content
stringlengths
5
1.05M
# Copyright 2018-2021 Xanadu Quantum Technologies Inc. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Transform for fusing sequences of single-qubit gates.""" # pylint: disable=too-many-branches from pennylane import apply from pennylane.transforms import qfunc_transform from pennylane.ops.qubit import Rot from pennylane.math import allclose, stack, is_abstract from .optimization_utils import find_next_gate, fuse_rot_angles @qfunc_transform def single_qubit_fusion(tape, atol=1e-8, exclude_gates=None): r"""Quantum function transform to fuse together groups of single-qubit operations into a general single-qubit unitary operation (:class:`~.Rot`). Fusion is performed only between gates that implement the property ``single_qubit_rot_angles``. Any sequence of two or more single-qubit gates (on the same qubit) with that property defined will be fused into one ``Rot``. Args: qfunc (function): A quantum function. atol (float): An absolute tolerance for which to apply a rotation after fusion. After fusion of gates, if the fused angles :math:`\theta` are such that :math:`|\theta|\leq \text{atol}`, no rotation gate will be applied. exclude_gates (None or list[str]): A list of gates that should be excluded from full fusion. If set to ``None``, all single-qubit gates that can be fused will be fused. Returns: function: the transformed quantum function **Example** Consider the following quantum function. .. code-block:: python def qfunc(r1, r2): qml.Hadamard(wires=0) qml.Rot(*r1, wires=0) qml.Rot(*r2, wires=0) qml.RZ(r1[0], wires=0) qml.RZ(r2[0], wires=0) return qml.expval(qml.PauliX(0)) The circuit before optimization: >>> dev = qml.device('default.qubit', wires=1) >>> qnode = qml.QNode(qfunc, dev) >>> print(qml.draw(qnode)([0.1, 0.2, 0.3], [0.4, 0.5, 0.6])) 0: ──H──Rot(0.1, 0.2, 0.3)──Rot(0.4, 0.5, 0.6)──RZ(0.1)──RZ(0.4)──┤ ⟨X⟩ Full single-qubit gate fusion allows us to collapse this entire sequence into a single ``qml.Rot`` rotation gate. >>> optimized_qfunc = single_qubit_fusion()(qfunc) >>> optimized_qnode = qml.QNode(optimized_qfunc, dev) >>> print(qml.draw(optimized_qnode)([0.1, 0.2, 0.3], [0.4, 0.5, 0.6])) 0: ──Rot(3.57, 2.09, 2.05)──┤ ⟨X⟩ """ # Make a working copy of the list to traverse list_copy = tape.operations.copy() while len(list_copy) > 0: current_gate = list_copy[0] # If the gate should be excluded, queue it and move on regardless # of fusion potential if exclude_gates is not None: if current_gate.name in exclude_gates: apply(current_gate) list_copy.pop(0) continue # Look for single_qubit_rot_angles; if not available, queue and move on. # If available, grab the angles and try to fuse. try: cumulative_angles = stack(current_gate.single_qubit_rot_angles()) except (NotImplementedError, AttributeError): apply(current_gate) list_copy.pop(0) continue # Find the next gate that acts on the same wires next_gate_idx = find_next_gate(current_gate.wires, list_copy[1:]) if next_gate_idx is None: apply(current_gate) list_copy.pop(0) continue # Before entering the loop, we check to make sure the next gate is not in the # exclusion list. If it is, we should apply the original gate as-is, and not the # Rot version (example in test test_single_qubit_fusion_exclude_gates). if exclude_gates is not None: next_gate = list_copy[next_gate_idx + 1] if next_gate.name in exclude_gates: apply(current_gate) list_copy.pop(0) continue # Loop as long as a valid next gate exists while next_gate_idx is not None: next_gate = list_copy[next_gate_idx + 1] # Check first if the next gate is in the exclusion list if exclude_gates is not None: if next_gate.name in exclude_gates: break # Try to extract the angles; since the Rot angles are implemented # solely for single-qubit gates, and we used find_next_gate to obtain # the gate in question, only valid single-qubit gates on the same # wire as the current gate will be fused. try: next_gate_angles = stack(next_gate.single_qubit_rot_angles()) except (NotImplementedError, AttributeError): break cumulative_angles = fuse_rot_angles(cumulative_angles, stack(next_gate_angles)) list_copy.pop(next_gate_idx + 1) next_gate_idx = find_next_gate(current_gate.wires, list_copy[1:]) # If we are tracing/jitting, don't perform any conditional checks and # apply the rotation regardless of the angles. if is_abstract(cumulative_angles): Rot(*cumulative_angles, wires=current_gate.wires) # If not tracing, check whether all angles are 0 (or equivalently, if the RY # angle is close to 0, and so is the sum of the RZ angles else: if not allclose( stack([cumulative_angles[0] + cumulative_angles[2], cumulative_angles[1]]), [0.0, 0.0], atol=atol, rtol=0, ): Rot(*cumulative_angles, wires=current_gate.wires) # Remove the starting gate from the list list_copy.pop(0) # Queue the measurements normally for m in tape.measurements: apply(m)
import requests from requests.exceptions import MissingSchema from bs4 import BeautifulSoup as soup import re import sys import time agent = requests.utils.default_headers() agent.update({ "User-Agent":'Mozilla/5.0 (Windows NT 6.3; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/59.0.3071.115 Safari/537.36', }) #agent = {'User-Agent' : 'Mozilla/5.0 (Windows NT 6.1; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/64.0.3282.186 Safari/537.36'} #agent = {'User-Agent': 'Mozilla/5.0 (Windows NT 6.1; Win64; x64; rv:59.0) Gecko/20100101 Firefox/59.0'} mainPage = requests.get('https://www.goodreads.com/list/show/264.Books_That_Everyone_Should_Read_At_Least_Once?page=9', headers=agent) csv = open("E:/CS 839/Project Stage 2/Table1_1_2.csv", "w", encoding='utf=8') f = open("E:/CS 839/Project Stage 2/mainPage.txt", "w", encoding='utf=8') f1 = open("E:/CS 839/Project Stage 2/bookPage.txt", "w", encoding='utf=8') csv.write("title, author, rating, format, pages\n") #f.write(str(mainPage.content)) #page = mainPage count = 800 while mainPage.status_code == 200: parsed = soup(mainPage.content, 'html.parser') mainPage.close() books = parsed.findAll("a", {"class":"bookTitle", "itemprop":"url"}) print(len(books)) for i in range(len(books)): book_href = "https://www.goodreads.com" + books[i]['href'] #print(book_href) if ((count % 100) == 0): time.sleep(3) bookPage = requests.get(book_href, headers=agent) if bookPage.status_code == 200: parsedBookPage = soup(bookPage.content, 'html.parser') bookPage.close() #f1.write(str(bookPage.content)) title = books[i].span.text title = re.sub('[,]' , '', title) #print("Title: " + title) authorName = parsedBookPage.find("a", {"class":"authorName"}).span.text #print("Author Name: " + authorName) rating = parsedBookPage.find("span", {"class":"average"}).text #print("Rating: " + rating) bookFormat = parsedBookPage.find("span", {"itemprop":"bookFormat"}) if bookFormat == None: bookFormat = '' else: bookFormat = bookFormat.text #print("format: " + bookFormat) pages = parsedBookPage.find("span", {"itemprop":"numberOfPages"}) if pages == None: pages = '' else: pages = pages.text.split(' ')[0] #print("pages: " + pages) csv.write(title + ',' + authorName + ',' + rating + ',' + bookFormat + ',' + pages + '\n') count = count + 1 print("Book " + repr(count)) if (count == 3000): break p = parsed.find("div", {"class":"pagination"}) p = p.find("a", {"class":"next_page"})['href'] nextLink = "https://www.goodreads.com" + p mainPage = requests.get(nextLink, headers=agent) #print(nextLink) csv.close()
# # Copyright 2019 BrainPad Inc. All Rights Reserved. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # from queue import Queue __all__ = ["StepQueue"] class StepQueue(Queue): """ Queue for processing """ _DEFAULT_PARALLEL_CNT = 2 def __init__(self): super().__init__() self.__multi_proc_cnt = self._DEFAULT_PARALLEL_CNT @property def multi_proc_cnt(self): return self.__multi_proc_cnt @multi_proc_cnt.setter def multi_proc_cnt(self, multi_proc_cnt): self.__multi_proc_cnt = multi_proc_cnt def push(self, instance): self.put(instance) def pop(self): return self.get() def peek(self): """ Retrieves the next item, but does not remove. """ return self.queue[0] def size(self): """ Returns: queue size """ return self.qsize() def is_empty(self): """ Returns: if queue is empty: True if queue is not empty: False """ return self.empty()
# ***** Minimum Pick-up Heuristic Function ***** # using Floyd-Warshall algorithm implemented on state, we compute the minimum distance to go in between all nodes # then, this function will evaluate each node with the sum of the mimimun distance from current position to each pickup and from currrent position to the initial position def MP(c_state): # suma = minimum distance from current position to initial position suma = c_state.floyd[int(c_state.current_pos[-1]) - 1][ int(c_state.init_position[-1]) - 1 ] for ( j ) in ( c_state.pending_children ): # sum minimum distance from current position to every stop where there is at least a child suma += c_state.floyd[int(j[-1]) - 1][int(c_state.current_pos[-1]) - 1] return suma # ***** Minimum Cost to Access Children ***** # using Floyd-Warshall algorithm we compute firs minimum cost from current to initial position. # then we compute a ratio between number of children of one stop/maximum capacity of our bus, # we truncate this ratio and add 1 to it getting with this number of times that we need to get to the node to get every children # finally we muliply this ratio by the smallest cost of that stop edges. def MCAC(c_state): # suma = minimum distance from current position to initial position suma = c_state.floyd[int(c_state.current_pos[-1]) - 1][ int(c_state.init_position[-1]) - 1 ] for i in c_state.pending_children: # ratio * minimum cost edge(explained above) suma += ( int(len(c_state.pending_children[i]) / c_state.max_capacity) + 1 ) * sorted(c_state.floyd[int(c_state.current_pos[-1]) - 1])[1] return suma
import os import sys from pathlib import Path root_dir = Path(__file__).resolve().parent.parent sys.path.append(root_dir) BASE_DIR = Path(__file__).resolve().parent.parent root_dir_content = os.listdir(BASE_DIR) PROJECT_DIR_NAME = 'foodgram_project' if ( PROJECT_DIR_NAME not in root_dir_content or not os.path.isdir(os.path.join(BASE_DIR, PROJECT_DIR_NAME)) ): assert False, ( f'В директории `{BASE_DIR}` не найдена ' f'папка c проектом `{PROJECT_DIR_NAME}`. ' ) MANAGE_PATH = os.path.join(BASE_DIR) project_dir_content = os.listdir(MANAGE_PATH) FILENAME = 'manage.py' if FILENAME not in project_dir_content: assert False, ( f'В директории `{MANAGE_PATH}` не найден файл `{FILENAME}`. ' ) DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } pytest_plugins = [ 'tests.fixtures.fixture_user', 'tests.fixtures.fixture_data', ]
from .metrics import (cd, fscore, emd) from .mm3d_pn2 import (nms, RoIAlign, roi_align, get_compiler_version, get_compiling_cuda_version, NaiveSyncBatchNorm1d, NaiveSyncBatchNorm2d, sigmoid_focal_loss, SigmoidFocalLoss, ball_query, knn, furthest_point_sample, furthest_point_sample_with_dist, three_interpolate, three_nn, gather_points, grouping_operation, group_points, GroupAll, QueryAndGroup, get_compiler_version, get_compiling_cuda_version, Points_Sampler) __all__ = [ 'cd', 'fscore', 'emd', 'nms', 'RoIAlign', 'roi_align', 'get_compiler_version', 'get_compiling_cuda_version', 'NaiveSyncBatchNorm1d', 'NaiveSyncBatchNorm2d', 'sigmoid_focal_loss', 'SigmoidFocalLoss', 'ball_query', 'knn', 'furthest_point_sample', 'furthest_point_sample_with_dist', 'three_interpolate', 'three_nn', 'gather_points', 'grouping_operation', 'group_points', 'GroupAll', 'QueryAndGroup', 'get_compiler_version', 'get_compiling_cuda_version', 'Points_Sampler', ]
from libmuscle.outbox import Outbox from libmuscle.mcp.message import Message from copy import copy import pytest from ymmsl import Reference @pytest.fixture def outbox(): return Outbox() @pytest.fixture def message(): Ref = Reference return Message( Ref('sender.out'), Ref('receiver.in'), None, 0.0, 1.0, bytes(), 'testing'.encode('utf-8')) def test_create_outbox(): box = Outbox() assert box._Outbox__queue.qsize() == 0 def test_deposit_message(outbox, message): outbox.deposit(message) assert outbox._Outbox__queue.qsize() == 1 assert outbox._Outbox__queue.get(message) def test_retrieve_message(outbox, message): outbox._Outbox__queue.put(message) assert outbox.retrieve() == message def test_deposit_retrieve_order(outbox, message): m1 = copy(message) m2 = copy(message) outbox.deposit(m1) outbox.deposit(m2) assert outbox.retrieve() == m1 assert outbox.retrieve() == m2
from django.urls import path from django.contrib.auth.views import LoginView from . import views urlpatterns = [ path('donorlogin', LoginView.as_view(template_name='donor/donorlogin.html'), name='donorlogin'), path('donorsignup', views.donor_signup_view, name='donorsignup'), path('donor-dashboard', views.donor_dashboard_view, name='donor-dashboard'), path('donate-blood', views.donate_blood_view, name='donate-blood'), path('donation-history', views.donation_history_view, name='donation-history'), path('make-request', views.make_request_view, name='d_make-request'), path('request-history', views.request_history_view, name='request-history'), path('patient-request-history/<int:id>/', views.patient_requested, name='patient-request-history'), path('d_profile', views.d_profile, name='d_profile'), ]
from baseline.tf.tfy import * import json import os import sys from google.protobuf import text_format from tensorflow.python.platform import gfile from tensorflow.contrib.layers import fully_connected, xavier_initializer from baseline.model import Tagger, create_tagger_model, load_tagger_model import tensorflow as tf import tensorflow_hub as hub import numpy as np class RNNTaggerELMoModel(Tagger): def save_values(self, basename): self.saver.save(self.sess, basename) def save_md(self, basename): path = basename.split('/') base = path[-1] outdir = '/'.join(path[:-1]) state = {"mxlen": self.mxlen, "maxw": self.maxw, "crf": self.crf, "proj": self.proj, "crf_mask": self.crf_mask, 'span_type': self.span_type} with open(basename + '.state', 'w') as f: json.dump(state, f) tf.train.write_graph(self.sess.graph_def, outdir, base + '.graph', as_text=False) with open(basename + '.saver', 'w') as f: f.write(str(self.saver.as_saver_def())) with open(basename + '.labels', 'w') as f: json.dump(self.labels, f) if len(self.word_vocab) > 0: with open(basename + '-word.vocab', 'w') as f: json.dump(self.word_vocab, f) with open(basename + '-char.vocab', 'w') as f: json.dump(self.char_vocab, f) def make_input(self, batch_dict, do_dropout=False): x = batch_dict['x'] x_lc = batch_dict['x_lc'] #np.set_printoptions(threshold=20) y = batch_dict.get('y', None) xch = batch_dict['xch'] lengths = batch_dict['lengths'] pkeep = 1.0-self.pdrop_value if do_dropout else 1.0 feed_dict = {self.x: x, self.x_lc: x_lc, self.xch: xch, self.lengths: lengths, self.pkeep: pkeep} if y is not None: feed_dict[self.y] = y return feed_dict def save(self, basename): self.save_md(basename) self.save_values(basename) @staticmethod def load(basename, **kwargs): model = RNNTaggerELMoModel() model.sess = kwargs.get('sess', tf.Session()) checkpoint_name = kwargs.get('checkpoint_name', basename) checkpoint_name = checkpoint_name or basename with open(basename + '.state') as f: state = json.load(f) model.mxlen = state.get('mxlen', 100) model.maxw = state.get('maxw', 100) model.crf = bool(state.get('crf', False)) model.crf_mask = bool(state.get('crf_mask', False)) model.span_type = state.get('span_type') model.proj = bool(state.get('proj', False)) with open(basename + '.saver') as fsv: saver_def = tf.train.SaverDef() text_format.Merge(fsv.read(), saver_def) with gfile.FastGFile(basename + '.graph', 'rb') as f: gd = tf.GraphDef() gd.ParseFromString(f.read()) model.sess.graph.as_default() tf.import_graph_def(gd, name='') model.sess.run(saver_def.restore_op_name, {saver_def.filename_tensor_name: checkpoint_name}) model.x = tf.get_default_graph().get_tensor_by_name('x:0') model.x_lc = tf.get_default_graph().get_tensor_by_name('x_lc:0') model.xch = tf.get_default_graph().get_tensor_by_name('xch:0') model.y = tf.get_default_graph().get_tensor_by_name('y:0') model.lengths = tf.get_default_graph().get_tensor_by_name('lengths:0') model.pkeep = tf.get_default_graph().get_tensor_by_name('pkeep:0') model.best = tf.get_default_graph().get_tensor_by_name('output/ArgMax:0') model.probs = tf.get_default_graph().get_tensor_by_name('output/Reshape_1:0') # TODO: rename model.sess.run(tf.get_default_graph().get_operation_by_name('index2word/table_init')) try: model.A = tf.get_default_graph().get_tensor_by_name('Loss/transitions:0') #print('Found transition matrix in graph, setting crf=True') if not model.crf: print('Warning: meta-data says no CRF but model contains transition matrix!') model.crf = True except: if model.crf is True: print('Warning: meta-data says there is a CRF but not transition matrix found!') model.A = None model.crf = False with open(basename + '.labels', 'r') as f: model.labels = json.load(f) model.word_vocab = {} if os.path.exists(basename + '-word.vocab'): with open(basename + '-word.vocab', 'r') as f: model.word_vocab = json.load(f) with open(basename + '-char.vocab', 'r') as f: model.char_vocab = json.load(f) model.saver = tf.train.Saver(saver_def=saver_def) return model def save_using(self, saver): self.saver = saver def _compute_word_level_loss(self, mask): nc = len(self.labels) # Cross entropy loss cross_entropy = tf.one_hot(self.y, nc, axis=-1) * tf.log(tf.nn.softmax(self.probs)) cross_entropy = -tf.reduce_sum(cross_entropy, reduction_indices=2) cross_entropy *= mask cross_entropy = tf.reduce_sum(cross_entropy, reduction_indices=1) all_loss = tf.reduce_mean(cross_entropy, name="loss") return all_loss def _compute_sentence_level_loss(self): if self.crf_mask: assert self.span_type is not None, "To mask transitions you need to provide a tagging span_type, choices are `IOB`, `BIO` (or `IOB2`), and `IOBES`" A = tf.get_variable( "transitions_raw", shape=(len(self.labels), len(self.labels)), dtype=tf.float32, trainable=True ) self.mask = crf_mask(self.labels, self.span_type, self.labels['<GO>'], self.labels['<EOS>'], self.labels.get('<PAD>')) self.inv_mask = tf.cast(tf.equal(self.mask, 0), tf.float32) * tf.constant(-1e4) self.A = tf.add(tf.multiply(A, self.mask), self.inv_mask, name="transitions") ll, self.A = tf.contrib.crf.crf_log_likelihood(self.probs, self.y, self.lengths, self.A) else: ll, self.A = tf.contrib.crf.crf_log_likelihood(self.probs, self.y, self.lengths) return tf.reduce_mean(-ll) def create_loss(self): with tf.variable_scope("Loss"): gold = tf.cast(self.y, tf.float32) mask = tf.sign(gold) if self.crf is True: print('crf=True, creating SLL') all_loss = self._compute_sentence_level_loss() else: print('crf=False, creating WLL') all_loss = self._compute_word_level_loss(mask) return all_loss def __init__(self): super(RNNTaggerELMoModel, self).__init__() pass def get_vocab(self, vocab_type='word'): return self.word_vocab if vocab_type == 'word' else self.char_vocab def get_labels(self): return self.labels def predict(self, batch_dict): feed_dict = self.make_input(batch_dict) lengths = batch_dict['lengths'] # We can probably conditionally add the loss here preds = [] if self.crf is True: probv, tranv = self.sess.run([self.probs, self.A], feed_dict=feed_dict) batch_sz, _, label_sz = probv.shape start = np.full((batch_sz, 1, label_sz), -1e4) start[:, 0, self.labels['<GO>']] = 0 probv = np.concatenate([start, probv], 1) for pij, sl in zip(probv, lengths): unary = pij[:sl + 1] viterbi, _ = tf.contrib.crf.viterbi_decode(unary, tranv) viterbi = viterbi[1:] preds.append(viterbi) else: # Get batch (B, T) bestv = self.sess.run(self.best, feed_dict=feed_dict) # Each sentence, probv for pij, sl in zip(bestv, lengths): unary = pij[:sl] preds.append(unary) return preds @staticmethod def index2word(vocab): # Make a vocab list vocab_list = [''] * len(vocab) for v, i in vocab.items(): vocab_list[i] = v vocab_list[0] = '' i2w = tf.contrib.lookup.index_to_string_table_from_tensor( tf.constant(vocab_list), default_value='', name='index2word' ) return i2w @staticmethod def create(labels, embeddings, **kwargs): elmo = hub.Module("https://tfhub.dev/google/elmo/1", trainable=True) word_vec = embeddings['word'] char_vec = embeddings['char'] model = RNNTaggerELMoModel() model.sess = kwargs.get('sess', tf.Session()) model.mxlen = kwargs.get('maxs', 100) model.maxw = kwargs.get('maxw', 100) hsz = int(kwargs['hsz']) pdrop = kwargs.get('dropout', 0.5) model.labels = labels model.crf = bool(kwargs.get('crf', False)) model.crf_mask = bool(kwargs.get('crf_mask', False)) model.span_type = kwargs.get('span_type') model.proj = bool(kwargs.get('proj', False)) model.feed_input = bool(kwargs.get('feed_input', False)) model.activation_type = kwargs.get('activation', 'tanh') char_dsz = char_vec.dsz nc = len(labels) model.x = kwargs.get('x', tf.placeholder(tf.int32, [None, model.mxlen], name="x")) model.x_lc = kwargs.get('x_lc', tf.placeholder(tf.int32, [None, model.mxlen], name="x_lc")) model.xch = kwargs.get('xch', tf.placeholder(tf.int32, [None, model.mxlen, model.maxw], name="xch")) model.y = kwargs.get('y', tf.placeholder(tf.int32, [None, model.mxlen], name="y")) model.lengths = kwargs.get('lengths', tf.placeholder(tf.int32, [None], name="lengths")) model.pkeep = kwargs.get('pkeep', tf.placeholder(tf.float32, name="pkeep")) model.pdrop_value = pdrop model.word_vocab = {} model.word_vocab = word_vec.vocab model.i2w = RNNTaggerELMoModel.index2word(model.word_vocab) model.char_vocab = char_vec.vocab seed = np.random.randint(10e8) words = model.i2w.lookup(tf.cast(model.x, dtype=tf.int64)) # words = tf.Print(words, [words]) welmo = elmo( inputs={ "tokens": words, "sequence_len": model.lengths }, signature="tokens", as_dict=True)["elmo"] with tf.variable_scope("WordLUT"): Ww = tf.Variable(tf.constant(word_vec.weights, dtype=tf.float32), name="W") we0 = tf.scatter_update(Ww, tf.constant(0, dtype=tf.int32, shape=[1]), tf.zeros(shape=[1, word_vec.dsz])) with tf.control_dependencies([we0]): wembed = tf.nn.embedding_lookup(Ww, model.x_lc, name="embeddings") Wch = tf.Variable(tf.constant(char_vec.weights, dtype=tf.float32), name="Wch") ce0 = tf.scatter_update(Wch, tf.constant(0, dtype=tf.int32, shape=[1]), tf.zeros(shape=[1, char_dsz])) word_char = RNNTaggerELMoModel.pool_chars(Wch, ce0, char_dsz, kwargs, model) nlayers = int(kwargs.get('layers', 1)) if nlayers > 2: raise Exception('Expected 1 or 2 layer stacking only!') joint = word_char if word_vec is None else tf.concat(values=[wembed, welmo, word_char], axis=2) embedseq = tf.nn.dropout(joint, model.pkeep) with tf.variable_scope("brnn1"): rnnfwd = lstm_cell(hsz) rnnbwd = lstm_cell(hsz) rnnout, _ = tf.nn.bidirectional_dynamic_rnn(rnnfwd, rnnbwd, embedseq, sequence_length=model.lengths, dtype=tf.float32) rnnout = tf.concat(axis=2, values=rnnout) if nlayers == 2: with tf.variable_scope("brnn2"): rnnfwd = lstm_cell(hsz) rnnbwd = lstm_cell(hsz) rnn2, _ = tf.nn.bidirectional_dynamic_rnn(rnnfwd, rnnbwd, rnnout, sequence_length=model.lengths, dtype=tf.float32) # The output of the BRNN function needs to be joined on the H axis rnn2 = tf.concat(axis=2, values=rnn2) rnnout = tf.nn.dropout(tf.concat(axis=2, values=[rnnout, rnn2]), model.pkeep) with tf.variable_scope("output"): # Converts seq to tensor, back to (B,T,W) hout = rnnout.get_shape()[-1] # Flatten from [B x T x H] - > [BT x H] rnnout_bt_x_h = tf.reshape(rnnout, [-1, hout]) init = xavier_initializer(True, seed) with tf.contrib.slim.arg_scope([fully_connected], weights_initializer=init): if model.proj is True: hidden = tf.nn.dropout(fully_connected(rnnout_bt_x_h, hsz, activation_fn=tf_activation(model.activation_type)), model.pkeep) preds = fully_connected(hidden, nc, activation_fn=None, weights_initializer=init) else: preds = fully_connected(rnnout_bt_x_h, nc, activation_fn=None, weights_initializer=init) model.probs = tf.reshape(preds, [-1, model.mxlen, nc]) model.best = tf.argmax(model.probs, 2) return model @staticmethod def pool_chars(Wch, ce0, char_dsz, kwargs, model): wsz = kwargs.get('wsz', 30) filtsz = kwargs.get('cfiltsz') with tf.variable_scope("Chars2Word"): with tf.control_dependencies([ce0]): rnnchar_bt_x_w = tf.reshape(model.xch, [-1, model.maxw]) mxfiltsz = np.max(filtsz) halffiltsz = mxfiltsz // 2 zeropad = tf.pad(rnnchar_bt_x_w, [[0, 0], [halffiltsz, halffiltsz]], "CONSTANT") cembed = tf.nn.embedding_lookup(Wch, zeropad, name="embeddings") cmot, num_filts = char_word_conv_embeddings(cembed, filtsz, char_dsz, wsz, activation_fn=tf_activation(model.activation_type)) word_char = tf.reshape(cmot, [-1, model.mxlen, num_filts]) return word_char def create_model(labels, embeddings, **kwargs): return RNNTaggerELMoModel.create(labels, embeddings, **kwargs) def load_model(modelname, **kwargs): return RNNTaggerELMoModel.load(modelname, **kwargs)
import unittest from request_build_helper import RequestBuildHelper from boofuzz import * from configuration_manager import ConfigurationManager class RequestBuilderHelperTests(unittest.TestCase): def setUp(self): # Just init block for boofuzz s_initialize(self.id()) ConfigurationManager.config = [] def test_generate_simple_uri_without_parameters(self): uri_parameters = [] base_uri = '/api/endpoint' RequestBuildHelper.generate_uri(base_uri, uri_parameters) uri = s_render().decode('utf8', 'ignore') self.assertEqual(base_uri, uri) def test_generate_uri_path_parameter_without_documentation(self): uri_parameters = [] RequestBuildHelper.generate_uri('/api/endpoint/{id}', uri_parameters) uri = s_render().decode('utf8', 'ignore') self.assertEqual('/api/endpoint/attribute', uri) def test_generate_uri_path_parameter_with_fixed_config_value(self): uri_parameters = [] ConfigurationManager.config = { "fixed_url_attributes": { "id": "20" } } RequestBuildHelper.generate_uri('/api/endpoint/{id}', uri_parameters) uri = s_render().decode('utf8', 'ignore') self.assertEqual('/api/endpoint/20', uri) def test_generate_uri_path_parameter_with_documented_example(self): uri_parameters = [{'Name': 'id', 'Required': True, 'ExampleValue': '1', 'Type': 'string', 'Format': None, 'Location': 'Path'}] RequestBuildHelper.generate_uri('/api/endpoint/{id}', uri_parameters) uri = s_render().decode('utf8', 'ignore') self.assertEqual('/api/endpoint/1', uri) def test_generate_uri_single_query_parameter_with_documented_example(self): uri_parameters = [{'Name': 'id', 'Required': True, 'ExampleValue': '1', 'Type': 'string', 'Format': None, 'Location': 'Query'}] RequestBuildHelper.generate_uri('/api/endpoint', uri_parameters) uri = s_render().decode('utf8', 'ignore') self.assertEqual('/api/endpoint?id=1', uri) def test_generate_uri_single_query_parameter_with_multiple_documented_examples(self): uri_parameters = [ {'Name': 'id', 'Required': True, 'ExampleValue': '1', 'Type': 'string', 'Format': None, 'Location': 'Query'}, {'Name': 'attr', 'Required': True, 'ExampleValue': '2', 'Type': 'string', 'Format': None, 'Location': 'Query'} ] RequestBuildHelper.generate_uri('/api/endpoint', uri_parameters) uri = s_render().decode('utf8', 'ignore') self.assertEqual('/api/endpoint?id=1&attr=2', uri) def test_generate_uri_single_non_required_query_parameter_is_not_in_uri(self): ConfigurationManager.config = { "are_non_required_attributes_in_requests": False } uri_parameters = [ {'Name': 'id', 'Required': False, 'ExampleValue': '1', 'Type': 'string', 'Format': None, 'Location': 'Query'}, ] RequestBuildHelper.generate_uri('/api/endpoint', uri_parameters) uri = s_render().decode('utf8', 'ignore') self.assertEqual('/api/endpoint', uri) def test_generate_uri_combined_parameters(self): ConfigurationManager.config = { "fixed_url_attributes": { "attr2": "20" } } uri_parameters = [ {'Name': 'id', 'Required': True, 'ExampleValue': '1', 'Type': 'string', 'Format': None, 'Location': 'Path'}, {'Name': 'attr1', 'Required': True, 'ExampleValue': '2', 'Type': 'string', 'Format': None, 'Location': 'Query'}, {'Name': 'attr2', 'Required': True, 'ExampleValue': '3', 'Type': 'integer', 'Format': 'int32', 'Location': 'Query'} ] RequestBuildHelper.generate_uri('/api/endpoint/{id}', uri_parameters) uri = s_render().decode('utf8', 'ignore') self.assertEqual('/api/endpoint/1?attr1=2&attr2=20', uri)
from django.db import models # Create your models here. class Route(models.Model): original_url = models.URLField(help_text= "Add the original URL that you want to shorten.") key = models.TextField(unique= True, help_text= "Add any random characters of your choice to shorten it.") def __str__(self): return f"{self.key}"
# -*- coding: utf-8 -*- # Copyright 2015 Mirantis, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """ Classes for checking data restrictions and limits """ from functools import partial import re import six from nailgun.errors import errors from nailgun.expression import Expression from nailgun.utils import camel_to_snake_case from nailgun.utils import compact from nailgun.utils import flatten class LimitsMixin(object): """Mixin with limits processing functionality""" def check_node_limits(self, models, nodes, role, limits, limit_reached=True, limit_types=['min', 'max', 'recommended']): """Check nodes limits for current role :param models: objects which represent models in restrictions :type models: dict :param nodes: list of nodes to check limits count for role :type nodes: list :param role: node role name :type role: string :param limits: object with min|max|recommended values and overrides :type limits: dict :param limit_reached: flag to check possibility adding/removing nodes :type limit_reached: bool :param limit_types: List of possible limit types (min|max|recommended) :type limit_types: list :returns: dict -- object with bool 'valid' flag and related information """ self.checked_limit_types = {} self.models = models self.overrides = limits.get('overrides', []) self.limit_reached = limit_reached self.limit_types = limit_types self.limit_values = { 'max': self._evaluate_expression( limits.get('max'), self.models), 'min': self._evaluate_expression( limits.get('min'), self.models), 'recommended': self._evaluate_expression( limits.get('recommended'), self.models) } self.count = len(filter( lambda node: not(node.pending_deletion) and (role in node.roles), nodes)) self.messages = compact(flatten( map(self._check_override, self.overrides))) self.messages += compact(flatten( map(self._check_limit_type, self.limit_types))) self.messages = compact(flatten( map(self._get_message, limit_types))) self.messages = '. '.join(self.messages) return { 'count': self.count, 'limits': self.limit_values, 'messages': self.messages, 'valid': not self.messages } def _check_limit(self, obj, limit_type): """Check limit value with nodes count :param obj: limits or overrides item data :type obj: dict :param limit_type: one of (min|max|recommended) values :type limit_type: string :returns: dict -- message data in format: { 'type': 'min|max|recommended' 'value': '1', 'message': 'Message for limit' } """ if not obj.get(limit_type): return if limit_type == 'min': compare = lambda a, b: a < b if self.limit_reached else a <= b elif limit_type == 'max': compare = lambda a, b: a > b if self.limit_reached else a >= b else: compare = lambda a, b: a < b limit_value = int( self._evaluate_expression(obj.get(limit_type), self.models)) self.limit_values[limit_type] = limit_value self.checked_limit_types[limit_type] = True # TODO(apopovych): write proper default message if compare(self.count, limit_value): return { 'type': limit_type, 'value': limit_value, 'message': obj.get('message', 'Default message') } def _check_override(self, override): """Check overridden restriction for limit""" expression = override.get('condition') result = self._evaluate_expression(expression, self.models) if result: return map(partial(self._check_limit, override), self.limit_types) def _check_limit_type(self, limit_type): """Check limit types for role :param limit_type: one of (min|max|recommended) values :type limit_type: string """ if self.checked_limit_types.get(limit_type): return return self._check_limit(self.limit_values, limit_type) def _get_message(self, limit_type): """Get proper message if we have more than one :param limit_type: one of (min|max|recommended) values :type limit_type: string :returns: string -- first relevant message """ message = sorted(filter( lambda message: message.get('type') == limit_type, self.messages), key=lambda message: message.get('value')) if limit_type != 'max': message = message[::-1] if message: return message[0].get('message') def _evaluate_expression(self, expression, models): """Evaluate expression if it exists""" if expression: return Expression(str(expression), models).evaluate() class RestrictionBase(object): """Mixin with restriction processing functionality""" @classmethod def check_restrictions(cls, models, restrictions, action=None, strict=True): """Check if attribute satisfied restrictions :param models: objects which represent models in restrictions :type models: dict :param restrictions: list of restrictions to check :type restrictions: list :param action: filtering restrictions by action key :type action: string :param strict: disallow undefined variables in condition :type strict: bool :returns: dict -- object with 'result' as bool and 'message' as dict """ satisfied = [] if restrictions: expened_restrictions = map( cls._expand_restriction, restrictions) # Filter by action if action: filterd_by_action_restrictions = filter( lambda item: item.get('action') == action, expened_restrictions) else: filterd_by_action_restrictions = expened_restrictions[:] # Filter which restriction satisfied condition satisfied = filter( lambda item: Expression( item.get('condition'), models, strict=strict).evaluate(), filterd_by_action_restrictions) return { 'result': bool(satisfied), 'message': '. '.join([item.get('message') for item in satisfied if item.get('message')]) } @staticmethod def _expand_restriction(restriction): """Normalize restrictions into one canonical format :param restriction: restriction object :type restriction: string|dict :returns: dict -- restriction object in canonical format: { 'action': 'enable|disable|hide|none' 'condition': 'value1 == value2', 'message': 'value1 shouldn't equal value2' } """ result = { 'action': 'disable' } if isinstance(restriction, six.string_types): result['condition'] = restriction elif isinstance(restriction, dict): if 'condition' in restriction: result.update(restriction) else: result['condition'] = list(restriction)[0] result['message'] = list(restriction.values())[0] else: raise errors.InvalidData('Invalid restriction format') return result class AttributesRestriction(RestrictionBase): @classmethod def check_data(cls, models, data): """Check cluster attributes data :param models: objects which represent models in restrictions :type models: dict :param data: cluster attributes object :type data: list|dict :retruns: func -- generator which produces errors """ def find_errors(data=data): """Generator which traverses through cluster attributes tree Also checks restrictions for attributes and values for correctness with regex """ if isinstance(data, dict): restr = cls.check_restrictions( models, data.get('restrictions', [])) if restr.get('result'): # TODO(apopovych): handle restriction message return else: attr_type = data.get('type') if ( attr_type == 'text_list' or attr_type == 'textarea_list' ): err = cls.check_fields_length(data) if err is not None: yield err regex_error = cls.validate_regex(data) if regex_error is not None: yield regex_error for key, value in six.iteritems(data): if key not in ['restrictions', 'regex']: for err in find_errors(value): yield err elif isinstance(data, list): for item in data: for err in find_errors(item): yield err return list(find_errors()) @staticmethod def validate_regex(data): attr_regex = data.get('regex', {}) if attr_regex: attr_value = data.get('value') pattern = re.compile(attr_regex.get('source')) error = attr_regex.get('error') def test_regex(value, pattern=pattern, error=error): if not pattern.search(value): return error if isinstance(attr_value, six.string_types): return test_regex(attr_value) elif isinstance(attr_value, list): errors = map(test_regex, attr_value) if compact(errors): return errors else: return ('Value {0} is of invalid type, cannot check ' 'regexp'.format(attr_value)) @staticmethod def check_fields_length(data): min_items_num = data.get('min') max_items_num = data.get('max') attr_value = data.get('value') if min_items_num is not None and len(attr_value) < min_items_num: return ('Value {0} should have at least {1} ' 'items'.format(attr_value, min_items_num)) if max_items_num is not None and len(attr_value) > max_items_num: return ('Value {0} should not have more than {1} ' 'items'.format(attr_value, max_items_num)) class VmwareAttributesRestriction(RestrictionBase): @classmethod def check_data(cls, models, metadata, data): """Check cluster vmware attributes data :param models: objects which represent models in restrictions :type models: dict :param metadata: vmware attributes metadata object :type metadata: list|dict :param data: vmware attributes data(value) object :type data: list|dict :retruns: func -- generator which produces errors """ root_key = camel_to_snake_case(cls.__name__) def find_errors(metadata=metadata, path_key=root_key): """Generator for vmware attributes errors for each attribute in 'metadata' gets relevant values from vmware 'value' and checks them with restrictions and regexs """ if isinstance(metadata, dict): restr = cls.check_restrictions( models, metadata.get('restrictions', [])) if restr.get('result'): # TODO(apopovych): handle restriction message? return else: for mkey, mvalue in six.iteritems(metadata): if mkey == 'name': value_path = path_key.replace( root_key, '').replace('.fields', '') values = cls._get_values(value_path, data) attr_regex = metadata.get('regex', {}) if attr_regex: pattern = re.compile(attr_regex.get('source')) for value in values(): if not pattern.match(value): yield attr_regex.get('error') for err in find_errors( mvalue, '.'.join([path_key, mkey])): yield err elif isinstance(metadata, list): for i, item in enumerate(metadata): current_key = item.get('name') or str(i) for err in find_errors( item, '.'.join([path_key, current_key])): yield err return list(find_errors()) @classmethod def _get_values(cls, path, data): """Generator for all values from data selected by given path :param path: path to all releted values :type path: string :param data: vmware attributes value :type data: list|dict """ keys = path.split('.') key = keys[-1] def find(data=data): if isinstance(data, dict): for k, v in six.iteritems(data): if k == key: yield v elif k in keys: for result in find(v): yield result elif isinstance(data, list): for d in data: for result in find(d): yield result return find
import websockets import asyncio import utils from constants import SERVER_HOST,LOCAL_SERVER_PORT from answerable_channels import FunctionalChannel,remote, RemoteException import logging import aioconsole import pathlib import authenticate_box class Client(FunctionalChannel): async def send_ac_message(self,m): await _ws.send(m) @remote async def sync_product_down(self,product_id,strict=False,only_if_existing=True): if only_if_existing: if product_id not in file_manager.get_all_synced_products(): return await file_manager.sync_product_down(product_id,strict) client=Client() server=client.remote import file_manager #abajo porque file_manager importa server async def login(): user_id,login_token=utils.get_user_id(),utils.get_login_token() just_logged_in=False if not user_id or not login_token: #webbrowser.open(SERVER_HOST + '/local-products-login?port='+str(LOCAL_SERVER_PORT), new=0, autoraise=True) await utils.show_info("Sincronizador de archivos","No hay ningún usuario guardado. Inicia sesión...") user_mail,password= await authenticate_box.ask_login() if user_mail==None or password==None: exit() #user_mail= (await aioconsole.ainput("Correo electrónico: ")).strip() #password= (await aioconsole.ainput("Contraseña: ")).strip() try: user_id,login_token=await server.login(mail=user_mail,password=password) except RemoteException as e: await utils.show_warning("Linarand sincronizador de archivos","Hubo un problema. "+str(e)) return await login() utils.set_user_id(user_id) utils.set_login_token(login_token) utils.save_data() just_logged_in=True try: username= await server.authenticate(user_id=user_id,token=login_token) except RemoteException as e: await utils.show_warning("Sincronizador de archivos","Hubo un problema. "+str(e)+". Eliminando usuario") utils.set_user_id(None) utils.set_login_token(None) utils.save_data() return await login() if just_logged_in: asyncio.ensure_future(utils.show_info("Sincronizador de archivos","Sesión iniciada como %s. Puedes ir a la página de Ingeniería Linarand y sincronizar los archivos que desees desde este equipo."%username)) async def start(): sync_path=utils.get_sync_path() while sync_path is None or not pathlib.Path(sync_path).exists(): await utils.show_info("Sincronizador de archivos","No hay una carpeta de sincronización guardada. Escoge una...") path= await utils.ask_for_folder() print(path) if not path: exit() try: sync_path=pathlib.Path(path) if not sync_path.exists(): sync_path.mkdir(parents=True,exist_ok=True) sync_path=str(sync_path) utils.set_sync_path(sync_path) utils.save_data() except: await utils.show_warning("Sincronizador de archivos","Ruta inválida") await login() pds=list(file_manager.get_all_synced_products().keys()) await server.set_synced_products(products=pds) await asyncio.gather(*[file_manager.sync_product_down(p) for p in pds]) await server.tell_people_to_try_port(port=LOCAL_SERVER_PORT) file_manager.start_watchdog() _exit=False async def run(): global _ws while not _exit: try: async with websockets.connect(SERVER_HOST.replace("http", "ws") + '/ws/local-products-client') as ws: _ws=ws asyncio.ensure_future(start()) while True: m=await _ws.recv() asyncio.ensure_future(client.on_ac_message(m)) except Exception as e: logging.exception("Client Error") if not _exit: await asyncio.sleep(1) async def exit_(): global _exit _exit=True await _ws.close()
import json import os import gym import ray from ray.tune import run_experiments from ray.tune.registry import register_env from sagemaker_rl.ray_launcher import SageMakerRayLauncher from mlagents_envs.environment import UnityEnvironment from mlagents_envs.exception import UnityWorkerInUseException from mlagents_envs.registry import default_registry from gym_unity.envs import UnityToGymWrapper import gym.wrappers class UnityEnvWrapper(gym.Env): def __init__(self, env_config): self.worker_index = env_config.worker_index if 'SM_CHANNEL_TRAIN' in os.environ: env_name = os.environ['SM_CHANNEL_TRAIN'] +'/'+ env_config['env_name'] os.chmod(env_name, 0o755) print("Changed environment binary into executable mode.") # Try connecting to the Unity3D game instance. while True: try: unity_env = UnityEnvironment( env_name, no_graphics=False, worker_id=self.worker_index, additional_args=['-logFile', 'unity.log']) except UnityWorkerInUseException: self.worker_index += 1 else: break else: env_name = env_config['env_name'] while True: try: unity_env = default_registry[env_name].make( no_graphics=False, worker_id=self.worker_index, additional_args=['-logFile', 'unity.log']) except UnityWorkerInUseException: self.worker_index += 1 else: break self.env = UnityToGymWrapper(unity_env) self.action_space = self.env.action_space self.observation_space = self.env.observation_space def reset(self): return self.env.reset() def step(self, action): return self.env.step(action) class MyLauncher(SageMakerRayLauncher): def register_env_creator(self): register_env("unity_env", lambda config: UnityEnvWrapper(config)) def get_experiment_config(self): return { "training": { "run": "PPO", "stop": { "timesteps_total": 10000, }, "config": { "env": "unity_env", "lambda": 0.95, "gamma": 0.99, "rollout_fragment_length": 256, "lr": 1e-4, "clip_param": 0.2, "entropy_coeff": 0.005, "num_sgd_iter": 3, "sgd_minibatch_size": 1024, "train_batch_size": 10240, "monitor": False, # Record videos. "model": { #"free_log_std": True }, "env_config":{ "env_name": "Basic" }, "num_workers": self.num_cpus * len(self.hosts_info) - 1, "ignore_worker_failures": True, } } } if __name__ == "__main__": MyLauncher().train_main()
from __future__ import absolute_import from infi.gevent_utils.os import path import sys import os sys.path.append(os.path.dirname(__file__)) from utils import GreenletCalledValidatorTestCase class PathTestCase(GreenletCalledValidatorTestCase): def test_exists(self): self.switch_validator.assert_called(0) self.assertFalse(path.exists("/this_path_probably_doesnt_exist_or_else_the_test_will_fail")) self.switch_validator.assert_called(1) def test_basename(self): self.switch_validator.assert_called(0) self.assertEqual("a.text", path.basename("/a/b/c/a.text")) self.switch_validator.assert_called(0)
################################################################### # This file is a modification of the file "camera.py" from the # # RPi Telecine project. I've included that project's header and # # copyright below. # ################################################################### # RPi Telecine Camera Control # # Code to encapsulate the operation of the camera. # # Basically this isolates the fixed settings we use during the # taking process. Images returned are bgr format Numpy arrays # that can be used by openCV. # # Prerequisites: # Uses Python-picamera by Dave Hughes from: # https://pypi.python.org/pypi/picamera/ # or use sudo apt-get install python-picamera on your Pi. # # Uses array API of Picamera 1.5+ to return a Numpy array # # As of May 2014, it seems to be necessary to set the memory split # in raspi-config to at least 192M, otherwise we seem to get MMAL # out-of-memory errors. # # # Copyright (c) 2015, Jason Lane # # Redistribution and use in source and binary forms, with or without modification, # are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation and/or # other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its contributors # may be used to endorse or promote products derived from this software without # specific prior written permission. # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR # ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON # ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import picamera from picamera import PiCamera #import time # Subclass of PiCamera class s8sCamera( PiCamera ): def __init__(self): super().__init__(sensor_mode=2) def setup_cam(self,confDictCam): self.shutter_speed = confDictCam["shutter_speed"] self.resolution = (confDictCam["resolution_w"], confDictCam["resolution_h"]) self.iso = confDictCam["iso"] self.awb_gains = (confDictCam["awb_red_gain"], confDictCam["awb_blue_gain"]) self.awb_mode = confDictCam["awb_modes"] self.sharpness = confDictCam["sharpness"] self.brightness = confDictCam["brightness"] self.exposure_modes = confDictCam["exposure_modes"] self.exposure_compensation = confDictCam["exposure_compensation"] self.drc_strength = confDictCam["drc_strength"] self.raw_formats = confDictCam["raw_formats"] self.image_denoise = confDictCam["image_denoise"] self.framerate = 15
from __future__ import absolute_import import os, re, collections import requests, nltk import numpy as np import pandas as pd import tensorflow as tf import xml.etree.ElementTree as ET from TF2.extract_features_Builtin import * type = 'bert' if type == 'bert': bert_folder = 'Pretrained/uncased_L-12_H-768_A-12/' bert_config = bert_folder + 'bert_config.json' vocab_file = bert_folder + 'vocab.txt' bert_ckpt = bert_folder + 'bert_model.ckpt' pmc_id = '4304705' url = 'https://www.ncbi.nlm.nih.gov/pmc/oai/oai.cgi?verb=GetRecord&identifier=oai:pubmedcentral.nih.gov:'+pmc_id+'&metadataPrefix=pmc' d = requests.get(url).content.decode('utf-8') xmldata = re.sub('xmlns="[^"]+"', '', d) xml_handle = ET.fromstring(xmldata) # get abstact sentences from xml abstract = xml_handle.findall('.//abstract') abs_text = ET.tostring(abstract[0],method='text').decode('utf-8') abs_text = re.sub('\n',' ',abs_text) abs_text = re.sub(r'\s+',' ',abs_text) abs_sents = nltk.sent_tokenize(abs_text) tf.compat.v1.logging.set_verbosity('ERROR') # Return vectors in pandas frame Emb_Vectors = Ext_Features(input=abs_sents, bert_config_file=bert_config, vocab_file=vocab_file, init_checkpoint=bert_ckpt, input_type='string', layers = '-1', max_seq_length=128, do_lower_case=True, batch_size=32, use_tpu = False, master = None, num_tpu_cores=8, use_one_hot_embeddings=False) Emb_Vectors.head(5)
import cv2 import os import math import numpy as np import random import h5py sequences = ['Basketball', 'Bird1', 'BlurCar1', 'Bolt2', 'Box', 'Car1', 'CarDark',\ 'ClifBar', 'Diving', 'DragonBaby', 'FaceOcc1', 'Freeman1', 'Freeman4', 'Girl', 'Girl2', 'Human3', 'Human6',\ 'KiteSurf', 'Liquor', 'Ironman', 'Skating1', 'Soccer', 'Tiger1', 'Woman'] dirIn = '/media/syc/My Passport/_dataset/tracking2013/' dirOut = '../data/' dirTrain = "train.txt" dirTest = "test.txt" testNum = 2000 zeroNum = 4 samples = [] for seq in sequences: dirImg = dirIn + seq + '/img/' dirGt = dirIn + seq + '/groundtruth_rect.txt' if not os.path.exists(dirImg[:-1]): print 'dirImg not exist:%s' % dirImg if not os.path.exists(dirOut[:-1]): print 'makedir dirOut: %s' % dirOut os.mkdir(dirOut) print 'making label dataset for: %s' % seq gt = open(dirGt) images = os.listdir(dirImg) images.sort() for i,line in enumerate(gt): line = line.replace('\t', ',') line = dirImg + images[i] + '\t' + line samples.append(line) print "shuffling samples" random.shuffle(samples) train = open(dirOut+dirTrain, 'wb') test = open(dirOut+dirTest, 'wb') for i in range(len(samples)): if i < len(samples) - testNum: train.write(samples[i]) else: test.write(samples[i]) train.close() test.close()
import logging import traceback from flask import Blueprint from flask_restplus import Api from sqlalchemy.orm.exc import NoResultFound import settings log = logging.getLogger(__name__) api_blueprint = Blueprint('api', __name__, url_prefix='/api') api = Api( app=api_blueprint, version='1.0.0', title='My Flask, Blueprint, Flask-RESTPlus and Swagger API Example', description='''This is an example developed to show how can we configure a REST API using Flask as a main backend framework, adding Blueprint to organize the application, Flask-RESTPlus to configure the REST dispatchers and Swagger for documenting the API''', contact='@isccarrasco', contact_url='http://twitter.com/isccarrasco', contact_email="mario.carrasco@gmail.com" ) @api.errorhandler def default_error_handler(e): message = 'An unhandled exception occurred.' log.exception(message) if not settings.FLASK_DEBUG: return {'message': message}, 500 @api.errorhandler(NoResultFound) def database_not_found_error_handler(e): log.warning(traceback.format_exc()) return {'message': 'A database result was required but none was found.'}, 404
import torch import torch.nn as nn import math class DotProductAttention(nn.Module): def __init__(self, clip = None, return_logits = False, head_depth = 16, **kwargs): super().__init__(**kwargs) self.clip = clip self.return_logits = return_logits self.inf = math.inf# = 1e+10 self.scale = math.sqrt(head_depth) self.tanh = nn.Tanh def forward(self, x, mask = None): """ Q: (batch, n_heads, q_seq(=n_nodes or =1), head_depth) K: (batch, n_heads, k_seq(=n_nodes), head_depth) logits: (batch, n_heads, q_seq(this could be 1), k_seq) mask: (batch, n_nodes, 1), e.g. tf.Tensor([[ True], [ True], [False]]) mask[:,None,None,:,0]: (batch, 1, 1, n_nodes) ==> broadcast depending on logits shape [True] -> [1 * -np.inf], [False] -> [logits] K.transpose(-1,-2).size() == K.permute(0,1,-1,-2).size() """ Q, K, V = x logits = torch.matmul(Q, K.transpose(-1,-2)) / self.scale if self.clip is not None: logits = self.clip * torch.tanh(logits) # logits = self.clip * self.tanh(logits) if self.return_logits: if mask is not None: print('mask.size():', mask.size()) print('logits.size():', logits.size()) return logits.masked_fill(mask.permute(0,2,1) == True, -self.inf) return logits if mask is not None: print('mask.size():', mask.size()) print('logits.size():', logits.size()) print('mask[:,None,:,:].squeeze(-1).repeat(1,logits.size(1),1,logits.size(-1):', mask[:,None,:,:].squeeze(-1).repeat(1,logits.size(1),1,mask.size(1)).size()) # logits = logits.masked_fill(mask[:,None,None,:,0].repeat(1,logits.size(1),1,1) == True, -self.inf) logits = logits.masked_fill(mask[:,None,:,:].squeeze(-1).repeat(1,logits.size(1),1,mask.size(1)) == True, -self.inf) probs = torch.softmax(logits, dim = -1) return torch.matmul(probs, V) class MultiHeadAttention(nn.Module): def __init__(self, n_heads = 8, embed_dim = 128, clip = None, return_logits = None, need_W = None): super().__init__() self.n_heads = n_heads self.embed_dim = embed_dim self.head_depth = self.embed_dim // self.n_heads if self.embed_dim % self.n_heads != 0: raise ValueError("embed_dim = n_heads * head_depth") self.need_W = need_W self.attention = DotProductAttention(clip = clip, return_logits = return_logits, head_depth = self.head_depth) if self.need_W: self.Wk = nn.Linear(embed_dim, embed_dim, bias = False) self.Wv = nn.Linear(embed_dim, embed_dim, bias = False) self.Wq = nn.Linear(embed_dim, embed_dim, bias = False) self.Wout = nn.Linear(embed_dim, embed_dim, bias = False) self.init_parameters() def init_parameters(self): for name, param in self.named_parameters(): if name == 'Wout.weight': stdv = 1. / math.sqrt(param.size(-1)) elif name in ['Wk.weight', 'Wv.weight', 'Wq.weight']: stdv = 1. / math.sqrt(self.head_depth) else: raise ValueError param.data.uniform_(-stdv, stdv) def split_heads(self, T): """ https://qiita.com/halhorn/items/c91497522be27bde17ce T: (batch, n_nodes, self.embed_dim) T reshaped: (batch, n_nodes, self.n_heads, self.head_depth) return: (batch, self.n_heads, n_nodes, self.head_depth) https://raishi12.hatenablog.com/entry/2020/04/20/221905 """ shape = T.size()[:-1] + (self.n_heads, self.head_depth) T = T.view(*shape) return T.permute(0,2,1,3) def combine_heads(self, T): """ T: (batch, self.n_heads, n_nodes, self.head_depth) T transposed: (batch, n_nodes, self.n_heads, self.head_depth) return: (batch, n_nodes, self.embed_dim) """ T = T.permute(0,2,1,3).contiguous() shape = T.size()[:-2] + (self.embed_dim, ) return T.view(*shape) def forward(self, x, mask = None): """ q, k, v = x encoder arg x: [x, x, x] shape of q: (batch, n_nodes, embed_dim) output[0] - output[h_heads-1]: (batch, n_nodes, head_depth) --> concat output: (batch, n_nodes, head_depth * h_heads) return output: (batch, n_nodes, embed_dim) """ Q, K, V = x if self.need_W: Q, K, V = self.Wq(Q), self.Wk(K), self.Wv(V) Q, K, V = list(map(self.split_heads, [Q, K, V])) output = self.attention([Q, K, V], mask = mask) output = self.combine_heads(output) if self.need_W: return self.Wout(output) return output if __name__ == '__main__': mha = MultiHeadAttention(n_heads = 8, embed_dim = 128, need_W = True) batch, n_nodes, embed_dim = 5, 21, 128 x = torch.randn((batch, n_nodes, embed_dim), dtype = torch.float) mask = torch.zeros((batch, n_nodes, 1), dtype = torch.bool) mask = None output = mha([x,x,x], mask = mask) print('output.size()', output.size())
""" riotgears plugin manager Manages the plugins """ from abc import abstractmethod import importlib.util from importlib.util import spec_from_file_location import inspect import os.path import sys from pathlib import Path class Registry(object): # Singleton instance _instance = None def __new__(cls, default_dirs=None): if cls._instance is None: cls._instance = super(Registry, cls).__new__(cls) self = cls._instance self._search_dirs = [] if default_dirs: self._search_dirs = [ Path(os.path.abspath(directory)) for directory in default_dirs ] self._registry = dict() return cls._instance def add_dir(self, path): abspath = os.path.abspath(path) if abspath not in self.search_dirs(): self._search_dirs.append(abspath) def search_dirs(self): return self._search_dirs def load_all(self): for directory in self.search_dirs(): for child in directory.iterdir(): if child.is_dir(): module = Plugin.from_path(child.name, child) if module: self._registry[module.name] = module def add_to_registry(self, name, module): self._registry[name] = module def in_registry(self, name): return name in self._registry def get_registry(self): return self._registry def get_registry_items(self): return self._registry.items() def get_from_registry(self, name): return self._registry[name] def __getitem__(self, key): return self.get_from_registry(key) class Plugin(object): ######################## # Plugin API specifics # ######################## LOADER = "loader.py" ENTRY = "plugin.py" @classmethod def from_path(cls, name, directory): path = directory / cls.LOADER spec = spec_from_file_location("{}/loader".format(name), path) module = importlib.util.module_from_spec(spec) spec.loader.exec_module(module) return cls(module, directory) def __init__(self, loader, directory): self._loader_mod = loader self._dir = directory self._plugin_mod = None self._loader_class = None self._plugin_class = None self._plugin = None def is_basepluginloader(member): return ( inspect.isclass(member) and issubclass(member, BasePluginLoader) and member is not BasePluginLoader ) for name, member in inspect.getmembers( self._loader_mod, is_basepluginloader ): self._loader_class = member self.name = self._loader_class.NAME def add_plugin_mod(self, plugin): self.plugin = plugin def call_subcommand_args(self, argparser): if self._loader_class: self._loader_class.subcommand_args(argparser) def get_name(self): return self._loader_class.name() def get_subfunction(self): return self._loader_class.subfunction() def get_plugin_deps(self): deps = self._loader_class.DEPENDENCIES return deps def load_plugin_module(self): if self._plugin_mod: return for name in self.get_plugin_deps(): Registry()[name].load_plugin_module() module_path = self._dir / type(self).ENTRY # TODO: raise exception assert module_path.is_file() specname = "{}/plugin".format(self.name.lower()) spec = spec_from_file_location(specname, module_path) self._plugin_mod = importlib.util.module_from_spec(spec) spec.loader.exec_module(self._plugin_mod) sys.modules[ "riotgear.plugin.{}".format(self._loader_class.NAME.lower()) ] = self._plugin_mod def is_baseplugin(member): return ( inspect.isclass(member) and issubclass(member, BasePlugin) and member is not BasePlugin ) mod_class = None for name, member in inspect.getmembers(self._plugin_mod, is_baseplugin): if member.__module__.startswith(specname): mod_class = member self._plugin_mod = mod_class def _get_plugin_module(self): self.load_plugin_module() return self._plugin_mod def create_plugin(self, **kwargs): self.load_plugin_module() self._plugin = self._plugin_mod(**kwargs) def enter_plugin(self): self._plugin.entry() class BasePluginLoader(object): """ Plugin loader class object """ NAME = None SUBFUNCTION = None DEPENDENCIES = [] @classmethod @abstractmethod def subcommand_args(cls, argparser): ... @classmethod def name(cls): return cls.NAME if cls.NAME else "" @classmethod def subfunction(cls): return cls.SUBFUNCTION if cls.SUBFUNCTION else None class BasePlugin(object): """ Plugin class object """ @abstractmethod def __init__(self, name: str, **kwargs): ... @abstractmethod def entry(self): ...
""" FactSet Ownership API FactSet’s Fund Ownership API gives access to both **Holdings** and **Holders** data.<p> Factset's Holdings endpoints gives access to all the underlying securities and their position detils held within a given fund. Fund Types supported include Open-End Mutual Funds, Closed-end Mutual Funds, and Exchange Traded Funds. Security Holders information retrieves all \"holder types\" and their positions across institutions, funds, insiders, and stakeholders.</p><p>The FactSet Ownership and Mutual Funds database collects global equity ownership data for approximately 50,000 institutions, 60,000 unique Mutual Fund portfolios, and 400,000 Insider/Stake holders from around 110 countries. For more details review our [Data Collection](https://my.apps.factset.com/oa/cms/oaAttachment/87e162be-f2d1-4f40-a85b-bfb1b020d270/20079) methodology. </p> # noqa: E501 The version of the OpenAPI document: 1.1.0 Contact: api@factset.com Generated by: https://openapi-generator.tech """ import re # noqa: F401 import sys # noqa: F401 from multiprocessing.pool import ApplyResult import typing from fds.sdk.FactSetOwnership.api_client import ApiClient, Endpoint as _Endpoint from fds.sdk.FactSetOwnership.model_utils import ( # noqa: F401 check_allowed_values, check_validations, date, datetime, file_type, none_type, validate_and_convert_types ) from fds.sdk.FactSetOwnership.exceptions import ApiException from fds.sdk.FactSetOwnership.model.error_response import ErrorResponse from fds.sdk.FactSetOwnership.model.fund_holdings_request import FundHoldingsRequest from fds.sdk.FactSetOwnership.model.fund_holdings_response import FundHoldingsResponse class FundHoldingsApi(object): """NOTE: This class is auto generated by OpenAPI Generator Ref: https://openapi-generator.tech Do not edit the class manually. """ def __init__(self, api_client=None): if api_client is None: api_client = ApiClient() self.api_client = api_client self.get_ownership_holdings_endpoint = _Endpoint( settings={ 'response_type': ( { 200: (FundHoldingsResponse,), 400: (ErrorResponse,), 401: (ErrorResponse,), 403: (ErrorResponse,), 415: (ErrorResponse,), 500: (ErrorResponse,), }, None ), 'auth': [ 'FactSetApiKey', 'FactSetOAuth2' ], 'endpoint_path': '/factset-ownership/v1/fund-holdings', 'operation_id': 'get_ownership_holdings', 'http_method': 'GET', 'servers': None, }, params_map={ 'all': [ 'ids', 'date', 'topn', 'asset_type', 'currency', ], 'required': [ 'ids', ], 'nullable': [ ], 'enum': [ 'asset_type', ], 'validation': [ 'ids', ] }, root_map={ 'validations': { ('ids',): { 'max_items': 10, 'min_items': 1, }, }, 'allowed_values': { ('asset_type',): { "ALL": "ALL", "EQ": "EQ", "FI": "FI" }, }, 'openapi_types': { 'ids': ([str],), 'date': (str,), 'topn': (str,), 'asset_type': (str,), 'currency': (str,), }, 'attribute_map': { 'ids': 'ids', 'date': 'date', 'topn': 'topn', 'asset_type': 'assetType', 'currency': 'currency', }, 'location_map': { 'ids': 'query', 'date': 'query', 'topn': 'query', 'asset_type': 'query', 'currency': 'query', }, 'collection_format_map': { 'ids': 'csv', } }, headers_map={ 'accept': [ 'application/json' ], 'content_type': [], }, api_client=api_client ) self.post_ownership_holdings_endpoint = _Endpoint( settings={ 'response_type': ( { 200: (FundHoldingsResponse,), 400: (ErrorResponse,), 401: (ErrorResponse,), 403: (ErrorResponse,), 415: (ErrorResponse,), 500: (ErrorResponse,), }, None ), 'auth': [ 'FactSetApiKey', 'FactSetOAuth2' ], 'endpoint_path': '/factset-ownership/v1/fund-holdings', 'operation_id': 'post_ownership_holdings', 'http_method': 'POST', 'servers': None, }, params_map={ 'all': [ 'fund_holdings_request', ], 'required': [ 'fund_holdings_request', ], 'nullable': [ ], 'enum': [ ], 'validation': [ ] }, root_map={ 'validations': { }, 'allowed_values': { }, 'openapi_types': { 'fund_holdings_request': (FundHoldingsRequest,), }, 'attribute_map': { }, 'location_map': { 'fund_holdings_request': 'body', }, 'collection_format_map': { } }, headers_map={ 'accept': [ 'application/json' ], 'content_type': [ 'application/json' ] }, api_client=api_client ) @staticmethod def apply_kwargs_defaults(kwargs, return_http_data_only, async_req): kwargs["async_req"] = async_req kwargs["_return_http_data_only"] = return_http_data_only kwargs["_preload_content"] = kwargs.get("_preload_content", True) kwargs["_request_timeout"] = kwargs.get("_request_timeout", None) kwargs["_check_input_type"] = kwargs.get("_check_input_type", True) kwargs["_check_return_type"] = kwargs.get("_check_return_type", True) kwargs["_spec_property_naming"] = kwargs.get("_spec_property_naming", False) kwargs["_content_type"] = kwargs.get("_content_type") kwargs["_host_index"] = kwargs.get("_host_index") def get_ownership_holdings( self, ids, **kwargs ) -> FundHoldingsResponse: """Get underlying holdings information for a requested fund identifer. # noqa: E501 Gets holdings information for list of fund identifiers. The service allows you to filter by the TopN holdings and Asset Type. # noqa: E501 This method makes a synchronous HTTP request. Returns the http data only Args: ids ([str]): List of requested fund identifiers. <p>***ids limit** = 10 per request*</p> Keyword Args: date (str): Date of holdings expressed in YYYY-MM-DD format. The fund-holdings endpoint will default to latest month-end close.. [optional] topn (str): Limits number of holdings or holders displayed by the top *n* securities based on positions Market Value. Default is ALL, otherwise use number to limit number.. [optional] if omitted the server will use the default value of "ALL" asset_type (str): Filter holdings by the following major asset classes - * **EQ** = Equity * **FI** = Fixed Income * **ALL** = ALL . [optional] if omitted the server will use the default value of "EQ" currency (str): Currency code for adjusting prices. Default is Local. For a list of currency ISO codes, visit [Online Assistant Page 1470](https://oa.apps.factset.com/pages/1470).. [optional] _preload_content (bool): if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. _request_timeout (int/float/tuple): timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. Default is None. _check_input_type (bool): specifies if type checking should be done one the data sent to the server. Default is True. _check_return_type (bool): specifies if type checking should be done one the data received from the server. Default is True. _spec_property_naming (bool): True if the variable names in the input data are serialized names, as specified in the OpenAPI document. False if the variable names in the input data are pythonic names, e.g. snake case (default) _content_type (str/None): force body content-type. Default is None and content-type will be predicted by allowed content-types and body. _host_index (int/None): specifies the index of the server that we want to use. Default is read from the configuration. Returns: FundHoldingsResponse Response Object """ self.apply_kwargs_defaults(kwargs=kwargs, return_http_data_only=True, async_req=False) kwargs['ids'] = \ ids return self.get_ownership_holdings_endpoint.call_with_http_info(**kwargs) def get_ownership_holdings_with_http_info( self, ids, **kwargs ) -> typing.Tuple[FundHoldingsResponse, int, typing.MutableMapping]: """Get underlying holdings information for a requested fund identifer. # noqa: E501 Gets holdings information for list of fund identifiers. The service allows you to filter by the TopN holdings and Asset Type. # noqa: E501 This method makes a synchronous HTTP request. Returns http data, http status and headers Args: ids ([str]): List of requested fund identifiers. <p>***ids limit** = 10 per request*</p> Keyword Args: date (str): Date of holdings expressed in YYYY-MM-DD format. The fund-holdings endpoint will default to latest month-end close.. [optional] topn (str): Limits number of holdings or holders displayed by the top *n* securities based on positions Market Value. Default is ALL, otherwise use number to limit number.. [optional] if omitted the server will use the default value of "ALL" asset_type (str): Filter holdings by the following major asset classes - * **EQ** = Equity * **FI** = Fixed Income * **ALL** = ALL . [optional] if omitted the server will use the default value of "EQ" currency (str): Currency code for adjusting prices. Default is Local. For a list of currency ISO codes, visit [Online Assistant Page 1470](https://oa.apps.factset.com/pages/1470).. [optional] _preload_content (bool): if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. _request_timeout (int/float/tuple): timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. Default is None. _check_input_type (bool): specifies if type checking should be done one the data sent to the server. Default is True. _check_return_type (bool): specifies if type checking should be done one the data received from the server. Default is True. _spec_property_naming (bool): True if the variable names in the input data are serialized names, as specified in the OpenAPI document. False if the variable names in the input data are pythonic names, e.g. snake case (default) _content_type (str/None): force body content-type. Default is None and content-type will be predicted by allowed content-types and body. _host_index (int/None): specifies the index of the server that we want to use. Default is read from the configuration. Returns: FundHoldingsResponse Response Object int Http Status Code dict Dictionary of the response headers """ self.apply_kwargs_defaults(kwargs=kwargs, return_http_data_only=False, async_req=False) kwargs['ids'] = \ ids return self.get_ownership_holdings_endpoint.call_with_http_info(**kwargs) def get_ownership_holdings_async( self, ids, **kwargs ) -> "ApplyResult[FundHoldingsResponse]": """Get underlying holdings information for a requested fund identifer. # noqa: E501 Gets holdings information for list of fund identifiers. The service allows you to filter by the TopN holdings and Asset Type. # noqa: E501 This method makes a asynchronous HTTP request. Returns the http data, wrapped in ApplyResult Args: ids ([str]): List of requested fund identifiers. <p>***ids limit** = 10 per request*</p> Keyword Args: date (str): Date of holdings expressed in YYYY-MM-DD format. The fund-holdings endpoint will default to latest month-end close.. [optional] topn (str): Limits number of holdings or holders displayed by the top *n* securities based on positions Market Value. Default is ALL, otherwise use number to limit number.. [optional] if omitted the server will use the default value of "ALL" asset_type (str): Filter holdings by the following major asset classes - * **EQ** = Equity * **FI** = Fixed Income * **ALL** = ALL . [optional] if omitted the server will use the default value of "EQ" currency (str): Currency code for adjusting prices. Default is Local. For a list of currency ISO codes, visit [Online Assistant Page 1470](https://oa.apps.factset.com/pages/1470).. [optional] _preload_content (bool): if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. _request_timeout (int/float/tuple): timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. Default is None. _check_input_type (bool): specifies if type checking should be done one the data sent to the server. Default is True. _check_return_type (bool): specifies if type checking should be done one the data received from the server. Default is True. _spec_property_naming (bool): True if the variable names in the input data are serialized names, as specified in the OpenAPI document. False if the variable names in the input data are pythonic names, e.g. snake case (default) _content_type (str/None): force body content-type. Default is None and content-type will be predicted by allowed content-types and body. _host_index (int/None): specifies the index of the server that we want to use. Default is read from the configuration. Returns: ApplyResult[FundHoldingsResponse] """ self.apply_kwargs_defaults(kwargs=kwargs, return_http_data_only=True, async_req=True) kwargs['ids'] = \ ids return self.get_ownership_holdings_endpoint.call_with_http_info(**kwargs) def get_ownership_holdings_with_http_info_async( self, ids, **kwargs ) -> "ApplyResult[typing.Tuple[FundHoldingsResponse, int, typing.MutableMapping]]": """Get underlying holdings information for a requested fund identifer. # noqa: E501 Gets holdings information for list of fund identifiers. The service allows you to filter by the TopN holdings and Asset Type. # noqa: E501 This method makes a asynchronous HTTP request. Returns http data, http status and headers, wrapped in ApplyResult Args: ids ([str]): List of requested fund identifiers. <p>***ids limit** = 10 per request*</p> Keyword Args: date (str): Date of holdings expressed in YYYY-MM-DD format. The fund-holdings endpoint will default to latest month-end close.. [optional] topn (str): Limits number of holdings or holders displayed by the top *n* securities based on positions Market Value. Default is ALL, otherwise use number to limit number.. [optional] if omitted the server will use the default value of "ALL" asset_type (str): Filter holdings by the following major asset classes - * **EQ** = Equity * **FI** = Fixed Income * **ALL** = ALL . [optional] if omitted the server will use the default value of "EQ" currency (str): Currency code for adjusting prices. Default is Local. For a list of currency ISO codes, visit [Online Assistant Page 1470](https://oa.apps.factset.com/pages/1470).. [optional] _preload_content (bool): if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. _request_timeout (int/float/tuple): timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. Default is None. _check_input_type (bool): specifies if type checking should be done one the data sent to the server. Default is True. _check_return_type (bool): specifies if type checking should be done one the data received from the server. Default is True. _spec_property_naming (bool): True if the variable names in the input data are serialized names, as specified in the OpenAPI document. False if the variable names in the input data are pythonic names, e.g. snake case (default) _content_type (str/None): force body content-type. Default is None and content-type will be predicted by allowed content-types and body. _host_index (int/None): specifies the index of the server that we want to use. Default is read from the configuration. Returns: ApplyResult[(FundHoldingsResponse, int, typing.Dict)] """ self.apply_kwargs_defaults(kwargs=kwargs, return_http_data_only=False, async_req=True) kwargs['ids'] = \ ids return self.get_ownership_holdings_endpoint.call_with_http_info(**kwargs) def post_ownership_holdings( self, fund_holdings_request, **kwargs ) -> FundHoldingsResponse: """Get holdings for a list of funds. # noqa: E501 Gets Holding information for a long list of Fund objects. # noqa: E501 This method makes a synchronous HTTP request. Returns the http data only Args: fund_holdings_request (FundHoldingsRequest): Requesting Underlying Holdings for a list of Fund Identifiers. Keyword Args: _preload_content (bool): if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. _request_timeout (int/float/tuple): timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. Default is None. _check_input_type (bool): specifies if type checking should be done one the data sent to the server. Default is True. _check_return_type (bool): specifies if type checking should be done one the data received from the server. Default is True. _spec_property_naming (bool): True if the variable names in the input data are serialized names, as specified in the OpenAPI document. False if the variable names in the input data are pythonic names, e.g. snake case (default) _content_type (str/None): force body content-type. Default is None and content-type will be predicted by allowed content-types and body. _host_index (int/None): specifies the index of the server that we want to use. Default is read from the configuration. Returns: FundHoldingsResponse Response Object """ self.apply_kwargs_defaults(kwargs=kwargs, return_http_data_only=True, async_req=False) kwargs['fund_holdings_request'] = \ fund_holdings_request return self.post_ownership_holdings_endpoint.call_with_http_info(**kwargs) def post_ownership_holdings_with_http_info( self, fund_holdings_request, **kwargs ) -> typing.Tuple[FundHoldingsResponse, int, typing.MutableMapping]: """Get holdings for a list of funds. # noqa: E501 Gets Holding information for a long list of Fund objects. # noqa: E501 This method makes a synchronous HTTP request. Returns http data, http status and headers Args: fund_holdings_request (FundHoldingsRequest): Requesting Underlying Holdings for a list of Fund Identifiers. Keyword Args: _preload_content (bool): if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. _request_timeout (int/float/tuple): timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. Default is None. _check_input_type (bool): specifies if type checking should be done one the data sent to the server. Default is True. _check_return_type (bool): specifies if type checking should be done one the data received from the server. Default is True. _spec_property_naming (bool): True if the variable names in the input data are serialized names, as specified in the OpenAPI document. False if the variable names in the input data are pythonic names, e.g. snake case (default) _content_type (str/None): force body content-type. Default is None and content-type will be predicted by allowed content-types and body. _host_index (int/None): specifies the index of the server that we want to use. Default is read from the configuration. Returns: FundHoldingsResponse Response Object int Http Status Code dict Dictionary of the response headers """ self.apply_kwargs_defaults(kwargs=kwargs, return_http_data_only=False, async_req=False) kwargs['fund_holdings_request'] = \ fund_holdings_request return self.post_ownership_holdings_endpoint.call_with_http_info(**kwargs) def post_ownership_holdings_async( self, fund_holdings_request, **kwargs ) -> "ApplyResult[FundHoldingsResponse]": """Get holdings for a list of funds. # noqa: E501 Gets Holding information for a long list of Fund objects. # noqa: E501 This method makes a asynchronous HTTP request. Returns the http data, wrapped in ApplyResult Args: fund_holdings_request (FundHoldingsRequest): Requesting Underlying Holdings for a list of Fund Identifiers. Keyword Args: _preload_content (bool): if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. _request_timeout (int/float/tuple): timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. Default is None. _check_input_type (bool): specifies if type checking should be done one the data sent to the server. Default is True. _check_return_type (bool): specifies if type checking should be done one the data received from the server. Default is True. _spec_property_naming (bool): True if the variable names in the input data are serialized names, as specified in the OpenAPI document. False if the variable names in the input data are pythonic names, e.g. snake case (default) _content_type (str/None): force body content-type. Default is None and content-type will be predicted by allowed content-types and body. _host_index (int/None): specifies the index of the server that we want to use. Default is read from the configuration. Returns: ApplyResult[FundHoldingsResponse] """ self.apply_kwargs_defaults(kwargs=kwargs, return_http_data_only=True, async_req=True) kwargs['fund_holdings_request'] = \ fund_holdings_request return self.post_ownership_holdings_endpoint.call_with_http_info(**kwargs) def post_ownership_holdings_with_http_info_async( self, fund_holdings_request, **kwargs ) -> "ApplyResult[typing.Tuple[FundHoldingsResponse, int, typing.MutableMapping]]": """Get holdings for a list of funds. # noqa: E501 Gets Holding information for a long list of Fund objects. # noqa: E501 This method makes a asynchronous HTTP request. Returns http data, http status and headers, wrapped in ApplyResult Args: fund_holdings_request (FundHoldingsRequest): Requesting Underlying Holdings for a list of Fund Identifiers. Keyword Args: _preload_content (bool): if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. _request_timeout (int/float/tuple): timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. Default is None. _check_input_type (bool): specifies if type checking should be done one the data sent to the server. Default is True. _check_return_type (bool): specifies if type checking should be done one the data received from the server. Default is True. _spec_property_naming (bool): True if the variable names in the input data are serialized names, as specified in the OpenAPI document. False if the variable names in the input data are pythonic names, e.g. snake case (default) _content_type (str/None): force body content-type. Default is None and content-type will be predicted by allowed content-types and body. _host_index (int/None): specifies the index of the server that we want to use. Default is read from the configuration. Returns: ApplyResult[(FundHoldingsResponse, int, typing.Dict)] """ self.apply_kwargs_defaults(kwargs=kwargs, return_http_data_only=False, async_req=True) kwargs['fund_holdings_request'] = \ fund_holdings_request return self.post_ownership_holdings_endpoint.call_with_http_info(**kwargs)
# -*- coding: utf-8 -*- """Runs featurization and computes feature statistics""" import os import warnings import matplotlib.cm as cm import matplotlib.colors import matplotlib.pyplot as plt import numpy as np from pymatgen import Structure from scipy import stats from .predict import RUNNER THIS_DIR = os.path.dirname(os.path.realpath(__file__)) TRAIN_DATA = np.load(os.path.join(THIS_DIR, "features.npy")) warnings.simplefilter("ignore") ALPH = "abcdefghijlmnopqrstuvwxyzABZDEFGHIJKLMNOPQRSTUVQXYZ0123456789" cmap = plt.cm.coolwarm norm = matplotlib.colors.Normalize(vmin=10, vmax=90) MAPPABLE = cm.ScalarMappable(norm=norm, cmap=cmap) feature_cat_dict = { "wt CN_1": "geometry", "sgl_bd CN_1": "geometry", "wt CN_2": "geometry", "L-shaped CN_2": "geometry", "water-like CN_2": "geometry", "bent 120 degrees CN_2": "geometry", "bent 150 degrees CN_2": "geometry", "linear CN_2": "geometry", "wt CN_3": "geometry", "trigonal planar CN_3": "geometry", "trigonal non-coplanar CN_3": "geometry", "T-shaped CN_3": "geometry", "wt CN_4": "geometry", "square co-planar CN_4": "geometry", "tetrahedral CN_4": "geometry", "rectangular see-saw-like CN_4": "geometry", "see-saw-like CN_4": "geometry", "trigonal pyramidal CN_4": "geometry", "wt CN_5": "geometry", "pentagonal planar CN_5": "geometry", "square pyramidal CN_5": "geometry", "trigonal bipyramidal CN_5": "geometry", "wt CN_6": "geometry", "hexagonal planar CN_6": "geometry", "octahedral CN_6": "geometry", "pentagonal pyramidal CN_6": "geometry", "wt CN_7": "geometry", "hexagonal pyramidal CN_7": "geometry", "pentagonal bipyramidal CN_7": "geometry", "wt CN_8": "geometry", "body-centered cubic CN_8": "geometry", "hexagonal bipyramidal CN_8": "geometry", "wt CN_9": "geometry", "q2 CN_9": "geometry", "q4 CN_9": "geometry", "q6 CN_9": "geometry", "wt CN_10": "geometry", "q2 CN_10": "geometry", "q4 CN_10": "geometry", "q6 CN_10": "geometry", "wt CN_11": "geometry", "q2 CN_11": "geometry", "q4 CN_11": "geometry", "q6 CN_11": "geometry", "wt CN_12": "geometry", "cuboctahedral CN_12": "geometry", "q2 CN_12": "geometry", "q4 CN_12": "geometry", "q6 CN_12": "geometry", "wt CN_13": "geometry", "wt CN_14": "geometry", "wt CN_15": "geometry", "wt CN_16": "geometry", "wt CN_17": "geometry", "wt CN_18": "geometry", "wt CN_19": "geometry", "wt CN_20": "geometry", "wt CN_21": "geometry", "wt CN_22": "geometry", "wt CN_23": "geometry", "wt CN_24": "geometry", "local difference in MendeleevNumber": "chemistry", "local difference in Column": "chemistry", "local difference in Row": "chemistry", "local difference in Electronegativity": "chemistry", "local difference in NsValence": "chemistry", "local difference in NpValence": "chemistry", "local difference in NdValence": "chemistry", "local difference in NfValence": "chemistry", "local difference in NValence": "chemistry", "local difference in NsUnfilled": "chemistry", "local difference in NpUnfilled": "chemistry", "local difference in NdUnfilled": "chemistry", "local difference in NfUnfilled": "chemistry", "local difference in NUnfilled": "chemistry", "local difference in GSbandgap": "chemistry", "local signed difference in MendeleevNumber": "chemistry", "local signed difference in Column": "chemistry", "local signed difference in Row": "chemistry", "local signed difference in Electronegativity": "chemistry", "local signed difference in NsValence": "chemistry", "local signed difference in NpValence": "chemistry", "local signed difference in NdValence": "chemistry", "local signed difference in NfValence": "chemistry", "local signed difference in NValence": "chemistry", "local signed difference in NsUnfilled": "chemistry", "local signed difference in NpUnfilled": "chemistry", "local signed difference in NdUnfilled": "chemistry", "local signed difference in NfUnfilled": "chemistry", "local signed difference in NUnfilled": "chemistry", "local signed difference in GSbandgap": "chemistry", "maximum local difference in MendeleevNumber": "chemistry", "maximum local difference in Column": "chemistry", "maximum local difference in Row": "chemistry", "maximum local difference in Electronegativity": "chemistry", "maximum local difference in NsValence": "chemistry", "maximum local difference in NpValence": "chemistry", "maximum local difference in NdValence": "chemistry", "maximum local difference in NfValence": "chemistry", "maximum local difference in NValence": "chemistry", "maximum local difference in NsUnfilled": "chemistry", "maximum local difference in NpUnfilled": "chemistry", "maximum local difference in NdUnfilled": "chemistry", "maximum local difference in NfUnfilled": "chemistry", "maximum local difference in NUnfilled": "chemistry", "maximum local difference in GSbandgap": "chemistry", "mimum local difference in MendeleevNumber": "chemistry", "mimum local difference in Column": "chemistry", "mimum local difference in Row": "chemistry", "mimum local difference in Electronegativity": "chemistry", "mimum local difference in NsValence": "chemistry", "mimum local difference in NpValence": "chemistry", "mimum local difference in NdValence": "chemistry", "mimum local difference in NfValence": "chemistry", "mimum local difference in NValence": "chemistry", "mimum local difference in NsUnfilled": "chemistry", "mimum local difference in NpUnfilled": "chemistry", "mimum local difference in NdUnfilled": "chemistry", "mimum local difference in NfUnfilled": "chemistry", "mimum local difference in NUnfilled": "chemistry", "mimum local difference in GSbandgap": "chemistry", "G2_0.05": "geometry", "G2_4.0": "geometry", "G2_20.0": "geometry", "G2_80.0": "geometry", "G4_0.005_1.0_1.0": "geometry", "G4_0.005_1.0_-1.0": "geometry", "G4_0.005_4.0_1.0": "geometry", "G4_0.005_4.0_-1.0": "geometry", "number": "metal", "row": "metal", "column": "metal", "valenceelectrons": "metal", "diffto18electrons": "metal", "sunfilled": "metal", "punfilled": "metal", "dunfilled": "metal", "random_column": "metal", } def _return_feature_statistics(feature_number: int, feature_value: float, names: list): """ Arguments: feature_number (int) -- number of the feature feature_value (float) -- value of the feature (used to compute color) names (list) -- list of feature names Returns: """ percentile_score = int( stats.percentileofscore(TRAIN_DATA.T[feature_number], feature_value) ) color = matplotlib.colors.to_hex(MAPPABLE.to_rgba(percentile_score)) # ToDo: Maybe not only return the category but also the color which we used in the article return percentile_score, color, feature_cat_dict[names[feature_number]] def _return_feature_statistics_array(X, names): # pylint:disable=invalid-name results = [] for i, val in enumerate(X.T): score, color, category = _return_feature_statistics(i, val, names) results.append((val, str(score), str(color), category)) return results def _featurize_single(structure: Structure): """Featurizes structure, returns feature vector, feature values and metal indices. Arguments: structure (Structure) -- pymatgen Structure object Returns: X (np.array) -- feature matrix feature_value_dict (dict) -- metal_indices (list) names (list) -- list of feature names """ ( X, # pylint:disable=invalid-name metal_indices, metals, ) = RUNNER._featurize_single( # pylint:disable=protected-access structure ) names = RUNNER.feature_names names_ = [n.replace("mimum", "minimum") for n in names] # ToDo: Cleanup name feature_value_dict = {} for i, site in enumerate(X): feature_stats = _return_feature_statistics_array(site, names) feature_value_dict[metals[i] + " " + ALPH[i]] = dict(zip(names_, feature_stats)) return X, feature_value_dict, metal_indices, names class OverlapError(Exception): """ Error raised if overlaps of atoms are detected in the structure. """
import os from dbutils import create_connection from dbutils import insert_data from dbutils import read_schema from dbutils import set_time_zone from dbutils import EXAMPLE_DATA INGEST_EXAMPLES = False if __name__=='__main__': with create_connection() as con: # create tables cur = con.cursor() db_schema = read_schema() print(f'Creating new schema:\n\n{db_schema}\n') cur.execute(db_schema) con.commit() print('Setting correct time zone...') set_time_zone(con) con.commit() print('Done!') if INGEST_EXAMPLES: # add data for data_obj in EXAMPLE_DATA: insert_data(con, data_obj) # read data cur.execute(f'''SELECT * FROM {os.getenv('POSTGRES_SCHEMA')}.data''') print('DATA:', cur.fetchall()) cur.execute(f'''SELECT * FROM {os.getenv('POSTGRES_SCHEMA')}.billing''') print('BILLING:', cur.fetchall())
from __future__ import absolute_import, print_function import pytest from moment_polytopes import * def test_two_three_six(algorithm): R = external_tensor_product([2, 3, 6]) T = ressayre_tester(R, algorithm=algorithm) # one of the many inequalites for 2 x 3 x 6 (cf. Wernli/Klyachko) assert T.is_ressayre(((-1, 0, -1, 1, 0, 3, 2, 1, 2, 1, 0), 1)) def test_three_three_nine(algorithm): R = external_tensor_product([3, 3, 9]) T = ressayre_tester(R, algorithm=algorithm) # the last inequality of Klyachko assert T.is_ressayre(((3, 0, -3, -5, 4, 1, 8, 5, 2, 2, -1, -4, -7, -4, -1), 0)) # another inequality by Klyachko (the one that M.V. checked) assert T.is_ressayre(((-1, 0, 1, 0, -1, 1, 2, 1, 0, 1, 0, 0, -1, -1, -2), 0)) def test_fermi_four_eight(algorithm): R = weyl_module(8, [1, 1, 1, 1]) T = ressayre_tester(R, algorithm=algorithm) assert T.is_ressayre(((-1, 0, 0, 0, 0, 0, 0, 0), -1)) assert T.is_ressayre(((0, 0, 0, 0, -1, 1, 1, 1), 0)) assert T.is_ressayre(((-1, 1, 0, 0, 0, 0, 1, 1), 0)) assert T.is_ressayre(((-1, 0, 1, 0, 0, 1, 0, 1), 0)) assert T.is_ressayre(((-1, 0, 0, 1, 0, 1, 1, 0), 0)) assert T.is_ressayre(((-1, 0, 0, 1, 1, 0, 0, 1), 0)) assert T.is_ressayre(((0, 0, -1, 1, 0, 0, 1, 1), 0)) assert T.is_ressayre(((0, -1, 0, 1, 0, 1, 0, 1), 0)) assert T.is_ressayre(((0, -1, -1, 0, -1, 0, 0, 1), -2)) assert T.is_ressayre(((-1, 0, -1, 0, 0, -1, 0, 1), -2)) assert T.is_ressayre(((-1, -1, 0, 0, 0, 0, -1, 1), -2)) assert T.is_ressayre(((-1, -1, -1, 1, 0, 0, 0, 0), -2)) assert T.is_ressayre(((-1, 0, 0, -1, -1, 0, 0, 1), -2)) assert T.is_ressayre(((-1, -1, 0, 0, -1, 1, 0, 0), -2)) assert T.is_ressayre(((-1, 0, -1, 0, -1, 0, 1, 0), -2)) def test_fermi_three_eight(algorithm): R = weyl_module(8, [1, 1, 1]) T = ressayre_tester(R, algorithm=algorithm) # two of out many assert T.is_ressayre(((-1, -2, 3, 1, 2, 1, 0, -1), 0)) assert T.is_ressayre(((1, 0, -1, -2, 3, 2, 1, -1), 0)) @pytest.mark.parametrize("d", [6, 7]) def test_spin_orbit(algorithm, d): R = external_tensor_product([weyl_module(d, [2, 1]), 2]) T = ressayre_tester(R, algorithm=algorithm) # special case of Eqn. (3.19) in my thesis assert T.is_ressayre(((-2, 2, 0, 0) + (0,) * (d - 4) + (-1, 1), -3)) # some other inequalities found by Klyachko assert T.is_ressayre(((0, -2, 2, 0) + (0,) * (d - 4) + (-1, 1), -3)) assert T.is_ressayre(((-2, 0, 2, 0) + (0,) * (d - 4) + (1, -1), -3)) assert T.is_ressayre(((-1, 1, 1, 0) + (0,) * (d - 4) + (0, 0), -1)) assert T.is_ressayre(((-2, 1, 0, -1) + (0,) * (d - 4) + (0, -1), -4))
n = int(input()) A = [] B = [] C = [] D = [] S = 0 L = [] dt = dict() for i in range(n): a,b,c,d = map(int,input().split()) A.append(a) B.append(b) C.append(c) D.append(d) for i in A: for j in B: L.append(i+j) for i in C: for j in D: try: dt[i+j] +=1 except: dt[i+j] = 1 for i in L: try: S += dt[-i] except: continue print(S)
#!/usr/bin/env python2 # -*- coding: utf-8 -*- from optparse import OptionParser import os import sys import re import json import hoi4tools.parser def main(): parser = OptionParser() parser.add_option("-d", "--stats-directory", dest="directory", help="directory containing the stats files of hoi4", default=os.path.join( os.environ.get("HOME","~/"), ".steam/steam/steamapps/common/Hearts of Iron IV/common/units/" ), metavar="DIR") parser.add_option("-f", "--file", dest="file", help="path to a data file of hoi4 (ex: infantry.txt)", metavar="DIR") parser.add_option("-o", "--out", dest="out_file", help="path of outpout json file", default=None, metavar="OUT") (options, args) = parser.parse_args() if options.directory is None and options.file is None: print("missing --directory or --file option") sys.exit(1) if options.file is not None and options.directory is not None: print("option --directory and --file are exclusive, please pick one") sys.exit(1) data = {} if options.file: data = hoi4tools.parser.parse_file(options.file) elif options.directory: data = hoi4tools.parser.parse_dir(options.directory) json_data = json.dumps(data, sort_keys=True, indent=2, separators=(',', ': ')) if options.out_file: with open(options.out_file, 'w') as o: o.write(json_data) else: print(json_data) if __name__ == '__main__': main()
import lark import itertools from collections import defaultdict as dd preorder = ( 'class_', 'method', 'and_exp', 'or_exp', 'ternary', 'if_stmt', 'while_lp', 'typecase', 'store_field', 'ret_exp' ) #generate assembly code from the parse tree class Generator(lark.visitors.Visitor_Recursive): def __init__(self, classes, types): #store the code array and types table super().__init__() #array of class objects, initially empty self.classes_ = classes #class object of the current class subtree self.current_class = None #method object of the current method subtree self.current_method = None #method table of builtin and user-defined classes self.types = types #stores count of label prefixes self.labels = dd(itertools.count) #stores count of temporary variables self.temp_vars = 0 def emit(self, line, tab=True): #emits a line of code to the output array #adds a tab to the beginning by default if tab: line = ' ' + line self.current_method['code'].append(line) def label(self, prefix): #generates a unique label name with the given prefix num = next(self.labels[prefix]) #get current number for given prefix return f'{prefix}_{num}' def temp_var(self): ret = '__TEMP_VAR%d' % self.temp_vars self.temp_vars += 1 return ret def visit(self, tree): #some nodes need to be visited before their children #if this node is such a node, visit it directly #the node's method may visit its children if tree.data in preorder: getattr(self, tree.data)(tree) else: #most expressions are traversed postorder return super().visit(tree) def class_(self, tree): #extract class's name and supertype name = str(tree.children[0].children[0]) #if no supertype is given, default to 'Obj' sup = str(tree.children[0].children[2] or 'Obj') #create class object obj = { 'name': name, 'super': sup, 'methods': [], 'inherited_fields': set(), 'fields': set() } self.current_class = obj #store class object in result array self.classes_.append(obj) #attempt to retrieve the fields of this class from the method table try: type_obj = self.types[name] sup_obj = self.types[sup] except KeyError: #if class was not found, this is the main class pass else: #populate class object with fields from method table obj['fields'] = set(type_obj['fields']) obj['inherited_fields'] = set(sup_obj['fields']) #generate code for all methods in the class for method in tree.children[1].children[0].children: self.visit(method) def method(self, tree): #extract class's name and formal arguments name = str(tree.children[0]) args = tree.children[1] #create method object obj = { 'name': name, 'args': [str(arg.children[0]) for arg in args.children], 'locals': {}, #stores names and types of local variables 'code': [] #stores assembly code for the method } #add method object to the current class self.current_class['methods'].append(obj) #store the current method for use in other generator functions self.current_method = obj #all methods start with an enter command self.emit('enter') #iterate over statements in the method's statement block for child in tree.children[3].children: self.visit(child) def ret_exp(self, tree): #if this is the constructor, the returned object should be "this" if self.current_method['name'] == '$constructor': #ret_exp is preorder so that "none" is not visited self.emit('load $') else: #visit the expression to be returned self.visit(tree.children[0]) #emit a return statement that pops off the arguments num_args = len(self.current_method['args']) self.emit('return %s' % num_args) def lit_number(self, tree): #push an integer onto the stack self.emit('const %s' % tree.children[0]) def lit_true(self, tree): #push a boolean onto the stack self.emit('const true') def lit_false(self, tree): #push a boolean onto the stack self.emit('const false') def lit_nothing(self, tree): #push a nothing onto the stack self.emit('const nothing') def lit_string(self, tree): #push a string onto the stack self.emit('const %s' % tree.children[0]) def var(self, tree): #extract variable name from tree v_name = str(tree.children[0]) #treat the "this" object specially - it has a $ alias if v_name == 'this': #load the "this" object onto the stack self.emit('load $') else: #load a local variable onto the stack self.emit('load %s' % tree.children[0]) def load_field(self, tree): #unpack children for convenience obj, field = tree.children obj_type = obj.type #if object type is the current class, use the $ alias if obj_type == self.current_class['name']: obj_type = '$' #load the given variable onto the stack self.emit('load_field %s:%s' % (obj_type, field)) def assign(self, tree): #store the top value on the stack into a local variable name = tree.children[0] if tree.children[1] is not None: type = tree.children[1] else: type = tree.type #map the variable name to the type of the value self.current_method['locals'][name] = type #emit a store instruction self.emit('store %s' % name) def store_field(self, tree): #unpack children for convenience obj, field, value = tree.children #visit in the opposite of the usual order - value then name self.visit(value) self.visit(obj) c_name = obj.type #if object type is the current class, use the $ alias if c_name == self.current_class['name']: c_name = '$' #pop two values of the stack, then store the value of the second pop #in the object from the first pop in the provided field self.emit('store_field %s:%s' % (c_name, field)) def m_call(self, tree): #emit a method call command and possibly a roll m_name = str(tree.children[1]) #functions need to roll so that the receiver #is the first thing popped off the stack num_ops = len(tree.children[2].children) if num_ops: #don't roll for functions with no arguments self.emit('roll %d' % num_ops) left_type = tree.children[0].type #emit a method call of the correct type self.emit('call %s:%s' % (left_type, tree.children[1])) def c_call(self, tree): c_name = str(tree.children[0]) #if object type is the current class, use the $ alias if c_name == self.current_class['name']: c_name = '$' #allocate space for a new object of type c_name self.emit('new %s' % c_name) #call the constructor on the new object self.emit('call %s:$constructor' % c_name) def raw_rexp(self, tree): #if a statement is just a right_expression, the value of the expression #stays on the stack but is not used, so it can be popped self.emit('pop') def and_exp(self, tree): left, right = tree.children #generate unique label names false_label = self.label('and') join_label = self.label('and') #generate assembly for first expression, which will always run self.visit(left) #if the first expression evaluates to false, jump to join point self.emit('jump_ifnot %s' % false_label) #generate assembly for second expression #this will only run if the first expression evaluated to true self.visit(right) #if the second expression evaluates to false, jump to join point self.emit('jump_ifnot %s' % false_label) #if neither jump was taken, push true as the result self.emit('const true') #skip past the join point self.emit('jump %s' % join_label) #join point: execution will come here if either expression is false self.emit('%s:' % false_label, False) #if either jump was taken, push false as the result self.emit('const false') #and expression is over - join point self.emit('%s:' % join_label, False) def or_exp(self, tree): left, right = tree.children #generate unique label names true_label = self.label('or') join_label = self.label('or') #generate assembly for first expression, which will always run self.visit(left) #if the first expression evaluates to true, jump to join point self.emit('jump_if %s' % true_label) #generate assembly for second expression #this will only run if the first expression evaluated to false self.visit(right) #if the second expression evaluates to true, jump to join point self.emit('jump_if %s' % true_label) #if neither jump was taken, push false as the result self.emit('const false') #skip past the join point self.emit('jump %s' % join_label) #join point: execution will come here if either expression is true self.emit('%s:' % true_label, False) #if either jump was taken, push true as the result self.emit('const true') #or expression is over - join point self.emit('%s:' % join_label, False) def ternary(self, tree): #unpack children for convenience cond, t_exp, f_exp = tree.children #generate labels for ternary f_label = self.label('tern') join_label = self.label('join') #evaluate the condition self.visit(cond) #jump to the false branch if condition was false self.emit('jump_ifnot %s' % f_label) #if condition was true, evaluate the true branch self.visit(t_exp) #jump past the false branch self.emit('jump %s' % join_label) #if condition was false, evaluate the false branch self.emit('%s:' % f_label, False) self.visit(f_exp) self.emit('%s:' % join_label, False) def if_stmt(self, tree): #unpack children nodes for convenience if_cond, if_block, elifs, _else = tree.children join_label = self.label('join') #generate join label - emitted at end #holds all labels used in this block #must be pregenerated so that future labels can be accessed labels = [] for child in elifs.children: labels.append(self.label('elif')) #add "elif" for each elif block if _else.children: labels.append(self.label('else')) #if else block exists, add "else" #unconditionally evaluate the if statement's condition self.visit(if_cond) #emit the correct label to jump to if the condition was false if not labels: #if the if statement is alone, jump to the join point self.emit('jump_ifnot %s' % join_label) else: #if the if statement has friends, jump to the next condition self.emit('jump_ifnot %s' % labels[0]) #if condition was true, execute the block self.visit(if_block) if labels: #jump past elif/else blocks to the join point self.emit('jump %s' % join_label) label_index = 0 #used to get current/next labels #generate code for elif blocks, if there are any for _elif in elifs.children: #unpack condition/block for convenience elif_cond, elif_block = _elif.children #get label that points to this block current_label = labels[label_index] label_index += 1 #get label that will be jumped to if this block doesn't execute next_label = join_label if label_index == len(labels) else labels[label_index] #emit this block's label self.emit('%s:' % current_label, False) #evaluate the elif's condition self.visit(elif_cond) #jump to next block or join point if condition was false self.emit('jump_ifnot %s' % next_label) #execute block if condition was true self.visit(elif_block) #only jump to join if there is a block in between here and there if next_label != join_label: #jump past rest of the blocks after execution self.emit('jump %s' % join_label) #generate code for else block, if it exists if _else.children: #else label is always the last in labels else_label = labels[-1] #emit this block's label self.emit('%s:' % else_label, False) else_block = _else.children[0] #execute the else block self.visit(else_block) #emit the join label - this point will always be reached self.emit('%s:' % join_label, False) def while_lp(self, tree): #unpack children nodes for convenience condition, block = tree.children #generate unique labels for block and condition block_label = self.label('while_block') cond_label = self.label('while_cond') #unconditionally jump to condition check self.emit('jump %s' % cond_label) #emit label for start of block self.emit('%s:' % block_label, False) #generate code for block self.visit(block) #emit label for condition check self.emit('%s:' % cond_label, False) #generate code for condition check self.visit(condition) #if condition evaluates to true, jump to beginning of block self.emit('jump_if %s' % block_label) def typecase(self, tree): #unpack children for convenience expr, alts = tree.children #generate a temporary variable name to store the checked expression temp_var = self.temp_var() self.current_method['locals'][temp_var] = '' #evaluate the expression and store it in a temp variable self.visit(expr) self.emit('store %s' % temp_var) #pregenerate labels for each alternative after the first labels = [] for alt in alts.children[1:]: labels.append(self.label('type_alt')) #there will always be a join label at the end labels.append(self.label('type_join')) #iterate over alternatives and labels for alt, label in zip(alts.children, labels): name, type, block = alt.children if type == self.current_class['name']: type = '$' #add the current typecase variable to the list of locals self.current_method['locals'][name] = type #test the expression against the given type #if it fails, jump to the next alternative/join point self.emit('load %s' % temp_var) self.emit('is_instance %s' % type) self.emit('jump_ifnot %s' % label) #if the expression was of the correct type, assign it #to the given variable name and evaluate the block self.emit('load %s' % temp_var) self.emit('store %s' % name) self.visit(block) #jump to the join label, unless this is the last alternative if label != labels[-1]: self.emit('jump %s' % labels[-1]) #output the label for the next alternative self.emit('%s:' % label, False) #generates assembly file for the given class object def generate_file(class_): #extract data from class object name = class_['name'] sup = class_['super'] methods = class_['methods'] inherited_fields = class_['inherited_fields'] fields = class_['fields'] #data will be output to file with the same name as the class filename = name + '.asm' #open the output file for writing with open(filename, 'w') as f: emit = lambda *s: print(*s, file=f) #convenience method #output class header with name and supertype emit('.class %s:%s' % (name, sup)) #if there are any fields, output their names for field in fields: if field not in inherited_fields: emit('.field %s' % field) #for each method, output a forward declaration for method in methods: m_name = method['name'] #the constructor doesn't need a forward declaration if m_name != '$constructor': emit('.method %s forward' % m_name) emit() #for each method, output assembly for the method for method in methods: #extract data from method object m_name = method['name'] args = method['args'] locals = method['locals'] code = method['code'] #output method header emit('.method %s' % m_name) #if the method takes arguments, output their names if args: s = ','.join(args) emit('.args %s' % s) #if there are any local variables, output their names if locals: s = ','.join(locals) emit('.local %s' % s) #output assembly for each instruction in the method for line in code: emit(line) emit()
import sys import torch import torch.nn as nn import dgl.function as fn from .labels import role_codec, frame_codec class Embedding(nn.Module): """Linear -> BatchNorm -> Activation""" def __init__( self, in_feats=64, out_feats=64, activation='relu', batchnorm=True ): super(Embedding, self).__init__() self.in_feats = in_feats self.out_feats = out_feats self.activation = activation self.batchnorm = batchnorm layers = [] layer = nn.Linear(self.in_feats, self.out_feats) nn.init.kaiming_uniform_( layer.weight, mode='fan_in', nonlinearity='relu' ) layers.append(layer) if self.batchnorm: layer = nn.BatchNorm1d(self.out_feats) layers.append(layer) if self.activation == 'relu': layer = nn.ReLU() elif self.activation == 'tanhshrink': layer = nn.Tanhshrink() else: print('Activation function not implemented.') sys.exit(-1) layers.append(layer) self.fc = nn.Sequential(*layers) def forward(self, x): return self.fc(x) class MLP(nn.Module): """[Linear -> BatchNorm -> Activation] x (n-1) -> Linear""" def __init__( self, in_feats=64, out_feats=64, activation='relu', h_layers=2, batchnorm=True, pyramid=False, bias=True ): super(MLP, self).__init__() self.in_feats = in_feats self.out_feats = out_feats self.activation = activation self.h_layers = h_layers self.batchnorm = batchnorm self.pyramid = pyramid if pyramid: delta_dims = (self.in_feats - self.out_feats) // self.h_layers else: delta_dims = 0 dims_remaining = self.in_feats # 10 -> 2 in 2 layers # delta = (10 - 2) // 2 = 8 // 2 = 4 # 10 -> 6 -> 2 # 211 -> 1 in 2 layers # delta = (211 - 1) // 2 = 105 # 211 -> 106 -> 1 layers = [] for i in range(self.h_layers-1): layer = nn.Linear(dims_remaining, dims_remaining - delta_dims, bias=bias) dims_remaining -= delta_dims nn.init.kaiming_uniform_( layer.weight, mode='fan_in', nonlinearity='relu' ) layers.append(layer) if self.batchnorm: layer = nn.BatchNorm1d(self.in_feats) layers.append(layer) if self.activation == 'relu': layer = nn.ReLU() elif self.activation == 'tanhshrink': layer = nn.Tanhshrink() else: print('Activation function not implemented.') sys.exit(-1) layers.append(layer) layer = nn.Linear(dims_remaining, self.out_feats, bias=bias) nn.init.kaiming_uniform_( layer.weight, mode='fan_in', nonlinearity='relu' ) layers.append(layer) # layers.append(nn.Dropout(p=0.5)) self.fc = nn.Sequential(*layers) def forward(self, x): return self.fc(x) # https://docs.dgl.ai/en/0.4.x/tutorials/models/1_gnn/4_rgcn.html # simplify by setting num_bases = num_rels = 3 class RGCN(nn.Module): def __init__( self, in_feats=64, out_feats=64, activation='relu', skip=False ): super(RGCN, self).__init__() self.in_feats = in_feats self.out_feats = out_feats self.activation = activation self.skip = skip # weight bases in equation (3) self.weight = nn.Parameter( torch.Tensor(3, self.in_feats, self.out_feats) ) nn.init.kaiming_uniform_( self.weight, mode='fan_in', nonlinearity='relu' ) self.batchnorm = nn.BatchNorm1d(self.out_feats) if activation == 'relu': self.activation_ = nn.ReLU() elif activation == 'tanhshrink': self.activation_ = nn.Tanhshrink() else: print('Activation function not implemented.') sys.exit(-1) def extra_repr(self): return 'in_feats={}, out_feats={}, skip={}'.format( self.in_feats, self.out_feats, self.skip ) def forward(self, graph): weight = self.weight # At each edge, multiply the state h from the source node # with a linear weight W_(edge_type) def rgcn_msg(edges): w = weight[edges.data['rel_type']] n = edges.data['norm'] msg = torch.bmm(edges.src['h'].unsqueeze(1), w).squeeze() msg = torch.bmm(n.reshape(-1, 1, 1), msg.unsqueeze(1)).squeeze() return {'m': msg} # At each node, we want the summed messages W_(edge_type) \dot h # from the incomming edges rgcn_reduce = fn.sum(msg='m', out='Swh') # Apply activation to the sum(in_edges) W_(edge_type) \dot h # TODO: add bias? def rgcn_apply(nodes): h = nodes.data.pop('h') Swh = nodes.data.pop('Swh') if self.skip: h = self.batchnorm(h + Swh) else: h = self.batchnorm(h) h = self.activation_(h + Swh) return {'h': h} graph.update_all(rgcn_msg, rgcn_reduce, rgcn_apply) return graph # https://docs.dgl.ai/en/0.4.x/tutorials/models/1_gnn/4_rgcn.html # simplify by setting num_bases = num_rels = 3 class RGCNGRU(nn.Module): def __init__( self, in_feats=64, out_feats=64, num_layers=2 ): super(RGCNGRU, self).__init__() self.in_feats = in_feats self.out_feats = out_feats self.num_layers = num_layers # weight bases in equation (3) self.weight = nn.Parameter( torch.Tensor(3, self.in_feats, self.out_feats) ) nn.init.kaiming_uniform_( self.weight, mode='fan_in', nonlinearity='relu' ) self.gru = nn.GRU( input_size=self.in_feats, hidden_size=self.out_feats, num_layers=1, # for stacked GRU's, not our use case bias=True, dropout=0, # we'll use Batchnorm instead ) self.batchnorm = nn.BatchNorm1d(self.out_feats) def extra_repr(self): return 'in_feats={}, out_feats={}'.format( self.in_feats, self.out_feats ) def forward(self, graph): weight = self.weight # At each edge, multiply the state h from the source node # with a linear weight W_(edge_type) def rgcn_msg(edges): w = weight[edges.data['rel_type']] n = edges.data['norm'] msg = torch.bmm(edges.src['output'].unsqueeze(1), w).squeeze() msg = torch.bmm(n.reshape(-1, 1, 1), msg.unsqueeze(1)).squeeze() return {'m': msg} # At each node, we want the summed messages W_(edge_type) \dot h # from the incomming edges rgcn_reduce = fn.sum(msg='m', out='Swh') # Apply GRU to the sum(in_edges) W_(edge_type) \dot h def rgcn_apply(nodes): # Shape of h: [len(graph), self.out_feats] # GRU wants: [seq_len, batch, input_size] output, h_next = self.gru( nodes.data.pop('Swh').view(1, len(graph), self.out_feats), nodes.data.pop('h').view(1, len(graph), self.out_feats) ) return { 'h': h_next.view(len(graph), self.out_feats), 'output': output.view(len(graph), self.out_feats) } # the embedded node features are the first input to the GRU layer graph.ndata['output'] = graph.ndata.pop('h') # initial hidden state of the GRU cell graph.ndata['h'] = torch.zeros([len(graph), self.out_feats]) # each step will take the output and hidden state of t-1, # and create a new output and hidden state for step t for l in range(self.num_layers): graph.update_all(rgcn_msg, rgcn_reduce, rgcn_apply) # Batchnorm graph.ndata.pop('h') output = graph.ndata.pop('output') graph.ndata['h'] = self.batchnorm(output) return graph class Net(nn.Module): def __init__( self, in_feats=16, h_layers=2, h_dims=16, out_feats_a=2, out_feats_b=16, activation='relu' ): super(Net, self).__init__() self.h_layers = h_layers self.h_dims = h_dims self.in_feats = in_feats self.out_feats_a = out_feats_a self.out_feats_b = out_feats_b self.activation = activation # Embedding self.embedding = Embedding( in_feats=self.in_feats, out_feats=self.h_dims ) # Hidden layers, each of h_dims to h_dims self.kernel = RGCNGRU( in_feats=self.h_dims, out_feats=self.h_dims, num_layers=self.h_layers ) # a MLP per task self.task_a = MLP( in_feats=self.h_dims, out_feats=out_feats_a, h_layers=2 ) self.task_b = MLP( in_feats=self.h_dims, out_feats=out_feats_b, h_layers=2 ) # Weight factors for combining the two losses self.loss_a = torch.nn.Parameter(torch.tensor([0.])) self.loss_b = torch.nn.Parameter(torch.tensor([0.])) def forward(self, g): # Linear transform of one-hot-encoding to internal representation g.ndata['h'] = self.embedding(g.ndata['v']) # Hidden layers, each of h_dims to h_dims g = self.kernel(g) # MLP output x_a = self.task_a(g.ndata['h']) x_b = self.task_b(g.ndata['h']) return x_a, x_b def label(self, gs): logitsf, logitsr = self(gs) logitsf = torch.softmax(logitsf, dim=1) logitsr = torch.softmax(logitsr, dim=1) frame_chance, frame_labels = torch.max(logitsf, dim=1) role_chance, role_labels = torch.max(logitsr, dim=1) frame_labels = frame_codec.inverse_transform(frame_labels) role_labels = role_codec.inverse_transform(role_labels) return frame_labels, role_labels, frame_chance, role_chance
import requests import bs4 import typing import pathlib class Libgen: def __init__( self, site: str = "libgen.is", verbose: bool = False, headers: dict = {"User-Agent": "Not A Bot"}, ): self.site = site self.url = f"https://{self.site}" self.headers = headers def get_book(self, book: str, page: int = 1) -> dict: search = f'{self.url}/search.php?&req={"+".join(book.split(" "))}&page={page}' results = requests.get(search, headers=self.headers) soup = bs4.BeautifulSoup(results.content, "html5lib") d = {} for _index_1, _content_1 in enumerate(soup.find_all("tr")): if _index_1 not in [0, 1, 2, len(soup.find_all("tr")) - 1]: id = "" for _index_2, _content_2 in enumerate(_content_1.find_all("td")): if _index_2 == 0: d[_content_2.text] = {} d[_content_2.text]["authors"] = [] id = _content_2.text links = _content_2.find_all("a") for _content_3 in links: if "column=author" in _content_3.get("href"): d[id]["authors"].append(_content_3.text) elif "column[]=author" in _content_3.get("href"): d[id]["authors"].append(_content_3.text) elif _content_3.get("href").startswith("book/index.php"): try: title = _content_3.text.replace( _content_3.find("i").text, "" ) except AttributeError: title = _content_3.text d[id]["title"] = title d[id]["link"] = _content_3.get("href").split("md5=")[1] return d def get_download_links(self, link): content = requests.get(f"http://library.lol/main/{link}", headers=self.headers) soup = bs4.BeautifulSoup(content.content, "html5lib") _links = soup.find("ul").find_all("a") links = [] for i in _links: links.append(i.get("href")) return links def download_book(self, link: str, path: typing.Union[str, pathlib.Path]): content = requests.get(link, headers=self.headers).content with open(path, "wb") as f: f.write(content)
from datetime import datetime import json colors = { "❤️": 731625542490783814, # red "💛": 731625689660522556, # yellow "💚": 731625734338248775, # green "💙": 731625764981702716, # blue "💜": 731625799307755660, # purple } # with open("data/db/guilds/1","w") as f: # json.dump(colors,f) # # with open("data/db/guilds/1","r") as f: # data = json.load(f) # # print(data) # print(data.keys()) # # from lib.db import db # # version = db.record("PRAGMA user_version") # # b = db.record("SELECT COUNT(*) AS CNT FROM pragma_table_info('guilds') WHERE name = ?", "StarredChannel") # # if version: # version = version[0] # print(version) # db.execute(f"PRAGMA user_version = {version + 1}") # print(db.record("PRAGMA user_version")) def check_xp_formula(): from random import randint xp = 0 lvl =0 for i in range(1000): xp +=randint(10,20) lvl = int(((xp)//42)**0.55) print(i+1,xp,lvl) if __name__ == '__main__': check_xp_formula()
import mpl_toolkits.mplot3d import matplotlib.pyplot as plt import numpy as np def fn(x, y): """f(x, y) = (1/20) * x**2 + y**2""" return x**2 / 20 + y**2 def fn_derivative(x, y): return x/10, 2*y if __name__ == '__main__': x = np.linspace(-10, 10, 100) # x 좌표들 y = np.linspace(-10, 10, 100) # y 좌표들 # 3차원 그래프를 그리기 위해서 X, Y = np.meshgrid(x, y) Z = fn(X, Y) fig = plt.figure() ax = plt.axes(projection='3d') # projection 파라미터를 사용하려면 mpl_toolkits.mplot3d 패키지가 필요 ax.contour3D(X, Y, Z, 100) plt.xlabel('x') plt.ylabel('y') plt.show() # 등고선(contour) 그래프 plt.contour(X, Y, Z, 100, cmap='binary') plt.xlabel('x') plt.ylabel('y') plt.axis('equal') plt.show()
"""Portal. The entrypoint is Portal, a rule that teleports a sprite from one portal sprite position to another. """ from . import abstract_rule import numpy as np class Portal(abstract_rule.AbstractRule): """Makes a sprite teleport if it enters a portal sprite.""" def __init__(self, teleporting_layer, portal_layer): """Constructor. The environment state must have an even number of sprites in portal_layer, because portals are paired up in order. I.e. if there are 4 portals, the first two will teleport to each other and the second two will teleport to each other. Also, once a sprite has teleported, it cannot immediately teleport again until it exits the portal sprite. This is kept track of by self._currently_teleporting, and is necessary to prevent a sprite from immediately teleporting back and forth between portals. Args: teleporting_layer: String. Must be a key in the environment state. Sprites in this layer will be teleported from the state if their position enters a sprite in portal_layer. portal_layer: String. Must be a key in the environment state. """ self._teleporting_layer = teleporting_layer self._portal_layer = portal_layer def reset(self, state, meta_state): del state del meta_state self._currently_teleporting = set() def step(self, state, meta_state): """Apply rule to state. Teleport sprites in teleporting layer if they have entered a portal sprite, unless they are in self._currently_teleporting. """ del meta_state portals = state[self._portal_layer] num_portals = len(portals) if num_portals % 2 != 0: raise ValueError( 'There must be an even number of portals, but you have {} ' 'portals.'.format(num_portals)) for sprite in state[self._teleporting_layer]: in_portals = [portal.contains_point(sprite.position) for portal in portals] in_portal_inds = np.argwhere(in_portals)[:, 0] if len(in_portal_inds) == 0: # Sprite is not in any portal, so make sure we don't think # sprite is currently teleporting self._currently_teleporting.discard(sprite.id) continue if sprite.id in self._currently_teleporting: # To prevent immediately teleporting back and forth between # portals continue # Teleport the sprite entry_ind = in_portal_inds[0] exit_ind = entry_ind - 1 if entry_ind % 2 else entry_ind + 1 sprite.position = np.copy(portals[exit_ind].position) self._currently_teleporting.add(sprite.id)
# -*- encoding: utf-8 -*- { 'name': 'Odooku Amazon S3', 'description': 'Amazon S3 integration for Odoo', 'version': '0.1', 'category': 'Hidden', 'author': 'Raymond Reggers', 'depends': ['base'], 'data': [], 'auto_install': True, 'post_init_hook': '_force_s3_storage', }
description = 'vacuum system monitoring' group = 'lowlevel' tango_base = 'tango://phys.kws3.frm2:10000/kws3/' s7_analog = tango_base + 's7_analog/' devices = dict( pi2_1 = device('nicos.devices.tango.Sensor', description = 'pressure in selector', tangodevice = s7_analog + 'pi2_1', unit = 'mbar', fmtstr = '%.1e', lowlevel = True, ), pi2_2 = device('nicos.devices.tango.Sensor', description = 'pressure in tube 1', tangodevice = s7_analog + 'pi2_2', unit = 'mbar', fmtstr = '%.1e', lowlevel = True, ), pi3_1 = device('nicos.devices.tango.Sensor', description = 'pressure in mirror chamber', tangodevice = s7_analog + 'pi3_1', unit = 'mbar', fmtstr = '%.1e', lowlevel = True, ), pi1_1 = device('nicos.devices.tango.Sensor', description = 'pressure in sample chamber 1', tangodevice = s7_analog + 'pi1_1', unit = 'mbar', fmtstr = '%.1e', lowlevel = True, ), pi2_4 = device('nicos.devices.tango.Sensor', description = 'pressure in tube 2', tangodevice = s7_analog + 'pi2_4', unit = 'mbar', fmtstr = '%.1e', lowlevel = True, ), pi1_2 = device('nicos.devices.tango.Sensor', description = 'pressure in sample chamber 2', tangodevice = s7_analog + 'pi1_2', unit = 'mbar', fmtstr = '%.1e', lowlevel = True, ), pi1_3 = device('nicos.devices.tango.Sensor', description = 'pressure in tube 3', tangodevice = s7_analog + 'pi1_3', unit = 'mbar', fmtstr = '%.1e', lowlevel = True, ), )
# @filename:generate_conformers.py # @usage: # @author: AbhiramG # @description: generates conformers for each mol2 file in folder # @tags:Docking # @version: 1.0 beta # @date: Tuesday Jan 13 2015 import os import sys import mds import glob import time start_time = time.time() library_ligand = [] # read all the molecules in a directory and adds them to a list library_ligand = glob.glob(os.getcwd() + '/*.mol2') mds.enableDiagnosticOutput() # enable verbose output for index in library_ligand: print "start of molecule: " + os.path.basename(index) mol = mds.readMolecule(index) rotBonds = mds.getRotatableBonds(mol) # get rotatable bonds print "no of rotatable bonds: " + str(len(rotBonds)) # generate conformers, conformers are stored in caFileName caFileName = mds.generateConformer( mol, caType=2, noOfSeeds=10, FF=mds.FF.MMFF, rmsdCutoff=0.8, dieleFunc=1, rotatableBondList=rotBonds) print "\t =================>\t XXXXXXXXXXXXXXXXXX\t <==================" print "\n\n" mds.deleteMolecule(mol) sys.stdout.flush() print "End of program" print "Total time:" + str(round(((time.time() - start_time)), 3)) + " seconds"
num1 = 10 mum2 = 20 num3 = 30 num4 = 40
from numpy import concatenate, hstack, ones, zeros from numpy.random import permutation, rand, randn # Fonction carré def fcarre(x): return x * x # Génère n vrais échantillons def generate_real_samples(n): # Génère un vecteur d'entrées entre -0.5 et 0.5 X = rand(n) - 0.5 # Génère le vecteur de sortie de fcarre(x) Y = fcarre(X) # Transforme les vecteurs en matrice 1 dimension X = X.reshape(n, 1) Y = Y.reshape(n, 1) # Concatène les 2 matrice 1 dimension # pour obtenir une matrice à 2 dimension XY = hstack((X, Y)) # Crée une matrice 1 dimension remplie de 1 pour # indiquer qu'il s'agit de vrais échantillons Z = ones((n, 1)) return XY, Z """ # Génère n faux échantillons def generate_fake_samples(n): # Génère un vecteur entre -0.5 et 0.5 x1 = rand(n) - 0.5 # Génère un vecteur entre -0.5 et 0.5 x2 = rand(n) - 0.5 # Transforme les vecteurs en matrice 1 dimension x1 = x1.reshape(n, 1) x2 = x2.reshape(n, 1) # Concatène les 2 matrice 1 dimension # pour obtenir une matrice à 2 dimension x = hstack((x1, x2)) # Crée une matrice 1 dimension remplie de 0 pour # indiquer qu'il s'agit de faux échantillons y = zeros((n, 1)) return x, y # Génère n faux échantillons à l'aide du générateur def generate_fake_samples(generator, latent_dim, n): # Génère les points de l'espace latent x_input = generate_latent_points(latent_dim[0], n) # Génère les échantillons à l'aide du générateur x = generator.predict(x_input) # Crée une matrice 1 dimension remplie de 0 pour # indiquer qu'il s'agit de faux échantillons y = zeros((n, 1)) return x, y # Génère n/2 vrais échantillons et n/2 faux échantillons def generate_samples(n): half_n = int(n / 2) # Génère des vrais échantillons x_real, y_real = generate_real_samples(half_n) # Génère les faux échantillons x_fake, y_fake = generate_fake_samples(half_n) # Concatène les vrais et faux échantillons x = concatenate((x_real, x_fake)) y = concatenate((y_real, y_fake)) # Mélange x et y dans le même ordre assert len(x) == len(y) p = permutation(len(y)) return x[p], y[p] # Générer les points de l'espace latent def generate_latent_points(latent_dim, n): # Génère les points à l'aide de la fonction randn() utilisant la distribution gaussienne x_input = randn(latent_dim * n) # Remodèle dans une matrice à plusieurs dimensions x_input = x_input.reshape(n, latent_dim) return x_input """
# coding=utf-8 # # pylint: disable = wildcard-import, unused-wildcard-import # pylint: disable = missing-docstring, invalid-name # pylint: disable = too-many-statements, protected-access, unused-variable """ Copyright (c) 2019, Alexander Magola. All rights reserved. license: BSD 3-Clause License, see LICENSE for more details. """ import os from copy import deepcopy import pytest from zm.autodict import AutoDict from zm.error import * from zm.constants import * from zm.pathutils import unfoldPath from zm.buildconf.processing import convertTaskParamValue, Config as BuildConfig from tests.common import asRealConf, randomstr joinpath = os.path.join @pytest.mark.usefixtures("unsetEnviron") class TestSuite(object): def testInit(self, testingBuildConf): buildconf = testingBuildConf conf = asRealConf(buildconf) bconf = BuildConfig(conf) with pytest.raises(ZenMakeError): btype = bconf.selectedBuildType assert bconf._conf == conf assert bconf.projectName == buildconf.project.name assert bconf.projectVersion == buildconf.project.version def testDefaultBuildType(self, testingBuildConf): buildconf = testingBuildConf bconf = BuildConfig(asRealConf(buildconf)) assert bconf.defaultBuildType == '' buildconf.buildtypes.mybuildtype = {} buildconf.buildtypes.abc = {} buildconf.buildtypes.default = 'mybuildtype' # CASE: buildconf.buildtypes.default buildconf = deepcopy(testingBuildConf) bconf = BuildConfig(asRealConf(buildconf)) assert bconf.defaultBuildType == 'mybuildtype' # CASE: buildconf.buildtypes.default is not valid in # buildconf.platforms buildconf = deepcopy(testingBuildConf) buildconf.platforms = AutoDict({ PLATFORM : AutoDict(valid = ['abc'], ) }) with pytest.raises(ZenMakeError): bconf = BuildConfig(asRealConf(buildconf)) bt = bconf.defaultBuildType buildconf.platforms = AutoDict({ PLATFORM : AutoDict(valid = ['mybuildtype'], ) }) bconf = BuildConfig(asRealConf(buildconf)) assert bconf.defaultBuildType == 'mybuildtype' # CASE: buildconf.platforms[..].default buildconf = deepcopy(testingBuildConf) buildconf.platforms = AutoDict({ PLATFORM : AutoDict(valid = ['abc'], default = 'abc') }) bconf = BuildConfig(asRealConf(buildconf)) assert bconf.defaultBuildType == 'abc' # CASE: buildconf.platforms[..].default doesn't exist buildconf = deepcopy(testingBuildConf) buildconf.platforms[PLATFORM].default = 'void' with pytest.raises(ZenMakeError): bconf = BuildConfig(asRealConf(buildconf)) bt = bconf.defaultBuildType # CASE: global buildconf.byfilter[..].default-buildtype buildconf = deepcopy(testingBuildConf) buildconf.byfilter = [ { 'for' : {}, 'set' : { 'default-buildtype' : 'abc' } } ] bconf = BuildConfig(asRealConf(buildconf)) assert bconf.defaultBuildType == 'abc' # CASE: platform buildconf.byfilter[..].default-buildtype buildconf = deepcopy(testingBuildConf) buildconf.byfilter = [ { 'for' : { 'platform' : PLATFORM }, 'set' : { 'default-buildtype' : 'abc' } } ] bconf = BuildConfig(asRealConf(buildconf)) assert bconf.defaultBuildType == 'abc' buildconf.byfilter = [ { 'for' : { 'platform' : PLATFORM + randomstr() }, 'set' : { 'default-buildtype' : 'abc' } } ] bconf = BuildConfig(asRealConf(buildconf)) assert bconf.defaultBuildType == 'mybuildtype' def testSelectedBuildType(self, testingBuildConf): buildconf = testingBuildConf buildconf.buildtypes.mybuildtype = {} buildconf.buildtypes.default = 'mybuildtype' bconf = BuildConfig(asRealConf(buildconf)) with pytest.raises(ZenMakeLogicError): bt = bconf.selectedBuildType buildtype = 'mybuildtype' bconf.applyBuildType(buildtype) assert bconf.selectedBuildType == buildtype def _checkSupportedBuildTypes(self, buildconf, expected): bconf = BuildConfig(asRealConf(buildconf)) assert sorted(bconf.supportedBuildTypes) == sorted(expected) def testSupportedBuildTypes(self, testingBuildConf): buildconf = testingBuildConf buildconf.buildtypes.mybuildtype = {} buildconf.buildtypes.abcbt = {} buildconf.buildtypes.default = 'mybuildtype' # CASE: buildtypes in buildconf.buildtypes buildconf = deepcopy(testingBuildConf) self._checkSupportedBuildTypes(buildconf, [ 'mybuildtype', 'abcbt' ]) # CASE: buildtypes in buildconf.buildtypes and empty value of # buildconf.platforms[PLATFORM] buildconf = deepcopy(testingBuildConf) buildconf.platforms[PLATFORM] = AutoDict() with pytest.raises(ZenMakeError): bconf = BuildConfig(asRealConf(buildconf)) empty = bconf.supportedBuildTypes # CASE: buildtypes in buildconf.buildtypes and non-empty value of # buildconf.platforms[PLATFORM] with non-existent value. buildconf = deepcopy(testingBuildConf) buildconf.buildtypes.extrabtype = {} buildconf.platforms[PLATFORM].valid = [ 'mybuildtype', 'non-existent' ] self._checkSupportedBuildTypes(buildconf, [ 'mybuildtype', 'non-existent' ]) # CASE: buildtypes in buildconf.buildtypes and non-empty value of # buildconf.platforms[PLATFORM] with valid values. buildconf = deepcopy(testingBuildConf) buildconf.buildtypes.extrabtype = {} buildconf.platforms[PLATFORM].valid = [ 'mybuildtype', 'extrabtype' ] self._checkSupportedBuildTypes(buildconf, [ 'mybuildtype', 'extrabtype' ]) # CASE: buildtypes in buildconf.buildtypes and non-empty value of # buildconf.platforms[PLATFORM] with valid values and default build type. buildconf = deepcopy(testingBuildConf) buildconf.buildtypes.extrabtype = {} buildconf.buildtypes.default = 'mybuildtype' buildconf.platforms[PLATFORM].valid = [ 'mybuildtype', 'extrabtype' ] self._checkSupportedBuildTypes(buildconf, [ 'mybuildtype', 'extrabtype' ]) def testSupportedBuildTypesByfilter(self, testingBuildConf): buildconf = testingBuildConf buildconf.buildtypes.default = 'b1' # CASE: no buildtypes in buildconf.buildtypes and global # buildtypes in byfilter buildconf = deepcopy(testingBuildConf) buildconf.byfilter = [ { 'for' : { 'buildtype' : 'b1 b2' } } ] self._checkSupportedBuildTypes(buildconf, [ 'b1', 'b2' ]) buildconf.byfilter = [ { 'for' : { 'buildtype' : 'b1 b2' } }, { 'for' : { 'buildtype' : ['b3', 'b2'] } } ] self._checkSupportedBuildTypes(buildconf, [ 'b1', 'b2', 'b3' ]) # CASE: no buildtypes in buildconf.buildtypes and platform # buildtypes in byfilter buildconf = deepcopy(testingBuildConf) buildconf.buildtypes.default = 'b2' buildconf.byfilter = [ { 'for' : { 'buildtype' : 'b1 b2', 'platform' : PLATFORM } } ] self._checkSupportedBuildTypes(buildconf, [ 'b1', 'b2' ]) buildconf.byfilter = [ { 'for' : { 'buildtype' : 'b1 b2', 'platform' : PLATFORM + randomstr() } }, { 'for' : { 'buildtype' : 'b4 b2', 'platform' : PLATFORM } }, { 'for' : { 'buildtype' : 'b5 b6', 'platform' : PLATFORM } } ] self._checkSupportedBuildTypes(buildconf, [ 'b4', 'b2', 'b5', 'b6' ]) # CASE: no buildtypes in buildconf.buildtypes and global/platform # buildtypes in byfilter buildconf = deepcopy(testingBuildConf) buildconf.byfilter = [ { 'for' : { 'buildtype' : 'b1 b2', 'platform' : PLATFORM } }, { 'for' : { 'buildtype' : 'b3 b2', } }, ] self._checkSupportedBuildTypes(buildconf, [ 'b1', 'b2', 'b3' ]) buildconf.buildtypes.default = 'b2' buildconf.byfilter = [ { 'for' : { 'buildtype' : 'b1 b2', 'platform' : PLATFORM + randomstr() } }, { 'for' : { 'buildtype' : 'b3 b2', } }, ] self._checkSupportedBuildTypes(buildconf, [ 'b2', 'b3' ]) # CASE: buildtypes in buildconf.buildtypes and global/platform # buildtypes in byfilter buildconf = deepcopy(testingBuildConf) buildconf.buildtypes.gb1 = {} buildconf.buildtypes.default = 'b2' buildconf.byfilter = [ { 'for' : { 'buildtype' : 'b1 b2' } }, ] self._checkSupportedBuildTypes(buildconf, [ 'gb1', 'b1', 'b2' ]) buildconf.byfilter = [ { 'for' : { 'buildtype' : 'b1 b2', 'platform' : PLATFORM } }, ] self._checkSupportedBuildTypes(buildconf, [ 'gb1', 'b1', 'b2' ]) buildconf.byfilter = [ { 'for' : { 'buildtype' : 'b1 b2', 'platform' : PLATFORM + randomstr() } }, { 'for' : { 'buildtype' : 'b3 b2', } }, ] self._checkSupportedBuildTypes(buildconf, [ 'gb1', 'b2', 'b3' ]) # CASE: buildtypes in buildconf.buildtypes, non-empty buildconf.platforms # and global/platform buildtypes in byfilter buildconf = deepcopy(testingBuildConf) buildconf.buildtypes.b1 = {} buildconf.buildtypes.b2 = {} buildconf.platforms[PLATFORM].valid = [ 'b1', 'b2' ] buildconf.byfilter = [ { 'for' : { 'buildtype' : 'b3 b4' } }, ] self._checkSupportedBuildTypes(buildconf, [ 'b1', 'b2', 'b3', 'b4' ]) buildconf.byfilter = [ { 'for' : { 'buildtype' : 'b3 b4', 'platform' : PLATFORM } }, ] self._checkSupportedBuildTypes(buildconf, [ 'b1', 'b2', 'b3', 'b4' ]) buildconf.byfilter = [ { 'for' : { 'buildtype' : 'b5 b3', 'platform' : PLATFORM + randomstr() } }, { 'for' : { 'buildtype' : 'b4 b3', } }, ] self._checkSupportedBuildTypes(buildconf, [ 'b1', 'b2', 'b3', 'b4' ]) buildconf.byfilter = [ { 'for' : { 'buildtype' : 'b1' } }, ] self._checkSupportedBuildTypes(buildconf, [ 'b1', 'b2' ]) def testApplyBuildType(self, testingBuildConf): buildtype = 'mybuildtype' buildconf = testingBuildConf buildconf.buildtypes.mybuildtype = {} buildconf.buildtypes.default = 'mybuildtype' bconf = BuildConfig(asRealConf(buildconf)) with pytest.raises(ZenMakeLogicError): bt = bconf.selectedBuildType with pytest.raises(ZenMakeError): bconf.applyBuildType(None) bconf.applyBuildType(buildtype) # Hm, all other results of this method is checked in testSupportedBuildTypes assert bconf.selectedBuildType def _checkTasks(self, buildconf, buildtype, expected): bconf = BuildConfig(asRealConf(buildconf)) bconf.applyBuildType(buildtype) expected = expected.copy() for task in expected: taskParams = expected[task] taskParams['$startdir'] = '.' taskParams['$bconf'] = bconf for name, value in taskParams.items(): taskParams[name] = value convertTaskParamValue(taskParams, name) assert bconf.tasks == expected # to force covering of cache assert bconf.tasks == expected def testTasks(self, testingBuildConf): buildconf = testingBuildConf # CASE: invalid use bconf = BuildConfig(asRealConf(buildconf)) with pytest.raises(ZenMakeLogicError): empty = bconf.tasks buildconf.buildtypes.default = 'mybuildtype' buildconf.buildtypes.mybuildtype = {} buildconf.buildtypes.abcbt = {} buildtype = 'mybuildtype' # CASE: just empty buildconf.tasks buildconf = deepcopy(testingBuildConf) bconf = BuildConfig(asRealConf(buildconf)) bconf.applyBuildType(buildtype) assert bconf.tasks == {} # this assert just for in case assert bconf.selectedBuildType == 'mybuildtype' # CASE: just some buildconf.tasks, nothing else buildconf = deepcopy(testingBuildConf) buildconf.tasks.test1.name = 'test1' buildconf.tasks.test2.name = 'test2' buildconf.tasks.test1.param1 = '1' buildconf.tasks.test2.param2 = '2' self._checkTasks(buildconf, buildtype, buildconf.tasks) # CASE: some buildconf.tasks and buildconf.buildtypes # with non-empty selected buildtype # buildtype 'mybuildtype' should be selected at this moment buildconf = deepcopy(testingBuildConf) buildconf.tasks.test1.name = 'test1' buildconf.tasks.test2.name = 'test2' buildconf.tasks.test1.param1 = '111' buildconf.tasks.test2.param2 = '222' buildconf.buildtypes.mybuildtype = { 'cxxflags' : '-O2' } expected = deepcopy(buildconf.tasks) for task in expected: expected[task].update(deepcopy(buildconf.buildtypes.mybuildtype)) # self checking assert expected.test1.cxxflags == '-O2' assert expected.test2.cxxflags == '-O2' self._checkTasks(buildconf, buildtype, expected) # CASE: some buildconf.tasks and buildconf.buildtypes # with non-empty selected buildtype. Both have some same params and # params from buildconf.buildtypes must override params from # buildconf.tasks buildconf = deepcopy(testingBuildConf) buildconf.tasks.test1.name = 'test1' buildconf.tasks.test2.name = 'test2' buildconf.tasks.test1.param1 = 'p1' buildconf.tasks.test2.cxxflags = '-Os' buildconf.tasks.test2.toolchain = 'auto-c' buildconf.buildtypes.mybuildtype = { 'cxxflags' : '-O2', 'toolchain' : 'gcc', } expected = deepcopy(buildconf.tasks) for task in expected: expected[task].update(deepcopy(buildconf.buildtypes.mybuildtype)) # self checking assert expected.test1.cxxflags == '-O2' assert expected.test2.cxxflags == '-O2' assert expected.test1.toolchain == 'gcc' assert expected.test2.toolchain == 'gcc' self._checkTasks(buildconf, buildtype, expected) def testTasksByfilter(self, testingBuildConf): buildtype = 'mybt' baseByfilter = [ { 'for' : { 'buildtype' : 'mybt' } }, ] testingBuildConf.buildtypes.default = 'mybt' # CASE: no tasks in buildconf.tasks, some tasks in buildconf.byfilter buildconf = deepcopy(testingBuildConf) buildconf.byfilter = baseByfilter + [ { 'for' : { 'task' : 't1' }, 'set' : { 'param1' : '1' } }, { 'for' : { 'task' : 't2' }, 'set' : { 'param2' : '2' } }, ] expected = { 't1': {'name' : 't1', 'param1': '1'}, 't2': {'name' : 't2', 'param2': '2'} } self._checkTasks(buildconf, buildtype, expected) # CASE: no tasks in buildconf.tasks, some tasks in buildconf.byfilter # No param 'default-buildtype' in resulting tasks buildconf = deepcopy(testingBuildConf) buildconf.byfilter = baseByfilter + [ { 'for' : { 'task' : 't1' }, 'set' : { 'param1' : '1' } }, { 'for' : { 'task' : 't2' }, 'set' : { 'param2' : '2' } }, { 'for' : {}, 'set' : { 'default-buildtype' : 'mybt' } }, ] self._checkTasks(buildconf, buildtype, { 't1': {'name' : 't1', 'param1': '1'}, 't2': {'name' : 't2', 'param2': '2'} }) # CASE: no tasks in buildconf.tasks, some tasks in buildconf.byfilter # with non-empty selected buildtype buildconf = deepcopy(testingBuildConf) buildconf.byfilter = baseByfilter + [ { 'for' : { 'task' : 't1', 'buildtype' : 'b1 b2', }, 'set' : { 'param1' : '1' } }, { 'for' : { 'task' : 't2', 'buildtype' : 'mybt', }, 'set' : { 'param2' : '2' } }, ] self._checkTasks(buildconf, buildtype, { 't1': {'name' : 't1'}, 't2': {'name' : 't2', 'param2': '2'} }) # CASE: no tasks in buildconf.tasks, some tasks in buildconf.byfilter # Applying for all tasks buildconf = deepcopy(testingBuildConf) buildconf.byfilter = baseByfilter + [ { 'for' : {}, 'set' : { 'p3' : '3' } }, { 'for' : { 'task' : 't1' }, 'set' : { 'p1' : '1' } }, { 'for' : { 'task' : 't2' }, 'set' : { 'p2' : '2' } }, ] self._checkTasks(buildconf, buildtype, { 't1': {'name' : 't1', 'p1': '1', 'p3': '3'}, 't2': {'name' : 't2', 'p2': '2', 'p3': '3'}, }) # CASE: no tasks in buildconf.tasks, some tasks in buildconf.byfilter # Merging/replacing params in tasks buildconf = deepcopy(testingBuildConf) buildconf.byfilter = baseByfilter + [ { 'for' : {}, 'set' : { 'p3' : '3' } }, { 'for' : { 'task' : 't1' }, 'set' : { 'p1' : '1', 'p2' : '2' } }, { 'for' : { 'task' : 't2' }, 'set' : { 'p2' : '22' } }, { 'for' : { 'task' : 't1' }, 'set' : { 'p4' : '4', 'p2' : '-2-' } }, ] self._checkTasks(buildconf, buildtype, { 't1': {'name' : 't1', 'p1': '1', 'p3': '3', 'p2' : '-2-', 'p4' : '4'}, 't2': {'name' : 't2', 'p2': '22', 'p3': '3'}, }) # CASE: no tasks in buildconf.tasks, some tasks in buildconf.byfilter # with non-empty platform buildconf = deepcopy(testingBuildConf) buildconf.byfilter = baseByfilter + [ { 'for' : { 'task' : 't1', }, 'set' : { 'p1' : '1' } }, { 'for' : { 'task' : 't2', 'platform' : PLATFORM, }, 'set' : { 'p2' : '2' } }, ] expected = { 't1': {'name' : 't1', 'p1': '1'}, 't2': {'name' : 't2', 'p2': '2'} } self._checkTasks(buildconf, buildtype, expected) buildconf.byfilter = baseByfilter + [ { 'for' : { 'task' : 't1', 'platform' : PLATFORM }, 'set' : { 'p1' : '1' } }, { 'for' : { 'task' : 't2', 'platform' : PLATFORM + randomstr(), }, 'set' : { 'p2' : '2' } }, ] expected = { 't1': {'name' : 't1', 'p1': '1'}, 't2': { 'name' : 't2' } } self._checkTasks(buildconf, buildtype, expected) # CASE: some tasks in buildconf.tasks, some tasks in buildconf.byfilter # complex merging buildconf = deepcopy(testingBuildConf) buildconf.tasks.t1.p1 = '1' buildconf.tasks.t2.p2 = '2' buildconf.tasks.t2.p3 = '2' buildconf.byfilter = baseByfilter + [ { 'for' : {}, 'set' : { 'p3' : '3' } }, { 'for' : { 'task' : 't3' }, 'set' : { 'p1' : '1', 'p2' : '2' } }, { 'for' : { 'task' : 't2' }, 'set' : { 'p1' : '11' } }, { 'for' : { 'task' : 't4' }, 'set' : { 'p5' : '1', 'p6' : '2' } }, ] self._checkTasks(buildconf, buildtype, { 't1': {'name' : 't1', 'p1': '1', 'p3': '3'}, 't2': {'name' : 't2', 'p1': '11', 'p2': '2', 'p3': '3'}, 't3': {'name' : 't3', 'p1': '1', 'p2': '2', 'p3': '3'}, 't4': {'name' : 't4', 'p5': '1', 'p6': '2', 'p3': '3'}, }) def testCustomToolchains(self, testingBuildConf, capsys): buildconf = testingBuildConf buildconf.buildtypes['debug-gxx'] = {} buildconf.buildtypes.default = 'debug-gxx' # CASE: no custom toolchains buildconf = deepcopy(testingBuildConf) bconf = BuildConfig(asRealConf(buildconf)) assert bconf.customToolchains == {} # CASE: one custom toolchain with fake path buildconf = deepcopy(testingBuildConf) buildconf.toolchains = { 'something' : { 'kind': 'auto-c++', 'CXX': joinpath('path', 'to', 'toolchain') }, } bconf = BuildConfig(asRealConf(buildconf)) confPaths = bconf.confPaths expected = deepcopy(buildconf.toolchains) expected['something']['vars'] = { 'CXX' : [unfoldPath(confPaths.startdir, buildconf.toolchains['something']['CXX'])] } del expected['something']['CXX'] assert bconf.customToolchains == expected captured = capsys.readouterr() assert "doesn't exist" in captured.err # to force covering of cache assert bconf.customToolchains == expected
import os import json import numpy as np import torchvision from .util import read_image, read_image_resize, resize_bbox class NoAnnotaion(Exception): pass class VRDBboxDataset: def __init__(self, data_dir, split='train'): self.data_dir = data_dir json_file = os.path.join(data_dir, "annotations_{0}.json".format(split)) self.data_json = json.load(open(json_file)) self.id_list = list(self.data_json.keys()) self.label_names = json.load(open(os.path.join(data_dir, "objects.json"))) self.predicates_name = json.load(open(os.path.join(data_dir, "predicates.json"))) self.img_dir = os.path.join(data_dir, "sg_dataset/sg_{0}_images".format(split)) # self.use_difficult = False self.return_difficult = False def __len__(self): return len(self.data_json) def get_example(self, i): anno = self.data_json[self.id_list[i]] if not anno: raise NoAnnotaion bbox = list() label = list() for pair in anno: # bbox=[ymin,xmin,ymax,xmax] _bb = pair["subject"]["bbox"] bbox.append([_bb[0], _bb[2], _bb[1], _bb[3]]) _bb = pair["object"]["bbox"] bbox.append([_bb[0], _bb[2], _bb[1], _bb[3]]) label.append(pair["subject"]["category"]) label.append(pair["object"]["category"]) bbox = np.stack(bbox).astype(np.float32) label = np.stack(label).astype(np.int32) img_file = os.path.join(self.img_dir, self.id_list[i]) img = read_image(img_file, color=True) return img, bbox, label, 0 __getitem__ = get_example class VRDFullDataset: def __init__(self, data_dir, split='train'): self.data_dir = data_dir json_file = os.path.join(data_dir, "annotations_{0}.json".format(split)) self.data_json = json.load(open(json_file)) self.id_list = list(self.data_json.keys()) self.label_names = json.load(open(os.path.join(data_dir, "objects.json"))) self.predicates_name = json.load(open(os.path.join(data_dir, "predicates.json"))) self.img_dir = os.path.join(data_dir, "sg_dataset/sg_{0}_images".format(split)) # all relationship triplets # (i, j, k) self.triplets = [] for _, item in self.data_json.items(): for anno in item: R = (anno["subject"]["category"], anno["object"]["category"], anno["predicate"]) if not R in self.triplets: self.triplets.append(R) def __len__(self): return len(self.data_json) def get_example(self, i): anno = self.data_json[self.id_list[i]] img_file = os.path.join(self.img_dir, self.id_list[i]) # img = read_image(img_file, color=True) (h, w), img = read_image_resize(img_file, color=True) D_list = [] for r in anno: i = r["subject"]["category"] j = r["object"]["category"] k = r["predicate"] O1 = [r["subject"]["bbox"][0], r["subject"]["bbox"][2], r["subject"]["bbox"][1], r["subject"]["bbox"][3]] O2 = [r["object"]["bbox"][0], r["object"]["bbox"][2], r["subject"]["bbox"][1], r["subject"]["bbox"][3]] O1, O2 = resize_bbox([O1, O2], (h, w), (224, 224)) D_list.append(((i, j, k), O1, O2)) return img, D_list __getitem__ = get_example if __name__ == '__main__': test = VRDFullDataset(r"F:\json_dataset_vrd")
class Solution(object): def find132pattern(self, nums): """ :type nums: List[int] :rtype: bool """ stack = [] s3 = -float("inf") for n in nums[::-1]: if n < s3: return True while stack and stack[-1] < n: s3 = stack.pop() stack.append(n) return False
# Un-comment the line for your Lab to run the tests. # Do NOT commit this file, since it will lead to CONFLICTS with teammates. # import labs.lab1_drive_system # import labs.lab2a_touch_sensor
""" Created on Fri May 7 2021 Copyright (c) 2021 - Joshua Sizer This code is licensed under MIT license (see LICENSE for details) """ def merge_sort(arr, low=0, high=None): """Sort the given array using merge sort. Runtime average and best case is O(nlog(n)). Arguments: arr: The array to sort. low: The beginning of the sub-array. high: The end of the sub-array. Returns: arr, but sorted. """ # The first time merge_sort is called, high # will likely be None because the user wants # to sort the entire array. if high is None: high = len(arr) - 1 # Base case of recursion. if high-low <= 0: return # Find the middle index of the array. In the # case of an odd-sized array, the left # sub-array will be bigger than the right # sub-array. middle = int(low + ((high-low) / 2)) # Sort the left and right sub-arrays merge_sort(arr, low, middle) merge_sort(arr, middle+1, high) # Merge the left and right sub-arrays merge(arr, low, middle, high) return arr def merge(arr, low, middle, high): """Merge the given sub-arrays into one larger sub-array that is in correct order. Arguments: arr: The array whose sections should be merged. low: The start index of the first sub-array. middle: The end index of the first sub-array. high: The end index of the second sub-array. Returns: arr, where the values in indices low to high are in sorted order. """ # Need auxillary array so that no information # is lost in the merging process. left = arr[low:middle + 1] right = arr[middle + 1:high+1] # i is the current position in the left # sub-array. j is the current position in the # right sub-array. k is the current position # in the original array. i = j = 0 k = low # Exhaust all elements in the left or right # array by adding them to the original array # in sequential, ascending order. while i < len(left) and j < len(right): to_add = None if left[i] < right[j]: to_add = left[i] i += 1 else: to_add = right[j] j += 1 arr[k] = to_add k += 1 # If the left sub-array still has elements, # add the remaining to the original array. while i < len(left): arr[k] = left[i] i += 1 k += 1 # If the right sub-array still has elements, # add the remaining to the original array while j < len(right): arr[k] = right[j] j += 1 k += 1 print(merge_sort([-919, -661, 263, -329, -672, -680, 629, 708, 717, 586]))
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- from msrest.serialization import Model class ApplySnapshotRequest(Model): """Request body for applying snapshot operation. All required parameters must be populated in order to send to Azure. :param object_id: Required. User specified target object id to be created from the snapshot. :type object_id: str :param mode: Snapshot applying mode. Currently only CreateNew is supported, which means the apply operation will fail if target subscription already contains an object of same type and using the same objectId. Users can specify the "objectId" in request body to avoid such conflicts. Possible values include: 'CreateNew'. Default value: "CreateNew" . :type mode: str or ~azure.cognitiveservices.vision.face.models.SnapshotApplyMode """ _validation = { 'object_id': {'required': True, 'max_length': 64, 'pattern': r'^[a-z0-9-_]+$'}, } _attribute_map = { 'object_id': {'key': 'objectId', 'type': 'str'}, 'mode': {'key': 'mode', 'type': 'SnapshotApplyMode'}, } def __init__(self, *, object_id: str, mode="CreateNew", **kwargs) -> None: super(ApplySnapshotRequest, self).__init__(**kwargs) self.object_id = object_id self.mode = mode
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import argparse import time import cProfile import paddle import paddle.fluid as fluid import paddle.fluid.profiler as profiler SEED = 1 DTYPE = "float32" # random seed must set before configuring the network. # fluid.default_startup_program().random_seed = SEED def cnn_model(data): conv_pool_1 = fluid.nets.simple_img_conv_pool( input=data, filter_size=5, num_filters=20, pool_size=2, pool_stride=2, act="relu") conv_pool_2 = fluid.nets.simple_img_conv_pool( input=conv_pool_1, filter_size=5, num_filters=50, pool_size=2, pool_stride=2, act="relu") # TODO(dzhwinter) : refine the initializer and random seed settting SIZE = 10 input_shape = conv_pool_2.shape param_shape = [reduce(lambda a, b: a * b, input_shape[1:], 1)] + [SIZE] scale = (2.0 / (param_shape[0]**2 * SIZE))**0.5 predict = fluid.layers.fc( input=conv_pool_2, size=SIZE, act="softmax", param_attr=fluid.param_attr.ParamAttr( initializer=fluid.initializer.NormalInitializer( loc=0.0, scale=scale))) return predict def get_model(args): # Input data images = fluid.layers.data(name='pixel', shape=[1, 28, 28], dtype=DTYPE) label = fluid.layers.data(name='label', shape=[1], dtype='int64') # Train program predict = cnn_model(images) cost = fluid.layers.cross_entropy(input=predict, label=label) avg_cost = fluid.layers.mean(x=cost) # Evaluator batch_size_tensor = fluid.layers.create_tensor(dtype='int64') batch_acc = fluid.layers.accuracy( input=predict, label=label, total=batch_size_tensor) # inference program inference_program = fluid.default_main_program().clone() # Optimization opt = fluid.optimizer.AdamOptimizer( learning_rate=0.001, beta1=0.9, beta2=0.999) # Reader train_reader = paddle.batch( paddle.dataset.mnist.train(), batch_size=args.batch_size) test_reader = paddle.batch( paddle.dataset.mnist.test(), batch_size=args.batch_size) return avg_cost, inference_program, opt, train_reader, test_reader, batch_acc
import requests r = requests.get("https://newsapi.org/v1/sources?category=general") #print(r.json()) sources = r.json()["sources"] ids = [] for source in sources: ids.append(source["id"]) print(ids)
#!/usr/bin/env python3 # Foundations of Python Network Programming, Third Edition # https://github.com/brandon-rhodes/fopnp/blob/m/py3/chapter01/getname.py import socket if __name__ == '__main__': hostname = 'maps.google.com' addr = socket.gethostbyname(hostname) print('The IP address of {} is {}'.format(hostname, addr))
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import migrations, models from django.utils.timezone import utc import datetime class Migration(migrations.Migration): dependencies = [ ('movietrailer', '0019_auto_20170320_2009'), ] operations = [ migrations.RemoveField( model_name='movie_reviews', name='review', ), migrations.AddField( model_name='movie_reviews', name='review_body', field=models.TextField(default=' '), ), migrations.AddField( model_name='movie_reviews', name='review_title', field=models.CharField(default=datetime.datetime(2017, 3, 20, 22, 32, 53, 321006, tzinfo=utc), max_length=50), preserve_default=False, ), migrations.AlterField( model_name='movie', name='datuploaded', field=models.DateTimeField(verbose_name='date published', default=datetime.datetime(2017, 3, 20, 22, 32, 31, 388532)), ), ]
import codecs from datetime import datetime from influxdb_client import WritePrecision, InfluxDBClient, Point from influxdb_client.client.write_api import SYNCHRONOUS with InfluxDBClient(url="http://localhost:8086", token="my-token", org="my-org", debug=False) as client: query_api = client.query_api() p = Point("my_measurement").tag("location", "Prague").field("temperature", 25.3).time(datetime.utcnow(), WritePrecision.MS) write_api = client.write_api(write_options=SYNCHRONOUS) # write using point structure write_api.write(bucket="my-bucket", record=p) line_protocol = p.to_line_protocol() print(line_protocol) # write using line protocol string write_api.write(bucket="my-bucket", record=line_protocol) # using Table structure tables = query_api.query('from(bucket:"my-bucket") |> range(start: -10m)') for table in tables: print(table) for record in table.records: # process record print(record.values) # using csv library csv_result = query_api.query_csv('from(bucket:"my-bucket") |> range(start: -10m)') val_count = 0 for record in csv_result: for cell in record: val_count += 1 print("val count: ", val_count) response = query_api.query_raw('from(bucket:"my-bucket") |> range(start: -10m)') print (codecs.decode(response.data))
from greshunkel.build import POSTS_DIR from greshunkel.utils import parse_variable from greshunkel.slimdown import Slimdown from greshunkel.review_loader import ReviewLoader import subprocess from os import listdir DEFAULT_LANGUAGE = "en" # Question: Hey qpfiffer, why is this indented all weird? # Man I don't know leave me alone. BASE_CONTEXT = { } def build_review_context(default_context): new_context = default_context outfile = open("reviews_processed.yml", "w") with open("reviews.yml") as reviews: review_loader = ReviewLoader(reviews, outfile) review_loader.process() new_context['reviews'] = review_loader.reviews new_context['regions'] = review_loader.regions new_context['locations'] = review_loader.locations outfile.close() return new_context def build_blog_context(default_context): default_context['POSTS'] = [] slimmin = Slimdown() for post in listdir(POSTS_DIR): if not post.endswith(".markdown"): continue new_post = {} dashes_seen = 0 reading_meta = True muh_file = open(POSTS_DIR + post) all_text = "" for line in muh_file: stripped = line.strip() if stripped == '---': dashes_seen += 1 if reading_meta and dashes_seen < 2: continue elif reading_meta and dashes_seen >= 2: reading_meta = False continue if reading_meta and ':' in line: split_line = stripped.split(":") new_post[split_line[0]] = split_line[1] if not reading_meta: all_text += line new_post['content'] = slimmin.render(all_text) new_post['preview'] = new_post['content'][:300] + "&hellip;" new_post['link'] = "blog/{}".format(post.replace("markdown", "html")) new_post['filename'] = post new_post['built_filename'] = post.replace("markdown", "html") default_context['POSTS'].append(new_post) muh_file.close() default_context['POSTS'] = sorted(default_context['POSTS'], key=lambda x: x["date"], reverse=True) return default_context def build_doc_context(default_context): include_dir = "./OlegDB/include/" output = subprocess.check_output("cd OlegDB && git tag --list", shell=True) default_context['docs'] = {} default_context['ALL_VERSIONS'] = [] versions = [output.strip()] versions.append("master") for version in versions: print("Checking out {}".format(version)) cmd = "cd OlegDB && git checkout {} &> /dev/null".format(version) subprocess.call(cmd, shell=True) headers = ["oleg.h", "defs.h"] headers = map(lambda x: "{}/{}".format(include_dir, x), headers) version_context = {} for header_file in headers: try: oleg_header = open(header_file) except IOError as e: print(e) continue docstring_special = ["DEFINE", "ENUM", "STRUCT", "DESCRIPTION", "RETURNS", "TYPEDEF"] reading_docs = False raw_code = "" doc_object = {} for line in oleg_header: docline = False stripped = line.strip() if stripped == '*/': continue # ThIs iS sOmE wEiRd FaLlThRouGh BuLlShIt if reading_docs and stripped.startswith("/*"): raise Exception("Yo I think you messed up your formatting. Read too far.") if "xXx" in line and "*" in stripped[:2]: (variable, value) = parse_variable(stripped) docline = True if not reading_docs: doc_object["name"] = value doc_object["type"] = variable doc_object["params"] = [] reading_docs = True else: if variable in docstring_special: # SpEcIaL doc_object[variable] = value else: doc_object["params"].append((variable, value)) if reading_docs and not docline and stripped != "": raw_code = raw_code + line if stripped == "" and reading_docs: reading_docs = False doc_object["raw_code"] = raw_code if version_context.get(doc_object["type"], False): version_context[doc_object["type"]].append(doc_object) else: version_context[doc_object["type"]] = [doc_object] doc_object = {} raw_code = "" oleg_header.close() key_raw_code = [x for x in version_context['DEFINE'] if x['name'] == 'KEY_SIZE'][0]['raw_code'] version_raw_code = [x for x in version_context['DEFINE'] if x['name'] == 'VERSION'][0]['raw_code'] extracted_ks = key_raw_code.split(' ')[2].strip() extracted_version = version_raw_code.split(' ')[2].strip() extracted_version = extracted_version.replace('"', '') if version == 'master': default_context['EXTRACTED_KEY_SIZE'] = extracted_ks default_context['EXTRACTED_VERSION'] = extracted_version default_context['docs'][extracted_version] = version_context default_context['ALL_VERSIONS'].append(extracted_version) return default_context
import sys import traceback from discord.ext.commands import * import discord import bot_database import bot_errors import bot_helpers f = open("data/token.txt") TOKEN = f.readline().strip() f.close() # Fallback for reaction adds / removes when Bot is offline: # 1. For every combination of {messageID + Emoji} that appears in the database, save all userIDs that reacted to it in the database # 2. When the bot starts up, check all the reactions on all of these messages and determine differences, then add / remove roles accordingly bot_database.initialise_db() intents = discord.Intents.default() intents.members = True bot = Bot(command_prefix='!', description="MisterL's utility bot", intents=intents) bot.load_extension("bot_events") bot.load_extension("bot_commands") @bot.event async def on_error(event, *args, **kwargs): exc_type, exc_value, exc_traceback = sys.exc_info() # Ignore ProcessAborted if exc_type in {bot_errors.ProcessAborted}: return if exc_type == bot_errors.MissingObjectException: print("Something was missing: ", end="") print(exc_value.object_id, end=" | ") print(exc_value.object_type) if exc_value.object_type == "role_id": print("Deleting outdated role!") await bot_database.delete_role(exc_value.object_id) return trace = exc_value.__traceback__ verbosity = 4 lines = traceback.format_exception(exc_type, exc_value, trace, verbosity) traceback_text = ''.join(lines) print(traceback_text, file=sys.stderr) print("Logging in...") bot.run(TOKEN)
#!/usr/bin/env python3 from .utils import * from .base import Wrapper from .runner_wrapper import Runner from .logger_wrapper import Logger from .torch_wrapper import Torch from .openai_atari_wrapper import OpenAIAtari from .reward_clipper_wrapper import RewardClipper from .timestep_wrapper import AddTimestep from .monitor_wrapper import Monitor from .recorder_wrapper import Recorder from .normalizer_wrapper import Normalizer from .state_normalizer_wrapper import StateNormalizer from .reward_normalizer_wrapper import RewardNormalizer from .state_lambda_wrapper import StateLambda from .action_lambda_wrapper import ActionLambda from .action_space_scaler_wrapper import ActionSpaceScaler from .visdom_logger_wrapper import VisdomLogger
import mysql.connector import pytest import socket import threading import time from httplib2 import Http from json import dumps import requests _total = 0 _executed = 0 _pass = 0 _fail = 0 _skip = 0 _error = 0 _xpass = 0 _xfail = 0 _current_error = "" _suite_name = None _test_name = None _test_status = None _test_start_time = None _excution_time = 0 _duration = 0 _previous_suite_name = "None" _initial_trigger = True _spass_tests = 0 _sfail_tests = 0 _sskip_tests = 0 _serror_tests = 0 _sxfail_tests = 0 _sxpass_tests = 0 pytest_historic = False pname = None con = None ocon = None id = None host = None edesc = None versions = None def pytest_addoption(parser): group = parser.getgroup('phistoric') group.addoption( '--historic', action='store', dest='historic', default="False", help='Enable or disable pushing results to mysql' ) group.addoption( '--hshost', action='store', dest='hshost', default="localhost", help='MySQL hosted machine ip address' ) group.addoption( '--hsname', action='store', dest='hsname', default="superuser", help='MYSQL credentials: User name' ) group.addoption( '--hspwd', action='store', dest='hspwd', default="passw0rd", help='MYSQL credentials: Password' ) group.addoption( '--hname', action='store', dest='hname', help='Project Name' ) group.addoption( '--hdesc', action='store', dest='hdesc', help='Execution description' ) @pytest.hookimpl() def pytest_sessionstart(session): global pytest_historic, pname, host, edesc pytest_historic = session.config.option.historic if pytest_historic == "False": return host = session.config.option.hshost uname = session.config.option.hsname pwd = session.config.option.hspwd pname = session.config.option.hname edesc = session.config.option.hdesc global con con = connect_to_mysql_db(host, uname, pwd, pname) global ocon ocon = connect_to_mysql_db(host, uname, pwd, "pytesthistoric") # insert values into execution table global id id = insert_into_execution_table(con, ocon, edesc, 0, 0, 0, 0, 0, 0, 0, 0, pname) def pytest_runtest_setup(item): if pytest_historic == "False": return global _test_start_time _test_start_time = time.time() @pytest.hookimpl(tryfirst=True, hookwrapper=True) def pytest_runtest_makereport(item, call): outcome = yield if pytest_historic == "False": return rep = outcome.get_result() global _suite_name _suite_name = rep.nodeid.split("::")[0] if _initial_trigger: update_previous_suite_name() set_initial_trigger() if str(_previous_suite_name) != str(_suite_name): insert_suite_results(_previous_suite_name) update_previous_suite_name() reset_counts() else: update_counts(rep) if rep.when == "call" and rep.passed: if hasattr(rep, "wasxfail"): increment_xpass() update_test_status("xPASS") global _current_error update_test_error("") else: increment_pass() update_test_status("PASS") update_test_error("") if rep.failed: if getattr(rep, "when", None) == "call": if hasattr(rep, "wasxfail"): increment_xpass() update_test_status("xPASS") update_test_error("") else: increment_fail() update_test_status("FAIL") if rep.longrepr: for line in rep.longreprtext.splitlines(): exception = line.startswith("E ") if exception: update_test_error(line.replace("E ", "")) else: increment_error() update_test_status("ERROR") if rep.longrepr: for line in rep.longreprtext.splitlines(): update_test_error(line) if rep.skipped: if hasattr(rep, "wasxfail"): increment_xfail() update_test_status("xFAIL") if rep.longrepr: for line in rep.longreprtext.splitlines(): exception = line.startswith("E ") if exception: update_test_error(line.replace("E ", "")) else: increment_skip() update_test_status("SKIP") if rep.longrepr: for line in rep.longreprtext.splitlines(): update_test_error(line) def pytest_runtest_teardown(item, nextitem): if pytest_historic == "False": return _test_end_time = time.time() global _test_name _test_name = item.name global _duration try: _duration = _test_end_time - _test_start_time except Exception as e: print(e) _duration = 0 # create list to save content insert_test_results() def pytest_sessionfinish(session): if pytest_historic == "False": return insert_suite_results(_suite_name) reset_counts() def post_webhook(results_url, failures_url, build_version, summary, webhook_url): """Hangouts Chat incoming webhook quickstart.""" url = webhook_url msg = f'Build: {build_version}\n{summary}\nResults: {results_url}\nFailures: {failures_url}' bot_message = { 'text': msg} message_headers = {'Content-Type': 'application/json; charset=UTF-8'} http_obj = Http() response = http_obj.request( uri=url, method='POST', headers=message_headers, body=dumps(bot_message), ) print(response) def get_ip(): s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) try: # doesn't even have to be reachable s.connect(('10.255.255.255', 1)) IP = s.getsockname()[0] except Exception: IP = '127.0.0.1' finally: s.close() return IP def upload_report(version_file, report_file): url = f'http://10.240.0.87:5000/upload-pytest-results' files = {'version_file': open(version_file, 'rb'), 'report_file': open(report_file, 'rb')} requests.post(url, files=files) def update_description(con, eid, description): cursorObj = con.cursor() sql = "UPDATE TB_EXECUTION SET Execution_Desc=%s WHERE Execution_Id=%s;" % (description, eid) cursorObj.execute(sql) con.commit() @pytest.hookimpl(hookwrapper=True) def pytest_terminal_summary(terminalreporter, exitstatus, config): global host, pname, edesc, versions yield if pytest_historic == "False": return global _excution_time _excution_time = time.time() - terminalreporter._sessionstarttime # global _total # _total = _pass + _fail + _xpass + _xfail + _skip + _error global _executed _executed = _pass + _fail + _xpass + _xfail version_file = None report_file = None pipeline_link = "" if hasattr(config, '_metadata') and 'versions' in config._metadata.keys(): versions = config._metadata['versions'] if hasattr(config, '_metadata') and 'sw_version' in config._metadata.keys(): sw_version = config._metadata['sw_version'] if hasattr(config, '_metadata') and 'version_file' in config._metadata.keys(): version_file = config._metadata['version_file'] if hasattr(config, '_metadata') and 'report_file' in config._metadata.keys(): report_file = config._metadata['report_file'] if hasattr(config, '_metadata') and 'pipeline_link' in config._metadata.keys(): pipeline_link = config._metadata['pipeline_link'] # update_description(con, id, sw_version) if version_file and report_file: upload_report(version_file, report_file) update_execution_table(con, ocon, id, int(_executed), int(_pass), int(_fail), int(_skip), int(_xpass), int(_xfail), str(_error), round(_excution_time, 2), str(pname), versions, pipeline_link) webhook_url = get_webhook(con, ocon, pname) if webhook_url: hostname = f'{get_ip()}:5000' if host == "localhost" else host summary = f"{_pass} passed" if _fail: summary += f", {_fail} failed" if _xfail: summary += f", {_xfail} xfailed" if _xpass: summary += f", {_xpass} xpassed" if _skip: summary += f", {_skip} skipped" if _error: summary += f", {_error} error(s)" summary += f" in {round(_excution_time, 2)}s" port = ":5000" if ":5000" not in hostname else "" results_url = f'http://{hostname}{port}/{pname}/metrics/{id}#' failures_url = f'http://{hostname}{port}/{pname}/failures/{id}' t = threading.Thread(target=post_webhook, args=(results_url, failures_url, edesc, summary, webhook_url)) try: t.start() except Exception as e: print(e) def insert_suite_results(name): _sexecuted = _spass_tests + _sfail_tests + _sxpass_tests + _sxfail_tests insert_into_suite_table(con, id, str(name), _sexecuted, _spass_tests, _sfail_tests, _sskip_tests, _sxpass_tests, _sxfail_tests, _serror_tests) def insert_test_results(): full_name = str(_suite_name) + " - " + str(_test_name) insert_into_test_table(con, id, full_name, str(_test_status), round(_duration, 2), str(_current_error)) def set_initial_trigger(): global _initial_trigger _initial_trigger = False def update_previous_suite_name(): global _previous_suite_name _previous_suite_name = _suite_name def update_counts(rep): global _sfail_tests, _spass_tests, _sskip_tests, _serror_tests, _sxfail_tests, _sxpass_tests if rep.when == "call" and rep.passed: if hasattr(rep, "wasxfail"): _sxpass_tests += 1 else: _spass_tests += 1 if rep.failed: if getattr(rep, "when", None) == "call": if hasattr(rep, "wasxfail"): _sxpass_tests += 1 else: _sfail_tests += 1 else: _serror_tests += 1 if rep.skipped: if hasattr(rep, "wasxfail"): _sxfail_tests += 1 else: _sskip_tests += 1 def reset_counts(): global _sfail_tests, _spass_tests, _sskip_tests, _serror_tests, _sxfail_tests, _sxpass_tests _spass_tests = 0 _sfail_tests = 0 _sskip_tests = 0 _serror_tests = 0 _sxfail_tests = 0 _sxpass_tests = 0 def reset_suite_counts(): global _fail, _pass, _skip, _error, _xfail, _xpass _pass = 0 _fail = 0 _skip = 0 _error = 0 _xfail = 0 _xpass = 0 def update_test_error(msg): global _current_error _current_error = msg def update_test_status(status): global _test_status _test_status = status def increment_xpass(): global _xpass _xpass += 1 def increment_xfail(): global _xfail _xfail += 1 def increment_pass(): global _pass _pass += 1 def increment_fail(): global _fail _fail += 1 def increment_skip(): global _skip _skip += 1 def increment_error(): global _error _error += 1 ''' # * # * # * # * Re-usable methods out of class * # * # * # * # ''' def connect_to_mysql_db(host, user, pwd, db): try: mydb = mysql.connector.connect( host=host, user=user, passwd=pwd, database=db ) return mydb except Exception: print("Couldn't connect to Database") print(Exception) def insert_into_execution_table(con, ocon, name, executed, passed, failed, skip, xpass, xfail, error, ctime, projectname): cursorObj = con.cursor() # rootCursorObj = ocon.cursor() sql = "INSERT INTO TB_EXECUTION (Execution_Id, Execution_Date, Execution_Desc, Execution_Executed, Execution_Pass, Execution_Fail, Execution_Skip, Execution_XPass, Execution_XFail, Execution_Error, Execution_Time) VALUES (%s, now(), %s, %s, %s, %s, %s, %s, %s, %s, %s);" val = (0, name, executed, passed, failed, skip, xpass, xfail, error, ctime) cursorObj.execute(sql, val) con.commit() cursorObj.execute( "SELECT Execution_Id, Execution_Pass, Execution_Executed FROM TB_EXECUTION ORDER BY Execution_Id DESC LIMIT 1;") rows = cursorObj.fetchone() # update robothistoric.tb_project table # rootCursorObj.execute("UPDATE TB_PROJECT SET Last_Updated = now(), Total_Executions = %s, Recent_Pass_Perc =%s WHERE Project_Name='%s';" % (rows[0], float("{0:.2f}".format((rows[1]/rows[2]*100))), projectname)) # ocon.commit() return str(rows[0]) def get_webhook(con, ocon, projectname): rootCursorObj = ocon.cursor() sql = "SELECT Project_Webhook FROM TB_PROJECT WHERE Project_Name = %s;" val = (projectname,) rootCursorObj.execute(sql, val) webhook_url = rootCursorObj.fetchone()[0] return webhook_url def update_execution_table(con, ocon, eid, executed, passed, failed, skip, xpass, xfail, error, duration, projectname, versions, pipeline_link): cursorObj = con.cursor() rootCursorObj = ocon.cursor() sql = "UPDATE TB_EXECUTION SET Execution_Executed=%s, Execution_Pass=%s, Execution_Fail=%s, Execution_Skip=%s, Execution_XPass=%s, Execution_XFail=%s, Execution_Error=%s, Execution_Time=%s, Execution_Version='%s', Pipeline_Link='%s' WHERE Execution_Id=%s;" % ( executed, passed, failed, skip, xpass, xfail, error, duration, versions, pipeline_link, eid) print(sql) cursorObj.execute(sql) con.commit() cursorObj.execute("SELECT Execution_Pass, Execution_Executed FROM TB_EXECUTION ORDER BY Execution_Id DESC LIMIT 1;") rows = cursorObj.fetchone() cursorObj.execute("SELECT COUNT(*) FROM TB_EXECUTION;") execution_rows = cursorObj.fetchone() # update robothistoric.tb_project table if rows[1] != 0: rootCursorObj.execute( "UPDATE TB_PROJECT SET Last_Updated = now(), Total_Executions = %s, Recent_Pass_Perc =%s WHERE Project_Name='%s';" % ( execution_rows[0], float("{0:.2f}".format((rows[0] / rows[1] * 100))), projectname)) else: rootCursorObj.execute( "UPDATE TB_PROJECT SET Last_Updated = now(), Total_Executions = %s, Recent_Pass_Perc =%s WHERE Project_Name='%s';" % ( execution_rows[0], 0, projectname)) ocon.commit() def insert_into_suite_table(con, eid, name, executed, passed, failed, skip, xpass, xfail, error): cursorObj = con.cursor() sql = "INSERT INTO TB_SUITE (Suite_Id, Execution_Id, Suite_Name, Suite_Executed, Suite_Pass, Suite_Fail, Suite_Skip, Suite_XPass, Suite_XFail, Suite_Error) VALUES (%s, %s, %s, %s, %s, %s, %s, %s, %s, %s)" val = (0, eid, name, executed, passed, failed, skip, xpass, xfail, error) cursorObj.execute(sql, val) # Skip commit to avoid load on db (commit once execution is done as part of close) # con.commit() def insert_into_test_table(con, eid, test, status, duration, msg): global _fail, _sfail_tests, _xfail, _sxfail_tests cursorObj = con.cursor() sql = "SELECT count(Test_Name) FROM TB_TEST WHERE Test_Name = %s and Execution_Id = %s" val = (test, eid) cursorObj.execute(sql, val) count = cursorObj.fetchone()[0] if count == 0: sql = "INSERT INTO TB_TEST (Test_Id, Execution_Id, Test_Name, Test_Status, Test_Time, Test_Error) VALUES (%s, %s, %s, %s, %s, %s)" val = (0, eid, test, status, duration, msg) cursorObj.execute(sql, val) else: sql = "SELECT Test_Status FROM TB_TEST WHERE Test_Name = %s and Execution_Id = %s" val = (test, eid) cursorObj.execute(sql, val) prev_status = cursorObj.fetchone()[0] if prev_status == "FAIL": _fail -= 1 _sfail_tests -= 1 else: _xfail -= 1 _sxfail_tests -= 1 sql = "UPDATE TB_TEST SET Test_Status = %s, Test_Time = %s, Test_Error = %s WHERE Test_Name = %s and Execution_Id = %s" val = (status, duration, msg, test, eid) cursorObj.execute(sql, val) # Skip commit to avoid load on db (commit once execution is done as part of close) # con.commit()
""" #@Author: Frankln Kenghagho #@Date: 04.04.2019 #@Project: RobotVA """ import os os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID" #select a GPU if working on Multi-GPU Systems #Several GPUs can also be selected os.environ["CUDA_VISIBLE_DEVICES"] = "1" from TaskManager import * """Template To Train RobotVQA """ #start the model loader # modeldir='logs1': the location of the RobotVQA's Weight File .h5 #rootdir='/mnt/Datadisk/franklin/test/RobotVQA': absolute path to parent directory of modeldir tkm=TaskManager(modeldir='logs1',rootdir='../../RobotVQA') #load the training set test_set=tkm.getDataset(binary_dataset='../dataset/virtual_training_dataset(51000_Images).data') #load the validation set val_set=tkm.getDataset(binary_dataset='../dataset/virtual_validation_dataset(10105_Images).data') #depth='float32': the format of the depth image if working in RGBD mode #op_type= training or validation #start the training or validation tkm.train(test_set,val_set,depth='float32', op_type='training')
#coding=utf-8 import os import json from os.path import sameopenfile showCount = 4 def update(): with open("songlist.json", encoding="utf-8") as f: songlist = json.loads(f.read()) result = "" if len(songlist) == 0: result = "当前队列为空" else: result = "【正在唱】\n{}\n".format(songlist[0]) if len(songlist) > 1: result += "【队列中】\n{}".format("\n".join(songlist[1:showCount + 1])) with open("output.txt", mode="w+", encoding="utf-8") as f: f.write(result) def add(s : str): with open("songlist.json", encoding="utf-8") as f: songlist = json.loads(f.read()) songlist.append(s) with open("songlist.json", mode="w+", encoding="utf-8") as f: f.write(json.dumps(songlist).encode('latin-1').decode('unicode_escape')) update() def next(): with open("songlist.json", encoding="utf-8") as f: songlist = json.loads(f.read()) if len(songlist) > 0: with open("song.txt", mode="a", encoding="utf-8") as f: f.write("{}\n".format(songlist[0])) songlist = songlist[1:] with open("songlist.json", mode="w+", encoding="utf-8") as f: f.write(json.dumps(songlist).encode('latin-1').decode('unicode_escape')) update() def main(): if not os.path.exists("songlist.json"): with open("songlist.json", mode="w+", encoding="utf-8") as f: f.write("[]") update() while True: op = input("|>") if op == "add": content = input("|内容> ") add(content) elif op == "next": next() elif op == "quit": exit(0) else: update() if __name__ == "__main__": main()
import numpy as np import tensorflow as tf from t3f import nn class _NeuralTest(): def testKerasDense(self): # Try to create the layer twice to check that it won't crush saying the # variable already exist. x = tf.random_normal((20, 28*28)) layer = nn.KerasDense(input_dims=[7, 4, 7, 4], output_dims=[5, 5, 5, 5]) layer(x) layer = nn.KerasDense(input_dims=[7, 4, 7, 4], output_dims=[5, 5, 5, 5]) layer(x) class NeuralTestFloat32(tf.test.TestCase, _NeuralTest): dtype = tf.float32 class NeuralTestFloat64(tf.test.TestCase, _NeuralTest): dtype = tf.float64 if __name__ == "__main__": tf.test.main()
import os import mido from mido import MidiFile for file_name in os.listdir('schubert_lieder'): if '.mid' in file_name: # print file_name full_path = './schubert_lieder/' + file_name print('==========================================================') print(full_path) mid = MidiFile(full_path) # create array of notes notes = [] messages = [] #righthand-notes and time only for message in mid.tracks[1]: # track1 = righthand, track2 = lefthand messages.append(message) for m in range(len(messages)): print(messages[m]) note = "" if messages[m].type == 'note_on': message_components = str(messages[m]).split(' ') for item in message_components: if 'note=' in item: # notes.append(item.split('note=')[1]) note = item.split('note=')[1] message_components = str(messages[m+1]).split(' ') for item in message_components: if 'time=' in item: time = item.split('time=')[1] if note != "" and time!=0: notes.append(str(note + "_" + time)) notes = ' '.join(notes) #print(notes) if __name__ == '__main__': #write notes to text file note_file = open("./miditext/input_schubert.txt", "w") note_file.write(notes) note_file.close()
load("@bazel_skylib//lib:paths.bzl", "paths") # py_test_module_list creates a py_test target for each # Python file in `files` def py_test_module_list(files, size, deps, extra_srcs, name_suffix="", **kwargs): for file in files: # remove .py name = paths.split_extension(file)[0] + name_suffix if name == file: basename = basename + "_test" native.py_test( name = name, size = size, main = file, srcs = extra_srcs + [file], **kwargs ) def py_test_run_all_subdirectory(include, exclude, extra_srcs, **kwargs): for file in native.glob(include = include, exclude = exclude, allow_empty=False): print(file) basename = paths.split_extension(file)[0] if basename == file: basename = basename + "_test" native.py_test( name = basename, srcs = extra_srcs + [file], **kwargs ) # Runs all included notebooks as py_test targets, by first converting them to .py files with "test_myst_doc.py". def py_test_run_all_notebooks(include, exclude, **kwargs): for file in native.glob(include = include, exclude = exclude, allow_empty=False): print(file) basename = paths.split_extension(file)[0] if basename == file: basename = basename + "_test" native.py_test( name = basename, main = "test_myst_doc.py", srcs = ["//doc:test_myst_doc.py"], # --find-recursively will look for file in all # directories inside cwd recursively if it cannot # find it right away. This allows to deal with # mismatches between `name` and `data` args. args = ["--find-recursively", "--path", file], **kwargs )
# -*- coding: utf-8 -*- """ Created on Sat Feb 20 09:48:12 2021 @author: leyuan """ import numpy as np import matplotlib.pyplot as plt # def _numerical_gradient_no_batch(f, x): # h = 1e-4 # 0.0001 # grad = np.zeros_like(x) # for idx in range(x.size): # tmp_val = x[idx] # x[idx] = float(tmp_val) + h # fxh1 = f(x) # f(x+h) # x[idx] = tmp_val - h # fxh2 = f(x) # f(x-h) # grad[idx] = (fxh1 - fxh2) / (2*h) # x[idx] = tmp_val # 还原值 # return grad # def numerical_gradient(f, X): # if X.ndim == 1: # return _numerical_gradient_no_batch(f, X) # else: # grad = np.zeros_like(X) # for idx, x in enumerate(X): # grad[idx] = _numerical_gradient_no_batch(f, x) # return grad def numerical_gradient(f, x): ''' NumPy 迭代器对象 numpy.nditer 提供了一种灵活访问一个或者多个数组元素的方式。 https://blog.csdn.net/m0_37393514/article/details/79563776 ''' h = 1e-4 # 0.0001 grad = np.zeros_like(x) it = np.nditer(x, flags=['multi_index'], op_flags=['readwrite']) while not it.finished: idx = it.multi_index tmp_val = x[idx] x[idx] = tmp_val + h fxh1 = f(x) # f(x+h) x[idx] = tmp_val - h fxh2 = f(x) # f(x-h) grad[idx] = (fxh1 - fxh2) / (2*h) x[idx] = tmp_val it.iternext() return grad def f(x): ''' f(x1, x2) = x1^2 + x2^2 ''' return x[0]**2 + x[1]**2 def gradient_descent(f, init_x, lr=0.01, step_num=100): x = init_x x_history = [] for i in range(step_num): x_history.append( x.copy() ) grad = numerical_gradient(f, x) x -= lr * grad return x, np.array(x_history) if __name__ == '__main__': init_x = np.array([-3.0, 4.0]) lr = 0.1 step_num = 20 x, x_history = gradient_descent(f, init_x, lr=lr, step_num=step_num) x0 = np.arange(-4, 4, 0.25) x1 = np.arange(-4, 4, 0.25) X0, X1 = np.meshgrid(x0, x1) Y = f(np.array([X0,X1])) plt.figure(figsize=(8, 8)) c = plt.contour(X0, X1, Y, levels=[5, 10, 15], linestyles='--') plt.clabel(c, fontsize=10, colors='k', fmt='%.1f') # plt.plot( [-5, 5], [0,0], '--b') # plt.plot( [0,0], [-5, 5], '--b') plt.plot(x_history[:,0], x_history[:,1], 'o') # plt.xlim(-6, 6) # plt.ylim(-6, 6) plt.xlabel("X0") plt.ylabel("X1") plt.show()
from flask_pymongo import PyMongo from pymongo_inmemory import MongoClient from bson import ObjectId USE_REAL_DB = False def get_db(app): games = None if (USE_REAL_DB): # Actual original code mongo = PyMongo(app) games = mongo.db.get_collection('games') else: # In Memory Code mongo = MongoClient()['testdb'] games = mongo['games'] def get_games(): return [row for row in games.find()] def get_game(_id): return games.find_one({'_id': ObjectId(_id)}) def insert_game(game): new_id = games.insert_one(game).inserted_id return str(new_id) def delete_game(_id): return games.delete_one({'_id': ObjectId(_id)}).deleted_count def update_game(_id, game): return games.update_one({'_id' : ObjectId(_id)}, {'$set': {'name': game['name'], 'genre': game['genre'], 'platforms': game['platforms']}}).modified_count return get_games, get_game, insert_game, delete_game, update_game
import pyaudio import time import numpy as np class Player: def __init__(self, module): self.module = module self.stream = None self.output = np.zeros([self.module.framesize], dtype=np.float32) def __enter__(self): self.pyaudio = pyaudio.PyAudio() return self def __exit__(self, *args): if self.stream: self.stream.close() self.pyaudio.terminate() def init(self, block=False): self.module.render_frames() self.stream = self.pyaudio.open( format=self.pyaudio.get_format_from_width(4), channels=1, rate=self.module.samplerate, output=True, stream_callback=self.callback ) def play(self, target): self.target = target self.init(False) self.stream.start_stream() while self.stream.is_active(): time.sleep(1) self.stream.stop_stream() def callback(self, in_data, frame_count, time_info, status): self.output[:] = self.target.output self.module.render_frames() return (self.output, pyaudio.paContinue)
import math from collections import Iterable import game.game_data.cells.Cell as cell import game.game_data.units.Unit as unit from game import pygame_ from game.logs.Logs import Logs from .Command import Command # устанавливаем цвет логов from ..game_data.Data import Player log = Logs("Green") def all_elements(values): for value in values: if isinstance(value, Iterable): for elem in all_elements(value): yield elem else: yield value class Controller: # __game_data = 0 def __init__(self, inp_data): self.__game_data = inp_data self.keys = None self.command = Command() self.quit_func = None # последний элемент списка должен быть именем игрока def main_control(self, command: Command, name_of_player: str): log.mprint("main controller got command: " + str(command)) # провера на то, что не залезаем за края h1 = int(command.coords[0][0]) w1 = int(command.coords[0][1]) # провера на то, что не залезаем за края if h1 >= self.__game_data.get_size_field()[0] or w1 >= self.__game_data.get_size_field()[1] \ or h1 < 0 or w1 < 0: log.mprint("You are out of the field! Check coordinates!") return 1 if name_of_player != self.__game_data.units[h1, w1].player and not \ (self.__game_data.units[h1, w1].player == "died" and command.command == "create"): log.mprint("You can't do it! It is not your cell or union!") return 1 else: f = getattr(Controller, command.command) # исполняем команду (функцию с соответствующим именем) по названию команды # !координаты передаем в распакованном виде return f(self, list(all_elements(command.coords)), name_of_player) def create(self, coords: list, name: str): # если баланс 0 if self.__game_data.players[name].get_score() == 0: log.mprint("You have no coins to create a unit!") return 1 # если на этой позиции уже кто-то есть if self.__game_data.units[int(coords[0]), int(coords[1])].get_level() > 0: log.mprint("You can upgrade your unit!") return 1 else: # установим тип из command и левел 1 unit_creator = unit.Creator() # !!!пока у разных игроков разные типы - следовательно self.__game_data.units[(int(coords[0]), int(coords[1]))] = \ unit_creator.create_unit(name, self.__game_data.TIPS[name], int(coords[0]), int(coords[1]), 1) # и снимаем монету за создание юнита self.__game_data.players[name].down_score() return 0 def attack(self, coords: list, name: str): # провекра на то, что мы не пытаемся залезть за края h1 = int(coords[0]) w1 = int(coords[1]) h2 = int(coords[2]) w2 = int(coords[3]) if h2 >= self.__game_data.get_size_field()[0] or w2 >= self.__game_data.get_size_field()[1] \ or h2 < 0 or w2 < 0: log.mprint("You are out of the field! Check coordinates!") return 1 # если пытаемся напасть на себя же if self.__game_data.units[(h2, w2)].player == name: log.mprint("You are trying to attack yourself!") return 1 if self.__game_data.units[(h2, w2)].get_level == 0: # если на той позиции никого нет, просто переносим отряд self.move(coords, name) else: # иначе все сделано по правилам и можем нападать # пока считаем, что можем ходить только в 4 стороны if math.fabs(h1 - h2) + math.fabs(w1 - w2) > 1: log.mprint("You can go only up, down, left and right!") return 1 # unit1 - нападает, unit2 - защищается unit1 = self.__game_data.units[(h1, w1)] unit2 = self.__game_data.units[(h2, w2)] level1 = unit1.get_level() level2 = unit2.get_level() if level1 > level2: unit1.set_level(level1 - level2) unit1.set_cords(h2, w2) self.__game_data.units[(h2, w2)] = unit1 self.__game_data.units[(h1, w1)] = self.__game_data.units[(-1, -1)] # увеличиваем его очки for i in range(level2): self.__game_data.players[name].up_score() # указываем на мертвого return 0 elif level1 == level2: # когда совпадают уровни, просто уничтожаем обе армии self.__game_data.units[(h1, w1)] = self.__game_data.units[(-1, -1)] self.__game_data.units[(h2, w2)] = self.__game_data.units[(-1, -1)] # увеличиваем его очки for i in range(level2): self.__game_data.players[name].up_score() return 0 else: unit2.set_level(level2 - level1) self.__game_data.units[(h1, w1)] = self.__game_data.units[(-1, -1)] return 0 def move(self, coords: list, name: str): h1 = int(coords[0]) w1 = int(coords[1]) h2 = int(coords[2]) w2 = int(coords[3]) if math.fabs(h1 - h2) + math.fabs(w1 - w2) > 1: log.mprint("You can go only up, down, left and right!") return 1 if h2 >= self.__game_data.get_size_field()[0] or w2 >= self.__game_data.get_size_field()[1] \ or h2 < 0 or w2 < 0: log.mprint("You are out of the field! Check coordinates!") return 1 # если там уже кто-то есть if self.__game_data.units[(h2, w2)].get_level() > 0: log.mprint("You can only attack this unit!") return 1 else: unit1 = self.__game_data.units[(h1, w1)] unit1.set_cords(h2, w2) self.__game_data.units[(h2, w2)] = unit1 self.__game_data.units[(h1, w1)] = self.__game_data.units[(-1, -1)] return 0 def upgrade(self, coords: list, name: str): h1 = int(coords[0]) w1 = int(coords[1]) if self.__game_data.players[name].get_score() == 0: log.mprint("You have no coins to upgrade the unit!") return 1 # и снимаем монету за создание юнита self.__game_data.players[name].down_score() self.__game_data.units[(h1, w1)].set_level(self.__game_data.units[(h1, w1)].level + 1) return 0 def build(self, coords: list, name: str): h1 = int(coords[0]) w1 = int(coords[1]) # если на этой позиции уже кто-то есть if self.__game_data.units[(h1, w1)].player != name: log.mprint("You can't build on different unit!") return 1 else: # создаем либо бараки, либо шахты # пока что только шахты cell_creator = cell.Creator() self.__game_data._cells[h1][w1] = cell_creator.create_building("mines", name) return 0 available_button_commands = {0: "attack", 1: "move", 2: "create", 3: "upgrade"} def mouse_click(self, x, y): # вызывается из dispatcher при нажатии мыши # получаем координаты игрового поля и тип объекта, который был выбран мышью selected_object = pygame_.get_object_on_coords(x, y) if selected_object is None: return self.__game_data.selected = selected_object # если ожидаем команду и получаем ее if selected_object[1] == "action": # получаем имя команды по нажатой кнопке command_str = self.available_button_commands[selected_object[0][0]] # устанавливаем команду self.command.set_command(command_str) # иначе если ждали не команду (а координаты) elif selected_object[1] in {"cell", "unit"}: # добавляем координаты к команде self.command.append_coords(selected_object[0]) def mouse_move(self, x, y): # вызывается из dispatcher при движении мыши hovered_object = pygame_.get_object_on_coords(x, y) if hovered_object and hovered_object[1] == "action": self.__game_data.hovered = hovered_object else: self.__game_data.hovered = None def set_keys(self, keys: dict): # инициализация кнопок self.keys = keys def key_pressed(self, key): # если кнопка для нас не существует if key not in self.keys: return # если была нажата кнопка ESC if self.keys[key] == "escape": self.command.clear() self.__game_data.selected = None # если ожидаем команду и получаем ее elif self.keys[key] in ("create", "move", "attack", "upgrade"): # устанавливаем команду self.command.set_command(self.keys[key]) def execute_command(self, player: Player): # если команда сформирована if self.command.finish(): # выполняем записанную команду игроком Player result = self.main_control(self.command, player.get_name()) self.command.clear() # возвращаем результат выполнения (0 - успешно, 1 - ошибка) return result return 1 def set_quit_func(self, f): # устанавливаем функцию выхода из игры self.quit_func = f def quit(self): # Эта функция вызывается из dispatcher по нажатию на красный крестик self.quit_func()
from argparse import ArgumentParser import sys from gather import ( __version__, core, handlers, log, params, util, ) DEFAULT_EPILOG = "The default is %(default)s." def get_arg_parser(): p = ArgumentParser( description = """Detect sets of files named with incrementing numbers, and move each set into its own new directory.""" ) p.add_argument( "paths", nargs = "+", metavar = "PATHS", help = """Files to gather.""" ) p.add_argument( "-r", "--recurse", action = "store_true", default = False, help = """If directories are specified on the command line, scan their contents for file sets as well.""" ) p.add_argument( "-d", "--dir", default = params.DEFAULT_DIR_TEMPLATE, metavar = "TEMPLATE", help = """Specify a template for naming new directories. The template can contain literal text as well as the following tokens, which are substituted based on the detected file sequence. {path_prefix} - the shared prefix of all files in the set, including the path if any. {name_prefix} - the shared prefix of all files in the set, limited to the name only and not including any path. {suffix} - the shared suffix of all files in the set. {first} - the number of the first file in the set. {last} - the number of the last file in the set. {field} - a run of # characters, as many as their are digits in the number of the first file in the set. """ + DEFAULT_EPILOG ) p.add_argument( "-m", "--min", type = int, default = 3, metavar = "COUNT", help = """Ignore sequences with fewer than %(metavar)s files. """ + DEFAULT_EPILOG ) p.add_argument( "-a", "--ambiguities", choices = util.enum_name_set(params.AmbiguityBehavior), default = params.AmbiguityBehavior.report.name, metavar = "ACTION", help = """Specify handling of ambiguities. Ambiguities can occur if there are multiple files that could precede or follow a given file. In all cases, no action is taken on a sequence containing an ambiguity. `report` will list them. `ignore` will ignore them, unless --verbose is specified, in which case it is the same as `report`. `cancel` will exit without making any changes at all. """ + DEFAULT_EPILOG ) p.add_argument( "-s", "--shared", choices = util.enum_name_set(params.SharedDirectoryBehavior), default = params.SharedDirectoryBehavior.allow.name, metavar = "ACTION", help = """Specify handling of shared directories. It is possible to specify a template for the --dir option that causes more than one sequence to be moved into a new directory. `allow` will permit multiple sequences to share a new directory. `skip` will skip any sequence that would share a new directory with another. `cancel` will exit without making any changes at all. Note that even if `allow` is specified, it is considered an error if multiple files with identical names would be moved to the new directory. """ + DEFAULT_EPILOG ) p.add_argument( "--rollback", choices = util.enum_name_set(params.RollbackBehavior), default = params.RollbackBehavior.all.name, metavar = "ACTION", help = """Specify handling of errors. `all` will roll back every change made and exit. `set` will roll back only the changes to the set in which the error occurred and continue with the next. """ + DEFAULT_EPILOG ) p.add_argument( "-n", "--dry-run", action = "store_true", default = False, help = """List proposed changes without making them.""" ) p.add_argument( "-v", "--verbose", action = "count", default = 0, help = """Increase logging level.""" ) p.add_argument( "-q", "--quiet", action = "count", default = 0, help = """Decrease logging level.""" ) p.add_argument( "--version", action="version", version="%(prog)s " + __version__ ) return p def main(): sys.exit(run(sys.argv[1:])) LOG_LEVELS = ( log.ERROR, log.WARNING, log.INFO, log.VERBOSE, log.DEBUG, ) def run(argv1=None): args = get_arg_parser().parse_args(argv1) paths = ( util.recurse_file_iterator(args.paths) if args.recurse else args.paths ) log_level = decide_log_level(LOG_LEVELS, log.INFO, args.verbose, args.quiet) logger = log.Logger(min_level=log_level) config = params.Config( dir_template = args.dir, min_sequence_length = args.min, ambiguity_behavior = params.AmbiguityBehavior[args.ambiguities], shared_directory_behavior = params.SharedDirectoryBehavior[args.shared], rollback_behavior = params.RollbackBehavior[args.rollback], dry_run = args.dry_run, ) handler = handlers.CliReporter(config, logger) result = core.gather( paths = paths, config = config, handler = handler, ) return result.value def decide_log_level(selectable_levels, default_level, verbose, quiet): index = max( 0, min( len(selectable_levels) - 1, selectable_levels.index(default_level) + verbose - quiet ) ) return selectable_levels[index]
from __init__ import app, db, socketio, config import requests, time from include import websocket from classes.user import UserData from classes.user_details import UserDetailData from classes.images import ImagesData from classes.consultations import ConsultationData from classes.site_settings import site from classes.logging import logger def clear_rentention(): time.sleep(10) while True: now = int(time.time()) db.Execute(f"DELETE FROM {UserData.table} WHERE login_date < ?", (int(now - int(site.get_user_rention()) * 30 * 24 * 60 * 60), )) db.Execute(f"DELETE FROM {UserDetailData.table} WHERE login_date < ?", (int(now - int(site.get_user_rention()) * 30 * 24 * 60 * 60), )) db.Execute(f"DELETE FROM {ImagesData.table} WHERE timestamp < ?", (int(now - int(site.get_image_rention()) * 30 * 24 * 60 * 60), )) db.Execute(f"DELETE FROM {ConsultationData.table} WHERE timestamp < ?", (int(now - int(site.get_consultation_rention()) * 30 * 24 * 60 * 60), )) db.Commit() time.sleep(3000) def create_backup(): time.sleep(10) while True: time.sleep(86400) db.Backup()
# Copyright 2020 Hieu Nguyen # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== from torch.utils.data import DataLoader, BatchSampler from .sampler import TrainingSampler from .batch import Batch from .build_dataloader import DATALOADER_REGISTRY from .dataset import build_dataset __all__ = [ "infinite_dataloader", ] @DATALOADER_REGISTRY.register() def infinite_dataloader(mode, cfg): """ get dataloader for iteration-based training with infinite sampler mode: "train", "val" """ assert mode in ["val", "train"] data_folder = cfg.DIRS.TRAIN_DATA if mode == "train" else cfg.DIRS.VAL_DATA metadata = cfg.DIRS.TRAIN_METADATA if mode == "train" else None dataset_name = cfg.DATA.TRAIN_DATASET_NAME if mode == "train" else cfg.DATA.VAL_DATASET_NAME dataset = build_dataset( dataset_name=dataset_name, cfg=cfg, data_folder=data_folder, mode=mode, metadata=metadata, ) batch_size = { "val": cfg.VAL.BATCH_SIZE, "train": cfg.SOLVER.IMS_PER_BATCH, }[mode] collate_fn = lambda x: Batch(x, cfg) if mode == "train": sampler = TrainingSampler(len(dataset), True, cfg.SEED) batch_sampler = BatchSampler(sampler, batch_size, drop_last=True) return DataLoader( dataset, batch_sampler=batch_sampler, num_workers=cfg.DATA.NUM_WORKERS, collate_fn=collate_fn) return DataLoader( dataset, batch_size=batch_size, shuffle=False, drop_last=False, num_workers=cfg.DATA.NUM_WORKERS, collate_fn=collate_fn)
"""This module contains custom serializer classes.""" import copy import inspect from collections import OrderedDict import inflection from django.db import models, transaction from django.utils import six from django.db.models.fields.files import FieldFile from django.utils.functional import cached_property from rest_framework import exceptions, serializers from rest_framework.fields import SkipField, empty from rest_framework.reverse import reverse from rest_framework.exceptions import ValidationError from rest_framework.utils.serializer_helpers import ReturnDict, ReturnList from dynamic_rest.ui import UIFilter, UISection, UIField from dynamic_rest.permissions import PermissionsSerializerMixin from dynamic_rest.conf import settings from dynamic_rest import fields as _fields from dynamic_rest.links import merge_link_object from dynamic_rest.meta import (Meta, get_model_table, get_model_field, get_related_model) from dynamic_rest.processors import SideloadingProcessor from dynamic_rest.tagged import tag_dict from dynamic_rest.base import DynamicBase def nested_update(instance, key, value, objects=None): objects = objects or [] nested = getattr(instance, key, None) def fix(x): s = str(x).lower() if s == "true": return "True" if s == "false": return "False" return x value = {k: fix(v) for k, v in value.items()} if not nested: # object does not exist, try to create it try: field = get_model_field(instance, key) related_model = get_related_model(field) except AttributeError: raise exceptions.ValidationError('Invalid relationship: %s' % key) else: nested = related_model.objects.create(**value) setattr(instance, key, nested) else: # object exists, perform a nested update for k, v in six.iteritems(value): if isinstance(v, dict): nested_update(nested, k, v, objects) else: if isinstance(getattr(nested, k), models.Manager): getattr(nested, k).set(v) else: setattr(nested, k, v) objects.append(nested) return objects class WithResourceKeyMixin(object): @classmethod def get_resource_key(self): """Return canonical resource key, usually the DB table name.""" model = self.get_model() if model: return get_model_table(model) else: return self.get_name() class DynamicListSerializer(WithResourceKeyMixin, serializers.ListSerializer): """Custom ListSerializer class. This implementation delegates DREST-specific methods to the child serializer and performs post-processing before returning the data. """ update_lookup_field = 'id' def __init__(self, *args, **kwargs): super(DynamicListSerializer, self).__init__(*args, **kwargs) self.child.parent = self @property def create_related_serializers(self): return None def get_router(self): return self.child.get_router() def set_request_method(self, method): return self.child.set_request_method(method) def get_all_fields(self): return self.child.get_all_fields() def get_link_fields(self): return self.child.get_link_fields() def get_id_fields(self): return self.child.get_id_fields() def __iter__(self): return self.child.__iter__() def get_field(self, name, **kwargs): return self.child.get_field(name, **kwargs) @property def fields(self): return self.child.fields def get_filters(self): return self.child.get_filters() def get_meta(self): return self.child.get_meta() def disable_envelope(self): self.child.disable_envelope() self._processed_data = None def to_representation(self, data): iterable = data.all() if isinstance(data, models.Manager) else data return [self.child.to_representation(item) for item in iterable] def get_description(self): return self.child.get_description() def resolve(self, query, **kwargs): return self.child.resolve(query, **kwargs) def get_name_field(self): return self.child.get_name_field() def get_image_field(self): return self.child.get_image_field() def get_class_getter(self): return self.child.get_class_getter() def get_search_key(self): return self.child.get_search_key() def get_icon(self): return self.child.get_icon() def get_url(self, pk=None): return self.child.get_url(pk=pk) def get_model(self): return self.child.get_model() def get_pk_field(self): return self.child.get_pk_field() def get_format(self): return self.child.get_format() def get_name(self): return self.child.get_name() def get_plural_name(self): return self.child.get_plural_name() def id_only(self): return self.child.id_only() @property def data(self): """Get the data, after performing post-processing if necessary.""" if getattr(self, '_processed_data', None) is None: data = super(DynamicListSerializer, self).data self._processed_data = ReturnDict( SideloadingProcessor(self, data).data, serializer=self) if self.child.envelope else ReturnList( data, serializer=self) return self._processed_data def update(self, queryset, validated_data): lookup_attr = getattr(self.child.Meta, 'update_lookup_field', 'id') lookup_objects = { entry.pop(lookup_attr): entry for entry in validated_data } lookup_keys = lookup_objects.keys() if not all((bool(_) and not inspect.isclass(_) for _ in lookup_keys)): raise exceptions.ValidationError('Invalid lookup key value.') # Since this method is given a queryset which can have many # model instances, first find all objects to update # and only then update the models. objects_to_update = queryset.filter( **{'{}__in'.format(lookup_attr): lookup_keys}) if len(lookup_keys) != objects_to_update.count(): raise exceptions.ValidationError( 'Could not find all objects to update: {} != {}.'.format( len(lookup_keys), objects_to_update.count())) updated_objects = [] for object_to_update in objects_to_update: lookup_key = getattr(object_to_update, lookup_attr) data = lookup_objects.get(lookup_key) # Use model serializer to actually update the model # in case that method is overwritten. updated_objects.append(self.child.update(object_to_update, data)) return updated_objects class WithDynamicSerializerMixin( DynamicBase, WithResourceKeyMixin, ): """Base class for DREST serializers. This class provides support for dynamic field inclusions/exclusions. Like DRF, DREST serializers support a few Meta class options: - model - class - name - string - plural_name - string - defer_many_relations - bool - fields - list of strings - deferred_fields - list of strings - immutable_fields - list of strings - read_only_fields - list of strings - untrimmed_fields - list of strings - depends - dict of dependency objects """ SET_REQUEST_ON_SAVE = settings.SET_REQUEST_ON_SAVE def __new__(cls, *args, **kwargs): """ Custom constructor that sets the ListSerializer to DynamicListSerializer to avoid re-evaluating querysets. Addresses DRF 3.1.0 bug: https://github.com/tomchristie/django-rest-framework/issues/2704 """ meta = getattr(cls, 'Meta', None) if not meta: meta = type('Meta', (), {}) cls.Meta = meta list_serializer_class = getattr(meta, 'list_serializer_class', DynamicListSerializer) if not issubclass(list_serializer_class, DynamicListSerializer): list_serializer_class = DynamicListSerializer meta.list_serializer_class = list_serializer_class return super(WithDynamicSerializerMixin, cls).__new__( cls, *args, **kwargs) def __init__(self, instance=None, data=empty, only_fields=None, include_fields=None, exclude_fields=None, request_fields=None, sideloading=None, debug=False, dynamic=True, embed=False, envelope=False, request_method=None, **kwargs): """ Custom initializer that builds `request_fields`. Arguments: instance: Initial instance, used by updates. data: Initial data, used by updates / creates. only_fields: List of field names to render. include_fields: List of field names to include. exclude_fields: List of field names to exclude. request_fields: Map of field names that supports nested inclusions / exclusions. embed: If True, embed the current representation. If False, sideload the current representation. sideloading: If True, force sideloading for all descendents. If False, force embedding for all descendents. If None (default), respect descendents' embed parameters. dynamic: If False, disable inclusion / exclusion features. envelope: If True, wrap `.data` in an envelope. If False, do not use an envelope. """ if request_method: self.set_request_method(request_method) name = self.get_name() if data is not empty and name in data and len(data) == 1: # support POST/PUT key'd by resource name data = data[name] if data is not empty: # if a field is nullable but not required and the implementation # passes null as a value, remove the field from the data # this addresses the frontends that send # undefined resource fields as null on POST/PUT for field_name, field in six.iteritems(self.get_all_fields()): if (field.allow_null is False and field.required is False and field_name in data and data[field_name] is None): data.pop(field_name) kwargs['instance'] = instance kwargs['data'] = data # "sideload" argument is pending deprecation if kwargs.pop('sideload', False): # if "sideload=True" is passed, turn on the envelope envelope = True self.parent = None super(WithDynamicSerializerMixin, self).__init__(**kwargs) self.envelope = envelope self.sideloading = sideloading self.debug = debug self.dynamic = dynamic self.request_fields = request_fields or {} # `embed` is overriden by `sideloading` embed = embed if sideloading is None else not sideloading self.embed = embed self._dynamic_init(only_fields, include_fields, exclude_fields) self.enable_optimization = settings.ENABLE_SERIALIZER_OPTIMIZATIONS def __getitem__(self, key): field = self.fields[key] value = self.data.get(key) error = self.errors.get(key) if hasattr(self, '_errors') else None if not isinstance(field, serializers.Serializer): return UIField( field, value, error, instance=self.instance) else: return super(WithDynamicSerializerMixin, self).__getitem__(key) @cached_property def create_related_serializers(self): return self.get_create_related_serializers() def get_create_related_serializers(self, instance=None): instance = instance or self.instance forms = {} if instance: for related_name, field in self.get_link_fields( ).items(): source = field.source or related_name has_source = source != '*' if not has_source: continue kwargs = { 'request_fields': None, 'request_method': 'POST', 'many': False } inverse_field_name = field.get_inverse_field_name() if inverse_field_name: kwargs['exclude_fields'] = [inverse_field_name] related_serializer = field.get_serializer(**kwargs) if inverse_field_name: inverse = related_serializer.get_field(inverse_field_name) inverse.read_only = True else: pass has_permission = ( not getattr(related_serializer, 'permissions', None) or related_serializer.permissions.create ) can_create = field.create and ( field.many or getattr(instance, source, None) is None ) and has_permission if can_create: if hasattr(related_serializer, 'initialized'): # call initialized for permissions hooks/etc # this is simulating a primary request # so do not pass nested=True related_serializer.initialized() forms[related_name] = related_serializer return forms def get_router(self): return getattr(self, '_router', None) def initialized(self, **kwargs): return def _dynamic_init(self, only_fields, include_fields, exclude_fields): """ Modifies `request_fields` via higher-level dynamic field interfaces. Arguments: only_fields: List of field names to render. All other fields will be deferred (respects sideloads). include_fields: List of field names to include. Adds to default field set, (respects sideloads). `*` means include all fields. exclude_fields: List of field names to exclude. Removes from default field set. If set to '*', all fields are removed, except for ones that are explicitly included. """ if not self.dynamic: return if (isinstance(self.request_fields, dict) and self.request_fields.pop('*', None) is False): exclude_fields = '*' only_fields = set(only_fields or []) include_fields = include_fields or [] exclude_fields = exclude_fields or [] all_fields = set(self.get_all_fields().keys()) if only_fields: exclude_fields = '*' include_fields = only_fields if exclude_fields == '*': # First exclude all, then add back in explicitly included fields. include_fields = set( list(include_fields) + [ field for field, val in six.iteritems(self.request_fields) if val or val == {} ]) exclude_fields = all_fields - include_fields elif include_fields == '*': include_fields = all_fields for name in exclude_fields: self.request_fields[name] = False for name in include_fields: if not isinstance(self.request_fields.get(name), dict): # not sideloading this field self.request_fields[name] = True @cached_property def default_sections(self): field_names = self._all_readable_field_names instance = self.instance return [UISection( 'Details', field_names, self, instance, main=True )] def get_sections(self, instance=None): sections = getattr(self.get_meta(), 'sections', {}) if not sections: return self.default_sections if isinstance(sections, dict): sections = sections.items() return [ UISection(name, value, self, instance=instance) for name, value in sections ] def get_filters(self): filters = getattr(self.get_meta(), 'filters', {}) if isinstance(filters, dict): filters = filters.items() return OrderedDict(((name, UIFilter(name, value, serializer=self)) for name, value in filters)) def get_field_value(self, key, instance=None): if instance == '': instance = None field = self.fields[key] if hasattr(field, 'prepare_value'): value = field.prepare_value(instance) else: attr = field.get_attribute(instance) value = field.to_representation(attr) if attr else None if not isinstance(value, FieldFile): if isinstance(value, list): value = [getattr(v, 'instance', v) for v in value] else: value = getattr(value, 'instance', value) error = self.errors.get(key) if hasattr(self, '_errors') else None return UIField( field, value, error, prefix='', instance=instance ) def get_pk_field(self): try: field = self.get_field('pk') return field.field_name except AttributeError: pass return 'pk' @classmethod def get_icon(cls): meta = cls.get_meta() return getattr(meta, 'icon', None) @classmethod def get_meta(cls): return cls.Meta def resolve(self, query, sort=None): """Resolves a query into model and serializer fields. Arguments: query: an API field path, in dot-nation e.g: "creator.location_name" Returns: (model_fields, api_fields) e.g: [ Blog._meta.fields.user, User._meta.fields.location, Location._meta.fields.name ], [ DynamicRelationField(source="user"), DynamicCharField(source="location.name") ] Raises: ValidationError if the query is invalid, e.g. references a method field or an undefined field ``` Note that the lists do not necessarily contain the same number of elements because API fields can reference nested model fields. """ # noqa if not isinstance(query, six.string_types): parts = query query = '.'.join(query) else: parts = query.split('.') model_fields = [] api_fields = [] serializer = self model = serializer.get_model() resource_name = serializer.get_name() meta = Meta(model) api_name = parts[0] other = parts[1:] try: api_field = serializer.get_field(api_name) if isinstance(api_field, _fields.DynamicRelationField): api_field.bind(parent=self, field_name=api_name) except AttributeError: api_field = None if other: if not (api_field and isinstance(api_field, _fields.DynamicRelationField)): raise ValidationError({ api_name: 'Could not resolve "%s": ' '"%s.%s" is not an API relation' % (query, resource_name, api_name) }) source = api_field.source or api_name related = api_field.serializer_class() other = '.'.join(other) model_fields, api_fields = related.resolve(other, sort=sort) try: model_field = meta.get_field(source) except AttributeError: raise ValidationError({ api_name: 'Could not resolve "%s": ' '"%s.%s" is not a model relation' % (query, meta.get_name(), source) }) model_fields.insert(0, model_field) api_fields.insert(0, api_field) else: if api_name == 'pk': # pk is an alias for the id field model_field = meta.get_pk_field() model_fields.append(model_field) if api_field: # the pk field may not exist # on the serializer api_fields.append(api_field) else: if not api_field: raise ValidationError({ api_name: 'Could not resolve "%s": ' '"%s.%s" is not an API field' % (query, resource_name, api_name) }) api_fields.append(api_field) source = api_field.source or api_name if sort and getattr(api_field, 'sort_by', None): # use sort_by source source = api_field.sort_by if source == '*': # a method field was requested and has no sort_by # -> model field is unknown return (model_fields, api_fields) if '.' in source: fields = source.split('.') for field in fields[:-1]: related_model = None try: model_field = meta.get_field(field) related_model = model_field.related_model except AttributeError: pass if not related_model: raise ValidationError({ api_name: 'Could not resolve "%s": ' '"%s.%s" is not a model relation' % (query, meta.get_name(), field) }) model = related_model meta = Meta(model) model_fields.append(model_field) field = fields[-1] try: model_field = meta.get_field(field) except AttributeError: raise ValidationError({ api_name: 'Could not resolve: "%s", ' '"%s.%s" is not a model field' % (query, meta.get_name(), field) }) model_fields.append(model_field) else: try: model_field = meta.get_field(source) except AttributeError: raise ValidationError({ api_name: 'Could not resolve "%s": ' '"%s.%s" is not a model field' % (query, meta.get_name(), source) }) model_fields.append(model_field) return (model_fields, api_fields) def disable_envelope(self): envelope = self.envelope self.envelope = False if envelope: self._processed_data = None @classmethod def get_model(cls): """Get the model, if the serializer has one. Model serializers should implement this method. """ return None def get_field(self, field_name): # it might be deferred fields = self.get_all_fields() if field_name == 'pk': meta = self.get_meta() if hasattr(meta, '_pk'): return meta._pk field = None model = self.get_model() primary_key = getattr(meta, 'primary_key', None) if primary_key: field = fields.get(primary_key) else: for n, f in fields.items(): # try to use model fields try: if getattr(field, 'primary_key', False): field = f break model_field = get_model_field(model, f.source or n) if model_field.primary_key: field = f break except AttributeError: pass if not field: # fall back to a field called ID if 'id' in fields: field = fields['id'] if field: meta._pk = field return field else: if field_name in fields: field = fields[field_name] return field raise ValidationError({ field_name: '"%s" is not an API field' % field_name }) def get_format(self): view = self.context.get('view') get_format = getattr(view, 'get_format', None) if callable(get_format): return get_format() return None @classmethod def get_name(cls): """Get the serializer name. The name can be defined on the Meta class or will be generated automatically from the model name. """ if not hasattr(cls.Meta, 'name'): class_name = getattr(cls.get_model(), '__name__', None) setattr(cls.Meta, 'name', inflection.underscore(class_name) if class_name else None) return cls.Meta.name @classmethod def get_url(self, pk=None): # if associated with a registered viewset, use its URL url = getattr(self, '_url', None) if url: # use URL key to get endpoint url = reverse(url) if not url: # otherwise, return canonical URL for this model from dynamic_rest.routers import DynamicRouter url = DynamicRouter.get_canonical_path(self.get_resource_key()) if pk: return '%s/%s/' % (url, pk) if url and not url.endswith('/'): url = url + '/' return url @classmethod def get_description(cls): return getattr(cls.Meta, 'description', None) @classmethod def get_class_getter(self): meta = self.get_meta() return getattr(meta, 'get_classes', None) @classmethod def get_name_field(cls): if not hasattr(cls.Meta, 'name_field'): # fallback to primary key return 'pk' return cls.Meta.name_field @classmethod def get_image_field(cls): if not hasattr(cls.Meta, 'image_field'): # fallback to primary key return None return cls.Meta.image_field @classmethod def get_search_key(cls): meta = cls.get_meta() if hasattr(meta, 'search_key'): return meta.search_key # fallback to name field name_field = cls.get_name_field() if name_field: return 'filter{%s.icontains}' % name_field # fallback to PK return 'pk' @classmethod def get_plural_name(cls): """Get the serializer's plural name. The plural name may be defined on the Meta class. If the plural name is not defined, the pluralized form of the name will be returned. """ if not hasattr(cls.Meta, 'plural_name'): setattr(cls.Meta, 'plural_name', inflection.pluralize(cls.get_name())) return cls.Meta.plural_name def get_request_attribute(self, attribute, default=None): return getattr(self.context.get('request'), attribute, default) def set_request_method(self, method=None): self._request_method = method def get_request_method(self): if getattr(self, '_request_method', None): return self._request_method else: return self.get_request_attribute('method', '').upper() def get_all_fields(self): """Returns the entire serializer field set. Does not respect dynamic field inclusions/exclusions. """ if not hasattr(self, '_all_fields'): self._all_fields = super(WithDynamicSerializerMixin, self).get_fields() for k, field in six.iteritems(self._all_fields): self.setup_field(k, field) return self._all_fields def setup_field(self, name, field): field.field_name = name field.parent = self label = inflection.humanize(name) field.label = getattr(field, 'label', label) or label fields = {name: field} meta = self.get_meta() ro_fields = getattr(meta, 'read_only_fields', []) self.flag_fields(fields, ro_fields, 'read_only', True) wo_fields = getattr(meta, 'write_only_fields', []) self.flag_fields(fields, wo_fields, 'write_only', True) pw_fields = getattr(meta, 'untrimmed_fields', []) self.flag_fields( fields, pw_fields, 'trim_whitespace', False, ) depends = getattr(meta, 'depends', {}) self.change_fields( fields, depends, 'depends' ) def _get_flagged_field_names(self, fields, attr, meta_attr=None): meta = self.get_meta() if meta_attr is None: meta_attr = '%s_fields' % attr meta_list = set(getattr(meta, meta_attr, [])) return { name for name, field in six.iteritems(fields) if getattr(field, attr, None) is True or name in meta_list } def _get_deferred_field_names(self, fields): meta = self.get_meta() deferred_fields = self._get_flagged_field_names(fields, 'deferred') defer_many_relations = (settings.DEFER_MANY_RELATIONS if not hasattr(meta, 'defer_many_relations') else meta.defer_many_relations) if defer_many_relations: # Auto-defer all fields, unless the 'deferred' attribute # on the field is specifically set to False. many_fields = self._get_flagged_field_names(fields, 'many') deferred_fields.update({ name for name in many_fields if getattr(fields[name], 'deferred', None) is not False }) return deferred_fields def flag_fields(self, all_fields, fields_to_flag, attr, value): for name in fields_to_flag: field = all_fields.get(name) if not field: continue setattr(field, attr, value) field._kwargs[attr] = value def change_fields(self, all_fields, fields_dict, attr): for key, value in fields_dict.items(): field = all_fields.get(key) if not field: continue setattr(field, attr, value) field._kwargs[attr] = value def get_fields(self): """Returns the serializer's field set. If `dynamic` is True, respects field inclusions/exlcusions. Otherwise, reverts back to standard DRF behavior. """ all_fields = self.get_all_fields() if self.dynamic is False: return all_fields if self.id_only(): return {} serializer_fields = copy.deepcopy(all_fields) if ( 'name' in serializer_fields and getattr(self.get_meta(), 'untrimmed_fields', None) == ('name', ) ): if serializer_fields['name'].trim_whitespace is not False: import pdb pdb.set_trace() request_fields = self.request_fields deferred = self._get_deferred_field_names(serializer_fields) # apply request overrides if request_fields: if request_fields is True: request_fields = {} for name, include in six.iteritems(request_fields): if name not in serializer_fields and name != 'pk': raise exceptions.ParseError( '"%s" is not a valid field name for "%s".' % (name, self.get_name())) if include is not False and name in deferred: deferred.remove(name) elif include is False: deferred.add(name) for name in deferred: serializer_fields.pop(name) method = self.get_request_method() # Toggle read_only flags for immutable fields. # Note: This overrides `read_only` if both are set, to allow # inferred DRF fields to be made immutable. immutable_field_names = self._get_flagged_field_names( serializer_fields, 'immutable' ) self.flag_fields( serializer_fields, immutable_field_names, 'read_only', value=method in ('GET', 'PUT', 'PATCH')) # Toggle read_only for only-update fields only_update_field_names = self._get_flagged_field_names( serializer_fields, 'only_update' ) self.flag_fields( serializer_fields, only_update_field_names, 'read_only', value=method in ('POST') ) # TODO: move this to get_all_fields # blocked by DRF field init assertion that read_only and write_only # cannot both be true meta = self.get_meta() hidden_fields = getattr(meta, 'hidden_fields', []) self.flag_fields(serializer_fields, hidden_fields, 'read_only', True) self.flag_fields(serializer_fields, hidden_fields, 'write_only', True) return serializer_fields def is_field_sideloaded(self, field_name): if not isinstance(self.request_fields, dict): return False return isinstance(self.request_fields.get(field_name), dict) def get_link_fields(self): """Construct dict of name:field for linkable fields.""" if not hasattr(self, '_link_fields'): query_params = self.get_request_attribute('query_params', {}) if 'exclude_links' in query_params: self._link_fields = {} else: all_fields = self.get_all_fields() self._link_fields = { name: field for name, field in six.iteritems(all_fields) if isinstance(field, _fields.DynamicRelationField) and getattr(field, 'link', True) and not ( # Skip sideloaded fields name in self.fields and self.is_field_sideloaded(name)) } return self._link_fields @cached_property def _readable_fields(self): # NOTE: Copied from DRF, exists in 3.2.x but not 3.1 return [ field for field in self.fields.values() if not field.write_only ] @cached_property def _all_readable_field_names(self): fields = self.get_all_fields() return [ key for key in fields.keys() if not fields[key].write_only ] @cached_property def _readable_field_names(self): fields = self.fields return [ key for key in fields.keys() if not fields[key].write_only ] def _faster_to_representation(self, instance): """Modified to_representation with optimizations. 1) Returns a plain old dict as opposed to OrderedDict. (Constructing ordered dict is ~100x slower than `{}`.) 2) Ensure we use a cached list of fields (this optimization exists in DRF 3.2 but not 3.1) Arguments: instance: a model instance or data object Returns: Dict of primitive datatypes. """ ret = {} fields = self._readable_fields for field in fields: try: attribute = field.get_attribute(instance) except SkipField: continue if attribute is None: # We skip `to_representation` for `None` values so that # fields do not have to explicitly deal with that case. ret[field.field_name] = None else: ret[field.field_name] = field.to_representation(attribute) return ret def is_root(self): return self.parent is None def to_representation(self, instance): """Modified to_representation method. Arguments: instance: A model instance or data object. Returns: Instance ID if the serializer is meant to represent its ID. Otherwise, a tagged data dict representation. """ id_only = self.id_only() if (self.get_format() == 'admin' and self.is_root()): id_only = False if id_only: return instance.pk else: if self.enable_optimization: representation = self._faster_to_representation(instance) else: representation = super(WithDynamicSerializerMixin, self).to_representation(instance) query_params = self.get_request_attribute('query_params', {}) if (settings.ENABLE_LINKS and 'exclude_links' not in query_params): representation = merge_link_object(self, representation, instance) if self.debug: representation['_meta'] = { 'id': instance.pk, 'type': self.get_plural_name() } # tag the representation with the serializer and instance return tag_dict( representation, serializer=self, instance=instance, embed=self.embed) def to_internal_value(self, data): meta = self.get_meta() value = super(WithDynamicSerializerMixin, self).to_internal_value(data) id_attr = getattr(meta, 'update_lookup_field', 'id') request_method = self.get_request_method() # Add update_lookup_field field back to validated data # since super by default strips out read-only fields # hence id will no longer be present in validated_data. if all((isinstance(self.root, DynamicListSerializer), id_attr, request_method in ('PUT', 'PATCH'))): id_field = self.fields[id_attr] id_value = id_field.get_value(data) value[id_attr] = id_value return value def add_post_save(self, fn): if not hasattr(self, '_post_save'): self._post_save = [] self._post_save.append(fn) def do_post_save(self, instance): if hasattr(self, '_post_save'): for fn in self._post_save: fn(instance) self._post_save = [] def create(self, validated_data): model = self.Meta.model meta = Meta(model) instance = model() to_save = [instance] to_set = [] try: with transaction.atomic(): for attr, value in validated_data.items(): try: field = meta.get_field(attr) if field.related_model: if field.many_to_many: to_set.append((instance, attr, value)) else: if isinstance(value, dict): to_save.extend( nested_update(instance, attr, value) ) else: if isinstance( getattr(instance, attr), models.Manager ): getattr(instance, attr).set(value) else: setattr(instance, attr, value) else: setattr(instance, attr, value) except AttributeError: setattr(instance, attr, value) for s in to_save: if self.SET_REQUEST_ON_SAVE: attr = self.SET_REQUEST_ON_SAVE if isinstance( self.SET_REQUEST_ON_SAVE, str ) else '_request' setattr(s, attr, self.context.get('request')) s.save() for i, a, v in to_set: f = getattr(i, a) f.set(v) except Exception as e: if settings.DEBUG: raise else: raise exceptions.ValidationError(e) return instance def update(self, instance, validated_data): # support nested writes if possible meta = Meta(instance) to_save = [instance] # Simply set each attribute on the instance, and then save it. # Note that unlike `.create()` we don't need to treat many-to-many # relationships as being a special case. During updates we already # have an instance pk for the relationships to be associated with. try: with transaction.atomic(): for attr, value in validated_data.items(): try: field = meta.get_field(attr) if field.related_model: if isinstance(value, dict): # nested dictionary on a has-one # relationship, we should take the current # related value and apply updates to it to_save.extend( nested_update(instance, attr, value)) else: # normal relationship update field = getattr(instance, attr, None) if isinstance(field, models.Manager): field.set(value) else: setattr(instance, attr, value) else: setattr(instance, attr, value) except AttributeError: setattr(instance, attr, value) except TypeError as e: if 'Direct assignment to the forward side' in str(e): getattr(instance, attr).set(value) else: raise for s in to_save: if self.SET_REQUEST_ON_SAVE: attr = self.SET_REQUEST_ON_SAVE if isinstance( self.SET_REQUEST_ON_SAVE, str ) else '_request' setattr(s, attr, self.context.get('request')) s.save() except Exception as e: if self.debug: raise else: raise exceptions.ValidationError(e) return instance def save(self, *args, **kwargs): """Serializer save that addresses prefetch issues.""" update = getattr(self, 'instance', None) is not None with transaction.atomic(): try: instance = super(WithDynamicSerializerMixin, self).save( *args, **kwargs) self.do_post_save(instance) except exceptions.APIException: if self.debug: import traceback traceback.print_exc() raise except Exception as e: if self.debug: import traceback traceback.print_exc() error = e.args[0] if e.args else str(e) if not isinstance(error, dict): error = {'error': error} self._errors = error raise exceptions.ValidationError(self.errors) view = self._context.get('view') if update and view: # Reload the object on update # to get around prefetch cache issues instance = self.instance = view.get_object() return instance def id_only(self): """Whether the serializer should return an ID instead of an object. Returns: True if and only if `request_fields` is True. """ return (self.dynamic and self.request_fields is True) @property def data(self): if getattr(self, '_processed_data', None) is None: data = super(WithDynamicSerializerMixin, self).data data = SideloadingProcessor(self, data).data if self.envelope else data self._processed_data = ReturnDict(data, serializer=self) return self._processed_data class WithDynamicModelSerializerMixin(WithDynamicSerializerMixin): """Adds DREST serializer methods specific to model-based serializers.""" @classmethod def get_model(cls): return getattr(cls.Meta, 'model', None) def get_id_fields(self): """ Called to return a list of fields consisting of, at minimum, the PK field name. The output of this method is used to construct a Prefetch object with a .only() queryset when this field is not being sideloaded but we need to return a list of IDs. """ model = self.get_model() meta = Meta(model) out = [meta.get_pk_field().attname] # If this is being called, it means it # is a many-relation to its parent. # Django wants the FK to the parent, # but since accurately inferring the FK # pointing back to the parent is less than trivial, # we will just pull all ID fields. # TODO: We also might need to return all non-nullable fields, # or else it is possible Django will issue another request. for field in meta.get_fields(): if isinstance(field, models.ForeignKey): out.append(field.attname) return out class DynamicModelSerializer(PermissionsSerializerMixin, WithDynamicModelSerializerMixin, serializers.ModelSerializer): """DREST-compatible model-based serializer.""" serializer_choice_field = _fields.DynamicChoiceField serializer_related_field = _fields.DynamicRelationField for field in ( 'BooleanField', 'NullBooleanField', 'CharField', 'DateField', 'DateTimeField', 'DecimalField', 'EmailField', 'FilePathField', 'FloatField', 'ImageField', 'BigIntegerField', 'PositiveIntegerField', 'PositiveSmallIntegerField', 'IntegerField', 'SlugField', 'FileField', 'ImageField', 'TimeField', 'URLField', 'UUIDField', ): model_field = getattr(models, field, None) if model_field: serializer_field = 'Dynamic%s' % (field if 'IntegerField' not in field else 'IntegerField') serializer_field = getattr(_fields, serializer_field) DynamicModelSerializer.serializer_field_mapping[ model_field] = serializer_field DynamicModelSerializer.serializer_field_mapping[ models.TextField] = _fields.DynamicTextField try: from django.contrib.postgres import fields as postgres_fields DynamicModelSerializer.serializer_field_mapping[ postgres_fields.ArrayField] = _fields.DynamicListField DynamicModelSerializer.serializer_field_mapping[ postgres_fields.JSONField] = _fields.DynamicJSONField except ImportError: pass class EphemeralObject(object): """Object that initializes attributes from a dict.""" def __init__(self, values_dict): if 'pk' not in values_dict: raise Exception('"pk" key is required') self.__dict__.update(values_dict) class DynamicEphemeralSerializer(WithDynamicSerializerMixin, serializers.Serializer): """DREST-compatible baseclass for non-model serializers.""" def to_representation(self, instance): """ Provides post processing. Sub-classes should implement their own to_representation method, but pass the resulting dict through this function to get tagging and field selection. Arguments: instance: Serialized dict, or object. If object, it will be serialized by the super class's to_representation() method. """ if not isinstance(instance, dict): data = super(DynamicEphemeralSerializer, self).to_representation(instance) else: data = instance instance = EphemeralObject(data) if self.id_only(): return data else: return tag_dict(data, serializer=self, instance=instance)
c = input().strip() fr = input().split() n = 0 for i in fr: if c in i: n += 1 print('{:.1f}'.format(n*100/len(fr)))
import pygame from spritesheetparser import Spritesheet class Player(pygame.sprite.Sprite): def __init__(self,engine): pygame.sprite.Sprite.__init__(self) self.engine = engine self.friction = -0.09 self.image = Spritesheet('resources/Blockz').get_sprite('white.png') self.image = pygame.transform.scale(self.image, (32,32)) self.rect = self.image.get_rect() self.position, self.velocity = pygame.math.Vector2(0,0), pygame.math.Vector2(0,0) self.acceleration = pygame.math.Vector2(5,5) self.max_vel = 8 self.bump = False def draw(self): self.engine.screen.blit(self.image, (self.rect.x - self.engine.camera.offset.x, self.rect.y - self.engine.camera.offset.y)) def update(self): #print(self.rect) #print(self.rect.w) self.vertical_movement(self.engine.dt) self.checkCollisionsy(self.engine.tiles) self.horizontal_movement(self.engine.dt) self.checkCollisionsx(self.engine.tiles) def horizontal_movement(self,dt): self.acceleration.x = 0 if self.engine.LEFT_KEY and not self.bump: self.acceleration.x -= .6 elif self.engine.RIGHT_KEY and not self.bump: self.acceleration.x += .6 self.acceleration.x += self.velocity.x * self.friction self.velocity.x += self.acceleration.x * dt self.limit_x_velocity(self.max_vel) self.position.x += self.velocity.x * dt + (self.acceleration.x * .5) * (dt * dt) self.rect.x = self.position.x def vertical_movement(self,dt): self.acceleration.y = 0 if self.engine.UP_KEY and not self.bump: self.acceleration.y -= .6 elif self.engine.DOWN_KEY and not self.bump: self.acceleration.y += .6 self.acceleration.y += self.velocity.y * self.friction self.velocity.y += self.acceleration.y * dt self.limit_y_velocity(self.max_vel) self.position.y += self.velocity.y * dt + (self.acceleration.y * .5) * (dt * dt) self.rect.y = self.position.y def limit_x_velocity(self, max_vel): self.velocity.x = max(-max_vel, min(self.velocity.x, max_vel)) if abs(self.velocity.x) < .11: self.velocity.x = 0 def limit_y_velocity(self, max_vel): self.velocity.y = max(-max_vel, min(self.velocity.y, max_vel)) if abs(self.velocity.y) < .11: self.velocity.y = 0 def get_hits(self, tiles): hits = [] for tile in tiles: if self.rect.colliderect(tile): if tile.can_collide : hits.append(tile) #print(tile.rect) return hits def checkCollisionsx(self, tiles): collisions = self.get_hits(tiles) self.bump = False for tile in collisions: if self.velocity.x > 0: # Hit tile moving right self.position.x = tile.rect.left - self.rect.w self.rect.x = self.position.x self.velocity.x = 0 self.bump = True elif self.velocity.x < 0: # Hit tile moving left self.position.x = tile.rect.right self.rect.x = self.position.x self.velocity.x = 0 self.bump = True def checkCollisionsy(self, tiles): collisions = self.get_hits(tiles) self.bump = False for tile in collisions: if self.velocity.y > 0: # Hit tile moving down self.position.y = tile.rect.top - self.rect.h self.rect.y = self.position.y self.bump = True #- 2 self.velocity.y = 0 elif self.velocity.y < 0: # Hit tile moving up self.position.y = tile.rect.bottom self.rect.y = self.position.y self.velocity.y = 0 self.bump = True
import inspect import rhetoric.config.predicates from rhetoric.exceptions import ConfigurationError from rhetoric.util import viewdefaults class ViewsConfiguratorMixin(object): @viewdefaults def add_view(self, view=None, route_name=None, request_method=None, attr=None, decorator=None, check_csrf=False, renderer=None, **predicates): """ :param view: callable :param route_name: :type route_name: str or None :param request_method: :type request_method: str or tuple :param attr: This knob is most useful when the view definition is a class. The view machinery defaults to using the ``__call__`` method of the :term:`view callable` (or the function itself, if the view callable is a function) to obtain a response. The ``attr`` value allows you to vary the method attribute used to obtain the response. For example, if your view was a class, and the class has a method named ``index`` and you wanted to use this method instead of the class' ``__call__`` method to return the response, you'd say ``attr="index"`` in the view configuration for the view. :type attr: str :param decorator: :param check_csrf: :param renderer: :param predicates: Pass a key/value pair here to use a third-party predicate registered via :meth:`rhetoric.config.Configurator.add_view_predicate`. More than one key/value pair can be used at the same time. See :ref:`view_and_route_predicates` for more information about third-party predicates. :return: :raise ConfigurationError: """ try: route = self.routes[route_name] except KeyError: raise ConfigurationError( 'No route named {route_name} found for view registration'.format(route_name=route_name) ) # Parse view # ----------------------------------------------- if inspect.isclass(view): actual_method = attr if attr else '__call__' view = ClassViewWrapper(view, actual_method) # Add decorators # ----------------------------------------------- def combine(*decorators): def decorated(view_callable): # reversed() is allows a more natural ordering in the api for decorator in reversed(decorators): view_callable = decorator(view_callable) return view_callable return decorated if isinstance(decorator, tuple): decorator = combine(*decorator) if decorator: view = decorator(view) # csrf_exempt is used by Django CSRF Middleware # ----------------------------------------------- view.csrf_exempt = not check_csrf # Register predicates # ------------------------------------- if request_method is None: request_method = ('GET',) pvals = predicates.copy() pvals.update( dict( request_method=request_method, ) ) predlist = self.get_predlist('view') _weight_, preds, _phash_ = predlist.make(self, **pvals) # Renderers # ------------------------------------- if renderer is None: renderer = 'string' # Save # ------------------------------------- route_item = { 'view': view, 'attr': attr, 'renderer': self.get_renderer(renderer), 'predicates': preds, } route['viewlist'].append(route_item) def add_view_predicate(self, name, factory, weighs_more_than=None, weighs_less_than=None): """ Adds a view predicate factory. The associated view predicate can later be named as a keyword argument to :meth:`rhetoric.config.Configurator.add_view` in the ``predicates`` anonymous keyword argument dictionary. ``name`` should be the name of the predicate. It must be a valid Python identifier (it will be used as a keyword argument to ``add_view`` by others). ``factory`` should be a :term:`predicate factory` or :term:`dotted Python name` which refers to a predicate factory. See :ref:`view_and_route_predicates` for more information. """ self._add_predicate( 'view', name, factory, weighs_more_than=weighs_more_than, weighs_less_than=weighs_less_than ) def add_default_view_predicates(self): p = rhetoric.config.predicates for name, factory in ( ('request_method', p.RequestMethodPredicate), ): self.add_view_predicate(name, factory) class ClassViewWrapper(object): def __init__(self, view_class, method_to_call): self.view_class = view_class self.method_to_call = method_to_call def __call__(self, request, *args, **kw): instance = self.view_class(request, *args, **kw) view = getattr(instance, self.method_to_call) return view()
from os import listdir from datetime import datetime from os.path import isfile, join import zipfile import json def extract_data_from_zip(target_file): """unzip the file, parse the data and return a list of CVEs""" file = zipfile.ZipFile(target_file, "r") json_file = file.open(file.namelist()[0]) data = json.loads(json_file.read()) cves = [] for index, report in enumerate(data["CVE_Items"]): try: cve_id = report.get("cve").get("CVE_data_meta").get("ID") last_mod_date = datetime.strptime(report.get("lastModifiedDate"), "%Y-%m-%dT%H:%MZ") pub_date = datetime.strptime(report.get("publishedDate"), "%Y-%m-%dT%H:%MZ") summary = report.get("cve").get("description").get("description_data")[0].get("value") impact = report.get("impact") if "REJECT" in summary: continue if impact != {}: baseMetricV2 = impact.get("baseMetricV2") cvss_base = baseMetricV2.get("cvssV2").get("baseScore") cvss_impact = baseMetricV2.get("impactScore") cvss_exploit = baseMetricV2.get("exploitabilityScore") cvss_access_vector = baseMetricV2.get("cvssV2").get("accessVector") cvss_access_complexity = baseMetricV2.get("cvssV2").get("accessComplexity") cvss_access_authentication = baseMetricV2.get("cvssV2").get("authentication") cvss_confidentiality_impact = baseMetricV2.get("cvssV2").get("confidentialityImpact") cvss_integrity_impact = baseMetricV2.get("cvssV2").get("integrityImpact") cvss_availability_impact = baseMetricV2.get("cvssV2").get("availabilityImpact") cvss_vector = baseMetricV2.get("cvssV2").get("vectorString") cwe_id = report.get("cve").get("problemtype").get("problemtype_data")[0].get("description")[0].get("value") else: cvss_base = None cvss_impact = None cvss_exploit = None cvss_access_vector = None cvss_access_complexity = None cvss_access_authentication = None cvss_confidentiality_impact = None cvss_integrity_impact = None cvss_availability_impact = None cvss_vector = None except AttributeError as e: print(e) print(cve_id) print(report.get("impact")) print(summary) print("------------") continue cve = { "cve_id": cve_id, "published_date": pub_date, "last_modified_date": last_mod_date, "summary": summary, "cvss_base": cvss_base, "cvss_impact": cvss_impact, "cvss_exploit": cvss_exploit, "cvss_access_vector": cvss_access_vector, "cvss_access_complexity": cvss_access_complexity, "cvss_access_authentication": cvss_access_authentication, "cvss_confidentiality_impact": cvss_confidentiality_impact, "cvss_integrity_impact": cvss_integrity_impact, "cvss_availability_impact": cvss_availability_impact, "cvss_vector": cvss_vector, "cwe_id": cwe_id } cves.append(cve) return cves def extract_cpe_uris(target_file): file = zipfile.ZipFile(target_file, "r") json_file = file.open(file.namelist()[0]) data = json.loads(json_file.read()) cves = [] for index, report in enumerate(data["CVE_Items"]): try: summary = report.get("cve").get("description").get("description_data")[0].get("value") cve_id = report.get("cve").get("CVE_data_meta").get("ID") cpe_nodes = report.get("configurations").get("nodes") cpe_list = [] if cpe_nodes == [] or "REJECT" in summary: continue for node in cpe_nodes: cpe_children = node.get("children") if node.get("cpe_match") is None: continue elif cpe_children is None: for match in node.get("cpe_match"): cpe_list.append(match.get("cpe23Uri")) else: for child in cpe_children: for match in child.get("cpe_match"): cpe_list.append(match.get("cpe23Uri")) cve = { "cve_id": cve_id, "cpe_uris": cpe_list, } cves.append(cve) except TypeError as e: print(e) print(cve_id) return cves # print(extract_cpe_uris("nvd/cve/nvdcve-1.1-2020.json.zip"))
import datetime from itertools import chain import json import re from urllib.parse import quote as urlquote from django.utils.html import format_html, mark_safe from actionkit.api.event import AKEventAPI from actionkit.api.user import AKUserAPI from actionkit.utils import generate_akid from event_store.models import Activist, Event, CHOICES """ Non-standard use in ActionKit: * We assume a user field called "recent_phone" (because the phone table is a big pain) * Custom Event Field mappings: - review_status - prep_status - needs_organizer_help - political_scope - public_phone - venue_category """ #MYSQL 2016-12-12 18:00:00 DATE_FMT = '%Y-%m-%d %H:%M:%S' _LOGIN_TOKENS = {} class AKAPI(AKUserAPI, AKEventAPI): #merge both user and event apis in one class pass class Connector: """ This connects to ActionKit with the rest api -- queries are done through ad-hoc report queries: https://roboticdogs.actionkit.com/docs/manual/api/rest/reports.html#running-an-ad-hoc-query which is inelegant compared with browsing /rest/v1/event/ however, we can't get all the fields we need from that one call, and it's currently impossible to sort by updated_at for easy syncing and it's very difficult to get the hosts without browsing all signups. Better would be a way to filter eventsignups by role=host """ description = ("ActionKit API connector that needs API- read-only access and API edit access" " if you are going to save event status back") CAMPAIGNS_CACHE = {} USER_CACHE = {} #used for conversions date_fields = ('starts_at', 'ends_at', 'starts_at_utc', 'ends_at_utc', 'updated_at') common_fields = ['address1', 'address2', 'city', 'state', 'region', 'postal', 'zip', 'plus4', 'country', 'longitude', 'latitude', 'title', 'starts_at', 'ends_at', 'starts_at_utc', 'ends_at_utc', 'status', 'host_is_confirmed', 'is_private', 'is_approved', 'attendee_count', 'max_attendees', 'venue', 'public_description', 'directions', 'note_to_attendees', 'updated_at'] other_fields = ['ee.id', 'ee.creator_id', 'ee.campaign_id', 'ee.phone', 'ee.notes', 'ec.name', 'ec.title', 'ee.us_district', 'signuppage.name', 'createpage.name', 'host.id', 'hostaction.id', 'hostaction2.action_ptr_id', 'hostcreateaction.action_ptr_id', 'u.id', 'u.first_name', 'u.last_name', 'u.email', 'loc.us_district', 'recentphone.value'] event_fields = ['review_status', 'prep_status', 'needs_organizer_help', 'political_scope', 'public_phone', 'venue_category'] #column indexes for the above fields field_indexes = {k:i for i,k in enumerate( common_fields + other_fields # this looks complicated, but just alternates between <field>, <field>_id for the eventfield id + list(chain(*[(ef,'%s_id' % ef) for ef in event_fields])) )} sql_query = ( "SELECT %(commonfields)s, %(otherfields)s, %(eventfields)s" " FROM events_event ee" " JOIN events_campaign ec ON ee.campaign_id = ec.id" #host won't necessarily be unique but the GROUP BY will choose the first host signup " LEFT JOIN events_eventsignup host ON (host.event_id = ee.id AND host.role='host')" " LEFT JOIN core_user u ON (u.id = host.user_id)" " LEFT JOIN core_userfield recentphone ON (recentphone.parent_id = u.id AND recentphone.name = 'recent_phone')" " LEFT JOIN core_location loc ON (loc.user_id = u.id)" " JOIN core_eventsignuppage ces ON (ces.campaign_id = ee.campaign_id)" " JOIN core_page signuppage ON (signuppage.id = ces.page_ptr_id AND signuppage.hidden=0 AND signuppage.status='active')" " LEFT JOIN core_eventcreateaction hostcreateaction ON (hostcreateaction.event_id = ee.id)" " LEFT JOIN core_action hostaction ON (hostcreateaction.action_ptr_id = hostaction.id AND hostaction.user_id=host.user_id)" " LEFT JOIN core_eventsignupaction hostaction2 ON (hostaction2.signup_id = host.id)" " LEFT JOIN core_eventcreatepage cec ON (cec.campaign_id = ee.campaign_id)" " LEFT JOIN core_page createpage ON (createpage.id = cec.page_ptr_id AND createpage.hidden=0 AND createpage.status='active')" " %(eventjoins)s " " xxADDITIONAL_WHERExx " #will be replaced with text or empty string on run # we need to include hostcreateaction in group by so it doesn't get squashed with first match " GROUP BY ee.id, host.id, hostcreateaction.action_ptr_id" " ORDER BY {{ ordering }} DESC" " LIMIT {{ max_results }}" " OFFSET {{ offset }}" ) % {'commonfields': ','.join(['ee.{}'.format(f) for f in common_fields]), 'otherfields': ','.join(other_fields), 'eventfields': ','.join(['{f}.value, {f}.id'.format(f=f) for f in event_fields]), 'eventjoins': ' '.join([("LEFT JOIN events_eventfield {f}" " ON ({f}.parent_id=ee.id AND {f}.name = '{f}')" ).format(f=f) for f in event_fields]), } @classmethod def writable(cls): return True @classmethod def parameters(cls): return {'campaign': {'help_text': 'ID (a number) of campaign if just for a single campaign', 'required': False}, 'api_password': {'help_text': 'api password', 'required': True}, 'api_user': {'help_text': 'api username', 'required': True}, 'max_event_load': {'help_text': ('The default number of events to back-load from' ' the database. (if not set, then it will go' 'all the way back)'), 'required': False}, 'base_url': {'help_text': 'base url like "https://roboticdocs.actionkit.com"', 'required': True}, 'allowed_hosts': {'help_text': ('defaults to base_url host, but if you have other' ' hosts that should be allowed to ping as the client'), 'required': False}, 'ak_secret': {'help_text': 'actionkit "Secret" needed for auto-login tokens', 'required': False}, 'ignore_host_ids': {'help_text': ('if you want to ignore certain hosts' ' (due to automation/admin status) add' ' them as a json list of integers'), 'required': False}, 'cohost_id': {'help_text': ('for easy Act-as-host links, if all events' ' have a cohost, then this will create' ' links that do not need ActionKit staff access'), 'required': False}, 'cohost_autocreate_page_id': {'help_text': ('If you want the cohost auto-added as a host' 'to all events add a page_id for event signup'), 'required': False}, } def __init__(self, event_source): self.source = event_source data = event_source.data self.base_url = data['base_url'] class aksettings: AK_BASEURL = data['base_url'] AK_USER = data['api_user'] AK_PASSWORD = data['api_password'] AK_SECRET = data.get('ak_secret') self.akapi = AKAPI(aksettings) self.ignore_hosts = set() if 'ignore_host_ids' in data: self.ignore_hosts = set([int(h) for h in data['ignore_host_ids'].split(',') if re.match(r'^\d+$', h) ]) self.cohost_id = data.get('cohost_id') self.cohost_autocreate_page_id = data.get('cohost_autocreate_page_id') self._allowed_hosts = set(data['base_url'].split('/')[2]) if data.get('allowed_hosts'): self._allowed_hosts.update(data['allowed_hosts'].split(',')) def allowed_hosts(self): return self._allowed_hosts def _load_events_from_sql(self, ordering='ee.updated_at', max_results=10000, offset=0, additional_where=[], additional_params={}): """ With appropriate sql query gets all the events via report/run/sql api and returns None when there's an error or no events and returns a list of event row lists with column indexes described by self.field_indexes """ if max_results > 10000: raise Exception("ActionKit doesn't permit adhoc sql queries > 10000 results") where_clause = '' if additional_where: where_clause = ' WHERE %s' % ' AND '.join(additional_where) query = {'query': self.sql_query.replace('xxADDITIONAL_WHERExx', where_clause), 'ordering': ordering, 'max_results': max_results, 'refresh': True, 'offset': offset} query.update(additional_params) res = self.akapi.client.post('{}/rest/v1/report/run/sql/'.format(self.base_url), json=query) if res.status_code == 200: return res.json() def _host2activist(self, host): """from dict out of _convert_host, into an activist model""" args = host.copy() args.pop('create_action') return Activist(member_system=self.source, **args) def _convert_host(self, event_row): fi = self.field_indexes return dict(member_system_pk=str(event_row[fi['u.id']]), name='{} {}'.format(event_row[fi['u.first_name']], event_row[fi['u.last_name']]), email=event_row[fi['u.email']], hashed_email=Activist.hash(event_row[fi['u.email']]), phone=event_row[fi['recentphone.value']], #non Activist fields: # we try hostaction2 -- a signup instead of create, first, # because if there's a signup, there won't be a create # however the create action will join on all events # since the create action is just based on event_id, not the user create_action=(event_row[fi['hostaction2.action_ptr_id']] or event_row[fi['hostaction.id']]) ) def _convert_event(self, event_rows): """ Based on a row from self.sql_query, returns a dict of fields that correspond directly to an event_store.models.Event object """ event_row = event_rows[0] fi = self.field_indexes hackattempt = False def cleanchars(val, key): if isinstance(val, str): if key == 'state': if not re.match(r'^[A-Z][A-Z]$', val.upper()): # indication of corrupted state hackattempt = True return 'XX' return val.upper() # tx => TX if '\x00' in val: hackattempt = True # it would be nice to have a longer in-place message, # but we don't want to break char-count maximums return val.replace('\x00', 'X') return val event_fields = {k:cleanchars(event_row[fi[k]], k) for k in self.common_fields} signuppage = event_row[fi['signuppage.name']] campaign_slug = event_row[fi['ec.name']] e_id = event_row[fi['ee.id']] rsvp_url = ( '{base}/event/{attend_page}/{event_id}/'.format( base=self.base_url, attend_page=signuppage, event_id=e_id) if signuppage else None) search_url = ( '{base}/event/{attend_page}/search/'.format( base=self.base_url, attend_page=signuppage) if signuppage else None) slug = '{}-{}'.format(re.sub(r'\W', '', self.base_url.split('://')[1]), e_id) state, district = (event_row[fi['ee.us_district']] or '_').split('_') ocdep_location = ('ocd-division/country:us/state:{}/cd:{}'.format(state.lower(), district) if state and district else None) # Now go through all the rows to get the different hosts hosts = {} main_host_id = None cohost_create_action = None for row in sorted(event_rows, key=lambda r: r[fi['host.id']]): host = self._convert_host(row) hostpk = int(host['member_system_pk']) if not main_host_id and hostpk not in self.ignore_hosts: main_host_id = hostpk # put the first one in hosts, and then only update # if we have a create_action row if hostpk not in hosts or host.get('create_action'): hosts[hostpk] = host if hostpk == self.cohost_id: cohost_create_action = host['create_action'] if self.cohost_autocreate_page_id \ and self.cohost_id \ and not cohost_create_action: # cohost has not been added yet -- let's add it res = self.akapi.create_signup(self.cohost_id, e_id, self.cohost_autocreate_page_id, role='host', fields={'source': 'automatic', 'provider': 'eventroller'}) if res and res.get('id'): cohost_create_action = int(res['id']) event_fields.update({'organization_official_event': False, 'event_type': 'unknown', 'organization_host': (self._host2activist(hosts[main_host_id]) if main_host_id else None), 'organization_source': self.source, 'organization_source_pk': str(e_id), 'organization': self.source.origin_organization, 'organization_campaign': event_row[fi['ec.title']], 'is_searchable': (event_row[fi['status']] == 'active' and not event_row[fi['is_private']]), 'private_phone': event_row[fi['recentphone.value']] or '', 'phone': event_row[fi['public_phone']] or '', 'url': rsvp_url, #could also link to search page with hash 'slug': slug, 'osdi_origin_system': self.base_url, 'ticket_type': CHOICES['open'], 'share_url': search_url, 'internal_notes': event_row[fi['ee.notes']], #e.g. NC cong district 2 = "ocd-division/country:us/state:nc/cd:2" 'political_scope': (event_row[fi['political_scope']] or ocdep_location), #'dupe_id': None, #no need to set it 'venue_category': CHOICES[event_row[fi['venue_category']] or 'unknown'], 'needs_organizer_help': event_row[fi['needs_organizer_help']] == 'needs_organizer_help', 'rsvp_url': rsvp_url, 'event_facebook_url': None, 'organization_status_review': event_row[fi['review_status']], 'organization_status_prep': event_row[fi['prep_status']], 'source_json_data': json.dumps({ # other random data to keep around 'campaign_id': event_row[fi['ee.campaign_id']], 'create_page': event_row[fi['createpage.name']], 'create_action_id': cohost_create_action, 'hosts': hosts, 'hack': hackattempt, 'campaign_slug': campaign_slug, }), }) for df in self.date_fields: if event_fields[df]: event_fields[df] = datetime.datetime.strptime(event_fields[df], DATE_FMT) return event_fields def get_event(self, event_id): """ Returns an a dict with all event_store.Event model fields """ events = self._load_events_from_sql(additional_where=['ee.id = {{event_id}}'], additional_params={'event_id': event_id}) if events: return self._convert_event(events) def load_events(self, max_events=None, last_updated=None): additional_where = [] additional_params = {} campaign = self.source.data.get('campaign') if campaign: additional_where.append('ee.campaign_id = {{ campaign_id }}') additional_params['campaign_id'] = campaign if last_updated: additional_where.append('ee.updated_at > {{ last_updated }}') additional_params['last_updated'] = last_updated # all_events keyed by id with values as a list of event_rows for the event # there can be multiple rows, at least because there can be multiple hosts all_events = {} max_events = max_events or self.source.data.get('max_event_load') event_count = 0 for offset in range(0, max_events, min(10000, max_events)): if event_count > max_events: break events = self._load_events_from_sql(offset=offset, additional_where=additional_where, additional_params=additional_params, max_results=min(10000, max_events)) if events: for event_row in events: e_id = event_row[self.field_indexes['ee.id']] if e_id in all_events: all_events[e_id].append(event_row) else: all_events[e_id] = [event_row] event_count = event_count + 1 return {'events': [self._convert_event(event_rows) for event_rows in all_events.values()], 'last_updated': datetime.datetime.utcnow().strftime(DATE_FMT)} def update_review(self, event, reviews, log_message): res = self.akapi.get_event(event.organization_source_pk) if 'res' in res: eventfield_list = res['res'].json().get('fields', {}) eventfields = {ef['name']:ef['id'] for ef in eventfield_list} for r in reviews: if r.key in ('review_status', 'prep_status'): self.akapi.set_event_field(event.organization_source_pk, r.key, r.decision, eventfield_id=eventfields.get(r.key)) def get_admin_event_link(self, event): if event.source_json_data: cid = json.loads(event.source_json_data).get('campaign_id') if cid: return '{}/admin/events/event/?campaign={cid}&event_id={eid}'.format( self.base_url, cid=cid, eid=event.organization_source_pk) def get_host_event_link(self, event, edit_access=False, host_id=None, confirm=False): if event.status != 'active': return None jsondata = event.source_json_data create_page = None if jsondata: create_page = json.loads(jsondata).get('create_page') if not create_page: return None host_link = '/event/{create_page}/{event_id}/host/'.format( create_page=create_page, event_id=event.organization_source_pk) if not host_id: if self.cohost_id: host_id = self.cohost_id else: # no host to use. # maybe todo: use event host, but need to think of auth/consequences return None elif confirm: host_link = urlquote(host_link + '?confirmed=1') if edit_access and host_id and self.akapi.secret: #easy memoization for a single user token = _LOGIN_TOKENS.get(host_id, False) if token is False: token = self.akapi.login_token(host_id) _LOGIN_TOKENS[host_id] = token if token: host_link = '/login/?i={}&l=1&next={}'.format(token, host_link) return '{}{}'.format(self.base_url, host_link) def get_additional_hosts(self, event): additional_hosts = [] if event.source_json_data: json_data = json.loads(event.source_json_data) hosts = json_data.get('hosts') if hosts: for hostpk, host in hosts.items(): if int(hostpk) not in self.ignore_hosts\ and (not event.organization_host_id\ or hostpk != event.organization_host.member_system_pk): additional_hosts.append(host) return additional_hosts def get_extra_event_management_html(self, event): additional_hosts = self.get_additional_hosts(event) def host_format(host): # glyphicon glyphicon-envelope # glyphicon glyphicon-earphone additional_info = [] if host.get('email'): additional_info.append(format_html( '<a href="mailto:{}"><span class="glyphicon glyphicon-envelope"></span></a>', host['email'])) if host.get('phone'): additional_info.append(format_html( '<span class="glyphicon glyphicon-earphone"></span> {}', Event.phone_format(host['phone']))) return format_html('<div data-pk="{}">{} {}</div>', host['member_system_pk'], host['name'], mark_safe(' '.join(additional_info))) if additional_hosts: return mark_safe( '<div><b>Additional Hosts:</b>' + ''.join([host_format(h) for h in additional_hosts]) + '</div>') return None
import tensorflow as tf import tensorflow.contrib.layers as layers import sys import numpy as np def build_q_func(network, num_experts, hiddens=[256], dueling=True, layer_norm=False, **network_kwargs): assert isinstance(network, str) if isinstance(network, str): from baselines.common.models import get_network_builder # with tf.variable_scope("inp"): inp_network = get_network_builder(network)(**network_kwargs) # with tf.variable_scope("bel"): bel_network = get_network_builder(network)(**network_kwargs) def q_func_builder(input_placeholder, belief_placeholder, expert_q_ph, num_actions, scope, reuse=False): # input_placeholder = tf.Print(input_placeholder, [input_placeholder], '>>>> INP :', summarize=64*48) with tf.variable_scope(scope, reuse=reuse): # input_placeholder = tf.Print(input_placeholder, [input_placeholder], '>>>> INPUT: ', summarize=100) latent_inp = inp_network(input_placeholder) if isinstance(latent_inp, tuple): if latent_inp[1] is not None: raise NotImplementedError("DQN is not compatible with recurrent policies yet") latent_inp = latent_inp[0] latent_inp = layers.flatten(latent_inp) # belief_placeholder = tf.Print(belief_placeholder, [belief_placeholder], '>>>> BEL :', summarize=64*48) with tf.variable_scope(scope, reuse=reuse): with tf.variable_scope("bel", reuse=reuse): # residual network takes both input and bel latent_bel = bel_network(belief_placeholder) if isinstance(latent_bel, tuple): if latent_bel[1] is not None: raise NotImplementedError("DQN is not compatible with recurrent policies yet") latent_bel = latent_bel[0] latent_bel = layers.flatten(latent_bel) stacked = tf.stack([latent_inp, latent_bel], axis=1) latent = layers.flatten(stacked) with tf.variable_scope("action_value"): action_out = latent for hidden in hiddens: action_out = layers.fully_connected(action_out, num_outputs=hidden, activation_fn=None) if layer_norm: action_out = layers.layer_norm(action_out, center=True, scale=True) action_out = tf.nn.relu(action_out) action_scores = layers.fully_connected(action_out, num_outputs=num_actions, activation_fn=None) if dueling: with tf.variable_scope("state_value"): state_out = latent for hidden in hiddens: state_out = layers.fully_connected(state_out, num_outputs=hidden, activation_fn=None) if layer_norm: state_out = layers.layer_norm(state_out, center=True, scale=True) state_out = tf.nn.relu(state_out) state_score = layers.fully_connected(state_out, num_outputs=1, activation_fn=None) action_scores_mean = tf.reduce_mean(action_scores, 1) action_scores_centered = action_scores - tf.expand_dims(action_scores_mean, 1) q_out = state_score + action_scores_centered else: q_out = action_scores #q_out = tf.Print(q_out, [q_out], '>>>> FOUT :', summarize=3) #expert_q_ph = tf.Print(expert_q_ph, [expert_q_ph], '>>>> EXP :', summarize=3) q_out = q_out + expert_q_ph return q_out return q_func_builder
#Made by Andreas L. Vishart #Give the script an input (.com) or output (.out/.log) file with fragments in it. #Then the vector and distace between the donor and the acceptor will be printed. #------------------------Packages------------------------ import numpy as np import argparse #------------------------Parameters---------------------- #Donor fragment fd=1 #Acceptor fragment fa=2 #Bridge/Chromophore fb=0 #print ("y"/"n" or "yes"/"no") print_crit="y" #VdW radii vdw_radi=1.5 #Convergence factor, Angstrom to Bohr conv_dist=1/(0.529177210903) #------------------------Parser-------------------------- parser = argparse.ArgumentParser() parser.add_argument('Input', help="Input file is needed.", type=str) parser.add_argument("-fa", "--Frag_A", help="The label of the fragment for the acceptor.", type=int) parser.add_argument("-fd", "--Frag_D", help="The label of the fragment for the donor.", type=int) parser.add_argument("-fc", "--Frag_C", help="The label of the fragment for the chromophore.", type=int) args = parser.parse_args() if args.Frag_A: fa = args.Frag_A if args.Frag_D: fd = args.Frag_D if args.Frag_C: fb = args.Frag_C #------------------------Functions----------------------- #Atom info def atom_info(): Elements={} Elements["Element"]=["H","He","Li","Be","B","C","N","O","F","Ne","Na","Mg","Al","Si","P","S","Cl","Ar", "K","Ca","Sc","Ti","V","Cr","Mn","Fe","Co","Ni","Cu","Zn","Ga","Ge","As","Se","Br","Kr", "Rb","Sr","Y","Zr","Nb","Mo","Tc","Ru","Rh","Pd","Ag","Cd","In","Sn","Sb","Te","I","Xe"] Elements["Number"]=[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54] Elements["VdW"]=[1.20,1.40,1.82,1.53,1.92,1.70,1.55,1.52,1.47,1.54,2.27,1.73,1.84,2.10,1.80,1.80,1.75,1.88, 2.75,2.31,None,None,None,None,None,None,None,1.63,1.40,1.39,1.87,2.11,1.85,1.90,1.85,2.02, 3.03,2.49,None,None,None,None,None,None,None,1.63,1.72,1.58,1.93,2.17,2.06,2.06,1.98,2.16] return Elements #Get the xyz coordinates for each fragment of an input file def get_xyz(content,ifstatement): xyz=[] elements=[] for line in content: if ifstatement in line: con=list(filter(None,line.split(" "))) elements.append(str(con[0].split("(")[0])) xyz.append([]) for j in range(1,4): xyz[-1].append(float(con[j])) return elements,np.array(xyz) #Get the xyz coordinates for each fragment of an output file def load_xyz(out_content): frag=False frag_content=[] out=False for line in out_content: #Get fragments for each element if "Charge" in line and "Multiplicity" in line: frag=True elif "Initial Parameters" in line or "Stoichiometry" in line: frag=False break if frag: newline=list(filter(None,line.replace("\n","").split(" "))) if len(newline)==4: frag_content.append(newline[0]) for line in out_content: #Get the final coordinates if "Standard orientation:" in line: out=True l=1 out_xyz=[] elif "Rotational constants" in line: out=False elif out: newline=list(filter(None,line.replace("\n","").split(" "))) if newline[0]==str(l): out_xyz.append(["{0:.8f}".format(round(float(newline[3]),8)),"{0:.8f}".format(round(float(newline[4]),8)),"{0:.8f}".format(round(float(newline[5]),8))]) l+=1 #If elements and coordinates are loaded coorectly then make the xyz input xyz_list=[] if len(frag_content)==len(out_xyz): for i in range(len(frag_content)): xyz_txt="" space=32-len(str(frag_content[i]))-len(str(out_xyz[i][0])) xyz_txt+=" "+str(frag_content[i])+" "*space for j in range(2): space=16-len(str(out_xyz[i][j+1])) xyz_txt+=str(out_xyz[i][j])+" "*space xyz_txt+=str(out_xyz[i][2]) xyz_list.append(xyz_txt) return xyz_list #Distance between two elements def distance(coord1,coord2): distance=0 for i in range(3): distance+=(coord2[i]-coord1[i])**2 return np.sqrt(distance) #Get the center of charge and the radii of the fragment def center_radii_fragment(content,frag_num,Elements_prop,conv_dist): #Set the coordinates into lists of fragments Elements_frag,Frag_frag=get_xyz(content,"Fragment="+str(frag_num)) #Number of elements in the fragment len_Frag=len(Frag_frag) #Coordinates of elements by charge weighted factor weight_frag=np.array([Elements_prop["Number"][Elements_prop["Element"].index(i)] for i in Elements_frag]) Frag_frag_weight=np.array([Frag_frag[i]*weight_frag[i] for i in range(len_Frag)]) #Find the center of the donor and acceptor fragment from the distances alone center_Frag_frag=np.array([sum(Frag_frag_weight[:,j]) for j in range(3)])/(sum(weight_frag)) #Maximum Radii of the fragment with and without VdW radii radii_frag=0 for j in range(len_Frag): dis=distance(center_Frag_frag,Frag_frag[j]) if dis>=radii_frag: radii_frag=dis vdw=Elements_prop["VdW"][Elements_prop["Element"].index(Elements_frag[j])] radii_frag=radii_frag*conv_dist radii_frag_vdw=radii_frag+(vdw*conv_dist) return Frag_frag,center_Frag_frag,radii_frag,radii_frag_vdw def run_program(fd,fa,fb,print_crit,vdw_radi): #Import input file with open(args.Input) as thefile: content=thefile.readlines() #If the file is an output file else it is an input file if args.Input[-3:]=="out" or args.Input[-3:]=="log": content=load_xyz(content) Elements_prop=atom_info() #Center and radii of donor Frag_D,center_Frag_D,radii_D,radii_D_vdw=center_radii_fragment(content,fd,Elements_prop,conv_dist) #Center and radii of acceptor Frag_A,center_Frag_A,radii_A,radii_A_vdw=center_radii_fragment(content,fa,Elements_prop,conv_dist) #Vector from donor to acceptor DA_vec=(center_Frag_A-center_Frag_D)*conv_dist #Distace between donor and acceptor R_DA=np.sqrt(sum(DA_vec**2)) #All transition distances trans_dis=[] for i in range(len(Frag_D)): for j in range(len(Frag_A)): trans_dis.append(distance(Frag_A[j],Frag_D[i])) R_DA_min=min(trans_dis)*conv_dist #Center, radii, vector of bridge if fb!=0: try: Frag_B,center_Frag_B,radii_B,radii_B_vdw=center_radii_fragment(content,fb,Elements_prop,conv_dist) if radii_B>0: DB_vec=(center_Frag_B-center_Frag_D)*conv_dist R_DB=np.sqrt(sum(DB_vec**2)) BA_vec=(center_Frag_A-center_Frag_B)*conv_dist R_BA=np.sqrt(sum(BA_vec**2)) trans_dis_DB=[]; trans_dis_BA=[] for i in range(len(Frag_B)): for j in range(len(Frag_D)): trans_dis_DB.append(distance(Frag_B[i],Frag_D[j])) for j in range(len(Frag_A)): trans_dis_BA.append(distance(Frag_B[i],Frag_A[j])) R_DB_min=min(trans_dis_DB)*conv_dist R_BA_min=min(trans_dis_BA)*conv_dist except: fb=0 if print_crit.lower()=="y" or print_crit.lower()=="yes": print("Radius of the donor without VdW = "+str(radii_D)+" Bohr") print("Radius of the acceptor without VdW = "+str(radii_A)+" Bohr") print("Radius of the donor with VdW = "+str(radii_D_vdw)+" Bohr") print("Radius of the acceptor with VdW = "+str(radii_A_vdw)+" Bohr") print("Vector between the donor and acceptor centers = "+str(DA_vec)+" Bohr") print("Minimum distance between the donor and acceptor = "+str(R_DA_min)+" Bohr") print("Distance between the donor and acceptor centers= "+str(R_DA)+" Bohr") if fb!=0 and radii_B>0: print("Radius of the bridge without VdW = "+str(radii_B)+" Bohr") print("Radius of the bridge with VdW = "+str(radii_B_vdw)+" Bohr") print("Minimum distance between the donor and bridge = "+str(R_DB_min)+" Bohr") print("Distance between the donor and bridge centers= "+str(R_DB)+" Bohr") print("Minimum distance between the bridge and acceptor = "+str(R_BA_min)+" Bohr") print("Distance between the bridge and acceptor centers= "+str(R_BA)+" Bohr") return radii_D,radii_A,DA_vec,R_DA,R_DA_min,radii_B,R_DB,R_BA else: return radii_D,radii_A,DA_vec,R_DA,R_DA_min #------------------------Program------------------------- if __name__ == "__main__": run_program(fd,fa,fb,print_crit,vdw_radi)
import cv2 import utils img_left_original = cv2.imread("./MyData06/IMG/left_2019_08_11_15_35_48_328.jpg") img_center_original = cv2.imread("./MyData06/IMG/center_2019_08_11_15_35_48_328.jpg") img_right_original = cv2.imread("./MyData06/IMG/right_2019_08_11_15_35_48_328.jpg") img_l_o_rgb = utils.bgr2rgb(img_left_original) img_c_o_rgb = utils.bgr2rgb(img_center_original) img_r_o_rgb = utils.bgr2rgb(img_right_original) img_left_cropped = utils.crop_and_resize(img_l_o_rgb) img_center_cropped = utils.crop_and_resize(img_c_o_rgb) img_right_cropped = utils.crop_and_resize(img_r_o_rgb) img_left_cropped = cv2.cvtColor(img_left_cropped, cv2.COLOR_RGB2BGR) img_center_cropped = cv2.cvtColor(img_center_cropped, cv2.COLOR_RGB2BGR) img_right_cropped = cv2.cvtColor(img_right_cropped, cv2.COLOR_RGB2BGR) cv2.imwrite("./images/img_left_cropped.jpg", img_left_cropped ) cv2.imwrite("./images/img_center_cropped.jpg", img_center_cropped) cv2.imwrite("./images/img_right_cropped.jpg", img_right_cropped) img_left_flipped = utils.flipimg(img_left_cropped) img_center_flipped = utils.flipimg(img_center_cropped) img_right_flipped = utils.flipimg(img_right_cropped) cv2.imwrite("./images/img_left_flipped.jpg", img_left_flipped ) cv2.imwrite("./images/img_center_flipped.jpg", img_center_flipped) cv2.imwrite("./images/img_right_flipped.jpg", img_right_flipped)
# -*- coding: utf-8 -*- from pyramid_oereb.standard.xtf_import.util import parse_string, parse_multilingual_text, get_tag class LegendEntry(object): TAG_LEGEND = 'Legende' TAG_LEGEND_ENTRY = 'OeREBKRMtrsfr_V1_1.Transferstruktur.LegendeEintrag' TAG_SYMBOL = 'Symbol' TAG_SYMBOL_BIN = 'BINBLBOX' TAG_LEGEND_TEXT = 'LegendeText' TAG_TYPE_CODE = 'ArtCode' TAG_TYPE_CODE_LIST = 'ArtCodeliste' TAG_SUB_THEME = 'SubThema' def __init__(self, session, model, topic_code): self._session = session self._model = model self._topic_code = topic_code def parse(self, view_service): # pragma: no cover for element in view_service: if get_tag(element) == self.TAG_LEGEND: count = 1 for legend_entry in element: if get_tag(legend_entry) == self.TAG_LEGEND_ENTRY: sub_theme = parse_string(legend_entry, self.TAG_SUB_THEME) if sub_theme is not None: sub_theme = sub_theme instance = self._model( id='{0}.legende.{1}'.format(view_service.attrib['TID'], count), symbol=self._parse_symbol(legend_entry, self.TAG_SYMBOL), legend_text=parse_multilingual_text( legend_entry, self.TAG_LEGEND_TEXT ), type_code=parse_string(legend_entry, self.TAG_TYPE_CODE), type_code_list=parse_string( legend_entry, self.TAG_TYPE_CODE_LIST ), topic=self._topic_code, sub_theme=sub_theme, view_service_id=view_service.attrib['TID'] ) self._session.add(instance) count += 1 def _parse_symbol(self, element, prop): for p in element: if get_tag(p) == prop: for binblbox in p: if get_tag(binblbox) == self.TAG_SYMBOL_BIN: return binblbox.text return None
# Copyright (c) 2014-2018, Dr Alex Meakins, Raysect Project # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # # 3. Neither the name of the Raysect Project nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. """ Unit tests for the Point3D object. """ import unittest from raysect.core.math import Point3D, Vector3D, AffineMatrix3D from math import sqrt # TODO: Port to Cython to allow testing of the Cython API class TestPoint3D(unittest.TestCase): def test_initialise_default(self): """Default initialisation, point at local origin.""" v = Point3D() self.assertEqual(v.x, 0.0, "Default initialisation is not (0,0,0) [X].") self.assertEqual(v.y, 0.0, "Default initialisation is not (0,0,0) [Y].") self.assertEqual(v.z, 0.0, "Default initialisation is not (0,0,0) [Z].") def test_initialise_indexable(self): """Initialisation with an indexable object.""" v = Point3D(1.0, 2.0, 3.0) self.assertEqual(v.x, 1.0, "Initialisation with indexable failed [X].") self.assertEqual(v.y, 2.0, "Initialisation with indexable failed [Y].") self.assertEqual(v.z, 3.0, "Initialisation with indexable failed [Z].") def test_initialise_invalid(self): """Initialisation with invalid types should raise a TypeError.""" with self.assertRaises(TypeError, msg="Initialised with a string."): Point3D("spoon") def test_x(self): """Get/set x co-ordinate.""" v = Point3D(2.5, 6.7, -4.6) # get x attribute self.assertEqual(v.x, 2.5, "Getting x attribute failed.") # set x attribute v.x = 10.0 self.assertEqual(v.x, 10.0, "Setting x attribute failed.") def test_y(self): """Get/set y co-ordinate.""" v = Point3D(2.5, 6.7, -4.6) # get y attribute self.assertEqual(v.y, 6.7, "Getting y attribute failed.") # set y attribute v.y = -7.1 self.assertEqual(v.y, -7.1, "Setting y attribute failed.") def test_z(self): """Get/set z co-ordinate.""" v = Point3D(2.5, 6.7, -4.6) # get z attribute self.assertEqual(v.z, -4.6, "Getting z attribute failed.") # set z attribute v.z = 157.3 self.assertEqual(v.z, 157.3, "Setting z attribute failed.") def test_indexing(self): """Getting/setting components by indexing.""" v = Point3D(2.5, 6.7, -4.6) v[0] = 1.0 v[1] = 2.0 v[2] = 7.0 # check getting/setting via valid indexes self.assertEqual(v[0], 1.0, "Indexing failed [X].") self.assertEqual(v[1], 2.0, "Indexing failed [Y].") self.assertEqual(v[2], 7.0, "Indexing failed [Z].") # check invalid indexes with self.assertRaises(IndexError, msg="Invalid positive index did not raise IndexError."): r = v[4] with self.assertRaises(IndexError, msg="Invalid negative index did not raise IndexError."): r = v[-1] def test_equal(self): """Equality operator.""" self.assertTrue(Point3D(1, 2, 3) == Point3D(1, 2, 3), "Equality operator returned false for equal points.") self.assertFalse(Point3D(5, 2, 3) == Point3D(1, 2, 3), "Equality operator returned true for a point with non-equal x components.") self.assertFalse(Point3D(1, 5, 3) == Point3D(1, 2, 3), "Equality operator returned true for a point with non-equal y components.") self.assertFalse(Point3D(1, 2, 5) == Point3D(1, 2, 3), "Equality operator returned true for a point with non-equal z components.") def test_not_equal(self): """Inequality operator.""" self.assertFalse(Point3D(1, 2, 3) != Point3D(1, 2, 3), "Inequality operator returned true for equal points.") self.assertTrue(Point3D(5, 2, 3) != Point3D(1, 2, 3), "Inequality operator returned false for a point with non-equal x components.") self.assertTrue(Point3D(1, 5, 3) != Point3D(1, 2, 3), "Inequality operator returned false for a point with non-equal y components.") self.assertTrue(Point3D(1, 2, 5) != Point3D(1, 2, 3), "Inequality operator returned false for a point with non-equal z components.") def test_iter(self): """Obtain values by iteration.""" p = Point3D(2.5, 6.7, -4.6) l = list(p) self.assertEqual(len(l), 3, "Iteration failed to return the correct number of items.") self.assertEqual(l[0], 2.5, "Iteration failed [X].") self.assertEqual(l[1], 6.7, "Iteration failed [Y].") self.assertEqual(l[2], -4.6, "Iteration failed [Z].") def test_add(self): """Addition operator.""" # adding points is undefined with self.assertRaises(TypeError, msg="Point3D addition did not raise a TypeError."): Point3D() + Point3D() def test_subtract(self): """Subtraction operator.""" # subtracting points is undefined with self.assertRaises(TypeError, msg="Point3D subtraction did not raise a TypeError."): Point3D() - Point3D() def test_distance_to(self): """Testing method distance_to().""" a = Point3D(-1, 5, 26) b = Point3D(9, 4, -1) v = a.distance_to(b) r = sqrt((9 + 1)**2 + (4 - 5)**2 + (-1 - 26)**2) self.assertEqual(v, r, "Point3D to Point3D distance is incorrect.") def test_vector_to(self): """Testing method vector_to().""" a = Point3D(-1, 5, 26) b = Point3D(9, 4, -1) v = a.vector_to(b) self.assertTrue(isinstance(v, Vector3D), "Vector_to did not return a Vector3D.") self.assertEqual(v.x, 9 + 1, "Vector_to failed [X].") self.assertEqual(v.y, 4 - 5, "Vector_to failed [Y].") self.assertEqual(v.z, -1 - 26, "Vector_to failed [Z].") def test_transform(self): """Testing method transform().""" m = AffineMatrix3D([[1, 2, 3, 4], [5,6,2,8], [9,10,4,9], [4,14,15,16]]) v = Point3D(-1, 2, 6) r = v.transform(m) self.assertTrue(isinstance(r, Point3D), "Transform did not return a Point3D.") w = (4 * -1 + 14 * 2 + 15 * 6 + 16) self.assertEqual(r.x, (1 * -1 + 2 * 2 + 3 * 6 + 4) / w, "Transform failed [X].") self.assertEqual(r.y, (5 * -1 + 6 * 2 + 2 * 6 + 8) / w, "Transform failed [Y].") self.assertEqual(r.z, (9 * -1 + 10 * 2 + 4 * 6 + 9) / w, "Transform failed [Z].") def test_copy(self): """Testing method copy().""" v = Point3D(1.0, 2.0, 3.0) r = v.copy() # check a new instance has been created by modifying the original v.x = 5.0 v.y = 6.0 v.z = 7.0 self.assertEqual(r.x, 1.0, "Copy failed [X].") self.assertEqual(r.y, 2.0, "Copy failed [Y].") self.assertEqual(r.z, 3.0, "Copy failed [Z].") def test_orthogonal(self): v = Vector3D(1.0, 2.0, 3.0) r = v.orthogonal() self.assertAlmostEqual(v.dot(r), 0.0, delta=1e-10, msg="Orthogonal did not return an orthogonal vector.") if __name__ == "__main__": unittest.main()
""" usage: pv relationship create --typeName=<val> --end1Guid=<val> --end1Type=<val> --end2Guid=<val> --end2Type=<val> [--status=<val>] pv relationship read --relationshipGuid=<val> [--extendedInfo] pv relationship update --relationshipGuid=<val> [--status=<val>] pv relationship delete --relationshipGuid=<val> """ from docopt import docopt if __name__ == '__main__': arguments = docopt(__doc__)
import sys from collections import defaultdict, deque def distance(nodes, start, target): queue = deque() visited = dict() queue.append((start, 0, start)) queue.append((target, 0, target)) visited[start] = (0, start) visited[target] = (0, target) while queue: node, dist, path_id = queue.popleft() for neighbour in nodes[node]: if neighbour in visited: d, id2 = visited[neighbour] if path_id != id2: return dist + 1 + d else: queue.append((neighbour, dist + 1, path_id)) visited[neighbour] = (dist + 1, path_id) if __name__ == "__main__": nodes = defaultdict(list) for line in sys.stdin: obj, orbiter = line.rstrip().split(")") nodes[obj].append(orbiter) nodes[orbiter].append(obj) print(distance(nodes, "YOU", "SAN") - 2)
from rlbot.agents.base_agent import SimpleControllerState from maneuvers.maneuver import Maneuver from util.curves import curve_from_arrival_dir from util.rlmath import sign from util.vec import Vec3, norm, proj_onto_size def choose_kickoff_maneuver(bot) -> Maneuver: # Do we have teammates? If no -> always go for kickoff if len(bot.info.teammates) == 0: return KickoffManeuver() # Kickoff spawn locations (corners may vary from map to map) ts = bot.info.team_sign right_corner_loc = Vec3(-1970, ts * 2450, 0) # actually left for orange left_corner_loc = Vec3(1970, ts * 2450, 0) # actually right for orange back_right_loc = Vec3(-256, ts * 3840, 0) # actually left for orange back_left_loc = Vec3(256, ts * 3840, 0) # actually right for orange back_center_loc = Vec3(0, ts * 4608, 0) boost_x = 3072 boost_y = ts * 4096 # Are we in the corner -> go for kickoff (If two bot's are in the corners, we assume lowest index goes for kickoff) if is_my_kickoff_spawn(bot, right_corner_loc): tm_index = index_of_teammate_at_kickoff_spawn(bot, left_corner_loc) if 0 <= tm_index < bot.index: return SecondManSlowCornerKickoffManeuver(bot) else: return KickoffManeuver() if is_my_kickoff_spawn(bot, left_corner_loc): tm_index = index_of_teammate_at_kickoff_spawn(bot, right_corner_loc) if 0 <= tm_index < bot.index: return SecondManSlowCornerKickoffManeuver(bot) else: return KickoffManeuver() # Is a teammate in the corner -> collect boost if 0 <= index_of_teammate_at_kickoff_spawn(bot, right_corner_loc) \ or 0 <= index_of_teammate_at_kickoff_spawn(bot, left_corner_loc): if bot.info.my_car.pos.x > 10: # go for left boost return CollectSpecificBoostManeuver(Vec3(boost_x, boost_y, 0)) if bot.info.my_car.pos.x < -10: # go for right boost return CollectSpecificBoostManeuver(Vec3(-boost_x, boost_y, 0)) if 0 <= index_of_teammate_at_kickoff_spawn(bot, back_right_loc): # go for left boost return CollectSpecificBoostManeuver(Vec3(boost_x, boost_y, 0)) else: # go for right boost return CollectSpecificBoostManeuver(Vec3(-boost_x, boost_y, 0)) # No teammate in the corner # Are we back right or left -> go for kickoff if is_my_kickoff_spawn(bot, back_right_loc) \ or is_my_kickoff_spawn(bot, back_left_loc): return KickoffManeuver() # No teammate in the corner # Is a teammate back right or left -> collect boost if 0 <= index_of_teammate_at_kickoff_spawn(bot, back_right_loc): # go for left boost return CollectSpecificBoostManeuver(Vec3(boost_x, boost_y, 0)) elif 0 <= index_of_teammate_at_kickoff_spawn(bot, back_left_loc): # go for right boost return CollectSpecificBoostManeuver(Vec3(-boost_x, boost_y, 0)) # We have no teammates return KickoffManeuver() def is_my_kickoff_spawn(bot, loc): dist = norm(bot.info.my_car.pos - loc) return dist < 150 def index_of_teammate_at_kickoff_spawn(bot, loc): """ Returns index of teammate at loc, or -1 if there is no teammate """ # RLU Cars does not contain index, so we have to find that ourselves :( for car in bot.info.teammates: dist = norm(car.pos - loc) if dist < 150: return car.index return -1 class KickoffManeuver(Maneuver): def exec(self, bot) -> SimpleControllerState: DODGE_DIST = 250 MIDDLE_OFFSET = 430 # Since ball is at (0,0) we don't we a car_to_ball variable like we do so many other places car = bot.info.my_car dist = norm(car.pos) vel_p = -proj_onto_size(car.vel, car.pos) point = Vec3(0, bot.info.team_sign * (dist / 2.6 - MIDDLE_OFFSET), 0) speed = 2300 opp_dist = norm(bot.info.opponents[0].pos) opp_does_kick = opp_dist < dist + 600 # Opponent is not going for kickoff, so we slow down a bit if not opp_does_kick: speed = 2210 point = Vec3(0, bot.info.team_sign * (dist / 2.05 - MIDDLE_OFFSET), 0) point += Vec3(35 * sign(car.pos.x), 0, 0) # Dodge when close to (0, 0) - but only if the opponent also goes for kickoff. # The dodge itself should happen in about 0.3 seconds if dist - DODGE_DIST < vel_p * 0.3 and opp_does_kick: bot.drive.start_dodge(bot) # Make two dodges when spawning far back elif dist > 3640 and vel_p > 1200 and not opp_does_kick: bot.drive.start_dodge(bot) # Pickup boost when spawning back corner by driving a bit towards the middle boost pad first elif abs(car.pos.x) > 230 and abs(car.pos.y) > 2880: # The pads exact location is (0, 2816), but don't have to be exact point.y = bot.info.team_sign * 2790 self.done = not bot.info.is_kickoff bot.renderer.draw_line_3d(car.pos, point, bot.renderer.white()) return bot.drive.towards_point(bot, point, target_vel=speed, slide=False, boost_min=0, can_dodge=False, can_keep_speed=False) class SecondManSlowCornerKickoffManeuver(Maneuver): def __init__(self, bot): super().__init__() # These vectors will help us make the curve ts = bot.info.team_sign self.target_loc = Vec3(0, ts * 400, 0) self.target_dir = Vec3(0, -ts, 0) def exec(self, bot) -> SimpleControllerState: car = bot.info.my_car self.done = norm(car.pos) < 1100 # End when getting close to ball (approx at boost pad) curve_point = curve_from_arrival_dir(car.pos, self.target_loc, self.target_dir) return bot.drive.towards_point(bot, curve_point, target_vel=1200, slide=True, boost_min=20, can_keep_speed=False) class CollectSpecificBoostManeuver(Maneuver): def __init__(self, pad_pos: Vec3): super().__init__() self.boost_pad_pos = pad_pos def exec(self, bot) -> SimpleControllerState: car = bot.info.my_car car_to_pad = self.boost_pad_pos - car.pos vel = proj_onto_size(car.vel, car_to_pad) dist = norm(car_to_pad) if dist < vel * 0.3: self.done = True # Drive towards the pad return bot.drive.towards_point(bot, self.boost_pad_pos, target_vel=2300, boost_min=0, can_keep_speed=True)
#!/usr/bin/env python # # Autotune flags to LLVM to optimize the performance of apps/raytracer.cpp # # This is an extremely simplified version meant only for tutorials # import adddeps # fix sys.path import opentuner from opentuner import ConfigurationManipulator from opentuner import EnumParameter from opentuner import IntegerParameter from opentuner import MeasurementInterface from opentuner import Result #CLANGXX_PATH = '/Users/yygu/MIT/SuperUROP/build/Debug+Asserts/bin/clang++ -m32' CLANGXX_PATH = '/data/scratch/yygu/build/Debug+Asserts/bin/clang++' USE_ONLY_INTERNAL = False # agg-antidep-debugdiv, align-all-blocks, asan-mapping-scale, etc. PARAMS_EXTERNAL_FILE = 'working_params_external.txt' # copy-factor, unroll-runtime-count, etc. PARAMS_INTERNAL_FILE = 'params_internal.txt' # aggregate-extracted-args, aggressive-ext-opt, align-neon-spills, etc. FLAGS_EXTERNAL_FILE = 'working_flags_external.txt' FLAGS_INTERNAL_FILE = 'flags_internal.txt' OUTPUT_FILE = './tmp.bin' PREPEND_FLAG = "-mllvm " APP = 'apps/raytracer.cpp' class LlvmFlagsTuner(MeasurementInterface): def __init__(self, *pargs, **kwargs): super(LlvmFlagsTuner, self).__init__(*pargs, **kwargs) self.llvm_flags_internal = self.convert_flags(FLAGS_INTERNAL_FILE) self.llvm_params_internal = self.convert_params(PARAMS_INTERNAL_FILE) self.llvm_flags_external = self.convert_flags(FLAGS_EXTERNAL_FILE) self.llvm_params_external = self.convert_params(PARAMS_EXTERNAL_FILE) if USE_ONLY_INTERNAL: self.llvm_flags = self.llvm_flags_internal self.llvm_params = self.llvm_params_internal else: self.llvm_flags = self.llvm_flags_internal + self.llvm_flags_external self.llvm_params = self.llvm_params_internal + self.llvm_params_external self.run_baselines() def run_baselines(self): results = [] for i in range(4): llvm_cmd = '{} {} -o {} -O{}'.format(CLANGXX_PATH, APP, OUTPUT_FILE, i) compile_result = self.call_program(llvm_cmd) run_result = self.call_program(OUTPUT_FILE) results.append(run_result['time']) print "baseline perfs -O0={0:.4f} -O1={1:.4f} -O2={2:.4f} -O3={3:.4f}".format(*results) def convert_flags(self, fname): flags = [] with open(fname) as f: for line in f: flags.append(line[:-1]) return flags def convert_params(self, fname): params = [] with open(fname) as f: for line in f: params.append((line[:-1], 0, 1000)) return params def manipulator(self): """ Define the search space by creating a ConfigurationManipulator """ manipulator = ConfigurationManipulator() manipulator.add_parameter( IntegerParameter('opt_level', 0, 3)) for flag in self.llvm_flags: manipulator.add_parameter( EnumParameter(flag, ['on', 'off', 'default'])) for param, min, max in self.llvm_params: manipulator.add_parameter( IntegerParameter(param, min, max)) return manipulator def run(self, desired_result, input, limit): """ Compile and run a given configuration then return performance """ cfg = desired_result.configuration.data llvm_cmd = CLANGXX_PATH + ' ' + APP + ' -o ' + OUTPUT_FILE llvm_cmd += ' -O{0} '.format(cfg['opt_level']) for flag in self.llvm_flags: if cfg[flag] == 'on': llvm_cmd += PREPEND_FLAG + '-{0} '.format(flag) elif cfg[flag] == 'off': continue for param, min, max in self.llvm_params: llvm_cmd += PREPEND_FLAG + '-{0}={1} '.format(param, cfg[param]) print llvm_cmd compile_result = self.call_program(llvm_cmd, limit=10, memory_limit=1024**3) if compile_result['returncode'] != 0: return Result(state='ERROR', time=float('inf')) run_result = self.call_program(OUTPUT_FILE, limit=10, memory_limit=1024**3) print run_result if run_result['returncode'] != 0: return Result(state='ERROR', time=float('inf')) return Result(time=run_result['time']) if __name__ == '__main__': argparser = opentuner.default_argparser() args = argparser.parse_args() LlvmFlagsTuner.main(args)
import sys import os from setuptools import setup sys.path.append(os.path.join(os.path.dirname(__file__), "src")) from scarab import version def get_version(): return version setup( name="Scarab", version=get_version(), packages=["scarab"], install_requires=[ "falcon", "jinja2", ] )
#!/usr/bin/python import sys from Tkinter import * import socket import struct import comms class comms_link: CMD_QUERY_ALL = 0 CMD_TRIGGER = 1 CMD_EXIT = 2 STATUS_OK = 0 STATUS_FAIL = 1 ENCODE_ASCII = 0 ENCODE_UTF8 = 1 def __init__(self, server_loc): self.server_loc = server_loc self.link = socket.create_connection( server_loc ) def exit(self): msg = struct.pack('>II', 4, comms_link.CMD_EXIT) self.link.send( msg ) def refresh(self): msg = struct.pack('>II', 4, comms_link.CMD_QUERY_ALL) self.link.send( msg ) status = comms.get_u32(self.link) if status != comms_link.STATUS_OK: print "Failed to receive OK response from server, got %d" % status sys.exit(1) print "Success status" encoding = comms.get_u32(self.link) print "Encoding read %d" % encoding nbyte = comms.get_u32(self.link) print "Nbyte read %d" % nbyte msg = comms.read_all(self.link, nbyte) print "Msg read" self.link.close() return (encoding, msg) def trigger(self, key): sz = 4 + len(key) msg = struct.pack('>II', sz, comms_link.CMD_TRIGGER) print "Sending trigger" self.link.send( msg ) print "Sending key" self.link.send( key ) print "Receiving status" status = comms.get_u32(self.link) print "Received status %d" % status if status != comms_link.STATUS_OK: print "Failed to receive OK response from server, got %d" % status sys.exit(1) self.link.close() print "Finished trigger" return msg class UI( Frame ): def __init__(self, root, server_loc): Frame.__init__(self, root) self.server_loc = server_loc self.pack() self.refresh_button = Button(self, text="Refresh", command=self.do_refresh) self.refresh_button.grid(row=0, column=1) self.quit_button = Button(self, text="Quit", command=self.do_quit) self.quit_button.grid(row=0, column=0) self.options = Listbox(self) self.options.grid(row=1, column=0) self.refresh_button = Button(self, text="Send Password", command=self.send_password) self.refresh_button.grid(row=2, column=0) self.do_refresh() def do_quit( self ): link = comms_link( self.server_loc ) link.exit() self.quit() def do_refresh( self ): link = comms_link( self.server_loc ) encoding,info = link.refresh() self.options.delete(0, END) for element in self.parse_data_stream(info, encoding): self.options.insert(END, element) def send_password(self): link = comms_link( self.server_loc ) idx = self.options.curselection()[0] key = self.options.get(idx) link.trigger(key) print "Send password" def parse_data_stream(self, info, encoding): ''' Generator function returning UTF-8 encoding labels ''' off = 0 while off < len(info): sz = struct.unpack('>I', info[:4])[0] off += 4 if encoding == comms_link.ENCODE_ASCII: print "ASCII encoding" value = info[off:off + sz].decode("utf-8") else: if encoding == comms_link.ENCODE_UTF8: print "UTF-8 encoding" value = unicode(info[off:off + sz], 'utf-8') else: print "Unknown encoding" sys.exit(1) off += sz yield value root = Tk() ui = UI(root,('127.0.0.1', 6512)) root.mainloop()
import os, uuid, sys,logging from azure.storage.blob import BlobServiceClient, BlobClient, ContainerClient, __version__ from azure.core.exceptions import ResourceExistsError from pathlib import Path import configparser TOP_DIR = Path(__file__).resolve().parent.parent config = configparser.ConfigParser() config.read(str(TOP_DIR.joinpath('utilities','config','credentials.ini'))) logger = logging.getLogger(__name__) class BlobStorage(): def __init__(self): self.connect_str = os.getenv('AZURE_STORAGE_CONNECTION_STRING') # Create the BlobServiceClient object which will be used to create a container client self.blob_service_client = BlobServiceClient.from_connection_string(self.connect_str) def create_container(self,container_name): self.blob_service_client.create_container(container_name) def get_container_client(self,container_name): try: self.create_container(container_name) print ('container created. getting the container client') except ResourceExistsError as e: print (e) print('container already exists. getting the container client') pass except: raise IOError self.container_client=self.blob_service_client.get_container_client(container_name) print(self.container_client) def upload(self, source, dest,skipLevel=False): ''' Upload a file or directory to a path inside the container ''' self.get_container_client(dest) if (os.path.isdir(source)): self.upload_dir(source, dest,skipLevel) else: self.upload_file(source, dest) def upload_file(self, source, dest): ''' Upload a single file to a path inside the container ''' print(f'Uploading {source} to {dest}') with open(source, 'rb') as data: try: self.container_client.upload_blob(name=dest, data=data) except ResourceExistsError as e: print(e) print ('going to the next blob') pass except: raise IOError def upload_dir(self, source, dest,skipLevel): ''' Upload a directory to a path inside the container ''' dest='' if skipLevel else dest prefix = '' if dest == '' else dest + '/' prefix += os.path.basename(source) + '/' for root, dirs, files in os.walk(source): for name in files: dir_part = os.path.relpath(root, source) dir_part = '' if dir_part == '.' else dir_part + '/' file_path = os.path.join(root, name) blob_path = prefix + dir_part + name self.upload_file(file_path, blob_path) if __name__=='__main__': blob=BlobStorage() #blob.get_container_client('deploy') blob.upload('/home/natmsdnadmin/develop/sandbox/adls/jobs','deploy',True)
# Copyright 2021 Sony Group Corporation. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np def estimate_spatial_covariance(stft, eps): ''' Function that estimates the PSD(Power Spectral Density) and spatial covariance matrix. Inputs: `stft`: frames x channels x freq_bins 'eps' : small constant (to avoid numerical problems) Outputs: `psd` : frames x freq_bins `s_covariance` : channels x channels x freq_bins ''' # estimate PSD (we add a small `eps` to avoid numerical problems) psd = np.mean(np.square(np.abs(stft)), axis=1) psd += psd.max() * eps # estimate spatial covariance matrix s_covariance = np.sum(np.expand_dims(stft, axis=2) * np.conj(np.expand_dims(stft, axis=1)), axis=0) s_covariance /= np.sum(psd, axis=0) + np.finfo(np.float64).eps return psd, s_covariance def apply_mwf(stfts, stft_mixture=None, num_mwf_iterations=1): ''' Apply Multichannel Wiener Filter Inputs: `stft`: Sources STFTs 'stft_mixture' : Mixture STFT Outputs: `stfts` : Sources STFTs with Multichannel Wiener Filter applied ''' # define small constant (to avoid numerical problems) eps = 1e-10 psds = {} s_covariances = {} instruments = list(stfts.keys()) # compute inverse covariance matrix of mix stft = stfts[instruments[0]] s_covariances['mix'] = np.zeros( (stft.shape[0], stft.shape[1], stft.shape[1], stft.shape[2]), dtype=np.complex128) for idx in instruments: # estimate PSD and spatial covariance matrix psds[idx], s_covariances[idx] = estimate_spatial_covariance( stfts[idx], eps) s_covariances['mix'] += psds[idx][:, np.newaxis, np.newaxis, :] * s_covariances[idx][np.newaxis, :, :, :] inv_mix_cs = np.zeros_like(s_covariances['mix']) # 0. compute determinant for each s_covariances['mix'] det = s_covariances['mix'][:, 0, 0, :] * s_covariances['mix'][:, 1, 1, :] - s_covariances['mix'][:, 1, 0, :] * s_covariances['mix'][:, 0, 1, :] # 1. compute trace of each s_covariances['mix']^T * s_covariances['mix'] (needed for pseudo-inverse) trace = np.sum(np.square(np.abs(s_covariances['mix'])), axis=( 1, 2)) + np.finfo(np.float64).eps # 1. handle case of invertible 2x2 matrix idx_inv1, idx_inv2 = np.nonzero(np.abs(det) >= eps) inv_mix_cs[idx_inv1, 0, 0, idx_inv2] = s_covariances['mix'][idx_inv1, 1, 1, idx_inv2] inv_mix_cs[idx_inv1, 1, 1, idx_inv2] = s_covariances['mix'][idx_inv1, 0, 0, idx_inv2] inv_mix_cs[idx_inv1, 0, 1, idx_inv2] = - \ s_covariances['mix'][idx_inv1, 0, 1, idx_inv2] inv_mix_cs[idx_inv1, 1, 0, idx_inv2] = - \ s_covariances['mix'][idx_inv1, 1, 0, idx_inv2] inv_mix_cs[idx_inv1, :, :, idx_inv2] /= det[idx_inv1, np.newaxis, np.newaxis, idx_inv2] # 2. handle case of rank-1 matrix idx_non_inv1, idx_non_inv2 = np.nonzero(np.abs(det) < eps) inv_mix_cs[idx_non_inv1, 0, 0, idx_non_inv2] = np.conj( s_covariances['mix'][idx_non_inv1, 0, 0, idx_non_inv2]) inv_mix_cs[idx_non_inv1, 1, 1, idx_non_inv2] = np.conj( s_covariances['mix'][idx_non_inv1, 1, 1, idx_non_inv2]) inv_mix_cs[idx_non_inv1, 0, 1, idx_non_inv2] = np.conj( s_covariances['mix'][idx_non_inv1, 1, 0, idx_non_inv2]) inv_mix_cs[idx_non_inv1, 1, 0, idx_non_inv2] = np.conj( s_covariances['mix'][idx_non_inv1, 0, 1, idx_non_inv2]) inv_mix_cs[idx_non_inv1, :, :, idx_non_inv2] /= trace[idx_non_inv1, np.newaxis, np.newaxis, idx_non_inv2] # compute new STFTs for idx in instruments: stfts[idx] = psds[idx][:, np.newaxis, :] * \ np.sum(s_covariances[idx][np.newaxis, :, :, :] * np.sum(inv_mix_cs * stft_mixture[:, np.newaxis, :, :], axis=2)[:, np.newaxis, :, :], axis=2) return stfts
# Generated by Django 2.2.2 on 2019-08-02 13:23 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('core', '0068_auto_20190802_1315'), ] operations = [ migrations.CreateModel( name='ProjectOrganization', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('type', models.CharField(choices=[('funder', 'Funder'), ('commissioner', 'Commissioner'), ('organization', 'Organization')], max_length=20)), ('organization', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='core.Organization')), ('project', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='core.Project')), ], ), migrations.AddField( model_name='project', name='organizations', field=models.ManyToManyField(through='core.ProjectOrganization', to='core.Organization'), ), ]
import pytest import os import re import tempfile import shutil # hacky way to use a different upload_dir when testing tmpd = tempfile.mkdtemp() os.environ['UPLOAD_DIR'] = tmpd from werkzeug.datastructures import FileStorage from starter_1 import create_app @pytest.fixture() def app(): db_fd, db_file = tempfile.mkstemp() db_uri = 'sqlite:///%s' % db_file app = create_app({ 'TESTING': True, 'DBURI': db_uri, }) yield app os.close(db_fd) os.unlink(db_file) @pytest.fixture() def client(app): return app.test_client() def parse_csrf(resp): mt = re.search(b'"csrf_token" value="(\\S+)"', resp.data) assert mt csrf = mt.group(1).decode() return csrf def login(client, email, passw): resp = client.get('/auth/login') csrf = parse_csrf(resp) resp = client.post('/auth/login', data={'email':email, 'password':passw, 'csrf_token':csrf}, follow_redirects=True) assert resp.status_code == 200 def logout(client): resp = client.get('/auth/logout', follow_redirects=True) assert resp.status_code == 200 #TODO: allow multi-testing by fixing 'is already defined for this MetaData instance' def test_all(client): login(client, 'admin@test.d', 'hunter2') # test obtain profile picture resp = client.get('/auth/profile') mt = re.search(b'src="/auth/file\\?filename=(\\S+\\.png)"', resp.data) assert mt profimg_name = mt.group(1).decode() resp = client.get(f'/auth/file?filename={profimg_name}') assert resp.status_code == 200 test_file = FileStorage(stream=open('doomer.jpg', "rb"),) resp = client.get('/update_avatar') csrf = parse_csrf(resp) resp = client.post('/update_avatar', data={'profile_img':test_file, 'csrf_token':csrf}, content_type='multipart/form-data', follow_redirects=True) assert b'invalid file size' in resp.data resp = client.get(f'/auth/file?filename={profimg_name}') assert resp.status_code == 200 test_file = FileStorage(stream=open('wojak.jpg', "rb"),) resp = client.get('/update_avatar') csrf = parse_csrf(resp) resp = client.post('/update_avatar', data={'profile_img':test_file, 'csrf_token':csrf}, content_type='multipart/form-data', follow_redirects=True) assert resp.status_code == 200 csrf = parse_csrf(resp) resp = client.post('/crop_avatar', data={'x': 0, 'y': 0, 'w': 150, 'h': 150, 'csrf_token':csrf}, follow_redirects=True) mt = re.search(b'src="/auth/file\\?filename=(\\S+\\.png)"', resp.data) assert mt new_profimg_name = mt.group(1).decode() assert new_profimg_name != profimg_name resp = client.get(f'/auth/file?filename={profimg_name}') assert resp.status_code == 404 assert b'Not Found' in resp.data resp = client.get(f'/auth/file?filename={new_profimg_name}') assert resp.status_code == 200 resp = client.get('/role/list') assert b'&#34;project.view&#34;: 1' in resp.data resp = client.get('/role/insert') csrf = parse_csrf(resp) resp = client.post('/role/insert', data={'name':'NEW_ROLE_TEST', 'privileges':'{"NEW_ROLE_PRIV": 1}', 'csrf_token':csrf}, follow_redirects=True) assert b'NEW_ROLE_TEST' in resp.data and b'NEW_ROLE_PRIV' in resp.data assert resp.status_code == 200 resp = client.get('/role/update') assert resp.status_code == 400 resp = client.get('/role/delete') assert resp.status_code == 400 resp = client.get('/project/list') assert resp.status_code == 200 resp = client.get('/role/update?id=1') csrf = parse_csrf(resp) resp = client.post('/role/update?id=1', data={'privileges':'{"user.view": 1, "user.add": 1, "user.mod": 1, "user.del": 1, "role.view": 1, "role.insert": 1, "role.update": 1, "role.delete": 1, "project.view": 0, "project.insert": 1, "project.update": 1, "project.delete": 1}', 'csrf_token': csrf}, follow_redirects=True) assert resp.status_code == 200 resp = client.get('/role/update?id=2') csrf = parse_csrf(resp) resp = client.post('/role/update?id=2', data={'privileges':'{}', 'csrf_token': csrf}, follow_redirects=True) assert resp.status_code == 200 assert b'&#34;project.view&#34;' not in resp.data csrf = parse_csrf(resp) resp = client.get('/role/update?id=2') csrf = parse_csrf(resp) resp = client.post('/role/update?id=2', data={'privileges':'{"project.view":1, "project.insert":1, "project.update":1}', 'csrf_token': csrf}, follow_redirects=True) assert resp.status_code == 200 resp = client.get('/project/list') assert resp.status_code == 403 resp = client.post('/role/delete?id=3', data={'csrf_token': csrf}, follow_redirects=True) assert resp.status_code == 200 assert b'NEW_ROLE_TEST' not in resp.data and b'NEW_ROLE_PRIV' not in resp.data resp = client.post('/role/update?id=1', data={'privileges':'{"user.view": 1, "user.add": 1, "user.mod": 1, "user.del": 1, "role.view": 1, "role.insert": 1, "role.update": 1, "role.delete": 1, "project.view": 1, "project.insert": 1, "project.update": 1, "project.delete": 1}', 'csrf_token': csrf}, follow_redirects=True) assert resp.status_code == 200 resp = client.get('/project/list') assert resp.status_code == 200 # MULTI-FILE UPLOAD resp = client.get('/project/insert') csrf = parse_csrf(resp) invalid_file = FileStorage(stream=open('dev_run.sh', "rb"),) resp = client.post('/project/insert', data={'name':'UPLOAD_TEST', 'csrf_token': csrf, 'project_files':[invalid_file]}, content_type='multipart/form-data', follow_redirects=True) assert resp.status_code == 400 assert b'invalid file name' in resp.data invalid_file = FileStorage(stream=open('dev_run.sh', "rb"),) resp = client.get('/project/insert') csrf = parse_csrf(resp) test_file = FileStorage(stream=open('doomer.jpg', "rb"),) resp = client.post('/project/insert', data={'name':'UPLOAD_TEST', 'csrf_token': csrf, 'project_files':[test_file]}, content_type='multipart/form-data', follow_redirects=True) assert b'UPLOAD_TEST' in resp.data assert b'<td>new</td>' in resp.data resp = client.get('/project/view?id=1') mt = re.search(b'\\.jpg">(\\S+\\.jpg)</a>', resp.data) assert mt filename = mt.group(1).decode() resp = client.get(f'/project/file?id=1&filename={filename}') assert resp.status_code == 200 resp = client.get('/project/update?id=1') csrf = parse_csrf(resp) test_file = FileStorage(stream=open('wojak.jpg', "rb"),) resp = client.post('/project/update?id=1', data={'project_files':[test_file], 'status':'updated', 'csrf_token':csrf}, follow_redirects=True, content_type='multipart/form-data') assert resp.status_code == 200 assert b'status: updated' in resp.data mt = re.findall(b'\\.jpg">(\\S+\\.jpg)</a>', resp.data) assert len(mt) == 2 resp = client.get('/project/update?id=1') csrf = parse_csrf(resp) resp = client.post('/project/update?id=1', data={filename:'delete_file', 'status':'updated', 'csrf_token':csrf}, follow_redirects=True, content_type='multipart/form-data') assert resp.status_code == 200 mt = re.findall(b'\\.jpg">(\\S+\\.jpg)</a>', resp.data) assert len(mt) == 1 assert filename not in mt left_over = mt[0] logout(client) login(client, 'user@test.d', 'asdasd') resp = client.get('/role/list') assert resp.status_code == 403 assert b'403 Forbidden' in resp.data resp = client.get('/user/list') assert resp.status_code == 403 assert b'403 Forbidden' in resp.data resp = client.get('/project/list') assert resp.status_code == 200 resp = client.get('/project/view?id=1', follow_redirects=True) assert b'cannot view, no ownership' in resp.data resp = client.get('/project/insert') csrf = parse_csrf(resp) test_file = FileStorage(stream=open('doomer.jpg', "rb"),) resp = client.post('/project/insert', data={'name':'NEW_TEST', 'csrf_token': csrf, 'project_files':[test_file]}, content_type='multipart/form-data', follow_redirects=True) assert b'NEW_TEST' in resp.data assert b'UPLOAD_TEST' in resp.data resp = client.get('/project/view?id=2') mt = re.search(b'\\.jpg">(\\S+\\.jpg)</a>', resp.data) assert mt resp = client.get('/project/update?id=2') assert resp.status_code == 200 csrf = parse_csrf(resp) resp = client.get('/project/update?id=1', follow_redirects=True) assert resp.status_code == 400 resp = client.post('/project/update?id=1', data={left_over:'delete', 'csrf_token':csrf}, content_type='multipart/form-data', follow_redirects=True) assert resp.status_code == 400 assert b'cannot modify, no ownership' resp = client.get('/project/delete?id=2') assert b'403 Forbidden' in resp.data resp = client.get('/project/delete?id=1', follow_redirects=True) assert b'403 Forbidden' in resp.data resp = client.post('/project/delete?id=1', data={'csrf_token':csrf}, follow_redirects=True) assert resp.status_code == 403 assert b'cannot delete, no ownership' logout(client) # dont with testing, remove temporary upload directory shutil.rmtree(tmpd)
from metrics_test import MetricsTest import matplotlib.pyplot as plt import os import numpy as np # locals import utils class DecTest(MetricsTest): def __init__(self): super().__init__() def check_config(self, config): super().check_config(config) def collect_data(self, config): data = super().collect_data(config) return data def run(self, config, data): results = super().run(config, data) return results def visualize(self, config, data, results): super().visualize(config, data, results) if config['publish_plots']: for metric in results.keys(): fig, ax = plt.subplots() stds_key = metric.replace('_mean', '') + '_std' stds = data.get(stds_key, np.zeros_like(data[metric])) ax.errorbar(data['label_value'], data[metric], stds, linestyle='None', marker='.') x_scale = 'log' if data[utils.LABEL_NAME_FIELD] == 'topk' else 'linear' metric_name = metric.replace(utils.METRIC_FIELD_PREFIX, '') title_str = '{} - {} - {}\n pearson-cor [{:.2f}], spearman-cor [{:.2f}]'.format( config['exp_name'], config['sub_exp_name'], metric_name, results[metric]['pearson_cor'], results[metric]['spearman_cor']) ax.set(xlabel=data[utils.LABEL_NAME_FIELD], ylabel='Score', xscale=x_scale, title=title_str) fig.savefig(os.path.join(config['out_dir'], '{}_{}_{}.png'.format( config['exp_name'], config['sub_exp_name'], metric_name))) plt.close() def export(self, config, data, results): super().export(config, data, results)
import grp import os import pwd import pytest from unit.applications.lang.go import TestApplicationGo from unit.option import option from unit.utils import getns class TestGoIsolation(TestApplicationGo): prerequisites = {'modules': {'go': 'any'}, 'features': ['isolation']} def unpriv_creds(self): nobody_uid = pwd.getpwnam('nobody').pw_uid try: nogroup_gid = grp.getgrnam('nogroup').gr_gid nogroup = 'nogroup' except KeyError: nogroup_gid = grp.getgrnam('nobody').gr_gid nogroup = 'nobody' return (nobody_uid, nogroup_gid, nogroup) def isolation_key(self, key): return key in option.available['features']['isolation'].keys() def test_isolation_values(self): self.load('ns_inspect') obj = self.getjson()['body'] for ns, ns_value in option.available['features']['isolation'].items(): if ns.upper() in obj['NS']: assert obj['NS'][ns.upper()] == ns_value, '%s match' % ns def test_isolation_unpriv_user(self, is_su): if not self.isolation_key('unprivileged_userns_clone'): pytest.skip('unprivileged clone is not available') if is_su: pytest.skip('privileged tests, skip this') self.load('ns_inspect') obj = self.getjson()['body'] assert obj['UID'] == os.geteuid(), 'uid match' assert obj['GID'] == os.getegid(), 'gid match' self.load('ns_inspect', isolation={'namespaces': {'credential': True}}) obj = self.getjson()['body'] nobody_uid, nogroup_gid, nogroup = self.unpriv_creds() # unprivileged unit map itself to nobody in the container by default assert obj['UID'] == nobody_uid, 'uid of nobody' assert obj['GID'] == nogroup_gid, 'gid of %s' % nogroup self.load( 'ns_inspect', user='root', isolation={'namespaces': {'credential': True}}, ) obj = self.getjson()['body'] assert obj['UID'] == 0, 'uid match user=root' assert obj['GID'] == 0, 'gid match user=root' self.load( 'ns_inspect', user='root', group=nogroup, isolation={'namespaces': {'credential': True}}, ) obj = self.getjson()['body'] assert obj['UID'] == 0, 'uid match user=root group=nogroup' assert obj['GID'] == nogroup_gid, 'gid match user=root group=nogroup' self.load( 'ns_inspect', user='root', group='root', isolation={ 'namespaces': {'credential': True}, 'uidmap': [{'container': 0, 'host': os.geteuid(), 'size': 1}], 'gidmap': [{'container': 0, 'host': os.getegid(), 'size': 1}], }, ) obj = self.getjson()['body'] assert obj['UID'] == 0, 'uid match uidmap' assert obj['GID'] == 0, 'gid match gidmap' def test_isolation_priv_user(self, is_su): if not is_su: pytest.skip('unprivileged tests, skip this') self.load('ns_inspect') nobody_uid, nogroup_gid, nogroup = self.unpriv_creds() obj = self.getjson()['body'] assert obj['UID'] == nobody_uid, 'uid match' assert obj['GID'] == nogroup_gid, 'gid match' self.load('ns_inspect', isolation={'namespaces': {'credential': True}}) obj = self.getjson()['body'] # privileged unit map app creds in the container by default assert obj['UID'] == nobody_uid, 'uid nobody' assert obj['GID'] == nogroup_gid, 'gid nobody' self.load( 'ns_inspect', user='root', isolation={'namespaces': {'credential': True}}, ) obj = self.getjson()['body'] assert obj['UID'] == 0, 'uid nobody user=root' assert obj['GID'] == 0, 'gid nobody user=root' self.load( 'ns_inspect', user='root', group=nogroup, isolation={'namespaces': {'credential': True}}, ) obj = self.getjson()['body'] assert obj['UID'] == 0, 'uid match user=root group=nogroup' assert obj['GID'] == nogroup_gid, 'gid match user=root group=nogroup' self.load( 'ns_inspect', user='root', group='root', isolation={ 'namespaces': {'credential': True}, 'uidmap': [{'container': 0, 'host': 0, 'size': 1}], 'gidmap': [{'container': 0, 'host': 0, 'size': 1}], }, ) obj = self.getjson()['body'] assert obj['UID'] == 0, 'uid match uidmap user=root' assert obj['GID'] == 0, 'gid match gidmap user=root' # map 65535 uids self.load( 'ns_inspect', user='nobody', isolation={ 'namespaces': {'credential': True}, 'uidmap': [ {'container': 0, 'host': 0, 'size': nobody_uid + 1} ], }, ) obj = self.getjson()['body'] assert obj['UID'] == nobody_uid, 'uid match uidmap user=nobody' assert obj['GID'] == nogroup_gid, 'gid match uidmap user=nobody' def test_isolation_mnt(self): if not self.isolation_key('mnt'): pytest.skip('mnt namespace is not supported') if not self.isolation_key('unprivileged_userns_clone'): pytest.skip('unprivileged clone is not available') self.load( 'ns_inspect', isolation={'namespaces': {'mount': True, 'credential': True}}, ) obj = self.getjson()['body'] # all but user and mnt allns = list(option.available['features']['isolation'].keys()) allns.remove('user') allns.remove('mnt') for ns in allns: if ns.upper() in obj['NS']: assert ( obj['NS'][ns.upper()] == option.available['features']['isolation'][ns] ), ('%s match' % ns) assert obj['NS']['MNT'] != getns('mnt'), 'mnt set' assert obj['NS']['USER'] != getns('user'), 'user set' def test_isolation_pid(self, is_su): if not self.isolation_key('pid'): pytest.skip('pid namespace is not supported') if not is_su: if not self.isolation_key('unprivileged_userns_clone'): pytest.skip('unprivileged clone is not available') if not self.isolation_key('user'): pytest.skip('user namespace is not supported') if not self.isolation_key('mnt'): pytest.skip('mnt namespace is not supported') isolation = {'namespaces': {'pid': True}} if not is_su: isolation['namespaces']['mount'] = True isolation['namespaces']['credential'] = True self.load('ns_inspect', isolation=isolation) obj = self.getjson()['body'] assert obj['PID'] == 1, 'pid of container is 1' def test_isolation_namespace_false(self): self.load('ns_inspect') allns = list(option.available['features']['isolation'].keys()) remove_list = ['unprivileged_userns_clone', 'ipc', 'cgroup'] allns = [ns for ns in allns if ns not in remove_list] namespaces = {} for ns in allns: if ns == 'user': namespaces['credential'] = False elif ns == 'mnt': namespaces['mount'] = False elif ns == 'net': namespaces['network'] = False elif ns == 'uts': namespaces['uname'] = False else: namespaces[ns] = False self.load('ns_inspect', isolation={'namespaces': namespaces}) obj = self.getjson()['body'] for ns in allns: if ns.upper() in obj['NS']: assert ( obj['NS'][ns.upper()] == option.available['features']['isolation'][ns] ), ('%s match' % ns) def test_go_isolation_rootfs_container(self, is_su, temp_dir): if not is_su: if not self.isolation_key('unprivileged_userns_clone'): pytest.skip('unprivileged clone is not available') if not self.isolation_key('user'): pytest.skip('user namespace is not supported') if not self.isolation_key('mnt'): pytest.skip('mnt namespace is not supported') if not self.isolation_key('pid'): pytest.skip('pid namespace is not supported') isolation = {'rootfs': temp_dir} if not is_su: isolation['namespaces'] = { 'mount': True, 'credential': True, 'pid': True, } self.load('ns_inspect', isolation=isolation) obj = self.getjson(url='/?file=/go/app')['body'] assert obj['FileExists'] == True, 'app relative to rootfs' obj = self.getjson(url='/?file=/bin/sh')['body'] assert obj['FileExists'] == False, 'file should not exists' def test_go_isolation_rootfs_container_priv(self, is_su, temp_dir): if not is_su: pytest.skip('requires root') if not self.isolation_key('mnt'): pytest.skip('mnt namespace is not supported') isolation = { 'namespaces': {'mount': True}, 'rootfs': temp_dir, } self.load('ns_inspect', isolation=isolation) obj = self.getjson(url='/?file=/go/app')['body'] assert obj['FileExists'] == True, 'app relative to rootfs' obj = self.getjson(url='/?file=/bin/sh')['body'] assert obj['FileExists'] == False, 'file should not exists' def test_go_isolation_rootfs_automount_tmpfs(self, is_su, temp_dir): try: open("/proc/self/mountinfo") except: pytest.skip('The system lacks /proc/self/mountinfo file') if not is_su: if not self.isolation_key('unprivileged_userns_clone'): pytest.skip('unprivileged clone is not available') if not self.isolation_key('user'): pytest.skip('user namespace is not supported') if not self.isolation_key('mnt'): pytest.skip('mnt namespace is not supported') if not self.isolation_key('pid'): pytest.skip('pid namespace is not supported') isolation = {'rootfs': temp_dir} if not is_su: isolation['namespaces'] = { 'mount': True, 'credential': True, 'pid': True, } isolation['automount'] = {'tmpfs': False} self.load('ns_inspect', isolation=isolation) obj = self.getjson(url='/?mounts=true')['body'] assert ( "/ /tmp" not in obj['Mounts'] and "tmpfs" not in obj['Mounts'] ), 'app has no /tmp mounted' isolation['automount'] = {'tmpfs': True} self.load('ns_inspect', isolation=isolation) obj = self.getjson(url='/?mounts=true')['body'] assert ( "/ /tmp" in obj['Mounts'] and "tmpfs" in obj['Mounts'] ), 'app has /tmp mounted on /'
import logging import signal import threading import time import pika from pika import exceptions import gromozeka.app from gromozeka.brokers.base import BrokerInterface from gromozeka.primitives import Task APP_ID = 'gromozeka' CONSUMER_ID_FORMAT = "{exchange}.{exchange_type}.{queue}.{routing_key}" PIKA_CONNECTION_EXCEPTIONS = (exceptions.AMQPConnectionError, exceptions.ConnectionClosed) PIKA_CHANNEL_EXCEPTIONS = ( exceptions.AMQPConnectionError, exceptions.ConnectionClosed, exceptions.ChannelClosed, OverflowError, AttributeError) def format_consumer_id_from_broker_point(broker_point): return CONSUMER_ID_FORMAT.format(exchange=broker_point.exchange, exchange_type=broker_point.exchange_type, queue=broker_point.queue, routing_key=broker_point.routing_key) class RabbitMQPikaAdaptee(BrokerInterface): """Pika adapted broker Attributes: reconnect_max_retries(int): Maximum attempts to reconnect reconnect_retry_countdown(int|float): Maximum attempts to reconnect connection(pika.SelectConnection): Pika connection """ def __init__(self, app): """ Args: app (gromozeka.app.app.Gromozeka): """ self.reconnect_max_retries = None self.reconnect_retry_countdown = None self.connection = None self._consumers = {} self._url = None self._closing = False self.reconnecting = False self._prefetch_lock = threading.Lock() super().__init__(app=app) @staticmethod def worker_run(self): """ Args: self(gromozeka.brokers.base.BrokerAdapter): Returns: """ self.broker.connection = self.broker.connect() self.broker.connection.ioloop.start() def stop(self): self.stop_serve() def configure(self): self._url = self.app.config.broker_url self.reconnect_max_retries = self.app.config.broker_reconnect_max_retries self.reconnect_retry_countdown = self.app.config.broker_reconnect_retry_countdown def get_consumer(self, broker_point): return self._consumers[format_consumer_id_from_broker_point(broker_point)] def task_register(self, broker_point, task_id, options, deserializator): consumer_id = format_consumer_id_from_broker_point(broker_point) try: consumer = self._consumers[consumer_id] except KeyError: consumer = Consumer( exchange=broker_point.exchange, exchange_type=broker_point.exchange_type, queue=broker_point.queue, routing_key=broker_point.routing_key, deserializator=deserializator) self._consumers[consumer_id] = consumer consumer.add_task(task_id) def task_send(self, task_uuid, request, broker_point, reply_to=None): consumer = self._consumers[format_consumer_id_from_broker_point(broker_point)] if reply_to: exchange, routing_key = reply_to.exchange, reply_to.routing_key else: exchange, routing_key = None, None consumer.publish(task_uuid=task_uuid, request=request, exchange=exchange, routing_key=routing_key) def task_send_delayed(self, task_uuid, request, broker_point, delay): publisher = DelayedMessagePublisher(task_uuid=task_uuid, broker_connection=self.connection, request=request, original_exchange=broker_point.exchange, original_routing_key=broker_point.routing_key, delay=delay) publisher.publish() def task_done(self, task_uuid, broker_point, delivery_tag): consumer = self._consumers[format_consumer_id_from_broker_point(broker_point)] consumer.acknowledge_message(task_uuid, delivery_tag) def task_reject(self, task_uuid, broker_point, delivery_tag): consumer = self._consumers[format_consumer_id_from_broker_point(broker_point)] consumer.reject_message(task_uuid, delivery_tag) def on_pool_size_changed(self): with self._prefetch_lock: for cname, consumer in self._consumers.items(): new_prefetch_count = 0 for _, task in self.app.registry.items(): consumer_id = format_consumer_id_from_broker_point(task.broker_point) if consumer_id == cname: new_prefetch_count += task.pool.size if consumer.prefetch_count != new_prefetch_count: consumer.change_prefetch_count(new_prefetch_count) if consumer.prefetch_count == 0: consumer.stop_consuming() def wait_for_start(self): wfs_consumers = [c for _, c in self._consumers.items()] while wfs_consumers: for n, c in enumerate(wfs_consumers): if c.is_consuming: del (wfs_consumers[n]) def connect(self): """This method connects to RabbitMQ, returning the connection handle. When the connection is established, the on_connection_open method will be invoked by pika. Returns: pika.SelectConnection: """ self.logger.info('connecting to %s', self._url) return pika.adapters.SelectConnection(parameters=pika.URLParameters(self._url), on_open_callback=self.on_connection_open, stop_ioloop_on_close=False) def on_connection_open(self, unused_connection): """This method is called by pika once the connection to RabbitMQ has been established. It passes the handle to the connection object in case we need it, but in this case, we'll just mark it unused. Args: unused_connection(pika.SelectConnection): Unused connection """ self.logger.info('connection opened') self.add_on_connection_close_callback() for _, consumer in self._consumers.items(): consumer.connection = self.connection consumer.open_channel() def add_on_connection_close_callback(self): """This method adds an on close callback that will be invoked by pika when RabbitMQ closes the connection to the publisher unexpectedly. """ self.logger.debug('adding connection close callback') self.connection.add_on_close_callback(self.on_connection_closed) def on_connection_closed(self, connection, reply_code, reply_text): """This method is invoked by pika when the connection to RabbitMQ is closed unexpectedly. Since it is unexpected, we will reconnect to RabbitMQ if it disconnects. Args: connection(pika.connection.Connection): The closed connection obj reply_code(int): Reply code if given reply_text(str): The server provided reply_text if given """ for _, consumer in self._consumers.items(): consumer._channel = None if self._closing: self.connection.ioloop.stop() self.logger.info('connection closed') else: if self.reconnect_max_retries: self.logger.warning('starting reconnection process in %d seconds: (%s) %s', self.reconnect_retry_countdown, reply_code, reply_text) self.connection.add_timeout(self.reconnect_retry_countdown, self.reconnect) return self.logger.fatal("broker connection problems: (%s) %s", reply_code, reply_text) self.stop() self.app.stop_signal(signal.SIGTERM) def reconnect(self): """Will be invoked by the IOLoop timer if the connection is closed. See the on_connection_closed method. """ # This is the old connection IOLoop instance, stop its ioloop self.connection.ioloop.stop() if self._closing or self.connection.is_open: return attempts = self.reconnect_max_retries stop_exc = None while not self.app.is_closing: self.reconnecting = True # Create a new connection try: self.connection = self.connect() # There is now a new connection, needs a new ioloop to run self.connection.ioloop.start() self.reconnecting = False return except PIKA_CONNECTION_EXCEPTIONS as e: self.logger.warning(e) attempts -= 1 if attempts <= 0: stop_exc = "broker connection problems, max reconnects exceeded: %s" % e break time.sleep(self.reconnect_retry_countdown) continue except Exception as e: stop_exc = "unhandled exception while reconnecting: %s" % e break if self.app.is_closing: return self.logger.fatal(stop_exc) self.stop() self.app.stop_signal(signal.SIGTERM) def stop_serve(self): """Cleanly shutdown the connection to RabbitMQ by stopping the consumers with RabbitMQ. When RabbitMQ confirms the cancellation, on_cancelok will be invoked by pika, which will then closing the channel and connection. The IOLoop is started again because this method is invoked when CTRL-C is pressed raising a KeyboardInterrupt exception. This exception stops the IOLoop which needs to be running for pika to communicate with RabbitMQ. All of the commands issued prior to starting the IOLoop will be buffered but not processed. """ self._closing = True wfs_consumers = [] for _, consumer in self._consumers.items(): if not consumer.channel or consumer.channel.is_closed or consumer.channel.is_closing: continue consumer.stop_consuming() wfs_consumers.append(consumer) while wfs_consumers: for n, c in enumerate(wfs_consumers): if c.channel.is_closed: del (wfs_consumers[n]) if self.connection.is_open: self.close_connection() self.connection.ioloop.stop() def close_connection(self): """This method closes the connection to RabbitMQ.""" self.logger.info('closing connection') self.connection.close() class DelayedMessagePublisher: exchange = 'delayed' exchange_type = 'direct' def __init__(self, task_uuid, broker_connection, request, original_exchange, original_routing_key, delay): self.logger = logging.getLogger('%s.broker.consumer.delayed_publisher' % gromozeka.app.get_app().config.app_id) self.task_uuid = task_uuid self._connection = broker_connection self.ttl = delay * 1000 self.queue = 'delay.%d.%s.%s' % (self.ttl, original_exchange, original_routing_key) self.routing_key = self.queue self.original_exchange = original_exchange self.original_routing_key = original_routing_key self.request = request self.channel = None def open_channel(self): """Open a new channel with RabbitMQ by issuing the Channel.Open RPC command. When RabbitMQ responds that the channel is open, the on_channel_open callback will be invoked by pika. """ self.logger.debug('creating a new channel') self._connection.channel(on_open_callback=self.on_channel_open) def on_channel_open(self, channel): """This method is invoked by pika when the channel has been opened. The channel object is passed in so we can make use of it. Since the channel is now open, we'll declare the exchange to use. Args: channel(pika.channel.Channel): The closed channel """ self.logger.debug('channel opened') self.channel = channel self.add_on_channel_close_callback() self.setup_exchange(self.exchange) def add_on_channel_close_callback(self): """This method tells pika to call the on_channel_closed method if RabbitMQ unexpectedly closes the channel. """ self.logger.debug('adding channel close callback') self.channel.add_on_close_callback(self.on_channel_closed) def on_channel_closed(self, channel, reply_code, reply_text): """Invoked by pika when RabbitMQ unexpectedly closes the channel. Channels are usually closed if you attempt to do something that violates the protocol, such as re-declare an exchange or queue with different parameters. In this case, we'll close the connection to shutdown the object. Args: channel(pika.channel.Channel): The closed channel reply_code(int): The numeric reason the channel was closed reply_text(str): The text reason the channel was closed """ self.logger.debug('channel %i was closed: (%s) %s', channel, reply_code, reply_text) def setup_exchange(self, exchange_name): """Setup the exchange on RabbitMQ by invoking the Exchange.Declare RPC command. When it is complete, the on_exchange_declareok method will be invoked by pika. Args: exchange_name(str): The name of the exchange to declare """ self.logger.debug('declaring exchange %s', exchange_name) self.channel.exchange_declare(self.on_exchange_declareok, exchange_name, self.exchange_type) def on_exchange_declareok(self, unused_frame): """Invoked by pika when RabbitMQ has finished the Exchange.Declare RPC command. :param pika.Frame.Method unused_frame: Exchange.DeclareOk response frame """ self.logger.debug('exchange declared') self.setup_queue(self.queue) def setup_queue(self, queue_name, ): """Setup the queue on RabbitMQ by invoking the Queue.Declare RPC command. When it is complete, the on_queue_declareok method will be invoked by pika. :param str|unicode queue_name: The name of the queue to declare. """ self.logger.debug('declaring queue %s', queue_name) self.channel.queue_declare(self.on_queue_declareok, queue=queue_name, durable=True, arguments={ 'x-dead-letter-exchange': self.original_exchange, # Exchange used to transfer the message from A to B. 'x-dead-letter-routing-key': self.original_routing_key, # Name of the queue message transferred to. 'x-message-ttl': self.ttl, # Delay until the message is transferred in milliseconds. 'x-expires': self.ttl * 2 }) def on_queue_declareok(self, method_frame): """Method invoked by pika when the Queue.Declare RPC call made in setup_queue has completed. In this method we will bind the queue and exchange together with the routing key by issuing the Queue.Bind RPC command. When this command is complete, the on_bindok method will be invoked by pika. Args: method_frame(pika.frame.Method): The Queue.DeclareOk frame """ self.logger.debug('binding %s to %s with %s', self.exchange, self.queue, self.routing_key) self.channel.queue_bind(self.on_bindok, self.queue, self.exchange, self.routing_key) def on_bindok(self, unused_frame): """Invoked by pika when the Queue.Bind method has completed. At this point we will start consuming messages by calling start_consuming which will invoke the needed RPC commands to start the process. Args: unused_frame(pika.frame.Method): The Queue.BindOk response frame """ self.logger.debug('queue bound') try: self.channel.basic_publish(self.exchange, self.queue, self.request, properties=pika.BasicProperties(delivery_mode=2, app_id=APP_ID)) except PIKA_CHANNEL_EXCEPTIONS: self.logger.warning('connection lost on message retry, retry will be ignored') return self.close_channel() def add_on_cancel_callback(self): """Add a callback that will be invoked if RabbitMQ cancels the consumer for some reason. If RabbitMQ does cancel the consumer, on_consumer_cancelled will be invoked by pika. """ self.logger.debug('adding consumer cancellation callback') self.channel.add_on_cancel_callback(self.on_consumer_cancelled) def on_consumer_cancelled(self, method_frame): """Invoked by pika when RabbitMQ sends a Basic.Cancel for a consumer receiving messages. Args: method_frame(pika.frame.Method): The Basic.Cancel frame """ self.logger.info('consumer was cancelled remotely, shutting down: %r', method_frame) if self.channel: self.channel.close() def on_cancelok(self, unused_frame): """This method is invoked by pika when RabbitMQ acknowledges the cancellation of a consumer. At this point we will close the channel. This will invoke the on_channel_closed method once the channel has been closed, which will in-turn close the connection. Args: unused_frame(pika.frame.Method): The Basic.CancelOk frame """ self.logger.debug('RabbitMQ acknowledged the cancellation of the consumer') self.close_channel() def close_channel(self): """Call to close the channel with RabbitMQ cleanly by issuing the Channel.Close RPC command. """ self.logger.debug('closing the channel') self.channel.close() def publish(self): self.open_channel() class Consumer: def __init__(self, exchange, exchange_type, queue, routing_key, deserializator=None): consumer_id = "%s.%s.%s.%s" % (exchange, exchange_type, queue, routing_key) self.logger = logging.getLogger( '{}.broker.consumer.{}'.format(gromozeka.app.get_app().config.app_id, consumer_id)) self.consumer_tag = consumer_id self.exchange = exchange self.exchange_type = exchange_type self.queue = queue self.routing_key = routing_key self.tasks = {} self.channel = None self.connection = None self._closing = False self.is_consuming = False self.prefetch_count = 0 self.stop_lock = threading.Lock() self.deserializator = deserializator from gromozeka.brokers import LatexSema self.sema = LatexSema(threading.Semaphore, self.prefetch_count) def add_task(self, task_id): self.tasks[task_id] = gromozeka.app.get_app().get_task(task_id) def open_channel(self): """Open a new channel with RabbitMQ by issuing the Channel.Open RPC command. When RabbitMQ responds that the channel is open, the on_channel_open callback will be invoked by pika. """ self.logger.debug('creating a new channel') self.connection.channel(on_open_callback=self.on_channel_open) def on_channel_open(self, channel): """This method is invoked by pika when the channel has been opened. The channel object is passed in so we can make use of it. Since the channel is now open, we'll declare the exchange to use. Args: channel(pika.channel.Channel): The closed channel """ self.logger.debug('channel opened') self.channel = channel self.add_on_channel_close_callback() self.setup_exchange(self.exchange) def add_on_channel_close_callback(self): """This method tells pika to call the on_channel_closed method if RabbitMQ unexpectedly closes the channel. """ self.logger.debug('adding channel close callback') self.channel.add_on_close_callback(self.on_channel_closed) def on_channel_closed(self, channel, reply_code, reply_text): """Invoked by pika when RabbitMQ unexpectedly closes the channel. Channels are usually closed if you attempt to do something that violates the protocol, such as re-declare an exchange or queue with different parameters. In this case, we'll close the connection to shutdown the object. Args: channel(pika.channel.Channel): The closed channel reply_code(int): The numeric reason the channel was closed reply_text(str): The text reason the channel was closed """ self.logger.debug('channel %i was closed: (%s) %s', channel, reply_code, reply_text) def setup_exchange(self, exchange_name): """Setup the exchange on RabbitMQ by invoking the Exchange.Declare RPC command. When it is complete, the on_exchange_declareok method will be invoked by pika. Args: exchange_name(str): The name of the exchange to declare """ self.logger.debug('declaring exchange %s', exchange_name) self.channel.exchange_declare(self.on_exchange_declareok, exchange_name, self.exchange_type) def on_exchange_declareok(self, unused_frame): """Invoked by pika when RabbitMQ has finished the Exchange.Declare RPC command. :param pika.Frame.Method unused_frame: Exchange.DeclareOk response frame """ self.logger.debug('exchange declared') self.setup_queue(self.queue) def setup_queue(self, queue_name): """Setup the queue on RabbitMQ by invoking the Queue.Declare RPC command. When it is complete, the on_queue_declareok method will be invoked by pika. :param str|unicode queue_name: The name of the queue to declare. """ self.logger.debug('declaring queue %s', queue_name) self.channel.queue_declare(self.on_queue_declareok, queue_name, durable=True) def on_queue_declareok(self, method_frame): """Method invoked by pika when the Queue.Declare RPC call made in setup_queue has completed. In this method we will bind the queue and exchange together with the routing key by issuing the Queue.Bind RPC command. When this command is complete, the on_bindok method will be invoked by pika. Args: method_frame(pika.frame.Method): The Queue.DeclareOk frame """ self.logger.debug('binding %s to %s with %s', self.exchange, self.queue, self.routing_key) self.channel.queue_bind(self.on_bindok, self.queue, self.exchange, self.routing_key) def on_bindok(self, unused_frame): """Invoked by pika when the Queue.Bind method has completed. At this point we will start consuming messages by calling start_consuming which will invoke the needed RPC commands to start the process. Args: unused_frame(pika.frame.Method): The Queue.BindOk response frame """ self.logger.debug('queue bound') self.start_consuming() def start_consuming(self): """This method sets up the consumer by first calling add_on_cancel_callback so that the object is notified if RabbitMQ cancels the consumer. It then issues the Basic.Consume RPC command which returns the consumer tag that is used to uniquely identify the consumer with RabbitMQ. We keep the value to use it when we want to cancel consuming. The on_message method is passed in as a callback pika will invoke when a message is fully received. """ self.logger.debug('issuing consumer related RPC commands') self.channel.basic_qos(prefetch_count=self.prefetch_count) self.add_on_cancel_callback() self.consumer_tag = self.channel.basic_consume(self.on_message, self.queue) self.is_consuming = True def add_on_cancel_callback(self): """Add a callback that will be invoked if RabbitMQ cancels the consumer for some reason. If RabbitMQ does cancel the consumer, on_consumer_cancelled will be invoked by pika. """ self.logger.debug('adding consumer cancellation callback') self.channel.add_on_cancel_callback(self.on_consumer_cancelled) def on_consumer_cancelled(self, method_frame): """Invoked by pika when RabbitMQ sends a Basic.Cancel for a consumer receiving messages. Args: method_frame(pika.frame.Method): The Basic.Cancel frame """ self.logger.info('consumer was cancelled remotely, shutting down: %r', method_frame) if self.channel: self.channel.close() def change_prefetch_count(self, new_size): if self.channel and self.channel.is_open: self.channel.basic_qos(prefetch_size=new_size if self.prefetch_count < new_size else 0, prefetch_count=new_size) self.logger.info('prefetch count changed from %s to %s', self.prefetch_count, new_size) self.prefetch_count = new_size self.sema.change(new_size) def publish(self, task_uuid, request, exchange=None, routing_key=None): """ Args: task_uuid: request: exchange(str): routing_key(str): Returns: """ if exchange and routing_key: exchange, routing_key = exchange, routing_key else: exchange, routing_key = self.exchange, self.routing_key try: self.channel.basic_publish(exchange=exchange, routing_key=routing_key, body=request, properties=pika.BasicProperties(delivery_mode=2, app_id=APP_ID)) except PIKA_CHANNEL_EXCEPTIONS: self.logger.warning('connection lost on message publish') def on_message(self, unused_channel, basic_deliver, properties, body): """Invoked by pika when a message is delivered from RabbitMQ. The channel is passed for your convenience. The basic_deliver object that is passed in carries the exchange, routing key, delivery tag and a redelivered flag for the message. The properties passed in is an instance of BasicProperties with the message properties and the body is the message that was sent. Args: unused_channel(pika.channel.Channel): The channel object basic_deliver(pika.Spec.Basic.Deliver): Basic deliver method properties(pika.Spec.BasicProperties): Properties body(str|bytes): The message body """ self.sema.acquire() task = Task.from_proto(body, deserializator=self.deserializator if properties.app_id != APP_ID else None) self.logger.info('received message #%s, task_uuid <%s> from %s', basic_deliver.delivery_tag, task.uuid, properties.app_id) task.delivery_tag = basic_deliver.delivery_tag task.on_receive() self.tasks[task.task_id].pool.worker_queue.put(task.request.SerializeToString()) def acknowledge_message(self, task_uuid, delivery_tag): """Acknowledge the message delivery from RabbitMQ by sending a Basic.Ack RPC method for the delivery tag. Args: task_uuid: delivery_tag(int): The delivery tag from the Basic.Deliver frame """ try: self.channel.basic_ack(delivery_tag) except PIKA_CHANNEL_EXCEPTIONS: self.logger.warning('connection lost on message acknowledge #%d' % delivery_tag) finally: self.sema.release() self.logger.info('acknowledged message #%d, task_uuid <%s>', delivery_tag, task_uuid) def reject_message(self, task_uuid, delivery_tag, requeue=False): """Reject message by it`s delivery tag Args: task_uuid(str): delivery_tag(int): requeue(bool): If `True` message will reject with requeue """ self.logger.info('rejecting message %s, task_uuid <%s> from gromozeka', delivery_tag, task_uuid) try: self.channel.basic_reject(delivery_tag, requeue) except PIKA_CHANNEL_EXCEPTIONS: self.logger.warning('connection lost on message reject #%d' % delivery_tag) finally: self.sema.release() def stop_consuming(self): """Tell RabbitMQ that you would like to stop consuming by sending the Basic.Cancel RPC command. """ self.stop_lock.acquire() if not self.channel: return if self.channel.is_closing or self.channel.is_closed: return self.logger.debug('sending a Basic.Cancel RPC command to RabbitMQ') self.channel.basic_cancel(self.on_cancelok, self.consumer_tag) def on_cancelok(self, unused_frame): """This method is invoked by pika when RabbitMQ acknowledges the cancellation of a consumer. At this point we will close the channel. This will invoke the on_channel_closed method once the channel has been closed, which will in-turn close the connection. Args: unused_frame(pika.frame.Method): The Basic.CancelOk frame """ self.logger.debug('broker acknowledged the cancellation of the consumer') self.close_channel() self.stop_lock.release() def close_channel(self): """Call to close the channel with RabbitMQ cleanly by issuing the Channel.Close RPC command. """ self.logger.debug('closing the channel') self.channel.close()
#!/usr/bin/env python # DickServ IRC Bot - Developed by acidvegas in Python (https://acid.vegas/dickserv) # cryptocurrency.py import httplib def get(coin): api = httplib.get_json('https://api.coinmarketcap.com/v1/ticker/?limit=500') data = [item for item in api if (coin.lower() == item['id'] or coin.upper() == item['symbol'])] if data: return data[0] else: return False
#!/usr/bin/env python # encoding: utf-8 """ @version: 0.0 @author: hailang @Email: seahailang@gmail.com @software: PyCharm @file: snake_env.py @time: 2018/6/21 15:45 """ import numpy as np import gym from gym.spaces import Discrete class SnakeEnv(gym.Env): SIZE=100 def __init__(self,ladder_num,dices): # 初始化话蛇棋游戏 # ladder_num 表示有多少个梯子,梯子会在后面的代码中随机分配 # dices 表示有多少种投掷色字的策略 # SIZE规定了整个棋盘有多大 self.ladder_num = ladder_num self.dices = dices self.ladders = dict(np.random.randint(1,self.SIZE,size=(self.ladder_num,2))) self.observation_space = Discrete(self.SIZE+1) self.action_space = Discrete(len(dices)) items = list(self.ladders.items()) #双向的梯子 for k,v in items: self.ladders[v] = k print('ladders info:') print(self.ladders) print('dice ranges') print(self.dices) self.pos = 1 def _reset(self): self.pos=1 return self.pos def _step(self,a): step = np.random.randint(1,self.dices[a]+1) self.pos += step if self.pos ==100: return 100,100,1,{} elif self.pos >100: self.pos = 200 -self.pos if self.pos in self.ladders: self.pos = self.ladders[self.pos] return self.pos,-1,0,{} def reward(self,s): if s == 100: return 100 else: return -1 if __name__ == '__main__': s = SnakeEnv(10,[10])
import dlib from dfd import assets def test_face_landmarks_model_loads(): dlib.shape_predictor(str(assets.FACE_LANDMARKS_MODEL_PATH))
from setuptools import setup __version__ = '' #pylint: disable=exec-used exec(open('pman/version.py').read()) setup( name='panda3d-pman', version=__version__, keywords='panda3d gamedev', packages=['pman', 'pman.templates'], setup_requires=[ 'pytest-runner' ], tests_require=[ 'panda3d', 'pytest', 'pylint==2.4.*', 'pytest-pylint', ], install_requires=[ 'panda3d-blend2bam >=0.14', ], entry_points={ 'console_scripts': [ 'pman=pman.cli:main', 'native2bam=pman.native2bam:main', ], 'pman.converters': [ 'blend2bam = pman.hooks:converter_blend_bam', 'native2bam = pman.hooks:converter_native_bam', ], 'pman.creation_extras': [ 'git = pman.hooks:create_git', ], }, )
# -*- coding: utf-8 -*- from vindauga.constants.command_codes import wnNoNumber, wpCyanWindow from vindauga.constants.window_flags import wfGrow, wfZoom from vindauga.gadgets.calendar import Calendar from vindauga.types.rect import Rect from vindauga.widgets.window import Window class CalendarWindow(Window): name = 'CalendarWindow' def __init__(self): super().__init__(Rect(1, 1, 23, 11), _('Calendar'), wnNoNumber) r = self.getExtent() self.flags &= ~(wfZoom | wfGrow) self.growMode = 0 self.palette = wpCyanWindow r.grow(-1, -1) self.insert(Calendar(r))
import torch import torch.nn as nn import torch.nn.functional as F def top_filtering(logits, top_k=0, top_p=0.0, filter_value=-float('Inf')): """ Filter a distribution of logits using top-k, top-p (nucleus) and/or threshold filtering Args: logits: logits distribution shape (vocabulary size) top_k: <=0: no filtering, >0: keep only top k tokens with highest probability. top_p: <=0.0: no filtering, >0.0: keep only a subset S of candidates, where S is the smallest subset whose total probability mass is greater than or equal to the threshold top_p. In practice, we select the highest probability tokens whose cumulative probability mass exceeds the threshold top_p. """ # batch support! if top_k > 0: values, _ = torch.topk(logits, top_k) min_values = values[:, -1].unsqueeze(1).repeat(1, logits.shape[-1]) logits = torch.where(logits < min_values, torch.ones_like(logits, dtype=logits.dtype) * -float('Inf'), logits) if top_p > 0.0: # Compute cumulative probabilities of sorted tokens sorted_logits, sorted_indices = torch.sort(logits, descending=True) cumulative_probabilities = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1) # Remove tokens with cumulative probability above the threshold sorted_indices_to_remove = cumulative_probabilities > top_p # Shift the indices to the right to keep also the first token above the threshold sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone() sorted_indices_to_remove[..., 0] = 0 sorted_logits = sorted_logits.masked_fill_(sorted_indices_to_remove, filter_value) logits = torch.zeros_like(logits).scatter(1, sorted_indices, sorted_logits) return logits
#!/usr/bin/env python import sys import argparse import json from typing import List from decimal import Decimal try: from pymultisig.btc_utils import estimate_transaction_fees except ModuleNotFoundError: from btc_utils import estimate_transaction_fees def generate_outputs(address: str, inputs: str = None, change_address: str = None, amount: str = None, set_fees: int = 15) -> dict: """ Generate Output data for use in signing and tranasction construction One or Two output options. With One output, fees are removed from the one output, With two outputs, fees are removed from the change address output. Defaults to 15 sat/byte, but is optionally settable Args: Returns: Example: TODO """ # Calculate total input amount (satoshis) with open(inputs, 'r') as f: utxos = json.load(f) total_amount = 0 for utxo in utxos: total_amount += utxo['amount'] # Convert from BTC to Satoshis if amount is not None: amount = int(Decimal(amount) * 10 ** 8) # Calculate Fees if change_address is not None: num_outputs = 2 else: num_outputs = 1 fee_amount = estimate_transaction_fees(len(utxos), num_outputs, set_fees) # Set change amount if change_address is not None: change_amount = total_amount - amount - fee_amount else: amount = total_amount - fee_amount # Construct main output outputs = [] outputs.append({"address": address, "amount": amount}) # Optionally, construct second output if change_address is not None: outputs.append({"address": change_address, "amount": change_amount}) return outputs if __name__ == '__main__': parser = argparse.ArgumentParser( description='Generate Bitcoin Redeem Script from Public Keys ') parser.add_argument('address', help="Address to Send to, defaults to all if change_address is not given") parser.add_argument('inputs', help="inputs json file (see get_utxo_set.py)") parser.add_argument('--change_address', help="Address to send remaining BTC to after sending amount to address") parser.add_argument('--amount', help="Amount (in BTC) to send to address, required if change_address is given") parser.add_argument('--set_fees', type=int, help="Fees in Sat/Byte, defaults to 15 Sat/Byte") args = parser.parse_args() if args.set_fees is None: set_fees = 15 else: set_fees = args.set_fees result = generate_outputs(args.address, args.inputs, args.change_address, args.amount, set_fees) print(json.dumps(result, indent=2))
from oarepo_model_builder.builders import process from oarepo_model_builder.builders.python import PythonBuilder from oarepo_model_builder.builders.utils import ensure_parent_modules from oarepo_model_builder.stack import ModelBuilderStack class PythonStructureBuilder(PythonBuilder): TYPE = 'python_structure' @process('/model') def model(self, stack: ModelBuilderStack): yield package_path = self.settings.package_path ensure_parent_modules( self.builder, self.builder.output_dir.joinpath(package_path / '__init__.py'), max_depth=len(package_path.parts) )
""" All modules that use the TimeSeriesMediator. The classes inherit from the AbstractTimeSeriesModel. Each model is kept as its own class so new behavior can be added individually as needed. """ from gamebench_api_client.models.dataframes.time_series.abstract_time_series import AbstractTimeSeriesModel class Battery(AbstractTimeSeriesModel): """ Object to set the Battery information for a session.""" METRIC_PATH = '/battery' class CpuCoreFrequency(AbstractTimeSeriesModel): """ Object to set the CPU Core Frequency information for a session.""" METRIC_PATH = '/corefreq' class Cpu(AbstractTimeSeriesModel): """ Object to set the CPU usage information for a session.""" METRIC_PATH = '/cpu' class Energy(AbstractTimeSeriesModel): """ Object to set the Energy information for a session.""" METRIC_PATH = '/energy' class Fps(AbstractTimeSeriesModel): """ Object to set the FPS information for a session.""" METRIC_PATH = '/fps' class GpuImg(AbstractTimeSeriesModel): """ Object to set the Imagination GPU information for a session.""" METRIC_PATH = '/gpu/img' class Gpu(AbstractTimeSeriesModel): """ Object to set the non-Imagination GPU information for a session.""" METRIC_PATH = '/gpu/other' class Janks(AbstractTimeSeriesModel): """ Object to set the Janks information for a session.""" METRIC_PATH = '/janks' class Memory(AbstractTimeSeriesModel): """ Object to set the Memory information for a session.""" METRIC_PATH = '/memory' class Network(AbstractTimeSeriesModel): """ Object to set the Network information for a session.""" METRIC_PATH = '/network' class Power(AbstractTimeSeriesModel): """ Object to set the Power information for a session.""" METRIC_PATH = '/power'
factor = int(input()) n = int(input()) numbers = [] for x in range(1, (n * factor) + 1): if x % factor == 0: numbers.append(x) print(numbers)
# coding=utf-8 # !/usr/bin/env python """ :mod:"chempiler_client" -- User interface for the Chempiler =================================== .. module:: chempiler_client :platform: Windows, Unix :synopsis: User interface for the Chempiler .. moduleauthor:: Graham Keenan <1105045k@student.gla.ac.uk> .. moduleauthor:: Sebastian Steiner <s.steiner.1@research.gla.ac.uk> (c) 2017 The Cronin Group, University of Glasgow This module sets up a logging framework, then prompts the user to supply paths to GraphML and ChASM files. Once the input has been verified, the Chempiler is started. For style guide used see http://xkcd.com/1513/ """ import inspect import logging import multiprocessing import os import sys import time import click HERE = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe()))) sys.path.append(os.path.join(HERE, '..', 'platform_server')) from core.chempiler import Chempiler __all__ = ['main'] @click.command() @click.option('-e', '--experiment-code', required=True) @click.option('-g', '--graph', required=True, type=click.Path(file_okay=True, dir_okay=False, exists=True), help='GraphML file. Example: C:\\Users\\group\\Documents\\Chempiler\\experiments\\graph\\chemputer_rig_3_sildena/fil.graphml') @click.option('-c', '--command', required=True, type=click.Path(file_okay=True, dir_okay=False, exists=True), help='Command file. Example: C:\\Users\\group\\Documents\\Chempiler\\experiments\\ChASM\\sildenafil.chasm') @click.option('--log-folder', type=click.Path(file_okay=False, dir_okay=True), required=True) @click.option('--record-video', is_flag=True) @click.option('--crash-dump', is_flag=True) @click.option('--simulation', is_flag=True) def main(experiment_code, graph, command, log_folder, record_video, crash_dump, simulation): """Run the chemputer.""" # deal with logging # create main thread logger logger = logging.getLogger("main_logger") logger.setLevel(logging.DEBUG) # create file handler which logs all messages fh = logging.FileHandler(filename=os.path.join(log_folder, "{0}.txt".format(experiment_code))) fh.setLevel(logging.DEBUG) # create console handler which logs all messages ch = logging.StreamHandler() ch.setLevel(logging.INFO) # create formatter and add it to the handlers file_formatter = logging.Formatter("%(asctime)s ; %(levelname)s ; %(module)s ; %(threadName)s ; %(message)s") fh.setFormatter(file_formatter) console_formatter = logging.Formatter("%(asctime)s ; %(module)s ; %(message)s") ch.setFormatter(console_formatter) # add the handlers to the loggers logger.addHandler(fh) logger.addHandler(ch) # record the entered parameters logger.debug("User Input:\nXML file: {0}\nCommand file: {1}\nSimulation: {2}".format(graph, command, SIM)) # deal with video recording if record_video: from tools.vlogging import VlogHandler, RecordingSpeedFilter, recording_worker # spawn queues message_queue = multiprocessing.Queue() recording_speed_queue = multiprocessing.Queue() # create logging message handlers video_handler = VlogHandler(message_queue) recording_speed_handler = VlogHandler(recording_speed_queue) # set logging levels video_handler.setLevel(logging.INFO) recording_speed_handler.setLevel(5) # set a logging level below DEBUG # only allow dedicated messages for the recording speed handler speed_filter = RecordingSpeedFilter() recording_speed_handler.addFilter(speed_filter) # attach the handlers logger.addHandler(video_handler) logger.addHandler(recording_speed_handler) # work out video name and path i = 0 video_path = os.path.join(log_folder, "{0}_{1}.avi".format(experiment_code, i)) while True: # keep incrementing the file counter until you hit one that doesn't yet exist if os.path.isfile(video_path): i += 1 video_path = os.path.join(log_folder, "{0}_{1}.avi".format(experiment_code, i)) else: break # launch recording process recording_process = multiprocessing.Process(target=recording_worker, args=(message_queue, recording_speed_queue, video_path)) recording_process.start() time.sleep(5) # wait for the video feed to stabilise chempiler = Chempiler(graph, command, crash_dump=crash_dump, simulation=simulation) chempiler.run_platform() return sys.exit(0) if __name__ == "__main__": main()