content
stringlengths
5
1.05M
# <<BEGIN-copyright>> # Copyright 2021, Lawrence Livermore National Security, LLC. # See the top-level COPYRIGHT file for details. # # SPDX-License-Identifier: BSD-3-Clause # <<END-copyright>> import os import math import sys sys.path.insert( 0, '../../Utilities' ) from numericalFunctions import pointwiseXY_C import utilities options = utilities.getOptions( __file__ ) xData = [ 0.5 * i - 0.145 for i in range( 51 ) ] yData = [ math.sin( x ) for x in xData ] XYData = [ [ x, yData[i] ] for i, x in enumerate( xData ) ] listData = [] for i, x in enumerate( xData ) : listData.append( x ) listData.append( yData[i] ) dataXYs = pointwiseXY_C.pointwiseXY_C( XYData, initialSize = len( XYData ), overflowSize = 10 ) dataXYs2 = pointwiseXY_C.pointwiseXY_C( XYData, initialSize = len( XYData ), overflowSize = 10, dataForm = 'xys' ) dataXsAndYs = pointwiseXY_C.pointwiseXY_C( [ xData, yData ], initialSize = len( XYData ), overflowSize = 10, dataForm = 'XsAndYs' ) dataList = pointwiseXY_C.pointwiseXY_C( listData, initialSize = len( XYData ), overflowSize = 10, dataForm = 'List' ) def cmp( p1, p2 ) : status = 0 d = p1 - p2 if( d.rangeMin( ) != 0 ) : status = 1 if( d.rangeMax( ) != 0 ) : status = 1 return( status ) status = cmp( dataXYs, dataXYs2 ) status += cmp( dataXYs, dataXsAndYs ) status += cmp( dataXYs, dataList ) if( status ) : raise Exception( '%s: %d sets not the same' % ( __file__, status ) )
from pypy.tool.sourcetools import compile2 from pypy.rlib.rarithmetic import r_uint from pypy.jit.codegen.ppc.ppcgen.form import IDesc, IDupDesc ## "opcode": ( 0, 5), ## "rA": (11, 15, 'unsigned', regname._R), ## "rB": (16, 20, 'unsigned', regname._R), ## "Rc": (31, 31), ## "rD": ( 6, 10, 'unsigned', regname._R), ## "OE": (21, 21), ## "XO2": (22, 30), ## XO = Form("rD", "rA", "rB", "OE", "XO2", "Rc") ## add = XO(31, XO2=266, OE=0, Rc=0) ## def add(rD, rA, rB): ## v = 0 ## v |= (31&(2**(5-0+1)-1)) << (32-5-1) ## ... ## return v def make_func(name, desc): sig = [] fieldvalues = [] for field in desc.fields: if field in desc.specializations: fieldvalues.append((field, desc.specializations[field])) else: sig.append(field.name) fieldvalues.append((field, field.name)) if isinstance(desc, IDupDesc): for destfield, srcfield in desc.dupfields.iteritems(): fieldvalues.append((destfield, srcfield.name)) body = ['v = r_uint(0)'] assert 'v' not in sig # that wouldn't be funny #body.append('print %r'%name + ', ' + ', '.join(["'%s:', %s"%(s, s) for s in sig])) for field, value in fieldvalues: if field.name == 'spr': body.append('spr = (%s&31) << 5 | (%s >> 5 & 31)'%(value, value)) value = 'spr' body.append('v |= (%3s & r_uint(%#05x)) << %d'%(value, field.mask, (32 - field.right - 1))) body.append('self.emit(v)') src = 'def %s(self, %s):\n %s'%(name, ', '.join(sig), '\n '.join(body)) d = {'r_uint':r_uint} #print src exec compile2(src) in d return d[name] def make_rassembler(cls): bases = [make_rassembler(b) for b in cls.__bases__] ns = {} for k, v in cls.__dict__.iteritems(): if isinstance(v, IDesc): v = make_func(k, v) ns[k] = v rcls = type('R' + cls.__name__, tuple(bases), ns) def emit(self, value): self.insts.append(value) rcls.emit = emit return rcls
""" Topic models look for groups of words that occur frequenty together. We can often recognize these clusters as specific themes that appear in the collection -- thus the term "topic" model. Our example corpus today is a collection of Viking sagas. Start python like this: python -i topicmodel.py sagas_en.txt 20 We will work at the python prompt ">>>". Today we'll be working with the simplest and most reliable topic model algorithm, Gibbs sampling. Gibb sampling is a way to take a very complicted optimization problem and break it into little problems that are individually easy. First, we need to have a way of describing probability distributions. A discrete distribution is a vector of numbers that are >= 0.0 and sum to 1.0. One function is called *entropy*. Entropy takes a distribution and returns a number. 1. Run `entropy(np.array([0.7, 0.1, 0.2]))`. What is the value? [Response here] 2. Run `entropy(np.array([7, 1, 2]))`. Does the value change? Why or why not? [Response here] 3. Try different (non-negative) values of the three numbers. What is the largest value you can get, and what is the smallest? [Response here] 4. Now try different (non-negative) values of *four* numbers. Can you get a larger or smaller entropy than with three? [Response here] 5. Describe in your own words what entropy is measuring. [Response here] The Gibbs sampling algorithm proceeds in multiple iterations. In each iteration, we look at all the word tokens in all the documents, one after another. For each word, we erase its current topic assignment and sample a new topic assignment given all the other word tokens' topic assignments. Now look at the lines below the "SAMPLING DISTRIBUTION" comment. These define two vectors: * The probability of each topic in the current document * The probability of the current word in each topic We'll look at a particular dramatic moment in Njal's saga. Define these variables: document = documents[1160] doc_topic_counts = document["topic_counts"] word = "sword" word_topic_counts = word_topics[word] Use this command to suppress scientific notation: np.set_printoptions(suppress=True) 6. Calculate the entropy of `doc_topic_counts` 7. Calculate the entropy of `(doc_topic_counts + doc_smoothing)`. Should this be larger or smaller than the previous value? 8. Calculate the entropy of `(word_topic_counts + word_smoothing) / (topic_totals + smoothing_times_vocab_size)` 9. Calculate the entropy of `(doc_topic_counts + doc_smoothing) * (word_topic_counts + word_smoothing) / (topic_totals + smoothing_times_vocab_size)` These values are random initializations. Let's run the algorithm over the documents a few times and see what happens. Run: sample(25) Use `print_all_topics()` to get a view of the current state of the topics. 10. This function prints the number of tokens in each topic for the sample doc. Describe how (if at all) they change. 11. Recalculate the four entropies we calculated above for the sampling distribution. How are they different? 12. What is the value of `word_smoothing`? Previously we added 1.0 in this situation. Why are we using a different value now? Use the concept of entropy in your answer. [Response here] 13. What are Norse sagas about, from the perspective of the model? [Response here] 14. I'm removing a list of frequent words, words that are too short, and words whose first letter is capitalized. Why does removing capitalized words help? What happens if you remove that check? Is this a good idea? [Response here] """ import re, sys, random, math import numpy as np from collections import Counter from timeit import default_timer as timer word_pattern = re.compile("\w[\w\-\']*\w|\w") if len(sys.argv) != 3: print("Usage: topicmodel.py [docs file] [num topics]") sys.exit() num_topics = int(sys.argv[2]) doc_smoothing = 0.5 word_smoothing = 0.01 stoplist = set() with open("stoplist.txt", encoding="utf-8") as stop_reader: for line in stop_reader: line = line.rstrip() stoplist.add(line) word_counts = Counter() documents = [] word_topics = {} topic_totals = np.zeros(num_topics) for line in open(sys.argv[1], encoding="utf-8"): #line = line.lower() tokens = word_pattern.findall(line) ## remove stopwords, short words, and upper-cased words tokens = [w for w in tokens if not w in stoplist and len(w) >= 3 and not w[0].isupper()] word_counts.update(tokens) doc_topic_counts = np.zeros(num_topics) token_topics = [] for w in tokens: ## Generate a topic randomly topic = random.randrange(num_topics) token_topics.append({ "word": w, "topic": topic }) ## If we haven't seen this word before, initialize it if not w in word_topics: word_topics[w] = np.zeros(num_topics) ## Update counts: word_topics[w][topic] += 1 topic_totals[topic] += 1 doc_topic_counts[topic] += 1 documents.append({ "original": line, "token_topics": token_topics, "topic_counts": doc_topic_counts }) ## Now that we're done reading from disk, we can count the total ## number of words. vocabulary = list(word_counts.keys()) vocabulary_size = len(vocabulary) smoothing_times_vocab_size = word_smoothing * vocabulary_size def sample(num_iterations): for iteration in range(num_iterations): start = timer() for document in documents: doc_topic_counts = document["topic_counts"] token_topics = document["token_topics"] doc_length = len(token_topics) for token_topic in token_topics: w = token_topic["word"] old_topic = token_topic["topic"] word_topic_counts = word_topics[w] ## erase the effect of this token word_topic_counts[old_topic] -= 1 topic_totals[old_topic] -= 1 doc_topic_counts[old_topic] -= 1 ### ### SAMPLING DISTRIBUTION ### ## Does this topic occur often in the document? topic_probs = (doc_topic_counts + doc_smoothing) / (doc_length + num_topics * doc_smoothing) ## Does this word occur often in the topic? topic_probs *= (word_topic_counts + word_smoothing) / (topic_totals + smoothing_times_vocab_size) ## sample from an array that doesn't sum to 1.0 sample = random.uniform(0, np.sum(topic_probs)) new_topic = 0 while sample > topic_probs[new_topic]: sample -= topic_probs[new_topic] new_topic += 1 ## add back in the effect of this token word_topic_counts[new_topic] += 1 topic_totals[new_topic] += 1 doc_topic_counts[new_topic] += 1 token_topic["topic"] = new_topic end = timer() print(end - start) def entropy(p): ## make sure the vector is a valid probability distribution p = p / np.sum(p) result = 0.0 for x in p: if x > 0.0: result += -x * math.log2(x) return result def print_topic(topic): sorted_words = sorted(vocabulary, key=lambda w: word_topics[w][topic], reverse=True) for i in range(20): w = sorted_words[i] print("{}\t{}".format(word_topics[w][topic], w)) def print_all_topics(): for topic in range(num_topics): sorted_words = sorted(vocabulary, key=lambda w: word_topics[w][topic], reverse=True) print(" ".join(sorted_words[:20])) sample(100)
# -*- coding: utf-8 -*- from typing import List def check_strict_superset(raw_str: str, raw_arr: List[str]) -> bool: """ >>> check_strict_superset('1 2 3 4 5 6 7 8 9 10 11 12 23 45 84 78', ... ['1 2 3 4 5\\n', '100 11 12']) False """ superset = set(raw_str.split()) sets = (set(el.split()) for el in map(str.strip, raw_arr)) return all(superset > el for el in sets) if __name__ == '__main__': import sys raw_str, *raw_arr = sys.stdin.readlines() print(check_strict_superset(raw_str, raw_arr))
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.urls import reverse from django.db import models import uuid class Job(models.Model): """ Holds the details about the job run """ slug = models.SlugField(blank=True, null=True) created_date = models.DateTimeField(db_index=True, auto_now_add=True) finished_date = models.DateTimeField(blank=True, null=True) org_id = models.CharField(max_length=18) username = models.CharField(max_length=120, blank=True, null=True) email = models.EmailField(blank=True, null=True) email_result = models.BooleanField(default=True) access_token = models.CharField(max_length=255) instance_url = models.CharField(max_length=255) STATUS_CHOICES = ( ('Not Started', 'Not Started'), ('Processing', 'Processing'), ('Finished', 'Finished'), ('Error', 'Error'), ) status = models.CharField(max_length=40, choices=STATUS_CHOICES, default='Not Started') error = models.TextField(blank=True, null=True) stack_trace = models.TextField(blank=True, null=True) def classes(self): return self.apexclass_set.all().order_by('name') def visualforce(self): return self.apexpagecomponent_set.all().order_by('name') def save(self, *args, **kwargs): if not self.slug: self.slug = uuid.uuid4() super(Job, self).save(*args, **kwargs) def get_absolute_url(self): return reverse('job', kwargs={'slug': self.slug}) class ApexClass(models.Model): """ Holds all details about an ApexClass """ job = models.ForeignKey(Job) class_id = models.CharField(max_length=18) class_member_id = models.CharField(max_length=18, blank=True, null=True) name = models.CharField(max_length=120) body = models.TextField() symbol_table_json = models.TextField(blank=True, null=True) is_referenced_externally = models.BooleanField(default=False) # Holds a JSON structure of all the external classes that call this class referenced_by_json = models.TextField(blank=True, null=True) class Meta: ordering = ['name'] def __unicode__(self): return self.name class ApexPageComponent(models.Model): """ Hold details about an ApexPage """ job = models.ForeignKey(Job) sf_id = models.CharField(max_length=18) name = models.CharField(max_length=120) controller = models.CharField(max_length=120, blank=True, null=True) body = models.TextField() TYPE_CHOICES = ( ('Page', 'Page'), ('Component', 'Component'), ) type = models.CharField(max_length=10, default='Page') class Meta: ordering = ['name'] def __unicode__(self): return self.name
import torchvision.models as models from torch.nn import Parameter from utility.util import * import torch import torch.nn as nn class GraphConvolution(nn.Module): def __init__(self, in_features, out_features, bias=False): super(GraphConvolution, self).__init__() self.in_features = in_features self.out_features = out_features self.weight = Parameter(torch.Tensor(in_features, out_features)) if bias: self.bias = Parameter(torch.Tensor(1, 1, out_features)) else: self.register_parameter('bias', None) self.reset_parameters() def reset_parameters(self): stdv = 1. / math.sqrt(self.weight.size(1)) self.weight.data.uniform_(-stdv, stdv) if self.bias is not None: self.bias.data.uniform_(-stdv, stdv) def forward(self, input, adj): support = torch.matmul(input, self.weight) output = torch.matmul(adj, support) if self.bias is not None: return output + self.bias else: return output def __repr__(self): return self.__class__.__name__ + ' (' \ + str(self.in_features) + ' -> ' \ + str(self.out_features) + ')' class GCNResnet(nn.Module): def __init__(self, model, num_classes, in_channel=300, t=0, adj_file=None): super(GCNResnet, self).__init__() self.features = nn.Sequential( model.conv1, model.bn1, model.relu, model.maxpool, model.layer1, model.layer2, model.layer3, model.layer4, ) self.num_classes = num_classes # self.pooling = nn.MaxPool2d(14, 14) self.pooling = nn.MaxPool2d(7, 7) self.gc1 = GraphConvolution(in_channel, 1024) self.gc2 = GraphConvolution(1024, 2048) self.relu = nn.LeakyReLU(0.2) _adj = gen_A(num_classes, t, adj_file) self.A = Parameter(torch.from_numpy(_adj).float()) # # image normalization self.image_normalization_mean = [0.485, 0.456, 0.406] self.image_normalization_std = [0.229, 0.224, 0.225] def forward(self, feature, inp): feature = self.features(feature) feature = self.pooling(feature) feature = feature.view(feature.size(0), -1) inp = inp[0] adj = gen_adj(self.A).detach() x = self.gc1(inp, adj) x = self.relu(x) x = self.gc2(x, adj) x = x.transpose(0, 1) x = torch.matmul(feature, x) return x def get_config_optim(self, lr, lrp): return [ {'params': self.features.parameters(), 'lr': lr * lrp}, {'params': self.gc1.parameters(), 'lr': lr}, {'params': self.gc2.parameters(), 'lr': lr}, ] def gcn_resnet101(num_classes, t, pretrained=True, adj_file=None, in_channel=300): model = models.resnet101(pretrained=pretrained) return GCNResnet(model, num_classes, t=t, adj_file=adj_file, in_channel=in_channel)
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Given two int values, return their sum. Unless the two values are the same, then return double their sum. sum_double(1, 2) → 3 sum_double(3, 2) → 5 sum_double(2, 2) → 8 """ from utils.args_to_r import validate def main(a: int, b: int) -> int: s = (a + b) if (a == b): s *= 2 return s tests = [ ((1, 2), 3), ((3, 2), 5), ((2, 2), 8), ] validate(main, tests)
""" Provide basic functionality for stock agent to interact with exchange. """ from typing import Union from agent_exchange.agent import Agent from stock_exchange_v1_utils import dict_repr, dict_str from stock_exchange_v1 import StockExchangeV1FillTicket, StockExchangeV1OrderBook class StockAgentV1InternalState: def __init__(self, initial_num_shares: int, initial_capital: float): self.num_shares = [initial_num_shares] self.capital = [initial_capital] # Mappings from price to number of shares self.open_bids = {} self.open_asks = {} def on_timestep_passed(self, fill_ticket: Union[type(None), StockExchangeV1FillTicket]): if fill_ticket != None: new_num_shares, new_capital = self.update_with_fill_ticket(fill_ticket) else: new_num_shares, new_capital = self.get_num_shares(), self.get_capital() self.num_shares.append(new_num_shares) self.capital.append(new_capital) def update_with_fill_ticket(self, ticket: StockExchangeV1FillTicket): """Use the fill ticket to update our state variables. """ # The state updates for after the update -- this should be modified in this function when capital or num_shares changes new_num_shares = self.get_num_shares() new_capital = self.get_capital() # Add new bids for price in ticket.open_bids: StockAgentV1InternalState.increment_or_create(self.open_bids, price, ticket.open_bids[price]) # Add new asks for price in ticket.open_asks: StockAgentV1InternalState.increment_or_create(self.open_asks, price, ticket.open_asks[price]) # Remove old bids that were filled in the past time step for price in ticket.closed_bids: shares_bought = ticket.closed_bids[price] new_num_shares += shares_bought new_capital -= price * shares_bought StockAgentV1InternalState.decrement_and_try_delete(self.open_bids, price, shares_bought) # Remove old asks that were filled in the past time step for price in ticket.closed_asks: shares_sold = ticket.closed_asks[price] new_num_shares -= shares_sold new_capital += price * shares_sold StockAgentV1InternalState.decrement_and_try_delete(self.open_asks, price, shares_sold) return new_num_shares, new_capital def get_num_shares(self): return self.num_shares[-1] def get_capital(self): return self.capital[-1] def __repr__(self): return dict_repr(self) def __str__(self): return dict_str(self) def increment_or_create(D, key, value): """If the key-value pair does not exist yet, then add a new key-value pair with `value` as the value. Otherwise, increment the key's value with `value`. """ key = round(key, 2) if key not in D: D[key] = 0 D[key] += value if D[key] == 0: del D[key] def decrement_and_try_delete(D, key, value): """Decrement a value in a dictionary, and if the new value is 0, then delete the k-v pair from the dictionary. """ key = round(key, 2) if key not in D: D[key] = 0 D[key] -= value if D[key] == 0: del D[key] class StockAgentV1(Agent): """A base stock trading agent; this agent itself will perform no-ops each iteration. """ def __init__(self, initial_num_shares, initial_capital): super().__init__() self.internal_state = StockAgentV1InternalState(initial_num_shares, initial_capital) def action_results_update( self, new_order_book: StockExchangeV1OrderBook, reward, done: bool, fill_ticket: Union[type(None), StockExchangeV1FillTicket]): self.internal_state.on_timestep_passed(fill_ticket) def get_num_shares(self): return self.internal_state.get_num_shares() def get_capital(self): return self.internal_state.get_capital() def __repr__(self): return dict_repr(self) def __str__(self): return dict_str(self)
from django.conf.urls import patterns, url account_urls = patterns('', url(r'^$', 'crmapp.accounts.views.account_detail', name = 'account_detail'), url(r'^edit/$', 'crmapp.accounts.views.account_cru', name = 'account_update'), )
""" Copyright (c) 2020 COTOBA DESIGN, Inc. Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ from programytest.parser.pattern.matching.base import PatternMatcherBaseClass class PatternMatcherSetTests(PatternMatcherBaseClass): def test_basic_set_match_as_text(self): if self._client_context.brain.sets.contains("SEX") is False: set_dict = {"MAN": [["MAN"]], "WOMAN": [["WOMAN"]]} values = {"MAN": "MAN", "WOMAN": "WOMAN"} self._client_context.brain._sets_collection.add_set("SEX", set_dict, "teststore", False, values) self.add_pattern_to_graph(pattern="I AM A <set>sex</set>", topic="X", that="Y", template="1") context = self.match_sentence("I AM A MAN", topic="X", that="Y") self.assertIsNotNone(context) self.assertIsNotNone(context.template_node()) self.assertEqual("1", context.template_node().template.word) self.assertEqual("MAN", context.star(1)) context = self.match_sentence("I AM A WOMAN", topic="X", that="Y") self.assertIsNotNone(context) self.assertIsNotNone(context.template_node()) self.assertEqual("1", context.template_node().template.word) self.assertEqual("WOMAN", context.star(1)) def test_basic_set_match_as_name(self): if self._client_context.brain.sets.contains("SEX") is False: set_dict = {"MAN": [["MAN"]], "WOMAN": [["WOMAN"]]} values = {"MAN": "MAN", "WOMAN": "WOMAN"} self._client_context.brain._sets_collection.add_set("SEX", set_dict, "teststore", False, values) self.add_pattern_to_graph(pattern='I AM A <set name="sex" />', topic="X", that="Y", template="1") context = self.match_sentence("I AM A MAN", topic="X", that="Y") self.assertIsNotNone(context) self.assertIsNotNone(context.template_node()) self.assertEqual("1", context.template_node().template.word) self.assertEqual("MAN", context.star(1)) context = self.match_sentence("I AM A WOMAN", topic="X", that="Y") self.assertIsNotNone(context) self.assertIsNotNone(context.template_node()) self.assertEqual("1", context.template_node().template.word) self.assertEqual("WOMAN", context.star(1)) def test_multi_word_set_match(self): set_dict = {"RED": [["RED"], ["RED", "AMBER"], ["RED", "BURNT", "OAK"], ["RED", "ORANGE"]]} values = {"RED": "RED", "RED AMBER": "RED AMBER", "RED BURNT OAK": "RED BURNT OAK", "RED ORANGE": "RED ORANGE"} self._client_context.brain._sets_collection.add_set("COLOR", set_dict, "teststore", False, values) self.add_pattern_to_graph(pattern="I LIKE <set>color</set> *", topic="*", that="*", template="1") context = self.match_sentence("I LIKE RED PAINT", topic="*", that="*") self.assertIsNotNone(context) self.assertIsNotNone(context.template_node()) self.assertEqual("1", context.template_node().template.word) self.assertEqual("RED", context.star(1)) self.assertEqual("PAINT", context.star(2)) context = self.match_sentence("I LIKE RED AMBER CARS", topic="*", that="*") self.assertIsNotNone(context) self.assertIsNotNone(context.template_node()) self.assertEqual("1", context.template_node().template.word) self.assertEqual("RED AMBER", context.star(1)) self.assertEqual("CARS", context.star(2)) context = self.match_sentence("I LIKE RED BURNT OAK MOTOR BIKES", topic="*", that="*") self.assertIsNotNone(context) self.assertIsNotNone(context.template_node()) self.assertEqual("1", context.template_node().template.word) self.assertEqual("RED BURNT OAK", context.star(1)) self.assertEqual("MOTOR BIKES", context.star(2)) def test_multi_word_match_value(self): set_dict = {"RED": [["RED"], ["RED", "AMBER"], ["RED", "BURNT", "OAK"], ["RED", "ORANGE"]]} values = {"RED": "red", "RED AMBER": "red amber", "RED BURNT OAK": "red burnt oak", "RED ORANGE": "red orange"} self._client_context.brain._sets_collection.add_set("COLOR", set_dict, "teststore", False, values) self.add_pattern_to_graph(pattern="i like <set>color</set> *", topic="*", that="*", template="1") context = self.match_sentence("I LIKE RED PAINT", topic="*", that="*") self.assertIsNotNone(context) self.assertIsNotNone(context.template_node()) self.assertEqual("1", context.template_node().template.word) self.assertEqual("red", context.star(1)) self.assertEqual("PAINT", context.star(2)) context = self.match_sentence("I LIKE RED AMBER CARS", topic="*", that="*") self.assertIsNotNone(context) self.assertIsNotNone(context.template_node()) self.assertEqual("1", context.template_node().template.word) self.assertEqual("red amber", context.star(1)) self.assertEqual("CARS", context.star(2)) context = self.match_sentence("I LIKE RED BURNT OAK MOTOR BIKES", topic="*", that="*") self.assertIsNotNone(context) self.assertIsNotNone(context.template_node()) self.assertEqual("1", context.template_node().template.word) self.assertEqual("red burnt oak", context.star(1)) self.assertEqual("MOTOR BIKES", context.star(2)) def test_basic_set_match_as_text_jp(self): if self._client_context.brain.sets.contains("SEX") is False: set_dict = {"男": ["男", "男性"], "女": ["女", "女性"]} values = {"男": "男", "男性": "男性", "女": "女", "女性": "女性"} self._client_context.brain._sets_collection.add_set("SEX", set_dict, "teststore", True, values) self.add_pattern_to_graph(pattern="私は <set>sex</set>", topic="X", that="Y", template="1") context = self.match_sentence("私は男性", topic="X", that="Y") self.assertIsNotNone(context) self.assertIsNotNone(context.template_node()) self.assertEqual("1", context.template_node().template.word) self.assertEqual("男性", context.star(1)) context = self.match_sentence("私は女", topic="X", that="Y") self.assertIsNotNone(context) self.assertIsNotNone(context.template_node()) self.assertEqual("1", context.template_node().template.word) self.assertEqual("女", context.star(1)) def test_basic_set_match_as_name_jp(self): if self._client_context.brain.sets.contains("SEX") is False: set_dict = {"男": ["男", "男性"], "女": ["女", "女性"]} values = {"男": "男", "男性": "男性", "女": "女", "女性": "女性"} self._client_context.brain._sets_collection.add_set("SEX", set_dict, "teststore", True, values) self.add_pattern_to_graph(pattern='私は <set name="sex" />', topic="X", that="Y", template="1") context = self.match_sentence("私は男", topic="X", that="Y") self.assertIsNotNone(context) self.assertIsNotNone(context.template_node()) self.assertEqual("1", context.template_node().template.word) self.assertEqual("男", context.star(1)) context = self.match_sentence("私は女性", topic="X", that="Y") self.assertIsNotNone(context) self.assertIsNotNone(context.template_node()) self.assertEqual("1", context.template_node().template.word) self.assertEqual("女性", context.star(1)) def test_multi_word_set_match_jp(self): set_dict = {"赤": ["赤", "赤色", "赤黒い", "赤面", "赤に塗った"]} values = {"赤": "赤", "赤色": "赤色", "赤黒い": "赤黒い", "赤面": "赤面", "赤に塗った": "赤に塗った"} self._client_context.brain._sets_collection.add_set("COLOR", set_dict, "teststore", True, values) self.add_pattern_to_graph(pattern="私が好きなのは<set>color</set> *", topic="*", that="*", template="1") context = self.match_sentence("私が好きなのは赤系統", topic="*", that="*") self.assertIsNotNone(context) self.assertIsNotNone(context.template_node()) self.assertEqual("1", context.template_node().template.word) self.assertEqual("赤", context.star(1)) self.assertEqual("系統", context.star(2)) context = self.match_sentence("私が好きなのは赤黒い車", topic="*", that="*") self.assertIsNotNone(context) self.assertIsNotNone(context.template_node()) self.assertEqual("1", context.template_node().template.word) self.assertEqual("赤黒い", context.star(1)) self.assertEqual("車", context.star(2)) context = self.match_sentence("私が好きなのは赤に塗ったバイク", topic="*", that="*") self.assertIsNotNone(context) self.assertIsNotNone(context.template_node()) self.assertEqual("1", context.template_node().template.word) self.assertEqual("赤に塗った", context.star(1)) self.assertEqual("バイク", context.star(2)) def test_basic_set_number_match(self): self._client_context.brain.dynamics.add_dynamic_set('number', "programy.dynamic.sets.numeric.IsNumeric", None) self.add_pattern_to_graph(pattern="I AM <set>number</set> YEARS OLD", topic="X", that="Y", template="1") context = self.match_sentence("I AM 49 YEARS OLD", topic="X", that="Y") self.assertIsNotNone(context) self.assertIsNotNone(context.template_node()) self.assertEqual("1", context.template_node().template.word) self.assertEqual("49", context.star(1))
""" This library contains utilities to use authentication and authorization features of the DCP. """ from typing import List from .dcp_service_account import DCPServiceAccountManager from ..errors import SecurityException security_config_not_set_error = "security configuration not set for {}. Use Config.setup() to set." OIDC_claims = { 'email': 'https://auth.data.humancellatlas.org/email', 'group': 'https://auth.data.humancellatlas.org/group' } allowed_algorithms = ['RS256'] # for encrypting and decrypting a JWT class Config: _openid_provider = "humancellatlas.auth0.com" _auth_provider = "https://auth.data.humancellatlas.org" _trusted_google_projects = None _oidc_email_claim = 'https://auth.data.humancellatlas.org/email' @staticmethod def setup(trusted_google_projects: List[str], *, openid_provider: str = None, auth_url: str = None): """ Set the configuration values :param trusted_google_projects: trust service account project domains to allow access to your service. :param openid_provider: the openid provider used to authenticate users. :param auth_url: The url for the DCP authentication and authorization provider. :return: """ Config._openid_provider = openid_provider or Config._openid_provider Config._auth_url = auth_url or Config._auth_provider Config._trusted_google_projects = [x for x in trusted_google_projects if x.endswith("iam.gserviceaccount.com")] @staticmethod def get_openid_provider() -> str: if not Config._openid_provider: raise SecurityException(security_config_not_set_error.format('openid_provider')) return Config._openid_provider @staticmethod def get_auth_url() -> str: if not Config._auth_url: raise SecurityException(security_config_not_set_error.format('auth_url')) return Config._auth_url @staticmethod def get_trusted_google_projects(): if Config._trusted_google_projects is None: raise SecurityException(security_config_not_set_error.format('trusted_google_projects')) return Config._trusted_google_projects @staticmethod def get_oidc_email_claim(): return Config._oidc_email_claim
#!/usr/bin/env python import torch import getopt import math import numpy import os import PIL import PIL.Image import sys try: from .correlation import correlation # the custom cost volume layer except: sys.path.insert(0, './correlation'); import correlation # you should consider upgrading python # end ########################################################## assert(int(str('').join(torch.__version__.split('.')[0:2])) >= 13) # requires at least pytorch version 1.3.0 torch.set_grad_enabled(False) # make sure to not compute gradients for computational performance torch.backends.cudnn.enabled = True # make sure to use cudnn for computational performance ########################################################## arguments_strModel = 'default' # 'default', or 'chairs-things' arguments_strOne = './images/one.png' arguments_strTwo = './images/two.png' arguments_strOut = './out.flo' for strOption, strArgument in getopt.getopt(sys.argv[1:], '', [ strParameter[2:] + '=' for strParameter in sys.argv[1::2] ])[0]: if strOption == '--model' and strArgument != '': arguments_strModel = strArgument # which model to use if strOption == '--one' and strArgument != '': arguments_strOne = strArgument # path to the first frame if strOption == '--two' and strArgument != '': arguments_strTwo = strArgument # path to the second frame if strOption == '--out' and strArgument != '': arguments_strOut = strArgument # path to where the output should be stored # end ########################################################## backwarp_tenGrid = {} backwarp_tenPartial = {} def backwarp(tenInput, tenFlow): if str(tenFlow.shape) not in backwarp_tenGrid: tenHor = torch.linspace(-1.0 + (1.0 / tenFlow.shape[3]), 1.0 - (1.0 / tenFlow.shape[3]), tenFlow.shape[3]).view(1, 1, 1, -1).expand(-1, -1, tenFlow.shape[2], -1) tenVer = torch.linspace(-1.0 + (1.0 / tenFlow.shape[2]), 1.0 - (1.0 / tenFlow.shape[2]), tenFlow.shape[2]).view(1, 1, -1, 1).expand(-1, -1, -1, tenFlow.shape[3]) backwarp_tenGrid[str(tenFlow.shape)] = torch.cat([ tenHor, tenVer ], 1).cuda() # end if str(tenFlow.shape) not in backwarp_tenPartial: backwarp_tenPartial[str(tenFlow.shape)] = tenFlow.new_ones([ tenFlow.shape[0], 1, tenFlow.shape[2], tenFlow.shape[3] ]) # end tenFlow = torch.cat([ tenFlow[:, 0:1, :, :] / ((tenInput.shape[3] - 1.0) / 2.0), tenFlow[:, 1:2, :, :] / ((tenInput.shape[2] - 1.0) / 2.0) ], 1) tenInput = torch.cat([ tenInput, backwarp_tenPartial[str(tenFlow.shape)] ], 1) tenOutput = torch.nn.functional.grid_sample(input=tenInput, grid=(backwarp_tenGrid[str(tenFlow.shape)] + tenFlow).permute(0, 2, 3, 1), mode='bilinear', padding_mode='zeros', align_corners=False) tenMask = tenOutput[:, -1:, :, :]; tenMask[tenMask > 0.999] = 1.0; tenMask[tenMask < 1.0] = 0.0 return tenOutput[:, :-1, :, :] * tenMask # end ########################################################## class Network(torch.nn.Module): def __init__(self): super().__init__() class Extractor(torch.nn.Module): def __init__(self): super().__init__() self.netOne = torch.nn.Sequential( torch.nn.Conv2d(in_channels=3, out_channels=16, kernel_size=3, stride=2, padding=1), torch.nn.LeakyReLU(inplace=False, negative_slope=0.1), torch.nn.Conv2d(in_channels=16, out_channels=16, kernel_size=3, stride=1, padding=1), torch.nn.LeakyReLU(inplace=False, negative_slope=0.1), torch.nn.Conv2d(in_channels=16, out_channels=16, kernel_size=3, stride=1, padding=1), torch.nn.LeakyReLU(inplace=False, negative_slope=0.1) ) self.netTwo = torch.nn.Sequential( torch.nn.Conv2d(in_channels=16, out_channels=32, kernel_size=3, stride=2, padding=1), torch.nn.LeakyReLU(inplace=False, negative_slope=0.1), torch.nn.Conv2d(in_channels=32, out_channels=32, kernel_size=3, stride=1, padding=1), torch.nn.LeakyReLU(inplace=False, negative_slope=0.1), torch.nn.Conv2d(in_channels=32, out_channels=32, kernel_size=3, stride=1, padding=1), torch.nn.LeakyReLU(inplace=False, negative_slope=0.1) ) self.netThr = torch.nn.Sequential( torch.nn.Conv2d(in_channels=32, out_channels=64, kernel_size=3, stride=2, padding=1), torch.nn.LeakyReLU(inplace=False, negative_slope=0.1), torch.nn.Conv2d(in_channels=64, out_channels=64, kernel_size=3, stride=1, padding=1), torch.nn.LeakyReLU(inplace=False, negative_slope=0.1), torch.nn.Conv2d(in_channels=64, out_channels=64, kernel_size=3, stride=1, padding=1), torch.nn.LeakyReLU(inplace=False, negative_slope=0.1) ) self.netFou = torch.nn.Sequential( torch.nn.Conv2d(in_channels=64, out_channels=96, kernel_size=3, stride=2, padding=1), torch.nn.LeakyReLU(inplace=False, negative_slope=0.1), torch.nn.Conv2d(in_channels=96, out_channels=96, kernel_size=3, stride=1, padding=1), torch.nn.LeakyReLU(inplace=False, negative_slope=0.1), torch.nn.Conv2d(in_channels=96, out_channels=96, kernel_size=3, stride=1, padding=1), torch.nn.LeakyReLU(inplace=False, negative_slope=0.1) ) self.netFiv = torch.nn.Sequential( torch.nn.Conv2d(in_channels=96, out_channels=128, kernel_size=3, stride=2, padding=1), torch.nn.LeakyReLU(inplace=False, negative_slope=0.1), torch.nn.Conv2d(in_channels=128, out_channels=128, kernel_size=3, stride=1, padding=1), torch.nn.LeakyReLU(inplace=False, negative_slope=0.1), torch.nn.Conv2d(in_channels=128, out_channels=128, kernel_size=3, stride=1, padding=1), torch.nn.LeakyReLU(inplace=False, negative_slope=0.1) ) self.netSix = torch.nn.Sequential( torch.nn.Conv2d(in_channels=128, out_channels=196, kernel_size=3, stride=2, padding=1), torch.nn.LeakyReLU(inplace=False, negative_slope=0.1), torch.nn.Conv2d(in_channels=196, out_channels=196, kernel_size=3, stride=1, padding=1), torch.nn.LeakyReLU(inplace=False, negative_slope=0.1), torch.nn.Conv2d(in_channels=196, out_channels=196, kernel_size=3, stride=1, padding=1), torch.nn.LeakyReLU(inplace=False, negative_slope=0.1) ) # end def forward(self, tenInput): tenOne = self.netOne(tenInput) tenTwo = self.netTwo(tenOne) tenThr = self.netThr(tenTwo) tenFou = self.netFou(tenThr) tenFiv = self.netFiv(tenFou) tenSix = self.netSix(tenFiv) return [ tenOne, tenTwo, tenThr, tenFou, tenFiv, tenSix ] # end # end class Decoder(torch.nn.Module): def __init__(self, intLevel): super().__init__() intPrevious = [ None, None, 81 + 32 + 2 + 2, 81 + 64 + 2 + 2, 81 + 96 + 2 + 2, 81 + 128 + 2 + 2, 81, None ][intLevel + 1] intCurrent = [ None, None, 81 + 32 + 2 + 2, 81 + 64 + 2 + 2, 81 + 96 + 2 + 2, 81 + 128 + 2 + 2, 81, None ][intLevel + 0] if intLevel < 6: self.netUpflow = torch.nn.ConvTranspose2d(in_channels=2, out_channels=2, kernel_size=4, stride=2, padding=1) if intLevel < 6: self.netUpfeat = torch.nn.ConvTranspose2d(in_channels=intPrevious + 128 + 128 + 96 + 64 + 32, out_channels=2, kernel_size=4, stride=2, padding=1) if intLevel < 6: self.fltBackwarp = [ None, None, None, 5.0, 2.5, 1.25, 0.625, None ][intLevel + 1] self.netOne = torch.nn.Sequential( torch.nn.Conv2d(in_channels=intCurrent, out_channels=128, kernel_size=3, stride=1, padding=1), torch.nn.LeakyReLU(inplace=False, negative_slope=0.1) ) self.netTwo = torch.nn.Sequential( torch.nn.Conv2d(in_channels=intCurrent + 128, out_channels=128, kernel_size=3, stride=1, padding=1), torch.nn.LeakyReLU(inplace=False, negative_slope=0.1) ) self.netThr = torch.nn.Sequential( torch.nn.Conv2d(in_channels=intCurrent + 128 + 128, out_channels=96, kernel_size=3, stride=1, padding=1), torch.nn.LeakyReLU(inplace=False, negative_slope=0.1) ) self.netFou = torch.nn.Sequential( torch.nn.Conv2d(in_channels=intCurrent + 128 + 128 + 96, out_channels=64, kernel_size=3, stride=1, padding=1), torch.nn.LeakyReLU(inplace=False, negative_slope=0.1) ) self.netFiv = torch.nn.Sequential( torch.nn.Conv2d(in_channels=intCurrent + 128 + 128 + 96 + 64, out_channels=32, kernel_size=3, stride=1, padding=1), torch.nn.LeakyReLU(inplace=False, negative_slope=0.1) ) self.netSix = torch.nn.Sequential( torch.nn.Conv2d(in_channels=intCurrent + 128 + 128 + 96 + 64 + 32, out_channels=2, kernel_size=3, stride=1, padding=1) ) # end def forward(self, tenOne, tenTwo, objPrevious): tenFlow = None tenFeat = None if objPrevious is None: tenFlow = None tenFeat = None tenVolume = torch.nn.functional.leaky_relu(input=correlation.FunctionCorrelation(tenOne=tenOne, tenTwo=tenTwo), negative_slope=0.1, inplace=False) tenFeat = torch.cat([ tenVolume ], 1) elif objPrevious is not None: tenFlow = self.netUpflow(objPrevious['tenFlow']) tenFeat = self.netUpfeat(objPrevious['tenFeat']) tenVolume = torch.nn.functional.leaky_relu(input=correlation.FunctionCorrelation(tenOne=tenOne, tenTwo=backwarp(tenInput=tenTwo, tenFlow=tenFlow * self.fltBackwarp)), negative_slope=0.1, inplace=False) tenFeat = torch.cat([ tenVolume, tenOne, tenFlow, tenFeat ], 1) # end tenFeat = torch.cat([ self.netOne(tenFeat), tenFeat ], 1) tenFeat = torch.cat([ self.netTwo(tenFeat), tenFeat ], 1) tenFeat = torch.cat([ self.netThr(tenFeat), tenFeat ], 1) tenFeat = torch.cat([ self.netFou(tenFeat), tenFeat ], 1) tenFeat = torch.cat([ self.netFiv(tenFeat), tenFeat ], 1) tenFlow = self.netSix(tenFeat) return { 'tenFlow': tenFlow, 'tenFeat': tenFeat } # end # end class Refiner(torch.nn.Module): def __init__(self): super().__init__() self.netMain = torch.nn.Sequential( torch.nn.Conv2d(in_channels=81 + 32 + 2 + 2 + 128 + 128 + 96 + 64 + 32, out_channels=128, kernel_size=3, stride=1, padding=1, dilation=1), torch.nn.LeakyReLU(inplace=False, negative_slope=0.1), torch.nn.Conv2d(in_channels=128, out_channels=128, kernel_size=3, stride=1, padding=2, dilation=2), torch.nn.LeakyReLU(inplace=False, negative_slope=0.1), torch.nn.Conv2d(in_channels=128, out_channels=128, kernel_size=3, stride=1, padding=4, dilation=4), torch.nn.LeakyReLU(inplace=False, negative_slope=0.1), torch.nn.Conv2d(in_channels=128, out_channels=96, kernel_size=3, stride=1, padding=8, dilation=8), torch.nn.LeakyReLU(inplace=False, negative_slope=0.1), torch.nn.Conv2d(in_channels=96, out_channels=64, kernel_size=3, stride=1, padding=16, dilation=16), torch.nn.LeakyReLU(inplace=False, negative_slope=0.1), torch.nn.Conv2d(in_channels=64, out_channels=32, kernel_size=3, stride=1, padding=1, dilation=1), torch.nn.LeakyReLU(inplace=False, negative_slope=0.1), torch.nn.Conv2d(in_channels=32, out_channels=2, kernel_size=3, stride=1, padding=1, dilation=1) ) # end def forward(self, tenInput): return self.netMain(tenInput) # end # end self.netExtractor = Extractor() self.netTwo = Decoder(2) self.netThr = Decoder(3) self.netFou = Decoder(4) self.netFiv = Decoder(5) self.netSix = Decoder(6) self.netRefiner = Refiner() self.load_state_dict({ strKey.replace('module', 'net'): tenWeight for strKey, tenWeight in torch.hub.load_state_dict_from_url(url='http://content.sniklaus.com/github/pytorch-pwc/network-' + arguments_strModel + '.pytorch', file_name='pwc-' + arguments_strModel).items() }) # end def forward(self, tenOne, tenTwo): tenOne = self.netExtractor(tenOne) tenTwo = self.netExtractor(tenTwo) objEstimate = self.netSix(tenOne[-1], tenTwo[-1], None) objEstimate = self.netFiv(tenOne[-2], tenTwo[-2], objEstimate) objEstimate = self.netFou(tenOne[-3], tenTwo[-3], objEstimate) objEstimate = self.netThr(tenOne[-4], tenTwo[-4], objEstimate) objEstimate = self.netTwo(tenOne[-5], tenTwo[-5], objEstimate) return (objEstimate['tenFlow'] + self.netRefiner(objEstimate['tenFeat'])) * 20.0 # end # end netNetwork = None ########################################################## def estimate(tenOne, tenTwo): global netNetwork if netNetwork is None: netNetwork = Network().cuda().eval() # end assert(tenOne.shape[1] == tenTwo.shape[1]) assert(tenOne.shape[2] == tenTwo.shape[2]) intWidth = tenOne.shape[2] intHeight = tenOne.shape[1] assert(intWidth == 1360) # remember that there is no guarantee for correctness, comment this line out if you acknowledge this and want to continue assert(intHeight == 1000) # remember that there is no guarantee for correctness, comment this line out if you acknowledge this and want to continue tenPreprocessedOne = tenOne.cuda().view(1, 3, intHeight, intWidth) tenPreprocessedTwo = tenTwo.cuda().view(1, 3, intHeight, intWidth) intPreprocessedWidth = int(math.floor(math.ceil(intWidth / 64.0) * 64.0)) intPreprocessedHeight = int(math.floor(math.ceil(intHeight / 64.0) * 64.0)) tenPreprocessedOne = torch.nn.functional.interpolate(input=tenPreprocessedOne, size=(intPreprocessedHeight, intPreprocessedWidth), mode='bilinear', align_corners=False) tenPreprocessedTwo = torch.nn.functional.interpolate(input=tenPreprocessedTwo, size=(intPreprocessedHeight, intPreprocessedWidth), mode='bilinear', align_corners=False) tenFlow = torch.nn.functional.interpolate(input=netNetwork(tenPreprocessedOne, tenPreprocessedTwo), size=(intHeight, intWidth), mode='bilinear', align_corners=False) tenFlow[:, 0, :, :] *= float(intWidth) / float(intPreprocessedWidth) tenFlow[:, 1, :, :] *= float(intHeight) / float(intPreprocessedHeight) return tenFlow[0, :, :, :].cpu() # end ########################################################## if __name__ == '__main__': tenOne = torch.FloatTensor(numpy.ascontiguousarray(numpy.array(PIL.Image.open(arguments_strOne))[:, :, ::-1].transpose(2, 0, 1).astype(numpy.float32) * (1.0 / 255.0))) tenTwo = torch.FloatTensor(numpy.ascontiguousarray(numpy.array(PIL.Image.open(arguments_strTwo))[:, :, ::-1].transpose(2, 0, 1).astype(numpy.float32) * (1.0 / 255.0))) tenOutput = estimate(tenOne, tenTwo) objOutput = open(arguments_strOut, 'wb') numpy.array([ 80, 73, 69, 72 ], numpy.uint8).tofile(objOutput) numpy.array([ tenOutput.shape[2], tenOutput.shape[1] ], numpy.int32).tofile(objOutput) numpy.array(tenOutput.numpy().transpose(1, 2, 0), numpy.float32).tofile(objOutput) objOutput.close() # end
import I2C_LCD_driver mylcd1 = I2C_LCD_driver.lcd(0x27) mylcd1.lcd_display_string("Naresh's Status:", 1)
from django.http import HttpResponse, HttpResponsePermanentRedirect from django.shortcuts import render, redirect from rest_framework.generics import CreateAPIView, RetrieveAPIView from rest_framework.authtoken.models import Token from rest_framework.authtoken.views import ObtainAuthToken from rest_framework.permissions import AllowAny, IsAuthenticated from rest_framework.authentication import SessionAuthentication, BasicAuthentication, BaseAuthentication from rest_framework.response import Response from rest_framework.views import APIView from rest_framework import status from django.contrib.auth.hashers import check_password from .paginations import * from .models import * from .serializers import * from .helper_functions import * from django.utils import timezone from rest_framework.parsers import JSONParser from django.contrib.auth.forms import UserCreationForm from django.contrib import messages from django.contrib.auth import get_user_model, authenticate from django.contrib.auth.models import User from .forms import * import os import json import uuid from base64 import b64decode from uuid import uuid4 def serializePost(post): postDict = {} postDict['author'] = serializeAuthor(post.author) postDict['title'] = post.title postDict['source'] = post.source postDict['origin'] = post.origin postDict['description'] = post.description postDict['contentType'] = post.contentType postDict['content'] = post.content postDict['categories'] = post.categories # postDict['count'] = 'COUNT' # postDict['size'] = 'SIZE' # postDict['next'] = 'NEXT' comments = Comment.objects.filter(post=post) postDict['comments'] = [] for comment in comments: postDict['comments'].append(serializeComment(comment)) postDict['published'] = post.published postDict['id'] = post.uuid postDict['visibility'] = post.visibility postDict['visibleTo'] = [] postDict['unlisted'] = post.unlisted return postDict def serializeComment(comment): commentDict = {} commentDict['author'] = serializeAuthor(comment.author) commentDict['comment'] = comment.comment commentDict['contentType'] = comment.contentType commentDict['published'] = comment.published commentDict['id'] = comment.uuid return commentDict def serializeAuthor(author): authorDict = {} authorDict['id'] = str(author.host.hostname) + \ 'author/' + str(author.uuid) authorDict['host'] = author.host.hostname authorDict['displayName'] = author.displayName authorDict['github'] = author.github authorDict['url'] = str(author.host.hostname) + \ 'author/' + str(author.uuid) authorDict['bio'] = author.bio authorDict['firstName'] = author.first_name authorDict['lastName'] = author.last_name authorDict['email'] = author.email return authorDict class NodeBasicAuth(BaseAuthentication): def authenticate(self, request): try: auth = request.META['HTTP_AUTHORIZATION'].split() if auth[0].lower() == "basic": server_name, server_password = b64decode(auth[1]).decode().split(':') node = Node.objects.get(server_name=server_name, server_password=server_password) if node: return (Author.objects.get(username='warren'), None) raise except: return None class CreateAuthorAPIView(CreateAPIView): authentication_classes = [SessionAuthentication, BasicAuthentication] permission_classes = [AllowAny] serializer_class = CreateAuthorSerializer def create(self, request, *args, **kwargs): print(request.data) serializer = self.get_serializer(data=request.data) # print(serializer) serializer.is_valid(raise_exception=True) print("VALID") self.perform_create(serializer) headers = self.get_success_headers(serializer.data) print(request.user) print(request.auth) return Response( {**serializer.data}, status=status.HTTP_201_CREATED, headers=headers ) class GetAllAuthorsAPIView(APIView): def get(self, request): authors = Author.objects.filter(host=settings.HOSTNAME) authors = list(map(serializeAuthor, authors)) return Response(authors, status=status.HTTP_200_OK) class LogoutView(APIView): authentication_classes = [SessionAuthentication, BasicAuthentication] permission_classes = [IsAuthenticated] def get(self, request, format=None): request.user.auth_token.delete() return Response(status=status.HTTP_200_OK) class EditUserView(APIView): authentication_classes = [SessionAuthentication, BasicAuthentication] permission_classes = [IsAuthenticated] serializer = AuthorSerializer def put(self, request, pk, format=None): if request.user.uuid != pk: return Response(status=status.HTTP_403_FORBIDDEN) author = Author.objects.get(pk=pk) serializer = AuthorSerializer( instance=author, data=request.data, partial=True) serializer.is_valid(raise_exception=True) serializer.save() return Response(serializer.data) class GetAuthorAPIView(APIView): authentication_classes = [SessionAuthentication, BasicAuthentication] # permission_classes = [IsAuthenticated] serializer_class = AuthorSerializer def get(self, request, pk, format=None): try: author = Author.objects.get(uuid=pk) except: return Response(status=status.HTTP_404_NOT_FOUND) authorDict = serializeAuthor(author) friendList = [] asAuthor = Friend.objects.filter(author=author) asFriend = Friend.objects.filter(friend=author) friendList += list(map(lambda x: serializeAuthor(x.friend), asAuthor)) friendList += list(map(lambda x: serializeAuthor(x.author), asFriend)) authorDict['friends'] = friendList return Response(authorDict, status=status.HTTP_200_OK) class CreatePostAPIView(CreateAPIView): authentication_classes = [SessionAuthentication, BasicAuthentication] # permission_classes = [IsAuthenticated] serializer_class = CreatePostSerializer def create(self, request, pk): data = request.data.copy() data['author'] = pk serializer = self.get_serializer(data=data) serializer.is_valid(raise_exception=True) self.perform_create(serializer) headers = self.get_success_headers(serializer.data) return Response( {**serializer.data}, status=status.HTTP_201_CREATED, headers=headers ) class GetPostAPIView(APIView): authentication_classes = [SessionAuthentication, BasicAuthentication] # permission_classes = [IsAuthenticated] serializer_class = GetPostSerializer def get(self, request, pk, format=None): post = Post.objects.get(uuid=pk) postDict = serializePost(post) if post.visibility == 'PUBLIC': return Response(postDict, status=status.HTTP_200_OK) elif str(request.user) == 'AnonymousUser': return Response(status=status.HTTP_401_UNAUTHORIZED) elif post.visibility == 'FRIENDS': friendsUUIDList = [] for friend in Friend.objects.filter(author=post.author.uuid): friendsUUIDList.append(friend.friend.uuid) for friend in Friend.objects.filter(friend=post.author.uuid): friendsUUIDList.append(friend.author.uuid) if request.user.uuid in friendsUUIDList: return Response(postDict, status=status.HTTP_200_OK) elif post.visibility == 'FOAF': friendsUUIDList = [] for friend in Friend.objects.filter(author=post.author.uuid): friendsUUIDList.append(friend.friend.uuid) for friend in Friend.objects.filter(friend=post.author.uuid): friendsUUIDList.append(friend.author.uuid) foafUUIDList = [] for friendUUID in friendsUUIDList: tempAuthor = Author.objects.get(uuid=friendUUID) for innerFriend in Friend.objects.filter(author=tempAuthor): if innerFriend.friend.uuid not in foafUUIDList: foafUUIDList.append(innerFriend.friend.uuid) for innerFriend in Friend.objects.filter(friend=tempAuthor): if innerFriend.friend.uuid not in foafUUIDList: foafUUIDList.append(innerFriend.author.uuid) foafUUIDList.append(friendsUUIDList) if request.user.uuid in foafUUIDList: return Response(postDict, status=status.HTTP_200_OK) elif post.visibility == 'PRIVATE': if request.user == post.author: return Response(postDict, status=status.HTTP_200_OK) elif post.visibility == 'SERVERONLY': if request.user.host == post.host: return Response(postDict, status=status.HTTP_200_OK) return Response(status=status.HTTP_401_UNAUTHORIZED) # Returns Post by sending POST request def post(self, request, pk, format=None): try: post = Post.objects.get(uuid=request.data['postid']) postDict = serializePost(post) except: print("EXCEPTION") return Response(status=status.HTTP_404_NOT_FOUND) userUUID = request.data['author']['id'].split('/author/')[1] requestor = Author.objects.get(uuid=userUUID) if post.visibility == 'PUBLIC': return Response(postDict, status=status.HTTP_200_OK) elif post.visibility == 'FRIENDS': friendsUUIDList = [] for friend in Friend.objects.filter(author=post.author.uuid): friendsUUIDList.append(friend.friend.uuid) for friend in Friend.objects.filter(friend=post.author.uuid): friendsUUIDList.append(friend.author.uuid) if requestor.uuid in friendsUUIDList: return Response(postDict, status=status.HTTP_200_OK) elif post.visibility == 'FOAF': friendsUUIDList = [] for friend in Friend.objects.filter(author=post.author.uuid): friendsUUIDList.append(friend.friend.uuid) for friend in Friend.objects.filter(friend=post.author.uuid): friendsUUIDList.append(friend.author.uuid) foafUUIDList = [] for friendUUID in friendsUUIDList: tempAuthor = Author.objects.get(uuid=friendUUID) for innerFriend in Friend.objects.filter(author=tempAuthor): if innerFriend.friend.uuid not in foafUUIDList: foafUUIDList.append(innerFriend.friend.uuid) for innerFriend in Friend.objects.filter(friend=tempAuthor): if innerFriend.friend.uuid not in foafUUIDList: foafUUIDList.append(innerFriend.author.uuid) foafUUIDList.append(friendsUUIDList) if requestor.uuid in foafUUIDList: return Response(postDict, status=status.HTTP_200_OK) elif post.visibility == 'PRIVATE': if requestor == post.author: return Response(postDict, status=status.HTTP_200_OK) elif post.visibility == 'SERVERONLY': if requestor.host == post.host: return Response(postDict, status=status.HTTP_200_OK) return Response(status=status.HTTP_401_UNAUTHORIZED) class GetAllAuthorPostAPIView(APIView): authentication_classes = [BasicAuthentication, SessionAuthentication] serializer_class = GetPostSerializer # Returns All Author's Posts by sending UUID of Author def get(self, request, pk, format=None): posts = Post.objects.filter(author=pk) posts = posts.filter(visibility='PUBLIC') serializer = GetPostSerializer(posts, many=True) return Response(serializer.data, status=status.HTTP_200_OK) class GetAllAuthorFriendsAPIView(APIView): authentication_classes = [BasicAuthentication, SessionAuthentication] serializer_class = FriendSerializer # Returns All Author's friends def get(self, request, pk, format=None): friendList = [] asAuthor = Friend.objects.filter(author=pk) asFriend = Friend.objects.filter(friend=pk) friendList += list(map(lambda x: serializeAuthor(x.friend), asAuthor)) friendList += list(map(lambda x: serializeAuthor(x.author), asFriend)) return Response(friendList, status=status.HTTP_200_OK) def post(self, request, pk, format=None): requestedAuthor = Author.objects.get(uuid=pk) data = request.data authors = data['authors'] friendsList = [] for author in authors: friends = Friend.objects.filter(author=author).filter(friend=requestedAuthor).union( Friend.objects.filter(author=requestedAuthor).filter(friend=author)) if len(friends) == 1: friendsList.append(author) return Response({ "query": "friends", "author": requestedAuthor.uuid, "authors": friendsList }) class GetAllPublicPostsAPIView(APIView): authentication_classes = [NodeBasicAuth,SessionAuthentication, BasicAuthentication] serializer_class = GetPostSerializer def get(self, request, format=None): posts = Post.objects.filter(visibility='PUBLIC') data = paginated_result( request, posts, GetPostSerializer, 'posts', query='posts') return Response(data, status=status.HTTP_200_OK) class GetAllVisiblePostsAPIView(APIView): authentication_classes = [SessionAuthentication, BasicAuthentication] serializer_class = GetPostSerializer def get(self, request, format=None): user = request.user if str(user) == "AnonymousUser": print("Anonymous user") posts = Post.objects.filter(visibility='PUBLIC') serializer = GetPostSerializer(posts, many=True) return Response(serializer.data, status=status.HTTP_200_OK) else: userUUID = user.uuid print(userUUID) # ------------- # public posts # ------------- filteredPosts = Post.objects.filter(visibility='PUBLIC') # ------------- # foaf posts # ------------- foafPosts = Post.objects.filter(visibility='FOAF') friends = Friend.objects.filter(author=userUUID).union( Friend.objects.filter(friend=userUUID)) foafUUIDs = [] friendUUIDs = [] # for each friend for friend in friends: # append friend's uuid to foaf if friend.friend not in foafUUIDs: foafUUIDs.append(friend.friend) friendUUIDs.append(friend.friend) # innerFriends is friend's friends innerFriend = Friend.objects.filter(author=friend.friend) for f2 in innerFriend: if f2.friend not in foafUUIDs: foafUUIDs.append(f2.friend) for uuid in foafUUIDs: filteredPosts.union(foafPosts.filter(author=uuid)) # ------------- # friend posts # ------------- friendPosts = Post.objects.filter(visibility='FRIENDS') for uuid in friendUUIDs: filteredPosts.union(friendPosts.filter(author=uuid)) # ------------- # private posts # ------------- privatePosts = Post.objects.filter(visibility='PRIVATE') filteredPosts.union(privatePosts.filter(author=userUUID)) # ------------- # server posts # ------------- author = Author.objects.get(uuid=userUUID) serverAuthors = Author.objects.filter(host=author.host) print(serverAuthors) for author in serverAuthors: temp = Post.objects.filter( author=author.uuid, visibility='SERVERONLY') # print('temp ok') filteredPosts = filteredPosts.union(temp) postList = [] for post in filteredPosts: postList.append(serializePost(post)) return PostPagination().get_paginated_response(postList, author.host) # serializer = GetPostSerializer(filteredPosts, many=True) class DeletePostAPIView(APIView): authentication_classes = [SessionAuthentication, BasicAuthentication] # permission_classes = [IsAuthenticated] # serializer_class = DeletePostSerializer def delete(self, request, pk): try: post = Post.objects.get(uuid=pk).delete() return Response(status=status.HTTP_200_OK) except Exception as e: print("Post Not Found!", e) return Response(status=status.HTTP_404_NOT_FOUND) class CreateCommentAPIView(CreateAPIView): authentication_classes = [SessionAuthentication, BasicAuthentication] permission_classes = [IsAuthenticated] serializer_class = CreateCommentSerializer def create(self, request, pk): print(pk) data = request.data.copy() data['post'] = pk data['author'] = request.user.uuid print(data) serializer = self.get_serializer(data=data) # print(serializer) serializer.is_valid(raise_exception=True) # print("VALID") self.perform_create(serializer) headers = self.get_success_headers(serializer.data) return Response( {**serializer.data}, status=status.HTTP_201_CREATED, headers=headers ) class CommentsAPIView(APIView): authentication_classes = [SessionAuthentication, BasicAuthentication] # permission_classes = [IsAuthenticated] serializer_class = CommentSerializer def get(self, request, pk): postHost = Post.objects.get(uuid=pk).host.hostname comments = Comment.objects.filter(post=pk) commentList = [] for comment in comments: commentList.append(serializeComment(comment)) return CommentPagination().get_paginated_response(commentList, postHost) def post(self, request, pk, format=None): try: post = Post.objects.get( uuid=request.data['post'].split('/posts/')[1]) postDict = serializePost(post) except: print("EXCEPTION") return Response(status=status.HTTP_404_NOT_FOUND) userUUID = request.data['comment']['author']['id'].split('/author/')[1] requestor = Author.objects.get(uuid=userUUID) if post.visibility == 'PUBLIC': newComment = Comment(author=requestor, comment=request.data['comment']['comment'], contentType=request.data['comment'] ['contentType'], published=request.data['comment']['published'], post=post) newComment.save() return Response({ "query": "addComment", "success": True, "message": "Comment Added"}, status=status.HTTP_200_OK) elif post.visibility == 'FRIENDS': friendsUUIDList = [] for friend in Friend.objects.filter(author=post.author.uuid): friendsUUIDList.append(friend.friend.uuid) for friend in Friend.objects.filter(friend=post.author.uuid): friendsUUIDList.append(friend.author.uuid) if requestor.uuid in friendsUUIDList: newComment = Comment(author=requestor, comment=request.data['comment']['comment'], contentType=request.data['comment'] ['contentType'], published=request.data['comment']['published'], post=post) newComment.save() return Response({ "query": "addComment", "success": True, "message": "Comment Added"}, status=status.HTTP_200_OK) elif post.visibility == 'FOAF': friendsUUIDList = [] for friend in Friend.objects.filter(author=post.author.uuid): friendsUUIDList.append(friend.friend.uuid) for friend in Friend.objects.filter(friend=post.author.uuid): friendsUUIDList.append(friend.author.uuid) foafUUIDList = [] for friendUUID in friendsUUIDList: tempAuthor = Author.objects.get(uuid=friendUUID) for innerFriend in Friend.objects.filter(author=tempAuthor): if innerFriend.friend.uuid not in foafUUIDList: foafUUIDList.append(innerFriend.friend.uuid) for innerFriend in Friend.objects.filter(friend=tempAuthor): if innerFriend.friend.uuid not in foafUUIDList: foafUUIDList.append(innerFriend.author.uuid) foafUUIDList.append(friendsUUIDList) if requestor.uuid in foafUUIDList: newComment = Comment(author=requestor, comment=request.data['comment']['comment'], contentType=request.data['comment'] ['contentType'], published=request.data['comment']['published'], post=post) newComment.save() return Response({ "query": "addComment", "success": True, "message": "Comment Added"}, status=status.HTTP_200_OK) elif post.visibility == 'PRIVATE': if requestor == post.author: newComment = Comment(author=requestor, comment=request.data['comment']['comment'], contentType=request.data['comment'] ['contentType'], published=request.data['comment']['published'], post=post) newComment.save() return Response({ "query": "addComment", "success": True, "message": "Comment Added"}, status=status.HTTP_200_OK) elif post.visibility == 'SERVERONLY': if requestor.host == post.host: newComment = Comment(author=requestor, comment=request.data['comment']['comment'], contentType=request.data['comment'] ['contentType'], published=request.data['comment']['published'], post=post) newComment.save() return Response({ "query": "addComment", "success": True, "message": "Comment Added"}, status=status.HTTP_200_OK) return Response({"query": "addComment", "success": False, "message": "Comment not allowed"}, status=status.HTTP_403_FORBIDDEN) class CreateFriendRequestAPIView(CreateAPIView): authentication_classes = [SessionAuthentication, BasicAuthentication] serializer_class = FriendRequestSerializer def create(self, request): data = request.data print(data) serializer = self.get_serializer(data=data) serializer.is_valid(raise_exception=True) self.perform_create(serializer) headers = self.get_success_headers(serializer.data) return Response( {**serializer.data}, status=status.HTTP_201_CREATED, headers=headers ) class GetAllAuthorFriendRequest(APIView): serializer_class = FriendRequestSerializer def get(self, request, pk): friend_requests = FriendRequest.objects.filter(to_author=pk) serializer = FriendRequestSerializer(friend_requests, many=True) return Response( serializer.data, status=status.HTTP_200_OK ) class GetAllFOAFAPIView(APIView): serializer_class = AuthorSerializer def get(self, request, pk): friends = Friend.objects.filter(author=pk) foaf = [] # for each friend for friend in friends: # append friend's uuid to foaf if friend.friend not in foaf: foaf.append(friend.friend) # innerFriends is friend's friends innerFriend = Friend.objects.filter(author=friend.friend) for f2 in innerFriend: if f2.friend not in foaf: foaf.append(f2.friend) authors = [] for author in foaf: if author.uuid != pk: authors.append(Author.objects.get(uuid=author.uuid)) serializer = AuthorSerializer(authors, many=True) return Response( serializer.data, status=status.HTTP_200_OK ) class CreateFriendAPIView(CreateAPIView): serializer_class = FriendSerializer # pk = uuid of friend request def create(self, request, pk): friendRequest = FriendRequest.objects.get(uuid=pk) data = {} data['friend'] = friendRequest.to_author data['author'] = friendRequest.from_author serializer = self.get_serializer(data=data) serializer.is_valid(raise_exception=True) self.perform_create(serializer) headers = self.get_success_headers(serializer.data) return Response( {**serializer.data}, status=status.HTTP_201_CREATED, headers=headers ) class CheckFriendAPIView(APIView): def get(self, request, pk1, pk2): # checking for friendship author1 = Author.objects.get(uuid=pk1) author1dict = serializeAuthor(author1) author2 = Author.objects.get(uuid=pk2) author2dict = serializeAuthor(author2) friends = Friend.objects.filter(author=author1, friend=author2).union( Friend.objects.filter(author=author2, friend=author1)) return Response( {"query": "friends", "authors": [author1dict['id'], author2dict['id']], "friends": len(list(friends.all())) != 0 } ) class DeleteFriendAPIView(APIView): def delete(self, request, pk, format=None): currentUser = request.user # determine if user is Friend object's "author" or "friend" try: friend = Friend.objects.get(author=pk, friend=currentUser) except Exception: try: friend = Friend.objects.get(author=currentUser, friend=pk) except Exception: print("Friendship doesn't exist!") return Response( status=status.HTTP_404_NOT_FOUND ) friend.delete() return Response( status=status.HTTP_204_NO_CONTENT )
# narrowtemplates.py - added template keywords for narrow clones # # Copyright 2017 Google, Inc. # # This software may be used and distributed according to the terms of the # GNU General Public License version 2 or any later version. from __future__ import absolute_import from mercurial import ( registrar, revlog, ) keywords = {} templatekeyword = registrar.templatekeyword(keywords) revsetpredicate = registrar.revsetpredicate() def _isellipsis(repo, rev): if repo.changelog.flags(rev) & revlog.REVIDX_ELLIPSIS: return True return False @templatekeyword(b'ellipsis', requires={b'repo', b'ctx'}) def ellipsis(context, mapping): """String. 'ellipsis' if the change is an ellipsis node, else ''.""" repo = context.resource(mapping, b'repo') ctx = context.resource(mapping, b'ctx') if _isellipsis(repo, ctx.rev()): return b'ellipsis' return b'' @templatekeyword(b'outsidenarrow', requires={b'repo', b'ctx'}) def outsidenarrow(context, mapping): """String. 'outsidenarrow' if the change affects no tracked files, else ''.""" repo = context.resource(mapping, b'repo') ctx = context.resource(mapping, b'ctx') m = repo.narrowmatch() if ctx.files() and not m.always(): if not any(m(f) for f in ctx.files()): return b'outsidenarrow' return b'' @revsetpredicate(b'ellipsis()') def ellipsisrevset(repo, subset, x): """Changesets that are ellipsis nodes.""" return subset.filter(lambda r: _isellipsis(repo, r))
# -*- coding: utf-8 -*- from __future__ import absolute_import, unicode_literals from django.core.exceptions import ValidationError from django.core.validators import EmailValidator as DjangoEmailValidator from django.utils.encoding import force_text from dns import resolver from dns.exception import DNSException class EmailValidator(DjangoEmailValidator): """Extended EmailValidator which checks for MX records on the domain.""" def __call__(self, value, *args, **kwargs): super(EmailValidator, self).__call__(value, *args, **kwargs) value = force_text(value) domain = value.split('@')[1] try: resolver.query(domain, 'MX') except DNSException: raise ValidationError('Enter a valid email address domain.', code=self.code) validate_email = EmailValidator()
# MIT License # # Copyright (c) 2018 Airthings AS # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # # https://airthings.com # =============================== # Module import dependencies # =============================== import sys import time import tableprint from bluepy import btle from Sensors import Sensors from WavePlus import WavePlus # =============================== # Script guards for correct usage # =============================== def print_usage(): print ("USAGE: read_waveplus.py SN SAMPLE-PERIOD [pipe > yourfile.txt]") print (" where SN is the 10-digit serial number found under the magnetic backplate of your Wave Plus.") print (" where SAMPLE-PERIOD is the time in seconds between reading the current values.") print (" where [pipe > yourfile.txt] is optional and specifies that you want to pipe your results to yourfile.txt.") if len(sys.argv) < 3: print ("ERROR: Missing input argument SN or SAMPLE-PERIOD.") print_usage() sys.exit(1) if sys.argv[1].isdigit() is not True or len(sys.argv[1]) != 10: print ("ERROR: Invalid SN format.") print_usage() sys.exit(1) if sys.argv[2].isdigit() is not True or int(sys.argv[2]) < 0: print ("ERROR: Invalid SAMPLE-PERIOD. Must be a numerical value larger than zero.") print_usage() sys.exit(1) if len(sys.argv) > 3: Mode = sys.argv[3].lower() if Mode == 'mqtt': Broker = sys.argv[4] else: Broker = None else: Mode = 'terminal' # (default) print to terminal if Mode!='pipe' and Mode!='terminal': print ("ERROR: Invalid piping method.") print_usage() sys.exit(1) SerialNumber = int(sys.argv[1]) SamplePeriod = int(sys.argv[2]) try: #---- Initialize ----# waveplus = WavePlus(SerialNumber) if (Mode=='terminal'): print ("\nPress CTRL+C to exit program\n") header = ['TimeStamp', 'Humidity', 'Radon ST avg', 'Radon LT avg', 'Temperature', 'Pressure', 'CO2 level', 'VOC level', 'Battery'] print ("Device serial number: %s" %(SerialNumber)) if (Mode=='terminal'): print (tableprint.header(header, width=12)) elif (Mode=='pipe'): print (header) while True: sensors = None try: waveplus.connect() # read values sensors = waveplus.read() # extract timestamp = time.strftime('%m/%d..%H:%M') humidity = str(sensors.getValue(sensors.SENSOR_IDX_HUMIDITY)) + " " + str(sensors.getUnit(sensors.SENSOR_IDX_HUMIDITY)) radon_st_avg = str(sensors.getValue(sensors.SENSOR_IDX_RADON_SHORT_TERM_AVG)) + " " + str(sensors.getUnit(sensors.SENSOR_IDX_RADON_SHORT_TERM_AVG)) radon_lt_avg = str(sensors.getValue(sensors.SENSOR_IDX_RADON_LONG_TERM_AVG)) + " " + str(sensors.getUnit(sensors.SENSOR_IDX_RADON_LONG_TERM_AVG)) temperature = str(sensors.getValue(sensors.SENSOR_IDX_TEMPERATURE)) + " " + str(sensors.getUnit(sensors.SENSOR_IDX_TEMPERATURE)) pressure = str(sensors.getValue(sensors.SENSOR_IDX_REL_ATM_PRESSURE)) + " " + str(sensors.getUnit(sensors.SENSOR_IDX_REL_ATM_PRESSURE)) CO2_lvl = str(sensors.getValue(sensors.SENSOR_IDX_CO2_LVL)) + " " + str(sensors.getUnit(sensors.SENSOR_IDX_CO2_LVL)) VOC_lvl = str(sensors.getValue(sensors.SENSOR_IDX_VOC_LVL)) + " " + str(sensors.getUnit(sensors.SENSOR_IDX_VOC_LVL)) battery = str(sensors.getValue(sensors.SENSOR_IDX_BATTERY)) + " " + str(sensors.getUnit(sensors.SENSOR_IDX_BATTERY)) # Print data data = [timestamp, humidity, radon_st_avg, radon_lt_avg, temperature, pressure, CO2_lvl, VOC_lvl, battery] if (Mode=='terminal'): print (tableprint.row(data, width=12)) elif (Mode=='pipe'): print (data) waveplus.disconnect() time.sleep(SamplePeriod) except btle.BTLEException as ex: timestamp = time.strftime('%m/%d..%H:%M') errormsg = " ERROR: Failed to connect to the AirThings Wave Plus sensor, will try again on the next cycle..." if (Mode=='terminal'): #print (tableprint.bottom(9, width=12)) print (u'\u2502' + " " + timestamp + " " + u'\u2502' + errormsg + " " + u'\u2502') #print (tableprint.header(header, width=12)) elif (Mode=='pipe'): print (timestamp + errormsg) time.sleep(SamplePeriod) continue finally: waveplus.disconnect()
# -*- coding: utf-8 -*- """ Created on Mon May 18 23:23:23 2020 @author: afran """ import numpy as np import scipy.io as sio import os import sys from sklearn.svm import LinearSVC # SVM Classification def SVM_leave_one_classify(directory, SVM_random_state=None, SVM_dual=True, SVM_penalty='l2', SVM_max_iter=1000, SVM_C=1.0): #Creating ground truth array truth = [] prediction = [] for file in os.listdir(directory): if "normal" in file: truth.append(0) elif "increased" in file: truth.append(1) else: print("[Error] Invalid Filename") sys.exit() #Leave one subject out validation using SVM for file in os.listdir(directory): print("predicting file " + file) X_train = [] y_train = [] #Every file except for left out trial for train_file in os.listdir(directory): if train_file != file: X_data = np.squeeze(np.transpose(sio.loadmat(directory + train_file)['PersImg'])) X_train.append(X_data) if "normal" in train_file: y_train.append(0) elif "increased" in train_file: y_train.append(1) else: print("[Error] Invalid Filename") sys.exit() #Using parameters entered earlier clf = LinearSVC(random_state=SVM_random_state, dual=SVM_dual, penalty=SVM_penalty, max_iter=SVM_max_iter, C=SVM_C) clf.fit(X_train, y_train) X_pred_data = np.squeeze(np.transpose(sio.loadmat(directory + file)['PersImg'])) X_pred_data = [X_pred_data] prediction.append(clf.predict(X_pred_data)) #Checking against ground truth array print("Checking against ground truth array....") accuracy_array = [] for i in range(len(truth)): accuracy_array.append(1 if truth[i] == prediction[i] else 0) accuracy = sum(accuracy_array)/len(accuracy_array) return accuracy
from unittest import TestCase from peco.parser import parse, parse_string class TestParseMember (TestCase): def test_parse(self): template = parse_string("$person.name") # when undefined self.assertEqual(template.render_string(), "") # when did set self.assertEqual(template.render_string( person={"name": "tikubonn"}), "tikubonn")
STOP = 0x0 ADD = 0x1 MUL = 0x2 SUB = 0x3 DIV = 0x4 SDIV = 0x5 MOD = 0x6 SMOD = 0x7 ADDMOD = 0x8 MULMOD = 0x9 EXP = 0xa SIGNEXTEND = 0xb LT = 0x10 GT = 0x11 SLT = 0x12 SGT = 0x13 EQ = 0x14 ISZERO = 0x15 AND = 0x16 OR = 0x17 XOR = 0x18 NOT = 0x19 BYTE = 0x1a SHL = 0x1b SHR = 0x1c SAR = 0x1d SHA3 = 0x20 ADDRESS = 0x30 BALANCE = 0x31 ORIGIN = 0x32 CALLER = 0x33 CALLVALUE = 0x34 CALLDATALOAD = 0x35 CALLDATASIZE = 0x36 CALLDATACOPY = 0x37 CODESIZE = 0x38 CODECOPY = 0x39 GASPRICE = 0x3a EXTCODESIZE = 0x3b EXTCODECOPY = 0x3c RETURNDATASIZE = 0x3d RETURNDATACOPY = 0x3e EXTCODEHASH = 0x3f BLOCKHASH = 0x40 COINBASE = 0x41 TIMESTAMP = 0x42 NUMBER = 0x43 DIFFICULTY = 0x44 GASLIMIT = 0x45 CHAINID = 0x46 SELFBALANCE = 0x47 BASEFEE = 0x48 POP = 0x50 MLOAD = 0x51 MSTORE = 0x52 MSTORE8 = 0x53 SLOAD = 0x54 SSTORE = 0x55 JUMP = 0x56 JUMPI = 0x57 PC = 0x58 MSIZE = 0x59 GAS = 0x5a JUMPDEST = 0x5b PUSH1 = 0x60 PUSH2 = 0x61 PUSH3 = 0x62 PUSH4 = 0x63 PUSH5 = 0x64 PUSH6 = 0x65 PUSH7 = 0x66 PUSH8 = 0x67 PUSH9 = 0x68 PUSH10 = 0x69 PUSH11 = 0x6a PUSH12 = 0x6b PUSH13 = 0x6c PUSH14 = 0x6d PUSH15 = 0x6e PUSH16 = 0x6f PUSH17 = 0x70 PUSH18 = 0x71 PUSH19 = 0x72 PUSH20 = 0x73 PUSH21 = 0x74 PUSH22 = 0x75 PUSH23 = 0x76 PUSH24 = 0x77 PUSH25 = 0x78 PUSH26 = 0x79 PUSH27 = 0x7a PUSH28 = 0x7b PUSH29 = 0x7c PUSH30 = 0x7d PUSH31 = 0x7e PUSH32 = 0x7f DUP1 = 0x80 DUP2 = 0x81 DUP3 = 0x82 DUP4 = 0x83 DUP5 = 0x84 DUP6 = 0x85 DUP7 = 0x86 DUP8 = 0x87 DUP9 = 0x88 DUP10 = 0x89 DUP11 = 0x8a DUP12 = 0x8b DUP13 = 0x8c DUP14 = 0x8d DUP15 = 0x8e DUP16 = 0x8f SWAP1 = 0x90 SWAP2 = 0x91 SWAP3 = 0x92 SWAP4 = 0x93 SWAP5 = 0x94 SWAP6 = 0x95 SWAP7 = 0x96 SWAP8 = 0x97 SWAP9 = 0x98 SWAP10 = 0x99 SWAP11 = 0x9a SWAP12 = 0x9b SWAP13 = 0x9c SWAP14 = 0x9d SWAP15 = 0x9e SWAP16 = 0x9f LOG0 = 0xa0 LOG1 = 0xa1 LOG2 = 0xa2 LOG3 = 0xa3 LOG4 = 0xa4 PUSH = 0xb0 DUP = 0xb1 SWAP = 0xb2 CREATE = 0xf0 CALL = 0xf1 CALLCODE = 0xf2 RETURN = 0xf3 DELEGATECALL = 0xf4 STATICCALL = 0xfa REVERT = 0xfd INVALID = 0xfe SELFDESTRUCT = 0xff def is_push(op): return 0x60 <= op <= 0x7f def is_dup(op): return 0x80 <= op <= 0x8f def is_swap(op): return 0x90 <= op <= 0x9f STACK_CHANGES = { STOP: 0, ADD: -1, MUL: -1, SUB: -1, DIV: -1, SDIV: -1, MOD: -1, SMOD: -1, ADDMOD: -2, MULMOD: -2, EXP: -1, SIGNEXTEND: -1, LT: -1, GT: -1, SLT: -1, SGT: -1, EQ: -1, ISZERO: 0, AND: -1, OR: -1, XOR: -1, NOT: 0, BYTE: -1, SHL: -1, SHR: -1, SAR: -1, SHA3: -1, ADDRESS: 1, BALANCE: 0, ORIGIN: 1, CALLER: 1, CALLVALUE: 1, CALLDATALOAD: 0, CALLDATASIZE: 1, CALLDATACOPY: -3, CODESIZE: 1, CODECOPY: -3, GASPRICE: 1, EXTCODESIZE: 0, EXTCODECOPY: -4, RETURNDATASIZE: 1, RETURNDATACOPY: -3, BLOCKHASH: 0, COINBASE: 1, TIMESTAMP: 1, NUMBER: 1, DIFFICULTY: 1, GASLIMIT: 1, CHAINID: 1, SELFBALANCE: 1, BASEFEE: 1, POP: -1, MLOAD: 0, MSTORE: -2, MSTORE8: -2, SLOAD: 0, SSTORE: -2, JUMP: -1, JUMPI: -2, PC: 1, MSIZE: 1, GAS: 1, JUMPDEST: 0, PUSH1: 1, PUSH2: 1, PUSH3: 1, PUSH4: 1, PUSH5: 1, PUSH6: 1, PUSH7: 1, PUSH8: 1, PUSH9: 1, PUSH10: 1, PUSH11: 1, PUSH12: 1, PUSH13: 1, PUSH14: 1, PUSH15: 1, PUSH16: 1, PUSH17: 1, PUSH18: 1, PUSH19: 1, PUSH20: 1, PUSH21: 1, PUSH22: 1, PUSH23: 1, PUSH24: 1, PUSH25: 1, PUSH26: 1, PUSH27: 1, PUSH28: 1, PUSH29: 1, PUSH30: 1, PUSH31: 1, PUSH32: 1, DUP1: 1, DUP2: 1, DUP3: 1, DUP4: 1, DUP5: 1, DUP6: 1, DUP7: 1, DUP8: 1, DUP9: 1, DUP10: 1, DUP11: 1, DUP12: 1, DUP13: 1, DUP14: 1, DUP15: 1, DUP16: 1, SWAP1: 0, SWAP2: 0, SWAP3: 0, SWAP4: 0, SWAP5: 0, SWAP6: 0, SWAP7: 0, SWAP8: 0, SWAP9: 0, SWAP10: 0, SWAP11: 0, SWAP12: 0, SWAP13: 0, SWAP14: 0, SWAP15: 0, SWAP16: 0, LOG0: -2, LOG1: -3, LOG2: -4, LOG3: -5, LOG4: -6, CREATE: -2, CALL: -6, CALLCODE: -6, RETURN: -2, DELEGATECALL: -5, STATICCALL: -5, REVERT: -2, INVALID: 0, SELFDESTRUCT: -1 } OP_NAME = { STOP: 'STOP', ADD: 'ADD', MUL: 'MUL', SUB: 'SUB', DIV: 'DIV', SDIV: 'SDIV', MOD: 'MOD', SMOD: 'SMOD', ADDMOD: 'ADDMOD', MULMOD: 'MULMOD', EXP: 'EXP', SIGNEXTEND: 'SIGNEXTEND', LT: 'LT', GT: 'GT', SLT: 'SLT', SGT: 'SGT', EQ: 'EQ', ISZERO: 'ISZERO', AND: 'AND', OR: 'OR', XOR: 'XOR', NOT: 'NOT', BYTE: 'BYTE', SHL: 'SHL', SHR: 'SHR', SAR: 'SAR', SHA3: 'SHA3', ADDRESS: 'ADDRESS', BALANCE: 'BALANCE', ORIGIN: 'ORIGIN', CALLER: 'CALLER', CALLVALUE: 'CALLVALUE', CALLDATALOAD: 'CALLDATALOAD', CALLDATASIZE: 'CALLDATASIZE', CALLDATACOPY: 'CALLDATACOPY', CODESIZE: 'CODESIZE', CODECOPY: 'CODECOPY', GASPRICE: 'GASPRICE', EXTCODESIZE: 'EXTCODESIZE', EXTCODECOPY: 'EXTCODECOPY', RETURNDATASIZE: 'RETURNDATASIZE', RETURNDATACOPY: 'RETURNDATACOPY', EXTCODEHASH: 'EXTCODEHASH', BLOCKHASH: 'BLOCKHASH', COINBASE: 'COINBASE', TIMESTAMP: 'TIMESTAMP', NUMBER: 'NUMBER', DIFFICULTY: 'DIFFICULTY', GASLIMIT: 'GASLIMIT', CHAINID: 'CHAINID', SELFBALANCE: 'SELFBALANCE', BASEFEE: 'BASEFEE', POP: 'POP', MLOAD: 'MLOAD', MSTORE: 'MSTORE', MSTORE8: 'MSTORE8', SLOAD: 'SLOAD', SSTORE: 'SSTORE', JUMP: 'JUMP', JUMPI: 'JUMPI', PC: 'PC', MSIZE: 'MSIZE', GAS: 'GAS', JUMPDEST: 'JUMPDEST', PUSH1: 'PUSH1', PUSH2: 'PUSH2', PUSH3: 'PUSH3', PUSH4: 'PUSH4', PUSH5: 'PUSH5', PUSH6: 'PUSH6', PUSH7: 'PUSH7', PUSH8: 'PUSH8', PUSH9: 'PUSH9', PUSH10: 'PUSH10', PUSH11: 'PUSH11', PUSH12: 'PUSH12', PUSH13: 'PUSH13', PUSH14: 'PUSH14', PUSH15: 'PUSH15', PUSH16: 'PUSH16', PUSH17: 'PUSH17', PUSH18: 'PUSH18', PUSH19: 'PUSH19', PUSH20: 'PUSH20', PUSH21: 'PUSH21', PUSH22: 'PUSH22', PUSH23: 'PUSH23', PUSH24: 'PUSH24', PUSH25: 'PUSH25', PUSH26: 'PUSH26', PUSH27: 'PUSH27', PUSH28: 'PUSH28', PUSH29: 'PUSH29', PUSH30: 'PUSH30', PUSH31: 'PUSH31', PUSH32: 'PUSH32', DUP1: 'DUP1', DUP2: 'DUP2', DUP3: 'DUP3', DUP4: 'DUP4', DUP5: 'DUP5', DUP6: 'DUP6', DUP7: 'DUP7', DUP8: 'DUP8', DUP9: 'DUP9', DUP10: 'DUP10', DUP11: 'DUP11', DUP12: 'DUP12', DUP13: 'DUP13', DUP14: 'DUP14', DUP15: 'DUP15', DUP16: 'DUP16', SWAP1: 'SWAP1', SWAP2: 'SWAP2', SWAP3: 'SWAP3', SWAP4: 'SWAP4', SWAP5: 'SWAP5', SWAP6: 'SWAP6', SWAP7: 'SWAP7', SWAP8: 'SWAP8', SWAP9: 'SWAP9', SWAP10: 'SWP10', SWAP11: 'SWP11', SWAP12: 'SWP12', SWAP13: 'SWP13', SWAP14: 'SWP14', SWAP15: 'SWP15', SWAP16: 'SWP16', LOG0: 'LOG0', LOG1: 'LOG1', LOG2: 'LOG2', LOG3: 'LOG3', LOG4: 'LOG4', CREATE: 'CREATE', CALL: 'CALL', CALLCODE: 'CALLCODE', RETURN: 'RETURN', DELEGATECALL: 'DELEGATECALL', STATICCALL: 'STATICCALL', REVERT: 'REVERT', INVALID: 'INVALID', SELFDESTRUCT: 'SELFDESTRUCT', } INTERESTING_OPS = [ LT, GT, SLT, SGT, ISZERO, AND, OR, XOR, NOT, SHA3, ADDRESS, BALANCE, ORIGIN, CALLER, CALLVALUE, CALLDATALOAD, CALLDATASIZE, CALLDATACOPY, CODESIZE, CODECOPY, GASPRICE, EXTCODESIZE, EXTCODECOPY, RETURNDATASIZE, RETURNDATACOPY, BLOCKHASH, COINBASE, TIMESTAMP, NUMBER, DIFFICULTY, GASLIMIT, SLOAD, SSTORE, PC, MSIZE, GAS, LOG0, LOG1, LOG2, LOG3, LOG4, CREATE, CALL, CALLCODE, RETURN, DELEGATECALL, STATICCALL, REVERT, INVALID, SELFDESTRUCT, ] MEM_WRITES = { MSTORE, MSTORE8, CALLDATACOPY, CODECOPY, RETURNDATACOPY, EXTCODECOPY, } MEM_READS = { SHA3, LOG0, LOG1, LOG2, LOG3, LOG4, MLOAD, CREATE, RETURN, REVERT, } MEM_READ_WRITES = { CALL, CALLCODE, DELEGATECALL, STATICCALL, } def select_interesting_ops(bow): res = [] for op in INTERESTING_OPS: res.append(bow[op]) return res
""" Configure and create build file for libnuma """ def build_numa_lib(repository_ctx): repository_ctx.download_and_extract( url = "https://github.com/numactl/numactl/archive/3648aa5bf6e29bf618195c615ff2ced4bb995327.zip", stripPrefix = "numactl-3648aa5bf6e29bf618195c615ff2ced4bb995327", sha256 = "70b41bac88587ee980f266b3b2a9f32e9efef7c003a258eb50677cd8c66f358e", ) repository_ctx.execute(["./autogen.sh"]) repository_ctx.execute(["./configure"]) repository_ctx.file( "BUILD", """ package(default_visibility = ["//visibility:public"]) licenses(["notice"]) cc_library( name = "numa", srcs = [ "affinity.c", "config.h", "distance.c", "libnuma.c", "rtnetlink.c", "syscall.c", "sysfs.c", ], hdrs = [ "affinity.h", "numa.h", "numaif.h", "numaint.h", "rtnetlink.h", "sysfs.h", "util.h", ], ) """, ) numa_configure = repository_rule( implementation = build_numa_lib, )
from __future__ import print_function import numpy as np from scipy.spatial import ConvexHull import dicom_tools.pyqtgraph as pg def roi2myroi(ROI, verbose=False): rois = [None]*len(ROI) firsttime = True for layer in xrange(0, len(ROI)): fetta = ROI[layer] apoints = [] if fetta.max() > 0 : for j, riga in enumerate(fetta): for i, elemento in enumerate(riga): if elemento: thispoint = [i,j] apoints.append(thispoint) points = np.array(apoints) if firsttime: firsttime = False for point in points: print(point) hull = ConvexHull(points) rois[layer] = pg.PolyLineROI(hull.simplices.tolist(), pen=(6,9), closed=True).saveState() return rois # print "hull.simplices", hull.simplices
print 50000 s = "" for i in xrange(100000-2): s += 'cA' print s
from django.conf import settings from django.contrib.auth.models import Permission from django.core.urlresolvers import reverse from suit.templatetags.suit_menu import get_menu from suit.tests.mixins import ModelsTestCaseMixin, UserTestCaseMixin # conditional import, force_unicode was renamed in Django 1.5 try: from django.utils.encoding import force_unicode except ImportError: from django.utils.encoding import force_text as force_unicode class SuitMenuTestCase(ModelsTestCaseMixin, UserTestCaseMixin): def setUp(self): self.setUpConfig() self.login_superuser() def setUpConfig(self): settings.SUIT_CONFIG.update({ 'MENU_OPEN_FIRST_CHILD': True, 'MENU_ICONS': { 'auth': 'icon-auth-assert', }, 'MENU_EXCLUDE': [], 'MENU': [ 'tests', {'app': 'tests'}, {'app': 'tests', 'label': 'Custom'}, {'app': 'tests', 'icon': 'icon-test-assert'}, {'app': 'tests', 'icon': ''}, {'app': 'tests', 'icon': None}, {'app': 'auth'}, '-', {'label': 'Custom', 'url': '/custom/'}, {'label': 'Custom2', 'url': '/custom2/', 'permissions': 'x'}, {'label': 'Custom3', 'url': '/custom3/', 'permissions': ('y',)}, {'label': 'Custom4', 'url': '/custom4/', 'blank': True}, {'label': 'C4', 'url': '/c/4', 'models': ('book',)}, {'label': 'C5', 'url': '/c/5', 'models': ('tests.book',)}, {'label': 'C6', 'url': 'admin:index', 'models': ({'label': 'mx', 'url': 'admin:index'},)}, {'label': 'C7', 'url': 'tests.book'}, {'app': 'tests', 'models': []}, {'app': 'tests', 'models': ['book', 'album']}, {'app': 'tests', 'models': ['tests.book', 'tests.album']}, {'app': 'tests', 'models': [ 'book', 'tests.book', { 'model': 'tests.album', 'label': 'Albumzzz', 'url': '/albumzzz/', }, { 'label': 'CustModel', 'url': '/cust-mod/', 'permissions': 'z' }]}, ] }) def setUpOldConfig(self): settings.SUIT_CONFIG.update({ 'MENU_OPEN_FIRST_CHILD': False, 'MENU_ICONS': { 'tests': 'icon-fire icon-test-against-keyword', }, 'MENU_ORDER': ( ('tests', ('book',)), (('Custom app name', '/custom-url-test/', 'icon-custom-app'), ( ('Custom link', '/admin/custom/', 'tests.add_book'), ('Check out error 404', '/admin/non-existant/', ('mega-perms',)), 'tests.album' )), (('Custom app no models', '/custom-app-no-models', '', 'mega-rights'),), (('Custom app no models tuple perms', '/custom-app-tuple-perms', '', ('mega-rights',)),), ), 'MENU_EXCLUDE': [] }) del settings.SUIT_CONFIG['MENU'] def make_menu_from_response(self): return get_menu(self.response.context[-1], self.response._request) def test_menu_search_url_formats(self): # Test named url as defined in setUp config settings.SUIT_CONFIG['SEARCH_URL'] = 'admin:tests_book_changelist' admin_root = reverse('admin:index') self.get_response() self.assertContains(self.response, 'action="%stests/book/"' % admin_root) # Test absolute url absolute_search_url = '/absolute/search/url' settings.SUIT_CONFIG['SEARCH_URL'] = absolute_search_url self.get_response() self.assertContains(self.response, absolute_search_url) def test_menu(self): mc = settings.SUIT_CONFIG['MENU'] self.get_response() menu = self.make_menu_from_response() self.assertEqual(len(menu), len(mc)) # as string i = 0 first_model_url = reverse('admin:tests_album_changelist') self.assertEqual(menu[i]['url'], first_model_url) self.assertEqual(len(menu[i]['models']), 2) self.assertEqual(menu[i]['name'], mc[i]) self.assertEqual(menu[i]['label'], 'Tests') self.assertEqual(menu[i]['icon'], None) self.assertEqual(menu[i]['models'][0]['url'], first_model_url) self.assertEqual(force_unicode(menu[0]['models'][0]['label']), 'Albums') i += 1 # as dict self.assertEqual(menu[i]['url'], first_model_url) self.assertEqual(len(menu[i]['models']), 2) i += 1 # with label self.assertEqual(menu[i]['label'], mc[i]['label']) i += 1 # with icon self.assertEqual(menu[i]['icon'], mc[i]['icon']) i += 1 # with icon='' self.assertEqual(menu[i]['icon'], 'icon-') i += 1 # with is is None self.assertEqual(menu[i]['icon'], 'icon-') i += 1 # icon from SUIT_ICONS self.assertEqual(menu[i]['icon'], 'icon-auth-assert') i += 1 # separator self.assertEqual(menu[i]['separator'], True) i += 1 # custom app self.assertEqual(menu[i]['label'], mc[i]['label']) self.assertEqual(menu[i]['url'], mc[i]['url']) i += 1 # custom app, with perms as string self.assertEqual(menu[i]['label'], mc[i]['label']) i += 1 # custom app, with perms as tuple self.assertEqual(menu[i]['label'], mc[i]['label']) i += 1 # custom app, with perms as tuple self.assertEqual(menu[i]['blank'], True) i += 1 # custom app with wrong model self.assertEqual(menu[i]['label'], mc[i]['label']) self.assertEqual(menu[i]['models'], []) self.assertEqual(menu[i]['url'], mc[i]['url']) i += 1 # custom app with correct model first_model_url = reverse('admin:tests_book_changelist') self.assertEqual(menu[i]['label'], mc[i]['label']) self.assertEqual(len(menu[i]['models']), 1) self.assertEqual(menu[i]['url'], first_model_url) i += 1 # custom app and model with named urls expected_url = reverse('admin:index') self.assertEqual(menu[i]['url'], expected_url) self.assertEqual(menu[i]['models'][0]['url'], expected_url) i += 1 # with url by model books_url = reverse('admin:tests_book_changelist') self.assertEqual(menu[i]['url'], books_url) i += 1 # with empty models self.assertEqual(menu[i]['models'], []) self.assertEqual(menu[i]['url'], reverse('admin:app_list', args=[mc[i]['app']])) i += 1 # with ordered models first_model_url = reverse('admin:tests_book_changelist') self.assertEqual(menu[i]['models'][0]['url'], first_model_url) self.assertEqual(len(menu[i]['models']), 2) i += 1 # with prefixed models first_model_url = reverse('admin:tests_book_changelist') self.assertEqual(menu[i]['models'][0]['url'], first_model_url) self.assertEqual(len(menu[i]['models']), 2) i += 1 # with dict models first_model_url = reverse('admin:tests_book_changelist') self.assertEqual(menu[i]['models'][0]['url'], first_model_url) self.assertEqual(len(menu[i]['models']), 4) self.assertEqual(force_unicode(menu[i]['models'][2]['label']), mc[i]['models'][2]['label']) self.assertEqual(force_unicode(menu[i]['models'][2]['url']), mc[i]['models'][2]['url']) self.assertEqual(force_unicode(menu[i]['models'][3]['label']), mc[i]['models'][3]['label']) self.assertEqual(force_unicode(menu[i]['models'][3]['url']), mc[i]['models'][3]['url']) def test_menu_app_exclude(self): settings.SUIT_CONFIG['MENU'] = ({'app': 'tests', 'models': ['book']}, {'app': 'auth'}, 'auth') settings.SUIT_CONFIG['MENU_EXCLUDE'] = ('auth', 'tests.book') self.get_response() menu = self.make_menu_from_response() self.assertEqual(len(menu), 1) self.assertEqual(menu[0]['models'], []) def test_menu_model_exclude_with_string_app(self): settings.SUIT_CONFIG['MENU'] = ('tests',) settings.SUIT_CONFIG['MENU_EXCLUDE'] = ('tests.book',) self.get_response() menu = self.make_menu_from_response() self.assertEqual(len(menu), 1) self.assertEqual(len(menu[0]['models']), 1) def test_menu_custom_app(self): label = 'custom' icon = 'icon-custom' settings.SUIT_CONFIG['MENU'] = ({'label': label, 'icon': icon},) self.get_response() menu = self.make_menu_from_response() self.assertEqual(len(menu), 1) self.assertEqual(menu[0]['label'], label) self.assertEqual(menu[0]['icon'], icon) def test_menu_custom_app_permissions(self): settings.SUIT_CONFIG['MENU'] = ({'label': 'a', 'permissions': 'secure-perms'}, {'label': 'b', 'permissions': ('secure-perms',)}, {'label': 'c', 'models': [ {'label': 'model1', 'permissions': 'x'}]},) self.client.logout() self.login_user() self.get_response() menu = self.make_menu_from_response() self.assertEqual(len(menu), 1) self.assertEqual(len(menu[0]['models']), 0) # Now do the same with super user self.client.logout() self.login_superuser() self.get_response() menu = self.make_menu_from_response() self.assertEqual(len(menu), 3) self.assertEqual(len(menu[2]['models']), 1) def test_menu_app_marked_as_active(self): self.get_response(reverse('admin:app_list', args=['tests'])) self.assertContains(self.response, '<li class="active">') menu = self.make_menu_from_response() self.assertTrue(menu[0]['is_active']) def test_menu_app_marked_as_active_model_link(self): settings.SUIT_CONFIG['MENU'] = ({'label': 'C7', 'url': 'auth.user'},) self.get_response(reverse('admin:auth_user_add')) self.assertContains(self.response, '<li class="active">') menu = self.make_menu_from_response() self.assertTrue(menu[0]['is_active']) def test_menu_model_marked_as_active(self): self.get_response(reverse('admin:tests_album_changelist')) menu = self.make_menu_from_response() self.assertTrue(menu[0]['is_active']) self.assertTrue(menu[0]['models'][0]['is_active']) def test_only_native_apps(self): del settings.SUIT_CONFIG['MENU'] if 'MENU_ORDER' in settings.SUIT_CONFIG: del settings.SUIT_CONFIG['MENU_ORDER'] icon = 'icon-auth-assert' settings.SUIT_CONFIG['MENU_ICONS'] = {'auth': icon} self.get_response() menu = self.make_menu_from_response() self.assertEqual(len(menu), 4) self.assertEqual(menu[0]['icon'], icon) def test_user_with_add_but_not_change(self): settings.SUIT_CONFIG['MENU'] = ({'app': 'tests', 'models': ['book']}, {'app': 'auth'}, 'auth') settings.SUIT_CONFIG['MENU_EXCLUDE'] = () self.client.logout() self.login_user() self.user.user_permissions.add( Permission.objects.get(codename='add_book')) self.user.save() self.get_response() menu = self.make_menu_from_response() add_book_url = reverse('admin:tests_book_add') self.assertEqual(menu[0]['url'], add_book_url) self.assertEqual(menu[0]['models'][0]['url'], add_book_url) # # Tests for old menu config format # def test_old_menu_init(self): # Template usage self.client.logout() self.login_superuser() self.setUpOldConfig() self.get_response() self.assertTemplateUsed(self.response, 'suit/menu.html') self.assertContains(self.response, 'left-nav') self.assertContains(self.response, 'icon-test-against-keyword') app_list = self.response.context_data['app_list'] pass # print self.response.content def test_old_menu_custom_app_and_models(self): # Test custom app name, url and icon self.setUpOldConfig() self.get_response() menu_order = settings.SUIT_CONFIG['MENU_ORDER'] self.assertContains(self.response, menu_order[1][0][0]) self.assertContains(self.response, menu_order[1][0][1]) self.assertContains(self.response, menu_order[1][0][2]) # Test custom app no models name, url and icon self.assertContains(self.response, menu_order[2][0][0]) self.assertContains(self.response, menu_order[2][0][1]) self.assertContains(self.response, menu_order[2][0][2]) # Test custom app when perms defined but is allowed self.assertContains(self.response, menu_order[2][0][0]) # Test cross-linked app self.assertContains(self.response, 'tests/album') def test_old_menu_when_open_first_child_is_true(self): # Test custom app name, url and icon self.setUpOldConfig() settings.SUIT_CONFIG['MENU_OPEN_FIRST_CHILD'] = True self.get_response() menu_order = settings.SUIT_CONFIG['MENU_ORDER'] self.assertNotContains(self.response, menu_order[1][0][1]) def test_old_custom_menu_permissions(self): self.client.logout() self.login_user() self.setUpOldConfig() self.get_response() # Test for menu at all for simple user self.assertTemplateUsed(self.response, 'suit/menu.html') self.assertContains(self.response, 'left-nav') menu_order = settings.SUIT_CONFIG['MENU_ORDER'] # Test custom model when perms defined as string self.assertNotContains(self.response, menu_order[1][1][0][0]) # Test custom model when perms defined as tuple self.assertNotContains(self.response, menu_order[1][1][1][0]) # Test custom app when perms defined as string self.assertNotContains(self.response, menu_order[2][0][0]) # Test custom app when perms defined as tuple self.assertNotContains(self.response, menu_order[3][0][0]) def test_old_menu_marked_as_active(self): self.setUpOldConfig() self.get_response(reverse('admin:app_list', args=['tests'])) self.assertContains(self.response, '<li class="active">') class SuitMenuAdminRootURLTestCase(SuitMenuTestCase): urls = 'suit.tests.urls.admin_at_root' class SuitMenuAdminI18NURLTestCase(SuitMenuTestCase): urls = 'suit.tests.urls.admin_i18n' class SuitMenuAdminCustomURLTestCase(SuitMenuTestCase): urls = 'suit.tests.urls.admin_custom'
[ ## this file was manually modified by jt { 'functor' : { 'description' : ["The function computes the remainder of dividing a0 by a1.", "The return value is a0-n*a1, where n is the value a0/a1,", "rounded to the nearest integer.", "If the absolute value of a0-n*a1 is 0.5, n is chosen to be even.", "\par", "if one prefer: if a1 is zero returns a0, else return", "a0-divround(a0,a1)*a1"], 'module' : 'boost', 'arity' : '2', 'call_types' : [], 'ret_arity' : '0', 'rturn' : { 'default' : 'typename boost::common_type<T>::type', }, 'simd_types' : ['real_'], 'type_defs' : [], 'types' : ['real_', 'unsigned_int_', 'signed_int_'], }, 'info' : 'manually modified', 'unit' : { 'global_header' : { 'first_stamp' : 'modified by jt the 01/12/2010', 'included' : ['#include <boost/simd/include/functions/idivround.hpp>'], 'notes' : ['The remainder() function computes the remainder of dividing x by y.', 'The return value is x-n*y, where n is the value x / y,', 'rounded to the nearest integer. If the absolute value of x-n*y is 0.5,', 'n is chosen to be even. The drem() function does precisely the same thing.'], 'stamp' : 'modified by jt the 13/12/2010', }, 'ranges' : { 'real_' : [['T(-10)', 'T(10)'], ['T(-10)', 'T(10)']], 'signed_int_' : [['-100', '100'], ['1', '100']], 'default' : [['0', '100'], ['1', '100']], }, 'specific_values' : { 'default' : { }, 'real_' : { 'boost::simd::Inf<T>()' : 'boost::simd::Nan<T>()', 'boost::simd::Minf<T>()' : 'boost::simd::Nan<T>()', 'boost::simd::Mone<T>()' : 'boost::simd::Zero<T>()', 'boost::simd::Nan<T>()' : 'boost::simd::Nan<T>()', 'boost::simd::One<T>()' : 'boost::simd::Zero<T>()', 'boost::simd::One<T>(),boost::simd::Zero<T>()' : 'boost::simd::Nan<T>()', 'boost::simd::Zero<T>(),boost::simd::Zero<T>()' : 'boost::simd::Nan<T>()', }, 'signed_int_' : { 'boost::simd::Mone<T>()' : 'boost::simd::Zero<T>()', 'boost::simd::One<T>()' : 'boost::simd::Zero<T>()', 'boost::simd::Zero<T>()' : 'boost::simd::Zero<T>()', }, 'unsigned_int_' : { 'boost::simd::One<T>()' : 'boost::simd::Zero<T>()', 'boost::simd::Zero<T>()' : 'boost::simd::Zero<T>()', }, }, 'verif_test' : { 'property_call' : { 'default' : ['boost::simd::remainder(a0,a1)'], }, 'property_value' : { 'default' : ['a0-boost::simd::idivround(a0, a1)*a1'], }, 'ulp_thresh' : { 'default' : ['0'], }, }, }, 'version' : '0.1', }, ]
import os import shutil from django.conf import settings from django.contrib.auth import get_user_model from django.test import Client, RequestFactory from django.urls import reverse from django.utils.encoding import force_bytes from django.utils.http import urlsafe_base64_encode from accounts.forms import UserEditForm, ProfileEditForm, PhoneVerificationForm, TrustedDeviceForm from accounts.views import verify_phone from accounts.views import RegisterView, ProfileEditView, LoginView from accounts.tokens import account_activation_token from .utils import AccountsTestCase User = get_user_model() class UserTest(AccountsTestCase): def setUp(self): self.client = Client(enforce_csrf_checks=False) self.rf = RequestFactory() self.user = self.initialize_user() def tearDown(self): try: shutil.rmtree((os.path.join(settings.MEDIA_ROOT, 'test'))) except FileNotFoundError: pass def test_login_view(self): response = self.client.post(reverse('auth:login'), data={'username': 'test_user', 'password': 'rrrr'}, follow=True) self.assertEquals(response.context['user'].username, 'test_user') self.assertRedirects(response, reverse('auth:new_device')) self.client.logout() response = self.client.post(reverse('auth:login'), data={'username': 'test_user', 'password': 'rrrr'}, follow=True) self.assertRedirects(response, reverse('auth:profile')) self.assertTemplateUsed('accounts/profile.html') def test_login_invalid(self): response = self.client.post(reverse('auth:login'), data={'username': 'test_user', 'password': 'rrr'}, follow=True) self.assertTrue(response.context['user'].is_anonymous) def test_request_email_verification(self): response = self.client.get(reverse('auth:verification_request', args=[self.user.id]), follow=True) self.assertRedirects(response, reverse('auth:login')) def test_user_list_view(self): self.client.force_login(self.user) response = self.client.get(reverse('auth:user_detail', args=[self.user.username])) self.assertEquals(response.status_code, 200) self.assertTemplateUsed(response, 'accounts/user/detail.html') def test_validation_update_on_change_verified_attribute(self): user = self.user self.client.force_login(user) self.assertTrue(user.profile.email_verified) user.email = 'new@test.com' user.phone = '+18709932214' user.save() self.assertFalse(user.profile.email_verified) self.assertFalse(user.profile.phone_verified) def test_avatar_uploads(self): u = User.objects.get(username='test_user') avatar = self.generate_photo_file() self.client.force_login(u) user_form = UserEditForm(instance=u, data=u.__dict__) profile_form = ProfileEditForm({'photo': avatar}) profile_form.instance = u.profile res = self.client.post(reverse('auth:edit'), data={**profile_form.data, **user_form.data}, format='multipart', follow=True) u.refresh_from_db() upload_url = os.path.join(os.path.join(os.path.abspath(settings.MEDIA_ROOT), u.profile.photo.field.upload_to)) + 'test.png' self.assertEquals(res.status_code, 200) self.assertEquals(u.profile.photo.path, upload_url) u.profile.photo.delete() def test_cache_setup(self): from django.core.cache import cache cache.set('key', 'test_val') val = cache.get('key') self.assertEquals(val, 'test_val') class RegistrationTest(AccountsTestCase): def setUp(self): self.client = Client(enforce_csrf_checks=False) self.rf = RequestFactory() def test_register_post_valid(self): request = self.rf.post(reverse('auth:register'), data={'username': 'test', 'email': 'test@email.test', 'phone': '+5571981265131', 'password': 'secret', 'password2': 'secret'}) self.process_requests(request) response = RegisterView.as_view()(request) self.assertEquals(response.status_code, 201) def test_register_post_invalid(self): request = self.rf.post(reverse('auth:register'), data={'username': 'test', 'email': 'test@email.test', 'phone': '+5571981265131', 'password': 'secret', 'password2': 'secretttt'}) self.process_requests(request) response = RegisterView.as_view()(request) self.assertEquals(response.status_code, 200) def test_reset_password_process(self): from django.core import mail import re user = self.initialize_user() response = self.client.post(reverse('auth:password_reset'), data={'email': user.email}, follow=True) self.assertContains(response, 'We\'ve emailed you instructions for setting your password') self.assertRedirects(response, reverse('auth:password_reset_done')) url = re.findall('https?://[/-/_A-Za-z0-9/{4}].+', mail.outbox[0].body) reset_response = self.client.get(url[1][:-2], follow=True) self.assertContains(reset_response, 'New password') reset_done_response = self.client.post(reset_response.context['request'].path, data={'new_password1': 'secret_123444', 'new_password2': 'secret_123444'}, follow=True) self.assertContains(reset_done_response, 'password has been set') self.assertRedirects(response, reverse('auth:password_reset_done')) class UserActivationTest(AccountsTestCase): def setUp(self): self.client = Client(enforce_csrf_checks=False) self.rf = RequestFactory() def test_activate_user_email_valid(self): user = self.initialize_user(is_active=False, email_verified=False) uid = urlsafe_base64_encode(force_bytes(user.pk)) token = account_activation_token.make_token(user) self.client.get(reverse('auth:activate', args=[uid, token])) user.refresh_from_db() self.assertTrue(user.profile.email_verified) self.assertTrue(user.is_active) def test_activate_user_email_invalid(self): user = self.initialize_user(is_active=False, email_verified=False) uid = urlsafe_base64_encode(force_bytes('grabage')) token = account_activation_token.make_token(user) self.client.get(reverse('auth:activate', args=[uid, token])) user.refresh_from_db() self.assertFalse(user.profile.email_verified) self.assertFalse(user.is_active) class ProfileTest(AccountsTestCase): def setUp(self): self.client = Client(enforce_csrf_checks=False) self.rf = RequestFactory() # @override_settings(ROOT_URLCONF='core.public_urls') def test_profile_get_superuser(self): user = self.initialize_user(is_superuser=True) self.client.force_login(user) response = self.client.get(reverse('auth:profile')) self.assertEquals(response.status_code, 200) def test_profile_view(self): user = self.initialize_user() self.client.force_login(user) self.response = self.client.get(reverse('auth:profile')) self.assertTemplateUsed('accounts/profile.html') self.assertEqual(self.response.status_code, 200) self.assertContains(self.response, '<strong> Welcome</strong>, {}'.format(user.username), html=True, status_code=200) self.client.logout() self.response = self.client.get(reverse('auth:profile')) self.assertContains(self.response, '', html=False, status_code=302) self.assertTemplateUsed('accounts/login.html') def test_profile_edit_get(self): user = self.initialize_user() self.client.force_login(user) response = self.client.get(reverse('auth:edit'), follow=True) self.assertEqual(response.status_code, 200) self.assertTemplateUsed('accounts/edit.html') self.assertIsInstance(response.context['user_form'], UserEditForm) self.assertIsInstance(response.context['profile_form'], ProfileEditForm) def test_profile_edit_post_invalid(self): user = self.initialize_user() self.client.force_login(user) user_form = UserEditForm(instance=user, data={}) profile_form = ProfileEditForm() profile_form.instance = user.profile response = self.client.post(reverse('auth:edit'), data={**profile_form.data, **user_form.data}) self.assertEquals(response.status_code, 200) self.assertContains(response, 'Error updating your profile') class DeviceTest(AccountsTestCase): def setUp(self): self.client = Client(enforce_csrf_checks=False) self.rf = RequestFactory() def test_alert_user_device_changed(self): self.initialize_user() res = self.client.post(reverse('auth:login'), data={'username': 'test_user', 'password': 'rrrr'}, follow=True) device_form = res.context['form'] self.assertTrue(device_form.is_valid()) response = self.client.post(reverse('auth:new_device'), data=device_form.data, follow=True) self.assertContains(response, 'Device has been added to your safe list') def test_alert_user_device_changed_invalid(self): user = self.initialize_user() self.client.force_login(user) device_form = TrustedDeviceForm() response = self.client.post(reverse('auth:new_device'), device_form.data, follow=True) self.assertRedirects(response, reverse('auth:profile'))
import numpy import ardustat_library_simple as ard import time import atexit ardustat_id = 16 ardustat_socket = 7777 debug = False #Below here no touchy #connect to to ardustat and setup resistance table a = ard.ardustat() a.connect(ardustat_socket) a.debug = debug a.load_resistance_table(ardustat_id) a.ocv() time.sleep(.1) a.groundvalue = 2.5 a.moveground() time.sleep(.2) a.ocv() #create arrays + a function for logging data times = [] potential = [] current = [] time_start = time.time() cycle = 0 def appender(reading): print reading['work_v_ref'],reading['current'] tdiff = str(time.time()-time_start) out = tdiff+","+str(reading['work_v_ref'])+","+str(reading['current'])+","+str(cycle)+"\n" open(file_name,"a").write(out) #Allows cell to settle and picks starting potential based on OCV while True: time.sleep(1) read = a.parsedread() #appender(read) print read
from artemis.general.mymath import softmax from artemis.ml.predictors.i_predictor import IPredictor import numpy as np class LogisticRegressor(IPredictor): def __init__(self, w, learning_rate=0.1): self.w = w self.learning_rate = learning_rate def predict(self, x): """ :param x: An (n_samples, n_inputs) input :return: An (n_samples, n_classes) class probability """ return softmax(x.dot(self.w), axis=1) def train(self, x, y): """ :param x: An (n_samples, n_inputs) input :param y: An integer class label :return: """ probs = self.predict(x) d_l_d_u = probs - onehot(y, n_classes=self.w.shape[1]) self.w -= self.learning_rate * x.T.dot(d_l_d_u) @staticmethod def from_init(n_in, n_out, **kwargs): return LogisticRegressor(np.zeros((n_in, n_out)), **kwargs) def onehot(labels, n_classes): """ Turn a vector of labels into a onehot-encoding. :param labels: :param n_classes: :return: """ values = np.zeros((len(labels), n_classes)) values[np.arange(len(values)), labels] = 1 return values
from scout.server.blueprints.variants.controllers import variant_verification, variants_export_header, variant_export_lines def url_for(param, institute_id, case_name, variant_id): pass def test_sanger_mail_sent(mock_mail, real_variant_database, institute_obj, case_obj, user_obj, mock_sender, mock_comment): adapter = real_variant_database ## GIVEN we have a variant the we want to order sanger for variant_obj = adapter.variant_collection.find_one() variant_obj['hgnc_symbols'] = '' variant_obj['panels'] = '' ## WHEN calling variant_verification method with order==True variant_verification(adapter, mock_mail, institute_obj, case_obj, user_obj, variant_obj, mock_sender, 'complete_variant_url', True, mock_comment, url_builder=url_for) ## THEN the supplied mail objects send method should have been called assert mock_mail._send_was_called ## THEN the supplied mail objects send method should have received a message object assert mock_mail._message def test_cancel_sanger_mail_sent(mock_mail, real_variant_database, institute_obj, case_obj, user_obj, mock_sender, mock_comment): adapter = real_variant_database ## GIVEN we have a variant the we want to order sanger for variant_obj = adapter.variant_collection.find_one() variant_obj['hgnc_symbols'] = '' variant_obj['panels'] = '' ## WHEN calling variant_verification method with order==False variant_verification(adapter, mock_mail, institute_obj, case_obj, user_obj, variant_obj, mock_sender, 'complete_variant_url', False, mock_comment, url_builder=url_for) ## THEN the supplied mail objects send method should have been called assert mock_mail._send_was_called ## THEN the supplied mail objects send method should have received a message object assert mock_mail._message def test_variant_csv_export(real_variant_database, case_obj): adapter = real_variant_database case_id = case_obj['_id'] # Given a database with variants from a case snv_variants = adapter.variant_collection.find({'case_id' : case_id, "category" : "snv"}) # Given 5 variants to be exported variants_to_export = [] for variant in snv_variants.limit(5): assert type(variant) is dict variants_to_export.append(variant) n_vars = len(variants_to_export) assert n_vars == 5 # Collect export header from variants controller export_header = variants_export_header(case_obj) # Assert that exported document has n fields: # n = (EXPORT_HEADER items in variants_export.py) + (3 * number of individuals analysed for the case) assert len(export_header) == 8 + 3 * len(case_obj['individuals']) # Given the lines of the document to be exported export_lines = variant_export_lines(adapter, case_obj, variants_to_export) # Assert that all five variants are going to be exported to CSV assert len(export_lines) == 5 # Assert that all of 5 variants contain the fields specified by the document header for export_line in export_lines: export_cols = export_line.split(',') assert len(export_cols) == len(export_header)
#!/usr/bin/env python from neo4j.v1 import GraphDatabase from datetime import datetime import argparse import time parser = argparse.ArgumentParser() parser.add_argument("--server", help="Server to connect", default="localhost") parser.add_argument("--protocol", help="Protocol to use", default="bolt") parser.add_argument("--num_recs", help="Number of records to write", type=int, default=1000) parser.add_argument("--commit_every", help="Number of records after which to commit", type=int, default=100) args = parser.parse_args() driver = GraphDatabase.driver(args.protocol+"://"+args.server+":7687") def create_person(driver, name): with driver.session() as session: tx = session.begin_transaction() node_id = create_person_node(tx) set_person_name(tx, node_id, name) tx.commit() def create_person_node(tx): return tx.run("CREATE (a:Person)" "RETURN id(a)").single().value() def set_person_name(tx, node_id, name): tx.run("MATCH (a:Person) WHERE id(a) = $id " "SET a.name = $name", id=node_id, name=name) # Write test startWrite = time.time() with driver.session() as session: tx = session.begin_transaction() uncommited = True for id in range(1, args.num_recs+1): name = "User" + str(id) node_id = create_person_node(tx) # set_person_name(tx, node_id, name) uncommited = True if id%args.commit_every == 0: print("Committing [{recs}]".format(recs=id)) tx.commit() uncommited = False if id < args.num_recs: tx = session.begin_transaction() uncommited = True if uncommited: print('Committing [' + str(id) + ']') tx.commit() elapsedWrite = time.time() - startWrite # Read test num_read = 0 def read_all_nodes(tx): global num_read for record in tx.run("MATCH (n) RETURN n"): # print record['n'].id num_read = num_read + 1 startRead = time.time() with driver.session() as session: session.read_transaction(read_all_nodes) elapsedRead = time.time() - startRead # Results print print("ARGUMENTS:") print(" server = {server}".format(server=args.server)) print(" protocol = {protocol}".format(protocol=args.protocol)) print(" num_recs = {num_recs}".format(num_recs=args.num_recs)) print(" commit_every = {commit_every}".format(commit_every=args.commit_every)) print print("WRITE [{num_recs} rows]:\nElapsed: {elapsed}, RPS: {rps}" .format(num_recs=args.num_recs,commit_every=args.commit_every,elapsed=elapsedWrite, rps=round(args.num_recs/elapsedWrite,1))) print print("READ [{num_read} rows]:\nElapsed: {elapsed}, RPS: {rps}" .format(num_read=num_read,elapsed=elapsedRead, rps=round(num_read/float(elapsedRead),1))) print
print("address")
from django.urls import path from p2coffee.views.kindly import KindlyOutgoingView from p2coffee.views.sensors import CreateSensorEventView from p2coffee.views.slack import SlackCommandView, SlackInteractionsView, SlackEventsView from strawberry.django.views import AsyncGraphQLView from p2coffee.schema import schema urlpatterns = [ path("event/log/", CreateSensorEventView.as_view(), name="create-log-event"), path("kindly/", KindlyOutgoingView.as_view(), name="kindly-outgoing"), path("slack/commands/", SlackCommandView.as_view(), name="slack-commands"), path("slack/interactions/", SlackInteractionsView.as_view(), name="slack-interactions"), path("slack/events/", SlackEventsView.as_view(), name="slack-events"), path("graphql", AsyncGraphQLView.as_view(schema=schema)), ]
import copy import datetime import json import logging import re import time from collections import defaultdict import pyjq from crypto.keychain_service.keychain import ttypes as keychain from fbnet.command_runner.CommandRunner import ttypes as fcr_ttypes from libfb.py.thrift_clients.fbnet_command_runner_thrift_client import ( FBNetCommandRunnerThriftClient as Legacy_FcrClient, ) from libfb.py.thrift_clients.keychain_thrift_client import KeychainClient from scripts.neteng.optical.bow.ssh_interface import ( ssh_read, ssh_write, ) # define the class of line devices class Line_Device(object): def __init__( self, amplifiers, wss, wss_onoff, proprietary_controller_info, transponder_box, transponder_fre, fast_slow_version, ): self.amplifiers = amplifiers self.wss = wss self.wss_onoff = wss_onoff self.proprietary_controller_info = proprietary_controller_info self.transponder_box = transponder_box self.transponder_fre = transponder_fre self.fast_slow_version = fast_slow_version # system password for authetication def get_secret(self, name, group): req = keychain.GetSecretRequest( name=name, group=group, ) try: return KeychainClient().getSecret(req) except keychain.KeychainServiceException as ex: print("Error retrieving secret:" + ex) return False # activate user on device def ssh_act_user(self, ssh): print("Activating ssh user\n") user = self.get_secret("TACACS_USERNAME", "NETENG_AUTOMATION").secret pw = self.get_secret("TACACS_PASSWORD", "NETENG_AUTOMATION").secret user_add_cmd = "XXXXXXXXXXX" + user + pw ## anonymized southbound command ssh_write(ssh, user_add_cmd) results = ssh_read(ssh, identify_sign="") print("ssh_act_user results", results, "\n") return user def ssh_cancel_user(self, user, ssh): print("Canceling ssh user\n") user_cancel_cmd = "XXXXXXXXXXX" + user ## anonymized southbound command ssh_write(ssh, user_cancel_cmd) results = ssh_read(ssh, identify_sign="") print("ssh_cancel_user resutls", results, "\n") def tl1_ssh_runner(self, ssh, cmd, identify_sign): ssh_write(ssh, cmd) results = ssh_read(ssh, identify_sign=identify_sign) micro_timestamp = datetime.datetime.now() return results, micro_timestamp def tl1_device_bulkrunner(self, device_commands, read_or_write): try: user = self.get_secret("TACACS_USERNAME", "NETENG_AUTOMATION").secret pw = self.get_secret("TACACS_PASSWORD", "NETENG_AUTOMATION").secret if read_or_write == 1: persistent_sign = "auto" else: persistent_sign = "auto" fcr_commands = { fcr_ttypes.Device( hostname=device, username=user, password=pw, session_type=fcr_ttypes.SessionType.TL1, session_data=fcr_ttypes.SessionData( extra_options={ "format": "json", "use_persistent_connection": persistent_sign, } ), ): device_commands[device] for device in device_commands } with Legacy_FcrClient() as client: res = client.bulk_run(fcr_commands) timestamp = time.localtime() return res, timestamp except Exception as ex: print("User exception: {}".format(ex)) timestamp = time.localtime() return 1, timestamp # get the spectrum peaks of the channels on the testbed, vacant wavelength is 0 def read_spectrum(self, wss, ssh_list, ssh_flag): spectrum_spectrum = [] noise_spectrum = [] central_freq = [] corrected_central_freq = [] fine_grain_spectrum = [] fine_grain_frequency = [] bins = [] roadm_id = wss["roadm_id"] chassis_id = wss["chassis_id"] card_id = wss["card_id"] port_id = wss["port_id"] max_channel_read_num = wss["channel_num"] grid_space = wss["grid"] startchannel_freq = wss["start_freq"] if ssh_flag == 1: # use ssh one-time authentication print("\033[1;31m\n** Use SSH direct connection for read_spectrum\033[0;0m") command = "XXXXXXXXXXX" ## anonymized southbound command results, micro_timestamp = self.tl1_ssh_runner( ssh_list[roadm_id], command, identify_sign="XXXXXXXXXXX" ) print("tl1_ssh_runner", results, "\n") channel_id = [] frequency = [] power = [] for s in results: if s.startswith('"spectrum'): channel_id.append(str(s[1:-1].split(",")[0])) frequency.append(int(s[1:-1].split(",")[0].split("-")[-1])) power.append(float(s[1:-1].split(",")[2])) else: # use FCR print("\033[1;31m\n** Use FCR client connection for read_spectrum\033[0;0m") command = "XXXXXXXXXXX" ## anonymized southbound command commands = defaultdict(list) commands[roadm_id].append(command) rc = 1 count = 0 while rc == 1 and count < 10: # rc = 1 means exception rc, timestamp = self.tl1_device_bulkrunner(commands, read_or_write=1) count += 1 if rc == 1: print("the FCR fails to fetch data\n") channel_id = [] frequency = [] power = [] else: j_data = json.loads(rc[roadm_id][0].output) vars = {} jqscript = ".[][].fields | {keys: .[0][0], value: . [1][1]}" results = pyjq.all(jqscript, j_data, vars=vars) channel_id = list(map(lambda x: str(x["keys"]), results)) frequency = list(map(lambda x: int(x["keys"].split("-")[-1]), results)) power = list(map(lambda x: float(x["value"]), results)) spectrum_reading = {channel_id[i]: power[i] for i in range(len(frequency))} # print(spectrum_reading) loc_match = "spectrum-" + chassis_id + "-" + card_id + "-" + port_id # print(loc_match) step = 0 channel_num = 0 current_fre_bin = [] current_power_bin = [] for item in range(len(spectrum_reading)): if channel_id[item].startswith(loc_match): fine_grain_spectrum.append(power[item]) fine_grain_frequency.append(channel_id[item]) if frequency[item] >= start_freq + grid_space * channel_num: # print(frequency[item]) current_fre_bin.append(frequency[item]) current_power_bin.append(power[item]) step = step + 1 if step == grid_space: peak_power = max(current_power_bin) loc = current_power_bin.index(peak_power) noise = float( ( current_power_bin[0] + current_power_bin[1] + current_power_bin[-1] + current_power_bin[-2] ) / 4 ) if peak_power < -15: pass else: spectrum_spectrum.append(peak_power) central_freq.append(current_fre_bin[loc]) noise_spectrum.append(noise) current_fre_bin_copy = copy.deepcopy(current_fre_bin) bins.append(current_fre_bin_copy) current_fre_bin.clear() current_power_bin.clear() channel_num = channel_num + 1 step = 0 if channel_num == max_channel_read_num: break ## if the detected central frequency is closest to one of the transponder frequency for c in central_freq: for x in self.transponder_fre: if ( abs(c - self.transponder_fre[x]) < 75000 ): # frequency slot size is 75 GHz corrected_central_freq.append(self.transponder_fre[x]) break return ( spectrum_spectrum, noise_spectrum, corrected_central_freq, fine_grain_spectrum, fine_grain_frequency, bins, ) def write_amp(self, parameters, ssh_list, ssh_flag): write_amp_command = "XXXXXXXXXXX" ## anonymized southbound command if ssh_flag: print("\033[1;31m\n** Use SSH direct connection for write_amp\033[0;0m") for amp in ssh_list: print("write to", amp, "via ssh", ssh_list[amp]) gain_command = ( write_amp_command.format(amplifier_name=self.amplifiers[amp]) + str(parameters[amp]) + ";" ) rc, micro_timestamp = self.tl1_ssh_runner( ssh_list[amp], gain_command, identify_sign="" ) print("tl1_ssh_runner", rc, "\n") else: print("\033[1;31m\n** Use FCR for write_amp\033[0;0m") commands = defaultdict(list) for amp in parameters: gain_command = ( write_amp_command.format(amplifier_name=self.amplifiers[amp]) + str(parameters[amp]) + ";" ) commands[amp].append(gain_command) rc = 1 count = 0 while rc == 1 and count < 10: # rc = 1 means exception rc, timestamp = self.tl1_device_bulkrunner(commands, read_or_write=0) count += 1 def read_amp(self, amplifiers): query_amplifier_cmd = "XXXXXXXXXXX" ## anonymized southbound command commands = defaultdict(list) for amp in amplifiers: commands[amp].append(query_amplifier_cmd.format(amp_name=amplifiers[amp])) print(commands) results = 1 count = 0 while results == 1 and count < 10: # rc = 1 means exception results, timestamp = self.tl1_device_bulkrunner(commands, read_or_write=1) count += 1 gain_results = {} if results == 1: print("the FCR fails to fetch data") else: for device, command_results in results.items(): for command_result in command_results: if command_result.status != "success": logging.error(f"{command_result.command} failed on {device}") continue gain = self.process_AMP(command_result) gain_results[device] = gain return gain_results def process_AMP(self, rc): j_data = json.loads(rc.output) vars = {} jqscript = ".[][].fields | {keys: .[0], value: .[2]}" results = pyjq.all(jqscript, j_data, vars=vars) gain = 0 for i in range(len(results)): if results[i]["value"]["AMPMODE"] == "GAINCLAMP": gain = results[i]["value"]["GAIN"] return gain # query transponder def bulkrun_cli_command(device_commands, username, password): fcr_commands = { fcr_ttypes.Device( hostname=device, username=username, password=password, session_type=fcr_ttypes.SessionType.TL1, session_data=fcr_ttypes.SessionData( extra_options={ "format": "json", "use_persistent_connection": "auto", } ), ): device_commands[device] for device in device_commands } with Legacy_FcrClient() as client: res = client.bulk_run(fcr_commands) return res # bulk query def bulk_query_cli(device_commands): try: username = self.get_secret("TACACS_USERNAME", "NETENG_AUTOMATION").secret ppasswordw = self.get_secret("TACACS_PASSWORD", "NETENG_AUTOMATION").secret response = bulkrun_cli_command( device_commands=device_commands, username=username, password=password, ) timestamp = time.localtime() return response, timestamp except Exception as ex: print("exception: {}".format(ex)) # clean the transponder collection bin def clean_transponder(transponder_box): ts_command_set = [ "XXXXXXXXXXX" ## anonymized southbound command ] commands = defaultdict(list) ## construct commands for bulk run for ts_box in transponder_box: for transponder in transponder_box[ts_box]: clear_command = ts_command_set[0] + transponder commands[ts_box].append(clear_command) print("commands", commands) rc, timestamp = bulk_query_cli(commands) # query transponders adjacency def get_transponder_adj(transponder_box, metric_bit): ts_command_set = [ "XXXXXXXXXXX" ## anonymized southbound command ] commands = defaultdict(list) ## construct commands for bulk run for ts_box in transponder_box: for transponder in transponder_box[ts_box]: Modulation = "N/A" Frequency = 0 query_command = ts_command_set[0] + transponder ## query performance metric commands[ts_box].append(query_command) print("get_transponder_adj commands", commands) rc, timestamp = bulk_query_cli(commands) transponder_mod = {} transponder_fre = {} for tx_box in transponder_box: for tx in range(len(commands[tx_box])): if metric_bit[0]: regex_mod = r"Modulation Scheme" ## anonymized regex matches_mod = re.finditer( regex_mod, rc[tx_box][tx].output, re.MULTILINE ) for _, match in enumerate(matches_mod, start=1): for groupNum in range(0, len(match.groups())): groupNum = groupNum + 1 Modulation = str(match.group(groupNum)) if metric_bit[1]: regex_fre = r"Frequency \(GHz\)" ## anonymized regex matches_fre = re.finditer( regex_fre, rc[tx_box][tx].output, re.MULTILINE ) for _, match in enumerate(matches_fre, start=1): for groupNum in range(0, len(match.groups())): groupNum = groupNum + 1 if match.group(groupNum) == "N/A": Frequency = 999 else: Frequency = int(float(match.group(groupNum)) * 1000) transponder_mod[tx_box + "-" + transponder_box[tx_box][tx]] = Modulation transponder_fre[tx_box + "-" + transponder_box[tx_box][tx]] = Frequency return transponder_mod, transponder_fre ## query transponders performance metric def get_transponder_pm(line, ssh_list, metric_bit, ssh_flag): clean_transponder(line.transponder_box) time.sleep(5) ts_command_set = [ "XXXXXXXXXXX" ## anonymized southbound command ] if ssh_flag == 1: # use ssh one-time authentication print( "\033[1;31m\n** Use SSH direct connection for get_transponder_pm\033[0;0m" ) for ts_box in line.transponder_box: for transponder in line.transponder_box[ts_box]: BER = None BERMax = None Qfactor = None QfactorMin = None ESNR = None ESNRmin = None query_command = ( ts_command_set[0] + transponder + " bin-type untimed" # untimed bin ) ## query performance metric rc, micro_timestamp = line.tl1_ssh_runner( ts_box, query_command, identify_sign="" ) print("tl1_ssh_runner", rc, "\n") else: # use FCR print("\033[1;31m\n** Use FCR for get_transponder_pm\033[0;0m") commands = defaultdict(list) ## construct commands for bulk run for ts_box in line.transponder_box: for transponder in line.transponder_box[ts_box]: BER = None BERMax = None Qfactor = None QfactorMin = None ESNR = None ESNRmin = None query_command = ( ts_command_set[0] + transponder + " bin-type untimed" # untimed bin ) ## query performance metric commands[ts_box].append(query_command) print("commands", commands) rc, timestamp = bulk_query_cli(commands) transponder_Q_set = {} transponder_Qmin_set = {} transponder_ber_set = {} transponder_bermax_set = {} transponder_esnr_set = {} transponder_esnrmin_set = {} for tx_box in line.transponder_box: for tx in range(len(commands[tx_box])): BER = None BERMax = None Qfactor = None QfactorMin = None ESNR = None ESNRmin = None if metric_bit[0]: regex_q = r"Q-factor" ## anonymized regex matches_q = re.finditer(regex_q, rc[tx_box][tx].output, re.MULTILINE) for _, match in enumerate(matches_q, start=1): for groupNum in range(0, len(match.groups())): groupNum = groupNum + 1 if match.group(groupNum) == "N/A": Qfactor = None else: Qfactor = float(match.group(groupNum)) if metric_bit[1]: regex_qmin = r"Q-factor Min" ## anonymized regex matches_qmin = re.finditer( regex_qmin, rc[tx_box][tx].output, re.MULTILINE ) for _, match in enumerate(matches_qmin, start=1): for groupNum in range(0, len(match.groups())): groupNum = groupNum + 1 if match.group(groupNum) == "N/A": QfactorMin = None else: QfactorMin = float(match.group(groupNum)) if metric_bit[2]: regex_ber = r"Pre-FEC BER" ## anonymized regex matches_ber = re.finditer( regex_ber, rc[tx_box][tx].output, re.MULTILINE ) for _, match in enumerate(matches_ber, start=1): for groupNum in range(0, len(match.groups())): groupNum = groupNum + 1 if match.group(groupNum) == "N/A": BER = None else: BER = float(match.group(groupNum)) if metric_bit[3]: regex_bermax = r"Pre-FEC BER Max" ## anonymized regex matches_bermax = re.finditer( regex_bermax, rc[tx_box][tx].output, re.MULTILINE ) for _, match in enumerate(matches_bermax, start=1): for groupNum in range(0, len(match.groups())): groupNum = groupNum + 1 if match.group(groupNum) == "N/A": BERMax = None else: BERMax = float(match.group(groupNum)) if metric_bit[4]: regex_ESNR = r"ESNR Avg" ## anonymized regex matches_bermax = re.finditer( regex_ESNR, rc[tx_box][tx].output, re.MULTILINE ) for _, match in enumerate(matches_bermax, start=1): for groupNum in range(0, len(match.groups())): groupNum = groupNum + 1 if match.group(groupNum) == "N/A": ESNR = None else: ESNR = float(match.group(groupNum)) if metric_bit[5]: regex_ESNRmin = r"ESNR Min" ## anonymized regex matches_bermax = re.finditer( regex_ESNRmin, rc[tx_box][tx].output, re.MULTILINE ) for _, match in enumerate(matches_bermax, start=1): for groupNum in range(0, len(match.groups())): groupNum = groupNum + 1 if match.group(groupNum) == "N/A": ESNRmin = None else: ESNRmin = float(match.group(groupNum)) frequency = line.transponder_fre[ tx_box + "-" + line.transponder_box[tx_box][tx] ] transponder_Q_set[frequency] = Qfactor transponder_Qmin_set[frequency] = QfactorMin transponder_ber_set[frequency] = BER transponder_bermax_set[frequency] = BERMax transponder_esnr_set[frequency] = ESNR transponder_esnrmin_set[frequency] = ESNRmin return ( transponder_Q_set, transponder_Qmin_set, transponder_ber_set, transponder_bermax_set, transponder_esnr_set, transponder_esnrmin_set, )
# -*- coding: utf-8 -*- # Module: MockWindowException # Author: asciidisco # Created on: 24.07.2017 # License: MIT https://goo.gl/xF5sC4 """Mock for Kodi Window instance""" try: import cPickle as pickle except ImportError: import pickle class MockWindowException(object): """Mock for Kodi Window instance""" def __init__(self): """ADD ME""" self.storage = {} def getProperty(self, name): """ADD ME""" return '' def setProperty(self, name, value): """ADD ME""" self.storage[name] = value
import pandas as pd from configparser import ConfigParser def extract_training_data(data_path: str) -> pd.DataFrame: """ Extract only those matches that occurred during the 2020 season or earlier for the training phase """ config = ConfigParser() config.read("config.ini") data = pd.read_csv(data_path) return data[data[config.get("features", "season")] < 2021]
# Copyright 2021 Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance # with the License. A copy of the License is located at http://aws.amazon.com/apache2.0/ # or in the "LICENSE.txt" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES # OR CONDITIONS OF ANY KIND, express or implied. See the License for the specific language governing permissions and # limitations under the License. # pylint: disable=W0613 import logging import os from typing import Dict, List from pcluster.api.controllers.common import ( check_cluster_version, configure_aws_region, configure_aws_region_from_config, convert_errors, get_validator_suppressors, http_success_status_code, validate_cluster, ) from pcluster.api.converters import ( cloud_formation_status_to_cluster_status, validation_results_to_config_validation_errors, ) from pcluster.api.errors import ( BadRequestException, CreateClusterBadRequestException, DryrunOperationException, NotFoundException, UpdateClusterBadRequestException, ) from pcluster.api.models import ( Change, CloudFormationStackStatus, ClusterConfigurationStructure, ClusterInfoSummary, CreateClusterBadRequestExceptionResponseContent, CreateClusterRequestContent, CreateClusterResponseContent, DeleteClusterResponseContent, DescribeClusterResponseContent, EC2Instance, InstanceState, ListClustersResponseContent, Tag, UpdateClusterBadRequestExceptionResponseContent, UpdateClusterRequestContent, UpdateClusterResponseContent, UpdateError, ValidationLevel, ) from pcluster.api.util import assert_node_executable from pcluster.aws.aws_api import AWSApi from pcluster.aws.common import StackNotFoundError from pcluster.config.update_policy import UpdatePolicy from pcluster.models.cluster import ( Cluster, ClusterActionError, ClusterUpdateError, ConfigValidationError, NotFoundClusterActionError, ) from pcluster.models.cluster_resources import ClusterStack from pcluster.utils import get_installed_version, to_utc_datetime from pcluster.validators.common import FailureLevel LOGGER = logging.getLogger(__name__) @convert_errors() @http_success_status_code(202) def create_cluster( create_cluster_request_content: Dict, region: str = None, suppress_validators: List[str] = None, validation_failure_level: str = None, dryrun: bool = None, rollback_on_failure: bool = None, ) -> CreateClusterResponseContent: """ Create a managed cluster in a given region. :param create_cluster_request_content: :type create_cluster_request_content: dict | bytes :param region: AWS Region that the operation corresponds to. :type region: str :param suppress_validators: Identifies one or more config validators to suppress. Format: (ALL|type:[A-Za-z0-9]+) :param validation_failure_level: Min validation level that will cause the cluster creation to fail. (Defaults to &#39;ERROR&#39;.) :param dryrun: Only perform request validation without creating any resource. May be used to validate the cluster configuration. (Defaults to &#39;false&#39;.) :type dryrun: bool :param rollback_on_failure: When set it automatically initiates a cluster stack rollback on failures. (Defaults to &#39;true&#39;.) :type rollback_on_failure: bool """ assert_node_executable() # Set defaults configure_aws_region_from_config(region, create_cluster_request_content["clusterConfiguration"]) rollback_on_failure = rollback_on_failure in {True, None} validation_failure_level = validation_failure_level or ValidationLevel.ERROR dryrun = dryrun is True create_cluster_request_content = CreateClusterRequestContent.from_dict(create_cluster_request_content) cluster_config = create_cluster_request_content.cluster_configuration if not cluster_config: LOGGER.error("Failed: configuration is required and cannot be empty") raise BadRequestException("configuration is required and cannot be empty") try: cluster = Cluster(create_cluster_request_content.cluster_name, cluster_config) if dryrun: ignored_validation_failures = cluster.validate_create_request( get_validator_suppressors(suppress_validators), FailureLevel[validation_failure_level] ) validation_messages = validation_results_to_config_validation_errors(ignored_validation_failures) raise DryrunOperationException(validation_messages=validation_messages or None) stack_id, ignored_validation_failures = cluster.create( disable_rollback=not rollback_on_failure, validator_suppressors=get_validator_suppressors(suppress_validators), validation_failure_level=FailureLevel[validation_failure_level], ) return CreateClusterResponseContent( ClusterInfoSummary( cluster_name=create_cluster_request_content.cluster_name, cloudformation_stack_status=CloudFormationStackStatus.CREATE_IN_PROGRESS, cloudformation_stack_arn=stack_id, region=os.environ.get("AWS_DEFAULT_REGION"), version=get_installed_version(), cluster_status=cloud_formation_status_to_cluster_status(CloudFormationStackStatus.CREATE_IN_PROGRESS), ), validation_messages=validation_results_to_config_validation_errors(ignored_validation_failures) or None, ) except ConfigValidationError as e: config_validation_messages = validation_results_to_config_validation_errors(e.validation_failures) or None raise CreateClusterBadRequestException( CreateClusterBadRequestExceptionResponseContent( configuration_validation_errors=config_validation_messages, message=str(e) ) ) @configure_aws_region() @convert_errors() @http_success_status_code(202) def delete_cluster(cluster_name, region=None): """ Initiate the deletion of a cluster. :param cluster_name: Name of the cluster :type cluster_name: str :param region: AWS Region that the operation corresponds to. :type region: str :rtype: DeleteClusterResponseContent """ try: cluster = Cluster(cluster_name) if not check_cluster_version(cluster): raise BadRequestException( f"Cluster '{cluster_name}' belongs to an incompatible ParallelCluster major version." ) if not cluster.status == CloudFormationStackStatus.DELETE_IN_PROGRESS: # TODO: remove keep_logs logic from delete cluster.delete(keep_logs=False) return DeleteClusterResponseContent( cluster=ClusterInfoSummary( cluster_name=cluster_name, cloudformation_stack_status=CloudFormationStackStatus.DELETE_IN_PROGRESS, cloudformation_stack_arn=cluster.stack.id, region=os.environ.get("AWS_DEFAULT_REGION"), version=cluster.stack.version, cluster_status=cloud_formation_status_to_cluster_status(CloudFormationStackStatus.DELETE_IN_PROGRESS), ) ) except StackNotFoundError: raise NotFoundException( f"Cluster '{cluster_name}' does not exist or belongs to an incompatible ParallelCluster major version. " "In case you have running instances belonging to a deleted cluster please use the DeleteClusterInstances " "API." ) @configure_aws_region() @convert_errors() def describe_cluster(cluster_name, region=None): """ Get detailed information about an existing cluster. :param cluster_name: Name of the cluster :type cluster_name: str :param region: AWS Region that the operation corresponds to. :type region: str :rtype: DescribeClusterResponseContent """ cluster = Cluster(cluster_name) validate_cluster(cluster) cfn_stack = cluster.stack fleet_status = cluster.compute_fleet_status config_url = "NOT_AVAILABLE" try: config_url = cluster.config_presigned_url except ClusterActionError as e: # Do not fail request when S3 bucket is not available LOGGER.error(e) response = DescribeClusterResponseContent( creation_time=to_utc_datetime(cfn_stack.creation_time), version=cfn_stack.version, cluster_configuration=ClusterConfigurationStructure(url=config_url), tags=[Tag(value=tag.get("Value"), key=tag.get("Key")) for tag in cfn_stack.tags], cloud_formation_stack_status=cfn_stack.status, cluster_name=cluster_name, compute_fleet_status=fleet_status.value, cloudformation_stack_arn=cfn_stack.id, last_updated_time=to_utc_datetime(cfn_stack.last_updated_time), region=os.environ.get("AWS_DEFAULT_REGION"), cluster_status=cloud_formation_status_to_cluster_status(cfn_stack.status), ) try: head_node = cluster.head_node_instance response.head_node = EC2Instance( instance_id=head_node.id, launch_time=to_utc_datetime(head_node.launch_time), public_ip_address=head_node.public_ip, instance_type=head_node.instance_type, state=InstanceState.from_dict(head_node.state), private_ip_address=head_node.private_ip, ) except ClusterActionError as e: # This should not be treated as a failure cause head node might not be running in some cases LOGGER.info(e) return response @configure_aws_region() @convert_errors() def list_clusters(region=None, next_token=None, cluster_status=None): """ Retrieve the list of existing clusters managed by the API. Deleted clusters are not listed by default. :param region: List clusters deployed to a given AWS Region. :type region: str :param next_token: Token to use for paginated requests. :type next_token: str :param cluster_status: Filter by cluster status. (Defaults to all clusters.) :type cluster_status: list | bytes :rtype: ListClustersResponseContent """ stacks, next_token = AWSApi.instance().cfn.list_pcluster_stacks(next_token=next_token) stacks = [ClusterStack(stack) for stack in stacks] clusters = [] for stack in stacks: current_cluster_status = cloud_formation_status_to_cluster_status(stack.status) if not cluster_status or current_cluster_status in cluster_status: cluster_info = ClusterInfoSummary( cluster_name=stack.cluster_name, cloudformation_stack_status=stack.status, cloudformation_stack_arn=stack.id, region=os.environ.get("AWS_DEFAULT_REGION"), version=stack.version, cluster_status=current_cluster_status, ) clusters.append(cluster_info) return ListClustersResponseContent(clusters=clusters, next_token=next_token) @convert_errors() @http_success_status_code(202) def update_cluster( update_cluster_request_content: Dict, cluster_name, suppress_validators=None, validation_failure_level=None, region=None, dryrun=None, force_update=None, ): """ Update a cluster managed in a given region. :param update_cluster_request_content: :param cluster_name: Name of the cluster :type cluster_name: str :param suppress_validators: Identifies one or more config validators to suppress. Format: (ALL|type:[A-Za-z0-9]+) :type suppress_validators: List[str] :param validation_failure_level: Min validation level that will cause the update to fail. (Defaults to &#39;error&#39;.) :type validation_failure_level: dict | bytes :param region: AWS Region that the operation corresponds to. :type region: str :param dryrun: Only perform request validation without creating any resource. May be used to validate the cluster configuration and update requirements. Response code: 200 :type dryrun: bool :param force_update: Force update by ignoring the update validation errors. (Defaults to &#39;false&#39;.) :type force_update: bool :rtype: UpdateClusterResponseContent """ assert_node_executable() # Set defaults configure_aws_region_from_config(region, update_cluster_request_content["clusterConfiguration"]) validation_failure_level = validation_failure_level or ValidationLevel.ERROR dryrun = dryrun is True force_update = force_update is True update_cluster_request_content = UpdateClusterRequestContent.from_dict(update_cluster_request_content) cluster_config = update_cluster_request_content.cluster_configuration if not cluster_config: LOGGER.error("Failed: configuration is required and cannot be empty") raise BadRequestException("configuration is required and cannot be empty") try: cluster = Cluster(cluster_name) if not check_cluster_version(cluster, exact_match=True): raise BadRequestException( f"the update can be performed only with the same ParallelCluster version ({cluster.stack.version}) " "used to create the cluster." ) if dryrun: _, changes, ignored_validation_failures = cluster.validate_update_request( target_source_config=cluster_config, force=force_update, validator_suppressors=get_validator_suppressors(suppress_validators), validation_failure_level=FailureLevel[validation_failure_level], ) change_set, _ = _analyze_changes(changes) validation_messages = validation_results_to_config_validation_errors(ignored_validation_failures) raise DryrunOperationException(change_set=change_set, validation_messages=validation_messages or None) changes, ignored_validation_failures = cluster.update( target_source_config=cluster_config, validator_suppressors=get_validator_suppressors(suppress_validators), validation_failure_level=FailureLevel[validation_failure_level], force=force_update, ) change_set, _ = _analyze_changes(changes) return UpdateClusterResponseContent( cluster=ClusterInfoSummary( cluster_name=cluster_name, cloudformation_stack_status=CloudFormationStackStatus.UPDATE_IN_PROGRESS, cloudformation_stack_arn=cluster.stack.id, region=os.environ.get("AWS_DEFAULT_REGION"), version=cluster.stack.version, cluster_status=cloud_formation_status_to_cluster_status(CloudFormationStackStatus.UPDATE_IN_PROGRESS), ), validation_messages=validation_results_to_config_validation_errors(ignored_validation_failures) or None, change_set=change_set, ) except ConfigValidationError as e: config_validation_messages = validation_results_to_config_validation_errors(e.validation_failures) or None raise UpdateClusterBadRequestException( UpdateClusterBadRequestExceptionResponseContent( configuration_validation_errors=config_validation_messages, message=str(e) ) ) except ClusterUpdateError as e: raise _handle_cluster_update_error(e) except (NotFoundClusterActionError, StackNotFoundError): raise NotFoundException( f"Cluster '{cluster_name}' does not exist or belongs to an incompatible ParallelCluster major version." ) def _handle_cluster_update_error(e): """Create an UpdateClusterBadRequestExceptionResponseContent in case of failure during patch validation. Note that patch validation is carried out once we have successfully validated the configuration. For this reason, we want to avoid adding the suppressed configuration validation errors (which we attach to the response in case of a successful update) as we do not want to confuse the customer by showing them errors they suppressed, which did not cause the BadRequest exception. """ change_set, errors = _analyze_changes(e.update_changes) return UpdateClusterBadRequestException( UpdateClusterBadRequestExceptionResponseContent( message=str(e), change_set=change_set, update_validation_errors=errors or None ) ) def _cluster_update_change_succeded(check_result): """Describe if check_result represents successful individual change within a larger cluster update.""" return check_result == UpdatePolicy.CheckResult.SUCCEEDED def _analyze_changes(changes): if changes is None or len(changes) <= 1: return [], [] change_set = [] errors = [] key_indexes = {key: index for index, key in enumerate(changes[0])} for row in changes[1:]: parameter = _get_yaml_path(row[key_indexes["param_path"]], row[key_indexes["parameter"]]) new_value = row[key_indexes["new value"]] old_value = row[key_indexes["old value"]] check_result = row[key_indexes["check"]] message = _create_message(row[key_indexes["reason"]], row[key_indexes["action_needed"]]) if not _cluster_update_change_succeded(check_result): errors.append( UpdateError(parameter=parameter, requested_value=new_value, message=message, current_value=old_value) ) change_set.append(Change(parameter=parameter, requested_value=new_value, current_value=old_value)) return change_set, errors def _create_message(failure_reason, action_needed): message = None if failure_reason: message = failure_reason if action_needed: message = f"{message}. {action_needed}" if message else action_needed return message or "Error during update" def _get_yaml_path(path, parameter): """Compose the parameter path following the YAML Path standard. Standard: https://github.com/wwkimball/yamlpath/wiki/Segments-of-a-YAML-Path#yaml-path-standard """ yaml_path = [] if path: yaml_path.extend(path) if parameter: yaml_path.append(parameter) return ".".join(yaml_path)
import os import hydra import pytest from nuplan.common.utils.testing.nuplan_test import NUPLAN_TEST_PLUGIN, nuplan_test from nuplan.planning.metrics.utils.testing_utils import setup_history CONFIG_PATH = os.path.join('..', '..', '..', '..', 'script/config/common/simulation_metric/common/') CONFIG_NAME = 'time_to_collision_statistics' @nuplan_test(path='json/time_to_collision/time_to_collision.json') def test_time_to_collision(scene) -> None: # type: ignore """ Test predicted time to collision :param scene: the json scene """ history = setup_history(scene) # Metric hydra.core.global_hydra.GlobalHydra.instance().clear() hydra.initialize(config_path=CONFIG_PATH) cfg = hydra.compose(config_name=CONFIG_NAME) time_to_collision = hydra.utils.instantiate(cfg)['time_to_collision_statistics'] result = time_to_collision.compute(history)[0] expected_times_to_collision = [float(t) for t in scene['expected']["times_to_collision"]] for i, (actual_ttc, expected_ttc) in enumerate(zip(result.time_series.values, expected_times_to_collision)): assert round(actual_ttc, 2) == expected_ttc, f"Wrong TTC for timestep {i}" if __name__ == "__main__": raise SystemExit(pytest.main([__file__], plugins=[NUPLAN_TEST_PLUGIN]))
import matplotlib.pyplot as plt import numpy as np plot_name = "botbowl-1" exp_id_nopf = '7f556c38-7853-11eb-b93b-faffc23fefdb.dat' exp_id_pf = '129055f2-7846-11eb-a07b-faffc23fefdb.dat' window_size = 2 plot_name = "botbowl-3" exp_id_nopf = '48ed35ea-79b7-11eb-ba58-19faed4b7487.dat' exp_id_pf = '4cd8c832-794d-11eb-b2ed-19faed4b7487.dat' window_size = 20 #plot_name = "botbowl-5" #exp_id_nopf = 'f1e2354e-79d8-11eb-bb13-19faed4b7487.dat' #exp_id_pf = '70310ce8-7a80-11eb-8061-19faed4b7487.dat' #window_size = 100 logfile_nopf = f"logs/logs-pf/{plot_name}/nopf/{exp_id_nopf}" logfile_pf = f"logs/logs-pf/{plot_name}/pf/{exp_id_pf}" fig, axs = plt.subplots(1, 3, figsize=(4 * 3, 5)) axs[0].ticklabel_format(axis="x", style="sci", scilimits=(0, 0)) axs[0].set_title('Reward') axs[1].ticklabel_format(axis="x", style="sci", scilimits=(0, 0)) axs[1].set_title('TD/Episode') #axs[1].set_ylim(bottom=0.0) #axs[1].set_xlim(left=0) axs[2].ticklabel_format(axis="x", style="sci", scilimits=(0, 0)) axs[2].set_title('Win rate') #axs[2].set_yticks(np.arange(0, 1.001, step=0.1)) #axs[2].set_xlim(left=0) def plot(log_steps, log_mean_reward, log_td_rate, log_win_rate, label): axs[0].plot(log_steps, log_mean_reward, label=label) axs[1].plot(log_steps, log_td_rate, label=label) axs[2].plot(log_steps, log_win_rate, label=label) def load_data(logfile, window_size): data = [] with open(logfile, 'r') as file: for line in file: data.append([float(v) for v in line.strip().split(", ")]) cols = [] for i in range(len(data[0])): col = [] vals = [] for v in np.array(data)[:, i]: vals.append(v) if len(vals) == window_size: col.append(np.average(vals)) vals.clear() cols.append(col) return np.array(cols).transpose() data = load_data(logfile_nopf, window_size=window_size) plot(log_steps=data[:, 2], log_mean_reward=data[:, 6], log_td_rate=data[:, 4], log_win_rate=data[:, 3], label="No Pathfinding") data = load_data(logfile_pf, window_size=window_size) plot(log_steps=data[:, 2], log_mean_reward=data[:, 6], log_td_rate=data[:, 4], log_win_rate=data[:, 3], label="Pathfinding") # axs[0].legend(['Baseline', 'Pathfinding']) # axs[1].legend(['Baseline', 'Pathfinding']) axs[2].legend(['Baseline', 'Pathfinding']) fig.tight_layout() plotfile = f"plots/{plot_name}.png" fig.savefig(plotfile) plt.close('all')
from json import loads, dumps from pastemyst import * # you would want to set your key here # note: saving work if you dont set the key client = Client(key=None) paste = None def store_data(name, data): return client.create_paste( Paste( title=name, pasties=[ Pasty( title=name, code=dumps(data), language=Language.JSON ) ], # you would probably wanna change this to never expires_in=ExpiresIn.ONE_HOUR ) ) def get_data(id): return loads( client.get_paste(id).pasties[0].code ) def save_data(data): paste.pasties[0].code = dumps(data) return client.edit_paste(paste) if __name__ == '__main__': xp_data = { 'leaderboard': { 'John': 10, 'Joe': 20, 'Daniel': 69 } } paste = store_data("xp.json", xp_data) id = paste._id # ... data = get_data(id) leaderboard = data['leaderboard'] print(leaderboard) # this only works if you have set the api key leaderboard['Joe'] += 1 data['leaderboard'] = leaderboard save_data(leaderboard)
""" users.py A Flask Blueprint module for the user manager page. """ from flask import Blueprint, render_template, request, jsonify, g, abort from werkzeug.exceptions import HTTPException from meerkat_auth.user import User, InvalidCredentialException from meerkat_auth.role import InvalidRoleException from meerkat_auth.authorise import auth from meerkat_auth import app import datetime import logging users_blueprint = Blueprint('users', __name__, url_prefix="/<language>") @users_blueprint.before_request def requires_auth(): """ Checks that the user has authenticated before returning any page from this Blueprint. """ auth.check_auth(['admin'], ['']) # Only allow admin's to edit accounts in their own countries. # i.e. if admin has non-admin access to another country. countries = list(g.payload['acc'].keys()) for country in countries: if 'admin' not in g.payload['acc'][country]: del g.payload['acc'][country] logging.warning(g.payload['acc']) def compare_access(roles, countries): """ Utility function to check that the current user has access to the specified access levels. Aborts the request if current user doesn't have access. Args: roles ([`str`]): A list of access role names, to compare the current \ users access against. countries ([`str`]): The corresponding countries for each role in roles. """ user_access = g.payload['acc'] # Look at each access level the account has. for i in range(len(roles)): acc_role = roles[i] acc_country = countries[i] # If the account has an access level the current user doesn't have: # (If the current user has access in that country...) if acc_role not in user_access.get(acc_country, [acc_role]): abort(403, "You are not authorised to view or edit this user.") @users_blueprint.route('/get_users') def get_users(): """ Get a list of users for the bootstrap table listing users. We do not allow people to see accounts that have access they themselves do not have. Returns: A json response containing one property "rows" which is a list of objects where each object represents a row of the user accounts table. """ # Set attributes "to get" # And restrict accounts shown, to those from the user's countries. acc = g.payload['acc'] countries = list(acc.keys()) attributes = [ "email", "roles", "username", "countries", "creation", "data" ] rows = User.get_all(countries, attributes) # Remove any data rows (accounts) that are outside the users access. # Step backwards through the list so we can smoothly delete as we go. for j in range(len(rows)-1, -1, -1): access = (rows[j]['roles'], rows[j]['countries'], acc) if not auth.check_access(*access, 'AND'): del rows[j] return jsonify({'rows': rows}) @users_blueprint.route('/get_user/') @users_blueprint.route('/get_user/<username>') def get_user(username=""): """ Get the specified user as a json reponse. Args: username (`str`): The username of the user to get. Returns: A json response containing all the details of the specified user as specified by the User object "to_dict()" method. If no username is given, this method returns an empty user. This is useful for js design in the frontend (means we always have value to auto-fill the user editor form with). """ if username == "": return jsonify({ "countries": [], "creation": "", "data": {}, "email": "", "password": "", "roles": [], "state": "", "updated": "", "username": "" }) else: user = User.from_db(username) # Check that the current user has access to view the requested user. auth.check_auth(user.roles, user.countries, 'AND') return jsonify(user.to_dict()) @users_blueprint.route('/check_username/<username>') def check_username(username): """ Checks whether or not the specified username is a valid new username. Args: username (`str`): the username to check Returns: A json response with a single property 'valid', set to true if valid and false if not. """ return jsonify({'valid': not User.check_username(username)}) @users_blueprint.route('/update_user/<username>', methods=['POST']) @users_blueprint.route('/update_user/', methods=['POST']) def update_user(username='new'): """ Update/create a user. If username is set to "new" it will create and validate as a new user. Pass the new user details as json in the post data. Post data should contain the following properties: username, email, password, countries (list of str), roles (list of str), state, creation (timestamp), data (json object). Look at the db to see the structure of data. Args: username (`str`): The username of the user to be updated. Returns: A string stating success or error. """ # Load the form's data and check the current user has access to edit. data = request.get_json() auth.check_auth(data["roles"], data["countries"], 'AND') if username != 'new': user = User.from_db(username) auth.check_auth(user.roles, user.countries, 'AND') # Form's password field default is empty, only update if something entered. # Original password hash is stored in hidden input so we don't need to # reload user here. if data["password"]: data["password"] = User.hash_password(data["password"]) else: data["password"] = data["original_password"] # Create a user object represented by the form input. user = User( data["username"], data["email"], data["password"], data["countries"], data["roles"], state=data["state"], updated=datetime.datetime.now().isoformat(), creation=data["creation"], data=data["data"] ) logging.warning( "Original username: " + username + " New username: " + data['username'] ) # If username changed, then create a new record for validation. # ...because otherwise validation will say "username already exists". if username != data["username"]: user.state = "new" # Factor out the multiple lines of error handling for writing to database. def write(user): try: logging.warning(user.password) user.to_db() except (InvalidRoleException, InvalidCredentialException) as e: return str(e) except Exception as e: return str(e) raise # Write the user to the database. Includes server-side validation. write(user) # Reset state once validation and writing complete # Changing username shouldn't wipe the state. if user.state != data["state"]: user = User.from_db(user.username) logging.warning(repr(user)) user.state = data["state"] write(user) # When username changes we create a new db record, so delete old one. if username != data["username"]: User.delete(username) return "Successfully Updated" @users_blueprint.route('/delete_users', methods=['POST']) def delete_users(): """ Delete the users specified in the post arguments. The post arguments takes a list of usernames to be deleted. Returns: A string either stating success or the existance of an error. """ # Load the list of users to be deleted. users = request.get_json() logging.warning('Users: ' + str(users)) # Try to delete users message = "" error = False for username in users: try: # Check current user has access to delete the specified user. user_to_delete = User.from_db(username) try: auth.check_auth(['admin'], ['meerkat']) except HTTPException: countries_list = user_to_delete.countries admin_role_list = ['admin'] * len(countries_list) auth.check_auth(admin_role_list, countries_list, logic='AND') logging.warning( g.payload['usr'] + ' is deleting account ' + str(username) ) # Delete the user User.delete(username) message += 'Succesfully deleted "{}"\n'.format(username) except Exception as e: error = True message += 'Cannot delete "{}": {}\n'.format(username, e) if error: return ("ERROR: There was an error deleting some users.\n" + message) else: return "Users successfully deleted." @users_blueprint.route('/') def index(): """ Renders the user editor/creator/viewer page. """ return render_template( 'users/index.html', user=g.payload, root=app.config['ROOT_URL'] )
default_app_config = "outpost.django.salt.apps.DefaultConfig"
##################Read a netcdf file######################### ###########Import necessary modules########################## import netCDF4 as nc ############ File to be read #################### ############ IMD Gridded Rainfall data ########## file_name = "/mnt/e/Python_Scripts/Sample_Data/RFone_imd_rf_1x1_2019.nc" ################# open file ###################### f = nc.Dataset(file_name) print(f) # gives us information about the variables #contained in the file and their dimensions for dim in f.dimensions.values(): print(dim) # Metadata for all dimensions for var in f.variables.values(): print(var) # Metadata for all variables print(f['rf']) # Metadata of single variable ################# read variables ################ rf = f.variables['rf'][:] lats = f.variables['lat'][:] lons = f.variables['lon'][:] time = f.variables['time'][:] print(rf.min()," ,",rf.max()) exit()
# -*- coding: utf8 -*- # Copyright 2019 JSALT2019 Distant Supervision Team # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from torch.distributions.laplace import Laplace from torch.distributions.normal import Normal import torch.nn import torch.nn.functional as F import torchvision.models as tvmodels from distsup.utils import safe_squeeze # Quantizations with losses class BaseDataQuantizer(torch.nn.Module): def __init__(self, **kwargs): super(BaseDataQuantizer, self).__init__(**kwargs) self.num_levels = 1 def quantize(self, x): return self(x) def forward(self, x): """Encode the values, e.g. by quantizeing. Args: x: the data to quantize Returns: tuple of: - tensor with encoded values - tensor with """ return x, x def dequantize(self, x): return x def mean_field(self, logits): raise NotImplementedError def sample(self, logits): raise NotImplementedError def loss(self, x, targets): raise NotImplementedError class SoftmaxUniformQuantizer(BaseDataQuantizer): def __init__(self, num_levels, min=0.0, max=1.0, **kwargs): assert min == 0.0, "Not implemented" assert max == 1.0, "Not implemented" super(SoftmaxUniformQuantizer, self).__init__(**kwargs) self.num_levels = num_levels def forward(self, x): assert x.min() >= 0.0 assert x.max() <= 1.0 targets = (x * self.num_levels).clamp(0, self.num_levels - 1).long() assert targets.min() >= 0 assert targets.max() < self.num_levels inputs = self.dequantize(targets) return inputs, targets def dequantize(self, q): return q.float() / (self.num_levels - 1) def mean_field(self, logits): dim = -1 probs = F.softmax(logits, dim) ndim = [1] * probs.dim() ndim[dim] = self.num_levels probs *= ( torch .arange(self.num_levels, dtype=torch.float32, device=probs.device) .view(*ndim)) return probs.sum(dim) def sample(self, logits): *lead_dims, softmax_dim = logits.shape probs = torch.softmax(logits, -1).view(-1, softmax_dim) samples = torch.multinomial(probs, 1) samples = samples.view(*lead_dims) return self.dequantize(samples) def loss(self, logits, targets): assert logits.size()[:4] == targets.size() logits = logits.permute(0, 4, 1, 2, 3) loss = F.cross_entropy(logits, targets.long(), reduction='none') return loss class SoftmaxQuantizer(BaseDataQuantizer): def __init__(self, levels=[0.0, 0.25, 0.5, 0.75], **kwargs): super(SoftmaxQuantizer, self).__init__(**kwargs) assert levels == sorted(levels), "Levels should be sorted" self.register_buffer('levels', torch.tensor(levels)) self.num_levels = len(levels) def forward(self, x): _, targets = torch.min((x.unsqueeze(-1) - self.levels)**2, -1) return self.dequantize(targets), targets def dequantize(self, q): return self.levels[q] def mean_field(self, logits): dim = -1 probs = F.softmax(logits, dim) ndim = [1] * probs.dim() ndim[dim] = self.num_levels probs *= self.levels.view(*ndim) return probs.sum(dim) def sample(self, logits): *lead_dims, softmax_dim = logits.shape probs = torch.softmax(logits, -1).view(-1, softmax_dim) samples = torch.multinomial(probs, 1) samples = samples.view(*lead_dims) return self.dequantize(samples) def loss(self, logits, targets): assert logits.size()[:4] == targets.size() logits = logits.permute(0, 4, 1, 2, 3) loss = F.cross_entropy(logits, targets.long(), reduction='none') return loss class BinaryXEntropy(BaseDataQuantizer): def __init__(self, **kwargs): super(BinaryXEntropy, self).__init__(**kwargs) def forward(self, x): assert x.min() >= 0.0 assert x.max() <= 1.0 return x, x def dequantize(self, x): return x def mean_field(self, logits): logits = safe_squeeze(logits, -1) return torch.sigmoid(logits) def sample(self, logits): logits = safe_squeeze(logits, -1) probs = torch.sigmoid(logits) return (torch.rand_like(probs) < probs ).float() def loss(self, logits, targets): logits = safe_squeeze(logits, -1) assert logits.size() == targets.size() return F.binary_cross_entropy_with_logits( logits, targets, reduction='none') class L1Loss(BaseDataQuantizer): def __init__(self, **kwargs): super(L1Loss, self).__init__(**kwargs) def forward(self, x): return x, x def dequantize(self, x): return x def mean_field(self, logits): logits = safe_squeeze(logits, -1) return logits def sample(self, logits): logits = safe_squeeze(logits, -1) return Laplace(logits, 1.0).sample() def loss(self, logits, targets): logits = safe_squeeze(logits, -1) assert logits.size() == targets.size(), f"{logits.size()} != {targets.size()}" return F.l1_loss(logits, targets, reduction='none') class L2Loss(BaseDataQuantizer): def __init__(self, **kwargs): super(L2Loss, self).__init__(**kwargs) def forward(self, x): return x, x def dequantize(self, x): return x def mean_field(self, logits): logits = safe_squeeze(logits, -1) return logits def sample(self, logits): logits = safe_squeeze(logits, -1) return Normal(logits, 1.0).sample() def loss(self, logits, targets): logits = safe_squeeze(logits, -1) assert logits.size() == targets.size() return F.mse_loss(logits, targets, reduction='none') class NormalMeanScaleLoss(BaseDataQuantizer): def __init__(self, **kwargs): super(NormalMeanScaleLoss, self).__init__(**kwargs) self.num_levels = 2 def forward(self, x): return x, x def dequantize(self, x): return x def mean_field(self, logits): return logits[:, :, :, :, 0] def _get_normal(self, logits): loc, scale = logits.chunk(2, dim=-1) loc = safe_squeeze(loc, -1) scale = torch.exp(safe_squeeze(scale, -1)) return Normal(loc, scale) def sample(self, logits): return self._get_normal(logits).sample() def loss(self, logits, targets): assert logits.size()[:-1] == targets.size() return -self._get_normal(logits).log_prob(targets) class PerceptualLoss(BaseDataQuantizer): def __init__(self, layers=6): super(PerceptualLoss, self).__init__() self.vgg = tvmodels.vgg16(pretrained=True).features[:layers] self.vgg.eval() for p in self.vgg.parameters(): p.requires_grad_(False) def forward(self, x): return x, x def dequantize(self, x): return x def mean_field(self, logits): logits = safe_squeeze(logits, -1) return logits def sample(self, logits): return safe_squeeze(logits, -1) def loss(self, logits, targets): logits = safe_squeeze(logits, -1) logits = logits.permute(0, 3, 2, 1) B, C, H, W = logits.shape logits = logits.expand(B, 3, H, W) targets = targets.permute(0, 3, 2, 1) targets = targets.expand(B, 3, H, W) return F.l1_loss(self.vgg(logits * 2 - 1), self.vgg(targets * 2 - 1), reduction='none')
"""Module containing the namespace table definitions.""" from typing import Optional from sqlalchemy.sql.schema import Column, Index from sqlalchemy.ext.declarative import declared_attr from ..db import DB, MODEL from .model_helpers import ( FULLTEXT_INDEX_PARAMS, ChangesMixin, IdMixin, UniqueNameDescriptionMixin, ) class Namespace(IdMixin, UniqueNameDescriptionMixin, ChangesMixin, MODEL): """Namespace Table model.""" __tablename__ = "Namespace" @declared_attr def __table_args__(cls): return ( Index( f"ix_search{cls.__tablename__}", "name", "description", **FULLTEXT_INDEX_PARAMS, ), ) def __init__(self, name: str, description: Optional[str] = None, **kwargs) -> None: self.update(name, description, **kwargs) def update(self, name: str, description: Optional[str] = None, **kwargs): if kwargs: raise ValueError("Got unknown keyword arguments!") self.name = name self.description = description
# -*- coding: utf-8 -*- """Application configuration.""" import os from pathlib import Path class LocalConfig: db_type = os.getenv('DB_TYPE', 'mysql') user = os.getenv('DB_USER', 'root') passwd = os.getenv('DB_PASSWD', '123456') host = os.getenv('DB_HOST', '127.0.0.1') port = os.getenv('DB_PORT', 3306) db_name = os.getenv('DB_NAME', 'flaskshop') if db_type == 'postgresql': db_uri = 'postgresql://{user}:{passwd}@{host}:{port}/{db_name}'.format( user=user, passwd=passwd, host=host, port=port, db_name=db_name) elif db_type == u'mysql': db_uri = "mysql+pymysql://{user}:{passwd}@{host}:{port}/{db_name}?charset=utf8mb4".format( user=user,passwd=passwd, host=host, port=port, db_name=db_name) redis_uri = "redis://localhost:6379" esearch_uri = "localhost" class Config: SECRET_KEY = os.getenv("SECRET_KEY", "thisisashop") # Redis # if redis is enabled, it can be used for: # - cache # - save product description # - save page content USE_REDIS = False REDIS_URL = os.getenv("REDIS_URI", LocalConfig.redis_uri) # Elasticsearch # if elasticsearch is enabled, the home page will have a search bar # and while add a product, the search index will get update USE_ES = False ES_HOSTS = [ os.getenv("ESEARCH_URI", LocalConfig.esearch_uri), ] # SQLALCHEMY SQLALCHEMY_DATABASE_URI = os.getenv("DB_URI", LocalConfig.db_uri) SQLALCHEMY_TRACK_MODIFICATIONS = False DATABASE_QUERY_TIMEOUT = 0.1 # log the slow database query, and unit is second SQLALCHEMY_RECORD_QUERIES = True # Dir APP_DIR = Path(__file__).parent # This directory PROJECT_ROOT = APP_DIR.parent STATIC_DIR = APP_DIR / "static" UPLOAD_FOLDER = "upload" UPLOAD_DIR = STATIC_DIR / UPLOAD_FOLDER DASHBOARD_TEMPLATE_FOLDER = APP_DIR / "templates" / "dashboard" UPLOAD_FOLDER = os.getenv('UPLOAD_FOLDER', 'static/placeholders') PURCHASE_URI = os.getenv('PURCHASE_URI', '') BCRYPT_LOG_ROUNDS = 13 DEBUG_TB_ENABLED = os.getenv("FLASK_DEBUG", False) # Disable Debug toolbar DEBUG_TB_INTERCEPT_REDIRECTS = False DEBUG_TB_PROFILER_ENABLED = True MESSAGE_QUOTA = 10 LANGUAGES = { 'en': 'English', 'bg': 'Български' } BABEL_DEFAULT_LOCALE = os.getenv('BABEL_DEFAULT_LOCALE', 'en_US') BABEL_DEFAULT_TIMEZONE = os.getenv('BABEL_DEFAULT_TIMEZONE', 'UTC') BABEL_TRANSLATION_DIRECTORIES = os.getenv('BABEL_TRANSLATION_DIRECTORIES', '../translations') BABEL_CURRENCY = os.getenv('BABEL_CURRENCY', 'USD') MAIL_SERVER = os.getenv("MAIL_SERVER", 'localhost') MAIL_PORT = os.getenv("MAIL_PORT", 25) MAIL_TLS = os.getenv("MAIL_TLS", True) if MAIL_TLS: MAIL_USE_TLS = True MAIL_USE_SSL = False else: MAIL_USE_TLS = False MAIL_USE_SSL = True MAIL_DEBUG = DEBUG_TB_ENABLED MAIL_USERNAME = os.getenv("MAIL_USERNAME", '') MAIL_PASSWORD = os.getenv("MAIL_PASSWORD", '') MAIL_DEFAULT_SENDER = os.getenv("MAIL_DEFAULT_SENDER", '') GA_MEASUREMENT_ID = os.getenv("GA_MEASUREMENT_ID", '')
from __future__ import absolute_import from django.contrib import admin from .models import Timeline, Blip admin.site.register(Blip, list_display=["timeline", "pub_date", "is_private"], list_filter=["timeline", "is_private"], raw_id_fields=['user'], list_per_page=500, ) admin.site.register(Timeline, prepopulated_fields={'slug': ('name',)}, )
import tensorflow as tf import tensorflow.contrib.slim as slim from sacred import Ingredient from gnnbench.data.preprocess import row_normalize, renormalize_adj from gnnbench.models.base_model import GNNModel from gnnbench.util import dropout_supporting_sparse_tensors, to_sparse_tensor # implementation verified against Kipf data def graph_convolution(inputs, sparse_renormalized_laplacian, weights, input_is_sparse=False): """Implements the graph convolution operation  * inputs * weights, where  is the renormalized Laplacian  = D~^-0.5 * A~ * D~^-0.5 with A~ = A + I_N (adjacency matrix with added self-loops) and D~ = diagonal matrix of node degrees deduced from A~. """ if input_is_sparse: output = tf.sparse_tensor_dense_matmul(inputs, weights) else: output = tf.matmul(inputs, weights) return tf.sparse_tensor_dense_matmul(sparse_renormalized_laplacian, output) def graph_convolution_layer(output_dim, inputs, sparse_renormalized_laplacian, activation_fn, dropout_prob, weight_decay, name, input_is_sparse=False): with tf.name_scope(name): input_dim = int(inputs.get_shape()[1]) weights = tf.get_variable("%s-weights" % name, [input_dim, output_dim], dtype=tf.float32, initializer=tf.glorot_uniform_initializer(), regularizer=slim.l2_regularizer(weight_decay)) bias = tf.get_variable("%s-bias" % name, [output_dim], dtype=tf.float32, initializer=tf.zeros_initializer()) # Apply dropout to inputs if required inputs = tf.cond( tf.cast(dropout_prob, tf.bool), true_fn=(lambda: dropout_supporting_sparse_tensors(inputs, 1 - dropout_prob)), false_fn=(lambda: inputs), ) convolved = graph_convolution(inputs, sparse_renormalized_laplacian, weights, input_is_sparse) output = convolved + bias if activation_fn is not None: output = activation_fn(output) return output class GCN(GNNModel): def __init__(self, features, graph_adj, targets, nodes_to_consider, num_layers, hidden_size, dropout_prob, weight_decay, normalize_features): self.normalize_features = normalize_features with tf.name_scope('extract_relevant_nodes'): targets = tf.gather(targets, nodes_to_consider) super().__init__(features, graph_adj, targets) self.nodes_to_consider = nodes_to_consider self.num_layers = num_layers self.hidden_size = hidden_size self.dropout_prob = dropout_prob self.weight_decay = weight_decay self._build_model_graphs() def _inference(self): with tf.name_scope('inference'): x = self.features for i in range(0, self.num_layers - 1): x = graph_convolution_layer(output_dim=self.hidden_size, inputs=x, sparse_renormalized_laplacian=self.graph_adj, activation_fn=tf.nn.relu, dropout_prob=self.dropout_prob, # original implementation uses L2 regularization only on first layer weight_decay=self.weight_decay if i == 0 else 0.0, name="gc%d" % i, input_is_sparse=i == 0) output = graph_convolution_layer(output_dim=self.targets.shape[1], inputs=x, sparse_renormalized_laplacian=self.graph_adj, activation_fn=None, dropout_prob=self.dropout_prob, weight_decay=0.0, name="gc%d" % (self.num_layers - 1), input_is_sparse=False) with tf.name_scope('extract_relevant_nodes'): return tf.gather(output, self.nodes_to_consider) def _preprocess_features(self, features): if self.normalize_features: features = row_normalize(features) return to_sparse_tensor(features) def _preprocess_adj(self, graph_adj): return to_sparse_tensor(renormalize_adj(graph_adj)) MODEL_INGREDIENT = Ingredient('model') @MODEL_INGREDIENT.capture def build_model(graph_adj, node_features, labels, dataset_indices_placeholder, train_feed, trainval_feed, val_feed, test_feed, weight_decay, normalize_features, num_layers, hidden_size, dropout_prob): dropout = tf.placeholder(dtype=tf.float32, shape=[]) train_feed[dropout] = dropout_prob trainval_feed[dropout] = False val_feed[dropout] = False test_feed[dropout] = False return GCN(node_features, graph_adj, labels, dataset_indices_placeholder, num_layers=num_layers, hidden_size=hidden_size, dropout_prob=dropout, weight_decay=weight_decay, normalize_features=normalize_features)
import shutil import os def BackupConfigs(configPoolDir, colors): bakPath = os.getcwd() + "\\configs.bak" shutil.make_archive(bakPath, 'zip', configPoolDir) print("\x1b[%sm Backup complete... \x1b[0m" % colors['blue'])
import cv2 import numpy as np import matplotlib.pyplot as plt # DCT hyoer-parameter T = 8 K = 4 channel = 3 # DCT weight def DCT_w(x, y, u, v): cu = 1. cv = 1. if u == 0: cu /= np.sqrt(2) if v == 0: cv /= np.sqrt(2) theta = np.pi / (2 * T) return (( 2 * cu * cv / T) * np.cos((2*x+1)*u*theta) * np.cos((2*y+1)*v*theta)) # DCT def dct(img): H, W, _ = img.shape F = np.zeros((H, W, channel), dtype=np.float32) for c in range(channel): for yi in range(0, H, T): for xi in range(0, W, T): for v in range(T): for u in range(T): for y in range(T): for x in range(T): F[v+yi, u+xi, c] += img[y+yi, x+xi, c] * DCT_w(x,y,u,v) return F # IDCT def idct(F): H, W, _ = F.shape out = np.zeros((H, W, channel), dtype=np.float32) for c in range(channel): for yi in range(0, H, T): for xi in range(0, W, T): for y in range(T): for x in range(T): for v in range(K): for u in range(K): out[y+yi, x+xi, c] += F[v+yi, u+xi, c] * DCT_w(x,y,u,v) out = np.clip(out, 0, 255) out = np.round(out).astype(np.uint8) return out # Quantization def quantization(F): H, W, _ = F.shape Q = np.array(((16, 11, 10, 16, 24, 40, 51, 61), (12, 12, 14, 19, 26, 58, 60, 55), (14, 13, 16, 24, 40, 57, 69, 56), (14, 17, 22, 29, 51, 87, 80, 62), (18, 22, 37, 56, 68, 109, 103, 77), (24, 35, 55, 64, 81, 104, 113, 92), (49, 64, 78, 87, 103, 121, 120, 101), (72, 92, 95, 98, 112, 100, 103, 99)), dtype=np.float32) for ys in range(0, H, T): for xs in range(0, W, T): for c in range(channel): F[ys: ys + T, xs: xs + T, c] = np.round(F[ys: ys + T, xs: xs + T, c] / Q) * Q return F # MSE def MSE(img1, img2): H, W, _ = img1.shape mse = np.sum((img1 - img2) ** 2) / (H * W * channel) return mse # PSNR def PSNR(mse, vmax=255): return 10 * np.log10(vmax * vmax / mse) # bitrate def BITRATE(): return 1. * T * K * K / T / T # Read image img = cv2.imread("imori.jpg").astype(np.float32) # DCT F = dct(img) # quantization F = quantization(F) # IDCT out = idct(F) # MSE mse = MSE(img, out) # PSNR psnr = PSNR(mse) # bitrate bitrate = BITRATE() print("MSE:", mse) print("PSNR:", psnr) print("bitrate:", bitrate) # Save result cv2.imshow("result", out) cv2.waitKey(0) cv2.imwrite("out.jpg", out)
from PySide2.QtCore import QObject from models.constants import PropType class PropertyPopupCtrl(QObject): """controller for property popup view""" def __init__(self, popup_model): super(PropertyPopupCtrl, self).__init__() self._model = popup_model def set_popup_value(self, action): """move selected item to beginning of list and set """ selected_value_name = str(action.data()) self._model.value = list(filter(lambda choice: str(choice) == selected_value_name, self._model.choices))[0]
import typing class BitCount(): def __getitem__(self, n: int) -> int: return self.__a[n] def __call__(self, n: int) -> int: return self.__a[n] def __init__(self, n: int) -> typing.NoReturn: a = [0] * n for i in range(1, n): a[i] = a[i >> 1] + i & 1 self.__a = a
#!/usr/bin/env python """ Tests covering the command-line code. """ import nf_core.__main__ from click.testing import CliRunner import mock import unittest @mock.patch("nf_core.__main__.nf_core_cli") def test_header(mock_cli): """Just try to execute the header function""" nf_core.__main__.run_nf_core() def test_cli_help(): """Test the main launch function with --help""" runner = CliRunner() result = runner.invoke(nf_core.__main__.nf_core_cli, ["--help"]) assert result.exit_code == 0 assert "Show the version and exit." in result.output def test_cli_bad_subcommand(): """Test the main launch function with verbose flag and an unrecognised argument""" runner = CliRunner() result = runner.invoke(nf_core.__main__.nf_core_cli, ["-v", "foo"]) assert result.exit_code == 2 # Checks that -v was considered valid assert "No such command" in result.output
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import collections import ctypes import json import os import re import struct import sys import numpy as np import pytest import tvm import tvm.relay import tvm.testing from tvm.contrib import utils INPUT_SHAPE = (1, 3, 16, 16) KERNEL_SHAPE = (3, 3, 3, 3) # The data types that are linkable. LINKABLE_DTYPES = ( [f"uint{b}" for b in (8, 16, 32, 64)] + [f"int{b}" for b in (8, 16, 32, 64)] + ["float32", "float64"] ) def dtype_info(dtype): """Lookup numpy type info for the given string dtype (of LINKABLE_DTYPES above).""" if "int" in dtype: return np.iinfo(getattr(np, dtype)) else: return np.finfo(getattr(np, dtype)) # Note: for debugging, set this to an integer (i.e. 1.0). Then all "random" tensors will become # predictable RANDOM_TENSOR_START = None def _make_random_tensor(dtype, shape): """Create a random test tensor with given shape and dtype.""" global RAND_SEED if RANDOM_TENSOR_START is not None: to_return = np.arange( RANDOM_TENSOR_START, RANDOM_TENSOR_START + np.prod(shape), dtype=dtype ).reshape(shape) RAND_SEED += np.prod(shape) return to_return dinfo = dtype_info(dtype) if "int" in dtype: return np.random.randint(dinfo.min, dinfo.max, shape, dtype=dtype) else: to_return = np.random.uniform(0, dinfo.max, shape).astype(dtype) np.reshape(to_return, np.prod(shape))[::2] *= -1 return to_return def _lookup_sid(graph, name): """Lookup the storage id of a named parameter. Arguments --------- graph : dict Parsed JSON graph. name : str Name of the tensor parameter to lookup. Returns ------- int : The storage_id of the parameter. """ num_outputs_seen = 0 for i, n in enumerate(graph["nodes"]): if n["name"] == name: print("sid", name, graph["attrs"]["storage_id"][1], num_outputs_seen) return graph["attrs"]["storage_id"][1][num_outputs_seen] else: if "attrs" in n and "num_outputs" in n["attrs"]: num_outputs_seen += int(n["attrs"]["num_outputs"]) else: num_outputs_seen += 1 raise KeyError(f"no such param: {name}") def _get_ctypes_dtype(dt): """Return a ctypes c_* datatype given a string data type.""" if "int" in dt: return getattr(ctypes, f"c_{dt}") elif dt == "float32": return ctypes.c_float elif dt == "float64": return ctypes.c_double else: assert False, f"unknown dtype: {dt}" def _verify_linked_param(dtype, lib, mod, graph, name): """Directly read memory from the linked library to verify the linked parameter is correct.""" sid = _lookup_sid(graph, name) # NOTE: query_imports=True because when loading a module from disk (i.e. for C backend), # a GraphRuntimeFactory module is created instead of the module itself. param_ptr = mod.get_function("_lookup_linked_param", True)(sid) gen_param = lib.params[name] arr_data = (_get_ctypes_dtype(dtype) * np.prod(gen_param.shape)).from_address(param_ptr.value) arr = np.ndarray(shape=gen_param.shape, dtype=gen_param.dtype, buffer=arr_data, order="C") if "int" in gen_param.dtype: np.testing.assert_equal(gen_param.asnumpy(), arr) else: np.testing.assert_allclose(gen_param.asnumpy(), arr) return dtype == gen_param.dtype def _make_mod_and_params(dtype): """Create a Relay module and parameters to test the given datatype.""" param_decls = collections.OrderedDict() param_init = {} def _add_decl(name, dtype): param_decls[name] = f"%{name} : Tensor[{KERNEL_SHAPE}, {dtype}]" param_init[name] = _make_random_tensor(dtype, KERNEL_SHAPE) # Add several parameters so that the number of parameters _add_decl(f"{dtype}_a", dtype) _add_decl(f"{dtype}_b", dtype) mod_lines = [ '#[version = "0.0.5"]', f"def @main(%rand_input : Tensor[{INPUT_SHAPE}, {dtype}], { ', '.join(param_decls.values()) } ) {{", # This program ensures that GraphPlanMemory alternates between the same two storage IDs for a # while. In doing this, it ensures that param %{dtype}_b will be placed into the graph at an # index unequal to its storage_id. This ensures that GraphRuntimeCodegen encodes the storage_id # and not the parameter index into the graph. ( f' %0 = nn.conv2d(%rand_input, %{dtype}_a, data_layout="NCHW", kernel_layout="OIHW", ' f'kernel_size=[3, 3], out_dtype="{dtype}");' ), ( f' %1 = nn.conv2d(%0, %{dtype}_a, data_layout="NCHW", kernel_layout="OIHW", ' f'kernel_size=[3, 3], out_dtype="{dtype}");' ), ( f' %2 = nn.conv2d(%1, %{dtype}_a, data_layout="NCHW", kernel_layout="OIHW", ' f'kernel_size=[3, 3], out_dtype="{dtype}");' ), ( f' %3 = nn.conv2d(%2, %{dtype}_b, data_layout="NCHW", kernel_layout="OIHW", ' f'kernel_size=[3, 3], out_dtype="{dtype}");' ), " %3", "}", ] mod = tvm.parser.fromtext("\n".join(mod_lines)) return mod, param_init @tvm.testing.requires_llvm def test_llvm_link_params(): for dtype in LINKABLE_DTYPES: mod, param_init = _make_mod_and_params(dtype) rand_input = _make_random_tensor(dtype, INPUT_SHAPE) main_func = mod["main"] target = "llvm --runtime=c --system-lib --link-params" with tvm.transform.PassContext(opt_level=3): lib = tvm.relay.build(mod, target, params=param_init) assert set(lib.params.keys()) == {"p0", "p1"} # NOTE: op folded print("graph", lib.graph_json) graph = json.loads(lib.graph_json) for p in lib.params: _verify_linked_param(dtype, lib, lib.lib, graph, p) or found_one # Wrap in function to explicitly deallocate the runtime. def _run_linked(lib): graph_json, mod, _ = lib graph_rt = tvm.contrib.graph_runtime.create(graph_json, mod, tvm.cpu(0)) graph_rt.set_input("rand_input", rand_input) # NOTE: params not required. graph_rt.run() return graph_rt.get_output(0) linked_output = _run_linked(lib) with tvm.transform.PassContext(opt_level=3): lib = tvm.relay.build(mod, "llvm --system-lib", params=param_init) def _run_unlinked(lib): graph_json, mod, lowered_params = lib graph_rt = tvm.contrib.graph_runtime.create(graph_json, mod, tvm.cpu(0)) graph_rt.set_input("rand_input", rand_input, **lowered_params) graph_rt.run() return graph_rt.get_output(0) unlinked_output = _run_unlinked(lib) if "int" in dtype: np.testing.assert_equal(unlinked_output.asnumpy(), linked_output.asnumpy()) else: np.testing.assert_allclose(unlinked_output.asnumpy(), linked_output.asnumpy()) def _get_c_datatype(dtype): """Translate LINKABLE_DTYPES element to c datatype.""" if "int" in dtype: return f"{dtype}_t" elif dtype == "float32": return "float" elif dtype == "float64": return "double" else: assert False, f"unknown dtype {dtype}" def _format_c_value(dtype, width, x): if "int" in dtype: hex_formatstr = f'{{:{"+" if dtype.startswith("int") else ""}#0{width}x}}' return hex_formatstr.format(x) elif "float" in dtype: to_ret = float(x).hex() if "inf" in to_ret: return ("-" if x < 0 else "") + "INFINITY" elif "nan" in to_ret: return "NAN" before, after = to_ret.split("p") return f'{before.rstrip("0")}p{after}' else: assert False, f"don't know dtype {dtype}" HEX_NUM_RE = re.compile(r"[+\-]?(?:(?:0x[0-9A-Fa-f.p+-]+)|(?:INFINITY)|(?:NAN))") def test_c_link_params(): temp_dir = utils.tempdir() for dtype in LINKABLE_DTYPES: mod, param_init = _make_mod_and_params(dtype) rand_input = _make_random_tensor(dtype, INPUT_SHAPE) main_func = mod["main"] target = "c --link-params" with tvm.transform.PassContext(opt_level=3, config={"tir.disable_vectorize": True}): lib = tvm.relay.build(mod, target, params=param_init) assert set(lib.params.keys()) == {"p0", "p1"} # NOTE: op folded src = lib.lib.get_source() lib.lib.save("test.c", "cc") c_dtype = _get_c_datatype(dtype) src_lines = src.split("\n") param = lib.params["p0"].asnumpy().reshape(np.prod(KERNEL_SHAPE)) param_def = f"static const {c_dtype} __tvm_param__p0[{np.prod(param.shape)}] = {{" for i, line in enumerate(src_lines): if line == param_def: i += 1 break else: assert False, f'did not find parameter definition "{param_def}":\n{src}' cursor = 0 width = dtype_info(dtype).bits // 4 + 2 if dtype.startswith("int"): width += 1 # Account for sign while "};" not in src_lines[i]: for match in HEX_NUM_RE.finditer(src_lines[i]): assert match.group() == _format_c_value(dtype, width, param[cursor]), ( f'p0 byte {cursor}: want "{_format_c_value(dtype, width, param[cursor])}" got ' f'"{match.group(0)}"; full p0 follows:\n{src}' ) cursor += 1 i += 1 assert cursor == np.prod(param.shape) temp = utils.tempdir() # Need a unique name per library to avoid dlopen caching the lib load. lib_path = temp_dir.relpath(f"test-{dtype}-linked.so") lib["remove_params"]().export_library(lib_path) lib_mod = tvm.runtime.load_module(lib_path) # lib_mod = lib_factory['default']() graph = json.loads(lib.graph_json) for p in lib.params: _verify_linked_param(dtype, lib, lib_mod, graph, p) # Wrap in function to explicitly deallocate the runtime. def _run_linked(lib_mod): graph_rt = tvm.contrib.graph_runtime.GraphModule(lib_mod["default"](tvm.cpu(0))) graph_rt.set_input("rand_input", rand_input) # NOTE: params not required. graph_rt.run() return graph_rt.get_output(0) linked_output = _run_linked(lib_mod) linked_params = lib.params with tvm.transform.PassContext(opt_level=3, config={"tir.disable_vectorize": True}): lib = tvm.relay.build(mod, "c", params=param_init) _, _, params = lib # Need a unique name per library to avoid dlopen caching the lib load. lib_path = temp_dir.relpath(f"test-{dtype}-unlinked.so") lib.export_library(lib_path) lib_mod = tvm.runtime.load_module(lib_path) def _run_unlinked(lib_mod): graph_rt = tvm.contrib.graph_runtime.GraphModule(lib_mod["default"](tvm.cpu(0))) graph_rt.set_input("rand_input", rand_input, **params) graph_rt.run() return graph_rt.get_output(0) unlinked_output = _run_unlinked(lib_mod) if "int" in dtype: np.testing.assert_equal(unlinked_output.asnumpy(), linked_output.asnumpy()) else: np.testing.assert_allclose(unlinked_output.asnumpy(), linked_output.asnumpy()) @tvm.testing.requires_micro def test_crt_link_params(): import tvm.micro for dtype in LINKABLE_DTYPES: mod, param_init = _make_mod_and_params(dtype) rand_input = _make_random_tensor(dtype, INPUT_SHAPE) main_func = mod["main"] target = "c -mcpu=native --system-lib --runtime=c --link-params" with tvm.transform.PassContext(opt_level=3, config={"tir.disable_vectorize": True}): graph_json, lib, params = tvm.relay.build(mod, target, params=param_init) assert set(params.keys()) == {"p0", "p1"} # NOTE: op folded workspace = tvm.micro.Workspace() compiler = tvm.micro.DefaultCompiler(target=target) opts = tvm.micro.default_options(os.path.join(tvm.micro.CRT_ROOT_DIR, "host")) opts["bin_opts"]["ldflags"].append("-DTVM_HOST_USE_GRAPH_RUNTIME_MODULE") micro_binary = tvm.micro.build_static_runtime( # the x86 compiler *expects* you to give the exact same dictionary for both # lib_opts and bin_opts. so the library compiler is mutating lib_opts and # the binary compiler is expecting those mutations to be in bin_opts. # TODO(weberlo) fix this very bizarre behavior workspace, compiler, lib, lib_opts=opts["bin_opts"], bin_opts=opts["bin_opts"], extra_libs=[ os.path.join(tvm.micro.CRT_ROOT_DIR, m) for m in ("memory", "graph_runtime_module", "graph_runtime") ], ) flasher_kw = { "debug": False, } flasher = compiler.flasher(**flasher_kw) with tvm.micro.Session(binary=micro_binary, flasher=flasher) as sess: graph_rt = tvm.micro.session.create_local_graph_runtime( graph_json, sess.get_system_lib(), sess.context ) # NOTE: not setting params here. graph_rt.set_input("rand_input", rand_input) graph_rt.run() linked_output = graph_rt.get_output(0).asnumpy() with tvm.transform.PassContext(opt_level=3): lib = tvm.relay.build(mod, "llvm --system-lib", params=param_init) def _run_unlinked(lib): graph_json, mod, lowered_params = lib graph_rt = tvm.contrib.graph_runtime.create(graph_json, mod, tvm.cpu(0)) graph_rt.set_input("rand_input", rand_input, **lowered_params) graph_rt.run() return graph_rt.get_output(0).asnumpy() unlinked_output = _run_unlinked(lib) if "int" in dtype: np.testing.assert_equal(unlinked_output, linked_output) else: np.testing.assert_allclose(unlinked_output, linked_output) if __name__ == "__main__": sys.exit(pytest.main([__file__] + sys.argv[1:]))
from setuptools import setup setup( name='cookiecutter-serverless-aws-lambda', version='0.0.1', url='https://github.com/ninjabit/cookiecutter-serverless-aws-lambda', packages=[], setup_requires=['pytest-runner'], tests_require=['pytest'] )
from metac.metac import Instance, load from metac import stream vm = load('metac/vm.capnp') instance = Instance('10.234.0.1') serv = instance.node_admin.getServiceAdmin('vm').service.cast_as(vm.VMServiceAdmin) launcher = serv.getLauncher().launcher config = vm.LaunchConfiguration.new_message( memory=512, vcpu=1, machineInfo=vm.MachineInfo.new_message(type=vm.MachineInfo.Type.host), serialPorts=[ vm.SerialPort.new_message( driver=vm.SerialPort.Driver.virtio, stream=stream.debug_print_stream(instance, '[serial] ') ) ] ) config.boot.disk = 0 vm = launcher.launch(config).wait()
from typing import Dict, Any import json from pytest import raises from e2e.Libs.Ristretto.Ristretto import BASEPOINT, RistrettoScalar, RistrettoPoint, hashToCurve from e2e.Tests.Errors import TestError def RistrettoTest() -> None: vectors: Dict[str, Any] with open("e2e/Vectors/Libs/Ristretto.json", "r") as file: vectors = json.loads(file.read()) basepoint: RistrettoPoint = RistrettoPoint(BASEPOINT) for b in range(len(vectors["multiples"])): #Encoding. if vectors["multiples"][b] != (basepoint * RistrettoScalar(b)).serialize().hex(): raise TestError("Basepoint multiple was incorrect.") #Decoding. if vectors["multiples"][b] != RistrettoPoint(bytes.fromhex(vectors["multiples"][b])).serialize().hex(): raise TestError("Couldn't encode and decode.") #Test the equality operator. if RistrettoPoint(bytes.fromhex(vectors["multiples"][0])) != RistrettoPoint(bytes.fromhex(vectors["multiples"][0])): raise Exception("Equal points were considered inequal.") if RistrettoPoint(bytes.fromhex(vectors["multiples"][0])) == RistrettoPoint(bytes.fromhex(vectors["multiples"][1])): raise Exception("Inequal points were considered equal.") #Test decoding invalid points. for point in vectors["badEncodings"]: with raises(Exception): RistrettoPoint(bytes.fromhex(point)) #Test hash to curve. It's not used anywhere in Meros, yet it ensures accuracy of our Ristretto implementation. for hTP in vectors["hashToPoints"]: if hTP[1] != hashToCurve(hTP[0].encode("utf-8")).serialize().hex(): raise TestError("Hash to point was incorrect.")
from numpy.linalg import norm as l21_norm def U_converged(old, new, tol=5e-1): delta = l21_norm(old - new) return delta, delta < tol
#!/usr/bin/env python from unittest import TestCase from fundamentals.lists.linked_list import LL class TestLL(TestCase): def test_rev_ll(self): ll = LL() ll.add(3).add(4).add(5).add(6) self.assertEquals("3, 4, 5, 6", ll.head.pretty_walk()) self.assertEquals("6, 5, 4, 3", ll.recursive_reverse_ll().pretty_walk()) self.assertEquals("6, 5, 4, 3", ll.iterative_reverse_ll().pretty_walk()) def test_del(self): ll = LL() ll.add(3).add(4).add(5).add(6) self.assertEquals("3, 4, 5, 6", ll.head.pretty_walk()) ll.delkey(3) self.assertEquals("4, 5, 6", ll.head.pretty_walk()) ll.delkey(10) self.assertEquals("4, 5, 6", ll.head.pretty_walk()) ll.delkey(5) self.assertEquals("4, 6", ll.head.pretty_walk()) ll.delkey(6) self.assertEquals("4", ll.head.pretty_walk())
import pkg_resources import yaml def print_hello(): print("hello") pass def get_versions(): from ._version import get_versions as _get_versions return _get_versions() def get_data(): file_path=pkg_resources.resource_filename('project_name','data/data.yml') with open(file_path) as file: data_tests = yaml.load(file, Loader=yaml.FullLoader) return data_tests def list_files_in_data(): return pkg_resources.resource_listdir('project_name', 'data')
# xmlimportfile ######################################################################################################### # Imports import xml.etree.ElementTree as __xml_etree from ..error import SfcparseError # Exception for Module class XmlImportFile(SfcparseError): __module__ = SfcparseError.set_module_name() ######################################################################################################### # Import xml file def xmlimportfile(filename: str) -> __xml_etree.Element: """ Imports xml data from a file. Returns a xml Parsed Element obj with the root. Assign the output to var Enter xml file location as str to import. [Example Use] xmlimportfile('path/to/filename.xml') This is using the native xml library via etree shipped with the python standard library. For more information on the xml.etree api, visit: https://docs.python.org/3/library/xml.etree.elementtree.html#module-xml.etree.ElementTree """ __err_msg_str = f"Only str is allowed for filename" if not isinstance(filename, str): raise XmlImportFile(__err_msg_str, f'\nFILE: "{filename}"') try: return __xml_etree.parse(filename).getroot() except FileNotFoundError as __err_msg: raise XmlImportFile(__err_msg, f'\nFILE: "{filename}"') except __xml_etree.ParseError as __err_msg: raise XmlImportFile(__err_msg, f'\nFILE: "{filename}"')
# -*- coding: utf-8 -*- # Copyright (c) 2016 Arista Networks, Inc. All rights reserved. # Arista Networks, Inc. Confidential and Proprietary. import sys __version_info__ = (2, 2, 22) __version__ = '2.2.22' if sys.version_info < (2, 7): raise RuntimeError('You need Python 2.7+ for arcomm.') __title__ = 'arcomm' __description__ = 'Library for connecting to Arista switches' __author__ = 'Jesse R. Mather' __email__ = 'jmather@arista.com' __uri__ = 'https://github.com/aristanetworks/arcomm' __license__ = 'MIT License' __copyright__ = '2016 Arista Networks, Inc.' from arcomm import util from arcomm.api import (background, batch, configure, connect, creds, execute, tap) # # old v1 funcs # from arcomm.api import (authorize, authorized, clone, create_pool, execute_once, execute_pool, execute_bg, execute_until, close, get_credentials) from arcomm.async import Pool from arcomm.command import Command, commands_from_list, command_from_dict, mkcmd from arcomm.credentials import Creds, BasicCreds from arcomm.session import session, Session from arcomm.protocols import BaseProtocol from arcomm.response import (ResponseStore, Response, get_subscribers, subscribe, unsubscribe) from arcomm.exceptions import (ConnectFailed, AuthenticationFailed, AuthorizationFailed, ExecuteFailed)
from distutils.core import setup from Cython.Build import cythonize setup( ext_modules = cythonize("kepo.py") )
import hashlib reader = open('being_a_boy.txt', 'r').read() #Read from the book text file lst = reader.replace("\n", " ").split(" ") lst[:] = (value for value in lst if value != '') lst[:] = (x.lower() for x in lst) #All this is formatting basically, removing punctuations,converting to lowercase, etc. Don't want to explain it all, it is better to understand each function used for oneself s = 'b754015b1f05de447a0915eea5238c1f3310a4826b3190d5b7fe4739bc3bc992' for i in lst: word = "zenseCTF{"+i+"}" #Wrapping around hashval = hashlib.sha256(word.encode()).hexdigest() if hashval == s: #Checking equality print(word)
""" Tests for django.utils. """ from __future__ import absolute_import from .archive import TestBzip2Tar, TestGzipTar, TestTar, TestZip from .baseconv import TestBaseConv from .checksums import TestUtilsChecksums from .crypto import TestUtilsCryptoMisc, TestUtilsCryptoPBKDF2 from .datastructures import (DictWrapperTests, ImmutableListTests, MergeDictTests, MultiValueDictTests, SortedDictTests) from .dateformat import DateFormatTests from .dateparse import DateParseTests from .datetime_safe import DatetimeTests from .decorators import DecoratorFromMiddlewareTests from .encoding import TestEncodingUtils from .feedgenerator import FeedgeneratorTest from .functional import FunctionalTestCase from .html import TestUtilsHtml from .http import TestUtilsHttp, ETagProcessingTests, HttpDateProcessingTests from .ipv6 import TestUtilsIPv6 from .jslex import JsToCForGettextTest, JsTokensTest from .module_loading import (CustomLoader, DefaultLoader, EggLoader, ModuleImportTestCase) from .numberformat import TestNumberFormat from .os_utils import SafeJoinTests from .regex_helper import NormalizeTests from .simplelazyobject import TestUtilsSimpleLazyObject from .termcolors import TermColorTests from .text import TestUtilsText from .timesince import TimesinceTests from .timezone import TimezoneTests from .tzinfo import TzinfoTests
params = raw_input() m,n,k = map(int, params.split(' ')) result = [] for j in range(k): l = raw_input() l = map(int, l.split(' ')) max = 0 sub = [] ok = True for index, i in enumerate(l): if i - index > m: ok = False break if i > max: max = i if sub: if sorted(sub, reverse=True) != sub: ok = False break sub = [] continue else: sub.append(i) else: if sub: if sorted(sub, reverse=True) != sub: ok = False if ok: result.append("YES") else: result.append("NO") for res in result: print(res)
# -*- python -*- from zope.interface import implementer from nevow import loaders from nevow import rend from nevow import tags from nevow import inevow from nevow import url from formless import annotate from formless import webform from twisted.internet import defer #oldChoicesWay = annotate.Choice(choicesAttribute='theChoices') # Doing this gives you a DeprecationWarning now # If you still want to use an attribute or method of some other object, you should use a function as shown below, # but look up IResource(ctx) or IConfigurable(ctx), whichever is more appropriate. newChoicesWay = annotate.Choice(lambda c, d: list(range(30))) deferChoicesWay = annotate.Choice(lambda c, d: defer.succeed(['abcd', 'efgh', 'ijkl'])) radioChoices = annotate.Radio(["Old", "Tyme", "Radio"]) ## An example of using custom valueToKey and keyToValue functions to serialize/deserialize items values = {0: dict(name="Zero", stuff=1234), 1: dict(name="One", stuff=1234), 2: dict(name="Two", stuff=2345435)} customValueToKey = annotate.Choice( [0, 1, 2], # Perhaps these are primary keys in a database stringify=lambda x: values[x]['name'], # Do a database lookup to render a nice label in the ui valueToKey=str, # Convert the primary key to a value suitable for sending across the web keyToValue=lambda x: values[int(x)]) # Do a database lookup to get the actual value to pass to the binding class IMyForm(annotate.TypedInterface): foo = annotate.Integer() def bar(baz=annotate.Integer(), slam=newChoicesWay, ham=deferChoicesWay, radio=radioChoices, custom=customValueToKey): pass bar = annotate.autocallable(bar) @implementer(IMyForm) class Implementation(object): foo = 5 def bar(self, baz, slam, ham, radio, custom): return "You called bar! %s %s %s %s %r" % (baz, slam, ham, radio, custom) theChoices = [1, 2, 3] class FormPage(rend.Page): addSlash = True child_webform_css = webform.defaultCSS def render_hand(self, ctx, data): hand = inevow.IHand(ctx, None) if hand is not None: return ctx.tag[hand] return '' docFactory = loaders.stan( tags.html[ tags.head[ tags.link(rel='stylesheet', type='text/css', href=url.here.child('webform_css')), ], tags.body[ tags.h3(render=render_hand, style="color: red; font-size: xx-large"), "Hello! Here is a form:", # We want to render forms defined by the Implementation instance. # When we pass the Implementation instance to FormPage below, # rend.Page sets it as the .original attribute. To tell webform to render # forms described by this object, we use the configurable name "original". webform.renderForms('original'), ], ], )
import sys import traceback import json import logging import boto3 import argparse import aws logger = logging.getLogger() logger.setLevel(logging.INFO) def logger_(exception_type, exception_value, exception_traceback, excp): #pylint: disable=unused-argument """Simple logger""" traceback_string = traceback.format_exception( exception_type, exception_value, exception_traceback ) err_msg = json.dumps({ "errorType": exception_type.__name__, "errorMessage": str(exception_value), "stackTrace": traceback_string }) logger.error(err_msg) def main(): """Main entry point""" parser = argparse.ArgumentParser(description='List cloud resources') parser.add_argument('--aws-profile', type=str, dest='aws_profile', help='Name of an AWS profile to use') args = parser.parse_args() session = aws.get_aws_session(profile_name=args.aws_profile) regions = aws.get_regions(session) instances = aws.get_ec2_instances(session) try: print('Program starting') print(regions) print(instances) except Exception as excp: # pylint: disable=broad-except exception_type, exception_value, exception_traceback = sys.exc_info() logger_(exception_type, exception_value, exception_traceback, excp) return if __name__ == "__main__": main()
import math import random import numpy class MinHash(): def __init__(self): # choose four random 8 bit tables self.t1 = [random.randint(0, 2**32 - 1) for _ in range(2**8)] self.t2 = [random.randint(0, 2**32 - 1) for _ in range(2**8)] self.t3 = [random.randint(0, 2**32 - 1) for _ in range(2**8)] self.t4 = [random.randint(0, 2**32 - 1) for _ in range(2**8)] def intern_hash(self, x): return self.t1[(x >> 24) & 0xff] ^ self.t2[(x >> 16) & 0xff] ^\ self.t3[(x >> 8) & 0xff] ^ self.t4[x & 0xff] def hash(self, L): return min([self.intern_hash(x) for x in L]) def get_element(self, L): h = self.hash(L) for x in L: if self.intern_hash(x) == h: return x class OneBitMinHash(): def __init__(self): self.h = MinHash() def hash(self, L): return self.h.hash(L) % 2 class BucketHashing(): def __init__(self, universe_size, buckets, eps): self.universe_size = universe_size self.buckets = buckets self.eps = eps self.h = MinHash() self.bucket_id = {} self.threshold = (self.buckets - 1) / \ (math.exp(self.eps) + self.buckets - 1) for x in range(universe_size): self.bucket_id[x] = random.choice(range(self.buckets)) def hash(self, L): x = self.h.get_element(L) bucket = self.bucket_id[x] if random.random() <= self.threshold: return random.choice([i for i in range(self.buckets) if i != bucket]) return bucket class NoisyMinHash(): def __init__(self, scale): self.h = OneBitMinHash() self.scale = scale def hash(self, L): return self.h.hash(L) + numpy.random.laplace(scale=self.scale) class NoisyMinHashBuckets(): def __init__(self, universe_size, buckets, scale): self.universe_size = universe_size self.buckets = buckets self.scale = scale self.h = MinHash() self.bucket_id = {} for x in range(universe_size): self.bucket_id[x] = random.choice(range(self.buckets)) def hash(self, L): x = self.h.get_element(L) bucket = self.bucket_id[x] return bucket + numpy.random.laplace(scale=self.scale) class RROneBitMinHash(): def __init__(self, eps): self.h = OneBitMinHash() self.eps = eps self.threshold = 1 / (math.exp(eps) + 1) def hash(self, L): hv = self.h.hash(L) if random.random() <= self.threshold: return 1 - hv else: return hv
# -*- coding: utf-8 -*- """Scripts for aggregating recently added logs by action type; pushes results to the specified project. """ import bson import datetime from cStringIO import StringIO import pymongo from dateutil.relativedelta import relativedelta from framework.mongo import database from website import models from website.app import app, init_app from scripts.analytics import utils RESULTS_COLLECTION = 'logmetrics' TIME_OFFSET = relativedelta(days=1) NUM_ROWS = 20 FILE_NAME = 'log-counts.csv' CONTENT_TYPE = 'text/css' NODE_ID = '95nv8' USER_ID = 'icpnw' mapper = bson.Code('''function() { emit(this.action, 1); }''') reducer = bson.Code('''function(key, values) { var count = 0; for (var i=0; i<values.length; i++) { count += values[i]; } return count; }''') def run_map_reduce(**kwargs): return database['nodelog'].map_reduce( mapper, reducer, RESULTS_COLLECTION, **kwargs ) def main(): node = models.Node.load(NODE_ID) user = models.User.load(USER_ID) cutoff = datetime.datetime.utcnow() - TIME_OFFSET result = run_map_reduce(query={'date': {'$gt': cutoff}}) sio = StringIO() utils.make_csv( sio, ( (row['_id'], row['value']) for row in result.find().sort([('value', pymongo.DESCENDING)]) ), ['name', 'count'], ) utils.send_file(app, FILE_NAME, CONTENT_TYPE, sio, node, user) if __name__ == '__main__': init_app() main()
from django.db import models # Create your models here. class museos (models.Model): museo = models.TextField() id_entidad = models.TextField() descripcion = models.TextField() horario = models.TextField() transporte = models.TextField() accesibilidad = models.TextField() content_url = models.TextField() nombre_via = models.TextField() clase_vial = models.TextField() tipo_num = models.TextField() num = models.TextField() localidad = models.TextField() provincia = models.TextField() codigo_postal = models.TextField() barrio = models.TextField() distrito = models.TextField() coordenada_x = models.TextField() coordenada_y = models.TextField() latitud = models.TextField() longitud = models.TextField() telefono = models.TextField() fax = models.TextField() email = models.TextField() descripcion_entidad = models.TextField() def __str__self(): return self.museo class comentario (models.Model): museo = models.ForeignKey(museos) usuario = models.TextField() fecha = models.TextField() texto = models.TextField()
from time import sleep from random import randint print("\033[33m-=-" * 54) jo = ("\033[34m Jogo de batalha") print(jo.center(170)) print("\033[33m-=-" * 54) #---------------------------------------------------------------------------------------------------------------------- inicio = input("Pressione enter para começar...") print("Iniciando...") sleep(1) #---------------------------------------------------------------------Introdução------------------------------------------------------------------------------- print("\033[36m\nBem vindo ao sistema de batalha em Pycharm, o jogo a seguir consiste em batalha entre personagens, onda de inimigos, armas para o personagem e Loja de armas.") print("OBS: Jogo feito em Python por programador iniciante!") inicio = input("\nPressione enter para começar...") #-------------------------------------------------------------------------------------------------------------------------------------------------------------- #---------------------------------------------------------------------Criação de Personagem------------------------------------------------------------------- print("\n\033[32m[Escolha um nome para seu personagem]\033[m") NomeDePersonagem = str(input("\n\033[36mDigite o nome do personagem:\033[m ")) while NomeDePersonagem == "": print("\n\033[31m[Nome invalido, tente novamente]\033[m") NomeDePersonagem = str(input("\n\033[36mDigite o nome do personagem: ")) EscolhaDeArma = int(input(f"\n\033[36mOlá {NomeDePersonagem},escolha uma arma para começar:\n[1]Arco - ATA = (Min 3 a Max 5)\n[2]Adaga - ATA = (Min 2 a Max 4)\n[3]Espada - ATA = (Min 1 a Max 7)\nEscolha = ")) inicio = input("\nPressione enter para começar...") #------------------------------------------------------------------------------------------------------------------------------------------------------------- #---------------------------------------------------------------------Armas----------------------------------------------------------------------------------- #ARMAS INICIO Arco = randint(3, 5) Adaga = randint(2, 4) Espada = randint(1, 7) #LOJA DE ARMAS Katana_Simples = randint(2, 9) Katana_SimplesPreço = 100 Katana_Afiada = randint(3,10) Katana_AfiadaPreço = 170 Katana_Espiritual = randint(5,11) Katana_EspiritualPreço = 300 Besta_Simples = randint(4,6) Besta_SimplesPreço = 120 Besta_Imperial = randint(5,8) Besta_ImperialPreço = 170 Besta_Selvagem = randint(6,10) Besta_SelvagemPreço = 250 Sabre_de_Luz = randint(20,45) Sabre_de_LuzPreço = 600 #------------------------------------------------------------------------------------------------------------------------------------------------------------- #---------------------------------------------------------------------Inimigos-------------------------------------------------------------------------------- Zumbi = 12 Nzumbi = 12 ResVidaIni = randint(1,5) AtaqIni = randint(1,3) #------------------------------------------------------------------------------------------------------------------------------------------------------------- #---------------------------------------------------------------------Variaveis do jogo----------------------------------------------------------------------- Vida = 15 ResVida = randint(1,3) Nvida = 15 Moeda = 0 MoedaMais = randint(5,20) Nivel = 0 #------------------------------------------------------------------------------------------------------------------------------------------------------------- #---------------------------------------------------------------------Caso Arco------------------------------------------------------------------------------- while True: if EscolhaDeArma == 1: while Nivel < 10: print("\033[32m-=-" * 54) primeira = ("\033[34mBATALHA") print(primeira.center(170),"\n") DesqNivel = (f"\033[32:7mNIVEL = {Nivel}\033[m \033[33:7mMOEDAS = {Moeda}\033[m") print(DesqNivel.center(187)) Loja = int(input("\033[33mPressione \n\033[33:7m[1]\033[m \033[33mpara acessar a loja\033[n\n\033[32:7m[2]\033[m \033[33mPara ir para o jogo\033[m\n\033[33mEscolha =\033[m ")) if Loja == 1: print("\033[33:7m-=-\033[m" * 54) print(f"\033[36mBem vindo a loja de armas, aqui encontrara armas para melhorar a batalha, quando quiser comprar uma arma veja o numero dela e digite para comprar\nIMPORTANTE: se voce comprar alguma, ela ira substituir a anterior e não podera ser capaz de usar a anterior novamente ao menos que a compre novamente\n\033[33:7mMOEDAS = {Moeda}\033[m") DentroLoja = int(input("\n\033[36m[1] Katana Simples (Min 2 a Max 9) Preço = R$100\n[2] Katana Afiada (Min 3 a Max 10) Preço = R$170\n[3] Katana Espiritual (Min 5 a Max 11) Preço = R$300\n[4] Besta Simples (Min 4 a Max 6) Preço = R$120\n[5] Besta Imperial (Min 5 a Max 8) Preço = R$170\n[6] Besta Selvagem (Min 6 a Max 10) Preço = R$250\n[7] Sabre de Luz (Min 20 a 45) Preço = R$600\n[0]Para Sair da loja pressione 0(zero)\nEscolha = ")) print("\033[33:7m-=-\033[m" * 54) if DentroLoja == 1: if Moeda >= Katana_SimplesPreço: Moeda -= Katana_SimplesPreço Arco = Katana_Simples print("\n\033[32:7mAgora sua arma é uma Katana Simples\033[m") else: print("Voce não tem dinheiro suficiente para comprar esta arma.") elif DentroLoja == 2: if Moeda >= Katana_AfiadaPreço: Moeda -= Katana_AfiadaPreço Arco = Katana_Afiada print("\n\033[32:7mAgora sua arma é uma Katana Afiada\033[m") else: print("Voce não tem dinheiro suficiente para comprar esta arma.") elif DentroLoja == 3: if Moeda >= Katana_EspiritualPreço: Moeda -= Katana_EspiritualPreço Arco = Katana_Espiritual print("\n\033[32:7mAgora sua arma é uma Katana Espiritual\033[m") else: print("Voce não tem dinheiro suficiente para comprar esta arma.") elif DentroLoja == 4: if Moeda >= Besta_SimplesPreço: Moeda -= Besta_SimplesPreço Arco = Besta_Simples print("\n\033[32:7mAgora sua arma é uma Besta Simples\033[m") else: print("Voce não tem dinheiro suficiente para comprar esta arma.") elif DentroLoja == 5: if Moeda >= Besta_ImperialPreço: Moeda -= Besta_ImperialPreço Arco = Besta_Imperial print("\n\033[32:7mAgora sua arma é uma Besta Imperial\033[m") else: print("Voce não tem dinheiro suficiente para comprar esta arma.") elif DentroLoja == 6: if Moeda >= Besta_SelvagemPreço: Moeda -= Besta_SelvagemPreço Arco = Besta_Selvagem print("\n\033[32:7mAgora sua arma é uma Besta Selvagem\033[m") else: print("Voce não tem dinheiro suficiente para comprar esta arma.") elif DentroLoja == 7: if Moeda >= Sabre_de_LuzPreço: Moeda -= Sabre_de_LuzPreço Arco = Sabre_de_Luz print("\n\033[37:7mAgora sua arma é um Sabre de luz! QUE A FORÇA ESTEJA COM VOCÊ!\033[m") else: print("Voce não tem dinheiro suficiente para comprar esta arma.") elif DentroLoja == 0: print("Saindo da loja...") sleep(1) inicio = input("\n\033[33mPressione enter para começar o jogo...\033[m") elif Loja == 2: print("Iniciando jogo...") sleep(1) print(f"\n\033[33mVamos começar a batalha! {NomeDePersonagem} a frente existe um inimigo com {Zumbi} de vida, role o dado para saber quem atacara primeiro...(1 Voce ataca primeiro | 2 O inimigo ataca primeiro)\033[m\n\033[34mTente chegar ao Nivel 100, quanto maior o nivel mais dificil é! A cada 10 niveis voce ganha mais vida e dano! e os inimigos tambem\033[m") Vida = Nvida Zumbi = Nzumbi if Nivel >= 10 and Nivel <= 15: Vida = Nvida + ResVida Zumbi = Nzumbi + ResVidaIni Arco += 1 print(f"\033[33mVida de inimigo =\033[m \033[31m{Zumbi}\033[m \033[33m|| || || Vida {NomeDePersonagem} =\033[m \033[31m{Vida}\033[m") while True: RolarDados = input("\n\033[33mPressione enter para rolar o dado...\033[m") print("\033[31mRolando dados...\033[m") sleep(1) Dado = randint(1,2) print(f"\033[33mO dado foi de =\033[m \033[32m{Dado}\033[m ") sleep(1) if Dado == 1: print("\033[32mVoce ira atacar primeiro!\033[m") PreAtaq = str(input("\033[33mEscreva Atacar para atacar:\033[m ")) if PreAtaq == "Atacar" or PreAtaq == "atacar": AtaqPersonagem = Arco Zumbi -= AtaqPersonagem print(f"\033[33mInimigo =\033[m \033[31m{Zumbi}\033[m\n\033[33m{NomeDePersonagem}=\033[m \033[31m{Vida}\033[m") if Zumbi == 0: print(f"\033[33mParabens {NomeDePersonagem} voce derrotou o inimigo !\033[m") Nivel += 1 Moeda += MoedaMais print(f"\033[33mPersonagem subiu de nivel + 1 || Nivel =\033[m \033[32:7m{Nivel}\033[m") break if Dado == 2: print("\033[31mO inimigo ira atacar primeiro!\033[m") Vida -= AtaqIni print(f"\033[33m{NomeDePersonagem} =\033[m \033[31m{Vida}\033[m\n\033[33mInimigo =\033[m \033[31m{Zumbi}\033[m") if Vida <= 0: print("\033[31mQue pena :( voce perdeu, mas não se preocupe tente novamente\033[m") break while Nivel >= 10: print("\033[32m-=-" * 54) primeira = ("\033[34mBATALHA") print(primeira.center(170), "\n") DesqNivel = (f"\033[32:7mNIVEL = {Nivel}\033[m \033[33:7mMOEDAS = {Moeda}\033[m") print(DesqNivel.center(187)) print( f"\033[33mVamos começar a batalha! {NomeDePersonagem} a frente existe um inimigo com {Zumbi} de vida, role o dado para saber quem atacara primeiro...(1 Voce ataca primeiro | 2 O inimigo ataca primeiro)\033[m\n\033[34mTente chegar ao Nivel 100, quanto maior o nivel mais dificil é! A cada 10 niveis voce ganha mais vida e dano! e os inimigos tambem\033[m") Vida = Nvida Zumbi = Nzumbi if Nivel >= 10 and Nivel <= 15: Vida = Nvida + ResVida Zumbi = Nzumbi + ResVidaIni Arco += 1 print(f"\033[33mVida de inimigo =\033[m \033[31m{Zumbi}\033[m \033[33m|| || || Vida {NomeDePersonagem} =\033[m \033[31m{Vida}\033[m") while True: RolarDados = input("\n\033[33mPressione enter para rolar o dado...\033[m") print("\033[31mRolando dadosssssssssssssssss...\033[m") sleep(1) Dado = randint(1, 2) print(f"\033[33mO dado foi de =\033[m \033[32m{Dado}\033[m ") sleep(1) if Dado == 1: print("\033[32mVoce ira atacar primeiro!\033[m") PreAtaq = str(input("\033[33mEscreva Atacar para atacar:\033[m ")) if PreAtaq == "Atacar" or PreAtaq == "atacar": AtaqPersonagem = Arco Zumbi -= AtaqPersonagem print( f"\033[33mInimigo =\033[m \033[31m{Zumbi}\033[m\n\033[33m{NomeDePersonagem}=\033[m \033[31m{Vida}\033[m") if Zumbi <= 0: print(f"\033[33mParabens {NomeDePersonagem} voce derrotou o primeiro inimigo !\033[m") Nivel += 1 print(f"Personagem subiu de nivel + 1 || Nivel = {Nivel}") break if Dado == 2: print("\033[31mO inimigo ira atacar primeiro!\033[m") Vida -= AtaqIni print( f"\033[33m{NomeDePersonagem} =\033[m \033[31m{Vida}\033[m\n\033[33mInimigo =\033[m \033[31m{Zumbi}\033[m") if Vida <= 0: print("\033[31mQue pena :( voce perdeu, mas não se preocupe tente novamente\033[m") RolarDados = input("\n\033[33mPressione enter para tentar novamente...\033[m") break # ------------------------------------------------------------------------------------------------------------------------------------------------------------- # ---------------------------------------------------------------------Caso Adaga------------------------------------------------------------------------------- elif EscolhaDeArma == 2: print("\033[32m-=-" * 54) primeira = ("\033[34m PRIMEIRA BATALHA") print(primeira.center(170), "\n") DesqNivel = (f"\033[32m NIVEL = {Nivel}\033[m") print(DesqNivel.center(170)) print(f"\033[33mVamos começar a batalha! {NomeDePersonagem} a frente existe um inimigo com 100 de vida, role o dado para saber quem atacara primeiro...(1 Voce ataca primeiro | 2 O inimigo ataca primeiro)\033[m") while True: RolarDados = input("\n\033[33mPressione enter para rolar o dado...\033[m") print("\033[31mRolando dados...\033[m") sleep(1) Dado = randint(1, 2) print(f"\033[33mO dado foi de =\033[m \033[32m{Dado}\033[m ") sleep(1) if Dado == 1: print("\033[32mVoce ira atacar primeiro!\033[m") PreAtaq = str(input("\033[33mEscreva Atacar para atacar:\033[m ")) if PreAtaq == "Atacar" or PreAtaq == "atacar": AtaqPersonagem = Adaga Zumbi -= AtaqPersonagem print( f"\033[33mInimigo =\033[m \033[31m{Zumbi}\033[m\n\033[33m{NomeDePersonagem}=\033[m \033[31m{Vida}\033[m") if Zumbi <= 0: print(f"\033[33mParabens {NomeDePersonagem} voce derrotou o primeiro inimigo !\033[m") Nivel += 1 print(f"Personagem subiu de nivel + 1 || Nivel = {Nivel}") break if Dado == 2: print("\033[31mO inimigo ira atacar primeiro!\033[m") Vida -= AtaqIni print( f"\033[33m{NomeDePersonagem} =\033[m \033[31m{Vida}\033[m\n\033[33mInimigo =\033[m \033[31m{Zumbi}\033[m") if Vida <= 0: print("\033[31mQue pena :( voce perdeu, mas não se preocupe tente novamente\033[m") RolarDados = input("\n\033[33mPressione enter para tentar novamente...\033[m") break break # ------------------------------------------------------------------------------------------------------------------------------------------------------------- # ---------------------------------------------------------------------Caso Espada------------------------------------------------------------------------------- elif EscolhaDeArma == 3: print("\033[32m-=-" * 54) primeira = ("\033[34m PRIMEIRA BATALHA") print(primeira.center(170), "\n") DesqNivel = (f"\033[32m NIVEL = {Nivel}\033[m") print(DesqNivel.center(170)) print(f"\033[33mVamos começar a batalha! {NomeDePersonagem} a frente existe um inimigo com 100 de vida, role o dado para saber quem atacara primeiro...(1 Voce ataca primeiro | 2 O inimigo ataca primeiro)\033[m") while True: RolarDados = input("\n\033[33mPressione enter para rolar o dado...\033[m") print("\033[31mRolando dados...\033[m") sleep(1) Dado = randint(1, 2) print(f"\033[33mO dado foi de =\033[m \033[32m{Dado}\033[m ") sleep(1) if Dado == 1: print("\033[32mVoce ira atacar primeiro!\033[m") PreAtaq = str(input("\033[33mEscreva Atacar para atacar:\033[m ")) if PreAtaq == "Atacar" or PreAtaq == "atacar": AtaqPersonagem = Espada Zumbi -= AtaqPersonagem print( f"\033[33mInimigo =\033[m \033[31m{Zumbi}\033[m\n\033[33m{NomeDePersonagem}=\033[m \033[31m{Vida}\033[m") if Zumbi <= 0: print(f"\033[33mParabens {NomeDePersonagem} voce derrotou o primeiro inimigo !\033[m") Nivel += 1 print(f"Personagem subiu de nivel + 1 || Nivel = {Nivel}") break if Dado == 2: print("\033[31mO inimigo ira atacar primeiro!\033[m") Vida -= AtaqIni print( f"\033[33m{NomeDePersonagem} =\033[m \033[31m{Vida}\033[m\n\033[33mInimigo =\033[m \033[31m{Zumbi}\033[m") if Vida <= 0: print("\033[31mQue pena :( voce perdeu, mas não se preocupe tente novamente\033[m") RolarDados = input("\n\033[33mPressione enter para tentar novamente...\033[m") break break # ------------------------------------------------------------------------------------------------------------------------------------------------------------- nova = input("VAMOS JOGAR ") print("\033[32m-=-" * 54) #-------------------------------------------------------------------------------------------------------------------------------------------------------------
# -*- coding: utf-8 -*- """Top-level package for tf.""" __author__ = """tf""" __email__ = 'miffyrcee@outlook.com' __version__ = '0.1.0'
#!/usr/bin/python ############################################################################### # Calculates the global mean using 'fldmean' operation in the CDO # linux command (using annual mean data) # The resulting netcdf file contains a single time series # (but lon, lat coordinate dimensions will still exist in the output file) ############################################################################### import os #import sys #sys.path.append("./modules") from clens import * def global_mean(scen,run,v): """Calculates the global mean (time series) using CDO. Input variables: scen,run,v: strings indicating the scenario, ensemble member run, and the variable name. These variables are used to form the netcdf file names that are processed with cdo. """ app="fldmean" # app is used in the output file name cesmscen=TRANSLATE[scen]['scen'] cesmtime=TRANSLATE[scen]['time'] infile=MODEL+"_"+cesmscen+"_"+v+"_"+cesmtime+"_"+run+"_ann_ano.nc" # OUTPATH: Input path and output path are the same. outfile=MODEL+"_"+cesmscen+"_"+v+"_"+cesmtime+"_"+run+\ "_ann_"+app+".nc" cdo="cdo -v fldmean "+\ OUTPATH+infile+" "+OUTPATH+outfile print(cdo) os.system(cdo) print ("Infile: "+infile) print ("Outfile:"+outfile) print ("Folder: "+OUTPATH) return # Loop over scenarios iscen=0 for scen in SCENARIOLIST: nmodel=0 for run in ENSEMBLELIST: i=0 for v in VARLIST: global_mean(scen,run,v) i+=1 nmodel+=1 print ("----------------------------------------------------------") print ("stats for simulations "+scen+" : variable "+v) print ("models: "+str(nmodel)+" variables: "+str(i)) iscen+=1
import itertools import copy import numpy as np import scipy import scipy.linalg from functools import reduce __all__ = ['ImplicitSurface', 'ImplicitCollection', 'ImplicitPlane', 'ImplicitSphere', 'ImplicitXAlignedCylinder', 'ImplicitEllipse', 'ImplicitIntersection', 'ImplicitUnion', 'ImplicitDifference', 'ImplicitComplement', 'GridMapBase', 'GridMap', 'GridSlip' ] class ImplicitSurface(object): def __init__(self): pass def __call__(self): raise NotImplementedError('Must be implemented by subclass.') def interior(self, grid, asarray=False): val = self.__call__(grid) if asarray: retval = np.zeros_like(val) retval[np.where(val < 0.0)] = 1.0 return retval else: return np.where(val < 0.0) def exterior(self, grid, asarray=False): val = self.__call__(grid) if asarray: retval = np.zeros_like(val) retval[np.where(val >= 0.0)] = 1.0 return retval else: return np.where(val >= 0.0) class ImplicitCollection(ImplicitSurface): def __init__(self, *items): if np.iterable(items[0]): self.items = list(items[0]) else: self.items = list(items) def __call__(self): raise NotImplementedError('Must be implemented by subclass.') class ImplicitPlane(ImplicitSurface): def __init__(self, p, n): self.p = np.array(p) self.n = np.array(n) self.n = self.n/np.linalg.norm(self.n) self.d = -np.dot(self.p,self.n) def __call__(self, grid): return self.d + reduce(lambda x,y:x+y, list(map(lambda x,y:x*y,self.n,grid))) class ImplicitSphere(ImplicitSurface): def __init__(self, c=None, r=1.0): if c is None: self.c = None else: self.c = np.array(c) self.r = r def __call__(self, grid): if self.c is None: c = np.zeros_like(grid[0].shape) else: c = self.c return reduce(lambda x,y:x+y, list(map(lambda x,y:(y-x)**2,c,grid))) - self.r**2 class ImplicitXAlignedCylinder(ImplicitSurface): def __init__(self, c=None, length=1.0, r=1.0): if c is None: self.c = None else: self.c = np.array(c) self.len = length self.r = r def __call__(self, grid): if self.c is None: c = np.zeros_like(grid[0].shape) else: c = self.c g = grid[1:] cc = c[1:] # longways = (grid[1]-c[1])**2 - self.r**2 longways = reduce(lambda x,y:x+y, list(map(lambda x,y:(y-x)**2,cc,g))) - self.r**2 cutoff = np.abs(grid[0] - c[0]) - self.len/2 return np.maximum(longways, cutoff) class ImplicitEllipse(ImplicitSurface): def __init__(self, c=None, a=None, r=1.0): if c is None: self.c = None else: self.c = np.array(c) if a is None: self.a = None else: self.a = np.array(a) self.r = r def __call__(self, grid): if self.c is None: c = np.zeros(len(grid)) else: c = self.c if self.a is None: a = np.ones(len(grid)) else: a = self.a return reduce(lambda x,y:x+y, list(map(lambda x,y,z:(((y-x)**2)/z), c,grid,a)) ) - self.r**2 class ImplicitIntersection(ImplicitCollection): def __init__(self, *items): ImplicitCollection.__init__(self, *items) def __call__(self, grid): return reduce(lambda x,y: np.maximum(x,y), [x(grid) for x in self.items]) class ImplicitUnion(ImplicitCollection): def __init__(self, *items): ImplicitCollection.__init__(self, *items) def __call__(self, grid): return reduce(lambda x,y: np.minimum(x,y), [x(grid) for x in self.items]) class ImplicitDifference(ImplicitCollection): # Maybe sometime, this should just take *items, and pop the first one for # base. This way, we can allow a single list to be passed. For now, whatever. def __init__(self, base, *items): ImplicitCollection.__init__(self, *items) self.base = base def __call__(self, grid): items = [self.base] + self.items return reduce(lambda x,y: np.maximum(x,-y), [x(grid) for x in items]) class ImplicitComplement(ImplicitSurface): def __init__(self, base): self.base = base def __call__(self, grid): return -1.0*self.base(grid) # These must be defined so that the equality is switched if the complement # is the calling surface def interior(self, grid, asarray=False): val = self.__call__(grid) if asarray: retval = np.zeros_like(val) retval[np.where(val <= 0.0)] = 1.0 return retval else: return np.where(val <= 0.0) def exterior(self, grid, asarray=False): val = self.__call__(grid) if asarray: retval = np.zeros_like(val) retval[np.where(val > 0.0)] = 1.0 return retval else: return np.where(val > 0.0) class GridMapBase(object): def __init__(self): pass def __call__(self): raise NotImplementedError('Must be implemented by subclass.') class GridMap(GridMapBase): def __init__(self, funcs): self.funcs = funcs def __call__(self, grid): new_grid = [] for f,g in zip(self.funcs,grid): if f is not None: new_grid.append(f(g)) else: new_grid.append(g) return tuple(new_grid) class GridSlip(GridMapBase): # Creates a slip or a fault along the specifid plane def __init__(self, p, n): self.p = np.array(p) self.n = np.array(n) self.n = self.n/np.linalg.norm(self.n) self.d = -np.dot(self.p,self.n) self.basis = None def __call__(self, grid, direction, amount): # amount is a scalar # direction is a vector that will be normalized # the slip occurs along that vector's projection onto the plane, i.e., it is orthogonal to the normal # the exterior of the slip plane (the part the normal points to) is the part that is modified. d = np.array(direction) d = d/np.linalg.norm(d) dim = len(d) if self.basis is None: basis = [self.n] # Gramm schmidt while len(basis) != dim: c = np.random.rand(3) for b in basis: c -= np.dot(b,c)*b cn = np.linalg.norm(c) if cn > 1e-4: basis.append(c/cn) self.basis = basis[1:] # Project the slip direction onto the basis proj=0 for b in self.basis: proj += np.dot(d,b)*b # Scale the projection proj = amount*proj # Evaluate the plane to figure out what components of the old grid are shifted. val = self.d + reduce(lambda x,y:x+y, list(map(lambda x,y:x*y,self.n,grid))) loc = np.where(val >= 0.0) # Perform the shift. new_grid = [copy.deepcopy(g) for g in grid] for ng,p in zip(new_grid,proj): ng[loc] -=p return tuple(new_grid) class Weird(ImplicitSurface): def __init__(self, p,n, c=None, r=1.0): if c is None: self.c = None else: self.c = np.array(c) self.r = r self.p = np.array(p) self.n = np.array(n) self.n = self.n/np.linalg.norm(self.n) self.d = -np.dot(self.p,self.n) def __call__(self, grid): if self.c is None: c = np.zeros_like(grid[0].shape) else: c = self.c # Creates flat eye thingies # val1 = reduce(lambda x,y:x+y, map(lambda x,y:(y-x)**2,c,grid)) - self.r**2 # # val2 = self.d + reduce(lambda x,y:x+y, map(lambda x,y:x*y,self.n,grid)) # # return 4*val1/np.max(val1)+val2 val1 = reduce(lambda x,y:x+y, list(map(lambda x,y:(y-x)**2,c,grid))) - self.r**2 val2 = self.d + reduce(lambda x,y:x+y, list(map(lambda x,y:x*y,self.n,grid))) return 4*val1/np.max(val1)+val2 class Hyperbola(ImplicitSurface): def __init__(self, c=None, r=1.0): if c is None: self.c = None else: self.c = np.array(c) self.r = r def __call__(self, grid): if self.c is None: c = np.zeros_like(grid[0].shape) else: c = self.c return reduce(lambda x,y:-x+y, list(map(lambda x,y:(y-x)**2,c,grid))) - self.r**2 class Weird2(ImplicitSurface): def __init__(self, c=None, r=1.0, s=None): if c is None: self.c = None else: self.c = np.array(c) if s is None: self.s = None else: self.s = np.array(s) self.r = r def __call__(self, grid): c = np.zeros_like(grid[0].shape) if self.c is None else self.c s = np.ones_like(grid[0].shape) if self.s is None else self.s return ((grid[0]-c[0])**2)/s[0] + ((grid[1]-c[1])**1)/s[1] - self.r**2 #reduce(lambda x,y:-x+y, map(lambda x,y:(y-x)**2,c,grid)) - self.r**2 # FIXME #if __name__ == "__main__": # # import numpy as np # import matplotlib.pyplot as mpl # # from pysit import * # # x_lbc = PML(0.0, 100.0) # x_rbc = PML(0.0, 100.0) # z_lbc = PML(0.0, 100.0) # z_rbc = PML(0.0, 100.0) # # xmin, xmax = 0.0, 20 # zmin, zmax = 0.0, 10 # nx, nz = 500,250 # # x_config = (xmin, xmax, nx, x_lbc, x_rbc) # z_config = (zmin, zmax, nz, z_lbc, z_rbc) # # d = Domain((x_config, z_config)) # # grid = d.generate_grid() # grid = grid[0].reshape(d.shape).T, grid[1].reshape(d.shape).T # # p1 = ImplicitPlane((0.0,4.0),(0.0,-1.0)) # p2 = ImplicitPlane((0.0,6.0),(0.0,1.0)) # # w1 = Weird((0.0,5.0),(0.0,-1.0), (10,5)) # w2 = Weird((0.0,6.0),(0.0,1.0), (10,5)) # # w3 = Weird2((10,4),1.5,(-100.0,1.)) # w4 = Weird2((10,4),0.5,( 100.0,1.)) # # band = ImplicitIntersection(w1,w2) # band = ImplicitIntersection(p1,p2) # band = ImplicitDifference(w3,w4) # # g = GridSlip((10.0,5.0), (1,0.5)) # d = (0.0,-1.0) # a = 0.5 # new_grid = g(grid,d,a) # # # plt.figure() # plt.imshow(band(grid)) # plt.colorbar() # # plt.figure() # plt.imshow(band(new_grid)) # plt.colorbar() # # plt.figure() # plt.imshow(band.interior(grid)) # plt.colorbar() # # plt.figure() # plt.imshow(band.interior(new_grid)) # plt.colorbar() # # plt.show()
import sys from pol.server import Server from settings import DATABASES, SNAPSHOT_DIR, DOWNLOADER_USER_AGENT, DEBUG port = sys.argv[1] if len(sys.argv) >= 2 else 1234 Server(port, DATABASES['default'], SNAPSHOT_DIR, DOWNLOADER_USER_AGENT).run()
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi Terraform Bridge (tfgen) Tool. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from . import _utilities __all__ = ['AppSecReputationProfileArgs', 'AppSecReputationProfile'] @pulumi.input_type class AppSecReputationProfileArgs: def __init__(__self__, *, config_id: pulumi.Input[int], reputation_profile: pulumi.Input[str]): """ The set of arguments for constructing a AppSecReputationProfile resource. :param pulumi.Input[int] config_id: . Unique identifier of the security configuration associated with the reputation profile being modified. :param pulumi.Input[str] reputation_profile: . Path to a JSON file containing a definition of the reputation profile. You can view a sample JSON file in the [Create a reputation profile](https://developer.akamai.com/api/cloud_security/application_security/v1.html#postreputationprofiles) section of the Application Security API documentation. """ pulumi.set(__self__, "config_id", config_id) pulumi.set(__self__, "reputation_profile", reputation_profile) @property @pulumi.getter(name="configId") def config_id(self) -> pulumi.Input[int]: """ . Unique identifier of the security configuration associated with the reputation profile being modified. """ return pulumi.get(self, "config_id") @config_id.setter def config_id(self, value: pulumi.Input[int]): pulumi.set(self, "config_id", value) @property @pulumi.getter(name="reputationProfile") def reputation_profile(self) -> pulumi.Input[str]: """ . Path to a JSON file containing a definition of the reputation profile. You can view a sample JSON file in the [Create a reputation profile](https://developer.akamai.com/api/cloud_security/application_security/v1.html#postreputationprofiles) section of the Application Security API documentation. """ return pulumi.get(self, "reputation_profile") @reputation_profile.setter def reputation_profile(self, value: pulumi.Input[str]): pulumi.set(self, "reputation_profile", value) @pulumi.input_type class _AppSecReputationProfileState: def __init__(__self__, *, config_id: Optional[pulumi.Input[int]] = None, reputation_profile: Optional[pulumi.Input[str]] = None, reputation_profile_id: Optional[pulumi.Input[int]] = None): """ Input properties used for looking up and filtering AppSecReputationProfile resources. :param pulumi.Input[int] config_id: . Unique identifier of the security configuration associated with the reputation profile being modified. :param pulumi.Input[str] reputation_profile: . Path to a JSON file containing a definition of the reputation profile. You can view a sample JSON file in the [Create a reputation profile](https://developer.akamai.com/api/cloud_security/application_security/v1.html#postreputationprofiles) section of the Application Security API documentation. """ if config_id is not None: pulumi.set(__self__, "config_id", config_id) if reputation_profile is not None: pulumi.set(__self__, "reputation_profile", reputation_profile) if reputation_profile_id is not None: pulumi.set(__self__, "reputation_profile_id", reputation_profile_id) @property @pulumi.getter(name="configId") def config_id(self) -> Optional[pulumi.Input[int]]: """ . Unique identifier of the security configuration associated with the reputation profile being modified. """ return pulumi.get(self, "config_id") @config_id.setter def config_id(self, value: Optional[pulumi.Input[int]]): pulumi.set(self, "config_id", value) @property @pulumi.getter(name="reputationProfile") def reputation_profile(self) -> Optional[pulumi.Input[str]]: """ . Path to a JSON file containing a definition of the reputation profile. You can view a sample JSON file in the [Create a reputation profile](https://developer.akamai.com/api/cloud_security/application_security/v1.html#postreputationprofiles) section of the Application Security API documentation. """ return pulumi.get(self, "reputation_profile") @reputation_profile.setter def reputation_profile(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "reputation_profile", value) @property @pulumi.getter(name="reputationProfileId") def reputation_profile_id(self) -> Optional[pulumi.Input[int]]: return pulumi.get(self, "reputation_profile_id") @reputation_profile_id.setter def reputation_profile_id(self, value: Optional[pulumi.Input[int]]): pulumi.set(self, "reputation_profile_id", value) class AppSecReputationProfile(pulumi.CustomResource): @overload def __init__(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, config_id: Optional[pulumi.Input[int]] = None, reputation_profile: Optional[pulumi.Input[str]] = None, __props__=None): """ **Scopes**: Security policy Creates or modifies a reputation profile. Reputation profiles grade the security risk of an IP address based on previous activities associated with that address. Depending on the reputation score and how your configuration has been set up, requests from a specific IP address can trigger an alert or even be blocked. **Related API Endpoint**: [/appsec/v1/configs/{configId}/versions/{versionNumber}/reputation-profiles](https://developer.akamai.com/api/cloud_security/application_security/v1.html#postreputationprofiles) ## Example Usage Basic usage: ```python import pulumi import pulumi_akamai as akamai configuration = akamai.get_app_sec_configuration(name="Documentation") reputation_profile = akamai.AppSecReputationProfile("reputationProfile", config_id=configuration.config_id, reputation_profile=(lambda path: open(path).read())(f"{path['module']}/reputation_profile.json")) pulumi.export("reputationProfileId", reputation_profile.reputation_profile_id) ``` ## Output Options The following options can be used to determine the information returned, and how that returned information is formatted: - `reputation_profile_id`. ID of the newly-created or newly-modified reputation profile. :param str resource_name: The name of the resource. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[int] config_id: . Unique identifier of the security configuration associated with the reputation profile being modified. :param pulumi.Input[str] reputation_profile: . Path to a JSON file containing a definition of the reputation profile. You can view a sample JSON file in the [Create a reputation profile](https://developer.akamai.com/api/cloud_security/application_security/v1.html#postreputationprofiles) section of the Application Security API documentation. """ ... @overload def __init__(__self__, resource_name: str, args: AppSecReputationProfileArgs, opts: Optional[pulumi.ResourceOptions] = None): """ **Scopes**: Security policy Creates or modifies a reputation profile. Reputation profiles grade the security risk of an IP address based on previous activities associated with that address. Depending on the reputation score and how your configuration has been set up, requests from a specific IP address can trigger an alert or even be blocked. **Related API Endpoint**: [/appsec/v1/configs/{configId}/versions/{versionNumber}/reputation-profiles](https://developer.akamai.com/api/cloud_security/application_security/v1.html#postreputationprofiles) ## Example Usage Basic usage: ```python import pulumi import pulumi_akamai as akamai configuration = akamai.get_app_sec_configuration(name="Documentation") reputation_profile = akamai.AppSecReputationProfile("reputationProfile", config_id=configuration.config_id, reputation_profile=(lambda path: open(path).read())(f"{path['module']}/reputation_profile.json")) pulumi.export("reputationProfileId", reputation_profile.reputation_profile_id) ``` ## Output Options The following options can be used to determine the information returned, and how that returned information is formatted: - `reputation_profile_id`. ID of the newly-created or newly-modified reputation profile. :param str resource_name: The name of the resource. :param AppSecReputationProfileArgs args: The arguments to use to populate this resource's properties. :param pulumi.ResourceOptions opts: Options for the resource. """ ... def __init__(__self__, resource_name: str, *args, **kwargs): resource_args, opts = _utilities.get_resource_args_opts(AppSecReputationProfileArgs, pulumi.ResourceOptions, *args, **kwargs) if resource_args is not None: __self__._internal_init(resource_name, opts, **resource_args.__dict__) else: __self__._internal_init(resource_name, *args, **kwargs) def _internal_init(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, config_id: Optional[pulumi.Input[int]] = None, reputation_profile: Optional[pulumi.Input[str]] = None, __props__=None): if opts is None: opts = pulumi.ResourceOptions() if not isinstance(opts, pulumi.ResourceOptions): raise TypeError('Expected resource options to be a ResourceOptions instance') if opts.version is None: opts.version = _utilities.get_version() if opts.id is None: if __props__ is not None: raise TypeError('__props__ is only valid when passed in combination with a valid opts.id to get an existing resource') __props__ = AppSecReputationProfileArgs.__new__(AppSecReputationProfileArgs) if config_id is None and not opts.urn: raise TypeError("Missing required property 'config_id'") __props__.__dict__["config_id"] = config_id if reputation_profile is None and not opts.urn: raise TypeError("Missing required property 'reputation_profile'") __props__.__dict__["reputation_profile"] = reputation_profile __props__.__dict__["reputation_profile_id"] = None super(AppSecReputationProfile, __self__).__init__( 'akamai:index/appSecReputationProfile:AppSecReputationProfile', resource_name, __props__, opts) @staticmethod def get(resource_name: str, id: pulumi.Input[str], opts: Optional[pulumi.ResourceOptions] = None, config_id: Optional[pulumi.Input[int]] = None, reputation_profile: Optional[pulumi.Input[str]] = None, reputation_profile_id: Optional[pulumi.Input[int]] = None) -> 'AppSecReputationProfile': """ Get an existing AppSecReputationProfile resource's state with the given name, id, and optional extra properties used to qualify the lookup. :param str resource_name: The unique name of the resulting resource. :param pulumi.Input[str] id: The unique provider ID of the resource to lookup. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[int] config_id: . Unique identifier of the security configuration associated with the reputation profile being modified. :param pulumi.Input[str] reputation_profile: . Path to a JSON file containing a definition of the reputation profile. You can view a sample JSON file in the [Create a reputation profile](https://developer.akamai.com/api/cloud_security/application_security/v1.html#postreputationprofiles) section of the Application Security API documentation. """ opts = pulumi.ResourceOptions.merge(opts, pulumi.ResourceOptions(id=id)) __props__ = _AppSecReputationProfileState.__new__(_AppSecReputationProfileState) __props__.__dict__["config_id"] = config_id __props__.__dict__["reputation_profile"] = reputation_profile __props__.__dict__["reputation_profile_id"] = reputation_profile_id return AppSecReputationProfile(resource_name, opts=opts, __props__=__props__) @property @pulumi.getter(name="configId") def config_id(self) -> pulumi.Output[int]: """ . Unique identifier of the security configuration associated with the reputation profile being modified. """ return pulumi.get(self, "config_id") @property @pulumi.getter(name="reputationProfile") def reputation_profile(self) -> pulumi.Output[str]: """ . Path to a JSON file containing a definition of the reputation profile. You can view a sample JSON file in the [Create a reputation profile](https://developer.akamai.com/api/cloud_security/application_security/v1.html#postreputationprofiles) section of the Application Security API documentation. """ return pulumi.get(self, "reputation_profile") @property @pulumi.getter(name="reputationProfileId") def reputation_profile_id(self) -> pulumi.Output[int]: return pulumi.get(self, "reputation_profile_id")
import random def bubble(items): for t in range(len(items)-1): for i in range(len(items)-1): if items[i] > items[i+1]: items[i], items[i+1] = items[i+1], items[i] def reverseBubble(items): for t in range(len(items)-1): for i in range(len(items)-1): if items[i] < items[i+1]: items[i], items[i+1] = items[i+1], items[i] def mergeSort(items): if len(items) < 2: return None mid = int(len(items)/2) left = [] right = [] for i in range(mid): left.append(items[i]) for i in range(mid, len(items)): right.append(items[i]) mergeSort(left) mergeSort(right) #zipper L = 0 R = 0 M = 0 while L < len(left) and R < len(right): if left[L] < right[R]: items[M] = left[L] L += 1 M += 1 else: items[M] = right[R] R += 1 M += 1 while L < len(left): items[M] = left[L] L += 1 M += 1 while R < len(right): items[M] = right[R] R += 1 M += 1 def cupidShuffle(items): for i in range(len(items)): index = random.randint(i, len(items)-1) items[i], items[index] = items[index], items[i]
""" Pytorch dataset class and collate function for building the dataloader """ import torch import bcolz import re, collections import numpy as np import utils from torch.utils.data import Dataset, DataLoader from torch.nn.utils.rnn import pack_padded_sequence def pad_sequence(sequences, batch_first=False): r""" Note: This function returns a Tensor of size ``T x B x *`` or ``B x T x *`` where `T` is the length of longest sequence. Function assumes trailing dimensions and type of all the Tensors in sequences are same. Arguments: sequences (list[Tensor]): list of variable length sequences. batch_first (bool, optional): output will be in ``B x T x *`` if True, or in ``T x B x *`` otherwise padding_value (float, optional): value for padded elements. Returns: Tensor of size ``T x B x *`` if batch_first is False Tensor of size ``B x T x *`` otherwise """ # sort the sequences from largest to smallest length lengths = np.array([sequence.size(0) for sequence in sequences]) order = np.argsort(lengths)[::-1] # sorted_seqs = sorted(sequences, key=lambda x: len(x), reverse=True) # use size of largest sequence max_size = sequences[order[0]].size() max_len, trailing_dims = max_size[0], max_size[1:] if batch_first: out_dims = (len(sequences), max_len) + trailing_dims else: out_dims = (max_len, len(sequences)) + trailing_dims # create an empty tensor of the desired output size # use negative one to prevent errors when using embeddings # if trailing_dims: out_tensor = torch.zeros(out_dims) # else: # out_tensor = 20*torch.ones(out_dims) for i, tensor in enumerate(sequences): length = tensor.size(0) if batch_first: out_tensor[i, :length, ...] = tensor else: out_tensor[:length, i, ...] = tensor return out_tensor def sequence_collate(batch): r"""Puts each data field into a tensor with outer dimension batch size""" error_msg = "batch must contain tensors, numbers, dicts or lists; found {}" elem_type = type(batch[0]) if isinstance(batch[0], torch.Tensor): out = None if _use_shared_memory: # If we're in a background process, concatenate directly into a # shared memory tensor to avoid an extra copy numel = sum([x.numel() for x in batch]) storage = batch[0].storage()._new_shared(numel) out = batch[0].new(storage) return torch.stack(batch, 1, out=out).float() elif elem_type.__module__ == 'numpy' and elem_type.__name__ != 'str_' \ and elem_type.__name__ != 'string_': elem = batch[0] if elem_type.__name__ == 'ndarray': # array of string classes and object if re.search('[SaUO]', elem.dtype.str) is not None: raise TypeError(error_msg.format(elem.dtype)) sequences = [torch.from_numpy(b).float() for b in batch] padded = pad_sequence(sequences) return padded if elem.shape == (): # scalars py_type = float if elem.dtype.name.startswith('float') else int return numpy_type_map[elem.dtype.name](list(map(py_type, batch))) elif isinstance(batch[0], int): return torch.LongTensor(batch) elif isinstance(batch[0], float): return torch.DoubleTensor(batch) elif isinstance(batch[0], str): return batch elif isinstance(batch[0], collections.Mapping): return {key: sequence_collate([d[key] for d in batch]) for key in batch[0]} elif isinstance(batch[0], collections.Sequence): transposed = zip(*batch) return [sequence_collate(samples) for samples in transposed] raise TypeError((error_msg.format(type(batch[0])))) class ProteinDataset(Dataset): def __init__(self, bcolz_path, encoding, indices=None): """encoding has 3 states, None, onehot, and tokens""" self.encoding = encoding # TODO: in the future, when using multiple different protein chain lengths # try using pytorch ConcatDataset class if indices is None: self.data_array = bcolz.carray(rootdir=bcolz_path) else: self.data_array = bcolz.carray(rootdir=bcolz_path)[indices] def __len__(self): return len(self.data_array) def __getitem__(self, idx): name, sequence, coords = self.data_array[idx] length = len(sequence[0]) sequence_vec = sequence if self.encoding == 'onehot': sequence_vec = utils.encode_sequence(sequence, onehot=True) elif self.encoding == 'tokens': sequence_vec = utils.encode_sequence(sequence, onehot=False) sample = {'name': name, 'sequence': sequence_vec, 'coords': coords, 'length': length} return sample class ProteinNet(Dataset): def __init__(self, bcolz_path): self.data_array = bcolz.carray(rootdir=bcolz_path) def __len__(self): return len(self.data_array) def __getitem__(self, idx): name, sequence, pssm, coords, mask = self.data_array[idx] length = len(sequence) sequence_vec = utils.encode_sequence(sequence, onehot=True) seq_pssm = np.concatenate([sequence_vec, pssm], axis=1) sample = {'name': name, 'sequence': seq_pssm, 'coords': coords, 'length': length, 'mask': mask } return sample
""" Euler Problem #24 A permutation is an ordered arrangement of objects. For example, 3124 is one possible permutation of the digits 1, 2, 3 and 4. If all of the permutations are listed numerically or alphabetically, we call it lexicographic order. The lexicographic permutations of 0, 1 and 2 are: 012 021 102 120 201 210 What is the millionth lexicographic permutation of the digits 0, 1, 2, 3, 4, 5, 6, 7, 8 and 9? """ from permutation import permute for i, perm in enumerate(permute("0123456789"), 1): if i == 1000000: print(perm) break
import sys import json import attr import os import logging from galaxy_importer import collection from galaxy_importer import config def main(): filepath = sys.argv[1] savepath = sys.argv[2] logging.basicConfig( stream=sys.stdout, format='%(levelname)s: %(message)s', level=logging.INFO) config_data = config.ConfigFile.load() cfg = config.Config(config_data=config_data) # Modified importer to importer directory instead of tarball data = collection.CollectionLoader( filepath, filepath, cfg=cfg, logger=logging).load() json_data = json.dumps(attr.asdict(data), indent=2) with open(os.path.join(savepath), 'w+') as output_file: output_file.write(json_data) main()
import threading, socket, sys, logging fmt = '%(asctime)-16s %(levelname)-8s %(name)-30s %(message)s' dtfmt = '%Y-%m-%d %H:%M' logging.basicConfig(format=fmt, datefmt=dtfmt) def getcustomlogger(name): logger = logging.getLogger(name) logger.setLevel(logging.DEBUG) return logger ## required to allow the sockets to work on 2 and 3 _enc = lambda x: str(x) _dec = lambda x: x if sys.version_info[0] == 3: _enc = lambda x: bytes(x, 'utf-8') _dec = lambda x: str(x, 'utf-8') ## pasted, because it's easier than writing this and importing it. ## TODO: add async def socket_listen(port, action, shutdown = None, consume_size = 16, shutdown_command = None, async = False): socketslogger = getcustomlogger("socket server handler") ''' listen on a TCP port port: the numerical port to listen on action: a function with prototype `action(conn, data)` ''' if not shutdown_command: shutdown_command = _enc("!X") def start(): socketslogger.warn("starting server on port %s", port) try: sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) # Fixes 'TIME_WAIT' issue socketslogger.debug("socket acquired %s", sock) sock.bind(('', int(port))) socketslogger.debug("socket bound to port %s", port) backlog = 0 sock.listen(backlog) socketslogger.debug("socket listening, allowing %s backlogged connections", backlog) while True: conn, addr = sock.accept() socketslogger.info("socket connection accepted %s", addr) try: while True: data = conn.recv(consume_size).strip() socketslogger.debug("socket is listening on port %s", port) if data: if (data == shutdown_command): conn.send(_enc('shutting down\n')) return action(conn, _dec(data)) else: break conn.send(_enc('command success\n')) except BaseException as x: conn.send(_enc('command failure: %s\n', type(x).__name__)) raise x finally: conn.close() socketslogger.debug("closed connection %s", addr) finally: sock.close() if shutdown: shutdown() socketslogger.warn("shutting down server") if not async: socketslogger.warn("starting server in synchronous mode") start() else: socketslogger.warn("starting server in asynchronous mode") threading.Thread(target=start, args=(), name="server_thread", daemon = True).start() def socket_send(port, content): socketslogger = getcustomlogger("socket client handler") try: sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) sock.connect(('localhost', port)) socketslogger.debug("Connected to port %s", port) sock.sendall(content.encode()) socketslogger.debug("sent '%s'", content.encode()) sock.shutdown(socket.SHUT_WR) while True: data = sock.recv(4096) if not data: break socketslogger.info("recieved: '%s'", _dec(data.strip())) finally: sock.close() socketslogger.debug("connection closed")
#!/usr/bin/env python3 import sys output_dict = {} def handle_data(arg): a = arg.split(':') output_dict[a[0]] = a[1] return output_dict def print_data(key,output_dict): print("ID:{} Name:{}".format(key,output_dict)) if __name__=='__main__': for arg in sys.argv[1:]: handle_data(arg) for key in output_dict: print_data(key,output_dict[key])
from django.contrib import admin from arescaler.models import * class ItemAdmin(admin.ModelAdmin): list_display = ["name", "size"] admin.site.register(Item, ItemAdmin)
import setpath import functions import json import ast registered=True class formattreetotableoutput(functions.vtable.vtbase.VT): def VTiter(self, *parsedArgs,**envars): largs, dictargs = self.full_parse(parsedArgs) if 'query' not in dictargs: raise functions.OperatorError(__name__.rsplit('.')[-1],"No query argument ") query = dictargs['query'] cur = envars['db'].cursor() c=cur.execute(query) schema = cur.getdescriptionsafe() resulttable = [] for myrow in c: # assume that it is ordered by nodeno level = int(myrow[0]) #currentnode nodestoinsert = ast.literal_eval(myrow[1]) #colname,colval,nextnode,leafval set1=[] set2=[] for node in nodestoinsert: if node[3]=="": set1.append(node) set1 = sorted(set1, key=lambda (colname,colval,nextnode,leafval):(colval,leafval)) else : set2.append(node) set2 = sorted(set2, key=lambda (colname,colval,nextnode,leafval):(colval,nextnode)) # print "AA",nodestoinsert # print "Set1",set1 # print "Set2",set2 nodestoinsert= set2 + set1 # print "BB",nodestoinsert # print nodestoinsert indexi = 0 levelsi = 0 for i in xrange(len(resulttable)): if str(resulttable[i][4])== str(level): indexi = i levelsi= int(resulttable[i][1])+ 1 for i in xrange(len(nodestoinsert)): resulttable.insert(i + indexi+1, [level,levelsi,nodestoinsert[i][0],nodestoinsert[i][1],nodestoinsert[i][2],nodestoinsert[i][3]]) yield [('no',),('result',),] # print resulttable for i in xrange(len(resulttable)): result ="" for j in xrange(resulttable[i][1]): result+="| " result=result + resulttable[i][2] + "=" + resulttable[i][3] if resulttable[i][5]!="": result+=":"+resulttable[i][5] yield i,result # formattreetotableoutput select currentnode as nodeno ,jgroup(jpack(colname||"="||colval,nextnode,leafval)) as nodeinfo from mytree group by currentnode ; def Source(): return functions.vtable.vtbase.VTGenerator(formattreetotableoutput) if not ('.' in __name__): """ This is needed to be able to test the function, put it at the end of every new function you create """ import sys import setpath from functions import * testfunction() if __name__ == "__main__": reload(sys) sys.setdefaultencoding('utf-8') import doctest doctest.tes
#!/usr/bin/env python # coding=utf-8 # # spyne - Copyright (C) Spyne contributors. # # This library is free software; you can redistribute it and/or # modify it under the terms of the GNU Lesser General Public # License as published by the Free Software Foundation; either # version 2.1 of the License, or (at your option) any later version. # # This library is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public # License along with this library; if not, write to the Free Software # Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 # import re import datetime import unittest import pytz import uuid from datetime import timedelta from lxml import etree from spyne.util import total_seconds from spyne.const import xml_ns as ns from spyne.model import Null, AnyDict, Uuid from spyne.model.complex import Array from spyne.model.complex import ComplexModel from spyne.model.primitive import Date from spyne.model.primitive import Time from spyne.model.primitive import Boolean from spyne.model.primitive import DateTime from spyne.model.primitive import Duration from spyne.model.primitive import Float from spyne.model.primitive import Integer from spyne.model.primitive import UnsignedInteger from spyne.model.primitive import Unicode from spyne.model.primitive import String from spyne.model.primitive import Decimal from spyne.protocol import ProtocolBase from spyne.protocol.xml import XmlDocument ns_test = 'test_namespace' from spyne.model import ModelBase class TestPrimitive(unittest.TestCase): def test_nillable_quirks(self): assert ModelBase.Attributes.nillable == True class Attributes(ModelBase.Attributes): nillable = False nullable = False assert Attributes.nillable == False assert Attributes.nullable == False class Attributes(ModelBase.Attributes): nillable = True assert Attributes.nillable == True assert Attributes.nullable == True class Attributes(ModelBase.Attributes): nillable = False assert Attributes.nillable == False assert Attributes.nullable == False class Attributes(ModelBase.Attributes): nullable = True assert Attributes.nillable == True assert Attributes.nullable == True class Attributes(ModelBase.Attributes): nullable = False assert Attributes.nillable == False assert Attributes.nullable == False class Attributes(ModelBase.Attributes): nullable = False class Attributes(Attributes): pass assert Attributes.nullable == False def test_nillable_inheritance_quirks(self): class Attributes(ModelBase.Attributes): nullable = False class AttrMixin: pass class NewAttributes(Attributes, AttrMixin): pass assert NewAttributes.nullable is False class AttrMixin: pass class NewAttributes(AttrMixin, Attributes): pass assert NewAttributes.nullable is False def test_decimal(self): assert Decimal(10,4).Attributes.total_digits == 10 assert Decimal(10,4).Attributes.fraction_digits == 4 def test_decimal_format(self): f = 123456 str_format='${0}' element = etree.Element('test') XmlDocument().to_parent(None, Decimal(str_format=str_format), f, element, ns_test) element = element[0] self.assertEquals(element.text, '$123456') def test_string(self): s = String() element = etree.Element('test') XmlDocument().to_parent(None, String, 'value', element, ns_test) element=element[0] self.assertEquals(element.text, 'value') value = XmlDocument().from_element(None, String, element) self.assertEquals(value, 'value') def test_datetime(self): n = datetime.datetime.now(pytz.utc) element = etree.Element('test') XmlDocument().to_parent(None, DateTime, n, element, ns_test) element = element[0] self.assertEquals(element.text, n.isoformat()) dt = XmlDocument().from_element(None, DateTime, element) self.assertEquals(n, dt) def test_datetime_format(self): n = datetime.datetime.now().replace(microsecond=0) format = "%Y %m %d %H %M %S" element = etree.Element('test') XmlDocument().to_parent(None, DateTime(format=format), n, element, ns_test) element = element[0] assert element.text == datetime.datetime.strftime(n, format) dt = XmlDocument().from_element(None, DateTime(format=format), element) assert n == dt def test_date_format(self): t = datetime.date.today() format = "%Y %m %d" element = etree.Element('test') XmlDocument().to_parent(None, Date(format=format), t, element, ns_test) assert element[0].text == datetime.date.strftime(t, format) dt = XmlDocument().from_element(None, Date(format=format), element[0]) assert t == dt def test_datetime_timezone(self): import pytz n = datetime.datetime.now(pytz.timezone('EST')) element = etree.Element('test') cls = DateTime(as_timezone=pytz.utc, timezone=False) XmlDocument().to_parent(None, cls, n, element, ns_test) element = element[0] c = n.astimezone(pytz.utc).replace(tzinfo=None) self.assertEquals(element.text, c.isoformat()) dt = XmlDocument().from_element(None, cls, element) assert dt.tzinfo is not None dt = dt.replace(tzinfo=None) self.assertEquals(c, dt) def test_date_timezone(self): elt = etree.Element('wot') elt.text = '2013-08-09+02:00' dt = XmlDocument().from_element(None, Date, elt) print("ok without validation.") dt = XmlDocument(validator='soft').from_element(None, Date, elt) print(dt) def test_time(self): n = datetime.time(1, 2, 3, 4) ret = ProtocolBase().to_string(Time, n) self.assertEquals(ret, n.isoformat()) dt = ProtocolBase().from_string(Time, ret) self.assertEquals(n, dt) def test_date(self): n = datetime.date(2011,12,13) ret = ProtocolBase().to_string(Date, n) self.assertEquals(ret, n.isoformat()) dt = ProtocolBase().from_string(Date, ret) self.assertEquals(n, dt) def test_utcdatetime(self): datestring = '2007-05-15T13:40:44Z' e = etree.Element('test') e.text = datestring dt = XmlDocument().from_element(None, DateTime, e) self.assertEquals(dt.year, 2007) self.assertEquals(dt.month, 5) self.assertEquals(dt.day, 15) datestring = '2007-05-15T13:40:44.003Z' e = etree.Element('test') e.text = datestring dt = XmlDocument().from_element(None, DateTime, e) self.assertEquals(dt.year, 2007) self.assertEquals(dt.month, 5) self.assertEquals(dt.day, 15) def test_integer(self): i = 12 integer = Integer() element = etree.Element('test') XmlDocument().to_parent(None, Integer, i, element, ns_test) element = element[0] self.assertEquals(element.text, '12') value = XmlDocument().from_element(None, integer, element) self.assertEquals(value, i) def test_limits(self): try: ProtocolBase().from_string(Integer, "1" * (Integer.__max_str_len__ + 1)) except: pass else: raise Exception("must fail.") ProtocolBase().from_string(UnsignedInteger, "-1") # This is not supposed to fail. try: UnsignedInteger.validate_native(-1) # This is supposed to fail. except: pass else: raise Exception("must fail.") def test_large_integer(self): i = 128375873458473 integer = Integer() element = etree.Element('test') XmlDocument().to_parent(None, Integer, i, element, ns_test) element = element[0] self.assertEquals(element.text, '128375873458473') value = XmlDocument().from_element(None, integer, element) self.assertEquals(value, i) def test_float(self): f = 1.22255645 element = etree.Element('test') XmlDocument().to_parent(None, Float, f, element, ns_test) element = element[0] self.assertEquals(element.text, repr(f)) f2 = XmlDocument().from_element(None, Float, element) self.assertEquals(f2, f) def test_array(self): type = Array(String) type.resolve_namespace(type, "zbank") values = ['a', 'b', 'c', 'd', 'e', 'f'] element = etree.Element('test') XmlDocument().to_parent(None, type, values, element, ns_test) element = element[0] self.assertEquals(len(values), len(element.getchildren())) values2 = XmlDocument().from_element(None, type, element) self.assertEquals(values[3], values2[3]) def test_array_empty(self): type = Array(String) type.resolve_namespace(type, "zbank") values = [] element = etree.Element('test') XmlDocument().to_parent(None, type, values, element, ns_test) element = element[0] self.assertEquals(len(values), len(element.getchildren())) values2 = XmlDocument().from_element(None, type, element) self.assertEquals(len(values2), 0) def test_unicode(self): s = u'\x34\x55\x65\x34' self.assertEquals(4, len(s)) element = etree.Element('test') XmlDocument().to_parent(None, String, s, element, 'test_ns') element = element[0] value = XmlDocument().from_element(None, String, element) self.assertEquals(value, s) def test_unicode_pattern_mult_cust(self): assert Unicode(pattern='a').Attributes.pattern == 'a' assert Unicode(pattern='a')(5).Attributes.pattern == 'a' def test_unicode_upattern(self): patt = r'[\w .-]+' attr = Unicode(unicode_pattern=patt).Attributes assert attr.pattern == patt assert attr._pattern_re.flags & re.UNICODE assert attr._pattern_re.match(u"Ğ Ğ ç .-") assert attr._pattern_re.match(u"\t") is None def test_unicode_nullable_mult_cust_false(self): assert Unicode(nullable=False).Attributes.nullable == False assert Unicode(nullable=False)(5).Attributes.nullable == False def test_unicode_nullable_mult_cust_true(self): assert Unicode(nullable=True).Attributes.nullable == True assert Unicode(nullable=True)(5).Attributes.nullable == True def test_null(self): element = etree.Element('test') XmlDocument().to_parent(None, Null, None, element, ns_test) print(etree.tostring(element)) element = element[0] self.assertTrue( bool(element.attrib.get('{%s}nil' % ns.xsi)) ) value = XmlDocument().from_element(None, Null, element) self.assertEquals(None, value) def test_point(self): from spyne.model.primitive.geo import _get_point_pattern a=re.compile(_get_point_pattern(2)) assert a.match('POINT (10 40)') is not None assert a.match('POINT(10 40)') is not None assert a.match('POINT(10.0 40)') is not None assert a.match('POINT(1.310e4 40)') is not None def test_multipoint(self): from spyne.model.primitive.geo import _get_multipoint_pattern a=re.compile(_get_multipoint_pattern(2)) assert a.match('MULTIPOINT (10 40, 40 30, 20 20, 30 10)') is not None # FIXME: #assert a.match('MULTIPOINT ((10 40), (40 30), (20 20), (30 10))') is not None def test_linestring(self): from spyne.model.primitive.geo import _get_linestring_pattern a=re.compile(_get_linestring_pattern(2)) assert a.match('LINESTRING (30 10, 10 30, 40 40)') is not None def test_multilinestring(self): from spyne.model.primitive.geo import _get_multilinestring_pattern a=re.compile(_get_multilinestring_pattern(2)) assert a.match('''MULTILINESTRING ((10 10, 20 20, 10 40), (40 40, 30 30, 40 20, 30 10))''') is not None def test_polygon(self): from spyne.model.primitive.geo import _get_polygon_pattern a=re.compile(_get_polygon_pattern(2)) assert a.match('POLYGON ((30 10, 10 20, 20 40, 40 40, 30 10))') is not None def test_multipolygon(self): from spyne.model.primitive.geo import _get_multipolygon_pattern a=re.compile(_get_multipolygon_pattern(2)) assert a.match('''MULTIPOLYGON (((30 20, 10 40, 45 40, 30 20)), ((15 5, 40 10, 10 20, 5 10, 15 5)))''') is not None assert a.match('''MULTIPOLYGON (((40 40, 20 45, 45 30, 40 40)), ((20 35, 45 20, 30 5, 10 10, 10 30, 20 35), (30 20, 20 25, 20 15, 30 20)))''') is not None def test_boolean(self): b = etree.Element('test') XmlDocument().to_parent(None, Boolean, True, b, ns_test) b = b[0] self.assertEquals('true', b.text) b = etree.Element('test') XmlDocument().to_parent(None, Boolean, 0, b, ns_test) b = b[0] self.assertEquals('false', b.text) b = etree.Element('test') XmlDocument().to_parent(None, Boolean, 1, b, ns_test) b = b[0] self.assertEquals('true', b.text) b = XmlDocument().from_element(None, Boolean, b) self.assertEquals(b, True) b = etree.Element('test') XmlDocument().to_parent(None, Boolean, False, b, ns_test) b = b[0] self.assertEquals('false', b.text) b = XmlDocument().from_element(None, Boolean, b) self.assertEquals(b, False) b = etree.Element('test') XmlDocument().to_parent(None, Boolean, None, b, ns_test) b = b[0] self.assertEquals('true', b.get('{%s}nil' % ns.xsi)) b = XmlDocument().from_element(None, Boolean, b) self.assertEquals(b, None) def test_new_type(self): """Customized primitives go into namespace based on module name.""" custom_type = Unicode(pattern='123') self.assertEqual(custom_type.get_namespace(), custom_type.__module__) def test_default_nullable(self): """Test if default nullable changes nullable attribute.""" try: self.assertTrue(Unicode.Attributes.nullable) orig_default = Unicode.Attributes.NULLABLE_DEFAULT Unicode.Attributes.NULLABLE_DEFAULT = False self.assertFalse(Unicode.Attributes.nullable) self.assertFalse(Unicode.Attributes.nillable) finally: Unicode.Attributes.NULLABLE_DEFAULT = orig_default self.assertEqual(Unicode.Attributes.nullable, orig_default) def test_simple_type_explicit_customization(self): assert Unicode(max_len=5).__extends__ is not None assert Unicode.customize(max_len=5).__extends__ is not None def test_anydict_customization(self): from spyne.model import json assert isinstance(AnyDict.customize(store_as='json').Attributes.store_as, json) def test_uuid_serialize(self): value = uuid.UUID('12345678123456781234567812345678') assert ProtocolBase().to_string(Uuid, value) == \ '12345678-1234-5678-1234-567812345678' assert ProtocolBase().to_string(Uuid(serialize_as='hex'), value) == \ '12345678123456781234567812345678' assert ProtocolBase().to_string(Uuid(serialize_as='urn'), value) == \ 'urn:uuid:12345678-1234-5678-1234-567812345678' assert ProtocolBase().to_string(Uuid(serialize_as='bytes'), value) == \ '\x124Vx\x124Vx\x124Vx\x124Vx' assert ProtocolBase().to_string(Uuid(serialize_as='bytes_le'), value) == \ 'xV4\x124\x12xV\x124Vx\x124Vx' assert ProtocolBase().to_string(Uuid(serialize_as='fields'), value) == \ (305419896, 4660, 22136, 18, 52, 95073701484152) assert ProtocolBase().to_string(Uuid(serialize_as='int'), value) == \ 24197857161011715162171839636988778104 def test_uuid_deserialize(self): value = uuid.UUID('12345678123456781234567812345678') assert ProtocolBase().from_string(Uuid, '12345678-1234-5678-1234-567812345678') == value assert ProtocolBase().from_string(Uuid(serialize_as='hex'), '12345678123456781234567812345678') == value assert ProtocolBase().from_string(Uuid(serialize_as='urn'), 'urn:uuid:12345678-1234-5678-1234-567812345678') == value assert ProtocolBase().from_string(Uuid(serialize_as='bytes'), '\x124Vx\x124Vx\x124Vx\x124Vx') == value assert ProtocolBase().from_string(Uuid(serialize_as='bytes_le'), 'xV4\x124\x12xV\x124Vx\x124Vx') == value assert ProtocolBase().from_string(Uuid(serialize_as='fields'), (305419896, 4660, 22136, 18, 52, 95073701484152)) == value assert ProtocolBase().from_string(Uuid(serialize_as='int'), 24197857161011715162171839636988778104) == value def test_uuid_validate(self): assert Uuid.validate_string(Uuid, '12345678-1234-5678-1234-567812345678') assert Uuid.validate_native(Uuid, uuid.UUID('12345678-1234-5678-1234-567812345678')) def test_datetime_serialize_as(self): i = 1234567890123456 v = datetime.datetime.fromtimestamp(i / 1e6) assert ProtocolBase().to_string( DateTime(serialize_as='sec'), v) == i//1e6 assert ProtocolBase().to_string( DateTime(serialize_as='sec_float'), v) == i/1e6 assert ProtocolBase().to_string( DateTime(serialize_as='msec'), v) == i//1e3 assert ProtocolBase().to_string( DateTime(serialize_as='msec_float'), v) == i/1e3 assert ProtocolBase().to_string( DateTime(serialize_as='usec'), v) == i def test_datetime_deserialize(self): i = 1234567890123456 v = datetime.datetime.fromtimestamp(i / 1e6) assert ProtocolBase().from_string( DateTime(serialize_as='sec'), i//1e6) == \ datetime.datetime.fromtimestamp(i//1e6) assert ProtocolBase().from_string( DateTime(serialize_as='sec_float'), i/1e6) == v assert ProtocolBase().from_string( DateTime(serialize_as='msec'), i//1e3) == \ datetime.datetime.fromtimestamp(i/1e3//1000) assert ProtocolBase().from_string( DateTime(serialize_as='msec_float'), i/1e3) == v assert ProtocolBase().from_string( DateTime(serialize_as='usec'), i) == v ### Duration Data Type ## http://www.w3schools.com/schema/schema_dtypes_date.asp # Duration Data type # The time interval is specified in the following form "PnYnMnDTnHnMnS" where: # P indicates the period (required) # nY indicates the number of years # nM indicates the number of months # nD indicates the number of days # T indicates the start of a time section (*required* if you are going to # specify hours, minutes, seconds or microseconds) # nH indicates the number of hours # nM indicates the number of minutes # nS indicates the number of seconds class SomeBlob(ComplexModel): __namespace__ = 'myns' howlong = Duration() class TestDurationPrimitive(unittest.TestCase): def test_onehour_oneminute_onesecond(self): answer = 'PT1H1M1S' gg = SomeBlob() gg.howlong = timedelta(hours=1, minutes=1, seconds=1) element = etree.Element('test') XmlDocument().to_parent(None, SomeBlob, gg, element, gg.get_namespace()) element = element[0] print(gg.howlong) print(etree.tostring(element, pretty_print=True)) assert element[0].text == answer data = element.find('{%s}howlong' % gg.get_namespace()).text self.assertEquals(data, answer) s1 = XmlDocument().from_element(None, SomeBlob, element) assert total_seconds(s1.howlong) == total_seconds(gg.howlong) def test_4suite(self): # borrowed from 4Suite tests_seconds = [ (0, u'PT0S'), (1, u'PT1S'), (59, u'PT59S'), (60, u'PT1M'), (3599, u'PT59M59S'), (3600, u'PT1H'), (86399, u'PT23H59M59S'), (86400, u'P1D'), (86400*60, u'P60D'), (86400*400, u'P400D') ] for secs, answer in tests_seconds: gg = SomeBlob() gg.howlong = timedelta(seconds=secs) element = etree.Element('test') XmlDocument().to_parent(None, SomeBlob, gg, element, gg.get_namespace()) element = element[0] print(gg.howlong) print(etree.tostring(element, pretty_print=True)) assert element[0].text == answer data = element.find('{%s}howlong' % gg.get_namespace()).text self.assertEquals(data, answer) s1 = XmlDocument().from_element(None, SomeBlob, element) assert total_seconds(s1.howlong) == secs for secs, answer in tests_seconds: if secs > 0: secs *= -1 answer = '-' + answer gg = SomeBlob() gg.howlong = timedelta(seconds=secs) element = etree.Element('test') XmlDocument().to_parent(None, SomeBlob, gg, element, gg.get_namespace()) element = element[0] print(gg.howlong) print(etree.tostring(element, pretty_print=True)) assert element[0].text == answer data = element.find('{%s}howlong' % gg.get_namespace()).text self.assertEquals(data, answer) s1 = XmlDocument().from_element(None, SomeBlob, element) assert total_seconds(s1.howlong) == secs def test_duration_positive_seconds_only(self): answer = 'PT35S' gg = SomeBlob() gg.howlong = timedelta(seconds=35) element = etree.Element('test') XmlDocument().to_parent(None, SomeBlob, gg, element, gg.get_namespace()) element = element[0] print(gg.howlong) print(etree.tostring(element, pretty_print=True)) assert element[0].text == answer data = element.find('{%s}howlong' % gg.get_namespace()).text self.assertEquals(data, answer) s1 = XmlDocument().from_element(None, SomeBlob, element) assert total_seconds(s1.howlong) == total_seconds(gg.howlong) def test_duration_positive_minutes_and_seconds_only(self): answer = 'PT5M35S' gg = SomeBlob() gg.howlong = timedelta(minutes=5, seconds=35) element = etree.Element('test') XmlDocument().to_parent(None, SomeBlob, gg, element, gg.get_namespace()) element = element[0] print(gg.howlong) print(etree.tostring(element, pretty_print=True)) assert element[0].text == answer data = element.find('{%s}howlong' % gg.get_namespace()).text self.assertEquals(data, answer) s1 = XmlDocument().from_element(None, SomeBlob, element) assert total_seconds(s1.howlong) == total_seconds(gg.howlong) def test_duration_positive_milliseconds_only(self): answer = 'PT0.666000S' gg = SomeBlob() gg.howlong = timedelta(milliseconds=666) element = etree.Element('test') XmlDocument().to_parent(None, SomeBlob, gg, element, gg.get_namespace()) element = element[0] print(gg.howlong) print(etree.tostring(element, pretty_print=True)) assert element[0].text == answer data = element.find('{%s}howlong' % gg.get_namespace()).text self.assertEquals(data, answer) s1 = XmlDocument().from_element(None, SomeBlob, element) assert total_seconds(s1.howlong) == total_seconds(gg.howlong) def test_duration_xml_duration(self): dur = datetime.timedelta(days=5 + 30 + 365, hours=1, minutes=1, seconds=12, microseconds=8e5) str1 = 'P400DT3672.8S' str2 = 'P1Y1M5DT1H1M12.8S' self.assertEquals(dur, ProtocolBase().from_string(Duration, str1)) self.assertEquals(dur, ProtocolBase().from_string(Duration, str2)) self.assertEquals(dur, ProtocolBase().from_string(Duration, ProtocolBase().to_string(Duration, dur))) if __name__ == '__main__': unittest.main()
import _pickle as pickle from keras.models import load_model class BaseModel(object): def __init__(self, model_size): self.model_size = model_size self.model = None def save(self, filename): if self.model is not None: self.model.save(filename + '.model') d = dict(self.__dict__) d.pop('model') f = open(filename, 'wb') pickle.dump(d, f) f.close() @classmethod def load(cls, filename): model = load_model(filename + '.model') f = open(filename, 'rb') attrs = pickle.load(f) f.close() obj = cls(attrs['model_size']) for key, value in attrs.items(): setattr(obj, key, value) obj.model = model return obj
__author__ = 'user' import nltk import random import pickle import os.path from nltk.corpus import movie_reviews word_features = [] def find_features(document): words = set(document) features = {} for w in word_features: features[w] = (w in words) return features def train_classifier(): if(os.path.isfile("classifier.pickle")): return documents = [] for category in movie_reviews.categories(): for fileid in movie_reviews.fileids(category): documents.append((list(movie_reviews.words(fileid)),category)) #random.shuffle(documents) all_words = [] for w in movie_reviews.words(): all_words.append(w.lower()) all_words = nltk.FreqDist(all_words) for w in all_words.most_common(9000): if(len(w[0]) >= 3): word_features.append(w[0]) feature_sets = [(find_features(rev), category) for (rev, category) in documents] random.shuffle(feature_sets) #classifier = nltk.NaiveBayesClassifier.train(feature_sets[:2000]) classifier = nltk.NaiveBayesClassifier.train(feature_sets[:2000]) #print(nltk.classify.accuracy(classifier,feature_sets[1500:])*100) save_classifier = open("classifier.pickle","wb") pickle.dump(classifier,save_classifier) save_classifier.close()
import uuid import pytest from sentry_sdk.envelope import Envelope, Item, PayloadRef import queue def _create_transaction_item(): """ Creates an transaction item that can be added to an envelope :return: a tuple (transaction_item, trace_id) """ trace_id = uuid.uuid4().hex event_id = uuid.uuid4().hex item = { "event_id": event_id, "type": "transaction", "transaction": "tr1", "start_timestamp": 1597976392.6542819, "timestamp": 1597976400.6189718, "contexts": { "trace": { "trace_id": trace_id, "span_id": "FA90FDEAD5F74052", "type": "trace", } }, "spans": [], "extra": {"id": event_id}, } return item, trace_id, event_id def _create_event_item(environment=None, release=None): """ Creates an event with the specified environment and release :return: a tuple (event_item, event_id) """ event_id = uuid.uuid4().hex trace_id = uuid.uuid4().hex item = { "event_id": event_id, "message": "Hello, World!", "extra": {"id": event_id}, } if environment is not None: item["environment"] = environment if release is not None: item["release"] = release return item, trace_id, event_id def _outcomes_enabled_config(): """ Returns a configuration for Relay that enables outcome generation """ return { "outcomes": { "emit_outcomes": True, "batch_size": 1, "batch_interval": 1, "source": "relay", } } def _add_sampling_config( config, sample_rate, rule_type, releases=None, user_segments=None, environments=None, ): """ Adds a sampling configuration rule to a project configuration """ rules = config["config"].setdefault("dynamicSampling", {}).setdefault("rules", []) if rule_type is None: rule_type = "trace" conditions = [] field_prefix = "trace." if rule_type == "trace" else "event." if releases is not None: conditions.append( {"op": "glob", "name": field_prefix + "release", "value": releases,} ) if user_segments is not None: conditions.append( { "op": "eq", "name": field_prefix + "user", "value": user_segments, "options": {"ignoreCase": True,}, } ) if environments is not None: conditions.append( { "op": "eq", "name": field_prefix + "environment", "value": environments, "options": {"ignoreCase": True,}, } ) rule = { "sampleRate": sample_rate, "type": rule_type, "condition": {"op": "and", "inner": conditions}, "id": len(rules) + 1, } rules.append(rule) return rules def _add_trace_info(envelope, trace_id, public_key, release=None, user_segment=None): """ Adds trace information to an envelope (to the envelope headers) """ if envelope.headers is None: envelope.headers = {} trace_info = {"trace_id": trace_id, "public_key": public_key} envelope.headers["trace"] = trace_info if release is not None: trace_info["release"] = release if user_segment is not None: trace_info["user"] = user_segment def test_it_removes_transactions(mini_sentry, relay): """ Tests that when sampling is set to 0% for the trace context project the transactions are removed """ project_id = 42 relay = relay(mini_sentry, _outcomes_enabled_config()) # create a basic project config config = mini_sentry.add_basic_project_config(project_id) # add a sampling rule to project config that removes all transactions (sample_rate=0) public_key = config["publicKeys"][0]["publicKey"] rules = _add_sampling_config(config, sample_rate=0, rule_type="trace") # create an envelope with a trace context that is initiated by this project (for simplicity) envelope = Envelope() transaction, trace_id, event_id = _create_transaction_item() envelope.add_transaction(transaction) _add_trace_info(envelope, trace_id=trace_id, public_key=public_key) # send the event, the transaction should be removed. relay.send_envelope(project_id, envelope) # the event should be removed by Relay sampling with pytest.raises(queue.Empty): mini_sentry.captured_events.get(timeout=1) outcomes = mini_sentry.captured_outcomes.get(timeout=2) assert outcomes is not None outcome = outcomes["outcomes"][0] assert outcome.get("outcome") == 1 assert outcome.get("reason") == f"Sampled:{rules[0]['id']}" def test_it_keeps_transactions(mini_sentry, relay): """ Tests that when sampling is set to 100% for the trace context project the transactions are kept """ project_id = 42 relay = relay(mini_sentry, _outcomes_enabled_config()) # create a basic project config config = mini_sentry.add_basic_project_config(project_id) # add a sampling rule to project config that keeps all transactions (sample_rate=1) public_key = config["publicKeys"][0]["publicKey"] _add_sampling_config(config, sample_rate=1, rule_type="trace") # create an envelope with a trace context that is initiated by this project (for simplicity) envelope = Envelope() transaction, trace_id, event_id = _create_transaction_item() envelope.add_transaction(transaction) _add_trace_info(envelope, trace_id=trace_id, public_key=public_key) # send the event, the transaction should be removed. relay.send_envelope(project_id, envelope) # the event should be left alone by Relay sampling evt = mini_sentry.captured_events.get(timeout=1).get_transaction_event() assert evt is not None # double check that we get back our trace object (check the trace_id from the object) evt_trace_id = ( evt.setdefault("contexts", {}).setdefault("trace", {}).get("trace_id") ) assert evt_trace_id == trace_id # no outcome should be generated since we forward the event to upstream with pytest.raises(queue.Empty): mini_sentry.captured_outcomes.get(timeout=2) def _create_event_envelope(public_key): envelope = Envelope() event, trace_id, event_id = _create_event_item() envelope.add_event(event) _add_trace_info(envelope, trace_id=trace_id, public_key=public_key) return envelope, trace_id, event_id def _create_transaction_envelope(public_key): envelope = Envelope() transaction, trace_id, event_id = _create_transaction_item() envelope.add_transaction(transaction) _add_trace_info(envelope, trace_id=trace_id, public_key=public_key) return envelope, trace_id, event_id @pytest.mark.parametrize( "rule_type, event_factory", [("error", _create_event_envelope), ("transaction", _create_transaction_envelope)], ) def test_it_removes_events(mini_sentry, relay, rule_type, event_factory): """ Tests that when sampling is set to 0% for the trace context project the events are removed """ project_id = 42 relay = relay(mini_sentry, _outcomes_enabled_config()) # create a basic project config config = mini_sentry.add_basic_project_config(project_id) public_key = config["publicKeys"][0]["publicKey"] # add a sampling rule to project config that removes all transactions (sample_rate=0) rules = _add_sampling_config(config, sample_rate=0, rule_type=rule_type) # create an envelope with a trace context that is initiated by this project (for simplicity) envelope, trace_id, event_id = event_factory(public_key) # send the event, the transaction should be removed. relay.send_envelope(project_id, envelope) # the event should be removed by Relay sampling with pytest.raises(queue.Empty): mini_sentry.captured_events.get(timeout=1) outcomes = mini_sentry.captured_outcomes.get(timeout=2) assert outcomes is not None outcome = outcomes["outcomes"][0] assert outcome.get("outcome") == 1 assert outcome.get("reason") == f"Sampled:{rules[0]['id']}" @pytest.mark.parametrize( "rule_type, event_factory", [("error", _create_event_envelope), ("transaction", _create_transaction_envelope)], ) def test_it_keeps_events(mini_sentry, relay, rule_type, event_factory): """ Tests that when sampling is set to 100% for the trace context project the events are kept """ project_id = 42 relay = relay(mini_sentry, _outcomes_enabled_config()) # create a basic project config config = mini_sentry.add_basic_project_config(project_id) public_key = config["publicKeys"][0]["publicKey"] # add a sampling rule to project config that keeps all events (sample_rate=1) _add_sampling_config(config, sample_rate=1, rule_type=rule_type) # create an envelope with a trace context that is initiated by this project (for simplicity) envelope, trace_id, event_id = event_factory(public_key) # send the event, the transaction should be removed. relay.send_envelope(project_id, envelope) # the event should be left alone by Relay sampling envelope = mini_sentry.captured_events.get(timeout=1) assert envelope is not None # double check that we get back our object # we put the id in extra since Relay overrides the initial event_id items = [item for item in envelope] assert len(items) == 1 evt = items[0].payload.json evt_id = evt.setdefault("extra", {}).get("id") assert evt_id == event_id # no outcome should be generated since we forward the event to upstream with pytest.raises(queue.Empty): mini_sentry.captured_outcomes.get(timeout=2) @pytest.mark.parametrize("should_remove", [True, False]) @pytest.mark.parametrize( "rule_type, event_factory", [ ("error", _create_event_envelope), ("transaction", _create_transaction_envelope), ("trace", _create_transaction_envelope), ], ) def test_bad_dynamic_rules_in_processing_relays( mini_sentry, relay_with_processing, events_consumer, transactions_consumer, should_remove, rule_type, event_factory, ): """ Configurations that contain bad (unrecognized) rules should be handled by removing the offending rules and sampling using the correct rules """ sample_rate = 0 if should_remove else 1 relay = relay_with_processing() project_id = 42 config = mini_sentry.add_full_project_config(project_id) public_key = config["publicKeys"][0]["publicKey"] if rule_type == "error": consumer = events_consumer() else: consumer = transactions_consumer() # add a bad condition (with the opposite sample rate to make it evident it is not applied) rules = _add_sampling_config( config, sample_rate=1 - sample_rate, rule_type=rule_type ) last_rule = rules[-1] last_rule["condition"]["inner"].append( {"op": "BadOperator", "name": "foo", "value": "bar",} ) _add_sampling_config(config, sample_rate=sample_rate, rule_type=rule_type) envelope, trace_id, event_id = event_factory(public_key) relay.send_envelope(project_id, envelope) if should_remove: consumer.assert_empty() else: consumer.get_event() @pytest.mark.parametrize( "rule_type, event_factory", [ ("error", _create_event_envelope), ("transaction", _create_transaction_envelope), ("trace", _create_transaction_envelope), ], ) def test_bad_dynamic_rules_in_non_processing_relays( mini_sentry, relay, rule_type, event_factory ): """ Configurations that contain bad (unrecognized) rules should effectively disable any sampling (everything passes through) """ project_id = 42 relay = relay(mini_sentry, _outcomes_enabled_config()) # create a basic project config config = mini_sentry.add_basic_project_config(project_id) public_key = config["publicKeys"][0]["publicKey"] rules = _add_sampling_config(config, sample_rate=0, rule_type=rule_type) last_rule = rules[-1] last_rule["condition"]["inner"].append( {"op": "BadOperator", "name": "foo", "value": "bar",} ) # add a sampling rule to project config that drops all events (sample_rate=0), it should be ignored # because there is an invalid rule in the configuration _add_sampling_config(config, sample_rate=0, rule_type=rule_type) # create an envelope with a trace context that is initiated by this project (for simplicity) envelope, trace_id, event_id = event_factory(public_key) # send the event, the transaction should be removed. relay.send_envelope(project_id, envelope) # the event should be left alone by Relay sampling envelope = mini_sentry.captured_events.get(timeout=1) assert envelope is not None # double check that we get back our object # we put the id in extra since Relay overrides the initial event_id items = [item for item in envelope] assert len(items) == 1 evt = items[0].payload.json evt_id = evt.setdefault("extra", {}).get("id") assert evt_id == event_id # no outcome should be generated since we forward the event to upstream with pytest.raises(queue.Empty): mini_sentry.captured_outcomes.get(timeout=2) def test_uses_trace_public_key(mini_sentry, relay): """ Tests that the public_key from the trace context is used The project configuration corresponding to the project pointed to by the context public_key DSN is used (not the dsn of the request) Create a trace context for projectA and send an event from projectB using projectA's trace. Configure project1 to sample out all events (sample_rate=0) Configure project2 to sample in all events (sample_rate=1) First: Send event to project2 with trace from project1 It should be removed (sampled out) Second: Send event to project1 with trace from project2 It should pass through """ relay = relay(mini_sentry, _outcomes_enabled_config()) # create basic project configs project_id1 = 42 config1 = mini_sentry.add_basic_project_config(project_id1) public_key1 = config1["publicKeys"][0]["publicKey"] _add_sampling_config(config1, sample_rate=0, rule_type="trace") project_id2 = 43 config2 = mini_sentry.add_basic_project_config(project_id2) public_key2 = config2["publicKeys"][0]["publicKey"] _add_sampling_config(config2, sample_rate=1, rule_type="trace") # First # send trace with project_id1 context (should be removed) envelope = Envelope() transaction, trace_id, event_id = _create_transaction_item() envelope.add_transaction(transaction) _add_trace_info(envelope, trace_id=trace_id, public_key=public_key1) # send the event, the transaction should be removed. relay.send_envelope(project_id2, envelope) # the event should be removed by Relay sampling with pytest.raises(queue.Empty): mini_sentry.captured_events.get(timeout=1) # and it should create an outcome outcomes = mini_sentry.captured_outcomes.get(timeout=2) assert outcomes is not None # Second # send trace with project_id2 context (should go through) envelope = Envelope() transaction, trace_id, event_id = _create_transaction_item() envelope.add_transaction(transaction) _add_trace_info(envelope, trace_id=trace_id, public_key=public_key2) # send the event. relay.send_envelope(project_id1, envelope) # the event should be passed along to upstream (with the transaction unchanged) evt = mini_sentry.captured_events.get(timeout=1).get_transaction_event() assert evt is not None # no outcome should be generated (since the event is passed along to the upstream) with pytest.raises(queue.Empty): mini_sentry.captured_outcomes.get(timeout=2) @pytest.mark.parametrize( "rule_type, event_factory", [ ("error", _create_event_envelope), ("transaction", _create_transaction_envelope), ("trace", _create_transaction_envelope), ], ) def test_multi_item_envelope(mini_sentry, relay, rule_type, event_factory): """ Associated items are removed together with event item. The event is sent twice to account for both fast and slow paths. When sampling decides to remove a transaction it should also remove all dependent items (attachments). """ project_id = 42 relay = relay(mini_sentry, _outcomes_enabled_config()) # create a basic project config config = mini_sentry.add_basic_project_config(project_id) # add a sampling rule to project config that removes all transactions (sample_rate=0) public_key = config["publicKeys"][0]["publicKey"] # add a sampling rule to project config that drops all events (sample_rate=0), it should be ignored # because there is an invalid rule in the configuration _add_sampling_config(config, sample_rate=0, rule_type=rule_type) for i in range(2): # create an envelope with a trace context that is initiated by this project (for simplicity) envelope = Envelope() # create an envelope with a trace context that is initiated by this project (for simplicity) envelope, trace_id, event_id = event_factory(public_key) envelope.add_item( Item(payload=PayloadRef(json={"x": "some attachment"}), type="attachment") ) envelope.add_item( Item( payload=PayloadRef(json={"y": "some other attachment"}), type="attachment", ) ) # send the event, the transaction should be removed. relay.send_envelope(project_id, envelope) # the event should be removed by Relay sampling with pytest.raises(queue.Empty): mini_sentry.captured_events.get(timeout=1) outcomes = mini_sentry.captured_outcomes.get(timeout=2) assert outcomes is not None
# coding= utf-8 # Copyright (c) 2015 Rackspace, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or # implied. # See the License for the specific language governing permissions and # limitations under the License. import ddt from tests.api import base from tests.api.utils.schema import admin @ddt.ddt class TestServiceStatus(base.TestBase): def setUp(self): super(TestServiceStatus, self).setUp() if self.test_config.run_operator_tests is False: self.skipTest( 'Test Operator Functions is disabled in configuration') self.flavor_id = self.test_flavor self.service_urls = [] @ddt.data((1, u'deployed'), (1, u'failed'), (3, u'deployed'), (3, u'failed'), (5, u'deployed'), (5, u'failed')) def test_set_services(self, services_status): no_of_services, status = services_status self.service_urls = \ [self._service_limit_create_test_service(client=self.client) for _ in range(no_of_services)] service_ids = [url.rsplit('/')[-1:][0] for url in self.service_urls] project_id = self.user_project_id for service_id, service_url in zip(service_ids, self.service_urls): set_service_resp = self.operator_client.set_service_status( project_id=project_id, service_id=service_id, status=status) self.assertEqual(set_service_resp.status_code, 201) service_resp = self.client.get_service(service_url) resp_body = service_resp.json() resp_status = resp_body['status'] self.assertEqual(resp_status, status) get_service_resp = self.operator_client.get_by_service_status( status=status) self.assertSchema(get_service_resp.json(), admin.get_service_project_status) self.assertIn(service_id, get_service_resp.content) self.assertIn(project_id, get_service_resp.content) def tearDown(self): for service_url in self.service_urls: self.client.delete_service(location=service_url) if self.test_config.generate_flavors: self.client.delete_flavor(flavor_id=self.flavor_id) super(TestServiceStatus, self).tearDown()
from collections import namedtuple from typing import Any class FunctionRegisterBorg: __shared_state = {"register": {}} def __init__(self): self.__dict__ = self.__shared_state def _register(coin: Any, key: str, val: Any) -> None: borg = FunctionRegisterBorg() if coin not in borg.register: borg.register[coin] = {} borg.register[coin][key] = val def register_url(coin: Any) -> Any: def decorator(func): _register(coin, "url_func", func) return decorator def register_account(coin: Any) -> Any: def decorator(func): _register(coin, "account_func", func) return decorator CoinPrice = namedtuple("CoinPrice", ["coin", "fiat", "rate"]) Fiat = namedtuple("Fiat", ["balance", "type"]) Account = namedtuple("Account", ["balance", "type", "address"]) NullFiat = Fiat(type="Null", balance=0) NullCoinPrice = CoinPrice(coin="Null", fiat="Null", rate=0) NullAccount = Account(type="Null", balance=0, address="")
from construct import * from construct.lib import * combine_bytes = Struct( 'bytes_term' / NullTerminated(GreedyBytes, term=b'\x7C', include=False, consume=True), 'bytes_limit' / FixedSized(4, GreedyBytes), 'bytes_eos' / GreedyBytes, 'limit_or_calc' / Computed(lambda this: (this.bytes_limit if False else this.bytes_calc)), 'term_or_limit' / Computed(lambda this: (this.bytes_term if True else this.bytes_limit)), 'limit_or_eos' / Computed(lambda this: (this.bytes_limit if True else this.bytes_eos)), 'eos_or_calc' / Computed(lambda this: (this.bytes_eos if True else this.bytes_calc)), 'term_or_calc' / Computed(lambda this: (this.bytes_term if True else this.bytes_calc)), 'bytes_calc' / Computed(lambda this: b"\x52\x6E\x44"), 'term_or_eos' / Computed(lambda this: (this.bytes_term if False else this.bytes_eos)), ) _schema = combine_bytes
#!/bin/python # -*- coding: utf-8 -*- import json import RestApiz from flask import Flask, send_file, jsonify app = Flask(__name__) @app.route("/admin") def admin(): return send_file("/home/RestApi/dashboard/public/index.html") @app.errorhandler(404) def page_not_found(e): return jsonify({"error":'404.html'}), 404 def main(): app.run(debug=True, port=60000, host='127.0.1.1') if __name__ == "__main__": app.run(debug=True, port=60000, host='127.0.1.1')
# Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or # implied. # See the License for the specific language governing permissions and # limitations under the License. from os_vm_expire.model import models from os_vm_expire.model import repositories from os_vm_expire.tests import utils class WhenTestingVmExcludesResource(utils.OsVMExpireAPIBaseTestCase): def setUp(self): super(WhenTestingVmExcludesResource, self).setUp() def tearDown(self): super(WhenTestingVmExcludesResource, self).tearDown() repo = repositories.get_vmexpire_repository() repo.delete_all_entities() repositories.commit() repo = repositories.get_vmexclude_repository() repo.delete_all_entities() repositories.commit() def test_can_get_vmexcludes(self): entity = create_vmexclude_model(exclude_type=0) create_vmexclude(entity) exclude_id = entity.exclude_id exclude_type = entity.exclude_type _get_resp = self.app.get('/12345project/vmexcludes/') self.assertEqual(200, _get_resp.status_int) self.assertIn('vmexcludes', _get_resp.json) self.assertEqual(len(_get_resp.json['vmexcludes']), 1) self.assertEqual( _get_resp.json['vmexcludes'][0]['exclude_id'], exclude_id ) self.assertEqual( _get_resp.json['vmexcludes'][0]['exclude_type'], exclude_type ) def test_can_get_vmexclude(self): entity = create_vmexclude_model() instance = create_vmexclude(entity) _get_resp = self.app.get( '/12345project/vmexcludes/' + instance.id ) self.assertEqual(200, _get_resp.status_int) self.assertIn('vmexclude', _get_resp.json) self.assertEqual( _get_resp.json['vmexclude']['exclude_id'], entity.exclude_id) def test_can_create_vmexclude(self): entity = create_vmexclude_model(exclude_type=1) _get_resp = self.app.post_json( '/12345/vmexcludes/', { 'id': entity.exclude_id, 'type': 'project' }, headers={'Content-Type': 'application/json'} ) self.assertEqual(202, _get_resp.status_int) self.assertIn('vmexclude', _get_resp.json) self.assertEqual( _get_resp.json['vmexclude']['exclude_id'], entity.exclude_id ) self.assertEqual( _get_resp.json['vmexclude']['exclude_type'], entity.exclude_type ) _get_existing_resp = self.app.get( '/12345project/vmexcludes/' + _get_resp.json['vmexclude']['id'] ) self.assertEqual(200, _get_existing_resp.status_int) self.assertIn('vmexclude', _get_existing_resp.json) self.assertEqual( _get_resp.json['vmexclude']['exclude_id'], entity.exclude_id ) def test_can_delete_vmexclude(self): entity = create_vmexclude_model() instance = create_vmexclude(entity) _get_resp = self.app.delete( '/12345project/vmexcludes/' + instance.id, headers={'Content-Type': 'application/json'} ) self.assertEqual(204, _get_resp.status_int) _get_resp = self.app.get('/12345project/vmexcludes/') self.assertEqual(200, _get_resp.status_int) self.assertIn('vmexcludes', _get_resp.json) self.assertEqual(len(_get_resp.json['vmexcludes']), 0) def create_vmexclude_model(prefix=None, exclude_type=0): if not prefix: prefix = '12345' entity = models.VmExclude() entity.exclude_id = prefix entity.exclude_type = exclude_type return entity def create_vmexclude(entity): repo = repositories.get_vmexclude_repository() instance = repo.create_exclude(entity) repositories.commit() return instance
# Generated by Django 2.2.13 on 2020-07-20 19:06 from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('viewer', '0036_auto_20200705_1237'), ] operations = [ migrations.CreateModel( name='User_Lipid', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('user_lipid_name', models.CharField(max_length=100, verbose_name='user lipid name')), ('hg_scattering', models.FloatField(default=0, verbose_name='user head group scattering length')), ('hg_electrons', models.FloatField(default=0, verbose_name='user head group electrons')), ('hg_volume', models.FloatField(default=0, verbose_name='user head group volume')), ('tg_scattering', models.FloatField(default=0, verbose_name='user tail group scattering length')), ('tg_electrons', models.FloatField(default=0, verbose_name='user tail group electrons')), ('tm_scattering', models.FloatField(default=0, verbose_name='user terminal methyl scattering length')), ('tm_electrons', models.FloatField(default=0, verbose_name='user terminal methyl electrons')), ('owner', models.ForeignKey(default='admin', on_delete=django.db.models.deletion.CASCADE, related_name='user_lipid_owner', to=settings.AUTH_USER_MODEL)), ], options={ 'verbose_name': 'user lipid', 'verbose_name_plural': 'user lipids', }, ), migrations.CreateModel( name='Project_User_Lipid_Volume', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('user_lipid_volume', models.FloatField(default=0, verbose_name='user lipid volume')), ('project_title', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='project_user_lipid', to='viewer.Project')), ('project_user_lipid_name', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='project_user_lipid_name', to='viewer.User_Lipid')), ], options={ 'verbose_name': 'user lipid volume', 'verbose_name_plural': 'user lipid volumes', }, ), ]
import argparse import cv2 import os def extractImages(input, output, frameRate): if not os.path.exists(output): os.makedirs(output) count=1 vidcap = cv2.VideoCapture(input) def getFrame(sec): vidcap.set(cv2.CAP_PROP_POS_MSEC,sec*1000) hasFrames,image = vidcap.read() if hasFrames: cv2.imwrite(output+"/"+str(count)+".jpg", image) # Save frame as JPG file return hasFrames sec = 0 frameRate = int(frameRate) # Change this number to 1 for each 1 second, 0.5 for 500ms etc... # frameRate = 0.5 # Use this line if you want to take 2 images per second success = getFrame(sec) while success: print ('Read a new frame: ', success, '; at ', sec, 's ; frame number: ', count) count = count + 1 sec = sec + frameRate sec = round(sec, 2) success = getFrame(sec) if __name__=="__main__": print("Extracting Frames from video") a = argparse.ArgumentParser() a.add_argument("--input", help="path to video input") a.add_argument("--output", help="path to images") a.add_argument("--frameRate", help="frame rates, set 1 for 1 image per second, 2 for 1 images every 2 seconds, etc...") args = a.parse_args() print(args) extractImages(args.input, args.output, args.frameRate) # example: python3 extract_frames.py --input ../../dataset/dataset.mp4 --output output --frameRate 2
import unittest from tests.test_utils import get_sample_pdf_with_labels, get_sample_pdf, get_sample_sdf, get_sample_pdf_with_extra_cols, get_sample_pdf_with_no_text_col ,get_sample_spark_dataframe from nlu import * class TestToxic(unittest.TestCase): def test_toxic_model(self): # nlu.load('en.ner.dl.bert').predict("I like Angela Merkel") pipe = nlu.load('toxic',verbose=True) data = ['You are so dumb you goofy dummy', 'You stupid person with an identity that shall remain unnamed, such a filthy identity that you have go to a bad place you person!'] df = pipe.predict(data, output_level='sentence') print(df) print(df.columns) print(df['sentence'], df[['toxic_classes']]) print(df['sentence'], df[['toxic_confidences']]) df = pipe.predict(data, output_level='document',metadata=True) print(df) print(df.columns) print(df['document'], df[['toxic_obscene_confidence']]) print(df['toxic_severe_toxic_confidence'], df[['toxic_insult_confidence']]) print(df['toxic_toxic_confidence'], df[['toxic_obscene_confidence']]) if __name__ == '__main__': unittest.main()
from thumt.data.dataset import get_dataset from thumt.data.dataset_torchtext import get_dataset as get_dataset_torchtext from thumt.data.vocab import load_vocabulary, lookup
BOX_ACCESS_TOKEN = ""
#! /usr/bin/python # -*- coding: utf-8 -*- """ Collect error messages. """ __author__ = "Sofie & Bernd Krietenstein" __copyright__ = "Copyright (C) 2018 Sofie & Bernd Krietenstein" __license__ = "see LICENSE file" import logging _LEVEL = logging.DEBUG LOGGER = logging.getLogger('errors') LOGGER.setLevel(_LEVEL) _CONSOLE_HANDLER = logging.StreamHandler() _CONSOLE_HANDLER.setLevel(logging.ERROR) _FORMATTER = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s') _CONSOLE_HANDLER.setFormatter(_FORMATTER) LOGGER.addHandler(_CONSOLE_HANDLER)
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi SDK Generator. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from ... import _utilities from . import outputs from ._enums import * from ._inputs import * __all__ = ['EndpointVariantArgs', 'EndpointVariant'] @pulumi.input_type class EndpointVariantArgs: def __init__(__self__, *, compute_type: pulumi.Input[str], resource_group_name: pulumi.Input[str], workspace_name: pulumi.Input[str], description: Optional[pulumi.Input[str]] = None, environment_image_request: Optional[pulumi.Input['CreateServiceRequestEnvironmentImageRequestArgs']] = None, is_default: Optional[pulumi.Input[bool]] = None, keys: Optional[pulumi.Input['CreateServiceRequestKeysArgs']] = None, kv_tags: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]] = None, location: Optional[pulumi.Input[str]] = None, properties: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]] = None, service_name: Optional[pulumi.Input[str]] = None, traffic_percentile: Optional[pulumi.Input[float]] = None, type: Optional[pulumi.Input[Union[str, 'VariantType']]] = None): """ The set of arguments for constructing a EndpointVariant resource. :param pulumi.Input[str] compute_type: The compute environment type for the service. Expected value is 'Custom'. :param pulumi.Input[str] resource_group_name: Name of the resource group in which workspace is located. :param pulumi.Input[str] workspace_name: Name of Azure Machine Learning workspace. :param pulumi.Input[str] description: The description of the service. :param pulumi.Input['CreateServiceRequestEnvironmentImageRequestArgs'] environment_image_request: The Environment, models and assets needed for inferencing. :param pulumi.Input[bool] is_default: Is this the default variant. :param pulumi.Input['CreateServiceRequestKeysArgs'] keys: The authentication keys. :param pulumi.Input[Mapping[str, pulumi.Input[str]]] kv_tags: The service tag dictionary. Tags are mutable. :param pulumi.Input[str] location: The name of the Azure location/region. :param pulumi.Input[Mapping[str, pulumi.Input[str]]] properties: The service properties dictionary. Properties are immutable. :param pulumi.Input[str] service_name: Name of the Azure Machine Learning service. :param pulumi.Input[float] traffic_percentile: The amount of traffic variant receives. :param pulumi.Input[Union[str, 'VariantType']] type: The type of the variant. """ pulumi.set(__self__, "compute_type", 'Custom') pulumi.set(__self__, "resource_group_name", resource_group_name) pulumi.set(__self__, "workspace_name", workspace_name) if description is not None: pulumi.set(__self__, "description", description) if environment_image_request is not None: pulumi.set(__self__, "environment_image_request", environment_image_request) if is_default is not None: pulumi.set(__self__, "is_default", is_default) if keys is not None: pulumi.set(__self__, "keys", keys) if kv_tags is not None: pulumi.set(__self__, "kv_tags", kv_tags) if location is not None: pulumi.set(__self__, "location", location) if properties is not None: pulumi.set(__self__, "properties", properties) if service_name is not None: pulumi.set(__self__, "service_name", service_name) if traffic_percentile is not None: pulumi.set(__self__, "traffic_percentile", traffic_percentile) if type is not None: pulumi.set(__self__, "type", type) @property @pulumi.getter(name="computeType") def compute_type(self) -> pulumi.Input[str]: """ The compute environment type for the service. Expected value is 'Custom'. """ return pulumi.get(self, "compute_type") @compute_type.setter def compute_type(self, value: pulumi.Input[str]): pulumi.set(self, "compute_type", value) @property @pulumi.getter(name="resourceGroupName") def resource_group_name(self) -> pulumi.Input[str]: """ Name of the resource group in which workspace is located. """ return pulumi.get(self, "resource_group_name") @resource_group_name.setter def resource_group_name(self, value: pulumi.Input[str]): pulumi.set(self, "resource_group_name", value) @property @pulumi.getter(name="workspaceName") def workspace_name(self) -> pulumi.Input[str]: """ Name of Azure Machine Learning workspace. """ return pulumi.get(self, "workspace_name") @workspace_name.setter def workspace_name(self, value: pulumi.Input[str]): pulumi.set(self, "workspace_name", value) @property @pulumi.getter def description(self) -> Optional[pulumi.Input[str]]: """ The description of the service. """ return pulumi.get(self, "description") @description.setter def description(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "description", value) @property @pulumi.getter(name="environmentImageRequest") def environment_image_request(self) -> Optional[pulumi.Input['CreateServiceRequestEnvironmentImageRequestArgs']]: """ The Environment, models and assets needed for inferencing. """ return pulumi.get(self, "environment_image_request") @environment_image_request.setter def environment_image_request(self, value: Optional[pulumi.Input['CreateServiceRequestEnvironmentImageRequestArgs']]): pulumi.set(self, "environment_image_request", value) @property @pulumi.getter(name="isDefault") def is_default(self) -> Optional[pulumi.Input[bool]]: """ Is this the default variant. """ return pulumi.get(self, "is_default") @is_default.setter def is_default(self, value: Optional[pulumi.Input[bool]]): pulumi.set(self, "is_default", value) @property @pulumi.getter def keys(self) -> Optional[pulumi.Input['CreateServiceRequestKeysArgs']]: """ The authentication keys. """ return pulumi.get(self, "keys") @keys.setter def keys(self, value: Optional[pulumi.Input['CreateServiceRequestKeysArgs']]): pulumi.set(self, "keys", value) @property @pulumi.getter(name="kvTags") def kv_tags(self) -> Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]]: """ The service tag dictionary. Tags are mutable. """ return pulumi.get(self, "kv_tags") @kv_tags.setter def kv_tags(self, value: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]]): pulumi.set(self, "kv_tags", value) @property @pulumi.getter def location(self) -> Optional[pulumi.Input[str]]: """ The name of the Azure location/region. """ return pulumi.get(self, "location") @location.setter def location(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "location", value) @property @pulumi.getter def properties(self) -> Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]]: """ The service properties dictionary. Properties are immutable. """ return pulumi.get(self, "properties") @properties.setter def properties(self, value: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]]): pulumi.set(self, "properties", value) @property @pulumi.getter(name="serviceName") def service_name(self) -> Optional[pulumi.Input[str]]: """ Name of the Azure Machine Learning service. """ return pulumi.get(self, "service_name") @service_name.setter def service_name(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "service_name", value) @property @pulumi.getter(name="trafficPercentile") def traffic_percentile(self) -> Optional[pulumi.Input[float]]: """ The amount of traffic variant receives. """ return pulumi.get(self, "traffic_percentile") @traffic_percentile.setter def traffic_percentile(self, value: Optional[pulumi.Input[float]]): pulumi.set(self, "traffic_percentile", value) @property @pulumi.getter def type(self) -> Optional[pulumi.Input[Union[str, 'VariantType']]]: """ The type of the variant. """ return pulumi.get(self, "type") @type.setter def type(self, value: Optional[pulumi.Input[Union[str, 'VariantType']]]): pulumi.set(self, "type", value) class EndpointVariant(pulumi.CustomResource): @overload def __init__(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, compute_type: Optional[pulumi.Input[str]] = None, description: Optional[pulumi.Input[str]] = None, environment_image_request: Optional[pulumi.Input[pulumi.InputType['CreateServiceRequestEnvironmentImageRequestArgs']]] = None, is_default: Optional[pulumi.Input[bool]] = None, keys: Optional[pulumi.Input[pulumi.InputType['CreateServiceRequestKeysArgs']]] = None, kv_tags: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]] = None, location: Optional[pulumi.Input[str]] = None, properties: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]] = None, resource_group_name: Optional[pulumi.Input[str]] = None, service_name: Optional[pulumi.Input[str]] = None, traffic_percentile: Optional[pulumi.Input[float]] = None, type: Optional[pulumi.Input[Union[str, 'VariantType']]] = None, workspace_name: Optional[pulumi.Input[str]] = None, __props__=None): """ Machine Learning service object wrapped into ARM resource envelope. :param str resource_name: The name of the resource. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[str] compute_type: The compute environment type for the service. Expected value is 'Custom'. :param pulumi.Input[str] description: The description of the service. :param pulumi.Input[pulumi.InputType['CreateServiceRequestEnvironmentImageRequestArgs']] environment_image_request: The Environment, models and assets needed for inferencing. :param pulumi.Input[bool] is_default: Is this the default variant. :param pulumi.Input[pulumi.InputType['CreateServiceRequestKeysArgs']] keys: The authentication keys. :param pulumi.Input[Mapping[str, pulumi.Input[str]]] kv_tags: The service tag dictionary. Tags are mutable. :param pulumi.Input[str] location: The name of the Azure location/region. :param pulumi.Input[Mapping[str, pulumi.Input[str]]] properties: The service properties dictionary. Properties are immutable. :param pulumi.Input[str] resource_group_name: Name of the resource group in which workspace is located. :param pulumi.Input[str] service_name: Name of the Azure Machine Learning service. :param pulumi.Input[float] traffic_percentile: The amount of traffic variant receives. :param pulumi.Input[Union[str, 'VariantType']] type: The type of the variant. :param pulumi.Input[str] workspace_name: Name of Azure Machine Learning workspace. """ ... @overload def __init__(__self__, resource_name: str, args: EndpointVariantArgs, opts: Optional[pulumi.ResourceOptions] = None): """ Machine Learning service object wrapped into ARM resource envelope. :param str resource_name: The name of the resource. :param EndpointVariantArgs args: The arguments to use to populate this resource's properties. :param pulumi.ResourceOptions opts: Options for the resource. """ ... def __init__(__self__, resource_name: str, *args, **kwargs): resource_args, opts = _utilities.get_resource_args_opts(EndpointVariantArgs, pulumi.ResourceOptions, *args, **kwargs) if resource_args is not None: __self__._internal_init(resource_name, opts, **resource_args.__dict__) else: __self__._internal_init(resource_name, *args, **kwargs) def _internal_init(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, compute_type: Optional[pulumi.Input[str]] = None, description: Optional[pulumi.Input[str]] = None, environment_image_request: Optional[pulumi.Input[pulumi.InputType['CreateServiceRequestEnvironmentImageRequestArgs']]] = None, is_default: Optional[pulumi.Input[bool]] = None, keys: Optional[pulumi.Input[pulumi.InputType['CreateServiceRequestKeysArgs']]] = None, kv_tags: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]] = None, location: Optional[pulumi.Input[str]] = None, properties: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]] = None, resource_group_name: Optional[pulumi.Input[str]] = None, service_name: Optional[pulumi.Input[str]] = None, traffic_percentile: Optional[pulumi.Input[float]] = None, type: Optional[pulumi.Input[Union[str, 'VariantType']]] = None, workspace_name: Optional[pulumi.Input[str]] = None, __props__=None): if opts is None: opts = pulumi.ResourceOptions() if not isinstance(opts, pulumi.ResourceOptions): raise TypeError('Expected resource options to be a ResourceOptions instance') if opts.version is None: opts.version = _utilities.get_version() if opts.id is None: if __props__ is not None: raise TypeError('__props__ is only valid when passed in combination with a valid opts.id to get an existing resource') __props__ = EndpointVariantArgs.__new__(EndpointVariantArgs) if compute_type is None and not opts.urn: raise TypeError("Missing required property 'compute_type'") __props__.__dict__["compute_type"] = 'Custom' __props__.__dict__["description"] = description __props__.__dict__["environment_image_request"] = environment_image_request __props__.__dict__["is_default"] = is_default __props__.__dict__["keys"] = keys __props__.__dict__["kv_tags"] = kv_tags __props__.__dict__["location"] = location __props__.__dict__["properties"] = properties if resource_group_name is None and not opts.urn: raise TypeError("Missing required property 'resource_group_name'") __props__.__dict__["resource_group_name"] = resource_group_name __props__.__dict__["service_name"] = service_name __props__.__dict__["traffic_percentile"] = traffic_percentile __props__.__dict__["type"] = type if workspace_name is None and not opts.urn: raise TypeError("Missing required property 'workspace_name'") __props__.__dict__["workspace_name"] = workspace_name __props__.__dict__["identity"] = None __props__.__dict__["name"] = None __props__.__dict__["sku"] = None __props__.__dict__["tags"] = None alias_opts = pulumi.ResourceOptions(aliases=[pulumi.Alias(type_="azure-nextgen:machinelearningservices/v20200501preview:EndpointVariant"), pulumi.Alias(type_="azure-native:machinelearningservices:EndpointVariant"), pulumi.Alias(type_="azure-nextgen:machinelearningservices:EndpointVariant"), pulumi.Alias(type_="azure-native:machinelearningservices/v20200515preview:EndpointVariant"), pulumi.Alias(type_="azure-nextgen:machinelearningservices/v20200515preview:EndpointVariant"), pulumi.Alias(type_="azure-native:machinelearningservices/v20200901preview:EndpointVariant"), pulumi.Alias(type_="azure-nextgen:machinelearningservices/v20200901preview:EndpointVariant"), pulumi.Alias(type_="azure-native:machinelearningservices/v20210101:EndpointVariant"), pulumi.Alias(type_="azure-nextgen:machinelearningservices/v20210101:EndpointVariant"), pulumi.Alias(type_="azure-native:machinelearningservices/v20210401:EndpointVariant"), pulumi.Alias(type_="azure-nextgen:machinelearningservices/v20210401:EndpointVariant")]) opts = pulumi.ResourceOptions.merge(opts, alias_opts) super(EndpointVariant, __self__).__init__( 'azure-native:machinelearningservices/v20200501preview:EndpointVariant', resource_name, __props__, opts) @staticmethod def get(resource_name: str, id: pulumi.Input[str], opts: Optional[pulumi.ResourceOptions] = None) -> 'EndpointVariant': """ Get an existing EndpointVariant resource's state with the given name, id, and optional extra properties used to qualify the lookup. :param str resource_name: The unique name of the resulting resource. :param pulumi.Input[str] id: The unique provider ID of the resource to lookup. :param pulumi.ResourceOptions opts: Options for the resource. """ opts = pulumi.ResourceOptions.merge(opts, pulumi.ResourceOptions(id=id)) __props__ = EndpointVariantArgs.__new__(EndpointVariantArgs) __props__.__dict__["identity"] = None __props__.__dict__["location"] = None __props__.__dict__["name"] = None __props__.__dict__["properties"] = None __props__.__dict__["sku"] = None __props__.__dict__["tags"] = None __props__.__dict__["type"] = None return EndpointVariant(resource_name, opts=opts, __props__=__props__) @property @pulumi.getter def identity(self) -> pulumi.Output[Optional['outputs.IdentityResponse']]: """ The identity of the resource. """ return pulumi.get(self, "identity") @property @pulumi.getter def location(self) -> pulumi.Output[Optional[str]]: """ Specifies the location of the resource. """ return pulumi.get(self, "location") @property @pulumi.getter def name(self) -> pulumi.Output[str]: """ Specifies the name of the resource. """ return pulumi.get(self, "name") @property @pulumi.getter def properties(self) -> pulumi.Output[Any]: """ Service properties """ return pulumi.get(self, "properties") @property @pulumi.getter def sku(self) -> pulumi.Output[Optional['outputs.SkuResponse']]: """ The sku of the workspace. """ return pulumi.get(self, "sku") @property @pulumi.getter def tags(self) -> pulumi.Output[Optional[Mapping[str, str]]]: """ Contains resource tags defined as key/value pairs. """ return pulumi.get(self, "tags") @property @pulumi.getter def type(self) -> pulumi.Output[str]: """ Specifies the type of the resource. """ return pulumi.get(self, "type")