content
stringlengths
5
1.05M
import platform import textwrap import unittest from conans.test.utils.conan_v2_tests import ConanV2ModeTestCase from conans.test.utils.tools import TestClient class ConanfileSourceTestCase(ConanV2ModeTestCase): """ Conan v2: 'self.cpp_info' is not available in 'package_id()' """ def test_cppinfo_not_in_package_id(self): # self.cpp_info is not available in 'package_id' t = self.get_client() conanfile = textwrap.dedent(""" from conans import ConanFile class Recipe(ConanFile): def package_id(self): self.cpp_info.libs = ["A"] """) t.save({'conanfile.py': conanfile}) t.run('create . name/version@ -s os=Linux', assert_error=True) self.assertIn("Conan v2 incompatible: 'self.cpp_info' access in package_id() method is deprecated", t.out) class ConanfilePackageIdV1TestCase(unittest.TestCase): """ Conan v1 will show a warning """ def test_v1_warning(self): t = TestClient() conanfile = textwrap.dedent(""" from conans import ConanFile class Recipe(ConanFile): def package_id(self): self.cpp_info.libs = ["A"] # No sense, it will warn the user """) t.save({'conanfile.py': conanfile}) t.run('create . name/version@', assert_error=True) # It is already raising self.assertIn("AttributeError: 'NoneType' object has no attribute 'libs'", t.out) # self.assertIn("name/version: WARN: 'self.info' access in package() method is deprecated", t.out)
from test_ruby import TestRuby
""" Random comments: - if song wasn't found it will return 404 - link should be lower-cased - all spaces and punctuation characters should be deleted """ from prismriver.plugin.common import Plugin from prismriver.struct import Song class AZLyricsPlugin(Plugin): ID = 'azlyrics' def __init__(self, config): super(AZLyricsPlugin, self).__init__('AZLyrics', config) def search_song(self, artist, title): to_delete = [' ', ',', '.', '-', '?', '!', '/', '&', "'", '(', ')'] link = 'http://www.azlyrics.com/lyrics/{}/{}.html'.format( self.prepare_url_parameter(artist, to_delete), self.prepare_url_parameter(title, to_delete)).lower() page = self.download_webpage(link) if page: soup = self.prepare_soup(page) head_pane = soup.find('div', {'class': 'lyricsh'}) song_artist = head_pane.find('b').text.replace(' LYRICS', '') main_pane = soup.find('div', {'class': 'col-xs-12 col-lg-8 text-center'}) song_title = main_pane.find('b', recursive=False).text[1:-1] lyric_pane = main_pane.find('div', {'class': None}, recursive=False) lyric = self.parse_verse_block(lyric_pane) return Song(song_artist, song_title, self.sanitize_lyrics([lyric]))
#!/usr/bin/env python """ Performs setup of dotfiles and some system options. See '--help' for usage. """ import os import click import clckwrkbdgr.jobsequence as JB setup = JB.JobSequence( verbose_var_name='DOTFILES_SETUP_VERBOSE', default_job_dir=[ os.path.join(os.environ['XDG_CONFIG_HOME'], 'setup.d'), os.path.join(os.environ['XDG_DATA_HOME'], 'setup.d'), os.path.join(os.environ['HOME'], '.local', 'setup.d'), ], click=click, ) if __name__ == '__main__': setup.cli()
"""Module with additional types used by the index""" from binascii import b2a_hex from typing import TYPE_CHECKING, NamedTuple, Sequence, Tuple, Union, cast from git.objects import Blob from git.types import PathLike from .util import pack, unpack # typing ---------------------------------------------------------------------- if TYPE_CHECKING: from git.repo import Repo # --------------------------------------------------------------------------------- __all__ = ("BlobFilter", "BaseIndexEntry", "IndexEntry") # { Invariants CE_NAMEMASK = 0x0FFF CE_STAGEMASK = 0x3000 CE_EXTENDED = 0x4000 CE_VALID = 0x8000 CE_STAGESHIFT = 12 # } END invariants class BlobFilter(object): """ Predicate to be used by iter_blobs allowing to filter only return blobs which match the given list of directories or files. The given paths are given relative to the repository. """ __slots__ = "paths" def __init__(self, paths: Sequence[PathLike]) -> None: """ :param paths: tuple or list of paths which are either pointing to directories or to files relative to the current repository """ self.paths = paths def __call__(self, stage_blob: Blob) -> bool: path = stage_blob[1].path for p in self.paths: if path.startswith(p): return True # END for each path in filter paths return False class BaseIndexEntryHelper(NamedTuple): """Typed namedtuple to provide named attribute access for BaseIndexEntry. Needed to allow overriding __new__ in child class to preserve backwards compat.""" mode: int binsha: bytes flags: int path: PathLike ctime_bytes: bytes = pack(">LL", 0, 0) mtime_bytes: bytes = pack(">LL", 0, 0) dev: int = 0 inode: int = 0 uid: int = 0 gid: int = 0 size: int = 0 class BaseIndexEntry(BaseIndexEntryHelper): """Small Brother of an index entry which can be created to describe changes done to the index in which case plenty of additional information is not required. As the first 4 data members match exactly to the IndexEntry type, methods expecting a BaseIndexEntry can also handle full IndexEntries even if they use numeric indices for performance reasons. """ def __new__( cls, inp_tuple: Union[ Tuple[int, bytes, int, PathLike], Tuple[int, bytes, int, PathLike, bytes, bytes, int, int, int, int, int], ], ) -> "BaseIndexEntry": """Override __new__ to allow construction from a tuple for backwards compatibility""" return super().__new__(cls, *inp_tuple) def __str__(self) -> str: return "%o %s %i\t%s" % (self.mode, self.hexsha, self.stage, self.path) def __repr__(self) -> str: return "(%o, %s, %i, %s)" % (self.mode, self.hexsha, self.stage, self.path) @property def hexsha(self) -> str: """hex version of our sha""" return b2a_hex(self.binsha).decode("ascii") @property def stage(self) -> int: """Stage of the entry, either: * 0 = default stage * 1 = stage before a merge or common ancestor entry in case of a 3 way merge * 2 = stage of entries from the 'left' side of the merge * 3 = stage of entries from the right side of the merge :note: For more information, see http://www.kernel.org/pub/software/scm/git/docs/git-read-tree.html """ return (self.flags & CE_STAGEMASK) >> CE_STAGESHIFT @classmethod def from_blob(cls, blob: Blob, stage: int = 0) -> "BaseIndexEntry": """:return: Fully equipped BaseIndexEntry at the given stage""" return cls((blob.mode, blob.binsha, stage << CE_STAGESHIFT, blob.path)) def to_blob(self, repo: "Repo") -> Blob: """:return: Blob using the information of this index entry""" return Blob(repo, self.binsha, self.mode, self.path) class IndexEntry(BaseIndexEntry): """Allows convenient access to IndexEntry data without completely unpacking it. Attributes usully accessed often are cached in the tuple whereas others are unpacked on demand. See the properties for a mapping between names and tuple indices.""" @property def ctime(self) -> Tuple[int, int]: """ :return: Tuple(int_time_seconds_since_epoch, int_nano_seconds) of the file's creation time""" return cast(Tuple[int, int], unpack(">LL", self.ctime_bytes)) @property def mtime(self) -> Tuple[int, int]: """See ctime property, but returns modification time""" return cast(Tuple[int, int], unpack(">LL", self.mtime_bytes)) @classmethod def from_base(cls, base: "BaseIndexEntry") -> "IndexEntry": """ :return: Minimal entry as created from the given BaseIndexEntry instance. Missing values will be set to null-like values :param base: Instance of type BaseIndexEntry""" time = pack(">LL", 0, 0) return IndexEntry( (base.mode, base.binsha, base.flags, base.path, time, time, 0, 0, 0, 0, 0) ) @classmethod def from_blob(cls, blob: Blob, stage: int = 0) -> "IndexEntry": """:return: Minimal entry resembling the given blob object""" time = pack(">LL", 0, 0) return IndexEntry( ( blob.mode, blob.binsha, stage << CE_STAGESHIFT, blob.path, time, time, 0, 0, 0, 0, blob.size, ) )
''' 模拟多项式函数的拟合过程 ''' import tensorflow as tf import tensorflow.keras as ks import numpy as np import matplotlib.pyplot as plt from IPython import display # 自定义训练集、测试集、权重和偏量 n_train,n_test,true_w,true_b=100,100,[1.2,-3.4,5.6],5 features=tf.random.normal(shape=(n_train+n_test,1)) poly_features=tf.concat([features,tf.pow(features,2),tf.pow(features,3)],axis=1) print(poly_features.shape) labels=(true_w[0]*poly_features[:,0]+true_w[1]*poly_features[:,1]+true_w[2]*poly_features[:,2]+true_b) print(labels.shape) labels+=tf.random.normal(shape=labels.shape,mean=0.0,stddev=0.1) # 定义图形样式、大小 def use_svg_display(): display.set_matplotlib_formats('svg') def set_figsize(figsize=(5,3)): use_svg_display() plt.rcParams['figure.figsize']=figsize # 自定义作图函数 def semilogy(x_vals,y_vals,x_label,y_label,x2_vals=None,y2_vals=None,legend=None,figsize=(5,3)): set_figsize(figsize) plt.xlabel(x_label) plt.ylabel(y_label) plt.semilogy(x_vals,y_vals) if x2_vals and y2_vals: plt.semilogy(x2_vals,y2_vals,linestyle=':') plt.legend(legend) plt.show() # 定义训练函数,实验拟合效果 num_epochs,loss=100,tf.losses.MeanSquaredError() def fit_and_plot(train_features,test_features,train_labels,test_labels): net=ks.Sequential() net.add(ks.layers.Dense(1)) batch_size=min(10,train_labels.shape[0]) train_iter = tf.data.Dataset.from_tensor_slices((train_features,train_labels)).batch(batch_size) test_iter = tf.data.Dataset.from_tensor_slices((test_features,test_labels)).batch(batch_size) optimizer =ks.optimizers.SGD(0.01) train_ls, test_ls = [], [] for _ in range(num_epochs): for X, y in train_iter: with tf.GradientTape() as tape: l = loss(y, net(X)) grads = tape.gradient(l, net.trainable_variables) optimizer.apply_gradients(zip(grads, net.trainable_variables)) train_ls.append(loss(train_labels, net(train_features)).numpy().mean()) test_ls.append(loss(test_labels, net(test_features)).numpy().mean()) print(train_ls) print(test_ls) print('final epoch: train loss', train_ls[-1], 'test loss', test_ls[-1]) semilogy(range(1,num_epochs+1),train_ls,'epochs','loss',range(1,num_epochs+1),test_ls,['train','test']) print('weight:',net.get_weights()[0], '\nbias:',net.get_weights()[1]) # fit_and_plot(poly_features[:n_train, :], poly_features[n_train:, :], # labels[:n_train], labels[n_train:]) fit_and_plot(features[:n_train, :], features[n_train:, :], labels[:n_train], labels[n_train:])
import pymongo import json from datetime import datetime import time # 建立连接 myclient = pymongo.MongoClient("mongodb://202.204.62.145:27017/", username='admin', password='afish1001') mydb = myclient["runoobdb"] mycol = mydb["json_data"] def insert_json_data(): file = open('./2019-02-21-10-19.txt', 'r', encoding="utf-8") for each in file: print(each) eachline = json.loads(each) time = datetime.strptime(eachline["time"], "%Y-%m-%d %H:%M:%S") # 将时间类型转换:str -> date data = {"monitor_id": eachline["monitor_id"], "display": eachline["display"], "time": time} result = mycol.insert_one(data) print(result.acknowledged) # 判断有没有插入成功,成功True,失败:False file.close() if __name__ == '__main__': # mycol.drop() # insert_json_data() # 查询总条数 # print(mycol.find().count()) myresult = mycol.find() objectid = myresult[0]["_id"] # myresult[0]:第一条记录 print("objectid: %s" % objectid) # _id timestamp = time.mktime(objectid.generation_time.timetuple()) print("timestamp: %d" % timestamp) timeArray = time.localtime(timestamp) otherStyleTime = time.strftime("%Y-%m-%d %H:%M:%S", timeArray) print("time_transfer: %sUTC" % otherStyleTime)
# -*- coding: utf-8 -*- """ Django settings for django_backend project. Generated by 'django-admin startproject' using Django 4.0. For more information on this file, see https://docs.djangoproject.com/en/4.0/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/4.0/ref/settings/ """ import os from pathlib import Path # Build paths inside the project like this: BASE_DIR / 'subdir'. BASE_DIR = Path(__file__).resolve().parent.parent MEDIA_ROOT = os.path.join(BASE_DIR, "media/") # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/4.0/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = os.getenv("DJANGO_SECRET_KEY") # SECURITY WARNING: don't run with debug turned on in production! DEBUG = os.getenv("DJANGO_DEBUG") == "1" ALLOWED_HOSTS = os.getenv("DJANGO_ALLOWED_HOSTS").split(",") # Application definition INSTALLED_APPS = [ "django.contrib.admin", "django.contrib.auth", "django.contrib.contenttypes", "django.contrib.sessions", "django.contrib.messages", "django.contrib.staticfiles", "corsheaders", "rest_framework", "sudan_art", "storages", ] MIDDLEWARE = [ "django.middleware.security.SecurityMiddleware", "django.contrib.sessions.middleware.SessionMiddleware", "django.middleware.common.CommonMiddleware", "django.middleware.csrf.CsrfViewMiddleware", "django.contrib.auth.middleware.AuthenticationMiddleware", "django.contrib.messages.middleware.MessageMiddleware", "django.middleware.clickjacking.XFrameOptionsMiddleware", "corsheaders.middleware.CorsMiddleware", ] ROOT_URLCONF = "django_backend.urls" TEMPLATES = [ { "BACKEND": "django.template.backends.django.DjangoTemplates", "DIRS": [], "APP_DIRS": True, "OPTIONS": { "context_processors": [ "django.template.context_processors.debug", "django.template.context_processors.request", "django.contrib.auth.context_processors.auth", "django.contrib.messages.context_processors.messages", ], }, }, ] WSGI_APPLICATION = "django_backend.wsgi.application" # Database # https://docs.djangoproject.com/en/4.0/ref/settings/#databases DATABASES = { "default": { "ENGINE": os.getenv("DATABASE_ENGINE"), "NAME": os.getenv("DATABASE_NAME"), "USER": os.getenv("DATABASE_USERNAME"), "PASSWORD": os.getenv("DATABASE_PASSWORD"), "HOST": os.getenv("DATABASE_HOST"), "PORT": os.getenv("DATABASE_PORT"), } } # Password validation # https://docs.djangoproject.com/en/4.0/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { "NAME": "django.contrib.auth.password_validation.UserAttributeSimilarityValidator", }, { "NAME": "django.contrib.auth.password_validation.MinimumLengthValidator", }, { "NAME": "django.contrib.auth.password_validation.CommonPasswordValidator", }, { "NAME": "django.contrib.auth.password_validation.NumericPasswordValidator", }, ] # Internationalization # https://docs.djangoproject.com/en/4.0/topics/i18n/ LANGUAGE_CODE = "en-us" TIME_ZONE = "UTC" USE_I18N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/2.1/howto/static-files/ # Moving static assets to DigitalOcean Spaces as per: # https://www.digitalocean.com/community/tutorials/how-to-set-up-object-storage-with-django AWS_ACCESS_KEY_ID = os.getenv("STATIC_ACCESS_KEY_ID") AWS_SECRET_ACCESS_KEY = os.getenv("STATIC_SECRET_KEY") AWS_STORAGE_BUCKET_NAME = os.getenv("STATIC_BUCKET_NAME") AWS_S3_ENDPOINT_URL = os.getenv("STATIC_ENDPOINT_URL") AWS_S3_OBJECT_PARAMETERS = { "CacheControl": "max-age=86400", } AWS_LOCATION = "media" AWS_DEFAULT_ACL = "public-read" STATICFILES_STORAGE = "storages.backends.s3boto3.S3Boto3Storage" STATIC_URL = f"{AWS_S3_ENDPOINT_URL}/{AWS_LOCATION}/" STATIC_ROOT = "static/" AWS_QUERYSTRING_AUTH = False # Default primary key field type # https://docs.djangoproject.com/en/4.0/ref/settings/#default-auto-field DEFAULT_AUTO_FIELD = "django.db.models.BigAutoField" CORS_ALLOWED_ORIGINS = [os.getenv("DJANGO_CORS_ORIGINS")] PUBLIC_MEDIA_LOCATION = "media" MEDIA_URL = f"https://{AWS_S3_ENDPOINT_URL}/{PUBLIC_MEDIA_LOCATION}/" REST_FRAMEWORK = { "DEFAULT_THROTTLE_CLASSES": [ "rest_framework.throttling.AnonRateThrottle", ], "DEFAULT_THROTTLE_RATES": { "anon": "999/minute", }, "DEFAULT_PAGINATION_CLASS": "rest_framework.pagination.PageNumberPagination", "PAGE_SIZE": 10, } CACHES = { "default": { "BACKEND": "django.core.cache.backends.locmem.LocMemCache", } } LOGGING = { "version": 1, "disable_existing_loggers": False, "formatters": { "simple": { "format": "[%(asctime)s] %(levelname)s|%(name)s|%(message)s", "datefmt": "%Y-%m-%d %H:%M:%S", }, }, "handlers": { "file": { "level": "DEBUG", "class": "logging.handlers.RotatingFileHandler", "filename": os.path.join(BASE_DIR, "logs", "backend.log"), "backupCount": 10, "formatter": "simple", }, }, "loggers": { "": { "handlers": ["file"], "level": "DEBUG", "propagate": True, }, "django": { "handlers": ["file"], "level": "DEBUG", "propagate": True, }, }, } DATA_UPLOAD_MAX_MEMORY_SIZE = 11000000 FILE_UPLOAD_MAX_MEMORY_SIZE = 10000000 SECURE_PROXY_SSL_HEADER = ("HTTP_X_FORWARDED_PROTO", "https")
# -*- coding: utf-8 -*- import codecs import os import pickle #import io #from PIL import Image import numpy as np def im_to_cifar(image_array, class_im): # Input: 3D array (32 x 32 x 3) im_array_R = image_array[:, :, 0] im_array_G = image_array[:, :, 1] im_array_B = image_array[:, :, 2] byte_array = np.array(list(class_im) + list(im_array_R) + list(im_array_G) + list(im_array_B)) print(byte_array) # Wanted to check, but it doesnt print anything... return byte_array def randomBackground(): i = np.random.randint(2, size=1) weights = np.random.uniform(0, 1, size=(3,)) if i == 0: image = np.random.uniform(0, 255, (32*32*3,)) image[0:32*32] = weights[0] * image[0:32*32] image[32 * 32:2 * 32 * 32] = weights[0] * image[32 * 32:2*32*32] image[2 * 32 * 32:3 * 32 * 32] = weights[0] * image[2 * 32 * 32:3 * 32 * 32] image = np.uint8(image) elif i == 1: image = np.random.beta(np.random.uniform(0, 1, 1), np.random.uniform(0, 1, 1), (32*32*3,))*255 image[0:32*32] = weights[0] * image[0:32*32] image[32 * 32:2 * 32 * 32] = weights[0] * image[32 * 32:2*32*32] image[2 * 32 * 32:3 * 32 * 32] = weights[0] * image[2 * 32 * 32:3 * 32 * 32] image = np.uint8(image) return image def unpickle(file): with open(file, 'rb') as fo: dict = pickle.load(fo, encoding='bytes') return dict def dopickle(dict, file): with open(file, 'wb') as fo: pickle.dump(dict, fo) def read_cifar(what): meta_path = '/home/tobias/PycharmProjects/PlanB/venv/cifar-100-python/meta' test_path = '/home/tobias/PycharmProjects/PlanB/venv/cifar-100-python/test' train_path = '/home/tobias/PycharmProjects/PlanB/venv/cifar-100-python/train' if what is 'meta': data_path = meta_path """ 'fine_label_names' 'coarse_label_names' """ elif what is 'test': data_path = test_path elif what is 'train': data_path = train_path """ b'filenames' b'fine_labels' b'data' b'coarse_labels' b'batch_label' '' """ dict = unpickle(data_path) return dict def generate_new_cifar(): # meta_dict = read_cifar('meta') # meta_dict[b'fine_label_names'].append("b'background'") # meta_dict[b'coarse_label_names'].append("b'background'") folder = '/home/tobias/PycharmProjects/PlanB/venv/cifar-100-python/' # dopickle(meta_dict, folder + 'meta_new') # for i in range(2500): # # train_dict = read_cifar('train') # filename = str(i) # filename = filename.zfill(6) # filename = "b'background_s_" + filename + ".png" # train_dict[b'filenames'].append(filename) # train_dict[b'fine_labels'].append(20) # train_dict[b'coarse_labels'].append(100) # train_dict[b'data'] = np.append(train_dict[b'data'], randomBackground()) # dopickle(train_dict, folder + 'train_new') for i in range(500): test_dict = read_cifar('test') filename = str(i+2500) filename = filename.zfill(6) filename = "b'background_s_" + filename + ".png" test_dict[b'filenames'].append(filename) test_dict[b'fine_labels'].append(20) test_dict[b'coarse_labels'].append(100) test_dict[b'data'] = np.append(test_dict[b'data'], randomBackground()) dopickle(test_dict, folder + 'test_new')
import random import pandas as pd from datetime import datetime import plotly import plotly.graph_objects as go from plotly.subplots import make_subplots # Generate Data x = pd.date_range(datetime.today(), periods=100).tolist() y = random.sample(range(1, 300), 100) # Plot figure fig = go.Figure([go.Bar(x=x, y=y)]) # Asthetics of the plot fig.update_layout( {"plot_bgcolor": "rgba(0, 0, 0, 0)", "paper_bgcolor": "rgba(0, 0, 0, 0)"}, autosize=True, margin=dict(l=50, r=50, b=50, t=50, pad=4, autoexpand=True), # height=1000, # hovermode="x", ) # Add title and dynamic range selector to x axis fig.update_xaxes( title_text="Date", rangeselector=dict( buttons=list( [ dict(count=6, label="6m", step="month", stepmode="backward"), dict(count=1, label="1y", step="year", stepmode="backward"), dict(step="all"), ] ) ), ) # Add title to y axis fig.update_yaxes(title_text="Count") # Write out to file (.html) config = {"displayModeBar": False, "displaylogo": False} plotly_obj = plotly.offline.plot( fig, include_plotlyjs=False, output_type="div", config=config ) with open("_includes/plotly_obj.html", "w") as file: file.write(plotly_obj) # Grab timestamp data_updated = datetime.now().strftime("%d/%m/%Y %H:%M:%S") # Write out to file (.html) html_str = ( '<p><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 16 16" width="16" height="16"><path fill-rule="evenodd" d="M1.5 8a6.5 6.5 0 1113 0 6.5 6.5 0 01-13 0zM8 0a8 8 0 100 16A8 8 0 008 0zm.5 4.75a.75.75 0 00-1.5 0v3.5a.75.75 0 00.471.696l2.5 1a.75.75 0 00.557-1.392L8.5 7.742V4.75z"></path></svg> Latest Data: ' + data_updated + "</p>" ) with open("_includes/update.html", "w") as file: file.write(html_str)
# -*- coding: utf-8 -*- # @Time  : 2020/1/14 上午10:30 # @Author : upcbdipt # @Project : CDW_FedAvg # @FileName: reduce_dimension import os import numpy as np import random import tensorflow as tf from main.model.autoencoder import AutoEncoderModel import main.metrics.writer as metrics_writer from main.utils.model_utils import read_data from main.ae_client import Client class ReduceDimension: def __init__(self, config): self.config = config def run(self): random_seed = self.config.random_seed random.seed(1 + random_seed) np.random.seed(12 + random_seed) tf.set_random_seed(123 + random_seed) tf.logging.set_verbosity(tf.logging.WARN) # load model lr = self.config.lr n_hidden = self.config.n_hidden tf.reset_default_graph() # client train_data_dir = os.path.join('data', 'train') test_data_dir = os.path.join('data', 'test') users, groups, train_data, test_data = read_data(train_data_dir, test_data_dir) if len(groups) == 0: groups = [[] for _ in users] clients = [] i = 0 for u, g in zip(users, groups): client_model = AutoEncoderModel(config=self.config, seed=random_seed, lr=lr, n_hidden=n_hidden) clients.append(Client(u, g, train_data[u], test_data[u], client_model)) i += 1 client_ids, client_groups, client_num_samples = get_clients_info(clients) print('Clients in Total: %d' % len(clients)) # Initialization print('--- Random Initialization ---') # save state stat_writer_fn = get_stat_writer_function(client_ids, client_groups, client_num_samples, self.config) print_stats(0, clients, client_num_samples, stat_writer_fn) num_rounds = self.config.num_rounds eval_every = self.config.eval_every clients_per_round = self.config.clients_per_round num_epochs = self.config.num_epochs batch_size = self.config.batch_size # training for i in range(num_rounds): print('--- Round %d of %d: Training %d Clients ---' % (i + 1, num_rounds, clients_per_round)) # Choose client client_ids, client_groups, client_num_samples = get_clients_info(clients) # Simulate server model training on selected clients' data train_model(config=self.config, num_epochs=num_epochs, batch_size=batch_size, minibatch=None, clients=clients) # Test model if (i + 1) % eval_every == 0 or (i + 1) == num_rounds: print_stats(i + 1, clients, client_num_samples, stat_writer_fn) encoders, _ = test_model(clients, 'test') for client in clients: reduce_path = os.path.join('data', 'reduce') if not os.path.exists(reduce_path): os.makedirs(reduce_path) np.save(os.path.join(reduce_path, str(client.id + '.npy')), encoders[client.id]) client.model.close() def train_model(config, num_epochs=1, batch_size=10, minibatch=None, clients=None): sys_metrics = { c.id: {config.bytes_written_key: 0, config.bytes_read_key: 0, config.local_computations_key: 0} for c in clients} for c in clients: # train comp, num_samples, update = c.train(num_epochs, batch_size, minibatch) sys_metrics[c.id][config.bytes_read_key] += c.model.size sys_metrics[c.id][config.bytes_written_key] += c.model.size sys_metrics[c.id][config.local_computations_key] = comp return sys_metrics def get_clients_info(clients): """Returns the ids, hierarchies and num_samples for the given clients. Returns info about self.selected_clients if clients=None; Args: clients: list of Client objects. """ ids = [c.id for c in clients] groups = {c.id: c.group for c in clients} num_samples = {c.id: c.num_samples for c in clients} return ids, groups, num_samples def get_stat_writer_function(ids, groups, num_samples, config): def writer_fn(num_round, metrics, partition): metrics_writer.print_metrics( num_round, ids, metrics, groups, num_samples, partition, config.reduce_dimension_metrics_dir, '{}_{}'.format(config.reduce_dimension_metrics_name, 'stat')) return writer_fn def print_stats( num_round, clients, num_samples, writer, use_val_set=False): _, train_stat_metrics = test_model(clients, set_to_use='train') # 每一个客户端的loss print_metrics(train_stat_metrics, num_samples, prefix='train_') writer(num_round, train_stat_metrics, 'train') eval_set = 'test' if not use_val_set else 'val' _, test_stat_metrics = test_model(clients, set_to_use=eval_set) print_metrics(test_stat_metrics, num_samples, prefix='{}_'.format(eval_set)) writer(num_round, test_stat_metrics, eval_set) def test_model(clients_to_test, set_to_use='test'): """Tests self.model on given clients. Tests model on self.selected_clients if clients_to_test=None. Args: clients_to_test: list of Client objects. set_to_use: dataset to test on. Should be in ['train', 'test']. """ metrics = {} encoders = {} for client in clients_to_test: encoder, c_metrics = client.test(set_to_use) metrics[client.id] = c_metrics encoders[client.id] = encoder return encoders, metrics def print_metrics(metrics, weights, prefix=''): """Prints weighted averages of the given metrics. Args: metrics: dict with client ids as keys. Each entry is a dict with the metrics of that client. weights: dict with client ids as keys. Each entry is the weight for that client. """ ordered_weights = [weights[c] for c in sorted(weights)] metric_names = metrics_writer.get_metrics_names(metrics) to_ret = None # for metric in metric_names: # ordered_metric = [metrics[c][metric] for c in sorted(metrics)] # print('%s: %g, 10th percentile: %g, 50th percentile: %g, 90th percentile %g' \ # % (prefix + metric, # np.average(ordered_metric, weights=ordered_weights), # np.percentile(ordered_metric, 10), # np.percentile(ordered_metric, 50), # np.percentile(ordered_metric, 90)))
""" https://www.practicepython.org Exercise 23: File Overlap 2 chilis Given two .txt files that have lists of numbers in them, find the numbers that are overlapping. One .txt file has a list of all prime numbers under 1000, and the other .txt file has a list of happy numbers up to 1000. (If you forgot, prime numbers are numbers that can’t be divided by any other number. And yes, happy numbers are a real thing in mathematics - you can look it up on Wikipedia. The explanation is easier with an example, which I will describe below.) """ def file_overlap(): # read in the primes and save as a list of ints primes = [] with open('primes.txt', 'r') as primes_file: next_prime = primes_file.readline() while next_prime: primes.append(int(next_prime)) next_prime = primes_file.readline() # read in the happy numbers and compare each value to the prime list with open('happy.txt', 'r') as happy_file: next_happy = happy_file.readline() while next_happy: if int(next_happy.strip("\n")) in primes: print(next_happy.strip("\n") + " is in both lists") next_happy = happy_file.readline() if __name__ == '__main__': file_overlap() """ Michele's second solution: def filetolistofints(filename): list_to_return = [] with open(filename) as f: line = f.readline() while line: list_to_return.append(int(line)) line = f.readline() return list_to_return primeslist = filetolistofints('primenumbers.txt') happieslist = filetolistofints('happynumbers.txt') overlaplist = [elem for elem in primeslist if elem in happieslist] print(overlaplist) """
class SellsyAuthenticateError(Exception): pass class SellsyError(Exception): def __init__(self, sellsy_code_error, message): super(SellsyError, self).__init__(message) self.sellsy_code_error = sellsy_code_error self.message = message def __str__(self): return '{} - {}'.format(self.sellsy_code_error, self.message)
from datetime import datetime import os import logging import numpy as np import pandas as pd import pystore from decimal import Decimal from tests.fixtures import Fixes from src.crypto_accountant.bookkeeper import BookKeeper logging.basicConfig(level=os.environ.get("LOGLEVEL", "INFO")) pd.set_option("display.expand_frame_repr", False) pd.set_option("display.width", 0) pd.set_option('display.float_format', lambda x: '%.8f' % x) pd.set_option("display.max_colwidth", 20) pd.set_option("display.max_rows", None) pd.set_option("display.min_rows", 100) pd.set_option("display.max_columns", 8) # Hardcoded transactions # txs = TxnFactory.hardcoded_txs() # Firebase Transactions firestore_cred_file = Fixes.firestore_cred_file(Fixes.storage_dir()) firestore_ref = Fixes.firestore_ref(firestore_cred_file) txs = Fixes.firestore_user_transactions(firestore_ref) # Pystore historical data pystore.set_path("/Volumes/CAPA/.storage") store = pystore.store("messari") historical_prices = store.collection('price') def get_historical_df(symbols): df = pd.DataFrame() available_assets = historical_prices.list_items() not_found_assets = [] for symbol in symbols: if symbol in available_assets: prices = historical_prices.item(symbol).to_pandas() prices[symbol] = prices['close'].apply(lambda x: Decimal(x)) prices = prices.drop(['open', 'close', 'high', 'low', 'volume'], axis=1) if df.empty: df = prices.copy() else: df = df.join(prices, how='outer') else: not_found_assets.append(symbol) print(not_found_assets) df[not_found_assets] = np.nan # create nan columns for unfound assets df['USD'] = Decimal(1) # create nan columns for unfound assets df = df.fillna(Decimal(0)) df.index = df.index.tz_localize(tz='UTC').floor('1D') return df start = datetime.now() # initialize bookkeeper bk = BookKeeper() bk.add_txs(txs, auto_detect=True) eq_curve = bk.ledger.generate_equity_curve('assets') print(eq_curve) # multiply qty df with price df and then sum them all into total # historical = get_historical_df(bk.ledger.symbols) # val_curve = eq_curve.mul(historical) # val_curve['total'] = val_curve[bk.ledger.symbols].sum(axis=1) # print(val_curve['total']) print(datetime.now() - start)
import datetime from django.db import models from django.db.models import signals from django.conf import settings from django.utils import simplejson as json from django.dispatch import dispatcher class JSONEncoder(json.JSONEncoder): def default(self, obj): if isinstance(obj, datetime.datetime): return obj.strftime('%Y-%m-%d %H:%M:%S') elif isinstance(obj, datetime.date): return obj.strftime('%Y-%m-%d') elif isinstance(obj, datetime.time): return obj.strftime('%H:%M:%S') return json.JSONEncoder.default(self, obj) def dumps(data): return JSONEncoder().encode(data) def loads(str): return json.loads(str, encoding=settings.DEFAULT_CHARSET) class JSONField(models.TextField): """ Cribbed directly from http://www.djangosnippets.org/snippets/377/ This is a great way to pack extra data into a model object, where the structure is dynamic, and not relational. For instance, if you wanted to store a list of dictionaries. The data won't be classically searchable, but you can define pretty much any data construct you'd like, as long as it is JSON-serializable. It's especially useful in a JSON heavy application or one that deals with a lot of java script. Example (models.py): from django.db import models from jsonfield import JSONField class Sequence(models.Model): name = models.CharField(maxlength=25) list = JSONField() Example (shell): fib = Sequence(name='Fibonacci') fib.list = [0, 1, 1, 2, 3, 5, 8] fib.save() fib = Sequence.objects.get(name='Fibonacci') fib.list.append(13) print fib.list [0, 1, 1, 2, 3, 5, 8, 13] fib.get_list_json() "[0, 1, 1, 2, 3, 5, 8, 13]" NOTE: You can only save JSON-serializable data. Also, dates will be converted to string-timestamps, because I don't really know what better to do with them. Finally, I'm not sure how to interact with forms yet, so that realm is a bit murky. """ def db_type(self): return 'text' def pre_save(self, model_instance, add): value = getattr(model_instance, self.attname, None) return dumps(value) def contribute_to_class(self, cls, name): super(JSONField, self).contribute_to_class(cls, name) dispatcher.connect(self.post_init, signal=signals.post_init, sender=cls) def get_json(model_instance): return dumps(getattr(model_instance, self.attname, None)) setattr(cls, 'get_%s_json' % self.name, get_json) def set_json(model_instance, json): return setattr(model_instance, self.attname, loads(json)) setattr(cls, 'set_%s_json' % self.name, set_json) def post_init(self, instance=None): value = self.value_from_object(instance) if (value): setattr(instance, self.attname, loads(value)) else: setattr(instance, self.attname, None)
# ########################################################################### # # CLOUDERA APPLIED MACHINE LEARNING PROTOTYPE (AMP) # (C) Cloudera, Inc. 2021 # All rights reserved. # # Applicable Open Source License: Apache 2.0 # # NOTE: Cloudera open source products are modular software products # made up of hundreds of individual components, each of which was # individually copyrighted. Each Cloudera open source product is a # collective work under U.S. Copyright Law. Your license to use the # collective work is as provided in your written agreement with # Cloudera. Used apart from the collective work, this file is # licensed for your use pursuant to the open source license # identified above. # # This code is provided to you pursuant a written agreement with # (i) Cloudera, Inc. or (ii) a third-party authorized to distribute # this code. If you do not have a written agreement with Cloudera nor # with an authorized and properly licensed third party, you do not # have any rights to access nor to use this code. # # Absent a written agreement with Cloudera, Inc. (“Cloudera”) to the # contrary, A) CLOUDERA PROVIDES THIS CODE TO YOU WITHOUT WARRANTIES OF ANY # KIND; (B) CLOUDERA DISCLAIMS ANY AND ALL EXPRESS AND IMPLIED # WARRANTIES WITH RESPECT TO THIS CODE, INCLUDING BUT NOT LIMITED TO # IMPLIED WARRANTIES OF TITLE, NON-INFRINGEMENT, MERCHANTABILITY AND # FITNESS FOR A PARTICULAR PURPOSE; (C) CLOUDERA IS NOT LIABLE TO YOU, # AND WILL NOT DEFEND, INDEMNIFY, NOR HOLD YOU HARMLESS FOR ANY CLAIMS # ARISING FROM OR RELATED TO THE CODE; AND (D)WITH RESPECT TO YOUR EXERCISE # OF ANY RIGHTS GRANTED TO YOU FOR THE CODE, CLOUDERA IS NOT LIABLE FOR ANY # DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, PUNITIVE OR # CONSEQUENTIAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES # RELATED TO LOST REVENUE, LOST PROFITS, LOSS OF INCOME, LOSS OF # BUSINESS ADVANTAGE OR UNAVAILABILITY, OR LOSS OR CORRUPTION OF # DATA. # # ########################################################################### from PIL import Image from rank_bm25 import BM25Okapi import wikipedia as wiki import pandas as pd import streamlit as st from transformers import pipeline, AutoModelForQuestionAnswering, AutoTokenizer from qa.utils import absolute_path MODEL_OPTIONS = { "BERT": "deepset/bert-base-cased-squad2", "RoBERTa": "mbeck/roberta-base-squad2", "DistilBERT": "twmkn9/distilbert-base-uncased-squad2", "MiniLM": "deepset/minilm-uncased-squad2", "XLM-RoBERTa": "deepset/xlm-roberta-large-squad2", } CONTEXT_OPTIONS = { "Wikipedia summary paragraph": "summary", "Full Wikipedia article": "full", "Use RelSnip to identify most relevant sections": "relsnip", } @st.cache(allow_output_mutation=True) def load_model(model_choice): model_name = MODEL_OPTIONS[model_choice] tokenizer = AutoTokenizer.from_pretrained(model_name) model = pipeline("question-answering", model=model_name, tokenizer=tokenizer) return model def highlight_text(segment, context, full_text=False): if segment not in context: return length = len(segment) if full_text: # find the section the answer was found in and display only that section chunks = context.split("==") for chunk in chunks: if segment in chunk: idx = chunk.index(segment) chunk1 = chunk[:idx] chunk2 = chunk[idx : idx + length] chunk3 = chunk[idx + length :] break else: idx = context.index(segment) chunk1 = context[:idx] chunk2 = context[idx : idx + length] chunk3 = context[idx + length :] new_context = ( chunk1 + '<span style="background-color: #FFFF00"> **' + chunk2 + "** </span>" + chunk3 ) return new_context def relsnip(context, num_fragments=5): # Wiki section headings are wrapped with "==", (e.g., == Color ==) # split the context by article sections chunks = context.split("\n== ") # Remove sections that won't contain an answer chunks_cleaned = list() for chunk in chunks: subchunks = chunk.split(" ==") if subchunks[0] in [ "See also", "References", "Further reading", "External links", ]: continue chunks_cleaned.append(chunk) # tokenize each chunk and pass to BM25 search algorithm tokenized_chunks = [chunk.split(" ") for chunk in chunks_cleaned] bm25 = BM25Okapi(tokenized_chunks) # tokenize the query and score each chunk tokenized_query = query.split(" ") chunk_scores = bm25.get_scores(tokenized_query) # sort the chunks by their BM25 score sorted_chunks = sorted([c for s, c in zip(chunk_scores, chunks)], reverse=True) # select the num_fragments highest scoring chunks short_context = "" for chunk in sorted_chunks[:num_fragments]: short_context = short_context + chunk return short_context def make_url(segment, url): new_segment = f'<a target="_blank" href="{url}">{segment}</a>' return new_segment # ------ SIDEBAR SELECTIONS ------ image = Image.open(absolute_path("images", "cloudera-fast-forward.png")) st.sidebar.image(image, use_column_width=True) st.sidebar.markdown( "This app demonstrates a simple question answering system on Wikipedia. \ The question is first used in Wikipedia's default search engine, \ resulting in a ranked list of relevant Wikipedia pages. \ The question and each Wikipedia page are then sent to the QA model, which returns answers \ extracted from the text." ) model_choice = st.sidebar.selectbox( "Choose a Transformer model:", list(MODEL_OPTIONS.keys()) ) number_of_pages = st.sidebar.slider( "How many Wikipedia pages should be displayed?", 1, 5, 1 ) number_of_answers = st.sidebar.slider( "How many answers should the model suggest for each Wikipedia page?", 1, 5, 1 ) st.sidebar.text("") st.sidebar.markdown( "By default, the QA Model will only process the Wikipedia **summary** for answers. \ This saves time since Wikipedia pages are long and QA models are *slow*. \ Here, you can opt to use the **full text** of the article, or you can \ choose **RelSnip**, which uses BM25 to identify the most relevant sections \ of Wikipedia pages." ) context_choice = st.sidebar.selectbox( "Choose which part of the Wikipedia page(s) to process:", list(CONTEXT_OPTIONS.keys()), ) context_selection = CONTEXT_OPTIONS[context_choice] if context_selection == "relsnip": num_sections = st.sidebar.slider( "How many sections should RelSnip identify?", 3, 7, 5 ) st.sidebar.markdown( "**NOTE: Including more text often results in a better answer, but longer inference times.**" ) # ------ BEGIN APP ------ st.title("Question Answering with ") image = absolute_path("images/669px-Wikipedia-logo-v2-en.svg.png") st.image(Image.open(image), width=400) # ------ LOAD QA MODEL ------ reader = load_model(model_choice) # ------ GET QUESTION ------ st.markdown("## Ask a question") query = st.text_input("Enter text here", "Why is the sky blue?") st.markdown(f"## Displaying the top {number_of_pages} results:") # ------ SEARCH ENGINE (RETRIEVER) ------ results = wiki.search(query, results=number_of_pages) # ------ ANSWER EXTRACTION (READER) ------ for i, result in enumerate(results): wiki_page = wiki.page(result, auto_suggest=False) # display the Wiki title as a URL title_url = make_url(result, wiki_page.url) st.markdown("### " + str(i + 1) + ") " + title_url, unsafe_allow_html=True) use_full_text = True # grab text for answer extraction if context_selection == "full": context = wiki_page.content elif context_selection == "relsnip": context = wiki_page.content context = relsnip(context, num_sections) else: context = wiki_page.summary use_full_text = False # extract answers inputs = {"question": query, "context": context} answers = reader(inputs, **{"topk": number_of_answers}) try: answerdf = pd.DataFrame(answers) except: answerdf = pd.DataFrame(answers, index=[0]) # display results hilite_context = highlight_text( answerdf["answer"][0], context, full_text=use_full_text ) st.markdown(hilite_context, unsafe_allow_html=True) answerdf.drop(columns=["start", "end"], inplace=True) st.table(answerdf)
#!/usr/bin/env python # -*- coding: utf-8 -*- import sys import os import json import glob import logging import re import pandas import numpy as np from collections import defaultdict from collections import OrderedDict data_path = './' n = 0 class data_passport: def __init__(self): self.n_conf_files = 0 self.n_cf_formats = {} self.n_data_files = 0 self.n_empty_conf_files = 0 self.n_ecf_formats = defaultdict(int) self.n_uiks = 0 self.n_subjects = 0 self.n_valid_bulletins = 0 self.n_not_valid_bulletins = 0 self.n_given_bulletins = 0 self.n_registered_voters = 0 self.n_candidates = 0 self.n_data_errors = 0 self.data_errors = {} if __name__ == '__main__': logging.basicConfig(level=logging.DEBUG) dp = data_passport() logging.debug('args:') for a in sys.argv: logging.debug(a) args = sys.argv[1:] if '--data' in args: data_path = args[1] logging.info('Data directory: %s', data_path) formats = defaultdict(int) dig_formats = defaultdict(int) for e_cfg_file in glob.glob(os.path.join(data_path, '*.json')): with open(e_cfg_file) as json_data: ecfg = json.load(json_data) dp.n_conf_files += 1 pattern = re.compile(r'(\dNL).(json)') res = re.search(pattern, e_cfg_file) if res is None: pattern = re.compile(r'(_\d\d).(json)') res = re.search(pattern, e_cfg_file) if res is None: pattern = re.compile(r'(_\d).(json)') res = re.search(pattern, e_cfg_file) if res is None: print e_cfg_file + ' did not match any pattern, exiting' exit(1) res = res.group(1) dd = re.search(r'\d+', res).group() if 'NL' in res: dp.n_empty_conf_files += 1 dp.n_ecf_formats[dd] += 1 else: if dd not in dp.n_cf_formats: dp.n_cf_formats[dd] = { 'nfiles' : 0, 'nuiks': 0, 'nsubjects': 0, 'nvalid_bulletins': 0, 'nnotvalid_bulletins': 0, 'ngiven_bulletins': 0, 'nregistered_voters': 0, 'ncandidates': 0, 'ndata_errors': 0 } df = pandas.read_csv(data_path + '/' + ecfg['source_file'], encoding="utf-8", delimiter=',') dp.n_data_files += 1 dp.n_cf_formats[dd]['nfiles'] += 1 vbc = ecfg['valid_bulletins_column'] valid_bulletins = np.array(df[vbc], dtype=float) dp.n_valid_bulletins += np.int(valid_bulletins.sum()) gbc = 'calc0' given_bulletins = np.array(df[gbc], dtype=float) dp.n_given_bulletins += np.int(given_bulletins.sum()) dp.n_cf_formats[dd]['ngiven_bulletins'] += np.int(given_bulletins.sum()) nvbc = ecfg['not_valid_bulletins_column'] not_valid_bulletins = np.array(df[nvbc], dtype=float) dp.n_not_valid_bulletins += np.int(not_valid_bulletins.sum()) dp.n_cf_formats[dd]['nvalid_bulletins'] += np.int(valid_bulletins.sum()) dp.n_cf_formats[dd]['nnotvalid_bulletins'] += np.int(not_valid_bulletins.sum()) dp.n_uiks += df[vbc].count() dp.n_cf_formats[dd]['nuiks'] += df[vbc].count() dp.n_candidates += len(ecfg['candidates_columns']) dp.n_cf_formats[dd]['ncandidates'] += len(ecfg['candidates_columns']) dp.n_data_errors += len(ecfg['data_errors']) dp.n_cf_formats[dd]['ndata_errors'] += len(ecfg['data_errors']) for e in ecfg['data_errors']: if e['kind'] in dp.data_errors: dp.data_errors[e['kind']] += 1 else: dp.data_errors[e['kind']] = 1 # if e['kind'] == 10: # print 'In ', e_cfg_file, e['comment'].encode('utf-8') registered_voters = np.array(df[ecfg['registered_voters_column']], dtype=float) registered_voters[np.isnan(registered_voters)] = 0 dp.n_registered_voters += int(registered_voters.sum()) dp.n_cf_formats[dd]['nregistered_voters'] += int(registered_voters.sum()) ##### for k in dp.__dict__: if type(dp.__dict__[k]) in [int, np.int64]: logging.info('%s: %d', k, dp.__dict__[k]) else: logging.info(k) od = OrderedDict(sorted(dp.__dict__[k].items())) for v in od: if type(od[v]) != dict: logging.info('\t%s: %d', v, od[v]) else: logging.info('\t%s', v) for vv in od[v]: logging.info('\t\t%s: %d', vv, od[v][vv])
#!/usr/bin/env python # coding: utf-8 # In[ ]: import numpy as np import pandas as pd import os # In[ ]: mydir = os.getcwd() result = [] for file in os.listdir(mydir): if file.endswith("-0.csv"): result.append(os.path.join(file)) #print(os.path.join(file)) sorted_list_0 = sorted(result) sorted_list_0 result = [] for file in os.listdir(mydir): if file.endswith("-1.csv"): result.append(os.path.join(file)) #print(os.path.join(file)) sorted_list_1 = sorted(result) sorted_list_1 result = [] for file in os.listdir(mydir): if file.endswith("-2.csv"): result.append(os.path.join(file)) #print(os.path.join(file)) sorted_list_2 = sorted(result) #sorted_list_2 # In[ ]: length = len(sorted_list_0) for i in range(length): input_date_0 = sorted_list_0[i] input_date_1 = sorted_list_1[i] input_date_2 = sorted_list_2[i] input_date = input_date_0[:-8] ## BELOW IS THE PROGRAM/CODE TO RETRIEVE ALL RATIOS FOR BS, CSI & CSCF print('\n') print('\n') print(input_date_0) file = pd.read_csv(input_date_0) file = file.drop(file.columns[2:], axis=1) file = file.set_axis([input_date_0, 'Default'], axis=1, inplace=False) col_one_list_0 = file[input_date_0].tolist() #col_one_arr = file[input_date_0].to_numpy() #print(f"\ncol_one_list:\n{col_one_list}\ntype:{type(col_one_list)}") #print(f"\ncol_one_arr:\n{col_one_arr}\ntype:{type(col_one_arr)}") #Enter subs #subs_00 = 'Total liabilities and s' subs00 = 'Marketable securities' subs01 = 'Cash and cash equivalents' subs02 = 'Accounts receivable' subs03 = 'Total current a' subs04 = 'Total current l' subs05 = 'Total assets' subs06 = 'Total liabilities' subs07 = 'Retaine' subs08 = 'Total stockholder' subs09 = 'Property' subs10 = 'Short' subs11 = 'Long' subs12 = 'Convertible preferred stock, $0.001' subs13 = 'and Class B' subs14 = 'Prepaid' #res_00 = [i for i in col_one_list if subs_00 in i] #print(res_00) #file.replace(res_00, "NaN", inplace=True) res00 = [i for i in col_one_list_0 if subs00 in i] #print(res00) res01 = [i for i in col_one_list_0 if subs01 in i] #print(res01) res02 = [i for i in col_one_list_0 if subs02 in i] #print(res02) res03 = [i for i in col_one_list_0 if subs03 in i] #print(res03) res04 = [i for i in col_one_list_0 if subs04 in i] #print(res04) res05 = [i for i in col_one_list_0 if subs05 in i] #print(res05) res06 = [i for i in col_one_list_0 if subs06 in i] #print(res06) res07 = [i for i in col_one_list_0 if subs07 in i] #print(res07) res08 = [i for i in col_one_list_0 if subs08 in i] #print(res08) res09 = [i for i in col_one_list_0 if subs09 in i] #print(res09) res10 = [i for i in col_one_list_0 if subs10 in i] #print(res10) res11 = [i for i in col_one_list_0 if subs11 in i] #print(res11) res12 = [i for i in col_one_list_0 if subs12 in i] #print(res12) res13 = [i for i in col_one_list_0 if subs13 in i] #print(res13) res14 = [i for i in col_one_list_0 if subs14 in i] #print(res14) if len(res00) >= 2: res00 = res00[0] #print(res00) if len(res06) >= 2: res06 = res06[0] #print(res06) if len(res14) >= 2: res14 = res14[0] #print(res14) file.replace(res00, "Marketable securities", inplace=True) file.replace(res01, "Cash and cash equivalents", inplace=True) file.replace(res02, "Accounts receivable", inplace=True) file.replace(res03, "Current assets", inplace=True) file.replace(res04, "Current liabilities", inplace=True) file.replace(res05, "Total assets", inplace=True) file.replace(res06, "Total liabilities", inplace=True) file.replace(res07, "Retained earnings", inplace=True) file.replace(res08, "Total stockholder's equity", inplace=True) file.replace(res09, "Property, plant and equipment", inplace=True) file.replace(res10, "Short-term debt", inplace=True) file.replace(res11, "Long-term debt", inplace=True) file.replace(res12, "Convertible stocks", inplace=True) file.replace(res13, "Class A and Class B stocks", inplace=True) file.replace(res14, "Prepaid expenses", inplace=True) #file #file.loc[file[input_date_0] == 'Marketable securities'] ## PREPAID EXPENSES DOES NOT EXIST file = file[file['Default'].notna()] col_one_arr = file.loc[file[input_date_0].isin(['Marketable securities', 'Cash and cash equivalents', 'Accounts receivable', 'Current assets', 'Current liabilities', 'Total assets', 'Total liabilities', 'Retained earnings', "Total stockholder's equity", 'Property, plant and equipment', 'Short-term debt', 'Long-term debt', 'Convertible stocks', 'Class A and Class B stocks', 'Prepaid expenses'])].to_numpy() if res14: col_one_arr_01 = col_one_arr #print("Prepaid. Expenses exists.") else: col_one_arr_00 = np.array([['Prepaid expenses', '0']]) col_one_arr_01 = np.append(col_one_arr,col_one_arr_00, axis=0) #print("Prepaid. Expenses has been added.") #print(col_one_arr_01) if res10: col_one_arr_02 = col_one_arr_01 #print("Short-term Debt exists.") else: col_one_arr_00 = np.array([['Short-term debt', '0']]) col_one_arr_02 = np.append(col_one_arr_01,col_one_arr_00, axis=0) #print("Short-term Debt has been added.") #print(col_one_arr_02) if res12: col_one_arr_03 = col_one_arr_02 #print("Convertible Stocks exists.") else: col_one_arr_00 = np.array([['Convertible stocks', '0']]) col_one_arr_03 = np.append(col_one_arr_02,col_one_arr_00, axis=0) #print("Convertible Stocks has been added.") #print(col_one_arr_03) col_one_arr_CSI_04 = np.vstack({tuple(row) for row in col_one_arr_03}) col_one_arr_BS = np.array(sorted(col_one_arr_CSI_04 ,key=lambda x: x[0])) #col_one_arr_BS = col_one_arr ## CONVERTIBLE STOCKS NEED TO BE DEFINED (MAX) OR *HIGHEST VALUE - IF MULTIPLE #obj = len(col_one_arr) #np.insert(col_one_arr, obj, ["PE_1", "PE_1_VALUE"], 0) #new_arr00 = np.append(col_one_arr, [["PE_1", "PE_1_VALUE"]],0) #new_arr01 = np.append(new_arr00, [["PE_1", "PE_1_VALUE"]],0) #new_arr02 = np.append(new_arr01, [["PE_2", "PE_2_VALUE"]],0) #new_arr03 = np.append(new_arr02, [["PEG_1", "PEG_1_VALUE"]],0) #new_arr04 = np.append(new_arr03, [["PEG_2", "PEG_2_VALUE"]],0) #new_arr05 = np.append(new_arr04, [["EV", "EB_VALUE"]],0) #new_arr06 = np.append(new_arr05, [["EBIT", "EBIT_VALUE"]],0) #new_arr07 = np.append(new_arr06, [["EBITDA", "EBITDA_VALUE"]],0) #new_arr08 = np.append(new_arr07, [["DE", "DE_VALUE"]],0) #new_arr09 = np.append(new_arr08, [["NE", "NE_VALUE"]],0) #new_arr10 = np.append(new_arr09, [["QR_1", "QR_1_VALUE"]],0) #new_arr11 = np.append(new_arr10, [["QR_2", "QR_2_VALUE"]],0) #new_arr12 = np.append(new_arr11, [["DY", "DY_VALUE"]],0) #new_arr13 = np.append(new_arr12, [["DPS", "DPS_VALUE"]],0) #new_arr14 = np.append(new_arr13, [["EPS", "EPS_VALUE"]],0) #new_arr15 = np.append(new_arr14, [["MCAP", "MCAP_VALUE"]],0) #new_arr16 = np.append(new_arr15, [["ROE", "ROE_VALUE"]],0) #new_arr17 = np.append(new_arr16, [["NetMargin", "NetMargin_VALUE"]],0) #new_arr18 = np.append(new_arr17, [["OperatingMargin", "OperatingMargin_VALUE"]],0) #new_arr18 file = pd.read_csv(input_date_1) file = file.drop(file.columns[2:], axis=1) file = file.set_axis([input_date_1, 'Default'], axis=1, inplace=False) file = file.dropna() col_one_list_1 = file[input_date_1].tolist() #print(f"\ncol_one_list:\n{col_one_list}\ntype:{type(col_one_list)}") col_one_list_1[0] = "Additional Info" #Enter subs Rev = 'Revenues' #print(Rev) Rev_0 = 'Revenue' #print(Rev_0) NI = 'Net income' #print(NI) RD = 'Research and development' #print(RD) subs00 = 'Cost of' subs01 = 'Income from operations' subs02 = 'Income before' subs03 = 'asic' subs04 = 'iluted' subs05 = 'Less' res00 = [i for i in col_one_list_1 if subs00 in i] #print(res00) res01 = [i for i in col_one_list_1 if subs01 in i] #print(res01) res02 = [i for i in col_one_list_1 if subs02 in i] #print(res02) res03 = [i for i in col_one_list_1 if subs03 in i] #print(res03) res04 = [i for i in col_one_list_1 if subs04 in i] #print(res04) res05 = [i for i in col_one_list_1 if subs05 in i] #print(res05) if len(NI) >= 2: NI = NI[0] #print(NI) file.replace(RD, "Research and development", inplace=True) file.replace(Rev_0, "Revenues", inplace=True) file.replace(Rev, "Revenues", inplace=True) file.replace(NI, "Net income", inplace=True) file.replace(res00, "Cost of revenues", inplace=True) file.replace(res01, "Operating income", inplace=True) file.replace(res02, "Income before taxes", inplace=True) file.replace(res03, "Basic EPS", inplace=True) file.replace(res04, "Diluted EPS", inplace=True) file.replace(res05, "Less: Adjustment Payments", inplace=True) col_one_arr = file.loc[file[input_date_1].isin(['Revenues', 'Net income', 'Research and development', 'Cost of revenues', 'Research and development', 'Operating income', 'Income before taxes', 'Basic EPS', 'Diluted EPS', 'Less: Adjustment Payments'])].to_numpy() #print(col_one_arr) #print(res05) #print(type(res05)) if res05: col_one_arr_01 = col_one_arr #print("Adj. Payments exists.") else: col_one_arr_00 = np.array([['Less: Adjustment Payments', '0']]) col_one_arr_01 = np.append(col_one_arr,col_one_arr_00, axis=0) #print("Adj. Payments has been added.") #print(col_one_arr_01) col_one_arr_CSI_00 = np.vstack({tuple(row) for row in col_one_arr_01}) col_one_arr_CSI_01 = np.array(sorted(col_one_arr_CSI_00 ,key=lambda x: x[0])) #print(col_one_arr_CSI_01) ### counts = {} for elem in col_one_arr_CSI_00: counts[elem[0]] = counts.get(elem[0], 0) + 1 new_array = [] for elem in col_one_arr_CSI_00: if counts[elem[0]] > 1: new_array.append(elem) ni_loc_0 = np.where(col_one_arr_CSI_01 == 'Net income')[0][0] ni_loc_1 = np.where(col_one_arr_CSI_01 == 'Net income')[0][1] Net_income_v_0 = col_one_arr_CSI_01[ni_loc_0][1] Net_income_v_1 = col_one_arr_CSI_01[ni_loc_1][1] if Net_income_v_0 > Net_income_v_1: Net_income_v_2 = Net_income_v_0 else: Net_income_v_2 = Net_income_v_1 #print(Net_income_v_2) if col_one_arr_CSI_01[ni_loc_0][1] == Net_income_v_2: col_one_arr_CSI_0 = np.delete(col_one_arr_CSI_01, ni_loc_1, 0) #print('NI_LOC_0') else: col_one_arr_CSI_0 = np.delete(col_one_arr_CSI_01, ni_loc_0, 0) #print('NI_LOC_1') col_one_arr_CSI = col_one_arr_CSI_0 else: ni_loc_0 = np.where(col_one_arr_CSI_01 == 'Net income')[0] col_one_arr_CSI = col_one_arr_CSI_01 #print(col_one_arr_CSI) #['Net income'] in col_one_arr_CSI[6] #print(input_date_2) file = pd.read_csv(input_date_2) #print(file) file = file.drop(file.columns[2:], axis=1) file = file.set_axis([input_date_2, 'Default'], axis=1, inplace=False) #print(file) col_one_list_2 = file[input_date_2].tolist() #print(col_one_list_0) #print(f"\ncol_one_list:\n{col_one_list}\ntype:{type(col_one_list)}") col_one_list_2[0] = "Additional Info" #col_one_list = list(dict.fromkeys(col_one_list_0)) #print(col_one_list) subs00 = 'Net income' subs01 = 'Depreciation' subs02 = 'Amortization' subs03 = 'Prepaid' subs04 = 'by operating activities' subs05 = 'in investing activities' subs06 = 'in financing activities' subs07 = 'Purchases of property' res00 = [i for i in col_one_list_2 if subs00 in i] #print(res00) res01 = [i for i in col_one_list_2 if subs01 in i] #print(res01) res02 = [i for i in col_one_list_2 if subs02 in i] #print(res02) res03 = [i for i in col_one_list_2 if subs03 in i] #print(res03) res04 = [i for i in col_one_list_2 if subs04 in i] #print(res04) res05 = [i for i in col_one_list_2 if subs05 in i] #print(res05) res06 = [i for i in col_one_list_2 if subs06 in i] #print(res06) res07 = [i for i in col_one_list_2 if subs07 in i] #print(res07) file.replace(res00, "Net income", inplace=True) file.replace(res01, "Depreciation", inplace=True) file.replace(res02, "Amortization", inplace=True) file.replace(res03, "Prepaid expenses", inplace=True) file.replace(res04, "Net cash provided by operating activities", inplace=True) file.replace(res05, "Net cash provided by investing activities", inplace=True) file.replace(res06, "Net cash provided by financing activities", inplace=True) file.replace(res07, "Purchase of property, plant and equipment", inplace=True) col_one_list_2 = file.loc[file[input_date_2].isin(['Net income', 'Depreciation', 'Amortization', 'Prepaid expenses', 'Net cash provided by operating activities', 'Net cash provided by investing activities', 'Net cash provided by financing activities', 'Purchase of property, plant and equipment'])].to_numpy() #print(col_one_list_2) if res03: col_one_arr_01 = col_one_list_2 #print("Prepaid. Expenses exists.") else: col_one_arr_00 = np.array([['Prepaid expenses', '0']]) col_one_arr_01 = np.append(col_one_arr,col_one_arr_00, axis=0) #print("Prepaid. Expenses has been added.") #print(col_one_arr_01) col_one_arr_CSCF = np.array(sorted(col_one_arr_01 ,key=lambda x: x[0])) #print(col_one_arr_BS) Accounts_receivable = float(col_one_arr_BS[0,1]) Cash_and_cash_equivalents = float(col_one_arr_BS[1,1]) Class_A_and_Class_B_stocks = float(col_one_arr_BS[2,1]) Convertible_stocks = float(col_one_arr_BS[3,1]) Current_assets = float(col_one_arr_BS[4,1]) Current_liabilities = float(col_one_arr_BS[5,1]) Long_term_debt = float(col_one_arr_BS[6,1]) Marketable_securities = float(col_one_arr_BS[7,1]) Prepaid_expenses = float(col_one_arr_BS[8,1]) Property_plant_and_equipment = float(col_one_arr_BS[9,1]) Retained_earnings = float(col_one_arr_BS[10,1]) Short_term_debt = float(col_one_arr_BS[11,1]) Total_assets = float(col_one_arr_BS[12,1]) Total_liabilities = float(col_one_arr_BS[13,1]) Total_stockholder_equity = float(col_one_arr_BS[14,1]) #print(col_one_arr_CSI) #Consolidated Statement of Income CSI Basic_EPS = float(col_one_arr_CSI[0,1]) Cost_of_revenues = float(col_one_arr_CSI[1,1]) Diluted_EPS = float(col_one_arr_CSI[2,1]) Income_before_taxes = float(col_one_arr_CSI[3,1]) Adjustment_Payments = float(col_one_arr_CSI[4,1]) Net_income = float(col_one_arr_CSI[5,1]) Operating_income = float(col_one_arr_CSI[6,1]) Research_Development = float(col_one_arr_CSI[7,1]) Revenues = float(col_one_arr_CSI[8,1]) #print(col_one_arr_CSCF) #Consolidated Statement of Cash Flow CSCF Net_income_CSCF = float(col_one_arr_CSCF[0,1]) Depreciation = float(col_one_arr_CSCF[1,1]) Amortization = float(col_one_arr_CSCF[2,1]) Prepaid_expenses_CSCF = float(col_one_arr_CSCF[3,1]) Net_cash_operating_activities = float(col_one_arr_CSCF[4,1]) Purchase_of_PPE = float(col_one_arr_CSCF[5,1]) Net_cash_investing_activities = float(col_one_arr_CSCF[6,1]) Net_cash_financing_activities = float(col_one_arr_CSCF[7,1]) #Avg Share Price file = pd.read_csv('Alphabet Inc.csv') ## TRY STATEMENT FOR date_input-29 -28 -27 -26... date_prefix = input_date_0[:-8] date_ls = ["31", "30", "29", "28"] upd_date_0 = date_prefix + date_ls[0] upd_date_1 = date_prefix + date_ls[1] upd_date_2 = date_prefix + date_ls[2] upd_date_3 = date_prefix + date_ls[3] #print(upd_date_0) print('\n') if upd_date_0 in file.values: col_one_arr_P = file[file['Date'].str.contains(upd_date_0)].to_numpy() #print(upd_date_0 + " exists.") else: if upd_date_1 in file.values: col_one_arr_P = file[file['Date'].str.contains(upd_date_1)].to_numpy() #print("Month finishes in -30") else: if upd_date_2 in file.values: col_one_arr_P = file[file['Date'].str.contains(upd_date_2)].to_numpy() #print("Month finishes in -29") else: if upd_date_3 in file.values: col_one_arr_P = file[file['Date'].str.contains(upd_date_3)].to_numpy() #print("Month finishes in -28") Open_P = col_one_arr_P[0,1] Close_P = col_one_arr_P[0,-3] Avg_P = ((Open_P + Close_P)/2) col_one_arr_P_Modified = np.append(col_one_arr_P, [Avg_P]) col_one_arr_P_Modified #Saved Number of Shares Outstanding (res13) def listToString(res13): str1 = "" for ele in res13: str1 += ele return str1 str00 = listToString(res13) str01 = str00.replace(",", "") str02 = str(str01.split("; ",1)[1])[0:6] Outstanding_shares = int(str02) #Retained Earnings -3 months prior .calc(CHANGE) #file.loc[file[input_date_0] == 'Retained earnings'] file = pd.read_csv(input_date_0) file = file.drop(file.columns[1], axis=1) file = file.set_axis([input_date_0, 'Default'], axis=1, inplace=False) col_one_list = file[input_date_0].tolist() #print(f"\ncol_one_list:\n{col_one_list}\ntype:{type(col_one_list)}") subs99 = 'Retained earnings' res99 = [i for i in col_one_list if subs99 in i] col_one_arr = file.loc[file[input_date_0].isin(['Retained earnings'])].to_numpy() RE_start = float(col_one_arr[0,1]) #https://www.investopedia.com/ask/answers/012015/how-do-i-calculate-dividend-payout-ratio-income-statement.asp #Dividends Paid or Payout Ratio => DP = (NI + RE) - RE.close :::::: DP.start = (NI.start + RE.start) - RE.close #Net Income -3 months prior .calc(CHANGE) file = pd.read_csv(input_date_1) file = file.drop(file.columns[3:], axis=1) file = file.drop(file.columns[1], axis=1) file = file.set_axis([input_date_1, 'Default'], axis=1, inplace=False) col_one_arr = file.loc[file[input_date_1].isin(['Net income'])].to_numpy() NI_start = float(col_one_arr[0,1]) RE_close = Retained_earnings DP_VALUE = (NI_start + RE_start) - RE_close #Free Cash Flow FCF - Additional Data from BS & CSCF file = pd.read_csv(input_date_0) file = file.drop(file.columns[1], axis=1) file = file.set_axis([input_date_0, 'Default'], axis=1, inplace=False) file = file[file['Default'].notna()] col_one_list = file[input_date_0].tolist() #print(f"\ncol_one_list:\n{col_one_list}\ntype:{type(col_one_list)}") subs98 = 'Total current a' subs97 = 'Total current l' subs96 = 'Property' res98 = [i for i in col_one_list if subs98 in i] res97 = [i for i in col_one_list if subs97 in i] res96 = [i for i in col_one_list if subs96 in i] str00 = listToString(res98) str01 = listToString(res97) str02 = listToString(res96) file.replace(str00, "Current assets", inplace=True) file.replace(str01, "Current liabilities", inplace=True) file.replace(str02, "Property, plant and equipment", inplace=True) col_one_arr = file.loc[file[input_date_0].isin(["Current assets"])].to_numpy() Current_assets_start = float(col_one_arr[0,1]) col_one_arr = file.loc[file[input_date_0].isin(["Current liabilities"])].to_numpy() Current_liabilities_start = float(col_one_arr[0,1]) col_one_arr = file.loc[file[input_date_0].isin(["Property, plant and equipment"])].to_numpy() Property_plant_and_equipment_start = float(col_one_arr[0,1]) #For OLD Depreciation Value file = pd.read_csv(input_date_2) file = file.drop(file.columns[3:], axis=1) file = file.drop(file.columns[1], axis=1) file = file.set_axis([input_date_2, 'Default'], axis=1, inplace=False) col_one_list = file[input_date_2].tolist() col_one_list[0] = "Additional Info" subs95 = 'Depreciation' res95 = [i for i in col_one_list if subs95 in i] str03 = listToString(res95) file.replace(str03, "Depreciation", inplace=True) col_one_arr = file.loc[file[input_date_2].isin(["Depreciation"])].to_numpy() Depreciation_start = float(col_one_arr[0,1]) ############################################################################# d = {input_date_0[:-6]: [ # BALANCE SHEET 'Accounts_receivable', #Balance_Sheet 'Cash_and_cash_equivalents', #Balance_Sheet 'Class_A_and_Class_B_stocks', #Balance_Sheet 'Convertible_stocks', #Balance_Sheet 'Outstanding_shares', #Balance_Sheet 'Current_assets', #Balance_Sheet 'Current_liabilities', #Balance_Sheet 'Long_term_debt', #Balance_Sheet 'Marketable_securities', #Balance_Sheet 'Prepaid_expenses', #Balance_Sheet 'Property_plant_and_equipment', #Balance_Sheet 'Retained_earnings', #Balance_Sheet 'Short_term_debt', #Balance_Sheet 'Total_assets', #Balance_Sheet 'Total_liabilities', #Balance_Sheet 'Total_stockholder_equity', #Balance_Sheet # INCOME STATEMENT 'Basic_EPS', #Income_Statement 'Cost_of_revenues', #Income_Statement 'Diluted_EPS', #Income_Statement 'Income_before_taxes', #Income_Statement 'Adjustment_Payments', #Income_Statement 'Net_income', #Income_Statement 'Operating_income', #Income_Statement 'Research_Development', #Income_Statement 'Revenues', #Income_Statement # CASH-FLOW STATEMENT 'Net_income_CSCF', #Cash_Flow_Statement 'Depreciation', #Cash_Flow_Statement 'Amortization', #Cash_Flow_Statement 'Prepaid_expenses_CSCF', #Cash_Flow_Statement 'Net_cash_operating_activities', #Cash_Flow_Statement 'Purchase_of_PPE', #Cash_Flow_Statement 'Net_cash_investing_activities', #Cash_Flow_Statement 'Net_cash_financing_activities'], #Cash_Flow_Statement ########################################################################################## 'Financial Variables /unit': [ # BALANCE SHEET Accounts_receivable, #Balance_Sheet Cash_and_cash_equivalents, #Balance_Sheet Class_A_and_Class_B_stocks, #Balance_Sheet Convertible_stocks, #Balance_Sheet Outstanding_shares, #Balance_Sheet Current_assets, #Balance_Sheet Current_liabilities, #Balance_Sheet Long_term_debt, #Balance_Sheet Marketable_securities, #Balance_Sheet Prepaid_expenses, #Balance_Sheet Property_plant_and_equipment, #Balance_Sheet Retained_earnings, #Balance_Sheet Short_term_debt, #Balance_Sheet Total_assets, #Balance_Sheet Total_liabilities, #Balance_Sheet Total_stockholder_equity, #Balance_Sheet # INCOME STATEMENT Basic_EPS, #Income_Statement Cost_of_revenues, #Income_Statement Diluted_EPS, #Income_Statement Income_before_taxes, #Income_Statement Adjustment_Payments, #Income_Statement Net_income, #Income_Statement Operating_income, #Income_Statement Research_Development, #Income_Statement Revenues, #Income_Statement # CASH-FLOW STATEMENT Net_income_CSCF, #Cash_Flow_Statement Depreciation, #Cash_Flow_Statement Amortization, #Cash_Flow_Statement Prepaid_expenses_CSCF, #Cash_Flow_Statement Net_cash_operating_activities, #Cash_Flow_Statement Purchase_of_PPE, #Cash_Flow_Statement Net_cash_investing_activities, #Cash_Flow_Statement Net_cash_financing_activities #Cash_Flow_Statement ]} df= pd.DataFrame(data=d) print(df) filename = input_date_0[:-6] + "-Variables-DF.csv" df.to_csv(filename) #Ratios Equation & Formula ############################################################################# #Ratios Equation & Formula #Price to Earnings #PE_1_VALUE (Calculate EPS using Net Income & Number of shares issues and outstanding) #PE_1_VALUE = Avg_P/(Revenues/Class_A_and_Class_B_stocks) PE_1_VALUE = Avg_P / (Net_income / Outstanding_shares) / 1000 #Units print(PE_1_VALUE) #PE_2_VALUE (Calculate PE_2 using Market Price & Diluted EPS [CSI]) PE_2_0_VALUE = Avg_P / Diluted_EPS print(PE_2_0_VALUE) PE_2_1_VALUE = Avg_P / Basic_EPS print(PE_2_1_VALUE) print('\n') #Price/Earnings to Growth #PEG_1_VALUE (Calculate PEG using Expected Growth Rate as input) #print('Enter EGR:') #MISSING VALUE EGR can only be determined at the present moment using Expected Growth Rate from: Citibank, Goldman Sachs, JPM, MorganStanley, BNP Paribas - Expected EPS Growth #Other sources include the Wall Street Journal WSJ and Yahoo Finance #PEG_2_VALUE (Calculate from past 3-6-9-12 months growth rate using linear and non-linear regressions) #MISSING VALUE Data from the past 3-6-9-12 months #Other source: https://www.investopedia.com/terms/p/price-earningsratio.asp #EV and EBITDA-related ratios EV_1_VALUE = Avg_P * Outstanding_shares print(EV_1_VALUE) EV_2_VALUE = Avg_P * Class_A_and_Class_B_stocks print(EV_2_VALUE) EBIT_VALUE = Net_income_CSCF #Interest (N.A) print(EBIT_VALUE) EBITDA_VALUE = EBIT_VALUE - Depreciation - Amortization print(EBITDA_VALUE) EV_1_EBITDA_VALUE = EV_1_VALUE / EBITDA_VALUE print(EV_1_EBITDA_VALUE) EV_2_EBITDA_VALUE = EV_2_VALUE / EBITDA_VALUE print(EV_2_EBITDA_VALUE) print('\n') DE_VALUE = (Long_term_debt + Short_term_debt) / EBITDA_VALUE print(DE_VALUE) NE_VALUE = (Long_term_debt + Short_term_debt - Cash_and_cash_equivalents) / EBITDA_VALUE print(NE_VALUE) QR_1_VALUE = (Cash_and_cash_equivalents + Marketable_securities + Accounts_receivable) / Current_liabilities print(QR_1_VALUE) QR_2_VALUE = (Current_assets - Prepaid_expenses) / Current_liabilities print(QR_2_VALUE) print('\n') #Dividend-related ratios EPS_VALUE = (Net_income - Convertible_stocks) / Outstanding_shares #https://www.investopedia.com/ask/answers/032515/what-difference-between-earnings-share-and-dividends-share.asp print(EPS_VALUE) #Dividends Paid or Payout Ratio => DP = (NI + RE) - RE.close :::::: DP.start = (NI.start + RE.start) - RE.close #https://www.investopedia.com/ask/answers/012015/how-do-i-calculate-dividend-payout-ratio-income-statement.asp DPS_VALUE = DP_VALUE / Outstanding_shares print(DPS_VALUE) DY_1_VALUE = Net_income / ((RE_close - RE_start) / RE_close) * 4 # for 4 Quarters/Year print(DY_1_VALUE) #Approximation. Dividend Yield should be calculated within -12 months, not -3months DY_2_VALUE = DPS_VALUE / Avg_P * 1000 #Units print(DY_2_VALUE) Div_VALUE = -(Net_cash_financing_activities) print(Div_VALUE) print('\n') #Other Ratios (MCAP, ROE, Margins...) Verify Ratio Formulas MCAP_VALUE = Avg_P / Outstanding_shares print(MCAP_VALUE) ROE_VALUE = Net_income / Total_stockholder_equity * 4 # or 4 Quarters/Year :::: Other formula(s) exist print(ROE_VALUE) NetMargin_VALUE = (Revenues - Cost_of_revenues) / Revenues print(NetMargin_VALUE) OperatingMargin_VALUE = Net_cash_operating_activities - Revenues print(OperatingMargin_VALUE) print('\n') #MISSING VALUE: Income before Tax for -6 months (Income_before_taxes is only -3 months). Use current Tax Rate print(Net_income) print(Income_before_taxes) Tax_VALUE = 1 - (Net_income / Income_before_taxes) print(Tax_VALUE) FCF_2_VALUE = (Property_plant_and_equipment + (Depreciation/2)) - (Property_plant_and_equipment_start + (Depreciation_start/2)) #CHANGE(CAPEX) also looking at old Depreciation print(FCF_2_VALUE) #CHANGE(Assets-Liabilities) - ()#CHANGE(CAPEX) FCF_0_VALUE = EBIT_VALUE * (1 - Tax_VALUE) - (Amortization/2) - ((Current_assets - Current_liabilities) - (Current_assets_start - Current_liabilities_start)) - (Property_plant_and_equipment - Property_plant_and_equipment_start) print(FCF_0_VALUE) FCF_1_VALUE = Revenues - (Amortization/2) - ((Current_assets - Current_liabilities) - (Current_assets_start - Current_liabilities_start)) - (Property_plant_and_equipment - Property_plant_and_equipment_start) print(FCF_1_VALUE) #R&D print(Research_Development) ### USE BOTH 'Outstanding_shares' & 'Class_A_and_Class_B_stocks' FOR RELATED RATIOS? ############################################################################# # UPDATED :: Ratios Equation & Formula # () PE_1_VALUE = Avg_P / (Net_income / Outstanding_shares) / 1000 ## PE_2_2_VALUE = Avg_P / EPS_VALUE #print(PE_2_2_VALUE) # (CSCF) EBIT_VALUE = Net_income_CSCF && (CSI) EBIT_VALUE_0 = Income_before_taxes EBIT_VALUE_0 = Income_before_taxes #print(EBIT_VALUE_0) # (CSCF) EBITDA_VALUE = EBIT_VALUE - Depreciation - Amortization EBITDA_VALUE_0 = EBIT_VALUE_0 - Depreciation - Amortization #print(EBITDA_VALUE_0) # () EV_1_EBITDA_VALUE_0 = EV_1_VALUE / EBITDA_VALUE_0 #print(EV_1_EBITDA_VALUE_0) EV_2_EBITDA_VALUE_0 = EV_2_VALUE / EBITDA_VALUE_0 #print(EV_2_EBITDA_VALUE_0) # () DE_VALUE_0 = (Long_term_debt + Short_term_debt) / EBITDA_VALUE_0 #print(DE_VALUE_0) NE_VALUE_0 = (Long_term_debt + Short_term_debt - Cash_and_cash_equivalents) / EBITDA_VALUE_0 #print(NE_VALUE_0) # () #Div_VALUE_0 = Net_income - (EPS_VALUE * Outstanding_shares) #print(Div_VALUE_0) Div_VALUE_1 = Net_income - (Basic_EPS * Outstanding_shares) #print(Div_VALUE_1) Div_VALUE_2 = Net_income - (Diluted_EPS * Outstanding_shares) #print(Div_VALUE_2) #print('\n') # () #DPS_7 = EPS_VALUE * (Div_VALUE / EPS_VALUE) DPS_00 = EPS_VALUE * (Div_VALUE / Net_income) #print(DPS_00) #DPS_01 = EPS_VALUE * (Div_VALUE_0 / Net_income) #print(DPS_01) DPS_02 = EPS_VALUE * (Div_VALUE_1 / Net_income) #print(DPS_02) DPS_03 = EPS_VALUE * (Div_VALUE_2 / Net_income) #print(DPS_03) DPS_10 = Basic_EPS * (Div_VALUE / Net_income) #print(DPS_10) #DPS_11 = Basic_EPS * (Div_VALUE_0 / Net_income) #print(DPS_11) DPS_12 = Basic_EPS * (Div_VALUE_1 / Net_income) #print(DPS_12) DPS_13 = Basic_EPS * (Div_VALUE_2 / Net_income) #print(DPS_13) DPS_20 = Diluted_EPS * (Div_VALUE / Net_income) #print(DPS_20) #DPS_21 = Diluted_EPS * (Div_VALUE_0 / Net_income) #print(DPS_21) DPS_22 = Diluted_EPS * (Div_VALUE_1 / Net_income) #print(DPS_22) DPS_23 = Diluted_EPS * (Div_VALUE_2 / Net_income) #print(DPS_23) #DPS_30 = Div_VALUE / Outstanding_shares #print(DPS_30) #DPS_31 = Div_VALUE_0 / Outstanding_shares #print(DPS_31) #DPS_32 = Div_VALUE_1 / Outstanding_shares #print(DPS_32) #DPS_33 = Div_VALUE_2 / Outstanding_shares #print(DPS_33) #print('\n') # () DY_2_VALUE_00 = DPS_00 / Avg_P #Units #DY_2_VALUE_01 = DPS_01 / Avg_P DY_2_VALUE_02 = DPS_02 / Avg_P DY_2_VALUE_03 = DPS_03 / Avg_P #print(DY_2_VALUE_00) #print(DY_2_VALUE_01) #print(DY_2_VALUE_02) #print(DY_2_VALUE_03) DY_2_VALUE_04 = DPS_10 / Avg_P #DY_2_VALUE_05 = DPS_11 / Avg_P DY_2_VALUE_06 = DPS_12 / Avg_P DY_2_VALUE_07 = DPS_13 / Avg_P #print(DY_2_VALUE_04) #print(DY_2_VALUE_05) #print(DY_2_VALUE_06) #print(DY_2_VALUE_07) DY_2_VALUE_08 = DPS_20 / Avg_P #DY_2_VALUE_09 = DPS_21 / Avg_P DY_2_VALUE_10 = DPS_22 / Avg_P DY_2_VALUE_11 = DPS_23 / Avg_P #print(DY_2_VALUE_08) #print(DY_2_VALUE_09) #print(DY_2_VALUE_10) #print(DY_2_VALUE_11) #DY_2_VALUE_12 = DPS_30 / Avg_P #DY_2_VALUE_13 = DPS_31 / Avg_P #DY_2_VALUE_14 = DPS_32 / Avg_P #DY_2_VALUE_15 = DPS_33 / Avg_P #print(DY_2_VALUE_12) #print(DY_2_VALUE_13) #print(DY_2_VALUE_14) #print(DY_2_VALUE_15) #print('\n') # () # Following MCAP uses '*' rather than P/O_S Ratio #MCAP_VALUE_0 = Outstanding_shares * Avg_P #print(MCAP_VALUE_0) # () #FCF_0_VALUE = EBIT_VALUE_0 * (1 - Tax_VALUE) - (Amortization/2) - ((Current_assets - Current_liabilities) - (Current_assets_start - Current_liabilities_start)) - (Property_plant_and_equipment - Property_plant_and_equipment_start) #print(FCF_0_VALUE) #print('\n') # () ### CHECK FOR (Net Income (I/S)) //DONE// ### CHECK FOR [Outstanding_shares] [Dividends] [EPS && DPS] [ADD AND USE ALL SAME VARIABLES OF DIFFERENT VALUE(S)] # Book Value BV BV_0 = Total_assets - Total_liabilities #print(BV_0) #print('\n') #GPM_0 = Gross Profit / Sales GPM_0 = (Revenues - Cost_of_revenues) / Revenues #print(GPM_0) # Operating Profit Margin OPM_0 = Income_before_taxes / Revenues #print(OPM_0) # Profit Margin PM_0 = Net_income / Revenues #print(PM_0) # Return on Assets ROA_0 = Net_income / Total_assets #print(ROA_0) # Return on Investments ROI_0 = Net_income / Total_stockholder_equity #print(ROI_0) # Return on Capital ROC_0 = Net_income / (Total_stockholder_equity + Short_term_debt + Long_term_debt) #print(ROC_0) # ADD FORMULAS BELOW #ROC_1 = (Price [Year] – Price [Previous Year]) / Price [Previous Year] #print(ROC_1) #ROC_2 = (Price [Year] – Price [Base Year]) / Price [Base Year] #print(ROC_2) # Return on Capital Employed ROCE_0 = Operating_income / (Total_assets - Current_liabilities) #print(ROCE_0) #print('\n') # Operating Profit # ADD FORMULA BELOW #OP_0 = Revenue – Operating Costs – COGS – Other Day-to-day Expenses #print() #OP_0 = Income_before_taxes #print(OP_0) # Dividend Pay-out #DPO_0 = Div_VALUE / Net_income #DPO_1 = Div_VALUE_0 / Net_income #DPO_2 = Div_VALUE_1 / Net_income #DPO_3 = Div_VALUE_2 / Net_income #print(DPO_0) #print(DPO_1) #print(DPO_2) #print(DPO_3) #print('\n') # Preferred Stock Dividends PSD_0 = Net_income - Outstanding_shares #print(PSD_0) # Retention Ratio RR_0 = (Net_income - Div_VALUE) / Net_income #RR_1 = (Net_income - Div_VALUE_0) / Net_income RR_2 = (Net_income - Div_VALUE_1) / Net_income RR_3 = (Net_income - Div_VALUE_2) / Net_income #print(RR_0) #print(RR_1) #print(RR_2) #print(RR_3) #print('\n') # Market Value per Share MVPS_0 = MCAP_VALUE / Outstanding_shares #print(MVPS_0) #MVPS_1 = MCAP_VALUE_0 / Outstanding_shares #print(MVPS_1) MVPS_PRICE_0 = MVPS_0 / Avg_P #print(MVPS_PRICE_0) #MVPS_PRICE_1 = MVPS_1 / Avg_P #print(MVPS_PRICE_1) # Price Earnings PE_00 = MVPS_0 / EPS_VALUE #print(PE_00) PE_01 = MVPS_0 / Basic_EPS #print(PE_01) PE_02 = MVPS_0 / Diluted_EPS #print(PE_02) #PE_10 = MVPS_1 / EPS_VALUE #print(PE_10) #PE_11 = MVPS_1 / Basic_EPS #print(PE_11) #PE_12 = MVPS_1 / Diluted_EPS #print(PE_12) #print('\n') # Sustainable Growth Rate SGR_0 = ROE_VALUE * RR_0 #print(SGR_0) #SGR_1 = ROE_VALUE * RR_1 #print(SGR_1) SGR_2 = ROE_VALUE * RR_2 #print(SGR_2) SGR_3 = ROE_VALUE * RR_3 #print(SGR_3) #print('\n') # Book Value per Share BVPS_0 = Total_stockholder_equity / Outstanding_shares #print(BVPS_0) #print('\n') # Market Book MB_0 = (MCAP_VALUE / Outstanding_shares) / BVPS_0 #print(MB_0) #MB_1 = (MCAP_VALUE_0 / Outstanding_shares) / BVPS_0 #print(MB_1) #MB_2 = Avg_P / BVPS_0 #print(MB_2) #print('\n') # New Dividend Yield (DY) Formulas using MVPS DY_0 = DPS_VALUE / MVPS_0 #print(DY_0) DY_0_00 = DPS_00 / MVPS_0 #DY_0_01 = DPS_01 / MVPS_0 DY_0_02 = DPS_02 / MVPS_0 DY_0_03 = DPS_03 / MVPS_0 #print(DY_0_00) #print(DY_0_01) #print(DY_0_02) #print(DY_0_03) DY_0_04 = DPS_10 / MVPS_0 #DY_0_05 = DPS_11 / MVPS_0 DY_0_06 = DPS_12 / MVPS_0 DY_0_07 = DPS_13 / MVPS_0 #print(DY_0_04) #print(DY_0_05) #print(DY_0_06) #print(DY_0_07) DY_0_08 = DPS_20 / MVPS_0 #DY_0_09 = DPS_21 / MVPS_0 DY_0_10 = DPS_22 / MVPS_0 DY_0_11 = DPS_23 / MVPS_0 #print(DY_0_08) #print(DY_0_09) #print(DY_0_10) #print(DY_0_11) #DY_0_12 = DPS_30 / MVPS_0 #DY_0_13 = DPS_31 / MVPS_0 #DY_0_14 = DPS_32 / MVPS_0 #DY_0_15 = DPS_33 / MVPS_0 #print(DY_0_12) #print(DY_0_13) #print(DY_0_14) #print(DY_0_15) #print('\n') # () #DY_1 = DPS_VALUE / MVPS_1 #print(DY_1) #DY_1_00 = DPS_00 / MVPS_1 #DY_1_01 = DPS_01 / MVPS_1 #DY_1_02 = DPS_02 / MVPS_1 #DY_1_03 = DPS_03 / MVPS_1 #print(DY_1_00) #print(DY_1_01) #print(DY_1_02) #print(DY_1_03) #DY_1_04 = DPS_10 / MVPS_1 #DY_1_05 = DPS_11 / MVPS_1 #DY_1_06 = DPS_12 / MVPS_1 #DY_1_07 = DPS_13 / MVPS_1 #print(DY_1_04) #print(DY_1_05) #print(DY_1_06) #print(DY_1_07) #DY_1_08 = DPS_20 / MVPS_1 #DY_1_09 = DPS_21 / MVPS_1 #DY_1_10 = DPS_22 / MVPS_1 #DY_1_11 = DPS_23 / MVPS_1 #print(DY_1_08) #print(DY_1_09) #print(DY_1_10) #print(DY_1_11) #DY_1_12 = DPS_30 / MVPS_1 #DY_1_13 = DPS_31 / MVPS_1 #DY_1_14 = DPS_32 / MVPS_1 #DY_1_15 = DPS_33 / MVPS_1 #print(DY_1_12) #print(DY_1_13) #print(DY_1_14) #print(DY_1_15) #print('\n') Equity_multiplier = Total_assets / Total_stockholder_equity #print(Equity_multiplier) Total_asset_turnover = Revenues / Total_assets #print(Total_asset_turnover) #    ·       Apply YOY, HA && VA Analysis ## TO BE CONTINUED (DEFINE SINGLE VARIABLES) ## ADD LIQUIDITY [LEVERAGE], SOLVENCY [LEVERAGE] AND EFFICIENCY RATIO [BS] [CSI] #Liquidity Ratio [BS] [CSI] #Current Ratio = Current Assets / Current Liabilities Cur_R = Current_assets / Current_liabilities print(Cur_R) #Quick Ratio = (Current Assets - Inventory) / Current Liabilities Inventory = Total_assets - Cash_and_cash_equivalents - Accounts_receivable QR = (Current_assets - Inventory) / Current_liabilities print(QR) #Cash Ratio = Cash / Current Liabilities Cas_R = Cash_and_cash_equivalents / Current_liabilities print(Cas_R) #Net Worth Capital (NWC) = Current Assets - Current Liabilities NWC = Current_assets - Current_liabilities print(NWC) #NWC to Total Assets = NWC / Total Assets NWC_TA = NWC / Total_assets print(NWC_TA) #Interval Measure = (Current Assets / Average Daily Operating Costs) / [Current Assets / [(COGS + Operating Expense) / 365]] IM = (Current_assets / Operating_income) / (Current_assets / ((Cost_of_revenues + Operating_income) / 365)) print(IM) print('\n') #Solvency Ratios [BS] [CSI] #Debt Ratio (DR) = Total Debt / Total Assets Total_debt = Short_term_debt + Long_term_debt DR = Total_debt / Total_assets print(DR) #Equity Ratio = Total Equity / Total Assets ER = Total_stockholder_equity / Total_assets print(ER) #Debt-to-Equity Ratio = Total Debt / Total Equity DER = Total_debt / Total_stockholder_equity print(DER) #Equity Multiplier (Financial Leverage) = Total Assets / Total Equity EM = Total_assets / Total_stockholder_equity print(EM) #Fixed to Equity = Net Fixed Assets / Total Equity NFA = Total_assets - Current_assets FE = NFA / Total_stockholder_equity print(FE) #Long-Term Debt Ratio = Long-Term Debt / (Long-Term Debt + Total Equity) LTDR = Long_term_debt / (Long_term_debt + Total_stockholder_equity) print(LTDR) #Times Interest Earned (Interest Coverage) = EBIT / Interest Interest = - (Operating_income - Income_before_taxes) TIE = Operating_income / Interest print(TIE) #Cash Coverage = (EBIT + Depreciation) / Interest CC = (Operating_income + Depreciation) / Interest print(CC) #Debt Service Coverage Ratio = (Operating Income / Total Debt Service Costs) / [Operating Income / (Interest + Principal)] Principal = Current_liabilities - Short_term_debt TDS = (Interest * (1 - Tax_VALUE)) + Principal DSCR = (Operating_income / TDS) / (Operating_income / (Interest + Principal)) print(DSCR) print('\n') #Efficiency Ratios [BS] [CSI] #Inventory Turnover = COGS / Inventory IT = Cost_of_revenues / Inventory print(IT) #Day’s Sales in Inventory (Days Inventory Outstanding, or DIO) = 365 / Inventory Turnover DSI = 365 / IT print(DSI) #Receivables Turnover = Sales / Accounts Receivables Sales = Revenues - Operating_income - Cost_of_revenues - Research_Development RT = Sales / Accounts_receivable print(RT) #Day’s Sales in Receivables (Days Sales Outstanding, or DIO) = 365 / Receivables Turnover DSR = 365 / RT print(DSR) #Payables Turnover = COGS / Accounts Payable # Retrieve Accounts Payable from [BS] #PT = Cost_of_revenues / (...) #Day’s Sales in Payables (Days Payables Outstanding, or DIO) = 365 / Payables Turnover #Cash Conversion Cycle (CCC) = Day’s Sales in Inventory + Day’s Sales in Receivables - Day’s Sales in Payables #Total Asset Turnover (TATO) = Sales / Total Assets TATO = Sales / Total_assets print(TATO) #Capital Intensity = Total Assets / Sales CI = Total_assets / Sales print(CI) #Fixed Asset Turnover = Sales / Net Fixed Assets FAT = Sales / NFA print(FAT) #NWC Turnover = Sales / NWC NWCT = Sales / NWC print(NWCT) ## NOTES # Separate previous RATIOS into two sections: PROFITABILITY and MARKET VALUE RATIOS. # Separate new RATIOS into two, and three sub-sections. # Loop over all data # VERIFY ALL PROCESSED DATA (e.g. Date[1], Date[n-1], Date[n]) # Start using PMP Course to write BUSINESS PLAN & STRATEGY intended for new STAKEHOLDERS. # Finish building prototype for all 10 companies. EBIT_DEFAULT = Operating_income print(EBIT_DEFAULT) #Market Value EBITDA_DEFAULT = EBIT_DEFAULT - Depreciation - Amortization print(EBITDA_DEFAULT) #Market Value # () EV_1_EBITDA_DEFAULT = EV_1_VALUE / EBITDA_DEFAULT print(EV_1_EBITDA_DEFAULT) #Market Value EV_2_EBITDA_DEFAULT = EV_2_VALUE / EBITDA_DEFAULT print(EV_2_EBITDA_DEFAULT) #Market Value print('\n') # () DE_DEFAULT = (Long_term_debt + Short_term_debt) / EBITDA_DEFAULT print(DE_DEFAULT) #Solvency [Leverage] NE_DEFAULT = (Long_term_debt + Short_term_debt - Cash_and_cash_equivalents) / EBITDA_DEFAULT print(NE_DEFAULT) #Solvency [Leverage] FCF_3_VALUE = EBIT_VALUE_0 * (1 - Tax_VALUE) - (Amortization/2) - ((Current_assets - Current_liabilities) - (Current_assets_start - Current_liabilities_start)) - (Property_plant_and_equipment - Property_plant_and_equipment_start) print(FCF_3_VALUE) #Solvency [Leverage] FCF_DEFAULT = EBIT_DEFAULT * (1 - Tax_VALUE) - (Amortization/2) - ((Current_assets - Current_liabilities) - (Current_assets_start - Current_liabilities_start)) - (Property_plant_and_equipment - Property_plant_and_equipment_start) print(FCF_DEFAULT) #Solvency [Leverage] ### USE BOTH 'Outstanding_shares' & 'Class_A_and_Class_B_stocks' FOR RELATED RATIOS? #print('\n') d = {input_date_0[:-6]: [ # PROFITABILITY 'GPM_0', #Profitability 'OPM_0', #Profitability 'OPER_MARGIN_VALUE', #Profitability 'PM_0', #Profitability 'ROA_0', #Profitability 'ROI_0', #Profitability 'ROE_VALUE', #Profitability 'ROC_0', #Profitability 'ROCE_0', #Profitability # MARKET VALUE MEASURES 'EV_1_VALUE', #Market Value 'EV_2_VALUE', #Market Value 'EBIT_DEFAULT', ############################## 'EBIT_VALUE', #Market Value 'EBIT_VALUE_0', #Market Value 'EBITDA_DEFAULT', ############################## 'EBITDA_VALUE', #Market Value 'EBITDA_VALUE_0', #Market Value 'EV_1_EBITDA_VALUE', #Market Value 'EV_2_EBITDA_VALUE', #Market Value 'EV_1_EBITDA_VALUE_0', #Market Value 'EV_2_EBITDA_VALUE_0', #Market Value 'EV_1_EBITDA_DEFAULT', ############################## 'EV_2_EBITDA_DEFAULT', ############################## 'EPS_VALUE', #Market Value 'DPS_VALUE', #Market Value 'DPS_00', #Market Value 'DPS_02', #Market Value 'DPS_03', #Market Value 'DPS_10', #Market Value 'DPS_12', #Market Value 'DPS_13', #Market Value 'DPS_20', #Market Value 'DPS_22', #Market Value 'DPS_23', #Market Value 'PE_1_VALUE', #Market Value 'PE_2_0_VALUE', #Market Value 'PE_2_1_VALUE', #Market Value 'PE_00', #Market Value 'PE_01', #Market Value 'PE_02', #Market Value ############################## MISSING DPO ############################## 'RR_0', #Market Value 'RR_2', #Market Value 'RR_3', #Market Value 'DY_1_VALUE', #Market Value 'DY_2_VALUE', #Market Value 'DY_2_VALUE_00', #Market Value 'DY_2_VALUE_02', #Market Value 'DY_2_VALUE_03', #Market Value 'DY_2_VALUE_04', #Market Value 'DY_2_VALUE_06', #Market Value 'DY_2_VALUE_07', #Market Value 'DY_2_VALUE_08', #Market Value 'DY_2_VALUE_10', #Market Value 'DY_2_VALUE_11', #Market Value 'DY_0', #Market Value 'DY_0_00', #Market Value 'DY_0_02', #Market Value 'DY_0_03', #Market Value 'DY_0_04', #Market Value 'DY_0_06', #Market Value 'DY_0_07', #Market Value 'DY_0_08', #Market Value 'DY_0_10', #Market Value 'DY_0_11', #Market Value 'Div_VALUE', #Market Value 'Div_VALUE_1', #Market Value 'Div_VALUE_2', #Market Value 'PSD_0', #Market Value 'MCAP_VALUE', #Market Value 'BV_0', #Market Value 'MB_0', #Market Value 'MVPS_0', #Market Value 'MVPS_PRICE_0', #Market Value 'BVPS_0', #Market Value 'SGR_0', #Market Value 'SGR_2', #Market Value 'SGR_3', #Market Value 'RD_VALUE', #Market Value # LEVERAGE # i) LIQUIDITY RATIOS 'Cur_R_VALUE', #Liquidity [Leverage] 'QR_1_VALUE', #Liquidity [Leverage] 'QR_2_VALUE', #Liquidity [Leverage] 'QR_VALUE', #Liquidity [Leverage] 'Cas_R_VALUE', #Liquidity [Leverage] 'NWC_VALUE', #Liquidity [Leverage] 'NWC_TA_VALUE', #Liquidity [Leverage] 'IM_VALUE', #Liquidity [Leverage] # ii) SOLVENCY RATIOS 'DE_VALUE', #Solvency [Leverage] 'DE_VALUE_0', #Solvency [Leverage] 'NE_VALUE_0', #Solvency [Leverage] 'DE_DEFAULT', ############################## 'NE_DEFAULT', ############################## 'DR_VALUE', #Solvency [Leverage] 'ER_VALUE', #Solvency [Leverage] 'DER_VALUE', #Solvency [Leverage] 'EM_VALUE', #Solvency [Leverage] 'FE_VALUE', #Solvency [Leverage] 'LTDR_VALUE', #Solvency [Leverage] 'TIE_VALUE', #Solvency [Leverage] 'CC_VALUE', #Solvency [Leverage] 'DSCR_VALUE', #Solvency [Leverage] 'EQUITY_MULTIPLIER', #Solvency [Leverage] 'Tax_VALUE', #Solvency [Leverage] 'FCF_0_VALUE', #Solvency [Leverage] 'FCF_1_VALUE', #Solvency [Leverage] 'FCF_2_VALUE', #Solvency [Leverage] 'FCF_3_VALUE', ############################## 'FCF_DEFAULT', ############################## # EFFICIENCY 'IT_VALUE', #Efficiency 'DSI_VALUE', #Efficiency 'RT_VALUE', #Efficiency 'DSR_VALUE', #Efficiency 'TOT_ASSET_TURNOVER', #Efficiency 'TATO_VALUE', #Efficiency 'CI_VALUE', #Efficiency 'FAT_VALUE', #Efficiency 'NWCT_VALUE'], #Efficiency ########################################################################################## 'Financial Ratio /unit': [ # PROFITABILITY GPM_0, #Profitability OPM_0, #Profitability OperatingMargin_VALUE, #Profitability PM_0, #Profitability ROA_0, #Profitability ROI_0, #Profitability ROE_VALUE, #Profitability ROC_0, #Profitability ROCE_0, #Profitability # MARKET VALUE MEASURES EV_1_VALUE, #Market Value EV_2_VALUE, #Market Value EBIT_DEFAULT, ############################## EBIT_VALUE, #Market Value EBIT_VALUE_0, #Market Value EBITDA_DEFAULT, ############################## EBITDA_VALUE, #Market Value EBITDA_VALUE_0, #Market Value EV_1_EBITDA_VALUE, #Market Value EV_2_EBITDA_VALUE, #Market Value EV_1_EBITDA_VALUE_0, #Market Value EV_2_EBITDA_VALUE_0, #Market Value EV_1_EBITDA_DEFAULT, ############################## EV_2_EBITDA_DEFAULT, ############################## EPS_VALUE, #Market Value DPS_VALUE, #Market Value DPS_00, #Market Value DPS_02, #Market Value DPS_03, #Market Value DPS_10, #Market Value DPS_12, #Market Value DPS_13, #Market Value DPS_20, #Market Value DPS_22, #Market Value DPS_23, #Market Value PE_1_VALUE, #Market Value PE_2_0_VALUE, #Market Value PE_2_1_VALUE, #Market Value PE_00, #Market Value PE_01, #Market Value PE_02, #Market Value ############################## MISSING DPO ############################## RR_0, #Market Value RR_2, #Market Value RR_3, #Market Value DY_1_VALUE, #Market Value DY_2_VALUE, #Market Value DY_2_VALUE_00, #Market Value DY_2_VALUE_02, #Market Value DY_2_VALUE_03, #Market Value DY_2_VALUE_04, #Market Value DY_2_VALUE_06, #Market Value DY_2_VALUE_07, #Market Value DY_2_VALUE_08, #Market Value DY_2_VALUE_10, #Market Value DY_2_VALUE_11, #Market Value DY_0, #Market Value DY_0_00, #Market Value DY_0_02, #Market Value DY_0_03, #Market Value DY_0_04, #Market Value DY_0_06, #Market Value DY_0_07, #Market Value DY_0_08, #Market Value DY_0_10, #Market Value DY_0_11, #Market Value Div_VALUE, #Market Value Div_VALUE_1, #Market Value Div_VALUE_2, #Market Value PSD_0, #Market Value MCAP_VALUE, #Market Value BV_0, #Market Value MB_0, #Market Value MVPS_0, #Market Value MVPS_PRICE_0, #Market Value BVPS_0, #Market Value SGR_0, #Market Value SGR_2, #Market Value SGR_3, #Market Value Research_Development, #Market Value # LEVERAGE # i) LIQUIDITY RATIOS Cur_R, #Liquidity [Leverage] QR_1_VALUE, #Liquidity [Leverage] QR_2_VALUE, #Liquidity [Leverage] QR, #Liquidity [Leverage] Cas_R, #Liquidity [Leverage] NWC, #Liquidity [Leverage] NWC_TA, #Liquidity [Leverage] IM, #Liquidity [Leverage] # ii) SOLVENCY RATIOS DE_VALUE, #Solvency [Leverage] DE_VALUE_0, #Solvency [Leverage] NE_VALUE_0, #Solvency [Leverage] DE_DEFAULT, ############################## NE_DEFAULT, ############################## DR, #Solvency [Leverage] ER, #Solvency [Leverage] DER, #Solvency [Leverage] EM, #Solvency [Leverage] FE, #Solvency [Leverage] LTDR, #Solvency [Leverage] TIE, #Solvency [Leverage] CC, #Solvency [Leverage] DSCR, #Solvency [Leverage] Equity_multiplier, #Solvency [Leverage] Tax_VALUE, #Solvency [Leverage] FCF_0_VALUE, #Solvency [Leverage] FCF_1_VALUE, #Solvency [Leverage] FCF_2_VALUE, #Solvency [Leverage] FCF_3_VALUE, ############################## FCF_DEFAULT, ############################## # EFFICIENCY IT, #Efficiency DSI, #Efficiency RT, #Efficiency DSR, #Efficiency Total_asset_turnover, #Efficiency TATO, #Efficiency CI, #Efficiency FAT, #Efficiency NWCT #Efficiency ]} df= pd.DataFrame(data=d) #print(df) filename = input_date_0[:-6] + "-Ratio-DF.csv" df.to_csv(filename) # In[ ]: # In[ ]: # In[ ]: # In[ ]:
#!/usr/bin/env python # -*- coding: utf-8 -*- """ Tables ====== The table generation process use a :class:`TableGenerator` to gather all the cells of the table. The methods :meth:`TableGenerator.get_table` and :meth:`TableGenerator.get_long_table` returns the flowable objects to add to the story. Those methods take a list of styles, used to create a :class:`reportlab.platypus.TableStyle` object for the table. Those styles are are tuples as defined by :mod:`reportlab`. The :class:`Styles` objects and its default instantiation :data:`styles` are shortcut to :mod:`reportlab` table styles in a less obnoxious interface. Example: >>> gen = TableGenerator() >>> gen.append([ ... 'Column 1', ... 'Column 2', ... ]) >>> gen.extend(datas) >>> story.append(gen.get_long_table( ... styles.first_row.TextColor(colors.red), ... styles.first_col.Alignment('RIGHT'), ... )) .. data:: styles A shortcut to create :mod:`reportlab` table styles. All attributes of styles objects correspond to table styles directive and the arguments are the parameters of thoses table styles. Arguments are concatenated and may be applied before or after setting the directive name. Those 4 directives are equivalent: >>> styles((-1, 0), (-1, -1), 1, colors.black).Grid() >>> styles.Grid((-1, 0), (-1, -1), 1, colors.black) >>> styles((-1, 0), (-1, -1)).Grid(1, colors.Black) >>> ('GRID', (-1, 0), (-1, -1), 1, colors.black) This allow to create predefined sections of the grid and apply different styles to those sections. The sections **first_row**, **first_col**, **last_row**, **last_col** are predefined styles for respectively the first row, the first column, the last row and the last column. **first_rows**, **last_rows**, **first_cols**, **last_cols** are function matching the first and last columns or rows up the given value. Those 3 directives are equivalent: >>> styles((-2, 0), (-1, -1)).Background(colors.red) >>> styles.last_cols(2).Background(colors.red) >>> ('BACKGROUND', (-2, 0), (-1, -1), colors.red) The **all** attributes is a shorcut to a section for all the table. A special **styles.grid** style is defined and mainly designed for quick debugging more than intended as a production value. It defines a black grid on each cell of the array. """ from __future__ import absolute_import import collections from reportlab.lib import colors from reportlab.platypus import ( Table, LongTable, TableStyle as RootTableStyle, ) __all__ = [ 'TableGenerator', 'TableStyle', 'styles' ] class TableGenerator(collections.MutableSequence): """ A Generator of :class:`Table` and :class:`LongTable`. This object is a mutable sequence and supports all the access as a list to add values. """ def __init__(self, *styles, **kw): self.content = list() style = kw.pop('style', None) if styles: style = RootTableStyle(styles, parent=style) self.base_style = style self.default_kw = kw def __len__(self): return len(self.content) def __iter__(self): return iter(self.content) def __setitem__(self, index, value): self.content[index] = value def __getitem__(self, index): return self.content[index] def __delitem__(self, index): del self.content[index] def insert(self, index, value): self.content.insert(index, value) def _build(self, cls, style, kw): if style: style = RootTableStyle(style, parent=self.base_style) else: style = self.base_style h_align = kw.pop('hAlign', None) keywords = dict(self.default_kw) kw['style'] = style keywords.update(kw) table = cls(self.content, **keywords) if h_align is not None: table.hAlign = h_align return table def get_table(self, *style, **kw): """ Returns the table as a :class:`reportlab.platypus.Table` """ return self._build(Table, style, kw) def get_long_table(self, *style, **kw): """ Returns the table as a :class:`reportlab.platypus.LongTable`. The :class:`LongTable` is recommended for bigger tables. """ return self._build(LongTable, style, kw) class FormattedTableGenerator(TableGenerator): """ :class:`TableGenerator` that formats the rows appended with format strings. **formats** is a list of ``None`` or template strings. ``None`` means that the values is copied as given. Template strings are format strings compatible with the builtin :func:`format` function. >>> ftg = FormattedTableGenerator([None, '.2f', '.0%']) >>> ftg.append_raw(['name', 'Value', 'Rate']) >>> ftg.append(['value1', 513.492, 0.03]) >>> ftg.append(['value2', 1016.2, 0.43]) >>> ftg.get_table() Giving:: Name | Value | Rate value1 | 513.49 | 3% value2 | 1016.20 | 43% """ def __init__(self, formats, *args, **kw): super(FormattedTableGenerator, self).__init__(*args, **kw) self.formats = formats def append_raw(self, values): super(FormattedTableGenerator, self).append(values) def append(self, values): formatted = [v if f is None else format(v, f) for (f, v) in zip(self.formats, values)] super(FormattedTableGenerator, self).append(formatted) class TableStyle(RootTableStyle, object): def __init__(self, *args): super(TableStyle, self).__init__(args) class Styles(object): known_styles = { # borders 'grid': 4, 'box': 4, 'linebelow': 4, 'lineafter': 4, 'background': 3, 'valign': 3, 'textcolor': 3, 'span': 2, } def __init__(self, *args): self.args = args def __repr__(self): return 'Styles({})'.format(', '.join(repr(x) for x in self.args)) def __getattr__(self, name): return CellsStyle(name, self.known_styles.get(name.lower()), self.args) def __eq__(self, other): if isinstance(other, Styles): other = other.args elif not isinstance(other, (tuple, list)): return NotImplemented return self.args == other class CellsStyle(object): def __init__(self, name, argc, args): self.name = name.upper() self.argc = argc self.args = args def __repr__(self): return '{}({})'.format(self.name.capitalize(), self.args) def __call__(self, *args): args = self.args + args if self.argc is not None and len(args) != self.argc: raise TypeError('{2}: Expecting {0} arguments, got {1}'.format( self.argc, len(args), self.name)) return (self.name, ) + args def __eq__(self, other): return (isinstance(other, CellsStyle) and self.name == other.name and self.args == other.args) class AllStyles(Styles): @property def grid(self): return self.all.Grid(1, colors.black) @property def all(self): return self.cols(0, -1) @property def first_row(self): return self.rows(0, 0) def first_rows(self, n): return self.rows(0, n) def row(self, n): return self.rows(n, n) def rows(self, first, last): return Styles((0, first), (-1, last)) @property def last_row(self): return self.rows(-1, -1) def last_rows(self, n): return self.rows(-n, -1) @property def first_col(self): return self.cols(0, 0) def first_cols(self, n): return self.cols(0, n) def col(self, n): return self.cols(n, n) def cols(self, first, last): return Styles((first, 0), (last, -1)) @property def last_col(self): return self.cols(-1, -1) def last_cols(self, n): return self.cols(-n, -1) styles = AllStyles()
from __future__ import absolute_import import io import json import os import subprocess import sys import uuid from . import __version__ from .support import Popen class CredentialProvider(object): def __init__(self): if sys.platform.startswith("win"): self.exe = [ os.path.join( os.path.dirname(os.path.abspath(__file__)), "plugins", "netfx", "CredentialProvider.Microsoft", "CredentialProvider.Microsoft.exe", ) ] else: try: from dotnetcore2.runtime import get_runtime_path except ImportError: get_runtime_path = lambda: "dotnet" self.exe = [ get_runtime_path(), "exec", os.path.join( os.path.dirname(os.path.abspath(__file__)), "plugins", "netcore", "CredentialProvider.Microsoft", "CredentialProvider.Microsoft.dll", ), ] self.proc = p = Popen( self.exe + ["-P"], stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.PIPE, ) inputs = io.TextIOWrapper(p.stdout, "utf-8", "replace") self._in = (json.loads(d) for d in inputs) self._messages = {} def _kill(self): p, self.proc = self.proc, None if p: try: p.kill() except OSError: pass def _read1(self, method): pending = self._messages.get(method) if pending: return pending.pop(0) for msg in self._in: if msg["Type"] == "Progress": self.send(**msg) continue if msg["Method"] == method: return msg self._messages.setdefault(msg["Method"], []).append(msg) def _read(self, method): msg = self._read1(method) if msg and msg["Type"] == "Fault": raise RuntimeError(msg["Payload"].get("Message", msg)) return msg def __enter__(self): if not self.proc: raise RuntimeError("process already terminated") if not self.handshake(): self._kill() raise RuntimeError("failed to complete handshake") if not self.initialize(): self._kill() raise RuntimeError("failed to initialize") return self def __exit__(self, ex_type, ex_value, ex_tb): self.send(Method="Close", Type="Request") def send(self, **kwargs): kwargs.setdefault("RequestId", str(uuid.uuid4())) data = (json.dumps(kwargs) + "\r\n").encode("utf-8", "strict") p = self.proc if p: p.stdin.write(data) p.stdin.flush() def reply(self, req, **kwargs): return self.send( RequestId=req["RequestId"], Method=req["Method"], Type="Response", Payload=kwargs, ) def handshake(self): while True: req = self._read("Handshake") if not req: return if req["Type"] == "Request": protocol = req["Payload"]["MinimumProtocolVersion"] if protocol.startswith(("1.", "2.")): self.reply(req, ResponseCode="Success", ProtocolVersion="2.0.0") return True else: self.reply(ResponseCode="Error") raise RuntimeError("Cannot negotiate protocol") if req["Type"] == "Response": if req["Payload"]["ResponseCode"] == "Success": return True raise RuntimeError(req["Payload"]) raise RuntimeError(req) def initialize(self): self.send( Type="Request", Method="Initialize", Payload=dict( clientVersion=__version__, culture="en-US", requestTimeout="00:00:05.00" ), ) while True: req = self._read("Initialize") if req is None: raise RuntimeError("failed to initialize") if req["Type"] == "Response": if req["Payload"]["ResponseCode"] == "Success": return True raise RuntimeError(req["Payload"]) raise RuntimeError(req) def get_credentials(self, url, allow_prompt=False): self.send( Type="Request", Method="GetAuthenticationCredentials", Payload=dict( uri=url, IsRetry=False, IsNonInteractive=not allow_prompt, CanShowDialog=allow_prompt, ), ) while True: req = self._read("GetAuthenticationCredentials") if not req: raise RuntimeError("failed to get credentials") elif req["Type"] == "Response": payload = req["Payload"] if payload["ResponseCode"] == "Success": return payload["Username"], payload["Password"] elif payload["ResponseCode"] == "NotFound": return None, None else: raise RuntimeError(payload["ResponseCode"]) else: break
"""Build the desired software environment""" import sys import os import os.path from azureml.core import Environment from azureml.core.conda_dependencies import CondaDependencies sys.path.append(os.path.abspath(os.path.join(os.path.dirname( __file__ ), '../..'))) from scripts.authentication.service_principal import ws def build_env(): # Conda dependencies conda_dep = CondaDependencies() conda_dep.add_pip_package("tensorflow") conda_dep.add_pip_package("pandas-datareader") conda_dep.add_pip_package("scikit-learn") conda_dep.add_pip_package("python-dotenv") conda_dep.add_pip_package("matplotlib") # Env specifications baseline_env = Environment(name="model_env")#, file_path='./requirements.txt') baseline_env.python.conda_dependencies=conda_dep #baseline_env = Environment.from_pip_requirements(name="for_some", file_path='./requirements.txt') baseline_env.docker.base_image = None baseline_env.docker.base_dockerfile = "./scripts/setup/Dockerfile" # Register the environment baseline_env.register(workspace=ws) # Build the env build = baseline_env.build(workspace=ws) build.wait_for_completion(show_output=True) if __name__ == "__main__": build_env()
import torch from torch import nn from torch.nn import functional as F from torch.autograd import Function import numpy as np from network import * from loss import * from data import DataGenerator import match class UniNet: def __init__( self, input_w=512, input_h=64, train_txt='./dataset/Train/NDtrain.txt', evaL_txt='./dataset/Train/NDeval.txt', snapshots='./snapshots/', alpha=0.2, epoch=1000, batch_size=90, people_per_batch=45, imgs_per_person=40, lr=1e-3, lr_decay=1e-6 ): self.input_w = input_w self.input_h = input_h self.train_txt = train_txt self.eval_txt = evaL_txt self.snapshots = snapshots self.alpha = alpha self.epoch = epoch self.batch_size = batch_size self.people_per_batch = people_per_batch self.imgs_per_person = imgs_per_person self.lr = lr self.lr_decay = lr_decay ''' calculate the gradient: ETL/fp, ETL/fa, ETL/fn ''' def get_grad(self, loss, fp, fa, fn, fp_mask, fa_mask, fn_mask, b_AP, b_AN): if loss == 0.: return torch.zeros_like(fp), torch.zeros_like(fa), torch.zeros_like(fn) batch_size = fp.shape[0] zero = torch.tensor(0.).to(self.device) fp_mask_offset = torch.zeros_like(fp_mask) fn_mask_offset = torch.zeros_like(fn_mask) fa_b_AP = torch.zeros_like(fa) fa_b_AN = torch.zeros_like(fa) ''' shifted fp, fp with -b_AP and -b_AN ''' fp_AP_b = torch.zeros_like(fp) fn_AN_b = torch.zeros_like(fn) for i in range(batch_size): fp_mask_offset[i, :, :] = match.shiftbits_torch(fp_mask[i], b_AP[i]) fa_b_AP[i, 0, :, :] = match.shiftbits_torch(fa[i, 0, :, :], b_AP[i]) fp_AP_b[i, 0, :, :] = match.shiftbits_torch(fp[i, 0, :, :], -b_AP[i]) fn_mask_offset[i, :, :] = match.shiftbits_torch(fn_mask[i], b_AN[i]) fa_b_AN[i, 0, :, :] = match.shiftbits_torch(fa[i, 0, :, :], b_AN[i]) fn_AN_b[i, 0, :, :] = match.shiftbits_torch(fn[i, 0, :, :], -b_AN[i]) M_ap = (fa_mask == fp_mask_offset) & (fp_mask_offset == 1.) M_an = (fa_mask == fn_mask_offset) & (fn_mask_offset == 1.) norm_M_ap = torch.sum(M_ap, dim=[1, 2]) norm_M_an = torch.sum(M_an, dim=[1, 2]) norm_M_ap = norm_M_ap.unsqueeze(-1).unsqueeze(-1).unsqueeze(-1) norm_M_an = norm_M_an.unsqueeze(-1).unsqueeze(-1).unsqueeze(-1) grad_etl2fp = 2. * (fa_b_AP - fp) / (batch_size * norm_M_ap) grad_etl2fn = 2. * (fa_b_AN - fn) / (batch_size * norm_M_an) grad_etl2fp_AP_b = - 2. * (fa_b_AP - fp_AP_b) / (batch_size * norm_M_ap) grad_etl2fn_AN_b = 2. * (fa_b_AN - fn_AN_b) / (batch_size * norm_M_an) grad_etl2fp_ = grad_etl2fp.clone() grad_etl2fn_ = grad_etl2fn.clone() grad_etl2fp_AP_b_ = grad_etl2fp_AP_b.clone() grad_etl2fn_AN_b_ = grad_etl2fn_AN_b.clone() for i in range(batch_size): grad_etl2fp_[i] = torch.where(M_ap[i] == True, grad_etl2fp[i], zero) grad_etl2fp_AP_b_[i] = torch.where(M_ap[i] == True, grad_etl2fp_AP_b[i], zero) grad_etl2fn_[i] = torch.where(M_an[i] == True, grad_etl2fn[i], zero) grad_etl2fn_AN_b_[i] = torch.where(M_an[i] == True, grad_etl2fn_AN_b[i], zero) grad_etl2fa_ = grad_etl2fp_AP_b_ + grad_etl2fn_AN_b_ return grad_etl2fp_, grad_etl2fa_, grad_etl2fn_ def train(self): self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") self.featnet = FeatNet() self.featnet = torch.nn.DataParallel(self.featnet) self.featnet.to(self.device) self.etl_loss = ETLoss(self.alpha, self.device) ''' set data generator ''' self.train_dataGenerator = DataGenerator( txt=self.train_txt, batch_size=self.batch_size, people_per_batch=self.people_per_batch, imgs_per_person=self.imgs_per_person ) ''' set optimizer ''' self.optimizer = torch.optim.Adam(self.featnet.parameters(), self.lr) epoch_loss_list = [] for epoch in range(self.epoch): print('INFO: Epoch={}'.format(epoch+1)) self.train_dataGenerator.reset(self.featnet, self.device) train_g = self.train_dataGenerator.gen() epoch_loss = 0.0 for step in range(self.train_dataGenerator.batches): self.optimizer.zero_grad() triplet_batch = next(train_g) img_ps = triplet_batch['ps'].to(self.device) img_ps_mask = triplet_batch['ps_mask'].to(self.device) img_as = triplet_batch['as'].to(self.device) img_as_mask = triplet_batch['as_mask'].to(self.device) img_ns = triplet_batch['ns'].to(self.device) img_ns_mask = triplet_batch['ns_mask'].to(self.device) fp, fa, fn = self.featnet(img_ps), self.featnet(img_as), self.featnet(img_ns) etl_loss, b_AP, b_AN = self.etl_loss.forward( fp, fa, fn, img_ps_mask, img_as_mask, img_ns_mask) epoch_loss += etl_loss.item() fp.retain_grad() fa.retain_grad() fn.retain_grad() etl_loss.backward() if (step + 1) % 10 == 0: print('INFO: Steps={}, ETL loss={}'.format(step+1, etl_loss.item())) torch.save( self.featnet, self.snapshots + 'featnet_epoch{}_steps{}.pth'.format(epoch+1, step+1)) grad_etl2fp, grad_etl2fa, grad_etl2fn = self.get_grad( etl_loss, fp, fa, fn, img_ps_mask, img_as_mask, img_ns_mask, b_AP, b_AN ) ''' replace gradients ''' fp.grad.data = grad_etl2fp.data fa.grad.data = grad_etl2fa.data fn.grad.data = grad_etl2fn.data self.optimizer.step() epoch_loss_list.append(epoch_loss) np.save('static/epoch_loss.npy', epoch_loss_list) print('INFO: Epoch {} done, total loss={}'.format(epoch+1, epoch_loss))
import re import requests import argparse import sys parser = argparse.ArgumentParser(description='Load VitaDock exports into Runalyze.com') parser.add_argument('-k', '--key', required=True, help='The personal API for Runalyze.com') parser.add_argument('-t', '--type', required=True, help='The type of data set to load.', choices=['bloodPressure', 'bodyComposition']) parser.add_argument('-f', '--file', type=argparse.FileType('r'), default=sys.stdin, help='The input file to read from. This is an export file from VitaDock online. Default is to read from stdin.') parser.add_argument('-v', '--version', action='version', version='loadVitaDock v1.0') RUNALYZE_API_ENDPOINT = 'https://runalyze.com/api/v1/' args = parser.parse_args() headers = { "token": args.key } def loadData(content): r = requests.post(RUNALYZE_API_ENDPOINT + 'metrics/' + args.type, json=content, headers=headers) print(r.content) if args.type == 'bloodPressure': PATTERN = '"(.*)/(.*)/(.*) - (.*)";"(.*) mmHg";"(.*) mmHg";"(.*) bpm";"(.*)";"(.*)";" "' for reading in args.file: if match := re.search(PATTERN, reading): jsoncontent = { "date_time": match.group(3) + "-" + match.group(1) + "-" + match.group(2) + "T" + match.group(4) + ":00Z", "systolic": int(match.group(5)), "diastolic": int(match.group(6)), "heart_rate": int(match.group(7)) } loadData(jsoncontent) elif args.type == 'bodyComposition': PATTERN = '(.*)/(.*)/(.*) - (.*);(.*);(.*);(.*);(.*);(.*);(.*);.*;.*;.*' for reading in args.file: if match := re.search(PATTERN, reading): jsoncontent = { "date_time": match.group(3) + "-" + match.group(1) + "-" + match.group(2) + "T" + match.group(4) + ":00Z", "weight": float(match.group(5)), "fat_percentage": float(match.group(7)), "water_percentage": float(match.group(8)), "muscle_percentage": float(match.group(9)), "bone_percentage": float(match.group(6)) } loadData(jsoncontent)
from dubbo_client import ApplicationConfig, ZookeeperRegistry, DubboClient, DubboClientError service_interface = 'com.truthso.monitor.service.CompareService' registry = ZookeeperRegistry('127.0.0.1:2181') compare_provider = DubboClient(service_interface, registry, version='1.0.0', group='gaopin') print(compare_provider.compare({ u'width': 650, u'height': 433, u'phash': u'1011100001101000101100001101110101101100101001010101111001001010', u'sum': 5429, u'ave': 5.0, u'dc': 4331, u'rSum': 144219, u'gSum': 142677, u'bSum': 136723, u'hash': 4064693128758910538, }))
# Approach 1: def Remove_Row_with_Custom_Element(Test_list, Check_list): for row in Test_list: for ele in Check_list: if ele in row: Test_list.remove(row) return Test_list Test_list = [[5, 3, 1], [7, 8, 9], [1, 10, 22], [12, 18, 21]] Check_list = [3, 10, 19, 29, 20, 15] print(Remove_Row_with_Custom_Element(Test_list, Check_list)) # Approach 2: def Remove_Row_with_Custom_Element(Test_list, Check_list): return [row for row in Test_list if not any(ele in row for ele in Check_list)] Test_list = [[5, 3, 1], [7, 8, 9], [1, 10, 22], [12, 18, 21]] Check_list = [3, 10, 19, 29, 20, 15] print(Remove_Row_with_Custom_Element(Test_list, Check_list))
#!/usr/bin/env python # coding: utf-8 from __future__ import unicode_literals from japandas.io.estat import EStatReader from pandas_datareader import data _ohlc_columns_jp = ['始値', '高値', '安値', '終値', '出来高', '調整後終値*'] _ohlc_columns_en = ['Open', 'High', 'Low', 'Close', 'Volume', 'Adj Close'] def DataReader(symbols, data_source=None, start=None, end=None, appid=None, **kwargs): if data_source == 'yahoojp': msg = "YahooJPReaderは削除されました https://www.yahoo-help.jp/app/answers/detail/p/546/a_id/93575" raise NotImplementedError(msg) elif data_source == 'estat': return EStatReader(symbols=symbols, appid=appid, **kwargs).read() else: return data.DataReader(name=symbols, data_source=data_source, start=start, end=end, **kwargs) DataReader.__doc__ = data.DataReader.__doc__
#!/usr/bin/env python3 import sys import datetime import pytz from traffic.core.api import getOptimalRouteTime def main(): origin_address = "Savoy+Ct,+London+WC2R+0EZ" destination_address = "Francis+St,+Westminster,+London+SW1P+1QW" traffic_model = "pessimistic" startTime = datetime.datetime(2020, 2, 3, 9, 0, tzinfo=pytz.timezone('Europe/London')) try: time = getOptimalRouteTime(startTime, origin_address, destination_address, model=traffic_model)/60. print("Quickest route time is: {} minutes.".format(time/60.)) except OSError as err: print("OS error: {0}".format(err)) except ValueError as err: print(err) except: print("Unexpected error:", sys.exc_info()[0]) if __name__ == "__main__": main()
# Class for a server class fprint: @staticmethod def cmd(string, prefix="[$] ", suffix="", end="\n"): print(prefix + string + suffix, end=end) class Identifier: def __init__(self): self.re = __import__("re") def is_ip(self, obj): if self.is_string(obj): real_ip = r"^(?:(?:25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)\.){3}(?:25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)$" return self.re.match(real_ip, obj) return False def is_port(self, obj): if self.is_integer(obj): return 0 <= obj <= 255 return False @staticmethod def is_string(obj): return isinstance(obj, str) @staticmethod def is_integer(obj): return isinstance(obj, int) """ Main Server module Server(server_ip="", server_port="") - Sets up the server variable Server.start() - Starts the Server.listener() and Server.responder() threads Other Server modules Server.get_server_ip() - Returns server IP Server.set_server_ip(new_server_ip) - Sets a new server IP Server.get_server_port() - Returns server Port Server.set_server_port(new_server_port) - Sets a new server Port Private Server modules Server.listener() - Server.responder() - """ class Server: def __init__(self, server_ip=None, server_port=None): # Modules self.identify = Identifier() self.thread = __import__("_thread") # Server variables self.server_ip = None self.set_server_ip(server_ip) self.server_port = None self.set_server_port(server_port) def get_server_ip(self): return self.server_ip def set_server_ip(self, new_server_ip): if self.identify.is_ip(new_server_ip): self.server_ip = new_server_ip def set_server_port(self, new_server_port): if self.identify.is_port(new_server_port): self.server_port = new_server_port def start(self): self.thread.start_new_thread(self.listener, ()) self.thread.start_new_thread(self.responder, ()) def listener(self): is_running = True while is_running: pass def listener_user(self, socket, ip, port): def responder(self): is_running = True while is_running: pass
from dataclasses import dataclass from typing import Dict, List, Iterator, Tuple import pandas as pd from covid_model_seiir_pipeline.lib import ( utilities, ) @dataclass(repr=False, eq=False) class ODEParameters: # Core parameters alpha: pd.Series sigma: pd.Series gamma1: pd.Series gamma2: pd.Series # Variant prevalences rho: pd.Series rho_variant: pd.Series rho_b1617: pd.Series rho_total: pd.Series # Escape variant initialization pi: pd.Series # Cross-variant immunity chi: pd.Series # Vaccine parameters vaccinations_unprotected_lr: pd.Series vaccinations_non_escape_protected_lr: pd.Series vaccinations_escape_protected_lr: pd.Series vaccinations_non_escape_immune_lr: pd.Series vaccinations_escape_immune_lr: pd.Series vaccinations_unprotected_hr: pd.Series vaccinations_non_escape_protected_hr: pd.Series vaccinations_escape_protected_hr: pd.Series vaccinations_non_escape_immune_hr: pd.Series vaccinations_escape_immune_hr: pd.Series def to_dict(self) -> Dict[str, pd.Series]: return {k: v.rename(k) for k, v in utilities.asdict(self).items()} def to_df(self) -> pd.DataFrame: return pd.concat(self.to_dict().values(), axis=1) def reindex(self, index: pd.Index) -> 'ODEParameters': # noinspection PyArgumentList return type(self)( **{key: value.reindex(index) for key, value in self.to_dict().items()} ) def get_vaccinations(self, vaccine_types: List[str], risk_group: str) -> pd.DataFrame: vaccine_type_map = { 'u': 'vaccinations_unprotected', 'p': 'vaccinations_non_escape_protected', 'pa': 'vaccinations_escape_protected', 'm': 'vaccinations_non_escape_immune', 'ma': 'vaccinations_escape_immune', } vaccinations = [] for vaccine_type in vaccine_types: attr = f'{vaccine_type_map[vaccine_type]}_{risk_group}' vaccinations.append(getattr(self, attr).rename(attr)) return pd.concat(vaccinations, axis=1) def __iter__(self) -> Iterator[Tuple[int, 'ODEParameters']]: location_ids = self.alpha.reset_index().location_id.unique() this_dict = self.to_dict().items() for location_id in location_ids: # noinspection PyArgumentList loc_parameters = type(self)( **{key: value.loc[location_id] for key, value in this_dict}, ) yield location_id, loc_parameters @dataclass(repr=False, eq=False) class FitParameters(ODEParameters): # Transmission intensity new_e: pd.Series = None kappa: pd.Series = None phi: pd.Series = None psi: pd.Series = None # Sub-populations population_low_risk: pd.Series = None population_high_risk: pd.Series = None @dataclass(repr=False, eq=False) class ForecastParameters(ODEParameters): # Transmission intensity beta: pd.Series = None beta_wild: pd.Series = None beta_variant: pd.Series = None beta_hat: pd.Series = None
# Generated by Django 2.1.3 on 2018-11-15 09:07 from django.db import migrations, models class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='wine', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=500)), ('slug', models.SlugField(max_length=40)), ('grower', models.CharField(max_length=200)), ('year', models.IntegerField(blank=True, default=0, null=True)), ('color', models.CharField(choices=[('red', 'Rot'), ('white', 'Weiß'), ('rose', 'Rose')], max_length=5)), ('front_img', models.ImageField(blank=True, null=True, upload_to='')), ('back_img', models.ImageField(blank=True, null=True, upload_to='')), ('rating', models.IntegerField(blank=True, null=True)), ('notes', models.CharField(blank=True, max_length=500, null=True)), ('country', models.CharField(blank=True, max_length=50, null=True)), ('provine', models.CharField(blank=True, max_length=50, null=True)), ], ), ]
from math import sin, cos, tan, radians angulo = float(input('Digite o angulo que você deseja: ')) seno = sin(radians(angulo)) coseno = cos(radians(angulo)) tangente = tan(radians(angulo)) print('O angulo de {} tem o SENO de {:.2f}'.format(angulo, seno)) print('O angulo de {} tem o COSENO de {:.2f}'.format(angulo, coseno)) print('O angulo de {} tem o TANGENTE de {:.2f}'.format(angulo, tangente))
# -- coding:UTF-8 -- """ Python implementation of decentralized update algorithm with multi threads author: Yue Yang (@The-chosen) """ import sys sys.path.insert(0, '../') import argparse import yaml from math import fabs from itertools import combinations from copy import deepcopy import time import eventlet import threading from queue import PriorityQueue from algorithm.a_star_mine import AStar from algorithm.cbs_mine import * # from a_star_mine import AStar # from cbs_mine import * # eventlet.monkey_patch() # Global variables pq = PriorityQueue() solution = None alive_agent_thread_num = None DYNAMIC_OBSTACLES = None INITIAL_RUNTIME = 3 DEFAULT_TIME_LIMITATION = 5 INF_NUM = 999999999999999 R = 4 THRESHOLD = 25 TIME_LIMIT = 20 TIMESTEP_TIME = 0.5 IS_TEST = False # If it's now testing cbs for initialization, then True. class Server(threading.Thread): """ 自定义一个类haha,必须要继承threading.Thread,下面必须要重写一个run()方法。 把要执行的函数写到run()方法里。如果没有run()方法就会报错。其实这个类的作用就是 通过haha类里面的run()方法来定义每个启动的子线程要执行的函数内容。 """ def __init__(self, dimension, obstacles, agents, output_file, num_combine=2): threading.Thread.__init__(self) self.dimension = dimension self.obstacles = obstacles self.agents = agents self.output_file = output_file self.num_combine = num_combine # Number of conflict list to be combined def run(self): global alive_agent_thread_num, solution, pq, TIME_LIMIT # Robots start while True: # agents all finish their paths # print("alive_agent_thread_num: ", alive_agent_thread_num) if alive_agent_thread_num == 0: print("[INFO] FINAL FOUND SOLUTION: " + str(solution)) output = {} output["schedule"] = solution # output["cost"] = env.compute_solution_cost(solution) with open(self.output_file, 'w') as output_yaml: yaml.safe_dump(output, output_yaml) return if pq.empty(): continue else: compute_start_time = time.time() # Combine several conflict list & get minimum anytime limitation conflicts = [] min_anytime_limitation_timestep = INF_NUM min_anytime_limitation = INF_NUM for i in range(self.num_combine): if pq.empty(): break _, conflict, anytime_limitation_timestep, anytime_limitation = pq.get() conflicts += conflict if anytime_limitation_timestep < min_anytime_limitation_timestep: min_anytime_limitation_timestep = anytime_limitation_timestep if anytime_limitation < min_anytime_limitation: min_anytime_limitation = anytime_limitation # change agents start time agents_cp = deepcopy(self.agents) for agent in agents_cp: length = len(solution[agent['name']]) if min_anytime_limitation_timestep >= length: temp = solution[agent['name']][length - 1] else: temp = solution[agent['name']][min_anytime_limitation_timestep] agent['start'] = [temp['x'], temp['y']] # No dangerous points if len(conflicts) == 0: continue print("===========================================") env = Environment(self.dimension, agents_cp, self.obstacles, obstacles_d=conflicts) # Searching cbs = CBS(env, min_anytime_limitation) print('[INFO] Start common searching ...') print("[INFO] Anytime limitation: " + str(min_anytime_limitation)) # with eventlet.Timeout(TIME_LIMIT, False): solution_crr = cbs.search() if not solution_crr: print('[ERROR] Solution not found!') continue print('[INFO] Common searching ends') # Get previous solution solution_pre = solution # util: map function def f(x): x['t'] += min_anytime_limitation_timestep return x # combine previous solution [:timestep + anytime_limitation] and new solution for agent in solution_pre.keys(): # print("solution_crr: " + str(solution_crr)) # print("solution_pre: " + str(solution_pre)) solution_crr[agent] = solution_pre[agent][:min_anytime_limitation_timestep] + (list(map(f, solution_crr[agent]))) solution = solution_crr print('[INFO] SOLUTION:') print(solution) compute_end_time = time.time() print('[INFO] Common searching use time: ' + str(compute_end_time - compute_start_time)) class Agent(threading.Thread): ''' @Params: agent_name: name of the agent. R: Range the agent can see. It's a square(2R + 1 * 2R + 1). paths: Paths of all the agents. threshold: If score of one point is larger than this parameter, the point will be added to constraint list timestep_time: time limitation for each timestep ''' def __init__(self, agent_name, timestep_time=TIMESTEP_TIME, R=R, threshold=THRESHOLD): global solution threading.Thread.__init__(self) self.R = R self.agent_name = agent_name self.paths = deepcopy(solution) self.threshold = threshold self.timesteps = len(self.paths[self.agent_name]) self.timestep_time = timestep_time self.detect_pt = [] self.detect_obstacle = [] self.utils = Utils() def run(self): global alive_agent_thread_num, solution for timestep in range(self.timesteps): self.paths = deepcopy(solution) self.do_things_in_one_timestep(timestep) alive_agent_thread_num -= 1 print('[INFO] ' + str(self.agent_name) + ' end its path!') # @return: (conflicts[], anytime_limitation + timestep) def do_things_in_one_timestep(self, timestep): global pq start_time = time.time() # ↓↓↓↓↓ Do things from here ↓↓↓↓↓ self.detect_pt = [] points = self.detect(timestep, DYNAMIC_OBSTACLES) if not points: end_time = time.time() use_time = end_time - start_time time.sleep(self.timestep_time - use_time) # ensure the thing will be done within timestep_time real_end = time.time() # print(self.agent_name + ' finish timestep ' + str(timestep) + \ # '. Use time: ' + str(real_end - start_time) + '. Have collision points.') return conflict_list_agent, anytime_limitation, min_cost_pt = self.find_constraint_list() if anytime_limitation == 'DEFAULT': anytime_limitation = DEFAULT_TIME_LIMITATION pq.put((min_cost_pt, conflict_list_agent, anytime_limitation + timestep, anytime_limitation * self.timestep_time)) # ↑↑↑↑↑ End things from above ↑↑↑↑↑ end_time = time.time() use_time = end_time - start_time time.sleep(self.timestep_time - use_time) # ensure the thing will be done within timestep_time real_end = time.time() # print(self.agent_name + ' finish timestep ' + str(timestep) + \ # '. Use time: ' + str(real_end - start_time) + '. No collision points.') ''' @Params: t: current timestep @Return: scored list of points @Exlanation: In reality, these should be a function to accept data of sensors. Need to judge whether the occupied thing is obstacle or not. ''' def detect(self, t, dynamic_obstacles): self.crr_t = t # Form the detection square # print(self.paths.keys()) if len(self.paths[self.agent_name]) <= t: # Have reached end point return False central_pos = self.paths[self.agent_name][t] x_right = central_pos['x'] + R x_left = central_pos['x'] - R y_up = central_pos['y'] + R y_bottom = central_pos['y'] - R # Find points of path that are in the detection square for agent_name, path in self.paths.items(): if t >= len(path): # No action after t for this agent, then it will be static and detect obstacles crr_pos = path[len(path) - 1] else: crr_pos = path[t] for i in range(t + 1, len(path)): pos = path[i] if (pos['x'] <= x_right) and (pos['x'] >= x_left) and (pos['y'] <= y_up) and (pos['y'] >= y_bottom): pos['distance'] = i - t pos['agent_name'] = agent_name pos['crr_pos'] = crr_pos self.detect_pt.append(pos) # Find obstacles that are dangerous and calculate the score of every point is_dangerous_obs = False for obstacle_name, path in dynamic_obstacles.items(): is_obstacle_static = False if t >= len(path): # No action after t for this obstacle pos = path[len(path) - 1] is_obstacle_static = True self.dyn_pos = pos # V2: you cannot run into the around positions of the dynamic obstacle else: pos = path[t] # pos: position of dynamic obstacle self.dyn_pos = pos # V2: you cannot run into the around positions of the dynamic obstacle if (pos['x'] <= x_right) and (pos['x'] >= x_left) and (pos['y'] <= y_up) and (pos['y'] >= y_bottom): for pt in self.detect_pt: # pt: point on the path # For stop dynamic obstacles, only when it's on path will be considered. if is_obstacle_static: if pos['x'] == pt['x'] and pos['y'] == pt['y']: is_dangerous_obs = True if 'score' not in pt.keys(): pt['score'] = 0 pt['score'] += self.utils.score_func(pt, pos, pt['crr_pos']) continue # Else, use score function to calculate how dangerous it is if abs(pos['x'] - pt['x']) + abs(pos['y'] - pt['y']) <= pt['distance']: # bool to decide whether dangerous # print(pos) # print(pt) is_dangerous_obs = True if 'score' not in pt.keys(): pt['score'] = 0 pt['score'] += self.utils.score_func(pt, pos, pt['crr_pos']) # # Position of dynamic obstacles # pt['pos_x'] = pos['x'] # pt['pos_y'] = pos['y'] if len(self.detect_pt) == 0 or not is_dangerous_obs: # print('No point or dangerous obstacles detected!') return False return self.detect_pt ''' @Params: None @Return: Constraint dictionary: {'agent2': <__main__.Constraints object at 0x7fa54c69c2b0>, 'agent7': <__main__.Constraints object at 0x7fa54c69c2b0>} ''' def find_constraint_list(self): constraint_dict = {} conflict_list = [] min_cost_pt = INF_NUM is_path_change = False # whether there's point score > threshold. If yes -> True, else -> False for pt in self.detect_pt: if 'score' not in pt.keys(): continue if pt['score'] >= self.threshold: is_path_change = True if pt['t'] - self.crr_t < min_cost_pt: # for calculating anytime min_cost_pt = pt['t'] - self.crr_t conflict_list.append((pt['x'], pt['y'])) # v_constraint = VertexConstraint(pt['t'], Location(pt['x'], pt['y'])) # if pt['agent_name'] in constraint_dict.keys(): # constraint_dict[pt['agent_name']].vertex_constraints |= {v_constraint} # else: # constraint = Constraints() # constraint.vertex_constraints |= {v_constraint} # constraint_dict[pt['agent_name']] = constraint if is_path_change: anytime_limitation = self.utils.anytime_func(min_cost_pt) else: anytime_limitation = 'DEFAULT' # V2: Add round space of dynamic obstacles conflict_list.append((self.dyn_pos['x'], self.dyn_pos['y'])) conflict_list.append((self.dyn_pos['x'] + 1, self.dyn_pos['y'])) conflict_list.append((self.dyn_pos['x'] - 1, self.dyn_pos['y'])) conflict_list.append((self.dyn_pos['x'], self.dyn_pos['y'] + 1)) conflict_list.append((self.dyn_pos['x'], self.dyn_pos['y'] - 1)) return conflict_list, anytime_limitation, min_cost_pt class Utils(object): def __init__(self): pass ''' @Params: pos_pt: Position of the point. pos_obs: Position of the obstacle. pos_agent: Position of the agent. @Return: Score of the point. ''' def score_func(self, pos_pt, pos_obs, pos_agent): dist = abs(pos_pt['x'] - pos_obs['x']) + abs(pos_pt['y'] - pos_obs['y']) cost = abs(pos_pt['x'] - pos_agent['x']) + abs(pos_pt['y'] - pos_agent['y']) score = 0 if dist <= 1: score = INF_NUM elif dist <= 3: score = THRESHOLD * 1 elif dist == 4: score = THRESHOLD * 0.75 elif dist == 5: score = THRESHOLD * 0.5 elif dist >= 6: score = THRESHOLD * 0.1 if cost <= 3: score *= 1 elif cost == 4: score *= 0.8 elif cost == 5: score *= 0.5 elif cost == 6: score *= 0.2 elif cost >= 7: score *= 0.1 return int(score) ''' @Params: t_pos: timestep of the point. t_crr: timestep of current agent. ''' def anytime_func(self, cost): # return cost // 2 return cost - 1 def main(): global solution, alive_agent_thread_num, DYNAMIC_OBSTACLES # Parser part parser = argparse.ArgumentParser() parser.add_argument("param", help="input file containing map and obstacles") parser.add_argument("output", help="output file with the schedule") parser.add_argument("dynamic_obs", help="dynamic obs") if IS_TEST: parser.add_argument("N", help="number for experiments") parser.add_argument("agent_num", help="number of agents") parser.add_argument("obstacle_prob", help="probability of static obstacles") args = parser.parse_args() N, agent_num, obstacle_prob = None, None, None if IS_TEST: N = args.N if IS_TEST else 0 agent_num = args.agent_num if IS_TEST else 0 obstacle_prob = args.obstacle_prob if IS_TEST else 0 # Read from input file print('Read from input ...') with open(args.param, 'r') as param_file: try: param = yaml.load(param_file, Loader=yaml.FullLoader) except yaml.YAMLError as exc: print(exc) dimension = param["map"]["dimensions"] obstacles = param["map"]["obstacles"] agents = param['agents'] # Initial searching env = Environment(dimension, agents, obstacles) cbs = CBS(env, INITIAL_RUNTIME) print('[INFO] Start initial searching ...') solution = cbs.search(N, agent_num, obstacle_prob) print('[INFO] Initial searching end') if not solution: if IS_TEST: with open('consume_time_stats/results_' + str(agent_num) + 'agents_' + \ str(obstacle_prob) + '%.csv', 'a+', newline='') as csvfile: writer = csv.writer(csvfile, delimiter=' ', quotechar='|', quoting=csv.QUOTE_MINIMAL) # writer.writerow(["consume_time", "cost"]) writer.writerow(["Not found", "Not found"]) print("[ERROR] Initial solution not found" ) return if IS_TEST: print("[INFO] INITIAL FOUND SOLUTION: " + str(solution)) output = {} output["schedule"] = solution # output["cost"] = env.compute_solution_cost(solution) with open(args.output, 'w') as output_yaml: yaml.safe_dump(output, output_yaml) return # Assign value to global variables(alive_agent_thread_num & DYNAMIC_OBSTACLES) alive_agent_thread_num = len(agents) with open(args.dynamic_obs, 'r') as d_obstacles_file: try: DYNAMIC_OBSTACLES = yaml.load(d_obstacles_file, Loader=yaml.FullLoader)['schedule'] except yaml.YAMLError as exc: print(exc) # Create threads including server and agents threads = [] server_thread = Server(dimension, obstacles, agents, args.output) # create server thread threads.append(server_thread) for agent in agents: agent_name = agent['name'] agent_thread = Agent(agent_name) # create agent thread threads.append(agent_thread) # Start threads for thr in threads: thr.start() for thr in threads: if thr.is_alive(): thr.join() if __name__=='__main__': main()
#!/usr/bin/env python3 import csv # Convert the national ELR flat file into a schema YAML def main(): with open('PDI_fields.csv') as csv_file: csv_reader = csv.reader(csv_file, delimiter=',') line_count = 0 for row in csv_reader: if line_count > 0: print(f'- name: {row[0]}') print(f' csvField: {row[0]}') print(f'') line_count += 1 if __name__ == "__main__": main()
#!/usr/bin/env python # coding: utf-8 # # Code (c) 2009 Liam Cooke # See LICENSE.txt # # Content (c) 2009 David Malki ! # See http://wondermark.com/554/ vocab = dict( location_adj = u""" neo-noir alternate-history ancient post-apocalyptic dystopian VR-simulated metaphorical anachronistic leather-clad coal-powered dragon-filled shrill """, location_noun = u""" America Japan Soviet Russia Victorian Britain medieval Europe Aztec empire Atlantis terraformed Mars Antarctica one-way spaceflight Outer Rim world set from <i>Road Warrior</i> """, protagonist = u""" flying message courier student of metaphysics milquetoast office drone schlub with mild <abbr>OCD</abbr> farm boy with dreams techno-obsessed geek brooding loner wisecracking mercenary idealistic revolutionary journeyman inventor collector of oddities author self-insert """, discovery = u""" magic diadem arcane prophecy dusty tome crazy old man alien artifact enchanted sword otherworldly portal dream-inducing drug encrypted data feed time-traveling soldier exiled angel talking fish """, adversary = u""" a megalomaniacal dictator a government conspiracy a profit-obsessed corporation a sneering wizard supernatural monsters computer viruses made real murderous robots an army led by a sadist forces that encourage conformity a charismatic politician on the rise humanity’s selfish nature his own insecurity <i>vis-à-vis</i> girls """, assistant = u""" sarcastic female techno-geek tomboyish female mechanic shape-shifting female assassin leather-clad female in shades girl who's always loved him bookish female scholar with mousy brown hair cherubic girl with pigtails and spunk female who inexplicably becomes attracted to the damaged protagonist for unstated reasons """, inventory = u""" wacky pet welding gear closet full of assault rifles reference book cleavage facility with magic condescending tone discomfort in formal wear """, conflict = u""" a fistfight atop a tower a daring rescue preceding a giant explosion a heroic sacrifice that no one will ever remember a philosophical argument punctuated by violence a false victory with the promise of future danger the invocation of a spell at the last possible moment eternal love professed without irony the land restored to health authorial preaching through the mouths of the characters convoluted nonsense that squanders the readers’ goodwill wish-fulfillment solutions to real-world problems a cliffhanger for the sake of prompting a series """, title_adj = u""" Chrono Neuro Aero Cosmo Reve Necro Cyber Astro Psycho Steam Meta Black """, title_noun = u""" punks mechs noiacs opolis nauts phages droids bots blades trons mancers Wars """ ) for part, words in vocab.items(): vocab[part] = tuple(word.strip() for word in words.strip().split('\n')) if __name__ == '__main__': import json print json.dumps(vocab)
import shlex from azul import config from azul.template import emit emit({ "resource": [ { "google_service_account": { "indexer": { # We set the count to 0 to ensure that the destroy provisioner runs. # See https://www.terraform.io/docs/provisioners/index.html#destroy-time-provisioners "count": 1 if config.subscribe_to_dss else 0, "project": "${local.google_project}", "account_id": config.qualified_resource_name('indexer'), "display_name": f"Azul indexer in {config.deployment_stage}", "provisioner": [ { "local-exec": { "command": ' '.join(map(shlex.quote, [ "python", config.project_root + "/scripts/provision_credentials.py", "google-key", "--build", "${google_service_account.indexer[0].email}", ])) } }, { "local-exec": { "when": "destroy", "command": ' '.join(map(shlex.quote, [ "python", config.project_root + "/scripts/provision_credentials.py", "google-key", "--destroy", "${google_service_account.indexer[0].email}", ])) } } ] } }, "null_resource":{ "hmac-secret": { "provisioner": [ { "local-exec": { "command": ' '.join(map(shlex.quote, [ "python", config.project_root + "/scripts/provision_credentials.py", "hmac-key", "--build", ])) } }, { "local-exec": { "when": "destroy", "command": ' '.join(map(shlex.quote, [ "python", config.project_root + "/scripts/provision_credentials.py", "hmac-key", "--destroy", ])) } } ] } } }, ] })
import sublime import sublime_plugin from .generic_shell import GenericShell from .QuickMenu.QuickMenu import QuickMenu from .macro import Macro from .progress import ThreadProgress from .settings import Settings from .unit_collections import UnitCollections TERMINALITY_VERSION = "0.3.10" def plugin_loaded(): Settings.reset() Settings.startup() print("[Terminality] v%s" % (TERMINALITY_VERSION)) class TerminalityRunCommand(sublime_plugin.WindowCommand): def parse_list(self, in_list, macros): out_list = [] for value in in_list: if isinstance(value, str): value = Macro.parse_macro( string=value, custom_macros=macros ) elif (isinstance(value, list) or isinstance(value, tuple)): value = self.parse_list(value, macros) elif isinstance(value, dict): value = self.parse_dict(value, macros) out_list.append(value) return out_list def parse_dict(self, in_dict, macros): for key in in_dict: if isinstance(in_dict[key], str): in_dict[key] = Macro.parse_macro( string=in_dict[key], custom_macros=macros ) elif (isinstance(in_dict[key], list) or isinstance(in_dict[key], tuple)): in_dict[key] = self.parse_list(in_dict[key], macros) elif isinstance(in_dict[key], dict): in_dict[key] = self.parse_dict(in_dict[key], macros) return in_dict def run(self, selector=None, action=None, arguments_title=None): if arguments_title is None or arguments_title == "": self.run_command(selector, action) return self.window.show_input_panel( caption=arguments_title + ":", initial_text="", on_done=lambda args: self.run_command( selector=selector, action=action, arguments=args ), on_change=None, on_cancel=None ) def run_command(self, selector=None, action=None, arguments=None): execution_unit = None execution_units = UnitCollections.load_default_collections() # Global additional_execution_units = Settings.get_global( "execution_units", default=Settings.get_global( "additional_execution_units", default={} ) ) for sel in [x for x in ["*", selector] if x is not None]: if (sel in additional_execution_units and action in additional_execution_units[sel]): execution_unit = additional_execution_units[sel][action] if not isinstance(execution_unit, dict): continue # Local additional_execution_units = Settings.get_local( "execution_units", default=Settings.get_local( "additional_execution_units", default={} ) ) for sel in [x for x in ["*", selector] if x is not None]: if (sel in additional_execution_units and action in additional_execution_units[sel]): execution_unit = additional_execution_units[sel][action] if not isinstance(execution_unit, dict): continue elif (sel in execution_units and action in execution_units[sel]): execution_unit = execution_units[sel][action] if not isinstance(execution_unit, dict): continue if execution_unit is None: sublime.error_message("There is no such execution unit") return if not isinstance(execution_unit, dict): if Settings.get("debug"): print("Execution unit is ignored [%s][%s]" % (selector, action)) return command = None command_type = None for key in ["command", "window_command", "view_command"]: if key in execution_unit: command_type = key command = execution_unit[key] break if not command: sublime.error_message("No command to run") return custom_macros = {} required_macros = [] if "macros" in execution_unit: custom_macros = execution_unit["macros"] if "required" in execution_unit: required_macros = execution_unit["required"] if "location" not in execution_unit: execution_unit["location"] = "$working" is_not_windows = sublime.platform() != "windows" command_script = [Macro.parse_macro( string=cmd, custom_macros=custom_macros, required=required_macros, escaped=is_not_windows, arguments=arguments ) for cmd in command.split(" ")] if command_type == "window_command" or command_type == "view_command": args = {} if "args" in execution_unit: args = execution_unit["args"] args = self.parse_dict(args, custom_macros) if command_type == "window_command": self.window.run_command(" ".join(command_script), args) else: self.window.active_view().run_command( " ".join(command_script), args ) elif command_type == "command": working_dir = Macro.parse_macro( string=execution_unit["location"], custom_macros=custom_macros, required=required_macros, arguments=arguments ) if working_dir is None: sublime.error_message( "Working directory is invalid" ) return if Settings.get("debug"): print("Running \"%s\"" % (" ".join(command_script))) print("Working dir is \"%s\"" % (working_dir)) self.view = self.window.new_file() self.view.set_name("Running...") self.view.set_scratch(True) if is_not_windows: command_script = " ".join(command_script) shell = GenericShell( cmds=command_script, view=self.view, on_complete=lambda e, r, p: self.on_complete( e, r, p, execution_unit ), no_echo=("no_echo" in execution_unit and execution_unit["no_echo"]), read_only=("read_only" in execution_unit and execution_unit["read_only"]) ) shell.set_cwd(working_dir) shell.start() ThreadProgress( thread=shell, message="Running", success_message="Terminal has been stopped", set_status=self.set_status, view=self.view ) elif Settings.get("debug"): print("Invalid command type") def on_complete(self, elapse_time, return_code, params, execution_unit): if return_code is not None: self.view.set_name( "Terminal Ended (Return: {0}) [{1:.2f}s]".format( return_code, elapse_time ) ) if ("close_on_exit" in execution_unit and execution_unit["close_on_exit"]): self.view.window().focus_view(self.view) self.view.window().run_command("close") sublime.set_timeout(lambda: self.set_status(), 3000) def set_status(self, status=None): for window in sublime.windows(): for view in window.views(): if status is None: view.erase_status("Terminality") else: view.set_status("Terminality", status) class TerminalityCommand(sublime_plugin.WindowCommand): """ Command to show menu which use to run another command """ qm = None ready_retry = 0 main_menu = { "items": [["Terminality", "v" + TERMINALITY_VERSION]], "actions": [""] } def get_execution_units(self, execution_units_map, selector): execution_units = {} # Default Execution Units for selector_name in [x for x in ["*", selector] if x is not None]: if selector_name in execution_units_map: for action in execution_units_map[selector_name]: execution_units[action] = execution_units_map[ selector_name ][action] for selector_name in [x for x in ["*", selector] if x is not None]: # Global additional_execution_units = Settings.get_global( "execution_units", default=Settings.get_global( "additional_execution_units", default={} ) ) if selector_name in additional_execution_units: additional_execution_units = additional_execution_units[ selector_name ] for key in additional_execution_units: if (key in execution_units and isinstance(additional_execution_units[key], dict)): for sub_key in additional_execution_units[key]: execution_units[key][ sub_key ] = additional_execution_units[key][sub_key] else: execution_units[key] = additional_execution_units[key] if isinstance(additional_execution_units[key], dict): execution_units[key]["selector"] = selector # Local additional_execution_units = Settings.get_local( "execution_units", default=Settings.get_local( "additional_execution_units", default={} ) ) if selector_name in additional_execution_units: additional_execution_units = additional_execution_units[ selector_name ] for key in additional_execution_units: if (key in execution_units and isinstance(additional_execution_units[key], dict)): for sub_key in additional_execution_units[key]: execution_units[key][ sub_key ] = additional_execution_units[key][sub_key] else: execution_units[key] = additional_execution_units[key] if isinstance(additional_execution_units[key], dict): execution_units[key]["selector"] = selector if Settings.get("debug") and not execution_units: print("Execution units is empty") return execution_units def generate_menu(self, ask_arguments=False): menu = { "items": [], "actions": [], "unsort_items": [] } execution_units_map = UnitCollections.load_default_collections() sel_name = None for selector in execution_units_map: if (len(self.window.active_view().find_by_selector( selector)) > 0): sel_name = selector break if not sel_name: for selector in Settings.get("execution_units", {}): if (len(self.window.active_view().find_by_selector( selector)) > 0): sel_name = selector break for selector in Settings.get("additional_execution_units", {}): if (len(self.window.active_view().find_by_selector( selector)) > 0): sel_name = selector break if Settings.get("debug") and not sel_name: print("Selector is not found") execution_units = self.get_execution_units( execution_units_map, sel_name ) # Generate menu for action in execution_units: execution_unit = execution_units[action] if not isinstance(execution_unit, dict): continue if "selector" in execution_unit: selector_name = execution_unit["selector"] else: selector_name = sel_name custom_macros = {} required_macros = [] platforms = None arguments_title = None if ask_arguments: arguments_title = "Arguments" if "arguments" in execution_unit: arguments_title = execution_unit["arguments"] if "macros" in execution_unit: custom_macros = execution_unit["macros"] if "required" in execution_unit: required_macros = execution_unit["required"] if "platforms" in execution_unit: platforms = execution_unit["platforms"] action_name = Macro.parse_macro( string=action, custom_macros=custom_macros, required=required_macros, arguments="<Arguments>" if ask_arguments else None ) if platforms: matched = False current_platforms = [ sublime.platform() + "-" + sublime.arch(), sublime.platform(), sublime.arch() ] for platform in current_platforms: if platform in platforms: matched = True break if not matched: continue if action_name is None: if Settings.get("debug"): print("Required params is not completed") continue if "name" in execution_unit: action_name = Macro.parse_macro( string=execution_unit["name"], custom_macros=custom_macros, required=required_macros, arguments="<Arguments>" if ask_arguments else None ) order = action_name if "order" in execution_unit: order = execution_unit["order"] dest = action_name + " command" if "description" in execution_unit: dest = Macro.parse_macro( string=execution_unit["description"], custom_macros=custom_macros, required=required_macros, arguments="<Arguments>" if ask_arguments else None ) menu["unsort_items"] += [[ action_name, dest, { "command": "terminality_run", "args": { "selector": selector_name, "action": action, "arguments_title": arguments_title } }, order ]] menu["unsort_items"] = sorted(menu["unsort_items"], key=lambda x: x[3]) while menu["unsort_items"]: menu["items"].append(menu["unsort_items"][0][:-2]) menu["actions"].append(menu["unsort_items"][0][2]) menu["unsort_items"] = menu["unsort_items"][1:] if (Settings.get("run_if_only_one_available") and len(menu["items"]) == 1): self.window.run_command( "terminality_run", menu["actions"][0]["args"] ) return None if len(menu["items"]) <= 0 and Settings.get("show_nothing_if_nothing"): return None menu["items"] += self.main_menu["items"] menu["actions"] += self.main_menu["actions"] return menu def run(self, arguments=False, menu=None, action=None, replaceMenu=None): """ Show menu to user, if ready """ if not Settings.ready(): if self.ready_retry > 2: sublime.message_dialog( "Terminality is starting up..." + "Please wait a few seconds and try again." ) else: sublime.status_message( "Terminality is starting up..." + "Please wait a few seconds and try again..." ) self.ready_retry += 1 return if self.qm is None: self.qm = QuickMenu() if replaceMenu is not None: self.qm.setMenu(replaceMenu["name"], replaceMenu["menu"]) return menu = self.generate_menu(arguments) if menu is None: return self.qm.setMenu("main", menu) self.qm.show(window=self.window, menu=menu, action=action)
from adjunct.exceptions import ( AdjunctSyntaxError, AdjunctAttributeError, ) def is_valid_identifier(name): """ Adjunct identifiers: 1) must be valid python identifiers 2) must NOT begin with an underscore """ retval = name.isidentifier() if len(name) > 1: if name[0] == '_': retval = False return retval class AdjunctObject: """ Wraps objects to make them safe for use with Adjunct This class is not strictly needed, but it is recommended if there is uncertainty about the attributes of an object, that is, whether they can be used to do nasty things """ def __init__(self, obj): setattr(self, '__obj', obj) def __getattr__(self, name): if self.__is_safe_identifier(name) is False: raise AdjunctAttributeError(f"{type(self.__obj).__name__} object has no attribute {name}") return self.__obj.__getattr__(name) def __setattr__(self, name, value): if self.__is_safe_identifier(name) is False: raise AdjunctSyntaxError("invalid syntax") return self.__obj.__setattr__(name, value) def __is_safe_identifier(self, name): retval = name.isidentifier() # Identifiers with double underscores are not accessible in Adjunct if len(name) > 1: if name[0:2] == '__': retval = False return retval
>>> Account = namedtuple('Account', 'owner balance transaction_count') >>> default_account = Account('<owner name>', 0.0, 0) >>> johns_account = default_account._replace(owner='John') >>> janes_account = default_account._replace(owner='Jane')
# --------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # --------------------------------------------------------- """Entrypoints for creating AutoML tasks""" from typing import Union from azure.ai.ml._restclient.v2022_02_01_preview.models import ( ClassificationPrimaryMetrics, ClassificationMultilabelPrimaryMetrics, ObjectDetectionPrimaryMetrics, InstanceSegmentationPrimaryMetrics, ) from azure.ai.ml.entities._inputs_outputs import Input from azure.ai.ml.entities._job.automl.image.image_classification_job import ImageClassificationJob from azure.ai.ml.entities._job.automl.image.image_classification_multilabel_job import ImageClassificationMultilabelJob from azure.ai.ml.entities._job.automl.image.image_object_detection_job import ImageObjectDetectionJob from azure.ai.ml.entities._job.automl.image.image_instance_segmentation_job import ImageInstanceSegmentationJob from azure.ai.ml.entities._builders.base_node import pipeline_node_decorator def _create_image_job( job_cls, training_data: Input, target_column_name: str, primary_metric: Union[str, ClassificationPrimaryMetrics] = None, validation_data: Input = None, validation_data_size: float = None, **kwargs, ): """Helper function to create objects for AutoML Image jobs.""" image_job = job_cls(primary_metric=primary_metric, **kwargs) image_job.set_data( training_data=training_data, target_column_name=target_column_name, validation_data=validation_data, validation_data_size=validation_data_size, ) return image_job @pipeline_node_decorator def image_classification( *, training_data: Input, target_column_name: str, primary_metric: Union[str, ClassificationPrimaryMetrics] = None, validation_data: Input = None, validation_data_size: float = None, **kwargs, ) -> ImageClassificationJob: """Creates an object for AutoML Image multi-class Classification job. :param training_data: Training data. :type training_data: Input :param target_column_name: Name of the target column. :type target_column_name: str :param primary_metric: Primary optimization metric for the task. :type primary_metric: Union[str, ClassificationPrimaryMetrics] :param validation_data: Validation data. :type validation_data: Input :param validation_data_size: The fraction of training data to be set aside for validation purpose. :type validation_data_size: float :param kwargs: A dictionary of additional configuration parameters. :type kwargs: dict :return: Image classification job :rtype: ImageClassificationJob """ return _create_image_job( job_cls=ImageClassificationJob, training_data=training_data, target_column_name=target_column_name, primary_metric=primary_metric, validation_data=validation_data, validation_data_size=validation_data_size, **kwargs, ) @pipeline_node_decorator def image_classification_multilabel( *, training_data: Input, target_column_name: str, primary_metric: Union[str, ClassificationMultilabelPrimaryMetrics] = None, validation_data: Input = None, validation_data_size: float = None, **kwargs, ) -> ImageClassificationMultilabelJob: """Creates an object for AutoML Image multi-label Classification job. :param training_data: Training data. :type training_data: Input :param target_column_name: Name of the target column. :type target_column_name: str :param primary_metric: Primary optimization metric for the task. :type primary_metric: Union[str, ClassificationMultilabelPrimaryMetrics] :param validation_data: Validation data. :type validation_data: Input :param validation_data_size: The fraction of training data to be set aside for validation purpose. :type validation_data_size: float :param kwargs: A dictionary of additional configuration parameters. :type kwargs: dict :return: Image multi-label classification job :rtype: ImageClassificationMultilabelJob """ return _create_image_job( job_cls=ImageClassificationMultilabelJob, training_data=training_data, target_column_name=target_column_name, primary_metric=primary_metric, validation_data=validation_data, validation_data_size=validation_data_size, **kwargs, ) @pipeline_node_decorator def image_object_detection( *, training_data: Input, target_column_name: str, primary_metric: Union[str, ObjectDetectionPrimaryMetrics] = None, validation_data: Input = None, validation_data_size: float = None, **kwargs, ) -> ImageObjectDetectionJob: """Creates an object for AutoML Image Object Detection job. :param training_data: Training data. :type training_data: Input :param target_column_name: Name of the target column. :type target_column_name: str :param primary_metric: Primary optimization metric for the task. :type primary_metric: Union[str, ObjectDetectionPrimaryMetrics] :param validation_data: Validation data. :type validation_data: Input :param validation_data_size: The fraction of training data to be set aside for validation purpose. :type validation_data_size: float :param kwargs: A dictionary of additional configuration parameters. :type kwargs: dict :return: Image object detection job :rtype: ImageObjectDetectionJob """ return _create_image_job( job_cls=ImageObjectDetectionJob, training_data=training_data, target_column_name=target_column_name, primary_metric=primary_metric, validation_data=validation_data, validation_data_size=validation_data_size, **kwargs, ) @pipeline_node_decorator def image_instance_segmentation( *, training_data: Input, target_column_name: str, primary_metric: Union[str, InstanceSegmentationPrimaryMetrics] = None, validation_data: Input = None, validation_data_size: float = None, **kwargs, ) -> ImageInstanceSegmentationJob: """Creates an object for AutoML Image Instance Segmentation job. :param training_data: Training data. :type training_data: Input :param target_column_name: Name of the target column. :type target_column_name: str :param primary_metric: Primary optimization metric for the task. :type primary_metric: Union[str, InstanceSegmentationPrimaryMetrics] :param validation_data: Validation data. :type validation_data: Input :param validation_data_size: The fraction of training data to be set aside for validation purpose. :type validation_data_size: float :param kwargs: A dictionary of additional configuration parameters. :type kwargs: dict :return: Image instance segmentation job :rtype: ImageInstanceSegmentationJob """ return _create_image_job( job_cls=ImageInstanceSegmentationJob, training_data=training_data, target_column_name=target_column_name, primary_metric=primary_metric, validation_data=validation_data, validation_data_size=validation_data_size, **kwargs, )
from __future__ import with_statement, unicode_literals, division, print_function WITH_STATEMENT = with_statement.compiler_flag UNICODE_LITERALS = unicode_literals.compiler_flag DIVISION = division.compiler_flag PRINT_FUNCTION = print_function.compiler_flag COMPLETE_FUTURE = WITH_STATEMENT | UNICODE_LITERALS | DIVISION | PRINT_FUNCTION
from pymoo.algorithms.online_cluster_nsga3 import OnlineClusterNSGA3 from pymoo.factory import get_problem, get_visualization, get_reference_directions from pymoo.optimize import minimize import os import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt from sklearn.cluster import AgglomerativeClustering, KMeans class ExperimentOnlineClusterNSGA3(object): def __init__(self, ref_dirs, n_neighbors=20, decomposition='auto', prob_neighbor_mating=0.9, cluster=KMeans, number_of_clusters=2, interval_of_aggregations=1, save_data=True, problem=get_problem("dtlz1"), number_of_executions=1, termination=('n_gen', 100), use_random_aggregation=False, save_dir='', verbose=False, save_history=True, use_different_seeds=True, **kwargs): self.save_data = save_data self.problem = problem self.number_of_executions = number_of_executions self.termination = termination self.use_random_aggregation = use_random_aggregation self.save_dir = save_dir self.verbose = verbose self.save_history = save_history if use_different_seeds: self.algorithms = [OnlineClusterNSGA3( ref_dirs, pop_size=100, n_neighbors=n_neighbors, decomposition=decomposition, prob_neighbor_mating=prob_neighbor_mating, seed=i, number_of_clusters=number_of_clusters, number_of_clusters_for_directions=number_of_clusters, interval_of_aggregations=interval_of_aggregations, current_execution_number=i, use_random_aggregation = use_random_aggregation, save_dir=self.save_dir, save_data=self.save_data, cluster=cluster) for i in range(self.number_of_executions)] else: self.algorithms = [OnlineClusterNSGA3( ref_dirs, pop_size=100, n_neighbors=n_neighbors, decomposition=decomposition, prob_neighbor_mating=prob_neighbor_mating, seed=1, number_of_clusters=number_of_clusters, number_of_clusters_for_directions=number_of_clusters, interval_of_aggregations=interval_of_aggregations, current_execution_number=i, use_random_aggregation = use_random_aggregation, save_dir=self.save_dir, save_data=self.save_data, cluster=cluster) for i in range(self.number_of_executions)] def run(self): results = [] self.current_execution = 1 for algorithm in self.algorithms: print('CURRENT EXECUTION {}'.format(self.current_execution)) results.append(minimize( self.problem, algorithm, termination=self.termination, verbose=self.verbose, save_history=self.save_history)) self.current_execution +=1 def show_heat_map(self): aggregations = [] for i in range(self.number_of_executions): aggregations.append(pd.read_csv(os.path.join(self.save_dir,'Execution {}'.format(i), 'aggregations.txt'), header=None)) aggregations = pd.concat(aggregations, axis=1) aggregations.columns = ['exec_{}'.format(i) for i in range(self.number_of_executions)] aggregation_list = [aggregations['exec_{}'.format(i)].value_counts().keys().values.tolist() for i in range(self.number_of_executions)] unique_aggregations = list(set([j for i in aggregation_list for j in i])) unique_aggregations.sort(key = lambda x: x.split('-')[1], reverse=True) data_transposed = aggregations.T number_of_aggregations = len(unique_aggregations) number_of_generations = len(aggregations.index) heat_map = pd.DataFrame(data=np.zeros((number_of_aggregations, number_of_generations))) heat_map.index = unique_aggregations for i in range(number_of_generations): for k,v in data_transposed[i].value_counts().items(): heat_map.at[k, i] = v for i in range(number_of_generations): if heat_map[i].values.sum() != self.number_of_executions: print('Error in generation {}'.format(i)) plt.figure(figsize=(18,10)) sns.heatmap(heat_map.values, yticklabels=heat_map.index.values, cmap="Blues") plt.xlabel('Generation', fontsize=20) plt.yticks(fontsize=13) plt.ylabel('Aggregation', fontsize=20) plt.title('Aggregation Heat Map', fontsize=20) plt.savefig(os.path.join(self.save_dir, 'heat_map.pdf')) plt.show() def show_mean_convergence(self, file_name): convergence = pd.DataFrame(self.generate_mean_convergence(file_name)).mean().values self.save_convergence(file_name, convergence) plt.figure() plt.xlabel('Generation', fontsize=20) plt.ylabel(file_name.split('_')[0], fontsize=20) plt.plot(convergence) plt.title('Convergence', fontsize=20) plt.savefig(os.path.join(self.save_dir, file_name.split('.')[0] + '.pdf')) plt.show() def generate_mean_convergence(self, file_name): return [self.read_data_file(os.path.join(self.save_dir, 'Execution {}'.format(execution), file_name)) for execution in range(self.number_of_executions)] def read_data_file(self, file_path): with open(file_path, 'r') as file: lines = [float(line.replace('\n','')) for line in file.readlines()] return lines def save_convergence(self, file_name, convergence): with open(os.path.join(self.save_dir, 'mean_' + file_name), 'w') as file: file.write('\n'.join([str(i) for i in convergence]))
import numpy as np import pytest import blm from tests.conftest import m_needs_pyplot @pytest.mark.parametrize("model_param", [dict(m_lo=1.1, m_up=0.9, c_lo=0.1, c_up=0.2)]) @pytest.mark.parametrize("x_init", [None, np.array(0.0)]) def test_constructor(model_param: dict, x_init: np.ndarray): bl_model = blm.BacklashModel(**model_param, x_init=x_init) print(bl_model) assert isinstance(bl_model, blm.BacklashModel) assert bl_model.m_lo == model_param["m_lo"] assert bl_model.m_up == model_param["m_up"] assert bl_model.c_lo == model_param["c_lo"] assert bl_model.c_up == model_param["c_up"] if x_init is not None: assert isinstance(bl_model.z_lo, np.ndarray) assert isinstance(bl_model.z_up, np.ndarray) @pytest.mark.parametrize( "ctor_param", [ dict(m_lo="invalid", m_up=1.0, c_lo=0.01, c_up=0.01, x_init=0), dict(m_lo=1.0, m_up="invalid", c_lo=0.01, c_up=0.01, x_init=0), dict(m_lo=1.0, m_up=1.0, c_lo="invalid", c_up=0.01, x_init=0), dict(m_lo=1.0, m_up=1.0, c_lo=0.01, c_up="invalid", x_init=0), dict(m_lo=1.0, m_up=1.0, c_lo=0.01, c_up=0.01, x_init="invalid"), ], ) def test_nonfloat_ctor_params(ctor_param: dict): with pytest.raises(ValueError): blm.BacklashModel(**ctor_param) @pytest.mark.parametrize( "ctor_param", [ dict(m_lo=0, m_up=1.0, c_lo=0.01, c_up=0.01, x_init=0), dict(m_lo=1.0, m_up=0, c_lo=0.01, c_up=0.01, x_init=0), dict(m_lo=1.0, m_up=1.0, c_lo=-1, c_up=0.01, x_init=0), dict(m_lo=1.0, m_up=1.0, c_lo=0.01, c_up=-1, x_init=0), ], ) def test_invalid_ctor_params(ctor_param: dict): with pytest.raises(ValueError): blm.BacklashModel(**ctor_param) @pytest.mark.parametrize("plot", [pytest.param(True, marks=[m_needs_pyplot, pytest.mark.visual]), False]) @pytest.mark.parametrize("model_param", [dict(m_lo=2.0, m_up=1.9, c_lo=2.5, c_up=2.7)]) @pytest.mark.parametrize("apply_u_bl", [False]) def test_all(model_param: dict, apply_u_bl: bool, plot: bool): # Setup model dt = 0.002 t_end = 4.0 t_grid = np.linspace(0, t_end, int(t_end / dt)) amp = 5.0 freq = 1.0 bl_model = blm.BacklashModel(**model_param, x_init=np.array(0.0)) # Generate data x_hist = [] x_bl_hist = [] for t in t_grid: x = amp * (1 - t / t_end) * np.sin(2 * np.pi * freq * t) x_hist.append(x.copy()) x_bl = bl_model(x) x_bl_hist.append(x_bl.copy()) x_hist = np.expand_dims(np.stack(x_hist), axis=1) x_bl_hist = np.stack(x_bl_hist) if plot: from matplotlib import pyplot as plt plt.figure(figsize=(16, 8)) plt.plot(x_hist) plt.plot(x_bl_hist) plt.grid() u_grid = np.linspace(-5, 5, 10001) u_grid_lo = model_param["m_lo"] * (u_grid + model_param["c_lo"]) u_grid_up = model_param["m_up"] * (u_grid - model_param["c_up"]) plt.figure(figsize=(8, 8)) plt.plot(u_grid, u_grid_lo, label="lo") plt.plot(u_grid, u_grid_up, label="up") plt.fill_between(u_grid, u_grid_lo, u_grid_up, color="gray", alpha=0.3, label="backlash zone") plt.gca().axis("equal") plt.grid() plt.legend() plt.show() # Fit the model parameters bl_model.fit(u=x_hist[1:], x=x_bl_hist[1:], x_prev=x_bl_hist[:-1]) # Catch invalid shapes with pytest.raises(ValueError): bl_model.fit(u=x_hist[2:], x=x_bl_hist[1:], x_prev=x_bl_hist[:-1])
# -*- coding: utf-8 -*- import scrapy import json from jobs.items import JobsItem from urllib import quote class LagouSpider(scrapy.Spider): name = 'lagou' allowed_domains = ['www.lagou.com'] start_urls = ['https://www.lagou.com/jobs/'] positionUrl = 'https://www.lagou.com/jobs/positionAjax.json?' curPage = 1 city = '上海' keywords = [ 'APP设计师', '.NET', 'ARM开发', 'ASP', 'Android', 'BD经理', 'BI工程师', 'C', 'C#', 'C++', 'CDN', 'CEO', 'CFO', 'CMO', 'COCOS2D-X', 'COO', 'CTO', 'DB2', 'DBA其它', 'DSP开发', 'Delphi', 'ETL', 'F5', 'FPGA开发', 'Flash', 'Flash设计师', 'Go', 'HRBP', 'HRD/HRM', 'HTML5', 'Hadoop', 'Hive', 'IDC', 'IT支持', 'Java', 'JavaScript', 'MongoDB', 'MySQL', 'Node.js', 'Oracle', 'PCB工艺', 'PHP', 'Perl', 'Python', 'Ruby', 'SEM', 'SEO', 'SQLServer', 'Shell', 'U3D', 'UI设计师', 'VB', 'WEB安全', 'WP', 'html5', 'iOS', 'web前端', '专利', '主编', '交互设计师', '交互设计总监', '交互设计经理/主管', '交易员', '产品助理', '产品实习生', '产品总监', '产品经理', '产品运营', '产品部经理', '人事/HR', '人力资源', '仓储', '代理商销售', '企业软件其它', '会计', '全栈工程师', '公关总监', '内容编辑', '内容运营', '出纳', '分析师', '前台', '前端开发其它', '副主编', '副总裁', '功能测试', '助理', '单片机', '原画师', '合规稽查', '后端开发其它', '员工关系', '品牌公关', '品类运营', '售前咨询', '售前工程师', '售后客服', '售后工程师', '商业数据分析', '商务总监', '商务渠道', '商品经理', '商家运营', '图像处理', '图像识别', '培训经理', '多媒体设计师', '大客户代表', '媒介经理', '安全专家', '实施工程师', '审计', '客户代表', '客服总监', '客服经理', '射频工程师', '嵌入式', '市场总监', '市场推广', '市场策划', '市场营销', '市场顾问', '平面设计师', '并购', '并购总监', '广告协调', '广告设计师', '律师', '性能测试', '总助', '手机测试', '技术合伙人', '技术总监', '技术经理', '投资助理', '投资总监', '投资经理', '投资者关系', '投资顾问', '招聘', '搜索算法', '政府关系', '数据产品经理', '数据仓库', '数据分析师', '数据挖掘', '数据运营', '文案策划', '文秘', '新媒体运营', '无线交互设计师', '无线产品设计师', '机器学习', '机器视觉', '材料工程师', '架构师', '模具设计', '法务', '活动策划', '活动运营', '测试其它', '测试工程师', '测试开发', '测试总监', '测试经理', '海外市场', '海外运营', '淘宝客服', '深度学习', '清算', '渠道销售', '游戏制作人', '游戏动作', '游戏场景', '游戏数值策划', '游戏测试', '游戏特效', '游戏界面设计师', '游戏策划', '游戏角色', '游戏运营', '灰盒测试', '热传导', '物流', '理财顾问', '用户研究员', '用户研究总监', '用户研究经理/主管', '用户运营', '电商产品经理', '电话销售', '电路设计', '病毒分析', '白盒测试', '硬件', '硬件交互设计师', '硬件开发其它', '硬件测试', '移动产品经理', '移动开发其它', '税务', '算法工程师', '精准推荐', '精益工程师', '系统安全', '系统工程师', '系统管理员', '系统集成', '结算', '绩效考核经理', '网店运营', '网络安全', '网络工程师', '网络推广', '网络营销', '网页交互设计师', '网页产品经理', '网页产品设计师', '网页设计师', '美术设计师(2D/3D)', '自动化', '自动化测试', '自然语言处理', '薪资福利经理', '融资', '融资总监', '行业研究', '行政', '行政总监/经理', '视觉设计师', '视觉设计总监', '视觉设计经理/主管', '记者', '设计总监', '设计经理/主管', '语音识别', '财务', '财务总监/经理', '资产管理', '资信评估', '运维其它', '运维工程师', '运维开发工程师', '运维总监', '运维经理', '运营专员', '运营总监', '运营经理', '采购专员', '采购总监', '采购经理', '销售专员', '销售助理', '销售总监', '销售经理', '销售顾问', '项目助理', '项目总监', '项目经理', '风控', '风控总监', '驱动开发', '高端技术职位其它', '黑盒测试', ] kd_cur = 0 keyword = keywords[0] item_fns = [ 'city', 'education', 'workYear', 'salary', 'firstType', 'secondType', 'positionName', 'positionAdvantage', 'positionLables', 'companyFullName', 'companyShortName', 'companySize', 'companyLabelList', 'financeStage', 'industryField', 'industryLables', 'district', 'isSchoolJob', 'jobNature', 'createTime' ] headers = { 'origin': "https://www.lagou.com", 'x-anit-forge-code': "0", 'user-agent': "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_12_6) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/60.0.3112.101 Safari/537.36", 'content-type': "application/x-www-form-urlencoded", 'accept': "application/json, text/javascript, */*; q=0.01", 'x-requested-with': "XMLHttpRequest", 'x-anit-forge-token': "None", 'dnt': "1", 'accept-encoding': "gzip, deflate, br", 'accept-language': "zh-CN,zh;q=0.8,en;q=0.6", 'cookie': "user_trace_token=20170728162449-adcee15cc85848189cfb891619b80998; LGUID=20170728162451-3a327df6-736e-11e7-b9bc-5254005c3644; _gat=1; PRE_UTM=; PRE_HOST=; PRE_SITE=https%3A%2F%2Fwww.lagou.com%2Fgongsi%2F; PRE_LAND=https%3A%2F%2Fwww.lagou.com%2F; LGSID=20170807221703-15e8d3a5-7b7b-11e7-839b-5254005c3644; index_location_city=%E5%85%A8%E5%9B%BD; JSESSIONID=ABAAABAACBHABBI1DE966CF9357E8BD2D82C53257584955; X_HTTP_TOKEN=2274185a2011ec03f73ab98f8ceaf490; TG-TRACK-CODE=index_navigation; Hm_lvt_4233e74dff0ae5bd0a3d81c6ccf756e6=1501230293; Hm_lpvt_4233e74dff0ae5bd0a3d81c6ccf756e6=1503803797; _ga=GA1.2.1475031428.1501230295; LGRID=20170827111636-22b244c2-8ad6-11e7-8f3c-5254005c3644; SEARCH_ID=52d0e756ac5d41b395d4a9e57ab74b72; user_trace_token=20170728162449-adcee15cc85848189cfb891619b80998; LGUID=20170728162451-3a327df6-736e-11e7-b9bc-5254005c3644; index_location_city=%E5%85%A8%E5%9B%BD; user_trace_token=20170728162449-adcee15cc85848189cfb891619b80998; LGUID=20170728162451-3a327df6-736e-11e7-b9bc-5254005c3644; _gat=1; PRE_UTM=; PRE_HOST=; PRE_SITE=https%3A%2F%2Fwww.lagou.com%2Fgongsi%2F; PRE_LAND=https%3A%2F%2Fwww.lagou.com%2F; LGSID=20170807221703-15e8d3a5-7b7b-11e7-839b-5254005c3644; index_location_city=%E5%85%A8%E5%9B%BD; Hm_lvt_4233e74dff0ae5bd0a3d81c6ccf756e6=1501230293; Hm_lpvt_4233e74dff0ae5bd0a3d81c6ccf756e6=1503587852; _ga=GA1.2.1475031428.1501230295; LGRID=20170824231731-59096c0b-88df-11e7-8ea0-5254005c3644; JSESSIONID=ABAAABAACBHABBI1DE966CF9357E8BD2D82C53257584955; X_HTTP_TOKEN=2274185a2011ec03f73ab98f8ceaf490; TG-TRACK-CODE=index_navigation; Hm_lvt_4233e74dff0ae5bd0a3d81c6ccf756e6=1501230293; Hm_lpvt_4233e74dff0ae5bd0a3d81c6ccf756e6=1503807054; _ga=GA1.2.1475031428.1501230295; LGSID=20170827121054-b83e61a1-8add-11e7-8f3c-5254005c3644; PRE_UTM=; PRE_HOST=; PRE_SITE=https%3A%2F%2Fwww.lagou.com%2Fzhaopin%2Fheiheceshi%2F%3FlabelWords%3Dlabel; PRE_LAND=https%3A%2F%2Fwww.lagou.com%2Fjobs%2Flist_Go%3Fcity%3D%25E5%2585%25A8%25E5%259B%25BD%26cl%3Dfalse%26fromSearch%3Dtrue%26labelWords%3D%26suginput%3D; LGRID=20170827121054-b83e632d-8add-11e7-8f3c-5254005c3644; SEARCH_ID=ced77b843c064940a3c12c51d8720ca1", } def start_requests(self): return [self.next_request()] def parse(self, response): jdict = json.loads(response.body) jcontent = jdict['content'] jposresult = jcontent['positionResult'] jresult = jposresult['result'] resultSize = int(jposresult['resultSize']) pageSize = int(jcontent['pageSize']) print('[lagou][%s]resultSize: %d, pageNo: %d, pageSize: %d' % (self.keyword, resultSize, self.curPage, pageSize)) for entry in jresult: if len(entry) < 10: continue item = JobsItem() item['keyword'] = self.keyword item['pid'] = self.keyword + "_" + str( entry['positionId']) + "_" + str(entry['publisherId']) for fn in self.item_fns: item[fn] = entry[fn] yield item if pageSize <= resultSize: self.curPage += 1 yield self.next_request() elif self.kd_cur < len(self.keywords) - 1: self.curPage = 1 self.kd_cur += 1 self.keyword = self.keywords[self.kd_cur] yield self.next_request() def next_request(self): self.headers['referer'] = "https://www.lagou.com/jobs/list_" + quote( self.keyword ) + "?city=%E5%85%A8%E5%9B%BD&cl=false&fromSearch=true&labelWords=&suginput=" return scrapy.http.FormRequest( self.positionUrl, headers=self.headers, formdata={'pn': str(self.curPage), 'kd': self.keyword}, callback=self.parse)
# -*- coding: utf-8 -*- """\ Differnt output tests. """ from __future__ import unicode_literals, absolute_import import io from nose.tools import eq_ from segno_mimos import pyqrcode try: from .test_eps import eps_as_matrix from .test_png import png_as_matrix from .test_svg import svg_as_matrix except (ValueError, SystemError): # Attempted relative import in non-package from test_eps import eps_as_matrix from test_png import png_as_matrix from test_svg import svg_as_matrix _DATA = ( # Input string, error level, quiet_zone ('Märchenbuch', 'M', 4), (123, 'H', 0), ('http:/www.example.org/', 'L', 3), ('Hello\nWorld', 'Q', 2), ('HELLO WORLD', 'H', 2), ('Up Jumped The Devil', 'M', 4) ) def test_data(): # Creates a QR code, serializes it and checks if the serialization # corresponds to the initial QR code matrix. def check(serializer_name, buffer_factory, to_matrix_func, data, error, quiet_zone): """\ `serializer_name` Method name to serialize the QR code `buffer_factory` Callable to construct the buffer. `to_matrix_func` Function to convert the buffer back to a matrix. `data` The input to construct the QR code. `error` ECC level `quiet_zone` quiet_zone size. """ qr = pyqrcode.create(data, error=error) out = buffer_factory() meth = getattr(qr, serializer_name) meth(out, quiet_zone=quiet_zone) matrix = to_matrix_func(out, quiet_zone) eq_(qr.code, matrix) for meth_name, buffer_factory, to_matrix_func in (# Segno's EPS implementation differs #('eps', io.StringIO, eps_as_matrix), ('png', io.BytesIO, png_as_matrix), ('svg', io.BytesIO, svg_as_matrix)): for data, error, quiet_zone in _DATA: yield check, meth_name, buffer_factory, to_matrix_func, data, error, quiet_zone if __name__ == '__main__': import nose nose.core.runmodule()
from . import cv_processing from .camera_opencv import Camera import os from flask import Flask, redirect, render_template, Response, send_from_directory from .disc import d as discerd from .blueprints.clocker.inout_blueprint import in_page import psycopg2 app = Flask(__name__.split(".")[0]) app.register_blueprint(in_page, url_prefix="/tick_tock") # return floats instead of Decimals DEC2FLOAT = psycopg2.extensions.new_type( psycopg2.extensions.DECIMAL.values, "DEC2FLOAT", lambda value, curs: float(value) if value is not None else None, ) psycopg2.extensions.register_type(DEC2FLOAT) @app.route("/") def index(): return render_template("index.html") def gen(c): while True: d_frame = cv_processing.draw_debugs_jpegs(c.get_frame()[1]) yield (b"--frame\r\nContent-Type: image/jpeg\r\n\r\n" + d_frame + b"\r\n") @app.route("/video_feed") def feed(): """Streaming route (img src)""" return Response(gen(Camera()), mimetype="multipart/x-mixed-replace; boundary=frame") @app.route("/favicon.ico") def favicon(): return send_from_directory(os.path.join(app.root_path, "static"), "favicon.ico") @app.template_filter() def int_to_hexcolor(i) -> str: return "#" + (hex(i)[2:] if i != 0 else "FFFFFF")
from .followers import * from .posts import * from .authors import * from .likes import * from .inbox import * from .comments import * from .auth import *
import pkg_resources import unittest import gzip import goenrich class TestRead(unittest.TestCase): def test_ontology(self): G = goenrich.obo.ontology('db/go-basic.obo') def test_ontology_from_file_obj(self): with open('db/go-basic.obo') as f: G = goenrich.obo.ontology(f) self.assertFalse(f.closed) def test_goa(self): background = goenrich.read.goa('db/gene_association.goa_human.gaf.gz') def test_goa_from_file_obj(self): with gzip.GzipFile('db/gene_association.goa_human.gaf.gz') as f: background = goenrich.read.goa(f) self.assertFalse(f.closed) def test_gene2go(self): background = goenrich.read.gene2go('db/gene2go.gz') def test_gene2go_from_file_obj(self): with gzip.GzipFile('db/gene2go.gz') as f: background = goenrich.read.gene2go(f) self.assertFalse(f.closed) def test_goslim_from_file(self): G = goenrich.obo.ontology(pkg_resources.resource_filename(goenrich.__name__, 'tests/test_ontologies/goslim_generic.obo')) self.assertEqual(len(G.nodes()), 150) self.assertSetEqual(set(G.successors('GO:0009056')), set(['GO:0008150'])) self.assertSetEqual(set(G.predecessors('GO:0009056')), set(['GO:0034655', 'GO:0006914'])) if __name__ == '__main__': unittest.main()
import pandas as pd import numpy as np import os import re # User Input inputfile = input('What is the directory of your input file eg... D:/FILES/ALS_DRINKING-ALGAE_WATER_201807101206.xlsx: ') seperator = input('what is the delimiter for cells output? eg: | or , : ' ) columntosplit = input('what is the heading for the column you want to split the data by?: ') # Read File df = pd.read_excel(inputfile, index=False) df_column = df[columntosplit] # The number of unique items in the column you chose unique_values = df_column.unique() numberofunique = len(unique_values) print ('number of files to generate:', numberofunique) # Create Files for i in range(numberofunique): bools = df[columntosplit] == unique_values[i] df_temp = df[bools] filetag = re.sub('[^A-Za-z0-9]+', '-', unique_values[i]) filename, file_extension = os.path.splitext(inputfile) filename = filename + "_" + filetag + ".csv" df_temp.to_csv(filename, sep=seperator, index=False)
#!/usr/bin/python from beem import Hive, Steem from beem.account import Account from beem.amount import Amount from beem.block import Block from beem.nodelist import NodeList import pandas as pd def init(): data = {'exchange_name': [], 'account_name' : [], 'trade_date':[], 'buy_asset':[], 'sell_asset':[], 'buy_amount': [], 'sell_amount': [], 'exchange_order_id': [], 'fee':[], 'fee_asset': [], 'transaction_type': [], 'clarification': []} return data def add_trade(data, timestamp, amount_in, amount_out, data_account_name, clarification="", exchange_order_id=""): data["exchange_name"].append("generic") data["account_name"].append(data_account_name) data["trade_date"].append(timestamp) data["exchange_order_id"].append(exchange_order_id) data["fee"].append("") data["fee_asset"].append("") data["clarification"].append(clarification) data["buy_asset"].append(amount_in.symbol) data["buy_amount"].append(float(amount_in)) data["transaction_type"].append("trade") data["sell_amount"].append(float(amount_out)) data["sell_asset"].append(amount_out.symbol) return data def add_deposit(data, timestamp, amount, data_account_name, clarification="", exchange_order_id=""): data["exchange_name"].append("generic") data["account_name"].append(data_account_name) data["trade_date"].append(timestamp) data["exchange_order_id"].append(exchange_order_id) data["fee"].append("") data["fee_asset"].append("") data["clarification"].append(clarification) data["buy_asset"].append(amount.symbol) data["buy_amount"].append(float(amount)) data["transaction_type"].append("deposit") data["sell_amount"].append("") data["sell_asset"].append("") return data def add_withdrawal(data, timestamp, amount, data_account_name, clarification="", exchange_order_id=""): data["exchange_name"].append("generic") data["account_name"].append(data_account_name) data["trade_date"].append(timestamp) data["exchange_order_id"].append(exchange_order_id) data["fee"].append("") data["fee_asset"].append("") data["clarification"].append(clarification) data["buy_asset"].append("") data["buy_amount"].append("") data["transaction_type"].append("withdrawal") data["sell_amount"].append(float(amount)) data["sell_asset"].append(amount.symbol) return data def store(filename, data, sheet_name='Sheet1'): sell_asset2 = [] buy_asset2 = [] for a in data["sell_asset"]: if a == "SBD": sell_asset2.append("SBD2") else: sell_asset2.append(a) for a in data["buy_asset"]: if a == "SBD": buy_asset2.append("SBD2") else: buy_asset2.append(a) data["buy_asset"] = buy_asset2 data["sell_asset"] = sell_asset2 df = pd.DataFrame(data) writer = pd.ExcelWriter(filename, engine='xlsxwriter') df.to_excel(writer, sheet_name=sheet_name, startrow=0, header=True, index=False) writer.save() if __name__ == "__main__": nodelist = NodeList() nodelist.update_nodes() # stm = Steem(node=nodelist.get_steem_nodes()) stm = Hive(node=nodelist.get_hive_nodes()) print(stm) account_name = "holger80" data_account_name = "hive_holger80_powered_up" symbol = "HIVE" hive_fork_block = 41818753 has_fork = True limit_to_year = True current_year = 2020 xls_filename = "%s_%d.xlsx" % (data_account_name, current_year) account = Account(account_name, blockchain_instance=stm) ops_dict = {} _ids = {} for ops in account.history(): ops_dict[ops["index"]] = ops if ops["_id"] in _ids: _ids[ops["_id"]] += 1 else: _ids[ops["_id"]] = 1 duplicate_indices = [] _id_list = [] for _id in sorted(list(ops_dict.keys())): ops = ops_dict[_id] if _ids[ops["_id"]] == 1: continue if ops["_id"] not in _id_list: _id_list.append(ops["_id"]) else: trx_id = ops["trx_id"] if trx_id == "0000000000000000000000000000000000000000": duplicate_indices.append(ops["index"]) else: block = Block(ops["block"], blockchain_instance=stm) count_ops = 0 for t in block.transactions: if t["transaction_id"] != trx_id: continue for o in t["operations"]: count_ops += 1 if count_ops < _ids[ops["_id"]]: duplicate_indices.append(ops["index"]) type_count = {} for _id in sorted(list(ops_dict.keys())): ops = ops_dict[_id] if ops["type"] in type_count: type_count[ops["type"]] += 1 else: type_count[ops["type"]] = 1 symbol_amount = 0 backed_symbol_amount = 0 index = 0 hard_fork_reached = False year_reached = False next_year_reached = False data = init() print("duplicate indices %d" % len(duplicate_indices)) for _id in sorted(list(ops_dict.keys())): ops = ops_dict[_id] if _id in duplicate_indices: continue block = ops["block"] timestamp = ops["timestamp"].replace("T", " ") if limit_to_year and not year_reached and timestamp[:4] == str(current_year): if has_fork and hard_fork_reached: year_reached = True elif has_fork: year_reached = False else: year_reached = True if year_reached and symbol_amount > 0: amount = Amount(symbol_amount, symbol, blockchain_instance=stm) data = add_deposit(data, "%d-01-01 00:00:00" % current_year, amount, data_account_name, exchange_order_id="Virtual transfer to %d" % current_year) if limit_to_year and not next_year_reached and timestamp[:4] == str(current_year + 1): year_reached = True next_year_reached = False if symbol_amount > 0: amount = Amount(symbol_amount, symbol, blockchain_instance=stm) data = add_withdrawal(data, "%d-01-01 00:00:00" % (current_year + 1), amount, data_account_name, exchange_order_id="Virtual transfer to %d" % (current_year + 1)) elif limit_to_year and next_year_reached: continue if has_fork and block > hive_fork_block and not hard_fork_reached: amount = Amount(symbol_amount, symbol, blockchain_instance=stm) data = add_deposit(data, timestamp, amount, data_account_name, exchange_order_id="Hard fork") hard_fork_reached = True if limit_to_year and not year_reached and timestamp[:4] == str(current_year): year_reached = True if ops["type"] == "transfer_to_vesting": amount = Amount(ops["amount"], blockchain_instance=stm) if ops["to"] == account_name: symbol_amount += float(amount) index += 1 if has_fork and block < hive_fork_block: continue if limit_to_year and not year_reached: continue data = add_deposit(data, timestamp, amount, data_account_name, exchange_order_id="Power up") elif ops["type"] == "fill_vesting_withdraw": amount = Amount(ops["deposited"], blockchain_instance=stm) if ops["from_account"] == account_name: symbol_amount -= float(amount) index += 1 if has_fork and block < hive_fork_block: continue if limit_to_year and not year_reached: continue if symbol_amount < 0: data = add_deposit(data, timestamp, Amount(-symbol_amount, symbol, blockchain_instance=stm), data_account_name, exchange_order_id="Staking reward", clarification="staking") symbol_amount += (-round(symbol_amount, 3)) data = add_withdrawal(data, timestamp, amount, data_account_name, exchange_order_id="Powering down") print("%d entries" % index) print("%s - %.3f %s" % (timestamp, symbol_amount, symbol)) store(xls_filename, data)
from django.urls import path from .views import CarView, RateView, PopularView, CarViewSet, CarsRatingsViewSet from rest_framework.routers import DefaultRouter app_name = "cars" router = DefaultRouter() router.register(r'cars', CarViewSet) router.register(r'cars', CarsRatingsViewSet) urlpatterns = router.urls urlpatterns = [ path('cars/', CarView.as_view(), name="cars_list"), path('cars/<int:id>/', CarView.as_view(), name='del_cars'), path('rate/', RateView.as_view(), name="rate"), path('popular/', PopularView.as_view(), name="popular") ]
import os from pathlib import Path from dotenv import load_dotenv load_dotenv() TELEGRAM_TOKEN = os.getenv('TELEGRAM_TOKEN') CHAT_ID = os.getenv('CHAT_ID') BASE_DIR = Path(__file__).resolve().parent.parent SECRET_KEY = 'django-insecure-i6o5!@e5(!*exd6xpv7-+)1p!3=k_2#fb6xhsb&*3y*&z6vknt' DEBUG = True ALLOWED_HOSTS = [] INSTALLED_APPS = [ 'crm', 'accounts', 'crispy_forms', 'django_cleanup', 'django_filters', 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'config.urls' TEMPLATES_DIR = os.path.join(BASE_DIR, 'templates') TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [TEMPLATES_DIR], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'config.wsgi.application' DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': BASE_DIR / 'db.sqlite3', } } AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] LANGUAGE_CODE = 'ru' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True STATIC_URL = '/static/' STATIC_ROOT = os.path.join(BASE_DIR, 'static') MEDIA_URL = '/media/' MEDIA_ROOT = os.path.join(BASE_DIR, 'media') EMAIL_BACKEND = 'django.core.mail.backends.filebased.EmailBackend' EMAIL_FILE_PATH = os.path.join(BASE_DIR, 'sent_emails') DEFAULT_AUTO_FIELD = 'django.db.models.BigAutoField' LOGIN_URL = '/auth/login/' LOGIN_REDIRECT_URL = 'dashboard' LOGOUT_REDIRECT_URL = 'home' USER = 'user' REPAIR_SPECIALIST = 'repair' SERVICE_SPECIALIST = 'service' CONSULTANT_SPECIALIST = 'consultant' ROLES = [ (REPAIR_SPECIALIST, 'Специалист по ремонту'), (SERVICE_SPECIALIST, 'Специалист по обслуживанию'), (CONSULTANT_SPECIALIST, 'Консультант'), (USER, 'Пользователь без доступа в CRM'), ] REPAIR = 'repair' SERVICE = 'service' CONSULTATION = 'consultant' TYPE = [ (REPAIR, 'Заявка на ремонт'), (SERVICE, 'Заявка на обслуживание'), (CONSULTATION, 'Заявка на консультацию'), ] OPEN = 'open' WORK = 'work' CLOSE = 'close' STATUS = [ (OPEN, 'Открыта'), (WORK, 'В работе'), (CLOSE, 'Закрыта') ]
#coding=utf-8 import os def rename(): path=input("请输入路径(例如D:\\\\Jason):") name=input("请输入开头名:") startNumber=input("请输入开始数:") fileType=input("请输入后缀名(如 .jpg、.txt等等):") endSplit = input("请输入分隔符(如 佛系小吴_01_ 01 _.ext) : ") print("正在生成以"+name+startNumber+fileType+"迭代的文件名") count=0 filelist=os.listdir(path) for files in filelist: Olddir=os.path.join(path,files) if os.path.isdir(Olddir) or not files.endswith(fileType): continue Newdir=os.path.join(path,name+str(count+int(startNumber))+endSplit+fileType) os.rename(Olddir,Newdir) count+=1 print("一共修改了"+str(count)+"个文件") if __name__ == '__main__': rename()
import setuptools VERSION = "20.6.0" TITLE = "aragog" DESCRIPTION = "A better python scraper." URL = "https://www.cameroncairns.com/" DOC = DESCRIPTION + " <" + URL + ">" AUTHOR = "Cameron Cairns" AUTHOR_EMAIL = "cameron@cameroncairns.com" LICENSE = "Apache License 2.0" COPYRIGHT = "Copyright (c) 2020 Cameron Cairns" NAME = "aragog" INSTALL_REQUIRES = [] PYTHON_REQUIRES = ">=3.6" KEYWORDS = ["webscrape", "webcrawl", "crawl", "scrape"] CLASSIFIERS = [ "Development Status :: 1 - Planning", "Intended Audience :: Developers", "Natural Language :: English", "License :: OSI Approved :: Apache Software License", "Operating System :: OS Independent", "Programming Language :: Python", "Programming Language :: Python :: 3", "Programming Language :: Python :: 3.6", "Programming Language :: Python :: 3.7", "Programming Language :: Python :: 3.8", "Programming Language :: Python :: Implementation :: CPython", "Programming Language :: Python :: Implementation :: PyPy", "Topic :: Software Development :: Libraries :: Python Modules", ] def get_description(): with open("README.rst", "r") as readme: long_description = readme.read() return long_description if __name__ == "__main__": setuptools.setup( zip_safe=False, long_description=get_description(), long_description_content_type="text/x-rst", packages=setuptools.find_packages(where="src"), package_dir={"": "src"}, name=NAME, description=DESCRIPTION, license=LICENSE, url=URL, version=VERSION, author=AUTHOR, author_email=AUTHOR_EMAIL, maintainer=AUTHOR, maintainer_email=AUTHOR_EMAIL, keywords=KEYWORDS, python_requires=PYTHON_REQUIRES, classifiers=CLASSIFIERS, install_requires=INSTALL_REQUIRES, )
import requests import pandas as pd import ftplib import io import re import json try: from requests_html import HTMLSession except Exception: print("""Warning - Certain functionality requires requests_html, which is not installed. Install using: pip install requests_html After installation, you may have to restart your Python session.""") base_url = "https://query1.finance.yahoo.com/v8/finance/chart/" def build_url(ticker, start_date = None, end_date = None, interval = "1d"): if end_date is None: end_seconds = int(pd.Timestamp("now").timestamp()) else: end_seconds = int(pd.Timestamp(end_date).timestamp()) if start_date is None: start_seconds = 7223400 else: start_seconds = int(pd.Timestamp(start_date).timestamp()) site = base_url + ticker #"{}/v8/finance/chart/{}".format(self._base_url, self.ticker) params = {"period1": start_seconds, "period2": end_seconds, "interval": interval.lower(), "events": "div,splits"} return site, params def force_float(elt): try: return float(elt) except: return elt def get_data(ticker, start_date = None, end_date = None, index_as_date = True, interval = "1d"): '''Downloads historical stock price data into a pandas data frame. Interval must be "1d", "1wk", or "1mo" for daily, weekly, or monthly data. @param: ticker @param: start_date = None @param: end_date = None @param: index_as_date = True @param: interval = "1d" ''' if interval not in ("1d", "1wk", "1mo"): raise AssertionError("interval must be of of '1d', '1wk', or '1mo'") # build and connect to URL site, params = build_url(ticker, start_date, end_date, interval) resp = requests.get(site, params = params) if not resp.ok: raise AssertionError(resp.json()) # get JSON response data = resp.json() # get open / high / low / close data frame = pd.DataFrame(data["chart"]["result"][0]["indicators"]["quote"][0]) # add in adjclose frame["adjclose"] = data["chart"]["result"][0]["indicators"]["adjclose"][0]["adjclose"] # get the date info temp_time = data["chart"]["result"][0]["timestamp"] frame.index = pd.to_datetime(temp_time, unit = "s") frame.index = frame.index.map(lambda dt: dt.floor("d")) frame = frame[["open", "high", "low", "close", "adjclose", "volume"]] frame['ticker'] = ticker.upper() if not index_as_date: frame = frame.reset_index() frame.rename(columns = {"index": "date"}, inplace = True) return frame def tickers_sp500(): '''Downloads list of tickers currently listed in the S&P 500 ''' # get list of all S&P 500 stocks sp500 = pd.read_html("https://en.wikipedia.org/wiki/List_of_S%26P_500_companies")[0] sp_tickers = sorted(sp500.Symbol.tolist()) return sp_tickers def tickers_nasdaq(): '''Downloads list of tickers currently listed in the NASDAQ''' ftp = ftplib.FTP("ftp.nasdaqtrader.com") ftp.login() ftp.cwd("SymbolDirectory") r = io.BytesIO() ftp.retrbinary('RETR nasdaqlisted.txt', r.write) info = r.getvalue().decode() splits = info.split("|") tickers = [x for x in splits if "\r\n" in x] tickers = [x.split("\r\n")[1] for x in tickers if "NASDAQ" not in x != "\r\n"] tickers = [ticker for ticker in tickers if "File" not in ticker] ftp.close() return tickers def tickers_other(): '''Downloads list of tickers currently listed in the "otherlisted.txt" file on "ftp.nasdaqtrader.com" ''' ftp = ftplib.FTP("ftp.nasdaqtrader.com") ftp.login() ftp.cwd("SymbolDirectory") r = io.BytesIO() ftp.retrbinary('RETR otherlisted.txt', r.write) info = r.getvalue().decode() splits = info.split("|") tickers = [x for x in splits if "\r\n" in x] tickers = [x.split("\r\n")[1] for x in tickers] tickers = [ticker for ticker in tickers if "File" not in ticker] ftp.close() return tickers def tickers_dow(): '''Downloads list of currently traded tickers on the Dow''' site = "https://finance.yahoo.com/quote/%5EDJI/components?p=%5EDJI" table = pd.read_html(site)[0] dow_tickers = sorted(table['Symbol'].tolist()) return dow_tickers def tickers_ibovespa(): '''Downloads list of currently traded tickers on the Ibovespa, Brazil''' ibovespa_tickers = pd.read_html("https://pt.wikipedia.org/wiki/Lista_de_companhias_citadas_no_Ibovespa")[0] ibovespa_tickers.columns = ["Symbol", "Share", "Sector", "Type", "Site"] ibovespa_tickers = sorted(ibovespa_tickers.Symbol.tolist()) return ibovespa_tickers def get_quote_table(ticker , dict_result = True): '''Scrapes data elements found on Yahoo Finance's quote page of input ticker @param: ticker @param: dict_result = True ''' site = "https://finance.yahoo.com/quote/" + ticker + "?p=" + ticker tables = pd.read_html(site) data = tables[0].append(tables[1]) data.columns = ["attribute" , "value"] price_etc = [elt for elt in tables if elt.iloc[0][0] == "Previous Close"][0] price_etc.columns = data.columns.copy() data = data.append(price_etc) quote_price = pd.DataFrame(["Quote Price", get_live_price(ticker)]).transpose() quote_price.columns = data.columns.copy() data = data.append(quote_price) data = data.sort_values("attribute") data = data.drop_duplicates().reset_index(drop = True) data["value"] = data.value.map(force_float) if dict_result: result = {key : val for key,val in zip(data.attribute , data.value)} return result return data def get_stats(ticker): '''Scrapes information from the statistics tab on Yahoo Finance for an input ticker @param: ticker ''' stats_site = "https://finance.yahoo.com/quote/" + ticker + \ "/key-statistics?p=" + ticker tables = pd.read_html(stats_site) tables = [table for table in tables[1:] if table.shape[1] == 2] table = tables[0] for elt in tables[1:]: table = table.append(elt) table.columns = ["Attribute" , "Value"] table = table.reset_index(drop = True) return table def get_stats_valuation(ticker): '''Scrapes Valuation Measures table from the statistics tab on Yahoo Finance for an input ticker @param: ticker ''' stats_site = "https://finance.yahoo.com/quote/" + ticker + \ "/key-statistics?p=" + ticker tables = pd.read_html(stats_site) tables = [table for table in tables if "Trailing P/E" in table.iloc[:,0].tolist()] table = tables[0].reset_index(drop = True) return table def _parse_json(url): html = requests.get(url=url).text json_str = html.split('root.App.main =')[1].split( '(this)')[0].split(';\n}')[0].strip() data = json.loads(json_str)[ 'context']['dispatcher']['stores']['QuoteSummaryStore'] # return data new_data = json.dumps(data).replace('{}', 'null') new_data = re.sub(r'\{[\'|\"]raw[\'|\"]:(.*?),(.*?)\}', r'\1', new_data) json_info = json.loads(new_data) return json_info def _parse_table(json_info): df = pd.DataFrame(json_info) del df["maxAge"] df.set_index("endDate", inplace=True) df.index = pd.to_datetime(df.index, unit="s") df = df.transpose() df.index.name = "Breakdown" return df def get_income_statement(ticker, yearly = True): '''Scrape income statement from Yahoo Finance for a given ticker @param: ticker ''' income_site = "https://finance.yahoo.com/quote/" + ticker + \ "/financials?p=" + ticker json_info = _parse_json(income_site) if yearly: temp = json_info["incomeStatementHistory"]["incomeStatementHistory"] else: temp = json_info["incomeStatementHistoryQuarterly"]["incomeStatementHistory"] return _parse_table(temp) def get_balance_sheet(ticker, yearly = True): '''Scrapes balance sheet from Yahoo Finance for an input ticker @param: ticker ''' balance_sheet_site = "https://finance.yahoo.com/quote/" + ticker + \ "/balance-sheet?p=" + ticker json_info = _parse_json(balance_sheet_site) if yearly: temp = json_info["balanceSheetHistory"]["balanceSheetStatements"] else: temp = json_info["balanceSheetHistoryQuarterly"]["balanceSheetStatements"] return _parse_table(temp) def get_cash_flow(ticker, yearly = True): '''Scrapes the cash flow statement from Yahoo Finance for an input ticker @param: ticker ''' cash_flow_site = "https://finance.yahoo.com/quote/" + \ ticker + "/cash-flow?p=" + ticker json_info = _parse_json(cash_flow_site) if yearly: temp = json_info["cashflowStatementHistory"]["cashflowStatements"] else: temp = json_info["cashflowStatementHistoryQuarterly"]["cashflowStatements"] return _parse_table(temp) def get_financials(ticker, yearly = True, quarterly = True): '''Scrapes financials data from Yahoo Finance for an input ticker, including balance sheet, cash flow statement, and income statement. Returns dictionary of results. @param: ticker @param: yearly = True @param: quarterly = True ''' if not yearly and not quarterly: raise AssertionError("yearly or quarterly must be True") financials_site = "https://finance.yahoo.com/quote/" + ticker + \ "/financials?p=" + ticker json_info = _parse_json(financials_site) result = {} if yearly: temp = json_info["incomeStatementHistory"]["incomeStatementHistory"] table = _parse_table(temp) result["yearly_income_statement"] = table temp = json_info["balanceSheetHistory"]["balanceSheetStatements"] table = _parse_table(temp) result["yearly_balance_sheet"] = table temp = json_info["cashflowStatementHistory"]["cashflowStatements"] table = _parse_table(temp) result["yearly_cash_flow"] = table if quarterly: temp = json_info["incomeStatementHistoryQuarterly"]["incomeStatementHistory"] table = _parse_table(temp) result["quarterly_income_statement"] = table temp = json_info["balanceSheetHistoryQuarterly"]["balanceSheetStatements"] table = _parse_table(temp) result["quarterly_balance_sheet"] = table temp = json_info["cashflowStatementHistoryQuarterly"]["cashflowStatements"] table = _parse_table(temp) result["quarterly_cash_flow"] = table return result def get_holders(ticker): '''Scrapes the Holders page from Yahoo Finance for an input ticker @param: ticker ''' holders_site = "https://finance.yahoo.com/quote/" + \ ticker + "/holders?p=" + ticker tables = pd.read_html(holders_site , header = 0) table_names = ["Major Holders" , "Direct Holders (Forms 3 and 4)" , "Top Institutional Holders" , "Top Mutual Fund Holders"] table_mapper = {key : val for key,val in zip(table_names , tables)} return table_mapper def get_analysts_info(ticker): '''Scrapes the Analysts page from Yahoo Finance for an input ticker @param: ticker ''' analysts_site = "https://finance.yahoo.com/quote/" + ticker + \ "/analysts?p=" + ticker tables = pd.read_html(analysts_site , header = 0) table_names = [table.columns[0] for table in tables] table_mapper = {key : val for key , val in zip(table_names , tables)} return table_mapper def get_live_price(ticker): '''Gets the live price of input ticker @param: ticker ''' df = get_data(ticker, end_date = pd.Timestamp.today() + pd.DateOffset(10)) return df.close[-1] def _raw_get_daily_info(site): session = HTMLSession() resp = session.get(site) tables = pd.read_html(resp.html.raw_html) df = tables[0].copy() df.columns = tables[0].columns del df["52 Week Range"] df["% Change"] = df["% Change"].map(lambda x: float(x.strip("%+").replace(",", ""))) fields_to_change = [x for x in df.columns.tolist() if "Vol" in x \ or x == "Market Cap"] for field in fields_to_change: if type(df[field][0]) == str: df[field] = df[field].str.strip("B").map(force_float) df[field] = df[field].map(lambda x: x if type(x) == str else x * 1000000000) df[field] = df[field].map(lambda x: x if type(x) == float else force_float(x.strip("M")) * 1000000) session.close() return df def get_day_most_active(): return _raw_get_daily_info("https://finance.yahoo.com/most-active?offset=0&count=100") def get_day_gainers(): return _raw_get_daily_info("https://finance.yahoo.com/gainers?offset=0&count=100") def get_day_losers(): return _raw_get_daily_info("https://finance.yahoo.com/losers?offset=0&count=100") def get_top_crypto(): '''Gets the top 100 Cryptocurrencies by Market Cap''' session = HTMLSession() resp = session.get("https://finance.yahoo.com/cryptocurrencies?offset=0&count=100") tables = pd.read_html(resp.html.raw_html) df = tables[0].copy() df["% Change"] = df["% Change"].map(lambda x: float(x.strip("%").\ strip("+").\ replace(",", ""))) del df["52 Week Range"] del df["1 Day Chart"] fields_to_change = [x for x in df.columns.tolist() if "Volume" in x \ or x == "Market Cap" or x == "Circulating Supply"] for field in fields_to_change: if type(df[field][0]) == str: df[field] = df[field].str.strip("B").map(force_float) df[field] = df[field].map(lambda x: x if type(x) == str else x * 1000000000) df[field] = df[field].map(lambda x: x if type(x) == float else force_float(x.strip("M")) * 1000000) session.close() return df def get_dividends(ticker, start_date = None, end_date = None, index_as_date = True): '''Downloads historical dividend data into a pandas data frame. @param: ticker @param: start_date = None @param: end_date = None @param: index_as_date = True ''' # build and connect to URL site, params = build_url(ticker, start_date, end_date, "1d") resp = requests.get(site, params = params) if not resp.ok: raise AssertionError(resp.json()) # get JSON response data = resp.json() # check if there is data available for dividends if "dividends" not in data["chart"]["result"][0]['events']: raise AssertionError("There is no data available on dividends, or none have been granted") # get the dividend data frame = pd.DataFrame(data["chart"]["result"][0]['events']['dividends']) frame = frame.transpose() frame.index = pd.to_datetime(frame.index, unit = "s") frame.index = frame.index.map(lambda dt: dt.floor("d")) # sort in to chronological order frame = frame.sort_index() frame['ticker'] = ticker.upper() # remove old date column frame = frame.drop(columns='date') frame = frame.rename({'amount': 'dividend'}, axis = 'columns') if not index_as_date: frame = frame.reset_index() frame.rename(columns = {"index": "date"}, inplace = True) return frame def get_splits(ticker, start_date = None, end_date = None, index_as_date = True): '''Downloads historical stock split data into a pandas data frame. @param: ticker @param: start_date = None @param: end_date = None @param: index_as_date = True ''' # build and connect to URL site, params = build_url(ticker, start_date, end_date, "1d") resp = requests.get(site, params = params) if not resp.ok: raise AssertionError(resp.json()) # get JSON response data = resp.json() # check if there is data available for splits if "splits" not in data["chart"]["result"][0]['events']: raise AssertionError("There is no data available on stock splits, or none have occured") # get the split data frame = pd.DataFrame(data["chart"]["result"][0]['events']['splits']) frame = frame.transpose() frame.index = pd.to_datetime(frame.index, unit = "s") frame.index = frame.index.map(lambda dt: dt.floor("d")) # sort in to chronological order frame = frame.sort_index() frame['ticker'] = ticker.upper() # remove unnecessary columns frame = frame.drop(columns=['date', 'denominator', 'numerator']) if not index_as_date: frame = frame.reset_index() frame.rename(columns = {"index": "date"}, inplace = True) return frame def get_earnings(ticker): '''Scrapes earnings data from Yahoo Finance for an input ticker @param: ticker ''' financials_site = "https://finance.yahoo.com/quote/" + ticker + \ "/financials?p=" + ticker json_info = _parse_json(financials_site) temp = json_info["earnings"] result = {} result["quarterly_results"] = pd.DataFrame.from_dict(temp["earningsChart"]["quarterly"]) result["yearly_revenue_earnings"] = pd.DataFrame.from_dict(temp["financialsChart"]["yearly"]) result["quarterly_revenue_earnings"] = pd.DataFrame.from_dict(temp["financialsChart"]["quarterly"]) return result
import pygame import math import random from pygame.locals import * def main(): """Main game execution """ game_init() # initializing game load_resources() # loading game resources game_loop() # looping through game def game_init(): """Initializing game """ # initializing global variables global screen, width, height, keys, playerpos, accuracy, arrows global badtimer,badtimer1, badguys, healthvalue # initializing game and game-related variables pygame.init() width, height = 640, 480 # screen width and height keys = [False, False, False, False] # game keys (WASD) playerpos=[100,100] # player position accuracy =[0,0] # player's accuracy arrows = [] # arrows badtimer=100 # timer to decrease for bad guys to appear badtimer1=0 # timer to increase for bad guys to appear/disappear badguys=[[640,100]] # bad guys initial opsition healthvalue=194 # health value screen = pygame.display.set_mode((width, height)) def load_resources(): """Loading game resources """ # initializing global variables global player, grass, castle, arrow, gameover global badguyimg, badguyimg1, healthbar, health, youwin global shoot, hit, enemy # initializing mixer pygame.mixer.init() # loading resources player = pygame.image.load("resources/images/dude.png") grass = pygame.image.load("resources/images/grass.png") castle = pygame.image.load("resources/images/castle.png") arrow = pygame.image.load("resources/images/bullet.png") healthbar = pygame.image.load("resources/images/healthbar.png") health = pygame.image.load("resources/images/health.png") badguyimg1 = pygame.image.load("resources/images/badguy.png") gameover = pygame.image.load("resources/images/gameover.png") youwin = pygame.image.load("resources/images/youwin.png") hit = pygame.mixer.Sound("resources/audio/explode.wav") enemy = pygame.mixer.Sound("resources/audio/enemy.wav") shoot = pygame.mixer.Sound("resources/audio/shoot.wav") badguyimg = badguyimg1 # setting up music hit.set_volume(0.05) enemy.set_volume(0.05) shoot.set_volume(0.05) pygame.mixer.music.load('resources/audio/moonlight.wav') pygame.mixer.music.play(-1, 0.0) pygame.mixer.music.set_volume(0.25) def draw_grass(): """Drawing grass to the screen """ # referencing global variables global width, height, grass, screen # iterating over width/grass_width for x in range(width/grass.get_width() + 1): # iterating over height/grass_height for y in range(height/grass.get_height()+1): # drawing grass on screen screen.blit(grass,(x*100,y*100)) def draw_castle(): """Drawing castle """ # referencing global variable(s) global castle, screen y_castle = 30 # drawing castle(s) on the screen for x in range(4): screen.blit(castle, (0,y_castle)) y_castle += 105 def draw_player(): """Drawing player with z rotation """ # referencing global variables global player, playerpos, playerpos1 # calculazing z rotation value position = pygame.mouse.get_pos() # getting mouse position # calculating angle between mouse and player tan(angle) = (y2-y1)/(x2-x1) # angle = arctan((y2-y1)/(x2-x1)) # angle is in radians angle = math.atan2( position[1]-(playerpos[1]+32), position[0]-(playerpos[0]+26) ) angle_degress = 360-angle*57.29 # player rotation playerrot = pygame.transform.rotate(player, angle_degress) # player new position playerpos1 = ( playerpos[0]-playerrot.get_rect().width/2, playerpos[1]-playerrot.get_rect().height/2) # drawing player on the screen screen.blit(playerrot, playerpos1) def draw_arrows(): """Drawing the arrows fired by the player """ # referencing global variables global arrow, arrows # updating arrows position with velocity components for bullet in arrows: index=0 # velocity vector components: # x-component: cos(angle) * acceleration # y-compoent: sin(angle) * acceleration velx=math.cos(bullet[0])*10 # x-component of the velocity vector vely=math.sin(bullet[0])*10 # y-value of the velocity vector # adding velocities to the arrows position components bullet[1]+=velx bullet[2]+=vely # removing arrow from screen if bullet[1]<-64 or bullet[1]>640 or bullet[2]<-64 or bullet[2]>480: arrows.pop(index) index+=1 # drawing arrows on screen for projectile in arrows: arrow1 = pygame.transform.rotate(arrow, 360-projectile[0]*57.29) screen.blit(arrow1, (projectile[1], projectile[2])) def draw_bad_guys(): """Drawing bad guys """ # referencing global variables global badtimer, badtimer1, badguys, badguyimg global healthvalue, accuracy, arrows, hit, enemy # check if its time to add a new bad guy to the screen if badtimer == 0: # ok, its tim to add a new bad guy # adding a bad guy from any y-coordinate from the right of the screen # with boundaries badguys.append([640, random.randint(50,430)]) # reduce time for bad guys to appear badtimer=100-(badtimer1*2) # check for another timer if badtimer1>=35: badtimer1=35 else: badtimer1+=5 index=0 for badguy in badguys: # remove bad guys if they went off-screen if badguy[0]<-64: badguys.pop(index) # reduce bad guys x-position (move to the left) badguy[0]-=5 # use this variable to modify bad guys speed # blowing up castle badrect=pygame.Rect(badguyimg.get_rect()) badrect.top=badguy[1] badrect.left=badguy[0] if badrect.left<64: # hit castle sound hit.play() healthvalue -= random.randint(5,20) badguys.pop(index) # keeping track of current arrow index1=0 # checking for collision between bad guys and arrows for bullet in arrows: bullrect=pygame.Rect(arrow.get_rect()) # arrow rect bullrect.left=bullet[1] # left? bullrect.top=bullet[2] # top? # checking for collision between arrow and badguy if badrect.colliderect(bullrect): # enemy sound enemy.play() # a collision happened, increase accuracy? accuracy[0]+=1 # removing bad guy and arrow from screen badguys.pop(index) arrows.pop(index1) index1+=1 # keeping track of current bad guy index+=1 # drawing bad guys for badguy in badguys: screen.blit(badguyimg, badguy) def draw_clock(): """Drawing a timer """ # creating a font with size font = pygame.font.Font(None, 24) # rendering a text containing the current time survivedtext = font.render( (str((90000-pygame.time.get_ticks())/60000)+ ":"+str((90000-pygame.time.get_ticks())/1000%60).zfill(2)), True,(0,0,0)) # retrieving rect for text textRect = survivedtext.get_rect() # positioning text on top right corner textRect.topright=[635,5] # drawing text onto the screen screen.blit(survivedtext, textRect) def draw_health(): """Drawing health bar """ # referencing global variables global healthbar, health, healthvalue # drawing health bar screen.blit(healthbar, (5,5)) for health1 in range(healthvalue): # according to how much value left, draw health screen.blit(health, (health1+8,8)) def check_for_end(): """Checking for the end of game """ # referencing global variables global running, exitcode, accuracy, gameover, accuracy_str # check if game needs to end if pygame.time.get_ticks()>=90000: # time has elapsed running=0 exitcode=1 if healthvalue<=0: # player health is gone running=0 exitcode=0 if accuracy[1]!=0: accuracy_str=accuracy[0]*1.0/accuracy[1]*100 else: accuracy_str=0 def end_game(): """Ending game """ # referencing global variables global accuracy_str, gameover, youwin # check if player won/lost if exitcode==0: # player lost pygame.font.init() font = pygame.font.Font(None, 24) # creating font # rendering text text = font.render("Accuracy: "+str(accuracy_str)+"%", True, (255,0,0)) textRect = text.get_rect() textRect.centerx = screen.get_rect().centerx textRect.centery = screen.get_rect().centery+24 screen.blit(gameover, (0,0)) screen.blit(text, textRect) # adding text to screen else: # player won pygame.font.init() font = pygame.font.Font(None, 24) # creating font # rendering text text = font.render("Accuracy: "+str(accuracy_str)+"%", True, (0,255,0)) textRect = text.get_rect() textRect.centerx = screen.get_rect().centerx textRect.centery = screen.get_rect().centery+24 screen.blit(youwin, (0,0)) screen.blit(text, textRect) # adding text to screen pygame.display.flip() # giving user the ability to quit game while True: for event in pygame.event.get(): if event.type == pygame.QUIT: pygame.quit() exit(0) def game_events(): """Checking for game events """ # referencing global variables global keys, playerpos, accuracy, arrows, playerpos1, shoot # loop through events for event in pygame.event.get(): # check if the event is the X button if event.type == pygame.QUIT: # if it is, quit the game pygame.quit() exit(0) # checking for key down keyboard events if event.type == pygame.KEYDOWN: if event.key == K_w: # 'w' key was pressed down keys[0] = True if event.key == K_a: # 'a' key was pressed down keys[1] = True if event.key == K_s: # 's' key was pressed down keys[2] = True if event.key == K_d: # 'd' key was pressed down keys[3] = True # checking for key up keyboard events if event.type == pygame.KEYUP: if event.key == K_w: # 'w' key was pressed up keys[0] = False if event.key == K_a: # 'a' key was pressed up keys[1] = False if event.key == K_s: # 's' key was pressed up keys[2] = False if event.key == K_d: # 'd' key was pressed up keys[3] = False # checking if mouse was clicked AKA an arrow was fired! if event.type == pygame.MOUSEBUTTONDOWN: # shoot sound shoot.play() position = pygame.mouse.get_pos() # mouse position accuracy[1]+=1 # increase y accuracy # calculating the arrow rotation based on the rotated player # position and the cursor position. # This rotation value is stored in the arrows array. # arrow = (angle, x, y) arrows.append( [math.atan2( position[1]-(playerpos1[1]+32), position[0]-(playerpos1[0]+26)), playerpos1[0]+32,playerpos1[1]+32]) # updating player position based on which key was pressed # AKA moving player if keys[0]: playerpos[1]-=5 elif keys[2]: playerpos[1]+=5 if keys[1]: playerpos[0]-=5 elif keys[3]: playerpos[0]+=5 def game_loop(): """Infinite game loop """ # referencing global variables global screen, badtimer # initializing global variables global running, exitcode running = 1 # use to determine if player wins or loses exitcode = 0 # use to determine if game should be finished # keeping looping through game while running: # clear screen before drawing it again screen.fill(0) draw_grass() # drawing grass draw_castle() # drawing castle(s) draw_player() # drawing player draw_arrows() # drawing arrows draw_bad_guys() # drawing bad guys draw_clock() # drawing a clock draw_health() # drawing health! pygame.display.flip() # update the screen game_events() # loading game events # updating bad time for guys to appear badtimer-=1 # checking for end game check_for_end() # ending game end_game() if __name__ == "__main__": main()
from .views import IndexView from sanic_router import Include, Url routes = ( Url('', IndexView.as_view(), name='index'), Url('schema/', Include('tests.example.schema.routes', namespace='schema')), )
# Generated by the gRPC Python protocol compiler plugin. DO NOT EDIT! import grpc import protos.cisco_mdt_dial_in_pb2 as cisco__mdt__dial__in__pb2 class gRPCConfigOperStub(object): # missing associated documentation comment in .proto file pass def __init__(self, channel): """Constructor. Args: channel: A grpc.Channel. """ self.GetConfig = channel.unary_stream( "/IOSXRExtensibleManagabilityService.gRPCConfigOper/GetConfig", request_serializer=cisco__mdt__dial__in__pb2.ConfigGetArgs.SerializeToString, response_deserializer=cisco__mdt__dial__in__pb2.ConfigGetReply.FromString, ) self.MergeConfig = channel.unary_unary( "/IOSXRExtensibleManagabilityService.gRPCConfigOper/MergeConfig", request_serializer=cisco__mdt__dial__in__pb2.ConfigArgs.SerializeToString, response_deserializer=cisco__mdt__dial__in__pb2.ConfigReply.FromString, ) self.DeleteConfig = channel.unary_unary( "/IOSXRExtensibleManagabilityService.gRPCConfigOper/DeleteConfig", request_serializer=cisco__mdt__dial__in__pb2.ConfigArgs.SerializeToString, response_deserializer=cisco__mdt__dial__in__pb2.ConfigReply.FromString, ) self.ReplaceConfig = channel.unary_unary( "/IOSXRExtensibleManagabilityService.gRPCConfigOper/ReplaceConfig", request_serializer=cisco__mdt__dial__in__pb2.ConfigArgs.SerializeToString, response_deserializer=cisco__mdt__dial__in__pb2.ConfigReply.FromString, ) self.CliConfig = channel.unary_unary( "/IOSXRExtensibleManagabilityService.gRPCConfigOper/CliConfig", request_serializer=cisco__mdt__dial__in__pb2.CliConfigArgs.SerializeToString, response_deserializer=cisco__mdt__dial__in__pb2.CliConfigReply.FromString, ) self.CommitReplace = channel.unary_unary( "/IOSXRExtensibleManagabilityService.gRPCConfigOper/CommitReplace", request_serializer=cisco__mdt__dial__in__pb2.CommitReplaceArgs.SerializeToString, response_deserializer=cisco__mdt__dial__in__pb2.CommitReplaceReply.FromString, ) self.CommitConfig = channel.unary_unary( "/IOSXRExtensibleManagabilityService.gRPCConfigOper/CommitConfig", request_serializer=cisco__mdt__dial__in__pb2.CommitArgs.SerializeToString, response_deserializer=cisco__mdt__dial__in__pb2.CommitReply.FromString, ) self.ConfigDiscardChanges = channel.unary_unary( "/IOSXRExtensibleManagabilityService.gRPCConfigOper/ConfigDiscardChanges", request_serializer=cisco__mdt__dial__in__pb2.DiscardChangesArgs.SerializeToString, response_deserializer=cisco__mdt__dial__in__pb2.DiscardChangesReply.FromString, ) self.GetOper = channel.unary_stream( "/IOSXRExtensibleManagabilityService.gRPCConfigOper/GetOper", request_serializer=cisco__mdt__dial__in__pb2.GetOperArgs.SerializeToString, response_deserializer=cisco__mdt__dial__in__pb2.GetOperReply.FromString, ) self.CreateSubs = channel.unary_stream( "/IOSXRExtensibleManagabilityService.gRPCConfigOper/CreateSubs", request_serializer=cisco__mdt__dial__in__pb2.CreateSubsArgs.SerializeToString, response_deserializer=cisco__mdt__dial__in__pb2.CreateSubsReply.FromString, ) self.GetProtoFile = channel.unary_stream( "/IOSXRExtensibleManagabilityService.gRPCConfigOper/GetProtoFile", request_serializer=cisco__mdt__dial__in__pb2.GetProtoFileArgs.SerializeToString, response_deserializer=cisco__mdt__dial__in__pb2.GetProtoFileReply.FromString, ) class gRPCConfigOperServicer(object): # missing associated documentation comment in .proto file pass def GetConfig(self, request, context): """Configuration related commands """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details("Method not implemented!") raise NotImplementedError("Method not implemented!") def MergeConfig(self, request, context): # missing associated documentation comment in .proto file pass context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details("Method not implemented!") raise NotImplementedError("Method not implemented!") def DeleteConfig(self, request, context): # missing associated documentation comment in .proto file pass context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details("Method not implemented!") raise NotImplementedError("Method not implemented!") def ReplaceConfig(self, request, context): # missing associated documentation comment in .proto file pass context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details("Method not implemented!") raise NotImplementedError("Method not implemented!") def CliConfig(self, request, context): # missing associated documentation comment in .proto file pass context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details("Method not implemented!") raise NotImplementedError("Method not implemented!") def CommitReplace(self, request, context): # missing associated documentation comment in .proto file pass context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details("Method not implemented!") raise NotImplementedError("Method not implemented!") def CommitConfig(self, request, context): """Do we need implicit or explicit commit """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details("Method not implemented!") raise NotImplementedError("Method not implemented!") def ConfigDiscardChanges(self, request, context): # missing associated documentation comment in .proto file pass context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details("Method not implemented!") raise NotImplementedError("Method not implemented!") def GetOper(self, request, context): """Get only returns oper data """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details("Method not implemented!") raise NotImplementedError("Method not implemented!") def CreateSubs(self, request, context): """Get Telemetry Data """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details("Method not implemented!") raise NotImplementedError("Method not implemented!") def GetProtoFile(self, request, context): """Get Proto File """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details("Method not implemented!") raise NotImplementedError("Method not implemented!") def add_gRPCConfigOperServicer_to_server(servicer, server): rpc_method_handlers = { "GetConfig": grpc.unary_stream_rpc_method_handler( servicer.GetConfig, request_deserializer=cisco__mdt__dial__in__pb2.ConfigGetArgs.FromString, response_serializer=cisco__mdt__dial__in__pb2.ConfigGetReply.SerializeToString, ), "MergeConfig": grpc.unary_unary_rpc_method_handler( servicer.MergeConfig, request_deserializer=cisco__mdt__dial__in__pb2.ConfigArgs.FromString, response_serializer=cisco__mdt__dial__in__pb2.ConfigReply.SerializeToString, ), "DeleteConfig": grpc.unary_unary_rpc_method_handler( servicer.DeleteConfig, request_deserializer=cisco__mdt__dial__in__pb2.ConfigArgs.FromString, response_serializer=cisco__mdt__dial__in__pb2.ConfigReply.SerializeToString, ), "ReplaceConfig": grpc.unary_unary_rpc_method_handler( servicer.ReplaceConfig, request_deserializer=cisco__mdt__dial__in__pb2.ConfigArgs.FromString, response_serializer=cisco__mdt__dial__in__pb2.ConfigReply.SerializeToString, ), "CliConfig": grpc.unary_unary_rpc_method_handler( servicer.CliConfig, request_deserializer=cisco__mdt__dial__in__pb2.CliConfigArgs.FromString, response_serializer=cisco__mdt__dial__in__pb2.CliConfigReply.SerializeToString, ), "CommitReplace": grpc.unary_unary_rpc_method_handler( servicer.CommitReplace, request_deserializer=cisco__mdt__dial__in__pb2.CommitReplaceArgs.FromString, response_serializer=cisco__mdt__dial__in__pb2.CommitReplaceReply.SerializeToString, ), "CommitConfig": grpc.unary_unary_rpc_method_handler( servicer.CommitConfig, request_deserializer=cisco__mdt__dial__in__pb2.CommitArgs.FromString, response_serializer=cisco__mdt__dial__in__pb2.CommitReply.SerializeToString, ), "ConfigDiscardChanges": grpc.unary_unary_rpc_method_handler( servicer.ConfigDiscardChanges, request_deserializer=cisco__mdt__dial__in__pb2.DiscardChangesArgs.FromString, response_serializer=cisco__mdt__dial__in__pb2.DiscardChangesReply.SerializeToString, ), "GetOper": grpc.unary_stream_rpc_method_handler( servicer.GetOper, request_deserializer=cisco__mdt__dial__in__pb2.GetOperArgs.FromString, response_serializer=cisco__mdt__dial__in__pb2.GetOperReply.SerializeToString, ), "CreateSubs": grpc.unary_stream_rpc_method_handler( servicer.CreateSubs, request_deserializer=cisco__mdt__dial__in__pb2.CreateSubsArgs.FromString, response_serializer=cisco__mdt__dial__in__pb2.CreateSubsReply.SerializeToString, ), "GetProtoFile": grpc.unary_stream_rpc_method_handler( servicer.GetProtoFile, request_deserializer=cisco__mdt__dial__in__pb2.GetProtoFileArgs.FromString, response_serializer=cisco__mdt__dial__in__pb2.GetProtoFileReply.SerializeToString, ), } generic_handler = grpc.method_handlers_generic_handler( "IOSXRExtensibleManagabilityService.gRPCConfigOper", rpc_method_handlers ) server.add_generic_rpc_handlers((generic_handler,)) class gRPCExecStub(object): # missing associated documentation comment in .proto file pass def __init__(self, channel): """Constructor. Args: channel: A grpc.Channel. """ self.ShowCmdTextOutput = channel.unary_stream( "/IOSXRExtensibleManagabilityService.gRPCExec/ShowCmdTextOutput", request_serializer=cisco__mdt__dial__in__pb2.ShowCmdArgs.SerializeToString, response_deserializer=cisco__mdt__dial__in__pb2.ShowCmdTextReply.FromString, ) self.ShowCmdJSONOutput = channel.unary_stream( "/IOSXRExtensibleManagabilityService.gRPCExec/ShowCmdJSONOutput", request_serializer=cisco__mdt__dial__in__pb2.ShowCmdArgs.SerializeToString, response_deserializer=cisco__mdt__dial__in__pb2.ShowCmdJSONReply.FromString, ) self.ActionJSON = channel.unary_stream( "/IOSXRExtensibleManagabilityService.gRPCExec/ActionJSON", request_serializer=cisco__mdt__dial__in__pb2.ActionJSONArgs.SerializeToString, response_deserializer=cisco__mdt__dial__in__pb2.ActionJSONReply.FromString, ) class gRPCExecServicer(object): # missing associated documentation comment in .proto file pass def ShowCmdTextOutput(self, request, context): """Exec commands """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details("Method not implemented!") raise NotImplementedError("Method not implemented!") def ShowCmdJSONOutput(self, request, context): # missing associated documentation comment in .proto file pass context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details("Method not implemented!") raise NotImplementedError("Method not implemented!") def ActionJSON(self, request, context): # missing associated documentation comment in .proto file pass context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details("Method not implemented!") raise NotImplementedError("Method not implemented!") def add_gRPCExecServicer_to_server(servicer, server): rpc_method_handlers = { "ShowCmdTextOutput": grpc.unary_stream_rpc_method_handler( servicer.ShowCmdTextOutput, request_deserializer=cisco__mdt__dial__in__pb2.ShowCmdArgs.FromString, response_serializer=cisco__mdt__dial__in__pb2.ShowCmdTextReply.SerializeToString, ), "ShowCmdJSONOutput": grpc.unary_stream_rpc_method_handler( servicer.ShowCmdJSONOutput, request_deserializer=cisco__mdt__dial__in__pb2.ShowCmdArgs.FromString, response_serializer=cisco__mdt__dial__in__pb2.ShowCmdJSONReply.SerializeToString, ), "ActionJSON": grpc.unary_stream_rpc_method_handler( servicer.ActionJSON, request_deserializer=cisco__mdt__dial__in__pb2.ActionJSONArgs.FromString, response_serializer=cisco__mdt__dial__in__pb2.ActionJSONReply.SerializeToString, ), } generic_handler = grpc.method_handlers_generic_handler( "IOSXRExtensibleManagabilityService.gRPCExec", rpc_method_handlers ) server.add_generic_rpc_handlers((generic_handler,))
import numpy as np import collections from operator import itemgetter np.set_printoptions(linewidth=1024, edgeitems=1000) delta = {'N': (-1, 0), 'W': (0, -1), 'E': (0, 1), 'S': (1, 0)} inv_delta = {v: k for k, v in delta.items()} def distance(p1, p2): return np.array(p2) - np.array(p1) def manhattan_distance(p1, p2): return sum(np.abs(distance(p1, p2))) def build_graph(board): # Build the list of neighbors for each square in the grid. this is our graph. graph = {} for i in range(board.shape[0]): for j in range(board.shape[1]): if board[i, j] == 0: graph[i, j] = [] for direction in 'N', 'E', 'S', 'W': row, col = i + delta[direction][0], j + delta[direction][1] if board[row, col] == 0: graph[i, j].append((row, col)) return graph def get_squares_in_range(allies, enemies, graph): """ returns the positions of the squares that are within range of the enemy units """ squares = [] occupied = get_occupied_squares(allies, enemies) for e in enemies: if not e.alive: continue adjacent = graph[e.pos] squares.extend([sq for sq in adjacent if sq not in occupied]) return squares def get_occupied_squares(allies, enemies): occupied = set() for unit in allies + enemies: if unit.alive: occupied.add(unit.pos) return occupied def get_num_moves(pos, board, allies, enemies): """ Returns a np array of the board where each element holds the number of moves required to get from pos to that element. """ # Setup the visited set and queue for the BFS visited, queue = set(), collections.deque([(0, pos)]) grid = np.zeros_like(board) - 1 visited.add(pos) # Setup a set of spaces occupied by units occupied = get_occupied_squares(allies, enemies) # Perform the BFS to find the number of moves required to # get to every accessible point on the grid. while queue: distance, p = queue.popleft() grid[p] = distance for neighbor in graph[p]: if neighbor not in visited and neighbor in graph and neighbor not in occupied: queue.append((distance+1, neighbor)) visited.add(neighbor) return grid def get_cost_map(pos, allies, enemies, graph): # Setup the visited set and queue for the BFS visited, queue = set(), collections.deque([(0, pos)]) visited.add(pos) cost_map = {} # Setup a set of spaces occupied by units occupied = get_occupied_squares(allies, enemies) # Perform the BFS to find the number of moves required to # get to every accessible point on the grid. while queue: distance, p = queue.popleft() cost_map[p] = distance for neighbor in graph[p]: if neighbor not in visited and neighbor in graph and neighbor not in occupied: queue.append((distance+1, neighbor)) visited.add(neighbor) return cost_map def get_shortest_path(start, end, allies, enemies): """ Returns a np array of the board where each element holds the number of moves required to get from pos to that element. """ # Setup the visited set and queue for the BFS visited, queue = set(), collections.deque([(start)]) visited.add(start) # Setup a set of spaces occupied by units occupied = get_occupied_squares(allies, enemies) # Perform the BFS to get the shortest path prev = {start: None} while queue: loc = queue.popleft() for neighbor in graph[loc]: if neighbor == end: # Found the end, clear the queue and log the previous location\ prev[neighbor] = loc break if neighbor not in visited and neighbor in graph and neighbor not in occupied: queue.append((neighbor)) prev[neighbor] = loc visited.add(neighbor) # Reconstruct path path = [] at = end for i in range(20): path.append(at) at = prev[at] if at is None: break else: path.reverse() path.reverse() return path def print_board(turn, board, elves, goblins): g = np.empty(board.shape, dtype=str) g[:, :] = '.' for i in range(board.shape[0]): for j in range(board.shape[1]): if board[i, j] == 1: g[i, j] = '#' for elf in elves: g[elf.pos[0], elf.pos[1]] = 'E' for gob in goblins: g[gob.pos[0], gob.pos[1]] = 'G' print() for row in range(board.shape[0]): print(''.join(g[row, :])) print() def print_cost_map(turn, board, elves, goblins, cost_map): g = np.empty(board.shape, dtype=str) g[:, :] = '.' for i in range(board.shape[0]): for j in range(board.shape[1]): if board[i, j] == 1: g[i, j] = '#' for elf in elves: g[elf.pos[0], elf.pos[1]] = 'E' for gob in goblins: g[gob.pos[0], gob.pos[1]] = 'G' for key, val in cost_map.items(): g[key] = str(val) print() for row in range(board.shape[0]): print(''.join(g[row, :])) print() class Unit(object): def __init__(self, pos, attack_power=3): self.pos = pos self.hit_points = 200 self.attack_power = attack_power self.alive = True def __repr__(self): return '{0:6s}: pos:{1:10s} hp:{2:03d} {3}'.format(type(self).__name__, str(self.pos), self.hit_points, ' ' if self.alive else 'X') def get_attack_options(self, enemies): attack_directions = [] for t in enemies: if not t.alive: continue if tuple(distance(self.pos, t.pos)) in delta.values(): attack_directions.append(inv_delta[tuple(distance(self.pos, t.pos))]) return attack_directions def __lt__(self, other): self_row, self_col = self.pos other_row, other_col = other.pos if self_row == other_row: return self_col < other_col return self_row < other_row def try_attack(self, enemies): # Can this unit attack this turn? attack_directions = self.get_attack_options(enemies) if not attack_directions: return False fewest_target_hit_points = 1E16 target_to_attack = None for direction in ('N', 'W', 'E', 'S'): if direction in attack_directions: p = self.pos[0] + delta[direction][0], self.pos[1] + delta[direction][1] target_unit = [enemy for enemy in enemies if enemy.pos == p][0] if target_unit.hit_points < fewest_target_hit_points: fewest_target_hit_points = target_unit.hit_points target_to_attack = target_unit target_to_attack.hit_points -= self.attack_power if target_to_attack.hit_points <= 0: target_to_attack.alive = False return True def try_move(self, turn, allies, enemies, board, graph): # squares in range of the enemy squares = get_squares_in_range(allies, enemies, graph) # print(squares) # cost_map cost_map = get_cost_map(self.pos, allies, enemies, graph) # print(cost_map) # print_cost_map(turn, board, enemies, allies, cost_map) square_costs = {sq: cost_map[sq] for sq in squares if sq in cost_map} min_cost_squares = [sq for sq in squares if sq in cost_map and cost_map[sq] == min(square_costs.values())] if not min_cost_squares: # No viable targets found, do not move return False target_square = sorted(min_cost_squares, key=itemgetter(0, 1))[0] # now build a new cost_map from the targeted squares perspective # choose the square adjacent to this unit with the lowest cost for the first move # if multiple squares have the lowest cost, choose the first in reading order rev_cost_map = get_cost_map(target_square, allies, enemies, graph) first_step = None for direction in 'N', 'W', 'E', 'S': sq = self.pos[0] + delta[direction][0], self.pos[1] + delta[direction][1] if sq not in graph or sq not in rev_cost_map: continue if first_step is None or rev_cost_map[sq] < rev_cost_map[first_step]: first_step = sq if first_step is not None: self.pos = first_step return True return False def take_turn(self, turn, allies, enemies, board, graph): # I can't attack if I'm dead if not self.alive: return attack_performed = self.try_attack(enemies) if attack_performed: # Turn complete return # No attack performed, do a move move_performed = self.try_move(turn, allies, enemies, board, graph) if not move_performed: # Turn complete return self.try_attack(enemies) class Elf(Unit): def __init__(self, pos, attack_power=3): super(Elf, self).__init__(pos, attack_power) class Goblin(Unit): def __init__(self, pos, attack_power=3): super(Goblin, self).__init__(pos, attack_power) def parse_initial_state(initial_state, elf_attack_power=3): rows = len(initial_state) cols = len(initial_state[0]) board = np.zeros((rows, cols), dtype=int) elves = [] goblins = [] for i in range(rows): for j in range(cols): if initial_state[i][j] == '#': board[i, j] = 1 elif initial_state[i][j] == 'E': elves.append(Elf((i, j), attack_power=elf_attack_power)) elif initial_state[i][j] == 'G': goblins.append(Goblin((i, j))) return elves, goblins, board def solve(initial_state): elves, goblins, board = parse_initial_state(initial_state) graph = build_graph(board) units = elves + goblins units.sort() print('\ninitial setup') print_board(0, board, elves, goblins) for unit in units: print(unit) for turn in range(1,1000): print('\nstart turn', turn) # Sort all units by read-order units = elves + goblins units.sort() for unit in units: if isinstance(unit, Elf): allies = elves enemies = goblins else: allies = goblins enemies = elves if unit is goblins[0] and turn == 2: print(unit.pos) unit.take_turn(turn, allies, enemies, board, graph) # number of enemies remaining num_enemies = len([e for e in enemies if e.alive]) if num_enemies == 0: print('done after', turn-1, 'full turns') hp_remaining = sum([unit.hit_points for unit in units if unit.alive]) print('hitpoints remaining', hp_remaining) print('result', (turn-1) * hp_remaining) exit(0) # clear the dead elves = [e for e in elves if e.alive] goblins = [g for g in goblins if g.alive] print_board(turn, board, elves, goblins) for unit in units: print(unit) print('end turn', turn) print() print() if __name__ == '__main__': # with open('test_input.txt', 'r') as f: # lines = [s.rstrip() for s in f.readlines()] # solve(initial_state=lines) with open('input.txt', 'r') as f: lines = [s.rstrip() for s in f.readlines()] solve(initial_state=lines)
import binascii from helper import dump2file import Crypto import Crypto.Random from Crypto.Hash import SHA from Crypto.PublicKey import RSA from Crypto.Signature import PKCS1_v1_5 def hex2bin(hexStr): return binascii.unhexlify(hexStr) def verfiy_candidate_signature(public_address, signature, name): """ Check that the provided signature corresponds to transaction signed by the public key (sender_address) """ try: public_key = RSA.importKey(hex2bin(public_address)) verifier = PKCS1_v1_5.new(public_key) h = SHA.new(str(name).encode('utf8')) return verifier.verify(h, hex2bin(signature)) except: return False def gen_id(): random_gen = Crypto.Random.new().read private_key = RSA.generate(1024, random_gen) public_key = private_key.publickey() pri_k_exp = private_key.exportKey(format='DER').hex() pub_k_exp = public_key.exportKey(format='DER').hex() dump2file(pri_k_exp, "Client_pri.der") dump2file(pub_k_exp, "Client_pub.der") response = { 'private_key': pri_k_exp, 'public_key': pub_k_exp } return response def sign_transaction(trans_dict, with_k): """ Sign transaction with private key """ key = RSA.importKey(hex2bin(with_k)) cipher = PKCS1_v1_5.new(key) h = SHA.new(str(trans_dict).encode('utf8')) return cipher.sign(h).hex()
## This file is part of Scapy ## See http://www.secdev.org/projects/scapy for more informations ## Copyright (C) Philippe Biondi <phil@secdev.org> ## This program is published under a GPLv2 license """ ASN.1 (Abstract Syntax Notation One) """ import random from scapy.config import conf from scapy.error import Scapy_Exception,warning from scapy.volatile import RandField from scapy.utils import Enum_metaclass, EnumElement class RandASN1Object(RandField): def __init__(self, objlist=None): if objlist is None: objlist = map(lambda x:x._asn1_obj, filter(lambda x:hasattr(x,"_asn1_obj"), ASN1_Class_UNIVERSAL.__rdict__.values())) self.objlist = objlist self.chars = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789" def _fix(self, n=0): o = random.choice(self.objlist) if issubclass(o, ASN1_INTEGER): return o(int(random.gauss(0,1000))) elif issubclass(o, ASN1_IPADDRESS): z = RandIP()._fix() return o(z) elif issubclass(o, ASN1_STRING): z = int(random.expovariate(0.05)+1) return o("".join([random.choice(self.chars) for i in range(z)])) elif issubclass(o, ASN1_SEQUENCE) and (n < 10): z = int(random.expovariate(0.08)+1) return o(map(lambda x:x._fix(n+1), [self.__class__(objlist=self.objlist)]*z)) return ASN1_INTEGER(int(random.gauss(0,1000))) ############## #### ASN1 #### ############## class ASN1_Error(Scapy_Exception): pass class ASN1_Encoding_Error(ASN1_Error): pass class ASN1_Decoding_Error(ASN1_Error): pass class ASN1_BadTag_Decoding_Error(ASN1_Decoding_Error): pass class ASN1Codec(EnumElement): def register_stem(cls, stem): cls._stem = stem def dec(cls, s, context=None): return cls._stem.dec(s, context=context) def safedec(cls, s, context=None): return cls._stem.safedec(s, context=context) def get_stem(cls): return cls.stem class ASN1_Codecs_metaclass(Enum_metaclass): element_class = ASN1Codec class ASN1_Codecs: __metaclass__ = ASN1_Codecs_metaclass BER = 1 DER = 2 PER = 3 CER = 4 LWER = 5 BACnet = 6 OER = 7 SER = 8 XER = 9 class ASN1Tag(EnumElement): def __init__(self, key, value, context=None, codec=None): EnumElement.__init__(self, key, value) self._context = context if codec == None: codec = {} self._codec = codec def clone(self): # /!\ not a real deep copy. self.codec is shared return self.__class__(self._key, self._value, self._context, self._codec) def register_asn1_object(self, asn1obj): self._asn1_obj = asn1obj def asn1_object(self, val): if hasattr(self,"_asn1_obj"): return self._asn1_obj(val) raise ASN1_Error("%r does not have any assigned ASN1 object" % self) def register(self, codecnum, codec): self._codec[codecnum] = codec def get_codec(self, codec): try: c = self._codec[codec] except KeyError,msg: raise ASN1_Error("Codec %r not found for tag %r" % (codec, self)) return c class ASN1_Class_metaclass(Enum_metaclass): element_class = ASN1Tag def __new__(cls, name, bases, dct): # XXX factorise a bit with Enum_metaclass.__new__() for b in bases: for k,v in b.__dict__.iteritems(): if k not in dct and isinstance(v,ASN1Tag): dct[k] = v.clone() rdict = {} for k,v in dct.iteritems(): if type(v) is int: v = ASN1Tag(k,v) dct[k] = v rdict[v] = v elif isinstance(v, ASN1Tag): rdict[v] = v dct["__rdict__"] = rdict cls = type.__new__(cls, name, bases, dct) for v in cls.__dict__.values(): if isinstance(v, ASN1Tag): v.context = cls # overwrite ASN1Tag contexts, even cloned ones return cls class ASN1_Class: __metaclass__ = ASN1_Class_metaclass class ASN1_Class_UNIVERSAL(ASN1_Class): name = "UNIVERSAL" ERROR = -3 RAW = -2 NONE = -1 ANY = 0 BOOLEAN = 1 INTEGER = 2 BIT_STRING = 3 STRING = 4 NULL = 5 OID = 6 OBJECT_DESCRIPTOR = 7 EXTERNAL = 8 REAL = 9 ENUMERATED = 10 EMBEDDED_PDF = 11 UTF8_STRING = 12 RELATIVE_OID = 13 SEQUENCE = 0x30#XXX 16 ?? SET = 0x31 #XXX 17 ?? NUMERIC_STRING = 18 PRINTABLE_STRING = 19 T61_STRING = 20 VIDEOTEX_STRING = 21 IA5_STRING = 22 UTC_TIME = 23 GENERALIZED_TIME = 24 GRAPHIC_STRING = 25 ISO646_STRING = 26 GENERAL_STRING = 27 UNIVERSAL_STRING = 28 CHAR_STRING = 29 BMP_STRING = 30 IPADDRESS = 0x40 COUNTER32 = 0x41 GAUGE32 = 0x42 TIME_TICKS = 0x43 COUNTER64 = 0x46 SEP = 0x80 class ASN1_Object_metaclass(type): def __new__(cls, name, bases, dct): c = super(ASN1_Object_metaclass, cls).__new__(cls, name, bases, dct) try: c.tag.register_asn1_object(c) except: warning("Error registering %r for %r" % (c.tag, c.codec)) return c class ASN1_Object: __metaclass__ = ASN1_Object_metaclass tag = ASN1_Class_UNIVERSAL.ANY def __init__(self, val): self.val = val def enc(self, codec): return self.tag.get_codec(codec).enc(self.val) def __repr__(self): return "<%s[%r]>" % (self.__dict__.get("name", self.__class__.__name__), self.val) def __str__(self): return self.enc(conf.ASN1_default_codec) def strshow(self, lvl=0): return (" "*lvl)+repr(self)+"\n" def show(self, lvl=0): print self.strshow(lvl) def __eq__(self, other): return self.val == other def __cmp__(self, other): return cmp(self.val, other) class ASN1_DECODING_ERROR(ASN1_Object): tag = ASN1_Class_UNIVERSAL.ERROR def __init__(self, val, exc=None): ASN1_Object.__init__(self, val) self.exc = exc def __repr__(self): return "<%s[%r]{{%s}}>" % (self.__dict__.get("name", self.__class__.__name__), self.val, self.exc.args[0]) def enc(self, codec): if isinstance(self.val, ASN1_Object): return self.val.enc(codec) return self.val class ASN1_force(ASN1_Object): tag = ASN1_Class_UNIVERSAL.RAW def enc(self, codec): if isinstance(self.val, ASN1_Object): return self.val.enc(codec) return self.val class ASN1_BADTAG(ASN1_force): pass class ASN1_INTEGER(ASN1_Object): tag = ASN1_Class_UNIVERSAL.INTEGER class ASN1_STRING(ASN1_Object): tag = ASN1_Class_UNIVERSAL.STRING class ASN1_BIT_STRING(ASN1_STRING): tag = ASN1_Class_UNIVERSAL.BIT_STRING class ASN1_PRINTABLE_STRING(ASN1_STRING): tag = ASN1_Class_UNIVERSAL.PRINTABLE_STRING class ASN1_T61_STRING(ASN1_STRING): tag = ASN1_Class_UNIVERSAL.T61_STRING class ASN1_IA5_STRING(ASN1_STRING): tag = ASN1_Class_UNIVERSAL.IA5_STRING class ASN1_NUMERIC_STRING(ASN1_STRING): tag = ASN1_Class_UNIVERSAL.NUMERIC_STRING class ASN1_VIDEOTEX_STRING(ASN1_STRING): tag = ASN1_Class_UNIVERSAL.VIDEOTEX_STRING class ASN1_IPADDRESS(ASN1_STRING): tag = ASN1_Class_UNIVERSAL.IPADDRESS class ASN1_UTC_TIME(ASN1_STRING): tag = ASN1_Class_UNIVERSAL.UTC_TIME class ASN1_GENERALIZED_TIME(ASN1_STRING): tag = ASN1_Class_UNIVERSAL.GENERALIZED_TIME class ASN1_TIME_TICKS(ASN1_INTEGER): tag = ASN1_Class_UNIVERSAL.TIME_TICKS class ASN1_BOOLEAN(ASN1_INTEGER): tag = ASN1_Class_UNIVERSAL.BOOLEAN class ASN1_ENUMERATED(ASN1_INTEGER): tag = ASN1_Class_UNIVERSAL.ENUMERATED class ASN1_NULL(ASN1_INTEGER): tag = ASN1_Class_UNIVERSAL.NULL class ASN1_SEP(ASN1_NULL): tag = ASN1_Class_UNIVERSAL.SEP class ASN1_GAUGE32(ASN1_INTEGER): tag = ASN1_Class_UNIVERSAL.GAUGE32 class ASN1_COUNTER32(ASN1_INTEGER): tag = ASN1_Class_UNIVERSAL.COUNTER32 class ASN1_COUNTER64(ASN1_INTEGER): tag = ASN1_Class_UNIVERSAL.COUNTER64 class ASN1_SEQUENCE(ASN1_Object): tag = ASN1_Class_UNIVERSAL.SEQUENCE def strshow(self, lvl=0): s = (" "*lvl)+("# %s:" % self.__class__.__name__)+"\n" for o in self.val: s += o.strshow(lvl=lvl+1) return s class ASN1_SET(ASN1_SEQUENCE): tag = ASN1_Class_UNIVERSAL.SET class ASN1_OID(ASN1_Object): tag = ASN1_Class_UNIVERSAL.OID def __init__(self, val): val = conf.mib._oid(val) ASN1_Object.__init__(self, val) def __repr__(self): return "<%s[%r]>" % (self.__dict__.get("name", self.__class__.__name__), conf.mib._oidname(self.val)) def __oidname__(self): return '%s'%conf.mib._oidname(self.val) conf.ASN1_default_codec = ASN1_Codecs.BER
import pymysql # from fj_ftx import settings # # MYSQL_HOSTS = settings.MYSQL_HOSTS # MYSQL_USER = settings.MYSQL_USER # MYSQL_PASSWORD = settings.MYSQL_PASSWORD # MYSQL_PORT = settings.MYSQL_PORT # MYSQL_DB = settings.MYSQL_DB MYSQL_HOSTS = 'cdb-4sj903z8.bj.tencentcdb.com' MYSQL_USER = 'root' MYSQL_PASSWORD = 'andylau1987212' MYSQL_PORT = 10012 MYSQL_DB = 'spiders' conn = pymysql.connect(host=MYSQL_HOSTS, user=MYSQL_USER, passwd=MYSQL_PASSWORD, db=MYSQL_DB, port=MYSQL_PORT, charset='utf8') cursor = conn.cursor() class Sql: @classmethod def insert_ftx(cls, date, province, city, name, reference_rate, investment_period, recommend, general, not_recommended, favorable_rate, followers, Turnover, investors, borrowers, update_time, Unpaid, per_capita_investment, per_capita_borrowing, borrowing_number, uncollected_money, unpaid_people, score, rating, rating_ranking): sql = "INSERT INTO wdzj (date, province, city, name,reference_rate, " \ "investment_period,recommend, general,not_recommended, " \ "favorable_rate,followers, Turnover,investors, borrowers, " \ "update_time,Unpaid,per_capita_investment, " \ "per_capita_borrowing,borrowing_number, uncollected_money, " \ "unpaid_people,score,rating, rating_ranking) VALUES(%(date)s," \ "%(province)s, %(city)s, %(name)s, %(reference_rate)s, " \ "%(investment_period)s, %(recommend)s, %(general)s," \ "%(not_recommended)s, %(favorable_rate)s, %(followers)s," \ "%(Turnover)s, %(investors)s, %(borrowers)s, %(update_time)s," \ "%(Unpaid)s, %(per_capita_investment)s," \ "%(per_capita_borrowing)s, %(borrowing_number)s," \ "%(uncollected_money)s, %(unpaid_people)s, %(score)s," \ "%(rating)s, %(rating_ranking)s)" value = { 'date': date, 'province': province, 'city': city, 'name': name, 'reference_rate': reference_rate, 'investment_period': investment_period, 'recommend': recommend, 'general': general, 'not_recommended': not_recommended, 'favorable_rate': favorable_rate, 'followers': followers, 'Turnover': Turnover, 'investors': investors, 'borrowers': borrowers, 'update_time': update_time, 'Unpaid': Unpaid, 'per_capita_investment': per_capita_investment, 'per_capita_borrowing': per_capita_borrowing, 'borrowing_number': borrowing_number, 'uncollected_money': uncollected_money, 'unpaid_people': unpaid_people, 'score': score, 'rating': rating, 'rating_ranking': rating_ranking } cursor.execute(sql, value) conn.commit() @classmethod def select_name(cls, name): sql = "SELECT EXISTS(SELECT 1 FROM wdzj WHERE name=%(name)s)" value = { 'name': name } cursor.execute(sql, value) return cursor.fetchall()[0]
import csv import requests from bs4 import BeautifulSoup from urllib.parse import urljoin import time URL = 'https://columbian.gwu.edu/2015-2016' response = requests.get(URL) html = response.content soup = BeautifulSoup(html, 'lxml') all_pages = soup.select('.menu-mlid-1117 > ul > li > a') all_pages_rows = [] all_pages_headers = [] def parseTable(table, id): list_of_rows = [] header_list = [] for row in table.findAll('tr')[0:-1]: list_of_cells = [] for header in row.findAll('th'): header_list.append(header.text) for cell in row.findAll('td'): link = cell.find('a') if link: list_of_cells.append(urljoin(URL, link['href'])) else: list_of_cells.append(cell.text) if list_of_cells: list_of_cells.append(id) list_of_rows.append(list_of_cells) return header_list, list_of_rows for i, page in enumerate(all_pages): print('Fetching %s' % page['href']) current_year = requests.get(urljoin(URL, page['href'])) current_year_soup = BeautifulSoup(current_year.content, 'lxml') table = current_year_soup.find('table') header_list, all_rows = parseTable(table, page['href'][1:]) if i == 0: all_pages_headers.extend(header_list) all_pages_rows.extend(all_rows) time.sleep(1) #Chill out for a second before hitting the page again. all_pages_headers.append('Year') all_pages_rows.insert(0, list(all_pages_headers)) outfile = open("gwu_grants.csv", "w") writer = csv.writer(outfile, quoting=csv.QUOTE_NONNUMERIC) writer.writerows(all_pages_rows)
import pytest from rest_framework.test import APIRequestFactory from wagtail.api.v2.utils import BadRequestError from wagtail.core.models import Page from django.conf import settings from src.wagtail_rest_pack.comments.create import CreateCommentAPIView from .factory import new_comment_data from .help import cleanup_and_prepare factory = APIRequestFactory() endpoint = CreateCommentAPIView() @pytest.fixture(autouse=True) def run_around_tests(): cleanup_and_prepare() yield pass @pytest.mark.django_db def test_comment_can_be_added_with_anonymous_user(): # given page_id = str(list(Page.objects.all())[0].id) request = factory.post('/api/v2/comments/' + page_id, new_comment_data(page_id)) # when response = endpoint.dispatch(request) # then assert response.status_code == 201 @pytest.mark.django_db def test_comment_can_not_be_added_without_recaptcha(): # given page_id = str(list(Page.objects.all())[0].id) request = factory.post('/api/v2/comments/', new_comment_data(page_id)) # when response = endpoint.dispatch(request) # then assert response.status_code == 400 assert 'recaptcha' in response.data @pytest.mark.django_db def test_comment_can_not_be_added_without_recaptcha(): # given page_id = str(list(Page.objects.all())[0].id) request = factory.post('/api/v2/comments/', new_comment_data(page_id)) settings.RECAPTCHA_VERIFIER = 'wagtail_rest_pack.recaptcha.google.GoogleRecaptchaVerifier' # when response = endpoint.dispatch(request) # then assert response.status_code == 403 @pytest.mark.django_db def test_comment_can_not_be_added_when_model_not_allowed(): # given page_id = str(list(Page.objects.all())[0].id) request = factory.post('/api/v2/comments/', new_comment_data(page_id)) settings.ALLOWED_COMMENTED_CONTENT_TYPES = ['wagtailcore.Page2'] # when try: endpoint.dispatch(request) except BadRequestError as e: assert 'Given content is not allowed to be commented' in e.args[0]
import operator from datetime import timedelta from functools import reduce import re from itertools import chain from typing import Union, List import parsy from parsy import string, Parser from core.parse_util import lexeme, float_p, integer_p # See https://en.wikipedia.org/wiki/Unit_of_time for reference # The order is relevant: from highest to lowest and longest to shortest # | output | all names | number of seconds | time_units = [ ("yr", ["years", "year", "yr", "y"], 365 * 24 * 3600), ("mo", ["month", "mo", "M"], 31 * 24 * 3600), ("d", ["days", "day", "d"], 24 * 3600), (None, ["weeks", "week", "w"], 7 * 24 * 3600), # output is none, so it will not be used to print ("h", ["hours", "hour", "h"], 3600), ("min", ["minutes", "minute", "min", "m"], 60), ("s", ["seconds", "second", "s"], 1), ] time_unit_combines = [",", "and"] # Check if a string is a valid DurationRe = re.compile( "^[+-]?([\\d.]+(" + "|".join(chain.from_iterable(names for unit, names, _ in time_units)) + ")\\s*(" + "|".join(time_unit_combines) + ")?\\s*)+$" ) def combine_durations(elems: List[Union[int, float]]) -> Union[int, float]: result = 0.0 for d in elems: result += abs(d) return result if elems[0] >= 0 else -result time_unit_parser = reduce( lambda x, y: x | y, [lexeme(string(name)).result(seconds) for _, names, seconds in time_units for name in names] ) time_unit_combination: Parser = reduce(lambda x, y: x | y, [lexeme(string(a)) for a in [",", "and"]]) single_duration_parser = parsy.seq((float_p | integer_p), time_unit_parser).combine(operator.mul) duration_parser = single_duration_parser.sep_by(time_unit_combination.optional(), min=1).map(combine_durations) def parse_duration(ds: str) -> timedelta: return timedelta(seconds=duration_parser.parse(ds))
# Reference: https://note.com/agw/n/nc052420f3c37 from sense_hat import SenseHat sense = SenseHat() sense.clear() r = [255,0,0] b = [0,0,255] i = [75,0,130] v = [159,0,255] e = [0,0,0] w = [255,255,255] imageOff = [ e,e,e,e,e,e,e,e, e,e,e,e,e,e,e,e, e,e,e,e,e,e,e,e, e,e,e,e,e,e,e,e, e,e,e,e,e,e,e,e, e,e,e,e,e,e,e,e, e,e,e,e,e,e,e,e, e,e,e,e,e,e,e,e ] imageUp = [ e,e,e,w,e,e,e,e, e,e,e,w,e,e,e,e, e,e,e,w,e,e,e,e, e,e,e,w,w,w,w,e, e,e,e,w,e,e,e,e, e,e,e,w,e,e,e,e, e,e,e,w,e,e,e,e, w,w,w,w,w,w,w,w ] imageDown = [ r,r,r,r,r,r,r,r, e,e,e,r,e,e,e,e, e,e,e,r,e,e,e,e, e,e,e,r,r,r,r,e, e,e,e,r,e,e,e,e, e,e,e,r,e,e,e,e, e,e,e,r,e,e,e,e, e,e,e,r,e,e,e,e ] imageRight = [ e,e,e,e,i,e,e,e, e,e,e,i,e,e,e,e, i,i,i,i,i,i,i,i, e,e,i,e,e,e,e,e, e,i,e,i,i,i,i,i, i,e,e,i,e,e,e,i, e,e,e,i,e,e,e,i, e,e,e,i,i,i,i,i ] imageLeft = [ e,e,e,e,v,e,e,e, e,e,e,v,e,e,e,e, v,v,v,v,v,v,v,v, e,e,v,e,e,e,e,e, e,v,e,v,v,v,v,v, v,e,e,e,e,v,e,e, e,e,e,e,e,v,e,e, e,e,e,v,v,v,v,v ] imageMiddle = [ e,b,e,b,b,b,b,b, b,b,b,b,e,b,e,b, e,b,e,b,b,b,b,b, e,b,e,b,e,b,e,b, e,b,e,b,b,b,b,b, e,b,b,e,e,b,e,e, b,b,e,e,e,b,e,e, e,b,e,e,e,b,e,e ] chFlg = 0 image = imageOff while chFlg >= 0: for event in sense.stick.get_events(): print(event.direction, event.action) if event.direction == "down": image = imageDown chFlg = 1 if event.direction == "up": image = imageUp chFlg = 1 if event.direction == "right": image = imageRight chFlg = 1 if event.direction == "left": image = imageLeft chFlg = 1 if event.direction == "middle": chFlg = -1 if chFlg != 0: sense.clear() if chFlg == 1: sense.set_pixels(image) chFlg = 0
# -*- coding: utf-8 -*- from __future__ import absolute_import, unicode_literals class UnvalidEncodingAESKey(Exception): pass class AppIdValidationError(Exception): pass class InvalidSignature(Exception): pass
#!/usr/bin/python import sys import getopt import jieba jieba.dt.cache_file = 'jieba.cache.new' input_path = 'input.txt' output_path = 'output.txt' def scut2word(input_path, output_path): input_fd = open(input_path, "r") output_fd = open(output_path, "w") for line in input_fd: print("[Info] Origional Line:", line, end='') seg_list = jieba.cut(line) after_cut_line = " ".join(seg_list) print("[Info] Finished Cut Line from origional:", after_cut_line, end='') output_fd.write(after_cut_line) input_fd.close() output_fd.close() print(" ========== [System Message]: Finished Cut!!! Output to", output_path," ========== ") def main(argv): inputfile = False outputfile = False try: opts, args = getopt.getopt(argv,"hi:o:",["ifile=","ofile="]) except getopt.GetoptError: print('Tool_JiebaCut_PreProcess.py -i <inputfile> -o <outputfile>') sys.exit(2) for opt, arg in opts: if opt == '-h': print('test.py -i <inputfile> -o <outputfile>') sys.exit() elif opt in ("-i", "--ifile"): inputfile = arg elif opt in ("-o", "--ofile"): outputfile = arg if not inputfile or not outputfile: print('Tool_JiebaCut_PreProcess.py -i <inputfile> -o <outputfile>') sys.exit(2) print(" ========== [System Message]: Preprocess file Word cut for input file", input_path, " ========== ") scut2word(inputfile, outputfile) if __name__ == "__main__": main(sys.argv[1:])
from datanodes.core.utils import dumpException from datanodes.graphics.graphics_edge import GraphicsEdge DEBUG = False class SceneHistory(): def __init__(self, scene): self.scene = scene self.history_limit = 32 self._hostory_modified_listeners = [] self.clear() def clear(self): self.history_stack = [] self.history_current_step = -1 def storeInitialHistoryStamp(self): self.storeHistory("Initial History Stamp") def canUndo(self): return self.history_current_step > 0 def canRedo(self): return self.history_current_step + 1 < len(self.history_stack) def undo(self): if DEBUG : print("UNDO") if self.canUndo(): self.history_current_step -= 1 self.restoreHistory() self.scene.has_been_modified = True def redo(self): if DEBUG : print("REDO") if self.canRedo(): self.history_current_step += 1 self.restoreHistory() self.scene.has_been_modified = True def addHistoryModifiedListener(self, callback): self._hostory_modified_listeners.append(callback) def restoreHistory(self): if DEBUG : print("Restoring the history ... current step: @%d" % self.history_current_step, "(%d)" % len(self.history_stack)) self.restoreHistoryStamp(self.history_stack[self.history_current_step]) for callback in self._hostory_modified_listeners : callback() def storeHistory(self, desc, setModified=True): if DEBUG : print("Storing the history", "{0}".format(desc) , " ... current step: %d" % self.history_current_step, "(%d)" % len(self.history_stack)) # if the current step is not at the end of the history stack if self.history_current_step +1 < len(self.history_stack): self.history_stack = self.history_stack[:self.history_current_step+1] # check the history stack size limit if self.history_current_step + 1 >= self.history_limit: self.history_stack = self.history_stack[1:] self.history_current_step -= 1 hs = self.createHistoryStamp(desc) self.history_stack.append(hs) self.history_current_step += 1 if setModified: self.scene.has_been_modified =True if DEBUG : print(" --- setting step to:", self.history_current_step) for callback in self._hostory_modified_listeners : callback() if DEBUG : print("SHS: ", "done running the callbacks") def restoreHistoryStamp(self, history_stamp): if DEBUG : print("RHS: ", history_stamp) try: self.scene.deserialize(history_stamp['snapshot']) # restore selection for edge_id in history_stamp['selection']['edges']: for edge in self.scene.edges: if edge.id == edge_id: edge.grEdge.setSelected(True) break for node_id in history_stamp['selection']['nodes']: for node in self.scene.nodes: if node.id == node_id: node.grNode.setSelected(True) break except Exception as e : dumpException(e) def createHistoryStamp(self, desc): if DEBUG : print("SHS: ", desc) self_obj = { "nodes" : [], "edges" : [] } for item in self.scene.grScene.selectedItems(): if hasattr(item, "node"): self_obj['nodes'].append(item.node.id) elif isinstance(item, GraphicsEdge): self_obj['edges'].append(item.edge.id) history_stamp = { "desc" : desc, "snapshot" : self.scene.serialize(), "selection" : self_obj } return history_stamp
import uuid from datetime import datetime from django.db import models from apps.user.models import User # Create your models here. class Category_Article(models.Model): """ 分类 """ name = models.CharField(max_length=100) order = models.IntegerField(default=0,verbose_name='排序') add_time = models.DateTimeField(default=datetime.now) class Meta: verbose_name = '分类' verbose_name_plural = verbose_name class Article(models.Model): """文章""" id = models.UUIDField(default=uuid.uuid4,primary_key=True) authors = models.ForeignKey(User,on_delete=models.CASCADE,verbose_name='用户') category = models.ForeignKey(Category_Article,on_delete=models.CASCADE,verbose_name='分类') title = models.CharField(max_length=100) keywords = models.CharField(max_length=200,blank=True,null=True) desc = models.CharField(max_length=256,blank=True,null=True) list_pic = models.ImageField(upload_to='article/%Y%m%d',blank=True,null=True) content = models.TextField() click_nums = models.IntegerField(default=0,verbose_name='阅读数量') is_show = models.BooleanField(default=True,verbose_name='是否删除') add_time = models.DateTimeField(auto_now_add=True) def get_number(self): n= self.article_comment_set.all() num = self.article_comment_set.count() for i in n: num+=i.articlecommentreply_set.count() return num def __str__(self): return self.title class Meta: verbose_name = '文章' verbose_name_plural = verbose_name ordering = ('-add_time',) class Recommend(models.Model): recommends = models.ForeignKey(Article,on_delete=models.CASCADE,null=True,) is_recommend = models.BooleanField(default=False, verbose_name='是否推荐') add_time = models.DateTimeField(auto_now_add=True) class Meta: verbose_name = '文章推荐' verbose_name_plural = verbose_name ordering = ('-add_time',) class Article_Comment(models.Model): """"评论""" user = models.ForeignKey(User,on_delete=models.CASCADE,verbose_name='用户') article =models.ForeignKey(Article,verbose_name='文章',on_delete=models.CASCADE) comments = models.TextField(verbose_name='评论') address = models.CharField(max_length=50,verbose_name='地址',blank=True,null=True) url = models.CharField(max_length=60, blank=True, null=True, default='') add_time = models.DateTimeField(default=datetime.now, verbose_name='添加时间') def __str__(self): return self.article.title class Meta: verbose_name ='文章评论' verbose_name_plural=verbose_name ordering = ('-add_time',) class ArticleCommentReply(models.Model): """评论回复""" user = models.ForeignKey(User,on_delete=models.CASCADE,verbose_name='当前用户',related_name='form_uid') to_uids = models.ForeignKey(User,on_delete=models.CASCADE,verbose_name='目标用户',related_name='to_uids',default='') comments = models.TextField(verbose_name='回复内容') url = models.CharField(max_length=60,blank=True,null=True,default='') aomments_id = models.ForeignKey(Article_Comment,on_delete=models.CASCADE,verbose_name='回复id') address = models.CharField(max_length=50, verbose_name='地址',blank=True,null=True) add_time = models.DateTimeField(default=datetime.now, verbose_name='添加时间') class Headlines(models.Model): """头条""" id = models.UUIDField(default=uuid.uuid4,primary_key=True) title = models.CharField(max_length=200,verbose_name='标题') category = models.CharField(max_length=20,verbose_name='分类') conent = models.TextField(verbose_name='内容',default='') author_name = models.CharField(max_length=100,verbose_name='来源') url = models.URLField(verbose_name='地址') add_time = models.DateTimeField(default=datetime.now, verbose_name='添加时间') class Meta: ordering = ('-add_time',)
"""Example program that shows how to attach meta-data to a stream, and how to later on retrieve the meta-data again at the receiver side.""" import time from pylsl import StreamInfo, StreamOutlet, StreamInlet, resolve_stream # create a new StreamInfo object which shall describe our stream info = StreamInfo("MetaTester", "EEG", 8, 100, "float32", "myuid56872") # now attach some meta-data (in accordance with XDF format, # see also code.google.com/p/xdf) chns = info.desc().append_child("channels") for label in ["C3", "C4", "Cz", "FPz", "POz", "CPz", "O1", "O2"]: ch = chns.append_child("channel") ch.append_child_value("label", label) ch.append_child_value("unit", "microvolts") ch.append_child_value("type", "EEG") info.desc().append_child_value("manufacturer", "SCCN") cap = info.desc().append_child("cap") cap.append_child_value("name", "EasyCap") cap.append_child_value("size", "54") cap.append_child_value("labelscheme", "10-20") # create outlet for the stream outlet = StreamOutlet(info) # (...normally here one might start sending data into the outlet...) # === the following could run on another computer === # first we resolve a stream whose name is MetaTester (note that there are # other ways to query a stream, too - for instance by content-type) results = resolve_stream("name", "MetaTester") # open an inlet so we can read the stream's data (and meta-data) inlet = StreamInlet(results[0]) # get the full stream info (including custom meta-data) and dissect it info = inlet.info() print("The stream's XML meta-data is: ") print(info.as_xml()) print("The manufacturer is: %s" % info.desc().child_value("manufacturer")) print("Cap circumference is: %s" % info.desc().child("cap").child_value("size")) print("The channel labels are as follows:") ch = info.desc().child("channels").child("channel") for k in range(info.channel_count()): print(" " + ch.child_value("label")) ch = ch.next_sibling() time.sleep(3)
from __future__ import ( absolute_import, unicode_literals, ) import six from OpenSSL import crypto from twisted.internet import ( endpoints, reactor, ssl, task, ) from twisted.web import ( resource, server, ) from pysoa.common.transport.http2_gateway.backend.base import BaseHTTP2BackendThread class TwistedHTTP2BackendThread(BaseHTTP2BackendThread): def __init__(self, *args, **kwargs): super(TwistedHTTP2BackendThread, self).__init__(*args, **kwargs) def run(self): with open('cert.pem', 'r') as f: cert_data = f.read() with open('privkey.pem', 'r') as f: key_data = f.read() site = server.Site(PySOADelayedResource( requests_queue=self.requests_queue, responses_queue=self.responses_queue, )) cert = crypto.load_certificate(crypto.FILETYPE_PEM, cert_data) key = crypto.load_privatekey(crypto.FILETYPE_PEM, key_data) options = ssl.CertificateOptions( privateKey=key, certificate=cert, acceptableProtocols=[b'h2'], ) endpoint = endpoints.SSL4ServerEndpoint( reactor, int(self.backend_layer_config['http_port']), options, interface=self.backend_layer_config['http_host'] ) endpoint.listen(site) reactor.run(installSignalHandlers=0) class PySOADelayedResource(resource.Resource): isLeaf = True def __init__(self, requests_queue, responses_queue): self.requests_queue = requests_queue self.responses_queue = responses_queue def _delayed_response(self, request): try: protocol_key, stream_id, request_id, message, response_headers = self.responses_queue.get_nowait() except six.moves.queue.Empty: d = task.deferLater(reactor, 0, lambda: request) d.addCallback(self._delayed_response) return server.NOT_DONE_YET request.write(message) request.finish() def render_POST(self, request): try: self.requests_queue.put(( None, None, request.content.read(), ), timeout=3) except six.moves.queue.Full: pass d = task.deferLater(reactor, 0, lambda: request) d.addCallback(self._delayed_response) return server.NOT_DONE_YET
# -*- coding: utf-8 -*- from django.db import models class Task(models.Model): pass class TaskExecution(models.Model): pass
#!/usr/bin/env python import argparse from common import Example, Fact, Rule, Theory, TheoryAssertionRepresentationWithLabel import json import problog from problog.program import PrologString from problog.core import ProbLog from problog import get_evaluatable from problog.formula import LogicFormula, LogicDAG from problog.sdd_formula import SDD from problog.engine import NonGroundProbabilisticClause, UnknownClause from problog.engine_stack import NegativeCycle import re import time from utils import parse_statement current_milli_time = lambda: int(round(time.time() * 1000)) ruletaker_variable_nl_to_variable_format = {"someone": "X", "something": "Y"} class Metrics: """Class to store accuracy and timing related metrics when running an entire theories dataset through a theorem proving engine.""" def __init__(self): self.num_examples = 0 self.num_true = 0 self.num_false = 0 self.num_correct_true = 0 self.num_correct_false = 0 self.num_correct = 0 self.total_elapsed_millisecs = 0 self.num_true_with_exception = 0 self.num_false_with_exception = 0 self.num_correct_true_with_exception = 0 self.num_correct_false_with_exception = 0 self.num_incorrect_true_no_exception = 0 self.num_incorrect_false_no_exception = 0 self.num_no_gold_label = 0 self.exception_num_failures = dict() def update(self, gold_label, engine_label, engine_exception, elapsed_millisecs): """Update metrics. To be called after processing each example from the dataset.""" self.num_examples += 1 self.total_elapsed_millisecs += elapsed_millisecs if gold_label is None: self.num_no_gold_label += 1 else: engine_label_correct = gold_label == engine_label if not engine_label_correct: exception_msg = "No Exception" if engine_exception is not None: exception_msg = engine_exception if engine_exception not in self.exception_num_failures: self.exception_num_failures[engine_exception] = 0 self.exception_num_failures[engine_exception] += 1 if gold_label: self.num_true += 1 if engine_label: self.num_correct_true += 1 if engine_exception is not None: self.num_true_with_exception += 1 if engine_label: self.num_correct_true_with_exception += 1 else: if not engine_label: self.num_incorrect_true_no_exception += 1 else: self.num_false += 1 if not engine_label: self.num_correct_false += 1 if engine_exception is not None: self.num_false_with_exception += 1 if not engine_label: self.num_correct_false_with_exception += 1 else: if engine_label: self.num_incorrect_false_no_exception += 1 self.num_correct = self.num_correct_true + self.num_correct_false def report(self): """Report summarizing the overall accuracy, and breakdown by True and False (gold) labels. Also reports the number of examples that result in exceptions from the underlying engine, and timing information.""" if self.num_examples > 0: avg_elapsed_secs = (self.total_elapsed_millisecs / self.num_examples) / 1000 print(f"Total no. of examples: {self.num_examples}") if self.num_no_gold_label > 0: print(f"Found {self.num_no_gold_label} examples without a gold label") else: total_no_of_exceptions = ( self.num_true_with_exception + self.num_false_with_exception ) print(f" No. true: {self.num_true}") print(f" No. correct: {self.num_correct_true}") print(f" No. of exceptions: {self.num_true_with_exception}") print( f" No. correct with exceptions: {self.num_correct_true_with_exception}" ) print( f" No. incorrect without exception: {self.num_incorrect_true_no_exception}" ) print(f" No. false: {self.num_false}") print(f" No. correct: {self.num_correct_false}") print(f" No. of exceptions: {self.num_false_with_exception}") print( f" No. correct with exceptions: {self.num_correct_false_with_exception}" ) print( f" No. incorrect without exception: {self.num_incorrect_false_no_exception}" ) print(f"Total no. correct: {self.num_correct}") print(f"Total no. with exceptions: {total_no_of_exceptions}") print(f"Accuracy: {(self.num_correct * 100.0) / self.num_examples}") if total_no_of_exceptions > 0: print("\nFailure Breakdown by Exception:") for exception in self.exception_num_failures: print( f" {exception}: {self.exception_num_failures[exception]}" ) print( f"\nAverage theorem proving time per example: {avg_elapsed_secs} secs\n\n" ) def format_argument(arg_as_str): """Function that takes a string representing a predicate argument and formats it appropriately depending on whether it is a constatn or a variable. """ arg_as_str = arg_as_str.lower() if arg_as_str in ruletaker_variable_nl_to_variable_format.keys(): # If it's in the mapping, it is a variable, so return an appropriately formatted variable. return ruletaker_variable_nl_to_variable_format[arg_as_str] # If it's not in the mapping, it is a constant, so return a lower-cased string. return arg_as_str def parse_triple_representation(triple_rep): """Function that takes string containing a triple representation in RuleTaker format and creates a Fact. E.g. input: (\"cow\" \"needs\" \"bear\" \"+\") """ fact = None triple_rep = triple_rep.strip() # Remove enclosing parens () triple_txt = triple_rep[1:-1] # Extract the parts of the triple by looking for quotes. # Replace spaces in predicate/args with underscores to make them valid terms. triple_parts = [] for m in re.finditer(r'"([^"]+)"', triple_txt): triple_part = m.group(1).replace(" ", "_") triple_parts.append(triple_part) if len(triple_parts) == 4: arg1 = format_argument(triple_parts[0]) predicate = triple_parts[1] arg2 = format_argument(triple_parts[2]) polarity = triple_parts[3] if predicate == "is": predicate = f"{predicate}_{arg2}" fact = Fact(polarity, predicate, [arg1]) else: fact = Fact(polarity, predicate, [arg1, arg2]) return fact def parse_rule_representation(rule_rep): """Function that takes string containing a rule in RuleTaker format and creates a Rule. E.g. input: (((\"something\" \"needs\" \"cow\" \"+\")) -> (\"something\" \"is\" \"red\" \"+\")) """ rule = None rule_rep = rule_rep.strip() # Remove enclosing parens () rule_txt = rule_rep[1:-1] rule_parts = rule_txt.split("->") if len(rule_parts) == 2: # LHS is enclosed in parens. Remove (). lhs = rule_parts[0].strip()[1:-1] rhs = rule_parts[1] lhs_facts = [] lhs_parts = [] for m in re.finditer(r"\([^()]+\)", lhs): lhs_part = m.group(0) lhs_fact = parse_triple_representation(lhs_part) if lhs_fact is not None: lhs_facts.append(lhs_fact) rhs_fact = parse_triple_representation(rhs) rule = Rule(lhs_facts, rhs_fact) return rule def call_theorem_prover( theorem_prover, instance_id, question_id, theory, assertion, gold_label ): """Function that takes a single theory/assertion example and runs it through the theorem prover to obtain a label. Returns the obtained label, elapsed time to solve it, and exception returned by the engine, if any. """ obtained_result = False millisecs_elapsed = 0 print("=======ORIGINAL THEORY=========") theory_as_txt = theory.program(theorem_prover) print(theory_as_txt) theory.preprocess(theorem_prover) theory_as_txt = theory.program(theorem_prover) if theorem_prover == "problog": assertion_lf = assertion.logical_form(theorem_prover, False) assertion_lf = f"query({assertion_lf})." program = f"{theory_as_txt}\n{assertion_lf}" print("=======PROGRAM FROM PREPROCESSED THEORY=========") print(program) print("=======EXPECTED LABEL=========") print(f" {gold_label}") start_millisecs = current_milli_time() try: lf = LogicFormula.create_from(program) # ground the program dag = LogicDAG.create_from(lf) # break cycles in the ground program sdd = SDD.create_from(dag) result = sdd.evaluate() end_millisecs = current_milli_time() elapsed_millisecs = end_millisecs - start_millisecs result_tuples = [(k, v) for k, v in result.items()] obtained_result = result_tuples[0][1] != 0.0 return obtained_result, elapsed_millisecs, None except (NegativeCycle, NonGroundProbabilisticClause, UnknownClause) as e: end_millisecs = current_milli_time() elapsed_millisecs = end_millisecs - start_millisecs print( f"!!!Encountered Exception at instance id {instance_id}, question id {question_id}: {e}" ) obtained_result = assertion.polarity != "+" exception_name = str(type(e)).lstrip("<class '").rstrip("'>") return obtained_result, elapsed_millisecs, exception_name return obtained_result, elapsed_millisecs, None def run_theorem_prover(theorem_prover, ip, ip_format, op, report_metrics): """Function that takes an input file, calls the theorem prover on every example and gets a label. Results are written to output file. Metrics are tracked and reported if report_metrics is True. """ metrics = Metrics() if ip_format == "current": row_ix = 1 for ix, line in enumerate(ip.readlines()): facts = [] rules = [] instance_json = json.loads(line) instance = TheoryAssertionRepresentationWithLabel.from_json(instance_json) if instance is not None: for lf_str in instance.theory_statements: statement = parse_statement(lf_str) if isinstance(statement, Fact): facts.append(statement) elif isinstance(statement, Rule): rules.append(statement) else: print( f"Unable to parse statement {lf_str} in row {row_ix} of input jsonl file!" ) assertion = parse_statement(instance.assertion_statement) gold_label = instance.label theory = Theory(facts, rules) ix = str(row_ix) ( engine_label, elapsed_millisecs, returned_exception, ) = call_theorem_prover( theorem_prover, ix, ix, theory, assertion, gold_label ) if report_metrics: metrics.update( gold_label, engine_label, returned_exception, elapsed_millisecs ) instance_json["label"] = engine_label json.dump(instance_json, op) op.write("\n") else: print(f"Unexpected input file format in line no. {row_ix}") row_ix += 1 else: # Ruletaker Legacy Jsonl Format for ix, line in enumerate(ip.readlines()): facts = [] rules = [] instance = json.loads(line) triples = instance["triples"] ip_rules = instance.get("rules", []) questions = instance["questions"] for triple_key in triples: triple_obj = triples[triple_key] triple_rep = triple_obj["representation"] fact = parse_triple_representation(triple_rep) if fact is not None: facts.append(fact) for rule_key in ip_rules: rule_obj = ip_rules[rule_key] rule_rep = rule_obj["representation"] rule = parse_rule_representation(rule_rep) if rule is not None: rules.append(rule) theory = Theory(facts, rules) for question_key in questions: question_obj = questions[question_key] question_rep = question_obj["representation"] assertion = parse_triple_representation(question_rep) gold_label = question_obj.get("answer", None) ( engine_label, elapsed_millisecs, returned_exception, ) = call_theorem_prover( theorem_prover, ix, question_key, theory, assertion, gold_label ) if report_metrics: metrics.update( gold_label, engine_label, returned_exception, elapsed_millisecs ) op_obj = { **instance, **({f"{theorem_prover}_label": engine_label}), } json.dump(op_obj, op) op.write("\n") if report_metrics: metrics.report() def main(): """Tool that takes a collection of theory-assertion examples and runs them through a theorem prover. Supported input format 1: Jsonl format with json objects represented as per the `TheoryAssertionRepresentationWithLabel` class. Sample: { "json_class": "TheoryAssertionRepresentation", "theory_statements": [ "1.0::kind('Fiona').", "1.0::rough('Dave').", "1.0::smart('Dave').", "1.0::quiet('Charlie').", "1.0::kind('Dave').", "1.0::white('Erin').", "1.0::young(X) :- white(X).", "1.0::smart(X) :- big(X), green(X).", "1.0::kind(X) :- round(X), smart(X).", "1.0::kind(X) :- quiet(X), round(X).", "1.0::rough(X) :- round(X), red(X)." "1.0::kind(X) :- quiet(X).", "1.0::furry(X) :- quiet(X), big(X)." ], "assertion_statement": "query(1.0::young('Dave').)." } Supported input format 2: Ruletaker's legacy Jsonl format (for AI2's internal use with existing RuleTaker datasets) Sample (there are additional fields not relevant and not shown here): { "id": "AttNoneg-D3-319", ... "triples":{ "triple1": "text":"Bob is cold.", "representation":"(\"Bob\" \"is\" \"cold\" \"+\")" }, "triple2": { "text":"Erin is nice.", "representation":"(\"Erin\" \"is\" \"nice\" \"+\")" }, "triple3":{ "text":"Gary is nice.", "representation":"(\"Gary\" \"is\" \"nice\" \"+\")" }, "triple4":{ "text":"Harry is blue.", "representation":"(\"Harry\" \"is\" \"blue\" \"+\")" } }, "rules":{ "rule1":{ "text":"Blue people are furry.", "representation":"(((\"someone\" \"is\" \"blue\" \"+\")) -> (\"someone\" \"is\" \"furry\" \"+\"))" }, "rule2":{ "text":"Nice people are furry.", "representation":"(((\"someone\" \"is\" \"nice\" \"+\")) -> (\"someone\" \"is\" \"furry\" \"+\"))" }, "rule3":{ "text":"Blue, big people are nice.", "representation":"(((\"someone\" \"is\" \"blue\" \"+\") (\"someone\" \"is\" \"big\" \"+\")) -> (\"someone\" \"is\" \"nice\" \"+\"))" }, "rule4":{ "text":"If someone is cold then they are quiet.", "representation":"(((\"someone\" \"is\" \"cold\" \"+\")) -> (\"someone\" \"is\" \"quiet\" \"+\"))"}, } }, "questions":{ "Q1":{ "question":"Erin is nice.", "answer":true, ... "representation":"(\"Erin\" \"is\" \"nice\" \"+\")" }, "Q2":{ "question":"Gary is not nice.", "answer":false, ... "representation":"(\"Gary\" \"is\" \"nice\" \"-\")" }, "Q3":{ "question":"Gary is furry.", "answer":true, "representation":"(\"Gary\" \"is\" \"furry\" \"+\")" } } } Output jsonl format: Same as above with an additional field "problog_label": <true|false>. """ parser = argparse.ArgumentParser( description="Tool to run theories through a theorem prover." ) parser.add_argument( "--input-file", required=True, help="Input jsonl file in either the current format or the legacy RuleTaker Jsonl format", ) parser.add_argument( "--input-format", choices=["current", "legacy"], default="current", help="Input file format", ) parser.add_argument( "--theorem-prover", default="problog", help="Thorem proving engine to use. Only supported one right now is problog.", ) parser.add_argument( "--output-file", required=True, help="Output file containing the theorem prover's output for each theory-assertion instance input. \ Output format will be the same as input format, so this will be either a CSV or a jsonl file.", ) parser.add_argument( "--report-metrics", action="store_true", help="Flag that will cause metrics (accuracy against gold labels) to be tracked and reported", ) args = parser.parse_args() with open(args.input_file, "r") as ip, open(args.output_file, "w") as op: run_theorem_prover( args.theorem_prover, ip, args.input_format, op, args.report_metrics ) if __name__ == "__main__": main()
from django.db import models import datetime # Create your models here. class Player(models.Model): nickname = models.CharField(blank=False, max_length=50) name = models.CharField(blank=True, default='', max_length=100) class Map(models.Model): name = models.CharField(blank=False, max_length=50) version = models.DateField(blank=True, default=datetime.datetime.today()) class Team(models.Model): name = models.CharField(blank=False, max_length=50) class Tournament(models.Model): name = models.CharField(blank=False, max_length=200) class Demo(models.Model): team1 = models.ForeignKey(Team, related_name='team1') team2 = models.ForeignKey(Team, related_name='team2') context = models.ForeignKey(Tournament) source = models.CharField(blank=False, default='', max_length=400) class PositionData(models.Model): demo = models.ForeignKey(Demo) player = models.ForeignKey(Player) timestamp = models.CharField(blank=True, default='', max_length=300) notes = models.TextField(blank=True, default='', max_length=1000)
import wrangle import pandas as pd # define the urls for data base_url = 'https://zenodo.org/record/1215899/files/2008_Mossong_POLYMOD_' contact_common = 'contact_common.csv?download=1' participant_common = 'participant_common.csv?download=1' participant_extra = 'participant_extra.csv?download=1' household_common = 'hh_common.csv?download=1' # get the data into dataframes df_contact_common = pd.read_csv(base_url + contact_common) df_participant_common = pd.read_csv(base_url + participant_common) df_participant_extra = pd.read_csv(base_url + participant_extra) df_household_common = pd.read_csv(base_url + household_common) # match household id with participant id household_lookup = df_participant_common[['part_id', 'hh_id']].merge(df_household_common, on='hh_id') household_lookup = household_lookup[['part_id', 'country', 'hh_size']] # merge the tables df_participant_temp = df_participant_common.merge(df_participant_extra, on='part_id') df = df_contact_common.merge(df_participant_temp, on='part_id') df = df.merge(household_lookup, on='part_id') # use estimated age for missing contact age values estimated_age = (df.cnt_age_est_min + df.cnt_age_est_max) / 2 estimated_age = estimated_age.fillna(0).astype(int) df['contact_age'] = (df.cnt_age_exact.fillna(0) + estimated_age).astype(int) # keep these cols cols = ['part_id', 'part_gender', 'contact_age', 'part_age', 'country', 'hh_size', 'cnt_gender', 'cnt_home', 'cnt_work', 'cnt_school', 'cnt_transport', 'cnt_leisure', 'cnt_otherplace'] df = df[cols] # convert string label values to multi-label columns df = wrangle.col_to_multilabel(df, 'part_gender') df = wrangle.col_to_multilabel(df, 'country') # drop redundant columns df.drop(['cnt_gender'], 1, inplace=True) # use these column names instead cols = ['participant_id', 'contact_age', 'age_group', 'household_size', 'contact_home', 'contact_work', 'contact_school', 'contact_transport', 'contact_leisure', 'contact_other', 'gender_female', 'gender_male', 'country_be', 'country_de', 'country_fi', 'country_gb', 'country_it', 'country_lu', 'country_nl', 'country_pl'] # wrap up df.columns = cols _age_temp_ = df_participant_common[['part_id', 'part_age']] df = df.merge(_age_temp_, left_on='participant_id', right_on='part_id') # final cleanup _drop_cols_ = ['age_group', 'part_id'] df = wrangle.col_move_place(df, 'part_age') df = wrangle.col_move_place(df, 'participant_id') df = wrangle.df_rename_col(df, 'part_age', 'participant_age') df.drop(_drop_cols_, 1, inplace=True) df = df.dropna() df = df.astype(int) df.to_csv('polymod_social_contact_data.csv', index=False)
import yaml import numpy as np from interpolation.splines import UCGrid, CGrid, nodes from interpolation.splines import filter_cubic, eval_cubic from mldftdat.dft.xc_models import NormGPFunctional from sklearn.gaussian_process.kernels import RBF from itertools import combinations from argparse import ArgumentParser from joblib import load, dump from mldftdat.scripts.train_gp import parse_dataset from mldftdat.models.kernels import * """ Script for mapping a CIDER GP to a cubic spline. Requires an input DFTGPR object, stored in joblib format. """ def get_dim(x, length_scale, density = 6, buff = 0.0, bound = None, max_ngrid = None): print(length_scale, bound) mini = np.min(x) - buff maxi = np.max(x) + buff if bound is not None: mini, maxi = bound[0], bound[1] ran = maxi - mini ngrid = max(int(density * ran / length_scale) + 1, 3) if max_ngrid is not None and ngrid > max_ngrid: ngrid = max_ngrid return (mini, maxi, ngrid) def get_mapped_gp_evaluator(gpr, test_x=None, test_y=None, test_rho_data=None, srbf_density=8, arbf_density=8, max_ngrid=120): X = gpr.X alpha = gpr.gp.alpha_ D = X[:,1:] y = gpr.y n = gpr.args.agpr_nsingle N = D.shape[1] print(gpr.gp.kernel_) dims = [] if n == 0: arbf = gpr.gp.kernel_.k1 srbf = None ndim, length_scale, scale, order = arbf_args(arbf) elif n == 1: arbf = gpr.gp.kernel_.k1.k2 srbf = gpr.gp.kernel_.k1.k1 ndim, length_scale, scale, order = arbf_args(arbf) length_scale = np.append(srbf.length_scale, length_scale) dims = [get_dim(D[:,0], length_scale[0], density=srbf_density, bound=gpr.feature_list[0].bounds, max_ngrid=max_ngrid)] elif n > 1: arbf = gpr.gp.kernel_.k1.k2 srbf = gpr.gp.kernel_.k1.k1 ndim, length_scale, scale, order = arbf_args(arbf) length_scale = np.append(srbf.length_scale, length_scale) for i in range(n): dims.append(get_dim(D[:,i], length_scale[i], density=srbf_density, bound=gpr.feature_list[i].bounds, max_ngrid=max_ngrid)) scale = np.array(scale) for i in range(n,N): dims.append(get_dim(D[:,i], length_scale[i], density=arbf_density, bound=gpr.feature_list[i].bounds, max_ngrid=max_ngrid)) grid = [np.linspace(dims[i][0], dims[i][1], dims[i][2])\ for i in range(N)] k0s = [] print(length_scale) for i in range(D.shape[1]): print(length_scale[i], np.min(D[:,i]), np.max(D[:,i])) diff = (D[:,i:i+1] - grid[i][np.newaxis,:]) / length_scale[i] k0s.append(np.exp(-0.5 * diff**2)) funcps = [] spline_grids = [] ind_sets = [] if srbf is not None: srbf_inds = np.arange(n).tolist() arbf_inds = np.arange(n, N).tolist() assert order + n <= 4, 'Max order too high, must be at most 4' const = 0 for o in range(order+1): for inds in combinations(arbf_inds, o): if srbf is None: inds = list(inds) else: inds = list(srbf_inds) + list(inds) if len(inds) == 0: const += np.sum(alpha) elif len(inds) == 1: funcps.append(np.dot(alpha, k0s[inds[0]])) spline_grids.append(UCGrid(dims[inds[0]])) ind_sets.append(tuple(inds)) elif len(inds) == 2: k = np.einsum('ni,nj->nij', k0s[inds[0]], k0s[inds[1]]) spline_grids.append(UCGrid(dims[inds[0]], dims[inds[1]])) funcps.append(np.einsum('n,nij->ij', alpha, k)) ind_sets.append(tuple(inds)) elif len(inds) == 3: k = np.einsum('ni,nj,nk->nijk', k0s[inds[0]], k0s[inds[1]], k0s[inds[2]]) funcps.append(np.einsum('n,nijk->ijk', alpha, k)) spline_grids.append(UCGrid(dims[inds[0]], dims[inds[1]], dims[inds[2]])) ind_sets.append(tuple(inds)) elif len(inds) == 4: k = np.einsum('ni,nj,nk,nl->nijkl', k0s[inds[0]], k0s[inds[1]], k0s[inds[2]], k0s[inds[3]]) funcps.append(np.einsum('n,nijkl->ijkl', alpha, k)) spline_grids.append(UCGrid(dims[inds[0]], dims[inds[1]], dims[inds[2]], dims[inds[3]])) ind_sets.append(tuple(inds)) else: raise ValueError('Order too high!') coeff_sets = [] for i in range(len(funcps)): coeff_sets.append(filter_cubic(spline_grids[i], funcps[i])) evaluator = NormGPFunctional(scale, ind_sets, spline_grids, coeff_sets, gpr.xed_y_converter, gpr.feature_list, gpr.desc_order, const=const, desc_version=gpr.desc_version, a0=gpr.a0, fac_mul=gpr.fac_mul, amin=gpr.amin) if n == 1 and order == 2: res, en = arbf(X, get_sub_kernels=True) resg = srbf(X) res = np.dot(alpha, arbf.scale[0] * resg) print("Comparing K and Kspline!!!") print(en[0]) print(spline_grids[0][0], coeff_sets[0], ind_sets) tsp = eval_cubic(spline_grids[0], coeff_sets[0], X[:,1:2]) diff = (D[:,:1] - D[:,:1].T) / length_scale[0] tk = np.exp(-0.5 * diff**2) print(np.mean(np.abs(srbf(X) - tk))) print(np.mean(np.abs(res - evaluator.predict_from_desc(D, max_order=1)))) print(np.mean(np.abs(res - arbf.scale[0] * tsp))) print(evaluator.scale[0], scale[0], arbf.scale[0]) print(res[::1000]) print(tsp[::1000]) print("checked 1d") print(np.mean(res - evaluator.predict_from_desc(D, max_order=1))) res += np.dot(alpha, arbf.scale[1] * en[1] * resg) print(np.mean(np.abs(res - evaluator.predict_from_desc(D, max_order=2, vec_eval=True)[0]))) #print(np.mean(np.abs(res - evaluator.predict_from_desc(D, max_order=2)))) res += np.dot(alpha, arbf.scale[2] * en[2] * resg) print(np.mean(np.abs(res - evaluator.predict_from_desc(D, max_order=3, vec_eval=True)[0]))) #print(np.mean(np.abs(res - evaluator.predict_from_desc(D, max_order=3)))) ytest = gpr.gp.predict(X) ypred = evaluator.predict_from_desc(D) print(np.mean(np.abs(ytest - ypred))) print(np.mean(np.abs(ytest - y))) print(np.mean(np.abs(y - ypred))) print(np.linalg.norm(ytest - y)) print(np.linalg.norm(ypred - y)) print(ytest.shape) if test_x is not None: ytest = gpr.xed_to_y(gpr.predict(test_x, test_rho_data), test_rho_data) ypred = gpr.xed_to_y(evaluator.predict(test_x, test_rho_data), test_rho_data) print(np.max(np.abs(ytest - ypred))) print(np.max(np.abs(ytest - test_y))) print(np.max(np.abs(test_y - ypred))) print() print(np.linalg.norm(ytest - test_y)) print(np.mean(np.abs(ytest - test_y))) print(np.mean(ytest - test_y)) print(np.linalg.norm(ypred - test_y)) print(np.mean(np.abs(ypred - test_y))) print(np.mean(ypred - test_y)) print(np.linalg.norm(ypred - ytest)) print(np.mean(np.abs(ypred - ytest))) print(np.mean(ypred - ytest)) return evaluator def main(): parser = ArgumentParser() parser.add_argument('outname', type=str, help='Spline output filename') parser.add_argument('fname', type=str, help='GP filename (model to map)') parser.add_argument('-vs', '--validation-set', nargs='+') parser.add_argument('--basis', default='def2-qzvppd', type=str, help='basis set code') parser.add_argument('--functional', metavar='functional', type=str, default=None, help='exchange-correlation functional, HF for Hartree-Fock') parser.add_argument('-v', '--version', default='c', type=str, help='version of descriptor set. Default c') parser.add_argument('--srbfd', default=8, type=int, help='grid density for reduced gradient descriptor, srbfd pts per stddev of feature') parser.add_argument('--arbfd', default=8, type=int, help='grid density for other descriptors, arbfd pts per stddev of feature') parser.add_argument('--maxng', default=120, type=int, help='maximum number of grid points for a feature') #srbf_density=8, arbf_density=8, max_ngrid=120 args = parser.parse_args() print('OUTNAME', args.outname) gpr = load(args.fname) assert len(gpr.args.validation_set) % 2 == 0,\ 'Need pairs of entries for datasets list.' nv = 0#len(gpr.args.validation_set) // 2 if nv != 0: Xv, yv, rhov, rho_datav = parse_dataset(gpr.args, 0, val=True) for i in range(1, nv): Xn, yn, rhon, rho_datan, = parse_dataset(gpr.args, i, val=True) Xv = np.append(Xv, Xn, axis=0) yv = np.append(yv, yn, axis=0) rhov = np.append(rhov, rhon, axis=0) rho_datav = np.append(rho_datav, rho_datan, axis=1) if nv == 0: evaluator = get_mapped_gp_evaluator(gpr, srbf_density=args.srbfd, arbf_density=args.arbfd, max_ngrid=args.maxng) else: evaluator = get_mapped_gp_evaluator(gpr, test_x=Xv, test_y=yv, test_rho_data=rho_datav, srbf_density=args.srbfd, arbf_density=args.arbfd, max_ngrid=args.maxng) evaluator.args = gpr.args evaluator.fx_baseline = gpr.xed_y_converter[2] evaluator.fxb_num = gpr.xed_y_converter[3] evaluator.desc_version = gpr.args.version evaluator.amin = gpr.amin evaluator.a0 = gpr.a0 evaluator.fac_mul = gpr.fac_mul dump(evaluator, args.outname) if __name__ == '__main__': main()
import typing import json import uuid from copy import deepcopy from lib.crypto.keystore import KeyStore from ids.models import Id def create_verifiable_presentation( id: Id, attribute_groups: typing.Set[str], password: str, entropy: str, ) -> dict: # Initialize the keystore keypair = id.owner.keypair keystore = KeyStore( (keypair.public_key, keypair.private_key), password, ) # Get the required attr groups result = { "id": {} } for attr in ["idType", "idName", "issuer"]: val = id.verifiable_id["data"].get(attr, "") result["id"][attr] = deepcopy(val) result["id"]["groups"] = [] for group in id.verifiable_id["data"]["groups"]: group_name = group["data"]["groupName"] if group_name in attribute_groups: result["id"]["groups"].append(deepcopy(group)) result["entropy"] = uuid.uuid4().hex + "-" + entropy # Minify json and sign data = json.dumps(result, separators=(",", ":")) sign = keystore.sign(data) return { "data": result, "signature": sign, }
""" Interactive command tool for chaperone Usage: telchap <command> [<args> ...] """ # perform any patches first import chaperone.cutil.patches # regular code begins import sys import os import asyncio import shlex from docopt import docopt from chaperone.cproc.client import CommandClient from chaperone.cproc.version import VERSION_MESSAGE def main_entry(): options = docopt(__doc__, options_first=True, version=VERSION_MESSAGE) try: result = CommandClient.sendCommand(options['<command>'] + " " + " ".join([shlex.quote(a) for a in options['<args>']])) except (ConnectionRefusedError, FileNotFoundError) as ex: result = "chaperone does not seem to be listening, is it running?\n(Error is: {0})".format(ex) print(result)
from . import views from django.urls import path urlpatterns = [ path('', views.perfil, name='perfil-usuario'), path('alterar-informacoes/<int:id>/', views.alterar_informacoes, name='alterar-informacoes'), path('excluir-animal/<int:id_animal>/', views.excluir_animal, name='excluir-animal'), path('editar-animal/<int:id_animal>/', views.editar_animal, name='editar-animal'), path('animal/<int:id>/', views.perfil_animal, name='perfil-animal'), path('excluir-conta/', views.excluir_conta, name='excluir-conta'), ]
raise NotImplementedError("hmac is not yet implemented in Skulpt")
from collections import OrderedDict from enum import Enum import joblib import numpy as np from ptype.utils import project_root TYPE_INDEX = 0 MISSING_INDEX = 1 ANOMALIES_INDEX = 2 def _get_unique_vals(col, return_counts=False): """List of the unique values found in a column.""" return np.unique([str(x) for x in col.tolist()], return_counts=return_counts) # Use same names and values as the constants in Model.py. Could consolidate. class _Status(Enum): TYPE = 1 MISSING = 2 ANOMALOUS = 3 class _Feature(Enum): U_RATIO = 5 U_RATIO_CLEAN = 6 U = 7 U_CLEAN = 8 class Column: def __init__(self, series, p_t, p_z): self.series = series self.p_t = p_t self.p_t_canonical = {} self.p_z = p_z self.type = self.inferred_type() self.unique_vals, self.unique_vals_counts = _get_unique_vals( self.series, return_counts=True ) self._initialise_missing_anomalies() def __repr__(self): return repr(self.__dict__) def _initialise_missing_anomalies(self): row_posteriors = self.p_z[self.type] max_row_posterior_indices = np.argmax(row_posteriors, axis=1) self.normal_indices = list(np.where(max_row_posterior_indices == TYPE_INDEX)[0]) self.missing_indices = list( np.where(max_row_posterior_indices == MISSING_INDEX)[0] ) self.anomalous_indices = list( np.where(max_row_posterior_indices == ANOMALIES_INDEX)[0] ) def inferred_type(self): """Get most likely inferred type for the column.""" return max(self.p_t, key=self.p_t.get) def get_normal_ratio(self): """Get proportion of unique values in the column which are considered neither anomalous nor missing.""" return round( sum(self.unique_vals_counts[self.normal_indices]) / sum(self.unique_vals_counts), 2, ) def get_na_ratio(self): """Get proportion of unique values in the column which are considered 'missing'.""" return round( sum(self.unique_vals_counts[self.missing_indices]) / sum(self.unique_vals_counts), 2, ) def get_an_ratio(self): """Get proportion of unique values in the column which are considered 'anomalous'.""" return round( sum(self.unique_vals_counts[self.anomalous_indices]) / sum(self.unique_vals_counts), 2, ) def get_normal_values(self): """Get list of all values in the column which are considered neither anomalous nor missing.""" return list(self.unique_vals[self.normal_indices]) def get_na_values(self): """Get a list of the values in the column which are considered 'missing'.""" return list(self.unique_vals[self.missing_indices]) def get_an_values(self): """Get a list of the values in the column which are considered 'anomalous'.""" return list(self.unique_vals[self.anomalous_indices]) def reclassify(self, new_t): """Assign a different type to the column, and adjust the interpretation of missing/anomalous values accordingly. :param new_t: the new type, which must be one of the types known to ptype. """ if new_t not in self.p_z: raise Exception(f"Type {new_t} is unknown.") self.type = new_t self._initialise_missing_anomalies() def _get_features(self, counts): posterior = OrderedDict() for t, p in sorted(self.p_t.items()): # aggregate date subtypes t_0 = t.split("-")[0] if t_0 in posterior.keys(): posterior[t_0] += p else: posterior[t_0] = p posterior = posterior.values() entries = [str(int_element) for int_element in self.series.tolist()] U = len(np.unique(entries)) U_clean = len(self.normal_indices) N = len(entries) N_clean = sum([counts[index] for index in self.normal_indices]) u_ratio = U / N if U_clean == 0 and N_clean == 0: u_ratio_clean = 0.0 else: u_ratio_clean = U_clean / N_clean return np.array(list(posterior) + [u_ratio, u_ratio_clean, U, U_clean])
import numpy as np import Op, Interface import ISCV from GCore import Recon class PointsFromDetections(Op.Op): def __init__(self, name='/Reconstruct 3D from Dets', locations='', calibration='', tiltThreshold=0.0002, x2dThreshold=0.01, x3dThreshold=30.0, minRays=3, seedX3ds='', showContributions=True, pointSize=8.0, colour=(1.0, 0.5, 0.0, 0.7), setLabels=False, mesh='', visibilityLod='', intersection_threshold=100., generateNormals=False, frameRange=''): fields = [ ('name', 'Name', 'Name', 'string', name, {}), ('locations', 'Detection locations', 'Detection locations', 'string', locations, {}), ('calibration', 'Calibration location', 'Calibration location', 'string', calibration, {}), ('tilt_threshold', 'Tilt threshold', 'Slack factor for tilt pairing', 'float', tiltThreshold, {}), ('x2d_threshold', 'Detection threshold', 'Detections threshold', 'float', x2dThreshold, {}), ('x3d_threshold', '3D threshold', '3D threshold', 'float', x3dThreshold, {}), ('min_rays', 'Min. number of rays', 'Minimum number of rays', 'int', minRays, {}), ('seed_x3ds', '3D seed location', 'Existing 3D seed location', 'string', seedX3ds, {}), ('show_contributions', 'Show contributions', 'Show camera contributions', 'bool', showContributions, {}), ('pointSize', '3D Point size', '3D Point size', 'float', pointSize, {}), ('colour', '3D Point colour', '3D Point colour', 'string', str(colour), {}), ('setLabels', 'Set labels', 'Set labels', 'bool', setLabels, {}), ('mesh', 'Mesh', 'Mesh location', 'string', mesh, {}), ('visibilityLod', 'Visibility LOD location', 'Visibility LOD location', 'string', visibilityLod, {}), ('intersection_threshold', 'Intersection threshold', 'Intersection threshold', 'float', intersection_threshold, {}), ('generateNormals', 'Generate normals', 'Generate normals for visibility checks', 'bool', generateNormals, {}), ('frameRange', 'Frame range', 'Frame range', 'string', frameRange, {}) ] super(self.__class__, self).__init__(name, fields) self.visibility = None def flush(self): self.visibility = None def cook(self, location, interface, attrs): if not self.useFrame(interface.frame(), attrs['frameRange']): return calibrationLocation = attrs['calibration'] if not calibrationLocation: calibrationLocation = interface.root() # Get the mats from the calibration location mats = interface.attr('mats', atLocation=calibrationLocation) if mats is None: self.logger.error('Attribute mats not found at: %s' % calibrationLocation) return Ps = interface.attr('Ps', atLocation=calibrationLocation) if Ps is None: Ps = np.array([m[2] / (np.sum(m[2][0, :3] ** 2) ** 0.5) for m in mats], dtype=np.float32) # Get the detections from the location we are cooking # x2ds = interface.attr('x2ds') # x2ds_splits = interface.attr('x2ds_splits') x2ds = interface.attr('x2ds') x2ds_splits = interface.attr('x2ds_splits') x2ds_bright = interface.attr('x2ds', atLocation='/root/cameras/bright') x2ds_bright_splits = interface.attr('x2ds_splits', atLocation='/root/cameras/bright') if x2ds is None or x2ds_splits is None: self.logger.error('Detections not found at: %s' % location) return # Get configuration parameters tilt_threshold = attrs['tilt_threshold'] x2d_threshold = attrs['x2d_threshold'] x3d_threshold = attrs['x3d_threshold'] min_rays = attrs['min_rays'] seed_x3ds_location = attrs['seed_x3ds'] seed_x3ds = None if min_rays < 2: self.logger.error('You need at least 2 rays but you specified the minimum to be: %d' % min_rays) return if seed_x3ds_location: seed_x3ds = interface.attr('x3ds', atLocation=seed_x3ds_location) if self.visibility is None: self.visibility = ISCV.ProjectVisibility.create() # Check if we have normals if attrs['mesh'] and interface.hasAttr('normals', atLocation=attrs['mesh']): normals = interface.attr('normals', atLocation=attrs['mesh']) self.visibility.setNormals(normals) # Check if we have visibility LODs if 'visibilityLod' in attrs and attrs['visibilityLod']: visibilityLod = interface.location(attrs['visibilityLod']) if visibilityLod is not None: lodTris = visibilityLod['tris'] lodVerts = visibilityLod['verts'] lodNormals = visibilityLod['faceNormals'] tris = lodVerts[lodTris] cameraPositions = np.array([m[4] for m in mats], dtype=np.float32) self.visibility.setLods(tris, cameraPositions, np.concatenate((lodNormals)), attrs['intersection_threshold'], attrs['generateNormals']) # Calculate the 3D reconstructions from the detections x3ds, labels, _, _ = Recon.intersect_rays(x2ds, x2ds_splits, Ps, mats, seed_x3ds=seed_x3ds, tilt_threshold=tilt_threshold, x2d_threshold=x2d_threshold, x3d_threshold=x3d_threshold, min_rays=min_rays, numPolishIts=3, forceRayAgreement=True, visibility=self.visibility) if not x3ds.any() or not labels.any(): return x3ds_labels = np.arange(np.max(labels) + 1) if attrs['setLabels']: interface.setAttr('labels', labels) else: interface.setAttr('labels', []) # Find which cameras contribute to the 3D reconstructions (optional?) cameraPositions = np.array([m[4] for m in mats], dtype=np.float32) cameraContributions = {} for label3d in x3ds_labels: camIds = [interface.findCameraIdFromRayId(rayId, x2ds_splits) for rayId in np.where(labels == label3d)[0]] cameraContributions[label3d] = camIds # Create 3D points attributes on the cooked location pAttrs = { 'x3ds': x3ds, 'x3ds_labels': x3ds_labels, 'x3ds_colour': eval(attrs['colour']), 'x3ds_pointSize': attrs['pointSize'], 'cameraContributions': cameraContributions, 'showCameraContributions': attrs['show_contributions'], 'cameraPositions': cameraPositions } interface.createChild('reconstructed', 'points3d', attrs=pAttrs) class PointsFromDetectionsAll(Op.Op): def __init__(self, name='/PointsFromDetectionsAll', locations='', calibration='', tiltThreshold=0.0002, pointSize=8.0, colour=(1.0, 0.5, 0.0, 0.7), mesh='', visibilityLod='', intersection_threshold=100., generateNormals=True, frameRange=''): fields = [ ('name', 'Name', 'Name', 'string', name, {}), ('locations', 'Detection locations', 'Detection locations', 'string', locations, {}), ('calibration', 'Calibration location', 'Calibration location', 'string', calibration, {}), ('tilt_threshold', 'Tilt threshold', 'Slack factor for tilt pairing', 'float', tiltThreshold, {}), ('pointSize', '3D Point size', '3D Point size', 'float', pointSize, {}), ('colour', '3D Point colour', '3D Point colour', 'string', str(colour), {}), ('mesh', 'Mesh', 'Mesh location', 'string', mesh, {}), ('visibilityLod', 'Visibility LOD location', 'Visibility LOD location', 'string', visibilityLod, {}), ('intersection_threshold', 'Intersection threshold', 'Intersection threshold', 'float', intersection_threshold, {}), ('generateNormals', 'Generate normals', 'Generate normals for visibility checks', 'bool', generateNormals, {}), ('frameRange', 'Frame range', 'Frame range', 'string', frameRange, {}) ] super(self.__class__, self).__init__(name, fields) self.visibility = None def flush(self): self.visibility = None def calculate3dPointsFromDetections(self, x2ds, splits, mats, Ps=None, tilt_threshold=0.0002): import itertools Ts = np.array(zip(*mats)[4],dtype=np.float32) if Ps is None: Ps = np.array([m[2] / (np.sum(m[2][0, :3] ** 2) ** 0.5) for m in mats], dtype=np.float32) numCameras = len(splits) - 1 E = ISCV.compute_E(x2ds, splits, Ps) rays = Recon.dets_to_rays(x2ds, splits, mats) cameraPositions = np.array([m[4] for m in mats], dtype=np.float32) data = [] def norm(a): return a / (np.sum(a ** 2) ** 0.5) tilt_axes = np.array([norm(np.dot([-m[0][0, 2], -m[0][1, 2], m[0][0, 0]], m[1][:3, :3])) for m in mats], dtype=np.float32) # Create all combinations of ci < cj cameraPairCombinations = np.array(list(itertools.combinations(range(numCameras), 2)), dtype=np.int32) knownCamPairs = [ (7, 12), (5, 9), (3, 9), (4, 12), (7, 10), (8, 12), (0, 9), (3, 4), (1, 9), (2, 7), (1, 2), (0, 11), (5, 11), (1, 3), (2, 12), (9, 10), (10, 12), (7, 8), (9, 12), (4, 10), (11, 12), (6, 10), (6, 9), (8, 10), (3, 6), (0, 7), (4, 9), (1, 7), (0, 5), (2, 4), (1, 10), (5, 7), (3, 12), (4, 6), (2, 11), (3, 7), (3, 10), (4, 8), (4, 11), (0, 1), (5, 12), (1, 6), (7, 11), (2, 3), (2, 8), (1, 4), (1, 8), (0, 8), (6, 7), (1, 11), (8, 9), (0, 10), (10, 11), (9, 11), (5, 10), (0, 12), (3, 5), (8, 11), (0, 3), (5, 8), (7, 9), (6, 11), (6, 12), (1, 5), (6, 8), (3, 8), (0, 6), (2, 5), (0, 4), (5, 6), (1, 12), (4, 7), (2, 6), (2, 10), (4, 5), (3, 11), (0, 2), (2, 9) ] # Find valid pairs of camera rays that could intersect and create a 3D reconstruction for ci, cj in cameraPairCombinations: # for (ci, cj) in knownCamPairs: ui, uj = range(splits[ci], splits[ci + 1]), range(splits[cj], splits[cj + 1]) if len(ui) == 0 or len(uj) == 0: continue axis = cameraPositions[cj] - cameraPositions[ci] camPairDist = np.linalg.norm(axis) if camPairDist > 7000.: continue tilt_i = np.dot(map(norm, np.cross(rays[ui], axis)), tilt_axes[ci]) tilt_j = np.dot(map(norm, np.cross(rays[uj], axis)), tilt_axes[ci]) # NB tilt_axes[ci] not a bug io = np.argsort(tilt_i) jo = np.argsort(tilt_j) for ii, d0 in enumerate(tilt_i[io]): for ji, d1 in enumerate(tilt_j[jo]): diff = d0 - d1 if abs(diff) < tilt_threshold: d = [int(ui[io[ii]]), int(uj[jo[ji]])] cams = [int(ci), int(cj)] entry = {'pair': d, 'cameraIds': cams} data.append(entry) # Create 3D reconstructions from ray pairs x3ds = [] for entry in data: d = entry['pair'] E0, e0 = E[d, :, :3].reshape(-1, 3), E[d, :, 3].reshape(-1) x3d = np.linalg.solve(np.dot(E0.T, E0) + np.eye(3) * 1e-7, -np.dot(E0.T, e0)) ai, aj = x3d - Ts[ci], x3d - Ts[cj] angle = np.degrees(np.arccos(np.dot(ai, aj) / (np.linalg.norm(ai) * np.linalg.norm(aj)))) if angle > 120: continue x3ds.append(x3d) return x3ds, data, rays, cameraPositions def cook(self, location, interface, attrs): if not self.useFrame(interface.frame(), attrs['frameRange']): return calibrationLocation = attrs['calibration'] if not calibrationLocation: calibrationLocation = interface.root() # Get the mats from the calibration location mats = interface.attr('mats', atLocation=calibrationLocation) if mats is None: return Ps = interface.attr('Ps', atLocation=calibrationLocation) # Get the detections from the location we are cooking x2ds = interface.attr('x2ds') x2ds_splits = interface.attr('x2ds_splits') if self.visibility is None: self.visibility = ISCV.ProjectVisibility.create() # Check if we have normals if attrs['mesh'] and interface.hasAttr('normals', atLocation=attrs['mesh']): normals = interface.attr('normals', atLocation=attrs['mesh']) self.visibility.setNormals(normals) # Check if we have visibility LODs if 'visibilityLod' in attrs and attrs['visibilityLod']: visibilityLod = interface.location(attrs['visibilityLod']) if visibilityLod is not None: lodTris = visibilityLod['tris'] lodVerts = visibilityLod['verts'] lodNormals = visibilityLod['faceNormals'] tris = lodVerts[lodTris] cameraPositions = np.array([m[4] for m in mats], dtype=np.float32) self.visibility.setLods(tris, cameraPositions, np.concatenate((lodNormals)), attrs['intersection_threshold'], attrs['generateNormals']) # Calculate the 3D reconstructions from the detections x3ds, reconstructionData, rays, cameraPositions = self.calculate3dPointsFromDetections(x2ds, x2ds_splits, mats, Ps, tilt_threshold=attrs['tilt_threshold']) x3ds = np.array(x3ds, dtype=np.float32) labellingData = LabelData((x2ds, x2ds_splits), reconstructionData, rays, cameraPositions, mats) x3ds_means, x3ds_labels, x3ds_normals, _, _ = cleanAndLabelX3ds(labellingData, x3ds, range(5, 3, -1), self.visibility) if x3ds_means is None or not x3ds_means.any(): return # Create 3D points attributes on the cooked location # interface.setAttr('x3ds', x3ds) interface.setAttr('x3ds', x3ds_means) interface.setAttr('x3ds_colour', eval(attrs['colour'])) interface.setAttr('x3ds_pointSize', attrs['pointSize']) interface.setAttr('x3ds_labels', x3ds_labels) interface.setType('points') # Test class LabelData: def __init__(self, data1, reconstructionData, rays, cameraPositions, mats): self.labels = -np.ones(len(rays), dtype=np.int32) self.labelPositions = {} self.x3d_threshold = 10.0 self.x2ds, self.splits = data1 self.reconstructionData = reconstructionData self.rays = rays self.originalRays = rays self.cameraPositions = cameraPositions self.mats = mats self.labels_temp = -np.ones_like(self.labels) self.labelPositions_temp = {} self.Ps = np.array([m[2] / (np.sum(m[2][0, :3] ** 2) ** 0.5) for m in mats], dtype=np.float32) self.triangles = [] self.points = np.array([]) self.pointLabels = None self.pointNormals = None self.cloud = None self.scores, self.matches, self.matches_splits = [], [], [] def getX3ds(self, tempLabels=False): if tempLabels: return self.solveLabels_temp() self.solveLabels() return self.points, self.pointLabels, self.pointNormals def getClusterData(self, x3ds): if self.cloud is None: cloud = ISCV.HashCloud3D(x3ds, self.x3d_threshold) self.scores, self.matches, self.matches_splits = cloud.score(x3ds) return self.scores, self.matches, self.matches_splits def solveLabels(self): self.points, self.pointLabels, self.pointNormals, E, x2d_labels = Recon.solve_x3ds_normals(self.x2ds, self.splits, self.labels, self.Ps, self.rays) print "solveLabels:", len(self.points), np.min(self.pointLabels), np.max(self.pointLabels), "(#points | min label | max label)" def solveLabels_temp(self): points, pointLabels, pointNormals, E, x2d_labels = Recon.solve_x3ds_normals(self.x2ds, self.splits, self.labels_temp, self.Ps, self.rays) print "solveLabels:", len(points), np.min(pointLabels), np.max(pointLabels), "(#points | min label | max label)" return points, pointLabels, pointNormals def approveLabels(self, approved_point_labels): for label in approved_point_labels: self.labels[np.where(self.labels_temp == label)[0]] = label # Surely this can be done better? self.labels_temp = np.copy(self.labels) def getMeshData(self, solve=False): if solve: self.getX3ds() triangles = np.array(self.triangles, dtype=np.int32) if triangles.any(): verts = self.points tris = np.array(self.triangles, dtype=np.int32) return tris, verts return np.array([]), np.array([]) def findCameraIdFromRayId(rayId, camRaySplits): dists = rayId - camRaySplits[:-1] dists[np.where(dists < 0)[0]] = np.sum(camRaySplits) return dists.argmin() def cleanAndLabelX3ds(labellingData, x3ds, N, allowStealing=True, pts=np.array([]), visibility=None): global cameraContributions, rayInfo labels = labellingData.labels_temp labelPositions = labellingData.labelPositions x3d_threshold = labellingData.x3d_threshold x2ds = labellingData.x2ds splits = labellingData.splits reconstructionData = labellingData.reconstructionData rays = labellingData.rays cameraPositions = labellingData.cameraPositions # We want to get only the points that have N neighbours within 1cm # TODO: Cache this as we'll be using it multiple times #cloud = ISCV.HashCloud3D(x3ds, x3d_threshold) #scores, matches, matches_splits = cloud.score(x3ds) scores, matches, matches_splits = labellingData.getClusterData(x3ds) #clusterMeanPoints = [] registry = [] x3ds_means = [] x3ds_normals = [] cameraContributions = [] # clusterCameraContributions = [] rawData = None rayInfo = [] labelsAdded = [] #x2ds, splits = data1 #Ps = np.array([m[2] / (np.sum(m[2][0, :3] ** 2) ** 0.5) for m in mats], dtype=np.float32) Ps = labellingData.Ps volatileLabels = [] goldStandardLabels = [] for n in N: #print ">> Min Rays:", n whichMatches = np.where(matches_splits[1:] - matches_splits[:-1] >= n)[0] clusterSplitPairs = np.array(zip(matches_splits[:-1], matches_splits[1:]))[whichMatches] if n == N: rawData = x3ds[whichMatches] clusterCounter = 0 x3ds_clusters = [] x3ds_clusterColours = [] x3ds_clusterMeans = [] x3ds_clusterMeansColours = [] x3ds_clusterLabels = [] for matchFrom, matchTo in clusterSplitPairs: # Find the points for this cluster and calculate the mean position pointIndices = matches[matchFrom:matchTo] numPoints = len(pointIndices) assert(numPoints >= n) clusterMean = np.mean(x3ds[pointIndices], axis=0) if len(np.where(np.linalg.norm(clusterMean - cameraPositions, axis=1) < x3d_threshold * 6.0)[0]) > 0: continue if pts.any(): if len(pts.shape) == 1: dists = np.linalg.norm(clusterMean - pts) else: dists = np.linalg.norm(clusterMean - pts, axis=1) if len(np.where(dists > x3d_threshold * 10.0)[0]) > 0: continue cluster = x3ds[pointIndices] x3ds_clusters.extend(cluster) randomColour = np.concatenate((np.random.rand(3), np.array([0.5], dtype=np.float32))) x3ds_clusterColours.extend(np.tile(randomColour, (cluster.shape[0], 1))) x3ds_clusterMeans.append(clusterMean) x3ds_clusterMeansColours.append(randomColour) x3ds_clusterLabels.append(clusterCounter) # Get all the rays used to make the points in this cluster. This will be a Nx3 matrix rayIndices = np.unique([reconstructionData[pi]['pair'] for pi in pointIndices]) pointRays = rays[rayIndices] # Calculate the dot product for each combination of rays. This will be a NxN matrix raysDps = np.dot(pointRays, pointRays.T) # Find the ray which has the highest agreement with the others (sum of dot products) bestRay = np.sum(raysDps > 0, axis=0).argmax() # Find which other rays are in agreement with the best ray (dp > 0) goodRays = np.where(raysDps[bestRay] > 0.05)[0] # As all the (good) rays in the cluster should be contributing to creating a single point, we will # give them a new label that identifies them with the detection/reconstruction for that point #currentLabel = len(clusterMeanPoints) currentLabel = len(labelPositions) labelForPointReconstruction = currentLabel # Only continue with rays from a unique set of cameras camerasForRays = [findCameraIdFromRayId(rayId, splits) for rayId in rayIndices[goodRays]] uniqueRayCams, uniqueRayCamsIdx = np.unique(camerasForRays, return_index=True) goodRays = goodRays[uniqueRayCamsIdx] rayInfo.append(raysDps[goodRays]) # TODO: Fix.. nonsense existingLabelsForRays = labels[rayIndices[goodRays]] knownLabelIndices = np.where(existingLabelsForRays != -1)[0] rayIdsForKnownLabels = rayIndices[knownLabelIndices] camerasForKnownLabels = [findCameraIdFromRayId(rayId, splits) for rayId in rayIdsForKnownLabels] uniqueCams, uniqueCamsIdx = np.unique(camerasForKnownLabels, return_index=True) knownLabelIndices = knownLabelIndices[uniqueCamsIdx] knownLabels = existingLabelsForRays[knownLabelIndices] clusterCounter += 1 # We check if any of the rays have been assigned a label before (i.e. they will contribute to # reconstructing a 3D point). If that is the case then we have to make decision whether we # want to our rays in this cluster to contribute to the existing label (reconstruction), or # if we want to steal the labelled rays so that they now contribute to creating a new label # for this cluster threshold = x3d_threshold ** 2 for label in np.unique(knownLabels): # The ray has been labelled to create a 3D point. If that point is within threshold distance # of the current cluster we give this cluster the same label. In essence we are merging the # rays in this cluster with the rays that are already contributing to the label. # However, if the reconstructed label and the cluster mean are further away from each other # we will relabel it with the new label for this cluster which equates to stealing it. #dist = np.linalg.norm(clusterMeanPoints[label] - clusterMean) dist = np.linalg.norm(labelPositions[label] - clusterMean) if dist < threshold: labelForPointReconstruction = label break # threshold = dist _clusterId, _clusterX3dId = len(labelPositions) - 1, len(x3ds_clusterMeans) - 1 # Label the rays with the new or existing (merged) label useNewLabel = False unknownLabels = np.where(existingLabelsForRays == -1)[0] if labelForPointReconstruction == currentLabel: # No merging is going on if len(unknownLabels) > 0: labels[rayIndices[goodRays][unknownLabels]] = currentLabel useNewLabel = True if allowStealing: for knownLabel in knownLabelIndices: rayIdsWithLabel = np.where(labels == existingLabelsForRays[knownLabel])[0] numRaysForLabel = len(rayIdsWithLabel) # if existingLabelsForRays[knownLabel] not in volatileLabels and numRaysForLabel < 3: # if existingLabelsForRays[knownLabel] not in goldStandardLabels and numRaysForLabel < 3: # if existingLabelsForRays[knownLabel] not in goldStandardLabels: agreement = np.where(np.sum(np.dot(bestRay, rays[rayIdsWithLabel]) > 0, axis=1) > 1)[0] if True: labels[rayIndices[goodRays][knownLabel]] = currentLabel useNewLabel = True else: # Employ merging strategy if allowStealing: rayIdsWithLabel = np.where(labels == labelForPointReconstruction)[0] agreement = np.where(np.sum(np.dot(bestRay, rays[rayIdsWithLabel]) > 0, axis=1) > 1)[0] labels[rayIndices[goodRays][unknownLabels]] = labelForPointReconstruction for knownLabel in knownLabelIndices: numRaysForLabel = len(np.where(labels == existingLabelsForRays[knownLabel])[0]) # if existingLabelsForRays[knownLabel] not in goldStandardLabels and numRaysForLabel < 3: if existingLabelsForRays[knownLabel] not in goldStandardLabels: labels[rayIndices[goodRays][knownLabel]] = currentLabel useNewLabel = True else: labels[rayIndices[goodRays]] = labelForPointReconstruction if useNewLabel: labelPositions[currentLabel] = clusterMean labelsAdded.append(currentLabel) goldStandardLabels = np.where(labels != -1)[0] if len(np.where(labels != -1)[0]) == 0: return np.array([]), np.array([]), np.array([]), rawData, labelsAdded # x3ds_means, x3ds_labels, _, _ = Recon.solve_x3ds(x2ds, splits, labels, Ps) x3ds_means, x3ds_labels, x3ds_normals, _, _ = Recon.solve_x3ds_normals(x2ds, splits, labels, Ps, rays) # x2d_threshold = 30. / 2000. # clouds = ISCV.HashCloud2DList(x2ds, splits, x2d_threshold) # _, labels, _ = clouds.project_assign_visibility(x3ds_means, None, Ps, x2d_threshold, visibility) labellingData.labels = labels usedLabels = np.array(np.where(labels != -1)[0], dtype=np.int32) return x3ds_means, x3ds_labels, x3ds_normals, rawData, labelsAdded # Register Ops import Registry Registry.registerOp('Reconstruct 3D from Dets', PointsFromDetections) Registry.registerOp('Reconstruct 3D from Dets (all)', PointsFromDetectionsAll)
from etna.transforms.nn.pytorch_forecasting import PytorchForecastingTransform
__strict__ = True import httpx from core.config import Config async def client_fetch(endpoint: str, payload: dict = None) -> dict: payload.update({"key": Config.STEAM_API_KEY}) async with httpx.AsyncClient() as client: result = await client.get("https://api.steampowered.com" + endpoint, params=payload, timeout=10) result.raise_for_status() return result.json()
from __future__ import unicode_literals from django.db import models class Comment(models.Model): """Describes the comment""" name = models.CharField(max_length=128) userpic = models.URLField() url = models.URLField() text = models.TextField() like = models.PositiveIntegerField(default=0) dislike = models.PositiveIntegerField(default=0) date = models.DateTimeField() def __unicode__(self): return 'Comment: {} (user: {})'.format(self.id, self.name) class Reply(models.Model): """Describes the reply for comment""" name = models.CharField(max_length=128) userpic = models.URLField() url = models.URLField() text = models.TextField() like = models.PositiveIntegerField(default=0) dislike = models.PositiveIntegerField(default=0) date = models.DateTimeField() parent = models.ForeignKey(Comment, related_name='children') def __unicode__(self): return 'Reply for {}: user {}'.format(self.parent.id, self.name)
from .internal import _curry1, _curry2, _curry3, _arity from .function import empty, curry_n, lift from .internal import _equals, _get_arity, _fix_arity, _is_function __all__ = ["all_pass", "any_pass", "and_", "lt", "gt", "both", "complement", "if_else", "cond", "or_", "not_", "is_empty", "until", "when"] @_curry1 def all_pass(preds): fixed_preds = [_fix_arity(p) for p in preds] return curry_n(max(map(_get_arity, preds)) if len(preds) else 1, lambda *args: all(map(lambda p: p(*args), fixed_preds)) if len(preds) else True) @_curry1 def any_pass(preds): fixed_preds = [_fix_arity(p) for p in preds] return curry_n(max(map(_get_arity, preds)) if len(preds) else 1, lambda *args: any(map(lambda p: p(*args), fixed_preds)) if len(preds) else False) @_curry2 def and_(a, b): return a and b @_curry2 def lt(a, b): return a < b @_curry2 def gt(a, b): return a > b @_curry2 def or_(a, b): return a or b @_curry1 def not_(a): return not a @_curry2 def both(f, g): return lambda *args: f(*args) and g(*args) if _is_function(f) else \ lift(and_)(f, g) complement = lift(not_) @_curry3 def if_else(condition, on_true, on_false): return curry_n( max(map(_get_arity, [condition, on_true, on_false])), lambda *args: _fix_arity(on_true)(*args) if _fix_arity(condition)(*args) else _fix_arity(on_false)(*args)) @_curry1 def cond(pairs): arity = max(map(lambda p: _get_arity(p[0]), pairs), default=0) def do(*args): for pred, fn in pairs: if (pred(*args)): return fn(*args) return _arity(arity, do) @_curry1 def is_empty(x): return x is not None and _equals(x, empty(x)) @_curry3 def until(pred, fn, init): val = init while not pred(val): val = fn(val) return val @_curry3 def when(pred, when_true_fn, x): return when_true_fn(x) if pred(x) else x
from decimal import Decimal from django.conf import settings from django.utils.dateparse import parse_date from mt940_writer import Account, Balance, Statement, Transaction, TransactionType from . import MT940_STMT_LABEL from .utils import ( retrieve_all_transactions, get_daily_file_uid, get_or_create_file, reconcile_for_date, retrieve_last_balance, get_full_narrative ) def get_bank_statement_file(api_session, receipt_date): filepath = get_or_create_file( MT940_STMT_LABEL, receipt_date, generate_bank_statement, f_args=[api_session, receipt_date] ) return open(filepath, 'rb') def generate_bank_statement(api_session, receipt_date): start_date, end_date = reconcile_for_date(api_session, receipt_date) transactions = retrieve_all_transactions( api_session, received_at__gte=start_date, received_at__lt=end_date ) transaction_records = [] credit_num = 0 credit_total = 0 debit_num = 0 debit_total = 0 for transaction in transactions: narrative = get_full_narrative(transaction) amount = Decimal(transaction['amount']) / 100 if transaction['category'] == 'debit': amount *= -1 debit_num += 1 debit_total += amount else: if transaction.get('ref_code'): narrative = str(transaction['ref_code']) + ' BGC' credit_num += 1 credit_total += amount transaction_record = Transaction( receipt_date, amount, TransactionType.miscellaneous, narrative ) transaction_records.append(transaction_record) account = Account(settings.BANK_STMT_ACCOUNT_NUMBER, settings.BANK_STMT_SORT_CODE) last_balance = retrieve_last_balance(api_session, receipt_date) if last_balance: opening_date = parse_date(last_balance['date']) or receipt_date opening_amount = Decimal(last_balance['closing_balance']) / 100 else: opening_date = receipt_date opening_amount = 0 closing_amount = opening_amount + credit_total + debit_total opening_balance = Balance(opening_amount, opening_date, settings.BANK_STMT_CURRENCY) closing_balance = Balance(closing_amount, receipt_date, settings.BANK_STMT_CURRENCY) statement = Statement( get_daily_file_uid(), account, '1/1', opening_balance, closing_balance, transaction_records ) return str(statement)
# -*- coding: utf-8 -*- """ seasonedParser.__init__ Set module settings. """ from .__version__ import __version__
# version 2.0.0
import torch import torch.nn as nn import torch.nn.functional as F class AttentionXCosNet(nn.Module): def __init__(self, conf): super(AttentionXCosNet, self).__init__() self.embedding_net = nn.Sequential( nn.Conv2d(32, 16, 3, padding=1), nn.BatchNorm2d(16), nn.PReLU() ) self.attention = nn.Sequential( nn.Conv2d(32, 16, 3, padding=1), nn.BatchNorm2d(16), nn.PReLU(), nn.Conv2d(16, 1, 3, padding=1), nn.BatchNorm2d(1), nn.PReLU(), ) self.name = 'AttenCosNet' self.USE_SOFTMAX = conf.USE_SOFTMAX self.SOFTMAX_T = conf.SOFTMAX_T def softmax(self, x, T=1): x /= T return F.softmax(x.reshape(x.size(0), x.size(1), -1), 2).view_as(x) def divByNorm(self, x): ''' attention_weights.size(): [bs, 1, 7, 6] ''' x -= x.view(x.size(0), x.size(1), -1).min(dim=2)[0].repeat(1, 1, x.size(2) * x.size(3)).view(x.size(0), x.size(1), x.size(2), x.size(3)) x /= x.view(x.size(0), x.size(1), -1).sum(dim=2).repeat(1, 1, x.size(2) * x.size(3)).view(x.size(0), x.size(1), x.size(2), x.size(3)) return x def forward(self, feat_grid_1, feat_grid_2): ''' feat_grid_1.size(): [bs, 32, 7, 7] attention_weights.size(): [bs, 1, 7, 7] ''' # XXX Do I need to normalize grid_feat? conv1 = self.embedding_net(feat_grid_1) conv2 = self.embedding_net(feat_grid_2) fused_feat = torch.cat((conv1, conv2), dim=1) attention_weights = self.attention(fused_feat) # To Normalize attention if self.USE_SOFTMAX: attention_weights = self.softmax(attention_weights, self.SOFTMAX_T) else: attention_weights = self.divByNorm(attention_weights) return attention_weights class AttentionCosNet(nn.Module): def __init__(self): super(AttentionCosNet, self).__init__() self.embedding_net = nn.Sequential( nn.Conv2d(512, 256, 3, padding=1), nn.BatchNorm2d(256), nn.PReLU() ) self.attention = nn.Sequential( nn.Conv2d(512, 256, 3, padding=1), nn.BatchNorm2d(256), nn.PReLU(), nn.Conv2d(256, 1, 3, padding=1), nn.BatchNorm2d(1), nn.PReLU(), ) self.name = 'AttentionCosNet' def softmax(self, x): return F.softmax(x.reshape(x.size(0), x.size(1), -1), 2).view_as(x) def forward(self, x1, x2): ''' x1.size(): [bs, 512, 7, 6] attention_weights.size(): [bs, 1, 7, 6] ''' conv1 = self.embedding_net(x1) conv2 = self.embedding_net(x2) fused_feat = torch.cat((conv1, conv2), dim=1) attention_weights = self.attention(fused_feat) # XXX: I use softmax instead of normalize # attention_weights = F.normalize(attention_weights, p=2, dim=1) attention_weights = self.softmax(attention_weights) return x1, x2, attention_weights class EmbeddingNet(nn.Module): def __init__(self): super(EmbeddingNet, self).__init__() self.convnet = nn.Sequential(nn.Conv2d(1, 32, 5), nn.PReLU(), nn.MaxPool2d(2, stride=2), nn.Conv2d(32, 64, 5), nn.PReLU(), nn.MaxPool2d(2, stride=2)) self.fc = nn.Sequential(nn.Linear(64 * 4 * 4, 256), nn.PReLU(), nn.Linear(256, 256), nn.PReLU(), nn.Linear(256, 2) ) def forward(self, x): output = self.convnet(x) output = output.view(output.size()[0], -1) output = self.fc(output) return output def get_embedding(self, x): return self.forward(x) class EmbeddingNetL2(EmbeddingNet): def __init__(self): super(EmbeddingNetL2, self).__init__() def forward(self, x): output = super(EmbeddingNetL2, self).forward(x) output /= output.pow(2).sum(1, keepdim=True).sqrt() return output def get_embedding(self, x): return self.forward(x) class ClassificationNet(nn.Module): def __init__(self, embedding_net, n_classes): super(ClassificationNet, self).__init__() self.embedding_net = embedding_net self.n_classes = n_classes self.nonlinear = nn.PReLU() self.fc1 = nn.Linear(2, n_classes) def forward(self, x): output = self.embedding_net(x) output = self.nonlinear(output) scores = F.log_softmax(self.fc1(output), dim=-1) return scores def get_embedding(self, x): return self.nonlinear(self.embedding_net(x)) class SiameseNet(nn.Module): def __init__(self, embedding_net): super(SiameseNet, self).__init__() self.embedding_net = embedding_net def forward(self, x1, x2): output1 = self.embedding_net(x1) output2 = self.embedding_net(x2) return output1, output2 def get_embedding(self, x): return self.embedding_net(x) class TripletNet(nn.Module): def __init__(self, embedding_net): super(TripletNet, self).__init__() self.embedding_net = embedding_net def forward(self, x1, x2, x3): output1 = self.embedding_net(x1) output2 = self.embedding_net(x2) output3 = self.embedding_net(x3) return output1, output2, output3 def get_embedding(self, x): return self.embedding_net(x) class ENMSiameseNet(nn.Module): def __init__(self, embedding_net): super(ENMSiameseNet, self).__init__() self.embedding_net = embedding_net self.name = 'Siamese' def forward(self, x1, x2): output1 = self.embedding_net(x1) output2 = self.embedding_net(x2) return output1, output2 def get_embedding(self, x): return self.embedding_net(x) class ENMTripletNet(nn.Module): def __init__(self, embedding_net): super(ENMTripletNet, self).__init__() self.embedding_net = embedding_net self.name = 'Triplet' def forward(self, x1, x2, x3): output1 = self.embedding_net(x1) output2 = self.embedding_net(x2) output3 = self.embedding_net(x3) return output1, output2, output3 def get_embedding(self, x): return self.embedding_net(x) class ENMEmbeddingNet(nn.Module): def __init__(self): super(ENMEmbeddingNet, self).__init__() self.fc = nn.Sequential(nn.Linear(1024, 1024), nn.PReLU(), nn.Dropout(p=0.5), nn.Linear(1024, 1024), nn.PReLU(), nn.Dropout(p=0.5), nn.Linear(1024, 1024) ) self.name = 'ENMEmb' def forward(self, x): output = self.fc(x) return output def get_embedding(self, x): return self.forward(x)
from unittest import TestCase from piccolo.columns import ForeignKey, Varchar from piccolo.columns.base import OnDelete, OnUpdate from piccolo.table import Table class Manager(Table): name = Varchar() class Band(Table): """ Contains a ForeignKey with non-default `on_delete` and `on_update` values. """ manager = ForeignKey( references=Manager, on_delete=OnDelete.set_null, on_update=OnUpdate.set_null, ) class TestForeignKeyMeta(TestCase): """ Make sure that `ForeignKeyMeta` is setup correctly. """ def test_foreignkeymeta(self): self.assertTrue( Band.manager._foreign_key_meta.on_update == OnUpdate.set_null ) self.assertTrue( Band.manager._foreign_key_meta.on_delete == OnDelete.set_null ) self.assertTrue(Band.manager._foreign_key_meta.references == Manager)
import numpy as np from sklearn.base import BaseEstimator from keras_preprocessing.image import Iterator from tensorflow.keras.utils import Sequence from sklearn.utils.validation import indexable class FastaIterator(Iterator, BaseEstimator, Sequence): """Base class for fasta sequence iterators. Parameters ---------- n : int Total number of samples batch_size : int Size of batch shuffle : bool Whether to shuffle data between epoch seed : int Random seed number for data shuffling """ white_list_formats = {'fasta', 'fa'} def __init__(self, n, batch_size=32, shuffle=True, seed=0): super(FastaIterator, self).__init__(n, batch_size, shuffle, seed) class FastaToArrayIterator(FastaIterator): """Iterator yielding Numpy array from fasta sequences Parameters ---------- X : array Contains sequence indexes in the fasta file generator : fitted object instance of BatchGenerator, e.g., FastaDNABatchGenerator or FastaProteinBatchGenerator y : array Target labels or values batch_size : int, default=32 shuffle : bool, default=True Whether to shuffle the data between epochs sample_weight : None or array Sample weight seed : int Random seed for data shuffling """ def __init__(self, X, generator, y=None, batch_size=32, shuffle=True, sample_weight=None, seed=None): X, y, sample_weight = indexable(X, y, sample_weight) self.X = X self.generator = generator self.y = y self.sample_weight = sample_weight super(FastaToArrayIterator, self).__init__( X.shape[0], batch_size, shuffle, seed) def _get_batches_of_transformed_samples(self, index_array): generator = self.generator index_array = np.asarray(index_array) n_samples = index_array.shape[0] batch_x = np.zeros((n_samples, generator.seq_length, generator.n_bases), dtype='float32') for i in np.arange(n_samples): seq_idx = int(self.X[index_array[i], 0]) batch_x[i] = generator.apply_transform(seq_idx) output = (batch_x,) if self.y is None: return output[0] output += (self.y[index_array],) if self.sample_weight is not None: output += (self.sample_weight[index_array],) return output
import jpype from jpype.types import * import common import collections.abc class CollectionTestCase(common.JPypeTestCase): def setUp(self): super(CollectionTestCase, self).setUp() def testCollection(self): collection = jpype.java.util.ArrayList() collection.add(1) collection.add(2) self.assertEqual([1, 2], [i for i in collection]) def testIterateHashmap(self): collection = jpype.java.util.HashMap() collection.put('A', 1) collection.put('B', 2) asdict = dict() for x in collection.entrySet(): asdict[str(x.getKey())] = x.getValue().longValue() self.assertEqual(asdict, {'A': 1, 'B': 2}) def testEnumMap(self): enumclass = jpype.JClass('jpype.collection.TestEnum') enummap = jpype.java.util.EnumMap(enumclass) enummap.put(enumclass.A, 'ABC') enummap.put(enumclass.B, 'DEF') asdict = dict() for x in enummap.entrySet(): asdict[str(x.getKey())] = x.getValue() self.assertEqual({'A': 'ABC', 'B': 'DEF'}, asdict) def testMapPut(self): jmap = jpype.JClass("java.util.HashMap")() jmap["a"] = 1 self.assertEqual(jmap["a"], 1) def testMapPutAll(self): jmap = jpype.JClass("java.util.HashMap")() dic = {"a": "1", "b": "2", "c": "3"} jmap.putAll(dic) self.assertEqual(jmap["a"], "1") self.assertEqual(jmap["b"], "2") self.assertEqual(jmap["c"], "3") with self.assertRaises(TypeError): jmap.putAll([1, 2, 3]) def testListGet(self): jlist = jpype.JClass("java.util.ArrayList")() jlist.addAll([1, 2, 3, 4]) self.assertEqual(jlist[0], 1) self.assertEqual(jlist[3], 4) self.assertEqual(jlist[-1], 4) self.assertEqual(jlist[-4], 1) def testListSlice(self): jlist = jpype.JClass("java.util.ArrayList")() jlist.addAll([1, 2, 3, 4]) jlist[1:3] = [5, 6] self.assertEqual(jlist[1], 5) self.assertEqual(jlist[2], 6) def testListDel(self): jlist = jpype.JClass("java.util.ArrayList")() jlist.addAll([1, 2, 3, 4]) del jlist[0] self.assertEqual(len(jlist), 3) self.assertEqual(jlist[0], 2) def testCollectionAddAll(self): l = [1, 2, 3, 4] l2 = ['a', 'b'] jlist = jpype.JClass("java.util.ArrayList")() jlist.addAll(l) jcollection = jpype.JObject(jlist, jpype.java.util.Collection) jcollection.addAll(l2) l.extend(l2) self.assertEqual(l, list(jcollection)) def testListSetItemNeg(self): l = [1, 2, 3, 4] jlist = jpype.JClass("java.util.ArrayList")() jlist.addAll([1, 2, 3, 4]) jlist[-1] = 5 l[-1] = 5 self.assertEqual(l, list(jlist)) jlist[-2] = 6 l[-2] = 6 self.assertEqual(l, list(jlist)) with self.assertRaises(IndexError): jlist[-5] = 6 def testMapKeyError(self): hm = JClass('java.util.HashMap')() with self.assertRaises(KeyError): hm['foo'] hm['foo'] = None self.assertEqual(hm['foo'], None) def testHashMapEntryIter(self): hm = JClass('java.util.HashMap')() hm['alice'] = 'alice' hm['betty'] = 'betty' hm['catty'] = 'catty' for p, v in hm.entrySet(): self.assertEqual(p, v) def testTreeMapEntryIter(self): hm = JClass('java.util.TreeMap')() hm['alice'] = 'alice' hm['betty'] = 'betty' hm['catty'] = 'catty' for p, v in hm.entrySet(): self.assertEqual(p, v) def testSetDelItem(self): hs = JClass('java.util.HashSet')() hs.add('a') hs.add('b') hs.add('c') self.assertIn('a', hs) del hs['a'] self.assertNotIn('a', hs) def testMapEntry(self): hm = JClass('java.util.TreeMap')() hm['alice'] = 'alice' h = hm.entrySet() self.assertEqual(len(h.iterator().next()), 2) def testListIter(self): ls = JClass('java.util.ArrayList')([0, 1, 2, 3]) for i, j in enumerate(ls): self.assertEqual(i, j) def testEnumeration(self): st = JClass('java.util.StringTokenizer')("this is a test") out = [] for i in st: out.append(str(i)) self.assertEqual(len(i), 4) self.assertEqual(" ".join(out), "this is a test") def testCollectionDelItem(self): ja = JClass('java.util.ArrayList')(['1', '2', '3']) jc = JObject(ja, 'java.util.Collection') with self.assertRaisesRegex(TypeError, 'remove'): del jc[1] def testHashMapCtor(self): HashMap = JClass('java.util.HashMap') dc = dict() dc['fred'] = 1 dc['george'] = 2 dc['paul'] = 3 hm = HashMap(dc) for p, v in dc.items(): self.assertEqual(hm[p], v) def testHashMapPutAll(self): HashMap = JClass('java.util.HashMap') hm = HashMap() dc = dict() dc['fred'] = 1 dc['george'] = 2 dc['paul'] = 3 hm.putAll(dc) for p, v in dc.items(): self.assertEqual(hm[p], v) def testHashMapConvert(self): HashMap = JClass('java.util.HashMap') hm = HashMap() hm['fred'] = 1 hm['george'] = 2 hm['paul'] = 3 dc = dict(hm) for p, v in hm.items(): self.assertEqual(dc[p], v) def testMapABC(self): from collections.abc import Mapping, Sized, Iterable, Container hm = JClass('java.util.HashMap')() self.assertIsInstance(hm, Sized) self.assertIsInstance(hm, Iterable) self.assertIsInstance(hm, Container) self.assertIsInstance(hm, Mapping) def testUnmodifiableNext(self): ArrayList = JClass('java.util.ArrayList') Collections = JClass('java.util.Collections') a = ArrayList() a.add("first") a.add("second") a.add("third") for i in a: pass for i in Collections.unmodifiableList(a): pass @common.requirePythonAfter((3, 6, 0)) def testListABC(self): l = ['a', 'b', 'c', 'b'] JList = jpype.JClass('java.util.ArrayList') al = JList(l) for i, j in zip(reversed(al), reversed(l)): self.assertEqual(i, j) self.assertEqual(object() in al, object() in l) self.assertEqual('a' in al, 'a' in l) self.assertEqual(al.index('b'), l.index('b')) self.assertEqual(al.count('b'), l.count('b')) with self.assertRaises(ValueError): al.index(object()) self.assertEqual(al.count(object()), l.count(object())) self.assertIsInstance(al, collections.abc.Sequence) self.assertIsInstance(al, collections.abc.Reversible) self.assertIsInstance(al, collections.abc.Collection) self.assertIsInstance(al, collections.abc.Iterable) self.assertIsInstance(al, collections.abc.Sized) @common.requirePythonAfter((3, 6, 0)) def testCollectionABC(self): JCollection = jpype.JClass('java.util.Collection') self.assertFalse(issubclass(JCollection, collections.abc.Sequence)) self.assertFalse(issubclass(JCollection, collections.abc.Reversible)) self.assertTrue(issubclass(JCollection, collections.abc.Collection)) self.assertTrue(issubclass(JCollection, collections.abc.Iterable)) self.assertTrue(issubclass(JCollection, collections.abc.Sized))
import math import xml.etree.ElementTree as ET from optparse import OptionParser svg_prefix = """<?xml version="1.0" encoding="UTF-8" standalone="no"?> <svg xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:cc="http://creativecommons.org/ns#" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:svg="http://www.w3.org/2000/svg" xmlns="http://www.w3.org/2000/svg" xmlns:sodipodi="http://sodipodi.sourceforge.net/DTD/sodipodi-0.dtd" xmlns:inkscape="http://www.inkscape.org/namespaces/inkscape" width="210mm" height="297mm" viewBox="0 0 744.09448819 1052.3622047" id="svg4154" version="1.1" inkscape:version="0.91 r13725" sodipodi:docname="blank.svg"> <defs id="defs4156" /> <sodipodi:namedview id="base" pagecolor="#ffffff" bordercolor="#666666" borderopacity="1.0" inkscape:pageopacity="0.0" inkscape:pageshadow="2" inkscape:zoom="0.35" inkscape:cx="-467.86" inkscape:cy="405.71" inkscape:document-units="px" inkscape:current-layer="layer1" showgrid="false" inkscape:window-width="1920" inkscape:window-height="1017" inkscape:window-x="-8" inkscape:window-y="-8" inkscape:window-maximized="1" /> <metadata id="metadata4159"> <rdf:RDF> <cc:Work rdf:about=""> <dc:format>image/svg+xml</dc:format> <dc:type rdf:resource="http://purl.org/dc/dcmitype/StillImage" /> <dc:title /> </cc:Work> </rdf:RDF> </metadata> <g inkscape:label="Layer 1" inkscape:groupmode="layer" id="layer1"> """ svg_suffix = " </g>\n</svg>" def brd_to_svg(boardpath, layer, PIXELS_PER_MM, PAD_SHRINK_MM): if boardpath[-4:].lower() != ".brd": raise SystemExit("File must be a .BRD file") print "\nProcessing " + layer + " layer of BRD file " + boardpath + "..." layercode = 1 if layer == "bottom": layercode = 16 try: #PARSE BRD AS XML TREE tree = ET.parse(boardpath) root = tree.getroot() #BUILD DICT OF SMD PADS, BY LIBRARY AND PACKAGE NAMES smd_dict = {} for lib in root.findall('./drawing/board/libraries/library'): libname = lib.get("name") for pkg in lib.findall('./packages/package'): pkgname = pkg.get('name') smds = pkg.findall('smd') if len(smds) > 0: if libname not in smd_dict: smd_dict[libname] = {} if pkgname not in smd_dict[libname]: smd_dict[libname][pkgname] = {} for smd in smds: (srot, smir, sspin) = parse_rot(smd.get('rot')) smd_dict[libname][pkgname][smd.get('name')] = {"name":smd.get('name'), "x":float(smd.get('x')), "y":float(smd.get('y')), "dx":float(smd.get('dx')), "dy":float(smd.get('dy')), "rot":float(srot), "layer":int(smd.get('layer'))} pad = smd_dict[libname][pkgname][smd.get('name')] #FIND ALL ELEMENTS MATCHING SMD DICT ON LIBRARY AND PACKAGE NAMES pads_dict = {} svg_bbox = [[0,0],[0,0]] for elem in root.findall('./drawing/board/elements/element'): elib = elem.get('library') epkg = elem.get('package') ename = elem.get('name') if(elib in smd_dict): if(epkg in smd_dict[elib]): ex = float(elem.get('x')) ey = float(elem.get('y')) (erot, emir, espin) = parse_rot(elem.get('rot')) erot = float(erot) * math.pi/180.0 for smd in smd_dict[elib][epkg]: smd_layer = 1 #presume layer = 1, emir = 0 pad = smd_dict[elib][epkg][smd] if pad['layer'] == 1 and emir == 1: smd_layer = 16 elif pad['layer'] == 16 and emir == 0: smd_layer = 16 elif pad['layer'] == 16 and emir == 1: smd_layer = 1 if smd_layer == layercode: px = float(pad['x']) py = float(pad['y']) dx = float(pad['dx']) - 2.0 * PAD_SHRINK_MM dy = float(pad['dy']) - 2.0 * PAD_SHRINK_MM rot = pad['rot'] * math.pi / 180.0 hx = dx/2.0 hy = dy/2.0 coords = [[hx,hy],[hx-dx,hy],[hx-dx,hy-dy],[hx,hy-dy]] for c in coords: cx = c[0] * math.cos(rot) - c[1] * math.sin(rot) cy = c[0] * math.sin(rot) + c[1] * math.cos(rot) #Position of pads in package in library, with package centroid at origin: c[0] = cx + px c[1] = cy + py #Now rotate each point in coords by the element's rotation, and offset resulting coords by the element centroid padsname = ename + "_" + pad['name'] for c in coords: cx = c[0] * math.cos(erot) - c[1] * math.sin(erot) cy = c[0] * math.sin(erot) + c[1] * math.cos(erot) c[0] = cx + ex c[1] = cy + ey #convert mm to pixels and get full bounding box pix_x = c[0] * PIXELS_PER_MM pix_y = c[1] * PIXELS_PER_MM if pix_x < svg_bbox[0][0]: svg_bbox[0][0] = pix_x if pix_y < svg_bbox[0][1]: svg_bbox[0][1] = pix_y if pix_x > svg_bbox[1][0]: svg_bbox[1][0] = pix_x if pix_y > svg_bbox[1][1]: svg_bbox[1][1] = pix_y #Correctly placed points for each pad of each element on the board, in pixels pads_dict[padsname] = coords svg_infix = "" for k,v in pads_dict.iteritems(): #build SVG polygon element tags, inverting y coordinates to match SVG coordinate system coords_string = "" for c in v: coords_string += str(c[0] * PIXELS_PER_MM) + "," + str(svg_bbox[1][1] - c[1] * PIXELS_PER_MM) + " " svg_infix += "<polygon points=\"" + coords_string[:-1] + "\" style=\"fill:black;stroke:black;stroke-width:0\" />\n" svg_text = svg_prefix + svg_infix + svg_suffix svg_out = open(boardpath[:-4] + "_" + layer + ".svg", "w") svg_out.write(svg_text) svg_out.close() print "DONE" except Exception as e: print str(e) def parse_rot(rotstr): rot = 0 mir = 0 spin = 0 if rotstr != None: if "M" in rotstr: mir = 1 if "S" in rotstr: spin = 1 rot = ''.join(c for c in rotstr if c.isdigit()) return (rot, mir, spin) def main(): parser = OptionParser() parser.add_option("-f", "--file", dest="file", help="make svg of pads from BRD", metavar="BRD") parser.add_option("-F", "--folder", dest="folder", help="make svg of pads from folder of BRDs", metavar="FLD") parser.add_option("-l", "--layer", dest="layer", help="t=top, b=bottom", default="t") parser.add_option("-p", "--pixels", action="store", type="int", dest="ppi", default=90, help="pixels per inch (90 or 96 for Inkscape)") parser.add_option("-s", "--shrink", action="store", type="float", dest="shr", default=2, help="mils to shrink pad mask by (default 2)") (options, args) = parser.parse_args() ppm = 3.543307 if options.ppi != None: ppm = float(options.ppi) / 25.4 shrink = 0.0508 if options.shr != None: shrink = float(options.shr) * 0.0254 layer = "top" if options.layer == "b": layer = "bottom" f = options.file F = options.folder if f == None and F == None: raise SystemExit("\n*You must specify a folder or a file...") elif f == None: raise SystemExit("\nFolder operations are not yet supported...") elif F == None: brd_to_svg(f, layer, ppm, shrink) else: print "\N* File and folder arguments detected. Defaulting to file..." brd_to_svg(f, layer, ppm, shrink) if __name__ == '__main__': main()
from Games.GameLogic import InARowGameSquareBoard import numpy as np from Games.GameLogic import bitboard class MnkInARow(InARowGameSquareBoard): default_kwargs = { "rows": 10, "columns": 10, "in_a_row_to_win": 6 } def __init__(self, **kwargs): super().__init__() self.kwargs = self.default_kwargs.copy() self.kwargs.update(kwargs) self.rows = self.kwargs.get("rows") self.columns = self.kwargs.get("columns") self.in_a_row_to_win = self.kwargs.get("in_a_row_to_win") self.num_squares = self.columns * self.rows self.board = np.zeros((self.num_squares,), dtype=int) self.fv_size = self.num_squares * 2 self.num_actions = self.num_squares self.kwargs = kwargs self.__name__ = "MnkInARow" + str(self.rows) + "x" + str(self.columns) + "_" \ + str(self.in_a_row_to_win) if (self.rows, self.columns, self.in_a_row_to_win) == (3, 3, 3): self.__name__ = "TicTacToe" elif self.in_a_row_to_win == 6: self.__name__ = "ConnectSix" + str(self.rows) + "x" + str(self.columns) elif self.in_a_row_to_win == 5: self.__name__ = "Gomoku" + str(self.rows) + "x" + str(self.columns) def new(self): return MnkInARow(**self.kwargs) def copy(self): board_copy = MnkInARow(**self.kwargs) board_copy.board = self.board.copy() board_copy.winner = self.winner board_copy.turn = self.turn return board_copy def get_legal_moves(self): """ Return a list of the possible action indexes """ if self.is_game_over(): return [] return np.where(self.board[:self.num_actions] == 0, 1, 0).nonzero()[0] def advance(self, a): if self.winner is not None: raise Exception("Cannot advance when game is over") if a is None: raise Exception("action_index can not be None") if self.board[a] != 0: raise Exception("This column is full") if a >= self.num_actions or a < 0: raise Exception("Action is not legal") board_value = self.player_index_to_board_value(player_index=self.turn) self.board[a] = board_value self.update_game_state() def update_game_state(self): self.update_in_a_row_game() self.next_turn() # Is the game a draw. if self.is_draw(): self.winner = -1 def get_augmentations(self, s_array, pi_array, v_array): return self.get_all_augmentations(s_array, pi_array, v_array) def get_feature_vector(self): return bitboard(self.board, self.player_index_to_board_value(self.turn)) def next_turn(self): """ Next turn is always the other player in this game """ self.turn += 1 if self.turn >= self.num_players: self.turn = 0 def display(self): char_board = "" for x in self.board: if x == 0: char_board += '-' if x == 1: char_board += 'x' if x == 2: char_board += 'o' print("*** Print of " + str(type(self).__name__) + " game ***") c = self.columns for r in range(c): print(char_board[r*c:r*c + c]) print()
# coding=utf-8 # Copyright 2022 Microsoft Research and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tokenization classes for TAPEX.""" import json import os import random from contextlib import contextmanager from functools import lru_cache from typing import Dict, List, Optional, Tuple, Union import regex as re from ...file_utils import ExplicitEnum, PaddingStrategy, TensorType, add_end_docstrings, is_pandas_available from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import ENCODE_KWARGS_DOCSTRING, BatchEncoding, TextInput, TruncationStrategy from ...utils import logging if is_pandas_available(): import pandas as pd logger = logging.get_logger(__name__) VOCAB_FILES_NAMES = {"vocab_file": "vocab.json", "merges_file": "merges.txt"} PRETRAINED_VOCAB_FILES_MAP = { "vocab_file": { "microsoft/tapex-base": "https://huggingface.co/microsoft/tapex-base/resolve/main/vocab.json", }, "merges_file": { "microsoft/tapex-base": "https://huggingface.co/microsoft/tapex-base/resolve/main/merges.txt", }, } PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { "microsoft/tapex-base": 512, } PRETRAINED_INIT_CONFIGURATION = { "microsoft/tapex-base": {"do_lower_case": True}, } class TapexTruncationStrategy(ExplicitEnum): """ Possible values for the `truncation` argument in [`~TapasTokenizer.__call__`]. Useful for tab-completion in an IDE. """ DROP_ROWS_TO_FIT = "drop_rows_to_fit" class TokenizerStrategy(ExplicitEnum): TOKENIZE_SOURCE = "tokenize_source" TOKENIZE_TARGET = "tokenize_target" TAPEX_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING = r""" add_special_tokens (`bool`, *optional*, defaults to `True`): Whether or not to encode the sequences with the special tokens relative to their model. padding (`bool`, `str` or [`~file_utils.PaddingStrategy`], *optional*, defaults to `False`): Activates and controls padding. Accepts the following values: - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different lengths). truncation (`bool`, `str`, [`TapexTruncationStrategy`] or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`): Activates and controls truncation. Accepts the following values: - `'drop_rows_to_fit'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will truncate row by row, removing rows from the table. - `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will truncate token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch of pairs) is provided. - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths greater than the model maximum admissible input size). max_length (`int`, *optional*): Controls the maximum length to use by one of the truncation/padding parameters. If left unset or set to `None`, this will use the predefined model maximum length if a maximum length is required by one of the truncation/padding parameters. If the model has no specific maximum input length (like XLNet) truncation/padding to a maximum length will be deactivated. stride (`int`, *optional*, defaults to 0): If set to a number along with `max_length`, the overflowing tokens returned when `return_overflowing_tokens=True` will contain some tokens from the end of the truncated sequence returned to provide some overlap between truncated and overflowing sequences. The value of this argument defines the number of overlapping tokens. pad_to_multiple_of (`int`, *optional*): If set will pad the sequence to a multiple of the provided value. This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability >= 7.5 (Volta). return_tensors (`str` or [`~file_utils.TensorType`], *optional*): If set, will return tensors instead of list of python integers. Acceptable values are: - `'tf'`: Return TensorFlow `tf.constant` objects. - `'pt'`: Return PyTorch `torch.Tensor` objects. - `'np'`: Return Numpy `np.ndarray` objects. """ @lru_cache() def bytes_to_unicode(): """ Returns list of utf-8 byte and a mapping to unicode strings. We specifically avoids mapping to whitespace/control characters the bpe code barfs on. The reversible bpe codes work on unicode strings. This means you need a large # of unicode characters in your vocab if you want to avoid UNKs. When you're at something like a 10B token dataset you end up needing around 5K for decent coverage. This is a significant percentage of your normal, say, 32K bpe vocab. To avoid that, we want lookup tables between utf-8 bytes and unicode strings. """ bs = ( list(range(ord("!"), ord("~") + 1)) + list(range(ord("¡"), ord("¬") + 1)) + list(range(ord("®"), ord("ÿ") + 1)) ) cs = bs[:] n = 0 for b in range(2**8): if b not in bs: bs.append(b) cs.append(2**8 + n) n += 1 cs = [chr(n) for n in cs] return dict(zip(bs, cs)) def get_pairs(word): """ Return set of symbol pairs in a word. Word is represented as tuple of symbols (symbols being variable-length strings). """ pairs = set() prev_char = word[0] for char in word[1:]: pairs.add((prev_char, char)) prev_char = char return pairs class IndexedRowTableLinearize: """ FORMAT: col: col1 | col2 | col 3 row 1 : val1 | val2 | val3 row 2 : ... """ def process_table(self, table_content: Dict): """ Given a table, TableLinearize aims at converting it into a flatten sequence with special symbols. """ assert "header" in table_content and "rows" in table_content, self.PROMPT_MESSAGE # process header table_str = self.process_header(table_content["header"]) + " " # process rows for i, row_example in enumerate(table_content["rows"]): # NOTE: the row should start from row 1 instead of 0 table_str += self.process_row(row_example, row_index=i + 1) + " " return table_str.strip() def process_header(self, headers: List): """ Given a list of headers, TableLinearize aims at converting it into a flatten sequence with special symbols. """ return "col : " + " | ".join(headers) def process_row(self, row: List, row_index: int): """ Given a row, TableLinearize aims at converting it into a flatten sequence with special symbols. """ row_str = "" row_cell_values = [] for cell_value in row: if isinstance(cell_value, int): row_cell_values.append(str(cell_value)) else: row_cell_values.append(cell_value) row_str += " | ".join(row_cell_values) return "row " + str(row_index) + " : " + row_str class TapexTokenizer(PreTrainedTokenizer): r""" Construct a TAPEX tokenizer. Based on byte-level Byte-Pair-Encoding (BPE). This tokenizer can be used to flatten one or more table(s) and concatenate them with one or more related sentences to be used by TAPEX models. The format that the TAPEX tokenizer creates is the following: sentence col: col1 | col2 | col 3 row 1 : val1 | val2 | val3 row 2 : ... The tokenizer supports a single table + single query, a single table and multiple queries (in which case the table will be duplicated for every query), a single query and multiple tables (in which case the query will be duplicated for every table), and multiple tables and queries. In other words, you can provide a batch of tables + questions to the tokenizer for instance to prepare them for the model. Tokenization itself is based on the BPE algorithm. It is identical to the one used by BART, RoBERTa and GPT-2. This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Args: vocab_file (`str`): Path to the vocabulary file. merges_file (`str`): Path to the merges file. do_lower_case (`bool`, *optional*, defaults to `True`): Whether or not to lowercase the input when tokenizing. errors (`str`, *optional*, defaults to `"replace"`): Paradigm to follow when decoding bytes to UTF-8. See [bytes.decode](https://docs.python.org/3/library/stdtypes.html#bytes.decode) for more information. bos_token (`str`, *optional*, defaults to `"<s>"`): The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token. <Tip> When building a sequence using special tokens, this is not the token that is used for the beginning of sequence. The token used is the `cls_token`. </Tip> eos_token (`str`, *optional*, defaults to `"</s>"`): The end of sequence token. <Tip> When building a sequence using special tokens, this is not the token that is used for the end of sequence. The token used is the `sep_token`. </Tip> sep_token (`str`, *optional*, defaults to `"</s>"`): The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for sequence classification or for a text and a question for question answering. It is also used as the last token of a sequence built with special tokens. cls_token (`str`, *optional*, defaults to `"<s>"`): The classifier token which is used when doing sequence classification (classification of the whole sequence instead of per-token classification). It is the first token of the sequence when built with special tokens. unk_token (`str`, *optional*, defaults to `"<unk>"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. pad_token (`str`, *optional*, defaults to `"<pad>"`): The token used for padding, for example when batching sequences of different lengths. mask_token (`str`, *optional*, defaults to `"<mask>"`): The token used for masking values. This is the token used when training this model with masked language modeling. This is the token which the model will try to predict. add_prefix_space (`bool`, *optional*, defaults to `False`): Whether or not to add an initial space to the input. This allows to treat the leading word just as any other word. (BART tokenizer detect beginning of words by the preceding space). max_cell_length (`int`, *optional*, defaults to 15): Maximum number of characters per cell when linearizing a table. If this number is exceeded, truncation takes place. """ vocab_files_names = VOCAB_FILES_NAMES pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES pretrained_init_configuration = PRETRAINED_INIT_CONFIGURATION model_input_names = ["input_ids", "attention_mask"] def __init__( self, vocab_file, merges_file, do_lower_case=True, errors="replace", bos_token="<s>", eos_token="</s>", sep_token="</s>", cls_token="<s>", unk_token="<unk>", pad_token="<pad>", mask_token="<mask>", add_prefix_space=False, max_cell_length=15, **kwargs ): bos_token = AddedToken(bos_token, lstrip=False, rstrip=False) if isinstance(bos_token, str) else bos_token eos_token = AddedToken(eos_token, lstrip=False, rstrip=False) if isinstance(eos_token, str) else eos_token sep_token = AddedToken(sep_token, lstrip=False, rstrip=False) if isinstance(sep_token, str) else sep_token cls_token = AddedToken(cls_token, lstrip=False, rstrip=False) if isinstance(cls_token, str) else cls_token unk_token = AddedToken(unk_token, lstrip=False, rstrip=False) if isinstance(unk_token, str) else unk_token pad_token = AddedToken(pad_token, lstrip=False, rstrip=False) if isinstance(pad_token, str) else pad_token # Mask token behave like a normal word, i.e. include the space before it mask_token = AddedToken(mask_token, lstrip=True, rstrip=False) if isinstance(mask_token, str) else mask_token super().__init__( vocab_file=vocab_file, merges_file=merges_file, do_lower_case=do_lower_case, errors=errors, bos_token=bos_token, eos_token=eos_token, unk_token=unk_token, sep_token=sep_token, cls_token=cls_token, pad_token=pad_token, mask_token=mask_token, add_prefix_space=add_prefix_space, max_cell_length=max_cell_length, **kwargs, ) with open(vocab_file, encoding="utf-8") as vocab_handle: self.encoder = json.load(vocab_handle) self.decoder = {v: k for k, v in self.encoder.items()} self.errors = errors # how to handle errors in decoding self.byte_encoder = bytes_to_unicode() self.byte_decoder = {v: k for k, v in self.byte_encoder.items()} with open(merges_file, encoding="utf-8") as merges_handle: bpe_merges = merges_handle.read().split("\n")[1:-1] bpe_merges = [tuple(merge.split()) for merge in bpe_merges] self.bpe_ranks = dict(zip(bpe_merges, range(len(bpe_merges)))) self.cache = {} self.add_prefix_space = add_prefix_space self.do_lower_case = do_lower_case # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions self.pat = re.compile(r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""") # additional properties self.max_cell_length = max_cell_length self.table_linearize = IndexedRowTableLinearize() # property to decide using which call function self.current_tokenizer = TokenizerStrategy.TOKENIZE_SOURCE def build_inputs_with_special_tokens( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. A TAPEX sequence has the following format: - single sequence: `<s> X </s>` - pair of sequences: `<s> A </s></s> B </s>` Args: token_ids_0 (`List[int]`): List of IDs to which the special tokens will be added. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. """ if token_ids_1 is None: return [self.cls_token_id] + token_ids_0 + [self.sep_token_id] cls = [self.cls_token_id] sep = [self.sep_token_id] return cls + token_ids_0 + sep + sep + token_ids_1 + sep def get_special_tokens_mask( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False ) -> List[int]: """ Args: Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding special tokens using the tokenizer `prepare_for_model` method. token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. already_has_special_tokens (`bool`, *optional*, defaults to `False`): Whether or not the token list is already formatted with special tokens for the model. Returns: `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. """ if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True ) if token_ids_1 is None: return [1] + ([0] * len(token_ids_0)) + [1] return [1] + ([0] * len(token_ids_0)) + [1, 1] + ([0] * len(token_ids_1)) + [1] def create_token_type_ids_from_sequences( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Args: Create a mask from the two sequences passed to be used in a sequence-pair classification task. TAPEX does not: make use of token type ids, therefore a list of zeros is returned. token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of zeros. """ sep = [self.sep_token_id] cls = [self.cls_token_id] if token_ids_1 is None: return len(cls + token_ids_0 + sep) * [0] return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0] def prepare_for_tokenization(self, text, is_split_into_words=False, **kwargs): add_prefix_space = kwargs.pop("add_prefix_space", self.add_prefix_space) if (is_split_into_words or add_prefix_space) and (len(text) > 0 and not text[0].isspace()): text = " " + text return (text, kwargs) @property def vocab_size(self): return len(self.encoder) def get_vocab(self): return dict(self.encoder, **self.added_tokens_encoder) def bpe(self, token): if token in self.cache: return self.cache[token] word = tuple(token) pairs = get_pairs(word) if not pairs: return token while True: bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float("inf"))) if bigram not in self.bpe_ranks: break first, second = bigram new_word = [] i = 0 while i < len(word): try: j = word.index(first, i) except ValueError: new_word.extend(word[i:]) break else: new_word.extend(word[i:j]) i = j if word[i] == first and i < len(word) - 1 and word[i + 1] == second: new_word.append(first + second) i += 2 else: new_word.append(word[i]) i += 1 new_word = tuple(new_word) word = new_word if len(word) == 1: break else: pairs = get_pairs(word) word = " ".join(word) self.cache[token] = word return word def _tokenize(self, text): """Tokenize a string.""" bpe_tokens = [] for token in re.findall(self.pat, text): token = "".join( self.byte_encoder[b] for b in token.encode("utf-8") ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(token).split(" ")) return bpe_tokens def _convert_token_to_id(self, token): """Converts a token (str) in an id using the vocab.""" return self.encoder.get(token, self.encoder.get(self.unk_token)) def _convert_id_to_token(self, index): """Converts an index (integer) in a token (str) using the vocab.""" return self.decoder.get(index) def convert_tokens_to_string(self, tokens): """Converts a sequence of tokens (string) in a single string.""" text = "".join(tokens) text = bytearray([self.byte_decoder[c] for c in text]).decode("utf-8", errors=self.errors) return text def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: if not os.path.isdir(save_directory): logger.error(f"Vocabulary path ({save_directory}) should be a directory") return vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) merge_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(vocab_file, "w", encoding="utf-8") as f: f.write(json.dumps(self.encoder, ensure_ascii=False)) index = 0 with open(merge_file, "w", encoding="utf-8") as writer: writer.write("#version: 0.2\n") for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda kv: kv[1]): if index != token_index: logger.warning( f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." " Please check that the tokenizer is not corrupted!" ) index = token_index writer.write(" ".join(bpe_tokens) + "\n") index += 1 return vocab_file, merge_file @add_end_docstrings(ENCODE_KWARGS_DOCSTRING, TAPEX_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING) def __call__( self, table: Union["pd.DataFrame", List["pd.DataFrame"]] = None, query: Optional[Union[TextInput, List[TextInput]]] = None, answer: Union[str, List[str]] = None, add_special_tokens: bool = True, padding: Union[bool, str, PaddingStrategy] = False, truncation: Union[bool, str, TruncationStrategy] = False, max_length: Optional[int] = None, stride: int = 0, pad_to_multiple_of: Optional[int] = None, return_tensors: Optional[Union[str, TensorType]] = None, return_token_type_ids: Optional[bool] = None, return_attention_mask: Optional[bool] = None, return_overflowing_tokens: bool = False, return_special_tokens_mask: bool = False, return_offsets_mapping: bool = False, return_length: bool = False, verbose: bool = True, **kwargs ) -> BatchEncoding: """ Main method to tokenize and prepare for the model one or several table-sequence pair(s). Args: table (`pd.DataFrame`, `List[pd.DataFrame]`): Table(s) containing tabular data. query (`str` or `List[str]`, *optional*): Sentence or batch of sentences related to one or more table(s) to be encoded. Note that the number of sentences must match the number of tables. answer (`str` or `List[str]`, *optional*): Optionally, the corresponding answer to the questions as supervision. """ if self.current_tokenizer == TokenizerStrategy.TOKENIZE_SOURCE: if table is None: raise ValueError("Please ensure that the table is not empty if you use TAPEX to encode source.") return self.source_call_func( table=table, query=query, answer=answer, add_special_tokens=add_special_tokens, padding=padding, truncation=truncation, max_length=max_length, stride=stride, pad_to_multiple_of=pad_to_multiple_of, return_tensors=return_tensors, return_token_type_ids=return_token_type_ids, return_attention_mask=return_attention_mask, return_overflowing_tokens=return_overflowing_tokens, return_special_tokens_mask=return_special_tokens_mask, return_offsets_mapping=return_offsets_mapping, return_length=return_length, verbose=verbose, **kwargs, ) else: if answer is None: raise ValueError("Please ensure that the answer is not empty if you use TAPEX to encode target.") return self.target_call_func( answer=answer, add_special_tokens=add_special_tokens, padding=padding, truncation=truncation, max_length=max_length, stride=stride, pad_to_multiple_of=pad_to_multiple_of, return_tensors=return_tensors, return_token_type_ids=return_token_type_ids, return_attention_mask=return_attention_mask, return_overflowing_tokens=return_overflowing_tokens, return_special_tokens_mask=return_special_tokens_mask, return_offsets_mapping=return_offsets_mapping, return_length=return_length, verbose=verbose, **kwargs, ) def source_call_func( self, table: Union["pd.DataFrame", List["pd.DataFrame"]], query: Optional[Union[TextInput, List[TextInput]]] = None, answer: Union[str, List[str]] = None, add_special_tokens: bool = True, padding: Union[bool, str, PaddingStrategy] = False, truncation: Union[bool, str, TruncationStrategy] = False, max_length: Optional[int] = None, stride: int = 0, pad_to_multiple_of: Optional[int] = None, return_tensors: Optional[Union[str, TensorType]] = None, return_token_type_ids: Optional[bool] = None, return_attention_mask: Optional[bool] = None, return_overflowing_tokens: bool = False, return_special_tokens_mask: bool = False, return_offsets_mapping: bool = False, return_length: bool = False, verbose: bool = True, **kwargs ) -> BatchEncoding: # Input type checking for clearer error valid_table = False valid_query = False # Check that table have a valid type if isinstance(table, pd.DataFrame): valid_table = True elif isinstance(table, (list, tuple)) and isinstance(table[0], pd.DataFrame): valid_table = True # Check that query have a valid type if query is None or isinstance(query, str): valid_query = True elif isinstance(query, (list, tuple)): if len(query) == 0 or isinstance(query[0], str): valid_query = True if not valid_table: raise ValueError( "table input must of type `pd.DataFrame` (single example), `List[pd.DataFrame]` (batch of examples). " ) if not valid_query: raise ValueError("query input must of type `str` (single example), `List[str]` (batch of examples). ") is_batched = isinstance(table, (list, tuple)) or isinstance(query, (list, tuple)) if is_batched: return self.batch_encode_plus( table=table, query=query, answer=answer, add_special_tokens=add_special_tokens, padding=padding, truncation=truncation, max_length=max_length, pad_to_multiple_of=pad_to_multiple_of, return_tensors=return_tensors, return_token_type_ids=return_token_type_ids, return_attention_mask=return_attention_mask, return_overflowing_tokens=return_overflowing_tokens, return_special_tokens_mask=return_special_tokens_mask, return_offsets_mapping=return_offsets_mapping, return_length=return_length, verbose=verbose, **kwargs, ) else: return self.encode_plus( table=table, query=query, answer=answer, add_special_tokens=add_special_tokens, padding=padding, truncation=truncation, max_length=max_length, pad_to_multiple_of=pad_to_multiple_of, return_tensors=return_tensors, return_token_type_ids=return_token_type_ids, return_attention_mask=return_attention_mask, return_overflowing_tokens=return_overflowing_tokens, return_special_tokens_mask=return_special_tokens_mask, return_offsets_mapping=return_offsets_mapping, return_length=return_length, verbose=verbose, **kwargs, ) @add_end_docstrings(ENCODE_KWARGS_DOCSTRING, TAPEX_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING) def batch_encode_plus( self, table: Union["pd.DataFrame", List["pd.DataFrame"]], query: Optional[List[TextInput]] = None, answer: List[str] = None, add_special_tokens: bool = True, padding: Union[bool, str, PaddingStrategy] = False, truncation: Union[bool, str] = False, max_length: Optional[int] = None, pad_to_multiple_of: Optional[int] = None, return_tensors: Optional[Union[str, TensorType]] = None, return_token_type_ids: Optional[bool] = None, return_attention_mask: Optional[bool] = None, return_overflowing_tokens: bool = False, return_special_tokens_mask: bool = False, return_offsets_mapping: bool = False, return_length: bool = False, verbose: bool = True, **kwargs ) -> BatchEncoding: """ <Tip warning={true}> This method is deprecated, `__call__` should be used instead. </Tip> """ # Backward compatibility for 'truncation_strategy', 'pad_to_max_length' padding_strategy, truncation_strategy, max_length, kwargs = self._get_padding_truncation_strategies( padding=padding, truncation=truncation, max_length=max_length, pad_to_multiple_of=pad_to_multiple_of, verbose=verbose, **kwargs, ) return self._batch_encode_plus( table=table, query=query, answer=answer, add_special_tokens=add_special_tokens, padding_strategy=padding_strategy, truncation_strategy=truncation_strategy, max_length=max_length, pad_to_multiple_of=pad_to_multiple_of, return_tensors=return_tensors, return_token_type_ids=return_token_type_ids, return_attention_mask=return_attention_mask, return_overflowing_tokens=return_overflowing_tokens, return_special_tokens_mask=return_special_tokens_mask, return_offsets_mapping=return_offsets_mapping, return_length=return_length, verbose=verbose, **kwargs, ) def _batch_encode_plus( self, table: Union["pd.DataFrame", List["pd.DataFrame"]], query: Optional[List[TextInput]] = None, answer: Optional[List[str]] = None, add_special_tokens: bool = True, padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD, truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE, max_length: Optional[int] = None, stride: int = 0, pad_to_multiple_of: Optional[int] = None, return_tensors: Optional[Union[str, TensorType]] = None, return_token_type_ids: Optional[bool] = None, return_attention_mask: Optional[bool] = None, return_overflowing_tokens: bool = False, return_special_tokens_mask: bool = False, return_offsets_mapping: bool = False, return_length: bool = False, verbose: bool = True, **kwargs ) -> BatchEncoding: if return_offsets_mapping: raise NotImplementedError( "return_offset_mapping is not available when using Python tokenizers. " "To use this feature, change your tokenizer to one deriving from " "transformers.PreTrainedTokenizerFast." ) if isinstance(table, pd.DataFrame) and isinstance(query, (list, tuple)): # single table, many queries case # duplicate table for every query table = [table] * len(query) if isinstance(table, (list, tuple)) and isinstance(query, str): # many tables, single query case # duplicate query for every table query = [query] * len(table) batch_outputs = self._batch_prepare_for_model( table=table, query=query, answer=answer, add_special_tokens=add_special_tokens, padding_strategy=padding_strategy, truncation_strategy=truncation_strategy, max_length=max_length, stride=stride, pad_to_multiple_of=pad_to_multiple_of, return_attention_mask=return_attention_mask, return_token_type_ids=return_token_type_ids, return_overflowing_tokens=return_overflowing_tokens, return_special_tokens_mask=return_special_tokens_mask, return_length=return_length, return_tensors=return_tensors, verbose=verbose, ) return BatchEncoding(batch_outputs) @add_end_docstrings(ENCODE_KWARGS_DOCSTRING, TAPEX_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING) def _batch_prepare_for_model( self, table: Union["pd.DataFrame", List["pd.DataFrame"]], query: Optional[Union[TextInput, List[TextInput]]] = None, answer: Optional[Union[str, List[str]]] = None, add_special_tokens: bool = True, padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD, truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE, max_length: Optional[int] = None, stride: int = 0, pad_to_multiple_of: Optional[int] = None, return_tensors: Optional[str] = None, return_token_type_ids: Optional[bool] = None, return_attention_mask: Optional[bool] = None, return_overflowing_tokens: bool = False, return_special_tokens_mask: bool = False, return_length: bool = False, verbose: bool = True, ) -> BatchEncoding: """ This method adds special tokens, truncates sequences if overflowing while taking into account the special tokens and manages a moving window (with user defined stride) for overflowing tokens. """ batch_outputs = {} if answer is None: answer = [None] * len(table) for _table, _query, _answer in zip(table, query, answer): text = self.prepare_table_query( _table, _query, _answer, truncation_strategy=truncation_strategy, max_length=max_length ) if self.do_lower_case: text = text.lower() tokens = self.tokenize(text) outputs = self.prepare_for_model( ids=self.convert_tokens_to_ids(tokens), add_special_tokens=add_special_tokens, padding=PaddingStrategy.DO_NOT_PAD.value, # we pad in batch afterwards truncation=truncation_strategy.value, max_length=max_length, stride=stride, pad_to_multiple_of=None, # we pad in batch afterwards return_attention_mask=False, # we pad in batch afterwards return_token_type_ids=return_token_type_ids, return_overflowing_tokens=return_overflowing_tokens, return_special_tokens_mask=return_special_tokens_mask, return_length=return_length, return_tensors=None, # We convert the whole batch to tensors at the end prepend_batch_axis=False, verbose=verbose, ) for key, value in outputs.items(): if key not in batch_outputs: batch_outputs[key] = [] batch_outputs[key].append(value) batch_outputs = self.pad( batch_outputs, padding=padding_strategy.value, max_length=max_length, pad_to_multiple_of=pad_to_multiple_of, return_attention_mask=return_attention_mask, ) batch_outputs = BatchEncoding(batch_outputs, tensor_type=return_tensors) return batch_outputs @add_end_docstrings(ENCODE_KWARGS_DOCSTRING) def encode( self, table: "pd.DataFrame", query: Optional[TextInput] = None, answer: Optional[str] = None, add_special_tokens: bool = True, padding: Union[bool, str, PaddingStrategy] = False, truncation: Union[bool, str, TruncationStrategy, TapexTruncationStrategy] = False, max_length: Optional[int] = None, return_tensors: Optional[Union[str, TensorType]] = None, **kwargs ) -> List[int]: """ Prepare a table, a string and possible answer for the model. This method does not return token type IDs, attention masks, etc. which are necessary for the model to work correctly. Use this method if you want to build your processing on your own, otherwise refer to `__call__`. """ encoded_inputs = self.encode_plus( table, query=query, answer=answer, add_special_tokens=add_special_tokens, padding=padding, truncation=truncation, max_length=max_length, return_tensors=return_tensors, **kwargs, ) return encoded_inputs["input_ids"] @add_end_docstrings(ENCODE_KWARGS_DOCSTRING, TAPEX_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING) def encode_plus( self, table: "pd.DataFrame", query: Optional[TextInput] = None, answer: Optional[str] = None, add_special_tokens: bool = True, padding: Union[bool, str, PaddingStrategy] = False, truncation: Union[bool, str] = False, max_length: Optional[int] = None, pad_to_multiple_of: Optional[int] = None, return_tensors: Optional[Union[str, TensorType]] = None, return_token_type_ids: Optional[bool] = None, return_attention_mask: Optional[bool] = None, return_special_tokens_mask: bool = False, return_offsets_mapping: bool = False, return_length: bool = False, verbose: bool = True, **kwargs ) -> BatchEncoding: # Backward compatibility for 'truncation_strategy', 'pad_to_max_length' padding_strategy, truncation_strategy, max_length, kwargs = self._get_padding_truncation_strategies( padding=padding, truncation=truncation, max_length=max_length, pad_to_multiple_of=pad_to_multiple_of, verbose=verbose, **kwargs, ) return self._encode_plus( table=table, query=query, answer=answer, add_special_tokens=add_special_tokens, padding_strategy=padding_strategy, truncation_strategy=truncation_strategy, max_length=max_length, pad_to_multiple_of=pad_to_multiple_of, return_tensors=return_tensors, return_token_type_ids=return_token_type_ids, return_attention_mask=return_attention_mask, return_special_tokens_mask=return_special_tokens_mask, return_offsets_mapping=return_offsets_mapping, return_length=return_length, verbose=verbose, **kwargs, ) def _encode_plus( self, table: "pd.DataFrame", query: Optional[TextInput] = None, answer: Optional[str] = None, add_special_tokens: bool = True, padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD, truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE, max_length: Optional[int] = None, stride: int = 0, pad_to_multiple_of: Optional[int] = None, return_tensors: Optional[Union[str, TensorType]] = None, return_token_type_ids: Optional[bool] = None, return_attention_mask: Optional[bool] = None, return_overflowing_tokens: bool = False, return_special_tokens_mask: bool = False, return_offsets_mapping: bool = False, return_length: bool = False, verbose: bool = True, **kwargs ) -> BatchEncoding: if return_offsets_mapping: raise NotImplementedError( "return_offset_mapping is not available when using Python tokenizers. " "To use this feature, change your tokenizer to one deriving from " "transformers.PreTrainedTokenizerFast. " "More information on available tokenizers at " "https://github.com/huggingface/transformers/pull/2674" ) text = self.prepare_table_query( table, query, answer, truncation_strategy=truncation_strategy, max_length=max_length ) # if necessary, perform lower case if self.do_lower_case: text = text.lower() tokens = self.tokenize(text) return self.prepare_for_model( ids=self.convert_tokens_to_ids(tokens), add_special_tokens=add_special_tokens, padding=padding_strategy.value, truncation=truncation_strategy.value, max_length=max_length, stride=stride, pad_to_multiple_of=pad_to_multiple_of, return_tensors=return_tensors, prepend_batch_axis=True, return_attention_mask=return_attention_mask, return_token_type_ids=return_token_type_ids, return_overflowing_tokens=return_overflowing_tokens, return_special_tokens_mask=return_special_tokens_mask, return_length=return_length, verbose=verbose, ) def target_call_func( self, answer: Union[str, List[str]], add_special_tokens: bool = True, padding: Union[bool, str, PaddingStrategy] = False, truncation: Union[bool, str, TruncationStrategy] = False, max_length: Optional[int] = None, stride: int = 0, pad_to_multiple_of: Optional[int] = None, return_tensors: Optional[Union[str, TensorType]] = None, return_token_type_ids: Optional[bool] = None, return_attention_mask: Optional[bool] = None, return_overflowing_tokens: bool = False, return_special_tokens_mask: bool = False, return_offsets_mapping: bool = False, return_length: bool = False, verbose: bool = True, **kwargs ) -> BatchEncoding: """ The method tokenizes and prepares the answer label for the model. Args: answer (`str` or `List[str]`): Corresponding answer supervision to the queries for training the model. """ is_batched = isinstance(answer, (list, tuple)) if is_batched: return self.target_batch_encode_plus( answer=answer, add_special_tokens=add_special_tokens, padding=padding, truncation=truncation, max_length=max_length, pad_to_multiple_of=pad_to_multiple_of, return_tensors=return_tensors, return_token_type_ids=return_token_type_ids, return_attention_mask=return_attention_mask, return_overflowing_tokens=return_overflowing_tokens, return_special_tokens_mask=return_special_tokens_mask, return_offsets_mapping=return_offsets_mapping, return_length=return_length, verbose=verbose, **kwargs, ) else: return self.target_encode_plus( answer=answer, add_special_tokens=add_special_tokens, padding=padding, truncation=truncation, max_length=max_length, pad_to_multiple_of=pad_to_multiple_of, return_tensors=return_tensors, return_token_type_ids=return_token_type_ids, return_attention_mask=return_attention_mask, return_overflowing_tokens=return_overflowing_tokens, return_special_tokens_mask=return_special_tokens_mask, return_offsets_mapping=return_offsets_mapping, return_length=return_length, verbose=verbose, **kwargs, ) def target_batch_encode_plus( self, answer: List[str], add_special_tokens: bool = True, padding: Union[bool, str, PaddingStrategy] = False, truncation: Union[bool, str] = False, max_length: Optional[int] = None, pad_to_multiple_of: Optional[int] = None, return_tensors: Optional[Union[str, TensorType]] = None, return_token_type_ids: Optional[bool] = None, return_attention_mask: Optional[bool] = None, return_overflowing_tokens: bool = False, return_special_tokens_mask: bool = False, return_offsets_mapping: bool = False, return_length: bool = False, verbose: bool = True, **kwargs ) -> BatchEncoding: """ Prepare answer strings for the model. Args: answer `List[str]`: Corresponding answer supervision to the queries for training the model. """ # Backward compatibility for 'truncation_strategy', 'pad_to_max_length' padding_strategy, truncation_strategy, max_length, kwargs = self._get_padding_truncation_strategies( padding=padding, truncation=truncation, max_length=max_length, pad_to_multiple_of=pad_to_multiple_of, verbose=verbose, **kwargs, ) return self._target_batch_encode_plus( answer=answer, add_special_tokens=add_special_tokens, padding_strategy=padding_strategy, truncation_strategy=truncation_strategy, max_length=max_length, pad_to_multiple_of=pad_to_multiple_of, return_tensors=return_tensors, return_token_type_ids=return_token_type_ids, return_attention_mask=return_attention_mask, return_overflowing_tokens=return_overflowing_tokens, return_special_tokens_mask=return_special_tokens_mask, return_offsets_mapping=return_offsets_mapping, return_length=return_length, verbose=verbose, **kwargs, ) def _target_batch_encode_plus( self, answer: List[str], add_special_tokens: bool = True, padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD, truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE, max_length: Optional[int] = None, stride: int = 0, pad_to_multiple_of: Optional[int] = None, return_tensors: Optional[Union[str, TensorType]] = None, return_token_type_ids: Optional[bool] = None, return_attention_mask: Optional[bool] = None, return_overflowing_tokens: bool = False, return_special_tokens_mask: bool = False, return_offsets_mapping: bool = False, return_length: bool = False, verbose: bool = True, **kwargs ) -> BatchEncoding: batch_outputs = {} for text in answer: if self.do_lower_case: text = text.lower() tokens = self.tokenize(text) outputs = self.prepare_for_model( ids=self.convert_tokens_to_ids(tokens), add_special_tokens=add_special_tokens, padding=PaddingStrategy.DO_NOT_PAD.value, # we pad in batch afterwards truncation=truncation_strategy.value, max_length=max_length, stride=stride, pad_to_multiple_of=None, # we pad in batch afterwards return_attention_mask=False, # we pad in batch afterwards return_token_type_ids=return_token_type_ids, return_overflowing_tokens=return_overflowing_tokens, return_special_tokens_mask=return_special_tokens_mask, return_length=return_length, return_tensors=None, # We convert the whole batch to tensors at the end prepend_batch_axis=False, verbose=verbose, ) for key, value in outputs.items(): if key not in batch_outputs: batch_outputs[key] = [] batch_outputs[key].append(value) batch_outputs = self.pad( batch_outputs, padding=padding_strategy.value, max_length=max_length, pad_to_multiple_of=pad_to_multiple_of, return_attention_mask=return_attention_mask, ) batch_outputs = BatchEncoding(batch_outputs, tensor_type=return_tensors) return BatchEncoding(batch_outputs) def target_encode( self, answer: str, add_special_tokens: bool = True, padding: Union[bool, str, PaddingStrategy] = False, truncation: Union[bool, str, TruncationStrategy, TapexTruncationStrategy] = False, max_length: Optional[int] = None, return_tensors: Optional[Union[str, TensorType]] = None, **kwargs ) -> List[int]: """ Prepare the answer string for the model. This method does not return token type IDs, attention masks, etc. which are necessary for the model to work correctly. Use this method if you want to build your processing on your own, otherwise refer to `__call__`. Args: answer `str`: Corresponding answer supervision to the queries for training the model """ encoded_outputs = self.target_encode_plus( answer=answer, add_special_tokens=add_special_tokens, padding=padding, truncation=truncation, max_length=max_length, return_tensors=return_tensors, **kwargs, ) return encoded_outputs["input_ids"] def target_encode_plus( self, answer: str, add_special_tokens: bool = True, padding: Union[bool, str, PaddingStrategy] = False, truncation: Union[bool, str] = False, max_length: Optional[int] = None, pad_to_multiple_of: Optional[int] = None, return_tensors: Optional[Union[str, TensorType]] = None, return_token_type_ids: Optional[bool] = None, return_attention_mask: Optional[bool] = None, return_special_tokens_mask: bool = False, return_offsets_mapping: bool = False, return_length: bool = False, verbose: bool = True, **kwargs ) -> BatchEncoding: """ Prepare a answer string for the model. Args: answer `str`: Corresponding answer supervision to the queries for training the model. """ # Backward compatibility for 'truncation_strategy', 'pad_to_max_length' padding_strategy, truncation_strategy, max_length, kwargs = self._get_padding_truncation_strategies( padding=padding, truncation=truncation, max_length=max_length, pad_to_multiple_of=pad_to_multiple_of, verbose=verbose, **kwargs, ) return self._target_encode_plus( answer=answer, add_special_tokens=add_special_tokens, padding_strategy=padding_strategy, truncation_strategy=truncation_strategy, max_length=max_length, pad_to_multiple_of=pad_to_multiple_of, return_tensors=return_tensors, return_token_type_ids=return_token_type_ids, return_attention_mask=return_attention_mask, return_special_tokens_mask=return_special_tokens_mask, return_offsets_mapping=return_offsets_mapping, return_length=return_length, verbose=verbose, **kwargs, ) def _target_encode_plus( self, answer: str, add_special_tokens: bool = True, padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD, truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE, max_length: Optional[int] = None, stride: int = 0, pad_to_multiple_of: Optional[int] = None, return_tensors: Optional[Union[str, TensorType]] = None, return_token_type_ids: Optional[bool] = None, return_attention_mask: Optional[bool] = None, return_overflowing_tokens: bool = False, return_special_tokens_mask: bool = False, return_offsets_mapping: bool = False, return_length: bool = False, verbose: bool = True, **kwargs ) -> BatchEncoding: if return_offsets_mapping: raise NotImplementedError( "return_offset_mapping is not available when using Python tokenizers. " "To use this feature, change your tokenizer to one deriving from " "transformers.PreTrainedTokenizerFast. " "More information on available tokenizers at " "https://github.com/huggingface/transformers/pull/2674" ) text = answer # if necessary, perform lower case if self.do_lower_case: text = text.lower() tokens = self.tokenize(text) return self.prepare_for_model( ids=self.convert_tokens_to_ids(tokens), add_special_tokens=add_special_tokens, padding=padding_strategy.value, truncation=truncation_strategy.value, max_length=max_length, stride=stride, pad_to_multiple_of=pad_to_multiple_of, return_tensors=return_tensors, prepend_batch_axis=True, return_attention_mask=return_attention_mask, return_token_type_ids=return_token_type_ids, return_overflowing_tokens=return_overflowing_tokens, return_special_tokens_mask=return_special_tokens_mask, return_length=return_length, verbose=verbose, ) @contextmanager def as_target_tokenizer(self): """ Temporarily sets the tokenizer for encoding the targets. Useful for tokenizer associated to sequence-to-sequence models that need a slightly different processing for the labels. """ self.current_tokenizer = TokenizerStrategy.TOKENIZE_TARGET yield # restore the call function self.current_tokenizer = TokenizerStrategy.TOKENIZE_SOURCE def prepare_table_query( self, table, query, answer=None, truncation_strategy=Union[str, TruncationStrategy, TapexTruncationStrategy], max_length=None, ): """ This method can be used to linearize a table and add a corresponding query. Optionally, it also handles truncation of the table (cells). An answer can be provided for more precise truncation. """ if not table.empty: # step 1: create table dictionary table_content = {"header": list(table.columns), "rows": [list(row.values) for i, row in table.iterrows()]} # step 2: modify table internally # always truncate table cells based on self.max_cell_length # optionally truncate rows if truncation_strategy is set to it self.truncate_table_cells(table_content, query, answer) if truncation_strategy == TapexTruncationStrategy.DROP_ROWS_TO_FIT: self.truncate_table_rows(table_content, query, answer, max_length=max_length) # step 3: linearize table linear_table = self.table_linearize.process_table(table_content) else: linear_table = "" if linear_table == "": logger.warning( "You provide an empty table, or all cells contain much tokens (e.g., >= 1024 tokens). " + f"Please carefully check the corresponding table with the query : {query}." ) if query == "": logger.warning("You provide nothing to query with respect to the table.") # step 4: concatenate query with linear_table separator = " " if query and linear_table else "" joint_input = (query + separator + linear_table) if query else linear_table return joint_input def truncate_table_cells(self, table_content: Dict, question: str, answer: List): # TODO (Qian): is it possible to revert the original cell if it is in the final answer? cell_mapping = {} for row in table_content["rows"]: for i, cell in enumerate(row): truncate_cell = self.truncate_cell(cell) if truncate_cell is not None: cell_mapping[cell] = truncate_cell row[i] = truncate_cell # modify the answer list if answer is not None: for i, case in enumerate(answer): if case in cell_mapping.keys(): answer[i] = cell_mapping[case] def truncate_cell(self, cell_value): # do not process on these cases if isinstance(cell_value, int) or isinstance(cell_value, float): return cell_value if cell_value.strip() != "": try_tokens = self.tokenize(cell_value) if len(try_tokens) >= self.max_cell_length: retain_tokens = try_tokens[: self.max_cell_length] retain_cell_value = self.convert_tokens_to_string(retain_tokens) return retain_cell_value else: return None else: return cell_value def truncate_table_rows( self, table_content: Dict, question: str, answer: Optional[Union[str, List[str]]] = None, max_length=None ): """ Args: table_content: {"header": xxx, "rows": xxx, "id" (Optionally): xxx} question: natural language sentence answer: if for training, is the supervision; otherwise will be empty """ delete_ratio, remain_token_len = self.estimate_delete_ratio(table_content, question, max_length) # randomly delete unrelated rows self.delete_unrelated_rows(table_content, question, answer, delete_ratio) # guarantee the result < max_length maximum_keep_rows = 0 for ind, row_example in enumerate(table_content["rows"]): value_string = self.table_linearize.process_row(row_example, ind + 1) value_token_len = len(self.tokenize(value_string)) # over the size limit, and take action if value_token_len > remain_token_len: break remain_token_len -= value_token_len maximum_keep_rows += 1 del table_content["rows"][maximum_keep_rows:] def estimate_delete_ratio(self, table_content: Dict, question: str, max_length=None): if "header" not in table_content or "rows" not in table_content: raise ValueError("The table content should contain both 'header' and 'rows' keys.") # calculate the tokens of header, special tokens will only be pre-prepended into question question_tokens = self.tokenize(question, add_special_tokens=True) # calculate the tokens of header header_string = self.table_linearize.process_header(table_content["header"]) header_tokens = self.tokenize(header_string, add_special_tokens=False) # split all cell values into tokens and see how many can be accommodated used_token_len = len(question_tokens) + len(header_tokens) # remaining token space for rows remain_token_len = max_length - used_token_len value_string = "" for _, row_example in enumerate(table_content["rows"]): # use a general index to roughly estimate the overall token len value_string += self.table_linearize.process_row(row_example, 100) + " " value_token_len = len(self.tokenize(value_string)) if value_token_len < remain_token_len: # no row will be deleted return 0.0, remain_token_len else: # calc a roughly delete rate return 1.0 - remain_token_len / value_token_len, remain_token_len def delete_unrelated_rows(self, table_content: Dict, question: str, answer: List, delete_ratio: float): """ The argument answer is used only during training. """ truncated_unrelated_indices = [] related_indices = [] if answer is None or len(answer) == 0: answer_set = set([]) else: answer_set = set([ans_ex.lower() for ans_ex in answer]) # add question key words into answer set if question is not None: answer_set.update(question.split()) question_set = set(question.strip("?!.,").split(" ")) row_max_len = len(table_content["rows"]) for _row_idx, row in enumerate(table_content["rows"]): lower_row = set([str(cell).lower() for cell in row]) if len(lower_row & answer_set) == 0 and len(lower_row & question_set) == 0: truncated_unrelated_indices.append(_row_idx) else: # add neighbours to preserve information aggressively related_indices.extend([_row_idx - 2, _row_idx - 1, _row_idx, _row_idx + 1, _row_idx + 2]) # remove the neighbours truncated_unrelated_indices = [ _row_idx for _row_idx in truncated_unrelated_indices if _row_idx not in related_indices ] # select some cases to drop drop_items = min(len(truncated_unrelated_indices), int(len(table_content["rows"]) * delete_ratio)) drop_row_indices = random.choices(truncated_unrelated_indices, k=drop_items) for _row_idx in reversed(range(row_max_len)): if _row_idx in drop_row_indices: del table_content["rows"][_row_idx] # only when the drop ratio is too large, logging for warning. if "id" in table_content and len(drop_row_indices) > 0: logger.warning("Delete {:.2f} rows in table {}".format(len(drop_row_indices), table_content["id"]))
#!/usr/bin/env python # encoding: utf-8 import numpy as np import tensorflow as tf import sys sys.path.append('..') from models.run_net import SenseClsNet from config import cfg import cv2 import os from tqdm import tqdm import zipfile os.environ["CUDA_VISIBLE_DEVICES"] = "0" def accuracy(img_path, label_file, epoch): forders = os.listdir(img_path) labels_f = open(label_file, 'r') labels = labels_f.readlines() label_dict = dict() for l in labels: key_value = l.strip().split(':')[0::2] label_dict.update({key_value[0] : key_value[1]}) is_training = False cfg.batch_size = 1 ckpt_dir = cfg.ckpt_path correct = 0 wrong = 0 all_image = 0 configer = tf.ConfigProto() configer.gpu_options.per_process_gpu_memory_fraction = 0.1 with tf.Session(config=configer) as sess: imgs_holder = tf.placeholder(tf.float32, shape=[1, 224, 224, 3]) model = SenseClsNet(imgs_holder, None, is_training) classes, scores = model.predict() saver = tf.train.Saver() sess.run(tf.global_variables_initializer()) saver.restore(sess, ckpt_dir + 'senceCls-' + str(epoch)) sess.run(tf.local_variables_initializer()) for f in tqdm(forders): label = float(label_dict[f]) imgs = os.listdir(os.path.join(img_path, f)) for img in imgs: path = os.path.join(os.path.join(img_path, f), img) img = cv2.imread(path) image = cv2.resize(img, (224, 224)) img_data = image.astype(np.float32) / 255.0 * 2.0 all_image += 1 classes_index, scores_0 = sess.run([classes, scores], feed_dict={imgs_holder: np.reshape(img_data, [1, 224, 224, 3])}) if classes_index[0] + 1 == label: correct += 1 else: wrong += 1 accuracy = float(correct) / float(correct + wrong) # print('global_step: ', g_step) print("All images:\n {}".format(int(correct + wrong))) print("Accuracy: {:.4f}".format(accuracy)) tf.reset_default_graph() if __name__ == '__main__': img_path = '../data/rssrai_sense_cls/train' label_file = '../data/rssrai_sense_cls/ClsName2id.txt' epoch = np.arange(12, 1, -1) print(epoch) for i in epoch: print('================{}================'.format(i)) accuracy(img_path, label_file, i)
""":mod:`autotweet.database` --- Database structure ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ This module provides methods to get session, get answer, etc. """ from __future__ import unicode_literals from sqlalchemy import (Column, Float, ForeignKey, Integer, String, Table, UniqueConstraint, create_engine) from sqlalchemy.ext.declarative import declarative_base from sqlalchemy.orm import relationship, scoped_session, sessionmaker from .logger_factory import get_logger __all__ = ('Base', 'Document', 'Gram', 'get_session') Base = declarative_base() GRAM_LENGTH = 2 logger = get_logger('database') def get_session(url): """Get db session. :param url: URL for connect with DB :type url: :class:`str` :returns: A sqlalchemy db session :rtype: :class:`sqlalchemy.orm.Session` """ engine = create_engine(url) db_session = scoped_session(sessionmaker(engine)) Base.metadata.create_all(engine) return db_session association_table = Table( 'association', Base.metadata, Column('gram_id', Integer, ForeignKey('grams.id')), Column('document_id', Integer, ForeignKey('documents.id')) ) class Document(Base): __tablename__ = 'documents' __table_args__ = ( UniqueConstraint('text', 'answer'), ) id = Column(Integer, primary_key=True) text = Column(String(140), nullable=False) answer = Column(String(140), nullable=False) grams = relationship( 'Gram', secondary=association_table, backref='documents') __table_args__ = (UniqueConstraint('text', 'answer'),) def __init__(self, text, answer): self.text = text self.answer = answer class Gram(Base): __tablename__ = 'grams' id = Column(Integer, primary_key=True) gram = Column(String(GRAM_LENGTH), unique=True, nullable=False) idf = Column(Float) def __init__(self, gram): self.gram = gram
# -*- coding: utf-8 -*- """ Plotting methods for graphing the distribution of measured quantities such as reference monitor pollutant concentrations (``ref_distrib()``), meteorological conditions including temperature and relative humidity (``met_distrib()``), and the distribution of recording intervals (i.e., the time difference between consecutive timestamps) in sensor datasets (``recording_interval_histogram()``). ================================================================================ @Author: | Samuel Frederick, NSSC Contractor (ORAU) | U.S. EPA / ORD / CEMM / AMCD / SFSB Created: Mon Jan 27 08:49:12 2020 Last Updated: Wed Jul 28 14:20:18 2021 """ import os from pandas.plotting import register_matplotlib_converters import numpy as np import matplotlib.pyplot as plt import seaborn as sns from sensortoolkit.param import Parameter from sensortoolkit.datetime_utils import get_todays_date register_matplotlib_converters() sns.set_style('darkgrid') def ref_distrib(ref_df, param=None, averaging_interval='1-hour', font_size=18, write_to_file=True, figure_path=None, filename_suffix=''): """Plot the distribution of reference values for the passed parameter. Args: ref_df (pandas DataFrame): Dataframe containing reference data for the parameter ``'param'`` and logged at the specified ``'averaging_interval'`` . param (str, optional): The name of the parameter for which the distribution plot will show the distribution of reference measurements. Defaults to None. averaging_interval (str, optional): The averaging interval for the passed dataframe. Defaults to '1-hour'. font_size (int or float, optional): The font size for the figure. Defaults to 18. write_to_file (bool, optional): If true, the figure will be saved as a png image to the ``[project_path]/figures`` subdirectory. Defaults to True. figure_path (str): The full directory path to the folder where figures are saved. This should be located at ``[project_path]/figures``. filename_suffix (str, optional): Optional suffix that can be added to the end of filenames to ensure previously created files with similar naming are not overwritten. Defaults to ''. Returns: None. """ try: # Determine name of reference monitor from passed parameter name try: ref_name = ref_df[param + '_Method'].dropna().unique()[0] except IndexError: ref_name = 'Unspecified Reference' # Format the parameter name for plotting param_obj = Parameter(param) param_name = param_obj.param_name fmt_param = param_obj.param_format_name fmt_param_units = param_obj.param_units # Construct plot instance fig, ax = plt.subplots(1, 1, figsize=(6, 5)) sns.distplot(ref_df[ref_name].dropna(), label=ref_name +' ' + fmt_param, ax=ax) # Set axes attributes ax.set_xlabel(f'Reference {averaging_interval} {fmt_param} ({fmt_param_units})', fontsize=font_size) ax.set_ylabel('Relative Probability', fontsize=font_size) ax.tick_params(axis='both', labelsize=0.75*font_size) plt.legend(fontsize=0.85*font_size) if write_to_file is True: todays_date = get_todays_date() figure_path = os.path.join(figure_path, f'{ref_name}_DistPlot_{param_name}_{todays_date}') if filename_suffix != '': figure_path = figure_path + '_' + filename_suffix figure_path += '.png' plt.tight_layout() plt.savefig(figure_path, dpi=300) plt.close() # Exception: Column name for reference monitor data not in passed df except KeyError as i: print(i, 'not found in passed reference dataframe') def met_distrib(met_ref_data, avg_hrly_df, figure_path, sensor_name=None, write_to_file=True): """Create distribution plots for meteorological parameters provided in the passed met_ref_data dataframe. Distributions are displayed as relative frequencies (i.e., percentages of the total distribution of measurements). Args: met_ref_data (pandas DataFrame): Meteorological reference data (1-hour averages) for temperature, relative humidity, and dew point measurements. avg_hrly_df (pandas DataFrame): Dataframe containing the inter-sensor average value for 1-hour averaged air sensor measurements. figure_path (str): The full directory path to the folder where figures are saved. This should be located at ``[project_path]/figures``. sensor_name (str, optional): The name of the air sensor (make, manufacturer). Defaults to None. write_to_file (bool, optional): If true, the figure will be saved as a png image to the ``[project_path]/figures`` subdirectory. Defaults to True. Returns: None. """ font_size = 10 detail_font_size = 0.8*font_size n_var = len(met_ref_data.count()) # Number of met variables to plot fig, axs = plt.subplots(1, n_var, figsize=(5.15, 2.54)) fill_color = [['#77529A'], ['#b06c8b'], ['#588ded']] plt.suptitle('Evaluation Site Meteorological Conditions\n', fontsize=font_size) fig.subplots_adjust(wspace=.6, hspace=.3, left=.12, right=.88, top=.86, bottom=.17) for i in range(n_var): sensor_data = False param = met_ref_data.columns[i] data = met_ref_data[param].dropna() if data.empty: print(f'..Met data empty for {param}, trying sensor measurements') try: data = avg_hrly_df['mean_' + param].dropna() sensor_data = True except KeyError: print('..{param} not measured by sensor, unable to plot ' 'distribution') continue if data.empty: print('..no intersensor averaged {param} data, unable to plot ' 'distribution') continue sns.histplot(data, ax=axs[i], bins=15, stat='percent', kde=True, color=fill_color[i][0], **{'alpha': 0.6}) if param.startswith('RH'): label = 'Reference Relative Humidity (%)' if sensor_data: axs[i].set_title('*Sensor Measurements Shown*', fontsize=detail_font_size, y=0.97) axs[i].set_xlabel(label, fontsize=detail_font_size) axs[i].xaxis.set_major_locator(plt.MultipleLocator(25)) if param.startswith('Temp'): label = 'Reference Temperature ($\\degree$C)' if sensor_data: axs[i].set_title('*Sensor Measurements Shown*', fontsize=detail_font_size, y=0.97) axs[i].set_xlabel(label, fontsize=detail_font_size) axs[i].xaxis.set_major_locator(plt.MultipleLocator(10)) if param.startswith('DP'): label = 'Reference Dew Point ($\\degree$C)' if sensor_data: label = label.replace('Reference', 'Sensor') axs[i].set_title('*Sensor Measurements Shown*', fontsize=detail_font_size, y=0.97) axs[i].set_xlabel(label, fontsize=detail_font_size) axs[i].set_ylabel('Relative Probability (%)', fontsize=detail_font_size) axs[i].tick_params(axis='both', labelsize=detail_font_size) if write_to_file is True: todays_date = get_todays_date() file_path = os.path.join(figure_path, 'Met', f'{sensor_name}_met_distplot_report_fmt_{todays_date}') plt.savefig(file_path + '.png', dpi=300) plt.close() def recording_interval_histogram(full_df_list, xlims=(-10, 120), bar_width=2, bar_alpha=.4): """Plot indicating the uneven time delta in sensor data. Graphs bar plot of Log(counts) vs. time delta between consecutive timestamp entries. Args: full_df_list (list): List of pandas DataFrames containing timeseries data at the original recorded sampling frequency. xlims (Two-element tuple, optional): The x-axis limits (in seconds) for displaying the distribution of consecutive intervals between recorded timestamps. Defaults to (-10, 120). bar_width (int or float, optional): The width of bars displayed in the figure. Defaults to 2. bar_alpha (float, optional): The transparency of bars displayed in the figure. Defaults to .4. Returns: None. """ xmin, xmax = xlims if len(full_df_list) == 3: color_list = ['#1f77b4', '#d62728', '#9467bd'] # blue, red, purple else: color_list = ['#9F99C8', '#fb8072', '#80b1d3', '#8dd3c7', '#ffffb3', '#FD9962', '#b3de69'] fig, ax = plt.subplots(1, 1, figsize=(8, 6)) for color, df in zip(color_list, full_df_list): idx_name = df.index.name delta = (df.index[1:] - df.index[0:-1]).to_frame() ax.bar(delta[idx_name].value_counts().index.total_seconds(), np.log10(delta[idx_name].value_counts().values), width=bar_width, alpha=bar_alpha, edgecolor='none', color=color) ax.set_xlim(xmin, xmax) ax.set_xlabel(r'$\Delta t$ (seconds)') ax.set_ylabel(r'Log$_{10}$(counts)')
import numpy as np import cv2 from matplotlib import pyplot as plt #Read image img = cv2.imread('Photos/maimy.jpg',1) #color vector color = ('b','g','r') #https://docs.opencv.org/master/d1/db7/tutorial_py_histogram_begins.html #iterate chanels to print histogram for i,col in enumerate(color): histr = cv2.calcHist([img],[i],None,[256],[0,256]) plt.plot(histr,color = col) plt.xlim([0,256]) plt.show() #threshold for each chanel, analyzing the previous histogram TB = 90 TG = 115 TR = 135 #Chanels CB = img[:,:,0] CG = img[:,:,1] CR = img[:,:,2] #https://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_imgproc/py_thresholding/py_thresholding.html #Tresholding with blue chanel CB ret,thresh1 = cv2.threshold(CB,TB,255,cv2.THRESH_BINARY) ret,thresh2 = cv2.threshold(CB,TB,255,cv2.THRESH_BINARY_INV) ret,thresh3 = cv2.threshold(CB,TB,255,cv2.THRESH_TRUNC) ret,thresh4 = cv2.threshold(CB,TB,255,cv2.THRESH_TOZERO) ret,thresh5 = cv2.threshold(CB,TB,255,cv2.THRESH_TOZERO_INV) titles = ['Original Image','BINARY','BINARY_INV','TRUNC','TOZERO','TOZERO_INV'] images = [CB, thresh1, thresh2, thresh3, thresh4, thresh5] for i in range(6): plt.subplot(2,3,i+1) plt.imshow(images[i],'gray') plt.title(titles[i]) plt.xticks([]) plt.yticks([]) plt.show() # Adaptive Thresholding img = cv2.medianBlur(CB, 5) ret,th1 = cv2.threshold(img, 127, 255, cv2.THRESH_BINARY) th2 = cv2.adaptiveThreshold(img, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY, 11, 2) th3 = cv2.adaptiveThreshold(img, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 11, 2) titles = ['Original Image', 'Median Blur', 'Global Thresholding (v = 127)', 'Adaptive Mean Thresholding', 'Adaptive Gaussian Thresholding'] images = [CB, img, th1, th2, th3] for i in range(5): plt.subplot(2,3,i+1) plt.imshow(images[i],'gray') plt.title(titles[i]) plt.xticks([]) plt.yticks([]) plt.show() # Otsu’s Binarization img = CB # global thresholding ret1,th1 = cv2.threshold(img,127,255,cv2.THRESH_BINARY) # Otsu's thresholding ret2,th2 = cv2.threshold(img,0,255,cv2.THRESH_BINARY+cv2.THRESH_OTSU) # Otsu's thresholding after Gaussian filtering blur = cv2.GaussianBlur(img,(5,5),0) ret3,th3 = cv2.threshold(blur,0,255,cv2.THRESH_BINARY+cv2.THRESH_OTSU) # plot all the images and their histograms images = [img, 0, th1, img, 0, th2, blur, 0, th3] titles = ['Original Noisy Image','Histogram','Global Thresholding (v=127)', 'Original Noisy Image','Histogram',"Otsu's Thresholding", 'Gaussian filtered Image','Histogram',"Otsu's Thresholding"] for i in range(3): plt.subplot(3,3,i*3+1) plt.imshow(images[i*3],'gray') plt.title(titles[i*3]) plt.xticks([]) plt.yticks([]) plt.subplot(3,3,i*3+2) plt.hist(images[i*3].ravel(),256) plt.title(titles[i*3+1]) plt.xticks([]) plt.yticks([]) plt.subplot(3,3,i*3+3) plt.imshow(images[i*3+2],'gray') plt.title(titles[i*3+2]) plt.xticks([]) plt.yticks([]) plt.show()