_name, "skills", self.resource_name, "handlers.py" ) original = Path(AEA_DIR, "skills", "scaffold", "handlers.py") assert filecmp.cmp(path, original) with open(path, "w") as file: file.write(self.code_blocks[1]) path = Path( self.t, self.agent_name, "skills", self.resource_name, "my_model.py" ) os.remove(path) # Update the yaml file. path = Path(self.t, self.agent_name, "skills", self.resource_name, "skill.yaml") yaml_code_block = extract_code_blocks(self.path, filter="yaml") with open(path, "w") as file: file.write(yaml_code_block[0]) # update fingerprint result = self.runner.invoke( cli, [*CLI_LOG_OPTION, "fingerprint", "skill", self.skill_id], standalone_mode=False, ) assert result.exit_code == 0, "Fingerprinting not successful" os.chdir(Path(self.t, "simple_service_registration")) try: # run service agent process_one = subprocess.Popen( # nosec [ sys.executable, "-m", "aea.cli", "run", "--connections", "fetchai/oef:0.1.0", ], stdout=subprocess.PIPE, env=os.environ.copy(), ) # run the agent os.chdir(Path(self.t, self.agent_name)) process_two = subprocess.Popen( # nosec [ sys.executable, "-m", "aea.cli", "run", "--connections", "fetchai/oef:0.1.0", ], stdout=subprocess.PIPE, env=os.environ.copy(), ) time.sleep(7.0) process_one.send_signal(signal.SIGINT) process_two.send_signal(signal.SIGINT) process_one.wait(timeout=5) process_two.wait(timeout=5) assert process_one.returncode == 0 assert process_two.returncode == 0 finally: poll_one = process_one.poll() if poll_one is None: process_one.terminate() process_one.wait(2) poll_two = process_two.poll() if poll_two is None: process_two.terminate() process_two.wait(2) os.chdir(self.t) result = self.runner.invoke( cli, [*CLI_LOG_OPTION, "delete", self.agent_name], standalone_mode=False ) assert result.exit_code == 0 result = self.runner.invoke( cli, [*CLI_LOG_OPTION, "delete", "simple_service_registration"], standalone_mode=False, ) assert result.exit_code == 0 @classmethod def teardown_class(cls): """Teardowm the test.""" os.chdir(cls.cwd) try: shutil.rmtree(cls.t) except (OSError, IOError): pass
import os tg_token = os.environ['TG_TOKEN'] lastfm_api_key = os.environ['LASTFM_API_KEY'] lastfm_secret_key = os.environ['LASTFM_SECRET_KEY'] db = {"user": os.environ['DB_USER'], "password": os.environ['DB_PASS'], "address": os.environ['DB_ADDRESS'], "port": os.environ['DB_PORT'], "db_name": os.environ['DB_NAME']}
from flask import Flask from flask_sqlalchemy import SQLAlchemy from flask_migrate import Migrate from flask_bcrypt import Bcrypt from flask_login import LoginManager # from flask_bootstrap import Bootstrap from config import app_config db = SQLAlchemy() migrate = Migrate() bcrypt = Bcrypt() login_manager = LoginManager() def create_app(config_name): app = Flask(__name__, instance_relative_config=True) app.config.from_object(app_config[config_name]) app.config.from_pyfile('config.py') # Bootstrap(app) db.init_app(app) bcrypt.init_app(app) login_manager.init_app(app) login_manager.login_message = "You must be logged in to access this page" login_manager.login_view = "auth.login" with app.app_context(): if db.engine.url.drivername == 'sqlite': migrate.init_app(app, db, compare_type=True, render_as_batch=True) else: migrate.init_app(app, db) from tt_scheduler import models from .auth import auth as auth_blueprint app.register_blueprint(auth_blueprint) from .admin import admin as admin_blueprint app.register_blueprint(admin_blueprint, url_prefix='/admin') from .user import user as user_blueprint app.register_blueprint(user_blueprint) return app
import os def options(): ops = ["op1: Normal", "op2: Repair"] showops = input(ops) if showops == "op1": os.system("python3 Op1.py") elif showops == "op2": os.system("python3 Op2.py") else: print("Oops! Try Again") options()
"""A collection of examples for CARLAEnvironment""" import pygame from tensorforce import Agent from tensorforce.environments import CARLAEnvironment def training_example(num_episodes: int, max_episode_timesteps: int): # Instantiate the environment (run the CARLA simulator before doing this!) env = CARLAEnvironment(debug=True) # Create your own agent (here is just an example) agent = Agent.create(agent='ppo', environment=env, max_episode_timesteps=max_episode_timesteps, batch_size=1) # Training loop (you couldn't use a Runner instead) # `weights_dir` and `record_dir` are `None` to prevent saving and recording env.train(agent=agent, num_episodes=num_episodes, max_episode_timesteps=max_episode_timesteps, weights_dir=None, record_dir=None) pygame.quit() def custom_env_example(num_episodes: int, max_episode_timesteps: int): # import some libs import carla import numpy as np from tensorforce.environments.carla_environment import CARLAEnvironment, SensorSpecs, env_utils # Subclass `CARLAEnvironment` to customize it: class MyCARLAEnvironment(CARLAEnvironment): # Change actions space: (throttle, steer, brake, reverse) ACTIONS_SPEC = dict(type='float', shape=(4,), min_value=-1.0, max_value=1.0) DEFAULT_ACTIONS = np.array([0.0, 0.0, 0.0, 0.0]) # Define your own mapping: actions -> carla.VehicleControl def actions_to_control(self, actions): self.control.throttle = float((actions[0] + 1) / 2.0) self.control.steer = float(actions[1]) self.control.brake = float((actions[2] + 1) / 2.0) self.control.reverse = bool(actions[3] > 0) self.control.hand_brake = False # Define which sensors to use: def default_sensors(self) -> dict: sensors = super().default_sensors() # Substitute the default rgb camera with a semantic segmentation camera sensors['camera'] = SensorSpecs.segmentation_camera(position='front', attachment_type='Rigid', image_size_x=self.window_size[0], image_size_y=self.window_size[1], sensor_tick=self.tick_time) # Add a radar sensor sensors['radar'] = SensorSpecs.radar(position='radar', sensor_tick=self.tick_time) return sensors # Define a default agent (only used if env.train(agent=None, ...)) def default_agent(self, **kwargs) -> Agent: return Agent.create(agent='ppo', environment=self, max_episode_timesteps=kwargs.get('max_episode_timesteps'), batch_size=1) # Define your own reward function: def reward(self, actions, time_cost=-2.0): speed = env_utils.speed(self.vehicle) speed_limit = self.vehicle.get_speed_limit() if speed <= speed_limit: speed_penalty = -1.0 if speed < speed_limit / 2 else 0.0 else: speed_penalty = speed_limit - speed return time_cost - self.collision_penalty * 2.0 + speed_penalty def render(self, sensors_data: dict): super().render(sensors_data) env_utils.draw_radar_measurement(debug_helper=self.world.debug, data=sensors_data['radar']) # Training: env = MyCARLAEnvironment(debug=True) env.train(agent=None, # pass None to use the default_agent num_episodes=num_episodes, max_episode_timesteps=max_episode_timesteps, weights_dir=None, record_dir=None) pygame.quit()
#!/usr/bin/python # pickle,使用该模块你可以将任意对象存储在文件中, # 之后又可以将其完整的取出来。 # 这被称为持久地存储对象 import pickle shoplistfile = 'shoplist.data' shoplist = ['apple', 'mango', 'carrot'] print(shoplist) # write to the file f = open(shoplistfile, 'wb') pickle.dump(shoplist, f) # dump the object to a file f.close() del shoplist # detroy the shoplist variable # print(shoplist) # Read back from the storage f = open(shoplistfile, 'rb') storedlist = pickle.load(f) print(storedlist)
# Licensed under an MIT open source license - see LICENSE import os from astropy.table import Table import numpy as np import matplotlib.pyplot as p import sys import matplotlib.cm as cm from matplotlib import rc # rc("font", **{"family": "sans-serif", "size": 16}) # rc("text", usetex=True) from scipy.stats import scoreatpercentile import itertools widths = {} lengths = {} curvature = {} amplitude = {} orientation = {} background = {} median_bright = {} branches = {} # Setup to work on noise. If using from repo, use ["."] # folders = ["."] folders = [f for f in os.listdir(".") if os.path.isdir(f) and f[-3:] == '350'] # Proper names to show in plots labels = {"pipeCenterB59-350": "Pipe", "polaris-350": "Polaris", "ic5146-350": "IC-5146", "orionA-S-350": "Orion-A South", "lupusI-350": "Lupus", "orionB-350": "Orion-B", "taurusN3-350": "Taurus", "aquilaM2-350": "Aquila", "orionA-C-350": "Orion-A Center", "perseus04-350": "Perseus", "california_cntr-350": "California Center", "california_east-350": "California East", "california_west-350": "California West", "chamaeleonI-350": "Chamaeleon"} offsets = {"pipeCenterB59-350": 31.697, "polaris-350": 9.330, "ic5146-350": 20.728, "orionA-S-350": 35.219, "lupusI-350": 14.437, "orionB-350": 26.216, "taurusN3-350": 21.273, "aquilaM2-350": 85.452, "orionA-C-350": 32.616, "perseus04-350": 23.698, "california_cntr-350": 9.005, "california_east-350": 10.124, "california_west-350": 14.678, "chamaeleonI-350": -879.063} for folder in folders: # csv = [f for f in os.listdir(folder) if f[-3:] == "csv" and not "rht" in f # and not "deg" in f] csv = [f for f in os.listdir(folder) if f[-4:] == "fits" and 'table' in f] if csv == []: print "No csv file in %s" % (folder) else: for fil in csv: data = Table.read(folder + "/" + fil) name = fil[:-11] widths[name] = data["FWHM"][np.isfinite(data["FWHM"])] amplitude[name] = data["Amplitude"][np.isfinite(data["Amplitude"])] lengths[name] = data["Lengths"][np.isfinite(data["FWHM"])] curvature[name] = data["Curvature"][np.isfinite(data["FWHM"])] orientation[name] = data["Orientation"][np.isfinite(data["FWHM"])] background[name] = data["Background"][np.isfinite(data["FWHM"])] median_bright[name] = data["Median Brightness"][ np.isfinite(data["FWHM"])] # branches[name] = data['Branch Length'] # Make scatter plots scatter = sys.argv[1] if scatter == "T": scatter = True else: scatter = False # Make triangle plot triangle_plot = sys.argv[2] if triangle_plot == "T": triangle_plot = True else: triangle_plot = False # Create KS Test tables ks_tests = sys.argv[3] if ks_tests == "T": ks_tests = True else: ks_tests = False # Compute the covering fraction covering_frac = sys.argv[4] if covering_frac == "T": covering_frac = True else: covering_frac = False # Examine branch lengths bran_len = sys.argv[5] if bran_len == "T": bran_len = True else: bran_len = False # Return numbers of unresolved widths and non param usage width_stats = sys.argv[6] if width_stats == "T": width_stats = True else: width_stats = False # Scatter plots if scatter: # print labels symb_col = ["bD", "gD", "rD", "kD", "b^", "g^", "r^", "k^", "bo", "go", "ro", "ko", "bv", "gh", "rh", "kh"] # for i, key in enumerate(widths.keys()): # p.plot(np.log10(widths[key][(widths[key] > 0.0)]), np.log10(amplitude[key][(widths[key] > 0.0)]), symb_col[i], label=labels[key], # markersize=6) # p.legend() # p.grid(True) # p.xlabel("Widths (pc)") # p.ylabel("Surface Brightness (MJy/sr)") # # p.xlim([0.0, 1.0]) # # p.ylim([0.0, 2500.]) # p.show() # p.clf() # Amplitude vs. Length lenmed = [] lenstd = [] ampmed = [] ampstd = [] fig = p.figure() # figsize=(12, 9), dpi=100) for i, key in enumerate(np.sort(widths.keys())): loglength = np.log10(lengths[key]) lenmed = scoreatpercentile(loglength, 50) len75 = scoreatpercentile(loglength, 75) len25 = scoreatpercentile(loglength, 25) print labels[key]+": "+str([len25, lenmed, len75]) logamp = np.log10(amplitude[key] - background[key]) ampmed = scoreatpercentile(logamp, 50) amp75 = scoreatpercentile(logamp, 75) amp25 = scoreatpercentile(logamp, 25) p.errorbar(lenmed, ampmed, fmt=symb_col[i], xerr=[[np.abs(lenmed - len25)], [np.abs(lenmed + len75)]], yerr=[[np.abs(ampmed - amp25)], [np.abs(ampmed - amp75)]], label=labels[key], markersize=10, alpha=0.6) p.xlabel("log$_{10}($L/ pc)", fontsize=18) p.ylabel("log$_{10}(I$/ MJy/sr)", fontsize=18) p.grid(True) p.legend(loc="lower right", ncol=2, prop={"size": 12}, markerscale=0.75, numpoints=1) p.ylim([-0.3, 1.55]) p.xlim([0.1, 1.7]) # fig.savefig("length_vs_amp_centroids.eps", format="eps", dpi=1000) # p.clf() p.tight_layout() p.show() # Length vs Width lenmed = [] lenstd = [] widthmed = [] widthstd = [] fig = p.figure() # figsize=(12, 9), dpi=100) for i, key in enumerate(widths.keys()): loglength = np.log10(lengths[key][(widths[key] > 0.0)]) lenmed = scoreatpercentile(loglength, 50) len75 = scoreatpercentile(loglength, 75) len25 = scoreatpercentile(loglength, 25) # print labels[i]+": "+str([len25, lenmed, len75]) logwidth = np.log10(widths[key][(widths[key] > 0.0)]) widthmed = scoreatpercentile(logwidth, 50) width75 = scoreatpercentile(logwidth, 75) width25 = scoreatpercentile(logwidth, 25) p.errorbar(lenmed, widthmed, fmt=symb_col[i], xerr=[[np.abs(lenmed - len25)], [np.abs(lenmed + len75)]], yerr=[ [np.abs(widthmed - width25)], [np.abs(widthmed - width75)]], label=labels[key], markersize=10, alpha=0.6) p.xlabel("log$_{10}($L/ pc)", fontsize=18) p.ylabel("log$_{10}(W$/ pc)", fontsize=18) p.grid(True) p.legend(loc="lower right", ncol=2, prop={"size": 12}, markerscale=0.75) # p.ylim([-1.0, -0.05]) # p.xlim([0.18, 1.6]) # fig.savefig("length_vs_width_centroids.eps", format="eps", dpi=1000) # p.clf() p.show() # Triangle plot if triangle_plot: import triangle for i, key in enumerate(widths.keys()): if i == 0: data = np.asarray([np.log10(widths[key][(widths[key] > 0.0)]), np.log10((amplitude[key]-background[key])[(widths[key] > 0.0)]), np.log10(lengths[key][(widths[key] > 0.0)]), curvature[key][(widths[key] > 0.0)]]) else: data = np.hstack([data, np.asarray([np.log10(widths[key][(widths[key] > 0.0)]), np.log10(amplitude[key][(widths[key] > 0.0)]), np.log10(lengths[key][(widths[key] > 0.0)]), curvature[key][(widths[key] > 0.0)]])]) truths = np.array([-1.26, np.NaN, np.NaN, np.NaN]) # Plot it. figure = triangle.corner(data.T, labels=["log$_{10}$(W/ pc)", "log$_{10}$($I$/ MJy/sr)", "log$_{10}$(L/ pc)", r"$\delta$$\theta$", "$\theta$"], quantiles=[0.15, 0.50, 0.85, 0.995], bins=7, show_titles=False, title_args={"fontsize": 18}, truths=truths, truth_color='r') # figure.savefig('hgbs_scatter_hists.pdf', format='pdf', dpi=1000) p.show() if ks_tests: from scipy.stats import ks_2samp from pandas import DataFrame import warnings # Because we have non-continuous distributions, we use a # bootstrap to create a value pvalue for the KS Test try: execfile("/Users/ekoch/Dropbox/code_development/misc/R_ksboot.py") boot = True except: # You need R and the Matching package for this to work warnings.warn("Using scipy ks_2samp, not the bootstrap method.") boot = False boot = False def ks_table(param_dict, boot=boot): ''' ''' pvals = np.zeros((len(param_dict.keys()), len(param_dict.keys()))) stats = np.zeros((len(param_dict.keys()), len(param_dict.keys()))) for i, key in enumerate(np.sort(param_dict.keys())[::-1]): print key for j, key2 in enumerate(np.sort(param_dict.keys())[::-1]): if i == j: pvals[i, j] = 0 stats[i, j] = 0 else: if boot: values = ks_boot(param_dict[key], param_dict[key2]) else: values = ks_2samp(param_dict[key], param_dict[key2]) pvals[i, j] = values[1] stats[i, j] = values[0] return stats, pvals ordered_labels = [] for key in np.sort(widths.keys())[::-1]: ordered_labels.append(labels[key]) # Widths width_tables = ks_table(widths, boot=boot) # width_kd_table = DataFrame( # width_tables[0], index=ordered_labels, columns=ordered_labels) # # width_kd_table.to_latex("width_ks_table.tex") # width_kd_table.to_csv("width_ks_table.csv") width_kd_table = DataFrame( width_tables[1], index=ordered_labels, columns=ordered_labels) # width_kd_table.to_latex("width_ks_table_pvals.tex") width_kd_table.to_csv("width_ks_table_pvals.csv") # Lengths # length_tables = ks_table(lengths, boot=boot) # length_kd_table = DataFrame( # length_tables[0], index=ordered_labels, columns=ordered_labels) # # length_kd_table.to_latex("length_ks_table.tex") # length_kd_table.to_csv("length_ks_table.csv") # length_kd_table = DataFrame( # length_tables[1], index=ordered_labels, columns=ordered_labels) # # length_kd_table.to_latex("length_ks_table_pvals.tex") # length_kd_table.to_csv("length_ks_table_pvals.csv") # Orientations # Convert to sin(2*phi) to deal with continuity issues # for key in orientation.keys(): # orientation[key] = np.sin(2 * orientation[key]) # orientation_tables = ks_table(orientation, boot=boot) # orientation_kd_table = DataFrame( # orientation_tables[0], index=ordered_labels, columns=ordered_labels) # # orientation_kd_table.to_latex("orientation_ks_table.tex") # orientation_kd_table.to_csv("orientation_ks_table.csv") # orientation_kd_table = DataFrame( # orientation_tables[1], index=ordered_labels, columns=ordered_labels) # # orientation_kd_table.to_latex("orientation_ks_table_pvals.tex") # orientation_kd_table.to_csv("orientation_ks_table_pvals.csv") # Curvature curvature_tables = ks_table(curvature, boot=boot) # curvature_kd_table = DataFrame( # curvature_tables[0], index=ordered_labels, columns=ordered_labels) # # curvature_kd_table.to_latex("curvature_ks_table.tex") # curvature_kd_table.to_csv("curvature_ks_table.csv") curvature_kd_table = DataFrame( curvature_tables[1], index=ordered_labels, columns=ordered_labels) # curvature_kd_table.to_latex("curvature_ks_table_pvals.tex") curvature_kd_table.to_csv("curvature_ks_table_pvals.csv") # Amplitudes # amplitude_tables = ks_table(amplitude, boot=boot) # amplitude_kd_table = DataFrame( # amplitude_tables[0], index=ordered_labels, columns=ordered_labels) # # amplitude_kd_table.to_latex("amplitude_ks_table.tex") # amplitude_kd_table.to_csv("amplitude_ks_table.csv") # amplitude_kd_table = DataFrame( # amplitude_tables[1], index=ordered_labels, columns=ordered_labels) # # amplitude_kd_table.to_latex("amplitude_ks_table_pvals.tex") # amplitude_kd_table.to_csv("amplitude_ks_table_pvals.csv") if covering_frac: from pandas import DataFrame from astropy.io.fits import getdata cf = dict.fromkeys(widths.keys()) for i, name in enumerate(np.sort(widths.keys())): # Load the image in img = getdata(name + "/" + name + "_regrid_convolved.fits") model = getdata(name + "/" + name + "_filament_model.fits") cf[name] = np.nansum(model) / np.nansum(img) df = DataFrame(cf.values(), index=cf.keys(), columns=["Covering Fraction"]) df = df.sort() print(df) df.to_csv("covering_fracs.csv") if bran_len: new_branches = {} for key in branches.keys(): per_branch = [] for lis in branches[key]: # Split out parts str_list = lis[1:-1].split(',') float_list = [] for string in str_list: float_list.append(float(string)) per_branch.append(float_list) new_branches[key] = per_branch for i, key in enumerate(new_branches.keys()): all_branches = list(itertools.chain(*new_branches[key])) num_bin = np.sqrt(len(all_branches)) p.subplot(2, 7, i+1) p.title(labels[key]) p.hist(all_branches, bins=num_bin) print labels[key], np.percentile(all_branches, [15, 50, 85]) p.show() if width_stats: from astropy.table import Table csv = [] for folder in folders: test = [f for f in os.listdir(folder) if f[-4:] == 'fits' and 'table' in f] try: csv.append(test[0]) except: print "Not found for " + folder fail_frac = np.empty((len(csv), )) unres_frac = np.empty((len(csv), )) nonparam_frac = np.empty((len(csv), )) nonparam_success = np.empty((len(csv), )) num_fils = np.empty((len(csv), )) for i, (fil, fold) in enumerate(zip(csv, folders)): t = Table.read(fold+"/"+fil) # Failed fits fail_frac[i, ] = sum(np.isnan(t['FWHM'])) #/ float(t['FWHM'].shape[0]) # Unresolved widths fwhm = t['FWHM'] fwhm = fwhm[np.isfinite(fwhm)] unres_frac[i, ] = sum(fwhm > 0) #/ float(t['FWHM'].shape[0]) # Number that use non-param fits nonparam_frac[i, ] = sum(t['Fit Type'] == 'n') #/ float(t['FWHM'].shape[0]) # Number of successful nonparam fits nonparam_success[i, ] = sum(np.logical_and(t['Fit Type'] == 'n', ~np.isnan(t['FWHM']))) # Number of filaments num_fils[i, ] = t['FWHM'].shape[0] df = Table(np.vstack([csv, num_fils, fail_frac, unres_frac, nonparam_frac, nonparam_success]).T, names=['Names', "Number", 'Fail', 'Resolved', 'Nonparam', 'Nonparam Success']) print(df) print sum(num_fils)
# Copyright (c) 2009 - 2015 Tropo, now part of Cisco # Released under the MIT license. See the file LICENSE # for the complete license # -------------------------------------------- # python app that says a random number between 1 and 100 # -------------------------------------------- from random import * # The arguments to 'randint' define the start and end of the range. number = randint(1,100) answer() say("Hello. Your magic number today is %s. Goodbye." % number) hangup()
import gmpy2 n = 2739699434633097765008468371124644741923408864896396205946954196101304653772173210372608955799251139999322976228678445908704975780068946332615022064030241384638601426716056067126300711933438732265846838735860353259574129074615298010047322960704972157930663061480726566962254887144927753449042590678730779046154516549667611603792754880414526688217305247008627664864637891883902537649625488225238118503996674292057904635593729208703096877231276911845233833770015093213639131244386867600956112884383105437861665666273910566732634878464610789895607273567372933766243229798663389032807187003756226177111720510187664096691560511459141773632683383938152396711991246874813205614169161561906148974478519987935950318569760474249427787310865749167740917232799538099494710964837536211535351200520324575676987080484141561336505103872809932354748531675934527453231255132361489570816639925234935907741385330442961877410196615649696508210921 e = 65537 c = 2082926013138674164997791605512226759362824531322433048281306983526001801581956788909408046338065370689701410862433705395338736589120086871506362760060657440410056869674907314204346790554619655855805666327905912762300412323371126871463045993946331927129882715778396764969311565407104426500284824495461252591576672989633930916837016411523983491364869137945678029616541477271287052575817523864089061675401543733151180624855361245733039022140321494471318934716652758163593956711915212195328671373739342124211743835858897895276513396783328942978903764790088495033176253777832808572717335076829539988337505582696026111326821783912902713222712310343791755341823415393931813610365987465739339849380173805882522026704474308541271732478035913770922189429089852921985416202844838873352090355685075965831663443962706473737852392107876993485163981653038588544562512597409585410384189546449890975409183661424334789750460016306977673969147 estimate = gmpy2.iroot(n,3)[0] - 10000 # rough guess for the smallest prime prime = gmpy2.next_prime(estimate) for _ in range(512): prime = gmpy2.next_prime(prime) if n%prime ==0: print(prime) p = 139926822890670655977195962770726941986198973494425759476822219188316377933161673759394901805855617939978281385708941597117531007973713846772205166659227214187622925135931456526921198848312215276630974951050306344412865900075089120689559331322162952820292429725303619113876104177529039691490258588465409397803 q = 139926822890670655977195962770726941986198973494425759476822219188316377933161673759394901805855617939978281385708941597117531007973713846772205166659227214187622925135931456526921198848312215276630974951050306344412865900075089120689559331322162952820292429725303619113876104177529039691490258588465409494847 r = n//(p*q) phi = (p-1)*(q-1)*(r-1) d = pow(e, -1, phi) m = pow(c, d, n) print(bytes.fromhex(hex(m)[2:]).decode())
import numpy as np import matplotlib.pyplot as plt from astropy.cosmology import FlatLambdaCDM #import pysynphot as S from abspecphot import abspecphot cosmo = FlatLambdaCDM(H0=73, Om0=0.3) # testing #vega_wave,vega_flux = np.loadtxt('spectra/vega.dat',dtype=float,usecols=(0,1),unpack=True) #vega_u=abspecphot(vega_wave,vega_flux, 'filters/U_UVOT.txt') #print(vega_u) # Here is the input spectrum and the corresponding distance input_wave,input_flux = np.loadtxt('spectra/Gaia16apd_uv.dat', dtype=float,usecols=(0,1),unpack=True) # distance in Megaparsecs, here calculated from redshift for Gaia16apd distance_sn=cosmo.luminosity_distance(0.102).value wave11fe, flux11fe=np.loadtxt('spectra/SN2011fe_uv.dat', dtype=float,usecols=(0,1),unpack=True) distance_11fe=6.7 wave16ccj, flux16ccj=np.loadtxt('spectra/SN2016ccj_uv.dat', dtype=float,usecols=(0,1),unpack=True) distance_16ccj=cosmo.luminosity_distance(0.041).value wave06aj, flux06aj=np.loadtxt('/Users/pbrown/Desktop/SN/localtemplates/ANT-SN2006aj.20A.sed.restframe.dat_upeakspectrum.dat', dtype=float,usecols=(0,1),unpack=True) distance_06aj=0.000010 # in megaparsecs #set redshift array and initialize other arrays which will have the same length redshifts=[0.1,0.2,0.5,1.0,1.5,2.0,2.5,3.0,3.5,4.0,4.5,5.0,5.0,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20] redshiftmags=[] redshiftmags2=[] redshift11femags=[] redshift16ccjmags=[] redshift11femags2=[] redshift16ccjmags2=[] redshift06ajmags=[] redshift06ajmags2=[] distances=[] lightyears=[] for counter in range(0,len(redshifts),1): z=redshifts[counter] # calculate distance in Megaparsecs lumidist = cosmo.luminosity_distance(z).value distances.append(lumidist) # distances[counter]=lumidist # lightyears[counter]=lumidist*3.26*10.0**6.0 lightyears.append(lumidist*3.26*10.0**6.0) # print(lightyears[counter]) # correct for the effects of distance and flux dilution redshiftedflux = np.multiply(distance_sn**2.0,input_flux) redshiftedflux = np.divide(redshiftedflux, lumidist**2.0) redshiftedflux = np.divide(redshiftedflux, 1.0+z) redshifted11feflux = np.multiply(distance_11fe**2.0,flux11fe) redshifted11feflux = np.divide(redshifted11feflux, lumidist**2.0) redshifted11feflux = np.divide(redshifted11feflux, 1.0+z) redshifted16ccjflux = np.multiply(distance_16ccj**2.0,flux16ccj) redshifted16ccjflux = np.divide(redshifted16ccjflux, lumidist**2.0) redshifted16ccjflux = np.divide(redshifted16ccjflux, 1.0+z) redshifted06ajflux = np.multiply(distance_06aj**2.0,flux06aj) redshifted06ajflux = np.divide(redshifted06ajflux, lumidist**2.0) redshifted06ajflux = np.divide(redshifted06ajflux, 1.0+z) filter2='filters/F444W_NRC_and_OTE_ModAB_mean.txt' filter='filters/F200W_NRC_and_OTE_ModAB_mean.txt' # print(z) # abmag=[] abmag=abspecphot(wave16ccj*(1.0+z),redshifted16ccjflux,filter ) ab16ccjmag=abmag ab16ccjmag2=abspecphot(wave16ccj*(1.0+z),redshifted16ccjflux,filter2 ) # abmag=[] abmag=abspecphot(wave11fe*(1.0+z),redshifted11feflux,filter ) ab11femag=abmag ab11femag2=abspecphot(wave11fe*(1.0+z),redshifted11feflux,filter2 ) ab06ajmag=abspecphot(wave06aj*(1.0+z),redshifted06ajflux,filter ) ab06ajmag2=abspecphot(wave06aj*(1.0+z),redshifted06ajflux,filter2 ) # abmag=[] abmag=abspecphot(input_wave*(1.0+z),redshiftedflux,filter ) abmag2=abspecphot(input_wave*(1.0+z),redshiftedflux,filter2 ) # print(mag_array[5]) redshiftmags.append(abmag) redshiftmags2.append(abmag2) redshift11femags.append(ab11femag) redshift11femags2.append(ab11femag2) redshift16ccjmags.append(ab16ccjmag) redshift16ccjmags2.append(ab16ccjmag2) redshift06ajmags.append(ab06ajmag) redshift06ajmags2.append(ab06ajmag2) # print(abmag) goodmags,=(np.where(redshiftmags > 0)) color=np.subtract(redshiftmags,redshiftmags2) color11fe=np.subtract(redshift11femags,redshift11femags2) #color16ccj=np.subtract(redshift16ccjmags,redshift16ccjmags2) #best fit line and plotting #plt.ylabel(filter) plt.ylabel('JWST F200 AB Mag') #plt.ylabel('JWST F200-F444 AB Mag') plt.xlabel('Redshift') # plt.title('Gaia16apd Spectrum') #plt.plot(redshifts[goodmags[0][:]],redshiftmags[goodmags[0][:]],'b*') #plt.plot(redshifts,color, 'b*',color='black') #plt.plot(redshifts,color11fe, 'b*',color='blue') #plt.plot(redshifts,color16ccj, 'b*',color='purple') plt.plot(redshifts,redshiftmags, 'b*',color='black') plt.plot(redshifts,redshift11femags,'b*',color='blue') plt.plot(redshifts,redshift06ajmags,'b*',color='green') # 16ccj has [] in mag array #plt.plot(redshifts,redshift16ccjmags,'b*',color='green') #plt.plot([4.5, 5.5], [28, 28], color='k', linestyle='--', linewidth=2) ## invert y axis makes the brighter magnitude higher plt.gca().invert_yaxis() #plt.ylim([29,24]) plt.show()
import enum class State(enum.Enum): HEALTHY = "Healthy" INFECTED = "Infected" RISKY = "Risky" EXPOSED = "Exposed"
# pylint:disable=missing-module-docstring,missing-class-docstring,missing-function-docstring from .base import compare_template, SimpleTestCase class DatePickerHtmlTest(SimpleTestCase): maxDiff = None def test_basic_short(self): template = """ {% load carbondesign %} {% DatePicker form.started_at_empty mode="basic" short=True label="Date Picker label" %} """ expected = r""" <div class="bx--form-item"> <div class="bx--date-picker bx--date-picker--simple bx--date-picker--short"> <div class="bx--date-picker-container"> <label for="id_started_at_empty" class="bx--label"> Date Picker label </label> <input type="text" name="started_at_empty" class="bx--date-picker__input" data-date-picker-input="" pattern="\d{1,2}/\d{4,4}" placeholder="mm/yyyy" id="id_started_at_empty"> </div> </div> </div> """ rendered = compare_template(template, expected) self.assertEqual(*rendered) def test_basic_invalid(self): template = """ {% load carbondesign %} {% DatePicker form.started_at_missing mode="basic" label="Date Picker label" %} """ expected = r""" <div class="bx--form-item"> <div class="bx--date-picker bx--date-picker--simple"> <div class="bx--date-picker-container"> <label for="id_started_at_missing" class="bx--label"> Date Picker label </label> <input type="text" name="started_at_missing" value="" class="bx--date-picker__input" data-date-picker-input="" pattern="\d{1,2}/\d{1,2}/\d{4,4}" placeholder="mm/dd/yyyy" data-invalid="" required id="id_started_at_missing"> <div class="bx--form-requirement"> <div class="bx--form-requirement__title">This field is required.</div> </div> </div> </div> </div> """ rendered = compare_template(template, expected) self.assertEqual(*rendered) def test_basic_short_light(self): template = """ {% load carbondesign %} {% DatePicker form.started_at_empty mode="basic" short=True label="Date Picker label" light=True %} """ expected = r""" <div class="bx--form-item"> <div class="bx--date-picker bx--date-picker--simple bx--date-picker--light bx--date-picker--short"> <div class="bx--date-picker-container"> <label for="id_started_at_empty" class="bx--label"> Date Picker label </label> <input type="text" name="started_at_empty" class="bx--date-picker__input" data-date-picker-input="" pattern="\d{1,2}/\d{4,4}" placeholder="mm/yyyy" id="id_started_at_empty"> </div> </div> </div> """ rendered = compare_template(template, expected) self.assertEqual(*rendered) def test_basic_invalid_light(self): template = """ {% load carbondesign %} {% DatePicker form.started_at_missing mode="basic" label="Date Picker label" light=True %} """ expected = r""" <div class="bx--form-item"> <div class="bx--date-picker bx--date-picker--simple bx--date-picker--light"> <div class="bx--date-picker-container"> <label for="id_started_at_missing" class="bx--label"> Date Picker label </label> <input type="text" name="started_at_missing" value="" class="bx--date-picker__input" data-date-picker-input="" pattern="\d{1,2}/\d{1,2}/\d{4,4}" placeholder="mm/dd/yyyy" data-invalid="" required id="id_started_at_missing"> <div class="bx--form-requirement"> <div class="bx--form-requirement__title">This field is required.</div> </div> </div> </div> </div> """ rendered = compare_template(template, expected) self.assertEqual(*rendered) def test_range(self): template = """ {% load carbondesign %} {% RangeDatePicker form.started_at form.stopped_at %} """ expected = r""" <div class="bx--form-item"> <div data-date-picker data-date-picker-type="range" class="bx--date-picker bx--date-picker--range"> <div class="bx--date-picker-container"> <label for="id_started_at" class="bx--label"> Started at </label> <div class="bx--date-picker-input__wrapper"> <input type="text" name="started_at" value="2022-02-03 01:02:03" class="bx--date-picker__input" pattern="\d{1,2}/\d{1,2}/\d{4,4}" placeholder="mm/dd/yyyy" data-date-picker-input-from="" required id="id_started_at"> <svg focusable="false" preserveAspectRatio="xMidYMid meet" xmlns="http://www.w3.org/2000/svg" fill="currentColor" data-date-picker-icon="true" class="bx--date-picker__icon" width="16" height="16" viewBox="0 0 32 32" aria-hidden="true"> <path d="M26,4h-4V2h-2v2h-8V2h-2v2H6C4.9,4,4,4.9,4,6v20c0,1.1,0.9,2,2,2h20c1.1,0,2-0.9,2-2V6C28,4.9,27.1,4,26,4z M26,26H6V12h20 V26z M26,10H6V6h4v2h2V6h8v2h2V6h4V10z"></path> </svg> </div> </div> <div class="bx--date-picker-container"> <label for="id_stopped_at" class="bx--label"> Stopped at </label> <div class="bx--date-picker-input__wrapper"> <input type="text" name="stopped_at" value="2022-10-04 11:30:40" class="bx--date-picker__input" pattern="\d{1,2}/\d{1,2}/\d{4,4}" placeholder="mm/dd/yyyy" data-date-picker-input-to="" required id="id_stopped_at"> <svg focusable="false" preserveAspectRatio="xMidYMid meet" xmlns="http://www.w3.org/2000/svg" fill="currentColor" data-date-picker-icon="true" class="bx--date-picker__icon" width="16" height="16" viewBox="0 0 32 32" aria-hidden="true"> <path d="M26,4h-4V2h-2v2h-8V2h-2v2H6C4.9,4,4,4.9,4,6v20c0,1.1,0.9,2,2,2h20c1.1,0,2-0.9,2-2V6C28,4.9,27.1,4,26,4z M26,26H6V12h20 V26z M26,10H6V6h4v2h2V6h8v2h2V6h4V10z"></path> </svg> </div> </div> </div> </div> """ rendered = compare_template(template, expected) self.assertEqual(*rendered) def test_range_light(self): template = """ {% load carbondesign %} {% RangeDatePicker form.started_at form.stopped_at light=True %} """ expected = r""" <div class="bx--form-item"> <div data-date-picker data-date-picker-type="range" class="bx--date-picker bx--date-picker--range bx--date-picker--light"> <div class="bx--date-picker-container"> <label for="id_started_at" class="bx--label"> Started at </label> <div class="bx--date-picker-input__wrapper"> <input type="text" name="started_at" value="2022-02-03 01:02:03" class="bx--date-picker__input" pattern="\d{1,2}/\d{1,2}/\d{4,4}" placeholder="mm/dd/yyyy" data-date-picker-input-from="" required id="id_started_at"> <svg focusable="false" preserveAspectRatio="xMidYMid meet" xmlns="http://www.w3.org/2000/svg" fill="currentColor" data-date-picker-icon="true" class="bx--date-picker__icon" width="16" height="16" viewBox="0 0 32 32" aria-hidden="true"> <path d="M26,4h-4V2h-2v2h-8V2h-2v2H6C4.9,4,4,4.9,4,6v20c0,1.1,0.9,2,2,2h20c1.1,0,2-0.9,2-2V6C28,4.9,27.1,4,26,4z M26,26H6V12h20 V26z M26,10H6V6h4v2h2V6h8v2h2V6h4V10z"></path> </svg> </div> </div> <div class="bx--date-picker-container"> <label for="id_stopped_at" class="bx--label"> Stopped at </label> <div class="bx--date-picker-input__wrapper"> <input type="text" name="stopped_at" value="2022-10-04 11:30:40" class="bx--date-picker__input" pattern="\d{1,2}/\d{1,2}/\d{4,4}" placeholder="mm/dd/yyyy" data-date-picker-input-to="" required id="id_stopped_at"> <svg focusable="false" preserveAspectRatio="xMidYMid meet" xmlns="http://www.w3.org/2000/svg" fill="currentColor" data-date-picker-icon="true" class="bx--date-picker__icon" width="16" height="16" viewBox="0 0 32 32" aria-hidden="true"> <path d="M26,4h-4V2h-2v2h-8V2h-2v2H6C4.9,4,4,4.9,4,6v20c0,1.1,0.9,2,2,2h20c1.1,0,2-0.9,2-2V6C28,4.9,27.1,4,26,4z M26,26H6V12h20 V26z M26,10H6V6h4v2h2V6h8v2h2V6h4V10z"></path> </svg> </div> </div> </div> </div> """ rendered = compare_template(template, expected) self.assertEqual(*rendered) def test_nolabel_light(self): template = """ {% load carbondesign %} {% DatePicker form.started_at_empty mode="nolabel" label="Date Picker label" light=True %} """ expected = r""" <div class="bx--form-item"> <div data-date-picker data-date-picker-type="single" class="bx--date-picker bx--date-picker--single bx--date-picker--nolabel bx--date-picker--light"> <div class="bx--date-picker-container"> <div class="bx--date-picker-input__wrapper"> <input type="text" name="started_at_empty" class="bx--date-picker__input" data-date-picker-input="" pattern="\d{1,2}/\d{1,2}/\d{4,4}" placeholder="mm/dd/yyyy" id="id_started_at_empty"> <svg focusable="false" preserveAspectRatio="xMidYMid meet" xmlns="http://www.w3.org/2000/svg" fill="currentColor" data-date-picker-icon="true" class="bx--date-picker__icon" width="16" height="16" viewBox="0 0 32 32" aria-hidden="true"> <path d="M26,4h-4V2h-2v2h-8V2h-2v2H6C4.9,4,4,4.9,4,6v20c0,1.1,0.9,2,2,2h20c1.1,0,2-0.9,2-2V6C28,4.9,27.1,4,26,4z M26,26H6V12h20 V26z M26,10H6V6h4v2h2V6h8v2h2V6h4V10z"></path> </svg> </div> </div> </div> </div> """ rendered = compare_template(template, expected) self.assertEqual(*rendered) def test_nolabel_invalid_light(self): template = """ {% load carbondesign %} {% DatePicker form.started_at_missing mode="nolabel" label="Date Picker label" light=True %} """ expected = r""" <div class="bx--form-item"> <div data-date-picker data-date-picker-type="single" class="bx--date-picker bx--date-picker--single bx--date-picker--nolabel bx--date-picker--light"> <div class="bx--date-picker-container"> <div class="bx--date-picker-input__wrapper"> <input type="text" name="started_at_missing" value="" class="bx--date-picker__input" data-date-picker-input="" pattern="\d{1,2}/\d{1,2}/\d{4,4}" placeholder="mm/dd/yyyy" data-invalid="" required id="id_started_at_missing"> <svg focusable="false" preserveAspectRatio="xMidYMid meet" xmlns="http://www.w3.org/2000/svg" fill="currentColor" data-date-picker-icon="true" class="bx--date-picker__icon" width="16" height="16" viewBox="0 0 32 32" aria-hidden="true"> <path d="M26,4h-4V2h-2v2h-8V2h-2v2H6C4.9,4,4,4.9,4,6v20c0,1.1,0.9,2,2,2h20c1.1,0,2-0.9,2-2V6C28,4.9,27.1,4,26,4z M26,26H6V12h20 V26z M26,10H6V6h4v2h2V6h8v2h2V6h4V10z"></path> </svg> </div> <div class="bx--form-requirement"> <div class="bx--form-requirement__title">This field is required.</div> </div> </div> </div> </div> """ rendered = compare_template(template, expected) self.assertEqual(*rendered) def test_single_light(self): template = """ {% load carbondesign %} {% DatePicker form.started_at_empty label="Date Picker label" light=True %} """ expected = r""" <div class="bx--form-item"> <div data-date-picker data-date-picker-type="single" class="bx--date-picker bx--date-picker--single bx--date-picker--light"> <div class="bx--date-picker-container"> <label for="id_started_at_empty" class="bx--label"> Date Picker label </label> <div class="bx--date-picker-input__wrapper"> <input type="text" name="started_at_empty" class="bx--date-picker__input" data-date-picker-input="" pattern="\d{1,2}/\d{1,2}/\d{4,4}" placeholder="mm/dd/yyyy" id="id_started_at_empty"> <svg focusable="false" preserveAspectRatio="xMidYMid meet" xmlns="http://www.w3.org/2000/svg" fill="currentColor" data-date-picker-icon="true" class="bx--date-picker__icon" width="16" height="16" viewBox="0 0 32 32" aria-hidden="true"> <path d="M26,4h-4V2h-2v2h-8V2h-2v2H6C4.9,4,4,4.9,4,6v20c0,1.1,0.9,2,2,2h20c1.1,0,2-0.9,2-2V6C28,4.9,27.1,4,26,4z M26,26H6V12h20 V26z M26,10H6V6h4v2h2V6h8v2h2V6h4V10z"></path> </svg> </div> </div> </div> </div> """ rendered = compare_template(template, expected) self.assertEqual(*rendered) def test_single_invalid_light(self): template = """ {% load carbondesign %} {% DatePicker form.started_at_missing label="Date Picker label" light=True %} """ expected = r""" <div class="bx--form-item"> <div data-date-picker data-date-picker-type="single" class="bx--date-picker bx--date-picker--single bx--date-picker--light"> <div class="bx--date-picker-container"> <label for="id_started_at_missing" class="bx--label"> Date Picker label </label> <div class="bx--date-picker-input__wrapper"> <input type="text" name="started_at_missing" value="" class="bx--date-picker__input" data-date-picker-input="" pattern="\d{1,2}/\d{1,2}/\d{4,4}" placeholder="mm/dd/yyyy" data-invalid="" required id="id_started_at_missing"> <svg focusable="false" preserveAspectRatio="xMidYMid meet" xmlns="http://www.w3.org/2000/svg" fill="currentColor" data-date-picker-icon="true" class="bx--date-picker__icon" width="16" height="16" viewBox="0 0 32 32" aria-hidden="true"> <path d="M26,4h-4V2h-2v2h-8V2h-2v2H6C4.9,4,4,4.9,4,6v20c0,1.1,0.9,2,2,2h20c1.1,0,2-0.9,2-2V6C28,4.9,27.1,4,26,4z M26,26H6V12h20 V26z M26,10H6V6h4v2h2V6h8v2h2V6h4V10z"></path> </svg> </div> <div class="bx--form-requirement"> <div class="bx--form-requirement__title">This field is required.</div> </div> </div> </div> </div> """ rendered = compare_template(template, expected) self.assertEqual(*rendered) def test_nolabel(self): template = """ {% load carbondesign %} {% DatePicker form.started_at_empty mode="nolabel" label="Date Picker label" %} """ expected = r""" <div class="bx--form-item"> <div data-date-picker data-date-picker-type="single" class="bx--date-picker bx--date-picker--single bx--date-picker--nolabel"> <div class="bx--date-picker-container"> <div class="bx--date-picker-input__wrapper"> <input type="text" name="started_at_empty" class="bx--date-picker__input" data-date-picker-input="" pattern="\d{1,2}/\d{1,2}/\d{4,4}" placeholder="mm/dd/yyyy" id="id_started_at_empty"> <svg focusable="false" preserveAspectRatio="xMidYMid meet" xmlns="http://www.w3.org/2000/svg" fill="currentColor" data-date-picker-icon="true" class="bx--date-picker__icon" width="16" height="16" viewBox="0 0 32 32" aria-hidden="true"> <path d="M26,4h-4V2h-2v2h-8V2h-2v2H6C4.9,4,4,4.9,4,6v20c0,1.1,0.9,2,2,2h20c1.1,0,2-0.9,2-2V6C28,4.9,27.1,4,26,4z M26,26H6V12h20 V26z M26,10H6V6h4v2h2V6h8v2h2V6h4V10z"></path> </svg> </div> </div> </div> </div> """ rendered = compare_template(template, expected) self.assertEqual(*rendered) def test_nolabel_invalid(self): template = """ {% load carbondesign %} {% DatePicker form.started_at_missing mode="nolabel" label="Date Picker label" %} """ expected = r""" <div class="bx--form-item"> <div data-date-picker data-date-picker-type="single" class="bx--date-picker bx--date-picker--single bx--date-picker--nolabel"> <div class="bx--date-picker-container"> <div class="bx--date-picker-input__wrapper"> <input type="text" name="started_at_missing" value="" class="bx--date-picker__input" data-date-picker-input="" pattern="\d{1,2}/\d{1,2}/\d{4,4}" placeholder="mm/dd/yyyy" data-invalid="" required id="id_started_at_missing"> <svg focusable="false" preserveAspectRatio="xMidYMid meet" xmlns="http://www.w3.org/2000/svg" fill="currentColor" data-date-picker-icon="true" class="bx--date-picker__icon" width="16" height="16" viewBox="0 0 32 32" aria-hidden="true"> <path d="M26,4h-4V2h-2v2h-8V2h-2v2H6C4.9,4,4,4.9,4,6v20c0,1.1,0.9,2,2,2h20c1.1,0,2-0.9,2-2V6C28,4.9,27.1,4,26,4z M26,26H6V12h20 V26z M26,10H6V6h4v2h2V6h8v2h2V6h4V10z"></path> </svg> </div> <div class="bx--form-requirement"> <div class="bx--form-requirement__title">This field is required.</div> </div> </div> </div> </div> """ rendered = compare_template(template, expected) self.assertEqual(*rendered)
from ryu.base import app_manager from ryu.controller import ofp_event from ryu.controller.handler import CONFIG_DISPATCHER, MAIN_DISPATCHER from ryu.controller.handler import set_ev_cls from ryu.lib.packet.ether_types import ETH_TYPE_IP from ryu.ofproto import ofproto_v1_3 from ryu.lib.packet import packet, ether_types from ryu.lib.packet import ethernet from ryu.lib.packet import tcp, arp, ipv4, icmp from ryu.topology.api import get_all_host class LoadBalancer(app_manager.RyuApp): OFP_VERSIONS = [ofproto_v1_3.OFP_VERSION] VIRTUAL_IP = '10.0.1.100' VIRTUAL_MAC = '00:00:00:00:01:00' SERVER_NUMBER = 2 # Enable consistent hashing on source port HASH_ON_PORT = 1 # True = 1, False = 0 # CONFIG_DISPATCHER, Handle Features Reply @set_ev_cls(ofp_event.EventOFPSwitchFeatures, CONFIG_DISPATCHER) def switch_features_handler(self, ev): datapath = ev.msg.datapath ofproto = datapath.ofproto parser = datapath.ofproto_parser # Send all packet to the controller match = parser.OFPMatch() actions = [parser.OFPActionOutput(ofproto.OFPP_CONTROLLER, ofproto.OFPCML_NO_BUFFER)] inst = [parser.OFPInstructionActions(ofproto.OFPIT_APPLY_ACTIONS, actions)] mod = parser.OFPFlowMod( datapath=datapath, priority=1, match=match, instructions=inst ) datapath.send_msg(mod) # MAIN_DISPATCHER, handle packet-In @set_ev_cls(ofp_event.EventOFPPacketIn, MAIN_DISPATCHER) def _packet_in_handler(self, ev): msg = ev.msg datapath = msg.datapath ofproto = datapath.ofproto parser = datapath.ofproto_parser in_port = msg.match['in_port'] # Obtain packet headers pkt = packet.Packet(msg.data) pkt_eth = pkt.get_protocol(ethernet.ethernet) pkt_ipv4 = pkt.get_protocol(ipv4.ipv4) pkt_tcp = pkt.get_protocol(tcp.tcp) pkt_icmp = pkt.get_protocol(icmp.icmp) macsrc = pkt_eth.src # Handle ARP packets if pkt_eth.ethertype == ether_types.ETH_TYPE_ARP: pkt_arp = pkt.get_protocol(arp.arp) if pkt_arp.opcode == arp.ARP_REQUEST: if pkt_arp.dst_ip == self.VIRTUAL_IP: mac_dst_arp = self.VIRTUAL_MAC else: hosts = get_all_host(self) for host in hosts: if pkt_arp.dst_ip in host.ipv4: mac_dst_arp = host.mac break else: self.logger.info("[ARP] MAC address not found") return self.logger.info("[ARP] Request received") self.logger.info("[ARP] MAC destination is: " + mac_dst_arp) reply_packet = packet.Packet() reply_packet.add_protocol( ethernet.ethernet( dst=pkt_arp.src_mac, src=mac_dst_arp, ethertype=ether_types.ETH_TYPE_ARP ) ) reply_packet.add_protocol( arp.arp( opcode=arp.ARP_REPLY, src_mac=mac_dst_arp, src_ip=pkt_arp.dst_ip, dst_mac=pkt_arp.src_mac, dst_ip=pkt_arp.src_ip ) ) reply_packet.serialize() actions = [parser.OFPActionOutput(in_port)] packet_out = parser.OFPPacketOut( datapath=datapath, buffer_id=ofproto.OFP_NO_BUFFER, in_port=ofproto.OFPP_CONTROLLER, data=reply_packet.data, actions=actions ) datapath.send_msg(packet_out) self.logger.info("[ARP] Reply sent!") return # Handle IPv4 packets if pkt_ipv4 is not None: # Handle TCP packets if pkt_tcp is not None: if self.HASH_ON_PORT == 1: # Consistent hashing on IPv4 source and TCP source port server = hash((pkt_ipv4.src, pkt_tcp.src_port)) % self.SERVER_NUMBER else: # Deterministic routing via consistent hashing only on IPv4 source server = hash((pkt_ipv4.src)) % self.SERVER_NUMBER server = server + 1 ipdst = "10.0.1." + str(server) macdst = "00:00:00:00:01:0" + str(server) out_port = server # IMPORTANT: Servers must be connected to port 1 and 2 # Inbound FlowMod match = parser.OFPMatch( eth_type=ETH_TYPE_IP, ip_proto=pkt_ipv4.proto, eth_src=macsrc, tcp_src=pkt_tcp.src_port, eth_dst=self.VIRTUAL_MAC ) self.logger.info("[HASH] Chosen server is: SRV" + str(server)) actions = [parser.OFPActionSetField(eth_dst=macdst), parser.OFPActionSetField(ipv4_dst=ipdst), parser.OFPActionOutput(out_port)] inst = [parser.OFPInstructionActions(ofproto.OFPIT_APPLY_ACTIONS, actions)] ofmsg = parser.OFPFlowMod( datapath=datapath, hard_timeout=120, priority=50, match=match, instructions=inst, ) datapath.send_msg(ofmsg) # Outbound FlowMod match = parser.OFPMatch( eth_type=ETH_TYPE_IP, ip_proto=pkt_ipv4.proto, eth_src=macdst, tcp_dst=pkt_tcp.src_port, eth_dst=macsrc ) actions = [ parser.OFPActionSetField(eth_src=self.VIRTUAL_MAC), parser.OFPActionSetField(ipv4_src=self.VIRTUAL_IP), parser.OFPActionOutput(in_port) ] inst = [parser.OFPInstructionActions(ofproto.OFPIT_APPLY_ACTIONS, actions)] ofmsg = parser.OFPFlowMod( datapath=datapath, hard_timeout=120, priority=50, match=match, instructions=inst, ) datapath.send_msg(ofmsg) # Change packet data pkt_eth.dst = macdst pkt_ipv4.dst = ipdst pkt_tcp.csum = 0 pkt.serialize() # Packet-Out actions = [parser.OFPActionOutput(out_port)] out = parser.OFPPacketOut( datapath=datapath, buffer_id=ofproto.OFP_NO_BUFFER, in_port=in_port, actions=actions, data=msg.data ) datapath.send_msg(out) # Handle ICMP packets elif pkt_icmp is not None: if pkt_icmp.type == icmp.ICMP_ECHO_REQUEST: if pkt_ipv4.dst == self.VIRTUAL_IP: mac_icmp = self.VIRTUAL_MAC self.logger.info("[ICMP] Request received") reply_icmp = packet.Packet() reply_icmp.add_protocol( ethernet.ethernet( ethertype=pkt_eth.ethertype, dst=pkt_eth.src, src=mac_icmp ) ) reply_icmp.add_protocol( ipv4.ipv4( dst=pkt_ipv4.src, src=pkt_ipv4.dst, proto=pkt_ipv4.proto ) ) reply_icmp.add_protocol( icmp.icmp( type_=icmp.ICMP_ECHO_REPLY, code=icmp.ICMP_ECHO_REPLY_CODE, csum=0, data=pkt_icmp.data ) ) reply_icmp.serialize() actions = [parser.OFPActionOutput(in_port)] packet_out = parser.OFPPacketOut( datapath=datapath, buffer_id=ofproto.OFP_NO_BUFFER, in_port=ofproto.OFPP_CONTROLLER, data=reply_icmp.data, actions=actions ) datapath.send_msg(packet_out) self.logger.info("[ICMP] Reply sent!") return else: return else: return # Drop packet types not in the specifications else: return
from .abstract import make_design def make_ascii(tiling): return "\n".join(gen_ascii(tiling)) def gen_ascii(tiling): faces, vlines, hlines, nodes = make_design(tiling) for i in range(0, len(vlines)): node_chars = ["+" if node else " " for node in nodes[i]] h_chars = ["-" if h else " " for h in hlines[i]] row = alternate(node_chars, h_chars) yield "".join(row).rstrip() face_chars = ["X" if face == -1 else " " for face in faces[i]] v_chars = ["|" if v else " " for v in vlines[i]] row = alternate(v_chars, face_chars) yield "".join(row).rstrip() i = len(vlines) node_chars = ["+" if node else " " for node in nodes[i]] h_chars = ["-" if h else " " for h in hlines[i]] row = alternate(node_chars, h_chars) yield "".join(row).rstrip() def alternate(first, second): assert len(second) in [len(first) - 1, len(first)] n = len(first) + len(second) for i in range(0, n): if i % 2 == 0: yield first[i // 2] else: yield second[i // 2]
from flask import Flask, request, redirect from datetime import datetime import os from google.cloud import datastore app = Flask(__name__) dataclient = datastore.Client() def addVisitor(): ent = dataclient.key('data','visitors') total = dataclient.get(key=ent) if total: total['total'] += 1 dataclient.put(total) else: total = datastore.Entity(key=ent) total['total'] = 0 dataclient.put(total) @app.route('/') def main_page(): ent = dataclient.key('data', 'posts') posts = dataclient.get(key=ent) article = "" with open('articles.html','r') as page: article = page.read() html = "" if posts: for post in posts['posts']: array = json.loads(post) raw = article.replace("!content!", array[0]) raw = raw.replace("!time!", array[1]) raw = raw.replace("!title!", array[2]) html += raw else: return 'No Posts!' @app.route('/version') def vers(): return 'This is app version B' @app.route('/instance') def getid(): instanceid = os.getenv('GAE_INSTANCE') return str(instanceid) @app.route('/version-id') def getversionid(): addVisitor() versionid = os.getenv('GAE_VERSION') return str(versionid) @app.route('/visitors') def getVisitor(): addVisitor() ent = dataclient.key('data','visitors') total = dataclient.get(key=ent) if total: return 'Total visitors: ' + str(total['total']) else: return 'Total Broke!' @app.route('/editor') def edit_page(): with open('editor.html','r') as page: return page.read() @app.route('/submit', methods = ['POST']) def submit_post(): password = request_form['pass'] if password == "mySuperAwesomePassword": content = request.form['content'] title = request.form['title'] time = str(datetime.utcnow()) post = json.dumps([content, title, time]) ent = dataclient.get(key=ent) if posts: posts['posts'] = [post] + posts['posts'] dataclient.put(posts) else: posts = datastore.Entity(key=ent) posts['posts'] = [post] dataclient.put(posts) return redirect('/') else: return redirect('/') if __name__ == '__main__': app.run(host='127.0.0.1', port=8080, debug=True)
#!/usr/bin/env python # -*- coding: utf-8 -*- ''' #============================================================================= # # FileName: flask_util_js.py # Desc: provide flask_util.js # 在 app.config 中可以配置: # FLASK_UTIL_JS_PATH: flask_util.js 的url路径 # FLASK_UTIL_JS_ENDPOINT: flask_util.js 的endpoint # # Author: dantezhu # Email: zny2008@gmail.com # HomePage: http://www.vimer.cn # # Created: 2012-07-09 17:23:51 # History: # 0.0.1 | dantezhu | 2012-07-09 17:23:51 | initialization # 0.1 | dantezhu | 2012-08-30 22:54:33 | 正式版本 # 0.2.0 | dantezhu | 2012-10-22 21:53:14 | 优化为实例的方式 # 0.2.3 | dantezhu | 2012-11-20 11:13:22 | 增加no cache # 0.2.4 | dantezhu | 2012-11-30 10:58:13 | content-type # 0.2.5 | dantezhu | 2012-12-04 11:41:15 | defaults不需要,缺少params报异常 # #============================================================================= ''' __version__ = (0, 2, 5) from flask import Response from flask import render_template_string, json FLASK_UTIL_JS_PATH = '/flask_util.js' FLASK_UTIL_JS_TPL_STRING = ''' {% autoescape false %} var flask_util = function() { var url_map = {{ json_url_map }}; function url_for(endpoint, params) { if (!params) { params = {}; } if (!url_map[endpoint]) { return ''; } var rule = url_map[endpoint]['rule']; var used_params = {}; var rex = /\<\s*(\w+:)*(\w+)\s*\>/ig; var path = rule.replace(rex, function(_i, _0, _1) { if (params[_1]) { used_params[_1] = params[_1]; return encodeURIComponent(params[_1]); } else { throw(_1 + ' does not exist in params'); } }); var query_string = ''; for(var k in params) { if (used_params[k]) { continue; } var v = params[k]; if(query_string.length > 0) { query_string += '&'; } query_string += encodeURIComponent(k)+'='+encodeURIComponent(v); } var url = path; if (query_string.length > 0) { url += '?'+query_string; } return url; } return { url_for: url_for } }(); {% endautoescape %} ''' class FlaskUtilJs(object): """FlaskUtilJs""" def __init__(self, app=None): """init with app :app: Flask instance """ self._app = None if app: self.init_app(app) def init_app(self, app): """ 安装到app上 """ if self._app is not None: raise Exception('Flask-Admin is already associated with an application.') self._app = app path = app.config.get('FLASK_UTIL_JS_PATH', FLASK_UTIL_JS_PATH) endpoint = app.config.get('FLASK_UTIL_JS_ENDPOINT', None) @app.route(path, endpoint=endpoint) def flask_util_js(): org_url_map = app.url_map._rules_by_endpoint #把重的逻辑还是放到python代码里 url_map = dict() for k,v in org_url_map.items(): url_map[k] = dict( rule=app.config["WEB_ROOT"] + (v[0].rule)[1:], ) json_url_map = json.dumps(url_map, indent=4, ensure_ascii=False) rv = render_template_string( FLASK_UTIL_JS_TPL_STRING, json_url_map=json_url_map ) return Response( rv, content_type='text/javascript; charset=UTF-8', headers={ 'Cache-Control':'no-cache', } ) # 最后把数据写到实例里 self._path = path self._endpoint = endpoint or flask_util_js.__name__ @property def path(self): return self._path @property def endpoint(self): return self._endpoint
# -*- coding: utf-8 -*- # # This file is part of the RefTelState project # # # """ RefTelState Ref (Reference Element) device of Type TelState """ # PyTango imports import PyTango from PyTango import DebugIt from PyTango.server import run from PyTango.server import Device, DeviceMeta from PyTango.server import attribute, command from PyTango.server import device_property from PyTango import AttrQuality, DispLevel, DevState from PyTango import AttrWriteType, PipeWriteType from SKATelState import SKATelState # Additional import # PROTECTED REGION ID(RefTelState.additionnal_import) ENABLED START # # PROTECTED REGION END # // RefTelState.additionnal_import __all__ = ["RefTelState", "main"] class RefTelState(SKATelState): """ Ref (Reference Element) device of Type TelState """ __metaclass__ = DeviceMeta # PROTECTED REGION ID(RefTelState.class_variable) ENABLED START # # PROTECTED REGION END # // RefTelState.class_variable # ----------------- # Device Properties # ----------------- # ---------- # Attributes # ---------- # --------------- # General methods # --------------- def init_device(self): SKATelState.init_device(self) # PROTECTED REGION ID(RefTelState.init_device) ENABLED START # # PROTECTED REGION END # // RefTelState.init_device def always_executed_hook(self): # PROTECTED REGION ID(RefTelState.always_executed_hook) ENABLED START # pass # PROTECTED REGION END # // RefTelState.always_executed_hook def delete_device(self): # PROTECTED REGION ID(RefTelState.delete_device) ENABLED START # pass # PROTECTED REGION END # // RefTelState.delete_device # ------------------ # Attributes methods # ------------------ # -------- # Commands # -------- # ---------- # Run server # ---------- def main(args=None, **kwargs): # PROTECTED REGION ID(RefTelState.main) ENABLED START # return run((RefTelState,), args=args, **kwargs) # PROTECTED REGION END # // RefTelState.main if __name__ == '__main__': main()
"""Batch Rename Program""" __all__ = ["BatchRenamer"] import re import sys from argparse import ArgumentError, Namespace from copy import deepcopy from shlex import split try: # pylint: disable=unused-import import readline except ModuleNotFoundError: print("History not available") from .filehistory import FileHistory from .parser import generate_parser CONFIRM = [True, "y", "yes"] DENY = [False, "n", "no"] BACK = ["b", "back", "q", "quit"] class BatchRenamer: """Renaming thing""" def __init__(self, *filenames, autofiles=None): self.parser, help_list = generate_parser(self) _help_dic = {} for _help in help_list: _help_dic.update(_help.cmds) self._help_dic = _help_dic self._help_text = "\n".join([h.help for h in help_list]) self._help_small = "\n".join([f" {h.usage}" for h in help_list]) self.files = [FileHistory(filename) for filename in filenames] self.autofiles = autofiles or [] def __call__(self): """Go thru renaming things""" if self.autofiles: self.automate(*self.autofiles) while True: response = input("Action: ") args = split(response) args[0] = args[0].lower() try: resp_args = self.parser.parse_args(args) except ArgumentError as e: error_args = Namespace() if e.message.startswith("unrecognized arguments"): print("ERROR: Invalid argument\n") setattr(error_args, "subparsers", [args[0]]) elif e.message.startswith("invalid choice"): print("ERROR: Unknown command") setattr(error_args, "small", True) else: print(e.message) self.print_help(error_args) else: resp_args.func(resp_args) @staticmethod def _low_input(message): """Get user input and lower it""" return input(message).lower() def _print_file_changes(self, args=None): if getattr(args, "automated", False): return for file_ in self.files: file_.print_changes() print("-" * 20) def automate_manual(self, args): """Pass in manual automation filenames""" filenames = args.filenames or split(input("Filepath(s): ")) self.automate(*filenames) def automate(self, *autofiles): """Take file with list of commands and make those changes""" for autofile in autofiles: try: with open(autofile, "r", encoding="utf-8") as fp: lines = fp.readlines() except FileNotFoundError: print( f"Unable to open {autofile}; moving to next file provided (if any)" ) else: for line in lines: split_args = self.parser.convert_arg_line_to_args(line) if split_args: args = self.parser.parse_args(split_args) setattr(args, "automated", True) args.func(args) def change_case(self, args): """Change the case of the filenames""" styles = args.styles or split(input("Styles?: ")) for file_ in self.files: file_.change_case(styles) self._print_file_changes(args) def append(self, args): """Append value to filenames either from a file or manually provided""" setattr(args, "side", r"$") setattr(args, "replace", args.append) setattr(args, "value", "{pad}{repl}") self._pend(args, "Append") def prepend(self, args): """Prepend value to filenames either from a file or manually provided""" setattr(args, "side", r"^") setattr(args, "replace", args.prepend) setattr(args, "value", "{repl}{pad}") self._pend(args, "Prepend") def _pend(self, args, msg="Pend"): """Add value to begining or end of filename from a file or manaully provided""" if not args.filenames and not args.find and not args.replace: do_files = self._low_input("Load from files? Yes or No?: ") if do_files in CONFIRM: self._pend_file(args) elif args.filenames: self._pend_file(args) if args.find or args.replace or not args.filenames: self._pend_manual(args, msg) self._print_file_changes(args) def _pend_file(self, og_args): """Add value to begining or end of filename from file""" args = deepcopy(og_args) for filename in args.filenames: try: with open(filename, "r", encoding="utf-8") as fp: lines = fp.readlines() except FileNotFoundError: print(f"Unable to open {filename}; moving to next file provided") continue for line in lines: temp = self.parser.convert_arg_line_to_args(line) try: find, repl = temp[:2] except ValueError: continue setattr(args, "find", find) setattr(args, "replace", repl) self._pend_manual(args) def _pend_manual(self, args, msg=None): """Add value to begining or end of filename""" if not args.find: find = input("Find: ") setattr(args, "find", find) if not args.replace: repl = args.replace or input(f"{msg}: ") setattr(args, "replace", repl) for file_ in self.files: if re.search(args.find, file_.rename.name): repl = args.value.format(pad=args.padding, repl=args.replace) file_.replace(args.side, repl) else: file_.noop() def change_ext(self, args): """Change file extension for files""" repl = args.ext or input("New Ext: ") pattern = args.pattern or input("Match Pattern (Leave blank for no pattern): ") for file_ in self.files: file_.change_ext(repl, pattern) self._print_file_changes(args) def print_help(self, args=None): """Display help message""" if args is None or getattr(args, "small", False): print(self._help_small) return commands = [s for s in getattr(args, "commands", []) if s in self._help_dic] if not commands: print(self._help_text) return for sub in args.commands: print(self._help_dic[sub].help) def insert_string(self, args): """Insert value in specific position""" val = args.value or input("Insert: ") test_file = self.files[0].rename.name while True: try: num = args.index or int(input("Index: ")) except ValueError: print("Please enter a positive or negative integer.") else: test_len = len(test_file) if num >= 0: idx = num if num < test_len else test_len find = r"^(.{" f"{idx}" r"})(.*)$" elif num < 0: idx = (-1 * num) if num > (-1 * test_len) else 0 find = r"^(.*?)(.{" f"{idx}" r"})$" repl = r"\1" f"{val}" r"\2" test = re.sub(find, repl, test_file) print(f"Example: {test}") good = args.confirm or self._low_input("Right index? ") if good in CONFIRM: break if good in BACK: return if good in DENY: args.index = None print() setattr(args, "find", find) setattr(args, "replace", repl) self.find_and_replace(args) def list_file_changes(self, _): """List the current changes to the files""" self._print_file_changes() def history(self, args): """Print history of file changes""" if args.peak: self.files[0].print_history() return for file_ in self.files: file_.print_history() print("-" * 20) def reset(self, args): """Reset filenames""" really = args.confirm or self._low_input("Really reset? No undoing this action. ") while True: if really in CONFIRM: for file_ in self.files: file_.reset() break if really in DENY: break really = self._low_input("Yes or No? ") def quit_app(self, args): """Exit program""" really = args.confirm or self._low_input("Are you sure you want to quit? ") while True: if really in CONFIRM: print("Thanks for using!") sys.exit() if really in DENY: break really = self._low_input("Yes or No? ") def find_and_replace(self, args): """Find pattern and replace with new pattern""" find = args.find or input("Find: ") repl = args.replace or input("Repl: ") for file_ in self.files: file_.replace(find, repl) self._print_file_changes(args) def save(self, args): """Save name changes""" really = args.confirm or self._low_input( "Are you sure you want to save new names? " ) while True: if really in CONFIRM: for file_ in self.files: file_.save() print("Files renamed.") break if really in DENY: print("No files renamed.") break really = self._low_input("Yes or No? ") def undo(self, args): """Undo last changes""" undone_all = True for _ in range(args.number): for file_ in self.files: undone_all = file_.undo() if not undone_all: break if not undone_all: break if undone_all and not getattr(args, "automated", False): self._print_file_changes() print( ("Last " if undone_all else "All ") + "change" + (" has" if undone_all else "s have") + " been undone." ) def save_and_quit(self, args): """save changes, exit the program""" really = args.confirm or ("Are you sure you want to save and quit? ") while True: if really in CONFIRM: args.confirm = True self.save(args) self.quit_app(args) if really in DENY: return really = self._low_input("Yes or No? ")
from fastapi import APIRouter # from .endpoints import router = APIRouter(prefix="/v1") # router.include_router(healthcheck.router)
""" We have a collection of rocks, each rock has a positive integer weight. Each turn, we choose the two heaviest rocks and smash them together. Suppose the stones have weights x and y with x <= y. The result of this smash is: If x == y, both stones are totally destroyed; If x != y, the stone of weight x is totally destroyed, and the stone of weight y has new weight y-x. At the end, there is at most 1 stone left. Return the weight of this stone (or 0 if there are no stones left.) """ class Solution: def lastStoneWeight(self, stones: List[int]) -> int: import heapq # Since in Python, the heap is implemented as minimum heap, # in order to have the maximum heap, we applied a trick here, # i.e. we applied the negation on the original values. neg_stones = [-stone for stone in stones] heapq.heapify(neg_stones) while len(neg_stones) > 1: y = heapq.heappop(neg_stones) x = heapq.heappop(neg_stones) if x != y: #new_weight = -((-y) - (-x)) new_weight = y - x heapq.heappush(neg_stones, new_weight) if neg_stones: return - neg_stones[0] else: return 0
from dataclasses import dataclass from typing import List import os import logging from .config import get_config @dataclass class User: "Class for storing information about the current user." name: str roles: List[str] visitor: bool = False _allowed_visitor_roles = set(('user', 'readdb', 'annotator', 'geodb', 'pgadmin', 'reporting', 'vis')) _disallowed_visitor_roles = set(('writedb', 'dev', 'admin')) def default_visitor_roles(): conf = get_config() # get default roles for visitors roles_in = conf.visitor_roles if roles_in is None: logging.getLogger('flask.error').info('Visitor handling is disabled.') return None roles = ['visitor'] for role in roles_in: if role in _disallowed_visitor_roles: logging.getLogger('flask.error').warning('Cannot assign role %s to visitors: Too many privileges. Skipping.', role) elif role not in _allowed_visitor_roles: logging.getLogger('flask.error').warning('Cannot assign role %s to visitors: Unknown role. Skipping.', role) else: roles.append(role) logging.getLogger('flask.error').info('Visitors will have the following roles: %s', ', '.join(roles)) return roles def visitor(roles): if roles is None: return None return User(name='visitor', roles=roles, visitor=True)
from collections import namedtuple Color = namedtuple("Color", "RED BLACK") class Node: def __init__(self): self.color = None self.height = None self.lis = None self.data = None self.size = None self.next = None self.right = None self.left = None @staticmethod def newNode(data): n = Node() n.data = data n.lis = -1 n.height = 1 n.size = 1 n.color = Color.RED return n class BinaryTree: def __init__(self): pass @staticmethod def add_head(data, head): temp_head = head n = Node.newNode(data) if head is None: head = n return head prev = None while head is not None: prev = head if head.data < data: head = head.right else: head = head.left if prev.data < data: prev.right = n else: prev.left = n return temp_head
""" Build a simple mdlstm network with peepholes: >>> n = buildSimpleMDLSTMNetwork(True) >>> print(n) simpleMDLstmNet Modules: [<BiasUnit 'bias'>, <LinearLayer 'i'>, <MDLSTMLayer 'MDlstm'>, <LinearLayer 'o'>] Connections: [<FullConnection 'f1': 'i' -> 'MDlstm'>, <FullConnection 'f2': 'bias' -> 'MDlstm'>, <FullConnection 'f3': 'MDlstm' -> 'o'>] Recurrent Connections: [<FullConnection 'r1': 'MDlstm' -> 'MDlstm'>, <IdentityConnection 'rstate': 'MDlstm' -> 'MDlstm'>] Check its gradient: >>> from pybrain.tests import gradientCheck >>> gradientCheck(n) Perfect gradient True Try writing it to an xml file, reread it and determine if it looks the same: >>> from pybrain.tests import xmlInvariance >>> xmlInvariance(n) Same representation Same function Same class """ __author__ = 'Tom Schaul, tom@idsia.ch' from pybrain.structure.networks.recurrent import RecurrentNetwork from pybrain import LinearLayer, FullConnection, MDLSTMLayer, BiasUnit, IdentityConnection from pybrain.tests import runModuleTestSuite def buildSimpleMDLSTMNetwork(peepholes = False): N = RecurrentNetwork('simpleMDLstmNet') i = LinearLayer(1, name = 'i') dim = 1 h = MDLSTMLayer(dim, peepholes = peepholes, name = 'MDlstm') o = LinearLayer(1, name = 'o') b = BiasUnit('bias') N.addModule(b) N.addOutputModule(o) N.addInputModule(i) N.addModule(h) N.addConnection(FullConnection(i, h, outSliceTo = 4*dim, name = 'f1')) N.addConnection(FullConnection(b, h, outSliceTo = 4*dim, name = 'f2')) N.addRecurrentConnection(FullConnection(h, h, inSliceTo = dim, outSliceTo = 4*dim, name = 'r1')) N.addRecurrentConnection(IdentityConnection(h, h, inSliceFrom = dim, outSliceFrom = 4*dim, name = 'rstate')) N.addConnection(FullConnection(h, o, inSliceTo = dim, name = 'f3')) N.sortModules() return N if __name__ == "__main__": runModuleTestSuite(__import__('__main__'))
# -*- coding: utf-8 -*- """ Created on Wed Jan 01 20:00:29 2020 @author: Ing. Daniel Villarreal """ from PyQt5.QtWidgets import QMainWindow from PyQt5.uic import loadUi import pandas as pd from src_gui.generateDataframe import DataFrameModel from Gui.View_dso import Ui_MainWindow # Clase de la subventana class Dso(QMainWindow, Ui_MainWindow): def __init__(self, parent=None): super(Dso,self).__init__(parent) Ui_MainWindow.__init__(self) self.setupUi(self) # loadUi('Gui/View_dso.ui', self) read = pd.ExcelFile('src_calc/onefile/DesignRestrictionResult.xlsx') a = read.parse('CompressionDesign') b = read.parse('FlexuralDesign_X') c = read.parse('FlexuralDesign_Y') d = read.parse('Ratio_DC') model = DataFrameModel(a) self.tableView_DComp.setModel(model) model = DataFrameModel(b) self.tableView_Dflexx.setModel(model) model = DataFrameModel(c) self.tableView_Dflexy.setModel(model) model = DataFrameModel(d) self.tableView_DSum.setModel(model) class Dso_A(QMainWindow, Ui_MainWindow): def __init__(self, parent=None): super(Dso_A,self).__init__(parent) Ui_MainWindow.__init__(self) self.setupUi(self) # loadUi('Gui/View_dso.ui', self) read = pd.ExcelFile('src_calc/files/A_DesignRestrictionResult.xlsx') a = read.parse('CompressionDesign') b = read.parse('FlexuralDesign_X') c = read.parse('FlexuralDesign_Y') d = read.parse('Ratio_DC') model = DataFrameModel(a) self.tableView_DComp.setModel(model) model = DataFrameModel(b) self.tableView_Dflexx.setModel(model) model = DataFrameModel(c) self.tableView_Dflexy.setModel(model) model = DataFrameModel(d) self.tableView_DSum.setModel(model) class Dso_B(QMainWindow, Ui_MainWindow): def __init__(self, parent=None): super(Dso_B,self).__init__(parent) Ui_MainWindow.__init__(self) self.setupUi(self) # loadUi('Gui/View_dso.ui', self) read = pd.ExcelFile('src_calc/files/B_DesignRestrictionResult.xlsx') a = read.parse('CompressionDesign') b = read.parse('FlexuralDesign_X') c = read.parse('FlexuralDesign_Y') d = read.parse('Ratio_DC') model = DataFrameModel(a) self.tableView_DComp.setModel(model) model = DataFrameModel(b) self.tableView_Dflexx.setModel(model) model = DataFrameModel(c) self.tableView_Dflexy.setModel(model) model = DataFrameModel(d) self.tableView_DSum.setModel(model)
from django.db import models from django.utils import timezone from django.contrib.contenttypes.fields import GenericForeignKey from django.contrib.contenttypes.models import ContentType from django.db import models from django.db.models import Max from django.utils import timezone # Create your models here. class Board(models.Model): #let's do the relational part after I've done the other fields title = models.CharField(max_length=255) Description = models.TextField(blank=True) #where I got the image https://mixkit.co/blog/trello-backgrounds-awesome-free-illustrations-for-trello-boards/ ImageUrl = models.URLField( default="https://mixkit.imgix.net/art/preview/mixkit-starry-night-sky-over-hills-and-water-85-original-large.png?q=80&auto=format%2Ccompress&h=700&q=80&dpr=1", blank=True, null=False) CreatedAt = models.DateTimeField(default=timezone.now) #EndsAt = Board.return_date_time_in_one_year() def __str__(self): return self.title # Need to figure out how to write helper methods #@classmethod #def return_date_time_in_one_year(): # now = timezone.now() # return now + timedelta(years=1) class Column(models.Model): #add in relational fields Name = models.CharField(max_length=255) location = models.DecimalField(max_digits=1, decimal_places=0) def __str__(self): return self.Name class Ticket(models.Model): # add in relational fields title = models.CharField(max_length=100) description = models.TextField(blank=True) TypeChoices = [('B','Bug'),('F','Feature'),('U','Urgent'),('S','Server Side'), ('C','Client Side')] Role = models.CharField(max_length=1, choices=TypeChoices) created_at = models.DateTimeField(default=timezone.now) due_date = models.DateTimeField(blank=True, null=True) # assigned_to = <-- also relational order = models.DecimalField(max_digits=3,decimal_places=0) def __str__(self): return self.title # We're gonna need to put in a comment class # And a notification class
""" ReflectiveLearning Application Student Arbeit Universität Siegen @author: Sukrut S. Sathaye User Interface: Main Screen """ import os import kivy from kivy.uix.screenmanager import ScreenManager, Screen from kivy.lang import Builder from kivy.properties import ObjectProperty, StringProperty import pickle import pprint from user_interface.global_variables import * from user_interface.st_home_screens import StudentScreen, TeacherScreen from source_code.ReflectiveLearningV7 import QuestionAnswerGenerator as qag from source_code.ReflectiveLearningV7 import TestOptionGen as testoptn from source_code.ReflectiveLearningV7 import NewTopicCreator as ntc from source_code.ReflectiveLearningV7 import ExtractKeyWords as ekw file_path = os.path.join(design_path, 'main_screen.kv') Builder.load_file(file_path) class MainScreen(Screen): def __init__(self, **kwargs): super(MainScreen, self).__init__(**kwargs) login_id = ObjectProperty(None) password = ObjectProperty(None) status = ObjectProperty(None) self.registered_users = { # need to keep complete names in production 's' : '1', 't' : 'a', 'a' : 'q' } self.add_screens() def add_screens(self): student_screen = StudentScreen(name='student') sm.add_widget(student_screen) teacher_screen = TeacherScreen(name='teacher') sm.add_widget(teacher_screen) admin_screen = AdminScreen(name='admin') sm.add_widget(admin_screen) def user_login(self): user = self.login_id.text password = self.password.text if user not in list(self.registered_users.keys()): self.status.text = 'Unregistered User' self.login_id.text = '' self.password.text = '' else: if user == 's': # student if password == self.registered_users[user]: self.status.text = 'Logged in as Student' sm.current = 'student' else: self.status.text = 'Invalid Password try again' self.password.text = '' elif user == 't': # teacher if password == self.registered_users[user]: self.status.text = 'Logged in as Teacher' sm.current = 'teacher' else: self.status.text = 'Invalid Password try again' self.password.text = '' elif user == 'a': if password == self.registered_users[user]: sm.current = 'admin' else: self.status.text = 'Invalid Password try again' self.password.text = '' class AdminScreen(Screen): def __init__(self, **kwargs): super(AdminScreen, self).__init__(**kwargs) topic = ObjectProperty(None) status = ObjectProperty(None) def add_new_topic(self): # topic = self.new_topic.text if not self.topic.text.isnumeric(): print("Existing Topics: ", topics) if self.topic.text not in topics: print("Adding new topic") adder = ntc(self.topic.text) self.status.text = 'Done' else: self.status.text = 'Topic already exists, add a different topic' self.topic.text = '' else: self.status.text = 'Invalid topic, please re-enter' self.topic.text = '' def debug(self): ds = DebugScreen(name='ds', topic=self.topic.text) sm.add_widget(ds) sm.current = 'ds' class DebugScreen(Screen): def __init__(self, topic, **kwargs): super(DebugScreen, self).__init__(**kwargs) self.topic = topic def compare_keywords(self): obj = ekw(self.topic) comp_kw = obj.compare_keywords(per_parra=True) pprint.pprint(comp_kw, indent=2,width= 100) def back(self): sm.current = 'admin'
import time import json import codecs import sys import multiprocessing as mp, os import core from argparse import ArgumentParser from digsandpaper.elasticsearch_indexing.index_knowledge_graph import index_knowledge_graph_fields # # from concurrent import futures # from pathos.multiprocessing import ProcessingPool # from pathos import multiprocessing as mpp # import multiprocessing as mp # import pathos # # from pathos.helpers import gzip """ Process code begins here """ def output_write(output_path): return codecs.open(output_path, 'w+') def chunk_file(file_name, size=1024 * 1024): """ Splitting data into chunks for parallel processing :param file_name - name of the file to split :param size - size of file to split """ file_end = os.path.getsize(file_name) with open(file_name, 'r') as f: chunk_end = f.tell() while True: chunk_start = chunk_end f.seek(size, 1) f.readline() chunk_end = f.tell() yield chunk_start, chunk_end - chunk_start if chunk_end > file_end: break def process_wrapper(core, input, chunk_start, chunk_size, queue): results = [] with open(input) as f: f.seek(chunk_start) lines = f.read(chunk_size).splitlines() for i, line in enumerate(lines): document = json.loads(line) try: document = core.process(document, create_knowledge_graph=True) except Exception as e: print "Failed - ", e # queue.put(json.dumps(document)) # print "Processing chunk - ", str(chunk_start), " File - ", str(i) def listener(queue, output): f = open(output, 'wb') while 1: message = queue.get() if message == 'kill': print "Done writing to file......." break f.write(message + '\n') f.flush() f.close() def run_parallel(input, output, core, processes=0): processes = processes or mp.cpu_count() processes += 2 # for writing manager = mp.Manager() queue = manager.Queue() pool = mp.Pool(processes) # put listener to work first watcher = pool.apply_async(listener, (queue, output)) jobs = [] for chunk_start, chunk_size in chunk_file(input): jobs.append(pool.apply_async(process_wrapper, (core, input, chunk_start, chunk_size, queue))) for job in jobs: job.get() queue.put('kill') pool.close() def run_serial(input, output, core, prefix='', indexing=True): output = codecs.open(output, 'w') index = 1 for line in codecs.open(input): print prefix, 'processing line number:', index start_time_doc = time.time() jl = json.loads(line) jl.pop('knowledge_graph', None) if 'content_extraction' in jl: ce = jl['content_extraction'] if 'inferlink_extractions' in ce: ce.pop('inferlink_extractions') jl['content_extraction'] = ce jl.pop('indexed', None) result = core.process(jl, create_knowledge_graph=True) if indexing: result = index_knowledge_graph_fields(result) if result: output.write(json.dumps(result) + '\n') time_taken_doc = time.time() - start_time_doc # if time_taken_doc > 5: # print prefix, "Took", str(time_taken_doc), " seconds" else: print 'Failed line number:', index index += 1 output.close() def process_one(x): # output = "output-%d.gz" % pathos.helpers.mp.current_process().getPid() output = c_options.outputPath + "/output-%d.jl" % mp.current_process().pid with codecs.open(output, "a+") as out: out.write('%s\n' % json.dumps(c.process(x))) def run_parallel_2(input_path, output_path, core, processes=0): lines = codecs.open(input_path, 'r').readlines() inputs = list() # pool = ProcessingPool(16) pool = mpp.Pool(8) for line in lines: inputs.append(json.loads(line)) # pool = .ProcessPoolExecutor(max_workers=8) # results = list(pool.map(process_one, inputs)) pool.map(process_one, inputs) # output_f = codecs.open(output_path, 'w') # for result in results: # output_f.write(json.dumps(result)) # output_f.write('\n') def run_parallel_3(input_path, output_path, config_path, processes): if not os.path.exists(output_path) or not os.path.isdir(output_path): raise Exception('temp path is invalid') # if len(os.listdir(temp_path)) != 0: # raise Exception('temp path is not empty') if processes < 1: raise Exception('invalid process number') # split input file into chunks print 'splitting input file...' with codecs.open(input_path, 'r') as input: input_chunk_file_handlers = [ codecs.open(os.path.join(output_path, 'input_chunk_{}.json'.format(i)), 'w') for i in xrange(processes)] idx = 0 for line in input: if line == '\n': continue input_chunk_file_handlers[idx].write(line) idx = (idx + 1) % processes for f in input_chunk_file_handlers: f.close() # create processes print 'creating workers...' print '-------------------' process_handlers = [] for i in xrange(processes): input_chunk_path = os.path.join(output_path, 'input_chunk_{}.json'.format(i)) output_chunk_path = os.path.join(output_path, 'output_chunk_{}.json'.format(i)) p = mp.Process(target=run_parallel_worker, args=(i, input_chunk_path, output_chunk_path, config_path)) process_handlers.append(p) # start processes for p in process_handlers: p.start() # wait till finish for p in process_handlers: p.join() print '-------------------' def run_parallel_worker(worker_id, input_chunk_path, output_chunk_path, config_path): print 'start worker #{}'.format(worker_id) c = core.Core(json.load(codecs.open(config_path, 'r'))) run_serial(input_chunk_path, output_chunk_path, c, prefix='worker #{}:'.format(worker_id)) print 'worker #{} finished'.format(worker_id) def usage(): return """\ Usage: python run_core.py [args] -i, --input <input_doc> Input file -o, --output <output_doc> Output file -c, --config <config> Config file Optional -m, --enable-multiprocessing -t, --thread <processes_count> Serial(default=0) Run Parallel(>0) """ if __name__ == "__main__": parser = ArgumentParser() parser.add_argument("-i", "--input", action="store", type=str, dest="inputPath") parser.add_argument("-o", "--output", action="store", type=str, dest="outputPath") parser.add_argument("-c", "--config", action="store", type=str, dest="configPath") parser.add_argument("-m", "--enable-multiprocessing", action="store_true", dest="enableMP") parser.add_argument("-t", "--thread", action="store", type=int, dest="threadCount", default=mp.cpu_count()) c_options, args = parser.parse_known_args() if not (c_options.inputPath and c_options.outputPath and c_options.configPath): print usage() sys.exit() try: start_time = time.time() if c_options.enableMP and c_options.threadCount > 1: print "processing parallelly" run_parallel_3( input_path=c_options.inputPath, output_path=c_options.outputPath, config_path=c_options.configPath, processes=c_options.threadCount) else: # print "processing serially" c = core.Core(json.load(codecs.open(c_options.configPath, 'r'))) run_serial(c_options.inputPath, c_options.outputPath, c) print('The script took {0} second !'.format(time.time() - start_time)) except Exception as e: print e
import glob import os import numpy as np import csv import cv2 import argparse parser = argparse.ArgumentParser(description="", add_help='How to use', prog='python creating_numpy.py <options>') parser.add_argument("-if", "--inputfile", default=None, help='Path to the CSV file [DEFAULT: "data/tarin.csv"]') parser.add_argument("-o", "--outputdir", default="../data/tarin_np/", help='Path to save the files to[DEFAULT: "data/tarin_np/"]') parser.add_argument("-in", "--inputdir", default="../data/tarin/", help='Path to actual images[DEFAULT: "data/tarin/"]') parser.add_argument("-s", "--skip", default="10000", help='number of records per file') parser.add_argument("-sz", "--size", default="64", help='size of the prodused Images ( default = 64 )') parser.add_argument("-gm", "--generatemapping", action='store_true', help='generates mappings of hashes to records') args = parser.parse_args() train_path = args.inputdir output_path = args.outputdir # get a list of all files file_list = sorted(glob.glob( os.path.join(train_path, '*.jpg'))) X_train = [] y_train = [] if args.inputfile is not None: csv_file = csv.reader(open(args.inputfile), delimiter=',') csv_file_1 = dict((rows[0], rows[2])for rows in csv_file) csv_file = csv_file_1 counter = 0 records_per_file = int(args.skip) image_size = (int(args.size), int(args.size)) files = [] for i in range (0,len(file_list)): if i % 100000 == 0 and i > 0: print("current=", i) try: temp_x = cv2.imread(file_list[i], 1) try: if args.inputfile is not None: y_train.append(csv_file[os.path.splitext(os.path.basename(file_list[i]))[0]]) X_train.append(cv2.resize(temp_x, image_size)) files.append(os.path.splitext(os.path.basename(file_list[i]))[0]) except: print("cant find entry, skipping!") if i % records_per_file == 0 and i > 0: np.save(output_path + '/X_' + str(counter) + '.npy', np.array(X_train)) if args.inputfile is not None: np.save(output_path + '/y_' + str(counter) + '.npy', np.array(y_train)) with open(output_path + '/hashes_X_' + str(counter) + '.txt', 'w') as f: for pick in files: f.write(pick + "\n") counter += 1 files = [] X_train = [] y_train = [] except: raise print('error', i) # save the last section if len(X_train) > 0: with open(output_path + '/hashes_X_' + str(counter) + '.txt', 'w') as f: for pick in files: f.write(pick + "\n") np.save(output_path + '/X_' + str(counter) + '.npy', np.array(X_train)) if args.inputfile is not None: np.save(output_path + '/y_' + str(counter) + '.npy', np.array(y_train))
from mlpug.pytorch.trainers.callbacks.basic import * from mlpug.pytorch.trainers.callbacks.callback import * from .checkpoint_manager import CheckpointManager from mlpug.pytorch.trainers.callbacks.lr_scheduler_wrapper import LRSchedulerWrapper from mlpug.pytorch.trainers.callbacks.metrics_logger import MetricsLoggingMode, TrainingMetricsLogger, TestMetricsLogger from mlpug.pytorch.trainers.callbacks.tensorboard import Tensorboard, AutoTensorboard from mlpug.pytorch.trainers.callbacks.distributed import DistributedSamplerManager from mlpug.pytorch.trainers.callbacks.cuda_memory import EmptyCudaCache, LogCudaMemory
""" Choropleth Map ============== A choropleth map of unemployment rate per county in the US """ # category: maps import altair as alt from vega_datasets import data counties = alt.topo_feature(data.us_10m.url, 'counties') source = data.unemployment.url alt.Chart(counties).mark_geoshape().encode( color='rate:Q' ).transform_lookup( lookup='id', from_=alt.LookupData(source, 'id', ['rate']) ).project( type='albersUsa' ).properties( width=500, height=300 )
# Copyright 1999-2021 Alibaba Group Holding Ltd. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import sys import numpy as np import pandas as pd import pytest import mars.oscar as mo from mars.serialization import AioDeserializer, AioSerializer from mars.services import start_services, stop_services, NodeRole from mars.services.storage import StorageAPI from mars.storage import StorageLevel @pytest.fixture async def actor_pools(): async def start_pool(): start_method = os.environ.get('POOL_START_METHOD', 'forkserver') \ if sys.platform != 'win32' else None pool = await mo.create_actor_pool('127.0.0.1', n_process=2, subprocess_start_method=start_method, labels=['main', 'sub', 'io']) await pool.start() return pool worker_pool = await start_pool() yield worker_pool await worker_pool.stop() @pytest.mark.asyncio async def test_storage_service(actor_pools): worker_pool = actor_pools if sys.platform == 'darwin': plasma_dir = '/tmp' else: plasma_dir = '/dev/shm' plasma_setup_params = dict( store_memory=10 * 1024 * 1024, plasma_directory=plasma_dir, check_dir_size=False) config = { "services": ["storage"], "storage": { "backends": ["plasma"], "plasma": plasma_setup_params, } } await start_services( NodeRole.WORKER, config, address=worker_pool.external_address) api = await StorageAPI.create('mock_session', worker_pool.external_address) value1 = np.random.rand(10, 10) await api.put('data1', value1) get_value1 = await api.get('data1') np.testing.assert_array_equal(value1, get_value1) # test api in subpool subpool_address = list(worker_pool._sub_processes.keys())[0] api2 = await StorageAPI.create('mock_session', subpool_address) assert api2._storage_handler_ref.address == subpool_address get_value1 = await api2.get('data1') np.testing.assert_array_equal(value1, get_value1) sliced_value = await api2.get('data1', conditions=[slice(None, None), slice(0, 4)]) np.testing.assert_array_equal(value1[:, :4], sliced_value) value2 = pd.DataFrame(value1) await api2.put('data2', value2) get_value2 = await api.get('data2') pd.testing.assert_frame_equal(value2, get_value2) # test writer and read buffers = await AioSerializer(value2).run() size = sum(getattr(buf, 'nbytes', len(buf)) for buf in buffers) # test open_reader and open_writer writer = await api.open_writer('write_key', size, StorageLevel.MEMORY) async with writer: for buf in buffers: await writer.write(buf) reader = await api.open_reader('write_key') async with reader: read_value = await AioDeserializer(reader).run() pd.testing.assert_frame_equal(value2, read_value) await stop_services(NodeRole.WORKER, address=worker_pool.external_address, config=config)
import sys sys.stdout.write("qwert\nyuiop...")
from . import views from django.urls import path # We specify an app name to reference the URL we need in our HTML templates app_name = 'bookmyslot' # The app(bookmyslot) specific URL's urlpatterns = [ path('mybookings/',views.BookingList.as_view(),name='list'), path('mybookings/<int:pk>/',views.BookingDetail.as_view(),name='detail'), path('update/<int:pk>/',views.BookingUpdate.as_view(),name='update'), path('delete/<int:pk>/',views.BookingDelete.as_view(),name='delete'), path('new/',views.BookingCreate.as_view(),name='create'), path('',views.HomeView.as_view(),name='home'), path('welcome/',views.WelcomeView.as_view(),name='welcome'), path('thanks/',views.ThanksView.as_view(),name='thanks'), path('search/',views.search,name='search_bookings') ]
import os import sys # Read arguments if len(sys.argv) != 2: raise ValueError('Please provide a filename input') filename = sys.argv[1] # Read file file_data = open(os.getcwd() + '/' + filename, 'r') # Parse file commands = [] for line in file_data.readlines(): commands.append(line.split(' ')) # Get answer horizontal_pos = 0 depth_pos = 0 for command in commands: direction = command[0] value = int(command[1]) if direction == 'forward': horizontal_pos += value elif direction == 'down': depth_pos += value elif direction == 'up': depth_pos -= value answer = horizontal_pos * depth_pos print(answer)
# coding=utf-8 import tensorflow as tf from tfninja.utils import loggerfactory logger = loggerfactory.get_logger(__name__) hello = tf.constant('hello ninjas!!') session = tf.Session() logger.info(session.run(hello))
from pycg3d import cg3d_vector from pycg3d import utils class CG3dCordsBase(object): def __init__(self): pass @property def origin(self): raise NotImplementedError @property def ex(self): raise NotImplementedError @property def ey(self): raise NotImplementedError @property def ez(self): raise NotImplementedError class CG3dRectCords(CG3dCordsBase): def __init__( self, origin, ex=None, ey=None, ez=None, px=None, py=None, pz=None, pxy=None, pyz=None, pzx=None ): """ :param origin: origin point of the axis :param ex: vector of X-axis (from origin) :param px: one point on X-axis :param ey: vector of Y-axis :param py: one point on Y-axis :param ez: vector of Z-axis :param pz: one point on Z-axis :param pxy: one point on XY plane :param pyz: one point on YZ plane :param pzx: one point on ZX plane """ self._origin = origin self._ex = self.fix_cords(origin, ex, ey, ez, px, py, pz, pxy, pyz, pzx) self._ey = self.fix_cords(origin, ey, ez, self._ex, py, pz, px, pyz, pzx, pxy) self._ez = self.fix_cords(origin, ez, self._ex, self._ey, pz, px, py, pzx, pxy, pyz) self._ex.nornalize() self._ey.normalize() self._ez.normalize() def fix_cords(self, origin, e1, e2, e3, p1, p2, p3, p12, p23, p31): """ fix e1 :param origin: :param e1: vector of axis-1 or None :param e2: vector of axis-2 or None :param e3: vector of axis-3 or None :param p1: one point on axis-1 or None :param p2: one point on axis-2 or None :param p3: one point on axis-3 or None :param p12: one point on plane 12 or None :param p23: one point on plane 23 or None :param p31: one point on plane 31 or None :return: """ assert isinstance(origin, cg3d_vector.CG3dVector) if e1: assert isinstance(e1, cg3d_vector.CG3dVector) return e1 if p1: assert isinstance(p1, cg3d_vector.CG3dVector) return p1-origin # e1 is not defined if e2: if e3: return utils.cross_product(e2, e3) elif p3: return utils.cross_product(e2, p3-origin) elif p23: return utils.cross_product(e2, p3-origin) else: raise ValueError elif p2: return self.fix_cords(origin, e1, p2-origin, e3, p1, p2, p3, p12, p23, p31) else: raise ValueError @property def origin(self): return self._origin @property def ex(self): return self._ex @property def ey(self): return self._ey @property def ez(self): return self._ez
from threading import Thread import asyncio import random import time import pytest import _thread from pybeehive.asyn.socket import SocketListener, SocketStreamer import pybeehive def test_no_zmq(async_hive): async_hive._socket_listener_class = None async_hive._socket_streamer_class = None with pytest.raises(RuntimeError): async_hive.socket_listener(('', 0))(lambda: None) with pytest.raises(RuntimeError): async_hive.socket_streamer(('', 0))(lambda: None) async_hive._socket_listener_class = SocketListener async_hive._socket_streamer_class = SocketStreamer # If run_in_new_loop is not the first argument, things break def test_messaging(run_in_new_loop, async_client_server): client, server = async_client_server async def _test(): msg = b'data' generator = server.iter_messages().__aiter__() for _ in range(5): await client.send(msg) received = await generator.__anext__() assert received == msg, 'Incorrect message sent to server' await client.shutdown() await server.shutdown() run_in_new_loop(_test) def test_socket_streamer_listener_loop(async_hive): address = '127.0.0.1', random.randint(7000, 10000) events = [] @async_hive.socket_listener(address) async def parse_event(event): event = pybeehive.Event(event.data + 1, created_at=event.created_at) events.append(event) return event async_hive.add(SocketStreamer(address)) async_hive.submit_event(pybeehive.Event(-1)) async_hive.run(threaded=True) start = time.time() while len(events) < 5 and time.time() - start < 2: time.sleep(1e-4) async_hive.close() assert len(events) >= 5, "Hive did not process all events" for i, e in enumerate(events): assert i == e.data, "Event data was not parsed by listener" def test_multiple_listeners_single_streamer(async_hive): address = '127.0.0.1', random.randint(7000, 10000) events = [] class Listener(SocketListener): async def parse_event(self, event): event = pybeehive.Event(event.data + 1, created_at=event.created_at) events.append(event) return event async_hive.add(SocketStreamer(address)) for _ in range(3): async_hive.add(Listener(address)) async_hive.submit_event(pybeehive.Event(-1)) async_hive.run(threaded=True) start = time.time() while len(events) < 12 and time.time() - start < 2: time.sleep(1e-4) async_hive.close() assert len(events) >= 12, "Hive did not process all events" for i, e in enumerate(events[:12]): # First three if i < 3: assert e.data == 0, "Multiple listeners sent incorrect events" # Last nine (each cycle is 3x) else: assert e.data == 1, "Streamer did not propagate events to listeners" def test_message_closed_server(async_hive): address = '127.0.0.1', random.randint(7000, 10000) events = [] @async_hive.socket_listener(address) async def parse_event(event): events.append(event) return event async_hive.submit_event(pybeehive.Event(-1)) async_hive.run(threaded=True) start = time.time() while len(events) < 1 and time.time() - start < 2: time.sleep(1e-4) async_hive.kill() assert len(events) >= 1, "Hive did not process all events" # This test can pass, but due to the inconsistent handling of # KeyboardInterrupt in zmq.asyncio.Socket.send it does not # pass consistently and is thus skipped in the normal tests. # If pyzmq is updated to fix this the skip can be removed. @pytest.mark.skip def test_interrupted_streamer_listener_loop(async_hive): address = '127.0.0.1', random.randint(7000, 10000) events = [] def interrupt(): time.sleep(1e-2) _thread.interrupt_main() async def parse_event(event): await asyncio.sleep(1e-4) events.append(event) return event streamer = SocketStreamer(address) listener = SocketListener(address) listener.parse_event = parse_event async_hive.add(streamer) async_hive.add(listener) async_hive.submit_event(pybeehive.Event(-1)) Thread(target=interrupt).start() async_hive.run() assert len(events) > 1, "Listener did not receive any events from streamer" assert not async_hive.alive, 'KeyboardInterrupt did not kill hive' assert not streamer.server.alive, 'KeyboardInterrupt did not kill server' assert not listener.client.alive, 'KeyboardInterrupt did not kill client'
import mxnet as mx import nnvm import random import itertools import numpy as np from nnvm.compiler import graph_attr, graph_util from nnvm import graph as _graph import math import tvm from mxnet import nd import sym_utils as sutils import utils import mrt as _mrt def random_shape(shp, min_dim=1, max_dim=64): for i in range(len(shp)): if shp[i] is None: shp[i] = random.randint(min_dim, max_dim) while np.product(shp) > (1 << 20): rand_idx = random.randint(0, len(shp)-1) shp[rand_idx] = max(shp[rand_idx] // 2, 1) return shp def random_bool(): return random.randint(0, 1) == 0 def random_select(arr): return arr[random.randint(0, len(arr)-1)] def random_int(): int_max = (2 ** 31) - 1 return random.randint(-int_max, int_max) def get_cvm_op(op_name): if op_name == 'null': return nnvm.sym.Variable op = getattr(nnvm.sym, op_name) if not op: raise OpNotImplemented( 'Operator {} is not supported.'.format(op_name)) return op def infer_shape(symbol): nnvm_graph = _graph.create(symbol) return graph_util.infer_shape(nnvm_graph) def to_json(symbol): graph = _graph.create(symbol) return graph.json() def adjust_shape(sym, ishp, oshp): isize, osize = np.product(ishp), np.product(oshp) if ishp != (isize,): print ("\tflatten", sym.attr('name'), ishp, "into (", isize, ",)") sym = get_cvm_op("reshape")(sym, shape=(isize,)) if isize < osize: repeats = int(math.ceil(osize / isize)) print ("\trepeat", sym.attr('name'), "times=", repeats) sym = get_cvm_op("repeat")(sym, repeats=repeats) _, shape = infer_shape(sym) print ("\tstrided_slice", sym.attr('name'), "with (0, ", osize, ")", shape) sym = get_cvm_op("strided_slice")(sym, begin=(0,), end=(osize,)) if oshp != (osize,): print ("\treshape", sym.attr('name'), "into ", oshp) sym = get_cvm_op("reshape")(sym, shape=oshp) return sym class Attr(): bool_t = '__bool_type' int_t = '__int_type' list_10_t = '__list_10_type' list_4_t = '__list_4_type' list_2_t = '__list_2_type' def __init__(self, in_len=1, out_len=1, param_candidate_rate=0, **kwargs): assert out_len > 0 self.in_len = in_len self.out_len = out_len self.param_candidate_rate = param_candidate_rate self.attrs = kwargs def input_size(self): return self.in_len def output_size(self): return self.out_len def attr(self): attrs = {} for k, v in self.attrs.items(): if v == Attr.bool_t: attrs[k] = random_bool() elif v == Attr.int_t: attrs[k] = random_int() elif v == Attr.list_2_t: attrs[k] = [random_int(), random_int()] elif v == Attr.list_4_t: attrs[k] = [random_int() for _ in range(4)] elif v == Attr.list_10_t: attrs[k] = [random_int() for _ in range(10)] else: attrs[k] = v return attrs NullAttr = Attr(0, 1) class EntryId(): def __init__(self, node, entry=0): assert entry < len(node) self._node = node self._entry = entry def __call__(self, node_id=True): if node_id: return self._node.id() return self._entry def __repr__(self): return "<%d, %d>" % (self._node.id(), self._entry) class Node(): _eid = 0 def __init__(self, op_name="null", attr=NullAttr): self._op_name = op_name self._attr = attr self._input_size = attr.input_size() if self._input_size is None: self._input_size = random.randint(1, 4) elif isinstance(self._input_size, list): length = len(self._input_size) - 1 self._input_size = self._input_size[random.randint(0, length)] self._output_size = attr.output_size() self._id = Node._eid Node._eid += self._output_size self._inputs = None def attr(self, name=None): if name is None: return self._attr.attr() return self._attr.__dict__[name] def name(self): return self._op_name def set_inputs(self, inputs): self._inputs = inputs def get_children(self): return self._inputs def input_size(self): return self._input_size def id(self): return self._id def entry(self, entry=None): if entry is None: if self._op_name == 'get_valid_counts': return EntryId(self, 1) return EntryId(self, 0) return EntryId(self, entry) def __len__(self): return self._output_size def op(self): return get_cvm_op(self._op_name) def __repr__(self): return "id=%3d op=%-20s inputs=%s" % (self._id, self._op_name, self._inputs) class IndexGraph(): def __init__(self): self.idx_graph = {} self.nid = 0 self.last_node = None def add_node(self, node): print ("Index Graph add node nid", "%3d"%self.nid, "node", node) self.idx_graph[self.nid] = node self.last_node = node self.nid = self.nid + 1 def random_entry(self, param_rate=0): nid = random.randint(0, self.nid - 1) if random.randint(0, 99) < param_rate: self.add_node(Node()) nid = self.nid - 1 node = self.idx_graph[nid] return node.entry() def __iter__(self): for i in sorted(self.idx_graph.keys()): yield self.idx_graph[i] def __getitem__(self, key): assert key >= 0 and key < self.nid return self.idx_graph[key] CVM_OPS = { # nn 'conv2d': Attr(in_len=[2, 3], param_candidate_rate=100, channels=Attr.int_t, kernel_size=Attr.list_2_t, strides=Attr.list_2_t, padding=Attr.list_2_t, dilation=Attr.list_2_t, groups=Attr.int_t, use_bias=Attr.bool_t), 'dense': Attr(in_len=[2, 3], param_candidate_rate=100, units=Attr.int_t, use_bias=Attr.bool_t), 'relu': Attr(), 'upsampling':Attr(scale=Attr.int_t), 'max_pool2d': Attr(pool_size=Attr.list_2_t, strides=Attr.list_2_t, padding=Attr.list_2_t), # reduce 'max': Attr(axis=Attr.list_10_t, keepdims=Attr.bool_t, exclude=Attr.bool_t), 'sum': Attr(axis=Attr.list_10_t, keepdims=Attr.bool_t, exclude=Attr.bool_t), # elemwise 'elemwise_add': Attr(in_len=2, param_candidate_rate=5), 'elemwise_sub': Attr(in_len=2, param_candidate_rate=5), 'abs': Attr(), 'log2': Attr(), 'negative': Attr(), 'clip': Attr(), 'cvm_clip': Attr(precision=Attr.int_t), 'cvm_left_shift': Attr(shift_bit=Attr.int_t, precision=Attr.int_t), 'cvm_right_shift': Attr(shift_bit=Attr.int_t, precision=Attr.int_t), # broadcast 'broadcast_add': Attr(in_len=2, param_candidate_rate=10), 'broadcast_sub': Attr(in_len=2, param_candidate_rate=10), 'broadcast_mul': Attr(in_len=2, param_candidate_rate=70), 'broadcast_max': Attr(in_len=2, param_candidate_rate=50), # vision 'get_valid_counts': Attr(out_len=2, score_threshold=Attr.int_t), 'non_max_suppression': Attr(in_len=2, param_candidate_rate=100, iou_threshold=Attr.int_t, force_suppress=Attr.bool_t, top_k=Attr.int_t, max_output_size=Attr.int_t), # transform 'expand_dims': Attr(axis=Attr.int_t, num_newaxis=Attr.int_t), 'transpose': Attr(axes=Attr.list_10_t), 'reshape': Attr(shape=Attr.list_10_t), 'squeeze': Attr(axis=Attr.int_t), 'concatenate': Attr(in_len=None, param_candidate_rate=5, axis=Attr.int_t), 'take': Attr(in_len=2, axis=Attr.int_t), 'strided_slice': Attr(begin=Attr.list_10_t, end=Attr.list_10_t, stride=Attr.list_10_t), 'repeat': Attr(repeats=Attr.int_t, axis=Attr.int_t), 'tile': Attr(reps=Attr.list_10_t), 'slice_like': Attr(in_len=2, param_candidate_rate=10, axis=Attr.list_10_t), 'cvm_lut': Attr(in_len=2), 'flatten': Attr(), } op_names = [ 'conv2d', 'dense', 'expand_dims', 'transpose', 'reshape', 'squeeze', 'concatenate', 'take', 'strided_slice', 'repeat', 'tile', 'broadcast_add', 'broadcast_sub', 'broadcast_mul', 'broadcast_mul', 'elemwise_add', 'elemwise_sub', ] name_count = {} def uniq_name(name): if name not in name_count: name_count[name] = 0 uniq = "%s_%d" % (name, name_count[name]) name_count[name] += 1 return uniq def sequence2symbol(idx_graph): def constraint_attr(attr, name, a_min, a_max): num = attr[name] if isinstance(num, list): for i, a in enumerate(num): alpha = a_max[i] - a_min[i] + 1 attr[name][i] = a % alpha + a_min[i] return alpha = a_max - a_min + 1 attr[name] = num % alpha + a_min graph, shapes = {}, {} params = {} inputs_ext = { 'data': {} } for node in idx_graph: input_eids = node.get_children() if input_eids is not None: childs = [graph[c()][c(False)] for c in input_eids] else: childs = None op, op_name = node.op(), node.name() nid, attr = node.id(), node.attr() shpes = [] requantize = False shift_bit = 0 if op_name == 'conv2d': ishp = random_shape([None, None, None, None]) ishp[0] = random.randint(1, 16) ishp[1] = random_select([3, 4, 16]) is_depthwise = random.randint(0, 100) > 80 attr['groups'] = ishp[1] if is_depthwise else 1 matrix_len = 1 if is_depthwise: attr['channels'] = ishp[1] else: constraint_attr(attr, 'channels', a_min=1, a_max=256) matrix_len = attr['channels'] h, w = ishp[2:] dh, dw = random.randint(1, min(3, h)), random.randint(1, min(3, w)) kh, kw = random.randint(1, max(1, h // dh)), random.randint(1, max(1, w // dw)) while (kh * kw) > (32768 / matrix_len): kh = kh // 2 kw = kw // 2 bit = math.ceil(math.log2(matrix_len * kh * kw)) attr['kernel_size'] = (kh, kw) attr['dilation'] = (dh, dw) constraint_attr(attr, 'strides', a_min=(1, 1), a_max=(5, 5)) constraint_attr(attr, 'padding', a_min=(1, 1), a_max=(7, 7)) attr['use_bias'] = False if len(childs) == 2 else True if is_depthwise: wshp = (ishp[1], 1, kh, kw) else: wshp = (attr['channels'], ishp[1], kh, kw) shpes = [ishp, wshp] if attr['use_bias']: shpes.append((wshp[0],)) bit += 1 requantize = True shift_bit = bit + 16 - 14 elif op_name == 'dense': ishp = random_shape([None, None], 10, 64) constraint_attr(attr, 'units', a_min=1, a_max=1000) bit = math.ceil(math.log2(attr['units'])) attr['use_bias'] = False if len(childs) ==2 else True wshp = (attr['units'], ishp[1]) shpes = [ishp, wshp] if attr['use_bias']: shpes.append((wshp[0],)) bit += 1 requantize = True shift_bit = bit + 16 - 14 elif op_name == 'expand_dims': ndim = random.randint(1, 3) ishp = random_shape([None] * ndim) constraint_attr(attr, 'axis', a_min=-ndim-1, a_max=ndim) constraint_attr(attr, 'num_newaxis', a_min=1, a_max=6-ndim) shpes = [ishp] elif op_name == 'transpose': ndim = random.randint(1, 6) ishp = random_shape([None] * ndim, max_dim=32) axes = list(range(0, ndim)) random.shuffle(axes) attr['axes'] = axes shpes = [ishp] elif op_name == 'reshape': ndim = random.randint(1, 4) shape = random_shape([None] * ndim) attr['shape'] = shape size = np.product(shape) shpes = [(size,)] elif op_name == 'squeeze': ndim = random.randint(2, 5) ishp = random_shape([None] * ndim) constraint_attr(attr, 'axis', a_min=-ndim, a_max=ndim-1) ishp[attr['axis']] = 1 shpes = [ishp] elif op_name == 'concatenate': ndim = random.randint(1, 4) ishp = random_shape([None] * ndim) constraint_attr(attr, 'axis', a_min=-ndim, a_max=ndim-1) axis = attr['axis'] if attr['axis'] >= 0 else attr['axis']+ndim for _ in range(len(childs)): shp = [random.randint(1, 64) if i==axis else s for i,s in enumerate(ishp)] shpes.append(shp) elif op_name == 'take': ndim = random.randint(1, 3) ishp = random_shape([None] * ndim) constraint_attr(attr, 'axis', a_min=-ndim, a_max=ndim) attr['axis'] = None if attr['axis'] == ndim else attr['axis'] ndim = random.randint(1, 2) wshp = random_shape([None] * ndim) shpes = [ishp, wshp] elif op_name == 'strided_slice': ndim = random.randint(1, 4) ishp = random_shape([None] * ndim) begin, end, stride = [], [], [] for s in ishp: st = random_select([-3, -2, -1, 1, 2, 3]) if s == 1: b = 0 e = 1 if st > 0 else -s-1 else: b = random.randint(0, s-1) e = random.randint(0, s-2) e = e if e < b else e+1 if st > 0: b, e = (b, e) if b < e else (e, b) else: b, e = (e, b) if b < e else (b, e) b = b-s if random_bool() else b e = e-s if random_bool() else e begin.append(b) end.append(e) stride.append(st) attr['begin'], attr['end'], attr['stride'] = begin, end, stride shpes = [ishp] elif op_name == 'repeat': ndim = random.randint(1, 4) ishp = random_shape([None] * ndim) constraint_attr(attr, 'repeats', 1, 10) constraint_attr(attr, 'axis', -ndim, ndim-1) shpes = [ishp] elif op_name == 'tile': ndim = random.randint(1, 4) ishp = random_shape([None] * ndim) rdim = random.randint(1, 5) attr['reps'] = [random.randint(1, 4) for _ in range(rdim)] shpes = [ishp] elif op_name == 'flatten': ndim = random.randint(1, 4) ishp = random_shape([None] * ndim) shpes = [ishp] elif op_name in ['broadcast_add', 'broadcast_sub', 'broadcast_mul', 'broadcast_max']: adim = random.randint(1, 4) bdim = random.randint(1, 4) max_dim = max(adim, bdim) shp = random_shape([None] * max_dim) ashp = [1 if random_bool() else shp[max_dim-adim+i] for i in range(adim)] bshp = [1 if random_bool() else shp[max_dim-bdim+i] for i in range(bdim)] shpes = [ashp, bshp] elif op_name in ['elemwise_add', 'elemwise_sub']: ndim = random.randint(1, 4) ishp = random_shape([None] * ndim) shpes = [ishp, ishp] print (op_name, attr, "childs shape:", shpes) if nid==0: ndim = random.randint(1, 4) oshape = [random_shape([None] * ndim)] node = op("data", shape=oshape[0], precision=8) inputs_ext["data"]["shape"] = oshape[0] print ("data", oshape) elif op_name == 'null': node = op(uniq_name("param")) oshape = None elif childs is not None: new_childs = [] for i, c in enumerate(childs): cname, cop_name = c.attr('name'), c.attr('op_name') if shapes[cname] is None: new_name = uniq_name("parameter") new_c = get_cvm_op("null")(new_name, shape=shpes[i], precision=8) shapes[new_name] = shpes[i] param = np.random.randint(-127, 127, shpes[i], "int32") params[new_name] = tvm.nd.array(param) else: new_c = adjust_shape(c, shapes[cname][input_eids[i](False)], shpes[i]) new_childs.append(new_c) node = op(*new_childs, **attr) if requantize: # node = get_cvm_op("cvm_right_shift")(node, shift_bit=shift_bit, precision=8) node = get_cvm_op("cvm_clip")(node, precision=8) ishape, oshape = infer_shape(node) print (op_name, "name:", node.attr('name'), "output shape:", oshape) if len(oshape) == 1: bias = get_cvm_op("null")(uniq_name("parameter"), shape=oshape[0], precision=8) params[bias.attr('name')] = tvm.nd.array(np.random.randint(-127, 127, oshape[0], "int32")) node = get_cvm_op("elemwise_add")(node, bias) node = get_cvm_op("cvm_clip")(node, precision=8) else: assert False shapes[node.attr('name')] = oshape graph[nid] = node return graph[idx_graph.last_node.id()], params, inputs_ext def gen_sequence(): graph_size = random.randint(1, 100) print ("Graph Length", graph_size) # op_names.extend(['conv2d' for _ in range(5)]) # op_names.extend(['dense' for _ in range(2)]) ops_count = len(op_names) ops = [random.randint(0, ops_count-1) for _ in range(graph_size)] ops = [op_names[idx] for idx in ops] print ("Graph Ops", " -> ".join(ops)) idx_graph = IndexGraph() Node._eid = 0 out = Node() idx_graph.add_node(out) for op_name in ops: op = Node(op_name, CVM_OPS[op_name]) input_size = op.input_size() param_rate = op.attr('param_candidate_rate') inputs = [out.entry() if i==0 else idx_graph.random_entry(param_rate) \ for i in range(input_size)] op.set_inputs(inputs) idx_graph.add_node(op) out = op return idx_graph def to_nnvm(sym, params, inputs_ext, model_name): dshp = inputs_ext['data']['shape'] data = tvm.nd.array(np.random.randint(-127, 127, dshp, "int32")) _mrt.std_dump(sym, params, inputs_ext, data, model_name, is_mxnet=False, batch=True) def cvm_model(): graph = gen_sequence() symbol, params, inputs_ext = sequence2symbol(graph) open("/tmp/cvm_model.json", "w").write(to_json(symbol)) param_bytes = nnvm.compiler.save_param_dict(params) open("/tmp/cvm_model.params", "wb").write(param_bytes) model_name = uniq_name("random_4") to_nnvm(symbol, params, inputs_ext, model_name) def load_model(): sym_json = open("/tmp/cvm_model.json", "r").read() param_bytes = open("/tmp/cvm_model.params", "rb").read() params = nnvm.compiler.load_param_dict(param_bytes) nnvm_graph = _graph.load_json(sym_json) for sym in sutils.topo_sort(nnvm_graph.symbol): name, op_name = sym.attr('name'), sym.attr('op_name') if op_name == 'repeat': _, oshape = infer_shape(sym) print (op_name, name, oshape) # ishape, oshape = graph_util.infer_shape(nnvm_graph) # print (ishape, oshape) model_name = "random_test" inputs_ext = { 'data': { 'shape': (25, 32, 28, 28) }} to_nnvm(nnvm_graph.symbol, params, inputs_ext, model_name) exit() for i in range(10): cvm_model()
############### Configuration file ############### import math start_epoch = 1 num_epochs = 60 batch_size = 8 optim_type = 'Adam' lr = 0.00001 weight_decay = 0.0005 num_samples = 25 beta_type = "Blundell" mean = { 'cifar10': (0.4914, 0.4822, 0.4465), 'cifar100': (0.5071, 0.4867, 0.4408), 'mnist': (0.1307,), 'stl10': (0.485, 0.456, 0.406), 'origa': (0.5, 0.5, 0.5), } std = { 'cifar10': (0.2023, 0.1994, 0.2010), 'cifar100': (0.2675, 0.2565, 0.2761), 'mnist': (0.3081,), 'stl10': (0.229, 0.224, 0.225), 'origa': (0.5, 0.5, 0.5), } # Only for cifar-10 classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck') def learning_rate(init, epoch): optim_factor = 0 if(epoch > 160): optim_factor = 3 elif(epoch > 120): optim_factor = 2 elif(epoch > 60): optim_factor = 1 def dynamic_lr(init, epoch): optim_factor = 1 if (epoch > 60): optim_factor = 500 elif (epoch > 30): optim_factor = 100 elif (epoch > 10): optim_factor = 10 return init/optim_factor def get_hms(seconds): m, s = divmod(seconds, 60) h, m = divmod(m, 60) return h, m, s
import numpy as np import matplotlib.pyplot as plt from profit.sur.backend.gp_functions_old import invert, nll, predict_f, \ get_marginal_variance_BBQ, wld_get_marginal_variance from profit.sur.backend.kernels import kern_sqexp from profit.util.halton import halton def f(x): return x*np.cos(10*x) # Custom function to build GP matrix def build_K(xa, xb, hyp, K): for i in np.arange(len(xa)): for j in np.arange(len(xb)): K[i, j] = kern_sqexp(xa[i], xb[j], hyp[0]) noise_train = 0.01 #ntrain = 20 for ntrain in range(1, 31): xtrain = halton(ntrain, 1) ftrain = f(xtrain) np.random.seed(0) ytrain = ftrain + noise_train*np.random.randn(ntrain, 1) # GP regression with fixed kernel hyperparameters hyp = [0.1, 1e-4] # l and sig_noise**2 K = np.empty((ntrain, ntrain)) # train-train build_K(xtrain, xtrain, hyp, K) # writes inside K Ky = K + hyp[-1]*np.eye(ntrain) Kyinv = invert(Ky, 4, 1e-6) # using gp_functions.invert ntest = 300 xtest = np.linspace(0, 1, ntest) ftest = f(xtest) Ks = np.empty((ntrain, ntest)) # train-test Kss = np.empty((ntest, ntest)) # test-test build_K(xtrain, xtest, hyp, Ks) build_K(xtest, xtest, hyp, Kss) fmean = Ks.T.dot(Kyinv.dot(ytrain)) # predictive mean Ef, varf = predict_f(hyp, xtrain.reshape(-1, 1), ytrain.reshape(-1, 1), xtest.reshape(-1, 1), neig=8)# posterior # Estimation and variance varf = np.diag(varf) # we keep only the diag because the variance is on it, the other terms are covariance plt.figure() plt.plot(xtrain, ytrain, 'kx') plt.plot(xtest, ftest, 'm-') plt.plot(xtest, fmean, 'r--') axes = plt.gca() axes.set_ylim([-1.5, 1]) plt.title('Random Gaussian Process with '+ str(ntrain) + ' observation(s) hyp = [0.1, 1e-4]') plt.fill_between(xtest, # x (fmean.flatten() + 2 * np.sqrt(varf)), # y1 (fmean.flatten() - 2 * np.sqrt(varf)), facecolor='blue', alpha=0.4) # y2 plt.legend(('training', 'reference', 'prediction', 'Posterior Variance')) plt.savefig('Random_' + str(ntrain)) #plt.show()
# General course information COURSE_NUMBER = "CS 106A" COURSE_NAME = "Programming Methodology" COURSE_TITLE = COURSE_NUMBER + ": " + COURSE_NAME CS198_NUMBER = 1 # B = 2, X = 3 # General quarter information QUARTER_NUMBER = 1188 QUARTER_NAME = "Summer" QUARTER_YEAR = "2018" QUARTER_FULL_NAME = QUARTER_NAME + " " + QUARTER_YEAR QUARTER_OVER = True # Set to True to add banner at the top redirecting to newer version of webpage # Lecture information (displayed at top of home page) LECTURE_DAYS = ["Monday", "Tuesday", "Wednesday", "Thursday"] LECTURE_TIME = "11:30AM-12:20PM PST" LECTURE_LOCATION = "NVIDIA Auditorium" LECTURE_LOCATION_LINK = "https://www.google.com/maps/place/NVIDIA+Auditorium/@37.4277284,-122.1763905,17z/data=!3m1!4b1!4m5!3m4!1s0x808fbb2ac97723cb:0xa6e8fc1a7a5f2c29!8m2!3d37.4277284!4d-122.1741965" LECTURE_ASSIGNMENTS_LINK = "hashed-assignments.txt" LECTURE_FEEDBACK_LINK = "https://docs.google.com/forms/d/e/1FAIpQLSeqfuZy6h7FI5Bbuck20kUOXjeR7pPEdj_DKPBJrHT-PXNHUQ/viewform?usp=sf_link" # Length > 0 # Course staff (displayed in left sidebar and on staff page) STAFF_INFO = [ { "POSITION": "Instructor", "NAME": "Colin Kincaid", "IMAGE": "ckincaid.jpg", "EMAIL": "ckincaid@stanford.edu", "OFFICE_HOURS_LOCATION": "Gates B02", "OFFICE_HOURS_DATETIME": "Mon-Thu 12:30-1:30PM", "DESCRIPTION": "The instructor teaches lectures and manages the overall course. Contact the instructor if you have a question that cannot be answered by your section leader; the SLs are your primary email contact for all questions about homework or other course issues. Please also cc your section leader and/or Head TA. In addition to at his office hours, please feel free to ask Colin questions before/after any lecture." }, { "POSITION": "Head TA", "NAME": "Annie Hu", "IMAGE": "anniehu.jpg", "EMAIL": "anniehu@stanford.edu", "OFFICE_HOURS_LOCATION": "Gates B02", "OFFICE_HOURS_DATETIME": "Sun, Wed 5-7PM", "DESCRIPTION": "The Head TA manages the section leaders and also oversees important course activities such as grading and section problems. Contact the Head TA if you need a regrade on an assignment, or have a question that cannot be answered by your section leader; the SLs are your primary email contact for all questions about homework or other course issues. Please also cc your section leader and/or instructor." } ] # Note: section leader names MUST be formatted "NAME (SUNET)" as the image for a given Section Leader is assumed to be SUNET.jpg. SECTION_LEADERS = [ "Alex Mallery (amallery)", "Arjun Sawhney (sawhneya)", "Avery Wang (awvry952)", "Belce Dogru (belce)", "Diego Hernandez (diegoh)", "Garrick Fernandez (gfaerr)", "Jared Bitz (jbitz)", "Jennie Yang (jenniey)", "Jesse Doan (jdoan21)", "Jonathan Gomes Selman (jgs8)", "Matthew Katzman (mkatzman)", "Meng Zhang (mz315)", "Michelle McGhee (mmcghee)", "Ruiqi Chen (rchensix)", "Shanon Reckinger (mcintyrs)", "Yoni Lerner (yonlern)", "Allison Tielking (atielkin)", "Connor Meany (cmeany)", "Deanna Garcia (dgarcia5)", "Greg Ramel (gramel)", "Drew Bassilakis (abass20)" ] SL_INDEX = range(len(SECTION_LEADERS)) # LaIR (listed in left sidebar) LAIR_HOURS = "Sun-Wed, 7-11PM" # SCPD (listed in left sidebar) SCPD_OFFICE_HOURS = [] SCPD_OFFICE_HOURS_LINK = "http://www.queuestatus.com/queues/122" SCPD_OFFICE_HOURS_DESCRIPTION = "for help during the times below (free QueueStatus account required)." # Exams (displayed in left sidebar, but locations and review session are only displayed on exam subpages) MIDTERM = { "DATE": "Monday, July 23", "TIME": "7-9PM PST", "LOCATIONS": [ # A list of objects containing TITLE, LOCATION, MAP_LINK { "TITLE": "Exam", "LOCATION": "Hewlett 200", "MAP_LINK": "https://www.google.com/maps/embed?pb=!1m18!1m12!1m3!1d3168.345197243158!2d-122.1750263848679!3d37.42894923975373!2m3!1f0!2f0!3f0!3m2!1i1024!2i768!4f13.1!3m3!1m2!1s0x808fbb2ae177cc91%3A0x5351ffed56456da8!2sWilliam+R.+Hewlett+Teaching+Center%2C+370+Serra+Mall%2C+Stanford%2C+CA+94305!5e0!3m2!1sen!2sus!4v1500400060838" } ], "REVIEW_SESSION": { "DATE": "Friday, July 20", "TIME": "1:30-2:50PM PST", "LOCATION": "Gates B01 (basement)", "MAP_LINK": "https://www.google.com/maps/embed?pb=!1m18!1m12!1m3!1d3168.2942783500653!2d-122.17568493444799!3d37.4301523298236!2m3!1f0!2f0!3f0!3m2!1i1024!2i768!4f13.1!3m3!1m2!1s0x808fbb2b3f50f727%3A0xfd9cc3200ee97fda!2sGates+Computer+Science%2C+353+Serra+Mall%2C+Stanford%2C+CA+94305!5e0!3m2!1sen!2sus!4v1500425297459" } } FINAL_EXAM = { "DATE": "Friday, August 17", "TIME": "12:15-3:15PM PST", "LOCATIONS": [ # A list of objects containing TITLE, LOCATION, MAP_LINK { "TITLE": "Exam", "LOCATION": "Dinkelspiel Auditorium", "MAP_LINK": "https://www.google.com/maps/embed?pb=!1m18!1m12!1m3!1d3168.551960752374!2d-122.17208698447611!3d37.42406357982489!2m3!1f0!2f0!3f0!3m2!1i1024!2i768!4f13.1!3m3!1m2!1s0x808fbad417d5a965%3A0xff6e238283d53800!2sDinkelspiel+Auditorium!5e0!3m2!1sen!2sus!4v1533930014794" } ], "REVIEW_SESSION": { "DATE": "Mon/Tue, August 13/14", "TIME": "11:30AM-12:20PM PST", "LOCATION": "NVIDIA Auditorium", "MAP_LINK": "https://www.google.com/maps/embed?pb=!1m18!1m12!1m3!1d3168.396866793715!2d-122.17639054916224!3d37.42772837972516!2m3!1f0!2f0!3f0!3m2!1i1024!2i768!4f13.1!3m3!1m2!1s0x808fbb2ac97723cb%3A0xa6e8fc1a7a5f2c29!2sNVIDIA+Auditorium!5e0!3m2!1sen!2sus!4v1502919715852" } } # Assignments (displayed in Assignments dropdown at the top) STYLE_GUIDE = True PAIR_PROGRAMMING = True ASSIGNMENTS = [ { "NAME": "Karel the Robot", "LINK": "karel.html" }, { "NAME": "Intro to Java", "LINK": "introToJava.html" }, { "NAME": "Snowman", "LINK": "snowman.html" }, { "NAME": "Breakout", "LINK": "breakout.html" }, { "NAME": "ImageShop", "LINK": "imageshop.html" }, { "NAME": "BiasBars", "LINK": "biasbars.html" } ] ASSIGNMENT_DUE_TIME = "11AM PST" # Software SOFTWARE = "Eclipse" SOFTWARE_ICON = "eclipse-icon.png" SOFTWARE_LINK = "eclipse" # Stanford Library LIBRARY_DOCS_LINK = "http://stanford.edu/~stepp/acmdoc/" BLANK_PROJECTS = [ { "NAME": "Blank Karel Project", "LINK": "/resources/BlankKarelProject.zip" }, { "NAME": "Blank Java Project", "LINK": "/resources/BlankJavaProject.zip" } ]
import datetime import pytest import auth try: import mock except ImportError: from unittest import mock class Test_purge_login_tokens: @mock.patch('auth.datetime') def test_not_yet_expired_tokens_are_kept(self, stub_datetime): auth.login_tokens = { ('token', 'username'): datetime.datetime.max, } stub_datetime.datetime.now.return_value = datetime.datetime.min auth.purge_login_tokens() assert auth.login_tokens @mock.patch('auth.datetime') def test_expired_tokens_are_discarded(self, stub_datetime): auth.login_tokens = { ('token', 'username'): datetime.datetime.min, } stub_datetime.datetime.now.return_value = datetime.datetime.max auth.purge_login_tokens() assert not auth.login_tokens class Test_log_in_as_user: @mock.patch('auth.config') @mock.patch('auth.datetime') def test_cookies_have_correct_lifetime(self, stub_datetime, stub_config): stub_config.login_token_lifetime = 42 stub_datetime.datetime.now.return_value = datetime.datetime.min stub_datetime.timedelta = datetime.timedelta stub_request = mock.Mock() auth.log_in_as_user(stub_request, 'user') expires = list(auth.login_tokens.values())[0] lifetime = expires - datetime.datetime.min assert lifetime == datetime.timedelta(42) class Test__parse_login_cookie: @pytest.mark.parametrize("cookie", [ "", " ", " ", " asdf", "asdf", "asdf ", "asdf asdf", "asdf asdf asdf", ]) def test_returns_none_for_wrong_format(self, cookie): username, token = auth._parse_login_cookie(cookie) assert token is None @pytest.mark.parametrize("cookie", [ "abc 123", ]) def test_returns_username_and_token(self, cookie): username, token = auth._parse_login_cookie(cookie) assert username and token
import time import requests def compute_collateral_benefit(num_of_top_isp_rpki_adopters, rpki_adoption_propability_list): print("### Collateral benefit ###") for rpki_adopters_value in num_of_top_isp_rpki_adopters: for rpki_adoption_propability in rpki_adoption_propability_list: print("Top ISP RPKI Adopters: " + str(rpki_adopters_value) + " , RPKI Adoption Propability: " + str(rpki_adoption_propability)) sim_data = { "simulation_type": "random", "legitimate_AS": 0, "legitimate_prefix": "x.y.z.w/m", "hijacker_AS": 0, "hijacker_prefix": "x.y.z.w/m", "hijack_type": 0, "hijack_prefix_type": "exact", "anycast_ASes": [0], "mitigation_prefix": "x.y.z.w/m", "rpki_rov_mode": "manual", "nb_of_sims": 20, "nb_of_reps": 1, "caida_as_graph_dataset": "20211001", "caida_ixps_datasets": "202107", "max_nb_anycast_ASes": 2, "realistic_rpki_rov": False, "num_of_top_isp_rpki_adopters": rpki_adopters_value, "rpki_adoption_propability": rpki_adoption_propability } response = requests.post('http://127.0.0.1:5000/launch_simulation', json=sim_data) print(response.json()) time.sleep(8 * 60) #after 8mins do the next request def compute_today_rov_status_other_random_prop(num_of_top_isp_rpki_adopters, rpki_adoption_propability, other_random_prop_list): print("### Today ROV status + Other ASes ###") for prop_value in other_random_prop_list: print("Today ROV status: " + str(num_of_top_isp_rpki_adopters) + " , Deployment Probability of other ASes: " + str(prop_value)) sim_data = { "simulation_type": "random", "legitimate_AS": 0, "legitimate_prefix": "x.y.z.w/m", "hijacker_AS": 0, "hijacker_prefix": "x.y.z.w/m", "hijack_type": 0, "hijack_prefix_type": "exact", "anycast_ASes": [0], "mitigation_prefix": "x.y.z.w/m", "rpki_rov_mode": "today_rov_status+other_random_prop", "nb_of_sims": 20, "nb_of_reps": 1, "caida_as_graph_dataset": "20211001", "caida_ixps_datasets": "202107", "max_nb_anycast_ASes": 2, "realistic_rpki_rov": False, "num_of_top_isp_rpki_adopters": num_of_top_isp_rpki_adopters, "rpki_adoption_propability": rpki_adoption_propability, "other_random_prop": prop_value } response = requests.post('http://127.0.0.1:5000/launch_simulation', json=sim_data) print(response.json()) time.sleep(10 * 60) # after 10 mins do the next request def compute_top_isps_rov_other_random_prop(num_of_top_isp_rpki_adopters, rpki_adoption_propability, other_random_prop_list): print("### Top ISPs ROV + Other ASes ###") for prop_value in other_random_prop_list: print("Top ISPs ROV number: " + str( num_of_top_isp_rpki_adopters) + " , Deployment Probability of other ASes: " + str(prop_value)) sim_data = { "simulation_type": "random", "legitimate_AS": 0, "legitimate_prefix": "x.y.z.w/m", "hijacker_AS": 0, "hijacker_prefix": "x.y.z.w/m", "hijack_type": 0, "hijack_prefix_type": "exact", "anycast_ASes": [0], "mitigation_prefix": "x.y.z.w/m", "rpki_rov_mode": "top_isps_rov+other_random_prop", "nb_of_sims": 20, "nb_of_reps": 1, "caida_as_graph_dataset": "20211001", "caida_ixps_datasets": "202107", "max_nb_anycast_ASes": 2, "realistic_rpki_rov": False, "num_of_top_isp_rpki_adopters": num_of_top_isp_rpki_adopters, "rpki_adoption_propability": rpki_adoption_propability, "other_random_prop": prop_value } response = requests.post('http://127.0.0.1:5000/launch_simulation', json=sim_data) print(response.json()) time.sleep(10 * 60) # after 10 mins do the next request if __name__ == '__main__': rpki_adoption_propability_list = [0.25, 0.50, 0.75, 1] num_of_top_isp_rpki_adopters = list(range(0, 101, 10)) other_random_prop_list = [v * 0.1 for v in range(0, 11, 1)] print("EXPERIMENTS START ...") #compute_collateral_benefit(num_of_top_isp_rpki_adopters, rpki_adoption_propability_list) #compute_today_rov_status_other_random_prop(100, 1.0, other_random_prop_list) compute_top_isps_rov_other_random_prop(100, 1.0, other_random_prop_list)
import sys from .app import Application def main(): app = Application(sys.argv) sys.exit(app.exec_()) if __name__ == '__main__': main()
# This file contains helper functions developed by the MITx 6.00.1x course # The game can be played through ps4_6.py (and ps4_7.py with a computer player) import random VOWELS = 'aeiou' CONSONANTS = 'bcdfghjklmnpqrstvwxyz' HAND_SIZE = 7 SCRABBLE_LETTER_VALUES = { 'a': 1, 'b': 3, 'c': 3, 'd': 2, 'e': 1, 'f': 4, 'g': 2, 'h': 4, 'i': 1, 'j': 8, 'k': 5, 'l': 1, 'm': 3, 'n': 1, 'o': 1, 'p': 3, 'q': 10, 'r': 1, 's': 1, 't': 1, 'u': 1, 'v': 4, 'w': 4, 'x': 8, 'y': 4, 'z': 10 } WORDLIST_FILENAME = "words.txt" def loadWords(): """ Returns a list of valid words. Words are strings of lowercase letters. Depending on the size of the word list, this function may take a while to finish. """ print("Loading word list from file...") # inFile: file inFile = open(WORDLIST_FILENAME, 'r') # wordList: list of strings wordList = [] for line in inFile: wordList.append(line.strip().lower()) print(" ", len(wordList), "words loaded.") return wordList def getFrequencyDict(sequence): """ Returns a dictionary where the keys are elements of the sequence and the values are integer counts, for the number of times that an element is repeated in the sequence. sequence: string or list return: dictionary """ # freqs: dictionary (element_type -> int) freq = {} for x in sequence: freq[x] = freq.get(x,0) + 1 return freq def displayHand(hand): """ Displays the letters currently in the hand. For example: >>> displayHand({'a':1, 'x':2, 'l':3, 'e':1}) Should print out something like: a x x l l l e The order of the letters is unimportant. hand: dictionary (string -> int) """ for letter in hand.keys(): for j in range(hand[letter]): print(letter,end=" ") # print all on the same line print() # print an empty line def dealHand(n): """ Returns a random hand containing n lowercase letters. At least n/3 the letters in the hand should be VOWELS. Hands are represented as dictionaries. The keys are letters and the values are the number of times the particular letter is repeated in that hand. n: int >= 0 returns: dictionary (string -> int) """ hand={} numVowels = n // 3 for i in range(numVowels): x = VOWELS[random.randrange(0,len(VOWELS))] hand[x] = hand.get(x, 0) + 1 for i in range(numVowels, n): x = CONSONANTS[random.randrange(0,len(CONSONANTS))] hand[x] = hand.get(x, 0) + 1 return hand
# https://gitlab.freedesktop.org/wayland/wayland/-/blob/main/protocol/wayland.xml import struct from .base import ( ArgUint32, ArgString, Interface ) class ArgDisplayError: def parse(data): oid, code = struct.unpack('=II', data[:8]) _, msg = ArgString.parse(data[8:]) return (oid, code, msg) class ArgRegistryGlobal: def parse(data): global_id = struct.unpack('=I', data[:4])[0] data = data[4:] consumed, interface = ArgString.parse(data) data = data[consumed:] version = struct.unpack('=I', data)[0] return (interface, version, global_id) class ArgRegistryBind: def create(global_id, name, version, new_obj_id): data = ArgUint32.create(global_id) data += ArgString.create(name) data += ArgUint32.create(version) data += ArgUint32.create(new_obj_id) return data class Display(Interface): def __init__(self, connection): super().__init__(connection) self.obj_id = 1 self.set_name('wl_display') self.set_version(1) connection.add_event_handler(self) self.add_event(self.on_error) self.add_event(self.on_delete_id) self.registry = self.get_registry() # Wayland events def on_error(self, data, fds): obj_id, err_code, err_msg = ArgDisplayError.parse(data) obj = self._connection.get_obj(obj_id) self.log(f"Got Display error for {obj or obj_id}: [{err_code}] {err_msg}") def on_delete_id(self, data, fds): _, obj_id = ArgUint32.parse(data) self._connection.free_obj_id(obj_id) # Wayland methods def do_sync(self, callback): sync_id = self.get_new_obj_id() self._connection.add_event_handler(sync_id, callback) data = ArgUint32.create(sync_id) self.send_command(0, data) def get_registry(self): registry = Registry(self._connection, self.get_new_obj_id()) self._connection.add_event_handler(registry) data = ArgUint32.create(registry.obj_id) self.send_command(1, data) return registry # Internal events def on_initial_sync(self): self.seat = Seat(self._connection) class Registry(Interface): def __init__(self, connection, obj_id): super().__init__(connection, obj_id=obj_id) self.set_name('wl_registry') self.set_version(1) self._registry = dict() self._initial_sync = False self.add_event(self.on_global) self.add_event(self.on_global_remove) # Wayland events def on_global(self, data, fds): name, version, global_id = ArgRegistryGlobal.parse(data) self._registry[name] = (global_id, version) def on_global_remove(self, data, fds): _, global_id = ArgUint32.parse(data) # FIXME: should destroy all object instances for this global_id if global_id not in self._registry: self.log(f"Can't remove global id {global_id}: We have no idea about it") return del self._registry[global_id] self.log(f"Not destroying instances of global id {global_id}") # Wayland methods def do_bind(self, interface): if not self._initial_sync: raise RuntimeError("Bind without waiting for full sync. Please bind in on_initial_sync().") if interface.name not in self._registry: raise RuntimeError(f"Interface {interface.name} not supported by server") global_id, version = self._registry[interface.name] version = min(interface.version, version) if version < interface.version: interface.set_version(version) interface.obj_id = self.get_new_obj_id() data = ArgRegistryBind.create(global_id, interface.name, version, interface.obj_id) self.send_command(0, data) # Internal events def on_initial_sync(self): self._initial_sync = True class Seat(Interface): def __init__(self, connection): super().__init__(connection) self.set_name('wl_seat') self.set_version(7) self.add_event(self.on_capabilities) self.add_event(self.on_name) self.bind() # Wayland events def on_capabilities(self, data, fds): pass def on_name(self, data, fds): pass # Wayland methods def get_keyboard(self): pass def get_touch(self): pass def release(self): if self.version < 5: return pass
# Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. # """Compute v2 API Library Tests""" from keystoneauth1 import session from osc_lib import exceptions as osc_lib_exceptions from requests_mock.contrib import fixture from openstackclient.api import compute_v2 as compute from openstackclient.tests.unit import utils FAKE_PROJECT = 'xyzpdq' FAKE_URL = 'http://gopher.com/v2' class TestComputeAPIv2(utils.TestCase): def setUp(self): super(TestComputeAPIv2, self).setUp() sess = session.Session() self.api = compute.APIv2(session=sess, endpoint=FAKE_URL) self.requests_mock = self.useFixture(fixture.Fixture()) class TestFloatingIP(TestComputeAPIv2): FAKE_FLOATING_IP_RESP = { 'id': 1, 'ip': '203.0.113.11', # TEST-NET-3 'fixed_ip': '198.51.100.11', # TEST-NET-2 'pool': 'nova', 'instance_id': None, } FAKE_FLOATING_IP_RESP_2 = { 'id': 2, 'ip': '203.0.113.12', # TEST-NET-3 'fixed_ip': '198.51.100.12', # TEST-NET-2 'pool': 'nova', 'instance_id': None, } LIST_FLOATING_IP_RESP = [ FAKE_FLOATING_IP_RESP, FAKE_FLOATING_IP_RESP_2, ] FAKE_SERVER_RESP_1 = { 'id': 1, 'name': 'server1', } def test_floating_ip_add_id(self): self.requests_mock.register_uri( 'POST', FAKE_URL + '/servers/1/action', json={'server': {}}, status_code=200, ) self.requests_mock.register_uri( 'GET', FAKE_URL + '/servers/1', json={'server': self.FAKE_SERVER_RESP_1}, status_code=200, ) ret = self.api.floating_ip_add('1', '1.0.1.0') self.assertEqual(200, ret.status_code) def test_floating_ip_add_name(self): self.requests_mock.register_uri( 'POST', FAKE_URL + '/servers/1/action', json={'server': {}}, status_code=200, ) self.requests_mock.register_uri( 'GET', FAKE_URL + '/servers/server1', json={'server': self.FAKE_SERVER_RESP_1}, status_code=200, ) ret = self.api.floating_ip_add('server1', '1.0.1.0') self.assertEqual(200, ret.status_code) def test_floating_ip_create(self): self.requests_mock.register_uri( 'POST', FAKE_URL + '/os-floating-ips', json={'floating_ip': self.FAKE_FLOATING_IP_RESP}, status_code=200, ) ret = self.api.floating_ip_create('nova') self.assertEqual(self.FAKE_FLOATING_IP_RESP, ret) def test_floating_ip_create_not_found(self): self.requests_mock.register_uri( 'POST', FAKE_URL + '/os-floating-ips', status_code=404, ) self.assertRaises( osc_lib_exceptions.NotFound, self.api.floating_ip_create, 'not-nova', ) def test_floating_ip_delete(self): self.requests_mock.register_uri( 'DELETE', FAKE_URL + '/os-floating-ips/1', status_code=202, ) ret = self.api.floating_ip_delete('1') self.assertEqual(202, ret.status_code) self.assertEqual("", ret.text) def test_floating_ip_delete_none(self): ret = self.api.floating_ip_delete() self.assertIsNone(ret) def test_floating_ip_find_id(self): self.requests_mock.register_uri( 'GET', FAKE_URL + '/os-floating-ips/1', json={'floating_ip': self.FAKE_FLOATING_IP_RESP}, status_code=200, ) ret = self.api.floating_ip_find('1') self.assertEqual(self.FAKE_FLOATING_IP_RESP, ret) def test_floating_ip_find_ip(self): self.requests_mock.register_uri( 'GET', FAKE_URL + '/os-floating-ips/' + self.FAKE_FLOATING_IP_RESP['ip'], status_code=404, ) self.requests_mock.register_uri( 'GET', FAKE_URL + '/os-floating-ips', json={'floating_ips': self.LIST_FLOATING_IP_RESP}, status_code=200, ) ret = self.api.floating_ip_find(self.FAKE_FLOATING_IP_RESP['ip']) self.assertEqual(self.FAKE_FLOATING_IP_RESP, ret) def test_floating_ip_find_not_found(self): self.requests_mock.register_uri( 'GET', FAKE_URL + '/os-floating-ips/1.2.3.4', status_code=404, ) self.requests_mock.register_uri( 'GET', FAKE_URL + '/os-floating-ips', json={'floating_ips': self.LIST_FLOATING_IP_RESP}, status_code=200, ) self.assertRaises( osc_lib_exceptions.NotFound, self.api.floating_ip_find, '1.2.3.4', ) def test_floating_ip_list(self): self.requests_mock.register_uri( 'GET', FAKE_URL + '/os-floating-ips', json={'floating_ips': self.LIST_FLOATING_IP_RESP}, status_code=200, ) ret = self.api.floating_ip_list() self.assertEqual(self.LIST_FLOATING_IP_RESP, ret) def test_floating_ip_remove_id(self): self.requests_mock.register_uri( 'POST', FAKE_URL + '/servers/1/action', status_code=200, ) self.requests_mock.register_uri( 'GET', FAKE_URL + '/servers/1', json={'server': self.FAKE_SERVER_RESP_1}, status_code=200, ) ret = self.api.floating_ip_remove('1', '1.0.1.0') self.assertEqual(200, ret.status_code) def test_floating_ip_remove_name(self): self.requests_mock.register_uri( 'POST', FAKE_URL + '/servers/1/action', status_code=200, ) self.requests_mock.register_uri( 'GET', FAKE_URL + '/servers/server1', json={'server': self.FAKE_SERVER_RESP_1}, status_code=200, ) ret = self.api.floating_ip_remove('server1', '1.0.1.0') self.assertEqual(200, ret.status_code) class TestFloatingIPPool(TestComputeAPIv2): LIST_FLOATING_IP_POOL_RESP = [ {"name": "tide"}, {"name": "press"}, ] def test_floating_ip_pool_list(self): self.requests_mock.register_uri( 'GET', FAKE_URL + '/os-floating-ip-pools', json={'floating_ip_pools': self.LIST_FLOATING_IP_POOL_RESP}, status_code=200, ) ret = self.api.floating_ip_pool_list() self.assertEqual(self.LIST_FLOATING_IP_POOL_RESP, ret) class TestHost(TestComputeAPIv2): FAKE_HOST_RESP_1 = { "zone": "internal", "host_name": "myhost", "service": "conductor", } FAKE_HOST_RESP_2 = { "zone": "internal", "host_name": "myhost", "service": "scheduler", } FAKE_HOST_RESP_3 = { "zone": "nova", "host_name": "myhost", "service": "compute", } LIST_HOST_RESP = [ FAKE_HOST_RESP_1, FAKE_HOST_RESP_2, FAKE_HOST_RESP_3, ] def test_host_list_no_options(self): self.requests_mock.register_uri( 'GET', FAKE_URL + '/os-hosts', json={'hosts': self.LIST_HOST_RESP}, status_code=200, ) ret = self.api.host_list() self.assertEqual(self.LIST_HOST_RESP, ret) def test_host_list_zone(self): self.requests_mock.register_uri( 'GET', FAKE_URL + '/os-hosts?zone=nova', json={'hosts': [self.FAKE_HOST_RESP_3]}, status_code=200, ) self.requests_mock.register_uri( 'GET', FAKE_URL + '/os-hosts', json={'hosts': [self.FAKE_HOST_RESP_3]}, status_code=200, ) ret = self.api.host_list(zone='nova') self.assertEqual([self.FAKE_HOST_RESP_3], ret) def test_host_set_none(self): ret = self.api.host_set(host='myhost') self.assertIsNone(ret) def test_host_set(self): self.requests_mock.register_uri( 'PUT', FAKE_URL + '/os-hosts/myhost', json={}, status_code=200, ) ret = self.api.host_set(host='myhost', status='enabled') self.assertEqual({}, ret) def test_host_show(self): FAKE_RESOURCE_1 = { "cpu": 2, "disk_gb": 1028, "host": "c1a7de0ac9d94e4baceae031d05caae3", "memory_mb": 8192, "project": "(total)", } FAKE_RESOURCE_2 = { "cpu": 0, "disk_gb": 0, "host": "c1a7de0ac9d94e4baceae031d05caae3", "memory_mb": 512, "project": "(used_now)", } FAKE_RESOURCE_3 = { "cpu": 0, "disk_gb": 0, "host": "c1a7de0ac9d94e4baceae031d05caae3", "memory_mb": 0, "project": "(used_max)", } FAKE_HOST_RESP = [ {'resource': FAKE_RESOURCE_1}, {'resource': FAKE_RESOURCE_2}, {'resource': FAKE_RESOURCE_3}, ] FAKE_HOST_LIST = [ FAKE_RESOURCE_1, FAKE_RESOURCE_2, FAKE_RESOURCE_3, ] self.requests_mock.register_uri( 'GET', FAKE_URL + '/os-hosts/myhost', json={'host': FAKE_HOST_RESP}, status_code=200, ) ret = self.api.host_show(host='myhost') self.assertEqual(FAKE_HOST_LIST, ret) class TestNetwork(TestComputeAPIv2): FAKE_NETWORK_RESP = { 'id': '1', 'label': 'label1', 'cidr': '1.2.3.0/24', } FAKE_NETWORK_RESP_2 = { 'id': '2', 'label': 'label2', 'cidr': '4.5.6.0/24', } LIST_NETWORK_RESP = [ FAKE_NETWORK_RESP, FAKE_NETWORK_RESP_2, ] def test_network_create_default(self): self.requests_mock.register_uri( 'POST', FAKE_URL + '/os-networks', json={'network': self.FAKE_NETWORK_RESP}, status_code=200, ) ret = self.api.network_create('label1') self.assertEqual(self.FAKE_NETWORK_RESP, ret) def test_network_create_options(self): self.requests_mock.register_uri( 'POST', FAKE_URL + '/os-networks', json={'network': self.FAKE_NETWORK_RESP}, status_code=200, ) ret = self.api.network_create( name='label1', subnet='1.2.3.0/24', ) self.assertEqual(self.FAKE_NETWORK_RESP, ret) def test_network_delete_id(self): self.requests_mock.register_uri( 'GET', FAKE_URL + '/os-networks/1', json={'network': self.FAKE_NETWORK_RESP}, status_code=200, ) self.requests_mock.register_uri( 'DELETE', FAKE_URL + '/os-networks/1', status_code=202, ) ret = self.api.network_delete('1') self.assertEqual(202, ret.status_code) self.assertEqual("", ret.text) def test_network_delete_name(self): self.requests_mock.register_uri( 'GET', FAKE_URL + '/os-networks/label1', status_code=404, ) self.requests_mock.register_uri( 'GET', FAKE_URL + '/os-networks', json={'networks': self.LIST_NETWORK_RESP}, status_code=200, ) self.requests_mock.register_uri( 'DELETE', FAKE_URL + '/os-networks/1', status_code=202, ) ret = self.api.network_delete('label1') self.assertEqual(202, ret.status_code) self.assertEqual("", ret.text) def test_network_delete_not_found(self): self.requests_mock.register_uri( 'GET', FAKE_URL + '/os-networks/label3', status_code=404, ) self.requests_mock.register_uri( 'GET', FAKE_URL + '/os-networks', json={'networks': self.LIST_NETWORK_RESP}, status_code=200, ) self.assertRaises( osc_lib_exceptions.NotFound, self.api.network_delete, 'label3', ) def test_network_find_id(self): self.requests_mock.register_uri( 'GET', FAKE_URL + '/os-networks/1', json={'network': self.FAKE_NETWORK_RESP}, status_code=200, ) ret = self.api.network_find('1') self.assertEqual(self.FAKE_NETWORK_RESP, ret) def test_network_find_name(self): self.requests_mock.register_uri( 'GET', FAKE_URL + '/os-networks/label2', status_code=404, ) self.requests_mock.register_uri( 'GET', FAKE_URL + '/os-networks', json={'networks': self.LIST_NETWORK_RESP}, status_code=200, ) ret = self.api.network_find('label2') self.assertEqual(self.FAKE_NETWORK_RESP_2, ret) def test_network_find_not_found(self): self.requests_mock.register_uri( 'GET', FAKE_URL + '/os-networks/label3', status_code=404, ) self.requests_mock.register_uri( 'GET', FAKE_URL + '/os-networks', json={'networks': self.LIST_NETWORK_RESP}, status_code=200, ) self.assertRaises( osc_lib_exceptions.NotFound, self.api.network_find, 'label3', ) def test_network_list_no_options(self): self.requests_mock.register_uri( 'GET', FAKE_URL + '/os-networks', json={'networks': self.LIST_NETWORK_RESP}, status_code=200, ) ret = self.api.network_list() self.assertEqual(self.LIST_NETWORK_RESP, ret) class TestSecurityGroup(TestComputeAPIv2): FAKE_SECURITY_GROUP_RESP = { 'id': '1', 'name': 'sg1', 'description': 'test security group', 'tenant_id': '0123456789', 'rules': [] } FAKE_SECURITY_GROUP_RESP_2 = { 'id': '2', 'name': 'sg2', 'description': 'another test security group', 'tenant_id': '0123456789', 'rules': [] } LIST_SECURITY_GROUP_RESP = [ FAKE_SECURITY_GROUP_RESP_2, FAKE_SECURITY_GROUP_RESP, ] def test_security_group_create_default(self): self.requests_mock.register_uri( 'POST', FAKE_URL + '/os-security-groups', json={'security_group': self.FAKE_SECURITY_GROUP_RESP}, status_code=200, ) ret = self.api.security_group_create('sg1') self.assertEqual(self.FAKE_SECURITY_GROUP_RESP, ret) def test_security_group_create_options(self): self.requests_mock.register_uri( 'POST', FAKE_URL + '/os-security-groups', json={'security_group': self.FAKE_SECURITY_GROUP_RESP}, status_code=200, ) ret = self.api.security_group_create( name='sg1', description='desc', ) self.assertEqual(self.FAKE_SECURITY_GROUP_RESP, ret) def test_security_group_delete_id(self): self.requests_mock.register_uri( 'GET', FAKE_URL + '/os-security-groups/1', json={'security_group': self.FAKE_SECURITY_GROUP_RESP}, status_code=200, ) self.requests_mock.register_uri( 'DELETE', FAKE_URL + '/os-security-groups/1', status_code=202, ) ret = self.api.security_group_delete('1') self.assertEqual(202, ret.status_code) self.assertEqual("", ret.text) def test_security_group_delete_name(self): self.requests_mock.register_uri( 'GET', FAKE_URL + '/os-security-groups/sg1', status_code=404, ) self.requests_mock.register_uri( 'GET', FAKE_URL + '/os-security-groups', json={'security_groups': self.LIST_SECURITY_GROUP_RESP}, status_code=200, ) self.requests_mock.register_uri( 'DELETE', FAKE_URL + '/os-security-groups/1', status_code=202, ) ret = self.api.security_group_delete('sg1') self.assertEqual(202, ret.status_code) self.assertEqual("", ret.text) def test_security_group_delete_not_found(self): self.requests_mock.register_uri( 'GET', FAKE_URL + '/os-security-groups/sg3', status_code=404, ) self.requests_mock.register_uri( 'GET', FAKE_URL + '/os-security-groups', json={'security_groups': self.LIST_SECURITY_GROUP_RESP}, status_code=200, ) self.assertRaises( osc_lib_exceptions.NotFound, self.api.security_group_delete, 'sg3', ) def test_security_group_find_id(self): self.requests_mock.register_uri( 'GET', FAKE_URL + '/os-security-groups/1', json={'security_group': self.FAKE_SECURITY_GROUP_RESP}, status_code=200, ) ret = self.api.security_group_find('1') self.assertEqual(self.FAKE_SECURITY_GROUP_RESP, ret) def test_security_group_find_name(self): self.requests_mock.register_uri( 'GET', FAKE_URL + '/os-security-groups/sg2', status_code=404, ) self.requests_mock.register_uri( 'GET', FAKE_URL + '/os-security-groups', json={'security_groups': self.LIST_SECURITY_GROUP_RESP}, status_code=200, ) ret = self.api.security_group_find('sg2') self.assertEqual(self.FAKE_SECURITY_GROUP_RESP_2, ret) def test_security_group_find_not_found(self): self.requests_mock.register_uri( 'GET', FAKE_URL + '/os-security-groups/sg3', status_code=404, ) self.requests_mock.register_uri( 'GET', FAKE_URL + '/os-security-groups', json={'security_groups': self.LIST_SECURITY_GROUP_RESP}, status_code=200, ) self.assertRaises( osc_lib_exceptions.NotFound, self.api.security_group_find, 'sg3', ) def test_security_group_list_no_options(self): self.requests_mock.register_uri( 'GET', FAKE_URL + '/os-security-groups', json={'security_groups': self.LIST_SECURITY_GROUP_RESP}, status_code=200, ) ret = self.api.security_group_list() self.assertEqual(self.LIST_SECURITY_GROUP_RESP, ret) def test_security_group_set_options_id(self): self.requests_mock.register_uri( 'GET', FAKE_URL + '/os-security-groups/1', json={'security_group': self.FAKE_SECURITY_GROUP_RESP}, status_code=200, ) self.requests_mock.register_uri( 'PUT', FAKE_URL + '/os-security-groups/1', json={'security_group': self.FAKE_SECURITY_GROUP_RESP}, status_code=200, ) ret = self.api.security_group_set( security_group='1', description='desc2') self.assertEqual(self.FAKE_SECURITY_GROUP_RESP, ret) def test_security_group_set_options_name(self): self.requests_mock.register_uri( 'GET', FAKE_URL + '/os-security-groups/sg2', status_code=404, ) self.requests_mock.register_uri( 'GET', FAKE_URL + '/os-security-groups', json={'security_groups': self.LIST_SECURITY_GROUP_RESP}, status_code=200, ) self.requests_mock.register_uri( 'PUT', FAKE_URL + '/os-security-groups/2', json={'security_group': self.FAKE_SECURITY_GROUP_RESP_2}, status_code=200, ) ret = self.api.security_group_set( security_group='sg2', description='desc2') self.assertEqual(self.FAKE_SECURITY_GROUP_RESP_2, ret) class TestSecurityGroupRule(TestComputeAPIv2): FAKE_SECURITY_GROUP_RULE_RESP = { 'id': '1', 'name': 'sgr1', 'tenant_id': 'proj-1', 'ip_protocol': 'TCP', 'from_port': 1, 'to_port': 22, 'group': {}, # 'ip_range': , # 'cidr': , # 'parent_group_id': , } def test_security_group_create_no_options(self): self.requests_mock.register_uri( 'POST', FAKE_URL + '/os-security-group-rules', json={'security_group_rule': self.FAKE_SECURITY_GROUP_RULE_RESP}, status_code=200, ) ret = self.api.security_group_rule_create( security_group_id='1', ip_protocol='tcp', ) self.assertEqual(self.FAKE_SECURITY_GROUP_RULE_RESP, ret) def test_security_group_create_options(self): self.requests_mock.register_uri( 'POST', FAKE_URL + '/os-security-group-rules', json={'security_group_rule': self.FAKE_SECURITY_GROUP_RULE_RESP}, status_code=200, ) ret = self.api.security_group_rule_create( security_group_id='1', ip_protocol='tcp', from_port=22, to_port=22, remote_ip='1.2.3.4/24', ) self.assertEqual(self.FAKE_SECURITY_GROUP_RULE_RESP, ret) def test_security_group_create_port_errors(self): self.requests_mock.register_uri( 'POST', FAKE_URL + '/os-security-group-rules', json={'security_group_rule': self.FAKE_SECURITY_GROUP_RULE_RESP}, status_code=200, ) self.assertRaises( compute.InvalidValue, self.api.security_group_rule_create, security_group_id='1', ip_protocol='tcp', from_port='', to_port=22, remote_ip='1.2.3.4/24', ) self.assertRaises( compute.InvalidValue, self.api.security_group_rule_create, security_group_id='1', ip_protocol='tcp', from_port=0, to_port=[], remote_ip='1.2.3.4/24', ) def test_security_group_rule_delete(self): self.requests_mock.register_uri( 'DELETE', FAKE_URL + '/os-security-group-rules/1', status_code=202, ) ret = self.api.security_group_rule_delete('1') self.assertEqual(202, ret.status_code) self.assertEqual("", ret.text)
import logging import os import re import sys from configparser import RawConfigParser from html import unescape from html.parser import HTMLParser from json import dumps from logging.handlers import TimedRotatingFileHandler from os.path import isfile from shutil import copyfile import gevent from bottle import template, HTTPError, redirect from gevent import sleep from geventwebsocket import WebSocketError # Taken from http://www.electricmonk.nl/log/2011/08/14/redirect-stdout-and-stderr-to-a-logger-in-python/ class StreamToLogger(object): """ Fake file-like stream object that redirects writes to a logger instance. """ def __init__(self, logger, log_level=logging.INFO): self.logger = logger self.log_level = log_level self.linebuf = '' def write(self, buf): for line in buf.rstrip().splitlines(): self.logger.log(self.log_level, line.rstrip()) def setup_logging(name, log_level=None, capture_stderr=False): cfg = load_config() level = getattr(logging, cfg.get('Logging', 'level') if log_level is None else log_level) logs_folder = './logs' os.makedirs(logs_folder, exist_ok=True) logger = logging.getLogger(name) logger.setLevel(level) handler = TimedRotatingFileHandler(os.path.join(logs_folder, name + ".log"), when="midnight") formatter = logging.Formatter(cfg.get('Logging', 'format'), cfg.get('Logging', 'date format')) handler.setFormatter(formatter) logger.addHandler(handler) if capture_stderr: stderr_logger = logging.getLogger('STDERR') stderr_logger.addHandler(handler) sl = StreamToLogger(stderr_logger, logging.ERROR) sys.stderr = sl return logger def load_config(): # Create config folder config_folder = "." os.makedirs(config_folder, exist_ok=True) # Check for config file. If it doesn't exist, copy it over config_path = os.path.join(config_folder, "config.ini") if not os.path.isfile(config_path): dist_config_path = "config.ini.dist" copyfile(dist_config_path, config_path) # Load config file and return it cfg = RawConfigParser() cfg.read(config_path) return cfg def delete_config(): config_path = "./config.ini" os.remove(config_path) print(config_path, "has been removed.") # Taken from https://stackoverflow.com/questions/753052/strip-html-from-strings-in-python class MLStripper(HTMLParser): def __init__(self): super().__init__() self.reset() self.strict = False self.convert_charrefs= True self.fed = [] def handle_data(self, d): self.fed.append(d) def get_data(self): return ''.join(self.fed) def strip_html(html): s = MLStripper() s.feed(html) return s.get_data() def ordinal(num: str): if not num.isdigit(): return num.title() suffix = {"1": "st", "2": "nd", "3": "rd"} return num + suffix.get(num, "th") + " Level" def str_to_bool(s): return s and str(s).lower()[0] in ["t", "1", "y"] def create_tooltip(text, tooltip_text=None): if tooltip_text is not None: return ''' <div class="tooltip">{} <span class="tooltiptext">{}</span> </div>'''.format(text, tooltip_text) return text def title_to_page_name(title): """ Converts a title (e.g. "Beast Master (Revamped)") to a markdown filename (e.g. "beast-master-revamped") :param title: :return: """ return re.sub(r"\W+", "-", title.lower()).strip("-") def page_name_to_title(page_name): """ Converts a markdown filename (e.g. "beast-master-revamped.md") to a title (e.g. "Beast Master Revamped") Not a perfect solution. :param page_name: :return: """ return page_name.replace("-", " ").title() def md_page(page_title, namespace, directory=None, build_toc=True, markdown_parser=None, **kwargs): if markdown_parser is None: # Avoiding circular dependencies from src.common.markdown_parser import DEFAULT_MARKDOWN_PARSER markdown_parser = DEFAULT_MARKDOWN_PARSER path_name = title_to_page_name(page_title) if directory: path_name = os.path.join(directory, path_name) if namespace: path_name = os.path.join(namespace, path_name) template_path = f"views/{path_name}.tpl" md_path = f"data/{path_name}.md" if isfile(template_path): text = unescape(template(template_path, **kwargs)) elif isfile(md_path): with open(md_path, encoding="utf-8") as f: text = f.read() else: raise HTTPError(404, f"I couldn't find \"{path_name}\".") try: md = markdown_parser.parse_md(text, namespace) except NameError: print(f"Error when converting {path_name}") raise if md.startswith("<p>REDIRECT "): redirect(md[12:-5]) else: if "title" not in kwargs: kwargs["title"] = page_title.title() if build_toc and not md.startswith("<!-- no-toc -->"): kwargs["toc"] = md.toc_html kwargs["text"] = md kwargs["accordion_text"] = markdown_parser.accordion_text return template("common/page.tpl", kwargs) def websocket_loop(ws, websocket_list): print("Opening Websocket {}".format(ws), flush=True) websocket_list.append(ws) try: while True: sleep(60) # Checking if websocket has been closed by the client with gevent.Timeout(1.0, False): ws.receive() if ws.closed: print("WebSocket was closed by the client: {}".format(ws), flush=True) break except Exception as e: print("Error in WebSocket loop: {}".format(e), flush=True) finally: if not ws.closed: print("Closing WebSocket: {}".format(ws), flush=True) ws.close() try: websocket_list.remove(ws) except ValueError as e: print(e, ws) def send_to_websockets(payload, websocket_list): print(websocket_list, flush=True) for ws in websocket_list[:]: try: print(f"Sending payload {payload} to {ws}", flush=True) ws.send(dumps(payload)) except WebSocketError: print(f"Failed to send message to {ws}. Removing from list", flush=True) websocket_list.remove(ws) except Exception as e: print(f"Error when sending message to {ws}. {e}", flush=True) websocket_list.remove(ws)
""" An object to be imported. """ class InsightObject: def __init__(self): print("et print, ergo sum") def fizz(self): return "buzz"
import sys, os from lxml import etree import urllib from edx_gen import _edx_consts from edx_gen import _css_settings from edx_gen import _util import __SETTINGS__ #-------------------------------------------------------------------------------------------------- # Text strings WARNING = " WARNING:" INFO = " INFO:" #-------------------------------------------------------------------------------------------------- # process a hrefs def processHtmlTags(component_path, content_root_tag, unit_filename): # process headings h3_tags = list(content_root_tag.iter('h3')) h4_tags = list(content_root_tag.iter('h4')) h5_tags = list(content_root_tag.iter('h5')) _processHeadingsTags(h3_tags, h4_tags, h5_tags) # process pre pre_tags = list(content_root_tag.iter('pre')) _processPreTags(pre_tags) # process code code_tags = list(content_root_tag.iter('code')) _processCodeTags(code_tags) # process hrefs a_tags = list(content_root_tag.iter('a')) _processHtmlATags(component_path, a_tags, unit_filename) # process images img_tags = list(content_root_tag.iter('img')) _processHtmlImgTags(component_path, img_tags, unit_filename) #-------------------------------------------------------------------------------------------------- # process headings def _processHeadingsTags(h3_tags, h4_tags, h5_tags): for h3_tag in h3_tags: h3_tag.set('style', _css_settings.H3_CSS) for h4_tag in h4_tags: h4_tag.set('style', _css_settings.H4_CSS) for h5_tag in h5_tags: h5_tag.set('style', _css_settings.H5_CSS) #-------------------------------------------------------------------------------------------------- # process pre def _processPreTags(pre_tags): for pre_tag in pre_tags: parent = pre_tag.getparent() div_tag = etree.Element("div") for child in pre_tag: div_tag.append(child) if pre_tag.text: div_tag.text = pre_tag.text div_tag.set('style', _css_settings.CODE_BOX_CSS) parent.replace(pre_tag, div_tag) #-------------------------------------------------------------------------------------------------- # process code def _processCodeTags(code_tags): for code_tag in code_tags: lines = code_tag.text.strip().split('\n') if len(lines) > 1: parent = code_tag.getparent() div_tag = etree.Element("div") for line in lines: if len(line) > 0: pre_tag = etree.Element("pre") pre_tag.set('style', _css_settings.CODE_LINE_CSS) pre_tag.text = line div_tag.append(pre_tag) parent.replace(code_tag, div_tag) else: code_tag.set('style', _css_settings.CODE_INLINE_CSS) #-------------------------------------------------------------------------------------------------- # process images def _processHtmlImgTags(component_path, img_tags, unit_filename): for img_tag in img_tags: # create new image new_img_tag = etree.Element("img") for key in img_tag.keys(): if not key in ['src', 'modal']: new_img_tag.set(key, img_tag.get(key)) # get modal setting modal = False if 'modal' in img_tag.keys() and img_tag.get('modal') == 'true': modal = True # add css if modal: new_img_tag.set('style', _css_settings.IMAGE_MODAL_CSS) else: new_img_tag.set('style', _css_settings.IMAGE_CSS) src = img_tag.get('src') # get the new src for the image new_src = '' if src.startswith('/') or src.startswith('http'): new_src = src else: # check that that the file exists component_dir = os.path.dirname(component_path) image_filepath = os.path.normpath(component_dir + '/' + src) if (not os.path.exists(image_filepath) or not os.path.isfile(image_filepath)): print(WARNING, 'The image file does not exist: "' + image_filepath +'" in', component_path) # new src new_src = '/' + _edx_consts.STATIC_FOLDER + '/' + unit_filename + '_' + src new_img_tag.set('src', new_src) # create figure figure_tag = etree.Element("figure") if _css_settings.FIGURE_CSS: figure_tag.set('style', _css_settings.FIGURE_CSS) if modal: a_tag = etree.Element("a") a_tag.set('target', 'image') a_tag.set('href', new_src) a_tag.append(new_img_tag) figure_tag.append(a_tag) else: figure_tag.append(new_img_tag) # create caption for the figure if 'alt' in img_tag.keys(): figcaption_tag = etree.Element("figcaption") if _css_settings.FIGCAPTION_CSS: figcaption_tag.set('style', _css_settings.FIGCAPTION_CSS) figcaption_tag.text = img_tag.get('alt') figure_tag.append(figcaption_tag) # replace the existing image with the figure img_tag.getparent().replace(img_tag, figure_tag) #-------------------------------------------------------------------------------------------------- # process a hrefs def _processHtmlATags(component_path, a_tags, unit_filename): for a_tag in a_tags: # get the href href = a_tag.get('href') if not href: print(WARNING, 'An <a/> tag has no "href" attribute:', unit_filename) return # normal a tag else: _updateATag(a_tag, href, unit_filename) #-------------------------------------------------------------------------------------------------- # update the href in an <a href=''></a> tag def _updateATag(a_tag, href, unit_filename): # ends with /, so must be a url like http://google.com/ # do nothing if href.endswith('/'): return # break down the url href_parts = list(urllib.parse.urlparse(href)) href_file = None href_file_ext = None href_path = href_parts[2] if href_path and '.' in href_path: href_file = href_path.split('/')[-1] if '.' in href_file: href_file_ext = href_file.split('.')[-1] # no extension, so must be a url like http://google.com # do nothing if href_file_ext == None or href_file_ext == '': return # ends with html or htm, so must be a url like http://google.com/hello.html # do nothing if href_file_ext in ['html', 'htm', 'asp']: return # an asset that goes to the edX static folder if href_file_ext in __SETTINGS__.EDX_ASSET_EXT: new_href = '/' + _edx_consts.STATIC_FOLDER + '/' + unit_filename + '_' + href_file a_tag.set('href', new_href) # something unknown else: print(INFO, 'Found a strange href:', href, unit_filename) #--------------------------------------------------------------------------------------------------
# # Copyright 2008-2012 NVIDIA Corporation # Copyright 2009-2010 University of California # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # from copperhead import * import numpy as np import plac @cu def radix_sort(A, bits, lsb): """ Sort A using radix sort. Each element of A is assumed to be an integer. The key used in sorting will be bits [lsb, lsb+bits). For the general case, use bits=32 and lsb=0 to sort on all 32 bits. For sequences of length n with b-bit keys, this performs O(b*n) work. """ def delta(flag, ones_before, zeros_after): if flag==0: return -ones_before else: return +zeros_after if lsb >= bits: return A else: flags = map(lambda x: int64((x>>lsb)&1), A) ones = scan(op_add, flags) zeros = rscan(op_add, [f^1 for f in flags]) offsets = map(delta, flags, ones, zeros) bit_sorted = permute(A, map(op_add, indices(A), offsets)) return radix_sort(bit_sorted, bits, lsb+1) def radix_sort8(A): return radix_sort(A, np.int32(8), np.int32(0)) def radix_sort32(A): return radix_sort(A, np.int32(32), np.int32(0)) @plac.annotations(n="Length of array to test sort with, defaults to 277") def main(n=277): """Tests Copperhead radix sort in Python interpreter and on GPU.""" def random_numbers(n, bits=8): import random return [np.int32(random.getrandbits(bits)) for i in xrange(n)] def test_sort(S, n=277, trials=50, bits=8): npass, nfail = 0,0 name = S.__name__ for i in xrange(trials): data_in = random_numbers(n, bits) gold = sorted(data_in) data_out = S(data_in) if list(gold) == list(data_out): npass = npass+1 else: nfail = nfail+1 print ("%-20s passed [%2d]\tfailed [%2d]\r" % (name, npass,nfail)), print print print "---- Checking Python implementations (n=277) ----" with places.here: test_sort(radix_sort8, n=277) print "---- Checking GPU results (n=277) ----" with places.gpu0: test_sort(radix_sort8, n=277) if __name__ == '__main__': plac.call(main)
from hashlib import sha1 as sha def main(): m = sha() m.update(b"Nobody inspects") m.update(b" the spammish repetition") digest1 = m.digest() print('digest1: ', digest1) print('digest1 size (The size of the resulting hash in bytes.): ', m.digest_size) print( "digest1 block size (The internal block size of the hash algorithm in " "bytes.): ", m.block_size) hexdigest1 = m.hexdigest() print('hexdigest1: ', hexdigest1) print('length of hexdigest1: ', len(hexdigest1)) if __name__ == "__main__": main()
#!/usr/bin/env python """Tests for constructing supercell models.""" import itertools import pytest import numpy as np from parameters import T_VALUES # pylint: disable=invalid-name @pytest.mark.parametrize("t_values", T_VALUES) @pytest.mark.parametrize("offset", [(0.2, 1.2, 0.9), (-0.2, 0.912, 0.0)]) @pytest.mark.parametrize("cartesian", [True, False]) def test_shift_twice(get_model, t_values, sparse, offset, cartesian, models_close): """ Check that shifting a model twice in opposite direction gives back the original model. """ model = get_model( *t_values, sparse=sparse, uc=[[0.1, 1.0, 0.0], [2.0, 0.0, 0.0], [0.0, 0.0, 3.0]] ) model_shifted = model.change_unit_cell(offset=offset, cartesian=cartesian) model_shifted_twice = model_shifted.change_unit_cell( offset=[-x for x in offset], cartesian=cartesian ) assert models_close(model, model_shifted_twice) @pytest.mark.parametrize( "uc", [((1.1, 0.3, 0.0), (0.4, 1.5, 0.1), (-0.1, 0.0, 3.0)), None] ) @pytest.mark.parametrize("offset", [(1, 0, -1), (2, 3, 0)]) def test_lattice_shift_reduced(get_model, sparse, offset, uc, models_equal): """ Check that shifting by a lattice vector produces the original model, with reduced coordinates. """ model = get_model(t1=0.1, t2=0.7, sparse=sparse, uc=uc) model_shifted = model.change_unit_cell(offset=offset, cartesian=False) assert models_equal(model, model_shifted) @pytest.mark.parametrize( "uc, offsets", [ ( [[1.1, 0.3, 0.0], [0.4, 1.5, 0.1], [-0.1, 0.0, 3.0]], [(1.1, 0.3, 0), [1.5, 1.8, 0.1], (0.1, 0, -3)], ) ], ) def test_lattice_shift_cartesian(get_model, sparse, uc, offsets, models_close): """ Check that shifting by a lattice vector produces the original model, with cartesian coordinates. """ # We change the position from being exactly at the unit cell boundary # to avoid issues with positions being off by one unit cell. model = get_model( t1=0.1, t2=0.7, sparse=sparse, uc=uc, pos=[(0.01, 0.02, 0.03), (0.5, 0.5, 0.5)] ) for offset in offsets: model_shifted = model.change_unit_cell(offset=offset, cartesian=True) assert models_close(model, model_shifted) @pytest.mark.parametrize( "uc", ( [[1, 2, 0], [1, 1, 0], [0, 0, 1]], [[2, 0, 0], [0, 1, 0], [0, 0, 1]], [[1, 0, 0], [0, 1.5, 0], [0, 0, 1]], ), ) def test_invalid_uc_raises_reduced(get_model, uc, sparse): """ Test that specifying an invalid new unit cell in reduced coordinates raises an error. """ model = get_model(t1=0.1, t2=0.7, sparse=sparse, uc=uc) with pytest.raises(ValueError): model.change_unit_cell(uc=uc, cartesian=False) @pytest.mark.parametrize( "uc", ([[1, 2, 0], [0, 1, 0], [0, 0, 6]], [[1, 2, 0], [0, 1.5, 0], [0, 0, 3]]) ) def test_invalid_uc_raises_cartesian(get_model, uc, sparse): """ Test that specifying an invalid new unit cell in cartesian coordinates raises an error. """ model = get_model( t1=0.1, t2=0.7, sparse=sparse, uc=[[1, 2, 0], [0, 1, 0], [0, 0, 3]] ) with pytest.raises(ValueError): model.change_unit_cell(uc=uc, cartesian=True) def test_change_uc_without_pos_raises(get_model): """ Test that the 'change_unit_cell' method raises an error when no positions are defined. """ model = get_model(t1=0.4, t2=0.9) # Note: this is affected by issue #76 model.pos = None with pytest.raises(ValueError): model.change_unit_cell() def test_change_uc_without_uc_cartesian_raises(get_model): """ Test that the 'change_unit_cell' method raises an error in cartesian mode when the original unit cell is not defined. """ model = get_model(t1=0.4, t2=0.9) model.uc = None with pytest.raises(ValueError): model.change_unit_cell(cartesian=True) @pytest.mark.parametrize( "uc_original, uc_changed, offset", [ ( [[1.2, 0.1, 0.0], [0, 2, 0], [1, 0, 3]], [[1.2, 2.1, 0.0], [-1, 2, -3], [1, 0, 3]], (0, 0, 0), ), ( [[1.2, 0.1, 0.0], [0, 2, 0], [1, 0, 3]], [[1.2, 2.1, 0.0], [-1, 2, -3], [1, 0, 3]], (0.5, -0.1, 10.2), ), ([[1.2, 0.1], [0, 2]], [[1.2, 2.1], [0, 2]], (0.2, -1.5)), ], ) def test_revert_cartesian_uc_change( get_model, models_close, uc_original, uc_changed, offset ): """ Test that reverting a cartesian unit cell change produces the original model. """ if offset is None: revert_offset = None else: revert_offset = -np.array(offset) dim = len(offset) model = get_model( t1=0.2, t2=0.3, pos=[[0.1] * dim, [0.7] * dim], uc=uc_original, dim=dim ) model_changed = model.change_unit_cell(uc=uc_changed, cartesian=True, offset=offset) model_change_reverted = model_changed.change_unit_cell( uc=uc_original, cartesian=True, offset=revert_offset ) models_close(model, model_change_reverted) def test_equivalent_uc_shape(get_model, models_close): """ Test that two manually created equivalent models are equal after matching unit cells. """ t1 = 0.232 t2 = -0.941234 uc1 = np.eye(3) uc2 = [[1, 0, 0], [1, 1, 0], [0, 0, 1]] model1 = get_model(t1=0, t2=0, pos=[(0.2, 0.1, 0.1), (0.6, 0.5, 0.5)], uc=uc1) model2 = get_model(t1=0, t2=0, pos=[(0.1, 0.1, 0.1), (0.1, 0.5, 0.5)], uc=uc2) for phase, R1 in zip([1, -1j, 1j, -1], itertools.product([0, -1], [0, -1], [0])): model1.add_hop(t1 * phase, 0, 1, R1) R2 = [R1[0] - R1[1], R1[1], R1[2]] model2.add_hop(t1 * phase, 0, 1, R2) for r1_part in itertools.permutations([0, 1]): R1 = list(r1_part) + [0] R2 = [R1[0] - R1[1], R1[1], R1[2]] model1.add_hop(t2, 0, 0, R1) model1.add_hop(-t2, 1, 1, R1) model2.add_hop(t2, 0, 0, R2) model2.add_hop(-t2, 1, 1, R2) assert models_close(model1, model2.change_unit_cell(uc=uc1, cartesian=True)) assert models_close(model2, model1.change_unit_cell(uc=uc2, cartesian=True)) assert models_close(model2, model1.change_unit_cell(uc=uc2, cartesian=False)) assert models_close( model1, model2.change_unit_cell(uc=[[1, 0, 0], [-1, 1, 0], [0, 0, 1]], cartesian=False), )
import os from scipy.special import comb def bagging_proba(n, acc=0.8): ''' n independent estimators with accuracy 'acc', then what is estimated accuracy of bagging estimator with majority voting ? Note, 6 or more out of 10 is called a majority. ''' if n == 1: return acc error = 0 for i in range(n // 2 + 1): # only i estimator makes correct guess error += comb(n, i, exact=False) * \ ((1 - acc) ** (n - i)) * ((acc) ** i) return 1 - error for i in range(1, 10): n = i * 10 print(n, bagging_proba(n)) ''' 10 0.9672065024000001 20 0.997405172599326 30 0.9997687743883322 40 0.9999783081068737 50 0.9999979051451444 60 0.9999997938783113 70 0.999999979452253 80 0.999999997931789 90 0.9999999997902754 '''
''' @package: pyAudioLex @author: Jim Schwoebel @module: word_endings Given a word ending (e.g. '-ed'), output the words with that ending and the associated count. ''' from nltk import word_tokenize import re def word_endings(importtext,ending): text=word_tokenize(importtext) #number of words ending in 'ed' words=[w for w in text if re.search(ending+'$', w)] return [len(words),words] #test #print(word_endings('In a blunt warning to the remaining ISIS fighters, Army Command Sgt. Maj. John Wayne Troxell said the shrinking band of militants could either surrender to the U.S. military or face death. “ISIS needs to understand that the Joint Force is on orders to annihilate them,” he wrote in a forceful message on Facebook. “So they have two options, should they decide to come up against the United States, our allies and partners: surrender or die!”','s'))
__author__ = 'varun' from .views import settings_page, update_user_profile from django.conf.urls import url urlpatterns = [ url(r'^$', settings_page), url(r'^update-profile$', update_user_profile), ]
""" entrada nombre->int->n monto_compra-->int-->mc salidas total_descuento->str->td """ n = str(input("nombre del cliente: ")) mc = int(input("ingrese el valor de la compra $")) if (mc < 50000): print(n) print("No hay descuento") print("Monto a pagar: " + str(mc),"$") elif(mc > 50000 and mc <= 100000): td = mc*0.05 mcb = mc-td print("Nombre del cliente: "+str(n)) print("Su momto de compra es: " + str(mc)) print("Su descuento por la compra es de: " (td),"$") print("Su valor a pagar es de: " (mcb), "$") elif (mc >= 100000 and mc < 700000): td = mc*0.11 mcb = mc-td print("Nombre del cliente: "+str(n)) print("Su momto de compra es: " + str(mc)) print("Su descuento por la compra es de: "+str(td)," $") print("Su valor a pagar es de: "+str(mcb), " $") elif (mc >= 700000 and mc < 1500000): td = mc*0.18 mcb = mc-td print("Nombre del cliente: "+str(n)) print("Su momto de compra es: " + str(mc)) print("Su descuento por la compra es de: " +str(td), " $") print("Su valor a pagar es de: "+str(mcb), " $") elif (mc >= 1500000): td = mc*0.25 mcb = mc-td print("Nombre del cliente: "+str(n)) print("Su momto de compra es: " + str(mc)) print("Su descuento por la compra es de: " +str(td), " $") print("Su valor a pagar es de: "+str(mcb), " $")
# Generated by Django 2.2.2 on 2019-06-18 02:26 from django.db import migrations, models import django.utils.timezone class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Song', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('indexNumber', models.CharField(max_length=20)), ('opusNumber', models.PositiveIntegerField()), ('dateWritten', models.DateField(default=django.utils.timezone.now)), ('key', models.CharField(max_length=3)), ('meter', models.CharField(max_length=5)), ('tempo', models.CharField(max_length=20)), ('bpm', models.PositiveIntegerField()), ('instrumentation', models.CharField(max_length=10)), ('typeOfMusic', models.CharField(max_length=20)), ('filmGenre', models.CharField(max_length=20)), ('subGenre', models.CharField(max_length=20)), ('tone', models.CharField(max_length=300)), ('emotion', models.CharField(max_length=300)), ('mood', models.CharField(max_length=300)), ('feeling', models.CharField(max_length=300)), ('songName', models.CharField(max_length=60)), ('composerNotes', models.CharField(max_length=1024)), ('location', models.CharField(max_length=100)), ], ), ]
""" This file handles searching and adding workouts """ from flask import (Blueprint, render_template, flash, session, request, redirect, url_for, json) from flaskapp import db bp = Blueprint('workout', __name__, url_prefix='/workout') @bp.route('/') def workout(): """ Page where user adds workouts :return: html workout template with exercises in search bar """ exercises = db.get_exercises() categories = db.get_categories() return render_template('workout.html', exercises=exercises, categories=categories) @bp.route('/add_workout', methods=['POST']) def add_workout(): """ Add workout to database when user clicks button :return JSON response: """ data = request.get_json() set_id = db.insert_set(data) db.insert_workout(session['training_session'], set_id, data) return json.dumps({'success': True}), 200, {'ContentType': 'application/json'} @bp.route('/training_session', methods=['GET', 'POST']) def training_session(): """ Creates training sessions when user clicks start workout :return JSON response: """ if request.method == 'POST': session['training_session'] = db.get_training_session(session['user']) resp = f"""Training session created with ID#{session['training_session']}""" return json.dumps(resp), 200, {'ContentType': 'application/json'} @bp.route('/search-by-cat', methods=['GET', 'POST']) def return_by_cat(): """ Returns only exercises with a given category :return JSON response: """ if request.method == 'POST': # print('searching by category') data = request.get_json() # print(data) return json.dumps(db.get_exercises_by_cat(data)) @bp.route('/get-exercises', methods=['GET', 'POST']) def get_exercises(): """ Returns only exercises with a given category :return JSON response: """ if request.method == 'POST': return json.dumps(db.get_exercises())
import pickle import sys import maya.cmds as cmds import os # import DLS from maya.api.OpenMaya import MVector import xml.etree.ElementTree import maya.mel as mel import random import DLS import time import re mapping_folder = 'd:/.work/.chrs/.bone_mapping' xml_folder = 'd:/.work/.chrs/.xml' upper_lower_match = 'd:/.work/.chrs/.upper_lower_match/upper_lower_match.txt' lps_path = 'd:/.work/.chrs/.lps/' '''Gets or set bone mapping for a character, bone per vertex correspondance. Since bones are constrained to vertices. And vertices are driven with a blendshapes. Args: folder (str): path to bone mapping files that contain dictionary, dumped with a pickle set_mapping (bool, optional): used with cubes and mapping params. Defaults to False Sets custom mapping for a character cubes (list, optional): used with set and mapping params. Cubes that visualize joint placement mapping (dict, optional): used with set and cubes params. Bone per vertex correspondance Returns: dict: default or custom bone per vertex correspondance for a '*_head' mesh Examples: >>> print([i for i in example_generator(4)]) [0, 1, 2, 3] ''' def get_head(head=''): '''Searches for a transform node named '*_head' in the scene. Args: head (str, optional): Returns: str: mesh name with prefix "_head" ''' if head: return head meshes = cmds.ls('*_head', tr=True) if meshes and len(meshes) == 1: head = meshes[0] elif not meshes: sys.exit('No mesh with the prefix _head in the scene') else: sys.exit( 'More than one object with the prefix _head in the scene \n %s' % meshes) return head def get_teeth(teeth=''): '''Searches for a transform node named '*_teeth' in the scene. Returns: str: mesh name with prefix "_teeth" ''' if not teeth: meshes = cmds.ls('*_teeth', tr=True) if meshes and len(meshes) == 1: teeth = meshes[0] elif not meshes: sys.exit('No mesh with the prefix _teeth in the scene') else: sys.exit( 'More than one object with the prefix _teeth in the scene \n %s' % meshes) return teeth def mapping(mesh, folder, set_mapping=False, cubes=[], mapping={}, female=False): '''Gets or set bone mapping for a character, bone per vertex correspondance. Since bones are constrained to vertices. And vertices are driven with a blendshapes. Args: mesh (str): transform object name mapping will be applied to. folder (str): path to bone mapping files that contain dictionary, dumped with a pickle set_mapping (bool, optional): used with cubes and mapping params. Defaults to False Sets custom mapping for a character cubes (list, optional): used with set and mapping params. Cubes that visualize joint placement mapping (dict, optional): used with set and cubes params. Bone per vertex correspondance Returns: dict: default or custom bone per vertex correspondance for a '*_head' mesh if 'head' in mesh: default_map_name = 'head_bones_mapping.txt' elif 'teeth' or 'mouth' in mesh: default_map_name = 'teeth_bones_mapping.txt' else: sys.exit('No pattern for %s found' % mesh) ''' if female: default_map_name = 'female_bones_mapping.txt' else: default_map_name = 'male_bones_mapping.txt' cur_map_name = '%s_%s' % (mesh.split('_')[0], default_map_name) default_map_path = os.path.join(folder, default_map_name) cur_map_path = os.path.join(folder, cur_map_name) if os.path.exists(cur_map_path): path = cur_map_path elif os.path.exists(default_map_path): path = default_map_path else: sys.exit('Neither Default nor Chr mapping file found') with open(path, 'rb') as bone_map: mapping = pickle.loads(bone_map.read()) if set_mapping == True and cubes and mapping: upd_mapping = update_match(mapping, cubes) with open(cur_map_path, 'wb') as bone_map: pickle.dump(upd_mapping, bone_map) print 'Saved updated mapping to %s' % cur_map_path # return upd_mapping else: print 'Loaded mapping from %s' % path return mapping def get_length(jnt_coord, vtx_coord): '''''' vtx_vector = MVector(vtx_coord) jnt_vector = MVector(jnt_coord) vector_position = vtx_vector - jnt_vector vector_length = vector_position.length() return vector_length def set_cubes(mapping): cubes = [] head = get_head() for vtx, jnt in mapping.iteritems(): cube = cmds.polyCube(name=jnt + '_cube', d=0.15, w=0.15, h=0.15)[0] vtx_pos = cmds.pointPosition(head + vtx, world=True) cmds.xform(cube, t=vtx_pos, ws=True) cubes.append(cube) cubes_group = cmds.group(cubes, name='cubes') return cubes_group def get_pos(a): a_pos = cmds.xform(a, translation=True, query=True, worldSpace=True) return a_pos def get_coords(objects): pos = {} for o in objects: o_pos = cmds.xform(o, translation=True, query=True, worldSpace=True) pos[o] = o_pos return pos def compare_pos(a, b): a_pos = cmds.xform(a, translation=True, query=True, worldSpace=True) b_pos = cmds.xform(b, translation=True, query=True, worldSpace=True) if MVector(a_pos) == MVector(b_pos): return True else: return False ''' true_false = [] for a_v, b_v in zip(a_pos, b_pos): if round(a_v, 2) == round(b_v, 2): true_false.append(True) elif round(a_v, 0) == round(b_v, 0): true_false.append(True) print 'Not certain about match' else: true_false.append(False) ''' def update_match(mapping, cubes): if not cubes: sys.exit('No Cubes found in scene.\nSet new bone position first.') head = get_head() upd_match = {} for vtx, jnt in mapping.iteritems(): cube = jnt + '_cube' if cmds.objExists(cube): if compare_pos(head + vtx, cube) == True: upd_match[vtx] = jnt else: print 'cube %s moved' % cube vtx = '.vtx[%s]' % get_closest(cube) upd_match[vtx] = jnt else: sys.exit('Cube %s not found' % cube) return upd_match def get_closest(element, obj=''): if not obj: obj = get_head() vtxs = cmds.polyEvaluate(obj, v=True) check_value = float('inf') current_vtx = '' element_pos = get_pos(element) for vtx in range(0, vtxs + 1): l = get_length(get_pos(obj + '.vtx[%s]' % vtx), element_pos) if l < check_value: check_value = l match_l = vtx return match_l def set_bones(mesh, bone_mapping): '''Constrains facial bones to a certain vertices. Position is taken from bone per vertex mapping dictionary Args: mesh (str): transform object name. bone_mapping (dict): bone per vertex mapping dictionary Returns: list: temporary objects, locators, groups, to be deleted later ''' tmp_stuff = [] # Constrain joints to vertices for vtx, jnt in bone_mapping.iteritems(): old_loc_list = cmds.ls('*LOC*', flatten=True) cmds.select(mesh + vtx) HZrivet.UI.HZrivet_finalCC() current_loc_list = cmds.ls('*LOC*', flatten=True, tr=True) loc = [loc for loc in current_loc_list if loc not in old_loc_list] vtx_pos = cmds.pointPosition(mesh + vtx, world=True) new_loc = cmds.spaceLocator() new_group = cmds.group(new_loc) tmp_stuff.append(loc[0]) tmp_stuff.append(new_group) # Align joint to the world of the parent joint # Breaks the model in editor # cmds.joint(jnt, e=True, oj='none', zso=True) cmds.xform(jnt, t=vtx_pos, ws=True) cmds.xform(new_group, t=vtx_pos, ws=True) # Now, not needed, because bones often have connections # cmds.makeIdentity(jnt) cmds.pointConstraint(loc[0], new_group, mo=True) cmds.orientConstraint(loc[0], new_group, mo=True) cmds.parentConstraint(new_loc, jnt, mo=True) tmp = cmds.group(tmp_stuff, name='tmp') return tmp def get_closest_vtx_bone_match(obj, jnts): '''''' vtxs_pos = get_vtxs_coords(obj) jnts_pos = get_coords(jnts) match = {} for jnt, jnt_pos in jnts_pos.iteritems(): check_value = float('inf') current_vtx = '' for vtx, vtx_pos in vtxs_pos.iteritems(): vtx_length = get_length(jnt_pos, vtx_pos) if vtx_length < check_value: check_value = vtx_length current_vtx = vtx match['.vtx[%s]' % current_vtx] = jnt return match def set_bip_rom(start=0, angle=45, fxgraph=False, skeleton='new'): '''Sets rotation for each of the predefined joints at x,y,z axis. Is a part of blendshapes to skin process. Returns: None ''' if skeleton == 'new': jnts = ['driv_Bip01_Head', 'driv_Bip01_Neck1', 'driv_Bip01_Neck'] head_mapping = ['head_yaw_right', 'head_yaw_left', 'head_roll_left', 'head_roll_right', 'head_pitch_up', 'head_pitch_down', 'neck1_yaw_right', 'neck1_yaw_left', 'neck1_roll_left', 'neck1_roll_right', 'neck1_pitch_up', 'neck1_pitch_down', 'neck_yaw_right', 'neck_yaw_left', 'neck_roll_left', 'neck_roll_right', 'neck_pitch_up', 'neck_pitch_down'] elif skeleton == 'old': jnts = ['Bip01_Head', 'Bip01_Neck'] head_mapping = ['head_yaw_right', 'head_yaw_left', 'head_roll_left', 'head_roll_right', 'head_pitch_up', 'head_pitch_down', 'neck_yaw_right', 'neck_yaw_left', 'neck_roll_left', 'neck_roll_right', 'neck_pitch_up', 'neck_pitch_down'] # Fedor's code eval(str(rotates).replace('90','60')) # Get nested list of rotates for attributes rotates = [] for n in xrange(3): for mp in ['-', '']: temp = [0, 0, 0] temp[n] = int(mp + str(angle)) rotates += [temp] ''' rotates = [[-45,0,0], [45,0,0], [0,-45,0], [0,45,0], [0,0,-45], [0,0,45]] ''' head_frames = range(start + 1, start + 1 + len(head_mapping)) head_fxgraph = '' # Info for fxgraph. Placed in batch.txt. for head_name, head_frame in zip(head_mapping, head_frames): print head_name, head_frame head_fxgraph += '%s_%s\n' % (head_name, str(head_frame)) if fxgraph: return head_fxgraph cmds.setKeyframe(jnts, time=start) frame = start + 1 for jnt in jnts: for rot in rotates: cmds.xform(jnt, ro=(rot)) cmds.setKeyframe(jnts, time=(frame, frame)) frame += 1 cmds.xform(jnt, ro=(0, 0, 0)) cmds.setKeyframe(jnts, time=(frame, frame)) return max(head_frames) def set_eyes_rom(start=0, fxgraph=False, skeleton='new'): start = int(start) eye_mapping = ['Eyeball_L_Down', 'Eyeball_L_Up', 'Eyeball_L_In', 'Eyeball_L_Out', 'Eyeball_R_Down', 'Eyeball_R_Up', 'Eyeball_R_Out', 'Eyeball_R_In'] if skeleton == 'new': jnts = ['bn_eye_l', 'bn_eye_r'] elif skeleton == 'old': jnts = ['BN_Eyeball_L', 'BN_Eyeball_R'] # jnts = ['BN_Eyeball_L', 'BN_Eyeball_R'] rotates = [[-30, 0, 0], [30, 0, 0], [0, 0, -40], [0, 0, 40]] eye_frames = range(start + 1, start + 1 + len(eye_mapping)) fxgraph_text = '' for eye_name, eye_frame in zip(eye_mapping, eye_frames): print eye_name, eye_frame fxgraph_text += '%s_%s\n' % (eye_name, str(eye_frame)) if fxgraph: return fxgraph_text cmds.setKeyframe(jnts, time=start) frame = start + 1 for jnt in jnts: for rot in rotates: cmds.xform(jnt, ro=(rot)) cmds.setKeyframe(jnts, time=(frame, frame)) frame += 1 cmds.xform(jnt, ro=(0, 0, 0)) cmds.setKeyframe(jnts, time=(frame, frame)) return max(eye_frames) def set_tmp_skin(): '''Set skin cluster for the head mesh only on the predefined joints. Ommiting those, that not needed while skin calculation. Is a part of blendshapes to skin process. Returns: str: skin cluster name ''' head = get_head() tmp_bones = [u'Bip01_Spine3', u'driv_Bip01_Neck', u'driv_Bip01_Neck1', u'driv_Bip01_Head', u'bn_lid_l_d_02', u'bn_lid_l_u_05', u'bn_lid_l_u_04', u'bn_lid_l_d_03', u'bn_lid_l_u_06', u'bn_lid_l_u_07', u'bn_lid_l_d_04', u'bn_lid_l_d_05', u'bn_lid_l_u_08', u'bn_lid_l_u_03', u'bn_br_l_08', u'bn_br_l_09', u'bn_lid_l_u_01', u'bn_lid_l_u_02', u'bn_br_l_04', u'bn_br_l_05', u'bn_br_l_06', u'bn_br_l_07', u'bn_br_l_01', u'bn_br_l_02', u'bn_br_l_03', u'bn_nose_l', u'bn_mouth_l_01', u'bn_cheek_l_04', u'bn_cheek_l_02', u'bn_cheek_l_03', u'bn_cheek_l_05', u'bn_mouth_l_02', u'bn_mouth_l_03', u'bn_cheek_l_06', u'bn_cheek_l_07', u'bn_mouth_l_04', u'bn_lip_l_u_02', u'bn_lip_l', u'bn_lip_l_u_04', u'bn_lip_l_u_05', u'bn_lip_c_u_02', u'bn_lip_l_u_01', u'bn_lip_c_u', u'bn_lip_c_u_01', u'bn_lip_l_u_03', u'bn_cheek_l_01', u'bn_cheek_r_06', u'bn_lip_r', u'bn_lip_r_u_04', u'bn_mouth_r_02', u'bn_cheek_r_04', u'bn_cheek_r_07', u'bn_lip_r_u_01', u'bn_lip_r_u_05', u'bn_br_r_01', u'bn_lid_r_d_05', u'bn_lid_r_d_03', u'bn_lid_r_d_02', u'bn_lid_r_u_02', u'bn_lid_r_d_04', u'bn_lid_r_u_08', u'bn_lid_r_u_07', u'bn_lid_r_u_03', u'bn_br_r_02', u'bn_cheek_r_03', u'bn_cheek_r_02', u'bn_mouth_r_01', u'bn_lid_r_u_01', u'bn_br_r_05', u'bn_br_r_04', u'bn_br_r_07', u'bn_cheek_r_05', u'bn_nose_r', u'bn_lid_r_u_06', u'bn_lid_r_u_04', u'bn_lid_r_u_05', u'bn_br_r_09', u'bn_br_r_08', u'bn_br_r_06', u'bn_br_r_03', u'bn_lip_r_u_03', u'bn_mouth_r_03', u'bn_mouth_r_04', u'bn_lip_r_u_02', u'bn_cheek_r_01', u'bn_lid_l_d_01', u'bn_nose_c', u'bn_br_c', u'bn_chin_l', u'bn_chin_r', u'bn_chin_c', u'bn_lip_c_d_02', u'bn_lip_r_d_05', u'bn_lip_l_d_05', u'bn_lip_c_d_01', u'bn_lip_r_d_03', u'bn_lip_l_d_03', u'bn_lip_l_d_04', u'bn_lip_r_d_04', u'bn_lip_r_d_01', u'bn_lip_l_d_01', u'bn_lip_c_d', u'bn_lip_r_d_02', u'bn_lip_l_d_02', u'bn_lid_r_d_01', u'bn_lip_r_u_06', u'bn_lip_l_u_06'] sk = cmds.skinCluster(tmp_bones, head, tsb=True) cmds.setAttr("%s.envelope" % sk[0], 0) return sk def get_joints(invert=False): '''Gets all the child joints from the 'Bip01' Returns: list: all joints in hierarchy ''' root = 'Bip01' if not cmds.objExists(root): return cmds.select(root, hierarchy=True) selection = cmds.ls(sl=True, fl=True) nubs = cmds.ls('*Nub*', type='joint') if nubs: cmds.select(nubs, d=True) jnts = cmds.ls(type='joint', selection=True) cmds.select(clear=True) if invert: return [o for o in selection if o not in jnts] else: return jnts def get_meshes(): '''Gets all the transform meshes node names from a scene Returns: list: all meshes in scene ''' objects = cmds.ls('*', type='mesh') meshes = cmds.listRelatives(objects, parent=True) if not meshes: return meshes = list(set(meshes)) return meshes def unlock_attributes(o): locked = cmds.listAttr(o, l=True) if locked: for atr in locked: cmds.setAttr('%s.%s' % (o, atr), lock=0) def reset(objects): '''Deletes all connections and history from a given objects. And freezes transform. Args: objects (list): string list of objects Returns: None: ''' axis = ['scaleX', 'scaleY', 'scaleZ', 'rotateX', 'rotateY', 'rotateZ', 'translateX', 'translateY', 'translateZ'] cmds.currentTime(0) for o in objects: cmds.delete(o, ch=True, cn=True, tac=True, e=True) unlock_attributes(o) sk = cmds.listConnections(o, type='skinCluster') if sk: cmds.delete(sk) bp = cmds.listConnections(o, type='dagPose') if bp: cmds.delete(bp) for a in axis: conn = cmds.listConnections(o + "." + a, s=True, p=True) if conn: cmds.disconnectAttr(conn[0], o + "." + a) cmds.delete(objects, c=True) cmds.delete(objects, ch=True) cmds.makeIdentity(objects, apply=True) def add_zeroes(num, digits=2): '''Gerenerates zeroes in front of the given digit. Args: num (int): input digit that is processed. digits (int, optional): quantity of digits. Returns: str: Examples: >>> add_zeroes(2, digits=2) '02' >>> add_zeroes(2, digits=3) '002' ''' if isinstance(num, int) and isinstance(digits, int): num = str(num) zeroes_quantity = digits - len(num) if zeroes_quantity > 0: zeroes = (str(0) * zeroes_quantity) return zeroes + num elif zeroes_quantity == 0: return num else: print 'digits', digits, 'less than', num, 'returning', num return num else: exit_message = str( ['"update_number()" accepts "int" only, got', type(num), type(digits)]) sys.exit(exit_message) def create_bip_blendshapes(start=1, end=19, head=''): if not head: head = get_head() for key in range(start, end): cmds.currentTime(key, edit=True) cmds.select(head) new_name = cmds.duplicate() cmds.rename(new_name[0], head + '_' + add_zeroes(key, digits=2)) cmds.delete(ch=True) def prepare_buttons(path): ''' Take .py or .pyc path to script Return dictionary button label:function ''' path = path.replace('.pyc', '.py') with open(path, 'r+') as cmds: commands = cmds.read().splitlines() defs = [d for d in commands if 'def ' in d] to_del = ['def ', '(*args):'] buttons = [] for d in defs: for i in to_del: d = d.replace(i, '') buttons.append(d) labeled_buttons = {} for b in buttons: labeled_buttons[b.replace('_', ' ')] = 'c.' + b return labeled_buttons def get_blendshape_node(mesh): ''' Description: Example: input: transform mesh output: blendshape name if connected ''' bls_set = cmds.ls('blendShape*', type='objectSet') for bl_set in bls_set: conns = cmds.listConnections(bl_set) if mesh in conns: bl = cmds.ls(conns, type='blendShape') return bl[0] print 'No blendshape connected to', mesh def duplicate_blendshapes(bl=''): '''Duplicates all blendshapes of a node by calling them one by one. Number prefix of duplicated mesh is taken from a blendshape name if present. Otherwise, Maya takes care of a prefix by itself. Args: None: Returns: list: duplicated meshes Examples: >>> duplicate_blendshapes() ['yermak_head_01', 'yermak_head_02'] ''' mesh = cmds.ls(sl=True, flatten=True)[0] if not bl: bl = get_blendshape_node(mesh) cmds.currentTime(0) targets = cmds.blendShape(bl, t=True, q=True) # If blendshape meshes were deleted from scene if not targets: targets = cmds.listAttr(bl + '.w', multi=True) # Generate dict for set each blendshapes in range to 1 infl per call weights_bls = {} renamed = [] group_name = '%s_bls_duplicated' % mesh cmds.group(name=group_name, empty=True) # Get index mapping for blendshape targets. # Example: {0:'yermak_19', 1:'yermak_20'} for t in range(0, len(targets)): weight = [(i, 0) for i in range(0, len(targets))] weight[t] = (t, 1) weights_bls[targets[t]] = weight for bl_mesh, bl_weight in weights_bls.iteritems(): cmds.blendShape(bl, w=bl_weight, edit=True) d_name = cmds.duplicate(mesh) cmds.parent(d_name, group_name) new_name = cmds.rename(d_name[0], bl_mesh) renamed.append(new_name) return renamed def skin_eyes(): ''' Prepare eye for export to 4A engine Add the skin and the proper weights ''' # Add check for skinscuster eyes = cmds.ls('*l_eye', '*r_eye') if not eyes: sys.exit('No match for the pattern *l_eye *r_eye') elif len(eyes) != 2: sys.exit('More or less than 2 objects match the pattern *l_eye *r_eye') reset(eyes) # Center pivot cmds.xform(eyes, cp=True, p=True) l_prefix = '_l' r_prefix = '_r' jnts_list = ['bn_eye_r', 'bn_eye_l', 'Bip01_Head', 'Bip01'] for jnt in jnts_list: if not cmds.objExists(jnt): sys.exit('joint not found', jnt) for eye in eyes: jnts_hi = get_joints() if l_prefix in eye: eye_jnt = 'bn_eye_l' elif r_prefix in eye: eye_jnt = 'bn_eye_r' else: sys.exit('No prefix match') # Align bone to eyes # Should add a check tor keys and connections on bones # To prevent jumping thile grabbing timeline p_constr = cmds.pointConstraint(eye, eye_jnt) cmds.delete(p_constr) skin_cluster = cmds.skinCluster(jnts_hi, eye, tsb=True) # skin_cluster = mel.eval('findRelatedSkinCluster("%s")' % object) cmds.skinPercent(skin_cluster[0], eye + '.vtx[*]', transformValue=[(eye_jnt, 0.99), (jnts_list[2], 0.01)]) print 'Prepared', eye def dict_io(path, dict={}, get=False, set=False): if get: with open(path, 'rb') as dict_path: dict = pickle.loads(dict_path.read()) print '# Loaded dictionary from', path return dict elif set and dict: with open(path, 'wb') as dict_path: pickle.dump(dict, dict_path) print '# Saved dictionary to', path else: sys.exit('Command not specified') def add_bones_to_skin_cluster(mesh, skin_cluster): existing_bones = cmds.skinCluster(skin_cluster, query=True, inf=True) to_add_bones = [ bone for bone in get_joints() if bone not in existing_bones] if to_add_bones: cmds.skinCluster(skin_cluster, edit=True, ai=to_add_bones, wt=0) def get_info_from_xml(path): ''' takes path to .xml file return dict 'skin cluster name':[jnts] ''' root = xml.etree.ElementTree.parse(path).getroot() # set the header info for atype in root.findall('headerInfo'): fileName = atype.get('fileName') info = {} jnts = [] for atype in root.findall('weights'): jnts.append(atype.get('source')) #shape = atype.get('shape') skin_cluster = atype.get('deformer') info[skin_cluster] = jnts return info def get_skin_cluster(mesh): skin_cluster = mel.eval('findRelatedSkinCluster "%s"' % mesh) if not skin_cluster: skin_cluster = cmds.ls(cmds.listHistory(mesh), type='skinCluster') if skin_cluster: skin_cluster = skin_cluster[0] else: skin_cluster = None return skin_cluster def set_skin_cluster(mesh): global xml_folder mesh_xml = os.path.join(xml_folder, mesh + '.xml') if not os.path.exists(mesh_xml): print 'No saved skin cluster found for %s' % mesh return None else: info = get_info_from_xml(mesh_xml) # No check for skin cluster name match in scene yet. jnts = info.values()[0] skin_cluster = info.keys()[0] if not exists(jnts): print 'Not enough joints to apply saved skin to' return None if exists(skin_cluster): print 'Skin cluster already exists with a given name' return None cmds.skinCluster(mesh, jnts, name=skin_cluster, mi=4) return skin_cluster def exists(objects): ''' Takes strings and lists Return True or False ''' if isinstance(objects, str) or isinstance(objects, unicode): if cmds.objExists(objects): return True elif isinstance(objects, list): true_false = [] for o in objects: if cmds.objExists(o): true_false.append(True) else: true_false.append(False) if False in true_false: return False else: return True else: print 'Types "str", "list" are accepted only' return False def fix_skin_cluster_name(mesh, skin_cluster): '''Renames skin cluster with a mesh name + prefix "_sc" Args: mesh (str): transform object with a skin cluster skin_cluster (str): skin cluster node name Returns: str: updated mesh skin cluster name ''' prefix = '_sc' if skin_cluster != mesh + prefix: skin_cluster_name = cmds.rename(skin_cluster, mesh + prefix) return skin_cluster_name else: return skin_cluster def export_weights(): global xml_folder cmds.currentTime(0) objects = cmds.ls(selection=True, transforms=True, flatten=True) if not objects: print 'Nothing is selected to save weights from' return object_and_skin_cluster = {} for o in objects: skin_cluster = get_skin_cluster(o) if skin_cluster: skin_cluster = fix_skin_cluster_name(o, skin_cluster) object_and_skin_cluster[o] = skin_cluster if not object_and_skin_cluster: print 'No skin cluster was found on selected' return for o, skin_cluster in object_and_skin_cluster.iteritems(): add_bones_to_skin_cluster(o, skin_cluster) cmds.deformerWeights(o + '.xml', path=xml_folder, ex=True, deformer=skin_cluster, method='index') def import_weights(): global xml_folder cmds.currentTime(0) objects = cmds.ls(selection=True, transforms=True, flatten=True) if not objects: print 'Nothing is selected to import weights from' return for o in objects: skin_cluster = get_skin_cluster(o) if skin_cluster: cmds.skinCluster(skin_cluster, unbind=True, edit=True) skin_cluster = set_skin_cluster(o) if skin_cluster: cmds.deformerWeights(o + '.xml', path=xml_folder, im=True, deformer=skin_cluster, method='index') cmds.skinCluster( skin_cluster, forceNormalizeWeights=True, edit=True) add_bones_to_skin_cluster(o, skin_cluster) print "# Imported deformer weights from '%s'. #" % (os.path.join(xml_folder, o + '.xml')) def get_num_prefix(s): bl_prefix = s.split('_')[-1] return int(''.join(chr for chr in bl_prefix if chr.isdigit())) def set_blendshapes(head=''): if not head: head = get_head() bls = check_blendshapes(head) # Blendshapes may not be properly ordered. 1,2,3,5... # That is why a dictionary mapping is used bls_order = {} for i in range(0, len(bls)): bls_order[i] = bls[i] bl = cmds.blendShape(bls + [head])[0] zero_weights = [(i, 0) for i in range(0, len(bls))] cmds.blendShape(bl, w=zero_weights, edit=True) cmds.setKeyframe(bl, time=0) frames = [] for key in bls_order.keys(): frames.append(get_num_prefix(bls_order[key])) frame_range = [frame for frame in range(0, max(frames))] # Key all blendshapes along the timeline range for frame in frame_range: cmds.blendShape(bl, w=zero_weights, edit=True) cmds.setKeyframe(bl, time=frame) for key in bls_order.keys(): bl_num = get_num_prefix(bls_order[key]) cmds.blendShape(bl, w=zero_weights, edit=True) cmds.blendShape(bl, w=(key, 1.0), edit=True) cmds.setKeyframe(bl, time=bl_num) return bl def check_blendshapes(head): # Find all blendshapes in scene #head = get_head() head_template = '_'.join(head.split('_')[:-1]) head_template_match = cmds.ls(head_template + '*', tr=True) head_bl = [i for i in head_template_match if i.split('_')[-1].isdigit()] if not head_bl: sys.exit('No blendshapes') head_bl.sort() return head_bl def get_vtxs_coords(mesh, relative=False): vtxs_coords = {} vtxs = cmds.ls(mesh + '.vtx[*]', fl=True) for vtx in vtxs: if relative: coord = cmds.xform(vtx, q=True, t=True, r=True) else: coord = cmds.xform(vtx, q=True, t=True, ws=True) vtx_id = ''.join(i for i in vtx.split('.')[1] if i.isdigit()) vtxs_coords[vtx_id] = coord return vtxs_coords def calc_coords(a_coords, b_coords, add=False, sub=False): ''' Perfoms add or substract operations on a [x, y, z] input: [float, float, float] output: [float, float, float] ''' a_vector = MVector(a_coords) b_vector = MVector(b_coords) if add: result = list(a_vector + b_vector) elif sub: result = list(b_vector - a_vector) else: sys.exit('Only "sub" or "add" flags supported') # Operations are correct even without float formatting #diff = [float('%.10f' % c) for c in diff] return result def set_coords(mesh, coords): for vtx_id, coords in coords.iteritems(): cmds.xform(mesh + '.vtx[%s]' % vtx_id, t=coords, ws=True) def get_vtxs_delta(t_coords, a_coords, b_coords): delta = {} vtx_ids = [id for id in a_coords.keys()] for vtx_id in vtx_ids: if a_coords[vtx_id] == b_coords[vtx_id]: continue diff_coords = calc_coords(a_coords[vtx_id], b_coords[vtx_id], sub=True) delta_coords = calc_coords(t_coords[vtx_id], diff_coords, add=True) delta[vtx_id] = delta_coords return delta def set_delta_mesh(t_mesh, a_mesh, b_mesh): a_coords = get_vtxs_coords(a_mesh) b_coords = get_vtxs_coords(b_mesh) t_coords = get_vtxs_coords(t_mesh) if len(a_coords) != len(b_coords) != len(t_coords): exit_message = 'Different length of dicts: %s, %s, %s' % ( len(a_coords), len(b_coords), len(t_coords)) sys.exit(exit_message) if a_coords == b_coords == t_coords: sys.exit('Compared dictionaries are identical') vtxs_delta = get_vtxs_delta(t_coords, a_coords, b_coords) delta_mesh = cmds.duplicate(t_mesh, n=b_mesh + '_delta')[0] set_coords(delta_mesh, vtxs_delta) print delta_mesh return delta_mesh def calc_delta_on_meshes(mapping): ''' eye_l_up_closed 64 eye_r_up_closed 65 eye_l_down_closed 66 eye_r_down_closed 67 eye_l_left_closed 68 eye_r_left_closed 69 eye_l_right_closed 70 eye_r_right_closed 71 delta_mapping = {57:64, 56:65, 54:66, 55:67, 59:68, 58:69, 60:70, 61:71} ''' # delta_mapping = {57:64, 56:65, 54:66, 55:67, 59:68, 58:69, 60:70, 61:71} # calc_delta_on_meshes(delta_mapping) template_mesh = get_head() for a, b in delta_mapping.iteritems(): a_mesh = cmds.listRelatives( cmds.ls('*%s*' % a, type='mesh'), parent=True)[0] b_mesh = cmds.listRelatives( cmds.ls('*%s*' % b, type='mesh'), parent=True)[0] if not a_mesh and not b_mesh: exit_message = 'Meshes not found with the %s or %s prefix' % (a, b) sys.exit(exit_message) delta_mesh = set_delta_mesh(template_mesh, a_mesh, b_mesh) cmds.rename(delta_mesh, b_mesh + '_delta') def get_blend_multiplier(coords, threshold=3): '''Gets data for smooth dividing mesh on to symmetrical parts with a blend between parts given by threshold. Uses to divide a scanned emotion blendshapes on the left and the right sides. Default division axis is X. Args: coords (list): vertex coordinates [x,y,z] threshold (int, optional): blend half length. In units. Counted from the center of a mesh Returns: dict, dict: blend mapping for both sides in a format: '1': 0.5, where key is vertex id in "str", 05 is blend value ''' axis = 0 # x in x, y, z max_coord = max([x[axis] for x in coords.values()]) min_coord = min([x[axis] for x in coords.values()]) center_coord = (max_coord + min_coord) / 2 blend_max = center_coord + threshold blend_min = center_coord - threshold blend_length = threshold * 2 positive_blend = {} negative_blend = {} for id, coord in coords.iteritems(): axis_coord = coord[axis] if axis_coord > blend_max: positive_blend[id] = 1 elif axis_coord < blend_min: negative_blend[id] = 1 else: positive_blend_value = (axis_coord - blend_min) / blend_length positive_blend[id] = positive_blend_value # Sinse a multiplier will never be greater than 1 negative_blend[id] = 1 - positive_blend_value return positive_blend, negative_blend def set_blend_coords(blend, diff, mesh): '''Applies a relative transform on a mesh with a multiplier Args: blend (dict): vtx id: multiplier based on distance. diff (dict): vtx id: [x,y,z] difference between tempate mesh, and som emotion. mesh (str): mesh name transform are applied to. Returns: None: ''' for vtx_id in blend.keys(): pos_blend_coord = [x * blend[vtx_id] for x in diff] cmds.xform(mesh + '.vtx[%s]' % vtx_id, t=blend, r=True) def divide_mesh(template_mesh, divided_mesh, threshold=3): '''Divides mesh on the left and the right symmetrical sides. With a smooth linear blend inbetween. Uses to divide a scanned emotion blendshapes. Template mesh is duplicated. Args: template_mesh (str): divided_mesh (str): Returns: list: divided meshes names ''' l_mesh = cmds.duplicate(template_mesh, name=divided_mesh + '_l')[0] r_mesh = cmds.duplicate(template_mesh, name=divided_mesh + '_r')[0] template_coords = get_vtxs_coords(template_mesh, relative=True) div_coords = get_vtxs_coords(divided_mesh, relative=True) pos_blend_values, neg_blend_values = get_blend_multiplier( template_coords, threshold=threshold) for vtx_id in pos_blend_values.keys(): diff_coords = calc_coords( template_coords[vtx_id], div_coords[vtx_id], sub=True) pos_blend_coord = [x * pos_blend_values[vtx_id] for x in diff_coords] cmds.xform(r_mesh + '.vtx[%s]' % vtx_id, t=pos_blend_coord, r=True) for vtx_id in neg_blend_values.keys(): diff_coords = calc_coords( template_coords[vtx_id], div_coords[vtx_id], sub=True) neg_blend_coord = [x * neg_blend_values[vtx_id] for x in diff_coords] cmds.xform(l_mesh + '.vtx[%s]' % vtx_id, t=neg_blend_coord, r=True) print 'Divided', divided_mesh return [l_mesh, r_mesh] def get_neibour_faces(face): edges = cmds.polyListComponentConversion(face, ff=True, te=True) # get neighbour faces faces = cmds.polyListComponentConversion(edges, fe=True, tf=True, bo=True) return faces def check_bones_threshold(faces, skin_cluster): threshold = 80 bones_on_faces = cmds.skinPercent(skin_cluster, faces, transform=None, q=1, ib=0.001) bones_quantity = int(len(set(bones_on_faces))) if bones_quantity <= threshold: return True else: return False def get_faces(): mesh = cmds.ls(sl=True)[0] # a_mat, b_mat = get_faces() max_iter = 100 skin_cluster = get_skin_cluster(mesh) max_random = cmds.polyEvaluate(mesh, f=True) for i in range(0, max_iter): random_face = '%s.f[%s]' % (mesh, random.randrange(0, max_random)) faces = [] faces.append(random_face) # 100 iterations of grow selection is enough to cover even the most hi # poly mesh for i in range(0, 100): if check_bones_threshold(faces, skin_cluster): # new_faces = faces+get_neibour_faces(faces) # Slow but a selection is more elegant # Fits my needs because right now using only 81 bones cmds.select(faces) mel.eval('GrowPolygonSelectionRegion;') new_faces = cmds.ls(sl=True, fl=True) if check_bones_threshold(new_faces, skin_cluster): faces = new_faces else: break else: break # Get the other faces cmds.select(faces) mel.eval('InvertSelection') inverted_faces = cmds.ls(sl=True, flatten=True) cmds.select(clear=True) if check_bones_threshold(inverted_faces, skin_cluster) and check_bones_threshold(faces, skin_cluster): print random_face, 'worked' return faces, inverted_faces sys.exit('100 iteration is not enough to divide the mesh on two materials') def set_facefx_scale(root_only=False, biped_only=False, defined=[]): import skin_import_export start, end = get_timeline() jnts = get_joints() root_jnt = 'Bip01' meshes = get_meshes() reset(meshes) # Brute force approach to be confident for all meshes will be scaled # Apply one bone skin for mesh in meshes: cmds.skinCluster('Bip01_Head', mesh, tsb=True) # Make joints scalable for jnt in jnts: for a in ['scaleX', 'scaleY', 'scaleZ']: conn = cmds.listConnections(jnt + "." + a, s=True, p=True) if conn: cmds.disconnectAttr(conn[0], jnt + "." + a) # Works with old skeleton if root_only: cmds.xform(root_jnt, scale=(0.01, 0.01, 0.01)) # For unknown reasons works sometimes when all skeleton scale spoils face joints elif biped_only and not defined: if cmds.objExists('driv_Bip01_Head'): face_jnts = cmds.listRelatives('driv_Bip01_Head', type='joint', ad=True) elif cmds.objExists('Bip01_Head'): face_jnts = cmds.listRelatives('Bip01_Head', type='joint', ad=True) else: sys.exit('No head joint presents in scene. Biped scale only not possible.') filtered_jnts = [j for j in jnts if j not in face_jnts] cmds.xform(filtered_jnts, scale=(0.01, 0.01, 0.01)) elif defined: cmds.xform(defined, scale=(0.01, 0.01, 0.01)) # Default scale else: cmds.xform(jnts, scale=(0.01, 0.01, 0.01)) # Transfer and bake animation to locators locs = [] constrs = [] for jnt in jnts: cmds.select(clear=True) loc_name = cmds.spaceLocator(name=jnt + '_LOC') locs.append(loc_name[0]) pc = cmds.pointConstraint(jnt, loc_name) constrs.append(pc[0]) oc = cmds.orientConstraint(jnt, loc_name) constrs.append(oc[0]) cmds.bakeResults(locs, time=(start, end + 1), sm=True) cmds.delete(constrs) # Freeze transformation reset(meshes) reset(jnts) # Birng the animation back to joints from locators for jnt in jnts: cmds.select(clear=True) loc_name = jnt + '_LOC' cmds.pointConstraint(loc_name, jnt) cmds.orientConstraint(loc_name, jnt) cmds.select(meshes) skin_import_export.import_weights_sp() cmds.bakeResults(jnts, time=(start, end + 1), sm=True) cmds.delete(locs) def get_texture(mesh): shapesInSel = cmds.ls(mesh, dag=1, o=1, s=1) shadingGrps = cmds.listConnections(shapesInSel, type='shadingEngine') shaders = cmds.ls(cmds.listConnections(shadingGrps), materials=1) fileNode = cmds.listConnections('%s.color' % (shaders[0]), type='file') if fileNode: currentFile = cmds.getAttr("%s.fileTextureName" % fileNode[0]) return currentFile else: return None def create_shader(name, texture): shader = cmds.shadingNode("blinn", asShader=True, name=name) # a file texture node file_node = cmds.shadingNode("file", asTexture=True, name=name) # a shading group cmds.setAttr(file_node + '.fileTextureName', texture, type="string") shading_group = cmds.sets( renderable=True, noSurfaceShader=True, empty=True) # connect shader to sg surface shader cmds.connectAttr('%s.outColor' % shader, '%s.surfaceShader' % shading_group) # connect file texture node to shader's color cmds.connectAttr('%s.outColor' % file_node, '%s.color' % shader) return shading_group def assign_shader(object, s_group): try: cmds.sets(object, e=True, forceElement=s_group) except: print 'Cannot assign material to', object def find_texture(texture): path = 't:/' name = os.path.basename(texture) for path, dirs, file_names in os.walk(path): for file_name in file_names: if file_name == name: new_texture = os.path.join(path, file_name) return new_texture print 'Texture %s not found on T drive. Leaving as is.' % texture return texture def organize_scene_shaders(): # Obtain texture files from shaders mesh_texture = {} for mesh in get_meshes(): texture = get_texture(mesh) mesh_texture[mesh] = texture # Get all shaders in scene and delete them shaders = cmds.ls('*', mat=True) cmds.delete(shaders) for mesh, texture in mesh_texture.iteritems(): new_texture = find_texture(texture) s_name = '%s_m' % mesh sg = create_shader(s_name, new_texture) assign_shader(mesh, sg) def get_locators_in_scene(): existing_locs_shapes = cmds.ls('*', type='locator', flatten=True) return [cmds.listRelatives(l, p=True)[0] for l in existing_locs_shapes] def set_color_lps_rig(dict): object = cmds.ls(sl=True)[0] for loc, vtxs in dict.iteritems(): cmds.select([object + '.' + v for v in vtxs]) mel.eval("polyColorPerVertex -cdo -rgb 0.0 1.0 1.0;") def create_lps_rig(dict, ctrls=[]): object = cmds.ls(sl=True)[0] cmds.select(object) # Fetching commands from mel LPC script. # Since now don't want to rewrite on python mel.eval("setDeformGeom();") loc_renaming_table = {} if not ctrls: ctrls = dict.keys() for ctrl in ctrls: existing_locs = get_locators_in_scene() vtxs = dict[ctrl] # time.sleep(1) tmp_ls = cmds.select([object + '.' + v for v in vtxs]) # cmds.refresh() # time.sleep(1) if ctrl != 'excluded': mel.eval("addHandle();") else: mel.eval("addAnchor();") created_locs = get_locators_in_scene() created_loc = [l for l in created_locs if l not in existing_locs][0] loc_renaming_table[created_loc] = ctrl for loc in loc_renaming_table.keys(): cmds.rename(loc, loc_renaming_table[loc]) def get_shader_info(mesh): shapes = cmds.ls(mesh, dag=1, o=1, s=1) shading_groups = cmds.listConnections(shapes, type='shadingEngine') shading_groups = list(set(shading_groups)) shader_info = {} for shading_group in shading_groups: shader = cmds.ls(cmds.listConnections(shading_group), materials=1) print shader cmds.select(shading_group) shader_mesh = cmds.ls(selection=True, flatten=True) cmds.select(clear=True) # print shading_groups return len(shading_groups) def print_shader_info(): for m in get_meshes(): print m, get_shader_info(m) def get_timeline(): start = cmds.playbackOptions(min=True, query=True) end = cmds.playbackOptions(max=True, query=True) return int(start), int(end) def bake_animation_joints_to_locators(jnts=[]): '''First part of the operation, that consists of two steps. The second one is a function called "bake_animation_locators_to_joints" Transfer with a help of constraints animation from a given joins to locators. Keeps an animation when reparenting or scaling joints Args: jnts (list, optional): joints. If not specified, takes all joints starting from "Bip01" Returns: dict: joint:locator mapping. Used later when returning an animation back ''' start, end = get_timeline() if not jnts: jnts = get_joints() mapping = {} constrs = [] # group_name = 'tmp_locs' for jnt in jnts: cmds.select(clear=True) loc_name = cmds.spaceLocator(name=jnt + '_LOC')[0] pc = cmds.pointConstraint(jnt, loc_name) oc = cmds.orientConstraint(jnt, loc_name) # sc = cmds.scaleConstraint(jnt, loc_name) constrs.append(pc[0]) constrs.append(oc[0]) # constrs.append(sc[0]) mapping[jnt] = loc_name cmds.bakeResults([l for j, l in mapping.iteritems()], time=(start, end + 1), sm=True) cmds.delete(constrs) cmds.group([l for j, l in mapping.iteritems()], n='tmp_locs') # cmds.group([l for l in mapping.values()], name=group_name) return mapping def bake_animation_locators_to_joints(data): '''Second part of the operation, that consists of two steps. The first one is a function called "bake_animation_joints_to_locators" Args: data (dict, list): joint:locator data. Returns: none: ''' # Convert list of objects to mapping. # When locators are imported in the other file if isinstance(data, list): data = {l[:-4]: l for l in data} start, end = get_timeline() for jnt, loc in data.iteritems(): cmds.pointConstraint(loc, jnt) cmds.orientConstraint(loc, jnt) # cmds.scaleConstraint(loc, jnt) cmds.bakeResults([j for j, l in data.iteritems()], time=(start, end + 1), sm=True) cmds.delete([loc for jnt, loc in data.iteritems()]) def get_sc_multi(a): '''Get a multiplier from a skinned object based on the bone per vertex influences. A skin serves as a masked regions for further splitting blendshapes. Bones names are taken as a prefixes for masked areas. Used later when template mesh is being duplicated. Args: a (str): object name Returns: dict: with a following structure {bone:{vertex_id:bone_influence}} ''' sc = get_skin_cluster(a) if not sc: exit_message = 'No skin cluster on the %s' % a sys.exit(exit_message) bones = cmds.skinCluster(sc, wi=True, q=True) vtxs_range = cmds.polyEvaluate(a, v=True) sc_multi = {} for bone in bones: per_bone_multi = {} for id in range(0, vtxs_range + 1): infl = cmds.skinPercent(sc, '%s.vtx[%s]' % (a, id), transform=bone, ib=0.0001, query=True) if not infl or infl == 0: continue per_bone_multi[str(id)] = round(infl, 5) if not per_bone_multi: continue sc_multi[bone] = per_bone_multi if not sc_multi: sys.exit('Bones under the skin cluster do not have influences on any vertex') else: return sc_multi def get_diff_coords(a, b): diff = {} ids = [id for id in a.keys()] for id in ids: if a[id] == b[id]: continue diff_coords = calc_coords(a[id], b[id], sub=True) diff[id] = diff_coords return diff def set_local_coords(mesh, coords): for vtx_id, coords in coords.iteritems(): cmds.xform(mesh + '.vtx[%s]' % vtx_id, t=coords, r=True) def split_blendshape(a, b): '''Skin of an a object in used to divide the b blendshape on a zones. Each joint influence becomes the separate blendshape element. Args: a (str): object with a skin cluster b (str): blendshape name that will be divided Returns: b_group (str): created group ''' a_coords = get_vtxs_coords(a, relative=True) b_coords = get_vtxs_coords(b, relative=True) diff_coords = get_diff_coords(a_coords, b_coords) sc_multi = get_sc_multi(a) b_group = b + '_divided' b_group = cmds.group(n=b_group, empty=True) for bone in sc_multi.keys(): per_bone_multi = sc_multi[bone] diff_coords_multi = {} for id, multi in per_bone_multi.iteritems(): # If position of a identical to b if not id in diff_coords.keys(): continue elif multi == 1: diff_coords_multi[id] = diff_coords[id] else: diff_coords_multi[id] = [ coord * multi for coord in diff_coords[id]] duplicated = cmds.duplicate(a, name=b + '_' + bone)[0] set_local_coords(duplicated, diff_coords_multi) cmds.parent(duplicated, b_group) return b_group def batch_split_blendshapes(): '''Splits blendshapes on a zones provided by skin influence. Blendshapes selected first, the template with a skin cluster - the last. Args: None: Returns: None: ''' objects = cmds.ls(sl=True, fl=True, tr=True) a = objects[-1] objects.remove(a) for o in objects: split_blendshape(a, o) print o, 'done' def split_blendshapes_xy_axis(a, b, zx=0, zy=0, cut=0): '''Split blendshape on two. Movement is divided by axis. The first gets x, z/2 movement from original mesh, the second gets y, z/2. Positive or negative translation are cut if cut is set to 1 or -1 Args: a (str): neutral mesh name b (str): blendshape name that will be divided zx (float, optional): Z axis translation multiplier added to "X" mesh zy (float, optional): Z axis translation multiplier added to 'Y' mesh cut (int, optional): positive or negative value, that will be cut from Y axis if met conditions. No cut if 0. Returns: None: ''' a_coords = get_vtxs_coords(a, relative=True) b_coords = get_vtxs_coords(b, relative=True) diff_coords = get_diff_coords(a_coords, b_coords) x_mesh = cmds.duplicate(a, name=b + '_x')[0] y_mesh = cmds.duplicate(a, name=b + '_y')[0] for vtx_id, coords in diff_coords.iteritems(): x_m_coords = [coords[0], 0, coords[-1] * zx] # Cuts positive or negative value from transform if cut > 0 < coords[1] or cut < 0 > coords[1]: y_cut = 0 else: y_cut = coords[1] y_m_coords = [0, y_cut, coords[-1] * zy] cmds.xform(x_mesh + '.vtx[%s]' % vtx_id, t=x_m_coords, r=True) cmds.xform(y_mesh + '.vtx[%s]' % vtx_id, t=y_m_coords, r=True) def select_bad_joints(mesh, limit=3): ''' Seperates bad ones from auto generated joints that have no useful influence on a skin ''' sc = get_skin_cluster(mesh) jnts = cmds.skinCluster(sc, query=True, inf=True) bad_attr_jnts = list(jnts) start, end = get_timeline() attrs = ['translateX', 'translateY', 'translateZ', 'rotateX', 'rotateY', 'rotateZ'] for jnt in jnts: for attr in attrs: if jnt in bad_attr_jnts: for frame in range(start, end + 1): if frame == start: init_value = cmds.getAttr( '%s.%s' % (jnt, attr), time=frame) else: value = cmds.getAttr('%s.%s' % (jnt, attr), time=frame) if not (init_value - limit) < value < (init_value + limit): bad_attr_jnts.remove(jnt) break else: break # Another method to detect bad bones. # This will find bones with zero weight to vertices. bad_sc_jnts = [] for jnt in jnts: infl = cmds.skinPercent(sc, '%s.vtx[*]' % mesh, transform=jnt, query=True) if infl < 0.001: bad_sc_jnts.append(jnt) # Gets joints that influence the lips zones. # These joints will be substracted from bad joints. # Due to small weights on lips (f.e. Sticky), that are selected as "bad". # Vertices ids are saved for male topology. vtxs_nums = dict_io(r'u:\face\scripts\config_data\vtx_num_mask.txt', get=True) affected_vtxs = ['%s.vtx[%s]' % (mesh, vtx) for vtx in vtxs_nums] lips_jnts = cmds.skinPercent(sc, affected_vtxs, query=True, transform=None, ib=0.1) bad_jnts = list(set(bad_attr_jnts + bad_sc_jnts)) # Removes joints that influence the "lip" zone. bad_jnts = [j for j in bad_jnts if j not in lips_jnts] if bad_jnts: cmds.select(bad_jnts) else: print 'No bad joints found.' def get_fxgraph(obj='', print_fxgraph=False): if not obj: obj = cmds.ls(sl=True)[0] bls = get_blendshape_nodes(obj) if not bls: sys.exit() start, end = get_timeline() fxgraph = '' for frame in xrange(start, (end + 1)): for bl in bls: bl_names = cmds.listAttr(bl + '.w', multi=True) for bl_name in bl_names: if cmds.getAttr('%s.%s' % (bl, bl_name), time=frame) == 1: if print_fxgraph: print bl_name, frame fxgraph += '%s_%s\n' % (bl_name, str(frame)) return fxgraph def get_blendshape_nodes(mesh): bls = [] bls_set = cmds.ls('blendShape*', type='objectSet') for bl_set in bls_set: conns = cmds.listConnections(bl_set) if mesh in conns: bls.append(cmds.ls(conns, type='blendShape')[0]) if bls: return bls else: print 'No blendshape connected to', mesh def orient_driv(): a_jnts = ['driv_Bip01_Neck', 'driv_Bip01_Head'] b_jnts = ['Bip01_Neck', 'Bip01_Head'] i_jnt = 'driv_Bip01_Neck1' cs = [] if exists(a_jnts + b_jnts + [i_jnt]): for a, b in zip(a_jnts, b_jnts): cs.append(cmds.orientConstraint(b, a, mo=True)) cs.append(cmds.orientConstraint(a_jnts, i_jnt, mo=True, w=0.5)) return cs else: print 'Not done. Some of the joints are not in scene.' # Bones that cannot be deleted or replaced by autobones in # set_auto_to_biped(mesh) function low_case_skeleton = ['bn_eye_l', 'bn_eye_r', 'bn_tng_01', 'bn_tng_02', 'bn_tng_03', 'bn_jaw_c'] upper_case_skeleton = ['BN_Eyeball_L', 'BN_Eyeball_R', 'BN_Tongue_Back', 'BN_Tongue', 'BN_Tongue_Front', 'BN_Jaw_Pivot'] def parent_to_hi(jnts, mapping): if len(jnts) == 0: return for j, parent in mapping.iteritems(): if j in jnts: if cmds.objExists(parent): cmds.parent(j, parent) jnts.remove(j) else: continue return parent_to_hi(jnts, mapping) def set_auto_to_biped(mesh, skeleton='new'): '''Set autobones generated by DLS plugin into biped hierarchy. Autobones are renamed and reparented to biped. The same quantity of biped bones are deleted. There is no closest auto to biped bones mapping. Args: mesh (str): object skinned with autobones Returns: None: ''' # Gets biped bones hi from head if skeleton == 'new': biped_bones = cmds.listRelatives('driv_Bip01_Head', type='joint', ad=True) excl_bones = low_case_skeleton elif skeleton == 'old': biped_bones = cmds.listRelatives('Bip01_Head', type='joint', ad=True) excl_bones = upper_case_skeleton else: sys.exit('skeleton parameter should be "new" or "old"') [biped_bones.remove(j) for j in excl_bones if j in biped_bones] # Gets autobones sc = get_skin_cluster(mesh) if not sc: exit_message = 'No skin cluster found on %s' % mesh sys.exit(exit_message) auto_bones = cmds.skinCluster(sc, query=True, inf=True) # Checks if autobones fits biped bones quantity if len(biped_bones) < len(auto_bones): exit_message = 'Autobones quantity is greater than biped bones. %s vs %s' % ( len(auto_bones), len(biped_bones)) sys.exit(exit_message) # Sets auto/biped bones mapping auto_biped_match = {} for a, b in zip(auto_bones, biped_bones): auto_biped_match[a] = b bake_to_biped(auto_biped_match) return [j for j in auto_biped_match.values()] def bake_to_locs(objs): prefix = '_LOC' start, end = get_timeline() locs = [] constrs = [] for obj in objs: cmds.select(clear=True) loc_name = cmds.spaceLocator(name=obj + prefix) locs.append(loc_name[0]) pc = cmds.pointConstraint(obj, loc_name) constrs.append(pc[0]) oc = cmds.orientConstraint(obj, loc_name) constrs.append(oc[0]) cmds.bakeResults(locs, time=(start, end + 1), sm=True) cmds.delete(constrs) return locs def bake_from_locs(data): prefix = '_LOC' start, end = get_timeline() # If there is mapping for loc:bone if isinstance(data, dict): jnts = [j for l, j in data.iteritems()] constrs = [] for a, b in data.iteritems(): loc = a + prefix if not cmds.objExists(loc): exit = '%s locator not found in scene.' % loc sys.exit(exit) constrs.append(cmds.pointConstraint(loc, b)[0]) constrs.append(cmds.orientConstraint(loc, b)[0]) cmds.bakeResults(jnts, time=(start, end + 1), sm=True) cmds.delete(constrs) elif isinstance(data, list): exit = 'Got list. Now not working with lists.' sys.exit(exit) else: exit = 'Got neither list nor dict.' sys.exit(exit) def bake_to_biped(data): start, end = get_timeline() # If there is mapping for auto:biped if isinstance(data, dict): jnts = [biped for auto, biped in data.iteritems()] auto = [a for a in data.keys()] keyed_frames = cmds.keyframe(auto, query=True, timeChange=True) start, end = min(keyed_frames), max(keyed_frames) cmds.playbackOptions(min=min(keyed_frames), max=max(keyed_frames)) constrs = [] for a, b in data.iteritems(): constrs.append(cmds.pointConstraint(a, b)[0]) constrs.append(cmds.orientConstraint(a, b)[0]) cmds.bakeResults(jnts, time=(start, end + 1), sm=True) cmds.delete(constrs) elif isinstance(data, list): exit = 'Got list. Now not working with lists.' sys.exit(exit) else: exit = 'Got neither list nor dict.' sys.exit(exit) def walked(p, ends=''): files = [] for path, dirs, file_names in os.walk(p): for file_name in file_names: if file_name.endswith(ends): files.append(os.path.join(path, file_name)) return files def add_prefix_suffix(name, suf=False, pref=True): for o in cmds.ls(sl=True, flatten=True): if suf: cmds.rename(o, o + '_' + name) elif pref: cmds.rename(o, name + '_' + o) else: print 'Set suffix or prefix to rename' def dir_import(): folder_path_list = cmds.fileDialog2(fm=3) folder_path = folder_path_list[0] + '/' files = cmds.getFileList(folder=folder_path) if len(files) == 0: cmds.warning("No files found") else: for f in files: cmds.file(folder_path + f, i=True) def key_blendshapes(mesh, start=0): bl = get_blendshape_node(mesh) if not bl: sys.exit('No blendshape node found on oject.') targets = cmds.blendShape(bl, t=True, q=True) # If blendshape meshes were deleted from scene if not targets: targets = cmds.listAttr(bl + '.w', multi=True) # Generate dict for set each blendshapes in range to 1 infl per call weights_bls = {} for t in range(len(targets)): weight = [(i, 0) for i in range(len(targets))] weight[t] = (t, 1) weights_bls[start + t + 1] = weight # Keys start and end of teeth graph end = start + len(targets) cmds.setKeyframe(bl, time=start) cmds.setKeyframe(bl, time=end + 1) for frame, bl_weight in weights_bls.iteritems(): cmds.blendShape(bl, w=bl_weight, edit=True) cmds.setKeyframe(bl, time=frame) cmds.playbackOptions(min=start, max=end+1) return end def dls(mesh, target_mesh=None, num_jnts=220, infls=4, iters=4): import DLS DLS.launch() cmds.select(mesh) pruneBelow = 0.001 isKeepOriginal = True isDeleteDeltaMush = False numBones = num_jnts maxInfs = infls start, end = get_timeline() maxIters = iters epilon = 1.0 targetMesh = target_mesh isAlternativeUpdate = False DLS.core.learningFunc.solve(numBones, maxInfs, targetMesh, isAlternativeUpdate, start, end, maxIters, isKeepOriginal, pruneBelow, epilon, isDeleteDeltaMush) def get_m_time(f_path): import time import os e_time = os.path.getmtime(f_path) return time.strftime('%Y.%m.%d %H:%M:%S', time.localtime(e_time)) def find_identical_meshes(regex, vtxs_check=True, vtxs=[]): '''Searches for all polygon meshes in scene that matches regex expression and optional - vertex count. Preset vertex count fits two main types of head meshes, male, female, and male neck cut. Args: regex (str): regular expression vtxs_check (boolean, optional): condition, if to check the vertex count on top of the regular expression vtxs (list, optional): vertices count (int) Returns: list: polygon meshes that match search parameters Examples: >>> find_identical_meshes('(_head|head_)') ''' # 2770 - is for cut Krest cut neck head if not vtxs: vtxs = [2782, 3335, 2770] meshes = get_meshes() found = [] [found.append(m) for m in meshes if re.search(regex, m)] if not found: return # Meshes I'm searching for can by messy named, # so the only way to find them is to compare by vertices quantity. if not vtxs: return found meshes_filtered = [m for m in found for vtx in vtxs if cmds.polyEvaluate(m, v=True) == vtx] if meshes_filtered: return meshes_filtered def find_static_blendshapes(mesh='', rounded=1): def get_vtxs_coords_rounded(mesh, relative=False): vtxs_coords = {} vtxs = cmds.ls(mesh + '.vtx[*]', fl=True) for vtx in vtxs: if relative: coord = cmds.xform(vtx, q=True, t=True, r=True) else: coord = cmds.xform(vtx, q=True, t=True, ws=True) vtx_id = ''.join(i for i in vtx.split('.')[1] if i.isdigit()) vtxs_coords[vtx_id] = [round(c, rounded) for c in coord] return vtxs_coords if not mesh: mesh = cmds.ls(sl=True) if mesh: mesh = mesh[0] else: print '# Select something.' return init_data = get_vtxs_coords_rounded(mesh, relative=True) not_changed_meshes = [] for m in get_meshes(): m_data = get_vtxs_coords_rounded(m, relative=True) if init_data == m_data: not_changed_meshes.append(m) if not_changed_meshes: cmds.select(not_changed_meshes) else: print '# No static blendshapes found for %s.' % mesh def batch_dir_import(ext='mb'): folder_path_list = cmds.fileDialog2(fm=3) folder_path = folder_path_list[0] + '/' files = cmds.getFileList(folder=folder_path, filespec='*.%s' % ext) if len(files) == 0: cmds.warning("No files found") else: for f in files: cmds.file(folder_path + f, i=True) def rename_ps(add='', data=[], prefix=True, suffix=False): if not data: data = cmds.ls(sl=True, fl=True) for d in data: name = d.split('|')[-1] name = name.split(':')[-1] if prefix: d_renamed = add + '_' + name elif suffix: d_renamed = name + '_' + add else: continue try: cmds.rename(d, d_renamed) except Exception: print '# Cannot rename', d def get_blendshape_targets(bl): return cmds.listAttr(bl + '.w', multi=True)
'''Dsp module contains functions pertaining to the actual generation, manipulation, and analysis of sound. This ranges from generating sounds to calculating sound to noise ratio. ''' ############################################################################### import sys, os import inspect import numpy as np from numpy.fft import fft, rfft, ifft, irfft from scipy.signal import hamming, hann, resample, iirfilter, lfilter import librosa import math currentdir = os.path.dirname(os.path.abspath( inspect.getfile(inspect.currentframe()))) packagedir = os.path.dirname(currentdir) sys.path.insert(0, packagedir) import soundpy as sp def generate_sound(freq=200, amplitude=0.4, sr=8000, dur_sec=0.25): '''Generates a sound signal with the provided parameters. Signal begins at 0. Parameters ---------- freq : int, float The frequency in Hz the signal should have (default 200 Hz). This pertains to the number of ossicliations per second. amplitude : int, float The parameter controling how much energy the signal should have. (default 0.4) sr : int The sampling rate of the signal, or how many samples make up the signal per second. (default 8000) Returns ------- sound_samples : np.ndarray [size = ()] The samples of the generated sound sr : int The sample rate of the generated signal Examples -------- >>> sound, sr = generate_sound(freq=5, amplitude=0.5, sr=5, dur_sec=1) >>> sound array([ 0.000000e+00, 5.000000e-01, 3.061617e-16, -5.000000e-01, -6.123234e-16]) >>> sr 5 ''' #The variable `time` holds the expected number of measurements taken: time = get_time_points(dur_sec, sr=sr) # unit circle: 2pi equals a full circle # https://www.marksmath.org/visualization/unit_circle/ full_circle = 2 * np.pi sound_samples = amplitude * np.sin((freq*full_circle)*time) return sound_samples, sr def get_time_points(dur_sec,sr): '''Get evenly spaced time points from zero to length of `dur_sec`. The time points align with the provided sample rate, making it easy to plot a signal with a time line in seconds. Parameters ---------- dur_sec : int, float The amount of time in seconds sr : int The sample rate relevant for the signal Returns ------- time : np.ndarray [size = (num_time_points,)] Examples -------- >>> # 50 milliseconds at sample rate of 100 (100 samples per second) >>> x = get_time_points(0.05,100) >>> x.shape (5,) >>> x array([0. , 0.0125, 0.025 , 0.0375, 0.05 ]) ''' time = np.linspace(0, dur_sec, int(np.floor(dur_sec*sr))) return time def generate_noise(num_samples, amplitude=0.025, random_seed=None): '''Generates noise to be of a certain amplitude and number of samples. Useful for adding noise to another signal of length `num_samples`. Parameters ---------- num_samples : int The number of total samples making up the noise signal. amplitude : float Allows the noise signal to be louder or quieter. (default 0.025) random_seed : int, optional Useful for repeating 'random' noise samples. Examples -------- >>> noise = generate_noise(5, random_seed = 0) >>> noise array([0.04410131, 0.01000393, 0.02446845, 0.05602233, 0.04668895]) ''' if random_seed is not None: np.random.seed(random_seed) noise = amplitude * np.random.randn(num_samples) return noise def set_signal_length(samples, numsamps): '''Sets audio signal to be a certain length. Zeropads if too short. Useful for setting signals to be a certain length, regardless of how long the audio signal is. Parameters ---------- samples : np.ndarray [size = (num_samples, num_channels), or (num_samples,)] The array of sample data to be zero padded. numsamps : int The desired number of samples. Returns ------- data : np.ndarray [size = (numsamps, num_channels), or (numsamps,)] Copy of samples zeropadded or limited to `numsamps`. Examples -------- >>> import numpy as np >>> input_samples = np.array([1,2,3,4,5]) >>> output_samples = set_signal_length(input_samples, numsamps = 8) >>> output_samples array([1, 2, 3, 4, 5, 0, 0, 0]) >>> output_samples = set_signal_length(input_samples, numsamps = 4) >>> output_samples array([1, 2, 3, 4]) ''' data = samples.copy() if data.shape[0] < numsamps: diff = numsamps - data.shape[0] if len(data.shape) > 1: signal_zeropadded = np.zeros( (data.shape[0] + int(diff),data.shape[1])) else: signal_zeropadded = np.zeros( (data.shape[0] + int(diff),)) for i, row in enumerate(data): signal_zeropadded[i] = row data = signal_zeropadded else: if len(data.shape) > 1: data = data[:numsamps,:] else: data = data[:numsamps] # ensure returned data same dtype as input data = sp.utils.match_dtype(data, samples) return data # works for stereo sound (raw signal data) def scalesound(data, max_val = 1, min_val=None): '''Scales the input array to range between `min_val` and `max_val`. Parameters ---------- data : np.ndarray [size = (num_samples,) or (num_samples, num_channels)] Original samples max_val : int, float The maximum value the dataset is to range from (default 1) min_val : int, float, optional The minimum value the dataset is to range from. If set to None, will be set to the opposiite of `max_val`. E.g. if `max_val` is set to 0.8, `min_val` will be set to -0.8. (default None) Returns ------- samples : np.ndarray [size = (num_samples,) or (num_samples, num_channels)] Copy of original data, scaled to the min and max values. Examples -------- >>> import numpy as np >>> np.random.seed(0) >>> input_samples = np.random.random_sample((5,)) >>> input_samples array([0.5488135 , 0.71518937, 0.60276338, 0.54488318, 0.4236548 ]) >>> input_samples.max() 0.7151893663724195 >>> input_samples.min() 0.4236547993389047 >>> # default setting: between -1 and 1 >>> output_samples = scalesound(input_samples) >>> output_samples array([-0.14138 ,1., 0.22872961, -0.16834299, -1.]) >>> output_samples.max() 1.0 >>> output_samples.min() -1.0 >>> # range between -100 and 100 >>> output_samples = scalesound(input_samples, max_val = 100, min_val = -100) >>> output_samples array([ -14.13800026,100., 22.87296052,-16.83429866,-100.]) >>> output_samples.max() 100.0 >>> output_samples.min() -100.0 ''' if min_val is None: min_val = -max_val samples = data.copy() if isinstance(samples, np.ndarray): samples = np.interp(samples, (samples.min(), samples.max()), (min_val, max_val)) else: samples = np.interp(samples, (min(samples), max(samples)), (min_val, max_val)) return samples def shape_samps_channels(data): '''Returns data in shape (num_samps, num_channels) Parameters ---------- data : np.ndarray [size= (num_samples,) or (num_samples, num_channels), or (num_channels, num_samples)] The data that needs to be checked for correct format Returns ------- data : np.ndarray [size = (num_samples,) or (num_samples, num_channels)] ''' if len(data.shape) == 1: return data if len(data.shape) > 2: raise ValueError('Expected 2 dimensional data: (num_samples, num_channels,) not '+\ 'shape {}'.format(data.shape)) if data.shape[0] < data.shape[1]: # assumes number of samples will be greater than number of channels data = data.T assert data.shape[0] > data.shape[1] return data def resample_audio(samples, sr_original, sr_desired): '''Allows audio samples to be resampled to desired sample rate. Parameters ---------- samples : np.ndarray [size = (num_samples,)] The samples to be resampled. sr_original : int The orignal sample rate of the samples. sr_desired : int The desired sample rate of the samples. Returns ------- resampled : np.ndarray [size = (num_samples_resampled,)] The resampled samples. sr_desired : int The newly applied sample rate Examples -------- >>> import numpy as np >>> # example samples from 5 millisecond signal with sr 100 and frequency 10 >>> input_samples = np.array([0.00e+00, 2.82842712e-01, 4.000e-01, 2.82842712e-01, 4.89858720e-17]) >>> # we want to resample to 80 instead of 100 (for this example's sake) >>> output_samples, sr = resample_audio(input_samples, sr_original = 100, sr_desired = 80) >>> output_samples array([-2.22044605e-17, 3.35408001e-01, 3.72022523e-01, 6.51178161e-02]) ''' time_sec = len(samples)/sr_original num_samples = int(time_sec * sr_desired) resampled = resample(samples, num_samples) return resampled, sr_desired def stereo2mono(data): '''If sound data has multiple channels, reduces to first channel Parameters ---------- data : numpy.ndarray The series of sound samples, with 1+ columns/channels Returns ------- data_mono : numpy.ndarray The series of sound samples, with first column Examples -------- >>> import numpy as np >>> data = np.linspace(0,20) >>> data_2channel = data.reshape(25,2) >>> data_2channel[:5] array([[0. , 0.40816327], [0.81632653, 1.2244898 ], [1.63265306, 2.04081633], [2.44897959, 2.85714286], [3.26530612, 3.67346939]]) >>> data_mono = stereo2mono(data_2channel) >>> data_mono[:5] array([0. , 0.81632653, 1.63265306, 2.44897959, 3.26530612]) ''' data_mono = data.copy() if len(data.shape) > 1 and data.shape[1] > 1: # ensure data is samples first, channels second data_mono = sp.dsp.shape_samps_channels(data_mono) data_mono = np.take(data_mono,0,axis=-1) return data_mono def add_backgroundsound(audio_main, audio_background, sr, snr = None, pad_mainsound_sec = None, total_len_sec=None, wrap = False, stationary_noise = True, random_seed = None, extend_window_ms = 0, remove_dc = False, mirror_sound = False, clip_at_zero = True, **kwargs): '''Adds a sound (i.e. background noise) to a target signal. Stereo sound should work. If the sample rates of the two audio samples do not match, the sample rate of `audio_main` will be applied. (i.e. the `audio_background` will be resampled). If you have issues with clicks at the beginning or end of signals, see `soundpy.dsp.clip_at_zero`. Parameters ---------- audio_main : str, pathlib.PosixPath, or np.ndarray [size=(num_samples,) or (num_samples, num_channels)] Sound file of the main sound (will not be modified; only delayed if specified). If not path or string, should be a data samples corrresponding to the provided sample rate. audio_background : str, pathlib.PosixPath, or np.ndarray [size=(num_samples,)] Sound file of the background sound (will be modified /repeated to match or extend the length indicated). If not of type pathlib.PosixPath or string, should be a data samples corrresponding to the provided sample rate. sr : int The sample rate of sounds to be added together. Note: sr of 44100 or higher is suggested. snr : int, float, list, tuple The sound-to-noise-ratio of the target and background signals. Note: this is an approximation and needs further testing and development to be used as an official measurement of snr. If no SNR provided, signals will be added together as-is. (default None) pad_mainsound_sec : int or float, optional Length of time in seconds the background sound will pad the main sound. For example, if `pad_mainsound_sec` is set to 1, one second of the `audio_background` will be played before `audio_main` starts as well as after the `main audio` stops. (default None) total_len_sec : int or float, optional Total length of combined sound in seconds. If none, the sound will end after the (padded) target sound ends (default None). wrap : bool If False, the random selection of sound will be limited to end by the end of the audio file. If True, the random selection will wrap to beginning of the audio file if extends beyond the end of the audio file. (default False) stationary_noise : bool If False, `soundpy.feats.get_vad_stft` will be applied to noise to get energy of the active noise in the signal. Otherwise energy will be collected via `soundpy.dsp.get_stft`. (default True) random_seed : int If provided, the 'random' section of noise will be chosen using this seed. (default None) extend_window_ms : int or float The number of milliseconds the voice activity detected should be padded with. This might be useful to ensure sufficient amount of activity is calculated. (default 0) remove_dc : bool If the dc bias should be removed. This aids in the removal of clicks. See `soundpy.dsp.remove_dc_bias`. (default False) **kwargs : additional keyword arguments The keyword arguments for soundpy.files.loadsound Returns ------- combined : numpy.ndarray [shape=(num_samples) or (num_samples, num_channels)] The samples of the sounds added together snr : int, float The updated signal-to-noise ratio. Due to the non-stationary state of speech and sound in general, this value is only an approximation. References ---------- Yi Hu and Philipos C. Loizou : original authors Copyright (c) 2006 by Philipos C. Loizou SIP-Lab/CNN-VAD/ : GitHub Repo Copyright (c) 2019 Signal and Image Processing Lab MIT License See Also -------- soundpy.files.loadsound Loads audiofiles. soundpy.dsp.snr_adjustnoiselevel Calculates how much to adjust noise signal to achieve SNR. soundpy.feats.get_vad_stft Returns stft matrix of only voice active regions soundpy.feats.get_stft Returns stft matrix of entire signal ''' if sr < 44100: import warnings msg = 'Performance of signal to noise analysis is improved with '+\ 'sample rates at or higher than 44100 Hz. Current sample rate '+\ 'set at {}.'.format(sr) input_type_main = sp.utils.path_or_samples(audio_main) input_type_background = sp.utils.path_or_samples(audio_background) if 'path' in input_type_main: target, sr = sp.loadsound(audio_main, sr = sr, remove_dc = remove_dc,**kwargs) elif 'samples' in input_type_main: target, sr = audio_main, sr if 'path' in input_type_background: sound2add, sr2 = sp.loadsound(audio_background, sr = sr, remove_dc = remove_dc,**kwargs) elif 'samples' in input_type_background: sound2add, sr2 = audio_background, sr if sr != sr2: sound2add, sr2 = sp.dsp.resample_audio(sound2add, sr2, sr) assert sr2 == sr # make background same shape as signal if len(target.shape) != len(sound2add.shape): # ensure in shape (num_samples,) or (num_samples, num_channels) target = sp.dsp.shape_samps_channels(target) if len(target.shape) > 1: num_channels = target.shape[1] else: num_channels = 1 sound2add = sp.dsp.apply_num_channels(sound2add, num_channels) if remove_dc: target = sp.dsp.remove_dc_bias(target) sound2add = sp.dsp.remove_dc_bias(sound2add) target_stft, __ = sp.feats.get_vad_stft(target, sr, extend_window_ms = extend_window_ms) if not target_stft.any(): import warnings msg = '\nNo voice activity detected in target signal.' warnings.warn(msg) target_stft = sp.feats.get_stft(target,sr) if stationary_noise: noise_stft = sp.feats.get_stft(sound2add, sr) else: # get energy of noise when active (e.g. car honking) noise_stft, __ = sp.feats.get_vad_stft(sound2add, sr, extend_window_ms = extend_window_ms) if not noise_stft.any(): noise_stft = sp.feats.get_stft(sound2add, sr) target_power = np.abs(target_stft)**2 noise_power = np.abs(noise_stft)**2 target_energy = np.mean(target_power) noise_energy = np.mean(noise_power) if snr is not None: if isinstance(snr, list) or isinstance(snr, tuple): snr = np.random.choice(snr) elif isinstance(snr, int) or isinstance(snr, float) or isinstance(snr, np.int_) \ or isinstance(snr, np.float_): pass else: raise TypeError('Function `add_backgroundsound` expects parameter '+\ '`snr` to be an int or float or a list / tuple of ints or floats, '+\ 'not of type {}.'.format(type(snr))) # see soundpy.dsp.snr_adjustnoiselevel adjust_sound = (np.sqrt(target_energy/(noise_energy+1e-6) / (10**(snr/10)))) sound2add *= adjust_sound # get SNR where voice activity is detected. new_snr = sp.dsp.get_vad_snr(target, sound2add, sr=sr) if pad_mainsound_sec is None: pad_mainsound_sec = 0 num_padding_samples = int(sr*pad_mainsound_sec)*2 #pad on both sides of sound if total_len_sec is not None: total_samps = int(sr*total_len_sec) else: total_samps = len(target) + num_padding_samples if total_samps < len(target) + num_padding_samples: diff = len(target) + num_padding_samples - total_samps import warnings warnings.warn('The length of `audio_main` and `pad_mainsound_sec `'+\ 'exceeds `total_len_sec`. {} samples from '.format(diff)+\ '`audio_main` will be cut off in '+\ 'the `combined` audio signal.') # make the background sound match the length of total samples if len(sound2add) < total_samps: # if shorter than total_samps, extend the noise sound2add = sp.dsp.apply_sample_length(sound2add, total_samps, mirror_sound = mirror_sound, clip_at_zero = clip_at_zero) else: # otherwise, choose random selection of noise sound2add = sp.dsp.clip_at_zero(sound2add)[:-1] sound2add = sp.dsp.random_selection_samples(sound2add, total_samps, wrap = wrap, random_seed = random_seed) # separate samples to add to the target signal target_sound = sound2add[num_padding_samples//2:len(target) \ + num_padding_samples//2] # If target is longer than indicated length, shorten it if len(target_sound) < len(target): target = target[:len(target_sound)] combined = target_sound + target if remove_dc: combined = sp.dsp.remove_dc_bias(combined) if pad_mainsound_sec: # set aside samples for beginning delay (if there is one) beginning_pad = sound2add[:num_padding_samples//2] ending_pad = sound2add[num_padding_samples//2+len(target):] combined = np.concatenate((beginning_pad, combined, ending_pad)) if len(combined) > total_samps: combined = combined[:total_samps] elif len(combined) < total_samps: # set aside ending samples for ending (if sound is extended) ending_sound = sound2add[len(target)+num_padding_samples:total_samps] combined = np.concatenate((combined, ending_sound)) return combined, new_snr def hz_to_mel(freq): '''Converts frequency to Mel scale Parameters ---------- freq : int or float or array like of ints / floats The frequency/ies to convert to Mel scale. Returns ------- mel : int or float or array of ints / floats The frequency/ies in Mel scale. References ---------- https://en.wikipedia.org/wiki/Mel_scale#Formula Fayek, H. M. (2016). Speech Processing for Machine Learning: Filter banks, Mel-Frequency Cepstral Coefficients (MFCCs) and What’s In-Between. Retrieved from https://haythamfayek.com/2016/04/21/speech-processing-for-machine-learning.html ''' mel = (2595 * np.log10(1 + freq / 700)) return mel def mel_to_hz(mel): '''Converts Mel item or list to frequency/ies. Parameters ---------- mel : int, float, or list of ints / floats Mel item(s) to be converted to Hz. Returns ------- freq : int, float, or list of ints / floats The converted frequency/ies References ---------- https://en.wikipedia.org/wiki/Mel_scale#Formula Fayek, H. M. (2016). Speech Processing for Machine Learning: Filter banks, Mel-Frequency Cepstral Coefficients (MFCCs) and What’s In-Between. Retrieved from https://haythamfayek.com/2016/04/21/speech-processing-for-machine-learning.html ''' freq = (700 * (10**(mel / 2595) -1)) return freq def fbank_filters(fmin, fmax, num_filters): '''Calculates the mel filterbanks given a min and max frequency and `num_filters`. Parameters ---------- fmin : int, float Minimum frequency relevant in signal. fmax : int, float Maximum frequency relevant in signal. num_filters : int The number of evenly spaced filters (according to mel scale) between the `fmin` and `fmax` frequencies. Returns ------- mel_points : np.ndarray [size=(num_filters,)] An array of floats containing evenly spaced filters (according to mel scale). References ---------- Fayek, H. M. (2016). Speech Processing for Machine Learning: Filter banks, Mel-Frequency Cepstral Coefficients (MFCCs) and What’s In-Between. Retrieved from https://haythamfayek.com/2016/04/21/speech-processing-for-machine-learning.html ''' if fmin > 0: low_freq_mel = sp.dsp.hz_to_mel(fmin) else: low_freq_mel = 0 high_freq_mel = sp.dsp.hz_to_mel(fmax) mel_points = np.linspace(low_freq_mel, high_freq_mel, num_filters +2) return mel_points def sinosoidal_liftering(mfccs, cep_lifter = 22): '''Reduces influence of higher coefficients; found useful in automatic speech rec. Parameters ---------- mfccs : np.ndarray [shape=(num_samples, num_mfcc)] The matrix containing mel-frequency cepstral coefficients. cep_lifter : int The amount to apply `sinosoidal_liftering`. (default 22) References ---------- Fayek, H. M. (2016). Speech Processing for Machine Learning: Filter banks, Mel-Frequency Cepstral Coefficients (MFCCs) and What’s In-Between. Retrieved from https://haythamfayek.com/2016/04/21/speech-processing-for-machine-learning.html ''' (nframes, ncoeff) = mfccs.shape n = np.arange(ncoeff) lift = 1 + (cep_lifter / 2) * np.sin(np.pi * n / cep_lifter) mfccs *= lift return mfccs def index_at_zero(samples, num_dec_places=2): '''Finds indices of start and end of utterance, given amplitude strength. Parameters ---------- samples : numpy.ndarray [size= (num_samples,) or (num_samples, num_channels)] The samples to index where the zeros surrounding speech are located. num_dec_places : int To the number of decimal places the lowest value in `samples` should be rounded to. (default 2) Returns ------- f_0 : int The index of the last occuring zero, right before speech or sound begins. l_0 : int The index of the first occuring zero, after speech ends. Examples -------- >>> signal = np.array([-1, 0, 1, 2, 3, 2, 1, 0, -1, -2, -3, -2, -1, 0, 1]) >>> zero_1, zero_2 = index_at_zero(signal) >>> # +1 to include zero_2 in signal >>> signal[zero_1:zero_2+1] [ 0 1 2 3 2 1 0 -1 -2 -3 -2 -1 0] >>> # does not assume a zero preceeds any sample >>> signal = np.array([1, 2, 1, 0, -1, -2, -1, 0, 1, 2, 1]) >>> zero_1, zero_2 = index_at_zero(signal) >>> signal[zero_1:zero_2+1] [ 0 -1 -2 -1 0] ''' almost_zero = 1e-1 original_shape = samples.shape samps = samples.copy() if len(original_shape) > 1: # if multiple channels find where it is 0 across all channels samps = sp.dsp.average_channels(samps) min_samp = np.argmin(np.abs(samps)) # in some instances, stored as numpy array if isinstance(samps[min_samp], np.ndarray): assert len(samps[min_samp]) == 1 min_samp = samps[min_samp][0] else: min_samp = samps[min_samp] if round(min_samp,num_dec_places) <= almost_zero: almost_zero += min_samp # find first instance of zero: f_0_etc = np.where(np.abs(samps) <= almost_zero) if len(f_0_etc[0]) > 0: # get index of first zero for i, index in enumerate(f_0_etc[0]): # if more silence follows, adjust f_0 if i == len(f_0_etc[0])-1: import warnings warnings.warn('\n\nWarning: Only zeros found in signal.\n\n') f_0 = 0 else: if index+1 != f_0_etc[0][i+1]: f_0 = index break else: # no zero found f_0 = 0 # find end of utterance last zero l_0_etc = np.where(np.abs(np.flip(samps)) <= almost_zero) if len(l_0_etc[0]) > 1: # get index of first zero for i, index in enumerate(l_0_etc[0]): # if more silence follows, adjust l_0 if i == len(l_0_etc[0])-1: # warning should get called for f_0 #import warnings #warnings.warn('\n\nWarning: Only zeros found in signal.\n\n') l_0 = 0 else: if index+1 != l_0_etc[0][i+1]: l_0 = index break else: # no zeros found l_0 = 0 if l_0 != 0: l_0 = len(samps) - l_0 - 1 else: l_0 = len(samps) - 1 try: assert f_0 != l_0 except AssertionError: import warnings warnings.warn('\n\nWarning: only one zero was found. Returning '+\ 'sample indices that encompass more energy.') if sum(np.abs(samps[f_0:])) > sum(np.abs(samps[:f_0])): f_0, l_0 = 0, l_0 else: f_0, l_0 = f_0, len(samps)-1 return f_0, l_0 def clip_at_zero(samples, samp_win = None, neg2pos = True, **kwargs): '''Clips the signal at samples close to zero. The samples where clipping occurs crosses the zero line from negative to positive. This clipping process allows for a smoother transition of audio, especially if concatenating audio. Parameters ---------- samples : np.ndarray [shape = (num_samples, ) or (num_samples, num_channels)] The array containing sample data. Should work on stereo sound. start_with_zero : bool If True, the returned array will begin with 0 (or close to 0). Otherwise the array will end with 0. neg2pos : bool If True, the returned array will begin with positive values and end with negative values. Otherwise, the array will be returned with the first zeros detected, regardless of surrounding positive or negative values. samp_win : int, optional The window of samples to apply when clipping at zero crossings. The zero crossings adjacent to the main signal will be used. This is useful to remove already existing clicks within the signal, often found at the beginning and / or end of signals. kwargs : additional keyword arguments Keyword arguments for `soundpy.dsp.index_at_zero`. Warning ------- If only one zero found. Examples -------- >>> sig = np.array([-2,-1,0,1, 2, 1, 0, -1, -2, -1, 0, 1, 2, 1,0]) >>> clip_at_zero(sig) # defaults [ 0 1 2 1 0 -1 -2 -1 0] >>> # finds first and last insance of zeros, regardless of surrounding >>> # negative or positive values in signal >>> clip_at_zero(sig, neg2pos = False) [ 0 1 2 1 0 -1 -2 -1 0 1 2 1 0] >>> # avoid clicks at start of signal >>> sig = np.array([0,-10,-20,-1,0,1, 2, 1, 0, -1, -2, -1, 0, 1, 2, 1,0]) >>> clip_at_zero(sig, samp_win = 5) [ 0 1 2 1 0 -1 -2 -1 0] ''' almost_zero = 1e-1 original_shape = samples.shape samps = samples.copy() if samp_win is not None: samps_beg = samps[:samp_win] samps_end = samps[-samp_win:] # find last instance of zero within window at beginning of signal __, f_0 = index_at_zero(samps_beg) # find first instance of zero within window at end of signal l_0, __ = index_at_zero(samps_end) # match l_0 to original samples l_0 += len(samps)-samp_win else: f_0, l_0 = index_at_zero(samps) # ensure same shape as original_shape samps = samples[f_0:l_0+1] # ensure beginning of signal starts positive and ends negative if not neg2pos: return samps try: if len(samps.shape) > 1: beg_pos_neg = sum(samps[:3,0]) end_pos_neg = sum(samps[-4:,0]) else: beg_pos_neg = sum(samps[:3]) end_pos_neg = sum(samps[-4:]) except IndexError: raise ValueError('Function clip_at_zero can only be applied to arrays '+\ 'longer than 5 samples.\n\n') if beg_pos_neg > 0 and end_pos_neg < 0: return samps # try to cut at different zero but only # if more than 1 zero left in signal: if len(np.where(samps <= almost_zero)[0]) > 1: if beg_pos_neg > 0 and end_pos_neg > 0: # won't include the last zero samps_no_last_zero = samps[:-1] f_0, l_0 = index_at_zero(samps_no_last_zero) samps = samps_no_last_zero[f_0:l_0+1] elif beg_pos_neg < 0: if end_pos_neg < 0: # won't include the first zero samps_no_first_zero = samps[f_0+1::] f_0, l_0 = index_at_zero(samps_no_first_zero) samps = samps_no_first_zero[f_0:l_0+1] else: samps_no_first_last_zero = samps[f_0+1:-1] f_0, l_0 = index_at_zero(samps_no_first_last_zero) samps = samps_no_first_last_zero[f_0:l_0+1] try: if len(samps.shape) > 1: assert sum(samps[:2,0]) > 0 and \ sum(samps[-2:,0]) < 0 else: assert sum(samps[:2]) > 0 and sum(samps[-2:]) < 0 except AssertionError: import warnings warnings.warn('\n\nWarning: was not able to clip at zero where '+\ '`samples` begin positive and end negative.\n\n') return samps def remove_dc_bias(samples, samp_win = None): '''Removes DC bias by subtracting mean from sample data. Seems to work best without samp_win. # TODO add moving average? Parameters ---------- samples : np.ndarray [shape=(samples, num_channels) or (samples)] The sample data to center around zero. This worsk on both mono and stero data. samp_win: int, optional Apply subtraction of mean at windows - experimental. (default None) Returns ------- samps : np.ndarray [shape=(samples, num_channels) or (samples)] The `samples` with zero mean. References ---------- Lyons, Richard. (2011). Understanding Digital Signal Processing (3rd Edition). ''' samps = samples.copy() if samp_win is not None: subframes = math.ceil(len(samples) / samp_win) for frame in range(subframes): section = samps[frame * samp_win : frame * samp_win + samp_win] ave = np.mean(section) samps[frame * samp_win : frame * samp_win + samp_win] -= ave else: ave = np.mean(samps) samps -= ave return samps def apply_num_channels(sound_data, num_channels): '''Ensures `data` has indicated `num_channels`. To increase number of channels, the first column will be duplicated. To limit channels, channels will simply be removed. Parameters ---------- sound_data : np.ndarray [size= (num_samples,) or (num_samples, num_channels)] The data to adjust the number of channels num_channels : int The number of channels desired Returns ------- data : np.ndarray [size = (num_samples, num_channels)] Examples -------- >>> import numpy as np >>> data = np.array([1, 1, 1, 1]) >>> data_3d = apply_num_channels(data, 3) >>> data_3d array([[1, 1, 1], [1, 1, 1], [1, 1, 1], [1, 1, 1]]) >>> data_2d = apply_num_channels(data_3d, 2) >>> data_2d array([[1, 1], [1, 1], [1, 1], [1, 1]]) ''' if len(sound_data.shape)== 1: data = np.expand_dims(sound_data, axis=1) else: data = sound_data diff = num_channels - data.shape[1] if diff < 0: # limit number of channels data = data[:,:num_channels] return data elif diff == 0: # no change necessary return sound_data # add channels duplicated_data = np.expand_dims(data[:,0], axis=1) for i in range(diff): data = np.append(data, duplicated_data, axis=1) return data def apply_sample_length(data, target_len, mirror_sound = False, clip_at_zero = True): '''Extends a sound by repeating it until its `target_len`. If the `target_len` is shorter than the length of `data`, `data` will be shortened to the specificed `target_len` This is perhaps useful when working with repetitive or stationary sounds. Parameters ---------- data : np.ndarray [size = (num_samples,) or (num_samples, num_channels)] The data to be checked or extended in length. If shape (num_channels, num_samples), the data will be reshaped to (num_samples, num_channels). target_len : int The length of samples the input `data` should be. Returns ------- new_data : np.ndarray [size=(target_len, ) or (target_len, num_channels)] Examples -------- >>> import numpy as np >>> data = np.array([1,2,3,4]) >>> sp.dsp.apply_sample_length(data, 12) array([1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4]) >>> # two channels >>> data = np.zeros((3,2)) >>> data[:,0] = np.array([0,1,2]) >>> data[:,1] = np.array([1,2,3]) >>> data array([[0., 1.], [1., 2.], [2., 3.]]) >>> sp.dsp.apply_sample_length(data,5) array([[0., 1.], [1., 2.], [2., 3.], [0., 1.], [1., 2.]]) ''' if len(data.shape) > 2: raise ValueError('Too many dimensions.') if len(data) > target_len: new_data = data[:target_len] return new_data elif len(data) == target_len: new_data = data return new_data else: while len(data) < target_len: if clip_at_zero: data_clipped = sp.dsp.clip_at_zero(data) # get rid of last zero if len(data_clipped) < len(data): data = data_clipped[:-1] if mirror_sound: data = np.concatenate((data, np.flip(data[:-1]))) else: data = np.concatenate((data, data)) if len(data) >= target_len: break if len(data.shape) > 1: # ensure stereo in correct format (num_samples, num_channels) data = sp.dsp.shape_samps_channels(data) num_channels = data.shape[1] else: num_channels = 0 if num_channels: new_data = np.zeros((target_len, num_channels)) else: new_data = np.zeros((target_len,)) row_id = 0 while row_id < len(new_data): if row_id + len(data) > len(new_data): diff = row_id + len(data) - len(new_data) new_data[row_id:] += data[:-diff] else: new_data[row_id:row_id+len(data)] = data row_id += len(data) new_data = sp.utils.match_dtype(new_data, data) return new_data # TODO: raise error or only warning if original data cut off? def zeropad_sound(data, target_len, sr, delay_sec=None): '''If the sound data needs to be a certain length, zero pad it. Parameters ---------- data : numpy.ndarray [size = (num_samples,) or (num_samples, num_channels)] The sound data that needs zero padding. Shape (len(data),). target_len : int The number of samples the `data` should have sr : int The samplerate of the `data` delay_sec : int, float, optional If the data should be zero padded also at the beginning. (default None) Returns ------- signal_zeropadded : numpy.ndarray [size = (target_len,) or (target_len, num_channels)] The data zero padded. Examples -------- >>> import numpy as np >>> x = np.array([1,2,3,4]) >>> # with 1 second delay (with sr of 4, that makes 4 sample delay) >>> x_zeropadded = zeropad_sound(x, target_len=10, sr=4, delay_sec=1) >>> x_zeropadded array([0., 0., 0., 0., 1., 2., 3., 4., 0., 0.]) >>> # without delay >>> x_zeropadded = zeropad_sound(x, target_len=10, sr=4) >>> x_zeropadded array([1., 2., 3., 4., 0., 0., 0., 0., 0., 0.]) >>> # if signal is longer than desired length: >>> x_zeropadded = zeropad_sound(x, target_len=3, sr=4) UserWarning: The signal cannot be zeropadded and will instead be truncated as length of `data` is 4 and `target_len` is 3. len(data), target_len)) >>> x_zeropadded array([1, 2, 3]) ''' # ensure data follows shape of (num_samples,) or (num_samples, num_channels) data = sp.dsp.shape_samps_channels(data) num_channels = get_num_channels(data) if delay_sec is None: delay_sec = 0 delay_samps = sr * delay_sec if target_len < len(data) + delay_samps: import warnings # data must be truncated: remove_samples = len(data) - len(data[:target_len-delay_samps]) if remove_samples >= len(data): warnings.warn('All data will be lost and replaced with zeros with the '+\ 'provided `target_len` and `delay_sec` settings. Data length is '+\ '{}, target_len is {}, and delay samples is {}.'.format( len(data), target_len, delay_samps)) data = data[:target_len-delay_samps] warnings.warn('The `target_len` is shorter than the `data` and `delay_sec`. '+\ 'Therefore the data will be cut off by {} sample(s).'.format(remove_samples)) if len(data) < target_len: diff = target_len - len(data) signal_zeropadded = np.zeros((data.shape[0] + int(diff))) if num_channels > 1: signal_zeropadded = apply_num_channels(signal_zeropadded, num_channels) assert signal_zeropadded.shape[1] == data.shape[1] for i, row in enumerate(data): signal_zeropadded[i+delay_samps] += row else: import warnings warnings.warn('The signal cannot be zeropadded and will instead be truncated '+\ 'as length of `data` is {} and `target_len` is {}.'.format( len(data), target_len)) signal_zeropadded = data[:target_len] return signal_zeropadded def get_num_channels(data): if len(data.shape) > 1 and data.shape[1] > 1: num_channels = data.shape[1] else: num_channels = 1 return num_channels # TODO clarify how length of output array is established def combine_sounds(file1, file2, match2shortest=True, time_delay_sec=None,total_dur_sec=None): '''Combines sounds Parameters ---------- file1 : str One of two files to be added together file2 : str Second of two files to be added together match2shortest : bool If the lengths of the addition should be limited by the shorter sound. (defaul True) time_delay_sec : int, float, optional The amount of time in seconds before the sounds are added together. The longer sound will play for this period of time before the shorter sound is added to it. (default 1) total_dur_sec : int, float, optional The total duration in seconds of the combined sounds. (default 5) Returns ------- added_sound : numpy.ndarray The sound samples of the two soundfiles added together sr1 : int The sample rate of the original signals and added sound ''' data1, sr1 = sp.loadsound(file1) data2, sr2 = sp.loadsound(file2) if sr1 != sr2: data2, sr2 = resample_audio(data2, sr2, sr1) if time_delay_sec: num_extra_samples = int(sr1*time_delay_sec) else: num_extra_samples = 0 if len(data1) > len(data2): data_long = data1 data_short = data2 else: data_long = data2 data_short = data1 dl_copy = data_long.copy() ds_copy = data_short.copy() if match2shortest: data_short = zeropad_sound(data_short, len(ds_copy) + num_extra_samples, sr1, delay_sec= time_delay_sec) data_long = data_long[:len(ds_copy)+num_extra_samples] else: data_short = zeropad_sound(data_short,len(dl_copy), sr1, delay_sec= time_delay_sec) added_sound = data_long + data_short if total_dur_sec: added_sound = added_sound[:sr1*total_dur_sec] return added_sound, sr1 def calc_frame_length(dur_frame_millisec, sr): """Calculates the number of samples necessary for each frame Parameters ---------- dur_frame_millisec : int or float time in milliseconds each frame should be sr : int sampling rate of the samples to be framed Returns ------- frame_length : int the number of samples necessary to fill a frame Examples -------- >>> calc_frame_length(dur_frame_millisec=20, sr=1000) 20 >>> calc_frame_length(dur_frame_millisec=20, sr=48000) 960 >>> calc_frame_length(dur_frame_millisec=25.5, sr=22500) 573 """ frame_length = int(dur_frame_millisec * sr // 1000) return frame_length def calc_num_overlap_samples(samples_per_frame, percent_overlap): """Calculate the number of samples that constitute the overlap of frames Parameters ---------- samples_per_frame : int the number of samples in each window / frame percent_overlap : int, float either an integer between 0 and 100 or a decimal between 0.0 and 1.0 indicating the amount of overlap of windows / frames Returns ------- num_overlap_samples : int the number of samples in the overlap Examples -------- >>> calc_num_overlap_samples(samples_per_frame=100,percent_overlap=0.10) 10 >>> calc_num_overlap_samples(samples_per_frame=100,percent_overlap=10) 10 >>> calc_num_overlap_samples(samples_per_frame=960,percent_overlap=0.5) 480 >>> calc_num_overlap_samples(samples_per_frame=960,percent_overlap=75) 720 """ if percent_overlap > 1: percent_overlap *= 0.01 num_overlap_samples = int(samples_per_frame * percent_overlap) return num_overlap_samples def calc_num_subframes(tot_samples, frame_length, overlap_samples, zeropad=False): """Assigns total frames needed to process entire noise or target series This function calculates the number of full frames that can be created given the total number of samples, the number of samples in each frame, and the number of overlapping samples. Parameters ---------- tot_samples : int total number of samples in the entire series frame_length : int total number of samples in each frame / processing window overlap_samples : int number of samples in overlap between frames zeropad : bool, optional If False, number of subframes limited to full frames. If True, number of subframes extended to zeropad the last partial frame. (default False) Returns ------- subframes : int The number of subframes necessary to fully process the audio samples at given `frame_length`, `overlap_samples`, and `zeropad`. Examples -------- >>> calc_num_subframes(30,10,5) 5 >>> calc_num_subframes(30,20,5) 3 """ import math if overlap_samples == 0: if zeropad: subframes = int(math.ceil(tot_samples/frame_length)) else: subframes = int(tot_samples/frame_length) return subframes trim = frame_length - overlap_samples totsamps_adjusted = tot_samples-trim if zeropad: subframes = int(math.ceil(totsamps_adjusted / overlap_samples)) else: subframes = int(totsamps_adjusted / overlap_samples) return subframes def create_window(window_type, frame_length): """Creates window according to set window type and frame length the Hamming window tapers edges to around 0.08 while the Hann window tapers edges to 0.0. Both are commonly used in noise filtering. Parameters ---------- window_type : str type of window to be applied (default 'hamming') Returns ------- window : ndarray a window fitted to the class attribute 'frame_length' Examples -------- >>> #create Hamming window >>> hamm_win = create_window('hamming', frame_length=5) >>> hamm_win array([0.08, 0.54, 1. , 0.54, 0.08]) >>> #create Hann window >>> hann_win = create_window('hann',frame_length=5) >>> hann_win array([0. , 0.5, 1. , 0.5, 0. ]) """ if window_type.lower() == 'hamming': window = hamming(frame_length) elif 'hann' in window_type.lower(): window = hann(frame_length) return window def apply_window(samples, window, zeropad=False): """Applies predefined window to a section of samples. Mono or stereo sound checked. The length of the samples must be the same length as the window. Parameters ---------- samples : ndarray [shape=(num_samples,) or (num_samples, num_channels)] series of samples with the length of input window window : ndarray [shape=(num_samples,) or (num_samples, num_channels)] window to be applied to the signal. If window does not match number of channels of sample data, the missing channels will be applied to the window, repeating the first channel. Returns ------- samples_win : ndarray series with tapered sides according to the window provided Examples -------- >>> import numpy as np >>> input_signal = np.array([ 0. , 0.36371897, -0.302721, ... -0.1117662 , 0.3957433 ]) >>> window_hamming = np.array([0.08, 0.54, 1. , 0.54, 0.08]) >>> apply_window(input_signal, window_hamming) array([ 0. , 0.19640824, -0.302721 , -0.06035375, 0.03165946]) >>> window_hann = np.array([0. , 0.5, 1. , 0.5, 0. ]) >>> apply_window(input_signal, window_hann) array([ 0. , 0.18185948, -0.302721 , -0.0558831 , 0. ]) """ if len(samples.shape) == 1: if len(window.shape) > 1: window = window[:,0] elif len(samples.shape) != len(window.shape) or samples.shape[1] != window.shape[1]: window = sp.dsp.add_channels(window, samples.shape[1]) # in the off chance the window has more channels than samples: if window.shape[1] > samples.shape[1]: window = window[:,:samples.shape[1]] if zeropad: if samples.shape != window.shape: temp_matrix = sp.dsp.create_empty_matrix( window.shape) temp_matrix[:len(samples)] = samples samples = temp_matrix samples_win = samples * window return samples_win def add_channels(samples, channels_total): '''Copies columns of `samples` to create additional channels. Parameters ---------- samples : np.ndarray [shape=(num_samples) or (num_samples,num_channels)] The samples to add channels to. channels_total : int The total number of channels desired. For example, if `samples` already has 2 channels and you want it to have 3, set `channels_total` to 3. Returns ------- x : np.ndarray [shape = (num_samples, channels_total)] A copy of `samples` with desired number of channels. Examples -------- >>> import numpy as np >>> samps_mono = np.array([1,2,3,4,5]) >>> samps_stereo2 = add_channels(samps_mono, 2) >>> samps_stereo2 array([[1, 1], ... [2, 2], ... [3, 3], ... [4, 4], ... [5, 5]]) >>> samps_stereo5 = add_channels(samps_stereo2, 5) >>> samps_stereo5 array([[1, 1, 1, 1, 1], ... [2, 2, 2, 2, 2], ... [3, 3, 3, 3, 3], ... [4, 4, 4, 4, 4], ... [5, 5, 5, 5, 5]]) Warning ------- If `channels_total` is less than or equal to the number of channels already presesnt in `samples`. No channels added in those cases. ''' y = samples.copy() if len(y.shape) == 1: for i in range(channels_total): if i == 0: x = np.vstack((y, y)) elif i < channels_total-1: x = np.vstack((x, y)) else: if y.shape[1] == channels_total: import warnings msg = '\n\nWarning: provided `samples` already has {} channels.'.format(channels_total)+\ '\nTo add 1 channel to samples shaped (5, 1), set `channels_total` to 2.' +\ '\nNo channels added.\n' warnings.warn(msg) return y elif y.shape[1] > channels_total: import warnings msg = '\n\nWarning: function soundpy.dsp.add_channels adds channels. '+\ '`samples` currently has {} channels and provided`'.format(samples.shape[1]) +\ ' `channels_total` is less than that: {}'.format(channels_total) +\ '\nTo add 1 channel to samples shaped (5, 2), set `channels_total` to 3.'+\ '\nNo channels added.\n' warnings.warn(msg) x = y.T extra_channels = channels_total//samples.shape[1] for i in range(extra_channels): x = np.vstack((x, y.T)) x = x.T if x.shape[1] > channels_total: x = x[:,:channels_total] return x def average_channels(data): '''Averages all channels in a stereo signal into one channel. Parameters ---------- data : np.ndarray [size=(num_samples, num_channels)] The stereo data to average out. If mono data supplied, mono data is returned unchanged. Returns ------- data averaged : np.ndarray [size=(num_samples)] Copy of `data` averaged into one channel. Examples -------- >>> import numpy as np >>> input_samples1 = np.array([1,2,3,4,5]) >>> input_samples2 = np.array([1,1,3,3,5]) >>> input_2channels = np.vstack((input_samples1, input_samples2)).T >>> input_averaged = average_channels(input_2channels) >>> input_averaged array([1. , 1.5, 3. , 3.5, 5. ]) ''' # average out channels if len(data.shape) > 1 and data.shape[1] > 1: data_summed = data[:,0].copy() for channel in range(data.shape[1]): if channel == 0: pass else: data_summed += data[:,channel] return data_summed / data.shape[1] else: return data def calc_fft(signal_section, real_signal=None, fft_bins = None, **kwargs): """Calculates the fast Fourier transform of a time series. Should work with stereo signals. The length of the signal_section determines the number of frequency bins analyzed if `fft_bins` not set. Therefore, if there are higher frequencies in the signal, the length of the `signal_section` should be long enough to accommodate those frequencies. The frequency bins with energy levels at around zero denote frequencies not prevelant in the signal;the frequency bins with prevalent energy levels relate to frequencies as well as their amplitudes that are in the signal. Parameters ---------- signal_section : ndarray [shape = (num_samples) or (num_samples, num_channels)] the series that the fft will be applied to. If stereo sound, will return a FFT for each channel. real_signal : bool If True, only half of the fft will be returned (the fft is mirrored). Otherwise the full fft will be returned. kwargs : additional keyword arguments keyword arguments for numpy.fft.fft or nump.fft.rfft Returns ------- fft_vals : ndarray [shape=(num_fft_bins), or (num_fft_bins, num_channels), dtype=np.complex_] the series transformed into the frequency domain with the same shape as the input series """ if sp.dsp.ismono(signal_section): if real_signal: fft_vals = rfft(signal_section, n = fft_bins, **kwargs) else: fft_vals = fft(signal_section, n = fft_bins, **kwargs) else: for channel in range(signal_section.shape[1]): if channel == 0: if real_signal: fft_vals = rfft(signal_section[:,channel], n = fft_bins, **kwargs) else: fft_vals = fft(signal_section[:,channel], n = fft_bins, **kwargs) x = fft_vals else: if real_signal: fft_vals = rfft(signal_section[:,channel], n = fft_bins, **kwargs) else: fft_vals = fft(signal_section[:,channel], n = fft_bins, **kwargs) x = np.stack((x, fft_vals), axis=-1) fft_vals = x return fft_vals def ismono(data): # ensure channels last data = sp.dsp.shape_samps_channels(data) if len(data.shape) > 1 and data.shape[1] > 1: return False else: return True # TODO: https://github.com/biopython/biopython/issues/1496 # Fix numpy array repr for Doctest. def calc_power(fft_vals): '''Calculates the power of fft values Parameters ---------- fft_vals : ndarray (complex or floats) the fft values of a windowed section of a series Returns ------- power_spec : ndarray the squared absolute value of the input fft values Example ------- >>> import numpy as np >>> matrix = np.array([[1,1,1],[2j,2j,2j],[-3,-3,-3]], ... dtype=np.complex_) >>> calc_power(matrix) array([[0.33333333, 0.33333333, 0.33333333], [1.33333333, 1.33333333, 1.33333333], [3. , 3. , 3. ]]) ''' power_spec = np.abs(fft_vals)**2 / len(fft_vals) return power_spec def calc_average_power(matrix, num_iters): '''Divides matrix values by the number of times power values were added. This function assumes the power values of n-number of series were calculated and added. It divides the values in the input matrix by n, i.e. 'num_iters'. Parameters ---------- matrix : ndarray a collection of floats or ints representing the sum of power values across several series sets num_iters : int an integer denoting the number of times power values were added to the input matrix Returns ------- matrix : ndarray the averaged input matrix Examples -------- >>> matrix = np.array([[6,6,6],[3,3,3],[1,1,1]]) >>> ave_matrix = calc_average_power(matrix, 3) >>> ave_matrix array([[2. , 2. , 2. ], [1. , 1. , 1. ], [0.33333333, 0.33333333, 0.33333333]]) ''' if matrix.dtype == 'int64': matrix = matrix.astype('float') for i in range(len(matrix)): matrix[i] /= num_iters return matrix def calc_phase(fft_matrix, radians=False): '''Calculates phase from complex fft values. Parameters ---------- fft_vals : np.ndarray [shape=(num_frames, num_features), dtype=complex] matrix with fft values radians : boolean False and complex values are returned. True and radians are returned. (Default False) Returns ------- phase : np.ndarray [shape=(num_frames, num_features)] Phase values for fft_vals. If radians is set to False, dtype = complex. If radians is set to True, dtype = float. Examples -------- >>> import numpy as np >>> frame_length = 10 >>> time = np.arange(0, 10, 0.1) >>> signal = np.sin(time)[:frame_length] >>> fft_vals = np.fft.fft(signal) >>> phase = calc_phase(fft_vals, radians=False) >>> phase[:2] array([ 1. +0.j , -0.37872566+0.92550898j]) >>> phase = calc_phase(fft_vals, radians=True) >>> phase[:2] array([0. , 1.95921533]) ''' if not radians: if len(fft_matrix.shape) > 1 and fft_matrix.shape[1] > 1: # soundpy works with (num_frames, num_features) # librosa works with (num_features, num_frames) fft_matrix = fft_matrix.T __, phase = librosa.magphase(fft_matrix) if len(phase.shape) > 1 and phase.shape[1] > 1: # transpose back to (num_frames, num_features) phase = phase.T else: # in radians #if normalization: #phase = np.angle(fft_matrix) / (frame_length * norm_win) #else: phase = np.angle(fft_matrix) return phase def reconstruct_whole_spectrum(band_reduced_noise_matrix, n_fft=None): '''Reconstruct whole spectrum by mirroring complex conjugate of data. Parameters ---------- band_reduced_noise_matrix : np.ndarray [size=(n_fft,), dtype=np.float or np.complex_] Matrix with either power or fft values of the left part of the fft. The whole fft can be provided; however the right values will be overwritten by a mirrored left side. n_fft : int, optional If None, `n_fft` set to length of `band_reduced_noise_matrix`. `n_fft` defines the size of the mirrored vector. Returns ------- output_matrix : np.ndarray [size = (n_fft,), dtype=np.float or np.complex_] Mirrored vector of input data. Examples -------- >>> x = np.array([3.,2.,1.,0.]) >>> # double the size of x >>> x_rec = sp.dsp.reconstruct_whole_spectrum(x, n_fft=int(len(x)*2)) >>> x_rec array([3., 2., 1., 0., 0., 1., 2., 3.]) >>> # overwrite right side of data >>> x = np.array([3.,2.,1.,0.,0.,2.,3.,5.]) >>> x_rec = sp.dsp.reconstruct_whole_spectrum(x, n_fft=len(x)) >>> x_rec array([3., 2., 1., 0., 0., 1., 2., 3.]) ''' # expects 1d data if len(band_reduced_noise_matrix.shape) > 1: band_reduced_noise_matrix = band_reduced_noise_matrix.reshape(( band_reduced_noise_matrix.shape[0])) if n_fft is None: n_fft = len(band_reduced_noise_matrix) if np.issubdtype(band_reduced_noise_matrix.dtype, np.complexfloating): complex_vals = True else: complex_vals = False total_rows = n_fft output_matrix = create_empty_matrix((total_rows,), complex_vals=complex_vals) if band_reduced_noise_matrix.shape[0] < n_fft: temp_matrix = create_empty_matrix((total_rows,), complex_vals=complex_vals) temp_matrix[:len(band_reduced_noise_matrix)] += band_reduced_noise_matrix band_reduced_noise_matrix = temp_matrix # flip up-down flipped_matrix = np.flip(band_reduced_noise_matrix, axis=0) output_matrix[0:n_fft//2+1,] += band_reduced_noise_matrix[0:n_fft//2+1] output_matrix[n_fft//2+1:,] += flipped_matrix[n_fft//2+1:] assert output_matrix.shape == (n_fft,) return output_matrix # TODO: test with 2d+ dimensions def apply_original_phase(spectrum, phase): '''Multiplies phase to power spectrum Parameters ---------- spectrum : np.ndarray [shape=(n,), dtype=np.float or np.complex] Magnitude or power spectrum phase : np.ndarray [shape=(n,), dtype=np.float or np.complex] Phase to be applied to spectrum Returns ------- spectrum_complex : np.ndarray [shape=(n,), dtype = np.complex] ''' # ensure 1d dimensions if len(spectrum.shape) > 1: spectrum = spectrum.reshape(( spectrum.shape[0],)) if len(phase.shape) > 1: phase = phase.reshape(( phase.shape[0],)) assert spectrum.shape == phase.shape # Whether or not phase is represented in radians or a spectrum. if isinstance(phase[0], np.complex): radians = False else: radians = True if not radians: spectrum_complex = spectrum * phase else: import cmath phase_prepped = (1/2) * np.cos(phase) + cmath.sqrt(-1) * np.sin(phase) spectrum_complex = spectrum**(1/2) * phase_prepped return spectrum_complex def calc_posteri_snr(target_power_spec, noise_power_spec): """Calculates and signal to noise ratio of current frame Parameters ---------- target_power_spec : ndarray matrix of shape with power values of target signal noise_power_spec : ndarray matrix of shape with power values of noise signal Returns ------- posteri_snr : ndarray matrix containing the signal to noise ratio Examples -------- >>> sig_power = np.array([6,6,6,6]) >>> noise_power = np.array([2,2,2,2]) >>> calc_posteri_snr(sig_power, noise_power) array([3., 3., 3., 3.]) """ posteri_snr = np.zeros(target_power_spec.shape) for i in range(len(target_power_spec)): posteri_snr[i] += target_power_spec[i] / noise_power_spec[i] return posteri_snr def get_max_index(matrix): '''If not np.ndarray, expects real sample data. ''' max_val = 0 for i, value in enumerate(matrix): if isinstance(value, np.ndarray): if sum(value) > max_val: max_val = sum(value) max_index = i else: if np.abs(value) > max_val: max_val = np.abs(value) max_index = i return max_index def get_local_target_high_power(target_samples, sr, local_size_ms=25, min_power_percent=0.25): # get the size of power spectrum of length local_size_ms if local_size_ms is None: local_size_ms = 25 if min_power_percent is None: min_power_percent = 0.25 target_power_size = sp.feats.get_feats(target_samples, sr=sr, feature_type='powspec', dur_sec = local_size_ms/1000) target_power = sp.feats.get_feats(target_samples, sr=sr, feature_type='powspec') target_high_power = sp.dsp.create_empty_matrix(target_power_size.shape, complex_vals=False) max_index = sp.dsp.get_max_index(target_power) max_power = sum(target_power[max_index]) min_power = max_power * min_power_percent index=0 for row in target_power: # only get power values for `local_size_ms` if index == len(target_high_power): break if sum(row) >= min_power: target_high_power[index] = row index += 1 return target_high_power def get_vad_snr(target_samples, noise_samples, sr, extend_window_ms = 0): '''Approximates the signal to noise ratio of two sets of power spectrums Note: this is a simple implementation and should not be used for official/exact measurement of snr. Parameters ---------- target_samples : np.ndarray [size = (num_samples, )] The samples of the main / speech signal. Only frames with higher levels of energy will be used to calculate SNR. noise_samples : np.ndarray [size = (num_samples, )] The samples of background noise. Expects only noise, no speech. Must be the same sample rate as the target_samples sr : int The sample rate for the audio samples. local_size_ms : int or float The length in milliseconds to calculate level of SNR. (default 25) min_power_percent : float The minimum percentage of energy / power the target samples should have. This is to look at only sections with speech or other signal of interest and not periods of silence. Value should be between 0 and 1. (default 0.25) References ---------- http://www1.icsi.berkeley.edu/Speech/faq/speechSNR.html Gomolka, Ryszard. (2017). Re: How to measure signal-to-noise ratio (SNR) in real time?. Retrieved from: https://www.researchgate.net/post/How_to_measure_signal-to-noise_ratio_SNR_in_real_time/586a880f217e2060b65a8853/citation/download. https://www.who.int/occupational_health/publications/noise1.pdf ''' # get target power with only high energy values (vad) vad_stft, __ = sp.feats.get_vad_stft(target_samples, sr=sr, extend_window_ms = extend_window_ms) if not vad_stft.any(): import warnings msg = '\nNo voice activity found in target signal.' vad_stft = sp.feats.get_stft(target_samples, sr=sr) target_power = np.abs(vad_stft)**2 noise_stft = sp.feats.get_stft(noise_samples, sr=sr) noise_power = np.abs(noise_stft)**2 snr = 10 * np.log10(np.mean(target_power)/ (np.mean(noise_power) + 1e-6)) snr = np.mean(snr) return snr # Not having success with this def snr_adjustnoiselevel(target_samples, noise_samples, sr, snr): '''Computes scale factor to adjust noise samples to achieve snr. From script addnoise_asl_nseg.m: This function adds noise to a file at a specified SNR level. It uses the active speech level to compute the speech energy. The active speech level is computed as per ITU-T P.56 standard. soundpy Note: this functionality was pulled from the MATLAB script: addnoise_asl_nseg.m at this GitHub repo: https://github.com/SIP-Lab/CNN-VAD/blob/master/Training%20Code/Functions/addnoise_asl_nseg.m I do not understand all that went on to calculate the scale factor and therefore do not explain anything futher than the original script. Parameters ---------- target_samples : np.ndarray [size = (num_samples,)] The audio samples of the target / clean signal. noise_samples : np.ndarray [size = (num_samples,)] The audio samples of the noise signal. sr : int The sample rate of both `target_samples` and `noise_samples` snr : int The desired signal-to-noise ratio of the target and noise audio signals. Returns ------- scale_factor : int, float The factor to which noise samples should be multiplied before being added to target samples to achieve SNR. References ---------- Yi Hu and Philipos C. Loizou : original authors Copyright (c) 2006 by Philipos C. Loizou SIP-Lab/CNN-VAD/ : GitHub Repo Copyright (c) 2019 Signal and Image Processing Lab MIT License ITU-T (1993). Objective measurement of active speech level. ITU-T Recommendation P. 56 See Also -------- soundpy.dsp.asl_P56 ''' #% Px is the active speech level ms energy, asl is the active factor, and c0 #% is the active speech level threshold. target_px, asl, c0 = sp.dsp.asl_P56(target_samples, sr) x = target_samples x_len = len(x) # apply IRS? to noise segment? # TODO: randomize section of noise #noise_samples = noise_samples[:len(speech_samps)] noise_px = noise_samples.T @ noise_samples / len(target_samples) print(noise_px) #% we need to scale the noise segment samples to obtain the desired snr= 10* #% log10( Px/ (sf^2 * Pn)) # Just used this within soundpy.dsp.add_backgroundsound scale_factor = (np.sqrt(target_px/noise_px / (10**(snr/10)))) return scale_factor def asl_P56(samples, sr, bitdepth=16, smooth_factor=0.03, hangover=0.2, margin_db=15.9): '''Computes the active speech level according to ITU-T P.56 standard. Note: I don't personally understand the functionality behind this function and therefore do not offer the best documentation as of yet. Parameters ---------- samples : np.ndarray [size = (num_samples, )] The audio samples, for example speech samples. sr : int The sample rate of `samples`. bitdepth : int The bitdepth of audio. Expects 16. (default 16) smooth_factor : float Time smoothing factor. (default 0.03) hangover : float Hangover. Thank goodness not the kind I'm familiar with. (default 0.2) margin_db : int, float Margin decibels... (default 15.9) Returns ------- asl_ms : float The active speech level ms energy asl : float The active factor c0 : float Active speech level threshold References ---------- ITU-T (1993). Objective measurement of active speech level. ITU-T Recommendation P. 56 TODO handle bitdepth variation - what if not 16? TODO improve documentation ''' thresh_nu = bitdepth -1 #number of thresholds I = math.ceil(sr*hangover) # hangover in samples.. is this percent_overlap? # 8820 g = np.exp( -1 /( sr * smooth_factor)) # smoothing factor in envelop detection # 0.99924 ###c( 1: thres_no)= 2.^ (-15: thres_no- 16); ###% vector with thresholds from one quantizing level up to half the maximum ###% code, at a step of 2, in the case of 16bit samples, from 2^-15 to 0.5; ###a( 1: thres_no)= 0; % activity counter for each level threshold ###hang( 1: thres_no)= I; % hangover counter for each level threshold #% vector with thresholds from one quantizing level up to half the maximum thresholds = np.zeros((len(np.arange(-15,thresh_nu-16),))) for i, item in enumerate(np.arange(-15,thresh_nu-16)): thresholds[i] = 2.**item thresh_nu = len(thresholds) #% activity counter for each level threshold activity_counter = np.zeros((len(thresholds),)) # % hangover counter for each level threshold hangover_matrix = np.zeros((len(thresholds,))) hangover_matrix[:] = I #% long-term level square energy of x square_energy = samples.T @ samples # 154.55 x_len = len(samples) # use a 2nd order IIR filter to detect the envelope q x_abs = np.abs(samples) p, q = iirfilter(2,Wn=[1-g, g]) iir_2ndorder = lfilter(p, q, x_abs) for index in range(x_len): for j in range(thresh_nu): if iir_2ndorder[index] < thresholds[j]: activity_counter[j] += 1 hangover_matrix[j] += 1 else: break asl = 0 asl_rsm = 0 eps = 2**-52 # https://www.researchgate.net/post/What_does_eps_in_MATLAB_mean_What_is_the_value_of_it if activity_counter[0]==0: return None #?? #pass # #AdB1 = None #? #else: AdB1 = 10 * np.log10(square_energy/activity_counter[0] + eps) # if activity_counter[0] = 1 --> 21.89073220006766 CdB1 = 20 * np.log10( thresholds[0] + eps) if AdB1 - CdB1 < margin_db: return None#???? AdB = np.zeros((thresh_nu,)) CdB = np.zeros((thresh_nu,)) Delta = np.zeros((thresh_nu,)) AdB[0] = AdB1 CdB[0] = CdB1 Delta[0] = AdB1 - CdB1 for j in np.arange(0, thresh_nu, 2): AdB[j] = 10 * np.log10( square_energy / (activity_counter[j] + eps) + eps) CdB[j] = 20 * np.log10( thresholds[j] + eps) for j in np.arange(0, thresh_nu, 2): if activity_counter[j] != 0: Delta[j] = AdB[j] - CdB[j] if Delta[j] <= margin_db: # % interpolate to find the asl asl_ms_log, cl0 = bin_interp( AdB[j], AdB[j-1], CdB[j], CdB[j-1], margin_db, 0.5) asl_ms = 10**(asl_ms_log/10) asl = (square_energy/x_len)/asl_ms c0 = 10**( cl0/20) return asl_ms, asl, c0 def bin_interp(upcount, lwcount, upthr, lwthr, Margin, tol): if tol < 0: tol = -tol # % Check if extreme counts are not already the true active value iteration = 0 if np.abs(upcount - upthr - Margin) < tol: asl_ms_log = upcount cc = upthr return asl_ms_log, cc if np.abs(lwcount - lwthr - Margin) < tol: asl_ms_log = lwcount cc = lwthr return asl_ms_log, cc # % Initialize first middle for given (initial) bounds midcount = (upcount + lwcount) / 2.0 midthr = (upthr + lwthr) / 2.0 # % Repeats loop until `diff' falls inside the tolerance (-tol<=diff<=tol) while True: diff = midcount - midthr - Margin if np.abs(diff) <= tol: break #% if tolerance is not met up to 20 iteractions, then relax the #% tolerance by 10% iteration += 1 if iteration > 20: tol = tol * 1.1 if diff > tol: # then the new bounds are: # upper and middle activities midcount = (upcount + midcount) / 2.0 # and thresholds midthr = (upthr + midthr) / 2.0 elif (diff < -tol): # then the new bounds are: # middle and lower activities midcount = (midcount + lwcount) / 2.0 # and thresholds midthr = (midthr + lwthr) / 2.0 #% Since the tolerance has been satisfied, midcount is selected #% as the interpolated value with a tol [dB] tolerance. asl_ms_log = midcount cc = midthr return asl_ms_log, cc def calc_posteri_prime(posteri_snr): """Calculates the posteri prime Parameters ---------- posteri_snr : ndarray The signal-to-noise ratio of the noisey signal, frame by frame. Returns ------- posteri_prime : ndarray The primed posteri_snr, calculated according to the reference paper. References ---------- Scalart, P. and Filho, J. (1996). Speech enhancement based on a priori signal to noise estimation. Proc. IEEE Int. Conf. Acoust., Speech, Signal Processing, 629-632. """ posteri_prime = posteri_snr - 1 posteri_prime[posteri_prime < 0] = 0 return posteri_prime def calc_prior_snr(snr, snr_prime, smooth_factor=0.98, first_iter=None, gain=None): """Estimates the signal-to-noise ratio of the previous frame Depending on the `first_iter` argument, the prior snr is calculated according to different algorithms. If `first_iter` is None, prior snr is calculated according to Scalart and Filho (1996); if `first_iter` is True or False, snr prior is calculated according to Loizou (2013). Parameters ---------- snr : ndarray The sound-to-noise ratio of target vs noise power/energy levels. snr_prime : ndarray The prime of the snr (see Scalart & Filho (1996)) smooth_factor : float The value applied to smooth the signal. (default 0.98) first_iter : None, True, False If None, snr prior values are estimated the same, no matter if it is the first iteration or not (Scalart & Filho (1996)) If True, snr prior values are estimated without gain (Loizou 2013) If False, snr prior values are enstimed with gain (Loizou 2013) (default None) gain : None, ndarray If None, gain will not be used. If gain, it is a previously calculated value from the previous frame. (default None) Returns ------- prior_snr : ndarray Estimation of signal-to-noise ratio of the previous frame of target signal. References ---------- C Loizou, P. (2013). Speech Enhancement: Theory and Practice. Scalart, P. and Filho, J. (1996). Speech enhancement based on a priori signal to noise estimation. Proc. IEEE Int. Conf. Acoust., Speech, Signal Processing, 629-632. """ if first_iter is None: # calculate according to apriori SNR equation (6) in paper # Scalart, P. and Filho, J. (1996) first_arg = (1 - smooth_factor) * snr_prime second_arg = smooth_factor * snr prior_snr = first_arg + second_arg elif first_iter is True: # calculate according to Loizou (2013) # don't yet have previous gain or snr values to apply first_arg = smooth_factor second_arg = (1-smooth_factor) * snr_prime prior_snr = first_arg + second_arg elif first_iter is False: # now have previous gain and snr values first_arg = smooth_factor * (gain**2) * snr second_arg = (1 - smooth_factor) * snr_prime prior_snr = first_arg + second_arg return prior_snr def calc_gain(prior_snr): '''Calculates the gain (i.e. attenuation) values to reduce noise. Parameters ---------- prior_snr : ndarray The prior signal-to-noise ratio estimation Returns ------- gain : ndarray An array of attenuation values to be applied to the signal (stft) array at the current frame. References ---------- C Loizou, P. (2013). Speech Enhancement: Theory and Practice. Scalart, P. and Filho, J. (1996). Speech enhancement based on a priori signal to noise estimation. Proc. IEEE Int. Conf. Acoust., Speech, Signal Processing, 629-632. ''' gain = np.sqrt(prior_snr/(1+prior_snr)) return gain def apply_gain_fft(fft_vals, gain): '''Reduces noise by applying gain values to the stft / fft array of the target signal Parameters ---------- fft_vals : ndarray(complex) Matrix containing complex values (i.e. stft values) of target signal gain : ndarray(real) Matrix containing calculated attenuation values to apply to 'fft_vals' Returns ------- enhanced_fft : ndarray(complex) Matrix with attenuated noise in target (stft) values ''' enhanced_fft = fft_vals * gain assert enhanced_fft.shape == fft_vals.shape return enhanced_fft def postfilter(original_powerspec, noisereduced_powerspec, gain, threshold=0.4, scale=10): '''Apply filter that reduces musical noise resulting from other filter. If it is estimated that speech (or target signal) is present, reduced filtering is applied. References ---------- T. Esch and P. Vary, "Efficient musical noise suppression for speech enhancement system," Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing, Taipei, 2009. ''' power_ratio_current_frame = sp.dsp.calc_power_ratio( original_powerspec, noisereduced_powerspec) # is there speech? If so, SNR decision = 1 if power_ratio_current_frame < threshold: SNR_decision = power_ratio_current_frame else: SNR_decision = 1 noise_frame_len = sp.dsp.calc_noise_frame_len(SNR_decision, threshold, scale) # apply window postfilter_coeffs = sp.dsp.calc_linear_impulse( noise_frame_len, num_freq_bins = original_powerspec.shape[0]) gain_postfilter = np.convolve(gain, postfilter_coeffs, mode='valid') return gain_postfilter def calc_ifft(signal_section, real_signal=None, norm=False): """Calculates the inverse fft of a series of fft values The real values of the ifft can be used to be saved as an audiofile Parameters ---------- signal_section : ndarray [shape=(num_freq_bins,) The frame of fft values to apply the inverse fft to num_fft : int, optional The number of total fft values applied when calculating the original fft. If not given, length of `signal_section` is used. norm : bool Whether or not the ifft should apply 'ortho' normalization (default False) Returns ------- ifft_vals : ndarray(complex) The inverse Fourier transform of filtered audio data """ if norm: norm = 'ortho' else: norm = None if real_signal: ifft_vals = irfft(signal_section, norm=norm) else: ifft_vals = ifft(signal_section, norm=norm) return ifft_vals def control_volume(samples, max_limit): """Keeps max volume of samples to within a specified range. Parameters ---------- samples : ndarray series of audio samples max_limit: float maximum boundary of the maximum value of the audio samples Returns ------- samples : np.ndarray samples with volume adjusted (if need be). Examples -------- >>> import numpy as np >>> #low volume example: increase volume to desired window >>> x = np.array([-0.03, 0.04, -0.05, 0.02]) >>> x = control_volume(x, max_limit=0.25) >>> x array([-0.13888889, 0.25 , -0.25 , 0.13888889]) >>> #high volume example: decrease volume to desired window >>> y = np.array([-0.3, 0.4, -0.5, 0.2]) >>> y = control_volume(y, max_limit=0.15) >>> y array([-0.08333333, 0.15 , -0.15 , 0.08333333]) """ if max(samples) != max_limit: samples = np.interp(samples, (samples.min(), samples.max()), (-max_limit, max_limit)) return samples ######### Functions related to postfilter############### def calc_power_ratio(original_powerspec, noisereduced_powerspec): '''Calc. the ratio of original vs noise reduced power spectrum. ''' power_ratio = sum(noisereduced_powerspec) / \ sum(original_powerspec)/len(noisereduced_powerspec) return power_ratio def calc_noise_frame_len(SNR_decision, threshold, scale): '''Calc. window length for calculating moving average. Note: lower SNRs require larger window. ''' if SNR_decision < 1: soft_decision = 1 - (SNR_decision/threshold) soft_decision_scaled = round((soft_decision) * scale) noise_frame_len = 2 * soft_decision_scaled + 1 else: noise_frame_len = SNR_decision return noise_frame_len def calc_linear_impulse(noise_frame_len, num_freq_bins): '''Calc. the post filter coefficients to be applied to gain values. ''' linear_filter_impulse = np.zeros((num_freq_bins,)) for i in range(num_freq_bins): if i < noise_frame_len: linear_filter_impulse[i] = 1 / noise_frame_len else: linear_filter_impulse[i] = 0 return linear_filter_impulse def adjust_volume(samples, vol_range): samps = samples.copy() adjusted_volume = np.interp(samps, (samps.min(), samps.max()), (-vol_range, vol_range)) return adjusted_volume def spread_volumes(samples, vol_list = [0.1,0.3,0.5]): '''Returns samples with a range of volumes. This may be useful in applying to training data (transforming data). Parameters ---------- samples : ndarray Series belonging to acoustic signal. vol_list : list List of floats or ints representing the volumes the samples are to be oriented towards. (default [0.1,0.3,0.5]) Returns ------- volrange_dict : tuple Tuple of `volrange_dict` values containing `samples` at various vols. ''' if samples is None or len(samples) == 0: raise ValueError('No Audio sample data recognized.') max_vol = max(samples) if round(max_vol) > 1: raise ValueError('Audio data not normalized.') volrange_dict = {} for i, vol in enumerate(vol_list): volrange_dict[i] = adjust_volume(samples, vol) return tuple(volrange_dict.values()) def create_empty_matrix(shape, complex_vals=False): '''Allows creation of a matrix filled with real or complex zeros. In digital signal processing, complex numbers are common; it is important to note that if complex_vals=False and complex values are inserted into the matrix, the imaginary part will be removed. Parameters ---------- shape : tuple or int tuple or int indicating the shape or length of desired matrix or vector, respectively complex_vals : bool indicator of whether or not the matrix will receive real or complex values (default False) Returns ---------- matrix : ndarray a matrix filled with real or complex zeros Examples ---------- >>> matrix = create_empty_matrix((3,4)) >>> matrix array([[0., 0., 0., 0.], [0., 0., 0., 0.], [0., 0., 0., 0.]]) >>> matrix_complex = create_empty_matrix((3,4),complex_vals=True) >>> matrix_complex array([[0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j], [0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j], [0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j]]) >>> vector = create_empty_matrix(5,) >>> vector array([0., 0., 0., 0., 0.]) ''' if complex_vals: matrix = np.zeros(shape, dtype=np.complex_) else: matrix = np.zeros(shape, dtype=float) return matrix # TODO test this in applications (currently not implemented) def overlap_add(enhanced_matrix, frame_length, overlap, complex_vals=False): '''Overlaps and adds windowed sections together to form 1D signal. Parameters ---------- enhanced_matrix : np.ndarray [shape=(frame_length, num_frames), dtype=float] Matrix with enhance values frame_length : int Number of samples per frame overlap : int Number of samples that overlap Returns ------- new_signal : np.ndarray [shape=(frame_length,), dtype=float] Length equals (frame_length - overlap) * enhanced_matrix.shape[1] + overlap Examples -------- >>> import numpy as np >>> enhanced_matrix = np.ones((4, 4)) >>> frame_length = 4 >>> overlap = 1 >>> sig = overlap_add(enhanced_matrix, frame_length, overlap) >>> sig array([1., 1., 1., 2., 1., 1., 2., 1., 1., 2., 1., 1., 1.]) ''' try: assert enhanced_matrix.shape[0] == frame_length except AssertionError as e: raise TypeError('The first dimension of the enhance matrix should '+ \ 'match the frame length. {} does not match frame length {}'.format( enhanced_matrix.shape[0], frame_length)) if np.issubdtype(enhanced_matrix.dtype, np.complexfloating): complex_vals = True else: complex_vals = False increments = frame_length - overlap start= increments mid= start + overlap stop= start + frame_length expected_len = increments * enhanced_matrix.shape[1] + overlap new_signal = create_empty_matrix( (expected_len,), complex_vals=complex_vals) for i in range(enhanced_matrix.shape[1]): if i == 0: new_signal[:frame_length] += enhanced_matrix[:frame_length,i] else: new_signal[start:mid] += enhanced_matrix[:overlap,i] new_signal[mid:stop] += enhanced_matrix[overlap:frame_length,i] start += increments mid = start+overlap stop = start+frame_length return new_signal def random_selection_samples(samples, len_section_samps, wrap=False, random_seed=None, axis=0): '''Selects a section of samples, starting at random. Parameters ---------- samples : np.ndarray [shape = (num_samples, )] The array of sample data len_section_samps : int How many samples should be randomly selected wrap : bool If False, the selected noise will not be wrapped from end to beginning; if True, the random selected may take sound sample that is wrapped from the end to the beginning. See examples below. (default False) random_seed : int, optional If replicated randomization desired. (default None) Examples -------- >>> import numpy as np >>> # no wrap: >>> x = np.array([1,2,3,4,5,6,7,8,9,10]) >>> n = sp.dsp.random_selection_samples(x, len_section_samps = 7, ... wrap = False, random_seed = 40) >>> n array([3, 4, 5, 6, 7, 8, 9]) >>> # with wrap: >>> n = sp.dsp.random_selection_samples(x, len_section_samps = 7, ... wrap = True, random_seed = 40) >>> n array([ 7, 8, 9, 10, 1, 2, 3]) ''' if not isinstance(samples, np.ndarray): samples = np.array(samples) if random_seed is not None and random_seed is not False: np.random.seed(random_seed) if wrap: start_index = np.random.choice(range(len(samples))) if start_index + len_section_samps > len(samples): left_over = start_index + len_section_samps - len(samples) start = samples[start_index:] end = samples[:left_over] total_section = np.concatenate((start,end),axis=axis) return total_section else: total_section = samples[start_index:start_index+len_section_samps] return total_section else: max_index_start = len(samples) - len_section_samps + 1 if max_index_start > 0: start_index = np.random.choice(range(max_index_start)) else: start_index = 0 total_section = samples[start_index:start_index+len_section_samps] return total_section # TODO: remove? function get_mean_freq is much better def get_pitch(sound, sr=16000, win_size_ms = 50, percent_overlap = 0.5, real_signal = False, fft_bins = 1024, window = 'hann', **kwargs): '''Approximates pitch by collecting dominant frequencies of signal. ''' import warnings warnings.warn('\n\nWarning: `soundpy.dsp.get_pitch` is experimental at best.'+\ ' \nPerhaps try `soundpy.dsp.get_mean_freq`, which is still experimental '+\ 'but a bit more reliable.\n\n') if isinstance(sound, np.ndarray): data = sound else: data, sr2 = sp.loadsound(sound, sr=sr) assert sr2 == sr frame_length = sp.dsp.calc_frame_length(win_size_ms, sr) num_overlap_samples = int(frame_length * percent_overlap) num_subframes = sp.dsp.calc_num_subframes(len(data), frame_length = frame_length, overlap_samples = num_overlap_samples, zeropad = True) max_freq = sr//2 # ensure even if not max_freq % 2 == 0: max_freq += 1 total_rows = fft_bins # initialize empty matrix for dominant frequency values of speech frames freq_matrix = sp.dsp.create_empty_matrix((num_subframes,), complex_vals = False) section_start = 0 window_frame = sp.dsp.create_window(window, frame_length) row = 0 for frame in range(num_subframes): section = data[section_start:section_start+frame_length] # otherwise calculate frequency info section = sp.dsp.apply_window(section, window_frame, zeropad = True) section_fft = sp.dsp.calc_fft(section, real_signal = real_signal, fft_bins = total_rows, ) # limit exploration of dominant frequency to max frequency (Nyquist Theorem) section_fft = section_fft[:max_freq] section_power = sp.dsp.calc_power(section_fft) dom_f = sp.dsp.get_dom_freq(section_power) freq_matrix[row] = dom_f row += 1 section_start += (frame_length - num_overlap_samples) return freq_matrix # TODO consolidate into VAD? get_vad_stft, or get_vad_samples? Avoid extra processing? # Perhaps as class attribute.. def get_mean_freq(sound, sr=16000, win_size_ms = 50, percent_overlap = 0.5, real_signal = False, fft_bins = 1024, window = 'hann', percent_vad=0.75): '''Takes the mean of dominant frequencies of voice activated regions in a signal. Note: Silences discarded. The average fundamental frequency for a male voice is 125Hz; for a female voice it’s 200Hz; and for a child’s voice, 300Hz. (Russell, J., 2020) References ---------- Russell, James (2020) The Human Voice and the Frequency Range. Retrieved from: https://blog.accusonus.com/pro-audio-production/human-voice-frequency-range/ ''' if isinstance(sound, np.ndarray): data = sound else: data, sr2 = sp.loadsound(sound, sr=sr) assert sr2 == sr frame_length = sp.dsp.calc_frame_length(win_size_ms, sr) num_overlap_samples = int(frame_length * percent_overlap) num_subframes = sp.dsp.calc_num_subframes(len(data), frame_length = frame_length, overlap_samples = num_overlap_samples, zeropad = True) max_freq = sr//2 # ensure even if not max_freq % 2 == 0: max_freq += 1 total_rows = fft_bins # initialize empty matrix for dominant frequency values of speech frames freq_matrix = sp.dsp.create_empty_matrix((num_subframes,), complex_vals = False) section_start = 0 extra_rows = 0 e_min = None f_min = None sfm_min = None window_frame = sp.dsp.create_window(window, frame_length) row = 0 for frame in range(num_subframes): section = data[section_start:section_start+frame_length] section_vad, values_vad = sp.dsp.vad(section, sr=sr, win_size_ms = 10, percent_overlap = 0.5, min_energy = e_min, min_freq = f_min, min_sfm = sfm_min) # adjusted number of values returned by vad() - still not 100% # if should return three or four (probably three) if len(values_vad) == 3: e, f, sfm = values_vad elif len(values_vad) == 4: sr, e, f, sfm = values_vad if e_min is None or e < e_min: e_min = e if f_min is None or f < f_min: f_min = f if sfm_min is None or sfm < sfm_min: sfm_min = sfm if sum(section_vad)/len(section_vad) < percent_vad: # start over with the loop extra_rows += 1 section_start += (frame_length - num_overlap_samples) continue # otherwise calculate frequency info section = sp.dsp.apply_window(section, window_frame, zeropad = True) section_fft = sp.dsp.calc_fft(section, real_signal = real_signal, fft_bins = total_rows, ) # limit exploration of dominant frequency to max frequency (Nyquist Theorem) section_fft = section_fft[:max_freq] section_power = sp.dsp.calc_power(section_fft) dom_f = sp.dsp.get_dom_freq(section_power) if dom_f > 0: freq_matrix[row] = dom_f row += 1 else: extra_rows += 1 section_start += (frame_length - num_overlap_samples) freq_matrix = freq_matrix[:-extra_rows] fund_freq = np.mean(freq_matrix) return round(fund_freq,2) # TODO: finicky # Seems that removing the dc offset helps, as does having a higher sample rate # still exploring influence of window size and percent overlap # NOTE: good settings for VAD in SNR calc: # set percent_overlap at 0.5, win_size_ms at 300 # (and padding 100 ms to the identified VAD start and end) # TODO: fix ERROR issue: frame == 0, measure_noise_frames == 0 #vad_matrix, vad_settings = sp.dsp.vad(audio, sr, #File "/home/airos/Projects/gitlab/family-language-tracker/soundpy/dsp.py", line 2877, in vad #if ste - min_energy > thresh_e: #UnboundLocalError: local variable 'thresh_e' referenced before assignment def vad(sound, sr, win_size_ms = 50, percent_overlap = 0, real_signal = False, fft_bins = None, window = 'hann', energy_thresh = 40, freq_thresh = 185, sfm_thresh = 5, min_energy = None, min_freq = None, min_sfm = None, use_beg_ms = 120): ''' Warning: this VAD works best with sample rates above 44100 Hz. Parameters ---------- energy_thresh : int, float The minimum amount of energy for speech detection. freq_thresh : int, float The maximum frequency threshold. sfm_thresh : int, float The spectral flatness measure threshold. References ---------- M. H. Moattar and M. M. Homayounpour, "A simple but efficient real-time Voice Activity Detection algorithm," 2009 17th European Signal Processing Conference, Glasgow, 2009, pp. 2549-2553. ''' # if real signal, divide freq_thresh in half, as only half freq_bins are used if real_signal: freq_thresh /= 2 if fft_bins is None: fft_bins = sr // 2 if fft_bins % 2 != 0: fft_bins += 1 max_freq = sr//2 # ensure even if not max_freq % 2 == 0: max_freq += 1 if isinstance(sound, np.ndarray): data = sound # resample audio if sr is lower than 44100 if sr < 44100: import warnings msg = '\nWarning: VAD works best with sample rates above 44100 Hz.' warnings.warn(msg) else: if sr < 44100: import warnings msg = '\nWarning: VAD works best with sample rates above 44100 Hz.' warnings.warn(msg) data, sr2 = sp.loadsound(sound, sr=sr) assert sr2 == sr # first scale samples to be between -1 and 1 data = sp.dsp.scalesound(data, max_val = 1) frame_length = sp.dsp.calc_frame_length(win_size_ms, sr) num_overlap_samples = int(frame_length * percent_overlap) num_subframes = sp.dsp.calc_num_subframes(len(data), frame_length = frame_length, overlap_samples = num_overlap_samples, zeropad = True) # limit number of beginning frames to measure background noise: measure_noise_samples = sp.dsp.calc_frame_length(use_beg_ms, sr) measure_noise_frames = sp.dsp.calc_num_subframes(measure_noise_samples, frame_length = frame_length, overlap_samples = num_overlap_samples, zeropad = True) # initialize empty matrix to vad values into vad_matrix = sp.dsp.create_empty_matrix((num_subframes,), complex_vals = False) section_start = 0 speech = 0 silence = 0 min_energy_array = np.zeros(measure_noise_frames) min_freq_array = np.zeros(measure_noise_frames) min_sfm_array = np.zeros(measure_noise_frames) window_frame = sp.dsp.create_window(window, frame_length) for frame in range(num_subframes): samples = data[section_start:section_start+frame_length] samples_windowed = sp.dsp.apply_window(samples, window_frame, zeropad = True) # apply dft to large window - increase frequency resolution during warping section_fft = sp.dsp.calc_fft(samples_windowed, real_signal = real_signal, fft_bins = fft_bins, ) # limit exploration of dominant frequency to max frequency (Nyquist Theorem) section_fft = section_fft[:max_freq] section_power = sp.dsp.calc_power(section_fft) # set minimum values if not yet set if min_energy is None and frame == 0: min_energy = sp.dsp.short_term_energy(samples) #elif frame < measure_noise_frames: #new_min_energy = sp.dsp.short_term_energy(samples) #min_energy_array[frame] = new_min_energy #min_energy = np.mean(min_energy_array[:frame+1]) ste = sp.dsp.short_term_energy(samples) if ste < min_energy and frame < measure_noise_frames: min_energy = ste if min_freq is None and frame == 0: min_freq = sp.dsp.get_dom_freq(section_power) #elif frame < measure_noise_frames: #new_min_freq = sp.dsp.get_dom_freq(section_power) #min_freq_array[frame] = new_min_freq #min_freq = np.mean(min_freq_array[:frame+1]) f = sp.dsp.get_dom_freq(section_power) if f < min_freq and frame < measure_noise_frames: min_freq = f # TODO fix when NAN value if min_sfm is None and frame == 0: try: min_sfm = sp.dsp.spectral_flatness_measure(section_fft) except TypeError: min_sfm = 0 #elif frame < measure_noise_frames: #new_min_sfm = sp.dsp.spectral_flatness_measure(section_fft) #min_sfm_array[frame] = new_min_sfm #min_sfm= np.mean(min_sfm_array[:frame+1]) # TODO fix when NAN value try: sfm = sp.dsp.spectral_flatness_measure(section_fft) except TypeError: if frame == 0: sfm = 0 else: pass # it should already be defined if sfm < min_sfm and frame < measure_noise_frames: min_sfm = sfm # decide if speech or silence # not finding this helpful if frame < measure_noise_frames: thresh_e = energy_thresh * np.log(min_energy) else: # what if frame == 0 and measure_noise_frames == 0? # still samples to process thresh_e = energy_thresh # TODO: test this fix counter = 0 if ste - min_energy > thresh_e: counter += 1 if f - min_freq > freq_thresh: counter += 1 if sfm - min_sfm > sfm_thresh: counter += 1 if counter >= 1: vad_matrix[frame] += 1 speech += 1 # set silence back to 0 if at least 5 speech frames if speech > 5: silence = 0 else: vad_matrix[frame] += 0 # update min energy and silence count silence += 1 # not finding this helpful if frame < measure_noise_frames: min_energy = ((silence * min_energy) + ste) / \ silence + 1 # if silence has been longer than 10 frames, set speech to 0 if silence > 10: speech = 0 # not finding this helpful if frame < measure_noise_frames: thresh_e = energy_thresh * np.log(min_energy) section_start += (frame_length - num_overlap_samples) return vad_matrix, (sr, min_energy, min_freq, min_sfm) def suspended_energy(speech_energy,speech_energy_mean,row,start): try: if start == True: if row <= len(speech_energy)-4: if speech_energy[row+1] and speech_energy[row+2] and speech_energy[row+3] > speech_energy_mean: return True else: if row >= 3: if speech_energy[row-1] and speech_energy[row-2] and speech_energy[row-3] > speech_energy_mean: return True except IndexError as ie: return False def sound_index(speech_energy,speech_energy_mean,start = True): '''Identifies the index of where speech or energy starts or ends. ''' if start == True: side = 1 beg = 0 end = len(speech_energy) else: side = -1 beg = len(speech_energy)-1 end = -1 for row in range(beg,end,side): if speech_energy[row] > speech_energy_mean: if suspended_energy(speech_energy, speech_energy_mean, row,start=start): if start==True: #to catch plosive sounds while row >= 0: row -= 1 row -= 1 if row < 0: row = 0 break return row, True else: #to catch quiet consonant endings while row <= len(speech_energy): row += 1 row += 1 if row > len(speech_energy): row = len(speech_energy) break return row, True else: #print("No Speech Detected") pass return beg, False def get_energy(stft): rms_list = [np.sqrt(sum(np.abs(stft[row])**2)/stft.shape[1]) for row in range(len(stft))] return rms_list def get_energy_mean(rms_energy): energy_mean = sum(rms_energy)/len(rms_energy) return energy_mean # TODO test def spectral_flatness_measure(spectrum): import scipy spectrum = np.abs(spectrum) g = scipy.stats.gmean(spectrum) a = np.mean(spectrum) if not np.isfinite(a).all(): raise TypeError(a) elif not np.isfinite(a).any(): raise ValueError(a) sfm = 10 * np.log10(g/(a+1e-6)) return sfm def get_dom_freq(power_values): '''If real_signal (i.e. half fft bins), might mess up values. ''' freq_bin = np.argmax(power_values) return freq_bin def short_term_energy(signal_windowed): ''' Expects `signal` to be scaled (-1, 1) as well as windowed. References ---------- http://vlab.amrita.edu/?sub=3&brch=164&sim=857&cnt=1 ''' ste = sum(np.abs(signal_windowed)**2) return ste def bilinear_warp(fft_value, alpha): '''Subfunction for vocal tract length perturbation. See Also -------- soundpy.augment.vtlp References ---------- Kim, C., Shin, M., Garg, A., & Gowda, D. (2019). Improved vocal tract length perturbation for a state-of-the-art end-to-end speech recognition system. Interspeech. September 15-19, Graz, Austria. ''' nominator = (1-alpha) * np.sin(fft_value) denominator = 1 - (1-alpha) * np.cos(fft_value) fft_warped = fft_value + 2 * np.arctan(nominator/(denominator + 1e-6) + 1e-6) return fft_warped def piecewise_linear_warp(fft_value, alpha, max_freq): '''Subfunction for vocal tract length perturbation. See Also -------- soundpy.augment.vtlp References ---------- Kim, C., Shin, M., Garg, A., & Gowda, D. (2019). Improved vocal tract length perturbation for a state-of-the-art end-to-end speech recognition system. Interspeech. September 15-19, Graz, Austria. ''' if fft_value.all() <= max_freq * (min(alpha, 1)/ (alpha + 1e-6)): fft_warped = fft_value * alpha else: nominator = np.pi - max_freq * (min(alpha, 1)) denominator = np.pi - max_freq * (min(alpha, 1) / (alpha + 1e-6)) fft_warped = np.pi - (nominator / denominator + 1e-6) * (np.pi - fft_value) return fft_warped # TODO: remove? function get_mean_freq is much better def f0_approximation(sound, sr, low_freq = 50, high_freq = 300, **kwargs): '''Approximates fundamental frequency. Limits the stft of voice active sections to frequencies to between `low_freq` and `high_freq` and takes mean of the dominant frequencies within that range. Defaults are set at 50 and 300 as most human speech frequencies occur between 85 and 255 Hz. References ---------- https://en.wikipedia.org/wiki/Voice_frequency ''' import warnings warnings.warn('\n\nWarning: `soundpy.dsp.f0_approximation` is experimental at'+\ ' best. \nPerhaps try `soundpy.dsp.get_mean_freq`, which is still '+\ 'experimental but a bit more reliable.\n\n') import scipy if isinstance(sound, np.ndarray): data = sound else: data, sr2 = sp.loadsound(sound, sr=sr) assert sr2 == sr stft = sp.feats.get_vad_stft(data, sr=sr, **kwargs) # get_vad_stft now returns stft, vad_matrix but used to return just stft if isinstance(stft, tuple): stft = stft[0] stft = stft[:,low_freq:high_freq] power = np.abs(stft)**2 dom_f = [] for row in power: dom_f.append(sp.dsp.get_dom_freq(row)) return np.mean(dom_f) if __name__ == '__main__': import doctest doctest.testmod()
import os from nose.tools import assert_greater from scrapy.selector import Selector from .. import parse_user_arts CURRENT_PATH = os.path.dirname(__file__) def test_parse_user_arts(): for name in [ 'tid.html', ]: yield check_parse_user_arts, name def check_parse_user_arts(name): with open(os.path.join(CURRENT_PATH, name), 'rb') as f: sel = Selector(text=f.read(), type='html') assert_greater(len(list(parse_user_arts(sel))), 0)
import math import logging import gensim from collections import defaultdict from .matcher import Matcher class WordWeightMatcher(Matcher): """ 採用詞權重來比對短語相似度 """ def __init__(self, segLib="Taiba"): super().__init__(segLib) self.wordDictionary = defaultdict(int) # 保存每個詞的出現次數 self.totalWords = 0 # 詞總數 self.wordWeights = defaultdict(int) # 保存每個詞的權重 def initialize(self): logging.info("初始化模塊中...") self.TitlesSegmentation() self.buildWordDictionary() self.loadStopWords("data/stopwords/chinese_sw.txt") self.loadStopWords("data/stopwords/specialMarks.txt") self.calculateWeight() logging.info("初始化完成 :>") def buildWordDictionary(self): for title in self.segTitles: for word in title: self.wordDictionary[word] += 1 self.totalWords += 1 logging.info("詞記數完成") def buildWordBag(self): dictionary = gensim.corpora.Dictionary(self.titles) def calculateWeight(self): # 算法的數學推導請見: # 非主流自然语言处理——遗忘算法系列(四):改进TF-IDF权重公式 # http://www.52nlp.cn/forgetnlp4 # 此處儲存的 weight 為後項,即 -1 * log(N/T) for word,count in self.wordDictionary.items(): self.wordWeights[word] = -1 * math.log10(count/self.totalWords) logging.info("詞統計完成") def getCooccurrence(self, q1, q2): #TODO NEED OPTIMIZE!!!! res = [] for word in q1: if word in q2: res.append(word) return res def getWordWeight(self, word, n=1): #TODO FIX N return(n * self.wordWeights[word]) def match(self, query, sort=False): """ 讀入使用者 query,若語料庫中存在相同的句子,便回傳該句子與標號 """ max_similarity = -1 target = "" index = -1 segQuery = [word for word in self.wordSegmentation(query) if word not in self.stopwords] for index,title in enumerate(self.segTitles): if len(title) == 0: continue allWordsWeight = 0. coWordsWeight = 0. coWords = self.getCooccurrence(title, segQuery) for word in coWords: coWordsWeight += self.getWordWeight(word) for word in title: if word not in coWords: allWordsWeight += self.getWordWeight(word) for word in segQuery: if word not in coWords: allWordsWeight += self.getWordWeight(word) similarity = coWordsWeight/allWordsWeight if similarity > max_similarity: max_similarity = similarity target = title target_idx = index self.similarity = max_similarity * 100 #統一為百分制 return target,target_idx
from PhotochemPy import PhotochemPy template = 'Archean2Proterozoic' sun = 'Sun_2.7Ga.txt' pc = PhotochemPy('../input/templates/'+template+'/species.dat', \ '../input/templates/'+template+'/reactions.rx', \ '../input/templates/'+template+'/settings.yaml', \ '../input/templates/'+template+'/atmosphere.txt', \ '../input/templates/'+template+'/'+sun) converged = pc.integrate(method='Backward_Euler') converged = pc.integrate(method='CVODE_BDF')
import inflection SCHEMA = { 'Assignment': { 'create_endpoint_name': 'assignToEnvironment' }, 'EntityAssignment': { 'create_endpoint_name': 'assignToEntity' }, 'MaterialAssignment': { 'create_endpoint_name': 'assignToMaterial' }, 'Datapoint': { 'id_field_name': 'data_id' }, 'CoordinateSpace': { 'id_field_name': 'space_id' }, 'Pose2D': { 'search_endpoint_name': 'searchPoses2D', 'id_field_name': 'pose_id' }, 'Pose3D': { 'search_endpoint_name': 'searchPoses3D', 'id_field_name': 'pose_id' }, 'PoseTrack2D': { 'search_endpoint_name': 'searchPoseTracks2D', 'id_field_name': 'pose_track_id' }, 'Pose3D': { 'search_endpoint_name': 'searchPoseTracks3D', 'id_field_name': 'pose_track_id' }, 'AccelerometerData': { 'search_endpoint_name': 'searchAccelerometerData' }, 'GyroscopeData': { 'search_endpoint_name': 'searchGyroscopeData' }, 'MagnetometerData': { 'search_endpoint_name': 'searchMagnetometerData' } } def create_endpoint_name(object_name): name = SCHEMA.get(object_name, {}).get('create_endpoint_name') if name is None: name = 'create' + object_name return name def create_endpoint_argument_name(object_name): name = SCHEMA.get(object_name, {}).get('create_endpoint_argument_name') if name is None: name = inflection.camelize(object_name, uppercase_first_letter=False) return name def create_endpoint_argument_type(object_name): name = SCHEMA.get(object_name, {}).get('create_endpoint_argument_type') if name is None: name = object_name + 'Input' return name def update_endpoint_name(object_name): name = SCHEMA.get(object_name, {}).get('update_endpoint_name') if name is None: name = 'update' + object_name return name def update_endpoint_argument_name(object_name): name = SCHEMA.get(object_name, {}).get('update_endpoint_argument_name') if name is None: name = inflection.camelize(object_name, uppercase_first_letter=False) return name def update_endpoint_argument_type(object_name): name = SCHEMA.get(object_name, {}).get('update_endpoint_argument_type') if name is None: name = object_name + 'UpdateInput' return name def search_endpoint_name(object_name): name = SCHEMA.get(object_name, {}).get('search_endpoint_name') if name is None: name = 'search' + object_name + 's' return name def delete_endpoint_name(object_name): name = SCHEMA.get(object_name, {}).get('delete_endpoint_name') if name is None: name = 'delete' + object_name return name def id_field_name(object_name): name = SCHEMA.get(object_name, {}).get('id_field_name') if name is None: name = inflection.underscore(object_name) + '_id' return name
#!/usr/bin/env python ''' Use Netmiko to connect to each of the devices in the database. Execute 'show version' on each device. Record the amount of time required to do this. DISCLAIMER NOTE: Solution is limited to the exercise's scope ''' from net_system.models import NetworkDevice import django from termcolor import colored from datetime import datetime from netmiko import ConnectHandler def sh_ver(a_device): # Execute cmd with NETMIKO creds = a_device.credentials rem_conn_ssh = ConnectHandler(device_type=a_device.device_type, ip=a_device.ip_address, username=creds.username, password=creds.password, port=a_device.port, secret='') # Output cmd output = rem_conn_ssh.send_command_expect("show version") print "\n <<--------------------------->> \n "+ colored(output, 'green') + "\n" def main(): # Main function to connect to the devices using NETMIKO and execute a cmd. django.setup() # Record start time start_time = datetime.now() pylab_devices = NetworkDevice.objects.all() for a_device in pylab_devices: sh_ver(a_device) # Function sh_ver runtime calculation runtime = datetime.now() - start_time print "This operation required " + colored(runtime, 'red') if __name__ == "__main__": main()
# coding: utf-8 # Author: Marc Weber """ ========================================================================================= Multiple sequence alignment ========================================================================================= We follow the definition of conservation score in @Capra2007 by computing the Jensen-Shannon divergence (JSD) of MSA columns. I found the source code of the protein residue conservation prediction score by the Capra lab, [here](http://compbio.cs.princeton.edu/conservation/). Adapted the source code and verified that we get the same results as in the web tool. Capra2007: Capra, J. A., & Singh, M. (2007). Predicting functionally important residues from sequence conservation. Bioinformatics, 23(15), 1875–1882. http://doi.org/10.1093/bioinformatics/btm270 """ import subprocess from subprocess import CalledProcessError import shlex from pathlib import Path import re import numpy as np # This is the BLOSUM62 distribution. It is the default background distribution. blosum62_bg_dist = dict(zip( ['A', 'R', 'N', 'D', 'C', 'Q', 'E', 'G', 'H', 'I', 'L', 'K', 'M', 'F', 'P', 'S', 'T', 'W', 'Y', 'V'], [float(x) for x in "0.078 0.051 0.041 0.052 0.024 0.034 0.059 0.083 0.025 0.062 0.092 0.056 0.024 0.044 0.043 0.059 0.055 0.014 0.034 0.072".split()] )) amino_acids = ['A', 'R', 'N', 'D', 'C', 'Q', 'E', 'G', 'H', 'I', 'L', 'K', 'M', 'F', 'P', 'S', 'T', 'W', 'Y', 'V', '-'] PSEUDOCOUNT = .0000001 def weighted_freq_count_pseudocount(col, seq_weights, pc_amount): """ Return the weighted frequency count for a column--with pseudocount.""" # if the weights do not match, use equal weight if len(seq_weights) != len(col): seq_weights = [1.] * len(col) aa_num = 0 freq_counts = dict(zip(amino_acids, len(amino_acids)*[pc_amount])) for aa in amino_acids: for j in range(len(col)): if col[j] == aa: freq_counts[aa] = freq_counts[aa] + 1 * seq_weights[j] for aa in amino_acids: freq_counts[aa] = freq_counts[aa] / (sum(seq_weights) + len(amino_acids) * pc_amount) return freq_counts def weighted_gap_penalty(col, seq_weights): """ Calculate the simple gap penalty multiplier for the column. If the sequences are weighted, the gaps, when penalized, are weighted accordingly. """ # if the weights do not match, use equal weight if len(seq_weights) != len(col): seq_weights = [1.] * len(col) gap_sum = 0. for i in range(len(col)): if col[i] == '-': gap_sum += seq_weights[i] return 1 - (gap_sum / sum(seq_weights)) def msa_Jensen_Shannon_divergence(col, bg_distr, seq_weights, gap_penalty=True): """ Return the Jensen-Shannon Divergence for the column with the background distribution bg_distr. sim_matrix is ignored. JSD is the default method.""" fc = weighted_freq_count_pseudocount(col, seq_weights, PSEUDOCOUNT) # if background distribution lacks a gap count, remove fc gap count aaList = amino_acids if '-' not in bg_distr.keys(): aaList = [aa for aa in aaList if aa != '-'] fc = {aa:fc[aa] for aa in aaList} if fc.keys() != bg_distr.keys(): raise ValueError("fc and bg_distr amino acids are not the same.") p = np.array([fc[aa] for aa in aaList]) q = np.array([bg_distr[aa] for aa in aaList]) p = p/sum(p) q = q/sum(q) r = 0.5 * p + 0.5 * q d = 0. for i in range(len(p)): if r[i] != 0.0: if p[i] == 0.0: d += q[i] * np.log2(q[i]/r[i]) elif q[i] == 0.0: d += p[i] * np.log2(p[i]/r[i]) else: d += p[i] * np.log2(p[i]/r[i]) + q[i] * np.log2(q[i]/r[i]) d /= 2. if gap_penalty: return d * weighted_gap_penalty(col, seq_weights) else: return d def multiple_sequence_alignment(fastafile, outputDir=None, nThreads=1, tool='t-coffee', toolOptions=None, verbose=True): """ """ if outputDir is None: outputPath = Path(fastafile).resolve().parent else: outputPath = Path(outputDir) print("outputDir", outputDir) fastafileOut = str(outputPath / re.sub(r'(.+)\.f[na]a', r'\1.aln', Path(fastafile).name)) if tool == 't-coffee': cmd = 't_coffee -n_core={:d} -seq "{}"'.format(nThreads, fastafile) elif tool == 'mafft': if not toolOptions: toolOptions = '--globalpair' cmd = 'mafft {} --clustalout --maxiterate 1000 --thread {:d} "{}" > "{}"'\ .format(toolOptions, nThreads, fastafile, fastafileOut) else: cmd = None if verbose: print("MSA tool:", tool) print("fastafileOut:", fastafileOut) print("cmd:", cmd) # cmd = shlex.split(cmd) stderr = subprocess.STDOUT if verbose else subprocess.DEVNULL try: cmd_output = subprocess.check_output(cmd, stderr=stderr, cwd=str(outputPath), shell=True) cmd_output = re.sub(r'\\n','\n',str(cmd_output)) if verbose: print(cmd_output) except CalledProcessError as err: print(err.output) print(err.stderr) if tool == 'mafft': print("Alignment had an error, we try the same with the --anysymbol option") cmd = 'mafft --anysymbol {} --clustalout --maxiterate 1000 --thread {:d} "{}" > "{}"'\ .format(toolOptions, nThreads, fastafile, fastafileOut) cmd_output = subprocess.check_output(cmd, stderr=stderr, cwd=str(outputPath), shell=True) cmd_output = re.sub(r'\\n','\n',str(cmd_output)) if verbose: print(cmd_output) else: raise with open(fastafileOut, 'r') as f: MSA_result = f.read() return MSA_result, fastafileOut
# pylint: disable=import-outside-toplevel # pylint: disable=R0904 import json import logging import re import time from time import sleep from uuid import uuid4 import docker from botocore import UNSIGNED from botocore.config import Config from rpdk.core.contract.interface import Action, HandlerErrorCode, OperationStatus from rpdk.core.exceptions import InvalidProjectError from ..boto_helpers import ( LOWER_CAMEL_CRED_KEYS, create_sdk_session, get_account, get_temporary_credentials, ) from ..jsonutils.pointer import fragment_decode, fragment_list from ..jsonutils.utils import traverse LOG = logging.getLogger(__name__) def prune_properties(document, paths): """Prune given properties from a document. This assumes properties will always have an object (dict) as a parent. The function modifies the document in-place, but also returns the document for convenience. (The return value may be ignored.) """ for path in paths: try: _prop, resolved_path, parent = traverse(document, path) except LookupError: pass # not found means nothing to delete else: key = resolved_path[-1] del parent[key] return document def prune_properties_if_not_exist_in_path(output_model, input_model, paths): """Prune given properties from a model. This assumes properties will always have an object (dict) as a parent. The function returns the model after pruning the path which exists in the paths tuple but not in the input_model """ output_document = {"properties": output_model.copy()} input_document = {"properties": input_model.copy()} for path in paths: try: if not path_exists(input_document, path): _prop, resolved_path, parent = traverse(output_document, path) key = resolved_path[-1] del parent[key] except LookupError: pass return output_document["properties"] def prune_properties_which_dont_exist_in_path(model, paths): """Prunes model to properties present in path. This method removes any property from the model which does not exists in the paths This assumes properties will always have an object (dict) as a parent. The function returns the model after pruning all but the path which exists in the paths tuple from the input_model """ document = {"properties": model.copy()} for model_path in model.keys(): path_tuple = ("properties", model_path) if path_tuple not in paths: _prop, resolved_path, parent = traverse(document, path_tuple) key = resolved_path[-1] del parent[key] return document["properties"] def path_exists(document, path): try: _prop, _resolved_path, _parent = traverse(document, path) except LookupError: return False else: return True def prune_properties_from_model(model, paths): """Prune given properties from a resource model. This assumes the dict passed in is a resources model i.e. solely the properties. This also assumes the paths to remove are prefixed with "/properties", as many of the paths are defined in the schema The function modifies the document in-place, but also returns the document for convenience. (The return value may be ignored.) """ return prune_properties({"properties": model}, paths)["properties"] def override_properties(document, overrides): """Override given properties from a document.""" for path, obj in overrides.items(): try: _prop, resolved_path, parent = traverse(document, path) except LookupError: LOG.debug( "Override failed.\nPath %s\nObject %s\nDocument %s", path, obj, document ) LOG.warning("Override with path %s not found, skipping", path) else: key = resolved_path[-1] parent[key] = obj return document class ResourceClient: # pylint: disable=too-many-instance-attributes def __init__( self, function_name, endpoint, region, schema, overrides, inputs=None, role_arn=None, timeout_in_seconds="30", type_name=None, log_group_name=None, log_role_arn=None, docker_image=None, executable_entrypoint=None, ): # pylint: disable=too-many-arguments self._schema = schema self._session = create_sdk_session(region) self._role_arn = role_arn self._type_name = type_name self._log_group_name = log_group_name self._log_role_arn = log_role_arn self.region = region self.account = get_account( self._session, get_temporary_credentials(self._session, LOWER_CAMEL_CRED_KEYS, role_arn), ) self._function_name = function_name if endpoint.startswith("http://"): self._client = self._session.client( "lambda", endpoint_url=endpoint, use_ssl=False, verify=False, config=Config( signature_version=UNSIGNED, # needs to be long if docker is running on a slow machine read_timeout=5 * 60, retries={"max_attempts": 0}, region_name=self._session.region_name, ), ) else: self._client = self._session.client("lambda", endpoint_url=endpoint) self._schema = None self._strategy = None self._update_strategy = None self._invalid_strategy = None self._overrides = overrides self._update_schema(schema) self._inputs = inputs self._timeout_in_seconds = int(timeout_in_seconds) self._docker_image = docker_image self._docker_client = docker.from_env() if self._docker_image else None self._executable_entrypoint = executable_entrypoint def _properties_to_paths(self, key): return {fragment_decode(prop, prefix="") for prop in self._schema.get(key, [])} def _update_schema(self, schema): # TODO: resolve $ref self._schema = schema self._strategy = None self._update_strategy = None self._invalid_strategy = None self.primary_identifier_paths = self._properties_to_paths("primaryIdentifier") self.read_only_paths = self._properties_to_paths("readOnlyProperties") self.write_only_paths = self._properties_to_paths("writeOnlyProperties") self.create_only_paths = self._properties_to_paths("createOnlyProperties") self.properties_without_insertion_order = self.get_metadata() additional_identifiers = self._schema.get("additionalIdentifiers", []) self._additional_identifiers_paths = [ {fragment_decode(prop, prefix="") for prop in identifier} for identifier in additional_identifiers ] def has_only_writable_identifiers(self): return all( path in self.create_only_paths for path in self.primary_identifier_paths ) def assert_write_only_property_does_not_exist(self, resource_model): if self.write_only_paths: assert not any( self.key_error_safe_traverse(resource_model, write_only_property) for write_only_property in self.write_only_paths ), "The model MUST NOT return properties defined as \ writeOnlyProperties in the resource schema" def get_metadata(self): try: properties = self._schema["properties"] except KeyError: return set() else: return { prop for prop in properties.keys() if "insertionOrder" in properties[prop] and properties[prop]["insertionOrder"] == "false" } @property def strategy(self): # an empty strategy (i.e. false-y) is valid if self._strategy is not None: return self._strategy # imported here to avoid hypothesis being loaded before pytest is loaded from .resource_generator import ResourceGenerator # make a copy so the original schema is never modified schema = json.loads(json.dumps(self._schema)) prune_properties(schema, self.read_only_paths) self._strategy = ResourceGenerator(schema).generate_schema_strategy(schema) return self._strategy @property def invalid_strategy(self): # an empty strategy (i.e. false-y) is valid if self._invalid_strategy is not None: return self._invalid_strategy # imported here to avoid hypothesis being loaded before pytest is loaded from .resource_generator import ResourceGenerator # make a copy so the original schema is never modified schema = json.loads(json.dumps(self._schema)) self._invalid_strategy = ResourceGenerator(schema).generate_schema_strategy( schema ) return self._invalid_strategy @property def update_strategy(self): # an empty strategy (i.e. false-y) is valid if self._update_strategy is not None: return self._update_strategy # imported here to avoid hypothesis being loaded before pytest is loaded from .resource_generator import ResourceGenerator # make a copy so the original schema is never modified schema = json.loads(json.dumps(self._schema)) prune_properties(schema, self.read_only_paths) prune_properties(schema, self.create_only_paths) self._update_strategy = ResourceGenerator(schema).generate_schema_strategy( schema ) return self._update_strategy def generate_create_example(self): if self._inputs: return self._inputs["CREATE"] example = self.strategy.example() return override_properties(example, self._overrides.get("CREATE", {})) def generate_invalid_create_example(self): if self._inputs: return self._inputs["INVALID"] example = self.invalid_strategy.example() return override_properties(example, self._overrides.get("CREATE", {})) def get_unique_keys_for_model(self, create_model): return { k: v for k, v in create_model.items() if self.is_property_in_path(k, self.primary_identifier_paths) or any( map( lambda additional_identifier_paths, key=k: self.is_property_in_path( key, additional_identifier_paths ), self._additional_identifiers_paths, ) ) } @staticmethod def is_property_in_path(key, paths): for path in paths: prop = fragment_list(path, "properties")[0] if prop == key: return True return False def validate_update_example_keys(self, unique_identifiers, update_example): for primary_identifier in self.primary_identifier_paths: if primary_identifier in self.create_only_paths: primary_key = fragment_list(primary_identifier, "properties")[0] assert update_example[primary_key] == unique_identifiers[primary_key], ( "Any createOnlyProperties specified in update handler input " "MUST NOT be different from their previous state" ) def generate_update_example(self, create_model): if self._inputs: unique_identifiers = self.get_unique_keys_for_model(create_model) update_example = self._inputs["UPDATE"] if self.create_only_paths: self.validate_update_example_keys(unique_identifiers, update_example) update_example.update(unique_identifiers) create_model_with_read_only_properties = ( prune_properties_which_dont_exist_in_path( create_model, self.read_only_paths ) ) return {**create_model_with_read_only_properties, **update_example} overrides = self._overrides.get("UPDATE", self._overrides.get("CREATE", {})) example = override_properties(self.update_strategy.example(), overrides) return {**create_model, **example} def generate_invalid_update_example(self, create_model): if self._inputs: return self._inputs["INVALID"] overrides = self._overrides.get("UPDATE", self._overrides.get("CREATE", {})) example = override_properties(self.invalid_strategy.example(), overrides) return {**create_model, **example} def compare(self, inputs, outputs): assertion_error_message = ( "All properties specified in the request MUST " "be present in the model returned, and they MUST" " match exactly, with the exception of properties" " defined as writeOnlyProperties in the resource schema" ) try: if isinstance(inputs, dict): for key in inputs: if isinstance(inputs[key], dict): self.compare(inputs[key], outputs[key]) elif isinstance(inputs[key], list): assert len(inputs[key]) == len(outputs[key]) self.compare_list(inputs[key], outputs[key]) else: assert inputs[key] == outputs[key], assertion_error_message else: assert inputs == outputs, assertion_error_message except Exception as exception: raise AssertionError(assertion_error_message) from exception def compare_list(self, inputs, outputs): for index in range(len(inputs)): # pylint: disable=C0200 self.compare(inputs[index], outputs[index]) @staticmethod def key_error_safe_traverse(resource_model, write_only_property): try: return traverse( resource_model, fragment_list(write_only_property, "properties") )[0] except KeyError: return None @staticmethod def assert_in_progress(status, response): assert status == OperationStatus.IN_PROGRESS, "status should be IN_PROGRESS" assert ( response.get("errorCode", 0) == 0 ), "IN_PROGRESS events should have no error code set" assert ( response.get("resourceModels") is None ), "IN_PROGRESS events should not include any resource models" return response.get("callbackDelaySeconds", 0) @staticmethod def assert_success(status, response): assert status == OperationStatus.SUCCESS, "status should be SUCCESS" assert ( response.get("errorCode", 0) == 0 ), "SUCCESS events should have no error code set" assert ( response.get("callbackDelaySeconds", 0) == 0 ), "SUCCESS events should have no callback delay" @staticmethod def assert_failed(status, response): assert status == OperationStatus.FAILED, "status should be FAILED" assert "errorCode" in response, "FAILED events must have an error code set" # raises a KeyError if the error code is invalid error_code = HandlerErrorCode[response["errorCode"]] assert ( response.get("callbackDelaySeconds", 0) == 0 ), "FAILED events should have no callback delay" assert ( response.get("resourceModels") is None ), "FAILED events should not include any resource models" return error_code @staticmethod # pylint: disable=R0913 def make_request( desired_resource_state, previous_resource_state, region, account, action, creds, type_name, log_group_name, log_creds, token, callback_context=None, **kwargs, ): request_body = { "requestData": { "callerCredentials": creds, "resourceProperties": desired_resource_state, "previousResourceProperties": previous_resource_state, "logicalResourceId": token, }, "region": region, "awsAccountId": account, "action": action, "callbackContext": callback_context, "bearerToken": token, "resourceType": type_name, **kwargs, } if log_group_name and log_creds: request_body["requestData"]["providerCredentials"] = log_creds request_body["requestData"]["providerLogGroupName"] = log_group_name return request_body @staticmethod def generate_token(): return str(uuid4()) def assert_time(self, start_time, end_time, action): timeout_in_seconds = ( self._timeout_in_seconds if action in (Action.READ, Action.LIST) else self._timeout_in_seconds * 2 ) assert end_time - start_time <= timeout_in_seconds, ( "Handler %r timed out." % action ) @staticmethod def assert_primary_identifier(primary_identifier_paths, resource_model): try: assert all( traverse( resource_model, fragment_list(primary_identifier, "properties") )[0] for primary_identifier in primary_identifier_paths ), "Every returned model MUST include the primaryIdentifier" except KeyError as e: raise AssertionError( "Every returned model MUST include the primaryIdentifier" ) from e @staticmethod def is_primary_identifier_equal( primary_identifier_path, created_model, updated_model ): try: return all( traverse( created_model, fragment_list(primary_identifier, "properties") )[0] == traverse( updated_model, fragment_list(primary_identifier, "properties") )[0] for primary_identifier in primary_identifier_path ) except KeyError as e: raise AssertionError( "The primaryIdentifier returned in every progress event must\ match the primaryIdentifier passed into the request" ) from e def _make_payload(self, action, current_model, previous_model=None, **kwargs): return self.make_request( current_model, previous_model, self.region, self.account, action, get_temporary_credentials( self._session, LOWER_CAMEL_CRED_KEYS, self._role_arn ), self._type_name, self._log_group_name, get_temporary_credentials( self._session, LOWER_CAMEL_CRED_KEYS, self._log_role_arn ), self.generate_token(), **kwargs, ) def _call(self, payload): request_without_write_properties = prune_properties( payload["requestData"]["resourceProperties"], self.write_only_paths ) previous_request_without_write_properties = None if payload["requestData"]["previousResourceProperties"]: previous_request_without_write_properties = prune_properties( payload["requestData"]["previousResourceProperties"], self.write_only_paths, ) payload_to_log = { "callbackContext": payload["callbackContext"], "action": payload["action"], "requestData": { "resourceProperties": request_without_write_properties, "previousResourceProperties": previous_request_without_write_properties, "logicalResourceId": payload["requestData"]["logicalResourceId"], }, "region": payload["region"], "awsAccountId": payload["awsAccountId"], "bearerToken": payload["bearerToken"], } LOG.debug( "Sending request\n%s", json.dumps(payload_to_log, ensure_ascii=False, indent=2), ) payload = json.dumps(payload, ensure_ascii=False, indent=2) if self._docker_image: if not self._executable_entrypoint: raise InvalidProjectError( "executableEntrypoint not set in .rpdk-config. " "Have you run cfn generate?" ) result = ( self._docker_client.containers.run( self._docker_image, self._executable_entrypoint + " '" + payload + "'", ) .decode() .strip() ) LOG.debug("=== Handler execution logs ===") LOG.debug(result) # pylint: disable=W1401 regex = "__CFN_RESOURCE_START_RESPONSE__([\s\S]*)__CFN_RESOURCE_END_RESPONSE__" # noqa: W605,B950 # pylint: disable=C0301 payload = json.loads(re.search(regex, result).group(1)) else: result = self._client.invoke( FunctionName=self._function_name, Payload=payload.encode("utf-8") ) try: payload = json.load(result["Payload"]) except json.decoder.JSONDecodeError as json_error: LOG.debug("Received invalid response\n%s", result["Payload"]) raise ValueError( "Handler Output is not a valid JSON document" ) from json_error LOG.debug("Received response\n%s", payload) return payload def call_and_assert( self, action, assert_status, current_model, previous_model=None, **kwargs ): if not self.has_required_handlers(): raise ValueError("Create/Read/Delete handlers are required") if assert_status not in [OperationStatus.SUCCESS, OperationStatus.FAILED]: raise ValueError("Assert status {} not supported.".format(assert_status)) status, response = self.call(action, current_model, previous_model, **kwargs) if assert_status == OperationStatus.SUCCESS: self.assert_success(status, response) error_code = None else: error_code = self.assert_failed(status, response) return status, response, error_code def call(self, action, current_model, previous_model=None, **kwargs): request = self._make_payload(action, current_model, previous_model, **kwargs) start_time = time.time() response = self._call(request) self.assert_time(start_time, time.time(), action) # this throws a KeyError if status isn't present, or if it isn't a valid status status = OperationStatus[response["status"]] if action in (Action.READ, Action.LIST): assert status != OperationStatus.IN_PROGRESS return status, response while status == OperationStatus.IN_PROGRESS: callback_delay_seconds = self.assert_in_progress(status, response) self.assert_primary_identifier( self.primary_identifier_paths, response.get("resourceModel") ) sleep(callback_delay_seconds) request["requestData"]["resourceProperties"] = response.get("resourceModel") request["callbackContext"] = response.get("callbackContext") response = self._call(request) status = OperationStatus[response["status"]] # ensure writeOnlyProperties are not returned on final responses if "resourceModel" in response.keys() and status == OperationStatus.SUCCESS: self.assert_write_only_property_does_not_exist(response["resourceModel"]) return status, response def has_update_handler(self): return "update" in self._schema["handlers"] def has_required_handlers(self): try: has_delete = "delete" in self._schema["handlers"] has_create = "create" in self._schema["handlers"] has_read = "read" in self._schema["handlers"] return has_read and has_create and has_delete except KeyError: return False
from __future__ import absolute_import import sys, os, shutil import forcebalance.parser import unittest from __init__ import ForceBalanceTestCase class TestParser(ForceBalanceTestCase): def test_parse_inputs_returns_tuple(self): """Check parse_inputs() returns type""" output = forcebalance.parser.parse_inputs('test/files/very_simple.in') self.assertEqual(type(output), tuple, msg = "\nExpected parse_inputs() to return a tuple, but got a %s instead" % type(output).__name__) self.assertEqual(type(output[0]), dict, msg = "\nExpected parse_inputs()[0] to be an options dictionary, got a %s instead" % type(output).__name__) self.assertEqual(type(output[1]), list, msg = "\nExpected parse_inputs()[1] to be a target list, got a %s instead" % type(output[1]).__name__) self.assertEqual(type(output[1][0]), dict, msg = "\nExpected parse_inputs()[1][0] to be a target dictionary, got a %s instead" % type(output[1]).__name__) def test_parse_inputs_generates_default_options(self): """Check parse_inputs() without arguments generates dictionary of default options""" output = forcebalance.parser.parse_inputs() defaults = forcebalance.parser.gen_opts_defaults defaults.update({'root':os.getcwd()}) defaults.update({'input_file':None}) target_defaults = forcebalance.parser.tgt_opts_defaults self.assertEqual(output[0], defaults, msg="\nparse_inputs() target options do not match those in forcebalance.parser.gen_opts_defaults") self.assertEqual(output[1][0], target_defaults, msg="\nparse_inputs() target options do not match those in forcebalance.parser.tgt_opts_defaults") def test_parse_inputs_yields_consistent_results(self): """Check parse_inputs() gives consistent results""" output1 = forcebalance.parser.parse_inputs('test/files/very_simple.in') output2 = forcebalance.parser.parse_inputs('test/files/very_simple.in') self.assertEqual(output1,output2) os.chdir('test/files') output3 = forcebalance.parser.parse_inputs('very_simple.in') output4 = forcebalance.parser.parse_inputs('very_simple.in') self.assertEqual(output3,output4) # directory change should lead to different result in output['root'] self.assertNotEqual(output1,output3) # different parameters from the same file should yield different results shutil.copyfile('0.energy_force.in', 'test.in') output5 = forcebalance.parser.parse_inputs('test.in') shutil.copyfile('1.netforce_torque.in','test.in') output6 = forcebalance.parser.parse_inputs('test.in') self.assertNotEqual(output5,output6) os.remove('test.in') if __name__ == '__main__': unittest.main()
import json from collections import Counter def read_depparse_features(data_path): with open(data_path, "r") as f: examples = [json.loads(jsonline) for jsonline in f.readlines()] dependencies = [] predicted_heads = [] predicted_dependencies = [] for example in examples: doc_key = example['doc_key'] depparse_features = example['depparse_features'] dependency_features = [] head_features = [] predicted_dependency_features = [] for sent_feature in depparse_features: temp_dependency = [] temp_predicted_head = [] temp_predicted_dependency = [] for feature in sent_feature: word_id = feature['id'] head_id = feature['head_id'] deprel = feature['deprel'] temp_dependency.append([deprel, head_id, word_id]) temp_predicted_head.append(head_id) temp_predicted_dependency.append(deprel) dependency_features.append(temp_dependency) head_features.append(temp_predicted_head) predicted_dependency_features.append(temp_predicted_dependency) dependencies.append(dependency_features) predicted_heads.append(head_features) predicted_dependencies.append(predicted_dependency_features) print("num of examples {}".format(len(dependencies))) return dependencies, predicted_heads, predicted_dependencies def build_dep_tag_vocab(dependencies, vocab_size=1000, min_freq=0): counter = Counter() for sent_dependency in dependencies: for dependency in sent_dependency: counter.update(dependency) dep_tags = ['<pad>'] min_freq = max(min_freq, 1) words_and_frequencies = sorted(counter.items(), key=lambda tup: tup[0]) words_and_frequencies.sort(key=lambda tup: tup[1], reverse=True) for word, freq in words_and_frequencies: if freq < min_freq or len(dep_tags) == vocab_size: break if word == '<pad>': continue dep_tags.append(word) tag2id = {tag: i for i, tag in enumerate(dep_tags)} keys = list(tag2id.keys()) tags = [] for i in range(len(tag2id)): if i < 2: tags.append(keys[i]) continue key = keys[i] if key == "root": continue tags.append(key) tag2id = {tag: i for i, tag in enumerate(tags)} return dep_tags, tag2id if __name__ == '__main__': language = "english" total_dependencies = [] for name in ["train", "dev", "test"]: data_path = "conll_data/{}.{}.depparse.allennlp.jsonlines".format(name, language) dependencies, predicted_heads, predicted_dependencies = read_depparse_features(data_path) total_dependencies.extend(predicted_dependencies) dep_tags, tag2id = build_dep_tag_vocab(total_dependencies) print("dependency tag size {}".format(len(tag2id))) with open("conll_data/dep_allennlp_vocab.txt", "w") as f: for tag, id in tag2id.items(): f.write(tag + " " + str(id) + "\n")
import tkinter as tk import tkinter.ttk as ttk import Inbound import MainInventory import Outbound from Database import Database database = Database() def main(): window = tk.Tk() window.title("UNCW Football!") tab_control = ttk.Notebook(window) inventory = MainInventory.MainInventory(tab_control, database) tab_control.add(inventory.tab, text="Main Inventory") inbound = Inbound.Inbound(tab_control, database) tab_control.add(inbound.tab, text="Inbound Shipments") outbound = Outbound.Outbound(tab_control, database) tab_control.add(outbound.tab, text="Outbound Shipments") tab_control.pack(expand=1, fill="both") # # TAB2~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # tab2 = ttk.Frame((tabControl)) # tabControl.add(tab2, text="Outbound") # tabControl.pack(expand=1, fill="both") # columns = ('id', 'name', 'amount', 'shipdate', 'destination') # table = ttk.Treeview(tab2, columns=columns, show='headings') # # new_item = ttk.Button(tab2, text="Outbound", command=lambda: create_item(table)) # new_item.pack() # # table.heading('id', text='ID', anchor='w', command=lambda: sort_table(table, "id", False)) # table.column('id', anchor="w", width=50) # table.heading('name', text='Product Name', command=lambda: sort_table(table, "name", False)) # table.column('name', anchor='center', width=200) # table.heading('shipdate', text='Shipping Date', command=lambda: sort_table(table, "shipdate", False)) # table.column('shipdate', anchor='center', width=100) # table.heading('destination', text='Destination', command=lambda: sort_table(table, "destination", False)) # table.column('destination', anchor='center', width=100) # update_table(table) # table.pack() # # TAB3~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # tab3 = ttk.Frame((tabControl)) # tabControl.add(tab3, text="Inbound") # tabControl.pack(expand=1, fill="both") # columns = ('id', 'name', 'amount', 'arrivaldate','tracking') # table = ttk.Treeview(tab3, columns=columns, show='headings') # # new_item = ttk.Button(tab3, text="Inbound", command=lambda: create_item(table)) # new_item.pack() # # table.heading('id', text='ID', anchor='w', command=lambda: sort_table(table, "id", False)) # table.column('id', anchor="w", width=50) # table.heading('name', text='Product Name', command=lambda: sort_table(table, "name", False)) # table.column('name', anchor='center', width=200) # table.heading('arrivaldate', text='Arrival Date', command=lambda: sort_table(table, "arrivaldate", False)) # table.column('arrivaldate', anchor='center', width=100) # table.heading('tracking', text='Tracking Number', command=lambda: sort_table(table, "tracking", False)) # table.column('tracking', anchor='center', width=100) # update_table(table) # table.pack() # # # TAB4~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # tab4 = ttk.Frame((tabControl)) # tabControl.add(tab4, text="Users") # tabControl.pack(expand=1, fill="both") # columns = ('id', 'name', 'email', 'shift') # table = ttk.Treeview(tab4, columns=columns, show='headings') # # new_item = ttk.Button(tab4, text="New Item", command=lambda: create_item(table)) # new_item.pack() # # table.heading('id', text='ID', anchor='w', command=lambda: sort_table(table, "id", False)) # table.column('id', anchor="w", width=50) # table.heading('name', text='Employee Name', command=lambda: sort_table(table, "name", False)) # table.column('name', anchor='center', width=200) # table.heading('email', text='Email', command=lambda: sort_table(table, "email", False)) # table.column('email', anchor='center', width=100) # table.heading('shift', text='Shift', command=lambda: sort_table(table, "shift", False)) # table.column('shift', anchor='center', width=100) # update_table(table) # table.pack() window.mainloop() if __name__ == '__main__': main()
import pytest from admin.maintenance import views from django.utils import timezone from django.test import RequestFactory from django.contrib.auth.models import Permission from django.core.exceptions import PermissionDenied import website.maintenance as maintenance from osf.models import MaintenanceState from osf_tests.factories import AuthUserFactory from admin_tests.utilities import setup_view pytestmark = pytest.mark.django_db @pytest.fixture def date(): return timezone.now() @pytest.fixture() def maintenance_alert(): maintenance.set_maintenance('') return maintenance.get_maintenance() @pytest.fixture() def user(): return AuthUserFactory() @pytest.fixture() def req(user): req = RequestFactory().get('/fake_path') req.user = user return req @pytest.mark.urls('admin.base.urls') class TestMaintenanceDisplay: @pytest.fixture() def plain_view(self): return views.MaintenanceDisplay @pytest.fixture() def view(self, req, plain_view): view = plain_view() setup_view(view, req) return view def test_has_alert(self, view, maintenance_alert): data = view.get_context_data() assert data['current_alert'] def test_has_no_alert(self, view): data = view.get_context_data() assert not data.get('current_alert') def test_no_user_permissions_raises_error(self, req, plain_view): with pytest.raises(PermissionDenied): plain_view.as_view()(req) def test_correct_view_permissions(self, req, user, plain_view): view_permission = Permission.objects.get(codename='change_maintenancestate') user.user_permissions.add(view_permission) user.save() res = plain_view.as_view()(req) assert res.status_code == 200 def test_create_maintenance(self, view, req): message = 'Whooo. Its Custom!' req.POST = {'start': '2018/01/27 10:24', 'level': 1, 'message': message} view.post(req) assert MaintenanceState.objects.first().message == message @pytest.mark.urls('admin.base.urls') class TestDeleteMaintenance: @pytest.fixture() def plain_view(self): return views.DeleteMaintenance @pytest.fixture() def view(self, req, plain_view): view = plain_view() setup_view(view, req) return view def test_delete(self, view, req): res = view.delete(req) assert res.url == '/maintenance/' assert res.status_code == 302 assert MaintenanceState.objects.all().count() == 0 def test_no_user_permissions_raises_error(self, req, plain_view): with pytest.raises(PermissionDenied): plain_view.as_view()(req) def test_correct_view_permissions(self, req, user, plain_view): view_permission = Permission.objects.get(codename='delete_maintenancestate') user.user_permissions.add(view_permission) user.save() res = plain_view.as_view()(req) assert res.status_code == 200
from typing import List from flask import Response, make_response, jsonify def item_not_found(item_name: str, field_name: str, field_value: str) -> Response: return make_response( jsonify( { "error": { "code": 1, "msg": f"Could not find {item_name} with " f'{field_name}="{field_value}"', } } ), 404, ) def could_not_update(item_name: str, field_name: str, field_value: str) -> Response: return make_response( jsonify( { "error": { "code": 2, "msg": f"Could not update {item_name} for " f'"{field_name}={field_value}"', } } ), 404, ) def could_not_create(item_name: str) -> Response: return make_response( jsonify({"error": {"code": 3, "msg": f"Could not create {item_name}"}}), 400 ) def not_authorized() -> Response: return make_response( jsonify( { "error": { "code": 4, "msg": "You are not authorized to perform this operation.", } } ), 401, ) def invalid_join_token() -> Response: return make_response( jsonify({"error": {"code": 5, "msg": "The join token provided is invalid."}}), 401, ) def is_not_json() -> Response: return make_response( jsonify( { "error": { "code": 6, "msg": "The request does not contain a valid JSON body.", } } ), 400, ) def bad_body_arg() -> Response: return make_response( jsonify( { "error": { "code": 7, "msg": "Your request JSON body contains invalid data.", } } ), 400, ) def missing_json_arg(arg_missing: str) -> Response: return make_response( jsonify( { "error": { "code": 8, "msg": f"Your JSON request is missing argument: {arg_missing}.", } } ), 400, ) def invalid_body_arg(bad_arg: str) -> Response: return make_response( jsonify( { "error": { "code": 9, "msg": "Your JSON request passed an incorrect value for " f"argument {bad_arg}", } } ), 400, ) def invalid_url_arg(bad_arg: str) -> Response: return make_response( jsonify( { "error": { "code": 10, "msg": "Your GET request passed an incorrect value for " f"argument {bad_arg}", } } ), 400, ) def invalid_url_args_combination(bad_args: List[str]) -> Response: return make_response( jsonify( { "error": { "code": 11, "msg": "Your GET request passed an incorrect combination of " f"values for the arguments {bad_args}", } } ), 400, ) def missing_url_arg(missing_arg: str) -> Response: return make_response( jsonify( { "error": { "code": 12, "msg": "Your GET request is missing the URL argument " f"{missing_arg}", } } ), 400, )
from flask import Flask app = Flask(__name__) import grpc import demo_pb2 import demo_pb2_grpc @app.route('/grpc') def hello_world_grpc(): with grpc.insecure_channel('127.0.0.1:9090') as channel: client = demo_pb2_grpc.DemoServiceStub(channel) response = client.CreateOne(demo_pb2.RequestData( data="call create one from client", )) print(response.return_code, response.message, response.data) return 'Hello, World grpc!' @app.route('/') def hello_world(): return 'Hello, World!'
from services.log_service import LogService from entities.word_evaluation import WordEvaluation import os import torch import torch.nn as nn from datetime import datetime from typing import Dict, List, Tuple from overrides import overrides from entities.models.model_checkpoint import ModelCheckpoint from entities.metric import Metric from entities.batch_representation import BatchRepresentation from enums.metric_type import MetricType from services.data_service import DataService from services.arguments.arguments_service_base import ArgumentsServiceBase class ModelBase(nn.Module): def __init__( self, data_service: DataService, arguments_service: ArgumentsServiceBase, log_service: LogService): super(ModelBase, self).__init__() self._data_service = data_service self._arguments_service = arguments_service self._log_service = log_service self.do_not_save: bool = False self.metric_log_key: str = None def forward(self, batch_representation: BatchRepresentation): return None def calculate_accuracies( self, batch: BatchRepresentation, outputs, output_characters=False) -> Tuple[Dict[MetricType, float], List[str]]: return ({}, None) def compare_metric(self, best_metric: Metric, new_metric: Metric) -> bool: if best_metric.is_new: return True current_best = 0 new_result = 0 if self.metric_log_key is not None: current_best = best_metric.get_accuracy_metric(self.metric_log_key) new_result = new_metric.get_accuracy_metric(self.metric_log_key) if current_best == new_result: best_loss = best_metric.get_current_loss() current_loss = new_metric.get_current_loss() result = (best_loss > current_loss) or (not self._arguments_service.consider_equal_results_as_worse and best_loss == current_loss) else: result = current_best < new_result return result def clip_gradients(self): torch.nn.utils.clip_grad_norm_(self.parameters(), max_norm=1.0) def save( self, path: str, epoch: int, iteration: int, best_metrics: object, resets_left: int, name_prefix: str = None, save_model_dict: bool = True) -> bool: self._log_service.log_debug(f'Saving model [epoch: {epoch} | iteration: {iteration} | resets left: {resets_left}]') assert self._data_service is not None assert self._arguments_service is not None model_checkpoint = ModelCheckpoint( model_dict=self.state_dict() if save_model_dict else {}, epoch=epoch, iteration=iteration, best_metrics=best_metrics, resets_left=resets_left) checkpoint_name = self._get_model_name(name_prefix) saved = self._data_service.save_python_obj( model_checkpoint, path, checkpoint_name) return saved def load( self, path: str, name_prefix: str = None, name_suffix: str = None, load_model_dict: bool = True, use_checkpoint_name: bool = True, checkpoint_name: str = None, overwrite_args: Dict[str, object] = None) -> ModelCheckpoint: self._log_service.log_debug(f'Loading model [path: {path} | name_prefix: {name_prefix} | name_suffix: {name_suffix}]') assert self._data_service is not None assert self._arguments_service is not None if checkpoint_name is None: if not use_checkpoint_name: checkpoint_name = name_prefix else: checkpoint_name = self._arguments_service.resume_checkpoint_name if checkpoint_name is None: checkpoint_name = self._get_model_name(name_prefix, name_suffix, overwrite_args) if not self._data_service.python_obj_exists(path, checkpoint_name): error_message = f'Model checkpoint "{checkpoint_name}" not found at "{path}"' self._log_service.log_error(error_message) raise FileNotFoundError(error_message) model_checkpoint: ModelCheckpoint = self._data_service.load_python_obj( path, checkpoint_name) if model_checkpoint is None: error_message = 'Model checkpoint is empty' self._log_service.log_error(error_message) raise Exception(error_message) if load_model_dict: model_dict = model_checkpoint.model_dict for module_name, module in self.named_modules(): if isinstance(module, ModelBase): if module.do_not_save: for parameter_name, parameter_value in module.named_parameters(): model_dict[f'{module_name}.{parameter_name}'] = parameter_value module.before_load() self.load_state_dict(model_dict) for module_name, module in self.named_modules(): if isinstance(module, ModelBase): module.after_load() self._log_service.log_debug(f'Loaded model dictionary successfully') return model_checkpoint def _get_model_name(self, name_prefix: str = None, name_suffix: str = None, overwrite_args: Dict[str, object] = None) -> str: result = self._arguments_service.get_configuration_name(overwrite_args) if name_prefix is not None: result = f'{name_prefix}_{result}' if name_suffix is not None: result = f'{result}{name_suffix}' return result def on_convergence(self) -> bool: self._log_service.log_debug(f'Model converged') result = self._on_convergence(self) for _, module in self.named_modules(): result = result or self._on_convergence(module) return result def _on_convergence(self, main_module) -> bool: result = False for module_name, module in main_module.named_modules(): if module_name == '': continue if isinstance(module, ModelBase): result = result or module.on_convergence() return result @overrides def state_dict(self, destination=None, prefix='', keep_vars=False): if self.do_not_save: return None result = super().state_dict( destination=destination, prefix=prefix, keep_vars=keep_vars) return result @property def keep_frozen(self) -> bool: return False def optimizer_parameters(self): return self.parameters() def calculate_evaluation_metrics(self) -> Dict[str, float]: return {} def finalize_batch_evaluation(self, is_new_best: bool): pass def before_load(self): pass def after_load(self): pass def get_embeddings(self, tokens: List[str], vocab_ids: List[torch.Tensor], skip_unknown: bool = False) -> List[WordEvaluation]: raise NotImplementedError()
# -*- coding: utf-8 -*- """ Created on Sat Dec 4 10:38:45 2021 Advent of Code 2021 is here My goal is to attempt all challenges before the onset of 2022 @author: Rahul Venugopal """ #%% --- Day 4: Giant Squid --- Part 1 #test data number_list = ['7','4','9','5','11','17','23','2','0','14','21','24','10','16','13','6','15','25','12','22','18','20','8','19','3','26','1'] cards = [] cards.append([['22', '13', '17', '11', '0'], ['8', '2', '23', '4', '24'],['21', '9', '14', '16', '7'], ['6', '10', '3', '18', '5'], ['1', '12', '20', '15', '19']]) cards.append([['3', '15', '0', '2', '22'], ['9', '18', '13', '17', '5'],['19', '8','7','25','23'],['20', '11', '10', '24','4'],['14','21','16','12','6']]) cards.append([['14','21','17','24','4'],['10','16','15','9','19'],['18','8','23','26','20'],['22','11','13','6','5'],['2','0','12','3','7']]) # for column bingo check number_list = ['22','8','21','6','1'] #%% Load data which is in text format file = open('input.txt','r') data = file.readlines() data = [line.rstrip() for line in data] # extract the bingo name list number_string = data[0] number_list = list(number_string.split(",")) # get all the bingo cards cards = [] for card_no in range(2,601,6): cards.append(data[card_no:card_no+5]) for card_row in range(len(cards)): for card_col in range(5): cards[card_row][card_col] = cards[card_row][card_col].split() print(len(cards)) # we got 100 bingo cards import copy copy_of_cards = copy.deepcopy(cards) #%% taking first number from bingo list and checking if that number is there in every card in a loop and replacing if its a hit bingo_nos = 0 lucky_card_all = [] lucky_no_row = [] lucky_no_col = [] while bingo_nos < len(number_list): for bingo_card in range(len(cards)): take_a_card = cards[bingo_card] for rows in range(5): for columns in range(5): if take_a_card[rows][columns] == number_list[bingo_nos]: take_a_card[rows][columns] = 'X' # checking if any rows has hit bingo for looper in range(len(take_a_card)): if all(x == take_a_card[looper][0] for x in take_a_card[looper]): lucky_card_all.append(bingo_card) lucky_no_row.append(bingo_nos) # checking if any columns has hit bingo for second_looper in range(len(take_a_card)): column_card = [] for entries in range(len(take_a_card)): column_card.append([item[entries][:] for item in take_a_card]) if all(y == column_card[second_looper][0] for y in column_card[second_looper]): lucky_card_all.append(bingo_card) lucky_no_col.append(bingo_nos) cards[bingo_card] = take_a_card bingo_nos += 1 # find the min of first entries of lucky_card_row/col # that is our lucky card lucky_card = lucky_card_all[0] #index of number just called index_no_just_called = min(lucky_no_row[0], lucky_no_col[0]) # find the min of first entries of lucky_no_row/col no_just_called = number_list[index_no_just_called] #%% verifying # load cards again cards = copy_of_cards lucky_bingo_card = cards[lucky_card] bingo_nos = 0 while bingo_nos < index_no_just_called + 1: for rows in range(5): for columns in range(5): if lucky_bingo_card[rows][columns] == number_list[bingo_nos]: lucky_bingo_card[rows][columns] = 'X' bingo_nos += 1 # Replace substring in list of strings lucky_bingo_card = [[item.replace('X', '0') for item in big_item] for big_item in lucky_bingo_card] # converting all str to int int_list = [[int(x) for x in lst] for lst in lucky_bingo_card] # flatten the nested list import itertools flattened_list = list(itertools.chain(*int_list)) final_score_of_board = sum(flattened_list) * int(no_just_called) print(final_score_of_board) #%% --- Day 4: Giant Squid --- Part 2 # in previous part we were saving winning card no.s in lucky_card_all variable # getting unique entries and checking the last entry should work from collections import OrderedDict fail_card_no = list(OrderedDict.fromkeys(lucky_card_all))[-1] fail_card = copy_of_cards[fail_card_no] bingo_nos = 0 trigger = 0 while trigger != 1: for rows in range(5): for columns in range(5): if fail_card[rows][columns] == number_list[bingo_nos]: fail_card[rows][columns] = 'X' # checking if any rows has hit bingo for looper in range(len(fail_card)): if all(x == fail_card[looper][0] for x in fail_card[looper]): trigger = 1 # checking if any columns has hit bingo for second_looper in range(len(fail_card)): column_card = [] for entries in range(len(fail_card)): column_card.append([item[entries][:] for item in fail_card]) if all(y == column_card[second_looper][0] for y in column_card[second_looper]): trigger = 1 bingo_nos += 1 # getting the final bingo entry print(bingo_nos-1) last_no_in_bingo = number_list[bingo_nos-1] # Replace substring in list of strings fail_bingo_card = [[item.replace('X', '0') for item in big_item] for big_item in fail_card] # converting all str to int int_list = [[int(x) for x in lst] for lst in fail_bingo_card] # flatten the nested list import itertools flattened_list = list(itertools.chain(*int_list)) final_score_of_board_failed = sum(flattened_list) * int(last_no_in_bingo) print(final_score_of_board_failed)
import rfl.core as core import rfl.tflbridge as tflbridge import click import json class ReporterContext: def __init__(self): self._path = None self._model = None @property def path(self): return self._path @path.setter def path(self, new_path: str): self._path = new_path @property def model(self): return self._model @model.setter def model(self, new_model: core.Model): self._model = new_model class JSONReporter: def summarize_tensor(tensor: core.Tensor): return { 'shape': [int(dim) for dim in tensor.shape], 'bitwidth': { 'value': tensor.bitwidth, 'note': 'The average number of bits used to encode each element (= bit size / element count)' } } def summarize_layer(layer: core.Layer): compute_cost_report = { 'attr': { k:str(v) for (k, v) in layer.compute_cost.attr.items() }, 'expr': layer.compute_cost.expr, 'value': str(layer.compute_cost.value), } if layer.compute_cost.note is not None: compute_cost_report['note'] = layer.compute_cost.note return { 'origin': layer.origin, 'operation': layer.operation.name, 'compute_cost': compute_cost_report, 'weight': [JSONReporter.summarize_tensor(t) for t in layer.weight], } def report(self, ctx: ReporterContext): path = ctx.path model = ctx.model W = sum([l.compute_cost.value for l in model.layers]) model_input_size_in_byte = sum([i.get_size_in_byte() for i in model.inputs]) model_output_size_in_byte = sum([o.get_size_in_byte() for o in model.outputs]) model_weight_size_in_byte = sum([l.weight.get_size_in_byte() for l in model.layers]) Qmin = sum([model_input_size_in_byte, model_output_size_in_byte, model_weight_size_in_byte]) Imax = W / Qmin meta = { 'path': str(path), } summary = { 'W': { 'value': str(W), 'unit': 'OPS', 'note': 'The number of operations' }, 'Qmin': { 'value': str(Qmin), 'unit': 'B', 'note': 'The minimal number of byte transfer (Input size + Output size + Weight size)' }, 'Imax': { 'value': str(Imax), 'unit': 'OPS/B', 'note': 'W / Qmin' }, } return json.dumps({ 'meta': meta, 'summary': summary, 'detail': { 'input': [JSONReporter.summarize_tensor(i) for i in model.inputs], 'output': [JSONReporter.summarize_tensor(o) for o in model.outputs], 'layer': [JSONReporter.summarize_layer(l) for l in model.layers], } }) @click.command() @click.argument("path", type=click.Path(exists=True, dir_okay=False)) def cli(path): # TODO Check file extension and select importer core_model = tflbridge.import_file_at(path) # TODO Select reporter with command-line option reporter = JSONReporter() ctx = ReporterContext() ctx.model = core_model ctx.path = str(path) report = reporter.report(ctx) print(report) cli()
from .episodes import * # noqa from .podcasts import * # noqa from .progress import * # noqa from .playlists import * # noqa
import os, sys; sModulePath = os.path.dirname(__file__); sys.path = [sModulePath] + [sPath for sPath in sys.path if sPath.lower() != sModulePath.lower()]; from fTestDependencies import fTestDependencies; fTestDependencies(); try: # mDebugOutput use is Optional import mDebugOutput as m0DebugOutput; except ModuleNotFoundError as oException: if oException.args[0] != "No module named 'mDebugOutput'": raise; m0DebugOutput = None; guExitCodeInternalError = 1; # Use standard value; try: try: from mConsole import oConsole; except: import sys, threading; oConsoleLock = threading.Lock(); class oConsole(object): @staticmethod def fOutput(*txArguments, **dxArguments): sOutput = ""; for x in txArguments: if isinstance(x, str): sOutput += x; sPadding = dxArguments.get("sPadding"); if sPadding: sOutput.ljust(120, sPadding); oConsoleLock.acquire(); print(sOutput); sys.stdout.flush(); oConsoleLock.release(); @staticmethod def fStatus(*txArguments, **dxArguments): pass; import sys; #Import the test subject import mRegistry; # Test registry access print("* Testing Registry access...");sys.stdout.flush(); oTestRegistryValue = mRegistry.cRegistryValue( sTypeName = "SZ", xValue = "Test value", ); oRegistryHiveKeyNamedValue = mRegistry.cRegistryHiveKeyNamedValue( sHiveName = "HKCU", sKeyPath = "Software\\SkyLined\\mRegistry", sValueName = "Test value name", ); assert oRegistryHiveKeyNamedValue.sValueName == "Test value name", \ "Unexpected registry hive key value name: %s" % oRegistryHiveKeyNamedValue.sValueName; assert oRegistryHiveKeyNamedValue.sFullPath == r"HKEY_CURRENT_USER\Software\SkyLined\mRegistry\Test value name", \ "Unexpected registry hive key value path: %s" % oRegistryHiveKeyNamedValue.sFullPath; oRegistryHiveKey = oRegistryHiveKeyNamedValue.oRegistryHiveKey; assert oRegistryHiveKey.sKeyPath == "Software\\SkyLined\\mRegistry", \ "Unexpected registry hive key name: %s" % oRegistryHiveKey.sKeyPath; assert oRegistryHiveKey.sFullPath == "HKEY_CURRENT_USER\Software\SkyLined\mRegistry", \ "Unexpected registry hive key path: %s" % oRegistryHiveKey.sFullPath; oRegistryHive = oRegistryHiveKey.oRegistryHive; assert oRegistryHive.sHiveName == "HKEY_CURRENT_USER", \ "Unexpected registry hive name: %s" % (oRegistryHive.sHiveName); assert oRegistryHive.sFullPath == "HKEY_CURRENT_USER", \ "Unexpected registry hive path: %s" % (oRegistryHive.sFullPath); assert oRegistryHive == oRegistryHiveKeyNamedValue.oRegistryHive, \ "Registry hive mismatch: %s vs %s" % (oRegistryHive, oRegistryHiveKeyNamedValue.oRegistryHive); assert oRegistryHiveKeyNamedValue.foSet(oTestRegistryValue), \ "Could not set named registry value!"; assert oRegistryHiveKeyNamedValue.foGet() == oTestRegistryValue, \ "Could not get named registry value!"; assert oRegistryHiveKey.doValue_by_Name["Test value name"].xValue == oTestRegistryValue.xValue, \ "Unexpected registry value mismatch (%s vs %s)" % \ (oRegistryHiveKey.doValue_by_Name["Test value name"].xValue, oTestRegistryValue.xValue); assert oRegistryHiveKey.bExists, \ "Expected %s to exist!" % oRegistryHiveKey; o0ParentHiveKey = oRegistryHiveKey.o0ParentHiveKey; assert o0ParentHiveKey, \ "Unexpected lack of parent hive key!"; assert o0ParentHiveKey.sFullPath == r"HKEY_CURRENT_USER\Software\SkyLined", \ "Unexpected parent hive key path: %s" % o0ParentHiveKey.sFullPath; for oParentSubHiveKey in o0ParentHiveKey.aoSubKeys: if oParentSubHiveKey.sFullPath == oRegistryHiveKey.sFullPath: break; else: raise AssertionError("%s is missing from sub keys (%s)" % (oRegistryHiveKey, o0ParentHiveKey.aoSubKeys)); oSubKey = oRegistryHiveKey.foCreateSubKey("Test key name"); oSubKey2 = oRegistryHiveKey.foGetSubKey("Test key name"); assert oSubKey.sFullPath == oSubKey2.sFullPath, \ "Unexpected sub key path mismatch (%s vs %s)" % (oSubKey.sFullPath, oSubKey2.sFullPath); assert oSubKey.o0ParentHiveKey, \ "Unexpected lack of parent hive key in sub key!"; assert oSubKey.o0ParentHiveKey.sFullPath == oRegistryHiveKey.sFullPath, \ "Unexpected sub key parent path mismatch (%s vs %s)" % \ (oSubKey.o0ParentHiveKey.sFullPath, oRegistryHiveKey.sFullPath); assert oRegistryHiveKey.doSubKey_by_sName["Test key name"].sFullPath == oSubKey.sFullPath, \ "Unexpected sub key path mismatch (%s vs %s)" % \ (oRegistryHiveKey.doSubKey_by_sName["Test key name"].sFullPath, oSubKey.sFullPath); for oNamedValue in oRegistryHiveKey.aoNamedValues: if oNamedValue.sFullPath == oRegistryHiveKeyNamedValue.sFullPath: break; else: raise AssertionError("%s is missing from named values (%s)" % (oNamedValue, oRegistryHiveKey.aoNamedValues)); assert oRegistryHiveKeyNamedValue.fbDelete(), \ "Could not delete named registry value"; assert oRegistryHiveKeyNamedValue.foGet() is None, \ "Deleting named registry value failed!"; print(oRegistryHiveKey.foSetValueForName(oRegistryHiveKeyNamedValue.sValueName, oTestRegistryValue)); print(oRegistryHiveKey.foGetValueForName(oRegistryHiveKeyNamedValue.sValueName)) print(oRegistryHiveKey.fbDeleteValueForName(oRegistryHiveKeyNamedValue.sValueName)) print(oRegistryHiveKey.sFullPath); print("+ Done."); except Exception as oException: if m0DebugOutput: m0DebugOutput.fTerminateWithException(oException, guExitCodeInternalError, bShowStacksForAllThread = True); raise;
from pandas import Timestamp # Chinese holidays are quite irregular because # 1. some of the holidays are base on traditional Chinese calendar (lunisolar) # 2. the government tries very hard to arrange multi-day holidays # and is not consistent in ways of doing so. # So instead of writing rules for them, it's much cleaner to just use # all past holidays as ad hoc holidays. # # Records start from 1992. SSE was founded at the end of 1990. all_holidays = [ Timestamp('1991-01-01'), Timestamp('1991-02-15'), Timestamp('1991-02-18'), Timestamp('1991-05-01'), Timestamp('1991-10-01'), Timestamp('1991-10-02'), Timestamp('1992-01-01'), Timestamp('1992-02-04'), Timestamp('1992-02-05'), Timestamp('1992-02-06'), Timestamp('1992-05-01'), Timestamp('1992-10-01'), Timestamp('1992-10-02'), Timestamp('1993-01-01'), Timestamp('1993-01-25'), Timestamp('1993-01-26'), Timestamp('1993-10-01'), Timestamp('1994-02-07'), Timestamp('1994-02-08'), Timestamp('1994-02-09'), Timestamp('1994-02-10'), Timestamp('1994-02-11'), Timestamp('1994-05-02'), Timestamp('1994-10-03'), Timestamp('1994-10-04'), Timestamp('1995-01-02'), Timestamp('1995-01-30'), Timestamp('1995-01-31'), Timestamp('1995-02-01'), Timestamp('1995-02-02'), Timestamp('1995-02-03'), Timestamp('1995-05-01'), Timestamp('1995-10-02'), Timestamp('1995-10-03'), Timestamp('1996-01-01'), Timestamp('1996-02-19'), Timestamp('1996-02-20'), Timestamp('1996-02-21'), Timestamp('1996-02-22'), Timestamp('1996-02-23'), Timestamp('1996-02-26'), Timestamp('1996-02-27'), Timestamp('1996-02-28'), Timestamp('1996-02-29'), Timestamp('1996-03-01'), Timestamp('1996-05-01'), Timestamp('1996-09-30'), Timestamp('1996-10-01'), Timestamp('1996-10-02'), Timestamp('1997-01-01'), Timestamp('1997-02-03'), Timestamp('1997-02-04'), Timestamp('1997-02-05'), Timestamp('1997-02-06'), Timestamp('1997-02-07'), Timestamp('1997-02-10'), Timestamp('1997-02-11'), Timestamp('1997-02-12'), Timestamp('1997-02-13'), Timestamp('1997-02-14'), Timestamp('1997-05-01'), Timestamp('1997-05-02'), Timestamp('1997-06-30'), Timestamp('1997-07-01'), Timestamp('1997-10-01'), Timestamp('1997-10-02'), Timestamp('1997-10-03'), Timestamp('1998-01-01'), Timestamp('1998-01-02'), Timestamp('1998-01-26'), Timestamp('1998-01-27'), Timestamp('1998-01-28'), Timestamp('1998-01-29'), Timestamp('1998-01-30'), Timestamp('1998-02-02'), Timestamp('1998-02-03'), Timestamp('1998-02-04'), Timestamp('1998-02-05'), Timestamp('1998-02-06'), Timestamp('1998-05-01'), Timestamp('1998-10-01'), Timestamp('1998-10-02'), Timestamp('1999-01-01'), Timestamp('1999-02-10'), Timestamp('1999-02-11'), Timestamp('1999-02-12'), Timestamp('1999-02-15'), Timestamp('1999-02-16'), Timestamp('1999-02-17'), Timestamp('1999-02-18'), Timestamp('1999-02-19'), Timestamp('1999-02-22'), Timestamp('1999-02-23'), Timestamp('1999-02-24'), Timestamp('1999-02-25'), Timestamp('1999-02-26'), Timestamp('1999-05-03'), Timestamp('1999-10-01'), Timestamp('1999-10-04'), Timestamp('1999-10-05'), Timestamp('1999-10-06'), Timestamp('1999-10-07'), Timestamp('1999-12-20'), Timestamp('1999-12-31'), Timestamp('2000-01-03'), Timestamp('2000-01-31'), Timestamp('2000-02-01'), Timestamp('2000-02-02'), Timestamp('2000-02-03'), Timestamp('2000-02-04'), Timestamp('2000-02-07'), Timestamp('2000-02-08'), Timestamp('2000-02-09'), Timestamp('2000-02-10'), Timestamp('2000-02-11'), Timestamp('2000-05-01'), Timestamp('2000-05-02'), Timestamp('2000-05-03'), Timestamp('2000-05-04'), Timestamp('2000-05-05'), Timestamp('2000-10-02'), Timestamp('2000-10-03'), Timestamp('2000-10-04'), Timestamp('2000-10-05'), Timestamp('2000-10-06'), Timestamp('2001-01-01'), Timestamp('2001-01-22'), Timestamp('2001-01-23'), Timestamp('2001-01-24'), Timestamp('2001-01-25'), Timestamp('2001-01-26'), Timestamp('2001-01-29'), Timestamp('2001-01-30'), Timestamp('2001-01-31'), Timestamp('2001-02-01'), Timestamp('2001-02-02'), Timestamp('2001-05-01'), Timestamp('2001-05-02'), Timestamp('2001-05-03'), Timestamp('2001-05-04'), Timestamp('2001-05-07'), Timestamp('2001-10-01'), Timestamp('2001-10-02'), Timestamp('2001-10-03'), Timestamp('2001-10-04'), Timestamp('2001-10-05'), Timestamp('2002-01-01'), Timestamp('2002-01-02'), Timestamp('2002-01-03'), Timestamp('2002-02-11'), Timestamp('2002-02-12'), Timestamp('2002-02-13'), Timestamp('2002-02-14'), Timestamp('2002-02-15'), Timestamp('2002-02-18'), Timestamp('2002-02-19'), Timestamp('2002-02-20'), Timestamp('2002-02-21'), Timestamp('2002-02-22'), Timestamp('2002-05-01'), Timestamp('2002-05-02'), Timestamp('2002-05-03'), Timestamp('2002-05-06'), Timestamp('2002-05-07'), Timestamp('2002-09-30'), Timestamp('2002-10-01'), Timestamp('2002-10-02'), Timestamp('2002-10-03'), Timestamp('2002-10-04'), Timestamp('2002-10-07'), Timestamp('2003-01-01'), Timestamp('2003-01-30'), Timestamp('2003-01-31'), Timestamp('2003-02-03'), Timestamp('2003-02-04'), Timestamp('2003-02-05'), Timestamp('2003-02-06'), Timestamp('2003-02-07'), Timestamp('2003-05-01'), Timestamp('2003-05-02'), Timestamp('2003-05-05'), Timestamp('2003-05-06'), Timestamp('2003-05-07'), Timestamp('2003-05-08'), Timestamp('2003-05-09'), Timestamp('2003-10-01'), Timestamp('2003-10-02'), Timestamp('2003-10-03'), Timestamp('2003-10-06'), Timestamp('2003-10-07'), Timestamp('2004-01-01'), Timestamp('2004-01-19'), Timestamp('2004-01-20'), Timestamp('2004-01-21'), Timestamp('2004-01-22'), Timestamp('2004-01-23'), Timestamp('2004-01-26'), Timestamp('2004-01-27'), Timestamp('2004-01-28'), Timestamp('2004-05-03'), Timestamp('2004-05-04'), Timestamp('2004-05-05'), Timestamp('2004-05-06'), Timestamp('2004-05-07'), Timestamp('2004-10-01'), Timestamp('2004-10-04'), Timestamp('2004-10-05'), Timestamp('2004-10-06'), Timestamp('2004-10-07'), Timestamp('2005-01-03'), Timestamp('2005-02-07'), Timestamp('2005-02-08'), Timestamp('2005-02-09'), Timestamp('2005-02-10'), Timestamp('2005-02-11'), Timestamp('2005-02-14'), Timestamp('2005-02-15'), Timestamp('2005-05-02'), Timestamp('2005-05-03'), Timestamp('2005-05-04'), Timestamp('2005-05-05'), Timestamp('2005-05-06'), Timestamp('2005-10-03'), Timestamp('2005-10-04'), Timestamp('2005-10-05'), Timestamp('2005-10-06'), Timestamp('2005-10-07'), Timestamp('2006-01-02'), Timestamp('2006-01-03'), Timestamp('2006-01-26'), Timestamp('2006-01-27'), Timestamp('2006-01-30'), Timestamp('2006-01-31'), Timestamp('2006-02-01'), Timestamp('2006-02-02'), Timestamp('2006-02-03'), Timestamp('2006-05-01'), Timestamp('2006-05-02'), Timestamp('2006-05-03'), Timestamp('2006-05-04'), Timestamp('2006-05-05'), Timestamp('2006-10-02'), Timestamp('2006-10-03'), Timestamp('2006-10-04'), Timestamp('2006-10-05'), Timestamp('2006-10-06'), Timestamp('2007-01-01'), Timestamp('2007-01-02'), Timestamp('2007-01-03'), Timestamp('2007-02-19'), Timestamp('2007-02-20'), Timestamp('2007-02-21'), Timestamp('2007-02-22'), Timestamp('2007-02-23'), Timestamp('2007-05-01'), Timestamp('2007-05-02'), Timestamp('2007-05-03'), Timestamp('2007-05-04'), Timestamp('2007-05-07'), Timestamp('2007-10-01'), Timestamp('2007-10-02'), Timestamp('2007-10-03'), Timestamp('2007-10-04'), Timestamp('2007-10-05'), Timestamp('2007-12-31'), Timestamp('2008-01-01'), Timestamp('2008-02-06'), Timestamp('2008-02-07'), Timestamp('2008-02-08'), Timestamp('2008-02-11'), Timestamp('2008-02-12'), Timestamp('2008-04-04'), Timestamp('2008-05-01'), Timestamp('2008-05-02'), Timestamp('2008-06-09'), Timestamp('2008-09-15'), Timestamp('2008-09-29'), Timestamp('2008-09-30'), Timestamp('2008-10-01'), Timestamp('2008-10-02'), Timestamp('2008-10-03'), Timestamp('2009-01-01'), Timestamp('2009-01-02'), Timestamp('2009-01-26'), Timestamp('2009-01-27'), Timestamp('2009-01-28'), Timestamp('2009-01-29'), Timestamp('2009-01-30'), Timestamp('2009-04-06'), Timestamp('2009-05-01'), Timestamp('2009-05-28'), Timestamp('2009-05-29'), Timestamp('2009-10-01'), Timestamp('2009-10-02'), Timestamp('2009-10-05'), Timestamp('2009-10-06'), Timestamp('2009-10-07'), Timestamp('2009-10-08'), Timestamp('2010-01-01'), Timestamp('2010-02-15'), Timestamp('2010-02-16'), Timestamp('2010-02-17'), Timestamp('2010-02-18'), Timestamp('2010-02-19'), Timestamp('2010-04-05'), Timestamp('2010-05-03'), Timestamp('2010-06-14'), Timestamp('2010-06-15'), Timestamp('2010-06-16'), Timestamp('2010-09-22'), Timestamp('2010-09-23'), Timestamp('2010-09-24'), Timestamp('2010-10-01'), Timestamp('2010-10-04'), Timestamp('2010-10-05'), Timestamp('2010-10-06'), Timestamp('2010-10-07'), Timestamp('2011-01-03'), Timestamp('2011-02-02'), Timestamp('2011-02-03'), Timestamp('2011-02-04'), Timestamp('2011-02-07'), Timestamp('2011-02-08'), Timestamp('2011-04-04'), Timestamp('2011-04-05'), Timestamp('2011-05-02'), Timestamp('2011-06-06'), Timestamp('2011-09-12'), Timestamp('2011-10-03'), Timestamp('2011-10-04'), Timestamp('2011-10-05'), Timestamp('2011-10-06'), Timestamp('2011-10-07'), Timestamp('2012-01-02'), Timestamp('2012-01-03'), Timestamp('2012-01-23'), Timestamp('2012-01-24'), Timestamp('2012-01-25'), Timestamp('2012-01-26'), Timestamp('2012-01-27'), Timestamp('2012-04-02'), Timestamp('2012-04-03'), Timestamp('2012-04-04'), Timestamp('2012-04-30'), Timestamp('2012-05-01'), Timestamp('2012-06-22'), Timestamp('2012-10-01'), Timestamp('2012-10-02'), Timestamp('2012-10-03'), Timestamp('2012-10-04'), Timestamp('2012-10-05'), Timestamp('2013-01-01'), Timestamp('2013-01-02'), Timestamp('2013-01-03'), Timestamp('2013-02-11'), Timestamp('2013-02-12'), Timestamp('2013-02-13'), Timestamp('2013-02-14'), Timestamp('2013-02-15'), Timestamp('2013-04-04'), Timestamp('2013-04-05'), Timestamp('2013-04-29'), Timestamp('2013-04-30'), Timestamp('2013-05-01'), Timestamp('2013-06-10'), Timestamp('2013-06-11'), Timestamp('2013-06-12'), Timestamp('2013-09-19'), Timestamp('2013-09-20'), Timestamp('2013-10-01'), Timestamp('2013-10-02'), Timestamp('2013-10-03'), Timestamp('2013-10-04'), Timestamp('2013-10-07'), Timestamp('2014-01-01'), Timestamp('2014-01-31'), Timestamp('2014-02-03'), Timestamp('2014-02-04'), Timestamp('2014-02-05'), Timestamp('2014-02-06'), Timestamp('2014-04-07'), Timestamp('2014-05-01'), Timestamp('2014-05-02'), Timestamp('2014-06-02'), Timestamp('2014-09-08'), Timestamp('2014-10-01'), Timestamp('2014-10-02'), Timestamp('2014-10-03'), Timestamp('2014-10-06'), Timestamp('2014-10-07'), Timestamp('2015-01-01'), Timestamp('2015-01-02'), Timestamp('2015-02-18'), Timestamp('2015-02-19'), Timestamp('2015-02-20'), Timestamp('2015-02-23'), Timestamp('2015-02-24'), Timestamp('2015-04-06'), Timestamp('2015-05-01'), Timestamp('2015-09-03'), Timestamp('2015-09-04'), Timestamp('2015-10-01'), Timestamp('2015-10-02'), Timestamp('2015-10-05'), Timestamp('2015-10-06'), Timestamp('2015-10-07'), Timestamp('2016-01-01'), Timestamp('2016-02-08'), Timestamp('2016-02-09'), Timestamp('2016-02-10'), Timestamp('2016-02-11'), Timestamp('2016-02-12'), Timestamp('2016-04-04'), Timestamp('2016-05-02'), Timestamp('2016-06-09'), Timestamp('2016-06-10'), Timestamp('2016-09-15'), Timestamp('2016-09-16'), Timestamp('2016-10-03'), Timestamp('2016-10-04'), Timestamp('2016-10-05'), Timestamp('2016-10-06'), Timestamp('2016-10-07'), Timestamp('2017-01-02'), Timestamp('2017-01-27'), Timestamp('2017-01-30'), Timestamp('2017-01-31'), Timestamp('2017-02-01'), Timestamp('2017-02-02'), Timestamp('2017-04-03'), Timestamp('2017-04-04'), Timestamp('2017-05-01'), Timestamp('2017-05-29'), Timestamp('2017-05-30'), Timestamp('2017-10-02'), Timestamp('2017-10-03'), Timestamp('2017-10-04'), Timestamp('2017-10-05'), Timestamp('2017-10-06'), Timestamp('2018-01-01'), Timestamp('2018-02-15'), Timestamp('2018-02-16'), Timestamp('2018-02-19'), Timestamp('2018-02-20'), Timestamp('2018-02-21'), Timestamp('2018-04-05'), Timestamp('2018-04-06'), Timestamp('2018-04-30'), Timestamp('2018-05-01'), Timestamp('2018-06-18'), Timestamp('2018-09-24'), Timestamp('2018-10-01'), Timestamp('2018-10-02'), Timestamp('2018-10-03'), Timestamp('2018-10-04'), Timestamp('2018-10-05'), Timestamp('2018-12-30'), Timestamp('2018-12-31'), Timestamp('2019-01-01'), Timestamp('2019-02-04'), Timestamp('2019-02-05'), Timestamp('2019-02-06'), Timestamp('2019-02-07'), Timestamp('2019-02-08'), Timestamp('2019-02-09'), Timestamp('2019-02-10'), Timestamp('2019-04-05'), Timestamp('2019-05-01'), Timestamp('2019-05-02'), Timestamp('2019-05-03'), Timestamp('2019-06-07'), Timestamp('2019-09-13'), Timestamp('2019-10-01'), Timestamp('2019-10-02'), Timestamp('2019-10-03'), Timestamp('2019-10-04'), Timestamp('2019-10-05'), Timestamp('2019-10-06'), Timestamp('2019-10-07'), ] # The following holidays are based on Solar terms or Chinese lunisolar calendar, # so pre-calculated mappings to Gregorian calendar are kept here from 2019-2099 # Spring Festival sf_mapping = { 1960: Timestamp('1960-01-28'), 1961: Timestamp('1961-02-15'), 1962: Timestamp('1962-02-05'), 1963: Timestamp('1963-01-25'), 1964: Timestamp('1964-02-13'), 1965: Timestamp('1965-02-02'), 1966: Timestamp('1966-01-21'), 1967: Timestamp('1967-02-09'), 1968: Timestamp('1968-01-30'), 1969: Timestamp('1969-02-17'), 1970: Timestamp('1970-02-06'), 1971: Timestamp('1971-01-27'), 1972: Timestamp('1972-02-15'), 1973: Timestamp('1973-02-03'), 1974: Timestamp('1974-01-23'), 1975: Timestamp('1975-02-11'), 1976: Timestamp('1976-01-31'), 1977: Timestamp('1977-02-18'), 1978: Timestamp('1978-02-07'), 1979: Timestamp('1979-01-28'), 1980: Timestamp('1980-02-16'), 1981: Timestamp('1981-02-05'), 1982: Timestamp('1982-01-25'), 1983: Timestamp('1983-02-13'), 1984: Timestamp('1984-02-02'), 1985: Timestamp('1985-02-20'), 1986: Timestamp('1986-02-09'), 1987: Timestamp('1987-01-29'), 1988: Timestamp('1988-02-17'), 1989: Timestamp('1989-02-06'), 1990: Timestamp('1990-01-27'), 1991: Timestamp('1991-02-15'), 1992: Timestamp('1992-02-04'), 1993: Timestamp('1993-01-23'), 1994: Timestamp('1994-02-10'), 1995: Timestamp('1995-01-31'), 1996: Timestamp('1996-02-19'), 1997: Timestamp('1997-02-07'), 1998: Timestamp('1998-01-28'), 1999: Timestamp('1999-02-16'), 2000: Timestamp('2000-02-05'), 2001: Timestamp('2001-01-24'), 2002: Timestamp('2002-02-12'), 2003: Timestamp('2003-02-01'), 2004: Timestamp('2004-01-22'), 2005: Timestamp('2005-02-09'), 2006: Timestamp('2006-01-29'), 2007: Timestamp('2007-02-18'), 2008: Timestamp('2008-02-07'), 2009: Timestamp('2009-01-26'), 2010: Timestamp('2010-02-14'), 2011: Timestamp('2011-02-03'), 2012: Timestamp('2012-01-23'), 2013: Timestamp('2013-02-10'), 2014: Timestamp('2014-01-31'), 2015: Timestamp('2015-02-19'), 2016: Timestamp('2016-02-08'), 2017: Timestamp('2017-01-28'), 2018: Timestamp('2018-02-16'), 2019: Timestamp('2019-02-05'), 2020: Timestamp('2020-01-25'), 2021: Timestamp('2021-02-12'), 2022: Timestamp('2022-02-01'), 2023: Timestamp('2023-01-22'), 2024: Timestamp('2024-02-10'), 2025: Timestamp('2025-01-29'), 2026: Timestamp('2026-02-17'), 2027: Timestamp('2027-02-06'), 2028: Timestamp('2028-01-26'), 2029: Timestamp('2029-02-13'), 2030: Timestamp('2030-02-03'), 2031: Timestamp('2031-01-23'), 2032: Timestamp('2032-02-11'), 2033: Timestamp('2033-01-31'), 2034: Timestamp('2034-02-19'), 2035: Timestamp('2035-02-08'), 2036: Timestamp('2036-01-28'), 2037: Timestamp('2037-02-15'), 2038: Timestamp('2038-02-04'), 2039: Timestamp('2039-01-24'), 2040: Timestamp('2040-02-12'), 2041: Timestamp('2041-02-01'), 2042: Timestamp('2042-01-22'), 2043: Timestamp('2043-02-10'), 2044: Timestamp('2044-01-30'), 2045: Timestamp('2045-02-17'), 2046: Timestamp('2046-02-06'), 2047: Timestamp('2047-01-26'), 2048: Timestamp('2048-02-14'), 2049: Timestamp('2049-02-02'), 2050: Timestamp('2050-01-23'), 2051: Timestamp('2051-02-11'), 2052: Timestamp('2052-02-01'), 2053: Timestamp('2053-02-19'), 2054: Timestamp('2054-02-08'), 2055: Timestamp('2055-01-28'), 2056: Timestamp('2056-02-15'), 2057: Timestamp('2057-02-04'), 2058: Timestamp('2058-01-24'), 2059: Timestamp('2059-02-12'), 2060: Timestamp('2060-02-02'), 2061: Timestamp('2061-01-21'), 2062: Timestamp('2062-02-09'), 2063: Timestamp('2063-01-29'), 2064: Timestamp('2064-02-17'), 2065: Timestamp('2065-02-05'), 2066: Timestamp('2066-01-26'), 2067: Timestamp('2067-02-14'), 2068: Timestamp('2068-02-03'), 2069: Timestamp('2069-01-23'), 2070: Timestamp('2070-02-11'), 2071: Timestamp('2071-01-31'), 2072: Timestamp('2072-02-19'), 2073: Timestamp('2073-02-07'), 2074: Timestamp('2074-01-27'), 2075: Timestamp('2075-02-15'), 2076: Timestamp('2076-02-05'), 2077: Timestamp('2077-01-24'), 2078: Timestamp('2078-02-12'), 2079: Timestamp('2079-02-02'), 2080: Timestamp('2080-01-22'), 2081: Timestamp('2081-02-09'), 2082: Timestamp('2082-01-29'), 2083: Timestamp('2083-02-17'), 2084: Timestamp('2084-02-06'), 2085: Timestamp('2085-01-26'), 2086: Timestamp('2086-02-14'), 2087: Timestamp('2087-02-03'), 2088: Timestamp('2088-01-24'), 2089: Timestamp('2089-02-10'), 2090: Timestamp('2090-01-30'), 2091: Timestamp('2091-02-18'), 2092: Timestamp('2092-02-07'), 2093: Timestamp('2093-01-27'), 2094: Timestamp('2094-02-15'), 2095: Timestamp('2095-02-05'), 2096: Timestamp('2096-01-25'), 2097: Timestamp('2097-02-12'), 2098: Timestamp('2098-02-01'), 2099: Timestamp('2099-01-21'), } # Tomb-sweeping Day, "Qingming" tsd_mapping = { 1960: Timestamp('1960-04-05'), 1961: Timestamp('1961-04-05'), 1962: Timestamp('1962-04-05'), 1963: Timestamp('1963-04-05'), 1964: Timestamp('1964-04-05'), 1965: Timestamp('1965-04-05'), 1966: Timestamp('1966-04-05'), 1967: Timestamp('1967-04-05'), 1968: Timestamp('1968-04-05'), 1969: Timestamp('1969-04-05'), 1970: Timestamp('1970-04-05'), 1971: Timestamp('1971-04-05'), 1972: Timestamp('1972-04-05'), 1973: Timestamp('1973-04-05'), 1974: Timestamp('1974-04-05'), 1975: Timestamp('1975-04-05'), 1976: Timestamp('1976-04-04'), 1977: Timestamp('1977-04-05'), 1978: Timestamp('1978-04-05'), 1979: Timestamp('1979-04-05'), 1980: Timestamp('1980-04-04'), 1981: Timestamp('1981-04-05'), 1982: Timestamp('1982-04-05'), 1983: Timestamp('1983-04-05'), 1984: Timestamp('1984-04-04'), 1985: Timestamp('1985-04-05'), 1986: Timestamp('1986-04-05'), 1987: Timestamp('1987-04-05'), 1988: Timestamp('1988-04-04'), 1989: Timestamp('1989-04-05'), 1990: Timestamp('1990-04-05'), 1991: Timestamp('1991-04-05'), 1992: Timestamp('1992-04-04'), 1993: Timestamp('1993-04-05'), 1994: Timestamp('1994-04-05'), 1995: Timestamp('1995-04-05'), 1996: Timestamp('1996-04-04'), 1997: Timestamp('1997-04-05'), 1998: Timestamp('1998-04-05'), 1999: Timestamp('1999-04-05'), 2000: Timestamp('2000-04-04'), 2001: Timestamp('2001-04-05'), 2002: Timestamp('2002-04-05'), 2003: Timestamp('2003-04-05'), 2004: Timestamp('2004-04-04'), 2005: Timestamp('2005-04-05'), 2006: Timestamp('2006-04-05'), 2007: Timestamp('2007-04-05'), 2008: Timestamp('2008-04-04'), 2009: Timestamp('2009-04-04'), 2010: Timestamp('2010-04-05'), 2011: Timestamp('2011-04-05'), 2012: Timestamp('2012-04-04'), 2013: Timestamp('2013-04-04'), 2014: Timestamp('2014-04-05'), 2015: Timestamp('2015-04-05'), 2016: Timestamp('2016-04-04'), 2017: Timestamp('2017-04-04'), 2018: Timestamp('2018-04-05'), 2019: Timestamp('2019-04-05'), 2020: Timestamp('2020-04-04'), 2021: Timestamp('2021-04-04'), 2022: Timestamp('2022-04-05'), 2023: Timestamp('2023-04-05'), 2024: Timestamp('2024-04-04'), 2025: Timestamp('2025-04-04'), 2026: Timestamp('2026-04-05'), 2027: Timestamp('2027-04-05'), 2028: Timestamp('2028-04-04'), 2029: Timestamp('2029-04-04'), 2030: Timestamp('2030-04-05'), 2031: Timestamp('2031-04-05'), 2032: Timestamp('2032-04-04'), 2033: Timestamp('2033-04-04'), 2034: Timestamp('2034-04-05'), 2035: Timestamp('2035-04-05'), 2036: Timestamp('2036-04-04'), 2037: Timestamp('2037-04-04'), 2038: Timestamp('2038-04-05'), 2039: Timestamp('2039-04-05'), 2040: Timestamp('2040-04-04'), 2041: Timestamp('2041-04-04'), 2042: Timestamp('2042-04-04'), 2043: Timestamp('2043-04-05'), 2044: Timestamp('2044-04-04'), 2045: Timestamp('2045-04-04'), 2046: Timestamp('2046-04-04'), 2047: Timestamp('2047-04-05'), 2048: Timestamp('2048-04-04'), 2049: Timestamp('2049-04-04'), 2050: Timestamp('2050-04-04'), 2051: Timestamp('2051-04-05'), 2052: Timestamp('2052-04-04'), 2053: Timestamp('2053-04-04'), 2054: Timestamp('2054-04-04'), 2055: Timestamp('2055-04-05'), 2056: Timestamp('2056-04-04'), 2057: Timestamp('2057-04-04'), 2058: Timestamp('2058-04-04'), 2059: Timestamp('2059-04-05'), 2060: Timestamp('2060-04-04'), 2061: Timestamp('2061-04-04'), 2062: Timestamp('2062-04-04'), 2063: Timestamp('2063-04-05'), 2064: Timestamp('2064-04-04'), 2065: Timestamp('2065-04-04'), 2066: Timestamp('2066-04-04'), 2067: Timestamp('2067-04-05'), 2068: Timestamp('2068-04-04'), 2069: Timestamp('2069-04-04'), 2070: Timestamp('2070-04-04'), 2071: Timestamp('2071-04-05'), 2072: Timestamp('2072-04-04'), 2073: Timestamp('2073-04-04'), 2074: Timestamp('2074-04-04'), 2075: Timestamp('2075-04-04'), 2076: Timestamp('2076-04-04'), 2077: Timestamp('2077-04-04'), 2078: Timestamp('2078-04-04'), 2079: Timestamp('2079-04-04'), 2080: Timestamp('2080-04-04'), 2081: Timestamp('2081-04-04'), 2082: Timestamp('2082-04-04'), 2083: Timestamp('2083-04-04'), 2084: Timestamp('2084-04-04'), 2085: Timestamp('2085-04-04'), 2086: Timestamp('2086-04-04'), 2087: Timestamp('2087-04-04'), 2088: Timestamp('2088-04-04'), 2089: Timestamp('2089-04-04'), 2090: Timestamp('2090-04-04'), 2091: Timestamp('2091-04-04'), 2092: Timestamp('2092-04-04'), 2093: Timestamp('2093-04-04'), 2094: Timestamp('2094-04-04'), 2095: Timestamp('2095-04-04'), 2096: Timestamp('2096-04-04'), 2097: Timestamp('2097-04-04'), 2098: Timestamp('2098-04-04'), 2099: Timestamp('2099-04-04'), } # Dragon Boat Festival, "Duanwu" dbf_mapping = { 1960: Timestamp('1960-05-29'), 1961: Timestamp('1961-06-17'), 1962: Timestamp('1962-06-06'), 1963: Timestamp('1963-06-25'), 1964: Timestamp('1964-06-14'), 1965: Timestamp('1965-06-04'), 1966: Timestamp('1966-06-23'), 1967: Timestamp('1967-06-12'), 1968: Timestamp('1968-05-31'), 1969: Timestamp('1969-06-19'), 1970: Timestamp('1970-06-08'), 1971: Timestamp('1971-05-28'), 1972: Timestamp('1972-06-15'), 1973: Timestamp('1973-06-05'), 1974: Timestamp('1974-06-24'), 1975: Timestamp('1975-06-14'), 1976: Timestamp('1976-06-02'), 1977: Timestamp('1977-06-21'), 1978: Timestamp('1978-06-10'), 1979: Timestamp('1979-05-30'), 1980: Timestamp('1980-06-17'), 1981: Timestamp('1981-06-06'), 1982: Timestamp('1982-06-25'), 1983: Timestamp('1983-06-15'), 1984: Timestamp('1984-06-04'), 1985: Timestamp('1985-06-22'), 1986: Timestamp('1986-06-11'), 1987: Timestamp('1987-05-31'), 1988: Timestamp('1988-06-18'), 1989: Timestamp('1989-06-08'), 1990: Timestamp('1990-05-28'), 1991: Timestamp('1991-06-16'), 1992: Timestamp('1992-06-05'), 1993: Timestamp('1993-06-24'), 1994: Timestamp('1994-06-13'), 1995: Timestamp('1995-06-02'), 1996: Timestamp('1996-06-20'), 1997: Timestamp('1997-06-09'), 1998: Timestamp('1998-05-30'), 1999: Timestamp('1999-06-18'), 2000: Timestamp('2000-06-06'), 2001: Timestamp('2001-06-25'), 2002: Timestamp('2002-06-15'), 2003: Timestamp('2003-06-04'), 2004: Timestamp('2004-06-22'), 2005: Timestamp('2005-06-11'), 2006: Timestamp('2006-05-31'), 2007: Timestamp('2007-06-19'), 2008: Timestamp('2008-06-08'), 2009: Timestamp('2009-05-28'), 2010: Timestamp('2010-06-16'), 2011: Timestamp('2011-06-06'), 2012: Timestamp('2012-06-23'), 2013: Timestamp('2013-06-12'), 2014: Timestamp('2014-06-02'), 2015: Timestamp('2015-06-20'), 2016: Timestamp('2016-06-09'), 2017: Timestamp('2017-05-30'), 2018: Timestamp('2018-06-18'), 2019: Timestamp('2019-06-07'), 2020: Timestamp('2020-06-25'), 2021: Timestamp('2021-06-14'), 2022: Timestamp('2022-06-03'), 2023: Timestamp('2023-06-22'), 2024: Timestamp('2024-06-10'), 2025: Timestamp('2025-05-31'), 2026: Timestamp('2026-06-19'), 2027: Timestamp('2027-06-09'), 2028: Timestamp('2028-05-28'), 2029: Timestamp('2029-06-16'), 2030: Timestamp('2030-06-05'), 2031: Timestamp('2031-06-24'), 2032: Timestamp('2032-06-12'), 2033: Timestamp('2033-06-01'), 2034: Timestamp('2034-06-20'), 2035: Timestamp('2035-06-10'), 2036: Timestamp('2036-05-30'), 2037: Timestamp('2037-06-18'), 2038: Timestamp('2038-06-07'), 2039: Timestamp('2039-05-27'), 2040: Timestamp('2040-06-14'), 2041: Timestamp('2041-06-03'), 2042: Timestamp('2042-06-22'), 2043: Timestamp('2043-06-11'), 2044: Timestamp('2044-05-31'), 2045: Timestamp('2045-06-19'), 2046: Timestamp('2046-06-08'), 2047: Timestamp('2047-05-29'), 2048: Timestamp('2048-06-15'), 2049: Timestamp('2049-06-04'), 2050: Timestamp('2050-06-23'), 2051: Timestamp('2051-06-13'), 2052: Timestamp('2052-06-01'), 2053: Timestamp('2053-06-20'), 2054: Timestamp('2054-06-10'), 2055: Timestamp('2055-05-30'), 2056: Timestamp('2056-06-17'), 2057: Timestamp('2057-06-06'), 2058: Timestamp('2058-06-25'), 2059: Timestamp('2059-06-14'), 2060: Timestamp('2060-06-03'), 2061: Timestamp('2061-06-22'), 2062: Timestamp('2062-06-11'), 2063: Timestamp('2063-06-01'), 2064: Timestamp('2064-06-19'), 2065: Timestamp('2065-06-08'), 2066: Timestamp('2066-05-28'), 2067: Timestamp('2067-06-16'), 2068: Timestamp('2068-06-04'), 2069: Timestamp('2069-06-23'), 2070: Timestamp('2070-06-13'), 2071: Timestamp('2071-06-02'), 2072: Timestamp('2072-06-20'), 2073: Timestamp('2073-06-10'), 2074: Timestamp('2074-05-30'), 2075: Timestamp('2075-06-17'), 2076: Timestamp('2076-06-06'), 2077: Timestamp('2077-06-24'), 2078: Timestamp('2078-06-14'), 2079: Timestamp('2079-06-04'), 2080: Timestamp('2080-06-22'), 2081: Timestamp('2081-06-11'), 2082: Timestamp('2082-06-01'), 2083: Timestamp('2083-06-19'), 2084: Timestamp('2084-06-07'), 2085: Timestamp('2085-05-27'), 2086: Timestamp('2086-06-15'), 2087: Timestamp('2087-06-05'), 2088: Timestamp('2088-06-23'), 2089: Timestamp('2089-06-13'), 2090: Timestamp('2090-06-02'), 2091: Timestamp('2091-06-21'), 2092: Timestamp('2092-06-09'), 2093: Timestamp('2093-05-29'), 2094: Timestamp('2094-06-17'), 2095: Timestamp('2095-06-06'), 2096: Timestamp('2096-06-24'), 2097: Timestamp('2097-06-14'), 2098: Timestamp('2098-06-04'), 2099: Timestamp('2099-06-23'), } # Mid-autumn Festival, "Zhongqiu" maf_mapping = { 1960: Timestamp('1960-10-05'), 1961: Timestamp('1961-09-24'), 1962: Timestamp('1962-09-13'), 1963: Timestamp('1963-10-02'), 1964: Timestamp('1964-09-20'), 1965: Timestamp('1965-09-10'), 1966: Timestamp('1966-09-29'), 1967: Timestamp('1967-09-18'), 1968: Timestamp('1968-10-06'), 1969: Timestamp('1969-09-26'), 1970: Timestamp('1970-09-15'), 1971: Timestamp('1971-10-03'), 1972: Timestamp('1972-09-22'), 1973: Timestamp('1973-09-11'), 1974: Timestamp('1974-09-30'), 1975: Timestamp('1975-09-20'), 1976: Timestamp('1976-09-08'), 1977: Timestamp('1977-09-27'), 1978: Timestamp('1978-09-17'), 1979: Timestamp('1979-10-05'), 1980: Timestamp('1980-09-23'), 1981: Timestamp('1981-09-12'), 1982: Timestamp('1982-10-01'), 1983: Timestamp('1983-09-21'), 1984: Timestamp('1984-09-10'), 1985: Timestamp('1985-09-29'), 1986: Timestamp('1986-09-18'), 1987: Timestamp('1987-10-07'), 1988: Timestamp('1988-09-25'), 1989: Timestamp('1989-09-14'), 1990: Timestamp('1990-10-03'), 1991: Timestamp('1991-09-22'), 1992: Timestamp('1992-09-11'), 1993: Timestamp('1993-09-30'), 1994: Timestamp('1994-09-20'), 1995: Timestamp('1995-09-09'), 1996: Timestamp('1996-09-27'), 1997: Timestamp('1997-09-16'), 1998: Timestamp('1998-10-05'), 1999: Timestamp('1999-09-24'), 2000: Timestamp('2000-09-12'), 2001: Timestamp('2001-10-01'), 2002: Timestamp('2002-09-21'), 2003: Timestamp('2003-09-11'), 2004: Timestamp('2004-09-28'), 2005: Timestamp('2005-09-18'), 2006: Timestamp('2006-10-06'), 2007: Timestamp('2007-09-25'), 2008: Timestamp('2008-09-14'), 2009: Timestamp('2009-10-03'), 2010: Timestamp('2010-09-22'), 2011: Timestamp('2011-09-12'), 2012: Timestamp('2012-09-30'), 2013: Timestamp('2013-09-19'), 2014: Timestamp('2014-09-08'), 2015: Timestamp('2015-09-27'), 2016: Timestamp('2016-09-15'), 2017: Timestamp('2017-10-04'), 2018: Timestamp('2018-09-24'), 2019: Timestamp('2019-09-13'), 2020: Timestamp('2020-10-01'), 2021: Timestamp('2021-09-21'), 2022: Timestamp('2022-09-10'), 2023: Timestamp('2023-09-29'), 2024: Timestamp('2024-09-17'), 2025: Timestamp('2025-10-06'), 2026: Timestamp('2026-09-25'), 2027: Timestamp('2027-09-15'), 2028: Timestamp('2028-10-03'), 2029: Timestamp('2029-09-22'), 2030: Timestamp('2030-09-12'), 2031: Timestamp('2031-10-01'), 2032: Timestamp('2032-09-19'), 2033: Timestamp('2033-09-08'), 2034: Timestamp('2034-09-27'), 2035: Timestamp('2035-09-16'), 2036: Timestamp('2036-10-04'), 2037: Timestamp('2037-09-24'), 2038: Timestamp('2038-09-13'), 2039: Timestamp('2039-10-02'), 2040: Timestamp('2040-09-20'), 2041: Timestamp('2041-09-10'), 2042: Timestamp('2042-09-28'), 2043: Timestamp('2043-09-17'), 2044: Timestamp('2044-10-05'), 2045: Timestamp('2045-09-25'), 2046: Timestamp('2046-09-15'), 2047: Timestamp('2047-10-04'), 2048: Timestamp('2048-09-22'), 2049: Timestamp('2049-09-11'), 2050: Timestamp('2050-09-30'), 2051: Timestamp('2051-09-19'), 2052: Timestamp('2052-09-07'), 2053: Timestamp('2053-09-26'), 2054: Timestamp('2054-09-16'), 2055: Timestamp('2055-10-05'), 2056: Timestamp('2056-09-24'), 2057: Timestamp('2057-09-13'), 2058: Timestamp('2058-10-02'), 2059: Timestamp('2059-09-21'), 2060: Timestamp('2060-09-09'), 2061: Timestamp('2061-09-28'), 2062: Timestamp('2062-09-17'), 2063: Timestamp('2063-10-06'), 2064: Timestamp('2064-09-25'), 2065: Timestamp('2065-09-15'), 2066: Timestamp('2066-10-03'), 2067: Timestamp('2067-09-23'), 2068: Timestamp('2068-09-11'), 2069: Timestamp('2069-09-29'), 2070: Timestamp('2070-09-19'), 2071: Timestamp('2071-09-08'), 2072: Timestamp('2072-09-26'), 2073: Timestamp('2073-09-16'), 2074: Timestamp('2074-10-05'), 2075: Timestamp('2075-09-24'), 2076: Timestamp('2076-09-12'), 2077: Timestamp('2077-10-01'), 2078: Timestamp('2078-09-20'), 2079: Timestamp('2079-09-10'), 2080: Timestamp('2080-09-28'), 2081: Timestamp('2081-09-17'), 2082: Timestamp('2082-10-06'), 2083: Timestamp('2083-09-26'), 2084: Timestamp('2084-09-14'), 2085: Timestamp('2085-10-03'), 2086: Timestamp('2086-09-22'), 2087: Timestamp('2087-09-11'), 2088: Timestamp('2088-09-29'), 2089: Timestamp('2089-09-18'), 2090: Timestamp('2090-09-08'), 2091: Timestamp('2091-09-27'), 2092: Timestamp('2092-09-16'), 2093: Timestamp('2093-10-05'), 2094: Timestamp('2094-09-24'), 2095: Timestamp('2095-09-13'), 2096: Timestamp('2096-09-30'), 2097: Timestamp('2097-09-20'), 2098: Timestamp('2098-09-09'), 2099: Timestamp('2099-09-29'), } # Buddha Shakyamuni day bsd_mapping = { 1959: Timestamp('1959-5-15'), 1960: Timestamp('1960-5-3'), 1961: Timestamp('1961-5-22'), 1962: Timestamp('1962-5-11'), 1963: Timestamp('1963-5-1'), 1964: Timestamp('1964-5-19'), 1965: Timestamp('1965-5-8'), 1966: Timestamp('1966-5-27'), 1967: Timestamp('1967-5-16'), 1968: Timestamp('1968-5-4'), 1969: Timestamp('1969-5-23'), 1970: Timestamp('1970-5-12'), 1971: Timestamp('1971-5-2'), 1972: Timestamp('1972-5-20'), 1973: Timestamp('1973-5-10'), 1974: Timestamp('1974-4-29'), 1975: Timestamp('1975-5-18'), 1976: Timestamp('1976-5-6'), 1977: Timestamp('1977-5-25'), 1978: Timestamp('1978-5-14'), 1979: Timestamp('1979-5-3'), 1980: Timestamp('1980-5-21'), 1981: Timestamp('1981-5-11'), 1982: Timestamp('1982-5-1'), 1983: Timestamp('1983-5-20'), 1984: Timestamp('1984-5-8'), 1985: Timestamp('1985-5-27'), 1986: Timestamp('1986-5-16'), 1987: Timestamp('1987-5-5'), 1988: Timestamp('1988-5-23'), 1989: Timestamp('1989-5-12'), 1990: Timestamp('1990-5-2'), 1991: Timestamp('1991-5-21'), 1992: Timestamp('1992-5-10'), 1993: Timestamp('1993-5-28'), 1994: Timestamp('1994-5-18'), 1995: Timestamp('1995-5-7'), 1996: Timestamp('1996-5-24'), 1997: Timestamp('1997-5-14'), 1998: Timestamp('1998-5-3'), 1999: Timestamp('1999-5-22'), 2000: Timestamp('2000-5-11'), 2001: Timestamp('2001-4-30'), 2002: Timestamp('2002-5-19'), 2003: Timestamp('2003-5-8'), 2004: Timestamp('2004-5-26'), 2005: Timestamp('2005-5-15'), 2006: Timestamp('2006-5-5'), 2007: Timestamp('2007-5-24'), 2008: Timestamp('2008-5-12'), 2009: Timestamp('2009-5-2'), 2010: Timestamp('2010-5-21'), 2011: Timestamp('2011-5-10'), 2012: Timestamp('2012-4-28'), 2013: Timestamp('2013-5-17'), 2014: Timestamp('2014-5-6'), 2015: Timestamp('2015-5-25'), 2016: Timestamp('2016-5-14'), 2017: Timestamp('2017-5-3'), 2018: Timestamp('2018-5-22'), 2019: Timestamp('2019-5-12'), 2020: Timestamp('2020-4-30'), 2021: Timestamp('2021-5-19'), 2022: Timestamp('2022-5-8'), 2023: Timestamp('2023-5-26'), 2024: Timestamp('2024-5-15'), 2025: Timestamp('2025-5-5'), 2026: Timestamp('2026-5-24'), 2027: Timestamp('2027-5-13'), 2028: Timestamp('2028-5-2'), 2029: Timestamp('2029-5-20'), 2030: Timestamp('2030-5-9'), 2031: Timestamp('2031-5-28'), 2032: Timestamp('2032-5-16'), 2033: Timestamp('2033-5-6'), 2034: Timestamp('2034-5-25'), 2035: Timestamp('2035-5-15'), 2036: Timestamp('2036-5-3'), 2037: Timestamp('2037-5-22'), 2038: Timestamp('2038-5-11'), 2039: Timestamp('2039-4-30'), 2040: Timestamp('2040-5-18'), 2041: Timestamp('2041-5-7'), 2042: Timestamp('2042-5-26'), 2043: Timestamp('2043-5-16'), 2044: Timestamp('2044-5-5'), 2045: Timestamp('2045-5-24'), 2046: Timestamp('2046-5-13'), 2047: Timestamp('2047-5-2'), 2048: Timestamp('2048-5-20'), 2049: Timestamp('2049-5-9'), 2050: Timestamp('2050-5-28'), 2051: Timestamp('2051-5-17'), 2052: Timestamp('2052-5-6'), 2053: Timestamp('2053-5-25'), 2054: Timestamp('2054-5-15'), 2055: Timestamp('2055-5-4'), 2056: Timestamp('2056-5-22'), 2057: Timestamp('2057-5-11'), 2058: Timestamp('2058-4-30'), 2059: Timestamp('2059-5-19'), 2060: Timestamp('2060-5-7'), 2061: Timestamp('2061-5-26'), 2062: Timestamp('2062-5-16'), 2063: Timestamp('2063-5-5'), 2064: Timestamp('2064-5-23'), 2065: Timestamp('2065-5-12'), 2066: Timestamp('2066-5-1'), 2067: Timestamp('2067-5-20'), 2068: Timestamp('2068-5-9'), 2069: Timestamp('2069-4-28'), 2070: Timestamp('2070-5-17'), 2071: Timestamp('2071-5-7'), 2072: Timestamp('2072-5-25'), 2073: Timestamp('2073-5-14'), 2074: Timestamp('2074-5-3'), 2075: Timestamp('2075-5-22'), 2076: Timestamp('2076-5-10'), 2077: Timestamp('2077-4-30'), 2078: Timestamp('2078-5-19'), 2079: Timestamp('2079-5-8'), 2080: Timestamp('2080-5-26'), 2081: Timestamp('2081-5-16'), 2082: Timestamp('2082-5-5'), 2083: Timestamp('2083-5-24'), 2084: Timestamp('2084-5-12'), 2085: Timestamp('2085-5-1'), 2086: Timestamp('2086-5-20'), 2087: Timestamp('2087-5-10'), 2088: Timestamp('2088-4-28'), 2089: Timestamp('2089-5-17'), 2090: Timestamp('2090-5-7'), 2091: Timestamp('2091-5-25'), 2092: Timestamp('2092-5-13'), 2093: Timestamp('2093-5-3'), 2094: Timestamp('2094-5-21'), 2095: Timestamp('2095-5-11'), 2096: Timestamp('2096-4-30'), 2097: Timestamp('2097-5-19'), 2098: Timestamp('2098-5-8'), 2099: Timestamp('2099-5-27'), } # Double Ninth Festival dnf_mapping = { 1959: Timestamp('1959-10-10'), 1960: Timestamp('1960-10-28'), 1961: Timestamp('1961-10-18'), 1962: Timestamp('1962-10-7'), 1963: Timestamp('1963-10-25'), 1964: Timestamp('1964-10-14'), 1965: Timestamp('1965-10-3'), 1966: Timestamp('1966-10-22'), 1967: Timestamp('1967-10-12'), 1968: Timestamp('1968-10-30'), 1969: Timestamp('1969-10-19'), 1970: Timestamp('1970-10-8'), 1971: Timestamp('1971-10-27'), 1972: Timestamp('1972-10-15'), 1973: Timestamp('1973-10-4'), 1974: Timestamp('1974-10-23'), 1975: Timestamp('1975-10-13'), 1976: Timestamp('1976-10-31'), 1977: Timestamp('1977-10-21'), 1978: Timestamp('1978-10-10'), 1979: Timestamp('1979-10-29'), 1980: Timestamp('1980-10-17'), 1981: Timestamp('1981-10-6'), 1982: Timestamp('1982-10-25'), 1983: Timestamp('1983-10-14'), 1984: Timestamp('1984-10-3'), 1985: Timestamp('1985-10-22'), 1986: Timestamp('1986-10-12'), 1987: Timestamp('1987-10-31'), 1988: Timestamp('1988-10-19'), 1989: Timestamp('1989-10-8'), 1990: Timestamp('1990-10-26'), 1991: Timestamp('1991-10-16'), 1992: Timestamp('1992-10-4'), 1993: Timestamp('1993-10-23'), 1994: Timestamp('1994-10-13'), 1995: Timestamp('1995-11-1'), 1996: Timestamp('1996-10-20'), 1997: Timestamp('1997-10-10'), 1998: Timestamp('1998-10-28'), 1999: Timestamp('1999-10-17'), 2000: Timestamp('2000-10-6'), 2001: Timestamp('2001-10-25'), 2002: Timestamp('2002-10-14'), 2003: Timestamp('2003-10-4'), 2004: Timestamp('2004-10-22'), 2005: Timestamp('2005-10-11'), 2006: Timestamp('2006-10-30'), 2007: Timestamp('2007-10-19'), 2008: Timestamp('2008-10-7'), 2009: Timestamp('2009-10-26'), 2010: Timestamp('2010-10-16'), 2011: Timestamp('2011-10-5'), 2012: Timestamp('2012-10-23'), 2013: Timestamp('2013-10-13'), 2014: Timestamp('2014-10-2'), 2015: Timestamp('2015-10-21'), 2016: Timestamp('2016-10-9'), 2017: Timestamp('2017-10-28'), 2018: Timestamp('2018-10-17'), 2019: Timestamp('2019-10-7'), 2020: Timestamp('2020-10-25'), 2021: Timestamp('2021-10-14'), 2022: Timestamp('2022-10-4'), 2023: Timestamp('2023-10-23'), 2024: Timestamp('2024-10-11'), 2025: Timestamp('2025-10-29'), 2026: Timestamp('2026-10-18'), 2027: Timestamp('2027-10-8'), 2028: Timestamp('2028-10-26'), 2029: Timestamp('2029-10-16'), 2030: Timestamp('2030-10-5'), 2031: Timestamp('2031-10-24'), 2032: Timestamp('2032-10-12'), 2033: Timestamp('2033-10-1'), 2034: Timestamp('2034-10-20'), 2035: Timestamp('2035-10-9'), 2036: Timestamp('2036-10-27'), 2037: Timestamp('2037-10-17'), 2038: Timestamp('2038-10-7'), 2039: Timestamp('2039-10-26'), 2040: Timestamp('2040-10-14'), 2041: Timestamp('2041-10-3'), 2042: Timestamp('2042-10-22'), 2043: Timestamp('2043-10-11'), 2044: Timestamp('2044-10-29'), 2045: Timestamp('2045-10-18'), 2046: Timestamp('2046-10-8'), 2047: Timestamp('2047-10-27'), 2048: Timestamp('2048-10-16'), 2049: Timestamp('2049-10-5'), 2050: Timestamp('2050-10-24'), 2051: Timestamp('2051-10-13'), 2052: Timestamp('2052-10-30'), 2053: Timestamp('2053-10-20'), 2054: Timestamp('2054-10-9'), 2055: Timestamp('2055-10-28'), 2056: Timestamp('2056-10-17'), 2057: Timestamp('2057-10-6'), 2058: Timestamp('2058-10-25'), 2059: Timestamp('2059-10-14'), 2060: Timestamp('2060-10-2'), 2061: Timestamp('2061-10-21'), 2062: Timestamp('2062-10-11'), 2063: Timestamp('2063-10-30'), 2064: Timestamp('2064-10-18'), 2065: Timestamp('2065-10-8'), 2066: Timestamp('2066-10-27'), 2067: Timestamp('2067-10-16'), 2068: Timestamp('2068-10-4'), 2069: Timestamp('2069-10-23'), 2070: Timestamp('2070-10-12'), 2071: Timestamp('2071-10-31'), 2072: Timestamp('2072-10-20'), 2073: Timestamp('2073-10-9'), 2074: Timestamp('2074-10-28'), 2075: Timestamp('2075-10-18'), 2076: Timestamp('2076-10-6'), 2077: Timestamp('2077-10-25'), 2078: Timestamp('2078-10-14'), 2079: Timestamp('2079-10-3'), 2080: Timestamp('2080-10-21'), 2081: Timestamp('2081-10-11'), 2082: Timestamp('2082-10-30'), 2083: Timestamp('2083-10-19'), 2084: Timestamp('2084-10-8'), 2085: Timestamp('2085-10-27'), 2086: Timestamp('2086-10-16'), 2087: Timestamp('2087-10-5'), 2088: Timestamp('2088-10-22'), 2089: Timestamp('2089-10-12'), 2090: Timestamp('2090-10-31'), 2091: Timestamp('2091-10-21'), 2092: Timestamp('2092-10-9'), 2093: Timestamp('2093-10-28'), 2094: Timestamp('2094-10-17'), 2095: Timestamp('2095-10-6'), 2096: Timestamp('2096-10-24'), 2097: Timestamp('2097-10-13'), 2098: Timestamp('2098-10-3'), 2099: Timestamp('2099-10-22') }
#!/usr/bin/env python """ generated source for module GdlValidator """ # package: org.ggp.base.util.gdl import org.ggp.base.util.symbol.grammar.Symbol import org.ggp.base.util.symbol.grammar.SymbolAtom import org.ggp.base.util.symbol.grammar.SymbolList # # * The GdlValidator class implements Gdl validation for the GdlFactory class. # * Its purpose is to validate whether or not a Symbol can be transformed into a # * Gdl expression without error. # class GdlValidator(object): """ generated source for class GdlValidator """ # # * Validates whether a Symbol can be transformed into a Gdl expression # * without error using the following process: # * <ol> # * <li>Returns true if the Symbol is a SymbolAtom. Otherwise, treats the # * Symbol as a SymbolList.</li> # * <li>Checks that the SymbolList contains no sub-elements that are # * SymbolLists which do not begin with a SymbolAtom.</li> # * <li>Checks that neither the SymbolList nor its sub-elements contain the # * deprecated 'or' keyword.</li> # * </ol> # * Note that as implemented, this method is incomplete: it only verifies a # * subset of the correctness properties of well-formed Gdl. A more thorough # * implementation is advisable. # * # * @param symbol # * The Symbol to validate. # * @return True if the Symbol passes validation; false otherwise. # def validate(self, symbol): """ generated source for method validate """ if isinstance(symbol, (SymbolAtom, )): return True elif containsAnonymousList(symbol): return False elif containsOr(symbol): return False else: return True # # * A recursive method that checks whether a Symbol contains SymbolList that # * does not begin with a SymbolAtom. # * # * @param symbol # * The Symbol to validate. # * @return True if the Symbol passes validation; false otherwise. # def containsAnonymousList(self, symbol): """ generated source for method containsAnonymousList """ if isinstance(symbol, (SymbolAtom, )): return False else: if isinstance(symbol, (SymbolList, )): return True else: while i < (symbol).size(): if self.containsAnonymousList((symbol).get(i)): return True i += 1 return False # # * A recursive method that checks whether a Symbol contains the deprecated # * 'or' keyword. # * # * @param symbol # * The Symbol to validate. # * @return True if the Symbol passes validation; false otherwise. # def containsOr(self, symbol): """ generated source for method containsOr """ if isinstance(symbol, (SymbolAtom, )): return False else: if symbol.__str__().lower() == "or": return True elif isinstance(symbol, (SymbolList, )): while i < (symbol).size(): if self.containsOr((symbol).get(i)): return True i += 1 return False
#!/usr/bin/env python # -*- encoding: utf-8 -*- ''' @File : 2_BrowserClass.py @Time : 2020-8-22 20:20:16 @Author : Recluse Xu @Version : 1.0 @Contact : 444640050@qq.com @Desc : 浏览器类相关 官方文档:https://miyakogi.github.io/pyppeteer/reference.html#pyppeteer.page.Page.target ''' # here put the import lib import asyncio from pyppeteer import launch async def main(): # 创建浏览器对象 browser = await launch({ 'headless': False, 'ignorehttpserrrors': True, 'viewport': {'width': 1280, 'height': 800}, 'autoClose': True, }) # 创建一个新页面 page = await browser.newPage() # 创建一个无痕模式浏览器内容, 以无痕模式内容浏览东西的话不会报错cookie之类的数据 # context = await browser.createIncognitoBrowserContext() # page = await context.newPage() # await page.goto('https://example.com') await page.goto('http://www.baidu.com') # 获取网页中的所有内容 c = browser.browserContexts print(c) # 返回浏览器进程 c = browser.process print(c) # 返回浏览器UerAgent c = browser.userAgent print(c) # 从浏览器中获取页面对象 pages = await browser.pages() page = pages[0] # 断开连接 browser.disconnect() asyncio.get_event_loop().run_until_complete(main())
""" File Processing (file_processing.py): ------------------------------------------------------------------------------- Last updated 7/2/2015 This module creates functions for generic file operations. """ # Packages import os import sys def get_file(dirct, contains=[""]): """ Given a directory, this function finds a file that contains each string in an array of strings. It returns the string :param dirct: The directory to be searched in. :param contains: An array of strings, all of which must be contained in the filename """ for filename in os.listdir(dirct): if all(item in filename for item in contains): return filename # Note: move the naics_processing search_ws function here. # Will require changing every instance it is called in.
#!/usr/bin/env python import platform import resource from unicorn import * import regress # OS X: OK with 2047 iterations. # OS X: Crashes at 2048:th iteration ("qemu: qemu_thread_create: Resource temporarily unavailable"). # Linux: No crashes observed. class ThreadCreateCrash(regress.RegressTest): def test(self): for i in xrange(2048): Uc(UC_ARCH_X86, UC_MODE_64) self.assertTrue(True, "If not reached, then we have a crashing bug.") if __name__ == '__main__': regress.main()
import os import compas from compas.geometry import Point, Polygon from compas.datastructures import Mesh from compas.utilities import i_to_red from compas_assembly.datastructures import Assembly, Block from compas_view2.app import App from compas_view2.objects import Object, NetworkObject, MeshObject from compas_view2.objects import Collection Object.register(Assembly, NetworkObject) Object.register(Block, MeshObject) FILE_I = os.path.join(os.path.dirname(__file__), 'armadillo_assembly.json') assembly = compas.json_load(FILE_I) # ============================================================================== # Flatness # ============================================================================== # ============================================================================== # Export # ============================================================================== # ============================================================================== # Viz # ============================================================================== viewer = App() nodes = [] blocks = [] interfaces = [] sides = [] colors = [] for node in assembly.nodes(): nodes.append(Point(* assembly.node_coordinates(node))) blocks.append(assembly.node_attribute(node, 'block')) for node in assembly.nodes(): block = assembly.node_attribute(node, 'block') faces = sorted(block.faces(), key=lambda face: block.face_area(face))[:-2] for face in faces: side = Polygon(block.face_coordinates(face)) mesh = Mesh.from_polygons([side]) sides.append(mesh) for mesh in sides: face = list(mesh.faces())[0] dev = mesh.face_flatness(face) colors.append(i_to_red(dev, normalize=True)) viewer.add(Collection(blocks), show_faces=False, show_edges=True) viewer.add(Collection(sides), colors=colors, show_edges=False) viewer.run()
import random def main(): length = get_length() chars = parse_chars() password = construct_pass(length, chars) print("Your password is: " + password) input("Press enter to exit.") def get_length(): print("Weak: 0-7; Moderate: 8-11; Strong: 12+") while True: num = input("How many characters long is your password? (-1 to quit) ") try: num = int(num) if num == -1: exit(1) elif num <= 0: print("Please type a positive number.\n") else: return num except ValueError: print("Please type a number.\n") def parse_chars(): lowercase = "abcdefghijkmnopqrstuvwxyz" # 'l' as in lambda removed uppercase = "ABCDEFGHJKLMNPQRSTUVWXYZ" # 'I' as in IGLOO, 'O' as in OPRAH removed numbers = "123456789" # 'zero' removed special_characters = "!\"#$%&'()*+,-./:;?@[\\]^_`{|}~" return lowercase + uppercase + numbers + special_characters def construct_pass(length, chars): pw = "" for i in range(length): pw += random.choice(chars) return pw
from .clang_tidy_parser import ClangTidyParser, ClangMessage
from typing import MutableMapping from app.views.handlers.list_action import ListAction class ListAddQuestion(ListAction): def is_location_valid(self): if not super().is_location_valid() or self._current_location.list_item_id: return False return True def handle_post(self): list_item_id = self.questionnaire_store_updater.add_list_item( self.parent_block["for_list"] ) self.questionnaire_store_updater.update_answers(self.form.data, list_item_id) return super().handle_post() def _resolve_custom_page_title_vars(self) -> MutableMapping: # For list add blocks, no list item id is yet available. Instead, we resolve # `list_item_position` to the position in the list it would be if added. list_length = len( self._questionnaire_store.list_store[self._current_location.list_name] ) return {"list_item_position": list_length + 1}
import os import re import pandas as pd from scripts.task import Task from Constants import METADATA, RESULT class FindPatternInJudgements(Task): def __init__(self, input_dir: str, pattern: str, label: str, line_limit: int = 0, limit_lines: bool = False, store_result: bool = True): super().__init__() self.limit_lines = limit_lines self.line_limit = line_limit self.store_result = store_result self.label = label self.input_dir = input_dir try: self.pattern = re.compile(pattern, re.IGNORECASE) except re.error: raise Exception({"message": "given pattern invalid"}) def _execute(self): # metadata = self.shared_resources.get(METADATA, None) # assert isinstance(metadata, pd.DataFrame) labels_found = self.shared_resources.get(RESULT, {}) for filename in os.listdir(self.input_dir): if filename.endswith(".txt"): judgement = os.path.join(self.input_dir, filename) cino = filename.split('_')[0] results = [] line_count = 0 with open(judgement) as f: for line in f: line = self.clean_line(line) if not self.line_limit or line_count <= self.line_limit: all_found = self.get_patterns(line) if self.label == "fine_imposed": for found in all_found: results.append(found.replace(',', "")) else: results.extend(all_found) line_count += 1 if not self.store_result: results = True if len(results) else False else: current = labels_found.get(cino, {self.label: []}).get(self.label, []) results = current + results labels_found.setdefault(cino, {}).update({self.label: results}) self.share_next(RESULT, labels_found) def get_patterns(self, line): patterns = [] all_found = self.pattern.findall(line) for found in all_found: if type(found) is tuple: filtered_list = list(filter(None, list(found))) patterns.extend(filtered_list) else: patterns.append(found) return list(set(patterns)) @staticmethod def clean_line(line): return line.\ replace("\n", ' ').\ replace(' ', ' ')
import pytest from rdkit import RDLogger from prolif.fingerprint import Fingerprint from prolif.interactions import _INTERACTIONS, Interaction, get_mapindex import prolif from .test_base import ligand_mol from . import mol2factory # disable rdkit warnings lg = RDLogger.logger() lg.setLevel(RDLogger.ERROR) @pytest.fixture(scope="module") def mol1(request): return getattr(mol2factory, request.param)() @pytest.fixture(scope="module") def mol2(request): return getattr(mol2factory, request.param)() class TestInteractions: @pytest.fixture(scope="class") def fingerprint(self): return Fingerprint() @pytest.mark.parametrize("func_name, mol1, mol2, expected", [ ("cationic", "cation", "anion", True), ("cationic", "anion", "cation", False), ("cationic", "cation", "benzene", False), ("anionic", "cation", "anion", False), ("anionic", "anion", "cation", True), ("anionic", "anion", "benzene", False), ("cationpi", "cation", "benzene", True), ("cationpi", "cation_false", "benzene", False), ("cationpi", "benzene", "cation", False), ("cationpi", "cation", "cation", False), ("cationpi", "benzene", "benzene", False), ("pication", "benzene", "cation", True), ("pication", "benzene", "cation_false", False), ("pication", "cation", "benzene", False), ("pication", "cation", "cation", False), ("pication", "benzene", "benzene", False), ("pistacking", "benzene", "etf", True), ("pistacking", "etf", "benzene", True), ("pistacking", "ftf", "benzene", True), ("pistacking", "benzene", "ftf", True), ("facetoface", "benzene", "ftf", True), ("facetoface", "ftf", "benzene", True), ("facetoface", "benzene", "etf", False), ("facetoface", "etf", "benzene", False), ("edgetoface", "benzene", "etf", True), ("edgetoface", "etf", "benzene", True), ("edgetoface", "benzene", "ftf", False), ("edgetoface", "ftf", "benzene", False), ("hydrophobic", "benzene", "etf", True), ("hydrophobic", "benzene", "ftf", True), ("hydrophobic", "benzene", "chlorine", True), ("hydrophobic", "benzene", "anion", False), ("hydrophobic", "benzene", "cation", False), ("hbdonor", "hb_donor", "hb_acceptor", True), ("hbdonor", "hb_donor", "hb_acceptor_false", False), ("hbdonor", "hb_acceptor", "hb_donor", False), ("hbacceptor", "hb_acceptor", "hb_donor", True), ("hbacceptor", "hb_acceptor_false", "hb_donor", False), ("hbacceptor", "hb_donor", "hb_acceptor", False), ("xbdonor", "xb_donor", "xb_acceptor", True), ("xbdonor", "xb_donor", "xb_acceptor_false_xar", False), ("xbdonor", "xb_donor", "xb_acceptor_false_axd", False), ("xbdonor", "xb_acceptor", "xb_donor", False), ("xbacceptor", "xb_acceptor", "xb_donor", True), ("xbacceptor", "xb_acceptor_false_xar", "xb_donor", False), ("xbacceptor", "xb_acceptor_false_axd", "xb_donor", False), ("xbacceptor", "xb_donor", "xb_acceptor", False), ("metaldonor", "metal", "ligand", True), ("metaldonor", "metal_false", "ligand", False), ("metaldonor", "ligand", "metal", False), ("metalacceptor", "ligand", "metal", True), ("metalacceptor", "ligand", "metal_false", False), ("metalacceptor", "metal", "ligand", False), ], indirect=["mol1", "mol2"]) def test_interaction(self, fingerprint, func_name, mol1, mol2, expected): interaction = getattr(fingerprint, func_name) assert interaction(mol1, mol2) is expected def test_warning_supersede(self): old = id(_INTERACTIONS["Hydrophobic"]) with pytest.warns(UserWarning, match="interaction has been superseded"): class Hydrophobic(Interaction): def detect(self): pass new = id(_INTERACTIONS["Hydrophobic"]) assert old != new # fix dummy Hydrophobic class being reused in later unrelated tests class Hydrophobic(prolif.interactions.Hydrophobic): pass def test_error_no_detect(self): class Dummy(Interaction): pass with pytest.raises(TypeError, match="Can't instantiate abstract class Dummy"): Dummy() # fix Dummy class being reused in later unrelated tests del prolif.interactions._INTERACTIONS["Dummy"] @pytest.mark.parametrize("index", [ 0, 1, 3, 42, 78 ]) def test_get_mapindex(self, index): parent_index = get_mapindex(ligand_mol[0], index) assert parent_index == index
# -*- coding: utf-8 -*- """ ========================= rx_sect_plot (mod: 'vmlib.seis') ========================= basemap cdp_spacing distance """ __all__ = ['cdp', 'navmerge', 'rcv', 'src', 'traces', 'rx_sect_plot', 'rx_sect_qc', 'segy'] from .cdp import CDP_line from .navmerge import basemap, elevation, offset_cdp_fold, amplitude_offset from .navmerge import stacking, fold, cdp_spacing, rms_map, gathers_short from .rcv import RCV_line from .rx_sect_plot import section, basemap, cdp_spacing, distances from .rx_sect_qc import get_info_from_text_header, compare_text_bin_header from .src import SRC_line from .traces import Line from . import plot from . import qc from . import segy
from django.contrib.auth.models import Group def get_group_obj(gid): try: return Group.objects.get(pk=gid) except Group.DoesNotExist: return None
from .BayesianLogisticRegression import BayesianLogisticRegression from .BayesianNetwork import BayesianNetwork, MLP_mcmc from .MLP import MLP from .CNN import CNN, Net from .HMC_GP import HMC_GP
import allure from antiphishme.src.api_modules.ip_module import get_ip, get_ip_details from antiphishme.tests.test_helpers import ( assert_true, assert_equal, assert_none, assert_type, assert_not_empty, info ) @allure.epic("api_modules") @allure.parent_suite("Unit tests") @allure.story('Unit') @allure.suite("api_modules") @allure.sub_suite("ip") class Tests: @allure.description(""" Test ip api module Expect proper ip for given domain. """) def test_get_ip(self): domain = "google.com" info("Requested domain - {}".format(domain)) ip = get_ip(domain) info("Returned ip: {}".format(ip)) assert_true(ip.count('.') == 3, "Check if returned ip is correct ip") @allure.description(""" Test ip api module Send unexisting domain and expect None. """) def test_get_ip_unexisting(self): domain = "." info("Requested domain - {}".format(domain)) ip = get_ip(domain) info("Returned ip: {}".format(ip)) assert_none(ip, "Check if result for get_ip is None") @allure.description(""" Test ip api module Send correct ip and expect details dict. """) def test_get_ip_details(self): ip = "8.8.8.8" info("Requested ip - {}".format(ip)) details = get_ip_details(ip) assert_type(details, dict, "Check if returned results are of type dict") assert_not_empty(details, "Check if returned results are not empty") @allure.description(""" Test ip api module Send reserved ip and expect proper response. """) def test_get_ip_details_reserved_range(self): ip = "127.0.0.1" info("Requested ip - {}".format(ip)) details = get_ip_details(ip) assert_type(details, dict, "Check if returned results are of type dict") assert_not_empty(details, "Check if returned results are not empty") field = 'status' expected = 'reserved_range' assert_equal(details[field], expected, "Check if returned status is equal to expected one") field = 'ip' expected = ip assert_equal(details[field], expected, "Check if returned ip is equal to expected one") @allure.description(""" Test ip api module Send wrong ip and expect None. """) def test_get_ip_details_wrong_ip(self): ip = "abc" info("Requested ip - {}".format(ip)) details = get_ip_details(ip) assert_none(details, "Check if returned results are empty/None")
import datetime import pytest real_datetime_class = datetime.datetime class DatetimeSubclassMeta(type): @classmethod def __instancecheck__(mcs, obj): return isinstance(obj, real_datetime_class) class BaseMockDatetime(real_datetime_class): @classmethod def now(cls): if hasattr(cls, '_now') and cls._now is not None: return cls._now else: return real_datetime_class.now() @classmethod def set_now(cls, datetime_value): cls._now = datetime_value MockedDatetime = DatetimeSubclassMeta( 'datetime', (BaseMockDatetime,), {} ) @pytest.fixture def mock_datetime(monkeypatch): with monkeypatch.context() as ctx: ctx.setattr(datetime, 'datetime', MockedDatetime) yield del MockedDatetime._now
# -*- coding: utf-8 -*- import djchoices from django.db import models import schools.models import users.models class Discount(models.Model): class Type(djchoices.DjangoChoices): SOCIAL = djchoices.ChoiceItem(1, 'Социальная скидка') PARTNER = djchoices.ChoiceItem(2, 'Скидка от партнёра') STATE = djchoices.ChoiceItem(3, 'Скидка от государства') OLYMPIADS = djchoices.ChoiceItem(4, 'Олимпиадная скидка') ORGANIZATION = djchoices.ChoiceItem(5, 'Частичная оплата от организации') school = models.ForeignKey( schools.models.School, on_delete=models.CASCADE, related_name='+', ) user = models.ForeignKey( users.models.User, on_delete=models.CASCADE, related_name='discounts', ) type = models.PositiveIntegerField(choices=Type.choices, validators=[Type.validator]) # If amount = 0, discount is considered now amount = models.PositiveIntegerField( help_text='Размер скидки. Выберите ноль, чтобы скидка считалась «рассматриваемой»') private_comment = models.TextField(blank=True, help_text='Не показывается школьнику') public_comment = models.TextField(blank=True, help_text='Показывается школьнику') @property def type_name(self): return self.Type.values[self.type] def __str__(self): return "%s %s" % (self.user, self.Type.values[self.type])
import blobconverter import numpy as np import cv2 import depthai as dai class TextHelper: def __init__(self) -> None: self.bg_color = (0, 0, 0) self.color = (255, 255, 255) self.text_type = cv2.FONT_HERSHEY_SIMPLEX self.line_type = cv2.LINE_AA def putText(self, frame, text, coords): cv2.putText(frame, text, coords, self.text_type, 0.5, self.bg_color, 4, self.line_type) cv2.putText(frame, text, coords, self.text_type, 0.5, self.color, 1, self.line_type) class_names = ['neutral', 'happy', 'sad', 'surprise', 'anger'] openvinoVersion = "2021.3" p = dai.Pipeline() p.setOpenVINOVersion(version=dai.OpenVINO.Version.VERSION_2021_3) cam = p.create(dai.node.ColorCamera) cam.setIspScale(2,3) cam.setInterleaved(False) cam.setVideoSize(720,720) cam.setPreviewSize(720,720) # Send color frames to the host via XLink cam_xout = p.create(dai.node.XLinkOut) cam_xout.setStreamName("video") cam.video.link(cam_xout.input) # Crop 720x720 -> 300x300 face_det_manip = p.create(dai.node.ImageManip) face_det_manip.initialConfig.setResize(300, 300) cam.preview.link(face_det_manip.inputImage) # NN that detects faces in the image face_nn = p.create(dai.node.MobileNetDetectionNetwork) face_nn.setConfidenceThreshold(0.3) face_nn.setBlobPath(blobconverter.from_zoo("face-detection-retail-0004", shaves=6, version=openvinoVersion)) face_det_manip.out.link(face_nn.input) # Send ImageManipConfig to host so it can visualize the landmarks config_xout = p.create(dai.node.XLinkOut) config_xout.setStreamName("face_det") face_nn.out.link(config_xout.input) # Script node will take the output from the NN as an input, get the first bounding box # and send ImageManipConfig to the manip_crop image_manip_script = p.create(dai.node.Script) face_nn.out.link(image_manip_script.inputs['nn_in']) cam.preview.link(image_manip_script.inputs['frame']) image_manip_script.setScript(""" import time def limit_roi(det): if det.xmin <= 0: det.xmin = 0.001 if det.ymin <= 0: det.ymin = 0.001 if det.xmax >= 1: det.xmax = 0.999 if det.ymax >= 1: det.ymax = 0.999 while True: frame = node.io['frame'].get() face_dets = node.io['nn_in'].get().detections # node.warn(f"Faces detected: {len(face_dets)}") for det in face_dets: limit_roi(det) # node.warn(f"Detection rect: {det.xmin}, {det.ymin}, {det.xmax}, {det.ymax}") cfg = ImageManipConfig() cfg.setCropRect(det.xmin, det.ymin, det.xmax, det.ymax) cfg.setResize(64, 64) cfg.setKeepAspectRatio(False) node.io['manip_cfg'].send(cfg) node.io['manip_img'].send(frame) # node.warn(f"1 from nn_in: {det.xmin}, {det.ymin}, {det.xmax}, {det.ymax}") """) # This ImageManip will crop the mono frame based on the NN detections. Resulting image will be the cropped # face that was detected by the face-detection NN. manip_crop = p.create(dai.node.ImageManip) image_manip_script.outputs['manip_img'].link(manip_crop.inputImage) image_manip_script.outputs['manip_cfg'].link(manip_crop.inputConfig) manip_crop.initialConfig.setResize(64, 64) manip_crop.setWaitForConfigInput(True) # Second NN that detcts emotions from the cropped 64x64 face landmarks_nn = p.createNeuralNetwork() landmarks_nn.setBlobPath(blobconverter.from_zoo("emotions-recognition-retail-0003", shaves=6, version=openvinoVersion)) manip_crop.out.link(landmarks_nn.input) landmarks_nn_xout = p.createXLinkOut() landmarks_nn_xout.setStreamName("emotions") landmarks_nn.out.link(landmarks_nn_xout.input) def frame_norm(frame, bbox): normVals = np.full(len(bbox), frame.shape[0]) normVals[::2] = frame.shape[1] return (np.clip(np.array(bbox), 0, 1) * normVals).astype(int) # Pipeline is defined, now we can connect to the device with dai.Device(p) as device: videoQ = device.getOutputQueue(name="video", maxSize=1, blocking=False) faceDetQ = device.getOutputQueue(name="face_det", maxSize=4, blocking=False) emotionsQ = device.getOutputQueue(name="emotions", maxSize=4, blocking=False) textHelper = TextHelper() while True: if faceDetQ.has(): detections = faceDetQ.get().detections frame = videoQ.get().getCvFrame() for detection in detections: bbox = frame_norm(frame, (detection.xmin, detection.ymin, detection.xmax, detection.ymax)) cv2.rectangle(frame, (bbox[0], bbox[1]), (bbox[2], bbox[3]), (255, 255, 255), 1) # Each face detection will be sent to emotion estimation model. Wait for the result nndata = emotionsQ.get() # [print(f"Layer name: {l.name}, Type: {l.dataType}, Dimensions: {l.dims}") for l in nndata.getAllLayers()] results = np.array(nndata.getFirstLayerFp16()) result_conf = np.max(results) if 0.3 < result_conf: name = class_names[np.argmax(results)] conf = round(100 * result_conf, 1) textHelper.putText(frame, f"{name}, {conf}%", (bbox[0] + 10, bbox[1] + 20)) cv2.imshow("frame", frame) # if frame is not None: if cv2.waitKey(1) == ord('q'): break
#!/usr/bin/env python ''' Create CFIS photometric images from SKIRT IFS datacube. Version 0.1 SED to flux conversions use the AB system following the documentation here: http://www.astro.ljmu.ac.uk/~ikb/research/mags-fluxes/ Also found here (though incorrect in places): http://mfouesneau.github.io/docs/pyphot/ Update History: Version 0.1 - Corrected to explicitly account for the target redshift by stretching the emitted spectrum by the redshift factor and reducing the specific intensities by a factor of (1+z)**5. Now requires a redshift as input in addition to image properties. The output image AB surface brightnesses have already been scaled to account for the target redshift. ObsRealism should not then apply any brightness factor. ''' import os,sys,string,time import numpy as np from astropy.io import fits def SpecPhotCFIS(inputName,_outputName,wl_filename,cfis_cfg_path,redshift=0.05,bands=['g','r','i'],airmass=0.,overwrite=0): ''' Generate idealized mock CFIS photometric images with same spatial scale as the original datacube. The input is a SKIRT data cube with units specific intensity units W/m2/micron/arcsec2. This code is provided as a companion to the Realism suite as it produces output in the exact format accepted by the suite. "_outputName - formattable string: Should be a formattable string which can be updated for each band (e.g. Outputs/photo_{}.fits). "wl_filename" - string: Path to wavelength file accompanied with SKIRT. The file should show provide the wavelengths for which each specific intensity in the datacubes is defined. "cfis_cfg_path" - string: Path to CFIS response curve files. "redshift" - float: Redshift by which the input spectrum is streched and dimmed. "airmass" - float>=0: Airmass used to determine atmospheric extinction effects on the response curves. The average value for CFIS is 1.13 over all fields. If 0, the unattenuated response curves are used (only telescope/filter/ccd). This should nominally be set to zero because calibrated images account for atmospheric extinction. "overwrite" - boolean: Overwrite output in output location. "bands" - list object: Options are 'u','g','r','i','z', but depends on how much of the spectrum is modelled by SKIRT. Additionally, care should also be taken when interpreting 'u' or 'z' band fluxes because response functions in these bands are strongly (and non-uniformly) affected by atmospheric absorption. ''' # useful constants / quantities speed_of_light = 2.998e8 # [m/s] speed_of_light = speed_of_light*1e10 # [Angstrom/s] # wavelengths of datacube [microns] (expand by redshift factor) wl = np.loadtxt(wl_filename).astype(float)*1e4*(1+redshift) # [Angstrom] # wavelength bin widths [Angstrom] dwl = np.median(np.diff(wl)) # [Angstrom] # read IFU cube header and data with fits.open(inputName,mode='readonly') as hdul: # IFU header header = hdul[0].header # image spectral flux density in W/m2/micron/arcsec2; convert to [Jy*Hz/Angstrom/arcsec2] ifu_data = hdul[0].data*1e22 # [Jy*Hz/Angstrom/arcsec2] # header changes for photometry header.remove('NAXIS3') # calibrated flux units; easily converted to nanomaggies header['BUNIT'] = 'AB mag/arcsec2' header.set('FILTER', value='', comment='Transmission band') header.set('WLEFF' , value=np.float32(0.) , comment='Effective WL of response [Angstrom]') for band in bands: # filter response function filter_data = np.loadtxt(cfis_cfg_path+'{}_CFIS.res'.format(band.capitalize())) # wavelength elements in response curve file filter_wl = filter_data[:,0] # filter response filter_res = filter_data[:,1] # filter response interpolated onto image wavelength grid filter_res = np.interp(xp=filter_wl,x=wl,fp=filter_res,left=0,right=0) # unitless # apply extinction correction to filters: extinction file kkFile = cfis_cfg_path+'CFIS_extinction.txt' # unpack wavelengths and extinctions [mag/airmass] wl_kk,kk = np.loadtxt(kkFile,unpack=True) # interpolated onto wavelength grid kk = np.interp(xp=wl_kk,x=wl,fp=kk,left=np.nanmax(kk),right=0) # 1.25 because CFIS response curves assume 1.25 airmass by default filter_res *= 10**(0.4*((1.25-airmass)*kk)) # filter-specific pivot wavelength squared [m2] wl_pivot2 = np.sum(filter_res*wl*dwl)/np.sum(filter_res*dwl/wl) # now the mean photon rate density in the filter [Jy*Hz/Angstrom/arcsec2] f_wl = np.sum(wl*filter_res*ifu_data.T*dwl,axis=2)/np.sum(wl*filter_res*dwl) # multiplying by wl_pivot2/speed_of_light gives [Jy/arcsec2] # convert to maggies/arcsec2 (w/ AB zeropoint) using 1 maggy ~ 3631 Jy # apply (1+z)**-5 redshift degradation to wavelength specific intensities f_mgys = f_wl*wl_pivot2/speed_of_light/3631.*(1+redshift)**-5 # [maggies/arcsec2] # convert to mag/arcsec2 surface brightness for numerical ease with np.errstate(divide='ignore'): f_sb = -2.5*np.log10(f_mgys) # [mag/arcsec2] AB system # fits file output photo_out = _outputName.format(band) if os.access(photo_out,0):os.remove(photo_out) # create output photometry file and make band-specific header updates hdu = fits.PrimaryHDU(f_sb) header['FILTER'] = '{}'.format(band) header['WLEFF'] = np.around(np.sqrt(wl_pivot2),decimals=1) header['REDSHIFT'] = (redshift,'Redshift') hdu.header = header hdu.writeto(photo_out, overwrite=True)
#!/usr/bin/env python """ Summary ------- Provides implementation of the Test Problem C Oracle for use in PyMOSO. """ from ..chnbase import Oracle from math import exp, sqrt, sin class ProbTPC(Oracle): """ An Oracle that simulates Test Problem C. Attributes ---------- num_obj : int, 2 dim : int, 3 density_factor : int, 2 Parameters ---------- rng : prng.MRG32k3a object See also -------- chnbase.Oracle """ def __init__(self, rng): self.num_obj = 2 self.dim = 3 self.density_factor = 2 super().__init__(rng) def g(self, x, rng): """ Simulates one replication. PyMOSO requires that all valid Oracles implement an Oracle.g. Parameters ---------- x : tuple of int rng : prng.MRG32k3a object Returns ------- isfeas : bool tuple of float simulated objective values """ df = self.density_factor xr = range(-5*df, 5*df + 1) obj1 = None obj2 = None isfeas = True for xi in x: if not xi in xr: isfeas = False if isfeas: z1 = rng.normalvariate(0, 1) z2 = rng.normalvariate(0, 1) z3 = rng.normalvariate(0, 1) xi = (z1**2, z2**2, z3**2) x = tuple(i/df for i in x) s = [sin(i) for i in x] sum1 = [-10*xi[i]*exp(-0.2*sqrt(x[i]**2 + x[i+1]**2)) for i in [0, 1]] sum2 = [xi[i]*(pow(abs(x[i]), 0.8) + 5*pow(s[i], 3)) for i in [0, 1, 2]] obj1 = sum(sum1) obj2 = sum(sum2) return isfeas, (obj1, obj2)