content
stringlengths
5
1.05M
''' 0. 问大家一个问题:Python 支持常量吗?相信很多鱼油的答案都是否定的, 但实际上 Python 内建的命名空间是支持一小部分常量的,比如我们熟悉的 True,False,None 等,只是 Python 没有提供定义常量的直接方式而已。 那么这一题的要求是创建一个 const 模块,功能是让 Python 支持常量。 说到这里大家可能还是一头雾水,没关系,我们举个栗子。 test.py 是我们的测试代码,内容如下: # const 模块就是这道题要求我们自己写的 # const 模块用于让 Python 支持常量操作 import const const.NAME = "FishC" print(const.NAME) try: # 尝试修改常量 const.NAME = "FishC.com" except TypeError as Err: print(Err) try: # 变量名需要大写 const.name = "FishC" except TypeError as Err: print(Err) 执行后的结果是: >>> FishC 常量无法改变! 常量名必须由大写字母组成! 在 const 模块中我们到底做了什么,使得这个模块这么有“魔力”呢? 大家跟着小甲鱼的提示,一步步来做你就懂了: 提示一:我们需要一个 Const 类 提示二:重写 Const 类的某一个魔法方法,指定当实例对象的属性被修改时的行为 提示三:检查该属性是否已存在 提示四:检查该属性的名字是否为大写 提示五:细心的鱼油可能发现了,怎么我们这个 const 模块导入之后就把它当对象来使用 (const.NAME = "FishC")了呢?难道模块也可以是一个对象? 没错啦,在 Python 中无处不对象,到处都是你的对象。 使用以下方法可以将你的模块与类 A 的对象挂钩。 sys.modules 是一个字典,它包含了从 Python 开始运行起,被导入的所有模块。键就是模块名,值就是模块对象。 import sys sys.modules[__name__] = A() ''' class Const: def __setattr__(self , name , value): if hasattr(self , name) : print('常量无法改变!') elif not str(name).isupper(): print('常量名必须由大写字母组成!') else: super().__setattr__(name , value) import sys sys.modules[__name__] = Const()
from Utils.menu import Resto items = { 1: 3.50, 2: 2.50, 3: 4.00, 4: 3.5, 5: 1.75, 6: 1.50, 7: 2.25, 8: 3.75, 9: 1.25 } def total(order): item = [int(n) for n in order] totals = 0 for unit in item: totals += items.get(unit) return totals cont = int(input("enter 0 for exit 1 for continue")) while cont != 0: if cont == 1: print(Resto.MENU) order = input("enter your order: ") if len(order) <= 0: print("") print(f"your total bill is ${total(order)}") cont = int(input(f"enter 0 for exit 1 for continue")) print("Thanks!!!")
__licence__ = 'MIT' __author__ = 'kuyaki' __credits__ = ['kuyaki'] __maintainer__ = 'kuyaki' __date__ = '2021/03/23' from collections import defaultdict from typing import Dict, Optional, Set, List, Iterable import networkx from program_slicing.graph.parse import parse, Lang from program_slicing.graph.cdg import ControlDependenceGraph from program_slicing.graph.cfg import ControlFlowGraph from program_slicing.graph.ddg import DataDependenceGraph from program_slicing.graph.pdg import ProgramDependenceGraph from program_slicing.graph.point import Point from program_slicing.graph.statement import Statement, StatementType from program_slicing.graph.basic_block import BasicBlock from program_slicing.graph import convert class ProgramGraphsManager: def __init__(self, source_code: str = None, lang: Lang = None) -> None: self.__cdg: Optional[ControlDependenceGraph] = None self.__cfg: Optional[ControlFlowGraph] = None self.__ddg: Optional[DataDependenceGraph] = None self.__pdg: Optional[ProgramDependenceGraph] = None self.__basic_blocks: Optional[Dict[Statement, BasicBlock]] = None self.__dom_blocks: Optional[Dict[BasicBlock, Set[BasicBlock]]] = None self.__reach_blocks: Optional[Dict[BasicBlock, Set[BasicBlock]]] = None self.__scope_dependency: Optional[Dict[Statement, Statement]] = None self.__scope_dependency_backward: Optional[Dict[Statement, Set[Statement]]] = None self.__function_dependency: Optional[Dict[Statement, Statement]] = None self.__statement_line_numbers: Optional[Dict[Statement, Set[int]]] = None self.__general_statements: Optional[Set[Statement]] = None self.__sorted_statements: Optional[List[Statement]] = None if source_code is not None and lang is not None: self.__build_cdg = lambda: parse.control_dependence_graph(source_code, lang) self.__build_cfg = lambda: convert.cdg.to_cfg(self.control_dependence_graph) self.__build_ddg = lambda: convert.cdg.to_ddg(self.control_dependence_graph) self.__build_pdg = lambda: convert.cdg.to_pdg(self.control_dependence_graph) else: self.__build_cdg = lambda: ControlDependenceGraph() self.__build_cfg = lambda: ControlFlowGraph() self.__build_ddg = lambda: DataDependenceGraph() self.__build_pdg = lambda: ProgramDependenceGraph() @classmethod def from_source_code(cls, source_code: str, lang: Lang) -> 'ProgramGraphsManager': """ Build all the graphs by a given source code string and a language description. :param source_code: string with the source code. :param lang: the source code Lang. :return: Program Graphs Manager. """ return cls(source_code, lang) @classmethod def from_control_dependence_graph(cls, graph: ControlDependenceGraph) -> 'ProgramGraphsManager': """ Build all the graphs by a given Control Dependence Graph. :param graph: Control Dependence Graph. :return: Program Graphs Manager. """ result = cls() result.__build_cdg = lambda: graph result.__build_cfg = lambda: convert.cdg.to_cfg(result.control_dependence_graph) result.__build_ddg = lambda: convert.cdg.to_ddg(result.control_dependence_graph) result.__build_pdg = lambda: convert.cdg.to_pdg(result.control_dependence_graph) return result @classmethod def from_control_flow_graph(cls, graph: ControlFlowGraph) -> 'ProgramGraphsManager': """ Build all the graphs by a given Control Flow Graph. :param graph: Control Flow Graph. :return: Program Graphs Manager. """ result = cls() result.__build_cdg = lambda: convert.cfg.to_cdg(result.control_flow_graph) result.__build_cfg = lambda: graph result.__build_ddg = lambda: convert.cfg.to_ddg(result.control_flow_graph) result.__build_pdg = lambda: convert.cfg.to_pdg(result.control_flow_graph) return result @classmethod def from_data_dependence_graph(cls, graph: DataDependenceGraph) -> 'ProgramGraphsManager': """ Build all the graphs by a given Data Dependence Graph. :param graph: Data Dependence Graph. :return: Program Graphs Manager. """ result = cls() result.__build_cdg = lambda: convert.ddg.to_cdg(result.data_dependence_graph) result.__build_cfg = lambda: convert.ddg.to_cfg(result.data_dependence_graph) result.__build_ddg = lambda: graph result.__build_pdg = lambda: convert.ddg.to_pdg(result.data_dependence_graph) return result @classmethod def from_program_dependence_graph(cls, graph: ProgramDependenceGraph) -> 'ProgramGraphsManager': """ Build all the graphs by a given Program Dependence Graph. :param graph: Program Dependence Graph. :return: Program Graphs Manager. """ result = cls() result.__build_cdg = lambda: convert.pdg.to_cdg(result.program_dependence_graph) result.__build_cfg = lambda: convert.pdg.to_cfg(result.program_dependence_graph) result.__build_ddg = lambda: convert.pdg.to_ddg(result.program_dependence_graph) result.__build_pdg = lambda: graph return result @property def control_dependence_graph(self) -> ControlDependenceGraph: """ Structure that represents Control Dependence Graph (inherited from networkx.DiGraph) with corresponding methods. :return: Control Dependence Graph. """ if self.__cdg is None: self.__cdg = self.__build_cdg() return self.__cdg @property def control_flow_graph(self) -> ControlFlowGraph: """ Structure that represents Control Flow Graph (inherited from networkx.DiGraph) with corresponding methods. :return: Control Flow Graph. """ if self.__cfg is None: self.__cfg = self.__build_cfg() return self.__cfg @property def data_dependence_graph(self) -> DataDependenceGraph: """ Structure that represents Data Dependence Graph (inherited from networkx.DiGraph) with corresponding methods. :return: Data Dependence Graph. """ if self.__ddg is None: self.__ddg = self.__build_ddg() return self.__ddg @property def program_dependence_graph(self) -> ProgramDependenceGraph: """ Structure that represents Program Dependence Graph (inherited from networkx.DiGraph) with corresponding methods. :return: Program Dependence Graph. """ if self.__pdg is None: self.__pdg = self.__build_pdg() return self.__pdg @property def sorted_statements(self) -> List[Statement]: """ Statements are sorted first increasing of their start_point, then by decreasing of their end_point. :return: sorted list of all Statements. """ if self.__sorted_statements is None: self.__sorted_statements = self.__build_sorted_statements() return self.__sorted_statements @property def general_statements(self) -> Set[Statement]: """ Statement is 'general' if it is not contained in any non SCOPE, BRANCH, LOOP, FUNCTION or EXIT Statement. :return: set of general Statements. """ if self.__general_statements is None: self.__general_statements = self.__build_general_statements() return self.__general_statements @property def scope_statements(self) -> Iterable[Statement]: """ Statement is a 'scope' Statement if it is SCOPE, BRANCH, LOOP or FUNCTION. :return: set of scope Statements. """ if self.__scope_dependency_backward is None: self.__scope_dependency_backward = self.__build_statements_in_scope() return self.__scope_dependency_backward.keys() def get_basic_block(self, statement: Statement) -> Optional[BasicBlock]: """ Basic Block - structure that represents Control Flow Graph nodes. :return: Basic Block that contains the given Statement. """ if self.__basic_blocks is None: self.__basic_blocks = self.__build_basic_blocks() return self.__basic_blocks.get(statement, None) def get_boundary_blocks(self, block: BasicBlock) -> Set[BasicBlock]: """ Get a set of Basic Blocks which intersection of dominated and reach blocks contain the given one block. :param block: Basic Block for which the boundary blocks should to be obtained. :return: set of boundary Basic Blocks. """ boundary_blocks = set() for basic_block in self.control_flow_graph: if block in self.get_dominated_blocks(basic_block).intersection(self.get_reach_blocks(basic_block)): boundary_blocks.add(basic_block) return boundary_blocks def get_boundary_blocks_for_statement(self, statement: Statement) -> Set[BasicBlock]: """ Get a set of boundary blocks for BasicBlock in which the given Statement is placed. :param statement: Statement for which the boundary blocks should to be obtained. :return: set of boundary Basic Blocks. """ block = self.get_basic_block(statement) return self.get_boundary_blocks(block) def get_dominated_blocks(self, block: BasicBlock) -> Set[BasicBlock]: """ Get a set of Basic Blocks which are reachable in Control Dependence Graph from the parent of the given block. :param block: Basic Block for which the dominated blocks should to be obtained. :return: set of dominated Basic Blocks. """ if self.__dom_blocks is None: self.__dom_blocks = {} if block in self.__dom_blocks: return self.__dom_blocks[block] result = {block} root = block.root if root is None: return result predecessors = [predecessor for predecessor in self.control_dependence_graph.predecessors(root)] if len(predecessors) == 0: predecessors = [root] for root in predecessors: for statement in networkx.algorithms.bfs_tree(self.control_dependence_graph, root): if statement == root: continue current_block = self.get_basic_block(statement) if current_block is not None: result.add(current_block) self.__dom_blocks[block] = result return result def get_reach_blocks(self, block: BasicBlock) -> Set[BasicBlock]: """ Get a set of Basic Blocks which are reachable in Control Flow Graph from the the given block (including itself). :param block: Basic Block for which the reach blocks should to be obtained. :return: set of reach Basic Blocks. """ if self.__reach_blocks is None: self.__reach_blocks = {} return self.__build_reach_blocks(block) def get_statement_line_numbers(self, statement: Statement) -> Set[int]: """ Get a set of line numbers in which the given Statement is placed. :param statement: Statement for which the line numbers should to be obtained. :return: set of line numbers (integers). """ if self.__statement_line_numbers is None: self.__statement_line_numbers = {} if statement in self.__statement_line_numbers: return self.__statement_line_numbers[statement] inner_statements = self.get_statements_in_scope(statement) if inner_statements: result = set() if statement.statement_type in {StatementType.SCOPE, StatementType.BRANCH, StatementType.LOOP}: result.add(statement.start_point.line_number) if statement.statement_type == StatementType.SCOPE: result.add(statement.end_point.line_number) for inner_statement in inner_statements: result.update(self.get_statement_line_numbers(inner_statement)) self.__statement_line_numbers[statement] = result else: result = { number for number in range(statement.start_point.line_number, statement.end_point.line_number + 1) } self.__statement_line_numbers[statement] = result return result def get_function_statement(self, statement: Statement) -> Optional[Statement]: """ Get the minimal FUNCTION Statement in which the given Statement is placed. :param statement: Statement for which the FUNCTION statement should to be obtained. :return: FUNCTION Statement or None if not found. """ if self.__function_dependency is None: self.__function_dependency = self.__build_function_dependency() return self.__function_dependency.get(statement, None) def get_function_statement_by_range(self, start_point: Point, end_point: Point) -> Optional[Statement]: """ Get the minimal FUNCTION Statement in which the given range is placed. :param start_point: start Point of the given range. :param end_point: end Point of the given range. :return: FUNCTION Statement or None if not found. """ statements = self.sorted_statements start_statement_idx = self.__bisect_range_left(start_point, end_point) if start_statement_idx >= len(statements): return None return self.get_function_statement(statements[start_statement_idx]) def get_scope_statement(self, statement: Statement) -> Optional[Statement]: """ Get the minimal SCOPE, BRANCH, LOOP or FUNCTION Statement in which the given Statement is placed. :param statement: Statement for which the scope statement should to be obtained. :return: SCOPE, BRANCH, LOOP or FUNCTION Statement (or None if not found). """ if self.__scope_dependency is None: self.__scope_dependency = self.control_dependence_graph.scope_dependency return self.__scope_dependency.get(statement, None) def get_statements_in_scope(self, scope: Statement) -> Set[Statement]: """ Get all the Statements in the given scope Statement. :param scope: Statement for which contained Statements should to be obtained. :return: set of Statements contained in the given Statement, set will be empty if the given Statement is not SCOPE, BRANCH, LOOP or FUNCTION. """ if self.__scope_dependency_backward is None: self.__scope_dependency_backward = self.__build_statements_in_scope() return self.__scope_dependency_backward.get(scope, set()) def get_statements_in_range(self, start_point: Point = None, end_point: Point = None) -> Set[Statement]: """ Get all the Statements in the given range. :param start_point: start Point of the given range. :param end_point: end Point of the given range. :return: set of Statements contained in the given range. """ statements = self.sorted_statements start_statement_idx = 0 if start_point is None else self.__bisect_range_left(start_point, end_point) end_statement_idx = len(statements) if end_point is None else self.__bisect_range_right(end_point, end_point) return set( statements[idx] for idx in range(start_statement_idx, end_statement_idx) if (start_point is None or start_point <= statements[idx].start_point) and (end_point is None or end_point >= statements[idx].end_point) ) def get_exit_statements(self, statements: Set[Statement]) -> Set[Statement]: """ Get Statements that are Flow Dependence children of the given statements but not one of them. :param statements: set of Statements for which exit Statements should to be obtained. :return: set of exit Statements (may have not only EXIT type). """ start_point = min(statement.start_point for statement in statements) end_point = max(statement.end_point for statement in statements) exit_statements = set() flow_statements = set() for statement in statements: if statement not in self.control_dependence_graph.control_flow: continue flow_statements.update(self.control_dependence_graph.control_flow[statement]) visited = set() while flow_statements: level = set() for flow_statement in flow_statements: if flow_statement in statements: continue if flow_statement.start_point < start_point or flow_statement.end_point > end_point: exit_statements.add(flow_statement) elif flow_statement.statement_type == StatementType.EXIT: exit_statements.add(flow_statement) elif flow_statement not in visited and flow_statement in self.control_dependence_graph.control_flow: level.update(self.control_dependence_graph.control_flow[flow_statement]) visited.add(flow_statement) flow_statements = level return exit_statements def get_affecting_statements(self, statements: Set[Statement]) -> Set[Statement]: """ Get Statements from the given set that affect by Data Dependence some Statement not form the given set. :param statements: set of Statements for which affecting Statements should to be obtained. :return: set of affecting Statements (may have VARIABLE or ASSIGNMENT type). """ assignment_statements = [ statement for statement in statements if statement.statement_type == StatementType.ASSIGNMENT or statement.statement_type == StatementType.VARIABLE ] arg_statements_by_arg_name = self.__get_arg_statements_by_arg_name(statements) affecting_statements = set() for assignment_statement in assignment_statements: if assignment_statement not in self.data_dependence_graph: continue for affected_statement in self.data_dependence_graph.successors(assignment_statement): if affected_statement not in statements or \ affected_statement.end_point <= assignment_statement.end_point and \ affected_statement in arg_statements_by_arg_name.get(assignment_statement.name, set()): affecting_statements.add(assignment_statement) break return affecting_statements def get_changed_variables_statements(self, statements: Iterable[Statement]) -> Set[Statement]: """ Get VARIABLE Statements that represent variables changed in the given set of Statements. :param statements: set of Statements for which changed variables should to be obtained. :return: set of changed variables (Statements with VARIABLE type). """ changed_variables = set() ddg = self.data_dependence_graph for statement in statements: if statement not in ddg: continue if statement.statement_type == StatementType.VARIABLE: changed_variables.add(statement) if statement.statement_type == StatementType.ASSIGNMENT: if statement not in self.data_dependence_graph: continue for ancestor in networkx.ancestors(ddg, statement): if ancestor.statement_type == StatementType.VARIABLE and ancestor.name == statement.name: changed_variables.add(ancestor) return changed_variables def get_involved_variables_statements(self, statements: Iterable[Statement]) -> Set[Statement]: """ Get VARIABLE Statements that represent variables involved (including usage) in the given set of Statements. :param statements: set of Statements for which involved variables should to be obtained. :return: set of involved variables (Statements with VARIABLE type). """ involved_variables = set() ddg = self.data_dependence_graph for statement in statements: if statement not in ddg: continue if statement.statement_type == StatementType.VARIABLE: involved_variables.add(statement) continue for ancestor in networkx.ancestors(ddg, statement): if ancestor.statement_type == StatementType.VARIABLE and ancestor.name in statement.affected_by: involved_variables.add(ancestor) return involved_variables def __build_basic_blocks(self) -> Dict[Statement, BasicBlock]: basic_blocks = {} for block in networkx.traversal.dfs_tree(self.control_flow_graph): for statement in block: basic_blocks[statement] = block return basic_blocks def __build_function_dependency(self) -> Dict[Statement, Statement]: function_dependency = {} for function_statement in sorted( (s for s in self.control_dependence_graph if s.statement_type == StatementType.FUNCTION), key=lambda x: (x.start_point, -x.end_point)): for statement in networkx.traversal.dfs_tree(self.control_dependence_graph, function_statement): function_dependency[statement] = function_statement return function_dependency def __build_sorted_statements(self) -> List[Statement]: return sorted(self.control_dependence_graph, key=lambda s: (s.start_point, -s.end_point)) def __build_general_statements(self) -> Set[Statement]: result = set() for scope in self.scope_statements: last_statement = None for statement in sorted(self.get_statements_in_scope(scope), key=lambda s: (s.start_point, -s.end_point)): if statement.start_point == statement.end_point: continue if not last_statement or statement.end_point > last_statement.end_point: last_statement = statement result.add(statement) return result def __build_reach_blocks(self, block: BasicBlock, visited_blocks: Set[BasicBlock] = None) -> Set[BasicBlock]: if block in self.__reach_blocks: return self.__reach_blocks[block] if visited_blocks is None: visited_blocks = set() visited_blocks.add(block) result = {block} for child in self.control_flow_graph.successors(block): if child not in visited_blocks: result.update(self.__build_reach_blocks(child, visited_blocks)) self.__reach_blocks[block] = result visited_blocks.remove(block) return result def __build_statements_in_scope(self) -> Dict[Statement, Set[Statement]]: statements_in_scope = defaultdict(set) for statement in self.control_dependence_graph: scope = self.get_scope_statement(statement) if scope is None: continue statements_in_scope[scope].add(statement) return statements_in_scope def __get_arg_statements_by_arg_name(self, statements: Set[Statement]) -> Dict[str, Set[Statement]]: arg_statements_by_arg_name = defaultdict(set) for statement in statements: if statement in self.data_dependence_graph and \ statement.statement_type != StatementType.ASSIGNMENT and \ statement.statement_type != StatementType.VARIABLE: for predecessor in self.data_dependence_graph.predecessors(statement): if predecessor not in statements: arg_statements_by_arg_name[predecessor.name].add(statement) return arg_statements_by_arg_name def __bisect_range_left(self, start_point: Point, end_point: Point) -> int: searching_range = (start_point, -end_point) a = self.sorted_statements lo = 0 hi = len(a) while lo < hi: mid = (lo + hi) // 2 if (a[mid].start_point, -a[mid].end_point) < searching_range: lo = mid + 1 else: hi = mid return lo def __bisect_range_right(self, start_point: Point, end_point: Point) -> int: searching_range = (start_point, -end_point) a = self.sorted_statements lo = 0 hi = len(a) while lo < hi: mid = (lo + hi) // 2 if searching_range < (a[mid].start_point, -a[mid].end_point): hi = mid else: lo = mid + 1 return lo
''' Have you got what it takes to be the fuzzbizzard..." A number will be displayed you have to guess if in a FizzBuzz the number will be displayed normally or will it show Fizz, Buzz or FizzBuzz! Enter 0 for normal number Enter 1 for Fizz Enter 2 for Buzz Enter 3 for FizzBuzz You will have 7 seconds per number Guess all 10 to become the FUZZBIZZARD ''' import random import threading import _thread as thread from os import system,name def clear(): if name == 'nt': _ = system('cls') else: _ = system('clear') def display_instructions(): clear() print("Have you got what it takes to be the fuzzbizzard...\n") print("A number will be displayed you have to guess if in a FizzBuzz the number will be displayed normally or will it show Fizz, Buzz or FizzBuzz! \n") print("Enter 0 for normall number") print("Enter 1 for Fizz") print("Enter 2 for Buzz") print("Enter 3 for FizzBuzz\n") print("You will have 7 seconds per number") print("Guess all 10 to become the FUZZBIZZARD") print("Press ENTER to play") _ = input() def input_with_timeout(timeout=7): timer = threading.Timer(timeout, thread.interrupt_main) astring = None try: timer.start() astring = input() except KeyboardInterrupt: pass timer.cancel() return astring def game(x): if x % 15 == 0: return 3 elif x % 3 == 0: return 1 elif x % 5 == 0: return 2 else: return 0 fizzbuzz = {0:"Normal", 1:"FiZz!", 2:"BuZz!", 3:"FiZzBuZz!!!"} points = 0 def check(): clear() global points x = random.randint(1,100) print("The Number is... ",x) print("Enter your answer in 7 seconds") answer = input_with_timeout() if answer != None: if game(x) == int(answer): print("Correct") print(fizzbuzz[game(x)]) points = points + 1 print("Press Enter") else: print("Wrong") print(fizzbuzz[game(x)]) print("Press Enter") else: print("Too Slow") print(fizzbuzz[game(x)]) print("Press Enter") display_instructions() for i in range(10): answer = None check() _ = input() clear() print("Your Score:",points) if points == 10: print("Wow!!! you are a fuzzbizzard!!!") else: print("Maybe Next Time")
"""Module for GitHub webhook functionality.""" from typing import Optional import sys import tempfile from string import Template from urllib.parse import urlsplit from threading import Timer import github.PullRequest as ghp # type: ignore from github import Github import pygit2 from pyramid.interfaces import IResponse # type: ignore from hublabbot.util import JsonDict from hublabbot.settings import HubLabBotSettings class RemotePushCallback(pygit2.RemoteCallbacks): """Callback for remote push.""" def __init__(self, gh_repo_path: str, gl_repo_path: str, pr_num: int): self.gh_repo_path = gh_repo_path """Path like {namespace}/{repo name} in GitHub.""" self.gl_repo_path = gl_repo_path """Path like {namespace}/{repo name} in GitLab.""" self.pr_num = pr_num """Number of PR.""" def push_update_reference(self, refname: bytes, message: Optional[bytes]) -> None: """Overrided callback for remote push. Args: refname: The name of the reference (on the remote). message: Rejection message from the remote. If None, the update was accepted. """ if message is None: print(f'GH:{self.gh_repo_path}: PR#{self.pr_num} ({refname.decode("utf-8")})' + f' synced to GL:{self.gl_repo_path}.') else: print(f'GH:{self.gh_repo_path}: Fail sync PR#{self.pr_num} ({refname.decode("utf-8")})' + f' to GL:{self.gl_repo_path} - "{message.decode("utf-8")}"!', file=sys.stderr) class GithubWebhook: """Main class with GitHub functionality.""" def __init__(self, settings: HubLabBotSettings, repo_path: str, is_admin: bool = False): self.settings = settings """`hublabbot.settings.HubLabBotSettings`.""" self.repo_path = repo_path """Path like {namespace}/{repo name} in GitHub.""" self.repo_options = self.settings.get_repo_by_github(repo_path) """`hublabbot.settings.RepoOptions`.""" self.github = Github(self.settings.gh_token if is_admin else self.settings.gh_bot_token) """Github object with bot credentials.""" def _merge_pr(self, pr: ghp.PullRequest) -> None: assert self.repo_options.gh_auto_merge_pr is not None if pr.update() is True: if pr.state == 'closed' or not pr.mergeable: return if self.repo_options.gh_auto_merge_pr.required_label_name not in [l.name for l in pr.labels]: return status = pr.merge() if status.merged: print(f'GH:{self.repo_path}: PR#{pr.number} merged.') else: raise RuntimeError(f'GH:{self.repo_path}: PR#{pr.number} fail to merge - "{status.message}"!') def get_pr_by_sha(self, sha: str) -> Optional[ghp.PullRequest]: """Get PR by head commit sha. Args: sha: Head commit sha. Returns: PullRequest or `None` if not found. """ repo = self.github.get_repo(self.repo_path) pr_list = [p for p in repo.get_pulls() if p.head.sha == sha] if len(pr_list) == 0: return None else: return pr_list[0] def get_branch_head(self, branch_name: str) -> str: """Get head sha of `branch_name`. Args: branch_name: Branch name. Returns: Head commit sha. """ repo = self.github.get_repo(self.repo_path) branch = repo.get_branch(branch_name) head_sha: str = branch.commit.sha return head_sha def is_external_pr(self, pr: JsonDict) -> bool: """Check PR is external or not. Args: pr: JSON from GitHub with PR dict. Returns: `True` if is external, `False` is not. """ pr_repo_path: str = pr['head']['repo']['full_name'] return pr_repo_path != self.repo_path def auto_merge_pr(self, sha: str) -> IResponse: """Action - auto-merge PR. Args: sha: SHA of HEAD commit in PR. Returns: `{'status': 'OK', ...}` if action was successful,</br> `{'status': 'IGNORE', ...}` if action ignored,</br> `{'status': 'ERROR', ...}` if action failed. """ if self.repo_options.gh_auto_merge_pr is None: return { 'status': 'IGNORE', 'note': f'Repo option gh_auto_merge_pr disabled for repo {self.repo_path}.'} pr = self.get_pr_by_sha(sha) if pr is None or pr.state == 'closed' or not pr.mergeable: return {'status': 'IGNORE'} if pr.user.login not in self.repo_options.gh_auto_merge_pr.authors_white_list: return {'status': 'IGNORE'} if self.repo_options.gh_auto_merge_pr.required_label_name not in [l.name for l in pr.labels]: return {'status': 'IGNORE'} if self.repo_options.gh_auto_merge_pr.delay > 0: timer = Timer(self.repo_options.gh_auto_merge_pr.delay, lambda: self._merge_pr(pr)) timer.start() else: self._merge_pr(pr) return {'status': 'OK'} def show_gitlabci_fail(self, failed_job_sha: str, failed_stage: str, failed_job_url: str, failed_job_log: str) -> IResponse: """Action - post comment with GitLab CI fail-report to PR. Args: failed_job_sha: SHA of HEAD commit in PR. failed_stage: Stage at which the error occurred. failed_job_url: Fail job URL. failed_job_log: Fail job log. Returns: `{'status': 'OK', ...}` if action was successful,</br> `{'status': 'IGNORE', ...}` if action ignored,</br> `{'status': 'ERROR', ...}` if action failed. """ pr = self.get_pr_by_sha(failed_job_sha) if pr is None: return { 'status': 'IGNORE', 'note': f'Commit "{failed_job_sha}" not found in Pull Requests.'} gitlabci_fail_tmd = (self.settings.assets_path / 'gitlabci_fail.templ.md').read_text() gitlabci_fail_templ = Template(gitlabci_fail_tmd) gitlabci_fail_md = gitlabci_fail_templ.substitute( failed_stage=failed_stage, failed_job_log=failed_job_log, failed_job_url=failed_job_url) pr.create_issue_comment(gitlabci_fail_md) print(f'GH:{self.repo_path}: Comment with GitLab CI fail-report posted to PR#{pr.number}.') return {'status': 'OK'} def sync_pr_to_gitlab(self, pr: JsonDict) -> IResponse: """Action - push external PR's branch to GitLab. Args: pr: JSON from GitHub with PR dict. Returns: `{'status': 'OK', ...}` if action was successful,</br> `{'status': 'IGNORE', ...}` if action ignored,</br> `{'status': 'ERROR', ...}` if action failed. """ if not self.is_external_pr(pr): return {'status': 'IGNORE'} with tempfile.TemporaryDirectory() as gitdir: repo = pygit2.init_repository(gitdir, bare=True) pr_num = pr['number'] pr_ref = f'refs/heads/pr-{pr_num}' creds = f'gitlab-ci-token:{self.settings.gl_token}' gl_host = urlsplit(self.settings.gl_base_url).netloc repo.remotes.create('github', f'https://github.com/{self.repo_path}.git') repo.remotes.create('gitlab', f'https://{creds}@{gl_host}/{self.repo_options.gl_repo_path}.git') repo.remotes['github'].fetch([f'+refs/pull/{pr_num}/head:{pr_ref}']) repo.remotes['gitlab'].push( ['+' + pr_ref], RemotePushCallback(self.repo_path, self.repo_options.gl_repo_path, pr_num)) return {'status': 'OK'}
import logging import random import os from unittest import TestLoader, TestSuite import unittest.util from exchangelib.util import PrettyXmlHandler class RandomTestSuite(TestSuite): def __iter__(self): tests = list(super().__iter__()) random.shuffle(tests) return iter(tests) # Execute test classes in random order TestLoader.suiteClass = RandomTestSuite # Execute test methods in random order within each test class TestLoader.sortTestMethodsUsing = lambda _, x, y: random.choice((1, -1)) # Make sure we're also random in multiprocess test runners random.seed() # Always show full repr() output for object instances in unittest error messages unittest.util._MAX_LENGTH = 2000 if os.environ.get('DEBUG', '').lower() in ('1', 'yes', 'true'): logging.basicConfig(level=logging.DEBUG, handlers=[PrettyXmlHandler()]) else: logging.basicConfig(level=logging.CRITICAL)
''' Get's the file's name from the user ''' def get_file_name() -> str: filename = '' while filename == '': filename = input("Please enter the name of the Python file you wish to obfuscate: ") return filename ''' Opens the file the use wants and returns a string(?) of all the contents of that file ''' def get_file_contents(filename:str) -> str: # What type does it return? program = '' with open(filename) as f: for line in f.readlines(): program += line return program if __name__ == '__main__': filename = get_file_name() file_contents = get_file_contents(filename) print(file_contents)
import contextlib import os import textwrap from libqtile.backend.wayland.core import Core from test.helpers import Backend wlr_env = { "WLR_BACKENDS": "headless", "WLR_LIBINPUT_NO_DEVICES": "1", "WLR_RENDERER_ALLOW_SOFTWARE": "1", "WLR_RENDERER": "pixman", "XDG_RUNTIME_DIR": "/tmp", } @contextlib.contextmanager def wayland_environment(outputs): """This backend just needs some environmental variables set""" env = wlr_env.copy() env["WLR_HEADLESS_OUTPUTS"] = str(outputs) yield env class WaylandBackend(Backend): name = "wayland" def __init__(self, env, args=()): self.env = env self.args = args self.core = Core self.manager = None def create(self): """This is used to instantiate the Core""" os.environ.update(self.env) return self.core(*self.args) def configure(self, manager): """This backend needs to get WAYLAND_DISPLAY variable.""" success, display = manager.c.eval("self.core.display_name") assert success self.env["WAYLAND_DISPLAY"] = display def fake_click(self, x, y): """Click at the specified coordinates""" # Currently only restacks windows, and does not trigger bindings self.manager.c.eval(textwrap.dedent(f""" self.core.warp_pointer({x}, {y}) self.core._focus_by_click() """)) def get_all_windows(self): """Get a list of all windows in ascending order of Z position""" success, result = self.manager.c.eval(textwrap.dedent(""" [win.wid for win in self.core.mapped_windows] """)) assert success return eval(result)
#!/usr/bin/python import os import sys import signal import json import yfinance as yf import pandas as pd import math import argparse from datetime import datetime import matplotlib.pyplot as plt import numpy as np g_StocksDB = None def Load(filename): if os.path.isfile(filename) is True: file = open(filename, "r") data = file.read() file.close() return data return "" def Save (filename, data): file = open(filename, "w") file.write(data) file.close() def Append (filename, data): file = open(filename, "a") file.write(data) file.close() def Get5D(ticker): ''' Open,High,Low,Close,Volume,Dividends,Stock Splits ''' hist = [] objtk = yf.Ticker(ticker) data = objtk.history(period="1mo", interval="5m") for idx, row in data.iterrows(): hist.append({ "date": "{0}".format(idx), "open": row['Open'], "close": row['Close'], "high": row['High'], "low": row['Low'], "vol": row['Volume'] }) return hist g_exit = False def signal_handler(signal, frame): global g_exit print("Accepted signal from other app") g_exit = True def FindBufferMaxMin(buffer): pmax = 0 pmin = 0 if len(buffer) > 0: pmin = buffer[0] for item in buffer: if pmax < item: pmax = item if pmin > item: pmin = item return pmin, pmax def CreateHistogram(buffer, bin_size): ret_hist_buffer_y = [] ret_hist_buffer_x = [] freq = 1 try: if len(buffer) > 0: # Find min and max for this buffer pmin, pmax = FindBufferMaxMin(buffer) # print("pmax:{0}, pmin:{1}, bin_size:{2}".format(pmax,pmin,bin_size)) # Calculate freq freq = (float(pmax) - float(pmin)) / float(bin_size) if freq == 0: return 0, [pmin], [pmax] # Generate x scale ret_hist_buffer_x = [(x * freq) + pmin for x in range(0, int(bin_size))] ret_hist_buffer_y = [0] * int(bin_size) # Generate y scale for sample in buffer: index = int((float(sample) - float(pmin)) / freq) if index == bin_size: index = bin_size - 1 #print(index, sample, freq, pmin, pmax) ret_hist_buffer_y[index] += 1 except Exception as e: print("Histograme exception {0}".format(e)) return 1, [], [] return 0, ret_hist_buffer_y, ret_hist_buffer_x def MAVG(buffer, win): window_size = win i = 0 moving_averages = [] while i < len(buffer) - window_size + 1: this_window = buffer[i : i + window_size] window_average = sum(this_window) / window_size moving_averages.append(window_average) i += 1 x_scale = [x for x in range(0, len(moving_averages))] return moving_averages, x_scale def GetIntersetPoints(data): data_diff = [] roi_list = [] pmin, pmax = FindBufferMaxMin(data) avg = (pmax + pmin) / 2 diff_arr = np.array(data, dtype=np.double) data_diff = np.diff(diff_arr, n=1).tolist() # ------------------------------------------------------------------ DIFF REMOVE POSITIVE SLOPE START for idx, item in enumerate(data_diff): if item < 0: if idx < len(data_diff) - 2: if data_diff[idx + 1] > 0: pass else: data_diff[idx] = 0 if item > 0: data_diff[idx] = 0 # ------------------------------------------------------------------ DIFF REMOVE POSITIVE SLOPE END # ------------------------------------------------------------------ HISTOGRAM START error, hist_y, hist_x = CreateHistogram(data_diff, len(data_diff)) hist_sum = 0.0 for sample in hist_y: hist_sum += sample if hist_sum == 0: return [] filter_thershold = 0.0 perc_integral = 0.0 for idx, sample in enumerate(hist_y): perc_integral += sample if (perc_integral / hist_sum) > 0.1: filter_thershold = hist_x[idx] break # ------------------------------------------------------------------ HISTOGRAM END # ------------------------------------------------------------------ DIFF REMOVE NOISE START for idx, item in enumerate(data_diff): if item > filter_thershold: data_diff[idx] = 0 # ------------------------------------------------------------------ DIFF REMOVE NOISE END # ------------------------------------------------------------------ FIND GROUPS START start_of_peak = 0 item_counter = 0 prev_item = 0 for idx, item in enumerate(data_diff): if prev_item == 0 and item < 0: # START OF PEAK start_of_peak = idx elif prev_item < 0 and item < 0: # MIDDLE OF PEAK pass elif prev_item == 0 and item == 0: # NO PEAK # Count items item_counter += 1 elif prev_item < 0 and item == 0: # END OF PEAK # Check length of items between previouse peak if item_counter < 10 and len(roi_list) > 0: roi_list[-1]["end"] = idx roi_list[-1]["data"] = data_diff[roi_list[-1]["start"]:idx] else: roi_list.append({ "start": start_of_peak, "end": idx, "data": data_diff[start_of_peak:idx] }) # Start items counter item_counter = 0 else: # ANY OTHER CASE pass prev_item = item return roi_list if history == None: return roi_list[-1] if history["start"] != roi_list[-1]["start"] and history["end"] != roi_list[-1]["end"]: return roi_list[-1] else: return None # ------------------------------------------------------------------ FIND GROUPS END def CompareRoi(a, b): pass def main(): parser = argparse.ArgumentParser(description='Stock DB Creator') parser.add_argument('--update', action='store_true', help='Update DB') parser.add_argument('--ticker', action='store', dest='ticker', help='Calculate single ticker') parser.add_argument('--plot', action='store_true', help='Update DB') args = parser.parse_args() if args.ticker is not None: x_buff = [] y_buff = [] ticker = args.ticker data = Get5D(ticker) # Build y scale (close data) for idx, item in enumerate(data): y_buff.append(item["close"]) y_buff, x_buff = MAVG(y_buff, 10) rois = None rois_map = {} window_size = 96 # hours w_start = 0 w_end = window_size # print(len(y_buff), y_buff) while len(y_buff) - 1 != w_end: # print(w_start, w_end, len(y_buff)) rois = GetIntersetPoints(y_buff[w_start:w_end]) if len(rois) > 0: key = w_start+rois[-1]["end"] rois_map[key] = 1 w_start += 1 w_end += 1 pmin, pmax = FindBufferMaxMin(y_buff) avg = (pmax + pmin) / 2 scale_const = (pmax - pmin) / 12 y1 = [pmin] * len(x_buff) for idx in rois_map: y1[idx] = pmin + scale_const print(y1) fig, (ax1) = plt.subplots(1, 1) fig.subplots_adjust(hspace=0.5) ax1.plot(x_buff, y_buff, color='green') ax1.plot(x_buff, y1, color='red') plt.show() if __name__ == "__main__": main()
from datetime import datetime from time import sleep from celery import shared_task from celery.exceptions import Reject from django.db import connections from django.db.models import Prefetch from django.utils import timezone from elasticsearch import ElasticsearchException from elasticsearch.helpers import BulkIndexError from urllib3.exceptions import ReadTimeoutError from capapi.documents import CaseDocument from scripts.helpers import ordered_query_iterator from capdb.models import * ### HELPERS ### def run_task_for_volumes(task, volumes=None, last_run_before=None, synchronous=False, **kwargs): """ Run the given celery task for the given queryset of volumes, or all volumes if not specified. If last_run_before is provided as an ISO timestamp, volumes will only be run if volume.task_statuses indicates that the task has not succeeded after that time. """ if volumes is None: volumes = VolumeMetadata.objects.all() if last_run_before: volumes = volumes.exclude(**{ "task_statuses__%s__success" % task.name: True, "task_statuses__%s__timestamp__gte" % task.name: last_run_before }) for volume_id in volumes.values_list('pk', flat=True): task.delay(volume_id, **kwargs) @contextmanager def record_task_status_for_volume(task, volume_id): """ Context manager to record in volume.task_statuses whether the given task succeeds or fails. """ try: yield except Exception as e: volume = VolumeMetadata.objects.get(pk=volume_id) volume.task_statuses[task.name] = { 'timestamp': timezone.now().isoformat(), 'error': str(e), } volume.save() raise else: volume = VolumeMetadata.objects.get(pk=volume_id) volume.task_statuses[task.name] = { 'timestamp': timezone.now().isoformat(), 'success': True, } volume.save() ### TASKS ### @shared_task(bind=True, acks_late=True) # use acks_late for tasks that can be safely re-run if they fail def update_in_scope_for_vol(self, volume_id): """ Call .update_in_scope() for all cases in given volume. """ with record_task_status_for_volume(self, volume_id): CaseMetadata.objects.filter(volume_id=volume_id).update_in_scope() @shared_task(bind=True, acks_late=True) # use acks_late for tasks that can be safely re-run if they fail def update_elasticsearch_for_vol(self, volume_id): """ Index all cases for given volume with elasticsearch. """ with record_task_status_for_volume(self, volume_id): # fetch cases cases = (CaseMetadata.objects .in_scope() .filter(volume_id=volume_id) .select_related('volume', 'reporter', 'court', 'jurisdiction', 'body_cache') .exclude(body_cache=None)) # attempt to store 10 times, with linearly increasing backoff. this gives time for the bulk queue to be processed # if necessary (in which case we'll get BulkIndexError with error 429, too many requests). for i in range(10): try: CaseDocument().update(cases) VolumeMetadata.objects.filter(pk=volume_id).update(last_es_index=timezone.now()) return except (ElasticsearchException, ReadTimeoutError) as e: if i == 9: # If all 10 requests fail, re-add job to the back of the queue if type(e) == BulkIndexError: # delete submitted data from BulkIndexError, because otherwise error messages are too large to store for item in e.args[1]: for v in item.values(): v['data'] = '[data omitted]' raise Reject('Bulk indexing of volume %s failed: %s' % (volume_id, e), requeue=True) sleep(i) @shared_task(bind=True, acks_late=True) # use acks_late for tasks that can be safely re-run if they fail def sync_from_initial_metadata_for_vol(self, volume_id, force): """ call sync_from_initial_metadata on cases in given volume """ with record_task_status_for_volume(self, volume_id): cases = (CaseMetadata.objects .filter(volume_id=volume_id) .select_related('structure', 'initial_metadata', 'volume') .exclude(initial_metadata=None) .exclude(structure=None)) for c in cases: c.sync_from_initial_metadata(force=force) @shared_task def sync_case_body_cache_for_vol(volume_id, rerender=True): """ call sync_case_body_cache on cases in given volume """ volume = VolumeMetadata.objects.get(pk=volume_id) pages = list(volume.page_structures.all()) blocks_by_id = PageStructure.blocks_by_id(pages) fonts_by_id = CaseFont.fonts_by_id(blocks_by_id) labels_by_block_id = PageStructure.labels_by_block_id(pages) query = volume.case_metadatas\ .select_related('structure', 'body_cache')\ .defer('body_cache__html', 'body_cache__xml', 'body_cache__text', 'body_cache__json') for case_metadata in query: case_metadata.sync_case_body_cache(blocks_by_id, fonts_by_id, labels_by_block_id, rerender=rerender) def create_case_metadata_from_all_vols(update_existing=False): """ iterate through all volumes, call celery task for each volume """ query = VolumeXML.objects.all() # if not updating existing, then only launch jobs for volumes with unindexed cases: if not update_existing: query = query.filter(case_xmls__metadata_id=None).distinct() # launch a job for each volume: for volume_id in query.values_list('pk', flat=True): create_case_metadata_from_vol.delay(volume_id, update_existing=update_existing) @shared_task def create_case_metadata_from_vol(volume_id, update_existing=False): """ create or update cases for each volume """ case_xmls = CaseXML.objects\ .filter(volume_id=volume_id)\ .select_related('metadata', 'volume__metadata__reporter')\ .defer('orig_xml', 'volume__orig_xml') if not update_existing: case_xmls = case_xmls.filter(metadata_id=None) for case_xml in case_xmls: case_xml.create_or_update_metadata(update_existing=update_existing) @shared_task def update_volume_metadata(volume_xml_id): VolumeXML.objects.get(pk=volume_xml_id).update_metadata() @shared_task def test_slow(i, ram=10, cpu=30): """ Allocate `ram` megabytes of ram and run `cpu` million additions. """ print("Task %s" % i) # waste 0-ram MB of RAM waste_ram = bytearray(2**20 * ram) # noqa # waste CPU total = 0 for i in range(cpu * 1000000): total += i @shared_task @transaction.atomic def fix_md5_column(volume_id): """ Our database has xml fields in the casexml and pagexml tables that are missing the <?xml> declaration, and that also don't have the md5 column filled. Here we update all the xml fields to add the <?xml> declaration and md5 hash. """ with connections['capdb'].cursor() as cursor: new_xml_sql = "E'<?xml version=''1.0'' encoding=''utf-8''?>\n' || orig_xml" for table in ('capdb_casexml', 'capdb_pagexml'): print("Volume %s: updating %s" % (volume_id, table)) update_sql = "UPDATE %(table)s SET orig_xml=xmlparse(CONTENT %(new_xml)s), md5=md5(%(new_xml)s) where volume_id = %%s and md5 is null" % {'table':table, 'new_xml':new_xml_sql} cursor.execute(update_sql, [volume_id]) @shared_task def get_reporter_count_for_jur(jurisdiction_id): """ Count reporters through the years per jurisdiction. Include totals. """ if not jurisdiction_id: print('Must provide jurisdiction id') return with connections['capdb'].cursor() as cursor: cursor.execute("select r.id, r.start_year, r.full_name, r.volume_count from capdb_reporter r join capdb_reporter_jurisdictions j on (r.id = j.reporter_id) where j.jurisdiction_id=%s order by r.start_year;" % jurisdiction_id) db_results = cursor.fetchall() results = { 'total': 0, 'years': {}, 'firsts': { 'name': '', 'id': '' } } try: results['firsts']['name'] = db_results[0][2] results['firsts']['id'] = db_results[0][0] except IndexError: pass for res in db_results: rep_id, start_year, full_name, volume_count = res if start_year in results: results['years'][start_year] += 1 else: results['years'][start_year] = 1 results['total'] += 1 results['recorded'] = str(datetime.now()) return results @shared_task def get_case_count_for_jur(jurisdiction_id): if not jurisdiction_id: print('Must provide jurisdiction id') return with connections['capdb'].cursor() as cursor: cursor.execute("select extract(year from decision_date)::integer as case_year, count(*) from capdb_casemetadata where duplicative=false and jurisdiction_id=%s group by case_year;" % jurisdiction_id) db_results = cursor.fetchall() results = { 'total': 0, 'years': {}, 'firsts': { 'name_abbreviation': '', 'name': '', 'id': '' } } first_case = CaseMetadata.objects.filter(jurisdiction_id=jurisdiction_id).order_by('decision_date').first() if first_case: results['firsts']['name_abbreviation'] = first_case.name_abbreviation results['firsts']['name'] = first_case.name results['firsts']['id'] = first_case.id for res in db_results: case_year, count = res results['years'][case_year] = count results['total'] += count results['recorded'] = str(datetime.now()) return results @shared_task def get_court_count_for_jur(jurisdiction_id): if not jurisdiction_id: print("Must provide jurisdiction id") return jur = Jurisdiction.objects.get(id=jurisdiction_id) results = { 'recorded': str(datetime.now()), 'total': jur.courts.count() } return results def create_case_text_for_all_cases(update_existing=False): """ Call create_case_text for each volume """ run_task_for_volumes(create_case_text, update_existing=update_existing) @shared_task def create_case_text(volume_id, update_existing=False): """ Create or update cases for each volume """ cases = CaseMetadata.objects \ .in_scope() \ .order_by('id') \ .filter(volume_id=volume_id) \ .select_related('case_xml', 'case_text') if not update_existing: cases = cases.filter(case_text=None) for case in ordered_query_iterator(cases): case.create_or_update_case_text() def retrieve_images_from_all_cases(update_existing=False): """ Call celery task to get images for each volume """ run_task_for_volumes(retrieve_images_from_cases, update_existing=update_existing) @shared_task(bind=True, acks_late=True) # use acks_late for tasks that can be safely re-run if they fail @transaction.atomic(using='capdb') def retrieve_images_from_cases(self, volume_id, update_existing=True): """ Create or update case images for each volume """ with record_task_status_for_volume(self, volume_id): cases = CaseMetadata.objects.filter(volume_id=volume_id) \ .only('body_cache__html') \ .order_by('id') \ .select_related('body_cache') \ .prefetch_related(Prefetch('caseimages', queryset=CaseImage.objects.only('hash', 'case'))) \ .exclude(body_cache=None) \ .filter(body_cache__html__contains='<img') \ .select_for_update() if not update_existing: cases = cases.exclude(caseimages__isnull=False) for case in cases: case.retrieve_and_store_images()
#!/usr/bin/env python # -*- coding: utf8 -*- """A script to ensure that our docs are not being utterly neglected.""" import argparse import os import sys IGNORES = { 'pydir': ['tests'], 'pyfile': ['__init__.py'], 'docfile': ['index.rst'], } class AddDocIgnores(argparse.Action): """Add entries to docfile ignores list.""" def __call__(self, parser, namespace, values, option_string=None): """Add entries to docfile ignores list.""" global IGNORES ignores = values.split(',') IGNORES['docfile'] += ignores setattr(namespace, 'doc_ignores', ignores) class DocParityCheck(object): """Ensure proper python module and documentation parity.""" def __init__(self): self._args = None @property def args(self): """Parsed command-line arguments.""" if self._args is None: parser = self._build_parser() self._args = parser.parse_args() return self._args def build_pypackage_basename(self, pytree, base): """Build the string representing the parsed package basename. :param str pytree: The pytree absolute path. :param str pytree: The absolute path of the pytree sub-package of which determine the parsed name. :rtype: str """ dirname = os.path.dirname(pytree) parsed_package_name = base.replace(dirname, '').strip('/') return parsed_package_name def _build_parser(self): """Build the needed command-line parser.""" parser = argparse.ArgumentParser() parser.add_argument('--pytree', required=True, type=self._valid_directory, help='This is the path, absolute or relative, of the Python package ' 'that is to be parsed.') parser.add_argument('--doctree', required=True, type=self._valid_directory, help='This is the path, absolute or relative, of the documentation ' 'package that is to be parsed.') parser.add_argument('--no-fail', action='store_true', help='Using this option will cause this program to return an exit ' 'code of 0 even when the given trees do not match.') parser.add_argument('--doc-ignores', action=AddDocIgnores, help='A comma separated list of additional doc files to ignore') return parser def build_rst_name_from_pypath(self, parsed_pypath): """Build the expected rst file name based on the parsed Python module path. :param str parsed_pypath: The parsed Python module path from which to build the expected rst file name. :rtype: str """ expected_rst_name = parsed_pypath.replace('/', '.').replace('.py', '.rst') return expected_rst_name def build_pyfile_path_from_docname(self, docfile): """Build the expected Python file name based on the given documentation file name. :param str docfile: The documentation file name from which to build the Python file name. :rtype: str """ name, ext = os.path.splitext(docfile) expected_py_name = name.replace('.', '/') + '.py' return expected_py_name def calculate_tree_differences(self, pytree, doctree): """Calculate the differences between the given trees. :param dict pytree: The dictionary of the parsed Python tree. :param dict doctree: The dictionary of the parsed documentation tree. :rtype: tuple :returns: A two-tuple of sets, where the first is the missing Python files, and the second is the missing documentation files. """ pykeys = set(pytree.keys()) dockeys = set(doctree.keys()) # Calculate the missing documentation files, if any. missing_doc_keys = pykeys - dockeys missing_docs = {pytree[pyfile] for pyfile in missing_doc_keys} # Calculate the missing Python files, if any. missing_py_keys = dockeys - pykeys missing_pys = {docfile for docfile in missing_py_keys} return missing_pys, missing_docs def compare_trees(self, parsed_pytree, parsed_doctree): """Compare the given parsed trees. :param dict parsed_pytree: A dictionary representing the parsed Python tree where each key is a parsed Python file and its key is its expected rst file name. """ if parsed_pytree == parsed_doctree: return 0 missing_pys, missing_docs = self.calculate_tree_differences(pytree=parsed_pytree, doctree=parsed_doctree) self.pprint_tree_differences(missing_pys=missing_pys, missing_docs=missing_docs) return 0 if self.args.no_fail else 1 def _ignore_docfile(self, filename): """Test if a documentation filename should be ignored. :param str filename: The documentation file name to test. :rtype: bool """ if filename in IGNORES['docfile'] or not filename.endswith('.rst'): return True return False def _ignore_pydir(self, basename): """Test if a Python directory should be ignored. :param str filename: The directory name to test. :rtype: bool """ if basename in IGNORES['pydir']: return True return False def _ignore_pyfile(self, filename): """Test if a Python filename should be ignored. :param str filename: The Python file name to test. :rtype: bool """ if filename in IGNORES['pyfile'] or not filename.endswith('.py'): return True return False def parse_doc_tree(self, doctree, pypackages): """Parse the given documentation tree. :param str doctree: The absolute path to the documentation tree which is to be parsed. :param set pypackages: A set of all Python packages found in the pytree. :rtype: dict :returns: A dict where each key is the path of an expected Python module and its value is the parsed rst module name (relative to the documentation tree). """ parsed_doctree = {} for filename in os.listdir(doctree): if self._ignore_docfile(filename): continue expected_pyfile = self.build_pyfile_path_from_docname(filename) parsed_doctree[expected_pyfile] = filename pypackages = {name + '.py' for name in pypackages} return {elem: parsed_doctree[elem] for elem in parsed_doctree if elem not in pypackages} def parse_py_tree(self, pytree): """Parse the given Python package tree. :param str pytree: The absolute path to the Python tree which is to be parsed. :rtype: dict :returns: A two-tuple. The first element is a dict where each key is the path of a parsed Python module (relative to the Python tree) and its value is the expected rst module name. The second element is a set where each element is a Python package or sub-package. :rtype: tuple """ parsed_pytree = {} pypackages = set() for base, dirs, files in os.walk(pytree): if self._ignore_pydir(os.path.basename(base)): continue # TODO(Anthony): If this is being run against a Python 3 package, this needs to be # adapted to account for namespace packages. elif '__init__.py' not in files: continue package_basename = self.build_pypackage_basename(pytree=pytree, base=base) pypackages.add(package_basename) for filename in files: if self._ignore_pyfile(filename): continue parsed_path = os.path.join(package_basename, filename) parsed_pytree[parsed_path] = self.build_rst_name_from_pypath(parsed_path) return parsed_pytree, pypackages def pprint_tree_differences(self, missing_pys, missing_docs): """Pprint the missing files of each given set. :param set missing_pys: The set of missing Python files. :param set missing_docs: The set of missing documentation files. :rtype: None """ if missing_pys: print('The following Python files appear to be missing:') for pyfile in missing_pys: print(pyfile) print('\n') if missing_docs: print('The following documentation files appear to be missing:') for docfiile in missing_docs: print(docfiile) print('\n') def _valid_directory(self, path): """Ensure that the given path is valid. :param str path: A valid directory path. :raises: :py:class:`argparse.ArgumentTypeError` :returns: An absolute directory path. """ abspath = os.path.abspath(path) if not os.path.isdir(abspath): raise argparse.ArgumentTypeError('Not a valid directory: {}'.format(abspath)) return abspath def main(self): """Parse package trees and report on any discrepancies.""" args = self.args parsed_pytree, pypackages = self.parse_py_tree(pytree=args.pytree) parsed_doctree = self.parse_doc_tree(doctree=args.doctree, pypackages=pypackages) return self.compare_trees(parsed_pytree=parsed_pytree, parsed_doctree=parsed_doctree) if __name__ == '__main__': sys.exit(DocParityCheck().main())
# Licensed under a 3-clause BSD style license - see LICENSE.rst """ Convenience functions for `astropy.cosmology`. """ from .core import get_current as _get_current def kpc_comoving_per_arcmin(z, cosmo=None): """ Separation in transverse comoving kpc corresponding to an arcminute at redshift `z`. Parameters ---------- z : array_like Input redshifts. Returns ------- d : astropy.units.Quantity The distance in comoving kpc corresponding to an arcmin at each input redshift. """ if cosmo is None: cosmo = _get_current() return cosmo.kpc_comoving_per_arcmin(z) def kpc_proper_per_arcmin(z, cosmo=None): """ Separation in transverse proper kpc corresponding to an arcminute at redshift `z`. Parameters ---------- z : array_like Input redshifts. Returns ------- d : astropy.units.Quantity The distance in proper kpc corresponding to an arcmin at each input redshift. """ if cosmo is None: cosmo = _get_current() return cosmo.kpc_proper_per_arcmin(z) def arcsec_per_kpc_comoving(z, cosmo=None): """ Angular separation in arcsec corresponding to a comoving kpc at redshift `z`. Parameters ---------- z : array_like Input redshifts. Returns ------- theta : astropy.units.Quantity The angular separation in arcsec corresponding to a comoving kpc at each input redshift. """ if cosmo is None: cosmo = _get_current() return cosmo.arcsec_per_kpc_comoving(z) def arcsec_per_kpc_proper(z, cosmo=None): """ Angular separation in arcsec corresponding to a proper kpc at redshift `z`. Parameters ---------- z : array_like Input redshifts. Returns ------- theta : astropy.units.Quantity The angular separation in arcsec corresponding to a proper kpc at each input redshift. """ if cosmo is None: cosmo = _get_current() return cosmo.arcsec_per_kpc_proper(z) def distmod(z, cosmo=None): """ Distance modulus at redshift `z`. The distance modulus is defined as the (apparent magnitude - absolute magnitude) for an object at redshift `z`. Parameters ---------- z : array_like Input redshifts. Returns ------- distmod : astropy.units.Quantity Distance modulus at each input redshift. """ if cosmo is None: cosmo = _get_current() return cosmo.distmod(z) def H(z, cosmo=None): """ Hubble parameter (km/s/Mpc) at redshift `z`. Parameters ---------- z : array_like Input redshifts. Returns ------- H : astropy.units.Quantity Hubble parameter at each input redshift. """ if cosmo is None: cosmo = _get_current() return cosmo.H(z) def scale_factor(z, cosmo=None): """ Scale factor at redshift `z`. The scale factor is defined as `a = 1 / (1 + z)`. Parameters ---------- z : array_like Input redshifts. Returns ------- scalefac : ndarray, or float if input scalar Scale factor at each input redshift. """ if cosmo is None: cosmo = _get_current() return cosmo.scale_factor(z) def critical_density(z, cosmo=None): """ Critical density in grams per cubic cm at redshift `z`. Parameters ---------- z : array_like Input redshifts. Returns ------- critdens : astropy.units.Quantity Critical density at each input redshift. """ if cosmo is None: cosmo = _get_current() return cosmo.critical_density(z) def lookback_time(z, cosmo=None): """ Lookback time in Gyr to redshift `z`. The lookback time is the difference between the age of the Universe now and the age at redshift `z`. Parameters ---------- z : array_like Input redshifts. Returns ------- t : astropy.units.Quantity Lookback time at each input redshift. """ if cosmo is None: cosmo = _get_current() return cosmo.lookback_time(z) def comoving_distance(z, cosmo=None): """ Comoving distance in Mpc at redshift `z`. The comoving distance along the line-of-sight between two objects remains constant with time for objects in the Hubble flow. Parameters ---------- z : array_like Input redshifts. Returns ------- codist : astropy.units.Quantity Comoving distance at each input redshift. """ if cosmo is None: cosmo = _get_current() return cosmo.comoving_distance(z) def angular_diameter_distance(z, cosmo=None): """ Angular diameter distance in Mpc at a given redshift. This gives the proper (sometimes called 'physical') transverse distance corresponding to an angle of 1 radian for an object at redshift `z`. Parameters ---------- z : array_like Input redshifts. Returns ------- angdist : astropy.units.Quantity Angular diameter distance at each input redshift. """ if cosmo is None: cosmo = _get_current() return cosmo.angular_diameter_distance(z) def luminosity_distance(z, cosmo=None): """ Luminosity distance in Mpc at redshift `z`. This is the distance to use when converting between the bolometric flux from an object at redshift `z` and its bolometric luminosity. Parameters ---------- z : array_like Input redshifts. Returns ------- lumdist : astropy.units.Quantity Luminosity distance at each input redshift. """ if cosmo is None: cosmo = _get_current() return cosmo.luminosity_distance(z)
# Python - 3.6.0 test.assert_equals(areYouPlayingBanjo('martin'), 'martin does not play banjo') test.assert_equals(areYouPlayingBanjo('Rikke'), 'Rikke plays banjo')
# Generated by Django 3.1.4 on 2020-12-30 17:51 from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ] operations = [ migrations.CreateModel( name='Label', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=255)), ('folder_name', models.CharField(max_length=512)), ('description', models.TextField()), ], ), migrations.CreateModel( name='ROI', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('roi_id', models.CharField(max_length=255)), ('width', models.IntegerField()), ('height', models.IntegerField()), ('path', models.CharField(max_length=512)), ], ), migrations.CreateModel( name='ImageCollection', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=255)), ('rois', models.ManyToManyField(related_name='rois', to='core.ROI')), ], ), migrations.CreateModel( name='Annotation', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('timestamp', models.DateTimeField(auto_now_add=True)), ('label', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='annotations', to='core.label')), ('roi', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='annotations', to='core.roi')), ('user', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='annotations', to=settings.AUTH_USER_MODEL)), ], ), ]
import argparse import os import random import cv2 import numpy as np import torch import torch.backends.cudnn as cudnn from data import cfg_mnet, cfg_re50 from layers.functions.prior_box import PriorBox from models.retinaface import RetinaFace from utils.box_utils import decode from utils.nms.py_cpu_nms import py_cpu_nms from utils.timer import Timer parser = argparse.ArgumentParser(description="Retinaface") parser.add_argument( "-m", "--trained_model", type=str, help="Trained state_dict file path to open", ) parser.add_argument( "--network", default="resnet50", help="Backbone network mobile0.25 or resnet50" ) parser.add_argument( "--save_folder", default="input/detection-results-all", type=str, help="Dir to save results", ) parser.add_argument("--cpu", action="store_true", default=False, help="Use cpu inference") parser.add_argument("--dataset", default="kouzhao", type=str, help="dataset") parser.add_argument("--type", default="test", type=str, help="test or val") parser.add_argument( "--confidence_threshold", default=0.1, type=float, help="confidence_threshold" ) parser.add_argument("--top_k", default=5000, type=int, help="top_k") parser.add_argument("--nms_threshold", default=0.4, type=float, help="nms_threshold") parser.add_argument("--keep_top_k", default=750, type=int, help="keep_top_k") parser.add_argument( "-s", "--save_image", action="store_true", default=False, help="show detection results", ) parser.add_argument("--vis_thres", default=0, type=float, help="visualization_threshold") args = parser.parse_args() def check_keys(model, pretrained_state_dict): ckpt_keys = set(pretrained_state_dict.keys()) model_keys = set(model.state_dict().keys()) used_pretrained_keys = model_keys & ckpt_keys unused_pretrained_keys = ckpt_keys - model_keys missing_keys = model_keys - ckpt_keys print("Missing keys:{}".format(len(missing_keys))) print("Unused checkpoint keys:{}".format(len(unused_pretrained_keys))) print("Used keys:{}".format(len(used_pretrained_keys))) assert len(used_pretrained_keys) > 0, "load NONE from pretrained checkpoint" return True def remove_prefix(state_dict, prefix): """ Old style model is stored with all names of parameters sharing common prefix 'module.' """ print("remove prefix '{}'".format(prefix)) f = lambda x: x.split(prefix, 1)[-1] if x.startswith(prefix) else x return {f(key): value for key, value in state_dict.items()} def load_model(model, pretrained_path, load_to_cpu): print("Loading pretrained model from {}".format(pretrained_path)) if load_to_cpu: pretrained_dict = torch.load( pretrained_path, map_location=lambda storage, loc: storage ) else: device = torch.cuda.current_device() pretrained_dict = torch.load( pretrained_path, map_location=lambda storage, loc: storage.cuda(device) ) if "state_dict" in pretrained_dict.keys(): pretrained_dict = remove_prefix(pretrained_dict["state_dict"], "module.") else: pretrained_dict = remove_prefix(pretrained_dict, "module.") check_keys(model, pretrained_dict) model.load_state_dict(pretrained_dict, strict=False) return model def plot_one_box(x, img, color=None, label=None, line_thickness=None): """ description: Plots one bounding box on image img, this function comes from YoLov5 project. param: x: a box likes [x1,y1,x2,y2] img: a opencv image object color: color to draw rectangle, such as (0,255,0) label: str line_thickness: int return: no return """ tl = ( line_thickness or round(0.002 * (img.shape[0] + img.shape[1]) / 2) + 1 ) # line/font thickness color = color or [random.randint(0, 255) for _ in range(3)] c1, c2 = (int(x[0]), int(x[1])), (int(x[2]), int(x[3])) cv2.rectangle(img, c1, c2, color, thickness=tl, lineType=cv2.LINE_AA) if label: tf = max(tl - 1, 1) # font thickness t_size = cv2.getTextSize(label, 0, fontScale=tl / 3, thickness=tf)[0] c2 = c1[0] + t_size[0], c1[1] - t_size[1] - 3 cv2.rectangle(img, c1, c2, color, -1, cv2.LINE_AA) # filled cv2.putText( img, label, (c1[0], c1[1] - 2), 0, tl / 3, [225, 255, 255], thickness=tf, lineType=cv2.LINE_AA, ) def preprocess(img, input_h=960, input_w=960): h, w, _ = img.shape # Calculate width and height and paddings r_w = input_w / w r_h = input_h / h if r_h > r_w: tw = input_w th = int(r_w * h) tx1 = tx2 = 0 ty1 = int((input_h - th) / 2) ty2 = input_h - th - ty1 else: tw = int(r_h * w) th = input_h tx1 = int((input_w - tw) / 2) tx2 = input_w - tw - tx1 ty1 = ty2 = 0 # Resize the image with long side while maintaining ratio img = cv2.resize(img, (tw, th), interpolation=cv2.INTER_LINEAR) # Pad the short side with (128,128,128) img = cv2.copyMakeBorder( img, ty1, ty2, tx1, tx2, cv2.BORDER_CONSTANT, (128, 128, 128) ) img = img.astype(np.float32) return img def postprocess(dets, origin_h, origin_w, input_h=960, input_w=960): r_w = input_w / origin_w r_h = input_h / origin_h if r_h > r_w: dets[:, 1] -= (input_h - r_w * origin_h) / 2 dets[:, 3] -= (input_h - r_w * origin_h) / 2 dets[:, :4] /= r_w else: dets[:, 0] -= (input_w - r_h * origin_w) / 2 dets[:, 2] -= (input_w - r_h * origin_w) / 2 dets[:, :4] /= r_h return dets if __name__ == "__main__": torch.set_grad_enabled(False) cfg = None if args.network == "mobile0.25": cfg = cfg_mnet elif args.network == "resnet50": cfg = cfg_re50 # net and model net = RetinaFace(cfg=cfg, phase="test") net = load_model(net, args.trained_model, args.cpu) net.eval() print("Finished loading model!") cudnn.benchmark = True device = torch.device("cpu" if args.cpu else "cuda") net = net.to(device) # save file if not os.path.exists(args.save_folder): os.makedirs(args.save_folder) # testing dataset test_dataset = [] with open( os.path.join("data", args.dataset, args.type, "labels.txt"), "r", encoding="utf-8" ) as f: for line in f: test_dataset.append( os.path.join( "data", args.dataset, args.type, "images", line.split("\t")[0] ) ) num_images = len(test_dataset) # testing scale resize = 1 for i, image_path in enumerate(test_dataset): save_name = os.path.splitext(os.path.basename(image_path))[0] + ".txt" with open(os.path.join(args.save_folder, save_name), "w", encoding="utf-8") as f: img_raw = cv2.imread(image_path, cv2.IMREAD_COLOR) origin_h, origin_w, _ = img_raw.shape img = preprocess(img_raw) im_height, im_width, _ = img.shape scale = torch.Tensor([im_width, im_height, im_width, im_height]) img -= (104, 117, 123) img = img.transpose(2, 0, 1) img = torch.from_numpy(img).unsqueeze(0) img = img.to(device) scale = scale.to(device) loc, conf = net(img) # forward pass priorbox = PriorBox(cfg, image_size=(im_height, im_width)) priors = priorbox.forward() priors = priors.to(device) prior_data = priors.data boxes = decode(loc.data.squeeze(0), prior_data, cfg["variance"]) boxes = boxes * scale boxes = boxes.cpu().numpy() conf = conf.squeeze(0).data.cpu().numpy() face_scores = conf[:, 1] mask_scores = conf[:, 2] scores = np.where(face_scores > mask_scores, face_scores, mask_scores) face_inds = np.where(face_scores > mask_scores, 1, 0) # ignore low scores inds = np.where(scores > args.confidence_threshold)[0] boxes = boxes[inds] scores = scores[inds] face_inds = face_inds[inds] # keep top-K before NMS # order = scores.argsort()[::-1][:args.top_k] order = scores.argsort()[::-1] boxes = boxes[order] scores = scores[order] face_inds = face_inds[order] # do NMS dets = np.hstack((boxes, scores[:, np.newaxis])).astype( np.float32, copy=False ) dets = postprocess(dets, origin_h, origin_w) keep = py_cpu_nms(dets, args.nms_threshold) dets = dets[keep, :] face_inds = face_inds[keep] print("im_detect: {:d}/{:d}".format(i + 1, num_images)) for j, b in enumerate(dets): if face_inds[j] > 0: f.write( "face " + str(b[4]) + " " + str(int(b[0])) + " " + str(int(b[1])) + " " + str(int(b[2])) + " " + str(int(b[3])) + "\n" ) else: f.write( "mask " + str(b[4]) + " " + str(int(b[0])) + " " + str(int(b[1])) + " " + str(int(b[2])) + " " + str(int(b[3])) + "\n" ) # show image if args.save_image: for j, b in enumerate(dets): if b[4] < args.vis_thres: continue if face_inds[j] > 0: # face text = "face {:.2f}".format(b[4]) plot_one_box(b, img_raw, (0, 0, 255), text) else: # mask text = "mask {:.2f}".format(b[4]) plot_one_box(b, img_raw, (255, 0, 0), text) # save image os.makedirs("./results/", exist_ok=True) name = os.path.join("./results", str(i) + ".jpg") cv2.imwrite(name, img_raw)
from rest_framework.permissions import BasePermission from acls.business.fields import AclLevelField from acls.business.permissions import has_object_acl class CanManageSecretPermission(BasePermission): def has_object_permission(self, request, view, obj): if view.action == 'retrieve' or view.action == 'list': return has_object_acl(request.user, obj.card, AclLevelField.LEVEL_READ) else: # check permission to card return has_object_acl(request.user, obj.card, AclLevelField.LEVEL_WRITE)
from django.core.mail import EmailMultiAlternatives from django.test import TestCase from django.test import override_settings from ai_django_core.mail.backends.whitelist_smtp import WhitelistEmailBackend @override_settings(EMAIL_BACKEND='ai_django_core.mail.backends.whitelist_smtp.WhitelistEmailBackend', EMAIL_BACKEND_DOMAIN_WHITELIST=['valid.domain'], EMAIL_BACKEND_REDIRECT_ADDRESS='%s@testuser.valid.domain') class MailBackendWhitelistBackendTest(TestCase): def test_whitify_mail_addresses_replace(self): email_1 = 'albertus.magnus@example.com' email_2 = 'thomas_von_aquin@example.com' processed_list = WhitelistEmailBackend.whitify_mail_addresses(mail_address_list=[email_1, email_2]) self.assertEqual(len(processed_list), 2) self.assertEqual(processed_list[0], 'albertus.magnus_example.com@testuser.valid.domain') self.assertEqual(processed_list[1], 'thomas_von_aquin_example.com@testuser.valid.domain') def test_whitify_mail_addresses_whitelisted_domain(self): email = 'platon@valid.domain' processed_list = WhitelistEmailBackend.whitify_mail_addresses(mail_address_list=[email]) self.assertEqual(len(processed_list), 1) self.assertEqual(processed_list[0], email) @override_settings(EMAIL_BACKEND_REDIRECT_ADDRESS='') def test_whitify_mail_addresses_no_redirect_configured(self): email = 'sokrates@example.com' processed_list = WhitelistEmailBackend.whitify_mail_addresses(mail_address_list=[email]) self.assertEqual(len(processed_list), 0) def test_process_recipients_regular(self): mail = EmailMultiAlternatives('Test subject', 'Here is the message.', 'from@example.com', ['to@example.com'], connection=None) backend = WhitelistEmailBackend() message_list = backend._process_recipients([mail]) self.assertEqual(len(message_list), 1) self.assertEqual(message_list[0].to, ['to_example.com@testuser.valid.domain'])
import json import os import sys import time import msvcrt from pick import pick from termcolor import cprint, colored from extractor import Extractor path_to_config = "./config.json" def extract_data(): config = get_config(path_to_config) extractor = Extractor(config, restart) raw_data = extractor.get_file() extracted_data = extractor.extract_data(raw_data) extractor.save_file(extracted_data) def title_map(option): try: title = option["title"] except: cprint("Invalid configuration", "red") return title def get_config(path_to_config): if os.path.exists(path_to_config): with open(path_to_config) as f: config = json.load(f) else: config = [] with open(path_to_config, 'w+') as f: f.write(json.dumps(config)) if len(config) > 0: prompt = 'Please choose data to extract:' (option, _) = pick(config, prompt, indicator="=>", options_map_func=title_map) return option else: restart(colored('No configurations available!', "red")) def run_tool(): prompt = 'What would you like to do?' (option, _) = pick(["Extract Data", "Exit"], prompt, indicator="=>") if option == "Exit": sys.exit(colored("Bye!", "green")) if option == "Extract Data": extract_data() def restart(status): print(status) print("Press any key to continue...") msvcrt.getch() run_tool() if __name__ == "__main__": run_tool()
from zenoh_service.core.zenoh_native import ZenohNative import numpy as np import time from datetime import datetime import logging ### L = logging.getLogger(__name__) ### class ZenohNativeGet(ZenohNative): def __init__(self, _listener=None, _mode="peer", _selector=None, _peer=None, _session_type=None, type_image=False, tagged_image=False): super().__init__(_listener=_listener, _mode=_mode, _selector=_selector, _peer=_peer, _session_type=_session_type) self.type_image = type_image self.tagged_image = tagged_image def get(self, count=False): """ selector: The selection of resources to get. """ t0_get = time.time() if count: print(">>>> count: {}".format(count)) total = len(self.workspace.get(self.selector)) print("Total data: {}".format(total)) else: for data in self.workspace.get(self.selector): print("Data path: {}".format(data.path)) # print(' {} : {} (encoding: {} , timestamp: {})'.format( # data.path, data.value.get_content(), data.value.encoding_descr(), data.timestamp)) if self.type_image and self.tagged_image: # data is an encoded image; print(" --- type: {}; {}; {}".format( type(data.value.get_content()[0]), data.value.get_content()[0], data.value.get_content()[1] )) # self._extract_normal_img(data.value.get_content()) elif self.type_image and not self.tagged_image: # data is an encoded image and tagged with extra information; self._extract_tagged_img(data.value.get_content()) else: print("Data: {}".format(data.value.get_content())) t1_get = (time.time() - t0_get) * 1000 L.warning(('\n[%s] Latency get data from Zenoh (%.3f ms) \n' % (datetime.now().strftime("%H:%M:%S"), t1_get))) def _extract_normal_img(self, img_data): t0_decoding = time.time() deserialized_bytes = np.frombuffer(img_data, dtype=np.int8) t1_decoding = (time.time() - t0_decoding) * 1000 L.warning( ('\n[%s] Latency load ONLY numpy image (%.3f ms) \n' % (datetime.now().strftime("%H:%M:%S"), t1_decoding))) t0_decoding = time.time() deserialized_img = np.reshape(deserialized_bytes, newshape=(1080, 1920, 3)) t1_decoding = (time.time() - t0_decoding) * 1000 L.warning( ('\n[%s] Latency reformat image (%.3f ms) \n' % (datetime.now().strftime("%H:%M:%S"), t1_decoding))) def _extract_tagged_img(self, img_data): t0_decoding = time.time() deserialized_bytes = np.frombuffer(img_data, dtype=[('id', 'U10'), ('store_enabled', '?'), ('timestamp', 'f'), ('image', [('pixel', 'i')], (1, 6220800)) ]) t1_decoding = (time.time() - t0_decoding) * 1000 L.warning( ('\n[%s] Latency deserialized_bytes (%.3f ms) \n' % (datetime.now().strftime("%H:%M:%S"), t1_decoding))) t0_decoding = time.time() img_original = deserialized_bytes["image"]["pixel"][0].reshape(1080, 1920, 3) print(">>> img_original SHAPE:", img_original.shape) t1_decoding = (time.time() - t0_decoding) * 1000 L.warning( ('\n[%s] Latency reformat image (%.3f ms) \n' % (datetime.now().strftime("%H:%M:%S"), t1_decoding))) """ Usage example --------------- # configure input parameters selector = "/demo/example/**" type_image = True tagged_image = True z_svc = ZenohNativeGet( _selector=selector, _session_type="GET", type_image=type_image, tagged_image=tagged_image ) z_svc.init_connection() z_svc.get() # closing Zenoh subscription & session z_svc.close_connection() """
# RUN: %PYTHON %s 2>&1 | FileCheck %s # This file contains simple test cases that combine various codegen options. from mlir.sandbox.experts import * from mlir.sandbox.harness import * from mlir.sandbox.transforms import * from .definitions import * fun_name = 'padded_conv1d_nwc_wcf_main' op_name = 'linalg.conv_1d_nwc_wcf' ################################################################################ ### Compilation strategies. ################################################################################ all_names = ["Conv1DExpert"] all_experts = [ Tile(fun_name=fun_name, op_name=op_name, # N W C KW F tile_sizes=[1, 8, 32, 1, 8])\ .then(LoweringOnlyExpert(fun_name=fun_name, op_name=op_name)) ] ################################################################################ ### Problem instantiation ################################################################################ keys = ['N', 'W', 'C', 'KW', 'F', 'WpadL', 'WpadR', 'stride', 'dilation'] # CHECK-NOT: FAILURE def main(): # Specify default configuration and parse command line. args = test_argparser( "padded conv 1d benchmark", default_n_iters=1, # N W C KW F WpadL WpadR stride dilation default_problem_sizes_list=[ [8, 16, 32, 3, 64, 0, 1, 1, 1], \ ], default_expert_list=all_names, default_dynamic_at_compile_time_list=[], default_spec_list=[]) test_harness(lambda sizes, t: Padded_Conv1d_NWC_WCF_Problem( WpadL=sizes['WpadL'], WpadR=sizes['WpadR'], stride=sizes['stride'], dilation=sizes['dilation']), [[np.float32] * 3], test_sizes(keys, args.problem_sizes_list), test_experts(all_experts, all_names, args.expert_list), n_iters=args.n_iters, function_name=fun_name, dump_data_to_file=args.dump_data) if __name__ == '__main__': main()
import asyncio import collections import unittest from unittest import mock from aiohttp.multidict import CIMultiDict from aiohttp.web import Request from aiohttp.protocol import RawRequestMessage, HttpVersion11 from aiohttp import web class TestHTTPExceptions(unittest.TestCase): def setUp(self): self.loop = asyncio.new_event_loop() asyncio.set_event_loop(None) self.payload = mock.Mock() self.transport = mock.Mock() self.reader = mock.Mock() self.writer = mock.Mock() self.writer.drain.return_value = () self.buf = b'' self.writer.write.side_effect = self.append def tearDown(self): self.loop.close() def append(self, data): self.buf += data def make_request(self, method='GET', path='/', headers=CIMultiDict()): self.app = mock.Mock() message = RawRequestMessage(method, path, HttpVersion11, headers, False, False) req = Request(self.app, message, self.payload, self.transport, self.reader, self.writer) return req def test_all_http_exceptions_exported(self): self.assertIn('HTTPException', web.__all__) for name in dir(web): if name.startswith('_'): continue obj = getattr(web, name) if isinstance(obj, type) and issubclass(obj, web.HTTPException): self.assertIn(name, web.__all__) def test_HTTPOk(self): req = self.make_request() resp = web.HTTPOk() self.loop.run_until_complete(resp.prepare(req)) self.loop.run_until_complete(resp.write_eof()) txt = self.buf.decode('utf8') self.assertRegex(txt, ('HTTP/1.1 200 OK\r\n' 'CONTENT-TYPE: text/plain; charset=utf-8\r\n' 'CONTENT-LENGTH: 7\r\n' 'CONNECTION: keep-alive\r\n' 'DATE: .+\r\n' 'SERVER: .+\r\n\r\n' '200: OK')) def test_terminal_classes_has_status_code(self): terminals = set() for name in dir(web): obj = getattr(web, name) if isinstance(obj, type) and issubclass(obj, web.HTTPException): terminals.add(obj) dup = frozenset(terminals) for cls1 in dup: for cls2 in dup: if cls1 in cls2.__bases__: terminals.discard(cls1) for cls in terminals: self.assertIsNotNone(cls.status_code, cls) codes = collections.Counter(cls.status_code for cls in terminals) self.assertNotIn(None, codes) self.assertEqual(1, codes.most_common(1)[0][1]) def test_HTTPFound(self): req = self.make_request() resp = web.HTTPFound(location='/redirect') self.assertEqual('/redirect', resp.location) self.assertEqual('/redirect', resp.headers['location']) self.loop.run_until_complete(resp.prepare(req)) self.loop.run_until_complete(resp.write_eof()) txt = self.buf.decode('utf8') self.assertRegex(txt, ('HTTP/1.1 302 Found\r\n' 'CONTENT-TYPE: text/plain; charset=utf-8\r\n' 'CONTENT-LENGTH: 10\r\n' 'LOCATION: /redirect\r\n' 'CONNECTION: keep-alive\r\n' 'DATE: .+\r\n' 'SERVER: .+\r\n\r\n' '302: Found')) def test_HTTPFound_empty_location(self): with self.assertRaises(ValueError): web.HTTPFound(location='') with self.assertRaises(ValueError): web.HTTPFound(location=None) def test_HTTPMethodNotAllowed(self): req = self.make_request() resp = web.HTTPMethodNotAllowed('get', ['POST', 'PUT']) self.assertEqual('GET', resp.method) self.assertEqual(['POST', 'PUT'], resp.allowed_methods) self.assertEqual('POST,PUT', resp.headers['allow']) self.loop.run_until_complete(resp.prepare(req)) self.loop.run_until_complete(resp.write_eof()) txt = self.buf.decode('utf8') self.assertRegex(txt, ('HTTP/1.1 405 Method Not Allowed\r\n' 'CONTENT-TYPE: text/plain; charset=utf-8\r\n' 'CONTENT-LENGTH: 23\r\n' 'ALLOW: POST,PUT\r\n' 'CONNECTION: keep-alive\r\n' 'DATE: .+\r\n' 'SERVER: .+\r\n\r\n' '405: Method Not Allowed')) def test_override_body_with_text(self): resp = web.HTTPNotFound(text="Page not found") self.assertEqual(404, resp.status) self.assertEqual("Page not found".encode('utf-8'), resp.body) self.assertEqual("Page not found", resp.text) self.assertEqual("text/plain", resp.content_type) self.assertEqual("utf-8", resp.charset) def test_override_body_with_binary(self): txt = "<html><body>Page not found</body></html>" resp = web.HTTPNotFound(body=txt.encode('utf-8'), content_type="text/html") self.assertEqual(404, resp.status) self.assertEqual(txt.encode('utf-8'), resp.body) self.assertEqual(txt, resp.text) self.assertEqual("text/html", resp.content_type) self.assertIsNone(resp.charset) def test_default_body(self): resp = web.HTTPOk() self.assertEqual(b'200: OK', resp.body) def test_empty_body_204(self): resp = web.HTTPNoContent() self.assertIsNone(resp.body) def test_empty_body_205(self): resp = web.HTTPNoContent() self.assertIsNone(resp.body) def test_empty_body_304(self): resp = web.HTTPNoContent() self.assertIsNone(resp.body)
# coding=utf-8 # Copyright 2022 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. r"""Saves updated Pfam-A seed 34.0 TFRecords with UniprotKB context sequences. The new TFRecords will be identical to the original, except for the following: + A new 'full_sequence' field will be included, containing the context sequence from UniprotKB. + The fields 'start' and 'end' will be overwritten whenever the values reported by Pfam-A seed do not match with those computed here (occurs in 11 entries). + Pfam-A seed entries that occur multiple times within their context (repeats) are no longer included (549 entries). + Pfam-A seed entries not found within their context (sequence mismatches) are no longer included (1 entry). """ import collections import json import os import time from typing import Any, Callable, List, Mapping, MutableMapping, Sequence, Union from absl import app from absl import flags from absl import logging import numpy as np import tensorflow as tf from dedal import vocabulary from dedal.data import specs flags.DEFINE_string( 'out_dir', None, 'TFrecords for <split> to be stored in <out_dir>/<task>_with_ctx/<split>.') flags.DEFINE_string( 'data_dir', None, '<data_dir>/<task> contains output of create_splits.py.') flags.DEFINE_string( 'full_sequences_file', None, 'Path to input csv file produced by the script `save_full_sequences.py`.') flags.DEFINE_string( 'pfam34_metadata', None, 'Path to input json file produced by the script `save_to_disk.py`.') flags.DEFINE_string( 'task', 'iid_ood_clans', 'Task for which to generate TFRecords.') flags.DEFINE_list( 'splits', ['train', 'iid_validation', 'ood_validation', 'iid_test', 'ood_test'], 'Data split for which to generate TFRecords.') flags.DEFINE_integer( 'num_shards_train', 30, 'Number of shards for TFRecords in the train split.') flags.DEFINE_integer( 'num_shards_eval', 5, 'Number of shards for TFRecords in eval splits, i.e. anything not train.') flags.mark_flag_as_required('out_dir') flags.mark_flag_as_required('data_dir') flags.mark_flag_as_required('full_sequences_file') flags.mark_flag_as_required('pfam34_metadata') FLAGS = flags.FLAGS # Preprocessed Pfam-A seed 34.0 config. INT_KEYS = ('seq_key', 'fam_key', 'cla_key', 'seq_len', 'start', 'end') CI_KEY = 'ci' STR_KEYS = ('id', 'ac', 'ss') # Type aliases PfamExample = MutableMapping[str, Union[np.ndarray, int, str]] PfamSplit = List[PfamExample] UniprotKBContext = Mapping[str, Union[Sequence[int], bool, str]] def load_pfam_metadata(): """Loads Pfam-A seed metadata with vocabulary and additional key info.""" with tf.io.gfile.GFile(FLAGS.pfam34_metadata, 'r') as f: metadata = json.load(f) metadata['vocab'] = vocabulary.Vocabulary(**metadata['vocab']) return metadata def load_pfam_examples(pid_ths): """Loads Pfam-A seed TFRecords w/o UniprotKB context for each split.""" logging.info('Loading original Pfam-A seed examples...') examples_from_split = collections.defaultdict(list) ci_keys = tuple(f'{CI_KEY}_{pid}' for pid in pid_ths) ds_loader = specs.make_pfam34_loader(root_dir=FLAGS.data_dir, sub_dir='', extra_keys=INT_KEYS + ci_keys+ STR_KEYS, task=FLAGS.task) for split in FLAGS.splits: for ex in ds_loader.load(split).prefetch(tf.data.AUTOTUNE): ex = tf.nest.map_structure(lambda t: t.numpy(), ex) for key in STR_KEYS: ex[key] = ex[key].decode('utf-8') # Multiple Pfam entries can share the same UniprotKB ID, but are different # subsequences of that protein. ex['id'] = f"{ex['id']}/{ex['start']}-{ex['end']}" examples_from_split[split].append(ex) logging.info('Found %d Pfam-A seed examples for split %s.', len(examples_from_split[split]), split) return examples_from_split def load_uniprotkb_context(): """Loads UniprotKB sequences containing Pfam-A seed (sub)sequences.""" logging.info('Loading UniprotKB context from %s...', FLAGS.full_sequences_file) context_from_id = {} with tf.io.gfile.GFile(FLAGS.full_sequences_file, 'r') as f: _ = f.readline() # Discards CSV header. for line in f: pfam_id, uniprot_starts_str, full_sequence = line.strip().split(',') uniprot_starts = [int(s) if s else -1 for s in uniprot_starts_str.split(';')] context_from_id[pfam_id] = {'starts': uniprot_starts, 'has_repeats': len(uniprot_starts) > 1, 'mismatched': -1 in uniprot_starts, 'full_sequence': full_sequence} logging.info('Found %d UniprotKB context entries.', len(context_from_id)) return context_from_id def add_uniprotkb_context_to_pfam_examples( pfam_examples_from_split, uniprotkb_context_from_id, vocab): """Cross-references UniprotKB context sequences with Pfam-A seed examples.""" updated_pfam_examples_from_split = collections.defaultdict(list) for split, pfam_split in pfam_examples_from_split.items(): removed_pfam_ids = [] for ex in pfam_split: pfam_id = ex['id'] # Ensures all Pfam-A seed entries were cross-referenced against UniprotKB. if pfam_id not in uniprotkb_context_from_id: raise ValueError( f'Pfam entry {pfam_id} not present in {FLAGS.full_sequences_file}.') uniprotkb_context = uniprotkb_context_from_id[pfam_id] # Skips any Pfam entries that occur more than once in their UniprotKB # context (ambiguous ground-truth alignment) or whose sequences did not # perfectly match a subsequence in the UniprotKB context. if uniprotkb_context['has_repeats'] or uniprotkb_context['mismatched']: removed_pfam_ids.append(pfam_id) continue updated_pfam_examples_from_split[split].append(ex) # Encodes UniprotKB context sequence using the same vocabulary as # `ex['sequence']`. ex['full_sequence'] = vocab.encode(uniprotkb_context['full_sequence']) # Overrides start / end positions for rare cases in which Pfam-A seed # reports values inconsistent with UniprotKB context. if ex['start'] != uniprotkb_context['starts'][0]: logging.info('Overriding start / end for Pfam entry %s.', pfam_id) ex['start'] = uniprotkb_context['starts'][0] ex['end'] = ex['start'] + ex['seq_len'] - 1 logging.info( '%d Pfam entries in %s split removed for repeats / mismatches: %s.', len(removed_pfam_ids), split, removed_pfam_ids) return updated_pfam_examples_from_split def make_serialize_example_fn(pid_ths): """Returns fn for serialization of Pfam-A seed examples.""" ci_keys = tuple(f'{CI_KEY}_{pid}' for pid in pid_ths) def int64_feature(value): return tf.train.Feature(int64_list=tf.train.Int64List(value=value)) def str_feature(value, encoding='ascii'): value = bytes(value, encoding=encoding) return tf.train.Feature(bytes_list=tf.train.BytesList(value=[value])) def serialize_example_fn(ex): """Serializes the Pfam-A seed example for TFRecord storage.""" feature = {} for key in INT_KEYS + ci_keys: feature[key] = int64_feature([ex[key]]) for key in STR_KEYS: feature[key] = str_feature(ex[key]) feature['seq'] = int64_feature(ex['sequence']) feature['full_seq'] = int64_feature(ex['full_sequence']) proto = tf.train.Example(features=tf.train.Features(feature=feature)) return proto.SerializeToString() return serialize_example_fn def split_to_disk( out_dir, num_shards, pfam_split, serialize_example_fn): """Saves new Pfam-A seed 34.0 TFRecords with extra 'full_sequence' field.""" def gen(): for ex in pfam_split: yield serialize_example_fn(ex) def reduce_func(key, ds): filename = tf.strings.join( [out_dir, '/', tf.strings.as_string(key), '.tfrecords']) writer = tf.data.experimental.TFRecordWriter(filename) writer.write(ds.map(lambda _, x: x)) return tf.data.Dataset.from_tensors(filename) ds = tf.data.Dataset.from_generator( gen, output_signature=tf.TensorSpec(shape=(), dtype=tf.string)) ds = ds.enumerate() ds = ds.group_by_window( lambda i, _: i % num_shards, reduce_func, tf.int64.max) _ = list(ds) def main(_): start = time.time() metadata = load_pfam_metadata() pfam_examples_from_split = load_pfam_examples(metadata['pid_ths']) uniprotkb_context_from_id = load_uniprotkb_context() updated_pfam_examples_from_split = add_uniprotkb_context_to_pfam_examples( pfam_examples_from_split, uniprotkb_context_from_id, metadata['vocab']) serialize_example_fn = make_serialize_example_fn(metadata['pid_ths']) for split, pfam_split in updated_pfam_examples_from_split.items(): logging.info('Saving updated TFRecords for split %s...', split) out_dir = os.path.join(FLAGS.out_dir, f'{FLAGS.task}_with_ctx', split) tf.io.gfile.makedirs(out_dir) num_shards = (FLAGS.num_shards_train if split == 'train' else FLAGS.num_shards_eval) split_to_disk(out_dir, num_shards, pfam_split, serialize_example_fn) runtime = time.time() - start logging.info('Total time elapsed: %.3f seconds.', runtime) if __name__ == '__main__': app.run(main)
# Copyright (C) 2017 MongoDB Inc. # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero General Public License, version 3, # as published by the Free Software Foundation. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Affero General Public License for more details. # # You should have received a copy of the GNU Affero General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. # """Transform idl.syntax trees from the parser into well-defined idl.ast trees.""" from __future__ import absolute_import, print_function, unicode_literals import re from typing import Union from . import ast from . import bson from . import errors from . import syntax def _validate_single_bson_type(ctxt, idl_type, syntax_type): # type: (errors.ParserContext, Union[syntax.Type, ast.Field], unicode) -> bool """Validate bson serialization type is correct for a type.""" bson_type = idl_type.bson_serialization_type[0] # Any is only valid if it is the only bson type specified if bson_type == "any": return True if not bson.is_valid_bson_type(bson_type): ctxt.add_bad_bson_type_error(idl_type, syntax_type, idl_type.name, bson_type) return False # Validate bindata_subytpe if bson_type == "bindata": subtype = idl_type.bindata_subtype if subtype is None: subtype = "<unknown>" if not bson.is_valid_bindata_subtype(subtype): ctxt.add_bad_bson_bindata_subtype_value_error(idl_type, syntax_type, idl_type.name, subtype) elif idl_type.bindata_subtype is not None: ctxt.add_bad_bson_bindata_subtype_error(idl_type, syntax_type, idl_type.name, bson_type) return True def _validate_bson_types_list(ctxt, idl_type, syntax_type): # type: (errors.ParserContext, Union[syntax.Type, ast.Field], unicode) -> bool """Validate bson serialization type(s) is correct for a type.""" bson_types = idl_type.bson_serialization_type if len(bson_types) == 1: return _validate_single_bson_type(ctxt, idl_type, syntax_type) for bson_type in bson_types: if bson_type == "any": ctxt.add_bad_any_type_use_error(idl_type, syntax_type, idl_type.name) return False if not bson.is_valid_bson_type(bson_type): ctxt.add_bad_bson_type_error(idl_type, syntax_type, idl_type.name, bson_type) return False # V1 restiction: cannot mix bindata into list of types if bson_type == "bindata": ctxt.add_bad_bson_type_error(idl_type, syntax_type, idl_type.name, bson_type) return False # Cannot mix non-scalar types into the list of types if not bson.is_scalar_bson_type(bson_type): ctxt.add_bad_bson_scalar_type_error(idl_type, syntax_type, idl_type.name, bson_type) return False return True def _validate_type(ctxt, idl_type): # type: (errors.ParserContext, syntax.Type) -> None """Validate each type is correct.""" # Validate naming restrictions if idl_type.name.startswith("array<"): ctxt.add_array_not_valid_error(idl_type, "type", idl_type.name) _validate_type_properties(ctxt, idl_type, 'type') def _validate_cpp_type(ctxt, idl_type, syntax_type): # type: (errors.ParserContext, Union[syntax.Type, ast.Field], unicode) -> None """Validate the cpp_type is correct.""" # Validate cpp_type # Do not allow StringData, use std::string instead. if "StringData" in idl_type.cpp_type: ctxt.add_no_string_data_error(idl_type, syntax_type, idl_type.name) # We do not support C++ char and float types for style reasons if idl_type.cpp_type in ['char', 'wchar_t', 'char16_t', 'char32_t', 'float']: ctxt.add_bad_cpp_numeric_type_use_error(idl_type, syntax_type, idl_type.name, idl_type.cpp_type) # We do not support C++ builtin integer for style reasons for numeric_word in ['signed', "unsigned", "int", "long", "short"]: if re.search(r'\b%s\b' % (numeric_word), idl_type.cpp_type): ctxt.add_bad_cpp_numeric_type_use_error(idl_type, syntax_type, idl_type.name, idl_type.cpp_type) # Return early so we only throw one error for types like "signed short int" return # Check for std fixed integer types which are allowed if idl_type.cpp_type in ["std::int32_t", "std::int64_t", "std::uint32_t", "std::uint64_t"]: return # Check for std fixed integer types which are not allowed. These are not allowed even if they # have the "std::" prefix. for std_numeric_type in [ "int8_t", "int16_t", "int32_t", "int64_t", "uint8_t", "uint16_t", "uint32_t", "uint64_t" ]: if std_numeric_type in idl_type.cpp_type: ctxt.add_bad_cpp_numeric_type_use_error(idl_type, syntax_type, idl_type.name, idl_type.cpp_type) return def _validate_type_properties(ctxt, idl_type, syntax_type): # type: (errors.ParserContext, Union[syntax.Type, ast.Field], unicode) -> None """Validate each type or field is correct.""" # Validate bson type restrictions if not _validate_bson_types_list(ctxt, idl_type, syntax_type): return if len(idl_type.bson_serialization_type) == 1: bson_type = idl_type.bson_serialization_type[0] if bson_type == "any": # For any, a deserialer is required but the user can try to get away with the default # serialization for their C++ type. if idl_type.deserializer is None: ctxt.add_missing_ast_required_field_error(idl_type, syntax_type, idl_type.name, "deserializer") elif bson_type == "string": # Strings support custom serialization unlike other non-object scalar types if idl_type.deserializer is None: ctxt.add_missing_ast_required_field_error(idl_type, syntax_type, idl_type.name, "deserializer") elif not bson_type in ["object"]: if idl_type.deserializer is None: ctxt.add_missing_ast_required_field_error(idl_type, syntax_type, idl_type.name, "deserializer") if idl_type.deserializer is not None and "BSONElement" not in idl_type.deserializer: ctxt.add_not_custom_scalar_serialization_not_supported_error( idl_type, syntax_type, idl_type.name, bson_type) if idl_type.serializer is not None: ctxt.add_not_custom_scalar_serialization_not_supported_error( idl_type, syntax_type, idl_type.name, bson_type) else: # Now, this is a list of scalar types if idl_type.deserializer is None: ctxt.add_missing_ast_required_field_error(idl_type, syntax_type, idl_type.name, "deserializer") _validate_cpp_type(ctxt, idl_type, syntax_type) def _validate_types(ctxt, parsed_spec): # type: (errors.ParserContext, syntax.IDLSpec) -> None """Validate all types are correct.""" for idl_type in parsed_spec.symbols.types: _validate_type(ctxt, idl_type) def _bind_struct(ctxt, parsed_spec, struct): # type: (errors.ParserContext, syntax.IDLSpec, syntax.Struct) -> ast.Struct """ Bind a struct. - Validating a struct and fields. - Create the idl.ast version from the idl.syntax tree. """ ast_struct = ast.Struct(struct.file_name, struct.line, struct.column) ast_struct.name = struct.name ast_struct.description = struct.description ast_struct.strict = struct.strict # Validate naming restrictions if ast_struct.name.startswith("array<"): ctxt.add_array_not_valid_error(ast_struct, "struct", ast_struct.name) for field in struct.fields: ast_field = _bind_field(ctxt, parsed_spec, field) if ast_field: ast_struct.fields.append(ast_field) return ast_struct def _validate_ignored_field(ctxt, field): # type: (errors.ParserContext, syntax.Field) -> None """Validate that for ignored fields, no other properties are set.""" if field.optional: ctxt.add_ignored_field_must_be_empty_error(field, field.name, "optional") if field.default is not None: ctxt.add_ignored_field_must_be_empty_error(field, field.name, "default") def _validate_field_of_type_struct(ctxt, field): # type: (errors.ParserContext, syntax.Field) -> None """Validate that for fields with a type of struct, no other properties are set.""" if field.default is not None: ctxt.add_ignored_field_must_be_empty_error(field, field.name, "default") def _bind_field(ctxt, parsed_spec, field): # type: (errors.ParserContext, syntax.IDLSpec, syntax.Field) -> ast.Field """ Bind a field from the idl.syntax tree. - Create the idl.ast version from the idl.syntax tree. - Validate the resulting type is correct. """ ast_field = ast.Field(field.file_name, field.line, field.column) ast_field.name = field.name ast_field.description = field.description ast_field.optional = field.optional ast_field.cpp_name = field.name if field.cpp_name: ast_field.cpp_name = field.cpp_name # Validate naming restrictions if ast_field.name.startswith("array<"): ctxt.add_array_not_valid_error(ast_field, "field", ast_field.name) if field.ignore: ast_field.ignore = field.ignore _validate_ignored_field(ctxt, field) return ast_field (struct, idltype) = parsed_spec.symbols.resolve_field_type(ctxt, field) if not struct and not idltype: return None # If the field type is an array, mark the AST version as such. if syntax.parse_array_type(field.type): ast_field.array = True if field.default or (idltype and idltype.default): ctxt.add_array_no_default(field, field.name) # Copy over only the needed information if this a struct or a type if struct: ast_field.struct_type = struct.name ast_field.bson_serialization_type = ["object"] _validate_field_of_type_struct(ctxt, field) else: # Produce the union of type information for the type and this field. # Copy over the type fields first ast_field.cpp_type = idltype.cpp_type ast_field.bson_serialization_type = idltype.bson_serialization_type ast_field.bindata_subtype = idltype.bindata_subtype ast_field.serializer = idltype.serializer ast_field.deserializer = idltype.deserializer ast_field.default = idltype.default if field.default: ast_field.default = field.default # Validate merged type _validate_type_properties(ctxt, ast_field, "field") return ast_field def _bind_globals(parsed_spec): # type: (syntax.IDLSpec) -> ast.Global """Bind the globals object from the idl.syntax tree into the idl.ast tree by doing a deep copy.""" if parsed_spec.globals: ast_global = ast.Global(parsed_spec.globals.file_name, parsed_spec.globals.line, parsed_spec.globals.column) ast_global.cpp_namespace = parsed_spec.globals.cpp_namespace ast_global.cpp_includes = parsed_spec.globals.cpp_includes else: ast_global = ast.Global("<implicit>", 0, 0) # If no namespace has been set, default it do "mongo" ast_global.cpp_namespace = "mongo" return ast_global def bind(parsed_spec): # type: (syntax.IDLSpec) -> ast.IDLBoundSpec """Read an idl.syntax, create an idl.ast tree, and validate the final IDL Specification.""" ctxt = errors.ParserContext("unknown", errors.ParserErrorCollection()) bound_spec = ast.IDLAST() bound_spec.globals = _bind_globals(parsed_spec) _validate_types(ctxt, parsed_spec) for struct in parsed_spec.symbols.structs: if not struct.imported: bound_spec.structs.append(_bind_struct(ctxt, parsed_spec, struct)) if ctxt.errors.has_errors(): return ast.IDLBoundSpec(None, ctxt.errors) else: return ast.IDLBoundSpec(bound_spec, None)
# -*- coding: utf-8 -*- """ Created on Wed Sep 25 16:20:45 2019 @author: Sturla """ import numpy as np import matplotlib.pyplot as plt days = 59 #Days between 1.jan - 1.mars lambd = 1.5 #The parameter in the poisson process def sim_poisson(): '''Simulates the poisson process''' process_time_steps = [] value = 0 for i in range(days): value += np.random.poisson(lambd) process_time_steps.append(value) return np.array(process_time_steps) #Simulate the poisson process 10 times for i in range(10): plt.plot(sim_poisson()) plt.title("10 realizations of the Poisson Process", fontdict={'fontname': 'Times New Roman', 'fontsize': 21}, y=1.03) plt.ylabel('Number of claims') plt.xlabel('Time (days)') plt.ylim(0) plt.xlim(0) plt.show() def count_large(): ''' Counts how many times the process reaches above 100 in 1000 iterations, and returns the percentage of times this happens. ''' count = 0 for i in range(1000): sim = sim_poisson() sim_max = sim[-1] if sim_max > 100: count += 1 return float(count)/1000 print("The precentage of iterations larger than 100 is: " + str(count_large())) def expected_claim_and_var(): '''Returns the excpected number of claims''' realization = [] for i in range(1000): time_steps = sim_poisson() last_time_step = time_steps[-1] Z = 0 for j in range(last_time_step): C = np.random.exponential(1/10) Z += C realization.append(Z) return np.average(realization), np.var(realization) excepcted_claims_value, estimated_variance = expected_claim_and_var() print("The excpected value of the claims is: " + str(excepcted_claims_value)) print("The estimated variance of the claims is: " + str(estimated_variance))
# Generated by Django 2.2.8 on 2019-12-14 06:50 from django.db import migrations from ontask import models def change_action_types(apps, schema_editor): """Change the action type for some of the actions.""" Old_Action = apps.get_model('ontask', 'Action') for action in Old_Action.objects.all(): if action.action_type == 'send_list': action.action_type = models.Action.EMAIL_LIST action.save() continue if action.action_type == 'send_list_json': action.action_type = models.Action.JSON_LIST action.save() def change_log_types(apps, schema_editor): """Change the log type for some of the logs""" Old_Log = apps.get_model('ontask', 'Log') for log_item in Old_Log.objects.all(): if log_item.name == 'action_run_list': log_item.name = models.Log.ACTION_RUN_JSON_LIST log_item.save() continue if log_item.name == 'action_runjson': log_item.name = models.Log.ACTION_RUN_PERSONALIZED_JSON log_item.save() continue if log_item.name == 'action_run_send_list': log_item.name = models.Log.ACTION_RUN_EMAIL_LIST log_item.save() class Migration(migrations.Migration): dependencies = [ ('ontask', '0015_auto_20191214_1720'), ] operations = [ migrations.RunPython(code=change_action_types), migrations.RunPython(code=change_log_types), ]
#!/usr/bin/env python3 from wsgiref.simple_server import make_server def page(content, *args): yield b'<html><head><title>wsgi_example.py</title></head><body>' yield (content % args).encode('utf-8') yield b'</body></html>' def application(environ, start_response): if environ['PATH_INFO'] == '/': response = "<p>This is my web page built with python wsgi</p>" start_response('200 OK', [('Content-Type', 'text/html; charset=utf-8')]) return page(response) elif environ['PATH_INFO'] == '/operation': print('environ["QUERY_STRING"]:',environ["QUERY_STRING"]) params = environ["QUERY_STRING"].split("&") print('Parameters ',params) operator1 = params[0].split("=")[1] print('Operator 1:',operator1) operator2 = params[1].split("=")[1] print('Operator 2:',operator2) operation = params[2].split("=")[1] print('Operation:',operation) result = str(eval(operator1+operation+operator2)) print('Result:',result) response = "<p>The operation result is %s</p>" %result start_response('200 OK', [('Content-Type', 'text/html; charset=utf-8')]) return page(response) else: response = "<p>This URL is not valid</p>" start_response('404 Not Found', [('Content-Type', 'text/html; charset=utf-8')]) return page(response) if __name__ == '__main__': print('Listening on localhost:8080') server = make_server('localhost', 8080, application) server.serve_forever()
load("@rules_foreign_cc//tools/build_defs/shell_toolchain/toolchains:toolchain_mappings.bzl", "ToolchainMapping") ADD_TOOLCHAIN_MAPPINGS = [ ToolchainMapping( exec_compatible_with = [ "@rules_foreign_cc_toolchains_examples//:fancy_constraint_value", ], file = "@rules_foreign_cc_toolchains_examples//:fancy_platform_commands.bzl", ), ]
import json, subprocess from .. pyaz_utils import get_cli_name, get_params def create(resource_group, name, publisher_email, sku_name=None, sku_capacity=None, virtual_network=None, enable_managed_identity=None, enable_client_certificate=None, publisher_name, location=None, tags=None, no_wait=None): params = get_params(locals()) command = "az apim create " + params print(command) output = subprocess.run(command, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE) stdout = output.stdout.decode("utf-8") stderr = output.stderr.decode("utf-8") if stdout: return json.loads(stdout) print(stdout) else: raise Exception(stderr) print(stderr) def show(resource_group, name): params = get_params(locals()) command = "az apim show " + params print(command) output = subprocess.run(command, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE) stdout = output.stdout.decode("utf-8") stderr = output.stderr.decode("utf-8") if stdout: return json.loads(stdout) print(stdout) else: raise Exception(stderr) print(stderr) def list(resource_group=None): params = get_params(locals()) command = "az apim list " + params print(command) output = subprocess.run(command, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE) stdout = output.stdout.decode("utf-8") stderr = output.stderr.decode("utf-8") if stdout: return json.loads(stdout) print(stdout) else: raise Exception(stderr) print(stderr) def delete(resource_group, name, yes=None, no_wait=None): params = get_params(locals()) command = "az apim delete " + params print(command) output = subprocess.run(command, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE) stdout = output.stdout.decode("utf-8") stderr = output.stderr.decode("utf-8") if stdout: return json.loads(stdout) print(stdout) else: raise Exception(stderr) print(stderr) def update(resource_group, name, publisher_email=None, sku_name=None, sku_capacity=None, virtual_network=None, publisher_name=None, enable_managed_identity=None, enable_client_certificate=None, tags=None, set=None, add=None, remove=None, force_string=None, no_wait=None): params = get_params(locals()) command = "az apim update " + params print(command) output = subprocess.run(command, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE) stdout = output.stdout.decode("utf-8") stderr = output.stderr.decode("utf-8") if stdout: return json.loads(stdout) print(stdout) else: raise Exception(stderr) print(stderr) def check_name(name): params = get_params(locals()) command = "az apim check-name " + params print(command) output = subprocess.run(command, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE) stdout = output.stdout.decode("utf-8") stderr = output.stderr.decode("utf-8") if stdout: return json.loads(stdout) print(stdout) else: raise Exception(stderr) print(stderr) def backup(resource_group, name, backup_name, storage_account_name, storage_account_container, storage_account_key, no_wait=None): params = get_params(locals()) command = "az apim backup " + params print(command) output = subprocess.run(command, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE) stdout = output.stdout.decode("utf-8") stderr = output.stderr.decode("utf-8") if stdout: return json.loads(stdout) print(stdout) else: raise Exception(stderr) print(stderr) def restore(resource_group, name, backup_name, storage_account_name, storage_account_container, storage_account_key, no_wait=None): params = get_params(locals()) command = "az apim restore " + params print(command) output = subprocess.run(command, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE) stdout = output.stdout.decode("utf-8") stderr = output.stderr.decode("utf-8") if stdout: return json.loads(stdout) print(stdout) else: raise Exception(stderr) print(stderr) def apply_network_updates(resource_group, name, location=None, no_wait=None): params = get_params(locals()) command = "az apim apply-network-updates " + params print(command) output = subprocess.run(command, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE) stdout = output.stdout.decode("utf-8") stderr = output.stderr.decode("utf-8") if stdout: return json.loads(stdout) print(stdout) else: raise Exception(stderr) print(stderr) def wait(resource_group, name, timeout=None, interval=None, deleted=None, created=None, updated=None, exists=None, custom=None): params = get_params(locals()) command = "az apim wait " + params print(command) output = subprocess.run(command, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE) stdout = output.stdout.decode("utf-8") stderr = output.stderr.decode("utf-8") if stdout: return json.loads(stdout) print(stdout) else: raise Exception(stderr) print(stderr)
import sys from .antlr import EOF, CommonToken as Tok, TokenStream, TokenStreamException import struct from . import ExcelFormulaParser from re import compile as recompile, match, LOCALE, UNICODE, IGNORECASE, VERBOSE int_const_pattern = r"\d+\b" flt_const_pattern = r""" (?: (?: \d* \. \d+ ) # .1 .12 .123 etc 9.1 etc 98.1 etc | (?: \d+ \. ) # 1. 12. 123. etc ) # followed by optional exponent part (?: [Ee] [+-]? \d+ ) ? """ str_const_pattern = r'"(?:[^"]|"")*"' #range2d_pattern = recompile(r"\$?[A-I]?[A-Z]\$?\d+:\$?[A-I]?[A-Z]\$?\d+" ref2d_r1c1_pattern = r"[Rr]0*[1-9][0-9]*[Cc]0*[1-9][0-9]*" ref2d_pattern = r"\$?[A-I]?[A-Z]\$?0*[1-9][0-9]*" true_pattern = r"TRUE\b" false_pattern = r"FALSE\b" if_pattern = r"IF\b" choose_pattern = r"CHOOSE\b" name_pattern = r"\w[\.\w]*" quotename_pattern = r"'(?:[^']|'')*'" #### It's essential that this bracket be non-grouping. ne_pattern = r"<>" ge_pattern = r">=" le_pattern = r"<=" pattern_type_tuples = ( (flt_const_pattern, ExcelFormulaParser.NUM_CONST), (int_const_pattern, ExcelFormulaParser.INT_CONST), (str_const_pattern, ExcelFormulaParser.STR_CONST), # (range2d_pattern , ExcelFormulaParser.RANGE2D), (ref2d_r1c1_pattern, ExcelFormulaParser.REF2D_R1C1), (ref2d_pattern , ExcelFormulaParser.REF2D), (true_pattern , ExcelFormulaParser.TRUE_CONST), (false_pattern , ExcelFormulaParser.FALSE_CONST), (if_pattern , ExcelFormulaParser.FUNC_IF), (choose_pattern , ExcelFormulaParser.FUNC_CHOOSE), (name_pattern , ExcelFormulaParser.NAME), (quotename_pattern, ExcelFormulaParser.QUOTENAME), (ne_pattern, ExcelFormulaParser.NE), (ge_pattern, ExcelFormulaParser.GE), (le_pattern, ExcelFormulaParser.LE), ) _re = recompile( '(' + ')|('.join([i[0] for i in pattern_type_tuples]) + ')', VERBOSE+LOCALE+IGNORECASE) _toktype = [None] + [i[1] for i in pattern_type_tuples] # need dummy at start because re.MatchObject.lastindex counts from 1 single_char_lookup = { '=': ExcelFormulaParser.EQ, '<': ExcelFormulaParser.LT, '>': ExcelFormulaParser.GT, '+': ExcelFormulaParser.ADD, '-': ExcelFormulaParser.SUB, '*': ExcelFormulaParser.MUL, '/': ExcelFormulaParser.DIV, ':': ExcelFormulaParser.COLON, ';': ExcelFormulaParser.SEMICOLON, ',': ExcelFormulaParser.COMMA, '(': ExcelFormulaParser.LP, ')': ExcelFormulaParser.RP, '&': ExcelFormulaParser.CONCAT, '%': ExcelFormulaParser.PERCENT, '^': ExcelFormulaParser.POWER, '!': ExcelFormulaParser.BANG, } class Lexer(TokenStream): def __init__(self, text): self._text = text[:] self._pos = 0 self._line = 0 def isEOF(self): return len(self._text) <= self._pos def curr_ch(self): return self._text[self._pos] def next_ch(self, n = 1): self._pos += n def is_whitespace(self): return self.curr_ch() in " \t\n\r\f\v" def match_pattern(self): m = _re.match(self._text, self._pos) if not m: return None self._pos = m.end(0) return Tok(type = _toktype[m.lastindex], text = m.group(0), col = m.start(0) + 1) def nextToken(self): # skip whitespace while not self.isEOF() and self.is_whitespace(): self.next_ch() if self.isEOF(): return Tok(type = EOF) # first, try to match token with 2 or more chars t = self.match_pattern() if t: return t # second, we want 1-char tokens te = self.curr_ch() try: ty = single_char_lookup[te] except KeyError: raise TokenStreamException( "Unexpected char %r in column %u." % (self.curr_ch(), self._pos)) self.next_ch() return Tok(type=ty, text=te, col=self._pos) if __name__ == '__main__': try: for t in Lexer(""" 1.23 456 "abcd" R2C2 a1 iv65536 true false if choose a_name 'qname' <> >= <= """): print(t) except TokenStreamException as e: print("error:", e)
# 202101 - Daniel Meier import uuid import requests import json import argparse import logging import ipaddress import os from datetime import datetime ################################################################################################# # set args # ################################################################################################# parser = argparse.ArgumentParser() parser.add_argument('-o', '--outfile', help='Target file name (ie. proxy.pac') args = parser.parse_args() ################################################################################################# params={} pacdata={} if not args.outfile: filename=str(datetime.now()).replace(' ','-').replace('.','_')+'.pac' else: filename=args.outfile def fun_setup(): try: with open('params.json', 'r') as paramsfile: json.load(paramsfile) except: print("parameter file not found or invalid, please define! Downloading template, please adjust!") with open("params.json", "w") as paramsfile: tmpl_url = 'https://raw.githubusercontent.com/leinadred/Py-PACBuilder/main/params.json_tmpl' r = requests.get(tmpl_url, verify=False) with open("params.json_tmpl","w") as file: file.write(r.content) raise ValueError("Downloaded file 'params.json_tmpl' - now you can set your preferencecs.") else: print("file found, using it!") with open("params.json","r") as paramsjson: params = json.load(paramsjson) #print(dir(params)) #print(params) if params["general"]["v_debug"]=='True': logging.basicConfig(level=logging.DEBUG) logging.debug("################## Starting - With extended Logging ##################") logging.debug("################## Setup Done, downloading Feeds ##################") return params def fun_downloadfeeds(): params = fun_setup() n=1 for feeds in params["feeds"]: print("Feed to work on: "+str(params["feeds"][feeds]["feed_name"])+"...") logging.debug("################## Downloading from "+str(params["feeds"][feeds]["feed_url"])+" ##################") #feedcontent = str("feedcontent_"+str(n)) if params["feeds"][feeds]["feed_uuid"]=="True": feedcontent = requests.get(params["feeds"][feeds]["feed_url"]+params["feeds"][feeds]["feed_guid"], verify=False) else: feedcontent = requests.get(params["feeds"][feeds]["feed_url"], verify=False) feedname=str(params["feeds"][feeds]["feed_name"]) pacdata[feedname]={} try: feedcontent.status_code==200 except: print("Download failed or file could not be parsed! (is it json formatted?)") raise(SystemExit) else: #pacdata[feedname]['ServiceArea']={} n+=1 fun_extractfromfeed(feedname,feedcontent,params,feeds) fun_pacbuilding(pacdata,params,filename) with open (filename,'a+') as file: file.write('else return "{0}";\n'.format(params['actions'][params['default']['act_todo']])) file.write(" }") def fun_extractfromfeed(feedname,feedcontent,params,feeds): cnt_url=1 cnt_ip4=1 cnt_ip6=1 if params['feeds'][feeds]['feed_format']=='json': for feedcont_entry in feedcontent.json(): pacdata[feedname]['action']={} pacdata[feedname]['action']=params["feeds"][feeds]["pac_action"]["act_todo"] pacdata[feedname][feedcont_entry['serviceArea']]={} pacdata[feedname][feedcont_entry['serviceArea']]['urls']={} pacdata[feedname][feedcont_entry['serviceArea']]['ips']={} pacdata[feedname][feedcont_entry['serviceArea']]['ips']['v4']={} pacdata[feedname][feedcont_entry['serviceArea']]['ips']['v6']={} for feedcont_entry in feedcontent.json(): if feedcont_entry['required']==False and not params["feeds"][feeds]['feed_option'] == 'all': print("Not Required: "+str(pacdata[feedname][feedcont_entry['serviceArea']])) else: for fe_key in feedcont_entry.keys(): if fe_key == 'urls': pacdata[feedname][feedcont_entry['serviceArea']]['urls'][cnt_url]={} for entry in feedcont_entry['urls']: pacdata[feedname][feedcont_entry['serviceArea']]['urls'][cnt_url]=entry cnt_url=cnt_url+1 if fe_key == 'ips': #pacdata[feedname]['ips'][cnt_ip]={} for entry in feedcont_entry['ips']: try: ipaddress.IPv4Network(entry) except: try: ipaddress.IPv6Network(entry) except: print("something weird with address "+entry) else: pacdata[feedname][feedcont_entry['serviceArea']]['ips']['v6'][cnt_ip6]=entry cnt_ip6=cnt_ip6+1 else: pacdata[feedname][feedcont_entry['serviceArea']]['ips']['v4'][cnt_ip4]=entry cnt_ip4=cnt_ip4+1 elif params['feeds'][feeds]['feed_format']=='wsa-csv': cnt_site=1 cnt_ip4=1 cnt_ip6=1 feedcont_entry='from-wsa-csv' pacdata[feedname]['action']={} pacdata[feedname]['action']=params["feeds"][feeds]["pac_action"]["act_todo"] pacdata[feedname][feedcont_entry]={} pacdata[feedname][feedcont_entry]['ips']={} pacdata[feedname][feedcont_entry]['urls']={} pacdata[feedname][feedcont_entry]['ips']['v4']={} pacdata[feedname][feedcont_entry]['ips']['v6']={} pacdata[feedname][feedcont_entry]['action']=params['feeds'][feeds]['pac_action']['act_todo'] for destination in feedcontent.text.splitlines(): if destination.split(',')[0][0]=='.': pacdata[feedname][feedcont_entry]['urls'][cnt_site]=destination.split(',')[0].replace('.','*.',1) else: pacdata[feedname][feedcont_entry]['urls'][cnt_site]=destination.split(',')[0] cnt_site+=1 pass elif params['feeds'][feeds]['feed_format']=='csv': cnt_site=1 cnt_ip4=1 cnt_ip6=1 feedcont_entry='csv' pacdata[feedname]['action']={} pacdata[feedname]['action']=params["feeds"][feeds]["pac_action"]["act_todo"] pacdata[feedname][feedcont_entry]={} pacdata[feedname][feedcont_entry]['urls']={} pacdata[feedname][feedcont_entry]['ips']={} pacdata[feedname][feedcont_entry]['ips']['v4']={} pacdata[feedname][feedcont_entry]['ips']['v6']={} pacdata[feedname][feedcont_entry]['action']=params['feeds'][feeds]['pac_action']['act_todo'] for destination in feedcontent.text.split(','): if destination=='':print('found empty value, ignoring') else: try: ipaddress.ip_network(destination) except: #domainname if destination[0]=='.': pacdata[feedname][feedcont_entry]['urls'][cnt_site]=destination.replace('.','*.',1) else: pacdata[feedname][feedcont_entry]['urls'][cnt_site]=destination cnt_site+=1 else: try: ipaddress.IPv4Network(destination) except: try: ipaddress.IPv6Network(destination) except: print("something is wrong with {0}".format(destination)) else: pacdata[feedname][feedcont_entry['serviceArea']]['ips']['v6'][cnt_ip6]=destination else: if destination[0]=='.': pacdata[feedname][feedcont_entry]['urls'][cnt_site]=destination.replace('.','*.',1) else: pacdata[feedname][feedcont_entry]['urls'][cnt_site]=destination cnt_site+=1 elif params['feeds'][feedname]['feed_format']=='plain': pass # FUTURE Build, Plain text or other formats return pacdata def fun_pacbuilding(pacdata,params,filename): #filename=str(datetime.now()).replace(' ','-').replace('.','_')+'.pac' try: with open (filename,'r'): print('file exists') except: with open(filename, 'w') as file: file.write else: filename=str(datetime.now()).replace(' ','-').replace('.','_')+'_1.pac' print('generating new file') with open (filename,'w') as file: file.write print('pacfile all is written to: '+filename) with open (filename,'a+') as file: file.write("function FindProxyForURL(url, host) {\n") #DEBUG #print(pacdata) line='' pacline={} isfirst=True for feedname in list(pacdata.keys()): #Feeds if line =='' and isfirst==True: line+='if (' isfirst=False else: line+='else if(' for feedservice in list(pacdata[feedname].keys()): #Parts of Feeds, like "Skype","Exchange" if not feedservice == 'action': for feeditemtype in pacdata[feedname][feedservice]: # type - URLs/IP if feeditemtype=='urls': for feeditem in pacdata[feedname][feedservice][feeditemtype]: if line =='' and isfirst==True: line+='if (' isfirst=False pacline={} pacline['targetline']={} elif line =='': line+='else if(' pacline['targetline']={} if pacdata[feedname][feedservice][feeditemtype][feeditem].startswith('*.'): line='if (shExpMatch(host, "{0}") ||\n'.format(pacdata[feedname][feedservice][feeditemtype][feeditem]) else: line='if (dnsDomainIs(host, "{0}") ||\n'.format(pacdata[feedname][feedservice][feeditemtype][feeditem]) else: if pacdata[feedname][feedservice][feeditemtype][feeditem].startswith('*.'): if feeditem==1: line+='shExpMatch(host, "{0}") ||\n'.format(pacdata[feedname][feedservice][feeditemtype][feeditem]) else: line+='\tshExpMatch(host, "{0}") ||\n'.format(pacdata[feedname][feedservice][feeditemtype][feeditem]) else: line+='\tdnsDomainIs(host, "{0}") ||\n'.format(pacdata[feedname][feedservice][feeditemtype][feeditem]) if feeditemtype=='ips': for ipver in pacdata[feedname][feedservice][feeditemtype]: for feeditem in pacdata[feedname][feedservice][feeditemtype][ipver]: if line =='' and isfirst==True: line+='if (' pacline={} pacline['targetline']={} elif line =='': line+='else if (isInNet(host, "{0}", "{1}") || isInNet(dnsResolve(host), "{0}", "{1}") ||\n'.format(str(ipaddress.ip_network(pacdata[feedname][feedservice][feeditemtype][ipver][feeditem]).network_address), str(ipaddress.ip_network(pacdata[feedname][feedservice][feeditemtype][ipver][feeditem]).netmask)) else: line+='\tisInNet(host, "{0}", "{1}") || isInNet(dnsResolve(host), "{0}", "{1}") ||\n'.format(str(ipaddress.ip_network(pacdata[feedname][feedservice][feeditemtype][ipver][feeditem]).network_address), str(ipaddress.ip_network(pacdata[feedname][feedservice][feeditemtype][ipver][feeditem]).netmask)) line=line[:-3]+')\n\t\t\treturn "{0}";\n'.format(params['actions'][pacdata[feedname]['action']]) pacline['targetline']=line with open (filename,'a+') as file: file.write(pacline['targetline']) line='' pacline.clear() for content in list(params['static'].keys()): if content.startswith('domains_'): for domainitem in params['static'][content]['destdomains']['names'].split(','): if line =='' and isfirst==True: line+='if (' isfirst=False elif line =='': line+='else if(' if domainitem.startswith('*.'): line+='shExpMatch(host, "{0}") ||\n'.format(domainitem).replace(' ','') else: line+='dnsDomainIs(host, "{0}") ||\n'.format(domainitem).replace(' ','') else: if domainitem.startswith('*.'): line+='\tshExpMatch(host, "{0}") ||\n'.format(domainitem).replace(' ','') else: line+='\tdnsDomainIs(host, "{0}") ||\n'.format(domainitem).replace(' ','') line=line[:-3]+')\n\t\t\treturn "{0}";\n'.format(params['actions'][params['static'][content]['pac_action']['act_todo']]) pacline['targetline']=line with open (filename,'a+') as file: file.write(pacline['targetline']) pacline.clear() line='' elif content.startswith('ipscopes_'): for ipver in params['static'][content]: if not ipver =='pac_action': for ipitem in params['static'][content][ipver]['networks'].split(','): if not ipitem=="": if line =='' and isfirst==True: line+='if (' isfirst=False elif line =='': line+='else if(' try: str(ipaddress.ip_network(str([ipitem]).replace('[','').replace(']','').replace('\'',''))) except: print("ERROR with network "+ipitem) raise(SystemExit) line+='isInNet(host, "{0}", "{1}") || isInNet(dnsResolve(host), "{0}", "{1}") ||\n'.format(str(ipaddress.ip_network(str([ipitem]).replace('[','').replace(']','').replace('\'','')).network_address), str(ipaddress.ip_network(str([ipitem]).replace('[','').replace(']','').replace('\'','')).netmask)) else: line+='\tisInNet(host, "{0}", "{1}") || isInNet(dnsResolve(host), "{0}", "{1}") ||\n'.format(str(ipaddress.ip_network(str([ipitem]).replace('[','').replace(']','').replace('\'','')).network_address), str(ipaddress.ip_network(str([ipitem]).replace('[','').replace(']','').replace('\'','')).netmask)) line=line[:-3]+')\n\t\t\treturn "{0}";\n'.format(params['actions'][params['static'][content]['pac_action']['act_todo']]) pacline['targetline']=line with open (filename,'a+') as file: file.write(pacline['targetline']) pacline.clear() line='' if __name__ == "__main__": fun_downloadfeeds()
from bitcoinrpc.authproxy import AuthServiceProxy, JSONRPCException import discord from discord.ext import commands from discord_slash import cog_ext from discord_slash import SlashCommand from discord_slash import SlashContext from decimal import Decimal import time import user_db import config import utility class Claim(commands.Cog): def __init__(self, bot): if not hasattr(bot, "slash"): bot.slash = SlashCommand(bot, override_type=True, auto_register=True, auto_delete=True) self.bot = bot self.bot.slash.get_cog_commands(self) def cog_unload(self): self.bot.slash.remove_cog_commands(self) async def _make_claim(self,ctx): client = AuthServiceProxy(f'http://{config.rpc_user}:{config.rpc_password}@{config.ip}:{config.rpc_port}') claim = user_db.can_claim(ctx.author.id) if claim[0]: if client.getbalance(config.faucet_wallet, config.confirm) > config.faucet: user_db.update_claim(ctx.author.id) client.move(config.faucet_wallet, str(ctx.author.id), float(config.faucet)) embed = await utility.make_embed(ctx,self.bot, title=":tada: Congratulation :tada:", color=0x4b8b3b) embed.add_field(name=f'You got {config.faucet} {config.currency}', value=f'Your balance is now {utility.moneyfmt(client.getbalance(str(ctx.author.id), config.confirm))} {config.currency}') return embed else: return await utility.make_embed(ctx,self.bot, title="Not enough funds", color=0xd0312d) else: to_wait = (claim[1] + config.faucet_time) - int(time.time()) return await utility.make_embed(ctx,self.bot, title=f'You have to wait {int(to_wait / 3600):02}:{int(to_wait / 60):02}:{int(to_wait % 60):02}', color=0xd0312d) @commands.command() async def claim(self,ctx): embed = await self._make_claim(ctx) await ctx.channel.send(embed=embed) @cog_ext.cog_slash(name="claim", description=f'Claim some Free {config.currency}', guild_ids=config.guilds) async def claim_slash(self, ctx: SlashContext): ctx.author = await self.bot.fetch_user(ctx.author) embed = await self._make_claim(ctx) await ctx.send(embeds=[embed]) def setup(bot): bot.add_cog(Claim(bot))
from django.core.management.base import BaseCommand from shost import setup class Command(BaseCommand): help = 'Setup the app' def handle(self, *args, **options): self.stdout.write('Starting setup...') setup.setup() self.stdout.write(self.style.SUCCESS('Setup successful!'))
from unittest.mock import MagicMock, PropertyMock import pytest from aioddd import ( BadRequestError, BaseError, ConflictError, NotFoundError, UnauthorizedError, UnknownError, ) from aioddd.testing import sanitize_objects from orjson import loads from pydantic import BaseModel, ValidationError from pydantic.error_wrappers import ErrorWrapper from starlette.datastructures import URL from starlette.exceptions import HTTPException from project.apps.api.middleware.exception_handler import exception_handler @pytest.mark.parametrize( 'code,status,err', [ ('unknown', 500, Exception()), ('unauthorized', 401, HTTPException(401)), ('not_found', 404, HTTPException(404)), ('invalid_request_validation', 400, ValidationError([ErrorWrapper(Exception(), '')], BaseModel)), ('code', 500, BaseError.create()), ('unauthorized', 401, UnauthorizedError.create()), ('not_found', 404, NotFoundError.create()), ('conflict', 409, ConflictError.create()), ('bad_request', 400, BadRequestError.create()), ('unknown', 500, UnknownError.create()), ], ) def test_exception_handler(code: str, status: int, err: Exception) -> None: mock_request = MagicMock() type(mock_request).url = PropertyMock(return_value=URL('/')) res = exception_handler(mock_request, err, False) expected = {'code': code, 'status': str(status)} assert res.status_code == status actual = loads(res.body) assert 'errors' in actual and len(actual['errors']) == 1 actual = sanitize_objects(expected, actual['errors'][0]) assert actual == expected, f'"Actual: {actual}, Expected: {expected}'
# # Copyright (c) 2019-2020 Mike's Pub, see https://github.com/mikespub-org # Licensed under the MIT license: http://www.opensource.org/licenses/mit-license.php import json import os.path # from btfs import sessions # from btfs.auth import AuthorizedUser from .model import Chunk, Dir, File, Path PAGE_SIZE = 10 KNOWN_MODELS = { "Path": Path, "Dir": Dir, "File": File, "Chunk": Chunk, # "AuthorizedUser": AuthorizedUser, # "AuthSession": sessions.AuthSession, } LIST_CONFIG = {} config_file = os.path.join(os.path.dirname(__file__), "config.json") # with open(config_file, "w") as fp: # json.dump(LIST_CONFIG, fp, indent=2) with open(config_file) as fp: LIST_CONFIG = json.load(fp) for kind in LIST_CONFIG: truncate_list = LIST_CONFIG[kind].get("truncate", []) truncate_list.extend(LIST_CONFIG[kind].get("pickled", [])) truncate_list.extend(LIST_CONFIG[kind].get("image", [])) if len(truncate_list) > 0: LIST_CONFIG[kind]["truncate_list"] = truncate_list def get_list_config(kind, what, default=[]): # if "/" in kind: # kind = kind.split("/")[-1] if kind in LIST_CONFIG: return LIST_CONFIG[kind].get(what, default) return default
# import modules from math import radians, cos, sin, asin, sqrt import urllib.request import urllib import json import xml.etree.ElementTree as ET from operator import itemgetter import requests # create class with station coordinates/status, and methods to # find nearest bikes and docks class LoadStations: """ class loads stations with geo coordinates """ def __init__(self, latitude, longitude): self.latitude = latitude self.longitude = longitude # converts latitude/longitude into country/city name using # Google Maps API url = "http://maps.googleapis.com/maps/api/geocode/json?" url += "latlng=%s,%s&sensor=false" % (latitude, longitude) v = urllib.request.urlopen(url).read() j = json.loads(v) try: components = j['results'][0]['address_components'] except: components = [] country = town = None for c in components: if "country" in c['types']: country = c['long_name'] if "locality" in c['types']: town = c['long_name'] # query for station locations and status if country/city is # United States/Washington area if country == 'United States' and town in ['Washington','Arlington','Alexandria']: xml_path = 'https://www.capitalbikeshare.com/data/stations/' \ 'bikeStations.xml' tree = ET.parse(urllib.request.urlopen(xml_path)) root = tree.getroot() station_location = dict() station_status = dict() for child in root: station_location[child[1].text] = \ {'Latitude': float(child[4].text), 'Longitude': float(child[5].text)} station_status[child[1].text] = [child[12].text, child[13].text] self.station_location = station_location self.station_status = station_status # query for station locations and status if country/city is # United States/New York elif country == 'United States' and town in 'New York': station_location = dict() station_status = dict() url = 'https://www.citibikenyc.com/stations/json' v = urllib.request.urlopen(url).read() j = json.loads(v) for i in j['stationBeanList']: station_location[i['stationName']] = \ {'Latitude': i['latitude'], 'Longitude': i['longitude']} station_status[i['stationName']] = \ [i['availableBikes'], i['availableDocks']] self.station_location = station_location self.station_status = station_status # query for station locations and status if country/city is # United States/Chicago elif country == 'United States' and town in 'Chicago': station_location = dict() station_status = dict() url = 'https://www.divvybikes.com/stations/json' v = urllib.request.urlopen(url).read() j = json.loads(v) for i in j['stationBeanList']: station_location[i['stationName']] = \ {'Latitude': i['latitude'], 'Longitude': i['longitude']} station_status[i['stationName']] = \ [i['availableBikes'], i['availableDocks']] self.station_location = station_location self.station_status = station_status # search for station locations and status if # country/city is Canada/Toronto elif country == 'Canada' and town in 'Toronto': station_location = dict() station_status = dict() url = 'http://www.bikesharetoronto.com/stations/json' v = urllib.request.urlopen(url).read() j = json.loads(v) for i in j['stationBeanList']: station_location[i['stationName']] = \ {'Latitude': i['latitude'], 'Longitude': i['longitude']} station_status[i['stationName']] = \ [i['availableBikes'], i['availableDocks']] self.station_location = station_location self.station_status = station_status # query for station locations and status if # country/city is United States/San Francisco Bay area elif country == 'United States' \ and town in ['San Francisco','Palo Alto', 'Redwood City', 'Mountain View', 'San Jose']: station_location = dict() station_status = dict() url = 'http://www.bayareabikeshare.com/stations/json' v = urllib.request.urlopen(url).read() j = json.loads(v) for i in j['stationBeanList']: station_location[i['stationName']] = \ {'Latitude': i['latitude'], 'Longitude': i['longitude']} station_status[i['stationName']] = \ [i['availableBikes'], i['availableDocks']] self.station_location = station_location self.station_status = station_status elif country == 'United States' and town in 'Philadelphia': station_location = dict() station_status = dict() url = 'https://www.rideindego.com/stations/json/' class MyOpener(urllib.request.FancyURLopener): version = 'Mozilla/5.0 (Windows; U; Windows NT 5.1; it; ' \ 'rv:1.8.1.11)Gecko/20071127 Firefox/2.0.0.11' myopener = MyOpener() v = myopener.open(url) j = json.load(v) for i in j['features']: station_location[i['properties']['name']] = \ {'Latitude': float(i['geometry']['coordinates'][1]), 'Longitude': float(i['geometry']['coordinates'][0])} station_status[i['properties']['name']] = \ [i['properties']['bikesAvailable'], i['properties']['docksAvailable']] self.station_location = station_location self.station_status = station_status # query for station locations and status if # country/city is Canada/Montreal elif country == 'Canada' and town in 'Montréal': xml_path = 'http://montreal.bixi.com/data/bikeStations.xml' tree = ET.parse(urllib.request.urlopen(xml_path)) root = tree.getroot() station_location = dict() station_status = dict() for child in root: station_location[child[1].text] = \ {'Latitude': float(child[4].text), 'Longitude': float(child[4].text)} station_status[child[1].text] = \ [child[12].text, child[13].text] self.station_location = station_location self.station_status = station_status # query for station locations and status if # country/city is United Kingdom/London elif country == 'United Kingdom' and town in 'London': xml_path = 'https://tfl.gov.uk/tfl/syndication/feeds/cycle-hire/livecyclehireupdates.xml' root = ET.fromstring(requests.get(xml_path).content) station_location = dict() station_status = dict() for child in root: station_location[child[1].text] = \ {'Latitude': float(child[3].text), 'Longitude': float(child[4].text)} station_status[child[1].text] = [child[10].text, child[11].text] self.station_location = station_location self.station_status = station_status # query for station locations and status if # country/city is United States/Boston elif country == 'United States' and town in 'Boston': xml_path = 'http://www.thehubway.com/data/stations/bikeStations.xml' tree = ET.parse(urllib.request.urlopen(xml_path)) root = tree.getroot() station_location = dict() station_status = dict() for child in root: station_location[child[1].text] = \ {'Latitude': float(child[4].text), 'Longitude': float(child[5].text)} station_status[child[1].text] = [child[12].text, child[13].text] self.station_location = station_location self.station_status = station_status # query for station locations and status if # country/city is United States/Minneapolis elif country == 'United States' and town in 'Minneapolis': xml_path = 'https://secure.niceridemn.org/data2/bikeStations.xml' tree = ET.parse(urllib.request.urlopen(xml_path)) root = tree.getroot() station_location = dict() station_status = dict() for child in root: station_location[child[1].text] = \ {'Latitude': float(child[5].text), 'Longitude': float(child[6].text)} station_status[child[1].text] = [child[13].text, child[14].text] self.station_location = station_location self.station_status = station_status def distance(self, lon1, lat1, lon2, lat2): """ Calculate the great circle distance between two points on the earth (specified in decimal degrees) """ # convert decimal degrees to radians lon1, lat1, lon2, lat2 = map(radians, [lon1, lat1, lon2, lat2]) # haversine formula dlon = lon2 - lon1 dlat = lat2 - lat1 a = sin(dlat/2)**2 + cos(lat1) * cos(lat2) * sin(dlon/2)**2 c = 2 * asin(sqrt(a)) km = 6367 * c return round(km * 0.621371, 2) def find_closest_bike(self): """ Finds closest station with available bike based on passed coordinates and returns sorted list of three closest stations """ closest_station = [] station_availability = self.station_status for station in self.station_location.keys(): if int(station_availability[station][0]) >= 2: closest_station.append( [station, self.distance(float(self.longitude), float(self.latitude), self.station_location[station]['Longitude'], self.station_location[station]['Latitude']), station_availability[station][0], self.station_location[station]['Latitude'], self.station_location[station]['Longitude']]) else: continue return sorted(closest_station, key=itemgetter(1))[0:5] def find_closest_dock(self): """ Funds closest station with available bike based on passed coordinates and returns sorted list of three closest stations """ closest_station = [] station_availability = self.station_status for station in self.station_location.keys(): if int(station_availability[station][1]) >= 2: closest_station.append( [station, self.distance(float(self.longitude), float(self.latitude), self.station_location[station]['Longitude'], self.station_location[station]['Latitude']), station_availability[station][1], self.station_location[station]['Latitude'], self.station_location[station]['Longitude']]) else: continue return sorted(closest_station, key=itemgetter(1))[0:5]
import numpy as np def extract_snippets(data,*,times,snippet_size): M = data.shape[1] T = snippet_size L = len(times) Tmid = int(np.floor(T / 2)) snippets = np.zeros((L, T, M),dtype='float32') for j in range(L): t1 = times[j] - Tmid t2 = t1+snippet_size snippets[j, :, :] = data[t1:t2, :] return snippets
# Copyright (c) 2017-2022 Digital Asset (Switzerland) GmbH and/or its affiliates. All rights reserved. # SPDX-License-Identifier: Apache-2.0 from asyncio import ensure_future, gather, get_event_loop, sleep, wait_for from concurrent.futures import ThreadPoolExecutor from datetime import timedelta from typing import Awaitable, Callable, Dict, Optional, TypeVar from . import PackageService from ... import LOG from ...damlast.daml_lf_1 import Package, PackageRef from ...damlast.errors import PackageNotFoundError from ...damlast.lookup import STAR, MultiPackageLookup, PackageExceptionTracker from ...damlast.parse import parse_archive from ...damlast.pkgfile import Dar from ...prim import DazlError __all__ = ["PackageLoader", "DEFAULT_TIMEOUT"] T = TypeVar("T") # mypy insists on having a type annotation here, or it will complain about not being able to # determine the type of this field in pkgloader_aio_compat.py DEFAULT_TIMEOUT: timedelta = timedelta(seconds=30) class PackageLoader: """ Loader for packages from a remote PackageService. This class handles retries and backoffs, and avoids having more than one request in flight for the same package ID. It is intended to be shared by all local clients that may need package information. """ _allow_deprecated_identifiers = False def __init__( self, package_lookup: "MultiPackageLookup", conn: "Optional[PackageService]" = None, timeout: "Optional[timedelta]" = DEFAULT_TIMEOUT, executor: "Optional[ThreadPoolExecutor]" = None, ): self._package_lookup = package_lookup self._conn = conn self._timeout = timeout or DEFAULT_TIMEOUT self._futures = dict() # type: Dict[PackageRef, Awaitable[Package]] self._executor = executor or ThreadPoolExecutor(3) def set_connection(self, conn: "Optional[PackageService]"): self._conn = conn async def do_with_retry(self, fn: "Callable[[], T]") -> "T": """ Perform a synchronous action that assumes the existence of one or more packages. In the event the function raises :class:`PackageNotFoundError` or a wildcarded :class:`NameNotFoundError`, the required package/type is fetched and the operation retried. If, after a retry, an expected package or type could not be found, the exception is re-raised to the caller. :param fn: A function to invoke. :return: The result of that function. """ guard = PackageExceptionTracker( allow_deprecated_identifiers=self._allow_deprecated_identifiers ) while True: pkg_ref = guard.pop_package() while pkg_ref is not None: await self.load(pkg_ref) pkg_ref = guard.pop_package() with guard: return fn() async def preload(self, *contents: "Dar") -> None: """ Populate a :class:`PackageCache` with types from DARs. :param contents: One or more DARs to load into a local package cache. """ async def load(self, ref: "PackageRef") -> "Optional[Package]": """ Load a package ID from the remote server. If the package has additional dependencies, they are also loaded. :param ref: One or more :class:`PackageRef`s. :raises: PackageNotFoundError if the package could not be resolved """ if ref == STAR: return await self.load_all() # If the package has already been loaded, then skip all the expensive I/O stuff try: return self._package_lookup.package(ref) except PackageNotFoundError: pass # If we already have a request in-flight, simply return that same Future to our caller; # do not try to schedule a new request fut = self._futures.get(ref) if fut is None: fut = ensure_future(self._load(ref)) self._futures[ref] = fut package = await fut _ = self._futures.pop(ref, None) return package async def _load(self, package_id: "PackageRef") -> "Package": LOG.info("Loading package: %s", package_id) loop = get_event_loop() conn = self._conn if conn is None: raise DazlError("a connection is not configured") archive_bytes = await wait_for( self.__fetch_package_bytes(conn, package_id), timeout=self._timeout.total_seconds() ) LOG.info("Loaded for package: %s, %d bytes", package_id, len(archive_bytes)) archive = await loop.run_in_executor( self._executor, lambda: parse_archive(package_id, archive_bytes) ) self._package_lookup.add_archive(archive) return archive.package @staticmethod async def __fetch_package_bytes(conn: "PackageService", package_id: "PackageRef") -> bytes: sleep_interval = 1 while True: # noinspection PyBroadException try: return await conn.get_package(package_id) except Exception: # We tried fetching the package but got an error. Retry, backing off to waiting as # much as 30 seconds between each attempt. await sleep(sleep_interval) sleep_interval = min(sleep_interval * 2, 30) LOG.exception("Failed to fetch package; this will be retried.") async def load_all(self) -> None: """ Load all packages from the remote server. """ conn = self._conn if conn is None: raise DazlError("a connection is not configured") package_ids = set(await conn.list_package_ids()) package_ids -= self._package_lookup.package_ids() if package_ids: await gather(*(self.load(package_id) for package_id in package_ids)) return None
""" Definição de Escala de Tripulação de Transporte Coletivo Utilizando Algoritmo Genético Daniel Rodrigues Acosta Universidade Federal do Rio Grande do Sul Junho/2019 Variáveis Globais """ #import classPopulacao as pp import datetime as dtm import pandas as pd import os import pickle as pk # Caminhos das Pastas inputPopFolder = '25' linha = '165' folder = "C:\\Users\\"+ os.getlogin() +"\\Google Drive\\TCC Daniel Acosta\\GitHub\\genetic-algorithm-crew\\Programa\\" inputViags = folder + "v_input_"+linha+".csv" # Controle macro alg = 10000 # n° iterações do algoritmo (usar enquanto eu não estabelecer outro critério) modo_inicio =1 # 0 = do zero 1 = ler do binário modo_fim = 1 # 0 = até igl=alg 1 = até ter nCompl soluções completas 2 = até ter completas e tentar algumas modo_salva = 1 # 0 = não salva no pickle 1 = salva no pickle nCompl = 4 #nº soluções completas exigidas para que o algoritmo pare carregaPais = 0 #se pais dos cruzamentos devem ser adicionados a C tryCompl = 10000 gotCompl = 0 # Pesos dos custos alfa = 1.5 delta = 0.5 tau = 1.5 gama = 3.5 probMaiorCusto = 0.08 # Populações e Probabilidades fs = 0.3 #fator de seleção () pm = 0.1 #probabilidade de mutação probAlm = 0.5 probMutNeg = 0.9 algMutNeg = 1 na = 10 #número de soluções na população A nb = 5 #número de soluções na população B nCruz = 1 #nº soluções filhas adicionadas no cruzamento fatorTop = 0.3 #nº soluções que sobrevivem na seleção Deterministica final fatorRol = 0.3 #nº soluções que sobrevivem na seleção Roleta final fatorMinServ = 0.3 # tamanho minimo do serviço em numero de viagens fatorDelServ = 0.1 # quantos serviços bons devem ser deletados minViagAlm = 3 jornGlob = dtm.timedelta(hours = 7.5) #duraçao fixa da jornada a considerar de início almGlob = dtm.timedelta(hours = 0.5) #duracao fixa da colacao intervPontaGlob = dtm.timedelta(hours=0.5) minInicAlm = dtm.timedelta(hours=1.5) maxFimAlm = dtm.timedelta(hours=1) # Inputs e Outputs if not os.path.exists(folder + "output\\"): os.mkdir(folder + "output\\") if not os.path.exists(folder+"output\\img"): os.mkdir(folder+"output\\img") def inpop(nomepop): pkfile = open(folder+'output\\'+inputPopFolder+'\\pop_'+nomepop+'.txt', mode='br') return pk.load(pkfile) pkfile.close() def outpop(pop, nome, outputPopFolder): pasta = folder+'output\\'+outputPopFolder if not os.path.exists(pasta): os.mkdir(pasta) nomefile = pasta+'\\pop_'+nome+'.txt' if os.path.exists(nomefile): os.remove(nomefile) pkfile = open(nomefile, mode='bw') pk.dump(pop,pkfile) pkfile.close() def ler_tempo(primeira,ultima): #reunir atributos de todas as execuções em um único arquivo execs = open(folder+"tempo_execs.txt",'w') execs.write("exec;horario inicio;iAlg;horario fim;delta horario") for ex in range(primeira,ultima+1): atrib = open(folder+"output\\"+str(ex)+"\\atributos.txt", 'r') execs.write("\n"+str(ex)+atrib.readline()) atrib.close() execs.close() # Contadores if modo_inicio==0: idsolGlob = 0 #contador de soluções global, para o identificador IDSOL #popCompl = pp.Populacao(nCompl, 'f') # População para guardar Soluções Completas popCompl = inpop('f') elif modo_inicio==1: idsolGlob = inpop('id') popCompl = inpop('f') # População para guardar Soluções Completas - herdada do pickle #popCompl = pp.Populacao(nCompl, 'f') # População para guardar Soluções Completas - não herdada #popQuase = pp.Populacao(10, 'q') igl = 0 custosIguais = 0 solCompl = 0 algStart = 0 # Horário de Inicialização ### LEITURA DO ARQUIVO DE INPUT ############ dfv = pd.read_csv(inputViags, sep=';', index_col=0) for i in range(0,len(dfv)): # Confusão absurda pra colocar a data na classe datetime de acordo com a tabela sábado ou sexta ou domingo if i==0: iniciodiai = 0 iniciodiaf = 0 else: if dfv.iloc[i,4]!=dfv.iloc[i-1,4] or dfv.iloc[i,5]!=dfv.iloc[i-1,5] or dfv.iloc[i,1]!=dfv.iloc[i-1,1]: iniciodiai = 0 iniciodiaf = 0 print(i, "| Começou nova tabela. |tab ", dfv['tab'][i],"|ti ", dfv['ti'][i],"|tf",dfv['tf'][i]) else: if int(dfv.iloc[i,2][0:2])<dfv.iloc[i-1,2].hour: iniciodiai = 1 print(i,"| Na mesma tabela, o dia virou em hi") if int(dfv.iloc[i,3][0:2])<dfv.iloc[i-1,3].hour: iniciodiaf = 1 print(i, "| Na mesma tabela, o dia virou em hf") if dfv.iloc[i,1]==1: #tab 1 = segunda a sexta - 07 de junho de 2019 diai = 7 + iniciodiai diaf = 7 + iniciodiaf elif dfv.iloc[i,1]==2: #tab 2 = sábado - 08 de junho de 2019 diai = 8 + iniciodiai diaf = 8 + iniciodiaf elif dfv.iloc[i,1]==3: #tab 3 = domingo - 09 de junho de 2019 diai = 9 + iniciodiai diaf = 9 + iniciodiaf else: print("Erro! A coluna TAB deve ser 1, 2 ou 3") dfv.iloc[i,2]=dtm.datetime(2019,6,diai,int(dfv.iloc[i,2][0:2]),int(dfv.iloc[i,2][3:5]),0) dfv.iloc[i,3]=dtm.datetime(2019,6,diaf,int(dfv.iloc[i,3][0:2]),int(dfv.iloc[i,3][3:5]),0) dfv.iloc[i,6]=dfv.iloc[i,3]-dfv.iloc[i,2] ### PESO HORARIO DE PICO ########### start = min(dfv['hi']) end = max(dfv['hf']) qtdVList = [] i = start while i < end: qtdV = len([j for j in range(0,len(dfv)) if dfv.iloc[j,2] <= i and i <= dfv.iloc[j,3]]) qtdVList.append(qtdV) i = i + dtm.timedelta(minutes=5) maxq = max(qtdVList) qtdVList = [(maxq-x)/maxq for x in qtdVList] for j in range(0,len(dfv)): k = 0 i = start while i < dfv.iloc[j,2]: i = i + dtm.timedelta(minutes=5) k = k + 1 dfv.iloc[j,7] = qtdVList[k] dfv.drop(columns="tab", inplace=True) # excluir a coluna tab, porque aparentemente não vai mais ser necessário. vdict = dfv.to_dict() nc = round(fs*na*(len(vdict['hi'])+na+nb)) #número de soluções na população C dursViags = list(vdict['dur'].values()) durMediaViags = sum(dursViags, dtm.timedelta(0))/len(dursViags) hmus = almGlob + dtm.timedelta(hours=1) # 2h de intervalos (30min / 1h / 30min) - estimativa da folga mínima que se pode alcançar em um serviço viagsPorServ = (jornGlob-hmus) / durMediaViags meioTab = min(vdict['hi'].values()) + (max(vdict['hf'].values())-min(vdict['hi'].values()))/2
"""Unit tests for the Axe report generated by axe-selenium-python accessibility collector.""" import json from collector_utilities.functions import md5_hash from .base import AxeSeleniumPythonTestCase class AxeSeleniumPythonAccessibilityTest(AxeSeleniumPythonTestCase): """Unit tests for the axe-selenium-python collector for accessibility violations.""" METRIC_TYPE = "accessibility" def setUp(self): """Extend to set up test data.""" super().setUp() self.tested_url = "https://tested_url" self.json = dict( url=self.tested_url, violations=[ dict( id="aria-input-field-name", description="description1", helpUrl="https://help1", tags=["cat.color", "wcag2aa", "wcag143"], nodes=[dict(impact="serious", html="html1")], ), dict( id="aria-hidden-focus", description="description2", helpUrl="https://help2", nodes=[dict(impact="moderate", html="html2")], ), ], ) self.expected_entities = [ { "description": "description1", "element": "html1", "help": "https://help1", "impact": "serious", "page": self.tested_url, "url": self.tested_url, "violation_type": "aria-input-field-name", "tags": "cat.color, wcag143, wcag2aa", }, { "description": "description2", "element": "html2", "help": "https://help2", "impact": "moderate", "page": self.tested_url, "url": self.tested_url, "violation_type": "aria-hidden-focus", "tags": "", }, ] for entity in self.expected_entities: entity["key"] = md5_hash(",".join(str(value) for key, value in entity.items() if key != "tags")) async def test_nr_of_issues(self): """Test that the number of issues is returned.""" response = await self.collect(get_request_json_return_value=self.json) self.assert_measurement(response, value="2", entities=self.expected_entities) async def test_no_issues(self): """Test zero issues.""" self.json["violations"] = [] response = await self.collect(get_request_json_return_value=self.json) self.assert_measurement(response, value="0", entities=[]) async def test_filter_by_impact(self): """Test that violations can be filtered by impact level.""" self.set_source_parameter("impact", ["serious", "critical"]) response = await self.collect(get_request_json_return_value=self.json) self.assert_measurement(response, value="1") async def test_filter_by_tag_include(self): """Test that violations can be filtered by tag.""" self.set_source_parameter("tags_to_include", ["wcag2aa"]) response = await self.collect(get_request_json_return_value=self.json) self.assert_measurement(response, value="1", entities=[self.expected_entities[0]]) async def test_filter_by_tag_ignore(self): """Test that violations can be filtered by tag.""" self.set_source_parameter("tags_to_ignore", ["wcag2aa"]) response = await self.collect(get_request_json_return_value=self.json) self.assert_measurement(response, value="1", entities=[self.expected_entities[1]]) async def test_zipped_json(self): """Test that a zip archive with JSON files is processed correctly.""" self.set_source_parameter("url", "axe.zip") zipfile = self.zipped_report(*[(f"axe{index}.json", json.dumps(self.json)) for index in range(2)]) response = await self.collect(get_request_content=zipfile) self.assert_measurement(response, value="4", entities=self.expected_entities + self.expected_entities)
from .const import * from .docs import Docs from .settings import Settings
from collections import defaultdict import pytest from names import group_names_by_country, data # another output to test with data2 = """last_name,first_name,country_code Poxton,Sydney,CZ Kynman,Bryant,NL Mockler,Leese,AF Gillicuddy,Raffaello,IR Renyard,Carlo,CO Beadham,Evonne,CZ Tunstall,Allissa,IR Kamenar,Augy,IR Insko,Ave,NL Pigney,Gavrielle,ID""" @pytest.fixture def grouping1(): return group_names_by_country(data) @pytest.fixture def grouping2(): return group_names_by_country(data2) def test_return_type(grouping1, grouping2): assert type(grouping1) == defaultdict assert type(grouping2) == defaultdict def test_return_dict_len(grouping1, grouping2): assert len(grouping1) == 7 assert len(grouping2) == 6 @pytest.mark.parametrize('key, expected', [ ('BR', ['Alphonso Harrold']), ('CN', ['Davie Halbard', 'Ines Parrett', 'Margo Apdell']), ('ID', ['Husain Watsham', 'Sula Wasielewski']), ('PL', ['Kermit Braunle']), ('RU', ['Deerdre Tomblings']), ('SE', ['Luke Brenston']), ('TD', ['Rudolph Jeffry']), ]) def test_grouping1_return(grouping1, key, expected): assert sorted(grouping1[key]) == expected @pytest.mark.parametrize('key, expected', [ ('AF', ['Leese Mockler']), ('CO', ['Carlo Renyard']), ('CZ', ['Evonne Beadham', 'Sydney Poxton']), ('ID', ['Gavrielle Pigney']), ('IR', ['Allissa Tunstall', 'Augy Kamenar', 'Raffaello Gillicuddy']), ('NL', ['Ave Insko', 'Bryant Kynman']), ]) def test_grouping2_return(grouping2, key, expected): assert sorted(grouping2[key]) == expected
'''Meta command which draws a graph of chapters with Graphviz''' import yaml from pathlib import Path from foliant.meta_commands.base import BaseMetaCommand from foliant.meta.generate import load_meta from foliant.preprocessors.testrail import Preprocessor as TestRail class MetaCommand(BaseMetaCommand): config_section = 'testcoverage' defaults = {'filename': 'test_data.yml'} meta_fields = ['functionality', 'test_case_ids'] def _get_testrail(self): options = {} for p in self.config.get('preprocessors', []): if isinstance(p, dict): if 'testrail' in p: options = p['testrail'] if not options: raise RuntimeError('Error: to use this command add testrail to' 'preprocessors list in foliant.yml and set up' 'host, login and password.') return TestRail(self.context, self.logger, False, False, options) def collect_data(self) -> list: result = [] testrail = self._get_testrail() for section in self.meta.iter_sections(): if section.data.get('functionality', False): data = {'title': section.title} test_cases = [] for case_id in section.data.get('test_case_ids', []): test_cases.append(testrail._get_case_data(case_id)) data['test_cases'] = test_cases result.append(data) return result def run(self, config_file_name='foliant.yml', project_path=Path('.')): self.logger.debug('Meta command collect_test_data started') self.meta = load_meta(self.config['chapters'], self.project_path / self.config['src_dir']) test_data = self.collect_data() with open(self.options['filename'], 'w') as f: yaml.dump({'data': test_data}, f, default_flow_style=False, allow_unicode=True, sort_keys=False) self.logger.debug('Meta command collect_test_data finished')
# Copyright 2019 Google LLC. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Core package.""" from tink.proto import tink_pb2 from tink.core import _crypto_format from tink.core import _key_manager from tink.core import _primitive_set from tink.core import _primitive_wrapper from tink.core import _registry from tink.core import _tink_error KeyManager = _key_manager.KeyManager PrivateKeyManager = _key_manager.PrivateKeyManager KeyManagerCcToPyWrapper = _key_manager.KeyManagerCcToPyWrapper PrivateKeyManagerCcToPyWrapper = _key_manager.PrivateKeyManagerCcToPyWrapper Registry = _registry.Registry TinkError = _tink_error.TinkError use_tink_errors = _tink_error.use_tink_errors new_primitive_set = _primitive_set.new_primitive_set PrimitiveSet = _primitive_set.PrimitiveSet PrimitiveWrapper = _primitive_wrapper.PrimitiveWrapper crypto_format = _crypto_format class KeyAccess: """Base class for access tokens for Tink Keys.""" pass
""" Exceptions for ArgTyper """ from typing import Optional, Text, Callable, TYPE_CHECKING if TYPE_CHECKING: from .base import ArgParser class ArgTyperException(Exception): """ Thrown on ArgTyper problems """ ... class ArgTyperArgumentException(ArgTyperException): """ Thrown when something is wrong with a provided Arguement() """ def __init__(self, func: Callable, argument: str, message: str): self.func = func self.argument = argument super().__init__( f"Error while parsing Argument {argument} for function {func.__qualname__}: {message}" ) class ArgParserException(Exception): """Thrown on Parser errors Args: parser: The ArgParser instance that raised this errors message: Optional error message """ def __init__(self, parser: "ArgParser", message: Optional[Text]): self.parser = parser self.message = message super().__init__(f"{self.parser.prog}: {message}") class ArgParserExitException(Exception): """Thrown when the ArgumentParser would have called sys.exit(<code>) Args: parser: The ArgParser instance that raised this errors status: Status/Exit code of the ArgParser message: Optional error message """ def __init__(self, parser: "ArgParser", status: int, message: Optional[Text]): self.parser = parser self.status = status self.message = message super().__init__(f"{self.parser.prog} exited with status {status} ({message})")
import numpy as np from joblib import Parallel, delayed import sklearn.neighbors as neighbors class KernelDensity(object): ''' Kernel Density for anomaly detection ''' def __init__(self, kernel: str = 'gaussian', bandwidth: float = 0.2) -> None: super().__init__() self.bandwidth = bandwidth self.kernel = kernel @staticmethod def __calc_batch__(input_numpy: np.ndarray, bandwidth: float, kernel: str) -> np.ndarray: kde = neighbors.KernelDensity(bandwidth=bandwidth, kernel=kernel) kde = kde.fit(input_numpy) rtn = kde.score_samples(input_numpy) rtn = np.exp(rtn) return np.reshape(rtn, newshape=(1, -1)) def __call__(self, input: np.ndarray) -> np.ndarray: ''' from memory key to memory value Args: input (np.ndarray): the input data points, [batch_size, memory_size] ''' batch_size = input.shape[0] input_numpy = np.reshape(input, newshape=(batch_size, -1, 1)) #rtns = Parallel(n_jobs=1)( # delayed(KernelDensity.__calc_batch__)(input_numpy[idx, :, :], self.bandwidth, self.kernel) # for idx in range(batch_size) #) rtns = [(input_numpy[idx, :, :], self.bandwidth, self.kernel) for idx in range(batch_size)] outputs = np.concatenate(rtns, axis=0) return outputs
#!/usr/bin/env python3.7 # -*- coding: utf-8 -*- # Copyright (c) 2020. # # @author Mike Hartl <mike_hartl@gmx.de> # @copyright 2020 Mike Hartl # @license http://opensource.org/licenses/gpl-license.php GNU Public License # @version 0.0.1 class Exemplar: def inspect(self, content): del content[0] for row in content: columns = list(row) value = columns[24] if (int(value) > 70): raise Exception("Fehler falsche Exemplar Groesse {}".format(value))
from __future__ import print_function import signal import copy import sys import time from random import randint class AlarmException(Exception): pass
""" Serializers convert data types to serialized data (e.g. JSON) and back again. Copyright (C) 2020 Nicholas H.Tollervey. "Commons Clause" License Condition v1.0: The Software is provided to you by the Licensor under the License, as defined below, subject to the following condition. Without limiting other conditions in the License, the grant of rights under the License will not include, and the License does not grant to you, the right to Sell the Software. For purposes of the foregoing, "Sell" means practicing any or all of the rights granted to you under the License to provide to third parties, for a fee or other consideration (including without limitation fees for hosting or consulting/support services related to the Software), a product or service whose value derives, entirely or substantially, from the functionality of the Software. Any license notice or attribution required by the License must also include this Commons Clause License Condition notice. MIT License: Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import re from rest_framework.exceptions import ValidationError # type: ignore from rest_framework import serializers # type: ignore from rest_framework.utils import html # type: ignore from datastore import models # from datastore import logic class TagPathField(serializers.Field): """ Tag paths are serialized as strings (consisting of a namespace and tag name separated by a slash "/"). An incoming tagpath is checked for correctness. """ default_error_messages = { "incorrect_type": ( "Incorrect type. Expected a string, but got {input_type}" ), "incorrect_format": ( "Incorrect format. Expected `namespace_name/tag_name`." ), } def to_representation(self, value: str) -> str: """ Pass through the outgoing string value. """ return value def to_internal_value(self, data: str) -> str: """ Ensure the incoming data is a string and of the expected "namespace/tag" format. Raise a ValidationError exception if not the case. """ if not isinstance(data, str): self.fail("incorrect_type", input_type=type(data).__name__) if not re.match(r"[-\w]+/[-\w]+", data): self.fail("incorrect_format") return data class TagPathListField(serializers.ListField): """ Represents a list of TagPathFields. """ child = TagPathField() allow_empty = False class TagValueDictField(serializers.DictField): """ Represents a dictionary where the keys must be valid TagPathFields and the values arbitrary values (whose type and range are checked by the serializer rather than this field). """ initial = {} default_error_messages = { "not_a_dict": ( 'Expected a dictionary of items but got type "{input_type}".' ), "empty": "This dictionary may not be empty.", } def get_value(self, dictionary): """ Override the default field access in order to support dictionaries in HTML forms. """ if html.is_html_input(dictionary): return html.parse_html_dict(dictionary, prefix=self.field_name) return dictionary.get(self.field_name, serializers.empty) def to_internal_value(self, data): """ Ensure incoming data is a dictionary and run validation on entries. """ if html.is_html_input(data): data = html.parse_html_dict(data) if not isinstance(data, dict): self.fail("not_a_dict", input_type=type(data).__name__) if not self.allow_empty and len(data) == 0: self.fail("empty") return self.run_child_validation(data) def to_representation(self, value): """ Pass through the outgoing dictionary value. """ return value def run_child_validation(self, data): """ Ensure the dictionary keys are valid TagPathFields. Otherwise raise a ValidationError exception. """ result = {} errors = {} for key, value in data.items(): key_field = TagPathField() try: tag_path = key_field.run_validation(key) result[tag_path] = value except ValidationError as e: errors[key] = e.detail if errors: raise ValidationError(errors) return result class TagPathList(serializers.Serializer): """ Manages how lists of tag paths are serialized. """ tag_paths = TagPathListField( required=True, label="Tag paths", help_text=("A list of tag-paths to use with the referenced object."), ) class RetrieveQuery(serializers.Serializer): """ Manages how queries for retrieving values on matching objects are serialized. """ select = TagPathListField( required=True, label="Select", help_text=( "A list of tag-paths for values to retrieve from matching objects." ), ) where = serializers.CharField( required=True, label="Where", help_text="Criteria for matching objects expressed as BFQL.", style={"base_template": "textarea.html"}, ) class UpdateQuery(serializers.Serializer): """ Manages how queries for updating values on matching objects are serialized. """ update = TagValueDictField( required=True, label="Update", help_text=( "A dictionary of tag-paths and values " "to annotate onto matching objects." ), ) where = serializers.CharField( required=True, label="Where", help_text="Criteria for matching objects expressed as BFQL,", style={"base_template": "textarea.html"}, ) class DeleteQuery(serializers.Serializer): """ Manages how queries for deleting values from matching objects are serialized. """ delete = TagPathListField( required=True, label="Delete", help_text=( "A list of tag-paths for values to delete from matching objects." ), ) where = serializers.CharField( required=True, label="Where", help_text="Criteria for matching objects expressed as BFQL.", style={"base_template": "textarea.html"}, ) class UserSerializer(serializers.ModelSerializer): """ Manages how users are serialized to the outside world. """ username = serializers.SlugField(read_only=True) email = serializers.EmailField(read_only=True) is_admin = serializers.BooleanField(source="is_superuser", read_only=True) last_login = serializers.DateTimeField(read_only=True) class Meta: model = models.User fields = [ "username", "email", "is_admin", "last_login", ] class UserRoleSerializer(serializers.ModelSerializer): """ Manages how users are serialized when being specified for roles. """ username = serializers.SlugField(required=True) avatar = serializers.CharField(required=True) class Meta: model = models.User fields = [ "username", "avatar", ] class NamespaceCreateSerializer(serializers.ModelSerializer): """ Manages Namespace creation data. """ name = serializers.SlugField(required=True) description = serializers.CharField( required=True, style={"base_template": "textarea.html"} ) admins = UserRoleSerializer(many=True) class Meta: model = models.Namespace fields = ["name", "description", "admins"] class NamespaceUpdateSerializer(serializers.ModelSerializer): """ Manages data to update a namespace. """ description = serializers.CharField( required=True, style={"base_template": "textarea.html"} ) admins = UserRoleSerializer(many=True) class Meta: model = models.Namespace fields = ["description", "admins"] class TagSerializer(serializers.ModelSerializer): """ Manages how Tag data comes in/out of the API. """ name = serializers.SlugField(read_only=True) description = serializers.CharField( required=True, style={"base_template": "textarea.html"} ) type_of = serializers.ChoiceField(models.VALID_DATA_TYPES, read_only=True) private = serializers.BooleanField() users = UserRoleSerializer(many=True) readers = UserRoleSerializer(many=True) class Meta: model = models.Tag fields = [ "name", "description", "type_of", "private", "users", "readers", ] class NamespaceDetailSerializer(serializers.ModelSerializer): """ Manages outgoing Namespace detail data. """ name = serializers.SlugField() description = serializers.CharField() admins = UserRoleSerializer(many=True) tag_set = TagSerializer(many=True) class Meta: model = models.Namespace fields = ["name", "description", "admins", "tag_set"] class StringValueSerializer(serializers.ModelSerializer): """ Manages the serialization of string values annotated onto objects via a tag. """ value = serializers.CharField( required=True, style={"base_template": "textarea.html"} ) class Meta: model = models.StringValue fields = [ "value", ] class BooleanValueSerializer(serializers.ModelSerializer): """ Manages the serialization of boolean values annotated onto objects via a tag. """ value = serializers.BooleanField() class Meta: model = models.BooleanValue fields = [ "value", ] class IntegerValueSerializer(serializers.ModelSerializer): """ Manages the serialization of integer values annotated onto objects via a tag. """ value = serializers.IntegerField() class Meta: model = models.IntegerValue fields = [ "value", ] class FloatValueSerializer(serializers.ModelSerializer): """ Manages the serialization of float values annotated onto objects via a tag. """ value = serializers.FloatField() class Meta: model = models.FloatValue fields = [ "value", ] class DateTimeSerializer(serializers.ModelSerializer): """ Manages the serialization of datetime values annotated onto objects via a tag. """ value = serializers.DateTimeField() class Meta: model = models.DateTimeValue fields = [ "value", ] class DurationSerializer(serializers.ModelSerializer): """ Manages the serialization of duration values annotated onto objects via a tag. """ value = serializers.DurationField() class Meta: model = models.DurationValue fields = [ "value", ] class BinarySerializer(serializers.ModelSerializer): """ Manages the serialization of binary values annotated onto objects via a tag. """ value = serializers.FileField() mime = serializers.CharField(required=True, max_length=256) class Meta: model = models.BinaryValue fields = [ "value", "mime", ] class PointerSerializer(serializers.ModelSerializer): """ Manages the serialization of URL values annotated onto objects via a tag. """ value = serializers.URLField(max_length=512) class Meta: model = models.PointerValue fields = [ "value", ]
# -*- coding: utf-8 -*- def morse_to_text(morse): """Convert morse code to text. Args: morse (str): Morse code. Returns: str: Return a text. """ CODE = { 'A': '.-', 'B': '-...', 'C': '-.-.', 'D': '-..', 'E': '.', 'F': '..-.', 'G': '--.', 'H': '....', 'I': '..', 'J': '.---', 'K': '-.-', 'L': '.-..', 'M': '--', 'N': '-.', 'O': '---', 'P': '.--.', 'Q': '--.-', 'R': '.-.', 'S': '...', 'T': '-', 'U': '..-', 'V': '...-', 'W': '.--', 'X': '-..-', 'Y': '-.--', 'Z': '--..', '0': '-----', '1': '.----', '2': '..---', '3': '...--', '4': '....-', '5': '.....', '6': '-....', '7': '--...', '8': '---..', '9': '----.', ',': '--..--', '.': '.-.-.-', ':': '---...', ';': '-.-.-.', '?': '..--..', '=': '-...-', "'": '.----.', '/': '-..-.', '!': '-.-.--', '-': '-....-', '_': '..--.-', '(': '-.--.', ')': '-.--.-', '$': '...-..-', '&': '. . . .', '@': '.--.-.', ' ': '/' } morse = morse.strip() msg = '' codes = morse.split(' ') for code in codes: msg += dict(map(lambda t: (t[1], t[0]), CODE.items()))[code] return msg
import zoo def makeTheZoo(): return zoo.Zoo("Bill's Wonderland Zoo", getLocations()) def getLocations(): locations = {} locations.update(one()) locations.update(two()) locations.update(three()) locations.update(four()) locations.update(five()) locations.update(six()) locations.update(seven()) locations.update(eight()) locations.update(nine()) return locations def one(): id = 1 name = 'Entrance' animal = None neighbors = {} neighbors['s'] = 9 neighbors['sw'] = 2 neighbors['se'] = 8 allowExit = True return {id : zoo.Location(id, name, animal, neighbors, allowExit)} def two(): id = 2 name = 'Africa Live' animal = zoo.Animal('Lion', 'roar', 'whatever it wants', 'dry, arid land') neighbors = {} neighbors['ne'] = 1 neighbors['se'] = 9 neighbors['s'] = 3 allowExit = False return {id : zoo.Location(id, name, animal, neighbors, allowExit)} def three(): id = 3 name = 'Antarctica' animal = zoo.Animal('Penguin', 'silence', 'fish', 'cold air with lots of water') neighbors = {} neighbors['n'] = 2 neighbors['e'] = 9 neighbors['s'] = 4 allowExit = False return {id : zoo.Location(id, name, animal, neighbors, allowExit)} def four(): id = 4 name = 'Bird House' animal = zoo.Animal('Maquaw', 'squawk, squawk', 'nuts, berries, insects', 'clean crisp air') neighbors = {} neighbors['n'] = 3 neighbors['e'] = 5 neighbors['ne'] = 9 allowExit = False return {id : zoo.Location(id, name, animal, neighbors, allowExit)} def five(): id = 5 name = 'Elbonia' animal = zoo.Animal('Hippophant', 'Moo', 'humans, unicorns', 'filthy water, with bugs in it') neighbors = {} neighbors['n'] = 9 neighbors['e'] = 4 neighbors['w'] = 6 allowExit = False return {id : zoo.Location(id, name, animal, neighbors, allowExit)} def six(): id = 6 name = 'Enchanted Wood' animal = zoo.Animal('Unicorn', 'Giggle Snort', 'magic seeds, magic grass, imaginary leaves', 'forest full of people who will believe anything') neighbors = {} neighbors['n'] = 7 neighbors['w'] = 5 neighbors['nw'] = 9 allowExit = False return {id : zoo.Location(id, name, animal, neighbors, allowExit)} def seven(): id = 7 name = 'Deep Sea' animal = zoo.Animal('Sea Serpent', 'ssssssss', 'you', 'salt water, preferably 1000 meters deep') neighbors = {} neighbors['s'] = 6 neighbors['n'] = 8 neighbors['w'] = 9 allowExit = False return {id : zoo.Location(id, name, animal, neighbors, allowExit)} def eight(): id = 8 name = 'Cave Land' animal = zoo.Animal('Dragon', 'roaring growl', 'farm animals, humans, other dragons', 'dark caves, with water, and one entrance') neighbors = {} neighbors['nw'] = 1 neighbors['sw'] = 9 neighbors['s'] = 7 allowExit = False return {id : zoo.Location(id, name, animal, neighbors, allowExit)} def nine(): id = 9 name = 'Aquarium' animal = zoo.Animal('Seal', 'barking', 'fish and penguins', 'water with some dry land') neighbors = {} neighbors['n'] = 1 neighbors['nw'] = 2 neighbors['ne'] = 8 neighbors['w'] = 3 neighbors['e'] = 7 neighbors['sw'] = 4 neighbors['se'] = 6 neighbors['s'] = 5 allowExit = False return {id : zoo.Location(id, name, animal, neighbors, allowExit)}
"""initial migration Revision ID: 2ddfd99e0bb4 Revises: Create Date: 2021-01-25 22:42:56.598121 """ from alembic import op import sqlalchemy as sa from sqlalchemy.dialects import postgresql # revision identifiers, used by Alembic. revision = "2ddfd99e0bb4" down_revision = None branch_labels = None depends_on = None def upgrade(): # ### commands auto generated by Alembic - please adjust! ### op.create_table( "users", sa.Column("id", postgresql.UUID(as_uuid=True), nullable=False), sa.Column("email", sa.TEXT(), nullable=False), sa.Column("created_at", postgresql.TIMESTAMP(), nullable=True), sa.Column("updated_at", postgresql.TIMESTAMP(), nullable=True), sa.Column("deleted_at", postgresql.TIMESTAMP(), nullable=True), sa.PrimaryKeyConstraint("id", name=op.f("pk_users")), sa.UniqueConstraint("email", name=op.f("uq_users_email")), ) op.create_table( "credentials", sa.Column("id", postgresql.UUID(as_uuid=True), nullable=False), sa.Column("username", sa.TEXT(), nullable=False), sa.Column("password", postgresql.BYTEA(), nullable=False), sa.Column("last_seen", postgresql.TIMESTAMP(), nullable=True), sa.Column("user_id", postgresql.UUID(as_uuid=True), nullable=False), sa.Column("created_at", postgresql.TIMESTAMP(), nullable=True), sa.Column("updated_at", postgresql.TIMESTAMP(), nullable=True), sa.ForeignKeyConstraint( ["user_id"], ["users.id"], name=op.f("fk_credentials_user_id_users") ), sa.PrimaryKeyConstraint("id", name=op.f("pk_credentials")), sa.UniqueConstraint("username", name=op.f("uq_credentials_username")), ) op.create_table( "event_statuses", sa.Column("id", postgresql.UUID(as_uuid=True), nullable=False), sa.Column("name", sa.TEXT(), nullable=False), sa.Column("user_id", postgresql.UUID(as_uuid=True), nullable=False), sa.Column("created_at", postgresql.TIMESTAMP(), nullable=True), sa.Column("updated_at", postgresql.TIMESTAMP(), nullable=True), sa.Column("deleted_at", postgresql.TIMESTAMP(), nullable=True), sa.ForeignKeyConstraint( ["user_id"], ["users.id"], name=op.f("fk_event_statuses_user_id_users") ), sa.PrimaryKeyConstraint("id", name=op.f("pk_event_statuses")), ) op.create_table( "event_types", sa.Column("id", postgresql.UUID(as_uuid=True), nullable=False), sa.Column("name", sa.TEXT(), nullable=False), sa.Column("user_id", postgresql.UUID(as_uuid=True), nullable=False), sa.Column("created_at", postgresql.TIMESTAMP(), nullable=True), sa.Column("updated_at", postgresql.TIMESTAMP(), nullable=True), sa.Column("deleted_at", postgresql.TIMESTAMP(), nullable=True), sa.ForeignKeyConstraint( ["user_id"], ["users.id"], name=op.f("fk_event_types_user_id_users") ), sa.PrimaryKeyConstraint("id", name=op.f("pk_event_types")), ) op.create_table( "hive_conditions", sa.Column("id", postgresql.UUID(as_uuid=True), nullable=False), sa.Column("name", sa.TEXT(), nullable=False), sa.Column("user_id", postgresql.UUID(as_uuid=True), nullable=False), sa.Column("created_at", postgresql.TIMESTAMP(), nullable=True), sa.Column("updated_at", postgresql.TIMESTAMP(), nullable=True), sa.Column("deleted_at", postgresql.TIMESTAMP(), nullable=True), sa.ForeignKeyConstraint( ["user_id"], ["users.id"], name=op.f("fk_hive_conditions_user_id_users") ), sa.PrimaryKeyConstraint("id", name=op.f("pk_hive_conditions")), ) op.create_table( "honey_types", sa.Column("id", postgresql.UUID(as_uuid=True), nullable=False), sa.Column("name", sa.TEXT(), nullable=True), sa.Column("user_id", postgresql.UUID(as_uuid=True), nullable=False), sa.Column("created_at", postgresql.TIMESTAMP(), nullable=True), sa.Column("updated_at", postgresql.TIMESTAMP(), nullable=True), sa.Column("deleted_at", postgresql.TIMESTAMP(), nullable=True), sa.ForeignKeyConstraint( ["user_id"], ["users.id"], name=op.f("fk_honey_types_user_id_users") ), sa.PrimaryKeyConstraint("id", name=op.f("pk_honey_types")), ) op.create_table( "owners", sa.Column("id", postgresql.UUID(as_uuid=True), nullable=False), sa.Column("name", sa.TEXT(), nullable=False), sa.Column("user_id", postgresql.UUID(as_uuid=True), nullable=False), sa.Column("created_at", postgresql.TIMESTAMP(), nullable=True), sa.Column("updated_at", postgresql.TIMESTAMP(), nullable=True), sa.Column("deleted_at", postgresql.TIMESTAMP(), nullable=True), sa.ForeignKeyConstraint( ["user_id"], ["users.id"], name=op.f("fk_owners_user_id_users") ), sa.PrimaryKeyConstraint("id", name=op.f("pk_owners")), ) op.create_table( "swarm_health_statuses", sa.Column("id", postgresql.UUID(as_uuid=True), nullable=False), sa.Column("name", sa.TEXT(), nullable=True), sa.Column("user_id", postgresql.UUID(as_uuid=True), nullable=False), sa.Column("created_at", postgresql.TIMESTAMP(), nullable=True), sa.Column("updated_at", postgresql.TIMESTAMP(), nullable=True), sa.Column("deleted_at", postgresql.TIMESTAMP(), nullable=True), sa.ForeignKeyConstraint( ["user_id"], ["users.id"], name=op.f("fk_swarm_health_statuses_user_id_users"), ), sa.PrimaryKeyConstraint("id", name=op.f("pk_swarm_health_statuses")), ) op.create_table( "apiaries", sa.Column("id", postgresql.UUID(as_uuid=True), nullable=False), sa.Column("name", sa.TEXT(), nullable=False), sa.Column("location", sa.TEXT(), nullable=False), sa.Column("user_id", postgresql.UUID(as_uuid=True), nullable=False), sa.Column("honey_type_id", postgresql.UUID(as_uuid=True), nullable=False), sa.Column("created_at", postgresql.TIMESTAMP(), nullable=True), sa.Column("updated_at", postgresql.TIMESTAMP(), nullable=True), sa.Column("deleted_at", postgresql.TIMESTAMP(), nullable=True), sa.ForeignKeyConstraint( ["honey_type_id"], ["honey_types.id"], name=op.f("fk_apiaries_honey_type_id_honey_types"), ), sa.ForeignKeyConstraint( ["user_id"], ["users.id"], name=op.f("fk_apiaries_user_id_users") ), sa.PrimaryKeyConstraint("id", name=op.f("pk_apiaries")), ) op.create_table( "swarms", sa.Column("id", postgresql.UUID(as_uuid=True), nullable=False), sa.Column("health_status_id", postgresql.UUID(as_uuid=True), nullable=False), sa.Column("user_id", postgresql.UUID(as_uuid=True), nullable=False), sa.Column("created_at", postgresql.TIMESTAMP(), nullable=True), sa.Column("updated_at", postgresql.TIMESTAMP(), nullable=True), sa.Column("deleted_at", postgresql.TIMESTAMP(), nullable=True), sa.ForeignKeyConstraint( ["health_status_id"], ["swarm_health_statuses.id"], name=op.f("fk_swarms_health_status_id_swarm_health_statuses"), ), sa.ForeignKeyConstraint( ["user_id"], ["users.id"], name=op.f("fk_swarms_user_id_users") ), sa.PrimaryKeyConstraint("id", name=op.f("pk_swarms")), ) op.create_table( "hives", sa.Column("id", postgresql.UUID(as_uuid=True), nullable=False), sa.Column("name", sa.TEXT(), nullable=False), sa.Column("user_id", postgresql.UUID(as_uuid=True), nullable=False), sa.Column("condition_id", postgresql.UUID(as_uuid=True), nullable=False), sa.Column("owner_id", postgresql.UUID(as_uuid=True), nullable=True), sa.Column("swarm_id", postgresql.UUID(as_uuid=True), nullable=True), sa.Column("apiary_id", postgresql.UUID(as_uuid=True), nullable=True), sa.Column("created_at", postgresql.TIMESTAMP(), nullable=True), sa.Column("updated_at", postgresql.TIMESTAMP(), nullable=True), sa.Column("deleted_at", postgresql.TIMESTAMP(), nullable=True), sa.ForeignKeyConstraint( ["apiary_id"], ["apiaries.id"], name=op.f("fk_hives_apiary_id_apiaries") ), sa.ForeignKeyConstraint( ["condition_id"], ["hive_conditions.id"], name=op.f("fk_hives_condition_id_hive_conditions"), ), sa.ForeignKeyConstraint( ["owner_id"], ["owners.id"], name=op.f("fk_hives_owner_id_owners") ), sa.ForeignKeyConstraint( ["swarm_id"], ["swarms.id"], name=op.f("fk_hives_swarm_id_swarms") ), sa.ForeignKeyConstraint( ["user_id"], ["users.id"], name=op.f("fk_hives_user_id_users") ), sa.PrimaryKeyConstraint("id", name=op.f("pk_hives")), ) op.create_table( "events", sa.Column("id", postgresql.UUID(as_uuid=True), nullable=False), sa.Column("title", sa.TEXT(), nullable=False), sa.Column("description", sa.TEXT(), nullable=True), sa.Column("due_date", postgresql.TIMESTAMP(), nullable=False), sa.Column("user_id", postgresql.UUID(as_uuid=True), nullable=False), sa.Column("type_id", postgresql.UUID(as_uuid=True), nullable=False), sa.Column("status_id", postgresql.UUID(as_uuid=True), nullable=False), sa.Column("hive_id", postgresql.UUID(as_uuid=True), nullable=True), sa.Column("created_at", postgresql.TIMESTAMP(), nullable=True), sa.Column("updated_at", postgresql.TIMESTAMP(), nullable=True), sa.Column("deleted_at", postgresql.TIMESTAMP(), nullable=True), sa.ForeignKeyConstraint( ["hive_id"], ["hives.id"], name=op.f("fk_events_hive_id_hives") ), sa.ForeignKeyConstraint( ["status_id"], ["event_statuses.id"], name=op.f("fk_events_status_id_event_statuses"), ), sa.ForeignKeyConstraint( ["type_id"], ["event_types.id"], name=op.f("fk_events_type_id_event_types") ), sa.ForeignKeyConstraint( ["user_id"], ["users.id"], name=op.f("fk_events_user_id_users") ), sa.PrimaryKeyConstraint("id", name=op.f("pk_events")), ) op.create_table( "comments", sa.Column("id", postgresql.UUID(as_uuid=True), nullable=False), sa.Column("comment", sa.TEXT(), nullable=False), sa.Column("type", sa.TEXT(), nullable=False), sa.Column("date", postgresql.TIMESTAMP(), nullable=False), sa.Column("user_id", postgresql.UUID(as_uuid=True), nullable=False), sa.Column("swarm_id", postgresql.UUID(as_uuid=True), nullable=True), sa.Column("hive_id", postgresql.UUID(as_uuid=True), nullable=True), sa.Column("event_id", postgresql.UUID(as_uuid=True), nullable=True), sa.Column("created_at", postgresql.TIMESTAMP(), nullable=True), sa.Column("updated_at", postgresql.TIMESTAMP(), nullable=True), sa.Column("deleted_at", postgresql.TIMESTAMP(), nullable=True), sa.ForeignKeyConstraint( ["event_id"], ["events.id"], name=op.f("fk_comments_event_id_events") ), sa.ForeignKeyConstraint( ["hive_id"], ["hives.id"], name=op.f("fk_comments_hive_id_hives") ), sa.ForeignKeyConstraint( ["swarm_id"], ["swarms.id"], name=op.f("fk_comments_swarm_id_swarms") ), sa.ForeignKeyConstraint( ["user_id"], ["users.id"], name=op.f("fk_comments_user_id_users") ), sa.PrimaryKeyConstraint("id", name=op.f("pk_comments")), ) # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.drop_table("comments") op.drop_table("events") op.drop_table("hives") op.drop_table("swarms") op.drop_table("apiaries") op.drop_table("swarm_health_statuses") op.drop_table("owners") op.drop_table("honey_types") op.drop_table("hive_conditions") op.drop_table("event_types") op.drop_table("event_statuses") op.drop_table("credentials") op.drop_table("users") op.drop_table("comment_types") # ### end Alembic commands ###
# -*- coding: utf-8 -*- """ Leetcode - Binary search introduction https://leetcode.com/problems/binary-search Binary search solution Created on Sun Oct 21 16:21:01 2018 @author: Arthur Dysart """ # REQUIRED MODULES import sys # FUNCTION DEFINITIONS class Solution(object): def search(self, a, x): """ Determines index of target "x" in sorted array "a". :type nums: List[int] :type target: int :rtype: int """ if len(a) == 0: return -1 else: l = 0 r = len(a) - 1 # Executes binary search while l <= r: m = l + (r - l) // 2 # Determines if target found if a[m] == x: return m # Determines if left-half has target elif a[m] < x: l = m + 1 # Determines if right-half has target else: r = m - 1 # Target not found return -1 def stdin(sys_stdin): """ Imports standard input. """ inputs = [x.strip("[]\n").split(",") for x in sys_stdin] a = [int(x) for x in inputs[0]] x = int(inputs[1][0]) return a, x # MAIN MODULE if __name__ == "__main__": a, x = stdin(sys.stdin) s = Solution() i = s.search(a, x) print(i)
from autobahn.twisted.websocket import WebSocketServerFactory, \ WebSocketServerProtocol from tws_game.lobby import Lobby from tws_game.tetris import Tetris from pprint import pprint import json class ClientConnection(WebSocketServerProtocol): def onOpen(self): self.factory.register(self) def onMessage(self, payload, is_binary): if not is_binary: self.factory.command(self, payload) def connectionLost(self, reason): WebSocketServerProtocol.connectionLost(self, reason) self.factory.unregister(self) class TwsServerFactory(WebSocketServerFactory): AVAILABLE_GAMES = { 'TETRIS': Tetris } def __init__(self, url): WebSocketServerFactory.__init__(self, url) self.clients = [] self.lobbies = {} self._lobby_id_counter = 0 """ Client registration """ def register(self, client): if client not in self.clients: print "registered client {}".format(client.peer) client.lobby = None self.clients.append(client) def unregister(self, client): if client in self.clients: print "unregistered client {}".format(client.peer) if client.lobby: client.lobby.remove_client(client) self.clients.remove(client) """ Message encode/decode functionality """ def encode_message(self, command, data): return '|'.join([command, json.dumps(data)]) def decode_message(self, message): command, data = message.split('|', 1) data = json.loads(data) return command, data """ Basic game commands """ def create_lobby(self, client, data): if not 'game' in data and data['game'] in self.AVAILABLE_GAMES: raise Exception('Game unavailable') lobby = Lobby(self.AVAILABLE_GAMES[data['game']]) lobby.set_factory(self) self._lobby_id_counter += 1 lobby.name = 'Lobby %s' % self._lobby_id_counter self.lobbies[lobby.id] = lobby self.send_command(client, 'create_lobby', { 'id': lobby.id }) def join_lobby(self, client, data): if client.lobby: client.lobby.remove_client(client) if data['id'] in self.lobbies and client not in self.lobbies[data['id']].clients: self.lobbies[data['id']].add_client(client) self.send_command(client, 'join_lobby', True) def list_lobbies(self, client, data): lobbies = [] for id in self.lobbies: lobby = self.lobbies[id] lobbies.append({ 'id': lobby.id, 'name': lobby.name, 'clients': len(lobby.clients) }) self.send_command(client, 'list_lobbies', lobbies) return lobbies def leave_lobby(self, client, data): pass def start_game(self, client, data): client.lobby.start_game(client) def set_nickname(self, client, data): print "Setting nickname" pprint(data) """ Communication methods """ def send_command(self, client, command, data): msg = self.encode_message(command, data) client.sendMessage( msg ) def command(self, client, msg): command, data = self.decode_message(msg) commands = { 'create_lobby': self.create_lobby, 'join_lobby': self.join_lobby, 'list_lobbies': self.list_lobbies, 'leave_lobby': self.leave_lobby, 'start_game': self.start_game, 'set_nickname': self.set_nickname } if command in commands: print "Executing command %s" % (command,) commands[command](client, data) else: if client.lobby.game: client.lobby.game.handle_command(client, command, data)
"""provides functions to kill the script by raising SystemExit""" import sys from typing import List, NoReturn def assert_empty(blocked_actions: List[str]) -> None: """used with validate_perms, which returns list of denied AWS actions""" if blocked_actions: err("IAM user missing following permission(s):", *sorted(list(set(blocked_actions)))) def err(*halt_messages: str) -> NoReturn: """prepend "Error: " to first halt message, then halt""" halt_msg_list = list(halt_messages) halt_msg_list[0] = f"Error: {halt_messages[0]}" stop(*halt_msg_list) def stop(*halt_messages: str) -> NoReturn: """halts the script by raising SystemExit""" if halt_messages: print("") print("\n".join(halt_messages), file=sys.stderr, flush=True) sys.exit(1)
numbers = [10, 25, 54, 86, 89, 11, 33, 22] new_numbers = list(filter(lambda x: (x%2 == 0) , numbers)) print(new_numbers)
import re from .deep_getattr import deep_getattr from connexion.resolver import Resolver class RestyResolverEx(Resolver): """ Resolves endpoint functions using REST semantics (unless overridden by specifying operationId) """ def __init__(self, default_module_name, collection_endpoint_name='search', **kwargs): """ :param default_module_name: Default module name for operations :type default_module_name: str """ Resolver.__init__(self, **kwargs) self.default_module_name = default_module_name self.collection_endpoint_name = collection_endpoint_name def resolve_operation_id(self, operation): """ Resolves the operationId using REST semantics unless explicitly configured in the spec :type operation: connexion.operation.Operation """ if operation.operation.get('operationId'): return Resolver.resolve_operation_id(self, operation) return self.resolve_operation_id_using_rest_semantics(operation) def resolve_operation_id_using_rest_semantics(self, operation): """ Resolves the operationId using REST semantics :type operation: connexion.operation.Operation """ path_match = re.search( '^/?(?P<resource_name>([\w\-](?<!/))*)(?P<trailing_slash>/*)(?P<extended_path>.*)$', operation.path ) def get_controller_name(): x_router_controller = operation.operation.get('x-swagger-router-controller') name = self.default_module_name resource_name = path_match.group('resource_name') if x_router_controller: name = x_router_controller elif resource_name: resource_controller_name = resource_name.replace('-', '_') name += '.' + resource_controller_name return name def get_function_name(): method = operation.method is_collection_endpoint = \ method.lower() == 'get' \ and path_match.group('resource_name') \ and not path_match.group('extended_path') return self.collection_endpoint_name if is_collection_endpoint else method.lower() return '{}.{}'.format(get_controller_name(), get_function_name()) class ModuleResolver(RestyResolverEx): def __init__(self, module, collection_endpoint_name='search'): """ :param module: Default module name for operations :type module: any """ RestyResolverEx.__init__( self, default_module_name=module.__name__, collection_endpoint_name=collection_endpoint_name, function_resolver=self.get_function_from_name, ) self.module = module def get_function_from_name(self, function_name): """ Tries to get function by fully qualified name (e.g. "mymodule.myobj.myfunc") :type function_name: str """ if function_name is None: raise ValueError("Empty function name") function_name_parts = function_name.split('.') assert function_name_parts[0] == self.module.__name__ return deep_getattr(self.module, '.'.join(function_name_parts[1:]))
#Changeable parameters def calc(*number): #can be seen as a list/tuple #automatically seen s=0 for n in number: s=s+n*n return s #This input must be a list or tuple without the star mark def calc(number): #can be seen as a list/tuple #automatically seen s=0 for n in number: s=s+n*n return s #Default parameters def defunc(x,n=2): #if no input of n, the n is defaulted as 2 s=0 while n>0: n-=1 s=s+x*x return s #f(*arg,**arc)funtion can be used #All different kinds of print(calc(1,2,3,4)) #just input directly without be in list or tuple style print(defunc(3,4))
import pyx ### vector graphics import cmath from file_io import parse_data_file, read_from_pickle, output_to_pickle from taut import isosig_to_tri_angle from veering import veering_triangulation from continent import continent from boundary_triangulation import boundary_triangulation, tet_face # def pre_draw_transformation( z, ladder_holonomy ): # return z/ladder_holonomy def draw_path(canv, path_C, draw_options, fill = False, closed = False): p = pyx.path.path( pyx.path.moveto(path_C[0].real, path_C[0].imag) ) for coord in path_C[1:]: ### this is how path drawing works... p.append( pyx.path.lineto(coord.real, coord.imag) ) if closed: p.closepath() if fill: canv.fill(p, draw_options) else: canv.stroke(p, draw_options) def dividers_to_lightning_curves_spiky(dividers): # print(('dividers', len(dividers[0]), len(dividers[1]))) ### now find lightning curve from the edges of the divider out = [] for i in range(2): ## upper and lower curves = [] for divider in dividers[i]: if len(divider) <= 2: ### add nothing continue a, b = divider[:2] x = a.shared_vertex(b) lightning_curve = [x] for c in divider[2:]: y = b.shared_vertex(c) if x == y: a, b = a, c else: lightning_curve.append(y) a, b = b, c x = y curves.append(lightning_curve) out.append(curves) return out def special_vertex_in_and_out(divider_list, v, v_inds): ### v_inds are indices of edges in divider_list that are incident to v ### answers how we get to v and back out when we are doing the non-spiky lightning curves if len(v_inds) % 2 == 1: # print 'odd' ind = (v_inds[0] + v_inds[-1])//2 return ( [v.pos.complex()], ind, ind ) ### last midpoint is at ind, then we do the extra point in the list, then start midpoints up again with ind else: # print 'even' ind = (v_inds[0] + v_inds[-1] + 1)//2 mid_step = (divider_list[ind-1].midpoint() + divider_list[ind].midpoint()) * 0.5 return ( [mid_step, v.pos.complex(), mid_step], ind - 1, ind ) ### more complicated since we have an extra point on the midpoints curve def lightning_curve_from_dividers(dividers, a, b, special_vertices = [], spiky = True): #### give it only upper dividers, or only lower dividers #### result is oriented not in terms of order of a and b, but in order of the dividers curve = [] for divider_list in dividers: ### check if both s and e are endpoints of this divider list a_inds = [] b_inds = [] for i, div in enumerate(divider_list): if a in div.vertices: a_inds.append(i) if b in div.vertices: b_inds.append(i) if len(a_inds) > 0 and len(b_inds) > 0: # we found the correct divider_list divider_list = divider_list[:] ### make a copy a_to_b = a_inds[0] < b_inds[0] if spiky: if a_to_b: divider_list = divider_list[a_inds[-1]:b_inds[0]] else: divider_list = divider_list[b_inds[-1]:a_inds[0]] p, q = divider_list[:2] x = p.shared_vertex(q) lightning_curve = [x.pos.complex()] for r in divider_list[2:]: y = q.shared_vertex(r) if x == y: p, q = p, r else: lightning_curve.append(y.pos.complex()) p, q = q, r x = y if a_to_b: lightning_curve = [a.pos.complex()] + lightning_curve + [b.pos.complex()] else: lightning_curve = [b.pos.complex()] + lightning_curve + [a.pos.complex()] return lightning_curve else: ### have to hit a, b, and any special vertices along the way ### find all special vertices along the path from a to b (or b to a), go in and out of each in turn... if a_to_b: s_inds, e_inds = a_inds, b_inds s, e = a, b else: s_inds, e_inds = b_inds, a_inds s, e = b, a special_verts = special_vertices[:] if a in special_vertices: special_verts.remove(a) if b in special_vertices: special_verts.remove(b) visited_special_vertices = [s] visited_special_vertex_inds = [s_inds] for j in range(s_inds[-1] + 1, e_inds[0]): edge = divider_list[j] p, q = edge.vertices v = None if p in special_vertices: v = p elif q in special_vertices: v = q if v != None: if v == visited_special_vertices[-1]: visited_special_vertex_inds[-1].append(j) else: visited_special_vertices.append(v) visited_special_vertex_inds.append([j]) visited_special_vertices.append(e) visited_special_vertex_inds.append(e_inds) all_extra_steps = [] all_in_indices = [] all_out_indices = [] for v, v_inds in zip(visited_special_vertices, visited_special_vertex_inds): extra_steps, in_ind, out_ind = special_vertex_in_and_out(divider_list, v, v_inds) all_extra_steps.append(extra_steps) all_in_indices.append(in_ind) all_out_indices.append(out_ind) lightning_curve = [] for j in range(len(all_extra_steps) - 1): lightning_curve.extend(all_extra_steps[j]) lightning_curve.extend([edge.midpoint() for edge in divider_list[all_out_indices[j] : all_in_indices[j+1] + 1]]) lightning_curve.extend(all_extra_steps[-1]) if len(s_inds) % 2 == 0: lightning_curve = lightning_curve[1:] if len(e_inds) % 2 == 0: lightning_curve = lightning_curve[:-1] return lightning_curve ### function to get lightning curve to the left or right of a ladderpole edge. look for tet_faces you need near the edge. Calculate any needed offsets then and there. def explore_side(vt, tet, face, pivot_vert, leading_vert, trailing_vert, ladderpole_colour): tet_faces_pivots = [] while True: tet_faces_pivots.append( (tet_face(vt, tet.index(), face), pivot_vert) ) if vt.get_edge_between_verts_colour(tet.index(), (pivot_vert, leading_vert)) != ladderpole_colour: break gluing = tet.adjacentGluing(trailing_vert) tet = tet.adjacentTetrahedron(trailing_vert) face = gluing[face] pivot_vert = gluing[pivot_vert] leading_vert, trailing_vert = gluing[trailing_vert], gluing[leading_vert] tet_faces_pivots.reverse() ## seems to play nice with continent coast order return tet_faces_pivots def lightning_curve_for_ladder_unit(dividers, lu, offset): non_inf_verts = [0,1,2,3] non_inf_verts.remove(lu.face) edge_colours = [] for i in range(3): edge_colours.append( lu.ladder.vt.get_edge_between_verts_colour(lu.tet_num, (non_inf_verts[(i+1)%3], non_inf_verts[(i+2)%3]) ) ) for i in range(3): if edge_colours[i] == edge_colours[(i+1)%3]: odd_one_out = (i+2)%3 s, e = lu.con_verts[non_inf_verts[(odd_one_out + 1)%3]], lu.con_verts[non_inf_verts[(odd_one_out + 2)%3]] T = lu.ladder.torus_triangulation ladder_parity = T.ladder_list.index(lu.ladder) % 2 lightning_curve = lightning_curve_from_dividers(dividers[ladder_parity], s, e, special_vertices = [], spiky = False) ### no need for extra ladderpole vertices - there are none between these two lightning_curve = [c + offset for c in lightning_curve] return lightning_curve # lightning_curve_scaled = [ T.drawing_scale * (c + offset) for c in lightning_curve ] # draw_path(T.canv, lightning_curve_scaled, [pyx.style.linewidth(ct_lw), pyx.style.linejoin.round, lightning_colours[ladder_parity%2]]) def lightning_curves_around_ladder_unit_ladder_pole_edge(dividers, lu, T): ### describe a ladderpole edge by a neighbouring ladder unit. Draw lightning curves around it vt = T.vt tet_num, face = lu.tet_num, lu.face if lu.is_on_left(): opp_vert = lu.right_vertices[0] ladderpole_verts = lu.left_vertices else: opp_vert = lu.left_vertices[0] ladderpole_verts = lu.right_vertices ladderpole_verts_complex = [lu.verts_pos[i].complex() for i in ladderpole_verts] ladderpole_colour = vt.get_edge_between_verts_colour(tet_num, ladderpole_verts) if (ladderpole_colour == "red" and lu.is_on_left()) or (ladderpole_colour == "blue" and lu.is_on_right()): pivot_vert, trailing_vert = ladderpole_verts else: trailing_vert, pivot_vert = ladderpole_verts ladderpole_verts_complex.reverse() leading_vert = opp_vert tet = T.vt.tri.tetrahedron(tet_num) gluing = tet.adjacentGluing(opp_vert) nb_tet = tet.adjacentTetrahedron(opp_vert) nb_face = gluing[face] nb_pivot_vert, nb_trailing_vert = gluing[trailing_vert], gluing[pivot_vert] ### swap nb_leading_vert = gluing[leading_vert] ### if the edge is blue, rotate up to the right to find relevant tet_faces to its right, and down to the left. ### vice versa for red ladderpole edge our_side_tet_faces_pivots = explore_side(vt, tet, face, pivot_vert, leading_vert, trailing_vert, ladderpole_colour) nb_side_tet_faces_pivots = explore_side(vt, nb_tet, nb_face, nb_pivot_vert, nb_leading_vert, nb_trailing_vert, ladderpole_colour) ### for each of these tet_faces, use the edge for the corresponding ladder unit in T, translated as necessary using the offset ### from either end of the ladderpole edge. if (ladderpole_colour == "red" and lu.is_on_left()) or (ladderpole_colour == "blue" and lu.is_on_right()): all_tet_faces_pivots = [our_side_tet_faces_pivots, nb_side_tet_faces_pivots] else: all_tet_faces_pivots = [nb_side_tet_faces_pivots, our_side_tet_faces_pivots] out = [] for k in range(2): full_crv = [] for j, (tf, pivot_vert) in enumerate(all_tet_faces_pivots[k]): lu = T.bt.get_ladder_unit_from_tet_face(tf) offset = ladderpole_verts_complex[k] - lu.verts_pos[pivot_vert].complex() crv = lightning_curve_for_ladder_unit(dividers, lu, offset) if j > 0: crv = crv[1:] full_crv.extend(crv) out.append(full_crv) return out def uniquify_list(dup_list, subtract = [], epsilon = 0.001): unique_list = [] for z in dup_list: keep = True for w in unique_list + subtract: if abs(z-w)<0.001: keep = False break if keep: unique_list.append(z) return unique_list def replace_with_continent_vertices(v_list, con, epsilon = 0.001): for i, w in enumerate(v_list): for v in con.boundary_triangulation_vertices: # print(type(v), type(w)) if abs(v.pos.complex() - w) < epsilon: v_list[i] = v break def assign_continent_vertices_to_tet_faces(T, con): for L in T.ladder_list: for lu in L.ladder_unit_list: lu.con_verts = [v.complex() for v in lu.verts_pos] replace_with_continent_vertices(lu.con_verts, con) def draw_continent( veering_isosig, tet_shapes, max_num_tetrahedra, max_length, output_filename = None, draw_args = None, build_type = None ): draw_CT_curve, draw_lightning_curve, draw_jordan_curve = draw_args['draw_CT_curve'], draw_args['draw_lightning_curve'], draw_args['draw_jordan_curve'] draw_dividers, draw_landscapes, draw_box_for_cohom_frac = draw_args['draw_dividers'], draw_args['draw_landscapes'], draw_args['draw_box_for_cohom_frac'] draw_alignment_dots, draw_desired_vertices, expand_fund_dom = draw_args['draw_alignment_dots'], draw_args['draw_desired_vertices'], draw_args['expand_fund_dom'] tri, angle = isosig_to_tri_angle(veering_isosig) vt = veering_triangulation(tri, angle, tet_shapes = tet_shapes) B = boundary_triangulation(vt) B.generate_canvases(args = draw_args) out_data = [] for i,T in enumerate(B.torus_triangulation_list): print(T.sideways_index_shift) print(T.sideways_once_holonomy) print(T.sideways_holonomy) print(T.ladder_holonomy) # print(('cusp', i)) ### make initial_tet_face be in the lower left of the fundamental domain # initial_tet_face = T.ladder_list[0].ladder_unit_list[0] ### make initial_tet_face be in the middle of the fundamental domain num_ladders = len(T.ladder_list) L = T.ladder_list[int(num_ladders/2 - 1)] ## -1 because we split the last ladder between the left and right num_ladder_units = len(L.ladder_unit_list) initial_tet_face = L.ladder_unit_list[int(num_ladder_units/2)] # print(('initial_tet_face', initial_tet_face)) # print(('origin_in_C', initial_tet_face.origin_in_C)) # print(('verts_pos', initial_tet_face.verts_pos)) ### want to draw a box which will contain a fund dom, will be what we render as a cohom frac ladderpoles_vertices = T.left_ladder_pole_vertices() ### everything is on left of the ladders... if expand_fund_dom: left_ladder = T.ladder_list[0] right_ladder = T.ladder_list[-1] left_ladder_nbd = [] for lu in left_ladder.ladder_unit_list: if lu.is_on_left(): # print(lu, lu.left_vertices[0]) left_ladder_nbd.extend( lu.vert_positions_around_corner( lu.left_vertices[0] ) ) last = left_ladder.ladder_unit_list[-1] # print('extra', last, last.left_vertices[-1]) left_ladder_nbd.extend( last.vert_positions_around_corner( last.left_vertices[-1] ) ) # print('right') right_ladder_nbd = [] for lu in right_ladder.ladder_unit_list: if lu.is_on_left(): # print(lu, lu.left_vertices[0]) right_ladder_nbd.extend( lu.vert_positions_around_corner( lu.left_vertices[0] ) ) last = right_ladder.ladder_unit_list[-1] # print('extra', last, last.left_vertices[-1]) right_ladder_nbd.extend( last.vert_positions_around_corner( last.left_vertices[-1] ) ) left_ladder_nbd = uniquify_list(left_ladder_nbd) right_ladder_nbd = uniquify_list(right_ladder_nbd) bottom_nbd = [] top_nbd = [] for i, L in enumerate(T.ladder_list): if i%2 == 0: lu_bottom = L.ladder_unit_list[0] lu_top = L.ladder_unit_list[-1] bottom_nbd.extend( lu_bottom.vert_positions_around_corner(lu_bottom.left_vertices[0]) ) bottom_nbd.extend( lu_bottom.vert_positions_around_corner(lu_bottom.right_vertices[0]) ) top_nbd.extend( lu_top.vert_positions_around_corner(lu_top.left_vertices[-1]) ) top_nbd.extend( lu_top.vert_positions_around_corner(lu_top.right_vertices[-1]) ) bottom_nbd = uniquify_list(bottom_nbd) top_nbd = uniquify_list(top_nbd) all_ladderpole_vertices = [v for L in ladderpoles_vertices for v in L] left_ladder_nbd = uniquify_list(left_ladder_nbd, subtract = all_ladderpole_vertices) right_ladder_nbd = uniquify_list(right_ladder_nbd, subtract = all_ladderpole_vertices + left_ladder_nbd) ### right and left can overlap bottom_nbd = uniquify_list(bottom_nbd, subtract = all_ladderpole_vertices + left_ladder_nbd + right_ladder_nbd) ### top and bottom cannot top_nbd = uniquify_list(top_nbd, subtract = all_ladderpole_vertices + left_ladder_nbd + right_ladder_nbd) desired_vertices = all_ladderpole_vertices + left_ladder_nbd + right_ladder_nbd + bottom_nbd + top_nbd desired_vertices = uniquify_list(desired_vertices) ## just in case... else: desired_vertices = [v for L in ladderpoles_vertices for v in L] con = continent( vt, initial_tet_face, desired_vertices = desired_vertices ) con.build_fundamental_domain() ## expand the continent until we have all vertices of the boundary triangulation fundamental domain # print(('unfound desired_vertices', con.desired_vertices)) # assert con.desired_vertices == [] ### found all the desired vertices if con.desired_vertices != []: print(veering_isosig, 'did not find all torus triangulation vertices') return False # now replace ladderpoles_vertices with the continent's corresponding vertices for ladderpole_vertices in ladderpoles_vertices: replace_with_continent_vertices(ladderpole_vertices, con) if expand_fund_dom: replace_with_continent_vertices(left_ladder_nbd, con) replace_with_continent_vertices(right_ladder_nbd, con) replace_with_continent_vertices(bottom_nbd, con) replace_with_continent_vertices(top_nbd, con) nbd = left_ladder_nbd + bottom_nbd + top_nbd + right_ladder_nbd nbd.sort(key = lambda v: con.coast.index(v)) ### the following is the list with correctly replaced vertices all_ladderpole_vertices = [v for L in ladderpoles_vertices for v in L] ### dont need this to be bigger when doing "expand_fund_dom" ladderpole_descendant_segments = [] if expand_fund_dom: ### we must sort the extra vertices of nbd into the correct ladderpoles... just do by colour of the edge connecting to infty ladderpole_is_red = nbd[0].edge_between(con.infinity).is_red segment_start = con.coast.index(nbd[0]) for i,v in enumerate(nbd): if v.edge_between(con.infinity).is_red != ladderpole_is_red: ladderpole_descendant_segments.append( [segment_start, con.coast.index(nbd[i-1])] ) segment_start = con.coast.index(nbd[i]) ladderpole_is_red = not ladderpole_is_red ladderpole_descendant_segments.append( [segment_start, con.coast.index(nbd[-1])] ) else: for ladderpole_vertices in ladderpoles_vertices: segment = [con.coast.index(ladderpole_vertices[0]), con.coast.index(ladderpole_vertices[-1])] segment.sort() ladderpole_descendant_segments.append( segment ) con.mark_ladderpole_descendants(ladderpole_descendant_segments) # print 'important verts', important_vertices # for v in important_vertices: # z = T.drawing_scale * v.pos.complex() # pyx_fill_col = pyx.deco.filled([pyx.color.rgb.black]) # T.canv.fill(pyx.path.circle(z.real, z.imag, 0.02), [pyx_fill_col]) hit_max_tetrahedra = False ### default assumption is that we had enough tetrahedra to get the max_length we want. # print(build_type) if build_type == 'build_naive': con.build_naive(max_num_tetrahedra = max_num_tetrahedra) elif build_type == 'build_on_coast': hit_max_tetrahedra = con.build_on_coast(max_length = max_length, max_num_tetrahedra = max_num_tetrahedra) elif build_type == 'build_make_long_descendant_edges_internal': hit_max_tetrahedra = con.build_make_long_descendant_edges_internal(max_length = max_length, max_num_tetrahedra = max_num_tetrahedra) elif build_type == 'build_explore_prongs': hit_max_tetrahedra = con.build_explore_prongs(max_length = max_length, max_num_tetrahedra = max_num_tetrahedra) elif build_type == 'build_long_and_mid': hit_max_tetrahedra = con.build_long_and_mid(max_length = max_length, max_num_tetrahedra = max_num_tetrahedra) if hit_max_tetrahedra: output_filename = output_filename[:-4] + '_hitmax.pdf' ####### # eq = con.segment_between( ladderpoles_vertices[0][0], ladderpoles_vertices[0][1] ) ## segment under one edge of ladderpole # eq = con.segment_between( ladderpoles_vertices[0][0], ladderpoles_vertices[0][-1] ) ## 0th ladderpole grad = pyx.color.gradient.Hue # colours = {"blue":pyx.color.rgb.blue, "red":pyx.color.rgb.red} colours = {"blue":pyx.color.rgb(0,0,0.5), "red":pyx.color.rgb(0.5,0,0)} ct_lw = draw_args['ct_lw'] draw_options = [pyx.style.linewidth(ct_lw), pyx.style.linejoin.round, pyx.deco.colorgradient(grad, steps = 256)] ## this may get overwritten with colour information for the ladder assign_continent_vertices_to_tet_faces(T, con) dividers = con.lightning_dividers([]) ## only lightning curves for infinity layer1 = T.canv.layer("layer1") layer2 = T.canv.layer("layer2", below = "layer1") if draw_jordan_curve: jordan_colours = [pyx.color.rgb(0,0,0), pyx.color.rgb(1,1,1)] ### black, white for k, L in enumerate(T.ladder_list): if k%2 == 0: for lu in L.ladder_unit_list: if lu.is_on_left(): s, e = lu.con_verts[lu.left_vertices[0]], lu.con_verts[lu.left_vertices[1]] else: s, e = lu.con_verts[lu.right_vertices[0]], lu.con_verts[lu.right_vertices[1]] CT_ladderpole = con.segment_between(s, e) curves = lightning_curves_around_ladder_unit_ladder_pole_edge(dividers, lu, T) if CT_ladderpole[0] != e: CT_ladderpole.reverse() assert CT_ladderpole[0] == e assert CT_ladderpole[-1] == s CT_ladderpole_pos = [v.pos.complex() for v in CT_ladderpole ] assert abs(CT_ladderpole_pos[0] - curves[0][-1]) < 0.0001 assert abs(CT_ladderpole_pos[-1] - curves[0][0]) < 0.0001 loop0 = curves[0] + CT_ladderpole_pos[1:-1] path_C = [ T.drawing_scale * c for c in loop0 ] draw_path(layer1, path_C, [jordan_colours[0]], fill = True) assert abs(CT_ladderpole_pos[0] - curves[1][0]) < 0.0001 assert abs(CT_ladderpole_pos[-1] - curves[1][-1]) < 0.0001 CT_ladderpole_pos.reverse() loop1 = curves[1] + CT_ladderpole_pos[1:-1] path_C = [ T.drawing_scale * c for c in loop1 ] draw_path(layer1, path_C, [jordan_colours[1]], fill = True) # for k, ladderpole in enumerate(ladderpoles_vertices): # for j in range(len(ladderpole) - 1): # s, e = ladderpole[j], ladderpole[j+1] # CT_ladderpole = con.segment_between(s, e) # if CT_ladderpole[0] != s: # CT_ladderpole.reverse() # assert CT_ladderpole[0] == s # assert CT_ladderpole[-1] == e # for i in range(2): # lightning_curve = lightning_curve_from_dividers(dividers[i], s, e, special_vertices = all_ladderpole_vertices, spiky = False) # CT_ladderpole_pos = [v.pos.complex() for v in CT_ladderpole ] # if CT_ladderpole_pos[0] == lightning_curve[0]: # lightning_curve.reverse() # assert CT_ladderpole_pos[0] == lightning_curve[-1] and CT_ladderpole_pos[-1] == lightning_curve[0] # lightning_curve = lightning_curve[1:-1] # loop = CT_ladderpole_pos + lightning_curve # path_C = [ T.drawing_scale * c for c in loop ] # draw_path(layer1, path_C, [jordan_colours[i]], fill = True) # if k == 0: # L = T.ladder_list[0] # offset = L.left_ladderpole_index_to_ladder_unit(j).gluing_offset # path_C = [ T.drawing_scale * (c + offset) for c in loop ] # draw_path(layer1, path_C, [jordan_colours[i]], fill = True) box = T.canv.bbox() layer2.fill(box.enlarged(1.0).rect(), [pyx.color.rgb(0.5,0.5,0.5)]) # lightning_colours = [pyx.color.rgb(0,0.5,0), pyx.color.rgb(0.5,0,0.5)] ### green, purple # lightning_colours = [pyx.color.rgb(1,0,0), pyx.color.rgb(1,0,0)] ### red, red lightning_colours = [pyx.color.rgb(0,0,0), pyx.color.rgb(0,0,0)] ### black, black if draw_dividers: for k in range(2): for divider_list in dividers[k]: for edge in divider_list: edgeC = [T.drawing_scale * v.pos.complex() for v in edge.vertices] draw_path(layer1, edgeC, [lightning_colours[k], pyx.style.linewidth(0.005)]) ##### draw the Cannon-Thurston curve if draw_CT_curve: if draw_args['only_draw_ladderpoles']: for j, ladderpole_vertices in enumerate(ladderpoles_vertices): # if j%2 == 0: # col = colours["red"] # else: # col = colours["blue"] # draw_options = [pyx.style.linewidth(ct_lw), col] for i in range(len(ladderpole_vertices) - 1): # fenceposts path = con.segment_between(ladderpole_vertices[i], ladderpole_vertices[i+1]) for v in path[:-1]: assert v.is_ladderpole_descendant() path_C = [ T.drawing_scale * v.pos.complex() for v in path ] draw_path(T.canv, path_C, draw_options) else: path = con.coast path.remove(con.infinity) path_C = [ T.drawing_scale * v.pos.complex() for v in path ] draw_path(T.canv, path_C, draw_options) ############## # adj_verts, adj_edges = con.vertices_and_edges_adjacent_to_infinity() ### continent drawing the boundary triangulation (we don't generally do this because we have boundary_triangulation to do this) # lines for triangles meeting infinity # for endpoints, veering_colour in adj_edges: # z, w = [T.drawing_scale * v.pos.complex() for v in endpoints] # pyx_stroke_col = pyx.deco.stroked([colours[veering_colour]]) # T.canv.stroke(pyx.path.line( z.real, z.imag, w.real, w.imag), [pyx.style.linewidth(lw * 5), pyx_stroke_col] ) # # dots for edges from infinity # for v,veering_colour in adj_verts: # z = v.pos.complex() # pyx_fill_col = pyx.deco.filled([colours[veering_colour]]) # T.canv.fill(pyx.path.circle(z.real, z.imag, 0.02), [pyx_fill_col]) ### continent drawing the left_ladder_pole_vertices # T = B.torus_triangulation_list[0] # for L in T.ladder_list: # for v in L.left_ladder_pole_vertices(): # v *= T.drawing_scale # if L.is_even: # col = colours["blue"] # else: # col = colours["red"] # T.canv.stroke(pyx.path.circle(v.real, v.imag, 0.15), [pyx.style.linewidth(lw * 3), col]) #### draw upper and lower landscapes for the continent if draw_landscapes: lower_colours = {True: pyx.color.rgb(0.5,0.3,0), False: pyx.color.rgb(0,0.3,0.5)} upper_colours = {True: pyx.color.rgb(0.9,0.3,0), False: pyx.color.rgb(0,0.3,0.9)} landscape_edges = con.boundary_landscape_edges() colours = [lower_colours, upper_colours] for i in range(2): # i = 1 for e in landscape_edges[i]: col = colours[i][e.is_red] u, v = e.vertices if u == con.infinity or v == con.infinity: if u == con.infinity: z = T.drawing_scale * v.pos.complex() else: z = T.drawing_scale * u.pos.complex() T.canv.fill(pyx.path.circle(z.real, z.imag, 0.05), [col]) else: draw_path(T.canv, [T.drawing_scale * u.pos.complex(), T.drawing_scale * v.pos.complex()], [pyx.style.linewidth(0.5 * ct_lw), col]) #### draw lightning curves lightning_colours = [pyx.color.rgb(0,0.5,0), pyx.color.rgb(0.5,0,0.5)] ### green, purple # lightning_colours = [pyx.color.rgb(1,0,0), pyx.color.rgb(1,0,0)] ### red, red # lightning_colours = [pyx.color.rgb(0,0,0), pyx.color.rgb(0,0,0)] ### black, black if draw_lightning_curve: dividers = con.lightning_dividers([]) ## only lightning curves for infinity # dividers = con.lightning_dividers(all_ladderpole_vertices) ## add in more lightning curves # k = 0 for k, L in enumerate(T.ladder_list): for lu in L.ladder_unit_list: if k%2 == 0: curves = lightning_curves_around_ladder_unit_ladder_pole_edge(dividers, lu, T) for j, crv in enumerate(curves): lightning_curve_scaled = [ T.drawing_scale * c for c in crv ] draw_path(T.canv, lightning_curve_scaled, [pyx.style.linewidth(ct_lw), pyx.style.linejoin.round, lightning_colours[j]]) # non_inf_verts = [0,1,2,3] # non_inf_verts.remove(lu.face) # edge_colours = [] # for i in range(3): # edge_colours.append( T.vt.get_edge_between_verts_colour(lu.tet_num, (non_inf_verts[(i+1)%3], non_inf_verts[(i+2)%3]) ) ) # for i in range(3): # if edge_colours[i] == edge_colours[(i+1)%3]: # odd_one_out = (i+2)%3 # s, e = lu.con_verts[non_inf_verts[(odd_one_out + 1)%3]], lu.con_verts[non_inf_verts[(odd_one_out + 2)%3]] # lightning_curve = lightning_curve_from_dividers(dividers[k%2], s, e, special_vertices = all_ladderpole_vertices, spiky = False) # lightning_curve_scaled = [ T.drawing_scale * c for c in lightning_curve ] # draw_path(T.canv, lightning_curve_scaled, [pyx.style.linewidth(ct_lw), pyx.style.linejoin.round, lightning_colours[k%2]]) # if k == len(T.ladder_list) - 1: # lightning_curve_shifted = [c + lu.gluing_offset for c in lightning_curve] # lightning_curve_shifted_scaled = [ T.drawing_scale * c for c in lightning_curve_shifted ] # draw_path(T.canv, lightning_curve_shifted_scaled, [pyx.style.linewidth(ct_lw), pyx.style.linejoin.round, lightning_colours[k%2]]) # for k, ladderpole in enumerate(ladderpoles_vertices): # for j in range(len(ladderpole) - 1): # s, e = ladderpole[j], ladderpole[j+1] # for i in range(2): # lightning_curve = lightning_curve_from_dividers(dividers[i], s, e, special_vertices = all_ladderpole_vertices, spiky = False) # lightning_curve_scaled = [ T.drawing_scale * c for c in lightning_curve ] # draw_path(T.canv, lightning_curve_scaled, [pyx.style.linewidth(ct_lw), pyx.style.linejoin.round, lightning_colours[i]]) # if k == 0: # L = T.ladder_list[0] # offset = L.left_ladderpole_index_to_ladder_unit(j).gluing_offset # lightning_curve_scaled_shifted = [ T.drawing_scale * (c + offset) for c in lightning_curve ] # draw_path(T.canv, lightning_curve_scaled_shifted, [pyx.style.linewidth(ct_lw), pyx.style.linejoin.round, pyx.color.rgb(0,1,1)]) # for i in range(2): # for crv in lightning_curves[i]: # ## remove any infinities # crv = [c for c in crv if c != con.infinity] # # if draw_args['only_draw_ladderpoles']: # # ladderpole_indices = [] # # for j, c in enumerate(crv): # # if c in all_ladderpole_vertices: # # ladderpole_indices.append(j) # # if len(ladderpole_indices) <= 1: # # crv = [] # # else: # # crv = crv[ladderpole_indices[0]:ladderpole_indices[-1] + 1] # crv = [ T.drawing_scale * c.pos.complex() for c in crv ] # if len(crv) > 0: # draw_path(T.canv, crv, [pyx.style.linewidth(ct_lw), pyx.style.linejoin.round, lightning_colours[i]]) # # ## trim to ladder poles # # ladderpole_vertex_indices = [] # # for i, v in enumerate(crv): # # if v in all_ladderpole_vertices: # # ladderpole_vertex_indices.append(i) # # if len(ladderpole_vertex_indices) > 0: # # crv = crv[ladderpole_vertex_indices[0]: ladderpole_vertex_indices[-1] + 1] # # # for e in crv: # # # pts = [T.drawing_scale * v.pos.complex() for v in e.vertices] # # # draw_path(T.canv, pts, [pyx.style.linewidth(ct_lw)]) # # crv = [ T.drawing_scale * c.pos.complex() for c in crv ] # # draw_path(T.canv, crv, [pyx.style.linewidth(ct_lw), pyx.style.linejoin.round]) if draw_box_for_cohom_frac: box = T.canv.bbox() diam = pyx.unit.tocm( max([box.right() - box.left(), box.top() - box.bottom()]) ) ### pyx stores lengths in a weird format, we have to convert to cm to get a float out box_center = complex(pyx.unit.tocm( 0.5*(box.right() + box.left()) ), pyx.unit.tocm( 0.5*(box.top() + box.bottom()) )) box_right_midpoint = box_center + complex(0.5*diam, 0) # T.canv.stroke(box.rect()) T.canv.stroke(pyx.path.rect(box_center.real - 0.5*diam, box_center.imag - 0.5*diam, diam, diam)) # lower left corner coords, width, height inf_vert = initial_tet_face.face zero_vert = inf_vert - ((inf_vert%2)*2 - 1) ## swaps 0 with 1, 2 with 3 one_vert = inf_vert - 2*(((inf_vert//2) % 2)*2 - 1) ## swaps 0 with 2, 1 with 3 zero_vert_pos = T.drawing_scale * initial_tet_face.verts_pos[zero_vert].complex() one_vert_pos = T.drawing_scale * initial_tet_face.verts_pos[one_vert].complex() half_pos = 0.5 * (zero_vert_pos + one_vert_pos) ### we must rotate, translate, and scale the cohom fractal picture to fit in the box if draw_alignment_dots: T.canv.fill(pyx.path.circle(zero_vert_pos.real, zero_vert_pos.imag, 0.2)) T.canv.fill(pyx.path.circle(half_pos.real, half_pos.imag, 0.15)) T.canv.fill(pyx.path.circle(box_center.real, box_center.imag, 0.1)) T.canv.fill(pyx.path.circle(box_right_midpoint.real, box_right_midpoint.imag, 0.1)) ### need to send zero_vert_pos to box_center, and half_pos to box_right_midpoint # print veering_isosig out_data.append(veering_isosig) # print 'tet face', initial_tet_face out_data.append((initial_tet_face.tet_num, initial_tet_face.face)) picture_unit = one_vert_pos - zero_vert_pos translation = (box_center - zero_vert_pos)/picture_unit ## need to write this in coord system of one_vert_pos and zero_vert_pos # print 'translation', [translation.real, translation.imag] out_data.append((translation.real, translation.imag)) ### first rotate and scale, then do parabolicBy2DVector(v) complex_scale = (box_right_midpoint - box_center)/(half_pos - zero_vert_pos) # print 'scale, rotate', cmath.polar(complex_scale) out_data.append(cmath.polar(complex_scale)) # pic_center = zero_vert_pos # print pyx.unit.tocm(box.right()) # print type(pyx.unit.tocm(box.right())) # rad = pyx.unit.tocm( max([box.right() - pic_center.real, pic_center.real - box.left(), box.top() - pic_center.imag, pic_center.imag - box.bottom()]) ) ### pyx stores lengths in a weird format, we have to convert to cm to get a float out # T.canv.stroke(pyx.path.rect(pic_center.real - rad, pic_center.imag - rad, 2*rad, 2*rad)) # lower left corner coords, width, height # right_midpoint = pic_center + complex(rad,0) # complex_scale = (right_midpoint - pic_center) / (half_pos - pic_center) # print "complex_scale", complex_scale ### to do: ### 1. remove bits of lightning curve beyond the fund domain DONE ### 2. how to get the data into the cohom frac code DONE ## circles around found vertices if draw_desired_vertices: for pos in desired_vertices: # pos = v.pos.complex() pos *= T.drawing_scale T.canv.stroke(pyx.path.circle(pos.real, pos.imag, 0.3), [pyx.style.linewidth(0.1), pyx.color.rgb.green]) out_canvas = pyx.canvas.canvas() height_offset = 0.0 canvases = [T.canv for T in B.torus_triangulation_list] for i,c in enumerate(canvases): out_canvas.insert(c, attrs=[pyx.trafo.translate(-c.bbox().left(), height_offset - c.bbox().bottom())]) height_offset += c.bbox().height() + 0.05 ### add a tiny bit to stop crashes due to line width out_canvas.writePDFfile(output_filename) return out_data def draw_cannon_thurston_from_veering_isosigs_file(veering_isosigs_filename, output_dirname, max_num_tetrahedra = 500, max_length = 0.1, interval_to_draw = None, draw_args = None, build_type = None): veering_isosigs_list = parse_data_file(veering_isosigs_filename) if interval_to_draw != None: to_draw = veering_isosigs_list[interval_to_draw[0]:interval_to_draw[1]] else: to_draw = veering_isosigs_list shapes_data = read_from_pickle('Data/veering_shapes.pkl') for veering_isosig in to_draw: print(veering_isosig) tet_shapes = shapes_data[veering_isosig] filename = output_dirname + '/' + veering_isosig + '_' + str(max_num_tetrahedra) + '_' + str(max_length) + '_' + build_type + '.pdf' try: draw_continent( veering_isosig, tet_shapes, max_num_tetrahedra, max_length, output_filename = filename, draw_args = draw_args, build_type = build_type ) except: print('failed to draw ' + veering_isosig) def draw_jigsaw_from_veering_isosigs_list(veering_isosigs_list, output_dirname, jigsaw_data_out_filename = "jigsaw_data.pkl", max_num_tetrahedra = 2000000, max_length = 0.2, draw_args = None): build_type = 'build_long_and_mid' shapes_data = read_from_pickle('Data/shapes_jig_no_symm.pkl') data_for_cohom_fracs = {} for i, veering_isosig in enumerate(veering_isosigs_list): # print(veering_isosig) if i%25 == 0: print(i) tet_shapes = shapes_data[veering_isosig] # print 'tet_shapes', tet_shapes filename = output_dirname + '/' + veering_isosig + '_' + str(max_num_tetrahedra) + '_' + str(max_length) + '_' + build_type + '.pdf' expand_fund_dom = True out = draw_continent( veering_isosig, tet_shapes, max_num_tetrahedra, max_length, output_filename = filename, draw_args = draw_args, build_type = build_type ) if out != False: data_for_cohom_fracs[out[0]] = out[1:] output_to_pickle(data_for_cohom_fracs, jigsaw_data_out_filename) def draw_jigsaw_from_veering_isosigs_file(veering_isosigs_filename, output_dirname, jigsaw_data_out_filename = "jigsaw_data.pkl", max_num_tetrahedra = 2000000, max_length = 0.2, interval_to_draw = None, draw_args = None): veering_isosigs_list = parse_data_file(veering_isosigs_filename) if interval_to_draw != None: to_draw = veering_isosigs_list[interval_to_draw[0]:interval_to_draw[1]] else: to_draw = veering_isosigs_list draw_jigsaw_from_veering_isosigs_list(to_draw, output_dirname, jigsaw_data_out_filename = jigsaw_data_out_filename, max_num_tetrahedra = max_num_tetrahedra, max_length = max_length, draw_args = draw_args) if __name__ == '__main__': # draw_args = {'draw_boundary_triangulation':True, 'draw_labels': False, 'only_draw_ladderpoles': True, 'ct_lw': 0.002, 'global_drawing_scale': 4, 'style': 'geometric', 'draw_triangles_near_poles': True, 'ct_depth': -1} #ct_depth is the old way to try to build ct maps # draw_args = {'draw_boundary_triangulation':True, 'draw_labels': True, 'only_draw_ladderpoles': False, 'ct_lw': 0.02, 'global_drawing_scale': 4, 'style': 'geometric', 'draw_triangles_near_poles': False, 'ct_depth': -1} #ct_depth is the old way to try to build ct maps draw_args = {'draw_boundary_triangulation':False, 'draw_labels': False, 'only_draw_ladderpoles': True, 'ct_lw': 0.02, 'global_drawing_scale': 4, 'style': 'geometric', 'draw_triangles_near_poles': True, 'ct_depth': -1} #ct_depth is the old way to try to build ct maps # max_num_tetrahedra = 40 # max_num_tetrahedra = 5000 # max_num_tetrahedra = 50000 # max_num_tetrahedra = 100000 # max_num_tetrahedra = 400000 max_num_tetrahedra = 2000000 # max_length = 0.4 # max_length = 0.3 # max_length = 0.2 # max_length = 0.15 # max_length = 0.14 max_length = 0.1 # max_length = 0.07 # max_length = 0.06 # max_length = 0.05 # max_length = 0.02 # max_length = 0.01 draw_args['ct_lw'] = 0.2 * max_length # build_type = 'build_naive' # build_type = 'build_on_coast' # build_type = 'build_make_long_descendant_edges_internal' # build_type = 'build_explore_prongs' build_type = 'build_long_and_mid' # veering_isosig = 'cPcbbbiht_12' # # # # veering_isosig = 'cPcbbbdxm_10' # veering_isosig = 'dLQacccjsnk_200' # veering_isosig = 'eLMkbcddddedde_2100' # veering_isosig = 'eLAkaccddjsnak_2001' # veering_isosig = 'gLAMPbbcdeffdhwqqqj_210202' # veering_isosig = 'gLLAQbecdfffhhnkqnc_120012' # veering_isosig = 'iLLLAQccdffgfhhhqgdatgqdm_21012210' ## no symmetry - helps us spot errors # veering_isosig = 'iLLPwQcccdfehghhhggaahhbg_20102211' # # veering_isosig = 'jLAwwAQbcbdfghihihhwhnaaxrn_211211021' ## first non geometric # # veering_isosig = 'nLLwMLPMMkbeefeihjkjlmlmhhaaaektxnaqrs_0111000011220' ### quite big negative shape # veering_isosig = 'qLvPvvMQQLQkccgkgjkmlknpooppoqjaajqqhhqqaqxhhh_0222110112222211' # veering_isosig = 'fLLQcbeddeehhnkhh_21112' # veering_isosig = 'eLAkbbcdddhwqj_2102' # # # veering_isosig = 'mLvLLLQQQbegikhjiilkllhiardrnnkxeif_120000112222' # veering_isosig = 'mLvLLMMQQcehfhjlklkjlktilbbjumhtfai_011220220111' # veering_isosig = 'mLLvLQLQQbeffjglhlkjklxxxjsfqjhhoqo_102210101022' veering_isosig ='kLLLAPPkcdgfehhjijjhfhaqiphffj_2010222001' # veering_isosig = 'jLLLLQQbegfhihihihhqakkkkoo_120011211' # veering_isosig = 'dLQbccchhsj_122' # veering_isosig = 'mvLALLMQQecfgjkkjiljllccaxvvwkfekix_100001122112' # veering_isosig = 'mvLALPMPQecfggjgikllklccaxxvcfaqdmo_100001122100' # veering_isosig = 'nLLLLzAPQkbefgjkjimlllmmxxqhxqubxtivwb_1022101110220' # shapes_data = read_from_pickle('Data/veering_shapes_up_to_twelve_tetrahedra.pkl') # shapes_data = read_from_pickle('Data/veering_shapes.pkl') shapes_data = read_from_pickle('Data/shapes_jig_no_symm.pkl') tet_shapes = shapes_data[veering_isosig] # # print tet_shapes # filename = 'Images/Cannon-Thurston/' + veering_isosig + '_' + str(max_num_tetrahedra) + '_' + str(max_length) + '_' + build_type + '.pdf' filename = 'Images/Jigsaw/' + veering_isosig + '_' + str(max_num_tetrahedra) + '_' + str(max_length) + '_' + build_type + '.pdf' # # # draw_continent( veering_isosig, tet_shapes, max_num_tetrahedra, draw_CT_curve = True, draw_lightning_curve = False, draw_landscapes = False, max_length = max_length, output_filename = filename, draw_args = draw_args, build_type = build_type ) # # draw_continent( veering_isosig, tet_shapes, max_num_tetrahedra, draw_CT_curve = True, draw_lightning_curve = True, draw_landscapes = False, draw_box_for_cohom_frac = True, max_length = max_length, output_filename = filename, draw_args = draw_args, build_type = build_type ) # # draw_continent( veering_isosig, tet_shapes, max_num_tetrahedra, draw_CT_curve = False, draw_lightning_curve = True, draw_landscapes = True, draw_box_for_cohom_frac = False, max_length = max_length, output_filename = filename, draw_args = draw_args, build_type = build_type, more = more ) draw_args['draw_CT_curve'] = False draw_args['draw_lightning_curve'] = True draw_args['draw_jordan_curve'] = False draw_args['draw_dividers'] = True draw_args['draw_landscapes'] = False draw_args['draw_box_for_cohom_frac'] = False draw_args['draw_alignment_dots'] = False draw_args['draw_desired_vertices'] = False draw_args['expand_fund_dom'] = True draw_continent( veering_isosig, tet_shapes, max_num_tetrahedra, max_length, output_filename = filename, draw_args = draw_args, build_type = build_type ) ## draw many: start_num = 500 end_num = 502 # draw_cannon_thurston_from_veering_isosigs_file('Data/veering_census.txt', 'Images/Jordan_curve', max_num_tetrahedra = max_num_tetrahedra, max_length = max_length, interval_to_draw = (start_num, end_num), draw_args = draw_args, build_type = build_type) ### jigsaws # draw_jigsaw_from_veering_isosigs_file('Data/sigs_for_jigs_no_symm.txt', 'Images/Jigsaw', jigsaw_data_out_filename = "jigsaw_data_no_symm.pkl", max_num_tetrahedra = max_num_tetrahedra, max_length = max_length, draw_args = draw_args, interval_to_draw = (start_num, end_num)) # all up through n's is 876. The 281th has trouble developing # veering_isosigs_list = ['kLLLAPPkcdgfehhjijjhfhaqiphffj_2010222001', 'mvLALLMQQecfgjkkjiljllccaxvvwkfekix_100001122112', 'mvLALPMPQecfggjgikllklccaxxvcfaqdmo_100001122100'] # draw_jigsaw_from_veering_isosigs_list(veering_isosigs_list, 'Images/Jigsaw', jigsaw_data_out_filename = "jigsaw_data.pkl", max_num_tetrahedra = 2000000, max_length = max_length, draw_args = draw_args)
from Tkinter import * def doNothing(): print "okay okay I won't" root = Tk() optionsbar = Menu(root) root.config(menu = optionsbar) fileMenu = Menu(optionsbar, tearoff = 0 ) optionsbar.add_cascade(label = "File", menu = fileMenu) fileMenu.add_command(label = "New Project", command = doNothing) fileMenu.add_command(label = "New", command = doNothing) fileMenu.add_separator() fileMenu.add_command(label = "Exit", command = doNothing) editMenu = Menu(optionsbar, tearoff = 0) optionsbar.add_cascade(label = "Edit", menu = editMenu) editMenu.add_command(label = "Redo", command = doNothing) root.mainloop()
#!/usr/bin/python arr = [2,3,4,3,5,4,6,4,6,9,10,9,2,8,7,8,10,7] dict1={} for elem in arr: dict1.setdefault(elem, 0) dict1[elem] = dict1.get(elem) + 1 for a in dict1.keys(): if dict1.get(a) == 1: print a
# Generated by Django 4.0 on 2021-12-08 14:40 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('project_first_app', '0004_user_alter_owner_first_name'), ] operations = [ migrations.AlterField( model_name='owner', name='first_name', field=models.CharField(max_length=30), ), migrations.DeleteModel( name='User', ), ]
''' This python file implements a wrapper for surface matching (PPF) algorithm in Halcon software ''' import time import numpy as np from scipy.spatial.transform import Rotation as R ''' Please refer https://pypi.org/project/mvtec-halcon/ for setting up Halcon/Python Interface. More documentations can be found here: https://www.mvtec.com/products/halcon/documentation Note that the Halcon software of the corresponding version must be installed ''' import halcon as ha class PPFModel(): def __init__( self, object_model, ModelSamplingDist = 0.03, ModelInvertNormals = 'true', UseViewBased = 'false', ) -> None: ''' @params object_model: str or np.ndarray. The path to the ply model file or the array storing model points XYZ coordinates of the model points should be in milimeter others: all other arguments are to be used in create_surface_model() in halcon Refer https://www.mvtec.com/doc/halcon/2105/en/create_surface_model.html for details ''' # Create the Object3DModel if type(object_model) is str: Object3DModel, StatusModel = ha.read_object_model_3d(object_model, 'm', [], []) elif type(object_model) is np.ndarray: Object3DModel = ha.gen_object_model_3d_from_points(object_model[:, 0].tolist(), object_model[:, 1].tolist(), object_model[:, 2].tolist()) Object3DModel = ha.surface_normals_object_model_3d(Object3DModel, 'mls', [], []) else: raise Exception("Unknown type of object_model:", type(object_model)) self.Object3DModel = Object3DModel self.ObjectSurfaceModel = ha.create_surface_model( self.Object3DModel, ModelSamplingDist, ['model_invert_normals', 'train_view_based'], [ModelInvertNormals, UseViewBased], ) self.UseViewBased = UseViewBased def find_surface_model( self, scene_pc, MaxOverlapDistRel=0, NumResult=100, SceneNormalComputation='mls', SparsePoseRefinement = 'true', DensePoseRefinement = 'true', RefPtRate = 1, SceneSamplingDist = 0.03, ): ''' @params scene_pc: np.ndarray of shape (N, 6), the scene point cloud, in milimeter others: all other arguments are to be used in find_surface_model() in halcon Refer https://www.mvtec.com/doc/halcon/2105/en/find_surface_model.html for details @return poses_ppf: np.ndarray of shape (NumResult, 4, 4), the estimated poses, in milimeter scores_ppf: list of length NumResult, the score of each pose given by PPF algorithm time_ppf: float, the time used by find_surface_model() ''' Scene3DModel = ha.gen_object_model_3d_from_points(scene_pc[:, 0].tolist(), scene_pc[:, 1].tolist(), scene_pc[:, 2].tolist()) t1 = time.time() Pose, Score, SurfaceMatchingResultID = ha.find_surface_model( self.ObjectSurfaceModel, Scene3DModel, SceneSamplingDist, RefPtRate, 0, 'true', ['num_matches', 'use_view_based', 'max_overlap_dist_rel', 'scene_normal_computation', 'sparse_pose_refinement', 'dense_pose_refinement'], \ [NumResult, self.UseViewBased, MaxOverlapDistRel, SceneNormalComputation, SparsePoseRefinement, DensePoseRefinement], ) t2 = time.time() poses_raw = np.asarray(Pose).reshape((NumResult, 7)) poses_rot = R.from_euler("XYZ", poses_raw[:, 3:6], degrees=True) poses_rotmat = poses_rot.as_matrix() poses_ppf = np.zeros((NumResult, 4, 4)) poses_ppf[:, :3, :3] = poses_rotmat poses_ppf[:, :3, 3] = poses_raw[:, :3] poses_ppf[:, 3, 3] = 1 scores_ppf = Score time_ppf = t2 - t1 return poses_ppf, scores_ppf, time_ppf
import math a = [] # user array c = [] one = int(1) zero = int(0) def perfect_square(x): return int(math.sqrt(x))**2 == x def sorted(arr, n): a1 = [] # index a2 = [] # perfect squares for i in range(n): if(perfect_square(a[i]) == True): a1.append(i) a2.append(a[i]) a2.sort() # print(a1) # print(a2) for i in range(n): if(perfect_square(a[i]) != True): c.append(a[i]) # print(c) n1 = len(a2) for i in range(0, n1, 1): c.insert(a1[i], a2[i]) # print(c) n = int(input()) a = list(map(int, input().strip().split()))[:n] # print(a) sorted(a, n) # print(perfect_square(21)) print(*c, sep=" ")
# # This script is licensed as public domain. # # http://docs.python.org/2/library/struct.html from xml.etree import ElementTree as ET from xml.dom import minidom import os,shutil import struct import array import logging import bpy import re from queue import Queue from threading import current_thread,main_thread from math import degrees from mathutils import Vector import traceback from .addon_jsonnodetree import JSONNodetree # # ----------------------------------------- # # Check if json-nodetree-addon is available # # ----------------------------------------- # def IsJsonNodeAddonAvailable(): # #jsonNodetreeAvailable = False # #log = logging.getLogger("ExportLogger") # jsonNodetreeAvailable = "addon_jsonnodetree" in bpy.context.preferences.addons.keys() # return jsonNodetreeAvailable # # ------------------------------------------- # # Check if blender-connect-addon is available # # ------------------------------------------- # def IsBConnectAddonAvailable(): # bconnectAvailable = "addon_blender_connect" in bpy.context.preferences.addons.keys() # return bconnectAvailable # BCONNECT_AVAILABLE = IsBConnectAddonAvailable() # if BCONNECT_AVAILABLE: # import addon_blender_connect # from addon_blender_connect.BConnectNetwork import Publish,StartNetwork,NetworkRunning,AddListener,GetSessionId log = logging.getLogger("ExportLogger") def enum(**enums): return type('Enum', (), enums) PathType = enum( ROOT = "ROOT-", MODELS = "MODE-", ANIMATIONS = "ANIM-", TRIGGERS = "TRIG-", MATERIALS = "MATE-", TECHNIQUES = "TECH-", TEXTURES = "TEXT-", MATLIST = "MATL-", OBJECTS = "OBJE-", SCENES = "SCEN-") # Options for file utils class FOptions: def __init__(self): self.useSubDirs = True self.fileOverwrite = False self.paths = {} self.exts = { PathType.MODELS : "mdl", PathType.ANIMATIONS : "ani", PathType.TRIGGERS : "xml", PathType.MATERIALS : "xml", PathType.TECHNIQUES : "xml", PathType.TEXTURES : "png", PathType.MATLIST : "txt", PathType.OBJECTS : "xml", PathType.SCENES : "xml" } self.preserveExtTemp = False #-------------------- # Errors container #-------------------- class ErrorsMem: def __init__(self): self.errors = {} self.seconds = [] def Get(self, name, defaultValue = None): try: return self.errors[name] except KeyError: if defaultValue is not None: self.errors[name] = defaultValue return defaultValue def Delete(self, name): if name in self.errors: del self.errors[name] def Cleanup(self): emptyList = [] for name in self.errors.keys(): try: if not self.errors[name]: emptyList.append(name) except TypeError: pass for name in emptyList: del self.errors[name] def Names(self): return self.errors.keys() def Second(self, index): try: return self.seconds[index] except IndexError: return None def SecondIndex(self, second): try: return self.seconds.index(second) except ValueError: index = len(self.seconds) self.seconds.append(second) return index def Clear(self): self.errors.clear() self.seconds.clear() #-------------------- # File utilities #-------------------- # Get a file path for the object 'name' in a folder of type 'pathType' def GetFilepath(pathType, name, fOptions): # Get absolute root path rootPath = bpy.path.abspath(fOptions.paths[PathType.ROOT]) # Remove unnecessary separators and up-level references rootPath = os.path.normpath(rootPath) # Append the relative path to get the full path fullPath = rootPath if fOptions.useSubDirs: fullPath = os.path.join(fullPath, fOptions.paths[pathType]) # Compose filename, remove invalid characters filename = re.sub('[^\w_.)( -]', '_', name) if type(filename) is list or type(filename) is tuple: filename = os.path.sep.join(filename) # Add extension to the filename, if present we can preserve the extension ext = fOptions.exts[pathType] if ext and (not fOptions.preserveExtTemp or os.path.extsep not in filename): filename += os.path.extsep + ext #filename = bpy.path.ensure_ext(filename, ".mdl") fOptions.preserveExtTemp = False # Replace all characters besides A-Z, a-z, 0-9 with '_' #filename = bpy.path.clean_name(filename) # Compose the full file path fileFullPath = os.path.join(fullPath, filename) # Get the Urho path (relative to root) fileUrhoPath = os.path.relpath(fileFullPath, rootPath) fileUrhoPath = fileUrhoPath.replace(os.path.sep, '/') # Return full file path and relative file path return (fileFullPath, fileUrhoPath) # Check if 'filepath' is valid def CheckFilepath(fileFullPaths, fOptions): fileFullPath = fileFullPaths if type(fileFullPaths) is tuple: fileFullPath = fileFullPaths[0] # Create the full path if missing fullPath = os.path.dirname(fileFullPath) if not os.path.isdir(fullPath): try: os.makedirs(fullPath) log.info( "Created path {:s}".format(fullPath) ) except Exception as e: log.error("Cannot create path {:s} {:s}".format(fullPath, e)) if os.path.exists(fileFullPath) and not fOptions.fileOverwrite: log.error( "File already exists {:s}".format(fileFullPath) ) return False return True #-------------------- # XML formatters #-------------------- def FloatToString(value): return "{:g}".format(value) def Vector3ToString(vector): return "{:g} {:g} {:g}".format(vector[0], vector[1], vector[2]) def Vector4ToString(vector): return "{:g} {:g} {:g} {:g}".format(vector[0], vector[1], vector[2], vector[3]) def XmlToPrettyString(elem): rough = ET.tostring(elem, 'utf-8') reparsed = minidom.parseString(rough) pretty = reparsed.toprettyxml(indent="\t") i = pretty.rfind("?>") if i >= 0: pretty = pretty[i+2:] return pretty.strip() #-------------------- # XML writers #-------------------- def ensure_dir(file_path): directory = os.path.dirname(file_path) if not os.path.exists(directory): os.makedirs(directory) def WriteStringFile(stringContent, filepath, fOptions): try: ensure_dir(filepath) file = open(filepath, "w") except Exception as e: log.error("Cannot open file {:s} {:s}".format(filepath, e)) return try: file.write(stringContent) except Exception as e: log.error("Cannot write to file {:s} {:s}".format(filepath, e)) file.close() # Write XML to a text file def WriteXmlFile(xmlContent, filepath, fOptions): WriteStringFile(XmlToPrettyString(xmlContent),filepath,fOptions) #-------------------- # Binary writers #-------------------- class BinaryFileWriter: # We try to write the file with a single API call to avoid # the Editor crashing while reading a not completed file. # We set the buffer to 1Mb (if unspecified is 64Kb, and it is # 8Kb with multiple file.write calls) # Constructor. def __init__(self): self.filename = None self.buffer = None # Open file stream. def open(self, filename): self.filename = filename self.buffer = array.array('B') return True def close(self): try: file = open(self.filename, "wb", 1024 * 1024) except Exception as e: log.error("Cannot open file {:s} {:s}".format(self.filename, e)) return try: self.buffer.tofile(file) except Exception as e: log.error("Cannot write to file {:s} {:s}".format(self.filename, e)) file.close() # Writes an ASCII string without terminator def writeAsciiStr(self, v): # Non ASCII to '_' v = re.sub(r'[^\x00-\x7f]', '_', v) self.buffer.extend(bytes(v, "ascii", errors="ignore")) # Writes a 32 bits unsigned int def writeUInt(self, v): self.buffer.extend(struct.pack("<I", v)) # Writes a 16 bits unsigned int def writeUShort(self, v): self.buffer.extend(struct.pack("<H", v)) # Writes one 8 bits unsigned byte def writeUByte(self, v): self.buffer.extend(struct.pack("<B", v)) # Writes four 32 bits floats .w .x .y .z def writeQuaternion(self, v): self.buffer.extend(struct.pack("<4f", v.w, v.x, v.y, v.z)) # Writes three 32 bits floats .x .y .z def writeVector3(self, v): self.buffer.extend(struct.pack("<3f", v.x, v.y, v.z)) # Writes a 32 bits float def writeFloat(self, v): self.buffer.extend(struct.pack("<f", v)) # -------------------------- # Hash - Function (like StringHash in Urho3D) # -------------------------- def SDBMHash(key): hash = 0 for i in range(len(key)): hash = ord(key[i]) + (hash << 6) + (hash << 16) - hash return (hash & 0xFFFFFFFF) def CalcNodeHash(id): return SDBMHash(id) % 10000000 def getLodSetWithID(id,returnIdx=False): cnt=0 for lodset in bpy.data.worlds[0].lodsets: if lodset.lodset_id == id: # good that I'm so consistent with my name *#%& if returnIdx: return cnt else: return lodset cnt=cnt+1 #print("COULD NOT FIND LODSET WITH ID:%s"%id) return None def getObjectWithID(id): if id==-1: return None for obj in bpy.data.objects: if obj.ID == id: return obj return None # --------------- # execution queue # --------------- class ExecutionQueue: def __init__(self): self.queue = Queue() def queue_action(self,action): #print("added queue function(THREAD:%s)" % current_thread().getName()) self.queue.put(action) #print("..done..") ## execute immediately if called from main-thread, otherwise queue it def execute_or_queue_action(self,action): if current_thread() is main_thread(): #print("immediate call") action() else: #print("queued:%s"%current_thread().getName()) self.queue_action(action) def has_actions(self): return not self.queue.empty def flush_actions(self): #print("TRY TO FLUSH EXECUTION ACTIONS: empty?: %s" % self.queue.empty()) while not self.queue.empty(): #print("DO EXECUTION FUNCTION") # get queued-action... action = self.queue.get() # ...and execute it try: action() except ReferenceError: print("!!Referror!! %s" % str(action)); except Exception: print("Listener error for ") print(traceback.format_exc()) execution_queue = ExecutionQueue() # ---------------- # conversion utils # ---------------- def vec2dict(vec,convToDeg=False): result={} try: if not convToDeg: result["x"]=vec.x result["y"]=vec.y result["z"]=vec.z result["w"]=vec.w else: result["x"]=degrees(vec.x) result["y"]=degrees(vec.y) result["z"]=degrees(vec.z) result["w"]=degrees(vec.w) except: pass return result def matrix2dict(matrix,convToDeg=False): resultmatrix=[] for vector in matrix: resultmatrix.append(vec2dict(vector,convToDeg)) return resultmatrix class PingData: ping_check_running = False ping_runtime_timer = 0 ping_runtime_interval = 0.5 ping_count = 0 ping_auto_timer = 0 FOUND_RUNTIME = False def found_blender_runtime(): global FOUND_RUNTIME return FOUND_RUNTIME def set_found_blender_runtime(found=True): global FOUND_RUNTIME FOUND_RUNTIME=found def PingForRuntime(): #print("PPIINNGG for Runtime") if PingData.ping_check_running: return PingData.ping_auto_timer = 10 PingData.ping_check_running = True #print("Setted:%s" % PingData.ping_check_running) PingData.ping_runtime_timer = 0 PingData.ping_runtime_interval = 2 PingData.ping_count = 0 set_found_blender_runtime(False) def copy_file(from_filepath,to_folder,createFolderIfNotPresent=True): if createFolderIfNotPresent: from pathlib import Path Path(to_folder).mkdir(parents=True, exist_ok=True) shutil.copy(bpy.path.abspath(from_filepath), to_folder) def PrepareSceneHeaderFile(scene=None): # store object-data object_data={} def get_or_create_objdata(obj): if obj in object_data: return object_data[obj] obj_data={ "name" : obj.name } object_data[obj]=obj_data return obj_data if not scene: scene = bpy.context.scene scene_name = scene.name all_objects={} result={} scenedata=result[scene_name]={} scene_data = scenedata['scene']={ "name" : scene_name, "path" : "Scenes/%s.xml" % scene_name } objects = scenedata["all_obj"]={} empties = scenedata["empties"]={} collections = scenedata["collections"]={} tags = scenedata["tags"]={} lights = scenedata["lights"]={} cameras = scenedata["cameras"]={} meshobj = scenedata["mesh_objects"]={} # build data-structure for obj in scene.objects: obj_data = get_or_create_objdata(obj) obj_name = obj.name obj_name = re.sub('[^\w_.)( -]', '_', obj_name).replace('.','_') objects[obj_name]=obj_data all_objects[obj]=obj_data if obj.type=="MESH": meshobj[obj_name]=obj_data elif obj.type=="LIGHT": lights[obj_name]=obj_data elif obj.type=="CAMERA": cameras[obj_name]=obj_data elif obj.type=="EMPTY": empties[obj_name]=obj_data else: print("obj-type:%s not categorized" % obj.type) for col in obj.users_collection: collection_name = col.name if collection_name not in collections: collections[collection_name]={} collections[collection_name][obj_name]=obj_data for userdata in obj.user_data: if userdata.key=="tag": tag = userdata.value if tag not in tags: tags[tag]={} tags[tag][obj_name]=obj_data return (result,all_objects) def PrepareGlobalHeader(): result={} animations = result["animations"]={} scenes = result["scenes"]={} objects = result["objects"]={} sounds = result["sounds"]={} particles = result["particles"]={} models = result["models"]={} textures = result["textures"]={} materials = result["materials"]={} fonts = result["fonts"]={} postprocess = result["postprocess"]={} textures["all"]={} def PrepareDefault(globalDataName,bucket): try: for elem in JSONNodetree.globalData[globalDataName]: res_path = elem["name"] name = bpy.path.basename(res_path) name_normalized = re.sub('[_.)( -]|@', '_', name) if name_normalized[0].isdigit(): name_normalized = "_"+name_normalized data = { "name" : os.path.splitext(name)[0], "path" : res_path } bucket[name_normalized]=data except: print("could not read animations") try: for texture in JSONNodetree.globalData["textures"]: tex_res_path = texture["name"] tex_name = bpy.path.basename(tex_res_path) tex_name_normalized = re.sub('[_.)( -]|@', '_', tex_name) folder = os.path.dirname(tex_res_path) data = { #"name" : os.path.splitext(tex_name)[0], "path" : tex_res_path } textures["all"][tex_name_normalized]=data current_dict=textures skip=True # skip first for f in folder.split('/'): if skip: skip=False continue if f not in current_dict: current_dict[f]={} current_dict = current_dict[f] if current_dict!=textures: current_dict[tex_name_normalized]=data except: print("could not read textures") PrepareDefault("animations",animations) PrepareDefault("scenes",scenes) PrepareDefault("objects",objects) PrepareDefault("particles",particles) PrepareDefault("sounds",sounds) PrepareDefault("models",models) PrepareDefault("materials",materials) PrepareDefault("postprocess",postprocess) PrepareDefault("fonts",fonts) return result def WriteSceneHeaderFile(topic,input,output_path): def _WriteSceneHeader(input): current_text="" for key in input: value=input[key] if isinstance(value,dict): namespace_name = re.sub('[_.\.)( -]', '_', key) current_text+="namespace %s {\n%s\n}\n" % (namespace_name,_WriteSceneHeader(value)) elif isinstance(value,int): current_text+="int %s=%s;\n" % (key,value) elif isinstance(value,float): current_text+="float %s=%sf;\n" % (key,value) elif isinstance(value,str): current_text+='const char* %s="%s";\n' % (key,value) else: print("unsupported type for %s[%s]:%s" % (key,value,type(value))) return current_text text=""" #pragma once namespace res { namespace %s { """ % topic text += _WriteSceneHeader(input) text+="}}" print(text) WriteStringFile(text,output_path,None) def WriteSceneHeaderFileDotNet(topic,input,output_path): def _WriteSceneHeader(input): current_text="" for key in input: value=input[key] if isinstance(value,dict): namespace_name = re.sub('[_.\.)( -]', '_', key) if namespace_name[0].isdigit(): namespace_name="_"+namespace_name current_text+="public partial class %s {\n%s\n}\n" % (namespace_name,_WriteSceneHeader(value)) elif isinstance(value,int): current_text+="public const int %s=%s;\n" % (key,value) elif isinstance(value,float): current_text+="public const float %s=%sf;\n" % (key,value) elif isinstance(value,str): current_text+='public const string %s="%s";\n' % (key,value) else: print("unsupported type for %s[%s]:%s" % (key,value,type(value))) return current_text text=""" namespace Assets { namespace %s { """ % topic text += _WriteSceneHeader(input) text+="}}" print(text) WriteStringFile(text,output_path,None)
from django.test import TestCase from safedelete.utils import get_deleted_or_not_deleted_filters_dictionary from safedelete import utils try: from unittest.mock import patch except ImportError: from mock import patch # for python 2 supporting class TestFiltersDictionary(TestCase): @patch.object(utils, 'USE_BOOLEAN_FIELD', False) @patch.object(utils, 'FIELD_NAME', 'deleted') def test_get_deleted_with_datetime_field(self): filters = get_deleted_or_not_deleted_filters_dictionary(get_deleted=True) self.assertEqual(filters, {'deleted__isnull': False}) @patch.object(utils, 'USE_BOOLEAN_FIELD', False) @patch.object(utils, 'FIELD_NAME', 'deleted') def test_get_not_deleted_with_datetime_field(self): filters = get_deleted_or_not_deleted_filters_dictionary(get_deleted=False) self.assertEqual(filters, {'deleted__isnull': True}) @patch.object(utils, 'USE_BOOLEAN_FIELD', True) @patch.object(utils, 'BOOLEAN_FIELD_NAME', 'is_deleted') def test_get_deleted_with_boolean_field(self): filters = get_deleted_or_not_deleted_filters_dictionary(get_deleted=True) self.assertEqual(filters, {'is_deleted': True}) @patch.object(utils, 'USE_BOOLEAN_FIELD', True) @patch.object(utils, 'BOOLEAN_FIELD_NAME', 'is_deleted') def test_get_not_deleted_with_boolean_field(self): filters = get_deleted_or_not_deleted_filters_dictionary(get_deleted=False) self.assertEqual(filters, {'is_deleted': False})
import asyncio from nats import NATS, Msg async def main(): nc = NATS() # It is very likely that the demo server will see traffic from clients other than yours. # To avoid this, start your own locally and modify the example to use it. # await nc.connect("nats://127.0.0.1:4222") await nc.connect("nats://demo.nats.io:4222") async def message_handler(msg: Msg) -> None: subject = msg.subject reply = msg.reply data = msg.data.decode() print( "Received a message on '{subject} {reply}': {data}".format( subject=subject, reply=reply, data=data ) ) # "*" matches any token, at any level of the subject. await nc.subscribe("foo.*.baz", cb=message_handler) await nc.subscribe("foo.bar.*", cb=message_handler) # ">" matches any length of the tail of a subject, and can only be the last token # E.g. 'foo.>' will match 'foo.bar', 'foo.bar.baz', 'foo.foo.bar.bax.22' await nc.subscribe("foo.>", cb=message_handler) # Matches all of the above. await nc.publish("foo.bar.baz", b'Hello World') # Gracefully close the connection. await nc.drain() if __name__ == '__main__': asyncio.run(main())
from airflow.hooks.postgres_hook import PostgresHook from airflow.models import BaseOperator from airflow.utils.decorators import apply_defaults class LoadDimensionOperator(BaseOperator): ui_color = '#80BD9E' @apply_defaults def __init__(self, redshift_conn_id="", table="", sql="", update_strategy="", # append, overwrite *args, **kwargs): super(LoadDimensionOperator, self).__init__(*args, **kwargs) self.redshift_conn_id = redshift_conn_id self.table = table self.sql = sql def execute(self, context): redshift = PostgresHook(self.redshift_conn_id) if update_strategy == "overwrite": # Update with truncate first strategy (only for dimension tables) query = 'TRUNCATE {}; INSERT INTO {} ({})'.format(self.table, self.table, self.sql) else if update_strategy == "append": query = 'INSERT INTO {} ({})'.format(self.table, self.sql) redshift.run(query) self.log.info('Success')
import numpy as np import matplotlib.pyplot as plt import pandas as pd def countWeight(X, y): w = np.sum(((X - X.mean()) * (y - y.mean()))) / np.sum((X - X.mean())**2) return w def polynomialUni(X, w, degrees): y = 0 for degree in range(degrees+1): y = w * (X ** degree) return y # Importing the dataset df = pd.read_csv("trainset1-15.csv", header=None) X = df.iloc[:, 0:-1].values y = df.iloc[:, -1].values # Find w and a predicted value w = countWeight(X, y) # Predict the value y_predict = polynomialUni(X, w, 3) # Visualizing plt.scatter(X, y, color="yellowgreen", label="Data") plt.plot(X, y_predict, label="Model") plt.xticks(()) plt.yticks(()) plt.legend(loc="best") plt.show() from sklearn.metrics import mean_squared_error print(mean_squared_error(y, y_predict))
import sys import github.overfl0.stack_overflow_import.stackoverflow as stackoverflow # Workaround: if the module name starts with 'github.[...]' the github import # hook will fire for each subpackage # To prevent that, we rename the module to look like a top level module stackoverflow.__name__ = 'stackoverflow' # Was: 'github. [...] .stackoverflow' sys.modules['stackoverflow'] = stackoverflow from stackoverflow import quicksort args = [1, 3, 2, 5, 4] print('Sorting array:', args) print('Result:', quicksort.quick_sort(None, args))
# MIT License # # Copyright (c) 2020 Christopher Friedt # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. '''The HanoiState Class The HanoiState Class encapsulates information for 1 instance of the classic Towers of Hanoi puzzle. https://en.wikipedia.org/wiki/Tower_of_Hanoi The optimal solution to the Towers of Hanoi requires 2^N - 1 moves. Thus, the time complexity is O(2^N). The memory requirements are O(N), where N is the number of discs. Currently a maximum of 64 discs are 'supported'. I say that loosely because it could take an extremely long amount of time for a single computer to solve the problem when N is 64. The way that this object keeps track of the state of the 3 towers is by encoding each disc as a bit in an unsigned integer. Specifically, disc N is represented by bit N - 1 of any given tower. Towers are numbered 0 to 2. This class itself does not have methods, so it's more like a data aggregate. To operate on a HanoiState instance, use the Hanoi Class. ''' from threading import Lock counterLock = Lock() counter = 0 class HanoiState(object): def __init__(self, numberOfDiscs=4, source=0, target=2): '''Initialize a HanoiState object Upon initialization, numberOfDiscs discs are placed on source, other towers are empty, and the number of moves is set to 0. :param numberOfDiscs: the number of discs in the game :param source: the tower from which discs should be moved :param target: the tower to which discs should be moved ''' global counter # check arguments if numberOfDiscs <= 0 or numberOfDiscs > 64: raise ValueError( 'numberOfDiscs {} is invalid'.format(numberOfDiscs)) if source < 0 or source > 2: raise ValueError('source {} is invalid'.format(source)) if target < 0 or target > 2: raise ValueError('target {} is invalid'.format(target)) if source == target: raise ValueError('source may not equal target') counterLock.acquire() self.id = counter counter += 1 counterLock.release() self.numberOfDiscs = numberOfDiscs self.tower = [0, 0, 0] self.tower[source] = (1 << numberOfDiscs) - 1 self.source = source self.target = target self.numberOfMoves = 0 def to_json(self): s = '' s += '{' s += '"sessionId": {}'.format(self.id) + ', ' s += '"numberOfDiscs": {}'.format(self.numberOfDiscs) + ', ' s += '"fromTower": {}'.format(self.source) + ', ' s += '"toTower": {}'.format(self.target) + ', ' s += '"numberOfMoves": {}'.format(self.numberOfMoves) + ', ' s += '"towers": {}'.format(self.tower) s += '}' return s
from flask import Flask, jsonify, request from flask_cors import CORS # configuration DEBUG = True # instantiate the app app = Flask(__name__) app.config.from_object(__name__) app.config['JSON_SORT_KEYS'] = False #Used to not sort json objects by keys (jsonify) - # enable CORS CORS(app, resources={r'/*': {'origins': '*'}}) from route import * if __name__ == '__main__': app.run()
def julday(month, day, year, hour=12, minute=0, second=0): ''' NAME: julday PURPOSE: Calculate the Julian Date Number for a given month, day, and year. Can also take in hours, minutes, and seconds. INPUTS: month: Number of the month of the year (1 = jan, ..., 12 = dec) day: Number of the day of the month. year: Number of the desired year. Year parameters must be valid values fron the civil calendar. Years B.C.E. are represented as negative integers. Years in the common era are represented as positive integers. In particular, note that there is no year 0 in the civil calendar. 1 B.C.E. (-1) is followed by 1 C.E. (1). hour: Number of the hour of the day. minute: Number of the minute of the hour. second: Number of the second of the minute. round: Optional; if true, round to one decimal place OUTPUTS: Julian Day Number (which begins at noon) of the specified calendar date is returned in double precision format. SIDE EFFECTS: None. NOTES: If a time is not given, the routine defaults to noon. Adopted from julday.pro; JULDAY is a standard routine in IDL. This is roughly equivalent to the IDL routine, with slightly more precision in results. MODIFICATION HISTORY: 2009-01-06 0.1 Christopher Campo, UCF Initial version ccampo@gmail.com ''' import numpy as np # catches a wrong date input if month > 12 or month < 1 or day > 31 or day < 1: raise ValueError('Error: Date does not exist. Check the input...') # Gregorian to Julian conversion formulae; wikipedia a = np.floor((14-month)/12.) y = year + 4800 - a m = month + (12*a) - 3 jdn = day + np.floor(((153*m) + 2)/5.) + 365*y + np.floor(y/4.)\ - np.floor(y/100.) + np.floor(y/400.) - 32045 jd = jdn + ((hour-12)/24.) + (minute/1440.) + (second/86400.) return jd
## DranoTheCat's Pink and Blue fireworks ## ## Tilt badge left to make lights move to the left ## Tilt badge right to make lights move to the right ## Boop to change speed -- meh, this effect sucked so disabled ## from random import randrange import math import dcfurs import badge import utime ### TESTS FOR PC #from os import system # Each rainbowLight object keeps track of its own settings class rainbowLight: def __init__(self, x, y, r, l): self.x = x self.y = y self.r = r self.l = l if randrange(0, 2) >= 1: self.cr = randrange(200, 255) self.cg = randrange(0, 64) self.cb = randrange(200, 255) else: self.cr = randrange(0, 64) self.cg = randrange(200, 255) self.cb = randrange(200, 255) self.state = 'appear' class fireworks: maxRadius = 2 # Maximum radius for lights maxCycles = 12 # Maximum cycles lights will stay alive newDropPct = 90 # Percent chance each cycle for a new droplet to be created lights = [] def __init__(self): self.interval=75 self.ivals = [75, 150, 250, 500, 50] self.cval = 0 self.rows=18 self.columns=7 self.initGrid() self.createLight() # def boop(self): # self.cval += 1 # if self.cval >= len(self.ivals): # self.cval = 0 # self.interval = self.ivals[self.cval] def checkButtons(self): (tx, ty, tz) = badge.imu.filtered_xyz() if ty < -40: # Tilt Right for light in self.lights: if light.x < self.rows: light.x += 1 else: light.x = self.rows - 1 elif ty > 40: # Tilt Left for light in self.lights: if light.x > 1: light.x -= 1 else: light.x = 0 # This method displays a quasi-grid for testing on a CLI def bogusDisplay(self): print("------------------------------------------------------------") for i in range(self.rows): for j in range(self.columns): a = hex(self.getGrid(i, j)) print(a, " ", end="") print("") print("============================================================") def createLight(self): x = randrange(0, self.rows) y = randrange(0, self.columns) r = randrange(1, self.maxRadius) l = randrange(3, self.maxCycles) self.lights.append(rainbowLight(x, y, r, l)) def render(self, light): # Appearance effect: # Draw circle at radius at min brightness # Then decrement radius, increase brightness, and draw the new circle, until done # ThrobA effect: # Draw final circle at r+1 at min brightness # Find remainder brightness steps for rest of radius; ignore bottom brightness # Draw circle at radius r/3 + 1 at next brightness level, then r/3 + n until min brightness # Draw circle at radius r/3 at max brightness # throbB effect: same as appearance # Vanish effect: # 1 - apperance # 2 - apperance but r -= 1 # 3 - apperance but r -= 2 # ... #print("ID {} | State: {}".format(light.id, light.state)) if light.state == 'appear': radius = light.r while (radius > 0): self.drawLight(light, radius, (light.r - radius + 1) / light.r) radius -= 3 light.state = 'throbA' elif light.state == 'throbA': radius = light.r minBright = 1 / light.r self.drawLight(light, radius, minBright) radius -= 3 while (radius > 0): bright = (light.r - radius + 1) / light.r if bright > 1: bright = 1 if radius < light.r / 4: bright = 1 self.drawLight(light, radius, bright) radius -= 3 light.state = 'throbB' elif light.state == 'throbB': radius = light.r + 1 while (radius > 0): self.drawLight(light, radius, (light.r - radius + 2) / light.r) radius -= 3 c = self.mkColor(255, 255, 255) self.setGrid(light.x, light.y, c) light.state = 'throbA' elif light.state == 'vanish': #print("ID: {} | vanish! {}".format(light.id, light.r)) radius = light.r while (radius > 0): self.drawLight(light, radius, (light.r - radius + 1) / (light.r + 0 - light.l)) radius -= 3 light.r -= 1 light.l = 1 light.state = 'throbB' def zfill(self, s, width): if len(s) < width: return ("0" * (width - len(s))) + s else: return s def mkColor(self, r, g, b): br = self.zfill(bin(r)[2:], 8) bg = self.zfill(bin(g)[2:], 8) bb = self.zfill(bin(b)[2:], 8) # print("Color Code: {}, {}, {}".format(br, bg, bb)) return int(br + bg + bb, 2) def drawLight(self, light, radius, brightness): #print("drawLight brightness: {}".format(brightness)) # start = utime.ticks_ms() if brightness < 0.75 and brightness >= 0.35: brightness = 0.35 elif brightness < 0.25 and brightness >= 0.1: brightness = 0.1 cr = int(light.cr * brightness + 0.5) cg = int(light.cg * brightness + 0.5) cb = int(light.cb * brightness + 0.5) rr = radius * radius for x in range(light.x - radius, light.x + 1): ax = light.x - x axax = ax * ax for y in range(light.y - radius, light.y + 1): # Are we within the radius? ay = light.y - y ayay = ay * ay extra = 0 if radius > 1: extra = 1 if axax + ayay <= rr + extra: c = self.mkColor(cr, cg, cb) self.setGrid(x, y, c) self.setGrid(light.x + ax, y, c) self.setGrid(light.x + ax, light.y + ay, c) self.setGrid(x, light.y + ay, c) # end = utime.ticks_ms() # t = end - start # print("drawLight of radius {} Done in {}".format(radius, t)) def draw(self): # start = utime.ticks_ms() # print("start") self.checkButtons() self.update() # dcfurs.clear() for i in range(self.rows): for j in range(self.columns): dcfurs.set_pix_rgb(i, j, self.getGrid(i, j)) # self.bogusDisplay() if randrange(0, 100) < self.newDropPct: self.createLight() # end = utime.ticks_ms() # t = end - start # print("done in {}".format(t)) def initGrid(self): self.grid = [[0 for col in range(self.columns)] for row in range(self.rows)] return self.grid def fixColumns(self, j): if j < 0: j = 0 elif j >= self.columns: j = self.columns - 1 return j def fixRows(self, i): if i < 0: i = self.rows + i elif i >= self.rows: i = 0 + i % self.rows return i def setGrid(self, i, j, value): i = self.fixRows(i) j = self.fixColumns(j) # If we already have a value, let's try to mix the colors... # if self.getGrid(i, j) > 0: # ec = self.getGrid(i, j) # cr = format(ec, '08b')[0:3] # cg = format(ec, '08b')[3:6] # cb = format(ec, '08b')[6:8] # dr = int(cr, 2) # dg = int(cg, 2) # db = int(cb, 2) # value = value # xr = format(value, '08b')[0:3] # xg = format(value, '08b')[3:6] # xb = format(value, '08b')[6:8] # yr = int(xr, 2) # yg = int(xg, 2) # yb = int(xb, 2) # nr = math.ceil((dr + yr) / 2) # ng = math.ceil((dg + yg) / 2) # nb = math.ceil((db + yb) / 2) # nv = self.mkColor(nr, ng, nb) # self.grid[i][j] = nv # else: self.grid[i][j] = value def getGrid(self, i, j): i = self.fixRows(i) j = self.fixColumns(j) return self.grid[i][j] def update(self): self.initGrid() if len(self.lights) < 1: self.createLight() for light in self.lights: light.l -= 1 if light.l < 1: light.state = 'vanish' if light.r < 1: self.lights.remove(light) else: self.render(light)
""" stoclust.visualization Contains functions for visualizing data and clusters. Functions --------- heatmap(mat,show_x=None,show_y=None,xlabels=None,ylabels=None,layout=None,**kwargs): Generates a heatmap of a given matrix: that is, displays the matrix as a table of colored blocks such that the colors correspond to matrix values. scatter3D(x,y,z,agg=None,layout=None,show_items=None,**kwargs): Generates a 3-dimensional scatter plot of given coordinate vectors; optionally plots them on separate traces based on an aggregation. scatter2D(x,y,agg=None,layout=None,show_items=None,**kwargs): Generates a 2-dimensional scatter plot of given coordinate vectors; optionally plots them on separate traces based on an aggregation. bars(mat,show_x=None,show_y=None,xlabels=None,ylabels=None,layout=None,**kwargs): Generates a stacked bar plot of a given array of vectors; the rows index the horizontally separate bars and the columns index the stack heights. dendrogram(hier,line=None,layout=None,show_progress=False,**kwargs): Generates a dendrogram of a hierarchical clustering scheme in a Plotly Figure. Uses Plotly Shapes to draw the dendrogram and a scatter plot to highlight clusters at their branching points. """ import numpy as _np import pandas as _pd import plotly.graph_objects as _go from stoclust.Aggregation import Aggregation as _Aggregation from tqdm import tqdm as _tqdm def heatmap(mat,show_x=None,show_y=None,xlabels=None,ylabels=None,layout=None,**kwargs): """ Generates a heatmap of a given matrix: that is, displays the matrix as a table of colored blocks such that the colors correspond to matrix values. Arguments --------- mat : The matrix whose values are being visualized in a heatmap. Keyword Arguments ----------------- show_x : An array of the column indices which are to be shown, in the order they should be shown. show_y : An array of the row indices which are to be shown, in the order they should be shown. xlabels : An array or group of how the columns should be labeled on the plot. ylabels : An array or group of how the rows should be labeled on the plot. layout : A dictionary for updating values for the Plotly Figure layout. **kwargs : Keyword arguments for the Plotly Heatmap trace. Output ------ fig : A Plotly Figure containing the heatmap. """ if show_x is None: show_x = _np.arange(mat.shape[1]) if show_y is None: show_y = _np.arange(mat.shape[0]) if xlabels is None: xlabels = _np.arange(mat.shape[1]) if ylabels is None: ylabels = _np.arange(mat.shape[0]) fig = _go.Figure(data=_go.Heatmap( z=mat[show_y][:,show_x],**kwargs)) fig.update_layout( xaxis = dict( tickmode = 'array', tickvals = _np.arange(len(show_x)), ticktext = xlabels[show_x] ), yaxis = dict( tickmode = 'array', tickvals = _np.arange(len(show_y)), ticktext = ylabels[show_y] ), margin=dict(l=100, r=100, t=20, b=20), ) if layout is not None: fig.update_layout(**layout) return fig def scatter3D(x,y,z,agg=None,layout=None,show_items=None,**kwargs): """ Generates a 3-dimensional scatter plot of given coordinate vectors; optionally plots them on separate traces based on an aggregation. Arguments --------- x : The x-coordinates of the data points. y : The y-coordinates of the data points. z : The z-coordinates of the data points. Keyword Arguments ----------------- agg : An Aggregation of the indices of x, y and z. show_items : A one-dimensional array of which indices of x, y and z are to be shown. layout : A dictionary for updating values for the Plotly Figure layout. **kwargs : Keyword arguments for the Plotly Scatter3d trace. If an attribute is given as a single string or float, will be applied to all data points. If as an array of length x.shape[0], will be applied separately to each data point. If an an array of length agg.clusters.__len__(), will be applied separately to each cluster. Output ------ fig : A Plotly Figure containing the scatter plot. """ if agg is None: agg = _Aggregation(_pd.Index(_np.arange(x.shape[0])), _pd.Index(_np.array([0])), {0:_np.arange(x.shape[0])}) specific_keywords = [{} for i in range(agg.clusters.__len__())] for k,v in kwargs.items(): if hasattr(v, '__len__') and not(isinstance(v,str)): if len(v)==len(agg.clusters): for i in range(agg.clusters.__len__()): specific_keywords[i][k] = v[i] elif len(v)==len(agg.items): for i in range(agg.clusters.__len__()): specific_keywords[i][k] = v[agg._aggregations[i]] else: for i in range(agg.clusters.__len__()): specific_keywords[i][k] = v if kwargs.get('name',None) is None: for i in range(agg.clusters.__len__()): specific_keywords[i]['name'] = str(agg.clusters[i]) fig = _go.Figure(data=[_go.Scatter3d(x=x[agg._aggregations[i]], y=y[agg._aggregations[i]], z=z[agg._aggregations[i]], **(specific_keywords[i])) for i in range(agg.clusters.__len__())]) if layout is not None: fig.update_layout(**layout) return fig def scatter2D(x,y,agg=None,layout=None,show_items=None,**kwargs): """ Generates a 2-dimensional scatter plot of given coordinate vectors; optionally plots them on separate traces based on an aggregation. Arguments --------- x : The x-coordinates of the data points. y : The y-coordinates of the data points. Keyword Arguments ----------------- agg : An Aggregation of the indices of x and y. show_items : A one-dimensional array of which indices of x and y are to be shown. layout : A dictionary for updating values for the Plotly Figure layout. **kwargs : Keyword arguments for the Plotly Scatter trace. If an attribute is given as a single string or float, will be applied to all data points. If as an array of length x.shape[0], will be applied separately to each data point. If an an array of length agg.clusters.__len__(), will be applied separately to each cluster. Output ------ fig : A Plotly Figure containing the scatter plot. """ if agg is None: agg = _Aggregation(_pd.Index(_np.arange(x.shape[0])), _pd.Index(_np.array([0])), {0:_np.arange(x.shape[0])}) specific_keywords = [{} for i in range(agg.clusters.__len__())] for k,v in kwargs.items(): if hasattr(v, '__len__') and not(isinstance(v,str)): if len(v)==len(agg.clusters): for i in range(agg.clusters.__len__()): specific_keywords[i][k] = v[i] elif len(v)==len(agg.items): for i in range(agg.clusters.__len__()): specific_keywords[i][k] = v[agg._aggregations[i]] else: for i in range(agg.clusters.__len__()): specific_keywords[i][k] = v if kwargs.get('name',None) is None: for i in range(agg.clusters.__len__()): specific_keywords[i]['name'] = str(agg.clusters[i]) fig = _go.Figure(data=[_go.Scatter(x=x[agg._aggregations[i]], y=y[agg._aggregations[i]], **(specific_keywords[i])) for i in range(agg.clusters.__len__())]) if layout is not None: fig.update_layout(**layout) return fig def bars(mat,show_x=None,show_y=None,xlabels=None,ylabels=None,layout=None,**kwargs): """ Generates a stacked bar plot of a given array of vectors; the rows index the horizontally separate bars and the columns index the stack heights. Arguments --------- mat : The matrix whose values are being visualized in a stacked bar plot. Keyword Arguments ----------------- show_x : An array of the row indices (horizontally separate bars) which are to be shown, in the order they should be shown. show_y : An array of the column indices (stacked bars) which are to be shown, in the order they should be shown. xlabels : An array or group of how the rows should be labeled on the plot. ylabels : An array or group of how the columns should be labeled on the plot. layout : A dictionary for updating values for the Plotly Figure layout. **kwargs : Keyword arguments for the Plotly Bar trace. If an attribute is given as a single string or float, will be applied to all bars. If as an array of length mat.shape[1], will be applied separately to each layer of the stack. Output ------ fig : A Plotly Figure containing the stacked bars. """ if show_x is None: show_x = _np.arange(mat.shape[0]) if show_y is None: show_y = _np.arange(mat.shape[1]) if xlabels is None: xlabels = _np.arange(mat.shape[0]).astype(str) if ylabels is None: ylabels = _np.arange(mat.shape[1]).astype(str) specific_keywords = [{} for i in range(mat.shape[1])] for k,v in kwargs.items(): if hasattr(v, '__len__') and not(isinstance(v,str)): if isinstance(v,_np.ndarray): if len(v.shape)==2: for i in range(mat.shape[1]): specific_keywords[i][k] = v[k,i] else: for i in range(mat.shape[1]): specific_keywords[i][k] = v[i] else: for i in range(mat.shape[1]): specific_keywords[i][k] = v[i] else: for i in range(mat.shape[1]): specific_keywords[i][k] = v if kwargs.get('width',None) is None: for i in range(mat.shape[1]): specific_keywords[i]['width'] = 1 fig = _go.Figure(data=[ _go.Bar(name=ylabels[o], x=xlabels, y=mat[show_x,o], **specific_keywords[o]) for o in show_y ]) fig.update_layout(barmode='stack', xaxis = dict( tickmode = 'array', tickvals = _np.arange(len(show_x)), ticktext = (xlabels)[show_x] ),) if layout is not None: fig.update_layout(**layout) return fig def dendrogram(hier,line=None,layout=None,show_progress=False,**kwargs): """ Generates a dendrogram of a hierarchical clustering scheme in a Plotly Figure. Uses Plotly Shapes to draw the dendrogram and a scatter plot to highlight clusters at their branching points. Arguments --------- hier : A Hierarchy which is to be plotted as a Dendrogram. Keyword Arguments ----------------- line : A dict for formatting Plotly shape lines. If an attribute is given as a single string or float, will be applied to all lines. If as an array of length hier.clusters.__len__(), will be applied separately to the lines immediately beneath each cluster. layout : A dictionary for updating values for the Plotly Figure layout. show_progress : Boolean; whether to show a tqdm progress bar as the dendrogram is generated. **kwargs : Keyword arguments for the Plotly Scatter trace. If an attribute is given as a single string or float, will be applied to all branch points. If as an array of length hier.clusters.__len__(), will be applied separately to each cluster's branch point. Output ------ fig : A Plotly Figure containing the dendrogram. """ groups = hier.cluster_groups() x_items = _np.zeros([hier.items.__len__()]) s_max = _np.max(hier._scales) top_agg = hier.at_scale(s_max) x_base = 0 x_in_superset = [] for c in range(top_agg.clusters.__len__()): grp = top_agg._aggregations[c] n = len(grp) x_items[grp] = _np.arange(n)+x_base x_base += n x_in_superset = x_in_superset + list(top_agg._aggregations[c]) x_in_superset = _np.array(x_in_superset) x_clusters = _np.zeros([hier.clusters.__len__()]) y_clusters = _np.zeros([hier.clusters.__len__()]) fig = _go.Figure() lineinfo = [{} for c in range(hier.clusters.__len__())] if line is None: for c in range(hier.clusters.__len__()): lineinfo[c]=dict( color="RoyalBlue", width=3) else: for k,v in line.items(): if hasattr(v, '__len__') and not(isinstance(v,str)): for c in range(hier.clusters.__len__()): lineinfo[c][k] = v[c] else: for c in range(hier.clusters.__len__()): lineinfo[c][k] = v if show_progress: clust_iter = _tqdm(range(hier.clusters.__len__())) else: clust_iter = range(hier.clusters.__len__()) for c in clust_iter: x_clusters[c] = _np.average(x_items[hier.items.get_indexer(groups[hier.clusters[c]])]) y_clusters[c] = hier._scales[c] if len(hier._children[c])>0: xmin = _np.min(x_clusters[hier._children[c]]) xmax = _np.max(x_clusters[hier._children[c]]) fig.add_shape( # Line Horizontal dict( type="line", x0=xmin, y0=y_clusters[c], x1=xmax, y1=y_clusters[c], line=lineinfo[c] )) for k in hier._children[c]: fig.add_shape( # Line Vertical dict( type="line", x0=x_clusters[k], y0=y_clusters[k], x1=x_clusters[k], y1=y_clusters[c], line=lineinfo[c] )) if kwargs.get('customdata',None) is None: customdata=hier.clusters.to_numpy() if kwargs.get('hovertemplate',None) is None: hovertemplate = '<b>ID</b>: %{customdata} <br><b>Scale</b>: %{y} ' fig.add_trace(_go.Scatter(x=x_clusters,y=y_clusters, mode='markers', customdata=customdata, hovertemplate = hovertemplate,**kwargs)) fig.update_layout( title = kwargs.get('title','Dendrogram'), margin=dict(l=20, r=20, t=30, b=10), xaxis_title=kwargs.get('x_axis_label','Items'), yaxis_title=kwargs.get('y_axis_label','Scale'), xaxis = dict( tickmode = 'array', tickvals = _np.arange(hier.items.__len__()), ticktext = hier.items[x_in_superset] )) fig.update_shapes(layer='below') fig.update_xaxes(showgrid=False,zeroline=False) fig.update_yaxes(showgrid=False,zeroline=False) if layout is not None: fig.update_layout(layout) return fig
#!/usr/bin/env python # -*- encoding: utf-8 -*- # Copyright 2011-2020, Nigel Small # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from collections import deque from socket import AF_INET, AF_INET6, SOCK_STREAM from pytest import fixture, raises from py2neo.wiring import Wire, Address, WireError class FakeSocket(object): def __init__(self, in_packets=(), out_packets=()): self._in_packets = deque(in_packets) self._in_buffer = bytearray() self._out_packets = out_packets self._closed = False def settimeout(self, value): pass def recv(self, n_bytes, flags=None): while not self._in_buffer: try: data = self._in_packets.popleft() except IndexError: return b"" else: self._in_buffer.extend(data) value, self._in_buffer = self._in_buffer[:n_bytes], self._in_buffer[n_bytes:] return value def send(self, b, flags=None): if self._closed: raise OSError("Socket closed") self._out_packets.append(bytes(b)) return len(b) def sendall(self, b, flags=None): if self._closed: raise OSError("Socket closed") self._out_packets.append(bytes(b)) def close(self): self._closed = True @fixture def fake_reader(): def reader(packets): s = FakeSocket(packets) return Wire(s) return reader @fixture def fake_writer(): def writer(into): s = FakeSocket(out_packets=into) return Wire(s) return writer class MockSocket(object): fail_on_connect = False fail_on_recv = False def __init__(self, family=AF_INET, type=SOCK_STREAM, proto=0, fileno=None): self.__family = family self.__type = type self.__proto = proto self.__fileno = fileno self.__timeout = None self.__peer = None self.on_connect = None def settimeout(self, value): self.__timeout = value def setsockopt(self, level, optname, value, optlen=None): pass def connect(self, address): if self.fail_on_connect: raise OSError("Connection refused to %r" % (address,)) else: self.__peer = address def getpeername(self): return self.__peer def recv(self, bufsize, flags=None): if self.fail_on_recv: raise OSError("Connection broken") else: raise NotImplementedError @fixture def mock_socket(monkeypatch): monkeypatch.setattr("socket.socket", MockSocket) return MockSocket def test_wire_open_simple(mock_socket): wire = Wire.open(("localhost", 7687)) assert wire.remote_address == ("localhost", 7687) def test_wire_open_with_keep_alive(mock_socket): wire = Wire.open(("localhost", 7687), keep_alive=True) assert wire.remote_address == ("localhost", 7687) def test_wire_open_with_connect_error(mock_socket): mock_socket.fail_on_connect = True try: with raises(WireError): _ = Wire.open(("localhost", 7687)) finally: mock_socket.fail_on_connect = False def test_wire_read_with_recv_error(mock_socket): mock_socket.fail_on_recv = True try: wire = Wire.open(("localhost", 7687)) with raises(WireError): _ = wire.read(1) finally: mock_socket.fail_on_recv = False def test_byte_reader_read_when_enough_available(fake_reader): reader = fake_reader([b"hello, world"]) data = reader.read(12) assert data == b"hello, world" def test_byte_reader_read_when_extra_available(fake_reader): reader = fake_reader([b"hello, world"]) data = reader.read(5) assert data == b"hello" def test_byte_reader_read_when_multiple_packets_available(fake_reader): reader = fake_reader([b"hello, world"]) data = reader.read(12) assert data == b"hello, world" def test_byte_reader_read_when_not_enough_available(fake_reader): reader = fake_reader([b"hello"]) with raises(OSError): _ = reader.read(12) def test_byte_writer_write_once(fake_writer): into = [] writer = fake_writer(into) writer.write(b"hello, world") writer.send() assert into == [b"hello, world"] def test_byte_writer_write_twice(fake_writer): into = [] writer = fake_writer(into) writer.write(b"hello,") writer.write(b" world") writer.send() assert into == [b"hello, world"] def test_byte_writer_close(fake_writer): into = [] writer = fake_writer(into) writer.close() with raises(OSError): assert writer.send() def test_address_parse_ipv4(): parsed = Address.parse("127.0.0.1:7687") assert parsed.family == AF_INET assert parsed.host == "127.0.0.1" assert parsed.port_number == 7687 def test_address_parse_ipv6(): parsed = Address.parse("[::1]:7687") assert parsed.family == AF_INET6 assert parsed.host == "::1" assert parsed.port_number == 7687
from . import agent_collection from . import entity from . import identity from . import model from . import time from . import world
""" Import as: import helpers.hparquet as hparque """ import logging import os from typing import Any, List, Optional import pandas as pd import pyarrow as pa import pyarrow.parquet as pq import helpers.hdbg as hdbg import helpers.hintrospection as hintros import helpers.hio as hio import helpers.htimer as htimer _LOG = logging.getLogger(__name__) def to_parquet( df: pd.DataFrame, file_name: str, *, log_level: int = logging.DEBUG, ) -> None: """ Save a dataframe as Parquet. """ hdbg.dassert_isinstance(df, pd.DataFrame) hdbg.dassert_isinstance(file_name, str) hdbg.dassert_file_extension(file_name, ["pq", "parquet"]) # hio.create_enclosing_dir(file_name, incremental=True) _LOG.debug("df.shape=%s", str(df.shape)) mem = df.memory_usage().sum() _LOG.debug("df.memory_usage=%s", hintros.format_size(mem)) # Save data. with htimer.TimedScope(logging.DEBUG, "To parquet '%s'" % file_name) as ts: table = pa.Table.from_pandas(df) pq.write_table(table, file_name) # Report stats. file_size = hintros.format_size(os.path.getsize(file_name)) _LOG.log( log_level, "Saved '%s' (size=%s, time=%.1fs)", file_name, file_size, ts.elapsed_time, ) # TODO(gp): What's the difference with read_pq? Maybe we use pandas there, # while here we use PQ directly with Dataset. def from_parquet( file_name: str, columns: Optional[List[str]] = None, filters: Optional[List[Any]] = None, *, log_level: int = logging.DEBUG, ) -> pd.DataFrame: """ Load a dataframe from a Parquet file. """ hdbg.dassert_isinstance(file_name, str) hdbg.dassert_file_extension(file_name, ["pq", "parquet"]) # Load data. with htimer.TimedScope(logging.DEBUG, "From parquet '%s'" % file_name) as ts: filesystem = None dataset = pq.ParquetDataset( file_name, filesystem=filesystem, filters=filters, use_legacy_dataset=False, ) # To read also the index we need to use `read_pandas()`, instead of `read_table()`. # See https://arrow.apache.org/docs/python/parquet.html#reading-and-writing-single-files. table = dataset.read_pandas(columns=columns) df = table.to_pandas() # Report stats. file_size = hintros.format_size(os.path.getsize(file_name)) _LOG.log( log_level, "Loaded '%s' (size=%s, time=%.1fs)", file_name, file_size, ts.elapsed_time, ) # Report stats about the df. _LOG.debug("df.shape=%s", str(df.shape)) mem = df.memory_usage().sum() _LOG.debug("df.memory_usage=%s", hintros.format_size(mem)) return df
from . import scapy_scan, nmap_scan, banner_scan, vulnerability_analysis_menu __all__ = ["scapy_scan", "nmap_scan", "banner_scan", "vulnerability_analysis_menu"]
# Generated by Django 2.0.3 on 2019-06-10 09:54 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('site', '0024_career'), ] operations = [ migrations.AlterField( model_name='career', name='title', field=models.CharField(max_length=200), ), ]
import board import busio import digitalio import time import circuitpython_hmac as hmac import binascii from adafruit_wiznet5k.adafruit_wiznet5k import * import adafruit_wiznet5k.adafruit_wiznet5k_socket as socket from adafruit_wiznet5k.adafruit_wiznet5k_ntp import NTP #NTP library import adafruit_wiznet5k.adafruit_wiznet5k_dns as dns #DNS library import adafruit_minimqtt.adafruit_minimqtt as MQTT def set_password (cal_time): #set the password print(cal_time) decoded_data = binascii.a2b_base64("CCCCCCCCCCCC") #C = device key #other variables settings et = str(cal_time) method = "md5" res = "products/AAAAAAA/devices/BBBBB" #A = Product ID, B = Device name version = "2018-10-31" #create the signiture for the password secret = decoded_data msg = et + "\n" + method+ "\n" + res+ "\n" + version en_msg = msg.encode() key = hmac.new(secret, msg=en_msg, digestmod="md5").digest() encoded_data = binascii.b2a_base64(key).strip() encoded_data = encoded_data.decode("UTF-8") new_res = res.replace("/","%2F") #modified the password into url format if encoded_data.find("=")>= 0: new_encoded_data = encoded_data.replace("=","%3D") if encoded_data.find("+")>= 0: new_encoded_data = new_encoded_data.replace("+","%2B") if encoded_data.find("/")>= 0: new_encoded_data = new_encoded_data.replace("/","%2F") #combine the whole password login_msg = "version=" + version+ "&res=" + new_res+ "&et=" + et+ "&method=" + method+ "&sign="+ new_encoded_data return login_msg ### MQTT Setup ### # MQTT Topic # Use this topic if you'd like to connect to a standard MQTT broker # pubs Monitoring_pub = "$sys/AAAAAAA/BBBBBBBB/thing/property/post" # Subscribe channel for sending information to the platform Control_pub = "$sys/AAAAAAA/BBBBBBBB/thing/property/set_reply" # Subscribe channel for returning message after received data from platform #subs Monitoring_sub = "$sys/AAAAAAA/BBBBBBBB/thing/property/post/reply" #Checking did the platform received message from the device Control_sub = "$sys/AAAAAAA/BBBBBBBB/thing/property/set" #Receiving data from the platform #MQTT send msg format def Monitor_message_setup (cal_time): cal_time_ms = (cal_time- 28800) *1000 cal_time_ms = str(cal_time_ms) Monitoring_msg = '{"id": "123","version": "1.0","params": {"Power": {"value": "500","time": '+cal_time_ms+'},"temp": {"value": 20,"time": '+cal_time_ms+'}}}' return Monitoring_msg ### Message Code ### # Define callback methods which are called when events occur # pylint: disable=unused-argument, redefined-outer-name def message(client, topic, message): # Method callled when a client's subscribed feed has a new value. # print("New message on topic {0}: {1}".format(topic, message)) # function used subs and pub (same like the above pub & subs) Monitoring_sub = "$sys/AAAAAAA/BBBBBBBB/thing/property/post/reply" Control_sub = "$sys/AAAAAAA/BBBBBBBB/thing/property/set" Control_pub = "$sys/AAAAAAA/BBBBBBBB/thing/property/set_reply" counter = 0 value = 0 if (topic == Monitoring_sub and message.find('"code":200') >= 0 ): print("New message on topic {0} : {1}".format(topic, message)) if topic == Control_sub: print("Received message on topic {0} : {1}".format(topic, message)) s_msg = message.split('"id":"') while value != 1: if s_msg[1].find('{0}"'.format(counter)) == 0: print("found value = {0}".format(counter)) value = 1 counter += 1 control_msg = '{"id":"'+str(counter-1)+'","code":200,"msg":"success"}' print(control_msg) mqtt_client.publish(Control_pub, control_msg) #SPI0 SPI0_SCK = board.GP18 SPI0_TX = board.GP19 SPI0_RX = board.GP16 SPI0_CSn = board.GP17 #Reset W5x00_RSTn = board.GP20 print("Wiznet5k MQTT Test (DHCP)") # Setup your network configuration below # random MAC, later should change this value on your vendor ID MY_MAC = (0x00, 0x01, 0x02, 0x03, 0x04, 0x05) IP_ADDRESS = (192, 168, 1, 100) SUBNET_MASK = (255, 255, 255, 0) GATEWAY_ADDRESS = (192, 168, 1, 1) DNS_SERVER = (8, 8, 8, 8) led = digitalio.DigitalInOut(board.GP25) led.direction = digitalio.Direction.OUTPUT ethernetRst = digitalio.DigitalInOut(W5x00_RSTn) ethernetRst.direction = digitalio.Direction.OUTPUT # For Adafruit Ethernet FeatherWing cs = digitalio.DigitalInOut(SPI0_CSn) # For Particle Ethernet FeatherWing # cs = digitalio.DigitalInOut(board.D5) spi_bus = busio.SPI(SPI0_SCK, MOSI=SPI0_TX, MISO=SPI0_RX) # Reset W5500 first ethernetRst.value = False time.sleep(1) ethernetRst.value = True # # Initialize ethernet interface without DHCP # eth = WIZNET5K(spi_bus, cs, is_dhcp=False, mac=MY_MAC, debug=False) # # Set network configuration # eth.ifconfig = (IP_ADDRESS, SUBNET_MASK, GATEWAY_ ADDRESS, DNS_SERVER) # Initialize ethernet interface with DHCP eth = WIZNET5K(spi_bus, cs, is_dhcp=True, mac=MY_MAC, debug=False) print("Chip Version:", eth.chip) print("MAC Address:", [hex(i) for i in eth.mac_address]) print("My IP address is:", eth.pretty_ip(eth.ip_address)) ntpserver_ip = eth.pretty_ip(eth.get_host_by_name("time.google.com")) print("NTP : %s" % ntpserver_ip) #DNS Domain ntp = NTP(iface = eth, ntp_address =ntpserver_ip ,utc=8) cal_time = ntp.get_time() cal_time = time.mktime(cal_time) + 300000 login_msg = set_password(cal_time) # Set up a MQTT Client # NOTE: We'll need to connect insecurely for ethernet configurations. mqtt_client = MQTT.MQTT( broker="218.201.45.7", #MQTT server IP address port=1883, username="AAAAAA", #username = product id password=login_msg, #created by the function -> set_password client_id="BBBBBB", # client id = device name is_ssl=False, socket_pool=None, ssl_context=None, keep_alive=60, ) # Initialize MQTT interface with the ethernet interface MQTT.set_socket(socket, eth) # Setup the callback methods above mqtt_client.on_message = message # Connect the client to the MQTT broker. print("Connecting to Broker...") mqtt_client.connect() #MQTT Subscriber Run while True: mqtt_client.loop() print("connected") #send a new message mqtt_client.subscribe(Monitoring_sub) mqtt_client.subscribe(Control_sub) cal_time = ntp.get_time() Monitoring_msg = Monitor_message_setup(time.mktime(cal_time)) print("Message to topic {0} : {1}".format(Monitoring_pub, Monitoring_msg)) mqtt_client.publish(Monitoring_pub, Monitoring_msg) time.sleep(2) #Disconnected print("Disconnecting from %s" % mqtt_client.broker)
""" Defines the Job Ledger necessary for jobs being serviced only once """ from collections import deque __author__: str = "Splice Machine, Inc." __copyright__: str = "Copyright 2019, Splice Machine Inc. All Rights Reserved" __credits__: list = ["Amrit Baveja"] __license__: str = "Proprietary" __version__: str = "2.0" __maintainer__: str = "Amrit Baveja" __email__: str = "abaveja@splicemachine.com" class JobLedger: """ A data structure that fills up to a maximum size with elements and then starts deleting oldest elements to maintain this size. *We use this to provide a buffer for jobs that are taking a while (especially if Splice Machine DB is running slow). We do not want to EVER service the same job from multiple threads (as it is probable to produce a write-write conflict). Thus, if a Job hasn't been updated to RUNNING status by the thread in time for the next poll, the Job ledger will make sure that it isn't serviced again. Obviously, this task could be done with a list, but this data structure is better-- it doesn't require searching through hundreds of jobs to find if one has been serviced yet. We use a deque (implemented as a linked list) because it has efficient deleting at head: O(1)* """ def __init__(self, max_size: int) -> None: """ :param max_size: (int) the maximum size of the list """ self.max_size: int = max_size self.current_size: int = 0 # so we don't need to # keep finding length to improve performance self._linked_list: deque = deque() def record(self, job_id: int) -> None: """ Record a new job_id in the job ledger, maintaining the maximum size :param job_id: (int) the job id to record in the list """ if self.current_size >= self.max_size: self._linked_list.popleft() self.current_size -= 1 self._linked_list.append(job_id) self.current_size += 1 def __contains__(self, job_id: int) -> bool: """ Return whether or not the Job Ledger contains a given job_id :param job_id: (int) the job id to check for the existence of :return: (bool) whether or not the job ledger contains the specified job id """ return job_id in self._linked_list
import time from turtle import * from random import randint speed(30) up() goto(-140, 140) for i in range(16): write(i, align='center') # text right(90) fd(10) down() fd(150) up() bk(160) left(90) fd(20) finish_line = xcor() - 20 print('finish line :', finish_line) tutle_color = ['red', 'blue', 'green', 'gold'] tutle_list = [] for i in range(len(tutle_color)): t = Turtle() # 거북이 선수 생성 t.color(tutle_color[i]) # 거북이 선수 색상 t.shape('turtle') # 거북이 모양 t.up() # 팬을 업 t.goto(-160, 140 - 30 * (i + 1)) t.down() tutle_list.append(t) def start_game(): while(True): for t in tutle_list: dist = randint(5, 10) t.fd(dist) if t.xcor() >= finish_line: return t my_game = start_game() for i in range(1, 10): my_game.shapesize(i, i) time.sleep(0.1) for i in range(18 * 3): my_game.right(20) goto(0, 0) color_name = str(my_game.color()[0]) write('Congratulation ' + color_name, align='center', font=('Arial', 20, 'normal'))
from keras.layers.core import Lambda from keras import backend as K class RecursiveLoopLayer(Lambda): """Class representing RecursiveLoop for keras""" def __init__(self, maxlend, rnn_size, activation_rnn_size, maxlenh, **kwargs): super().__init__(self.recursive_loop, **kwargs) self.rnn_size = rnn_size self.activation_rnn_size = activation_rnn_size self.maxlend = maxlend self.maxlenh = maxlenh self.supports_masking = True def compute_mask(self, inputs, mask=None): return mask[:, self.maxlend:] def compute_output_shape(self, input_shape): nb_samples = input_shape[0] n = 2*(self.rnn_size - self.activation_rnn_size) return (nb_samples, self.maxlenh, n) @staticmethod def recursive_loop(X, mask, n, maxlend, maxlenh): desc, head = X[:, :maxlend, :], X[:, maxlend:, :] head_activations, head_words = head[:, :, :n], head[:, :, n:] desc_activations, desc_words = desc[:, :, :n], desc[:, :, n:] activation_energies = K.batch_dot( head_activations, desc_activations, axes=(2, 2)) activation_energies = activation_energies + -1e20 * \ K.expand_dims(1. - K.cast(mask[:, :maxlend], 'float32'), 1) activation_energies = K.reshape(activation_energies, (-1, maxlend)) activation_weights = K.softmax(activation_energies) activation_weights = K.reshape( activation_weights, (-1, maxlenh, maxlend)) desc_avg_word = K.batch_dot( activation_weights, desc_words, axes=(2, 1)) return K.concatenate((desc_avg_word, head_words))
""" Python 3.6 PyTorch 0.4 """ import logging import itertools import torch import torch.nn.functional as F import torch.optim as optim import utils from Models.AbstractModel import AbstractModel, Models class InfoGAN(AbstractModel): """ InfoGAN InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets """ # ================ init part ================ def __init__(self, lambda_, **kwargs): # parameters super().__init__(**kwargs) self.lambda_ = lambda_ self.model_name = f'InfoGAN_{lambda_}' self.code_dim = max(self.hidden_dim // 16, 2) self.init_net_arch() self.init_optimizer() logging.debug(f'{self.model_name} initialized.') def init_net_arch(self, specified_net_arch = None): models = Models[self.dataset] if specified_net_arch == None else specified_net_arch self.net_arch = models.net_arch self.D = models.Discriminator_InfoGAN(self.hidden_dim, self.code_dim) self.G = models.Generator(self.hidden_dim, self.tanh) self.name_model_dict = { 'Discriminator':self.D, 'Generator':self.G } self.init_net_component(**self.name_model_dict) def init_optimizer(self): """ initialize optimizer """ beta1, beta2 = 0.5, 0.99 self.G_optimizer = optim.Adam(self.G.parameters(), lr=self.lr, betas=(beta1, beta2), weight_decay = 0) self.D_optimizer = optim.Adam(self.D.parameters(), lr=self.lr, betas=(beta1, beta2), weight_decay = 0) self.info_optimizer = optim.Adam(itertools.chain(self.G.parameters(), self.D.parameters()), lr=self.lr, betas=(beta1, beta2)) utils.print_line() logging.debug('Use ADAM optimizers for D and G.') def encode(self, X): """ encode and decode the samples X with the encoder and the decoder of the model. """ self.D.eval() X = X.to(self.device) with torch.no_grad(): _, regressed_code = self.D( X ) return regressed_code.cpu() # ================ training part ================ def stepTraining(self, batch_x): this_batch_size = len(batch_x) batch_x = batch_x.to(self.device) batch_ones = torch.ones(this_batch_size).to(self.device) batch_zeros = torch.zeros(this_batch_size).to(self.device) self.D.train() with torch.enable_grad(): # ================================== train D ================================== r""" E_{x \sim P_r} \log D(x) """ D_real, _ = self.D(batch_x) # loss combines a Sigmoid layer and the BCE loss D_real_loss = F.binary_cross_entropy_with_logits( D_real, batch_ones) r""" E_{x \sim P_g} \log ( 1- D(x) ) """ self.G.eval() z = self.get_noise(this_batch_size) x_fake = self.G(z).detach() D_fake, _ = self.D(x_fake) D_fake_loss = F.binary_cross_entropy_with_logits( D_fake, batch_zeros ) D_loss = D_real_loss + D_fake_loss self.D_optimizer.zero_grad() D_loss.backward() self.D_optimizer.step() # ================================== train G ================================== r""" E_{z \sim P_z} \log D( G(z) ) + \lambda E_{c \sim P(c), x \sim G(z,c)}[log Q(c|x)] """ self.G.train() z = self.get_noise(this_batch_size) c = z[:, :self.code_dim] x_fake = self.G(z) D_fake, regressed_code = self.D(x_fake) G_loss = F.binary_cross_entropy_with_logits( D_fake, batch_ones ) Info_loss = F.mse_loss(regressed_code, c) G_Info_loss = G_loss + self.lambda_ * Info_loss self.info_optimizer.zero_grad() G_Info_loss.backward() self.info_optimizer.step() loss_dict = {'D_real_loss': D_real_loss.item(), 'D_fake_loss': D_fake_loss.item(), 'D_loss': D_loss.item(), 'G_loss': G_loss.item(), 'Info_loss': Info_loss.item(), } return loss_dict
import httpx import json import time import asyncio import sys import os PROJECT = "bench-functions" FUNCTION = "place-test" HTTP_ENDPOINT_HOST = "https://us-central1-{}.cloudfunctions.net/{}" RESULT_FILE_NAME = os.path.join("results", "{}_size={}.json") async def async_request(client, orch_name, size): url = HTTP_ENDPOINT_HOST.format(PROJECT, FUNCTION) result_file_name = RESULT_FILE_NAME.format(orch_name, size) start = time.time() res = await client.get(url) query_ts = time.time() try: body = res.json() except Exception: body = res.text start_ms = start * 1000 end_ms = query_ts * 1000 output = { # Client times: 'pystart_ms': start_ms, 'pyend_ms': end_ms, 'pyduration_ms': end_ms - start_ms, # In-func data 'func_data': body } with open(result_file_name, 'a') as rf: rf.write('\n{},'.format(json.dumps(output, indent=4))) async def main(): client = httpx.AsyncClient(timeout=None, pool_limits=httpx.PoolLimits(soft_limit=10, hard_limit=1100)) orch_name = sys.argv[1] num_itr = int(sys.argv[2]) result_file_name = RESULT_FILE_NAME.format(orch_name, num_itr) with open(result_file_name, 'w') as rf: rf.write("") async_jobs = [] for _ in range(num_itr): async_jobs.append(async_request(client, orch_name, num_itr)) await asyncio.gather(*async_jobs) # async if __name__ == "__main__": loop = asyncio.get_event_loop() try: loop.run_until_complete(main()) finally: if not loop.is_closed(): loop.close()
# Tests on main client object import TestHelperSuperClass import EllucianEthosPythonClient import base64 import json import TestingHelper import queue class helpers(TestHelperSuperClass.testClassWithHelpers): pass @TestHelperSuperClass.wipd class test_MainClient_poller(helpers): def test_notAbleToStartPollerTwiceWithoutClose(self): pollerQueue = queue.Queue() mockResponse={} self.ethosClient.mock.registerNextResponse( reqFnName="get", url="/consume?limit=20", data=None, status_code=200, contentBytes=base64.b64encode(json.dumps(mockResponse).encode()), contentHeaders={ "x-remaining": "0"}, ignoreData=True ) self.ethosClient.startChangeNotificationPollerThread( loginSession=None, frequency=60, #number of seconds between fetches pageLimit=20, #number of change notifications to get per requests maxRequests=4, #maximum number of rquests to use in each fecth pollerQueue=pollerQueue ) with self.assertRaises(EllucianEthosPythonClient.CanNotStartChangeNotificationPollerTwiceException) as context: self.ethosClient.startChangeNotificationPollerThread( loginSession=None, frequency=60, #number of seconds between fetches pageLimit=20, #number of change notifications to get per requests maxRequests=4, #maximum number of rquests to use in each fecth pollerQueue=pollerQueue ) self.ethosClient.close() def test_startThenStopPoller(self): pollerQueue = queue.Queue() mockResponse={} self.ethosClient.mock.registerNextResponse( reqFnName="get", url="/consume?limit=20", data=None, status_code=200, contentBytes=base64.b64encode(json.dumps(mockResponse).encode()), contentHeaders={ "x-remaining": "0"}, ignoreData=True ) self.ethosClient.startChangeNotificationPollerThread( loginSession=None, frequency=60, #number of seconds between fetches pageLimit=20, #number of change notifications to get per requests maxRequests=4, #maximum number of rquests to use in each fecth pollerQueue=pollerQueue ) self.ethosClient.close() def test_startThenStopPollerFunctionMode(self): def processSingleMessage(apiClient, messageid, changeNotification): # in a real example this part would write to file or update a db print("received ", changeNotification.operation, changeNotification.resourceName, changeNotification.resourceID) return True mockResponse={} self.ethosClient.mock.registerNextResponse( reqFnName="get", url="/consume?limit=20&lastProcessedID=123", data=None, status_code=200, contentBytes=base64.b64encode(json.dumps(mockResponse).encode()), contentHeaders={ "x-remaining": "0"}, ignoreData=True ) self.ethosClient.startChangeNotificationPollerThreadInFunctionMode( loginSession=None, frequency=60, #number of seconds between fetches pageLimit=20, #number of change notifications to get per requests maxRequests=4, #maximum number of rquests to use in each fecth lastProcessedID="123", messageProcessingFunction=processSingleMessage ) self.ethosClient.close()
import matplotlib.pyplot as plt import numpy as np import math import keras # Importar la API keras from tensorflow.python.keras.models import Sequential from tensorflow.python.keras.layers import InputLayer, Input from tensorflow.python.keras.layers import Reshape, MaxPooling2D from tensorflow.python.keras.layers import Conv2D, Dense, Flatten import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data from tensorflow.python.keras.optimizers import Adam import keras.callbacks as cb class LossHistory(cb.Callback): def on_train_begin(self, logs={}): self.losses = [] def on_batch_end(self, batch, logs={}): batch_loss = logs.get('loss') self.losses.append(batch_loss) #Cargo los datos data = input_data.read_data_sets('data/MNIST/', one_hot=True) data.test.cls = np.argmax(data.test.labels, axis=1) #Se definen las variables img_size = 28 img_size_flat = img_size * img_size # Tupla con la altura y el ancho de las imagenes utilizadas para remodelar matrices. # Esto se utiliza para pintar las imagenes. img_shape = (img_size, img_size) # Tupla con altura, anchura y profundidad utilizada para remodelar matrices. # Esto se usa para remodelar en Keras. img_shape_full = (img_size, img_size, 1) # Numero de canales de color para las imagenes: 1 canal para escala de grises. num_channels = 1 # Numero de clases, una clase para cada uno de 10 digitos. num_classes = 10 #Construccion de la red neuronal de forma secuencial model = Sequential() # La entrada es una matriz aplanada con 784 elementos (img_size * img_size), # pero las capas convolucionales esperan imagenes con forma (28, 28, 1), por tanto hacemos un reshape model.add(Reshape(img_shape_full)) # Primera capa convolucional con ReLU-activation y max-pooling. model.add(Conv2D(kernel_size=5, strides=1, filters=16, padding='same', activation='relu', name='layer_conv1')) model.add(MaxPooling2D(pool_size=2, strides=2)) # Segunda capa convolucional con ReLU-activation y max-pooling. model.add(Conv2D(kernel_size=5, strides=1, filters=36, padding='same', activation='relu', name='layer_conv2')) model.add(MaxPooling2D(pool_size=2, strides=2)) # Aplanar la salida de 4 niveles de las capas convolucionales # a 2-rank que se puede ingresar a una capa totalmente conectada model.add(Flatten()) # Primera capa completamente conectada con ReLU-activation. model.add(Dense(128, activation='relu')) # Ultima capa totalmente conectada con activacion de softmax para usar en la clasificacion. model.add(Dense(num_classes, activation='softmax')) #Anadir funcion de coste, un optimizador y las metricas de rendimiento optimizer = Adam(lr=1e-3) model.compile(optimizer=optimizer, loss='categorical_crossentropy', metrics=['accuracy']) #Fase de entrenamiento print("Comienza el entrenamiento") history = LossHistory() model.fit(x=data.train.images, y=data.train.labels, callbacks=[history], epochs=15, batch_size=128) result = model.evaluate(x=data.train.images, y=data.train.labels) for name, value in zip(model.metrics_names, result): print(name, value) #Pruebo con el conjunto de test print("Pruebo el conjunto de test") result = model.evaluate(x=data.test.images, y=data.test.labels) for name, value in zip(model.metrics_names, result): print(name, value) print("") model.summary() plt.switch_backend('agg') plt.ioff() fig = plt.figure() ax = fig.add_subplot(111) ax.plot(history.losses) ax.set_title('Batch losses') plt.show() fig.savefig('img1.png')
__________________________________________________________________________________________________ sample 108 ms submission class Solution: def countVowelPermutation(self, n: int) -> int: # a -> e # e -> a, i # i -> a, e, o, u # o -> i, u # u -> a mod = 1000000007 a, e, i, o, u = 1, 1, 1, 1, 1 for _ in range(n - 1): a, e, i, o, u = (e + i + u) % mod, (a + i) % mod, (e + o) % mod, i, (i + o) % mod return (a + e + i + o + u) % mod __________________________________________________________________________________________________ sample 160 ms submission import numpy as np class Mint: def __init__(self, value): self.value = value % (10**9 + 7) def __add__(self, other): return Mint(self.value + other.value) def __mul__(self, other): return Mint(self.value * other.value) class Solution: def countVowelPermutation(self, n: int) -> int: O = Mint(0) I = Mint(1) transition = np.matrix([ [O, I, O, O, O], [I, O, I, O, O], [I, I, O, I, I], [O, O, I, O, I], [I, O, O, O, O] ], dtype=object) x = transition**(n - 1) res = np.sum(x) return res.value if type(res) != int else res __________________________________________________________________________________________________ sample 804 ms submission from functools import lru_cache m = 10**9 + 7 import sys sys.setrecursionlimit(10**6) class Solution: def countVowelPermutation(self, n: int) -> int: @lru_cache(None) def dp(idx, last): if idx == n: return 1 if last == 'a': return dp(idx + 1, 'e') % m if last == 'e': return (dp(idx + 1, 'a') + dp(idx + 1, 'i')) % m if last == 'i': return sum(dp(idx + 1, j) for j in 'aeou') % m if last == 'o': return (dp(idx + 1, 'u') + dp(idx + 1, 'i')) % m if last == 'u': return dp(idx + 1, 'a') % m return sum(dp(1, i) for i in 'aeiou') % m
class Reaction: """ A (possibly lifted) reaction """ def __init__(self, language, name, parameters, condition, effect): self.name = name self.language = language self.parameters = parameters self.condition = condition self.effect = effect self._check_well_formed() def _check_well_formed(self): pass def ident(self): params = ', '.join([str(o) for o in self.parameters]) return '{}({})'.format(self.name, params) def dump(self): return dict(name=self.name, params=[par.dump() for par in self.parameters], condition=self.condition.dump(), effect=[eff.dump() for eff in self.effect.dump()]) def __str__(self): tokens = ['reaction {}:'.format(self.name), 'cond: ({})'.format(self.condition), 'eff: ({})'.format(self.effect)] return '\n'.join(tokens)
import socket import pytest from airflow.utils import timezone from airflow.utils.db import create_session from airflow.utils.state import State from pytest_socket import disable_socket, SocketBlockedError from tests import mocks from tests.factories import DAGFactory, PythonOperatorFactory def pytest_runtest_setup(): """ This test suite uses pytest-socket which causes tests to fail immediately if a call to socket.socket is made, or in other words, tries to access the internet. However, the boto library tries to resolve addresses by calling socket.getaddrinfo which will make blocking network calls but is not covered by pytest-socket. This test setup will cause tests to fail immediately if socket.getaddrinfo is called. """ def block_lookup(*args, **kwargs): raise SocketBlockedError disable_socket() socket.getaddrinfo = block_lookup @pytest.fixture def context(): """ Generic Airflow context fixture that can be passed to a callable that requires context """ with create_session() as session: dag = DAGFactory() previous_task = PythonOperatorFactory(task_id='previous_task', dag=dag) current_task = PythonOperatorFactory(task_id='current_task', dag=dag) next_task = PythonOperatorFactory(task_id='next_task', dag=dag) current_task.set_upstream(previous_task) current_task.set_downstream(next_task) dag_run = dag.create_dagrun( run_id="manual__", start_date=timezone.utcnow(), execution_date=timezone.utcnow(), state=State.RUNNING, conf=None, session=session ) ti = dag_run.get_task_instances()[1] ti.task = current_task return ti.get_template_context() @pytest.fixture def s3_client(mocker): """ mocks boto client """ return mocker.patch('boto3.client', new_callable=mocks.s3ClientMock)
import numpy as np import pandas as pd dataset = pd.read_csv('Bd-Rainfall-prediction.csv') dataset.describe() X = dataset.iloc[:, :-1].values y = dataset.iloc[:,-1].values from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size =.20,random_state=0) from sklearn.preprocessing import StandardScaler sc = StandardScaler() X_train = sc.fit_transform(X_train) X_test = sc.transform(X_test) from sklearn.ensemble import RandomForestClassifier classifier = RandomForestClassifier() # Model training classifier.fit(X_train, y_train) y_pred = classifier.predict(X_test) y_prob = classifier.predict_proba(X_test)[:,1] from sklearn.metrics import confusion_matrix cm = confusion_matrix(y_test, y_pred) from sklearn.metrics import accuracy_score print(accuracy_score(y_test,y_pred)) from sklearn.metrics import classification_report print(classification_report(y_test,y_pred)) #made prediction using new data prediction_1 = classifier.predict(sc.transform(np.array([[13,2.5,2,75,60,5.7,4.8,300]]))) prediction_1_proba = classifier.predict_proba(sc.transform(np.array([[13,2.5,2,75,60,5.7,4.8,300]])))[:,1] prediction_2 = classifier.predict(sc.transform(np.array([[27,26,1,90,94,4.6,5.6,275]]))) prediction_2_proba = classifier.predict_proba(sc.transform(np.array([[27,26,1,90,94,4.6,5.6,275]])))[:,1] # Picking the Model and Standard Scaler import pickle model_file = "RandomForest.pickle" pickle.dump(classifier, open(model_file,'wb')) scaler_file = "scaller.pickle" pickle.dump(sc, open(scaler_file,'wb'))
def expand_int_list(input): items = [] if not input: return items parts = input.split(',') for part in parts: if part.strip() != '': try: if '-' in part: start_stop = part.split('-') start = start_stop[0] stop = start_stop[-1] for number in range(int(start), int(stop)+1): items.append(number) else: items.append(int(part)) except Exception: pass return items
import datetime import sqlalchemy import pytest from acondbs.db.sa import sa from acondbs.models import Map # __________________________________________________________________|| def test_type(app): '''confirm the type of the date field ''' with app.app_context(): map = Map.query.filter_by(name='lat20200120').first() # The type of the field "date_posted" of Map is "datetime.date" assert isinstance(map.date_posted, datetime.date) # __________________________________________________________________|| def test_add(app): '''A simple test of adding an object with a date field ''' # date_posted needs to be initialized with a datetime.date date_posted = datetime.date(2019, 2, 23) map1 = Map(name="map1", date_posted=date_posted) with app.app_context(): sa.session.add(map1) sa.session.commit() with app.app_context(): map1 = Map.query.filter_by(name='map1').first() assert datetime.date(2019, 2, 23) == map1.date_posted # __________________________________________________________________|| def test_add_raise(app): '''A simple test of adding an object with a wrong type ''' # It is not impossible to instnaiate a date field with a wrong # type, e.g, str map1 = Map(name="map1", date_posted="2019-02-13") with app.app_context(): # It is also possible to add sa.session.add(map1) # However, it is not possible to commit with pytest.raises(sqlalchemy.exc.StatementError): sa.session.commit() # __________________________________________________________________||
# This is the script without the need of a FFmpeg installation, pure OpenCV # This is not useful for image processing (eg: find faces) as there will be more lag, around 6 seconds added. import socket from time import time import cv2 import numpy as np from goprocam import GoProCamera, constants gpCam = GoProCamera.GoPro() sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) t = time() gpCam.livestream("start") cap = cv2.VideoCapture("udp://10.5.5.9:8554") while True: nmat, frame = cap.read() cv2.imshow("GoPro OpenCV", frame) if cv2.waitKey(1) & 0xFF == ord("q"): break if time() - t >= 2.5: sock.sendto(b"_GPHD_:0:0:2:0.000000\n", ("10.5.5.9", 8554)) t = time() # When everything is done, release the capture cap.release() cv2.destroyAllWindows()
from apkdecompiler import APKDecompile
from datetime import datetime from random import randint from typing import List from crypto_package.candles.get_candles import get_candles from pandas import DataFrame, to_datetime import plotly.graph_objects as go from plotly.subplots import make_subplots from .models import AnalysisResult, Trade def get_candles_and_plot(exchange: str, pair: str, candle_size: str, time_start: datetime = None, time_end: datetime = None, last_n_candles: int = None, trades: AnalysisResult = None, width: int = 1000, height: int = 600): candles, _ = get_candles(exchange, pair, candle_size, last_n_candles=last_n_candles, time_start=time_start, time_end=time_end) # candles = candles.rename(columns={"time": "date"}) # candles["date"] = to_datetime(candles["date"], unit='s') plot_candles(candles, trades, pair, width, height) # return fig return candles def plot_candles(candles: DataFrame, trades: AnalysisResult = None, pair=None, width: int = 1000, height: int = 650): if "time" in candles.columns: candles = candles.rename(columns={"time": "date"}) if type(candles["date"][0]) is not datetime: candles["date"] = to_datetime(candles["date"], unit='s') fig = go.Figure() fig.add_trace(go.Candlestick( x=candles['date'], open=candles['open'], high=candles['high'], low=candles['low'], close=candles['close'])) if trades is not None: res = trades.trades if pair is not None: res = [t for t in trades.trades if t.pair == pair] buy_trades_price = [tr.price for tr in res if tr.is_buy] buy_trades_time = [tr.timestamp for tr in res if tr.is_buy] sell_trades_price = [tr.price for tr in res if not tr.is_buy] sell_trades_time = [tr.timestamp for tr in res if not tr.is_buy] fig.add_trace(go.Scatter( x=buy_trades_time, y=buy_trades_price, mode='markers', name='buy trades', marker_symbol='diamond', marker=dict( color='blue', line_width=2, size=7, ) )) fig.add_trace(go.Scatter( x=sell_trades_time, y=sell_trades_price, mode='markers', name='sell trades', marker_symbol='square', marker=dict( color='yellow', line_width=2, size=7 ) )) fig.update_layout( title="Candles", xaxis_title="time", yaxis_title="price", width=width, height=height ) fig.show() # return fig # def plot_indicators(indicators_df: DataFrame, indicators: List[str], width: int = 1000, # height: int = 650, fig_type:str='lines'): # indicators_df contains columns with indicators and column "date" with datetime # if "time" in indicators_df.columns: # indicators_df = indicators_df.rename(columns={"time": "date"}) # if type(indicators_df["date"][0]) is not datetime: # indicators_df["date"] = to_datetime(indicators_df["date"], unit='s') # # for ind in indicators: # fig = go.Figure() # fig.add_trace(go.Scatter( # x=indicators_df['date'], # y=indicators_df[ind], # mode=fig_type, # name=ind, # )) # fig.update_layout( # title=ind, # xaxis_title="time", # yaxis_title="value", # width=width, # height=height # ) # fig.show() # def plot_patterns_on_candles(indicators_df, indicators, trades=None, pair=None, show_signal=False, lines=[], width: int = 1000, height: int = 650): # indicators_df contains columns with indicators and column "date" with datetime if "time" in indicators_df.columns: indicators_df = indicators_df.rename(columns={"time": "date"}) if type(indicators_df["date"][0]) is not datetime: indicators_df["date"] = to_datetime(indicators_df["date"], unit='s') fig = go.Figure() fig.add_trace(go.Candlestick( x=indicators_df['date'], open=indicators_df['open'], high=indicators_df['high'], low=indicators_df['low'], close=indicators_df['close'])) for ind in indicators: xup = [] xdown = [] yup = [] ydown = [] for idx, row in indicators_df.iterrows(): if row[ind] == 100: xup.append(row['date']) yup.append(((row['high'] + row['low']) / 2) + 1.5 * abs(row['high'] - row['low'])) elif row[ind] == -100: xdown.append(row['date']) ydown.append(((row['high'] + row['low']) / 2) - 1.5 * abs(row['high'] - row['low'])) color = 'green' if len(indicators) <= 2 else randint(1, 500) fig.add_trace(go.Scatter( x=xup, y=yup, mode='markers', marker=dict( color=color, line_width=1, size=8, ), marker_symbol='triangle-up', name=ind + " bullish", )) color = 'red' if len(indicators) <= 2 else randint(1, 500) fig.add_trace(go.Scatter( x=xdown, y=ydown, mode='markers', marker=dict( color=color, line_width=1, size=8, ), marker_symbol='triangle-down', name=ind + " bearish", )) for line in lines: fig.add_trace(go.Scatter( x=indicators_df["date"], y=indicators_df[line], mode='lines', name=line, )) if trades is not None: res = trades.trades if pair is not None: res = [t for t in trades.trades if t.pair == pair] buy_trades_price = [tr.price for tr in res if tr.is_buy] buy_trades_time = [tr.timestamp for tr in res if tr.is_buy] sell_trades_price = [tr.price for tr in res if not tr.is_buy] sell_trades_time = [tr.timestamp for tr in res if not tr.is_buy] fig.add_trace(go.Scatter( x=buy_trades_time, y=buy_trades_price, mode='markers', name='buy trades', marker_symbol='diamond', marker=dict( color='blue', line_width=2, size=7, ) )) fig.add_trace(go.Scatter( x=sell_trades_time, y=sell_trades_price, mode='markers', name='sell trades', marker_symbol='square', marker=dict( color='yellow', line_width=2, size=7 ) )) if show_signal: buy_sig = [a[0] for a in trades.buy_signals] buy_sig_time = [a[1] for a in trades.buy_signals] sell_sig = [a[0] for a in trades.sell_signals] sell_sig_time = [a[1] for a in trades.sell_signals] fig.add_trace(go.Scatter( x=buy_sig_time, y=buy_sig, mode='markers', name='buy signal', marker_symbol='diamond', marker=dict( color='lightblue', line_width=2, size=7, ) )) fig.add_trace(go.Scatter( x=sell_sig_time, y=sell_sig, mode='markers', name='sell signal', marker_symbol='square', marker=dict( color='lightyellow', line_width=2, size=7 ) )) fig.update_layout( title="Indicators on candles", xaxis_title="time", yaxis_title="value", width=width, height=height ) fig.show() def process_plots_info(one_plot, indicators): rows = 0 indicators_titles = [] for idx, i in enumerate(one_plot): if i == False: rows += 1 indicators_titles.append(indicators[idx]) else: title = indicators_titles.pop() if len(indicators_titles) > 0 else "" title = title + " + " + str(indicators[idx]) indicators_titles.append(title) return rows, indicators_titles def plot_indicators(indicators_df, indicators, trades=None, pair=None, show_signal=False, plot_candles=False, one_plot=None, width: int = 1000, height: int = 650, fig_type: str = 'lines'): # indicators_df contains columns with indicators and column "date" with datetime if "time" in indicators_df.columns: indicators_df = indicators_df.rename(columns={"time": "date"}) if type(indicators_df["date"][0]) is not datetime: indicators_df["date"] = to_datetime(indicators_df["date"], unit='s') rows = 0 indicators_titles = [] if plot_candles or trades is not None: rows += 1 indicators_titles = ['candles'] if one_plot is not None: ind_rows, ind_titles = process_plots_info(one_plot, indicators) rows += ind_rows indicators_titles += ind_titles else: rows += len(indicators) indicators_titles += [i for i in indicators] print(indicators_titles) fig = make_subplots(rows=rows, cols=1, subplot_titles=indicators_titles, shared_xaxes=True, vertical_spacing=0.05, x_title="time", y_title="value" ) ridx = 0 if plot_candles or trades is not None: ridx = 1 fig.add_trace(go.Candlestick( x=indicators_df['date'], open=indicators_df['open'], high=indicators_df['high'], low=indicators_df['low'], close=indicators_df['close']), row=ridx, col=1 ) if trades is not None: just_trades = trades.trades if pair is not None: just_trades = [t for t in trades.trades if t.pair == pair] add_trades(fig, just_trades, show_signal, ridx) for idx, ind in enumerate(indicators): if one_plot is None or one_plot[idx] == False: ridx += 1 fig.add_trace(go.Scatter( x=indicators_df['date'], y=indicators_df[ind], name=ind, line_color='rgb' + str((randint(0, 255), randint(0, 255), randint(0, 255))) ), row=ridx, col=1 ) fig.update_layout( title_text='indicators', width=width, height=height, xaxis_rangeslider_visible=False, ) fig.show() def add_trades(fig, res, show_signal, ridx): buy_trades_price = [tr.price for tr in res if tr.is_buy] buy_trades_time = [tr.timestamp for tr in res if tr.is_buy] sell_trades_price = [tr.price for tr in res if not tr.is_buy] sell_trades_time = [tr.timestamp for tr in res if not tr.is_buy] fig.add_trace(go.Scatter( x=buy_trades_time, y=buy_trades_price, mode='markers', name='buy trades', marker_symbol='diamond', marker=dict( color='blue', line_width=2, size=7, ) ), row=ridx, col=1) fig.add_trace(go.Scatter( x=sell_trades_time, y=sell_trades_price, mode='markers', name='sell trades', marker_symbol='square', marker=dict( color='yellow', line_width=2, size=7 ) ), row=ridx, col=1) if show_signal: buy_sig = [a[0] for a in trades.buy_signals] buy_sig_time = [a[1] for a in trades.buy_signals] sell_sig = [a[0] for a in trades.sell_signals] sell_sig_time = [a[1] for a in trades.sell_signals] fig.add_trace(go.Scatter( x=buy_sig_time, y=buy_sig, mode='markers', name='buy signal', marker_symbol='diamond', marker=dict( color='lightblue', line_width=2, size=7, ) ), row=ridx, col=1) fig.add_trace(go.Scatter( x=sell_sig_time, y=sell_sig, mode='markers', name='sell signal', marker_symbol='square', marker=dict( color='lightyellow', line_width=2, size=7 ) ), row=ridx, col=1) # def plot_indicators_on_candles(indicators_df: DataFrame, indicators: List[str], width: int = 1000, # height: int = 650): # indicators_df contains columns with indicators and column "date" with datetime # if "time" in indicators_df.columns: # indicators_df = indicators_df.rename(columns={"time": "date"}) # if type(indicators_df["date"][0]) is not datetime: # indicators_df["date"] = to_datetime(indicators_df["date"], unit='s') # # fig = go.Figure() # # fig.add_trace(go.Candlestick( # x=indicators_df['date'], # open=indicators_df['open'], # high=indicators_df['high'], # low=indicators_df['low'], # close=indicators_df['close'])) # # for ind in indicators: # fig.add_trace(go.Scatter( # x=indicators_df['date'], # y=indicators_df[ind], # mode='markers', # marker=dict( # color=randint(1,500), # line_width=2, # size=7, # ), # name=ind, # )) # fig.update_layout( # title="Indicators on candles", # xaxis_title="time", # yaxis_title="value", # width=width, # height=height # ) # fig.show() def calculate_profit_from_trades(transactions: List[Trade], start_datetime, end_datetime): transactions.sort(key=lambda x: x.timestamp) tr_buy_amount = {} start = 0 end = len(transactions) profit = 0 sell_costs = 0 buy_costs = 0 x_v = [start_datetime] y_v = [profit] for trade_id in range(start, end): trade = transactions[trade_id] results = [] if trade.amount in tr_buy_amount.keys(): results = tr_buy_amount.get(trade.amount) if trade.is_buy: if len(results) == 0: results = [trade] else: results.append(trade) tr_buy_amount.update({trade.amount: results}) else: oldest_buy = results.pop(0) if len(results) > 0: tr_buy_amount.update({trade.amount: results}) else: tr_buy_amount.pop(trade.amount) sell_costs += trade.amount * trade.price buy_costs += trade.amount * oldest_buy.price profit = (sell_costs - buy_costs) / buy_costs # profit = ((trade.amount * trade.price) - (trade.amount * oldest_buy.price)) / ( # trade.amount * oldest_buy.price) y_v.append(profit*100) x_v.append(trade.timestamp) x_v.append(end_datetime) y_v.append(profit*100) return x_v, y_v def calculate_bot_profit(transactions: List[Trade], start_datetime, end_datetime, start_amount): transactions.sort(key=lambda x: x.timestamp) tr_buy_amount = {} start = 0 end = len(transactions) profit = 0 profit_value = 0 x_v = [start_datetime] y_v = [profit] for trade_id in range(start, end): trade = transactions[trade_id] results = [] if trade.amount in tr_buy_amount.keys(): results = tr_buy_amount.get(trade.amount) if trade.is_buy: if len(results) == 0: results = [trade] else: results.append(trade) tr_buy_amount.update({trade.amount: results}) else: oldest_buy = results.pop(0) if len(results) > 0: tr_buy_amount.update({trade.amount: results}) else: tr_buy_amount.pop(trade.amount) profit_value += trade.amount * trade.price - trade.amount * oldest_buy.price # buy_costs += trade.amount * oldest_buy.price profit = profit_value / start_amount # profit = ((trade.amount * trade.price) - (trade.amount * oldest_buy.price)) / ( # trade.amount * oldest_buy.price) y_v.append(profit*100) x_v.append(trade.timestamp) x_v.append(end_datetime) y_v.append(profit*100) return x_v, y_v def plot_profit(trades: AnalysisResult, width: int = 1000, height: int = 650): x, y = calculate_profit_from_trades(trades.trades, trades.start_datetime, trades.end_datetime) fig = go.Figure() fig.add_trace(go.Scatter( x=x, y=y, mode='lines+markers', name="profit", )) fig.update_layout( title='BacktestingBots profit', xaxis_title="time", yaxis_title="value [%]", width=width, height=height ) fig.show() # return fig def plot_bot_profit(trades: AnalysisResult, start_amount, width: int = 1000, height: int = 650): x, y = calculate_bot_profit(trades.trades, trades.start_datetime, trades.end_datetime, start_amount) fig = go.Figure() fig.add_trace(go.Scatter( x=x, y=y, mode='lines+markers', name="profit", )) fig.update_layout( title='BacktestingBots profit', xaxis_title="time", yaxis_title="value [%]", width=width, height=height ) fig.show() # return fig def plot_profit_per_pair(trades: AnalysisResult, pairs: List[str] = None, width: int = 1000, height: int = 650): pair_trades = {} if pairs is None: for trade in trades.trades: uptrades = pair_trades.get(trade.pair) if trade.pair in pair_trades.keys() else [] uptrades.append(trade) pair_trades.update({trade.pair: uptrades}) else: for trade in trades.trades: if trade.pair in pairs: uptrades = pair_trades.get(trade.pair) if trade.pair in pair_trades.keys() else [] uptrades.append(trade) pair_trades.update({trade.pair: uptrades}) fig = go.Figure() for pair, transactions in pair_trades.items(): x, y = calculate_profit_from_trades(transactions, trades.start_datetime, trades.end_datetime) fig.add_trace(go.Scatter( x=x, y=y, mode='lines+markers', name=str(pair), )) calc_pairs = [item for item in pair_trades.keys()] fig.update_layout( title='BacktestingBots profit per pair ' + str(calc_pairs), xaxis_title="time", yaxis_title="value [%]", width=width, height=height ) fig.show()
import numpy as np from qiskit import BasicAer from qiskit.quantum_info import Pauli from qiskit.aqua import QuantumInstance, aqua_globals from qiskit.aqua.algorithms import NumPyMinimumEigensolver, VQE from qiskit.circuit.library import TwoLocal from qiskit.aqua.components.optimizers import SPSA from qiskit.aqua.operators import WeightedPauliOperator from qiskit.optimization import QuadraticProgram from qiskit.optimization.algorithms import MinimumEigenOptimizer class QuantumOptimizer: def __init__(self, instance, n, K): self.instance = instance self.n = n self.K = K def binary_representation(self, x_sol=0): instance = self.instance n = self.n K = self.K A = np.max(instance) * 100 # A parameter of cost function # Determine the weights w instance_vec = instance.reshape(n ** 2) w_list = [instance_vec[x] for x in range(n ** 2) if instance_vec[x] > 0] w = np.zeros(n * (n - 1)) for ii in range(len(w_list)): w[ii] = w_list[ii] # Some variables I will use Id_n = np.eye(n) Im_n_1 = np.ones([n - 1, n - 1]) Iv_n_1 = np.ones(n) Iv_n_1[0] = 0 Iv_n = np.ones(n - 1) neg_Iv_n_1 = np.ones(n) - Iv_n_1 v = np.zeros([n, n * (n - 1)]) for ii in range(n): count = ii - 1 for jj in range(n * (n - 1)): if jj // (n - 1) == ii: count = ii if jj // (n - 1) != ii and jj % (n - 1) == count: v[ii][jj] = 1.0 vn = np.sum(v[1:], axis=0) # Q defines the interactions between variables Q = A * (np.kron(Id_n, Im_n_1) + np.dot(v.T, v)) # g defines the contribution from the individual variables g = ( w - 2 * A * (np.kron(Iv_n_1, Iv_n) + vn.T) - 2 * A * K * (np.kron(neg_Iv_n_1, Iv_n) + v[0].T) ) # c is the constant offset c = 2 * A * (n - 1) + 2 * A * (K ** 2) try: max(x_sol) # Evaluates the cost distance from a binary representation of a path fun = ( lambda x: np.dot(np.around(x), np.dot(Q, np.around(x))) + np.dot(g, np.around(x)) + c ) cost = fun(x_sol) except: cost = 0 return Q, g, c, cost def construct_problem(self, Q, g, c) -> QuadraticProgram: n = self.n qp = QuadraticProgram() for i in range(n * (n - 1)): qp.binary_var(str(i)) qp.objective.quadratic = Q qp.objective.linear = g qp.objective.constant = c return qp def solve_problem(self, qp): aqua_globals.random_seed = 10598 quantum_instance = QuantumInstance( BasicAer.get_backend("qasm_simulator"), seed_simulator=aqua_globals.random_seed, seed_transpiler=aqua_globals.random_seed, ) vqe = VQE(quantum_instance=quantum_instance) optimizer = MinimumEigenOptimizer(min_eigen_solver=vqe) result = optimizer.solve(qp) # compute cost of the obtained result _, _, _, level = self.binary_representation(x_sol=result.x) return result.x, level
# Кожен трансформер має свою вагу, запишемо її у словник # transformersWeight = { "Оптімус": 5000, "Бамблбі": 2500, "Джаз": 3000 } # Яка вага всіх трансформерів у словнику? transformersWeight = { "Оптімус": 5000, "Бамблбі": 2500, "Джаз": 3000 } total_weight = 0 for value in transformersWeight.values(): total_weight+=value print("Total weight: ",total_weight)
""" Enables programmatic accessing of most recent docker images """ import pkg_resources import armory USER = "twosixarmory" TAG = armory.__version__ TF1 = f"{USER}/tf1:{TAG}" TF2 = f"{USER}/tf2:{TAG}" PYTORCH = f"{USER}/pytorch:{TAG}" ALL = ( TF1, TF2, PYTORCH, ) ARMORY_BASE = f"{USER}/armory:{TAG}" TF1_BASE = f"{USER}/tf1-base:{TAG}" TF2_BASE = f"{USER}/tf2-base:{TAG}" PYTORCH_BASE = f"{USER}/pytorch-base:{TAG}" BASES = ( ARMORY_BASE, TF1_BASE, TF2_BASE, PYTORCH_BASE, ) REPOSITORIES = tuple(x.split(":")[0] for x in (ALL + BASES)) def parse_version(tag): """ Return PEP 440 version for given version tag """ if not isinstance(tag, str): raise ValueError(f"tag is a {type(tag)}, not a str") if tag.endswith(armory.DEV): numeric_tag = tag[: -len(armory.DEV)] else: numeric_tag = tag if len(numeric_tag.split(".")) != 3: raise ValueError(f"tag {tag} must be of form 'major.minor.patch[-dev]'") version = pkg_resources.parse_version(tag) if not isinstance(version, pkg_resources.extern.packaging.version.Version): raise ValueError(f"tag {tag} parses to type {type(version)}, not Version") return version VERSION = parse_version(armory.__version__) def is_old(tag: str): """ Return True if tag is an old armory container, False otherwise If current version is dev, only returns True for old "-dev" containers. """ if not isinstance(tag, str): raise ValueError(f"tag must be of type str, not type {type(tag)}") if tag in ALL: return False tokens = tag.split(":") if len(tokens) != 2: return False repo, tag = tokens if repo in REPOSITORIES: try: other = parse_version(tag) if other < VERSION: # return True if both prerelease or both not prerelease return not (other.is_prerelease ^ VERSION.is_prerelease) except (AttributeError, ValueError): # Catch empty tag and tag parsing errors pass return False
#! Assignment 2 #! Previously in 1_notmnist.ipynb, #! we created a pickle with formatted datasets for training, development and testing on the notMNIST dataset. #! The goal of this assignment is to progressively train deeper and more accurate models using TensorFlow. #! These are all the modules we'll be using later. #! Make sure you can import them before proceeding further. import numpy as np import tensorflow as tf from six.moves import cPickle as pickle from six.moves import range #! First reload the data we generated in `1_notmnist.ipynb`. pickle_file = 'notMNIST.pickle' with open(pickle_file, 'rb') as f: save = pickle.load(f) train_dataset = save['train_dataset'] train_labels = save['train_labels'] valid_dataset = save['valid_dataset'] valid_labels = save['valid_labels'] test_dataset = save['test_dataset'] test_labels = save['test_labels'] del save # hint to help gc free up memory print('Training set', train_dataset.shape, train_labels.shape) print('Validation set', valid_dataset.shape, valid_labels.shape) print('Test set', test_dataset.shape, test_labels.shape) #! Reformat into a shape that's more adapted to the models we're going to train: #! * data as a flat matrix, #! * labels as float 1-hot encodings. image_size = 28 num_labels = 10 def reformat(dataset, labels): dataset = dataset.reshape((-1, image_size * image_size)).astype(np.float32) # Map 0 to [1.0, 0.0, 0.0 ...], 1 to [0.0, 1.0, 0.0 ...] labels = (np.arange(num_labels) == labels[:,None]).astype(np.float32) return dataset, labels train_dataset, train_labels = reformat(train_dataset, train_labels) valid_dataset, valid_labels = reformat(valid_dataset, valid_labels) test_dataset, test_labels = reformat(test_dataset, test_labels) print('Training set', train_dataset.shape, train_labels.shape) print('Validation set', valid_dataset.shape, valid_labels.shape) print('Test set', test_dataset.shape, test_labels.shape) #! We're first going to train a multinomial logitsic regression using simple gradient descent. #! TensorFlow works like this: #! * First you describe the computation that you want to see performed: what the inputs, the variables, #! and the operations look like. These get created as nodes over a computation graph. #! This description is all contained within the block below: #! with graph.as_default(): #! ... #! * Then you can run the operations on this graph as many times as you want by calling session.run(), #! providing it outputs to fetch from the graph that get returned. #! This runtime operation is all contained in the block below: #! with tf.Session(graph=graph) as session: #! ... #! Let's load all the data into TensorFlow and build the computation graph corresponding to our training: #! With gradient descent training, even this much data is prohibitive. #! Subset the training data for faster turnaround. train_subset = 10000 graph = tf.Graph() with graph.as_default(): #! Input data. #! Load the training, validation and test data into constants that are #! attached to the graph. tf_train_dataset = tf.constant(train_dataset[:train_subset, :]) tf_train_labels = tf.constant(train_labels[:train_subset]) tf_valid_dataset = tf.constant(valid_dataset) tf_test_dataset = tf.constant(test_dataset) #! Variables. #! These are the parameters that we are going to be training. #! The weight matrix will be initialized using random values following a (truncated) normal distribution. #! The biases get initialized to zero. weights = tf.Variable( tf.truncated_normal([image_size * image_size, num_labels])) biases = tf.Variable(tf.zeros([num_labels])) #! Training computation. #! We multiply the inputs with the weight matrix, and add biases. We compute #! the softmax and cross-entropy (it's one operation in TensorFlow, because #! it's very common, and it can be optimized). We take the average of this #! cross-entropy across all training examples: that's our loss. logits = tf.matmul(tf_train_dataset, weights) + biases loss = tf.reduce_mean( tf.nn.softmax_cross_entropy_with_logits(labels=tf_train_labels, logits=logits)) #! Optimizer. #! We are going to find the minimum of this loss using gradient descent. optimizer = tf.train.GradientDescentOptimizer(0.5).minimize(loss) #! Predictions for the training, validation, and test data. #! These are not part of training, #! but merely here so that we can report accuracy figures as we train. train_prediction = tf.nn.softmax(logits) valid_prediction = tf.nn.softmax( tf.matmul(tf_valid_dataset, weights) + biases) test_prediction = tf.nn.softmax(tf.matmul(tf_test_dataset, weights) + biases) #! Let's run this computation and iterate: num_steps = 801 def accuracy(predictions, labels): return (100.0 * np.sum(np.argmax(predictions, 1) == np.argmax(labels, 1)) / predictions.shape[0]) with tf.Session(graph=graph) as session: #! This is a one-time operation which ensures the parameters get initialized as #! we described in the graph: random weights for the matrix, zeros for the #! biases. tf.global_variables_initializer().run() print('Initialized') for step in range(num_steps): #! Run the computations. We tell .run() that we want to run the optimizer, #! and get the loss value and the training predictions returned as numpy #! arrays. _, l, predictions = session.run([optimizer, loss, train_prediction]) if (step % 100 == 0): print('Loss at step %d: %f' % (step, l)) print('Training accuracy: %.1f%%' % accuracy( predictions, train_labels[:train_subset, :])) #! Calling .eval() on valid_prediction is basically like calling run(), but #! just to get that one numpy array. Note that it recomputes all its graph #! dependencies. print('Validation accuracy: %.1f%%' % accuracy( valid_prediction.eval(), valid_labels)) print('Test accuracy: %.1f%%' % accuracy(test_prediction.eval(), test_labels)) #! Let's now switch to stochastic gradient descent training instead, which is much faster. #! The graph will be similar, except that instead of holding all the training data into a constant node, #! we create a Placeholder node which will be fed actual data at every call of session.run(). batch_size = 128 graph = tf.Graph() with graph.as_default(): # Input data. For the training data, we use a placeholder that will be fed # at run time with a training minibatch. tf_train_dataset = tf.placeholder(tf.float32,shape=(batch_size, image_size * image_size)) tf_train_labels = tf.placeholder(tf.float32, shape=(batch_size, num_labels)) tf_valid_dataset = tf.constant(valid_dataset) tf_test_dataset = tf.constant(test_dataset) # Variables. weights = tf.Variable( tf.truncated_normal([image_size * image_size, num_labels])) biases = tf.Variable(tf.zeros([num_labels])) # Training computation. logits = tf.matmul(tf_train_dataset, weights) + biases loss = tf.reduce_mean( tf.nn.softmax_cross_entropy_with_logits(labels=tf_train_labels, logits=logits)) # Optimizer. optimizer = tf.train.GradientDescentOptimizer(0.5).minimize(loss) # Predictions for the training, validation, and test data. train_prediction = tf.nn.softmax(logits) valid_prediction = tf.nn.softmax( tf.matmul(tf_valid_dataset, weights) + biases) test_prediction = tf.nn.softmax(tf.matmul(tf_test_dataset, weights) + biases) #!Let's run it: num_steps = 3001 with tf.Session(graph=graph) as session: tf.global_variables_initializer().run() print("Initialized") for step in range(num_steps): #! Pick an offset within the training data, which has been randomized. #! Note: we could use better randomization across epochs. offset = (step * batch_size) % (train_labels.shape[0] - batch_size) #! Generate a minibatch. batch_data = train_dataset[offset:(offset + batch_size), :] batch_labels = train_labels[offset:(offset + batch_size), :] #! Prepare a dictionary telling the session where to feed the minibatch. #! The key of the dictionary is the placeholder node of the graph to be fed, #! and the value is the numpy array to feed to it. feed_dict = {tf_train_dataset : batch_data, tf_train_labels : batch_labels} _, l, predictions = session.run( [optimizer, loss, train_prediction], feed_dict=feed_dict) if (step % 500 == 0): print("Minibatch loss at step %d: %f" % (step, l)) print("Minibatch accuracy: %.1f%%" % accuracy(predictions, batch_labels)) print("Validation accuracy: %.1f%%" % accuracy( valid_prediction.eval(), valid_labels)) print("Test accuracy: %.1f%%" % accuracy(test_prediction.eval(), test_labels)) #! Problem #! Turn the logitsic regression example with SGD into a 1-hidden layer neural network #! with rectified linear units nn.relu() and 1024 hidden nodes. #! This model should improve your validation / test accuracy. batch_size = 128 hidden_layer_nodes = 1024 graph = tf.Graph() with graph.as_default(): # Input data. For the trainlogitsing data, we use a placeholder that will be fed # at run time with a training minibatch. tf_train_dataset = tf.placeholder(tf.float32,shape=(batch_size, image_size * image_size)) tf_train_labels = tf.placeholder(tf.float32, shape=(batch_size, num_labels)) tf_valid_dataset = tf.constant(valid_dataset) tf_test_dataset = tf.constant(test_dataset) # Variables. weights_1 = tf.Variable( tf.truncated_normal([image_size * image_size, hidden_layer_nodes])) biases_1 = tf.Variable(tf.zeros([hidden_layer_nodes])) weights_2 = tf.Variable( tf.truncated_normal([hidden_layer_nodes, num_labels])) biases_2 = tf.Variable(tf.zeros([num_labels])) # Training computation. logits_1 = tf.matmul(tf_train_dataset, weights_1) + biases_1 hidden_1 = tf.nn.relu(logits_1) logits_2 = tf.matmul(hidden_1,weights_2)+biases_2 loss = tf.reduce_mean( tf.nn.softmax_cross_entropy_with_logits(labels=tf_train_labels, logits=logits_2)) # Optimizer. optimizer = tf.train.GradientDescentOptimizer(0.5).minimize(loss) # Predictions for the training, validation, and test data. train_prediction = tf.nn.softmax(logits_2) valid_prediction = tf.nn.softmax( tf.matmul(tf.nn.relu(tf.matmul(tf_valid_dataset,weights_1)+biases_1),weights_2)+biases_2) test_prediction = tf.nn.softmax( tf.matmul(tf.nn.relu(tf.matmul(tf_test_dataset,weights_1)+biases_1),weights_2)+biases_2) num_steps = 3001 with tf.Session(graph=graph) as session: tf.global_variables_initializer().run() print("Initialized, Using Neural Network") for step in range(num_steps): #! Pick an offset within the training data, which has been randomized. #! Note: we could use better randomization across epochs. offset = (step * batch_size) % (train_labels.shape[0] - batch_size) #! Generate a minibatch. batch_data = train_dataset[offset:(offset + batch_size), :] batch_labels = train_labels[offset:(offset + batch_size), :] #! Prepare a dictionary telling the session where to feed the minibatch. #! The key of the dictionary is the placeholder node of the graph to be fed, #! and the value is the numpy array to feed to it. feed_dict = {tf_train_dataset : batch_data, tf_train_labels : batch_labels} _, l, predictions = session.run( [optimizer, loss, train_prediction], feed_dict=feed_dict) if (step % 500 == 0): print("Minibatch loss at step %d: %f" % (step, l)) print("Minibatch accuracy: %.1f%%" % accuracy(predictions, batch_labels)) print("Validation accuracy: %.1f%%" % accuracy( valid_prediction.eval(), valid_labels)) print("Test accuracy: %.1f%%" % accuracy(test_prediction.eval(), test_labels))