content
stringlengths
5
1.05M
# Copyright (c) 2021 - present / Neuralmagic, Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Example script for generating random input from an ONNX model and running the model both through the DeepSparse Engine and ONNXRuntime, comparing outputs to confirm they are the same. In this method, we can assume that ONNXRuntime will give the "correct" output as it is the industry-standard solution. ########## Command help: usage: check_correctness.py [-h] [-s BATCH_SIZE] onnx_filepath Run an ONNX model, comparing outputs between the DeepSparse Engine and ONNXRuntime positional arguments: onnx_filepath The full filepath of the ONNX model file being run optional arguments: -h, --help show this help message and exit -s BATCH_SIZE, --batch_size BATCH_SIZE The batch size to run the analysis for ########## Example command for checking a downloaded resnet50 model for batch size 8: python examples/benchmark/check_correctness.py \ ~/Downloads/resnet50.onnx \ --batch_size 8 """ import argparse import onnxruntime from deepsparse import compile_model, cpu from deepsparse.utils import ( generate_random_inputs, get_input_names, get_output_names, override_onnx_batch_size, verify_outputs, ) CORES_PER_SOCKET, AVX_TYPE, _ = cpu.cpu_details() def parse_args(): parser = argparse.ArgumentParser( description=( "Run an ONNX model, comparing outputs between the DeepSparse Engine and" " ONNXRuntime" ) ) parser.add_argument( "onnx_filepath", type=str, help="The full filepath of the ONNX model file being run", ) parser.add_argument( "-s", "--batch_size", type=int, default=1, help="The batch size to run the analysis for", ) return parser.parse_args() def main(): args = parse_args() onnx_filepath = args.onnx_filepath batch_size = args.batch_size inputs = generate_random_inputs(onnx_filepath, batch_size) input_names = get_input_names(onnx_filepath) output_names = get_output_names(onnx_filepath) inputs_dict = {name: value for name, value in zip(input_names, inputs)} # ONNXRuntime inference print("Executing model with ONNXRuntime...") sess_options = onnxruntime.SessionOptions() with override_onnx_batch_size(onnx_filepath, batch_size) as override_onnx_filepath: ort_network = onnxruntime.InferenceSession(override_onnx_filepath, sess_options) ort_outputs = ort_network.run(output_names, inputs_dict) # DeepSparse Engine inference print("Executing model with DeepSparse Engine...") dse_network = compile_model(onnx_filepath, batch_size=batch_size) dse_outputs = dse_network(inputs) verify_outputs(dse_outputs, ort_outputs) print("DeepSparse Engine output matches ONNXRuntime output") if __name__ == "__main__": main()
# -*- coding: utf-8 -*- """ Bundle of methods for handling images. Rather than manipulating specialized operations in images methods in this module are used for loading, outputting and format-converting methods, as well as color manipulation. SUPPORTED FORMATS see http://docs.opencv.org/2.4/modules/highgui/doc/reading_and_writing_images_and_video.html#imread +---------------------------+--------------------------------------------------+ | Format | Extension | +===========================+==================================================+ | Windows bitmaps | \*.bmp, \*.dib (always supported) | +---------------------------+--------------------------------------------------+ | JPEG files | \*.jpeg, \*.jpg, \*.jpe (see the Notes section) | +---------------------------+--------------------------------------------------+ | JPEG 2000 files | \*.jp2 (see the Notes section) | +---------------------------+--------------------------------------------------+ | Portable Network Graphics | \*.png (see the Notes section) | +---------------------------+--------------------------------------------------+ | Portable image format | \*.pbm, \*.pgm, \*.ppm (always supported) | +---------------------------+--------------------------------------------------+ | Sun rasters | \*.sr, \*.ras (always supported) | +---------------------------+--------------------------------------------------+ | TIFF files | \*.tiff, \*.tif (see the Notes section) | +---------------------------+--------------------------------------------------+ """ from __future__ import division from __future__ import print_function from __future__ import absolute_import from builtins import zip from builtins import range from past.builtins import basestring from builtins import object from .directory import getData, mkPath, getPath, increment_if_exits from .config import FLOAT, INT, MANAGER import cv2 import os import numpy as np from .arrayops.basic import (anorm, polygonArea, im2shapeFormat, angle, vectorsAngles, overlay, standarizePoints, splitPoints) from .root import glob # from pyqtgraph import QtGui #BUG in pydev ImportError: cannot import # name QtOpenGL from .cache import cache, ResourceManager from collections import MutableSequence from .directory import (getData, strdifference, changedir, checkFile, getFileHandle, increment_if_exits, mkPath) import matplotlib.axes import matplotlib.figure from .plotter import Plotim, limitaxis from .serverServices import parseString, string_is_socket_address supported_formats = ("bmp", "dib", "jpeg", "jpg", "jpe", "jp2", "png", "pbm", "pgm", "ppm", "sr", "ras", "tiff", "tif") def transposeIm(im): if len(im.shape) == 2: return im.transpose(1, 0) else: return im.transpose(1, 0, 2) #from matplotlib import colors # colors to use green = (0, 255, 0) red = (0, 0, 255) white = (255, 255, 255) orange = (51, 103, 236) black = (0, 0, 0) blue = (255, 0, 0) # dictionary of colors to use colors = { "blue": blue, "green": green, "red": red, "white": white, "orange": orange, "black": black} # look for these as <numpy array>.dtype.names bgra_dtype = np.dtype({'b': (np.uint8, 0), 'g': ( np.uint8, 1), 'r': (np.uint8, 2), 'a': (np.uint8, 3)}) def plt2bgr(image): if isinstance(image, matplotlib.axes.SubplotBase): image = fig2bgr(image.figure) elif isinstance(image, matplotlib.figure.Figure): image = fig2bgr(image) return image def plt2bgra(image): if isinstance(image, matplotlib.axes.SubplotBase): image = fig2bgra(image.figure) elif isinstance(image, matplotlib.figure.Figure): image = fig2bgra(image) return image def fig2bgr(fig): """ Convert a Matplotlib figure to a RGB image. :param fig: a matplotlib figure :return: RGB image. """ fig.canvas.draw() buf = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep='') # get bgr return buf.reshape(fig.canvas.get_width_height()[::-1] + (3,)) def np2str(arr): return arr.tostring() def str2np(string, shape): buf = np.fromstring(string, dtype=np.uint8, sep='') # get bgr return buf.reshape(shape) def fig2bgra(fig): """ Convert a Matplotlib figure to a RGBA image. :param fig: a matplotlib figure :return: RGBA image. """ # http://www.icare.univ-lille1.fr/drupal/node/1141 # http://stackoverflow.com/questions/7821518/matplotlib-save-plot-to-numpy-array # draw the renderer fig.canvas.draw() # Get the RGBA buffer from the figure buf = np.fromstring(fig.canvas.tostring_argb(), dtype=np.uint8) # get bgra buf = buf.reshape(fig.canvas.get_width_height()[ ::-1] + (4,)) # reshape to h,w,c return np.roll(buf, 3, axis=2) # correct channels def qi2np(qimage, dtype='array'): """ Convert QImage to numpy.ndarray. The dtype defaults to uint8 for QImage.Format_Indexed8 or `bgra_dtype` (i.e. a record array) for 32bit color images. You can pass a different dtype to use, or 'array' to get a 3D uint8 array for color images. source from: https://kogs-www.informatik.uni-hamburg.de/~meine/software/vigraqt/qimage2ndarray.py """ from pyqtgraph import QtGui if qimage.isNull(): raise IOError("Image is Null") result_shape = (qimage.height(), qimage.width()) temp_shape = (qimage.height(), qimage.bytesPerLine() * 8 / qimage.depth()) if qimage.format() in (QtGui.QImage.Format_ARGB32_Premultiplied, QtGui.QImage.Format_ARGB32, QtGui.QImage.Format_RGB32): if dtype == 'rec': dtype = bgra_dtype elif dtype == 'array': dtype = np.uint8 result_shape += (4, ) temp_shape += (4, ) elif qimage.format() == QtGui.QImage.Format_Indexed8: dtype = np.uint8 else: raise ValueError("qi2np only supports 32bit and 8bit images") # FIXME: raise error if alignment does not match buf = qimage.bits().asstring(qimage.numBytes()) result = np.frombuffer(buf, dtype).reshape(result_shape) if result_shape != temp_shape: result = result[:, :result_shape[1]] if qimage.format() == QtGui.QImage.Format_RGB32 and dtype == np.uint8: result = result[..., :3] return result def np2qi(array): """ Convert numpy array to Qt Image. source from: https://kogs-www.informatik.uni-hamburg.de/~meine/software/vigraqt/qimage2ndarray.py :param array: :return: """ if np.ndim(array) == 2: return gray2qi(array) elif np.ndim(array) == 3: return rgb2qi(array) raise ValueError("can only convert 2D or 3D arrays") def gray2qi(gray): """ Convert the 2D numpy array `gray` into a 8-bit QImage with a gray colormap. The first dimension represents the vertical image axis. ATTENTION: This QImage carries an attribute `ndimage` with a reference to the underlying numpy array that holds the data. On Windows, the conversion into a QPixmap does not copy the data, so that you have to take care that the QImage does not get garbage collected (otherwise PyQt will throw away the wrapper, effectively freeing the underlying memory - boom!). source from: https://kogs-www.informatik.uni-hamburg.de/~meine/software/vigraqt/qimage2ndarray.py """ from pyqtgraph import QtGui if len(gray.shape) != 2: raise ValueError("gray2QImage can only convert 2D arrays") gray = np.require(gray, np.uint8, 'C') h, w = gray.shape result = QtGui.QImage(gray.data, w, h, QtGui.QImage.Format_Indexed8) result.ndarray = gray # let object live to avoid garbage collection """ for i in xrange(256): result.setColor(i, QtGui.QColor(i, i, i).rgb())""" return result def rgb2qi(rgb): """ Convert the 3D numpy array `rgb` into a 32-bit QImage. `rgb` must have three dimensions with the vertical, horizontal and RGB image axes. ATTENTION: This QImage carries an attribute `ndimage` with a reference to the underlying numpy array that holds the data. On Windows, the conversion into a QPixmap does not copy the data, so that you have to take care that the QImage does not get garbage collected (otherwise PyQt will throw away the wrapper, effectively freeing the underlying memory - boom!). source from: https://kogs-www.informatik.uni-hamburg.de/~meine/software/vigraqt/qimage2ndarray.py """ from pyqtgraph import QtGui if len(rgb.shape) != 3: raise ValueError("rgb2QImage can only convert 3D arrays") if rgb.shape[2] not in (3, 4): raise ValueError("rgb2QImage can expects the last dimension to contain " "exactly three (R,G,B) or four (R,G,B,A) channels") h, w, channels = rgb.shape # Qt expects 32bit BGRA data for color images: bgra = np.empty((h, w, 4), np.uint8, 'C') bgra[:, :, 2] = rgb[:, :, 2] bgra[:, :, 1] = rgb[:, :, 1] bgra[:, :, 0] = rgb[:, :, 0] # dstack, dsplit, stack if rgb.shape[2] == 3: bgra[..., 3].fill(255) fmt = QtGui.QImage.Format_RGB32 else: bgra[..., 3] = rgb[..., 3] fmt = QtGui.QImage.Format_ARGB32 result = QtGui.QImage(bgra.data, w, h, fmt) result.ndarray = bgra # let object live to avoid garbage collection return result # STABLE FUNCTIONS def bgra2bgr(im, bgrcolor=colors["white"]): """ Convert BGR to BGRA image. :param im: image :param bgrcolor: BGR color representing transparency. (information is lost when converting BGRA to BGR) e.g. [200,200,200]. :return: """ # back[chanel] = bgr[chanel]*(bgr[3]/255.0) + back[chanel]*(1-bgr[3]/255.0) temp = im.shape im2 = np.zeros((temp[0], temp[1], 3), np.uint8) im2[:, :, :] = bgrcolor for c in range(0, 3): # looping over channels im2[:, :, c] = (im[:, :, c] * (im[:, :, 3] / 255.0) + im2[:, :, c] * (1.0 - im[:, :, 3] / 255.0)) return im2 def convertAs(fns, base=None, folder=None, name=None, ext=None, overwrite=False, loader=None, simulate=False): """ Reads a file and save as other file based in a pattern. :param fns: file name or list of file names. It supports glob operations. By default glob operations ignore folders. :param base: path to place images. :param folder: (None) folder to place images in base's path. If True it uses the folder in which image was loaded. If None, not folder is used. :param name: string for formatting new name of image with the {name} tag. Ex: if name is 'new_{name}' and image is called 'img001' then the formatted new image's name is 'new_img001' :param ext: (None) extension to save all images. If None uses the same extension as the loaded image. :param overwrite: (False) If True and the destine filename for saving already exists then it is replaced, else a new filename is generated with an index "{name}_{index}.{extension}" :param loader: (None) loader for the image file to change image attributes. If None reads the original images untouched. :param simulate: (False) if True, no saving is performed but the status is returned to confirm what images where adequately processed. :return: list of statuses (0 - no error, 1 - image not loaded, 2 - image not saved, 3 - error in processing image) """ if loader is None: loader = loadFunc(1) if isinstance(fns, basestring): filelist = glob(fns) # list else: # is an iterator filelist = [] for f in fns: filelist.extend(glob(f)) if base is None: base = '' # ensures that path from base ends with separator if base: base = os.path.join(base, "") replaceparts = getData(base) # from base get parts # ensures that extension starts with point "." if isinstance(ext, basestring) and not ext.startswith("."): ext = "." + ext # correct extension status = [] for file in filelist: parts = getData(file) # file parts # replace drive if replaceparts[0]: parts[0] = replaceparts[0] # replace root if replaceparts[1]: if folder is True: parts[1] = os.path.join(replaceparts[1], os.path.split(os.path.split(parts[1])[0])[1], "") elif isinstance(folder, basestring): parts[1] = os.path.join(replaceparts[1], folder, "") else: parts[1] = replaceparts[1] # to replace basic name if isinstance(name, basestring): parts[2] = name.format(name=parts[2]) if isinstance(ext, basestring): parts[3] = ext # replace extension newfile = "".join(parts) if not overwrite: newfile = increment_if_exits(newfile) try: im = loader(file) # image not loaded if im is None: status.append((file, 1, newfile)) continue # image successfully saved if simulate: status.append((file, 0, newfile)) continue else: mkPath("".join(parts[:2])) if cv2.imwrite(newfile, im): status.append((file, 0, newfile)) continue # image not saved status.append((file, 2, newfile)) except: # an error in the process status.append((file, 3, newfile)) return status def checkLoaded(obj, fn="", raiseError=False): """ Simple function to determine if variable is valid. :param obj: loaded object :param fn: path of file :param raiseError: if True and obj is None, raise :return: None """ if obj is not None: print(fn, " Loaded...") else: print(fn, " Could not be loaded...") if raiseError: raise def loadcv(path, flags=-1, shape=None): """ Simple function to load using opencv. :param path: path to image. :param flag: openCV flags: +-------+------------------------------+--------+ | value | openCV flag | output | +=======+==============================+========+ | (1) | cv2.CV_LOAD_IMAGE_COLOR | BGR | +-------+------------------------------+--------+ | (0) | cv2.CV_LOAD_IMAGE_GRAYSCALE | GRAY | +-------+------------------------------+--------+ | (-1) | cv2.CV_LOAD_IMAGE_UNCHANGED | format | +-------+------------------------------+--------+ :param shape: shape to resize image. :return: loaded image """ im = cv2.imread(path, flags) if shape: im = cv2.resize(im, shape) return im def loadsfrom(path, flags=cv2.IMREAD_COLOR): """ Loads Image from URL or file. :param path: filepath or url :param flags: openCV flags: +-------+------------------------------+--------+ | value | openCV flag | output | +=======+==============================+========+ | (1) | cv2.CV_LOAD_IMAGE_COLOR | BGR | +-------+------------------------------+--------+ | (0) | cv2.CV_LOAD_IMAGE_GRAYSCALE | GRAY | +-------+------------------------------+--------+ | (-1) | cv2.CV_LOAD_IMAGE_UNCHANGED | format | +-------+------------------------------+--------+ :return: """ if isinstance(path, basestring): if path.endswith(".npy"): # reads numpy arrays return np.lib.load(path, None) resp = getFileHandle(path) # download the image else: resp = path # assume path is a file-like object ie. cStringIO or file # nparr = np.asarray(bytearray(resp.read()), dtype=dtype) # convert it to # a NumPy array nparr = np.fromstring(resp.read(), dtype=np.uint8) image = cv2.imdecode(nparr, flags=flags) # decode using OpenCV format return image def interpretImage(toparse, flags): """ Interprets to get image. :param toparse: string to parse or array. It can interpret: * connection to server (i.e. host:port) * path to file (e.g. /path_to_image/image_name.ext) * URL to image (e.g. http://domain.com/path_to_image/image_name.ext) * image as string (i.g. numpy converted to string) * image itself (i.e. numpy array) :param flags: openCV flags: +-------+------------------------------+--------+ | value | openCV flag | output | +=======+==============================+========+ | (1) | cv2.CV_LOAD_IMAGE_COLOR | BGR | +-------+------------------------------+--------+ | (0) | cv2.CV_LOAD_IMAGE_GRAYSCALE | GRAY | +-------+------------------------------+--------+ | (-1) | cv2.CV_LOAD_IMAGE_UNCHANGED | format | +-------+------------------------------+--------+ :return: image or None if not successfull """ # test it is from server if string_is_socket_address(toparse): # process request to server toparse = parseString(toparse, 5) # test is object itself if type(toparse).__module__ == np.__name__: # test numpy array if flags == 1: return im2shapeFormat(toparse, (0, 0, 3)) if flags == 0: return im2shapeFormat(toparse, (0, 0)) return toparse # test image in string try: return cv2.imdecode(toparse, flags) except TypeError: # test path to file or URL return loadsfrom(toparse, flags) class ImFactory(object): """ image factory for RRToolbox to create scripts to standardize loading images and provide lazy loading (it can load images from disk with the customized options and/or create mapping images to load when needed) to conserve memory. .. warning:: In development. """ _interpolations = {"nearest": 0, "bilinear": 1, "bicubic": 2, "area": 3, "lanczos": 4} _convertions = {} def __init__(self, **kwargs): """ :param kwargs: :return: An image can be represented as a matrix of width "W" and height "H" with elements called pixels,each pixel is a representation of a color in one point of a plane (2D dimension). In the case of openCV and many other libraries for image manipulation, the use of numpy arrays as base for image representation is becoming the standard (numpy is a fast and powerful library for array manipulation and one of the main modules for scientific development in python). A numpy matrix with n rows and m columns has a shape (n,m), that in an Image is H,W which in a Cartesian plane would be y,x. if image is W,H = 100,100 then dsize = (W,H) = (300,100) would be the same as fsize = (fx,fy) = (3,1) after the image is loaded in a numpy array the image would have shape (n,m) = (rows,cols) = (H,W) = im.shape """ self.path = None # path to use to load image self.mmap_mode = None # mapping file modes self.mmap_path = None # path to create numpy file; None, do not create mapping file self.w = None self.h = None self.fx = None self.fy = None self.convert = None self.interpolation = None self.throw = True self.update(**kwargs) # TODO not finished def update(self, **kwargs): for key, value in kwargs.items(): if hasattr(self, key): setattr(self, key, value) else: raise Exception("Not attribute '{}'".format(key)) def get_Func(self): """ gets the loading function """ pass def get_code(self): """ get the script code """ pass def get_errorFunc(self, path=None, throw=None): def errorFunc(im): if throw and im is None: if checkFile(path): if getData(path)[-1] in supported_formats: raise Exception( "Not enough permissions to load '{}'".format(path)) else: raise Exception( "Failed to load '{}'. Format not supported".format(path)) else: raise Exception("Missing file '{}'".format(path)) return {None: errorFunc} def get_loadFunc(self, flag=None): def loadFunc(path): return cv2.imread(path, flag) return {"im": loadFunc} def get_resizeFunc(self, dsize=None, dst=None, fx=None, fy=None, interpolation=None): # see # http://docs.opencv.org/2.4/modules/imgproc/doc/geometric_transformations.html#resize fx, fy, interpolation = fx or 0, fy or 0, interpolation or 0 def resizeFunc(im): return cv2.resize(im, dsize, dst, fx, fy, interpolation) return {"im": resizeFunc} def get_mapFunc(self, flag=None, RGB=None, mpath=None, mode=None, func=None, dsize=None, dst=None, fx=None, fy=None, interpolation=None): def mapFunc(path): if mpath == "*": # save mmap in working directory drive, dirname, (filename, ext) = "", "", getData(path)[-2:] elif mpath: # save mmap in mpath drive, dirname, filename, ext = getData(changedir(path, mpath)) else: # save mmap in image path drive, dirname, filename, ext = getData(path) # THIS CREATES ONE HASHED FILE hashed = hash("{}{}{}{}{}{}".format( flag, RGB, dsize, fx, fy, interpolation)) savepath = "{}{}{}{}.{}.npy".format( drive, dirname, filename, ext, hashed) try: # load from map # mapper(savepath,None,mode,True)[0]# return np.lib.load(savepath, mode) except IOError: # create object and map im = func(path) if im is None: # this is regardless of throw flag raise Exception("Failed to load image to map") np.save(savepath, im) # mapper(savepath,im,mode,True)[0]# return np.lib.load(savepath, mode) return {"im": mapFunc} def get_transposeFunc(self): def transposeFunc(im): if len(im.shape) == 2: return im.transpose(1, 0) else: # np.ascontiguousarray? # http://stackoverflow.com/a/27601130/5288758 return im.transpose(1, 0, 2) return {"im": transposeFunc} def get_convertionFunc(self, code): def convertionFunc(im): return cv2.cvtColor(im, code) return {"im": convertionFunc} def get_np2qi(self): return {"im": np2qi} def loadFunc(flag=0, dsize=None, dst=None, fx=None, fy=None, interpolation=None, mmode=None, mpath=None, throw=True, keepratio=True): """ Creates a function that loads image array from path, url, server, string or directly from numpy array (supports databases). :param flag: (default: 0) 0 to read as gray, 1 to read as BGR, -1 to read as BGRA, 2 to read as RGB, -2 to read as RGBA. It supports openCV flags: * cv2.CV_LOAD_IMAGE_COLOR * cv2.CV_LOAD_IMAGE_GRAYSCALE * cv2.CV_LOAD_IMAGE_UNCHANGED +-------+-------------------------------+--------+ | value | openCV flag | output | +=======+===============================+========+ | (2) | N/A | RGB | +-------+-------------------------------+--------+ | (1) | cv2.CV_LOAD_IMAGE_COLOR | BGR | +-------+-------------------------------+--------+ | (0) | cv2.CV_LOAD_IMAGE_GRAYSCALE | GRAY | +-------+-------------------------------+--------+ | (-1) | cv2.CV_LOAD_IMAGE_UNCHANGED | BGRA | +-------+-------------------------------+--------+ | (-2) | N/A | RGBA | +-------+-------------------------------+--------+ :param dsize: (None) output image size; if it equals zero, it is computed as: \texttt{dsize = Size(round(fx*src.cols), round(fy*src.rows))} If (integer,None) or (None,integer) it completes the values according to keepratio parameter. :param dst: (None) output image; it has the size dsize (when it is non-zero) or the size computed from src.size(), fx, and fy; the type of dst is uint8. :param fx: scale factor along the horizontal axis :param fy: scale factor along the vertical axis :param interpolation: interpolation method compliant with opencv: +-----+-----------------+-------------------------------------------------------+ |flag | Operation | Description | +=====+=================+=======================================================+ |(0) | INTER_NEAREST | nearest-neighbor interpolation | +-----+-----------------+-------------------------------------------------------+ |(1) | INTER_LINEAR | bilinear interpolation (used by default) | +-----+-----------------+-------------------------------------------------------+ |(2) | INTER_CUBIC | bicubic interpolation over 4x4 pixel neighborhood | +-----+-----------------+-------------------------------------------------------+ |(3) | INTER_AREA | resampling using pixel area relation. | | | | It may be a preferred method for image decimation, | | | | as it gives moire’-free results. But when the image | | | | is zoomed, it is similar to the INTER_NEAREST method. | +-----+-----------------+-------------------------------------------------------+ |(4) | INTER_LANCZOS4 | Lanczos interpolation over 8x8 pixel neighborhood | +-----+-----------------+-------------------------------------------------------+ :param mmode: (None) mmode to create mapped file. if mpath is specified loads image, converts to mapped file and then loads mapping file with mode {None, 'r+', 'r', 'w+', 'c'} (it is slow for big images). If None, loads mapping file to memory (useful to keep image copy for session even if original image is deleted or modified). :param mpath: (None) path to create mapped file. None, do not create mapping file "", uses path directory; "*", uses working directory; else, uses specified directory. :param keepratio: True to keep image ratio when completing data from dsize,fx and fy, False to not keep ratio. .. note:: If mmode is None and mpath is given it creates mmap file but loads from it to memory. It is useful to create physical copy of data to keep loading from (data can be reloaded even if original file is moved or deleted). :return loader function """ # create factory functions def errorFunc(im, path): if im is None: if checkFile(path): if getData(path)[-1][1:] in supported_formats: raise Exception( "Not enough permissions to load '{}'".format(path)) else: raise Exception( "Failed to load '{}'. Format not supported".format(path)) else: raise Exception("Missing file '{}'".format(path)) RGB = False if abs(flag) == 2: # determine if needs to do conversion from BGR to RGB flag = flag // 2 # get normal flag RGB = True def loadfunc(path): im = interpretImage(path, flag) # load func if throw: errorFunc(im, path) # if not loaded throw error if flag < 0 and im.shape[2] != 4: if RGB: return cv2.cvtColor(im, cv2.COLOR_BGR2RGBA) return cv2.cvtColor(im, cv2.COLOR_BGR2BGRA) if RGB: if flag < 0: return cv2.cvtColor(im, cv2.COLOR_BGRA2RGBA) else: return cv2.cvtColor(im, cv2.COLOR_BGR2RGB) return im if dsize or dst or fx or fy: if fx is None and fy is None: fx = fy = 1.0 elif keepratio: if fx is not None and fy is None: fy = fx elif fy is not None and fx is None: fx = fy else: if fx is not None and fy is None: fy = 1 elif fy is not None and fx is None: fx = 1 interpolation = interpolation or 0 if keepratio: def calc_dsize(shape, dsize=None): """ calculates dsize to keep the image's ratio. :param shape: image shape :param dsize: dsize tuple with a None value :return: calculated dsize """ x, y = dsize sy, sx = shape[:2] if x is not None and y is None: dsize = x, int(sy * (x * 1.0 / sx)) elif y is not None and x is None: dsize = int(sx * (y * 1.0 / sy)), y else: dsize = sx, sy return dsize else: def calc_dsize(shape, dsize=None): """ calculates dsize without keeping the image's ratio. :param shape: image shape :param dsize: dsize tuple with a None value :return: calculated dsize """ dsize = list(dsize) ndsize = shape[:2][::-1] for i, val in enumerate(dsize): if val is None: dsize[i] = ndsize[i] dsize = tuple(dsize) return dsize if dsize is not None and None in dsize: def resizefunc(path): img = loadfunc(path) return cv2.resize(img, calc_dsize(img.shape, dsize), dst, fx, fy, interpolation) else: def resizefunc(path): return cv2.resize(loadfunc(path), dsize, dst, fx, fy, interpolation) func = resizefunc else: func = loadfunc if mmode or mpath is not None: # if there is a mmode, or mpath is string def mapfunc(path): if mpath == "*": # save mmap in working directory drive, dirname, (filename, ext) = "", "", getData(path)[-2:] elif mpath: # save mmap in mpath drive, dirname, filename, ext = getData(changedir(path, mpath)) else: # save mmap in image path drive, dirname, filename, ext = getData(path) """ # THIS CREATES A FOLDER TO MEMOIZE def dummy(path,flag=0,dsize=0,fx=0,fy=0,interpolation=0): return func(path) savepath = "{}{}{}{}".format(drive,dirname,filename,ext) return memoize(savepath,mmap_mode=mmode)(dummy)(path,flag,dsize,fx,fy,interpolation)""" """ # THIS CREATES TWO FILES BUT ONLY MEMOIZE ONE STATE OF IM ARGUMENTS savepath = "{}{}{}{}.{}".format(drive,dirname,filename,ext,"memoized") comps = ("flag","dsize","fx","fy","interpolation") try: # load from map data = mapper(savepath, mmode=mmode)[0] bad = [i for i in comps if data[i] != locals()[i]] if bad: raise IOError else: return data["im"] except IOError: # create object and map im = func(path) if im is None: # this is regardless of throw flag raise Exception("Failed to load image to map") data = dict(im=im,flag=flag,dsize=dsize,fx=fx,fy=fy,interpolation=interpolation) return mapper(savepath,data,mmode)[0]["im"]""" """ # THIS CREATES TWO HASHED FILES hashed = hash("{}{}{}{}{}{}".format(flag,RGB,dsize,fx,fy,interpolation)) savepath = "{}{}{}{}.{}".format(drive,dirname,filename,ext,hashed) try: # load from map im = mapper(savepath, mmode=mmode)[0] return im except IOError: # create object and map im = func(path) if im is None: # this is regardless of throw flag raise Exception("Failed to load image to map") return mapper(savepath,im,mmode)[0]""" # THIS CREATES ONE HASHED FILE hashed = hash("{}{}{}{}{}{}".format( flag, RGB, dsize, fx, fy, interpolation)) savepath = "{}{}{}{}.{}.npy".format( drive, dirname, filename, ext, hashed) try: # load from map # mapper(savepath,None,mmode,True)[0]# return np.lib.load(savepath, mmode) except IOError: # create object and map im = func(path) if im is None: # this is regardless of throw flag raise Exception("Failed to load image to map") np.save(savepath, im) # mapper(savepath,im,mmode,True)[0]# return np.lib.load(savepath, mmode) func = mapfunc # factory function def loader(path): try: return func(path) except Exception as e: if throw: raise return loader # factory function class ImLoader(object): """ Class to load image array from path, url, server, string or directly from numpy array (supports databases). :param flag: (default: 0) 0 to read as gray, 1 to read as BGR, -1 to read as BGRA, 2 to read as RGB, -2 to read as RGBA. It supports openCV flags: * cv2.CV_LOAD_IMAGE_COLOR * cv2.CV_LOAD_IMAGE_GRAYSCALE * cv2.CV_LOAD_IMAGE_UNCHANGED +-------+-------------------------------+--------+ | value | openCV flag | output | +=======+===============================+========+ | (2) | N/A | RGB | +-------+-------------------------------+--------+ | (1) | cv2.CV_LOAD_IMAGE_COLOR | BGR | +-------+-------------------------------+--------+ | (0) | cv2.CV_LOAD_IMAGE_GRAYSCALE | GRAY | +-------+-------------------------------+--------+ | (-1) | cv2.CV_LOAD_IMAGE_UNCHANGED | BGRA | +-------+-------------------------------+--------+ | (-2) | N/A | RGBA | +-------+-------------------------------+--------+ :param dsize: (None) output image size; if it equals zero, it is computed as: \texttt{dsize = Size(round(fx*src.cols), round(fy*src.rows))} :param dst: (None) output image; it has the size dsize (when it is non-zero) or the size computed from src.size(), fx, and fy; the type of dst is uint8. :param fx: scale factor along the horizontal axis; when it equals 0, it is computed as \texttt{(double)dsize.width/src.cols} :param fy: scale factor along the vertical axis; when it equals 0, it is computed as \texttt{(double)dsize.height/src.rows} :param interpolation: interpolation method compliant with opencv: +-----+-----------------+-------------------------------------------------------+ |flag | Operation | Description | +=====+=================+=======================================================+ |(0) | INTER_NEAREST | nearest-neighbor interpolation | +-----+-----------------+-------------------------------------------------------+ |(1) | INTER_LINEAR | bilinear interpolation (used by default) | +-----+-----------------+-------------------------------------------------------+ |(2) | INTER_CUBIC | bicubic interpolation over 4x4 pixel neighborhood | +-----+-----------------+-------------------------------------------------------+ |(3) | INTER_AREA | resampling using pixel area relation. | | | | It may be a preferred method for image decimation, | | | | as it gives moire’-free results. But when the image | | | | is zoomed, it is similar to the INTER_NEAREST method. | +-----+-----------------+-------------------------------------------------------+ |(4) | INTER_LANCZOS4 | Lanczos interpolation over 8x8 pixel neighborhood | +-----+-----------------+-------------------------------------------------------+ :param mmode: (None) mmode to create mapped file. if mpath is specified loads image, converts to mapped file and then loads mapping file with mode {None, 'r+', 'r', 'w+', 'c'} (it is slow for big images). If None, loads mapping file to memory (useful to keep image copy for session even if original image is deleted or modified). :param mpath: (None) path to create mapped file. None, do not create mapping file "", uses path directory; "*", uses working directory; else, uses specified directory. .. note:: If mmode is None and mpath is given it creates mmap file but loads from it to memory. It is useful to create physical copy of data to keep loading from (data can be reloaded even if original file is moved or deleted). """ def __init__(self, path, flag=0, dsize=None, dst=None, fx=None, fy=None, interpolation=None, mmode=None, mpath=None, throw=True): self.path = path self._flag = flag self._dsize = dsize self._dst = dst self._fx = fx self._fy = fy self._interpolation = interpolation self._mmode = mmode self._mpath = mpath self._throw = throw self.load = loadFunc(flag, dsize, dst, fx, fy, interpolation, mmode, mpath, throw) #i = loadFunc.__doc__.find(":param") #__init__.__doc__ = loadFunc.__doc__[:i] + __init__.__doc__ + loadFunc.__doc__[i:] # builds documentation dynamically # del i # job done, delete def __call__(self): return self.load(self.path) def getConfiguration(self, **kwargs): """ Get Custom configuration from default configuration. :param kwargs: keys to customize default configuration. If no key is provided default configuration is returned. :return: dictionary of configuration """ temp = {"flag": self._flag, "dsize": self._dsize, "dst": self._dst, "fx": self._fx, "fy": self._fy, "interpolation": self._interpolation, "mmode": self._mmode, "mpath": self._mpath, "throw": self._throw} if kwargs: temp.update(kwargs) return temp def temp(self, **kwargs): """ loads from temporal loader created with customized and default parameters. :param kwargs: keys to customize default configuration. :return: loaded image. """ if len(kwargs) == 1 and "path" in kwargs: return self.load(kwargs["path"]) path = kwargs.get("path", self.path) # get path # build a new loader and load path return loadFunc(**self.getConfiguration(**kwargs))(path) class PathLoader(MutableSequence): """ Class to standardize loading images from list of paths and offer lazy evaluations. :param fns: list of paths :param loader: path loader (loadcv,loadsfrom, or function from loadFunc) Also see:: :func:`loadcv`, :func:`loadsfrom`, :func:`loadFunc` Example:: fns = ["/path to/image 1.ext","/path to/image 2.ext"] imgs = pathLoader(fns) print imgs[0] # loads image in path 0 print imgs[1] # loads image in path 1 """ def __init__(self, fns=None, loader=None): # create factory functions self._fns = fns or [] self._loader = loader or loadFunc() def __call__(self): """ if called returns the list of paths """ return self._fns def __getitem__(self, key): return self._loader(self._fns[key]) def __setitem__(self, key, value): self._fns[key] = value def __delitem__(self, key): del self._fns[key] def __len__(self): return len(self._fns) def insert(self, index, value): self._fns.insert(index, value) class LoaderDict(ResourceManager): """ Class to standardize loading objects and manage memory efficiently. :param loader: default loader for objects (e.g. load from file or create instance object) :param maxMemory: (None) max memory in specified unit to keep in check optimization (it does not mean that memory never surpasses maxMemory). :param margin: (0.8) margin from maxMemory to trigger optimization. It is in percentage of maxMemory ranging from 0 (0%) to maximum 1 (100%). So optimal memory is inside range: maxMemory*margin < Memory < maxMemory :param unit: (MB) maxMemory unit, it can be GB (Gigabytes), MB (Megabytes), B (bytes) :param all: if True used memory is from all alive references, if False used memory is only from keptAlive references. :param config: (Not Implemented) """ def __init__(self, loader=None, maxMemory=None, margin=0.8, unit="MB", all=True, config=None): super(LoaderDict, self).__init__(maxMemory, margin, unit, all) # create factory functions #if config is None: from config import MANAGER as config #self._config = config self._default_loader = loader or loadFunc() def register(self, key, path=None, method=None): if method is not None: def func(): return method(func.path) else: def func(): return self._default_loader(func.path) func.path = path super(LoaderDict, self).register(key=key, method=func) def try_loads(fns, func=cv2.imread, paths=None, debug=False, addpath=False): """ Try to load images from paths. :param fns: list of file names :param func: loader function :param paths: paths to try. By default it loads working dir and test path :param debug: True to show debug messages :param addpath: add path as second argument :return: image else None """ default = ("", str(MANAGER["TESTPATH"])) if paths is None: paths = [] if isinstance(paths, basestring): paths = [paths] paths = list(paths) for i in default: if i not in paths: paths.append(i) for fn in fns: for path in paths: try: if path[-1] not in ("/", "\\"): # ensures path path += "/" except: pass path += fn im = func(path) # foreground if im is not None: if debug: print(path, " Loaded...") if addpath: return im, path return im def hist_match(source, template, alpha=None): """ Adjust the pixel values of an image to match those of a template image. :param source: image to transform colors to template :param template: template image () :param alpha: :return: transformed source """ # theory https://en.wikipedia.org/wiki/Histogram_matching # explanation http://dsp.stackexchange.com/a/16175 and # http://fourier.eng.hmc.edu/e161/lectures/contrast_transform/node3.html # based on implementation http://stackoverflow.com/a/33047048/5288758 # see http://www.mathworks.com/help/images/ref/imhistmatch.html if len(source.shape) > 2: matched = np.zeros_like(source) for i in range(3): matched[:, :, i] = hist_match(source[:, :, i], template[:, :, i]) return matched else: oldshape = source.shape source = source.ravel() template = template.ravel() # get the set of unique pixel values and their corresponding indices and # counts s_values, bin_idx, s_counts = np.unique(source, return_inverse=True, return_counts=True) t_values, t_counts = np.unique(template, return_counts=True) # take the cumsum of the counts and normalize by the number of pixels to # get the empirical cumulative distribution functions for the source and # template images (maps pixel value --> quantile) s_quantiles = np.cumsum(s_counts).astype(np.float64) s_quantiles /= s_quantiles[-1] t_quantiles = np.cumsum(t_counts).astype(np.float64) t_quantiles /= t_quantiles[-1] # interpolate linearly to find the pixel values in the template image # that correspond most closely to the quantiles in the source image interp_t_values = np.interp(s_quantiles, t_quantiles, t_values) return interp_t_values[bin_idx].reshape(oldshape) # reconstruct image ############################# GETCOORS ################################### # http://docs.opencv.org/master/db/d5b/tutorial_py_mouse_handling.html # http://docs.opencv.org/modules/highgui/doc/qt_new_functions.html class ImCoors(object): """ Image's coordinates class. Example:: a = ImCoors(np.array([(116, 161), (295, 96), (122, 336), (291, 286)])) print a.__dict__ print "mean depend on min and max: ", a.mean print a.__dict__ print "after mean max has been already been calculated: ", a.max a.data = np.array([(116, 161), (295, 96)]) print a.__dict__ print "mean and all its dependencies are processed again: ", a.mean """ def __init__(self, pts, dtype=FLOAT, deg=False): """ Initiliazes ImCoors. :param pts: list of points :param dtype: return data as dtype. Default is config.FLOAT """ self._pts = pts # supports bigger numbers self._dtype = dtype self._deg = deg @property def pts(self): return self._pts @pts.setter def pts(self, value): getattr(self, "__dict__").clear() self._pts = value @pts.deleter def pts(self): raise Exception("Cannot delete attribute") @property def dtype(self): return self._dtype @dtype.setter def dtype(self, value): getattr(self, "__dict__").clear() self._dtype = value @dtype.deleter def dtype(self): raise Exception("Cannot delete attribute") # DATA METHODS def __len__(self): return len(self._pts) @cache def max(self): """ Maximum in each axis. :return: x_max, y_max """ #self.max_x, self.max_y = np.max(self.data,0) return tuple(np.max(self._pts, 0)) @cache def min(self): """ Minimum in each axis. :return: x_min, y_min """ #self.min_x, self.min_y = np.min(self.data,0) return tuple(np.min(self._pts, 0)) @cache def rectbox(self): """ Rectangular box enclosing points (origin and end point or rectangle). :return: (x0,y0),(x,y) """ return (self.min, self.max) @cache def boundingRect(self): """ Rectangular box dimensions enclosing points. example:: P = np.ones((400,400)) a = ImCoors(np.array([(116, 161), (295, 96), (122, 336), (291, 286)])) x0,y0,w,h = a.boundingRect P[y0:y0+h,x0:x0+w] = 0 :return: x0,y0,w,h """ return cv2.boundingRect(self._pts) @cache def minAreaRect(self): return cv2.minAreaRect(self._pts) @cache def rotatedBox(self): """ Rotated rectangular box enclosing points. :return: 4 points. """ try: # opencv 2 return self._dtype(cv2.cv.BoxPoints(self.minAreaRect)) except AttributeError: # opencv 3 return self._dtype(cv2.boxPoints(self.minAreaRect)) @cache def boxCenter(self): """ Mean in each axis. :return: x_mean, y_mean """ #self.mean_x = (self.max_x+self.min_x)/2 #self.mean_y = (self.max_y+self.min_y)/2 xX, xY = self.max nX, nY = self.min return tuple(self._dtype((xX + nX, xY + nY)) / 2) @cache def mean(self): """ Center or mean. :return: x,y """ # http://hyperphysics.phy-astr.gsu.edu/hbase/cm.html # https://www.grc.nasa.gov/www/K-12/airplane/cg.html #self.center_x, self.center_y = np.sum(self.data,axis=0)/len(self.data) # map(int,np.mean(self.data,0)) # tuple(np.sum(self.data,axis=0)/len(self.data)) return tuple(np.mean(self._pts, 0, dtype=self._dtype)) center = mean @cache def area(self): """ Area of points. :return: area number """ return polygonArea(self._pts) @cache def rectangularArea(self): """ Area of rectangle enclosing points aligned with x,y axes. :return: area number """ # method 1, it is not precise in rotation (x0, y0), (x, y) = self.rectbox return self.dtype(np.abs((x - x0) * (y - y0))) @cache def rotatedRectangularArea(self): """ Area of Rotated rectangle enclosing points. :return: area number """ return polygonArea(self.rotatedBox) @cache def rectangularity(self): """ Ratio that represent a perfect square aligned with x,y axes. :return: ratio from 1 to 0, 1 representing a perfect rectangle. """ # method 1 #cx,cy = self.center # bcx,bcy=self.boxCenter # return (cx)/bcx,(cy)/bcy # x_ratio, y_ratio # method 2 return self.dtype(self.area / self.rectangularArea) @cache def rotatedRectangularity(self): """ Ratio that represent a perfect rotated square fitting points. :return: ratio from 1 to 0, 1 representing a perfect rotated rectangle. """ # prevent unstable values if self.area < 1: area = 0 # needed to prevent false values else: area = self.area return self.dtype(area / self.rotatedRectangularArea) @cache def regularity(self): """ Ratio of forms with similar measurements and angles. e.g. squares and rectangles have rect angles so they are regular. For regularity object must give 1. :return: """ # TODO this algorithm is still imperfect # get pi value in radian or degrees pi = angle((1, 0), (0, 1), deg=self._deg) av = self.vertexesAngles return pi * (len(av)) / np.sum(av) # pi*number_agles/sum_angles @cache def relativeVectors(self): """ Form vectors from points. :return: array of vectors [V0, ... , (V[n] = x[n+1]-x[n],y[n+1]-y[n])]. """ pts = np.array(self._pts) # adds last vector from last and first point. pts = np.append(pts, [pts[0]], axis=0) return np.stack([np.diff(pts[:, 0]), np.diff(pts[:, 1])], 1) @cache def vertexesAngles(self): """ Relative angle of vectors formed by vertexes. i.e. angle between vectors "v01" formed by points "p0-p1" and "v12" formed by points "p1-p2" where "p1" is seen as a vertex (where vectors cross). :return: angles. """ vs = self.relativeVectors # get all vectors from points. # add last vector to first position vs = np.roll(np.append(vs, [vs[-1]], axis=0), 2) return np.array([angle(vs[i - 1], vs[i], deg=self._deg) for i in range(1, len(vs))], self._dtype) # caculate angles @cache def pointsAngles(self): """ Angle of vectors formed by points in Cartesian plane with respect to x axis. i.e. angle between vector "v01" (formed by points "p0-p1") and vector unity in axis x. :return: angles. """ vs = self.relativeVectors # get all vectors from points. return vectorsAngles(pts=vs, dtype=self._dtype, deg=self._deg) @cache def vectorsAngles(self): """ Angle of vectors in Cartesian plane with respect to x axis. i.e. angle between vector "v0" (formed by point "p0" and the origin) and vector unity in axis x. :return: angles. """ return np.array([angle((1, 0), i, deg=self._deg) for i in self._pts], self._dtype) # caculate angles with respect to x axis def drawcoorpoints(vis, points, col_out=black, col_in=red, radius=2): """ Funtion to draw points. :param vis: image array. :param points: list of points. :param col_out: outer color of point. :param col_in: inner color of point. :param radius: radius of drawn points. :return: """ points = np.array(points, INT) radius_in = radius - 1 for x, y in points: cv2.circle(vis, (x, y), radius, col_out, -1) cv2.circle(vis, (x, y), radius_in, col_in, -1) return vis def myline(img, pt1, pt2, color, thickness=None): """ Funtion to draw points (experimental). :param img: :param pt1: :param pt2: :param color: :param thickness: :return: """ # y=m*x+b x1, y1 = np.array(pt1, dtype=FLOAT) x2, y2 = np.array(pt2, dtype=FLOAT) m = (y2 - y1) / (x2 - x1) xmin, xmax = np.sort([x1, x2]) xvect = np.arange(xmin, xmax + 1).astype('int') yvect = np.array(xvect * m + int(y1 - x1 * m), dtype=np.int) for i in zip(yvect, xvect): # img.itemset(i,color) img[i] = color def drawcooraxes(vis, points, col_out=black, col_in=green, radius=2): """ Function to draw axes instead of points. :param vis: image array. :param points: list of points. :param col_out: outer color of point. :param col_in: inner color of point. :param radius: radius of drawn points. :return: """ points = np.array(points, INT) thickness = radius - 1 h1, w1 = vis.shape[:2] # obtaining image dimensions for i in points: h1pt1 = (0, i[1]) h1pt2 = (w1, i[1]) w2pt1 = (i[0], 0) w2pt2 = (i[0], h1) cv2.line(vis, h1pt1, h1pt2, col_in, thickness) cv2.line(vis, w2pt1, w2pt2, col_in, thickness) vis = drawcoorpoints(vis, points, col_out, col_in, radius) return vis def drawcoorpolyline(vis, points, col_out=black, col_in=red, radius=2): """ Function to draw interaction with points to obtain polygonal. :param vis: image array. :param points: list of points. :param col_out: outer color of point. :param col_in: inner color of point. :param radius: radius of drawn points. :return: """ thickness = radius - 1 if len(points) > 1: points = np.array(points, INT) cv2.polylines(vis, [points], False, col_in, thickness) """ for i in range(len(points)-1): pt1 = (points[i][0], points[i][1]) pt2 = (points[i+1][0], points[i+1][1]) cv2.line(vis, pt1, pt2, col_in, thickness)""" else: vis = drawcoorpoints(vis, points, col_out, col_in, radius) return vis def drawcoorarea(vis, points, col_out=black, col_in=red, radius=2): """ Function to draw interaction with points to obtain area. :param vis: image array. :param points: list of points. :param col_out: outer color of point. :param col_in: inner color of point. :param radius: radius of drawn points. :return: """ if len(points) > 2: mask = np.zeros(vis.shape[:2]) cv2.drawContours(mask, [np.array(points, np.int32)], 0, 1, -1) vis = overlay(vis, np.array( [(0,) * len(col_in), col_in])[mask.astype(int)], alpha=mask * 0.5) vis = drawcoorpoints(vis, points, col_out, col_in, radius) else: vis = drawcoorpoints(vis, points, col_out, col_in, radius) return vis def drawcoorpolyArrow(vis, points, col_out=black, col_in=red, radius=2): """ Function to draw interaction with vectors to obtain polygonal. :param vis: image array. :param points: list of points. :param col_out: outer color of point. :param col_in: inner color of point. :param radius: radius of drawn points. :return: """ points = np.array(points, INT) thickness = radius - 1 if len(points) > 1: for i in range(len(points) - 1): pt1 = (points[i][0], points[i][1]) pt2 = (points[i + 1][0], points[i + 1][1]) cv2.arrowedLine(vis, pt1, pt2, col_in, thickness) vis = drawcoorpoints(vis, points, col_out, col_in, radius) # draw points else: vis = drawcoorpoints(vis, points, col_out, col_in, radius) return vis def drawcoorperspective(vis, points, col_out=black, col_in=red, radius=2): """ Function to draw interaction with points to obtain perspective. :param vis: image array. :param points: list of points. :param col_out: outer color of point. :param col_in: inner color of point. :param radius: radius of drawn points. :return: """ points = np.array(points, INT) thickness = radius - 1 if len(points) > 1 and len(points) < 5: for i in range(len(points) - 1): if i % 2: for j in range(i + 1, min(len(points), i + 3)): if j % 2: # print "i=",i," j=",j pt1 = (points[i][0], points[i][1]) pt2 = (points[j][0], points[j][1]) cv2.arrowedLine(vis, pt1, pt2, col_in, thickness) else: for j in range(i + 1, min(len(points), i + 3)): # print "i=",i," j=",j pt1 = (points[i][0], points[i][1]) pt2 = (points[j][0], points[j][1]) cv2.arrowedLine(vis, pt1, pt2, col_in, thickness) vis = drawcoorpoints(vis, points, col_out, col_in, radius) # draw points else: vis = drawcoorpoints(vis, points, col_out, col_in, radius) return vis def limitaxispoints(c, maxc, minc=0): """ Limit a point in axis. :param c: list of points.. :param maxc: maximum value of point. :param minc: minimum value of point. :return: return limited points. """ x = np.zeros(len(c), dtype=np.int) for i, j in enumerate(c): x[i] = limitaxis(j, maxc, minc) return tuple(x) class GetCoors(Plotim): """ Create window to select points from image. :param im: image to get points. :param win: window name. :param updatefunc: function to draw interaction with points. (e.g. limitaxispoints, drawcoorperspective, etc.). :param prox: proximity to identify point. :param radius: radius of drawn points. :param unique: If True no point can be repeated, else selected points can be repeated. :param col_out: outer color of point. :param col_in: inner color of point. """ def __init__(self, im, win="get coordinates", updatefunc=drawcoorpoints, unique=True, col_out=black, col_in=red): # functions super(GetCoors, self).__init__(win, im) # assign functions self.updatefunc = updatefunc self.userupdatefunc = updatefunc self.prox = 8 # proximity to keypoint # initialize user variables self.radius = 3 self.unique = unique self.col_out = col_out self.col_in = col_in # initialize control variables self.interpolation = cv2.INTER_AREA self._coors = [] self.rcoors = [] # rendered coordinates self.coorlen = 0 self.showstats = False self.mapdata2 = [None, None, None] self.data2 = np.zeros((self.rH, self.rW, 1), dtype=np.uint8) self.drawcooraxes = drawcooraxes self.drawcoorperspective = drawcoorperspective self.drawcoorpolyline = drawcoorpolyline self.drawcoorpoints = drawcoorpoints self.controlText[0].extend([" No. coordinates: {self.coorlen}. "]) self.cmdeval.update({"points": "self.updatefunc = self.drawcoorpoints", "polyline": "self.updatefunc = self.drawcoorpolyline", "perspective": "self.updatefunc = self.drawcoorperspective", "axes": "self.updatefunc = self.drawcooraxes", "user": "self.updatefunc = self.userupdatefunc", "end": ["self.updatecoors()", "self.mousefunc()"]}) self.cmdlist.extend(["unique", "showstats", "user", "points", "polyline", "perspective", "axes"]) # self.coors # return coordinates @property def coors(self): return self._coors @coors.setter def coors(self, value): self._coors = value self.updatecoors() @coors.deleter def coors(self): self._coors = [] self.updatecoors() def drawstats(self, points, col_out=black, col_in=green, radius=2): """ :param self: :param points: :param col_out: :param col_in: :param radius: :return: """ vis = self.rimg p = ImCoors(points) self.data2 = np.zeros((vis.shape[0], vis.shape[1], 1), dtype=np.uint8) drawcooraxes(vis, [p.boxCenter], col_out, col_in, radius) drawcooraxes(self.data2, [p.boxCenter], 1, 1, self.prox) drawcooraxes(vis, [p.mean], col_in, col_out, radius) drawcooraxes(self.data2, [p.mean], 2, 2, self.prox) p1 = ImCoors(self.coors) self.mapdata2 = [None, "center at " + str(p1.boxCenter), "mean at " + str(p1.mean)] def updatecoors(self): """ :param self: :return: """ self.coorlen = len(self.coors) self.updaterenderer() if self.coors != []: self.rcoors = self.coors[:] newc = self.coors[:] for j, i in enumerate(self.coors): newc[j] = self.real2render(i[0], i[1]) self.rcoors[j] = limitaxispoints(newc[j], 10000, -10000) if self.showstats: self.drawstats(newc, radius=self.radius) self.rimg = self.updatefunc( self.rimg, newc, self.col_out, self.col_in, self.radius) else: self.data2[:] = 0 self.coordinateText = [["xy({self.x},{self.y})"]] def mousefunc(self): """ :param self: :return: """ # control system controlled = self.builtincontrol() drawed = False # get nearest coordinate to pointer isnear = False if self.coors != [] and self.rx is not None and self.ry is not None: # vals = anorm(np.int32(self.coors) - (self.x, self.y)) # relative # to real coordinates # relative to rendered coordinates vals = anorm(np.int32(self.rcoors) - (self.rx, self.ry)) near_point = np.logical_and(vals < self.prox, vals == np.min(vals)) if np.any(near_point): # if near point idx = np.where(near_point)[0] # get index isnear = True val = self.coors[idx[0]] count = self.coors.count(val) self.coordinateText = [ ["point " + str(idx[0]) + " at " + str(val) + "x" + str(count)]] else: self.coordinateText = [["xy({self.x},{self.y})"]] # coordinate system if not controlled and bool(self.flags): if self.event == cv2.EVENT_RBUTTONDBLCLK: # if middle button DELETE ALL COORDINATES self.coors = [] self.img = self.data.copy() drawed = True elif isnear and self.event == cv2.EVENT_RBUTTONDOWN: # if right button DELETE NEAREST COORDINATE self.coors.pop(idx[0]) # if more than one point delete first drawed = True elif self.event == cv2.EVENT_LBUTTONDOWN: # if left button ADD COORDINATE val = (self.x, self.y) if not self.coors.count(val) or not self.unique: self.coors.append(val) drawed = True # update renderer if (controlled or drawed): self.updatecoors() if self.y is not None and self.x is not None: if self.showstats: data = self.mapdata2[self.data2[self.ry, self.rx]] if not isnear and data is not None: self.coordinateText = [[data]] self.builtinplot(self.data[int(self.y), int(self.x)]) def getcoors(im, win="get coordinates", updatefunc=drawcoorpoints, coors=None, prox=8, radius=3, unique=True, col_out=black, col_in=red): self = GetCoors(im, win, updatefunc, unique=unique, col_out=col_out, col_in=col_in) self.radius = radius self.prox = prox if coors is not None: self.coors = standarizePoints(coors, aslist=True) self.show(clean=False) coors = self.coors self.clean() return coors def separe(values, sep, axis=0): """ Separate values from separator or threshold. :param values: list of values :param sep: peparator value :param axis: axis in each value :return: lists of greater values, list of lesser values """ greater, lesser = [], [] for i in values: if i[axis] > sep: greater.append(i) else: lesser.append(i) return greater, lesser def getrectcoors(*data): """ Get ordered points. :param data: list of points :return: [Top_left,Top_right,Bottom_left,Bottom_right] """ #[Top_left,Top_right,Bottom_left,Bottom_right] # img, win = "get pixel coordinates", updatefunc = drawpoint if len(data) == 1: # points points = data[0] else: # img, win points = getcoors(*data) p = ImCoors(points) min_x, min_y = p.min max_x, max_y = p.max Top_left = (min_x, min_y) Top_right = (max_x, min_y) Bottom_left = (min_x, max_y) Bottom_right = (max_x, max_y) return [Top_left, Top_right, Bottom_left, Bottom_right] def quadrants(points): """ Separate points respect to center of gravity point. :param points: list of points :return: [[Top_left],[Top_right],[Bottom_left],[Bottom_right]] """ # group points on 4 quadrants # [Top_left,Top_right,Bottom_left,Bottom_right] p = ImCoors(points) # points data x,y -> (width,height) mean_x, mean_y = p.mean Bottom, Top = separe(points, mean_y, axis=1) Top_right, Top_left = separe(Top, mean_x, axis=0) Bottom_right, Bottom_left = separe(Bottom, mean_x, axis=0) return [Top_left, Top_right, Bottom_left, Bottom_right] def getgeometrycoors(*data): """ Get filled object coordinates. (function in progress) """ #[Top_left,Top_right,Bottom_left,Bottom_right] # img, win = "get pixel coordinates", updatefunc = drawpoint if len(data) == 1: # points points = data[0] else: # img, win points = getcoors(*data) return points def random_color(channels=1, min=0, max=256): """ Random color. :param channels: number of channels :param min: min color in any channel :param max: max color in any channel :return: random color """ return [np.random.randint(min, max) for i in range(channels)] class Image(object): """ Structure to load and save images """ def __init__(self, name=None, ext=None, path=None, shape=None, verbosity=False): self._loader = loadFunc(-1, dsize=None, throw=False) self._shape = None self.shape = shape # it is the inverted of dsize self.ext = ext self.name = name self.path = path self._RGB = None self._RGBA = None self._gray = None self._BGRA = None self._BGR = None self.overwrite = False self.verbosity = verbosity self.log_saved = None self.log_loaded = None self.last_loaded = None @property def shape(self): return self._shape @shape.setter def shape(self, value): if value != self._shape: if value is not None: # invert, for value is shape and we need dsize value = value[1], value[0] self._loader = loadFunc(-1, dsize=value, throw=False) self._shape = value @shape.deleter def shape(self): del self._shape @property def ext(self): if self._ext is None: return "" return self._ext @ext.setter def ext(self, value): try: if not value.startswith("."): # ensures path value = "." + value except: pass self._ext = value @ext.deleter def ext(self): del self._ext @property def path(self): if self._path is None: return "" return self._path @path.setter def path(self, value): try: if value[-1] not in ("/", "\\"): # ensures path value += "/" except: pass self._path = value @path.deleter def path(self): del self._path @property def BGRA(self): if self._BGRA is None: self.load() return self._BGRA @BGRA.setter def BGRA(self, value): self._BGRA = value @BGRA.deleter def BGRA(self): self._BGRA = None @property def BGR(self): if self._BGR is None: self.load() return self._BGR @BGR.setter def BGR(self, value): self._BGR = value @BGR.deleter def BGR(self): self._BGR = None @property def RGB(self): if self._RGB is None: self._RGB = cv2.cvtColor(self.BGR, cv2.COLOR_BGR2RGB) return self._RGB @RGB.setter def RGB(self, value): self._RGB = value @RGB.deleter def RGB(self): self._RGB = None @property def RGBA(self): if self._RGBA is None: self._RGBA = cv2.cvtColor(self.BGRA, cv2.COLOR_BGRA2RGBA) return self._RGBA @RGBA.setter def RGBA(self, value): self._RGBA = value @RGBA.deleter def RGBA(self): self._RGBA = None @property def gray(self): if self._gray is None: self._gray = cv2.cvtColor(self.BGR, cv2.COLOR_BGR2GRAY) return self._gray @gray.setter def gray(self, value): self._gray = value @gray.deleter def gray(self): self._gray = None def save(self, name=None, image=None, overwrite=None): """ save restored image in path. :param name: filename, string to format or path to save image. if path is not a string it would be replaced with the string "{path}restored_{name}{ext}" to format with the formatting "{path}", "{name}" and "{ext}" from the baseImage variable. :param image: (self.BGRA) :param overwrite: If True and the destine filename for saving already exists then it is replaced, else a new filename is generated with an index "{filename}_{index}.{extension}" :return: saved path, status (True for success and False for fail) """ if name is None: name = self.name if name is None: raise Exception("name parameter needed") if image is None: image = self.BGRA if overwrite is None: overwrite = self.overwrite bbase, bpath, bname = getData(self.path) bext = self.ext # format path if user has specified so data = getData(name.format(path="".join((bbase, bpath)), name=bname, ext=bext)) # complete any data lacking in path for i, (n, b) in enumerate(zip(data, (bbase, bpath, bname, bext))): if not n: data[i] = b # joint parts to get string fn = "".join(data) mkPath(getPath(fn)) if not overwrite: fn = increment_if_exits(fn) if cv2.imwrite(fn, image): if self.verbosity: print("Saved: {}".format(fn)) if self.log_saved is not None: self.log_saved.append(fn) return fn, True else: if self.verbosity: print("{} could not be saved".format(fn)) return fn, False def load(self, name=None, path=None, shape=None): if name is None: name = self.name if path is None: path = self.path if path is None: path = "" if shape is not None: self.shape = shape data = try_loads([name, name + self.ext], paths=path, func=self._loader, addpath=True) if data is None: raise Exception("Image not Loaded") img, last_loaded = data if self.log_loaded is not None: self.log_loaded.append(last_loaded) if self.verbosity: print("loaded: {}".format(last_loaded)) self.last_loaded = last_loaded self._RGB = None self._RGBA = None self._gray = None if img.shape[2] == 3: self.BGR = img self.BGRA = cv2.cvtColor(img, cv2.COLOR_BGR2BGRA) else: self.BGRA = img self.BGR = cv2.cvtColor(img, cv2.COLOR_BGRA2BGR) return self
# -*- coding: utf-8 -*- """ Created on Fri Dec 20 09:02:18 2019 @author: Andrea """ def add_frac(zaeler1, nenner1, zaeler2, nenner2): """Dieses Programm addiert 2 Brüche miteinander und kürzt sie mit ihrem größten gemeinsamen Teiler (ggt)""" #Variablen einführen zaeler=0 nennerg=0 ggt = 1 #überprüfen ob die Eingabe eine Ganzzahl ist if not(isinstance(zaeler1,int) and isinstance(nenner1, int) and isinstance(zaeler2, int) and isinstance(nenner2, int)): print("Gib bitte nur ganze Zahlen ein") return 0 #neuen Nenner und neuen Zähler ausrechnen else: nennerg=nenner1*nenner2 zaeler1neu=zaeler1*nenner2 zaeler2neu=zaeler2*nenner1 zaeler=zaeler1neu+zaeler2neu if zaeler<nennerg: maximum = zaeler else: maximum=nennerg #ggt durch iterieren ermitteln for i in range(1,maximum): ggt = maximum-i if (zaeler%ggt)==0 and (nennerg%ggt)==0: break return zaeler/ggt, nennerg/ggt def is_prime(ganzzahl): for i in range(2,ganzzahl): result=ganzzahl/i if result.is_integer(): # Keine Primzahl return 0 return 1
# # Demonstrates that the super-class implementation of an overridden method # can be called in the same way as with normal objects. # from Foundation import * N = 1 class MyObject (NSObject): def init(self): global N if N == 1: print "Calling super.init" N = 0 # Call super-class implementation. super(MyObject, self).init() else: print "Cyclic call detected" x = MyObject.alloc().init()
import jsonobject import jsl def jsl_field_to_jsonobject_property(prop: jsl.BaseField) -> jsonobject.JsonProperty: if isinstance(prop, jsl.DateTimeField): return jsonobject.DateTimeProperty(name=prop.name, required=prop.required) if isinstance(prop, jsl.StringField): return jsonobject.StringProperty(name=prop.name, required=prop.required) if isinstance(prop, jsl.IntField): return jsonobject.IntegerProperty(name=prop.name, required=prop.required) if isinstance(prop, jsl.DictField): return jsonobject.DictProperty(name=prop.name, required=prop.required) if isinstance(prop, jsl.NumberField): return jsonobject.FloatProperty(name=prop.name, required=prop.required) if isinstance(prop, jsl.BooleanField): return jsonobject.BooleanProperty(name=prop.name, required=prop.required) if isinstance(prop, jsl.DocumentField): if prop.document_cls: subtype = jsl2jsonobject(prop.document_cls) return jsonobject.DictProperty( name=prop.name, item_type=subtype, required=prop.required ) return jsonobject.DictProperty(name=prop.name, required=prop.required) if isinstance(prop, jsl.ArrayField): if prop.items: if isinstance(prop.items, jsl.DocumentField): subtype = jsl2jsonobject(prop.items.document_cls) elif isinstance(prop.items, jsl.BaseField): subtype = jsl_field_to_jsonobject_property(prop.items) else: raise KeyError(prop.items) return jsonobject.ListProperty(item_type=subtype, required=prop.required) return jsonobject.ListProperty(name=prop.name, required=prop.required) raise KeyError(prop) def jsl2jsonobject(schema): # output jsonobject schema from jsl schema attrs = {} for attr, prop in schema._fields.items(): prop.name = attr attrs[attr] = jsl_field_to_jsonobject_property(prop) Schema = type("Schema", (jsonobject.JsonObject,), attrs) return Schema convert = jsl2jsonobject
import argparse import pandas as pd parser = argparse.ArgumentParser() parser.add_argument( '--data-train', type=str, default='./data/original/train.csv', help='train data path') parser.add_argument( '--data-test', type=str, default='./data/original/test.csv', help='test data path') parser.add_argument( '--seed', type=int, default=42, help='seed') args = parser.parse_args() df_train = pd.read_csv(args.data_train, header=None) df_train = df_train[[0, 1]] df_train = df_train.rename(columns={0: 'label', 1: 'text'}) df_test = pd.read_csv(args.data_test, header=None) df_test = df_test.rename(columns={0: 'label', 1: 'text'}) df = pd.concat([df_train, df_test]) df = df.sample(frac=1, random_state=args.seed) df.to_csv('./data/all.csv', index=False, header=True)
from mlagents.tf_utils.tf import tf as tf # noqa from mlagents.tf_utils.tf import set_warnings_enabled # noqa
# coding=utf-8 from os import path from constantes import * import pickle from random import choice from indexer import Indexer class Zone: def __init__(self, id_: str, creatures_id: list, level_range: tuple): self.id = id_ # c'est l'id d'une subCarte self.creatures_id = creatures_id self.level_range = level_range def get_id(self): return self.id def get_new_adversaire(self, indexer: Indexer): id_ = choice(self.creatures_id) type_ = indexer.get_type_of(id_) return id_, type_, self.level_range class ZonesManager: def __init__(self, indexer: Indexer): self.indexer = indexer self.path = path.join("..", "saves", "zones" + EXTENSION) self.zones = [] @staticmethod def add_new_zone_to_path(zone: Zone): path_ = path.join("..", "saves", "zones" + EXTENSION) if path.exists(path_): with open(path_, 'rb') as read_zones: sv = pickle.Unpickler(read_zones).load() sv.append(zone) pickle.Pickler(open(path_, 'wb')).dump(sv) else: with open(path_, 'wb') as add_new: pickle.Pickler(add_new).dump([zone]) def get_new_adversary(self, with_zoneid: int): for zone in self.zones: if zone.get_id() == with_zoneid: return zone.get_new_adversaire(self.indexer) return ZONE_ADV_ERROR def load(self): if path.exists(self.path): with open(self.path, 'rb') as zones_rb: self.zones = pickle.Unpickler(zones_rb).load() def save(self): with open(self.path, 'wb') as save_zones: pickle.Pickler(save_zones).dump(self.zones)
from django.shortcuts import render_to_response, get_object_or_404, redirect, render from django.core.paginator import Paginator from django.core.exceptions import ObjectDoesNotExist from django.http import HttpResponse, Http404, FileResponse from django.conf import settings import datetime from . import models import os import all.models as all_model import student.models as student_model import teacher.models as teacher_model # Create your views here. # 竞赛列表 def com_list(request): context = {} # 没有登录或者还未修改个人信息都无法报名 try: is_login = request.session['is_login'] except KeyError: context['have_login'] = "赶紧登录啦 :(" else: user_num = request.session['user_number'] user_info = get_object_or_404(all_model.user_login_info, account=user_num) if user_info.have_alter == '0': context['have_alter'] = "客官还没确认个人信息啦 :( 赶紧滚去修改" com_basic_info = models.com_basic_info.objects.all() context['com_list'] = com_basic_info return render(request, 'competition/com_list.html', context) # 竞赛详情 def com_detail(request): context = {} # 没有登录或者还未修改个人信息都无法报名 try: is_login = request.session['is_login'] except KeyError: return redirect("/competition/com_list/") else: user_num = request.session['user_number'] user_info = get_object_or_404(all_model.user_login_info, account=user_num) if user_info.have_alter == '0': return redirect("/competition/com_list/") if request.method == 'GET': id = request.GET.get('id') # print(id) com_info = get_object_or_404(models.com_basic_info, com_id=id) com_publish = get_object_or_404(models.com_publish_info, com_id=com_info) # 插入竞赛公告 context['inform'] = str("[通知]竞赛通知") # 插入发布信息 context['com_publish'] = com_publish context['com_info'] = com_info return render(request, 'competition/com_detail.html', context) # 下载竞赛附件 def com_attach_download(request): com_id = request.GET.get('id') com_info = get_object_or_404(models.com_basic_info, com_id=com_id) com_publish = get_object_or_404(models.com_publish_info, com_id=com_info) # 返回下载 filename = str(com_publish.com_attachment) file_path = settings.MEDIA_ROOT + filename ext = os.path.basename(file_path).split('.')[-1].lower() if ext not in ['py', 'db', 'sqlite3']: response = FileResponse(open(file_path, 'rb')) response['content_type'] = "application/octet-stream" response['Content-Disposition'] = 'attachment; filename=' + os.path.basename(file_path) return response else: raise Http404 # 报名参加比赛第一步 def com_apply_first(request): context = {} if request.method == 'GET': id = request.GET.get('id') # 获取竞赛组别信息 group_list = models.com_sort_info.objects.filter(com_id=id) # 获取竞赛报名所需信息 info_list = get_object_or_404(models.com_need_info, com_id=id) # 获取竞赛信息 com_info = get_object_or_404(models.com_basic_info, com_id=id) context['com_info'] = com_info context['info_list'] = info_list context['group_list'] = group_list context['tea_num'] = range(1, info_list.tea_num + 1) num = com_info.num_stu context['stu_num'] = range(1, num + 1) return render(request, 'competition/apply/com_apply_first.html', context) if request.method == "POST": id = request.GET.get('id') com_info = get_object_or_404(models.com_basic_info, com_id=id) info_list = get_object_or_404(models.com_need_info, com_id=id) group_list = models.com_sort_info.objects.filter(com_id=id) # 人数 # 是否需要满员(1;需要, 0:不需要) # 成员能否重复(同上) # 作品名称不能为空 # 还有组别信息和备注 # 小组名称 num = com_info.num_stu flag_full = com_info.need_full flag_same = com_info.same_stu flag_proname = info_list.product_name flag_teanum = com_info.num_teach flag_group = info_list.com_group flag_else = info_list.else_info flag_groupname = info_list.group_name # 获取页面学号输入 stu_list = [] for i in range(1, num + 1): name = str("stu_num" + str(i)) temp = request.POST.get(name) temp = temp.strip() if temp != None and temp != "": stu_list.append(temp) # 获取学生信息 stu_info_list = [] for stu in stu_list: try: name = student_model.stu_basic_info.objects.get(stu_number=stu) except ObjectDoesNotExist: # 回到first页面 context['message'] = '无法搜索到学号对应学生信息,请确认学号无误' context['com_info'] = com_info context['info_list'] = info_list context['group_list'] = group_list context['tea_num'] = range(1, info_list.tea_num + 1) num = com_info.num_stu context['stu_num'] = range(1, num + 1) return render(request, 'competition/apply/com_apply_first.html', context) else: stu_info_list.append(name) # 判断是否符合条件,不符合则跳回first页面 # 判断是够重复报名 flag = 1 if flag_same == 0: for stu in stu_info_list: com_list = student_model.com_stu_info.objects.filter(stu_id=stu) for com in com_list: if com.com_id == com_info: flag = 0 break elif flag_same == 1: num = 1 for stu in stu_info_list: com_list = student_model.com_stu_info.objects.filter(stu_id=stu) if num == 1: for com in com_list: if com.com_id == com_info: flag = 0 break else: for com in com_list: if com.is_leader == 1: flag = 0 break num = num + 1 if flag == 0: # 回到first页面 context['message'] = '参赛成员不符合规定哦 :(' context['com_info'] = com_info context['info_list'] = info_list context['group_list'] = group_list context['tea_num'] = range(1, info_list.tea_num + 1) num = com_info.num_stu context['stu_num'] = range(1, num + 1) return render(request, 'competition/apply/com_apply_first.html', context) # 判断满员 student_num = com_info.num_stu len_stu = len(stu_info_list) if flag_full == 1: if len_stu != student_num: # 回到first页面 context['message'] = '队伍人数不足 :(' context['com_info'] = com_info context['info_list'] = info_list context['group_list'] = group_list context['tea_num'] = range(1, info_list.tea_num + 1) num = com_info.num_stu context['stu_num'] = range(1, num + 1) return render(request, 'competition/apply/com_apply_first.html', context) # 判断学号重复 list1 = stu_info_list list2 = list(set(list1)) if len(list1) != len(list2): # 回到first页面 context['message'] = '有重复人员的哦 :(' context['com_info'] = com_info context['info_list'] = info_list context['group_list'] = group_list context['tea_num'] = range(1, info_list.tea_num + 1) num = com_info.num_stu context['stu_num'] = range(1, num + 1) return render(request, 'competition/apply/com_apply_first.html', context) # 判断作品名称是否为空 if flag_proname == 1: prodect_name = request.POST.get('product_name') if prodect_name == "": context['message'] = "作品名称没有填哦 X D " context['com_info'] = com_info context['info_list'] = info_list context['group_list'] = group_list context['tea_num'] = range(1, info_list.tea_num + 1) num = com_info.num_stu context['stu_num'] = range(1, num + 1) return render(request, 'competition/apply/com_apply_first.html', context) prodect_name = prodect_name.strip() context['product_name'] = prodect_name # 判断小组名称是否为空 if flag_groupname == 1: group_name = request.POST.get('group_name') if group_name == "": context['message'] = "小组名称没有填哦 X D " context['com_info'] = com_info context['info_list'] = info_list context['group_list'] = group_list context['tea_num'] = range(1, info_list.tea_num + 1) num = com_info.num_stu context['stu_num'] = range(1, num + 1) return render(request, 'competition/apply/com_apply_first.html', context) group_name = group_name.strip() context['group_name'] = group_name # 对指导教师进行判断 teach_list = [] if flag_teanum: for i in range(1, flag_teanum + 1): name = str('tea_name' + str(i)) temp = request.POST.get(name) temp = temp.strip() teach = teacher_model.teach_basic_info.objects.filter(tea_name=temp) if len(teach) == 0: # 回到first页面 context['message'] = '无法搜索到对应指导教师信息,请确认姓名无误' context['com_info'] = com_info context['info_list'] = info_list context['group_list'] = group_list context['tea_num'] = range(1, info_list.tea_num + 1) num = com_info.num_stu context['stu_num'] = range(1, num + 1) return render(request, 'competition/apply/com_apply_first.html', context) else: # 教师信息列表中也是一个列表 teach_list.append(teach) teach_list = zip(teach_list, range(1, info_list.tea_num + 1)) context['teach_list'] = teach_list # 对组别信息进行判断 if flag_group == 1: group = request.POST.get("group") group_list = models.com_sort_info.objects.filter(com_id=id, sort_name=group) context['group'] = group_list[0] # 备注信息 if flag_else == 1: else_info = request.POST.get("else_info") else_info = else_info.strip() context['else_info'] = else_info # 跳转确认页面 context['stu_list'] = stu_info_list context['info_list'] = info_list return render(request, 'competition/apply/com_apply_second.html', context) return render(request, 'competition/apply/com_apply_first.html', context) # 报名参加比赛第二步 def com_apply_second(request): context = {} if request.method == 'POST': id = request.GET.get('id') com_info = get_object_or_404(models.com_basic_info, com_id=id) info_list = get_object_or_404(models.com_need_info, com_id=id) group_list = models.com_sort_info.objects.filter(com_id=id) num = com_info.num_stu flag_full = com_info.need_full flag_same = com_info.same_stu flag_proname = info_list.product_name flag_teanum = com_info.num_teach flag_group = info_list.com_group flag_else = info_list.else_info flag_groupname = info_list.group_name # 优化 stu_list = [] for i in range(1, num + 1): stu_number = request.POST.get('stu_num' + str(i)) if stu_number != None and stu_number != "": stu_list.append(stu_number) len_stu = len(stu_list) stu_info_list = [] for stu in stu_list: name = student_model.stu_basic_info.objects.get(stu_number=stu) stu_info_list.append(name) group_name = request.POST.get('group_name') group = request.POST.get('group') product_name = request.POST.get('product_name') else_info = request.POST.get('else_info') # 分批保存信息,包括:竞赛小组信息、小组成员信息 # 保存竞赛小组信息 com_group = models.com_group_basic_info() # id com_group.com_id = get_object_or_404(models.com_basic_info, com_id=id) # 小组名字 if flag_groupname == 1: com_group.group_name = group_name # 小组人数 com_group.group_num = len_stu # 竞赛组别 if flag_group == 1: group_list = models.com_sort_info.objects.filter(com_id=id, sort_name=group) com_group.com_group = group_list[0] # 作品名字 if flag_proname == 1: com_group.product_name = product_name # 备注 if flag_else == 1: com_group.else_info = else_info com_group.save() group_id = com_group.group_id # 保存小组成员信息 number = 1 for i in stu_info_list: stu = student_model.com_stu_info() stu.com_id = get_object_or_404(models.com_basic_info, com_id=id) stu.group_id = get_object_or_404(models.com_group_basic_info, group_id=group_id) stu.stu_id = i if number == 1: stu.is_leader = 1 number += 1 stu.save() teach_list = [] if flag_teanum: for i in range(1, flag_teanum + 1): name = str('tea_name' + str(i)) temp = request.POST.get(name) if temp != "" and temp != None: teach = teacher_model.teach_basic_info.objects.get(tea_number=temp) teach_list.append(teach) for i in teach_list: teach = teacher_model.com_teach_info() teach.com_id = get_object_or_404(models.com_basic_info, com_id=id) teach.group_id = get_object_or_404(models.com_group_basic_info, group_id=group_id) teach.teach_id = i teach.save() return redirect('/student/personal_center_stu/?tag=2') return redirect('/student/personal_center_stu/?tag=2')
import math import random from ..algorithm_common import AlgorithmCommon as AC from ..algorithm_common import IAlgorithm class Tabu(IAlgorithm): def __init__(self, individual_max, epsilon=0.1, tabu_list_size=100, tabu_range_rate=0.1, ): self.individual_max = individual_max self.epsilon = epsilon self.tabu_list_size = tabu_list_size self.tabu_range_rate = tabu_range_rate def init(self, problem): self.problem = problem self.count = 0 self.tabu_range = (problem.MAX_VAL - problem.MIN_VAL) * self.tabu_range_rate self.tabu_list = [] self.best_individual = problem.create() self.individuals = [self.best_individual] def getMaxElement(self): return self.best_individual def getElements(self): return self.individuals def step(self): # 基準となる個体(前stepの最良個体) individual = self.individuals[-1] # 個体数が集まるまで近傍を生成 next_individuals = [] for _ in range(self.individual_max*99): # for safety if len(next_individuals) >= self.individual_max: break # 近傍を生成 pos = individual.getArray() ri = random.randint(0, len(pos)-1) # 1成分は必ず変更 trans = [] # タブーリスト用 for i in range(len(pos)): if i == ri or random.random() < self.epsilon: # ランダムな値に変更 val = self.problem.randomVal() trans.append((i, pos[i]-val)) # 変更内容を保存 pos[i] = val # タブーリストにある遷移は作らない if self._isInTabuList(trans): continue self.count += 1 o = self.problem.create(pos) next_individuals.append((o, trans)) # 近傍が0なら別途新しく生成する if len(next_individuals) == 0: o = self.problem.create() if self.best_individual.getScore() < o.getScore(): self.best_individual = o self.individuals = [o] return # sort next_individuals.sort(key=lambda x: x[0].getScore()) # 次のstep用に保存 self.individuals = [x[0] for x in next_individuals] # このstepでの最良個体 step_best = next_individuals[-1][0] if self.best_individual.getScore() < step_best.getScore(): self.best_individual = step_best # タブーリストに追加 step_best_trans = next_individuals[-1][1] self.tabu_list.append(step_best_trans) if len(self.tabu_list) > self.tabu_list_size: self.tabu_list.pop(0) def _isInTabuList(self, trans): for tabu in self.tabu_list: # 個数が違えば違う if len(tabu) != len(trans): continue f = True for i in range(len(trans)): # 対象要素が違えば違う if tabu[i][0] != trans[i][0]: f = False break # 範囲内なら該当 tabu_val = tabu[i][1] val = trans[i][1] if not(tabu_val - self.tabu_range < val and val < tabu_val + self.tabu_range): f = False break # 該当するものがある if f: return True return False
# SPDX-License-Identifier: Apache-2.0 import os import sys import unittest import keras2onnx import keras_contrib import numpy as np from keras2onnx import set_converter from keras2onnx.proto import keras from os.path import dirname, abspath sys.path.insert(0, os.path.join(dirname(abspath(__file__)), '../../tests/')) from test_utils import run_onnx_runtime, convert_InstanceNormalizationLayer Activation = keras.layers.Activation Add = keras.layers.Add BatchNormalization = keras.layers.BatchNormalization Concatenate = keras.layers.Concatenate Conv2D = keras.layers.Conv2D Dense = keras.layers.Dense Dropout = keras.layers.Dropout Embedding = keras.layers.Embedding Flatten = keras.layers.Flatten InstanceNormalization = keras_contrib.layers.InstanceNormalization Input = keras.layers.Input LeakyReLU = keras.layers.LeakyReLU multiply = keras.layers.multiply Reshape = keras.layers.Reshape UpSampling2D = keras.layers.UpSampling2D ZeroPadding2D = keras.layers.ZeroPadding2D Sequential = keras.models.Sequential Model = keras.models.Model # From https://github.com/eriklindernoren/Keras-GAN/blob/master/pixelda/pixelda.py class PixelDA(): def __init__(self): # Input shape self.img_rows = 32 self.img_cols = 32 self.channels = 3 self.img_shape = (self.img_rows, self.img_cols, self.channels) self.num_classes = 10 # Loss weights lambda_adv = 10 lambda_clf = 1 # Calculate output shape of D (PatchGAN) patch = int(self.img_rows / 2**4) self.disc_patch = (patch, patch, 1) # Number of residual blocks in the generator self.residual_blocks = 6 # Number of filters in first layer of discriminator and classifier self.df = 64 self.cf = 64 # Build and compile the discriminators self.discriminator = self.build_discriminator() # Build the generator self.generator = self.build_generator() # Build the task (classification) network self.clf = self.build_classifier() # Input images from both domains img_A = Input(shape=self.img_shape) img_B = Input(shape=self.img_shape) # Translate images from domain A to domain B fake_B = self.generator(img_A) # Classify the translated image class_pred = self.clf(fake_B) # For the combined model we will only train the generator and classifier self.discriminator.trainable = False # Discriminator determines validity of translated images valid = self.discriminator(fake_B) self.combined = Model(img_A, [valid, class_pred]) def build_generator(self): """Resnet Generator""" def residual_block(layer_input): """Residual block described in paper""" d = Conv2D(64, kernel_size=3, strides=1, padding='same')(layer_input) d = BatchNormalization(momentum=0.8)(d) d = Activation('relu')(d) d = Conv2D(64, kernel_size=3, strides=1, padding='same')(d) d = BatchNormalization(momentum=0.8)(d) d = Add()([d, layer_input]) return d # Image input img = Input(shape=self.img_shape) l1 = Conv2D(64, kernel_size=3, padding='same', activation='relu')(img) # Propogate signal through residual blocks r = residual_block(l1) for _ in range(self.residual_blocks - 1): r = residual_block(r) output_img = Conv2D(self.channels, kernel_size=3, padding='same', activation='tanh')(r) return Model(img, output_img) def build_discriminator(self): def d_layer(layer_input, filters, f_size=4, normalization=True): """Discriminator layer""" d = Conv2D(filters, kernel_size=f_size, strides=2, padding='same')(layer_input) d = LeakyReLU(alpha=0.2)(d) if normalization: d = InstanceNormalization()(d) return d img = Input(shape=self.img_shape) d1 = d_layer(img, self.df, normalization=False) d2 = d_layer(d1, self.df*2) d3 = d_layer(d2, self.df*4) d4 = d_layer(d3, self.df*8) validity = Conv2D(1, kernel_size=4, strides=1, padding='same')(d4) return Model(img, validity) def build_classifier(self): def clf_layer(layer_input, filters, f_size=4, normalization=True): """Classifier layer""" d = Conv2D(filters, kernel_size=f_size, strides=2, padding='same')(layer_input) d = LeakyReLU(alpha=0.2)(d) if normalization: d = InstanceNormalization()(d) return d img = Input(shape=self.img_shape) c1 = clf_layer(img, self.cf, normalization=False) c2 = clf_layer(c1, self.cf*2) c3 = clf_layer(c2, self.cf*4) c4 = clf_layer(c3, self.cf*8) c5 = clf_layer(c4, self.cf*8) class_pred = Dense(self.num_classes, activation='softmax')(Flatten()(c5)) return Model(img, class_pred) set_converter(keras_contrib.layers.InstanceNormalization, convert_InstanceNormalizationLayer) class TestPixelDA(unittest.TestCase): def setUp(self): self.model_files = [] def tearDown(self): for fl in self.model_files: os.remove(fl) def test_PixelDA(self): keras_model = PixelDA().combined x = np.random.rand(5, 32, 32, 3).astype(np.float32) expected = keras_model.predict([x]) onnx_model = keras2onnx.convert_keras(keras_model, keras_model.name) self.assertTrue(run_onnx_runtime(onnx_model.graph.name, onnx_model, x, expected, self.model_files, atol=1.e-5)) if __name__ == "__main__": unittest.main()
import audio_dspy as adsp _fs_ = 44100 _num_ = 1000 _dur_ = 1 class SweepsTimeSuite: """ Benchmarkng Suite for sweep functions """ def setup(self): self.sweep = adsp.sweep_log(1, _fs_/2, _dur_, _fs_) self.sweep2 = adsp.sweep_log(1, _fs_/2, _dur_, _fs_) def time_log_sweep(self): for _ in range(_num_): adsp.sweep_log(1, _fs_/2, _dur_, _fs_) def time_lin_sweep(self): for _ in range(_num_): adsp.sweep_lin(_dur_, _fs_) def time_sweep2ir(self): for _ in range(_num_): adsp.sweep2ir(self.sweep, self.sweep2)
import torch import torch.nn as nn from se3cnn.point.radial import CosineBasisModel from e3_layer.persistent_point.data_hub import DataHub from e3_layer.persistent_point.periodic_convolution import PeriodicConvolutionWithKernel from e3_layer.persistent_point.gate import Gate class EQLayer(nn.Module): def __init__(self, data_hub, number_of_the_layer, radial_basis_function_kwargs, gate_kwargs, radial_basis_function=CosineBasisModel, convolution=PeriodicConvolutionWithKernel, gate=Gate, device=torch.device(type='cuda', index=0)): super().__init__() self.data_hub = data_hub self.n = number_of_the_layer self.radial_basis_function_kwargs = radial_basis_function_kwargs # or {'max_radius': 5.0, 'number_of_basis': 100, 'h': 100, 'L': 2, 'act': relu} self.gate_kwargs = gate_kwargs # or {'scalar_activation': relu, 'gate_activation': sigmoid} self.radial_basis_trainable_function = radial_basis_function(out_dim=self.data_hub.R_base_offsets[self.n][-1].item(), **radial_basis_function_kwargs).to(device) self.convolution = convolution(self.data_hub, self.n) if self.data_hub.has_gates[self.n]: self.gate = gate(self.data_hub, self.n, **gate_kwargs) def forward(self, features): rbf_coefficients = self.radial_basis_trainable_function(self.data_hub.radii) return self.gate(self.convolution(features, rbf_coefficients)) if hasattr(self, 'gate') else self.convolution(features, rbf_coefficients) class EQNetwork(nn.Module): def __init__(self, representations, radial_basis_functions_kwargs, gate_kwargs, radial_basis_function=CosineBasisModel, convolution=PeriodicConvolutionWithKernel, gate=Gate, has_gates=True, normalization='norm', device=torch.device(type='cuda', index=0)): super().__init__() number_of_layers = len(representations) - 1 # region input check assert isinstance(has_gates, bool) or \ (isinstance(has_gates, (list, tuple)) and (len(has_gates) == 1 or len(has_gates) == number_of_layers) and all(isinstance(has_gate, bool) for has_gate in has_gates)), \ "has_gates should be specified as a single boolean value or as list/tuple of boolean values that matches number of layers" assert isinstance(radial_basis_functions_kwargs, dict) or \ (isinstance(radial_basis_functions_kwargs, (list, tuple)) and (len(radial_basis_functions_kwargs) == 1 or len(radial_basis_functions_kwargs) == number_of_layers) and all(isinstance(rbf_args, dict) for rbf_args in radial_basis_functions_kwargs)), \ "radial_basis_functions_kwargs should be specified as a single dict (shared for all layers) or as list/tuple of dicts - one for each layers" assert isinstance(gate_kwargs, dict) or \ (isinstance(gate_kwargs, (list, tuple)) and (len(gate_kwargs) == 1 or len(gate_kwargs) == number_of_layers) and all(isinstance(g_args, dict) for g_args in gate_kwargs)), \ "gate_kwargs should be specified as a single dict (shared for all layers) or as list/tuple of dicts - one for each layers" # endregion has_gates_list = [has_gates] if isinstance(has_gates, bool) else has_gates has_gates_list = has_gates_list * number_of_layers if len(has_gates_list) == 1 else has_gates_list # construct representations, without gates - gates got added in Data Hub where necessary # can have mixed specifications (short - multiplicity, long - multiplicity and rotation order) across layers, but within layer it should be consistent representations = [[(mul, l) if isinstance(mul, int) else mul for l, mul in enumerate(rs)] for rs in representations] self.data_hub = DataHub(representations, has_gates_list, normalization, device) radial_basis_functions_kwargs_list = [radial_basis_functions_kwargs] if isinstance(radial_basis_functions_kwargs, dict) else radial_basis_functions_kwargs radial_basis_functions_kwargs_list = radial_basis_functions_kwargs_list * number_of_layers if len(radial_basis_functions_kwargs_list) == 1 else radial_basis_functions_kwargs_list gate_kwargs_list = [gate_kwargs] if isinstance(gate_kwargs, dict) else gate_kwargs gate_kwargs_list = gate_kwargs_list * number_of_layers if len(gate_kwargs_list) == 1 else gate_kwargs_list layers = [] for i in range(number_of_layers): layers.append(EQLayer(self.data_hub, i, radial_basis_functions_kwargs_list[i], gate_kwargs_list[i], radial_basis_function, convolution, gate, device)) self.layers = nn.Sequential(*layers) def forward(self, features, radii_vectors, n_norm, ab_p_to_a, ab_p_to_b): self.data_hub(radii_vectors, n_norm, ab_p_to_a, ab_p_to_b) return self.layers(features).mean(dim=0)
""" HealthDES - A python library to support discrete event simulation in health and social care """ import simpy from .Routing import Activity_ID class DecisionBase: # TODO: Need to return a function which includes list of next activities def set_next_activity(self, activity): return self.get_next_activity def get_next_activity(self, person, activity_a): """ Dummy method to anchor class """ return Activity_ID(None, None, None) class NextActivity(DecisionBase): def set_next_activity(next_activity_id): pass def get_next_activity(self, person, activity_a): # TODO: Need to sort routing access activity = person.routing.get_activity(activity_a.routing_id) # Add this instance to the arguments list activity.kwargs['person'] = self # Create two communication pipes for bi-directional communication with activity activity.kwargs['message_to_activity'] = simpy.Store(self.env) activity.kwargs['message_to_person'] = simpy.Store(self.env) return activity
import json import time import graphics DEBUG = True class GShape: """ A parent class that represents a shape. It is named GShape for "Graphical shape" since "shape" is such a generic word. """ def __init__(self, win: object, name: str, channel: int, x: int, y: int, color: str): """ A generic shape object. :param win: The graphics window. :param name: A string name of the thing this shape represents. :param channel: What channel on the Christmas lights controller this is associated with. :param x: The x coordinate of the top left of box containing the shape. :param y: The y coordinate of the top left of box containing the shape. :param color: The X11 name of the color as a string of the shape when it is on. """ self._win = win self._name = name self._channel = channel self._x = x self._y = y self._color = color self._graphics_object = None self._current_color = ChannelCollection.GRAY def draw(self): """ Draws the shape in the graphics window. :return: None """ self._graphics_object.setWidth(1) self._graphics_object.setOutline('black') self._graphics_object.setFill(self._current_color) self._graphics_object.draw(self._win) def on(self): """ Turns on this shape. Turning on means changing the color from gray to the color this object was initialized to be. :return: None """ self._graphics_object.undraw() self._current_color = self._color self.draw() def off(self): """ Turns off this shape. Turning off means changing the color to gray from the color this object was initialized to be. :return: None """ self._graphics_object.undraw() # We do not turn off channel 0 (background stuff, etc.) if self._channel != 0: self._current_color = ChannelCollection.GRAY self.draw() class Triangle(GShape): """ A shape that is an equilateral triangle that points up. """ def __init__(self, win: object, name: str, channel: int, x: int, y: int, color: str, height: int, width: int): """ Initializes this Triangle GShape object. :param win: The graphics window. :param name: A string name of the thing this shape represents. :param channel: What channel on the Christmas lights controller this is associated with. :param x: The x coordinate of the top left of box containing the shape. :param y: The y coordinate of the top left of box containing the shape. :param color: The X11 name of the color as a string of the shape when it is on. :param height: The height of this Rectangle (from the base to the vertex between the equal-length sides at the top. :param width: The width of the base of this Triangle. """ super().__init__(win, name, channel, x, y, color) self._height = height self._width = width bottom_left = graphics.Point(self._x, self._y + self._height) top_center = graphics.Point(self._x + self._width/2, self._y) bottom_right = graphics.Point(self._x + self._width, self._y + self._height) self._graphics_object = graphics.Polygon(bottom_left, top_center, bottom_right) if DEBUG: print('Triangle created (%s)' % (name)) class Circle(GShape): """ A shape that is a circle. """ def __init__(self, win: object, name: str, channel: int, x: int, y: int, color: str, radius: int): """ Initializes this Circle GShape object. :param win: The graphics window. :param name: A string name of the thing this shape represents. :param channel: What channel on the Christmas lights controller this is associated with. :param x: The x coordinate of the top left of box containing the shape. :param y: The y coordinate of the top left of box containing the shape. :param color: The X11 name of the color as a string of the shape when it is on. :param radius: The radius of this Circle. """ super().__init__(win, name, channel, x, y, color) self._radius = radius center_point = graphics.Point(self._x + self._radius/2, self._y + self._radius/2) self._graphics_object = graphics.Circle(center_point, self._radius) if DEBUG: print('Circle created (%s)' % (name)) class Rectangle(GShape): """ A shape that is a rectangle. """ def __init__(self, win: object, name: str, channel: int, x: int, y: int, color: str, height: int, width: int): """ Initializes this Rectangle GShape object. :param win: The graphics window. :param name: A string name of the thing this shape represents. :param channel: What channel on the Christmas lights controller this is associated with. :param x: The x coordinate of the top left of box containing the shape. :param y: The y coordinate of the top left of box containing the shape. :param color: The X11 name of the color as a string of the shape when it is on. :param height: The height of this Rectangle. :param width: The width of this Rectangle. """ super().__init__(win, name, channel, x, y, color) self._height = height self._width = width top_left = graphics.Point(self._x , self._y) bottom_right = graphics.Point(self._x + self._width, self._y + self._height) self._graphics_object = graphics.Rectangle(top_left, bottom_right) if DEBUG: print('Rectangle created (%s)' % (name)) class Line(GShape): """ A shape that is a line segment. """ def __init__(self, win: object, name: str, channel: int, x: int, y: int, color: str, x2: int, y2: int): """ Initializes this Line GShape object. :param win: The graphics window. :param name: A string name of the thing this shape represents. :param channel: What channel on the Christmas lights controller this is associated with. :param x: The x coordinate of one end of the line. :param y: The y coordinate of one end of the line. :param color: The X11 name of the color as a string of the shape when it is on. :param x2: The x coordinate of the other end of the line. :param y2: The y coordinate of the other end of the line. """ super().__init__(win, name, channel, x, y, color) self._x2 = x2 self._y2 = y2 point1 = graphics.Point(self._x, self._y) point2 = graphics.Point(self._x2, self._y2) self._graphics_object = graphics.Line(point1, point2) if DEBUG: print('Line created (%s)' % (name)) class ChannelCollection: """ A collection of channel objects. """ # The color of a GShape that is turned off. GRAY = "Gray41" def __init__(self): """ Initializes the ChannelCollection with 17 channels. Channel 0 is for anything that does not turn off and on. Channel 0 is always on. There can be multiple GShape objects in each channel. """ self._channels = [] self._iter_index = 1 # We will have channels 0 - 16. 0 does not blink. for i in range(0, 17): self._channels.append([]) def add(self, shape_object: object): """ Adds a GShape object to the Channel collection into the channel associated with the GShape object when the GShape was initialized. :param shape_object: The GShape object to add. :return: None """ self._channels[shape_object._channel].append(shape_object) def on(self, channel_number: int): """ Turns on every GShape object in the requested channel number. :param channel_number: The channel number to turn on. :return: None """ for a_shape in self._channels[channel_number]: a_shape.on() def off(self, channel_number: int): """ Turns off every GShape object in the requested channel number. :param channel_number: The channel number to turn off. :return: None """ for a_shape in self._channels[channel_number]: a_shape.off() def __iter__(self): """ This makes this object iterable. This resets the object's iter "pointer" every time a new iterator is created. This probably should never be used in a nested for loop where both for loops are iterating over this object. :return: A reference to this iterable object. """ self._iter_index = 1 return self def __next__(self): """ Returns the next channel in this iterable ChannelCollection object. :return: A reference to the list of GShape objects for the next channel. (One channel in the ChannelCollection contains a list of GShape objects that should all turn on or off when a channel is turned on or off.) """ list = self._channels[self._iter_index] self._iter_index += 1 return list class GraphicsJson: """ A class that creates a Graphical visualization based on the data in a JSON file. """ def __init__(self, filename: str, channel_collection: object): """ Reads in a JSON file and creates a graphical visualization from the data. :param filename: The filename of the JSON file to read in. :param channel_collection: The ChannelCollection object to populate. """ json_file = open(filename, 'r') self._json_data = json.load(json_file) json_file.close() self._width = self._json_data["window_width"] self._height = self._json_data["window_height"] self._win = graphics.GraphWin("Map", self._width, self._height) self._win.setBackground(self._json_data['bg_color']) self._channel_collection = channel_collection if DEBUG: print(f'Using Map: { self._json_data["name"] }') channels = self._json_data['channels'] for one_channel in channels: # Create a GShape based on the dictionary for this one "channel". shape = self.shape_factory(one_channel) self._channel_collection.add(shape) shape.draw() self._channel_collection.on(0) def __del__(self): """ Destructor for this object that closes the graphics environment. :return: None """ self._win.close() def close(self): """ Closes the graphics environment. :return: None """ self._win.close() def shape_factory(self, channel_entry: dict): """ Takes in a dictionary member from the "channels" array in the JSON file and creates a GShape object. :param channel_entry: A dictionary member from the "channels" array in the JSON file. :return: A GShape object based on the input JSON data. """ name = channel_entry['name'] channel = channel_entry['channel'] if channel > 16: channel = 0 elif channel < 0: channel = 0 shape = channel_entry['shape'] x = channel_entry['x'] y = channel_entry['y'] color = channel_entry['color'] if shape.lower() == 'triangle': height = channel_entry['height'] width = channel_entry['width'] return Triangle(self._win, name, channel, x, y, color, height, width) elif shape.lower() == 'circle': radius = channel_entry['radius'] return Circle(self._win, name, channel, x, y, color, radius) elif shape.lower() == 'rectangle': height = channel_entry['height'] width = channel_entry['width'] return Rectangle(self._win, name, channel, x, y, color, height, width) elif shape.lower() == 'line': x2 = channel_entry['x2'] y2 = channel_entry['y2'] return Line(self._win, name, channel, x, y, color, x2, y2) def all_on(self): """ Turns on all of the channels in the ChannelCollection. :return: None """ for i in range(1, 17): self._channel_collection.on(i) def all_off(self): """ Turns off all of the channels in the ChannelCollection. :return: None """ for i in range(1, 17): self._channel_collection.off(i) if __name__ == '__main__': # Tests GraphicsJson without using any of the rest of the ChristmasLights code. channel_collection = ChannelCollection() graphics_json = GraphicsJson('MapData.json', channel_collection) for i in range(1, 17): for j in range(1, 17): if i == j: channel_collection.on(j) else: channel_collection.off(j) time.sleep(.5) graphics_json.all_off() graphics_json._win.getMouse()
# -*- coding: utf-8 -*- """PSF DECONVOLUTION MODULE This module deconvolves a set of galaxy images with a known object-variant PSF. :Author: Samuel Farrens <samuel.farrens@gmail.com> """ from __future__ import print_function from builtins import range, zip from scipy.linalg import norm from modopt.math.stats import sigma_mad from modopt.opt.algorithms import * from modopt.opt.cost import costObj from modopt.opt.linear import * from modopt.opt.proximity import * from modopt.opt.reweight import cwbReweight from modopt.signal.wavelet import * from . gradient import * def set_noise(data, **kwargs): """Set the noise level This method calculates the noise standard deviation using the median absolute deviation (MAD) of the input data and adds it to the keyword arguments. Parameters ---------- data : np.ndarray Input noisy data (3D array) Returns ------- dict Updated keyword arguments """ # It the noise is not already provided calculate it using the MAD if isinstance(kwargs['noise_est'], type(None)): kwargs['noise_est'] = sigma_mad(data) print(' - Noise Estimate:', kwargs['noise_est']) if 'log' in kwargs: kwargs['log'].info(' - Noise Estimate: ' + str(kwargs['noise_est'])) return kwargs def set_grad_op(data, psf, **kwargs): """Set the gradient operator This method defines the gradient operator class to use and add an instance to the keyword arguments. Parameters ---------- data : np.ndarray Input noisy data (3D array) psf : np.ndarray PSF data (2D or 3D array) Returns ------- dict Updated keyword arguments """ # Set the gradient operator if kwargs['grad_type'] == 'psf_known': kwargs['grad_op'] = (GradKnownPSF(data, psf, psf_type=kwargs['psf_type'], convolve_method=kwargs['convolve_method'])) elif kwargs['grad_type'] == 'psf_unknown': kwargs['grad_op'] = (GradUnknownPSF(data, psf, prox=Positivity(), psf_type=kwargs['psf_type'], convolve_method=kwargs['convolve_method'], beta_reg=kwargs['beta_psf'], lambda_reg=kwargs['lambda_psf'])) elif kwargs['grad_type'] == 'shape': kwargs['grad_op'] = (GradShape(data, psf, psf_type=kwargs['psf_type'], convolve_method=kwargs['convolve_method'], lambda_reg=kwargs['lambda_shape'])) elif kwargs['grad_type'] == 'none': kwargs['grad_op'] = GradNone(data, psf, psf_type=kwargs['psf_type'], convolve_method=kwargs['convolve_method']) print(' - Spectral Radius:', kwargs['grad_op'].spec_rad) if 'log' in kwargs: kwargs['log'].info(' - Spectral Radius: ' + str(kwargs['grad_op'].spec_rad)) return kwargs def set_linear_op(data, **kwargs): """Set the gradient operator This method defines the gradient operator class to use and add an instance to the keyword arguments. It additionally add the l1 norm of the linear operator and the wavelet filters (if used) to the kwagrs. Parameters ---------- data : np.ndarray Input noisy data (3D array) Returns ------- dict Updated keyword arguments ToDo ---- - Clean up wavelet_filters and l1norm """ # Set the options for mr_transform (for sparsity) if kwargs['mode'] in ('all', 'sparse'): wavelet_opt = ['-t ' + kwargs['wavelet_type']] kwargs['wavelet_filters'] = get_mr_filters(data.shape[-2:], wavelet_opt) kwargs['linear_l1norm'] = (data.shape[0] * np.sqrt(sum((np.sum(np.abs (filter_i)) ** 2 for filter_i in kwargs['wavelet_filters'])))) # Set the linear operator if kwargs['mode'] == 'all': kwargs['linear_op'] = LinearCombo([WaveletConvolve( kwargs['wavelet_filters'], method=kwargs['convolve_method'],), Identity()]) elif kwargs['mode'] in ('lowr', 'grad'): kwargs['linear_op'] = Identity() kwargs['linear_l1norm'] = 1.0 elif kwargs['mode'] == 'sparse': kwargs['linear_op'] = WaveletConvolve(kwargs['wavelet_filters'], method=kwargs['convolve_method'], ) return kwargs def set_sparse_weights(data_shape, psf, **kwargs): """Set the sparsity weights This method defines the weights for thresholding in the sparse domain and add them to the keyword arguments. It additionally defines the shape of the dual variable. Parameters ---------- data_shape : tuple Shape of the input data array psf : np.ndarray PSF data (2D or 3D array) Returns ------- dict Updated keyword arguments """ # Convolve the PSF with the wavelet filters if kwargs['psf_type'] == 'fixed': filter_conv = (filter_convolve(np.rot90(psf, 2), kwargs['wavelet_filters'], method=kwargs['convolve_method'])) filter_norm = np.array([norm(a) * b * np.ones(data_shape[1:]) for a, b in zip(filter_conv, kwargs['wave_thresh_factor'])]) filter_norm = np.array([filter_norm for i in range(data_shape[0])]) else: filter_conv = (filter_convolve_stack(np.rot90(psf, 2), kwargs['wavelet_filters'], method=kwargs['convolve_method'])) filter_norm = np.array([[norm(b) * c * np.ones(data_shape[1:]) for b, c in zip(a, kwargs['wave_thresh_factor'])] for a in filter_conv]) # Define a reweighting instance kwargs['reweight'] = cwbReweight(kwargs['noise_est'] * filter_norm) # Set the shape of the dual variable dual_shape = ([kwargs['wavelet_filters'].shape[0]] + list(data_shape)) dual_shape[0], dual_shape[1] = dual_shape[1], dual_shape[0] kwargs['dual_shape'] = dual_shape return kwargs def set_condat_param(**kwargs): """Set the Condat-Vu parameters This method sets the values of tau and sigma in the Condat-Vu proximal-dual splitting algorithm if not already provided. It additionally checks that the combination of values will lead to convergence. Returns ------- dict Updated keyword arguments """ # Define a method for calculating sigma and/or tau def get_sig_tau(): return 1.0 / (kwargs['grad_op'].spec_rad + kwargs['linear_l1norm']) # Calulate tau if not provided if isinstance(kwargs['condat_tau'], type(None)): kwargs['condat_tau'] = get_sig_tau() # Calculate sigma if not provided if isinstance(kwargs['condat_sigma'], type(None)): kwargs['condat_sigma'] = get_sig_tau() print(' - tau:', kwargs['condat_tau']) print(' - sigma:', kwargs['condat_sigma']) print(' - rho:', kwargs['relax']) if 'log' in kwargs: kwargs['log'].info(' - tau: ' + str(kwargs['condat_tau'])) kwargs['log'].info(' - sigma: ' + str(kwargs['condat_sigma'])) kwargs['log'].info(' - rho: ' + str(kwargs['relax'])) # Test combination of sigma and tau sig_tau_test = (1.0 / kwargs['condat_tau'] - kwargs['condat_sigma'] * kwargs['linear_l1norm'] ** 2 >= kwargs['grad_op'].spec_rad / 2.0) print(' - 1/tau - sigma||L||^2 >= beta/2:', sig_tau_test) if 'log' in kwargs: kwargs['log'].info(' - 1/tau - sigma||L||^2 >= beta/2: ' + str(sig_tau_test)) return kwargs def get_lambda(n_images, p_pixel, sigma, spec_rad): """Get lambda value This method calculates the singular value threshold for low-rank regularisation Parameters ---------- n_images : int Total number of images p_pixel : int Total number of pixels sigma : float Noise standard deviation spec_rad : float The spectral radius of the gradient operator Returns ------- float Lambda value """ return sigma * np.sqrt(np.max([n_images + 1, p_pixel])) * spec_rad def set_lowr_thresh(data_shape, **kwargs): """Set the low-rank threshold This method sets the value of the low-rank singular value threshold. Parameters ---------- data_shape : tuple Shape of the input data array Returns ------- dict Updated keyword arguments """ if kwargs['lowr_type'] == 'standard': kwargs['lambda'] = (kwargs['lowr_thresh_factor'] * get_lambda(data_shape[0], np.prod(data_shape[1:]), kwargs['noise_est'], kwargs['grad_op'].spec_rad)) elif kwargs['lowr_type'] == 'ngole': kwargs['lambda'] = (kwargs['lowr_thresh_factor'] * kwargs['noise_est']) print(' - lambda:', kwargs['lambda']) if 'log' in kwargs: kwargs['log'].info(' - lambda: ' + str(kwargs['lambda'])) return kwargs def set_primal_dual(data_shape, **kwargs): """Set primal and dual variables This method sets the initial values of the primal and dual variables Parameters ---------- data_shape : tuple Shape of the input data array Returns ------- dict Updated keyword arguments """ # Set the initial values of the primal variable if not provided if isinstance(kwargs['primal'], type(None)): kwargs['primal'] = np.ones(data_shape) # Set the initial values of the dual variable if kwargs['mode'] == 'all': kwargs['dual'] = np.empty(2, dtype=np.ndarray) kwargs['dual'][0] = np.ones(kwargs['dual_shape']) kwargs['dual'][1] = np.ones(data_shape) elif kwargs['mode'] in ('lowr', 'grad'): kwargs['dual'] = np.ones(data_shape) elif kwargs['mode'] == 'sparse': kwargs['dual'] = np.ones(kwargs['dual_shape']) print(' - Primal Variable Shape:', kwargs['primal'].shape) print(' - Dual Variable Shape:', kwargs['dual'].shape) print(' ' + '-' * 70) if 'log' in kwargs: kwargs['log'].info(' - Primal Variable Shape: ' + str(kwargs['primal'].shape)) kwargs['log'].info(' - Dual Variable Shape: ' + str(kwargs['dual'].shape)) return kwargs def set_prox_op_and_cost(data, **kwargs): """Set the proximity operators and cost function This method sets the proximity operators and cost function instances. Parameters ---------- data : np.ndarray Input noisy data (3D array) Returns ------- dict Updated keyword arguments """ # Create a list of proximity operators kwargs['prox_op'] = [] # Set the first operator as positivity contraint or simply identity if not kwargs['no_pos']: kwargs['prox_op'].append(Positivity()) else: kwargs['prox_op'].append(IdentityProx()) # Add a second proximity operator if kwargs['mode'] == 'all': kwargs['prox_op'].append(ProximityCombo( [SparseThreshold( kwargs['linear_op'].operators[0], kwargs['reweight'].weights,), LowRankMatrix(kwargs['lambda'], thresh_type=kwargs['lowr_thresh_type'], lowr_type=kwargs['lowr_type'], operator=kwargs['grad_op'].trans_op)])) elif kwargs['mode'] == 'lowr': kwargs['prox_op'].append(LowRankMatrix(kwargs['lambda'], thresh_type=kwargs['lowr_thresh_type'], lowr_type=kwargs['lowr_type'], operator=kwargs['grad_op'].trans_op)) operator_list = [kwargs['grad_op']] + kwargs['prox_op'] elif kwargs['mode'] == 'sparse': kwargs['prox_op'].append(SparseThreshold(kwargs['linear_op'], kwargs['reweight'].weights)) elif kwargs['mode'] == 'grad': kwargs['prox_op'].append(IdentityProx()) # Set the cost function kwargs['cost_op'] = (costObj([kwargs['grad_op']] + kwargs['prox_op'], tolerance=kwargs['convergence'], cost_interval=kwargs['cost_window'], plot_output=kwargs['output'], verbose=not kwargs['quiet'])) return kwargs def set_optimisation(**kwargs): """Set the optimisation technique This method sets the technique used for opttimising the problem Returns ------- dict Updated keyword arguments """ # Initalise an optimisation instance if kwargs['opt_type'] == 'fwbw': kwargs['optimisation'] = (ForwardBackward(kwargs['primal'], kwargs['grad_op'], kwargs['prox_op'][1], kwargs['cost_op'], auto_iterate=False)) elif kwargs['opt_type'] == 'condat': kwargs['optimisation'] = (Condat(kwargs['primal'], kwargs['dual'], kwargs['grad_op'], kwargs['prox_op'][0], kwargs['prox_op'][1], kwargs['linear_op'], kwargs['cost_op'], rho=kwargs['relax'], sigma=kwargs['condat_sigma'], tau=kwargs['condat_tau'], auto_iterate=False)) elif kwargs['opt_type'] == 'gfwbw': kwargs['optimisation'] = (GenForwardBackward(kwargs['primal'], kwargs['grad_op'], kwargs['prox_op'], lambda_init=1.0, cost=kwargs['cost_op'], weights=[0.1, 0.9], auto_iterate=False)) return kwargs def perform_reweighting(**kwargs): """Perform reweighting This method updates the weights used for thresholding in the sparse domain Returns ------- dict Updated keyword arguments """ # Loop through number of reweightings for i in range(kwargs['n_reweights']): print(' - REWEIGHT:', i + 1) print('') # Generate the new weights following reweighting persctiption kwargs['reweight'].reweight(kwargs['linear_op'].op( kwargs['optimisation'].x_final)) # Perform optimisation with new weights kwargs['optimisation'].iterate(max_iter=kwargs['n_iter']) print('') def run(data, psf, **kwargs): """Run deconvolution This method initialises the operator classes and runs the optimisation algorithm Parameters ---------- data : np.ndarray Input data array, an array of 2D images psf : np.ndarray Input PSF array, a single 2D PSF or an array of 2D PSFs Returns ------- np.ndarray decconvolved data """ # SET THE NOISE ESTIMATE kwargs = set_noise(data, **kwargs) # SET THE GRADIENT OPERATOR kwargs = set_grad_op(data, psf, **kwargs) # SET THE LINEAR OPERATOR kwargs = set_linear_op(data, **kwargs) # SET THE WEIGHTS IN THE SPARSE DOMAIN if kwargs['mode'] in ('all', 'sparse'): kwargs = set_sparse_weights(data.shape, psf, **kwargs) # SET THE CONDAT-VU PARAMETERS if kwargs['opt_type'] == 'condat': kwargs = set_condat_param(**kwargs) # SET THE LOW-RANK THRESHOLD if kwargs['mode'] in ('all', 'lowr'): kwargs = set_lowr_thresh(data.shape, **kwargs) # SET THE INITIAL PRIMAL AND DUAL VARIABLES kwargs = set_primal_dual(data.shape, **kwargs) # SET THE PROXIMITY OPERATORS AND THE COST FUNCTION kwargs = set_prox_op_and_cost(data, **kwargs) # SET THE OPTIMISATION METHOD kwargs = set_optimisation(**kwargs) # PERFORM OPTIMISATION kwargs['optimisation'].iterate(max_iter=kwargs['n_iter']) # PERFORM REWEIGHTING FOR SPARSITY if kwargs['mode'] in ('all', 'sparse'): perform_reweighting(**kwargs) # PLOT THE COST FUNCTION if not kwargs['no_plots']: kwargs['cost_op'].plot_cost() # FINISH AND RETURN RESULTS if 'log' in kwargs: kwargs['log'].info(' - Final iteration number: ' + str(kwargs['cost_op']._iteration)) kwargs['log'].info(' - Final log10 cost value: ' + str(np.log10(kwargs['cost_op'].cost))) kwargs['log'].info(' - Converged: ' + str(kwargs['optimisation'].converge)) primal_res = kwargs['optimisation'].x_final if kwargs['opt_type'] == 'condat': dual_res = kwargs['optimisation'].y_final else: dual_res = None if kwargs['grad_type'] == 'psf_unknown': psf_res = kwargs['grad_op']._psf else: psf_res = None return primal_res, dual_res, psf_res
import os import sys import configparser import matplotlib matplotlib.use('Agg') # Don't try to use X forwarding for plots import matplotlib.pyplot as plt from mpl_toolkits.axes_grid1.inset_locator import inset_axes import pandas as pd import numpy as np from root_pandas import read_root ### Insert path to most recent directory with fast data _,mostRecentDir = sys.argv config = configparser.ConfigParser() config.read('config.ini') plotoutDir = config['Control']['plotoutdir'] rootf=[] for file in os.listdir(mostRecentDir): if file.endswith('.root'): rootf.append(file) def append_dfs(): if len(rootf)>1: framesroot = [read_root(mostRecentDir+'/'+rf, columns=['channel','time','error','integral']) for rf in rootf] df = pd.concat(framesroot,axis=0) else: df = read_root(mostRecentDir+'/'+rootf[0], columns=['channel','time','error','integral']) return df def get_mc_arr(channel): if channel == 0 or channel == 1: return pd.read_csv(os.getcwd()+'/monte_carlo/cs137.csv', header = None, names = ['energy','Count']),(580,750) elif channel == 2 or channel == 3: return pd.read_csv(os.getcwd()+'/monte_carlo/co60.csv', header = None, names = ['energy','Count']),(1050,1450) elif channel == 6 or channel == 7: return pd.read_csv(os.getcwd()+'/monte_carlo/ti44.csv', header = None, names = ['energy','Count']),(430,1720) def timedelta(df): df['time'] = df['time'] - 2208988800 df['time'] = pd.to_datetime(df['time'], unit = 's') return (df['time'].min()-df['time'].max()).seconds def specdf(df,channel): df = df[(df['channel']==channel)][['time','integral']] td = timedelta(df) df = df.groupby(pd.cut(df['integral'],bins=500)).agg('count').rename(columns={'integral' : 'Count'}).reset_index() df = df.rename(columns={'integral' : 'energy'}) df['energy'] = df['energy'].astype('str') df['energy'] = df['energy'].str.split(',').str[0].str.split('.').str[0].str[1:].astype('int') df = df[['energy','Count']] df['Count'] = df['Count']/(td) return df def plot_log_spectra(df,channel): df_spec = specdf(df[df.error==0],channel) df_spec_e = specdf(df[df.error!=0],channel) bins = str((df_spec['energy'].max()-df_spec['energy'].min())/500) plt.figure() ax = df_spec.plot(x='energy',y='Count',logy=True) df_spec_e.plot(x='energy',y='Count',logy=True, ax = ax) ax.legend(['Error free emissions','With error']) plt.ylabel('Rate (Hz) / ' +bins+' KeV' ) plt.xlabel('Energy (KeV)') plt.savefig(plotoutDir+'/log_spectrum_channel'+str(channel)+'.png') plt.close() return def plot_spectra(df,channel): if channel == 4 or channel == 5: return df_spec = specdf(df[df.error==0],channel) df_mc,lims = get_mc_arr(channel) bins = str((df_spec['energy'].max()-df_spec['energy'].min())/500) df_spec = df_spec[(df_spec['energy'] >= lims[0]) & (df_spec['energy'] <= lims[1])] df_mc = df_mc[(df_mc['energy'] >= lims[0]) & (df_mc['energy'] <= lims[1])] df_mc['Count'] = (df_spec['Count'].max()/df_mc['Count'].max())*df_mc['Count'] plt.figure() ax = df_spec.plot(x='energy',y='Count') df_mc.plot(x='energy',y='Count', ax = ax) ax.legend(['Experimental Peaks','Simulated Peaks']) plt.ylabel('Rate (Hz) / ' +bins+' KeV' ) plt.xlabel('Energy (KeV)') plt.savefig(plotoutDir+'/mc'+str(channel)+'.png') plt.close() return def plot_ana_rates(channel): #if chn == 4 or chn == 5: #return plt.figure() df_ana[df_ana.channel==channel].plot(x='time',y='rate',kind='scatter') plt.savefig(plotoutDir+'/rate_ana_channel'+str(channel)+'.png') plt.close() return ### Fetches processed and analyzed dataframes from root sources dataframe = append_dfs() df_ana = read_root(mostRecentDir.split('mx_b')[0] + "analysis/ANA_" + mostRecentDir.split('/')[-2] + '.root', columns = ['rate','drate','time','channel','e']) ## Energy filter ( energy > 0 KeV ) dataframe = dataframe[dataframe.integral > 0] for chn in range(0,8): plot_spectra(dataframe,chn) plot_log_spectra(dataframe,chn)
import os import copy import math import numpy as np import basis.robot_math as rm import robot_sim._kinematics.jlchain as jl import robot_sim.manipulators.manipulator_interface as mi class IRB14050(mi.ManipulatorInterface): def __init__(self, pos=np.zeros(3), rotmat=np.eye(3), homeconf=np.zeros(7), name='irb14050', enable_cc=True): super().__init__(pos=pos, rotmat=rotmat, name=name) this_dir, this_filename = os.path.split(__file__) self.jlc = jl.JLChain(pos=pos, rotmat=rotmat, homeconf=homeconf, name=name) # seven joints, n_jnts = 7+2 (tgt ranges from 1-7), nlinks = 7+1 jnt_safemargin = math.pi / 18.0 # self.jlc.jnts[1]['loc_pos'] = np.array([0.05355, -0.0725, 0.41492]) # self.jlc.jnts[1]['loc_rotmat'] = rm.rotmat_from_euler(-0.9795, -0.5682, -2.3155) self.jlc.jnts[1]['loc_pos'] = np.array([0., 0., 0.]) self.jlc.jnts[1]['motion_rng'] = [-2.94087978961 + jnt_safemargin, 2.94087978961 - jnt_safemargin] self.jlc.jnts[2]['loc_pos'] = np.array([0.03, 0.0, 0.1]) self.jlc.jnts[2]['loc_rotmat'] = rm.rotmat_from_euler(1.57079632679, 0.0, 0.0) self.jlc.jnts[2]['motion_rng'] = [-2.50454747661 + jnt_safemargin, 0.759218224618 - jnt_safemargin] self.jlc.jnts[3]['loc_pos'] = np.array([-0.03, 0.17283, 0.0]) self.jlc.jnts[3]['loc_rotmat'] = rm.rotmat_from_euler(-1.57079632679, 0.0, 0.0) self.jlc.jnts[3]['motion_rng'] = [-2.94087978961 + jnt_safemargin, 2.94087978961 - jnt_safemargin] self.jlc.jnts[4]['loc_pos'] = np.array([-0.04188, 0.0, 0.07873]) self.jlc.jnts[4]['loc_rotmat'] = rm.rotmat_from_euler(1.57079632679, -1.57079632679, 0.0) self.jlc.jnts[4]['motion_rng'] = [-2.15548162621 + jnt_safemargin, 1.3962634016 - jnt_safemargin] self.jlc.jnts[5]['loc_pos'] = np.array([0.0405, 0.16461, 0.0]) self.jlc.jnts[5]['loc_rotmat'] = rm.rotmat_from_euler(-1.57079632679, 0.0, 0.0) self.jlc.jnts[5]['motion_rng'] = [-5.06145483078 + jnt_safemargin, 5.06145483078 - jnt_safemargin] self.jlc.jnts[6]['loc_pos'] = np.array([-0.027, 0, 0.10039]) self.jlc.jnts[6]['loc_rotmat'] = rm.rotmat_from_euler(1.57079632679, 0.0, 0.0) self.jlc.jnts[6]['motion_rng'] = [-1.53588974176 + jnt_safemargin, 2.40855436775 - jnt_safemargin] self.jlc.jnts[7]['loc_pos'] = np.array([0.027, 0.029, 0.0]) self.jlc.jnts[7]['loc_rotmat'] = rm.rotmat_from_euler(-1.57079632679, 0.0, 0.0) self.jlc.jnts[7]['motion_rng'] = [-3.99680398707 + jnt_safemargin, 3.99680398707 - jnt_safemargin] # links self.jlc.lnks[1]['name'] = "link_1" self.jlc.lnks[1]['mesh_file'] = os.path.join(this_dir, "meshes", "link_1.stl") self.jlc.lnks[1]['rgba'] = [.5, .5, .5, 1] self.jlc.lnks[2]['name'] = "link_2" self.jlc.lnks[2]['mesh_file'] = os.path.join(this_dir, "meshes", "link_2.stl") self.jlc.lnks[2]['rgba'] = [.929, .584, .067, 1] self.jlc.lnks[3]['name'] = "link_3" self.jlc.lnks[3]['mesh_file'] = os.path.join(this_dir, "meshes", "link_3.stl") self.jlc.lnks[3]['rgba'] = [.7, .7, .7, 1] self.jlc.lnks[4]['name'] = "link_4" self.jlc.lnks[4]['mesh_file'] = os.path.join(this_dir, "meshes", "link_4.stl") self.jlc.lnks[4]['rgba'] = [0.180, .4, 0.298, 1] self.jlc.lnks[5]['name'] = "link_5" self.jlc.lnks[5]['mesh_file'] = os.path.join(this_dir, "meshes", "link_5.stl") self.jlc.lnks[5]['rgba'] = [.7, .7, .7, 1] self.jlc.lnks[6]['name'] = "link_6" self.jlc.lnks[6]['mesh_file'] = os.path.join(this_dir, "meshes", "link_6.stl") self.jlc.lnks[6]['rgba'] = [0.180, .4, 0.298, 1] self.jlc.lnks[7]['name'] = "link_7" # self.jlc.lnks[7]['mesh_file'] = os.path.join(this_dir, "meshes", "link_7.stl") # not really needed to visualize # self.jlc.lnks[7]['rgba'] = [.5,.5,.5,1] # reinitialization self.jlc.reinitialize() # collision detection if enable_cc: self.enable_cc() def enable_cc(self): super().enable_cc() self.cc.add_cdlnks(self.jlc, [1, 2, 3, 4, 5, 6]) activelist = [self.jlc.lnks[1], self.jlc.lnks[2], self.jlc.lnks[3], self.jlc.lnks[4], self.jlc.lnks[5], self.jlc.lnks[6]] self.cc.set_active_cdlnks(activelist) fromlist = [self.jlc.lnks[1]] intolist = [self.jlc.lnks[5], self.jlc.lnks[6]] self.cc.set_cdpair(fromlist, intolist) if __name__ == '__main__': import copy import time import copy import visualization.panda.world as wd import modeling.geometric_model as gm base = wd.World(cam_pos=[1, 0, 1], lookat_pos=[0, 0, 0]) gm.gen_frame().attach_to(base) manipulator_instance = IRB14050(enable_cc=True) manipulator_instance.fk( jnt_values=[0, 0, manipulator_instance.jnts[3]['motion_rng'][1] / 2, manipulator_instance.jnts[4]['motion_rng'][1], 0, 0, 0]) manipulator_meshmodel = manipulator_instance.gen_meshmodel() manipulator_meshmodel.attach_to(base) manipulator_instance.gen_stickmodel().attach_to(base) manipulator_instance.show_cdprimit() tic = time.time() print(manipulator_instance.is_collided()) toc = time.time() print(toc - tic) manipulator_instance2 = manipulator_instance.copy() # manipulator_instance2.disable_localcc() manipulator_instance2.fix_to(pos=np.array([.2, .2, 0.2]), rotmat=np.eye(3)) manipulator_instance2.fk( jnt_values=[0, 0, manipulator_instance.jnts[3]['motion_rng'][1] / 2, manipulator_instance.jnts[4]['motion_rng'][1]*1.1, manipulator_instance.jnts[5]['motion_rng'][1], 0, 0]) manipulator_meshmodel2 = manipulator_instance2.gen_meshmodel() manipulator_meshmodel2.attach_to(base) manipulator_instance2.show_cdprimit() tic = time.time() print(manipulator_instance2.is_collided()) toc = time.time() print(toc - tic) base.run()
# -*- coding: utf-8 -*- from collections import namedtuple from inspect import isclass attr_type_to_column = { int: "ival", float: "fval", basestring: "tval", str: "tval", # TODO: add other python subtype of basestring. bool: "bval", } _op_val_typecheck = { "==": [basestring, int, float, bool], "=": [basestring, int, float, bool], "!=": [basestring, int, float, bool], "<=": [int, float], ">=": [int, float], ">": [int, float], "<": [int, float], } def valid_op_val(op, val): return any(map(lambda t: isinstance(val, t), _op_val_typecheck[op])) class Attribute(namedtuple('Attribute', ['key', 'op', 'value'])): def __new__(cls, key, op=None, value=None): # xor to see if either op or value alone wasn't provided. if bool(op is None) ^ bool(value is None): raise ValueError("You need to supply both the operator and the " + "value as parameters or none of them.") check_args(key, instance=basestring, exception=True) if op and value and not valid_op_val(op, value): raise ValueError("Incompatiblity between op {} and value {}.". format(op, value)) inst = super(Attribute, cls).__new__(cls, key, op, value) if value is not None: column = attr_type_to_column[type(value)] setattr(inst, 'column', column) return inst class AttrDict(dict): def __init__(self, *args, **kwargs): super(AttrDict, self).__init__(*args, **kwargs) self.__dict__ = self def check_args(arguments, instance=[], subclass=[], exception=False): if not isinstance(arguments, (list, tuple)): arguments = [arguments] if not isinstance(instance, list): instance = [instance] if not isinstance(subclass, list): subclass = [subclass] def checker(var): instance_check = map(lambda instance: isinstance(var, instance), instance) subclass_check = [] if isclass(var): subclass_check = map(lambda sub: issubclass(var, sub), subclass) return any(instance_check + subclass_check) results = map(checker, arguments) correct = all(results) if not correct and exception: error_string = ", ".join(map(lambda e: e.__name__, instance + subclass)) raise TypeError("The arguments need to be of the following type: {}". format(error_string)) return correct
is_valid = True while is_valid: password = int(input()) if password == 2002: print("Acesso Permitido") is_valid =False else: print("Senha Invalida")
import torch from torch import nn # import torch.nn.functional as F from train.helpers import * # inspired by fastai course class BCE_Loss(nn.Module): def __init__(self, n_classes, device): super().__init__() self.n_classes = n_classes self.device = device self.id2idx = {1: 0, 3: 1, 100: 2} def forward(self, pred, targ): ''' pred - tensor of shape anchors x n_classes targ - tensor of shape anchors ''' t = [] for clas_id in targ: bg = [0] * self.n_classes bg[self.id2idx[clas_id.item()]] = 1 t.append(bg) t = torch.FloatTensor(t).to(self.device) weight=self.get_weight(pred, t) return torch.nn.functional.binary_cross_entropy_with_logits(pred, t, weight) def get_weight(self, x, t): alpha, gamma = 0.9, 2. p = x.detach() # confidence of prediction pt = p*t + (1-p)*(1-t) # non-background / background weight w = alpha*t + (1-alpha)*(1-t) # complete weighing factor return w * ((1-pt).pow(gamma)) def ssd_1_loss(pred_bbox, pred_class, gt_bbox, gt_class, anchors, grid_sizes, device): # make network outputs same as gt bbox format pred_bbox = actn_to_bb(pred_bbox, anchors, grid_sizes) # compute IOU for obj x anchor overlaps = jaccard(gt_bbox, anchors) # map each anchor to the highest IOU obj, gt_idx - ids of mapped objects matched_gt_bbox, matched_gt_class_ids, pos_idx = map_to_ground_truth( overlaps, gt_bbox, gt_class) loc_loss = ((pred_bbox[pos_idx] - matched_gt_bbox).abs()).mean() loss_f = BCE_Loss(3, device) class_loss = loss_f(pred_class, matched_gt_class_ids) return loc_loss, class_loss def ssd_loss(pred, targ, anchors, grid_sizes, device, params): ''' args: pred - model output - two tensors of dim anchors x 4 and anchors x n_classes in a list targ - ground truth - two tensors of dim #obj x 4 and #obj in a list anchors will be mappend to overlapping GT bboxes, thus feature map cells corresponding to those anchors will have to predict those gt bboxes ''' localization_loss, classification_loss = 0., 0. # computes the loss for each image in the batch for idx in range(pred[0]): pred_bbox, pred_class = pred[0][idx], pred[1][idx] gt_bbox, gt_class = targ[0][idx].to(device), targ[1][idx].to(device) l_loss, c_loss = ssd_1_loss(pred_bbox, pred_class, gt_bbox, gt_class, anchors, grid_sizes, device) localization_loss += l_loss classification_loss += c_loss return localization_loss, classification_loss
import pytest from django.core.exceptions import ImproperlyConfigured from esteid.constants import Languages @pytest.mark.parametrize( "lang_code, result", [ *[(code.upper(), code) for code in Languages.ALL], *[(code.lower(), code) for code in Languages.ALL], *[(alpha2.upper(), code) for alpha2, code in Languages._MAP_ISO_639_1_TO_MID.items()], *[(alpha2.lower(), code) for alpha2, code in Languages._MAP_ISO_639_1_TO_MID.items()], # These tests duplicate the ones above, just for clarity here. ("et", "EST"), ("est", "EST"), ("ET", "EST"), ("EST", "EST"), (None, ImproperlyConfigured("Language should be one of .+, got `None`")), ("whatever", ImproperlyConfigured("Language should be one of .+, got `whatever`")), (object, ImproperlyConfigured("Language should be one of .+, got `<class 'object'>`")), ], ) def test_languages_identify_language(lang_code, result): if isinstance(result, Exception): with pytest.raises(type(result), match=result.args[0]): Languages.identify_language(lang_code) else: assert Languages.identify_language(lang_code) == result
# https://oj.leetcode.com/problems/spiral-matrix-ii/ class Solution: # @return a list of lists of integer def generateMatrix(self, n): matrix = [[0]*n for i in xrange(n)] next = 1 for k in xrange(n/2): for j in xrange(k, n-1-k): matrix[k][j] = next next += 1 for i in xrange(k, n-1-k): matrix[i][n-1-k] = next next += 1 for j in xrange(k, n-1-k): matrix[n-1-k][n-1-j] = next next += 1 for i in xrange(k, n-1-k): matrix[n-1-i][k] = next next += 1 if n % 2 == 1: matrix[n/2][n/2] = next return matrix s = Solution() print s.generateMatrix(1) print s.generateMatrix(2) print s.generateMatrix(3)
#writing functions to be called from different notebooks, making the code easier to read import os import glob import pandas as pd #TODO creat a nice function that saves a file summarizing the data outputs as graphs from cellprofiler #def DataCheckPlotting(): def ImportData_NUC_CYTO(cp_output_dir): #use glob to pull the common filename from the csv files, call this the experiment name #import glob #import os exp_name = os.path.basename(glob.glob(cp_output_dir + '/*_Image.csv',recursive=True)[0])[:-10] print(f'EXPERIMENT NAME: {exp_name}') #create a folder to export data from the CNN cnn_export_folder = f"_IMGexportforCNN_{exp_name}" os.makedirs(cnn_export_folder, exist_ok=True) #generate the other cellprofiler output filenames nuc_csv = f"{exp_name}_NUC_DAPI.csv" cyto_csv = f"{exp_name}_Cytoplasm.csv" image_csv = f"{exp_name}_Image.csv" print("\nIMPORTED AND MERGED THE FOLLOWING FILES:", nuc_csv, cyto_csv, image_csv, sep="\n - ") #import these files as datafames using pandas #import pandas as pd #nucleus data df_nuc = pd.read_csv(os.path.join(cp_output_dir, nuc_csv), na_filter=True) df_nuc.set_index("ImageNumber", inplace=True) #cytoplasm data df_cyto = pd.read_csv(os.path.join(cp_output_dir, cyto_csv), na_filter=True) df_cyto.set_index("ImageNumber", inplace=True) #image info df_image = pd.read_csv(os.path.join(cp_output_dir, image_csv), na_filter=True) df_image.set_index("ImageNumber", inplace=True) #then extract only the image urls from this df_image_url = df_image.filter(regex=r'^URL_', axis=1) #this will select any columns starting with "URL_" #combine these dataframes together #merge nucleus data with urls df_combined_data = df_nuc.merge(df_image_url, left_on='ImageNumber', right_on='ImageNumber', how='outer') #merge this with cytoplasm data and differentiate columns from the two datasets as "_NUC" and "_CYTO" df_combined_data = df_combined_data.merge(df_cyto, left_on=["ImageNumber", "ObjectNumber"], right_on=["ImageNumber", "Parent_NUC_DAPI"], how="outer", suffixes=('_NUC', '_CYTO')) #we can also just look at the raw number of rows in the dataframe to see how many nuclei we've identified print(f'\nDETECTED NUCLEI: {df_combined_data.shape[0]:,.0f}') return(df_combined_data, df_image_url,exp_name); def GenerateIDsandCoords(df_combined_data, Metadata_for_ID): df_combined_data.reset_index(inplace=True) df_combined_data.rename(columns={'ObjectNumber_NUC':'NUC_ID'}, inplace=True) df_combined_data.dropna(subset=['NUC_ID'], inplace=True) #conversion to string for concatenation ### CODE CAN BE IMPROVED ### df_combined_data["NUC_ID"] = df_combined_data["NUC_ID"].astype(float).astype(int).astype(str) df_combined_data["ImageNumber"] = df_combined_data["ImageNumber"].astype(float).astype(int).astype(str) df_combined_data['Metadata_date_NUC'] = df_combined_data['Metadata_date_NUC'].astype(float).astype(int).astype(str) df_combined_data['Metadata_experiment_NUC'] = df_combined_data['Metadata_experiment_NUC'].astype(float).astype(int).astype(str) # TODO: if this is a string and not a number, then make it an float then int then string. df_combined_data['Metadata_for_ID'] = df_combined_data[Metadata_for_ID].astype(float).astype(int).astype(str) df_combined_data["Unique_ID"] = df_combined_data['Metadata_experiment_NUC'].str.cat( df_combined_data[['Metadata_date_NUC', 'Metadata_biorep_NUC','Metadata_for_ID','ImageNumber','NUC_ID']] , sep="_") print(f'EXAMPLE IDS: {df_combined_data["Unique_ID"][1]}') return(df_combined_data); def IDsandCoords_IMGexport(df_merge_OUTPUT,C1,C2,C3,exp_name): df_merge_OUTPUT['NUC_x0'] = df_merge_OUTPUT[('Location_Center_X_NUC')]*8 #correcting for downscaling df_merge_OUTPUT['NUC_y0'] = df_merge_OUTPUT[('Location_Center_Y_NUC')]*8 #correcting for downscaling df_merge_OUTPUT['CYTO_x0'] = df_merge_OUTPUT[('Location_CenterMassIntensity_X_gB_small')]*8 #correcting for downscaling df_merge_OUTPUT['CYTO_y0'] = df_merge_OUTPUT[('Location_CenterMassIntensity_Y_gB_small')]*8 #correcting for downscaling df_merge_OUTPUT['URL_C1'] = df_merge_OUTPUT[C1] #this will be red in imageJ df_merge_OUTPUT['URL_C2'] = df_merge_OUTPUT[C2] #this will be green in imageJ df_merge_OUTPUT['URL_C3'] = df_merge_OUTPUT[C3] #this will be blue in imageJ df_merge_EXPORT= df_merge_OUTPUT[["Unique_ID", 'NUC_x0','NUC_y0','URL_C1','URL_C2','URL_C3','AreaShape_Orientation','CYTO_x0','CYTO_y0']] df_merge_EXPORT.to_csv(f'{exp_name}_IDsandCoords.csv', index=False) print(f'Exported Nucleus IDs and Coordinates into a csv named: {exp_name}_IDsandCoords.csv')
# http://flask.pocoo.org/docs/1.0/api/#api # $ export FLASK_APP=flask_demo.py # $ export FLASK_ENV=development # $ flask run # $ flask run -h <ip> -p <port> # $ python -m flask run from flask import Flask, request, jsonify, abort app = Flask(__name__) @app.errorhandler(400) def bad_json(error): return 'Error parsing JSON', 400 # no trailing slash, 404 if client includes # if trailing slash and client does not include, redirect @app.route('/hello') def hello_world(): #print(f"client's user-agent: {request.headers.get('user-agent')}") app.logger.debug(f"client's user-agent: {request.headers.get('user-agent')}") return 'Hello, World!' # variable rules- string, int, float, path, uuid @app.route('/users/<int:user_id>', methods=['POST', 'GET']) def show_user(user_id): if request.method == 'POST': if request.json is None: abort(400) else: return jsonify(success=True), 201 else: return jsonify(_id=user_id)
# -*- coding: utf-8 -*- # # Copyright 2019 Google LLC. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """The unregister-cluster command for removing clusters from the Hub.""" from __future__ import absolute_import from __future__ import division from __future__ import unicode_literals from apitools.base.py import exceptions as apitools_exceptions from googlecloudsdk.calliope import base from googlecloudsdk.command_lib.container.hub import util as hub_util from googlecloudsdk.command_lib.util.apis import arg_utils from googlecloudsdk.core import exceptions from googlecloudsdk.core import log class UnregisterCluster(base.DeleteCommand): r"""Unregisters a cluster from Google Cloud Platform. This command unregisters a cluster referenced from a kubeconfig file from Google Cloud Platform. It also removes the Connect agent installation from the Cluster. ## EXAMPLES Unregister a cluster referenced from the default kubeconfig file: $ {command} --context=my-cluster-context Unregister a cluster referenced from a specific kubeconfig file: $ {command} \ --kubeconfig-file=/home/user/custom_kubeconfig \ --context=my-cluster-context """ @classmethod def Args(cls, parser): hub_util.AddCommonArgs(parser) def Run(self, args): project = arg_utils.GetFromNamespace(args, '--project', use_defaults=True) kube_client = hub_util.KubernetesClient(args) registered_project = hub_util.GetMembershipCROwnerID(kube_client) authorized_projects = hub_util.UserAccessibleProjectIDSet() if registered_project: if registered_project not in authorized_projects: raise exceptions.Error( 'The cluster is already registered to [{}], which you are not ' 'authorized to access.'.format(registered_project)) elif registered_project != project: raise exceptions.Error( 'This cluster is registered to another project [{}]. ' 'Please unregister this cluster from the correct project:\n\n' ' gcloud {}container hub unregister-cluster --project {} --context {}' .format(registered_project, hub_util.ReleaseTrackCommandPrefix(self.ReleaseTrack()), registered_project, args.context)) if project not in authorized_projects: raise exceptions.Error( 'The project you are attempting to register with [{}] either ' 'doesn\'t exist or you are not authorized to access it.'.format( project)) uuid = hub_util.GetClusterUUID(kube_client) try: registered_membership_project = hub_util.ProjectForClusterUUID( uuid, [project, registered_project]) except apitools_exceptions.HttpNotFoundError as e: raise exceptions.Error( 'Could not access Memberships API. Is your project whitelisted for ' 'API access? Underlying error: {}'.format(e)) if registered_membership_project and project != registered_membership_project: raise exceptions.Error( 'This cluster is registered to another project [{}]. ' 'Please unregister this cluster from the appropriate project:\n\n' ' gcloud {}container hub unregister-cluster --project {} --context {}' .format(registered_membership_project, hub_util.ReleaseTrackCommandPrefix(self.ReleaseTrack()), registered_membership_project, args.context)) if not registered_membership_project: log.status.Print( 'Membership for [{}] was not found. It may already have been ' 'deleted, or it may never have existed. You can safely run the ' '`register-cluster` command again for this cluster.'.format( args.context)) # There is no Membership for this cluster, but there is a Membership CR. # We can safely remove the Membership CR, so users can register to another # hub without issue. if registered_project: hub_util.DeleteMembershipResources(kube_client) return hub_util.DeleteConnectNamespace(args) try: name = 'projects/{}/locations/global/memberships/{}'.format(project, uuid) hub_util.DeleteMembership(name) hub_util.DeleteMembershipResources(kube_client) except apitools_exceptions.HttpUnauthorizedError as e: raise exceptions.Error( 'You are not authorized to unregister clusters from project [{}]. ' 'Underlying error: {}'.format(project, e))
import pandas as pd import geojson as gj import plotly.express as px import urllib.request import dash # from dash import dcc # from dash import html import dash_core_components as dcc import dash_html_components as html app = dash.Dash(__name__) server = app.server # # # # # DATA # # # # # # # loading dataframe # lopip freeze > requirements.txtading data data_path = 'https://github.com/sebastian-konicz/covid-dashboard/raw/main/data/interim/vaccination_data/vaccinations_county_20211003.xlsx' data = pd.read_excel(data_path, engine='openpyxl') # restricting dataframe data = data[['teryt', 'powiat', '%_zaszczepieni']] # reshaping teryt data['teryt'] = data['teryt'].apply(lambda x: str(x).zfill(4)) # loading geojson jsonurl = 'https://github.com/sebastian-konicz/covid-dashboard/raw/main/data/interim/geo/geo_county.geojson' with urllib.request.urlopen(jsonurl) as url: geojson = gj.load(url) # with open(jsonurl) as file: # geojson = gj.load(file) # geojson = gj.load(geo_path) # get the maximum value to cap displayed values max_log = data['%_zaszczepieni'].max() min_val = data['%_zaszczepieni'].min() max_val = int(max_log) + 1 fig = px.choropleth_mapbox(data, geojson=geojson, featureidkey='properties.JPT_KOD_JE', locations='teryt', color='%_zaszczepieni', color_continuous_scale=px.colors.diverging.RdBu, range_color=(min_val, max_val), mapbox_style="carto-positron", zoom=5, center={"lat": 52, "lon": 19}, opacity=0.5, ) fig.update_layout(margin={"r": 0, "t": 0, "l": 0, "b": 0}) fig.show() # # # # # # LAYOUT # # # # # # app.layout = html.Div([ html.H1('Mapa szczepień na COVID-19 w Polsce ', style={'textAlign': 'center'}), dcc.Graph( id='example-map', figure=fig ), ]) if __name__ == '__main__': app.run_server(debug=True)
import numpy as np print('------------------Aufgabe 1-----------------------') # strukturiertes Array mit 2 Spalten ( ID int32) und Produktpreis my_type = [('ID', np.int32), ('Preis', np.float64)] produkte = np.array([(12345, 670.89), (34567, 18.99), (78900, 250.00), (13579, 999.99)], dtype=my_type) # ProduktIDs ausgeben print(produkte['ID']) # erste Zeile ausgeben print(produkte[0]) # Artikelpreis in 3ten Zeile ausgeben print(produkte[2]['Preis']) print('------------------Aufgabe 2-----------------------') # neues Array erzeugen verkaufszahlen = np.array([3, 5, 2, 1]) # Einnahmen für jedes Produkt errechnen erlöse = produkte['Preis'] * verkaufszahlen # Ausgabe print('Erlöse pro Produkt : ', erlöse) print('Gesamterlös : ', erlöse.sum()) print('------------------Aufgabe 3,4 und 5-----------------------') time_temp_type = np.dtype([('time', [('h',int), ('min',int), ('sec',int)]), ('temperature',float)]) # Array füllen und Struktur zuordnen time_temp=np.array( [((11,42,17),20.8), ((13,19,3),23.2), ((14,50,29),24.6)],dtype=time_temp_type) print(time_temp) print(time_temp['time']) print(time_temp['time']['h']) print(time_temp['temperature']) with open("time_temp.csv","w") as fh: for row in time_temp: zeit = [f"{el:02d}" for el in row[0]] zeit = ":".join(zeit) fh.write(zeit+" "+str(row[1])+"\n")
import sed_eval import utils import pandas as pd from sklearn.preprocessing import binarize, MultiLabelBinarizer import sklearn.metrics as skmetrics import numpy as np def get_audio_tagging_df(df): return df.groupby('filename')['event_label'].unique().reset_index() def audio_tagging_results(reference, estimated): """audio_tagging_results. Returns clip-level F1 Scores :param reference: The ground truth dataframe as pd.DataFrame :param estimated: Predicted labels by the model ( thresholded ) """ if "event_label" in reference.columns: classes = reference.event_label.dropna().unique().tolist( ) + estimated.event_label.dropna().unique().tolist() encoder = MultiLabelBinarizer().fit([classes]) reference = get_audio_tagging_df(reference) estimated = get_audio_tagging_df(estimated) ref_labels, _ = utils.encode_labels(reference['event_label'], encoder=encoder) reference['event_label'] = ref_labels.tolist() est_labels, _ = utils.encode_labels(estimated['event_label'], encoder=encoder) estimated['event_label'] = est_labels.tolist() matching = reference.merge(estimated, how='outer', on="filename", suffixes=["_ref", "_pred"]) def na_values(val): if type(val) is np.ndarray: return val elif isinstance(val, list): return np.array(val) if pd.isna(val): return np.zeros(len(encoder.classes_)) return val ret_df = pd.DataFrame(columns=['label', 'f1', 'precision', 'recall']) if not estimated.empty: matching['event_label_pred'] = matching.event_label_pred.apply( na_values) matching['event_label_ref'] = matching.event_label_ref.apply(na_values) y_true = np.vstack(matching['event_label_ref'].values) y_pred = np.vstack(matching['event_label_pred'].values) ret_df.loc[:, 'label'] = encoder.classes_ for avg in [None, 'macro', 'micro']: avg_f1 = skmetrics.f1_score(y_true, y_pred, average=avg) avg_pre = skmetrics.precision_score(y_true, y_pred, average=avg) avg_rec = skmetrics.recall_score(y_true, y_pred, average=avg) # avg_auc = skmetrics.roc_auc_score(y_true, y_pred, average=avg) if avg == None: # Add for each label non pooled stats ret_df.loc[:, 'precision'] = avg_pre ret_df.loc[:, 'recall'] = avg_rec ret_df.loc[:, 'f1'] = avg_f1 # ret_df.loc[:, 'AUC'] = avg_auc else: # Append macro and micro results in last 2 rows ret_df = ret_df.append( { 'label': avg, 'precision': avg_pre, 'recall': avg_rec, 'f1': avg_f1, # 'AUC': avg_auc }, ignore_index=True) return ret_df def get_event_list_current_file(df, fname): """ Get list of events for a given filename :param df: pd.DataFrame, the dataframe to search on :param fname: the filename to extract the value from the dataframe :return: list of events (dictionaries) for the given filename """ event_file = df[df["filename"] == fname] if len(event_file) == 1: if pd.isna(event_file["event_label"].iloc[0]): event_list_for_current_file = [{"filename": fname}] else: event_list_for_current_file = event_file.to_dict('records') else: event_list_for_current_file = event_file.to_dict('records') return event_list_for_current_file def event_based_evaluation_df(reference, estimated, t_collar=0.200, percentage_of_length=0.2): """ Calculate EventBasedMetric given a reference and estimated dataframe :param reference: pd.DataFrame containing "filename" "onset" "offset" and "event_label" columns which describe the reference events :param estimated: pd.DataFrame containing "filename" "onset" "offset" and "event_label" columns which describe the estimated events to be compared with reference :return: sed_eval.sound_event.EventBasedMetrics with the scores """ evaluated_files = reference["filename"].unique() classes = [] classes.extend(reference.event_label.dropna().unique()) classes.extend(estimated.event_label.dropna().unique()) classes = list(set(classes)) event_based_metric = sed_eval.sound_event.EventBasedMetrics( event_label_list=classes, t_collar=t_collar, percentage_of_length=percentage_of_length, empty_system_output_handling='zero_score') for fname in evaluated_files: reference_event_list_for_current_file = get_event_list_current_file( reference, fname) estimated_event_list_for_current_file = get_event_list_current_file( estimated, fname) event_based_metric.evaluate( reference_event_list=reference_event_list_for_current_file, estimated_event_list=estimated_event_list_for_current_file, ) return event_based_metric def segment_based_evaluation_df(reference, estimated, time_resolution=1.): evaluated_files = reference["filename"].unique() classes = [] classes.extend(reference.event_label.dropna().unique()) classes.extend(estimated.event_label.dropna().unique()) classes = list(set(classes)) segment_based_metric = sed_eval.sound_event.SegmentBasedMetrics( event_label_list=classes, time_resolution=time_resolution) for fname in evaluated_files: reference_event_list_for_current_file = get_event_list_current_file( reference, fname) estimated_event_list_for_current_file = get_event_list_current_file( estimated, fname) segment_based_metric.evaluate( reference_event_list=reference_event_list_for_current_file, estimated_event_list=estimated_event_list_for_current_file) return segment_based_metric def compute_metrics(valid_df, pred_df, time_resolution=1.): metric_event = event_based_evaluation_df(valid_df, pred_df, t_collar=0.200, percentage_of_length=0.2) metric_segment = segment_based_evaluation_df( valid_df, pred_df, time_resolution=time_resolution) return metric_event, metric_segment def roc(y_true, y_pred, average=None): return skmetrics.roc_auc_score(y_true, y_pred, average=average) def mAP(y_true, y_pred, average=None): return skmetrics.average_precision_score(y_true, y_pred, average=average) def precision_recall_fscore_support(y_true, y_pred, average=None): return skmetrics.precision_recall_fscore_support(y_true, y_pred, average=average) def tpr_fpr(y_true, y_pred): fpr, tpr, thresholds = skmetrics.roc_curve(y_true, y_pred) return fpr, tpr, thresholds def obtain_error_rates_alt(y_true, y_pred, threshold=0.5): speech_frame_predictions = binarize(y_pred.reshape(-1, 1), threshold=threshold) tn, fp, fn, tp = skmetrics.confusion_matrix( y_true, speech_frame_predictions).ravel() p_miss = 100 * (fn / (fn + tp)) p_fa = 100 * (fp / (fp + tn)) return p_fa, p_miss def confusion_matrix(y_true, y_pred): return skmetrics.confusion_matrix(y_true, y_pred) def obtain_error_rates(y_true, y_pred, threshold=0.5): negatives = y_pred[np.where(y_true == 0)] positives = y_pred[np.where(y_true == 1)] Pfa = np.sum(negatives >= threshold) / negatives.size Pmiss = np.sum(positives < threshold) / positives.size return Pfa, Pmiss
""" Support for Meteobridge SmartEmbed This component will read the local weatherstation data and create Binary sensors for each type defined below. For a full description, go here: https://github.com/briis/hass-mbweather Author: Bjarne Riis """ import logging from datetime import timedelta import homeassistant.helpers.config_validation as cv import voluptuous as vol from homeassistant.components.binary_sensor import ( PLATFORM_SCHEMA, BinarySensorDevice, ) from homeassistant.const import ATTR_ATTRIBUTION, CONF_MONITORED_CONDITIONS, CONF_NAME from homeassistant.util import slugify from . import MBDATA from .const import ( DOMAIN, DEFAULT_ATTRIBUTION, ENTITY_ID_BINARY_SENSOR_FORMAT, ENTITY_UNIQUE_ID, ) DEPENDENCIES = ["mbweather"] _LOGGER = logging.getLogger(__name__) SENSOR_TYPES = { "raining": ["Raining", None, "mdi:water", "mdi:water-off"], "lowbattery": ["Battery Status", None, "mdi:battery-10", "mdi:battery"], "freezing": ["Freezing", None, "mdi:thermometer-minus", "mdi:thermometer-plus"], } PLATFORM_SCHEMA = PLATFORM_SCHEMA.extend( { vol.Required(CONF_MONITORED_CONDITIONS, default=list(SENSOR_TYPES)): vol.All( cv.ensure_list, [vol.In(SENSOR_TYPES)] ), vol.Optional(CONF_NAME, default=DOMAIN): cv.string, } ) async def async_setup_platform(hass, config, async_add_entities, _discovery_info=None): """Set up the MBWeather binary sensor platform.""" coordinator = hass.data[MBDATA]["coordinator"] if not coordinator.data: return name = slugify(config.get(CONF_NAME)) sensors = [] for sensor in config[CONF_MONITORED_CONDITIONS]: sensors.append(MBweatherBinarySensor(coordinator, sensor, name)) _LOGGER.debug("Binary ensor added: %s", sensor) async_add_entities(sensors, True) class MBweatherBinarySensor(BinarySensorDevice): """ Implementation of a MBWeather Binary Sensor. """ def __init__(self, coordinator, sensor, name): """Initialize the sensor.""" self.coordinator = coordinator self._sensor = sensor self._device_class = SENSOR_TYPES[self._sensor][1] self.entity_id = ENTITY_ID_BINARY_SENSOR_FORMAT.format(self._sensor) self._name = SENSOR_TYPES[self._sensor][0] self._unique_id = ENTITY_UNIQUE_ID.format(slugify(self._name).replace(" ", "_")) @property def unique_id(self): """Return a unique ID.""" return self._unique_id @property def name(self): """Return the name of the sensor.""" return self._name @property def is_on(self): """Return the state of the sensor.""" return self.coordinator.data[self._sensor] is True @property def icon(self): """Icon to use in the frontend.""" return ( SENSOR_TYPES[self._sensor][2] if self.coordinator.data[self._sensor] else SENSOR_TYPES[self._sensor][3] ) @property def device_class(self): """Return the device class of the sensor.""" return SENSOR_TYPES[self._sensor][1] @property def device_state_attributes(self): """Return the state attributes of the device.""" attr = {} attr[ATTR_ATTRIBUTION] = DEFAULT_ATTRIBUTION return attr async def async_added_to_hass(self): """When entity is added to hass.""" self.coordinator.async_add_listener(self.async_write_ha_state) async def async_will_remove_from_hass(self): """When entity will be removed from hass.""" self.coordinator.async_remove_listener(self.async_write_ha_state)
#! /usr/bin/env python3 # -*- coding: utf-8 -*- import re import time import random from decimal import * getcontext().prec = 30 def addDot(num): """Formats the number into a string and adds a '.' for every thousand (eg. 3000 -> 3.000) Parameters ---------- num : int integer number to format Returns ------- number : str a string representing that number with added dots for every thousand """ return '{0:,}'.format(int(num)).replace(',','.') def daysHoursMinutes(totalSeconds): """Formats the total number of seconds into days hours minutes (eg. 321454 -> 3D 17H) Parameters ---------- totalSeconds : int total number of seconds Returns ------- text : str formatted string (D H M) """ if totalSeconds == 0: return '0 s' dias = int(totalSeconds / Decimal(86400)) totalSeconds -= dias * Decimal(86400) horas = int(totalSeconds / Decimal(3600)) totalSeconds -= horas * Decimal(3600) minutos = int(totalSeconds / Decimal(60)) texto = '' if dias > 0: texto = str(dias) + 'D ' if horas > 0: texto = texto + str(horas) + 'H ' if minutos > 0 and dias == 0: texto = texto + str(minutos) + 'M ' return texto[:-1] def wait(seconds, maxrandom = 0): """This function will wait the provided number of seconds plus a random number of seconds between 0 and maxrandom Parameters ----------- seconds : int the number of seconds to wait for maxrandom : int the maximum number of additional seconds to wait for """ randomTime = random.randint(0, maxrandom) if seconds <= 0: return ratio = (1 + 5 ** 0.5) / 2 - 1 # 0.6180339887498949 comienzo = time.time() fin = comienzo + seconds restantes = seconds while restantes > 0: time.sleep(restantes * ratio) restantes = fin - time.time() time.sleep(randomTime) def getCurrentCityId(session): """ Parameters ---------- session : ikabot.web.session.Session """ html = session.get() return re.search(r'currentCityId:\s(\d+),', html).group(1)
# Copyright (c) 2020 NVIDIA Corporation. All rights reserved. # This work is licensed under the NVIDIA Source Code License - Non-commercial. Full # text can be found in LICENSE.md import sys, os import numpy as np import cv2 # This function is modeled off of P/R/F measure as described by Dave et al. (arXiv19) def multilabel_metrics(prediction, gt, num_classes): """ Computes F-Measure, Precision, Recall, IoU, #objects detected, #confident objects detected, #GT objects. It computes these measures only of objects, not background (0)/table (1). Uses the Hungarian algorithm to match predicted masks with ground truth masks. A "confident object" is an object that is predicted with more than 0.75 F-measure @param gt: a [H x W] numpy.ndarray with ground truth masks @param prediction: a [H x W] numpy.ndarray with predicted masks @return: a dictionary with the metrics """ precisions = np.zeros((num_classes, ), dtype=np.float32) recalls = np.zeros((num_classes, ), dtype=np.float32) f1s = np.zeros((num_classes, ), dtype=np.float32) count = np.zeros((num_classes, ), dtype=np.float32) # for each class for cls in range(num_classes): gt_mask = (gt == cls) pred_mask = (prediction == cls) A = np.logical_and(pred_mask, gt_mask) count_true = np.count_nonzero(A) count_pred = np.count_nonzero(pred_mask) count_gt = np.count_nonzero(gt_mask) # precision if count_pred > 0: precisions[cls] = float(count_true) / float(count_pred) # recall if count_gt > 0: recalls[cls] = float(count_true) / float(count_gt) count[cls] = 1 # F-measure if precisions[cls] + recalls[cls] != 0: f1s[cls] = (2 * precisions[cls] * recalls[cls]) / (precisions[cls] + recalls[cls]) return {'F-measure' : f1s, 'Precision' : precisions, 'Recall' : recalls, 'Count': count}
# -*- coding: utf-8 -*- """Unit test package for talklocal_python."""
"""A wrapper class that will hold the column values and recreate a model instance when needed.""" class ModelWrapper: def __init__(self, model_instance): self._model_instance = model_instance for key in self._model_instance.__table__.columns.keys(): this_val = getattr(self._model_instance, key) setattr(self, key, this_val) def reconnect_model(self): self._model_instance if __name__ == '__main__': import sqlalchemy as sqla from sqlalchemy import create_engine from sqlalchemy.orm import sessionmaker, declarative_base DATABASE_URI = 'sqlite:///:memory:' engine = create_engine(DATABASE_URI, pool_pre_ping=True) Base = declarative_base() class DummyModel(Base): __tablename__ = '__dummy_table__' id_ = sqla.Column(primary_key=True, type_=sqla.Integer) data = sqla.Column(sqla.TEXT) Base.metadata.create_all(engine) # original session: create a record, save it to the database, use the ModelWrapper sesmkr = sessionmaker(bind=engine) with sesmkr() as session0: dm0 = DummyModel() session0.add(dm0) session0.commit() wrp0 = ModelWrapper(dm0) pass # at this point, because of the wrp0(why?), dm0 is detached but accessible print(f'dm0 detached state: {dm0._sa_instance_state.detached}') # reattach to new session with sesmkr() as session1: dm0.data = 'words' session1.add(dm0) session1.commit() # wrp1 = ModelWrapper(dm0) # without this, will get detached instance error accessing columns dumdum = dm0 # this is not sufficient '''sqlalchemy.orm.exc.DetachedInstanceError: Instance <DummyModel at 0x1a7f6e5a550> is not bound to a Session; attribute refresh operation cannot proceed (Background on this error at: https://sqlalche.me/e/14/bhk3)''' pass # at this point, since wrp1 is commented out, dm0 is detached but not accessible
# -*- coding: utf-8 -*- """ Created on Thu Aug 6 18:29:13 2020 @author: Goutam Dadhich """ import sys INT_MAX = sys.maxsize # print(INT_MAX) # Finding Minimum Coins using Recursio def FindMinCoins_rec(coins, n, amt): if amt == 0: return 0 if amt < 0: return INT_MAX count = INT_MAX for i in range(0, n): res = FindMinCoins_rec(coins, n, amt-coins[i]) if res != INT_MAX: count = min(res+1, count) return count # Finding Minimum Coins using Dynamic programming def FindMinCoins_dp(coins, n, amt): T = [INT_MAX]*(amt+1) T[0] = 0 for i in range(1, amt+1): res = INT_MAX for j in range(0, n): if i-coins[j] >= 0: res = T[i - coins[j]] if res != INT_MAX: T[i] = min(res+1, T[i]) return T[amt] if __name__ == '__main__': coins = [1, 2, 3, 5, 7] n = len(coins) amt = 15 print('-'*10 + '*'*5 + '-'*10) print('Using Recurssion:- ') print('Minimum coins required :- ', FindMinCoins_rec(coins, n, amt)) print('-'*10 + '*'*5 + '-'*10) print('Using Recurssion:- ') print('Minimum coins required :- ', FindMinCoins_dp(coins, n, amt)) print('-'*10 + '*'*5 + '-'*10)
resp = 's' cont = soma = 0 list = [] while resp == 's': num = int(input('digite um número: ')) cont += 1 soma += num list.append(num) resp = input('Deseja continuar? [s/n]').lower().strip() print(f'Você digitou {cont} números\n' f'A média deles é {soma/cont}\n' f'O maior número é o {max(list)}\n' f'O menor número é o {min(list)}\n')
import streamlit as st from is_even_nn import * st.set_page_config(layout="centered", page_icon="🤖", page_title="Is it even?") st.title("IsEvenNN") st.write("A neural network that predicts if a number is even!") left, right = st.columns(2) form = left.form("input") number_input = form.text_input("Your number:") submit = form.form_submit_button("Submit number") if submit: evenNN = IsEvenNN() evenNN.net.load_state_dict(torch.load("isEvenModel.pt", map_location=torch.device("cpu"))) try: res, conf = evenNN.predict_single(number_input) message = f'{number_input} is {"" if res else "not "}even! (confidence {conf:.3f})' if res: right.success(message) else: right.error(message) except IndexError as ie: right.error(f"Failed to process \"{number_input}\" ({ie.__class__.__name__}: {ie})") except ValueError as ve: right.error(f"Failed to process \"{number_input}\" ({ve.__class__.__name__}: {ve})") except Exception as e: right.error(f"Failed to process \"{number_input}\" (Unknown Error)")
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations class Migration(migrations.Migration): dependencies = [ ('estore', '0003_auto_20151029_0013'), ] operations = [ migrations.RenameField( model_name='event', old_name='detail', new_name='event_detail', ), migrations.AddField( model_name='event', name='event_short', field=models.CharField(default=b'', max_length=300), preserve_default=True, ), migrations.AddField( model_name='event', name='map_url', field=models.CharField(default=b'invalid', max_length=200), preserve_default=True, ), ]
from __future__ import unicode_literals import frappe from frappe.model.document import Document from frappe.utils import flt, time_diff_in_hours, get_datetime, getdate, today, cint, add_days, get_link_to_form from frappe import _ from frappe.utils.xlsxutils import make_xlsx import json @frappe.whitelist() def send_statements(): email_list = frappe.db.get_values('Send Customer Statements Customers', {'parent': 'Send Customer Statements'}, ['customer_name','email','send_statement']) for customer_name, email, send_statement in email_list: if email is not None: if send_statement == "Yes": data = get_report_content(customer_name) if not data: return attachments = [{ 'fname': get_file_name(), 'fcontent': data }] frappe.sendmail( recipients = email, subject = "Customer Statement from Simply Garlic", message = "Good day. <br> Please find attached your latest statement from Simply Garlic", attachments = attachments, reference_doctype = "Report", reference_name="General Ledger" ) frappe.msgprint('Emails queued for sending') def get_report_content(customer_name): '''Returns file in for the report in given format''' # Borrowed code from frappe/email/doctype/auto_email_report/auto_email_report.py report = frappe.get_doc('Report', "General Ledger") custom_filter = {'company': "Horizon Global SA (Pty) Ltd", 'party_type': "Customer", 'party': customer_name, 'from_date': add_days(today(), -7),'to_date': today(), 'group_by': "Group by Voucher (Consolidated)"} columns, data = report.get_data(limit=100 or 100, user = "Administrator", filters = custom_filter, as_dict=True) # add serial numbers columns.insert(0, frappe._dict(fieldname='idx', label='', width='30px')) for i in range(len(data)): data[i]['idx'] = i+1 # For .xlsx spreadsheet_data = get_spreadsheet_data(columns, data) xlsx_file = make_xlsx(spreadsheet_data, "Auto Email Report") return xlsx_file.getvalue() # For .html # columns, data = make_links(columns, data) # return self.get_html_table(columns, data) <-------------Fails here....... see auto_email_report.py def get_spreadsheet_data(columns, data): out = [[_(df.label) for df in columns], ] for row in data: new_row = [] out.append(new_row) for df in columns: if df.fieldname not in row: continue new_row.append(frappe.format(row[df.fieldname], df, row)) return out def get_file_name(): return "{0}.{1}".format("Customer Statement".replace(" ", "-").replace("/", "-"), "xlsx") # return "{0}.{1}".format("Customer Statement".replace(" ", "-").replace("/", "-"), "html") # def make_links(columns, data): # for row in data: # for col in columns: # if col.fieldtype == "Link" and col.options != "Currency": # if col.options and row.get(col.fieldname): # row[col.fieldname] = get_link_to_form(col.options, row[col.fieldname]) # elif col.fieldtype == "Dynamic Link": # if col.options and row.get(col.fieldname) and row.get(col.options): # row[col.fieldname] = get_link_to_form(row[col.options], row[col.fieldname]) # # return columns, data
#!/usr/bin/env python # -*- coding: utf-8 -*- import json from alipay.aop.api.constant.ParamConstants import * class AnttechDataServiceBlockchainAccountQueryModel(object): def __init__(self): self._account_hash = None self._account_status = None self._at_tenant_name = None self._block_chain_id = None self._block_hash = None self._end_timestamp = None self._page_no = None self._page_size = None self._start_timestamp = None @property def account_hash(self): return self._account_hash @account_hash.setter def account_hash(self, value): self._account_hash = value @property def account_status(self): return self._account_status @account_status.setter def account_status(self, value): self._account_status = value @property def at_tenant_name(self): return self._at_tenant_name @at_tenant_name.setter def at_tenant_name(self, value): self._at_tenant_name = value @property def block_chain_id(self): return self._block_chain_id @block_chain_id.setter def block_chain_id(self, value): self._block_chain_id = value @property def block_hash(self): return self._block_hash @block_hash.setter def block_hash(self, value): self._block_hash = value @property def end_timestamp(self): return self._end_timestamp @end_timestamp.setter def end_timestamp(self, value): self._end_timestamp = value @property def page_no(self): return self._page_no @page_no.setter def page_no(self, value): self._page_no = value @property def page_size(self): return self._page_size @page_size.setter def page_size(self, value): self._page_size = value @property def start_timestamp(self): return self._start_timestamp @start_timestamp.setter def start_timestamp(self, value): self._start_timestamp = value def to_alipay_dict(self): params = dict() if self.account_hash: if hasattr(self.account_hash, 'to_alipay_dict'): params['account_hash'] = self.account_hash.to_alipay_dict() else: params['account_hash'] = self.account_hash if self.account_status: if hasattr(self.account_status, 'to_alipay_dict'): params['account_status'] = self.account_status.to_alipay_dict() else: params['account_status'] = self.account_status if self.at_tenant_name: if hasattr(self.at_tenant_name, 'to_alipay_dict'): params['at_tenant_name'] = self.at_tenant_name.to_alipay_dict() else: params['at_tenant_name'] = self.at_tenant_name if self.block_chain_id: if hasattr(self.block_chain_id, 'to_alipay_dict'): params['block_chain_id'] = self.block_chain_id.to_alipay_dict() else: params['block_chain_id'] = self.block_chain_id if self.block_hash: if hasattr(self.block_hash, 'to_alipay_dict'): params['block_hash'] = self.block_hash.to_alipay_dict() else: params['block_hash'] = self.block_hash if self.end_timestamp: if hasattr(self.end_timestamp, 'to_alipay_dict'): params['end_timestamp'] = self.end_timestamp.to_alipay_dict() else: params['end_timestamp'] = self.end_timestamp if self.page_no: if hasattr(self.page_no, 'to_alipay_dict'): params['page_no'] = self.page_no.to_alipay_dict() else: params['page_no'] = self.page_no if self.page_size: if hasattr(self.page_size, 'to_alipay_dict'): params['page_size'] = self.page_size.to_alipay_dict() else: params['page_size'] = self.page_size if self.start_timestamp: if hasattr(self.start_timestamp, 'to_alipay_dict'): params['start_timestamp'] = self.start_timestamp.to_alipay_dict() else: params['start_timestamp'] = self.start_timestamp return params @staticmethod def from_alipay_dict(d): if not d: return None o = AnttechDataServiceBlockchainAccountQueryModel() if 'account_hash' in d: o.account_hash = d['account_hash'] if 'account_status' in d: o.account_status = d['account_status'] if 'at_tenant_name' in d: o.at_tenant_name = d['at_tenant_name'] if 'block_chain_id' in d: o.block_chain_id = d['block_chain_id'] if 'block_hash' in d: o.block_hash = d['block_hash'] if 'end_timestamp' in d: o.end_timestamp = d['end_timestamp'] if 'page_no' in d: o.page_no = d['page_no'] if 'page_size' in d: o.page_size = d['page_size'] if 'start_timestamp' in d: o.start_timestamp = d['start_timestamp'] return o
def minimum_bribes(q): q = [p - 1 for p in q] bribes = 0 for i, p in enumerate(q): if p - i > 2: return None for j in range(max(p - 1, 0), i): if q[j] > p: bribes += 1 return bribes
import collections import math import logging import torch import copy import numpy as np from naslib.optimizers.core.metaclasses import MetaOptimizer from naslib.search_spaces.core.query_metrics import Metric from naslib.utils.utils import AttrDict, count_parameters_in_MB from naslib.utils.logging import log_every_n_seconds logger = logging.getLogger(__name__) class DEHB(MetaOptimizer): # training the models is not implemented using_step_function = False def __init__(self, config): super().__init__() # Hyperband related stuff self.config = config self.rounds = [] self.round_sizes = [] self.fidelities = [] if self.config.search_space in ["nasbench201", "nasbench211"]: self.max_budget = 512 # SH according to cosine decay self.min_budget = 12 self.eta = 3 # defines downsampling rate (default=3) self.enc_dim = 6 self.max_mutations = 1 self.crossover_prob = 0.5 self.top_n_percent = 0.3 self.mutate_prob = 0.1 elif self.config.search_space == "nasbench101": self.max_budget = 108 self.min_budget = 4 self.eta = 3 # defines downsampling rate (default=3) self.enc_dim = 26 self.max_mutations = 1 self.crossover_prob = 0.5 self.top_n_percent = 0.3 self.mutate_prob = 0.1 elif self.config.search_space == "darts": self.max_budget = 98 self.min_budget = 4 self.eta = 3 # defines downsampling rate (default=3) self.enc_dim = 32 self.max_mutations = 5 self.crossover_prob = 0.5 self.top_n_percent = 0.3 self.mutate_prob = 0.1 elif self.config.search_space == "nlp": self.max_budget = 50 self.min_budget = 3 self.eta = 3 # defines downsampling rate (default=3) self.enc_dim = 185 self.max_mutations = 8 self.crossover_prob = 0.8 self.top_n_percent = 0.3 self.mutate_prob = 0.2 else: raise NotImplementedError() self.de = dict() self._epsilon = 1e-6 self.pop_size = {} self.counter = 0 s_max = math.floor(math.log(self.max_budget / self.min_budget, self.eta) + self._epsilon) # set up round sizes, fidelities, and list of arches for s in reversed(range(s_max + 1)): self.rounds.append(s) round_sizes = [] fidelities = [] n = math.ceil((s_max + 1) * self.eta ** s / (s + 1) - self._epsilon) # initial number of configurations r = self.max_budget / self.eta**s # initial number of iterations to run configurations for for i in range(s + 1): n_i = math.floor(n / self.eta ** i + self._epsilon) r_i = min(math.floor(r * self.eta ** i + self._epsilon), config.search.fidelity) round_sizes.append(n_i) fidelities.append(r_i) self.pop_size[r_i] = self.pop_size.get(r_i, 0) + n_i self.round_sizes.append(round_sizes) self.fidelities.append(fidelities) for budget in self.fidelities[0][1:]: budget = min(budget, config.search.fidelity) self.de[budget] = {} self.de[budget]['promotions'] = collections.deque(maxlen=100) self.performance_metric = Metric.VAL_ACCURACY self.dataset = config.dataset self.history = torch.nn.ModuleList() self.epochs = self.compute_epochs() self.current_round = [] self.next_round = [] self.round_number = 0 self.prev_round = 0 self.counter = 0 self.process = 0 def adapt_search_space(self, search_space, scope=None, dataset_api=None): assert search_space.QUERYABLE, "Hyperband_simple is currently only implemented for benchmarks." self.search_space = search_space.clone() self.scope = scope if scope else search_space.OPTIMIZER_SCOPE self.dataset_api = dataset_api self.max_training_epoch = self.search_space.get_max_epochs() def compute_epochs(self): return self.round_sizes, self.rounds[::-1] def new_epoch(self, epoch, round, i): if self.process < i: # re-init for each new process self.current_round = [] self.next_round = [] self.round_number = 0 self.prev_round = 0 self.counter = 0 self.process = i if self.prev_round < round: # reset round_number for each new round self.prev_round = round self.round_number = 0 if epoch < self.round_sizes[round][0]: # sample random architectures model = torch.nn.Module() # hacky way to get arch and accuracy checkpointable model.arch = self.search_space.clone() budget = self.fidelities[round][0] if round == 0: model.arch.sample_random_architecture(dataset_api=self.dataset_api) else: if len(self.de[budget]['promotions']) > 0: print('promotion from budget: {}, length: {}'.format(budget, len(self.de[budget]['promotions']))) model = self.de[budget]['promotions'].pop() model = copy.deepcopy(model) arch = self.search_space.clone() arch.mutate(model.arch, dataset_api=self.dataset_api) model.arch = arch else: model.arch.sample_random_architecture(dataset_api=self.dataset_api) model.epoch = min(self.fidelities[round][0], self.max_training_epoch) model.accuracy = model.arch.query(self.performance_metric, self.dataset, epoch=model.epoch, dataset_api=self.dataset_api) self._update_history(model) self.next_round.append(model) else: if len(self.current_round) == 0: # if we are at the end of a round of hyperband, continue training only the best logger.info("Starting a new round: continuing to train the best arches") self.counter = 0 cutoff = math.ceil(self.round_sizes[round][self.round_number] * self.top_n_percent) self.current_round = sorted(self.next_round, key=lambda x: -x.accuracy)[:cutoff] self.round_number += 1 self.round_number = min(self.round_number, len(self.fidelities[round]) - 1) self.next_round = [] # train the next architecture model = self.current_round.pop() self.counter += 1 """ Note: technically we would just continue training this arch, but right now, just for simplicity, we treat it as if we start to train it again from scratch """ model = copy.deepcopy(model) if np.random.rand(1) < self.mutate_prob: candidate = model.arch.clone() for _ in range(self.max_mutations): arch_ = self.search_space.clone() arch_.mutate(candidate, dataset_api=self.dataset_api) candidate = arch_ mutant = candidate arch = self.search_space.clone() arch.crossover_bin(model.arch, mutant, self.enc_dim, self.crossover_prob, dataset_api=self.dataset_api) model.arch = arch model.epoch = min(self.fidelities[round][self.round_number], self.max_training_epoch) model.accuracy = model.arch.query(self.performance_metric, self.dataset, epoch=model.epoch, dataset_api=self.dataset_api) self.de[self.fidelities[round][self.round_number]]['promotions'].append(model) self._update_history(model) self.next_round.append(model) def _update_history(self, child): self.history.append(child) def get_final_architecture(self): # Returns the sampled architecture with the lowest validation error. best_arch = max(self.history, key=lambda x: x.accuracy) return best_arch.arch, best_arch.epoch def get_latest_architecture(self): # Returns the architecture from the most recent epoch latest_arch = self.history[-1] return latest_arch.arch, latest_arch.epoch def train_statistics(self): best_arch, best_arch_epoch = self.get_final_architecture() latest_arch, latest_arch_epoch = self.get_latest_architecture() return ( best_arch.query(Metric.TRAIN_ACCURACY, self.dataset, dataset_api=self.dataset_api, epoch=best_arch_epoch-1), best_arch.query(Metric.VAL_ACCURACY, self.dataset, dataset_api=self.dataset_api, epoch=best_arch_epoch), best_arch.query(Metric.TEST_ACCURACY, self.dataset, dataset_api=self.dataset_api, epoch=best_arch_epoch), latest_arch.query(Metric.TRAIN_TIME, self.dataset, dataset_api=self.dataset_api, epoch=latest_arch_epoch), ) def test_statistics(self): best_arch, epoch = self.get_final_architecture() return best_arch.query(Metric.RAW, self.dataset, dataset_api=self.dataset_api, epoch=epoch) def get_op_optimizer(self): raise NotImplementedError() def get_checkpointables(self): return {'model': self.history} def get_model_size(self): return count_parameters_in_MB(self.history)
# -*- coding: utf-8 -*- import os import json import unicodedata from sqlalchemy import func from cornice import Service from cornice.resource import resource from .models import AdminZoneFinance, DBSession, AdminZone, Stats as StatsModel, ADMIN_LEVEL_CITY from .maps import timemap_registry, MAPS_CONFIG city_search = Service(name='city_search', path='/city_search', description="city search") @city_search.get() def get_city(request): term = request.params['term'] term_ascii = unicodedata.normalize('NFKD', unicode(term)).encode('ascii', 'ignore').lower() results = DBSession.query(*City.az_columns)\ .filter(AdminZone.name % term_ascii)\ .filter(AdminZone.admin_level==ADMIN_LEVEL_CITY)\ .order_by(func.levenshtein(func.lower(AdminZone.name), term_ascii), AdminZone.population.desc())\ .limit(10).all() return {'results': [City.format_city_res(res) for res in results]} @resource(collection_path='/cities', path='/city/{id}') class City(object): az_columns = (AdminZone.id, AdminZone.name, AdminZone.code_department, func.ST_X(func.ST_Centroid(AdminZone.geometry)), func.ST_Y(func.ST_Centroid(AdminZone.geometry))) @staticmethod def format_city_res(result): return {'id': result[0], 'name': result[1], 'code_department': result[2], 'lng': result[3], 'lat': result[4]} def __init__(self, request): self.request = request def get(self): id = self.request.matchdict['id'] return {'results': self.format_city_res(DBSession.query(*self.az_columns).filter(AdminZone.id==id).first())} def collection_get(self): ids = self.request.params['ids'].split(',') return {'results': [self.format_city_res(res) for res in DBSession.query(*self.az_columns).filter(AdminZone.id.in_(ids)).all()]} @resource(collection_path='/timemaps', path='/timemap/{id}') class TimeMap(object): def __init__(self, request): self.request = request def get(self): id = self.request.matchdict['id'] return {'results': {'var_name': id, 'maps': [m.info for m in timemap_registry[id]]}} def collection_get(self): return {'results': [{'var_name': key, 'maps': [m.info for m in timemap_registry[key]]} for key in sorted(MAPS_CONFIG.keys())]} @resource(collection_path='/finance', path='/finance/{id}') class AZFinance(object): def __init__(self, request): self.request = request def get(self): id = self.request.matchdict['id'] results = DBSession.query(AdminZone.name, AdminZone.code_insee, AdminZone.code_department, AdminZoneFinance.year, AdminZoneFinance.data).join(AdminZoneFinance, AdminZone.id==AdminZoneFinance.adminzone_id).filter(AdminZone.id==id).order_by('year').all() return {'results': [{'name': res[0], 'year': res[3], 'data': res[4]} for res in results]} @resource(collection_path='/stats', path='/stat/{id}') class Stats(object): def __init__(self, request): self.request = request def get(self): id = self.request.matchdict['id'] stat = DBSession.query(StatsModel).filter(StatsModel.name==id).first() return {'results': {'mean_by_year': json.loads(stat.data['mean_by_year']), 'var_name': id}} def collection_get(self): stats = DBSession.query(StatsModel).all() return {'results': [{'mean_by_year': json.loads(stat.data['mean_by_year']), 'var_name': stat.name} for stat in stats]} # XXX: view set for development purpose only from pyramid.response import FileResponse def index(request): html_file = os.path.join(request.registry.settings['client_dir'], 'index.html') return FileResponse(html_file)
import argparse import json import logging import os import random import time import uuid from kafka import KafkaProducer CARD_NO= [ "2345796540876432", "7766554433221198", "9856342187654321", "7777744433667790" , "6538764975321765", "086543226688908"] TXN_CTRY = [ 'SG', 'TH', 'PH', 'MY', 'HK', 'BR', 'US', 'CA', 'IN' ] POS = [ '9100', '1234', '1111' ] TXN_TYPE = [ 'Purchase', 'ATM', 'MOBILE_CHG', 'cardReissue', 'addressChange' ] MERCH_ID = [ 'MERCH1','MERCH2','MERCH3' ] def generate_event(TXN_TS, CUST, cntr): millis = int(round(time.time() * 1000)) ret = { 'org': '1', 'product': 'V', 'cardNumber':CARD_NO[random.randint(0,5)], 'txnTS': millis, 'txnCntry': TXN_CTRY[random.randint(0,8)], 'txnType': TXN_TYPE[random.randint(0,4)], 'pos':POS[random.randint(0,2)], 'mcc': 'MCC', 'merchId': MERCH_ID[random.randint(0,2)], 'destCard':CARD_NO[random.randint(0,5)], 'txnAmt': 1000.0, 'transactionId':'TRAN'+str(cntr), "dataWeight1": "abcdefghijklmnopqrstuvwxyz0123456789", "dataWeight2": "abcdefghijklmnopqrstuvwxyz0123456789", "dataWeight3": "abcdefghijklmnopqrstuvwxyz0123456789", "dataWeight4": "abcdefghijklmnopqrstuvwxyz0123456789", "dataWeight5": "abcdefghijklmnopqrstuvwxyz0123456789", "dataWeight6": "abcdefghijklmnopqrstuvwxyz0123456789", "dataWeight7": "abcdefghijklmnopqrstuvwxyz0123456789", "dataWeight8": "abcdefghijklmnopqrstuvwxyz0123456789", "dataWeight9": "abcdefghijklmnopqrstuvwxyz0123456789", "dataWeight10": "abcdefghijklmnopqrstuvwxyz0123456789", "dataWeight11": "abcdefghijklmnopqrstuvwxyz0123456789", "dataWeight12": "abcdefghijklmnopqrstuvwxyz0123456789", "dataWeight13": "abcdefghijklmnopqrstuvwxyz0123456789", "dataWeight14": "abcdefghijklmnopqrstuvwxyz0123456789", "dataWeight15": "abcdefghijklmnopqrstuvwxyz0123456789", "dataWeight16": "abcdefghijklmnopqrstuvwxyz0123456789", "dataWeight17": "abcdefghijklmnopqrstuvwxyz0123456789", "dataWeight18": "abcdefghijklmnopqrstuvwxyz0123456789", "dataWeight19": "abcdefghijklmnopqrstuvwxyz0123456789", "dataWeight20": "abcdefghijklmnopqrstuvwxyz0123456789", "dataWeight21": "abcdefghijklmnopqrstuvwxyz0123456789", "dataWeight22": "abcdefghijklmnopqrstuvwxyz0123456789", "dataWeight23": "abcdefghijklmnopqrstuvwxyz0123456789", "dataWeight24": "abcdefghijklmnopqrstuvwxyz0123456789", "dataWeight25": "abcdefghijklmnopqrstuvwxyz0123456789", "dataWeight26": "abcdefghijklmnopqrstuvwxyz0123456789", "dataWeight27": "abcdefghijklmnopqrstuvwxyz0123456789", "dataWeight28": "abcdefghijklmnopqrstuvwxyz0123456789", "dataWeight29": "abcdefghijklmnopqrstuvwxyz0123456789", "dataWeight30": "abcdefghijklmnopqrstuvwxyz0123456789", "dataWeight31": "abcdefghijklmnopqrstuvwxyz0123456789", "dataWeight32": "abcdefghijklmnopqrstuvwxyz0123456789", "dataWeight33": "abcdefghijklmnopqrstuvwxyz0123456789", "dataWeight34": "abcdefghijklmnopqrstuvwxyz0123456789", "dataWeight35": "abcdefghijklmnopqrstuvwxyz0123456789", "dataWeight36": "abcdefghijklmnopqrstuvwxyz0123456789", "dataWeight37": "abcdefghijklmnopqrstuvwxyz0123456789", "dataWeight38": "abcdefghijklmnopqrstuvwxyz0123456789", "dataWeight39": "abcdefghijklmnopqrstuvwxyz0123456789", "dataWeight40": "abcdefghijklmnopqrstuvwxyz0123456789", "dataWeight41": "abcdefghijklmnopqrstuvwxyz0123456789", "dataWeight42": "abcdefghijklmnopqrstuvwxyz0123456789", "dataWeight43": "abcdefghijklmnopqrstuvwxyz0123456789", "dataWeight44": "abcdefghijklmnopqrstuvwxyz0123456789", "dataWeight45": "abcdefghijklmnopqrstuvwxyz0123456789", "dataWeight46": "abcdefghijklmnopqrstuvwxyz0123456789", "dataWeight47": "abcdefghijklmnopqrstuvwxyz0123456789" } return ret def main(args): TXN_TS = 1562904000000 TXN_INCREMENT = 360000 logging.info('brokers={}'.format(args.brokers)) logging.info('topic={}'.format(args.topic)) logging.info('rate={}'.format(args.rate)) logging.info('creating kafka producer') producer = KafkaProducer(bootstrap_servers=args.brokers) logging.info('begin sending events') cntr=1 while True: TXN_TS = TXN_TS+TXN_INCREMENT crdNo = CARD_NO[random.randint(0,5)] logging.info('TransactionId {0} and Txn Timestamp {1}'.format(cntr,int(round(time.time() * 1000)))) producer.send(args.topic, json.dumps(generate_event(TXN_TS+TXN_INCREMENT,crdNo,cntr)).encode(), json.dumps(crdNo).encode()) producer.send(args.histTopic, json.dumps(generate_event(TXN_TS+TXN_INCREMENT,crdNo,cntr)).encode(), json.dumps(crdNo).encode()) cntr = int(cntr) + 1 time.sleep(1.0 / 100) def get_arg(env, default): return os.getenv(env) if os.getenv(env, '') is not '' else default def parse_args(parser): args = parser.parse_args() args.brokers = get_arg('KAFKA_BROKERS', args.brokers) args.topic = get_arg('KAFKA_TOPIC', args.topic) args.rate = get_arg('RATE', args.rate) args.histTopic = get_arg('HIST_TOPIC', args.rate) return args if __name__ == '__main__': logging.basicConfig(level=logging.INFO) logging.info('starting kafka-openshift-python emitter') parser = argparse.ArgumentParser(description='emit some stuff on kafka') parser.add_argument( '--brokers', help='The bootstrap servers, env variable KAFKA_BROKERS', default='localhost:9092') parser.add_argument( '--topic', help='Topic to publish to, env variable KAFKA_TOPIC', default='event-input-stream') parser.add_argument( '--hist-topic', help='Topic to publish to, env variable KAFKA_TOPIC', default='hist-input-stream') parser.add_argument( '--rate', type=int, help='Lines per second, env variable RATE', default=1) args = parse_args(parser) main(args) logging.info('exiting')
# Python Assert def attendance(days): assert len(days) !=0, "Days should not be empty" return 8 * days[0] print("Total number of hours is ",attendance([20])) print("Total number of hours is ",attendance([])) # Output # Traceback (most recent call last): # File "py-assert.py", line 8, in <module> # print("Total number of hours is ",attendance([])) # File "py-assert.py", line 3, in attendance # assert len(days) !=0, "Days should not be empty" # AssertionError: Days should not be empty
""" This Python script executes a series of Python scripts and subroutines that prepare input public use census geography and surname data and constructs the surname-only, georgraphy-only, and BISG proxies for race and ethnicity. This file is set up to execute the proxy building code sequence on a set of ficitious data constructed by create_test_data.py from the publicly available census surname list and geography data. It is provided to illustrate how the main.py is set up to run the proxy building code. """ import os import surname_creation_lower import create_attr_over18_all_geo_entities import surname_parser import geo_name_merger_all_entities_over_18 def main(): # Identify the input directory that contains the individual or application level data containing name and geocodes. source_dir = "../input_files" # Identify the output directory for processing. out_dir = "../test_output" # Identify the location of the prepared input census files. census_data = "../input_files/created_python" geo_dir = "../input_files/created_python" # Run the script that prepares the analysis version of the census surname list, including the proportions of individuals by race and ethnicities by surname. census_surnames_lower = surname_creation_lower.create("../input_files/app_c.csv") create_attr_over18_all_geo_entities.create(source_dir, census_data) # Read in the file that defines the program "name_parse" that contains the name standardization routines and merges surname probabilities # from the census surname list. # See script for details on arguments that need to be supplied to the program. surname_probabilities = surname_parser.parse(matchvars=[], app_lname='name1', coapp_lname='name2', output=out_dir, readdir='../test_output', readfile='fictitious_sample_data.pkl', censusdir=census_data) geo_name_merger_all_entities_over_18.create(output=out_dir, orig_dir=out_dir, orig_file='fictitious_sample_data.pkl', surname_dir=out_dir, surname_file='proxy_name.pkl', orig_surname_match=[], surname_census_match=['zip_sample'], censusdir=census_data, geo_switch=['zip']) if __name__ == '__main__': main()
from question_model import Question from data import question_data from quiz_brain import QuizBrain question_bank = [] for x in question_data: next_question = Question(x['question'], x['correct_answer']) question_bank.append(next_question) quiz = QuizBrain(question_bank) while quiz.has_next(): user_input = quiz.next_question() quiz.print_final_score()
# -*- coding: utf-8 -*- # Program Name: print_cs.py # Anthony Waldsmith # 6/13/2016 # Python Version 2.7 # Description: Program to print "CS" ASCII-PUNK style # Must import print_function because I didn't update to Python 3.x yet. from __future__ import print_function # Imports extra utilities that I used to spice up the text print import time import sys # Here I defined a function with a parameter text def coolprint(text): # Here it takes each letter (character) from text and sets it to the variable char for char in text: # Here we add a short delay time.sleep(0.01) # This is essentially the same as print ("text",end=' ') however that function does not handle spaces very well. # so using this function deeper in python allows me to directly write each character individually. sys.stdout.write(char) # This pushes the text out to the stdout stream (in this case the console is the output) sys.stdout.flush() print ("*"*55) coolprint (" CCCCCC SSSS \n") coolprint (" C S S \n") coolprint (" C S \n") coolprint (" C S \n") coolprint (" C SSSSS \n") coolprint (" C S \n") coolprint (" C S \n") coolprint (" C S S \n") coolprint (" CCCCC SSSSS \n") print ("*"*55) print ("\n") coolprint ("Computer Science is Cool Stuff!\n") ''' ******************************************************* CCCCCC SSSS C S S C S C S C SSSSS C S C S C S S CCCCC SSSSS ******************************************************* Computer Science is Cool Stuff! '''
from colorama import init, Fore, Style class Colors: def __init__(self): init() self.GREEN = Fore.LIGHTGREEN_EX self.YELLOW = Fore.LIGHTYELLOW_EX self.RED = Fore.LIGHTRED_EX self.ENDC = Style.RESET_ALL class Action: SCRAPE = 'scrape' GENERATE = 'generate' BRUTE_FORCE = 'bruteforce' PHONE_NUMBER = 'PHONE_NUMBER'
#!/usr/bin/env python3 import dataclasses import pathlib import typing import unittest from unittest.mock import MagicMock, Mock, patch import numpy import torch import bunkai import bunkai.algorithm.lbd.predict from bunkai.algorithm.bunkai_sbd.annotator import MorphAnnotatorJanome from bunkai.base.annotation import Annotations, SpanAnnotation from bunkai.constant import METACHAR_LINE_BREAK from bunkai.third.utils_ner import InputFeatures @dataclasses.dataclass class ReturnObject(object): predictions: typing.Union[numpy.ndarray, typing.Tuple[numpy.ndarray, typing.Any]] label_ids: numpy.ndarray metrics: typing.Dict[str, float] labels: typing.List[str] label_map: typing.Dict[int, str] tokenizer: typing.List[typing.List[str]] subwords_lengths: typing.List[typing.List[int]] dataset_content: typing.List[InputFeatures] subword_tokens: typing.List[str] model_type: str def to_prediction_tuple(self): return self.predictions, self.label_ids, self.metrics @dataclasses.dataclass class NewlineTestCase(object): text: str return_value: ReturnObject @dataclasses.dataclass class DummyBcObject(object): max_seq_length = 352 class DummyJanomeSubwordsTokenizer(object): subword_tokenizer_type = "wordpiece" do_subword_tokenize: bool = True never_split = None unk_token = "[UNK]" sep_token = "[SEP]" pad_token = "[PAD]" cls_token = "[CLS]" mask_token = "[MASK]" def func_generate_dummy_bert_prediction() -> ReturnObject: input_ids = numpy.array( [ [ -100, 0, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, 0, 0, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, ] ] ) bert_prediction_dummy = ReturnObject( predictions=numpy.array( [ [ [6.2508187, -4.232818, -2.757059], [6.1650567, -3.9524226, -2.8288684], [5.8380218, -3.6578689, -2.6578376], [6.572264, -3.9870892, -2.8709047], [6.4894476, -3.9268737, -2.9671426], [6.216006, -3.7496064, -2.699235], [6.154592, -3.768798, -2.9045649], [6.713662, -4.110723, -3.033975], [6.4546986, -4.302385, -2.8338246], [6.654306, -4.3293185, -2.6386347], [6.471306, -4.2099767, -2.675298], [6.5739822, -4.2123647, -2.610855], [6.56117, -4.2072744, -2.7977717], [5.5703177, -3.9187171, -2.5862396], [-1.884768, 4.4782224, -1.8186623], [5.8886337, -3.8386352, -2.851794], [6.1382294, -4.0328712, -2.8980045], [5.56992, -3.6112833, -2.725328], [6.1413136, -4.0054746, -3.0763247], [5.949703, -3.7203593, -2.748416], [6.490921, -4.10034, -2.882184], [6.5604143, -4.187022, -2.7890666], [6.594881, -4.082993, -2.8291895], [6.5816226, -4.3966985, -2.8815534], [6.4179454, -4.2702456, -2.9540753], [5.451252, -3.8440175, -2.5752163], [5.04419, -3.9542036, -2.1646724], [3.4635344, -1.968563, -2.199682], [4.8015337, -2.961069, -2.4906867], [5.642599, -3.646186, -2.6289954], [5.2767353, -3.545886, -2.642362], [5.0331793, -3.3589022, -2.6159847], [5.4294004, -3.643956, -2.6506023], [4.5621023, -3.094194, -2.4944196], [4.1612453, -2.6053162, -2.4269052], [5.314385, -3.575482, -2.6072056], [5.7357044, -3.812284, -2.5930557], [5.507862, -3.702612, -2.5583594], [4.6684365, -3.2131882, -2.445125], [3.5338802, -2.0267015, -2.207005], [5.7340727, -3.7640634, -2.584625], [5.6197987, -3.716104, -2.5262532], [5.47165, -3.8265584, -2.683898], [5.622836, -3.8941417, -2.4897096], [5.7662735, -3.5816152, -2.5766578], [6.1038303, -3.778536, -2.5087128], [5.8932824, -3.5206861, -2.5480444], [5.9496975, -3.6596575, -2.7018757], [5.80085, -3.8926811, -2.7254941], [5.2340307, -3.5927713, -2.7278686], [5.1017323, -3.3140123, -2.598034], [5.8979063, -3.754191, -2.4886804], [6.0222745, -3.7422712, -2.5321903], [6.018483, -3.754891, -2.6665978], [5.704626, -3.542376, -2.654388], [4.6625023, -2.9835098, -2.541861], [5.851006, -3.9127822, -2.657012], [5.7435713, -3.8231273, -2.593646], [5.4913816, -3.65688, -2.581519], [5.5846696, -3.8045363, -2.5105321], [5.7596455, -3.856001, -2.5696197], [5.2555804, -3.6392345, -2.5121176], [3.876574, -2.5438776, -2.222461], [3.7917795, -2.0205114, -2.2313485], [5.4242163, -3.5941799, -2.5328736], [5.375439, -3.5381823, -2.5158625], [5.4592915, -3.702542, -2.6168754], [5.560192, -3.833506, -2.513876], [5.6088414, -3.6553125, -2.5693743], [5.9053307, -3.8074007, -2.5359588], [5.9091473, -3.8741407, -2.577005], [5.8823833, -3.9749475, -2.7565668], [5.6488376, -3.8580503, -2.6887958], [5.2936573, -3.6095896, -2.6221497], [4.391178, -2.9584074, -2.444511], [3.6910276, -2.122798, -2.2480416], [4.749332, -3.0014434, -2.4438312], [5.4725676, -3.572462, -2.5331836], [5.383877, -3.459734, -2.5013256], [4.7639284, -3.1252341, -2.3972554], [3.0694826, -1.5774779, -2.004921], [4.904317, -3.1489391, -2.5000887], [5.3118916, -3.5204654, -2.4224253], [5.180787, -3.576025, -2.5785341], [5.114481, -3.4627273, -2.5771754], [5.3889327, -3.5888848, -2.5031228], [5.6680975, -3.6847317, -2.5290437], [5.138223, -3.5371237, -2.4942274], [4.500623, -3.0357556, -2.3804736], [4.391722, -2.5864615, -2.312683], [5.499447, -3.6149004, -2.4913578], [5.5458784, -3.731234, -2.5449672], [5.3306437, -3.7202172, -2.6340237], [5.555006, -3.902042, -2.5700445], [5.5402975, -3.5568285, -2.5195646], [5.923624, -3.8101199, -2.5412364], [5.966515, -3.813748, -2.5135388], [5.8475056, -3.5183058, -2.591], [6.0184994, -3.9749384, -2.7445848], [5.477597, -3.7229378, -2.662457], [5.360407, -3.6949844, -2.6515026], [5.664912, -3.8135028, -2.5601358], [5.4726477, -3.3598118, -2.4900548], [5.716467, -3.51123, -2.4441009], [5.9715557, -3.444706, -2.381342], [5.684905, -3.407822, -2.4511132], [5.652356, -3.5395107, -2.566182], [6.086296, -4.0143557, -2.757162], [5.93272, -3.913489, -2.8516464], [5.513011, -3.4940288, -2.4365187], [5.847448, -3.7215633, -2.3947792], [5.8946314, -3.8241282, -2.54148], [5.750376, -3.7425175, -2.5400023], [4.2657037, -2.7419717, -2.2960308], [2.803505, -1.1151873, -2.0724204], [5.069028, -3.2909331, -2.334376], [5.1803617, -3.453929, -2.5205479], [5.4511433, -3.702659, -2.574565], [5.3047314, -3.4712682, -2.4875286], [5.6509314, -3.7447715, -2.5951982], [4.6699295, -3.1814604, -2.428188], [3.7801378, -2.4215903, -2.232263], [5.882105, -3.9000041, -2.7211075], [5.4890738, -3.6392746, -2.5046637], [5.5276957, -3.803844, -2.6643615], [5.5274057, -3.8214302, -2.472117], [5.697824, -3.462097, -2.537269], [5.957882, -3.4408717, -2.3871222], [5.7239294, -3.427033, -2.4772236], [5.7963157, -3.564792, -2.6691947], [6.039237, -3.963026, -2.7902536], [5.920341, -4.0087867, -2.9042587], [5.5651474, -3.5472107, -2.4891918], [5.8184776, -3.666483, -2.4670477], [5.9809966, -3.7833667, -2.6582336], [5.647328, -3.433617, -2.5941267], [5.5610843, -3.4891434, -2.6713898], [5.927872, -3.8813362, -2.7214065], [5.785965, -3.7625728, -2.7681732], [5.5795455, -3.5510294, -2.4824677], [5.658676, -3.582807, -2.3650568], [5.5469546, -3.691554, -2.5050597], [4.9479814, -3.3915858, -2.4030986], [2.3329203, -1.131766, -1.8485751], [4.9787626, -3.2024384, -2.483747], [4.911786, -3.1755145, -2.3659158], [5.1218967, -3.4676068, -2.5503993], [5.3810396, -3.6829956, -2.4702733], [5.547564, -3.4910274, -2.545243], [5.7789097, -3.722993, -2.4507918], [5.970089, -3.8823137, -2.4802265], [5.9492865, -4.123867, -2.6572356], [5.6568136, -3.8770761, -2.729714], [4.3428807, -2.8855278, -2.3944554], [3.3280978, -1.8396173, -2.1001978], [4.402819, -2.6880207, -2.3907475], [5.33469, -3.4014668, -2.4767218], [5.344347, -3.4569607, -2.5946865], [5.16568, -3.5411572, -2.5953364], [4.793007, -3.216085, -2.473689], [4.2960186, -2.7347312, -2.3489754], [3.805702, -2.1488824, -2.2282677], [4.8418455, -3.0454865, -2.429937], [5.323112, -3.394518, -2.4346614], [5.0180244, -3.275909, -2.4122648], [2.9661903, -1.4233906, -1.8672131], [4.931182, -3.1389503, -2.4102225], [4.9693556, -3.3392224, -2.3979883], [4.7797327, -3.1475272, -2.4123082], [4.9508667, -3.3479035, -2.4246244], [5.3461943, -3.5120308, -2.403717], [4.7816477, -3.1765049, -2.3775845], [3.5539727, -2.0844865, -2.1079192], [4.6387863, -2.7948396, -2.327755], [5.2454753, -3.5064278, -2.4758189], [5.34525, -3.6765518, -2.5685573], [5.3302755, -3.6907237, -2.3332164], [5.5514193, -3.3656187, -2.4497824], [5.9280806, -3.4156218, -2.3316245], [5.6186748, -3.4095483, -2.409141], [5.5813913, -3.4803317, -2.5405798], [6.018386, -4.0123005, -2.7944303], [5.791168, -3.8674788, -2.84371], [5.5173597, -3.5319824, -2.486122], [5.699461, -3.6407382, -2.38972], [5.5982647, -3.7332854, -2.5377173], [5.2531133, -3.6009998, -2.52218], [3.1787467, -1.9656836, -2.093604], [4.40965, -2.5246685, -2.265173], [4.986265, -3.2378364, -2.3466463], [5.221637, -3.5330796, -2.599038], [5.4330263, -3.6381497, -2.5219502], [5.4239407, -3.537006, -2.494265], [5.7460465, -3.6373107, -2.4902682], [5.8602858, -3.7709167, -2.4536014], [6.177119, -4.1630287, -2.6641548], [6.007184, -4.1391425, -2.7746332], [5.234189, -3.6090078, -2.6703088], [4.458186, -2.7931972, -2.487601], [5.560937, -3.7051048, -2.4895868], [5.6427107, -3.4239001, -2.5180545], [5.985802, -3.4383836, -2.3521647], [5.705908, -3.4290183, -2.4250975], [5.633841, -3.4536667, -2.5365653], [6.068409, -4.0221148, -2.7998438], [5.9640284, -3.9706354, -2.9187305], [5.5351458, -3.5053978, -2.4735668], [5.819968, -3.7009068, -2.4335914], [5.7983685, -3.7754993, -2.5713015], [5.6510377, -3.7154012, -2.5723357], [3.1107492, -1.7932931, -2.038206], [4.6108003, -2.809266, -2.3758132], [5.129378, -3.334814, -2.3553529], [5.27525, -3.511778, -2.542399], [5.553991, -3.7560308, -2.5243082], [5.502201, -3.4396672, -2.5307422], [5.932541, -3.7612128, -2.6955643], [5.511362, -3.666332, -2.6930692], [5.7192364, -3.4919772, -2.5201082], [5.9494834, -3.9199066, -2.8064528], [5.989796, -4.028501, -2.9356284], [5.6844234, -3.7073665, -2.6559854], [5.7420044, -3.6841903, -2.4219987], [6.019269, -3.851921, -2.5968761], [6.012556, -3.7651906, -2.7302198], [5.22493, -3.475544, -2.7187457], [3.7751057, -2.2496824, -2.357636], [5.0919046, -3.3189614, -2.3565404], [5.065481, -3.4329944, -2.5660634], [5.425741, -3.6887774, -2.519134], [5.4049864, -3.6632752, -2.5491867], [5.7636952, -3.6867075, -2.525423], [5.069643, -3.6292334, -2.5354824], [4.145218, -2.7678344, -2.3718739], [5.6274185, -3.743704, -2.6409373], [5.338847, -3.5374503, -2.5367274], [5.486684, -3.7471037, -2.6338878], [5.5501976, -3.8444057, -2.492587], [5.680416, -3.5932336, -2.565421], [5.806082, -3.7560775, -2.4588132], [6.016405, -3.9916434, -2.5753489], [5.8762383, -4.095117, -2.6915278], [5.441005, -3.7025, -2.6978788], [3.8021955, -2.3089309, -2.2744963], [3.295628, -1.7485684, -2.1460679], [3.8095417, -2.1189125, -2.2619543], [5.4892044, -3.5187688, -2.5719445], [5.4801655, -3.616661, -2.614462], [4.9412575, -3.1965845, -2.5532193], [5.1379337, -3.4174705, -2.5731788], [4.9215374, -3.290681, -2.5169702], [4.978571, -3.3317158, -2.5741048], [5.4809895, -3.7299604, -2.5985618], [5.4321156, -3.5919714, -2.5068498], [4.9712186, -3.3998384, -2.4638414], [3.131559, -1.8154464, -2.0161948], [4.20892, -2.32469, -2.24137], [5.3603983, -3.5648031, -2.6062012], [4.770118, -3.3103986, -2.570477], [4.701253, -3.1281867, -2.5695343], [5.692337, -3.640839, -2.4616065], [5.45103, -3.6451797, -2.5184312], [5.107309, -3.4940763, -2.478231], [2.6783373, -1.4480876, -1.8975571], [5.1807585, -3.3610148, -2.513155], [5.0343246, -3.2504637, -2.3884437], [5.273611, -3.5527153, -2.5969102], [5.4621787, -3.6608934, -2.5238476], [5.4608717, -3.5109582, -2.4960275], [5.82248, -3.7629507, -2.517388], [5.7347484, -3.8859196, -2.5711641], [6.112766, -4.150079, -2.6801968], [5.705344, -3.8973122, -2.7257922], [4.6984296, -3.2733493, -2.5083308], [4.3192806, -2.8144884, -2.431129], [3.3805945, -1.8914232, -2.134581], [5.3352375, -3.2841783, -2.4582448], [5.7989273, -3.6409295, -2.5358305], [5.648154, -3.3823075, -2.5451796], [5.525385, -3.6856186, -2.5623384], [5.047093, -3.3972507, -2.5808408], [4.6922903, -3.1120577, -2.520347], [4.454125, -2.7146144, -2.4370828], [5.8160934, -3.7015703, -2.4822454], [5.842537, -3.7719693, -2.5903497], [5.584236, -3.6224103, -2.578228], [4.6949444, -3.0575066, -2.4430642], [3.7849636, -2.0093102, -2.2221537], [5.34052, -3.4516811, -2.3648925], [5.4426284, -3.7016723, -2.6079993], [5.575471, -3.8038383, -2.6187627], [5.374604, -3.4713042, -2.472371], [5.573716, -3.7265248, -2.549485], [4.758337, -3.2580361, -2.4734373], [3.182425, -1.8679427, -2.1192076], [5.5819745, -3.679071, -2.5723608], [5.2793016, -3.4560566, -2.421187], [5.5433426, -3.7827773, -2.6599064], [5.5916505, -3.8679109, -2.5255156], [5.497374, -3.498955, -2.525767], [5.8535748, -3.5889792, -2.5111132], [5.98721, -3.4372945, -2.3722787], [5.8036013, -3.5048394, -2.530361], [5.953143, -3.8283353, -2.7150617], [6.1119184, -4.0932183, -2.832982], [5.959545, -4.0726967, -2.8936415], [5.6262956, -3.5740123, -2.5001867], [5.802416, -3.625824, -2.6191945], [6.1741114, -3.677545, -2.5701354], [6.019506, -3.5576932, -2.555736], [5.670724, -3.441112, -2.5689387], [5.865163, -3.8021712, -2.7791395], [6.131137, -4.057909, -2.8261504], [5.7952104, -3.6973677, -2.644189], [5.7676497, -3.6922674, -2.5299058], [5.883764, -3.8301828, -2.5025594], [5.574148, -3.6859841, -2.5446942], [4.5494995, -3.0782628, -2.4074235], [2.3880472, -1.2455968, -1.9546468], [5.3021474, -3.4626734, -2.5357323], ] ], dtype=numpy.float32, ), label_ids=input_ids, metrics={"eval_loss": 3.2364680767059326}, labels=["O", "LB_SEP", "LB_NS"], label_map={0: "O", 1: "LB_SEP", 2: "LB_NS"}, tokenizer=[ [ "ラウンジ", "も", "気軽", "に", "利用", "でき", "、", "申し分", "ない", "です", "。", "▁", "ホテル", "内", "の", "部屋", "も", "ゆったり", "でき", "まし", "た", "。", ] ], subwords_lengths=[[1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1]], subword_tokens=[ "[CLS]", "ラウンジ", "も", "気", "##軽", "に", "利用", "でき", "、", "申し", "##分", "ない", "です", "。", "▁", "ホテル", "内", "の", "部屋", "も", "ゆ", "##ったり", "でき", "まし", "た", "。", "[SEP]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", ], dataset_content=[ InputFeatures( input_ids=[ 2, 25018, 28, 704, 29505, 7, 666, 203, 6, 4482, 28593, 80, 2992, 8, 1, 3228, 186, 5, 3250, 28, 1223, 21087, 203, 3913, 10, 8, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ], label_ids=list(input_ids.tolist()), attention_mask=[], token_type_ids=[], document_id="0-1", ) ], model_type="bert", ) return bert_prediction_dummy def func_generate_dummy_distil_bert_prediction() -> ReturnObject: input_ids = numpy.array( [ [ -100, 0, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, 0, 0, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, ] ] ) dummy_object = ReturnObject( predictions=numpy.array( [ [ [6.2508187, -4.232818, -2.757059], [6.1650567, -3.9524226, -2.8288684], [5.8380218, -3.6578689, -2.6578376], [6.572264, -3.9870892, -2.8709047], [6.4894476, -3.9268737, -2.9671426], [6.216006, -3.7496064, -2.699235], [6.154592, -3.768798, -2.9045649], [6.713662, -4.110723, -3.033975], [6.4546986, -4.302385, -2.8338246], [6.654306, -4.3293185, -2.6386347], [6.471306, -4.2099767, -2.675298], [6.5739822, -4.2123647, -2.610855], [6.56117, -4.2072744, -2.7977717], [5.5703177, -3.9187171, -2.5862396], [-1.884768, 4.4782224, -1.8186623], [5.8886337, -3.8386352, -2.851794], [6.1382294, -4.0328712, -2.8980045], [5.56992, -3.6112833, -2.725328], [6.1413136, -4.0054746, -3.0763247], [5.949703, -3.7203593, -2.748416], [6.490921, -4.10034, -2.882184], [6.5604143, -4.187022, -2.7890666], [6.594881, -4.082993, -2.8291895], [6.5816226, -4.3966985, -2.8815534], [6.4179454, -4.2702456, -2.9540753], [5.451252, -3.8440175, -2.5752163], [5.04419, -3.9542036, -2.1646724], [3.4635344, -1.968563, -2.199682], [4.8015337, -2.961069, -2.4906867], [5.642599, -3.646186, -2.6289954], [5.2767353, -3.545886, -2.642362], [5.0331793, -3.3589022, -2.6159847], [5.4294004, -3.643956, -2.6506023], [4.5621023, -3.094194, -2.4944196], [4.1612453, -2.6053162, -2.4269052], [5.314385, -3.575482, -2.6072056], [5.7357044, -3.812284, -2.5930557], [5.507862, -3.702612, -2.5583594], [4.6684365, -3.2131882, -2.445125], [3.5338802, -2.0267015, -2.207005], [5.7340727, -3.7640634, -2.584625], [5.6197987, -3.716104, -2.5262532], [5.47165, -3.8265584, -2.683898], [5.622836, -3.8941417, -2.4897096], [5.7662735, -3.5816152, -2.5766578], [6.1038303, -3.778536, -2.5087128], [5.8932824, -3.5206861, -2.5480444], [5.9496975, -3.6596575, -2.7018757], [5.80085, -3.8926811, -2.7254941], [5.2340307, -3.5927713, -2.7278686], [5.1017323, -3.3140123, -2.598034], [5.8979063, -3.754191, -2.4886804], [6.0222745, -3.7422712, -2.5321903], [6.018483, -3.754891, -2.6665978], [5.704626, -3.542376, -2.654388], [4.6625023, -2.9835098, -2.541861], [5.851006, -3.9127822, -2.657012], [5.7435713, -3.8231273, -2.593646], [5.4913816, -3.65688, -2.581519], [5.5846696, -3.8045363, -2.5105321], [5.7596455, -3.856001, -2.5696197], [5.2555804, -3.6392345, -2.5121176], [3.876574, -2.5438776, -2.222461], [3.7917795, -2.0205114, -2.2313485], [5.4242163, -3.5941799, -2.5328736], [5.375439, -3.5381823, -2.5158625], [5.4592915, -3.702542, -2.6168754], [5.560192, -3.833506, -2.513876], [5.6088414, -3.6553125, -2.5693743], [5.9053307, -3.8074007, -2.5359588], [5.9091473, -3.8741407, -2.577005], [5.8823833, -3.9749475, -2.7565668], [5.6488376, -3.8580503, -2.6887958], [5.2936573, -3.6095896, -2.6221497], [4.391178, -2.9584074, -2.444511], [3.6910276, -2.122798, -2.2480416], [4.749332, -3.0014434, -2.4438312], [5.4725676, -3.572462, -2.5331836], [5.383877, -3.459734, -2.5013256], [4.7639284, -3.1252341, -2.3972554], [3.0694826, -1.5774779, -2.004921], [4.904317, -3.1489391, -2.5000887], [5.3118916, -3.5204654, -2.4224253], [5.180787, -3.576025, -2.5785341], [5.114481, -3.4627273, -2.5771754], [5.3889327, -3.5888848, -2.5031228], [5.6680975, -3.6847317, -2.5290437], [5.138223, -3.5371237, -2.4942274], [4.500623, -3.0357556, -2.3804736], [4.391722, -2.5864615, -2.312683], [5.499447, -3.6149004, -2.4913578], [5.5458784, -3.731234, -2.5449672], [5.3306437, -3.7202172, -2.6340237], [5.555006, -3.902042, -2.5700445], [5.5402975, -3.5568285, -2.5195646], [5.923624, -3.8101199, -2.5412364], [5.966515, -3.813748, -2.5135388], [5.8475056, -3.5183058, -2.591], [6.0184994, -3.9749384, -2.7445848], [5.477597, -3.7229378, -2.662457], [5.360407, -3.6949844, -2.6515026], [5.664912, -3.8135028, -2.5601358], [5.4726477, -3.3598118, -2.4900548], [5.716467, -3.51123, -2.4441009], [5.9715557, -3.444706, -2.381342], [5.684905, -3.407822, -2.4511132], [5.652356, -3.5395107, -2.566182], [6.086296, -4.0143557, -2.757162], [5.93272, -3.913489, -2.8516464], [5.513011, -3.4940288, -2.4365187], [5.847448, -3.7215633, -2.3947792], [5.8946314, -3.8241282, -2.54148], [5.750376, -3.7425175, -2.5400023], [4.2657037, -2.7419717, -2.2960308], [2.803505, -1.1151873, -2.0724204], [5.069028, -3.2909331, -2.334376], [5.1803617, -3.453929, -2.5205479], [5.4511433, -3.702659, -2.574565], [5.3047314, -3.4712682, -2.4875286], [5.6509314, -3.7447715, -2.5951982], [4.6699295, -3.1814604, -2.428188], [3.7801378, -2.4215903, -2.232263], [5.882105, -3.9000041, -2.7211075], [5.4890738, -3.6392746, -2.5046637], [5.5276957, -3.803844, -2.6643615], [5.5274057, -3.8214302, -2.472117], [5.697824, -3.462097, -2.537269], [5.957882, -3.4408717, -2.3871222], [5.7239294, -3.427033, -2.4772236], [5.7963157, -3.564792, -2.6691947], [6.039237, -3.963026, -2.7902536], [5.920341, -4.0087867, -2.9042587], [5.5651474, -3.5472107, -2.4891918], [5.8184776, -3.666483, -2.4670477], [5.9809966, -3.7833667, -2.6582336], [5.647328, -3.433617, -2.5941267], [5.5610843, -3.4891434, -2.6713898], [5.927872, -3.8813362, -2.7214065], [5.785965, -3.7625728, -2.7681732], [5.5795455, -3.5510294, -2.4824677], [5.658676, -3.582807, -2.3650568], [5.5469546, -3.691554, -2.5050597], [4.9479814, -3.3915858, -2.4030986], [2.3329203, -1.131766, -1.8485751], [4.9787626, -3.2024384, -2.483747], [4.911786, -3.1755145, -2.3659158], [5.1218967, -3.4676068, -2.5503993], [5.3810396, -3.6829956, -2.4702733], [5.547564, -3.4910274, -2.545243], [5.7789097, -3.722993, -2.4507918], [5.970089, -3.8823137, -2.4802265], [5.9492865, -4.123867, -2.6572356], [5.6568136, -3.8770761, -2.729714], [4.3428807, -2.8855278, -2.3944554], [3.3280978, -1.8396173, -2.1001978], [4.402819, -2.6880207, -2.3907475], [5.33469, -3.4014668, -2.4767218], [5.344347, -3.4569607, -2.5946865], [5.16568, -3.5411572, -2.5953364], [4.793007, -3.216085, -2.473689], [4.2960186, -2.7347312, -2.3489754], [3.805702, -2.1488824, -2.2282677], [4.8418455, -3.0454865, -2.429937], [5.323112, -3.394518, -2.4346614], [5.0180244, -3.275909, -2.4122648], [2.9661903, -1.4233906, -1.8672131], [4.931182, -3.1389503, -2.4102225], [4.9693556, -3.3392224, -2.3979883], [4.7797327, -3.1475272, -2.4123082], [4.9508667, -3.3479035, -2.4246244], [5.3461943, -3.5120308, -2.403717], [4.7816477, -3.1765049, -2.3775845], [3.5539727, -2.0844865, -2.1079192], [4.6387863, -2.7948396, -2.327755], [5.2454753, -3.5064278, -2.4758189], [5.34525, -3.6765518, -2.5685573], [5.3302755, -3.6907237, -2.3332164], [5.5514193, -3.3656187, -2.4497824], [5.9280806, -3.4156218, -2.3316245], [5.6186748, -3.4095483, -2.409141], [5.5813913, -3.4803317, -2.5405798], [6.018386, -4.0123005, -2.7944303], [5.791168, -3.8674788, -2.84371], [5.5173597, -3.5319824, -2.486122], [5.699461, -3.6407382, -2.38972], [5.5982647, -3.7332854, -2.5377173], [5.2531133, -3.6009998, -2.52218], [3.1787467, -1.9656836, -2.093604], [4.40965, -2.5246685, -2.265173], [4.986265, -3.2378364, -2.3466463], [5.221637, -3.5330796, -2.599038], [5.4330263, -3.6381497, -2.5219502], [5.4239407, -3.537006, -2.494265], [5.7460465, -3.6373107, -2.4902682], [5.8602858, -3.7709167, -2.4536014], [6.177119, -4.1630287, -2.6641548], [6.007184, -4.1391425, -2.7746332], [5.234189, -3.6090078, -2.6703088], [4.458186, -2.7931972, -2.487601], [5.560937, -3.7051048, -2.4895868], [5.6427107, -3.4239001, -2.5180545], [5.985802, -3.4383836, -2.3521647], [5.705908, -3.4290183, -2.4250975], [5.633841, -3.4536667, -2.5365653], [6.068409, -4.0221148, -2.7998438], [5.9640284, -3.9706354, -2.9187305], [5.5351458, -3.5053978, -2.4735668], [5.819968, -3.7009068, -2.4335914], [5.7983685, -3.7754993, -2.5713015], [5.6510377, -3.7154012, -2.5723357], [3.1107492, -1.7932931, -2.038206], [4.6108003, -2.809266, -2.3758132], [5.129378, -3.334814, -2.3553529], [5.27525, -3.511778, -2.542399], [5.553991, -3.7560308, -2.5243082], [5.502201, -3.4396672, -2.5307422], [5.932541, -3.7612128, -2.6955643], [5.511362, -3.666332, -2.6930692], [5.7192364, -3.4919772, -2.5201082], [5.9494834, -3.9199066, -2.8064528], [5.989796, -4.028501, -2.9356284], [5.6844234, -3.7073665, -2.6559854], [5.7420044, -3.6841903, -2.4219987], [6.019269, -3.851921, -2.5968761], [6.012556, -3.7651906, -2.7302198], [5.22493, -3.475544, -2.7187457], [3.7751057, -2.2496824, -2.357636], [5.0919046, -3.3189614, -2.3565404], [5.065481, -3.4329944, -2.5660634], [5.425741, -3.6887774, -2.519134], [5.4049864, -3.6632752, -2.5491867], [5.7636952, -3.6867075, -2.525423], [5.069643, -3.6292334, -2.5354824], [4.145218, -2.7678344, -2.3718739], [5.6274185, -3.743704, -2.6409373], [5.338847, -3.5374503, -2.5367274], [5.486684, -3.7471037, -2.6338878], [5.5501976, -3.8444057, -2.492587], [5.680416, -3.5932336, -2.565421], [5.806082, -3.7560775, -2.4588132], [6.016405, -3.9916434, -2.5753489], [5.8762383, -4.095117, -2.6915278], [5.441005, -3.7025, -2.6978788], [3.8021955, -2.3089309, -2.2744963], [3.295628, -1.7485684, -2.1460679], [3.8095417, -2.1189125, -2.2619543], [5.4892044, -3.5187688, -2.5719445], [5.4801655, -3.616661, -2.614462], [4.9412575, -3.1965845, -2.5532193], [5.1379337, -3.4174705, -2.5731788], [4.9215374, -3.290681, -2.5169702], [4.978571, -3.3317158, -2.5741048], [5.4809895, -3.7299604, -2.5985618], [5.4321156, -3.5919714, -2.5068498], [4.9712186, -3.3998384, -2.4638414], [3.131559, -1.8154464, -2.0161948], [4.20892, -2.32469, -2.24137], [5.3603983, -3.5648031, -2.6062012], [4.770118, -3.3103986, -2.570477], [4.701253, -3.1281867, -2.5695343], [5.692337, -3.640839, -2.4616065], [5.45103, -3.6451797, -2.5184312], [5.107309, -3.4940763, -2.478231], [2.6783373, -1.4480876, -1.8975571], [5.1807585, -3.3610148, -2.513155], [5.0343246, -3.2504637, -2.3884437], [5.273611, -3.5527153, -2.5969102], [5.4621787, -3.6608934, -2.5238476], [5.4608717, -3.5109582, -2.4960275], [5.82248, -3.7629507, -2.517388], [5.7347484, -3.8859196, -2.5711641], [6.112766, -4.150079, -2.6801968], [5.705344, -3.8973122, -2.7257922], [4.6984296, -3.2733493, -2.5083308], [4.3192806, -2.8144884, -2.431129], [3.3805945, -1.8914232, -2.134581], [5.3352375, -3.2841783, -2.4582448], [5.7989273, -3.6409295, -2.5358305], [5.648154, -3.3823075, -2.5451796], [5.525385, -3.6856186, -2.5623384], [5.047093, -3.3972507, -2.5808408], [4.6922903, -3.1120577, -2.520347], [4.454125, -2.7146144, -2.4370828], [5.8160934, -3.7015703, -2.4822454], [5.842537, -3.7719693, -2.5903497], [5.584236, -3.6224103, -2.578228], [4.6949444, -3.0575066, -2.4430642], [3.7849636, -2.0093102, -2.2221537], [5.34052, -3.4516811, -2.3648925], [5.4426284, -3.7016723, -2.6079993], [5.575471, -3.8038383, -2.6187627], [5.374604, -3.4713042, -2.472371], [5.573716, -3.7265248, -2.549485], [4.758337, -3.2580361, -2.4734373], [3.182425, -1.8679427, -2.1192076], [5.5819745, -3.679071, -2.5723608], [5.2793016, -3.4560566, -2.421187], [5.5433426, -3.7827773, -2.6599064], [5.5916505, -3.8679109, -2.5255156], [5.497374, -3.498955, -2.525767], [5.8535748, -3.5889792, -2.5111132], [5.98721, -3.4372945, -2.3722787], [5.8036013, -3.5048394, -2.530361], [5.953143, -3.8283353, -2.7150617], [6.1119184, -4.0932183, -2.832982], [5.959545, -4.0726967, -2.8936415], [5.6262956, -3.5740123, -2.5001867], [5.802416, -3.625824, -2.6191945], [6.1741114, -3.677545, -2.5701354], [6.019506, -3.5576932, -2.555736], [5.670724, -3.441112, -2.5689387], [5.865163, -3.8021712, -2.7791395], [6.131137, -4.057909, -2.8261504], [5.7952104, -3.6973677, -2.644189], [5.7676497, -3.6922674, -2.5299058], [5.883764, -3.8301828, -2.5025594], [5.574148, -3.6859841, -2.5446942], [4.5494995, -3.0782628, -2.4074235], [2.3880472, -1.2455968, -1.9546468], [5.3021474, -3.4626734, -2.5357323], ] ], dtype=numpy.float32, ), label_ids=input_ids, metrics={"eval_loss": 3.2364680767059326}, labels=["O", "LB_SEP", "LB_NS"], label_map={0: "O", 1: "LB_SEP", 2: "LB_NS"}, tokenizer=[ [ "ラウンジ", "も", "気軽", "に", "利用", "でき", "、", "申し分", "ない", "です", "。", "▁", "ホテル", "内", "の", "部屋", "も", "ゆったり", "でき", "まし", "た", "。", ] ], subwords_lengths=[ [ 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, ] ], subword_tokens=[ "[CLS]", "ラウンジ", "も", "気", "##軽", "に", "利用", "でき", "、", "申し", "##分", "ない", "です", "。", "▁", "ホテル", "内", "の", "部屋", "も", "ゆ", "##ったり", "でき", "まし", "た", "。", "[SEP]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", "[PAD]", ], model_type="distil_bert", dataset_content=[ InputFeatures( input_ids=[ 2, 4703, 693, 12, 5, 73, 1172, 28674, 10766, 7, 666, 15, 3913, 10, 8, 32000, 7052, 9, 8494, 832, 14, 16815, 6, 8567, 18178, 8342, 10, 2992, 8, 32000, 3, ] + [0] * 289, token_type_ids=None, label_ids=list(input_ids.tolist()), attention_mask=[1] * 31 + [0] * 289, document_id="0-1", ) ], ) return dummy_object class TestPredictor(unittest.TestCase): def setUp(self) -> None: self.morph_annotator = MorphAnnotatorJanome() self.test_dataset_bert = [ NewlineTestCase( text="ラウンジも気軽に利用でき、申し分ないです。▁ホテル内の部屋もゆったりできました。", return_value=func_generate_dummy_bert_prediction() ) ] self.test_dataset_distil_bert = [ NewlineTestCase( text="ラウンジも気軽に利用でき、申し分ないです。▁ホテル内の部屋もゆったりできました。", return_value=func_generate_dummy_distil_bert_prediction(), ) ] def init_tokenized_layer(self, text: str) -> Annotations: annotations = Annotations() annotations.add_annotation_layer( "first", [ SpanAnnotation( rule_name=None, start_index=0, end_index=len(text), split_string_type=None, split_string_value=None ) ], ) res = self.morph_annotator.annotate(text, annotations) return res @staticmethod def reformat_data_structure(tokenized_layer: Annotations) -> typing.List[str]: tokens = [] for s in tokenized_layer.get_annotation_layer("MorphAnnotatorJanome"): if s.args is None: continue if str(s.args["token"]) == "\n" or str(s.args["token"]) == "▁": tokens.append(METACHAR_LINE_BREAK) else: tokens.append(str(s.args["token"])) else: pass return tokens @staticmethod def check_all_prediction_point(original_sentence: typing.List[str], index_predicition: typing.List[int]): """予測された箇所が、改行であることを確認する。""" for t_index in index_predicition: assert ( METACHAR_LINE_BREAK in original_sentence[t_index] ), f"The predicted point {t_index} is not line break." def test_run_predict(self): path_model = "" predictor_init = MagicMock() predictor_init.return_value = None for test_case in self.test_dataset_distil_bert: transformer_predictor_mock = MagicMock() transformer_predictor_mock.return_value = test_case.return_value.to_prediction_tuple() bunkai_predictor_mock_split_long_text = Mock( return_value=(test_case.return_value.tokenizer, test_case.return_value.subwords_lengths) ) from typing import List from bunkai.algorithm.lbd.custom_tokenizers import JanomeSubwordsTokenizer from bunkai.third.utils_ner import InputExample # note: this function must be here because this function refers test_case objects. def func_dummy_convert_examples_to_features( examples: List[InputExample], label_list: List[str], max_seq_length: int, tokenizer: JanomeSubwordsTokenizer, cls_token_at_end=False, cls_token="[CLS]", cls_token_segment_id=1, sep_token="[SEP]", sep_token_extra=False, pad_on_left=False, pad_token=0, pad_token_segment_id=0, pad_token_label_id=-100, sequence_a_segment_id=0, mask_padding_with_zero=True, is_distil_bert: bool = False, ): return test_case.return_value.dataset_content # note: this function must be here because this function refers test_case objects. def convert_ids_to_tokens(ids: typing.Union[int, List[int]], skip_special_tokens: bool = False): """dummy method to generate subword-token-sequence from a sequence of token-id""" return test_case.return_value.subword_tokens with patch( "bunkai.algorithm.lbd.train.convert_examples_to_features", side_effect=func_dummy_convert_examples_to_features, ): with patch("bunkai.algorithm.lbd.predict.Predictor.__init__", predictor_init): with patch( "bunkai.algorithm.lbd.predict.Predictor._split_long_text", bunkai_predictor_mock_split_long_text ): predictor = bunkai.algorithm.lbd.predict.Predictor(modelpath=pathlib.Path(path_model)) predictor.labels = test_case.return_value.labels predictor.label_map = test_case.return_value.label_map predictor.bc = DummyBcObject() # type: ignore predictor.tokenizer = MagicMock() predictor.tokenizer.side_effect = DummyJanomeSubwordsTokenizer() predictor.tokenizer.convert_ids_to_tokens.side_effect = convert_ids_to_tokens predictor.device = torch.device("cpu") ret = type( "Ret", (object,), { "logits": type( "Ret2", (object,), { "to": lambda x: type( "Ret4", (object,), { "detach": type( "Ret3", (object,), { "numpy": lambda x: test_case.return_value.predictions, }, ) }, ) }, ) }, ) class DummyModelDistilBert: base_model_prefix = "distilbert" def __call__(self, input_ids, attention_mask): return ret class DummyModelBert: base_model_prefix = "bert" def __call__(self, input_ids, attention_mask, token_type_ids): return ret if test_case.return_value.model_type == "bert": predictor.model = DummyModelBert() # type: ignore elif test_case.return_value.model_type == "distil_bert": predictor.model = DummyModelDistilBert() # type: ignore else: raise Exception("unexpected case.") tokenized_layer = self.init_tokenized_layer(test_case.text) tokens = self.reformat_data_structure(tokenized_layer) # check when return type is TokenIndex res = list(predictor.predict([tokens])) self.check_all_prediction_point(tokens, res[0]) # type: ignore if __name__ == "__main__": unittest.main()
# -*- coding: utf-8 -*- # Form implementation generated from reading ui file 'C:/Users/lukas/PycharmProjects/zd_inventory/ui/zd_mail.ui' # # Created by: PyQt5 UI code generator 5.15.6 # # WARNING: Any manual changes made to this file will be lost when pyuic5 is # run again. Do not edit this file unless you know what you are doing. from PyQt5 import QtCore, QtGui, QtWidgets class Ui_dlg_mail(object): def setupUi(self, dlg_mail): dlg_mail.setObjectName("dlg_mail") dlg_mail.resize(756, 618) self.layoutWidget = QtWidgets.QWidget(dlg_mail) self.layoutWidget.setGeometry(QtCore.QRect(240, 570, 501, 31)) self.layoutWidget.setObjectName("layoutWidget") self.horizontalLayout = QtWidgets.QHBoxLayout(self.layoutWidget) self.horizontalLayout.setContentsMargins(0, 0, 0, 0) self.horizontalLayout.setObjectName("horizontalLayout") self.btn_send = QtWidgets.QPushButton(self.layoutWidget) self.btn_send.setAutoDefault(False) self.btn_send.setObjectName("btn_send") self.horizontalLayout.addWidget(self.btn_send) self.btn_cancel = QtWidgets.QPushButton(self.layoutWidget) self.btn_cancel.setAutoDefault(False) self.btn_cancel.setObjectName("btn_cancel") self.horizontalLayout.addWidget(self.btn_cancel) self.layoutWidget1 = QtWidgets.QWidget(dlg_mail) self.layoutWidget1.setGeometry(QtCore.QRect(0, 10, 741, 551)) self.layoutWidget1.setObjectName("layoutWidget1") self.lyt_mail = QtWidgets.QHBoxLayout(self.layoutWidget1) self.lyt_mail.setContentsMargins(10, 10, 10, 10) self.lyt_mail.setSpacing(20) self.lyt_mail.setObjectName("lyt_mail") self.lyt_expired = QtWidgets.QVBoxLayout() self.lyt_expired.setObjectName("lyt_expired") self.verticalLayout = QtWidgets.QVBoxLayout() self.verticalLayout.setObjectName("verticalLayout") self.label = QtWidgets.QLabel(self.layoutWidget1) self.label.setObjectName("label") self.verticalLayout.addWidget(self.label) self.formLayout = QtWidgets.QFormLayout() self.formLayout.setObjectName("formLayout") self.horizontalLayout_3 = QtWidgets.QHBoxLayout() self.horizontalLayout_3.setObjectName("horizontalLayout_3") self.lbl_sender = QtWidgets.QLabel(self.layoutWidget1) self.lbl_sender.setObjectName("lbl_sender") self.horizontalLayout_3.addWidget(self.lbl_sender) self.led_sender = QtWidgets.QLineEdit(self.layoutWidget1) self.led_sender.setObjectName("led_sender") self.horizontalLayout_3.addWidget(self.led_sender) self.formLayout.setLayout(0, QtWidgets.QFormLayout.FieldRole, self.horizontalLayout_3) self.horizontalLayout_4 = QtWidgets.QHBoxLayout() self.horizontalLayout_4.setObjectName("horizontalLayout_4") self.lbl_passowrd = QtWidgets.QLabel(self.layoutWidget1) self.lbl_passowrd.setObjectName("lbl_passowrd") self.horizontalLayout_4.addWidget(self.lbl_passowrd) self.led_password = QtWidgets.QLineEdit(self.layoutWidget1) self.led_password.setObjectName("led_password") self.horizontalLayout_4.addWidget(self.led_password) self.formLayout.setLayout(1, QtWidgets.QFormLayout.FieldRole, self.horizontalLayout_4) self.chk_default = QtWidgets.QCheckBox(self.layoutWidget1) self.chk_default.setEnabled(False) self.chk_default.setLayoutDirection(QtCore.Qt.LeftToRight) self.chk_default.setAutoFillBackground(False) self.chk_default.setObjectName("chk_default") self.formLayout.setWidget(2, QtWidgets.QFormLayout.FieldRole, self.chk_default) self.verticalLayout.addLayout(self.formLayout) self.lyt_expired.addLayout(self.verticalLayout) self.lbl_expired = QtWidgets.QLabel(self.layoutWidget1) font = QtGui.QFont() font.setPointSize(8) self.lbl_expired.setFont(font) self.lbl_expired.setObjectName("lbl_expired") self.lyt_expired.addWidget(self.lbl_expired) self.lsv_expired = QtWidgets.QListView(self.layoutWidget1) self.lsv_expired.setEnabled(True) self.lsv_expired.setAlternatingRowColors(True) self.lsv_expired.setSelectionMode(QtWidgets.QAbstractItemView.MultiSelection) self.lsv_expired.setObjectName("lsv_expired") self.lyt_expired.addWidget(self.lsv_expired) self.horizontalLayout_2 = QtWidgets.QHBoxLayout() self.horizontalLayout_2.setObjectName("horizontalLayout_2") self.btn_select_all = QtWidgets.QPushButton(self.layoutWidget1) self.btn_select_all.setAutoDefault(False) self.btn_select_all.setObjectName("btn_select_all") self.horizontalLayout_2.addWidget(self.btn_select_all) self.lyt_expired.addLayout(self.horizontalLayout_2) self.verticalLayout_2 = QtWidgets.QVBoxLayout() self.verticalLayout_2.setObjectName("verticalLayout_2") self.lyt_expired.addLayout(self.verticalLayout_2) self.lyt_mail.addLayout(self.lyt_expired) self.lyt_mail_body = QtWidgets.QVBoxLayout() self.lyt_mail_body.setObjectName("lyt_mail_body") self.lbl_mail = QtWidgets.QLabel(self.layoutWidget1) font = QtGui.QFont() font.setPointSize(8) self.lbl_mail.setFont(font) self.lbl_mail.setObjectName("lbl_mail") self.lyt_mail_body.addWidget(self.lbl_mail) self.ted_mail = QtWidgets.QPlainTextEdit(self.layoutWidget1) self.ted_mail.setEnabled(True) self.ted_mail.setObjectName("ted_mail") self.lyt_mail_body.addWidget(self.ted_mail) self.btn_reset_changes = QtWidgets.QPushButton(self.layoutWidget1) self.btn_reset_changes.setAutoDefault(False) self.btn_reset_changes.setObjectName("btn_reset_changes") self.lyt_mail_body.addWidget(self.btn_reset_changes) self.lyt_mail.addLayout(self.lyt_mail_body) self.lyt_mail.setStretch(0, 3) self.lyt_mail.setStretch(1, 7) self.retranslateUi(dlg_mail) QtCore.QMetaObject.connectSlotsByName(dlg_mail) def retranslateUi(self, dlg_mail): _translate = QtCore.QCoreApplication.translate dlg_mail.setWindowTitle(_translate("dlg_mail", "Dialog")) self.btn_send.setText(_translate("dlg_mail", "Wyślij")) self.btn_cancel.setText(_translate("dlg_mail", "Anuluj")) self.label.setText(_translate("dlg_mail", "NADAWCA")) self.lbl_sender.setText(_translate("dlg_mail", "email")) self.lbl_passowrd.setText(_translate("dlg_mail", "hasło")) self.chk_default.setText(_translate("dlg_mail", "Ustaw jako domyślne")) self.lbl_expired.setText(_translate("dlg_mail", "ODBIORCA")) self.btn_select_all.setText(_translate("dlg_mail", "Zaznacz wszystkich")) self.lbl_mail.setText(_translate("dlg_mail", "TREŚĆ WIADOMOŚCI")) self.btn_reset_changes.setText(_translate("dlg_mail", "Resetuj zmiany"))
# coding=utf-8 # Copyright 2018-2020 EVA # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from src.parser.upload_statement import UploadStatement from src.parser.evaql.evaql_parserVisitor import evaql_parserVisitor from src.parser.evaql.evaql_parser import evaql_parser class Upload(evaql_parserVisitor): def visitUploadStatement(self, ctx: evaql_parser.UploadStatementContext): srv_path = self.visit(ctx.fileName()).value video_blob = self.visit(ctx.videoBlob()).value stmt = UploadStatement(srv_path, video_blob) return stmt
import pandas as pd import matplotlib.pyplot as plt import numpy as np import re import string from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.linear_model import PassiveAggressiveClassifier from flask import Flask, request, redirect, url_for, flash, jsonify import numpy as np import json import pickle import math from scrape import c vectorizer = pickle.load(open("tfidf_vectorizer.pickle",'rb')) model = pickle.load(open("PA.pickle",'rb')) import re import string def wordopt(text): text = text.lower() text = re.sub('\[.*?\]', '', text) text = re.sub("\\W"," ",text) text = re.sub('https?://\S+|www\.\S+', '', text) text = re.sub('<.*?>+', '', text) text = re.sub('[%s]' % re.escape(string.punctuation), '', text) text = re.sub('\n', '', text) text = re.sub('\w*\d\w*', '', text) return text link = input("") test = c(link) test_x = wordopt(test) tfidf_x = vectorizer.transform([test_x]) pred = model.predict(tfidf_x) result = math.ceil(model._predict_proba_lr(tfidf_x)[0][1]*100) print(result,"% True.")
import copy from dataclasses import replace from typing import Callable, Sequence, Tuple import numpy as np import pytest from .._evaluation import Evaluation, Quantity from ..evaluators import SegmentationEvaluator def get_random_prediction_and_mask( image_size: Tuple[int, int, int], num_classes: int ) -> Tuple[np.ndarray, np.ndarray]: return ( np.random.randint(0, num_classes, image_size), np.random.randint(0, num_classes, image_size), ) @pytest.mark.parametrize("classes", (["dog", "cat", "snake"], ["dog", "cat"])) def test_SegmentationEvaluator(classes: Sequence[str]) -> None: np.random.seed(42) num_classes = len(classes) prediction, mask = get_random_prediction_and_mask((2, 256, 256), num_classes) se = SegmentationEvaluator(num_classes, class_names=classes) evaluation = se.evaluate( ground_truth=mask, model_prediction=prediction, model_name="MockModel" ) assert isinstance(evaluation, Evaluation) assert evaluation.model_name == "MockModel" @pytest.mark.parametrize("classes", (["dog", "cat", "snake"], ["dog", "cat"])) def test_SegmentationEvaluator_perfect_prediction(classes: Sequence[str]) -> None: np.random.seed(42) num_classes = len(classes) predictions, _ = get_random_prediction_and_mask((2, 256, 256), num_classes) mask = copy.deepcopy(predictions) se = SegmentationEvaluator(num_classes, class_names=classes) evaluation = se.evaluate( ground_truth=mask, model_prediction=predictions, model_name="MockModel" ) evaluation.figures() expected_quantities = [] for class_name in classes: expected_quantities.append( Quantity(name=f"{class_name} mIoU", value=1.0, higher_is_better=True) ) expected_quantities.append( Quantity(name="Class weighted Mean mIoU", value=1.0, higher_is_better=True) ) assert len(evaluation.quantities) == len(expected_quantities) for actual, expected in zip(evaluation.quantities, expected_quantities): # check that everything except value is equal assert replace(actual, value=42) == replace(expected, value=42) # check that values are approximately equal if isinstance(expected.value, str): assert isinstance(actual, str) assert actual.value == expected.value else: assert isinstance(expected.value, float) assert isinstance(actual.value, float) np.testing.assert_allclose(actual.value, expected.value) @pytest.mark.parametrize( "num_classes, class_names", [(1, ["dog", "cat"]), (2, ["dog"])] ) def test_SegmentationEvaluator_inconsistent_class_names( num_classes: int, class_names: Sequence[str] ) -> None: """ Tests if the __init__ method of SegmentationEvaluator raises an error if the length of the class_names list is not equal to num_classes """ with pytest.raises(ValueError): _ = SegmentationEvaluator(num_classes, class_names=class_names) @pytest.mark.parametrize("num_classes, class_weights", [(1, [0.2, 0.3]), (2, [0.2])]) def test_SegmentationEvaluator_inconsistent_class_weights( num_classes: int, class_weights: Sequence[float] ) -> None: """ Tests if the __init__ method of SegmentationEvaluator raises an error if the length of the class_weights list is not equal to num_classes """ with pytest.raises(ValueError): _ = SegmentationEvaluator(num_classes, class_weights=class_weights) @pytest.mark.parametrize( "num_classes, ground_truth, model_prediction", [ (3, *get_random_prediction_and_mask((2, 256, 256), 2)), (2, *get_random_prediction_and_mask((2, 256, 256), 3)), ], ) def test_SegmentationEvaluator_inconsistent_num_classes( num_classes: int, ground_truth: np.ndarray, model_prediction: np.ndarray ) -> None: """ Tests if the evaluate method of SegmentationEvaluator raises an error if the actual number of classes present in the ground_truth/prediction is not equal to num_classes. """ se = SegmentationEvaluator(num_classes) with pytest.raises(ValueError): se.evaluate(ground_truth, model_prediction, model_name="MockModel") @pytest.mark.parametrize( "num_classes, ground_truth, model_prediction", [ ( 3, np.random.randint(0, 3, (1, 256, 256)), np.random.randint(0, 3, (2, 256, 256)), ) ], ) def test_SegmentationEvaluator_inconsistent_shapes( num_classes: int, ground_truth: np.ndarray, model_prediction: np.ndarray ) -> None: """ Tests if the evaluate method of SegmentationEvaluator raises an error if the shapes of the ground_truth and model_prediction aren't the same """ se = SegmentationEvaluator(num_classes) with pytest.raises(ValueError): se.evaluate(ground_truth, model_prediction, model_name="MockModel") @pytest.mark.parametrize( "num_classes, ground_truth, model_prediction", [ ( 3, np.random.randint(0, 3, (256, 256)), np.random.randint(0, 3, (2, 256, 256)), ), ( 3, np.random.randint(0, 3, (2, 256, 256)), np.random.randint(0, 3, (256, 256)), ), ], ) def test_SegmentationEvaluator_not_a_3D_array( num_classes: int, ground_truth: np.ndarray, model_prediction: np.ndarray ) -> None: """ Tests if the evaluate method of SegmentationEvaluator raises an error if the ground_truth or model_prediction isn't a 3D array """ se = SegmentationEvaluator(num_classes) with pytest.raises(ValueError): se.evaluate(ground_truth, model_prediction, model_name="MockModel") @pytest.mark.parametrize("num_classes", [2, 3]) @pytest.mark.parametrize( "quantity_filter", [ lambda name: False, lambda name: True, lambda name: "Weighted" not in name, lambda name: "mIoU" not in name, ], ) def test_SegmentationEvaluator_filter_quantities( num_classes: int, quantity_filter: Callable[[str], bool] ) -> None: np.random.seed(42) predictions, mask = get_random_prediction_and_mask((2, 256, 256), num_classes) se_all = SegmentationEvaluator(num_classes) se_filtering = SegmentationEvaluator(num_classes, filter_quantities=quantity_filter) evaluation_all = se_all.evaluate( ground_truth=mask, model_prediction=predictions, model_name="MockModel" ) evaluation_filtered = se_filtering.evaluate( ground_truth=mask, model_prediction=predictions, model_name="MockModel" ) assert replace(evaluation_all, quantities=[], lazy_figures=[]) == replace( evaluation_filtered, quantities=[], lazy_figures=[] ) for quantity in evaluation_all.quantities: if quantity_filter(quantity.name): same_quantity = evaluation_filtered.get_by_name(quantity.name) assert same_quantity == quantity else: with pytest.raises(ValueError): evaluation_filtered.get_by_name(quantity.name) for filtered_quantity in evaluation_filtered.quantities: same_quantity = evaluation_all.get_by_name(filtered_quantity.name) assert same_quantity == filtered_quantity @pytest.mark.parametrize( "num_classes, desired_number_of_figures, figure_filter", [ (3, 0, lambda name: False), (3, 4, lambda name: True), (3, 1, lambda name: "Heatmap" not in name), (3, 3, lambda name: "Class" not in name), (2, 2, lambda name: "Class" not in name), (2, 3, lambda name: True), ], ) def test_SegmentationEvaluator_filter_figures( num_classes: int, desired_number_of_figures: int, figure_filter: Callable[[str], bool], ) -> None: np.random.seed(42) predictions, mask = get_random_prediction_and_mask((2, 256, 256), num_classes) se_all = SegmentationEvaluator(num_classes) se_filtering = SegmentationEvaluator(num_classes, filter_figures=figure_filter) evaluation_all = se_all.evaluate( ground_truth=mask, model_prediction=predictions, model_name="MockModel" ) evaluation_filtered = se_filtering.evaluate( ground_truth=mask, model_prediction=predictions, model_name="MockModel" ) assert replace(evaluation_all, lazy_figures=[]) == replace( evaluation_filtered, lazy_figures=[] ) assert len(evaluation_filtered.lazy_figures) == desired_number_of_figures
#!/usr/bin/env python # -*- coding: UTF-8 -*- """ .. --------------------------------------------------------------------- ___ __ __ __ ___ / | \ | \ | \ / the automatic \__ |__/ |__/ |___| \__ annotation and \ | | | | \ analysis ___/ | | | | ___/ of speech http://www.sppas.org/ Use of this software is governed by the GNU Public License, version 3. SPPAS is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. SPPAS is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with SPPAS. If not, see <http://www.gnu.org/licenses/>. This banner notice must not be removed. --------------------------------------------------------------------- scripts.evalsegmentation.py ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ... a script to evaluate a segmentation vs a reference segmentation. It estimates the Unit Boundary Positioning Accuracy and generates an R script to draw a boxplot of the evaluation. """ import sys import os import codecs import os.path from argparse import ArgumentParser import subprocess PROGRAM = os.path.abspath(__file__) SPPAS = os.path.dirname(os.path.dirname(os.path.dirname(PROGRAM))) sys.path.append(SPPAS) from sppas import ubpa from sppas import sppasRW from sppas import sppasTranscription import sppas.src.anndata.aio # --------------------------------------------------------------------------- # Constants # --------------------------------------------------------------------------- vowels = ["a","e","i","i:","o","u","y","A","E","I","M","O","Q","U","V","Y", "a~","A~","E~", "e~","i~","o~","O~","O:","u~","U~","eu","EU","{", "}","@","1","2","3","6","7","8","9","&","3:r","OI","@U","eI","ai", "aI","au","aU","aj","aw","ei","ew","ia","ie","io","ja","je","jo", "ju","oj","ou","ua","uo","wa","we","wi","wo","ya","ye","yu", "A/","O/","U~/"] consonants = ["b","b_<","c","d","d`","f","g","g_<","h","j","k","l","l`","m", "n","n`","p","q","r","r`","r\\", "rr","s","s`","t","t`","v", "w","x","z","z`","B","C","D","F","G","H","J","K","L","M","N", "R","S","T","W","X","Z","4","5","?","ts","tS","dz","dZ","tK", "kp","Nm","rr","ss","ts_h","k_h","p_h","t_h","ts_hs","tss"] fillers = ["laugh", "noise", "fp"] # ---------------------------------------------------------------------------- # Functions # ---------------------------------------------------------------------------- # ---------------------------------------------------------------------------- # Functions to manage input annotated files def get_tier(filename, tier_idx): """Return the tier of the given index in an annotated file. :param filename: (str) Name of the annotated file :param tier_idx: (int) Index of the tier to get :returns: sppasTier or None """ try: parser = sppasRW(filename) trs_input = parser.read(filename) except: return None if tier_idx < 0 or tier_idx >= len(trs_input): return None return trs_input[tier_idx] # ---------------------------------------------------------------------------- def get_tiers(ref_filename, hyp_filename, ref_idx=0, hyp_idx=0): """Return a reference and an hypothesis tier from annotated files. :param ref_filename: Name of the annotated file with the reference :param hyp_filename: Name of the annotated file with the hypothesis :param ref_idx: (int) :param hyp_idx: (int) :returns: a tuple with sppasTier or None for both ref and hyp """ ref_tier = get_tier(ref_filename, ref_idx) hyp_tier = get_tier(hyp_filename, hyp_idx) return ref_tier, hyp_tier # --------------------------------------------------------------------------- # Function to draw the evaluation as BoxPlots (using an R script) def test_R(): """Test if Rscript is available as a command of the system. """ try: NULL = open(os.devnull, "w") subprocess.call(['Rscript'], stdout=NULL, stderr=subprocess.STDOUT) except OSError: return False return True # --------------------------------------------------------------------------- def exec_Rscript(filenamed, filenames, filenamee, rscriptname, pdffilename): """Perform an the R script to draw boxplots from the given files. Write the script, then execute it, and delete it. :param filenamed: (str) duration :param filenames: (str) start :param filenamee: (str) end :param rscriptname: (str) :param pdffilename: PDF file with the result. """ with codecs.open(rscriptname, "w", "utf8") as fp: fp.write("#!/usr/bin/env Rscript \n") fp.write("# Title: Boxplot for phoneme alignments evaluation \n") fp.write("\n") fp.write("args <- commandArgs(trailingOnly = TRUE) \n") fp.write("\n") fp.write("# Get datasets \n") fp.write('dataD <- read.csv("%s",header=TRUE,sep=",") \n' % filenamed) fp.write('dataPS <- read.csv("%s",header=TRUE,sep=",") \n' % filenames) fp.write('dataPE <- read.csv("%s",header=TRUE,sep=",") \n' % filenamee) fp.write("\n") fp.write("# Define Output file \n") fp.write('pdf(file="%s", paper="a4") \n'%pdffilename) fp.write("\n") fp.write("# Control plotting style \n") fp.write("par(mfrow=c(3,1)) # only one line and one column \n") fp.write("par(cex.lab=1.2) # controls the font size of the axis title \n") fp.write("par(cex.axis=1.2) # controls the font size of the axis labels \n") fp.write("par(cex.main=1.6) # controls the font size of the title \n") fp.write("\n") fp.write("# Then, plot: \n") fp.write("boxplot(dataD$DeltaD~dataD$PhoneD, \n") fp.write(' main="Delta Duration", # graphic title \n') fp.write(' ylab="T(automatic) - T(manual)", # y axis title \n') fp.write(' #range=0, # use min and max for the whisker \n') fp.write(' outline = FALSE, # REMOVE OUTLIERS \n') fp.write(' border="blue", \n') fp.write(' ylim=c(-0.05,0.05), \n') fp.write(' col="pink") \n') fp.write(" abline(0,0) \n") fp.write("\n") fp.write('boxplot(dataPS$DeltaS~dataPS$PhoneS, \n') fp.write(' main="Delta Start Position", \n') fp.write(' ylab="T(automatic) - T(manual)", \n') fp.write(' outline = FALSE, \n') fp.write(' border = "blue", \n') fp.write(' ylim=c(-0.05,0.05), \n') fp.write(' col = "pink") \n') fp.write(' abline(0,0) \n') fp.write("\n") fp.write('boxplot(dataPE$DeltaE~dataPE$PhoneE, \n') fp.write(' main="Delta End Position", \n') fp.write(' ylab="T(automatic) - T(manual)", \n') fp.write(' outline = FALSE, \n') fp.write(' border="blue", \n') fp.write(' ylim=c(-0.05,0.05), \n') fp.write(' col="pink") \n') fp.write('abline(0,0) \n') fp.write('graphics.off() \n') fp.write("\n") fp.close() command = "Rscript " + rscriptname try: p = subprocess.Popen(command, shell=True, stdout=subprocess.PIPE, stderr=subprocess.STDOUT) retval = p.wait() line = p.communicate() except OSError as e: os.remove(rscriptname) return e os.remove(rscriptname) if retval != 0: return line return "" # --------------------------------------------------------------------------- def boxplot(deltaposB, deltaposE, deltaposD, extras, out_name, vector, name): """Create a PDF file with boxplots of selected phonemes. :param vector: the list of phonemes """ filenamed = out_name+"-delta-duration-"+name+".csv" filenames = out_name+"-delta-position-start-"+name+".csv" filenamee = out_name+"-delta-position-end-"+name+".csv" fpb = codecs.open(filenames, "w", 'utf8') fpe = codecs.open(filenamee, "w", 'utf8') fpd = codecs.open(filenamed, "w", 'utf8') fpb.write("PhoneS,DeltaS\n") fpe.write("PhoneE,DeltaE\n") fpd.write("PhoneD,DeltaD\n") for i, extra in enumerate(extras): etiquette = extra[0] tag = extra[2] if etiquette in vector: if tag != 0: fpb.write("%s,%f\n" % (etiquette, deltaposB[i])) if tag != -1: fpe.write("%s,%f\n" % (etiquette, deltaposE[i])) fpd.write("%s,%f\n" % (etiquette, delta_durationur[i])) fpb.close() fpe.close() fpd.close() message = exec_Rscript(filenamed, filenames, filenamee, out_name+".R", out_name+"-delta-"+name+".pdf") os.remove(filenamed) os.remove(filenames) os.remove(filenamee) return message # --------------------------------------------------------------------------- # Main program # --------------------------------------------------------------------------- # --------------------------------------------------------------------------- # Verify and extract args: parser = ArgumentParser( usage="%(prog)s -fr ref -fh hyp [options]", description="Compare two segmentation boundaries, " "in the scope of evaluating an hypothesis vs a reference.") parser.add_argument( "-fr", metavar="file", required=True, help='Input annotated file/directory name of the reference.') parser.add_argument( "-fh", metavar="file", required=True, help='Input annotated file/directory name of the hypothesis.') parser.add_argument( "-tr", metavar="file", type=int, default=1, required=False, help='Tier number of the reference (default=1).') parser.add_argument( "-th", metavar="file", type=int, default=1, required=False, help='Tier number of the hypothesis (default=1).') parser.add_argument( "-d", metavar="delta", required=False, type=float, default=0.04, help='Delta max value for the UBPA estimation (default=0.02).') parser.add_argument( "-o", metavar="path", required=False, help='Path for the output files.') parser.add_argument( "--quiet", action='store_true', help="Disable the verbosity.") if len(sys.argv) <= 1: sys.argv.append('-h') args = parser.parse_args() # ---------------------------------------------------------------------------- # Global variables idxref_tier = args.tr - 1 idxhyp_tier = args.th - 1 files = [] # List of tuples: (ref_filename, hyp_filename) delta_durationur = [] # Duration of each phoneme deltaposB = [] # Position of the beginning boundary of each phoneme deltaposE = [] # Position of the end boundary of each phoneme deltaposM = [] # Position of the center of each phoneme extras = [] # List of tuples: (evaluated phoneme,hypothesis file names, a tag) # ---------------------------------------------------------------------------- # Prepare file names to be analyzed, as a list of tuples (ref,hyp) out_path = None if args.o: out_path = args.o if not os.path.exists(out_path): os.mkdir(out_path) if os.path.isfile(args.fh) and os.path.isfile(args.fr): hyp_filename, extension = os.path.splitext(args.fh) out_basename = os.path.basename(hyp_filename) if out_path is None: out_path = os.path.dirname(hyp_filename) out_name = os.path.join(out_path, out_basename) files.append((os.path.basename(args.fr), os.path.basename(args.fh))) ref_directory = os.path.dirname(args.fr) hyp_directory = os.path.dirname(args.fh) elif os.path.isdir(args.fh) and os.path.isdir(args.fr): if out_path is None: out_path = args.fh out_name = os.path.join(out_path, "phones") ref_directory = args.fr hyp_directory = args.fh ref_files = [] hyp_files = [] for fr in os.listdir(args.fr): if os.path.isfile(os.path.join(ref_directory, fr)): ref_files.append(fr) for fh in os.listdir(args.fh): if os.path.isfile(os.path.join(hyp_directory, fh)): hyp_files.append(os.path.basename(fh)) for fr in ref_files: base_fr, ext_fr = os.path.splitext(fr) if not ext_fr.lower() in sppas.src.anndata.aio.extensions: continue for fh in hyp_files: base_fh, ext_fh = os.path.splitext(fh) if not ext_fh.lower() in sppas.src.anndata.aio.extensions: continue if fh.startswith(base_fr): files.append((fr, fh)) else: print("Both reference and hypothesis must be of the same type: " "file or directory.") sys.exit(1) if not args.quiet: print("Results will be stored in: {}".format(out_name)) if len(files) == 0: print("No matching hyp/ref files. Nothing to do!") sys.exit(1) # ---------------------------------------------------------------------------- # Evaluate the delta from the hypothesis to the reference # Delta = T(hyp) - T(ref) if not args.quiet: print("Results are evaluated on {:d} files: ".format(len(files))) for f in files: if not args.quiet: print(" {:s}".format(os.path.basename(f[1]))) fr = os.path.join(ref_directory, f[0]) fh = os.path.join(hyp_directory, f[1]) ref_tier, hyp_tier = get_tiers(fr, fh, idxref_tier, idxhyp_tier) if ref_tier is None or hyp_tier is None: print("[ INFO ] No aligned phonemes found in tiers. Nothing to do. ") continue if len(ref_tier) != len(hyp_tier): print("[ ERROR ] Hypothesis: {} -> {} vs Reference: {} -> {} phonemes." .format(f[1], len(hyp_tier), f[0], len(ref_tier))) continue if not args.quiet: print("[ OK ] Hypothesis: {} vs Reference: {} -> {} phonemes." .format(f[1], f[0], len(ref_tier))) # ---------------------------------------------------------------------------- # Compare boundaries and durations of annotations. i = 0 imax = len(ref_tier)-1 for ref_ann, hyp_ann in zip(ref_tier, hyp_tier): etiquette = ref_ann.serialize_labels() if etiquette == "#": continue # begin rb = ref_ann.get_location().get_best().get_begin().get_midpoint() hb = hyp_ann.get_location().get_best().get_begin().get_midpoint() delta_start = hb-rb # end re = ref_ann.get_location().get_best().get_end().get_midpoint() he = hyp_ann.get_location().get_best().get_end().get_midpoint() delta_end = he-re # middle rm = rb + (re-rb)/2. hm = hb + (he-hb)/2. delta_center = hm-rm # duration rd = ref_ann.get_location().get_best().duration().get_value() hd = hyp_ann.get_location().get_best().duration().get_value() delta_duration = hd-rd tag = 1 if i == 0: tag = 0 elif i == imax: tag = -1 # Add new values into vectors, to evaluate the accuracy deltaposB.append(delta_start) deltaposE.append(delta_end) deltaposM.append(delta_center) delta_durationur.append(delta_duration) extras.append((etiquette, fh, tag)) i += 1 # ---------------------------------------------------------------------------- # Save delta values into output files fpb = codecs.open(os.path.join(out_name)+"-delta-position-start.txt", "w", 'utf8') fpe = codecs.open(os.path.join(out_name)+"-delta-position-end.txt", "w", 'utf8') fpm = codecs.open(os.path.join(out_name)+"-delta-position-middle.txt", "w", 'utf8') fpd = codecs.open(os.path.join(out_name)+"-delta-duration.txt", "w", 'utf8') fpb.write("Phone Delta Filename\n") fpe.write("Phone Delta Filename\n") fpm.write("Phone Delta Filename\n") fpd.write("Phone Delta Filename\n") for i, extra in enumerate(extras): etiquette = extra[0] filename = extra[1] tag = extra[2] if tag != 0: fpb.write("%s %f %s\n" % (etiquette, deltaposB[i], filename)) if tag != -1: fpe.write("%s %f %s\n" % (etiquette, deltaposE[i], filename)) fpm.write("%s %f %s\n" % (etiquette, deltaposM[i], filename)) fpd.write("%s %f %s\n" % (etiquette, delta_durationur[i], filename)) fpb.close() fpe.close() fpm.close() fpd.close() # ---------------------------------------------------------------------------- # Estimates the Unit Boundary Positioning Accuracy if not args.quiet: ubpa(deltaposB, "Start boundary", sys.stdout, delta_max=args.d, step=0.005) with open(out_name+"-eval-position-start.txt", "w") as fp: ubpa(deltaposB, "Start boundary position", fp, delta_max=args.d, step=0.005) with open(out_name+"-eval-position-end.txt", "w") as fp: ubpa(deltaposE, "End boundary position", fp, delta_max=args.d, step=0.005) with open(out_name+"-eval-position-middle.txt", "w") as fp: ubpa(deltaposM, "Middle boundary position", fp, delta_max=args.d, step=0.005) with open(out_name+"-eval-duration.txt", "w") as fp: ubpa(delta_durationur, "Duration", fp, delta_max=args.d, step=0.005) # ---------------------------------------------------------------------------- # Draw BoxPlots of the accuracy via an R script if test_R() is False: sys.exit(0) message = boxplot(deltaposB, deltaposE, delta_durationur, extras, out_name, vowels, "vowels") if len(message) > 0 and not args.quiet: print("{:s}".format(message)) message = boxplot(deltaposB, deltaposE, delta_durationur, extras, out_name, consonants, "consonants") if len(message) > 0 and not args.quiet: print("{:s}".format(message)) message = boxplot(deltaposB, deltaposE, delta_durationur, extras, out_name, fillers, "fillers") if len(message) > 0 and not args.quiet: print("{:s}".format(message)) others = [] known = vowels+consonants+fillers for extra in extras: etiquette = extra[0] if not (etiquette in known or etiquette in others): others.append(etiquette) if len(others) > 0: message = boxplot(deltaposB, deltaposE, delta_durationur, extras, out_name, others, "others") if len(message) > 0 and not args.quiet: print("{:s}".format(message))
import numpy as np class DataClusterAnalysis: def __init__(self): pass def _getNumberOfPointsInCluster(self, data,clusterWidth): ''' take the first element in the data set and get the next n data points that are within the cluster. returns n ''' count = 1; # print(data[count+1] - data[count] < clusterWidth) while count < len(data) and data[count] - data[count -1] < clusterWidth[0]\ and data[count] - data[0] < clusterWidth[1]: count += 1 return count def _clusterByData(self, data1,data2,clusterWidth): # data1Cluster = [] # data2Cluster = [] dataClusters = [[],[]] while (len(data1) > 0): numberOfPoints = self._getNumberOfPointsInCluster(data1, clusterWidth) dataClusters[0].append(data1[:numberOfPoints]) dataClusters[1].append(data2[:numberOfPoints]) # data1Cluster.append(np.mean(data1[:numberOfPoints])) # data2Cluster.append(np.mean(data2[:numberOfPoints])) data1 = np.delete(data1, np.arange(numberOfPoints)) data2 = np.delete(data2, np.arange(numberOfPoints)) return dataClusters def _clusterDataStat(self, dataClusters, operator): ''' This is a little convoluted, but it runs through the data and takes the mean ''' dataSize = len(dataClusters[0]) clusterStat = [np.zeros(dataSize), np.zeros(dataSize)] for i in range(dataSize): clusterStat[0][i] = operator(dataClusters[0][i]) clusterStat[1][i] = operator(dataClusters[1][i]) return clusterStat
# -*- coding: utf-8 -*- # Generated by Django 1.11.7 on 2017-12-09 13:05 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('webui', '0006_dataset_name'), ] operations = [ migrations.AddField( model_name='dataset', name='complete', field=models.BooleanField(default=True, help_text='Is each element present in each ranking of the dataset?'), preserve_default=False, ), migrations.AlterField( model_name='dataset', name='step', field=models.IntegerField(blank=True, help_text='The number of steps used to generate the dataset, if pertinent', null=True), ), ]
import pytest from JDI.jdi_assert.testing.assertion import Assert from tests.jdi_uitests_webtests.main.enums.preconditions import Preconditions from tests.jdi_uitests_webtests.main.page_objects.epam_jdi_site import EpamJDISite from tests.jdi_uitests_webtests.test.init_tests import InitTests @pytest.mark.web class SmokeTableTests(InitTests): table_as_text = ( "||X||Type|Now|Plans||\n" + "||1||Drivers|Selenium, Custom|JavaScript, Appium, WinAPI, Sikuli||\n" + "||2||Test Runner|TestNG, JUnit, Custom|MSTest, NUnit, Epam||\n" + "||3||Asserter|TestNG, JUnit, Custom|MSTest, NUnit, Epam||\n" + "||4||Logger|Log4J, TestNG log, Custom|Epam, XML/Json logging, Hyper logging||\n" + "||5||Reporter|Jenkins, Allure, Custom|EPAM Report portal, Serenity, TimCity, Hudson||\n" + "||6||BDD/DSL|Custom|Cucumber, Jbehave, Thucydides, SpecFlow||" ) table = EpamJDISite.support_page.support_table def setUp(self): Preconditions.SUPPORT_PAGE.is_in_state() def test_get_value(self): Assert.assert_equal(self.table.get_value(), self.table_as_text) def test_get_text(self): Assert.assert_equal(self.table.get_text(), self.table_as_text) def test_table_dimension(self): Assert.assert_equal(str(self.table.columns.get_count()) + "/" + str(self.table.rows.get_count()), "3/6") def test_table_column_headers(self): Assert.assert_equal(", ".join(self.table.columns.get_headers()), "Type, Now, Plans") def test_table_headers(self): Assert.assert_equal(", ".join(self.table.get_headers()), "Type, Now, Plans") def test_table_row_headers(self): Assert.assert_equal(", ".join(self.table.rows.get_headers()), "1, 2, 3, 4, 5, 6") def test_table_is_not_empty(self): Assert.assert_false(self.table.is_empty())
"""A set of classes used to represent Mods in memory.""" # Disable warnings about 'too few class methods' # pylint: disable=R0903 from typing import List, NamedTuple, Type, Union def yaml_serializable(cls: Type[NamedTuple]): """Make a NamedTuple serializable by PyYAML.""" class Wrapper(object): """Provides the __dict__ property for annotated objects.""" def __init__(self, *args) -> None: self.__wrapped = cls(*args) self.__dict__ = dict(self.__wrapped._asdict()) return Wrapper @yaml_serializable class Media(NamedTuple): """Container for media URLs.""" images: List[str] # Screenshots of the mod videos: List[str] # Videos of the mod @yaml_serializable class Webpages(NamedTuple): """Container for the mod's homepages.""" steam: Union[str, None] # The URL of the mod's workshop page, or None nexus: Union[str, None] # The URL of the mod's nexus page, or None bethesda: Union[str, None] # The URL of the mod's bethesda page, or None others: List[str] # The URLs for the mod's other pages (GH, AFKM, etc) @yaml_serializable class Requirement(NamedTuple): """Pointer to another mod needed by this mod.""" modid: Union[int, None] # The modid of the required mod, or None if N/A name: str # The name of the required mod optional: bool # If true, the mod will work without the requirement @yaml_serializable class Oldrim(NamedTuple): """Container for oldrim-specific data.""" is_oldrim: bool # If true, the mod has an oldrim version webpages: Webpages requirements: List[Requirement] @yaml_serializable class Sse(NamedTuple): """Container for SSE-specific data.""" is_sse: bool # If true, the mod has an SSE version webpages: Webpages requirements: List[Requirement] console_compat: bool = False # If true, this mod can be used on a console @yaml_serializable class Mod(NamedTuple): """A collection of useful info about a mod.""" modid: int # The id of this mod (order it was added) name: str # The name of this mod description: str # A description of what this mod does notes: List[str] # Installation notes and warnings gems_category: Union[str, None] # This mod's category in GEMS, if any media: Media oldrim: Oldrim sse: Sse tags: List[str] = [] # A list of strings deprecated: bool = False # Whether this mod has been replaced entry_verified: bool = False # Whether this entry was checked by a human @yaml_serializable class MiniOldrim(NamedTuple): """A stripped-down Oldrim object.""" is_oldrim: bool @yaml_serializable class MiniSse(NamedTuple): """A stripped-down Sse object.""" is_sse: bool console_compat: bool = False @yaml_serializable class MiniMod(NamedTuple): """A stripped-down mod for transfer over networks.""" modid: int name: str gems_category: Union[str, None] oldrim: MiniOldrim sse: MiniSse tags: List[str]
"""Test the pyscript component.""" from ast import literal_eval import asyncio from datetime import datetime as dt import time import homeassistant.components.pyscript.trigger as trigger from homeassistant.const import EVENT_HOMEASSISTANT_STARTED, EVENT_STATE_CHANGED from homeassistant.setup import async_setup_component from tests.async_mock import mock_open, patch async def setup_script(hass, notify_q, now, source): """Initialize and load the given pyscript.""" scripts = [ "/some/config/dir/pyscripts/hello.py", ] with patch( "homeassistant.components.pyscript.os.path.isdir", return_value=True ), patch( "homeassistant.components.pyscript.glob.iglob", return_value=scripts ), patch( "homeassistant.components.pyscript.open", mock_open(read_data=source), create=True, ), patch( "homeassistant.components.pyscript.trigger.dt_now", return_value=now ): assert await async_setup_component(hass, "pyscript", {}) # # I'm not sure how to run the mock all the time, so just force the dt_now() # trigger function to return the given list of times in now. # def return_next_time(): nonlocal now if isinstance(now, list): if len(now) > 1: return now.pop(0) return now[0] return now trigger.__dict__["dt_now"] = return_next_time if notify_q: async def state_changed(event): var_name = event.data["entity_id"] if var_name != "pyscript.done": return value = event.data["new_state"].state await notify_q.put(value) hass.bus.async_listen(EVENT_STATE_CHANGED, state_changed) async def wait_until_done(notify_q): """Wait for the done handshake.""" return await asyncio.wait_for(notify_q.get(), timeout=4) async def test_state_trigger(hass, caplog): """Test state trigger.""" notify_q = asyncio.Queue(0) await setup_script( hass, notify_q, [dt(2020, 7, 1, 10, 59, 59, 999999), dt(2020, 7, 1, 11, 59, 59, 999999)], """ from math import sqrt seq_num = 0 # # Instead of just a bare @time_trigger, do a real time trigger. # The first value of now() causes func_startup_sync() to start almost # immediately. The remaining values of now() are all and hour later at # 11:59:59.999999, so this trigger won't happen again for another 24 hours. # @time_trigger("once(2020/07/01 11:00:00)") def func_startup_sync(): global seq_num seq_num += 1 log.info(f"func_startup_sync setting pyscript.done = {seq_num}") pyscript.done = seq_num @state_trigger("pyscript.f1var1 == '1'") def func1(var_name=None, value=None): global seq_num seq_num += 1 log.info(f"func1 var = {var_name}, value = {value}") pyscript.done = [seq_num, var_name, int(value), sqrt(1024)] @state_trigger("pyscript.f1var1 == '1' or pyscript.f2var2 == '2'") @state_active("pyscript.f2var3 == '3' and pyscript.f2var4 == '4'") def func2(var_name=None, value=None): global seq_num seq_num += 1 log.info(f"func2 var = {var_name}, value = {value}") pyscript.done = [seq_num, var_name, int(value), sqrt(4096)] @event_trigger("fire_event") def fire_event(**kwargs): event.fire(kwargs["new_event"], arg1=kwargs["arg1"], arg2=kwargs["arg2"]) @event_trigger("test_event3", "arg1 == 20 and arg2 == 30") def func3(trigger_type=None, event_type=None, **kwargs): global seq_num seq_num += 1 log.info(f"func3 trigger_type = {trigger_type}, event_type = {event_type}, event_data = {kwargs}") pyscript.done = [seq_num, trigger_type, event_type, kwargs] @event_trigger("test_event4", "arg1 == 20 and arg2 == 30") def func4(trigger_type=None, event_type=None, **kwargs): global seq_num seq_num += 1 res = task.wait_until(event_trigger=["test_event4b", "arg1 == 25 and arg2 == 35"], timeout=10) log.info(f"func4 trigger_type = {res}, event_type = {event_type}, event_data = {kwargs}") pyscript.done = [seq_num, res, event_type, kwargs] seq_num += 1 res = task.wait_until(state_trigger="pyscript.f4var2 == '2'", timeout=10) log.info(f"func4 trigger_type = {res}") pyscript.done = [seq_num, res] pyscript.setVar1 = 1 pyscript.setVar2 = "var2" state.set("pyscript.setVar3", {"foo": "bar"}) state.set("pyscript.setVar1", 1 + int(state.get("pyscript.setVar1")), {"attr1": 456, "attr2": 987}) seq_num += 1 res = task.wait_until(state_trigger="pyscript.f4var2 == '10'", timeout=10) log.info(f"func4 trigger_type = {res}") pyscript.done = [seq_num, res, pyscript.setVar1, pyscript.setVar1.attr1, state.get("pyscript.setVar1.attr2"), pyscript.setVar2, state.get("pyscript.setVar3")] seq_num += 1 # # now() returns 1usec before 2020/7/1 12:00:00, so trigger right # at noon # res = task.wait_until(time_trigger="once(2020/07/01 12:00:00)", timeout=10) log.info(f"func4 trigger_type = {res}") pyscript.done = [seq_num, res] seq_num += 1 # # this should pick up the trigger interval at noon # res = task.wait_until(time_trigger="period(2020/07/01 11:00, 1 hour)", timeout=10) log.info(f"func4 trigger_type = {res}") pyscript.done = [seq_num, res] seq_num += 1 # # cron triggers at 10am, 11am, noon, 1pm, 2pm, 3pm, so this # should trigger at noon. # res = task.wait_until(time_trigger="cron(0 10-15 * * *)", timeout=10) log.info(f"func4 trigger_type = {res}") pyscript.done = [seq_num, res] seq_num += 1 # # also add some month and day ranges; should still trigger at noon # on 7/1. # res = task.wait_until(time_trigger="cron(0 10-15 1-5 6,7 *)", timeout=10) log.info(f"func4 trigger_type = {res}") pyscript.done = [seq_num, res] seq_num += 1 # # make sure a short timeout works, for a trigger further out in time # (7/5 at 3pm) # res = task.wait_until(time_trigger="cron(0 15 5 6,7 *)", timeout=1e-6) log.info(f"func4 trigger_type = {res}") pyscript.done = [seq_num, res] seq_num += 1 # # make sure a short timeout works when there are no other triggers # res = task.wait_until(timeout=1e-6) log.info(f"func4 trigger_type = {res}") pyscript.done = [seq_num, res] seq_num += 1 # # make sure we return when there no triggers and no timeout # res = task.wait_until() log.info(f"func4 trigger_type = {res}") pyscript.done = [seq_num, res] seq_num += 1 # # make sure we return when there only past triggers and no timeout # res = task.wait_until(time_trigger="once(2020/7/1 11:59:59.999)") log.info(f"func4 trigger_type = {res}") pyscript.done = [seq_num, res] # # create a run-time exception # no_such_function("xyz") """, ) seq_num = 0 seq_num += 1 # fire event to start triggers, and handshake when they are running hass.bus.async_fire(EVENT_HOMEASSISTANT_STARTED) assert literal_eval(await wait_until_done(notify_q)) == seq_num seq_num += 1 # initialize the trigger and active variables hass.states.async_set("pyscript.f1var1", 0) hass.states.async_set("pyscript.f2var2", 0) hass.states.async_set("pyscript.f2var3", 0) hass.states.async_set("pyscript.f2var4", 0) # try some values that shouldn't work, then one that does hass.states.async_set("pyscript.f1var1", 0) hass.states.async_set("pyscript.f1var1", "string") hass.states.async_set("pyscript.f1var1", -1) hass.states.async_set("pyscript.f1var1", 1) assert literal_eval(await wait_until_done(notify_q)) == [ seq_num, "pyscript.f1var1", 1, 32, ] assert "func1 var = pyscript.f1var1, value = 1" in caplog.text seq_num += 1 hass.states.async_set("pyscript.f2var3", 3) hass.states.async_set("pyscript.f2var4", 0) hass.states.async_set("pyscript.f2var2", 0) hass.states.async_set("pyscript.f1var1", 0) hass.states.async_set("pyscript.f1var1", 1) assert literal_eval(await wait_until_done(notify_q)) == [ seq_num, "pyscript.f1var1", 1, 32, ] seq_num += 1 hass.states.async_set("pyscript.f2var4", 4) hass.states.async_set("pyscript.f2var2", 2) assert literal_eval(await wait_until_done(notify_q)) == [ seq_num, "pyscript.f2var2", 2, 64, ] assert "func2 var = pyscript.f2var2, value = 2" in caplog.text seq_num += 1 hass.bus.async_fire("test_event3", {"arg1": 12, "arg2": 34}) hass.bus.async_fire("test_event3", {"arg1": 20, "arg2": 29}) hass.bus.async_fire("test_event3", {"arg1": 12, "arg2": 30}) hass.bus.async_fire( "fire_event", {"new_event": "test_event3", "arg1": 20, "arg2": 30} ) assert literal_eval(await wait_until_done(notify_q)) == [ seq_num, "event", "test_event3", {"arg1": 20, "arg2": 30}, ] seq_num += 1 hass.states.async_set("pyscript.f4var2", 2) hass.bus.async_fire("test_event4", {"arg1": 20, "arg2": 30}) t_now = time.monotonic() while notify_q.empty() and time.monotonic() < t_now + 4: hass.bus.async_fire("test_event4b", {"arg1": 15, "arg2": 25}) hass.bus.async_fire("test_event4b", {"arg1": 20, "arg2": 25}) hass.bus.async_fire("test_event4b", {"arg1": 25, "arg2": 35}) await asyncio.sleep(1e-3) trig = { "trigger_type": "event", "event_type": "test_event4b", "arg1": 25, "arg2": 35, } assert literal_eval(await wait_until_done(notify_q)) == [ seq_num, trig, "test_event4", {"arg1": 20, "arg2": 30}, ] seq_num += 1 # the state_trigger wait_until should succeed immediately, since the expr is true assert literal_eval(await wait_until_done(notify_q)) == [ seq_num, {"trigger_type": "state"}, ] seq_num += 1 # now try a few other values, then the correct one hass.states.async_set("pyscript.f4var2", 4) hass.states.async_set("pyscript.f4var2", 2) hass.states.async_set("pyscript.f4var2", 10) trig = { "trigger_type": "state", "var_name": "pyscript.f4var2", "value": "10", "old_value": "2", } result = literal_eval(await wait_until_done(notify_q)) assert result[0] == seq_num assert result[1] == trig assert result[2:5] == ["2", 456, 987] assert hass.states.get("pyscript.setVar1").state == "2" assert hass.states.get("pyscript.setVar1").attributes == { "attr1": 456, "attr2": 987, } assert hass.states.get("pyscript.setVar2").state == "var2" assert literal_eval(hass.states.get("pyscript.setVar3").state) == {"foo": "bar"} # # check for the three time triggers, two timeouts and two none # for trig_type in ["time"] * 4 + ["timeout"] * 2 + ["none"] * 2: seq_num += 1 assert literal_eval(await wait_until_done(notify_q)) == [ seq_num, {"trigger_type": trig_type}, ] assert "name 'no_such_function' is not defined" in caplog.text
from django.urls import path, include from django.contrib.auth import views as auth_views from . import views app_name = "users" urlpatterns = [ path("register", views.register, name="register"), path("update_profile", views.update_profile, name="update_profile") ]
import pandas as pd from pandas.core.frame import DataFrame from typing import Tuple def get_user_secondary_df(name: str, value_column: str) -> DataFrame: """ Args: name (str): value_column (str): Returns: DataFrame: """ df = pd.read_csv("data/user" + name + ".csv", encoding='utf-8') # create list of columns columns = ['userID'] + list("U" + name + "_" + df[value_column].unique()) new_df = pd.DataFrame(columns=columns) # TODO: change type of columns to int for column in new_df.columns[1:]: new_df[column].astype(int) # iterate over every row for user in df['userID'].unique(): # create row with user ID and zero values in other columns row = [user] + [0] * (len(columns) - 1) # append row to dataframe new_df = new_df.append(pd.DataFrame([row], columns=columns), ignore_index=True) # set every cuisine user has (likes) for value in df.loc[df.userID == user][value_column]: new_df.at[new_df.index.max(), "U" + name + "_" + value] = 1 return new_df def get_users() -> DataFrame: """ Get users dataframe with respective data. Returns: Dataframe: Expected data. """ df = pd.read_csv("data/userprofile.csv", encoding='utf-8') # drop useless columns df.drop(columns=['color', 'interest', 'personality', 'height', 'activity', 'religion', 'ambience'], inplace=True) user_ids = set() # remove '?' values for column in df.columns: if df[column].dtype.name == 'object': for user_id in df.loc[df[column] == "?"].userID: user_ids.add(user_id) df = df[df[column] != '?'] df.smoker = df.smoker.replace({'true': 1, 'false': 0}) # select categorical column names categorical_columns = [column for column in df.columns if df[column].dtype.name == 'object' if column not in ['userID', 'smoker']] # replace categorical columns with one hot encoding for column_name in categorical_columns: dummies = pd.get_dummies(df[column_name]) for dummy_column_name in dummies.columns: df[column_name + "_" + dummy_column_name] = dummies[dummy_column_name] df.drop(columns=[column_name], inplace=True) df_cuisine = get_user_secondary_df('cuisine', 'Rcuisine') df_payment = get_user_secondary_df('payment', 'Upayment') # merge dataframes on user ID new_df = df.merge(df_payment, on='userID', how='inner') \ .merge(df_cuisine, on='userID', how='inner') return new_df
#!/usr/bin/env python # Parse the options the user provided from the command line def option_parser(): parser = OptionParser() parser.add_option("-v", action="store_true", dest="verbose", default=False) parser.add_option("--inplace", action="store_true", dest="inplace", default=False) parser.add_option("-d", dest="data_format_name", default="") parser.add_option("-g", type="float", dest="gammaval", default=1.0) parser.add_option("--sRGB", action="store_true", dest="sRGB", default=False) parser.add_option("--tile", nargs=3, dest="tile") parser.add_option("--scanline", action="store_true", dest="scanline", default=False) parser.add_option("--separate", action="store_true", dest="separate", default=False) parser.add_option("--contig", action="store_true", dest="contig", default=False) parser.add_option("--compression", dest="compression") parser.add_option("--quality", type="int", dest="quality", default = -1) parser.add_option("--no-copy-image", action="store_true", dest="no_copy", default=False) parser.add_option("--adjust-time", action="store_true", dest="adjust_time", default=False) parser.add_option("--caption", dest="caption", default=None) parser.add_option("-k", "--keyword", action="append", dest="keywords") parser.add_option("--clear-keywords", action="store_true", default=False) parser.add_option("--attrib", nargs=2, action="append", dest="attribs") parser.add_option("--orientation", type="int", dest="orientation", default = 0) parser.add_option("--rotcw", action="store_true", dest="rotcw", default=False) parser.add_option("--rotccw", action="store_true", dest="rotccw", default=False) parser.add_option("--rot180", action="store_true", dest="rot180", default=False) parser.add_option("--plugin-path", dest="path", default="") # FIXME: I suppose there should be a way to enter input/output files without # having to specify an option, like "python iconvert.py -g 0.9 input.jpg output.jpg" # However, I could not find it in the docs so I've set it that the user has # to put -i and -o before input/output. parser.add_option("-i", action="append", dest="input_files", default=[]) parser.add_option("-o", action="append", dest="output_files", default=[]) (options, args) = parser.parse_args() if len(options.input_files) > len(options.output_files) and not options.inplace: print "Must have both an input and output filename specified" return False if len(options.input_files) == 0 and options.inplace: print "Must have at least one filename specified" return False if (int(options.rotcw) + int(options.rotccw) + int(options.rot180) + \ (options.orientation>0)) > 1: print "iconvert: more than one of --rotcw, --rotccw, --rot180, --orientation" return False if options.path == "": print "OIIO plugin path not provided, assuming \"\"" return parser.parse_args() def convert_files(in_file, out_file): nocopy = options.no_copy tempname = out_file # Check whether the conversion is inplace. if tempname == in_file: try: ext = out_file.rfind(".") tempname += ".tmp" + out_file[ext:] except: print "Error: Output file does not have an extension" # image input inp = oiio.ImageInput.create(in_file, options.path) if not inp: msg = "Could not crete ImageInput for " + in_file sys.exit(msg) inspec = oiio.ImageSpec() inp.open(in_file, inspec) # image output out = oiio.ImageOutput.create(tempname, options.path) if not out: msg = "Unable to create ImageOutput for " + out_file sys.exit(msg) # adjust spec outspec = inspec nocopy = adjust_spec(inp, inspec, outspec) out.open(tempname, outspec, False) # convert if nocopy == False: ok = out.copy_image(inp) if not ok: print "Error" else: arr = array.array("B", "\0" * inspec.image_bytes()) ok = inp.read_image(outspec.format, arr) if not ok: print "Error reading" else: ok = out.write_image(outspec.format, arr) if not ok: print "Error writing" out.close() inp.close() # if the conversion was --inplace, this will result to True if out_file != tempname: if ok: # since it was inplace, in_file == out_file # so we need to replace the original file with tempfile os.remove(out_file) os.rename(tempname, out_file) else: os.remove(tempname) def adjust_spec(inp, inspec, outspec): nocopy = options.no_copy # the following line is from the original iconvert, but I'm not sure # it is needed. It's already outspec = inspec, right? #outspec.set_format(inspec.format) if options.data_format_name != "": if data_format_name == "uint8": outspec.set_format(oiio.BASETYPE.UINT8) elif data_format_name == "int8": outspec.set_format(oiio.BASETYPE.INT8) elif data_format_name == "uint16": outspec.set_format(oiio.BASETYPE.UINT16) elif data_format_name == "int16": outspec.set_format(oiio.BASETYPE.INT16) elif data_format_name == "half": outspec.set_format(oiio.BASETYPE.HALF) elif data_format_name == "float": outspec.set_format(oiio.BASETYPE.FLOAT) elif data_format_name == "double": outspec.set_format(oiio.BASETYPE.DOUBLE) if outspec.format != inspec.format: nocopy = True if options.gammaval != outspec.gamma: outspec.gamma = options.gammaval nocopy = True if options.sRGB: outspec.linearity = oiio.sRGB #ImageSpec.find_attribute() is not exposed to Python #if inp.format_name() != "jpeg" or outspec.find_attribute("Exif:ColorSpace"): #outspec.attribute("Exif:ColorSpace", 1) # handling tiles is not exposed to Python if options.tile: outspec.tile_width = options.tile[0] outspec.tile_height = options.tile[1] outspec.tile_depth = options.tile[2] if options.scanline: outspec.tile_width = 0 outspec.tile_height = 0 outspec.tile_depth = 0 if outspec.tile_width != inspec.tile_width or \ outspec.tile_height != inspec.tile_height or \ outspec.tile_depth != inspec.tile_depth: nocopy = True if options.compression: outspec.attribute("compression", options.compression) # 2nd argument should be exposed as default if options.compression != inspec.get_string_attribute("compression", ""): nocopy = True # FIXME: If quality is provided, the resultig image is larger than the # input image, and it is always the same no matter what quality (1-100). # (I suppose it uses the maximum possible value) # Should a --compression method be provided if --quality is used? if options.quality > 0: outspec.attribute("CompressionQuality", options.quality) # the 2nd argument should be exposed as default (in ImageSpec wrapper) # FIXME: The default arg is supposed to be 0, and get_int_attribute always # returns whatever is provided as the 2nd argument - 0 in this case. # I can't find out what's wrong in the binding. if options.quality != inspec.get_int_attribute("CompressionQuality", 0): nocopy = True if options.contig: outspec.attribute("planarconfig", "contig") if options.separate: outspec.attribute("planarconfig", "separate") if options.orientation >= 1: outspec.attribute("Orientation", options.orientation) else: orientation = outspec.get_int_attribute("Orientation", 1) if orientation >= 1 and orientation <= 8: cw = [0, 6, 7, 8, 5, 2, 3, 4, 1] if options.rotcw or options.rotccw or options.rot180: orientation = cw[orientation] if options.rotcw or options.rot180: orientation = cw[orientation] if options.rotccw: orientation = cw[orientation] outspec.attribute("Orientation", orientation) if options.caption != None: outspec.attribute("ImageDescription", options.caption) if options.clear_keywords == True: outspec.attribute("Keywords", "") # this looks a lot simpler than in c++ :) if options.keywords != None: oldkw = outspec.get_string_attribute("Keywords", "") newkw = oldkw for keyword in options.keywords: newkw += "; " + keyword outspec.attribute("Keywords", newkw) if options.attribs: for i in options.attribs: outspec.attribute(i[0], i[1]) return nocopy # main import OpenImageIO as oiio import array from optparse import OptionParser import os import sys (options, args) = option_parser() if options.inplace: for image in options.input_files: if convert_files(image, image) == False: sys.exit("Conversion failed") else: for i in range(len(options.input_files)): if convert_files(options.input_files[i], options.output_files[i]) == False: sys.exit("Conversion failed")
import logging from PySide2 import QtWidgets from channel_box_plus import widgets from channel_box_plus import utils log = logging.getLogger(__name__) def execute(): """ Add the search interface and colouring functionality to Maya's main channel box. If channelBoxPlus is already installed a RuntimeError exception will be thrown. A threshold can be set, this threshold determines when the attributes should change colour. the higher the threshold the more the 2 attributes will have to match up to stay the same colour. :raises RuntimeError: When the channel box plus is already installed. """ # get widgets channel_box = utils.get_channel_box() parent = channel_box.parent() parent_layout = parent.layout() parent_layout.setSpacing(0) # validate search widget for i in range(parent_layout.count()): item = parent_layout.itemAt(0) if isinstance(item.widget(), widgets.SearchWidget): raise RuntimeError("channel-box-plus has already been installed.") # initialize search widget search_widget = widgets.SearchWidget(parent) # add search widget to layout if isinstance(parent_layout, QtWidgets.QLayout): item = parent_layout.itemAt(0) widget = item.widget() parent_layout.removeWidget(widget) parent_layout.addWidget(search_widget) parent_layout.addWidget(widget) else: parent_layout.insertWidget(0, search_widget) log.info("channel-box-plus installed successfully.")
word = "banana" check = "a" print(word.count(check))
import csv from django.core.management.base import BaseCommand from gsr_booking.models import GSR class Command(BaseCommand): def handle(self, *args, **kwargs): with open("gsr_booking/data/gsr_data.csv") as data: reader = csv.reader(data) for i, row in enumerate(reader): if i == 0: continue # collects room information from csv lid, gid, name, service = row # gets image from s3 given the lid and gid # TODO: fix image url! image_url = ( f"https://s3.us-east-2.amazonaws.com/labs.api/gsr/lid-{lid}-gid-{gid}.jpg" ) kind = GSR.KIND_WHARTON if service == "wharton" else GSR.KIND_LIBCAL GSR.objects.create(lid=lid, gid=gid, name=name, kind=kind, image_url=image_url) self.stdout.write("Uploaded GSRs!")
import pr2hub import discord import math import re from discord.ext import commands from cogs.utils import exp class PR2(): def __init__(self, bot): self.bot = bot self.quoted = re.compile(r"\"(.+)\"") @commands.command(description="returns player information", aliases=["pi", "view"], brief="player_name") async def player_info(self, *, player_name : str): #region SANITY if len(player_name) > 20: await self.bot.say("Parameter too long: `player_name`") return #endregion player = None match_obj = self.quoted.match(player_name) try: if match_obj: print("quoted") player = pr2hub.get_player_info(match_obj.group(num=0)) else: player = pr2hub.get_player_info(player_name) except pr2hub.PR2HubError as e: await self.bot.say(str(e)) return description = f"**Name:** {player.name}\n" description += f"**Status:** {player.status}\n" description += f"**Group:** {player.group}\n" description += f"**Guild:** {player.guild_name}\n" description += f"**Rank:** {player.rank}\n" description += f"**Hats:** {player.hats}\n" description += f"**Joined:** {player.register_date}\n" description += f"**Active:** {player.login_date}" embed = discord.Embed(title="-- Player Info --", description=description) await self.bot.say(embed=embed) @commands.command(description="returns guild information", aliases=["gi", "guild"], brief="guild_name") async def guild_info(self, *, guild_name : str): #region SANITY if len(guild_name) > 20: await self.bot.say("Parameter too long: `guild_name`") return #endregion guild = None try: guild = pr2hub.get_guild_info(guild_name, False) except pr2hub.PR2HubError as e: await self.bot.say(str(e)) return description = f"**Name:** {guild.name}\n" description += "**GP Today:** {:,}\n".format(int(guild.gp_today)) description += "**GP Total:** {:,}\n".format(int(guild.gp_total)) description += f"**Members:** {guild.member_count} ({guild.active_count} active)\n" description += f"**Creation Date:** {guild.creation_date}\n" description += f"**Prose:** {guild.note}" embed = discord.Embed(title="-- Guild Info --", description=description) embed.set_thumbnail(url=pr2hub.emblems.url + guild.emblem) await self.bot.say(embed=embed) @commands.command(description="returns the names of all members in a guild", aliases=["gm", "guildm"], brief="guild_name") async def guild_members(self, *, guild_name : str): #region SANITY if len(guild_name) > 20: await self.bot.say("Parameter too long: `guild_name`") return #endregion guild = None try: guild = pr2hub.get_guild_info(guild_name, True) except pr2hub.PR2HubError as e: await self.bot.say(str(e)) return member_count_is_even = guild.member_count % 2 == 0 half_member_count = int(guild.member_count / 2) guild_member_names = [] value1 = [] value2 = [] # create a list of just the member names for member in guild.members: guild_member_names.append(member.name) if member_count_is_even: value1 = guild_member_names[:half_member_count] value2 = guild_member_names[half_member_count:half_member_count*2] else: value1 = guild_member_names[:half_member_count+1] value2 = guild_member_names[half_member_count+1:half_member_count*2+1] embed = discord.Embed(title=f"-- Guild Members ({len(guild_member_names)}) --") embed.add_field(name="1", value="\n".join(value1), inline=True) if guild.member_count > 1: embed.add_field(name="2", value="\n".join(value2), inline=True) await self.bot.say(embed=embed) @commands.command(description="calculates experience required to reach a specified rank", aliases=["xp"], brief="from [to [exp_per_day=720]]") async def exp(self, _from : int, to : int=None, exp_per_day=720): if to == None: to = _from + 1 #region SANITY if _from > 1000 or _from < 0: await self.bot.say("Parameter out of range: `from`") return if to > 1000 or to < 0: await self.bot.say("Parameter out of range: `to`") return if exp_per_day > 10000 or exp_per_day < 0: await self.bot.say("Parameter out of range: `exp_per_day`") return #endregion _exp = exp.calculate(_from, to) days = int(_exp/(exp_per_day*1000)) _exp = "{:,}".format(_exp) embed = discord.Embed(title="-- Experience Needed --", description=f"{_from} -> {to} = {_exp}\nroughly {days} days") await self.bot.say(embed=embed) @commands.command(description="returns info of every server", aliases=["hh", "status"]) async def server_info(self): servers = None try: servers = pr2hub.get_servers_info() except pr2hub.PR2HubError as e: await self.bot.say(str(e)) return description = "" for server in servers: line = "" line += server.name if server.status == "down": line += " (down)" else: line += f" ({server.population} online)" if server.is_happy_hour: line = f"**!! {line}**" line += "\n" description += line embed = discord.Embed(title="-- Server Info --", description=description) await self.bot.say(embed=embed) def setup(bot): bot.add_cog(PR2(bot))
""" Helper functions for parsing python code, as required by ScriptTask """ import ast from itertools import chain import re import sys from typing import Container, Iterator, List, Tuple from ..exceptions import ScriptParseError _BUILTINS_WHITELIST = { "abs", "all", "any", "ascii", "bin", "chr", "dir", "divmod", "environ", "format", "getattr", "hasattr", "hex", "iter", "len", "max", "min", "next", "oct", "ord", "pow", "repr", "round", "sorted", "sum", "None", "Ellipsis", "False", "True", "bool", "memoryview", "bytearray", "bytes", "complex", "dict", "enumerate", "filter", "float", "frozenset", "int", "list", "map", "range", "reversed", "set", "slice", "str", "tuple", "type", "zip", } Substitution = Tuple[Tuple[int, int], str] def resolve_function_call( source: str, arguments: Container[str], args_prefix: str = "__args." ): """ Validate function call and substitute references to arguments with their namespaced counterparts (e.g. `my_arg` => `args.my_arg`). """ call_node = parse_and_validate(source) substitutions: List[Substitution] = [] # Collect all the variables name_nodes: Iterator[ast.Name] = chain( ( node for arg in call_node.args for node in ast.walk(arg) if isinstance(node, ast.Name) ), ( node for kwarg in call_node.keywords for node in ast.walk(kwarg.value) if isinstance(node, ast.Name) ), ) for node in name_nodes: if node.id in _BUILTINS_WHITELIST: # builtin values have precedence over unqualified args continue if node.id in arguments: substitutions.append( (_get_name_node_abs_range(source, node), args_prefix + node.id) ) else: raise ScriptParseError( "Invalid variable reference in script: " + _get_name_source_segment(source, node) ) # Prefix references to arguments with args_prefix return _apply_substitutions(source, substitutions) def parse_and_validate(source: str): """ Parse the given source into an ast, validate that is consists of a single function call, and return the Call node. """ try: module = ast.parse(source) except SyntaxError as error: raise ScriptParseError(f"Invalid script content: {source}") from error if len(module.body) != 1: raise ScriptParseError( f"Expected a single python expression, instead got: {source}" ) first_statement = module.body[0] if not isinstance(first_statement, ast.Expr): raise ScriptParseError(f"Expected a function call, instead got: {source}") call_node = first_statement.value if not isinstance(call_node, ast.Call): raise ScriptParseError(f"Expected a function call, instead got: {source}") node = call_node.func while isinstance(node, ast.Attribute): node = node.value if not isinstance(node, ast.Name): raise ScriptParseError(f"Invalid function reference in: {source}") return call_node def _apply_substitutions(content: str, subs: List[Substitution]): """ Returns a copy of content with all of the substitutions applied. Uses a single pass for efficiency. """ cursor = 0 segments: List[str] = [] for ((start, end), replacement) in sorted(subs, key=lambda x: x[0][0]): in_between = content[cursor:start] segments.extend((in_between, replacement)) cursor += len(in_between) + (end - start) segments.append(content[cursor:]) return "".join(segments) # This pattern matches the sequence of chars from the begining of the string that are # *probably* a valid identifier IDENTIFIER_PATTERN = r"[^\s\!-\/\:-\@\[-\^\{-\~`]+" def _get_name_node_abs_range(source: str, node: ast.Name): """ Find the absolute start and end offsets of the given name node in the source. """ source_lines = re.findall(r".*?(?:\r\n|\r|\n)", source + "\n") prev_lines_offset = sum(len(line) for line in source_lines[: node.lineno - 1]) own_line_offset = len( source_lines[node.lineno - 1].encode()[: node.col_offset].decode() ) total_start_chars_offset = prev_lines_offset + own_line_offset name_content = re.match( # type: ignore IDENTIFIER_PATTERN, source[total_start_chars_offset:] ).group() while not name_content.isidentifier() and name_content: name_content = name_content[:-1] return (total_start_chars_offset, total_start_chars_offset + len(name_content)) def _get_name_source_segment(source: str, node: ast.Name): """ Before python 3.8 the ast module didn't allow for easily identifying the source segment of a node, so this function provides this functionality specifically for name nodes as needed here. The fallback logic is specialised for name nodes which cannot span multiple lines and must be valid identifiers. It is expected to be correct in all cases, and performant in common cases. """ if sys.version_info.minor >= 8: return ast.get_source_segment(source, node) # type: ignore partial_result = ( re.split(r"(?:\r\n|\r|\n)", source)[node.lineno - 1] .encode()[node.col_offset :] .decode() ) # The name probably extends to the first ascii char outside of [a-zA-Z\d_] # regex will always match with valid arguments to this function partial_result = re.match(IDENTIFIER_PATTERN, partial_result).group() # type: ignore # This bit is a nasty hack, but probably always gets skipped while not partial_result.isidentifier() and partial_result: partial_result = partial_result[:-1] return partial_result
from flask import Flask, render_template_string from sucuri import rendering app = Flask(__name__) @app.route("/") def index(): template = rendering.template('template.suc',{"text": "Hello! I'm here!", "var":[1, 2, 3, 4]}) return render_template_string(template)
# Author: Qianru Zhou # Email: zhouqr333@126.com # Magic, do not touch!! """ generate immature detector, a file with random 96 bits binary strings """ from random import randint def reduce_duplicate(inputPath, outputPath): """ delete the duplicate strings in the log for efficiency """ patterns = [] with open(inputPath, 'r') as f: for line in f.readlines(): if line not in patterns: patterns.append(line) with open(outputPath, 'w+') as out: for pattern in patterns: out.write(pattern) # another way to do that #tmp = open('/Users/silvia/Documents/code/my/my_pcap/log').readlines() #set(tmp) #with open('/Users/silvia/Documents/code/my/my_pcap/uniLog', 'w+') as f: #for item in tmp: #f.write(item) def create_antibody(): """ generate 96 bits long binary strings randomly """ s = list(''.zfill(96)) for i in range(0,96): s[i]=str(randint(0,9)%2) return ''.join(s) if __name__ == '__main__': # with open('/Users/silvia/Documents/code/my/my_pcap/log/raw_immature_detector', 'w+') as f: # for _ in range(5000000): # f.write(create_antibody()+'\n') reduce_duplicate('/Users/silvia/Documents/code/my/my_pcap/log/raw_immature_detector', \ '/Users/silvia/Documents/code/my/my_pcap/log/immature_detector')
DEEPREACH_DIR = '/'.join(__file__.split('/')[:-2]) environment = f'{DEEPREACH_DIR}/environment.yml' not_installed = f'{DEEPREACH_DIR}/change_env_file/packages_not_found.txt' not_in_osx = f'{DEEPREACH_DIR}/change_env_file/not_in_osx.txt' desired_env = f'{DEEPREACH_DIR}/new_environment.yml' def remove_build(s: str) -> str: ''' Removes the build from a string representing a package ''' new_s = s[:s.rfind('=')] if '=' not in new_s: return s return new_s def make_fuzzy(s: str) -> str: ''' Changes the == to an = in the package specification ''' return s.replace('==', '=', 1) def make_exact(s: str) -> str: ''' Does the opposite of above ''' return s.replace('=', '==', 1) if __name__ == '__main__': with open(not_installed) as ni: not_installed_list = ni.read().split('\n') with open(not_in_osx) as nio: not_in_osx_list = nio.read().split('\n') with open(environment) as e: env_list = e.read().split('\n') not_installed_list = [make_fuzzy(package) for package in not_installed_list] new_env_list = env_list[:] matches = 0 indices = {val: index for index, val in enumerate(env_list)} for package in not_installed_list: index = indices.get(package, -1) if index != -1: new_env_list[index] = remove_build(new_env_list[index]) matches += 1 else: print('The following package was not found in the environment.yml file:', package) if matches == len(not_installed_list): print(f'All {matches} packages had their build strings removed!') else: print(f'There were {matches} packages out of {len(not_installed_list)} whose build string was removed.') matches = 0 for package in not_in_osx_list: for e_package in new_env_list: if package in e_package: new_env_list.remove(e_package) new_env_list.append(' ' + make_exact(package)) matches += 1 break else: print('The following package was not found in the environment.yml file:', package) if matches == len(not_in_osx_list): print(f'All {matches} packages were moved under the pip section!') else: print(f'There were {matches} packages out of {len(not_in_osx_list)} which were moved under the pip section.') with open(desired_env, 'w') as d: d.write('\n'.join(new_env_list)) # with open(not_installed) as n: # not_installed_list = n.read().split('\n') # with open(environment) as e: # environment_list = e.read().split('\n') # not_installed_list = [make_fuzzy(package) for package in not_installed_list] # new_env_list = environment_list[:] # matches = 0 # pip_location = 197 # assert 'pip:' in environment_list[pip_location] # not_pip = set(environment_list[:pip_location]) # for package in not_installed_list: # if package in not_pip: # new_env_list.remove(package) # matches += 1 # new_env_list.append(' ' + remove_build(make_exact(package))) # else: # print('The following package was not found in the environment.yml file:', package) # with open(desired_env, 'w') as d: # d.write('\n'.join(new_env_list)) # if matches == len(not_installed_list): # print(f'All {matches} packages were successfully moved under the \'pip\' section') # else: # print(f'There were {matches} packages out of {len(not_installed_list)} that were moved under the \'pip\' section.') # input()
#-*-coding:utf-8-*- import numpy as np import pandas as pd import time from bayes_smoothing import * from sklearn.preprocessing import LabelEncoder import copy def roll_browse_fetch(df, column_list): print("==========================roll_browse_fetch ing==============================") df = df.sort('context_timestamp') df['tmp_count'] = df['status'] for c in column_list: if isinstance(c, (list, tuple)): pair = [cc for cc in c] c = '_'.join(c) else: pair = [c] df['%s_browse' %c] = df.groupby(pair)['tmp_count'].cumsum() del df['tmp_count'] return df def roll_click_fetch(df, column_list): print("==========================roll_click_fetch ing==============================") for c in column_list: if isinstance(c, (list, tuple)): pair = [cc for cc in c] c = '_'.join(c) else: pair = [c] df['%s_click' %c] = df.groupby(pair)['is_trade'].cumsum() df['%s_click' %c] = df['%s_click' %c]-df['is_trade'] return df def roll_rate_fetch(df, column_list): df = roll_browse_fetch(df,column_list) df = roll_click_fetch(df,column_list) print("==========================roll_rate_fetch ing==============================\n") for c in column_list: if isinstance(c, (list, tuple)): c = '_'.join(c) df['%s_rate' %c] = bs_utilize(df['%s_browse' %c], df['%s_click' %c]) # del df['%s_browse' %c] return df #===================================按天的转化率============================== def roll_browse_day(df, column_list): df = df.sort('context_timestamp') df['tmp_count'] = df['status'] df_data_temp =df.copy() for c in column_list: if isinstance(c, (list, tuple)): pair = [cc for cc in c] c = '_'.join(c) else: pair = [c] pair.append('day') df_temp = df.groupby(pair)['tmp_count'].agg({"browse_temp":np.sum}).reset_index() pair_temp =copy.copy(pair) pair_temp.remove('day') df_temp["{}_day_browse".format(c)] = df_temp.groupby(pair_temp)["browse_temp"].cumsum() df_temp["{}_day_browse".format(c)] = df_temp["{}_day_browse".format(c)] - df_temp['browse_temp'] del df_temp['browse_temp'] df_data_temp = pd.merge(df_data_temp,df_temp,how = "left",on = pair ) del df['tmp_count'] return df_data_temp def roll_click_day_hour(df,column_list): df = df.sort('context_timestamp') df_data_temp =df.copy() for c in column_list: if isinstance(c, (list, tuple)): pair = [cc for cc in c] c = '_'.join(c) else: pair = [c] pair.append('day') df_temp = df.groupby(pair)['is_trade'].agg({"click_temp":np.sum}).reset_index() pair_temp = copy.copy(pair) pair_temp.remove('day') df_temp["{}_day_click".format(c)] = df_temp.groupby(pair_temp)["click_temp"].cumsum() df_temp["{}_day_click".format(c)] = df_temp["{}_day_click".format(c)] - df_temp['click_temp'] del df_temp['click_temp'] df_data_temp = pd.merge(df_data_temp,df_temp,how = "left",on = pair) return df_data_temp def roll_rate_day(df,column_list): print("==========================roll_rate_day ing==============================") df = roll_browse_day(df,column_list) df =roll_click_day(df,column_list) for c in column_list: if isinstance(c, (list, tuple)): c = '_'.join(c) df['%s_day_rate' %c] = bs_utilize(df['%s_day_browse' %c], df['%s_day_click' %c]) # del df['%s_day_browse'%c] # del df['%s_day_click'%c] return df #===================================按天小时的转化率============================== def roll_browse_day_hour(df, column_list): df = df.sort('context_timestamp') df['tmp_count'] = df['status'] df_data_temp =df.copy() for c in column_list: if isinstance(c, (list, tuple)): pair = [cc for cc in c] c = '_'.join(c) else: pair = [c] pair.append('day') pair.append('hour') df_temp = df.groupby(pair)['tmp_count'].agg({"browse_temp":np.sum}).reset_index() pair_temp =copy.copy(pair) pair_temp.remove('day') pair_temp.remove('hour') df_temp["{}_day_hour_browse".format(c)] = df_temp.groupby(pair_temp)["browse_temp"].cumsum() df_temp["{}_day_hour_browse".format(c)] = df_temp["{}_day_hour_browse".format(c)] - df_temp['browse_temp'] del df_temp['browse_temp'] df_data_temp = pd.merge(df_data_temp,df_temp,how = "left",on = pair ) del df['tmp_count'] return df_data_temp def roll_click_day_hour(df,column_list): df = df.sort('context_timestamp') df_data_temp =df.copy() for c in column_list: if isinstance(c, (list, tuple)): pair = [cc for cc in c] c = '_'.join(c) else: pair = [c] pair.append('day') pair.append('hour') df_temp = df.groupby(pair)['is_trade'].agg({"click_temp":np.sum}).reset_index() pair_temp = copy.copy(pair) pair_temp.remove('day') pair_temp.remove('hour') df_temp["{}_day_hour_click".format(c)] = df_temp.groupby(pair_temp)["click_temp"].cumsum() df_temp["{}_day_hour_click".format(c)] = df_temp["{}_day_hour_click".format(c)] - df_temp['click_temp'] del df_temp['click_temp'] df_data_temp = pd.merge(df_data_temp,df_temp,how = "left",on = pair) return df_data_temp def roll_rate_day_hour(df,column_list): print("==========================roll_rate_day ing==============================") df = roll_browse_day_hour(df,column_list) df =roll_click_day_hour(df,column_list) for c in column_list: if isinstance(c, (list, tuple)): c = '_'.join(c) df['%s_day_hour_rate' %c] = bs_utilize(df['%s_day_hour_browse' %c], df['%s_day_hour_click' %c]) # del df['%s_day_browse'%c] # del df['%s_day_click'%c] return df #===================================按小时的转化率============================== def roll_browse_hour(df, column_list): df = df.sort('context_timestamp') df['tmp_count'] = df['status'] df_data_temp =df.copy() for c in column_list: if isinstance(c, (list, tuple)): pair = [cc for cc in c] c = '_'.join(c) else: pair = [c] pair.append('hour') df_temp = df.groupby(pair)['tmp_count'].agg({"browse_temp":np.sum}).reset_index() pair_temp =copy.copy(pair) pair_temp.remove('hour') df_temp["{}_hour_browse".format(c)] = df_temp.groupby(pair_temp)["browse_temp"].cumsum() df_temp["{}_hour_browse".format(c)] = df_temp["{}_hour_browse".format(c)] - df_temp['browse_temp'] del df_temp['browse_temp'] df_data_temp = pd.merge(df_data_temp,df_temp,how = "left",on = pair ) del df['tmp_count'] return df_data_temp def roll_click_hour(df,column_list): df = df.sort('context_timestamp') df_data_temp =df.copy() for c in column_list: if isinstance(c, (list, tuple)): pair = [cc for cc in c] c = '_'.join(c) else: pair = [c] pair.append('hour') df_temp = df.groupby(pair)['is_trade'].agg({"click_temp":np.sum}).reset_index() pair_temp = copy.copy(pair) pair_temp.remove('hour') df_temp["{}_hour_click".format(c)] = df_temp.groupby(pair_temp)["click_temp"].cumsum() df_temp["{}_hour_click".format(c)] = df_temp["{}_hour_click".format(c)] - df_temp['click_temp'] del df_temp['click_temp'] df_data_temp = pd.merge(df_data_temp,df_temp,how = "left",on = pair) return df_data_temp def roll_rate_hour(df,column_list): print("==========================roll_rate_hour ing==============================") df = roll_browse_hour(df,column_list) df =roll_click_hour(df,column_list) for c in column_list: if isinstance(c, (list, tuple)): c = '_'.join(c) df['%s_hour_rate' %c] = bs_utilize(df['%s_hour_browse' %c], df['%s_hour_click' %c]) return df def label_encoding(df, columns): for c in columns: le = LabelEncoder() df[c] = le.fit_transform(df[c]) return df # # #----------------统计特征----------------- # def get_last_diff_statistic(data,col_list, n_last_diff): # print("=======get_last_diff============\n") # data_temp = data # col_id = col_list[0],col_list[1] # data = data.sort_values([col_id, 'timestamp']) # data['next_id'] = data[col_id].shift(-1) # data['next_actionTime'] = data.timestamp.shift(-1) # data = data.loc[data.next_id == data[col_id]].copy() # data['action_diff'] = data['next_actionTime'] - data['timestamp'] # if n_last_diff is not None: # df_n_last_diff = data.groupby(col_id, as_index=False).tail(n_last_diff).copy() # df_last_diff_statistic = df_n_last_diff.groupby(col_id, as_index=False).action_diff.agg({ # '{}_last_{}_action_diff_mean'.format(col_id,n_last_diff): np.mean, # '{}_last_{}_action_diff_std'.format(col_id,n_last_diff): np.std, # '{}_last_{}_action_diff_max'.format(col_id,n_last_diff): np.max, # '{}_last_{}_action_diff_min'.format(col_id,n_last_diff): np.min # }) # else: # grouped_user = data.groupby(col_id, as_index=False) # n_last_diff = 'all' # df_last_diff_statistic = grouped_user.action_diff.agg({ # '{}_last_{}_action_diff_mean'.format(col_id,n_last_diff): np.mean, # '{}_last_{}_action_diff_std'.format(col_id,n_last_diff): np.std, # '{}_last_{}_action_diff_max'.format(col_id,n_last_diff): np.max, # '{}_last_{}_action_diff_min'.format(col_id,n_last_diff): np.min # }) # res_data = pd.merge(data_temp,df_last_diff_statistic,how="left",on = col_id) # return res_data # #-----------------------时间特征----------------------- # # #--时间间隔特征、 # def chafen(df): # return pd.DataFrame(np.diff(df,axis = 0)) # def get_last_diff(data, col_list,n_last_diff): # """获取最后 n_last_diff 个动作之间的时间间隔""" # print("=======get_last_diff============\n") # for col in col_list: # col_sort = col.copy() # col_sort.append('timestamp') # data = data.sort_values(col_sort,ascending = False) # data_temp = data.groupby(col)['timestamp'].apply(chafen).reset_index() # data_temp.columns = [col[0],col[1],'level','time_gap'] # data_temp = data_temp.loc[data_temp.level<n_last_diff] # data_temp['time_gap'] = -1*data_temp['time_gap'] # data_temp['level'] = str(col[0])+"_"+str(col[1])+"_last_time_gap"+ data_temp['level'].astype('str') # data_temp = pd.pivot_table(data_temp,index=[col[0],col[1]],values='time_gap',columns='level').reset_index() # res_data = pd.merge(data,data_temp,how="left",on = [col[0],col[1]]) # return res_data #--时间间隔特征 def time_diff_feat(data,col_list): print("get tiem diff...") for col in col_list: col_sort = copy.copy(col) col_sort.append('timestamp') data_temp = data.sort(col_sort,ascending = True) data_temp['{}_{}_time_diff'.format(col[0],col[1])] = data_temp.groupby(col)['timestamp'].apply(lambda x:x.diff()) data['{}_{}_time_diff'.format(col[0],col[1])] = data_temp['{}_{}_time_diff'.format(col[0],col[1])].fillna(0) return data def CombinationFeature(data): print("==============convert_data===============") data['tm_hour'] = data['hour'] + data['min']/60 data['tm_hour_sin'] = data['tm_hour'].map(lambda x:np.sin((x-12)/24*2*np.pi)) data['tm_hour_cos'] = data['tm_hour'].map(lambda x:np.cos((x-12)/24*2*np.pi)) data_time=data[['user_id','day','hour','min']] user_query_day = data.groupby(['user_id', 'day']).size().reset_index().rename(columns={0: 'user_query_day'}) user_query_day_hour = data.groupby(['user_id', 'day', 'hour']).size().reset_index().rename(columns={0: 'user_query_day_hour'}) user_query_day_hour_min = data.groupby(['user_id', 'day', 'hour','min']).size().reset_index().rename(columns={0: 'user_query_day_hour_min'}) user_query_day_hour_min_sec = data.groupby(['user_id', 'day', 'hour','min','sec']).size().reset_index().rename(columns={0: 'user_query_day_hour_min_sec'}) user_day_hourmin_mean= data_time.groupby(['user_id', 'day']).mean().reset_index().rename(columns={'hour': 'mean_hour','min':'mean_minuite'}) user_day_hourmin_std= data_time.groupby(['user_id', 'day']).std().reset_index().rename(columns={'hour': 'std_hour','min':'std_minuite'}) user_day_hourmin_max= data_time.groupby(['user_id', 'day']).max().reset_index().rename(columns={'hour': 'max_hour','min':'max_minuite'}) user_day_hourmin_min= data_time.groupby(['user_id', 'day']).min().reset_index().rename(columns={'hour': 'min_hour','min':'min_minuite'}) #-------merge----- data = pd.merge(data, user_query_day, 'left', on=['user_id', 'day']) data = pd.merge(data, user_query_day_hour, 'left',on=['user_id', 'day', 'hour']) data = pd.merge(data, user_query_day_hour_min, 'left',on=['user_id', 'day', 'hour','min']) data = pd.merge(data, user_query_day_hour_min_sec, 'left',on=['user_id', 'day', 'hour','min','sec']) data = pd.merge(data, user_day_hourmin_mean, 'left',on=['user_id','day']) data = pd.merge(data, user_day_hourmin_std, 'left',on=['user_id','day']) data = pd.merge(data, user_day_hourmin_max, 'left',on=['user_id','day']) data = pd.merge(data, user_day_hourmin_min, 'left',on=['user_id','day']) #==============================click_feat================================ data_temp = data.copy() columns_click = [ #--单个-- ['user_id'], ['item_id'], ['context_id'], ['shop_id'], ['item_brand_id'], ['item_city_id'], ['context_page_id'], ['item_category_2'], ['item_property_list_1'], ['item_property_list_2'], ['item_property_list_3'], ['predict_category_property_A'], ['predict_category_property_B'], ['predict_category_property_C'], ['predict_category_property_A_1'], ['predict_category_property_B_1'], ['predict_category_property_C_1'], ['predict_category_property_A_2'], ['predict_category_property_B_2'], ['predict_category_property_C_2'], #--加day-- ['user_id','day','item_id'], ['user_id','day','context_id'], ['user_id','day','shop_id'], ['user_id','day','item_brand_id'], ['user_id','day','item_city_id'], ['user_id','day','context_page_id'], ['user_id','day','item_category_2'], ['user_id','day','item_property_list_1'], ['user_id','day','item_property_list_2'], ['user_id','day','item_property_list_3'], ['user_id','day','predict_category_property_A'], ['user_id','day','predict_category_property_B'], ['user_id','day','predict_category_property_C'], ['user_id','day','predict_category_property_A_1'], ['user_id','day','predict_category_property_B_1'], ['user_id','day','predict_category_property_C_1'], ['user_id','day','predict_category_property_A_2'], ['user_id','day','predict_category_property_B_2'], ['user_id','day','predict_category_property_C_2'], #--加day,hour-- ['user_id','day','hour','item_id'], ['user_id','day','hour','context_id'], ['user_id','day','hour','shop_id'], ['user_id','day','hour','item_brand_id'], ['user_id','day','hour','item_city_id'], ['user_id','day','hour','context_page_id'], ['user_id','day','hour','item_category_2'], ['user_id','day','hour','item_property_list_1'], ['user_id','day','hour','item_property_list_2'], ['user_id','day','hour','item_property_list_3'], ['user_id','day','hour','predict_category_property_A'], ['user_id','day','hour','predict_category_property_B'], ['user_id','day','hour','predict_category_property_C'], ['user_id','day','hour','predict_category_property_A_1'], ['user_id','day','hour','predict_category_property_B_1'], ['user_id','day','hour','predict_category_property_C_1'], ['user_id','day','hour','predict_category_property_A_2'], ['user_id','day','hour','predict_category_property_B_2'], ['user_id','day','hour','predict_category_property_C_2'], #--加hour-- ['user_id','hour','item_id'], ['user_id','hour','shop_id'], ['user_id','hour','item_brand_id'], ['user_id','hour','item_city_id'], ['user_id','hour','context_page_id'], ['user_id','hour','item_category_2'], ['user_id','hour','item_property_list_1'], ['user_id','hour','item_property_list_2'], ['user_id','hour','item_property_list_3'], ['user_id','hour','predict_category_property_A'], ['user_id','hour','predict_category_property_B'], ['user_id','hour','predict_category_property_C'], ['user_id','hour','predict_category_property_A_1'], ['user_id','hour','predict_category_property_B_1'], ['user_id','hour','predict_category_property_C_1'], ['user_id','hour','predict_category_property_A_2'], ['user_id','hour','predict_category_property_B_2'], ['user_id','hour','predict_category_property_C_2'] ] for c in columns_click: if isinstance(c, (list, tuple)): pair = [cc for cc in c] c = '_'.join(c) else: pair = [c] click_temp = data_temp.groupby(pair).size().reset_index().rename(columns={0: '{}_click'.format(c)}) data = pd.merge(data, click_temp, how = 'left',on=pair) return data def load_feat(): train_together_data = pd.read_csv("data_handle/train_together_data_after.csv") train_together_data = train_together_data[train_together_data['context_timestamp'] > '2018-09-06 23:59:59'] val_data = train_together_data[train_together_data['context_timestamp'] > '2018-09-07 10:59:59'] train_data = train_together_data[train_together_data['context_timestamp'] <= '2018-09-07 10:59:59'] # train_data = pd.read_csv("data_handle/train_data.csv") # val_data = pd.read_csv("data_handle/valid_data.csv") test_data = pd.read_csv("data_handle/test_data_after.csv") del train_together_data['context_timestamp'] del train_data['context_timestamp'] del val_data['context_timestamp'] del test_data['context_timestamp'] return train_together_data,train_data,val_data,test_data if __name__ == '__main__': pass
#!/usr/bin/env python3 # from: http://sam.aiki.info/b/google-images.py # requires: selenium, chromium-driver, retry # # $ pip install webdriver_manager # $ pip install selenium retry # $ brew install chromedriver # install google.com/chrome from selenium import webdriver from webdriver_manager.chrome import ChromeDriverManager from selenium.webdriver.chrome.options import Options import selenium.common.exceptions as sel_ex import sys import time import urllib.parse from retry import retry import argparse import logging logging.basicConfig(stream=sys.stderr, level=logging.INFO) logger = logging.getLogger() retry_logger = None css_thumbnail = "img.Q4LuWd" css_large = "img.n3VNCb" css_load_more = ".mye4qd" selenium_exceptions = (sel_ex.ElementClickInterceptedException, sel_ex.ElementNotInteractableException, sel_ex.StaleElementReferenceException) def scroll_to_end(wd): wd.execute_script("window.scrollTo(0, document.body.scrollHeight);") @retry(exceptions=KeyError, tries=6, delay=0.1, backoff=2, logger=retry_logger) def get_thumbnails(wd, want_more_than=0): wd.execute_script("document.querySelector('{}').click();".format(css_load_more)) thumbnails = wd.find_elements_by_css_selector(css_thumbnail) n_results = len(thumbnails) if n_results <= want_more_than: raise KeyError("no new thumbnails") return thumbnails @retry(exceptions=KeyError, tries=6, delay=0.1, backoff=2, logger=retry_logger) def get_image_src(wd): actual_images = wd.find_elements_by_css_selector(css_large) sources = [] for img in actual_images: src = img.get_attribute("src") if src.startswith("http") and not src.startswith("https://encrypted-tbn0.gstatic.com/"): sources.append(src) if not len(sources): raise KeyError("no large image") return sources @retry(exceptions=selenium_exceptions, tries=6, delay=0.1, backoff=2, logger=retry_logger) def retry_click(el): el.click() def get_images(wd, start=0, n=20, out=None): thumbnails = [] count = len(thumbnails) while count < n: scroll_to_end(wd) try: thumbnails = get_thumbnails(wd, want_more_than=count) except KeyError as e: logger.warning("cannot load enough thumbnails") break count = len(thumbnails) sources = [] for tn in thumbnails: try: retry_click(tn) except selenium_exceptions as e: logger.warning("main image click failed") continue sources1 = [] try: sources1 = get_image_src(wd) except KeyError as e: pass # logger.warning("main image not found") if not sources1: tn_src = tn.get_attribute("src") if not tn_src.startswith("data"): logger.warning("no src found for main image, using thumbnail") sources1 = [tn_src] else: logger.warning("no src found for main image, thumbnail is a data URL") for src in sources1: if not src in sources: sources.append(src) if out: print(src, file=out) out.flush() if len(sources) >= n: break return sources def google_image_search(wd, query, safe="off", n=20, opts='', out=None): search_url_t = "https://www.google.com/search?safe={safe}&site=&tbm=isch&source=hp&q={q}&oq={q}&gs_l=img&tbs={opts}" search_url = search_url_t.format(q=urllib.parse.quote(query), opts=urllib.parse.quote(opts), safe=safe) wd.get(search_url) sources = get_images(wd, n=n, out=out) return sources def main(): parser = argparse.ArgumentParser(description='Fetch image URLs from Google Image Search.') parser.add_argument('--safe', type=str, default="off", help='safe search [off|active|images]') parser.add_argument('--opts', type=str, default="", help='search options, e.g. isz:lt,islt:svga,itp:photo,ic:color,ift:jpg') parser.add_argument('query', type=str, help='image search query') parser.add_argument('n', type=int, default=20, help='number of images (approx)') args = parser.parse_args() opts = Options() opts.add_argument("--headless") # opts.add_argument("--blink-settings=imagesEnabled=false") # with webdriver.Chrome(options=opts) as wd: with webdriver.Chrome(ChromeDriverManager().install(), options=opts) as wd: sources = google_image_search(wd, args.query, safe=args.safe, n=args.n, opts=args.opts, out=sys.stdout) main()
import json from asynctest import mock as async_mock, TestCase as AsyncTestCase from .....cache.base import BaseCache from .....cache.in_memory import InMemoryCache from .....connections.models.conn_record import ConnRecord from .....connections.models.connection_target import ConnectionTarget from .....connections.models.diddoc import ( DIDDoc, PublicKey, PublicKeyType, Service, ) from .....core.in_memory import InMemoryProfile from .....ledger.base import BaseLedger from .....ledger.error import LedgerError from .....messaging.responder import BaseResponder, MockResponder from .....messaging.decorators.attach_decorator import AttachDecorator from .....multitenant.manager import MultitenantManager from .....storage.error import StorageNotFoundError from .....transport.inbound.receipt import MessageReceipt from .....multitenant.manager import MultitenantManager from .....wallet.base import DIDInfo from .....wallet.in_memory import InMemoryWallet from .....wallet.util import naked_to_did_key from .....connections.base_manager import ( BaseConnectionManager, BaseConnectionManagerError, ) from ....connections.v1_0.messages.connection_invitation import ConnectionInvitation from ....coordinate_mediation.v1_0.manager import MediationManager from ....coordinate_mediation.v1_0.messages.keylist_update import ( KeylistUpdate, KeylistUpdateRule, ) from ....coordinate_mediation.v1_0.models.mediation_record import ( MediationRecord, ) from ....didcomm_prefix import DIDCommPrefix from ....out_of_band.v1_0.manager import OutOfBandManager from ....out_of_band.v1_0.messages.invitation import HSProto, InvitationMessage from ....out_of_band.v1_0.messages.service import Service as OOBService from .. import manager as test_module from ..manager import DIDXManager, DIDXManagerError class TestConfig: test_seed = "testseed000000000000000000000001" test_did = "55GkHamhTU1ZbTbV2ab9DE" test_verkey = "3Dn1SJNPaCXcvvJvSbsFWP2xaCjMom3can8CQNhWrTRx" test_endpoint = "http://localhost" test_target_did = "GbuDUYXaUZRfHD2jeDuQuP" test_target_verkey = "9WCgWKUaAJj3VWxxtzvvMQN3AoFxoBtBDo9ntwJnVVCC" def make_did_doc(self, did, verkey): doc = DIDDoc(did=did) controller = did ident = "1" pk_value = verkey pk = PublicKey( did, ident, pk_value, PublicKeyType.ED25519_SIG_2018, controller, False ) doc.set(pk) recip_keys = [pk] router_keys = [] service = Service( did, "indy", "IndyAgent", recip_keys, router_keys, TestConfig.test_endpoint ) doc.set(service) return doc class TestDidExchangeManager(AsyncTestCase, TestConfig): async def setUp(self): self.responder = MockResponder() self.session = InMemoryProfile.test_session( { "default_endpoint": "http://aries.ca/endpoint", "default_label": "This guy", "additional_endpoints": ["http://aries.ca/another-endpoint"], "debug.auto_accept_invites": True, "debug.auto_accept_requests": True, "multitenant.enabled": True, "wallet.id": True, }, bind={BaseResponder: self.responder, BaseCache: InMemoryCache()}, ) self.context = self.session.context self.did_info = await self.session.wallet.create_local_did() self.ledger = async_mock.create_autospec(BaseLedger) self.ledger.__aenter__ = async_mock.CoroutineMock(return_value=self.ledger) self.ledger.get_endpoint_for_did = async_mock.CoroutineMock( return_value=TestConfig.test_endpoint ) self.session.context.injector.bind_instance(BaseLedger, self.ledger) self.multitenant_mgr = async_mock.MagicMock(MultitenantManager, autospec=True) self.session.context.injector.bind_instance( MultitenantManager, self.multitenant_mgr ) self.manager = DIDXManager(self.session) assert self.manager.session self.oob_manager = OutOfBandManager(self.session) self.test_mediator_routing_keys = [ naked_to_did_key("3Dn1SJNPaCXcvvJvSbsFWP2xaCjMom3can8CQNhWrTRR") ] self.test_mediator_conn_id = "mediator-conn-id" self.test_mediator_endpoint = "http://mediator.example.com" async def test_verify_diddoc(self): did_doc = self.make_did_doc( TestConfig.test_target_did, TestConfig.test_target_verkey, ) did_doc_attach = AttachDecorator.from_indy_dict(did_doc.serialize()) with self.assertRaises(DIDXManagerError): await self.manager.verify_diddoc(self.session.wallet, did_doc_attach) await did_doc_attach.data.sign(self.did_info.verkey, self.session.wallet) await self.manager.verify_diddoc(self.session.wallet, did_doc_attach) did_doc_attach.data.base64_ = "YmFpdCBhbmQgc3dpdGNo" with self.assertRaises(DIDXManagerError): await self.manager.verify_diddoc(self.session.wallet, did_doc_attach) async def test_receive_invitation(self): self.session.context.update_settings({"public_invites": True}) mediation_record = MediationRecord( role=MediationRecord.ROLE_CLIENT, state=MediationRecord.STATE_GRANTED, connection_id=self.test_mediator_conn_id, routing_keys=self.test_mediator_routing_keys, endpoint=self.test_mediator_endpoint, ) await mediation_record.save(self.session) with async_mock.patch.object( test_module, "AttachDecorator", autospec=True ) as mock_attach_deco, async_mock.patch.object( self.multitenant_mgr, "get_default_mediator" ) as mock_get_default_mediator: mock_get_default_mediator.return_value = mediation_record invi_rec = await self.oob_manager.create_invitation( my_endpoint="testendpoint", hs_protos=[HSProto.RFC23], ) invi_msg = InvitationMessage.deserialize(invi_rec.invitation) mock_attach_deco.from_indy_dict = async_mock.MagicMock( return_value=async_mock.MagicMock( data=async_mock.MagicMock(sign=async_mock.CoroutineMock()) ) ) invitee_record = await self.manager.receive_invitation(invi_msg) assert invitee_record.state == ConnRecord.State.REQUEST.rfc23 async def test_receive_invitation_no_auto_accept(self): mediation_record = MediationRecord( role=MediationRecord.ROLE_CLIENT, state=MediationRecord.STATE_GRANTED, connection_id=self.test_mediator_conn_id, routing_keys=self.test_mediator_routing_keys, endpoint=self.test_mediator_endpoint, ) await mediation_record.save(self.session) with async_mock.patch.object( self.multitenant_mgr, "get_default_mediator" ) as mock_get_default_mediator: mock_get_default_mediator.return_value = mediation_record invi_rec = await self.oob_manager.create_invitation( my_endpoint="testendpoint", hs_protos=[HSProto.RFC23], ) invitee_record = await self.manager.receive_invitation( InvitationMessage.deserialize(invi_rec.invitation), auto_accept=False ) assert invitee_record.state == ConnRecord.State.INVITATION.rfc23 async def test_receive_invitation_bad_invitation(self): x_invites = [ InvitationMessage(), InvitationMessage(service=[OOBService()]), InvitationMessage( service=[ OOBService( recipient_keys=["3Dn1SJNPaCXcvvJvSbsFWP2xaCjMom3can8CQNhWrTRx"] ) ] ), ] for x_invite in x_invites: with self.assertRaises(DIDXManagerError): await self.manager.receive_invitation(x_invite) async def test_create_request_implicit(self): mediation_record = MediationRecord( role=MediationRecord.ROLE_CLIENT, state=MediationRecord.STATE_GRANTED, connection_id=self.test_mediator_conn_id, routing_keys=self.test_mediator_routing_keys, endpoint=self.test_mediator_endpoint, ) await mediation_record.save(self.session) with async_mock.patch.object( self.manager, "create_did_document", async_mock.CoroutineMock() ) as mock_create_did_doc, async_mock.patch.object( self.multitenant_mgr, "get_default_mediator" ) as mock_get_default_mediator: mock_get_default_mediator.return_value = mediation_record mock_create_did_doc.return_value = async_mock.MagicMock( serialize=async_mock.MagicMock(return_value={}) ) didx_req = await self.manager.create_request_implicit( their_public_did=TestConfig.test_target_did, my_label=None, my_endpoint=None, mediation_id=mediation_record._id, ) assert didx_req._id async def test_create_request(self): mock_conn_rec = async_mock.MagicMock( connection_id="dummy", my_did=self.did_info.did, their_did=TestConfig.test_target_did, their_role=ConnRecord.Role.RESPONDER.rfc23, state=ConnRecord.State.REQUEST.rfc23, retrieve_invitation=async_mock.CoroutineMock( return_value=async_mock.MagicMock( service_blocks=None, service_dids=[TestConfig.test_target_did], ) ), save=async_mock.CoroutineMock(), ) with async_mock.patch.object( self.manager, "create_did_document", async_mock.CoroutineMock() ) as mock_create_did_doc: mock_create_did_doc.return_value = async_mock.MagicMock( serialize=async_mock.MagicMock(return_value={}) ) didx_req = await self.manager.create_request(mock_conn_rec) assert didx_req async def test_create_request_multitenant(self): self.context.update_settings( {"multitenant.enabled": True, "wallet.id": "test_wallet"} ) with async_mock.patch.object( InMemoryWallet, "create_local_did", autospec=True ) as mock_wallet_create_local_did, async_mock.patch.object( self.manager, "create_did_document", async_mock.CoroutineMock() ) as mock_create_did_doc, async_mock.patch.object( test_module, "AttachDecorator", autospec=True ) as mock_attach_deco: mock_create_did_doc.return_value = async_mock.MagicMock( serialize=async_mock.MagicMock(return_value={}) ) mock_wallet_create_local_did.return_value = DIDInfo( TestConfig.test_did, TestConfig.test_verkey, None ) mock_attach_deco.from_indy_dict = async_mock.MagicMock( return_value=async_mock.MagicMock( data=async_mock.MagicMock(sign=async_mock.CoroutineMock()) ) ) await self.manager.create_request( async_mock.MagicMock( invitation_key=TestConfig.test_verkey, their_label="Hello", their_role=ConnRecord.Role.RESPONDER.rfc160, alias="Bob", my_did=None, retrieve_invitation=async_mock.CoroutineMock( return_value=async_mock.MagicMock( service_blocks=None, service_dids=[TestConfig.test_target_did], ) ), save=async_mock.CoroutineMock(), ) ) self.multitenant_mgr.add_key.assert_called_once_with( "test_wallet", TestConfig.test_verkey ) async def test_create_request_mediation_id(self): mediation_record = MediationRecord( role=MediationRecord.ROLE_CLIENT, state=MediationRecord.STATE_GRANTED, connection_id=self.test_mediator_conn_id, routing_keys=self.test_mediator_routing_keys, endpoint=self.test_mediator_endpoint, ) await mediation_record.save(self.session) invi = InvitationMessage( comment="test", handshake_protocols=[ pfx.qualify(HSProto.RFC23.name) for pfx in DIDCommPrefix ], service_dids=[TestConfig.test_did], ) record = ConnRecord( invitation_key=TestConfig.test_verkey, invitation_msg_id=invi._id, their_label="Hello", their_role=ConnRecord.Role.RESPONDER.rfc160, alias="Bob", my_did=None, ) await record.save(self.session) await record.attach_invitation(self.session, invi) with async_mock.patch.object( self.manager, "create_did_document", async_mock.CoroutineMock() ) as mock_create_did_doc: mock_create_did_doc.return_value = async_mock.MagicMock( serialize=async_mock.MagicMock(return_value={}) ) didx_req = await self.manager.create_request( record, my_endpoint="http://testendpoint.com/endpoint", mediation_id=mediation_record._id, ) assert didx_req assert len(self.responder.messages) == 1 message, used_kwargs = self.responder.messages[0] assert isinstance(message, KeylistUpdate) assert ( "connection_id" in used_kwargs and used_kwargs["connection_id"] == self.test_mediator_conn_id ) async def test_create_request_my_endpoint(self): mock_conn_rec = async_mock.MagicMock( connection_id="dummy", my_did=None, their_did=TestConfig.test_target_did, their_role=ConnRecord.Role.RESPONDER.rfc23, their_label="Bob", invitation_key=TestConfig.test_verkey, state=ConnRecord.State.REQUEST.rfc23, alias="Bob", retrieve_invitation=async_mock.CoroutineMock( return_value=async_mock.MagicMock( service_blocks=None, service_dids=[TestConfig.test_target_did], ) ), save=async_mock.CoroutineMock(), ) with async_mock.patch.object( self.manager, "create_did_document", async_mock.CoroutineMock() ) as mock_create_did_doc: mock_create_did_doc.return_value = async_mock.MagicMock( serialize=async_mock.MagicMock(return_value={}) ) didx_req = await self.manager.create_request( mock_conn_rec, my_endpoint="http://testendpoint.com/endpoint", ) assert didx_req async def test_receive_request_explicit_public_did(self): mock_request = async_mock.MagicMock( did=TestConfig.test_did, did_doc_attach=async_mock.MagicMock( data=async_mock.MagicMock( verify=async_mock.CoroutineMock(return_value=True), signed=async_mock.MagicMock( decode=async_mock.MagicMock(return_value="dummy-did-doc") ), ) ), _thread=async_mock.MagicMock(pthid="did:sov:publicdid0000000000000"), ) mediation_record = MediationRecord( role=MediationRecord.ROLE_CLIENT, state=MediationRecord.STATE_GRANTED, connection_id=self.test_mediator_conn_id, routing_keys=self.test_mediator_routing_keys, endpoint=self.test_mediator_endpoint, ) await mediation_record.save(self.session) await self.session.wallet.create_local_did(seed=None, did=TestConfig.test_did) STATE_REQUEST = ConnRecord.State.REQUEST self.session.context.update_settings({"public_invites": True}) ACCEPT_AUTO = ConnRecord.ACCEPT_AUTO with async_mock.patch.object( test_module, "ConnRecord", async_mock.MagicMock() ) as mock_conn_rec_cls, async_mock.patch.object( test_module, "DIDDoc", autospec=True ) as mock_did_doc, async_mock.patch.object( test_module, "DIDPosture", autospec=True ) as mock_did_posture, async_mock.patch.object( test_module, "AttachDecorator", autospec=True ) as mock_attach_deco, async_mock.patch.object( test_module, "DIDXResponse", autospec=True ) as mock_response, async_mock.patch.object( self.manager, "create_did_document", async_mock.CoroutineMock() ) as mock_create_did_doc, async_mock.patch.object( MediationManager, "prepare_request", autospec=True ) as mock_mediation_mgr_prep_req: mock_create_did_doc.return_value = async_mock.MagicMock( serialize=async_mock.MagicMock(return_value={}) ) mock_mediation_mgr_prep_req.return_value = (mediation_record, mock_request) mock_conn_record = async_mock.MagicMock( accept=ACCEPT_AUTO, my_did=None, state=STATE_REQUEST.rfc23, attach_request=async_mock.CoroutineMock(), retrieve_request=async_mock.CoroutineMock(), metadata_get_all=async_mock.CoroutineMock(return_value={}), metadata_get=async_mock.CoroutineMock(return_value=True), save=async_mock.CoroutineMock(), ) mock_conn_rec_cls.ACCEPT_AUTO = ConnRecord.ACCEPT_AUTO mock_conn_rec_cls.State.REQUEST = STATE_REQUEST mock_conn_rec_cls.State.get = async_mock.MagicMock( return_value=STATE_REQUEST ) mock_conn_rec_cls.retrieve_by_id = async_mock.CoroutineMock( return_value=async_mock.MagicMock(save=async_mock.CoroutineMock()) ) mock_conn_rec_cls.retrieve_by_invitation_key = async_mock.CoroutineMock( return_value=mock_conn_record ) mock_conn_rec_cls.return_value = mock_conn_record mock_did_posture.get = async_mock.MagicMock( return_value=test_module.DIDPosture.PUBLIC ) mock_did_doc.from_json = async_mock.MagicMock( return_value=async_mock.MagicMock(did=TestConfig.test_did) ) mock_attach_deco.from_indy_dict = async_mock.MagicMock( return_value=async_mock.MagicMock( data=async_mock.MagicMock(sign=async_mock.CoroutineMock()) ) ) mock_response.return_value = async_mock.MagicMock( assign_thread_from=async_mock.MagicMock(), assign_trace_from=async_mock.MagicMock(), ) conn_rec = await self.manager.receive_request( request=mock_request, recipient_did=TestConfig.test_did, recipient_verkey=None, my_endpoint=None, alias=None, auto_accept_implicit=None, mediation_id=None, ) assert conn_rec messages = self.responder.messages assert len(messages) == 2 (result, target) = messages[0] assert "connection_id" in target async def test_receive_request_invi_not_found(self): mock_request = async_mock.MagicMock( did=TestConfig.test_did, did_doc_attach=None, _thread=async_mock.MagicMock(pthid="explicit-not-a-did"), ) await self.session.wallet.create_local_did(seed=None, did=TestConfig.test_did) with async_mock.patch.object( test_module, "ConnRecord", async_mock.MagicMock() ) as mock_conn_rec_cls: mock_conn_rec_cls.retrieve_by_invitation_key = async_mock.CoroutineMock( side_effect=StorageNotFoundError() ) with self.assertRaises(DIDXManagerError) as context: await self.manager.receive_request( request=mock_request, recipient_did=TestConfig.test_did, recipient_verkey=TestConfig.test_verkey, my_endpoint=None, alias=None, auto_accept_implicit=None, mediation_id=None, ) assert "No explicit invitation found" in str(context.exception) async def test_receive_request_with_mediator_without_multi_use_multitenant(self): multiuse_info = await self.session.wallet.create_local_did() did_doc_dict = self.make_did_doc( did=TestConfig.test_target_did, verkey=TestConfig.test_target_verkey, ).serialize() del did_doc_dict["authentication"] del did_doc_dict["service"] new_info = await self.session.wallet.create_local_did() mock_request = async_mock.MagicMock() mock_request.connection = async_mock.MagicMock( is_multiuse_invitation=False, invitation_key=multiuse_info.verkey ) mock_request.connection.did = TestConfig.test_did mock_request.connection.did_doc = async_mock.MagicMock() mock_request.connection.did_doc.did = TestConfig.test_did mock_request.did = self.test_target_did mock_request.did_doc_attach = async_mock.MagicMock( data=async_mock.MagicMock( verify=async_mock.CoroutineMock(return_value=True), signed=async_mock.MagicMock( decode=async_mock.MagicMock(return_value=json.dumps(did_doc_dict)) ), ) ) await self.session.wallet.create_local_did(seed=None, did=TestConfig.test_did) mediation_record = MediationRecord( role=MediationRecord.ROLE_CLIENT, state=MediationRecord.STATE_GRANTED, connection_id=self.test_mediator_conn_id, routing_keys=self.test_mediator_routing_keys, endpoint=self.test_mediator_endpoint, ) await mediation_record.save(self.session) record = ConnRecord( invitation_key=TestConfig.test_verkey, their_label="Hello", their_role=ConnRecord.Role.RESPONDER.rfc160, alias="Bob", ) record.accept = ConnRecord.ACCEPT_MANUAL await record.save(self.session) with async_mock.patch.object( ConnRecord, "save", autospec=True ) as mock_conn_rec_save, async_mock.patch.object( ConnRecord, "attach_request", autospec=True ) as mock_conn_attach_request, async_mock.patch.object( ConnRecord, "retrieve_by_invitation_key" ) as mock_conn_retrieve_by_invitation_key, async_mock.patch.object( ConnRecord, "retrieve_request", autospec=True ): mock_conn_retrieve_by_invitation_key.return_value = record conn_rec = await self.manager.receive_request( request=mock_request, recipient_did=TestConfig.test_did, recipient_verkey=TestConfig.test_verkey, my_endpoint=None, alias=None, auto_accept_implicit=None, mediation_id=mediation_record.mediation_id, ) assert len(self.responder.messages) == 1 message, target = self.responder.messages[0] assert isinstance(message, KeylistUpdate) assert len(message.updates) == 1 (remove,) = message.updates assert remove.action == KeylistUpdateRule.RULE_REMOVE assert remove.recipient_key == record.invitation_key async def test_receive_request_with_mediator_without_multi_use_multitenant_mismatch( self, ): multiuse_info = await self.session.wallet.create_local_did() did_doc_dict = self.make_did_doc( did=TestConfig.test_target_did, verkey=TestConfig.test_target_verkey, ).serialize() del did_doc_dict["authentication"] del did_doc_dict["service"] new_info = await self.session.wallet.create_local_did() mock_request = async_mock.MagicMock() mock_request.connection = async_mock.MagicMock( is_multiuse_invitation=False, invitation_key=multiuse_info.verkey ) mock_request.connection.did = TestConfig.test_did mock_request.connection.did_doc = async_mock.MagicMock() mock_request.connection.did_doc.did = TestConfig.test_did mock_request.did_doc_attach = async_mock.MagicMock( data=async_mock.MagicMock( verify=async_mock.CoroutineMock(return_value=True), signed=async_mock.MagicMock( decode=async_mock.MagicMock(return_value=json.dumps(did_doc_dict)) ), ) ) await self.session.wallet.create_local_did(seed=None, did=TestConfig.test_did) mediation_record = MediationRecord( role=MediationRecord.ROLE_CLIENT, state=MediationRecord.STATE_GRANTED, connection_id=self.test_mediator_conn_id, routing_keys=self.test_mediator_routing_keys, endpoint=self.test_mediator_endpoint, ) await mediation_record.save(self.session) record = ConnRecord( invitation_key=TestConfig.test_verkey, their_label="Hello", their_role=ConnRecord.Role.RESPONDER.rfc160, alias="Bob", ) record.accept = ConnRecord.ACCEPT_MANUAL await record.save(self.session) with async_mock.patch.object( ConnRecord, "save", autospec=True ) as mock_conn_rec_save, async_mock.patch.object( ConnRecord, "attach_request", autospec=True ) as mock_conn_attach_request, async_mock.patch.object( ConnRecord, "retrieve_by_invitation_key" ) as mock_conn_retrieve_by_invitation_key, async_mock.patch.object( ConnRecord, "retrieve_request", autospec=True ): mock_conn_retrieve_by_invitation_key.return_value = record with self.assertRaises(DIDXManagerError) as context: conn_rec = await self.manager.receive_request( request=mock_request, recipient_did=TestConfig.test_did, recipient_verkey=TestConfig.test_verkey, my_endpoint=None, alias=None, auto_accept_implicit=None, mediation_id=mediation_record.mediation_id, ) assert "does not match" in str(context.exception) async def test_receive_request_public_did_no_did_doc_attachment(self): mock_request = async_mock.MagicMock( did=TestConfig.test_did, did_doc_attach=None, _thread=async_mock.MagicMock(pthid="did:sov:publicdid0000000000000"), ) await self.session.wallet.create_local_did(seed=None, did=TestConfig.test_did) self.session.context.update_settings({"public_invites": True}) mock_conn_rec_state_request = ConnRecord.State.REQUEST with async_mock.patch.object( test_module, "ConnRecord", async_mock.MagicMock() ) as mock_conn_rec_cls, async_mock.patch.object( test_module, "DIDPosture", autospec=True ) as mock_did_posture: mock_conn_record = async_mock.MagicMock( accept=ConnRecord.ACCEPT_MANUAL, my_did=None, state=mock_conn_rec_state_request.rfc23, attach_request=async_mock.CoroutineMock(), retrieve_request=async_mock.CoroutineMock(), metadata_get_all=async_mock.CoroutineMock(return_value={}), save=async_mock.CoroutineMock(), ) mock_conn_rec_cls.return_value = mock_conn_record mock_conn_rec_cls.retrieve_by_invitation_key = async_mock.CoroutineMock( return_value=mock_conn_record ) mock_did_posture.get = async_mock.MagicMock( return_value=test_module.DIDPosture.PUBLIC ) with self.assertRaises(DIDXManagerError) as context: await self.manager.receive_request( request=mock_request, recipient_did=TestConfig.test_did, recipient_verkey=None, my_endpoint=TestConfig.test_endpoint, alias="Alias", auto_accept_implicit=None, mediation_id=None, ) assert "DID Doc attachment missing or has no data" in str(context.exception) async def test_receive_request_public_did_x_not_public(self): mock_request = async_mock.MagicMock( did=TestConfig.test_did, did_doc_attach=async_mock.MagicMock( data=async_mock.MagicMock( verify=async_mock.CoroutineMock(return_value=True), signed=async_mock.MagicMock( decode=async_mock.MagicMock(return_value="dummy-did-doc") ), ) ), _thread=async_mock.MagicMock(pthid="did:sov:publicdid0000000000000"), ) await self.session.wallet.create_local_did(seed=None, did=TestConfig.test_did) self.session.context.update_settings({"public_invites": True}) mock_conn_rec_state_request = ConnRecord.State.REQUEST with async_mock.patch.object( test_module, "DIDPosture", autospec=True ) as mock_did_posture: mock_did_posture.get = async_mock.MagicMock( return_value=test_module.DIDPosture.WALLET_ONLY ) with self.assertRaises(DIDXManagerError) as context: await self.manager.receive_request( request=mock_request, recipient_did=TestConfig.test_did, recipient_verkey=None, my_endpoint=TestConfig.test_endpoint, alias="Alias", auto_accept_implicit=False, mediation_id=None, ) assert "is not public" in str(context.exception) async def test_receive_request_public_did_x_wrong_did(self): mock_request = async_mock.MagicMock( did=TestConfig.test_did, did_doc_attach=async_mock.MagicMock( data=async_mock.MagicMock( verify=async_mock.CoroutineMock(return_value=True), signed=async_mock.MagicMock( decode=async_mock.MagicMock(return_value="dummy-did-doc") ), ) ), _thread=async_mock.MagicMock(pthid="did:sov:publicdid0000000000000"), ) await self.session.wallet.create_local_did(seed=None, did=TestConfig.test_did) self.session.context.update_settings({"public_invites": True}) mock_conn_rec_state_request = ConnRecord.State.REQUEST with async_mock.patch.object( test_module, "ConnRecord", async_mock.MagicMock() ) as mock_conn_rec_cls, async_mock.patch.object( test_module, "DIDPosture", autospec=True ) as mock_did_posture, async_mock.patch.object( test_module.DIDDoc, "from_json", async_mock.MagicMock() ) as mock_did_doc_from_json: mock_conn_record = async_mock.MagicMock( accept=ConnRecord.ACCEPT_MANUAL, my_did=None, state=mock_conn_rec_state_request.rfc23, attach_request=async_mock.CoroutineMock(), retrieve_request=async_mock.CoroutineMock(), metadata_get_all=async_mock.CoroutineMock(return_value={}), save=async_mock.CoroutineMock(), ) mock_conn_rec_cls.return_value = mock_conn_record mock_conn_rec_cls.retrieve_by_invitation_key = async_mock.CoroutineMock( return_value=mock_conn_record ) mock_did_doc_from_json.return_value = async_mock.MagicMock(did="wrong-did") mock_did_posture.get = async_mock.MagicMock( return_value=test_module.DIDPosture.PUBLIC ) with self.assertRaises(DIDXManagerError) as context: await self.manager.receive_request( request=mock_request, recipient_did=TestConfig.test_did, recipient_verkey=None, my_endpoint=TestConfig.test_endpoint, alias="Alias", auto_accept_implicit=False, mediation_id=None, ) assert "does not match" in str(context.exception) async def test_receive_request_public_did_x_did_doc_attach_bad_sig(self): mock_request = async_mock.MagicMock( did=TestConfig.test_did, did_doc_attach=async_mock.MagicMock( data=async_mock.MagicMock( verify=async_mock.CoroutineMock(return_value=False) ) ), _thread=async_mock.MagicMock(pthid="did:sov:publicdid0000000000000"), ) await self.session.wallet.create_local_did(seed=None, did=TestConfig.test_did) self.session.context.update_settings({"public_invites": True}) mock_conn_rec_state_request = ConnRecord.State.REQUEST with async_mock.patch.object( test_module, "ConnRecord", async_mock.MagicMock() ) as mock_conn_rec_cls, async_mock.patch.object( test_module, "DIDPosture", autospec=True ) as mock_did_posture: mock_conn_record = async_mock.MagicMock( accept=ConnRecord.ACCEPT_MANUAL, my_did=None, state=mock_conn_rec_state_request.rfc23, attach_request=async_mock.CoroutineMock(), retrieve_request=async_mock.CoroutineMock(), metadata_get_all=async_mock.CoroutineMock(return_value={}), save=async_mock.CoroutineMock(), ) mock_conn_rec_cls.return_value = mock_conn_record mock_conn_rec_cls.retrieve_by_invitation_key = async_mock.CoroutineMock( return_value=mock_conn_record ) mock_did_posture.get = async_mock.MagicMock( return_value=test_module.DIDPosture.PUBLIC ) with self.assertRaises(DIDXManagerError) as context: await self.manager.receive_request( request=mock_request, recipient_did=TestConfig.test_did, recipient_verkey=None, my_endpoint=TestConfig.test_endpoint, alias="Alias", auto_accept_implicit=False, mediation_id=None, ) assert "DID Doc signature failed" in str(context.exception) async def test_receive_request_public_did_no_public_invites(self): mock_request = async_mock.MagicMock( did=TestConfig.test_did, did_doc_attach=async_mock.MagicMock( data=async_mock.MagicMock( verify=async_mock.CoroutineMock(return_value=True), signed=async_mock.MagicMock( decode=async_mock.MagicMock(return_value="dummy-did-doc") ), ) ), _thread=async_mock.MagicMock(pthid="did:sov:publicdid0000000000000"), ) await self.session.wallet.create_local_did(seed=None, did=TestConfig.test_did) self.session.context.update_settings({"public_invites": False}) with async_mock.patch.object( test_module, "ConnRecord", async_mock.MagicMock() ) as mock_conn_rec_cls, async_mock.patch.object( test_module, "AttachDecorator", autospec=True ) as mock_attach_deco, async_mock.patch.object( test_module, "DIDXResponse", autospec=True ) as mock_response, async_mock.patch.object( self.manager, "create_did_document", async_mock.CoroutineMock() ) as mock_create_did_doc, async_mock.patch.object( test_module.DIDDoc, "from_json", async_mock.MagicMock() ) as mock_did_doc_from_json: mock_did_doc_from_json.return_value = async_mock.MagicMock( did=TestConfig.test_did ) with self.assertRaises(DIDXManagerError) as context: await self.manager.receive_request( request=mock_request, recipient_did=TestConfig.test_did, recipient_verkey=None, my_endpoint=TestConfig.test_endpoint, alias="Alias", auto_accept_implicit=False, mediation_id=None, ) assert "Public invitations are not enabled" in str(context.exception) async def test_receive_request_public_did_no_auto_accept(self): mock_request = async_mock.MagicMock( did=TestConfig.test_did, did_doc_attach=async_mock.MagicMock( data=async_mock.MagicMock( verify=async_mock.CoroutineMock(return_value=True), signed=async_mock.MagicMock( decode=async_mock.MagicMock(return_value="dummy-did-doc") ), ) ), _thread=async_mock.MagicMock(pthid="did:sov:publicdid0000000000000"), ) await self.session.wallet.create_local_did(seed=None, did=TestConfig.test_did) self.session.context.update_settings( {"public_invites": True, "debug.auto_accept_requests": False} ) mock_conn_rec_state_request = ConnRecord.State.REQUEST with async_mock.patch.object( test_module, "ConnRecord", async_mock.MagicMock() ) as mock_conn_rec_cls, async_mock.patch.object( test_module, "DIDDoc", autospec=True ) as mock_did_doc, async_mock.patch.object( test_module, "DIDPosture", autospec=True ) as mock_did_posture, async_mock.patch.object( test_module, "AttachDecorator", autospec=True ) as mock_attach_deco, async_mock.patch.object( test_module, "DIDXResponse", autospec=True ) as mock_response, async_mock.patch.object( self.manager, "create_did_document", async_mock.CoroutineMock() ) as mock_create_did_doc: mock_conn_record = async_mock.MagicMock( accept=ConnRecord.ACCEPT_MANUAL, my_did=None, state=mock_conn_rec_state_request.rfc23, attach_request=async_mock.CoroutineMock(), retrieve_request=async_mock.CoroutineMock(), metadata_get_all=async_mock.CoroutineMock(return_value={}), save=async_mock.CoroutineMock(), ) mock_conn_rec_cls.return_value = mock_conn_record mock_conn_rec_cls.retrieve_by_invitation_key = async_mock.CoroutineMock( return_value=mock_conn_record ) mock_did_posture.get = async_mock.MagicMock( return_value=test_module.DIDPosture.PUBLIC ) mock_did_doc.from_json = async_mock.MagicMock( return_value=async_mock.MagicMock(did=TestConfig.test_did) ) conn_rec = await self.manager.receive_request( request=mock_request, recipient_did=TestConfig.test_did, recipient_verkey=None, my_endpoint=TestConfig.test_endpoint, alias="Alias", auto_accept_implicit=False, mediation_id=None, ) assert conn_rec messages = self.responder.messages assert not messages async def test_receive_request_peer_did(self): mock_request = async_mock.MagicMock( did=TestConfig.test_did, did_doc_attach=async_mock.MagicMock( data=async_mock.MagicMock( verify=async_mock.CoroutineMock(return_value=True), signed=async_mock.MagicMock( decode=async_mock.MagicMock(return_value="dummy-did-doc") ), ) ), _thread=async_mock.MagicMock(pthid="dummy-pthid"), ) mock_conn = async_mock.MagicMock( my_did=TestConfig.test_did, their_did=TestConfig.test_target_did, invitation_key=TestConfig.test_verkey, connection_id="dummy", is_multiuse_invitation=True, state=ConnRecord.State.INVITATION.rfc23, their_role=ConnRecord.Role.REQUESTER.rfc23, save=async_mock.CoroutineMock(), attach_request=async_mock.CoroutineMock(), accept=ConnRecord.ACCEPT_MANUAL, metadata_get_all=async_mock.CoroutineMock(return_value={"test": "value"}), ) mock_conn_rec_state_request = ConnRecord.State.REQUEST await self.session.wallet.create_local_did(seed=None, did=TestConfig.test_did) self.session.context.update_settings({"public_invites": True}) with async_mock.patch.object( test_module, "ConnRecord", async_mock.MagicMock() ) as mock_conn_rec_cls, async_mock.patch.object( test_module, "DIDDoc", autospec=True ) as mock_did_doc, async_mock.patch.object( test_module, "AttachDecorator", autospec=True ) as mock_attach_deco, async_mock.patch.object( test_module, "DIDXResponse", autospec=True ) as mock_response: mock_conn_rec_cls.retrieve_by_invitation_key = async_mock.CoroutineMock( return_value=mock_conn ) mock_conn_rec_cls.return_value = async_mock.MagicMock( accept=ConnRecord.ACCEPT_AUTO, my_did=None, state=mock_conn_rec_state_request.rfc23, attach_request=async_mock.CoroutineMock(), retrieve_request=async_mock.CoroutineMock(), save=async_mock.CoroutineMock(), metadata_set=async_mock.CoroutineMock(), ) mock_did_doc.from_json = async_mock.MagicMock( return_value=async_mock.MagicMock(did=TestConfig.test_did) ) mock_attach_deco.from_indy_dict = async_mock.MagicMock( return_value=async_mock.MagicMock( data=async_mock.MagicMock(sign=async_mock.CoroutineMock()) ) ) mock_response.return_value = async_mock.MagicMock( assign_thread_from=async_mock.MagicMock(), assign_trace_from=async_mock.MagicMock(), ) conn_rec = await self.manager.receive_request( request=mock_request, recipient_did=TestConfig.test_did, recipient_verkey=TestConfig.test_verkey, my_endpoint=TestConfig.test_endpoint, alias="Alias", auto_accept_implicit=False, mediation_id=None, ) assert conn_rec mock_conn_rec_cls.return_value.metadata_set.assert_called() assert not self.responder.messages async def test_receive_request_multiuse_multitenant(self): multiuse_info = await self.session.wallet.create_local_did() new_info = await self.session.wallet.create_local_did() mock_request = async_mock.MagicMock( did=TestConfig.test_did, did_doc_attach=async_mock.MagicMock( data=async_mock.MagicMock( verify=async_mock.CoroutineMock(return_value=True), signed=async_mock.MagicMock( decode=async_mock.MagicMock(return_value="dummy-did-doc") ), ) ), _thread=async_mock.MagicMock(pthid="dummy-pthid"), ) self.context.update_settings( {"wallet.id": "test_wallet", "multitenant.enabled": True} ) ACCEPT_MANUAL = ConnRecord.ACCEPT_MANUAL with async_mock.patch.object( test_module, "ConnRecord", autospec=True ) as mock_conn_rec_cls, async_mock.patch.object( InMemoryWallet, "create_local_did", autospec=True ) as mock_wallet_create_local_did, async_mock.patch.object( test_module, "DIDDoc", autospec=True ) as mock_did_doc: mock_conn_rec = async_mock.CoroutineMock( connection_id="dummy", accept=ACCEPT_MANUAL, is_multiuse_invitation=True, attach_request=async_mock.CoroutineMock(), save=async_mock.CoroutineMock(), retrieve_invitation=async_mock.CoroutineMock(return_value={}), metadata_get_all=async_mock.CoroutineMock(return_value={}), retrieve_request=async_mock.CoroutineMock(), ) mock_conn_rec_cls.return_value = mock_conn_rec mock_conn_rec_cls.retrieve_by_invitation_key = async_mock.CoroutineMock( return_value=mock_conn_rec ) mock_wallet_create_local_did.return_value = DIDInfo( new_info.did, new_info.verkey, None ) mock_did_doc.from_json = async_mock.MagicMock( return_value=async_mock.MagicMock(did=TestConfig.test_did) ) await self.manager.receive_request( request=mock_request, recipient_did=TestConfig.test_did, recipient_verkey=TestConfig.test_verkey, my_endpoint=TestConfig.test_endpoint, alias="Alias", auto_accept_implicit=False, mediation_id=None, ) self.multitenant_mgr.add_key.assert_called_once_with( "test_wallet", new_info.verkey ) async def test_receive_request_implicit_multitenant(self): new_info = await self.session.wallet.create_local_did() mock_request = async_mock.MagicMock( did=TestConfig.test_did, did_doc_attach=async_mock.MagicMock( data=async_mock.MagicMock( verify=async_mock.CoroutineMock(return_value=True), signed=async_mock.MagicMock( decode=async_mock.MagicMock(return_value="dummy-did-doc") ), ) ), _thread=async_mock.MagicMock(pthid="did:sov:publicdid0000000000000"), ) self.context.update_settings( { "wallet.id": "test_wallet", "multitenant.enabled": True, "public_invites": True, "debug.auto_accept_requests": False, } ) ACCEPT_MANUAL = ConnRecord.ACCEPT_MANUAL with async_mock.patch.object( test_module, "ConnRecord", autospec=True ) as mock_conn_rec_cls, async_mock.patch.object( InMemoryWallet, "create_local_did", autospec=True ) as mock_wallet_create_local_did, async_mock.patch.object( InMemoryWallet, "get_local_did", autospec=True ) as mock_wallet_get_local_did, async_mock.patch.object( test_module, "DIDPosture", autospec=True ) as mock_did_posture, async_mock.patch.object( test_module, "DIDDoc", autospec=True ) as mock_did_doc: mock_conn_rec = async_mock.CoroutineMock( connection_id="dummy", accept=ACCEPT_MANUAL, is_multiuse_invitation=False, attach_request=async_mock.CoroutineMock(), save=async_mock.CoroutineMock(), retrieve_invitation=async_mock.CoroutineMock(return_value={}), metadata_get_all=async_mock.CoroutineMock(return_value={}), retrieve_request=async_mock.CoroutineMock(), ) mock_conn_rec_cls.return_value = mock_conn_rec mock_conn_rec_cls.retrieve_by_invitation_key = async_mock.CoroutineMock( side_effect=StorageNotFoundError() ) mock_did_posture.get = async_mock.MagicMock( return_value=test_module.DIDPosture.PUBLIC ) mock_wallet_create_local_did.return_value = DIDInfo( new_info.did, new_info.verkey, None ) mock_did_doc.from_json = async_mock.MagicMock( return_value=async_mock.MagicMock(did=TestConfig.test_did) ) mock_wallet_get_local_did.return_value = DIDInfo( TestConfig.test_did, TestConfig.test_verkey, None ) await self.manager.receive_request( request=mock_request, recipient_did=TestConfig.test_did, recipient_verkey=None, my_endpoint=TestConfig.test_endpoint, alias="Alias", auto_accept_implicit=False, mediation_id=None, ) self.multitenant_mgr.add_key.assert_called_once_with( "test_wallet", new_info.verkey ) async def test_receive_request_peer_did_not_found_x(self): mock_request = async_mock.MagicMock( did=TestConfig.test_did, did_doc_attach=async_mock.MagicMock( data=async_mock.MagicMock( verify=async_mock.CoroutineMock(return_value=True), signed=async_mock.MagicMock( decode=async_mock.MagicMock(return_value="dummy-did-doc") ), ) ), _thread=async_mock.MagicMock(pthid="dummy-pthid"), ) await self.session.wallet.create_local_did(seed=None, did=TestConfig.test_did) with async_mock.patch.object( test_module, "ConnRecord", async_mock.MagicMock() ) as mock_conn_rec_cls: mock_conn_rec_cls.retrieve_by_invitation_key = async_mock.CoroutineMock( side_effect=StorageNotFoundError() ) with self.assertRaises(DIDXManagerError): await self.manager.receive_request( request=mock_request, recipient_did=TestConfig.test_did, recipient_verkey=TestConfig.test_verkey, my_endpoint=TestConfig.test_endpoint, alias="Alias", auto_accept_implicit=False, mediation_id=None, ) async def test_create_response(self): conn_rec = ConnRecord( connection_id="dummy", state=ConnRecord.State.REQUEST.rfc23 ) with async_mock.patch.object( test_module.ConnRecord, "retrieve_request", async_mock.CoroutineMock() ) as mock_retrieve_req, async_mock.patch.object( conn_rec, "save", async_mock.CoroutineMock() ) as mock_save, async_mock.patch.object( test_module, "DIDDoc", autospec=True ) as mock_did_doc, async_mock.patch.object( test_module, "AttachDecorator", autospec=True ) as mock_attach_deco, async_mock.patch.object( test_module, "DIDXResponse", autospec=True ) as mock_response, async_mock.patch.object( self.manager, "create_did_document", async_mock.CoroutineMock() ) as mock_create_did_doc: mock_create_did_doc.return_value = async_mock.MagicMock( serialize=async_mock.MagicMock() ) mock_attach_deco.from_indy_dict = async_mock.MagicMock( return_value=async_mock.MagicMock( data=async_mock.MagicMock(sign=async_mock.CoroutineMock()) ) ) await self.manager.create_response(conn_rec, "http://10.20.30.40:5060/") async def test_create_response_mediation_id(self): mediation_record = MediationRecord( role=MediationRecord.ROLE_CLIENT, state=MediationRecord.STATE_GRANTED, connection_id=self.test_mediator_conn_id, routing_keys=self.test_mediator_routing_keys, endpoint=self.test_mediator_endpoint, ) await mediation_record.save(self.session) invi = InvitationMessage( comment="test", handshake_protocols=[ pfx.qualify(HSProto.RFC23.name) for pfx in DIDCommPrefix ], service_dids=[TestConfig.test_did], ) record = ConnRecord( invitation_key=TestConfig.test_verkey, invitation_msg_id=invi._id, their_label="Hello", their_role=ConnRecord.Role.RESPONDER.rfc160, alias="Bob", my_did=None, state=ConnRecord.State.REQUEST.rfc23, ) await record.save(self.session) await record.attach_invitation(self.session, invi) with async_mock.patch.object( ConnRecord, "log_state", autospec=True ) as mock_conn_log_state, async_mock.patch.object( ConnRecord, "retrieve_request", autospec=True ) as mock_conn_retrieve_request, async_mock.patch.object( ConnRecord, "save", autospec=True ) as mock_conn_save, async_mock.patch.object( record, "metadata_get", async_mock.CoroutineMock(return_value=False) ), async_mock.patch.object( test_module, "AttachDecorator", autospec=True ) as mock_attach_deco: mock_attach_deco.from_indy_dict = async_mock.MagicMock( return_value=async_mock.MagicMock( data=async_mock.MagicMock(sign=async_mock.CoroutineMock()) ) ) await self.manager.create_response( record, mediation_id=mediation_record.mediation_id ) assert len(self.responder.messages) == 1 message, target = self.responder.messages[0] assert isinstance(message, KeylistUpdate) assert len(message.updates) == 1 (add,) = message.updates assert add.action == KeylistUpdateRule.RULE_ADD assert add.recipient_key async def test_create_response_mediation_id_invalid_conn_state(self): mediation_record = MediationRecord( role=MediationRecord.ROLE_CLIENT, state=MediationRecord.STATE_GRANTED, connection_id=self.test_mediator_conn_id, routing_keys=self.test_mediator_routing_keys, endpoint=self.test_mediator_endpoint, ) await mediation_record.save(self.session) invi = InvitationMessage( comment="test", handshake_protocols=[ pfx.qualify(HSProto.RFC23.name) for pfx in DIDCommPrefix ], service_dids=[TestConfig.test_did], ) record = ConnRecord( invitation_key=TestConfig.test_verkey, invitation_msg_id=invi._id, their_label="Hello", their_role=ConnRecord.Role.RESPONDER.rfc160, alias="Bob", my_did=None, ) await record.save(self.session) await record.attach_invitation(self.session, invi) with async_mock.patch.object( ConnRecord, "log_state", autospec=True ) as mock_conn_log_state, async_mock.patch.object( ConnRecord, "retrieve_request", autospec=True ) as mock_conn_retrieve_request, async_mock.patch.object( ConnRecord, "save", autospec=True ) as mock_conn_save, async_mock.patch.object( record, "metadata_get", async_mock.CoroutineMock(return_value=False) ): with self.assertRaises(DIDXManagerError) as context: await self.manager.create_response( record, mediation_id=mediation_record.mediation_id ) assert "Connection not in state" in str(context.exception) async def test_create_response_multitenant(self): conn_rec = ConnRecord( connection_id="dummy", state=ConnRecord.State.REQUEST.rfc23 ) self.manager.session.context.update_settings( { "multitenant.enabled": True, "wallet.id": "test_wallet", } ) with async_mock.patch.object( test_module.ConnRecord, "retrieve_request" ), async_mock.patch.object( conn_rec, "save", async_mock.CoroutineMock() ), async_mock.patch.object( test_module, "AttachDecorator", autospec=True ) as mock_attach_deco, async_mock.patch.object( self.manager, "create_did_document", async_mock.CoroutineMock() ) as mock_create_did_doc, async_mock.patch.object( InMemoryWallet, "create_local_did", autospec=True ) as mock_wallet_create_local_did: mock_wallet_create_local_did.return_value = DIDInfo( TestConfig.test_did, TestConfig.test_verkey, None ) mock_create_did_doc.return_value = async_mock.MagicMock( serialize=async_mock.MagicMock() ) mock_attach_deco.from_indy_dict = async_mock.MagicMock( return_value=async_mock.MagicMock( data=async_mock.MagicMock(sign=async_mock.CoroutineMock()) ) ) await self.manager.create_response(conn_rec) self.multitenant_mgr.add_key.assert_called_once_with( "test_wallet", TestConfig.test_verkey ) async def test_create_response_conn_rec_my_did(self): conn_rec = ConnRecord( connection_id="dummy", my_did=TestConfig.test_did, state=ConnRecord.State.REQUEST.rfc23, ) with async_mock.patch.object( test_module.ConnRecord, "retrieve_request", async_mock.CoroutineMock() ) as mock_retrieve_req, async_mock.patch.object( conn_rec, "save", async_mock.CoroutineMock() ) as mock_save, async_mock.patch.object( test_module, "DIDDoc", autospec=True ) as mock_did_doc, async_mock.patch.object( test_module, "AttachDecorator", autospec=True ) as mock_attach_deco, async_mock.patch.object( test_module, "DIDXResponse", autospec=True ) as mock_response, async_mock.patch.object( self.manager, "create_did_document", async_mock.CoroutineMock() ) as mock_create_did_doc, async_mock.patch.object( InMemoryWallet, "get_local_did", async_mock.CoroutineMock() ) as mock_get_loc_did: mock_get_loc_did.return_value = self.did_info mock_create_did_doc.return_value = async_mock.MagicMock( serialize=async_mock.MagicMock() ) mock_attach_deco.from_indy_dict = async_mock.MagicMock( return_value=async_mock.MagicMock( data=async_mock.MagicMock(sign=async_mock.CoroutineMock()) ) ) await self.manager.create_response(conn_rec, "http://10.20.30.40:5060/") async def test_create_response_bad_state(self): with self.assertRaises(DIDXManagerError): await self.manager.create_response( ConnRecord( invitation_key=TestConfig.test_verkey, their_label="Hello", their_role=ConnRecord.Role.REQUESTER.rfc23, state=ConnRecord.State.ABANDONED.rfc23, alias="Bob", ) ) async def test_accept_response_find_by_thread_id(self): mock_response = async_mock.MagicMock() mock_response._thread = async_mock.MagicMock() mock_response.did = TestConfig.test_target_did mock_response.did_doc_attach = async_mock.MagicMock( data=async_mock.MagicMock( verify=async_mock.CoroutineMock(return_value=True), signed=async_mock.MagicMock( decode=async_mock.MagicMock( return_value=json.dumps({"dummy": "did-doc"}) ) ), ) ) receipt = MessageReceipt( recipient_did=TestConfig.test_did, recipient_did_public=True, ) with async_mock.patch.object( ConnRecord, "save", autospec=True ) as mock_conn_rec_save, async_mock.patch.object( ConnRecord, "retrieve_by_request_id", async_mock.CoroutineMock() ) as mock_conn_retrieve_by_req_id, async_mock.patch.object( ConnRecord, "retrieve_by_id", async_mock.CoroutineMock() ) as mock_conn_retrieve_by_id, async_mock.patch.object( DIDDoc, "deserialize", async_mock.MagicMock() ) as mock_did_doc_deser: mock_did_doc_deser.return_value = async_mock.MagicMock( did=TestConfig.test_target_did ) mock_conn_retrieve_by_req_id.return_value = async_mock.MagicMock( did=TestConfig.test_target_did, did_doc_attach=async_mock.MagicMock( data=async_mock.MagicMock( verify=async_mock.CoroutineMock(return_value=True), signed=async_mock.MagicMock( decode=async_mock.MagicMock( return_value=json.dumps({"dummy": "did-doc"}) ) ), ) ), state=ConnRecord.State.REQUEST.rfc23, save=async_mock.CoroutineMock(), metadata_get=async_mock.CoroutineMock(), connection_id="test-conn-id", ) mock_conn_retrieve_by_id.return_value = async_mock.MagicMock( their_did=TestConfig.test_target_did, save=async_mock.CoroutineMock(), ) conn_rec = await self.manager.accept_response(mock_response, receipt) assert conn_rec.their_did == TestConfig.test_target_did assert ConnRecord.State.get(conn_rec.state) is ConnRecord.State.COMPLETED async def test_accept_response_not_found_by_thread_id_receipt_has_sender_did(self): mock_response = async_mock.MagicMock() mock_response._thread = async_mock.MagicMock() mock_response.did = TestConfig.test_target_did mock_response.did_doc_attach = async_mock.MagicMock( data=async_mock.MagicMock( verify=async_mock.CoroutineMock(return_value=True), signed=async_mock.MagicMock( decode=async_mock.MagicMock( return_value=json.dumps({"dummy": "did-doc"}) ) ), ) ) receipt = MessageReceipt(sender_did=TestConfig.test_target_did) with async_mock.patch.object( ConnRecord, "save", autospec=True ) as mock_conn_rec_save, async_mock.patch.object( ConnRecord, "retrieve_by_request_id", async_mock.CoroutineMock() ) as mock_conn_retrieve_by_req_id, async_mock.patch.object( ConnRecord, "retrieve_by_did", async_mock.CoroutineMock() ) as mock_conn_retrieve_by_did, async_mock.patch.object( DIDDoc, "deserialize", async_mock.MagicMock() ) as mock_did_doc_deser: mock_did_doc_deser.return_value = async_mock.MagicMock( did=TestConfig.test_target_did ) mock_conn_retrieve_by_req_id.side_effect = StorageNotFoundError() mock_conn_retrieve_by_did.return_value = async_mock.MagicMock( did=TestConfig.test_target_did, did_doc_attach=async_mock.MagicMock( data=async_mock.MagicMock( verify=async_mock.CoroutineMock(return_value=True), signed=async_mock.MagicMock( decode=async_mock.MagicMock( return_value=json.dumps({"dummy": "did-doc"}) ) ), ) ), state=ConnRecord.State.REQUEST.rfc23, save=async_mock.CoroutineMock(), metadata_get=async_mock.CoroutineMock(return_value=False), connection_id="test-conn-id", ) conn_rec = await self.manager.accept_response(mock_response, receipt) assert conn_rec.their_did == TestConfig.test_target_did assert ConnRecord.State.get(conn_rec.state) is ConnRecord.State.COMPLETED async def test_accept_response_not_found_by_thread_id_nor_receipt_sender_did(self): mock_response = async_mock.MagicMock() mock_response._thread = async_mock.MagicMock() mock_response.did = TestConfig.test_target_did mock_response.did_doc_attach = async_mock.MagicMock( data=async_mock.MagicMock( verify=async_mock.CoroutineMock(return_value=True), signed=async_mock.MagicMock( decode=async_mock.MagicMock( return_value=json.dumps({"dummy": "did-doc"}) ) ), ) ) receipt = MessageReceipt(sender_did=TestConfig.test_target_did) with async_mock.patch.object( ConnRecord, "save", autospec=True ) as mock_conn_rec_save, async_mock.patch.object( ConnRecord, "retrieve_by_request_id", async_mock.CoroutineMock() ) as mock_conn_retrieve_by_req_id, async_mock.patch.object( ConnRecord, "retrieve_by_did", async_mock.CoroutineMock() ) as mock_conn_retrieve_by_did: mock_conn_retrieve_by_req_id.side_effect = StorageNotFoundError() mock_conn_retrieve_by_did.side_effect = StorageNotFoundError() with self.assertRaises(DIDXManagerError): await self.manager.accept_response(mock_response, receipt) async def test_accept_response_find_by_thread_id_bad_state(self): mock_response = async_mock.MagicMock() mock_response._thread = async_mock.MagicMock() mock_response.did = TestConfig.test_target_did mock_response.did_doc_attach = async_mock.MagicMock( data=async_mock.MagicMock( verify=async_mock.CoroutineMock(return_value=True), signed=async_mock.MagicMock( decode=async_mock.MagicMock( return_value=json.dumps({"dummy": "did-doc"}) ) ), ) ) receipt = MessageReceipt(sender_did=TestConfig.test_target_did) with async_mock.patch.object( ConnRecord, "save", autospec=True ) as mock_conn_rec_save, async_mock.patch.object( ConnRecord, "retrieve_by_request_id", async_mock.CoroutineMock() ) as mock_conn_retrieve_by_req_id: mock_conn_retrieve_by_req_id.return_value = async_mock.MagicMock( state=ConnRecord.State.ABANDONED.rfc23 ) with self.assertRaises(DIDXManagerError): await self.manager.accept_response(mock_response, receipt) async def test_accept_response_find_by_thread_id_no_did_doc_attached(self): mock_response = async_mock.MagicMock() mock_response._thread = async_mock.MagicMock() mock_response.did = TestConfig.test_target_did mock_response.did_doc_attach = None receipt = MessageReceipt(sender_did=TestConfig.test_target_did) with async_mock.patch.object( ConnRecord, "save", autospec=True ) as mock_conn_rec_save, async_mock.patch.object( ConnRecord, "retrieve_by_request_id", async_mock.CoroutineMock() ) as mock_conn_retrieve_by_req_id: mock_conn_retrieve_by_req_id.return_value = async_mock.MagicMock( did=TestConfig.test_target_did, did_doc_attach=async_mock.MagicMock( data=async_mock.MagicMock( verify=async_mock.CoroutineMock(return_value=True), signed=async_mock.MagicMock( decode=async_mock.MagicMock( return_value=json.dumps({"dummy": "did-doc"}) ) ), ) ), state=ConnRecord.State.REQUEST.rfc23, save=async_mock.CoroutineMock(), ) with self.assertRaises(DIDXManagerError): await self.manager.accept_response(mock_response, receipt) async def test_accept_response_find_by_thread_id_did_mismatch(self): mock_response = async_mock.MagicMock() mock_response._thread = async_mock.MagicMock() mock_response.did = TestConfig.test_target_did mock_response.did_doc_attach = async_mock.MagicMock( data=async_mock.MagicMock( verify=async_mock.CoroutineMock(return_value=True), signed=async_mock.MagicMock( decode=async_mock.MagicMock( return_value=json.dumps({"dummy": "did-doc"}) ) ), ) ) receipt = MessageReceipt(sender_did=TestConfig.test_target_did) with async_mock.patch.object( ConnRecord, "save", autospec=True ) as mock_conn_rec_save, async_mock.patch.object( ConnRecord, "retrieve_by_request_id", async_mock.CoroutineMock() ) as mock_conn_retrieve_by_req_id, async_mock.patch.object( ConnRecord, "retrieve_by_id", async_mock.CoroutineMock() ) as mock_conn_retrieve_by_id, async_mock.patch.object( DIDDoc, "deserialize", async_mock.MagicMock() ) as mock_did_doc_deser: mock_did_doc_deser.return_value = async_mock.MagicMock( did=TestConfig.test_did ) mock_conn_retrieve_by_req_id.return_value = async_mock.MagicMock( did=TestConfig.test_target_did, did_doc_attach=async_mock.MagicMock( data=async_mock.MagicMock( verify=async_mock.CoroutineMock(return_value=True), signed=async_mock.MagicMock( decode=async_mock.MagicMock( return_value=json.dumps({"dummy": "did-doc"}) ) ), ) ), state=ConnRecord.State.REQUEST.rfc23, save=async_mock.CoroutineMock(), ) mock_conn_retrieve_by_id.return_value = async_mock.MagicMock( their_did=TestConfig.test_target_did, save=async_mock.CoroutineMock(), ) with self.assertRaises(DIDXManagerError): await self.manager.accept_response(mock_response, receipt) async def test_accept_complete(self): mock_complete = async_mock.MagicMock() receipt = MessageReceipt(sender_did=TestConfig.test_target_did) with async_mock.patch.object( ConnRecord, "retrieve_by_request_id", async_mock.CoroutineMock() ) as mock_conn_retrieve_by_req_id: mock_conn_retrieve_by_req_id.return_value.save = async_mock.CoroutineMock() conn_rec = await self.manager.accept_complete(mock_complete, receipt) assert ConnRecord.State.get(conn_rec.state) is ConnRecord.State.COMPLETED async def test_accept_complete_x_not_found(self): mock_complete = async_mock.MagicMock() receipt = MessageReceipt(sender_did=TestConfig.test_target_did) with async_mock.patch.object( ConnRecord, "retrieve_by_request_id", async_mock.CoroutineMock() ) as mock_conn_retrieve_by_req_id: mock_conn_retrieve_by_req_id.side_effect = StorageNotFoundError() with self.assertRaises(DIDXManagerError): await self.manager.accept_complete(mock_complete, receipt) async def test_create_did_document(self): did_info = DIDInfo( TestConfig.test_did, TestConfig.test_verkey, None, ) mock_conn = async_mock.MagicMock( connection_id="dummy", inbound_connection_id=None, their_did=TestConfig.test_target_did, state=ConnRecord.State.COMPLETED.rfc23, ) did_doc = self.make_did_doc( did=TestConfig.test_target_did, verkey=TestConfig.test_target_verkey, ) for i in range(2): # first cover store-record, then update-value await self.manager.store_did_document(did_doc) with async_mock.patch.object( ConnRecord, "retrieve_by_id", async_mock.CoroutineMock() ) as mock_conn_rec_retrieve_by_id: mock_conn_rec_retrieve_by_id.return_value = mock_conn did_doc = await self.manager.create_did_document( did_info=did_info, inbound_connection_id="dummy", svc_endpoints=[TestConfig.test_endpoint], ) async def test_create_did_document_not_completed(self): did_info = DIDInfo( TestConfig.test_did, TestConfig.test_verkey, None, ) mock_conn = async_mock.MagicMock( connection_id="dummy", inbound_connection_id=None, their_did=TestConfig.test_target_did, state=ConnRecord.State.ABANDONED.rfc23, ) with async_mock.patch.object( ConnRecord, "retrieve_by_id", async_mock.CoroutineMock() ) as mock_conn_rec_retrieve_by_id: mock_conn_rec_retrieve_by_id.return_value = mock_conn with self.assertRaises(BaseConnectionManagerError): await self.manager.create_did_document( did_info=did_info, inbound_connection_id="dummy", svc_endpoints=[TestConfig.test_endpoint], ) async def test_create_did_document_no_services(self): did_info = DIDInfo( TestConfig.test_did, TestConfig.test_verkey, None, ) mock_conn = async_mock.MagicMock( connection_id="dummy", inbound_connection_id=None, their_did=TestConfig.test_target_did, state=ConnRecord.State.COMPLETED.rfc23, ) x_did_doc = self.make_did_doc( did=TestConfig.test_target_did, verkey=TestConfig.test_target_verkey ) x_did_doc._service = {} for i in range(2): # first cover store-record, then update-value await self.manager.store_did_document(x_did_doc) with async_mock.patch.object( ConnRecord, "retrieve_by_id", async_mock.CoroutineMock() ) as mock_conn_rec_retrieve_by_id: mock_conn_rec_retrieve_by_id.return_value = mock_conn with self.assertRaises(BaseConnectionManagerError): await self.manager.create_did_document( did_info=did_info, inbound_connection_id="dummy", svc_endpoints=[TestConfig.test_endpoint], ) async def test_create_did_document_no_service_endpoint(self): did_info = DIDInfo( TestConfig.test_did, TestConfig.test_verkey, None, ) mock_conn = async_mock.MagicMock( connection_id="dummy", inbound_connection_id=None, their_did=TestConfig.test_target_did, state=ConnRecord.State.COMPLETED.rfc23, ) x_did_doc = self.make_did_doc( did=TestConfig.test_target_did, verkey=TestConfig.test_target_verkey ) x_did_doc._service = {} x_did_doc.set( Service(TestConfig.test_target_did, "dummy", "IndyAgent", [], [], "", 0) ) for i in range(2): # first cover store-record, then update-value await self.manager.store_did_document(x_did_doc) with async_mock.patch.object( ConnRecord, "retrieve_by_id", async_mock.CoroutineMock() ) as mock_conn_rec_retrieve_by_id: mock_conn_rec_retrieve_by_id.return_value = mock_conn with self.assertRaises(BaseConnectionManagerError): await self.manager.create_did_document( did_info=did_info, inbound_connection_id="dummy", svc_endpoints=[TestConfig.test_endpoint], ) async def test_create_did_document_no_service_recip_keys(self): did_info = DIDInfo( TestConfig.test_did, TestConfig.test_verkey, None, ) mock_conn = async_mock.MagicMock( connection_id="dummy", inbound_connection_id=None, their_did=TestConfig.test_target_did, state=ConnRecord.State.COMPLETED.rfc23, ) x_did_doc = self.make_did_doc( did=TestConfig.test_target_did, verkey=TestConfig.test_target_verkey ) x_did_doc._service = {} x_did_doc.set( Service( TestConfig.test_target_did, "dummy", "IndyAgent", [], [], TestConfig.test_endpoint, 0, ) ) for i in range(2): # first cover store-record, then update-value await self.manager.store_did_document(x_did_doc) with async_mock.patch.object( ConnRecord, "retrieve_by_id", async_mock.CoroutineMock() ) as mock_conn_rec_retrieve_by_id: mock_conn_rec_retrieve_by_id.return_value = mock_conn with self.assertRaises(BaseConnectionManagerError): await self.manager.create_did_document( did_info=did_info, inbound_connection_id="dummy", svc_endpoints=[TestConfig.test_endpoint], ) async def test_did_key_storage(self): did_info = DIDInfo( TestConfig.test_did, TestConfig.test_verkey, None, ) did_doc = self.make_did_doc( did=TestConfig.test_target_did, verkey=TestConfig.test_target_verkey ) await self.manager.add_key_for_did( did=TestConfig.test_target_did, key=TestConfig.test_target_verkey ) did = await self.manager.find_did_for_key(key=TestConfig.test_target_verkey) assert did == TestConfig.test_target_did await self.manager.remove_keys_for_did(TestConfig.test_target_did) async def test_diddoc_connection_targets_diddoc(self): did_doc = self.make_did_doc( TestConfig.test_target_did, TestConfig.test_target_verkey, ) targets = self.manager.diddoc_connection_targets( did_doc, TestConfig.test_verkey, ) assert isinstance(targets[0], ConnectionTarget) async def test_diddoc_connection_targets_diddoc_underspecified(self): with self.assertRaises(BaseConnectionManagerError): self.manager.diddoc_connection_targets(None, TestConfig.test_verkey) x_did_doc = DIDDoc(did=None) with self.assertRaises(BaseConnectionManagerError): self.manager.diddoc_connection_targets(x_did_doc, TestConfig.test_verkey) x_did_doc = self.make_did_doc( did=TestConfig.test_target_did, verkey=TestConfig.test_target_verkey ) x_did_doc._service = {} with self.assertRaises(BaseConnectionManagerError): self.manager.diddoc_connection_targets(x_did_doc, TestConfig.test_verkey)
# # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import unittest from unittest import mock from airflow.exceptions import AirflowException from airflow.providers.amazon.aws.hooks.quicksight import QuickSightHook from airflow.providers.amazon.aws.hooks.sts import StsHook from airflow.providers.amazon.aws.sensors.quicksight import QuickSightSensor AWS_ACCOUNT_ID = "123456789012" DATA_SET_ID = "DemoDataSet" INGESTION_ID = "DemoDataSet_Ingestion" class TestQuickSightSensor(unittest.TestCase): def setUp(self): self.sensor = QuickSightSensor( task_id="test_quicksight_sensor", aws_conn_id="aws_default", data_set_id="DemoDataSet", ingestion_id="DemoDataSet_Ingestion", ) @mock.patch.object(QuickSightHook, "get_status") @mock.patch.object(StsHook, "get_conn") @mock.patch.object(StsHook, "get_account_number") def test_poke_success(self, mock_get_account_number, sts_conn, mock_get_status): mock_get_account_number.return_value = AWS_ACCOUNT_ID mock_get_status.return_value = "COMPLETED" self.assertTrue(self.sensor.poke({})) mock_get_status.assert_called_once_with(AWS_ACCOUNT_ID, DATA_SET_ID, INGESTION_ID) @mock.patch.object(QuickSightHook, "get_status") @mock.patch.object(StsHook, "get_conn") @mock.patch.object(StsHook, "get_account_number") def test_poke_cancelled(self, mock_get_account_number, sts_conn, mock_get_status): mock_get_account_number.return_value = AWS_ACCOUNT_ID mock_get_status.return_value = "CANCELLED" with self.assertRaises(AirflowException): self.sensor.poke({}) mock_get_status.assert_called_once_with(AWS_ACCOUNT_ID, DATA_SET_ID, INGESTION_ID) @mock.patch.object(QuickSightHook, "get_status") @mock.patch.object(StsHook, "get_conn") @mock.patch.object(StsHook, "get_account_number") def test_poke_failed(self, mock_get_account_number, sts_conn, mock_get_status): mock_get_account_number.return_value = AWS_ACCOUNT_ID mock_get_status.return_value = "FAILED" with self.assertRaises(AirflowException): self.sensor.poke({}) mock_get_status.assert_called_once_with(AWS_ACCOUNT_ID, DATA_SET_ID, INGESTION_ID) @mock.patch.object(QuickSightHook, "get_status") @mock.patch.object(StsHook, "get_conn") @mock.patch.object(StsHook, "get_account_number") def test_poke_initialized(self, mock_get_account_number, sts_conn, mock_get_status): mock_get_account_number.return_value = AWS_ACCOUNT_ID mock_get_status.return_value = "INITIALIZED" self.assertFalse(self.sensor.poke({})) mock_get_status.assert_called_once_with(AWS_ACCOUNT_ID, DATA_SET_ID, INGESTION_ID)
# -*- coding: utf-8 -*- import re import logging import warnings from scrapy import signals from scrapy.http import Request from scrapy.utils.httpobj import urlparse_cached logger = logging.getLogger(__name__) class DisallowDomainMiddleware(object): def __init__(self, stats): # type: ignore self.stats = stats @classmethod def from_crawler(cls, crawler): # type: ignore o = cls(crawler.stats) crawler.signals.connect(o.spider_opened, signal=signals.spider_opened) return o def process_spider_output(self, response, result, spider): # type: ignore for x in result: if isinstance(x, Request): if x.dont_filter or self.should_follow(x, spider): yield x else: domain = urlparse_cached(x).hostname if domain and domain not in self.domains_seen: self.domains_seen.add(domain) logger.debug("Filtered offsite request to %(domain)r: %(request)s", {'domain': domain, 'request': x}, extra={'spider': spider}) self.stats.inc_value('offsite/domains', spider=spider) self.stats.inc_value('offsite/filtered', spider=spider) else: yield x def should_follow(self, request, spider): # type: ignore regex = self.host_regex if regex is None: return True # hostname can be None for wrong urls (like javascript links) host = urlparse_cached(request).hostname or '' return not bool(regex.search(host)) def get_host_regex(self, spider): # type: ignore """Override this method to implement a different offsite policy""" disallowed_domains = getattr(spider, 'disallowed_domains', None) if not disallowed_domains: return None # allow all by default url_pattern = re.compile("^https?://.*$") for domain in disallowed_domains: if url_pattern.match(domain): warnings.warn("disallowed_domains accepts only domains, not URLs. Ignoring URL entry %s in disallowed_domains." % domain, URLWarning) regex = r'^(.*\.)?(%s)$' % '|'.join(re.escape(d) for d in disallowed_domains if d is not None) return re.compile(regex) def spider_opened(self, spider): # type: ignore self.host_regex = self.get_host_regex(spider) self.domains_seen = set() # type: ignore class URLWarning(Warning): pass
import unittest from onedrive_client import od_stringutils class TestStringUtils(unittest.TestCase): INCREMENTED_FILE_NAMES = (('Folder', 'Folder 1'), ('Folder 1', 'Folder 2'), ('file.txt', 'file 1.txt'), ('file 1.txt', 'file 2.txt'), ('Folder 0', 'Folder 0 1')) def test_get_filename_with_incremented_count(self): for orig, exp in self.INCREMENTED_FILE_NAMES: self.assertEqual(exp, od_stringutils.get_filename_with_incremented_count(orig)) if __name__ == '__main__': unittest.main()
from tf_bodypix.utils.v4l2 import VideoLoopbackImageSink from .api import T_OutputSink def get_v4l2_output_sink(device_name: str, **__) -> T_OutputSink: return VideoLoopbackImageSink(device_name) OUTPUT_SINK_FACTORY = get_v4l2_output_sink
# Copyright 2015 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for tensorflow.ops.math_ops.matmul.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow.python.platform import numpy as np import tensorflow as tf class MatMulTest(tf.test.TestCase): def _testCpuMatmul(self, x, y, transpose_x=False, transpose_y=False): x_mat = np.matrix(x).T if transpose_x else np.matrix(x) y_mat = np.matrix(y).T if transpose_y else np.matrix(y) np_ans = x_mat * y_mat with self.test_session(use_gpu=False): tf_ans = tf.matmul(x, y, transpose_x, transpose_y).eval() self.assertAllClose(np_ans, tf_ans) self.assertAllEqual(np_ans.shape, tf_ans.shape) def _testGpuMatmul(self, x, y, transpose_x=False, transpose_y=False): x_mat = np.matrix(x).T if transpose_x else np.matrix(x) y_mat = np.matrix(y).T if transpose_y else np.matrix(y) np_ans = x_mat * y_mat with self.test_session(use_gpu=True): tf_ans = tf.matmul(x, y, transpose_x, transpose_y).eval() self.assertAllClose(np_ans, tf_ans) self.assertAllEqual(np_ans.shape, tf_ans.shape) def _randMatrix(self, rows, cols, dtype): if dtype is np.complex64: real = self._randMatrix(rows, cols, np.float32) imag = self._randMatrix(rows, cols, np.float32) return real + np.complex(0, 1) * imag else: return np.random.uniform(low=1.0, high=100.0, size=rows * cols).reshape( [rows, cols]).astype(dtype) # Basic test: # [ [1], # [2], # [3], * [1, 2] # [4] ] def testFloatBasic(self): x = np.arange(1., 5.).reshape([4, 1]).astype(np.float32) y = np.arange(1., 3.).reshape([1, 2]).astype(np.float32) self._testCpuMatmul(x, y) self._testGpuMatmul(x, y) def testDoubleBasic(self): x = np.arange(1., 5.).reshape([4, 1]).astype(np.float64) y = np.arange(1., 3.).reshape([1, 2]).astype(np.float64) self._testCpuMatmul(x, y) def testInt32Basic(self): x = np.arange(1., 5.).reshape([4, 1]).astype(np.int32) y = np.arange(1., 3.).reshape([1, 2]).astype(np.int32) self._testCpuMatmul(x, y) def testSComplexBasic(self): x = np.arange(1., 5.).reshape([4, 1]).astype(np.complex64) y = np.arange(1., 3.).reshape([1, 2]).astype(np.complex64) self._testCpuMatmul(x, y) # Tests testing random sized matrices. def testFloatRandom(self): for _ in range(10): n, k, m = np.random.randint(1, 100, size=3) x = self._randMatrix(n, k, np.float32) y = self._randMatrix(k, m, np.float32) self._testCpuMatmul(x, y) self._testGpuMatmul(x, y) def testDoubleRandom(self): for _ in range(10): n, k, m = np.random.randint(1, 100, size=3) x = self._randMatrix(n, k, np.float64) y = self._randMatrix(k, m, np.float64) self._testCpuMatmul(x, y) def testInt32Random(self): for _ in range(10): n, k, m = np.random.randint(1, 100, size=3) x = self._randMatrix(n, k, np.int32) y = self._randMatrix(k, m, np.int32) self._testCpuMatmul(x, y) def testSComplexRandom(self): for _ in range(10): n, k, m = np.random.randint(1, 100, size=3) x = self._randMatrix(n, k, np.complex64) y = self._randMatrix(k, m, np.complex64) self._testCpuMatmul(x, y) # Test the cases that transpose the matrices before multiplying. # NOTE(keveman): The cases where only one of the inputs is # transposed are covered by tf.matmul's gradient function. def testFloatRandomTransposeBoth(self): for _ in range(10): n, k, m = np.random.randint(1, 100, size=3) x = self._randMatrix(k, n, np.float32) y = self._randMatrix(m, k, np.float32) self._testCpuMatmul(x, y, True, True) self._testGpuMatmul(x, y, True, True) def testDoubleRandomTranposeBoth(self): for _ in range(10): n, k, m = np.random.randint(1, 100, size=3) x = self._randMatrix(k, n, np.float64) y = self._randMatrix(m, k, np.float64) self._testCpuMatmul(x, y, True, True) def testMatMul_OutEmpty_A(self): n, k, m = 0, 8, 3 x = self._randMatrix(n, k, np.float32) y = self._randMatrix(k, m, np.float32) self._testCpuMatmul(x, y) self._testGpuMatmul(x, y) def testMatMul_OutEmpty_B(self): n, k, m = 3, 8, 0 x = self._randMatrix(n, k, np.float32) y = self._randMatrix(k, m, np.float32) self._testCpuMatmul(x, y) self._testGpuMatmul(x, y) def testMatMul_Inputs_Empty(self): n, k, m = 3, 0, 4 x = self._randMatrix(n, k, np.float32) y = self._randMatrix(k, m, np.float32) self._testCpuMatmul(x, y) self._testGpuMatmul(x, y) def testShapeErrors(self): a = tf.placeholder(tf.float32, [32, 37]) b = tf.placeholder(tf.float32, [36, 2]) c = tf.placeholder(tf.float32, [37]) with self.assertRaisesRegexp( ValueError, r"Dimensions Dimension\(37\) and Dimension\(36\) are not compatible"): tf.matmul(a, b) with self.assertRaisesRegexp(ValueError, "must have rank 2"): tf.matmul(a, c) # TODO(zhifengc): Figures out how to test matmul gradients on GPU. class MatMulGradientTest(tf.test.TestCase): def testGradientInput0(self): with self.test_session(use_gpu=False): x = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[3, 2], dtype=tf.float64, name="x") y = tf.constant([1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7], shape=[2, 4], dtype=tf.float64, name="y") m = tf.matmul(x, y, name="matmul") err = tf.test.compute_gradient_error(x, [3, 2], m, [3, 4]) print("matmul input0 gradient err = ", err) self.assertLess(err, 1e-10) def testGradientInput1(self): with self.test_session(use_gpu=False): x = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[3, 2], dtype=tf.float64, name="x") y = tf.constant([1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7], shape=[2, 4], dtype=tf.float64, name="y") m = tf.matmul(x, y, name="matmul") err = tf.test.compute_gradient_error(y, [2, 4], m, [3, 4]) print("matmul input1 gradient err = ", err) self.assertLess(err, 1e-10) def _VerifyInput0(self, transpose_a, transpose_b): shape_x = [3, 2] shape_y = [2, 4] if transpose_a: shape_x = list(reversed(shape_x)) if transpose_b: shape_y = list(reversed(shape_y)) with self.test_session(use_gpu=False): x = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=shape_x, dtype=tf.float64, name="x") y = tf.constant([1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7], shape=shape_y, dtype=tf.float64, name="y") m = tf.matmul(x, y, transpose_a, transpose_b, name="matmul") err = tf.test.compute_gradient_error(x, shape_x, m, [3, 4]) print("matmul input0 gradient err = ", err) self.assertLess(err, 1e-10) def testGradientInput0WithTranspose(self): self._VerifyInput0(transpose_a=True, transpose_b=False) self._VerifyInput0(transpose_a=False, transpose_b=True) self._VerifyInput0(transpose_a=True, transpose_b=True) def _VerifyInput1(self, transpose_a, transpose_b): shape_x = [3, 2] shape_y = [2, 4] if transpose_a: shape_x = list(reversed(shape_x)) if transpose_b: shape_y = list(reversed(shape_y)) with self.test_session(use_gpu=False): x = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=shape_x, dtype=tf.float64, name="x") y = tf.constant([1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7], shape=shape_y, dtype=tf.float64, name="y") m = tf.matmul(x, y, transpose_a, transpose_b, name="matmul") err = tf.test.compute_gradient_error(y, shape_y, m, [3, 4]) print("matmul input1 gradient err = ", err) self.assertLess(err, 1e-10) def testGradientInput1WithTranspose(self): self._VerifyInput1(transpose_a=True, transpose_b=False) self._VerifyInput1(transpose_a=False, transpose_b=True) self._VerifyInput1(transpose_a=True, transpose_b=True) if __name__ == "__main__": tf.test.main()
import numpy as np import pandas as pd import pytest from pandas.testing import assert_frame_equal def test_str_split(): "Test wrapper for Pandas ``.str.split()`` method." df = pd.DataFrame( {"text": ["a_b_c", "c_d_e", np.nan, "f_g_h"], "numbers": range(1, 5)} ) expected = df.copy() expected["text"] = expected["text"].str.split("_") result = df.process_text(column="text", string_function="split", pat="_") assert_frame_equal(result, expected) def test_str_cat(): "Test wrapper for Pandas ``.str.cat()`` method." df = pd.DataFrame({"text": ["a", "b", "c", "d"], "numbers": range(1, 5)}) expected = df.copy() expected["text"] = expected["text"].str.cat(others=["A", "B", "C", "D"]) result = df.process_text( column="text", string_function="cat", others=["A", "B", "C", "D"], ) assert_frame_equal(result, expected) def test_str_get(): """Test wrapper for Pandas ``.str.get()`` method.""" df = pd.DataFrame( {"text": ["aA", "bB", "cC", "dD"], "numbers": range(1, 5)} ) expected = df.copy() expected["text"] = expected["text"].str.get(1) result = df.process_text(column="text", string_function="get", i=-1) assert_frame_equal(result, expected) def test_str_lower(): """Test string conversion to lowercase using ``.str.lower()``.""" df = pd.DataFrame( { "codes": range(1, 7), "names": [ "Graham Chapman", "John Cleese", "Terry Gilliam", "Eric Idle", "Terry Jones", "Michael Palin", ], } ) expected = df.copy() expected["names"] = expected["names"].str.lower() result = df.process_text(column="names", string_function="lower") assert_frame_equal(result, expected) def test_str_wrong(): """Test that an invalid Pandas string method raises an exception.""" df = pd.DataFrame( {"text": ["ragnar", "sammywemmy", "ginger"], "code": [1, 2, 3]} ) with pytest.raises(KeyError): df.process_text(column="text", string_function="invalid_function") def test_str_wrong_parameters(): """Test that invalid argument for Pandas string method raises an error.""" df = pd.DataFrame( {"text": ["a_b_c", "c_d_e", np.nan, "f_g_h"], "numbers": range(1, 5)} ) with pytest.raises(TypeError): df.process_text(column="text", string_function="split", pattern="_")
apiAttachAvailable = u'API verf\xfcgbar' apiAttachNotAvailable = u'Nicht verf\xfcgbar' apiAttachPendingAuthorization = u'Ausstehende Genehmigungsanfrage' apiAttachRefused = u'Abgelehnt' apiAttachSuccess = u'Erfolg' apiAttachUnknown = u'Unbekannt' budDeletedFriend = u'Aus Freundesliste gel\xf6scht' budFriend = u'Freund' budNeverBeenFriend = u'War noch nie in Freundesliste' budPendingAuthorization = u'Ausstehende Genehmigungsanfrage' budUnknown = u'Unbekannt' cfrBlockedByRecipient = u'Anruf von Empf\xe4nger gesperrt' cfrMiscError = u'Sonstiger Fehler' cfrNoCommonCodec = u'Kein Standard-Codec' cfrNoProxyFound = u'Kein Proxy gefunden' cfrNotAuthorizedByRecipient = u'Aktueller Benutzer nicht von Empf\xe4nger genehmigt' cfrRecipientNotFriend = u'Empf\xe4nger kein Freund' cfrRemoteDeviceError = u'Problem mit dem Audioger\xe4t der Gegenstelle' cfrSessionTerminated = u'Sitzung beendet' cfrSoundIOError = u'Ton-E/A-Fehler' cfrSoundRecordingError = u'Aufnahmefehler' cfrUnknown = u'Unbekannt' cfrUserDoesNotExist = u'Benutzer/Telefonnummer gibt es nicht' cfrUserIsOffline = u'Sie oder er ist offline' chsAllCalls = u'Dialog mit Altversion' chsDialog = u'Dialog' chsIncomingCalls = u'Mehrere m\xfcssen annehmen' chsLegacyDialog = u'Dialog mit Altversion' chsMissedCalls = u'Dialog' chsMultiNeedAccept = u'Mehrere m\xfcssen annehmen' chsMultiSubscribed = u'Mehrere abonniert' chsOutgoingCalls = u'Mehrere abonniert' chsUnknown = u'Unbekannt' chsUnsubscribed = u'Abonnement gek\xfcndigt' clsBusy = u'Besetzt' clsCancelled = u'Abbrechen' clsEarlyMedia = u'Wiedergabe von Early Media' clsFailed = u'Anruf leider fehlgeschlagen!' clsFinished = u'Beendet' clsInProgress = u'Aktives Gespr\xe4ch' clsLocalHold = u'In lokaler Wartestellung' clsMissed = u'Anruf in Abwesenheit von:' clsOnHold = u'Konferenz wird gehalten' clsRefused = u'Abgelehnt' clsRemoteHold = u'In Fern-Wartestellung' clsRinging = u'Gespr\xe4che' clsRouting = u'Wird weitergeleitet' clsTransferred = u'Unbekannt' clsTransferring = u'Unbekannt' clsUnknown = u'Unbekannt' clsUnplaced = u'Nie get\xe4tigt' clsVoicemailBufferingGreeting = u'Ansage wird gepuffert' clsVoicemailCancelled = u'Voicemail wurde abgebrochen' clsVoicemailFailed = u'Fehler bei Sprachnachricht' clsVoicemailPlayingGreeting = u'Ansage wird abgespielt' clsVoicemailRecording = u'Sprachnachricht wird aufgezeichnet' clsVoicemailSent = u'Voicemail wurde gesendet' clsVoicemailUploading = u'Voicemail wird hochgeladen' cltIncomingP2P = u'Eingehender P2P-Anruf' cltIncomingPSTN = u'Eingehender Anruf' cltOutgoingP2P = u'Ausgehender P2P-Anruf' cltOutgoingPSTN = u'Ausgehender Anruf' cltUnknown = u'Unbekannt' cmeAddedMembers = u'Hinzugef\xfcgte Mitglieder' cmeCreatedChatWith = u'Chat erstellt mit' cmeEmoted = u'Unbekannt' cmeLeft = u'Links' cmeSaid = u'Gesagt' cmeSawMembers = u'Gesehene Mitglieder' cmeSetTopic = u'Thema festlegen' cmeUnknown = u'Unbekannt' cmsRead = u'Gelesen' cmsReceived = u'Empfangen' cmsSending = u'Sende...' cmsSent = u'Gesendet' cmsUnknown = u'Unbekannt' conConnecting = u'Verbindungsaufbau' conOffline = u'Offline' conOnline = u'Online' conPausing = u'Wird angehalten' conUnknown = u'Unbekannt' cusAway = u'Abwesend' cusDoNotDisturb = u'Besch\xe4ftigt' cusInvisible = u'Als offline anzeigen' cusLoggedOut = u'Offline' cusNotAvailable = u'Nicht verf\xfcgbar' cusOffline = u'Offline' cusOnline = u'Online' cusSkypeMe = u'Skype Me-Modus' cusUnknown = u'Unbekannt' cvsBothEnabled = u'Video wird gesendet und empfangen' cvsNone = u'Kein Video' cvsReceiveEnabled = u'Video wird empfangen' cvsSendEnabled = u'Video wird gesendet' cvsUnknown = u'' grpAllFriends = u'Alle Freunde' grpAllUsers = u'Alle Benutzer' grpCustomGroup = u'Benutzerdefiniert' grpOnlineFriends = u'Online-Freunde' grpPendingAuthorizationFriends = u'Ausstehende Genehmigungsanfrage' grpProposedSharedGroup = u'Proposed Shared Group' grpRecentlyContactedUsers = u'K\xfcrzlich kontaktierte Benutzer' grpSharedGroup = u'Shared Group' grpSkypeFriends = u'Skype-Freunde' grpSkypeOutFriends = u'SkypeOut-Freunde' grpUngroupedFriends = u'Nicht gruppierte Freunde' grpUnknown = u'Unbekannt' grpUsersAuthorizedByMe = u'Von mir genehmigt' grpUsersBlockedByMe = u'Von mir blockiert' grpUsersWaitingMyAuthorization = u'Warten auf meine Genehmigung' leaAddDeclined = u'Hinzuf\xfcgung abgelehnt' leaAddedNotAuthorized = u'Hinzugef\xfcgter Benutzer muss genehmigt sein' leaAdderNotFriend = u'Hinzuf\xfcgender Benutzer muss Freund sein' leaUnknown = u'Unbekannt' leaUnsubscribe = u'Abonnement gek\xfcndigt' leaUserIncapable = u'Benutzer unf\xe4hig' leaUserNotFound = u'Kein Benutzer gefunden' olsAway = u'Abwesend' olsDoNotDisturb = u'Besch\xe4ftigt' olsNotAvailable = u'Nicht verf\xfcgbar' olsOffline = u'Offline' olsOnline = u'Online' olsSkypeMe = u'Skype Me-Modus' olsSkypeOut = u'SkypeOut' olsUnknown = u'Unbekannt' smsMessageStatusComposing = u'Composing' smsMessageStatusDelivered = u'Delivered' smsMessageStatusFailed = u'Failed' smsMessageStatusRead = u'Read' smsMessageStatusReceived = u'Received' smsMessageStatusSendingToServer = u'Sending to Server' smsMessageStatusSentToServer = u'Sent to Server' smsMessageStatusSomeTargetsFailed = u'Some Targets Failed' smsMessageStatusUnknown = u'Unknown' smsMessageTypeCCRequest = u'Confirmation Code Request' smsMessageTypeCCSubmit = u'Confirmation Code Submit' smsMessageTypeIncoming = u'Incoming' smsMessageTypeOutgoing = u'Outgoing' smsMessageTypeUnknown = u'Unknown' smsTargetStatusAcceptable = u'Acceptable' smsTargetStatusAnalyzing = u'Analyzing' smsTargetStatusDeliveryFailed = u'Delivery Failed' smsTargetStatusDeliveryPending = u'Delivery Pending' smsTargetStatusDeliverySuccessful = u'Delivery Successful' smsTargetStatusNotRoutable = u'Not Routable' smsTargetStatusUndefined = u'Undefined' smsTargetStatusUnknown = u'Unknown' usexFemale = u'Weiblich' usexMale = u'M\xe4nnlich' usexUnknown = u'Unbekannt' vmrConnectError = u'Verbindungsfehler' vmrFileReadError = u'Fehler beim Lesen der Datei' vmrFileWriteError = u'Fehler beim Schreiben in die Datei' vmrMiscError = u'Sonstiger Fehler' vmrNoError = u'Kein Fehler' vmrNoPrivilege = u'Keine Voicemail-Berechtigung' vmrNoVoicemail = u'Voicemail gibt es nicht' vmrPlaybackError = u'Fehler bei der Wiedergabe' vmrRecordingError = u'Fehler bei der Aufnahme' vmrUnknown = u'Unbekannt' vmsBlank = u'Leer' vmsBuffering = u'Pufferung' vmsDeleting = u'Wird gel\xf6scht' vmsDownloading = u'Download l\xe4uft' vmsFailed = u'Fehlgeschlagen' vmsNotDownloaded = u'Nicht gedownloadet' vmsPlayed = u'Abgespielt' vmsPlaying = u'Wiedergabe' vmsRecorded = u'Aufgenommen' vmsRecording = u'Sprachnachricht wird aufgezeichnet' vmsUnknown = u'Unbekannt' vmsUnplayed = u'Nicht abgespielt' vmsUploaded = u'Upload beendet' vmsUploading = u'Upload' vmtCustomGreeting = u'Benutzerdefinierte Ansage' vmtDefaultGreeting = u'Standardansage' vmtIncoming = u'Ich eine Sprachnachricht empfange' vmtOutgoing = u'Ausgehend' vmtUnknown = u'Unbekannt' vssAvailable = u'Verf\xfcgbar' vssNotAvailable = u'Nicht verf\xfcgbar' vssPaused = u'Angehalten' vssRejected = u'Abgelehnt' vssRunning = u'Wird ausgef\xfchrt' vssStarting = u'Wird gestartet' vssStopping = u'Wird gestoppt' vssUnknown = u'Unbekannt'
# Copyright 2018 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for the staff detectors.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import os.path import numpy as np import tensorflow as tf from moonlight import image as omr_image from moonlight import staves from moonlight.staves import staffline_distance from moonlight.staves import testing class StaffDetectorsTest(tf.test.TestCase): def setUp(self): # The normal _MIN_STAFFLINE_DISTANCE_SCORE is too large for the small images # used in unit tests. self.old_min_staffline_distance_score = ( staffline_distance._MIN_STAFFLINE_DISTANCE_SCORE) staffline_distance._MIN_STAFFLINE_DISTANCE_SCORE = 10 def tearDown(self): staffline_distance._MIN_STAFFLINE_DISTANCE_SCORE = ( self.old_min_staffline_distance_score) def test_single_staff(self): blank_row = [255] * 50 staff_row = [255] * 4 + [0] * 42 + [255] * 4 # Create an image with 5 staff lines, with a slightly noisy staffline # thickness and distance. image = np.asarray([blank_row] * 25 + [staff_row] * 2 + [blank_row] * 8 + [staff_row] * 3 + [blank_row] * 8 + [staff_row] * 3 + [blank_row] * 9 + [staff_row] * 2 + [blank_row] * 8 + [staff_row] * 2 + [blank_row] * 25, np.uint8) for detector in self.generate_staff_detectors(image): with self.test_session() as sess: staves_arr, staffline_distances, staffline_thickness = sess.run( (detector.staves, detector.staffline_distance, detector.staffline_thickness)) expected_y = 25 + 2 + 8 + 3 + 8 + 1 # y coordinate of the center line self.assertEqual( staves_arr.shape[0], 1, 'Expected single staff from detector %s. Got: %d' % (detector, staves_arr.shape[0])) self.assertAlmostEqual( np.mean(staves_arr[0, :, 1]), # average y position expected_y, delta=2.0) self.assertAlmostEqual(staffline_distances[0], 11, delta=1.0) self.assertLessEqual(staffline_thickness, 3) def test_corpus_image(self): # Test only the default staff detector (because projection won't detect all # staves). filename = os.path.join(tf.resource_loader.get_data_files_path(), '../testdata/IMSLP00747-000.png') image_t = omr_image.decode_music_score_png(tf.read_file(filename)) detector = staves.StaffDetector(image_t) with self.test_session() as sess: staves_arr, staffline_distances = sess.run( [detector.staves, detector.staffline_distance]) self.assertAllClose( np.mean(staves_arr[:, :, 1], axis=1), # average y position [413, 603, 848, 1040, 1286, 1476, 1724, 1915, 2162, 2354, 2604, 2795], atol=5) self.assertAllEqual(staffline_distances, [16] * 12) def test_staves_interpolated_y(self): # Test staff center line interpolation. # The sequence of (x, y) points always starts at x = 0 and ends at # x = width - 1. staff = tf.constant( np.array([[[0, 10], [5, 5], [11, 0], [15, 10], [20, 20], [23, 49]]], np.int32)) with self.test_session(): line_y = testing.FakeStaves(tf.zeros([50, 24]), staff).staves_interpolated_y[0].eval() self.assertEquals( list(line_y), [ 10, 9, 8, 7, 6, 5, 4, 3, 3, 2, 1, 0, 2, 5, 8, 10, 12, 14, 16, 18, 20, 30, 39, 49 ]) def test_staves_interpolated_y_empty(self): with self.test_session(): self.assertAllEqual( testing.FakeStaves(tf.zeros([50, 25]), tf.zeros( [0, 2, 2], np.int32)).staves_interpolated_y.eval().shape, [0, 25]) def test_staves_interpolated_y_staves_dont_extend_to_edge(self): staff = tf.constant(np.array([[[5, 10], [12, 8]]], np.int32)) with self.test_session(): # The y values should extend past the endpoints to the edge of the image, # and should be equal to the y value at the nearest endpoint. self.assertAllEqual( testing.FakeStaves(tf.zeros([50, 15]), staff).staves_interpolated_y[0].eval(), [10, 10, 10, 10, 10, 10, 10, 9, 9, 9, 9, 8, 8, 8, 8]) def generate_staff_detectors(self, image): yield staves.ProjectionStaffDetector(image) yield staves.FilteredHoughStaffDetector(image) if __name__ == '__main__': tf.test.main()
# Generated by Django 3.0.3 on 2020-10-13 10:02 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('modelzoo', '0021_auto_20201012_1423'), ] operations = [ migrations.AddField( model_name='model', name='github', field=models.CharField(blank=True, default='', max_length=100), ), ]
""" * Definition for singly-linked list. * function ListNode(val, next) { * this.val = (val===undefined ? 0 : val) * this.next = (next===undefined ? null : next) * } * @param {ListNode} l1 * @param {ListNode} l2 * @return {ListNode} """ def addTwoNumbers(l1, l2): pass
from setuptools import setup setup( name='get-bittrex-tick', version='1.0', description='A useful module', author='Shadowist', author_email='shadowist@protonmail.com', packages=['.'], #same as name install_requires=["requests"], #external packages as dependencies )
import logging import tempfile import time from ocs_ci.ocs.ui.views import locators, osd_sizes from ocs_ci.ocs.ui.base_ui import PageNavigator from ocs_ci.utility.utils import get_ocp_version, TimeoutSampler, run_cmd from ocs_ci.utility import templating from ocs_ci.ocs.exceptions import TimeoutExpiredError from ocs_ci.framework import config from ocs_ci.ocs import constants, defaults from ocs_ci.ocs.node import get_worker_nodes from ocs_ci.deployment.helpers.lso_helpers import add_disk_for_vsphere_platform logger = logging.getLogger(__name__) class DeploymentUI(PageNavigator): """ Deployment OCS Operator via User Interface """ def __init__(self, driver): super().__init__(driver) self.ocp_version = get_ocp_version() self.dep_loc = locators[self.ocp_version]["deployment"] def verify_disks_lso_attached(self, timeout=600, sleep=20): """ Verify Disks Attached Args: timeout (int): Time in seconds to wait sleep (int): Sampling time in seconds """ osd_size = config.ENV_DATA.get("device_size", defaults.DEVICE_SIZE) number_worker_nodes = get_worker_nodes() capacity = int(osd_size) * len(number_worker_nodes) if capacity >= 1024: capacity_str = str(capacity / 1024).rstrip("0").rstrip(".") + " TiB" else: capacity_str = str(capacity) + " GiB" sample = TimeoutSampler( timeout=timeout, sleep=sleep, func=self.check_element_text, expected_text=capacity_str, ) if not sample.wait_for_func_status(result=True): logger.error(f" after {timeout} seconds") raise TimeoutExpiredError def create_catalog_source_yaml(self): """ Create OLM YAML file """ try: catalog_source_data = templating.load_yaml(constants.CATALOG_SOURCE_YAML) image = config.DEPLOYMENT.get( "ocs_registry_image", config.DEPLOYMENT["default_ocs_registry_image"] ) catalog_source_data["spec"]["image"] = image catalog_source_manifest = tempfile.NamedTemporaryFile( mode="w+", prefix="catalog_source_manifest", delete=False ) templating.dump_data_to_temp_yaml( catalog_source_data, catalog_source_manifest.name ) run_cmd(f"oc create -f {catalog_source_manifest.name}", timeout=300) run_cmd(f"oc create -f {constants.OLM_YAML}", timeout=300) time.sleep(60) except Exception as e: logger.info(e) def install_ocs_operator(self): """ Install OCS Opeartor """ self.navigate_operatorhub_page() logger.info("Search OCS Operator") self.do_send_keys( self.dep_loc["search_operators"], text="OpenShift Container Storage" ) logger.info("Choose OCS Version") self.do_click(self.dep_loc["choose_ocs_version"], enable_screenshot=True) logger.info("Click Install OCS") self.do_click(self.dep_loc["click_install_ocs"], enable_screenshot=True) self.do_click(self.dep_loc["click_install_ocs_page"], enable_screenshot=True) self.verify_operator_succeeded(operator="OpenShift Container Storage") def install_local_storage_operator(self): """ Install local storage operator """ if config.DEPLOYMENT.get("local_storage"): self.navigate_operatorhub_page() logger.info("Search OCS Operator") self.do_send_keys(self.dep_loc["search_operators"], text="Local Storage") logger.info("Choose Local Storage Version") self.do_click( self.dep_loc["choose_local_storage_version"], enable_screenshot=True ) logger.info("Click Install LSO") self.do_click(self.dep_loc["click_install_lso"], enable_screenshot=True) self.do_click( self.dep_loc["click_install_lso_page"], enable_screenshot=True ) self.verify_operator_succeeded(operator="Local Storage") def install_storage_cluster(self): """ Install Storage Cluster """ self.search_operator_installed_operators_page() logger.info("Click on ocs operator on Installed Operators") self.do_click( locator=self.dep_loc["ocs_operator_installed"], enable_screenshot=True ) logger.info("Click on Storage Cluster") self.do_click( locator=self.dep_loc["storage_cluster_tab"], enable_screenshot=True ) logger.info("Click on Create Storage Cluster") self.refresh_page() self.do_click( locator=self.dep_loc["create_storage_cluster"], enable_screenshot=True ) if config.DEPLOYMENT.get("local_storage"): self.install_lso_cluster() else: self.install_internal_cluster() def install_lso_cluster(self): """ Install LSO cluster via UI """ logger.info("Click Internal - Attached Devices") self.do_click(self.dep_loc["internal-attached_devices"], enable_screenshot=True) logger.info("Click on All nodes") self.do_click(self.dep_loc["all_nodes_lso"], enable_screenshot=True) self.do_click(self.dep_loc["next"], enable_screenshot=True) logger.info( f"Configure Volume Set Name and Storage Class Name as {constants.LOCAL_BLOCK_RESOURCE}" ) self.do_send_keys( locator=self.dep_loc["lv_name"], text=constants.LOCAL_BLOCK_RESOURCE ) self.do_send_keys( locator=self.dep_loc["sc_name"], text=constants.LOCAL_BLOCK_RESOURCE ) logger.info("Select all nodes on 'Create Storage Class' step") self.do_click( locator=self.dep_loc["all_nodes_create_sc"], enable_screenshot=True ) self.verify_disks_lso_attached() self.do_click(self.dep_loc["next"], enable_screenshot=True) logger.info("Confirm new storage class") self.do_click(self.dep_loc["yes"], enable_screenshot=True) sample = TimeoutSampler( timeout=600, sleep=10, func=self.check_element_text, expected_text="Memory", ) if not sample.wait_for_func_status(result=True): logger.error("Nodes not found after 600 seconds") raise TimeoutExpiredError logger.info(f"Select {constants.LOCAL_BLOCK_RESOURCE} storage class") self.choose_expanded_mode( mode=True, locator=self.dep_loc["storage_class_dropdown_lso"] ) self.do_click(locator=self.dep_loc["localblock_sc"], enable_screenshot=True) self.do_click(self.dep_loc["next"], enable_screenshot=True) self.configure_encryption() self.create_storage_cluster() def install_internal_cluster(self): """ Install Internal Cluster """ logger.info("Click Internal") self.do_click(locator=self.dep_loc["internal_mode"], enable_screenshot=True) logger.info("Configure Storage Class (thin on vmware, gp2 on aws)") self.do_click( locator=self.dep_loc["storage_class_dropdown"], enable_screenshot=True ) self.do_click(locator=self.dep_loc[self.storage_class], enable_screenshot=True) device_size = str(config.ENV_DATA.get("device_size")) osd_size = device_size if device_size in osd_sizes else "512" logger.info(f"Configure OSD Capacity {osd_size}") self.choose_expanded_mode(mode=True, locator=self.dep_loc["osd_size_dropdown"]) self.do_click(locator=self.dep_loc[osd_size], enable_screenshot=True) logger.info("Select all worker nodes") self.select_checkbox_status(status=True, locator=self.dep_loc["all_nodes"]) if self.ocp_version == "4.6" and config.ENV_DATA.get("encryption_at_rest"): self.do_click( locator=self.dep_loc["enable_encryption"], enable_screenshot=True ) if self.ocp_version in ("4.7", "4.8"): logger.info("Next on step 'Select capacity and nodes'") self.do_click(locator=self.dep_loc["next"], enable_screenshot=True) self.configure_encryption() self.create_storage_cluster() def create_storage_cluster(self): """ Review and Create storage cluster """ logger.info("Create on Review and create page") self.do_click(locator=self.dep_loc["create_on_review"], enable_screenshot=True) logger.info("Sleep 10 second after click on 'create storage cluster'") time.sleep(10) def configure_encryption(self): """ Configure Encryption """ if config.ENV_DATA.get("encryption_at_rest"): logger.info("Enable OSD Encryption") self.select_checkbox_status( status=True, locator=self.dep_loc["enable_encryption"] ) logger.info("Cluster-wide encryption") self.select_checkbox_status( status=True, locator=self.dep_loc["wide_encryption"] ) self.do_click(self.dep_loc["next"], enable_screenshot=True) def verify_operator_succeeded( self, operator="OpenShift Container Storage", timeout_install=300, sleep=20 ): """ Verify Operator Installation Args: operator (str): type of operator timeout_install (int): Time in seconds to wait sleep (int): Sampling time in seconds """ self.search_operator_installed_operators_page(operator=operator) sample = TimeoutSampler( timeout=timeout_install, sleep=sleep, func=self.check_element_text, expected_text="Succeeded", ) if not sample.wait_for_func_status(result=True): logger.error( f"{operator} Installation status is not Succeeded after {timeout_install} seconds" ) raise TimeoutExpiredError def search_operator_installed_operators_page( self, operator="OpenShift Container Storage" ): """ Search Operator on Installed Operators Page Args: operator (str): type of operator """ self.navigate_operatorhub_page() self.navigate_installed_operators_page() logger.info(f"Search {operator} operator installed") if self.ocp_version in ("4.7", "4.8"): self.do_send_keys( locator=self.dep_loc["search_operator_installed"], text=operator, ) # https://bugzilla.redhat.com/show_bug.cgi?id=1899200 elif self.ocp_version == "4.6": self.do_click(self.dep_loc["project_dropdown"], enable_screenshot=True) self.do_click(self.dep_loc[operator], enable_screenshot=True) def install_ocs_ui(self): """ Install OCS via UI """ if config.DEPLOYMENT.get("local_storage"): add_disk_for_vsphere_platform() self.install_local_storage_operator() self.create_catalog_source_yaml() self.install_ocs_operator() self.install_storage_cluster()
'''Spark Configuration In this file we define the key configuration parameters for submitting Spark jobs. Spark can be run in a variety of deployment contexts. See the Spark documentation at https://spark.apache.org/docs/latest/submitting-applications.html for a more in-depth summary of Spark deployment contexts and configuration. ''' from dagster import Dict, Field, List, Path, String from .types import SparkDeployMode from .configs_spark import spark_config def define_spark_config(): '''Spark configuration. See the Spark documentation for reference: https://spark.apache.org/docs/latest/submitting-applications.html ''' master_url = Field( String, description='The master URL for the cluster (e.g. spark://23.195.26.187:7077)', is_optional=False, ) deploy_mode = Field( SparkDeployMode, description='''Whether to deploy your driver on the worker nodes (cluster) or locally as an external client (client) (default: client). A common deployment strategy is to submit your application from a gateway machine that is physically co-located with your worker machines (e.g. Master node in a standalone EC2 cluster). In this setup, client mode is appropriate. In client mode, the driver is launched directly within the spark-submit process which acts as a client to the cluster. The input and output of the application is attached to the console. Thus, this mode is especially suitable for applications that involve the REPL (e.g. Spark shell).''', is_optional=True, ) application_jar = Field( Path, description='''Path to a bundled jar including your application and all dependencies. The URL must be globally visible inside of your cluster, for instance, an hdfs:// path or a file:// path that is present on all nodes. ''', is_optional=False, ) application_arguments = Field( String, description='Arguments passed to the main method of your main class, if any', is_optional=True, ) spark_home = Field( String, description='The path to your spark installation. Defaults to $SPARK_HOME at runtime if not provided.', is_optional=True, ) spark_outputs = Field(List[String], description='The outputs that this Spark job will produce') return Field( Dict( fields={ 'master_url': master_url, 'deploy_mode': deploy_mode, 'application_jar': application_jar, 'spark_conf': spark_config(), 'spark_home': spark_home, 'application_arguments': application_arguments, 'spark_outputs': spark_outputs, } ) )
from .models import StreamItem class ManyToManyDatabaseBackend(object): def add_stream_item(self, users, content, created_at): item = StreamItem.objects.create(content=content, created_at=created_at) item.users.add(*[user.pk for user in users]) def get_stream_items(self, user): return StreamItem.objects.filter(users=user)
# Separa el texto enviado por el usuario en la forma "comando resto" # Ejemplo: # "/comando ASDASd" # regresa ("comando","ASDASd") # # "/comando@MemesBot Test - Test , Red" # regresa ("comando","Test - Test , Red") # # "yao ming" # regresa ("yao ming","") def extraer_comando(text): if not text: return ("","") text = text.strip() comando = "" for i in range(0, len(text)): if (text[0] == "/" and text[i] == ' '): return (comando, text[i + 1:]) if text[i] == '@' and text[i:i + len("MemesBot")]: return (comando, text[i + len("MemesBot") + 1:]) comando += text[i] return (comando, "")
import traceback import unittest from unittest.mock import Mock, patch from tests import resources from pyfootball.models.team import Team from pyfootball.models.fixture import Fixture from pyfootball.models.player import Player class TestTeam(unittest.TestCase): def test_init(self): try: Team(resources.TEAM) except: self.fail() def test_init_bad_data(self): with self.assertRaises(KeyError): Team({"a": "dict", "that": "has", "bad": "data"}) class TestTeamAfterInit(unittest.TestCase): def setUp(self): try: self.team = Team(resources.TEAM) except Exception: print("Setting up Team object failed:") traceback.print_exc() self.skipTest(TestTeamAfterInit) def tearDown(self): self.team = None def test_data_types(self): integers = ['id'] for attr, val in self.team.__dict__.items(): if attr in integers: self.assertIsInstance(val, int) else: # Strings self.assertIsInstance(val, str) @patch('pyfootball.models.team.requests.get') def test_get_fixtures(self, mock_get): mock_response = mock_get.return_value mock_response.status_code = 200 mock_response.json.return_value = resources.FIXTURES fixtures = self.team.get_fixtures() self.assertIsInstance(fixtures, list) for fixture in fixtures: self.assertIsInstance(fixture, Fixture) @patch('pyfootball.models.team.requests.get') def test_get_players(self, mock_get): mock_response = mock_get.return_value mock_response.status_code = 200 mock_response.json.return_value = resources.PLAYERS players = self.team.get_players() self.assertIsInstance(players, list) for player in players: self.assertIsInstance(player, Player) if __name__ == '__main__': unittest.main()
def isStringCharsUnique(incoming_string): for i in range(0, len(incoming_string)): for j in range(0, len(incoming_string)): if (i != j) and (incoming_string[i] == incoming_string[j]): print('Match Found - Positions: ' + str(i + 1) + ' & ' + str(j + 1)) # "+ 1" to avoid 0 position for readability return False return True incoming_string = str(input()) if isStringCharsUnique(incoming_string) is True: print('Your string has all unique characters.') else: print('Your string does not have all unique characters.')
# Add parent folder to path import sys, os sys.path.insert(1, os.path.join(sys.path[0], '..')) import unittest import numpy as np from time import perf_counter from src.Equations.TaitEOS import TaitEOS, TaitEOS_B, TaitEOS_co class test_numba_taiteos(unittest.TestCase): def test_vec(self): rhos = np.linspace(0, 2000, 1_000_000) # thingies rho0 = 1000.0 gamma = 7 co = TaitEOS_co(H=2.0) B = TaitEOS_B(co=co, rho0=rho0, gamma=gamma) # Calc vectorized start_vec = perf_counter() p = TaitEOS(gamma, B, rho0, rhos) t_vec = perf_counter() - start_vec t_old = 0 for i, rho in enumerate(rhos): # Old start_old = perf_counter() p_s = self.old_calc(rho, rho0, gamma, B) t_old += perf_counter() - start_old # Verify self.assertAlmostEqual(p_s, p[i], 3) print('Completed TaitEOS') print(f'Timing:') print(f'Old: {t_old:f} [s]') print(f'New: {t_vec:f} [s]') print(f'Speed-up: {t_old / t_vec:f}x') def old_calc(self, rho: float, rho0: float, gamma: float, B: float) -> float: ratio = rho / rho0 temp = ratio ** gamma p = (temp - 1.0) * B return p if __name__ == "__main__": test_numba_taiteos().test_vec()
# -*- coding: utf8 -*- import sys # thank_you 関数を作成する def thank_you() -> None: print(""" ありがとう!(∩´∀`)∩ """) q = input("どういたしまして!") if q: sys.exit() def main() -> None: thank_you() if __name__ == '__main__': main()
# Generated by Django 2.2.16 on 2020-10-21 13:38 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('integration', '0004_gaenotpserversettings'), ] operations = [ migrations.AddField( model_name='gaenotpserversettings', name='server_type', field=models.CharField(choices=[('NEARFORM', 'NearForm OTP Server'), ('APHL', 'APHL Exposure Notifications')], default='NEARFORM', max_length=255), ), ]
from yowsup.structs import ProtocolEntity, ProtocolTreeNode from .iq_result_groups import GroupsResultIqProtocolEntity from ..structs import Group class ListGroupsResultIqProtocolEntity(GroupsResultIqProtocolEntity): ''' <iq type="result" from="g.us" id="{{IQ_ID}}"> <group s_t="{{SUBJECT_TIME}}" creation="{{CREATING_TIME}}" owner="{{OWNER_JID}}" id="{{GROUP_ID}}" s_o="{{SUBJECT_OWNER_JID}}" subject="{{SUBJECT}}"> </group> <group s_t="{{SUBJECT_TIME}}" creation="{{CREATING_TIME}}" owner="{{OWNER_JID}}" id="{{GROUP_ID}}" s_o="{{SUBJECT_OWNER_JID}}" subject="{{SUBJECT}}"> </group> </iq> ''' def __init__(self, groupsList): super(ListGroupsResultIqProtocolEntity, self).__init__(_from = "g.us") self.setProps(groupsList) def __str__(self): out = super(ListGroupsResultIqProtocolEntity, self).__str__() for g in self.groupsList: out += "%s" % g out += "\n" return out def setProps(self, groupsList): assert type(groupsList) is list and len(groupsList) > 0 and groupsList[0].__class__ is Group,\ "groupList must be a list of Group instances" self.groupsList = groupsList def toProtocolTreeNode(self): node = super(ListGroupsResultIqProtocolEntity, self).toProtocolTreeNode() groupsNodes = [ ProtocolTreeNode("group", { "id": group.getId(), "owner": group.getOwner(), "subject": group.getSubject(), "s_o": group.getSubjectOwner(), "s_t": str(group.getSubjectTime()), "creation": str(group.getCreationTime()) }) for group in self.groupsList ] node.addChildren(groupsNodes) return node @staticmethod def fromProtocolTreeNode(node): entity = GroupsResultIqProtocolEntity.fromProtocolTreeNode(node) entity.__class__ = ListGroupsResultIqProtocolEntity groups = [ Group(groupNode["id"], groupNode["owner"], groupNode["subject"], groupNode["s_o"], groupNode["s_t"], groupNode["creation"]) for groupNode in node.getAllChildren() ] entity.setProps(groups) return entity
""" Utils used by hkp module. """ import subprocess import sys import os __all__ = ['cached_property'] class _Missing(object): def __repr__(self): return 'no value' def __reduce__(self): return '_missing' _missing = _Missing() class cached_property(object): """A decorator that converts a function into a lazy property. The function wrapped is called the first time to retrieve the result and then that calculated result is used the next time you access the value:: class Foo(object): @cached_property def foo(self): # calculate something important here return 42 The class has to have a `__dict__` in order for this property to work. Taken from Werkzeug: http://werkzeug.pocoo.org/ """ # implementation detail: this property is implemented as non-data # descriptor. non-data descriptors are only invoked if there is # no entry with the same name in the instance's __dict__. # this allows us to completely get rid of the access function call # overhead. If one choses to invoke __get__ by hand the property # will still work as expected because the lookup logic is replicated # in __get__ for manual invocation. def __init__(self, func, name=None, doc=None): self.__name__ = name or func.__name__ self.__module__ = func.__module__ self.__doc__ = doc or func.__doc__ self.func = func def __get__(self, obj, type=None): if obj is None: return self value = obj.__dict__.get(self.__name__, _missing) if value is _missing: value = self.func(obj) obj.__dict__[self.__name__] = value return value class ca(object): def __init__( self, domain='sks-keyservers.net', pem_url="https://sks-keyservers.net/sks-keyservers.netCA.pem", pem_filename='sks-keyservers.netCA.pem' ): self.domain = domain self.pem_url = pem_url self.pem_filename = pem_filename @cached_property def pem(self): if sys.platform == "win32": gpgconfcmd = ["gpgconf.exe", "--list-dirs", "datadir"] else: gpgconfcmd = ["/usr/bin/env", "gpgconf", "--list-dirs", "datadir"] try: output = subprocess.check_output(gpgconfcmd) if sys.version_info[0] == 2: datadir = output.strip() else: datadir = output.decode(sys.stdout.encoding).strip() except subprocess.CalledProcessError: datadir = "" pass pempath = "{0}{1}{2}".format(datadir, os.sep, self.pem_filename) if os.path.exists(pempath): pemfile = pempath else: pemfile = self.pem_url return pemfile def __repr__(self): return 'CA {0}, PEM {1}'.format(self.domain, self.pem) def __str__(self): return repr(self)
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import errno import io import os import pickle import select import stat import subprocess import sys from contextlib import contextmanager from shutil import copyfile from typing import List from attr import dataclass from jinja2 import Environment, FileSystemLoader from pympler import summary from frontend import frontend_utils @dataclass class RetrievedObjects: pid: int title: str data: List[List[int]] class GDBObject: def __init__(self, pid, current_path, executable): self.pid = pid self.fifo = f"/tmp/memanz_pipe_{self.pid}" self.current_path = current_path self.executable = executable def run_analysis(self, debug=False): self.create_pipe() frontend_utils.echo_info(f"Analyzing pid {self.pid}") command_file = f"{self.current_path}/gdb_commands.py" command = [ "gdb", "-q", # Activates python for GDB. self.executable, "-p", f"{self.pid}", "-ex", "set trace-commands on", f"{'-batch' if debug else '-batch-silent'}", "-ex", # Lets gdb find the correct gdb_commands script. f"set directories {self.current_path}", "-ex", # Sets the correct path for gdb_commands, else C-API commands fail. f'py sys.path.append("{self.current_path}")', "-x", f"{command_file}", ] frontend_utils.echo_info(f"Setting up GDB for pid {self.pid}") proc = subprocess.Popen( command, stderr=sys.stderr if debug else subprocess.DEVNULL ) with self.drain_pipe(proc) as data: retrieved_objs = RetrievedObjects( pid=self.pid, title=f"Analysis for {self.pid}", data=self.unpickle_pipe(data), ) self._end_subprocess(proc) return retrieved_objs @contextmanager def drain_pipe(self, process): """ We need this because by default, `open`s on named pipes block. If GDB or the injected GDB extension in Python crash, the process will never write to the pipe and we will block opening and `memory_analyzer` won't exit. """ try: pipe = os.open(self.fifo, os.O_RDONLY | os.O_NONBLOCK) result = io.BytesIO() timeout = 0.1 # seconds partial_read = None while bool(partial_read) or process.poll() is None: ready_fds, _, _ = select.select([pipe], [], [], timeout) if len(ready_fds) > 0: ready_fd = ready_fds[0] try: partial_read = os.read(ready_fd, select.PIPE_BUF) except BlockingIOError: partial_read = None if partial_read: result.write(partial_read) result.seek(0) yield result result.close() except Exception as e: frontend_utils.echo_error(f"Failed with {e}") self._end_subprocess(process) sys.exit(1) finally: os.close(pipe) def _end_subprocess(self, proc): try: proc.wait(5) except TimeoutError: proc.kill() def create_pipe(self): try: os.mkfifo(self.fifo) os.chmod(str(self.fifo), 0o666) except OSError as oe: if oe.errno != errno.EEXIST: raise def unpickle_pipe(self, fifo): frontend_utils.echo_info("Gathering data...") try: items = pickle.load(fifo) if items: if isinstance(items, Exception): raise items return items except EOFError: return except pickle.UnpicklingError as e: frontend_utils.echo_error(f"Error retrieving data from process: {e}") raise except Exception as e: frontend_utils.echo_error( f"{type(e).__name__} occurred during analysis: {e}" ) raise def load_template(name, templates_path): env = Environment(autoescape=False, loader=FileSystemLoader(templates_path)) return env.get_template(name) def render_template( template_name, templates_path, num_refs, pid, specific_refs, output_file ): objgraph_template = load_template(template_name, templates_path) template = objgraph_template.render( num_refs=num_refs, pid=pid, specific_refs=specific_refs, output_file=output_file ) with open(f"{templates_path}rendered_template-{pid}.py.out", "w") as f: f.write(template) return template def snapshot_diff(cur_items, snapshot_file): """ Attempts to compare like PIDs. If like PIDS can't be found it will just compare the first PID listed to the first PID in the file. Any unmatched or non-first PIDs will be ignored because we don't know what to compare them to. """ try: prev_items = list(frontend_utils.get_pages(snapshot_file)) except pickle.UnpicklingError as e: frontend_utils.echo_error( f"Error unpickling the data from {snapshot_file}: {e}" ) return None differences = [] for cur_item in cur_items: for prev_item in prev_items: if cur_item.pid == prev_item.pid: diff = summary.get_diff(cur_item.data, prev_item.data) differences.append( RetrievedObjects( pid=cur_item.pid, title=f"Snapshot Differences for {cur_item.pid}", data=diff, ) ) if not differences: diff = summary.get_diff(cur_items[0].data, prev_items[0].data) differences.append( RetrievedObjects(pid=0, title=f"Snapshot Differences", data=diff) ) return differences
import matplotlib.pyplot as plt import numpy as np def record_losses(input): f=open(input,encoding='utf-8') re_list=[] for line in f: li_str=str(line) if li_str.find("losses")!=-1: id=li_str.find("losses") re_list.append(float(li_str[id+8:-1])) print(re_list) return re_list if __name__=="__main__": losses_list1=record_losses('__main__.info_pcl+I2G.log') print(len(losses_list1)) losses_list2=record_losses('__main__.info_pcl10.log') print(len(losses_list2)) x=np.arange(1,101,1) plt.plot(x,losses_list1,label='pcl+I2G') plt.plot(x,losses_list2,label='pcl') plt.legend(['pcl+I2G','pcl']) plt.xlabel("Epoch") plt.ylabel("Losses") plt.show()
import requests import random import json import hashlib import hmac import urllib import uuid import time import copy import math import sys from datetime import datetime import calendar import os # Turn off InsecureRequestWarning from requests.packages.urllib3.exceptions import InsecureRequestWarning requests.packages.urllib3.disable_warnings(InsecureRequestWarning) try: from moviepy.editor import VideoFileClip except: print("Спасибо за использование этого бота\n") # The urllib library was split into other modules from Python 2 to Python 3 if sys.version_info.major == 3: import urllib.parse try: from ImageUtils import getImageSize except: # Issue 159, python3 import fix from .ImageUtils import getImageSize class InstagramAPI: API_URL = 'https://i.instagram.com/api/v1/' DEVICE_SETTINTS = {'manufacturer': 'Xiaomi', 'model': 'HM 1SW', 'android_version': 18, 'android_release': '4.3'} USER_AGENT = 'Instagram 10.26.0 Android ({android_version}/{android_release}; 320dpi; 720x1280; {manufacturer}; {model}; armani; qcom; en_US)'.format(**DEVICE_SETTINTS) IG_SIG_KEY = '4f8732eb9ba7d1c8e8897a75d6474d4eb3f5279137431b2aafb71fafe2abe178' EXPERIMENTS = 'ig_promote_reach_objective_fix_universe,ig_android_universe_video_production,ig_search_client_h1_2017_holdout,ig_android_live_follow_from_comments_universe,ig_android_carousel_non_square_creation,ig_android_live_analytics,ig_android_follow_all_dialog_confirmation_copy,ig_android_stories_server_coverframe,ig_android_video_captions_universe,ig_android_offline_location_feed,ig_android_direct_inbox_retry_seen_state,ig_android_ontact_invite_universe,ig_android_live_broadcast_blacklist,ig_android_insta_video_reconnect_viewers,ig_android_ad_async_ads_universe,ig_android_search_clear_layout_universe,ig_android_shopping_reporting,ig_android_stories_surface_universe,ig_android_verified_comments_universe,ig_android_preload_media_ahead_in_current_reel,android_instagram_prefetch_suggestions_universe,ig_android_reel_viewer_fetch_missing_reels_universe,ig_android_direct_search_share_sheet_universe,ig_android_business_promote_tooltip,ig_android_direct_blue_tab,ig_android_async_network_tweak_universe,ig_android_elevate_main_thread_priority_universe,ig_android_stories_gallery_nux,ig_android_instavideo_remove_nux_comments,ig_video_copyright_whitelist,ig_react_native_inline_insights_with_relay,ig_android_direct_thread_message_animation,ig_android_draw_rainbow_client_universe,ig_android_direct_link_style,ig_android_live_heart_enhancements_universe,ig_android_rtc_reshare,ig_android_preload_item_count_in_reel_viewer_buffer,ig_android_users_bootstrap_service,ig_android_auto_retry_post_mode,ig_android_shopping,ig_android_main_feed_seen_state_dont_send_info_on_tail_load,ig_fbns_preload_default,ig_android_gesture_dismiss_reel_viewer,ig_android_tool_tip,ig_android_ad_logger_funnel_logging_universe,ig_android_gallery_grid_column_count_universe,ig_android_business_new_ads_payment_universe,ig_android_direct_links,ig_android_audience_control,ig_android_live_encore_consumption_settings_universe,ig_perf_android_holdout,ig_android_cache_contact_import_list,ig_android_links_receivers,ig_android_ad_impression_backtest,ig_android_list_redesign,ig_android_stories_separate_overlay_creation,ig_android_stop_video_recording_fix_universe,ig_android_render_video_segmentation,ig_android_live_encore_reel_chaining_universe,ig_android_sync_on_background_enhanced_10_25,ig_android_immersive_viewer,ig_android_mqtt_skywalker,ig_fbns_push,ig_android_ad_watchmore_overlay_universe,ig_android_react_native_universe,ig_android_profile_tabs_redesign_universe,ig_android_live_consumption_abr,ig_android_story_viewer_social_context,ig_android_hide_post_in_feed,ig_android_video_loopcount_int,ig_android_enable_main_feed_reel_tray_preloading,ig_android_camera_upsell_dialog,ig_android_ad_watchbrowse_universe,ig_android_internal_research_settings,ig_android_search_people_tag_universe,ig_android_react_native_ota,ig_android_enable_concurrent_request,ig_android_react_native_stories_grid_view,ig_android_business_stories_inline_insights,ig_android_log_mediacodec_info,ig_android_direct_expiring_media_loading_errors,ig_video_use_sve_universe,ig_android_cold_start_feed_request,ig_android_enable_zero_rating,ig_android_reverse_audio,ig_android_branded_content_three_line_ui_universe,ig_android_live_encore_production_universe,ig_stories_music_sticker,ig_android_stories_teach_gallery_location,ig_android_http_stack_experiment_2017,ig_android_stories_device_tilt,ig_android_pending_request_search_bar,ig_android_fb_topsearch_sgp_fork_request,ig_android_seen_state_with_view_info,ig_android_animation_perf_reporter_timeout,ig_android_new_block_flow,ig_android_story_tray_title_play_all_v2,ig_android_direct_address_links,ig_android_stories_archive_universe,ig_android_save_collections_cover_photo,ig_android_live_webrtc_livewith_production,ig_android_sign_video_url,ig_android_stories_video_prefetch_kb,ig_android_stories_create_flow_favorites_tooltip,ig_android_live_stop_broadcast_on_404,ig_android_live_viewer_invite_universe,ig_android_promotion_feedback_channel,ig_android_render_iframe_interval,ig_android_accessibility_logging_universe,ig_android_camera_shortcut_universe,ig_android_use_one_cookie_store_per_user_override,ig_profile_holdout_2017_universe,ig_android_stories_server_brushes,ig_android_ad_media_url_logging_universe,ig_android_shopping_tag_nux_text_universe,ig_android_comments_single_reply_universe,ig_android_stories_video_loading_spinner_improvements,ig_android_collections_cache,ig_android_comment_api_spam_universe,ig_android_facebook_twitter_profile_photos,ig_android_shopping_tag_creation_universe,ig_story_camera_reverse_video_experiment,ig_android_direct_bump_selected_recipients,ig_android_ad_cta_haptic_feedback_universe,ig_android_vertical_share_sheet_experiment,ig_android_family_bridge_share,ig_android_search,ig_android_insta_video_consumption_titles,ig_android_stories_gallery_preview_button,ig_android_fb_auth_education,ig_android_camera_universe,ig_android_me_only_universe,ig_android_instavideo_audio_only_mode,ig_android_user_profile_chaining_icon,ig_android_live_video_reactions_consumption_universe,ig_android_stories_hashtag_text,ig_android_post_live_badge_universe,ig_android_swipe_fragment_container,ig_android_search_users_universe,ig_android_live_save_to_camera_roll_universe,ig_creation_growth_holdout,ig_android_sticker_region_tracking,ig_android_unified_inbox,ig_android_live_new_watch_time,ig_android_offline_main_feed_10_11,ig_import_biz_contact_to_page,ig_android_live_encore_consumption_universe,ig_android_experimental_filters,ig_android_search_client_matching_2,ig_android_react_native_inline_insights_v2,ig_android_business_conversion_value_prop_v2,ig_android_redirect_to_low_latency_universe,ig_android_ad_show_new_awr_universe,ig_family_bridges_holdout_universe,ig_android_background_explore_fetch,ig_android_following_follower_social_context,ig_android_video_keep_screen_on,ig_android_ad_leadgen_relay_modern,ig_android_profile_photo_as_media,ig_android_insta_video_consumption_infra,ig_android_ad_watchlead_universe,ig_android_direct_prefetch_direct_story_json,ig_android_shopping_react_native,ig_android_top_live_profile_pics_universe,ig_android_direct_phone_number_links,ig_android_stories_weblink_creation,ig_android_direct_search_new_thread_universe,ig_android_histogram_reporter,ig_android_direct_on_profile_universe,ig_android_network_cancellation,ig_android_background_reel_fetch,ig_android_react_native_insights,ig_android_insta_video_audio_encoder,ig_android_family_bridge_bookmarks,ig_android_data_usage_network_layer,ig_android_universal_instagram_deep_links,ig_android_dash_for_vod_universe,ig_android_modular_tab_discover_people_redesign,ig_android_mas_sticker_upsell_dialog_universe,ig_android_ad_add_per_event_counter_to_logging_event,ig_android_sticky_header_top_chrome_optimization,ig_android_rtl,ig_android_biz_conversion_page_pre_select,ig_android_promote_from_profile_button,ig_android_live_broadcaster_invite_universe,ig_android_share_spinner,ig_android_text_action,ig_android_own_reel_title_universe,ig_promotions_unit_in_insights_landing_page,ig_android_business_settings_header_univ,ig_android_save_longpress_tooltip,ig_android_constrain_image_size_universe,ig_android_business_new_graphql_endpoint_universe,ig_ranking_following,ig_android_stories_profile_camera_entry_point,ig_android_universe_reel_video_production,ig_android_power_metrics,ig_android_sfplt,ig_android_offline_hashtag_feed,ig_android_live_skin_smooth,ig_android_direct_inbox_search,ig_android_stories_posting_offline_ui,ig_android_sidecar_video_upload_universe,ig_android_promotion_manager_entry_point_universe,ig_android_direct_reply_audience_upgrade,ig_android_swipe_navigation_x_angle_universe,ig_android_offline_mode_holdout,ig_android_live_send_user_location,ig_android_direct_fetch_before_push_notif,ig_android_non_square_first,ig_android_insta_video_drawing,ig_android_swipeablefilters_universe,ig_android_live_notification_control_universe,ig_android_analytics_logger_running_background_universe,ig_android_save_all,ig_android_reel_viewer_data_buffer_size,ig_direct_quality_holdout_universe,ig_android_family_bridge_discover,ig_android_react_native_restart_after_error_universe,ig_android_startup_manager,ig_story_tray_peek_content_universe,ig_android_profile,ig_android_high_res_upload_2,ig_android_http_service_same_thread,ig_android_scroll_to_dismiss_keyboard,ig_android_remove_followers_universe,ig_android_skip_video_render,ig_android_story_timestamps,ig_android_live_viewer_comment_prompt_universe,ig_profile_holdout_universe,ig_android_react_native_insights_grid_view,ig_stories_selfie_sticker,ig_android_stories_reply_composer_redesign,ig_android_streamline_page_creation,ig_explore_netego,ig_android_ig4b_connect_fb_button_universe,ig_android_feed_util_rect_optimization,ig_android_rendering_controls,ig_android_os_version_blocking,ig_android_encoder_width_safe_multiple_16,ig_search_new_bootstrap_holdout_universe,ig_android_snippets_profile_nux,ig_android_e2e_optimization_universe,ig_android_comments_logging_universe,ig_shopping_insights,ig_android_save_collections,ig_android_live_see_fewer_videos_like_this_universe,ig_android_show_new_contact_import_dialog,ig_android_live_view_profile_from_comments_universe,ig_fbns_blocked,ig_formats_and_feedbacks_holdout_universe,ig_android_reduce_view_pager_buffer,ig_android_instavideo_periodic_notif,ig_search_user_auto_complete_cache_sync_ttl,ig_android_marauder_update_frequency,ig_android_suggest_password_reset_on_oneclick_login,ig_android_promotion_entry_from_ads_manager_universe,ig_android_live_special_codec_size_list,ig_android_enable_share_to_messenger,ig_android_background_main_feed_fetch,ig_android_live_video_reactions_creation_universe,ig_android_channels_home,ig_android_sidecar_gallery_universe,ig_android_upload_reliability_universe,ig_migrate_mediav2_universe,ig_android_insta_video_broadcaster_infra_perf,ig_android_business_conversion_social_context,android_ig_fbns_kill_switch,ig_android_live_webrtc_livewith_consumption,ig_android_destroy_swipe_fragment,ig_android_react_native_universe_kill_switch,ig_android_stories_book_universe,ig_android_all_videoplayback_persisting_sound,ig_android_draw_eraser_universe,ig_direct_search_new_bootstrap_holdout_universe,ig_android_cache_layer_bytes_threshold,ig_android_search_hash_tag_and_username_universe,ig_android_business_promotion,ig_android_direct_search_recipients_controller_universe,ig_android_ad_show_full_name_universe,ig_android_anrwatchdog,ig_android_qp_kill_switch,ig_android_2fac,ig_direct_bypass_group_size_limit_universe,ig_android_promote_simplified_flow,ig_android_share_to_whatsapp,ig_android_hide_bottom_nav_bar_on_discover_people,ig_fbns_dump_ids,ig_android_hands_free_before_reverse,ig_android_skywalker_live_event_start_end,ig_android_live_join_comment_ui_change,ig_android_direct_search_story_recipients_universe,ig_android_direct_full_size_gallery_upload,ig_android_ad_browser_gesture_control,ig_channel_server_experiments,ig_android_video_cover_frame_from_original_as_fallback,ig_android_ad_watchinstall_universe,ig_android_ad_viewability_logging_universe,ig_android_new_optic,ig_android_direct_visual_replies,ig_android_stories_search_reel_mentions_universe,ig_android_threaded_comments_universe,ig_android_mark_reel_seen_on_Swipe_forward,ig_internal_ui_for_lazy_loaded_modules_experiment,ig_fbns_shared,ig_android_capture_slowmo_mode,ig_android_live_viewers_list_search_bar,ig_android_video_single_surface,ig_android_offline_reel_feed,ig_android_video_download_logging,ig_android_last_edits,ig_android_exoplayer_4142,ig_android_post_live_viewer_count_privacy_universe,ig_android_activity_feed_click_state,ig_android_snippets_haptic_feedback,ig_android_gl_drawing_marks_after_undo_backing,ig_android_mark_seen_state_on_viewed_impression,ig_android_live_backgrounded_reminder_universe,ig_android_live_hide_viewer_nux_universe,ig_android_live_monotonic_pts,ig_android_search_top_search_surface_universe,ig_android_user_detail_endpoint,ig_android_location_media_count_exp_ig,ig_android_comment_tweaks_universe,ig_android_ad_watchmore_entry_point_universe,ig_android_top_live_notification_universe,ig_android_add_to_last_post,ig_save_insights,ig_android_live_enhanced_end_screen_universe,ig_android_ad_add_counter_to_logging_event,ig_android_blue_token_conversion_universe,ig_android_exoplayer_settings,ig_android_progressive_jpeg,ig_android_offline_story_stickers,ig_android_gqls_typing_indicator,ig_android_chaining_button_tooltip,ig_android_video_prefetch_for_connectivity_type,ig_android_use_exo_cache_for_progressive,ig_android_samsung_app_badging,ig_android_ad_holdout_watchandmore_universe,ig_android_offline_commenting,ig_direct_stories_recipient_picker_button,ig_insights_feedback_channel_universe,ig_android_insta_video_abr_resize,ig_android_insta_video_sound_always_on''' SIG_KEY_VERSION = '4' # username # Instagram username # password # Instagram password # debug # Debug # uuid # UUID # device_id # Device ID # username_id # Username ID # token # _csrftoken # isLoggedIn # Session status # rank_token # Rank token # IGDataPath # Data storage path def __init__(self, username, password, debug=False, IGDataPath=None): m = hashlib.md5() m.update(username.encode('utf-8') + password.encode('utf-8')) self.device_id = self.generateDeviceId(m.hexdigest()) self.setUser(username, password) self.isLoggedIn = False self.LastResponse = None self.s = requests.Session() def setUser(self, username, password): self.username = username self.password = password self.uuid = self.generateUUID(True) def setProxy(self, proxy=None): """ Set proxy for all requests:: Proxy format - user:password@ip:port """ if proxy is not None: print('Set proxy!') proxies = {'http': 'http://' + proxy, 'https': 'http://' + proxy} self.s.proxies.update(proxies) def login(self, force=False): if (not self.isLoggedIn or force): if (self.SendRequest('si/fetch_headers/?challenge_type=signup&guid=' + self.generateUUID(False), None, True)): data = {'phone_id': self.generateUUID(True), '_csrftoken': self.LastResponse.cookies['csrftoken'], 'username': self.username, 'guid': self.uuid, 'device_id': self.device_id, 'password': self.password, 'login_attempt_count': '0'} if (self.SendRequest('accounts/login/', self.generateSignature(json.dumps(data)), True)): self.isLoggedIn = True self.username_id = self.LastJson["logged_in_user"]["pk"] self.rank_token = "%s_%s" % (self.username_id, self.uuid) self.token = self.LastResponse.cookies["csrftoken"] self.syncFeatures() self.autoCompleteUserList() self.timelineFeed() self.getv2Inbox() self.getRecentActivity() print("Login success!\n") return True def syncFeatures(self): data = json.dumps({'_uuid': self.uuid, '_uid': self.username_id, 'id': self.username_id, '_csrftoken': self.token, 'experiments': self.EXPERIMENTS}) return self.SendRequest('qe/sync/', self.generateSignature(data)) def autoCompleteUserList(self): return self.SendRequest('friendships/autocomplete_user_list/') def timelineFeed(self): return self.SendRequest('feed/timeline/') def megaphoneLog(self): return self.SendRequest('megaphone/log/') def expose(self): data = json.dumps({'_uuid': self.uuid, '_uid': self.username_id, 'id': self.username_id, '_csrftoken': self.token, 'experiment': 'ig_android_profile_contextual_feed'}) return self.SendRequest('qe/expose/', self.generateSignature(data)) def logout(self): logout = self.SendRequest('accounts/logout/') def uploadPhoto(self, photo, caption=None, upload_id=None, is_sidecar=None): if upload_id is None: upload_id = str(int(time.time() * 1000)) data = {'upload_id': upload_id, '_uuid': self.uuid, '_csrftoken': self.token, 'image_compression': '{"lib_name":"jt","lib_version":"1.3.0","quality":"87"}', 'photo': ('pending_media_%s.jpg' % upload_id, open(photo, 'rb'), 'application/octet-stream', {'Content-Transfer-Encoding': 'binary'})} if is_sidecar: data['is_sidecar'] = '1' m = MultipartEncoder(data, boundary=self.uuid) self.s.headers.update({'X-IG-Capabilities': '3Q4=', 'X-IG-Connection-Type': 'WIFI', 'Cookie2': '$Version=1', 'Accept-Language': 'en-US', 'Accept-Encoding': 'gzip, deflate', 'Content-type': m.content_type, 'Connection': 'close', 'User-Agent': self.USER_AGENT}) response = self.s.post(self.API_URL + "upload/photo/", data=m.to_string()) if response.status_code == 200: if self.configure(upload_id, photo, caption): self.expose() return False def uploadVideo(self, video, thumbnail, caption=None, upload_id=None, is_sidecar=None): if upload_id is None: upload_id = str(int(time.time() * 1000)) data = {'upload_id': upload_id, '_csrftoken': self.token, 'media_type': '2', '_uuid': self.uuid} if is_sidecar: data['is_sidecar'] = '1' m = MultipartEncoder(data, boundary=self.uuid) self.s.headers.update({'X-IG-Capabilities': '3Q4=', 'X-IG-Connection-Type': 'WIFI', 'Host': 'i.instagram.com', 'Cookie2': '$Version=1', 'Accept-Language': 'en-US', 'Accept-Encoding': 'gzip, deflate', 'Content-type': m.content_type, 'Connection': 'keep-alive', 'User-Agent': self.USER_AGENT}) response = self.s.post(self.API_URL + "upload/video/", data=m.to_string()) if response.status_code == 200: body = json.loads(response.text) upload_url = body['video_upload_urls'][3]['url'] upload_job = body['video_upload_urls'][3]['job'] videoData = open(video, 'rb').read() # solve issue #85 TypeError: slice indices must be integers or None or have an __index__ method request_size = int(math.floor(len(videoData) / 4)) lastRequestExtra = (len(videoData) - (request_size * 3)) headers = copy.deepcopy(self.s.headers) self.s.headers.update({'X-IG-Capabilities': '3Q4=', 'X-IG-Connection-Type': 'WIFI', 'Cookie2': '$Version=1', 'Accept-Language': 'en-US', 'Accept-Encoding': 'gzip, deflate', 'Content-type': 'application/octet-stream', 'Session-ID': upload_id, 'Connection': 'keep-alive', 'Content-Disposition': 'attachment; filename="video.mov"', 'job': upload_job, 'Host': 'upload.instagram.com', 'User-Agent': self.USER_AGENT}) for i in range(0, 4): start = i * request_size if i == 3: end = i * request_size + lastRequestExtra else: end = (i + 1) * request_size length = lastRequestExtra if i == 3 else request_size content_range = "bytes {start}-{end}/{lenVideo}".format(start=start, end=(end - 1), lenVideo=len(videoData)).encode('utf-8') self.s.headers.update({'Content-Length': str(end - start), 'Content-Range': content_range, }) response = self.s.post(upload_url, data=videoData[start:start + length]) self.s.headers = headers if response.status_code == 200: if self.configureVideo(upload_id, video, thumbnail, caption): self.expose() return False def uploadAlbum(self, media, caption=None, upload_id=None): if not media: raise Exception("List of media to upload can't be empty.") if len(media) < 2 or len(media) > 10: raise Exception('Instagram requires that albums contain 2-10 items. You tried to submit {}.'.format(len(media))) # Figure out the media file details for ALL media in the album. # NOTE: We do this first, since it validates whether the media files are # valid and lets us avoid wasting time uploading totally invalid albums! for idx, item in enumerate(media): if not item.get('file', '') or item.get('tipe', ''): raise Exception('Media at index "{}" does not have the required "file" and "type" keys.'.format(idx)) # $itemInternalMetadata = new InternalMetadata(); # If usertags are provided, verify that the entries are valid. if item.get('usertags', []): self.throwIfInvalidUsertags(item['usertags']) # Pre-process media details and throw if not allowed on Instagram. if item.get('type', '') == 'photo': # Determine the photo details. # $itemInternalMetadata->setPhotoDetails(Constants::FEED_TIMELINE_ALBUM, $item['file']); pass elif item.get('type', '') == 'video': # Determine the video details. # $itemInternalMetadata->setVideoDetails(Constants::FEED_TIMELINE_ALBUM, $item['file']); pass else: raise Exception('Unsupported album media type "{}".'.format(item['type'])) itemInternalMetadata = {} item['internalMetadata'] = itemInternalMetadata # Perform all media file uploads. for idx, item in enumerate(media): itemInternalMetadata = item['internalMetadata'] item_upload_id = self.generateUploadId() if item.get('type', '') == 'photo': self.uploadPhoto(item['file'], caption=caption, is_sidecar=True, upload_id=item_upload_id) # $itemInternalMetadata->setPhotoUploadResponse($this->ig->internal->uploadPhotoData(Constants::FEED_TIMELINE_ALBUM, $itemInternalMetadata)); elif item.get('type', '') == 'video': # Attempt to upload the video data. self.uploadVideo(item['file'], item['thumbnail'], caption=caption, is_sidecar=True, upload_id=item_upload_id) # $itemInternalMetadata = $this->ig->internal->uploadVideo(Constants::FEED_TIMELINE_ALBUM, $item['file'], $itemInternalMetadata); # Attempt to upload the thumbnail, associated with our video's ID. # $itemInternalMetadata->setPhotoUploadResponse($this->ig->internal->uploadPhotoData(Constants::FEED_TIMELINE_ALBUM, $itemInternalMetadata)); pass item['internalMetadata']['upload_id'] = item_upload_id albumInternalMetadata = {} return self.configureTimelineAlbum(media, albumInternalMetadata, captionText=caption) def throwIfInvalidUsertags(self, usertags): for user_position in usertags: # Verify this usertag entry, ensuring that the entry is format # ['position'=>[0.0,1.0],'user_id'=>'123'] and nothing else. correct = True if isinstance(user_position, dict): position = user_position.get('position', None) user_id = user_position.get('user_id', None) if isinstance(position, list) and len(position) == 2: try: x = float(position[0]) y = float(position[1]) if x < 0.0 or x > 1.0: correct = False if y < 0.0 or y > 1.0: correct = False except: correct = False try: user_id = long(user_id) if user_id < 0: correct = False except: correct = False if not correct: raise Exception('Invalid user entry in usertags array.') def configureTimelineAlbum(self, media, albumInternalMetadata, captionText='', location=None): endpoint = 'media/configure_sidecar/' albumUploadId = self.generateUploadId() date = datetime.utcnow().isoformat() childrenMetadata = [] for item in media: itemInternalMetadata = item['internalMetadata'] uploadId = itemInternalMetadata.get('upload_id', self.generateUploadId()) if item.get('type', '') == 'photo': # Build this item's configuration. photoConfig = {'date_time_original': date, 'scene_type': 1, 'disable_comments': False, 'upload_id': uploadId, 'source_type': 0, 'scene_capture_type': 'standard', 'date_time_digitized': date, 'geotag_enabled': False, 'camera_position': 'back', 'edits': {'filter_strength': 1, 'filter_name': 'IGNormalFilter'} } # This usertag per-file EXTERNAL metadata is only supported for PHOTOS! if item.get('usertags', []): # NOTE: These usertags were validated in Timeline::uploadAlbum. photoConfig['usertags'] = json.dumps({'in': item['usertags']}) childrenMetadata.append(photoConfig) if item.get('type', '') == 'video': # Get all of the INTERNAL per-VIDEO metadata. videoDetails = itemInternalMetadata.get('video_details', {}) # Build this item's configuration. videoConfig = {'length': videoDetails.get('duration', 1.0), 'date_time_original': date, 'scene_type': 1, 'poster_frame_index': 0, 'trim_type': 0, 'disable_comments': False, 'upload_id': uploadId, 'source_type': 'library', 'geotag_enabled': False, 'edits': { 'length': videoDetails.get('duration', 1.0), 'cinema': 'unsupported', 'original_length': videoDetails.get('duration', 1.0), 'source_type': 'library', 'start_time': 0, 'camera_position': 'unknown', 'trim_type': 0} } childrenMetadata.append(videoConfig) # Build the request... data = {'_csrftoken': self.token, '_uid': self.username_id, '_uuid': self.uuid, 'client_sidecar_id': albumUploadId, 'caption': captionText, 'children_metadata': childrenMetadata} self.SendRequest(endpoint, self.generateSignature(json.dumps(data))) response = self.LastResponse if response.status_code == 200: self.LastResponse = response self.LastJson = json.loads(response.text) return True else: print("Request return " + str(response.status_code) + " error!") # for debugging try: self.LastResponse = response self.LastJson = json.loads(response.text) except: pass return False def sendMessage(self, target_user, msgText): target_user = '[[{}]]'.format(','.join([target_user])) url = 'direct_v2/threads/broadcast/text/' data = { 'text': msgText, '_uuid': self.uuid, '_csrftoken': self.token, 'recipient_users': target_user, '_uid': self.username_id, 'action': 'send_item', 'client_context': self.generateUUID(True)} return self.SendRequest(url, data) def direct_share(self, media_id, recipients, text=None): if not isinstance(position, list): recipients = [str(recipients)] recipient_users = '"",""'.join(str(r) for r in recipients) endpoint = 'direct_v2/threads/broadcast/media_share/?media_type=photo' boundary = self.uuid bodies = [ { 'type': 'form-data', 'name': 'media_id', 'data': media_id, }, { 'type': 'form-data', 'name': 'recipient_users', 'data': '[["{}"]]'.format(recipient_users), }, { 'type': 'form-data', 'name': 'client_context', 'data': self.uuid, }, { 'type': 'form-data', 'name': 'thread', 'data': '["0"]', }, { 'type': 'form-data', 'name': 'text', 'data': text or '', }, ] data = self.buildBody(bodies, boundary) self.s.headers.update({'User-Agent': self.USER_AGENT, 'Proxy-Connection': 'keep-alive', 'Connection': 'keep-alive', 'Accept': '*/*', 'Content-Type': 'multipart/form-data; boundary={}'.format(boundary), 'Accept-Language': 'en-en'}) # self.SendRequest(endpoint,post=data) #overwrites 'Content-type' header and boundary is missed response = self.s.post(self.API_URL + endpoint, data=data) if response.status_code == 200: self.LastResponse = response self.LastJson = json.loads(response.text) return True else: print("Request return " + str(response.status_code) + " error!") # for debugging try: self.LastResponse = response self.LastJson = json.loads(response.text) except: pass return False def configureVideo(self, upload_id, video, thumbnail, caption=''): clip = VideoFileClip(video) self.uploadPhoto(photo=thumbnail, caption=caption, upload_id=upload_id) data = json.dumps({ 'upload_id': upload_id, 'source_type': 3, 'poster_frame_index': 0, 'length': 0.00, 'audio_muted': False, 'filter_type': 0, 'video_result': 'deprecated', 'clips': { 'length': clip.duration, 'source_type': '3', 'camera_position': 'back', }, 'extra': { 'source_width': clip.size[0], 'source_height': clip.size[1], }, 'device': self.DEVICE_SETTINTS, '_csrftoken': self.token, '_uuid': self.uuid, '_uid': self.username_id, 'caption': caption, }) return self.SendRequest('media/configure/?video=1', self.generateSignature(data)) def configure(self, upload_id, photo, caption=''): (w, h) = getImageSize(photo) data = json.dumps({'_csrftoken': self.token, 'media_folder': 'Instagram', 'source_type': 4, '_uid': self.username_id, '_uuid': self.uuid, 'caption': caption, 'upload_id': upload_id, 'device': self.DEVICE_SETTINTS, 'edits': { 'crop_original_size': [w * 1.0, h * 1.0], 'crop_center': [0.0, 0.0], 'crop_zoom': 1.0 }, 'extra': { 'source_width': w, 'source_height': h }}) return self.SendRequest('media/configure/?', self.generateSignature(data)) def editMedia(self, mediaId, captionText=''): data = json.dumps({'_uuid': self.uuid, '_uid': self.username_id, '_csrftoken': self.token, 'caption_text': captionText}) return self.SendRequest('media/' + str(mediaId) + '/edit_media/', self.generateSignature(data)) def removeSelftag(self, mediaId): data = json.dumps({'_uuid': self.uuid, '_uid': self.username_id, '_csrftoken': self.token}) return self.SendRequest('media/' + str(mediaId) + '/remove/', self.generateSignature(data)) def mediaInfo(self, mediaId): data = json.dumps({'_uuid': self.uuid, '_uid': self.username_id, '_csrftoken': self.token, 'media_id': mediaId}) return self.SendRequest('media/' + str(mediaId) + '/info/', self.generateSignature(data)) def deleteMedia(self, mediaId): data = json.dumps({'_uuid': self.uuid, '_uid': self.username_id, '_csrftoken': self.token, 'media_id': mediaId}) return self.SendRequest('media/' + str(mediaId) + '/delete/', self.generateSignature(data)) def changePassword(self, newPassword): data = json.dumps({'_uuid': self.uuid, '_uid': self.username_id, '_csrftoken': self.token, 'old_password': self.password, 'new_password1': newPassword, 'new_password2': newPassword}) return self.SendRequest('accounts/change_password/', self.generateSignature(data)) def explore(self): return self.SendRequest('discover/explore/') def comment(self, mediaId, commentText): data = json.dumps({'_uuid': self.uuid, '_uid': self.username_id, '_csrftoken': self.token, 'comment_text': commentText}) return self.SendRequest('media/' + str(mediaId) + '/comment/', self.generateSignature(data)) def deleteComment(self, mediaId, commentId): data = json.dumps({'_uuid': self.uuid, '_uid': self.username_id, '_csrftoken': self.token}) return self.SendRequest('media/' + str(mediaId) + '/comment/' + str(commentId) + '/delete/', self.generateSignature(data)) def changeProfilePicture(self, photo): # TODO Instagram.php 705-775 return False def removeProfilePicture(self): data = json.dumps({'_uuid': self.uuid, '_uid': self.username_id, '_csrftoken': self.token}) return self.SendRequest('accounts/remove_profile_picture/', self.generateSignature(data)) def setPrivateAccount(self): data = json.dumps({'_uuid': self.uuid, '_uid': self.username_id, '_csrftoken': self.token}) return self.SendRequest('accounts/set_private/', self.generateSignature(data)) def setPublicAccount(self): data = json.dumps({'_uuid': self.uuid, '_uid': self.username_id, '_csrftoken': self.token}) return self.SendRequest('accounts/set_public/', self.generateSignature(data)) def getProfileData(self): data = json.dumps({'_uuid': self.uuid, '_uid': self.username_id, '_csrftoken': self.token}) return self.SendRequest('accounts/current_user/?edit=true', self.generateSignature(data)) def editProfile(self, url, phone, first_name, biography, email, gender): data = json.dumps({'_uuid': self.uuid, '_uid': self.username_id, '_csrftoken': self.token, 'external_url': url, 'phone_number': phone, 'username': self.username, 'full_name': first_name, 'biography': biography, 'email': email, 'gender': gender}) return self.SendRequest('accounts/edit_profile/', self.generateSignature(data)) def getUsernameInfo(self, usernameId): return self.SendRequest('users/' + str(usernameId) + '/info/') def getSelfUsernameInfo(self): return self.getUsernameInfo(self.username_id) def getSelfSavedMedia(self): return self.SendRequest('feed/saved') def getRecentActivity(self): activity = self.SendRequest('news/inbox/?') return activity def getFollowingRecentActivity(self): activity = self.SendRequest('news/?') return activity def getv2Inbox(self): inbox = self.SendRequest('direct_v2/inbox/?') return inbox def getv2Threads(self, thread, cursor=None): endpoint = 'direct_v2/threads/{0}'.format(thread) if cursor is not None: endpoint += '?cursor={0}'.format(cursor) inbox = self.SendRequest(endpoint) return inbox def getUserTags(self, usernameId): tags = self.SendRequest('usertags/' + str(usernameId) + '/feed/?rank_token=' + str(self.rank_token) + '&ranked_content=true&') return tags def getSelfUserTags(self): return self.getUserTags(self.username_id) def tagFeed(self, tag): userFeed = self.SendRequest('feed/tag/' + str(tag) + '/?rank_token=' + str(self.rank_token) + '&ranked_content=true&') return userFeed def getMediaLikers(self, mediaId): likers = self.SendRequest('media/' + str(mediaId) + '/likers/?') return likers def getGeoMedia(self, usernameId): locations = self.SendRequest('maps/user/' + str(usernameId) + '/') return locations def getSelfGeoMedia(self): return self.getGeoMedia(self.username_id) def fbUserSearch(self, query): query = self.SendRequest('fbsearch/topsearch/?context=blended&query=' + str(query) + '&rank_token=' + str(self.rank_token)) return query def searchUsers(self, query): query = self.SendRequest('users/search/?ig_sig_key_version=' + str(self.SIG_KEY_VERSION) + '&is_typeahead=true&query=' + str(query) + '&rank_token=' + str(self.rank_token)) return query def searchUsername(self, usernameName): query = self.SendRequest('users/' + str(usernameName) + '/usernameinfo/') return query def syncFromAdressBook(self, contacts): return self.SendRequest('address_book/link/?include=extra_display_name,thumbnails', "contacts=" + json.dumps(contacts)) def searchTags(self, query): query = self.SendRequest('tags/search/?is_typeahead=true&q=' + str(query) + '&rank_token=' + str(self.rank_token)) return query def getTimeline(self): query = self.SendRequest('feed/timeline/?rank_token=' + str(self.rank_token) + '&ranked_content=true&') return query def getUserFeed(self, usernameId, maxid='', minTimestamp=None): query = self.SendRequest('feed/user/%s/?max_id=%s&min_timestamp=%s&rank_token=%s&ranked_content=true' % (usernameId, maxid, minTimestamp, self.rank_token)) return query def getSelfUserFeed(self, maxid='', minTimestamp=None): return self.getUserFeed(self.username_id, maxid, minTimestamp) def getHashtagFeed(self, hashtagString, maxid=''): return self.SendRequest('feed/tag/' + hashtagString + '/?max_id=' + str(maxid) + '&rank_token=' + self.rank_token + '&ranked_content=true&') def searchLocation(self, query): locationFeed = self.SendRequest('fbsearch/places/?rank_token=' + str(self.rank_token) + '&query=' + str(query)) return locationFeed def getLocationFeed(self, locationId, maxid=''): return self.SendRequest('feed/location/' + str(locationId) + '/?max_id=' + maxid + '&rank_token=' + self.rank_token + '&ranked_content=true&') def getPopularFeed(self): popularFeed = self.SendRequest('feed/popular/?people_teaser_supported=1&rank_token=' + str(self.rank_token) + '&ranked_content=true&') return popularFeed def getUserFollowings(self, usernameId, maxid=''): url = 'friendships/' + str(usernameId) + '/following/?' query_string = {'ig_sig_key_version': self.SIG_KEY_VERSION, 'rank_token': self.rank_token} if maxid: query_string['max_id'] = maxid if sys.version_info.major == 3: url += urllib.parse.urlencode(query_string) else: url += urllib.urlencode(query_string) return self.SendRequest(url) def getSelfUsersFollowing(self): return self.getUserFollowings(self.username_id) def getUserFollowers(self, usernameId, maxid=''): if maxid == '': return self.SendRequest('friendships/' + str(usernameId) + '/followers/?rank_token=' + self.rank_token) else: return self.SendRequest('friendships/' + str(usernameId) + '/followers/?rank_token=' + self.rank_token + '&max_id=' + str(maxid)) def getSelfUserFollowers(self): return self.getUserFollowers(self.username_id) def like(self, mediaId): data = json.dumps({'_uuid': self.uuid, '_uid': self.username_id, '_csrftoken': self.token, 'media_id': mediaId}) return self.SendRequest('media/' + str(mediaId) + '/like/', self.generateSignature(data)) def unlike(self, mediaId): data = json.dumps({'_uuid': self.uuid, '_uid': self.username_id, '_csrftoken': self.token, 'media_id': mediaId}) return self.SendRequest('media/' + str(mediaId) + '/unlike/', self.generateSignature(data)) def getMediaComments(self, mediaId, max_id=''): return self.SendRequest('media/' + mediaId + '/comments/?max_id=' + max_id) def setNameAndPhone(self, name='', phone=''): data = json.dumps({'_uuid': self.uuid, '_uid': self.username_id, 'first_name': name, 'phone_number': phone, '_csrftoken': self.token}) return self.SendRequest('accounts/set_phone_and_name/', self.generateSignature(data)) def getDirectShare(self): return self.SendRequest('direct_share/inbox/?') def backup(self): # TODO Instagram.php 1470-1485 return False def follow(self, userId): data = json.dumps({'_uuid': self.uuid, '_uid': self.username_id, 'user_id': userId, '_csrftoken': self.token}) return self.SendRequest('friendships/create/' + str(userId) + '/', self.generateSignature(data)) def unfollow(self, userId): data = json.dumps({'_uuid': self.uuid, '_uid': self.username_id, 'user_id': userId, '_csrftoken': self.token}) return self.SendRequest('friendships/destroy/' + str(userId) + '/', self.generateSignature(data)) def block(self, userId): data = json.dumps({'_uuid': self.uuid, '_uid': self.username_id, 'user_id': userId, '_csrftoken': self.token}) return self.SendRequest('friendships/block/' + str(userId) + '/', self.generateSignature(data)) def unblock(self, userId): data = json.dumps({'_uuid': self.uuid, '_uid': self.username_id, 'user_id': userId, '_csrftoken': self.token}) return self.SendRequest('friendships/unblock/' + str(userId) + '/', self.generateSignature(data)) def userFriendship(self, userId): data = json.dumps({'_uuid': self.uuid, '_uid': self.username_id, 'user_id': userId, '_csrftoken': self.token}) return self.SendRequest('friendships/show/' + str(userId) + '/', self.generateSignature(data)) def getLikedMedia(self, maxid=''): return self.SendRequest('feed/liked/?max_id=' + str(maxid)) def generateSignature(self, data, skip_quote=False): if not skip_quote: try: parsedData = urllib.parse.quote(data) except AttributeError: parsedData = urllib.quote(data) else: parsedData = data return 'ig_sig_key_version=' + self.SIG_KEY_VERSION + '&signed_body=' + hmac.new(self.IG_SIG_KEY.encode('utf-8'), data.encode('utf-8'), hashlib.sha256).hexdigest() + '.' + parsedData def generateDeviceId(self, seed): volatile_seed = "12345" m = hashlib.md5() m.update(seed.encode('utf-8') + volatile_seed.encode('utf-8')) return 'android-' + m.hexdigest()[:16] def generateUUID(self, type): generated_uuid = str(uuid.uuid4()) if (type): return generated_uuid else: return generated_uuid.replace('-', '') def generateUploadId(self): return str(calendar.timegm(datetime.utcnow().utctimetuple())) def buildBody(self, bodies, boundary): body = u'' for b in bodies: body += u'--{boundary}\r\n'.format(boundary=boundary) body += u'Content-Disposition: {b_type}; name="{b_name}"'.format(b_type=b['type'], b_name=b['name']) _filename = b.get('filename', None) _headers = b.get('headers', None) if _filename: _filename, ext = os.path.splitext(_filename) _body += u'; filename="pending_media_{uid}.{ext}"'.format(uid=self.generateUploadId(), ext=ext) if _headers and isinstance(_headers, list): for h in _headers: _body += u'\r\n{header}'.format(header=h) body += u'\r\n\r\n{data}\r\n'.format(data=b['data']) body += u'--{boundary}--'.format(boundary=boundary) return body def SendRequest(self, endpoint, post=None, login=False): verify = False # don't show request warning if (not self.isLoggedIn and not login): raise Exception("Not logged in!\n") self.s.headers.update({'Connection': 'close', 'Accept': '*/*', 'Content-type': 'application/x-www-form-urlencoded; charset=UTF-8', 'Cookie2': '$Version=1', 'Accept-Language': 'en-US', 'User-Agent': self.USER_AGENT}) while True: try: if (post is not None): response = self.s.post(self.API_URL + endpoint, data=post, verify=verify) else: response = self.s.get(self.API_URL + endpoint, verify=verify) break except Exception as e: print('Except on SendRequest (wait 60 sec and resend): ' + str(e)) time.sleep(60) if response.status_code == 200: self.LastResponse = response self.LastJson = json.loads(response.text) return True else: print("Request return " + str(response.status_code) + " error!") # for debugging try: self.LastResponse = response self.LastJson = json.loads(response.text) print(self.LastJson) except: pass return False def getTotalFollowers(self, usernameId): followers = [] next_max_id = '' while 1: self.getUserFollowers(usernameId, next_max_id) temp = self.LastJson for item in temp["users"]: followers.append(item) if temp["big_list"] is False: return followers next_max_id = temp["next_max_id"] def getTotalFollowings(self, usernameId): followers = [] next_max_id = '' while True: self.getUserFollowings(usernameId, next_max_id) temp = self.LastJson for item in temp["users"]: followers.append(item) if temp["big_list"] is False: return followers next_max_id = temp["next_max_id"] def getTotalUserFeed(self, usernameId, minTimestamp=None): user_feed = [] next_max_id = '' while True: self.getUserFeed(usernameId, next_max_id, minTimestamp) temp = self.LastJson for item in temp["items"]: user_feed.append(item) if temp["more_available"] is False: return user_feed next_max_id = temp["next_max_id"] def getTotalSelfUserFeed(self, minTimestamp=None): return self.getTotalUserFeed(self.username_id, minTimestamp) def getTotalSelfFollowers(self): return self.getTotalFollowers(self.username_id) def getTotalSelfFollowings(self): return self.getTotalFollowings(self.username_id) def getTotalLikedMedia(self, scan_rate=1): next_id = '' liked_items = [] for x in range(0, scan_rate): temp = self.getLikedMedia(next_id) temp = self.LastJson try: next_id = temp["next_max_id"] for item in temp["items"]: liked_items.append(item) except KeyError as e: break return liked_items
# Hello World program in Python print("Example of Python Tuples\n") # Create a Tuple: thistuple = ("apple", "banana", "cherry") print(thistuple) # You can access tuple items by referring to the index number: # Return the item in position 1: print(thistuple[1]) # You can loop through the tuple items by using a for loop. # Iterate through the items and print the values: for x in thistuple: print(x) # To determine if a specified item is present in a tuple use the in keyword: # Check if "apple" is present in the tuple: thistuple = ("apple", "banana", "cherry") if "apple" in thistuple: print("Yes, 'apple' is in the fruits tuple") # To determine how many items a list have, use the len() method: # Print the number of items in the tuple: print(len(thistuple)) # Using the tuple() method to make a tuple: thistuple = tuple(("apple", "banana", "cherry")) # note the double round-brackets print(thistuple) # Once a tuple is created, you cannot add items to it. Tuples are unchangeable. # You cannot add items to a tuple: thistuple = ("apple", "banana", "cherry") thistuple[3] = "orange" # This will raise an error print(thistuple) # The del keyword can delete the tuple completely: del thistuple print(thistuple) # this will raise an error because the tuple no longer exists