content
stringlengths
5
1.05M
''' 04 - Sorting by index values: Previously, you changed the order of the rows in a DataFrame by calling .sort_values(). It's also useful to be able to sort by elements in the index. For this, you need to use .sort_index(). pandas is loaded as pd. temperatures_ind has a multi-level index of country and city, and is available. Instructions: - Sort temperatures_ind by the index values. - Sort temperatures_ind by the index values at the "city" level. - Sort temperatures_ind by ascending country then descending city. ------------------------------------------- temperatures_ind date avg_temp_c country city Côte D'Ivoire Abidjan 2000-01-01 27.293 Abidjan 2000-02-01 27.685 Abidjan 2000-03-01 29.061 Abidjan 2000-04-01 28.162 Abidjan 2000-05-01 27.547 --------------------------------------------- ''' # Sort temperatures_ind by index values print(temperatures_ind.sort_index()) # Sort temperatures_ind by index values at the city level print(temperatures_ind.sort_index(level="city")) # Sort temperatures_ind by country then descending city print(temperatures_ind.sort_index( level=["country", "city"], ascending=[True, False]))
import numpy as np import torch import torchvision from torchvision import datasets, transforms from torchvision import transforms import matplotlib.pyplot as plt CPKT = 'checkpoints/' PLOTS = 'plots/' ROOT = './data' DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu") D_STEPS_PER_ITER = 5 # Number of discriminator updates per iteration G_STEPS_PER_ITER = 5 # Number of Generator updates per iteration PLOT_NUM = 9 # Number of images to plot LR_G = 1e-4 # Learning rate for generator LR_D = 4e-4 # Learning rate for generator LR_C = 3e-4 # Learning rate for classifier BATCH_SIZE = 256 # Batch size LATENT_DIM = 100 # Latent dimension of noise vector EPOCHS = 100 # Epochs for GANs C_EPOCHS = 10 # Epochs for classifier G_CHANNELS = 256 # Generator input channels for conv layer after linear layer DROPOUT = 0.3 # Dropout rate for discriminator PRINT_FREQ = 100 # Print after this number of iterations INTERPOLATE_STEPS = 10 # Number of steps to interpolate between 2 points while traversing in latent dimension NROW = 10 # Number of images to print in row NUM_SAMPLES = 20 # Number of images to generate for classifier ######### FLAGS ########## G_SPECTRAL_NORM = True # Spectral norm in generator D_SPECTRAL_NORM = True # Spectral norm in discriminator BATCH_NORM = True # Batch Norm flag BOOL_PLOT = True # Plot images while training TRAIN_CLASSIFIER = True # Trains the classifier model [Better to train GANs first then train classifier] PRED_ON_GAN_OUTPUT = True # Making prediction on images generated from GANs using classifier model PLOT_DISTRIBUTION = False # Plot distribution of generated images over classes PLOT_20 = True # Plot 20 random images from generator with predictions SELF_ATTENTION = True # Apply Self Attention in Generator and Discriminator before Last conv. layer GET_NOISE = lambda x : torch.rand(size = (x, LATENT_DIM), device = DEVICE) TRANSFORM = transforms.Compose([ transforms.Grayscale(num_output_channels=1), transforms.ToTensor(), transforms.Normalize((0.5,), (0.5,)) ])
from flask_login.utils import login_required from my_project import app from flask import render_template, redirect, url_for, flash, request from my_project.forms import RegisterForm, LoginForm from my_project.models import User from my_project import db from flask_login import login_user, logout_user, current_user # register page #TODO only acces when not logged in @app.route("/register", methods=["GET", "POST"]) def register_page(): status_code = 200 if current_user.is_authenticated: return redirect(url_for("landing_page")) form = RegisterForm() # get the register form from import at top (Forms.py) if request.method == "POST": if form.validate_on_submit(): # validators user_to_create = User( # set user_to_create to form data username=form.username.data, email_address=form.email_address.data, password=form.password1.data, ) db.session.add( user_to_create ) # add and commit user_to_create to the Database, User db.session.commit() login_user(user_to_create) # log the user_to_create in flash( f"Account created succesfully and loged in as {user_to_create.username}", category="success", ) return redirect(url_for("landing_page")) if ( form.errors != {} ): # checks for validations erros. if {} is empty the error is raised for err_msg in form.errors.values(): flash(f"Error with creating your account: {err_msg[0]}", category="danger") status_code = 400 return render_template("register.html", page_title="Register", form=form), status_code # login page @app.route("/login", methods=["GET", "POST"]) def login_page(): form = LoginForm() # get the LoginForm from import at top (Forms.py) if form.validate_on_submit(): attempted_user = User.query.filter_by( username=form.username.data ).first() # query the attempted login user by the username (the form input) # check if the username and the password if attempted_user and attempted_user.check_password_correction( attempted_password=form.password.data ): login_user(attempted_user) # login success flash( f"Succesfully logged in as: {attempted_user.username}", category="success", ) return redirect(url_for("landing_page")) else: # login failed flash( "Username and password did not match! Please try again", category="danger", ) return render_template("login.html", form=form, page_title="Login") # logout page @app.route("/logout") # logout the current user and return the landing page #default method "GET" @login_required def logout_page(): logout_user() flash("Succesfully logged out!", category="info") return redirect(url_for("landing_page"))
# M6 #4 def add_html_tags(tag, words): ''' Given a tag and words to enclose within the tag return the result string tag == the tag to enclose with words == the words to enclose ''' return '<' + tag + '>' + words + '</' + tag + '>' print(add_html_tags('p', 'This is my first page.')) print(add_html_tags('h2', 'A secondary header.')) print(add_html_tags('p', 'Some more text.'))
# Copyright 2022 Maximilien Le Clei. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import cv2 import numpy as np import torch def compute_padding(d_input): padding = () for d in d_input[-1:0:-1]: if d == 1: padding += (1,1) elif d == 2: padding += (0,1) else: padding += (0,0) return padding def neg(tup): return tuple(-x for x in tup) def avg_pool(x, d): _, _, h, w = x.shape x = x.numpy() x = x[0] x = np.transpose(x, (1, 2, 0)) x = cv2.resize(x, (h//d, w//d), interpolation=cv2.INTER_AREA) if x.ndim == 2: x = x[:, :, None] x = np.transpose(x, (2, 0, 1)) x = x[None, :, :, :] x = torch.Tensor(x) return x def torch_cat(x, i): for x_i in x: x_i = x_i.numpy() return torch.Tensor(np.concatenate(x, i))
#!/usr/bin/env python # -*- coding: utf-8 -*- # ----------------------------------------------------------------------------- # (C) British Crown Copyright 2017-2019 Met Office. # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # * Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. """Script to run time-lagged ensembles.""" from improver import cli @cli.clizefy @cli.with_output def process(*cubes: cli.inputcube): """Module to time-lag ensembles. Combines the realization from different forecast cycles into one cube. Takes an input CubeList containing forecasts from different cycles and merges them into a single cube. Args: cubes (list of iris.cube.Cube): List of individual ensemble cubes Returns: iris.cube.Cube: Merged cube Raises: ValueError: If ensembles have mismatched validity times """ import warnings from improver.utilities.time_lagging import GenerateTimeLaggedEnsemble if len(cubes) == 1: warnings.warn( "Only a single cube input, so time lagging will have " "no effect." ) return cubes[0] # raise error if validity times are not all equal time_coords = [cube.coord("time") for cube in cubes] time_coords_match = [coord == time_coords[0] for coord in time_coords] if not all(time_coords_match): raise ValueError("Cubes with mismatched validity times are not compatible.") return GenerateTimeLaggedEnsemble()(cubes)
from django.urls import path,include from . import views urlpatterns = ( # approval urls path('approval/',views.ApprovalListView.as_view(),name = 'approval_approval_list'), path('approval/detail/<int:pk>/',views.ApprovalDetailView.as_view(),name = 'approval_approval_detail'), path('approval/create/',views.ApprovalCreateView.as_view(),name ='approval_approval_create'), path('approval/update/<int:pk>/',views.ApprovalUpdateView.as_view(),name = 'approval_approval_update'), path('approval/delete/<int:pk>/',views.ApprovalDeleteView.as_view(),name = 'approval_approval_delete'), path('approval/post/<int:pk>/',views.post_approval,name = 'approval_post'), path('approval/unpost/<int:pk>/',views.unpost_approval,name='approval_unpost'), ) urlpatterns +=( path('approvalline/create/',views.ApprovalLineCreateView.as_view(), name ='approval_approvalline_create'), path('approvallinereturn/',views.ApprovalLineReturnView, name='approval_approvallinereturn_create'), path('approvallinereturnlist/',views.ApprovalLineReturnListView.as_view(), name ='approval_approvallinereturn_list'), path('approvallinereturn/delete/<int:pk>/',views.ApprovalLineReturnDeleteView.as_view(), name = 'approval_approvallinereturn_delete'), path('approvallinereturn/post/<int:pk>/', views.post_approvallinereturn, name='approvallinereturn_post'), path('approvallinereturn/unpost/<int:pk>/', views.unpost_approvallinereturn, name='approvallinereturn_unpost'), path('approval/convert_sale/<int:pk>/',views.convert_sales,name='approval_convert_sale'), )
# Copyright (C) 2018-2021 Intel Corporation # SPDX-License-Identifier: Apache-2.0 import numpy as np from openvino.tools.mo.front.common.partial_infer.utils import dynamic_dimension, is_fully_defined, shape_array, strict_compare_tensors, dynamic_dimension_value from openvino.tools.mo.graph.graph import Node, Graph from openvino.tools.mo.ops.op import Op class SparseReshape(Op): """ SparseReshape operation reshapes a sparse tensor in Coordinate list (COO) format It recomputes indices for a new dense shape. """ op = 'SparseReshape' def __init__(self, graph: Graph, attrs: dict): mandatory_props = { 'type': None, 'op': __class__.op, 'infer': self.infer, 'in_ports_count': 3, 'out_ports_count': 2, } super().__init__(graph, mandatory_props, attrs) def supported_attrs(self): return [] @staticmethod def infer(node: Node): name = node.soft_get('name', node.id) input_indices_shape = node.in_port(0).data.get_shape() input_indices_value = node.in_port(0).data.get_value() input_shape = node.in_port(1).data.get_value() new_shape = node.in_port(2).data.get_value() new_shape_shape = node.in_port(2).data.get_shape() assert input_shape is not None and new_shape is not None, \ "Values for input shape and new shape must be defined" assert len(np.argwhere(new_shape == -1)) <= 1, \ "Value -1 occurs in new shape value more than once" assert len(np.argwhere(new_shape < -1)) == 0, \ "Only non-negative or -1 values are allowed" output_shape = np.ma.masked_array(new_shape, mask=new_shape == -1, fill_value=dynamic_dimension_value) assert not is_fully_defined(input_shape) or not is_fully_defined(output_shape) or \ np.prod(input_shape) == np.prod(output_shape), \ "Number of elements in input {} and output {} of dynamic reshape node {} mismatch" \ "".format(input_shape, output_shape, name) # we can deduce -1 only if input_shape is fully defined and # there is one dynamic dimension in output_shape if is_fully_defined(input_shape) and np.ma.count_masked(output_shape) == 1: undefined_dim_size = np.prod(input_shape) // np.prod(output_shape) undefined_idx = np.where(output_shape == dynamic_dimension)[0][0] output_shape[undefined_idx] = undefined_dim_size output_shape.mask[undefined_idx] = False node.out_port(1).data.set_value(shape_array(output_shape)) output_indices_shape = np.concatenate((input_indices_shape[0:1], new_shape_shape)) node.out_port(0).data.set_shape(output_indices_shape) # TODO: implement constant value propagation for common case with scipy.sparse.coo_matrix.reshape # instead of compatible_shapes we intentionally use np.array_equal if strict_compare_tensors(input_shape, output_shape) and input_indices_value is not None: node.out_port(0).data.set_value(input_indices_value)
import unittest from pprint import pprint from random import randint from pysyspol.util import random_alphanumeric_str from pydsalg.hash_table import (HashTable0) class TestHashTable0(unittest.TestCase): @classmethod def setUpClass(cls): min_key_len = 8 max_key_len = 16 min_value_len = 1 max_value_len = 8 testdict0_len = 150 cls.testdict0 = {} for i in range(testdict0_len): key_len = randint(min_key_len, max_key_len) value_len = randint(min_value_len, max_value_len) key = random_alphanumeric_str(key_len) value = random_alphanumeric_str(value_len) cls.testdict0[key] = value def test_misc_00(self): ht0 = HashTable0() self.assertRaises(KeyError, lambda: ht0['x']) self.assertEqual(ht0.length, HashTable0._ARR_DEFAULT_LENGTH) self.assertEqual(ht0.count, 0) ht0["670ag;bn's"] = 'value00' ht0["njdfg789d"] = 'value01' ht0["z76g6234"] = 'value02' self.assertEqual(ht0.count, 3) def test_misc_01(self): ht0 = HashTable0() for k, v in self.testdict0.items(): ht0[k] = v self.assertEqual(ht0.count, len(self.testdict0)) for k, v in self.testdict0.items(): ht0[k] = v def test_membership(self): ht0 = HashTable0() for k in self.testdict0: self.assertTrue(k not in ht0) for k, v in self.testdict0.items(): ht0[k] = v for k in self.testdict0: self.assertTrue(k in ht0) if __name__ == '__main__': unittest.main()
import numpy as np import pandas as pd mensaje="there are three kinds of lies lies damn lies and statistics mark twain i could not claim that i was smarter than sixty five other guys but the average of sixty five other guys certainly feynman a single death is a tragedy a million deaths is a statistic joseph stalin coincidences in general are great stumbling blocks in the way of that class of thinkers who have been educated to know nothing of the theory of probabilities that theory to which the most glorious objects of human research are indebted for the most glorious of illustrations edgar allen poe morgue morpheus this is your last chance after this there is no turning back you take the blue pill the story ends you wake up in your bed and believe whatever you want to believe you take the red pill you stay in wonderland and i show you how deep the rabbit hole goes " ocurrencias = pd.read_csv("AustenCount.txt",sep='\t',header=None).values "Tomamos logaritmos para reducir el tamaño de los números (al calcular productorios serán demasiado grandes)" logocurrencias=np.log(ocurrencias+1) print(pd.DataFrame(ocurrencias)) abc="abcdefghijklmnopqrstuvwxyz" #charIndex={"a":0,"b":1,"c":2,"d":3,"e":4,"f":5,"g":6,"h":7,"i":8,"j":9,"k":10,"l":11,"m":12,"n":13,"ñ":14,"o":15,"p":16,"q":17,"r":18,"s":19,"t":20,"u":21,"v":22,"w":23,"x":24,"y":25,"z":26," ":27} charIndex={"a":0,"b":1,"c":2,"d":3,"e":4,"f":5,"g":6,"h":7,"i":8,"j":9,"k":10,"l":11,"m":12,"n":13,"o":14,"p":15,"q":16,"r":17,"s":18,"t":19,"u":20,"v":21,"w":22,"x":23,"y":24,"z":25," ":26} to_Char=list(charIndex.keys()) def score(m): p=0 '''Para cada par de letras en el mensaje m, ver qué score obtenemos según las ocurrencias Sin embargo, como los números son muy grandes, vamos a tomar logaritmos (en vez de productorio de ocurrencias, tomaremos la suma de los logaritmos)''' for i in range(len(m)-1): ic1=charIndex[m[i]] ic2=charIndex[m[i+1]] p+=logocurrencias[ic1,ic2] return p def desencriptar(mensaje,func): desencriptared=list(mensaje) func=list(func) "Para cada caracter del mensaje, lo desencripta a tenor de la funcion que se le indique" for i in range(len(desencriptared)): value=charIndex[desencriptared[i]] if value<26: newchar=func[value] desencriptared[i]=to_Char[newchar] return "".join(desencriptared) def permutar2(f): fperm=[i for i in f] swap=np.random.choice(26,size=2,replace=False) fperm[swap[0]]=f[swap[1]] fperm[swap[1]]=f[swap[0]] return fperm ##################################################### ''' BANCO DE PRUEBAS: los siguientes valores indican un ejemplo válido de encriptado y desencriptado correspondiente encriptadora=[i-1 for i in [23,5,6,18,22,26,9,3,25,1,4,17,7,2,19,8,12,14,16,15,11,10,21,13,24,20]] desencriptadora=[i-1 for i in [10,14,8,11,2,3,13,16,7,22,21,24,26,18,20,19,12,4,15,17,23,5,1,25,9,6,27]] encriptado=desencriptar(mensaje,encriptadora) print(encriptado) print(desencriptar(encriptadito,desencriptadora)) exit() ''' ################################################### funcAleatoria=list(np.random.choice(26,size=26,replace=False)) "Encripto el mensaje con una func Aleatoria" encriptado=desencriptar(mensaje,funcAleatoria) funcActual=list(range(27)) funcPropuesta=None scoreActual = score(desencriptar(encriptado,funcActual)) iteraciones=300000 for i in range(iteraciones): "Nueva funcion propuesta tras permutar" funcPropuesta=permutar2(funcActual) scorePropuesta=score(desencriptar(encriptado,funcPropuesta)) "Si Uniforme< a(i,j)=scoreProopuesta/scoreActual (recordemos que los scores están en logaritmos, por eso hacemos la exponencial) " "aceptaremos la funcion (actualizando el scoreActual)" if np.random.uniform() <= np.exp(scorePropuesta-scoreActual): funcActual=funcPropuesta scoreActual=scorePropuesta if(i%100==0): print(i,desencriptar(encriptado,funcActual)) print("FIN")
from __future__ import absolute_import from pgoapi.exceptions import PleaseInstallProtobufVersion3 import pkg_resources protobuf_exist = False protobuf_version = 0 try: protobuf_version = pkg_resources.get_distribution("protobuf").version protobuf_exist = True except: pass if (not protobuf_exist) or (int(protobuf_version[:1]) < 3): raise PleaseInstallProtobufVersion3() from pgoapi.pgoapi import PGoApi from pgoapi.rpc_api import RpcApi from pgoapi.auth import Auth try: import requests.packages.urllib3 requests.packages.urllib3.disable_warnings() except: pass
import h5py import os from .imports import code_dir, SensorInfo def load_ordnance_dict( directory=code_dir, filenames=[ "ordnance_DoD_UltraTEM_5F_APG.h5", "ordnance_DoD_UltraTEM_5F_ISOsmall.h5", "ordnance_DoD_UltraTEM_NATA_dyn_F_scale0o86.h5" ] ): """ create a dictionary of ordnance object from h5 files """ ord_dict = {} for file in filenames: ord_file = os.path.join(code_dir, file) f = h5py.File(ord_file, 'r') for i in f['ordnance']: ord_name = str(f[f'ordnance/{i}/Name'][()][0]).split("'")[1] L3 = f[f'ordnance/{i}/L1ref'][()].flatten() L2 = f[f'ordnance/{i}/L2ref'][()].flatten() L1 = f[f'ordnance/{i}/L3ref'][()].flatten() size_mm = int(f[f'ordnance/{i}/size_mm'][()].flatten()) common_name = f[f'ordnance/{i}/h5_Common_Name'][()].flatten()[0] if isinstance(common_name, list): common_name = common_name[0] if ord_name not in ord_dict.keys(): times = f[f'ordnance/{i}/time'][()].flatten() ord_dict[ord_name] = { "L3": [L3], "L2": [L2], "L1": [L2], "size mm": [size_mm], "common name": [common_name], "times": times, } else: for key, val in zip( ["L3", "L2", "L1", "size mm", "common name"], [L3, L2, L1, size_mm, common_name] ): ord_dict[ord_name][key].append(val) return ord_dict def load_sensor_info( filename = os.path.join( code_dir, 'config','sensor_definitions','UltraTEMArrayNA___Default.yaml' ) ): return SensorInfo.fromYAML(filename)[0]
"""GTLVQ example using the MNIST dataset.""" import argparse import prototorch as pt import pytorch_lightning as pl import torch from torchvision import transforms from torchvision.datasets import MNIST if __name__ == "__main__": # Command-line arguments parser = argparse.ArgumentParser() parser = pl.Trainer.add_argparse_args(parser) args = parser.parse_args() # Dataset train_ds = MNIST( "~/datasets", train=True, download=True, transform=transforms.Compose([ transforms.ToTensor(), ]), ) test_ds = MNIST( "~/datasets", train=False, download=True, transform=transforms.Compose([ transforms.ToTensor(), ]), ) # Dataloaders train_loader = torch.utils.data.DataLoader(train_ds, num_workers=0, batch_size=256) test_loader = torch.utils.data.DataLoader(test_ds, num_workers=0, batch_size=256) # Hyperparameters num_classes = 10 prototypes_per_class = 1 hparams = dict( input_dim=28 * 28, latent_dim=28, distribution=(num_classes, prototypes_per_class), proto_lr=0.01, bb_lr=0.01, ) # Initialize the model model = pt.models.ImageGTLVQ( hparams, optimizer=torch.optim.Adam, prototypes_initializer=pt.initializers.SMCI(train_ds), #Use one batch of data for subspace initiator. omega_initializer=pt.initializers.PCALinearTransformInitializer( next(iter(train_loader))[0].reshape(256, 28 * 28))) # Callbacks vis = pt.models.VisImgComp( data=train_ds, num_columns=10, show=False, tensorboard=True, random_data=100, add_embedding=True, embedding_data=200, flatten_data=False, ) pruning = pt.models.PruneLoserPrototypes( threshold=0.01, idle_epochs=1, prune_quota_per_epoch=10, frequency=1, verbose=True, ) es = pl.callbacks.EarlyStopping( monitor="train_loss", min_delta=0.001, patience=15, mode="min", check_on_train_epoch_end=True, ) # Setup trainer # using GPUs here is strongly recommended! trainer = pl.Trainer.from_argparse_args( args, callbacks=[ vis, pruning, # es, ], terminate_on_nan=True, weights_summary=None, accelerator="ddp", ) # Training loop trainer.fit(model, train_loader)
""" Class for simulate queen piece """ class Queen: """Queen class""" @staticmethod def attack(x, y, available): """Simulate attack * Validate if x and is safe * Validate if diagonal is safe * Delete posibilities in board """ if Queen.safe_xy(x, y, available): if Queen.safe_diagonal(x, y, available): return True, available return False, available @staticmethod def safe_xy(x, y, available): """Validate x in y Delete positions in x Delete cols for y positions in n rows if one col will be empty, the solution ends """ if x in available.keys(): available.pop(x) for row, col in available.items(): if y in col: col.pop(y) if len(col) == 0: return False return True @staticmethod def safe_diagonal(x, y, available): """Validate diagonal Delete all restant positions in board for x and y """ for j, k in available.items(): # Right up if j < x and y + x - j in k: k.pop(y + x - j) # Left up if j < x and y - x + j in k: k.pop(y - x + j) # Right down if j >= x and y + j - x in k: k.pop(y + j - x) # Left down if j > x and y - j + x in k: k.pop(y - j + x) if len(k) == 0: return False return True
from base64 import b64decode from hashlib import md5 from uuid import uuid1, uuid4 from bottle import HTTPError from .nodes.node import Node from .session import Session def authenticate(session: Session, node: Node, header: str, method: str = "GET"): # from bottlepy def tob(s, enc='utf8'): return s.encode(enc) if isinstance(s, str) else bytes(s) def touni(s, enc='utf8', err='strict'): if isinstance(s, bytes): return s.decode(enc, err) else: return str(s or ("" if s is None else s)) raise_login = True realm = "user@TheOnionBox" auth_scheme = "TheOnionBox" if header != '': try: scheme, data = header.split(None, 1) if scheme == auth_scheme: # Basic Authentication if session['auth'] == 'basic': user, pwd = touni(b64decode(tob(data))).split(':', 1) if user == session.id: node.controller.authenticate(password=pwd) raise_login = False # Digest Authentication elif session['auth'] == 'digest': # the data comes as in as 'key1="xxx...", key2="xxx...", ..., key_x="..."' # therefore we split @ ', ' # then remove the final '"' & split @ '="' # to create a nice dict. request_data = dict(item[:-1].split('="') for item in data.split(", ")) ha1_prep = (session.id + ":" + realm + ":" + node.controller.password).encode('utf-8') ha1 = md5(ha1_prep).hexdigest() ha2_prep = (method + ":" + request_data['uri']).encode('utf-8') ha2 = md5(ha2_prep).hexdigest() resp_prep = (ha1 + ":{}:".format(session['nonce']) + ha2).encode('utf-8') response = md5(resp_prep).hexdigest() # print(response) # print(request_data['response']) if response == request_data['response']: node.controller.authenticate(password=node.controller.password) raise_login = False except Exception as e: print(e) pass if raise_login: acc_denied = HTTPError(401, 'Access denied!') # Request Basic Authentication if session['auth'] == 'basic': acc_denied.add_header('WWW-Authenticate', '{} realm={}'.format(auth_scheme, realm)) # Request Digest Authentication else: session['nonce'] = uuid1().hex session['opaque'] = uuid4().hex header = '{} realm={}, nonce={}, opaque={}' header = header.format(auth_scheme, realm, session['nonce'], session['opaque']) acc_denied.add_header('WWW-Authenticate', header) raise acc_denied # at this stage, authentication was passed! return node.controller.password
version_info = (1, 11, 2) __version__ = '.'.join(map(str, version_info))
from __future__ import (absolute_import, division, print_function, unicode_literals) from builtins import * import errno import os import sys import subprocess from subprocess import CalledProcessError REPOS_PATH = os.path.abspath('repos') # http://stackoverflow.com/a/600612/545027 def mkdir_p(path): try: os.makedirs(path) except OSError as e: # Python >2.5 if e.errno != errno.EEXIST or not os.path.isdir(path): raise def run_cmd(args, bypass_exit_code=False, **kwargs): try: return subprocess.check_output(args, **kwargs) except CalledProcessError: if not bypass_exit_code: raise def git_cmd(repo, args, no_git_dir=False): repo_path = os.path.join(REPOS_PATH, repo) env = {} if not no_git_dir: env['GIT_DIR'] = repo_path return run_cmd(['git'] + args, env=env, cwd=repo_path) def git_revlist(repo, *commits): try: out = git_cmd(repo, ['rev-list'] + list(commits) + ['--']) except CalledProcessError: return [] else: return out.splitlines() def git_show(repo, commit, format='%B'): format_arg = '--format={}'.format(format) # deal with it out = git_cmd(repo, ['show', '--no-patch', format_arg, commit]) return out def git_diff_check(repo, commit): try: git_cmd(repo, ['diff-tree', '--check', '--no-color', commit]) except CalledProcessError as e: out = e.output return sum(line[0] == '+' for line in out.splitlines() if line) or 1 else: return 0
from __future__ import unicode_literals from django.db import models from django.contrib.auth.models import User from mezzanine.core.models import TimeStamped from group.models import Group, GroupMember # Create your models here. class Bill(TimeStamped): who_paid = models.ForeignKey(GroupMember, related_name='bill_paid') description = models.TextField() quantity_paid = models.FloatField() group = models.ForeignKey(Group, related_name='bill') who_owes = models.ManyToManyField(GroupMember) # class Debt(TimeStamped): # who_incurred_cost = models.ForeignKey(HouseholdMember, related_name='money_owed') # bill = models.ForeignKey(Bill, related_name='who_owes')
import requests import logging import json class MPulseAPIHandler: def __init__(self, logger, simulate = False): self.logger = logger self.simulate = simulate def getSecurityToken(self, apiToken, tenant): """curl -X PUT -H "Content-type: application/json" --data-binary '{"apiToken":"<token>", "tenant": "<tenant>"}' \ "https://mpulse.soasta.com/concerto/services/rest/RepositoryService/v1/Tokens" :param apiToken: mPulse API token :type apiToken: a String :param tenant: mPulse tenant :type tenant: a String :returns: a String with the security token, None in case of error """ payload = "{\"apiToken\": \"" + apiToken + "\", \"tenant\": \"" + tenant + "\"}" self.logger.info("requesting an mPulse security token with: " + payload) url = 'https://mpulse.soasta.com/concerto/services/rest/RepositoryService/v1/Tokens' result = requests.put(url, data = payload, headers={'Content-Type':'application/json'}) if (result.status_code == 200): json_data = result.json() self.logger.info('mPulse security token returned: ' + str(json_data['token']) ) return str(json_data['token']) else: self.logger.error('Error ' + str(result.status_code) + ': no security token returned') return None def addAnnotation(self, token, title, text, start, end = None): """Add a new Annotation to mPulse dashboard. :param token: the security token as returned by getSecurityToken() :type token: a String object :param title: the annotation title :type title: a String object :param text: the annotation body text :type text: a String object :param start: start time of the annotation in epoch time format in milliseconds :type start: an int :param end: (optional) end time of the annotation in epoch time format in milliseconds :type end: an int """ if end is None: payload = "{\"title\":\"" + title + "\", \"start\": \"" + str(start) + "\", \"text\":\"" + text + "\"}" else: payload = "{\"title\":\"" + title + "\", \"start\": \"" + str(start) + "\", \"end\":\"" + str(end) + "\", \"text\":\"" + text + "\"}" if self.simulate: self.logger.info("[SIMULATE] adding new annotation: " + payload) return self.logger.info("adding new annotation: " + payload) #self.logger.info("WARNING: mpulse API handler disabled!") #return url = "https://mpulse.soasta.com/concerto/mpulse/api/annotations/v1" result = requests.post(url, data = payload, headers={'Content-Type':'application/json', 'X-Auth-Token': token }) if (result.status_code == 200): json_data = result.json() self.logger.info('annotation successfully added') else: self.logger.error('Error ' + str(result.status_code) + ': annotation not added!')
# -*-coding:Utf-8 -* ############## # Les listes # ############## ma_liste = list() # initialisation 1 ma_liste = [] # initialisation 2 ma_liste = ['c', 'f', 'm'] ma_liste[0] # On accède au premier élément de la liste (c) ma_liste[2] # Troisième élément (m) ma_liste[1] = 'Z' # On remplace 'f' par 'Z' ma_liste # ['c', 'Z', 'm'] # Ajouter un élément à la fin de la liste ma_liste.append("O") # ['c', 'Z', 'm', O] # Insérer un élément dans la liste ma_liste.insert(2, "a") # insérer "a" à la 2ème position : ['c', 'Z', 'a', 'm', 'O'] # Concatener 2 listes ma_liste1 = [3, 4, 5] ma_liste2 = [8, 9, 10] ma_liste1.extend(ma_liste2) # 1ère méthode : on insère ma_liste2 à la fin de ma_liste1 : [3, 4, 5, 8, 9, 10] ma_liste1 = [3, 4, 5] ma_liste1 + ma_liste2 # 2ème méthode (juste pour l'affichage car ne modifie pas la liste, renvoie juste les 2 listes): [3, 4, 5, 8, 9, 10] ma_liste1 += ma_liste2 # 3ème méthode : dentique à extend : [3, 4, 5, 8, 9, 10] # Suppression d'éléments d'une liste ma_liste = ['c', 'Z', 'a', 'm', 'O'] del ma_liste[0] # Avec del : l'indice de l'élément à supprimer ('c') ma_liste.remove('m') # Avec remove : l'élément lui meme ########################## # Le parcours des listes # ########################## # 1ère méthode ma_liste = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h'] i = 0 # Notre indice pour la boucle while while i < len(ma_liste): print(ma_liste[i]) i += 1 # On incrémente i, ne pas oublier ! # 2ème méthode : cette méthode est cependant préférable for elt in ma_liste: # elt va prendre les valeurs successives des éléments de ma_liste print(elt) # La fonction enumerate ma_liste = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h'] for i, elt in enumerate(ma_liste): # i l'indice, elt l'élément en cours print("À l'indice {} se trouve {}.".format(i, elt)) ################################## # Un petit coup d'œil aux tuples # ################################## tuple_vide = () tuple_non_vide = (1,) # est équivalent à ci dessous tuple_non_vide = 1, tuple_avec_plusieurs_valeurs = (1, 2, 5) # Affectation multiple a, b = 3, 4 # Une fonction renvoyant plusieurs valeurs def decomposer(entier, divise_par): """Cette fonction retourne la partie entière et le reste de entier / divise_par""" p_e = entier // divise_par reste = entier % divise_par return p_e, reste partie_entiere, reste = decomposer(20, 3) # partie_entiere = 6 et reste = 2 ########################### # Entre chaînes et listes # ########################### # Des chaînes aux listes : split("séparateur") ma_chaine = "Bonjour à tous" ma_chaine.split(" ") # ['Bonjour', 'à', 'tous'] # Des listes aux chaînes : "séparateur".join(liste_à_fusionner) ma_liste = ['Bonjour', 'à', 'tous'] " ".join(ma_liste) # 'Bonjour à tous' # Exemple : def afficher_flottant(flottant): """Fonction prenant en paramètre un flottant et renvoyant une chaîne de caractères représentant la troncature de ce nombre. La partie flottante doit avoir une longueur maximum de 3 caractères. De plus, on va remplacer le point décimal par la virgule""" if type(flottant) is not float: raise TypeError("Le paramètre attendu doit être un flottant") flottant = str(flottant) partie_entiere, partie_flottante = flottant.split(".") # La partie entière n'est pas à modifier # Seule la partie flottante doit être tronquée return ",".join([partie_entiere, partie_flottante[:3]]) ########################################################################### # Les fonctions dont on ne connaît pas à l'avance le nombre de paramètres # ########################################################################### def fonction_inconnue(*parametres): """Test d'une fonction pouvant être appelée avec un nombre variable de paramètres""" print("J'ai reçu : {}.".format(parametres)) fonction_inconnue() # J'ai reçu : (). fonction_inconnue(33) # J'ai reçu : (33,). fonction_inconnue('a', 'e', 'f') # J'ai reçu : ('a', 'e', 'f'). var = 3.5 fonction_inconnue(var, [4], "...") # J'ai reçu : (3.5, [4], '...'). ######################################## # Exemple : fonction identique à print # ######################################## def afficher(*parametres, sep=' ', fin='\n'): """Fonction chargée de reproduire le comportement de print. Elle doit finir par faire appel à print pour afficher le résultat. Mais les paramètres devront déjà avoir été formatés. On doit passer à print une unique chaîne, en lui spécifiant de ne rien mettre à la fin : print(chaine, end='')""" # Les paramètres sont sous la forme d'un tuple # Or on a besoin de les convertir # Mais on ne peut pas modifier un tuple # On a plusieurs possibilités, ici je choisis de convertir le tuple en liste parametres = list(parametres) # On va commencer par convertir toutes les valeurs en chaîne # Sinon on va avoir quelques problèmes lors du join for i, parametre in enumerate(parametres): parametres[i] = str(parametre) # La liste des paramètres ne contient plus que des chaînes de caractères # À présent on va constituer la chaîne finale chaine = sep.join(parametres) # On ajoute le paramètre fin à la fin de la chaîne chaine += fin # On affiche l'ensemble print(chaine, end='') ################################################### # Transformer une liste en paramètres de fonction # ################################################### liste_des_parametres = [1, 4, 9, 16, 25, 36] print(*liste_des_parametres) # 1 4 9 16 25 36 ############################### # Les compréhensions de liste # ############################### # Parcours simple liste_origine = [0, 1, 2, 3, 4, 5] [nb * nb for nb in liste_origine] # [0, 1, 4, 9, 16, 25], nb * nb revient à écrire nb ** 2 # Filtrage avec un branchement conditionnel liste_origine = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] [nb for nb in liste_origine if nb % 2 == 0] # [2, 4, 6, 8, 10] # Filtrer et modifier une liste (partie 1) qtt_a_retirer = 7 # On retire chaque semaine 7 fruits de chaque sorte fruits_stockes = [15, 3, 18, 21] # Par exemple 15 pommes, 3 melons... [nb_fruits - qtt_a_retirer for nb_fruits in fruits_stockes if nb_fruits > qtt_a_retirer] # [8, 11, 14] # Filtrer et modifier une liste (partie 2) inventaire = [ ("pommes", 22), ("melons", 4), ("poires", 18), ("fraises", 76), ("prunes", 51), ] # On change le sens de l'inventaire, la quantité avant le nom inventaire_inverse = [(qtt, nom_fruit) for nom_fruit,qtt in inventaire] # On trie l'inventaire inversé dans l'ordre décroissant inventaire_inverse.sort(reverse=True) # Et on reconstitue l'inventaire inventaire = [(nom_fruit, qtt) for qtt,nom_fruit in inventaire_inverse]
#!/usr/bin/env python # coding: utf-8 import networkx as nx import matplotlib.pyplot as plt with open('nodes.txt') as nodesfile: nodes = [(map(int, l.split(';'))) for l in nodesfile] nodesdict = {node[0] : (node[1], node[2]) for node in nodes} with open('edges.txt') as edgesfile: edges = [map(lambda x: nodesdict[int(x)], line.split(';')) for line in edgesfile] graph = nx.Graph() graph.add_edges_from(edges) for node in graph.nodes(): if nx.degree(graph, node) > 2: graph.remove_node(node) for road in nx.connected_component_subgraphs(graph): endpoints = [n for n in road if nx.degree(graph, n) == 1] if not endpoints: continue path = nx.shortest_path(road, endpoints[0], endpoints[1]) lons, lats = zip(*path) plt.plot(lons, lats) plt.axis('equal') plt.grid() plt.show() # plt.figure() # for edge in edges: # lons, lats = zip(*edge) # plt.plot(lons, lats) # plt.axis('equal') # plt.grid() # plt.figure() # indices, lons, lats = zip(*nodes) # plt.scatter(lons, lats, color='b', s=5, linewidths=0, alpha=0.5) # plt.axis('equal') # plt.grid() # plt.show()
# coding: utf-8 import xlsxwriter import models def formatindicator(indicator): data = indicator if indicator == 0: data = '0' if type(indicator) == str: if '.' in indicator and '>' not in indicator: data = float(indicator) if type(indicator) == float: data = indicator return data # Creates the Excel folder and add a worksheet workbook = xlsxwriter.Workbook('output/scopus_list_20180406.xlsx') worksheet = workbook.add_worksheet('Scopus_list') # HEADER col = 0 wrap = workbook.add_format({'text_wrap': True}) wrap_blue = workbook.add_format({'text_wrap': True, 'bg_color': '#6495ED'}) wrap_red = workbook.add_format({'text_wrap': True, 'bg_color': '#DC143C'}) wrap_orange = workbook.add_format({'text_wrap': True, 'bg_color': '#FFA500'}) wrap_green = workbook.add_format({'text_wrap': True, 'bg_color': '#99FF99'}) for h in [ 'ISSNs', 'Main Title (SciELO, Scopus, JCR or WOS)', 'OECD major categories', 'OECD minor categories', 'Scimago Region', 'Scopus Country', 'SciELO Country', 'JCR country', 'is Scopus', 'is SciELO', 'is JCR', 'is WOS', 'Open Access(Scopus or SciELO)' ]: worksheet.write(0, col, h, wrap) col += 1 # Scopus fields for h in [ 'Scopus Title', 'Scopus Publisher', 'Scopus source type', 'Scopus Codes ASJC' ]: worksheet.write(0, col, h, wrap_blue) col += 1 # Scopus SciteScore 2016-2011 for y in range(2016, 2010, -1): worksheet.write(0, col, 'Scopus CiteScore ' + str(y), wrap_blue) col += 1 # CWTS SNIP 2016-1999 for y in range(2016, 1998, -1): worksheet.write(0, col, 'CWTS SNIP ' + str(y), wrap) col += 1 # Scimago fields worksheet.write(0, col, 'Scimago Title', wrap_orange) col += 1 # Scimago Indicators 2016-1999 for y in range(2016, 1998, -1): for h in [ 'Scimago SJR', 'Scimago SJR Best Quartile', 'Scimago H Index', 'Scimago Total Docs', 'Scimago Total Docs 3years', 'Scimago Total Refs', 'Scimago Total Cites 3years', 'Scimago Citable Docs 3years', 'Scimago Cites by Doc(2 years)', 'Scimago Ref by Doc' ]: worksheet.write(0, col, h + ' ' + str(y), wrap_orange) col += 1 # SciELO fields and Subjects for h in [ 'SciELO Title', 'SciELO Publisher', 'SciELO thematic areas', 'SciELO agricultural sciences', 'SciELO applied social sciences', 'SciELO biological sciences', 'SciELO engineering', 'SciELO exact and earth sciences', 'SciELO health sciences', 'SciELO human sciences', 'SciELO linguistics letters and arts', 'SciELO multidisciplinary' ]: worksheet.write(0, col, h, wrap_red) col += 1 # SciELO metrics - 2016-2012 for y in range(2016, 2011, -1): for h in [ 'SciELO Total Docs', 'SciELO Citable Docs' ]: worksheet.write(0, col, h + ' ' + str(y), wrap_red) col += 1 # JCR CIs and Thematic Areas for h in [ 'JCR SCIE', 'JCR SSCI', 'JCR Title', 'JCR Publisher', 'JCR Thematic Areas' ]: worksheet.write(0, col, h, wrap_green) col += 1 # JCR Indicators 2016-1997 for y in range(2016, 1996, -1): for h in [ 'JCR Total cites', 'JCR Journal Impact Factor', 'JCR Impact Factor without Journal Self Cites', 'JCR 5 years Impact Factor', 'JCR Immediacy Index', 'JCR Citable Items', 'JCR Cited half life', 'JCR Citing half life', 'JCR Eigenfactor Score', 'JCR Article Influence Score', 'JCR % Articles in Citable Items', 'JCR Average Journal Impact Factor Percentile', 'JCR Normalized Eigenfactor' ]: worksheet.write(0, col, h + ' ' + str(y), wrap_green) col += 1 row = 1 # SCOPUS scopus = models.Scopus.objects() for docscopus in scopus: print('Scopus : ' + docscopus.title) col = 0 if hasattr(docscopus, 'issn_list'): worksheet.write(row, col, '; '.join(docscopus.issn_list)) col += 1 if docscopus.is_scielo == 1: query = models.Scielo.objects.filter(id=str(docscopus.scielo_id)) worksheet.write(row, col, query[0]['title']) else: if hasattr(docscopus, 'title'): worksheet.write(row, col, docscopus.title) col += 1 # OECD categories col = 2 if hasattr(docscopus, 'oecd'): loecd = sorted(docscopus.oecd, key=lambda k: k['code']) major = [] minor = [] for d in loecd: if '.' not in d['code']: major.append(d['code'] + ' ' + d['description']) if '.' in d['code']: minor.append(d['code'] + ' ' + d['description']) worksheet.write(row, col, '; '.join(major)) col += 1 worksheet.write(row, col, '; '.join(minor)) col += 1 col = 4 if docscopus.is_scielo == 1: query = models.Scielo.objects.filter(id=str(docscopus.scielo_id)) worksheet.write(row, col, query[0]['region']) else: if docscopus.is_scimago == 1: query = models.Scimago.objects.filter(id=str(docscopus.scimago_id)) worksheet.write(row, col, query[0]['region']) col += 1 if hasattr(docscopus, 'publishers_country'): worksheet.write(row, col, docscopus.publishers_country) col += 1 if hasattr(docscopus, 'country_scielo'): worksheet.write(row, col, docscopus.country_scielo) col += 1 if hasattr(docscopus, 'country_jcr'): worksheet.write(row, col, docscopus.country_jcr) col += 1 if hasattr(docscopus, 'is_scopus'): worksheet.write(row, col, docscopus.is_scopus) col += 1 if hasattr(docscopus, 'is_scielo'): worksheet.write(row, col, docscopus.is_scielo) col += 1 if hasattr(docscopus, 'is_jcr'): worksheet.write(row, col, docscopus.is_jcr) col += 1 if hasattr(docscopus, 'is_wos'): worksheet.write(row, col, docscopus.is_wos) col += 1 # Open Access if hasattr(docscopus, 'open_access_status'): worksheet.write(row, col, 1) elif docscopus.is_scielo == 1: worksheet.write(row, col, 1) else: worksheet.write(row, col, 0) col += 1 # Scopus fields if hasattr(docscopus, 'title'): worksheet.write(row, col, docscopus.title) col += 1 if hasattr(docscopus, 'publishers_name'): worksheet.write(row, col, docscopus.publishers_name) col += 1 if hasattr(docscopus, 'source_type'): worksheet.write(row, col, docscopus.source_type) col += 1 if hasattr(docscopus, 'asjc_code_list'): worksheet.write(row, col, '; '.join(docscopus['asjc_code_list'])) col += 1 col = 17 for year in range(2016, 2010, -1): if hasattr(docscopus, str(year)): # print(docscopus[str(year)]) if 'citescore' in docscopus[str(year)]: worksheet.write(row, col, docscopus[str(year)]['citescore']) col += 1 # CWTS SNIP col = 23 if docscopus.is_cwts == 1: cwts = models.Cwts.objects(id=str(docscopus.cwts_id))[0] for year in range(2016, 1998, -1): if hasattr(cwts, str(year)): if 'snip' in cwts[str(year)]: worksheet.write(row, col, round(cwts[str(year)]['snip'], 3)) col += 1 # SCIMAGO indicators col = 41 if docscopus.is_scimago == 1: scimago = models.Scimago.objects(id=str(docscopus.scimago_id))[0] if hasattr(scimago, 'title'): worksheet.write(row, col, scimago['title']) col += 1 for year in range(2016, 1998, -1): if hasattr(scimago, str(year)): if 'sjr' in scimago[str(year)]: worksheet.write(row, col, scimago[str(year)]['sjr']) col += 1 if 'sjr_best_quartile' in scimago[str(year)]: worksheet.write(row, col, scimago[str(year)]['sjr_best_quartile']) col += 1 if 'h_index' in scimago[str(year)]: worksheet.write(row, col, scimago[str(year)]['h_index']) col += 1 if 'total_docs' in scimago[str(year)]: worksheet.write(row, col, scimago[str(year)]['total_docs']) col += 1 if 'total_docs_3years' in scimago[str(year)]: worksheet.write(row, col, scimago[str(year)]['total_docs_3years']) col += 1 if 'total_refs' in scimago[str(year)]: worksheet.write(row, col, scimago[str(year)]['total_refs']) col += 1 if 'total_cites_3years' in scimago[str(year)]: worksheet.write(row, col, scimago[str(year)]['total_cites_3years']) col += 1 if 'citable_docs_3years' in scimago[str(year)]: worksheet.write(row, col, scimago[str(year)]['citable_docs_3years']) col += 1 if 'cites_by_doc_2years' in scimago[str(year)]: worksheet.write(row, col, scimago[str(year)]['cites_by_doc_2years']) col += 1 if 'ref_by_doc' in scimago[str(year)]: worksheet.write(row, col, scimago[str(year)]['ref_by_doc']) col += 1 else: col += 10 # SciELO - subjects col = 222 if docscopus.is_scielo == 1: scielo = models.Scielo.objects(id=str(docscopus.scielo_id))[0] worksheet.write(row, col, scielo['title']) col += 1 worksheet.write(row, col, scielo['publisher_name']) col += 1 for k in [ 'title_thematic_areas', 'title_is_agricultural_sciences', 'title_is_applied_social_sciences', 'title_is_biological_sciences', 'title_is_engineering', 'title_is_exact_and_earth_sciences', 'title_is_health_sciences', 'title_is_human_sciences', 'title_is_linguistics_letters_and_arts', 'title_is_multidisciplinary' ]: if scielo[k]: worksheet.write(row, col, scielo[k]) else: worksheet.write(row, col, 0) col += 1 for year in range(2016, 2011, -1): k = 'documents_at_' + str(year) if hasattr(scielo, k): worksheet.write(row, col, scielo[k]) col += 1 k = 'citable_documents_at_' + str(year) if hasattr(scielo, k): worksheet.write(row, col, scielo[k]) col += 1 else: col += 2 # JCR Indicators 2016-1997 col = 244 if docscopus.is_jcr == 1: jcr = models.Jcr.objects(id=str(docscopus.jcr_id))[0] if hasattr(jcr, 'citation_database'): if 'SCIE' in jcr['citation_database']: worksheet.write(row, col, 1) else: worksheet.write(row, col, 0) col += 1 if 'SSCI' in jcr['citation_database']: worksheet.write(row, col, 1) else: worksheet.write(row, col, 0) col += 1 else: col += 2 col = 246 worksheet.write(row, col, jcr['title']) col += 1 if hasattr(jcr, 'publisher'): worksheet.write(row, col, jcr['publisher']) col += 1 col = 248 if docscopus.is_scielo == 1: scielo = models.Scielo.objects(id=str(docscopus.scielo_id))[0] if hasattr(scielo, 'thematic_areas'): worksheet.write(row, col, '; '.join(scielo['thematic_areas'])) else: if hasattr(jcr, 'thematic_areas'): worksheet.write(row, col, '; '.join(jcr['thematic_areas'])) col = 249 for year in range(2016, 1996, -1): if hasattr(jcr, str(year)): for k in [ 'total_cites', 'journal_impact_factor', 'impact_factor_without_journal_self_cites', 'five_year_impact_factor', 'immediacy_index', 'citable_items', 'cited_half_life', 'citing_half_life', 'eigenfactor_score', 'article_influence_score', 'percentage_articles_in_citable_items', 'average_journal_impact_factor_percentile', 'normalized_eigenfactor' ]: if k in jcr[str(year)]: worksheet.write( row, col, formatindicator(jcr[str(year)][k]) ) col += 1 else: col += 13 # Avançar linha - prox. documento row += 1 print('last line of Scopus: %s' % row) # ----------------------- # SciELO - is_scopus = 0 scielo = models.Scielo.objects.filter(is_scopus=0) for doc in scielo: print('SciELO : ' + doc.title) col = 0 if hasattr(doc, 'issn_list'): worksheet.write(row, col, '; '.join(doc.issn_list)) col += 1 if hasattr(doc, 'title'): worksheet.write(row, col, doc.title) col += 1 # OECD categories col = 2 if hasattr(doc, 'oecd'): loecd = sorted(doc.oecd, key=lambda k: k['code']) major = [] minor = [] for d in loecd: if '.' not in d['code']: major.append(d['code'] + ' ' + d['description']) if '.' in d['code']: minor.append(d['code'] + ' ' + d['description']) worksheet.write(row, col, '; '.join(major)) col += 1 worksheet.write(row, col, '; '.join(minor)) col += 1 col = 4 if hasattr(doc, 'region'): worksheet.write(row, col, doc.region) col += 1 # Scopus country col += 1 if hasattr(doc, 'country'): worksheet.write(row, col, doc.country) col += 1 if hasattr(doc, 'country_jcr'): worksheet.write(row, col, doc.country_jcr) col += 1 if hasattr(doc, 'is_scopus'): worksheet.write(row, col, doc.is_scopus) col += 1 if hasattr(doc, 'is_scielo'): worksheet.write(row, col, doc.is_scielo) col += 1 if hasattr(doc, 'is_jcr'): worksheet.write(row, col, doc.is_jcr) col += 1 if hasattr(doc, 'is_wos'): worksheet.write(row, col, doc.is_wos) col += 1 # Open Access worksheet.write(row, col, 1) # CWTS SNIP col = 23 if doc.is_cwts == 1: cwts = models.Cwts.objects(id=str(doc.cwts_id))[0] for year in range(2016, 1998, -1): if hasattr(cwts, str(year)): if 'snip' in cwts[str(year)]: worksheet.write(row, col, round(cwts[str(year)]['snip'], 3)) col += 1 # SCIMAGO indicators col = 41 if doc.is_scimago == 1: scimago = models.Scimago.objects(id=str(doc.scimago_id))[0] worksheet.write(row, col, scimago['title']) col += 1 for year in range(2016, 1998, -1): if hasattr(scimago, str(year)): if 'sjr' in scimago[str(year)]: worksheet.write(row, col, scimago[str(year)]['sjr']) col += 1 if 'sjr_best_quartile' in scimago[str(year)]: worksheet.write(row, col, scimago[str(year)]['sjr_best_quartile']) col += 1 if 'h_index' in scimago[str(year)]: worksheet.write(row, col, scimago[str(year)]['h_index']) col += 1 if 'total_docs' in scimago[str(year)]: worksheet.write(row, col, scimago[str(year)]['total_docs']) col += 1 if 'total_docs_3years' in scimago[str(year)]: worksheet.write(row, col, scimago[str(year)]['total_docs_3years']) col += 1 if 'total_refs' in scimago[str(year)]: worksheet.write(row, col, scimago[str(year)]['total_refs']) col += 1 if 'total_cites_3years' in scimago[str(year)]: worksheet.write(row, col, scimago[str(year)]['total_cites_3years']) col += 1 if 'citable_docs_3years' in scimago[str(year)]: worksheet.write(row, col, scimago[str(year)]['citable_docs_3years']) col += 1 if 'cites_by_doc_2years' in scimago[str(year)]: worksheet.write(row, col, scimago[str(year)]['cites_by_doc_2years']) col += 1 if 'ref_by_doc' in scimago[str(year)]: worksheet.write(row, col, scimago[str(year)]['ref_by_doc']) col += 1 else: col += 10 # SciELO - subjects col = 222 worksheet.write(row, col, doc['title']) col += 1 if hasattr(doc, 'publisher_name'): worksheet.write(row, col, doc.publisher_name) col += 1 for k in [ 'title_thematic_areas', 'title_is_agricultural_sciences', 'title_is_applied_social_sciences', 'title_is_biological_sciences', 'title_is_engineering', 'title_is_exact_and_earth_sciences', 'title_is_health_sciences', 'title_is_human_sciences', 'title_is_linguistics_letters_and_arts', 'title_is_multidisciplinary' ]: if doc[k]: worksheet.write(row, col, doc[k]) else: worksheet.write(row, col, 0) col += 1 for year in range(2016, 2011, -1): k = 'documents_at_' + str(year) if hasattr(doc, k): worksheet.write(row, col, doc[k]) col += 1 k = 'citable_documents_at_' + str(year) if hasattr(doc, k): worksheet.write(row, col, doc[k]) col += 1 else: col += 2 # JCR Indicators 2016-1997 col = 244 if doc.is_jcr == 1: jcr = models.Jcr.objects(id=str(doc.jcr_id))[0] if hasattr(jcr, 'citation_database'): if 'SCIE' in jcr['citation_database']: worksheet.write(row, col, 1) else: worksheet.write(row, col, 0) col += 1 if 'SSCI' in jcr['citation_database']: worksheet.write(row, col, 1) else: worksheet.write(row, col, 0) col += 1 else: col += 2 col = 246 worksheet.write(row, col, jcr['title']) col += 1 if hasattr(jcr, 'publisher'): worksheet.write(row, col, jcr['publisher']) col += 1 col = 248 if hasattr(jcr, 'thematic_areas'): worksheet.write(row, col, '; '.join(jcr['thematic_areas'])) col = 249 for year in range(2016, 1996, -1): if hasattr(jcr, str(year)): for k in [ 'total_cites', 'journal_impact_factor', 'impact_factor_without_journal_self_cites', 'five_year_impact_factor', 'immediacy_index', 'citable_items', 'cited_half_life', 'citing_half_life', 'eigenfactor_score', 'article_influence_score', 'percentage_articles_in_citable_items', 'average_journal_impact_factor_percentile', 'normalized_eigenfactor' ]: if k in jcr[str(year)]: worksheet.write( row, col, formatindicator(jcr[str(year)][k]) ) col += 1 else: col += 13 # Avançar linha - prox. documento row += 1 print('last line of SciELO: %s' % row) # -------------------------------- # JCR - is_scopus=0, is_scielo = 0 jcr = models.Jcr.objects.filter(is_scopus=0, is_scielo=0) for doc in jcr: print('JCR: ' + doc.title) col = 0 if hasattr(doc, 'issn_list'): worksheet.write(row, col, '; '.join(doc.issn_list)) col += 1 if hasattr(doc, 'title'): worksheet.write(row, col, doc.title) col += 1 # OECD categories col = 2 if hasattr(doc, 'oecd'): loecd = sorted(doc.oecd, key=lambda k: k['code']) major = [] minor = [] for d in loecd: if '.' not in d['code']: major.append(d['code'] + ' ' + d['description']) if '.' in d['code']: minor.append(d['code'] + ' ' + d['description']) worksheet.write(row, col, '; '.join(major)) col += 1 worksheet.write(row, col, '; '.join(minor)) col += 1 col = 4 if doc.is_scimago == 1: query = models.Scimago.objects.filter(id=str(doc.scimago_id)) worksheet.write(row, col, query[0]['region']) col += 1 # Scopus country col += 1 # SciELO country col += 1 if hasattr(doc, 'country'): worksheet.write(row, col, doc.country) col += 1 if hasattr(doc, 'is_scopus'): worksheet.write(row, col, doc.is_scopus) col += 1 if hasattr(doc, 'is_scielo'): worksheet.write(row, col, doc.is_scielo) col += 1 if hasattr(doc, 'is_jcr'): worksheet.write(row, col, doc.is_jcr) col += 1 # CWTS SNIP col = 22 if doc.is_cwts == 1: cwts = models.Cwts.objects(id=str(doc.cwts_id))[0] for year in range(2016, 1998, -1): if hasattr(cwts, str(year)): if 'snip' in cwts[str(year)]: worksheet.write(row, col, round(cwts[str(year)]['snip'], 3)) col += 1 # SCIMAGO indicators col = 41 if doc.is_scimago == 1: scimago = models.Scimago.objects(id=str(doc.scimago_id))[0] worksheet.write(row, col, scimago['title']) col += 1 for year in range(2016, 1998, -1): if hasattr(scimago, str(year)): if 'sjr' in scimago[str(year)]: worksheet.write(row, col, scimago[str(year)]['sjr']) col += 1 if 'sjr_best_quartile' in scimago[str(year)]: worksheet.write(row, col, scimago[str(year)]['sjr_best_quartile']) col += 1 if 'h_index' in scimago[str(year)]: worksheet.write(row, col, scimago[str(year)]['h_index']) col += 1 if 'total_docs' in scimago[str(year)]: worksheet.write(row, col, scimago[str(year)]['total_docs']) col += 1 if 'total_docs_3years' in scimago[str(year)]: worksheet.write(row, col, scimago[str(year)]['total_docs_3years']) col += 1 if 'total_refs' in scimago[str(year)]: worksheet.write(row, col, scimago[str(year)]['total_refs']) col += 1 if 'total_cites_3years' in scimago[str(year)]: worksheet.write(row, col, scimago[str(year)]['total_cites_3years']) col += 1 if 'citable_docs_3years' in scimago[str(year)]: worksheet.write(row, col, scimago[str(year)]['citable_docs_3years']) col += 1 if 'cites_by_doc_2years' in scimago[str(year)]: worksheet.write(row, col, scimago[str(year)]['cites_by_doc_2years']) col += 1 if 'ref_by_doc' in scimago[str(year)]: worksheet.write(row, col, scimago[str(year)]['ref_by_doc']) col += 1 else: col += 10 # JCR Indicators 2016-1997 col = 244 if hasattr(doc, 'citation_database'): if 'SCIE' in doc['citation_database']: worksheet.write(row, col, 1) else: worksheet.write(row, col, 0) col += 1 if 'SSCI' in doc['citation_database']: worksheet.write(row, col, 1) else: worksheet.write(row, col, 0) col += 1 else: col += 2 col = 246 if hasattr(doc, 'title'): worksheet.write(row, col, doc.title) col += 1 if hasattr(doc, 'publisher'): worksheet.write(row, col, doc.publisher) col += 1 col = 248 if hasattr(doc, 'thematic_areas'): worksheet.write(row, col, '; '.join(doc['thematic_areas'])) col = 249 for year in range(2016, 1996, -1): if hasattr(doc, str(year)): for k in [ 'total_cites', 'journal_impact_factor', 'impact_factor_without_journal_self_cites', 'five_year_impact_factor', 'immediacy_index', 'citable_items', 'cited_half_life', 'citing_half_life', 'eigenfactor_score', 'article_influence_score', 'percentage_articles_in_citable_items', 'average_journal_impact_factor_percentile', 'normalized_eigenfactor' ]: if k in doc[str(year)]: worksheet.write( row, col, formatindicator(doc[str(year)][k]) ) col += 1 else: col += 13 # Avançar linha - prox. documento row += 1 print('last line of JCR: %s' % row) # Grava planilha Excel workbook.close()
import re from struct import unpack, pack def parse(buf): # Compile a regex that can parse a buffer with an arbitrary number of # records, each consisting of a short, a null-terminated string, # and two more shorts. Incomplete records at the end of the file # will be ignored. re.DOTALL ensures we treat newlines as data. r = re.compile("(..)(.*?)\0(..)(..)", re.DOTALL) # packed will be a list of tuples: (packed short, string, short, short). # You can use finditer instead to save memory on a large file, but # it will return MatchObjects rather than tuples. packed = r.findall(buf) # Create an unpacked list of tuples, mirroring the packed list. # Perl equivalent: @objlist = unpack("(S Z* S S)*", $buf); # Note that we do not need to unpack the string, because its # packed and unpacked representations are identical. objlist = map(lambda x: (short(x[0]), x[1], short(x[2]), short(x[3])), packed) # Alternatively, unpack using a list comprehension: # objlist = [ ( short(x[0]), x[1], short(x[2]), short(x[3]) ) for x in packed ] # Create a dictionary from the packed list. The records hold object id, # description, and x and y coordinates, and we want to index by id. # We could also create it from the unpacked list, of course. objdict = {} for x in packed: id = short(x[0]) objdict[id] = {} objdict[id]["desc"] = x[1] objdict[id]["x"] = short(x[2]) objdict[id]["y"] = short(x[3]) return objlist, objdict # Converts 2-byte string to little-endian short value. # unpack returns a tuple, so we grab the first (and only) element. def short(x): return unpack("<H", x)[0] # Packs the arguments into a string that parse() can read, # for testing. def packobj(id, desc, x, y): return pack("<H", id) + desc + "\0" + pack("<HH", x, y) if __name__ == '__main__': # Pack test objects into string buffer. Normally, you'd load buf # with file data, perhaps with buf = file(filename, "rb").read() buf = "" buf += packobj(768, "golden helmet", 3, 4) buf += packobj(234, "windmill", 20, 30) # Test inclusion of newline in string buf += packobj( 35, "pitcher\nand stone", 1, 2) # Also add a bit of garbage at the end, # which the parser should ignore. buf += "garbage"; # Parse buffer into list and dictionary of objects olist, odict = parse(buf) print olist print odict print odict[35]["desc"] # should retain the newline
class MoveTarget: def __init__(self, identifier: str, name: str, description: str): self.identifier = identifier self.name = name self.description = description def __str__(self): return self.name
from google.appengine.ext import ndb class MyModel(ndb.Model): @classmethod def get_create_by_id(cls, *args, **kwargs): """ Get an entity or create one if it doesn't exist. :param args: Arbitrary number of args. These will be used to create a key if 'id' is not in kwargs. :param kwargs: Arbitrary kwargs. If 'id' is in kwargs, it will be used to look up the entity. :return: tuple. First element is entity. Second element indicates whether the entity was created. """ created = False if 'id' not in kwargs: kwargs['id'] = '_'.join(args) entity = cls.get_by_id(kwargs['id']) if entity is None: entity = cls(**kwargs) created = True return entity, created @classmethod def get_by_id(cls, *args): return super(MyModel, cls).get_by_id('_'.join(args)) class SheetStock(MyModel): bound_lower = ndb.FloatProperty('lb') bound_upper = ndb.FloatProperty('ub') class User(MyModel): notify = ndb.BooleanProperty('n', default=False) email = ndb.StringProperty('e') sheet_keys = ndb.KeyProperty(kind='Sheet', repeated=True) credentials = ndb.BlobProperty('c') class Sheet(MyModel): title = ndb.StringProperty('t') last_updated = ndb.DateTimeProperty(auto_now=True) stock_keys = ndb.KeyProperty(kind='Stock', repeated=True) user_keys = ndb.KeyProperty(kind='User', repeated=True) class Stock(MyModel): price = ndb.FloatProperty('p') sheet_keys = ndb.KeyProperty(kind='Sheet', repeated=True)
#!/usr/bin/env python import serial import time ser=serial.Serial( port = '/dev/ttyUSB0', baudrate = 115200, parity = serial.PARITY_NONE, bytesize = serial.EIGHTBITS, stopbits = serial.STOPBITS_ONE, timeout = None, xonxoff = 0, rtscts = 0, # interCharTimeout = None ) #ser.open() while 1: print ser.readline(),
__version__ = "1.0.0-beta1"
# Thermal Camera Demo # # This example shows off how to overlay a heatmap onto your OpenMV Cam's # live video output from the main camera. import image, time, fir drawing_hint = image.BICUBIC # or image.BILINEAR or 0 (nearest neighbor) # Initialize the thermal sensor fir.init() w = fir.width() h = fir.height() if (fir.type() == fir.FIR_MLX90621): w = w * 10 h = h * 10 elif (fir.type() == fir.FIR_MLX90640): w = w * 10 h = h * 10 elif (fir.type() == fir.FIR_MLX90641): w = w * 10 h = h * 10 elif (fir.type() == fir.FIR_AMG8833): w = w * 20 h = h * 20 # FPS clock clock = time.clock() while (True): clock.tick() try: img = fir.snapshot(x_size=w, y_size=h, color_palette=fir.PALETTE_IRONBOW, hint=drawing_hint, copy_to_fb=True) except OSError: continue # Print FPS. print(clock.fps())
import Estrapy from Estrapy import OsuClients import asyncio client_id = "" # Put your own osu client_id client_secret = "" # Put your own osu client_secret Osu = OsuClients(client_id=client_id, client_secret=client_secret) OsuObject = OsuClients( client_id=client_id, client_secret=client_secret, output="object" ) async def beatmap(): data = await Osu.osubeatmap(beatmap_id="2405223") data_formatter = await Osu.osubeatmap( beatmap_id="2405223", formatter=True, # Keep it on mind, this will only making the output with better formatting JSON format ) print(data["beatmapset"]["artist"]) print(data_formatter) asyncio.run(beatmap()) async def profile(): data = await Osu.osuprofile(username="Stawa") data_formatter = await Osu.osuprofile( username="Stawa", formatter=True, # Keep it on mind, this will only making the output with better formatting JSON format ) print(data["country"]["name"]) print(data_formatter) asyncio.run(profile()) async def osu_object(): example = await OsuObject.osuprofile(username="Stawa") print(example.avatar_url) print(example.discord) asyncio.run(osu_object())
import discord from discord import Option, OptionChoice from discord.ext import commands from discord.ext.commands import BucketType, cooldown import asyncio import random from Utilities import Checks, PlayerObject, Vars from Utilities.ConfirmationMenu import OneButtonView from Utilities.AyeshaBot import Ayesha class Casino(commands.Cog): """Casino text""" def __init__(self, bot : Ayesha): self.bot = bot # EVENTS @commands.Cog.listener() async def on_ready(self): print("Casino is ready.") # COMMANDS @commands.slash_command() @commands.check(Checks.is_player) async def coinflip(self, ctx : discord.ApplicationContext, call : Option(str, description="Bet on heads or tails", choices=[OptionChoice("Heads"), OptionChoice("Tails")], default="Heads" ), wager : Option(int, description="The amount of gold you are betting (up to 25k)", min_value=1, max_value=25000, default=1000)): """Wager some money on a coinflip for the classic 50/50 gamble.""" async with self.bot.db.acquire() as conn: player = await PlayerObject.get_player_by_id(conn, ctx.author.id) if player.gold < wager: raise Checks.NotEnoughGold(wager, player.gold) msg = f"The coin landed on **{call}**!" if random.choice(["Heads", "Tails"]) == call: await player.give_gold(conn, wager) await ctx.respond(f"{msg} You made `{wager}` gold.") else: await player.give_gold(conn, -wager) call = "Tails" if call == "Heads" else "Heads" await ctx.respond( f"{msg} You lost your `{wager}` gold wager.") @commands.slash_command() @commands.check(Checks.is_player) async def roulette(self, ctx : discord.ApplicationContext, bet_type : Option(str, description="The odds you want to play at", required=True, choices=[ OptionChoice( "Straight-up: Bet on rolling a single number", "Straight-up"), OptionChoice( ("Snake: Bet on rolling 1, 5, 9, 12, 14, 16, 19, 23, " "27, 30, 32, or 34"), "Snake"), OptionChoice("Even: Bet on rolling an even number", "Even"), OptionChoice("Odd: Bet on rolling an odd number", "Odd")]), bet_number : Option(int, description=( "If you bet straight-up, call the number you think the " "ball will land on"), default = 7, min_value=1, max_value=36), wager : Option(int, description="The amount of gold you are betting (up to 50k)", min_value=1, max_value=50000, default=1000)): """Play a game of Roulette""" async with self.bot.db.acquire() as conn: player = await PlayerObject.get_player_by_id(conn, ctx.author.id) if player.gold < wager: raise Checks.NotEnoughGold(wager, player.gold) # Perform the roulette SNAKE = [1, 5, 9, 12, 14, 16, 19, 23, 27, 30, 32, 34] landing = random.randint(0, 36) msg = f"The ball landed on **{landing}**!" if landing == 0: await player.give_gold(conn, -wager//2) return await ctx.respond(f"{msg} You regained half your wager.") # Determine outcome based on bet type # Payouts taken from https://www.onlinegambling.com/casino/roulette/bets-payouts/ if bet_type == "Straight-up" and bet_number == landing: await player.give_gold(conn, wager*35) # 35:1 stakes await ctx.respond(f"{msg} You made `{wager*35}` gold!") elif bet_type == "Snake" and landing in SNAKE: await player.give_gold(conn, wager*2) await ctx.respond(f"{msg} You made `{wager*2}` gold!") elif bet_type == "Even" and landing % 2 == 0: await player.give_gold(conn, wager) await ctx.respond(f"{msg} You made `{wager}` gold!") elif bet_type == "Odd" and landing % 2 == 1: await player.give_gold(conn, wager) await ctx.respond(f"{msg} You made `{wager}` gold!") else: await player.give_gold(conn, -wager) await ctx.respond(f"{msg} You lost your bet.") @commands.slash_command() @cooldown(1, 10, BucketType.user) @commands.check(Checks.is_player) async def craps(self, ctx : discord.ApplicationContext, wager : Option(int, description="The amount of gold you are betting (up to 100k)", min_value=1, max_value=100000, default=1000)): """Play a game of craps/seven-elevens on Pass Line rules.""" async with self.bot.db.acquire() as conn: player = await PlayerObject.get_player_by_id(conn, ctx.author.id) if player.gold < wager: raise Checks.NotEnoughGold(wager, player.gold) # Game is printed as an embed display = discord.Embed( title=f"Craps: {ctx.author.display_name}", color=Vars.ABLUE) display.set_footer(text=ctx.author, icon_url=ctx.author.avatar.url) display.add_field( name=f"Press Shoot! to roll the die!", value=(f"Numbers to win: 7, 11\nNumbers to lose: 2, 3, 12")) # Create a button that will determine dice rolls view = OneButtonView("Shoot!", ctx.author, True, 15) interaction = await ctx.respond(embed=display, view=view) turn_counter = 1 goal_number = 0 die1, die2 = 0, 0 victory, loss = False, False # Game loops until over while not victory and not loss: await view.wait() if view.value: die1, die2 = random.randint(1, 6), random.randint(1, 6) total = die1 + die2 if turn_counter == 1: if total in (7, 11): # win victory = True elif total in (2, 3, 12): # lose loss = True else: # goal_number becomes the number to repeat goal_number = total else: if total == goal_number: # win victory = True elif total == 7: # lose loss = True else: # Player didn't respond await player.give_gold(conn, -wager) msg = ( f"You left the game and forfeit your `{wager}` " f"gold wager.") await interaction.edit_original_message(view=None) return await interaction.followup.send(msg) # end game here # Edit the message to reflect gameplay display.set_field_at(0, name=f"Press Shoot! to roll the die!", value=( f"You rolled a **{die1}** and a **{die2}**.\n\n" f"Your Roll: **{total}**\n" f"Number to Win: **{goal_number}**\n" f"Number to Lose: **7**")) # View needs to be reloaded to be interactive again view = OneButtonView("Shoot!", ctx.author, True, 15) await interaction.edit_original_message( embed=display, view=view) turn_counter += 1 await interaction.edit_original_message(view=None) if victory: await player.give_gold(conn, wager) await interaction.followup.send( f"You won and received `{wager}` gold!") else: # then loss await player.give_gold(conn, -wager) await interaction.followup.send(( f"You rolled a **{total}** and lost the game and your " f"`{wager}` gold wager!")) @commands.slash_command() @cooldown(1, 10, BucketType.user) @commands.check(Checks.is_player) async def race(self, ctx : discord.ApplicationContext, bet : Option(str, description="The animal you are betting on winning the race", required=True, choices=[ OptionChoice(c) for c in ["Duck", "Swan", "Dog", "Horse", "Turtle", "Rabbit"]]), wager : Option(int, description="The amount of gold you are betting (up to 100k)", default=1000, min_value=1, max_value=100000)): """Bet on an animal race!""" names = ["Duck", "Swan", "Dog", "Horse", "Turtle", "Rabbit"] emojis = ["🦆", "🦢", "🐕", "🐎", "🐢", "🐇"] racers = { n : { "emoji" : e, "string" : "||" + "."*19 + e, "score" : 0, "player" : True if n == bet else False } for n, e in zip(names, emojis)} async with self.bot.db.acquire() as conn: # Remember to reconnect later player = await PlayerObject.get_player_by_id(conn, ctx.author.id) if player.gold < wager: raise Checks.NotEnoughGold(wager, player.gold) # Race is printed on an embed output = "```" + "\n".join([racers[r]['string'] for r in racers]) +\ "```" display = discord.Embed( title="And the race is on!", color=Vars.ABLUE, description=output) interaction = await ctx.respond(embed=display) # Game Loop - extraordinarily bad code even for my standards geez while max([racers[r]['score'] for r in racers]) <= 100: bet_str = "" for racer in racers: # Change their progress and accompanying data advance = random.randint(3, 14) racers[racer]['score'] += advance dots = racers[racer]['score'] // 5 if dots >= 20: # They pass the finish line racers[racer]['string'] = "|" + racers[racer]['emoji'] +\ "."*20 else: racers[racer]['string'] = "||" + "."*(19-dots) +\ racers[racer]['emoji'] + "."*(dots) # If racer is the bet, come up with some string if racer == bet: e = racers[racer]['emoji'] if advance < 7: bet_str = random.choice([ f"{e} falters!", f"{e} has been outgunned!", f"{e} trips!", f"{e} was the sussy-impostor all along!", f"{e} eats a fly and momentarily loses focus!"]) elif advance < 11: bet_str = random.choice([ f"{e} keeps pace.", f"{e} settles into mediocrity.", f"{e} is showing signs of exhaustion.", f"{e} passes a checkpoint!"]) else: bet_str = random.choice([ f"{e} gains a quick burst of speed!", f"{e} is one with nature.", f"{e} is showing them who's boss!", f"{e} leaps over an obstacle."]) output = bet_str +"\n```" +\ "\n".join([racers[r]['string'] for r in racers]) + "```" display = discord.Embed( title="And the race is on!", color=Vars.ABLUE, description=output) await interaction.edit_original_message(embed=display) await asyncio.sleep(3) # Find the winner winners = [r for r in racers if racers[r]['score'] >= 100] win_str = ", ".join([racers[r]["emoji"] for r in winners]) message = f"The winner(s) are {win_str}" async with self.bot.db.acquire() as conn: if bet in winners: # Then player's choice won payout = int(wager * 6.25 / len(winners)) # // gave float anyway await player.give_gold(conn, payout) message += f"\n You received a payout of `{payout}` gold!" else: await player.give_gold(conn, -wager) message +=f"\n You lost your bet and your `{wager}` gold wager!" await interaction.followup.send(message) def setup(bot): bot.add_cog(Casino(bot))
""" Module: 'random' on esp32_LoBo 3.2.24 """ # MCU: (sysname='esp32_LoBo', nodename='esp32_LoBo', release='3.2.24', version='ESP32_LoBo_v3.2.24 on 2018-09-06', machine='ESP32 board with ESP32') # Stubber: 1.2.0 def choice(): pass def getrandbits(): pass def randint(): pass def random(): pass def randrange(): pass def seed(): pass def uniform(): pass
from django.urls import path from .views import ( ProfileRetrieveUpdateAPIView, ProfileListAPIView ) urlpatterns = [ path('api/profiles/<username>', ProfileRetrieveUpdateAPIView.as_view(), name='profile'), path('api/profiles', ProfileListAPIView.as_view(), name='profile_list'), ]
# Generated by Django 2.0.2 on 2019-03-10 09:01 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('delivery', '0005_delivery_enterprice'), ] operations = [ migrations.RemoveField( model_name='delivery', name='interview', ), ]
# Copyright 2015-2016 Yelp Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import datetime import json import os import stat import sys import time from typing import Dict # noqa from typing import List # noqa import mock import pytest from pytest import raises from paasta_tools import utils def test_get_git_url_provided_by_serviceyaml(): service = 'giiiiiiiiiiit' expected = 'git@some_random_host:foobar' with ( mock.patch('service_configuration_lib.read_service_configuration', autospec=True) ) as mock_read_service_configuration: mock_read_service_configuration.return_value = {'git_url': expected} assert utils.get_git_url(service) == expected mock_read_service_configuration.assert_called_once_with(service, soa_dir=utils.DEFAULT_SOA_DIR) def test_get_git_url_default(): service = 'giiiiiiiiiiit' expected = 'git@git.yelpcorp.com:services/%s' % service with ( mock.patch('service_configuration_lib.read_service_configuration', autospec=True) ) as mock_read_service_configuration: mock_read_service_configuration.return_value = {} assert utils.get_git_url(service) == expected mock_read_service_configuration.assert_called_once_with(service, soa_dir=utils.DEFAULT_SOA_DIR) def test_format_log_line(): input_line = 'foo' fake_cluster = 'fake_cluster' fake_service = 'fake_service' fake_instance = 'fake_instance' fake_component = 'build' fake_level = 'debug' fake_now = 'fake_now' expected = json.dumps( { 'timestamp': fake_now, 'level': fake_level, 'cluster': fake_cluster, 'service': fake_service, 'instance': fake_instance, 'component': fake_component, 'message': input_line, }, sort_keys=True, ) with mock.patch('paasta_tools.utils._now', autospec=True) as mock_now: mock_now.return_value = fake_now actual = utils.format_log_line( level=fake_level, cluster=fake_cluster, service=fake_service, instance=fake_instance, component=fake_component, line=input_line, ) assert actual == expected def test_deploy_whitelist_to_constraints(): fake_whitelist = ('fake_location_type', ['fake_location', 'anotherfake_location'],) expected_constraints = [['fake_location_type', 'LIKE', 'fake_location|anotherfake_location']] constraints = utils.deploy_whitelist_to_constraints(fake_whitelist) assert constraints == expected_constraints def test_format_log_line_with_timestamp(): input_line = 'foo' fake_cluster = 'fake_cluster' fake_service = 'fake_service' fake_instance = 'fake_instance' fake_component = 'build' fake_level = 'debug' fake_timestamp = 'fake_timestamp' expected = json.dumps( { 'timestamp': fake_timestamp, 'level': fake_level, 'cluster': fake_cluster, 'service': fake_service, 'instance': fake_instance, 'component': fake_component, 'message': input_line, }, sort_keys=True, ) actual = utils.format_log_line( fake_level, fake_cluster, fake_service, fake_instance, fake_component, input_line, timestamp=fake_timestamp, ) assert actual == expected def test_format_log_line_rejects_invalid_components(): with raises(utils.NoSuchLogComponent): utils.format_log_line( level='debug', cluster='fake_cluster', service='fake_service', instance='fake_instance', line='fake_line', component='BOGUS_COMPONENT', ) def test_ScribeLogWriter_log_raise_on_unknown_level(): with raises(utils.NoSuchLogLevel): utils.ScribeLogWriter().log('fake_service', 'fake_line', 'build', 'BOGUS_LEVEL') def test_get_log_name_for_service(): service = 'foo' expected = 'stream_paasta_%s' % service assert utils.get_log_name_for_service(service) == expected def test_get_readable_files_in_glob_ignores_unreadable(tmpdir): tmpdir.join('readable.json').ensure().chmod(0o644) tmpdir.join('unreadable.json').ensure().chmod(0o000) ret = utils.get_readable_files_in_glob('*.json', tmpdir.strpath) assert ret == [tmpdir.join('readable.json').strpath] def test_get_readable_files_in_glob_is_recursive(tmpdir): a = tmpdir.join('a.json').ensure() b = tmpdir.join('b.json').ensure() c = tmpdir.join('subdir').ensure_dir().join('c.json').ensure() ret = utils.get_readable_files_in_glob('*.json', tmpdir.strpath) assert set(ret) == {a.strpath, b.strpath, c.strpath} def test_load_system_paasta_config(): json_load_return_value: utils.SystemPaastaConfigDict = {'cluster': 'bar'} expected = utils.SystemPaastaConfig(json_load_return_value, '/some/fake/dir') file_mock = mock.mock_open() with mock.patch( 'os.path.isdir', return_value=True, autospec=True, ), mock.patch( 'os.access', return_value=True, autospec=True, ), mock.patch( 'builtins.open', file_mock, autospec=None, ) as open_file_patch, mock.patch( 'paasta_tools.utils.get_readable_files_in_glob', autospec=True, return_value=['/some/fake/dir/some_file.json'], ), mock.patch( 'paasta_tools.utils.json.load', autospec=True, return_value=json_load_return_value, ) as json_patch, mock.patch( 'paasta_tools.utils.os.stat', autospec=True, ), mock.patch( 'paasta_tools.utils.deep_merge_dictionaries', autospec=True, return_value=json_load_return_value, ) as mock_deep_merge: actual = utils.load_system_paasta_config(path='/some/fake/dir') assert actual == expected # Kinda weird but without this load_system_paasta_config() can (and # did! during development) return a plain dict without the test # complaining. assert actual.__class__ == expected.__class__ open_file_patch.assert_any_call('/some/fake/dir/some_file.json') json_patch.assert_any_call(file_mock.return_value.__enter__.return_value) assert json_patch.call_count == 1 mock_deep_merge.assert_called_with(json_load_return_value, {}, allow_duplicate_keys=False) def test_load_system_paasta_config_file_non_existent_dir(): fake_path = '/var/dir_of_fake' with mock.patch('os.path.isdir', return_value=False, autospec=True): with raises(utils.PaastaNotConfiguredError) as excinfo: utils.load_system_paasta_config(fake_path) expected = "Could not find system paasta configuration directory: %s" % fake_path assert str(excinfo.value) == expected def test_load_system_paasta_config_file_non_readable_dir(): fake_path = '/var/dir_of_fake' with mock.patch( 'os.path.isdir', return_value=True, autospec=True, ), mock.patch( 'os.access', return_value=False, autospec=True, ): with raises(utils.PaastaNotConfiguredError) as excinfo: utils.load_system_paasta_config(fake_path) expected = "Could not read from system paasta configuration directory: %s" % fake_path assert str(excinfo.value) == expected def test_load_system_paasta_config_file_dne(): fake_path = '/var/dir_of_fake' with mock.patch( 'os.path.isdir', return_value=True, autospec=True, ), mock.patch( 'os.access', return_value=True, autospec=True, ), mock.patch( 'builtins.open', side_effect=IOError(2, 'a', 'b'), autospec=None, ), mock.patch( 'paasta_tools.utils.os.stat', autospec=True, ), mock.patch( 'paasta_tools.utils.get_readable_files_in_glob', autospec=True, return_value=[fake_path], ): with raises(utils.PaastaNotConfiguredError) as excinfo: utils.load_system_paasta_config(fake_path) assert str(excinfo.value) == "Could not load system paasta config file b: a" def test_load_system_paasta_config_duplicate_keys_errors(): fake_file_a = {'cluster': 'this value will be overriden', 'sensu_host': 'fake_data'} fake_file_b = {'cluster': 'overriding value'} file_mock = mock.mock_open() with mock.patch( 'os.path.isdir', return_value=True, autospec=True, ), mock.patch( 'os.access', return_value=True, autospec=True, ), mock.patch( 'builtins.open', file_mock, autospec=None, ), mock.patch( 'paasta_tools.utils.os.stat', autospec=True, ), mock.patch( 'paasta_tools.utils.get_readable_files_in_glob', autospec=True, return_value=['a', 'b'], ), mock.patch( 'paasta_tools.utils.json.load', autospec=True, side_effect=[fake_file_a, fake_file_b], ): with raises(utils.DuplicateKeyError): utils.load_system_paasta_config(path='/some/fake/dir') def test_SystemPaastaConfig_get_cluster(): fake_config = utils.SystemPaastaConfig( { 'cluster': 'peanut', }, '/some/fake/dir', ) expected = 'peanut' actual = fake_config.get_cluster() assert actual == expected def test_SystemPaastaConfig_get_cluster_dne(): fake_config = utils.SystemPaastaConfig({}, '/some/fake/dir') with raises(utils.PaastaNotConfiguredError): fake_config.get_cluster() def test_SystemPaastaConfig_get_volumes(): fake_config = utils.SystemPaastaConfig( { 'volumes': [{'hostPath': "fake_other_path", 'containerPath': '/blurp', 'mode': 'ro'}], }, '/some/fake/dir', ) expected = [{'hostPath': "fake_other_path", 'containerPath': '/blurp', 'mode': 'ro'}] actual = fake_config.get_volumes() assert actual == expected def test_SystemPaastaConfig_get_volumes_dne(): fake_config = utils.SystemPaastaConfig({}, '/some/fake/dir') with raises(utils.PaastaNotConfiguredError): fake_config.get_volumes() def test_SystemPaastaConfig_get_zk(): fake_config = utils.SystemPaastaConfig( { 'zookeeper': 'zk://fake_zookeeper_host', }, '/some/fake/dir', ) expected = 'fake_zookeeper_host' actual = fake_config.get_zk_hosts() assert actual == expected def test_SystemPaastaConfig_get_zk_dne(): fake_config = utils.SystemPaastaConfig({}, '/some/fake/dir') with raises(utils.PaastaNotConfiguredError): fake_config.get_zk_hosts() def test_get_service_registry(): fake_registry = 'fake_registry' fake_service_config = { "description": "This service is fake", "external_link": "www.yelp.com", "git_url": "git@mercurial-scm.org:fake-service", "docker_registry": fake_registry, } with mock.patch( 'service_configuration_lib.read_service_configuration', return_value=fake_service_config, autospec=True, ): actual = utils.get_service_docker_registry('fake_service', 'fake_soa_dir') assert actual == fake_registry def test_get_service_registry_dne(): fake_registry = 'fake_registry' fake_service_config = { "description": "This service is fake", "external_link": "www.yelp.com", "git_url": "git@mercurial-scm.org:fake-service", # no docker_registry configured for this service } fake_system_config = utils.SystemPaastaConfig( { "docker_registry": fake_registry, }, '/some/fake/dir', ) with mock.patch( 'service_configuration_lib.read_service_configuration', return_value=fake_service_config, autospec=True, ): with mock.patch( 'paasta_tools.utils.load_system_paasta_config', return_value=fake_system_config, autospec=True, ): actual = utils.get_service_docker_registry('fake_service', 'fake_soa_dir') assert actual == fake_registry def test_SystemPaastaConfig_get_sensu_host_default(): fake_config = utils.SystemPaastaConfig({}, '/some/fake/dir') actual = fake_config.get_sensu_host() expected = 'localhost' assert actual == expected def test_SystemPaastaConfig_get_sensu_host(): fake_config = utils.SystemPaastaConfig({"sensu_host": "blurp"}, '/some/fake/dir') actual = fake_config.get_sensu_host() expected = 'blurp' assert actual == expected def test_SystemPaastaConfig_get_sensu_host_None(): fake_config = utils.SystemPaastaConfig({"sensu_host": None}, '/some/fake/dir') actual = fake_config.get_sensu_host() expected = None assert actual == expected def test_SystemPaastaConfig_get_sensu_port_default(): fake_config = utils.SystemPaastaConfig({}, '/some/fake/dir') actual = fake_config.get_sensu_port() expected = 3030 assert actual == expected def test_SystemPaastaConfig_get_sensu_port(): fake_config = utils.SystemPaastaConfig({"sensu_port": 4040}, '/some/fake/dir') actual = fake_config.get_sensu_port() expected = 4040 assert actual == expected def test_SystemPaastaConfig_get_metrics_provider(): fake_config = utils.SystemPaastaConfig({"deployd_metrics_provider": 'bar'}, '/some/fake/dir') actual = fake_config.get_metrics_provider() expected = 'bar' assert actual == expected def test_SystemPaastaConfig_get_cluster_fqdn_format_default(): fake_config = utils.SystemPaastaConfig({}, '/some/fake/dir') actual = fake_config.get_cluster_fqdn_format() expected = 'paasta-{cluster:s}.yelp' assert actual == expected def test_SystemPaastaConfig_get_cluster_fqdn_format(): fake_config = utils.SystemPaastaConfig({"cluster_fqdn_format": "paasta-{cluster:s}.something"}, '/some/fake/dir') actual = fake_config.get_cluster_fqdn_format() expected = 'paasta-{cluster:s}.something' assert actual == expected def test_SystemPaastaConfig_get_deployd_number_workers(): fake_config = utils.SystemPaastaConfig({"deployd_number_workers": 3}, '/some/fake/dir') actual = fake_config.get_deployd_number_workers() expected = 3 assert actual == expected def test_SystemPaastaConfig_get_deployd_big_bounce_rate(): fake_config = utils.SystemPaastaConfig({"deployd_big_bounce_rate": 3}, '/some/fake/dir') actual = fake_config.get_deployd_big_bounce_rate() expected = 3 assert actual == expected def test_SystemPaastaConfig_get_deployd_log_level(): fake_config = utils.SystemPaastaConfig({"deployd_log_level": 'DEBUG'}, '/some/fake/dir') actual = fake_config.get_deployd_log_level() expected = 'DEBUG' assert actual == expected @pytest.yield_fixture def umask_022(): old_umask = os.umask(0o022) yield os.umask(old_umask) def test_atomic_file_write_itest(umask_022, tmpdir): target_file_name = tmpdir.join('test_atomic_file_write_itest.txt').strpath with open(target_file_name, 'w') as f_before: f_before.write('old content') with utils.atomic_file_write(target_file_name) as f_new: f_new.write('new content') with open(target_file_name) as f_existing: # While in the middle of an atomic_file_write, the existing # file should still contain the old content, and should not # be truncated, etc. assert f_existing.read() == 'old content' with open(target_file_name) as f_done: # once we're done, the content should be in place. assert f_done.read() == 'new content' file_stat = os.stat(target_file_name) assert stat.S_ISREG(file_stat.st_mode) assert stat.S_IMODE(file_stat.st_mode) == 0o0644 def test_configure_log(): fake_log_writer_config = {'driver': 'fake', 'options': {'fake_arg': 'something'}} with mock.patch('paasta_tools.utils.load_system_paasta_config', autospec=True) as mock_load_system_paasta_config: mock_load_system_paasta_config().get_log_writer.return_value = fake_log_writer_config with mock.patch('paasta_tools.utils.get_log_writer_class', autospec=True) as mock_get_log_writer_class: utils.configure_log() mock_get_log_writer_class.assert_called_once_with('fake') mock_get_log_writer_class('fake').assert_called_once_with(fake_arg='something') def test_compose_job_id_without_hashes(): fake_service = "my_cool_service" fake_instance = "main" expected = "my_cool_service.main" actual = utils.compose_job_id(fake_service, fake_instance) assert actual == expected def test_compose_job_id_with_git_hash(): fake_service = "my_cool_service" fake_instance = "main" fake_git_hash = "git123abc" with raises(utils.InvalidJobNameError): utils.compose_job_id(fake_service, fake_instance, git_hash=fake_git_hash) def test_compose_job_id_with_config_hash(): fake_service = "my_cool_service" fake_instance = "main" fake_config_hash = "config456def" with raises(utils.InvalidJobNameError): utils.compose_job_id(fake_service, fake_instance, config_hash=fake_config_hash) def test_compose_job_id_with_hashes(): fake_service = "my_cool_service" fake_instance = "main" fake_git_hash = "git123abc" fake_config_hash = "config456def" expected = "my_cool_service.main.git123abc.config456def" actual = utils.compose_job_id(fake_service, fake_instance, fake_git_hash, fake_config_hash) assert actual == expected def test_decompose_job_id_too_short(): with raises(utils.InvalidJobNameError): utils.decompose_job_id('foo') def test_decompose_job_id_without_hashes(): fake_job_id = "my_cool_service.main" expected = ("my_cool_service", "main", None, None) actual = utils.decompose_job_id(fake_job_id) assert actual == expected def test_decompose_job_id_with_hashes(): fake_job_id = "my_cool_service.main.git123abc.config456def" expected = ("my_cool_service", "main", "git123abc", "config456def") actual = utils.decompose_job_id(fake_job_id) assert actual == expected def test_build_docker_image_name(): registry_url = "fake_registry" upstream_job_name = "a_really_neat_service" expected = f"{registry_url}/services-{upstream_job_name}" with mock.patch( 'paasta_tools.utils.get_service_docker_registry', autospec=True, return_value=registry_url, ): actual = utils.build_docker_image_name(upstream_job_name) assert actual == expected @mock.patch('paasta_tools.utils.build_docker_image_name', autospec=True) def test_build_docker_tag(mock_build_docker_image_name): upstream_job_name = 'foo' upstream_git_commit = 'bar' mock_build_docker_image_name.return_value = 'fake-registry/services-foo' expected = 'fake-registry/services-foo:paasta-{}'.format( upstream_git_commit, ) actual = utils.build_docker_tag(upstream_job_name, upstream_git_commit) assert actual == expected @mock.patch('paasta_tools.utils.build_docker_image_name', autospec=True) def test_check_docker_image_false(mock_build_docker_image_name): mock_build_docker_image_name.return_value = 'fake-registry/services-foo' fake_app = 'fake_app' fake_commit = 'fake_commit' docker_tag = utils.build_docker_tag(fake_app, fake_commit) with mock.patch('paasta_tools.utils.get_docker_client', autospec=True) as mock_docker: docker_client = mock_docker.return_value docker_client.images.return_value = [ { 'Created': 1425430339, 'VirtualSize': 250344331, 'ParentId': '1111', 'RepoTags': [docker_tag], 'Id': 'ef978820f195dede62e206bbd41568463ab2b79260bc63835a72154fe7e196a2', 'Size': 0, }, ] assert utils.check_docker_image('test_service', 'tag2') is False @mock.patch('paasta_tools.utils.build_docker_image_name', autospec=True) def test_check_docker_image_true(mock_build_docker_image_name): fake_app = 'fake_app' fake_commit = 'fake_commit' mock_build_docker_image_name.return_value = 'fake-registry/services-foo' docker_tag = utils.build_docker_tag(fake_app, fake_commit) with mock.patch('paasta_tools.utils.get_docker_client', autospec=True) as mock_docker: docker_client = mock_docker.return_value docker_client.images.return_value = [ { 'Created': 1425430339, 'VirtualSize': 250344331, 'ParentId': '1111', 'RepoTags': [docker_tag], 'Id': 'ef978820f195dede62e206bbd41568463ab2b79260bc63835a72154fe7e196a2', 'Size': 0, }, ] assert utils.check_docker_image(fake_app, fake_commit) is True def test_remove_ansi_escape_sequences(): plain_string = 'blackandwhite' colored_string = '\033[34m' + plain_string + '\033[0m' assert utils.remove_ansi_escape_sequences(colored_string) == plain_string def test_missing_cluster_configs_are_ignored(): fake_soa_dir = '/nail/etc/services' fake_cluster_configs = [ '/nail/etc/services/service1/marathon-cluster1.yaml', '/nail/etc/services/service2/chronos-cluster2.yaml', ] expected = [] with mock.patch( 'os.path.join', autospec=True, return_value='%s/*' % fake_soa_dir, ) as mock_join_path, mock.patch( 'glob.glob', autospec=True, return_value=fake_cluster_configs, ) as mock_glob: actual = utils.list_clusters(soa_dir=fake_soa_dir) assert actual == expected mock_join_path.assert_called_once_with(fake_soa_dir, '*') mock_glob.assert_called_once_with('%s/*/*.yaml' % fake_soa_dir) def test_list_clusters_no_service_given_lists_all_of_them(): fake_soa_dir = '/nail/etc/services' fake_soa_cluster_configs = [ ['cluster1', '/nail/etc/services/service1/marathon-cluster1.yaml'], ['cluster2', '/nail/etc/services/service1/chronos-cluster2.yaml'], ] expected = ['cluster1', 'cluster2'] with mock.patch( 'paasta_tools.utils.get_soa_cluster_deploy_files', autospec=True, return_value=fake_soa_cluster_configs, ): actual = utils.list_clusters(soa_dir=fake_soa_dir) assert actual == expected def test_list_clusters_with_service(): fake_soa_dir = '/nail/etc/services' fake_service = 'fake_service' fake_soa_cluster_configs = [ ['cluster1', '/nail/etc/services/service1/marathon-cluster1.yaml'], ['cluster2', '/nail/etc/services/service1/chronos-cluster2.yaml'], ] expected = ['cluster1', 'cluster2'] with mock.patch( 'paasta_tools.utils.get_soa_cluster_deploy_files', autospec=True, return_value=fake_soa_cluster_configs, ): actual = utils.list_clusters(fake_service, fake_soa_dir) assert actual == expected def test_list_clusters_ignores_bogus_clusters(): fake_soa_dir = '/nail/etc/services' fake_service = 'fake_service' fake_cluster_configs = [ '/nail/etc/services/service1/marathon-cluster1.yaml', '/nail/etc/services/service1/marathon-PROD.yaml', '/nail/etc/services/service1/chronos-cluster2.yaml', '/nail/etc/services/service1/chronos-SHARED.yaml', ] expected = ['cluster1', 'cluster2'] with mock.patch( 'os.path.join', autospec=True, return_value=f'{fake_soa_dir}/{fake_service}', ), mock.patch( 'glob.glob', autospec=True, return_value=fake_cluster_configs, ), mock.patch( 'builtins.open', autospec=None, path=mock.mock_open(read_data="fakedata"), ): actual = utils.list_clusters(service=fake_service) assert actual == expected def test_list_all_instances_for_service(): service = 'fake_service' clusters = ['fake_cluster'] mock_instances = [(service, 'instance1'), (service, 'instance2')] expected = {'instance1', 'instance2'} with mock.patch( 'paasta_tools.utils.list_clusters', autospec=True, ) as mock_list_clusters, mock.patch( 'paasta_tools.utils.get_service_instance_list', autospec=True, ) as mock_service_instance_list: mock_list_clusters.return_value = clusters mock_service_instance_list.return_value = mock_instances actual = utils.list_all_instances_for_service(service) assert actual == expected mock_list_clusters.assert_called_once_with(service, soa_dir=mock.ANY) mock_service_instance_list.assert_called_once_with(service, clusters[0], None, soa_dir=mock.ANY) def test_get_service_instance_list(): fake_name = 'hint' fake_instance_1 = 'unsweet' fake_instance_2 = 'water' fake_cluster = '16floz' fake_dir = '/nail/home/hipster' fake_job_config: Dict[str, Dict] = { fake_instance_1: {}, fake_instance_2: {}, } expected = [ (fake_name, fake_instance_1), (fake_name, fake_instance_1), (fake_name, fake_instance_1), (fake_name, fake_instance_1), (fake_name, fake_instance_2), (fake_name, fake_instance_2), (fake_name, fake_instance_2), (fake_name, fake_instance_2), ] with mock.patch( 'paasta_tools.utils.service_configuration_lib.read_extra_service_information', autospec=True, return_value=fake_job_config, ) as read_extra_info_patch: actual = utils.get_service_instance_list(fake_name, fake_cluster, soa_dir=fake_dir) read_extra_info_patch.assert_any_call(fake_name, 'marathon-16floz', soa_dir=fake_dir) read_extra_info_patch.assert_any_call(fake_name, 'chronos-16floz', soa_dir=fake_dir) read_extra_info_patch.assert_any_call(fake_name, 'paasta_native-16floz', soa_dir=fake_dir) assert read_extra_info_patch.call_count == 4 assert sorted(expected) == sorted(actual) def test_get_service_instance_list_ignores_underscore(): fake_name = 'hint' fake_instance_1 = 'unsweet' fake_instance_2 = '_ignore_me' fake_cluster = '16floz' fake_dir = '/nail/home/hipster' fake_job_config: Dict[str, Dict] = { fake_instance_1: {}, fake_instance_2: {}, } expected = [ (fake_name, fake_instance_1), (fake_name, fake_instance_1), (fake_name, fake_instance_1), (fake_name, fake_instance_1), ] with mock.patch( 'paasta_tools.utils.service_configuration_lib.read_extra_service_information', autospec=True, return_value=fake_job_config, ): actual = utils.get_service_instance_list(service=fake_name, cluster=fake_cluster, soa_dir=fake_dir) assert sorted(expected) == sorted(actual) def test_get_services_for_cluster(): cluster = 'honey_bunches_of_oats' soa_dir = 'completely_wholesome' instances = [ [ ('fake_service1', 'this_is_testing'), ('fake_service1', 'all_the_things'), ], [ ('fake_service2', 'my_nerf_broke'), ], ] expected = [ ('fake_service2', 'my_nerf_broke'), ('fake_service1', 'this_is_testing'), ('fake_service1', 'all_the_things'), ] with mock.patch( 'os.path.abspath', autospec=True, return_value='chex_mix', ) as abspath_patch, mock.patch( 'os.listdir', autospec=True, return_value=['dir1', 'dir2'], ) as listdir_patch, mock.patch( 'paasta_tools.utils.get_service_instance_list', side_effect=lambda a, b, c, d: instances.pop(), autospec=True, ) as get_instances_patch: actual = utils.get_services_for_cluster(cluster, soa_dir=soa_dir) assert expected == actual abspath_patch.assert_called_once_with(soa_dir) listdir_patch.assert_called_once_with('chex_mix') get_instances_patch.assert_any_call('dir1', cluster, None, soa_dir) get_instances_patch.assert_any_call('dir2', cluster, None, soa_dir) assert get_instances_patch.call_count == 2 def test_get_services_for_cluster_ignores_underscore(): cluster = 'honey_bunches_of_oats' soa_dir = 'completely_wholesome' instances = [ [ ('fake_service1', 'this_is_testing'), ('fake_service1', 'all_the_things'), ('fake_service1', '_ignore_me'), ], [ ('fake_service2', 'my_nerf_broke'), ], ] expected = [ ('fake_service2', 'my_nerf_broke'), ('fake_service1', 'this_is_testing'), ('fake_service1', 'all_the_things'), ] with mock.patch( 'os.path.abspath', autospec=True, return_value='chex_mix', ), mock.patch( 'os.listdir', autospec=True, return_value=['dir1', 'dir2'], ), mock.patch( 'paasta_tools.utils.get_service_instance_list', side_effect=lambda a, b, c, d: instances.pop(), autospec=True, ): actual = utils.get_services_for_cluster(cluster, soa_dir=soa_dir) assert expected == actual def test_color_text(): expected = f"{utils.PaastaColors.RED}hi{utils.PaastaColors.DEFAULT}" actual = utils.PaastaColors.color_text(utils.PaastaColors.RED, "hi") assert actual == expected def test_color_text_nested(): expected = "{}red{}blue{}red{}".format( utils.PaastaColors.RED, utils.PaastaColors.BLUE, utils.PaastaColors.DEFAULT + utils.PaastaColors.RED, utils.PaastaColors.DEFAULT, ) actual = utils.PaastaColors.color_text(utils.PaastaColors.RED, "red%sred" % utils.PaastaColors.blue("blue")) assert actual == expected def test_DeploymentsJson_read(): file_mock = mock.mock_open() fake_dir = '/var/dir_of_fake' fake_path = '/var/dir_of_fake/fake_service/deployments.json' fake_json = { 'v1': { 'no_srv:blaster': { 'docker_image': 'test_rocker:9.9', 'desired_state': 'start', 'force_bounce': None, }, 'dont_care:about': { 'docker_image': 'this:guy', 'desired_state': 'stop', 'force_bounce': '12345', }, }, } with mock.patch( 'builtins.open', file_mock, autospec=None, ) as open_patch, mock.patch( 'json.load', autospec=True, return_value=fake_json, ) as json_patch, mock.patch( 'paasta_tools.utils.os.path.isfile', autospec=True, return_value=True, ): actual = utils.load_deployments_json('fake_service', fake_dir) open_patch.assert_called_once_with(fake_path) json_patch.assert_called_once_with(file_mock.return_value.__enter__.return_value) assert actual == utils.DeploymentsJsonV1(fake_json['v1']) def test_get_running_mesos_docker_containers(): fake_container_data = [ { "Status": "Up 2 hours", "Names": ['/mesos-legit.e1ad42eb-3ed7-4c9b-8711-aff017ef55a5'], "Id": "05698f4156c4f30c8dcd747f7724b14c9af7771c9a4b96fdd6aa37d6419a12a3", }, { "Status": "Up 3 days", "Names": ['/definitely_not_meeeeesos-.6d2fb3aa-2fef-4f98-8fed-df291481e91f'], "Id": "ae66e2c3fe3c4b2a7444212592afea5cc6a4d8ca70ee595036b19949e00a257c", }, ] with mock.patch("paasta_tools.utils.get_docker_client", autospec=True) as mock_docker: docker_client = mock_docker.return_value docker_client.containers.return_value = fake_container_data assert len(utils.get_running_mesos_docker_containers()) == 1 def test_run_cancels_timer_thread_on_keyboard_interrupt(): mock_process = mock.Mock() mock_timer_object = mock.Mock() with mock.patch( 'paasta_tools.utils.Popen', autospec=True, return_value=mock_process, ), mock.patch( 'paasta_tools.utils.threading.Timer', autospec=True, return_value=mock_timer_object, ): mock_process.stdout.readline.side_effect = KeyboardInterrupt with raises(KeyboardInterrupt): utils._run('sh echo foo', timeout=10) assert mock_timer_object.cancel.call_count == 1 def test_run_returns_when_popen_fails(): fake_exception = OSError(1234, 'fake error') with mock.patch('paasta_tools.utils.Popen', autospec=True, side_effect=fake_exception): return_code, output = utils._run('nonexistant command', timeout=10) assert return_code == 1234 assert 'fake error' in output @pytest.mark.parametrize( ('dcts', 'expected'), ( ( [{'a': 'b'}, {'c': 'd'}], [{'a': 'b'}, {'c': 'd'}], ), ( [{'c': 'd'}, {'a': 'b'}], [{'a': 'b'}, {'c': 'd'}], ), ( [{'a': 'b', 'c': 'd'}, {'a': 'b'}], [{'a': 'b'}, {'a': 'b', 'c': 'd'}], ), ), ) def test_sort_dcts(dcts, expected): assert utils.sort_dicts(dcts) == expected class TestInstanceConfig: def test_get_monitoring(self): fake_info = {'fake_key': 'fake_value'} assert utils.InstanceConfig( service='', cluster='', instance='', config_dict={'monitoring': fake_info}, branch_dict=None, ).get_monitoring() == fake_info def test_get_cpus_in_config(self): fake_conf = utils.InstanceConfig( service='', cluster='', instance='', config_dict={'cpus': -5}, branch_dict=None, ) assert fake_conf.get_cpus() == -5 def test_get_cpus_in_config_float(self): fake_conf = utils.InstanceConfig( service='', cluster='', instance='', config_dict={'cpus': .66}, branch_dict=None, ) assert fake_conf.get_cpus() == .66 def test_get_cpus_default(self): fake_conf = utils.InstanceConfig( service='', cluster='', instance='', config_dict={}, branch_dict=None, ) assert fake_conf.get_cpus() == .25 def test_get_mem_in_config(self): fake_conf = utils.InstanceConfig( service='', instance='', cluster='', config_dict={'mem': -999}, branch_dict=None, ) assert fake_conf.get_mem() == -999 def test_get_mem_default(self): fake_conf = utils.InstanceConfig( service='', instance='', cluster='', config_dict={}, branch_dict=None, ) assert fake_conf.get_mem() == 1024 def test_zero_cpu_burst(self): fake_conf = utils.InstanceConfig( service='fake_name', cluster='', instance='fake_instance', config_dict={'cpu_burst_pct': 0, 'cpus': 1}, branch_dict=None, ) assert fake_conf.get_cpu_quota() == 100000 def test_format_docker_parameters_default(self): fake_conf = utils.InstanceConfig( service='fake_name', cluster='', instance='fake_instance', config_dict={ 'cpus': 1, 'mem': 1024, }, branch_dict=None, ) assert fake_conf.format_docker_parameters() == [ {"key": "memory-swap", "value": '1088m'}, {"key": "cpu-period", "value": "100000"}, {"key": "cpu-quota", "value": "1000000"}, {"key": "label", "value": "paasta_service=fake_name"}, {"key": "label", "value": "paasta_instance=fake_instance"}, ] def test_format_docker_parameters_non_default(self): fake_conf = utils.InstanceConfig( service='fake_name', cluster='', instance='fake_instance', config_dict={ 'cpu_burst_pct': 200, 'cfs_period_us': 200000, 'cpus': 1, 'mem': 1024, 'ulimit': { 'nofile': {'soft': 1024, 'hard': 2048}, 'nice': {'soft': 20}, }, 'cap_add': ['IPC_LOCK', 'SYS_PTRACE'], }, branch_dict=None, ) assert fake_conf.format_docker_parameters() == [ {"key": "memory-swap", "value": '1088m'}, {"key": "cpu-period", "value": "200000"}, {"key": "cpu-quota", "value": "600000"}, {"key": "label", "value": "paasta_service=fake_name"}, {"key": "label", "value": "paasta_instance=fake_instance"}, {"key": "ulimit", "value": "nice=20"}, {"key": "ulimit", "value": "nofile=1024:2048"}, {"key": "cap-add", "value": "IPC_LOCK"}, {"key": "cap-add", "value": "SYS_PTRACE"}, ] def test_full_cpu_burst(self): fake_conf = utils.InstanceConfig( service='fake_name', cluster='', instance='fake_instance', config_dict={'cpu_burst_pct': 100, 'cpus': 1}, branch_dict=None, ) assert fake_conf.get_cpu_quota() == 200000 def test_get_mem_swap_int(self): fake_conf = utils.InstanceConfig( service='', instance='', cluster='', config_dict={ 'mem': 50, }, branch_dict=None, ) assert fake_conf.get_mem_swap() == "114m" def test_get_mem_swap_float_rounds_up(self): fake_conf = utils.InstanceConfig( service='', instance='', cluster='', config_dict={ 'mem': 50.4, }, branch_dict=None, ) assert fake_conf.get_mem_swap() == "115m" def test_get_disk_in_config(self): fake_conf = utils.InstanceConfig( service='', instance='', cluster='', config_dict={'disk': -999}, branch_dict=None, ) assert fake_conf.get_disk() == -999 def test_get_disk_default(self): fake_conf = utils.InstanceConfig( service='', instance='', cluster='', config_dict={}, branch_dict=None, ) assert fake_conf.get_disk() == 1024 def test_get_gpus_in_config(self): fake_conf = utils.InstanceConfig( service='', instance='', cluster='', config_dict={'gpus': -123}, branch_dict=None, ) assert fake_conf.get_gpus() == -123 def test_get_gpus_default(self): fake_conf = utils.InstanceConfig( service='', instance='', cluster='', config_dict={}, branch_dict=None, ) assert fake_conf.get_gpus() == 0 def test_get_ulimit_in_config(self): fake_conf = utils.InstanceConfig( service='', instance='', cluster='', config_dict={ 'ulimit': { 'nofile': {'soft': 1024, 'hard': 2048}, 'nice': {'soft': 20}, }, }, branch_dict=None, ) assert list(fake_conf.get_ulimit()) == [ {"key": "ulimit", "value": "nice=20"}, {"key": "ulimit", "value": "nofile=1024:2048"}, ] def test_get_ulimit_default(self): fake_conf = utils.InstanceConfig( service='', instance='', cluster='', config_dict={}, branch_dict=None, ) assert list(fake_conf.get_ulimit()) == [] def test_get_cap_add_in_config(self): fake_conf = utils.InstanceConfig( service='', instance='', cluster='', config_dict={ 'cap_add': ['IPC_LOCK', 'SYS_PTRACE'], }, branch_dict=None, ) assert list(fake_conf.get_cap_add()) == [ {"key": "cap-add", "value": "IPC_LOCK"}, {"key": "cap-add", "value": "SYS_PTRACE"}, ] def test_get_cap_add_default(self): fake_conf = utils.InstanceConfig( service='', instance='', cluster='', config_dict={}, branch_dict=None, ) assert list(fake_conf.get_cap_add()) == [] def test_deploy_group_default(self): fake_conf = utils.InstanceConfig( service='', instance='fake_instance', cluster='fake_cluster', config_dict={}, branch_dict=None, ) assert fake_conf.get_deploy_group() == 'fake_cluster.fake_instance' def test_deploy_group_if_config(self): fake_conf = utils.InstanceConfig( service='', instance='', cluster='', config_dict={'deploy_group': 'fake_deploy_group'}, branch_dict=None, ) assert fake_conf.get_deploy_group() == 'fake_deploy_group' def test_deploy_group_string_interpolation(self): fake_conf = utils.InstanceConfig( service='', instance='', cluster='fake_cluster', config_dict={'deploy_group': 'cluster_is_{cluster}'}, branch_dict=None, ) assert fake_conf.get_deploy_group() == 'cluster_is_fake_cluster' def test_get_cmd_default(self): fake_conf = utils.InstanceConfig( service='', cluster='', instance='', config_dict={}, branch_dict=None, ) assert fake_conf.get_cmd() is None def test_get_cmd_in_config(self): fake_conf = utils.InstanceConfig( service='', cluster='', instance='', config_dict={'cmd': 'FAKECMD'}, branch_dict=None, ) assert fake_conf.get_cmd() == 'FAKECMD' def test_get_env_default(self): fake_conf = utils.InstanceConfig( service='fake_service', cluster='fake_cluster', instance='fake_instance', config_dict={}, branch_dict=None, ) assert fake_conf.get_env() == { 'PAASTA_SERVICE': 'fake_service', 'PAASTA_INSTANCE': 'fake_instance', 'PAASTA_CLUSTER': 'fake_cluster', 'PAASTA_DEPLOY_GROUP': 'fake_cluster.fake_instance', 'PAASTA_DOCKER_IMAGE': '', } def test_get_env_with_config(self): fake_conf = utils.InstanceConfig( service='', cluster='', instance='', config_dict={ 'env': {'SPECIAL_ENV': 'TRUE'}, 'deploy_group': 'fake_deploy_group', 'monitoring': {'team': 'generic_team'}, }, branch_dict={'docker_image': 'something'}, ) assert fake_conf.get_env() == { 'SPECIAL_ENV': 'TRUE', 'PAASTA_SERVICE': '', 'PAASTA_INSTANCE': '', 'PAASTA_CLUSTER': '', 'PAASTA_DEPLOY_GROUP': 'fake_deploy_group', 'PAASTA_DOCKER_IMAGE': 'something', 'PAASTA_MONITORING_TEAM': 'generic_team', } def test_get_args_default_no_cmd(self): fake_conf = utils.InstanceConfig( service='', cluster='', instance='', config_dict={}, branch_dict=None, ) assert fake_conf.get_args() == [] def test_get_args_default_with_cmd(self): fake_conf = utils.InstanceConfig( service='', cluster='', instance='', config_dict={'cmd': 'FAKECMD'}, branch_dict=None, ) assert fake_conf.get_args() is None def test_get_args_in_config(self): fake_conf = utils.InstanceConfig( service='', cluster='', instance='', config_dict={'args': ['arg1', 'arg2']}, branch_dict=None, ) assert fake_conf.get_args() == ['arg1', 'arg2'] def test_get_args_in_config_with_cmd(self): fake_conf = utils.InstanceConfig( service='', cluster='', instance='', config_dict={'args': ['A'], 'cmd': 'C'}, branch_dict=None, ) fake_conf.get_cmd() with raises(utils.InvalidInstanceConfig): fake_conf.get_args() def test_get_force_bounce(self): fake_conf = utils.InstanceConfig( service='', cluster='', instance='', config_dict={}, branch_dict={'force_bounce': 'blurp'}, ) assert fake_conf.get_force_bounce() == 'blurp' def test_get_desired_state(self): fake_conf = utils.InstanceConfig( service='', cluster='', instance='', config_dict={}, branch_dict={'desired_state': 'stop'}, ) assert fake_conf.get_desired_state() == 'stop' def test_monitoring_blacklist_default(self): fake_conf = utils.InstanceConfig( service='', cluster='', instance='', config_dict={}, branch_dict=None, ) assert fake_conf.get_monitoring_blacklist(system_deploy_blacklist=[]) == [] def test_monitoring_blacklist_defaults_to_deploy_blacklist(self): fake_deploy_blacklist = [("region", "fake_region")] fake_conf = utils.InstanceConfig( service='', cluster='', instance='', config_dict={'deploy_blacklist': fake_deploy_blacklist}, branch_dict=None, ) assert fake_conf.get_monitoring_blacklist(system_deploy_blacklist=[]) == fake_deploy_blacklist def test_deploy_blacklist_default(self): fake_conf = utils.InstanceConfig( service='', cluster='', instance='', config_dict={}, branch_dict=None, ) assert fake_conf.get_deploy_blacklist() == [] def test_deploy_blacklist_reads_blacklist(self): fake_deploy_blacklist = [("region", "fake_region")] fake_conf = utils.InstanceConfig( service='', cluster='', instance='', config_dict={'deploy_blacklist': fake_deploy_blacklist}, branch_dict=None, ) assert fake_conf.get_deploy_blacklist() == fake_deploy_blacklist def test_extra_volumes_default(self): fake_conf = utils.InstanceConfig( service='', cluster='', instance='', config_dict={}, branch_dict=None, ) assert fake_conf.get_extra_volumes() == [] def test_extra_volumes_normal(self): fake_extra_volumes: List[utils.DockerVolume] = [ { "containerPath": "/etc/a", "hostPath": "/var/data/a", "mode": "RO", }, ] fake_conf = utils.InstanceConfig( service='', cluster='', instance='', config_dict={'extra_volumes': fake_extra_volumes}, branch_dict=None, ) assert fake_conf.get_extra_volumes() == fake_extra_volumes def test_get_pool(self): pool = "poolname" fake_conf = utils.InstanceConfig( service='', cluster='', instance='', config_dict={'pool': pool}, branch_dict=None, ) assert fake_conf.get_pool() == pool def test_get_pool_default(self): fake_conf = utils.InstanceConfig( service='', cluster='', instance='', config_dict={}, branch_dict=None, ) assert fake_conf.get_pool() == 'default' def test_get_volumes_dedupes_correctly_when_mode_differs_last_wins(self): fake_conf = utils.InstanceConfig( service='', cluster='', instance='', config_dict={ 'extra_volumes': [ {"containerPath": "/a", "hostPath": "/a", "mode": "RW"}, {"containerPath": "/a", "hostPath": "/a", "mode": "RO"}, ], }, branch_dict=None, ) system_volumes: List[utils.DockerVolume] = [] assert fake_conf.get_volumes(system_volumes) == [ {"containerPath": "/a", "hostPath": "/a", "mode": "RO"}, ] def test_get_volumes_dedupes_respects_hostpath(self): fake_conf = utils.InstanceConfig( service='', cluster='', instance='', config_dict={ 'extra_volumes': [ {"containerPath": "/a", "hostPath": "/a", "mode": "RO"}, {"containerPath": "/a", "hostPath": "/other_a", "mode": "RO"}, ], }, branch_dict=None, ) system_volumes: List[utils.DockerVolume] = [{"containerPath": "/a", "hostPath": "/a", "mode": "RO"}] assert fake_conf.get_volumes(system_volumes) == [ {"containerPath": "/a", "hostPath": "/a", "mode": "RO"}, {"containerPath": "/a", "hostPath": "/other_a", "mode": "RO"}, ] def test_get_volumes_handles_dupes_everywhere(self): fake_conf = utils.InstanceConfig( service='', cluster='', instance='', config_dict={ 'extra_volumes': [ {"containerPath": "/a", "hostPath": "/a", "mode": "RO"}, {"containerPath": "/b", "hostPath": "/b", "mode": "RO"}, {"containerPath": "/c", "hostPath": "/c", "mode": "RO"}, ], }, branch_dict=None, ) system_volumes: List[utils.DockerVolume] = [ {"containerPath": "/a", "hostPath": "/a", "mode": "RO"}, {"containerPath": "/b", "hostPath": "/b", "mode": "RO"}, {"containerPath": "/d", "hostPath": "/d", "mode": "RO"}, ] assert fake_conf.get_volumes(system_volumes) == [ {"containerPath": "/a", "hostPath": "/a", "mode": "RO"}, {"containerPath": "/b", "hostPath": "/b", "mode": "RO"}, {"containerPath": "/c", "hostPath": "/c", "mode": "RO"}, {"containerPath": "/d", "hostPath": "/d", "mode": "RO"}, ] def test_get_volumes_prefers_extra_volumes_over_system(self): fake_conf = utils.InstanceConfig( service='', cluster='', instance='', config_dict={ 'extra_volumes': [ {"containerPath": "/a", "hostPath": "/a", "mode": "RW"}, ], }, branch_dict=None, ) system_volumes: List[utils.DockerVolume] = [ {"containerPath": "/a", "hostPath": "/a", "mode": "RO"}, ] assert fake_conf.get_volumes(system_volumes) == [ {"containerPath": "/a", "hostPath": "/a", "mode": "RW"}, ] def test_get_volumes_handles_dupes_with_trailing_slashes(self): fake_conf = utils.InstanceConfig( service='', cluster='', instance='', config_dict={ 'extra_volumes': [ {"containerPath": "/a", "hostPath": "/a", "mode": "RO"}, {"containerPath": "/b", "hostPath": "/b", "mode": "RO"}, ], }, branch_dict=None, ) system_volumes: List[utils.DockerVolume] = [ {"containerPath": "/a", "hostPath": "/a", "mode": "RO"}, {"containerPath": "/b/", "hostPath": "/b/", "mode": "RO"}, ] # note: prefers extra_volumes over system_volumes assert fake_conf.get_volumes(system_volumes) == [ {"containerPath": "/a", "hostPath": "/a", "mode": "RO"}, {"containerPath": "/b", "hostPath": "/b", "mode": "RO"}, ] def test_get_volumes_preserves_trailing_slash(self): fake_conf = utils.InstanceConfig( service='', cluster='', instance='', config_dict={ 'extra_volumes': [ {"containerPath": "/a/", "hostPath": "/a/", "mode": "RW"}, ], }, branch_dict=None, ) system_volumes: List[utils.DockerVolume] = [ {"containerPath": "/b/", "hostPath": "/b/", "mode": "RW"}, ] assert fake_conf.get_volumes(system_volumes) == [ {"containerPath": "/a/", "hostPath": "/a/", "mode": "RW"}, {"containerPath": "/b/", "hostPath": "/b/", "mode": "RW"}, ] def test_get_docker_url_no_error(self): fake_registry = "im.a-real.vm" fake_image = "and-i-can-run:1.0" fake_conf = utils.InstanceConfig( service='', cluster='', instance='', config_dict={}, branch_dict=None, ) with mock.patch( 'paasta_tools.utils.InstanceConfig.get_docker_registry', autospec=True, return_value=fake_registry, ), mock.patch( 'paasta_tools.utils.InstanceConfig.get_docker_image', autospec=True, return_value=fake_image, ): expected_url = f"{fake_registry}/{fake_image}" assert fake_conf.get_docker_url() == expected_url @pytest.mark.parametrize( ('dependencies_reference', 'dependencies', 'expected'), [ (None, None, None), ('aaa', None, None), ('aaa', {}, None), ('aaa', {"aaa": [{"foo": "bar"}]}, {"foo": "bar"}), ('aaa', {"bbb": [{"foo": "bar"}]}, None), ], ) def test_get_dependencies(self, dependencies_reference, dependencies, expected): fake_conf = utils.InstanceConfig( service='', cluster='', instance='', config_dict={ 'dependencies_reference': dependencies_reference, 'dependencies': dependencies, }, branch_dict=None, ) fake_conf.get_dependencies() == expected @pytest.mark.parametrize( ('security', 'expected'), [ ({}, None), (None, None), ({"outbound_firewall": "monitor"}, 'monitor'), ({"outbound_firewall": "foo"}, 'foo'), ], ) def test_get_outbound_firewall(self, security, expected): fake_conf = utils.InstanceConfig( service='', cluster='', instance='', config_dict={'security': security}, branch_dict=None, ) fake_conf.get_outbound_firewall() == expected @pytest.mark.parametrize( ('security', 'expected'), [ ({}, (True, '')), ({"outbound_firewall": "monitor"}, (True, '')), ({"outbound_firewall": "block"}, (True, '')), ({"outbound_firewall": "foo"}, (False, 'Unrecognized outbound_firewall value "foo"')), ( {"outbound_firewall": "monitor", "foo": 1}, (False, 'Unrecognized items in security dict of service config: "foo"'), ), ], ) def test_check_security(self, security, expected): fake_conf = utils.InstanceConfig( service='', cluster='', instance='', config_dict={'security': security}, branch_dict=None, ) assert fake_conf.check_security() == expected @pytest.mark.parametrize( ('dependencies_reference', 'dependencies', 'expected'), [ (None, None, (True, '')), ('aaa', {"aaa": []}, (True, '')), ('aaa', None, (False, 'dependencies_reference "aaa" declared but no dependencies found')), ('aaa', {"bbb": []}, (False, 'dependencies_reference "aaa" not found in dependencies dictionary')), ], ) def test_check_dependencies_reference(self, dependencies_reference, dependencies, expected): fake_conf = utils.InstanceConfig( service='', cluster='', instance='', config_dict={ 'dependencies_reference': dependencies_reference, 'dependencies': dependencies, }, branch_dict=None, ) assert fake_conf.check_dependencies_reference() == expected def test_is_under_replicated_ok(): num_available = 1 expected_count = 1 crit_threshold = 50 actual = utils.is_under_replicated(num_available, expected_count, crit_threshold) assert actual == (False, float(100)) def test_is_under_replicated_zero(): num_available = 1 expected_count = 0 crit_threshold = 50 actual = utils.is_under_replicated(num_available, expected_count, crit_threshold) assert actual == (False, float(100)) def test_is_under_replicated_critical(): num_available = 0 expected_count = 1 crit_threshold = 50 actual = utils.is_under_replicated(num_available, expected_count, crit_threshold) assert actual == (True, float(0)) def test_deploy_blacklist_to_constraints(): fake_deploy_blacklist = [("region", "useast1-prod"), ("habitat", "fake_habitat")] expected_constraints = [["region", "UNLIKE", "useast1-prod"], ["habitat", "UNLIKE", "fake_habitat"]] actual = utils.deploy_blacklist_to_constraints(fake_deploy_blacklist) assert actual == expected_constraints def test_validate_service_instance_valid_marathon(): mock_marathon_services = [('service1', 'main'), ('service2', 'main')] mock_chronos_services = [('service1', 'worker'), ('service2', 'tailer')] my_service = 'service1' my_instance = 'main' fake_cluster = 'fake_cluster' fake_soa_dir = 'fake_soa_dir' with mock.patch( 'paasta_tools.utils.get_services_for_cluster', autospec=True, side_effect=[mock_marathon_services, mock_chronos_services], ) as get_services_for_cluster_patch: assert utils.validate_service_instance( my_service, my_instance, fake_cluster, fake_soa_dir, ) == 'marathon' assert mock.call( cluster=fake_cluster, instance_type='marathon', soa_dir=fake_soa_dir, ) in get_services_for_cluster_patch.call_args_list def test_validate_service_instance_valid_chronos(): mock_marathon_services = [('service1', 'main'), ('service2', 'main')] mock_chronos_services = [('service1', 'worker'), ('service2', 'tailer')] my_service = 'service1' my_instance = 'worker' fake_cluster = 'fake_cluster' fake_soa_dir = 'fake_soa_dir' with mock.patch( 'paasta_tools.utils.get_services_for_cluster', autospec=True, side_effect=[mock_marathon_services, mock_chronos_services], ) as get_services_for_cluster_patch: assert utils.validate_service_instance( my_service, my_instance, fake_cluster, fake_soa_dir, ) == 'chronos' assert mock.call( cluster=fake_cluster, instance_type='chronos', soa_dir=fake_soa_dir, ) in get_services_for_cluster_patch.call_args_list def test_validate_service_instance_invalid(): mock_marathon_services = [('service1', 'main'), ('service2', 'main')] mock_chronos_services = [('service1', 'worker'), ('service2', 'tailer')] mock_paasta_native_services = [('service1', 'main2'), ('service2', 'main2')] mock_adhoc_services = [('service1', 'interactive'), ('service2', 'interactive')] my_service = 'bad_service' my_instance = 'main' fake_cluster = 'fake_cluster' fake_soa_dir = 'fake_soa_dir' with mock.patch( 'paasta_tools.utils.get_services_for_cluster', autospec=True, side_effect=[ mock_marathon_services, mock_chronos_services, mock_paasta_native_services, mock_adhoc_services, ], ): with raises(utils.NoConfigurationForServiceError): utils.validate_service_instance( my_service, my_instance, fake_cluster, fake_soa_dir, ) def test_terminal_len(): assert len('some text') == utils.terminal_len(utils.PaastaColors.red('some text')) def test_format_table(): actual = utils.format_table( [ ['looooong', 'y', 'z'], ['a', 'looooong', 'c'], ['j', 'k', 'looooong'], ], ) expected = [ 'looooong y z', 'a looooong c', 'j k looooong', ] assert actual == expected assert ["a b c"] == utils.format_table([['a', 'b', 'c']], min_spacing=5) def test_format_table_with_interjected_lines(): actual = utils.format_table( [ ['looooong', 'y', 'z'], 'interjection', ['a', 'looooong', 'c'], 'unicode interjection', ['j', 'k', 'looooong'], ], ) expected = [ 'looooong y z', 'interjection', 'a looooong c', 'unicode interjection', 'j k looooong', ] assert actual == expected def test_format_table_all_strings(): actual = utils.format_table(['foo', 'bar', 'baz']) expected = ['foo', 'bar', 'baz'] assert actual == expected def test_parse_timestamp(): actual = utils.parse_timestamp('19700101T000000') expected = datetime.datetime(year=1970, month=1, day=1, hour=0, minute=0, second=0) assert actual == expected def test_null_log_writer(): """Basic smoke test for NullLogWriter""" lw = utils.NullLogWriter(driver='null') lw.log('fake_service', 'fake_line', 'build', 'BOGUS_LEVEL') class TestFileLogWriter: def test_smoke(self): """Smoke test for FileLogWriter""" fw = utils.FileLogWriter('/dev/null') fw.log('fake_service', 'fake_line', 'build', 'BOGUS_LEVEL') def test_format_path(self): """Test the path formatting for FileLogWriter""" fw = utils.FileLogWriter("/logs/{service}/{component}/{level}/{cluster}/{instance}") expected = "/logs/a/b/c/d/e" assert expected == fw.format_path("a", "b", "c", "d", "e") def test_maybe_flock(self): """Make sure we flock and unflock when flock=True""" with mock.patch("paasta_tools.utils.fcntl", autospec=True) as mock_fcntl: fw = utils.FileLogWriter("/dev/null", flock=True) mock_file = mock.Mock() with fw.maybe_flock(mock_file): mock_fcntl.flock.assert_called_once_with(mock_file.fileno(), mock_fcntl.LOCK_EX) mock_fcntl.flock.reset_mock() mock_fcntl.flock.assert_called_once_with(mock_file.fileno(), mock_fcntl.LOCK_UN) def test_maybe_flock_flock_false(self): """Make sure we don't flock/unflock when flock=False""" with mock.patch("paasta_tools.utils.fcntl", autospec=True) as mock_fcntl: fw = utils.FileLogWriter("/dev/null", flock=False) mock_file = mock.Mock() with fw.maybe_flock(mock_file): assert mock_fcntl.flock.call_count == 0 assert mock_fcntl.flock.call_count == 0 def test_log_makes_exactly_one_write_call(self): """We want to make sure that log() makes exactly one call to write, since that's how we ensure atomicity.""" fake_file = mock.Mock() fake_contextmgr = mock.Mock( __enter__=lambda _self: fake_file, __exit__=lambda _self, t, v, tb: None, ) fake_line = "text" * 1000000 with mock.patch("paasta_tools.utils.io.FileIO", return_value=fake_contextmgr, autospec=True) as mock_FileIO: fw = utils.FileLogWriter("/dev/null", flock=False) with mock.patch("paasta_tools.utils.format_log_line", return_value=fake_line, autospec=True) as fake_fll: fw.log("service", "line", "component", level="level", cluster="cluster", instance="instance") fake_fll.assert_called_once_with("level", "cluster", "service", "instance", "component", "line") mock_FileIO.assert_called_once_with("/dev/null", mode=fw.mode, closefd=True) fake_file.write.assert_called_once_with(f"{fake_line}\n".encode('UTF-8')) def test_write_raises_IOError(self): fake_file = mock.Mock() fake_file.write.side_effect = IOError("hurp durp") fake_contextmgr = mock.Mock( __enter__=lambda _self: fake_file, __exit__=lambda _self, t, v, tb: None, ) fake_line = "line" with mock.patch( "paasta_tools.utils.io.FileIO", return_value=fake_contextmgr, autospec=True, ), mock.patch( "paasta_tools.utils.paasta_print", autospec=True, ) as mock_print, mock.patch( "paasta_tools.utils.format_log_line", return_value=fake_line, autospec=True, ): fw = utils.FileLogWriter("/dev/null", flock=False) fw.log( service="service", line="line", component="build", level="level", cluster="cluster", instance="instance", ) mock_print.assert_called_once_with( mock.ANY, file=sys.stderr, ) # On python3, they merged IOError and OSError. Once paasta is fully py3, replace mock.ANY above with the OSError # message below. assert mock_print.call_args[0][0] in { "Could not log to /dev/null: IOError: hurp durp -- would have logged: line\n", "Could not log to /dev/null: OSError: hurp durp -- would have logged: line\n", } def test_deep_merge_dictionaries(): overrides = { 'common_key': 'value', 'common_dict': { 'subkey1': 1, 'subkey2': 2, 'subkey3': 3, }, 'just_in_overrides': 'value', 'just_in_overrides_dict': {'key': 'value'}, 'overwriting_key': 'value', 'overwriting_dict': {'test': 'value'}, } defaults = { 'common_key': 'overwritten_value', 'common_dict': { 'subkey1': 'overwritten_value', 'subkey4': 4, 'subkey5': 5, }, 'just_in_defaults': 'value', 'just_in_defaults_dict': {'key': 'value'}, 'overwriting_key': {'overwritten-key', 'overwritten-value'}, 'overwriting_dict': 'overwritten-value', } expected = { 'common_key': 'value', 'common_dict': { 'subkey1': 1, 'subkey2': 2, 'subkey3': 3, 'subkey4': 4, 'subkey5': 5, }, 'just_in_overrides': 'value', 'just_in_overrides_dict': {'key': 'value'}, 'just_in_defaults': 'value', 'just_in_defaults_dict': {'key': 'value'}, 'overwriting_key': 'value', 'overwriting_dict': {'test': 'value'}, } assert utils.deep_merge_dictionaries(overrides, defaults, allow_duplicate_keys=True) == expected def test_deep_merge_dictionaries_no_duplicate_keys_allowed(): # Nested dicts should be allowed overrides = { "nested": { "a": "override", }, } defaults = { "nested": { "b": "default", }, } expected = { "nested": { "a": "override", "b": "default", }, } assert utils.deep_merge_dictionaries(overrides, defaults, allow_duplicate_keys=True) == expected del expected overrides = { "a": "override", } defaults = { "a": "default", } with raises(utils.DuplicateKeyError): utils.deep_merge_dictionaries(overrides, defaults, allow_duplicate_keys=False) overrides = { "nested": { "a": "override", }, } defaults = { "nested": { "a": "default", }, } with raises(utils.DuplicateKeyError): utils.deep_merge_dictionaries(overrides, defaults, allow_duplicate_keys=False) def test_function_composition(): def func_one(count): return count + 1 def func_two(count): return count + 1 composed_func = utils.compose(func_one, func_two) assert composed_func(0) == 2 def test_is_deploy_step(): assert utils.is_deploy_step('prod.main') assert utils.is_deploy_step('thingy') assert not utils.is_deploy_step('itest') assert not utils.is_deploy_step('performance-check') assert not utils.is_deploy_step('command-thingy') def test_long_job_id_to_short_job_id(): assert utils.long_job_id_to_short_job_id('service.instance.git.config') == 'service.instance' def test_mean(): iterable = [1.0, 2.0, 3.0] assert utils.mean(iterable) == 2.0 def test_prompt_pick_one_happy(): with mock.patch( 'paasta_tools.utils.sys.stdin', autospec=True, ) as mock_stdin, mock.patch( 'paasta_tools.utils.choice.Menu', autospec=True, ) as mock_menu: mock_stdin.isatty.return_value = True mock_menu.return_value = mock.Mock(ask=mock.Mock(return_value='choiceA')) assert utils.prompt_pick_one(['choiceA'], 'test') == 'choiceA' def test_prompt_pick_one_quit(): with mock.patch( 'paasta_tools.utils.sys.stdin', autospec=True, ) as mock_stdin, mock.patch( 'paasta_tools.utils.choice.Menu', autospec=True, ) as mock_menu: mock_stdin.isatty.return_value = True mock_menu.return_value = mock.Mock(ask=mock.Mock(return_value=(None, 'quit'))) with raises(SystemExit): utils.prompt_pick_one(['choiceA', 'choiceB'], 'test') def test_prompt_pick_one_keyboard_interrupt(): with mock.patch( 'paasta_tools.utils.sys.stdin', autospec=True, ) as mock_stdin, mock.patch( 'paasta_tools.utils.choice.Menu', autospec=True, ) as mock_menu: mock_stdin.isatty.return_value = True mock_menu.return_value = mock.Mock(ask=mock.Mock(side_effect=KeyboardInterrupt)) with raises(SystemExit): utils.prompt_pick_one(['choiceA', 'choiceB'], 'test') def test_prompt_pick_one_eoferror(): with mock.patch( 'paasta_tools.utils.sys.stdin', autospec=True, ) as mock_stdin, mock.patch( 'paasta_tools.utils.choice.Menu', autospec=True, ) as mock_menu: mock_stdin.isatty.return_value = True mock_menu.return_value = mock.Mock(ask=mock.Mock(side_effect=EOFError)) with raises(SystemExit): utils.prompt_pick_one(['choiceA', 'choiceB'], 'test') def test_prompt_pick_one_exits_no_tty(): with mock.patch('paasta_tools.utils.sys.stdin', autospec=True) as mock_stdin: mock_stdin.isatty.return_value = False with raises(SystemExit): utils.prompt_pick_one(['choiceA', 'choiceB'], 'test') def test_prompt_pick_one_exits_no_choices(): with mock.patch('paasta_tools.utils.sys.stdin', autospec=True) as mock_stdin: mock_stdin.isatty.return_value = True with raises(SystemExit): utils.prompt_pick_one([], 'test') def test_get_code_sha_from_dockerurl(): fake_docker_url = 'docker-paasta.yelpcorp.com:443/services-cieye:paasta-93340779404579' actual = utils.get_code_sha_from_dockerurl(fake_docker_url) assert actual == 'git93340779' # Useful mostly for integration tests, where we run busybox a lot. assert utils.get_code_sha_from_dockerurl('docker.io/busybox') == 'gitbusybox' @mock.patch("paasta_tools.utils.fcntl.flock", autospec=True, wraps=utils.fcntl.flock) def test_flock(mock_flock, tmpdir): my_file = tmpdir.join('my-file') with open(str(my_file), 'w') as f: with utils.flock(f): mock_flock.assert_called_once_with(f.fileno(), utils.fcntl.LOCK_EX) mock_flock.reset_mock() mock_flock.assert_called_once_with(f.fileno(), utils.fcntl.LOCK_UN) @mock.patch("paasta_tools.utils.Timeout", autospec=True) @mock.patch("paasta_tools.utils.fcntl.flock", autospec=True, wraps=utils.fcntl.flock) def test_timed_flock_ok(mock_flock, mock_timeout, tmpdir): my_file = tmpdir.join('my-file') with open(str(my_file), 'w') as f: with utils.timed_flock(f, seconds=mock.sentinel.seconds): mock_timeout.assert_called_once_with(seconds=mock.sentinel.seconds) mock_flock.assert_called_once_with(f.fileno(), utils.fcntl.LOCK_EX) mock_flock.reset_mock() mock_flock.assert_called_once_with(f.fileno(), utils.fcntl.LOCK_UN) @mock.patch("paasta_tools.utils.Timeout", autospec=True, side_effect=utils.TimeoutError('Oh noes')) @mock.patch("paasta_tools.utils.fcntl.flock", autospec=True, wraps=utils.fcntl.flock) def test_timed_flock_timeout(mock_flock, mock_timeout, tmpdir): my_file = tmpdir.join('my-file') with open(str(my_file), 'w') as f: with pytest.raises(utils.TimeoutError): with utils.timed_flock(f): assert False # pragma: no cover assert mock_flock.mock_calls == [] @mock.patch("paasta_tools.utils.fcntl.flock", autospec=True, wraps=utils.fcntl.flock) def test_timed_flock_inner_timeout_ok(mock_flock, tmpdir): # Doing something slow inside the 'with' context of timed_flock doesn't cause a timeout # (the timeout should only apply to the flock operation itself) my_file = tmpdir.join('my-file') with open(str(my_file), 'w') as f: with utils.timed_flock(f, seconds=1): time.true_slow_sleep(0.1) assert mock_flock.mock_calls == [ mock.call(f.fileno(), utils.fcntl.LOCK_EX), mock.call(f.fileno(), utils.fcntl.LOCK_UN), ]
# s3 production content bucket information ACCESS_KEY_ID = 'ACCESS_KEY_ID' ACCESS_KEY_SECRET = 'ACCESS_KEY_SECRET' # raise BotoClientError("Bucket names cannot contain upper-case " \ #boto.exception.BotoClientError: BotoClientError: Bucket names cannot contain upp #er-case characters when using either the sub-domain or virtual hosting calling f #ormat. BUCKET_NAME= 'bucket_name-pass-portal-content-prod' ORIGINAL_DIRECTORY = 'original' COMPRESS_DIRECTORY = 'compress' TRIAL_RUN = False START_FROM = 99765
import time, pyaudio,string,serial from multiprocessing import Process import requests import getmac import pynmea2 import speech_recognition as sr import Adafruit_DHT from gtts import gTTS as s2t import json,os # DHT22 SERVER_IP = '192.168.0.104' DHT_SENSOR = Adafruit_DHT.DHT22 DHT_PIN = 4 API_URL = 'http://' + SERVER_IP SEND_DATA = '/insertData' RAISE_ALERT = '/raiseAlert' GET_ALERTS = '/getalerts' # NEO 6M GPS PORT = '/dev/ttyS0' SERIAL = serial.Serial(PORT,baudrate=9600,timeout=0.5) # Speech Recognition RECOGNIZER = sr.Recognizer() def getData_NEO6M(): serialRow = SERIAL.readline().decode('utf-8') if (serialRow[0:6] == '$GPRMC'): parsedSerialRow = pynmea2.parse(serialRow) return { 'latitude' : parsedSerialRow.latitude, 'longitude': parsedSerialRow.longitude } def getData_DHT22(): h,t = Adafruit_DHT.read_retry(DHT_SENSOR, DHT_PIN) return {'temperature':t,'humidity':h} def parallelRun(*procs): thread = [] for process in procs: p = Process(target=process).start() thread.append(p) for p in thread: p.join() def p1(): # Data aquire , server communication idx = 0 postData = { 'device_key' : getmac.get_mac_address(), 'data' : { 'temperature': None, 'humidity': None, 'latitude': None, 'longitude': None } } while True: print("Data aquire process active !") tmp = getData_DHT22() gps = getData_NEO6M() print(gps) postData['data']['temperature'] = tmp['temperature'] postData['data']['humidity'] = tmp['humidity'] try: postData['data']['latitude'] = gps['latitude'] postData['data']['longitude'] = gps['longitude'] except: pass requests.post(API_URL+SEND_DATA,json=postData) # Send data and reset for next data set response = requests.get(API_URL+GET_ALERTS) content = response.content.decode('utf-8') print(content) content = json.loads(content) for item in content['data']: f = s2t(item['desc'],lang='ro') f.save(item['cod']+'.mp3') os.system('mpg321 -a plughw ' + item['cod'] +'.mp3') time.sleep(60) # Acquire data every 60 seconds, send them every 10 minutes def p2(): # Voice managing try: with sr.Microphone as ainput: while True: RECOGNIZER.adjust_for_ambient_noise(ainput,duration=5) voiceSignal = RECOGNIZER.listen(ainput) message = RECOGNIZER.recognize_google(voiceSignal,language='ro-RO') if (message == 'ajutor'): bodyMessage = { 'device_key': getmac.get_mac_address(), } requests.post(API_URL+RAISE_ALERT,json=bodyMessage) except: # Raise no mic detected alert pass if __name__ == '__main__': parallelRun(p1,p2)
# -*- coding: utf-8 -*- """ @Author: Shaoweihua.Liu @Contact: liushaoweihua@126.com @Site: github.com/liushaoweihua @File: __init__.py1.py @Time: 2020/3/2 10:54 AM """ # Codes come from <bert-as-service>: # Author: Han Xiao # Github: https://hanxiao.github.io # Email: artex.xh@gmail.com # Version: 1.10.0 __all__ = ['_py2', '_str', '_buffer', '_raise'] _py2 = False _str = str _buffer = memoryview def _raise(t_e, _e): raise t_e from _e
""" Code for initialising and calling functionality for performing cross-validation """ import argparse import train_and_evaluate_model import active_learning_preannotation import vectorize_data import os import importlib def do_cross_validation(parser): properties_main, path_slash_format, path_dot_format = active_learning_preannotation.load_properties(parser) word2vecwrapper = vectorize_data.Word2vecWrapper(properties_main.model_path, properties_main.semantic_vector_length) CROSS_VALIDATION_SETTINGS = "cross_validation_settings" if not os.path.exists(os.path.join(path_slash_format, CROSS_VALIDATION_SETTINGS + ".py")): print("The directory '" + str(path_slash_format) + "' does not have a " + CROSS_VALIDATION_SETTINGS + ".py file.") exit(1) properties_cross_validation = importlib.import_module(path_dot_format + "." + CROSS_VALIDATION_SETTINGS) properties_container_cross_validation = CrossValidationPropertiesContainer(properties_cross_validation) for c_value in properties_container_cross_validation.c_values: for whether_to_use_word2vec in properties_container_cross_validation.whether_to_use_word2vec: for whether_to_use_clustering in properties_container_cross_validation.whether_to_use_clustering: properties_main.c_value = c_value properties_main.whether_to_use_word2vec = whether_to_use_word2vec properties_main.whether_to_use_clustering = whether_to_use_clustering train_and_evaluate_model.train_and_evaluate_model_cross_validation(properties_main, path_slash_format, word2vecwrapper, properties_container_cross_validation) class CrossValidationPropertiesContainer: """ CrossValidationPropertiesContainer A container for properties specific to cross validation """ def __init__(self, properties): """ :params properties: a python model including properties (retrieved by importlib.import_module(<PATH>)) """ try: self.nr_of_cross_validation_splits_for_evaluation = properties.nr_of_cross_validation_splits_for_evaluation except AttributeError: print("Cross-validation settings file lacks the property 'nr_of_cross_validation_splits_for_evaluation'.") exit(1) try: self.c_values = properties.c_values except AttributeError: print("Cross-validation settings file lacks the property 'c_values'.") exit(1) try: self.whether_to_use_word2vec = properties.whether_to_use_word2vec except AttributeError: print("Cross-validation settings file lacks the property 'whether_to_use_word2vec'.") exit(1) try: self.whether_to_use_clustering = properties.whether_to_use_clustering except AttributeError: print("Cross-validation settings file lacks the property 'whether_to_use_clustering'.") exit(1) try: self.evaluation_output_dir = properties.evaluation_output_dir except AttributeError: print("Cross-validation settings file lacks the property 'evaluation_output_dir'.") exit(1) if __name__ == "__main__": parser = argparse.ArgumentParser() do_cross_validation(parser)
# -*- coding: utf-8 -*- # @Author: 何睿 # @Create Date: 2019-01-12 10:09:56 # @Last Modified by: 何睿 # @Last Modified time: 2019-01-12 12:05:39 # Definition for singly-linked list. class ListNode(object): def __init__(self, x): self.val = x self.next = None class Solution(object): def detectCycle(self, head): """ :type head: ListNode :rtype: ListNode """ if not head or not head.next: return None count = 1 slow, fast = head, head.next while fast and fast.next: # 找到第一次相遇的节点 if fast == slow: # 确定环中节点的个数 fast = fast.next while fast and fast.next: # 如果fast指针和slow指针相遇,说明环已经走完一趟 # 结束循环 if fast == slow: break # 否则count自增一次 count += 1 slow, fast = slow.next, fast.next.next # 重置slow和fast只想首节点 slow, fast = head, head # 将fast往后移count-1个(即环中节点个数少一个节点) for _ in range(count - 1): fast = fast.next while fast: # 当fast.next 指向slow时,说明已经到达结尾 if fast.next == slow: return slow fast = fast.next slow = slow.next return slow slow, fast = slow.next, fast.next.next # 如果遍历的所有节点fast和slow都不等,说明没有环 return None
""" Automated celery tasks that use the NewsAPI to retrive top headline articles """ from __future__ import absolute_import, unicode_literals from datetime import datetime from random import shuffle from celery import shared_task from django.utils import timezone from newsapi import NewsApiClient from env import get_env_value from .categories import categories from .models import Article n_article_request = 100 article_db_limit = 7500 @shared_task def refresh_articles(): """ Refresh database with newest articles after a datetime cutoff, tagging each with their category. """ datetime_cutoff = get_datetime_cutoff() articles = [] newsapi = NewsApiClient(get_env_value('NEWS_API_KEY')) for category in categories: response = newsapi.get_top_headlines( country='us', category=category, page_size=n_article_request) if response['status'] != 'ok': print_error(response) continue all_response_articles = response['articles'] # Filter out old articles to avoid saving duplicates to database new_articles = [] for article in all_response_articles: article_datetime = get_article_datetime(article) if article_datetime > datetime_cutoff: article['category'] = category new_articles.append(article) articles += new_articles for article in articles: save_article(article) @shared_task def delete_oldest_articles(): """ Our free hosting plan limits our data storage to 10,000 records Therefore, we must periodically remove the oldest articles from our database to accomodate this limitation """ articles = Article.objects.all().order_by('-pub_date')[article_db_limit:] for article in articles: article.delete() def print_error(response): print(response['code']) print(response['message']) def get_datetime_cutoff(): """ Get datetime of last published article, so we know which articles are new and which have already been saved to database. """ ordered_articles = Article.objects.all().order_by('-pub_date') # If database is empty, start cutoff to this morning if not ordered_articles: return datetime.today().replace(hour=0, minute=0, second=0, tzinfo=timezone.utc) else: return ordered_articles[0].pub_date.replace(tzinfo=timezone.utc) def get_article_datetime(article): datetime_str = article['publishedAt'] return datetime.strptime(datetime_str, "%Y-%m-%dT%H:%M:%SZ").replace(tzinfo=timezone.utc) def request_articles(newsapi, category): response = newsapi.get_top_headlines( country='us', category=category, page_size=n_articles) if response['status'] != 'ok': return return response['articles'] def save_article(article): article_data = extract_article_data(article) a = Article(**article_data) a.save() def extract_article_data(article): source = article['source']['name'] title = article['title'] description = article['description'] url = article['url'] url_to_image = article['urlToImage'] pub_date = article['publishedAt'] category = article['category'] return {'source': source, 'title': title, 'description': description, 'url': url, 'url_to_image': url_to_image, 'pub_date': pub_date, 'category': category}
from scvi.data import get_from_registry from celligner2.metrics.metrics import entropy_batch_mixing, knn_purity, asw, nmi from celligner2.othermodels import SCVI, SCANVI, TOTALVI from scipy.sparse import issparse import numpy as np import scanpy as sc import torch from typing import Union, Optional from sklearn.metrics import f1_score import anndata import matplotlib.pyplot as plt sc.settings.set_figure_params(dpi=200, frameon=False) torch.set_printoptions(precision=3, sci_mode=False, edgeitems=7) np.set_printoptions(precision=2, edgeitems=7) class SCVI_EVAL: def __init__( self, model: Union[SCVI, SCANVI, TOTALVI], adata: anndata.AnnData, trainer: Optional['Trainer'] = None, cell_type_key: str = None, batch_key: str = None, ): self.outer_model = model self.model = model.model self.model.eval() if trainer is None: self.trainer = model.trainer else: self.trainer = trainer self.adata = adata self.modified = getattr(model.model, 'encode_covariates', True) self.annotated = type(model) is SCANVI self.predictions = None self.certainty = None self.prediction_names = None self.class_check = None self.post_adata_2 = None if trainer is not None: if self.trainer.use_cuda: self.device = torch.device('cuda') else: self.device = torch.device('cpu') else: self.device = next(self.model.parameters()).get_device() if issparse(self.adata.X): X = self.adata.X.toarray() else: X = self.adata.X self.x_tensor = torch.tensor(X, device=self.device) self.labels = None self.label_tensor = None if self.annotated: self.labels = get_from_registry(self.adata, "labels").astype(np.int8) self.label_tensor = torch.tensor(self.labels, device=self.device) self.cell_types = self.adata.obs[cell_type_key].tolist() self.batch_indices = get_from_registry(self.adata, "batch_indices").astype(np.int8) self.batch_tensor = torch.tensor(self.batch_indices, device=self.device) self.batch_names = self.adata.obs[batch_key].tolist() self.celltype_enc = [0]*len(self.adata.obs[cell_type_key].unique().tolist()) for i, cell_type in enumerate(self.adata.obs[cell_type_key].unique().tolist()): label = self.adata.obs['_scvi_labels'].unique().tolist()[i] self.celltype_enc[label] = cell_type self.post_adata = self.latent_as_anndata() def latent_as_anndata(self): if type(self.outer_model) is TOTALVI: latent = self.outer_model.get_latent_representation(self.adata) else: if self.modified: latents = self.model.sample_from_posterior_z( self.x_tensor, y=self.label_tensor, batch_index=self.batch_tensor ) else: latents = self.model.sample_from_posterior_z( self.x_tensor, y=self.label_tensor, ) if self.annotated: latent = latents.cpu().detach().numpy() latent2, _, _ = self.model.encoder_z2_z1(latents, self.label_tensor) latent2 = latent2.cpu().detach().numpy() post_adata_2 = sc.AnnData(latent2) post_adata_2.obs['cell_type'] = self.cell_types post_adata_2.obs['batch'] = self.batch_names self.post_adata_2 = post_adata_2 else: latent = latents.cpu().detach().numpy() post_adata = sc.AnnData(latent) post_adata.obs['cell_type'] = self.cell_types post_adata.obs['batch'] = self.batch_names return post_adata def get_model_arch(self): for name, p in self.model.named_parameters(): print(name, " - ", p.size(0), p.size(-1)) def plot_latent(self, show=True, save=False, dir_path=None, n_neighbors=8, predictions=False, in_one=False, colors=None): """ if save: if dir_path is None: name = 'scanvi_latent.png' else: name = f'{dir_path}.png' else: name = False """ if self.model is None: print("Not possible if no model is provided") return if save: show = False if dir_path is None: dir_path = 'scanvi_latent' sc.pp.neighbors(self.post_adata, n_neighbors=n_neighbors) sc.tl.umap(self.post_adata) if in_one: color = ['cell_type', 'batch'] if predictions: color.append(['certainty', 'predictions', 'type_check']) sc.pl.umap(self.post_adata, color=color, ncols=2, frameon=False, wspace=0.6, show=show, save=f'{dir_path}_complete.png' if dir_path else None) else: sc.pl.umap(self.post_adata, color=['cell_type'], frameon=False, wspace=0.6, show=show, palette=colors, save=f'{dir_path}_celltypes.png' if dir_path else None) sc.pl.umap(self.post_adata, color=['batch'], frameon=False, wspace=0.6, show=show, save=f'{dir_path}_batch.png' if dir_path else None) if predictions: sc.pl.umap(self.post_adata, color=['predictions'], frameon=False, wspace=0.6, show=show, save=f'{dir_path}_predictions.png' if dir_path else None) sc.pl.umap(self.post_adata, color=['certainty'], frameon=False, wspace=0.6, show=show, save=f'{dir_path}_certainty.png' if dir_path else None) sc.pl.umap(self.post_adata, color=['type_check'], ncols=2, frameon=False, wspace=0.6, show=show, save=f'{dir_path}_type_check.png' if dir_path else None) def plot_history(self, show=True, save=False, dir_path=None): if self.trainer is None: print("Not possible if no trainer is provided") return if self.annotated: fig, axs = plt.subplots(2, 1) elbo_full = self.trainer.history["elbo_full_dataset"] x_1 = np.linspace(0, len(elbo_full), len(elbo_full)) axs[0].plot(x_1, elbo_full, label="Full") accuracy_labelled_set = self.trainer.history["accuracy_labelled_set"] accuracy_unlabelled_set = self.trainer.history["accuracy_unlabelled_set"] if len(accuracy_labelled_set) != 0: x_2 = np.linspace(0, len(accuracy_labelled_set), (len(accuracy_labelled_set))) axs[1].plot(x_2, accuracy_labelled_set, label="accuracy labelled") if len(accuracy_unlabelled_set) != 0: x_3 = np.linspace(0, len(accuracy_unlabelled_set), (len(accuracy_unlabelled_set))) axs[1].plot(x_3, accuracy_unlabelled_set, label="accuracy unlabelled") axs[0].set_xlabel('Epochs') axs[0].set_ylabel('ELBO') axs[1].set_xlabel('Epochs') axs[1].set_ylabel('Accuracy') axs[0].legend(bbox_to_anchor=(1.05, 1), loc='upper left', borderaxespad=0.) axs[1].legend(bbox_to_anchor=(1.05, 1), loc='upper left', borderaxespad=0.) if save: if dir_path is None: plt.savefig('scanvi_history.png', bbox_inches='tight') else: plt.savefig(f'{dir_path}.png', bbox_inches='tight') if show: plt.show() else: fig = plt.figure() elbo_train = self.trainer.history["elbo_train_set"] elbo_test = self.trainer.history["elbo_test_set"] x = np.linspace(0, len(elbo_train), len(elbo_train)) plt.plot(x, elbo_train, label="train") plt.plot(x, elbo_test, label="test") plt.ylim(min(elbo_train) - 50, min(elbo_train) + 1000) plt.legend(bbox_to_anchor=(1.05, 1), loc='upper left', borderaxespad=0.) if save: if dir_path is None: plt.savefig('scvi_history.png', bbox_inches='tight') else: plt.savefig(f'{dir_path}.png', bbox_inches='tight') if show: plt.show() def get_ebm(self, n_neighbors=50, n_pools=50, n_samples_per_pool=100, verbose=True): ebm_score = entropy_batch_mixing( adata=self.post_adata, label_key='batch', n_neighbors=n_neighbors, n_pools=n_pools, n_samples_per_pool=n_samples_per_pool ) if verbose: print("Entropy of Batchmixing-Score:", ebm_score) return ebm_score def get_knn_purity(self, n_neighbors=50, verbose=True): knn_score = knn_purity( adata=self.post_adata, label_key='cell_type', n_neighbors=n_neighbors ) if verbose: print("KNN Purity-Score:", knn_score) return knn_score def get_asw(self): asw_score_batch, asw_score_cell_types = asw(adata=self.post_adata, label_key='cell_type',batch_key='batch') print("ASW on batch:", asw_score_batch) print("ASW on celltypes:", asw_score_cell_types) return asw_score_batch, asw_score_cell_types def get_nmi(self): nmi_score = nmi(adata=self.post_adata, label_key='cell_type') print("NMI score:", nmi_score) return nmi_score def get_latent_score(self): ebm = self.get_ebm(verbose=False) knn = self.get_knn_purity(verbose=False) score = ebm + knn print("Latent-Space Score (KNN + EBM):", score) return score def get_classification_accuracy(self): if self.annotated: if self.modified: softmax = self.model.classify(self.x_tensor, batch_index=self.batch_tensor) else: softmax = self.model.classify(self.x_tensor) softmax = softmax.cpu().detach().numpy() self.predictions = np.argmax(softmax, axis=1) self.certainty = np.max(softmax, axis=1) self.prediction_names = [0]*self.predictions.shape[0] for index, label in np.ndenumerate(self.predictions): self.prediction_names[index[0]] = self.celltype_enc[label] self.class_check = np.array(np.expand_dims(self.predictions, axis=1) == self.labels) class_check_labels = [0] * self.class_check.shape[0] for index, check in np.ndenumerate(self.class_check): class_check_labels[index[0]] = 'Correct' if check else 'Incorrect' accuracy = np.sum(self.class_check) / self.class_check.shape[0] self.post_adata.obs['certainty'] = self.certainty self.post_adata.obs['type_check'] = class_check_labels self.post_adata.obs['predictions'] = self.prediction_names print("Classification Accuracy: %0.2f" % accuracy) return accuracy else: print("Classification ratio not available for scVI models") def get_f1_score(self): if self.annotated: if self.modified: predictions = self.model.classify(self.x_tensor, batch_index=self.batch_tensor) else: predictions = self.model.classify(self.x_tensor) self.predictions = predictions.cpu().detach().numpy() self.predictions = np.expand_dims(np.argmax(self.predictions, axis=1), axis=1) score = f1_score(self.labels, self.predictions, average='macro') print("F1 Score: %0.2f" % score) return score else: print("F1 Score not available for scVI models")
import traci import subprocess import sys import os from sumolib import checkBinary import time if __name__ == '__main__': try: sys.path.append(os.path.join(os.path.dirname( __file__), '..', '..', '..', '..', "tools")) sys.path.append(os.path.join(os.environ.get("SUMO_HOME", os.path.join( os.path.dirname(__file__), "..", "..", "..")), "tools")) # tutorial in doc except ImportError: sys.exit("please declare environment variable 'SUMO_HOME' as the root directory of your sumo installation (it should contain folders 'bin', 'tools' and 'docs')") sumoBinary = checkBinary('sumo-gui') sumoProcess = subprocess.Popen([sumoBinary, "-c", "../prueba.sumocfg", "--remote-port", "2081", "-l", "prueba_log"], stdout=sys.stdout, stderr=sys.stderr) traci.init(2081) while traci.simulation.getMinExpectedNumber() > 0: print ("time: " + str(traci.simulation.getCurrentTime()/1000)) option=raw_input("Opcion: ") if option=="c": traci.simulationStep() elif option=="i": id=raw_input("ID del vehiculo: ") print ("Ruta prevista: " + str(traci.vehicle.getRoute(id)) + "\n") edge=raw_input("edge de la ruta: ") edge_list=[] while edge<>"f": edge_list.append(edge) edge=raw_input("edge de la ruta: ") traci.vehicle.setRoute(id, edge_list) print (traci.vehicle.getRoute(id)) print "Fin de la simulacion"
''' Created on Oct 28, 2020 Define the Config, Parser, and ParserFactory objects for reading and storing GaMD simulation parameters. @author: lvotapka ''' from __future__ import absolute_import import xml.etree.ElementTree as ET from xml.dom import minidom from abc import ABCMeta, ABC from abc import abstractmethod from simtk import unit from gamd import config def strBool(bool_str): """ Take the string "true" or "false" of any case and returns a boolean object. """ if bool_str.lower() == "true": return True elif bool_str.lower() == "false": return False else: raise Exception( "argument for strBool must be string either 'True' or 'False'.") class Parser: def __init__(self): self.config = config.Config() def assign_value(self, value, func, useunit=None): if value is not None: if useunit is None: return func(value) else: return unit.Quantity(func(value), useunit) else: return None @abstractmethod def parse_file(self, filename): raise NotImplementedError("must implement parse_file") class XmlParser(Parser): def __init__(self): super(XmlParser, self).__init__() def assign_tag(self, tag, func, useunit=None): if tag is not None: return self.assign_value(tag.text, func, useunit) else: return None def parse_file(self, filename): tree = ET.parse(filename) root = tree.getroot() for tag in root: if tag.tag == "system_files": xml_system_files_type_text = tag.find("type").text.lower() if xml_system_files_type_text == "amber": amber_config = config.AmberConfig() for amber_tag in tag: if amber_tag.tag == "prmtop_filename": amber_config.prmtop_filename = \ self.assign_tag(amber_tag, str) elif amber_tag.tag == "inpcrd_filename": amber_config.inpcrd_filename = \ self.assign_tag(amber_tag, str) elif amber_tag.tag == \ "load_box_vectors_from_coordinates_file": amber_config.load_box_vecs_from_coords_file = \ self.assign_tag(amber_tag, strBool) elif amber_tag.tag == "type": pass else: print("Warning: parameter in XML not found in "\ "amber_config. Spelling error?", amber_tag.tag) self.config.system_files_config = amber_config elif xml_system_files_type_text == "charmm": charmm_config = config.CharmmConfig() for charmm_tag in tag: if charmm_tag.tag == "psf_filename": charmm_config.psf_filename = \ self.assign_tag(charmm_tag, str) elif charmm_tag.tag == "pdb_filename": charmm_config.pdb_filename = \ self.assign_tag(charmm_tag, str) elif charmm_tag.tag == \ "params_filenames": charmm_config.params_filenames = [] for xml_params_filename in charmm_tag: charmm_config.params_filenames.append( self.assign_tag(xml_params_filename, str)) elif charmm_tag.tag == "type": pass else: print("Warning: parameter in XML not found in "\ "charmm_config. Spelling error?", charmm_tag.tag) self.config.system_files_config = charmm_config elif xml_system_files_type_text == "gromacs": gromacs_config = config.GromacsConfig() for gro_tag in tag: if gro_tag.tag == "gro_filename": gromacs_config.gro_filename = \ self.assign_tag(gro_tag, str) elif gro_tag.tag == "top_filename": gromacs_config.top_filename = \ self.assign_tag(gro_tag, str) elif gro_tag.tag == "include_dir": gromacs_config.include_dir = \ self.assign_tag(gro_tag, str) elif gro_tag.tag == "type": pass else: print("Warning: parameter in XML not found in "\ "gromacs_config. Spelling error?", gro_tag.tag) self.config.system_files_config = gromacs_config elif xml_system_files_type_text == "forcefield": forcefield_config = config.ForceFieldConfig() for forcefield_tag in tag: if forcefield_tag.tag == "pdb_filename": forcefield_config.pdb_filename = \ self.assign_tag(forcefield_tag, str) elif forcefield_tag.tag == \ "forcefield_filenames": forcefield_config.forcefield_filenames = [] for forcefield_filename in forcefield_tag: forcefield_config.forcefield_filenames.append( self.assign_tag(forcefield_filename, str)) elif forcefield_config.tag == "type": pass else: print("Warning: parameter in XML not found in "\ "charmm_config. Spelling error?", forcefield_config.tag) self.config.system_files_config = forcefield_config else: raise Exception("system_files type not implemented:", xml_system_files_type_text) elif tag.tag == "box_vectors": config.box_vectors = config.deserialize_box_vectors(tag) elif tag.tag == "output_directory": self.config.output_directory = self.assign_tag(tag, str) elif tag.tag == "overwrite_output": self.config.overwrite_output = self.assign_tag(tag, strBool) elif tag.tag == "chunk_size": self.config.chunk_size = self.assign_tag(tag, int) elif tag.tag == "nonbonded_method": self.config.nonbonded_method = \ self.assign_tag(tag, str).lower() elif tag.tag == "nonbonded_cutoff": self.config.nonbonded_cutoff = self.assign_tag( tag, float, useunit=unit.nanometer) elif tag.tag == "constraints": self.config.constraints = self.assign_tag(tag, str).lower() elif tag.tag == "integrator_type": self.config.integrator_type = self.assign_tag(tag, str).lower() elif tag.tag == "friction_coefficient": self.config.friction_coefficient = self.assign_tag( tag, float, useunit=unit.picosecond**-1) elif tag.tag == "target_temperature": self.config.target_temperature = self.assign_tag( tag, float, useunit=unit.kelvin) elif tag.tag == "random_seed": self.config.random_seed = self.assign_tag(tag, int) elif tag.tag == "dt": self.config.dt = self.assign_tag( tag, float, useunit=unit.picosecond) elif tag.tag == "use_barostat": self.config.use_barostat = self.assign_tag(tag, strBool) elif tag.tag == "barostat_target_pressure": self.config.barostat_target_pressure = self.assign_tag( tag, float, useunit=unit.bar) elif tag.tag == "barostat_target_temperature": self.config.barostat_target_temperature = self.assign_tag( tag, float, useunit=unit.kelvin) elif tag.tag == "barostat_frequency": self.config.barostat_frequency = self.assign_tag(tag, int) elif tag.tag == "run_minimization": self.config.run_minimization = self.assign_tag(tag, strBool) elif tag.tag == "initial_temperature": self.config.initial_temperature = self.assign_tag( tag, float, useunit=unit.kelvin) elif tag.tag == "energy_reporter_frequency": self.config.energy_reporter_frequency = self.assign_tag( tag, int) elif tag.tag == "coordinates_reporter_frequency": self.config.coordinates_reporter_frequency = self.assign_tag( tag, int) elif tag.tag == "coordinates_reporter_file_type": self.config.coordinates_reporter_file_type = self.assign_tag( tag, str).lower() elif tag.tag == "gamd_bound": self.config.gamd_bound = self.assign_tag(tag, str).lower() elif tag.tag == "total_simulation_length": self.config.total_simulation_length = self.assign_tag(tag, int) elif tag.tag == "total_boost": self.config.total_boost = self.assign_tag(tag, strBool) elif tag.tag == "total_boost_sigma0": self.config.total_boost_sigma0 = self.assign_tag( tag, float, useunit=unit.kilocalories_per_mole) elif tag.tag == "dihedral_boost": self.config.dihedral_boost = self.assign_tag(tag, strBool) elif tag.tag == "dihedral_boost_sigma0": self.config.dihedral_boost_sigma0 = self.assign_tag( tag, float, useunit=unit.kilocalories_per_mole) elif tag.tag == "num_steps_conventional_md": self.config.num_steps_conventional_md = self.assign_tag( tag, int) elif tag.tag == "num_steps_conventional_md_prep": self.config.num_steps_conventional_md_prep = self.assign_tag( tag, int) elif tag.tag == "num_steps_per_averaging": self.config.num_steps_per_averaging = self.assign_tag( tag, int) elif tag.tag == "num_steps_gamd_equilibration": self.config.num_steps_gamd_equilibration = self.assign_tag( tag, int) elif tag.tag == "num_steps_gamd_equilibration_prep": self.config.num_steps_gamd_equilibration_prep = self.assign_tag( tag, int) elif tag.tag == "restart_checkpoint_filename": self.config.restart_checkpoint_filename = self.assign_tag( tag, str) elif tag.tag == "restart_checkpoint_frequency": self.config.restart_checkpoint_frequency = self.assign_tag( tag, int) else: print("Warning: parameter in XML not found in config. "\ "Spelling error?", tag.tag) class ParserFactory: def __init__(self): return def parse_file(self, input_file, input_type): input_type = input_type.lower() if input_type == "xml": myparser = XmlParser() myparser.parse_file(input_file) config = myparser.config else: raise Exception("input type not implemented: %s", input_type) return config if __name__ == "__main__": myparser = XmlParser() myparser.parse_file("/tmp/gamdconfig.xml")
from dataclasses import dataclass @dataclass class Options: """List of configurable options of the `flake8-too-many` plugin.""" ignore_defaulted_arguments: bool max_function_arguments: int max_function_return_stmts: int max_function_return_values: int max_unpacking_targets: int
# this file is originally in exp_3_debiased folder # plot predict dense map with true force point. # show the changes of learning process from 1 point to 10 points import numpy as np import autosklearn.regression import sklearn.model_selection import sklearn.datasets import sklearn.metrics import scipy import pickle import random import matplotlib.pyplot as plt from train_config import * from data_loader import normalize_points import glob import matplotlib as mpl mpl.rcParams['figure.dpi'] = 100 import matplotlib.pyplot as plt plt.rcParams["figure.figsize"] = (6,8) import time def load_data(point_path, force_path, probe_type='point', datatype='1'): points=[] colors=[] normals=[] curvatures=[] dataFile=open(point_path,'r') for line in dataFile: line=line.rstrip() l=[num for num in line.split(' ')] l2=[float(num) for num in l] points.append(l2[0:3]) colors.append(l2[0:3]) normals.append(l2[6:9]) curvatures.append(l2[9]) dataFile.close() # normalize, note colors and normals is 0~1 points = np.array(points) colors = np.array(colors) normals = np.array(normals) curvatures = np.array(curvatures) max_range = max([ (np.max(points[:,0])-np.min(points[:,0])) , (np.max(points[:,1])-np.min(points[:,1])) , (np.max(points[:,2])-np.min(points[:,2])) ]) for i in range(3): points[:,i] = (points[:,i]-np.min(points[:,i]))/max_range num_point = len(points) print('[*]load %d points, and normalized'%num_point) ''' X = np.array([[]]) Y = np.array([[]]) insert_i = 0 ''' X=[] Y=[] for i in range(num_point): force_path = './'+probe_type+'/force_'+str(i)+'.txt' force=[] force_normal=[] displacement=[] theta=[] dataFile=open(force_path,'r') for line in dataFile: line=line.rstrip() l=[num for num in line.split(' ')] l2=[float(num) for num in l] if probe_type == 'point': force.append(l2[0:3]) force_normal.append(l2[3]) displacement.append(l2[4]) else: force.append(l2[0:3]) force_normal.append(l2[3]) displacement.append(l2[4]) theta.append(l2[5:7]) dataFile.close() # clean #TODO: # final if probe_type == 'point': num_dis = len(displacement) #print('---load %d displacement'%num_dis) displacement = np.resize(np.array(displacement),(num_dis,1)) X_i = np.hstack((np.tile(points[i],(num_dis,1)), displacement)) Y_i = np.array(force_normal,ndmin=2).T ''' if insert_i == 0: X=X_i Y=Y_i else: X = np.vstack((X,X_i)) Y = np.vstack((Y,Y_i)) insert_i = insert_i + 1 ''' X.append(X_i) Y.append(Y_i) return X,Y def my_train_test_split(X,y,num_point=1,train_size=0.8,select_method='random'): num_point = len(X) if select_method=='random': train_index = random.sample(range(num_point),int(train_size*num_point)) test_index = [x for x in range(num_point) if x not in train_index] elif select_method=='uniform': train_index = [int(i*(1.0/train_size)) for i in range(int(train_size*num_point))] test_index = [x for x in range(num_point) if x not in train_index] flag = 0 for i in train_index: if flag==0: X_train = X[i] y_train = y[i] flag = 1 else: X_train = np.vstack((X_train,X[i])) y_train = np.vstack((y_train,y[i])) flag = 0 for i in test_index: if flag==0: X_test = X[i] y_test = y[i] flag = 1 else: X_test = np.vstack((X_test,X[i])) y_test = np.vstack((y_test,y[i])) return X_train, X_test, y_train, y_test def my_train_test_split2(X,y,num_point=1,train_size=0.8,use_all=False): num_point = len(X) train_index = random.sample(range(num_point),int(train_size*num_point)) test_index = [x for x in range(num_point) if x not in train_index] flag = 0 for i in train_index: if flag==0: X_train = X[i] y_train = y[i] flag = 1 else: X_train = np.vstack((X_train,X[i])) y_train = np.vstack((y_train,y[i])) if use_all == False: flag = 0 for i in test_index: if flag==0: X_test = X[i] y_test = y[i] flag = 1 else: X_test = np.vstack((X_test,X[i])) y_test = np.vstack((y_test,y[i])) if use_all == False: return X_train, X_test, y_train, y_test else: return X_train, y_train def load_pcd(path, pcdtype='xyzrgbn'): points=[] normals=[] normal_theta=[] theta=[] pt_index=[] lines=[] dataFile=open(path,'r') for line in dataFile: line=line.rstrip() l=[num for num in line.split(' ')] l2=[float(num) for num in l] lines.append(l2) points.append(l2[0:3]) normals.append(l2[6:9]) if pcdtype == 'xyzrgbntheta': normal_theta.append(l2[10:13]) theta.append(l2[13]) pt_index.append(l2[14]) dataFile.close() print('---------------------pcd loaded -----------------------------') if pcdtype == 'xyzrgbn': return points, normals elif pcdtype == 'xyzrgbntheta': return points, normals, normal_theta, theta, pt_index elif pcdtype == 'return_lines': return lines def main(point_num): X_poke,y_poke = load_data('./probePcd.txt','.') #note: is list X = load_pcd('./originalPcd.txt',pcdtype='return_lines') #note: is list X = np.array(X) print(X.shape) X = X[:,0:3] set_displacement = -0.002 X = np.hstack((X, np.tile(set_displacement,(X.shape[0],1)))) X = X[X[:,1]>-0.01] X = normalize_points(X, location_offset[0:3], location_offset[3]) model_path = './models_dense/model_pt'+str(point_num)+'.pkl' print(model_path) index_cur = train_indexes_dense[0][point_num-1] print(index_cur) with open(model_path, 'rb') as f: s2 = f.read() automl = pickle.loads(s2) predictions = automl.predict(X) #print('[*]load model and predict at %f s, average: %f s'%(t_e-t_s, (t_e-t_s)/X.shape[0])) X[:,0] = X[:,0]*location_offset[3]*100 #cm X[:,1] = X[:,1]*location_offset[3]*100 #cm cm = plt.cm.get_cmap('jet') #sc = plt.scatter(Xe[:,0], Xe[:,1], c=Xe[:,4], vmin=0, vmax=err_max, s=20, cmap=cm) sc = plt.scatter(X[:,0], X[:,1], c=predictions, vmin=0, vmax=1.5, s=4, cmap=cm) for i in index_cur: cur_X_array = X_poke[i] cur_y_array = y_poke[i] #print(cur_X_array[:,3]) y_true = cur_y_array[cur_X_array[:,3]>set_displacement] y_true = y_true[0] loc_x = cur_X_array[0,0]*location_offset[3] * 100 loc_y = cur_X_array[0,1]*location_offset[3]* 100 #colors = plt.cm.jet(y_true) plt.scatter(loc_x, loc_y, color=plt.cm.jet(y_true/2),s=100,edgecolors='k')#, c=y_true, vmin=0, vmax=3, s=100, cmap=cm) #plt.text(loc_x,loc_y,str(i)) cbar=plt.colorbar(sc) cbar.ax.set_ylabel('Force (N)', labelpad=30,rotation=270,fontsize=25) cbar.ax.tick_params(labelsize=16) plt.xlabel('x (cm)', fontsize=25) plt.ylabel('y (cm)', fontsize=25) plt.xticks(fontsize=20) plt.yticks(fontsize=20) plt.axis('auto') plt.savefig('./dense_fig/pt_'+str(point_num)+'.png') plt.show() if __name__ == "__main__": for i in range(10): main(i+1)
# -*- coding: utf-8 -*- from setuptools import setup, find_packages with open('README.md') as f: readme = f.read() with open('LICENSE') as f: license = f.read() with open('lah/version.py') as f: exec(f.read()) tests_require = [ "mock", "nose", ] install_requires=[ "biopython>=1.46", "click==7.0", "Jinja2>=2.10.1", "natsort", "pyyaml==5.1", "SQLAlchemy>=1.3.10", "tabulate", "yoyo-migrations>=6.1.0", ] setup( name='lah', version=__version__, description='Sequence Transform', long_description=readme, author='Eddie Belter', author_email='ebelter@wustl.edu', license=license, url='https://github.com/hall-lab/lah.git', install_requires=install_requires, entry_points=''' [console_scripts] lah=lah.cli:cli ''', setup_requires=["pytest-runner"], test_suite="nose.collector", tests_requires=tests_require, packages=find_packages(include=['lah'], exclude=('tests')), include_package_data=True, package_data={"lah": ["db-migrations/*"]}, )
''' Bluetooth socket support Copyright 2018 Gunnar Bowman, Emily Boyes, Trip Calihan, Simon D. Levy, Shepherd Sims MIT License ''' import os import time import bluetooth as bt pathON = '/home/pi/ObjectsNeeded.txt' pathOP = '/home/pi/ObjectsPresent.txt' pathBL = '/home/pi/BatteryLevel.txt' class BluetoothServer(object): ''' Provides an abstract class for serving sockets over Bluetooth. You call the constructor and the start() method. You must implement the method handleMessage(self, message) to handle messages from the client. ''' def __init__(self): ''' Constructor ''' # Arbitrary service UUID to advertise self.uuid = "7be1fcb3-5776-42fb-91fd-2ee7b5bbb86d" self.client_sock = None def start(self): ''' Serves a socket on the default port, listening for clients. Upon client connection, runs a loop to that receives period-delimited messages from the client and calls the sub-class's handleMessage(self, message) method. Sub-class can call send(self, message) to send a message back to the client. Begins listening again after client disconnects. ''' # Make device visible os.system("hciconfig hci0 piscan") # Create a new server socket using RFCOMM protocol server_sock = bt.BluetoothSocket(bt.RFCOMM) # Bind to any port server_sock.bind(("", bt.PORT_ANY))# #server_sock.find(("", 1))# # Start listening server_sock.listen(1) # Get the port the server socket is listening port = server_sock.getsockname()[1] # Start advertising the service bt.advertise_service(server_sock, "RaspiBtSrv", service_id=self.uuid, service_classes=[self.uuid, bt.SERIAL_PORT_CLASS], profiles=[bt.SERIAL_PORT_PROFILE]) # Outer loop: listen for connections from client while True: print("Waiting for connection on RFCOMM channel %d" % port) try: # This will block until we get a new connection self.client_sock, client_info = server_sock.accept() print("Accepted connection from " + str(client_info)) # Track strings delimited by '.' s = '' try: on = open(pathON, 'r') neededContents = on.read() nC = neededContents.split('|')[:-1] op = open(pathOP, 'r') presentContents = op.read() pC = presentContents.split('|')[:-1] bl = open(pathBL, 'r') bp = bl.read() # bp - battery percentage print("Sending List of Objects missing") for need in nC: if need not in pC: print(need) self.send("OM:"+need) print("Sending List of Objects present ") for present in pC: print(present) self.send("OP:"+present) print("Sending battery level of Pi") print(bp) self.send("BL:"+bp) except IOError: print("Trouble reading file. Trying again after 5 seconds") time.sleep(5) #while True: #self.send("Object Missing"); #self.send("U|0|1") #c = self.client_sock.recv(1).decode('utf-8') #if c == '.' and len(s) > 0: # self.handleMessage(s) #self.send(s) #print(s) # self.handleMessage(s) # s = '' #else: # s += c except IOError: pass except KeyboardInterrupt: if self.client_sock is not None: self.client_sock.close() server_sock.close() print("Server going down") break def send(self, message): ''' Appends a period to your message and sends the message back to the client. ''' self.client_sock.send((message+'.').encode('utf-8'))
from socket import * from select import * import sys from time import ctime # 웹소켓 주소, 포트, 버퍼 사이즈 정의 HOST = '192.168.0.5' # 주소는 공유기에 접속되 있는 ip 주소 PORT = 8000 BUFSIZE = 1024 ADDR = (HOST, PORT) flag = True # 소켓 서버 초기화 serv = socket(AF_INET, SOCK_STREAM) serv.close() # 소켓 연결 server = socket(AF_INET, SOCK_STREAM) # 주소 연결 server.bind(ADDR) server.listen(10) # 연결된 웹소켓 리스트 connection_list = [server] print('==============================================') print('채팅 서버를 시작합니다. %s 포트로 접속을 기다립니다.' % str(PORT)) print('==============================================') client_socket, client_address = server.accept() print('[INFO][%s] 클라이언트(%s)가 새롭게 연결 되었습니다.' % (ctime(), client_address[0])) connection_list.append(client_socket) # ==========현제 반복적으로 작동 안함========== # 1회성으로 작동 중 try: while flag: if client_socket != server: # 클라이언트로 부터 소켓 정보 받아옴 data = client_socket.recv(BUFSIZE).decode() print('hello : %s' % str(data)) # 데이터 존재 시 if data: print('[INFO][%s] 클라이언트로부터 데이터를 전달 받았습니다.' % ctime()) msg = 'Server got: ' + data # 연결된 모든 소켓에 메시지 전송 client_socket.sendall(msg.encode()) # 데이터 부재 시 else: flag = False print('[INFO][%s] 사용자와의 연결이 끊어졌습니다.' % ctime()) client_socket.close() except Exception as e: # 웹 클라이언트 종료, 서버 종료 client_socket.close() server.close()
from protocol.Radio.RadioProtocol import radioProtocol import configparser class protocolManager(object): radio = None config = None def __init__(self, config): self.config = config while True: if self.config['Protocol']['Radio']: print("oui") # Modifier quand le catch retournera un bodySensor #if self.radio is None: # self.radio = radioProtocol() #self.radio.catch()
import torch CHUNK_NUM = 32 def partition_without_replication(device, probs, ids): """Partition node with given node IDs and node access distribution. The result will cause no replication between each parititon. We assume node IDs can be placed in the given device. Args: device (int): device which computes the partitioning strategy probs (torch.Tensor): node access distribution ids (Optional[torch.Tensor]): specified node IDs Returns: [torch.Tensor]: list of IDs for each partition """ ranks = len(probs) if ids is not None: ids = ids.to(device) probs = [ prob[ids].to(device) if ids is not None else prob.to(device) for prob in probs ] total_size = ids.size(0) if ids is not None else probs[0].size(0) res = [None] * ranks for rank in range(ranks): res[rank] = [] CHUNK_SIZE = (total_size + CHUNK_NUM - 1) // CHUNK_NUM chunk_beg = 0 beg_rank = 0 for i in range(CHUNK_NUM): chunk_end = min(total_size, chunk_beg + CHUNK_SIZE) chunk_size = chunk_end - chunk_beg chunk = torch.arange(chunk_beg, chunk_end, dtype=torch.int64, device=device) probs_sum_chunk = [ torch.zeros(chunk_size, device=device) + 1e-6 for i in range(ranks) ] for rank in range(ranks): for dst_rank in range(ranks): if dst_rank == rank: probs_sum_chunk[rank] += probs[dst_rank][chunk] * ranks else: probs_sum_chunk[rank] -= probs[dst_rank][chunk] acc_size = 0 rank_size = (chunk_size + ranks - 1) // ranks picked_chunk_parts = torch.LongTensor([]).to(device) for rank_ in range(beg_rank, beg_rank + ranks): rank = rank_ % ranks probs_sum_chunk[rank][picked_chunk_parts] -= 1e6 rank_size = min(rank_size, chunk_size - acc_size) _, rank_order = torch.sort(probs_sum_chunk[rank], descending=True) pick_chunk_part = rank_order[:rank_size] pick_ids = chunk[pick_chunk_part] picked_chunk_parts = torch.cat( (picked_chunk_parts, pick_chunk_part)) res[rank].append(pick_ids) acc_size += rank_size beg_rank += 1 chunk_beg += chunk_size for rank in range(ranks): res[rank] = torch.cat(res[rank]) if ids is not None: res[rank] = ids[res[rank]] return res def partition_with_replication(device, probs, ids, per_rank_size): """Partition node with given node IDs and node access distribution. The result will cause replication between each parititon, but the size of each partition will not exceed per_rank_size. """ partition_res = partition_without_replication(device, probs, ids) if ids is not None: ids = ids.to(device) ranks = len(probs) total_res = [ torch.empty(per_rank_size, device=device) for i in range(ranks) ] probs = [prob.clone().to(device) for prob in probs] for rank in range(ranks): partition_ids = partition_res[rank] probs[rank][partition_ids] = -1e6 replication_size = per_rank_size - partition_ids.size(0) _, prev_order = torch.sort(probs[rank], descending=True) replication_ids = ids[ prev_order[: replication_size]] if ids is not None else prev_order[: replication_size] total_res[rank] = torch.cat((partition_ids, replication_ids)) return total_res def select_nodes(device, probs, ids): nodes = probs[0].size(0) prob_sum = torch.zeros(nodes, device=device) for prob in probs: if ids is None: prob_sum += prob else: prob_sum[ids] += prob[ids] node_ids = torch.nonzero(prob_sum) return prob_sum, node_ids def partition_free(device, probs, ids, per_rank_size): """Partition node with given node IDs and node access distribution. The result will cause either replication or missing nodes across partitions. The size of each partition is limited by per_rank_size. """ prob_sum, node_ids = select_nodes(device, probs, ids) nodes = node_ids.size(0) ranks = len(probs) limit = ranks * per_rank_size if nodes <= limit: return partition_with_replication(device, probs, node_ids, per_rank_size), None else: _, prev_order = torch.sort(prob_sum, descending=True) limit_ids = prev_order[:limit] return partition_without_replication(device, probs, node_ids), limit_ids
import sqlite3 import os PATH = os.path.join(os.getcwd(), 'resources', 'feitico.db') conn = sqlite3.connect(PATH) cursor = conn.cursor() ################### # CRIANDO TABELAS # ################### # cursor.execute(""" # CREATE TABLE feitico ( # id_feitico INTEGER NOT NULL PRIMARY KEY AUTOINCREMENT, # nome VARCHAR(255) NOT NULL UNIQUE, # descricao TEXT NOT NULL, # disponivel BOOLEAN NOT NULL, # nivel INTEGER NOT NULL, # dificuldade INTEGER NOT NULL, # tipo INTEGER NOT NULL, # ex_solucao TEXT # ); # """) # cursor.execute(""" # CREATE TABLE status ( # id_status INTEGER NOT NULL PRIMARY KEY AUTOINCREMENT, # id_feitico INTEGER, # assunto VARCHAR(255) NOT NULL, # valor INTEGER NOT NULL, # FOREIGN KEY(id_feitico) REFERENCES feitico(id_feitico) # ); # """) # ADICIONANDO CAMPO NA TABELA # cursor.execute(""" # ALTER TABLE feitico ADD COLUMN json TEXT; # """) ##################### # INSERINDO VALORES # ##################### # cursor.execute(""" # INSERT INTO feitico VALUES ( # null, # 'teste', # 'feitico que ordena livros', # 1, # 0, # 0, # 1, # null # ); # """) # cursor.execute(""" # INSERT INTO status VALUES ( # null, # 4, # 'operadores', # 90 # ); # """) conn.commit() cursor.execute(""" SELECT * FROM status WHERE assunto = 'tipos' and id_feitico > 2 """) print cursor.fetchall() conn.close()
from __future__ import annotations import subprocess import sys from urllib.parse import ParseResult import requests import murfey def check(api_base: ParseResult, install: bool = True, force: bool = False): """ Verify that the current client version can run against the selected server. If the version number is outside the allowed range then this can trigger an update on the client, and in that case will terminate the process. """ version_check_url = api_base._replace( path="/version", query=f"client_version={murfey.__version__}" ) server_reply = requests.get(version_check_url.geturl()) if server_reply.status_code != 200: raise ValueError(f"Server unreachable ({server_reply.status_code})") versions = server_reply.json() if not install: return print( f"Murfey {murfey.__version__} connected to Murfey server {versions['server']}" ) if versions["client-needs-update"] or versions["client-needs-downgrade"]: # Proceed with mandatory installation if versions["client-needs-update"]: print("This version of Murfey must be updated before continuing.") if versions["client-needs-downgrade"]: print( "This version of Murfey is too new for the server and must be downgraded before continuing." ) result = install_murfey(api_base, versions["server"]) if result: print("\nMurfey has been updated. Please restart Murfey") exit() else: exit("Error occurred while updating Murfey") if versions["server"] != murfey.__version__: if force: result = install_murfey(api_base, versions["server"]) if result: print("\nMurfey has been updated. Please restart Murfey") exit() else: exit("Error occurred while updating Murfey") else: print("An update is available, install with 'murfey update'.") def install_murfey(api_base: ParseResult, version: str) -> bool: """Install a specific version of the Murfey client. Return 'true' on success and 'false' on error.""" assert api_base.hostname is not None result = subprocess.run( [ sys.executable, "-mpip", "install", "--trusted-host", api_base.hostname, "-i", api_base._replace(path="/pypi", query="").geturl(), f"murfey[client]=={version}", ] ) return result.returncode == 0
import logging logger = logging.getLogger('qrhub') logging_formats = { 'simple': '%(asctime)s: %(levelname)s - %(message)s', 'full': '%(asctime)s [%(name)s]: %(levelname)s - %(message)s (%(filename)s:%(funcName)s#%(lineno)d)' } class DBHandler(logging.Handler): def emit(self, record): from apps.core.models import Log payload = { 'filename': record.filename, 'function_name': record.funcName, 'level_name': record.levelname, 'level_number': record.levelno, 'line_number': record.lineno, 'module': record.module, 'message': self.format(record), 'path': record.pathname, 'stack_info': record.stack_info, 'args': record.args } Log.objects.create(**payload) class ColoredFormatter(logging.Formatter): """Logging Formatter to add colors""" reset = "\x1b[0m" white = "\x1b[97;21m" red = "\x1b[91;21m" green = "\x1b[32;21m" bold_red = "\x1b[31;21m" blue = "\x1b[36;21m" yellow = "\x1b[33;21m" grey = "\x1b[37;21m" def format(self, record): FORMATS = { logging.DEBUG: self.green + self._fmt + self.reset, logging.INFO: self.blue + self._fmt + self.reset, logging.WARNING: self.yellow + self._fmt + self.reset, logging.ERROR: self.red + self._fmt + self.reset, logging.CRITICAL: self.bold_red + self._fmt + self.reset } log_fmt = FORMATS.get(record.levelno) formatter = logging.Formatter(log_fmt) return formatter.format(record)
# # PySNMP MIB module BATTERY-MIB (http://snmplabs.com/pysmi) # ASN.1 source file:///Users/davwang4/Dev/mibs.snmplabs.com/asn1/BATTERY-MIB # Produced by pysmi-0.3.4 at Mon Apr 29 17:18:18 2019 # On host DAVWANG4-M-1475 platform Darwin version 18.5.0 by user davwang4 # Using Python version 3.7.3 (default, Mar 27 2019, 09:23:15) # ObjectIdentifier, OctetString, Integer = mibBuilder.importSymbols("ASN1", "ObjectIdentifier", "OctetString", "Integer") NamedValues, = mibBuilder.importSymbols("ASN1-ENUMERATION", "NamedValues") ConstraintsUnion, ConstraintsIntersection, ValueRangeConstraint, ValueSizeConstraint, SingleValueConstraint = mibBuilder.importSymbols("ASN1-REFINEMENT", "ConstraintsUnion", "ConstraintsIntersection", "ValueRangeConstraint", "ValueSizeConstraint", "SingleValueConstraint") entPhysicalIndex, = mibBuilder.importSymbols("ENTITY-MIB", "entPhysicalIndex") SnmpAdminString, = mibBuilder.importSymbols("SNMP-FRAMEWORK-MIB", "SnmpAdminString") NotificationGroup, ObjectGroup, ModuleCompliance = mibBuilder.importSymbols("SNMPv2-CONF", "NotificationGroup", "ObjectGroup", "ModuleCompliance") MibScalar, MibTable, MibTableRow, MibTableColumn, IpAddress, Counter32, NotificationType, ModuleIdentity, mib_2, ObjectIdentity, Bits, Counter64, TimeTicks, iso, Gauge32, MibIdentifier, Integer32, Unsigned32 = mibBuilder.importSymbols("SNMPv2-SMI", "MibScalar", "MibTable", "MibTableRow", "MibTableColumn", "IpAddress", "Counter32", "NotificationType", "ModuleIdentity", "mib-2", "ObjectIdentity", "Bits", "Counter64", "TimeTicks", "iso", "Gauge32", "MibIdentifier", "Integer32", "Unsigned32") DisplayString, DateAndTime, TextualConvention = mibBuilder.importSymbols("SNMPv2-TC", "DisplayString", "DateAndTime", "TextualConvention") batteryMIB = ModuleIdentity((1, 3, 6, 1, 2, 1, 233)) batteryMIB.setRevisions(('2015-06-15 00:00',)) if mibBuilder.loadTexts: batteryMIB.setLastUpdated('201506150000Z') if mibBuilder.loadTexts: batteryMIB.setOrganization('IETF EMAN Working Group') batteryNotifications = MibIdentifier((1, 3, 6, 1, 2, 1, 233, 0)) batteryObjects = MibIdentifier((1, 3, 6, 1, 2, 1, 233, 1)) batteryConformance = MibIdentifier((1, 3, 6, 1, 2, 1, 233, 2)) batteryTable = MibTable((1, 3, 6, 1, 2, 1, 233, 1, 1), ) if mibBuilder.loadTexts: batteryTable.setStatus('current') batteryEntry = MibTableRow((1, 3, 6, 1, 2, 1, 233, 1, 1, 1), ).setIndexNames((0, "ENTITY-MIB", "entPhysicalIndex")) if mibBuilder.loadTexts: batteryEntry.setStatus('current') batteryIdentifier = MibTableColumn((1, 3, 6, 1, 2, 1, 233, 1, 1, 1, 1), SnmpAdminString()).setMaxAccess("readonly") if mibBuilder.loadTexts: batteryIdentifier.setStatus('current') batteryFirmwareVersion = MibTableColumn((1, 3, 6, 1, 2, 1, 233, 1, 1, 1, 2), SnmpAdminString()).setMaxAccess("readonly") if mibBuilder.loadTexts: batteryFirmwareVersion.setStatus('current') batteryType = MibTableColumn((1, 3, 6, 1, 2, 1, 233, 1, 1, 1, 3), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2, 3, 4, 5))).clone(namedValues=NamedValues(("unknown", 1), ("other", 2), ("primary", 3), ("rechargeable", 4), ("capacitor", 5)))).setMaxAccess("readonly") if mibBuilder.loadTexts: batteryType.setStatus('current') batteryTechnology = MibTableColumn((1, 3, 6, 1, 2, 1, 233, 1, 1, 1, 4), Unsigned32()).setMaxAccess("readonly") if mibBuilder.loadTexts: batteryTechnology.setStatus('current') batteryDesignVoltage = MibTableColumn((1, 3, 6, 1, 2, 1, 233, 1, 1, 1, 5), Unsigned32()).setUnits('millivolt').setMaxAccess("readonly") if mibBuilder.loadTexts: batteryDesignVoltage.setStatus('current') batteryNumberOfCells = MibTableColumn((1, 3, 6, 1, 2, 1, 233, 1, 1, 1, 6), Unsigned32()).setMaxAccess("readonly") if mibBuilder.loadTexts: batteryNumberOfCells.setStatus('current') batteryDesignCapacity = MibTableColumn((1, 3, 6, 1, 2, 1, 233, 1, 1, 1, 7), Unsigned32()).setUnits('milliampere hours').setMaxAccess("readonly") if mibBuilder.loadTexts: batteryDesignCapacity.setStatus('current') batteryMaxChargingCurrent = MibTableColumn((1, 3, 6, 1, 2, 1, 233, 1, 1, 1, 8), Unsigned32()).setUnits('milliampere').setMaxAccess("readonly") if mibBuilder.loadTexts: batteryMaxChargingCurrent.setStatus('current') batteryTrickleChargingCurrent = MibTableColumn((1, 3, 6, 1, 2, 1, 233, 1, 1, 1, 9), Unsigned32()).setUnits('milliampere').setMaxAccess("readonly") if mibBuilder.loadTexts: batteryTrickleChargingCurrent.setStatus('current') batteryActualCapacity = MibTableColumn((1, 3, 6, 1, 2, 1, 233, 1, 1, 1, 10), Unsigned32()).setUnits('milliampere hours').setMaxAccess("readonly") if mibBuilder.loadTexts: batteryActualCapacity.setStatus('current') batteryChargingCycleCount = MibTableColumn((1, 3, 6, 1, 2, 1, 233, 1, 1, 1, 11), Unsigned32()).setMaxAccess("readonly") if mibBuilder.loadTexts: batteryChargingCycleCount.setStatus('current') batteryLastChargingCycleTime = MibTableColumn((1, 3, 6, 1, 2, 1, 233, 1, 1, 1, 12), DateAndTime()).setMaxAccess("readonly") if mibBuilder.loadTexts: batteryLastChargingCycleTime.setStatus('current') batteryChargingOperState = MibTableColumn((1, 3, 6, 1, 2, 1, 233, 1, 1, 1, 13), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2, 3, 4, 5))).clone(namedValues=NamedValues(("unknown", 1), ("charging", 2), ("maintainingCharge", 3), ("noCharging", 4), ("discharging", 5)))).setMaxAccess("readonly") if mibBuilder.loadTexts: batteryChargingOperState.setStatus('current') batteryChargingAdminState = MibTableColumn((1, 3, 6, 1, 2, 1, 233, 1, 1, 1, 14), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2, 3, 4))).clone(namedValues=NamedValues(("notSet", 1), ("charge", 2), ("doNotCharge", 3), ("discharge", 4)))).setMaxAccess("readwrite") if mibBuilder.loadTexts: batteryChargingAdminState.setStatus('current') batteryActualCharge = MibTableColumn((1, 3, 6, 1, 2, 1, 233, 1, 1, 1, 15), Unsigned32()).setUnits('milliampere hours').setMaxAccess("readonly") if mibBuilder.loadTexts: batteryActualCharge.setStatus('current') batteryActualVoltage = MibTableColumn((1, 3, 6, 1, 2, 1, 233, 1, 1, 1, 16), Unsigned32()).setUnits('millivolt').setMaxAccess("readonly") if mibBuilder.loadTexts: batteryActualVoltage.setStatus('current') batteryActualCurrent = MibTableColumn((1, 3, 6, 1, 2, 1, 233, 1, 1, 1, 17), Integer32()).setUnits('milliampere').setMaxAccess("readonly") if mibBuilder.loadTexts: batteryActualCurrent.setStatus('current') batteryTemperature = MibTableColumn((1, 3, 6, 1, 2, 1, 233, 1, 1, 1, 18), Integer32()).setUnits('deci-degrees Celsius').setMaxAccess("readonly") if mibBuilder.loadTexts: batteryTemperature.setStatus('current') batteryAlarmLowCharge = MibTableColumn((1, 3, 6, 1, 2, 1, 233, 1, 1, 1, 19), Unsigned32()).setUnits('milliampere hours').setMaxAccess("readwrite") if mibBuilder.loadTexts: batteryAlarmLowCharge.setStatus('current') batteryAlarmLowVoltage = MibTableColumn((1, 3, 6, 1, 2, 1, 233, 1, 1, 1, 20), Unsigned32()).setUnits('millivolt').setMaxAccess("readwrite") if mibBuilder.loadTexts: batteryAlarmLowVoltage.setStatus('current') batteryAlarmLowCapacity = MibTableColumn((1, 3, 6, 1, 2, 1, 233, 1, 1, 1, 21), Unsigned32()).setUnits('milliampere hours').setMaxAccess("readwrite") if mibBuilder.loadTexts: batteryAlarmLowCapacity.setStatus('current') batteryAlarmHighCycleCount = MibTableColumn((1, 3, 6, 1, 2, 1, 233, 1, 1, 1, 22), Unsigned32()).setMaxAccess("readwrite") if mibBuilder.loadTexts: batteryAlarmHighCycleCount.setStatus('current') batteryAlarmHighTemperature = MibTableColumn((1, 3, 6, 1, 2, 1, 233, 1, 1, 1, 23), Integer32()).setUnits('deci-degrees Celsius').setMaxAccess("readwrite") if mibBuilder.loadTexts: batteryAlarmHighTemperature.setStatus('current') batteryAlarmLowTemperature = MibTableColumn((1, 3, 6, 1, 2, 1, 233, 1, 1, 1, 24), Integer32()).setUnits('deci-degrees Celsius').setMaxAccess("readwrite") if mibBuilder.loadTexts: batteryAlarmLowTemperature.setStatus('current') batteryCellIdentifier = MibTableColumn((1, 3, 6, 1, 2, 1, 233, 1, 1, 1, 25), SnmpAdminString()).setMaxAccess("readonly") if mibBuilder.loadTexts: batteryCellIdentifier.setStatus('current') batteryChargingStateNotification = NotificationType((1, 3, 6, 1, 2, 1, 233, 0, 1)).setObjects(("BATTERY-MIB", "batteryChargingOperState")) if mibBuilder.loadTexts: batteryChargingStateNotification.setStatus('current') batteryLowNotification = NotificationType((1, 3, 6, 1, 2, 1, 233, 0, 2)).setObjects(("BATTERY-MIB", "batteryActualCharge"), ("BATTERY-MIB", "batteryActualVoltage"), ("BATTERY-MIB", "batteryCellIdentifier")) if mibBuilder.loadTexts: batteryLowNotification.setStatus('current') batteryCriticalNotification = NotificationType((1, 3, 6, 1, 2, 1, 233, 0, 3)).setObjects(("BATTERY-MIB", "batteryActualCharge"), ("BATTERY-MIB", "batteryActualVoltage"), ("BATTERY-MIB", "batteryCellIdentifier")) if mibBuilder.loadTexts: batteryCriticalNotification.setStatus('current') batteryTemperatureNotification = NotificationType((1, 3, 6, 1, 2, 1, 233, 0, 4)).setObjects(("BATTERY-MIB", "batteryTemperature"), ("BATTERY-MIB", "batteryCellIdentifier")) if mibBuilder.loadTexts: batteryTemperatureNotification.setStatus('current') batteryAgingNotification = NotificationType((1, 3, 6, 1, 2, 1, 233, 0, 5)).setObjects(("BATTERY-MIB", "batteryActualCapacity"), ("BATTERY-MIB", "batteryChargingCycleCount"), ("BATTERY-MIB", "batteryCellIdentifier")) if mibBuilder.loadTexts: batteryAgingNotification.setStatus('current') batteryConnectedNotification = NotificationType((1, 3, 6, 1, 2, 1, 233, 0, 6)).setObjects(("BATTERY-MIB", "batteryIdentifier")) if mibBuilder.loadTexts: batteryConnectedNotification.setStatus('current') batteryDisconnectedNotification = NotificationType((1, 3, 6, 1, 2, 1, 233, 0, 7)) if mibBuilder.loadTexts: batteryDisconnectedNotification.setStatus('current') batteryCompliances = MibIdentifier((1, 3, 6, 1, 2, 1, 233, 2, 1)) batteryGroups = MibIdentifier((1, 3, 6, 1, 2, 1, 233, 2, 2)) batteryCompliance = ModuleCompliance((1, 3, 6, 1, 2, 1, 233, 2, 1, 1)).setObjects(("BATTERY-MIB", "batteryDescriptionGroup"), ("BATTERY-MIB", "batteryStatusGroup"), ("BATTERY-MIB", "batteryAlarmThresholdsGroup"), ("BATTERY-MIB", "batteryNotificationsGroup"), ("BATTERY-MIB", "batteryPerCellNotificationsGroup"), ("BATTERY-MIB", "batteryAdminGroup")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): batteryCompliance = batteryCompliance.setStatus('current') batteryDescriptionGroup = ObjectGroup((1, 3, 6, 1, 2, 1, 233, 2, 2, 1)).setObjects(("BATTERY-MIB", "batteryIdentifier"), ("BATTERY-MIB", "batteryFirmwareVersion"), ("BATTERY-MIB", "batteryType"), ("BATTERY-MIB", "batteryTechnology"), ("BATTERY-MIB", "batteryDesignVoltage"), ("BATTERY-MIB", "batteryNumberOfCells"), ("BATTERY-MIB", "batteryDesignCapacity"), ("BATTERY-MIB", "batteryMaxChargingCurrent"), ("BATTERY-MIB", "batteryTrickleChargingCurrent")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): batteryDescriptionGroup = batteryDescriptionGroup.setStatus('current') batteryStatusGroup = ObjectGroup((1, 3, 6, 1, 2, 1, 233, 2, 2, 2)).setObjects(("BATTERY-MIB", "batteryActualCapacity"), ("BATTERY-MIB", "batteryChargingCycleCount"), ("BATTERY-MIB", "batteryLastChargingCycleTime"), ("BATTERY-MIB", "batteryChargingOperState"), ("BATTERY-MIB", "batteryActualCharge"), ("BATTERY-MIB", "batteryActualVoltage"), ("BATTERY-MIB", "batteryActualCurrent"), ("BATTERY-MIB", "batteryTemperature")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): batteryStatusGroup = batteryStatusGroup.setStatus('current') batteryAdminGroup = ObjectGroup((1, 3, 6, 1, 2, 1, 233, 2, 2, 3)).setObjects(("BATTERY-MIB", "batteryChargingAdminState")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): batteryAdminGroup = batteryAdminGroup.setStatus('current') batteryAlarmThresholdsGroup = ObjectGroup((1, 3, 6, 1, 2, 1, 233, 2, 2, 4)).setObjects(("BATTERY-MIB", "batteryAlarmLowCharge"), ("BATTERY-MIB", "batteryAlarmLowVoltage"), ("BATTERY-MIB", "batteryAlarmLowCapacity"), ("BATTERY-MIB", "batteryAlarmHighCycleCount"), ("BATTERY-MIB", "batteryAlarmHighTemperature"), ("BATTERY-MIB", "batteryAlarmLowTemperature")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): batteryAlarmThresholdsGroup = batteryAlarmThresholdsGroup.setStatus('current') batteryNotificationsGroup = NotificationGroup((1, 3, 6, 1, 2, 1, 233, 2, 2, 5)).setObjects(("BATTERY-MIB", "batteryChargingStateNotification"), ("BATTERY-MIB", "batteryLowNotification"), ("BATTERY-MIB", "batteryCriticalNotification"), ("BATTERY-MIB", "batteryAgingNotification"), ("BATTERY-MIB", "batteryTemperatureNotification"), ("BATTERY-MIB", "batteryConnectedNotification"), ("BATTERY-MIB", "batteryDisconnectedNotification")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): batteryNotificationsGroup = batteryNotificationsGroup.setStatus('current') batteryPerCellNotificationsGroup = ObjectGroup((1, 3, 6, 1, 2, 1, 233, 2, 2, 6)).setObjects(("BATTERY-MIB", "batteryCellIdentifier")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): batteryPerCellNotificationsGroup = batteryPerCellNotificationsGroup.setStatus('current') mibBuilder.exportSymbols("BATTERY-MIB", batteryLastChargingCycleTime=batteryLastChargingCycleTime, batteryConformance=batteryConformance, batteryAlarmThresholdsGroup=batteryAlarmThresholdsGroup, batteryMIB=batteryMIB, batteryAdminGroup=batteryAdminGroup, batteryNotifications=batteryNotifications, batteryEntry=batteryEntry, batteryTechnology=batteryTechnology, batteryActualCharge=batteryActualCharge, batteryAlarmLowCharge=batteryAlarmLowCharge, batteryAlarmLowTemperature=batteryAlarmLowTemperature, batteryDesignCapacity=batteryDesignCapacity, batteryCompliances=batteryCompliances, batteryAlarmHighCycleCount=batteryAlarmHighCycleCount, batteryAlarmLowCapacity=batteryAlarmLowCapacity, batteryCompliance=batteryCompliance, batteryActualVoltage=batteryActualVoltage, batteryActualCapacity=batteryActualCapacity, batteryTemperature=batteryTemperature, batteryChargingOperState=batteryChargingOperState, batteryStatusGroup=batteryStatusGroup, batteryObjects=batteryObjects, PYSNMP_MODULE_ID=batteryMIB, batteryAlarmLowVoltage=batteryAlarmLowVoltage, batteryDisconnectedNotification=batteryDisconnectedNotification, batteryGroups=batteryGroups, batteryNotificationsGroup=batteryNotificationsGroup, batteryDescriptionGroup=batteryDescriptionGroup, batteryChargingCycleCount=batteryChargingCycleCount, batteryFirmwareVersion=batteryFirmwareVersion, batteryCriticalNotification=batteryCriticalNotification, batteryConnectedNotification=batteryConnectedNotification, batteryDesignVoltage=batteryDesignVoltage, batteryMaxChargingCurrent=batteryMaxChargingCurrent, batteryLowNotification=batteryLowNotification, batteryIdentifier=batteryIdentifier, batteryTemperatureNotification=batteryTemperatureNotification, batteryNumberOfCells=batteryNumberOfCells, batteryAlarmHighTemperature=batteryAlarmHighTemperature, batteryChargingAdminState=batteryChargingAdminState, batteryTable=batteryTable, batteryChargingStateNotification=batteryChargingStateNotification, batteryPerCellNotificationsGroup=batteryPerCellNotificationsGroup, batteryCellIdentifier=batteryCellIdentifier, batteryAgingNotification=batteryAgingNotification, batteryType=batteryType, batteryTrickleChargingCurrent=batteryTrickleChargingCurrent, batteryActualCurrent=batteryActualCurrent)
# 共享视觉模型 from keras.layers import Conv2D, MaxPooling2D, Input, Dense, Flatten from keras.models import Model # First, define the vision modules digit_input = Input(shape=(27, 27, 1)) x = Conv2D(64, (3,3))(digit_input) x = Conv2D(64, (3,3))(x) x = MaxPooling2D((2, 2))(x) out = Flatten(x) vision_model = Model(digit_input) # Then define the tell-digits-apart model digit_a = Input(shape=(27, 27, 1)) digit_b = Input(shape=(27, 27, 1)) # The vision model will be shared, weights and all out_a = vision_model(digit_a) out_b = vision_model(digit_b) concatenated = keras.layers.concatenate([out_a, out_b]) out = Dense(1, activation='sigmoid')(concatenated) classification_model = Model([digit_a, digit_b], out)
from flask import Flask, jsonify from flask.wrappers import Request import requests from blockchain import Blockchain from uuid import uuid4 # Creating a Web App app = Flask(__name__) # Creating a Blockchain blockchain = Blockchain() # Creating an address for the node node_address = str(uuid4()).replace('-', '') # Mining a new block @app.route('/mine_block', methods=['GET']) def mine_block(): previous_block = blockchain.get_previous_block() previous_proof = previous_block['proof'] proof = blockchain.proof_of_work(previous_proof) previous_hash = blockchain.hash(previous_block) blockchain.add_transaction(sender=node_address, receiver='Jokers', amount=10) block = blockchain.create_block(proof, previous_hash) response = {'message': 'Congratulations, you just mined a block!', 'index': block['index'], 'timestamp': block['timestamp'], 'proof': block['proof'], 'previous_hash': block['previous_hash'], 'transactions': block['transactions']} return jsonify(response), 200 # Getting the full Blockchain @app.route('/get_chain', methods=['GET']) def get_chain(): response = {'chain': blockchain.chain, 'length': len(blockchain.chain)} return jsonify(response), 200 # Checking if the Blockchain is valid @app.route('/is_valid', methods=['GET']) def is_valid(): is_valid = blockchain.is_chain_valid(blockchain.chain) if is_valid: response = {'message': 'All good. The Blockchain is valid.'} else: response = { 'message': '''Houston, we have a problem. The Blockchain is not valid.'''} return jsonify(response), 200 # Add a new transaction to the Blockchain @app.route('/add_transaction', methods=['POST']) def add_transaction(): json = Request.get_json() transaction_keys = ['sender', 'receiver', 'amount'] if not all (key in json for key in transaction_keys): return 'Some elements of the transaction are missing', 400 index = blockchain.add_transaction(json['sender'], json['receiver'], json['amount']) response = {'message': f'This transaction will be added in Block {index}'} return jsonify(response), 201 # Connecting new nodes @app.route('/connect_node', methods=['POST']) def connect_node(): json = Request.get_json() nodes = json.get('nodes') if nodes is not None: return "No node", 400 for node in nodes: blockchain.add_node(node) response = {'message': f'All the nodes are now connected.', 'total_nodes': list(blockchain.nodes)} return jsonify(response), 201 # Checking if the Blockchain is valid @app.route('/replace_chain', methods=['GET']) def is_valid(): is_chain_replaced = blockchain.replace_chain() if is_chain_replaced: response = {'message': 'The chain was replaced by the longest one.'} else: response = {'message': 'The chain is the longest one'} return jsonify(response), 200 # Running the app app.run(host='0.0.0.0', port=5000)
import torch import torch.nn as nn import numpy as np from data_info.data_info import DataInfo class ACloss(nn.Module): def __init__(self): super(ACloss, self).__init__() self.height = DataInfo.resized_image_size[1] self.width = DataInfo.resized_image_size[0] self.num_landmark_class = DataInfo.num_landmark_class def get_angle_matrix(self, inp_mat): np_array1 = inp_mat - [self.height / 2, self.width / 2] np_array2 = inp_mat - [self.height / 2, self.width / 2] arccos_val = np.dot(np_array1, np_array2.transpose()) / ( np.linalg.norm(np_array1, axis=1).reshape(np_array1.shape[0], 1) * np.linalg.norm(np_array2, axis=1)) arccos_val = np.where(arccos_val < -1, -1, arccos_val) arccos_val = np.where(arccos_val > 1, 1, arccos_val) angle_matrix = np.arccos(arccos_val) angle_matrix[np.isnan(angle_matrix)] = 0 return angle_matrix @staticmethod def get_dist_matrix(inp_mat): y_meshgrid1, y_meshgrid2 = np.meshgrid(inp_mat[:, 0], inp_mat[:, 0]) x_meshgrid1, x_meshgrid2 = np.meshgrid(inp_mat[:, 1], inp_mat[:, 1]) dist = np.sqrt((y_meshgrid1 - y_meshgrid2) ** 2 + (x_meshgrid1 - x_meshgrid2) ** 2) return dist def get_angle_and_dist_loss(self, output, target): # tensor(1,landmark_num,h,w) angle_loss = 0.0 dist_loss = 0.0 for batch in range(target.size(0)): output_matrix = np.zeros((self.num_landmark_class, 2)) target_matrix = np.zeros((self.num_landmark_class, 2)) for landmark_num in range(0, self.num_landmark_class): output_image = output[batch][landmark_num] output_image = output_image.cpu() target_image = target[batch][landmark_num] target_image = target_image.cpu() output_max_point_np_array = np.array(np.where(output_image == output_image.max())) target_max_point_np_array = np.array(np.where(target_image == target_image.max())) output_matrix[landmark_num] = output_max_point_np_array[:, 0] target_matrix[landmark_num] = target_max_point_np_array[:, 0] output_angle = self.get_angle_matrix(output_matrix) target_angle = self.get_angle_matrix(target_matrix) angle_loss += np.mean(np.abs(output_angle - target_angle)) output_dist = self.get_dist_matrix(output_matrix) target_dist = self.get_dist_matrix(target_matrix) dist_loss += np.mean(np.abs(output_dist - target_dist)) return angle_loss, dist_loss def forward(self, output, target): l2_loss = torch.mean(torch.pow((output - target), 2)) angle_loss, dist_loss = self.get_angle_and_dist_loss(output, target) w_loss = (1 + angle_loss) + np.log(dist_loss + 1e-10) loss = torch.mul(l2_loss, w_loss) return loss, l2_loss, w_loss, angle_loss, dist_loss
from django.conf import settings from mongoengine import Document, fields from mongodbforms import DocumentForm import unittest class MyDocument(Document): mystring = fields.StringField() myverbosestring = fields.StringField(verbose_name="Foobar") myrequiredstring = fields.StringField(required=True) list_of_strings = fields.ListField(fields.StringField()) class MyForm(DocumentForm): class Meta: document = MyDocument class SimpleDocumentTest(unittest.TestCase): @classmethod def setUpClass(cls): settings.configure() def test_form(self): form = MyForm() self.assertEquals(len(form.fields), 4) self.assertFalse(form.fields['mystring'].required) self.assertEquals(form.fields['myverbosestring'].label, "Foobar") self.assertTrue(form.fields['myrequiredstring'].required) self.assertEqual(form.fields['list_of_strings'].label, "List of strings")
# uncompyle6 version 3.7.4 # Python bytecode 3.7 (3394) # Decompiled from: Python 3.7.9 (tags/v3.7.9:13c94747c7, Aug 17 2020, 18:58:18) [MSC v.1900 64 bit (AMD64)] # Embedded file name: T:\InGame\Gameplay\Scripts\Server\objects\components\stored_sim_info_component.py # Compiled at: 2018-09-12 23:39:12 # Size of source mod 2**32: 10090 bytes from protocolbuffers import SimObjectAttributes_pb2 as protocols from interactions import ParticipantType from interactions.utils.interaction_elements import XevtTriggeredElement from interactions.utils.loot_basic_op import BaseTargetedLootOperation, BaseLootOperation from objects.components import Component, types, componentmethod_with_fallback from sims.sim_info_name_data import SimInfoNameData from sims4.tuning.tunable import AutoFactoryInit, HasTunableFactory, TunableEnumEntry, OptionalTunable, Tunable import services, sims4, zone_types logger = sims4.log.Logger('Stored Sim Info Component', default_owner='shipark') class TransferStoredSimInfo(BaseTargetedLootOperation): FACTORY_TUNABLES = {'clear_stored_sim_on_subject': Tunable(description='\n If set to False, the Stored Sim will remain on the subject object. If\n set to True, the Store Sim will be removed from the subject object.\n ', tunable_type=bool, default=False)} def __init__(self, *args, clear_stored_sim_on_subject=None, **kwargs): (super().__init__)(*args, **kwargs) self._clear_stored_sim_on_subject = clear_stored_sim_on_subject def _apply_to_subject_and_target(self, subject, target, resolver): if subject is None: logger.error("The Transfer Stored Sim Info loot tuned on: '{}' has a subject participant of None value.", self) return stored_sim_info = subject.get_component(types.STORED_SIM_INFO_COMPONENT) if stored_sim_info is None: logger.error("The Transfer Stored Sim Info loot tuned on interaction: '{}' has a subject with no Stored Sim Info Component.", self) return if target is None: logger.error("The Transfer Stored Sim Info loot tuned on interaction: '{}' has a target participant of None value.", self) return if target.has_component(types.STORED_SIM_INFO_COMPONENT): target.remove_component(types.STORED_SIM_INFO_COMPONENT) target.add_dynamic_component((types.STORED_SIM_INFO_COMPONENT), sim_id=(stored_sim_info.get_stored_sim_id())) if self._clear_stored_sim_on_subject: subject.remove_component(types.STORED_SIM_INFO_COMPONENT) class StoreSimInfoLootOp(BaseTargetedLootOperation): def _apply_to_subject_and_target(self, subject, target, resolver): if subject is None or target is None: logger.error('Trying to run Store Sim Info loot action with a None Subject and/or Target. subject:{}, target:{}', subject, target) return else: target.is_sim or logger.error('Trying to run Store Sim Info loot action on Subject {} with a non Sim Target {}', subject, target) return if subject.has_component(types.STORED_SIM_INFO_COMPONENT): subject.remove_component(types.STORED_SIM_INFO_COMPONENT) subject.add_dynamic_component((types.STORED_SIM_INFO_COMPONENT), sim_id=(target.sim_id)) class RemoveSimInfoLootOp(BaseLootOperation): def _apply_to_subject_and_target(self, subject, target, resolver): if subject is None: logger.error('Trying to run Remove Stored Sim Info loot action with a None Subject') return if subject.has_component(types.STORED_SIM_INFO_COMPONENT): subject.remove_component(types.STORED_SIM_INFO_COMPONENT) class StoreSimElement(XevtTriggeredElement, HasTunableFactory, AutoFactoryInit): FACTORY_TUNABLES = {'description':'\n An element that retrieves an interaction participant and attaches\n its information to another interaction participant using a dynamic\n StoredSimInfoComponent.\n ', 'source_participant':OptionalTunable(description='\n Specify what participant to store on the destination participant.\n ', tunable=TunableEnumEntry(description='\n The participant of this interaction whose Sim Info is retrieved\n to be stored as a component.\n ', tunable_type=ParticipantType, default=(ParticipantType.PickedObject)), enabled_name='specific_participant', disabled_name='no_participant'), 'destination_participant':TunableEnumEntry(description='\n The participant of this interaction to which a\n StoredSimInfoComponent is added, with the Sim Info of\n source_participant.\n ', tunable_type=ParticipantType, default=ParticipantType.Object)} def _do_behavior(self): source = self.interaction.get_participant(participant_type=(self.source_participant)) if self.source_participant is not None else None destination = self.interaction.get_participant(participant_type=(self.destination_participant)) if destination.has_component(types.STORED_SIM_INFO_COMPONENT): destination.remove_component(types.STORED_SIM_INFO_COMPONENT) if source is not None: destination.add_dynamic_component((types.STORED_SIM_INFO_COMPONENT), sim_id=(source.id)) class StoredSimInfoComponent(Component, component_name=types.STORED_SIM_INFO_COMPONENT, allow_dynamic=True, persistence_key=protocols.PersistenceMaster.PersistableData.StoredSimInfoComponent): def __init__(self, *args, sim_id=None, **kwargs): (super().__init__)(*args, **kwargs) self._sim_id = sim_id self._sim_info_name_data = None def save(self, persistence_master_message): persistable_data = protocols.PersistenceMaster.PersistableData() persistable_data.type = protocols.PersistenceMaster.PersistableData.StoredSimInfoComponent stored_sim_info_component_data = persistable_data.Extensions[protocols.PersistableStoredSimInfoComponent.persistable_data] stored_sim_info_component_data.sim_id = self._sim_id if self._sim_info_name_data is not None: stored_sim_info_component_data.sim_info_name_data = SimInfoNameData.generate_sim_info_name_data_msg((self._sim_info_name_data), use_profanity_filter=False) persistence_master_message.data.extend([persistable_data]) def load(self, persistable_data): stored_sim_info_component_data = persistable_data.Extensions[protocols.PersistableStoredSimInfoComponent.persistable_data] self._sim_id = stored_sim_info_component_data.sim_id if stored_sim_info_component_data.sim_info_name_data: sim_info_data = stored_sim_info_component_data.sim_info_name_data self._sim_info_name_data = SimInfoNameData(sim_info_data.gender, sim_info_data.first_name, sim_info_data.last_name, sim_info_data.full_name_key) def on_add(self, *_, **__): services.current_zone().register_callback(zone_types.ZoneState.HOUSEHOLDS_AND_SIM_INFOS_LOADED, self._on_households_loaded) def _on_households_loaded(self, *_, **__): if self._sim_info_name_data is None: sim_info = services.sim_info_manager().get(self._sim_id) if sim_info is not None: self._sim_info_name_data = sim_info.get_name_data() self.owner.update_object_tooltip() @componentmethod_with_fallback(lambda : None) def get_stored_sim_id(self): return self._sim_id @componentmethod_with_fallback(lambda : None) def get_stored_sim_info(self): return services.sim_info_manager().get(self._sim_id) @componentmethod_with_fallback(lambda : None) def get_stored_sim_info_or_name_data(self): sim_info = services.sim_info_manager().get(self._sim_id) if sim_info is not None: return sim_info return self._sim_info_name_data def has_stored_data(self): return self._sim_info_name_data is not None def component_interactable_gen(self): yield self
import setuptools import os on_rtd = os.environ.get('READTHEDOCS') == 'True' if on_rtd: requirements = [] else: requirements = [ 'pandas>=0.25.1', 'numpy>=1.16.5', 'scipy>=1.3.1', 'gpflow==1.5.1', 'tensorflow==1.15.2', 'goatools>=1.0.2', 'scikit-learn>=0.21.3', 'statsmodels>=0.10.1', 'matplotlib>=3.1.1', 'seaborn>=0.9.0', 'pytest' ] with open("README.md", "r") as fh: long_description = fh.read() setuptools.setup( name="TRANSPIRE", version="0.1.1.dev1", author="Michelle A. Kennedy", author_email="mak4515@gmail.com", description="A Python package for TRanslocation ANalysis of SPatIal pRotEomics data", long_description=long_description, long_description_content_type="text/markdown", url="https://github.com/mak4515/TRANSPIRE", packages=setuptools.find_packages(), classifiers=[ 'Development Status :: 3 - Alpha', "Programming Language :: Python :: 3", "License :: OSI Approved :: MIT License", "Operating System :: OS Independent", ], python_requires='>=3.6', install_requires = requirements, include_package_data = True, package_data = { '': ['.csv', '.txt', '.xlsx'] } )
#!/usr/bin/env python from setuptools import setup VERSION = '1.0.0' DESCRIPTION = "mutual-followers: Find out mutual friends of twitter users" LONG_DESCRIPTION = """ mutual-followers finds out the mutual friends for given screen names. I use this to discover people who are tweeting about software development and also being followed by common reputable people. """ CLASSIFIERS = filter(None, map(str.strip, """ Intended Audience :: Developers License :: OSI Approved :: MIT License Programming Language :: Python :: 3.7 Operating System :: OS Independent Topic :: Utilities Topic :: Database :: Database Engines/Servers Topic :: Software Development :: Libraries :: Python Modules """.splitlines())) setup( name="mutual-followers", version=VERSION, description=DESCRIPTION, long_description=LONG_DESCRIPTION, classifiers=CLASSIFIERS, keywords=('twitter', 'tweepy', 'friends', 'followers', 'python', 'set'), author="Berkay Dincer", author_email="dincerbberkay@gmail.com", url="https://github.com/berkay-dincer/mutual-followers", license="MIT License", platforms=['any'], zip_safe=True, install_requires=['tweepy>=1.1.0', 'argparse>=1.4.0'], packages=['mutual-followers'] )
from .Assets import Assets from .BaseClient import BaseClient from .DataViews import DataViews from .Streams import Streams from .Types import Types class OCSClient: """ A client that handles communication with OCS """ def __init__(self, api_version: str, tenant: str, url: str, client_id: str, client_secret: str = None, accept_verbosity: bool = False): """ Use this to help in communinication with OCS :param api_version: Version of the api you are communicating with :param tenant: Your tenant ID :param url: The base URL for your OCS instance :param client_id: Your client ID :param client_secret: Your client Secret or Key :param accept_verbosity: Sets whether in value calls you get all values or just non-default values """ self.__base_client = BaseClient(api_version, tenant, url, client_id, client_secret, accept_verbosity) self.__assets = Assets(self.__base_client) self.__data_views = DataViews(self.__base_client) self.__streams = Streams(self.__base_client) self.__types = Types(self.__base_client) @property def uri(self) -> str: """ :return: The uri of this OCS client as a string """ return self.__base_client.uri @property def tenant(self) -> str: """ :return: The tenant of this OCS client as a string """ return self.__base_client.tenant @property def acceptverbosity(self) -> bool: """ :return: Whether this will include the accept verbosity header """ return self.__base_client.AcceptVerbosity @acceptverbosity.setter def acceptverbosity(self, value: bool): self.__base_client.AcceptVerbosity = value @property def request_timeout(self) -> int: """ :return: Request timeout in seconds (default 30 secs) """ return self.__base_client.RequestTimeout @request_timeout.setter def request_timeout(self, value: int): self.__base_client.RequestTimeout = value @property def Assets(self) -> Assets: """ :return: A client for interacting with Assets """ return self.__assets @property def DataViews(self) -> DataViews: """ :return: A client for interacting with Data Views """ return self.__data_views @property def Streams(self) -> Streams: """ :return: A client for interacting with Streams """ return self.__streams @property def Types(self) -> Types: """ :return: A client for interacting with Types """ return self.__types @property def baseClient(self) -> BaseClient: """ :return: A client for interacting with the baseclient directly """ return self.__base_client
""" Main BZT classes Copyright 2015 BlazeMeter Inc. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import codecs import copy import datetime import json import logging import os import pkgutil import shutil import sys import threading import time import traceback import uuid from distutils.version import LooseVersion from urllib import parse from bzt import ManualShutdown, get_configs_dir, TaurusConfigError, TaurusInternalException from bzt.utils import reraise, load_class, BetterDict, ensure_is_dict, dehumanize_time, is_windows, is_linux from bzt.utils import shell_exec, get_full_path, ExceptionalDownloader, get_uniq_name, HTTPClient, Environment from bzt.utils import NETWORK_PROBLEMS from .dicts import Configuration from .modules import Provisioning, Reporter, Service, Aggregator, EngineModule from .names import EXEC, TAURUS_ARTIFACTS_DIR, SETTINGS from .templates import Singletone from ..environment_helpers import expand_variable_with_os, custom_expandvars, expand_envs_with_os from bzt.resources.version import VERSION, DEV_VERSION class Engine(object): """ Core entity of the technology, used to coordinate whole process :type reporters: list[Reporter] :type services: list[Service]EXEC :type log: logging.Logger :type aggregator: bzt.modules.aggregator.ConsolidatingAggregator :type stopping_reason: BaseException """ ARTIFACTS_DIR = "%Y-%m-%d_%H-%M-%S.%f" def __init__(self, parent_logger): """ :type parent_logger: logging.Logger """ self.file_search_paths = [] self.services = [] self.__artifacts = [] self.reporters = [] self.artifacts_dir = None self.log = parent_logger.getChild(self.__class__.__name__) self.env = Environment(self.log) # backward compatibility self.shared_env = Environment(self.log) # backward compatibility self.config = Configuration() self.config.log = self.log.getChild(Configuration.__name__) self.modules = {} # available modules self.provisioning = Provisioning() self.aggregator = Aggregator(is_functional=False) self.aggregator.engine = self self.interrupted = False self.check_interval = 1 self.stopping_reason = None self.engine_loop_utilization = 0 self.prepared = [] self.started = [] self.default_cwd = None self.logging_level_down = lambda: None self.logging_level_up = lambda: None self.user_pythonpath = None self.temp_pythonpath = None self._http_client = None self.graceful_tmp = None def set_pythonpath(self): version = sys.version.split(' ')[0] path_suffix = os.path.join('python-packages', version) self.user_pythonpath = get_full_path(os.path.join("~", ".bzt", path_suffix)) self.temp_pythonpath = get_full_path(os.path.join(self.artifacts_dir, path_suffix)) current_pythonpath = os.environ.get('PYTHONPATH', '') paths = self.temp_pythonpath, self.user_pythonpath, current_pythonpath self.log.debug("Set PYTHONPATH to :\n\tUSER: '{}' +\n\tTEMP: '{}' +\n\tCURRENT: '{}'".format(*paths)) try: user_packages = os.listdir(self.user_pythonpath) except: user_packages = [] self.log.debug("Content of user packages dir: {}".format(user_packages)) os.environ['PYTHONPATH'] = os.pathsep.join(paths) def configure(self, user_configs, read_config_files=True): """ Load configuration files :type user_configs: list[str] :type read_config_files: bool """ self.log.info("Configuring...") if read_config_files: self._load_base_configs() merged_config = self._load_user_configs(user_configs) all_includes = [] while "included-configs" in self.config: includes = self.config.pop("included-configs") included_configs = [self.find_file(conf) for conf in includes if conf not in all_includes + user_configs] all_includes += includes self.config.load(included_configs) self.config['included-configs'] = all_includes self.config.merge({"version": VERSION}) self.get_http_client() if self.config.get(SETTINGS).get("check-updates", True): install_id = self.config.get("install-id", self._generate_id()) def wrapper(): return self._check_updates(install_id) thread = threading.Thread(target=wrapper) # intentionally non-daemon thread thread.start() return merged_config def unify_config(self): executions = self.config.get(EXEC, []) if isinstance(executions, dict): executions = [executions] self.config[EXEC] = executions settings = self.config.get(SETTINGS) default_executor = settings.get("default-executor", None) prov_type = self.config.get(Provisioning.PROV) for execution in executions: # type: BetterDict executor = execution.get("executor", default_executor, force_set=True) if not executor: msg = "Cannot determine executor type and no default executor in %s" raise TaurusConfigError(msg % execution) reporting = self.config.get(Reporter.REP, []) for index in range(len(reporting)): ensure_is_dict(reporting, index, "module") services = self.config.get(Service.SERV, []) for index in range(len(services)): ensure_is_dict(services, index, "module") modules = self.config.get("modules") for module in modules: ensure_is_dict(modules, module, "class") @staticmethod def _generate_id(): if os.getenv("JENKINS_HOME"): prefix = "jenkins" elif os.getenv("TRAVIS"): prefix = "travis" elif any([key.startswith("bamboo") for key in os.environ.keys()]): prefix = "bamboo" elif os.getenv("TEAMCITY_VERSION"): prefix = "teamcity" elif os.getenv("DOCKER_HOST"): prefix = "docker" elif os.getenv("AWS_"): prefix = "amazon" elif os.getenv("GOOGLE_APPLICATION_CREDENTIALS") or os.getenv("CLOUDSDK_CONFIG"): prefix = "google_cloud" elif os.getenv("WEBJOBS_NAME"): prefix = "azure" elif is_linux(): prefix = 'linux' elif is_windows(): prefix = 'windows' else: prefix = 'macos' return "%s-%x" % (prefix, uuid.getnode()) def prepare(self): """ Prepare engine for work, will call preparing of Provisioning and add downstream EngineModule instances """ self.log.info("Preparing...") self.unify_config() interval = self.config.get(SETTINGS).get("check-interval", self.check_interval) self.check_interval = dehumanize_time(interval) try: self.__prepare_aggregator() self.__prepare_services() self.__prepare_provisioning() self.__prepare_reporters() self.config.dump() except BaseException as exc: self.stopping_reason = exc raise def _startup(self): modules = self.services + [self.aggregator] + self.reporters + [self.provisioning] # order matters for module in modules: self.log.debug("Startup %s", module) self.started.append(module) module.startup() self.config.dump() def start_subprocess(self, args, env, cwd=None, **kwargs): if cwd is None: cwd = self.default_cwd self.graceful_tmp = self.create_artifact(prefix="GRACEFUL", suffix="") env = env.get() env['GRACEFUL'] = self.graceful_tmp return shell_exec(args, cwd=cwd, env=env, **kwargs) def run(self): """ Run the job. Calls `startup`, does periodic `check`, calls `shutdown` in any case """ self.log.info("Starting...") exc_info = exc_value = None try: self._startup() self.logging_level_down() self._wait() except BaseException as exc: self.log.debug("%s:\n%s", exc, traceback.format_exc()) if not self.stopping_reason: self.stopping_reason = exc exc_value = exc exc_info = sys.exc_info() finally: self.log.warning("Please wait for graceful shutdown...") try: self.logging_level_up() self._shutdown() except BaseException as exc: self.log.debug("%s:\n%s", exc, traceback.format_exc()) if not self.stopping_reason: self.stopping_reason = exc if not exc_value: exc_value = exc exc_info = sys.exc_info() if exc_value: reraise(exc_info, exc_value) def _check_modules_list(self): stop = False modules = [self.provisioning, self.aggregator] + self.services + self.reporters # order matters for module in modules: if module in self.started: self.log.debug("Checking %s", module) finished = bool(module.check()) if finished: self.log.debug("%s finished", module) stop = finished return stop def _wait(self): """ Wait modules for finish :return: """ prev = time.time() while not self._check_modules_list(): now = time.time() diff = now - prev delay = self.check_interval - diff self.engine_loop_utilization = diff / self.check_interval self.log.debug("Iteration took %.3f sec, sleeping for %.3f sec...", diff, delay) if delay > 0: time.sleep(delay) prev = time.time() if self.interrupted: raise ManualShutdown() self.config.dump() def _shutdown(self): """ Shutdown modules :return: """ self.log.info("Shutting down...") self.log.debug("Current stop reason: %s", self.stopping_reason) if self.graceful_tmp and not os.path.exists(self.graceful_tmp): open(self.graceful_tmp, 'x').close() exc_info = exc_value = None modules = [self.provisioning, self.aggregator] + self.reporters + self.services # order matters for module in modules: try: if module in self.started: module.shutdown() except BaseException as exc: self.log.debug("%s:\n%s", exc, traceback.format_exc()) if not self.stopping_reason: self.stopping_reason = exc if not exc_value: exc_value = exc exc_info = sys.exc_info() if self.graceful_tmp and os.path.exists(self.graceful_tmp): os.remove(self.graceful_tmp) self.config.dump() if exc_value: reraise(exc_info, exc_value) def post_process(self): """ Do post-run analysis and processing for the results. """ self.log.info("Post-processing...") # :type exception: BaseException exc_info = exc_value = None modules = [self.provisioning, self.aggregator] + self.reporters + self.services # order matters # services are last because of shellexec which is "final-final" action for module in modules: if module in self.prepared: try: module.post_process() except BaseException as exc: if isinstance(exc, KeyboardInterrupt): self.log.debug("post_process: %s", exc) else: self.log.debug("post_process: %s\n%s", exc, traceback.format_exc()) if not self.stopping_reason: self.stopping_reason = exc if not exc_value: exc_value = exc exc_info = sys.exc_info() self.config.dump() if exc_info: reraise(exc_info, exc_value) def create_artifact(self, prefix, suffix): """ Create new artifact in artifacts dir with given prefix and suffix :type prefix: str :type suffix: str :return: Path to created file :rtype: str :raise TaurusInternalException: if no artifacts dir set """ if not self.artifacts_dir: raise TaurusInternalException("Cannot create artifact: no artifacts_dir set up") filename = get_uniq_name(self.artifacts_dir, prefix, suffix, self.__artifacts) self.__artifacts.append(filename) self.log.debug("New artifact filename: %s", filename) return filename def existing_artifact(self, filename, move=False, target_filename=None): """ Add existing artifact, it will be collected into artifact_dir. If move=True, the original file will be deleted :type filename: str :type move: bool :type target_filename: str """ self.log.debug("Add existing artifact (move=%s): %s", move, filename) if self.artifacts_dir is None: self.log.warning("Artifacts dir has not been set, will not copy %s", filename) return new_filename = os.path.basename(filename) if target_filename is None else target_filename new_name = os.path.join(self.artifacts_dir, new_filename) self.__artifacts.append(new_name) if get_full_path(filename) == get_full_path(new_name): self.log.debug("No need to copy %s", filename) return if not os.path.exists(filename): self.log.warning("Artifact file not exists: %s", filename) return if move: self.log.debug("Moving %s to %s", filename, new_name) shutil.move(filename, new_name) else: self.log.debug("Copying %s to %s", filename, new_name) shutil.copy(filename, new_name) def create_artifacts_dir(self, existing_artifacts=(), merged_config=None): """ Create directory for artifacts, directory name based on datetime.now() """ if not self.artifacts_dir: artifacts_dir = self.config.get(SETTINGS, force_set=True).get("artifacts-dir", self.ARTIFACTS_DIR) self.artifacts_dir = datetime.datetime.now().strftime(artifacts_dir) self.artifacts_dir = self.__expand_artifacts_dir() self.log.info("Artifacts dir: %s", self.artifacts_dir) os.environ[TAURUS_ARTIFACTS_DIR] = self.artifacts_dir if not os.path.isdir(self.artifacts_dir): os.makedirs(self.artifacts_dir) # dump current effective configuration dump = self.create_artifact("effective", "") # TODO: not good since this file not exists self.config.set_dump_file(dump) self.config.dump() # dump merged configuration if merged_config: merged_config.dump(self.create_artifact("merged", ".yml"), Configuration.YAML) merged_config.dump(self.create_artifact("merged", ".json"), Configuration.JSON) for artifact in existing_artifacts: self.existing_artifact(artifact) def __expand_artifacts_dir(self): envs = self.__get_envs_from_config() artifacts_dir = custom_expandvars(self.artifacts_dir, envs) artifacts_dir = expand_variable_with_os(artifacts_dir) artifacts_dir = get_full_path(artifacts_dir) return artifacts_dir def is_functional_mode(self): return self.aggregator is not None and self.aggregator.is_functional def __load_module(self, alias): """ Load module class by alias :param alias: str :return: class """ if alias in self.modules: return self.modules[alias] mod_conf = self.config.get('modules') if alias not in mod_conf: msg = "Module '%s' not found in list of available aliases %s" % (alias, sorted(mod_conf.keys())) raise TaurusConfigError(msg) settings = ensure_is_dict(mod_conf, alias, "class") acopy = copy.deepcopy(settings) BetterDict.traverse(acopy, Configuration.masq_sensitive) self.log.debug("Module config: %s %s", alias, acopy) err = TaurusConfigError("Class name for alias '%s' is not found in module settings: %s" % (alias, settings)) clsname = settings.get('class', err) self.modules[alias] = load_class(clsname) if not issubclass(self.modules[alias], EngineModule): raise TaurusInternalException("Module class does not inherit from EngineModule: %s" % clsname) return self.modules[alias] def instantiate_module(self, alias): """ Create new instance for module using its alias from module settings section of config. Thus, to instantiate module it should be mentioned in settings. :type alias: str :rtype: EngineModule """ classobj = self.__load_module(alias) instance = classobj() assert isinstance(instance, EngineModule) instance.log = self.log.getChild(alias) instance.engine = self settings = self.config.get("modules") instance.settings = settings.get(alias) return instance def find_file(self, filename): """ Try to find file or dir in search_path if it was specified. Helps finding files in non-CLI environments or relative to config path Return path is full and mustn't treat with abspath/etc. :param filename: file basename to find :type filename: str """ if not filename: return filename if filename.lower().startswith("http://") or filename.lower().startswith("https://"): parsed_url = parse.urlparse(filename) downloader = ExceptionalDownloader(self.get_http_client()) self.log.info("Downloading %s", filename) tmp_f_name, headers = downloader.get(filename) cd_header = headers.get('Content-Disposition', '') dest = cd_header.split('filename=')[-1] if cd_header and 'filename=' in cd_header else '' if dest.startswith('"') and dest.endswith('"') or dest.startswith("'") and dest.endswith("'"): dest = dest[1:-1] elif not dest: dest = os.path.basename(parsed_url.path) fname, ext = os.path.splitext(dest) if dest else (parsed_url.hostname.replace(".", "_"), '.file') dest = self.create_artifact(fname, ext) self.log.debug("Moving %s to %s", tmp_f_name, dest) shutil.move(tmp_f_name, dest) return dest else: filename = os.path.expanduser(filename) # expanding of '~' is required for check of existence # check filename 'as is' and all combinations of file_search_path/filename for dirname in [""] + self.file_search_paths: location = os.path.join(dirname, filename) if os.path.exists(location): if dirname: self.log.warning("Guessed location from search paths for %s: %s", filename, location) return get_full_path(location) self.log.warning("Could not find location at path: %s", filename) return filename def _load_base_configs(self): configs = [] try: sys.path.insert(0, os.path.curdir) # necessary for development mode (running bzt from curdir) configs.extend(self._scan_system_configs()) configs.extend(self._scan_package_configs()) finally: sys.path.pop(0) configs.sort(key=os.path.basename) self.log.debug("Base configs list: %s", configs) if not configs: self.log.warning("No base configs were discovered") self.config.load(configs) def _scan_package_configs(self): configs = [] for importer, modname, ispkg in pkgutil.iter_modules(path=None): try: if not ispkg: continue package_path = getattr(importer, 'path', None) if package_path is None: continue index_path = os.path.join(package_path, modname, 'bzt-configs.json') if not os.path.exists(index_path): continue try: with codecs.open(index_path, 'rb', encoding='utf-8') as fds: index_configs = json.load(fds) except (OSError, IOError, ValueError) as exc: self.log.debug("Can't load package-specific bzt config %s: %s", index_path, exc) continue if not isinstance(index_configs, list): self.log.debug("Error: value of bzt-configs.json should be a list (%s)" % index_path) continue for config_name in index_configs: configs.append(os.path.join(importer.path, modname, config_name)) except BaseException as exc: self.log.warning("Can't look for package configs in package %r: %s", modname, str(exc)) self.log.debug("Traceback: %s", traceback.format_exc()) return configs def _scan_system_configs(self): configs = [] machine_dir = get_configs_dir() # can't refactor machine_dir out - see setup.py if os.path.isdir(machine_dir): self.log.debug("Reading system configs from: %s", machine_dir) for cfile in sorted(os.listdir(machine_dir)): fname = os.path.join(machine_dir, cfile) if os.path.isfile(fname): configs.append(fname) return configs def _load_user_configs(self, user_configs): """ :type user_configs: list[str] :rtype: Configuration """ # "tab-replacement-spaces" is not documented 'cause it loads only from base configs # so it's sort of half-working last resort self.config.tab_replacement_spaces = self.config.get(SETTINGS).get("tab-replacement-spaces", 4) self.log.debug("User configs list: %s", user_configs) self.config.load(user_configs) user_config = Configuration() user_config.log = self.log.getChild(Configuration.__name__) user_config.tab_replacement_spaces = self.config.tab_replacement_spaces user_config.warn_on_tab_replacement = False user_config.load(user_configs, self.__config_loaded) return user_config def __config_loaded(self, config): self.file_search_paths.append(get_full_path(config, step_up=1)) def __prepare_provisioning(self): """ Instantiate provisioning class """ err = TaurusConfigError("Please check global config availability or configure provisioning settings") cls = self.config.get(Provisioning.PROV, err) self.provisioning = self.instantiate_module(cls) self.prepared.append(self.provisioning) self.provisioning.prepare() def __prepare_reporters(self): """ Instantiate reporters, then prepare them in case they would like to interact """ reporting = self.config.get(Reporter.REP, []) for index, reporter in enumerate(reporting): msg = "reporter 'module' field isn't recognized: %s" cls = reporter.get('module', TaurusConfigError(msg % reporter)) instance = self.instantiate_module(cls) instance.parameters = reporter if self.__singletone_exists(instance, self.reporters): continue assert isinstance(instance, Reporter) self.reporters.append(instance) for reporter in self.reporters[:]: if not reporter.should_run(): self.reporters.remove(reporter) # prepare reporters for module in self.reporters: self.prepared.append(module) module.prepare() def __prepare_services(self): """ Instantiate service modules, then prepare them """ srv_config = self.config.get(Service.SERV, []) services = [] for index, config in enumerate(srv_config): cls = config.get('module', '') instance = self.instantiate_module(cls) instance.parameters = config if self.__singletone_exists(instance, services): continue assert isinstance(instance, Service) services.append(instance) for service in services[:]: if not service.should_run(): services.remove(service) self.services.extend(services) for module in self.services: self.prepared.append(module) module.prepare() def __singletone_exists(self, instance, mods_list): """ :type instance: EngineModule :type mods_list: list[EngineModule] :rtype: bool """ if not isinstance(instance, Singletone): return False for mod in mods_list: if mod.parameters.get("module") == instance.parameters.get("module"): msg = "Module '%s' can be only used once, will merge all new instances into single" self.log.warning(msg % mod.parameters.get("module")) mod.parameters.merge(instance.parameters) return True return False def __prepare_aggregator(self): """ Instantiate aggregators :return: """ cls = self.config.get(SETTINGS).get("aggregator", "") if not cls: self.log.warning("Proceeding without aggregator, no results analysis") else: self.aggregator = self.instantiate_module(cls) self.prepared.append(self.aggregator) self.aggregator.prepare() def get_http_client(self): if self._http_client is None: self._http_client = HTTPClient() self._http_client.add_proxy_settings(self.config.get("settings").get("proxy")) return self._http_client def _check_updates(self, install_id): if VERSION == DEV_VERSION: return params = (VERSION, install_id) addr = "https://gettaurus.org/updates/?version=%s&installID=%s" % params self.log.debug("Requesting updates info: %s", addr) client = self.get_http_client() try: response = client.request('GET', addr, timeout=10) except NETWORK_PROBLEMS: self.log.debug("Failed to check for updates: %s", traceback.format_exc()) self.log.warning("Failed to check for updates") return data = response.json() latest = data.get('latest') needs_upgrade = data.get('needsUpgrade') if latest is None or needs_upgrade is None: self.log.warning(f'Wrong updates info: "{data}"') else: self.log.debug(f'Taurus updates info: "{data}"') mine = LooseVersion(VERSION) if (mine < latest) or needs_upgrade: msg = "There is newer version of Taurus %s available, consider upgrading. " \ "What's new: http://gettaurus.org/docs/Changelog/" self.log.warning(msg, latest) else: self.log.debug("Installation is up-to-date") def eval_env(self): """ Should be done after `configure` """ envs = self.__get_envs_from_config() envs = expand_envs_with_os(envs) def apply_env(value, key, container): if isinstance(value, str): container[key] = custom_expandvars(value, envs) BetterDict.traverse(self.config, apply_env) self.__export_variables_to_os() def __export_variables_to_os(self): """ Export all user-defined environment variables to the system. Example: settings: env: FOO: bbb/ccc BAR: aaa """ envs = self.__get_envs_from_config() for var_name in envs: if envs[var_name] is None: if var_name in os.environ: os.environ.pop(var_name) else: os.environ[var_name] = envs[var_name] self.log.debug("OS env: %s=%s", var_name, envs[var_name]) def __get_envs_from_config(self): envs = self.config.get(SETTINGS, force_set=True).get("env", force_set=True) envs[TAURUS_ARTIFACTS_DIR] = self.artifacts_dir return envs
from .boxes import nms, box_iou from .new_empty_tensor import _new_empty_tensor from .deform_conv import deform_conv2d, DeformConv2d from .roi_align import roi_align, RoIAlign from .roi_pool import roi_pool, RoIPool from .ps_roi_align import ps_roi_align, PSRoIAlign from .ps_roi_pool import ps_roi_pool, PSRoIPool from .poolers import MultiScaleRoIAlign from .feature_pyramid_network import FeaturePyramidNetwork from ._register_onnx_ops import _register_custom_op _register_custom_op() __all__ = [ 'deform_conv2d', 'DeformConv2d', 'nms', 'roi_align', 'RoIAlign', 'roi_pool', 'RoIPool', '_new_empty_tensor', 'ps_roi_align', 'PSRoIAlign', 'ps_roi_pool', 'PSRoIPool', 'MultiScaleRoIAlign', 'FeaturePyramidNetwork' ]
from common import * from trezor.ui import display class TestDisplay(unittest.TestCase): def test_clear(self): display.clear() def test_refresh(self): display.refresh() def test_bar(self): display.bar(0, 0, 10, 10, 0xFFFF) def test_bar_radius(self): display.bar_radius(0, 0, 10, 10, 0xFFFF, 0x0000, 16) def test_image(self): pass def test_icon(self): pass def test_text(self): display.text(120, 120, 'Test', 0, 0xFFFF, 0x0000) def test_text_center(self): display.text_center(120, 120, 'Test', 0, 0xFFFF, 0x0000) def test_text_right(self): display.text_right(120, 120, 'Test', 0, 0xFFFF, 0x0000) def test_text_width(self): display.text_width('Test', 0) def test_qrcode(self): display.qrcode(0, 0, 'Test', 4) def test_loader(self): display.loader(333, 0, 0xFFFF, 0x0000) def test_orientation(self): for o in [0, 90, 180, 270]: display.orientation(o) def test_backlight(self): for b in range(256): display.backlight(b) def test_offset(self): for x in range(-4, 5): for y in range(-4, 5): o = (x * 57, y * 57) display.offset(o) o2 = display.offset() self.assertEqual(o, o2) def test_raw(self): pass def test_save(self): pass if __name__ == '__main__': unittest.main()
# Pandas import pandas as pd # utils import joblib class Utils: """Handles the utils for data""" def load_from_csv(self, path): """Load to a csv""" return pd.read_csv(path) def features_target(self, dataset, dropcols, y): """Slplit features and targets""" X = dataset.drop(dropcols, axis=1) y = dataset[y] return X, y def model_export(self, clf, score): """Export best model.""" joblib.dump(clf, './models/best_model.pkl')
from django.contrib.auth.models import User from django.db import models from main.models import PhotoItem from psycho.settings import st_password class Person(PhotoItem): """ Stores all information about a psychologist """ id = models.AutoField(primary_key=True) full_name = models.CharField('Имя', max_length=100) name = models.CharField('Логин', max_length=50, unique=True, help_text='Уникальный логин. При входе в систему его нужно будет указывать. ') birth_date = models.DateField('Дата рождения') email = models.EmailField() info = models.TextField('Основная информация', blank=True, help_text='Хорошее краткое описание своей деятельности') bio = models.TextField('Биография', blank=True) contacts = models.TextField('Другие контактные данные: ', blank=True) user = models.OneToOneField(User, on_delete=models.CASCADE, related_name='profile', null=True, blank=True) def save(self, *args, **kwargs): if self.user: user = User.objects.get(id=self.user.id) user.username, user.email = self.name, self.email user.save() else: user = User.objects.create_user(self.name, self.email, st_password) user.save() self.user = user user.groups.add(1) user.is_staff = True user.save() self.save_photo() super().save(*args, **kwargs) def delete(self, *args, **kwargs): user = User.objects.get(id=self.user.id) if not user.is_superuser: user.delete() super().delete(*args, **kwargs) def __str__(self): return self.full_name class Meta: """ Person model settings """ db_table = 'people' verbose_name = 'Специалист' verbose_name_plural = 'Специалисты' ordering = ['-user__is_superuser'] class HelpItem(models.Model): """ Stores information about the type of help """ id = models.AutoField(primary_key=True) name = models.CharField("Название", max_length=50, help_text='С чем работает эксперт?') description = models.TextField("Описание", null=True, blank=True, max_length=200) expert = models.ForeignKey(Person, on_delete=models.CASCADE, verbose_name='Эксперт', related_name='help_items') def __str__(self): return self.name class Meta: """ HelpItem model settings """ ordering = ['-id'] db_table = 'help' verbose_name = 'Пункт помощи' verbose_name_plural = 'Пункты помощи' class Achievement(PhotoItem): """ Stores information about a single certificate or other proof of competence """ priority = models.IntegerField("Приоритет", default=2, help_text='Чем больше приоритет, тем выше в списке будет достижение') expert = models.ForeignKey(Person, on_delete=models.CASCADE, verbose_name='Эксперт', related_name='achievements') def __str__(self): return self.alt class Meta: """ Achievement model settings """ db_table = 'achievements' verbose_name = 'Достижение' ordering = ['-priority'] verbose_name_plural = 'Достижения'
""" flightAPI AirMapSDK Created by AirMap Team on 6/28/16. Copyright (c) 2016 AirMap, Inc. All rights reserved. """ # flightAPI.py -- Flight API functions import traceback import httplib import urllib import json import ssl import time import datetime import socket from airdefs import Advisory, Advisories, Properties, Globals import os import subprocess import traceback class Flight: os = __import__('os') connection = None headers = None thisGlobals = Globals() def __init__(self): pass def get_FlightList(self, pilotID): connection = httplib.HTTPSConnection(Globals.httpsAddr, Globals.httpsPort, timeout=Globals.timeOut) headers = Globals.xapikey try: connection.request('GET', '/flight/v2/?pilot_id='+str(pilotID)+'&enhance=true', '', headers) result = connection.getresponse().read() parsed_json = json.loads(result) flight_collection = parsed_json['data']['results'] return flight_collection except: traceback.print_exc() def cmd_KillFlights(self, pilotID): connection = httplib.HTTPSConnection(Globals.httpsAddr, Globals.httpsPort, timeout=Globals.timeOut) headers = Globals.xapikey try: connection.request('GET', '/flight/v2/?pilot_id='+str(pilotID)+'&enhance=true', '', headers) result = connection.getresponse().read() parsed_json = json.loads(result) flight_collection = parsed_json['data']['results'] for flights in flight_collection: endFlight = flights['id'] #destroy flight print "deleting {}".format(endFlight) try: connectFlight = httplib.HTTPSConnection(Globals.httpsAddr, Globals.httpsPort, timeout=Globals.timeOut) headers = Globals.xapikey headers['Authorization'] = "Bearer {}".format(Globals.myToken) connectFlight.request('POST', '/flight/v2/{}/delete'.format(endFlight), '', headers) result = connectFlight.getresponse().read() #print(result) except: print "Kill Flights Error..." traceback.print_exc() except: traceback.print_exc() def get_PilotID(self): if Globals.pilotIDValid == True: return Globals.pilot_id else: return False def create_FlightPoint(self, time, lat, lon, public, notify): startTime = datetime.datetime.utcnow() endTime = startTime + datetime.timedelta(0,(time*60)) startTime = startTime.isoformat() + "-00:00" endTime = endTime.isoformat() + "-00:00" print startTime print endTime try: connectFlight = httplib.HTTPSConnection(Globals.httpsAddr, Globals.httpsPort, timeout=Globals.timeOut) headers = Globals.xapikey headers['Authorization'] = "Bearer {}".format(Globals.myToken) connectFlight.request('POST', '/flight/v2/point', json.dumps({"latitude":float(lat),"longitude":float(lon),"max_altitude":100,"start_time":"{}".format(startTime),"end_time":"" + endTime + "","public":bool(public),"notify":bool(notify)}), headers) result = connectFlight.getresponse().read() #Globals.strPrint(self.thisGlobals,result) try: parsed_json = json.loads(result) parsed_status = parsed_json['status'] print parsed_status Globals.pilot_id = parsed_json['data']['pilot_id'] Globals.pilotIDValid = True #Globals.strPrint (self.thisGlobals,Globals.pilot_id) except: Globals.strPrint (self.thisGlobals,"Pilot ID not found...Retry!") Globals.strPrint (self.thisGlobals,result) return False if parsed_status != "success": return False Globals.myFlightID = parsed_json['data']['id'] except: print "Create Flight Error..." traceback.print_exc() return Globals.myFlightID def create_FlightPolygon(self, time, lat, lon,thisBounds, public, notify): startTime = datetime.datetime.utcnow() endTime = startTime + datetime.timedelta(0,(time*60)) startTime = startTime.isoformat() + "-00:00" endTime = endTime.isoformat() + "-00:00" thisBounds = json.loads(thisBounds) try: connectFlight = httplib.HTTPSConnection(Globals.httpsAddr, Globals.httpsPort, timeout=Globals.timeOut) headers = Globals.xapikey headers['Authorization'] = "Bearer {}".format(Globals.myToken) connectFlight.request('POST', '/flight/v2/polygon', json.dumps({"latitude":float(lat),"longitude":float(lon),"max_altitude":100,"start_time":"{}".format(startTime),"end_time":"" + endTime + "","public":bool(public),"notify":bool(notify),"geometry":{"type":"Polygon","coordinates": thisBounds}}), headers) result = connectFlight.getresponse().read() #Globals.strPrint(self.thisGlobals,result) try: parsed_json = json.loads(result) parsed_status = parsed_json['status'] print parsed_status Globals.pilot_id = parsed_json['data']['pilot_id'] Globals.pilotIDValid = True #Globals.strPrint (self.thisGlobals,Globals.pilot_id) except: Globals.strPrint (self.thisGlobals,"Pilot ID not found...Retry!") Globals.strPrint (self.thisGlobals,result) return False if parsed_status != "success": return False Globals.myFlightID = parsed_json['data']['id'] except: print "Create Flight Error..." traceback.print_exc() return Globals.myFlightID def end_Flight(self, flightID): try: connectFlight = httplib.HTTPSConnection(Globals.httpsAddr, Globals.httpsPort, timeout=Globals.timeOut) headers = Globals.xapikey headers['Authorization'] = "Bearer {}".format(Globals.myToken) connectFlight.request('POST', '/flight/v2/{}/end'.format(flightID), '', headers) result = connectFlight.getresponse().read() parsed_json = json.loads(result) parsed_status = parsed_json['status'] if parsed_status != "success": return False else: return True except: print "End Flight Error..." traceback.print_exc() def delete_Flight(self, flightID): try: connectFlight = httplib.HTTPSConnection(Globals.httpsAddr, Globals.httpsPort, timeout=Globals.timeOut) headers = Globals.xapikey headers['Authorization'] = "Bearer {}".format(Globals.myToken) connectFlight.request('POST', '/flight/v2/{}/delete'.format(flightID), '', headers) result = connectFlight.getresponse().read() parsed_json = json.loads(result) parsed_status = parsed_json['status'] if parsed_status != "success": return False else: return True except: print "End Flight Error..." traceback.print_exc() def start_comm(self, flightID): try: connectFlight = httplib.HTTPSConnection(Globals.httpsAddr, Globals.httpsPort, timeout=Globals.timeOut) headers = Globals.xapikey headers['Authorization'] = "Bearer {}".format(Globals.myToken) connectFlight.request('POST', '/flight/v2/{}/start-comm'.format(flightID), '', headers) result = connectFlight.getresponse().read() parsed_json = json.loads(result) print parsed_json #parsed_status = parsed_json['data']['key']['data'] parsed_status = parsed_json['data']['key'] print "H:" + parsed_status #thisKey = (''.join(str(hex(i)[2:].zfill(2)) for i in parsed_status)).decode('hex') thisKey = parsed_status.decode('base64') return thisKey except: print "Could Not Start Comms..." traceback.print_exc() def end_comm(self, flightID): try: connectFlight = httplib.HTTPSConnection(Globals.httpsAddr, Globals.httpsPort, timeout=Globals.timeOut) headers = Globals.xapikey headers['Authorization'] = "Bearer {}".format(Globals.myToken) connectFlight.request('POST', '/flight/v2/{}/start-comm'.format(flightID), '', headers) result = connectFlight.getresponse().read() parsed_json = json.loads(result) parsed_status = parsed_json['status'] if parsed_status != "success": return False else: return True except: print "Could Not End Comms..." traceback.print_exc() def recover_Pilot(self): try: connectFlight = httplib.HTTPSConnection(Globals.httpsAddr, Globals.httpsPort, timeout=Globals.timeOut) headers = Globals.xapikey headers['Authorization'] = "Bearer {}".format(Globals.myToken) connectFlight.request('GET', '/pilot/v2/profile', "", headers) result = connectFlight.getresponse().read() try: parsed_json = json.loads(result) parsed_status = parsed_json['status'] print parsed_status Globals.pilot_id = parsed_json['data']['id'] Globals.pilotIDValid = True except: Globals.strPrint (self.thisGlobals,"Pilot Recover ID not found...Retry!") Globals.strPrint (self.thisGlobals,result) return False if parsed_status != "success": return False except: print "Create Flight Error..." traceback.print_exc() return Globals.pilot_id
from webdnn.backend.webgpu.optimize_rules.concat_lstm_input_and_hidden import ConcatLSTMInputAndHidden from webdnn.backend.webgpu.optimize_rules.insert_transpose import InsertTranspose from webdnn.graph.optimize_rule import OptimizeRuleGroup from webdnn.optimizer.sub_rules.constant_folding import ConstantFolding from webdnn.optimizer.sub_rules.elementwise_kernel_fusion import ElementwiseKernelFusion from webdnn.optimizer.sub_rules.merge_sgemm_and_elementwise_mul import MergeSgemmAndElementwiseMul from webdnn.optimizer.sub_rules.remove_no_effect_operator import RemoveNoEffectOperator from webdnn.optimizer.sub_rules.remove_redundant_operator import RemoveRedundantOperator from webdnn.optimizer.sub_rules.replace_convolution_by_im2col import ReplaceConvolutionByIm2Col from webdnn.optimizer.sub_rules.replace_deconvolution_by_col2im import ReplaceDeconvolutionByCol2Im from webdnn.optimizer.sub_rules.replace_linear_by_sgemm import ReplaceLinearBySgemm from webdnn.optimizer.sub_rules.update_inplace_attribute import UpdateInplaceAttribute class WebGPUOptimizeRule(OptimizeRuleGroup): def __init__(self): super(WebGPUOptimizeRule, self).__init__([ OptimizeRuleGroup([ InsertTranspose(), ReplaceConvolutionByIm2Col(), MergeSgemmAndElementwiseMul(), ConstantFolding(), ReplaceDeconvolutionByCol2Im(), MergeSgemmAndElementwiseMul(), ConstantFolding(), ReplaceLinearBySgemm(), MergeSgemmAndElementwiseMul(), ConstantFolding(), ConcatLSTMInputAndHidden(), RemoveRedundantOperator(), RemoveNoEffectOperator(), UpdateInplaceAttribute() ]), ElementwiseKernelFusion() ])
import json import logging from django.http import ( HttpResponse, HttpResponseBadRequest ) from django.contrib.auth.decorators import login_required from django.urls import reverse from django.shortcuts import get_object_or_404 from papermerge.core.models import BaseTreeNode, Document, Folder from papermerge.core.models.utils import recursive_delete logger = logging.getLogger(__name__) @login_required def browse_view(request, parent_id=None): nodes = BaseTreeNode.objects.filter(parent_id=parent_id) nodes_list = [] parent_kv = [] if parent_id: parent_node = get_object_or_404( BaseTreeNode, id=parent_id ) for item in parent_node.kv.all(): parent_kv.append(item.to_dict()) for node in nodes: node_dict = node.to_dict() if node.is_document(): node_dict['img_src'] = reverse( 'core:preview', args=(node.id, 4, 1) ) node_dict['document_url'] = reverse( 'core:document', args=(node.id,) ) nodes_list.append(node_dict) return HttpResponse( json.dumps( { 'nodes': nodes_list, 'parent_id': parent_id, 'parent_kv': parent_kv } ), content_type="application/json" ) @login_required def breadcrumb_view(parent, parent_id=None): nodes = [] node = None try: node = BaseTreeNode.objects.get(id=parent_id) except BaseTreeNode.DoesNotExist: pass if node: nodes = [ item.to_dict() for item in node.get_ancestors(include_self=True) ] return HttpResponse( json.dumps({ 'nodes': nodes, }), content_type="application/json" ) @login_required def node_view(request, node_id): try: node = BaseTreeNode.objects.get(id=node_id) except BaseTreeNode.DoesNotExist: return HttpResponseBadRequest( json.dumps({ 'node': node.to_dict() }), content_type="application/json" ) if request.method == "DELETE": node.delete() return HttpResponse( json.dumps({ 'msg': 'OK' }), content_type="application/json" ) return HttpResponse( json.dumps({ 'node': node.to_dict() }), content_type="application/json" ) @login_required def nodes_view(request): if request.method == "POST": data = json.loads(request.body) node_ids = [item['id'] for item in data] queryset = BaseTreeNode.objects.filter(id__in=node_ids) recursive_delete(queryset) return HttpResponse( json.dumps({ 'msg': 'OK' }), content_type="application/json" ) return HttpResponse( json.dumps({ 'msg': 'OK' }), content_type="application/json" )
import os import requests from gdelt20utils.common import utils_worker from gdelt20utils.common.gd_logger import logger_obj HEARTBEAT_LOG_NUM = 10 WORKER_ERROR_MAX = 100 class ExtractorError(Exception): pass class FileExtractWorker(): def __init__( self, language, timestamps=None, path_gen=None, check_point=None, api_client=None, obj_types=None): self.language = language self.obj_types = obj_types self.api_client = api_client self.path_gen = path_gen self.check_point = check_point self.jobq = utils_worker.JobQueue() skip_processed = check_point.get_cnt() for ts in timestamps[skip_processed:]: self.jobq.put(ts) self.api_request_cnt = 0 self.logger = logger_obj.logger def extract_data_worker(self, queue=None, worker_num=None): heartbeat_cnt = 0 worker_error = 0 self.logger.info(f"Worker {worker_num} started") while True: ts = queue.get() for obj_type in self.obj_types: save_path = self.path_gen.get_data_file_path( self.language, obj_type, ts) try: if not os.path.exists(save_path): res_code, url = self.api_client.save_file(self.language, ts, obj_type, save_path) if res_code != requests.codes.ok: if res_code == requests.codes.not_found: self.logger.warning(f"Worker {worker_num}: requests error - {url} code 404") else: raise ExtractorError( f"Worker {worker_num}: requests error - url {url}, code {res_code}") else: self.logger.info(f"Worker {worker_num}: {save_path} exists, skip") except Exception as exp: self.logger.error(f"Worker {worker_num} error: {exp}") worker_error += 1 queue.task_done() self.check_point.update_checkpoint(ts) if worker_error >= WORKER_ERROR_MAX: self.logger.info(f"Worker {worker_num}: max error acceded {worker_error}") queue.lock_flush() heartbeat_cnt += 1 if not heartbeat_cnt % HEARTBEAT_LOG_NUM: self.logger.info(f"Worker {worker_num}: heartbeat {heartbeat_cnt}, last ts {ts}") def run(self): self.logger.info(f"Start extraction, concurrency {utils_worker.CONCURENCY_NUM}, stats {self.check_point}") self.jobq.start( concurrency=utils_worker.CONCURENCY_NUM, worker=self.extract_data_worker ) self.logger.info(f"Finish extraction, stats {self.check_point}")
# This Python file uses the following encoding: utf-8 """autogenerated by genpy from rtabmap_ros/NodeData.msg. Do not edit.""" import sys python3 = True if sys.hexversion > 0x03000000 else False import genpy import struct import rtabmap_ros.msg import geometry_msgs.msg import std_msgs.msg import sensor_msgs.msg class NodeData(genpy.Message): _md5sum = "9ea28782bcb5ac28722f26aaaa7acb18" _type = "rtabmap_ros/NodeData" _has_header = False #flag to mark the presence of a Header object _full_text = """ int32 id int32 mapId int32 weight float64 stamp string label # Pose from odometry not corrected geometry_msgs/Pose pose # Ground truth (optional) geometry_msgs/Pose groundTruthPose # GPS (optional) GPS gps # compressed image in /camera_link frame # use rtabmap::util3d::uncompressImage() from "rtabmap/core/util3d.h" uint8[] image # compressed depth image in /camera_link frame # use rtabmap::util3d::uncompressImage() from "rtabmap/core/util3d.h" uint8[] depth # Camera models float32[] fx float32[] fy float32[] cx float32[] cy float32[] width float32[] height float32 baseline # local transform (/base_link -> /camera_link) geometry_msgs/Transform[] localTransform # compressed 2D laser scan in /base_link frame # use rtabmap::util3d::uncompressData() from "rtabmap/core/util3d.h" uint8[] laserScan int32 laserScanMaxPts float32 laserScanMaxRange int32 laserScanFormat geometry_msgs/Transform laserScanLocalTransform # compressed user data # use rtabmap::util3d::uncompressData() from "rtabmap/core/util3d.h" uint8[] userData # compressed occupancy grid # use rtabmap::util3d::uncompressData() from "rtabmap/core/util3d.h" uint8[] grid_ground uint8[] grid_obstacles uint8[] grid_empty_cells float32 grid_cell_size Point3f grid_view_point # std::multimap<wordId, cv::Keypoint> # std::multimap<wordId, pcl::PointXYZ> int32[] wordIds KeyPoint[] wordKpts sensor_msgs/PointCloud2 wordPts # compressed descriptors # use rtabmap::util3d::uncompressData() from "rtabmap/core/util3d.h" uint8[] descriptors ================================================================================ MSG: geometry_msgs/Pose # A representation of pose in free space, composed of position and orientation. Point position Quaternion orientation ================================================================================ MSG: geometry_msgs/Point # This contains the position of a point in free space float64 x float64 y float64 z ================================================================================ MSG: geometry_msgs/Quaternion # This represents an orientation in free space in quaternion form. float64 x float64 y float64 z float64 w ================================================================================ MSG: rtabmap_ros/GPS float64 stamp # in seconds float64 longitude # DD format float64 latitude # DD format float64 altitude # in meters float64 error # in meters float64 bearing # North 0->360 deg ================================================================================ MSG: geometry_msgs/Transform # This represents the transform between two coordinate frames in free space. Vector3 translation Quaternion rotation ================================================================================ MSG: geometry_msgs/Vector3 # This represents a vector in free space. # It is only meant to represent a direction. Therefore, it does not # make sense to apply a translation to it (e.g., when applying a # generic rigid transformation to a Vector3, tf2 will only apply the # rotation). If you want your data to be translatable too, use the # geometry_msgs/Point message instead. float64 x float64 y float64 z ================================================================================ MSG: rtabmap_ros/Point3f #class cv::Point3f #{ # float x; # float y; # float z; #} float32 x float32 y float32 z ================================================================================ MSG: rtabmap_ros/KeyPoint #class cv::KeyPoint #{ # Point2f pt; # float size; # float angle; # float response; # int octave; # int class_id; #} Point2f pt float32 size float32 angle float32 response int32 octave int32 class_id ================================================================================ MSG: rtabmap_ros/Point2f #class cv::Point2f #{ # float x; # float y; #} float32 x float32 y ================================================================================ MSG: sensor_msgs/PointCloud2 # This message holds a collection of N-dimensional points, which may # contain additional information such as normals, intensity, etc. The # point data is stored as a binary blob, its layout described by the # contents of the "fields" array. # The point cloud data may be organized 2d (image-like) or 1d # (unordered). Point clouds organized as 2d images may be produced by # camera depth sensors such as stereo or time-of-flight. # Time of sensor data acquisition, and the coordinate frame ID (for 3d # points). Header header # 2D structure of the point cloud. If the cloud is unordered, height is # 1 and width is the length of the point cloud. uint32 height uint32 width # Describes the channels and their layout in the binary data blob. PointField[] fields bool is_bigendian # Is this data bigendian? uint32 point_step # Length of a point in bytes uint32 row_step # Length of a row in bytes uint8[] data # Actual point data, size is (row_step*height) bool is_dense # True if there are no invalid points ================================================================================ MSG: std_msgs/Header # Standard metadata for higher-level stamped data types. # This is generally used to communicate timestamped data # in a particular coordinate frame. # # sequence ID: consecutively increasing ID uint32 seq #Two-integer timestamp that is expressed as: # * stamp.sec: seconds (stamp_secs) since epoch (in Python the variable is called 'secs') # * stamp.nsec: nanoseconds since stamp_secs (in Python the variable is called 'nsecs') # time-handling sugar is provided by the client library time stamp #Frame this data is associated with # 0: no frame # 1: global frame string frame_id ================================================================================ MSG: sensor_msgs/PointField # This message holds the description of one point entry in the # PointCloud2 message format. uint8 INT8 = 1 uint8 UINT8 = 2 uint8 INT16 = 3 uint8 UINT16 = 4 uint8 INT32 = 5 uint8 UINT32 = 6 uint8 FLOAT32 = 7 uint8 FLOAT64 = 8 string name # Name of field uint32 offset # Offset from start of point struct uint8 datatype # Datatype enumeration, see above uint32 count # How many elements in the field """ __slots__ = ['id','mapId','weight','stamp','label','pose','groundTruthPose','gps','image','depth','fx','fy','cx','cy','width','height','baseline','localTransform','laserScan','laserScanMaxPts','laserScanMaxRange','laserScanFormat','laserScanLocalTransform','userData','grid_ground','grid_obstacles','grid_empty_cells','grid_cell_size','grid_view_point','wordIds','wordKpts','wordPts','descriptors'] _slot_types = ['int32','int32','int32','float64','string','geometry_msgs/Pose','geometry_msgs/Pose','rtabmap_ros/GPS','uint8[]','uint8[]','float32[]','float32[]','float32[]','float32[]','float32[]','float32[]','float32','geometry_msgs/Transform[]','uint8[]','int32','float32','int32','geometry_msgs/Transform','uint8[]','uint8[]','uint8[]','uint8[]','float32','rtabmap_ros/Point3f','int32[]','rtabmap_ros/KeyPoint[]','sensor_msgs/PointCloud2','uint8[]'] def __init__(self, *args, **kwds): """ Constructor. Any message fields that are implicitly/explicitly set to None will be assigned a default value. The recommend use is keyword arguments as this is more robust to future message changes. You cannot mix in-order arguments and keyword arguments. The available fields are: id,mapId,weight,stamp,label,pose,groundTruthPose,gps,image,depth,fx,fy,cx,cy,width,height,baseline,localTransform,laserScan,laserScanMaxPts,laserScanMaxRange,laserScanFormat,laserScanLocalTransform,userData,grid_ground,grid_obstacles,grid_empty_cells,grid_cell_size,grid_view_point,wordIds,wordKpts,wordPts,descriptors :param args: complete set of field values, in .msg order :param kwds: use keyword arguments corresponding to message field names to set specific fields. """ if args or kwds: super(NodeData, self).__init__(*args, **kwds) #message fields cannot be None, assign default values for those that are if self.id is None: self.id = 0 if self.mapId is None: self.mapId = 0 if self.weight is None: self.weight = 0 if self.stamp is None: self.stamp = 0. if self.label is None: self.label = '' if self.pose is None: self.pose = geometry_msgs.msg.Pose() if self.groundTruthPose is None: self.groundTruthPose = geometry_msgs.msg.Pose() if self.gps is None: self.gps = rtabmap_ros.msg.GPS() if self.image is None: self.image = b'' if self.depth is None: self.depth = b'' if self.fx is None: self.fx = [] if self.fy is None: self.fy = [] if self.cx is None: self.cx = [] if self.cy is None: self.cy = [] if self.width is None: self.width = [] if self.height is None: self.height = [] if self.baseline is None: self.baseline = 0. if self.localTransform is None: self.localTransform = [] if self.laserScan is None: self.laserScan = b'' if self.laserScanMaxPts is None: self.laserScanMaxPts = 0 if self.laserScanMaxRange is None: self.laserScanMaxRange = 0. if self.laserScanFormat is None: self.laserScanFormat = 0 if self.laserScanLocalTransform is None: self.laserScanLocalTransform = geometry_msgs.msg.Transform() if self.userData is None: self.userData = b'' if self.grid_ground is None: self.grid_ground = b'' if self.grid_obstacles is None: self.grid_obstacles = b'' if self.grid_empty_cells is None: self.grid_empty_cells = b'' if self.grid_cell_size is None: self.grid_cell_size = 0. if self.grid_view_point is None: self.grid_view_point = rtabmap_ros.msg.Point3f() if self.wordIds is None: self.wordIds = [] if self.wordKpts is None: self.wordKpts = [] if self.wordPts is None: self.wordPts = sensor_msgs.msg.PointCloud2() if self.descriptors is None: self.descriptors = b'' else: self.id = 0 self.mapId = 0 self.weight = 0 self.stamp = 0. self.label = '' self.pose = geometry_msgs.msg.Pose() self.groundTruthPose = geometry_msgs.msg.Pose() self.gps = rtabmap_ros.msg.GPS() self.image = b'' self.depth = b'' self.fx = [] self.fy = [] self.cx = [] self.cy = [] self.width = [] self.height = [] self.baseline = 0. self.localTransform = [] self.laserScan = b'' self.laserScanMaxPts = 0 self.laserScanMaxRange = 0. self.laserScanFormat = 0 self.laserScanLocalTransform = geometry_msgs.msg.Transform() self.userData = b'' self.grid_ground = b'' self.grid_obstacles = b'' self.grid_empty_cells = b'' self.grid_cell_size = 0. self.grid_view_point = rtabmap_ros.msg.Point3f() self.wordIds = [] self.wordKpts = [] self.wordPts = sensor_msgs.msg.PointCloud2() self.descriptors = b'' def _get_types(self): """ internal API method """ return self._slot_types def serialize(self, buff): """ serialize message into buffer :param buff: buffer, ``StringIO`` """ try: _x = self buff.write(_get_struct_3id().pack(_x.id, _x.mapId, _x.weight, _x.stamp)) _x = self.label length = len(_x) if python3 or type(_x) == unicode: _x = _x.encode('utf-8') length = len(_x) buff.write(struct.pack('<I%ss'%length, length, _x)) _x = self buff.write(_get_struct_20d().pack(_x.pose.position.x, _x.pose.position.y, _x.pose.position.z, _x.pose.orientation.x, _x.pose.orientation.y, _x.pose.orientation.z, _x.pose.orientation.w, _x.groundTruthPose.position.x, _x.groundTruthPose.position.y, _x.groundTruthPose.position.z, _x.groundTruthPose.orientation.x, _x.groundTruthPose.orientation.y, _x.groundTruthPose.orientation.z, _x.groundTruthPose.orientation.w, _x.gps.stamp, _x.gps.longitude, _x.gps.latitude, _x.gps.altitude, _x.gps.error, _x.gps.bearing)) _x = self.image length = len(_x) # - if encoded as a list instead, serialize as bytes instead of string if type(_x) in [list, tuple]: buff.write(struct.pack('<I%sB'%length, length, *_x)) else: buff.write(struct.pack('<I%ss'%length, length, _x)) _x = self.depth length = len(_x) # - if encoded as a list instead, serialize as bytes instead of string if type(_x) in [list, tuple]: buff.write(struct.pack('<I%sB'%length, length, *_x)) else: buff.write(struct.pack('<I%ss'%length, length, _x)) length = len(self.fx) buff.write(_struct_I.pack(length)) pattern = '<%sf'%length buff.write(struct.pack(pattern, *self.fx)) length = len(self.fy) buff.write(_struct_I.pack(length)) pattern = '<%sf'%length buff.write(struct.pack(pattern, *self.fy)) length = len(self.cx) buff.write(_struct_I.pack(length)) pattern = '<%sf'%length buff.write(struct.pack(pattern, *self.cx)) length = len(self.cy) buff.write(_struct_I.pack(length)) pattern = '<%sf'%length buff.write(struct.pack(pattern, *self.cy)) length = len(self.width) buff.write(_struct_I.pack(length)) pattern = '<%sf'%length buff.write(struct.pack(pattern, *self.width)) length = len(self.height) buff.write(_struct_I.pack(length)) pattern = '<%sf'%length buff.write(struct.pack(pattern, *self.height)) buff.write(_get_struct_f().pack(self.baseline)) length = len(self.localTransform) buff.write(_struct_I.pack(length)) for val1 in self.localTransform: _v1 = val1.translation _x = _v1 buff.write(_get_struct_3d().pack(_x.x, _x.y, _x.z)) _v2 = val1.rotation _x = _v2 buff.write(_get_struct_4d().pack(_x.x, _x.y, _x.z, _x.w)) _x = self.laserScan length = len(_x) # - if encoded as a list instead, serialize as bytes instead of string if type(_x) in [list, tuple]: buff.write(struct.pack('<I%sB'%length, length, *_x)) else: buff.write(struct.pack('<I%ss'%length, length, _x)) _x = self buff.write(_get_struct_ifi7d().pack(_x.laserScanMaxPts, _x.laserScanMaxRange, _x.laserScanFormat, _x.laserScanLocalTransform.translation.x, _x.laserScanLocalTransform.translation.y, _x.laserScanLocalTransform.translation.z, _x.laserScanLocalTransform.rotation.x, _x.laserScanLocalTransform.rotation.y, _x.laserScanLocalTransform.rotation.z, _x.laserScanLocalTransform.rotation.w)) _x = self.userData length = len(_x) # - if encoded as a list instead, serialize as bytes instead of string if type(_x) in [list, tuple]: buff.write(struct.pack('<I%sB'%length, length, *_x)) else: buff.write(struct.pack('<I%ss'%length, length, _x)) _x = self.grid_ground length = len(_x) # - if encoded as a list instead, serialize as bytes instead of string if type(_x) in [list, tuple]: buff.write(struct.pack('<I%sB'%length, length, *_x)) else: buff.write(struct.pack('<I%ss'%length, length, _x)) _x = self.grid_obstacles length = len(_x) # - if encoded as a list instead, serialize as bytes instead of string if type(_x) in [list, tuple]: buff.write(struct.pack('<I%sB'%length, length, *_x)) else: buff.write(struct.pack('<I%ss'%length, length, _x)) _x = self.grid_empty_cells length = len(_x) # - if encoded as a list instead, serialize as bytes instead of string if type(_x) in [list, tuple]: buff.write(struct.pack('<I%sB'%length, length, *_x)) else: buff.write(struct.pack('<I%ss'%length, length, _x)) _x = self buff.write(_get_struct_4f().pack(_x.grid_cell_size, _x.grid_view_point.x, _x.grid_view_point.y, _x.grid_view_point.z)) length = len(self.wordIds) buff.write(_struct_I.pack(length)) pattern = '<%si'%length buff.write(struct.pack(pattern, *self.wordIds)) length = len(self.wordKpts) buff.write(_struct_I.pack(length)) for val1 in self.wordKpts: _v3 = val1.pt _x = _v3 buff.write(_get_struct_2f().pack(_x.x, _x.y)) _x = val1 buff.write(_get_struct_3f2i().pack(_x.size, _x.angle, _x.response, _x.octave, _x.class_id)) _x = self buff.write(_get_struct_3I().pack(_x.wordPts.header.seq, _x.wordPts.header.stamp.secs, _x.wordPts.header.stamp.nsecs)) _x = self.wordPts.header.frame_id length = len(_x) if python3 or type(_x) == unicode: _x = _x.encode('utf-8') length = len(_x) buff.write(struct.pack('<I%ss'%length, length, _x)) _x = self buff.write(_get_struct_2I().pack(_x.wordPts.height, _x.wordPts.width)) length = len(self.wordPts.fields) buff.write(_struct_I.pack(length)) for val1 in self.wordPts.fields: _x = val1.name length = len(_x) if python3 or type(_x) == unicode: _x = _x.encode('utf-8') length = len(_x) buff.write(struct.pack('<I%ss'%length, length, _x)) _x = val1 buff.write(_get_struct_IBI().pack(_x.offset, _x.datatype, _x.count)) _x = self buff.write(_get_struct_B2I().pack(_x.wordPts.is_bigendian, _x.wordPts.point_step, _x.wordPts.row_step)) _x = self.wordPts.data length = len(_x) # - if encoded as a list instead, serialize as bytes instead of string if type(_x) in [list, tuple]: buff.write(struct.pack('<I%sB'%length, length, *_x)) else: buff.write(struct.pack('<I%ss'%length, length, _x)) buff.write(_get_struct_B().pack(self.wordPts.is_dense)) _x = self.descriptors length = len(_x) # - if encoded as a list instead, serialize as bytes instead of string if type(_x) in [list, tuple]: buff.write(struct.pack('<I%sB'%length, length, *_x)) else: buff.write(struct.pack('<I%ss'%length, length, _x)) except struct.error as se: self._check_types(struct.error("%s: '%s' when writing '%s'" % (type(se), str(se), str(locals().get('_x', self))))) except TypeError as te: self._check_types(ValueError("%s: '%s' when writing '%s'" % (type(te), str(te), str(locals().get('_x', self))))) def deserialize(self, str): """ unpack serialized message in str into this message instance :param str: byte array of serialized message, ``str`` """ try: if self.pose is None: self.pose = geometry_msgs.msg.Pose() if self.groundTruthPose is None: self.groundTruthPose = geometry_msgs.msg.Pose() if self.gps is None: self.gps = rtabmap_ros.msg.GPS() if self.localTransform is None: self.localTransform = None if self.laserScanLocalTransform is None: self.laserScanLocalTransform = geometry_msgs.msg.Transform() if self.grid_view_point is None: self.grid_view_point = rtabmap_ros.msg.Point3f() if self.wordKpts is None: self.wordKpts = None if self.wordPts is None: self.wordPts = sensor_msgs.msg.PointCloud2() end = 0 _x = self start = end end += 20 (_x.id, _x.mapId, _x.weight, _x.stamp,) = _get_struct_3id().unpack(str[start:end]) start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) start = end end += length if python3: self.label = str[start:end].decode('utf-8') else: self.label = str[start:end] _x = self start = end end += 160 (_x.pose.position.x, _x.pose.position.y, _x.pose.position.z, _x.pose.orientation.x, _x.pose.orientation.y, _x.pose.orientation.z, _x.pose.orientation.w, _x.groundTruthPose.position.x, _x.groundTruthPose.position.y, _x.groundTruthPose.position.z, _x.groundTruthPose.orientation.x, _x.groundTruthPose.orientation.y, _x.groundTruthPose.orientation.z, _x.groundTruthPose.orientation.w, _x.gps.stamp, _x.gps.longitude, _x.gps.latitude, _x.gps.altitude, _x.gps.error, _x.gps.bearing,) = _get_struct_20d().unpack(str[start:end]) start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) start = end end += length self.image = str[start:end] start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) start = end end += length self.depth = str[start:end] start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) pattern = '<%sf'%length start = end end += struct.calcsize(pattern) self.fx = struct.unpack(pattern, str[start:end]) start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) pattern = '<%sf'%length start = end end += struct.calcsize(pattern) self.fy = struct.unpack(pattern, str[start:end]) start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) pattern = '<%sf'%length start = end end += struct.calcsize(pattern) self.cx = struct.unpack(pattern, str[start:end]) start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) pattern = '<%sf'%length start = end end += struct.calcsize(pattern) self.cy = struct.unpack(pattern, str[start:end]) start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) pattern = '<%sf'%length start = end end += struct.calcsize(pattern) self.width = struct.unpack(pattern, str[start:end]) start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) pattern = '<%sf'%length start = end end += struct.calcsize(pattern) self.height = struct.unpack(pattern, str[start:end]) start = end end += 4 (self.baseline,) = _get_struct_f().unpack(str[start:end]) start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) self.localTransform = [] for i in range(0, length): val1 = geometry_msgs.msg.Transform() _v4 = val1.translation _x = _v4 start = end end += 24 (_x.x, _x.y, _x.z,) = _get_struct_3d().unpack(str[start:end]) _v5 = val1.rotation _x = _v5 start = end end += 32 (_x.x, _x.y, _x.z, _x.w,) = _get_struct_4d().unpack(str[start:end]) self.localTransform.append(val1) start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) start = end end += length self.laserScan = str[start:end] _x = self start = end end += 68 (_x.laserScanMaxPts, _x.laserScanMaxRange, _x.laserScanFormat, _x.laserScanLocalTransform.translation.x, _x.laserScanLocalTransform.translation.y, _x.laserScanLocalTransform.translation.z, _x.laserScanLocalTransform.rotation.x, _x.laserScanLocalTransform.rotation.y, _x.laserScanLocalTransform.rotation.z, _x.laserScanLocalTransform.rotation.w,) = _get_struct_ifi7d().unpack(str[start:end]) start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) start = end end += length self.userData = str[start:end] start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) start = end end += length self.grid_ground = str[start:end] start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) start = end end += length self.grid_obstacles = str[start:end] start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) start = end end += length self.grid_empty_cells = str[start:end] _x = self start = end end += 16 (_x.grid_cell_size, _x.grid_view_point.x, _x.grid_view_point.y, _x.grid_view_point.z,) = _get_struct_4f().unpack(str[start:end]) start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) pattern = '<%si'%length start = end end += struct.calcsize(pattern) self.wordIds = struct.unpack(pattern, str[start:end]) start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) self.wordKpts = [] for i in range(0, length): val1 = rtabmap_ros.msg.KeyPoint() _v6 = val1.pt _x = _v6 start = end end += 8 (_x.x, _x.y,) = _get_struct_2f().unpack(str[start:end]) _x = val1 start = end end += 20 (_x.size, _x.angle, _x.response, _x.octave, _x.class_id,) = _get_struct_3f2i().unpack(str[start:end]) self.wordKpts.append(val1) _x = self start = end end += 12 (_x.wordPts.header.seq, _x.wordPts.header.stamp.secs, _x.wordPts.header.stamp.nsecs,) = _get_struct_3I().unpack(str[start:end]) start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) start = end end += length if python3: self.wordPts.header.frame_id = str[start:end].decode('utf-8') else: self.wordPts.header.frame_id = str[start:end] _x = self start = end end += 8 (_x.wordPts.height, _x.wordPts.width,) = _get_struct_2I().unpack(str[start:end]) start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) self.wordPts.fields = [] for i in range(0, length): val1 = sensor_msgs.msg.PointField() start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) start = end end += length if python3: val1.name = str[start:end].decode('utf-8') else: val1.name = str[start:end] _x = val1 start = end end += 9 (_x.offset, _x.datatype, _x.count,) = _get_struct_IBI().unpack(str[start:end]) self.wordPts.fields.append(val1) _x = self start = end end += 9 (_x.wordPts.is_bigendian, _x.wordPts.point_step, _x.wordPts.row_step,) = _get_struct_B2I().unpack(str[start:end]) self.wordPts.is_bigendian = bool(self.wordPts.is_bigendian) start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) start = end end += length self.wordPts.data = str[start:end] start = end end += 1 (self.wordPts.is_dense,) = _get_struct_B().unpack(str[start:end]) self.wordPts.is_dense = bool(self.wordPts.is_dense) start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) start = end end += length self.descriptors = str[start:end] return self except struct.error as e: raise genpy.DeserializationError(e) #most likely buffer underfill def serialize_numpy(self, buff, numpy): """ serialize message with numpy array types into buffer :param buff: buffer, ``StringIO`` :param numpy: numpy python module """ try: _x = self buff.write(_get_struct_3id().pack(_x.id, _x.mapId, _x.weight, _x.stamp)) _x = self.label length = len(_x) if python3 or type(_x) == unicode: _x = _x.encode('utf-8') length = len(_x) buff.write(struct.pack('<I%ss'%length, length, _x)) _x = self buff.write(_get_struct_20d().pack(_x.pose.position.x, _x.pose.position.y, _x.pose.position.z, _x.pose.orientation.x, _x.pose.orientation.y, _x.pose.orientation.z, _x.pose.orientation.w, _x.groundTruthPose.position.x, _x.groundTruthPose.position.y, _x.groundTruthPose.position.z, _x.groundTruthPose.orientation.x, _x.groundTruthPose.orientation.y, _x.groundTruthPose.orientation.z, _x.groundTruthPose.orientation.w, _x.gps.stamp, _x.gps.longitude, _x.gps.latitude, _x.gps.altitude, _x.gps.error, _x.gps.bearing)) _x = self.image length = len(_x) # - if encoded as a list instead, serialize as bytes instead of string if type(_x) in [list, tuple]: buff.write(struct.pack('<I%sB'%length, length, *_x)) else: buff.write(struct.pack('<I%ss'%length, length, _x)) _x = self.depth length = len(_x) # - if encoded as a list instead, serialize as bytes instead of string if type(_x) in [list, tuple]: buff.write(struct.pack('<I%sB'%length, length, *_x)) else: buff.write(struct.pack('<I%ss'%length, length, _x)) length = len(self.fx) buff.write(_struct_I.pack(length)) pattern = '<%sf'%length buff.write(self.fx.tostring()) length = len(self.fy) buff.write(_struct_I.pack(length)) pattern = '<%sf'%length buff.write(self.fy.tostring()) length = len(self.cx) buff.write(_struct_I.pack(length)) pattern = '<%sf'%length buff.write(self.cx.tostring()) length = len(self.cy) buff.write(_struct_I.pack(length)) pattern = '<%sf'%length buff.write(self.cy.tostring()) length = len(self.width) buff.write(_struct_I.pack(length)) pattern = '<%sf'%length buff.write(self.width.tostring()) length = len(self.height) buff.write(_struct_I.pack(length)) pattern = '<%sf'%length buff.write(self.height.tostring()) buff.write(_get_struct_f().pack(self.baseline)) length = len(self.localTransform) buff.write(_struct_I.pack(length)) for val1 in self.localTransform: _v7 = val1.translation _x = _v7 buff.write(_get_struct_3d().pack(_x.x, _x.y, _x.z)) _v8 = val1.rotation _x = _v8 buff.write(_get_struct_4d().pack(_x.x, _x.y, _x.z, _x.w)) _x = self.laserScan length = len(_x) # - if encoded as a list instead, serialize as bytes instead of string if type(_x) in [list, tuple]: buff.write(struct.pack('<I%sB'%length, length, *_x)) else: buff.write(struct.pack('<I%ss'%length, length, _x)) _x = self buff.write(_get_struct_ifi7d().pack(_x.laserScanMaxPts, _x.laserScanMaxRange, _x.laserScanFormat, _x.laserScanLocalTransform.translation.x, _x.laserScanLocalTransform.translation.y, _x.laserScanLocalTransform.translation.z, _x.laserScanLocalTransform.rotation.x, _x.laserScanLocalTransform.rotation.y, _x.laserScanLocalTransform.rotation.z, _x.laserScanLocalTransform.rotation.w)) _x = self.userData length = len(_x) # - if encoded as a list instead, serialize as bytes instead of string if type(_x) in [list, tuple]: buff.write(struct.pack('<I%sB'%length, length, *_x)) else: buff.write(struct.pack('<I%ss'%length, length, _x)) _x = self.grid_ground length = len(_x) # - if encoded as a list instead, serialize as bytes instead of string if type(_x) in [list, tuple]: buff.write(struct.pack('<I%sB'%length, length, *_x)) else: buff.write(struct.pack('<I%ss'%length, length, _x)) _x = self.grid_obstacles length = len(_x) # - if encoded as a list instead, serialize as bytes instead of string if type(_x) in [list, tuple]: buff.write(struct.pack('<I%sB'%length, length, *_x)) else: buff.write(struct.pack('<I%ss'%length, length, _x)) _x = self.grid_empty_cells length = len(_x) # - if encoded as a list instead, serialize as bytes instead of string if type(_x) in [list, tuple]: buff.write(struct.pack('<I%sB'%length, length, *_x)) else: buff.write(struct.pack('<I%ss'%length, length, _x)) _x = self buff.write(_get_struct_4f().pack(_x.grid_cell_size, _x.grid_view_point.x, _x.grid_view_point.y, _x.grid_view_point.z)) length = len(self.wordIds) buff.write(_struct_I.pack(length)) pattern = '<%si'%length buff.write(self.wordIds.tostring()) length = len(self.wordKpts) buff.write(_struct_I.pack(length)) for val1 in self.wordKpts: _v9 = val1.pt _x = _v9 buff.write(_get_struct_2f().pack(_x.x, _x.y)) _x = val1 buff.write(_get_struct_3f2i().pack(_x.size, _x.angle, _x.response, _x.octave, _x.class_id)) _x = self buff.write(_get_struct_3I().pack(_x.wordPts.header.seq, _x.wordPts.header.stamp.secs, _x.wordPts.header.stamp.nsecs)) _x = self.wordPts.header.frame_id length = len(_x) if python3 or type(_x) == unicode: _x = _x.encode('utf-8') length = len(_x) buff.write(struct.pack('<I%ss'%length, length, _x)) _x = self buff.write(_get_struct_2I().pack(_x.wordPts.height, _x.wordPts.width)) length = len(self.wordPts.fields) buff.write(_struct_I.pack(length)) for val1 in self.wordPts.fields: _x = val1.name length = len(_x) if python3 or type(_x) == unicode: _x = _x.encode('utf-8') length = len(_x) buff.write(struct.pack('<I%ss'%length, length, _x)) _x = val1 buff.write(_get_struct_IBI().pack(_x.offset, _x.datatype, _x.count)) _x = self buff.write(_get_struct_B2I().pack(_x.wordPts.is_bigendian, _x.wordPts.point_step, _x.wordPts.row_step)) _x = self.wordPts.data length = len(_x) # - if encoded as a list instead, serialize as bytes instead of string if type(_x) in [list, tuple]: buff.write(struct.pack('<I%sB'%length, length, *_x)) else: buff.write(struct.pack('<I%ss'%length, length, _x)) buff.write(_get_struct_B().pack(self.wordPts.is_dense)) _x = self.descriptors length = len(_x) # - if encoded as a list instead, serialize as bytes instead of string if type(_x) in [list, tuple]: buff.write(struct.pack('<I%sB'%length, length, *_x)) else: buff.write(struct.pack('<I%ss'%length, length, _x)) except struct.error as se: self._check_types(struct.error("%s: '%s' when writing '%s'" % (type(se), str(se), str(locals().get('_x', self))))) except TypeError as te: self._check_types(ValueError("%s: '%s' when writing '%s'" % (type(te), str(te), str(locals().get('_x', self))))) def deserialize_numpy(self, str, numpy): """ unpack serialized message in str into this message instance using numpy for array types :param str: byte array of serialized message, ``str`` :param numpy: numpy python module """ try: if self.pose is None: self.pose = geometry_msgs.msg.Pose() if self.groundTruthPose is None: self.groundTruthPose = geometry_msgs.msg.Pose() if self.gps is None: self.gps = rtabmap_ros.msg.GPS() if self.localTransform is None: self.localTransform = None if self.laserScanLocalTransform is None: self.laserScanLocalTransform = geometry_msgs.msg.Transform() if self.grid_view_point is None: self.grid_view_point = rtabmap_ros.msg.Point3f() if self.wordKpts is None: self.wordKpts = None if self.wordPts is None: self.wordPts = sensor_msgs.msg.PointCloud2() end = 0 _x = self start = end end += 20 (_x.id, _x.mapId, _x.weight, _x.stamp,) = _get_struct_3id().unpack(str[start:end]) start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) start = end end += length if python3: self.label = str[start:end].decode('utf-8') else: self.label = str[start:end] _x = self start = end end += 160 (_x.pose.position.x, _x.pose.position.y, _x.pose.position.z, _x.pose.orientation.x, _x.pose.orientation.y, _x.pose.orientation.z, _x.pose.orientation.w, _x.groundTruthPose.position.x, _x.groundTruthPose.position.y, _x.groundTruthPose.position.z, _x.groundTruthPose.orientation.x, _x.groundTruthPose.orientation.y, _x.groundTruthPose.orientation.z, _x.groundTruthPose.orientation.w, _x.gps.stamp, _x.gps.longitude, _x.gps.latitude, _x.gps.altitude, _x.gps.error, _x.gps.bearing,) = _get_struct_20d().unpack(str[start:end]) start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) start = end end += length self.image = str[start:end] start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) start = end end += length self.depth = str[start:end] start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) pattern = '<%sf'%length start = end end += struct.calcsize(pattern) self.fx = numpy.frombuffer(str[start:end], dtype=numpy.float32, count=length) start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) pattern = '<%sf'%length start = end end += struct.calcsize(pattern) self.fy = numpy.frombuffer(str[start:end], dtype=numpy.float32, count=length) start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) pattern = '<%sf'%length start = end end += struct.calcsize(pattern) self.cx = numpy.frombuffer(str[start:end], dtype=numpy.float32, count=length) start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) pattern = '<%sf'%length start = end end += struct.calcsize(pattern) self.cy = numpy.frombuffer(str[start:end], dtype=numpy.float32, count=length) start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) pattern = '<%sf'%length start = end end += struct.calcsize(pattern) self.width = numpy.frombuffer(str[start:end], dtype=numpy.float32, count=length) start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) pattern = '<%sf'%length start = end end += struct.calcsize(pattern) self.height = numpy.frombuffer(str[start:end], dtype=numpy.float32, count=length) start = end end += 4 (self.baseline,) = _get_struct_f().unpack(str[start:end]) start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) self.localTransform = [] for i in range(0, length): val1 = geometry_msgs.msg.Transform() _v10 = val1.translation _x = _v10 start = end end += 24 (_x.x, _x.y, _x.z,) = _get_struct_3d().unpack(str[start:end]) _v11 = val1.rotation _x = _v11 start = end end += 32 (_x.x, _x.y, _x.z, _x.w,) = _get_struct_4d().unpack(str[start:end]) self.localTransform.append(val1) start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) start = end end += length self.laserScan = str[start:end] _x = self start = end end += 68 (_x.laserScanMaxPts, _x.laserScanMaxRange, _x.laserScanFormat, _x.laserScanLocalTransform.translation.x, _x.laserScanLocalTransform.translation.y, _x.laserScanLocalTransform.translation.z, _x.laserScanLocalTransform.rotation.x, _x.laserScanLocalTransform.rotation.y, _x.laserScanLocalTransform.rotation.z, _x.laserScanLocalTransform.rotation.w,) = _get_struct_ifi7d().unpack(str[start:end]) start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) start = end end += length self.userData = str[start:end] start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) start = end end += length self.grid_ground = str[start:end] start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) start = end end += length self.grid_obstacles = str[start:end] start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) start = end end += length self.grid_empty_cells = str[start:end] _x = self start = end end += 16 (_x.grid_cell_size, _x.grid_view_point.x, _x.grid_view_point.y, _x.grid_view_point.z,) = _get_struct_4f().unpack(str[start:end]) start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) pattern = '<%si'%length start = end end += struct.calcsize(pattern) self.wordIds = numpy.frombuffer(str[start:end], dtype=numpy.int32, count=length) start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) self.wordKpts = [] for i in range(0, length): val1 = rtabmap_ros.msg.KeyPoint() _v12 = val1.pt _x = _v12 start = end end += 8 (_x.x, _x.y,) = _get_struct_2f().unpack(str[start:end]) _x = val1 start = end end += 20 (_x.size, _x.angle, _x.response, _x.octave, _x.class_id,) = _get_struct_3f2i().unpack(str[start:end]) self.wordKpts.append(val1) _x = self start = end end += 12 (_x.wordPts.header.seq, _x.wordPts.header.stamp.secs, _x.wordPts.header.stamp.nsecs,) = _get_struct_3I().unpack(str[start:end]) start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) start = end end += length if python3: self.wordPts.header.frame_id = str[start:end].decode('utf-8') else: self.wordPts.header.frame_id = str[start:end] _x = self start = end end += 8 (_x.wordPts.height, _x.wordPts.width,) = _get_struct_2I().unpack(str[start:end]) start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) self.wordPts.fields = [] for i in range(0, length): val1 = sensor_msgs.msg.PointField() start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) start = end end += length if python3: val1.name = str[start:end].decode('utf-8') else: val1.name = str[start:end] _x = val1 start = end end += 9 (_x.offset, _x.datatype, _x.count,) = _get_struct_IBI().unpack(str[start:end]) self.wordPts.fields.append(val1) _x = self start = end end += 9 (_x.wordPts.is_bigendian, _x.wordPts.point_step, _x.wordPts.row_step,) = _get_struct_B2I().unpack(str[start:end]) self.wordPts.is_bigendian = bool(self.wordPts.is_bigendian) start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) start = end end += length self.wordPts.data = str[start:end] start = end end += 1 (self.wordPts.is_dense,) = _get_struct_B().unpack(str[start:end]) self.wordPts.is_dense = bool(self.wordPts.is_dense) start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) start = end end += length self.descriptors = str[start:end] return self except struct.error as e: raise genpy.DeserializationError(e) #most likely buffer underfill _struct_I = genpy.struct_I def _get_struct_I(): global _struct_I return _struct_I _struct_3f2i = None def _get_struct_3f2i(): global _struct_3f2i if _struct_3f2i is None: _struct_3f2i = struct.Struct("<3f2i") return _struct_3f2i _struct_IBI = None def _get_struct_IBI(): global _struct_IBI if _struct_IBI is None: _struct_IBI = struct.Struct("<IBI") return _struct_IBI _struct_B = None def _get_struct_B(): global _struct_B if _struct_B is None: _struct_B = struct.Struct("<B") return _struct_B _struct_ifi7d = None def _get_struct_ifi7d(): global _struct_ifi7d if _struct_ifi7d is None: _struct_ifi7d = struct.Struct("<ifi7d") return _struct_ifi7d _struct_f = None def _get_struct_f(): global _struct_f if _struct_f is None: _struct_f = struct.Struct("<f") return _struct_f _struct_3I = None def _get_struct_3I(): global _struct_3I if _struct_3I is None: _struct_3I = struct.Struct("<3I") return _struct_3I _struct_2f = None def _get_struct_2f(): global _struct_2f if _struct_2f is None: _struct_2f = struct.Struct("<2f") return _struct_2f _struct_20d = None def _get_struct_20d(): global _struct_20d if _struct_20d is None: _struct_20d = struct.Struct("<20d") return _struct_20d _struct_B2I = None def _get_struct_B2I(): global _struct_B2I if _struct_B2I is None: _struct_B2I = struct.Struct("<B2I") return _struct_B2I _struct_3id = None def _get_struct_3id(): global _struct_3id if _struct_3id is None: _struct_3id = struct.Struct("<3id") return _struct_3id _struct_4f = None def _get_struct_4f(): global _struct_4f if _struct_4f is None: _struct_4f = struct.Struct("<4f") return _struct_4f _struct_4d = None def _get_struct_4d(): global _struct_4d if _struct_4d is None: _struct_4d = struct.Struct("<4d") return _struct_4d _struct_2I = None def _get_struct_2I(): global _struct_2I if _struct_2I is None: _struct_2I = struct.Struct("<2I") return _struct_2I _struct_3d = None def _get_struct_3d(): global _struct_3d if _struct_3d is None: _struct_3d = struct.Struct("<3d") return _struct_3d
import unittest from support import lib,ffi from qcgc_test import QCGCTest class FitAllocatorTest(QCGCTest): def test_initialization(self): # self.assertEqual( <config_value> ,lib.arenas().size) self.assertEqual(1, lib.arenas().count) self.assertNotEqual(ffi.NULL, lib.arenas().items) # self.assertEqual( <config_value> ,lib.free_arenas().size) self.assertEqual(0, lib.free_arenas().count) self.assertNotEqual(ffi.NULL, lib.free_arenas().items) self.assertEqual(ffi.addressof(lib.arena_cells(lib.arenas().items[0])[lib.qcgc_arena_first_cell_index]), lib._qcgc_bump_allocator.ptr) self.assertEqual(lib.qcgc_arena_cells_count - lib.qcgc_arena_first_cell_index, self.bump_remaining_cells()) for i in range(lib.qcgc_small_free_lists): self.assertEqual(lib.QCGC_SMALL_FREE_LIST_INIT_SIZE, lib.small_free_list(i).size) self.assertEqual(0, lib.small_free_list(i).count) self.assertNotEqual(ffi.NULL, lib.small_free_list(i).items) for i in range(lib.qcgc_large_free_lists): self.assertEqual(lib.QCGC_LARGE_FREE_LIST_INIT_SIZE, lib.large_free_list(i).size) self.assertEqual(0, lib.large_free_list(i).count) self.assertNotEqual(ffi.NULL, lib.large_free_list(i).items) def test_macro_consistency(self): self.assertEqual(2**lib.QCGC_LARGE_FREE_LIST_FIRST_EXP, lib.qcgc_small_free_lists + 1) last_exp = lib.QCGC_LARGE_FREE_LIST_FIRST_EXP + lib.qcgc_large_free_lists - 1 self.assertEqual(2**last_exp * 16, 2**lib.QCGC_LARGE_ALLOC_THRESHOLD_EXP) def test_small_free_list_index(self): for i in range(1, lib.qcgc_small_free_lists + 1): self.assertTrue(lib.is_small(i)) self.assertEqual(lib.small_index(i), i - 1) self.assertTrue(lib.small_index_to_cells(i - 1), i) self.assertLess(lib.small_index(i), lib.qcgc_small_free_lists) def test_large_free_list_index(self): index = -1; for i in range(2**lib.QCGC_LARGE_FREE_LIST_FIRST_EXP, 2**lib.QCGC_LARGE_ALLOC_THRESHOLD_EXP // 16): if (i & (i - 1) == 0): # Check for power of two index = index + 1 self.assertFalse(lib.is_small(i)) self.assertEqual(index, lib.large_index(i)) self.assertLess(lib.large_index(i), lib.qcgc_large_free_lists) def test_block_validity_check(self): arena = lib.qcgc_arena_create() first = ffi.addressof(lib.arena_cells(arena)[lib.qcgc_arena_first_cell_index]) self.assertTrue(lib.valid_block(first, lib.qcgc_arena_cells_count - lib.qcgc_arena_first_cell_index)) lib.qcgc_arena_mark_allocated(first, 10); self.assertFalse(lib.valid_block(first, 10)); self.set_blocktype(first, lib.BLOCK_FREE); self.assertTrue(lib.valid_block(first, 10)); self.assertFalse(lib.valid_block(first, 8)); self.assertFalse(lib.valid_block(first + 1, 9)); self.assertFalse(lib.valid_block(first + 1, 8)); def test_add_small(self): blocks = list() for i in range(1, lib.qcgc_small_free_lists + 1): p = self.bump_allocate_cells(i) lib.qcgc_arena_mark_free(p) blocks.append(p) lib.qcgc_fit_allocator_add(p, i) for i in range(lib.qcgc_small_free_lists): l = lib.small_free_list(i) self.assertEqual(l.count, 1) self.assertEqual(blocks[i], l.items[0]) def test_add_large(self): blocks = list() for i in range(lib.qcgc_large_free_lists): size = 2**(i + lib.QCGC_LARGE_FREE_LIST_FIRST_EXP) p = self.bump_allocate_cells(size) lib.qcgc_arena_mark_free(p) blocks.append(p) lib.qcgc_fit_allocator_add(p, size) for i in range(lib.qcgc_large_free_lists): size = 2**(i + lib.QCGC_LARGE_FREE_LIST_FIRST_EXP) l = lib.large_free_list(i) self.assertEqual(l.count, 1) self.assertEqual(blocks[i], l.items[0].ptr) self.assertEqual(size, l.items[0].size) def test_allocate_exact(self): "Test allocate when there is always exactly the size needed" # Small first fit for i in range(1, lib.qcgc_small_free_lists + 1): p = self.bump_allocate_cells(i) lib.qcgc_arena_mark_free(p) lib.qcgc_fit_allocator_add(p, i) q = self.fit_allocate(i) self.assertEqual(p, q) q = self.fit_allocate(i) self.assertNotEqual(p, q) # Large first fit for i in range(lib.qcgc_large_free_lists): size = 2**(i + lib.QCGC_LARGE_FREE_LIST_FIRST_EXP) p = self.bump_allocate_cells(size) lib.qcgc_arena_mark_free(p) lib.qcgc_fit_allocator_add(p, size) q = self.fit_allocate(size) self.assertEqual(p, q) q = self.fit_allocate(size) self.assertNotEqual(p, q) def test_allocate_no_block(self): "Test allocate when no block is available" p = self.bump_allocate_cells(1) lib.qcgc_arena_mark_free(p) lib.qcgc_fit_allocator_add(p, 1) q = self.fit_allocate(2) self.assertEqual(ffi.NULL, q) def test_allocate_block_splitting(self): "Test allocation when blocks have to be split" # Small block size = lib.qcgc_small_free_lists p = self.bump_allocate_cells(size) lib.qcgc_arena_mark_free(p) lib.qcgc_fit_allocator_add(p, size) q = self.fit_allocate(1) self.assertEqual(q, p) q = self.fit_allocate(size - 1) self.assertEqual(q, p + 1) # Large block size = 2**(1 + lib.QCGC_LARGE_FREE_LIST_FIRST_EXP) p = self.bump_allocate_cells(size) lib.qcgc_arena_mark_free(p) lib.qcgc_fit_allocator_add(p, size) q = self.fit_allocate(1) self.assertEqual(q, p) q = self.fit_allocate(size - 2) self.assertEqual(q, p + 1) q = self.fit_allocate(1) self.assertEqual(q, p + size - 1) @unittest.skip("Free lists do not contain invalid blocks") def test_allocate_coalesced_block(self): "Test allocation when there are invalid blocks in the free lists" # Small block # coalesced area no 1 # ATOMIC! Invalidates internal invariant for short time x = self.bump_allocate(16) y = self.bump_allocate(16) self.bump_allocate(16) # Prevent non-coalesced arena lib.qcgc_arena_mark_free(ffi.cast("cell_t *",x)) lib.qcgc_arena_mark_free(ffi.cast("cell_t *",y)) lib.qcgc_fit_allocator_add(ffi.cast("cell_t *", x), 1) lib.qcgc_fit_allocator_add(ffi.cast("cell_t *", y), 1) self.set_blocktype(ffi.cast("cell_t *", y), lib.BLOCK_EXTENT) # only valid block p = self.bump_allocate_cells(1) lib.qcgc_arena_mark_free(p) lib.qcgc_fit_allocator_add(p, 1) # coalesced area no 2 # ATOMIC! Invalidates internal invariant for short time x = self.bump_allocate(16) y = self.bump_allocate(16) self.bump_allocate(16) # Prevent non-coalesced arena lib.qcgc_arena_mark_free(ffi.cast("cell_t *",x)) lib.qcgc_arena_mark_free(ffi.cast("cell_t *",y)) lib.qcgc_fit_allocator_add(ffi.cast("cell_t *", x), 1) lib.qcgc_fit_allocator_add(ffi.cast("cell_t *", y), 1) self.set_blocktype(ffi.cast("cell_t *", y), lib.BLOCK_EXTENT) q = self.fit_allocate(1) self.assertEqual(p, q) # Large block # coalesced area no 1 # ATOMIC! Invalidates internal invariant for short time x = self.bump_allocate(16 * 2**lib.QCGC_LARGE_FREE_LIST_FIRST_EXP) y = self.bump_allocate(16 * 2**lib.QCGC_LARGE_FREE_LIST_FIRST_EXP) self.bump_allocate(16) # Prevent non-coalesced arena lib.qcgc_arena_mark_free(ffi.cast("cell_t *",x)) lib.qcgc_arena_mark_free(ffi.cast("cell_t *",y)) lib.qcgc_fit_allocator_add(ffi.cast("cell_t *", x), 2**lib.QCGC_LARGE_FREE_LIST_FIRST_EXP) lib.qcgc_fit_allocator_add(ffi.cast("cell_t *", y), 2**lib.QCGC_LARGE_FREE_LIST_FIRST_EXP) self.set_blocktype(ffi.cast("cell_t *", y), lib.BLOCK_EXTENT) # only valid block p = self.bump_allocate_cells(2**lib.QCGC_LARGE_FREE_LIST_FIRST_EXP) lib.qcgc_arena_mark_free(p) lib.qcgc_fit_allocator_add(p, 2**lib.QCGC_LARGE_FREE_LIST_FIRST_EXP) # coalesced area no 2 # ATOMIC! Invalidates internal invariant for short time x = self.bump_allocate(16 * 2**lib.QCGC_LARGE_FREE_LIST_FIRST_EXP) y = self.bump_allocate(16 * 2**lib.QCGC_LARGE_FREE_LIST_FIRST_EXP) self.bump_allocate(16) # Prevent non-coalesced arena lib.qcgc_arena_mark_free(ffi.cast("cell_t *",x)) lib.qcgc_arena_mark_free(ffi.cast("cell_t *",y)) lib.qcgc_fit_allocator_add(ffi.cast("cell_t *", x), 2**lib.QCGC_LARGE_FREE_LIST_FIRST_EXP) lib.qcgc_fit_allocator_add(ffi.cast("cell_t *", y), 2**lib.QCGC_LARGE_FREE_LIST_FIRST_EXP) self.set_blocktype(ffi.cast("cell_t *", y), lib.BLOCK_EXTENT) q = self.fit_allocate(2**lib.QCGC_LARGE_FREE_LIST_FIRST_EXP) self.assertEqual(p, q) def test_fit_allocate_no_double_entry(self): roots = list() x = self.bump_allocate(16 * 3) roots.append(x) self.bump_allocate(16 * 1) roots.append(self.bump_allocate(16 * 1)) # for r in roots: self.push_root(r) lib.bump_ptr_reset() lib.qcgc_collect() for _ in roots: self.pop_root() # self.assertEqual(lib.small_free_list(0).count, 1) # del roots[0] for r in roots: self.push_root(r) lib.qcgc_collect() for _ in roots: self.pop_root() # self.assertEqual(lib.small_free_list(3).count, 1) # y = lib.qcgc_fit_allocate(16 * 3) # Create double entry self.assertEqual(lib.small_free_list(3).count, 0) self.assertEqual(lib.small_free_list(0).count, 1) self.assertEqual(x, y) def fit_allocate(self, cells): p = lib.qcgc_fit_allocate(cells * 16) return ffi.cast("cell_t *", p) def bump_allocate_cells(self, cells): p = self.bump_allocate(cells * 16) self.bump_allocate(16) # Prevent non-coalseced arena return ffi.cast("cell_t *", p) if __name__ == "__main__": unittest.main()
__all__ = [ 'app', 'clear_cache' ] from . import *
# -------------------------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # -------------------------------------------------------------------------------------------- # pylint: disable=line-too-long from azure.cli.command_modules.storage._command_type import cli_storage_data_plane_command from azure.cli.command_modules.storage._factory import \ (storage_client_factory, blob_data_service_factory, file_data_service_factory, table_data_service_factory, queue_data_service_factory, cloud_storage_account_service_factory) from azure.cli.command_modules.storage._format import \ (transform_container_list, transform_container_show, transform_blob_output, transform_share_list, transform_file_output, transform_entity_show, transform_message_show, transform_boolean_for_table, transform_file_directory_result) from azure.cli.command_modules.storage._validators import \ (transform_acl_list_output, transform_cors_list_output, transform_entity_query_output, transform_logging_list_output, transform_metrics_list_output, transform_url, transform_storage_list_output, transform_container_permission_output, create_boolean_result_output_transformer) from azure.cli.core.commands import cli_command # storage account commands factory = lambda kwargs: storage_client_factory().storage_accounts # noqa: E731 lambda vs def cli_command(__name__, 'storage account check-name', 'azure.mgmt.storage.operations.storage_accounts_operations#StorageAccountsOperations.check_name_availability', factory) cli_command(__name__, 'storage account delete', 'azure.mgmt.storage.operations.storage_accounts_operations#StorageAccountsOperations.delete', factory, confirmation=True) cli_command(__name__, 'storage account show', 'azure.mgmt.storage.operations.storage_accounts_operations#StorageAccountsOperations.get_properties', factory) cli_command(__name__, 'storage account create', 'azure.cli.command_modules.storage.custom#create_storage_account') cli_command(__name__, 'storage account list', 'azure.cli.command_modules.storage.custom#list_storage_accounts') cli_command(__name__, 'storage account show-usage', 'azure.cli.command_modules.storage.custom#show_storage_account_usage') cli_command(__name__, 'storage account update', 'azure.cli.command_modules.storage.custom#set_storage_account_properties') cli_command(__name__, 'storage account show-connection-string', 'azure.cli.command_modules.storage.custom#show_storage_account_connection_string') cli_command(__name__, 'storage account keys renew', 'azure.mgmt.storage.operations.storage_accounts_operations#StorageAccountsOperations.regenerate_key', factory, transform=lambda x: x.keys) cli_command(__name__, 'storage account keys list', 'azure.mgmt.storage.operations.storage_accounts_operations#StorageAccountsOperations.list_keys', factory, transform=lambda x: x.keys) cli_storage_data_plane_command('storage account generate-sas', 'azure.storage.cloudstorageaccount#CloudStorageAccount.generate_shared_access_signature', cloud_storage_account_service_factory) # container commands factory = blob_data_service_factory cli_storage_data_plane_command('storage container list', 'azure.storage.blob.blockblobservice#BlockBlobService.list_containers', factory, transform=transform_storage_list_output, table_transformer=transform_container_list) cli_storage_data_plane_command('storage container delete', 'azure.storage.blob.blockblobservice#BlockBlobService.delete_container', factory, transform=create_boolean_result_output_transformer('deleted'), table_transformer=transform_boolean_for_table) cli_storage_data_plane_command('storage container show', 'azure.storage.blob.blockblobservice#BlockBlobService.get_container_properties', factory, table_transformer=transform_container_show) cli_storage_data_plane_command('storage container create', 'azure.storage.blob.blockblobservice#BlockBlobService.create_container', factory, transform=create_boolean_result_output_transformer('created'), table_transformer=transform_boolean_for_table) cli_storage_data_plane_command('storage container generate-sas', 'azure.storage.blob.blockblobservice#BlockBlobService.generate_container_shared_access_signature', factory) cli_storage_data_plane_command('storage container metadata update', 'azure.storage.blob.blockblobservice#BlockBlobService.set_container_metadata', factory) cli_storage_data_plane_command('storage container metadata show', 'azure.storage.blob.blockblobservice#BlockBlobService.get_container_metadata', factory) cli_storage_data_plane_command('storage container lease acquire', 'azure.storage.blob.blockblobservice#BlockBlobService.acquire_container_lease', factory) cli_storage_data_plane_command('storage container lease renew', 'azure.storage.blob.blockblobservice#BlockBlobService.renew_container_lease', factory) cli_storage_data_plane_command('storage container lease release', 'azure.storage.blob.blockblobservice#BlockBlobService.release_container_lease', factory) cli_storage_data_plane_command('storage container lease change', 'azure.storage.blob.blockblobservice#BlockBlobService.change_container_lease', factory) cli_storage_data_plane_command('storage container lease break', 'azure.storage.blob.blockblobservice#BlockBlobService.break_container_lease', factory) cli_storage_data_plane_command('storage container exists', 'azure.storage.blob.baseblobservice#BaseBlobService.exists', factory, transform=create_boolean_result_output_transformer('exists'), table_transformer=transform_boolean_for_table) cli_storage_data_plane_command('storage container set-permission', 'azure.storage.blob.baseblobservice#BaseBlobService.set_container_acl', factory) cli_storage_data_plane_command('storage container show-permission', 'azure.storage.blob.baseblobservice#BaseBlobService.get_container_acl', factory, transform=transform_container_permission_output) cli_storage_data_plane_command('storage container policy create', 'azure.cli.command_modules.storage.custom#create_acl_policy', factory) cli_storage_data_plane_command('storage container policy delete', 'azure.cli.command_modules.storage.custom#delete_acl_policy', factory) cli_storage_data_plane_command('storage container policy show', 'azure.cli.command_modules.storage.custom#get_acl_policy', factory) cli_storage_data_plane_command('storage container policy list', 'azure.cli.command_modules.storage.custom#list_acl_policies', factory, table_transformer=transform_acl_list_output) cli_storage_data_plane_command('storage container policy update', 'azure.cli.command_modules.storage.custom#set_acl_policy', factory) # blob commands cli_storage_data_plane_command('storage blob list', 'azure.storage.blob.blockblobservice#BlockBlobService.list_blobs', factory, transform=transform_storage_list_output, table_transformer=transform_blob_output) cli_storage_data_plane_command('storage blob delete', 'azure.storage.blob.blockblobservice#BlockBlobService.delete_blob', factory, transform=create_boolean_result_output_transformer('deleted'), table_transformer=transform_boolean_for_table) cli_storage_data_plane_command('storage blob generate-sas', 'azure.storage.blob.blockblobservice#BlockBlobService.generate_blob_shared_access_signature', factory) cli_storage_data_plane_command('storage blob url', 'azure.storage.blob.blockblobservice#BlockBlobService.make_blob_url', factory, transform=transform_url) cli_storage_data_plane_command('storage blob snapshot', 'azure.storage.blob.blockblobservice#BlockBlobService.snapshot_blob', factory) cli_storage_data_plane_command('storage blob show', 'azure.storage.blob.blockblobservice#BlockBlobService.get_blob_properties', factory, table_transformer=transform_blob_output) cli_storage_data_plane_command('storage blob update', 'azure.storage.blob.blockblobservice#BlockBlobService.set_blob_properties', factory) cli_storage_data_plane_command('storage blob exists', 'azure.storage.blob.baseblobservice#BaseBlobService.exists', factory, transform=create_boolean_result_output_transformer('exists')) cli_storage_data_plane_command('storage blob download', 'azure.storage.blob.baseblobservice#BaseBlobService.get_blob_to_path', factory) cli_storage_data_plane_command('storage blob upload', 'azure.cli.command_modules.storage.custom#upload_blob', factory) cli_storage_data_plane_command('storage blob metadata show', 'azure.storage.blob.blockblobservice#BlockBlobService.get_blob_metadata', factory) cli_storage_data_plane_command('storage blob metadata update', 'azure.storage.blob.blockblobservice#BlockBlobService.set_blob_metadata', factory) cli_storage_data_plane_command('storage blob service-properties show', 'azure.storage.blob.baseblobservice#BaseBlobService.get_blob_service_properties', factory) cli_storage_data_plane_command('storage blob lease acquire', 'azure.storage.blob.blockblobservice#BlockBlobService.acquire_blob_lease', factory) cli_storage_data_plane_command('storage blob lease renew', 'azure.storage.blob.blockblobservice#BlockBlobService.renew_blob_lease', factory) cli_storage_data_plane_command('storage blob lease release', 'azure.storage.blob.blockblobservice#BlockBlobService.release_blob_lease', factory) cli_storage_data_plane_command('storage blob lease change', 'azure.storage.blob.blockblobservice#BlockBlobService.change_blob_lease', factory) cli_storage_data_plane_command('storage blob lease break', 'azure.storage.blob.blockblobservice#BlockBlobService.break_blob_lease', factory) cli_storage_data_plane_command('storage blob copy start', 'azure.storage.blob.blockblobservice#BlockBlobService.copy_blob', factory) cli_storage_data_plane_command('storage blob copy start-batch', 'azure.cli.command_modules.storage.blob#storage_blob_copy_batch', factory) cli_storage_data_plane_command('storage blob copy cancel', 'azure.storage.blob.blockblobservice#BlockBlobService.abort_copy_blob', factory) cli_storage_data_plane_command('storage blob upload-batch', 'azure.cli.command_modules.storage.blob#storage_blob_upload_batch', factory) cli_storage_data_plane_command('storage blob download-batch', 'azure.cli.command_modules.storage.blob#storage_blob_download_batch', factory) # share commands factory = file_data_service_factory cli_storage_data_plane_command('storage share list', 'azure.storage.file.fileservice#FileService.list_shares', factory, transform=transform_storage_list_output, table_transformer=transform_share_list) cli_storage_data_plane_command('storage share create', 'azure.storage.file.fileservice#FileService.create_share', factory, transform=create_boolean_result_output_transformer('created'), table_transformer=transform_boolean_for_table) cli_storage_data_plane_command('storage share delete', 'azure.storage.file.fileservice#FileService.delete_share', factory, transform=create_boolean_result_output_transformer('deleted'), table_transformer=transform_boolean_for_table) cli_storage_data_plane_command('storage share generate-sas', 'azure.storage.file.fileservice#FileService.generate_share_shared_access_signature', factory) cli_storage_data_plane_command('storage share stats', 'azure.storage.file.fileservice#FileService.get_share_stats', factory) cli_storage_data_plane_command('storage share show', 'azure.storage.file.fileservice#FileService.get_share_properties', factory) cli_storage_data_plane_command('storage share update', 'azure.storage.file.fileservice#FileService.set_share_properties', factory) cli_storage_data_plane_command('storage share metadata show', 'azure.storage.file.fileservice#FileService.get_share_metadata', factory) cli_storage_data_plane_command('storage share metadata update', 'azure.storage.file.fileservice#FileService.set_share_metadata', factory) cli_storage_data_plane_command('storage share exists', 'azure.storage.file.fileservice#FileService.exists', factory, transform=create_boolean_result_output_transformer('exists')) cli_storage_data_plane_command('storage share policy create', 'azure.cli.command_modules.storage.custom#create_acl_policy', factory) cli_storage_data_plane_command('storage share policy delete', 'azure.cli.command_modules.storage.custom#delete_acl_policy', factory) cli_storage_data_plane_command('storage share policy show', 'azure.cli.command_modules.storage.custom#get_acl_policy', factory) cli_storage_data_plane_command('storage share policy list', 'azure.cli.command_modules.storage.custom#list_acl_policies', factory, table_transformer=transform_acl_list_output) cli_storage_data_plane_command('storage share policy update', 'azure.cli.command_modules.storage.custom#set_acl_policy', factory) # directory commands cli_storage_data_plane_command('storage directory create', 'azure.storage.file.fileservice#FileService.create_directory', factory, transform=create_boolean_result_output_transformer('created'), table_transformer=transform_boolean_for_table) cli_storage_data_plane_command('storage directory delete', 'azure.storage.file.fileservice#FileService.delete_directory', factory, transform=create_boolean_result_output_transformer('deleted'), table_transformer=transform_boolean_for_table) cli_storage_data_plane_command('storage directory show', 'azure.storage.file.fileservice#FileService.get_directory_properties', factory, table_transformer=transform_file_output) cli_storage_data_plane_command('storage directory list', 'azure.cli.command_modules.storage.custom#list_share_directories', factory, transform=transform_file_directory_result, table_transformer=transform_file_output) cli_storage_data_plane_command('storage directory exists', 'azure.storage.file.fileservice#FileService.exists', factory, transform=create_boolean_result_output_transformer('exists')) cli_storage_data_plane_command('storage directory metadata show', 'azure.storage.file.fileservice#FileService.get_directory_metadata', factory) cli_storage_data_plane_command('storage directory metadata update', 'azure.storage.file.fileservice#FileService.set_directory_metadata', factory) # file commands cli_storage_data_plane_command('storage file list', 'azure.cli.command_modules.storage.custom#list_share_files', factory, transform=transform_file_directory_result, table_transformer=transform_file_output) cli_storage_data_plane_command('storage file delete', 'azure.storage.file.fileservice#FileService.delete_file', factory, transform=create_boolean_result_output_transformer('deleted'), table_transformer=transform_boolean_for_table) cli_storage_data_plane_command('storage file resize', 'azure.storage.file.fileservice#FileService.resize_file', factory) cli_storage_data_plane_command('storage file url', 'azure.storage.file.fileservice#FileService.make_file_url', factory, transform=transform_url) cli_storage_data_plane_command('storage file generate-sas', 'azure.storage.file.fileservice#FileService.generate_file_shared_access_signature', factory) cli_storage_data_plane_command('storage file show', 'azure.storage.file.fileservice#FileService.get_file_properties', factory, table_transformer=transform_file_output) cli_storage_data_plane_command('storage file update', 'azure.storage.file.fileservice#FileService.set_file_properties', factory) cli_storage_data_plane_command('storage file exists', 'azure.storage.file.fileservice#FileService.exists', factory, transform=create_boolean_result_output_transformer('exists')) cli_storage_data_plane_command('storage file download', 'azure.storage.file.fileservice#FileService.get_file_to_path', factory) cli_storage_data_plane_command('storage file upload', 'azure.storage.file.fileservice#FileService.create_file_from_path', factory) cli_storage_data_plane_command('storage file metadata show', 'azure.storage.file.fileservice#FileService.get_file_metadata', factory) cli_storage_data_plane_command('storage file metadata update', 'azure.storage.file.fileservice#FileService.set_file_metadata', factory) cli_storage_data_plane_command('storage file copy start', 'azure.storage.file.fileservice#FileService.copy_file', factory) cli_storage_data_plane_command('storage file copy cancel', 'azure.storage.file.fileservice#FileService.abort_copy_file', factory) cli_storage_data_plane_command('storage file upload-batch', 'azure.cli.command_modules.storage.file#storage_file_upload_batch', factory) cli_storage_data_plane_command('storage file download-batch', 'azure.cli.command_modules.storage.file#storage_file_download_batch', factory) cli_storage_data_plane_command('storage file copy start-batch', 'azure.cli.command_modules.storage.file#storage_file_copy_batch', factory) # table commands factory = table_data_service_factory cli_storage_data_plane_command('storage table generate-sas', 'azure.storage.table.tableservice#TableService.generate_table_shared_access_signature', factory) cli_storage_data_plane_command('storage table stats', 'azure.storage.table.tableservice#TableService.get_table_service_stats', factory) cli_storage_data_plane_command('storage table list', 'azure.storage.table.tableservice#TableService.list_tables', factory, transform=transform_storage_list_output) cli_storage_data_plane_command('storage table create', 'azure.storage.table.tableservice#TableService.create_table', factory, transform=create_boolean_result_output_transformer('created'), table_transformer=transform_boolean_for_table) cli_storage_data_plane_command('storage table exists', 'azure.storage.table.tableservice#TableService.exists', factory, transform=create_boolean_result_output_transformer('exists')) cli_storage_data_plane_command('storage table delete', 'azure.storage.table.tableservice#TableService.delete_table', factory, transform=create_boolean_result_output_transformer('deleted'), table_transformer=transform_boolean_for_table) cli_storage_data_plane_command('storage table policy create', 'azure.cli.command_modules.storage.custom#create_acl_policy', factory) cli_storage_data_plane_command('storage table policy delete', 'azure.cli.command_modules.storage.custom#delete_acl_policy', factory) cli_storage_data_plane_command('storage table policy show', 'azure.cli.command_modules.storage.custom#get_acl_policy', factory) cli_storage_data_plane_command('storage table policy list', 'azure.cli.command_modules.storage.custom#list_acl_policies', factory, table_transformer=transform_acl_list_output) cli_storage_data_plane_command('storage table policy update', 'azure.cli.command_modules.storage.custom#set_acl_policy', factory) # table entity commands cli_storage_data_plane_command('storage entity query', 'azure.storage.table.tableservice#TableService.query_entities', factory, table_transformer=transform_entity_query_output) cli_storage_data_plane_command('storage entity show', 'azure.storage.table.tableservice#TableService.get_entity', factory, table_transformer=transform_entity_show) cli_storage_data_plane_command('storage entity insert', 'azure.cli.command_modules.storage.custom#insert_table_entity', factory) cli_storage_data_plane_command('storage entity replace', 'azure.storage.table.tableservice#TableService.update_entity', factory) cli_storage_data_plane_command('storage entity merge', 'azure.storage.table.tableservice#TableService.merge_entity', factory) cli_storage_data_plane_command('storage entity delete', 'azure.storage.table.tableservice#TableService.delete_entity', factory, transform=create_boolean_result_output_transformer('deleted'), table_transformer=transform_boolean_for_table) # queue commands factory = queue_data_service_factory cli_storage_data_plane_command('storage queue generate-sas', 'azure.storage.queue.queueservice#QueueService.generate_queue_shared_access_signature', factory) cli_storage_data_plane_command('storage queue stats', 'azure.storage.queue.queueservice#QueueService.get_queue_service_stats', factory) cli_storage_data_plane_command('storage queue list', 'azure.storage.queue.queueservice#QueueService.list_queues', factory, transform=transform_storage_list_output) cli_storage_data_plane_command('storage queue create', 'azure.storage.queue.queueservice#QueueService.create_queue', factory, transform=create_boolean_result_output_transformer('created'), table_transformer=transform_boolean_for_table) cli_storage_data_plane_command('storage queue delete', 'azure.storage.queue.queueservice#QueueService.delete_queue', factory, transform=create_boolean_result_output_transformer('deleted'), table_transformer=transform_boolean_for_table) cli_storage_data_plane_command('storage queue metadata show', 'azure.storage.queue.queueservice#QueueService.get_queue_metadata', factory) cli_storage_data_plane_command('storage queue metadata update', 'azure.storage.queue.queueservice#QueueService.set_queue_metadata', factory) cli_storage_data_plane_command('storage queue exists', 'azure.storage.queue.queueservice#QueueService.exists', factory, transform=create_boolean_result_output_transformer('exists')) cli_storage_data_plane_command('storage queue policy create', 'azure.cli.command_modules.storage.custom#create_acl_policy', factory) cli_storage_data_plane_command('storage queue policy delete', 'azure.cli.command_modules.storage.custom#delete_acl_policy', factory) cli_storage_data_plane_command('storage queue policy show', 'azure.cli.command_modules.storage.custom#get_acl_policy', factory) cli_storage_data_plane_command('storage queue policy list', 'azure.cli.command_modules.storage.custom#list_acl_policies', factory, table_transformer=transform_acl_list_output) cli_storage_data_plane_command('storage queue policy update', 'azure.cli.command_modules.storage.custom#set_acl_policy', factory) # queue message commands cli_storage_data_plane_command('storage message put', 'azure.storage.queue.queueservice#QueueService.put_message', factory) cli_storage_data_plane_command('storage message get', 'azure.storage.queue.queueservice#QueueService.get_messages', factory, table_transformer=transform_message_show) cli_storage_data_plane_command('storage message peek', 'azure.storage.queue.queueservice#QueueService.peek_messages', factory, table_transformer=transform_message_show) cli_storage_data_plane_command('storage message delete', 'azure.storage.queue.queueservice#QueueService.delete_message', factory, transform=create_boolean_result_output_transformer('deleted'), table_transformer=transform_boolean_for_table) cli_storage_data_plane_command('storage message clear', 'azure.storage.queue.queueservice#QueueService.clear_messages', factory) cli_storage_data_plane_command('storage message update', 'azure.storage.queue.queueservice#QueueService.update_message', factory) # cors commands cli_storage_data_plane_command('storage cors list', 'azure.cli.command_modules.storage.custom#list_cors', None, transform=transform_cors_list_output) cli_storage_data_plane_command('storage cors add', 'azure.cli.command_modules.storage.custom#add_cors', None) cli_storage_data_plane_command('storage cors clear', 'azure.cli.command_modules.storage.custom#clear_cors', None) # logging commands cli_storage_data_plane_command('storage logging show', 'azure.cli.command_modules.storage.custom#get_logging', None, table_transformer=transform_logging_list_output) cli_storage_data_plane_command('storage logging update', 'azure.cli.command_modules.storage.custom#set_logging', None) # metrics commands cli_storage_data_plane_command('storage metrics show', 'azure.cli.command_modules.storage.custom#get_metrics', None, table_transformer=transform_metrics_list_output) cli_storage_data_plane_command('storage metrics update', 'azure.cli.command_modules.storage.custom#set_metrics', None)
import pickle import random import numpy as np def load_counts(dataset): fname = "{}_counts".format(dataset) with open(fname, 'rb') as f: loaded_cls_counts = pickle.load(f) return loaded_cls_counts def avg_cls_weights(dataset, num_classes): all_class_freq = load_counts(dataset) J = 40 keys = list(all_class_freq) random.shuffle(keys) averaging_weights = np.zeros((J, num_classes), dtype=np.float32) for i in range(num_classes): total_num_counts = 0 worker_class_counts = [0] * J for j in range(J): w = keys[j] if i in all_class_freq[w].keys(): total_num_counts += all_class_freq[w][i] worker_class_counts[j] = all_class_freq[w][i] else: total_num_counts += 0 worker_class_counts[j] = 0 averaging_weights[:, i] = worker_class_counts / total_num_counts return averaging_weights, all_class_freq
# This file is part of the pyMOR project (https://www.pymor.org). # Copyright 2013-2021 pyMOR developers and contributors. All rights reserved. # License: BSD 2-Clause License (https://opensource.org/licenses/BSD-2-Clause) import functools from hypothesis import strategies as hyst from hypothesis import assume, given from hypothesis.extra import numpy as hynp import numpy as np from scipy.stats._multivariate import random_correlation_gen from pymor.analyticalproblems.functions import Function, ExpressionFunction, ConstantFunction from pymor.core.config import config from pymor.parameters.base import Mu from pymor.vectorarrays.list import NumpyListVectorSpace from pymor.vectorarrays.block import BlockVectorSpace from pymor.vectorarrays.numpy import NumpyVectorSpace if config.HAVE_FENICS: import dolfin as df from pymor.bindings.fenics import FenicsVectorSpace if config.HAVE_DEALII: from pymor_dealii.pymor.vectorarray import DealIIVectorSpace if config.HAVE_DUNEGDT: from pymor.bindings.dunegdt import DuneXTVectorSpace if config.HAVE_NGSOLVE: import ngsolve as ngs import netgen.meshing as ngmsh from pymor.bindings.ngsolve import NGSolveVectorSpace # hypothesis will gladly fill all our RAM with vector arrays if it's not restricted. MAX_VECTORARRAY_LENGTH = 102 hy_lengths = hyst.integers(min_value=0, max_value=MAX_VECTORARRAY_LENGTH) # this is a legacy restriction, some tests will not work as expected when this is changed/unset MAX_ARRAY_ELEMENT_ABSVALUE = 1 hy_float_array_elements = hyst.floats(allow_nan=False, allow_infinity=False, min_value=-MAX_ARRAY_ELEMENT_ABSVALUE, max_value=MAX_ARRAY_ELEMENT_ABSVALUE) # the magnitute restriction is also a legacy one MAX_COMPLEX_MAGNITUDE = 2 hy_complex_array_elements = hyst.complex_numbers(allow_nan=False, allow_infinity=False, max_magnitude=MAX_COMPLEX_MAGNITUDE) hy_dtypes = hyst.sampled_from([np.float64, np.complex128]) @hyst.composite def _hy_dims(draw, count, compatible): dims = hyst.integers(min_value=0, max_value=34) if compatible: return draw(equal_tuples(dims, count)) dim_tuple = draw(hyst.tuples(*[dims for _ in range(count)])) for d in range(1, count): assume(dim_tuple[d] != dim_tuple[0]) return dim_tuple def nothing(*args, **kwargs): return hyst.nothing() def _np_arrays(length, dim, dtype=None): if dtype is None: return hynp.arrays(dtype=np.float64, shape=(length, dim), elements=hy_float_array_elements) | \ hynp.arrays(dtype=np.complex128, shape=(length, dim), elements=hy_complex_array_elements) if dtype is np.complex128: return hynp.arrays(dtype=dtype, shape=(length, dim), elements=hy_complex_array_elements) if dtype is np.float64: return hynp.arrays(dtype=dtype, shape=(length, dim), elements=hy_float_array_elements) raise RuntimeError(f'unsupported dtype={dtype}') def _numpy_vector_spaces(draw, np_data_list, compatible, count, dims): return [(NumpyVectorSpace(d), ar) for d, ar in zip(dims, np_data_list)] def _numpy_list_vector_spaces(draw, np_data_list, compatible, count, dims): return [(NumpyListVectorSpace(d), ar) for d, ar in zip(dims, np_data_list)] def _block_vector_spaces(draw, np_data_list, compatible, count, dims): ret = [] rr = draw(hyst.randoms()) def _block_dims(d): bd = [] while d > 1: block_size = rr.randint(1, d) bd.append(block_size) d -= block_size if d > 0: bd.append(d) return bd for c, (d, ar) in enumerate(zip(dims, np_data_list)): # only redraw after initial for (potentially) incompatible arrays if c == 0 or (not compatible and c > 0): block_dims = _block_dims(d) constituent_spaces = [NumpyVectorSpace(dim) for dim in block_dims] # TODO this needs to be relaxed again assume(len(constituent_spaces)) ret.append((BlockVectorSpace(constituent_spaces), ar)) return ret _other_vector_space_types = [] if config.HAVE_FENICS: _FENICS_spaces = {} def _fenics_vector_spaces(draw, np_data_list, compatible, count, dims): ret = [] for d, ar in zip(dims, np_data_list): assume(d > 1) if d not in _FENICS_spaces: _FENICS_spaces[d] = FenicsVectorSpace(df.FunctionSpace(df.UnitIntervalMesh(d - 1), 'Lagrange', 1)) ret.append((_FENICS_spaces[d], ar)) return ret _other_vector_space_types.append('fenics') if config.HAVE_NGSOLVE: _NGSOLVE_spaces = {} def _create_ngsolve_space(dim): if dim not in _NGSOLVE_spaces: mesh = ngmsh.Mesh(dim=1) if dim > 0: pids = [] for i in range(dim + 1): pids.append(mesh.Add(ngmsh.MeshPoint(ngmsh.Pnt(i / dim, 0, 0)))) for i in range(dim): mesh.Add(ngmsh.Element1D([pids[i], pids[i + 1]], index=1)) _NGSOLVE_spaces[dim] = NGSolveVectorSpace(ngs.L2(ngs.Mesh(mesh), order=0)) return _NGSOLVE_spaces[dim] def _ngsolve_vector_spaces(draw, np_data_list, compatible, count, dims): return [(_create_ngsolve_space(d), ar) for d, ar in zip(dims, np_data_list)] _other_vector_space_types.append('ngsolve') if config.HAVE_DEALII: def _dealii_vector_spaces(draw, np_data_list, compatible, count, dims): return [(DealIIVectorSpace(d), ar) for d, ar in zip(dims, np_data_list)] _other_vector_space_types.append('dealii') if config.HAVE_DUNEGDT: def _dunegdt_vector_spaces(draw, np_data_list, compatible, count, dims): return [(DuneXTVectorSpace(d), ar) for d, ar in zip(dims, np_data_list)] _other_vector_space_types.append('dunegdt') _picklable_vector_space_types = ['numpy', 'numpy_list', 'block'] @hyst.composite def vector_arrays(draw, space_types, count=1, dtype=None, length=None, compatible=True): dims = draw(_hy_dims(count, compatible)) dtype = dtype or draw(hy_dtypes) lngs = draw(length or hyst.tuples(*[hy_lengths for _ in range(count)])) np_data_list = [draw(_np_arrays(l, dim, dtype=dtype)) for l, dim in zip(lngs, dims)] space_type = draw(hyst.sampled_from(space_types)) space_data = globals()[f'_{space_type}_vector_spaces'](draw, np_data_list, compatible, count, dims) ret = [sp.from_numpy(d) for sp, d in space_data] assume(len(ret)) if len(ret) == 1: assert count == 1 # in test funcs where we only need one array this saves a line to access the single list # element return ret[0] assert count > 1 return ret def given_vector_arrays(which='all', count=1, dtype=None, length=None, compatible=True, index_strategy=None, **kwargs): """This decorator hides the combination details of given the decorated function will be first wrapped in a |hypothesis.given| (with expanded `given_args` and then in |pytest.mark.parametrize| with selected implementation names. The decorated test function must still draw (which a vector_arrays or similar strategy) from the `data` argument in the default case. Parameters ---------- which A list of implementation shortnames, or either of the special values "all" and "picklable". kwargs passed to `given` decorator as is, use for additional strategies count how many vector arrays to return (in a list), count=1 is special cased to just return the array dtype dtype of the foundational numpy data the vector array is constructed from length a hypothesis.strategy how many vectors to generate in each vector array compatible if count > 1, this switch toggles generation of vector_arrays with compatible `dim`, `length` and `dtype` """ @functools.wraps(given) def inner_backend_decorator(func): try: use_imps = {'all': _picklable_vector_space_types + _other_vector_space_types, 'picklable': _picklable_vector_space_types}[which] except KeyError: use_imps = which first_args = {} if index_strategy: arr_ind_strategy = index_strategy(vector_arrays( count=count, dtype=dtype, length=length, compatible=compatible, space_types=use_imps)) first_args['vectors_and_indices'] = arr_ind_strategy else: arr_strategy = vector_arrays(count=count, dtype=dtype, length=length, compatible=compatible, space_types=use_imps) if count > 1: first_args['vector_arrays'] = arr_strategy else: first_args['vector_array'] = arr_strategy return given(**first_args, **kwargs)(func) return inner_backend_decorator # TODO match st_valid_inds results to this def valid_inds(v, length=None, random_module=None): if length is None: yield [] yield slice(None) yield slice(0, len(v)) yield slice(0, 0) yield slice(-3) yield slice(0, len(v), 3) yield slice(0, len(v)//2, 2) yield list(range(-len(v), len(v))) yield list(range(int(len(v)/2))) yield list(range(len(v))) * 2 # TODO what's with the magic number here? length = 32 if len(v) > 0: for ind in [-len(v), 0, len(v) - 1]: yield ind if len(v) == length: yield slice(None) # this avoids managing random state "against" hypothesis when this function is used in a # strategy if random_module is None: np.random.seed(len(v) * length) yield list(np.random.randint(-len(v), len(v), size=length)) else: if len(v) == 0: yield slice(0, 0) yield [] @hyst.composite def valid_indices(draw, array_strategy, length=None): v = draw(array_strategy) ints = hyst.integers(min_value=-len(v), max_value=max(len(v)-1, 0)) indices = hyst.nothing() if length is None: indices = indices | hyst.just([]) | hyst.lists(ints, max_size=2*len(v)) else: indices = indices | hyst.slices(length) if len(v) > 0: inds = [-len(v), 0, len(v) - 1] if len(v) == length: inds.append(slice(None)) indices = indices | hyst.lists(ints, max_size=length) else: inds = [] if len(v) == 0: inds.append(slice(0, 0)) indices = indices | hyst.sampled_from(inds) return v, draw(indices) # TODO match st_valid_inds_of_same_length results to this def valid_inds_of_same_length(v1, v2, random_module=None): if len(v1) == len(v2): yield slice(None), slice(None) yield list(range(len(v1))), list(range(len(v1))) yield (slice(0, len(v1)),) * 2 yield (slice(0, 0),) * 2 yield (slice(-3),) * 2 yield (slice(0, len(v1), 3),) * 2 yield (slice(0, len(v1)//2, 2),) * 2 yield [], [] if len(v1) > 0 and len(v2) > 0: yield 0, 0 yield len(v1) - 1, len(v2) - 1 yield -len(v1), -len(v2) yield [0], 0 yield (list(range(min(len(v1), len(v2))//2)),) * 2 # this avoids managing random state "against" hypothesis when this function is used in a # strategy if random_module is None: np.random.seed(len(v1) * len(v2)) for count in np.linspace(0, min(len(v1), len(v2)), 3).astype(int): yield (list(np.random.randint(-len(v1), len(v1), size=count)), list(np.random.randint(-len(v2), len(v2), size=count))) yield slice(None), np.random.randint(-len(v2), len(v2), size=len(v1)) yield np.random.randint(-len(v1), len(v1), size=len(v2)), slice(None) @hyst.composite def st_valid_inds_of_same_length(draw, v1, v2): len1, len2 = len(v1), len(v2) ret = hyst.just(([], [])) # TODO we should include integer arrays here by chaining # `| hynp.integer_array_indices(shape=(LEN_X,))` if len1 == len2: ints = hyst.integers(min_value=-len1, max_value=max(len1 - 1, 0)) slicer = hyst.slices(len1) | hyst.lists(ints, max_size=len1) ret = ret | hyst.tuples(hyst.shared(slicer, key="st_valid_inds_of_same_length"), hyst.shared(slicer, key="st_valid_inds_of_same_length")) if len1 > 0 and len2 > 0: mlen = min(len1, len2) ints = hyst.integers(min_value=-mlen, max_value=max(mlen - 1, 0)) slicer = hyst.slices(mlen) | ints | hyst.lists(ints, max_size=mlen) ret = ret | hyst.tuples(hyst.shared(slicer, key="st_valid_inds_of_same_length_uneven"), hyst.shared(slicer, key="st_valid_inds_of_same_length_uneven")) return draw(ret) @hyst.composite def st_scaling_value(draw, v1, v2=None): v1 = draw(v1) ints = hyst.integers(min_value=-1, max_value=23) r1 = draw(ints | hyst.just(np.arange(len(v1)))) if v2: v2 = draw(v2) return v1, v2, r1, draw(ints | hyst.just(np.arange(len(v2)))) return v1, r1 # TODO match st_valid_inds_of_different_length results to this def valid_inds_of_different_length(v1, v2, random_module): # note this potentially yields no result at all for dual 0 length inputs if len(v1) != len(v2): yield slice(None), slice(None) yield list(range(len(v1))), list(range(len(v2))) if len(v1) > 0 and len(v2) > 0: if len(v1) > 1: yield [0, 1], 0 yield [0, 1], [0] yield [-1, 0, 1], [0] yield slice(0, -1), [] if len(v2) > 1: yield 0, [0, 1] yield [0], [0, 1] # this avoids managing random state "against" hypothesis when this function is used in a # strategy if random_module is None: np.random.seed(len(v1) * len(v2)) for count1 in np.linspace(0, len(v1), 3).astype(int): count2 = np.random.randint(0, len(v2)) if count2 == count1: count2 += 1 if count2 == len(v2): count2 -= 2 if count2 >= 0: yield (list(np.random.randint(-len(v1), len(v1), size=count1)), list(np.random.randint(-len(v2), len(v2), size=count2))) @hyst.composite def st_valid_inds_of_different_length(draw, v1, v2): def _filter(x): a, b = x a_type, b_type = type(a), type(b) if a_type != b_type: return True # tuple + scalar index if a_type == tuple: return len(a) != len(b) return False # both scalars => not of different length len1, len2 = len(v1), len(v2) # TODO we should include integer arrays here val1 = hyst.slices(len1) # | hynp.integer_array_indices(shape=(len1,)) val2 = hyst.slices(len2) # | hynp.integer_array_indices(shape=(len1,)) ret = hyst.tuples(val1, val2).filter(_filter) return draw(ret) @hyst.composite def st_valid_inds_of_same_or_different_length(draw, v1, v2): return draw(st_valid_inds_of_same_length(v1, v2) | st_valid_inds_of_different_length(v1, v2)) @hyst.composite def same_and_different_length(draw, array_strategy): v = draw(array_strategy) if isinstance(v, list): return v, draw(st_valid_inds_of_same_or_different_length(*v)) return v, draw(st_valid_inds_of_same_or_different_length(v, v)) @hyst.composite def pairs_same_length(draw, array_strategy): v = draw(array_strategy) if isinstance(v, list): return v, draw(st_valid_inds_of_same_length(*v)) return v, draw(st_valid_inds_of_same_length(v, v)) @hyst.composite def pairs_diff_length(draw, array_strategy): v = draw(array_strategy) if isinstance(v, list): ind_list = draw(st_valid_inds_of_different_length(*v)) else: ind_list = draw(st_valid_inds_of_different_length(v, v)) # the consuming tests do not work for None as index assume(len(ind_list)) return v, ind_list @hyst.composite def pairs_both_lengths(draw, array_strategy): return draw(hyst.one_of(pairs_same_length(array_strategy), pairs_diff_length(array_strategy))) @hyst.composite def invalid_indices(draw, array_strategy): length = 42 v = draw(array_strategy) assert not isinstance(v, list) invalid_inds = (None, len(v), [len(v)], -len(v) - 1, [-len(v) - 1], [0, len(v)], [-len(v) - 1] + [0, ] * (length - 1), list(range(length - 1)) + [len(v)]) return v, draw(hyst.sampled_from(invalid_inds)) @hyst.composite def base_vector_arrays(draw, count=1, dtype=None, max_dim=100): """Strategy to generate linear independent |VectorArray| inputs for test functions Parameters ---------- draw hypothesis control function object count how many bases do you want dtype dtype for the generated bases, defaults to `np.float_` max_dim size limit for the generated Returns ------- a list of |VectorArray| linear-independent objects of same dim and length """ dtype = dtype or np.float_ # simplest way currently of getting a |VectorSpace| to construct our new arrays from space_types = _picklable_vector_space_types + _other_vector_space_types space = draw(vector_arrays(count=1, dtype=dtype, length=hyst.just((1,)), compatible=True, space_types=space_types) .filter(lambda x: x[0].space.dim > 0 and x[0].space.dim < max_dim)).space length = space.dim # this lets hypothesis control np's random state too random = draw(hyst.random_module()) # scipy performs this check although technically numpy accepts a different range assume(0 <= random.seed < 2**32 - 1) random_correlation = random_correlation_gen(random.seed) def _eigs(): """Sum must equal to `length` for the scipy construct method""" min_eig, max_eig = 0.001, 1. eigs = np.asarray((max_eig-min_eig)*np.random.random(length-1) + min_eig, dtype=float) return np.append(eigs, [length - np.sum(eigs)]) if length > 1: mat = [random_correlation.rvs(_eigs(), tol=1e-12) for _ in range(count)] return [space.from_numpy(m) for m in mat] else: scalar = 4*np.random.random((1, 1))+0.1 return [space.from_numpy(scalar) for _ in range(count)] @hyst.composite def equal_tuples(draw, strategy, count): val = draw(strategy) return draw(hyst.tuples(*[hyst.just(val) for _ in range(count)])) # stick to a few representative examples to avoid only seeing degenerate cases # in the selected examples mus = hyst.dictionaries( keys=hyst.sampled_from(['t', 'foo', 'bar']), values=hyst.sampled_from([ np.array([1.]), np.array([1., 32., 3]), ExpressionFunction('x+1', 1), ExpressionFunction('[1., 0] * x + [0, 1.] * x**2', 1), ConstantFunction(np.array([1., 2, 3])) ]) ).filter(lambda mu: 't' not in mu or (not isinstance(mu['t'], Function) and len(mu['t']) == 1)).map(Mu)
######################################################################## # Author: NhaiHai Phan, Han Hu # License: Apache 2.0 # source code snippets from: Tensorflow ######################################################################## ''' Loss function of SecureSGD ''' import tensorflow as tf def lossDPSGD(logits, labels): """Add L2Loss to all the trainable variables. Add summary for "Loss" and "Loss/avg". Args: logits: Logits from inference(). labels: Labels from distorted_inputs or inputs(). 1-D tensor of shape [batch_size] Returns: Loss tensor of type float. """ # Calculate the average cross entropy loss across the batch. labels = tf.argmax(tf.cast(labels, tf.int64), 1) print(labels) cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=labels, logits=logits, name='cross_entropy_per_example') cross_entropy_mean = tf.reduce_mean(cross_entropy, name='cross_entropy') tf.add_to_collection('losses', cross_entropy_mean) # The total loss is defined as the cross entropy loss plus all of the weight # decay terms (L2 loss). return tf.add_n(tf.get_collection('losses'), name='total_loss')
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi Terraform Bridge (tfgen) Tool. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Dict, List, Mapping, Optional, Tuple, Union from .. import _utilities, _tables from . import outputs from ._inputs import * __all__ = ['Intent'] class Intent(pulumi.CustomResource): def __init__(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, action: Optional[pulumi.Input[str]] = None, default_response_platforms: Optional[pulumi.Input[List[pulumi.Input[str]]]] = None, display_name: Optional[pulumi.Input[str]] = None, events: Optional[pulumi.Input[List[pulumi.Input[str]]]] = None, input_context_names: Optional[pulumi.Input[List[pulumi.Input[str]]]] = None, is_fallback: Optional[pulumi.Input[bool]] = None, ml_disabled: Optional[pulumi.Input[bool]] = None, parent_followup_intent_name: Optional[pulumi.Input[str]] = None, priority: Optional[pulumi.Input[float]] = None, project: Optional[pulumi.Input[str]] = None, reset_contexts: Optional[pulumi.Input[bool]] = None, webhook_state: Optional[pulumi.Input[str]] = None, __props__=None, __name__=None, __opts__=None): """ Represents a Dialogflow intent. Intents convert a number of user expressions or patterns into an action. An action is an extraction of a user command or sentence semantics. To get more information about Intent, see: * [API documentation](https://cloud.google.com/dialogflow/docs/reference/rest/v2/projects.agent.intents) * How-to Guides * [Official Documentation](https://cloud.google.com/dialogflow/docs/) ## Example Usage :param str resource_name: The name of the resource. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[str] action: The name of the action associated with the intent. Note: The action name must not contain whitespaces. :param pulumi.Input[List[pulumi.Input[str]]] default_response_platforms: The list of platforms for which the first responses will be copied from the messages in PLATFORM_UNSPECIFIED (i.e. default platform). Each value may be one of `FACEBOOK`, `SLACK`, `TELEGRAM`, `KIK`, `SKYPE`, `LINE`, `VIBER`, `ACTIONS_ON_GOOGLE`, and `GOOGLE_HANGOUTS`. :param pulumi.Input[str] display_name: The name of this intent to be displayed on the console. :param pulumi.Input[List[pulumi.Input[str]]] events: The collection of event names that trigger the intent. If the collection of input contexts is not empty, all of the contexts must be present in the active user session for an event to trigger this intent. See the [events reference](https://cloud.google.com/dialogflow/docs/events-overview) for more details. :param pulumi.Input[List[pulumi.Input[str]]] input_context_names: The list of context names required for this intent to be triggered. Format: projects/<Project ID>/agent/sessions/-/contexts/<Context ID>. :param pulumi.Input[bool] is_fallback: Indicates whether this is a fallback intent. :param pulumi.Input[bool] ml_disabled: Indicates whether Machine Learning is disabled for the intent. Note: If mlDisabled setting is set to true, then this intent is not taken into account during inference in ML ONLY match mode. Also, auto-markup in the UI is turned off. :param pulumi.Input[str] parent_followup_intent_name: The unique identifier of the parent intent in the chain of followup intents. Format: projects/<Project ID>/agent/intents/<Intent ID>. :param pulumi.Input[float] priority: The priority of this intent. Higher numbers represent higher priorities. - If the supplied value is unspecified or 0, the service translates the value to 500,000, which corresponds to the Normal priority in the console. - If the supplied value is negative, the intent is ignored in runtime detect intent requests. :param pulumi.Input[str] project: The ID of the project in which the resource belongs. If it is not provided, the provider project is used. :param pulumi.Input[bool] reset_contexts: Indicates whether to delete all contexts in the current session when this intent is matched. :param pulumi.Input[str] webhook_state: Indicates whether webhooks are enabled for the intent. * WEBHOOK_STATE_ENABLED: Webhook is enabled in the agent and in the intent. * WEBHOOK_STATE_ENABLED_FOR_SLOT_FILLING: Webhook is enabled in the agent and in the intent. Also, each slot filling prompt is forwarded to the webhook. Possible values are `WEBHOOK_STATE_ENABLED` and `WEBHOOK_STATE_ENABLED_FOR_SLOT_FILLING`. """ if __name__ is not None: warnings.warn("explicit use of __name__ is deprecated", DeprecationWarning) resource_name = __name__ if __opts__ is not None: warnings.warn("explicit use of __opts__ is deprecated, use 'opts' instead", DeprecationWarning) opts = __opts__ if opts is None: opts = pulumi.ResourceOptions() if not isinstance(opts, pulumi.ResourceOptions): raise TypeError('Expected resource options to be a ResourceOptions instance') if opts.version is None: opts.version = _utilities.get_version() if opts.id is None: if __props__ is not None: raise TypeError('__props__ is only valid when passed in combination with a valid opts.id to get an existing resource') __props__ = dict() __props__['action'] = action __props__['default_response_platforms'] = default_response_platforms if display_name is None: raise TypeError("Missing required property 'display_name'") __props__['display_name'] = display_name __props__['events'] = events __props__['input_context_names'] = input_context_names __props__['is_fallback'] = is_fallback __props__['ml_disabled'] = ml_disabled __props__['parent_followup_intent_name'] = parent_followup_intent_name __props__['priority'] = priority __props__['project'] = project __props__['reset_contexts'] = reset_contexts __props__['webhook_state'] = webhook_state __props__['followup_intent_infos'] = None __props__['name'] = None __props__['root_followup_intent_name'] = None super(Intent, __self__).__init__( 'gcp:diagflow/intent:Intent', resource_name, __props__, opts) @staticmethod def get(resource_name: str, id: pulumi.Input[str], opts: Optional[pulumi.ResourceOptions] = None, action: Optional[pulumi.Input[str]] = None, default_response_platforms: Optional[pulumi.Input[List[pulumi.Input[str]]]] = None, display_name: Optional[pulumi.Input[str]] = None, events: Optional[pulumi.Input[List[pulumi.Input[str]]]] = None, followup_intent_infos: Optional[pulumi.Input[List[pulumi.Input[pulumi.InputType['IntentFollowupIntentInfoArgs']]]]] = None, input_context_names: Optional[pulumi.Input[List[pulumi.Input[str]]]] = None, is_fallback: Optional[pulumi.Input[bool]] = None, ml_disabled: Optional[pulumi.Input[bool]] = None, name: Optional[pulumi.Input[str]] = None, parent_followup_intent_name: Optional[pulumi.Input[str]] = None, priority: Optional[pulumi.Input[float]] = None, project: Optional[pulumi.Input[str]] = None, reset_contexts: Optional[pulumi.Input[bool]] = None, root_followup_intent_name: Optional[pulumi.Input[str]] = None, webhook_state: Optional[pulumi.Input[str]] = None) -> 'Intent': """ Get an existing Intent resource's state with the given name, id, and optional extra properties used to qualify the lookup. :param str resource_name: The unique name of the resulting resource. :param pulumi.Input[str] id: The unique provider ID of the resource to lookup. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[str] action: The name of the action associated with the intent. Note: The action name must not contain whitespaces. :param pulumi.Input[List[pulumi.Input[str]]] default_response_platforms: The list of platforms for which the first responses will be copied from the messages in PLATFORM_UNSPECIFIED (i.e. default platform). Each value may be one of `FACEBOOK`, `SLACK`, `TELEGRAM`, `KIK`, `SKYPE`, `LINE`, `VIBER`, `ACTIONS_ON_GOOGLE`, and `GOOGLE_HANGOUTS`. :param pulumi.Input[str] display_name: The name of this intent to be displayed on the console. :param pulumi.Input[List[pulumi.Input[str]]] events: The collection of event names that trigger the intent. If the collection of input contexts is not empty, all of the contexts must be present in the active user session for an event to trigger this intent. See the [events reference](https://cloud.google.com/dialogflow/docs/events-overview) for more details. :param pulumi.Input[List[pulumi.Input[pulumi.InputType['IntentFollowupIntentInfoArgs']]]] followup_intent_infos: Information about all followup intents that have this intent as a direct or indirect parent. We populate this field only in the output. :param pulumi.Input[List[pulumi.Input[str]]] input_context_names: The list of context names required for this intent to be triggered. Format: projects/<Project ID>/agent/sessions/-/contexts/<Context ID>. :param pulumi.Input[bool] is_fallback: Indicates whether this is a fallback intent. :param pulumi.Input[bool] ml_disabled: Indicates whether Machine Learning is disabled for the intent. Note: If mlDisabled setting is set to true, then this intent is not taken into account during inference in ML ONLY match mode. Also, auto-markup in the UI is turned off. :param pulumi.Input[str] name: The unique identifier of this intent. Format: projects/<Project ID>/agent/intents/<Intent ID>. :param pulumi.Input[str] parent_followup_intent_name: The unique identifier of the parent intent in the chain of followup intents. Format: projects/<Project ID>/agent/intents/<Intent ID>. :param pulumi.Input[float] priority: The priority of this intent. Higher numbers represent higher priorities. - If the supplied value is unspecified or 0, the service translates the value to 500,000, which corresponds to the Normal priority in the console. - If the supplied value is negative, the intent is ignored in runtime detect intent requests. :param pulumi.Input[str] project: The ID of the project in which the resource belongs. If it is not provided, the provider project is used. :param pulumi.Input[bool] reset_contexts: Indicates whether to delete all contexts in the current session when this intent is matched. :param pulumi.Input[str] root_followup_intent_name: The unique identifier of the root intent in the chain of followup intents. It identifies the correct followup intents chain for this intent. Format: projects/<Project ID>/agent/intents/<Intent ID>. :param pulumi.Input[str] webhook_state: Indicates whether webhooks are enabled for the intent. * WEBHOOK_STATE_ENABLED: Webhook is enabled in the agent and in the intent. * WEBHOOK_STATE_ENABLED_FOR_SLOT_FILLING: Webhook is enabled in the agent and in the intent. Also, each slot filling prompt is forwarded to the webhook. Possible values are `WEBHOOK_STATE_ENABLED` and `WEBHOOK_STATE_ENABLED_FOR_SLOT_FILLING`. """ opts = pulumi.ResourceOptions.merge(opts, pulumi.ResourceOptions(id=id)) __props__ = dict() __props__["action"] = action __props__["default_response_platforms"] = default_response_platforms __props__["display_name"] = display_name __props__["events"] = events __props__["followup_intent_infos"] = followup_intent_infos __props__["input_context_names"] = input_context_names __props__["is_fallback"] = is_fallback __props__["ml_disabled"] = ml_disabled __props__["name"] = name __props__["parent_followup_intent_name"] = parent_followup_intent_name __props__["priority"] = priority __props__["project"] = project __props__["reset_contexts"] = reset_contexts __props__["root_followup_intent_name"] = root_followup_intent_name __props__["webhook_state"] = webhook_state return Intent(resource_name, opts=opts, __props__=__props__) @property @pulumi.getter def action(self) -> pulumi.Output[str]: """ The name of the action associated with the intent. Note: The action name must not contain whitespaces. """ return pulumi.get(self, "action") @property @pulumi.getter(name="defaultResponsePlatforms") def default_response_platforms(self) -> pulumi.Output[Optional[List[str]]]: """ The list of platforms for which the first responses will be copied from the messages in PLATFORM_UNSPECIFIED (i.e. default platform). Each value may be one of `FACEBOOK`, `SLACK`, `TELEGRAM`, `KIK`, `SKYPE`, `LINE`, `VIBER`, `ACTIONS_ON_GOOGLE`, and `GOOGLE_HANGOUTS`. """ return pulumi.get(self, "default_response_platforms") @property @pulumi.getter(name="displayName") def display_name(self) -> pulumi.Output[str]: """ The name of this intent to be displayed on the console. """ return pulumi.get(self, "display_name") @property @pulumi.getter def events(self) -> pulumi.Output[Optional[List[str]]]: """ The collection of event names that trigger the intent. If the collection of input contexts is not empty, all of the contexts must be present in the active user session for an event to trigger this intent. See the [events reference](https://cloud.google.com/dialogflow/docs/events-overview) for more details. """ return pulumi.get(self, "events") @property @pulumi.getter(name="followupIntentInfos") def followup_intent_infos(self) -> pulumi.Output[List['outputs.IntentFollowupIntentInfo']]: """ Information about all followup intents that have this intent as a direct or indirect parent. We populate this field only in the output. """ return pulumi.get(self, "followup_intent_infos") @property @pulumi.getter(name="inputContextNames") def input_context_names(self) -> pulumi.Output[Optional[List[str]]]: """ The list of context names required for this intent to be triggered. Format: projects/<Project ID>/agent/sessions/-/contexts/<Context ID>. """ return pulumi.get(self, "input_context_names") @property @pulumi.getter(name="isFallback") def is_fallback(self) -> pulumi.Output[bool]: """ Indicates whether this is a fallback intent. """ return pulumi.get(self, "is_fallback") @property @pulumi.getter(name="mlDisabled") def ml_disabled(self) -> pulumi.Output[bool]: """ Indicates whether Machine Learning is disabled for the intent. Note: If mlDisabled setting is set to true, then this intent is not taken into account during inference in ML ONLY match mode. Also, auto-markup in the UI is turned off. """ return pulumi.get(self, "ml_disabled") @property @pulumi.getter def name(self) -> pulumi.Output[str]: """ The unique identifier of this intent. Format: projects/<Project ID>/agent/intents/<Intent ID>. """ return pulumi.get(self, "name") @property @pulumi.getter(name="parentFollowupIntentName") def parent_followup_intent_name(self) -> pulumi.Output[str]: """ The unique identifier of the parent intent in the chain of followup intents. Format: projects/<Project ID>/agent/intents/<Intent ID>. """ return pulumi.get(self, "parent_followup_intent_name") @property @pulumi.getter def priority(self) -> pulumi.Output[float]: """ The priority of this intent. Higher numbers represent higher priorities. - If the supplied value is unspecified or 0, the service translates the value to 500,000, which corresponds to the Normal priority in the console. - If the supplied value is negative, the intent is ignored in runtime detect intent requests. """ return pulumi.get(self, "priority") @property @pulumi.getter def project(self) -> pulumi.Output[str]: """ The ID of the project in which the resource belongs. If it is not provided, the provider project is used. """ return pulumi.get(self, "project") @property @pulumi.getter(name="resetContexts") def reset_contexts(self) -> pulumi.Output[bool]: """ Indicates whether to delete all contexts in the current session when this intent is matched. """ return pulumi.get(self, "reset_contexts") @property @pulumi.getter(name="rootFollowupIntentName") def root_followup_intent_name(self) -> pulumi.Output[str]: """ The unique identifier of the root intent in the chain of followup intents. It identifies the correct followup intents chain for this intent. Format: projects/<Project ID>/agent/intents/<Intent ID>. """ return pulumi.get(self, "root_followup_intent_name") @property @pulumi.getter(name="webhookState") def webhook_state(self) -> pulumi.Output[str]: """ Indicates whether webhooks are enabled for the intent. * WEBHOOK_STATE_ENABLED: Webhook is enabled in the agent and in the intent. * WEBHOOK_STATE_ENABLED_FOR_SLOT_FILLING: Webhook is enabled in the agent and in the intent. Also, each slot filling prompt is forwarded to the webhook. Possible values are `WEBHOOK_STATE_ENABLED` and `WEBHOOK_STATE_ENABLED_FOR_SLOT_FILLING`. """ return pulumi.get(self, "webhook_state") def translate_output_property(self, prop): return _tables.CAMEL_TO_SNAKE_CASE_TABLE.get(prop) or prop def translate_input_property(self, prop): return _tables.SNAKE_TO_CAMEL_CASE_TABLE.get(prop) or prop
from django.apps import AppConfig class DeviceConfig(AppConfig): name = 'backend.device' def ready(self): import backend.device.signal_handlers # noqa
#!/usr/bin/env python3 ########################################################################################## # Author: Jared L. Ostmeyer # Date Started: 2017-01-01 (This is my new year's resolution) # Purpose: Train recurrent neural network # License: For legal information see LICENSE in the home directory. ########################################################################################## ########################################################################################## # Libraries ########################################################################################## import os import numpy as np import tensorflow as tf import dataplumbing as dp ########################################################################################## # Settings ########################################################################################## # Model settings # num_features = dp.train.num_features max_steps = dp.train.max_length num_cells = 250 num_classes = dp.train.num_classes activation = tf.nn.tanh initialization_factor = 1.0 # Training parameters # num_iterations = 20000 batch_size = 100 learning_rate = 0.001 ########################################################################################## # Model ########################################################################################## # Inputs # x = tf.placeholder(tf.float32, [batch_size, max_steps, num_features]) # Features l = tf.placeholder(tf.int32, [batch_size]) # Sequence length y = tf.placeholder(tf.float32, [batch_size]) # Labels # Trainable parameters # s = tf.Variable(tf.random_normal([num_cells], stddev=np.sqrt(initialization_factor))) # Determines initial state W_g = tf.Variable( tf.random_uniform( [num_features+num_cells, num_cells], minval=-np.sqrt(6.0*initialization_factor/(num_features+2.0*num_cells)), maxval=np.sqrt(6.0*initialization_factor/(num_features+2.0*num_cells)) ) ) b_g = tf.Variable(tf.zeros([num_cells])) W_u = tf.Variable( tf.random_uniform( [num_features, num_cells], minval=-np.sqrt(6.0*initialization_factor/(num_features+num_cells)), maxval=np.sqrt(6.0*initialization_factor/(num_features+num_cells)) ) ) b_u = tf.Variable(tf.zeros([num_cells])) W_a = tf.Variable( tf.random_uniform( [num_features+num_cells, num_cells], minval=-np.sqrt(6.0*initialization_factor/(num_features+2.0*num_cells)), maxval=np.sqrt(6.0*initialization_factor/(num_features+2.0*num_cells)) ) ) W_o = tf.Variable( tf.random_uniform( [num_cells, num_classes], minval=-np.sqrt(6.0*initialization_factor/(num_cells+num_classes)), maxval=np.sqrt(6.0*initialization_factor/(num_cells+num_classes)) ) ) b_o = tf.Variable(tf.zeros([num_classes])) # Internal states # n = tf.zeros([batch_size, num_cells]) d = tf.zeros([batch_size, num_cells]) h = tf.zeros([batch_size, num_cells]) a_max = tf.fill([batch_size, num_cells], -1E38) # Start off with lowest number possible # Define model # h += activation(tf.expand_dims(s, 0)) for i in range(max_steps): x_step = x[:,i,:] xh_join = tf.concat(axis=1, values=[x_step, h]) # Combine the features and hidden state into one tensor u = tf.matmul(x_step, W_u)+b_u g = tf.matmul(xh_join, W_g)+b_g a = tf.matmul(xh_join, W_a) # The bias term when factored out of the numerator and denominator cancels and is unnecessary z = tf.multiply(u, tf.nn.tanh(g)) a_newmax = tf.maximum(a_max, a) exp_diff = tf.exp(a_max-a_newmax) exp_scaled = tf.exp(a-a_newmax) n = tf.multiply(n, exp_diff)+tf.multiply(z, exp_scaled) # Numerically stable update of numerator d = tf.multiply(d, exp_diff)+exp_scaled # Numerically stable update of denominator h_new = activation(tf.div(n, d)) a_max = a_newmax h = tf.where(tf.greater(l, i), h_new, h) # Use new hidden state only if the sequence length has not been exceeded ly = tf.matmul(h, W_o)+b_o ly_flat = tf.reshape(ly, [batch_size]) py = tf.nn.sigmoid(ly_flat) ########################################################################################## # Optimizer/Analyzer ########################################################################################## # Cost function and optimizer # cost = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=ly_flat, labels=y)) # Cross-entropy cost function optimizer = tf.train.AdamOptimizer(learning_rate).minimize(cost) # Evaluate performance # correct = tf.equal(tf.round(py), tf.round(y)) accuracy = 100.0*tf.reduce_mean(tf.cast(correct, tf.float32)) ########################################################################################## # Train ########################################################################################## # Operation to initialize session # initializer = tf.global_variables_initializer() # Open session # with tf.Session() as session: # Initialize variables # session.run(initializer) # Each training session represents one batch # for iteration in range(num_iterations): # Grab a batch of training data # xs, ls, ys = dp.train.batch(batch_size) feed = {x: xs, l: ls, y: ys} # Update parameters # out = session.run((cost, accuracy, optimizer), feed_dict=feed) print('Iteration:', iteration, 'Dataset:', 'train', 'Cost:', out[0]/np.log(2.0), 'Accuracy:', out[1]) # Periodically run model on test data # if iteration%100 == 0: # Grab a batch of test data # xs, ls, ys = dp.test.batch(batch_size) feed = {x: xs, l: ls, y: ys} # Run model # out = session.run((cost, accuracy), feed_dict=feed) print('Iteration:', iteration, 'Dataset:', 'test', 'Cost:', out[0]/np.log(2.0), 'Accuracy:', out[1]) # Save the trained model # os.makedirs('bin', exist_ok=True) saver = tf.train.Saver() saver.save(session, 'bin/train.ckpt')
import os import re import sys import numpy as np import nltk import xml.etree.ElementTree as ET from nltk.tokenize import TweetTokenizer tknzr = TweetTokenizer() from nltk.stem import PorterStemmer ps = PorterStemmer() from nltk.corpus import stopwords from collections import Counter import collections import time from time import mktime from datetime import datetime from collections import defaultdict def list_duplicates(seq): tally = defaultdict(list) for i,item in enumerate(seq): tally[item].append(i) return ((key,locs) for key,locs in tally.items() if len(locs)>1) def add_id_hours(IDs,timezone): print (IDs[0]) sumTimezone=int() for j in range(1, len(IDs), 1): sumTimezone = sumTimezone + timezone[int(IDs[j])] return sumTimezone def check_id(IDs,dataset1): print (IDs[0]) sumbags=Counter() for j in range(1, len(IDs), 1): sumbags = sumbags+dataset1[int(IDs[j])] return sumbags def depression_diagnosed(ID, risk_train): for i in range (0,len(risk_train),1): if ID==risk_train[i][0]: a=risk_train[i][1] return ID,a def total_posts(ID, Var_train): for i in range (0,len(Var_train),1): if ID==Var_train[i][0]: a=Var_train[i][1] return ID,a def convAlph2Num(sent): alphArray = list(string.ascii_lowercase) alphSet = set(alphArray) sentArray = list(sent.lower()) x = '' for u in sentArray: if u in alphSet: u = alphArray.index(u) + 1 u=str(u) x=x+u return x import time from time import mktime from datetime import datetime def getTimeCat(time1): # extract time categories xml_str = ET.tostring(time1).decode() b=xml_str[18]+xml_str[19]; b=int(b) #print (b) if (b>=0 and b<8): timecat = 1 #night elif (b>=8 and b<16): timecat = 2 #working hours elif (b>=16 and b<24): timecat = 3 #evening return timecat
#!/usr/bin/python3 import _mysql import db_config try: conn = _mysql.connect(db_config.db_host,db_config.db_user,db_config.db_password,db_config.db_name) except Exception as e: print(e) #-------------------------------------------------DROP------------------------------------------------------------ print("\n--------------------------------------DROP-payee_list---------------------------------------") query_drop_table = "DROP TABLE payee_list" try: print("Query: ",query_drop_table) conn.query(query_drop_table) print("Result: Successfully dropped table.") except Exception as e: print(e) #-------------------------------------------------CREATE------------------------------------------------------------ print("\n--------------------------------------CREATE-payee_list---------------------------------------") query_create_payee_list = '''CREATE TABLE payee_list ( id INT NOT NULL AUTO_INCREMENT, payee_name VARCHAR(45) NOT NULL, owner_account INT NOT NULL, payee_account INT NOT NULL, payee_bank VARCHAR(45) NOT NULL, payee_branch VARCHAR(45) NOT NULL, payee_ifsc_code VARCHAR(10) NOT NULL, PRIMARY KEY (id));''' try: print("Query: ",query_create_payee_list) conn.query(query_create_payee_list) print("Result: Successfully executed.") except Exception as e: print("Error occured!"); print(e) #---------------------------------------------------INSERT---------------------------------------------------------- print("\n--------------------------------------INSERT-payee_list---------------------------------------") try: sql_insert1 = "INSERT INTO payee_list(payee_name,owner_account,payee_account,payee_bank,payee_branch,payee_ifsc_code)" sql_insert1 += " VALUES('Anthony', 20001, 20002, 'PNB', 'Panjab','PNB123456')" conn.query(sql_insert1) sql_insert2 = "INSERT INTO payee_list(payee_name,owner_account,payee_account,payee_bank,payee_branch,payee_ifsc_code)" sql_insert2 += " VALUES('Chandan', 20002, 20001, 'SBI', 'Bangalore','SBI123456')" conn.query(sql_insert2) print("Result: Successfully inserted.") except Exception as e: print("Insert error!") print(e) print("\n--------------------------------------DONE---------------------------------------") conn.close()
from django.shortcuts import render from .models import Student from django.contrib.auth.decorators import login_required # Create your views here. @login_required def student_view(request, id): print(type(id)) obj = Student.objects.get(StudentID=id) context = { "object" : obj } return render(request, "student/detstu.html", context)
import json import argparse from detectron2.data.build import ( get_detection_dataset_dicts, ) def generate(args): datasets = [] for d in args.datasets.split(','): if d == '': continue datasets.append(d) dataset_dicts = get_detection_dataset_dicts(datasets) print('len of ditaset:',len(dataset_dicts)) try: with open(args.random_file,'r') as f: dic=json.load(f) except: dic={} dic[str(args.random_percent)] = {} seeds = [int(i) for i in args.random_seeds.split(',')] for i in range(10): arr = generate_supervised_seed( dataset_dicts, args.random_percent, seeds[i] ) print(len(arr)) dic[str(args.random_percent)][str(i)] = arr with open(args.random_file,'w') as f: f.write(json.dumps(dic)) def generate_supervised_seed( dataset_dicts, SupPercent, seed ): num_all = len(dataset_dicts) num_label = int(SupPercent / 100.0 * num_all) arr = range(num_all) import random random.seed(seed) return random.sample(arr,num_label) if __name__ == "__main__": parser = argparse.ArgumentParser(description='Generate random data partitions') parser.add_argument("--random-file",type=str,default='dataseed/COCO_supervision.txt') parser.add_argument("--random-percent",type=float,default=10.0) parser.add_argument("--datasets",type=str,default='coco_2017_train,') # default='voc_2007_trainval,voc_2012_trainval,' parser.add_argument("--random-seeds",type=str,default="0,1,2,3,4,5,6,7,8,9") # Need to set 10 random number seeds for experiments, divided by ',' args = parser.parse_args() generate(args)
import logging from django.conf import settings from django.utils.translation import ugettext_lazy as _ from django.views.generic import ListView, TemplateView from rdmo.core.exports import XMLResponse from rdmo.core.utils import get_model_field_meta, render_to_format from rdmo.core.views import CSRFViewMixin, ModelPermissionMixin from .models import Condition from .renderers import ConditionRenderer from .serializers.export import ConditionExportSerializer log = logging.getLogger(__name__) class ConditionsView(ModelPermissionMixin, CSRFViewMixin, TemplateView): template_name = 'conditions/conditions.html' permission_required = 'conditions.view_condition' def get_context_data(self, **kwargs): context = super(ConditionsView, self).get_context_data(**kwargs) context['export_formats'] = settings.EXPORT_FORMATS context['meta'] = { 'Condition': get_model_field_meta(Condition) } return context class ConditionsExportView(ModelPermissionMixin, ListView): model = Condition context_object_name = 'conditions' permission_required = 'conditions.view_condition' def render_to_response(self, context, **response_kwargs): format = self.kwargs.get('format') if format == 'xml': serializer = ConditionExportSerializer(context['conditions'], many=True) xml = ConditionRenderer().render(serializer.data) return XMLResponse(xml, name='conditions') else: return render_to_format(self.request, format, _('Conditions'), 'conditions/conditions_export.html', context)
from ads import Ads, Project, Service, ServiceSet, Profile, BadSelectorException
import json from matchbook.utils import check_status_code, check_call_complete class BaseEndpoint(object): def __init__(self, parent): """ :param parent: API client. """ self.client = parent def request(self, request_method, urn, method, params={}, data={}, target=None, session=None): """ :param request_method: type of request to be sent. :param urn: matchbook urn to append to url specified. :param method: Matchbook method to be used. :param params: Params to be used in request. :param data: data to be sent in request body. :param target: target to get from returned data, if none returns full response. :param session: Requests session to be used, reduces latency. """ session = session or self.client.session data['session-token'] = self.client.session_token data['user-id'] = self.client.user_id request_url = '%s%s%s' % (self.client.url, urn, method) response = session.request( request_method, request_url, params=params, data=json.dumps(data), headers=self.client.headers ) check_status_code(response) if ('per-page' in params.keys()) and target: resp_data = response.json().get(target, []) while not check_call_complete(response.json()): params['offset'] += response.json().get('total', 0) + 1 response = session.request( request_method, request_url, params=params, data=json.dumps(data), headers=self.client.headers ) resp_data += response.json().get(target, []) return resp_data else: return response @staticmethod def process_response(response_json, resource, date_time_sent, date_time_received=None): """ :param response_json: Response in json format :param resource: Resource data structure :param date_time_sent: Date time sent :param date_time_received: Date time received response from request """ if isinstance(response_json, list): return [ resource(date_time_sent=date_time_sent, TIMESTAMP=date_time_received.strftime('%Y-%m-%d %H:%M:%S.%f'), **x).json() for x in response_json] else: response_result = response_json.get('result', response_json) if isinstance(response_result, list): return [resource(date_time_sent=date_time_sent, TIMESTAMP=date_time_received.strftime('%Y-%m-%d %H:%M:%S.%f'), **x).json() for x in response_result] else: return resource(date_time_sent=date_time_sent, TIMESTAMP=date_time_received.strftime('%Y-%m-%d %H:%M:%S.%f'), **response_result).json()
import numpy as np import open3d as o3d from .line_mesh import LineMesh from polylidar.polylidarutil import COLOR_PALETTE from polylidar import MatrixDouble, MatrixInt, create_tri_mesh_copy EXTRINSICS = None MAX_POLYS = 10 ORANGE = (255 / 255, 188 / 255, 0) GREEN = (0, 255 / 255, 0) def open_3d_mesh_to_trimesh(mesh: o3d.geometry.TriangleMesh): triangles = np.asarray(mesh.triangles) vertices = np.asarray(mesh.vertices) triangles = np.ascontiguousarray(triangles) vertices_mat = MatrixDouble(vertices) triangles_mat = MatrixInt(triangles) triangles_mat_np = np.asarray(triangles_mat) tri_mesh = create_tri_mesh_copy(vertices_mat, triangles_mat) return tri_mesh def create_open_3d_mesh_from_tri_mesh(tri_mesh): """Create an Open3D Mesh given a Polylidar TriMesh""" triangles = np.asarray(tri_mesh.triangles) vertices = np.asarray(tri_mesh.vertices) triangle_normals = np.asarray(tri_mesh.triangle_normals) return create_open_3d_mesh(triangles, vertices, triangle_normals, counter_clock_wise=tri_mesh.counter_clock_wise) def create_open_3d_mesh(triangles, points, triangle_normals=None, color=COLOR_PALETTE[0], counter_clock_wise=True): """Create an Open3D Mesh given triangles vertices Arguments: triangles {ndarray} -- Triangles array points {ndarray} -- Points array Keyword Arguments: color {list} -- RGB COlor (default: {[1, 0, 0]}) Returns: mesh -- Open3D Mesh """ mesh_o3d = o3d.geometry.TriangleMesh() if points.ndim == 1: points = points.reshape((int(points.shape[0] / 3), 3)) if triangles.ndim == 1: triangles = triangles.reshape((int(triangles.shape[0] / 3), 3)) # Open 3D expects triangles to be counter clockwise if not counter_clock_wise: triangles = np.ascontiguousarray(np.flip(triangles, 1)) mesh_o3d.triangles = o3d.utility.Vector3iVector(triangles) mask = np.isnan(points).any(axis=1) # I think that we need this with open3d 0.10.0 points[mask, :] = [0,0,0] mesh_o3d.vertices = o3d.utility.Vector3dVector(points) if triangle_normals is None: mesh_o3d.compute_vertex_normals() mesh_o3d.compute_triangle_normals() elif triangle_normals.ndim == 1: triangle_normals_ = triangle_normals.reshape((int(triangle_normals.shape[0] / 3), 3)) mesh_o3d.triangle_normals = o3d.utility.Vector3dVector(triangle_normals_) else: mesh_o3d.triangle_normals = o3d.utility.Vector3dVector(triangle_normals) mesh_o3d.paint_uniform_color(color) mesh_o3d.compute_vertex_normals() return mesh_o3d def flatten(l): return [item for sublist in l for item in sublist] def update_points(pcd, pc): pcd.points = o3d.utility.Vector3dVector(pc) def set_line(line_set, points, lines, colors): line_set.points = o3d.utility.Vector3dVector(points) line_set.lines = o3d.utility.Vector2iVector(lines) line_set.colors = o3d.utility.Vector3dVector(colors) def construct_grid(size=10, n=10, color=[0.5, 0.5, 0.5], plane='xy', plane_offset=-1, translate=[0, 0, 0]): grid_ls = o3d.geometry.LineSet() my_grid = make_grid(size=size, n=n, color=color, plane=plane, plane_offset=plane_offset, translate=translate) set_line(grid_ls, *my_grid) return grid_ls def make_grid(size=10, n=10, color=[0.5, 0.5, 0.5], plane='xy', plane_offset=-1, translate=[0, 0, 0]): """draw a grid as a line set""" # lineset = o3d.geometry.LineSet() s = size / float(n) s2 = 0.5 * size points = [] for i in range(0, n + 1): x = -s2 + i * s points.append([x, -s2, plane_offset]) points.append([x, s2, plane_offset]) for i in range(0, n + 1): z = -s2 + i * s points.append([-s2, z, plane_offset]) points.append([s2, z, plane_offset]) points = np.array(points) if plane == 'xz': points[:, [2, 1]] = points[:, [1, 2]] points = points + translate n_points = points.shape[0] lines = [[i, i + 1] for i in range(0, n_points - 1, 2)] colors = [list(color)] * (n_points - 1) return points, lines, colors def clear_polys(all_polys, vis): for line_mesh in all_polys: line_mesh.remove_line(vis) return [] def handle_shapes(vis, planes, obstacles, all_polys, line_radius=0.15): all_polys = clear_polys(all_polys, vis) for plane, _ in planes: points = np.array(plane.exterior) line_mesh = LineMesh(points, colors=GREEN, radius=line_radius) line_mesh.add_line(vis) all_polys.append(line_mesh) for plane, _ in obstacles: points = np.array(plane.exterior) line_mesh = LineMesh(points, colors=ORANGE, radius=line_radius) line_mesh.add_line(vis) all_polys.append(line_mesh) return all_polys def create_lines(planes, obstacles, line_radius=0.15, rotate_func=None): all_polys = [] for plane, _ in planes: points = np.array(plane.exterior) if rotate_func: points = rotate_func(points) line_mesh = LineMesh(points, colors=GREEN, radius=line_radius) all_polys.append(line_mesh) for plane, _ in obstacles: points = np.array(plane.exterior) if rotate_func: points = rotate_func(points) line_mesh = LineMesh(points, colors=ORANGE, radius=line_radius) all_polys.append(line_mesh) return all_polys def get_extrinsics(vis): ctr = vis.get_view_control() camera_params = ctr.convert_to_pinhole_camera_parameters() return camera_params.extrinsic def set_initial_view(vis, extrinsics=[EXTRINSICS]): ctr = vis.get_view_control() camera_params = ctr.convert_to_pinhole_camera_parameters() camera_params.extrinsic = extrinsics ctr.convert_from_pinhole_camera_parameters(camera_params)
import csv import os import sys def make_rename_dict(rewrite_path): rename_mapping = {} for line in open(rewrite_path, encoding='utf-16'): try: k, v = line.split(" was replaced by ") rename_mapping[k[5:]] = v.strip() except ValueError: continue print('{} roles renamed'.format(len(rename_mapping))) return rename_mapping def update_roles(role_path, rename_dict, new_path=None): if not new_path: new_path = role_path updated = 0 tmp = 'roles.tmp' reader = csv.DictReader(open(role_path), dialect='excel-tab') writer = csv.DictWriter(open(tmp, 'w'), reader.fieldnames, dialect='excel-tab') writer.writeheader() for row in reader: if row['name'] in rename_dict: updated += 1 if row['aliases'] == 'null': row['aliases'] = rename_dict[row['name']] else: row['aliases'] += ";" + rename_dict[row['name']] writer.writerow(row) print("{} role aliases updated".format(updated)) os.rename(tmp, new_path) if __name__ == "__main__": roles_path = os.path.dirname(sys.argv[0])+"/../../Annotations/Roles.tsv" role_rewrite_path = sys.argv[1] rename_dict = make_rename_dict(role_rewrite_path) update_roles(roles_path, rename_dict)
""" This script wraps the execution of console program so that a prompt appear after the end of the console program (so that the console does not close as soon as the user program finished). Usage: heconsole program [options] Example: $ heconsole python /path/to/a/script.py --spam eggs $ ... $ The process terminated with exit code 0. $ Press a key to close this window... $ """ import sys import subprocess def main(): """ heconsole main entrypoint """ ret = 0 if '--help' in sys.argv or '-h' in sys.argv or len(sys.argv) == 1: print(__doc__) else: program = sys.argv[1] args = sys.argv[2:] try: if args: ret = subprocess.call([program] + args) else: ret = subprocess.call([program]) except (OSError, subprocess.CalledProcessError) as e: print('failed to start process: program = %r, args = %r. ' 'Error=%s' % (program, args, str(e))) print('\nProcess terminated with exit code %d' % ret) prompt = 'Press ENTER to close this window...' input(prompt) sys.exit(ret) if __name__ == '__main__': main()
import pytz import dateutil.relativedelta as relativedelta import dateutil.rrule as rrule from datetime import datetime, timedelta from django.utils import timezone from django.utils.text import slugify from django.core.management.base import BaseCommand from events.models import Event, Location class Command(BaseCommand): help = 'Create all PYATL events for a calndar year.' TWITCH_LOCATION_NAME = 'PyATL Official Twitch Channel' TWITCH_LOCATION_DESCRIPTION_HTML = '''<p> The event will be live streamed through the official <a href="https://twitch.com/pyatl">PyATL Twitch Channel</a>. </p> ''' DISCORD_LOCATION_NAME = 'PyATL Official Discord' DISCORD_LOCATION_DESCRIPTION_HTML = '''<p> The event will be live on our Jam Session Discord channel. Join us at the <a href="https://discord.gg/5UBnR3P">PyATL Discord here.</a> </p> ''' TWITCH_EVENT_NAME_CODING_LIVE_STREAM = 'Live coding stream on PyATL\'s official Twitch channel' TWITCH_EVENT_SHORT_DESCRIPTION = 'Twitch streaming session on the official PyATL Twitch channell.' TWITCH_EVENT_DESCRIPTION_HTML = ''' <p> Coding live streams about Python and related technologies. You can also watch the event after it is finished by visiting our official Twitch PyATL channel. </p> <p> The event will be live streamed through the official <a href="https://twitch.com/pyatl">PyATL Twitch Channel</a>. </p> <p> <iframe src="https://player.twitch.tv/?channel=pyatl&parent=pyatl.dev" height="360" width="640" frameborder="0" scrolling="no" allowfullscreen="true"> </iframe> </p> ''' JAM_SESSION_EVENT_NAME = 'PyATL Jam Session' JAM_SESSION_EVENT_SHORT_DESCRIPTION = 'Jam Session meetings are intended to be hands-on, collaborative experiences with your fellow PyATL members.' JAM_SESSION_EVENT_DESCRIPTION_HTML = ''' <p> Note: all Jam Sessions will be held online on our <a href="https://discord.gg/5UBnR3P">Discord instance</a> until further notice. We hope that will be able to meet all of you face to face later! The event will be hosted on the PyATL Discord channel; the link will be displayed after you RSVP. <p> <p> What is a Jam Session? https://github.com/pyatl/jam-sessions/wiki </p> <p> Jam Session meetings are intended to be hands-on, collaborative experiences with your fellow PyATL members. Programmers of all experience levels are welcome! We will be meeting from 7pm to 10pm to work together on a coding challenge or on any project you want. We recommend bringing a laptop with you, optionally with Python installed (but the coding challenge does not require it). </p> <p> Each month we provide a coding puzzle or exercise that is designed to be accessible to novices to Python, but that also provide additional challenges for more advanced users. We use the online platform at https://www.cyber-dojo.org/ to run the challenge and share our solutions with each other. </p> <p> The Jam session is also a safe space to work and ask for help on any Python project. Bring your own hobby projects, a work project, your new startup idea - whatever you like. Or come along and see others are working on, and sit down with them! The organizers will be there a bit early to help introduce people, organize, and make sure everyone is comfortable. </p>''' MEETUP_EVENT_NAME = 'Python Atlanta Meetup' MEETUP_EVENT_SHORT_DESCRIPTION = 'Python Atlanta Meetup Monthly Event' MEETUP_EVENT_DESCRIPTION_HTML = ''' <p>All in-person events are on hold until further notice.</p> <p>We will be holding events live on our Twitch channel.</p> <p> <iframe src="https://player.twitch.tv/?channel=pyatl&parent=pyatl.dev" height="360" width="640" frameborder="0" scrolling="no" allowfullscreen="true"> </iframe> </p> <p>The meeting starts at 7:30PM in the North Avenue room. Some of us get together before the meeting between 6:00 and 6:30 to have dinner and talk.</p> <p>Excellent Talks Scheduled: To be announced</p> ''' def create_event(self, name, short_description, description, start, end, location): event, created = Event.objects.get_or_create( name=name, slug=slugify(name), short_description=short_description, description=description, start=start, end=end, published=True, location=location) return event def handle(self, *args, **options): # get the current year # starting date - now when the script is run # end date - last day of the year # rules = every tuesday and friday. Every 1st and 2nd thursday # for each of the rules, we need to create a specific event. now = timezone.now() start_date = datetime(now.year, 1, 1, 19, 0, 0).replace(tzinfo=pytz.utc) end_date = datetime(now.year, 12, 31, 19, 0, 0).replace(tzinfo=pytz.utc) # location for twitch related events twitch_location = Location.objects.create( name=self.TWITCH_LOCATION_NAME, slug=slugify(self.TWITCH_LOCATION_NAME), description=self.TWITCH_LOCATION_DESCRIPTION_HTML,) discord_location = Location.objects.create( name=self.DISCORD_LOCATION_NAME, slug=slugify(self.DISCORD_LOCATION_NAME), description=self.DISCORD_LOCATION_DESCRIPTION_HTML,) tuesdays = rrule.rrule( rrule.WEEKLY, byweekday=relativedelta.TU, dtstart=start_date) fridays = rrule.rrule( rrule.WEEKLY, byweekday=relativedelta.FR, dtstart=start_date) thursdays = rrule.rrule( rrule.WEEKLY, byweekday=relativedelta.TH, dtstart=start_date) tuesdays_days = tuesdays.between( start_date, end_date, inc=True) fridays_days = fridays.between( start_date, end_date, inc=True) thursdays_days = thursdays.between( start_date, end_date, inc=True) # first get the first and second thursdays of the month first_and_second_thursdays = [] for thursday in thursdays_days: if thursday.day <= 14: first_and_second_thursdays.append(thursday) # then get the first thirsdays first_thursdays = [] for thursday in first_and_second_thursdays: if thursday.day <= 7: first_thursdays.append(thursday) # remove the first thursday so we only endup # with second thursdays on this list first_and_second_thursdays.remove(thursday) # reassign for redability second_thursdays = first_and_second_thursdays # streaming on tuesdays for day in tuesdays_days: self.create_event( self.TWITCH_EVENT_NAME_CODING_LIVE_STREAM, self.TWITCH_EVENT_SHORT_DESCRIPTION, self.TWITCH_EVENT_DESCRIPTION_HTML, day, day + timedelta(hours=2), twitch_location) # streaming on fridays for day in fridays_days: self.create_event( self.TWITCH_EVENT_NAME_CODING_LIVE_STREAM, self.TWITCH_EVENT_SHORT_DESCRIPTION, self.TWITCH_EVENT_DESCRIPTION_HTML, day, day + timedelta(hours=2), twitch_location) # jam session for day in first_thursdays: self.create_event( self.JAM_SESSION_EVENT_NAME, self.JAM_SESSION_EVENT_SHORT_DESCRIPTION, self.JAM_SESSION_EVENT_DESCRIPTION_HTML, day, day + timedelta(hours=2), discord_location) # meetup for day in second_thursdays: self.create_event( self.MEETUP_EVENT_NAME, self.MEETUP_EVENT_SHORT_DESCRIPTION, self.MEETUP_EVENT_DESCRIPTION_HTML, day, day + timedelta(hours=2), discord_location) self.stdout.write(self.style.SUCCESS('Events Created'))
""" Return the min/max of the input list of arrays """ from typing import List import numpy def minmax(*xs): # type: (List) -> List """Return the min/max of the input list of arrays Example: minmax(X) returns [min(X), max(X)] minmax(X, Y) returns [[min(X), max(X)], [min(Y), max(Y)]] Args: xs (list): variable number of inputs Returns: a list of min/max values """ def tail(xs): return xs[1:] def aux(xs, accum): if len(xs) == 0: if len(accum) == 1: return accum[0] else: return accum else: return aux( tail(xs), accum + [[numpy.amin(xs[0]), numpy.amax(xs[0])]]) return aux(xs, [])
"""Push Repository Layer""" import multiprocessing import base64 from PiCN.Layers.ICNLayer.ContentStore import BaseContentStore from PiCN.Packets import Packet, Interest, Nack, NackReason, Content from PiCN.Processes import LayerProcess from PiCN.Layers.NFNLayer.Parser import DefaultNFNParser from PiCN.Layers.NFNLayer.Parser.AST import * def is_publish_expression(ast) -> bool: if ast.type == AST_FuncCall: return ast._element == "/remote/publish" and len(ast.params) == 2 and isinstance(ast.params[0], AST_Name) \ and isinstance(ast.params[1], AST_String) return False class PushRepositoryLayer(LayerProcess): """Push Repository Layer""" def __init__(self, cs: BaseContentStore = None, log_level=255): super().__init__(logger_name="PushRepoLyr", log_level=log_level) self.cs = cs def data_from_higher(self, to_lower: multiprocessing.Queue, to_higher: multiprocessing.Queue, data): pass # this is already the highest layer def data_from_lower(self, to_lower: multiprocessing.Queue, to_higher: multiprocessing.Queue, data): if len(data) != 2: self.logger.warning("PushRepo Layer expects to receive [face_id, Interest] from lower layer") return if type(data[0]) != int: self.logger.warning("PushRepo Layer expects to receive [face_id, Interest] from lower layer") return if not isinstance(data[1], Packet): self.logger.warning("PushRepo Layer expects to receive [face_id, Interest] from lower layer. Drop.") return face_id = data[0] interest = data[1] self.handle_interest_from_lower(face_id, interest, to_lower) def handle_interest_from_lower(self, face_id: int, interest: Interest, to_lower: multiprocessing.Queue): self.logger.info("Incoming interest: " + interest.name.to_string()) # incoming interest is nfn expression if interest.name.string_components[-1] == "NFN": try: parser = DefaultNFNParser() nfn_str, prepended_name = parser.network_name_to_nfn_str(interest.name) ast = parser.parse(nfn_str) # assert that valid publish expression if is_publish_expression(ast): # store to database data_name = ast.params[0]._element payload = ast.params[1]._element try: payload = base64.b64decode(payload[7:]) self.logger.info("Payload is base64 encoded. Decoded.") except: self.logger.info("Invalid publish expression. The payload could not be decoded.") nack = Nack(interest.name, reason=NackReason.COMP_NOT_PARSED, interest=interest) self.queue_to_lower.put([face_id, nack]) self.cs.add_content_object(Content(data_name, payload)) self.logger.info("Add to database: " + data_name) # reply confirmation confirmation = Content(interest.name, "ok") to_lower.put([face_id, confirmation]) else: self.logger.info("Invalid publish expression. Wrong format.") nack = Nack(interest.name, reason=NackReason.COMP_NOT_PARSED, interest=interest) self.queue_to_lower.put([face_id, nack]) except: self.logger.info("Invalid publish expression.") nack = Nack(interest.name, reason=NackReason.COMP_NOT_PARSED, interest=interest) self.queue_to_lower.put([face_id, nack]) # incoming interest is data request else: db_entry = self.cs.find_content_object(interest.name) if db_entry is not None: self.logger.info("Found in database") to_lower.put([face_id, db_entry.content]) return else: self.logger.info("Not found in database") nack = Nack(interest.name, NackReason.NO_CONTENT, interest) to_lower.put([face_id, nack]) return
'''App.py - front end using dash bootstrap components July 2, 2020 Peter Koppelman''' import sqlite3 import dash as dash import dash_bootstrap_components as dbc import dash_core_components as dcc import dash_html_components as html from dash.dependencies import Input, Output import pandas as pd import sys from apps import layout, callbacks, reference app = dash.Dash(__name__, external_stylesheets=[dbc.themes.BOOTSTRAP], \ suppress_callback_exceptions=True) # the style arguments for the sidebar. We use position:fixed and a fixed width SIDEBAR_STYLE = { "position": "fixed", "top": 0, "left": 0, "bottom": 0, "width": "18rem", "padding": "2rem 1rem", "background-color": "#f8f9fa", } # the styles for the main content position it to the right of the sidebar and # add some padding. CONTENT_STYLE = { "margin-left": "18rem", "margin-right": "2rem", "padding": "2rem 1rem", } TEXT_ALIGN_CENTER = { 'text-align': 'center' } HEADER_STYLE = { 'justify-content': 'center', 'display': 'block', 'text-align': 'center', 'align-items': 'center', 'margin-left': '18rem', 'background': 'rgb(0,191,255,.6)' } sidebar = html.Div([ html.Div([ html.H4("Robo Investing Tool", className="display-5"), html.Hr(), dbc.Nav([ dbc.NavLink("Welcome", href="/page-1", id="page-1-link"), dbc.NavLink("Login", href="/page-2", id="page-2-link"), dbc.NavLink("Open an account", href="/page-3", id="page-3-link"), dbc.NavLink("Create a sample portfolio", href="/page-4", id="page-4-link"), dbc.NavLink("Contact Us", href="/page-5", id="page-5-link"), dbc.NavLink("FAQ", href="/page-6", id="page-6-link"), dbc.NavLink('-------------------------------'), dbc.NavLink("Employee Transaction", href="/page-7", id="page-7-link"), ], vertical=True, pills=True), ], style=SIDEBAR_STYLE, ), html.Div([ html.H2('The Shore-Koppelman Group'), html.H3('Robo-Investing Tool'), ], style = HEADER_STYLE ), ] ) content = html.Div(id="page-content", style=CONTENT_STYLE) column_names = [] df_portfolio = pd.DataFrame(columns = column_names) callbacks.sample_portfolio(app, df_portfolio) # record = pd.DataFrame(columns = column_names) callbacks.login(app) callbacks.open_account(app) callbacks.contact_layout(app) try: connect = sqlite3.connect(reference.database) cursor = connect.cursor() except sqlite3.OperationalError: print('There was a problem opening up the roboinvest database') sys.exit('There was a problem opening up the roboinvest database') ### get info for dropdowns used in journal_data_entry # Customer name and customer id cursor.execute( \ 'SELECT \ CASE \ when Middle_initial is Null \ then First_name || " " || Last_name \ else First_name || " " || Middle_initial || " " || Last_name \ END name, \ Cust_Id \ FROM \ Customer_Master') cust = cursor.fetchall() cust_info = [] for i in enumerate(cust): my_dict = dict() my_dict['label'] = i[1][0] my_dict['value'] = i[1][1] cust_info.append(my_dict) ## Employee last name and id number cursor.execute( \ 'SELECT \ Last_name, \ ee_id \ FROM \ Employee_Master') ee = cursor.fetchall() ee_info = [] for i in enumerate(ee): my_dict = dict() my_dict['label'] = i[1][0] my_dict['value'] = i[1][1] ee_info.append(my_dict) # get valid account numbers for each customer cursor.execute( \ 'SELECT \ customer_master.cust_id, \ account_master.account_number \ FROM \ customer_master \ Inner Join account_master On account_master.cust_id = Customer_Master.cust_id') acct = cursor.fetchall() acct_info = [] for i in enumerate(acct): my_dict = dict() my_dict['label'] = i[1][0] my_dict['value'] = i[1][1] acct_info.append(my_dict) # Close the cursor. Send date to journal_data_entry callback and screen. cursor.close() callbacks.journal_data_entry(app, cust_info, ee_info, acct_info) content = html.Div(id="page-content", style=CONTENT_STYLE) app.layout = html.Div([ dcc.Location(id="url", refresh = False), sidebar, content ]) # this callback uses the current pathname to set the active state of the # corresponding nav link to true, allowing users to tell see page they are on @app.callback( [Output(f"page-{i}-link", "active") for i in range(1, 8)], [Input("url", "pathname")]) def toggle_active_links(pathname): '''Treat page 1 as the homepage / index''' if pathname == "/": return True, False, False, False, False, False, False return [pathname == f"/page-{i}" for i in range(1, 8)] @app.callback(Output("page-content", "children"), [Input("url", "pathname")]) def render_page_content(pathname): '''call layouts from sidebar''' if pathname in ['/', '/page-1']: return layout.welcome() elif pathname == "/page-2": return layout.login() elif pathname == "/page-3": return layout.open_account() elif pathname == "/page-4": return layout.sample_portfolio_layout(app, df_portfolio) # return layout.sample_portfolio_layout() elif pathname == "/page-5": return layout.contact_layout() elif pathname == '/page-6': return layout.faq() elif pathname == '/page-7': # return layout.journal_data_entry(app, cust_info, ee_info, acct_info) return layout.journal_data_entry(cust_info, ee_info, acct_info) else: return dbc.Jumbotron([ html.H1("404: Not found", className="text-danger"), html.Hr(), html.P(f"The pathname {pathname} was not recognized...")] ) if __name__ == "__main__": app.run_server(debug=True)
import pygame import requests import openpyxl book = openpyxl.load_workbook('Canteen-Copy.xlsx', data_only=True) # get data from excel file from mergesort import * from html.parser import HTMLParser #get data from each sheet worksheet_A = book.get_sheet_by_name('Canteen_A') worksheet_B = book.get_sheet_by_name('Canteen_B') worksheet_1 = book.get_sheet_by_name('Canteen_1') worksheet_2 = book.get_sheet_by_name('Canteen_2') worksheet_4 = book.get_sheet_by_name('Canteen_4') worksheet_9 = book.get_sheet_by_name('Canteen_9') worksheet_11 = book.get_sheet_by_name('Canteen_11') worksheet_13 = book.get_sheet_by_name('Canteen_13') worksheet_14 = book.get_sheet_by_name('Canteen_14') worksheet_16 = book.get_sheet_by_name('Canteen_16') worksheet_NIE = book.get_sheet_by_name('Canteen_NIE') worksheet_NorthHill = book.get_sheet_by_name('Canteen_NorthHill') class Canteen(): def __init__(self,name, location_on_map, real_location, seat_capacity, time_open, phone): self.name = name self.stalls = [] # list of Stall objects self.location_on_map = location_on_map self.real_location = real_location self.seat_capacity = seat_capacity self.time_open = time_open self.phone = phone type_stall_name = ['Others', 'Western Cuisine', 'Mixed Rice', 'Indian Cuisine','Beverages & Desserts',\ 'Chinese Cuisine', 'Vegetarian Food', 'Mala'] class Stall(): def __init__(self, name, type_stall): self.name = name self.menu = [] self.type_stall = type_stall Canteen_A = Canteen("Canteen_A", (1.347016,103.680244),"North Spine Plaza, 76 Nanyang Drive", 1838, "7am-3pm", 64658588) Canteen_B = Canteen("Canteen_B", (1.342447,103.682390)," South Spine, 50 Nanyang Avenue", 1050,"7am-3pm", 67900355) Canteen_1 = Canteen("Canteen_1", (1.346571,103.686025),"Hall 1, 21 NanyangCircle", 310, "7am-9pm", 63343033) Canteen_2 = Canteen("Canteen_2", (1.348347,103.685456), "Hall 2, 35 Students Walk", 446, "7am-9pm", 63343033) Canteen_4 = Canteen("Canteen_4", (1.344263,103.685321), "10 Nanyang Drive NTU Hall 4", 303, "7am-9pm", 68998600) Canteen_9 = Canteen("Canteen_9", (1.352256,103.685257), "Hall 9, 50 Nanyang Avenue", 293,"7am-9pm",96923456) Canteen_11 = Canteen("Canteen_11", (1.354904,103.686476), "Hall 11, 21 Nanyang Avenue", 210,"7am-9pm", 97866726) Canteen_13 = Canteen("Canteen_13", (1.351716,103.681076), "Hall 13, 32 Nanyang Cresent", 210,"7am-9pm", 98510908) Canteen_14 = Canteen("Canteen_14", (1.352718,103.682166), "Hall 14, 34 Nanyang Cresent", 270, "7am-9pm", 81127239) Canteen_16 = Canteen("Canteen_16", (1.350296,103.680923), "Hall 16, 50 Nanyang Walk", 304, "7am-9pm",94505893) Canteen_NIE = Canteen("Canteen_NIE", (1.348749,103.677622),"1 Nanyang Walk", 405, "7am-9pm", 67903888) Canteen_NorthHill = Canteen("Canteen_NorthHill", (1.354422,103.688176), "NorthHill, 60 Nanyang Cresent", 440,"7am-9pm", 85080232) list_worksheet = [worksheet_1, worksheet_11, worksheet_13, worksheet_14, worksheet_16, worksheet_2, worksheet_4,\ worksheet_9, worksheet_A, worksheet_B, worksheet_NIE, worksheet_NorthHill] list_Canteen = [Canteen_1, Canteen_11, Canteen_13, Canteen_14, Canteen_16, Canteen_2, Canteen_4,\ Canteen_9, Canteen_A, Canteen_B, Canteen_NIE, Canteen_NorthHill] for k in range(len(list_Canteen)): row = row_stall = 3 try: while True: name_stall = list_worksheet[k].cell(row = row_stall, column = 3).value type_stall = list_worksheet[k].cell(row = row_stall, column = 2).value if name_stall != None: list_Canteen[k].stalls.append(Stall(name_stall, type_stall)) row_stall += 1 if row_stall == list_worksheet[k].max_row: break except IndexError: pass for i in list_Canteen[k].stalls: try: menu = [] while list_worksheet[k].cell(row = row, column = 4).value != None: menu.append((list_worksheet[k].cell(row =row, column = 4).value, list_worksheet[k].cell(row = row,column = 5).value, list_worksheet[k].cell(row = row, column = 8).value)) row += 1 i.menu = menu row += 1 if list_worksheet[k].max_row == row: break except IndexError: pass def reload_data(canteen_name, stall_name): global list_worksheet, list_Canteen book = openpyxl.load_workbook('Canteen-Copy.xlsx', data_only=True) for i in range(len(list_worksheet)): if list_worksheet[i].title == canteen_name: list_worksheet[i] = book.get_sheet_by_name(str(canteen_name)) row = 3 for k in list_Canteen[i].stalls: if k.name == stall_name: try: menu = [] while list_worksheet[i].cell(row = row, column = 3).value != stall_name: row += 1 while list_worksheet[i].cell(row = row, column = 4).value != None: menu.append((list_worksheet[i].cell(row =row, column = 4).value, list_worksheet[i].cell(row = row,column = 5).value, list_worksheet[i].cell(row = row, column = 8).value)) row += 1 k.menu = menu row += 1 except Exception: pass break break '''for i in range(len(list_Canteen)): #use bubblesort to sort the canteen by name swap = 0 for k in range(len(list_Canteen)-1-i): if list_Canteen[k].name > list_Canteen[k+1].name: list_Canteen[k] ,list_Canteen[k+1] = list_Canteen[k+1], list_Canteen[k] list_worksheet[k], list_worksheet[k+1] = list_worksheet[k+1], list_worksheet[k] swap =1 if swap == 0: break''' for i in list_Canteen: #use bubblesort to sort the foodstalls by name for k in range(len(i.stalls)): swap = 0 for j in range(len(i.stalls) - 1 - k): if i.stalls[j].name > i.stalls[j+1].name: i.stalls[j] ,i.stalls[j+1] = i.stalls[j+1], i.stalls[j] swap = 1 if swap == 0: break for i in list_Canteen: # use bubble sort to sort the dish in foodstall by name for k in i.stalls: for j in range(len(k.menu)): swap = 0 for t in range(len(k.menu) - 1 - j): if k.menu[t][0] > k.menu[t+1][0]: k.menu[t] ,k.menu[t+1] = k.menu[t+1], k.menu[t] swap = 1 if swap == 0: break def search_food_by_name(food_name, price_sort, rank_sort): #find the food by searching name global list_Canteen information = [] for i in list_Canteen: for k in i.stalls: for j in k.menu: if j[0] == food_name: information.append((i,k.name, j[1], j[2])) # i.name is name of canteen, k.name is name of stall, j[1] is price of food, j[2] is rank of food if price_sort == 1: for i in range(len(information) - 1): swap = 0 for k in range(len(information)-1-i): if information[k][2] > information[k+1][2]: information[k], information[k+1] = information[k+1], information[k] swap =1 elif rank_sort == 1: for i in range(len(information) - 1): swap = 0 for k in range(len(information)-1-i): if information[k][3] > information[k+1][3]: information[k], information[k+1] = information[k+1], information[k] swap =1 return information #this part is to search food by some initial charaters input from user # this list contains all the name of food all_food_name = [] for i in list_Canteen: for k in i.stalls: for j in k.menu: if j[0] not in all_food_name: all_food_name.append(j[0]) all_food_name = mergesort(all_food_name) def search_foodname_by_characters(characters): global all_food_name available_food = [] charaters = characters.lower() t = k =0 crashed = False while len(available_food) < 11 and not crashed: for i in range(t, len(all_food_name)): k = i if charaters == all_food_name[i].lower()[:len(characters)] and all_food_name[i] not in available_food: t = i + 1 available_food.append(all_food_name[i]) break if k == len(all_food_name) - 1: crashed = True t = 0 crashed = False while len(available_food) < 11 and not crashed: for i in range(t, len(all_food_name)): k = i if charaters in all_food_name[i].lower() and all_food_name[i] not in available_food: t = i + 1 available_food.append(all_food_name[i]) break if k == len(all_food_name) - 1: crashed = True return available_food[:10] #this function is used to search for food based on provided price, stall name and canteen name from user def search_food_by_price(price_of_food, name_of_stall_to_search, number_of_star): # price_of_food is a tuple containing the maximum and minimun value of food price global list_Canteen list_of_food_in_stall = name_of_stall_to_search.menu # this list contains the menu of stall food_satisfy_price = [] if number_of_star >0: for i in list_of_food_in_stall: if price_of_food[0] < float(i[1]) < price_of_food[1] and number_of_star == i[2]: food_satisfy_price.append(i) else: for i in list_of_food_in_stall: try: if price_of_food[0] < float(i[1]) < price_of_food[1]: food_satisfy_price.append(i) except Exception: continue return food_satisfy_price def search_stalls_by_name(stall_name): global list_Canteen canteen_have_this_stall = [] for i in list_Canteen: for k in i.stalls: if k.name == stall_name: canteen_have_this_stall.append(i.name) break return canteen_have_this_stall def search_by_type_stall(type_stall_input): global location_type_stall, list_Canteen for i in location_type_stall: if i.name == type_stall_input: return i.location def check_character(a,b): a = a.lower() letter_check = [chr(97 + i) for i in range(26)]+ [str(i) for i in range(9)] letter_a = [ i for i in a if i in letter_check] letter_b = [ i for i in b.lower() if i in letter_check] if letter_a == letter_b: return True return False def search_for_stall_name(stall_name, min_value, max_value, rank): result =[] for i in list_Canteen: for k in i.stalls: if k.type_stall == stall_name: for j in k.menu: try: if min_value<= j[1] <= max_value and j[2] == rank: result.append((i, k.name,j[0],j[1] )) except Exception: continue return result type_of_food_image = [] for i in range(1,9): try: image = pygame.image.load("icon %s.png"%(i)) image = pygame.transform.smoothscale(image, (198,114)) type_of_food_image.append(image) except Exception: image = pygame.image.load("food.jpg") image = pygame.transform.scale(image, (198,114)) type_of_food_image.append(image) # this class is used to extract data from html instructions of google map class MyHTMLParser(HTMLParser): def __init__(self): super().__init__() self.my_data = [] def handle_data(self, data): self.my_data.append(data) def return_data(self): return self.my_data
import sys def get_screen_count_gnome(): import gi gi.require_version('Gdk','3.0') from gi.repository import Gdk d = Gdk.Display() return d.get_n_monitors() def get_screen_count_x(): try: # Try python-xlib from Xlib import X, display except ImportError: # Try xrandr app bash = 'xrandr -q | grep Screen | wc -l' return int(os.popen(bash).read()) d = display.Display() return d.screen_count() def get_screen_count_win32(): import win32api return len(win32api.EnumDisplayMonitors())
import bcrypt from .string_encoding import encode_string def hash_password(password): """Hash a password. Parameters ---------- password : str or bytes Human readable password. Returns ------- hashed_password : bytes The hashed password. """ return bcrypt.hashpw(encode_string(password), bcrypt.gensalt()) def check_password(password, hashed_password): """Check if a password is the same than the hashed password. Parameters ---------- password : str or bytes Human readable password. hashed_password : str or bytes The hashed password. Returns ------- is_same_password : bool Return True if the two passwords are identical. """ return bcrypt.checkpw(encode_string(password), encode_string(hashed_password))
import pytest import tensorflow as tf from tefla.core.layers import fully_connected @pytest.fixture(autouse=True) def clean_graph(): tf.reset_default_graph() def test_trainable_true(): x = tf.placeholder(tf.float32, [1, 10, 10, 3]) x = fully_connected(x, 15, is_training=True, reuse=False, name='fc1', trainable=True) trainable_vars = [v.name for v in tf.trainable_variables()] assert 'fc1/W:0' in trainable_vars assert 'fc1/b:0' in trainable_vars def test_trainable_false(): x = tf.placeholder(tf.float32, [1, 10, 10, 3]) x = fully_connected(x, 15, is_training=True, reuse=False, name='fc1', trainable=False) trainable_vars = [v.name for v in tf.trainable_variables()] assert 'fc1/W:0' not in trainable_vars assert 'fc1/b:0' not in trainable_vars if __name__ == '__main__': pytest.main([__file__])
from time import sleep from random import randint from math import hypot from os import system winsoundimport = False try: from winsound import beep winsoundimport = True except: pass finally: pass def ConfigureCmd(): system("echo off") system("color 0a") system("cls") ConfigureCmd() #Agents&Target setup AgentSmith = [randint(1, 100), randint(1, 100)] Agent1 = [randint(1, 100), randint(1, 100)] Agent2 = [randint(1, 100), randint(1, 100)] Agent3 = [randint(1, 100), randint(1, 100)] Agent4 = [randint(1, 100), randint(1, 100)] Target = [randint(1, 100), randint(1, 100)] def transmit(subject1: list, subject2: list) -> None: sleep(hypot(abs(subject1[0]-subject2[0]), abs(subject1[1]-subject2[1]))/10) def Setup(): print(f"Intel is searching the Target{Target}") sleep(randint(2, 5)) print() print(f"Intel found the Target{Target}") sleep(2) print() print(f"Intel is now transmitting the location of the Target{Target} to AgentSmith{AgentSmith}") sleep(randint(1, 5)) print() print(f"AgentSmith{AgentSmith} received the location of the Target{Target}") sleep(2) print() print(f"AgentSmith{AgentSmith} is now Transmitting the location of the Target{Target} to Agent1{Agent1}") transmit(AgentSmith, Agent1) print() print(f"AgentSmith{AgentSmith} is now Transmitting the location of the Target{Target} to Agent2{Agent2}") transmit(AgentSmith, Agent2) print() print(f"AgentSmith{AgentSmith} is now Transmitting the location of the Target{Target} to Agent3{Agent3}") transmit(AgentSmith, Agent3) print() print(f"AgentSmith{AgentSmith} is now Transmitting the location of the Target{Target} to Agent4{Agent4}") transmit(AgentSmith, Agent4) print() print("All Agents Are Good To Go") def Hunt(): print() print("Agents started the Hunt") print() while True: print(f"AgentSmith: {AgentSmith}") print(f"Agent1 : {Agent1}") print(f"Agent2 : {Agent2}") print(f"Agent3 : {Agent3}") print(f"Agent4 : {Agent4}") print(f"Target : {Target}") print() if AgentSmith == Target: print(f"AgentSmith({AgentSmith[0]}, {AgentSmith[1]}) got the Target({Target[0]}, {Target[1]})") break elif Agent1 == Target: print(f"Agent1({Agent1[0]}, {Agent1[1]}) got the Target({Target[0]}, {Target[1]})") break elif Agent2 == Target: print(f"Agent2({Agent2[0]}, {Agent2[1]}) got the Target({Target[0]}, {Target[1]})") break elif Agent3 == Target: print(f"Agent3({Agent3[0]}, {Agent3[1]}) got the Target({Target[0]}, {Target[1]})") break elif Agent4 == Target: print(f"Agent4({Agent4[0]}, {Agent4[1]}) got the Target({Target[0]}, {Target[1]})") break else: for i in range(0, 2): if AgentSmith[0] < Target[0]: AgentSmith[0] += 1 if AgentSmith[0] > Target[0]: AgentSmith[0] -= 1 if AgentSmith[1] < Target[1]: AgentSmith[1] += 1 if AgentSmith[1] > Target[1]: AgentSmith[1] -= 1 if Agent1[0] < Target[0]: Agent1[0] += 1 if Agent1[0] > Target[0]: Agent1[0] -= 1 if Agent1[1] < Target[1]: Agent1[1] += 1 if Agent1[1] > Target[1]: Agent1[1] -= 1 if Agent2[0] < Target[0]: Agent2[0] += 1 if Agent2[0] > Target[0]: Agent2[0] -= 1 if Agent2[1] < Target[1]: Agent2[1] += 1 if Agent2[1] > Target[1]: Agent2[1] -= 1 if Agent3[0] < Target[0]: Agent3[0] += 1 if Agent3[0] > Target[0]: Agent3[0] -= 1 if Agent3[1] < Target[1]: Agent3[1] += 1 if Agent3[1] > Target[1]: Agent3[1] -= 1 if Agent4[0] < Target[0]: Agent4[0] += 1 if Agent4[0] > Target[0]: Agent4[0] -= 1 if Agent4[1] < Target[1]: Agent4[1] += 1 if Agent4[1] > Target[1]: Agent4[1] -= 1 if randint(0, 1000) == randint(0, 1000): print(f"Target Jumped") print() sleep(1) if winsoundimport: Beep(1000, 1000) Setup() Hunt()