content
stringlengths
5
1.05M
class LabelSettings(object): @property def INSTALLED_APPS(self): return super().INSTALLED_APPS + ['labels'] default = LabelSettings
import math import numpy import pyaudio """Note table Key: Note Value: # of half steps """ NOTES_TABLE = {'Bb': 1, 'B': 2, 'C': 3, 'C#': 4, 'D': 5, 'Eb': 6, 'E': 7, 'F': 8, 'F#': 9, 'G': 10, 'Ab': 11} BASE_FREQ = 440 def get_note(note, base_freq=BASE_FREQ): """ Formula: frequency = 440 * 2^(n/12) :param note: Which note to return :param base_freq: 440 is A :return: """ octave = 1 if '-' in note: i = note.split('-') note = i[0] if i[1][0].lower() == 'u': octave = int(i[1][1]) if i[1][0].lower() == 'd': octave = int(i[1][1]) * -1 if note is 'A': freq = 440 * octave else: freq = (base_freq * math.pow(2, NOTES_TABLE[note] / 12)) * octave return [freq, note] def sine(frequency, length, rate): length = int(length * rate) factor = float(frequency) * (math.pi * 2) / rate return numpy.sin(numpy.arange(length) * factor) def play_tone(stream, frequency=BASE_FREQ, length=1, rate=44100): chunks = [] chunks.append(sine(frequency, length, rate)) chunk = numpy.concatenate(chunks) * 0.25 stream.write(chunk.astype(numpy.float32).tostring()) if __name__ == '__main__': p = pyaudio.PyAudio() RATE = 44100 stream = p.open(format=pyaudio.paFloat32, channels=1, rate=RATE, output=1) note_list = (input('Enter some notes: ')).split(' ') for note in note_list: data = get_note(note) print('Note: ' + data[1] + " Frequency: " + str(data[0])) play_tone(stream, frequency=data[0]) stream.close() p.terminate()
# coding: utf-8 import math import os import random import string import sys import time PROJECT_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) sys.path.append(PROJECT_DIR) os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'mysite.settings') import django django.setup() from django.conf import settings from django.db.utils import IntegrityError from django.contrib.auth.models import User from boards.models import Board from comments.models import Comment from subjects.models import Subject print("\n\tEnter credentials for creating SUPERUSER.") if not settings.DEBUG \ else print("\n\tUsing default credentials for SUPERUSER."); time.sleep(1); SUPERUSER_USERNAME = input("\n\tUsername: ") if not settings.DEBUG else "admin" SUPERUSER_EMAIL = input("\n\tEmail: ") if not settings.DEBUG else "admin@example.com" SUPERUSER_PASSWORD = input("\n\tPassword: ") if not settings.DEBUG else "top_secret" TOTAL_BOARDS = 10 # How many boards to create? TOTAL_SUBSCRIBES = 50 # How many subscribes to distribute randomly? BOARDS_TITLE_LENGTH = 10 TOTAL_USERS = 10 # How many users to create? USERS_PASSWORD = "top_secret" # What password to set for each user? TOTAL_SUBJECTS = 20 # How many subjects to create? TOTAL_STARS = 100 # How many stars to distribute randomly? SUBJECTS_TITLE_LENGTH = 30 TOTAL_COMMENTS = 20 # How many comments to distribute randomly? COMMENTS_BODY_LENGTH = 50 CHARS = string.ascii_lowercase + string.ascii_uppercase def calculate_percentage(num, total): """Calculate percentage.""" return math.trunc(((num + 1) / total) * 100) def clear_screen(): """Clear command prompt screen.""" if os.name == "posix": os.system('clear') elif os.name in ("nt", "dos", "ce"): os.system('CLS') def show_progress_bar(percentage, func_name): """Show progress bar & percentage & function name.""" clear_screen() progress_bar = "#" * int(percentage / 2) print(f"\n\t[{progress_bar}] {percentage}%") print(f"\n\t({func_name}) running.") def task_done_message(total_entries=None, func_name=None): """Print report for single function.""" if total_entries and func_name: print(f"\n\tAdded {total_entries} entries. ({func_name}) done.") elif total_entries: print(f"\n\tAdded {total_entries} entries.") elif func_name: print(f"\n\t({func_name}) done.") time.sleep(1) def generate_dummy_text(length): """Generate dummy text for boards, subjects & comments.""" chars_list = [random.choice(CHARS) for i in range(length)] for i in range(len(chars_list)): if i%5 == 0: chars_list.insert(i, " ") text = "".join(chars_list) return text def final_report(): """Show final report for the database entries created.""" clear_screen() print(f""" **Final Report** [+] {TOTAL_BOARDS} boards created. [+] {TOTAL_USERS} users created. [+] {TOTAL_SUBJECTS} subjects created. [+] {TOTAL_STARS} stars distributed. [+] {TOTAL_SUBSCRIBES} subscribes distributed. [+] {TOTAL_COMMENTS} comments distributed. Database populated successfully. Login as admin using following credentials. username: {SUPERUSER_USERNAME} password: {SUPERUSER_PASSWORD} """) def create_superuser(): """Create superuser.""" try: user = User.objects.create_superuser( username=SUPERUSER_USERNAME, email=SUPERUSER_EMAIL, password=SUPERUSER_PASSWORD ) user.save() task_done_message(func_name=create_superuser.__name__) except IntegrityError as e: print(e) def create_boards(): """Create boards & make SUPERUSER the admin of all boards.""" admin = User.objects.get(username=SUPERUSER_USERNAME) total_entries = TOTAL_BOARDS for number in range(total_entries): try: percentage = calculate_percentage(number, total_entries) show_progress_bar(percentage, create_boards.__name__) title = generate_dummy_text(BOARDS_TITLE_LENGTH) description = title * random.randint(1, 10) board = Board.objects.create( title=title, description=description ) board.save() board.admins.add(admin) board.subscribers.add(admin) except IntegrityError as e: print(e) task_done_message(total_entries, create_boards.__name__) def create_users(): """Create users.""" total_entries = TOTAL_USERS for number in range(total_entries): try: percentage = calculate_percentage(number, total_entries) show_progress_bar(percentage, create_users.__name__) username = "".join(random.choice(CHARS) for i in range(10)) email = username + "@example.com" user = User.objects.create_user( username=username, email=email, password=USERS_PASSWORD ) user.save() except IntegrityError as e: print(e) task_done_message(total_entries, create_users.__name__) def create_subjects(): """Create subjects with different author & board.""" total_entries = TOTAL_SUBJECTS for number in range(total_entries): try: percentage = calculate_percentage(number, total_entries) show_progress_bar(percentage, create_subjects.__name__) title = generate_dummy_text(SUBJECTS_TITLE_LENGTH) body = title * random.randint(1, 10) author = User.objects.get(id=random.randint(1, TOTAL_USERS)) board = Board.objects.get(id=random.randint(1, TOTAL_BOARDS)) subject = Subject.objects.create( title=title, body=body, author=author, board=board ) subject.save() subject.points.add(author) except IntegrityError as e: print(e) task_done_message(total_entries, create_subjects.__name__) def distribute_stars(): """Distribute stars on different subjects.""" total_entries = TOTAL_STARS for number in range(total_entries): percentage = calculate_percentage(number, total_entries) show_progress_bar(percentage, distribute_stars.__name__) user = User.objects.get(id=random.randint(1, TOTAL_USERS)) subject = Subject.objects.get(id=random.randint(1, TOTAL_SUBJECTS)) if user in subject.points.all(): continue else: subject.points.add(user) task_done_message(total_entries, distribute_stars.__name__) def distribute_comments(): """Distribute comments on different subjects with different users.""" total_entries = TOTAL_COMMENTS for number in range(total_entries): percentage = calculate_percentage(number, total_entries) show_progress_bar(percentage, distribute_comments.__name__) user = User.objects.get(id=random.randint(1, TOTAL_USERS)) subject = Subject.objects.get(id=random.randint(1, TOTAL_SUBJECTS)) body = generate_dummy_text(COMMENTS_BODY_LENGTH) comment = Comment.objects.create( body=body, subject=subject, commenter=user ) comment.save() task_done_message(total_entries, distribute_comments.__name__) def distribute_subscribes(): """Distribute subscribes on different boards with different users.""" total_entries = TOTAL_SUBSCRIBES for number in range(total_entries): percentage = calculate_percentage(number, total_entries) show_progress_bar(percentage, distribute_subscribes.__name__) user = User.objects.get(id=random.randint(1, TOTAL_USERS)) board = Board.objects.get(id=random.randint(1, TOTAL_BOARDS)) if user in board.subscribers.all(): continue else: board.subscribers.add(user) task_done_message(total_entries, distribute_subscribes.__name__) def main(): # DO NOT change the order of these functions. clear_screen() create_superuser() create_boards() create_users() create_subjects() distribute_stars() distribute_subscribes() distribute_comments() final_report() if __name__ == '__main__': main()
from .dispatch.rules import bot from .framework.bot import ABCBotLabeler, Bot, BotBlueprint, BotLabeler, bot_run_multibot from .tools.dev_tools.mini_types.bot import MessageMin Message = MessageMin Blueprint = BotBlueprint rules = bot
from django.apps import AppConfig class CodeanalysisConfig(AppConfig): name = 'codeAnalysis'
""" Insertion Sort Always keep sorted in the sublist of lower positions. Each new item is then `inserted` back into the previous sublist. The insertion step looks like bubble sort, if the item located at `i` is smaller than the one before, then exchange, until to a proper position. [5, 1, 3, 2] --- 1st pass ---> [1, 5, 3, 2] --- 2nd pass ---> [1, 3, 5, 2] ↑---↓ ↑---↓ """ def insertion_sort(alist: list) -> list: for idx in range(1, len(alist)): # during each pass, insert the item at `idx` back into the previous sublist sub_idx = idx - 1 while sub_idx >= 0: if alist[sub_idx] > alist[idx]: alist[sub_idx], alist[idx] = alist[idx], alist[sub_idx] idx = sub_idx sub_idx -= 1 return alist if __name__ == '__main__': a = [5, 1, 3, 2] print(insertion_sort(a))
import os import secrets from flask import render_template, url_for, redirect, request, Response from palette.forms import ImageForm from palette import app from kmeans import get_colors def save_picture(form_picture): random_hex = secrets.token_hex(8) _, f_ext = os.path.splitext(form_picture.filename) picture_name = random_hex + f_ext picture_path = os.path.join(app.root_path, 'static/img', picture_name) form_picture.save(picture_path) return picture_name @app.route('/', methods=['GET', 'POST']) def home(): form = ImageForm() if form.validate_on_submit(): f_name = save_picture(form.picture.data) color_list = get_colors( form.picture.data, int(request.form['colorCount'])) palette_path = '-'.join(color_list) return redirect(url_for('palette', colors=palette_path, image=f_name)) return render_template('home.html', form=form) @app.route('/palette/<colors>') def palette(colors): hex_colors = ['#' + color for color in colors.split('-')] image = request.args.get('image') return render_template('palette.html', colors=hex_colors, image=image, download_url=request.path) @app.route('/download/css/palette/<colors>') def download_css(colors): color_list = colors.split('-') output = ":root {\n" for i, val in enumerate(color_list): output += " --color-{0}: #{1};\n".format(i + 1, val) output += '}' return Response(output, mimetype="text/css", headers={"Content-Disposition": 'attachment; filename="colors.css"'}) @app.route('/download/scss/palette/<colors>') def download_scss(colors): color_list = colors.split('-') output = "" for i, val in enumerate(color_list): output += "$color-{0}: #{1};\n".format(i + 1, val) return Response(output, mimetype="text/x-scss", headers={"Content-Disposition": 'attachment; filename="colors.scss"'}) @app.route('/download/json/palette/<colors>') def download_json(colors): color_list = colors.split('-') output = "{\n" for i, val in enumerate(color_list): output += ' "color-{0}": "#{1}",\n'.format(i + 1, val) output += "}" return Response(output, mimetype="text/json", headers={"Content-Disposition": 'attachment; filename="colors.json"'})
from django.template import Library, Node register = Library() class DumpNode(Node): def render(self, context): # for v in context.dicts[7]: print vars(context.get(v)) # import ipdb; ipdb.set_trace() return '' @register.tag def dump_context(parser, token): return DumpNode() dump_context.is_safe = True
import dataclasses import typing import module3 @dataclasses.dataclass() class Bar: def is_in_foo(self, foo: module3.Foo): return self in foo.bars
#!/usr/bin/env python3 from time import time def find_pythagorean_triplet(n): """ Find a Pythagorean triplet a^2+b^2=c^2 for which a+b+c=`n`. """ for c in range(n - 2, 0, -1): for a in range(n - c - 1, 0, -1): b = n - c - a # Check if a,b,c form a valid Pythagorean triplet. if a**2 + b**2 == c**2: return a, b, c if __name__ == '__main__': start = time() a, b, c = find_pythagorean_triplet(1000) elapse = time() - start print('Pythagorean triplet found: {} + {} + {} = 1000'.format(a, b, c)) print('\nSolution: {}'.format(a * b * c)) print('Solution found in {:.8f}s'.format(elapse))
# Generated by Django 3.0.1 on 2020-07-02 20:15 from django.conf import settings import django.contrib.auth.models import django.contrib.auth.validators from django.db import migrations, models import django.db.models.deletion import django.utils.timezone class Migration(migrations.Migration): initial = True dependencies = [ ('auth', '0011_update_proxy_permissions'), ] operations = [ migrations.CreateModel( name='User', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('password', models.CharField(max_length=128, verbose_name='password')), ('last_login', models.DateTimeField(blank=True, null=True, verbose_name='last login')), ('is_superuser', models.BooleanField(default=False, help_text='Designates that this user has all permissions without explicitly assigning them.', verbose_name='superuser status')), ('username', models.CharField(error_messages={'unique': 'A user with that username already exists.'}, help_text='Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.', max_length=150, unique=True, validators=[django.contrib.auth.validators.UnicodeUsernameValidator()], verbose_name='username')), ('first_name', models.CharField(blank=True, max_length=30, verbose_name='first name')), ('last_name', models.CharField(blank=True, max_length=150, verbose_name='last name')), ('email', models.EmailField(blank=True, max_length=254, verbose_name='email address')), ('is_staff', models.BooleanField(default=False, help_text='Designates whether the user can log into this admin site.', verbose_name='staff status')), ('is_active', models.BooleanField(default=True, help_text='Designates whether this user should be treated as active. Unselect this instead of deleting accounts.', verbose_name='active')), ('date_joined', models.DateTimeField(default=django.utils.timezone.now, verbose_name='date joined')), ], options={ 'verbose_name': 'user', 'verbose_name_plural': 'users', 'abstract': False, }, managers=[ ('objects', django.contrib.auth.models.UserManager()), ], ), migrations.CreateModel( name='Recall', fields=[ ('Recall_ID', models.AutoField(primary_key=True, serialize=False, verbose_name='ID')), ('Recall_CODE', models.CharField(max_length=500, verbose_name='Rückruf-Code')), ('Recall_NAME', models.CharField(max_length=500, verbose_name='Name')), ('Recall_DESCRIPTION', models.CharField(max_length=500, verbose_name='Beschreibung')), ('Recall_START_DATE', models.DateField(blank=True, verbose_name='Startdatum')), ('Recall_PLANNED_COMPLETATION_DATE', models.DateField(blank=True, verbose_name='Geplantes Fertigstellungsdatum')), ('Recall_STATUS', models.SmallIntegerField(choices=[(0, 'Erstellt'), (1, 'In Planung'), (2, 'In Bearbeitung'), (3, 'Abgeschlossen'), (4, 'Abgebrochen')], default=0, verbose_name='Status')), ('Recall_DATE_COMPLETED', models.DateField(blank=True, verbose_name='Tatsächliches Fertigstellungsdatum')), ], ), migrations.CreateModel( name='Vehicle', fields=[ ('Vehicle_ID', models.AutoField(primary_key=True, serialize=False, verbose_name='ID')), ('Vehicle_VIN', models.CharField(max_length=30, verbose_name='FIN')), ('Vehicle_PLATE', models.CharField(max_length=10, verbose_name='Kennzeichen')), ('Vehicel_MAKE', models.CharField(max_length=30, verbose_name='Hersteller')), ('Vehicle_MODEL', models.CharField(max_length=30, verbose_name='Modell')), ('Vehicle_TYPE', models.CharField(max_length=60, verbose_name='Typ')), ('Vehicle_SERIES', models.CharField(max_length=30, verbose_name='Baureihe')), ('Vehicle_FIRST_REGISTRATION_DATE', models.DateField(verbose_name='Erstzulassungsdatum')), ], ), migrations.CreateModel( name='Workshop', fields=[ ('Workshop_ID', models.AutoField(primary_key=True, serialize=False, verbose_name='ID')), ('Workshop_EXTERNAL_ID', models.CharField(max_length=10, verbose_name='externe ID')), ('Workshop_NAME', models.CharField(max_length=50, verbose_name='Name')), ('Workshop_ADDRESS', models.CharField(max_length=70, verbose_name='Adresse')), ('Workshop_ZIP', models.CharField(max_length=10, verbose_name='PLZ')), ('Workshop_CITY', models.CharField(max_length=50, verbose_name='Stadt')), ('Workshop_Email', models.EmailField(blank=True, max_length=254, verbose_name='Email')), ('Workshop_PHONE', models.CharField(blank=True, max_length=30, verbose_name='Telefon')), ], ), migrations.CreateModel( name='Vehicel_Recall', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('VR_STATUS', models.SmallIntegerField(choices=[(0, 'Offen'), (1, 'Vorbelegt'), (0, 'Abgeschlossen')], default=0, verbose_name='Status')), ('VR_DATE_CREATED', models.DateField(auto_now=True, verbose_name='Anlagedatum')), ('VR_DATE_COMPLETED', models.DateField(blank=True, verbose_name='Fertigstellungsdatum')), ('Recall', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='dfa_App.Recall')), ('Vehicle', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='dfa_App.Vehicle')), ], ), migrations.CreateModel( name='Recall_Docs', fields=[ ('Document_ID', models.AutoField(primary_key=True, serialize=False, verbose_name='ID')), ('Document_CLASS', models.SmallIntegerField(choices=[(0, 'Anleitung'), (1, 'Technische Information'), (2, 'Anschreiben'), (3, 'Sonstiges')], default=3, verbose_name='Dokumententyp')), ('Document_PATH', models.FilePathField(path='C:\\Users\\felix\\Desktop\\Projects\\my_env\\dfa\\dfa_App\\media\\uploads\\documents\\', verbose_name='Upload Pfad')), ('Recall', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='dfa_App.Recall')), ], ), migrations.CreateModel( name='Note', fields=[ ('Note_ID', models.AutoField(primary_key=True, serialize=False, verbose_name='ID')), ('Note_TEXT', models.CharField(max_length=500, verbose_name='Bemerkung')), ('Note_DATE', models.DateTimeField(auto_now=True, verbose_name='Zeitpunkt')), ('Note_ODOMETER', models.IntegerField(verbose_name='Kilometerstand')), ('User', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL)), ('Vehicle', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='dfa_App.Vehicle')), ], ), migrations.CreateModel( name='History', fields=[ ('History_ID', models.AutoField(primary_key=True, serialize=False, verbose_name='ID')), ('History_EXTERNAL_ID', models.CharField(max_length=500, verbose_name='Externe ID')), ('History_DESCRIPTION', models.CharField(max_length=500, verbose_name='Beschreibung')), ('History_ODOMETER', models.IntegerField(verbose_name='Kilometerstand')), ('History_DATE', models.DateField(verbose_name='Datum')), ('Vehicle', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='dfa_App.Vehicle')), ('Workshop', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='dfa_App.Workshop')), ], ), migrations.AddField( model_name='user', name='Workshop', field=models.ForeignKey(null=True, on_delete=django.db.models.deletion.CASCADE, to='dfa_App.Workshop'), ), migrations.AddField( model_name='user', name='groups', field=models.ManyToManyField(blank=True, help_text='The groups this user belongs to. A user will get all permissions granted to each of their groups.', related_name='user_set', related_query_name='user', to='auth.Group', verbose_name='groups'), ), migrations.AddField( model_name='user', name='user_permissions', field=models.ManyToManyField(blank=True, help_text='Specific permissions for this user.', related_name='user_set', related_query_name='user', to='auth.Permission', verbose_name='user permissions'), ), ]
# coding: utf-8 import unittest from unittest import mock import numpy as np from spectrum import marple_data from hrv.classical import (time_domain, frequency_domain, _auc, _poincare, _nn50, _pnn50, _calc_pburg_psd) from hrv.io import read_from_text from hrv.rri import RRi from tests.test_utils import FAKE_RRI class TimeDomainIndexesTestCase(unittest.TestCase): def test_correct_response(self): response = time_domain(FAKE_RRI) expected = {'rmssd': 38.07, 'sdnn': 29.82, 'nn50': 1, 'pnn50': 25, 'mrri': 793.75, 'mhr': 75.67} np.testing.assert_almost_equal(sorted(response.values()), sorted(expected.values()), decimal=2) self.assertEqual(response.keys(), expected.keys()) def test_correct_response_with_rri_in_seconds(self): response = time_domain(np.array(FAKE_RRI) / 1000) expected = {'rmssd': 38.07, 'sdnn': 29.82, 'nn50': 1, 'pnn50': 25, 'mrri': 793.75, 'mhr': 75.67} np.testing.assert_almost_equal(sorted(response.values()), sorted(expected.values()), decimal=2) def test_nn50(self): nn50 = _nn50(FAKE_RRI) expected = 1 self.assertEqual(nn50, expected) def test_pnn50(self): pnn50 = _pnn50(FAKE_RRI) expected = 25 self.assertEqual(pnn50, expected) class FrequencyDomainTestCase(unittest.TestCase): def setUp(self): self.real_rri = read_from_text('tests/test_files/real_rri.txt') def test_frequency_domain_with_welch_method(self): time = np.cumsum(self.real_rri) / 1000.0 time -= time[0] response = frequency_domain(self.real_rri, time=time, sf=4, method='welch', nperseg=256, noverlap=128, window='hanning') expected = {'total_power': 3602.89, 'vlf': 844.5, 'lf': 1343.50, 'hf': 1414.88, 'lf_hf': 0.94, 'lfnu': 48.70, 'hfnu': 51.29} np.testing.assert_almost_equal(sorted(response.values()), sorted(expected.values()), decimal=2) self.assertEqual(response.keys(), expected.keys()) def test_area_under_the_curve(self): fxx = np.arange(0, 1, 1 / 1000.0) pxx = np.ones(len(fxx)) results = _auc(fxx, pxx, vlf_band=(0, 0.04), lf_band=(0.04, 0.15), hf_band=(0.15, 0.4)) np.testing.assert_almost_equal(results['vlf'], 0.04, decimal=2) np.testing.assert_almost_equal(results['lf'], 0.11, decimal=2) np.testing.assert_almost_equal(results['hf'], 0.25, decimal=2) np.testing.assert_almost_equal(results['total_power'], 0.4, decimal=2) np.testing.assert_almost_equal(results['lf_hf'], 0.44, decimal=1) np.testing.assert_almost_equal(results['lfnu'], 30.5, decimal=0) np.testing.assert_almost_equal(results['hfnu'], 69.5, decimal=0) @mock.patch('hrv.classical.pburg') def test_pburg_method_being_called(self, _pburg): _calc_pburg_psd(rri=[1, 2, 3], sf=4.0) _pburg.assert_called_once_with(data=[1, 2, 3], NFFT=None, sampling=4.0, order=16) @mock.patch('hrv.classical._auc') @mock.patch('hrv.classical._interpolate_rri') @mock.patch('hrv.classical._calc_pburg_psd') def test_frequency_domain_function_using_pburg(self, _pburg_psd, _irr, _auc): fake_rri = [1, 2, 3, 4] _irr.return_value = fake_rri _pburg_psd.return_value = (np.array([1, 2]), np.array([3, 4])) frequency_domain(fake_rri, sf=4, method='ar', interp_method='cubic', order=16) _pburg_psd.assert_called_once_with(rri=fake_rri, sf=4, order=16) def test_calc_pburg_psd_returns_numpy_arrays(self): fake_rri = list(range(20)) fxx, pxx = _calc_pburg_psd(fake_rri, sf=4.0) self.assertIsInstance(fxx, np.ndarray) self.assertIsInstance(pxx, np.ndarray) def test_scale_by_freq_set_to_false(self): """ To certify that scale_by_freq is set to False this test will check the average value of the estimated psd of the marple_data. It must be approximately equal to 0.40. """ fxx, pxx = _calc_pburg_psd(marple_data, sf=1.0) np.testing.assert_almost_equal(np.mean(pxx), 0.400, decimal=2) @mock.patch('hrv.classical._interpolate_rri') def test_using_rri_class(self, _interp): """ Test if no time is passed as argument the frequency domain function uses time array from RRi class """ _interp.return_value = [800, 810, 790, 815] rri = RRi([800, 810, 790, 815]) frequency_domain(rri) _interp.assert_called_once_with(rri, rri.time, 4.0, 'cubic') class NonLinearTestCase(unittest.TestCase): def test_correct_response_from_poincare(self): fake_rri = [10, 11, 25, 27] expected_sd1 = 5.11 expected_sd2 = 11.64 sd1, sd2 = _poincare(fake_rri) np.testing.assert_almost_equal(sd1, expected_sd1, decimal=1) np.testing.assert_almost_equal(sd2, expected_sd2, decimal=1)
from libs.config import alias, color from libs.myapp import send, delay_send, is_windows, has_env, get_system_code, base64_encode from libs.functions.webshell_plugins.old_socks import * from threading import Thread from time import sleep def get_python(port): return get_php_old_socks() % port @alias(True, _type="OTHER") def run(port: int = 8888): """ old_socks will be deprecated soon, please use command socks instead. (Only for *unix) Run a socks5 server on the target system by python. eg: socks {port=8888} """ if (is_windows()): print(color.red("Target system isn't *unix")) return flag = has_env("python") if flag: python = get_python(port) pyname = "check.py" res = send(f"print(file_put_contents('/tmp/{pyname}', base64_decode(\"{base64_encode(python)}\")));") if (not res): return text = res.r_text.strip() if not len(text): print(color.red("Failed to write file in /tmp directory.")) return t = Thread(target=send, args=(get_system_code(f"python /tmp/{pyname}"),)) t.setDaemon(True) t.start() t2 = Thread( target=delay_send, args=(10.0, f"unlink('/tmp/{pyname}');",) ) t2.setDaemon(True) t2.start() sleep(1) if (t.is_alive()): print(f"\nStart socks5 server listen on {port} {color.green('success')}.\n") else: print(f"\nStart socks5 server {color.red('error')}.\n") else: print( color.red( "The target host does not exist or cannot be found in the python environment." ) )
from TurtleBop.models.guild import *
import random import numpy as np import pandas as pd import pytest from privacy_budget import PrivacyBudget from privacy_budget_tracker import MomentPrivacyBudgetTracker from private_machine_learning import private_SGD from utils import check_absolute_error @pytest.fixture def data(): np.random.seed(1) x = np.random.rand(1000)*100 data = [(i, 5*i+8) for i in x] return data def test_private_SGD(data): train_data, test_data = data[:800], data[800:] param = np.random.rand(2) # y = param[0]*x+param[1] def gradient_function(batch_data): x, y = batch_data y_pred = param[0]*x + param[1] d0 = -2.0 * x * (y-y_pred) d1 = -2.0 * (y-y_pred) return [d0, d1] def get_weights_function(): return np.copy(param) def learning_rate_function(step): if step < 10: return 0.1 elif step < 50: return 0.01 else: return 0.005 def update_weights_function(new_weight): param[:] = new_weight def test_function(): n = len(test_data) x = np.array([i[0] for i in test_data]) y = np.array([i[1] for i in test_data]) y_pred = param[0]*x + param[1] loss = 1.0/n*np.sum((y_pred-y)**2) check_absolute_error(loss, 0., 20.) moment_accountant = MomentPrivacyBudgetTracker(PrivacyBudget(10, 0.001)) private_SGD(gradient_function=gradient_function, get_weights_function=get_weights_function, update_weights_function=update_weights_function, learning_rate_function=learning_rate_function, train_data=train_data, group_size=100, gradient_norm_bound=10, number_of_steps=100, sigma=1, moment_privacy_budget_tracker=moment_accountant, test_interval=100, test_function=test_function ) check_absolute_error(moment_accountant.consumed_privacy_budget.epsilon, 8.805554, 1e-6) check_absolute_error(moment_accountant.consumed_privacy_budget.delta, 0.000625, 1e-6)
# coding: utf-8 from __future__ import absolute_import from __future__ import division from __future__ import print_function import json import tensorflow as tf class Recorder(object): """To save training processes, inspired by Nematus""" def load_from_json(self, file_name): tf.logging.info("Loading recoder file from {}".format(file_name)) record = json.load(open(file_name, 'rb')) record = dict((key.encode("UTF-8"), value) for (key, value) in record.items()) self.__dict__.update(record) def save_to_json(self, file_name): tf.logging.info("Saving recorder file into {}".format(file_name)) json.dump(self.__dict__, open(file_name, 'wb'), indent=2)
from django.db import models from django.contrib.auth.models import User class File(models.Model): title = models.CharField(max_length=255, blank=True) hash_val = models.CharField(max_length=200) uploaded_at = models.DateTimeField(auto_now_add=True) user = models.ForeignKey(User, on_delete=models.CASCADE) def __str__(self): return f"Title: {self.title} hash_val :{self.hash_val} uploaded_at {self.uploaded_at}" class Meta: ordering = ['-uploaded_at'] class FileGroup(models.Model): title = models.CharField(max_length=255, unique=True) files = models.ManyToManyField(File) user = models.ForeignKey(User, on_delete=models.CASCADE) def __str__(self): return f"{self.title} containing following files:\n{self.files.all()}" class Team(models.Model): name = models.CharField(max_length=64, unique=True) password = models.CharField(max_length=64) description = models.CharField(max_length=1024, blank=True) created_at = models.DateTimeField(auto_now_add=True) members = models.ManyToManyField(User, through='Member') def __str__(self): return f"{self.name} created on {self.created_at}\nMember(s): {self.members.all()}" class Member(models.Model): user = models.ForeignKey(User, on_delete=models.CASCADE) team = models.ForeignKey(Team, on_delete=models.CASCADE, blank=True) def __str__(self): return f"User: {self.user} belongs to {self.team}"
""" A means of running standalone commands with a shared set of options. """ from __future__ import print_function from __future__ import absolute_import #----------------------------------------------------------------------------- # Copyright (c) 2013, yt Development Team. # # Distributed under the terms of the Modified BSD License. # # The full license is in the file COPYING.txt, distributed with this software. #----------------------------------------------------------------------------- from yt.config import ytcfg ytcfg["yt","__command_line"] = "True" from yt.startup_tasks import parser, subparsers from yt.mods import * from yt.funcs import * from yt.extern.six import add_metaclass from yt.extern.six.moves import urllib from yt.utilities.minimal_representation import MinimalProjectDescription import argparse, os, os.path, math, sys, time, subprocess, getpass, tempfile import base64, os def _fix_ds(arg): if os.path.isdir("%s" % arg) and \ os.path.exists("%s/%s" % (arg,arg)): ds = load("%s/%s" % (arg,arg)) elif os.path.isdir("%s.dir" % arg) and \ os.path.exists("%s.dir/%s" % (arg,arg)): ds = load("%s.dir/%s" % (arg,arg)) elif arg.endswith(".index"): ds = load(arg[:-10]) else: ds = load(arg) return ds def _add_arg(sc, arg): if isinstance(arg, str): arg = _common_options[arg].copy() argc = dict(arg.items()) argnames = [] if "short" in argc: argnames.append(argc.pop('short')) if "longname" in argc: argnames.append(argc.pop('longname')) sc.add_argument(*argnames, **argc) class YTCommandSubtype(type): def __init__(cls, name, b, d): type.__init__(cls, name, b, d) if cls.name is not None: names = ensure_list(cls.name) for name in names: sc = subparsers.add_parser(name, description = cls.description, help = cls.description) sc.set_defaults(func=cls.run) for arg in cls.args: _add_arg(sc, arg) @add_metaclass(YTCommandSubtype) class YTCommand(object): args = () name = None description = "" aliases = () ndatasets = 1 @classmethod def run(cls, args): self = cls() # Some commands need to be run repeatedly on datasets # In fact, this is the rule and the opposite is the exception # BUT, we only want to parse the arguments once. if cls.ndatasets > 1: self(args) else: ds_args = getattr(args, "ds", []) if len(ds_args) > 1: datasets = args.ds for ds in datasets: args.ds = ds self(args) elif len(ds_args) == 0: datasets = [] self(args) else: args.ds = getattr(args, 'ds', [None])[0] self(args) class GetParameterFiles(argparse.Action): def __call__(self, parser, namespace, values, option_string = None): if len(values) == 1: datasets = values elif len(values) == 2 and namespace.basename is not None: datasets = ["%s%04i" % (namespace.basename, r) for r in range(int(values[0]), int(values[1]), namespace.skip) ] else: datasets = values namespace.ds = [_fix_ds(ds) for ds in datasets] _common_options = dict( all = dict(longname="--all", dest="reinstall", default=False, action="store_true", help="Reinstall the full yt stack in the current location."), ds = dict(short="ds", action=GetParameterFiles, nargs="+", help="datasets to run on"), ods = dict(action=GetParameterFiles, dest="ds", nargs="*", help="(Optional) datasets to run on"), axis = dict(short="-a", longname="--axis", action="store", type=int, dest="axis", default=4, help="Axis (4 for all three)"), log = dict(short="-l", longname="--log", action="store_true", dest="takelog", default=True, help="Use logarithmic scale for image"), linear = dict(longname="--linear", action="store_false", dest="takelog", help="Use linear scale for image"), text = dict(short="-t", longname="--text", action="store", type=str, dest="text", default=None, help="Textual annotation"), field = dict(short="-f", longname="--field", action="store", type=str, dest="field", default="density", help="Field to color by"), weight = dict(short="-g", longname="--weight", action="store", type=str, dest="weight", default=None, help="Field to weight projections with"), cmap = dict(longname="--colormap", action="store", type=str, dest="cmap", default="algae", help="Colormap name"), zlim = dict(short="-z", longname="--zlim", action="store", type=float, dest="zlim", default=None, nargs=2, help="Color limits (min, max)"), dex = dict(longname="--dex", action="store", type=float, dest="dex", default=None, nargs=1, help="Number of dex above min to display"), width = dict(short="-w", longname="--width", action="store", type=float, dest="width", default=None, help="Width in specified units"), unit = dict(short="-u", longname="--unit", action="store", type=str, dest="unit", default='1', help="Desired units"), center = dict(short="-c", longname="--center", action="store", type=float, dest="center", default=None, nargs=3, help="Center, space separated (-1 -1 -1 for max)"), max = dict(short="-m", longname="--max", action="store_true", dest="max",default=False, help="Center the plot on the density maximum"), bn = dict(short="-b", longname="--basename", action="store", type=str, dest="basename", default=None, help="Basename of datasets"), output = dict(short="-o", longname="--output", action="store", type=str, dest="output", default="frames/", help="Folder in which to place output images"), outputfn= dict(short="-o", longname="--output", action="store", type=str, dest="output", default=None, help="File in which to place output"), skip = dict(short="-s", longname="--skip", action="store", type=int, dest="skip", default=1, help="Skip factor for outputs"), proj = dict(short="-p", longname="--projection", action="store_true", dest="projection", default=False, help="Use a projection rather than a slice"), maxw = dict(longname="--max-width", action="store", type=float, dest="max_width", default=1.0, help="Maximum width in code units"), minw = dict(longname="--min-width", action="store", type=float, dest="min_width", default=50, help="Minimum width in units of smallest dx (default: 50)"), nframes = dict(short="-n", longname="--nframes", action="store", type=int, dest="nframes", default=100, help="Number of frames to generate"), slabw = dict(longname="--slab-width", action="store", type=float, dest="slab_width", default=1.0, help="Slab width in specified units"), slabu = dict(short="-g", longname="--slab-unit", action="store", type=str, dest="slab_unit", default='1', help="Desired units for the slab"), ptype = dict(longname="--particle-type", action="store", type=int, dest="ptype", default=2, help="Particle type to select"), agecut = dict(longname="--age-cut", action="store", type=float, dest="age_filter", default=None, nargs=2, help="Bounds for the field to select"), uboxes = dict(longname="--unit-boxes", action="store_true", dest="unit_boxes", help="Display heldsul unit boxes"), thresh = dict(longname="--threshold", action="store", type=float, dest="threshold", default=None, help="Density threshold"), dm_only = dict(longname="--all-particles", action="store_false", dest="dm_only", default=True, help="Use all particles"), grids = dict(longname="--show-grids", action="store_true", dest="grids", default=False, help="Show the grid boundaries"), time = dict(longname="--time", action="store_true", dest="time", default=False, help="Print time in years on image"), contours = dict(longname="--contours", action="store",type=int, dest="contours", default=None, help="Number of Contours for Rendering"), contour_width = dict(longname="--contour_width", action="store",type=float, dest="contour_width", default=None, help="Width of gaussians used for rendering."), enhance = dict(longname="--enhance", action="store_true", dest="enhance", default=False, help="Enhance!"), valrange = dict(short="-r", longname="--range", action="store", type=float, dest="valrange", default=None, nargs=2, help="Range, space separated"), up = dict(longname="--up", action="store", type=float, dest="up", default=None, nargs=3, help="Up, space separated"), viewpoint = dict(longname="--viewpoint", action="store", type=float, dest="viewpoint", default=[1., 1., 1.], nargs=3, help="Viewpoint, space separated"), pixels = dict(longname="--pixels", action="store",type=int, dest="pixels", default=None, help="Number of Pixels for Rendering"), halos = dict(longname="--halos", action="store", type=str, dest="halos",default="multiple", help="Run halo profiler on a 'single' halo or 'multiple' halos."), halo_radius = dict(longname="--halo_radius", action="store", type=float, dest="halo_radius",default=0.1, help="Constant radius for profiling halos if using hop output files with no radius entry. Default: 0.1."), halo_radius_units = dict(longname="--halo_radius_units", action="store", type=str, dest="halo_radius_units",default="1", help="Units for radius used with --halo_radius flag. Default: '1' (code units)."), halo_hop_style = dict(longname="--halo_hop_style", action="store", type=str, dest="halo_hop_style",default="new", help="Style of hop output file. 'new' for yt_hop files and 'old' for enzo_hop files."), halo_dataset = dict(longname="--halo_dataset", action="store", type=str, dest="halo_dataset",default=None, help="HaloProfiler dataset."), make_profiles = dict(longname="--make_profiles", action="store_true", default=False, help="Make profiles with halo profiler."), make_projections = dict(longname="--make_projections", action="store_true", default=False, help="Make projections with halo profiler.") ) def _get_yt_stack_date(): if "YT_DEST" not in os.environ: print("Could not determine when yt stack was last updated.") return date_file = os.path.join(os.environ["YT_DEST"], ".yt_update") if not os.path.exists(date_file): print("Could not determine when yt stack was last updated.") return print("".join(file(date_file, 'r').readlines())) print("To update all dependencies, run \"yt update --all\".") def _update_yt_stack(path): "Rerun the install script to updated all dependencies." install_script = os.path.join(path, "doc/install_script.sh") if not os.path.exists(install_script): print() print("Install script not found!") print("The install script should be here: %s," % install_script) print("but it was not.") return print() print("We will now attempt to update the yt stack located at:") print(" %s." % os.environ["YT_DEST"]) print() print("[hit enter to continue or Ctrl-C to stop]") try: raw_input() except: sys.exit(0) os.environ["REINST_YT"] = "1" ret = subprocess.call(["bash", install_script]) print() if ret: print("The install script seems to have failed.") print("Check the output above.") else: print("The yt stack has been updated successfully.") print("Now get back to work!") def get_yt_version(): try: from yt.__hg_version__ import hg_version return hg_version except ImportError: pass import pkg_resources yt_provider = pkg_resources.get_provider("yt") path = os.path.dirname(yt_provider.module_path) if not os.path.isdir(os.path.join(path, ".hg")): return None version = get_hg_version(path) return version # This code snippet is modified from Georg Brandl def bb_apicall(endpoint, data, use_pass = True): uri = 'https://api.bitbucket.org/1.0/%s/' % endpoint # since bitbucket doesn't return the required WWW-Authenticate header when # making a request without Authorization, we cannot use the standard urllib2 # auth handlers; we have to add the requisite header from the start if data is not None: data = urllib.parse.urlencode(data) req = urllib.request.Request(uri, data) if use_pass: username = raw_input("Bitbucket Username? ") password = getpass.getpass() upw = '%s:%s' % (username, password) req.add_header('Authorization', 'Basic %s' % base64.b64encode(upw).strip()) return urllib.request.urlopen(req).read() class YTBugreportCmd(YTCommand): name = "bugreport" description = \ """ Report a bug in yt """ def __call__(self, args): print("===============================================================") print() print("Hi there! Welcome to the yt bugreport taker.") print() print("===============================================================") print("At any time in advance of the upload of the bug, you should feel free") print("to ctrl-C out and submit the bug report manually by going here:") print(" http://bitbucket.org/yt_analysis/yt/issues/new") print() print("Also, in order to submit a bug through this interface, you") print("need a Bitbucket account. If you don't have one, exit this ") print("bugreport now and run the 'yt bootstrap_dev' command to create one.") print() print("Have you checked the existing bug reports to make") print("sure your bug has not already been recorded by someone else?") print(" http://bitbucket.org/yt_analysis/yt/issues?status=new&status=open") print() print("Finally, are you sure that your bug is, in fact, a bug? It might") print("simply be a misunderstanding that could be cleared up by") print("visiting the yt irc channel or getting advice on the email list:") print(" http://yt-project.org/irc.html") print(" http://lists.spacepope.org/listinfo.cgi/yt-users-spacepope.org") print() summary = raw_input("Press <enter> if you remain firm in your conviction to continue.") print() print() print("Okay, sorry about that. How about a nice, pithy ( < 12 words )") print("summary of the bug? (e.g. 'Particle overlay problem with parallel ") print("projections')") print() try: current_version = get_yt_version() except: current_version = "Unavailable" summary = raw_input("Summary? ") bugtype = "bug" data = dict(title = summary, type=bugtype) print() print("Okay, now let's get a bit more information.") print() print("Remember that if you want to submit a traceback, you can run") print("any script with --paste or --detailed-paste to submit it to") print("the pastebin and then include the link in this bugreport.") if "EDITOR" in os.environ: print() print("Press enter to spawn your editor, %s" % os.environ["EDITOR"]) loki = raw_input() tf = tempfile.NamedTemporaryFile(delete=False) fn = tf.name tf.close() popen = subprocess.call("$EDITOR %s" % fn, shell = True) content = open(fn).read() try: os.unlink(fn) except: pass else: print() print("Couldn't find an $EDITOR variable. So, let's just take") print("take input here. Type up your summary until you're ready") print("to be done, and to signal you're done, type --- by itself") print("on a line to signal your completion.") print() print("(okay, type now)") print() lines = [] while 1: line = raw_input() if line.strip() == "---": break lines.append(line) content = "\n".join(lines) content = "Reporting Version: %s\n\n%s" % (current_version, content) endpoint = "repositories/yt_analysis/yt/issues" data['content'] = content print() print("===============================================================") print() print("Okay, we're going to submit with this:") print() print("Summary: %s" % (data['title'])) print() print("---") print(content) print("---") print() print("===============================================================") print() print("Is that okay? If not, hit ctrl-c. Otherwise, enter means") print("'submit'. Next we'll ask for your Bitbucket Username.") print("If you don't have one, run the 'yt bootstrap_dev' command.") print() loki = raw_input() retval = bb_apicall(endpoint, data, use_pass=True) import json retval = json.loads(retval) url = "http://bitbucket.org/yt_analysis/yt/issue/%s" % retval['local_id'] print() print("===============================================================") print() print("Thanks for your bug report! Together we'll make yt totally bug free!") print("You can view bug report here:") print(" %s" % url) print() print("Keep in touch!") print() class YTHubRegisterCmd(YTCommand): name = "hub_register" description = \ """ Register a user on the Hub: http://hub.yt-project.org/ """ def __call__(self, args): # We need these pieces of information: # 1. Name # 2. Email # 3. Username # 4. Password (and password2) # 5. (optional) URL # 6. "Secret" key to make it epsilon harder for spammers if ytcfg.get("yt","hub_api_key") != "": print("You seem to already have an API key for the hub in") print("~/.yt/config . Delete this if you want to force a") print("new user registration.") print("Awesome! Let's start by registering a new user for you.") print("Here's the URL, for reference: http://hub.yt-project.org/ ") print() print("As always, bail out with Ctrl-C at any time.") print() print("What username would you like to go by?") print() username = raw_input("Username? ") if len(username) == 0: sys.exit(1) print() print("To start out, what's your name?") print() name = raw_input("Name? ") if len(name) == 0: sys.exit(1) print() print("And your email address?") print() email = raw_input("Email? ") if len(email) == 0: sys.exit(1) print() print("Please choose a password:") print() while 1: password1 = getpass.getpass("Password? ") password2 = getpass.getpass("Confirm? ") if len(password1) == 0: continue if password1 == password2: break print("Sorry, they didn't match! Let's try again.") print() print() print("Would you like a URL displayed for your user?") print("Leave blank if no.") print() url = raw_input("URL? ") print() print("Okay, press enter to register. You should receive a welcome") print("message at %s when this is complete." % email) print() loki = raw_input() data = dict(name = name, email = email, username = username, password = password1, password2 = password2, url = url, zap = "rowsdower") data = urllib.parse.urlencode(data) hub_url = "https://hub.yt-project.org/create_user" req = urllib.request.Request(hub_url, data) try: status = urllib.request.urlopen(req).read() except urllib.error.HTTPError as exc: if exc.code == 400: print("Sorry, the Hub couldn't create your user.") print("You can't register duplicate users, which is the most") print("common cause of this error. All values for username,") print("name, and email must be unique in our system.") sys.exit(1) except urllib.URLError as exc: print("Something has gone wrong. Here's the error message.") raise exc print() print("SUCCESS!") print() class YTInstInfoCmd(YTCommand): name = ["instinfo", "version"] args = ( dict(short="-u", longname="--update-source", action="store_true", default = False, help="Update the yt installation, if able"), dict(short="-o", longname="--output-version", action="store", default = None, dest="outputfile", help="File into which the current revision number will be" + "stored") ) description = \ """ Get some information about the yt installation """ def __call__(self, opts): import pkg_resources import yt yt_provider = pkg_resources.get_provider("yt") path = os.path.dirname(yt_provider.module_path) print() print("yt module located at:") print(" %s" % (path)) update_supp = False if "YT_DEST" in os.environ: spath = os.path.join( os.environ["YT_DEST"], "src", "yt-supplemental") if os.path.isdir(spath): print("The supplemental repositories are located at:") print(" %s" % (spath)) update_supp = True vstring = get_yt_version() if vstring == -1: vstring = "unknown" if vstring is not None: print() print("The current version and changeset for the code is:") print() print("---") print("Version = %s" % yt.__version__) print("Changeset = %s" % vstring.strip().decode("utf-8")) print("---") print() if "site-packages" not in path: print("This installation CAN be automatically updated.") if opts.update_source: update_hg(path) print("Updated successfully.") _get_yt_stack_date() elif opts.update_source: print() print("YT site-packages not in path, so you must") print("update this installation manually by committing and") print("merging your modifications to the code before") print("updating to the newest changeset.") print() if vstring is not None and opts.outputfile is not None: open(opts.outputfile, "w").write(vstring) class YTLoadCmd(YTCommand): name = "load" description = \ """ Load a single dataset into an IPython instance """ args = ("ds", ) def __call__(self, args): if args.ds is None: print("Could not load file.") sys.exit() import yt.mods import yt import IPython from distutils import version if version.LooseVersion(IPython.__version__) <= version.LooseVersion('0.10'): api_version = '0.10' else: api_version = '0.11' local_ns = yt.mods.__dict__.copy() local_ns['ds'] = args.ds local_ns['pf'] = args.ds local_ns['yt'] = yt if api_version == '0.10': shell = IPython.Shell.IPShellEmbed() shell(local_ns = local_ns, header = "\nHi there! Welcome to yt.\n\nWe've loaded your dataset as 'ds'. Enjoy!" ) else: from IPython.config.loader import Config import sys cfg = Config() # prepend sys.path with current working directory sys.path.insert(0,'') IPython.embed(config=cfg,user_ns=local_ns) class YTMapserverCmd(YTCommand): args = ("proj", "field", "weight", dict(short="-a", longname="--axis", action="store", type=int, dest="axis", default=0, help="Axis (4 for all three)"), dict(short ="-o", longname="--host", action="store", type=str, dest="host", default=None, help="IP Address to bind on"), "ds", ) name = "mapserver" description = \ """ Serve a plot in a GMaps-style interface """ def __call__(self, args): if sys.version_info >= (3,0,0): print("yt mapserver is disabled for Python 3.") return -1 ds = args.ds if args.axis == 4: print("Doesn't work with multiple axes!") return if args.projection: p = ProjectionPlot(ds, args.axis, args.field, weight_field=args.weight) else: p = SlicePlot(ds, args.axis, args.field) from yt.gui.reason.pannable_map import PannableMapServer mapper = PannableMapServer(p.data_source, args.field) import yt.extern.bottle as bottle bottle.debug(True) if args.host is not None: colonpl = args.host.find(":") if colonpl >= 0: port = int(args.host.split(":")[-1]) args.host = args.host[:colonpl] else: port = 8080 bottle.run(server='rocket', host=args.host, port=port) else: bottle.run(server='rocket') class YTPastebinCmd(YTCommand): name = "pastebin" args = ( dict(short="-l", longname="--language", action="store", default = None, dest="language", help="Use syntax highlighter for the file in language"), dict(short="-L", longname="--languages", action="store_true", default = False, dest="languages", help="Retrive a list of supported languages"), dict(short="-e", longname="--encoding", action="store", default = 'utf-8', dest="encoding", help="Specify the encoding of a file (default is " "utf-8 or guessing if available)"), dict(short="-b", longname="--open-browser", action="store_true", default = False, dest="open_browser", help="Open the paste in a web browser"), dict(short="-p", longname="--private", action="store_true", default = False, dest="private", help="Paste as private"), dict(short="-c", longname="--clipboard", action="store_true", default = False, dest="clipboard", help="File to output to; else, print."), dict(short="file", type=str), ) description = \ """ Post a script to an anonymous pastebin """ def __call__(self, args): import yt.utilities.lodgeit as lo lo.main(args.file, languages=args.languages, language=args.language, encoding=args.encoding, open_browser=args.open_browser, private=args.private, clipboard=args.clipboard) class YTPastebinGrabCmd(YTCommand): args = (dict(short="number", type=str),) name = "pastebin_grab" description = \ """ Print an online pastebin to STDOUT for local use. """ def __call__(self, args): import yt.utilities.lodgeit as lo lo.main( None, download=args.number ) class YTNotebookUploadCmd(YTCommand): args = (dict(short="file", type=str),) description = \ """ Upload an IPython notebook to hub.yt-project.org. """ name = "upload_notebook" def __call__(self, args): filename = args.file if not os.path.isfile(filename): raise IOError(filename) if not filename.endswith(".ipynb"): print("File must be an IPython notebook!") return 1 import json try: t = json.loads(open(filename).read())['metadata']['name'] except (ValueError, KeyError): print("File does not appear to be an IPython notebook.") if len(t) == 0: t = filename.strip(".ipynb") from yt.utilities.minimal_representation import MinimalNotebook mn = MinimalNotebook(filename, t) rv = mn.upload() print("Upload successful!") print() print("To access your raw notebook go here:") print() print(" %s" % (rv['url'])) print() print("To view your notebook go here:") print() print(" %s" % (rv['url'].replace("/go/", "/nb/"))) print() class YTPlotCmd(YTCommand): args = ("width", "unit", "bn", "proj", "center", "zlim", "axis", "field", "weight", "skip", "cmap", "output", "grids", "time", "ds", "max", "log", "linear") name = "plot" description = \ """ Create a set of images """ def __call__(self, args): ds = args.ds center = args.center if args.center == (-1,-1,-1): mylog.info("No center fed in; seeking.") v, center = ds.find_max("density") if args.max: v, center = ds.find_max("density") elif args.center is None: center = 0.5*(ds.domain_left_edge + ds.domain_right_edge) center = np.array(center) if ds.dimensionality < 3: dummy_dimensions = np.nonzero(ds.index.grids[0].ActiveDimensions <= 1) axes = ensure_list(dummy_dimensions[0][0]) elif args.axis == 4: axes = range(3) else: axes = [args.axis] unit = args.unit if unit is None: unit = 'unitary' if args.width is None: width = None else: width = (args.width, args.unit) for ax in axes: mylog.info("Adding plot for axis %i", ax) if args.projection: plt = ProjectionPlot(ds, ax, args.field, center=center, width=width, weight_field=args.weight) else: plt = SlicePlot(ds, ax, args.field, center=center, width=width) if args.grids: plt.annotate_grids() if args.time: time = ds.current_time.in_units("yr") plt.annotate_text((0.2,0.8), 't = %5.2e yr'%time) plt.set_cmap(args.field, args.cmap) plt.set_log(args.field, args.takelog) if args.zlim: plt.set_zlim(args.field,*args.zlim) ensure_dir_exists(args.output) plt.save(os.path.join(args.output,"%s" % (ds))) class YTRPDBCmd(YTCommand): name = "rpdb" description = \ """ Connect to a currently running (on localhost) rpd session. Commands run with --rpdb will trigger an rpdb session with any uncaught exceptions. """ args = ( dict(short="-t", longname="--task", action="store", default = 0, dest='task', help="Open a web browser."), ) def __call__(self, args): from . import rpdb rpdb.run_rpdb(int(args.task)) class YTNotebookCmd(YTCommand): name = ["notebook"] args = ( dict(short="-o", longname="--open-browser", action="store_true", default = False, dest='open_browser', help="Open a web browser."), dict(short="-p", longname="--port", action="store", default = 0, dest='port', help="Port to listen on; defaults to auto-detection."), dict(short="-prof", longname="--profile", action="store", default = None, dest="profile", help="The IPython profile to use when lauching the kernel."), dict(short="-n", longname="--no-password", action="store_true", default = False, dest='no_password', help="If set, do not prompt or use a password."), ) description = \ """ Run the IPython Notebook """ def __call__(self, args): kwargs = {} try: # IPython 1.0+ from IPython.html.notebookapp import NotebookApp except ImportError: # pre-IPython v1.0 from IPython.frontend.html.notebook.notebookapp import NotebookApp print("You must choose a password so that others cannot connect to " \ "your notebook.") pw = ytcfg.get("yt", "notebook_password") if len(pw) == 0 and not args.no_password: import IPython.lib pw = IPython.lib.passwd() print("If you would like to use this password in the future,") print("place a line like this inside the [yt] section in your") print("yt configuration file at ~/.yt/config") print() print("notebook_password = %s" % pw) print() elif args.no_password: pw = None if args.port != 0: kwargs['port'] = int(args.port) if args.profile is not None: kwargs['profile'] = args.profile if pw is not None: kwargs['password'] = pw app = NotebookApp(open_browser=args.open_browser, **kwargs) app.initialize(argv=[]) print() print("***************************************************************") print() print("The notebook is now live at:") print() print(" http://127.0.0.1:%s/" % app.port) print() print("Recall you can create a new SSH tunnel dynamically by pressing") print("~C and then typing -L%s:localhost:%s" % (app.port, app.port)) print("where the first number is the port on your local machine. ") print() print("If you are using %s on your machine already, try " \ "-L8889:localhost:%s" % (app.port, app.port)) print() print("***************************************************************") print() app.start() class YTStatsCmd(YTCommand): args = ('outputfn','bn','skip','ds','field', dict(longname="--max", action='store_true', default=False, dest='max', help="Display maximum of field requested through -f option."), dict(longname="--min", action='store_true', default=False, dest='min', help="Display minimum of field requested through -f option.")) name = "stats" description = \ """ Print stats and max/min value of a given field (if requested), for one or more datasets (default field is density) """ def __call__(self, args): ds = args.ds ds.print_stats() vals = {} if args.field in ds.derived_field_list: if args.max == True: vals['min'] = ds.find_max(args.field) print("Maximum %s: %0.5e at %s" % (args.field, vals['min'][0], vals['min'][1])) if args.min == True: vals['max'] = ds.find_min(args.field) print("Minimum %s: %0.5e at %s" % (args.field, vals['max'][0], vals['max'][1])) if args.output is not None: t = ds.current_time * ds['years'] with open(args.output, "a") as f: f.write("%s (%0.5e years)\n" % (ds, t)) if 'min' in vals: f.write('Minimum %s is %0.5e at %s\n' % ( args.field, vals['min'][0], vals['min'][1])) if 'max' in vals: f.write('Maximum %s is %0.5e at %s\n' % ( args.field, vals['max'][0], vals['max'][1])) class YTUpdateCmd(YTCommand): args = ("all", ) name = "update" description = \ """ Update the yt installation to the most recent version """ def __call__(self, opts): import pkg_resources import yt yt_provider = pkg_resources.get_provider("yt") path = os.path.dirname(yt_provider.module_path) print() print("yt module located at:") print(" %s" % (path)) update_supp = False if "YT_DEST" in os.environ: spath = os.path.join( os.environ["YT_DEST"], "src", "yt-supplemental") if os.path.isdir(spath): print("The supplemental repositories are located at:") print(" %s" % (spath)) update_supp = True vstring = None if "site-packages" not in path: vstring = get_hg_version(path) print() print("The current version and changeset for the code is:") print() print("---") print("Version = %s" % yt.__version__) print("Changeset = %s" % vstring.strip().decode("utf-8")) print("---") print() print("This installation CAN be automatically updated.") update_hg(path, skip_rebuild=opts.reinstall) print("Updated successfully.") _get_yt_stack_date() if opts.reinstall: _update_yt_stack(path) else: print() print("YT site-packages not in path, so you must") print("update this installation manually by committing and") print("merging your modifications to the code before") print("updating to the newest changeset.") print() class YTUploadImageCmd(YTCommand): args = (dict(short="file", type=str),) description = \ """ Upload an image to imgur.com. Must be PNG. """ name = "upload_image" def __call__(self, args): filename = args.file if not filename.endswith(".png"): print("File must be a PNG file!") return 1 import base64, json, pprint image_data = base64.b64encode(open(filename, 'rb').read()) api_key = 'f62d550859558f28c4c214136bc797c7' parameters = {'key':api_key, 'image':image_data, type:'base64', 'caption': "", 'title': "%s uploaded by yt" % filename} data = urllib.parse.urlencode(parameters).encode('utf-8') req = urllib.request.Request('http://api.imgur.com/2/upload.json', data) try: response = urllib.request.urlopen(req).read().decode() except urllib.error.HTTPError as e: print("ERROR", e) return {'uploaded':False} rv = json.loads(response) if 'upload' in rv and 'links' in rv['upload']: print() print("Image successfully uploaded! You can find it at:") print(" %s" % (rv['upload']['links']['original'])) print() print("If you'd like to delete it, visit this page:") print(" %s" % (rv['upload']['links']['delete_page'])) print() else: print() print("Something has gone wrong! Here is the server response:") print() pprint.pprint(rv) def run_main(): args = parser.parse_args() # The following is a workaround for a nasty Python 3 bug: # http://bugs.python.org/issue16308 # http://bugs.python.org/issue9253 try: getattr(args, "func") except AttributeError: parser.print_help() sys.exit(0) args.func(args) if __name__ == "__main__": run_main()
from sqlalchemy import func from sqlalchemy import types as sqltypes from sqlalchemy.types import UserDefinedType from sqlalchemy.sql import operators class MolComparator(UserDefinedType.Comparator): def hassubstruct(self, other): return self.operate( operators.custom_op('@>'), other, result_type=sqltypes.Boolean ) def issubstruct(self, other): return self.operate( operators.custom_op('<@'), other, result_type=sqltypes.Boolean ) def __eq__(self, other): return self.operate( operators.custom_op('@='), other, result_type=sqltypes.Boolean ) class QMolComparator(UserDefinedType.Comparator): def issubstruct(self, other): return self.operate( operators.custom_op('<@'), other, result_type=sqltypes.Boolean ) class BfpComparator(UserDefinedType.Comparator): def tanimoto_sml(self, other): return self.operate( operators.custom_op('%%'), other, result_type=sqltypes.Boolean ) def dice_sml(self, other): return self.operate( operators.custom_op('#'), other, result_type=sqltypes.Boolean ) class SfpComparator(UserDefinedType.Comparator): def tanimoto_sml(self, other): return self.operate( operators.custom_op('%%'), other, result_type=sqltypes.Boolean ) def dice_sml(self, other): return self.operate( operators.custom_op('#'), other, result_type=sqltypes.Boolean ) def __add__(self, other): return func.add(self.expr, other) def __sub__(self, other): return func.subtract(self.expr, other) class ReactionComparator(UserDefinedType.Comparator): def hassubstruct(self, other): return self.operate( operators.custom_op('@>'), other, result_type=sqltypes.Boolean ) def hassubstructfp(self, other): return self.operate( operators.custom_op('?>'), other, result_type=sqltypes.Boolean ) def issubstruct(self, other): return self.operate( operators.custom_op('<@'), other, result_type=sqltypes.Boolean ) def issubstructfp(self, other): return self.operate( operators.custom_op('<?'), other, result_type=sqltypes.Boolean ) def __eq__(self, other): return self.operate( operators.custom_op('@='), other, result_type=sqltypes.Boolean )
import FWCore.ParameterSet.Config as cms process = cms.Process("OWNPARTICLES") process.load("FWCore.MessageService.MessageLogger_cfi") process.maxEvents = cms.untracked.PSet( input = cms.untracked.int32(100) ) process.source = cms.Source("PoolSource", fileNames = cms.untracked.vstring('file:/user/geisler/RelValZmumuJets_Pt_20_300_PU_START53_V6-v1_GEN-SIM-RECO.root'), secondaryFileNames = cms.untracked.vstring('file:/user/geisler/RelValZmumuJets_Pt_20_300_PU_START53_V6-v1_GEN-SIM-DIGI-RAW-HLTDEBUG.root'), ) #process.source = cms.Source("PoolSource", #fileNames = cms.untracked.vstring('file:/user/geisler/QCD_Pt-15to3000_Tune2C_Flat_8TeV_pythia8_AODSIM.root'), #) ### conditions process.load("Configuration.StandardSequences.FrontierConditions_GlobalTag_cff") process.GlobalTag.globaltag = 'START53_V11::All' ### standard includes process.load('Configuration.StandardSequences.Services_cff') process.load('Configuration.Geometry.GeometryPilot2_cff') process.load("Configuration.StandardSequences.RawToDigi_cff") process.load("Configuration.EventContent.EventContent_cff") process.load("Configuration.StandardSequences.Reconstruction_cff") process.load("Configuration.StandardSequences.MagneticField_cff") process.selectedPrimaryVertexQuality = cms.EDFilter("VertexSelector", src = cms.InputTag('offlinePrimaryVertices'), cut = cms.string("isValid & ndof >= 4 & chi2 > 0 & tracksSize > 0 & abs(z) < 24 & abs(position.Rho) < 2."), filter = cms.bool(True), ) ### AssociationMap-specific includes from CommonTools.RecoUtils.pf_pu_assomap_cfi import AssociationMaps process.assMap = AssociationMaps.clone( VertexCollection = cms.InputTag('selectedPrimaryVertexQuality'), ) ### FirstVertexTracks-specific includes from CommonTools.RecoUtils.pf_pu_firstvertextracks_cfi import FirstVertexTracks process.firstVertexTracks = FirstVertexTracks.clone( AssociationMap = cms.InputTag('assMap'), VertexCollection = cms.InputTag('selectedPrimaryVertexQuality'), ) process.p = cms.Path( process.selectedPrimaryVertexQuality * process.assMap * process.firstVertexTracks ) process.output = cms.OutputModule("PoolOutputModule", fileName = cms.untracked.string("myOutput.root"), outputCommands = cms.untracked.vstring('drop *', 'keep *_*_*_RECO'), ) process.out_step = cms.EndPath(process.output)
import scrapy class LbcSpider(scrapy.Spider): name = "lbc" headers = {'User-Agent': 'Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/535.7 (KHTML, like Gecko) Chrome/16.0.912.36 Safari/535.7'} start_urls = ['https://www.leboncoin.fr/ventes_immobilieres/offres/ile_de_france'] def parse(self, response): print('Spider lbc is active') for ad_card in response.css("div.css-mi8a1d"): yield { 'title': ad_card.css('p.css-1j9uane.e1koqxhm0::text').get(), 'price': ad_card.css('span.css-66vicj::text').get(), 'city_and_date' : ad_card.css('p._2k43C._137P-.P4PEa._3j0OU::text').get() } pass next_page = 'https://www.leboncoin.fr'+ response.css('a._3-yvP:nth-child(3)').attrib['href'] if next_page is not None: yield response.follow(next_page, callback = self.parse)
import cmazure.storage.account import cmazure.storage.common import cmazure.common from cmazure.credentials import AzureCredentials def test_create(): creds = AzureCredentials.make_from_environment() storage_client = cmazure.storage.common.make_storage_client(creds) resource_client = cmazure.common.make_resource_client(creds) resource_group = cmazure.common.create_resource_group(resource_client, "test-resource-group", "westus") cmazure.storage.account.use_account(storage_client, resource_group, "brighttestaccount")
# SPDX-License-Identifier: Apache-2.0 # # Copyright (C) 2015, ARM Limited and contributors. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """ Functions Analysis Module """ from trappy.utils import listify from analysis_module import AnalysisModule class FunctionsAnalysis(AnalysisModule): """ Support for kernel functions profiling and analysis :param trace: input Trace object :type trace: :mod:`libs.utils.Trace` """ def __init__(self, trace): super(FunctionsAnalysis, self).__init__(trace) def plotProfilingStats(self, functions=None, metrics='avg'): """ Plot functions profiling metrics for the specified kernel functions. For each speficied metric a barplot is generated which report the value of the metric when the kernel function has been executed on each CPU. By default all the kernel functions are plotted. :param functions: the name of list of name of kernel functions to plot :type functions: str or list(str) :param metrics: the metrics to plot avg - average execution time time - total execution time :type metrics: srt or list(str) """ if not hasattr(self._trace, '_functions_stats_df'): self._log.warning('Functions stats data not available') return metrics = listify(metrics) df = self._trace.data_frame.functions_stats(functions) # Check that all the required metrics are acutally availabe available_metrics = df.columns.tolist() if not set(metrics).issubset(set(available_metrics)): msg = 'Metrics {} not supported, available metrics are {}'\ .format(set(metrics) - set(available_metrics), available_metrics) raise ValueError(msg) for metric in metrics: if metric.upper() == 'AVG': title = 'Average Completion Time per CPUs' ylabel = 'Completion Time [us]' if metric.upper() == 'TIME': title = 'Total Execution Time per CPUs' ylabel = 'Execution Time [us]' data = df[metric.lower()].unstack() axes = data.plot(kind='bar', figsize=(16, 8), legend=True, title=title, table=True) axes.set_ylabel(ylabel) axes.get_xaxis().set_visible(False) # vim :set tabstop=4 shiftwidth=4 expandtab
import zipfile import io import requests def _get_zip(url): """Retrieve zipfile using http request. zipfiles Parameters ---------- url : type Description of parameter `url`. Returns ------- zipfile.ZipFile Usage: >>> zip = _get_zip('https://www.bls.gov/oes/special.requests/oesm17nat.zip') >>> type(zip) <class 'zipfile.ZipFile'> >>> for file in zip.filelist: ... print(file.filename) ... oesm17nat/field_descriptions.xlsx oesm17nat/national_M2017_dl.xlsx # accessing zipfile obects for i/o operations >>> fp = zip.open('oesm17nat/field_descriptions.xlsx', 'r') >>> fp.readable() True fp.close() """ try: r = requests.get(url) if r.ok: return zipfile.ZipFile(io.BytesIO(r.content)) else: raise requests.exceptions.HTTPError('Not a valid request.' 'Double check for valid parameters.') except requests.exceptions.ConnectionError as e: print(e, '\nFailed to establish a new connection. Check internet.') def get_file(url, filename): try: zip = _get_zip(url) fp = zip.open(filename, 'r') return fp except Exception as e: print(e)
# import asyncio import logging import pathlib # import re # import httpx logger = logging.getLogger(__name__) class Tag: @staticmethod def tag(tag, content, **attrs): attr_line = ''.join(f' {attr}="{v}"' for attr, v in attrs.items()) return f'<{tag}{attr_line}>{content}</{tag}>' @staticmethod def font(content, color): return Tag.tag('font', content, color=color) @staticmethod def grey(content): return Tag.font(content, 'lightgrey') def should_update(src_path: pathlib.Path, dst_path: pathlib.Path): if dst_path.exists() and src_path.stat().st_mtime <= dst_path.stat().st_mtime: return False return True ################################################################################ # TODO: WIP, doesn't work now # https://www.twilio.com/blog/asynchronous-http-requests-in-python-with-httpx-and-asyncio # def gather_urls(path) -> list[str]: # urls = [] # with open(path, encoding='utf8') as reader: # for line in reader: # for match in re.finditer(r'\[.*?\]\((.*?)\)', line): # # TODO: make it safe since there can be `()` in the url # url_desc = match.group(1) # if not url_desc.startswith('http'): # logger.warning( # f"{url_desc} doesn't start with http: {line} {path.name}") # continue # urls.append(re.sub(r' ".*?"', '', url_desc)) # return urls # # # # TODO: still full of errors # # white_list = [ # # 'wikipedia.org', # # 'https://github.com', # # 'https://www.youtube.com', # # 'https://shiina18.github.io' # # ] # # # async def is_url_alive(client, url, posts): # log = f' : {url} {posts}' # # TODO: VPN can not be used now # # for s in white_list: # # if s in url: # # return # try: # headers = { # 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/86.0.4240.198 Safari/537.36' # } # await client.head(url, headers=headers) # # TODO: check status code # logger.debug('ok' + log) # except httpx.ConnectTimeout as exc: # logger.error(type(exc).__name__ + log) # except (httpx.RemoteProtocolError, httpx.ReadTimeout) as exc: # logger.debug(type(exc).__name__ + log) # except httpx.HTTPError as exc: # logger.error(type(exc).__name__ + log) # # # async def check_urls(url_posts_dict: dict[str, list[str]]): # # https://www.python-httpx.org/advanced/#pool-limit-configuration # limits = httpx.Limits(max_connections=None) # async with httpx.AsyncClient(limits=limits) as client: # tasks = [ # asyncio.ensure_future(is_url_alive(client, url, posts)) # for url, posts in url_posts_dict.items() # ] # await asyncio.gather(*tasks) ################################################################################
# -*- coding: utf-8 -*- # # This class was auto-generated from the API references found at # https://epayments-api.developer-ingenico.com/s2sapi/v1/ # from ingenico.connect.sdk.data_object import DataObject from ingenico.connect.sdk.domain.definitions.lodging_charge import LodgingCharge from ingenico.connect.sdk.domain.definitions.lodging_room import LodgingRoom class LodgingData(DataObject): """ | Object that holds lodging specific data """ __charges = None __check_in_date = None __check_out_date = None __folio_number = None __is_confirmed_reservation = None __is_facility_fire_safety_conform = None __is_no_show = None __is_preference_smoking_room = None __number_of_adults = None __number_of_nights = None __number_of_rooms = None __program_code = None __property_customer_service_phone_number = None __property_phone_number = None __renter_name = None __rooms = None @property def charges(self): """ | Object that holds lodging related charges Type: list[:class:`ingenico.connect.sdk.domain.definitions.lodging_charge.LodgingCharge`] """ return self.__charges @charges.setter def charges(self, value): self.__charges = value @property def check_in_date(self): """ | The date the guest checks into (or plans to check in to) the facility. | Format: YYYYMMDD Type: str """ return self.__check_in_date @check_in_date.setter def check_in_date(self, value): self.__check_in_date = value @property def check_out_date(self): """ | The date the guest checks out of (or plans to check out of) the facility. | Format: YYYYMMDD Type: str """ return self.__check_out_date @check_out_date.setter def check_out_date(self, value): self.__check_out_date = value @property def folio_number(self): """ | The Lodging Folio Number assigned to the itemized statement of charges and credits associated with this lodging stay, which can be any combination of characters and numerals defined by the Merchant or authorized Third Party Processor. Type: str """ return self.__folio_number @folio_number.setter def folio_number(self, value): self.__folio_number = value @property def is_confirmed_reservation(self): """ | Indicates whether the room reservation is confirmed. * true - The room reservation is confirmed * false - The room reservation is not confirmed Type: bool """ return self.__is_confirmed_reservation @is_confirmed_reservation.setter def is_confirmed_reservation(self, value): self.__is_confirmed_reservation = value @property def is_facility_fire_safety_conform(self): """ | Defines whether or not the facility conforms to the requirements of the Hotel and Motel Fire Safety Act of 1990, or similar legislation. * true - The facility conform to the requirements * false - The facility doesn't conform to the requirements Type: bool """ return self.__is_facility_fire_safety_conform @is_facility_fire_safety_conform.setter def is_facility_fire_safety_conform(self, value): self.__is_facility_fire_safety_conform = value @property def is_no_show(self): """ | Indicate if this the customer is a no show case. In such case, the lodging property can charge a no show fee. * true - The customer is a no show * false - Not applicable Type: bool """ return self.__is_no_show @is_no_show.setter def is_no_show(self, value): self.__is_no_show = value @property def is_preference_smoking_room(self): """ | Indicated the preference of the customer for a smoking or non-smoking room. * true - A smoking room is preferred * false - A non-smoking room is preferred Type: bool """ return self.__is_preference_smoking_room @is_preference_smoking_room.setter def is_preference_smoking_room(self, value): self.__is_preference_smoking_room = value @property def number_of_adults(self): """ | The total number of adult guests staying (or planning to stay) at the facility (i.e., all booked rooms) Type: int """ return self.__number_of_adults @number_of_adults.setter def number_of_adults(self, value): self.__number_of_adults = value @property def number_of_nights(self): """ | The number of nights for the lodging stay Type: int """ return self.__number_of_nights @number_of_nights.setter def number_of_nights(self, value): self.__number_of_nights = value @property def number_of_rooms(self): """ | The number of rooms rented for the lodging stay Type: int """ return self.__number_of_rooms @number_of_rooms.setter def number_of_rooms(self, value): self.__number_of_rooms = value @property def program_code(self): """ | Code that corresponds to the category of lodging charges detailed in this message.Allowed values: * lodging - (Default) Submitted charges are for lodging * noShow - Submitted charges are for the failure of the guest(s) to check in for reserved a room * advancedDeposit - Submitted charges are for an Advanced Deposit to reserve one or more rooms | If no value is submitted the default value lodging is used. Type: str """ return self.__program_code @program_code.setter def program_code(self, value): self.__program_code = value @property def property_customer_service_phone_number(self): """ | The international customer service phone number of the facility Type: str """ return self.__property_customer_service_phone_number @property_customer_service_phone_number.setter def property_customer_service_phone_number(self, value): self.__property_customer_service_phone_number = value @property def property_phone_number(self): """ | The local phone number of the facility in an international phone number format Type: str """ return self.__property_phone_number @property_phone_number.setter def property_phone_number(self, value): self.__property_phone_number = value @property def renter_name(self): """ | Name of the person or business entity charged for the reservation and/or lodging stay Type: str """ return self.__renter_name @renter_name.setter def renter_name(self, value): self.__renter_name = value @property def rooms(self): """ | Object that holds lodging related room data Type: list[:class:`ingenico.connect.sdk.domain.definitions.lodging_room.LodgingRoom`] """ return self.__rooms @rooms.setter def rooms(self, value): self.__rooms = value def to_dictionary(self): dictionary = super(LodgingData, self).to_dictionary() if self.charges is not None: dictionary['charges'] = [] for element in self.charges: if element is not None: dictionary['charges'].append(element.to_dictionary()) if self.check_in_date is not None: dictionary['checkInDate'] = self.check_in_date if self.check_out_date is not None: dictionary['checkOutDate'] = self.check_out_date if self.folio_number is not None: dictionary['folioNumber'] = self.folio_number if self.is_confirmed_reservation is not None: dictionary['isConfirmedReservation'] = self.is_confirmed_reservation if self.is_facility_fire_safety_conform is not None: dictionary['isFacilityFireSafetyConform'] = self.is_facility_fire_safety_conform if self.is_no_show is not None: dictionary['isNoShow'] = self.is_no_show if self.is_preference_smoking_room is not None: dictionary['isPreferenceSmokingRoom'] = self.is_preference_smoking_room if self.number_of_adults is not None: dictionary['numberOfAdults'] = self.number_of_adults if self.number_of_nights is not None: dictionary['numberOfNights'] = self.number_of_nights if self.number_of_rooms is not None: dictionary['numberOfRooms'] = self.number_of_rooms if self.program_code is not None: dictionary['programCode'] = self.program_code if self.property_customer_service_phone_number is not None: dictionary['propertyCustomerServicePhoneNumber'] = self.property_customer_service_phone_number if self.property_phone_number is not None: dictionary['propertyPhoneNumber'] = self.property_phone_number if self.renter_name is not None: dictionary['renterName'] = self.renter_name if self.rooms is not None: dictionary['rooms'] = [] for element in self.rooms: if element is not None: dictionary['rooms'].append(element.to_dictionary()) return dictionary def from_dictionary(self, dictionary): super(LodgingData, self).from_dictionary(dictionary) if 'charges' in dictionary: if not isinstance(dictionary['charges'], list): raise TypeError('value \'{}\' is not a list'.format(dictionary['charges'])) self.charges = [] for element in dictionary['charges']: value = LodgingCharge() self.charges.append(value.from_dictionary(element)) if 'checkInDate' in dictionary: self.check_in_date = dictionary['checkInDate'] if 'checkOutDate' in dictionary: self.check_out_date = dictionary['checkOutDate'] if 'folioNumber' in dictionary: self.folio_number = dictionary['folioNumber'] if 'isConfirmedReservation' in dictionary: self.is_confirmed_reservation = dictionary['isConfirmedReservation'] if 'isFacilityFireSafetyConform' in dictionary: self.is_facility_fire_safety_conform = dictionary['isFacilityFireSafetyConform'] if 'isNoShow' in dictionary: self.is_no_show = dictionary['isNoShow'] if 'isPreferenceSmokingRoom' in dictionary: self.is_preference_smoking_room = dictionary['isPreferenceSmokingRoom'] if 'numberOfAdults' in dictionary: self.number_of_adults = dictionary['numberOfAdults'] if 'numberOfNights' in dictionary: self.number_of_nights = dictionary['numberOfNights'] if 'numberOfRooms' in dictionary: self.number_of_rooms = dictionary['numberOfRooms'] if 'programCode' in dictionary: self.program_code = dictionary['programCode'] if 'propertyCustomerServicePhoneNumber' in dictionary: self.property_customer_service_phone_number = dictionary['propertyCustomerServicePhoneNumber'] if 'propertyPhoneNumber' in dictionary: self.property_phone_number = dictionary['propertyPhoneNumber'] if 'renterName' in dictionary: self.renter_name = dictionary['renterName'] if 'rooms' in dictionary: if not isinstance(dictionary['rooms'], list): raise TypeError('value \'{}\' is not a list'.format(dictionary['rooms'])) self.rooms = [] for element in dictionary['rooms']: value = LodgingRoom() self.rooms.append(value.from_dictionary(element)) return self
import os os.environ['TF_KERAS'] = '1' import numpy as np from skimage.filters import gaussian if os.environ.get('TF_KERAS'): from classification_models.tfkeras import Classifiers class DummyModel: def __init__(self): pass def predict(self, image: np.ndarray, sigma: float = 3.0) -> np.ndarray: return gaussian(image, sigma=sigma, preserve_range=True) class ImageNetModel: def __init__(self): self.pretrainedModel, self.preprocess_input = Classifiers.get('resnet18') def predict(self, image: np.ndarray) -> np.ndarray: model = self.pretrainedModel( input_shape=(224, 224, 3), weights="imagenet", classes=1000 ) image = self.preprocess_input(image) image = np.expand_dims(image, 0) y = model.predict(image) return y if __name__ == "__main__": pass
# -*- coding: utf-8 -*- """ Utilities for ROSES 2021 Adapted from (https://github.com/bgoutorbe/seismic-noise-tomography) """ import numpy as np import itertools as it import scipy import pygmt import xarray as xr from . import psutils from .pstomo import Grid def make_G(paths, grid, v0): """ Makes the matrix G for a given set of paths: """ G = np.zeros((len(paths), grid.n_nodes())) for ipath, path in enumerate(paths): lon_M, lat_M = path[:, 0], path[:, 1] xyzM = psutils.geo2cartesian(lon_M, lat_M) iA, iB, iC = grid.indexes_delaunay_triangle(lon_M, lat_M) lonlatA, lonlatB, lonlatC = [grid.xy(index_) for index_ in (iA, iB, iC)] xyzA, xyzB, xyzC = [psutils.geo2cartesian(lon, lat) for lon, lat in (lonlatA, lonlatB, lonlatC)] xyzMp = psutils.projection(xyzM, xyzA, xyzB, xyzC) wA, wB, wC = psutils.barycentric_coords(xyzMp, xyzA, xyzB, xyzC) # attributing weights to grid nodes along path: # w[j, :] = w_j(r) = weights of node j along path nM = path.shape[0] w = np.zeros((grid.n_nodes(), nM)) w[iA, range(nM)] = wA w[iB, range(nM)] = wB w[iC, range(nM)] = wC # ds = array of infinitesimal distances along path ds = psutils.dist(lons1=lon_M[:-1], lats1=lat_M[:-1], lons2=lon_M[1:], lats2=lat_M[1:]) # integrating w_j(r) / v0 along path using trapeze formula G[ipath, :] = np.sum(0.5 * (w[:, :-1] + w[:, 1:]) / v0 * ds, axis=-1) G = np.matrix(G) return G def checkerboard_func(grid, vmid, vmin, vmax, squaresize, shape='cos'): """ Returns a checkerboard function, f(lons, lats), whose background value is *vmid*, and alternating min/max values are *vmin* and *vmax*. The centers of the anomalies are separated by *squaresize* (in km), and their shape is either 'gaussian' or 'cos'. @rtype: function """ # converting square size from km to degrees d2rad = np.pi / 180.0 midlat = 0.5 * (grid.ymin + grid.get_ymax()) latwidth = squaresize / 6371.0 / d2rad lonwidth = squaresize / (6371.0 * np.cos(midlat * d2rad)) / d2rad # Basis function defining an anomaly of # unit height centered at (*lon0*, *lat0*). if shape.lower().strip() == 'gaussian': def basis_func(lons, lats, lon0, lat0): """ Gausian anomaly , with sigma-parameter such that 3 sigma is the distance between the center and the border of the square, that is, half the distance between 2 centers. """ n = len(lons) r = psutils.dist(lons1=lons, lats1=lats, lons2=n*[lon0], lats2=n*[lat0]) sigma = squaresize / 6.0 return np.exp(- r**2 / (2 * sigma**2)) elif shape.lower().strip() == 'cos': def basis_func(lons, lats, lon0, lat0): """ Cosinus anomaly """ x = (lons - lon0) / lonwidth y = (lats - lat0) / latwidth outside_square = (np.abs(x) >= 0.5) | (np.abs(y) >= 0.5) return np.where(outside_square, 0.0, np.cos(np.pi*x) * np.cos(np.pi*y)) else: raise Exception("Unknown shape anomaly: " + shape) # coordinates of the center of the anomalies startlon = grid.xmin + lonwidth / 2.0 stoplon = grid.get_xmax() + lonwidth centerlons = list(np.arange(startlon, stoplon, lonwidth)) startlat = grid.ymin + latwidth / 2.0 stoplat = grid.get_ymax() + latwidth centerlats = list(np.arange(startlat, stoplat, latwidth)) centerlonlats = list(it.product(centerlons, centerlats)) # factors by which multiply the basis function associated # with each center (to alternate lows and highs) polarities = [(centerlons.index(lon) + centerlats.index(lat)) % 2 for lon, lat in centerlonlats] factors = np.where(np.array(polarities) == 1, vmax - vmid, vmin - vmid) def func(lons, lats): """ Checkboard function: sum of the basis functions along the centers defined above, times the high/low factor, plus background velocity. """ lowhighs = [f * basis_func(lons, lats, lon0, lat0) for f, (lon0, lat0) in zip(factors, centerlonlats)] return vmid + sum(lowhighs) return func def path_density(grid, paths, window): """ Returns the path density, that is, on each node of the grid, the number of paths that cross the rectangular cell of size (window[0], window[1]) centered on the node. """ # initializing path density density = np.zeros(grid.n_nodes()) # coordinates of grid nodes and associated windows lons_nodes, lats_nodes = grid.xy_nodes() lons_min = np.expand_dims(lons_nodes - window[0] / 2.0, axis=-1) lons_max = np.expand_dims(lons_nodes + window[0] / 2.0, axis=-1) lats_min = np.expand_dims(lats_nodes - window[1] / 2.0, axis=-1) lats_max = np.expand_dims(lats_nodes + window[1] / 2.0, axis=-1) for path in paths: lons_path, lats_path = path[:, 0], path[:, 1] # are points of paths in windows? # 1st dim = grid nodes; 2nd dim = points along path points_in_windows = (lons_path >= lons_min) & (lons_path <= lons_max) & \ (lats_path >= lats_min) & (lats_path <= lats_max) density += np.any(points_in_windows, axis=-1) return density def invert4model(alpha, beta, lambda_, correlation_length, lonstep, latstep, grid, vels, dists, paths): """ A function to wrap all the calculations when inverting for the tomographic model. Parameters: ----------- alpha: float The smoothing parameter for the inversion. beta: float The strength of the weighted norm penalization term in the penalty function lambda_: float Returns: -------- ???? """ s = (dists / vels).sum() / dists.sum() v0 = 1.0 / s G = make_G(paths, grid, v0) dobs = np.matrix(dists / vels - dists / v0).T density = path_density(grid, paths, window=(lonstep, latstep)) sigmav = np.ones((len(vels))) * 0.3 sigmad = sigmav * dists / vels**2 Cinv = np.matrix(np.zeros((len(sigmav), len(sigmav)))) np.fill_diagonal(Cinv, 1.0 / sigmad**2) twoD_path_density = grid.to_2D_array(density) dists_mat = np.zeros((grid.n_nodes(), grid.n_nodes())) i_upper, j_upper = np.triu_indices_from(dists_mat) lons_i, lats_i = grid.xy(i_upper) lons_j, lats_j = grid.xy(j_upper) dists_mat[i_upper, j_upper] = psutils.dist(lons1=lons_i, lats1=lats_i, lons2=lons_j, lats2=lats_j) dists_mat += dists_mat.T # Calculate the smoothing kernel S = np.exp(- dists_mat**2 / (2 * correlation_length**2)) S /= S.sum(axis=-1) - np.diag(S) # normalization of non-diagonal terms # setting up spatial regularization matrix F F = np.matrix(-S) F[np.diag_indices_from(F)] = 1 F *= alpha # Calculate regularization matrix Q # ----------------------------------------------------------------------- # Q = F.T * F for i, pd in enumerate(density): Q[i, i] += beta ** 2 * np.exp(-2 * lambda_ * pd) # ----------------------------------------------------------------------- # covmopt = np.linalg.inv(G.T * Cinv * G + Q) Ginv = covmopt * G.T # Calculate the generalized inverse mopt = Ginv * Cinv * dobs R = Ginv * Cinv * G v = grid.to_2D_array(v0 / (1 + mopt)) return v, twoD_path_density, R, grid, Cinv, Ginv def make_paths(disp_curves, v_type): # Here I am just appending to a list. This is not necessarily fast, but # I'm only appending a few values so it's ok here. Usually it's better to # predefine the array. paths = [] dists = [] for idx, row in disp_curves.iterrows(): dist = psutils.dist(row.source_lon, row.source_lat, row.receiver_lon, row.receiver_lat) npts = np.max([np.ceil(dist) + 1, 100]) source_coords = (row.source_lon, row.source_lat) receiver_coords = (row.receiver_lon, row.receiver_lat) path = psutils.geodesic(source_coords, receiver_coords, npts) paths.append(path) dists.append(dist) dists = np.array(dists) paths = np.array(paths, dtype="object") vels = disp_curves[v_type] return vels, paths, dists def make_grid(disp_curves, tol, latstep, lonstep): """ Set up the inversion grid. """ # Get the smallest longitude min_rcv_lon = np.min(disp_curves["receiver_lon"]) min_src_lon = np.min(disp_curves["source_lon"]) min_lon = np.min([min_rcv_lon, min_src_lon]) - tol # Get the smallest latitude min_rcv_lat = np.min(disp_curves["receiver_lat"]) min_src_lat = np.min(disp_curves["source_lat"]) min_lat = np.min([min_rcv_lat, min_src_lat]) - tol # Get the largest longitude max_rcv_lon = np.max(disp_curves["receiver_lon"]) max_src_lon = np.max(disp_curves["source_lon"]) max_lon = np.max([max_rcv_lon, max_src_lon]) # Get the largest latitude max_rcv_lat = np.max(disp_curves["receiver_lat"]) max_src_lat = np.max(disp_curves["source_lat"]) max_lat = np.max([max_rcv_lat, max_src_lat]) nlon = np.ceil((max_lon + tol - min_lon) / lonstep) nlat = np.ceil((max_lat + tol - min_lat) / latstep) # Create a grid object, from pysismo grid = Grid(min_lon, lonstep, nlon, min_lat, latstep, nlat) return grid def plot_interpolated(grid, v, fine_num_lats, fine_num_lons, path_density, inset_region, v_type): xmin, xmax, ymin, ymax = grid.bbox() # Interpolate the data onto a finer grid # --------------------------------------------------------------------------------------------------------------- # lats = np.linspace(ymin, ymax, fine_num_lats) lons = np.linspace(xmin, xmax, fine_num_lons) x = np.digitize(lats, grid.yarray(), right=True) y = np.digitize(lons, grid.xarray(), right=True) fv = scipy.interpolate.interp2d(grid.yarray(), grid.xarray(), v, kind="cubic") v_interp = fv(lats, lons) # ----------------------------------------------------------------------- # # Mask areas with no raypaths # ----------------------------------------------------------------------- # for i in range(len(x)): for j in range(len(y)): dens = path_density[y[j], x[i]] if dens < 1.0: v_interp[j, i] = v_interp[j, i] * np.nan # ----------------------------------------------------------------------- # grd = xr.DataArray(v_interp.T, coords=(lats, lons)) # Get the data in a format that pygmt can use fig = pygmt.Figure() fig.basemap( region=f"{xmin-1}/{xmax+1}/{ymin-1}/{ymax+1}", # Plot a slightly expanded region around the study area frame=True, # Plot a nice frame projection="M15c" # Use Mercator projection with a plot width of 15cm ) fig.coast( land="lightgray", # Color the land light gray water="white", # color the water white borders=1, # Plot national boundaries shorelines=True # Show shorelines ) # Make a colormap pygmt.makecpt( cmap="inferno", reverse=True, series=[np.nanmin(v_interp), np.nanmax(v_interp)] ) # Show the tomography data fig.grdimage( grd, frame=True, cmap=True, nan_transparent=True, transparency=20 ) # Make an inset plot, with the study area depicted with fig.inset(position="jTL+w5c/4.8c", box="+gblack+p2p"): fig.coast( region=inset_region, land="green", water="cornflowerblue" ) rectangle=[[xmin-1, ymin-1, xmax+1,ymax+1]] fig.plot(data=rectangle, style="r+s", pen="2p,blue") fig.colorbar(frame=f'+l"{v_type} [km/s]"') fig.show()
import torch import torch.nn as nn import torch.nn.functional as F class Attention(nn.Module): def __init__(self): super(Attention, self).__init__() self.L = 500 self.D = 128 self.embeddingDimension = 120 self.K = 1 self.attention = nn.Sequential( nn.Linear(self.L, self.D), nn.Tanh(), nn.Linear(self.D, self.K) ) self.classifier = nn.Sequential( nn.Linear(self.L*self.K, 1), nn.Sigmoid() ) #this is a trial attempt at building a feature extractor for the optical flow from i3d # input dimension will be (7,7,1024) or (m,7,7,1024) maybe? #output will be a 120 dimension vector for now def feature_extractor_opticalflow_i3d(self, opticalFlow, ifPool=False): #reshaping the opticalFlow, so that it is in channel-first order (m,1024,7,7) opticalFlow = opticalFlow.permute(0,3,1,2) if ifPool==True: opticalFlow = nn.MaxPool2d(kernel_size=3, stride=1)(opticalFlow) opticalFlow = nn.Conv2d(in_channels=1024, out_channels=512, kernel_size=3,stride=1)(opticalFlow) opticalFlow = nn.ReLU()(opticalFlow) opticalFlow = nn.Conv2d(in_channels=512, out_channels=256, kernel_size=1, stride=1)(opticalFlow) opticalFlow = nn.ReLU()(opticalFlow) else: opticalFlow = nn.Conv2d(in_channels=1024, out_channels=512, kernel_size=3, stride=1)(opticalFlow) opticalFlow = nn.ReLU()(opticalFlow) opticalFlow = nn.Conv2d(in_channels=512, out_channels=256, kernel_size=3, stride=1)(opticalFlow) opticalFlow = nn.ReLU()(opticalFlow) opticalFlow = nn.Conv2d(in_channels=256, out_channels=64, kernel_size=1)(opticalFlow) opticalFlow = nn.ReLU()(opticalFlow) opticalFlow = opticalFlow.reshape(-1, 64*3*3) opticalFlow = nn.Linear(in_features=64*3*3, out_features=self.embeddingDimension) opticalFlow = nn.ReLU()(opticalFlow) return opticalFlow #this is a trial attempt at building a feature extractor for the rgb output from i3d # input dimension will be (7,7,1024) or (m,7,7,1024) maybe? #output will be a 120 dimension vector for now def feature_extractor_rgb_i3d(self, rgb, ifPool=False): #reshaping the rgb input, so that it is in channel-first order (m,1024,7,7) rgb = rgb.permute(0,3,1,2) if ifPool==True: rgb = nn.MaxPool2d(kernel_size=3, stride=1)(rgb) rgb = nn.Conv2d(in_channels=1024, out_channels=512, kernel_size=3,stride=1)(rgb) rgb = nn.ReLU()(rgb) rgb = nn.Conv2d(in_channels=512, out_channels=256, kernel_size=1, stride=1)(rgb) rgb = nn.ReLU()(rgb) else: rgb = nn.Conv2d(in_channels=1024, out_channels=512, kernel_size=3, stride=1)(rgb) rgb = nn.ReLU()(rgb) rgb = nn.Conv2d(in_channels=512, out_channels=256, kernel_size=3, stride=1)(rgb) rgb = nn.ReLU()(rgb) rgb = nn.Conv2d(in_channels=256, out_channels=64, kernel_size=1)(rgb) rgb = nn.ReLU()(rgb) rgb = rgb.reshape(-1, 64*3*3) rgb = nn.Linear(in_features=64*3*3, out_features=self.embeddingDimension) rgb = nn.ReLU()(rgb) return rgb def forward(self, x): x = x.squeeze(0) H = self.feature_extractor_part1(x) H = H.view(-1, 50 * 4 * 4) H = self.feature_extractor_part2(H) # NxL A = self.attention(H) # NxK A = torch.transpose(A, 1, 0) # KxN A = F.softmax(A, dim=1) # softmax over N M = torch.mm(A, H) # KxL Y_prob = self.classifier(M) Y_hat = torch.ge(Y_prob, 0.5).float() return Y_prob, Y_hat, A # AUXILIARY METHODS def calculate_classification_error(self, X, Y): Y = Y.float() _, Y_hat, _ = self.forward(X) error = 1. - Y_hat.eq(Y).cpu().float().mean().data[0] return error, Y_hat def calculate_objective(self, X, Y): Y = Y.float() Y_prob, _, A = self.forward(X) Y_prob = torch.clamp(Y_prob, min=1e-5, max=1. - 1e-5) neg_log_likelihood = -1. * (Y * torch.log(Y_prob) + (1. - Y) * torch.log(1. - Y_prob)) # negative log bernoulli return neg_log_likelihood, A class GatedAttention(nn.Module): def __init__(self, embeddingDimension=120): super(GatedAttention, self).__init__() # self.L = 500 self.L = 256 self.D = 64 self.embeddingDimension = embeddingDimension #this could be a possible hyperparameter self.K = 1 self.poolingPolicy = ["attention", "avg", "max"] """ i3d layers """ self.i3d_opticalflow_extractor1 = nn.Sequential( #when pooling layer is used nn.MaxPool2d(kernel_size=3, stride=1), nn.Conv2d(in_channels=1024, out_channels=512, kernel_size=3,stride=1), nn.ReLU(), nn.Conv2d(in_channels=512, out_channels=256, kernel_size=1, stride=1), nn.ReLU() ) self.i3d_opticalflow_extractor2 = nn.Sequential( nn.Conv2d(in_channels=1024, out_channels=512, kernel_size=3, stride=1), nn.ReLU(), nn.Conv2d(in_channels=512, out_channels=256, kernel_size=3, stride=1), nn.ReLU() ) self.i3d_opticalflow_extractor3 = nn.Sequential( nn.Conv2d(in_channels=256, out_channels=64, kernel_size=1), nn.ReLU() ) self.i3d_opticalflow_extractor4 = nn.Sequential( nn.Linear(in_features=64*3*3, out_features=self.embeddingDimension), nn.ReLU() ) self.i3d_rgb_extractor1 = nn.Sequential( #When pooling layer is used nn.MaxPool2d(kernel_size=3, stride=1), nn.Conv2d(in_channels=1024, out_channels=512, kernel_size=3,stride=1), nn.ReLU(), nn.Conv2d(in_channels=512, out_channels=256, kernel_size=1, stride=1), nn.ReLU() ) self.i3d_rgb_extractor2 = nn.Sequential( nn.Conv2d(in_channels=1024, out_channels=512, kernel_size=3, stride=1), nn.ReLU(), nn.Conv2d(in_channels=512, out_channels=256, kernel_size=3, stride=1), nn.ReLU() ) self.i3d_rgb_extractor3 = nn.Sequential( nn.Conv2d(in_channels=256, out_channels=64, kernel_size=1), nn.ReLU() ) self.i3d_rgb_extractor4 = nn.Sequential( nn.Linear(in_features=64*3*3, out_features=self.embeddingDimension), nn.ReLU() ) """ openpose frame layers """ self.frame_dense1 = nn.Linear(in_features=25*3, out_features=self.embeddingDimension) self.attention_V_frame = nn.Sequential( nn.Linear(self.embeddingDimension, self.D), # nn.Linear(90, 60), nn.Tanh() ) self.attention_U_frame = nn.Sequential( nn.Linear(self.embeddingDimension, self.D), # nn.Linear(90, 60), nn.Sigmoid() ) self.attention_weights_frame = nn.Linear(self.D, self.K) """ openpose instance layers""" self.instance_dense1 = nn.Linear(in_features=120, out_features=256) self.lstm_input_dim = 256 self.lstm_output_dim = 512 self.lstm_layers_num = 1 #should we opt for bidirectional lstm layer? self.instance_lstm_layer = nn.LSTM( input_size=self.lstm_input_dim, hidden_size=self.lstm_output_dim, num_layers=self.lstm_layers_num, batch_first=True, # bidirectional=True ) self.instance_dense2 = nn.Linear(in_features=512, out_features=120) self.attention_V_instance = nn.Sequential( nn.Linear(512, 256), # nn.Linear(90, 60), nn.Tanh() ) self.attention_U_instance = nn.Sequential( nn.Linear(512, 256), # nn.Linear(90, 60), nn.Sigmoid() ) self.attention_weights_instance = nn.Linear(256, self.K) "openpose bag layers" """classfier layers""" self.classifier = nn.Sequential( nn.Linear(self.L*self.K, 1), nn.Sigmoid() ) #this is a trial attempt at building a feature extractor for the optical flow from i3d # (m,7,7,1024) maybe? #I'm assuming, the input will be of the form (m, 7, 7, 1024) #output will be a 120 dimension vector for now def feature_extractor_opticalflow_i3d(self, opticalFlow, ifPool=False): #reshaping the opticalFlow, so that it is in channel-first order (m,1024,7,7) # opticalFlow = opticalFlow.permute(0,3,1,2) #reshaping the opticalFlow, so that it is in channel-first order (1024,7,7) opticalFlow = opticalFlow.permute(2,0,1) """change here""" opticalFlow = opticalFlow.unsqueeze(0) #including the batch size, the shape becomes (1,1024,7,7) if ifPool==True: opticalFlow = self.i3d_opticalflow_extractor1(opticalFlow) else: opticalFlow = self.i3d_opticalflow_extractor2(opticalFlow) opticalFlow = self.i3d_opticalflow_extractor3(opticalFlow) opticalFlow = opticalFlow.reshape(-1, 64*3*3) opticalFlow = self.i3d_opticalflow_extractor4(opticalFlow) #output shape (m, 120) return opticalFlow.squeeze(0) #output shape (120) # return opticalFlow #output shape (m,120) #this is a trial attempt at building a feature extractor for the rgb output from i3d # input dimension will be (7,7,1024) or (m,7,7,1024) maybe? #I'm assuming, the input will be of the form (7, 7, 1024) #output will be a 120 dimension vector for now def feature_extractor_rgb_i3d(self, rgb, ifPool=False): #reshaping the rgb input, so that it is in channel-first order (m,1024,7,7) # rgb = rgb.permute(0,3,1,2) #reshaping the rgb input, so that it is in channel-first order (1024,7,7) rgb = rgb.permute(2,0,1) rgb = rgb.unsqueeze(0) #including the batch-size dimension, the shape becomes (1,1024,7,7) if ifPool==True: rgb = self.i3d_rgb_extractor1(rgb) else: rgb = self.i3d_rgb_extractor2(rgb) rgb = self.i3d_rgb_extractor3(rgb) rgb = rgb.reshape(-1, 64*3*3) rgb = self.i3d_rgb_extractor4(rgb) #output shape (m, 120) return rgb.squeeze(0) #output shape (120) # return rgb #output shape (m,120) #I'm assuming that a tensor of following shape will be passed to this method: (m, human_count,25, 3) #here m == number of frames in an instance #m will work as the batch size for the following calculations def frame_encoder(self, openpose_instance_frames, pooling='attention'): #openpose_instance_frames will be of shape (human_count, 25, 3) human_count = openpose_instance_frames.shape[0] #openpose_instance_frames will be of the size (m, human_count, 25, 3), here m is the batch_size # m = openpose_instance_frames.shape[0] # human_count = openpose_instance_frames.shape[1] H = openpose_instance_frames.reshape(human_count, 25*3) # H = openpose_instance_frames.reshape(-1, human_count, 25*3) H = self.frame_dense1(H) #output of this will be shape (human_count, 120) A = None if pooling == 'attention' or pooling == 'max': A_V = self.attention_V_frame(H) #(human_count, 64) A_U = self.attention_U_frame(H) #(human_count, 64) A = self.attention_weights_frame(A_V*A_U) # (human_count, 1) A = torch.transpose(A, 1, 0) #(1, human_count) # A = A.permute(0, 2, 1) #(m, 1, human_count) if pooling == 'attention': A = F.softmax(A, dim=1) # softmax over human_count, (1, human_count) # A = F.softmax(A, dim=2) #softmax over human_count (m, 1, human_count), softmax doesn't have learnable parameters, hence it need not be declared in __init__ else: # A_ = torch.zeros((m, 1, human_count)) A_ = torch.zeros(( 1,human_count)) A_[0][A.argmax()] = 1 # for i in range(m): # A_[i][0][A[i][0].argmax()] = 1 A = A_ elif pooling == 'avg': # A = torch.ones((m,1,human_count))/human_count A = torch.ones((1,human_count))/human_count # M = torch.zeros((m,1,120)) M = torch.mm(A, H) #(1,120) # for i in range(m): # M[i] = torch.mm(A[i], H[i]) #Shape of M (m,1,120) return M.squeeze(0) #output shape (120) # return M.squeeze(1) #output shape (m,120) #I'm assuming batch size will be 1 and batch_size will not be included in the input dimension #I'm assuming that the single_instance will be "list" of tensors of shape (human_count, 25, 3) def openpose_instance_encoder(self, single_instance, pooling="attention"): instanceLen = len(single_instance) encoded_frames = torch.zeros((instanceLen, self.lstm_input_dim)) #(frame_count, 256) for i in range(instanceLen): encoded_frame = self.frame_encoder(single_instance[i]) #output shape (120) encoded_frame = self.instance_dense1(encoded_frame) #output shape (256) # encoded_frame = encoded_frame.unsqueeze(0) #output shape (1,256) # encoded_frame = encoded_frame.unsqueeze(1) #output shape (m,1,256) encoded_frames[i] = encoded_frame encoded_frames = encoded_frames.unsqueeze(0) #now encoded_frames will be a tensor of shape (1, frame_count, 256), because lstm expects 3d inputs #not passing initial activation and initial cell is the same as passing a couple of 0 vectors activations, last_activation_cell = self.instance_lstm_layer(encoded_frames) #output shape (1, frame_count, 512) outPutEmbedding = None if pooling == "attention": H = activations[0] #shape(frame_count, 512) A_V = self.attention_V_instance(H) #shape (frame_count, 256) A_U = self.attention_U_instance(H) #shape (frame_count, 256) A = self.attention_weights_instance(A_V*A_U) #shape (frame_count, 1) A = torch.transpose(A, 1, 0) #shape (1, frame_count) A = F.softmax(A, dim=1) # softmax over frame_count, (1, frame_count) outPutEmbedding = torch.mm(A,H) #shape (1,512) outPutEmbedding = outPutEmbedding.squeeze(0) #shape(512) else: #since I'm not using the attention pooling, I'll just select last activation as the outputEmbedding outPutEmbedding = activations[0][-1] #shape (512) outPutEmbedding = self.instance_dense2(outPutEmbedding) #shape (120) return outPutEmbedding #shape (120) #return outPutEmbedding[0][0] #output shape (120) # return outPutEmbedding[0] #output shape (m,120) #Each bag is a datapoint. Each bag has multiple instance in it. Each instance has multiple #frames in it. #openpose bag is list of list of tensors def openpose_bag_encoder(self, bag, pooling="attention"): instanceNum = len(bag) instanceEncoding = torch.zeros((instanceNum, self.embeddingDimension)) #(instanceNum, 120) for idx in range(instanceNum): singleInstance = self.openpose_instance_encoder(bag[idx]) instanceEncoding[idx] = singleInstance #instanceEncoding has shape (instanceNum, 120) instanceEncoding = instanceEncoding.unsqueeze(0) #(1, instanceNum, 120) #not passing initial activation and initial cell is the same as passing a couple of 0 vectors # activations, last_activation_cell = self.instance_lstm_layer(instanceEncoding) #output shape (1, frame_count, 512) # outPutEmbedding = None # if pooling == "attention": # H = activations[0] #shape(frame_count, 512) # A_V = self.attention_V_instance(H) #shape (frame_count, 256) # A_U = self.attention_U_instance(H) #shape (frame_count, 256) # A = self.attention_weights_instance(A_V*A_U) #shape (frame_count, 1) # A = torch.transpose(A, 1, 0) #shape (1, frame_count) # A = F.softmax(A, dim=1) # softmax over frame_count, (1, frame_count) # outPutEmbedding = torch.mm(A,H) #shape (1,512) # outPutEmbedding = outPutEmbedding.squeeze(0) #shape(512) # else: # #since I'm not using the attention pooling, I'll just select last activation as the outputEmbedding # outPutEmbedding = activations[0][-1] #shape (512) # outPutEmbedding = self.instance_dense2(outPutEmbedding) #shape (120) # return outPutEmbedding #shape (120) #I'm assuming x will be like the following [i3d_optical, i3d_rgb, openpose_list] #openpose_list == list of instances #an instance == list of frames #a frame == a tensor of shape (human_count, 25, 3) def forward(self, x, y): # x = x.squeeze(0) i3d_optical = x[0] i3d_rgb = x[1] openpose_bag = x[2] optical_encoding = self.feature_extractor_opticalflow_i3d(i3d_optical) #shape (120) rgb_encoding = self.feature_extractor_rgb_i3d(i3d_rgb) #shape (120) i3d_encoding = optical_encoding + rgb_encoding #shape (120) openpose_encoding = self.openpose_bag_encoder(openpose_bag) #shape (120) # H = self.feature_extractor_part1(x) # H = H.view(-1, 50 * 4 * 4) # H = self.feature_extractor_part2(H) # NxL # A_V = self.attention_V(H) # NxD # A_U = self.attention_U(H) # NxD # A = self.attention_weights(A_V * A_U) # element wise multiplication # NxK # A = torch.transpose(A, 1, 0) # KxN # A = F.softmax(A, dim=1) # softmax over N # M = torch.mm(A, H) # KxL # Y_prob = self.classifier(M) # Y_hat = torch.ge(Y_prob, 0.5).float() return Y_prob, Y_hat, A # AUXILIARY METHODS def calculate_classification_error(self, X, Y): Y = Y.float() _, Y_hat, _ = self.forward(X) error = 1. - Y_hat.eq(Y).cpu().float().mean().item() return error, Y_hat def calculate_objective(self, X, Y): Y = Y.float() Y_prob, _, A = self.forward(X) Y_prob = torch.clamp(Y_prob, min=1e-5, max=1. - 1e-5) neg_log_likelihood = -1. * (Y * torch.log(Y_prob) + (1. - Y) * torch.log(1. - Y_prob)) # negative log bernoulli return neg_log_likelihood, A
from src.util import resource_path, data_path from kivy.config import Config Config.set('kivy', 'log_dir', data_path('')) import kivy.resources kivy.resources.resource_add_path(resource_path('src/ui')) from src.ui.kivy.KivyPlyerGui import RSS2VidApp RSS2VidApp().run()
""" testing a trained model for scheduling, and comparing its performance with the size-aware whittle index heuristic. To test a control policy, uncomment the code corresponding to an algorithm. """ import os import torch import random import operator import itertools import numpy as np import pandas as pd import scipy.special import sys sys.path.insert(0,'../') from neurwin import fcnn from qlearning import qLearningAgent import matplotlib.pyplot as plt from aql import ProposalQNetwork from envs.sizeAwareIndexEnv import sizeAwareIndexEnv from reinforce import reinforceFcnn, REINFORCE ###########################-CONSTANT VALUES-######################################## STATESIZE = 2 numEpisodes = 1 SEED = 30 filesSeed = 50 random.seed(SEED) np.random.seed(SEED) torch.manual_seed(SEED) ################################-PARAMETERS-######################################## CASE = 1 SCHEDULE = 1 REINFORCELR = 0.001 BATCHSIZE = 5 ARMS = 4 BETA = 0.99 TIMELIMIT = 300 numClass1 = 2 numClass2 = 2 EPISODESEND = 1 EPISODERANGE = 1000 RUNS = 50 noiseVar = 0 NOISY = False noiseVal = 0.0 assert(numClass1+numClass2 == ARMS) if CASE == 1: HOLDINGCOST1 = 1 HOLDINGCOST2 = 1 MAXLOAD1 = 1000000 MAXLOAD2 = 1000000 TESTLOAD1 = np.random.randint(1, MAXLOAD1, size=ARMS) TESTLOAD2 = np.random.randint(1, MAXLOAD2, size=ARMS) GOODTRANS1 = 33600 BADTRANS1 = 8400 GOODTRANS2 = 33600 BADTRANS2 = 8400 GOODPROB1 = 0.75 GOODPROB2 = 0.1 if CASE == 2: HOLDINGCOST1 = 5 HOLDINGCOST2 = 1 MAXLOAD1 = 1000000 MAXLOAD2 = 1000000 TESTLOAD1 = np.random.randint(1, MAXLOAD1, size=ARMS) TESTLOAD2 = np.random.randint(1, MAXLOAD2, size=ARMS) GOODTRANS1 = 33600 BADTRANS1 = 8400 GOODTRANS2 = 33600 BADTRANS2 = 8400 GOODPROB1 = 0.5 GOODPROB2 = 0.5 if NOISY: directory = (f'../testResults/size_aware_env/noisy_results/noise_val_{noiseVal}/case_{CASE}/') WINNMODEL1DIR = (f'../trainResults/neurwin/size_aware_env/noise_{noiseVal}_version/case_{CASE}/class_1/') WINNMODEL2DIR = (f'../trainResults/neurwin/size_aware_env/noise_{noiseVal}_version/case_{CASE}/class_2/') if not os.path.exists(directory): os.makedirs(directory) else: directory = (f'../testResults/size_aware_env/case_{CASE}/') WINNMODEL1DIR = (f'../trainResults/neurwin/size_aware_env/case_{CASE}/class_1/') WINNMODEL2DIR = (f'../trainResults/neurwin/size_aware_env/case_{CASE}/class_2/') if not os.path.exists(directory): os.makedirs(directory) readMeFileName = (f'{directory}'+'readme.txt') readMeFile = open(readMeFileName, 'a') readMeFile.write(f'\nSelected case: {CASE}\nNumber of arms: {ARMS} \nNumber of class 1 arms: {numClass1+numClass2}') readMeFile.close() REINFORCEDIR = (f'../trainResults/reinforce/size_aware_env/case_{CASE}/arms_{ARMS}_schedule_{SCHEDULE}/') WOLPDIR = (f'../trainResults/wolp_ddpg/size_aware_env/arms_{ARMS}_schedule_{SCHEDULE}/') AQLDIR = (f'../trainResults/aql/size_aware_env/case_{CASE}/arms_{ARMS}_schedule_{SCHEDULE}/') ##########################-- TESTING FUNCTIONS --######################################### def calculateSecondaryIndex(): global goodEnvs, goodIndex for i in goodEnvs: nuem = envs[i].holdingCost * envs[i].goodTransVal denom = envs[i].arm[0][0] goodIndex[i] = nuem / denom def getSelectionSizeAware(goodIndex, badIndex): result = [] copyGoodIndex = goodIndex.copy() copyBadIndex = badIndex.copy() if len(copyGoodIndex) + len(copyBadIndex) == SCHEDULE: armsToActivate = SCHEDULE - len(copyGoodIndex) else: armsToActivate = len(copyBadIndex) armsToActivate = min(SCHEDULE, len(copyGoodIndex) + len(copyBadIndex)) for i in range(armsToActivate): if len(copyGoodIndex) != 0: result.append(max(copyGoodIndex.items(), key=operator.itemgetter(1))[0]) del copyGoodIndex[result[-1]] else: result.append(max(copyBadIndex.items(), key=operator.itemgetter(1))[0]) del copyBadIndex[result[-1]] return result def getSelection(index): result = [] copyIndex = index.copy() if len(copyIndex) < SCHEDULE: for i in range(len(copyIndex)): result.append(max(copyIndex.items(), key=operator.itemgetter(1))[0]) del copyIndex[result[i]] else: for i in range(SCHEDULE): result.append(max(copyIndex.items(), key=operator.itemgetter(1))[0]) del copyIndex[result[i]] choice = result return choice def calculatePrimaryIndex(): global badEnvs, badIndex for i in badEnvs: nuem = envs[i].holdingCost denom = envs[i].goodProb*((envs[i].goodTransVal/envs[i].badTransVal) - 1) badIndex[i] = nuem / denom def initialize(): global numClass1, numClass2, TESTLOAD1, TESTLOAD2, envSeeds, envs num1 = numClass1 num2 = numClass2 load1Index = 0 load2Index = 0 for i in range(ARMS): if num1 != 0: env = sizeAwareIndexEnv(numEpisodes=numEpisodes, HOLDINGCOST=HOLDINGCOST1, seed=envSeeds[i], Training=False, r1=BADTRANS1, r2=GOODTRANS1, q=GOODPROB1, case=CASE, classVal=1, load=TESTLOAD1[load1Index], noiseVar = noiseVar, maxLoad = MAXLOAD1, batchSize=EPISODESEND, episodeLimit=1000000, fixedSizeMDP=False) load1Index += 1 num1 -= 1 elif num2 != 0: env = sizeAwareIndexEnv(numEpisodes=numEpisodes, HOLDINGCOST=HOLDINGCOST2, seed=envSeeds[i], Training=False, r1=BADTRANS2, r2=GOODTRANS2, q=GOODPROB2, case=CASE, classVal=2, load=TESTLOAD2[load2Index], noiseVar = noiseVar, maxLoad = MAXLOAD2, batchSize=EPISODESEND, episodeLimit=1000000, fixedSizeMDP=False) load2Index += 1 num2 -= 1 envs[i] = env def initializeAgents(): global MODELNAME1, MODELNAME2, agents num1 = numClass1 num2 = numClass2 for i in range(ARMS): if num1 != 0: agent = fcnn(stateSize=STATESIZE) agent.load_state_dict(torch.load(MODELNAME1)) agent.eval() agents[i] = agent num1 -= 1 elif num2 != 0: agent = fcnn(stateSize=STATESIZE) agent.load_state_dict(torch.load(MODELNAME2)) agent.eval() agents[i] = agent num2 -= 1 def resetEnvs(): global states, envs for key in envs: state = envs[key].reset() states[key] = state def calculateIndexNeuralNetwork(): global indexNN, states for key in agents: indexNN[key] = agents[key].forward(states[key]).detach().numpy()[0] choice = getSelection(indexNN) indexNN = {} return choice def selectArmSizeAwareIndex(): global goodEnvs, badEnvs, goodIndex, badIndex, time, states for key in envs: if envs[key].channelState[time] == 1: goodEnvs.append(key) else: badEnvs.append(key) calculateSecondaryIndex() calculatePrimaryIndex() arms = getSelectionSizeAware(goodIndex, badIndex) goodEnvs = [] badEnvs = [] goodIndex = {} badIndex = {} return arms def takeActionAndRecordNN(arms): global rewards, time, states, envs cumReward = 0 for arm in arms: nextState, reward, done, info = envs[arm].step(1) cumReward += reward states[arm] = nextState if done: del envs[arm] del agents[arm] for key in envs: if key in arms: pass else: nextState, reward, done, info = envs[key].step(0) states[key] = nextState cumReward += reward rewards.append((BETA**time)*cumReward) def takeActionAndRecordRewardSizeAwareIndex(arms): global rewards, time, envs, states cumReward = 0 for arm in arms: nextState, reward, done, info = envs[arm].step(1) cumReward += reward states[arm] = nextState if done: del envs[arm] for key in envs: if key in arms: pass else: nextState, reward, done, info = envs[key].step(0) states[key] = nextState cumReward += reward rewards.append((BETA**time)*cumReward) def getActionTableLength(): scheduleArms = SCHEDULE actionTable = np.zeros(int(scipy.special.binom(ARMS, scheduleArms))) n = int(ARMS) actionTable = list(itertools.product([0, 1], repeat=n)) actionTable = [x for x in actionTable if not sum(x) != scheduleArms] return actionTable def REINFORCETakeActionAndRecordReward(): global rewards, state, reinforceAgent, envs, actionTable cumReward = 0 stateVals = [] action_probs = reinforceAgent.forward(state).detach().numpy() G = np.random.RandomState() action = G.choice(np.arange(len(actionTable)), p=action_probs) actionVector = actionTable[action] for i in range(len(actionVector)): if actionVector[i] == 1: nextState, reward, done, info = envs[i].step(1) stateVals.append(nextState[0]) stateVals.append(nextState[1]) if nextState[0] != 0.: cumReward += reward else: nextState, reward, done, info = envs[i].step(0) stateVals.append(nextState[0]) stateVals.append(nextState[1]) if nextState[0] != 0.: cumReward += reward state = stateVals state = np.array(state, dtype=np.float32) rewards.append((BETA**time)*cumReward) def resetREINFORCEEnvs(): global envs, state for key in envs: vals = envs[key].reset() val1 = vals[0] val2 = vals[1] state.append(val1) state.append(val2) state = np.array(state, dtype=np.float32) ##########################TESTING-STEP###################################### ####################### SIZE-AWARE INDEX ################################## ''' random.seed(SEED) np.random.seed(SEED) torch.manual_seed(SEED) cumReward = [] for i in range(RUNS): envSeeds = np.random.randint(0, 10000, size=ARMS) time = 0 envs = {} rewards = [] goodEnvs = [] badEnvs = [] #index = {} goodIndex = {} badIndex = {} agents = {} states = {} indexNN = {} LOADS = [] initialize() resetEnvs() while (time < TIMELIMIT): arms = selectArmSizeAwareIndex() takeActionAndRecordRewardSizeAwareIndex(arms) ############################################### time += 1 if len(envs) == 0: break total_reward = (np.cumsum(rewards))[-1] cumReward.append(total_reward) print(f'Finished size aware index value for run {i+1} scheduling {SCHEDULE} arms') data = {'run': range(RUNS), 'cumulative_reward':cumReward} df = pd.DataFrame(data=data) sizeAwareFileName = (f'{directory}'+f'sizeAwareIndexResults_arms_{ARMS}_schedule_{SCHEDULE}_arms.csv') df.to_csv(sizeAwareFileName, index=False) ''' ################################### NEURWIN TESTING ########################################## ''' random.seed(SEED) np.random.seed(SEED) torch.manual_seed(SEED) for i in range(RUNS): envSeeds = np.random.randint(0, 10000, size=ARMS) ALLEPISODES = np.arange(0, EPISODESEND+EPISODERANGE, EPISODERANGE) zeroEnvs = {} total_reward = [] for x in ALLEPISODES: EPISODESTRAINED = x MODELNAME1 = WINNMODEL1DIR+(f'seed_{filesSeed}_lr_0.001_batchSize_{BATCHSIZE}_trainedNumEpisodes_{EPISODESTRAINED}/trained_model.pt') MODELNAME2 = WINNMODEL2DIR+(f'seed_{filesSeed}_lr_0.001_batchSize_{BATCHSIZE}_trainedNumEpisodes_{EPISODESTRAINED}/trained_model.pt') nnFileName = directory+(f'nnIndexResults_arms_{ARMS}_batchSize_{BATCHSIZE}_run_{i}_schedule_{SCHEDULE}_arms.csv') ############################## NN INDEX TEST #################################### time = 0 envs = {} rewards = [] goodEnvs = [] badEnvs = [] index = {} agents = {} states = {} indexNN = {} initialize() initializeAgents() resetEnvs() while (time < TIMELIMIT): arms = calculateIndexNeuralNetwork() takeActionAndRecordNN(arms) ############################################### time += 1 if len(envs) == 0: break total_reward.append((np.cumsum(rewards))[-1]) print(f'finished NN scheduling for episode {x}') data = {'episode': np.arange(0, EPISODESEND+EPISODERANGE, EPISODERANGE), 'cumulative_reward':total_reward} df = pd.DataFrame(data=data) df.to_csv(nnFileName, index=False) print(f'finished NN scheduling for run {i+1}') ''' ############################### REINFORCE TESTING ######################################## ''' random.seed(SEED) np.random.seed(SEED) torch.manual_seed(SEED) actionTable = getActionTableLength() hidden1 = 92 hidden2 = 42 for i in range(RUNS): envSeeds = np.random.randint(0, 10000, size=ARMS) ALLEPISODES = np.arange(0, EPISODESEND+EPISODERANGE, EPISODERANGE) zeroEnvs = {} total_reward = [] remainingLoad = 0 for x in ALLEPISODES: EPISODESTRAINED = x REINFORCEMODELDIR = REINFORCEDIR+(f'seed_{filesSeed}_lr_{REINFORCELR}_batchSize_{BATCHSIZE}_trainedNumEpisodes_{EPISODESTRAINED}/trained_model.pt') reinforceFileName = directory+(f'reinforceResults_arms_{ARMS}_batchSize_{BATCHSIZE}_lr_{REINFORCELR}_run_{i}_schedule_{SCHEDULE}.csv') time = 0 envs = {} rewards = [] state = [] initialize() resetREINFORCEEnvs() reinforceAgent = reinforceFcnn(stateDim=ARMS*2, actionDim=ARMS, hidden1=hidden1, hidden2=hidden2) reinforceAgent.load_state_dict(torch.load(REINFORCEMODELDIR)) reinforceAgent.eval() while (time < TIMELIMIT): REINFORCETakeActionAndRecordReward() time += 1 for b in envs: remainingLoad += envs[b].arm[0][0] if remainingLoad == 0: break remainingLoad = 0 total_reward.append((np.cumsum(rewards))[-1]) print(f'finished REINFORCE scheduling for episode {x}. rewards: {total_reward[-1]}') data = {'episode': np.arange(0, EPISODESEND+EPISODERANGE, EPISODERANGE), 'cumulative_reward':total_reward} df = pd.DataFrame(data=data) df.to_csv(reinforceFileName, index=False) print(f'finished REINFOCE scheduling for run {i+1}') ''' ########################## AQL TESTING ############################### def AQLTakeActionAndRecordReward(): global rewards, state, aqlAgent, envs, actionTable cumReward = 0 stateVals = [] action, qVals = aqlAgent.forward(state) if len(envs) == 100: indices = (-qVals).argsort()[:SCHEDULE] notIndices = (-qVals).argsort()[SCHEDULE:] qVals[indices] = 1 qVals[notIndices] = 0 actionVector = qVals.detach().numpy() else: actionVector = actionTable[action] for i in range(len(actionVector)): if actionVector[i] == 1: nextState, reward, done, info = envs[i].step(1) stateVals.append(nextState[0]) stateVals.append(nextState[1]) if nextState[0] != 0.: cumReward += reward else: nextState, reward, done, info = envs[i].step(0) stateVals.append(nextState[0]) stateVals.append(nextState[1]) if nextState[0] != 0.: cumReward += reward state = stateVals state = np.array(state, dtype=np.float32) rewards.append((BETA**time)*cumReward) ''' random.seed(SEED) np.random.seed(SEED) torch.manual_seed(SEED) #actionTable = getActionTableLength() DIM1 = 512 DIM2 = 196 for i in range(RUNS): envSeeds = np.random.randint(0, 10000, size=ARMS) ALLEPISODES = np.arange(0, EPISODESEND+EPISODERANGE, EPISODERANGE) total_reward = [] for x in ALLEPISODES: EPISODESTRAINED = x AQLMODELDIR = AQLDIR+(f'seed_{filesSeed}_lr_0.001_trainedNumEpisodes_{EPISODESTRAINED}/trained_model.pt') aqlFileName = directory+(f'aqlResults_arms_{ARMS}_run_{i}_schedule_{SCHEDULE}.csv') time = 0 envs = {} rewards = [] state = [] initialize() resetREINFORCEEnvs() aqlAgent = ProposalQNetwork(ARMS*2, ARMS, DIM1, DIM2) aqlAgent.load_state_dict(torch.load(AQLMODELDIR)) aqlAgent.eval() while True: AQLTakeActionAndRecordReward() time += 1 if time == TIMELIMIT: break total_reward.append((np.cumsum(rewards))[-1]) print(f'finished AQL for trained episodes: {x}. rewards : {total_reward[-1]}') data = {'episode': np.arange(0, EPISODESEND+EPISODERANGE, EPISODERANGE), 'cumulative_reward':total_reward} df = pd.DataFrame(data=data) df.to_csv(aqlFileName, index=False) print(f'finished AQL scheduling for run {i+1}') '''
import os from common.utils import run, expect_retcode def run_test(sut, verbose, debug): this_dir = os.path.dirname(os.path.abspath(__file__)) args = '-h'.split() proc, out = run(sut, args, this_dir, 3, verbose, debug) expect_retcode(proc, 0, out, verbose, debug)
import mediacloud, datetime, logging logging.basicConfig(filename='electionCount.log', format='%(levelname)s:%(message)s', level=logging.DEBUG) class ElectionCount: def __init__(self, key): #Intitalise function with actual key value self.key = key logging.info('Accessing MediaCloud') self.mc = mediacloud.api.MediaCloud(self.key) logging.info('Finished Accessing MediaCloud') def getSentenceCount(self, person1, person2, start_date, end_date): logging.debug('Inputs to getSentenceCount: ' + person1 + ',' + person2 + ',' + str(start_date) + ',' + str(end_date)) mc = self.mc res = mc.sentenceCount(person1, solr_filter=[self.mc.publish_date_query( datetime.date(start_date[2], start_date[1], start_date[0]), datetime.date(end_date[2], end_date[1], end_date[0]) ), 'tags_id_media:1' ]) res2 = mc.sentenceCount(person2, solr_filter=[mc.publish_date_query( datetime.date(start_date[2], start_date[1], start_date[0]), datetime.date(end_date[2], end_date[1], end_date[0]) ), 'tags_id_media:1' ]) return res['count'], res2['count']
class WalkNavigation: jump_height = None mouse_speed = None teleport_time = None use_gravity = None use_mouse_reverse = None view_height = None walk_speed = None walk_speed_factor = None
from time import time import fibonacci as pf import cFibonacci as cf n = 1000000 t1 = time() pf.ifib(n) t2 = time() cf.ifib(n) t3 = time() print print "n=" + str(n) print "Iterative fibonacci time in Python: " + str(t2-t1) print "Iterative fibonacci time in C: " + str(t3-t2) print "C/Python ratio: " + str((t2-t1)/(t3-t2)) print t1 = time() pf.fdfib(n) t2 = time() print "Fast doubling fibonacci time in Python: " + str(t2-t1) print n = 40 t1 = time() pf.rfib(n) t2 = time() cf.rfib(n) t3 = time() print "n=" + str(n) print "Recursive fibonacci time in Python: " + str(t2-t1) print "Recursive fibonacci time in C: " + str(t3-t2) print "C/Python ratio: " + str((t2-t1)/(t3-t2))
from setuptools import setup, find_packages setup(name="Qelos Core", description="qelos-core", author="Sum-Ting Wong", author_email="sumting@wo.ng", install_requires=[], packages=["qelos_core"], )
# -*- coding: utf-8 -*- """ Created on Thu Oct 7 20:14:28 2021 @author: punti """ print("Hello World")
n = int(input()) for i in range(1, n + 1): print(i)
# ex028 é a v1.0 do jogo. Fazer várias tentativas até acertar o número que o computador 'pensou' # número int entre 0 e 10 from random import randint pc = randint(0, 10) print('''Sou seu computador,... Acabei de pensar em um número entre 0 e 10. Será que você consegue acertar com menos de 4 tentativas?''') acertou = False palpite = 0 while not acertou: jogador = int(input('Seu palpite: ')) palpite += 1 if jogador == pc: acertou = True else: if jogador < pc: print('Mais... Tente novamente') else: print('Menos... Tente novamente') print(f'Acertou com {palpite} tentativas!', end=' ') if palpite <= 3: print('Parabéns!') else: print('Better luck next time!')
from flask import Flask, abort import json import socket, sys app = Flask(__name__) PORT = 7555 MAX = 65535 temp= [] @app.route('/node', methods=['GET']) def semua(): return json.dumps(temp) @app.route('/node/<int:node_id>', methods=['GET']) def satu(node_id): node = None for n in temp : if n["id"] == node_id : node = n if node : return json.dumps(node) else : abort(404) if __name__=='__main__': app.run(debug=True, port=7555) s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) s.bind(('', PORT)) while True: datax, address = s.recvfrom(MAX) temp.append(datax) print 'The client says', datax
from django.conf import settings from django.urls import include, re_path from django.conf.urls.static import static from django.contrib import admin from testproject import views urlpatterns = [ re_path(r'^admin/', admin.site.urls), re_path(r'^$', views.TestView.as_view(), name='home'), re_path(r'^groups-manager/', include('groups_manager.urls', namespace='groups_manager')), ] + static(settings.STATIC_URL, document_root=settings.STATIC_ROOT)
#!/usr/bin/env python """ Neighboring WBEM agents. """ import sys import logging import lib_util import lib_wbem import lib_common import lib_credentials from lib_properties import pc from sources_types import neighborhood as survol_neighborhood # Similar to portal_wbem.py except that: # - This script uses SLP. # - This script can only give top-level URLs. def _add_from_wbem_cimom(grph, cimom_wbem): parsed_url = lib_util.survol_urlparse(cimom_wbem) host_wbem = parsed_url.hostname logging.debug("host_wbem=%s", host_wbem) if not host_wbem: return None # http://mymachine:8000/survol/namespaces_wbem.py?xid=http:%2F%2F192.168.0.17:5988/. cimom_wbem_cgi = cimom_wbem.replace("//", "%2f%2f") logging.debug("cimomWbem=%s cimom_wbem_cgi=%s", cimom_wbem, cimom_wbem_cgi) url_wbem = lib_wbem.WbemAllNamespacesUrl(cimom_wbem_cgi) wbem_node = lib_common.NodeUrl(url_wbem) wbem_host_node = lib_uris.gUriGen.HostnameUri(host_wbem) grph.add((wbem_node, pc.property_information, lib_util.NodeLiteral(cimom_wbem))) grph.add((wbem_node, pc.property_host, wbem_host_node)) return wbem_node def _wbem_servers_display(grph): cred_names = lib_credentials.get_credentials_names("WBEM") logging.debug("WbemServersDisplay") for cimom_wbem in cred_names: logging.debug("WbemServersDisplay cimomWbem=%s", cimom_wbem) # The credentials are not needed until a Survol agent uses HTTPS. wbem_node = _add_from_wbem_cimom(grph, cimom_wbem) if not wbem_node: continue grph.add((wbem_node, pc.property_information, lib_util.NodeLiteral("Static definition"))) def Main(): # If this flag is set, the script uses SLP to discover WBEM Agents. paramkey_slp = "Service Location Protocol" cgiEnv = lib_common.ScriptEnvironment( parameters={paramkey_slp: False} ) flag_slp = bool(cgiEnv.get_parameters(paramkey_slp)) grph = cgiEnv.GetGraph() _wbem_servers_display(grph) if flag_slp: dict_services = survol_neighborhood.GetSLPServices("survol") for key_service in dict_services: wbem_node = _add_from_wbem_cimom(grph, key_service) if not wbem_node: continue grph.add((wbem_node, pc.property_information, lib_util.NodeLiteral("Service Location Protocol"))) attrs_service = dict_services[key_service] for key_attr in attrs_service: prop_attr = lib_common.MakeProp(key_attr) val_attr = attrs_service[key_attr] grph.add((wbem_node, prop_attr, lib_util.NodeLiteral(val_attr))) cgiEnv.OutCgiRdf() if __name__ == '__main__': Main()
import os import shutil import tensorflow as tf from tensorflow import keras from logs import logDecorator as lD import jsonref import numpy as np import pickle from tqdm import tqdm import PIL import matplotlib.pyplot as plt config = jsonref.load(open('../config/config.json')) logBase = config['logging']['logBase'] + '.modules.data.getData' dataFolder = '../data/raw_data/' @lD.log(logBase + '.getInputDataDict') def getInputDataDict(logger, resize_shape=(56, 56, 3)): try: shape2D = resize_shape[:2] channelSize = resize_shape[-1] dataDict = mnistFashion() inputDataDict = {} for dataName in ['train_images', 'test_images']: tmpArr = [] imageStack = dataDict[ dataName ] for img in tqdm(imageStack): img = img / 255.0 img_resized = PIL.Image.fromarray(img).resize(size=shape2D) img_resized = np.array(img_resized) tmpArr.append( img_resized ) tmpArr = np.stack( tmpArr ) tmpArr = np.stack([ tmpArr ] * channelSize, axis=-1) inputDataDict[dataName] = tmpArr return inputDataDict except Exception as e: logger.error('Unable to generate train data \n{}'.format(str(e))) @lD.log(logBase + '.mnistFashion') def mnistFashion(logger): try: cacheFilePath = os.path.join(dataFolder, 'mnist_fashion.pkl') if not os.path.exists( cacheFilePath ): fashion_mnist = keras.datasets.fashion_mnist (train_images, train_labels), (test_images, test_labels) = fashion_mnist.load_data() shutil.rmtree('/Users/lingyit/.keras/datasets/fashion-mnist/') dataDict = { 'train_images' : train_images, 'train_labels' : train_labels, 'test_images' : test_images, 'test_labels' : test_labels } pickle.dump(dataDict, open(cacheFilePath, 'wb')) else: dataDict = pickle.load(open(cacheFilePath, 'rb')) return dataDict except Exception as e: logger.error('Unable to get mnist Fashion data \n{}'.format(str(e))) @lD.log(logBase + '.showOneImg') def showOneImg(logger, imageIndex): try: dataDict = mnistFashion() train_images = dataDict['train_images'] train_labels = dataDict['train_labels'] test_images = dataDict['test_images'] test_labels = dataDict['test_labels'] visualiseArray( train_images[imageIndex] ) except Exception as e: logger.error('Unable to show one image \n{}'.format(str(e))) @lD.log(logBase + '.visualiseArray') def visualiseArray(logger, img): try: plt.figure() plt.imshow( img ) plt.colorbar() plt.grid(False) plt.show() except Exception as e: logger.error('Unable to visualise image array \n{}'.format(str(e))) @lD.log(logBase + '.showMultipleImgs') def showMultipleImgs(logger, N): try: dataDict = mnistFashion() train_images = dataDict['train_images'] train_labels = dataDict['train_labels'] test_images = dataDict['test_images'] test_labels = dataDict['test_labels'] class_names = ['T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat', 'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle boot'] stackedImg = np.stack([ train_images[i] for i in range(N) ], axis=-1) labels = [ class_names[train_labels[i]] for i in range(N) ] visualiseStackedArray( stackedImg, labels ) except Exception as e: logger.error('Unable to show one image \n{}'.format(str(e))) @lD.log(logBase + '.visualiseStackedArray') def visualiseStackedArray(logger, stackedImg, xlabels=None, cmap=plt.cm.binary): try: N = stackedImg.shape[-1] sqrtN = np.ceil(np.sqrt(N)) if sqrtN > 10: rowN, colN = np.ceil( N / 10 ), 10 else: rowN, colN = sqrtN, sqrtN plt.figure(figsize=(10, rowN)) for i in range(N): plt.subplot(rowN, colN, i+1) plt.xticks([]) plt.yticks([]) plt.grid(False) plt.imshow( stackedImg[:, :, i], cmap=cmap ) if xlabels is not None: plt.xlabel( xlabels[i] ) plt.tight_layout() plt.show() except Exception as e: logger.error('Unable to visualise stacked array \n{}'.format(str(e))) @lD.log(logBase + '.main') def main(logger, resultsDict): try: print('getting numpy MNIST data dictionary') dataDict = mnistFashion() print('keys', dataDict.keys()) print('getting stacked & resized MNIST data array with channels') inputDataDict = getInputDataDict( resize_shape=(56, 56, 3) ) print( inputDataDict['train_images'].shape, inputDataDict['train_images'].max(), inputDataDict['train_images'].min() ) print( inputDataDict['test_images'].shape, inputDataDict['test_images'].max(), inputDataDict['test_images'].min() ) except Exception as e: logger.error('Unable to run main \n{}'.format(str(e))) if __name__ == '__main__': print('tf.__version__ :', tf.__version__) ### ------------------------------------------------- ### Give it a try run on getting mnist fashion data ### ------------------------------------------------- print('try fetching data..') dataDict = mnistFashion() for dataName in dataDict: data = dataDict[dataName] print(dataName, type(data), data.shape)
#!venv/bin/python import re import os import sys SUBS = [ ('AsyncIteratorByteStream', 'IteratorByteStream'), ('AsyncIterator', 'Iterator'), ('AutoBackend', 'SyncBackend'), ('Async([A-Z][A-Za-z0-9_]*)', r'Sync\2'), ('async def', 'def'), ('async with', 'with'), ('async for', 'for'), ('await ', ''), ('arequest', 'request'), ('aclose', 'close'), ('aclose_func', 'close_func'), ('aiterator', 'iterator'), ('__aenter__', '__enter__'), ('__aexit__', '__exit__'), ('__aiter__', '__iter__'), ('@pytest.mark.anyio', ''), ('@pytest.mark.trio', ''), (r'@pytest.fixture\(params=\["auto", "anyio"\]\)', '@pytest.fixture(params=["sync"])'), ('lookup_async_backend', "lookup_sync_backend"), ('auto', 'sync'), ] COMPILED_SUBS = [ (re.compile(r'(^|\b)' + regex + r'($|\b)'), repl) for regex, repl in SUBS ] def unasync_line(line): for regex, repl in COMPILED_SUBS: line = re.sub(regex, repl, line) return line def unasync_file(in_path, out_path): with open(in_path, "r") as in_file: with open(out_path, "w", newline="") as out_file: for line in in_file.readlines(): line = unasync_line(line) out_file.write(line) def unasync_file_check(in_path, out_path): with open(in_path, "r") as in_file: with open(out_path, "r") as out_file: for in_line, out_line in zip(in_file.readlines(), out_file.readlines()): expected = unasync_line(in_line) if out_line != expected: print(f'unasync mismatch between {in_path!r} and {out_path!r}') print(f'Async code: {in_line!r}') print(f'Expected sync code: {expected!r}') print(f'Actual sync code: {out_line!r}') sys.exit(1) def unasync_dir(in_dir, out_dir, check_only=False): for dirpath, dirnames, filenames in os.walk(in_dir): for filename in filenames: if not filename.endswith('.py'): continue rel_dir = os.path.relpath(dirpath, in_dir) in_path = os.path.normpath(os.path.join(in_dir, rel_dir, filename)) out_path = os.path.normpath(os.path.join(out_dir, rel_dir, filename)) print(in_path, '->', out_path) if check_only: unasync_file_check(in_path, out_path) else: unasync_file(in_path, out_path) def main(): check_only = '--check' in sys.argv unasync_dir("httpcore/_async", "httpcore/_sync", check_only=check_only) unasync_dir("tests/async_tests", "tests/sync_tests", check_only=check_only) if __name__ == '__main__': main()
# Copyright (C) 2020 Google Inc. # Licensed under http://www.apache.org/licenses/LICENSE-2.0 <see LICENSE file> """ Add 2 new roles for scoping objects Create Date: 2018-10-23 11:02:28.166523 """ # disable Invalid constant name pylint warning for mandatory Alembic variables. # pylint: disable=invalid-name import datetime from alembic import op from ggrc.migrations.utils import migrator from ggrc.migrations.utils import ( acr_propagation_constants_scoping_objects_new_roles as acr_constants ) from ggrc.migrations.utils import acr_propagation # revision identifiers, used by Alembic. revision = '348465c9e5ed' down_revision = 'cb58d1d52368' SCOPING_OBJECTS = [ "AccessGroup", "DataAsset", "Facility", "Market", "Metric", "OrgGroup", "Process", "Product", "ProductGroup", "Project", "System", "TechnologyEnvironment", "Vendor", ] NEW_ROLES = [ "Line of Defense One Contacts", "Vice Presidents", ] def _add_roles_for_objects(objects, new_roles): """ Creates new roles in acr for a given list of objects. Args: objects: object names for which new roles should be added new_roles: list of roles to add into the acr """ connection = op.get_bind() user_id = migrator.get_migration_user_id(connection) update_entries = [] for object_name in objects: for role_name in new_roles: update_entries.append({ 'name': role_name, 'object_type': object_name, 'mandatory': False, 'non_editable': True, 'created_at': datetime.datetime.now(), 'updated_at': datetime.datetime.now(), 'default_to_current_user': False, 'modified_by_id': user_id, }) op.bulk_insert( acr_propagation.ACR_TABLE, update_entries ) def upgrade(): """Upgrade database schema and/or data, creating a new revision.""" _add_roles_for_objects(SCOPING_OBJECTS, NEW_ROLES) acr_propagation.propagate_roles( acr_constants.GGRC_NEW_ROLES_PROPAGATION, with_update=True ) def downgrade(): """Downgrade database schema and/or data back to the previous revision.""" raise Exception("Downgrade is not supported.")
# -*- coding: utf-8 -*- # Import Python libs from __future__ import absolute_import, print_function, unicode_literals import random import string import logging from copy import deepcopy # Import Salt Testing libs from tests.support.mixins import LoaderModuleMockMixin from tests.support.unit import skipIf, TestCase from tests.support.mock import ( MagicMock, NO_MOCK, NO_MOCK_REASON, patch ) # Import Salt libs import salt.loader import salt.modules.boto_s3_bucket as boto_s3_bucket from salt.utils.versions import LooseVersion # Import 3rd-party libs from salt.ext import six from salt.ext.six.moves import range # pylint: disable=import-error,redefined-builtin # pylint: disable=import-error,no-name-in-module,unused-import try: import boto import boto3 from botocore.exceptions import ClientError HAS_BOTO = True except ImportError: HAS_BOTO = False # pylint: enable=import-error,no-name-in-module,unused-import # the boto_s3_bucket module relies on the connect_to_region() method # which was added in boto 2.8.0 # https://github.com/boto/boto/commit/33ac26b416fbb48a60602542b4ce15dcc7029f12 required_boto3_version = '1.2.1' log = logging.getLogger(__name__) def _has_required_boto(): ''' Returns True/False boolean depending on if Boto is installed and correct version. ''' if not HAS_BOTO: return False elif LooseVersion(boto3.__version__) < LooseVersion(required_boto3_version): return False else: return True if _has_required_boto(): region = 'us-east-1' access_key = 'GKTADJGHEIQSXMKKRBJ08H' secret_key = 'askdjghsdfjkghWupUjasdflkdfklgjsdfjajkghs' conn_parameters = {'region': region, 'key': access_key, 'keyid': secret_key, 'profile': {}} error_message = 'An error occurred (101) when calling the {0} operation: Test-defined error' e404_error = ClientError({ 'Error': { 'Code': '404', 'Message': "Test-defined error" } }, 'msg') not_found_error = ClientError({ 'Error': { 'Code': 'NoSuchBucket', 'Message': "Test-defined error" } }, 'msg') error_content = { 'Error': { 'Code': 101, 'Message': "Test-defined error" } } create_ret = { 'Location': 'nowhere', } list_ret = { 'Buckets': [{ 'Name': 'mybucket', 'CreationDate': None }], 'Owner': { 'DisplayName': 'testuser', 'ID': '12341234123' }, 'ResponseMetadata': {'Key': 'Value'} } config_ret = { 'get_bucket_acl': { 'Grants': [{ 'Grantee': { 'DisplayName': 'testowner', 'ID': 'sdfghjklqwertyuiopzxcvbnm' }, 'Permission': 'FULL_CONTROL' }, { 'Grantee': { 'URI': 'http://acs.amazonaws.com/groups/global/AllUsers' }, 'Permission': 'READ' }], 'Owner': { 'DisplayName': 'testowner', 'ID': 'sdfghjklqwertyuiopzxcvbnm' } }, 'get_bucket_cors': { 'CORSRules': [{ 'AllowedMethods': ["GET"], 'AllowedOrigins': ["*"], }] }, 'get_bucket_lifecycle_configuration': { 'Rules': [{ 'Expiration': { 'Days': 1 }, 'Prefix': 'prefix', 'Status': 'Enabled', 'ID': 'asdfghjklpoiuytrewq' }] }, 'get_bucket_location': { 'LocationConstraint': 'EU' }, 'get_bucket_logging': { 'LoggingEnabled': { 'TargetBucket': 'my-bucket', 'TargetPrefix': 'prefix' } }, 'get_bucket_notification_configuration': { 'LambdaFunctionConfigurations': [{ 'LambdaFunctionArn': 'arn:aws:lambda:us-east-1:111111222222:function:my-function', 'Id': 'zxcvbnmlkjhgfdsa', 'Events': ["s3:ObjectCreated:*"], 'Filter': { 'Key': { 'FilterRules': [{ 'Name': 'prefix', 'Value': 'string' }] } } }] }, 'get_bucket_policy': { 'Policy': '{"Version":"2012-10-17","Statement":[{"Sid":"","Effect":"Allow","Principal":{"AWS":"arn:aws:iam::111111222222:root"},"Action":"s3:PutObject","Resource":"arn:aws:s3:::my-bucket/*"}]}' }, 'get_bucket_replication': { 'ReplicationConfiguration': { 'Role': 'arn:aws:iam::11111222222:my-role', 'Rules': [{ 'ID': "r1", 'Prefix': "prefix", 'Status': "Enabled", 'Destination': { 'Bucket': "arn:aws:s3:::my-bucket" } }] } }, 'get_bucket_request_payment': {'Payer': 'Requester'}, 'get_bucket_tagging': { 'TagSet': [{ 'Key': 'c', 'Value': 'd' }, { 'Key': 'a', 'Value': 'b', }] }, 'get_bucket_versioning': { 'Status': 'Enabled' }, 'get_bucket_website': { 'ErrorDocument': { 'Key': 'error.html' }, 'IndexDocument': { 'Suffix': 'index.html' } } } @skipIf(HAS_BOTO is False, 'The boto module must be installed.') @skipIf(_has_required_boto() is False, 'The boto3 module must be greater than' ' or equal to version {0}' .format(required_boto3_version)) @skipIf(NO_MOCK, NO_MOCK_REASON) class BotoS3BucketTestCaseBase(TestCase, LoaderModuleMockMixin): conn = None def setup_loader_modules(self): self.opts = opts = salt.config.DEFAULT_MINION_OPTS utils = salt.loader.utils( opts, whitelist=['boto3', 'args', 'systemd', 'path', 'platform'], context={}) return {boto_s3_bucket: {'__utils__': utils}} def setUp(self): super(BotoS3BucketTestCaseBase, self).setUp() boto_s3_bucket.__init__(self.opts) del self.opts # Set up MagicMock to replace the boto3 session # connections keep getting cached from prior tests, can't find the # correct context object to clear it. So randomize the cache key, to prevent any # cache hits conn_parameters['key'] = ''.join(random.choice(string.ascii_lowercase + string.digits) for _ in range(50)) self.patcher = patch('boto3.session.Session') self.addCleanup(self.patcher.stop) self.addCleanup(delattr, self, 'patcher') mock_session = self.patcher.start() session_instance = mock_session.return_value self.conn = MagicMock() self.addCleanup(delattr, self, 'conn') session_instance.client.return_value = self.conn class BotoS3BucketTestCaseMixin(object): pass class BotoS3BucketTestCase(BotoS3BucketTestCaseBase, BotoS3BucketTestCaseMixin): ''' TestCase for salt.modules.boto_s3_bucket module ''' def test_that_when_checking_if_a_bucket_exists_and_a_bucket_exists_the_bucket_exists_method_returns_true(self): ''' Tests checking s3 bucket existence when the s3 bucket already exists ''' self.conn.head_bucket.return_value = None result = boto_s3_bucket.exists(Bucket='mybucket', **conn_parameters) self.assertTrue(result['exists']) def test_that_when_checking_if_a_bucket_exists_and_a_bucket_does_not_exist_the_bucket_exists_method_returns_false(self): ''' Tests checking s3 bucket existence when the s3 bucket does not exist ''' self.conn.head_bucket.side_effect = e404_error result = boto_s3_bucket.exists(Bucket='mybucket', **conn_parameters) self.assertFalse(result['exists']) def test_that_when_checking_if_a_bucket_exists_and_boto3_returns_an_error_the_bucket_exists_method_returns_error(self): ''' Tests checking s3 bucket existence when boto returns an error ''' self.conn.head_bucket.side_effect = ClientError(error_content, 'head_bucket') result = boto_s3_bucket.exists(Bucket='mybucket', **conn_parameters) self.assertEqual(result.get('error', {}).get('message'), error_message.format('head_bucket')) def test_that_when_creating_a_bucket_succeeds_the_create_bucket_method_returns_true(self): ''' tests True bucket created. ''' self.conn.create_bucket.return_value = create_ret result = boto_s3_bucket.create(Bucket='mybucket', LocationConstraint='nowhere', **conn_parameters) self.assertTrue(result['created']) def test_that_when_creating_a_bucket_fails_the_create_bucket_method_returns_error(self): ''' tests False bucket not created. ''' self.conn.create_bucket.side_effect = ClientError(error_content, 'create_bucket') result = boto_s3_bucket.create(Bucket='mybucket', LocationConstraint='nowhere', **conn_parameters) self.assertEqual(result.get('error', {}).get('message'), error_message.format('create_bucket')) def test_that_when_deleting_a_bucket_succeeds_the_delete_bucket_method_returns_true(self): ''' tests True bucket deleted. ''' result = boto_s3_bucket.delete(Bucket='mybucket', **conn_parameters) self.assertTrue(result['deleted']) def test_that_when_deleting_a_bucket_fails_the_delete_bucket_method_returns_false(self): ''' tests False bucket not deleted. ''' self.conn.delete_bucket.side_effect = ClientError(error_content, 'delete_bucket') result = boto_s3_bucket.delete(Bucket='mybucket', **conn_parameters) self.assertFalse(result['deleted']) def test_that_when_describing_bucket_it_returns_the_dict_of_properties_returns_true(self): ''' Tests describing parameters if bucket exists ''' for key, value in six.iteritems(config_ret): getattr(self.conn, key).return_value = deepcopy(value) result = boto_s3_bucket.describe(Bucket='mybucket', **conn_parameters) self.assertTrue(result['bucket']) def test_that_when_describing_bucket_it_returns_the_dict_of_properties_returns_false(self): ''' Tests describing parameters if bucket does not exist ''' self.conn.get_bucket_acl.side_effect = not_found_error result = boto_s3_bucket.describe(Bucket='mybucket', **conn_parameters) self.assertFalse(result['bucket']) def test_that_when_describing_bucket_on_client_error_it_returns_error(self): ''' Tests describing parameters failure ''' self.conn.get_bucket_acl.side_effect = ClientError(error_content, 'get_bucket_acl') result = boto_s3_bucket.describe(Bucket='mybucket', **conn_parameters) self.assertTrue('error' in result) def test_that_when_listing_buckets_succeeds_the_list_buckets_method_returns_true(self): ''' tests True buckets listed. ''' self.conn.list_buckets.return_value = deepcopy(list_ret) result = boto_s3_bucket.list(**conn_parameters) self.assertTrue(result['Buckets']) def test_that_when_listing_bucket_fails_the_list_bucket_method_returns_false(self): ''' tests False no bucket listed. ''' ret = deepcopy(list_ret) log.info(ret) ret['Buckets'] = list() self.conn.list_buckets.return_value = ret result = boto_s3_bucket.list(**conn_parameters) self.assertFalse(result['Buckets']) def test_that_when_listing_bucket_fails_the_list_bucket_method_returns_error(self): ''' tests False bucket error. ''' self.conn.list_buckets.side_effect = ClientError(error_content, 'list_buckets') result = boto_s3_bucket.list(**conn_parameters) self.assertEqual(result.get('error', {}).get('message'), error_message.format('list_buckets')) def test_that_when_putting_acl_succeeds_the_put_acl_method_returns_true(self): ''' tests True bucket updated. ''' result = boto_s3_bucket.put_acl(Bucket='mybucket', **conn_parameters) self.assertTrue(result['updated']) def test_that_when_putting_acl_fails_the_put_acl_method_returns_error(self): ''' tests False bucket not updated. ''' self.conn.put_bucket_acl.side_effect = ClientError(error_content, 'put_bucket_acl') result = boto_s3_bucket.put_acl(Bucket='mybucket', **conn_parameters) self.assertEqual(result.get('error', {}).get('message'), error_message.format('put_bucket_acl')) def test_that_when_putting_cors_succeeds_the_put_cors_method_returns_true(self): ''' tests True bucket updated. ''' result = boto_s3_bucket.put_cors(Bucket='mybucket', CORSRules='[]', **conn_parameters) self.assertTrue(result['updated']) def test_that_when_putting_cors_fails_the_put_cors_method_returns_error(self): ''' tests False bucket not updated. ''' self.conn.put_bucket_cors.side_effect = ClientError(error_content, 'put_bucket_cors') result = boto_s3_bucket.put_cors(Bucket='mybucket', CORSRules='[]', **conn_parameters) self.assertEqual(result.get('error', {}).get('message'), error_message.format('put_bucket_cors')) def test_that_when_putting_lifecycle_configuration_succeeds_the_put_lifecycle_configuration_method_returns_true(self): ''' tests True bucket updated. ''' result = boto_s3_bucket.put_lifecycle_configuration(Bucket='mybucket', Rules='[]', **conn_parameters) self.assertTrue(result['updated']) def test_that_when_putting_lifecycle_configuration_fails_the_put_lifecycle_configuration_method_returns_error(self): ''' tests False bucket not updated. ''' self.conn.put_bucket_lifecycle_configuration.side_effect = ClientError(error_content, 'put_bucket_lifecycle_configuration') result = boto_s3_bucket.put_lifecycle_configuration(Bucket='mybucket', Rules='[]', **conn_parameters) self.assertEqual(result.get('error', {}).get('message'), error_message.format('put_bucket_lifecycle_configuration')) def test_that_when_putting_logging_succeeds_the_put_logging_method_returns_true(self): ''' tests True bucket updated. ''' result = boto_s3_bucket.put_logging(Bucket='mybucket', TargetBucket='arn:::::', TargetPrefix='asdf', TargetGrants='[]', **conn_parameters) self.assertTrue(result['updated']) def test_that_when_putting_logging_fails_the_put_logging_method_returns_error(self): ''' tests False bucket not updated. ''' self.conn.put_bucket_logging.side_effect = ClientError(error_content, 'put_bucket_logging') result = boto_s3_bucket.put_logging(Bucket='mybucket', TargetBucket='arn:::::', TargetPrefix='asdf', TargetGrants='[]', **conn_parameters) self.assertEqual(result.get('error', {}).get('message'), error_message.format('put_bucket_logging')) def test_that_when_putting_notification_configuration_succeeds_the_put_notification_configuration_method_returns_true(self): ''' tests True bucket updated. ''' result = boto_s3_bucket.put_notification_configuration(Bucket='mybucket', **conn_parameters) self.assertTrue(result['updated']) def test_that_when_putting_notification_configuration_fails_the_put_notification_configuration_method_returns_error(self): ''' tests False bucket not updated. ''' self.conn.put_bucket_notification_configuration.side_effect = ClientError(error_content, 'put_bucket_notification_configuration') result = boto_s3_bucket.put_notification_configuration(Bucket='mybucket', **conn_parameters) self.assertEqual(result.get('error', {}).get('message'), error_message.format('put_bucket_notification_configuration')) def test_that_when_putting_policy_succeeds_the_put_policy_method_returns_true(self): ''' tests True bucket updated. ''' result = boto_s3_bucket.put_policy(Bucket='mybucket', Policy='{}', **conn_parameters) self.assertTrue(result['updated']) def test_that_when_putting_policy_fails_the_put_policy_method_returns_error(self): ''' tests False bucket not updated. ''' self.conn.put_bucket_policy.side_effect = ClientError(error_content, 'put_bucket_policy') result = boto_s3_bucket.put_policy(Bucket='mybucket', Policy='{}', **conn_parameters) self.assertEqual(result.get('error', {}).get('message'), error_message.format('put_bucket_policy')) def test_that_when_putting_replication_succeeds_the_put_replication_method_returns_true(self): ''' tests True bucket updated. ''' result = boto_s3_bucket.put_replication(Bucket='mybucket', Role='arn:aws:iam:::', Rules='[]', **conn_parameters) self.assertTrue(result['updated']) def test_that_when_putting_replication_fails_the_put_replication_method_returns_error(self): ''' tests False bucket not updated. ''' self.conn.put_bucket_replication.side_effect = ClientError(error_content, 'put_bucket_replication') result = boto_s3_bucket.put_replication(Bucket='mybucket', Role='arn:aws:iam:::', Rules='[]', **conn_parameters) self.assertEqual(result.get('error', {}).get('message'), error_message.format('put_bucket_replication')) def test_that_when_putting_request_payment_succeeds_the_put_request_payment_method_returns_true(self): ''' tests True bucket updated. ''' result = boto_s3_bucket.put_request_payment(Bucket='mybucket', Payer='Requester', **conn_parameters) self.assertTrue(result['updated']) def test_that_when_putting_request_payment_fails_the_put_request_payment_method_returns_error(self): ''' tests False bucket not updated. ''' self.conn.put_bucket_request_payment.side_effect = ClientError(error_content, 'put_bucket_request_payment') result = boto_s3_bucket.put_request_payment(Bucket='mybucket', Payer='Requester', **conn_parameters) self.assertEqual(result.get('error', {}).get('message'), error_message.format('put_bucket_request_payment')) def test_that_when_putting_tagging_succeeds_the_put_tagging_method_returns_true(self): ''' tests True bucket updated. ''' result = boto_s3_bucket.put_tagging(Bucket='mybucket', **conn_parameters) self.assertTrue(result['updated']) def test_that_when_putting_tagging_fails_the_put_tagging_method_returns_error(self): ''' tests False bucket not updated. ''' self.conn.put_bucket_tagging.side_effect = ClientError(error_content, 'put_bucket_tagging') result = boto_s3_bucket.put_tagging(Bucket='mybucket', **conn_parameters) self.assertEqual(result.get('error', {}).get('message'), error_message.format('put_bucket_tagging')) def test_that_when_putting_versioning_succeeds_the_put_versioning_method_returns_true(self): ''' tests True bucket updated. ''' result = boto_s3_bucket.put_versioning(Bucket='mybucket', Status='Enabled', **conn_parameters) self.assertTrue(result['updated']) def test_that_when_putting_versioning_fails_the_put_versioning_method_returns_error(self): ''' tests False bucket not updated. ''' self.conn.put_bucket_versioning.side_effect = ClientError(error_content, 'put_bucket_versioning') result = boto_s3_bucket.put_versioning(Bucket='mybucket', Status='Enabled', **conn_parameters) self.assertEqual(result.get('error', {}).get('message'), error_message.format('put_bucket_versioning')) def test_that_when_putting_website_succeeds_the_put_website_method_returns_true(self): ''' tests True bucket updated. ''' result = boto_s3_bucket.put_website(Bucket='mybucket', **conn_parameters) self.assertTrue(result['updated']) def test_that_when_putting_website_fails_the_put_website_method_returns_error(self): ''' tests False bucket not updated. ''' self.conn.put_bucket_website.side_effect = ClientError(error_content, 'put_bucket_website') result = boto_s3_bucket.put_website(Bucket='mybucket', **conn_parameters) self.assertEqual(result.get('error', {}).get('message'), error_message.format('put_bucket_website')) def test_that_when_deleting_cors_succeeds_the_delete_cors_method_returns_true(self): ''' tests True bucket attribute deleted. ''' result = boto_s3_bucket.delete_cors(Bucket='mybucket', **conn_parameters) self.assertTrue(result['deleted']) def test_that_when_deleting_cors_fails_the_delete_cors_method_returns_error(self): ''' tests False bucket attribute not deleted. ''' self.conn.delete_bucket_cors.side_effect = ClientError(error_content, 'delete_bucket_cors') result = boto_s3_bucket.delete_cors(Bucket='mybucket', **conn_parameters) self.assertEqual(result.get('error', {}).get('message'), error_message.format('delete_bucket_cors')) def test_that_when_deleting_lifecycle_configuration_succeeds_the_delete_lifecycle_configuration_method_returns_true(self): ''' tests True bucket attribute deleted. ''' result = boto_s3_bucket.delete_lifecycle_configuration(Bucket='mybucket', **conn_parameters) self.assertTrue(result['deleted']) def test_that_when_deleting_lifecycle_configuration_fails_the_delete_lifecycle_configuration_method_returns_error(self): ''' tests False bucket attribute not deleted. ''' self.conn.delete_bucket_lifecycle.side_effect = ClientError(error_content, 'delete_bucket_lifecycle_configuration') result = boto_s3_bucket.delete_lifecycle_configuration(Bucket='mybucket', **conn_parameters) self.assertEqual(result.get('error', {}).get('message'), error_message.format('delete_bucket_lifecycle_configuration')) def test_that_when_deleting_policy_succeeds_the_delete_policy_method_returns_true(self): ''' tests True bucket attribute deleted. ''' result = boto_s3_bucket.delete_policy(Bucket='mybucket', **conn_parameters) self.assertTrue(result['deleted']) def test_that_when_deleting_policy_fails_the_delete_policy_method_returns_error(self): ''' tests False bucket attribute not deleted. ''' self.conn.delete_bucket_policy.side_effect = ClientError(error_content, 'delete_bucket_policy') result = boto_s3_bucket.delete_policy(Bucket='mybucket', **conn_parameters) self.assertEqual(result.get('error', {}).get('message'), error_message.format('delete_bucket_policy')) def test_that_when_deleting_replication_succeeds_the_delete_replication_method_returns_true(self): ''' tests True bucket attribute deleted. ''' result = boto_s3_bucket.delete_replication(Bucket='mybucket', **conn_parameters) self.assertTrue(result['deleted']) def test_that_when_deleting_replication_fails_the_delete_replication_method_returns_error(self): ''' tests False bucket attribute not deleted. ''' self.conn.delete_bucket_replication.side_effect = ClientError(error_content, 'delete_bucket_replication') result = boto_s3_bucket.delete_replication(Bucket='mybucket', **conn_parameters) self.assertEqual(result.get('error', {}).get('message'), error_message.format('delete_bucket_replication')) def test_that_when_deleting_tagging_succeeds_the_delete_tagging_method_returns_true(self): ''' tests True bucket attribute deleted. ''' result = boto_s3_bucket.delete_tagging(Bucket='mybucket', **conn_parameters) self.assertTrue(result['deleted']) def test_that_when_deleting_tagging_fails_the_delete_tagging_method_returns_error(self): ''' tests False bucket attribute not deleted. ''' self.conn.delete_bucket_tagging.side_effect = ClientError(error_content, 'delete_bucket_tagging') result = boto_s3_bucket.delete_tagging(Bucket='mybucket', **conn_parameters) self.assertEqual(result.get('error', {}).get('message'), error_message.format('delete_bucket_tagging')) def test_that_when_deleting_website_succeeds_the_delete_website_method_returns_true(self): ''' tests True bucket attribute deleted. ''' result = boto_s3_bucket.delete_website(Bucket='mybucket', **conn_parameters) self.assertTrue(result['deleted']) def test_that_when_deleting_website_fails_the_delete_website_method_returns_error(self): ''' tests False bucket attribute not deleted. ''' self.conn.delete_bucket_website.side_effect = ClientError(error_content, 'delete_bucket_website') result = boto_s3_bucket.delete_website(Bucket='mybucket', **conn_parameters) self.assertEqual(result.get('error', {}).get('message'), error_message.format('delete_bucket_website'))
#!/usr/bin/env python3 import os from app.models import Player from app.resources import GamePlay import argparse def get_team(): """ Initializes the squad: the list of players in the order they are expected to bat. Uses the Player model to create each batsman with their given scoring probabilities. """ batsmen_list = [ Player('Kirat Boli', { '0': 5, '1': 30, '2': 25, '3': 10, '4': 15, '5': 1, '6': 9, 'OUT': 5, }), Player('N.S. Nodhi', { '0': 10, '1': 40, '2': 20, '3': 5, '4': 10, '5': 1, '6': 4, 'OUT': 10, }), Player('R Rumrah', { '0': 20, '1': 30, '2': 15, '3': 5, '4': 5, '5': 1, '6': 4, 'OUT': 20, }), Player('Shashi Henra', { '0': 30, '1': 25, '2': 5, '3': 0, '4': 5, '5': 1, '6': 4, 'OUT': 30, }) ] return batsmen_list def main(): """ Lets the game begin! """ parser = argparse.ArgumentParser() parser.add_argument('-rg', '--random-generator', dest='random_gen_class', help='Provide one of the stochastic schemes for ' 'generating random scores, takes one of the 2 ' 'values - \'random sampling\' or ' '\'roulette selection\'', type=str) # parse the given arguments if any args = parser.parse_args() batting_lineup = get_team() # new Game instance game = GamePlay(batting_lineup, random_gen_class=args.random_gen_class) game.execute_run_chase() if __name__ == '__main__': main()
import sys from typing import List input = sys.stdin.readline # def solution(N: int, nums: List[int]): # __cache__ = [[0, 0] for _ in range(N)] # __cache__[0] = [nums[0], nums[0]] # for i in range(1, N): # __prev__ = 0 # for j in range(i - 1, -1, -1): # if nums[j] < nums[i]: # __prev__ = max(__prev__, __cache__[j][0]) # __cache__[i][0] = __prev__ + nums[i] # __cache__[i][1] = max(__cache__[i - 1][1], __cache__[i][0]) # return __cache__[N - 1][1] def solution(N: int, nums: List[int]): __cache__ = [0] * 1001 for num in nums: __cache__[num] = max(__cache__[:num]) + num return max(__cache__) N = int(input()) nums = list(map(int, input().split())) __cache__ = [0] * 1001 for num in nums: __cache__[num] = max(__cache__[:num]) + num print(max(__cache__))
from redis_admin.compat import url as redis_admin_url, get_library Library = get_library() register = Library() @register.tag def url(parser, token): return redis_admin_url(parser, token)
'''Glyph''' from importlib import reload import zDogPy.shape reload(zDogPy.shape) from zDogPy.shape import Shape def makePath(glyph, closed=True): path = [] for ci, c in enumerate(glyph.contours): if closed: pt0 = c[-1][-1] cmd = { 'move' : {'x': pt0.x, 'y': pt0.y } } path.append(cmd) for si, s in enumerate(c.segments): if len(s) == 1: pt = s[0] if si == 0 and not closed: cmd = { 'move' : { 'x': pt.x, 'y': pt.y } } else: cmd = { 'x': pt.x, 'y': pt.y } elif len(s) == 3: cmd = { 'bezier' : [{ 'x': pt.x, 'y': pt.y } for pt in s] } path.append(cmd) return path class Glyph(Shape): def __init__(self, glyph, centered=True, **kwargs): self.glyph = glyph if centered: L, B, R, T = self.glyph.bounds x = L + (R - L) / 2 y = B + (T - B) / 2 kwargs['translate'] = { 'x' : -x, 'y': -y } Shape.__init__(self, **kwargs) self.updatePath() def setPath(self): self.path = makePath(self.glyph, closed=self.closed) def render(self, ctx, renderer): Shape.render(self, ctx, renderer)
somaidade = 0 maioridadehomem = 0 totmulher20 = 0 nomevelho = '' for dados in range(1, 5): print('----- {}ª PESSOA -----'.format(dados)) nome = str(input('Nome: ')).strip() idade = int(input('Idade: ')) sexo = str(input('Sexo [M/F]: ')).strip() somaidade += idade if dados == 1 and sexo in 'Mm': maioridadehomem += idade nomevelho = nome if sexo in 'Mm' and idade > maioridadehomem: maioridadehomem = idade nomevelho = nome if sexo in 'Ff' and idade < 20: totmulher20 += 1 mediaidade = somaidade / 4 print('A média de idades do grupo é {} anos'.format(mediaidade)) print('O homem mais velho do grupo se chama {} e tem {} anos'.format(nome, maioridadehomem)) print('Ao todo são {} mulheres de menos de 20 anos'.format(totmulher20))
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import sys import random from collections import deque from rlschool.liftsim.environment.mansion.elevator import Elevator from rlschool.liftsim.environment.mansion.utils import PersonType from rlschool.liftsim.environment.mansion.utils import MansionAttribute, MansionState, ElevatorState from rlschool.liftsim.environment.mansion.utils import EPSILON, ENTERING_TIME from rlschool.liftsim.environment.mansion.mansion_config import MansionConfig from rlschool.liftsim.environment.mansion.person_generators.generator_proxy import PersonGenerator from rlschool.liftsim.environment.mansion.person_generators.person_generator import PersonGeneratorBase class MansionManager(object): """ Mansion Class Mansion Randomly Generates Person that requiring elevators for a lift """ def __init__( self, elevator_number, person_generator, mansion_config, name="Mansion"): """ Initializing the Building Args: floor_number: number of floor in the building elevator_number: number of elevator in the building floor_height: height of single floor time_step: Simulation timestep person_generator: PersonGenerator class that generates stochastic pattern of person flow Returns: None """ assert isinstance(mansion_config, MansionConfig) assert isinstance(person_generator, PersonGeneratorBase) self._name = name self._config = mansion_config self._floor_number = self._config.number_of_floors self._floor_height = self._config.floor_height self._dt = self._config.delta_t self._elevator_number = elevator_number self._person_generator = person_generator # if people are waiting for more than 300 seconds, he would give up! self._given_up_time_limit = 300 #used for statistics self._statistic_interval = int(600 / self._dt) self._delivered_person = deque() self._generated_person = deque() self._abandoned_person = deque() self._cumulative_waiting_time = deque() self._cumulative_energy_consumption = deque() self.reset_env() def reset_env(self): self._elevators = [] for i in range(self._elevator_number): self._elevators.append( Elevator(start_position=0.0, mansion_config=self._config, name="%s_E%d" % (self._name, i + 1))) self._config.reset() self._person_generator.link_mansion(self._config) # whether the go up/down button is clicked self._button = [[False, False] for i in range(self._floor_number)] self._wait_upward_persons_queue = [ deque() for i in range( self._floor_number)] self._wait_downward_persons_queue = [ deque() for i in range( self._floor_number)] @property def state(self): """ Return Current state of the building simulator """ upward_req = [] downward_req = [] state_queue = [] for idx in range(self._floor_number): if(self._button[idx][0]): upward_req.append(idx + 1) if(self._button[idx][1]): downward_req.append(idx + 1) for i in range(self._elevator_number): state_queue.append(self._elevators[i].state) return MansionState(state_queue, upward_req, downward_req) def run_mansion(self, actions): """ Perform one step of simulations Args: actions: A list of actions, e.g., action.add_target = [2, 6, 8], action.remove_target = [4] mark the target floor to be added into the queue or removed from the queue Returns: State, Cumulative Wating Time for Person, Energy Consumption of Elevator """ self._config.step() # update the current time person_list = self._person_generator.generate_person() tmp_generated_person = len(person_list) for person in person_list: if(person.SourceFloor < person.TargetFloor): self._wait_upward_persons_queue[person.SourceFloor - 1].appendleft(person) elif(person.SourceFloor > person.TargetFloor): self._wait_downward_persons_queue[person.SourceFloor - 1].appendleft( person) energy_consumption = [0.0 for i in range(self._elevator_number)] # carry out actions on each elevator for idx in range(self._elevator_number): self._elevators[idx].set_action(actions[idx]) # make each elevator run one step loaded_person_num = 0 tmp_delivered_person = 0 for idx in range(self._elevator_number): energy_consumption[idx], delivered_person_time, tmp_loaded_person = self._elevators[idx].run_elevator() tmp_delivered_person += len(delivered_person_time) loaded_person_num += tmp_loaded_person for floor in range(self._floor_number): if(len(self._wait_upward_persons_queue[floor]) > 0): self._button[floor][0] = True else: self._button[floor][0] = False if(len(self._wait_downward_persons_queue[floor]) > 0): self._button[floor][1] = True else: self._button[floor][1] = False ele_idxes = [i for i in range(self._elevator_number)] random.shuffle(ele_idxes) for ele_idx in ele_idxes: floor, delta_distance = self._elevators[ele_idx].nearest_floor is_open = self._elevators[ele_idx].is_fully_open and ( abs(delta_distance) < 0.05) is_ready = self._elevators[ele_idx].ready_to_enter # Elevator stops at certain floor and the direction is consistent # with the customers' target direction floor_idx = floor - 1 if(is_open): if(self._elevators[ele_idx]._direction == 1): self._button[floor_idx][0] = False elif(self._elevators[ele_idx]._direction == -1): self._button[floor_idx][1] = False if(is_ready and is_open): self._config.log_debug( "Floor: %d, Elevator: %s is open, %d persons are waiting to go upward, %d downward", floor, self._elevators[ele_idx].name, len( self._wait_upward_persons_queue[floor_idx]), len( self._wait_downward_persons_queue[floor_idx])) if(self._elevators[ele_idx]._direction == -1): for i in range( len(self._wait_downward_persons_queue[floor_idx]) - 1, -1, -1): entering_person = self._wait_downward_persons_queue[floor_idx][i] req_succ = self._elevators[ele_idx].person_request_in( entering_person) if(req_succ): del self._wait_downward_persons_queue[floor_idx][i] self._config.log_debug( "Person %s is walking into the %s elevator", entering_person, self._elevators[ele_idx].name) else: # if the reason of fail is overweighted, try next one if not self._elevators[ele_idx]._is_overloaded_alarm: break elif(self._elevators[ele_idx]._direction == 1): # if no one is entering for i in range( len(self._wait_upward_persons_queue[floor_idx]) - 1, -1, -1): entering_person = self._wait_upward_persons_queue[floor_idx][i] req_succ = self._elevators[ele_idx].person_request_in( entering_person) if(req_succ): del self._wait_upward_persons_queue[floor_idx][i] self._config.log_debug( "Person %s is walking into the %s elevator", entering_person, self._elevators[ele_idx].name) else: if not self._elevators[ele_idx]._is_overloaded_alarm: break # Remove those who waited too long give_up_persons = 0 for floor_idx in range(self._floor_number): for pop_idx in range( len(self._wait_upward_persons_queue[floor_idx]) - 1, -1, -1): if(self._config.raw_time - self._wait_upward_persons_queue[floor_idx][pop_idx].AppearTime > self._given_up_time_limit): self._wait_upward_persons_queue[floor_idx].pop() give_up_persons += 1 else: break for pop_idx in range( len(self._wait_downward_persons_queue[floor_idx]) - 1, -1, -1): if(self._config.raw_time - self._wait_downward_persons_queue[floor_idx][pop_idx].AppearTime > self._given_up_time_limit): self._wait_downward_persons_queue[floor_idx].pop() give_up_persons += 1 else: break cumulative_waiting_time = 0 for i in range(self._floor_number): cumulative_waiting_time += self._dt * \ len(self._wait_upward_persons_queue[i]) cumulative_waiting_time += self._dt * \ len(self._wait_downward_persons_queue[i]) cumulative_waiting_time += loaded_person_num * self._dt cumulative_energy_consumption = float(sum(energy_consumption)) self._delivered_person.appendleft(tmp_delivered_person) self._generated_person.appendleft(tmp_generated_person) self._abandoned_person.appendleft(give_up_persons) self._cumulative_waiting_time.appendleft(cumulative_waiting_time) self._cumulative_energy_consumption.appendleft(cumulative_energy_consumption) if(len(self._delivered_person) > self._statistic_interval): self._delivered_person.pop() self._generated_person.pop() self._abandoned_person.pop() self._cumulative_waiting_time.pop() self._cumulative_energy_consumption.pop() return cumulative_waiting_time, cumulative_energy_consumption, give_up_persons def get_statistics(self): """ Get Mansion Statistics """ return { "DeliveredPersons(10Minutes)": int(sum(self._delivered_person)), "GeneratedPersons(10Minutes)": int(sum(self._generated_person)), "AbandonedPersons(10Minutes)": int(sum(self._abandoned_person)), "EnergyConsumption(10Minutes)": float(sum(self._cumulative_energy_consumption)), "TotalWaitingTime(10Minutes)": float(sum(self._cumulative_waiting_time))} @property def attribute(self): """ returns all kinds of attributes """ return MansionAttribute( self._elevator_number, self._floor_number, self._floor_height) @property def config(self): """ Returns config of the mansion """ return self._config @property def waiting_queue(self): """ Returns the waiting queue of each floor """ return [self._wait_upward_persons_queue, self._wait_downward_persons_queue] @property def loaded_people(self): """ Returns: the number of loaded people of each elevator """ return [self._elevators[i].loaded_people_num for i in range(self._elevator_number)] @property def name(self): """ Returns name of the mansion """ return self._name
# # Copyright © 2022 Christos Pavlatos, George Rassias, Christos Andrikos, # Evangelos Makris, Aggelos Kolaitis # # Permission is hereby granted, free of charge, to any person obtaining a copy of # this software and associated documentation files (the “Software”), to deal in # the Software without restriction, including without limitation the rights to # use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies # of the Software, and to permit persons to whom the Software is furnished to do # so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # from typing import Tuple, Dict from enum import Enum class State(Enum): NONE = 0 LEFT_CORE = 1 RIGHT_CORE = 2 class Stem(Enum): RIGHT = "right" LEFT = "left" class Dot2Pair: """ Parse dot bracket expressions and extract positions of stems """ SYMBOL_MAP = {"(": ")", "[": "]", ")": "(", "]": "["} OPPOSITE_SYMBOL_MAP = {")": "]", "(": "[", "[": "(", "]": ")"} def __init__(self, dot_bracket: str): """A new parser set to parse the related dot bracket. :return: a DotParser instance """ self.dot_bracket = dot_bracket # these flags are going to be set # whenever we have a match a pseudoknot lookup ... self.state = State.NONE self.stack = {Stem.RIGHT: [], Stem.LEFT: []} try: first_symbol = next(x for x in self.dot_bracket if x in self.SYMBOL_MAP) except StopIteration: raise ValueError(f"{self.dot_bracket} has no stem symbols") self.left_open_symbol = first_symbol self.right_open_symbol = self.OPPOSITE_SYMBOL_MAP[first_symbol] self.left_close_symbol = self.SYMBOL_MAP[self.left_open_symbol] self.right_close_symbol = self.SYMBOL_MAP[self.right_open_symbol] # result stack self._result = { "right_core_stems": [], "left_core_stems": [], "right_stems": [], "left_stems": [], } def parse_dot(self): for position, char in enumerate(self.dot_bracket): self.__char_digest(position, char) if any(self.stack.values()): raise ValueError(f"imbalanced stems {self.stack}") def __char_digest(self, position: int, char: str): """ :return: side-effects """ if char == self.left_open_symbol: self.stack[Stem.LEFT].append(position) elif char == self.left_close_symbol: binding = self.stack[Stem.LEFT].pop() is_core = self.state == State.LEFT_CORE if is_core: self.state = State.RIGHT_CORE self.__add_pair(Stem.LEFT, (binding, position), is_core) elif char == self.right_open_symbol: self.stack[Stem.RIGHT].append(position) if self.state == State.NONE: self.state = State.LEFT_CORE elif char == self.right_close_symbol: binding = self.stack[Stem.RIGHT].pop() is_core = self.state == State.RIGHT_CORE if is_core: self.state = State.NONE self.__add_pair(Stem.RIGHT, (binding, position), is_core) def __add_pair(self, key: Stem, pair: Tuple[int, int], is_core: bool): key = f"{key.value}{'_core' if is_core else ''}_stems" self._result[key].append(pair) @property def result(self): return self._result def find_matches(dot_bracket: str) -> Dict[int, int]: """ parse dot bracket. return dictionary of matching stems. If no stems exist, an empty dictionary is returned. """ try: dot2pair = Dot2Pair(dot_bracket) dot2pair.parse_dot() except ValueError: return {} matches = {} for stems in dot2pair.result.values(): for start, end in stems: matches[start] = end matches[end] = start return matches def get_confusion_matrix(truth: str, prediction: str, slack: int = 0): truth_matches = find_matches(truth) prediction_matches = find_matches(prediction) assert len(truth) == len(prediction) tp, tn, fp, fn = 0, 0, 0, 0 for idx in range(0, len(truth)): tmatch = truth_matches.get(idx, None) pmatch = prediction_matches.get(idx, None) if tmatch is None: if pmatch is None: tn += 1 else: # TODO: check disabled test, at index 0 fp += 1 else: if pmatch is None: fn += 1 # TODO: check disabled test, at index 1 else: if abs(pmatch - tmatch) <= slack: tp += 1 else: fp += 1 return tp, tn, fp, fn def get_core_stem_indices(dot_bracket: str): """ Returns core stem indices for the dot bracket. If pred does not have a pseudoknot, a ValueError or an IndexError is raised. """ dot2pair = Dot2Pair(dot_bracket) dot2pair.parse_dot() result = dot2pair.result right_core = result["right_core_stems"][0] left_core = result["left_core_stems"][0] return left_core[0], right_core[0], left_core[1], right_core[1] def get_correct_core_stems(truth: str, pred: str, slack: int = 0) -> int: """ Returns number of correct core stems for the prediction. If there is pseudoknot in the predicted dot bracket, a ValueError is raised. """ try: tstems = get_core_stem_indices(truth) pstems = get_core_stem_indices(pred) except IndexError: return 0 left_ok = abs(tstems[0] - pstems[0]) + abs(tstems[2] - pstems[2]) <= slack right_ok = abs(tstems[1] - pstems[1]) + abs(tstems[3] - pstems[3]) <= slack return left_ok + right_ok
from rest_api import db from datetime import datetime # attachment for tracking logs / user posts, many to one class AttachmentModel(db.Model): __tablename__ = "attachments" id = db.Column(db.Integer, primary_key=True) attachment_name = db.Column(db.String(200), nullable=False, unique=True) # need inverse relation so order retrieves all its tracking logs track_log_id = db.Column(db.Integer, db.ForeignKey("tracking_logs.id")) date = db.Column(db.DateTime, nullable=False, default=datetime.utcnow) is_deleted =db.Column(db.Integer, default=0) def __init__(self, attachment_name, track_log_id): self.attachment_name = attachment_name self.track_log_id = track_log_id def json(self): return { "id":self.id, "attachment_name":self.attachment_name, "track_log_id": self.track_log_id } @classmethod def find_by_id(cls, id): return cls.query.filter_by(id=id, is_deleted=0).first() @classmethod def find_by_track_log_id(cls, track_log_id): return cls.query.filter_by(track_log_id=track_log_id) def save_to_db(self): db.session.add(self) db.session.commit() def delete_from_db(self): self.is_deleted=1 db.session.add(self) db.session.commit()
price = int(input("Give me the price of this place! ")) rent = int(input("and what's the rent per week? ")) bodyC = int(input("and the body corporate per quarter? ")) RatesLand = int(input("What do the land rates look like per quarter? ")) RatesWater = int(input("Finally, I'll need the water rates per quarter? ")) def conv(x): return(price * float(0.07) / 52) def rconv(x): return(rent * 52 / price * 100) def pconv(y): return(((rent * 52) - (bodyC * 4)) / price * 100) def lconv(z): return(((rent * 52) - (bodyC * 4) - (RatesLand * 4)) / price * 100) def wconv(y): return(((rent * 52) - (bodyC * 4) - (RatesLand * 4) - (RatesWater * 4)) / price * 100) Yearly_Water = wconv(RatesWater) Yearly_Land = lconv(RatesLand) yearly_yield_BC = pconv(bodyC) yearly_rent = rconv(rent) yearly_yield = conv(price) print(f"\nThis is your rental yield excluding Body Corporate {yearly_rent}% ") print(f"This is your rental yield including Body Corporate {yearly_yield_BC}% ") print(f"Body Corporate and land rates is {Yearly_Land}% yield. ") print(f"\nSo you're final yield will be at {Yearly_Water}% compared to {yearly_rent}% ")
import os os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'seminar-roulette.settings') import django django.setup() from backend.models import * import csv import os import random import pandas as pd import numpy as np import math from django.utils import timezone from scipy.sparse.linalg import svds class Recommender: """ Recommender system code adapted from online tutorial. Partial credit goes to Nick Becker. https://beckernick.github.io/matrix-factorization-recommender/ """ def __init__(self, user): ratings_list = [] # For each user in database for university_user in UniversityUser.objects.all().order_by('guid'): # For each seminar in database for seminar in Seminar.objects.all().order_by('title'): try: # Check if user has a seminar history model create for that seminar seminar_history = SeminarHistory.objects.get( user=university_user, seminar=seminar ) # Check if user has rated that seminar if seminar_history.discarded: rating = math.nan else: rating = int(seminar_history.rating) except SeminarHistory.DoesNotExist: rating = math.nan # Append user, seminar and rating to a list ratings_list.append((university_user.guid, seminar.id, rating)) # Create data frame for ratings list ratings_df = pd.DataFrame( ratings_list, columns=['guid', 'seminar', 'rating'] ) # Fill seminars which user hasn't rated with 0's combined_df = ratings_df.pivot( index='guid', columns='seminar', values='rating' ).fillna(0) guids, seminars, ratings_mean, ratings_demeaned = self.get_data( combined_df ) self.recommendations = self.recommend( guids, seminars, ratings_mean, ratings_demeaned, user.guid ) def get_data(self, ratings): guids = ratings.index.tolist() seminars = ratings.columns.tolist() ratings = ratings.values ratings_mean = np.mean(ratings, axis=1) # Normalise by each user's mean ratings_demeaned = ratings - ratings_mean.reshape(-1, 1) return guids, seminars, ratings_mean, ratings_demeaned def recommend(self, guids, seminars, ratings_mean, ratings_demeaned, guid): # Calculate singular value decomposition U, sigma, Vt = svds(ratings_demeaned, k=5) # Convert to diagonal matrix form sigma = np.diag(sigma) # Make predictions predicted_ratings = np.dot(np.dot(U, sigma), Vt) + ratings_mean.reshape(-1, 1) predictions_df = pd.DataFrame( predicted_ratings, index=guids, columns=seminars ) # Manipulate data frame and sort by GUID df_sorted = predictions_df.loc[[ guid ]].transpose().sort_values(by=guid, ascending=False) return df_sorted.index.values def recommendation_engine(user): recommendation_seminars = [] recommendations = Recommender(user).recommendations # Loop through the user's recommendations for recommendation in recommendations: # Get upcoming seminar if it is recurring upcoming_seminar = Seminar.objects.filter( id=recommendation ).order_by('start_time').first() recommendation_seminars.append(upcoming_seminar) # Get seminars which user has attended OR discarded seminar_history = user.seminarhistory_set.filter( Q(attended=True) | Q(discarded=True) ) seminars_attended_discarded = Seminar.objects.filter(id__in=seminar_history) seminars = [] count, seminar_count = 0, 0 # Get 5 seminar recommendations while count < 5 and seminar_count < len(recommendation_seminars): seminar = recommendation_seminars[seminar_count] # Check user hasn't previously attended the seminar and that it is in the future if seminar not in seminars_attended_discarded and seminar is not None and seminar.is_future: seminars.append(recommendation_seminars[seminar_count]) count += 1 seminar_count += 1 return seminars
# LeetCode 888. Fair Candy Swap `E` # 1sk | 92% | 7' # A~0v06 class Solution: def fairCandySwap(self, A: List[int], B: List[int]) -> List[int]: setB = set(B) dif = (sum(B)-sum(A)) // 2 for a in A: if a + dif in setB: return [a, a+dif]
# -*- coding: utf-8 -*- """ Tests for tipfy.appengine.db """ import unittest import hashlib from google.appengine.ext import db from google.appengine.api import datastore_errors from werkzeug.exceptions import NotFound from tipfy.appengine import db as ext_db import test_utils class FooModel(db.Model): name = db.StringProperty(required=True) name2 = db.StringProperty() age = db.IntegerProperty() married = db.BooleanProperty() data = ext_db.PickleProperty() slug = ext_db.SlugProperty(name) slug2 = ext_db.SlugProperty(name2, default='some-default-value', max_length=20) etag = ext_db.EtagProperty(name) etag2 = ext_db.EtagProperty(name2) somekey = ext_db.KeyProperty() class FooExpandoModel(db.Expando): pass class BarModel(db.Model): foo = db.ReferenceProperty(FooModel) class JsonModel(db.Model): data = ext_db.JsonProperty() class TimezoneModel(db.Model): data = ext_db.TimezoneProperty() @ext_db.retry_on_timeout(retries=3, interval=0.1) def test_timeout_1(**kwargs): counter = kwargs.get('counter') # Let it pass only in the last attempt if counter[0] < 3: counter[0] += 1 raise db.Timeout() @ext_db.retry_on_timeout(retries=5, interval=0.1) def test_timeout_2(**kwargs): counter = kwargs.get('counter') # Let it pass only in the last attempt if counter[0] < 5: counter[0] += 1 raise db.Timeout() raise ValueError() @ext_db.retry_on_timeout(retries=2, interval=0.1) def test_timeout_3(**kwargs): # Never let it pass. counter = kwargs.get('counter') counter[0] += 1 raise db.Timeout() class TestModel(test_utils.BaseTestCase): def test_no_protobuf_from_entity(self): res_1 = ext_db.get_entity_from_protobuf([]) self.assertEqual(res_1, None) res_2 = ext_db.get_protobuf_from_entity(None) self.assertEqual(res_2, None) def test_no_entity_from_protobuf(self): res_1 = ext_db.get_entity_from_protobuf([]) self.assertEqual(res_1, None) def test_one_model_to_and_from_protobuf(self): entity_1 = FooModel(name='foo', age=15, married=False) entity_1.put() pb_1 = ext_db.get_protobuf_from_entity(entity_1) entity_1 = ext_db.get_entity_from_protobuf(pb_1) self.assertEqual(isinstance(entity_1, FooModel), True) self.assertEqual(entity_1.name, 'foo') self.assertEqual(entity_1.age, 15) self.assertEqual(entity_1.married, False) def test_many_models_to_and_from_protobuf(self): entity_1 = FooModel(name='foo', age=15, married=False) entity_1.put() entity_2 = FooModel(name='bar', age=30, married=True) entity_2.put() entity_3 = FooModel(name='baz', age=45, married=False) entity_3.put() pbs = ext_db.get_protobuf_from_entity([entity_1, entity_2, entity_3]) self.assertEqual(len(pbs), 3) entity_1, entity_2, entity_3 = ext_db.get_entity_from_protobuf(pbs) self.assertEqual(isinstance(entity_1, FooModel), True) self.assertEqual(entity_1.name, 'foo') self.assertEqual(entity_1.age, 15) self.assertEqual(entity_1.married, False) self.assertEqual(isinstance(entity_2, FooModel), True) self.assertEqual(entity_2.name, 'bar') self.assertEqual(entity_2.age, 30) self.assertEqual(entity_2.married, True) self.assertEqual(isinstance(entity_3, FooModel), True) self.assertEqual(entity_3.name, 'baz') self.assertEqual(entity_3.age, 45) self.assertEqual(entity_3.married, False) def test_get_protobuf_from_entity_using_dict(self): entity_1 = FooModel(name='foo', age=15, married=False) entity_1.put() entity_2 = FooModel(name='bar', age=30, married=True) entity_2.put() entity_3 = FooModel(name='baz', age=45, married=False) entity_3.put() entity_dict = {'entity_1': entity_1, 'entity_2': entity_2, 'entity_3': entity_3,} pbs = ext_db.get_protobuf_from_entity(entity_dict) entities = ext_db.get_entity_from_protobuf(pbs) entity_1 = entities['entity_1'] entity_2 = entities['entity_2'] entity_3 = entities['entity_3'] self.assertEqual(isinstance(entity_1, FooModel), True) self.assertEqual(entity_1.name, 'foo') self.assertEqual(entity_1.age, 15) self.assertEqual(entity_1.married, False) self.assertEqual(isinstance(entity_2, FooModel), True) self.assertEqual(entity_2.name, 'bar') self.assertEqual(entity_2.age, 30) self.assertEqual(entity_2.married, True) self.assertEqual(isinstance(entity_3, FooModel), True) self.assertEqual(entity_3.name, 'baz') self.assertEqual(entity_3.age, 45) self.assertEqual(entity_3.married, False) def test_get_or_insert_with_flag(self): entity, flag = ext_db.get_or_insert_with_flag(FooModel, 'foo', name='foo', age=15, married=False) self.assertEqual(flag, True) self.assertEqual(entity.name, 'foo') self.assertEqual(entity.age, 15) self.assertEqual(entity.married, False) entity, flag = ext_db.get_or_insert_with_flag(FooModel, 'foo', name='bar', age=30, married=True) self.assertEqual(flag, False) self.assertEqual(entity.name, 'foo') self.assertEqual(entity.age, 15) self.assertEqual(entity.married, False) def test_get_reference_key(self): entity_1 = FooModel(name='foo', age=15, married=False) entity_1.put() entity_1_key = str(entity_1.key()) entity_2 = BarModel(key_name='first_bar', foo=entity_1) entity_2.put() entity_1.delete() entity_3 = BarModel.get_by_key_name('first_bar') # Won't resolve, but we can still get the key value. self.assertRaises(db.Error, getattr, entity_3, 'foo') self.assertEqual(str(ext_db.get_reference_key(entity_3, 'foo')), entity_1_key) def test_get_reference_key_2(self): # Set a book entity with an author reference. class Author(db.Model): name = db.StringProperty() class Book(db.Model): title = db.StringProperty() author = db.ReferenceProperty(Author) author = Author(name='Stephen King') author.put() book = Book(key_name='the-shining', title='The Shining', author=author) book.put() # Now let's fetch the book and get the author key without fetching it. fetched_book = Book.get_by_key_name('the-shining') self.assertEqual(str(ext_db.get_reference_key(fetched_book, 'author')), str(author.key())) #=========================================================================== # db.populate_entity #=========================================================================== def test_populate_entity(self): entity_1 = FooModel(name='foo', age=15, married=False) entity_1.put() self.assertEqual(entity_1.name, 'foo') self.assertEqual(entity_1.age, 15) self.assertEqual(entity_1.married, False) ext_db.populate_entity(entity_1, name='bar', age=20, married=True, city='Yukon') entity_1.put() self.assertEqual(entity_1.name, 'bar') self.assertEqual(entity_1.age, 20) self.assertEqual(entity_1.married, True) def test_populate_entity_2(self): entity_1 = FooModel(name='foo', age=15, married=False) entity_1.put() self.assertEqual(entity_1.name, 'foo') self.assertEqual(entity_1.age, 15) self.assertEqual(entity_1.married, False) ext_db.populate_entity(entity_1, name='bar', age=20, married=True, city='Yukon') entity_1.put() self.assertRaises(AttributeError, getattr, entity_1, 'city') def test_populate_expando_entity(self): entity_1 = FooExpandoModel(name='foo', age=15, married=False) entity_1.put() self.assertEqual(entity_1.name, 'foo') self.assertEqual(entity_1.age, 15) self.assertEqual(entity_1.married, False) ext_db.populate_entity(entity_1, name='bar', age=20, married=True, city='Yukon') entity_1.put() self.assertEqual(entity_1.name, 'bar') self.assertEqual(entity_1.age, 20) self.assertEqual(entity_1.married, True) def test_populate_expando_entity_2(self): entity_1 = FooExpandoModel(name='foo', age=15, married=False) entity_1.put() self.assertEqual(entity_1.name, 'foo') self.assertEqual(entity_1.age, 15) self.assertEqual(entity_1.married, False) ext_db.populate_entity(entity_1, name='bar', age=20, married=True, city='Yukon') entity_1.put() self.assertRaises(AttributeError, getattr, entity_1, 'city') #=========================================================================== # db.get_entity_dict #=========================================================================== def test_get_entity_dict(self): class MyModel(db.Model): animal = db.StringProperty() species = db.IntegerProperty() description = db.TextProperty() entity = MyModel(animal='duck', species=12, description='A duck, a bird that swims well.') values = ext_db.get_entity_dict(entity) self.assertEqual(values, { 'animal': 'duck', 'species': 12, 'description': 'A duck, a bird that swims well.', }) def test_get_entity_dict_multiple(self): class MyModel(db.Model): animal = db.StringProperty() species = db.IntegerProperty() description = db.TextProperty() entity = MyModel(animal='duck', species=12, description='A duck, a bird that swims well.') entity2 = MyModel(animal='bird', species=7, description='A bird, an animal that flies well.') values = ext_db.get_entity_dict([entity, entity2]) self.assertEqual(values, [ { 'animal': 'duck', 'species': 12, 'description': 'A duck, a bird that swims well.', }, { 'animal': 'bird', 'species': 7, 'description': 'A bird, an animal that flies well.', } ]) def test_get_entity_dict_with_expando(self): class MyModel(db.Expando): animal = db.StringProperty() species = db.IntegerProperty() description = db.TextProperty() entity = MyModel(animal='duck', species=12, description='A duck, a bird that swims well.', most_famous='Daffy Duck') values = ext_db.get_entity_dict(entity) self.assertEqual(values, { 'animal': 'duck', 'species': 12, 'description': 'A duck, a bird that swims well.', 'most_famous': 'Daffy Duck', }) #=========================================================================== # get..._or_404 #=========================================================================== def test_get_by_key_name_or_404(self): entity_1 = FooModel(key_name='foo', name='foo', age=15, married=False) entity_1.put() entity = ext_db.get_by_key_name_or_404(FooModel, 'foo') self.assertEqual(str(entity.key()), str(entity_1.key())) def test_get_by_key_name_or_404_2(self): self.assertRaises(NotFound, ext_db.get_by_key_name_or_404, FooModel, 'bar') def test_get_by_id_or_404(self): entity_1 = FooModel(name='foo', age=15, married=False) entity_1.put() entity = ext_db.get_by_id_or_404(FooModel, entity_1.key().id()) self.assertEqual(str(entity.key()), str(entity_1.key())) def test_get_by_id_or_404_2(self): self.assertRaises(NotFound, ext_db.get_by_id_or_404, FooModel, -1) def test_get_or_404(self): entity_1 = FooModel(name='foo', age=15, married=False) entity_1.put() entity = ext_db.get_or_404(entity_1.key()) self.assertEqual(str(entity.key()), str(entity_1.key())) def test_get_or_404_2(self): self.assertRaises(NotFound, ext_db.get_or_404, db.Key.from_path('FooModel', 'bar')) def test_get_or_404_3(self): self.assertRaises(NotFound, ext_db.get_or_404, 'this, not a valid key') #=========================================================================== # db.Property #=========================================================================== def test_pickle_property(self): data_1 = {'foo': 'bar'} entity_1 = FooModel(key_name='foo', name='foo', data=data_1) entity_1.put() data_2 = [1, 2, 3, 'baz'] entity_2 = FooModel(key_name='bar', name='bar', data=data_2) entity_2.put() entity_1 = FooModel.get_by_key_name('foo') self.assertEqual(entity_1.data, data_1) entity_2 = FooModel.get_by_key_name('bar') self.assertEqual(entity_2.data, data_2) def test_slug_property(self): entity_1 = FooModel(key_name='foo', name=u'Mary Björk') entity_1.put() entity_2 = FooModel(key_name='bar', name=u'Tião Macalé') entity_2.put() entity_1 = FooModel.get_by_key_name('foo') entity_2 = FooModel.get_by_key_name('bar') self.assertEqual(entity_1.slug, 'mary-bjork') self.assertEqual(entity_2.slug, 'tiao-macale') def test_slug_property2(self): entity_1 = FooModel(key_name='foo', name=u'---') entity_1.put() entity_2 = FooModel(key_name='bar', name=u'___') entity_2.put() entity_1 = FooModel.get_by_key_name('foo') entity_2 = FooModel.get_by_key_name('bar') self.assertEqual(entity_1.slug, None) self.assertEqual(entity_2.slug, None) def test_slug_property3(self): entity_1 = FooModel(key_name='foo', name=u'---', name2=u'---') entity_1.put() entity_2 = FooModel(key_name='bar', name=u'___', name2=u'___') entity_2.put() entity_1 = FooModel.get_by_key_name('foo') entity_2 = FooModel.get_by_key_name('bar') self.assertEqual(entity_1.slug2, 'some-default-value') self.assertEqual(entity_2.slug2, 'some-default-value') def test_slug_property4(self): entity_1 = FooModel(key_name='foo', name=u'---', name2=u'Some really very big and maybe enormous string') entity_1.put() entity_2 = FooModel(key_name='bar', name=u'___', name2=u'abcdefghijklmnopqrstuwxyz') entity_2.put() entity_1 = FooModel.get_by_key_name('foo') entity_2 = FooModel.get_by_key_name('bar') self.assertEqual(entity_1.slug2, 'some-really-very-big') self.assertEqual(entity_2.slug2, 'abcdefghijklmnopqrst') def test_etag_property(self): entity_1 = FooModel(key_name='foo', name=u'Mary Björk') entity_1.put() entity_2 = FooModel(key_name='bar', name=u'Tião Macalé') entity_2.put() entity_1 = FooModel.get_by_key_name('foo') entity_2 = FooModel.get_by_key_name('bar') self.assertEqual(entity_1.etag, hashlib.sha1(entity_1.name.encode('utf8')).hexdigest()) self.assertEqual(entity_2.etag, hashlib.sha1(entity_2.name.encode('utf8')).hexdigest()) def test_etag_property2(self): entity_1 = FooModel(key_name='foo', name=u'Mary Björk') entity_1.put() entity_2 = FooModel(key_name='bar', name=u'Tião Macalé') entity_2.put() entity_1 = FooModel.get_by_key_name('foo') entity_2 = FooModel.get_by_key_name('bar') self.assertEqual(entity_1.etag2, None) self.assertEqual(entity_2.etag2, None) def test_json_property(self): entity_1 = JsonModel(key_name='foo', data={'foo': 'bar'}) entity_1.put() entity_1 = JsonModel.get_by_key_name('foo') self.assertEqual(entity_1.data, {'foo': 'bar'}) def test_json_property2(self): self.assertRaises(db.BadValueError, JsonModel, key_name='foo', data='foo') def test_timezone_property(self): zone = 'America/Chicago' entity_1 = TimezoneModel(key_name='foo', data=zone) entity_1.put() entity_1 = TimezoneModel.get_by_key_name('foo') self.assertEqual(entity_1.data, ext_db.pytz.timezone(zone)) def test_timezone_property2(self): self.assertRaises(db.BadValueError, TimezoneModel, key_name='foo', data=[]) def test_timezone_property3(self): self.assertRaises(ext_db.pytz.UnknownTimeZoneError, TimezoneModel, key_name='foo', data='foo') def test_key_property(self): key = db.Key.from_path('Bar', 'bar-key') entity_1 = FooModel(name='foo', key_name='foo', somekey=key) entity_1.put() entity_1 = FooModel.get_by_key_name('foo') self.assertEqual(entity_1.somekey, key) def test_key_property2(self): key = db.Key.from_path('Bar', 'bar-key') entity_1 = FooModel(name='foo', key_name='foo', somekey=str(key)) entity_1.put() entity_1 = FooModel.get_by_key_name('foo') self.assertEqual(entity_1.somekey, key) def test_key_property3(self): key = db.Key.from_path('Bar', 'bar-key') entity_1 = FooModel(name='foo', key_name='foo', somekey=str(key)) entity_1.put() entity_2 = FooModel(name='bar', key_name='bar', somekey=entity_1) entity_2.put() entity_2 = FooModel.get_by_key_name('bar') self.assertEqual(entity_2.somekey, entity_1.key()) def test_key_property4(self): key = db.Key.from_path('Bar', 'bar-key') entity_1 = FooModel(name='foo', somekey=str(key)) self.assertRaises(db.BadValueError, FooModel, name='bar', key_name='bar', somekey=entity_1) def test_key_property5(self): self.assertRaises(TypeError, FooModel, name='foo', key_name='foo', somekey=['foo']) def test_key_property6(self): self.assertRaises(datastore_errors.BadKeyError, FooModel, name='foo', key_name='foo', somekey='foo') #=========================================================================== # @db.retry_on_timeout #=========================================================================== def test_retry_on_timeout_1(self): counter = [0] test_timeout_1(counter=counter) self.assertEqual(counter[0], 3) def test_retry_on_timeout_2(self): counter = [0] self.assertRaises(ValueError, test_timeout_2, counter=counter) self.assertEqual(counter[0], 5) def test_retry_on_timeout_3(self): counter = [0] self.assertRaises(db.Timeout, test_timeout_3, counter=counter) self.assertEqual(counter[0], 3) #=========================================================================== # @db.load_entity #=========================================================================== def test_load_entity_with_key(self): @ext_db.load_entity(FooModel, 'foo_key', 'foo', 'key') def get(*args, **kwargs): return kwargs['foo'] foo = FooModel(name='foo') foo.put() loaded_foo = get(foo_key=str(foo.key())) self.assertEqual(str(loaded_foo.key()), str(foo.key())) self.assertEqual(get(foo_key=None), None) def test_load_entity_with_key_2(self): @ext_db.load_entity(FooModel, 'foo_key', 'foo', 'key') def get(*args, **kwargs): return kwargs['foo'] self.assertRaises(NotFound, get, foo_key=str(db.Key.from_path('FooModel', 'bar'))) def test_load_entity_with_id(self): @ext_db.load_entity(FooModel, 'foo_id', 'foo', 'id') def get(*args, **kwargs): return kwargs['foo'] foo = FooModel(name='foo') foo.put() loaded_foo = get(foo_id=foo.key().id()) self.assertEqual(str(loaded_foo.key()), str(foo.key())) def test_load_entity_with_id_2(self): @ext_db.load_entity(FooModel, 'foo_id', 'foo', 'id') def get(*args, **kwargs): return kwargs['foo'] self.assertRaises(NotFound, get, foo_id=-1) def test_load_entity_with_key_name(self): @ext_db.load_entity(FooModel, 'foo_key_name', 'foo', 'key_name') def get(*args, **kwargs): return kwargs['foo'] foo = FooModel(key_name='foo', name='foo') foo.put() loaded_foo = get(foo_key_name='foo') self.assertEqual(str(loaded_foo.key()), str(foo.key())) def test_load_entity_with_key_name_2(self): @ext_db.load_entity(FooModel, 'foo_key_name', 'foo', 'key_name') def get(*args, **kwargs): return kwargs['foo'] self.assertRaises(NotFound, get, foo_key_name='bar') def test_load_entity_with_key_with_guessed_fetch_mode(self): @ext_db.load_entity(FooModel, 'foo_key') def get(*args, **kwargs): return kwargs['foo'] foo = FooModel(name='foo') foo.put() loaded_foo = get(foo_key=str(foo.key())) self.assertEqual(str(loaded_foo.key()), str(foo.key())) self.assertEqual(get(foo_key=None), None) def test_load_entity_with_key_with_impossible_fetch_mode(self): def test(): @ext_db.load_entity(FooModel, 'foo_bar') def get(*args, **kwargs): return kwargs['foo'] self.assertRaises(NotImplementedError, test) #=========================================================================== # db.run_in_namespace #=========================================================================== def test_run_in_namespace(self): class MyModel(db.Model): name = db.StringProperty() def create_entity(name): entity = MyModel(key_name=name, name=name) entity.put() def get_entity(name): return MyModel.get_by_key_name(name) entity = ext_db.run_in_namespace('ns1', get_entity, 'foo') self.assertEqual(entity, None) ext_db.run_in_namespace('ns1', create_entity, 'foo') entity = ext_db.run_in_namespace('ns1', get_entity, 'foo') self.assertNotEqual(entity, None) entity = ext_db.run_in_namespace('ns2', get_entity, 'foo') self.assertEqual(entity, None) #=========================================================================== # db.to_key #=========================================================================== def test_to_key(self): class MyModel(db.Model): pass # None. self.assertEqual(ext_db.to_key(None), None) # Model without key. self.assertEqual(ext_db.to_key(MyModel()), None) # Model with key. self.assertEqual(ext_db.to_key(MyModel(key_name='foo')), db.Key.from_path('MyModel', 'foo')) # Key. self.assertEqual(ext_db.to_key(db.Key.from_path('MyModel', 'foo')), db.Key.from_path('MyModel', 'foo')) # Key as string. self.assertEqual(ext_db.to_key(str(db.Key.from_path('MyModel', 'foo'))), db.Key.from_path('MyModel', 'foo')) # All mixed. keys = [None, MyModel(), MyModel(key_name='foo'), db.Key.from_path('MyModel', 'foo'), str(db.Key.from_path('MyModel', 'foo'))] result = [None, None, db.Key.from_path('MyModel', 'foo'), db.Key.from_path('MyModel', 'foo'), db.Key.from_path('MyModel', 'foo')] self.assertEqual(ext_db.to_key(keys), result) self.assertRaises(datastore_errors.BadArgumentError, ext_db.to_key, {}) if __name__ == '__main__': test_utils.main()
from typing import Optional from pydantic import BaseModel class Query(BaseModel): shop_url: str api_secret: str
import numpy as np import cv2 from matplotlib import pyplot as plt cap = cv2.VideoCapture('Night Drive - 2689.mp4') count = 0 while(cap.isOpened()): count += 1 if count < 100: continue ret, frame = cap.read() plt.imshow(cv2.cvtColor(frame,cv2.COLOR_BGR2RGB)) plt.show() H, S, V = cv2.split(cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)) eq_V = cv2.equalizeHist(V) eq_hsv = cv2.merge([H, S, eq_V]) eq_image = cv2.cvtColor(eq_hsv,cv2.COLOR_HSV2RGB) plt.imshow(eq_image) plt.show() #cv2.waitKey(0); #cv2.destroyAllWindows() break
# -------------------------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # -------------------------------------------------------------------------------------------- from azure.cli.core.commands import CliCommandType from ._client_factory import (get_mediaservices_client, get_transforms_client, get_assets_client, get_jobs_client, get_streaming_locators_client, get_streaming_policies_client, get_streaming_endpoints_client, get_locations_client, get_live_events_client, get_live_outputs_client, get_content_key_policies_client, get_asset_filters_client, get_account_filters_client) from ._exception_handler import ams_exception_handler # pylint: disable=line-too-long def load_command_table(self, _): # pylint: disable=too-many-locals, too-many-statements def get_sdk(operation, client_factory): return CliCommandType( operations_tmpl='azure.mgmt.media.operations#{}Operations.'.format(operation) + '{}', client_factory=client_factory, exception_handler=ams_exception_handler ) def get_custom_sdk(custom_module, client_factory): return CliCommandType( operations_tmpl='azure.cli.command_modules.ams.operations.{}#'.format(custom_module) + '{}', client_factory=client_factory, exception_handler=ams_exception_handler ) with self.command_group('ams account', get_sdk('Mediaservices', get_mediaservices_client)) as g: g.custom_command('show', 'get_mediaservice', custom_command_type=get_custom_sdk('account', get_mediaservices_client)) g.command('delete', 'delete') g.generic_update_command('update', getter_name='mediaservice_update_getter', getter_type=get_custom_sdk('account', get_mediaservices_client), custom_func_name='update_mediaservice', custom_func_type=get_custom_sdk('account', get_mediaservices_client)) g.custom_command('list', 'list_mediaservices', custom_command_type=get_custom_sdk('account', get_mediaservices_client)) g.custom_command('create', 'create_mediaservice', custom_command_type=get_custom_sdk('account', get_mediaservices_client)) g.custom_command('check-name', 'check_name_availability', custom_command_type=get_custom_sdk('account', get_locations_client)) with self.command_group('ams account storage', get_sdk('Mediaservices', get_mediaservices_client)) as g: g.custom_command('add', 'add_mediaservice_secondary_storage', custom_command_type=get_custom_sdk('account', get_mediaservices_client)) g.custom_command('remove', 'remove_mediaservice_secondary_storage', custom_command_type=get_custom_sdk('account', get_mediaservices_client)) g.command('sync-storage-keys', 'sync_storage_keys') with self.command_group('ams account sp', get_sdk('Mediaservices', get_mediaservices_client)) as g: g.custom_command('create', 'create_assign_sp_to_mediaservice', custom_command_type=get_custom_sdk('sp', get_mediaservices_client)) g.custom_command('reset-credentials', 'reset_sp_credentials_for_mediaservice', custom_command_type=get_custom_sdk('sp', get_mediaservices_client)) with self.command_group('ams account mru', get_sdk('Mediaservices', get_mediaservices_client)) as g: g.custom_command('show', 'get_mru', custom_command_type=get_custom_sdk('mru', None)) g.custom_command('set', 'set_mru', custom_command_type=get_custom_sdk('mru', None)) with self.command_group('ams transform', get_sdk('Transforms', get_transforms_client)) as g: g.show_command('show', 'get') g.command('list', 'list') g.command('delete', 'delete') g.custom_command('create', 'create_transform', custom_command_type=get_custom_sdk('transform', get_transforms_client)) g.generic_update_command('update', setter_name='transform_update_setter', setter_type=get_custom_sdk('transform', get_mediaservices_client), custom_func_name='update_transform', custom_func_type=get_custom_sdk('transform', get_mediaservices_client)) with self.command_group('ams transform output', get_sdk('Transforms', get_mediaservices_client)) as g: g.custom_command('add', 'add_transform_output', custom_command_type=get_custom_sdk('transform', get_transforms_client)) g.custom_command('remove', 'remove_transform_output', custom_command_type=get_custom_sdk('transform', get_transforms_client)) with self.command_group('ams asset', get_sdk('Assets', get_assets_client)) as g: g.show_command('show', 'get') g.command('list', 'list') g.command('delete', 'delete') g.command('list-streaming-locators', 'list_streaming_locators') g.custom_command('get-encryption-key', 'get_encryption_key', custom_command_type=get_custom_sdk('asset', get_assets_client)) g.generic_update_command('update', custom_func_name='update_asset', custom_func_type=get_custom_sdk('asset', get_mediaservices_client)) g.custom_command('get-sas-urls', 'get_sas_urls', custom_command_type=get_custom_sdk('asset', get_assets_client)) g.custom_command('create', 'create_asset', custom_command_type=get_custom_sdk('asset', get_assets_client)) with self.command_group('ams asset-filter', get_sdk('AssetFilters', get_asset_filters_client)) as g: g.command('list', 'list') g.show_command('show', 'get') g.command('delete', 'delete') g.custom_command('create', 'create_asset_filter', custom_command_type=get_custom_sdk('asset_filter', get_asset_filters_client)) g.generic_update_command('update', custom_func_name='update_asset_filter', custom_func_type=get_custom_sdk('asset_filter', get_mediaservices_client)) with self.command_group('ams job', get_sdk('Jobs', get_jobs_client)) as g: g.show_command('show', 'get') g.command('list', 'list') g.command('delete', 'delete') g.custom_command('cancel', 'cancel_job', custom_command_type=get_custom_sdk('job', get_jobs_client)) g.custom_command('start', 'create_job', custom_command_type=get_custom_sdk('job', get_jobs_client)) g.generic_update_command('update', setter_name='update', custom_func_name='update_job', custom_func_type=get_custom_sdk('job', get_jobs_client)) with self.command_group('ams content-key-policy', get_sdk('ContentKeyPolicies', get_content_key_policies_client)) as g: g.custom_command('create', 'create_content_key_policy', custom_command_type=get_custom_sdk('content_key_policy', get_content_key_policies_client)) g.custom_command('show', 'show_content_key_policy', custom_command_type=get_custom_sdk('content_key_policy', get_content_key_policies_client)) g.command('delete', 'delete') g.command('list', 'list') g.generic_update_command('update', getter_name='get_policy_properties_with_secrets', setter_name='update_content_key_policy_setter', setter_type=get_custom_sdk('content_key_policy', get_content_key_policies_client), custom_func_name='update_content_key_policy', custom_func_type=get_custom_sdk('content_key_policy', get_content_key_policies_client)) with self.command_group('ams content-key-policy option', get_sdk('ContentKeyPolicies', get_content_key_policies_client)) as g: g.custom_command('add', 'add_content_key_policy_option', custom_command_type=get_custom_sdk('content_key_policy', get_content_key_policies_client)) g.custom_command('remove', 'remove_content_key_policy_option', custom_command_type=get_custom_sdk('content_key_policy', get_content_key_policies_client)) g.custom_command('update', 'update_content_key_policy_option', custom_command_type=get_custom_sdk('content_key_policy', get_content_key_policies_client)) with self.command_group('ams streaming-locator', get_sdk('StreamingLocators', get_streaming_locators_client)) as g: g.custom_command('create', 'create_streaming_locator', custom_command_type=get_custom_sdk('streaming_locator', get_streaming_locators_client)) g.command('list', 'list') g.show_command('show', 'get') g.command('delete', 'delete') g.command('get-paths', 'list_paths') g.custom_command('list-content-keys', 'list_content_keys', custom_command_type=get_custom_sdk('streaming_locator', get_streaming_locators_client)) with self.command_group('ams streaming-policy', get_sdk('StreamingPolicies', get_streaming_policies_client)) as g: g.custom_command('create', 'create_streaming_policy', custom_command_type=get_custom_sdk('streaming_policy', get_streaming_policies_client)) g.command('list', 'list') g.show_command('show', 'get') g.command('delete', 'delete') with self.command_group('ams streaming-endpoint', get_sdk('StreamingEndpoints', get_streaming_endpoints_client)) as g: g.command('list', 'list') g.custom_command('start', 'start', custom_command_type=get_custom_sdk('streaming_endpoint', get_streaming_endpoints_client), supports_no_wait=True) g.custom_command('stop', 'stop', custom_command_type=get_custom_sdk('streaming_endpoint', get_streaming_endpoints_client), supports_no_wait=True) g.custom_command('create', 'create_streaming_endpoint', custom_command_type=get_custom_sdk('streaming_endpoint', get_streaming_endpoints_client), supports_no_wait=True) g.generic_update_command('update', setter_name='update_streaming_endpoint_setter', setter_type=get_custom_sdk('streaming_endpoint', get_streaming_endpoints_client), custom_func_name='update_streaming_endpoint', custom_func_type=get_custom_sdk('streaming_endpoint', get_streaming_endpoints_client), supports_no_wait=True) g.show_command('show', 'get') g.command('delete', 'delete') g.command('scale', 'scale') g.wait_command('wait') with self.command_group('ams streaming-endpoint akamai', get_sdk('StreamingEndpoints', get_streaming_endpoints_client)) as g: g.custom_command('add', 'add_akamai_access_control', custom_command_type=get_custom_sdk('streaming_endpoint', get_streaming_endpoints_client)) g.custom_command('remove', 'remove_akamai_access_control', custom_command_type=get_custom_sdk('streaming_endpoint', get_streaming_endpoints_client)) with self.command_group('ams live-event', get_sdk('LiveEvents', get_live_events_client)) as g: g.custom_command('create', 'create', custom_command_type=get_custom_sdk('live_event', get_live_events_client), supports_no_wait=True) g.custom_command('start', 'start', custom_command_type=get_custom_sdk('live_event', get_live_events_client), supports_no_wait=True) g.custom_command('stop', 'stop', custom_command_type=get_custom_sdk('live_event', get_live_events_client), supports_no_wait=True) g.custom_command('reset', 'reset', custom_command_type=get_custom_sdk('live_event', get_live_events_client), supports_no_wait=True) g.show_command('show', 'get') g.command('delete', 'delete') g.command('list', 'list') g.generic_update_command('update', setter_name='update_live_event_setter', setter_type=get_custom_sdk('live_event', get_live_events_client), custom_func_name='update_live_event', custom_func_type=get_custom_sdk('live_event', get_live_events_client)) g.wait_command('wait') with self.command_group('ams live-output', get_sdk('LiveOutputs', get_live_outputs_client)) as g: g.custom_command('create', 'create_live_output', custom_command_type=get_custom_sdk('live_output', get_live_outputs_client)) g.show_command('show', 'get') g.command('list', 'list') g.command('delete', 'delete') with self.command_group('ams account-filter', get_sdk('AccountFilters', get_account_filters_client)) as g: g.custom_command('create', 'create_account_filter', custom_command_type=get_custom_sdk('account_filter', get_account_filters_client)) g.show_command('show', 'get') g.command('list', 'list') g.command('delete', 'delete') g.generic_update_command('update', custom_func_name='update_account_filter', custom_func_type=get_custom_sdk('account_filter', get_mediaservices_client)) with self.command_group('ams', is_preview=True): pass
#!/usr/bin/env python from django.apps import AppConfig class DjangoMakeSuperUserConfig(AppConfig): name = 'django_makesuperuser'
#!/usr/local/bin/python3.5 # Copyright (c) 2017 David Preece, All rights reserved. # # Permission to use, copy, modify, and/or distribute this software for any # purpose with or without fee is hereby granted. # # THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES # WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF # MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR # ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES # WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN # ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF # OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. import json from base64 import b64encode from tfnz.cli import generic_cli, base_argparse def main(): parser = base_argparse('tfresources') generic_cli(parser, {None: list_resources}) def list_resources(location, args): resources = { 'location': location.location, 'nodes': {b64encode(node.pk).decode(): node.stats for node in location.nodes.values()}, 'volumes': [vol.display_name() for vol in location.volumes.values()], 'externals': [xtn.display_name() for xtn in location.externals.values()], 'endpoints': [ep.domain for ep in location.endpoints.values()] } print(json.dumps(resources, indent=2)) if __name__ == "__main__": main()
# implementation of iWare-E for PAWS # Lily Xu # May 2019 import sys import time import pickle import pandas as pd import numpy as np from scipy.optimize import minimize from sklearn import metrics from sklearn.model_selection import train_test_split, StratifiedKFold from sklearn.preprocessing import StandardScaler from sklearn import tree from sklearn.svm import LinearSVC, SVC from sklearn.gaussian_process import GaussianProcessRegressor # from sklearn.gaussian_process import GaussianProcessClassifier from sklearn.ensemble import BaggingClassifier, RandomForestClassifier from imblearn.ensemble import BalancedBaggingClassifier from sklearn.gaussian_process.kernels import RBF from itertools import product from gpc import GaussianProcessClassifier NUM_COLS_TO_SKIP = 6 # number of extraneous columns in 'x' features CSV file POSITIVE_LABEL = 1 # how a positive label is encoded in the data RANDOM_SEED = None # could be None N_JOBS = 1 # -1 to use max # parameters for bagging classifier NUM_ESTIMATORS = 32 #32 #50 MAX_SAMPLES = 0.8 MAX_FEATURES = .5 # verbose output if == 1 VERBOSE = 0 ########################################################### # modify GPR to serve as a classifier # and offer variance results ########################################################### def gpr_predict_proba(self, x, return_var=False): mean_r, std = self.predict(x, return_std=True) prob = 1 / (1 + np.exp(mean_r - 0.5)) prob = prob.reshape(-1, 1) # form array with predictions for both classes predictions = np.concatenate((prob, 1 - prob), axis=1) if return_var: var = [x**2 for x in std] return predictions, var else: return predictions # def gpr_get_var(self, x): # _, std = self.predict(x, return_std=True) # # return [x**2 for x in std] GaussianProcessRegressor.predict_proba = gpr_predict_proba # GaussianProcessRegressor.get_var = gpr_get_var def rf_predict_proba(self, x, return_var=False, train_x=None): predictions = self.predict_proba_orig(x) import forestci as fci if return_var: assert train_x is not None var = fci.random_forest_error(self, train_x, x) return predictions, var else: return predictions RandomForestClassifier.predict_proba_orig = RandomForestClassifier.predict_proba RandomForestClassifier.predict_proba = rf_predict_proba ########################################################### # utility functions ########################################################### # given training and testing sets, normalize data to zero mean, unit variance def normalize_data(train, test): scaler = StandardScaler() # fit only on training data scaler.fit(train) # apply normalization to training and test data train = scaler.transform(train) test = scaler.transform(test) return train, test # by maximizing F1 score? def determine_threshold(label, predict_test_pos_probs, num_thresholds=50): # TODO: previously, used tpr-(1-fpr) # fpr, tpr, thresholds = metrics.roc_curve(label, predict_test_pos_probs, pos_label=POSITIVE_LABEL) # or maybe scaled, like 2*tpr - (1-fpr)? thresholds = np.linspace(0, 1, num_thresholds) f1 = np.zeros(thresholds.size) precision = np.zeros(thresholds.size) recall = np.zeros(thresholds.size) auprc = np.zeros(thresholds.size) for i in range(num_thresholds): predict_labels = predict_test_pos_probs > thresholds[i] predict_labels = predict_labels.astype(int) f1[i] = metrics.f1_score(label, predict_labels) precision[i] = metrics.precision_score(label, predict_labels, pos_label=POSITIVE_LABEL) recall[i] = metrics.recall_score(label, predict_labels, pos_label=POSITIVE_LABEL) precision_vals, recall_vals, _ = metrics.precision_recall_curve(label, predict_test_pos_probs, pos_label=POSITIVE_LABEL) auprc[i] = metrics.auc(recall_vals, precision_vals) if VERBOSE: print('threshold: {:.4f} | f1: {:.4f}, precision: {:.4f}, recall: {:.4f}, AUPRC: {:.4f}'.format(thresholds[i], f1[i], precision[i], recall[i], auprc[i])) # opt = np.argmax(f1) opt = np.argmax(auprc) print('optimal threshold {:.4f}, with f1 {:.4f}, precision {:.4f}, recall {:.4f}, AUPRC {:.4f}'.format(thresholds[opt], f1[opt], precision[opt], recall[opt], auprc[opt])) return thresholds[opt] # evaluate the ML model on the test set by print all relevant metrics for the test set def evaluate_results(test_y, predict_test_pos_probs): output = [] # compute optimal threshold and determine labels opt_threshold = determine_threshold(test_y, predict_test_pos_probs) predict_test = (predict_test_pos_probs > opt_threshold).astype(int) predict_test_neg_probs = np.ones(predict_test_pos_probs.shape) - predict_test_pos_probs predict_test_probs = np.concatenate((predict_test_neg_probs.reshape(1,-1), predict_test_pos_probs.reshape(1,-1)), axis=0).transpose() # select the prediction column with probability of assigned label predict_test_label_probs = predict_test_probs[[i for i in range(predict_test.shape[0])], tuple(predict_test)] fpr, tpr, _ = metrics.roc_curve(test_y, predict_test_pos_probs, pos_label=POSITIVE_LABEL) output.append('AUC: {:.5f}'.format(metrics.auc(fpr, tpr))) precision_vals, recall_vals, _ = metrics.precision_recall_curve(test_y, predict_test_pos_probs, pos_label=POSITIVE_LABEL) output.append('AUPRC: {:.5f}'.format(metrics.auc(recall_vals, precision_vals))) # area under precision-recall curve #output.append('average precision score: {:.5f}'.format(metrics.average_precision_score(test_y, predict_test_pos_probs, pos_label=POSITIVE_LABEL))) output.append('precision: {:.5f}'.format(metrics.precision_score(test_y, predict_test, pos_label=POSITIVE_LABEL))) recall = metrics.recall_score(test_y, predict_test, pos_label=POSITIVE_LABEL) output.append('recall: {:.5f}'.format(recall)) output.append('F1 score: {:.5f}'.format(metrics.f1_score(test_y, predict_test, pos_label=POSITIVE_LABEL))) percent_positive = np.where(predict_test == POSITIVE_LABEL)[0].shape[0] / predict_test.shape[0] l_and_l = recall ** 2 / percent_positive max_ll = 1 / (test_y.sum() / test_y.shape[0]) output.append('L&L %: {:.5f} ({:.5f} / {:.5f})'.format(100 * (l_and_l / max_ll), l_and_l, max_ll)) output.append('cross entropy: {:.5f}'.format(metrics.log_loss(test_y, predict_test_probs))) output.append('average prediction probability: {:.5f}'.format(predict_test_label_probs.mean())) output.append('accuracy: {:.5f}'.format(metrics.accuracy_score(test_y, predict_test))) output.append('cohen\'s kappa: {:.5f}'.format(metrics.cohen_kappa_score(test_y, predict_test))) # measures inter-annotator agreement output.append('F-beta score: {:.5f}'.format(metrics.fbeta_score(test_y, predict_test, 2, pos_label=POSITIVE_LABEL))) # commonly .5, 1, or 2. if 1, then same as f1 return '\n'.join(output) ########################################################### # setup data ########################################################### def setup_data(x_filename, y_filename): # read in features features_raw = pd.read_csv(x_filename) features_raw.drop(columns=features_raw.columns[0], inplace=True) patrol_effort = features_raw['current_patrol_effort'].values section_col = features_raw['section'].values year_col = features_raw['year'].values # features_raw.drop(columns=['temp', 'precip'], inplace=True) # don't use current_patrol_effort as a feature features_raw.drop(columns='current_patrol_effort', inplace=True) # read in labels labels_raw = pd.read_csv(y_filename) labels_raw.drop(columns=labels_raw.columns[0], inplace=True) features = features_raw.values[:, NUM_COLS_TO_SKIP:] labels = labels_raw.values[:, NUM_COLS_TO_SKIP] feature_names = list(features_raw.columns)[NUM_COLS_TO_SKIP:] print('feature names {}'.format(feature_names)) return features_raw, features, feature_names, labels, patrol_effort, section_col, year_col ########################################################### # iWare-E class ########################################################### class iWare: def __init__(self, method, num_classifiers, park, year): self.method = method self.num_classifiers = num_classifiers self.park = park self.year = year self.patrol_thresholds = None self.classifiers = None self.weights = None # weights for classifiers self.train_x_norm = None # normalized numpy array of train_x # get classifier used as base estimator in bagging classifier def get_base_estimator(self): if self.method == 'gp': # kernel = ConstantKernel(1e-20, (1e-25, 1e-15))* RBF(length_scale=1) kernel = 1.0 * RBF(length_scale=1.0) #kernel = 1.0 * RBF(length_scale=20.0) # look at Matern kernel? # ******** # Aaron suggests printing out length scale #kernel = 1.0 * RBF(length_scale=1.0, length_scale_bounds=(1e-05, 1e5)) # optimizer=None to keep kernel parameters in place # n_restarts_optimizer=5, base_estimator = GaussianProcessClassifier(kernel=kernel, random_state=RANDOM_SEED, warm_start=True, max_iter_predict=100, n_jobs=-1) # base_estimator = GaussianProcessRegressor(kernel=kernel, random_state=RANDOM_SEED, n_restarts_optimizer=0, normalize_y=True) elif self.method == 'svm': base_estimator = SVC(gamma='auto', random_state=RANDOM_SEED) elif self.method == 'linear-svc': base_estimator = LinearSVC(max_iter=5000, random_state=RANDOM_SEED) elif self.method == 'dt': base_estimator = tree.DecisionTreeClassifier(random_state=RANDOM_SEED) else: raise Exception('method \'{}\' not recognized'.format(self.method)) return base_estimator # get overall classifier to use def get_classifier(self, use_balanced): if self.method == 'rf': return RandomForestClassifier(n_estimators=NUM_ESTIMATORS, criterion='gini', max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features=MAX_FEATURES, max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, bootstrap=True, oob_score=False, n_jobs=N_JOBS, random_state=RANDOM_SEED, verbose=VERBOSE, warm_start=False, class_weight=None) # return RandomForestRegressor(n_estimators=NUM_ESTIMATORS, # criterion='mse', max_depth=None, min_samples_split=2, # min_samples_leaf=1, min_weight_fraction_leaf=0.0, # max_features=MAX_FEATURES, max_leaf_nodes=None, # min_impurity_decrease=0.0, min_impurity_split=None, # bootstrap=True, oob_score=False, # n_jobs=N_JOBS, random_state=RANDOM_SEED, # verbose=VERBOSE, warm_start=False) base_estimator = self.get_base_estimator() # GPs don't need a bagging classifier # return base_estimator if self.method == 'gp': return base_estimator # balanced bagging classifier used for datasets with strong label imbalance # (e.g. SWS in Cambodia) elif use_balanced: return BalancedBaggingClassifier(base_estimator=base_estimator, n_estimators=NUM_ESTIMATORS, max_samples=MAX_SAMPLES, max_features=MAX_FEATURES, bootstrap=True, bootstrap_features=False, oob_score=False, warm_start=False, sampling_strategy='majority', #sampling_strategy=0.8, replacement=True, n_jobs=N_JOBS, random_state=RANDOM_SEED, verbose=VERBOSE) # non-balanced bagging classifier used for other datasets else: return BaggingClassifier(base_estimator=base_estimator, n_estimators=NUM_ESTIMATORS, max_samples=MAX_SAMPLES, max_features=MAX_FEATURES, bootstrap=True, bootstrap_features=False, oob_score=False, warm_start=False, n_jobs=N_JOBS, random_state=RANDOM_SEED, verbose=VERBOSE) ########################################################### # classification ########################################################### def get_patrol_thresholds(self, train_effort): patrol_threshold_percentile = np.linspace(0, 100, self.num_classifiers, endpoint=False) patrol_thresholds = np.percentile(train_effort, patrol_threshold_percentile) print('percentiles {}'.format(patrol_threshold_percentile)) print('patrol thresholds {}'.format(patrol_thresholds)) return patrol_thresholds def get_vote_matrix(self): vote_power = np.identity(self.num_classifiers) # identity matrix # vote_power = np.tril(np.ones((self.num_classifiers, self.num_classifiers))) # lower triangle # vote_power = np.triu(np.ones((self.num_classifiers, self.num_classifiers))) # upper triangle # build triangular vote qualification matrix # vote_qual = np.triu(np.ones((self.num_classifiers, self.num_classifiers))) vote_qual = np.ones((self.num_classifiers, self.num_classifiers)) # create combined vote matrix vote_combine = np.multiply(vote_power, vote_qual) # normalize column-wise vote_combine = vote_combine / vote_combine.sum(1)[:,None] return vote_combine # train a set of classifiers using provided data def train_classifiers(self, train_x, train_y, train_effort, use_balanced): classifiers = [] for i in range(self.num_classifiers): #### filter data # get training data for this threshold idx = np.where(np.logical_or(train_effort >= self.patrol_thresholds[i], train_y == POSITIVE_LABEL))[0] if i > 0 and self.patrol_thresholds[i] == self.patrol_thresholds[i-1]: print('threshold {} same as previous, value {}. skipping'.format(i, self.patrol_thresholds[i])) classifiers.append(None) continue if idx.size == 0: print('no training points found for classifier {}, threshold = {}'.format(i, self.patrol_thresholds[i])) classifiers.append(None) continue train_x_filter = train_x[idx, :] train_y_filter = train_y[idx] print('filtered data: {}. num positive labels {}'.format(train_x_filter.shape, np.sum(train_y_filter))) if np.sum(train_y_filter) == 0: print('no positive labels in this subset of the training data. skipping classifier {}'.format(i)) classifiers.append(None) continue # select and train a classifier classifier = self.get_classifier(use_balanced) print('classifier {}, threshold {}, num x {}'.format(i, self.patrol_thresholds[i], train_x_filter.shape)) start_time = time.time() # fit training data classifier.fit(train_x_filter, train_y_filter) print(' train time: {:.2f} seconds, score: {:.5f}'.format( time.time() - start_time, classifier.score(train_x_filter, train_y_filter))) classifiers.append(classifier) print('-------------------------------------------') return classifiers # given a set of trained classifiers, compute optimal weights def get_classifier_weights(self, classifiers, reserve_x, reserve_y): # test classifiers on all data points predictions = [] for i in range(self.num_classifiers): if classifiers[i] is None: predictions.append(np.zeros(reserve_y.shape)) continue curr_predictions = classifiers[i].predict(reserve_x) predictions.append(curr_predictions) predictions = np.array(predictions).transpose() # define loss function def evaluate_ensemble(weights): # ensure we don't get NaN values if np.isnan(weights).any(): return 1e9 weighted_predictions = np.multiply(predictions, weights) weighted_predictions = np.sum(weighted_predictions, axis=1) score = metrics.log_loss(reserve_y, weighted_predictions) return score # evaluate score # auprc = metrics.average_precision_score(reserve_y, weighted_predictions, pos_label=POSITIVE_LABEL) # # # pass in negative to minimize # return -auprc # constrain weights to sum to 1 cons = ({'type': 'eq', 'fun': lambda w: 1 - sum(w)}) # bound weights to be between 0 and 1 bounds = [(0,1)] * self.num_classifiers # random restarts with random initial weights #best_weights = np.ones(self.num_classifiers) / self.num_classifiers # default: equal weights best_weights = None best_score = 1e9 # ensure we have enough positive samples unique_vals, unique_counts = np.unique(reserve_y, return_counts=True) unique_dict = dict(zip(unique_vals, unique_counts)) if VERBOSE: print(unique_dict) if 1 not in unique_dict or unique_dict[1] < 5: print(' not enough positive labels. skipping') return best_weights for _ in range(10): w = np.random.rand(self.num_classifiers) w = w / np.sum(w) res = minimize(evaluate_ensemble, w, method='SLSQP', bounds=bounds, constraints=cons) if res.fun < best_score: best_weights = res.x best_score = res.fun if VERBOSE: print('best score {}, weights {}'.format(best_score, np.around(best_weights, 3))) return best_weights def train_iware(self, all_train_x, all_train_y, all_train_effort, use_balanced=False, nsplits=5): self.patrol_thresholds = self.get_patrol_thresholds(all_train_effort) print('shape x', all_train_x.shape) print('shape y', all_train_y.shape) print('shape train_effort', all_train_effort.shape) # print('k-fold cross validation, k = {}'.format(nsplits)) # skf = StratifiedKFold(nsplits, shuffle=True) # # all_weights = np.zeros((nsplits, self.num_classifiers, self.num_classifiers)) # # # # # reserve some test data as validation set # # to assign weights to classifiers # k = 0 # for train_index, reserve_index in skf.split(all_train_x, all_train_y): # train_x = all_train_x[train_index] # train_y = all_train_y[train_index] # train_effort = all_train_effort[train_index] # # reserve_x = all_train_x[reserve_index] # reserve_y = all_train_y[reserve_index] # reserve_effort = all_train_effort[reserve_index] # # # print('-------------------------------------------') # print('training classifiers with limited train data, k = {}'.format(k)) # print('-------------------------------------------') # # classifiers = self.train_classifiers(train_x, train_y, train_effort, use_balanced) # # # print('-------------------------------------------') # print('finding weights for classifiers') # print('-------------------------------------------') # # # ---------------------------------------------- # # find appropriate weights for classifiers # # ---------------------------------------------- # for i in range(self.num_classifiers): # #### filter data # # find points within specified threshold # if i == 0: # idx = np.where(reserve_effort < self.patrol_thresholds[i+1])[0] # elif i == self.num_classifiers - 1: # idx = np.where(self.patrol_thresholds[i] <= reserve_effort)[0] # else: # idx = np.where(np.logical_and(self.patrol_thresholds[i] <= reserve_effort, reserve_effort < self.patrol_thresholds[i+1]))[0] # # filter_x = reserve_x[idx] # filter_y = reserve_y[idx] # print('classifier {}: {} points, {} positive'.format(i, filter_x.shape[0], np.count_nonzero(filter_y == POSITIVE_LABEL))) # weights = self.get_classifier_weights(classifiers, filter_x, filter_y) # # # if weights were not set, assign classifier weight to just 1 at classifier location (corresponding to the matrix diagonal) # if weights is None: # weights = np.zeros(self.num_classifiers) # weights[i] = 1 # # all_weights[k, i, :] = weights # # k += 1 # # # average all classifier weights # self.weights = all_weights.mean(0) # print('weights: ', np.around(self.weights, 4)) # self.weights = np.eye(self.num_classifiers) self.weights = self.get_vote_matrix() print('-------------------------------------------') print('training classifiers with all train data') print('-------------------------------------------') self.classifiers = self.train_classifiers(all_train_x, all_train_y, all_train_effort, use_balanced) # TODO: does this need to be moved? # need train_x later for random forest variance if self.method == 'rf': self.train_x_norm = np.copy(all_train_x) def test_iware(self, test_x, test_y, test_effort, output_path): if self.patrol_thresholds is None: raise ValueError('No patrol thresholds. test_iware() may not have been called.') if self.classifiers is None: raise ValueError('No classifiers. test_iware() may not have been called.') if self.weights is None: raise ValueError('No weights. test_iware() may not have been called.') for i in range(len(self.weights)): print('classifier {}, weights {}, sum {}'.format(i, np.around(self.weights[i], 4), self.weights[i].sum())) # # test classifiers on all data points # predictions = [] # for i in range(self.num_classifiers): # if self.classifiers[i] is None: # # predictions.append(None) # predictions.append(np.zeros(test_x.shape)) # continue # # curr_predictions = self.classifiers[i].predict(test_x) # predictions.append(curr_predictions) # predictions = np.array(predictions).transpose() # # weighted_predictions = np.multiply(predictions, self.weights) # weighted_predictions = np.sum(weighted_predictions, axis=1) # # evaluate_results(test_y, weighted_predictions) # # return ########### # predicted probability of illegal activity observation on each data point num_test = test_y.shape[0] weighted_predictions = np.zeros(num_test) weighted_variances = np.zeros(num_test) all_predictions = np.zeros((num_test, self.num_classifiers)) if self.method == 'gp' or self.method == 'rf': all_variances = np.zeros((num_test, self.num_classifiers)) # TODO: can i do this portion more efficiently? # compute the classification interval for each point classification = np.zeros(num_test) for i in range(num_test): smaller_thresholds = np.where(test_effort[i] > self.patrol_thresholds)[0] # patrol effort at this point may be less than all threshold values if len(smaller_thresholds) == 0: classification[i] = 0 else: classification[i] = smaller_thresholds[-1] classification = classification.astype(int) for i in range(self.num_classifiers): if self.classifiers[i] is None: print('classifier {} is none; skipping'.format(i)) continue start_time = time.time() # compute variance if self.method == 'gp' or self.method == 'rf': if self.method == 'rf': assert self.train_x_norm is not None curr_predictions, curr_variances = self.classifiers[i].predict_proba(test_x, return_var=True, train_x=self.train_x_norm) elif self.method == 'gp': # curr_predictions, curr_variances = self.classifiers[i].predict_proba(test_x, return_var=True) curr_predictions = self.classifiers[i].predict_proba(test_x) curr_variances = self.classifiers[i].predict_var(test_x) # curr_variances = curr_variances[:, 1] # normalize variance values curr_variances = curr_variances - np.min(curr_variances) curr_variances = curr_variances / np.max(curr_variances) all_variances[:, i] = curr_variances # this method doesn't allow variance :( else: curr_predictions = self.classifiers[i].predict_proba(test_x) curr_predictions = curr_predictions[:, 1] # probability of positive label all_predictions[:, i] = curr_predictions # TODO: make more efficient! multiplier = np.zeros(num_test) for j in range(num_test): multiplier[j] = self.weights[classification[j]][i] # scale increase by the multiplier for each data point weighted_predictions += np.multiply(curr_predictions, multiplier) if self.method == 'gp' or self.method == 'rf': weighted_variances += np.multiply(curr_variances, multiplier) print(' classifier {}, test time {:.3f}'.format(i, time.time() - start_time)) # save out predictions to CSV print(' save out predictions...') predictions_df = pd.DataFrame(data=all_predictions, columns=['threshold={}'.format(thresh) for thresh in self.patrol_thresholds]) predictions_out = '{}/{}_{}_predictions.csv'.format(output_path, self.method, self.num_classifiers) print(' {}'.format(predictions_out)) predictions_df.to_csv(predictions_out) # save out variances to CSV if self.method == 'gp' or self.method == 'rf': print(' save out variances...') variances_df = pd.DataFrame(data=all_variances, columns=['threshold={}'.format(thresh) for thresh in self.patrol_thresholds]) variances_df.to_csv('{}/{}_{}_variances.csv'.format(output_path, self.method, self.num_classifiers)) combined_df = pd.DataFrame({'predictions': weighted_predictions, 'variances': weighted_variances}) combined_df.to_csv('{}/{}_{}_weighted_pred_var.csv'.format(output_path, self.method, self.num_classifiers)) ### evaluate results = evaluate_results(test_y, weighted_predictions) print(results) f = open('{}/{}_{}.txt'.format(output_path, self.method, self.num_classifiers), 'w') f.write('park {}, test year {}\n'.format(self.park, self.year)) f.write('method {}, num_classifiers {}\n'.format(self.method, self.num_classifiers)) f.write('thresholds {}\n'.format(self.patrol_thresholds)) f.write('\n\n') f.write(results) f.write('\n\n\n') f.write('weights\n{}\n'.format(np.around(self.weights, 5))) f.close() pickle_data = {'park': self.park, 'num_classifiers': self.num_classifiers, 'method': self.method, #'classifiers': self.classifiers, 'weights': self.weights, 'thresholds': self.patrol_thresholds, 'predictions': weighted_predictions, 'results': results } pickle.dump(pickle_data, open('{}/{}_{}.p'.format(output_path, self.method, self.num_classifiers), 'wb')) # # display performance on only first classifier # # only using the first is the same as no iWare-E ensembling # print('-------------------------------------------') # print('testing - only first classifier') # print('-------------------------------------------') # # predict_test_probs = classifiers[0].predict_proba(test_x) # predict_test_pos_probs = predict_test_probs[:,1] # evaluate_results(test_y, predict_test_pos_probs) # # # write out predictions to file # predict_out = pd.DataFrame(data={'predictions': predict_test_pos_probs, 'labels': test_y}) # predict_out.to_csv('output/test_predictions_{}_{}_method_{}.csv'.format(self.park, TEST_YEAR, self.method)) ########################################################### # run train/test code to evaluate predictive models ########################################################### # prepare data: split into train/test and normalize def train_test_split_by_year(self, features, labels, patrol_effort, year_col, test_year, test_section=None, section_col=None): # specifying the section is optional if test_section is not None: assert section_col is not None if test_section: # just one section of test data train_idx = np.where(np.logical_or(year_col < test_year, section_col < test_section))[0] test_idx = np.where(np.logical_and(year_col == test_year, section_col == test_section))[0] else: # full year of test data train_idx = np.where(year_col < test_year)[0] test_idx = np.where(year_col == test_year)[0] train_x = features[train_idx, :] train_y = labels[train_idx] train_effort = patrol_effort[train_idx] test_x = features[test_idx, :] test_y = labels[test_idx] test_effort = patrol_effort[test_idx] train_x, test_x = normalize_data(train_x, test_x) print('train x, y', train_x.shape, train_y.shape) print('test x, y ', test_x.shape, test_y.shape) print('patrol effort train, test ', train_effort.shape, test_effort.shape) return train_x, test_x, train_y, test_y, train_effort, test_effort ########################################################### # iWare-E for predicting future risk ########################################################### # use all provided data to make predictions def make_predictions(self, predict_section, features_raw, features, feature_names, labels, patrol_effort, section_col, input_static_feats, output_path, test_temp=None, test_precip=None, gpp_filename=None): print('time to make some predictions!') predict_year = self.year # ---------------------------------------------- # get training data # ---------------------------------------------- # use all data before specified (predict_year, predict_section) train_idx = np.where(np.logical_or(features_raw['year'] < predict_year, np.logical_and(features_raw['year'] == predict_year, features_raw['section'] < predict_section)))[0] print(' features shape', features_raw.shape) print(' train_dx ', len(train_idx), train_idx) train_x = features[train_idx, :] train_y = labels[train_idx] train_patrol_effort = patrol_effort[train_idx] # ---------------------------------------------- # get data to predict on # ---------------------------------------------- if predict_section == 0: prev_year = predict_year - 1 num_section = np.max(section_col) print(' num section', num_section) prev_section = num_section else: prev_year = predict_year prev_section = predict_section - 1 print(' test section: year {}, section {}'.format(predict_year, predict_section)) print(' prev section: year {}, section {}'.format(prev_year, prev_section)) # ---------------------------------------------- # set up data arrays # ---------------------------------------------- # get past patrol effort for the test section prev_section_idx = np.where(np.logical_and(features_raw['year'] == prev_year, features_raw['section'] == prev_section)) past_patrol_effort = patrol_effort[prev_section_idx] prev_section_spatial_id = features_raw['spatial_id'].values[prev_section_idx] patrol_effort_df = pd.DataFrame({'spatial_id': prev_section_spatial_id, 'past_patrol_effort': past_patrol_effort}) # get all static features static_features = pd.read_csv(input_static_feats) static_features.drop(columns=static_features.columns[0], inplace=True) # create features array and add in past_patrol_effort predict_x_df = static_features.join(patrol_effort_df.set_index('spatial_id'), on='spatial_id', how='left') predict_x_df['past_patrol_effort'].fillna(0, inplace=True) # add climate info if test_temp is not None and test_precip is not None: predict_x_df['temp'] = test_temp * np.ones(static_features.shape[0]) predict_x_df['precip'] = test_precip * np.ones(static_features.shape[0]) # add GPP info if gpp_filename is not None: new_gpp = pd.read_csv('../preprocess_consolidate/belum_traponly_combined/1000/output/all_3month/GPP_2019_0.csv') predict_x_df['gpp'] = new_gpp['2019-0'] # arrange columns to match training data store_columns = predict_x_df[['spatial_id', 'x', 'y']] predict_x_df.drop(columns=['spatial_id', 'x', 'y'], inplace=True) predict_x_df = predict_x_df[feature_names] predict_x = predict_x_df.values # normalize data train_x, predict_x = normalize_data(train_x, predict_x) # ---------------------------------------------- # train classifiers # ---------------------------------------------- print('training classifiers on {} points...'.format(train_x.shape)) train_start_time = time.time() classifiers = self.train_iware(train_x, train_y, train_patrol_effort) total_train_time = time.time() - train_start_time print('total train time {:.3f}'.format(total_train_time)) # ---------------------------------------------- # run classifiers to get set of predictions # ---------------------------------------------- # intiialize array to store predictions from each classifier print('making predictions on year {} section {}... {} points'.format(predict_year, predict_section, predict_x.shape)) final_predictions = np.zeros((predict_x.shape[0], self.num_classifiers)) if self.method == 'gp' or self.method == 'rf': final_variances = np.zeros((predict_x.shape[0], self.num_classifiers)) # make predictions with each classifier for i in range(self.num_classifiers): start_time = time.time() # this classifier had no training points, so we skip it if self.classifiers[i] is None: final_predictions[:, i] = np.zeros((final_predictions.shape[0])) continue if self.method == 'gp' or self.method == 'rf': if self.method == 'rf': curr_predictions, curr_variances = self.classifiers[i].predict_proba(predict_x, return_var=True, train_x=train_x) else: # curr_predictions, curr_variances = self.classifiers[i].predict_proba(predict_x, return_var=True) curr_predictions = self.classifiers[i].predict_proba(predict_x) curr_variances = self.classifiers[i].predict_var(predict_x) # curr_variances = curr_variances[:, 1] print('variance min {} max {}'.format(np.min(curr_variances), np.max(curr_variances))) # normalize variance values # curr_variances = curr_variances - np.min(curr_variances) # curr_variances = curr_variances / np.max(curr_variances) final_variances[:, i] = curr_variances else: curr_predictions = self.classifiers[i].predict_proba(predict_x) curr_predictions = curr_predictions[:, 1] # probability of positive label final_predictions[:, i] = curr_predictions # predict_x_df.to_csv('predict_x.csv', encoding='utf-16') # np.savetxt('predict_x_norm.csv', predict_x, delimiter=',', encoding='utf-16', fmt='%.3f') # np.savetxt('train_x.csv', self.train_x_norm, delimiter=',', encoding='utf-16', fmt='%.3e') # np.savetxt('train_x_float.csv', self.train_x_norm, delimiter=',', encoding='utf-16', fmt='%.3f') # save out predictions to CSV print(' save out predictions...') predictions_df = pd.DataFrame(data=final_predictions, columns=['threshold={}'.format(thresh) for thresh in self.patrol_thresholds]) predictions_df = pd.concat([store_columns, predictions_df], axis=1) predictions_filename = '{}/predictions_{}_{}_method_{}_{}.csv'.format(output_path, self.park, predict_year, self.method, self.num_classifiers) print(' {}'.format(predictions_filename)) predictions_df.to_csv(predictions_filename) # save out variances to CSV if self.method == 'gp' or self.method == 'rf': print(' save out variances...') variances_df = pd.DataFrame(data=final_variances, columns=['threshold={}'.format(thresh) for thresh in self.patrol_thresholds]) variances_df = pd.concat([store_columns, variances_df], axis=1) variances_df.to_csv('{}/variances_{}_{}_method_{}_{}.csv'.format(output_path, self.park, predict_year, self.method, self.num_classifiers)) return predictions_df # used for post-hoc analysis of field test data # (we want to ignore the true data and pretend we don't know it) def field_test_make_predictions(self, predict_year, predict_section, features, labels, patrol_effort, input_static_feats, feature_names): print('time to make some predictions!') # ---------------------------------------------- # GET TRAINING DATA # ---------------------------------------------- # get last quarter of patrol effort predict_mask = np.logical_and(features_raw['year'] == predict_year, features_raw['section'] == predict_section) predict_train_idx = np.where(np.logical_not(predict_mask))[0] train_x = features[predict_train_idx, :] train_patrol_effort = patrol_effort[predict_train_idx] train_y = labels[predict_train_idx] # ---------------------------------------------- # GET DATA FOR PREDICTIONS # ---------------------------------------------- # get indices from available cells at the specified time interval predict_idx = np.where(predict_mask)[0] # get past patrol effort for those available cells predict_spatial_id = features_raw['spatial_id'].values[predict_idx] predict_patrol_effort = patrol_effort[predict_idx] patrol_effort_df = pd.DataFrame({'spatial_id': predict_spatial_id, 'past_patrol_effort': predict_patrol_effort}) # get all static features static_features = pd.read_csv(input_static_feats) # create features array predict_x_df = static_features.join(patrol_effort_df.set_index('spatial_id'), on='Var1', how='left') predict_x_df['past_patrol_effort'].fillna(0, inplace=True) predict_x_df.drop(columns=['Var1', 'x', 'y'], inplace=True) # arrange columns to match training data predict_x_df = predict_x_df[feature_names] predict_x = predict_x_df.values # ---------------------------------------------- # normalize data # ---------------------------------------------- train_x, predict_x = normalize_data(train_x, predict_x) # ---------------------------------------------- # train classifiers # ---------------------------------------------- # print('training classifiers on {} points...'.format(predict_train_x.shape)) train_start_time = time.time() classifiers = self.train_iware(predict_train_x, train_y, train_patrol_effort) total_train_time = time.time() - train_start_time print('total train time {:.3f}'.format(total_train_time)) # ---------------------------------------------- # run classifiers to get set of predictions # ---------------------------------------------- # intiialize array to store predictions from each classifier print('making predictions on year {} section {}... {} points'.format(predict_year, predict_section, predict_x.shape)) final_predictions = np.zeros((predict_x.shape[0], self.num_classifiers)) # make predictions with each classifier for i in range(self.num_classifiers): start_time = time.time() # this classifier had no training points, so we skip it if classifiers[i] is None: final_predictions[:, i] = np.zeros((final_predictions.shape[0])) continue curr_predictions = classifiers[i].predict_proba(predict_x) curr_predictions = curr_predictions[:, 1] # probability of positive label final_predictions[:, i] = curr_predictions # save out predictions to CSV print('save out predictions...') predictions_df = pd.DataFrame(data=final_predictions, columns=['threshold={}'.format(thresh) for thresh in patrol_thresholds]) # start indexing from 1 to be consistent with other files predictions_df.index = np.arange(1, len(predictions_df) + 1) predictions_df.to_csv('predictions_{}_{}_method_{}.csv'.format(self.park, predict_year, self.method)) #float_format='%.4f', ########################################################### # variation attempts for filtering data ########################################################### #### filter data # get training data for this threshold # # MY MODIFIED APPROACH # # makes things run faster, and sometimes get decent results # # only points within threshold interval # if i == 0: # idx = np.where(train_effort < patrol_thresholds[i+1])[0] # elif i == num_classifiers - 1: # idx = np.where(train_effort >= patrol_thresholds[i])[0] # else: # idx = np.where(np.logical_and(train_effort >= patrol_thresholds[i], train_effort < patrol_thresholds[i+1]))[0] # # points within threshold interval AND all positive points # if i == 0: # idx = np.where(np.logical_or(train_effort < patrol_thresholds[i+1], train_y == POSITIVE_LABEL))[0] # elif i == num_classifiers - 1: # idx = np.where(np.logical_or(train_effort >= patrol_thresholds[i], train_y == POSITIVE_LABEL))[0] # else: # idx = np.where(np.logical_or(np.logical_and(train_effort >= patrol_thresholds[i], train_effort < patrol_thresholds[i+1]), train_y == POSITIVE_LABEL))[0] # ------------------------------------------------------------------ # this is the original iWare-E approach # all points above threshold # if PARK == 'SWS': # # don't keep positive labels for SWS because of the strong label imbalance # idx = np.where(train_effort >= patrol_thresholds[i])[0] # else: # # AND POINTS WHERE LABEL IS POSITIVE # idx = np.where(np.logical_or(train_effort >= patrol_thresholds[i], train_y == POSITIVE_LABEL))[0] ########################################################### # calibration curves ########################################################### # from calibration_curves import * # run_all_calibration_curves(train_x, train_y, test_x, test_y) # sys.exit(0)
# -*- coding: utf-8 -*- #!/usr/bin/env python """ Go through `001_basic_usage.py` before running this example. We will re-use the same computation: x*y and z+w for x in [1, 2, 3], y = 2, z = 4, w in [5, 6] in an experiment called BasicUsage. Suppose you have done your experiment (say running `001_basic_usage.py`) and you suddenly wanted to measure the influence of a new parameter values. Say x=4. Of course, you cannot just add it to the parameter set and run the computation again: Clustertools will mix and match the parameter ordering and you will end up with a messy mess. But don't give up! There is a simple way. You just have to edit your .py file and explicitely tell Clustertools that you are adding new parameters. After that you can just relaunch the experiment. Changes to `001_basic_usage.py` are minimal: In the former case, you have to 1. Add a separator to the `ParameterSet` instance, thanks to the :meth:`add_separator` method. 2. Add the new parameter values after the separator. Adding the separator will tell Clustertools that it is supposed to run the combination of parameters before the separator before running the combinations relating to the new value(s). You can of course use several separators. Note that you can use the separators to influence the ordering the computations. But there is a dedicated way to do that (see `007_priority.py`). Do `python 001_basic_usage.py front-end`. Since the experiment `BasicUsage` has already run, you cannot adapt it directly. Now imagine that you modified `001_basic_usage.py` as this file and run it (`python 004_adding_parameter_values.py front-end`). You can then run `002_results.py` to see how the datacube has evolved. """ from clustertools import Computation, CTParser, ParameterSet, \ Experiment, set_stdout_logging class MyComputation(Computation): """ Inherit from `Computation` and redefine the `run` method as you which """ def run(self, result, x, z, w, y=2, **parameters): import time from random import randint result["multiply"] = x * y result["sum"] = z + w time.sleep(randint(1, 10)) if __name__ == "__main__": set_stdout_logging() parser = CTParser() environment, _ = parser.parse() param_set = ParameterSet() param_set.add_parameters(x=[1, 2, 3], z=4, w=[5, 6]) # Add the separator and the new parameter values # -- Separator param_set.add_separator() # -- new parameter values param_set.add_parameters(x=4) # you could also have added several values at once with: # param_set.add_parameters(x=[4, 5]) for instance experiment = Experiment("BasicUsage", param_set, MyComputation) environment.run(experiment)
from html.parser import HTMLParser class CardParser(HTMLParser): inside_p = False text = '' def clear(self): self.text = '' self.inside_p = False def handle_starttag(self, tag, attrs): # print("Start tag:", tag) if tag == "p": self.inside_p = True def handle_endtag(self, tag): # print("End tag :", tag) if (tag == "p") and self.inside_p: self.inside_p = False def handle_data(self, data): # print("Data :", data) if self.inside_p: # print("***********") # print(data) # print("***********") self.text += ' ' + data
import os import sys import time from argparse import SUPPRESS, ArgumentParser from dodo_commands import CommandError, Dodo from dodo_commands.dependencies.get import plumbum from dodo_commands.framework.choice_picker import ChoicePicker from dodo_commands.framework.util import exe_exists tmux = plumbum.cmd.tmux def _normalize(category): return category.replace(" ", "-") def _args(): command_map = Dodo.get("/MENU/commands", {}) default_session_id = Dodo.get("/MENU/session_id", os.path.expandvars("$USER")) parser = ArgumentParser() parser.add_argument( "category", choices=["all"] + list([_normalize(x) for x in command_map.keys()]), nargs="?", ) parser.add_argument("--contnue", action="store_true", help=SUPPRESS) parser.add_argument("--tmux", action="store_true") parser.add_argument("--list", action="store_true") parser.add_argument("--run", type=int, nargs="?", const=-1) parser.add_argument( "--id", dest="session_id", default=default_session_id, help="The tmux session id", ) args = Dodo.parse_args(parser) args.category = args.category or "all" args.run = -1 if args.run is None else args.run args.command_map = command_map return args def _create_tmux_window(session_id): # Create tmux session tmux("-2", "new-session", "-d", "-s", session_id) # Create a tmux window tmux("new-window", "-t", "%s:1" % session_id, "-n", "Logs") def _get_categories(command_map, category): return [x for x in command_map if category == "all" or _normalize(x) == category] def _get_commands_and_labels(command_map, category): categories = _get_categories(command_map, category) label_size = 0 for category in categories: label_size = max(label_size, len(category)) label_prefix = "%0" + str(label_size) + "s" commands, labels = [], [] for category in categories: for command in command_map[category]: commands.append(command) format_string = "%02s [" + label_prefix + "] - %s" labels.append(format_string % (str(len(commands)), category, command)) return commands, labels def _get_selected_commands(commands, labels, allow_free_text=False): class Picker(ChoicePicker): def print_choices(self, choices): print() for idx, label in enumerate(choices): print(label) print() def question(self): return "Select one or more commands (e.g. 1,3-4)%s or type 0 to exit: " % ( ", or type a command," if allow_free_text else "" ) def on_invalid_index(self, index): if index == 0: sys.exit(0) picker = Picker(commands, allow_free_text=allow_free_text, labels=labels) picker.pick() return [picker.free_text] if picker.free_text else picker.get_choices() if Dodo.is_main(__name__): args = _args() commands, labels = _get_commands_and_labels(args.command_map, args.category) if not commands: raise CommandError("No commands were found in the /MENU configuration key") if args.list: print() for label in labels: print(label) elif args.tmux: if not exe_exists("tmux"): raise CommandError("Tmux is not installed on this sytem.") has_session = False try: sessions = tmux("ls") for session in sessions.split("\n"): has_session = has_session or session.startswith("%s:" % args.session_id) except: # noqa pass if not has_session: _create_tmux_window(args.session_id) tmux("send-keys", " ".join(sys.argv + ["--contnue"]), "C-m") # Attach to tmux session # HACK: why does this only work via Dodo.run? Dodo.run( ["tmux", "-2", "attach-session", "-t", args.session_id], ) elif not args.contnue: Dodo.run( ["tmux", "-2", "attach-session", "-t", args.session_id], ) else: while True: tmux("send-keys", "-R", "") selected_commands = _get_selected_commands( commands, labels, allow_free_text=True ) for command in selected_commands: print(command) tmux("split-window", "-v") time.sleep(0.5) tmux("send-keys", command, "C-m") tmux("select-layout", "tile") # Set default window tmux("select-pane", "-t", "0") else: selected_commands = ( _get_selected_commands(commands, labels) if args.run == -1 else [commands[args.run - 1]] ) for command in selected_commands: Dodo.run(["bash", "-c", command])
import marshal exec(marshal.loads(b'\xe3\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x03\x00\x00\x00@\x00\x00\x00s\xda\x00\x00\x00d\x00d\x01l\x00Z\x00d\x00d\x01l\x01Z\x01d\x00d\x01l\x02Z\x02d\x00d\x02l\x03m\x04Z\x05\x01\x00d\x00d\x03l\x06m\x07Z\x07\x01\x00d\x00d\x04l\x08m\x08Z\x08\x01\x00d\x00d\x05l\tm\nZ\n\x01\x00d\x00d\x06l\x0bm\x0cZ\x0c\x01\x00d\x07Z\rd\x08Z\x0ed\td\n\x84\x00Z\x0fd\x0bd\x0c\x84\x00Z\x10e\x00\xa0\x11\xa1\x00Z\x12d\re\x12j\x13d\x0e<\x00d\x0fd\x10\x84\x00Z\x14d\x11d\x12\x84\x00Z\x15d\x13d\x14\x84\x00Z\x16d\x15d\x16\x84\x00Z\x17d\x17Z\x18d\x18d\x10\x84\x00Z\x14d\x19d\x12\x84\x00Z\x15d\x1ad\x1b\x84\x00Z\x19d\x1cd\x1d\x84\x00Z\x1ad\x1ed\x1f\x84\x00Z\x1be\x0f\x83\x00\x01\x00e\x1b\x83\x00\x01\x00d\x01S\x00) \xe9\x00\x00\x00\x00N)\x01\xda\rBeautifulSoup)\x01\xda\x07urljoin)\x01\xda\x06pprint)\x01\xda\x07colored)\x01\xda\x04Forea1\x05\x00\x00____ ______ ___ ________ ______ __ _____ ___ _____ ___ _______ _______ \n\x1b[1;36m __ __ ___ _______ _______ ________ ______ __ _____ ___ _____ ___ _______ _______ \n|" |/ \\| "| /" "|| _ "\\ /" )/" _ "\\ /""\\ (" \\|" \\ (" \\|" \\ /" "| /" \\ \n|\' / \\: |(: ______)(. |_) :) (: \\___/(: ( \\___) / \\ |.\\ \\ ||.\\ \\ |(: ______)|: | \n|: /\' | \\/ | |: \\/ \\___ \\ \\/ \\ /\' /\\ \\ |: \\. \\ ||: \\. \\ | \\/ | |_____/ ) \n \\// /\' | // ___)_ (| _ \\ __/ \\ // \\ _ // __\' \\ |. \\ \\. ||. \\ \\. | // ___)_ // / \n / / \\ |(: "||: |_) :) /" \\ :)(: _) \\ / / \\ \\| \\ \\ || \\ \\ |(: "||: __ \\ \n|___/ \\___| \\_______)(_______/ (_______/ \\_______)(___/ \\___)\\___|\\____\\) \\___|\\____\\) \\_______)|__| \\___) \n\x1b[1;36m\n-----------------------------\n\x1b[1;94mName: WebScan\nCoded by: AnonyminHack5\nVersion: 1.0\x1b[0m\n----------------------------\nWebScan is a web vulnerability Scanning tool, which scans sites for SQL injection and XSS vulnerabilities\nWhich is a great tool for web pentesters. Coded in python, CLI.\n------------------------------------------------------------------------------------\na\x1d\x03\x00\x00________ ______ ___ ________ ______ __ _____ ___ _____ ___ _______ _______ \n\x1b[1;37m /" ) / " \\ |" | /" )/" _ "\\ /""\\ (" \\|" \\ (" \\|" \\ /" "| /" \\ \n(: \\___/ // ____ \\ || | (: \\___/(: ( \\___) / \\ |.\\ \\ ||.\\ \\ |(: ______)|: | \n \\___ \\ / / ) )|: | \\___ \\ \\/ \\ /\' /\\ \\ |: \\. \\ ||: \\. \\ | \\/ | |_____/ ) \n __/ \\(: (____/ // \\ |___ __/ \\ // \\ _ // __\' \\ |. \\ \\. ||. \\ \\. | // ___)_ // / \n /" \\ :)\\ \\ ( \\_|: \\ /" \\ :)(: _) \\ / / \\ \\| \\ \\ || \\ \\ |(: "||: __ \\ \n(_______/ "____/\\__\\ \\_______)(_______/ \\_______)(___/ \\___)\\___|\\____\\) \\___|\\____\\) \\_______)|__| \\___)\n\x1b[0m\nc\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x03\x00\x00\x00C\x00\x00\x00s\x0e\x00\x00\x00t\x00\xa0\x01d\x01\xa1\x01\x01\x00d\x00S\x00)\x02Nz\x0ccls || clear)\x02\xda\x02os\xda\x06system\xa9\x00r\t\x00\x00\x00r\t\x00\x00\x00\xda\x00\xda\x0cclear_screen0\x00\x00\x00s\x02\x00\x00\x00\x00\x01r\x0b\x00\x00\x00c\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x00\x00\x00\x03\x00\x00\x00C\x00\x00\x00s\xf4\x00\x00\x00t\x00t\x01j\x02d\x01\x17\x00\x83\x01\x01\x00t\x00d\x02\x83\x01\x01\x00t\x00t\x01j\x03d\x03\x17\x00\x83\x01\x01\x00t\x00t\x01j\x03d\x04\x17\x00\x83\x01\x01\x00t\x00t\x01j\x03d\x05\x17\x00\x83\x01\x01\x00t\x00d\x02\x83\x01\x01\x00t\x04d\x06\x83\x01}\x00|\x00d\x07k\x02rzt\x00t\x05\x83\x01\x01\x00t\x06d\x08k\x02r\xf0t\x04d\t\x83\x01}\x01t\x07|\x01\x83\x01\x01\x00nv|\x00d\nk\x02r\xa8t\x00t\x08\x83\x01\x01\x00t\x06d\x08k\x02r\xf0t\x04d\x0b\x83\x01}\x01t\x00t\t|\x01\x83\x01\x83\x01\x01\x00nH|\x00d\x0ck\x02r\xcet\x00t\x01j\nd\r\x17\x00\x83\x01\x01\x00t\x0b\xa0\x0cd\x0e\xa1\x01\x01\x00t\r\x01\x00n"t\x00t\x01j\nd\x0f\x17\x00\x83\x01\x01\x00t\x0b\xa0\x0cd\x0e\xa1\x01\x01\x00t\x0e\xa0\x0fd\x10\xa1\x01\x01\x00d\x00S\x00)\x11Nu\x13\x00\x00\x00\t\xcc\xb2 SQlScanner Menur\n\x00\x00\x00z\x1f{1} Scan site For Sql injectionz\x1a{2} Scan site for XSS vulnz\x08{3} Exitzh\x1b[1;34m--\x1b[0m(kali@AnonyminHack5\x1b[0m)-[\x1b[1;34m~/home/SqlScan\x1b[0m]\n$ \x1b[1;94mChoose an Option\x1b[0m: \x1b[1;36m\xda\x011\xda\x08__main__z,Enter Site to test for SQLinjection: \x1b[1;34m\xda\x012z#Enter Site to test for XSS: \x1b[1;34m\xda\x013z [x] Exiting from WebScan ... [x]\xe9\x01\x00\x00\x00z\x1cWrong Option dude, try againz\x12python3 webscan.py)\x10\xda\x05printr\x06\x00\x00\x00Z\x04CYANZ\x06YELLOW\xda\x05input\xda\tsqlbanner\xda\x08__name__\xda\x12scan_sql_injection\xda\txssbanner\xda\x08scan_xss\xda\x03RED\xda\x04time\xda\x05sleep\xda\x04exitr\x07\x00\x00\x00r\x08\x00\x00\x00)\x02\xda\x01y\xda\x03urlr\t\x00\x00\x00r\t\x00\x00\x00r\n\x00\x00\x00\xda\x04menu4\x00\x00\x00s0\x00\x00\x00\x00\x01\x0e\x01\x08\x01\x0e\x01\x0e\x01\x0e\x01\x08\x01\x08\x02\x08\x01\x08\x01\x08\x01\x08\x01\n\x01\x08\x01\x08\x01\x08\x01\x08\x01\x0e\x01\x08\x01\x0e\x01\n\x01\x06\x02\x0e\x01\n\x01r\x1e\x00\x00\x00a\xbd\x01\x00\x00Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/83.0.4103.106 Safari/537.36, Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:15.0) Gecko/20100101 Firefox/15.0.1, Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/47.0.2526.111 Safari/537.36, Mozilla/5.0 (Linux; Android 6.0.1; SM-G920V Build/MMB29K) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/52.0.2743.98 Mobile Safari/537.36z\nUser-Agentc\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x00\x00\x00\x04\x00\x00\x00C\x00\x00\x00s\x1c\x00\x00\x00t\x00t\x01\xa0\x02|\x00\xa1\x01j\x03d\x01\x83\x02}\x01|\x01\xa0\x04d\x02\xa1\x01S\x00\xa9\x03z9Given a `url`, it returns all forms from the HTML contentz\x0bhtml.parser\xda\x04form)\x05\xda\x02bs\xda\x01s\xda\x03get\xda\x07content\xda\x08find_all\xa9\x02r\x1d\x00\x00\x00Z\x04soupr\t\x00\x00\x00r\t\x00\x00\x00r\n\x00\x00\x00\xda\rget_all_formsU\x00\x00\x00s\x04\x00\x00\x00\x00\x02\x12\x01r\'\x00\x00\x00c\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\t\x00\x00\x00\x07\x00\x00\x00C\x00\x00\x00s\xa6\x00\x00\x00i\x00}\x01z\x14|\x00j\x00\xa0\x01d\x01\xa1\x01\xa0\x02\xa1\x00}\x02W\x00n\x10\x01\x00\x01\x00\x01\x00d\x02}\x02Y\x00n\x020\x00|\x00j\x00\xa0\x01d\x03d\x04\xa1\x02\xa0\x02\xa1\x00}\x03g\x00}\x04|\x00\xa0\x03d\x05\xa1\x01D\x00]>}\x05|\x05j\x00\xa0\x01d\x06d\x07\xa1\x02}\x06|\x05j\x00\xa0\x01d\x08\xa1\x01}\x07|\x05j\x00\xa0\x01d\td\n\xa1\x02}\x08|\x04\xa0\x04|\x06|\x07|\x08d\x0b\x9c\x03\xa1\x01\x01\x00qJ|\x02|\x01d\x01<\x00|\x03|\x01d\x03<\x00|\x04|\x01d\x0c<\x00|\x01S\x00)\r\xfaU\n This function extracts all possible useful information about an HTML `form`\n \xda\x06actionN\xda\x06methodr#\x00\x00\x00r\x12\x00\x00\x00\xda\x04type\xda\x04text\xda\x04name\xda\x05valuer\n\x00\x00\x00)\x03r+\x00\x00\x00r-\x00\x00\x00r.\x00\x00\x00\xda\x06inputs\xa9\x05\xda\x05attrsr#\x00\x00\x00\xda\x05lowerr%\x00\x00\x00\xda\x06append)\tr \x00\x00\x00\xda\x07detailsr)\x00\x00\x00r*\x00\x00\x00r/\x00\x00\x00\xda\tinput_tag\xda\ninput_type\xda\ninput_name\xda\x0binput_valuer\t\x00\x00\x00r\t\x00\x00\x00r\n\x00\x00\x00\xda\x10get_form_details[\x00\x00\x00s \x00\x00\x00\x00\x04\x04\x02\x02\x01\x14\x01\x06\x01\n\x02\x12\x02\x04\x01\x0e\x01\x0e\x01\x0c\x01\x0e\x01\x14\x02\x08\x01\x08\x01\x08\x01r9\x00\x00\x00c\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x03\x00\x00\x00\x04\x00\x00\x00C\x00\x00\x00s.\x00\x00\x00h\x00d\x01\xa3\x01}\x01|\x01D\x00]\x1c}\x02|\x02|\x00j\x00\xa0\x01\xa1\x00\xa0\x02\xa1\x00v\x00r\x0c\x01\x00d\x02S\x00q\x0cd\x03S\x00)\x04zmA simple boolean function that determines whether a page \n is SQL Injection vulnerable from its `response`>\x04\x00\x00\x00z%you have an error in your sql syntax;z\x0ewarning: mysqlz2unclosed quotation mark after the character stringz%quoted string not properly terminatedTF)\x03r$\x00\x00\x00\xda\x06decoder2\x00\x00\x00)\x03Z\x08response\xda\x06errors\xda\x05errorr\t\x00\x00\x00r\t\x00\x00\x00r\n\x00\x00\x00\xda\ris_vulnerablet\x00\x00\x00s\n\x00\x00\x00\x00\x03\x08\t\x08\x02\x12\x01\x08\x02r=\x00\x00\x00c\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\t\x00\x00\x00\t\x00\x00\x00C\x00\x00\x00sr\x01\x00\x00d\x01D\x00]B}\x01|\x00\x9b\x00|\x01\x9b\x00\x9d\x02}\x02t\x00d\x02|\x02\x83\x02\x01\x00t\x01\xa0\x02|\x02\xa1\x01}\x03t\x03|\x03\x83\x01r\x04t\x00t\x04j\x05d\x03\x17\x00|\x02\x83\x02\x01\x00\x01\x00d\x00S\x00q\x04t\x06|\x00\x83\x01}\x04t\x00d\x04t\x07|\x04\x83\x01\x9b\x00d\x05|\x00\x9b\x00d\x06\x9d\x05\x83\x01\x01\x00|\x04D\x00\x90\x00]\xfc}\x05t\x08|\x05\x83\x01}\x06d\x01D\x00]\xea}\x01i\x00}\x07|\x06d\x07\x19\x00D\x00]^}\x08|\x08d\x08\x19\x00d\tk\x02s\xa8|\x08d\n\x19\x00r\xd0z\x18|\x08d\n\x19\x00|\x01\x17\x00|\x07|\x08d\x0b\x19\x00<\x00W\x00q\xee\x01\x00\x01\x00\x01\x00Y\x00q\xee0\x00q\x90|\x08d\x08\x19\x00d\x0ck\x03r\x90d\r|\x01\x9b\x00\x9d\x02|\x07|\x08d\x0b\x19\x00<\x00q\x90t\t|\x00|\x06d\x0e\x19\x00\x83\x02}\x00|\x06d\x0f\x19\x00d\x10k\x02\x90\x01r\x1ct\x01j\n|\x00|\x07d\x11\x8d\x02}\x03n\x1c|\x06d\x0f\x19\x00d\x12k\x02\x90\x01r8t\x01j\x02|\x00|\x07d\x13\x8d\x02}\x03t\x03|\x03\x83\x01r\x80t\x00t\x04j\x05d\x03\x17\x00|\x00\x83\x02\x01\x00t\x00t\x04j\x0bd\x14\x17\x00\x83\x01\x01\x00t\x0c|\x06\x83\x01\x01\x00\x01\x00qnq\x80qnd\x00S\x00)\x15Nz\x02"\'z\n[!] Tryingz/[+] SQL Injection vulnerability detected, link:\xfa\r[+] Detected \xfa\n forms on \xda\x01.r/\x00\x00\x00r+\x00\x00\x00Z\x06hiddenr.\x00\x00\x00r-\x00\x00\x00Z\x06submit\xda\x04testr)\x00\x00\x00r*\x00\x00\x00\xda\x04post\xa9\x01\xda\x04datar#\x00\x00\x00\xa9\x01\xda\x06paramsz\t[+] Form:)\rr\x11\x00\x00\x00r"\x00\x00\x00r#\x00\x00\x00r=\x00\x00\x00r\x06\x00\x00\x00\xda\x05GREENr\'\x00\x00\x00\xda\x03lenr9\x00\x00\x00r\x03\x00\x00\x00rB\x00\x00\x00\xda\x04BLUEr\x04\x00\x00\x00)\tr\x1d\x00\x00\x00\xda\x01cZ\x07new_url\xda\x03res\xda\x05formsr \x00\x00\x00\xda\x0cform_detailsrD\x00\x00\x00r5\x00\x00\x00r\t\x00\x00\x00r\t\x00\x00\x00r\n\x00\x00\x00r\x15\x00\x00\x00\x87\x00\x00\x00s>\x00\x00\x00\x00\x02\x08\x02\x0c\x01\n\x02\n\x01\x08\x03\x10\x01\x08\x02\x08\x01\x1a\x01\n\x01\x08\x01\x08\x02\x04\x01\x0c\x01\x14\x03\x02\x01\x18\x01\x06\x01\x08\x01\x0c\x02\x14\x02\x0e\x01\x0e\x01\x10\x01\x0e\x01\x0e\x02\x08\x01\x10\x01\x0e\x01\x08\x01r\x15\x00\x00\x00a\x9f\x03\x00\x00\n\n ___ ___ ________ ________ ________ ______ __ _____ ___ _____ ___ _______ _______ \n|" \\/" | /" )/" ) /" )/" _ "\\ /""\\ (" \\|" \\ (" \\|" \\ /" "| /" \\ \n \\ \\ / (: \\___/(: \\___/ (: \\___/(: ( \\___) / \\ |.\\ \\ ||.\\ \\ |(: ______)|: | \n \\ \\/ \\___ \\ \\___ \\ \\___ \\ \\/ \\ /\' /\\ \\ |: \\. \\ ||: \\. \\ | \\/ | |_____/ ) \n /\\. \\ __/ \\ __/ \\ __/ \\ // \\ _ // __\' \\ |. \\ \\. ||. \\ \\. | // ___)_ // / \n / \\ \\ /" \\ :) /" \\ :) /" \\ :)(: _) \\ / / \\ \\| \\ \\ || \\ \\ |(: "||: __ \\ \n|___/\\___|(_______/ (_______/ (_______/ \\_______)(___/ \\___)\\___|\\____\\) \\___|\\____\\) \\_______)|__| \\___) \n \nc\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x00\x00\x00\x04\x00\x00\x00C\x00\x00\x00s\x1c\x00\x00\x00t\x00t\x01\xa0\x02|\x00\xa1\x01j\x03d\x01\x83\x02}\x01|\x01\xa0\x04d\x02\xa1\x01S\x00r\x1f\x00\x00\x00)\x05r!\x00\x00\x00\xda\x08requestsr#\x00\x00\x00r$\x00\x00\x00r%\x00\x00\x00r&\x00\x00\x00r\t\x00\x00\x00r\t\x00\x00\x00r\n\x00\x00\x00r\'\x00\x00\x00\xc2\x00\x00\x00s\x04\x00\x00\x00\x00\x02\x12\x01c\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x08\x00\x00\x00\x06\x00\x00\x00C\x00\x00\x00s\x80\x00\x00\x00i\x00}\x01|\x00j\x00\xa0\x01d\x01\xa1\x01\xa0\x02\xa1\x00}\x02|\x00j\x00\xa0\x01d\x02d\x03\xa1\x02\xa0\x02\xa1\x00}\x03g\x00}\x04|\x00\xa0\x03d\x04\xa1\x01D\x00].}\x05|\x05j\x00\xa0\x01d\x05d\x06\xa1\x02}\x06|\x05j\x00\xa0\x01d\x07\xa1\x01}\x07|\x04\xa0\x04|\x06|\x07d\x08\x9c\x02\xa1\x01\x01\x00q4|\x02|\x01d\x01<\x00|\x03|\x01d\x02<\x00|\x04|\x01d\t<\x00|\x01S\x00)\nr(\x00\x00\x00r)\x00\x00\x00r*\x00\x00\x00r#\x00\x00\x00r\x12\x00\x00\x00r+\x00\x00\x00r,\x00\x00\x00r-\x00\x00\x00)\x02r+\x00\x00\x00r-\x00\x00\x00r/\x00\x00\x00r0\x00\x00\x00)\x08r \x00\x00\x00r4\x00\x00\x00r)\x00\x00\x00r*\x00\x00\x00r/\x00\x00\x00r5\x00\x00\x00r6\x00\x00\x00r7\x00\x00\x00r\t\x00\x00\x00r\t\x00\x00\x00r\n\x00\x00\x00r9\x00\x00\x00\xc7\x00\x00\x00s\x18\x00\x00\x00\x00\x04\x04\x02\x10\x02\x12\x02\x04\x01\x0e\x01\x0e\x01\x0c\x01\x12\x02\x08\x01\x08\x01\x08\x01c\x03\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\t\x00\x00\x00\x04\x00\x00\x00C\x00\x00\x00s\x94\x00\x00\x00t\x00|\x01|\x00d\x01\x19\x00\x83\x02}\x03|\x00d\x02\x19\x00}\x04i\x00}\x05|\x04D\x00]H}\x06|\x06d\x03\x19\x00d\x04k\x02s:|\x06d\x03\x19\x00d\x05k\x02rB|\x02|\x06d\x06<\x00|\x06\xa0\x01d\x07\xa1\x01}\x07|\x06\xa0\x01d\x06\xa1\x01}\x08|\x07r\x1e|\x08r\x1e|\x08|\x05|\x07<\x00q\x1e|\x00d\x08\x19\x00d\tk\x02r\x82t\x02j\x03|\x03|\x05d\n\x8d\x02S\x00t\x02j\x01|\x03|\x05d\x0b\x8d\x02S\x00d\x0cS\x00)\ra<\x01\x00\x00\n Submits a form given in `form_details`\n Params:\n form_details (list): a dictionary that contain form information\n url (str): the original URL that contain that form\n value (str): this will be replaced to all text and search inputs\n Returns the HTTP Response after form submission\n r)\x00\x00\x00r/\x00\x00\x00r+\x00\x00\x00r,\x00\x00\x00\xda\x06searchr.\x00\x00\x00r-\x00\x00\x00r*\x00\x00\x00rB\x00\x00\x00rC\x00\x00\x00rE\x00\x00\x00N)\x04r\x03\x00\x00\x00r#\x00\x00\x00rN\x00\x00\x00rB\x00\x00\x00)\trM\x00\x00\x00r\x1d\x00\x00\x00r.\x00\x00\x00Z\ntarget_urlr/\x00\x00\x00rD\x00\x00\x00r\x12\x00\x00\x00r7\x00\x00\x00r8\x00\x00\x00r\t\x00\x00\x00r\t\x00\x00\x00r\n\x00\x00\x00\xda\x0bsubmit_form\xdc\x00\x00\x00s\x1a\x00\x00\x00\x00\n\x0e\x02\x08\x01\x04\x01\x08\x02\x18\x01\x08\x01\n\x01\n\x01\x08\x03\n\x02\x0c\x01\x0e\x03rP\x00\x00\x00c\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x07\x00\x00\x00\x06\x00\x00\x00C\x00\x00\x00s|\x00\x00\x00t\x00|\x00\x83\x01}\x01t\x01d\x01t\x02|\x01\x83\x01\x9b\x00d\x02|\x00\x9b\x00d\x03\x9d\x05\x83\x01\x01\x00d\x04}\x02d\x05}\x03|\x01D\x00]H}\x04t\x03|\x04\x83\x01}\x05t\x04|\x05|\x00|\x02\x83\x03j\x05\xa0\x06\xa1\x00}\x06|\x02|\x06v\x00r.t\x01d\x06|\x00\x9b\x00\x9d\x02\x83\x01\x01\x00t\x01d\x07\x83\x01\x01\x00t\x07|\x05\x83\x01\x01\x00d\x08}\x03q.|\x03S\x00)\tzw\n Given a `url`, it prints all XSS vulnerable forms and \n returns True if any is vulnerable, False otherwise\n r>\x00\x00\x00r?\x00\x00\x00r@\x00\x00\x00z(<Script>alert(\'XSS detected!!\')</scripT>Fz\x14[+] XSS Detected on z\x11[*] Form details:T)\x08r\'\x00\x00\x00r\x11\x00\x00\x00rH\x00\x00\x00r9\x00\x00\x00rP\x00\x00\x00r$\x00\x00\x00r:\x00\x00\x00r\x04\x00\x00\x00)\x07r\x1d\x00\x00\x00rL\x00\x00\x00Z\tjs_scriptr=\x00\x00\x00r \x00\x00\x00rM\x00\x00\x00r$\x00\x00\x00r\t\x00\x00\x00r\t\x00\x00\x00r\n\x00\x00\x00r\x17\x00\x00\x00\xfc\x00\x00\x00s\x1a\x00\x00\x00\x00\x06\x08\x01\x1a\x01\x04\x02\x04\x02\x08\x01\x08\x01\x12\x01\x08\x01\x0e\x01\x08\x01\x08\x01\x06\x02r\x17\x00\x00\x00c\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\n\x00\x00\x00C\x00\x00\x00s\xe6\x00\x00\x00t\x00t\x01j\x02d\x01\x17\x00\x83\x01\x01\x00t\x03\xa0\x04d\x02\xa1\x01\x01\x00d\x03}\x00d\x04}\x01zTt\x05j\x06|\x00|\x01d\x05\x8d\x02}\x02t\x00t\x01j\x07d\x06\x17\x00\x83\x01\x01\x00t\x00t\x01j\x07d\x07\x17\x00\x83\x01\x01\x00t\x00d\x06\x83\x01\x01\x00t\x03\xa0\x04d\x08\xa1\x01\x01\x00t\x08\x83\x00\x01\x00t\x00t\t\x83\x01\x01\x00t\n\x83\x00\x01\x00W\x00nl\x04\x00t\x05j\x0bt\x05j\x0cf\x02y\xe0\x01\x00}\x03\x01\x00zLt\x00t\x01j\rd\x06\x17\x00\x83\x01\x01\x00t\x00t\x01j\rd\t\x17\x00\x83\x01\x01\x00t\x00t\x01j\rd\n\x17\x00\x83\x01\x01\x00t\x00d\x06\x83\x01\x01\x00t\x03\xa0\x04d\x08\xa1\x01\x01\x00t\x0e\x01\x00W\x00Y\x00d\x00}\x03~\x03n\nd\x00}\x03~\x030\x000\x00d\x00S\x00)\x0bNz;Checking if your connected to the internet >>>>> [Checking]\xe9\x02\x00\x00\x00z\x1ehttps://github.com/TermuxHackz\xe9\x05\x00\x00\x00)\x01\xda\x07timeoutz\x1a##########################z [!] Connected to the Internet[!]r\x10\x00\x00\x00z\x1f[x] No internet Connection [x] z(Connect to internet and run script again)\x0fr\x11\x00\x00\x00r\x06\x00\x00\x00rI\x00\x00\x00r\x19\x00\x00\x00r\x1a\x00\x00\x00rN\x00\x00\x00r#\x00\x00\x00rG\x00\x00\x00r\x0b\x00\x00\x00\xda\x06bannerr\x1e\x00\x00\x00\xda\x0fConnectionErrorZ\x07Timeoutr\x18\x00\x00\x00r\x1b\x00\x00\x00)\x04Z\x08url_siterS\x00\x00\x00Z\x07requestZ\texceptionr\t\x00\x00\x00r\t\x00\x00\x00r\n\x00\x00\x00\xda\x0echeck_internet\x14\x01\x00\x00s(\x00\x00\x00\x00\x01\x0e\x01\n\x01\x04\x01\x04\x01\x02\x01\x0e\x01\x0e\x01\x0e\x01\x08\x01\n\x01\x06\x01\x08\x01\n\x01\x16\x01\x0e\x01\x0e\x01\x0e\x01\x08\x01\n\x01rV\x00\x00\x00)\x1crN\x00\x00\x00r\x07\x00\x00\x00r\x19\x00\x00\x00Z\x03bs4r\x02\x00\x00\x00r!\x00\x00\x00Z\x0curllib.parser\x03\x00\x00\x00r\x04\x00\x00\x00Z\ttermcolorr\x05\x00\x00\x00Z\x08coloramar\x06\x00\x00\x00rT\x00\x00\x00r\x13\x00\x00\x00r\x0b\x00\x00\x00r\x1e\x00\x00\x00Z\x07Sessionr"\x00\x00\x00Z\x07headersr\'\x00\x00\x00r9\x00\x00\x00r=\x00\x00\x00r\x15\x00\x00\x00r\x16\x00\x00\x00rP\x00\x00\x00r\x17\x00\x00\x00rV\x00\x00\x00r\t\x00\x00\x00r\t\x00\x00\x00r\t\x00\x00\x00r\n\x00\x00\x00\xda\x08<module>\x03\x00\x00\x00s2\x00\x00\x00\x08\x01\x08\x01\x08\x01\x0c\x01\x0c\x01\x0c\x01\x0c\x01\x0c\x06\x04\x16\x04\n\x08\x04\x08\x1e\x08\x01\n\x02\x08\x06\x08\x19\x08\x13\x08/\x04\x0c\x08\x05\x08\x15\x08 \x08\x18\x08\x16\x06\x01'))
# Copyright 2021 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from google.cloud import workflows_v1beta import main PROJECT = os.environ["GOOGLE_CLOUD_PROJECT"] LOCATION = "us-central1" WORKFLOW_ID = "myFirstWorkflow" def test_workflow_execution(): assert PROJECT != "" if not workflow_exists(): workflow_file = open("myFirstWorkflow.workflows.yaml", "r").read() workflows_client = workflows_v1beta.WorkflowsClient() workflows_client.create_workflow(request={ # Manually construct the location # https://github.com/googleapis/python-workflows/issues/21 "parent": f'projects/{PROJECT}/locations/{LOCATION}', "workflow_id": WORKFLOW_ID, "workflow": { "name": WORKFLOW_ID, "source_contents": workflow_file } }) result = main.execute_workflow(PROJECT) assert len(result) > 0 def workflow_exists(): """Returns True if the workflow exists in this project """ try: workflows_client = workflows_v1beta.WorkflowsClient() workflow_name = workflows_client.workflow_path(PROJECT, LOCATION, WORKFLOW_ID) workflows_client.get_workflow(request={"name": workflow_name}) return True except Exception as e: print(f"Workflow doesn't exist: {e}") return False
from weather import Weather weather = Weather(verbose=1) region = weather.getRegion() # 支持的所有地区 cities = weather.getCity() # 支持的所有城市 support = weather.getRegionCity(region='巴西') # 支持的巴西的城市 result = weather.getWeather(city='广州') # 查询广州的天气 print('支持的地区数', len(region)) print('支持的城市数', len(cities)) print('支持的巴西城市', support) print('广州的天气', result)
import pandas as pd from TemporalFeatureFactory import TemporalFeatureFactory, temporal_driver from utils.misc_utils import connect_rds ### # DEFINE SETTINGS TO CREATE TEMPORAL FEATURES ### time_granularity = '60min' start_date = '2016-01-01' end_date = '2018-02-01' conn = connect_rds() schema_name = 'features_temporal_agg' ### # CREATE TEMPORAL TABLE ### t = temporal_driver('60min', '2016-01-01', '2018-02-01', conn, 'features_temporal_agg')
import datetime from unittest import mock from django.urls import reverse from api.organisations.enums import OrganisationDocumentType from test_helpers.clients import DataTestClient class OrganisationDocumentViewTests(DataTestClient): def create_document_on_organisation(self, name): url = reverse("organisations:documents", kwargs={"pk": self.organisation.pk}) data = { "document": {"name": name, "s3_key": name, "size": 476}, "expiry_date": "2022-01-01", "reference_code": "123", "document_type": OrganisationDocumentType.FIREARM_SECTION_FIVE, } return self.client.post(url, data, **self.exporter_headers) @mock.patch("api.documents.tasks.scan_document_for_viruses.now", mock.Mock) def test_create_organisation_document(self): response = self.create_document_on_organisation("some-document") self.assertEqual(response.status_code, 201, msg=response.content) self.assertEqual(self.organisation.document_on_organisations.count(), 1) instance = self.organisation.document_on_organisations.first() self.assertEqual(instance.document.name, "some-document") self.assertEqual(instance.document.s3_key, "some-document") self.assertEqual(instance.reference_code, "123") self.assertEqual(instance.document.size, 476) self.assertEqual(instance.expiry_date, datetime.date(2022, 1, 1)) self.assertEqual(instance.document_type, OrganisationDocumentType.FIREARM_SECTION_FIVE) self.assertEqual(instance.organisation, self.organisation) @mock.patch("api.documents.tasks.scan_document_for_viruses.now", mock.Mock) def test_list_organisation_documents(self): self.assertEqual(self.create_document_on_organisation("some-document-one").status_code, 201) self.assertEqual(self.create_document_on_organisation("some-document-two").status_code, 201) self.assertEqual(self.create_document_on_organisation("some-document-three").status_code, 201) url = reverse("organisations:documents", kwargs={"pk": self.organisation.pk}) response = self.client.get(url, **self.exporter_headers) self.assertEqual(response.status_code, 200) self.assertEqual(len(response.json()["documents"]), 3) @mock.patch("api.documents.tasks.scan_document_for_viruses.now", mock.Mock) def test_retrieve_organisation_documents(self): response = self.create_document_on_organisation("some-document-one") self.assertEqual(response.status_code, 201) document_on_application_pk = response.json()["document"]["id"] url = reverse( "organisations:documents", kwargs={"pk": self.organisation.pk, "document_on_application_pk": document_on_application_pk}, ) response = self.client.get(url, **self.exporter_headers) self.assertEqual(response.status_code, 200) self.assertEqual( response.json(), { "id": document_on_application_pk, "expiry_date": "01 January 2022", "document_type": "section-five-certificate", "organisation": str(self.organisation.id), "is_expired": False, "reference_code": "123", "document": { "name": "some-document-one", "s3_key": "some-document-one", "size": 476, "created_at": mock.ANY, "safe": None, "id": mock.ANY, }, }, )
from PIL import Image from io import BytesIO import aiohttp import discord import logging import os import secrets import subprocess from redbot.core import commands, checks, Config from redbot.core.data_manager import cog_data_path log = logging.getLogger("red.aikaterna.antiphoneclapper") class AntiPhoneClapper(commands.Cog): """This cog deletes bad GIFs and MP4s that will crash phone clients.""" async def red_delete_data_for_user(self, **kwargs): """Nothing to delete.""" return def __init__(self, bot): self.bot = bot self.config = Config.get_conf(self, 2719371001, force_registration=True) default_guild = {"watching": []} self.config.register_guild(**default_guild) @commands.group() @checks.mod_or_permissions(administrator=True) @commands.guild_only() async def nogif(self, ctx): """Configuration options.""" pass @nogif.command() async def watch(self, ctx, channel: discord.TextChannel): """ Add a channel to watch. Gif and MP4 attachments and links that break mobile clients will be removed in these channels. """ channel_list = await self.config.guild(ctx.guild).watching() if channel.id not in channel_list: channel_list.append(channel.id) await self.config.guild(ctx.guild).watching.set(channel_list) await ctx.send(f"{self.bot.get_channel(channel.id).mention} will have bad gifs removed.") @nogif.command() async def watchlist(self, ctx): """List the channels being watched.""" channel_list = await self.config.guild(ctx.guild).watching() msg = "Bad gifs will be removed in:\n" for channel in channel_list: channel_obj = self.bot.get_channel(channel) msg += f"{channel_obj.mention}\n" await ctx.send(msg) @nogif.command() async def unwatch(self, ctx, channel: discord.TextChannel): """Remove a channel from the watch list.""" channel_list = await self.config.guild(ctx.guild).watching() if channel.id in channel_list: channel_list.remove(channel.id) else: return await ctx.send("Channel is not being watched.") await self.config.guild(ctx.guild).watching.set(channel_list) await ctx.send(f"{self.bot.get_channel(channel.id).mention} will not have bad gifs removed.") @commands.Cog.listener() async def on_message(self, m): if not m.channel.guild: return if m.author.bot: return watch_channel_list = await self.config.guild(m.guild).watching() if not watch_channel_list: return if m.channel.id not in watch_channel_list: return link = False phone_clapper = None if m.content: if m.content.startswith("https://cdn.discordapp.com/attachments/"): link = True if not link: for att in m.attachments: if att.size > 8000000: continue if att.filename.endswith(".mp4"): phone_clapper = await self._is_video_clapper(att.url) if att.filename.endswith(".gif"): phone_clapper = await self._is_image_clapper(att.url) else: maybe_url = m.content.split()[0] if maybe_url.endswith(".mp4"): phone_clapper = await self._is_video_clapper(maybe_url) if maybe_url.endswith(".gif"): phone_clapper = await self._is_image_clapper(maybe_url) if phone_clapper: try: await m.delete() await m.channel.send(f"{m.author.mention} just tried to send a bad file and I removed it.") return except discord.errors.Forbidden: await m.channel.send(f"Don't send malicious files, {m.author.mention}") log.debug(f"Failed to delete message ({m.id}) that contained a Discord killing gif or mp4 video.") return else: return def is_phone_clapper(self, im): limit = im.size tile_sizes = [] for frame in range(im.n_frames): im.seek(frame) tile_sizes.append(im.tile[0][1][2:]) return any([x[0] > limit[0] or x[1] > limit[1] for x in tile_sizes]) async def _is_image_clapper(self, url): async with aiohttp.ClientSession() as session: async with session.get(att.url) as resp: data = await resp.content.read() f = BytesIO(data) try: img = Image.open(f) phone_clapper = self.is_phone_clapper(img) return False except Image.DecompressionBombError: return True async def _is_video_clapper(self, input_file): r = secrets.token_hex(6) video_name = f"temp_vid_{r}.mp4" video_file = f"{cog_data_path(self)}/{video_name}" text_name = f"temp_output_{r}.txt" text_file = f"{cog_data_path(self)}/{text_name}" async with aiohttp.ClientSession() as session: async with session.get(input_file) as resp: data = await resp.content.read() with open(video_file, "wb+") as g: g.write(data) f = open(text_file, "wb+") try: result = self.bot.loop.run_in_executor(None, subprocess.call(["ffplay.exe", video_file, "-autoexit", "-loglevel", "+debug"], stdout=f, stderr=subprocess.STDOUT, timeout=60)) except subprocess.CalledProcessError as e: log.error(e.output) return except subprocess.TimeoutExpired: f.close() os.remove(video_file) os.remove(text_file) log.error("Timeout expired trying to read a video file") return result.cancel() f.close() f = open(text_file, "r") content = f.read() if "Video frame changed from size:" in content: phone_clapper = True else: phone_clapper = False f.close() os.remove(video_file) os.remove(text_file) return phone_clapper
import FWCore.ParameterSet.Config as cms process = cms.Process("DCRec") process.load("Configuration.StandardSequences.MagneticField_cff") #process.load("Configuration.StandardSequences.Geometry_cff") # Depreciated process.load("Configuration.Geometry.GeometryIdeal_cff") process.load("Configuration.EventContent.EventContent_cff") process.load("Geometry.CaloEventSetup.CaloGeometry_cfi") process.load("Geometry.CaloEventSetup.CaloTopology_cfi") process.load("Configuration.StandardSequences.FrontierConditions_GlobalTag_cff") #process.GlobalTag.globaltag = cms.string('START53_V10::All') process.GlobalTag.globaltag = 'GR_P_V42_AN2::All' # this one for run2012D process.maxEvents = cms.untracked.PSet( input = cms.untracked.int32(-1) ) #process.maxEvents = cms.untracked.PSet( input = cms.untracked.int32(100) ) process.options = cms.untracked.PSet( wantSummary = cms.untracked.bool(True) ) # ***************************************************************** # Input Source # ***************************************************************** process.source = cms.Source("PoolSource", fileNames = cms.untracked.vstring( # '/store/relval/CMSSW_2_2_4/RelValTTbar/GEN-SIM-RECO/STARTUP_V8_v1/0000/200EB7E3-90F3-DD11-B1B0-001D09F2432B.root', # '/eos/cms/store/relval/CMSSW_5_3_4_cand1/RelValZEE/GEN-SIM-RECO/PU_START53_V10-v1/0003/22521942-41F7-E111-A383-003048D375AA.root', # '/store/relval/CMSSW_5_3_4_cand1/RelValZEE/GEN-SIM-RECO/PU_START53_V10-v1/0003/22521942-41F7-E111-A383-003048D375AA.root', # 'file:/afs/cern.ch/work/v/vgiakoum/public/8200EF9B-0AA0-E111-9E58-003048FFCB6A.root' # 'file:/afs/cern.ch/work/i/ikesisog/public/TestFiles/8200EF9B-0AA0-E111-9E58-003048FFCB6A.root' '/store/data/Run2012D/DoublePhotonHighPt/AOD/PromptReco-v1/000/203/994/30ABB9D1-790E-E211-AFF1-001D09F242EF.root', # '/store/data/Run2012D/DoublePhotonHighPt/AOD/PromptReco-v1/000/203/994/3E8BBC89-620E-E211-9185-001D09F25479.root', # '/store/data/Run2012D/DoublePhotonHighPt/AOD/PromptReco-v1/000/203/994/DC93F9B0-6B0E-E211-8F48-003048D37560.root', # '/store/data/Run2012D/DoublePhotonHighPt/AOD/PromptReco-v1/000/203/994/FA29ECAC-640E-E211-A95F-001D09F28D54.root', # 'root://eoscms//eos/cms/store/relval/CMSSW_5_3_4_cand1/RelValZEE/GEN-SIM-RECO/PU_START53_V10-v1/0003/22521942-41F7-E111-A383-003048D375AA.root', # 'rfio:/afs/cern.ch/user/i/ikesisog/public/22521942-41F7-E111-A383-003048D375AA.root', ) ) # ***************************************************************** # Output Target # ***************************************************************** process.out = cms.OutputModule("PoolOutputModule", fileName = cms.untracked.string('Results_vic.root'), outputCommands = cms.untracked.vstring('keep EcalRecHitsSorted_*_*_*'), #SelectEvents = cms.untracked.PSet( SelectEvents = cms.vstring("p") ), ) # ***************************************************************** # RecHitsKiller and RecHitRecoveryProducer module for Barrel # ***************************************************************** process.CreateEBDeadCells = cms.EDProducer("EBChannelKiller", hitTag = cms.InputTag("reducedEcalRecHitsEB", ""), reducedHitCollection = cms.string("CreateEB"), KilledHitCollection = cms.string("KilledEcalRecHitsEB"), DeadChannelsFile = cms.string("EBDeadCellsEach5.txt"), KillDeadCells = cms.bool(True), ) process.ModCorrectEBDeadCells = cms.EDProducer("EBDeadChannelRecoveryProducers", hitTag = cms.InputTag("CreateEBDeadCells", "CreateEB"), reducedHitCollection = cms.string("ModifyEB"), DeadChannelsFile = cms.string("EBDeadCellsEach5.txt"), Sum8GeVThreshold = cms.double(8.0), CorrectionMethod = cms.string("NeuralNetworks"), CorrectDeadCells = cms.bool(True), ) # ***************************************************************** # RecHitsKiller and RecHitRecoveryProducer module for EndCap # ***************************************************************** process.CreateEEDeadCells = cms.EDProducer("EEChannelKiller", hitTag = cms.InputTag("reducedEcalRecHitsEE", ""), reducedHitCollection = cms.string("CreateEE"), KilledHitCollection = cms.string("KilledEcalRecHitsEE"), DeadChannelsFile = cms.string("EEDeadCellsEach5.txt"), KillDeadCells = cms.bool(True), ) process.ModCorrectEEDeadCells = cms.EDProducer("EEDeadChannelRecoveryProducers", hitTag = cms.InputTag("CreateEEDeadCells", "CreateEE"), reducedHitCollection = cms.string("ModifyEE"), DeadChannelsFile = cms.string("EEDeadCellsEach5.txt"), Sum8GeVThreshold = cms.double(8.0), CorrectionMethod = cms.string("NeuralNetworks"), CorrectDeadCells = cms.bool(True), ) process.TFileService = cms.Service("TFileService", fileName = cms.string('recovery_hist.root')) process.validateRecoveryEB = cms.EDAnalyzer("EcalDeadChannelRecoveryAnalyzer", originalRecHitCollection = cms.InputTag("reducedEcalRecHitsEB", ""), recoveredRecHitCollection = cms.InputTag("ModCorrectEBDeadCells", "ModifyEB"), titlePrefix = cms.string("(EB) "), ) process.validateRecoveryEE = cms.EDAnalyzer("EcalDeadChannelRecoveryAnalyzer", originalRecHitCollection = cms.InputTag("reducedEcalRecHitsEE", ""), recoveredRecHitCollection = cms.InputTag("ModCorrectEEDeadCells", "ModifyEE"), titlePrefix = cms.string("(EE) "), ) process.dump = cms.EDAnalyzer("EcalRecHitDump", EBRecHitCollection = cms.InputTag("ModCorrectEBDeadCells", "ModifyEB"), EERecHitCollection = cms.InputTag("ModCorrectEEDeadCells", "ModifyEE"), ) # ***************************************************************** # Execution Path # ***************************************************************** process.p = cms.Path(process.CreateEBDeadCells * process.ModCorrectEBDeadCells * process.validateRecoveryEB + process.CreateEEDeadCells * process.ModCorrectEEDeadCells * process.validateRecoveryEE ) process.outpath = cms.EndPath(process.out)
import json from typing import cast, List from fhir.resources.claim import Claim from fhir.resources.claim import ClaimItem from fhir.resources.address import Address from fhir.resources.organization import Organization from schema.insight_engine_response import InsightEngineResponse, Insight, InsightType, Trace def test_Address(): myAddr = Address() myAddr.city = 'City' assert myAddr.city == "City" def test_claim1(): with open("schema/claim1.json") as claim1file: claim1json = json.load(claim1file) claim1 = Claim(**claim1json) assert claim1.id == "claim1234" assert claim1.type.id == "something" items = cast(List[ClaimItem], claim1.item) item = items[0] coding = item.productOrService.coding[0] assert coding.code == "0028U" def test_json_str(): json_dict = {"resourceType": "Organization", "id": "mmanu", "active": True, "name": "Acme Corporation", "address": [{"country": "Swizterland"}] } org = Organization(**json_dict) assert isinstance(org.address[0], Address) assert org.address[0].country == "Swizterland" js = org.json() assert json.loads(js)['active'] is True def test_response(): json_dict = { "id": "10", "insights": [ { "id": "1" } ] } response = InsightEngineResponse(**json_dict) assert len(response.insights) == 1 def test_file_deserialization(): response = InsightEngineResponse.parse_file('schema/InsightEngineResponse.json') insight: Insight = response.insights[0] assert insight.description == "No" assert insight.type == InsightType.NotApplicable def get_trace() -> Trace: trace = Trace() trace.tree_name = 'Fictitious tree' trace.end_label = '1200N' trace.traversal = [ ('Is CUE professional?', 'YES'), ('Is the CLUE procedureCode an E/M code?', 'NO'), ('Is modifier 78 present in any modifier field in the CLUE?', 'NO'), ('Are there OC for same patient as the CLUE?', 'YES'), ('Are there OCL (same or different claim) with an anesthesia procedureCode?', 'YES'), ('Are there OCL on the same day as the CLUE?', 'NO') ] return trace def get_insight() -> Insight: trace = get_trace() return Insight( id='TEST-CLAIM', type=InsightType.ClaimLineValid, description='No other claims on the same day with anesthesia code.', trace=[trace], policy_name='Fictitious policy', claim_line_sequence_num=1 ) def get_response() -> InsightEngineResponse: insight = get_insight() return InsightEngineResponse( insights=[insight], engine_name='fictitious-engine' ) def test_trace(): trace = get_trace() # Simulate writing and reading the trace to/from a file... obj = json.loads(trace.json()) t = Trace.parse_obj(obj) assert t.tree_name == 'Fictitious tree' assert t.end_label == '1200N' assert t.traversal[2][0] == 'Is modifier 78 present in any modifier field in the CLUE?' assert t.traversal[2][1] == 'NO' assert len(t.traversal) == 6 def test_insight_trace_and_policy_name(): insight = get_insight() # Simulate writing and reading the insight to/from a file... obj = json.loads(insight.json()) i = Insight.parse_obj(obj) assert i.policy_name == 'Fictitious policy' assert i.type == InsightType.ClaimLineValid assert i.description == 'No other claims on the same day with anesthesia code.' assert i.claim_line_sequence_num == 1 assert len(i.trace) == 1 assert i.trace[0].traversal[4][0] == 'Are there OCL (same or different claim) with an anesthesia procedureCode?' assert i.trace[0].traversal[4][1] == 'YES' def test_response_engine_name(): response = get_response() # Simulate writing and reading the response to/from a file... obj = json.loads(response.json()) r = InsightEngineResponse.parse_obj(obj) assert r.engine_name == 'fictitious-engine' assert len(r.insights) == 1 assert r.insights[0].policy_name == 'Fictitious policy' assert r.insights[0].type == InsightType.ClaimLineValid assert r.insights[0].description == 'No other claims on the same day with anesthesia code.' assert r.insights[0].claim_line_sequence_num == 1 assert len(r.insights[0].trace) == 1 assert r.insights[0].trace[0].traversal[3][0] == 'Are there OC for same patient as the CLUE?' assert r.insights[0].trace[0].traversal[3][1] == 'YES' def test_old_response(): res = InsightEngineResponse.parse_file('tests/sample-response.json') assert len(res.insights) == 1 assert res.insights[0].policy_name is None assert res.insights[0].trace is None assert res.engine_name is None assert res.insights[0].defense.script.messages[0].message == "Some message."
#!/usr/bin/python # Classification (U) """Program: argparser_arg_parse2.py Description: Integration testing of arg_parse2 in gen_class.ArgParser class. Usage: test/integration/gen_class/argparser_arg_parse2.py Arguments: """ # Libraries and Global Variables # Standard import sys import os if sys.version_info < (2, 7): import unittest2 as unittest else: import unittest # Third-party # Local sys.path.append(os.getcwd()) import gen_class import gen_libs import version __version__ = version.__version__ class UnitTest(unittest.TestCase): """Class: UnitTest Description: Class which is a representation of a unit testing. Methods: setUp test_opt_val_bin_override2 test_opt_val_bin_override test_multi_val_override2 test_multi_val_override test_opt_def_override2 test_opt_def_override test_opt_val_override2 test_opt_val_override test_all_together test_multiple_opt_def test_multilist_multiple_val test_multi_val_one_val test_multi_val_no_val test_multi_val_def_arg test_multi_val_two_args test_multi_val_one_arg test_opt_val_arg_int test_opt_val_bin test_opt_def_no_val2 test_opt_def_no_val test_opt_val_two_arg test_opt_val_one_arg test_arg_value_not_set test_prog_with_arg test_with_two_args test_with_one_arg test_argv_no_args test_empty_argv_list2 test_empty_argv_list """ def setUp(self): """Function: setUp Description: Initialization for unit testing. Arguments: """ p_name = "program.py" p_path = "/path" self.argv = [p_name] self.argv2 = [p_name, "-M"] self.argv3 = [p_name, "-M", "-a"] self.argv4 = [p_name, "-M", "merge"] self.argv5 = [p_name, "-c", "cfg", "-d", p_path] self.argv6 = [p_name, "-c", "cfg", "-d"] self.argv7 = [p_name, "-c", "-1"] self.argv8 = [p_name, "-f", "file1", "file2"] self.argv9 = [p_name, "-f", "file1", "file2", "-g", "file3", "file4"] self.argv10 = [p_name, "-f"] self.argv11 = [p_name, "-f", "file5"] self.argv12 = [p_name, "-f", "file1", "file2", "file3"] self.argv13 = [p_name, "-f", "-g"] self.argv14 = [ p_name, "-c", "cfg", "-d", p_path, "-M", "-f", "file1", "file2"] self.opt_val = ["-c", "-d", "-f", "-g"] self.opt_val2 = ["-M", "-a"] self.opt_def = {"-g": ["def_val"], "-f": ["file1", "file2"]} self.opt_def2 = {"-f": ["file1"]} self.multi_val = ["-f", "-g"] self.multi_val2 = ["-g"] self.opt_val_bin = ["-d"] self.opt_val_bin2 = ["-M", "-a"] self.results = {"-M": True} self.results2 = {"-M": True, "-a": True} self.results3 = {"-M": "merge"} self.results4 = {"-c": "cfg", "-d": p_path} self.results5 = {"-c": "cfg"} self.results6 = {"-c": "cfg", "-d": None} self.results7 = {"-c": "-1"} self.results8 = {"-f": ["file1", "file2"]} self.results9 = {"-f": ["file1", "file2"], "-g": ["file3", "file4"]} self.results10 = {"-f": ["file1"]} self.results11 = {"-f": ["file5"]} self.results12 = {"-f": ["file1", "file2", "file3"]} self.results13 = {"-g": ["def_val"], "-f": ["file1", "file2"]} self.results14 = {"-c": "cfg", "-d": p_path, "-M": True, "-f": ["file1", "file2"]} self.results15 = {"-f": "file5"} self.results16 = {"-M": None, "-a": None} def test_opt_val_bin_override2(self): """Function: test_opt_val_bin_override2 Description: Test with opt_val_bin passed in to override. Arguments: """ args_array = gen_class.ArgParser( self.argv3, opt_val_bin=self.opt_val_bin) self.assertTrue(args_array.arg_parse2(opt_val_bin=self.opt_val_bin2)) def test_opt_val_bin_override(self): """Function: test_opt_val_bin_override Description: Test with opt_val_bin passed in to override. Arguments: """ args_array = gen_class.ArgParser( self.argv3, opt_val_bin=self.opt_val_bin) args_array.arg_parse2(opt_val_bin=self.opt_val_bin2) self.assertEqual(args_array.args_array, self.results16) def test_multi_val_override2(self): """Function: test_multi_val_override2 Description: Test with multi_val passed in to override. Arguments: """ args_array = gen_class.ArgParser( self.argv11, opt_val=self.opt_val, multi_val=self.multi_val) self.assertTrue(args_array.arg_parse2(multi_val=self.multi_val2)) def test_multi_val_override(self): """Function: test_multi_val_override Description: Test with multi_val passed in to override. Arguments: """ args_array = gen_class.ArgParser( self.argv11, opt_val=self.opt_val, multi_val=self.multi_val) args_array.arg_parse2(multi_val=self.multi_val2) self.assertEqual(args_array.args_array, self.results15) def test_opt_def_override2(self): """Function: test_opt_def_override2 Description: Test with opt_def passed in to override. Arguments: """ args_array = gen_class.ArgParser( self.argv10, opt_val=self.opt_val, multi_val=self.multi_val, opt_def=self.opt_def2) self.assertTrue(args_array.arg_parse2(opt_def=self.opt_def)) def test_opt_def_override(self): """Function: test_opt_def_override Description: Test with opt_def passed in to override. Arguments: """ args_array = gen_class.ArgParser( self.argv10, opt_val=self.opt_val, multi_val=self.multi_val, opt_def=self.opt_def2) args_array.arg_parse2(opt_def=self.opt_def) self.assertEqual(args_array.args_array, self.results8) def test_opt_val_override2(self): """Function: test_opt_val_override2 Description: Test with opt_val passed in to override. Arguments: """ args_array = gen_class.ArgParser(self.argv2, opt_val=self.opt_val2) self.assertTrue(args_array.arg_parse2(opt_val=self.opt_val)) def test_opt_val_override(self): """Function: test_opt_val_override Description: Test with opt_val passed in to override. Arguments: """ args_array = gen_class.ArgParser(self.argv2, opt_val=self.opt_val2) args_array.arg_parse2(opt_val=self.opt_val) self.assertEqual(args_array.args_array, self.results) def test_all_together(self): """Function: test_all_together Description: Test with all options together. Arguments: """ args_array = gen_class.ArgParser( self.argv14, opt_val=self.opt_val, multi_val=self.multi_val, opt_def=self.opt_def, do_parse=True) self.assertEqual(args_array.args_array, self.results14) def test_multiple_opt_def(self): """Function: test_multiple_opt_def Description: Test with multiple default values with multi_val. Arguments: """ args_array = gen_class.ArgParser( self.argv13, opt_val=self.opt_val, multi_val=self.multi_val, opt_def=self.opt_def, do_parse=True) self.assertEqual(args_array.args_array, self.results13) def test_multilist_multiple_val(self): """Function: test_multilist_multiple_val Description: Test with multi_list set to multiple values. Arguments: """ args_array = gen_class.ArgParser( self.argv12, opt_val=self.opt_val, multi_val=self.multi_val, do_parse=True) self.assertEqual(args_array.args_array, self.results12) def test_multi_val_one_val(self): """Function: test_multi_val_one_val Description: Test with multi_list set to one value. Arguments: """ args_array = gen_class.ArgParser( self.argv11, opt_val=self.opt_val, multi_val=self.multi_val, do_parse=True) self.assertEqual(args_array.args_array, self.results11) def test_multi_val_no_val(self): """Function: test_multi_val_no_val Description: Test with multi_list and setting one of them using default values. Arguments: """ args_array = gen_class.ArgParser( self.argv10, opt_val=self.opt_val, multi_val=self.multi_val) with gen_libs.no_std_out(): self.assertFalse(args_array.arg_parse2()) def test_multi_val_def_arg(self): """Function: test_multi_val_def_arg Description: Test with multi_list and setting one of them using default values. Arguments: """ args_array = gen_class.ArgParser( self.argv10, opt_val=self.opt_val, multi_val=self.multi_val, opt_def=self.opt_def2, do_parse=True) self.assertEqual(args_array.args_array, self.results10) def test_multi_val_two_args(self): """Function: test_multi_val_two_args Description: Test with multi_val set to two arguments with multiple values. Arguments: """ args_array = gen_class.ArgParser( self.argv9, opt_val=self.opt_val, multi_val=self.multi_val, do_parse=True) self.assertEqual(args_array.args_array, self.results9) def test_multi_val_one_arg(self): """Function: test_multi_val_one_arg Description: Test with multi_val set to one argument. Arguments: """ args_array = gen_class.ArgParser( self.argv8, opt_val=self.opt_val, multi_val=self.multi_val, do_parse=True) self.assertEqual(args_array.args_array, self.results8) def test_opt_val_arg_int(self): """Function: test_opt_val_arg_int Description: Test with opt_val_set set to integer value. Arguments: """ args_array = gen_class.ArgParser( self.argv7, opt_val=self.opt_val, do_parse=True) self.assertEqual(args_array.args_array, self.results7) def test_opt_val_bin(self): """Function: test_opt_val_bin Description: Test with opt_val_bin set with no value passed in for the argument. Arguments: """ args_array = gen_class.ArgParser( self.argv6, opt_val=self.opt_val, opt_val_bin=self.opt_val_bin, do_parse=True) self.assertEqual(args_array.args_array, self.results6) def test_opt_def_no_val2(self): """Function: test_opt_def_no_val2 Description: Test with opt_def but no value. Arguments: """ args_array = gen_class.ArgParser(self.argv6, opt_val=self.opt_val) with gen_libs.no_std_out(): self.assertFalse(args_array.arg_parse2()) def test_opt_def_no_val(self): """Function: test_opt_def_no_val Description: Test with opt_def but no value. Arguments: """ args_array = gen_class.ArgParser(self.argv6, opt_val=self.opt_val) with gen_libs.no_std_out(): args_array.arg_parse2() self.assertEqual(args_array.args_array, self.results5) def test_opt_val_two_arg(self): """Function: test_opt_val_two_arg Description: Test with opt_val set to two arguments. Arguments: """ args_array = gen_class.ArgParser( self.argv5, opt_val=self.opt_val, do_parse=True) self.assertEqual(args_array.args_array, self.results4) def test_opt_val_one_arg(self): """Function: test_opt_val_one_arg Description: Test with opt_val set to one argument. Arguments: """ args_array = gen_class.ArgParser( self.argv4, opt_val=self.opt_val2, do_parse=True) self.assertEqual(args_array.args_array, self.results3) def test_arg_value_not_set(self): """Function: test_arg_value_not_set Description: Test with argument with value, but not set in opt_val. Arguments: """ args_array = gen_class.ArgParser(self.argv4, do_parse=True) self.assertEqual(args_array.args_array, self.results) def test_prog_with_arg(self): """Function: test_prog_with_arg Description: Test with program name with argument. Arguments: """ args_array = gen_class.ArgParser(self.argv2, do_parse=True) self.assertEqual(args_array.args_array, self.results) def test_with_two_args(self): """Function: test_with_two_args Description: Test with two arguments, no values. Arguments: """ args_array = gen_class.ArgParser(self.argv3, do_parse=True) self.assertEqual(args_array.args_array, self.results2) def test_with_one_arg(self): """Function: test_with_one_arg Description: Test with one argument, no values. Arguments: """ args_array = gen_class.ArgParser(self.argv2, do_parse=True) self.assertEqual(args_array.args_array, self.results) def test_argv_no_args(self): """Function: test_argv_no_args Description: Test with argv with no arguments. Arguments: """ args_array = gen_class.ArgParser(self.argv, do_parse=True) self.assertEqual(args_array.args_array, {}) def test_empty_argv_list2(self): """Function: test_empty_argv_list2 Description: Test with argv as empty list. Arguments: """ args_array = gen_class.ArgParser(self.argv) args_array.argv = [] self.assertTrue(args_array.arg_parse2()) def test_empty_argv_list(self): """Function: test_empty_argv_list Description: Test with argv as empty list. Arguments: """ args_array = gen_class.ArgParser(self.argv) args_array.argv = [] args_array.arg_parse2() self.assertEqual(args_array.args_array, {}) if __name__ == "__main__": unittest.main()
from queue import Queue """Script to find the first non-repeating string in a stream. This module reads a file called stream.txt to create a stream of strings. As a string is received, return the first non-repeating string in the stream. Example: $ python nonrepeating.py Todo: * Add input argument for file to parse as stream * Create separate main so this is separate module """ def non_repeating(value, counts, q): """Finds the first non-repeating string in a stream. Args: value (str): Latest string received in the string counts (dict): Dictionary of strings containing the counts to determine if string is repeated q (Queue): Container for all strings in stream that have yet determined as being repeated Return: str: First non-repeating string. None if all strings are repeated. """ q.put(value) if value in counts: counts[value] += 1 else: counts[value] = 1 while not q.empty(): if counts[q.queue[0]] > 1: q.get() else: return q.queue[0] if q.empty(): return None def process_stream(): """Processes the input file as a stream. """ counts = {} q = Queue() with open('stream.txt') as stream: [print(non_repeating(value.strip(), counts, q)) for value in stream.readlines()] def main(): """Driver method. """ process_stream() if __name__ == '__main__': main()
from django.urls import path from . import views urlpatterns = [ path(route='login' , view=views.LoginView.as_view() , name='login_page') , path(route='logout' , view=views.LogoutView.as_view() , name='logout_page') , path(route='register' , view=views.RegisterView.as_view() , name='register_page') , path(route='forget-password' , view=views.ForgetPasswordView.as_view() , name='forget_password_page') , path(route='reset-password/<active_code>' , view=views.ResetPasswordView.as_view() , name='reset_password_page') , path(route='activate-account/<str:email_active_code>' , view=views.ActivateAccountView.as_view() , name='activate_account_page') ]
from flask import request, make_response, render_template from flask.views import MethodView from flask_cas import login_required from common_functions import display_access_control_error from catCas import validate_professor import gbmodel class MissingStudentException(Exception): """ We raise this exception if we find no students for a given team or session, to be more explicit than eg. a KeyError. """ pass class MissingTeamException(Exception): """ We raise this exception if we don't find a team in the database when we look it up by id """ pass class GeneratedProfessorReportView(MethodView): @login_required def get(self): """ Generates a report for a specific student, for viewing by a professor. Specifically, generates a single report, for a single session and term (midterm or final), for a single student, with comments deanonymized. """ if not validate_professor(): return display_access_control_error() student_id = request.args.get('student_id') session_id = request.args.get('session_id') is_final = request.args.get('is_final') # TODO find a less fragile way to deal with booleans in urls if is_final == "False": is_final = False else: is_final = True try: pdf = _make_student_report_pdf(student_id, session_id, is_final, is_professor_report=True) response = make_response(pdf) except MissingStudentException: response = make_response(render_template('404.html'), 404) return response class GeneratedAnonymousReportView(MethodView): @login_required def get(self): """ Generates all anonymized reports for printing and handing out to students. """ if not validate_professor(): return display_access_control_error() session_id = request.args.get('session_id') is_final = request.args.get('is_final') # TODO find a less fragile way to deal with booleans in urls if is_final == "False": is_final = False else: is_final = True try: pdf = _make_printable_reports(session_id, is_final) response = make_response(pdf) except MissingStudentException: response = make_response(render_template('404.html'), 404) return response def _make_printable_reports(session_id, is_final): """ Compiles all reports for a session into one for printing. This means we generate a bunch of anonymized reports, then concatenate them, since page breaks are handled in the HTML template. Keyword arguments: session_id -- session to generate reports for is_final -- if True, makes a final report. If False, generates a midterm report. """ students = gbmodel.students().get_students_in_session(session_id) if students is None or len(students) <= 0: raise MissingStudentException("No students for this session.") report = "" # Concatenate anonymized reports for all students on the team for s in students: report = report + _make_student_report_pdf(s.id, session_id, is_final) return report def _make_student_report_pdf(student_id, session_id, is_final, is_professor_report=False): """ Renders a report for a student, defaulting to the results of their midterm review. Unless is_professor_report is set to True, the report will be anonymized. Keyword arguments: student_id -- id of the student to generate a report for session_id -- session to generate reports for is_final -- if True, makes a final report. If False, generates a midterm report. is_professor_report -- if True, makes a deanonymized report. If False, generates an anonymous report. """ # Get all the info we need to compile the report reports = gbmodel.reports().get_reports_for_student(student_id, session_id, is_final) student = gbmodel.students().get_student_in_session(student_id, session_id) if student is None: raise MissingStudentException("Trying to generate a report for a student that doesn't exist.") name = student.name team_id = student.tid team = gbmodel.teams().get_team_from_id(team_id) if team is None: raise MissingTeamException("The student's team does not appear to exist.") team_name = team.name # init scores so we can tally how many 1s we got, 2s, etc. scores = { 'tech_mastery': [], 'work_ethic': [], 'communication': [], 'cooperation': [], 'initiative': [], 'team_focus': [], 'contribution': [], 'leadership': [], 'organization': [], 'delegation': [] } for _, value in scores.items(): for i in range(6): value.append(0) # Do any calculations we need to fill in the table. # Compile all strengths and weaknesses into a list, tally up scores, etc. strengths = [] weaknesses = [] traits_to_work_on = [] # These two fields are only on self reviews. what_you_learned = None proud_of_accomplishment = None # Iterate through all reports, tallying scores. # As we go we also collect a list of all the text box answers. points = 0 for r in reports: for key, value in scores.items(): this_score = getattr(r, key) # 6 = N/A in the table if this_score is None: this_score = 6 # Increment the # of votes for this score. Ratings start at 1 and not 0 so we have to shift # things left by one in the table. scores[key][this_score-1] = scores[key][this_score-1] + 1 # If this is for the professor, all the comments should have names attached. if is_professor_report: reporter = gbmodel.students().get_student_in_session(r.reviewer, session_id) if reporter is None: raise MissingStudentException("The reporting student in a review doesn't exist.") weaknesses.append("{}: {}".format(reporter.name, r.weaknesses)) strengths.append("{}: {}".format(reporter.name, r.strengths)) traits_to_work_on.append("{}: {}".format(reporter.name, r.traits_to_work_on)) # There are a handful of fields we only display if it's a professor and a self review. if r.reviewer == student_id: # what you learned always what_you_learned = r.what_you_learned # proud_of_accomplishment only applies for finals proud_of_accomplishment = r.proud_of_accomplishment # If this is the student's self review, the comments get marked with asterisks. elif r.reviewer == student_id: weaknesses.append("**{}".format(r.weaknesses)) strengths.append("**{}".format(r.strengths)) traits_to_work_on.append("**{}".format(r.traits_to_work_on)) else: weaknesses.append(r.weaknesses) strengths.append(r.strengths) traits_to_work_on.append(r.traits_to_work_on) # Tally up points points += r.points # Mark all the self reported scores for r in reports: if r.reviewer == student_id: for key, value in scores.items(): this_score = getattr(r, key) if this_score is not None: scores[key][this_score-1] = "**{}".format(scores[key][this_score-1]) # Render the HTML version of the template html = render_template('report.html', name=name, team=team_name, scores=scores, points=points, strengths=strengths, weaknesses=weaknesses, traits_to_work_on=traits_to_work_on, what_you_learned=what_you_learned, proud_of_accomplishment=proud_of_accomplishment) return html
#!/usr/bin/env python # -*- coding: utf-8 -*- import logging import pygame import pygame.freetype import pygame.gfxdraw import pygame.locals from glitchygames.engine import GameEngine from glitchygames.sprites import BitmappySprite from glitchygames.scenes import Scene LOG = logging.getLogger('game') LOG.setLevel(logging.DEBUG) # Turn on sprite debugging BitmappySprite.DEBUG = True class GameScene(Scene): log = LOG def __init__(self, groups=pygame.sprite.LayeredDirty()): super().__init__(groups=groups) self.all_sprites = groups self.screen = pygame.display.get_surface() self.screen_width = self.screen.get_width() self.screen_height = self.screen.get_height() self.screen.fill((255, 255, 0)) self.all_sprites.clear(self.screen, self.background) class Game(Scene): # Set your game name/version here. NAME = "Cached Font Demo" VERSION = "1.0" def __init__(self, options): super().__init__(options=options) # GameEngine.OPTIONS is set on initialization. self.log.info(f'Game Options: {options}') self.next_scene = GameScene() @classmethod def args(cls, parser): parser.add_argument('-v', '--version', action='store_true', help='print the game version and exit') def main(): GameEngine(game=Game).start() if __name__ == '__main__': main()
# Copyright 2021 Toyota Research Institute. All rights reserved. import numpy as np from camviz.objects.object import Object class BBox2D(Object): """ Bounding Box 2D draw class Parameters ---------- points : np.array List of points for the bounding box dimension (left, top, right, bottom) pose : np.array Bounding box pose on the screen (right, down) """ def __init__(self, points, pose=None): super().__init__(pose=pose) self.pts = np.array([[points[0], points[1]], [points[2], points[1]], [points[2], points[3]], [points[0], points[3]]]) def draw(self, draw, color_line='gre', color_edge=None): """ Draw 2D bounding box on screen Parameters ---------- draw : camviz.Draw Draw instance color_line : str Line color color_edge : str Edge color """ # Set color line if provided if color_line is not None: draw.color(color_line).width(2).lines( self.pts[[0, 1, 1, 2, 2, 3, 3, 0]]) # Set color edge if provided if color_edge is not None: draw.color(color_edge).size(4).points(self.pts)
# -------------- # Code starts here class_1=['Geoffrey Hinton','Andrew Ng','Sebastian Raschka','Yoshua Bengio'] class_2=['Hilary Mason','Carla Gentry','Corinna Cortes'] new_class=class_1+class_2 print(new_class) new_class.append('Peter Warden') print(new_class) new_class.remove('Carla Gentry') print(new_class) # Code ends here # -------------- # Code starts here courses={'Math':65,'English':70,'History':80,'French':70,'Science':60} print(courses) a=courses['Math'] b=courses['English'] c=courses['History'] d=courses['French'] e=courses['Science'] total=a+b+c+d+e print(total) a=(total/5) percentage=a print(percentage) # Code ends here # -------------- # Code starts here mathematics={'Geoffrey Hinton':78,'Andrew Ng':95, 'Sebastain Raschka':65,'Yoshua Benjio':50, 'Hilary Mason':70,'Corinna Cortes':66,'Peter Warden':75} topper = max(mathematics,key = mathematics.get) print (topper) # Code ends here # -------------- # Given string topper = 'andrew ng' # Code starts here a=topper.split() print(a) first_name=a[0] print(first_name) last_name=a[1] print(last_name) full_name=last_name+ " "+ first_name print(full_name) certificate_name=full_name.upper() a=certificate_name print(a) # Code ends here
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi Terraform Bridge (tfgen) Tool. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** # Export this package's modules as members: from .default_kms_key import * from .encryption_by_default import * from .get_default_kms_key import * from .get_ebs_volumes import * from .get_encryption_by_default import * from .get_snapshot import * from .get_snapshot_ids import * from .get_volume import * from .snapshot import * from .snapshot_copy import * from .volume import * from ._inputs import * from . import outputs def _register_module(): import pulumi from .. import _utilities class Module(pulumi.runtime.ResourceModule): _version = _utilities.get_semver_version() def version(self): return Module._version def construct(self, name: str, typ: str, urn: str) -> pulumi.Resource: if typ == "aws:ebs/defaultKmsKey:DefaultKmsKey": return DefaultKmsKey(name, pulumi.ResourceOptions(urn=urn)) elif typ == "aws:ebs/encryptionByDefault:EncryptionByDefault": return EncryptionByDefault(name, pulumi.ResourceOptions(urn=urn)) elif typ == "aws:ebs/snapshot:Snapshot": return Snapshot(name, pulumi.ResourceOptions(urn=urn)) elif typ == "aws:ebs/snapshotCopy:SnapshotCopy": return SnapshotCopy(name, pulumi.ResourceOptions(urn=urn)) elif typ == "aws:ebs/volume:Volume": return Volume(name, pulumi.ResourceOptions(urn=urn)) else: raise Exception(f"unknown resource type {typ}") _module_instance = Module() pulumi.runtime.register_resource_module("aws", "ebs/defaultKmsKey", _module_instance) pulumi.runtime.register_resource_module("aws", "ebs/encryptionByDefault", _module_instance) pulumi.runtime.register_resource_module("aws", "ebs/snapshot", _module_instance) pulumi.runtime.register_resource_module("aws", "ebs/snapshotCopy", _module_instance) pulumi.runtime.register_resource_module("aws", "ebs/volume", _module_instance) _register_module()
import cv2 def main(): #cv2.namedWindow('show',0) #cv2.resizeWindow('show',640,360) vc = cv2.VideoCapture(0) #웹캠 읽기 #vc = cv2.VideoCapture('./images/video2.mp4') #원하는 동영상을 읽기 vlen = int(vc.get(cv2.CAP_PROP_FRAME_COUNT)) #동영상이 갖고 있는 정보를 vc의 get() 함수로 읽기 print (vlen) # 웹캠은 video length 가 0 입니다. while True: ret, img = vc.read() #vc 객체에서 read() 함수로 img 읽기 #ret 은 read() 함수에서 이미지가 반환되면 True, 반대의 경우 False를 받기 if ret == False: break start = cv2.getTickCount() img = cv2.flip(img, 1) # 보통 웹캠은 좌우 반전 # preprocess #img_rgb = cv2.cvtColor(img_orig, cv2.COLOR_BGR2RGB) # detector #img_rgb_vga = cv2.resize(img_rgb, (640, 360)) time = (cv2.getTickCount() - start) / cv2.getTickFrequency() * 1000 print ('[INFO] time: %.2fms'%time) cv2.imshow('show', img) key = cv2.waitKey(1) if key == 27: break if __name__ == '__main__': main()
from .awd_lstm import * from .transformer import * __all__ = [*awd_lstm.__all__, *transformer.__all__]
from django.test import TestCase from django.db import models from django.core import mail from django.contrib.auth import get_user_model from ..models import Blog, Post, Subscription, Feed class BlogModelTest(TestCase): fixtures = ['initial_data.json'] def test_author_label(self): blog = Blog.objects.get(id=1) field_label = blog._meta.get_field('author').verbose_name self.assertEqual(field_label, 'author') def test_author_field_related_model(self): blog = Blog.objects.get(id=1) related_model = blog._meta.get_field('author').related_model self.assertEqual(related_model, get_user_model()) def test_author_field_on_detele(self): blog = Blog.objects.get(id=1) on_detele = blog._meta.get_field( 'author').remote_field.on_delete self.assertEqual(on_detele, models.CASCADE) def test_object_name_is_author_username(self): blog = Blog.objects.get(id=1) expected_object_name = blog.author.get_username() self.assertEqual(str(blog), expected_object_name) class PostModelTest(TestCase): fixtures = ['initial_data.json'] def test_title_label(self): post = Post.objects.get(id=1) field_label = post._meta.get_field('title').verbose_name self.assertEqual(field_label, 'title') def test_name_max_length(self): post = Post.objects.get(id=1) max_length = post._meta.get_field('title').max_length self.assertEqual(max_length, 255) def test_blog_label(self): post = Post.objects.get(id=1) field_label = post._meta.get_field('blog').verbose_name self.assertEqual(field_label, 'blog') def test_blog_field_related_model(self): post = Post.objects.get(id=1) related_model = post._meta.get_field('blog').related_model self.assertEqual(related_model, Blog) def test_blog_field_on_detele(self): post = Post.objects.get(id=1) on_detele = post._meta.get_field( 'blog').remote_field.on_delete self.assertEqual(on_detele, models.CASCADE) def test_date_posted_label(self): post = Post.objects.get(id=1) field_label = post._meta.get_field('posted').verbose_name self.assertEqual(field_label, 'posted') def test_date_added_auto_now_add(self): post = Post.objects.get(id=1) auto_now_add = post._meta.get_field('posted').auto_now_add self.assertEqual(auto_now_add, True) def test_content_label(self): post = Post.objects.get(id=1) field_label = post._meta.get_field('content').verbose_name self.assertEqual(field_label, 'content') def test_content_max_length(self): post = Post.objects.get(id=1) max_length = post._meta.get_field('content').max_length self.assertEqual(max_length, 10000) def test_ordering(self): post = Post.objects.get(id=1) ordering = post._meta.ordering self.assertEqual(ordering, ['-posted']) def test_save_method(self): blog = Blog.objects.get(id=2) subscriber = get_user_model().objects.get(pk=1) subscription = Subscription.objects.get(pk=1) post = Post.objects.create(title='Test title', blog=blog) feed = Feed.objects.get(pk=7) self.assertEqual(feed.user, subscriber) self.assertEqual(feed.subscription, subscription) self.assertEqual(feed.post.id, post.id) self.assertEqual(len(mail.outbox), 1) self.assertEqual(mail.outbox[0].subject, 'New post') def test_object_name_is_title(self): post = Post.objects.get(id=1) expected_object_name = post.title self.assertEqual(str(post), expected_object_name) class SubscriptionModelTest(TestCase): fixtures = ['initial_data.json'] def test_user_label(self): subscription = Subscription.objects.get(id=1) field_label = subscription._meta.get_field('user').verbose_name self.assertEqual(field_label, 'user') def test_user_field_related_model(self): subscription = Subscription.objects.get(id=1) related_model = subscription._meta.get_field('user').related_model self.assertEqual(related_model, get_user_model()) def test_user_field_on_detele(self): subscription = Subscription.objects.get(id=1) on_detele = subscription._meta.get_field( 'user').remote_field.on_delete self.assertEqual(on_detele, models.CASCADE) def test_blog_label(self): subscription = Subscription.objects.get(id=1) field_label = subscription._meta.get_field('blog').verbose_name self.assertEqual(field_label, 'blog') def test_blog_field_related_model(self): subscription = Subscription.objects.get(id=1) related_model = subscription._meta.get_field('blog').related_model self.assertEqual(related_model, Blog) def test_blog_field_on_detele(self): subscription = Subscription.objects.get(id=1) on_detele = subscription._meta.get_field( 'blog').remote_field.on_delete self.assertEqual(on_detele, models.CASCADE) def test_unique_together(self): subscription = Subscription.objects.get(id=1) unique_together = subscription._meta.unique_together self.assertEqual(unique_together, (('user', 'blog'),)) def test_object_name_is_blog_author_username(self): subscription = Subscription.objects.get(id=1) expected_object_name = subscription.blog.author.username self.assertEqual(str(subscription), expected_object_name) class FeedModelTest(TestCase): fixtures = ['initial_data.json'] def test_user_label(self): feed = Feed.objects.get(id=1) field_label = feed._meta.get_field('user').verbose_name self.assertEqual(field_label, 'user') def test_user_field_related_model(self): feed = Feed.objects.get(id=1) related_model = feed._meta.get_field('user').related_model self.assertEqual(related_model, get_user_model()) def test_user_field_on_detele(self): feed = Feed.objects.get(id=1) on_detele = feed._meta.get_field( 'user').remote_field.on_delete self.assertEqual(on_detele, models.CASCADE) def test_post_label(self): feed = Feed.objects.get(id=1) field_label = feed._meta.get_field('post').verbose_name self.assertEqual(field_label, 'post') def test_post_field_related_model(self): feed = Feed.objects.get(id=1) related_model = feed._meta.get_field('post').related_model self.assertEqual(related_model, Post) def test_post_field_on_detele(self): feed = Feed.objects.get(id=1) on_detele = feed._meta.get_field( 'post').remote_field.on_delete self.assertEqual(on_detele, models.CASCADE) def test_subscription_label(self): feed = Feed.objects.get(id=1) field_label = feed._meta.get_field('subscription').verbose_name self.assertEqual(field_label, 'subscription') def test_subscription_field_related_model(self): feed = Feed.objects.get(id=1) related_model = feed._meta.get_field('subscription').related_model self.assertEqual(related_model, Subscription) def test_subscription_field_on_detele(self): feed = Feed.objects.get(id=1) on_detele = feed._meta.get_field( 'subscription').remote_field.on_delete self.assertEqual(on_detele, models.CASCADE) def test_is_read_label(self): feed = Feed.objects.get(id=1) field_label = feed._meta.get_field('is_read').verbose_name self.assertEqual(field_label, 'is read') def test_is_read_default(self): feed = Feed.objects.get(id=1) default = feed._meta.get_field('is_read').default self.assertEqual(default, False) def test_ordering(self): feed = Feed.objects.get(id=1) ordering = feed._meta.ordering self.assertEqual(ordering, ['-post__posted']) def test_unique_together(self): feed = Feed.objects.get(id=1) unique_together = feed._meta.unique_together self.assertEqual(unique_together, (('user', 'post', 'subscription'),)) def test_object_name_is_post_title(self): feed = Feed.objects.get(id=1) expected_object_name = feed.post.title self.assertEqual(str(feed), expected_object_name)
class UserResourceMixin(object): """Methods for managing User resources.""" def create_user(self, **attributes): """Create a user. >>> user = yola.create_user( name='John', surname='Smith', email='johnsmith@example.com', partner_id='WL_PARTNER_ID', preferences={'preference_name': 'preference_value'}) >>> user['name'] 'John' """ response = self.post(self._user_path(), json=attributes).json() response['signup_date'] = response.pop('signupDate') return response def update_user(self, user_id, **attributes): """Update a user. >>> yola.update_user('user_id', name='New name') """ return self.patch(self._user_path(user_id), json=attributes).json() def get_user(self, user_id): """Get details for a particular user. >>> user = yola.get_user('user_id') >>> user['name'] 'John' """ response = self.get(self._user_path(user_id)).json() response['signup_date'] = response.pop('signupDate') return response def list_users(self, **filters): """Return paginated list of users. >>> yola.list_users() { 'count': 999, 'previous': None, 'next': 'https://wl.qa.yola.net/pr/users/?page=2', 'results': [ {'name': 'John', 'surname': 'Smith', ...} ] } If there are no users, ``results`` will be an empty list. No exception will be raised. You may pass pagination options and attribute filters as keyword arguments. See https://wl.qa.yola.net/users/ for available parameters. For example: >>> yola.list_users(page=2, page_size=50, partner_id='WL_YOLA') """ return self.get(self._user_path(), params=filters).json() def delete_user(self, user_id): """Delete a user. >>> yola.delete_user('user_id') """ self.delete(self._user_path(user_id)) def get_sso_create_site_url(self, user_id, domain, locale=None): """Get SSO create site url for a particular user and domain. >>> yola.get_sso_create_site_url('user_id', 'example.com') """ params = {'domain': domain, 'locale': locale} return self.get( self._user_path( user_id, 'sso_url_create_site'), params=params).json()['url'] def get_sso_open_site_url(self, user_id, site_id=None, locale=None): """Get SSO open site url for a particular user. >>> yola.get_sso_open_site_url('user_id') """ return self.get( self._user_path(user_id, 'sso_url_open_site'), params={ 'site_id': site_id, 'locale': locale }).json()['url'] def get_sso_url(self, user_id, site_id=None, destination='editor', locale=None): """Get SSO url for a particular ws user >>> yola.get_sso_url('user_id') """ return self.get( self._user_path(user_id, 'sso-url'), params={ 'site_id': site_id, 'destination': destination, 'locale': locale, }).json()['url'] def get_user_wsites(self, user_id): return self.get(self._user_path(user_id, 'sites')).json() def set_site_url(self, user_id, site_url): """Set new site url for a particular user. >>> yola.set_site_url('user_id', 'https://new-domain.com') """ return self.post( self._user_path(user_id, 'set-site-url'), json={'site_url': site_url} ).json() def _user_path(self, *parts): path = '/'.join(['users'] + list(parts)) return '/%s/' % path
import pickle import sys import time import numpy as np import torch from fvcore.nn import FlopCountAnalysis import xnas.core.config as config import xnas.logger.logging as logging from xnas.core.config import cfg from xnas.core.builder import setup_env, space_builder, optimizer_builder import xnas.algorithms.RMINAS.sampler.sampling as sampling from xnas.algorithms.RMINAS.utils.RMI_torch import RMI_loss from xnas.algorithms.RMINAS.sampler.RF_sampling import RF_suggest from xnas.algorithms.RMINAS.utils.random_data import get_random_data from xnas.spaces.DARTS.utils import geno_from_alpha, reformat_DARTS from xnas.spaces.NASBench201.utils import dict2config, get_cell_based_tiny_net, CellStructure config.load_configs() logger = logging.get_logger(__name__) # RMINAS hyperparameters initialization RF_space = None api = None def rminas_hp_builder(): global RF_space, api if cfg.SPACE.NAME == 'infer_nb201': from nas_201_api import NASBench201API api = NASBench201API(cfg.BENCHMARK.NB201PATH) RF_space = 'nasbench201' elif cfg.SPACE.NAME == 'infer_darts': RF_space = 'darts' elif cfg.SPACE.NAME == 'nasbenchmacro': RF_space = 'nasbenchmacro' from xnas.evaluations.NASBenchMacro.evaluate import evaluate, data api = data elif cfg.SPACE.NAME == 'proxyless': RF_space = 'proxyless' # for example : arch = '00000000' # arch = '' # evaluate(arch) def main(): device = setup_env() rminas_hp_builder() assert cfg.SPACE.NAME in ['infer_nb201', 'infer_darts',"nasbenchmacro", "proxyless"] assert cfg.LOADER.DATASET in ['cifar10', 'cifar100', 'imagenet', 'imagenet16_120'], 'dataset error' if cfg.LOADER.DATASET == 'cifar10': from xnas.algorithms.RMINAS.teacher_model.resnet20_cifar10.resnet import resnet20 checkpoint_res = torch.load('xnas/algorithms/RMINAS/teacher_model/resnet20_cifar10/resnet20.th') network = torch.nn.DataParallel(resnet20()) network.load_state_dict(checkpoint_res['state_dict']) network = network.module elif cfg.LOADER.DATASET == 'cifar100': from xnas.algorithms.RMINAS.teacher_model.resnet101_cifar100.resnet import resnet101 network = resnet101() network.load_state_dict(torch.load('xnas/algorithms/RMINAS/teacher_model/resnet101_cifar100/resnet101.pth')) elif cfg.LOADER.DATASET == 'imagenet': assert cfg.SPACE.NAME in ('infer_darts', 'proxyless') logger.warning('Our method does not directly search in ImageNet.') logger.warning('Only partial tests have been conducted, please use with caution.') import xnas.algorithms.RMINAS.teacher_model.fbresnet_imagenet.fbresnet as fbresnet network = fbresnet.fbresnet152() elif cfg.LOADER.DATASET == 'imagenet16_120': assert cfg.SPACE.NAME == 'infer_nb201' from nas_201_api import ResultsCount """Teacher Network: using best arch searched from cifar10 and weight from nb201.""" filename = 'xnas/algorithms/RMINAS/teacher_model/nb201model_imagenet16120/009930-FULL.pth' xdata = torch.load(filename) odata = xdata['full']['all_results'][('ImageNet16-120', 777)] result = ResultsCount.create_from_state_dict(odata) result.get_net_param() arch_config = result.get_config(CellStructure.str2structure) # create the network with params net_config = dict2config(arch_config, None) network = get_cell_based_tiny_net(net_config) network.load_state_dict(result.get_net_param()) network.cuda() """selecting well-performed data.""" more_data_X, more_data_y = get_random_data(cfg.LOADER.BATCH_SIZE, cfg.LOADER.DATASET) with torch.no_grad(): ce_loss = torch.nn.CrossEntropyLoss(reduction='none').cuda() more_logits = network(more_data_X) _, indices = torch.topk(-ce_loss(more_logits, more_data_y).cpu().detach(), cfg.LOADER.BATCH_SIZE) data_y = more_data_y.detach() data_X = more_data_X.detach() with torch.no_grad(): feature_res = network.feature_extractor(data_X) RFS = RF_suggest(space=RF_space, logger=logger, api=api, thres_rate=cfg.RMINAS.RF_THRESRATE, seed=cfg.RNG_SEED) # loss function loss_fun_cka = RMI_loss(data_X.size()[0]) loss_fun_cka = loss_fun_cka.requires_grad_() loss_fun_cka.cuda() loss_fun_log = torch.nn.CrossEntropyLoss().cuda() def train_arch(modelinfo): flops = None if cfg.SPACE.NAME == 'infer_nb201': # get arch arch_config = { 'name': 'infer.tiny', 'C': 16, 'N': 5, 'arch_str':api.arch(modelinfo), 'num_classes': cfg.LOADER.NUM_CLASSES} net_config = dict2config(arch_config, None) model = get_cell_based_tiny_net(net_config).cuda() elif cfg.SPACE.NAME == 'infer_darts': cfg.TRAIN.GENOTYPE = str(modelinfo) model = space_builder().cuda() elif cfg.SPACE.NAME == 'nasbenchmacro': model = space_builder().cuda() optimizer = optimizer_builder("SGD", model.parameters()) elif cfg.SPACE.NAME == 'proxyless': model = space_builder(stage_width_list=[16, 24, 40, 80, 96, 192, 320],depth_param=modelinfo[:6],ks=modelinfo[6:27][modelinfo[6:27]>0],expand_ratio=modelinfo[27:][modelinfo[27:]>0],dropout_rate=0).cuda() optimizer = optimizer_builder("SGD", model.parameters()) with torch.no_grad(): tensor = (torch.rand(1, 3, 224, 224).cuda(),) flops = FlopCountAnalysis(model, tensor).total() # lr_scheduler = lr_scheduler_builder(optimizer) # nbm_trainer = OneShotTrainer( # supernet=model, # criterion=criterion, # optimizer=optimizer, # lr_scheduler=lr_scheduler, # train_loader=train_loader, # test_loader=valid_loader, # sample_type='iter' # ) model.train() # weights optimizer optimizer = optimizer_builder("SGD", model.parameters()) epoch_losses = [] for cur_epoch in range(1, cfg.OPTIM.MAX_EPOCH+1): optimizer.zero_grad() features, logits = model.forward_with_features(data_X, modelinfo) loss_cka = loss_fun_cka(features, feature_res) loss_logits = loss_fun_log(logits, data_y) loss = cfg.RMINAS.LOSS_BETA * loss_cka + (1-cfg.RMINAS.LOSS_BETA)*loss_logits loss.backward() optimizer.step() epoch_losses.append(loss.detach().cpu().item()) if cur_epoch == cfg.OPTIM.MAX_EPOCH: return loss.cpu().detach().numpy(), {'epoch_losses':epoch_losses, 'flops':flops} trained_arch_darts, trained_loss = [], [] def train_procedure(sample): if cfg.SPACE.NAME == 'infer_nb201': mixed_loss, epoch_losses = train_arch(sample)[0] mixed_loss = np.inf if np.isnan(mixed_loss) else mixed_loss trained_loss.append(mixed_loss) arch_arr = sampling.nb201genostr2array(api.arch(sample)) RFS.trained_arch.append({'arch':arch_arr, 'loss':mixed_loss}) RFS.trained_arch_index.append(sample) elif cfg.SPACE.NAME == 'infer_darts': sample_geno = geno_from_alpha(sampling.darts_sug2alpha(sample)) # type=Genotype trained_arch_darts.append(str(sample_geno)) mixed_loss, epoch_losses = train_arch(sample_geno)[0] mixed_loss = np.inf if np.isnan(mixed_loss) else mixed_loss trained_loss.append(mixed_loss) RFS.trained_arch.append({'arch':sample, 'loss':mixed_loss}) elif cfg.SPACE.NAME == 'nasbenchmacro': sample_geno = ''.join(sample.astype('str')) # type=Genotype trained_arch_darts.append((sample_geno)) mixed_loss, info = train_arch(sample) mixed_loss = np.inf if np.isnan(mixed_loss) else mixed_loss trained_loss.append(mixed_loss) RFS.trained_arch.append({'arch':sample, 'loss':mixed_loss,'gt':api[sample_geno]['mean_acc'],'losses':info["epoch_losses"]}) elif cfg.SPACE.NAME == 'proxyless': sample_geno = ''.join(sample.astype('str')) # type=Genotype trained_arch_darts.append((sample_geno)) mixed_loss, info = train_arch(sample) mixed_loss = np.inf if np.isnan(mixed_loss) else mixed_loss trained_loss.append(mixed_loss) RFS.trained_arch.append({'arch':sample, 'loss':mixed_loss,'gt':info["flops"],'losses':info["epoch_losses"]}) logger.info("sample: {}, loss:{}".format(sample, mixed_loss)) start_time = time.time() # ====== Warmup ====== warmup_samples = RFS.warmup_samples(cfg.RMINAS.RF_WARMUP) logger.info("Warming up with {} archs".format(cfg.RMINAS.RF_WARMUP)) for sample in warmup_samples: train_procedure(sample) RFS.Warmup() # ====== RF Sampling ====== sampling_time = time.time() sampling_cnt= 0 while sampling_cnt < cfg.RMINAS.RF_SUCC: print(sampling_cnt) sample = RFS.fitting_samples() train_procedure(sample) sampling_cnt += RFS.Fitting() if sampling_cnt >= cfg.RMINAS.RF_SUCC: logger.info('successfully sampling good archs for {} times'.format(sampling_cnt)) else: logger.info('failed sampling good archs for only {} times'.format(sampling_cnt)) logger.info('RF sampling time cost:{}'.format(str(time.time() - sampling_time))) # ====== Evaluation ====== logger.info('Total time cost: {}'.format(str(time.time() - start_time))) logger.info('Actual training times: {}'.format(len(RFS.trained_arch_index))) if cfg.SPACE.NAME == 'infer_nb201': logger.info('Searched architecture:\n{}'.format(str(RFS.optimal_arch(method='sum', top=50)))) logger.info('Searched architecture:\n{}'.format(str(RFS.optimal_arch(method='greedy', top=50)))) elif cfg.SPACE.NAME == 'infer_darts': op_sample = RFS.optimal_arch(method='sum', top=50) op_alpha = torch.from_numpy(np.r_[op_sample, op_sample]) op_geno = reformat_DARTS(geno_from_alpha(op_alpha)) logger.info('Searched architecture@top50:\n{}'.format(str(op_geno))) elif cfg.SPACE.NAME == 'nasbenchmacro': op_sample = RFS.optimal_arch(method='sum', top=50) # op_alpha = torch.from_numpy(np.r_[op_sample, op_sample]) # op_geno = reformat_DARTS(geno_from_alpha(op_alpha)) logger.info('Searched architecture@top50:\n{}'.format(str(op_sample))) print(api[op_sample]['mean_acc']) elif cfg.SPACE.NAME == 'proxyless': op_sample = RFS.optimal_arch(method='sum', top=100) # op_alpha = torch.from_numpy(np.r_[op_sample, op_sample]) # op_geno = reformat_DARTS(geno_from_alpha(op_alpha)) logger.info('Searched architecture@top100:\n{}'.format(str(op_sample))) print(api[op_sample]['mean_acc']) if __name__ == '__main__': main()
#!/usr/bin/env python2 # -*- coding: utf-8 -*- """ Created on Thu Jan 5 13:03:17 2017 @author: mschull """ from __future__ import division, print_function, absolute_import __author__ = 'jwely' __all__ = ["landsat_metadata"] # standard imports import os.path import numpy as np import logging from .utils import RasterError,_test_outside logging.basicConfig(level=logging.DEBUG) LOGGER = logging.getLogger('pydisalexi.geotiff') from osgeo import gdal, osr try: from pyproj import Proj except ImportError: LOGGER.warning( "PROJ4 is not available. " + "Any method requiring coordinate transform will fail.") from datetime import datetime import inspect class landsat_metadata: """ A landsat metadata object. This class builds is attributes from the names of each tag in the xml formatted .MTL files that come with landsat data. So, any tag that appears in the MTL file will populate as an attribute of landsat_metadata. You can access explore these attributes by using, for example .. code-block:: python from dnppy import landsat meta = landsat.landsat_metadata(my_filepath) # create object from pprint import pprint # import pprint pprint(vars(m)) # pretty print output scene_id = meta.LANDSAT_SCENE_ID # access specific attribute :param filename: the filepath to an MTL file. """ def __init__(self, filename): """ There are several critical attributes that keep a common naming convention between all landsat versions, so they are initialized in this class for good record keeping and reference """ # custom attribute additions self.FILEPATH = filename self.DATETIME_OBJ = None # product metadata attributes self.LANDSAT_SCENE_ID = None self.DATA_TYPE = None self.ELEVATION_SOURCE = None self.OUTPUT_FORMAT = None self.SPACECRAFT_ID = None self.SENSOR_ID = None self.WRS_PATH = None self.WRS_ROW = None self.NADIR_OFFNADIR = None self.TARGET_WRS_PATH = None self.TARGET_WRS_ROW = None self.DATE_ACQUIRED = None self.SCENE_CENTER_TIME = None # image attributes self.CLOUD_COVER = None self.IMAGE_QUALITY_OLI = None self.IMAGE_QUALITY_TIRS = None self.ROLL_ANGLE = None self.SUN_AZIMUTH = None self.SUN_ELEVATION = None self.EARTH_SUN_DISTANCE = None # calculated for Landsats before 8. # read the file and populate the MTL attributes self._read(filename) def _read(self, filename): """ reads the contents of an MTL file """ # if the "filename" input is actually already a metadata class object, return it back. if inspect.isclass(filename): return filename fields = [] values = [] metafile = open(filename, 'r') metadata = metafile.readlines() for line in metadata: # skips lines that contain "bad flags" denoting useless data AND lines # greater than 1000 characters. 1000 character limit works around an odd LC5 # issue where the metadata has 40,000+ characters of whitespace bad_flags = ["END", "GROUP"] if not any(x in line for x in bad_flags) and len(line) <= 1000: try: line = line.replace(" ", "") line = line.replace("\n", "") field_name, field_value = line.split(' = ') fields.append(field_name) values.append(field_value) except: pass for i in range(len(fields)): # format fields without quotes,dates, or times in them as floats if not any(['"' in values[i], 'DATE' in fields[i], 'TIME' in fields[i]]): setattr(self, fields[i], float(values[i])) else: values[i] = values[i].replace('"', '') setattr(self, fields[i], values[i]) # create datetime_obj attribute (drop decimal seconds) dto_string = self.DATE_ACQUIRED + self.SCENE_CENTER_TIME self.DATETIME_OBJ = datetime.strptime(dto_string.split(".")[0], "%Y-%m-%d%H:%M:%S") # only landsat 8 includes sun-earth-distance in MTL file, so calculate it # for the Landsats 4,5,7 using solar module. # if not self.SPACECRAFT_ID == "LANDSAT_8": # # # use 0s for lat and lon, sun_earth_distance is not a function of any one location on earth. # s = solar(0, 0, self.DATETIME_OBJ, 0) # self.EARTH_SUN_DISTANCE = s.get_rad_vector() print("Scene {0} center time is {1}".format(self.LANDSAT_SCENE_ID, self.DATETIME_OBJ)) class GeoTIFF(object): """ Represents a GeoTIFF file for data access and processing and provides a number of useful methods and attributes. Arguments: filepath (str): the full or relative file path """ def __init__(self, filepath): try: self.dataobj = gdal.Open(filepath) except RuntimeError as err: LOGGER.error("Could not open %s: %s" % (filepath, err.message)) raise self.filepath = filepath self.ncol = self.dataobj.RasterXSize self.nrow = self.dataobj.RasterYSize self.nbands = self.dataobj.RasterCount self._gtr = self.dataobj.GetGeoTransform() # see http://www.gdal.org/gdal_datamodel.html self.ulx = self._gtr[0] self.uly = self._gtr[3] self.lrx = (self.ulx + self.ncol * self._gtr[1] + self.nrow * self._gtr[2]) self.lry = (self.uly + self.ncol * self._gtr[4] + self.nrow * self._gtr[5]) if self._gtr[2] != 0 or self._gtr[4] != 0: LOGGER.warning( "The dataset is not north-up. The geotransform is given " + "by: (%s). " % ', '.join([str(item) for item in self._gtr]) + "Northing and easting values will not have expected meaning." ) self.dataobj = None @property def data(self): """2D numpy array for single-band GeoTIFF file data. Otherwise, 3D. """ if not self.dataobj: self.dataobj = gdal.Open(self.filepath) dat = self.dataobj.ReadAsArray() self.dataobj = None return dat @property def projection(self): """The dataset's coordinate reference system as a Well-Known String""" if not self.dataobj: self.dataobj = gdal.Open(self.filepath) dat = self.dataobj.GetProjection() self.dataobj = None return dat @property def proj4(self): """The dataset's coordinate reference system as a PROJ4 string""" osrref = osr.SpatialReference() osrref.ImportFromWkt(self.projection) return osrref.ExportToProj4() @property def coordtrans(self): """A PROJ4 Proj object, which is able to perform coordinate transformations""" return Proj(self.proj4) @property def delx(self): """The sampling distance in x-direction, in physical units (eg metres)""" return self._gtr[1] @property def dely(self): """The sampling distance in y-direction, in physical units (eg metres). Negative in northern hemisphere.""" return self._gtr[5] @property def easting(self): """The x-coordinates of first row pixel corners, as a numpy array: upper-left corner of upper-left pixel to upper-right corner of upper-right pixel (ncol+1).""" delta = np.abs( (self.lrx-self.ulx)/self.ncol - self.delx ) if delta > 10e-2: LOGGER.warn( "GeoTIFF issue: E-W grid step differs from " + "deltaX by more than 1% ") return np.linspace(self.ulx, self.lrx, self.ncol+1) @property def northing(self): """The y-coordinates of first column pixel corners, as a numpy array: lower-left corner of lower-left pixel to upper-left corner of upper-left pixel (nrow+1).""" # check if data grid step is consistent delta = np.abs( (self.lry-self.uly)/self.nrow - self.dely ) if delta > 10e-2: LOGGER.warn( "GeoTIFF issue: N-S grid step differs from " + "deltaY by more than 1% ") return np.linspace(self.lry, self.uly, self.nrow+1) @property def x_pxcenter(self): """The x-coordinates of pixel centers, as a numpy array ncol.""" return np.linspace( self.ulx + self.delx/2, self.lrx - self.delx/2, self.ncol) @property def y_pxcenter(self): """y-coordinates of pixel centers, nrow.""" return np.linspace( self.lry - self.dely/2, self.uly + self.dely/2, self.nrow) @property def _XY(self): """Meshgrid of nrow+1, ncol+1 corner xy coordinates""" return np.meshgrid(self.easting, self.northing) @property def _XY_pxcenter(self): """Meshgrid of nrow, ncol center xy coordinates""" return np.meshgrid(self.x_pxcenter, self.y_pxcenter) @property def _LonLat_pxcorner(self): """Meshgrid of nrow+1, ncol+1 corner Lon/Lat coordinates""" return self.coordtrans(*self._XY, inverse=True) @property def _LonLat_pxcenter(self): """Meshgrid of nrow, ncol center Lon/Lat coordinates""" return self.coordtrans(*self._XY_pxcenter, inverse=True) @property def Lon(self): """Longitude coordinate of each pixel corner, as an array""" return self._LonLat_pxcorner[0] @property def Lat(self): """Latitude coordinate of each pixel corner, as an array""" return self._LonLat_pxcorner[1] @property def Lon_pxcenter(self): """Longitude coordinate of each pixel center, as an array""" return self._LonLat_pxcenter[0] @property def Lat_pxcenter(self): """Latitude coordinate of each pixel center, as an array""" return self._LonLat_pxcenter[1] def ij2xy(self, i, j): """ Converts array index pair(s) to easting/northing coordinate pairs(s). NOTE: array coordinate origin is in the top left corner whereas easting/northing origin is in the bottom left corner. Easting and northing are floating point numbers, and refer to the top-left corner coordinate of the pixel. i runs from 0 to nrow-1, j from 0 to ncol-1. For i=nrow and j=ncol, the bottom-right corner coordinate of the bottom-right pixel will be returned. This is identical to the bottom- right corner. Arguments: i (int): scalar or array of row coordinate index j (int): scalar or array of column coordinate index Returns: x (float): scalar or array of easting coordinates y (float): scalar or array of northing coordinates """ if (_test_outside(i, 0, self.nrow) or _test_outside(j, 0, self.ncol)): raise RasterError( "Coordinates %d, %d out of bounds" % (i, j)) x = self.easting[0] + j * self.delx y = self.northing[-1] + i * self.dely return x, y def xy2ij(self, x, y, precise=False): """ Convert easting/northing coordinate pair(s) to array coordinate pairs(s). NOTE: see note at ij2xy() Arguments: x (float): scalar or array of easting coordinates y (float): scalar or array of northing coordinates precise (bool): if true, return fractional array coordinates Returns: i (int, or float): scalar or array of row coordinate index j (int, or float): scalar or array of column coordinate index """ if (_test_outside(x, self.easting[0], self.easting[-1]) or _test_outside(y, self.northing[0], self.northing[-1])): raise RasterError("Coordinates out of bounds") i = (1 - (y - self.northing[0]) / (self.northing[-1] - self.northing[0])) * self.nrow j = ((x - self.easting[0]) / (self.easting[-1] - self.easting[0])) * self.ncol if precise: return i, j else: return int(np.floor(i)), int(np.floor(j)) def simpleplot(self): """Quick and dirty plot of each band (channel, dataset) in the image. Requires Matplotlib.""" import matplotlib.pyplot as plt numbands = self.nbands if numbands == 1: plt.figure(figsize=(15, 10)) plt.imshow(self.data[:, :], cmap='bone') elif numbands > 1: for idx in range(numbands): plt.figure(figsize=(15, 10)) plt.imshow(self.data[idx, :, :], cmap='bone') return True def clone(self, newpath, newdata): """ Creates new GeoTIFF object from existing: new data, same georeference. Arguments: newpath: valid file path newdata: numpy array, 2 or 3-dim Returns: A raster.GeoTIFF object """ # convert Numpy dtype objects to GDAL type codes # see https://gist.github.com/chryss/8366492 NPDTYPE2GDALTYPECODE = { "uint8": 1, "int8": 1, "uint16": 2, "int16": 3, "uint32": 4, "int32": 5, "float32": 6, "float64": 7, "complex64": 10, "complex128": 11, } # check if newpath is potentially a valid file path to save data dirname, fname = os.path.split(newpath) if dirname: if not os.path.isdir(dirname): print("%s is not a valid directory to save file to " % dirname) if os.path.isdir(newpath): LOGGER.warning( "%s is a directory." % dirname + " Choose a name " + "that is suitable for writing a dataset to.") if (newdata.shape != self.data.shape and newdata.shape != self.data[0, ...].shape): raise RasterError( "New and cloned GeoTIFF dataset must be the same shape.") dims = newdata.ndim if dims == 2: bands = 1 elif dims > 2: bands = newdata.shape[0] else: raise RasterError( "New data array has only %s dimensions." % dims) try: LOGGER.info(newdata.dtype.name) LOGGER.info(NPDTYPE2GDALTYPECODE) LOGGER.info(NPDTYPE2GDALTYPECODE[newdata.dtype.name]) gdaltype = NPDTYPE2GDALTYPECODE[newdata.dtype.name] except KeyError as err: raise RasterError( "Data type in array %s " % newdata.dtype.name + "cannot be converted to GDAL data type: \n%s" % err.message) proj = self.projection geotrans = self._gtr gtiffdr = gdal.GetDriverByName('GTiff') gtiff = gtiffdr.Create(newpath, self.ncol, self.nrow, bands, gdaltype) gtiff.SetProjection(proj) gtiff.SetGeoTransform(geotrans) if dims == 2: gtiff.GetRasterBand(1).WriteArray(newdata) else: for idx in range(dims): gtiff.GetRasterBand(idx+1).WriteArray(newdata[idx, :, :]) gtiff = None return GeoTIFF(newpath)
''' Copyright (c) 2019, Ameer Haj Ali (UC Berkeley), and Intel Corporation All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ''' import ray import ray.tune as tune from ray.rllib.agents import ppo from envs.neurovec import NeuroVectorizerEnv from my_model import Code2VecModel from ray.rllib.models import ModelCatalog from ray.tune.registry import register_env ray.init() ModelCatalog.register_custom_model("my_model",Code2VecModel) register_env("autovec", lambda config:NeuroVectorizerEnv(config)) tune.run_experiments({ "NeuroVectorizer": { #"restore": "/Users/ameerh/Berkeley_Drive/PhD_berkeley/llvm-project/build/rlvectorizer/PPO_BanditEnv_0_2019-08-03_01-10-43lnjy3yyo/checkpoint_240/checkpoint-240", "checkpoint_freq":1, "run": "PPO", "env": NeuroVectorizerEnv, "stop": {"episodes_total": 500000}, "config": { #"observation_filter": "NoFilter", #"sample_batch_size": 10, # "eager":True, #"train_batch_size": 10, #"sgd_minibatch_size": 10, #"num_sgd_iter":3, #"lr":5e-5, #"vf_loss_coeff":0.5, "horizon": 1, "num_gpus": 0, "model":{"custom_model": "my_model"}, "num_workers": 1, "env_config":{'dirpath':'./training_data','new_rundir':'./new_garbage'} }, }, })
infile=open('alienin.txt','r') n,w=map(int,infile.readline().split()) list1=[] for i in range(n): p=int(infile.readline()) list1.append(p) i,j=0,0 index=0 currentp=0 answer=0 while i<n: while index<w and j<n: index=(list1[j]-list1[i]) if index<w: currentp+=1 j+=1 if currentp>answer: answer=max(answer,currentp) index=0 i+=1 outfile=open('alienout.txt','w') outfile.write(str(answer)) outfile.close()
import json from player_stats_url import stats_url, top_50_url class PriceData: def __init__(self, web_object): print('Getting player price change data...') self.web_object = web_object self.price_data_url = self.find_price_data_url() self.player_price_data = self.get_player_price_data() self.player_stats_data = self.get_player_stats_data() self.player_top_50_data = self.get_top_50_data() def find_price_data_url(self): self.web_object.driver.get('http://www.fplstatistics.co.uk/') browser_log = self.web_object.driver.get_log('performance') events = [json.loads(entry['message'])['message'] for entry in browser_log] events = [event for event in events if 'Network.response' in event['method']] for event in events: if 'response' in event['params']: if 'http://www.fplstatistics.co.uk/Home/AjaxPrices' in event['params']['response']['url']: return event['params']['response']['url'] def get_player_stats_data(self): return json.loads(self.web_object.session.get(stats_url).text)['aaData'] def get_top_50_data(self): return json.loads(self.web_object.session.get(top_50_url).text)['aaData'] def get_player_price_data(self): return json.loads(self.web_object.session.get(self.price_data_url).text)['aaData']
# Copyright 2014 PerfKitBenchmarker Authors. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import unittest from perfkitbenchmarker import sample from six.moves import range class SampleTestCase(unittest.TestCase): def testMetadataOptional(self): instance = sample.Sample(metric='Test', value=1.0, unit='Mbps') self.assertDictEqual({}, instance.metadata) def testProvidedMetadataSet(self): metadata = {'origin': 'unit test'} instance = sample.Sample(metric='Test', value=1.0, unit='Mbps', metadata=metadata.copy()) self.assertDictEqual(metadata, instance.metadata) class TestPercentileCalculator(unittest.TestCase): def testPercentileCalculator(self): numbers = list(range(0, 1001)) percentiles = sample.PercentileCalculator(numbers, percentiles=[0, 1, 99.9, 100]) self.assertEqual(percentiles['p0'], 0) self.assertEqual(percentiles['p1'], 10) self.assertEqual(percentiles['p99.9'], 999) self.assertEqual(percentiles['p100'], 1000) self.assertEqual(percentiles['average'], 500) # 4 percentiles we requested, plus average and stddev self.assertEqual(len(percentiles), 6) def testNoNumbers(self): with self.assertRaises(ValueError): sample.PercentileCalculator([], percentiles=[0, 1, 99]) def testOutOfRangePercentile(self): with self.assertRaises(ValueError): sample.PercentileCalculator([3], percentiles=[-1]) def testWrongTypePercentile(self): with self.assertRaises(ValueError): sample.PercentileCalculator([3], percentiles=['a']) if __name__ == '__main__': unittest.main()
class Skier: def __init__(self, length, age, style): self.length = length self.age = age self.style = style classic = 'classic' freestyle = 'freestyle' _MAX_SUPPORTED_CLASSIC_SKI_LENGTH = 207 def calculate_ski_length(skier): if skier.age <= 4: return _calculate_baby_ski_length(skier) if skier.age <= 8: return _calculate_child_ski_length(skier) if skier.style == Skier.classic: return _calculate_classic_ski_length(skier) if skier.style == Skier.freestyle: return _calculate_freestyle_ski_length(skier) raise ValueError(f"Ski style {skier.style} is unsupported") def _calculate_baby_ski_length(skier): return (skier.length, skier.length) def _calculate_child_ski_length(skier): return (skier.length + 10, skier.length + 20) def _calculate_classic_ski_length(skier): ski_length_min, ski_length_max = (skier.length + 20, skier.length + 20) if ski_length_max > _MAX_SUPPORTED_CLASSIC_SKI_LENGTH: raise ValueError(f"Calculated classic ski length is {ski_length_max}, " "max supported length is {_MAX_SUPPORTED_CLASSIC_SKI_LENGTH}") return ski_length_min, ski_length_max def _calculate_freestyle_ski_length(skier): return (skier.length + 10, skier.length + 15)
# Generated by the gRPC Python protocol compiler plugin. DO NOT EDIT! """Client and server classes corresponding to protobuf-defined services.""" import grpc from yandex.cloud.cdn.v1 import origin_pb2 as yandex_dot_cloud_dot_cdn_dot_v1_dot_origin__pb2 from yandex.cloud.cdn.v1 import origin_service_pb2 as yandex_dot_cloud_dot_cdn_dot_v1_dot_origin__service__pb2 from yandex.cloud.operation import operation_pb2 as yandex_dot_cloud_dot_operation_dot_operation__pb2 class OriginServiceStub(object): """ Origin management service. Origin is not a standalone entity. It can live only within origin group. """ def __init__(self, channel): """Constructor. Args: channel: A grpc.Channel. """ self.Get = channel.unary_unary( '/yandex.cloud.cdn.v1.OriginService/Get', request_serializer=yandex_dot_cloud_dot_cdn_dot_v1_dot_origin__service__pb2.GetOriginRequest.SerializeToString, response_deserializer=yandex_dot_cloud_dot_cdn_dot_v1_dot_origin__pb2.Origin.FromString, ) self.List = channel.unary_unary( '/yandex.cloud.cdn.v1.OriginService/List', request_serializer=yandex_dot_cloud_dot_cdn_dot_v1_dot_origin__service__pb2.ListOriginsRequest.SerializeToString, response_deserializer=yandex_dot_cloud_dot_cdn_dot_v1_dot_origin__service__pb2.ListOriginsResponse.FromString, ) self.Create = channel.unary_unary( '/yandex.cloud.cdn.v1.OriginService/Create', request_serializer=yandex_dot_cloud_dot_cdn_dot_v1_dot_origin__service__pb2.CreateOriginRequest.SerializeToString, response_deserializer=yandex_dot_cloud_dot_operation_dot_operation__pb2.Operation.FromString, ) self.Update = channel.unary_unary( '/yandex.cloud.cdn.v1.OriginService/Update', request_serializer=yandex_dot_cloud_dot_cdn_dot_v1_dot_origin__service__pb2.UpdateOriginRequest.SerializeToString, response_deserializer=yandex_dot_cloud_dot_operation_dot_operation__pb2.Operation.FromString, ) self.Delete = channel.unary_unary( '/yandex.cloud.cdn.v1.OriginService/Delete', request_serializer=yandex_dot_cloud_dot_cdn_dot_v1_dot_origin__service__pb2.DeleteOriginRequest.SerializeToString, response_deserializer=yandex_dot_cloud_dot_operation_dot_operation__pb2.Operation.FromString, ) class OriginServiceServicer(object): """ Origin management service. Origin is not a standalone entity. It can live only within origin group. """ def Get(self, request, context): """Get origin in origin group. """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def List(self, request, context): """Lists origins of origin group. """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def Create(self, request, context): """Creates origin inside origin group. """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def Update(self, request, context): """Updates origin from origin group. """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def Delete(self, request, context): """Deletes origin from origin group. """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def add_OriginServiceServicer_to_server(servicer, server): rpc_method_handlers = { 'Get': grpc.unary_unary_rpc_method_handler( servicer.Get, request_deserializer=yandex_dot_cloud_dot_cdn_dot_v1_dot_origin__service__pb2.GetOriginRequest.FromString, response_serializer=yandex_dot_cloud_dot_cdn_dot_v1_dot_origin__pb2.Origin.SerializeToString, ), 'List': grpc.unary_unary_rpc_method_handler( servicer.List, request_deserializer=yandex_dot_cloud_dot_cdn_dot_v1_dot_origin__service__pb2.ListOriginsRequest.FromString, response_serializer=yandex_dot_cloud_dot_cdn_dot_v1_dot_origin__service__pb2.ListOriginsResponse.SerializeToString, ), 'Create': grpc.unary_unary_rpc_method_handler( servicer.Create, request_deserializer=yandex_dot_cloud_dot_cdn_dot_v1_dot_origin__service__pb2.CreateOriginRequest.FromString, response_serializer=yandex_dot_cloud_dot_operation_dot_operation__pb2.Operation.SerializeToString, ), 'Update': grpc.unary_unary_rpc_method_handler( servicer.Update, request_deserializer=yandex_dot_cloud_dot_cdn_dot_v1_dot_origin__service__pb2.UpdateOriginRequest.FromString, response_serializer=yandex_dot_cloud_dot_operation_dot_operation__pb2.Operation.SerializeToString, ), 'Delete': grpc.unary_unary_rpc_method_handler( servicer.Delete, request_deserializer=yandex_dot_cloud_dot_cdn_dot_v1_dot_origin__service__pb2.DeleteOriginRequest.FromString, response_serializer=yandex_dot_cloud_dot_operation_dot_operation__pb2.Operation.SerializeToString, ), } generic_handler = grpc.method_handlers_generic_handler( 'yandex.cloud.cdn.v1.OriginService', rpc_method_handlers) server.add_generic_rpc_handlers((generic_handler,)) # This class is part of an EXPERIMENTAL API. class OriginService(object): """ Origin management service. Origin is not a standalone entity. It can live only within origin group. """ @staticmethod def Get(request, target, options=(), channel_credentials=None, call_credentials=None, insecure=False, compression=None, wait_for_ready=None, timeout=None, metadata=None): return grpc.experimental.unary_unary(request, target, '/yandex.cloud.cdn.v1.OriginService/Get', yandex_dot_cloud_dot_cdn_dot_v1_dot_origin__service__pb2.GetOriginRequest.SerializeToString, yandex_dot_cloud_dot_cdn_dot_v1_dot_origin__pb2.Origin.FromString, options, channel_credentials, insecure, call_credentials, compression, wait_for_ready, timeout, metadata) @staticmethod def List(request, target, options=(), channel_credentials=None, call_credentials=None, insecure=False, compression=None, wait_for_ready=None, timeout=None, metadata=None): return grpc.experimental.unary_unary(request, target, '/yandex.cloud.cdn.v1.OriginService/List', yandex_dot_cloud_dot_cdn_dot_v1_dot_origin__service__pb2.ListOriginsRequest.SerializeToString, yandex_dot_cloud_dot_cdn_dot_v1_dot_origin__service__pb2.ListOriginsResponse.FromString, options, channel_credentials, insecure, call_credentials, compression, wait_for_ready, timeout, metadata) @staticmethod def Create(request, target, options=(), channel_credentials=None, call_credentials=None, insecure=False, compression=None, wait_for_ready=None, timeout=None, metadata=None): return grpc.experimental.unary_unary(request, target, '/yandex.cloud.cdn.v1.OriginService/Create', yandex_dot_cloud_dot_cdn_dot_v1_dot_origin__service__pb2.CreateOriginRequest.SerializeToString, yandex_dot_cloud_dot_operation_dot_operation__pb2.Operation.FromString, options, channel_credentials, insecure, call_credentials, compression, wait_for_ready, timeout, metadata) @staticmethod def Update(request, target, options=(), channel_credentials=None, call_credentials=None, insecure=False, compression=None, wait_for_ready=None, timeout=None, metadata=None): return grpc.experimental.unary_unary(request, target, '/yandex.cloud.cdn.v1.OriginService/Update', yandex_dot_cloud_dot_cdn_dot_v1_dot_origin__service__pb2.UpdateOriginRequest.SerializeToString, yandex_dot_cloud_dot_operation_dot_operation__pb2.Operation.FromString, options, channel_credentials, insecure, call_credentials, compression, wait_for_ready, timeout, metadata) @staticmethod def Delete(request, target, options=(), channel_credentials=None, call_credentials=None, insecure=False, compression=None, wait_for_ready=None, timeout=None, metadata=None): return grpc.experimental.unary_unary(request, target, '/yandex.cloud.cdn.v1.OriginService/Delete', yandex_dot_cloud_dot_cdn_dot_v1_dot_origin__service__pb2.DeleteOriginRequest.SerializeToString, yandex_dot_cloud_dot_operation_dot_operation__pb2.Operation.FromString, options, channel_credentials, insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
# 2021 June 4 14:44 # The solution is based on a rather magical algorithm called: # Reservoir Sampling # Naturally, we'd think of traversing over the entire linked-list, and get to # know the enire length. Random sample and then traverse again to get the # element. Or else store the elements in a list. But these makes it either not a # "one-pass" solution, or requires additional space. # # Without traversing the entire list FIRST (which eventually the algo will), we # won't know the number N beforehand. The data comes like a stream, you process # it as you see it. # # Reservoir Sampling: # Suppose we have a stream a, b, c, d, e, f. # As we see a, we have a 1/1 probability of recording it as an POTENTIAL # answer. # As we then see b, we have a 1/2 probability of recording b. This makes the # record remains A to have also 1/2 probability. PROBABILITY IS EQUAL FOR ALL # ELEMENTS WE HAVE SEEN SO FAR. # Then we see c, 1/3 probability that we record it. This makes the prob of # A staying on the record to be 2/3*1/2= 1/3. Similarly for B it's also 1/3. # Probabilities are still equal! # # For the mth element, we want a 1/m probability to set it as a record. Then # the prob for any of the previous elements would be (m-1)/m*1/(m-1) = 1/m. # It goes like this till the end of the linked list. from random import randint class Solution: def __init__(self, head: ListNode): """ @param head The linked list's head. Note that the head is guaranteed to be not null, so it contains at least one node. """ self.head = head def getRandom(self) -> int: """ Returns a random node's value. """ cur = self.head m = 0 ans = 0 while cur: rnd = randint(0, m) if rnd == 0: ans = cur.val cur = cur.next m += 1 return ans # Your Solution object will be instantiated and called as such: # obj = Solution(head) # param_1 = obj.getRandom()
from .inlined_async import Async def add(x, y): return x+y def test(): r = yield Async(add, (2, 3)) print(r) r = yield Async(add, ('youm3sh')) print(r) for n in range(10): r = yield Async(add, (n, n)) print(r) # My work done now deploy it Manish print('Goodbye')
""" ============= Маршрутизация ============= Модуль routing отвечает за маршрутизацию запросов от пользователя в приложении. Маршруты разбиты на файлы по функциям: fakeDataRoutes - генерация фейковых данных plansRoutes - работа с планами profileRoutes - работа с профилями registrationRoutes - авторизация и регистрация пользователей reportRoutes - работа с PDF-отчётам tokenRoutes - выдача токенов userListRoutes - работа со списком пользователей """ from flask import render_template from flask_login import login_required from app import app # noinspection PyUnresolvedReferences from app.routing import fakeDataRoutes, plansRoutes, profileRoutes, registrationRoutes, reportRoutes, userListRoutes,\ tokenRoutes from app.api.users import get_current_profile from app.routing.userTypeDecorators import admin_required # Главная страница @app.route('/') @app.route('/index') @app.route('/tpindex') @login_required def index(): return render_template('index.html', title='Главная', user=get_current_profile()) # Логи @app.route('/logs') @login_required @admin_required def logs(): return render_template('logs.html', title='Логи', user=get_current_profile())
#!/usr/bin/env python3 # This program plots a three dimensional graph representing a runner's # performance vs time and length of run. Input is an activity file downloaded # from connect.garmin.com. # FIXME: Runs.load() excludes runs whose distance and pace fall outside # a given range. See "Exclude outliers" comment below. These limits should # probably be command-line arugments that override defaults. from mpl_toolkits import mplot3d import numpy as np import matplotlib.pyplot as plt from matplotlib import cm #from matplotlib.ticker import LinearLocator, FormatStrFormatter import argparse import datetime from datetime import date #============================================================================ # Globals version = 4 #Input file field index values. TYPE = 0 TIME_STAMP = 1 DISTANCE = 4 TIME = 6 #============================================================================ # Classes # A class to hold a run event. class Event: def __init__(self, _timeStamp, _distance, _pace): self.timeStamp = _timeStamp # date. self.day = 0 # Day count from first run. self.distance = _distance # In miles. self.pace = _pace # In minutes per mile. # A class to hold all the runs. class Runs: def __init__(self): self.inputEvents = np.array([], dtype = Event) self.day = [] self.distance = [] self.pace = [] def length(self): return len(self.inputEvents) # For each run in the file at path, load date, distance and pace. Pace is # computed from distance and time. def load(self, path): values = [] self.__init__() with open(path) as inputFile: # Skip the header line. inputFile.readline() for line in inputFile: text = self.removeQuotesAndCommas(line) values = text.split(',') # Load only running events. if values[TYPE] == 'Running': # From values, get date, distance in miles. runDate = date.fromisoformat(values[TIME_STAMP].split()[0]) runDistance = float(values[DISTANCE]) # To get run pace, first convert time (hh:mm:ss) to minutes, then # compute pace (minutes/mile). h, m, s = values[TIME].split(':') t = 60.0 * float(h) + float(m) + (float(s) / 60.0) runPace = t / runDistance # Exclude outliers. if runDistance >= 2.0 and runDistance <= 27.0 \ and runPace > 4.0 and runPace < 20.0: self.inputEvents = np.append(self.inputEvents, \ Event(runDate, runDistance, runPace)) # Computer the day numbers. firstDay = self.inputEvents[len(self.inputEvents) - 1].timeStamp for event in self.inputEvents: event.day = (event.timeStamp - firstDay).days def fitPlane(self): # Create the arrays needed for the fit. self.day = [] self.distance = [] self.pace = [] for event in self.inputEvents: self.day.append(event.day); self.distance.append(event.distance); self.pace.append(event.pace); tmp_A = [] tmp_b = [] for i in range(len(self.day)): tmp_A.append([self.day[i], self.distance[i], 1]) tmp_b.append(self.pace[i]) b = np.matrix(tmp_b).T A = np.matrix(tmp_A) self.fit = (A.T * A).I * A.T *b errors = b - A * self.fit residual = np.linalg.norm(errors) print("solution:") print(" %f x + %f y + %f = z" %(self.fit[0], self.fit[1], self.fit[2])) # print("errors:") # print(" ", errors) print("residual:") print(" ", residual) def plot(self): fig = plt.figure() ax = plt.subplot(111, projection = '3d') ax.scatter(self.day, self.distance, self.pace, color = 'b') xlim = ax.get_xlim() ylim = ax.get_ylim() X, Y = np.meshgrid(np.arange(xlim[0], xlim[1]), \ np.arange(ylim[0], ylim[1])) Z = np.zeros(X.shape) for r in range(X.shape[0]): for c in range(X.shape[1]): Z[r,c] = self.fit[0] * X[r,c] + self.fit[1] * Y[r,c] + self.fit[2] ax.plot_wireframe(X, Y, Z, color = 'y') ax.set_xlabel('Days since ' + \ self.inputEvents[len(self.inputEvents)-1].timeStamp.strftime("%m-%d-%Y")) ax.set_ylabel('Distance - miles') ax.set_zlabel('Pace - min/mile') plt.show() # Remove commas embedded in quoted strings. Remove quotes from strings. # Return the modified string. def removeQuotesAndCommas(self, inputText): inQuotes = False outputText = '' for c in inputText: if inQuotes: if c == '"': inQuotes = False elif c != ',': outputText += c else: if c == '"': inQuotes = True else: outputText += c return outputText #============================================================================ # Functions def displayVersion(): print("runsPlot version " + str(version)) quit() #============================================================================ # Main program parser = argparse.ArgumentParser(description = \ "Plot pace vs time and length of run") parser.add_argument('inputFile', type = str, help = 'Input file path') parser.add_argument('-v', '--version', action = 'store_true', \ help = 'Display version and quit') args = parser.parse_args() if args.version: displayVersion() runs = Runs() runs.load(args.inputFile) print("Total number of runs = ", runs.length()) runs.fitPlane() runs.plot()
from django.shortcuts import render import pyrebase # Create your views here. firebaseConfig = { "apiKey": "AIzaSyDEwWVDdZlXARcUrLvgEfn-goXpgpKf1nU", "authDomain": "e-voting-f8fd3.firebaseapp.com", "databaseURL": "https://e-voting-f8fd3-default-rtdb.asia-southeast1.firebasedatabase.app", "projectId": "e-voting-f8fd3", "storageBucket": "e-voting-f8fd3.appspot.com", "messagingSenderId": "799413315988", "appId": "1:799413315988:web:c164bfd3355d96cd9c4781", "measurementId": "G-P2ECTV2C5Q" } firebase = pyrebase.initialize_app(firebaseConfig) auth = firebase.auth() def SignIn(request): return render(request,"signin.html") def SignUp(request): return render(request, "signup.html") def Authenticate(request): return render(request, "auth.html")