repo_name
stringlengths
9
75
topic
stringclasses
30 values
issue_number
int64
1
203k
title
stringlengths
1
976
body
stringlengths
0
254k
state
stringclasses
2 values
created_at
stringlengths
20
20
updated_at
stringlengths
20
20
url
stringlengths
38
105
labels
listlengths
0
9
user_login
stringlengths
1
39
comments_count
int64
0
452
ryfeus/lambda-packs
numpy
20
Magpie package : Multi label text classification
Hi, great work ! You inspired me to build my own package for a project that you can find on my [repo](https://github.com/Sach97/serverless-multilabel-text-classification). Unfortunately I'm facing an issue. I have this [error](https://github.com/Sach97/serverless-multilabel-text-classification/issues/1). Have you already seen this type of error before ?
closed
2018-04-30T20:50:46Z
2018-05-02T18:15:10Z
https://github.com/ryfeus/lambda-packs/issues/20
[]
sachaarbonel
1
aiortc/aiortc
asyncio
332
Receiving parallel to sending frames
I am trying to modify server example to make receiving and sending frames parallel. The problem appeared when I've modified frame processing and it became too long. So I need to find out the way to deal with it. Now I see 2 ways to do it. 1. Understand input frame queue length. So I can read more when queue is too big. 2. Read frames as fast as it comes in parallel process. For the first way I don't understand how to get queue length. Is it possible for WebRTC at all? Maybe this way is wrong. For the second way I've tried to run in parallel process but in parallel receiving frames not worked in my implementation. believe it's more possible than first way but can't do it for now.
closed
2020-04-09T10:22:19Z
2021-03-07T14:52:33Z
https://github.com/aiortc/aiortc/issues/332
[]
Alick09
3
feder-cr/Jobs_Applier_AI_Agent_AIHawk
automation
293
Non Descriptive errors any advice:
``` Traceback (most recent call last): File "App/HawkAI/src/linkedIn_job_manager.py", line 138, in apply_jobs self.easy_applier_component.job_apply(job) File "App/HawkAI/src/linkedIn_easy_applier.py", line 67, in job_apply raise Exception(f"Failed to apply to job! Original exception: \nTraceback:\n{tb_str}") Exception: Failed to apply to job! Original exception: Traceback: Traceback (most recent call last): File "App/HawkAI/src/linkedIn_easy_applier.py", line 63, in job_apply self._fill_application_form(job) File "App/HawkAI/src/linkedIn_easy_applier.py", line 130, in _fill_application_form if self._next_or_submit(): ^^^^^^^^^^^^^^^^^^^^^^ File "App/HawkAI/src/linkedIn_easy_applier.py", line 145, in _next_or_submit self._check_for_errors() File "App/HawkAI/src/linkedIn_easy_applier.py", line 158, in _check_for_errors raise Exception(f"Failed answering or file upload. {str([e.text for e in error_elements])}") Exception: Failed answering or file upload. ['Please enter a valid answer', 'Please enter a valid answer'] ``` any idea why it keeps failing to answer? lines are mostly about filling application or going next or submit or uploading.
closed
2024-09-05T19:39:07Z
2024-09-11T02:01:47Z
https://github.com/feder-cr/Jobs_Applier_AI_Agent_AIHawk/issues/293
[]
elonbot
3
deepfakes/faceswap
deep-learning
595
Adjust convert does not work for GAN and GAN128 model
Adjust Convert plugin fails in case of GAN or GAN128 model ## Expected behavior Adjust convert completes w/o errors ## Actual behavior GAN and GAN128 fails with errors (please see pic attached) ## Steps to reproduce 1) Extract faces from images and train GAN or GAN128 model 2) Perform python faceswap convert with Adjust plugin ## Other relevant information - **Command lined used (GAN128)**: faceswap.py convert -i "path/to/images" -o "output/path" -m "path/to/GAN128/model" -t GAN128 -c Adjust - **Operating system and version:** Ubuntu 16.04.5 LTS - **Python version:** 3.5,2, - **Faceswap version:** 4376bbf4f85f9771b0e3752ccf9504efb4e43d21 - **Faceswap method:** GPU ![gan128_adjust](https://user-images.githubusercontent.com/15347623/51643846-10857480-1f7f-11e9-8613-d722a1f925eb.png)
closed
2019-01-23T23:19:49Z
2019-01-23T23:37:18Z
https://github.com/deepfakes/faceswap/issues/595
[]
temp-42
2
supabase/supabase-py
fastapi
280
Error when running this code
When i run this code i get an error ``` import os from supabase import create_client, Client url: str = os.environ.get("SUPABASE_URL") key: str = os.environ.get("SUPABASE_KEY") supabase: Client = create_client(url, key) # Create a random user login email and password. random_email: str = "cam@example.com" random_password: str = "9696" user = supabase.auth.sign_up(email=random_email, password=random_password) ``` here's the error message ``` Traceback (most recent call last): File "C:\Users\Camer\AppData\Local\Programs\Python\Python310\lib\site-packages\gotrue\helpers.py", line 16, in check_response response.raise_for_status() File "C:\Users\Camer\AppData\Local\Programs\Python\Python310\lib\site-packages\httpx\_models.py", line 1508, in raise_for_status raise HTTPStatusError(message, request=request, response=self) httpx.HTTPStatusError: Client error '422 Unprocessable Entity' for url 'https://gcaycwdskjdsfqvrtdqh.supabase.co/auth/v1/signup' For more information check: https://httpstatuses.com/422 During handling of the above exception, another exception occurred: Traceback (most recent call last): File "C:\Users\Camer\Cams-Stuff\coding\pyTesting\main.py", line 11, in <module> user = supabase.auth.sign_up(email=random_email, password=random_password) File "C:\Users\Camer\AppData\Local\Programs\Python\Python310\lib\site-packages\gotrue\_sync\client.py", line 129, in sign_up response = self.api.sign_up_with_email( File "C:\Users\Camer\AppData\Local\Programs\Python\Python310\lib\site-packages\gotrue\_sync\api.py", line 140, in sign_up_with_email return SessionOrUserModel.parse_response(response) File "C:\Users\Camer\AppData\Local\Programs\Python\Python310\lib\site-packages\gotrue\types.py", line 26, in parse_response check_response(response) File "C:\Users\Camer\AppData\Local\Programs\Python\Python310\lib\site-packages\gotrue\helpers.py", line 18, in check_response raise APIError.from_dict(response.json()) gotrue.exceptions.APIError ```
closed
2022-09-27T23:50:54Z
2022-10-07T08:35:21Z
https://github.com/supabase/supabase-py/issues/280
[]
camnoalive
1
ipyflow/ipyflow
jupyter
22
add binder launcher
See e.g. [here](https://github.com/jtpio/jupyterlab-cell-flash)
closed
2020-05-11T01:12:44Z
2020-05-12T22:54:34Z
https://github.com/ipyflow/ipyflow/issues/22
[]
smacke
0
BayesWitnesses/m2cgen
scikit-learn
525
The converted C model compiles very slow,how can i fix it?
open
2022-06-17T07:29:37Z
2022-06-17T07:29:37Z
https://github.com/BayesWitnesses/m2cgen/issues/525
[]
miszuoer
0
python-visualization/folium
data-visualization
1,701
On click circle radius changes not available
**Is your feature request related to a problem? Please describe.** After adding the folium.Circle feature to the map I just get circles defined by radius. Having them several, they overlap each other when close enough and it seems like there is no option for switching them on/off by clicking on the marker too, which the circle has been appended. The issue in detail has been raised here: https://stackoverflow.com/questions/74520790/python-folium-circle-not-working-along-with-popup and here https://stackoverflow.com/questions/75096366/python-folium-clickformarker-2-functions-dont-collaborate-with-each-other **Describe the solution you'd like** I would like to have an option that would allow me to control the folium.Circle appearance is based on the click feature keeping them invisible when the cursor is out of the circle range. **Describe alternatives you've considered** Tried to apply class Circle(folium.ClickForMarker): It doesn't work correctly. Despite if statement it appears for all the cases at once. Moreover, it remains in conflict with other classes ClickForOneMarker(folium.ClickForMarker): making it completely unusable. **Additional context** Provided in the link above **Implementation** The way of implementation should be creating a new option allowing using the on-click operation for folium.Circle feature.
closed
2023-01-13T09:31:00Z
2023-02-17T10:47:52Z
https://github.com/python-visualization/folium/issues/1701
[]
Krukarius
1
CPJKU/madmom
numpy
175
madmom.features.notes module incomplete
There should be something like a `NoteOnsetProcessor` to pick the note onsets from a 2-d note activation function. The respective functionality could then be removed from `madmom.features.onsets.PeakPickingProcessor`. Be aware that this processor returns MIDI note numbers right now which is quite counter-intuitive. Furthermore a `NoteTrackingProcessor` should be created which not only detects the note onsets but also the length (and velocity) of the notes.
closed
2016-07-20T09:56:45Z
2017-03-02T07:42:43Z
https://github.com/CPJKU/madmom/issues/175
[]
superbock
0
vitalik/django-ninja
django
430
[BUG] Schema defaults when using Pagination
**The bug** It seems that when I'm setting default values with Field() Pagination does not work as expected. In this case: it returns the default values of the schema (Bob, age 21) **Versions** - Python version: [3.10] - Django version: [4.0.4] - Django-Ninja version: [0.17.0] **How to reproduce:** Use the following code snippets or [clone my repo here.](https://github.com/florisgravendeel/DjangoNinjaPaginationBug) models.py ```python from django.db import models class Person(models.Model): id = models.AutoField(primary_key=True) name = models.CharField(null=False, blank=False, max_length=30) age = models.PositiveSmallIntegerField(null=False, blank=False) def __str__(self): return self.name + ", age: " + str(self.age) + " id: " + str(self.id) ``` api.py ```python from typing import List from ninja import Schema, Field, Router from ninja.pagination import PageNumberPagination, paginate from DjangoNinjaPaginationBug.models import Person router = Router() class PersonOutBugged(Schema): id: int = Field(1, alias="Short summary of the variable.") name: str = Field("Bob", alias="Second short summary of the variable.") age: str = Field(21, alias="Third summary of the variable.") class PersonOutWorks(Schema): id: int name: str age: str @router.get("/person-bugged", response=List[PersonOutBugged], tags=["Person"]) @paginate(PageNumberPagination) def list_persons(request): """Retrieves all persons from the database. Bugged. Returns the default values of the schema. """ return Person.objects.all() @router.get("/person-works", response=List[PersonOutWorks], tags=["Person"]) @paginate(PageNumberPagination) def list_persons2(request): """Retrieves all persons from the database. This works. """ return Person.objects.all() ``` Don't forget to add persons to the database (if you're using the code snippets)!
closed
2022-04-25T14:40:20Z
2022-04-25T16:15:07Z
https://github.com/vitalik/django-ninja/issues/430
[]
florisgravendeel
2
ploomber/ploomber
jupyter
461
Document command tester
closed
2022-01-03T19:02:56Z
2022-01-04T04:13:18Z
https://github.com/ploomber/ploomber/issues/461
[]
edublancas
0
tqdm/tqdm
jupyter
855
Merge to progressbar2
- [x] I have marked all applicable categories: + [x] new feature request - [x] I have visited the [source website], and in particular read the [known issues] - [x] I have searched through the [issue tracker] for duplicates [progressbar2](https://github.com/WoLpH/python-progressbar) has a concept of widgets. It allows library user to set up what is to be shown. I guess it may make sense to merge the 2 projects. @WoLpH
open
2019-11-30T07:40:11Z
2019-12-02T23:03:56Z
https://github.com/tqdm/tqdm/issues/855
[ "question/docs ‽", "p4-enhancement-future 🧨", "submodule ⊂" ]
KOLANICH
11
streamlit/streamlit
python
10,603
Rerun fragment from anywhere, not just from within itself
### Checklist - [x] I have searched the [existing issues](https://github.com/streamlit/streamlit/issues) for similar feature requests. - [x] I added a descriptive title and summary to this issue. ### Summary Related to #8511 and #10045. Currently the only way to rerun a fragment is calling `st.rerun(scope="fragment")` from within itself. Allowing a fragment rerun to be triggered from anywhere (another fragment or the main app) would unlock new powerful use-cases. ### Why? When a fragment is dependent on another fragment or on a change on the main app, the only current way to reflect that dependency is to rerun the full application whenever a dependency changes. ### How? I think adding a key to each fragment would allow the user to build his custom logic to manage the dependency chain and take full control on when to run a given fragment: ```python @st.fragment(key="depends_on_b") def a(): st.write(st.session_state.input_for_a) @st.fragment(key="depends_on_main") def b(): st.session_state.input_for_a = ... if st.button("Should rerun a"): st.rerun(scope="fragment", key="depends_on_b") if other_condition: st.rerun(scope="fragment", key="depends_on_main") ``` This implementation doesn't go the full mile to describe the dependency chain in the fragment's definition and let streamlit handle the rerun logic as suggested in #10045, but provides more flexibility for the user to rerun a fragment from anywhere and under any conditions that fits his use-case ### Additional Context _No response_
open
2025-03-03T14:55:41Z
2025-03-13T04:44:33Z
https://github.com/streamlit/streamlit/issues/10603
[ "type:enhancement", "feature:st.fragment" ]
Abdelgha-4
1
ultrafunkamsterdam/undetected-chromedriver
automation
1,758
InvalidArgumentException
this is my code import undetected_chromedriver as uc options = uc.ChromeOptions() driver = uc.Chrome() if __name__ == '__main__': page = driver.get(url='www.google.com') print(page.title) and this is the error message python app.py Traceback (most recent call last): File "C:\Users\user\Desktop\zalando\farfetch\app.py", line 8, in <module> page = driver.get(url='www.google.com') ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "C:\Users\user\Desktop\zalando\farfetch\venv\Lib\site-packages\undetected_chromedriver\__init__.py", line 665, in get return super().get(url) ^^^^^^^^^^^^^^^^ File "C:\Users\user\Desktop\zalando\farfetch\venv\Lib\site-packages\selenium\webdriver\remote\webdriver.py", line 356, in get self.execute(Command.GET, {"url": url}) File "C:\Users\user\Desktop\zalando\farfetch\venv\Lib\site-packages\selenium\webdriver\remote\webdriver.py", line 347, in execute self.error_handler.check_response(response) File "C:\Users\user\Desktop\zalando\farfetch\venv\Lib\site-packages\selenium\webdriver\remote\errorhandler.py", line 229, in check_response raise exception_class(message, screen, stacktrace) selenium.common.exceptions.InvalidArgumentException: Message: invalid argument (Session info: chrome=122.0.6261.58) Stacktrace: GetHandleVerifier [0x00BE8CD3+51395] (No symbol) [0x00B55F31] (No symbol) [0x00A0E004] (No symbol) [0x009FF161] (No symbol) [0x009FD9DE] (No symbol) [0x009FE0AB] (No symbol) [0x00A10258] (No symbol) [0x00A7AC91] (No symbol) [0x00A63E8C] (No symbol) [0x00A7A570] (No symbol) [0x00A63C26] (No symbol) [0x00A3C629] (No symbol) [0x00A3D40D] GetHandleVerifier [0x00F66493+3711107] GetHandleVerifier [0x00FA587A+3970154] GetHandleVerifier [0x00FA0B68+3950424] GetHandleVerifier [0x00C99CD9+776393] (No symbol) [0x00B61704] (No symbol) [0x00B5C5E8] (No symbol) [0x00B5C799] (No symbol) [0x00B4DDC0] BaseThreadInitThunk [0x76CC00F9+25] RtlGetAppContainerNamedObjectPath [0x77B47BBE+286] RtlGetAppContainerNamedObjectPath [0x77B47B8E+238] Exception ignored in: <function Chrome.__del__ at 0x0000027EF89C8540> Traceback (most recent call last): File "C:\Users\user\Desktop\zalando\farfetch\venv\Lib\site-packages\undetected_chromedriver\__init__.py", line 843, in __del__ File "C:\Users\user\Desktop\zalando\farfetch\venv\Lib\site-packages\undetected_chromedriver\__init__.py", line 798, in quit OSError: [WinError 6] The handle is invalid How can i solve this?
open
2024-02-23T08:04:44Z
2024-02-23T08:05:20Z
https://github.com/ultrafunkamsterdam/undetected-chromedriver/issues/1758
[]
idyweb
0
mirumee/ariadne-codegen
graphql
30
Handle fragments in provided queries
Given example schema: ```gql schema { query: Query } type Query { testQuery: ResultType } type ResultType { field1: Int! field2: String! field3: Boolean! } ``` and query with fragment: ```gql query QueryName { testQuery { ...TestFragment } } fragment TestFragment on ResultType { field1 field2 } ``` `graphql-sdk-gen` for now raises `KeyError: 'TestFragment'`, but should generate `query_name.py` file with model definition: ```python class QueryNameResultType(BaseModel): field1: int field2: str ```
closed
2022-11-15T10:22:17Z
2022-11-17T07:35:52Z
https://github.com/mirumee/ariadne-codegen/issues/30
[]
mat-sop
0
dnouri/nolearn
scikit-learn
191
Update Version of Lasagne Required in requirements.txt
closed
2016-01-13T18:19:13Z
2016-01-14T21:03:43Z
https://github.com/dnouri/nolearn/issues/191
[]
cancan101
0
python-visualization/folium
data-visualization
1,384
search plugin display multiple places
**Describe the issue** I display places where certain historic persons appear at different places on a stamen map. They are coded in geojson. Search works fine: it shows found places in search combo box and I after selecting one value it zooms to that place on the map. My question: Is it possible after search to display not only one found place, but all places where the name was found? cheers Uli
closed
2020-08-30T10:49:38Z
2022-11-28T12:36:10Z
https://github.com/python-visualization/folium/issues/1384
[]
uli22
1
ContextLab/hypertools
data-visualization
51
demo scripts: naming and paths
all of the demo scripts have names that start with `hypertools_demo-`, which is redundant. i propose removing `hypertools_demo-` from each script name. also, some of the paths are relative rather than absolute. for example, the `sample_data` folder is only visible within the `examples` folder, but it is referenced using relative paths. this causes some of the demo functions (e.g. `hypertools_demo-align.py`) to fail. references to `sample_data` could be changed as follows (from within any scripts that reference data in `sample_data`): `import os` `datadir = os.path.join(os.path.realpath(__file__), 'sample_data')`
closed
2017-01-02T23:27:43Z
2017-01-03T02:55:08Z
https://github.com/ContextLab/hypertools/issues/51
[ "bug" ]
jeremymanning
2
aiortc/aiortc
asyncio
1,102
Connection(0) ICE failed when using mobile Internet. Connection(0) ICE completed in local network.
I use the latest (1.8.0) version of aiortc. The "server" example (aiortc/tree/main/examples/server) works well on a local network and with mobile internet. My project uses django-channels for "offer/answer" message exchange, and a connection establishes perfectly when I use a local network (both computers on the same Wi-Fi network). However, when I try to connect to the server from my smartphone (Android 12, Chrome browser) using a mobile network, the output waits for several seconds and then shows "Connection(0) ICE failed". I examined the source code of "venv311/Lib/site-packages/aioice/ice.py" and found that the initial list of Pairs (self._check_list) is extended by this call: self.check_incoming(message, addr, protocol) - line 1062 in the request_received() method of the Connection class. It's a crucial part because it allows the server to know the dynamic IP address of the remote client. For the "server" example and my local setup, it works well, and the remote peer sends the needed request, triggering request_received() but for mobile internet request_received() is not called. Could you suggest any ideas about what I might have done wrong? Or maybe you can suggest things which impact this situation. Thanks in advance
closed
2024-05-23T12:25:46Z
2024-05-29T22:20:35Z
https://github.com/aiortc/aiortc/issues/1102
[]
Aroxed
0
CTFd/CTFd
flask
2,103
backport core theme for compatibility with new plugins
During updating of our plugins for compatibility with the currently developed theme It would be beneficial to move certain functions from the plugins to ctfd.js. It's working fine with the new theme however the current core theme needs to be backported for compatibility.
closed
2022-04-28T11:36:34Z
2022-04-29T04:17:12Z
https://github.com/CTFd/CTFd/issues/2103
[]
MilyMilo
0
AirtestProject/Airtest
automation
706
红米8aJAVACAP截图不正确
**(重要!问题分类)** * 图像识别、设备控制相关问题 **描述问题bug** JAVACAP在所有横屏应用下返回的图像方向正确但尺寸不正确,就像是把一块横着放的海绵塞进了竖着放的盒子里 JAVACAP返回的图片是经过压缩编码的,这个被编码的图片就是错误的 **相关截图** ![a](https://user-images.githubusercontent.com/40085173/76729377-fc5c9200-6793-11ea-80df-f56f493bc9df.jpg) ![Snipaste_2020-03-16_14-48-07](https://user-images.githubusercontent.com/40085173/76729923-2f535580-6795-11ea-8a8e-52ed607bcadf.png) **复现步骤** 在IDE里显示的就不正确,简化后就是以下代码 ```python from airtest.core.android.android import Android from airtest.core.android.constant import CAP_METHOD,ORI_METHOD a=Android(cap_method=CAP_METHOD.JAVACAP,ori_method=ORI_METHOD.ADB) import cv2 cv2.imshow('',a.snapshot()) ``` **预期效果** 使用MINICAP会报错,使用ADB能得到正确的截图 **python 版本:** python3.7 **airtest 版本:** 1.1.3 **设备:** - 型号: 红米redmi8a - 系统: MIUI(11.0.7)(android 9) **其他相关环境信息** win10 1909,python3.7,airtest1.1.3,adb1.0.40,Android.sdk_version=28
closed
2020-03-16T06:50:22Z
2020-07-07T08:11:09Z
https://github.com/AirtestProject/Airtest/issues/706
[ "to be released" ]
hgjazhgj
8
mwaskom/seaborn
pandas
3,591
Heatmap doees not display all entries
Hi all, I have an issue with my heatmap. I generated a dataframe with 30k columns and here I set some of the values to a non-nan value (2k of them) (some might be double hits but that is beside the point). The values I fill the dataframe with are values between 0-1 to tell the function how to color each sample When I plot this, I only get a low amount of hits displayed and wondered why this is. In my real case example what is shown is even less (more rows, less non-nan's) as in this example. Am I doing something wrong here? python=3.12; seaborn=0.12; matplotlib=3.8.2; pandas=2.1.4 (Ubuntu=22.04) ``` import seaborn as sns import matplotlib.pyplot as plt import matplotlib as mpl import numpy as np import os import pandas as pd new_dict = {} for k in ["a", "b", "c", "d"]: v = {str(idx): None for idx in range(30000)} rand_ints = [np.random.randint(low=0, high=30000) for i in range(2000)] for v_hits in rand_ints: v[str(v_hits)] = v_hits/30000 new_dict[k] = v df_heatmap_hits = pd.DataFrame(new_dict).transpose() sns.heatmap(df_heatmap_hits) plt.show() ```
closed
2023-12-11T11:45:03Z
2023-12-11T16:34:24Z
https://github.com/mwaskom/seaborn/issues/3591
[]
dansteiert
5
sqlalchemy/sqlalchemy
sqlalchemy
12,441
Remove features deprecated in 1.3 and earlier
Compation to #12437 that covers the other deprecated features
closed
2025-03-17T20:01:01Z
2025-03-18T16:12:31Z
https://github.com/sqlalchemy/sqlalchemy/issues/12441
[ "deprecations" ]
CaselIT
1
3b1b/manim
python
1,167
[Hiring] Need help creating animation
Hello, I have a simple project which requires a simple animation and though manim would be perfect. Since there is a time contraint, I won't be able to create an animation. Would anyone be willing to for hire?
closed
2020-07-14T17:59:48Z
2020-08-18T03:44:19Z
https://github.com/3b1b/manim/issues/1167
[]
OGALI
3
ResidentMario/geoplot
matplotlib
69
Failing voronoi example with the new 0.2.2 release
The geoplot release seems to have broken the geopandas examples (the voronoi one). I am getting the following error on our readthedocs build: ``` Unexpected failing examples: /home/docs/checkouts/readthedocs.org/user_builds/geopandas/checkouts/latest/examples/plotting_with_geoplot.py failed leaving traceback: Traceback (most recent call last): File "/home/docs/checkouts/readthedocs.org/user_builds/geopandas/checkouts/latest/examples/plotting_with_geoplot.py", line 80, in <module> linewidth=0) File "/home/docs/checkouts/readthedocs.org/user_builds/geopandas/conda/latest/lib/python3.6/site-packages/geoplot/geoplot.py", line 2133, in voronoi geoms = _build_voronoi_polygons(df) File "/home/docs/checkouts/readthedocs.org/user_builds/geopandas/conda/latest/lib/python3.6/site-packages/geoplot/geoplot.py", line 2687, in _build_voronoi_polygons ls = np.vstack([np.asarray(infinite_segments), np.asarray(finite_segments)]) File "/home/docs/checkouts/readthedocs.org/user_builds/geopandas/conda/latest/lib/python3.6/site-packages/numpy/core/shape_base.py", line 234, in vstack return _nx.concatenate([atleast_2d(_m) for _m in tup], 0) ValueError: all the input arrays must have same number of dimensions ```
closed
2019-01-07T14:10:45Z
2019-03-17T04:24:29Z
https://github.com/ResidentMario/geoplot/issues/69
[]
jorisvandenbossche
12
CorentinJ/Real-Time-Voice-Cloning
python
394
Is there any way to change the language?
Hey, i have successfully installed it, And I just wanted to ask if there was any way to Change the pronunciation language to German?
closed
2020-07-02T10:16:08Z
2020-07-04T15:03:11Z
https://github.com/CorentinJ/Real-Time-Voice-Cloning/issues/394
[]
ozanaaslan
2
WZMIAOMIAO/deep-learning-for-image-processing
deep-learning
572
关于MobileNetV3的训练问题
您好,我在使用MobileNetV3进行自定义数据集训练时,调用 `net = MobileNetV3(num_classes=16)` 时报错如下: > TypeError: __init__() missing 2 required positional arguments: 'inverted_residual_setting' and 'last_channel' 请问如何解决?感谢。
closed
2022-06-13T06:52:35Z
2022-06-15T02:38:15Z
https://github.com/WZMIAOMIAO/deep-learning-for-image-processing/issues/572
[]
myfeet2cold
1
dmlc/gluon-cv
computer-vision
1,032
NMS code question
I am a fresher of gluon-cv, I want to know how you implement nms in ssd model. Anyone can tell me where the code is? I see there is a tvm convert tutorials of gluon-cv ssd models which includes nms and post-processing operations which can be converted to tvm model directly, I want to know how it works so as to use it in pytorch detection model to conver to tvm. Thank you very much. Best, Edward
closed
2019-11-07T09:03:23Z
2019-12-19T06:49:49Z
https://github.com/dmlc/gluon-cv/issues/1032
[]
Edwardmark
3
InstaPy/InstaPy
automation
6,452
Ubuntu server // Hide Selenium Extension: error
I use Droplet on Digital Ocean _(Ubuntu 20.04 (LTS) x64)_ When I start my quickstart.py, it's fail cause "Hide Selenium Extension: error", I don't found solution for this time, somebody can help me ? > InstaPy Version: 0.6.15 ._. ._. ._. ._. ._. ._. ._. Workspace in use: "/root/InstaPy" OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO INFO [2022-01-03 23:29:27] [xxxxx] Session started! oooooooooooooooooooooooooooooooooooooooooooooooooooooo INFO [2022-01-03 23:29:27] [xxxxx] -- Connection Checklist [1/2] (Internet Connection Status) INFO [2022-01-03 23:29:28] [xxxxx] - Internet Connection Status: ok INFO [2022-01-03 23:29:28] [xxxxx] - Current IP is "64.227.120.175" and it's from "Germany/DE" INFO [2022-01-03 23:29:28] [xxxxx] -- Connection Checklist [2/2] (Hide Selenium Extension) INFO [2022-01-03 23:29:28] [xxxxx] - window.navigator.webdriver response: True WARNING [2022-01-03 23:29:28] [xxxxx] - Hide Selenium Extension: error INFO [2022-01-03 23:29:31] [xxxxx] - Cookie file not found, creating cookie... WARNING [2022-01-03 23:29:45] [xxxxx] Login A/B test detected! Trying another string... WARNING [2022-01-03 23:29:50] [xxxxx] Could not pass the login A/B test. Trying last string... ...................................................................................................................... CRITICAL [2022-01-03 23:30:24] [xxxxx] Unable to login to Instagram! You will find more information in the logs above. '''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' INFO [2022-01-03 23:30:25] [xxxxx] Sessional Live Report: |> No any statistics to show [Session lasted 1.04 minutes] OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO INFO [2022-01-03 23:30:25] [xxxxx] Session ended! ooooooooooooooooooooooooooooooooooooooooooooooooooooo
closed
2022-01-03T23:37:58Z
2022-02-01T14:54:18Z
https://github.com/InstaPy/InstaPy/issues/6452
[]
celestinsoum
8
modin-project/modin
data-science
7,409
BUG: can't use list of tuples of select multiple columns when columns are multiindex
### Modin version checks - [X] I have checked that this issue has not already been reported. - [X] I have confirmed this bug exists on the latest released version of Modin. - [X] I have confirmed this bug exists on the main branch of Modin. (In order to do this you can follow [this guide](https://modin.readthedocs.io/en/stable/getting_started/installation.html#installing-from-the-github-main-branch).) ### Reproducible Example ```python data = { "ix": [1, 2, 1, 1, 2, 2], "iy": [1, 2, 2, 1, 2, 1], "col": ["b", "b", "a", "a", "a", "a"], "col_b": ["x", "y", "x", "y", "x", "y"], "foo": [7, 1, 0, 1, 2, 2], "bar": [9, 4, 0, 2, 0, 0], } pivot_modin = mpd.DataFrame(data).pivot_table( values=['foo'], index=['ix'], columns=['col'], aggfunc='min', margins=False, observed=True, ) pivot_modin.loc[:, [('foo', 'b')]] ``` ### Issue Description this raises ``` KeyError Traceback (most recent call last) File /opt/conda/lib/python3.10/site-packages/pandas/core/indexes/base.py:3805, in Index.get_loc(self, key) 3804 try: -> 3805 return self._engine.get_loc(casted_key) 3806 except KeyError as err: File index.pyx:167, in pandas._libs.index.IndexEngine.get_loc() File index.pyx:196, in pandas._libs.index.IndexEngine.get_loc() File pandas/_libs/hashtable_class_helper.pxi:7081, in pandas._libs.hashtable.PyObjectHashTable.get_item() File pandas/_libs/hashtable_class_helper.pxi:7089, in pandas._libs.hashtable.PyObjectHashTable.get_item() KeyError: ('foo', 'b') The above exception was the direct cause of the following exception: KeyError Traceback (most recent call last) File /opt/conda/lib/python3.10/site-packages/pandas/core/indexes/multi.py:3499, in MultiIndex.get_locs(self, seq) 3498 try: -> 3499 lvl_indexer = self._get_level_indexer(k, level=i, indexer=indexer) 3500 except (InvalidIndexError, TypeError, KeyError) as err: 3501 # InvalidIndexError e.g. non-hashable, fall back to treating 3502 # this as a sequence of labels 3503 # KeyError it can be ambiguous if this is a label or sequence 3504 # of labels 3505 # github.com/pandas-dev/pandas/issues/39424#issuecomment-871626708 File /opt/conda/lib/python3.10/site-packages/pandas/core/indexes/multi.py:3391, in MultiIndex._get_level_indexer(self, key, level, indexer) 3390 else: -> 3391 idx = self._get_loc_single_level_index(level_index, key) 3393 if level > 0 or self._lexsort_depth == 0: 3394 # Desired level is not sorted File /opt/conda/lib/python3.10/site-packages/pandas/core/indexes/multi.py:2980, in MultiIndex._get_loc_single_level_index(self, level_index, key) 2979 else: -> 2980 return level_index.get_loc(key) File /opt/conda/lib/python3.10/site-packages/pandas/core/indexes/base.py:3812, in Index.get_loc(self, key) 3811 raise InvalidIndexError(key) -> 3812 raise KeyError(key) from err 3813 except TypeError: 3814 # If we have a listlike key, _check_indexing_error will raise 3815 # InvalidIndexError. Otherwise we fall through and re-raise 3816 # the TypeError. KeyError: ('foo', 'b') During handling of the above exception, another exception occurred: KeyError Traceback (most recent call last) File /opt/conda/lib/python3.10/site-packages/pandas/core/indexes/base.py:3805, in Index.get_loc(self, key) 3804 try: -> 3805 return self._engine.get_loc(casted_key) 3806 except KeyError as err: File index.pyx:167, in pandas._libs.index.IndexEngine.get_loc() File index.pyx:196, in pandas._libs.index.IndexEngine.get_loc() File pandas/_libs/hashtable_class_helper.pxi:7081, in pandas._libs.hashtable.PyObjectHashTable.get_item() File pandas/_libs/hashtable_class_helper.pxi:7089, in pandas._libs.hashtable.PyObjectHashTable.get_item() KeyError: 'b' The above exception was the direct cause of the following exception: KeyError Traceback (most recent call last) Cell In[17], line 1 ----> 1 pivot_modin.loc[:, [('foo', 'b')]] File /opt/conda/lib/python3.10/site-packages/modin/logging/logger_decorator.py:144, in enable_logging.<locals>.decorator.<locals>.run_and_log(*args, **kwargs) 129 """ 130 Compute function with logging if Modin logging is enabled. 131 (...) 141 Any 142 """ 143 if LogMode.get() == "disable": --> 144 return obj(*args, **kwargs) 146 logger = get_logger() 147 logger.log(log_level, start_line) File /opt/conda/lib/python3.10/site-packages/modin/pandas/indexing.py:666, in _LocIndexer.__getitem__(self, key) 664 except KeyError: 665 pass --> 666 return self._helper_for__getitem__( 667 key, *self._parse_row_and_column_locators(key) 668 ) File /opt/conda/lib/python3.10/site-packages/modin/logging/logger_decorator.py:144, in enable_logging.<locals>.decorator.<locals>.run_and_log(*args, **kwargs) 129 """ 130 Compute function with logging if Modin logging is enabled. 131 (...) 141 Any 142 """ 143 if LogMode.get() == "disable": --> 144 return obj(*args, **kwargs) 146 logger = get_logger() 147 logger.log(log_level, start_line) File /opt/conda/lib/python3.10/site-packages/modin/pandas/indexing.py:712, in _LocIndexer._helper_for__getitem__(self, key, row_loc, col_loc, ndim) 709 if isinstance(row_loc, Series) and is_boolean_array(row_loc): 710 return self._handle_boolean_masking(row_loc, col_loc) --> 712 qc_view = self.qc.take_2d_labels(row_loc, col_loc) 713 result = self._get_pandas_object_from_qc_view( 714 qc_view, 715 row_multiindex_full_lookup, (...) 719 ndim, 720 ) 722 if isinstance(result, Series): File /opt/conda/lib/python3.10/site-packages/modin/core/storage_formats/pandas/query_compiler_caster.py:157, in apply_argument_cast.<locals>.cast_args(*args, **kwargs) 155 kwargs = cast_nested_args_to_current_qc_type(kwargs, current_qc) 156 args = cast_nested_args_to_current_qc_type(args, current_qc) --> 157 return obj(*args, **kwargs) File /opt/conda/lib/python3.10/site-packages/modin/logging/logger_decorator.py:144, in enable_logging.<locals>.decorator.<locals>.run_and_log(*args, **kwargs) 129 """ 130 Compute function with logging if Modin logging is enabled. 131 (...) 141 Any 142 """ 143 if LogMode.get() == "disable": --> 144 return obj(*args, **kwargs) 146 logger = get_logger() 147 logger.log(log_level, start_line) File /opt/conda/lib/python3.10/site-packages/modin/core/storage_formats/base/query_compiler.py:4217, in BaseQueryCompiler.take_2d_labels(self, index, columns) 4197 def take_2d_labels( 4198 self, 4199 index, 4200 columns, 4201 ): 4202 """ 4203 Take the given labels. 4204 (...) 4215 Subset of this QueryCompiler. 4216 """ -> 4217 row_lookup, col_lookup = self.get_positions_from_labels(index, columns) 4218 if isinstance(row_lookup, slice): 4219 ErrorMessage.catch_bugs_and_request_email( 4220 failure_condition=row_lookup != slice(None), 4221 extra_log=f"Only None-slices are acceptable as a slice argument in masking, got: {row_lookup}", 4222 ) File /opt/conda/lib/python3.10/site-packages/modin/core/storage_formats/pandas/query_compiler_caster.py:157, in apply_argument_cast.<locals>.cast_args(*args, **kwargs) 155 kwargs = cast_nested_args_to_current_qc_type(kwargs, current_qc) 156 args = cast_nested_args_to_current_qc_type(args, current_qc) --> 157 return obj(*args, **kwargs) File /opt/conda/lib/python3.10/site-packages/modin/logging/logger_decorator.py:144, in enable_logging.<locals>.decorator.<locals>.run_and_log(*args, **kwargs) 129 """ 130 Compute function with logging if Modin logging is enabled. 131 (...) 141 Any 142 """ 143 if LogMode.get() == "disable": --> 144 return obj(*args, **kwargs) 146 logger = get_logger() 147 logger.log(log_level, start_line) File /opt/conda/lib/python3.10/site-packages/modin/core/storage_formats/base/query_compiler.py:4314, in BaseQueryCompiler.get_positions_from_labels(self, row_loc, col_loc) 4312 axis_lookup = self.get_axis(axis).get_indexer_for(axis_loc) 4313 else: -> 4314 axis_lookup = self.get_axis(axis).get_locs(axis_loc) 4315 elif is_boolean_array(axis_loc): 4316 axis_lookup = boolean_mask_to_numeric(axis_loc) File /opt/conda/lib/python3.10/site-packages/pandas/core/indexes/multi.py:3513, in MultiIndex.get_locs(self, seq) 3509 raise err 3510 # GH 39424: Ignore not founds 3511 # GH 42351: No longer ignore not founds & enforced in 2.0 3512 # TODO: how to handle IntervalIndex level? (no test cases) -> 3513 item_indexer = self._get_level_indexer( 3514 x, level=i, indexer=indexer 3515 ) 3516 if lvl_indexer is None: 3517 lvl_indexer = _to_bool_indexer(item_indexer) File /opt/conda/lib/python3.10/site-packages/pandas/core/indexes/multi.py:3391, in MultiIndex._get_level_indexer(self, key, level, indexer) 3388 return slice(i, j, step) 3390 else: -> 3391 idx = self._get_loc_single_level_index(level_index, key) 3393 if level > 0 or self._lexsort_depth == 0: 3394 # Desired level is not sorted 3395 if isinstance(idx, slice): 3396 # test_get_loc_partial_timestamp_multiindex File /opt/conda/lib/python3.10/site-packages/pandas/core/indexes/multi.py:2980, in MultiIndex._get_loc_single_level_index(self, level_index, key) 2978 return -1 2979 else: -> 2980 return level_index.get_loc(key) File /opt/conda/lib/python3.10/site-packages/pandas/core/indexes/base.py:3812, in Index.get_loc(self, key) 3807 if isinstance(casted_key, slice) or ( 3808 isinstance(casted_key, abc.Iterable) 3809 and any(isinstance(x, slice) for x in casted_key) 3810 ): 3811 raise InvalidIndexError(key) -> 3812 raise KeyError(key) from err 3813 except TypeError: 3814 # If we have a listlike key, _check_indexing_error will raise 3815 # InvalidIndexError. Otherwise we fall through and re-raise 3816 # the TypeError. 3817 self._check_indexing_error(key) KeyError: 'b' ``` ### Expected Behavior what pandas does ``` ix 1 7 2 1 Name: (foo, b), dtype: int64 ``` ### Error Logs <details> ```python-traceback Replace this line with the error backtrace (if applicable). ``` </details> ### Installed Versions <details> INSTALLED VERSIONS ------------------ commit : 3e951a63084a9cbfd5e73f6f36653ee12d2a2bfa python : 3.10.14 python-bits : 64 OS : Linux OS-release : 5.15.154+ Version : #1 SMP Thu Jun 27 20:43:36 UTC 2024 machine : x86_64 processor : x86_64 byteorder : little LC_ALL : POSIX LANG : C.UTF-8 LOCALE : None.None Modin dependencies ------------------ modin : 0.32.0 ray : 2.24.0 dask : 2024.9.1 distributed : None pandas dependencies ------------------- pandas : 2.2.3 numpy : 1.26.4 pytz : 2024.1 dateutil : 2.9.0.post0 pip : 24.0 Cython : 3.0.10 sphinx : None IPython : 8.21.0 adbc-driver-postgresql: None adbc-driver-sqlite : None bs4 : 4.12.3 blosc : None bottleneck : None dataframe-api-compat : None fastparquet : None fsspec : 2024.6.1 html5lib : 1.1 hypothesis : None gcsfs : 2024.6.1 jinja2 : 3.1.4 lxml.etree : 5.3.0 matplotlib : 3.7.5 numba : 0.60.0 numexpr : 2.10.1 odfpy : None openpyxl : 3.1.5 pandas_gbq : None psycopg2 : None pymysql : None pyarrow : 17.0.0 pyreadstat : None pytest : 8.3.3 python-calamine : None pyxlsb : None s3fs : 2024.6.1 scipy : 1.14.1 sqlalchemy : 2.0.30 tables : 3.10.1 tabulate : 0.9.0 xarray : 2024.9.0 xlrd : None xlsxwriter : None zstandard : 0.23.0 tzdata : 2024.1 qtpy : None pyqt5 : None </details>
open
2024-11-13T08:15:15Z
2024-11-13T11:17:32Z
https://github.com/modin-project/modin/issues/7409
[ "bug 🦗", "Triage 🩹" ]
MarcoGorelli
1
recommenders-team/recommenders
deep-learning
1,813
[ASK] Recommendation algorithms leveraging user attributes as input
Hi Recommenders, Thank you for the interesting repository. I came across `recommenders` repository very recently. I am still exploring different algorithms. I have a particular interest to recommendation algorithms leveraging or taking user attributes i.e., gender, age, occupation as input. ### Description <!--- Describe your general ask in detail --> In my experiments, I am exploring the impact of user attributes as side information to a recommender system algorithms. So I am looking for a number of algorithms that are available in `recommenders`. Could you please point me / direct me to all algorithms that do take user attributes as input. Bests, _Manel._ ### Comments Please note that I have already tried Factorization machine.
closed
2022-08-18T14:36:28Z
2022-10-19T07:58:51Z
https://github.com/recommenders-team/recommenders/issues/1813
[ "help wanted" ]
SlokomManel
1
wandb/wandb
data-science
9,046
[Feature]: Better grouping of runs
### Description Hi, I would suggest an option to group better the runs. Let us suppose we have 3 methods with some common (hyper)-parameters such as LR, WD but also they have some specific parameters such as attr_A (values B,C,...), attr_0 (values 1,2,3,...), attr_i (values ii,iii,iv,...) The problem is to compare the runs not only within the group of specific method, but also globally. ### Suggested Solution One idea to group them in order to compare not only within the selected method, but also holistically is to group method,LR,WD,attr_A,attr_0,attr_i and where a method does not accept/is independent of some attribute then it is just null. Currently in wandb it does not work. So this feature would be related to https://github.com/wandb/wandb/issues/6460 But another, more general idea would be to allow group in a tree manner. | LR | WD | method |->attr_A | |-> attr_AA |->attr_B |-> attr_C etc. Another way to handle this (situation where in our space we have runs from different methods) is to allow to have multiple grouping options saved - just as in filter field. This would at least allow quickly compare runs within the same family of approach, without grouping every single time when we want to switch method between method with attr_A and method with attr_0. However, so many users would happy with just "null" solution. Many thanks
closed
2024-12-09T00:31:19Z
2024-12-14T00:22:10Z
https://github.com/wandb/wandb/issues/9046
[ "ty:feature", "a:app" ]
matekrk
3
0xTheProDev/fastapi-clean-example
pydantic
6
question on service-to-service
Is it an issue that we expose models directly? For example in BookService we expose model in get method, and we also use models of Author repository. This implies that we are allowed to use those interfaces - CRUD, read all properties, call other relations, etc. Is exposing schemas objects between domains is a better solution?
closed
2023-02-13T10:09:41Z
2023-04-25T07:10:49Z
https://github.com/0xTheProDev/fastapi-clean-example/issues/6
[]
Murtagy
1
kensho-technologies/graphql-compiler
graphql
698
register_macro_edge builds a schema for macro definitions every time its called
`register_macro_edge` calls `make_macro_edge_descriptor` which calls `get_and_validate_macro_edge_info` which calls `_validate_ast_with_builtin_graphql_validation` which calls `get_schema_for_macro_edge_definitions` which builds the macro edge definition schema. Building the macro edge definition schema involves copying the entire original schema so we probably want to avoid doing this every time we register a macro edge. We should probably make a MacroRegistry a dataclass and have a `post_init` method that creates a schema for macro edge definitions once.
open
2019-12-10T03:42:49Z
2019-12-10T03:43:30Z
https://github.com/kensho-technologies/graphql-compiler/issues/698
[ "enhancement" ]
pmantica1
0
explosion/spacy-course
jupyter
31
Chapter 4.4 evaluates correct with no entities
<img width="859" alt="Screen Shot 2019-05-30 at 1 12 58 am" src="https://user-images.githubusercontent.com/21038129/58568874-6729f480-8278-11e9-8802-730ec6ea13d2.png"> I put `doc.ents` instead of `entities` but it was still marked correct
closed
2019-05-29T15:16:23Z
2020-04-17T01:32:50Z
https://github.com/explosion/spacy-course/issues/31
[]
natashawatkins
3
kubeflow/katib
scikit-learn
1,581
[chore] Upgrade CRDs to apiextensions.k8s.io/v1
/kind feature **Describe the solution you'd like** [A clear and concise description of what you want to happen.] > The api group apiextensions.k8s.io/v1beta1 is no longer served in k8s 1.22 https://kubernetes.io/docs/reference/using-api/deprecation-guide/#customresourcedefinition-v122 > > kubeflow APIs need to be upgraded /cc @alculquicondor Maybe there is problem about https://github.com/kubernetes/apiextensions-apiserver/issues/50 **Anything else you would like to add:** [Miscellaneous information that will assist in solving the issue.]
closed
2021-07-19T03:27:14Z
2021-08-10T23:31:25Z
https://github.com/kubeflow/katib/issues/1581
[ "help wanted", "area/operator", "kind/feature" ]
gaocegege
2
python-visualization/folium
data-visualization
1,942
Add example pattern for pulling JsCode snippets from external javascript files
**Is your feature request related to a problem? Please describe.** I have found myself embedding a lot of javascript code via `JsCode` when using the `Realtime` plugin. This gets messy for a few reasons: - unit testing the javascript code is not possible - adding leaflet plugins can result in a huge amount of javascript code embedded inside python - and the code is just not as modular as it could be I'm wondering if there's a recommended way to solve this. **Describe the solution you'd like** A solution would allow one to reference specific functions from external javascript files within a `JsCode` object. It's not clear to me what would be better: whether to do this from within `folium` (using the API) or to use some external library to populate the string of javascript code that's passed to `JsCode` based on some javascript file and function. In either case, having an example in the `examples` folder would be great. **Describe alternatives you've considered** If nothing is changed about the `folium` API, this could just be done external to `folium`. As in, another library interprets a javascript file, and given a function name, the function's definition is returned as a string. Is this preferable to building the functionality into `folium`? If so, does anybody know of an existing library that can already do this? **Additional context** n/a **Implementation** n/a
closed
2024-04-30T17:03:24Z
2024-05-19T08:46:33Z
https://github.com/python-visualization/folium/issues/1942
[]
thomasegriffith
9
learning-at-home/hivemind
asyncio
158
Optimize the tests
Right now, our tests can take upwards of 10 minutes both in CircleCI and locally, which slows down the development workflow and leads to unnecessary context switches. We should find a way to reduce the time requirements and make sure it stays that way. * Identify and speed up the slow tests. Main culprits: multiple iterations in tests using random samples, large model sizes for DMoE tests. * All the tests in our CI pipelines run sequentially, which increases the runtime with the number of tests. It is possible to use [pytest-xdist](https://pypi.org/project/pytest-xdist/), since the default executor has 2 cores. * Add a global timeout to ensure that future tests don't introduce any regressions
closed
2021-02-28T15:35:48Z
2021-08-03T17:43:27Z
https://github.com/learning-at-home/hivemind/issues/158
[ "ci" ]
mryab
2
mwaskom/seaborn
data-science
3,608
0.13.1: test suite needs `husl` module
<details> <summary>Looks like test suite needs husl module</summary> ```console + PYTHONPATH=/home/tkloczko/rpmbuild/BUILDROOT/python-seaborn-0.13.1-2.fc35.x86_64/usr/lib64/python3.8/site-packages:/home/tkloczko/rpmbuild/BUILDROOT/python-seaborn-0.13.1-2.fc35.x86_64/usr/lib/python3.8/site-packages + /usr/bin/pytest -ra -m 'not network' -p no:cacheprovider ============================= test session starts ============================== platform linux -- Python 3.8.18, pytest-7.4.4, pluggy-1.3.0 rootdir: /home/tkloczko/rpmbuild/BUILD/seaborn-0.13.1 configfile: pyproject.toml collected 0 items / 34 errors ==================================== ERRORS ==================================== __________________ ERROR collecting tests/test_algorithms.py ___________________ ImportError while importing test module '/home/tkloczko/rpmbuild/BUILD/seaborn-0.13.1/tests/test_algorithms.py'. Hint: make sure your test modules/packages have valid Python names. Traceback: /usr/lib64/python3.8/importlib/__init__.py:127: in import_module return _bootstrap._gcd_import(name[level:], package, level) tests/test_algorithms.py:6: in <module> from seaborn import algorithms as algo seaborn/__init__.py:2: in <module> from .rcmod import * # noqa: F401,F403 seaborn/rcmod.py:5: in <module> from . import palettes seaborn/palettes.py:7: in <module> import husl E ModuleNotFoundError: No module named 'husl' ___________________ ERROR collecting tests/test_axisgrid.py ____________________ ImportError while importing test module '/home/tkloczko/rpmbuild/BUILD/seaborn-0.13.1/tests/test_axisgrid.py'. Hint: make sure your test modules/packages have valid Python names. Traceback: /usr/lib64/python3.8/importlib/__init__.py:127: in import_module return _bootstrap._gcd_import(name[level:], package, level) tests/test_axisgrid.py:11: in <module> from seaborn._base import categorical_order seaborn/__init__.py:2: in <module> from .rcmod import * # noqa: F401,F403 seaborn/rcmod.py:5: in <module> from . import palettes seaborn/palettes.py:7: in <module> import husl E ModuleNotFoundError: No module named 'husl' _____________________ ERROR collecting tests/test_base.py ______________________ ImportError while importing test module '/home/tkloczko/rpmbuild/BUILD/seaborn-0.13.1/tests/test_base.py'. Hint: make sure your test modules/packages have valid Python names. Traceback: /usr/lib64/python3.8/importlib/__init__.py:127: in import_module return _bootstrap._gcd_import(name[level:], package, level) tests/test_base.py:11: in <module> from seaborn.axisgrid import FacetGrid seaborn/__init__.py:2: in <module> from .rcmod import * # noqa: F401,F403 seaborn/rcmod.py:5: in <module> from . import palettes seaborn/palettes.py:7: in <module> import husl E ModuleNotFoundError: No module named 'husl' __________________ ERROR collecting tests/test_categorical.py __________________ ImportError while importing test module '/home/tkloczko/rpmbuild/BUILD/seaborn-0.13.1/tests/test_categorical.py'. Hint: make sure your test modules/packages have valid Python names. Traceback: /usr/lib64/python3.8/importlib/__init__.py:127: in import_module return _bootstrap._gcd_import(name[level:], package, level) tests/test_categorical.py:19: in <module> from seaborn import categorical as cat seaborn/__init__.py:2: in <module> from .rcmod import * # noqa: F401,F403 seaborn/rcmod.py:5: in <module> from . import palettes seaborn/palettes.py:7: in <module> import husl E ModuleNotFoundError: No module named 'husl' _________________ ERROR collecting tests/test_distributions.py _________________ ImportError while importing test module '/home/tkloczko/rpmbuild/BUILD/seaborn-0.13.1/tests/test_distributions.py'. Hint: make sure your test modules/packages have valid Python names. Traceback: /usr/lib64/python3.8/importlib/__init__.py:127: in import_module return _bootstrap._gcd_import(name[level:], package, level) tests/test_distributions.py:12: in <module> from seaborn import distributions as dist seaborn/__init__.py:2: in <module> from .rcmod import * # noqa: F401,F403 seaborn/rcmod.py:5: in <module> from . import palettes seaborn/palettes.py:7: in <module> import husl E ModuleNotFoundError: No module named 'husl' __________________ ERROR collecting tests/test_docstrings.py ___________________ ImportError while importing test module '/home/tkloczko/rpmbuild/BUILD/seaborn-0.13.1/tests/test_docstrings.py'. Hint: make sure your test modules/packages have valid Python names. Traceback: /usr/lib64/python3.8/importlib/__init__.py:127: in import_module return _bootstrap._gcd_import(name[level:], package, level) tests/test_docstrings.py:1: in <module> from seaborn._docstrings import DocstringComponents seaborn/__init__.py:2: in <module> from .rcmod import * # noqa: F401,F403 seaborn/rcmod.py:5: in <module> from . import palettes seaborn/palettes.py:7: in <module> import husl E ModuleNotFoundError: No module named 'husl' ____________________ ERROR collecting tests/test_matrix.py _____________________ ImportError while importing test module '/home/tkloczko/rpmbuild/BUILD/seaborn-0.13.1/tests/test_matrix.py'. Hint: make sure your test modules/packages have valid Python names. Traceback: /usr/lib64/python3.8/importlib/__init__.py:127: in import_module return _bootstrap._gcd_import(name[level:], package, level) tests/test_matrix.py:27: in <module> from seaborn import matrix as mat seaborn/__init__.py:2: in <module> from .rcmod import * # noqa: F401,F403 seaborn/rcmod.py:5: in <module> from . import palettes seaborn/palettes.py:7: in <module> import husl E ModuleNotFoundError: No module named 'husl' ___________________ ERROR collecting tests/test_miscplot.py ____________________ ImportError while importing test module '/home/tkloczko/rpmbuild/BUILD/seaborn-0.13.1/tests/test_miscplot.py'. Hint: make sure your test modules/packages have valid Python names. Traceback: /usr/lib64/python3.8/importlib/__init__.py:127: in import_module return _bootstrap._gcd_import(name[level:], package, level) tests/test_miscplot.py:3: in <module> from seaborn import miscplot as misc seaborn/__init__.py:2: in <module> from .rcmod import * # noqa: F401,F403 seaborn/rcmod.py:5: in <module> from . import palettes seaborn/palettes.py:7: in <module> import husl E ModuleNotFoundError: No module named 'husl' ____________________ ERROR collecting tests/test_objects.py ____________________ ImportError while importing test module '/home/tkloczko/rpmbuild/BUILD/seaborn-0.13.1/tests/test_objects.py'. Hint: make sure your test modules/packages have valid Python names. Traceback: /usr/lib64/python3.8/importlib/__init__.py:127: in import_module return _bootstrap._gcd_import(name[level:], package, level) tests/test_objects.py:1: in <module> import seaborn.objects seaborn/__init__.py:2: in <module> from .rcmod import * # noqa: F401,F403 seaborn/rcmod.py:5: in <module> from . import palettes seaborn/palettes.py:7: in <module> import husl E ModuleNotFoundError: No module named 'husl' ___________________ ERROR collecting tests/test_palettes.py ____________________ ImportError while importing test module '/home/tkloczko/rpmbuild/BUILD/seaborn-0.13.1/tests/test_palettes.py'. Hint: make sure your test modules/packages have valid Python names. Traceback: /usr/lib64/python3.8/importlib/__init__.py:127: in import_module return _bootstrap._gcd_import(name[level:], package, level) tests/test_palettes.py:8: in <module> from seaborn import palettes, utils, rcmod seaborn/__init__.py:2: in <module> from .rcmod import * # noqa: F401,F403 seaborn/rcmod.py:5: in <module> from . import palettes seaborn/palettes.py:7: in <module> import husl E ModuleNotFoundError: No module named 'husl' _____________________ ERROR collecting tests/test_rcmod.py _____________________ ImportError while importing test module '/home/tkloczko/rpmbuild/BUILD/seaborn-0.13.1/tests/test_rcmod.py'. Hint: make sure your test modules/packages have valid Python names. Traceback: /usr/lib64/python3.8/importlib/__init__.py:127: in import_module return _bootstrap._gcd_import(name[level:], package, level) tests/test_rcmod.py:7: in <module> from seaborn import rcmod, palettes, utils seaborn/__init__.py:2: in <module> from .rcmod import * # noqa: F401,F403 seaborn/rcmod.py:5: in <module> from . import palettes seaborn/palettes.py:7: in <module> import husl E ModuleNotFoundError: No module named 'husl' __________________ ERROR collecting tests/test_regression.py ___________________ ImportError while importing test module '/home/tkloczko/rpmbuild/BUILD/seaborn-0.13.1/tests/test_regression.py'. Hint: make sure your test modules/packages have valid Python names. Traceback: /usr/lib64/python3.8/importlib/__init__.py:127: in import_module return _bootstrap._gcd_import(name[level:], package, level) tests/test_regression.py:18: in <module> from seaborn import regression as lm seaborn/__init__.py:2: in <module> from .rcmod import * # noqa: F401,F403 seaborn/rcmod.py:5: in <module> from . import palettes seaborn/palettes.py:7: in <module> import husl E ModuleNotFoundError: No module named 'husl' __________________ ERROR collecting tests/test_relational.py ___________________ ImportError while importing test module '/home/tkloczko/rpmbuild/BUILD/seaborn-0.13.1/tests/test_relational.py'. Hint: make sure your test modules/packages have valid Python names. Traceback: /usr/lib64/python3.8/importlib/__init__.py:127: in import_module return _bootstrap._gcd_import(name[level:], package, level) tests/test_relational.py:12: in <module> from seaborn.palettes import color_palette seaborn/__init__.py:2: in <module> from .rcmod import * # noqa: F401,F403 seaborn/rcmod.py:5: in <module> from . import palettes seaborn/palettes.py:7: in <module> import husl E ModuleNotFoundError: No module named 'husl' __________________ ERROR collecting tests/test_statistics.py ___________________ ImportError while importing test module '/home/tkloczko/rpmbuild/BUILD/seaborn-0.13.1/tests/test_statistics.py'. Hint: make sure your test modules/packages have valid Python names. Traceback: /usr/lib64/python3.8/importlib/__init__.py:127: in import_module return _bootstrap._gcd_import(name[level:], package, level) tests/test_statistics.py:12: in <module> from seaborn._statistics import ( seaborn/__init__.py:2: in <module> from .rcmod import * # noqa: F401,F403 seaborn/rcmod.py:5: in <module> from . import palettes seaborn/palettes.py:7: in <module> import husl E ModuleNotFoundError: No module named 'husl' _____________________ ERROR collecting tests/test_utils.py _____________________ ImportError while importing test module '/home/tkloczko/rpmbuild/BUILD/seaborn-0.13.1/tests/test_utils.py'. Hint: make sure your test modules/packages have valid Python names. Traceback: /usr/lib64/python3.8/importlib/__init__.py:127: in import_module return _bootstrap._gcd_import(name[level:], package, level) tests/test_utils.py:23: in <module> from seaborn import utils, rcmod, scatterplot seaborn/__init__.py:2: in <module> from .rcmod import * # noqa: F401,F403 seaborn/rcmod.py:5: in <module> from . import palettes seaborn/palettes.py:7: in <module> import husl E ModuleNotFoundError: No module named 'husl' __________________ ERROR collecting tests/_core/test_data.py ___________________ ImportError while importing test module '/home/tkloczko/rpmbuild/BUILD/seaborn-0.13.1/tests/_core/test_data.py'. Hint: make sure your test modules/packages have valid Python names. Traceback: /usr/lib64/python3.8/importlib/__init__.py:127: in import_module return _bootstrap._gcd_import(name[level:], package, level) tests/_core/test_data.py:9: in <module> from seaborn._core.data import PlotData seaborn/__init__.py:2: in <module> from .rcmod import * # noqa: F401,F403 seaborn/rcmod.py:5: in <module> from . import palettes seaborn/palettes.py:7: in <module> import husl E ModuleNotFoundError: No module named 'husl' _________________ ERROR collecting tests/_core/test_groupby.py _________________ ImportError while importing test module '/home/tkloczko/rpmbuild/BUILD/seaborn-0.13.1/tests/_core/test_groupby.py'. Hint: make sure your test modules/packages have valid Python names. Traceback: /usr/lib64/python3.8/importlib/__init__.py:127: in import_module return _bootstrap._gcd_import(name[level:], package, level) tests/_core/test_groupby.py:8: in <module> from seaborn._core.groupby import GroupBy seaborn/__init__.py:2: in <module> from .rcmod import * # noqa: F401,F403 seaborn/rcmod.py:5: in <module> from . import palettes seaborn/palettes.py:7: in <module> import husl E ModuleNotFoundError: No module named 'husl' __________________ ERROR collecting tests/_core/test_moves.py __________________ ImportError while importing test module '/home/tkloczko/rpmbuild/BUILD/seaborn-0.13.1/tests/_core/test_moves.py'. Hint: make sure your test modules/packages have valid Python names. Traceback: /usr/lib64/python3.8/importlib/__init__.py:127: in import_module return _bootstrap._gcd_import(name[level:], package, level) tests/_core/test_moves.py:9: in <module> from seaborn._core.moves import Dodge, Jitter, Shift, Stack, Norm seaborn/__init__.py:2: in <module> from .rcmod import * # noqa: F401,F403 seaborn/rcmod.py:5: in <module> from . import palettes seaborn/palettes.py:7: in <module> import husl E ModuleNotFoundError: No module named 'husl' __________________ ERROR collecting tests/_core/test_plot.py ___________________ ImportError while importing test module '/home/tkloczko/rpmbuild/BUILD/seaborn-0.13.1/tests/_core/test_plot.py'. Hint: make sure your test modules/packages have valid Python names. Traceback: /usr/lib64/python3.8/importlib/__init__.py:127: in import_module return _bootstrap._gcd_import(name[level:], package, level) tests/_core/test_plot.py:17: in <module> from seaborn._core.plot import Plot, PlotConfig, Default seaborn/__init__.py:2: in <module> from .rcmod import * # noqa: F401,F403 seaborn/rcmod.py:5: in <module> from . import palettes seaborn/palettes.py:7: in <module> import husl E ModuleNotFoundError: No module named 'husl' _______________ ERROR collecting tests/_core/test_properties.py ________________ ImportError while importing test module '/home/tkloczko/rpmbuild/BUILD/seaborn-0.13.1/tests/_core/test_properties.py'. Hint: make sure your test modules/packages have valid Python names. Traceback: /usr/lib64/python3.8/importlib/__init__.py:127: in import_module return _bootstrap._gcd_import(name[level:], package, level) tests/_core/test_properties.py:11: in <module> from seaborn._core.rules import categorical_order seaborn/__init__.py:2: in <module> from .rcmod import * # noqa: F401,F403 seaborn/rcmod.py:5: in <module> from . import palettes seaborn/palettes.py:7: in <module> import husl E ModuleNotFoundError: No module named 'husl' __________________ ERROR collecting tests/_core/test_rules.py __________________ ImportError while importing test module '/home/tkloczko/rpmbuild/BUILD/seaborn-0.13.1/tests/_core/test_rules.py'. Hint: make sure your test modules/packages have valid Python names. Traceback: /usr/lib64/python3.8/importlib/__init__.py:127: in import_module return _bootstrap._gcd_import(name[level:], package, level) tests/_core/test_rules.py:7: in <module> from seaborn._core.rules import ( seaborn/__init__.py:2: in <module> from .rcmod import * # noqa: F401,F403 seaborn/rcmod.py:5: in <module> from . import palettes seaborn/palettes.py:7: in <module> import husl E ModuleNotFoundError: No module named 'husl' _________________ ERROR collecting tests/_core/test_scales.py __________________ ImportError while importing test module '/home/tkloczko/rpmbuild/BUILD/seaborn-0.13.1/tests/_core/test_scales.py'. Hint: make sure your test modules/packages have valid Python names. Traceback: /usr/lib64/python3.8/importlib/__init__.py:127: in import_module return _bootstrap._gcd_import(name[level:], package, level) tests/_core/test_scales.py:11: in <module> from seaborn._core.plot import Plot seaborn/__init__.py:2: in <module> from .rcmod import * # noqa: F401,F403 seaborn/rcmod.py:5: in <module> from . import palettes seaborn/palettes.py:7: in <module> import husl E ModuleNotFoundError: No module named 'husl' ________________ ERROR collecting tests/_core/test_subplots.py _________________ ImportError while importing test module '/home/tkloczko/rpmbuild/BUILD/seaborn-0.13.1/tests/_core/test_subplots.py'. Hint: make sure your test modules/packages have valid Python names. Traceback: /usr/lib64/python3.8/importlib/__init__.py:127: in import_module return _bootstrap._gcd_import(name[level:], package, level) tests/_core/test_subplots.py:6: in <module> from seaborn._core.subplots import Subplots seaborn/__init__.py:2: in <module> from .rcmod import * # noqa: F401,F403 seaborn/rcmod.py:5: in <module> from . import palettes seaborn/palettes.py:7: in <module> import husl E ModuleNotFoundError: No module named 'husl' __________________ ERROR collecting tests/_marks/test_area.py __________________ ImportError while importing test module '/home/tkloczko/rpmbuild/BUILD/seaborn-0.13.1/tests/_marks/test_area.py'. Hint: make sure your test modules/packages have valid Python names. Traceback: /usr/lib64/python3.8/importlib/__init__.py:127: in import_module return _bootstrap._gcd_import(name[level:], package, level) tests/_marks/test_area.py:7: in <module> from seaborn._core.plot import Plot seaborn/__init__.py:2: in <module> from .rcmod import * # noqa: F401,F403 seaborn/rcmod.py:5: in <module> from . import palettes seaborn/palettes.py:7: in <module> import husl E ModuleNotFoundError: No module named 'husl' __________________ ERROR collecting tests/_marks/test_bar.py ___________________ ImportError while importing test module '/home/tkloczko/rpmbuild/BUILD/seaborn-0.13.1/tests/_marks/test_bar.py'. Hint: make sure your test modules/packages have valid Python names. Traceback: /usr/lib64/python3.8/importlib/__init__.py:127: in import_module return _bootstrap._gcd_import(name[level:], package, level) tests/_marks/test_bar.py:9: in <module> from seaborn._core.plot import Plot seaborn/__init__.py:2: in <module> from .rcmod import * # noqa: F401,F403 seaborn/rcmod.py:5: in <module> from . import palettes seaborn/palettes.py:7: in <module> import husl E ModuleNotFoundError: No module named 'husl' __________________ ERROR collecting tests/_marks/test_base.py __________________ ImportError while importing test module '/home/tkloczko/rpmbuild/BUILD/seaborn-0.13.1/tests/_marks/test_base.py'. Hint: make sure your test modules/packages have valid Python names. Traceback: /usr/lib64/python3.8/importlib/__init__.py:127: in import_module return _bootstrap._gcd_import(name[level:], package, level) tests/_marks/test_base.py:10: in <module> from seaborn._marks.base import Mark, Mappable, resolve_color seaborn/__init__.py:2: in <module> from .rcmod import * # noqa: F401,F403 seaborn/rcmod.py:5: in <module> from . import palettes seaborn/palettes.py:7: in <module> import husl E ModuleNotFoundError: No module named 'husl' __________________ ERROR collecting tests/_marks/test_dot.py ___________________ ImportError while importing test module '/home/tkloczko/rpmbuild/BUILD/seaborn-0.13.1/tests/_marks/test_dot.py'. Hint: make sure your test modules/packages have valid Python names. Traceback: /usr/lib64/python3.8/importlib/__init__.py:127: in import_module return _bootstrap._gcd_import(name[level:], package, level) tests/_marks/test_dot.py:6: in <module> from seaborn.palettes import color_palette seaborn/__init__.py:2: in <module> from .rcmod import * # noqa: F401,F403 seaborn/rcmod.py:5: in <module> from . import palettes seaborn/palettes.py:7: in <module> import husl E ModuleNotFoundError: No module named 'husl' __________________ ERROR collecting tests/_marks/test_line.py __________________ ImportError while importing test module '/home/tkloczko/rpmbuild/BUILD/seaborn-0.13.1/tests/_marks/test_line.py'. Hint: make sure your test modules/packages have valid Python names. Traceback: /usr/lib64/python3.8/importlib/__init__.py:127: in import_module return _bootstrap._gcd_import(name[level:], package, level) tests/_marks/test_line.py:8: in <module> from seaborn._core.plot import Plot seaborn/__init__.py:2: in <module> from .rcmod import * # noqa: F401,F403 seaborn/rcmod.py:5: in <module> from . import palettes seaborn/palettes.py:7: in <module> import husl E ModuleNotFoundError: No module named 'husl' __________________ ERROR collecting tests/_marks/test_text.py __________________ ImportError while importing test module '/home/tkloczko/rpmbuild/BUILD/seaborn-0.13.1/tests/_marks/test_text.py'. Hint: make sure your test modules/packages have valid Python names. Traceback: /usr/lib64/python3.8/importlib/__init__.py:127: in import_module return _bootstrap._gcd_import(name[level:], package, level) tests/_marks/test_text.py:8: in <module> from seaborn._core.plot import Plot seaborn/__init__.py:2: in <module> from .rcmod import * # noqa: F401,F403 seaborn/rcmod.py:5: in <module> from . import palettes seaborn/palettes.py:7: in <module> import husl E ModuleNotFoundError: No module named 'husl' ______________ ERROR collecting tests/_stats/test_aggregation.py _______________ ImportError while importing test module '/home/tkloczko/rpmbuild/BUILD/seaborn-0.13.1/tests/_stats/test_aggregation.py'. Hint: make sure your test modules/packages have valid Python names. Traceback: /usr/lib64/python3.8/importlib/__init__.py:127: in import_module return _bootstrap._gcd_import(name[level:], package, level) tests/_stats/test_aggregation.py:8: in <module> from seaborn._core.groupby import GroupBy seaborn/__init__.py:2: in <module> from .rcmod import * # noqa: F401,F403 seaborn/rcmod.py:5: in <module> from . import palettes seaborn/palettes.py:7: in <module> import husl E ModuleNotFoundError: No module named 'husl' ________________ ERROR collecting tests/_stats/test_counting.py ________________ ImportError while importing test module '/home/tkloczko/rpmbuild/BUILD/seaborn-0.13.1/tests/_stats/test_counting.py'. Hint: make sure your test modules/packages have valid Python names. Traceback: /usr/lib64/python3.8/importlib/__init__.py:127: in import_module return _bootstrap._gcd_import(name[level:], package, level) tests/_stats/test_counting.py:8: in <module> from seaborn._core.groupby import GroupBy seaborn/__init__.py:2: in <module> from .rcmod import * # noqa: F401,F403 seaborn/rcmod.py:5: in <module> from . import palettes seaborn/palettes.py:7: in <module> import husl E ModuleNotFoundError: No module named 'husl' ________________ ERROR collecting tests/_stats/test_density.py _________________ ImportError while importing test module '/home/tkloczko/rpmbuild/BUILD/seaborn-0.13.1/tests/_stats/test_density.py'. Hint: make sure your test modules/packages have valid Python names. Traceback: /usr/lib64/python3.8/importlib/__init__.py:127: in import_module return _bootstrap._gcd_import(name[level:], package, level) tests/_stats/test_density.py:7: in <module> from seaborn._core.groupby import GroupBy seaborn/__init__.py:2: in <module> from .rcmod import * # noqa: F401,F403 seaborn/rcmod.py:5: in <module> from . import palettes seaborn/palettes.py:7: in <module> import husl E ModuleNotFoundError: No module named 'husl' _________________ ERROR collecting tests/_stats/test_order.py __________________ ImportError while importing test module '/home/tkloczko/rpmbuild/BUILD/seaborn-0.13.1/tests/_stats/test_order.py'. Hint: make sure your test modules/packages have valid Python names. Traceback: /usr/lib64/python3.8/importlib/__init__.py:127: in import_module return _bootstrap._gcd_import(name[level:], package, level) tests/_stats/test_order.py:8: in <module> from seaborn._core.groupby import GroupBy seaborn/__init__.py:2: in <module> from .rcmod import * # noqa: F401,F403 seaborn/rcmod.py:5: in <module> from . import palettes seaborn/palettes.py:7: in <module> import husl E ModuleNotFoundError: No module named 'husl' _______________ ERROR collecting tests/_stats/test_regression.py _______________ ImportError while importing test module '/home/tkloczko/rpmbuild/BUILD/seaborn-0.13.1/tests/_stats/test_regression.py'. Hint: make sure your test modules/packages have valid Python names. Traceback: /usr/lib64/python3.8/importlib/__init__.py:127: in import_module return _bootstrap._gcd_import(name[level:], package, level) tests/_stats/test_regression.py:9: in <module> from seaborn._core.groupby import GroupBy seaborn/__init__.py:2: in <module> from .rcmod import * # noqa: F401,F403 seaborn/rcmod.py:5: in <module> from . import palettes seaborn/palettes.py:7: in <module> import husl E ModuleNotFoundError: No module named 'husl' =========================== short test summary info ============================ ERROR tests/test_algorithms.py ERROR tests/test_axisgrid.py ERROR tests/test_base.py ERROR tests/test_categorical.py ERROR tests/test_distributions.py ERROR tests/test_docstrings.py ERROR tests/test_matrix.py ERROR tests/test_miscplot.py ERROR tests/test_objects.py ERROR tests/test_palettes.py ERROR tests/test_rcmod.py ERROR tests/test_regression.py ERROR tests/test_relational.py ERROR tests/test_statistics.py ERROR tests/test_utils.py ERROR tests/_core/test_data.py ERROR tests/_core/test_groupby.py ERROR tests/_core/test_moves.py ERROR tests/_core/test_plot.py ERROR tests/_core/test_properties.py ERROR tests/_core/test_rules.py ERROR tests/_core/test_scales.py ERROR tests/_core/test_subplots.py ERROR tests/_marks/test_area.py ERROR tests/_marks/test_bar.py ERROR tests/_marks/test_base.py ERROR tests/_marks/test_dot.py ERROR tests/_marks/test_line.py ERROR tests/_marks/test_text.py ERROR tests/_stats/test_aggregation.py ERROR tests/_stats/test_counting.py ERROR tests/_stats/test_density.py ERROR tests/_stats/test_order.py ERROR tests/_stats/test_regression.py !!!!!!!!!!!!!!!!!!! Interrupted: 34 errors during collection !!!!!!!!!!!!!!!!!!! ============================== 34 errors in 5.02s ============================== ``` </details> Issue is that this module is not maintained since 2015 https://pypi.org/project/husl/#history
closed
2024-01-01T10:39:07Z
2024-01-01T13:11:23Z
https://github.com/mwaskom/seaborn/issues/3608
[]
kloczek
1
donnemartin/data-science-ipython-notebooks
deep-learning
16
Add SAWS: A Supercharged AWS Command Line Interface (CLI) to AWS Section.
closed
2015-10-04T10:40:50Z
2016-05-18T02:09:55Z
https://github.com/donnemartin/data-science-ipython-notebooks/issues/16
[ "feature-request" ]
donnemartin
1
deeppavlov/DeepPavlov
nlp
1,693
Github Security Lab Vulnerability Contact
Greetings DeepPavlov maintainers, Github has found a potentail vulnerability in DeepPavlov. Please let us know of a point of contact so that we can discuss this privately. We have the [Private Vulnerability Reporting](https://docs.github.com/en/code-security/security-advisories/working-with-repository-security-advisories/configuring-private-vulnerability-reporting-for-a-repository) feature if you do not have an established point of contact. Thanks, Kevin
open
2024-08-20T00:54:31Z
2024-08-20T00:54:31Z
https://github.com/deeppavlov/DeepPavlov/issues/1693
[ "bug" ]
Kwstubbs
0
serengil/deepface
machine-learning
845
Can't detect faces when calling represent trough API and Facenet detector
Here's the image being used: https://cdn.alboompro.com/5dc181967fac6b000152f3ae_650b3f428274300001d1815a/medium/whatsapp_image_2023-09-18_at_16-41-06.jpeg?v=1 I'm sending it to an API that running the dockerized image present in the repository on an EKS cluster (no GPU). When I send a request to the represent endpoint with the given image as the img parameter and using Facenet as a face decetor (tested with VGG, same error) it gives me the following error: ``` 20/Sep/2023:18:47:46 +0000] "POST /represent HTTP/1.1" 200 43 "-" "Insomnia/2023.5.6" [2023-09-20 18:48:06,321] ERROR in app: Exception on /represent [POST] Traceback (most recent call last): File "/usr/local/lib/python3.8/site-packages/flask/app.py", line 2190, in wsgi_app response = self.full_dispatch_request() File "/usr/local/lib/python3.8/site-packages/flask/app.py", line 1486, in full_dispatch_request rv = self.handle_user_exception(e) File "/usr/local/lib/python3.8/site-packages/flask/app.py", line 1484, in full_dispatch_request rv = self.dispatch_request() File "/usr/local/lib/python3.8/site-packages/flask/app.py", line 1469, in dispatch_request return self.ensure_sync(self.view_functions[rule.endpoint])(**view_args) File "/app/routes.py", line 28, in represent obj = service.represent( File "/app/service.py", line 6, in represent embedding_objs = DeepFace.represent( File "/app/deepface/DeepFace.py", line 663, in represent img_objs = functions.extract_faces( File "/app/deepface/commons/functions.py", line 163, in extract_faces raise ValueError( ValueError: Face could not be detected. Please confirm that the picture is a face photo or consider to set enforce_detection param to False. ``` Any leads on how to improve face detection? Could it be a hardware limitation problem (like if can't detect face because lack of memory allocation or something). Not sure if disable enforce_detection is a option here.
closed
2023-09-20T18:57:45Z
2024-01-11T03:09:50Z
https://github.com/serengil/deepface/issues/845
[]
elisoncampos
6
yinkaisheng/Python-UIAutomation-for-Windows
automation
198
如何快速的查找元素?
作者你好,我是刚刚接触这个库,觉得非常好用;我想问一下,如何快速的查找控件。 我通过光标获取到了元素控件,然后我把元素控件里面的Name,automationId, ClassName, ControlType这几个属性存储在了本地文件。我想实现快速的根据存储信息查找元素。我目前是通过这种方式找的,但是感觉不是很快,下面是部分代码截图: tips: 是通过读取本地存储的元素信息进行查找的。 with open(self._locators_path, 'r') as f: locators_data = json.loads(f.read())[name] control = auto.GetRootControl() def compare(locator): def find(child, depth): if child.Name == locator['Name'] and child.ClassName == locator['ClassName'] and child.ControlTypeName == locator['ControlType'] and child.AutomationId == locator['AutomationId']: print(child.Name) return True else: return False return find l = len(locators_data) for index in range(l): if index == l - 1: control = auto.FindControl(control, compare(locators_data[index]), depth) if control: return WindowsElement(control) else: control = auto.FindControl(control, compare(locators_data[index]), 1) return None
open
2022-03-18T12:10:18Z
2023-06-23T10:05:42Z
https://github.com/yinkaisheng/Python-UIAutomation-for-Windows/issues/198
[]
shidecheng
2
tensorpack/tensorpack
tensorflow
788
FullyConnected output
An issue has to be one of the following: 1. Unexpected Problems / Potential Bugs For any unexpected problems, __PLEASE ALWAYS INCLUDE__: 1. What you did: ``` xw = FullyConnected('FC', inputs, W_init=tf.random_uniform_initializer(0.0, 1.0), b_init=tf.constant_initializer(0.0), **kwargs) w = xw.variables.W ``` ``` AttributeError: 'Tensor' object has no attribute 'variables' ``` 2. Have you made any changes to code? Paste them if any: ``` inputs = symbf.batch_flatten(inputs) with rename_get_variable({'kernel': 'W', 'bias': 'b'}): layer = tf.layers.Dense( units=units, activation=activation, use_bias=use_bias, kernel_initializer=kernel_initializer, bias_initializer=bias_initializer, kernel_regularizer=kernel_regularizer, bias_regularizer=bias_regularizer, activity_regularizer=activity_regularizer) ret = layer.apply(inputs, scope=tf.get_variable_scope()) ret.variables = VariableHolder(W=layer.kernel) if use_bias: ret.variables.b = layer.bias # return tf.identity(ret, name='output') return ret ```
closed
2018-06-09T06:58:12Z
2018-06-09T19:09:47Z
https://github.com/tensorpack/tensorpack/issues/788
[ "duplicate" ]
kamwoh
1
tensorflow/datasets
numpy
5,390
[data request] <poker>
* Name of dataset: <name> * URL of dataset: <url> * License of dataset: <license type> * Short description of dataset and use case(s): <description> Folks who would also like to see this dataset in `tensorflow/datasets`, please thumbs-up so the developers can know which requests to prioritize. And if you'd like to contribute the dataset (thank you!), see our [guide to adding a dataset](https://github.com/tensorflow/datasets/blob/master/docs/add_dataset.md).
closed
2024-04-26T12:43:40Z
2024-04-26T12:44:30Z
https://github.com/tensorflow/datasets/issues/5390
[ "dataset request" ]
Loicgrd
0
pyppeteer/pyppeteer
automation
416
the different with pyppeteer and puppeteer-case by case
url:https://open.jd.com/ Using puppeteer to request the link response page content is richer than pyppeteer. The page content produced by pyppeteer is same with the page source code, but puppeteer produced the page content is after rendering. you can try! version: chromium-browser-Chromium 90.0.4430.212 Fedora Project pyppeteer-1.0.2 node-v14.13.1 puppeteer-5.5.0 pyppeteer response content length 19782 puppeteer response content length 35414
closed
2022-09-27T04:10:52Z
2022-09-27T09:05:33Z
https://github.com/pyppeteer/pyppeteer/issues/416
[]
runningabcd
0
numba/numba
numpy
9,278
Searching `%PREFIX%\Library` for new CTK Windows packages
In PR ( https://github.com/numba/numba/pull/7255 ) logic was added to Numba to handle the new-style CTK Conda packages on the `nvidia` channel (and now also on `conda-forge`) In particular this added a series of `get_nvidia...` functions to search for libraries as part of `numba/cuda /cuda_paths.py`. For example https://github.com/numba/numba/blob/a4664180ddc91e4c8a37dd06324f4e229a76df91/numba/cuda/cuda_paths.py#L82 <hr> While it does look like these have some logic for searching for Windows libraries (like looking in `bin` instead of `lib`). It appears they start with `%PREFIX%` instead of `%PREFIX%\Library` (where Conda packages typically [put content on Windows]( https://docs.conda.io/projects/conda-build/en/latest/user-guide/environment-variables.html#environment-variables-set-during-the-build-process )) Admittedly the `nvidia` package do use `%PREFIX%` to structure content. Though most Conda packages (include the CTK packages in `conda-forge`) do not do this using `%PREFIX%\Library` instead. In the future `nvidia` packages will match this behavior. Given this wonder if we could search `%PREFIX%\Library` for the CTK first and then search `%PREFIX%` second. This would handle both structures seamlessly
closed
2023-11-11T03:23:01Z
2023-12-11T16:10:20Z
https://github.com/numba/numba/issues/9278
[ "needtriage", "CUDA", "bug - build/packaging" ]
jakirkham
4
ijl/orjson
numpy
139
Regression in parsing JSON between 3.4.1 and 3.4.2
```Python import orjson s = '{"cf_status_firefox67": "---", "cf_status_firefox57": "verified"}' orjson.loads(s)["cf_status_firefox57"] ``` This works in 3.4.1, throws `KeyError: 'cf_status_firefox57'` in 3.4.2.
closed
2020-10-30T13:55:18Z
2020-10-30T14:11:03Z
https://github.com/ijl/orjson/issues/139
[]
marco-c
2
schemathesis/schemathesis
graphql
2,504
Specifying --hypothesis-seed=# does not recreate tests with the same data
### Checklist - [x] I checked the [FAQ section](https://schemathesis.readthedocs.io/en/stable/faq.html#frequently-asked-questions) of the documentation - [x] I looked for similar issues in the [issue tracker](https://github.com/schemathesis/schemathesis/issues) - [x] I am using the latest version of Schemathesis ### Describe the bug When running the CLI SchemaThesis tests, we cannot reproduce errors due to the changing data sent to the API. When specifying the seed, the initial several tests do use the same data, but eventually diverges into completely different data sets unique to each run. ### To Reproduce 1. Run this command twice: st run --base-url=http://host.docker.internal:3050/api --checks=all --data-generation-method=all --target=all --max-failures=5000 --validate-schema=true --debug-output-file=/mnt/debug.json --show-trace --code-sample-style=curl --cassette-path /mnt/cassette.yaml --fixups=all --stateful=links --sanitize-output=true --contrib-unique-data --contrib-openapi-fill-missing-examples --hypothesis-max-examples=25 --hypothesis-phases=generate,explicit --hypothesis-verbosity=verbose --experimental=openapi-3.1 --generation-allow-x00=false --schemathesis-io-telemetry=false --hypothesis-seed=115111099930844871414873197742186425200 -H Authorization: Bearer TOKEN /mnt/api-specification.json' 2. Cassette file is different lengths, different number of tests were run, different data was sent to the API Please include a minimal API schema causing this issue: ```yaml { "openapi": "3.0.1", "info": { "title": "System APIs", "description": "DESCRIPTION REDACTED", "version": "1.00.00" }, "servers": [ { "url": "/api" } ], "paths": { .... ``` ### Expected behavior The documentation for the run seed is sparse, but it indicates that the seed should be used to reproduce test results. We are not seeing this behavior. ### Environment ``` - OS: [Windows in Docker] - Python version: [Using schemathesis/schemathesis:stable] - Schemathesis version: [Using schemathesis/schemathesis:stable] - Spec version: [e.g. Open API 3.0.1] ``` ### Additional context Where the two test runs begin to diverge, one test run will send URLs like: uri: '[http://host.docker.internal:3050/api/PATHREDACTED?0=False&0=False&=true&%C2%94%F1%B3%9C%B3%C2%BC=0'] Whereas the equivalent other test run at the same line in the cassette file will be: uri: '[http://host.docker.internal:3050/api/PATHREDACTED?ID=0']
open
2024-10-09T20:26:42Z
2024-10-20T01:56:38Z
https://github.com/schemathesis/schemathesis/issues/2504
[ "Type: Bug", "Status: Needs Triage" ]
hydroculator
2
ansible/awx
automation
15,071
Job output not refreshing automatically in AWX 24.1.0 wit operator 2.14.0
### Please confirm the following - [X] I agree to follow this project's [code of conduct](https://docs.ansible.com/ansible/latest/community/code_of_conduct.html). - [X] I have checked the [current issues](https://github.com/ansible/awx/issues) for duplicates. - [X] I understand that AWX is open source software provided for free and that I might not receive a timely response. - [X] I am **NOT** reporting a (potential) security vulnerability. (These should be emailed to `security@ansible.com` instead.) ### Bug Summary HI, the bug is identical like the one described here: [https://github.com/ansible/awx/issues/9747](https://github.com/ansible/awx/issues/9747) - I did all the checks. So I removed completelly the older version and installed everything anew from the scratch. No luck. - I did not even especially installed the NGINX as ingress with hostNetwork: true what I usually do at home lab. - also does not work. - I tested it with hostNetwork: true. Does not work. - I tested it without NGINX ingress. Does not work. - I tested it with NGINX ingress. Does not work. - I also tested it with external DNS by modifying the coreDNS. Does not work. - I tested it also with NGINX Proxy Manager. Does not work. No above solution works. I mean this functionality just does not work and it seems it is related to websocket. Operator version 2.14.0 AWX version 24.1.0 Database clean installation: PostgreSQL 15 k3s version: v1.28.8+k3s1 OS: Debian 12 with kernel: 6.1.0-18-amd64 I see identical errors that the websocket is not working as expected like it is described in the URL I provided. The additional error: The error Uncaught DOMException: Failed to execute 'send' on 'WebSocket': Still in CONNECTING state indicates that the code is trying to send a message through the WebSocket before the connection has been fully established. This happens because the send method is called immediately after creating the WebSocket, but before the connection has completed the handshake with the server. To resolve this issue, you should ensure that the send operation in the ws.onopen callback occurs only after the WebSocket connection is fully open. The onopen event is designed to handle this scenario, as it's triggered when the WebSocket connection has been established successfully. Here's how you can modify the code to ensure the send method is called at the right time: ``` let ws; export default function connectJobSocket({ type, id }, onMessage) { ws = new WebSocket( `${window.location.protocol === 'http:' ? 'ws:' : 'wss:'}//${ window.location.host }${window.location.pathname}websocket/` ); ws.onopen = () => { console.debug('WebSocket connection established.'); const xrftoken = `; ${document.cookie}` .split('; csrftoken=') .pop() .split(';') .shift(); const eventGroup = `${type}_events`; // Ensure the connection is open before sending data if (ws.readyState === WebSocket.OPEN) { ws.send( JSON.stringify({ xrftoken, groups: { jobs: ['summary', 'status_changed'], [eventGroup]: [id] }, }) ); } }; ws.onmessage = (e) => { onMessage(JSON.parse(e.data)); }; ws.onclose = (e) => { console.debug('WebSocket closed:', e.code); if (e.code !== 1000) { console.debug('Reconnecting WebSocket...'); setTimeout(() => { connectJobSocket({ type, id }, onMessage); }, 1000); } }; ws.onerror = (err) => { console.debug('WebSocket error:', err); ws.close(); }; } export function closeWebSocket() { if (ws) { ws.close(); } } ``` Version AWX 23.9.0 with Operator 2.12.2 and PostgreSQL 13 is working without any issue. It does not matter do you use NGINX Proxy Manager, ingress or without ingress or do you modify the coreDNS it just works. So I decided to not upgrade to the newest AWX operator, AWX and PostgreSQL. ### AWX version 24.1.0 ### Select the relevant components - [X] UI - [X] UI (tech preview) - [ ] API - [ ] Docs - [ ] Collection - [ ] CLI - [ ] Other ### Installation method kubernetes ### Modifications yes ### Ansible version 2.14.3 ### Operating system Debian 12 ### Web browser Chrome ### Steps to reproduce - install newest k3s using this command: ```bash curl -sfL https://get.k3s.io | INSTALL_K3S_EXEC="--disable traefik,servicelb" K3S_KUBECONFIG_MODE="644" sh - ``` - Do not modify coreDNS. Do not install ingress. - Install HELM ```bash curl https://raw.githubusercontent.com/helm/helm/main/scripts/get-helm-3 | bash ``` - Install the newest AWX version with newest AWX operator from the scratch using the below ansible playbook: ```yaml --- - name: Install AWX hosts: localhost become: yes vars: awx_namespace: awx project_directory: /var/lib/awx/projects storage_size: 2Gi tasks: - name: Download Kustomize with curl ansible.builtin.shell: cmd: curl -s "https://raw.githubusercontent.com/kubernetes-sigs/kustomize/master/hack/install_kustomize.sh" | bash creates: /usr/local/bin/kustomize - name: Move Kustomize to the /usr/local/bin directory ansible.builtin.shell: cmd: mv kustomize /usr/local/bin args: creates: /usr/local/bin/kustomize - name: Ensure namespace {{ awx_namespace }} exists ansible.builtin.shell: cmd: kubectl create namespace {{ awx_namespace }} --dry-run=client -o yaml | kubectl apply -f - - name: Generate AWX resource file ansible.builtin.copy: dest: "./awx.yaml" content: | --- apiVersion: awx.ansible.com/v1beta1 kind: AWX metadata: name: awx spec: service_type: nodeport nodeport_port: 30060 projects_persistence: true projects_existing_claim: awx-projects-claim - name: Fetch latest release tag of AWX Operator ansible.builtin.shell: cmd: curl -s https://api.github.com/repos/ansible/awx-operator/releases/latest | grep tag_name | cut -d '"' -f 4 register: release_tag changed_when: false - name: Generate PV and PVC resource files ansible.builtin.copy: dest: "{{ item.dest }}" content: "{{ item.content }}" loop: - dest: "./pv.yml" content: | --- apiVersion: v1 kind: PersistentVolume metadata: name: awx-projects-volume spec: accessModes: - ReadWriteOnce persistentVolumeReclaimPolicy: Retain capacity: storage: {{ storage_size }} storageClassName: awx-projects-volume hostPath: path: {{ project_directory }} - dest: "./pvc.yml" content: | --- apiVersion: v1 kind: PersistentVolumeClaim metadata: name: awx-projects-claim spec: accessModes: - ReadWriteOnce volumeMode: Filesystem resources: requests: storage: {{ storage_size }} storageClassName: awx-projects-volume - name: Create kustomization.yaml ansible.builtin.copy: dest: "./kustomization.yaml" content: | --- apiVersion: kustomize.config.k8s.io/v1beta1 kind: Kustomization resources: - github.com/ansible/awx-operator/config/default?ref={{ release_tag.stdout }} - pv.yml - pvc.yml - awx.yaml images: - name: quay.io/ansible/awx-operator newTag: {{ release_tag.stdout }} namespace: {{ awx_namespace }} - name: Apply Kustomize configuration ansible.builtin.shell: cmd: kustomize build . | kubectl apply -f - ``` Perform a check using http://IP_ADDRESS:30060 ### Expected results Working standard output in jobs view. ### Actual results standard output in jobs does not work and it does not scroll the results of running ansible playbook. Websocket returns the same error like it is presented in the URL I provided. ### Additional information ``` connectJobSocket.js:17 Uncaught DOMException: Failed to execute 'send' on 'WebSocket': Still in CONNECTING state. at WebSocket.onopen (https://awx.sysadmin.homes/static/js/main.13ab8549.js:2:3449626) onopen @ connectJobSocket.js:17 ``` ``` react-dom.production.min.js:54 Uncaught Error: Minified React error #188; visit https://reactjs.org/docs/error-decoder.html?invariant=188 for the full message or use the non-minified dev environment for full errors and additional helpful warnings. at react-dom.production.min.js:54:67 at Ze (react-dom.production.min.js:55:217) at t.findDOMNode (react-dom.production.min.js:295:212) at t.value (CellMeasurer.js:102:33) at CellMeasurer.js:48:41 ``` See logs from awx-web pod ```bash 10.42.0.1 - - [05/Apr/2024:15:53:26 +0000] "GET /api/v2/jobs/39/job_events/?not__stdout=&order_by=counter&page=1&page_size=50 HTTP/1.1" 200 52 "https://awx.sysadmin.homes/" "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/123.0.0.0 Safari/537.36" "10.10.0.114" [pid: 21|app: 0|req: 204/1288] 10.42.0.1 () {70 vars in 1359 bytes} [Fri Apr 5 15:53:25 2024] GET /api/v2/jobs/39/job_events/?not__stdout=&order_by=counter&page=1&page_size=50 => generated 52 bytes in 376 msecs (HTTP/1.1 200) 15 headers in 600 bytes (1 switches on core 0) 127.0.0.1:54360 - - [05/Apr/2024:15:45:19] "WSCONNECTING /websocket/" - - 127.0.0.1:54360 - - [05/Apr/2024:15:45:19] "WSCONNECT /websocket/" - - 127.0.0.1:54308 - - [05/Apr/2024:15:45:28] "WSDISCONNECT /websocket/" - - 127.0.0.1:54360 - - [05/Apr/2024:15:45:28] "WSDISCONNECT /websocket/" - - 127.0.0.1:49622 - - [05/Apr/2024:15:45:28] "WSCONNECTING /websocket/" - - 127.0.0.1:49622 - - [05/Apr/2024:15:45:28] "WSCONNECT /websocket/" - - 127.0.0.1:49622 - - [05/Apr/2024:15:45:30] "WSDISCONNECT /websocket/" - - 127.0.0.1:49636 - - [05/Apr/2024:15:45:30] "WSCONNECTING /websocket/" - - 127.0.0.1:49636 - - [05/Apr/2024:15:45:30] "WSCONNECT /websocket/" - - 127.0.0.1:49638 - - [05/Apr/2024:15:45:31] "WSCONNECTING /websocket/" - - 127.0.0.1:49638 - - [05/Apr/2024:15:45:31] "WSDISCONNECT /websocket/" - - 127.0.0.1:49652 - - [05/Apr/2024:15:45:32] "WSCONNECTING /websocket/" - - 127.0.0.1:49652 - - [05/Apr/2024:15:45:32] "WSCONNECT /websocket/" - - 127.0.0.1:49664 - - [05/Apr/2024:15:45:32] "WSCONNECTING /websocket/" - - 127.0.0.1:49664 - - [05/Apr/2024:15:45:32] "WSCONNECT /websocket/" - - 127.0.0.1:49664 - - [05/Apr/2024:15:45:36] "WSDISCONNECT /websocket/" - - 127.0.0.1:49202 - - [05/Apr/2024:15:45:37] "WSCONNECTING /websocket/" - - 127.0.0.1:49202 - - [05/Apr/2024:15:45:37] "WSCONNECT /websocket/" - - 127.0.0.1:49208 - - [05/Apr/2024:15:45:37] "WSCONNECTING /websocket/" - - 127.0.0.1:49208 - - [05/Apr/2024:15:45:37] "WSCONNECT /websocket/" - - 127.0.0.1:49202 - - [05/Apr/2024:15:45:37] "WSDISCONNECT /websocket/" - - 127.0.0.1:49208 - - [05/Apr/2024:15:45:37] "WSDISCONNECT /websocket/" - - 127.0.0.1:49216 - - [05/Apr/2024:15:45:38] "WSCONNECTING /websocket/" - - 127.0.0.1:49216 - - [05/Apr/2024:15:45:38] "WSCONNECT /websocket/" - - 127.0.0.1:49232 - - [05/Apr/2024:15:45:38] "WSCONNECTING /websocket/" - - 127.0.0.1:49232 - - [05/Apr/2024:15:45:38] "WSCONNECT /websocket/" - - 127.0.0.1:49636 - - [05/Apr/2024:15:46:15] "WSDISCONNECT /websocket/" - - 127.0.0.1:49232 - - [05/Apr/2024:15:46:15] "WSDISCONNECT /websocket/" - - 127.0.0.1:57920 - - [05/Apr/2024:15:46:17] "WSCONNECTING /websocket/" - - 127.0.0.1:57920 - - [05/Apr/2024:15:46:17] "WSCONNECT /websocket/" - - 127.0.0.1:57920 - - [05/Apr/2024:15:46:20] "WSDISCONNECT /websocket/" - - 127.0.0.1:57934 - - [05/Apr/2024:15:46:20] "WSCONNECTING /websocket/" - - 127.0.0.1:57934 - - [05/Apr/2024:15:46:20] "WSCONNECT /websocket/" - - 127.0.0.1:57934 - - [05/Apr/2024:15:48:20] "WSDISCONNECT /websocket/" - - 127.0.0.1:39102 - - [05/Apr/2024:15:48:20] "WSCONNECTING /websocket/" - - 127.0.0.1:39102 - - [05/Apr/2024:15:48:20] "WSCONNECT /websocket/" - - 127.0.0.1:39102 - - [05/Apr/2024:15:48:48] "WSDISCONNECT /websocket/" - - 127.0.0.1:47586 - - [05/Apr/2024:15:48:48] "WSCONNECTING /websocket/" - - 127.0.0.1:47586 - - [05/Apr/2024:15:48:48] "WSCONNECT /websocket/" - - 127.0.0.1:47586 - - [05/Apr/2024:15:48:55] "WSDISCONNECT /websocket/" - - 127.0.0.1:47592 - - [05/Apr/2024:15:48:55] "WSCONNECTING /websocket/" - - 127.0.0.1:47592 - - [05/Apr/2024:15:48:55] "WSCONNECT /websocket/" - - 127.0.0.1:45654 - - [05/Apr/2024:15:48:56] "WSCONNECTING /websocket/" - - 127.0.0.1:45654 - - [05/Apr/2024:15:48:56] "WSCONNECT /websocket/" - - 127.0.0.1:45666 - - [05/Apr/2024:15:48:56] "WSCONNECTING /websocket/" - - 127.0.0.1:45654 - - [05/Apr/2024:15:48:56] "WSDISCONNECT /websocket/" - - 127.0.0.1:45666 - - [05/Apr/2024:15:48:56] "WSDISCONNECT /websocket/" - - 127.0.0.1:45672 - - [05/Apr/2024:15:48:57] "WSCONNECTING /websocket/" - - 127.0.0.1:45672 - - [05/Apr/2024:15:48:57] "WSCONNECT /websocket/" - - 127.0.0.1:45686 - - [05/Apr/2024:15:48:57] "WSCONNECTING /websocket/" - - 127.0.0.1:45686 - - [05/Apr/2024:15:48:57] "WSCONNECT /websocket/" - - 127.0.0.1:47592 - - [05/Apr/2024:15:51:04] "WSDISCONNECT /websocket/" - - 127.0.0.1:45686 - - [05/Apr/2024:15:51:04] "WSDISCONNECT /websocket/" - - 127.0.0.1:47042 - - [05/Apr/2024:15:51:05] "WSCONNECTING /websocket/" - - 127.0.0.1:47042 - - [05/Apr/2024:15:51:05] "WSCONNECT /websocket/" - - 127.0.0.1:47042 - - [05/Apr/2024:15:51:07] "WSDISCONNECT /websocket/" - - 127.0.0.1:36972 - - [05/Apr/2024:15:51:07] "WSCONNECTING /websocket/" - - 127.0.0.1:36972 - - [05/Apr/2024:15:51:07] "WSCONNECT /websocket/" - - 127.0.0.1:36972 - - [05/Apr/2024:15:51:16] "WSDISCONNECT /websocket/" - - 127.0.0.1:50854 - - [05/Apr/2024:15:51:16] "WSCONNECTING /websocket/" - - 127.0.0.1:50854 - - [05/Apr/2024:15:51:16] "WSCONNECT /websocket/" - - 127.0.0.1:50854 - - [05/Apr/2024:15:51:21] "WSDISCONNECT /websocket/" - - 127.0.0.1:50860 - - [05/Apr/2024:15:51:22] "WSCONNECTING /websocket/" - - 127.0.0.1:50860 - - [05/Apr/2024:15:51:22] "WSCONNECT /websocket/" - - 127.0.0.1:50862 - - [05/Apr/2024:15:51:23] "WSCONNECTING /websocket/" - - 127.0.0.1:50862 - - [05/Apr/2024:15:51:23] "WSCONNECT /websocket/" - - 127.0.0.1:50864 - - [05/Apr/2024:15:51:23] "WSCONNECTING /websocket/" - - 127.0.0.1:50864 - - [05/Apr/2024:15:51:23] "WSCONNECT /websocket/" - - 127.0.0.1:50862 - - [05/Apr/2024:15:51:23] "WSDISCONNECT /websocket/" - - 127.0.0.1:50864 - - [05/Apr/2024:15:51:23] "WSDISCONNECT /websocket/" - - 127.0.0.1:50872 - - [05/Apr/2024:15:51:24] "WSCONNECTING /websocket/" - - 127.0.0.1:50872 - - [05/Apr/2024:15:51:24] "WSCONNECT /websocket/" - - 127.0.0.1:50878 - - [05/Apr/2024:15:51:24] "WSCONNECTING /websocket/" - - 127.0.0.1:50878 - - [05/Apr/2024:15:51:24] "WSCONNECT /websocket/" - - 127.0.0.1:50860 - - [05/Apr/2024:15:51:35] "WSDISCONNECT /websocket/" - - 127.0.0.1:50878 - - [05/Apr/2024:15:51:35] "WSDISCONNECT /websocket/" - - 127.0.0.1:38166 - - [05/Apr/2024:15:51:35] "WSCONNECTING /websocket/" - - 127.0.0.1:38166 - - [05/Apr/2024:15:51:35] "WSCONNECT /websocket/" - - 127.0.0.1:38166 - - [05/Apr/2024:15:51:38] "WSDISCONNECT /websocket/" - - 127.0.0.1:52776 - - [05/Apr/2024:15:51:38] "WSCONNECTING /websocket/" - - 127.0.0.1:52776 - - [05/Apr/2024:15:51:38] "WSCONNECT /websocket/" - - 127.0.0.1:52776 - - [05/Apr/2024:15:52:45] "WSDISCONNECT /websocket/" - - 127.0.0.1:54772 - - [05/Apr/2024:15:52:45] "WSCONNECTING /websocket/" - - 127.0.0.1:54772 - - [05/Apr/2024:15:52:45] "WSCONNECT /websocket/" - - 127.0.0.1:54772 - - [05/Apr/2024:15:52:51] "WSDISCONNECT /websocket/" - - 127.0.0.1:43496 - - [05/Apr/2024:15:52:52] "WSCONNECTING /websocket/" - - 127.0.0.1:43496 - - [05/Apr/2024:15:52:52] "WSCONNECT /websocket/" - - 127.0.0.1:43502 - - [05/Apr/2024:15:52:53] "WSCONNECTING /websocket/" - - 127.0.0.1:43502 - - [05/Apr/2024:15:52:53] "WSCONNECT /websocket/" - - 127.0.0.1:43518 - - [05/Apr/2024:15:52:53] "WSCONNECTING /websocket/" - - 127.0.0.1:43518 - - [05/Apr/2024:15:52:53] "WSCONNECT /websocket/" - - 127.0.0.1:43502 - - [05/Apr/2024:15:52:53] "WSDISCONNECT /websocket/" - - 127.0.0.1:43518 - - [05/Apr/2024:15:52:53] "WSDISCONNECT /websocket/" - - 127.0.0.1:43522 - - [05/Apr/2024:15:52:54] "WSCONNECTING /websocket/" - - 127.0.0.1:43522 - - [05/Apr/2024:15:52:54] "WSCONNECT /websocket/" - - 127.0.0.1:43538 - - [05/Apr/2024:15:52:54] "WSCONNECTING /websocket/" - - 127.0.0.1:43538 - - [05/Apr/2024:15:52:54] "WSCONNECT /websocket/" - - 127.0.0.1:43538 - - [05/Apr/2024:15:53:19] "WSDISCONNECT /websocket/" - - 127.0.0.1:36982 - - [05/Apr/2024:15:53:21] "WSCONNECTING /websocket/" - - 127.0.0.1:36982 - - [05/Apr/2024:15:53:21] "WSCONNECT /websocket/" - - 127.0.0.1:36992 - - [05/Apr/2024:15:53:21] "WSCONNECTING /websocket/" - - 127.0.0.1:36992 - - [05/Apr/2024:15:53:21] "WSCONNECT /websocket/" - - 127.0.0.1:43496 - - [05/Apr/2024:15:53:22] "WSDISCONNECT /websocket/" - - 127.0.0.1:36992 - - [05/Apr/2024:15:53:22] "WSDISCONNECT /websocket/" - - 127.0.0.1:37002 - - [05/Apr/2024:15:53:22] "WSCONNECTING /websocket/" - - 127.0.0.1:37002 - - [05/Apr/2024:15:53:22] "WSCONNECT /websocket/" - - 127.0.0.1:37002 - - [05/Apr/2024:15:53:24] "WSDISCONNECT /websocket/" - - 127.0.0.1:37008 - - [05/Apr/2024:15:53:24] "WSCONNECTING /websocket/" - - 127.0.0.1:37008 - - [05/Apr/2024:15:53:24] "WSCONNECT /websocket/" - - 127.0.0.1:37022 - - [05/Apr/2024:15:53:25] "WSCONNECTING /websocket/" - - 127.0.0.1:37022 - - [05/Apr/2024:15:53:25] "WSCONNECT /websocket/" - - 127.0.0.1:37022 - - [05/Apr/2024:15:53:25] "WSDISCONNECT /websocket/" - - 10.42.0.1 - - [05/Apr/2024:15:53:29 +0000] "GET /websocket/ HTTP/1.1" 101 207 "-" "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/123.0.0.0 Safari/537.36" "10.10.0.114" 10.42.0.1 - - [05/Apr/2024:15:53:30 +0000] "GET /websocket/ HTTP/1.1" 101 29 "-" "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/123.0.0.0 Safari/537.36" "10.10.0.114" 10.42.0.1 - - [05/Apr/2024:15:53:30 +0000] "GET /websocket/ HTTP/1.1" 101 29 "-" "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/123.0.0.0 Safari/537.36" "10.10.0.114" 10.42.0.1 - - [05/Apr/2024:15:53:31 +0000] "GET /api/v2/jobs/39/job_events/?not__stdout=&order_by=counter&page=1&page_size=50 HTTP/1.1" 200 4049 "https://awx.sysadmin.homes/" "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/123.0.0.0 Safari/537.36" "10.10.0.114" [pid: 20|app: 0|req: 218/1289] 10.42.0.1 () {70 vars in 1359 bytes} [Fri Apr 5 15:53:30 2024] GET /api/v2/jobs/39/job_events/?not__stdout=&order_by=counter&page=1&page_size=50 => generated 4049 bytes in 731 msecs (HTTP/1.1 200) 15 headers in 602 bytes (1 switches on core 0) ``` logs from google chrome browser console in developer tools ``` Failed to load resource: the server responded with a status of 404 () /api/v2/workflow_jobs/62/workflow_nodes/?page=1&page_size=200:1 Failed to load resource: the server responded with a status of 404 () /api/v2/workflow_jobs/62/workflow_nodes/?page=1&page_size=200:1 Failed to load resource: the server responded with a status of 404 () requestCommon.ts:20 GET https://awx.sysadmin.homes/api/v2/workflow_jobs/62/workflow_nodes/?page=1&page_size=200 404 (Not Found) He @ requestCommon.ts:20 (anonimowa) @ useGet.tsx:55 t @ index.mjs:653 (anonimowa) @ index.mjs:671 (anonimowa) @ index.mjs:613 (anonimowa) @ index.mjs:245 (anonimowa) @ index.mjs:398 t.isPaused.A.revalidateOnFocus.A.revalidateOnReconnect.t.onErrorRetry.retryCount @ index.mjs:329 Pokaż jeszcze 6 ramek Pokaż mniej requestCommon.ts:20 GET https://awx.sysadmin.homes/api/v2/workflow_jobs/62/workflow_nodes/?page=1&page_size=200 404 (Not Found) ``` See logs from k3s cluster pod for awx-web ```bash 10.42.0.1 - - [05/Apr/2024:14:59:39 +0000] "GET /websocket/ HTTP/1.1" 404 3878 "-" "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/123.0.0.0 Safari/537.36" "10.10.0.114" 10.42.0.1 - - [05/Apr/2024:14:59:50 +0000] "GET /websocket/ HTTP/1.1" 101 322 "-" "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/123.0.0.0 Safari/537.36" "10.10.0.114" 10.42.0.1 - - [05/Apr/2024:14:59:50 +0000] "OPTIONS /api/v2/unified_jobs/ HTTP/1.1" 200 11658 "https://awx.sysadmin.homes/" "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/123.0.0.0 Safari/537.36" "10.10.0.114" [pid: 20|app: 0|req: 141/842] 10.42.0.1 () {72 vars in 1293 bytes} [Fri Apr 5 14:59:50 2024] OPTIONS /api/v2/unified_jobs/ => generated 11658 bytes in 194 msecs (HTTP/1.1 200) 14 headers in 580 bytes (1 switches on core 0) 10.42.0.1 - - [05/Apr/2024:14:59:50 +0000] "OPTIONS /api/v2/inventory_sources/ HTTP/1.1" 200 24146 "https://awx.sysadmin.homes/" "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/123.0.0.0 Safari/537.36" "10.10.0.114" [pid: 24|app: 0|req: 191/843] 10.42.0.1 () {72 vars in 1303 bytes} [Fri Apr 5 14:59:50 2024] OPTIONS /api/v2/inventory_sources/ => generated 24146 bytes in 410 msecs (HTTP/1.1 200) 14 headers in 586 bytes (1 switches on core 0) 10.42.0.1 - - [05/Apr/2024:14:59:51 +0000] "GET /api/v2/unified_jobs/?not__launch_type=sync&order_by=-finished&page=1&page_size=20 HTTP/1.1" 200 27264 "https://awx.sysadmin.homes/" "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/123.0.0.0 Safari/537.36" "10.10.0.114" [pid: 23|app: 0|req: 260/844] 10.42.0.1 () {70 vars in 1369 bytes} [Fri Apr 5 14:59:50 2024] GET /api/v2/unified_jobs/?not__launch_type=sync&order_by=-finished&page=1&page_size=20 => generated 27264 bytes in 585 msecs (HTTP/1.1 200) 14 headers in 580 bytes (1 switches on core 0) 10.42.0.1 - - [05/Apr/2024:14:59:56 +0000] "GET /api/v2/jobs/9/relaunch/ HTTP/1.1" 200 68 "https://awx.sysadmin.homes/" "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/123.0.0.0 Safari/537.36" "10.10.0.114" [pid: 23|app: 0|req: 261/845] 10.42.0.1 () {70 vars in 1254 bytes} [Fri Apr 5 14:59:56 2024] GET /api/v2/jobs/9/relaunch/ => generated 68 bytes in 341 msecs (HTTP/1.1 200) 14 headers in 583 bytes (1 switches on core 0) 2024-04-05 14:59:57,986 INFO [e7d81c60ac1a4b08af2363573ae59f3a] awx.analytics.job_lifecycle job-11 created 10.42.0.1 - - [05/Apr/2024:14:59:58 +0000] "POST /api/v2/jobs/9/relaunch/ HTTP/1.1" 201 2937 "https://awx.sysadmin.homes/" "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/123.0.0.0 Safari/537.36" "10.10.0.114" [pid: 23|app: 0|req: 262/846] 10.42.0.1 () {76 vars in 1374 bytes} [Fri Apr 5 14:59:56 2024] POST /api/v2/jobs/9/relaunch/ => generated 2937 bytes in 2210 msecs (HTTP/1.1 201) 15 headers in 618 bytes (1 switches on core 0) 10.42.0.1 - - [05/Apr/2024:14:59:58 +0000] "GET /websocket/ HTTP/1.1" 101 350 "-" "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/123.0.0.0 Safari/537.36" "10.10.0.114" 10.42.0.1 - - [05/Apr/2024:14:59:59 +0000] "GET /api/v2/unified_jobs/?id__in=11&not__launch_type=sync&order_by=-finished&page=1&page_size=20 HTTP/1.1" 200 2884 "https://awx.sysadmin.homes/" "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/123.0.0.0 Safari/537.36" "10.10.0.114" [pid: 20|app: 0|req: 142/847] 10.42.0.1 () {70 vars in 1389 bytes} [Fri Apr 5 14:59:58 2024] GET /api/v2/unified_jobs/?id__in=11&not__launch_type=sync&order_by=-finished&page=1&page_size=20 => generated 2884 bytes in 577 msecs (HTTP/1.1 200) 14 headers in 579 bytes (1 switches on core 0) 10.42.0.1 - - [05/Apr/2024:14:59:59 +0000] "GET /api/v2/unified_jobs/?id=11 HTTP/1.1" 200 2884 "https://awx.sysadmin.homes/" "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/123.0.0.0 Safari/537.36" "10.10.0.114" [pid: 23|app: 0|req: 263/848] 10.42.0.1 () {70 vars in 1259 bytes} [Fri Apr 5 14:59:58 2024] GET /api/v2/unified_jobs/?id=11 => generated 2884 bytes in 688 msecs (HTTP/1.1 200) 14 headers in 579 bytes (1 switches on core 0) 10.42.0.1 - - [05/Apr/2024:14:59:59 +0000] "GET /api/v2/jobs/11/ HTTP/1.1" 200 3026 "https://awx.sysadmin.homes/" "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/123.0.0.0 Safari/537.36" "10.10.0.114" [pid: 23|app: 0|req: 264/849] 10.42.0.1 () {70 vars in 1238 bytes} [Fri Apr 5 14:59:59 2024] GET /api/v2/jobs/11/ => generated 3026 bytes in 331 msecs (HTTP/1.1 200) 14 headers in 587 bytes (1 switches on core 0) 10.42.0.1 - - [05/Apr/2024:15:00:00 +0000] "OPTIONS /api/v2/jobs/11/job_events/ HTTP/1.1" 200 12315 "https://awx.sysadmin.homes/" "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/123.0.0.0 Safari/537.36" "10.10.0.114" [pid: 23|app: 0|req: 265/850] 10.42.0.1 () {72 vars in 1305 bytes} [Fri Apr 5 14:59:59 2024] OPTIONS /api/v2/jobs/11/job_events/ => generated 12315 bytes in 356 msecs (HTTP/1.1 200) 15 headers in 603 bytes (1 switches on core 0) [pid: 21|app: 0|req: 139/851] 10.42.0.1 () {70 vars in 1358 bytes} [Fri Apr 5 15:00:00 2024] GET /api/v2/jobs/11/job_events/?not__stdout=&order_by=counter&page=1&page_size=50 => generated 52 bytes in 351 msecs (HTTP/1.1 200) 15 headers in 600 bytes (1 switches on core 0) 10.42.0.1 - - [05/Apr/2024:15:00:00 +0000] "GET /api/v2/jobs/11/job_events/?not__stdout=&order_by=counter&page=1&page_size=50 HTTP/1.1" 200 52 "https://awx.sysadmin.homes/" "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/123.0.0.0 Safari/537.36" "10.10.0.114" [pid: 23|app: 0|req: 266/852] 10.42.0.1 () {72 vars in 1293 bytes} [Fri Apr 5 15:00:00 2024] OPTIONS /api/v2/unified_jobs/ => generated 11658 bytes in 393 msecs (HTTP/1.1 200) 14 headers in 580 bytes (1 switches on core 0) 10.42.0.1 - - [05/Apr/2024:15:00:00 +0000] "OPTIONS /api/v2/unified_jobs/ HTTP/1.1" 200 11658 "https://awx.sysadmin.homes/" "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/123.0.0.0 Safari/537.36" "10.10.0.114" 10.42.0.1 - - [05/Apr/2024:15:00:00 +0000] "OPTIONS /api/v2/inventory_sources/ HTTP/1.1" 200 24146 "https://awx.sysadmin.homes/" "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/123.0.0.0 Safari/537.36" "10.10.0.114" [pid: 22|app: 0|req: 115/853] 10.42.0.1 () {72 vars in 1303 bytes} [Fri Apr 5 15:00:00 2024] OPTIONS /api/v2/inventory_sources/ => generated 24146 bytes in 646 msecs (HTTP/1.1 200) 14 headers in 586 bytes (1 switches on core 0) 10.42.0.1 - - [05/Apr/2024:15:00:01 +0000] "GET /api/v2/unified_jobs/?not__launch_type=sync&order_by=-finished&page=1&page_size=20 HTTP/1.1" 200 32260 "https://awx.sysadmin.homes/" "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/123.0.0.0 Safari/537.36" "10.10.0.114" [pid: 20|app: 0|req: 143/854] 10.42.0.1 () {70 vars in 1369 bytes} [Fri Apr 5 15:00:00 2024] GET /api/v2/unified_jobs/?not__launch_type=sync&order_by=-finished&page=1&page_size=20 => generated 32260 bytes in 1164 msecs (HTTP/1.1 200) 14 headers in 580 bytes (1 switches on core 0) 10.42.0.1 - - [05/Apr/2024:15:00:30 +0000] "GET /websocket/ HTTP/1.1" 101 251 "-" "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/123.0.0.0 Safari/537.36" "10.10.0.114" [pid: 23|app: 0|req: 267/855] 10.42.0.1 () {70 vars in 1260 bytes} [Fri Apr 5 15:00:30 2024] GET /api/v2/project_updates/12/ => generated 5601 bytes in 567 msecs (HTTP/1.1 200) 14 headers in 587 bytes (1 switches on core 0) 10.42.0.1 - - [05/Apr/2024:15:00:31 +0000] "GET /api/v2/project_updates/12/ HTTP/1.1" 200 5601 "https://awx.sysadmin.homes/" "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/123.0.0.0 Safari/537.36" "10.10.0.114" 10.42.0.1 - - [05/Apr/2024:15:00:31 +0000] "OPTIONS /api/v2/project_updates/12/events/ HTTP/1.1" 200 12382 "https://awx.sysadmin.homes/" "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/123.0.0.0 Safari/537.36" "10.10.0.114" [pid: 20|app: 0|req: 144/856] 10.42.0.1 () {72 vars in 1319 bytes} [Fri Apr 5 15:00:31 2024] OPTIONS /api/v2/project_updates/12/events/ => generated 12382 bytes in 264 msecs (HTTP/1.1 200) 15 headers in 603 bytes (1 switches on core 0) 10.42.0.1 - - [05/Apr/2024:15:00:31 +0000] "GET /api/v2/project_updates/12/events/?not__stdout=&order_by=counter&page=1&page_size=50 HTTP/1.1" 200 32639 "https://awx.sysadmin.homes/" "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/123.0.0.0 Safari/537.36" "10.10.0.114" [pid: 22|app: 0|req: 116/857] 10.42.0.1 () {70 vars in 1373 bytes} [Fri Apr 5 15:00:31 2024] GET /api/v2/project_updates/12/events/?not__stdout=&order_by=counter&page=1&page_size=50 => generated 32639 bytes in 342 msecs (HTTP/1.1 200) 15 headers in 603 bytes (1 switches on core 0) 10.42.0.1 - - [05/Apr/2024:15:00:40 +0000] "GET /websocket/ HTTP/1.1" 101 195 "-" "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/123.0.0.0 Safari/537.36" "10.10.0.114" 10.42.0.1 - - [05/Apr/2024:15:00:40 +0000] "OPTIONS /api/v2/unified_jobs/ HTTP/1.1" 200 11658 "https://awx.sysadmin.homes/" "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/123.0.0.0 Safari/537.36" "10.10.0.114" [pid: 21|app: 0|req: 140/858] 10.42.0.1 () {72 vars in 1293 bytes} [Fri Apr 5 15:00:40 2024] OPTIONS /api/v2/unified_jobs/ => generated 11658 bytes in 299 msecs (HTTP/1.1 200) 14 headers in 580 bytes (1 switches on core 0) [pid: 22|app: 0|req: 117/859] 10.42.0.1 () {72 vars in 1303 bytes} [Fri Apr 5 15:00:40 2024] OPTIONS /api/v2/inventory_sources/ => generated 24146 bytes in 546 msecs (HTTP/1.1 200) 14 headers in 586 bytes (1 switches on core 0) 10.42.0.1 - - [05/Apr/2024:15:00:40 +0000] "OPTIONS /api/v2/inventory_sources/ HTTP/1.1" 200 24146 "https://awx.sysadmin.homes/" "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/123.0.0.0 Safari/537.36" "10.10.0.114" 10.42.0.1 - - [05/Apr/2024:15:00:41 +0000] "GET /api/v2/unified_jobs/?not__launch_type=sync&order_by=-finished&page=1&page_size=20 HTTP/1.1" 200 32590 "https://awx.sysadmin.homes/" "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/123.0.0.0 Safari/537.36" "10.10.0.114" [pid: 23|app: 0|req: 268/860] 10.42.0.1 () {70 vars in 1368 bytes} [Fri Apr 5 15:00:40 2024] GET /api/v2/unified_jobs/?not__launch_type=sync&order_by=-finished&page=1&page_size=20 => generated 32590 bytes in 1479 msecs (HTTP/1.1 200) 14 headers in 580 bytes (1 switches on core 0) 10.42.0.1 - - [05/Apr/2024:15:00:42 +0000] "GET /websocket/ HTTP/1.1" 101 237 "-" "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/123.0.0.0 Safari/537.36" "10.10.0.114" 10.42.0.1 - - [05/Apr/2024:15:00:43 +0000] "GET /api/v2/jobs/11/ HTTP/1.1" 200 6618 "https://awx.sysadmin.homes/" "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/123.0.0.0 Safari/537.36" "10.10.0.114" [pid: 24|app: 0|req: 192/861] 10.42.0.1 () {70 vars in 1238 bytes} [Fri Apr 5 15:00:42 2024] GET /api/v2/jobs/11/ => generated 6618 bytes in 732 msecs (HTTP/1.1 200) 14 headers in 587 bytes (1 switches on core 0) 10.42.0.1 - - [05/Apr/2024:15:00:43 +0000] "OPTIONS /api/v2/jobs/11/job_events/ HTTP/1.1" 200 12315 "https://awx.sysadmin.homes/" "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/123.0.0.0 Safari/537.36" "10.10.0.114" [pid: 23|app: 0|req: 269/862] 10.42.0.1 () {72 vars in 1305 bytes} [Fri Apr 5 15:00:43 2024] OPTIONS /api/v2/jobs/11/job_events/ => generated 12315 bytes in 232 msecs (HTTP/1.1 200) 15 headers in 603 bytes (1 switches on core 0) [pid: 23|app: 0|req: 270/863] 10.42.0.1 () {70 vars in 1359 bytes} [Fri Apr 5 15:00:43 2024] GET /api/v2/jobs/11/job_events/?not__stdout=&order_by=counter&page=1&page_size=50 => generated 179025 bytes in 167 msecs (HTTP/1.1 200) 15 headers in 604 bytes (1 switches on core 0) 10.42.0.1 - - [05/Apr/2024:15:00:43 +0000] "GET /api/v2/jobs/11/job_events/?not__stdout=&order_by=counter&page=1&page_size=50 HTTP/1.1" 200 179025 "https://awx.sysadmin.homes/" "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/123.0.0.0 Safari/537.36" "10.10.0.114" 10.42.0.1 - - [05/Apr/2024:15:01:28 +0000] "GET /websocket/ HTTP/1.1" 101 235 "-" "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/123.0.0.0 Safari/537.36" "10.10.0.114" 10.42.0.1 - - [05/Apr/2024:15:01:30 +0000] "GET /websocket/ HTTP/1.1" 101 223 "-" "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/123.0.0.0 Safari/537.36" "10.10.0.114" 10.42.0.1 - - [05/Apr/2024:15:01:30 +0000] "OPTIONS /api/v2/unified_jobs/ HTTP/1.1" 200 11658 "https://awx.sysadmin.homes/" "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/123.0.0.0 Safari/537.36" "10.10.0.114" [pid: 24|app: 0|req: 193/864] 10.42.0.1 () {72 vars in 1293 bytes} [Fri Apr 5 15:01:30 2024] OPTIONS /api/v2/unified_jobs/ => generated 11658 bytes in 408 msecs (HTTP/1.1 200) 14 headers in 580 bytes (1 switches on core 0) 10.42.0.1 - - [05/Apr/2024:15:01:30 +0000] "OPTIONS /api/v2/inventory_sources/ HTTP/1.1" 200 24146 "https://awx.sysadmin.homes/" "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/123.0.0.0 Safari/537.36" "10.10.0.114" [pid: 23|app: 0|req: 271/865] 10.42.0.1 () {72 vars in 1303 bytes} [Fri Apr 5 15:01:30 2024] OPTIONS /api/v2/inventory_sources/ => generated 24146 bytes in 569 msecs (HTTP/1.1 200) 14 headers in 586 bytes (1 switches on core 0) 10.42.0.1 - - [05/Apr/2024:15:01:31 +0000] "GET /api/v2/unified_jobs/?not__launch_type=sync&order_by=-finished&page=1&page_size=20 HTTP/1.1" 200 32615 "https://awx.sysadmin.homes/" "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/123.0.0.0 Safari/537.36" "10.10.0.114" [pid: 21|app: 0|req: 141/866] 10.42.0.1 () {70 vars in 1369 bytes} [Fri Apr 5 15:01:30 2024] GET /api/v2/unified_jobs/?not__launch_type=sync&order_by=-finished&page=1&page_size=20 => generated 32615 bytes in 775 msecs (HTTP/1.1 200) 14 headers in 580 bytes (1 switches on core 0) ``` The log snippets indicate interactions with various API endpoints and websocket connections under the /websocket/ path. Here's an analysis of the relevant parts and possible issues: Websocket Connection Codes (101): The HTTP status code 101 in your logs suggests that websocket connections are being initiated and possibly established ("Switching Protocols"). However, there's an initial 404 error for the websocket endpoint, which could indicate a misconfiguration at some point in time. Initial 404 Error: The first attempt to access /websocket/ resulted in a 404 (Not Found) error. This could imply that either the websocket service wasn't ready at that moment or there was a misconfiguration in the URL or routing. Successful Connections: Subsequent attempts to connect to the websocket endpoint returned a 101 status, which means the server accepted the request to switch protocols from HTTP to WebSockets. Other API Requests: The log shows successful HTTP requests (status 200) to various API endpoints, indicating that the regular HTTP API seems to be functioning well.
closed
2024-04-06T08:05:20Z
2024-05-29T15:03:23Z
https://github.com/ansible/awx/issues/15071
[ "type:bug", "component:ui", "needs_triage", "community", "component:ui_next" ]
sysadmin-info
6
BayesWitnesses/m2cgen
scikit-learn
582
How to use model for jpg photo?
Hello. I converted a model into pure python, which I trained to determine the presence or absence of an object. ``` import os import pickle import sys from skimage.io import imread from skimage.transform import resize import numpy as np from sklearn import svm from sklearn.model_selection import train_test_split from sklearn.model_selection import GridSearchCV from sklearn.svm import SVC from sklearn.metrics import accuracy_score import m2cgen as m2c sys.setrecursionlimit(2147483647) input_dir = '0000/clf-data' categories = ['empty', 'not_empty'] data = [] labels = [] for category_idx, category in enumerate(categories): for file in os.listdir(os.path.join(input_dir, category)): img_path = os.path.join(input_dir, category, file) img = imread(img_path) img = resize(img, (15, 15)) data.append(img.flatten()) labels.append(category_idx) data = np.asarray(data) labels = np.asarray(labels) clf = svm.SVC() x_train, x_test, y_train, y_test = train_test_split(data, labels, test_size=0.2, shuffle=True, stratify=labels) clf.fit(x_train, y_train) y_prediction = clf.predict(x_test) score = accuracy_score(y_prediction, y_test) print('{}% of samples were correctly classified'.format(str(score * 100))) #pickle.dump(best_estimator, open('./model.p', 'wb')) code = m2c.export_to_python(clf) print(code) nameimgs = "model.py" fs = open(nameimgs,"w") fs.write(code) fs.close()` ``` Please tell me how to make a prediction on a small JPG photo? I did not find on the net examples of working with a JPG image. Thank you.
open
2023-08-31T11:52:19Z
2023-08-31T11:52:19Z
https://github.com/BayesWitnesses/m2cgen/issues/582
[]
Flashton91
0
roboflow/supervision
computer-vision
1,619
Bug found in ConfusionMatrix.from_detections
### Search before asking - [X] I have searched the Supervision [issues](https://github.com/roboflow/supervision/issues) and found no similar bug report. ### Bug Issue found in code when producing a confusion matrix for object detection. It seems like the FN was being added incorrectly to the matrix. Here is the code that was problematic for me. When removing the else condition, I was getting the correct TP value. It seems that num_classes, ends up being at the same position detection_classes[matched_detection_idx[j]] ``` ``` for i, true_class_value in enumerate(true_classes): j = matched_true_idx == i print('sum(j)', sum(j)) if matches.shape[0] > 0 and sum(j) == 1: result_matrix[ true_class_value, detection_classes[matched_detection_idx[j]] ] += 1 # TP else: result_matrix[true_class_value, num_classes] += 1 # FN ``` ``` ### Environment _No response_ ### Minimal Reproducible Example _No response_ ### Additional _No response_ ### Are you willing to submit a PR? - [ ] Yes I'd like to help by submitting a PR!
open
2024-10-24T15:02:23Z
2025-01-28T22:37:40Z
https://github.com/roboflow/supervision/issues/1619
[ "bug" ]
chiggins2024
3
AutoGPTQ/AutoGPTQ
nlp
292
[BUG] Exllama seems to crash without a group size
**Describe the bug** Our entire KoboldAI software crashes when AutoGPTQ is trying to load a GPTQ model with act order true but no group size. First Huggingface shows an error that many keys such as model.layers.12.self_attn.q_proj.g_idx are missing, then the program closes without the real error and our fallbacks do not trigger. Right now this only happens when I either use my self compiled 0.4.1 wheel that contains the exllama kernels, as well as the official 0.4.2 wheel. If I use the 0.4.1 wheel without exllama kernels the key errors are still shown but the model works. Model tested: https://huggingface.co/TheBloke/airochronos-33B-GPTQ **Hardware details** Nvidia 3090 (I also have an M40 but its hidden during this test with CUDA_VISIBLE_DEVICES) + AMD Ryzen 1700X The same issue happens on an A6000 runpod docker instance. **Software version** KoboldAI Runtime defaults (Python 3.8, Pytorch 2.0.1, Transformers 4.32, Safetensors 0.3.3, Optimum) **To Reproduce** Use a model such as TheBloke/airochronos-33B-GPTQ that is in the GPTQ v1 format with no group size, the entire python process should crash during the loading phase. **Expected behavior** Key errors are / are not shown, the model loads with or without exllama and then generates fine.
closed
2023-08-27T19:12:36Z
2023-10-31T17:31:12Z
https://github.com/AutoGPTQ/AutoGPTQ/issues/292
[ "bug" ]
henk717
4
deepspeedai/DeepSpeed
pytorch
5,656
[BUG] Running llama2-7b step3 with tensor parallel and HE fails due to incompatible shapes
Hi, I get an error when trying to run step3 of llama2-7b with tensor parallel. The error happens in merge_qkv: ` return self._call_impl(*args, **kwargs) File "/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py", line 1569, in _call_impl result = forward_call(*args, **kwargs) File "/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py", line 1038, in forward outputs = self.model( File "/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py", line 1519, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File "/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py", line 1569, in _call_impl result = forward_call(*args, **kwargs) File "/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py", line 925, in forward layer_outputs = decoder_layer( File "/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py", line 1519, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File "/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py", line 1569, in _call_impl result = forward_call(*args, **kwargs) File "/software/users/snahir1/DeepSpeed/deepspeed/model_implementations/transformers/ds_transformer.py", line 171, in forward self.attention(input, File "/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py", line 1519, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File "/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py", line 1528, in _call_impl return forward_call(*args, **kwargs) File "/software/users/snahir1/DeepSpeed/deepspeed/ops/transformer/inference/ds_attention.py", line 141, in forward self._attn_qkvw, self._attn_qkvb = self._merge_qkv() File "/software/users/snahir1/DeepSpeed/deepspeed/ops/transformer/inference/ds_attention.py", line 118, in _merge_qkv qvkw[:self.hidden_size_per_partition, :] = self.attn_qw # type: ignore RuntimeError: The expanded size of the tensor (4096) must match the existing size (0) at non-singleton dimension 1. Target sizes: [512, 4096]. Tensor sizes: [0]` The target slice size is [512, 4096], and self.attn_qw size is 0. self.attn_qw is initialized in DeepSpeedSelfAttention as None when initializing the actor model. maybe the issue is in HybridSplitQKVContainer and specifically in the implementation of set_q_k_v() ? This specific logs are for batch size =1 and total batch size = 8. Originally I run the model with batch_size=4, total_batch_size=32 and it failed earlier, when trying to combine regular attention mask and casual attention mask, with: `line 841, in _prepare_decoder_attention_mask expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask` in modeling_llama.py. The regular attention mask is calculated in the data loader with dim[0] equal to the batch size. The causal mask is created later on in _make_causal_mask function in the transformers library, taking its shape from the "input_ids" argument. input_ids tensor is created in the hybrid engine, which uses it as a destination tensor to the dist.all_gather_into_tensor operation (hence its size is the batch size * tp size). therefore dim[0] of casual mask = total_batch_size. **To Reproduce** add --enable_hybrid_engine and --inference_tp_size 8 to training_scripts/llama2/run_llama2_7b.sh
open
2024-06-13T07:00:06Z
2024-06-13T13:21:28Z
https://github.com/deepspeedai/DeepSpeed/issues/5656
[ "bug", "deepspeed-chat" ]
ShellyNR
0
lux-org/lux
jupyter
217
Improve automatic bin determination for histograms
Currently, the formula for histogram binning sometimes results in bins that are very "skinny" and sometimes bins that are very "wide". We need to improve histogram bin width and size determination to ensure more accurate histograms are plotted. This is especially true for the "Filter" action. Example: ```python df = pd.read_csv("https://github.com/lux-org/lux-datasets/blob/master/data/olympic.csv?raw=True") df.intent=["Height"] df ``` ![image](https://user-images.githubusercontent.com/5554675/104189469-aa3cd980-5455-11eb-94c6-06849b836e5a.png) ![image](https://user-images.githubusercontent.com/5554675/104189512-bd4fa980-5455-11eb-9eca-9dad6fb71ae7.png) This needs to be customized for matplotlib and Altair.
closed
2021-01-11T12:46:22Z
2021-03-03T22:27:56Z
https://github.com/lux-org/lux/issues/217
[ "enhancement", "easy" ]
dorisjlee
1
strawberry-graphql/strawberry
graphql
2,941
tests on windows broken?
Seemingly the hook tests on windows are broken. First there are many deprecation warnings, second my code change works for all other tests. PR on which "tests on windows" fail (there are also some other): https://github.com/strawberry-graphql/strawberry/pull/2938
closed
2023-07-12T13:22:52Z
2025-03-20T15:56:17Z
https://github.com/strawberry-graphql/strawberry/issues/2941
[ "bug" ]
devkral
2
microsoft/MMdnn
tensorflow
206
TensorFlow2IR
Platform (CentOS 6.6): Python version:2.7.14 Source framework with version (like Tensorflow 1.6.1 with GPU): Pre-trained model path (own): Running scripts: python -m mmdnn.conversion._script.convertToIR -f tensorflow -d resnet101 -n tests/resnet_v1_101.ckpt.meta --dstNodeName muli_predictions ![image](https://user-images.githubusercontent.com/13047093/40397788-306ffe34-5e67-11e8-82a8-e57bc5661d8c.png) The last second lay of the net must be "dropout"?
closed
2018-05-23T00:58:29Z
2018-07-05T05:01:05Z
https://github.com/microsoft/MMdnn/issues/206
[]
rbzhu
4
plotly/dash
plotly
3,069
explicitly-set host name overridden by environment variables
I am running a dash app on a remote AlmaLinux machine. I connect to the remote machine from a Windows 10 computer via a ssh tunnel: "ssh -L 8050:localhost:8050 AlmaLinuxServerName. The AlmaLinux computer has restrictive rules preventing connections on all but a few ports coming in on its external IP interfaces but much less restrictive rules for connections to the localhost interface. The dash app would start and run on AlmaLinux , but Windows 10 connecting over the SSH tunnel would get ERR_CONNECTION_RESET errors in the web browser and the terminal of the AlmaLinux would get a "channel 3: open failed: connect failed: Connection refused" every time the web browser tried to refresh. Furthermore no matter what values I put into the host for the dash run() command, I would get: netstat -ltun | grep 8050 tcp 0 0 AlmaLinuxURL:8050 0.0.0.0:* LISTEN Where AlmaLinuxURL is the hostname in my AlmaLinux environment variable. Based on the network configuration, I need the result to be something like: netstat -ltun | grep 8050 tcp 0 0 localhost:8050 0.0.0.0:* LISTEN Note, other versions of the localhost name would work (127.0.0.1 etc) - replace the result of `pip list | grep dash` below ``` dash 2.18.1 dash-core-components 2.0.0 dash-html-components 2.0.0 dash-table 5.0.0 ``` - if frontend related, tell us your Browser, Version and OS Not relevant but tested with, - OS: Windows 10, AlmaLinux - Browser: Chrome,Firefox **Describe the bug** OS host environment variable overrides explicitly set host with an app.run_server(debug=True, port=8052,host="localhost") call. This is an issue on my compute host because the external IP interface is locked down to outside connections and will only allow connections to localhost via an ssh tunnel. The hostname in my environment variable points to the locked-down external IP interface. So, it doesn't matter what I put into the run_server call. Dash overwrites this with the locked-down interface, and the Flask app is unavailable. After a lot of debugging, I was able to get my dash app working I added an os.environ["HOST"] = "127.0.0.1" call to my code before initializing dash. This allowed me to set the flask host to the one I expected. This didnt solve the issue that I expected to get the host name that I set; but it did let the app run. **Expected behavior** When the host is explicitly set, it should override the default or environment variables. If it is considered desirable to change the host or port via environment variables instead of code, Dash should adopt environmental variables specific to Dash, for example, DASH_HOST and DASH_PORT.
closed
2024-11-09T20:06:24Z
2025-01-23T20:46:59Z
https://github.com/plotly/dash/issues/3069
[ "bug", "P2" ]
bberkeyU
1
nsidnev/fastapi-realworld-example-app
fastapi
1
Update uvicorn version
currently locked uvicorn version is ancient.
closed
2019-04-11T11:05:48Z
2019-04-12T10:01:45Z
https://github.com/nsidnev/fastapi-realworld-example-app/issues/1
[]
Euphorbium
1
newpanjing/simpleui
django
311
自定义action涉及数据库更新时操作无效
**bug描述** * *Bug description * * 简单的描述下遇到的bug: Briefly describe the bugs encountered: 在admin.py新增一个action,实现点击一下按钮更新数据的功能,该action无效 **重现步骤** ** repeat step ** 1.新增action 2.在界面能产生button,但是没有功能 3.在settings关闭simpleui,使用原生django,改功能没有问题 ![1600762739188](https://user-images.githubusercontent.com/52486559/93858868-6891f280-fcef-11ea-8cb2-ff5e03f72f3c.jpg) ![1600762880062](https://user-images.githubusercontent.com/52486559/93859055-b27ad880-fcef-11ea-922a-65b47e837f4b.jpg) **环境** ** environment** 1.Operating System:Ubuntu18 (Windows/Linux/MacOS).... 2.Python Version:3.6.9 3.Django Version:3.0.8 4.SimpleUI Version:今年8月的时候在官网下载使用源码安装的,不知道版本号 **Description**
closed
2020-09-22T08:23:23Z
2020-09-26T06:53:47Z
https://github.com/newpanjing/simpleui/issues/311
[ "bug" ]
qiuzige
1
onnx/onnx
machine-learning
5,880
Missing output shape when using infer_shapes_path on a model with external data?
### Discussed in https://github.com/onnx/onnx/discussions/5876 <div type='discussions-op-text'> <sup>Originally posted by **daveliddell** January 26, 2024</sup> Hi! I'm having trouble converting code that previously used `infer_shapes ` to use `infer_shapes_path` instead because the model I'm working with is too large for `infer_shapes`. However, on a small test model, it seems that now the output shape isn't getting set. I'm using onnx 1.15 with python 3.10 on ubuntu 22 or 20 (doesn't seem to matter). Here's the model (with data externalized): ``` def create_model(model_file: Path, data_path: Path): const = make_node('Constant', [], ['c_shape'], 'const', value=numpy_helper.from_array(numpy.array([4], dtype=numpy.int64))) cofshape = make_node('ConstantOfShape', ['c_shape'], ['c_out'], 'cofshape', value=numpy_helper.from_array(numpy.array([1], dtype=numpy.int64))) outval = make_tensor_value_info('c_out', TensorProto.INT64, [None]) graph = make_graph([const, cofshape], 'constgraph', [], [outval]) onnx_model = make_model(graph) convert_model_to_external_data(onnx_model, all_tensors_to_one_file=True, location=data_path, size_threshold=0, convert_attribute=True) onnx.save(onnx_model, model_file) ``` Here's the code to load it and infer shapes: ``` onnx.shape_inference.infer_shapes_path(args.input_file, temp_file) inferred_model = onnx.load(temp_file, load_external_data=False) onnx.load_external_data_for_model(inferred_model, data_dir) ``` Here's a dump of the output of the resulting model: ``` output { name: "c_out" type { tensor_type { elem_type: 7 shape { dim { <-- was expecting "dim_value: 4" here } } } } } ``` Some experiments I've tried: - infer_shapes_path + internal data --> PASS - infer_shapes_path + external data --> FAIL - infer_shapes + external data --> PASS Here's how we were using infer_shapes before: ``` raw_model = onnx.load(file_path) inferred_model = onnx.shape_inference.infer_shapes(raw_model) ``` </div>
closed
2024-01-30T01:46:09Z
2024-01-31T16:26:38Z
https://github.com/onnx/onnx/issues/5880
[]
daveliddell
2
flairNLP/flair
pytorch
3,519
[Feature]: Allow sentences longer than the token limit for sequence tagger training
### Problem statement Currently, we are not able to train `SequenceTagger` models with tagged `Sentence` objects exceeding the token limit (typically 512). It does seem there is some support for long sentences in embeddings via the `allow_long_sentences` option, but it does not appear that this applies to sequence tagging where the labels still need to be applied at the token level. We have tried doing this, but if we don't limit the sentences to the token limit, we get an out of memory error. Not sure if this is a bug specifically, or just a lack of support for this feature. ### Solution Not sure if there is a more ideal way, but one solution for training is to split a sentence into "chunks" that are of length 512 tokens or less, and applying the labels to these chunks. It is important to avoid splitting chunks across a labeled entity boundary. ### Additional Context We have used this in training successfully, so I will be introducing our specific solution in a PR
open
2024-08-03T01:06:08Z
2024-08-23T13:14:02Z
https://github.com/flairNLP/flair/issues/3519
[ "feature" ]
MattGPT-ai
7
jumpserver/jumpserver
django
14,908
[Feature] mysql ssl链接是否可以跳过服务端ca证书认证
### 产品版本 v4.6.0 ### 版本类型 - [x] 社区版 - [ ] 企业版 - [ ] 企业试用版 ### 安装方式 - [ ] 在线安装 (一键命令安装) - [ ] 离线包安装 - [x] All-in-One - [ ] 1Panel - [ ] Kubernetes - [ ] 源码安装 ### ⭐️ 需求描述 目前版本配置mysql使用证书,则必须指定mysql服务端ca证书,是否可以支持 --ssl-mode=REQUIRED 这种ssl链接模式 ### 解决方案 支持 --ssl-mode=REQUIRED 的mysql链接 ### 补充信息 _No response_
closed
2025-02-20T11:06:32Z
2025-03-05T12:54:48Z
https://github.com/jumpserver/jumpserver/issues/14908
[ "⭐️ Feature Request" ]
wppzxc
8
dask/dask
scikit-learn
11,494
`align_partitions` creates mismatched partitions.
**Describe the issue**: The `divisions` attribute doesn't match between data frames even after applying `align_partitions` on them. **Minimal Complete Verifiable Example**: ```python import numpy as np from distributed import Client, LocalCluster from dask import dataframe as dd from dask.dataframe.multi import align_partitions def make_ltr(n_samples: int, n_features: int, max_rel: int): rng = np.random.default_rng(1994) X = rng.normal(0, 1.0, size=n_samples * n_features).reshape(n_samples, n_features) y = np.sum(X, axis=1) y -= y.min() y = np.round(y / y.max() * max_rel).astype(np.int32) return X, y def main(client: Client) -> None: X, y = make_ltr(n_samples=4096 * 4, n_features=16, max_rel=8) dfx: dd.DataFrame = dd.from_array(X).repartition(npartitions=16) dfy: dd.DataFrame = dd.from_dict({"y": y}, npartitions=16) [dfx, dfy], _, _ = align_partitions(dfx, dfy) print("dfx:", dfx.divisions, "\ndfy:", dfy.divisions) if __name__ == "__main__": with LocalCluster(n_workers=2) as cluster: with Client(cluster) as client: main(client) ``` For this particular example, there's an off-by-1 error in the resulting divisions. ``` dfx: (0, 1023, 2047, 3071, 4095, 5119, 6143, 7167, 8191, 9215, 10239, 11263, 12287, 13311, 14335, 15359, 16383) dfy: (0, 1024, 2048, 3072, 4096, 5120, 6144, 7168, 8192, 9216, 10240, 11264, 12288, 13312, 14336, 15360, 16383) ``` We need multiple dfs to have the same partition scheme. **Anything else we need to know?**: **Environment**: - Dask version: dask, version 2024.10.0 - Python version: Python 3.11.9 - Operating System: Ubuntu 24.04.1 - Install method (conda, pip, source): conda
closed
2024-11-05T12:26:04Z
2024-11-05T13:53:43Z
https://github.com/dask/dask/issues/11494
[ "needs triage" ]
trivialfis
6
FactoryBoy/factory_boy
django
397
factory.Maybe doesn't work with factory.RelatedFactory
I'm trying to set a RelatedFactoy combine with Maybe, so that it's only created if a condition is fulfiled . ``` class PaymentModeFactory(factory.DjangoModelFactory): class Meta: model = models.PaymentMode kind = enums.MANUAL authorization = factory.Maybe( factory.LazyAttribute(lambda o: o.kind = enums.WITH_AUTH), factory.RelatedFactory(PaymentModeAuthorizationFactory, 'payment_mode'), ) ``` Whenever the Maybe condition is True (and only if True) the _create() method is given a authorization key in it's kwargs. The value is the RelatedFactory we defined.
closed
2017-07-31T15:51:11Z
2018-01-28T21:56:24Z
https://github.com/FactoryBoy/factory_boy/issues/397
[]
tonial
3
open-mmlab/mmdetection
pytorch
11,730
i cannot handle this issue i need some help
File "C:\Users\mistletoe\.conda\envs\d2l\lib\site-packages\mmdet\models\dense_heads\anchor_head.py", line 284, in _get_targets_single bbox_weights[pos_inds, :] = 1.0 RuntimeError: linearIndex.numel()*sliceSize*nElemBefore == expandedValue.numel() INTERNAL ASSERT FAILED at "C:\\actions-runner\\_work\\pytorch\\pytorch\\builder\\windows\\pytorch\\aten\\src\\ATen\\native\\cuda\\Indexing.cu":387, please report a bug to PyTorch. number of flattened indices did not match number of elements in the value tensor: 48 vs 12 Error in atexit._run_exitfuncs: what the hell
open
2024-05-21T09:19:33Z
2025-02-27T14:40:14Z
https://github.com/open-mmlab/mmdetection/issues/11730
[]
mistletoe111
2
ivy-llc/ivy
pytorch
28,485
Fix Frontend Failing Test: jax - tensor.paddle.Tensor.mean
To-do List: https://github.com/unifyai/ivy/issues/27496
open
2024-03-05T15:58:41Z
2024-03-09T20:51:36Z
https://github.com/ivy-llc/ivy/issues/28485
[ "Sub Task" ]
ZJay07
0
open-mmlab/mmdetection
pytorch
11,535
Output object detection per class mAP using faster rcnn model, classwise has been modified to True,but doesn't work.
I tried to change the \mmdetection\mmdet\evaluation\metrics\coco_metric.py **classwise: bool = False** to **classwise: bool = True**, but it doesn't work. I have searched related issues but cannot get the expected help. My system is windows10.Most likely it's because the code is running from source mmdet 3.1.0, which is why it's invalid for me to change classwise in the code. Is there any way to get the config file to load coco_metric.py from code? my version: mmdet 3.1.0 torch 1.13.1 + cu116 model: faster-rcnn_r50_fpn dataset: NWPU config file: .\mmdetection\configs\faster-rcnn_NWPU2COCO\faster-rcnn_r50_fpn_1x_NWPU.py ```fp16 = dict(loss_scale=512.) model = dict( type='FasterRCNN', data_preprocessor=dict( # copy from _base_/model/faster-rcnn_r50-fpn type='DetDataPreprocessor', mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], bgr_to_rgb=True, pad_size_divisor=32), backbone=dict( type='ResNet', depth=50, num_stages=4, out_indices=(0, 1, 2, 3), frozen_stages=1, norm_cfg=dict(type='BN', requires_grad=True), norm_eval=True, style='pytorch', init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50')), neck=dict( type='ATTFPN', in_channels=[256, 512, 1024, 2048], # 输入的各个stage的通道数 out_channels=256, # 输出的特征层的通道数 num_outs=5), # 输出的特征层的数量 rpn_head=dict( type='RPNHead', in_channels=256, feat_channels=256, anchor_generator=dict( type='AnchorGenerator', scales=[8], ratios=[0.5, 1.0, 2.0], strides=[4, 8, 16, 32, 64]), bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[.0, .0, .0, .0], # 均值 target_stds=[1.0, 1.0, 1.0, 1.0]), # 方差 loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0), # 是否使用sigmoid来进行分类,如果False则使用softmax来分类 loss_bbox=dict(type='L1Loss', loss_weight=1.0)), roi_head=dict( type='StandardRoIHead', # RoIExtractor类型 bbox_roi_extractor=dict( type='SingleRoIExtractor', roi_layer=dict(type='RoIAlign', output_size=7, sampling_ratio=0), # ROI具体参数:ROI类型为ROIalign,输出尺寸为7,sample数为2 out_channels=256, # 输出通道数 featmap_strides=[4, 8, 16, 32]), # 特征图的步长 bbox_head=dict( type='Shared2FCBBoxHead', # 全连接层类型 in_channels=256, # 全连接层数量 fc_out_channels=1024, # 输入通道数 roi_feat_size=7, # 输出通道数 # num_classes=80,修改为NWPU的10类 num_classes=10, # 分类器的类别数量 bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[0., 0., 0., 0.], target_stds=[0.1, 0.1, 0.2, 0.2]), reg_class_agnostic=False, # 是否采用class_agnostic的方式来预测,class_agnostic表示输出bbox时只考虑其是否为前景, # 后续分类的时候再根据该bbox在网络中的类别得分来分类,也就是说一个框可以对应多个类别 loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0), loss_bbox=dict(type='L1Loss', loss_weight=1.0))), # model training and testing settings train_cfg=dict( rpn=dict( assigner=dict( type='MaxIoUAssigner', # RPN网络的正负样本划分 pos_iou_thr=0.7, # 正样本的iou阈值 neg_iou_thr=0.3, # 负样本的iou阈值 min_pos_iou=0.3, # 正样本的iou最小值。 # 如果assign给ground truth的anchors中最大的IOU低于0.3,则忽略所有的anchors,否则保留最大IOU的anchor match_low_quality=True, ignore_iof_thr=-1), # 忽略bbox的阈值,当ground truth中包含需要忽略的bbox时使用,-1表示不忽略 sampler=dict( type='RandomSampler', # 正负样本提取器类型 num=256, # 需提取的正负样本数量 pos_fraction=0.5, # 正样本比例 neg_pos_ub=-1, # 最大负样本比例,大于该比例的负样本忽略,-1表示不忽略 add_gt_as_proposals=False), # 把ground truth加入proposal作为正样本 allowed_border=-1, # 不允许在bbox周围外扩一定的像素, 0允许 pos_weight=-1, # 正样本权重,-1表示不改变原始的权重 debug=False), rpn_proposal=dict( nms_pre=2000, # 在nms之前保留的的得分最高的proposal数量 max_per_img=1000, # 在nms之后保留的的得分最高的proposal数量 nms=dict(type='soft_nms', iou_threshold=0.7), # nms阈值 min_bbox_size=0), # 最小bbox尺寸 rcnn=dict( assigner=dict( type='MaxIoUAssigner', # RCNN网络正负样本划分 pos_iou_thr=0.5, # 正样本的iou阈值 neg_iou_thr=0.5, # 负样本的iou阈值 min_pos_iou=0.5, # 正样本的iou最小值。如果assign给ground truth的anchors中最大的IOU低于0.3,则忽略所有的anchors,否则保留最大IOU的anchor match_low_quality=False, ignore_iof_thr=-1), # 忽略bbox的阈值,当ground truth中包含需要忽略的bbox时使用,-1表示不忽略 sampler=dict( type='RandomSampler', # 正负样本提取器类型 num=512, # 需提取的正负样本数量 pos_fraction=0.25, # 正样本比例 neg_pos_ub=-1, # 最大负样本比例,大于该比例的负样本忽略,-1表示不忽略 add_gt_as_proposals=True), # 把ground truth加入proposal作为正样本 pos_weight=-1, # 正样本权重,-1表示不改变原始的权重 debug=False)), # val_cfg=dict(type='ValLoop'), test_cfg=dict( rpn=dict( nms_pre=2000, max_per_img=1000, nms=dict(type='soft_nms', iou_threshold=0.7), min_bbox_size=0), rcnn=dict( # score_thr=0.05, score_thr=0.001, nms=dict(type='soft_nms', iou_threshold=0.5), max_per_img=100)) ) # dataset settings dataset_type = 'NWPU2COCODataset' # 数据集类型 data_root = 'F:/paper_study/remote_sensing_image_processing/code/mmdetection/data/NWPU2COCO/' backend_args = None train_pipeline = [ dict(type='LoadImageFromFile', backend_args=backend_args), dict(type='LoadAnnotations', with_bbox=True), dict(type='Resize', scale=(1333, 800), keep_ratio=True),#这个调低点(200,200) dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] test_pipeline = [ dict(type='LoadImageFromFile', backend_args=backend_args), dict(type='Resize', scale=(1333, 800), keep_ratio=True), # If you don't have a gt annotation, delete the pipeline dict(type='LoadAnnotations', with_bbox=True), dict( type='PackDetInputs', meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor')) ] # #修改 # metainfo = { # 'classes': ('airplane', 'ship', 'storage tank', 'baseball diamond', 'tennis court', # 'basketball court', 'ground track field', 'harbor', 'bridge', 'vehicle') # # 'palette': [ # # (220, 20, 60), # # ] # } train_dataloader = dict( batch_size=1, num_workers=2, persistent_workers=True, sampler=dict(type='DefaultSampler', shuffle=True), batch_sampler=dict(type='AspectRatioBatchSampler'), dataset=dict( type=dataset_type, # metainfo=metainfo, data_root=data_root, ann_file=data_root + 'train.json', data_prefix=dict(img=data_root + 'positive_image_set/'), # img_prefix=data_root + 'positive_image_set/', filter_cfg=dict(filter_empty_gt=True, min_size=32), pipeline=train_pipeline, backend_args=backend_args )) val_dataloader = dict( batch_size=1, num_workers=2, persistent_workers=True, drop_last=False, sampler=dict(type='DefaultSampler', shuffle=False), dataset=dict( type=dataset_type, # metainfo=metainfo, data_root=data_root, ann_file=data_root+'test.json', data_prefix=dict(img=data_root + 'positive_image_set/'), # img_prefix=data_root+'positive_image_set/', test_mode=True, pipeline=test_pipeline, backend_args=backend_args )) test_dataloader = val_dataloader val_evaluator = dict( type='CocoMetric', # 用于评估检测和实例分割的 AR、AP 和 mAP 的 coco 评价指标 ann_file=data_root + '/test.json', # 标注文件路径 metric='bbox', # 需要计算的评价指标,`bbox` 用于检测,`segm` 用于实例分割 format_only=False, backend_args=backend_args) test_evaluator = val_evaluator # training schedule for 1x train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=24, val_interval=1) val_cfg = dict(type='ValLoop') test_cfg = dict(type='TestLoop') # learning rate param_scheduler = [ # dict( # type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=500), dict( type='MultiStepLR', begin=0, end=24, by_epoch=True, milestones=[16, 22], gamma=0.1) ] # optimizer optim_wrapper = dict( type='OptimWrapper', optimizer=dict(type='SGD', lr=0.00125, momentum=0.9, weight_decay=0.0001)) #lr=0.02,8GPU # Default setting for scaling LR automatically # - `enable` means enable scaling LR automatically # or not by default. # - `base_batch_size` = (8 GPUs) x (2 samples per GPU). auto_scale_lr = dict(enable=False, base_batch_size=1) load_from = 'https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_fpn_1x_coco' \ '/faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth ' #default_runtime.py default_scope = 'mmdet' default_hooks = dict( timer=dict(type='IterTimerHook'), logger=dict(type='LoggerHook', interval=50), param_scheduler=dict(type='ParamSchedulerHook'), checkpoint=dict(type='CheckpointHook', interval=1), sampler_seed=dict(type='DistSamplerSeedHook'), visualization=dict(type='DetVisualizationHook')) env_cfg = dict( cudnn_benchmark=False, mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0), dist_cfg=dict(backend='nccl'), ) vis_backends = [dict(type='LocalVisBackend')] visualizer = dict( type='DetLocalVisualizer', vis_backends=vis_backends, name='visualizer') log_processor = dict(type='LogProcessor', window_size=50, by_epoch=True) log_level = 'INFO' load_from = None resume = False ``` My val_evaluator and test_evaluator use same metric: type = CocoMetric. ![image](https://github.com/open-mmlab/mmdetection/assets/44051326/a63ceab6-2298-456b-bb01-f2a545290bc3) coco_metric.py modified: ![image](https://github.com/open-mmlab/mmdetection/assets/44051326/9edd2d90-3464-48cc-8b82-560fcc33d17a) I tried to debug as follows: 1. Because of the custom dataset, I define .\mmdetection\mmdet\datasets\NWPU2COCO.py,and modified classwise = True. It doesn't work, and exegesis this code, gets same unexcepted results. ![image](https://github.com/open-mmlab/mmdetection/assets/44051326/cf9f6f4f-9bed-4136-9395-fd48132723c1) 2. I deleted F:\paper_study\remote_sensing_image_processing\code\mmdetection\mmdet\evaluation\metrics\__init__.py “from .coco_metric import CocoMetric”, run the "python tools/train.py configs/faster-rcnn_NWPU2COCO/faster-rcnn_r50_fpn_1x_NWPU.py", but it still output results, it's werid! ![image](https://github.com/open-mmlab/mmdetection/assets/44051326/9ab990f8-36ed-4304-b3bc-27108d9b463d) 3. I added some print to get classwise value. But didn't out classwise valuse. ![image](https://github.com/open-mmlab/mmdetection/assets/44051326/24bbb477-7062-4b7a-a002-f62d15e6137a) **Environment** sys.platform: win32 Python: 3.8.17 | packaged by conda-forge | (default, Jun 16 2023, 07:01:59) [MSC v.1929 64 bit (AMD64)] CUDA available: True numpy_random_seed: 2147483648 GPU 0: NVIDIA GeForce RTX 2070 SUPER CUDA_HOME: C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.6 NVCC: Cuda compilation tools, release 11.6, V11.6.55 MSVC: 用于 x64 的 Microsoft (R) C/C++ 优化编译器 19.38.33133 版 GCC: n/a PyTorch: 1.13.1+cu116 PyTorch compiling details: PyTorch built with: - C++ Version: 199711 - MSVC 192829337 - Intel(R) Math Kernel Library Version 2020.0.2 Product Build 20200624 for Intel(R) 64 architecture applications - Intel(R) MKL-DNN v2.6.0 (Git Hash 52b5f107dd9cf10910aaa19cb47f3abf9b349815) - OpenMP 2019 - LAPACK is enabled (usually provided by MKL) - CPU capability usage: AVX2 - CUDA Runtime 11.6 - NVCC architecture flags: -gencode;arch=compute_37,code=sm_37;-gencode;arch=compute_50,code=sm_50;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_61,code=sm_61;-gencode;arch=compute_70,code=sm_70;-gencode;arch=compute_7 5,code=sm_75;-gencode;arch=compute_80,code=sm_80;-gencode;arch=compute_86,code=sm_86;-gencode;arch=compute_37,code=compute_37 - CuDNN 8.3.2 (built against CUDA 11.5) - Magma 2.5.4 - Build settings: BLAS_INFO=mkl, BUILD_TYPE=Release, CUDA_VERSION=11.6, CUDNN_VERSION=8.3.2, CXX_COMPILER=C:/actions-runner/_work/pytorch/pytorch/builder/windows/tmp_bin/sccache-cl.exe, CXX_FLAGS=/DWIN32 /D_WINDOWS /GR /EHsc /w /b igobj -DUSE_PTHREADPOOL -openmp:experimental -IC:/actions-runner/_work/pytorch/pytorch/builder/windows/mkl/include -DNDEBUG -DUSE_KINETO -DLIBKINETO_NOCUPTI -DUSE_FBGEMM -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE -DEDGE_PROFILE R_USE_KINETO, LAPACK_INFO=mkl, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, PERF_WITH_AVX512=1, TORCH_VERSION=1.13.1, USE_CUDA=ON, USE_CUDNN=ON, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_MKL=ON, USE_MKLDNN=ON, USE_MPI=OFF, USE_NC CL=OFF, USE_NNPACK=OFF, USE_OPENMP=ON, USE_ROCM=OFF, TorchVision: 0.14.1+cu116 OpenCV: 4.8.0 MMEngine: 0.8.4 MMDetection: 3.1.0+f78af77 I'm honoured by your advice~!!!!
open
2024-03-09T07:05:53Z
2024-03-10T05:41:51Z
https://github.com/open-mmlab/mmdetection/issues/11535
[]
LiuChar1esM
0
allenai/allennlp
pytorch
5,558
conda-forge support for mac M1 (osx-arm)
In #5258, @RoyLiberman [requested](https://github.com/allenai/allennlp/issues/5258#issuecomment-1014461862): > can you please add support for mac M1 systems on conda-forge? Since that issue is closed, it's exceedingly easy to overlook this, and so I thought I'd open a new issue. The migration will be kicked off as soon as https://github.com/conda-forge/conda-forge-pinning-feedstock/pull/2485 is merged, and will then be observable under https://conda-forge.org/status/#armosxaddition. It might be a while until all dependencies get published, but I'll try to keep an eye on the PRs that the migrator opens (you can too! yes, you! you can ping me if you find something has stalled, which is always possible in a volunteer-only organisation).
closed
2022-02-05T07:10:41Z
2022-02-07T05:40:18Z
https://github.com/allenai/allennlp/issues/5558
[ "Feature request" ]
h-vetinari
1
huggingface/datasets
pytorch
7,018
`load_dataset` fails to load dataset saved by `save_to_disk`
### Describe the bug This code fails to load the dataset it just saved: ```python from datasets import load_dataset from transformers import AutoTokenizer MODEL = "google-bert/bert-base-cased" tokenizer = AutoTokenizer.from_pretrained(MODEL) dataset = load_dataset("yelp_review_full") def tokenize_function(examples): return tokenizer(examples["text"], padding="max_length", truncation=True) tokenized_datasets = dataset.map(tokenize_function, batched=True) tokenized_datasets.save_to_disk("dataset") tokenized_datasets = load_dataset("dataset/") # raises ``` It raises `ValueError: Couldn't infer the same data file format for all splits. Got {NamedSplit('train'): ('arrow', {}), NamedSplit('test'): ('json', {})}`. I believe this bug is caused by the [logic that tries to infer dataset format](https://github.com/huggingface/datasets/blob/9af8dd3de7626183a9a9ec8973cebc672d690400/src/datasets/load.py#L556). It counts the most common file extension. However, a small dataset can fit in a single `.arrow` file and have two JSON metadata files, causing the format to be inferred as JSON: ```shell $ ls -l dataset/test -rw-r--r-- 1 sliedes sliedes 191498784 Jul 1 13:55 data-00000-of-00001.arrow -rw-r--r-- 1 sliedes sliedes 1730 Jul 1 13:55 dataset_info.json -rw-r--r-- 1 sliedes sliedes 249 Jul 1 13:55 state.json ``` ### Steps to reproduce the bug Execute the code above. ### Expected behavior The dataset is loaded successfully. ### Environment info - `datasets` version: 2.20.0 - Platform: Linux-6.9.3-arch1-1-x86_64-with-glibc2.39 - Python version: 3.12.4 - `huggingface_hub` version: 0.23.4 - PyArrow version: 16.1.0 - Pandas version: 2.2.2 - `fsspec` version: 2024.5.0
open
2024-07-01T12:19:19Z
2024-12-03T11:26:17Z
https://github.com/huggingface/datasets/issues/7018
[]
sliedes
4
deepfakes/faceswap
machine-learning
547
intel phi card useful on this project?
Can I use intel phi card to make my training faster?Does this project support intel phi?
closed
2018-12-12T06:04:56Z
2018-12-12T11:47:03Z
https://github.com/deepfakes/faceswap/issues/547
[]
bxjxxyy
1
RomelTorres/alpha_vantage
pandas
279
Uncorrect dates
Hello! alpha_vantage library: ![1](https://user-images.githubusercontent.com/55015388/102862284-e6c27a00-4441-11eb-9c8a-a04331d26f49.png) yfinance: ![2](https://user-images.githubusercontent.com/55015388/102862550-5173b580-4442-11eb-980a-bea57b08aff9.png) For example: 2020-07-31 | 102.885002 | 106.415001 | 100.824997 | 106.260002 102.885002 * 4 = 411.535 Why some of your data multiplied by 4? And how i can select a range of intraday data? Thank you
closed
2020-12-22T07:45:01Z
2020-12-22T15:13:33Z
https://github.com/RomelTorres/alpha_vantage/issues/279
[]
Taram1980
1
AutoGPTQ/AutoGPTQ
nlp
9
bloom quantize problems
error info: model.quantize([example]) File "/usr/local/lib/python3.7/dist-packages/torch/autograd/grad_mode.py", line 27, in decorate_context return func(*args, **kwargs) File "/home/ansible/online/operator/udf_pod_git/chat-gpt/AutoGPTQ/auto_gptq/modeling/_base.py", line 189, in quantize layer(layer_input, **additional_layer_inputs)[0][0].cpu() File "/usr/local/lib/python3.7/dist-packages/torch/nn/modules/module.py", line 1190, in _call_impl return forward_call(*input, **kwargs) TypeError: forward() missing 1 required positional argument: 'alibi' bloom的位置编码是要特殊处理下吗?
closed
2023-04-23T14:27:45Z
2023-04-25T03:21:44Z
https://github.com/AutoGPTQ/AutoGPTQ/issues/9
[]
hao-xyz
4
ymcui/Chinese-LLaMA-Alpaca
nlp
215
预测字符的速度与文档中宣称的不一致
### 问前必查项目 - [ ] 由于相关依赖频繁更新,请确保按照[Wiki](https://github.com/ymcui/Chinese-LLaMA-Alpaca/wiki)中的相关步骤执行 - [ ] 我已阅读[FAQ章节](https://github.com/ymcui/Chinese-LLaMA-Alpaca/wiki/常见问题)并且已在Issue中对问题进行了搜索,没有找到相似问题和解决方案 - [ ] 第三方插件问题:例如[llama.cpp](https://github.com/ggerganov/llama.cpp)、[text-generation-webui](https://github.com/oobabooga/text-generation-webui)、[LlamaChat](https://github.com/alexrozanski/LlamaChat)等,同时建议到对应的项目中查找解决方案 ### 选择问题类型 基础模型: - [ ] LLaMA - [x] Alpaca 问题类型: - [ ] 下载问题 - [ ] 模型转换和合并问题 - [ ] 模型推理问题(🤗 transformers) - [ ] 模型量化和部署问题(llama.cpp、text-generation-webui、LlamaChat) - [x] 效果问题 - [ ] 其他问题 ### 详细描述问题 CPU是Intel(R) Xeon(R) CPU E5-2680 v4 @ 2.40GHz 我使用llama.cpp使用q4_0参数量化了llama-7b和chinese_alpaca_lora-7b,在测试时的推理速度,开4线程,速度是299ms/token, 如下图 ![image](https://user-images.githubusercontent.com/41560825/234814141-7d502f45-ac62-4cff-a52d-585e83685e9d.png) 达不到这里所说的速度,请问时怎么回事 ![image](https://user-images.githubusercontent.com/41560825/234814610-05fe6dd2-4b7e-456d-bc3e-0482cf916263.png) ![image](https://user-images.githubusercontent.com/41560825/234814692-03633bf3-fe51-402b-a455-2c065193c538.png) ### 运行截图或log $ ./main -m 7B-zh-models/7B/ggml-model-q4_0.bin --color -f prompts/alpaca.txt -ins -c 2048 --temp 0.2 -n 256 --repeat_penalty 1.3 -t 4 main: seed = 1682586033 llama.cpp: loading model from 7B-zh-models/7B/ggml-model-q4_0.bin llama_model_load_internal: format = ggjt v1 (latest) llama_model_load_internal: n_vocab = 49954 llama_model_load_internal: n_ctx = 2048 llama_model_load_internal: n_embd = 4096 llama_model_load_internal: n_mult = 256 llama_model_load_internal: n_head = 32 llama_model_load_internal: n_layer = 32 llama_model_load_internal: n_rot = 128 llama_model_load_internal: ftype = 2 (mostly Q4_0) llama_model_load_internal: n_ff = 11008 llama_model_load_internal: n_parts = 1 llama_model_load_internal: model size = 7B llama_model_load_internal: ggml ctx size = 59.11 KB llama_model_load_internal: mem required = 5896.99 MB (+ 1026.00 MB per state) llama_init_from_file: kv self size = 1024.00 MB system_info: n_threads = 4 / 56 | AVX = 1 | AVX2 = 1 | AVX512 = 0 | AVX512_VBMI = 0 | AVX512_VNNI = 0 | FMA = 1 | NEON = 0 | ARM_FMA = 0 | F16C = 1 | FP16_VA = 0 | WASM_SIMD = 0 | BLAS = 0 | SSE3 = 1 | VSX = 0 | main: interactive mode on. Reverse prompt: '### Instruction: ' sampling: temp = 0.200000, top_k = 40, top_p = 0.950000, repeat_last_n = 64, repeat_penalty = 1.300000 generate: n_ctx = 2048, n_batch = 512, n_predict = 256, n_keep = 21 == Running in interactive mode. == - Press Ctrl+C to interject at any time. - Press Return to return control to LLaMa. - If you want to submit another line, end your input in '\'. Below is an instruction that describes a task. Write a response that appropriately completes the request. > 请介绍一下北京 北京是中国的首都,也是一个历史悠久、文化底蕴深厚的城市。它拥有许多著名的景点和历史建筑,如故宫博物院、天安门广场、颐和园等。此外,北京还是中国最大的城市之一,有着丰富的商业活动和现代化的发展趋势。 > ^C llama_print_timings: load time = 8234.30 ms llama_print_timings: sample time = 97.49 ms / 60 runs ( 1.62 ms per run) llama_print_timings: prompt eval time = 12867.45 ms / 43 tokens ( 299.24 ms per token) llama_print_timings: eval time = 23143.38 ms / 60 runs ( 385.72 ms per run) llama_print_timings: total time = 56133.66 ms
closed
2023-04-27T09:11:48Z
2023-05-12T01:49:25Z
https://github.com/ymcui/Chinese-LLaMA-Alpaca/issues/215
[]
YulongXia
6
robotframework/robotframework
automation
4,762
Unresolved library: CourseService.modules.courseServiceAPIHelper. Error generating libspec: Importing library 'CourseService.modules.courseServiceAPIHelper' failed: ModuleNotFoundError: No module named 'CourseService' Consider adding the needed paths to the "robot.pythonpath" setting and calling the "Robot Framework: Clear caches and restart" action.
Hi I am getting this error in my robot class: Unresolved library: CourseService.modules.courseServiceAPIHelper. Error generating libspec: Importing library 'CourseService.modules.courseServiceAPIHelper' failed: ModuleNotFoundError: No module named 'CourseService' Consider adding the needed paths to the "robot.pythonpath" setting and calling the "Robot Framework: Clear caches and restart" action.
closed
2023-05-11T07:11:22Z
2023-05-31T22:33:34Z
https://github.com/robotframework/robotframework/issues/4762
[]
vinayakvardhan
1
ray-project/ray
python
51,636
[<Ray component: Core|RLlib|etc...>] No action space and observation space in MASAC algorithm in the tune_example
### What happened + What you expected to happen In tune_examples, when I use the multi-agent sac algorithm to tune the pendulm environment, there is no observation space and action space as I print them ### Versions / Dependencies ray2.42.1 python 3.12.9. centos7 ### Reproduction script from torch import nn from ray.rllib.algorithms.sac import SACConfig from ray.rllib.core.rl_module.default_model_config import DefaultModelConfig from ray.rllib.examples.envs.classes.multi_agent import MultiAgentPendulum from ray.rllib.utils.metrics import ( ENV_RUNNER_RESULTS, EPISODE_RETURN_MEAN, NUM_ENV_STEPS_SAMPLED_LIFETIME, ) from ray.rllib.utils.test_utils import add_rllib_example_script_args from ray.tune.registry import register_env parser = add_rllib_example_script_args( default_timesteps=500000, ) parser.set_defaults( enable_new_api_stack=True, num_agents=2, ) # Use `parser` to add your own custom command line options to this script # and (if needed) use their values to set up `config` below. args = parser.parse_args() register_env("multi_agent_pendulum", lambda cfg: MultiAgentPendulum(config=cfg)) config = ( SACConfig() .environment("multi_agent_pendulum", env_config={"num_agents": args.num_agents}) .training( initial_alpha=1.001, # Use a smaller learning rate for the policy. actor_lr=2e-4 * (args.num_learners or 1) ** 0.5, critic_lr=8e-4 * (args.num_learners or 1) ** 0.5, alpha_lr=9e-4 * (args.num_learners or 1) ** 0.5, lr=None, target_entropy="auto", n_step=(2, 5), tau=0.005, train_batch_size_per_learner=256, target_network_update_freq=1, replay_buffer_config={ "type": "MultiAgentPrioritizedEpisodeReplayBuffer", "capacity": 100000, "alpha": 1.0, "beta": 0.0, }, num_steps_sampled_before_learning_starts=256, ) .rl_module( model_config=DefaultModelConfig( fcnet_hiddens=[256, 256], fcnet_activation="relu", fcnet_kernel_initializer=nn.init.xavier_uniform_, head_fcnet_hiddens=[], head_fcnet_activation=None, head_fcnet_kernel_initializer=nn.init.orthogonal_, head_fcnet_kernel_initializer_kwargs={"gain": 0.01}, ), ) .reporting( metrics_num_episodes_for_smoothing=5, ) ) if args.num_agents > 0: config.multi_agent( policy_mapping_fn=lambda aid, *arg, **kw: f"p{aid}", policies={f"p{i}" for i in range(args.num_agents)}, ) stop = { NUM_ENV_STEPS_SAMPLED_LIFETIME: args.stop_timesteps, # `episode_return_mean` is the sum of all agents/policies' returns. f"{ENV_RUNNER_RESULTS}/{EPISODE_RETURN_MEAN}": -450.0 * args.num_agents, } if __name__ == "__main__": assert ( args.num_agents > 0 ), "The `--num-agents` arg must be > 0 for this script to work." from ray.rllib.utils.test_utils import run_rllib_example_script_experiment env = MultiAgentPendulum(config={"num_agents": args.num_agents}) print("observation_space:", env.observation_space) print("action space is sssss:", env.action_space) run_rllib_example_script_experiment(config, args, stop=stop) ### Issue Severity None
open
2025-03-24T09:11:44Z
2025-03-24T09:11:44Z
https://github.com/ray-project/ray/issues/51636
[ "bug", "triage" ]
HaoningJiang-space
0
ultralytics/yolov5
deep-learning
12,865
Assertion Error : Image not found
### Search before asking - [X] I have searched the YOLOv5 [issues](https://github.com/ultralytics/yolov5/issues) and [discussions](https://github.com/ultralytics/yolov5/discussions) and found no similar questions. ### Question I am currently trying to train a yolov6 model in google colab and I am getting error. I referenced the question below. (https://github.com/ultralytics/yolov5/issues/1494) Is it because I imported the dataset from my Google Drive? And if that's the case, is what you're saying above referring to my situation?(glenn-jocher commented on Nov 27, 2020 Oh, then you simply have network issues. You should always train with local data, never with remote buckets/drives.) ![yolov6 error](https://github.com/ultralytics/yolov5/assets/80905105/5016601d-5450-4d2a-915b-574bb8e49ff2) ![yolov6 error1](https://github.com/ultralytics/yolov5/assets/80905105/34e102c5-1d07-4071-a8c0-0f671169e56f) ### Additional (Traceback (most recent call last): File "/content/YOLOv6/tools/train.py", line 142, in . main(args) File "/content/YOLOv6/tools/train.py", line 127, in main trainer = Trainer(args, cfg, device) File "/content/YOLOv6/yolov6/core/engine.py", line 94, in init self.train_loader, self.val_loader = self.get_data_loader(self.args, self.cfg, self.data_dict) File "/content/YOLOv6/yolov6/core/engine.py", line 406, in get_data_loader train_loader = create_dataloader(train_path, args.img_size, args.batch_size // args.world_size, grid_size, File "/content/YOLOv6/yolov6/data/data_load.py", line 46, in create_dataloader dataset = TrainValDataset( File "/content/YOLOv6/yolov6/data/seg_datasets.py", line 86, in init self.img_paths, self.labels = self.get_imgs_labels(self.img_dir) File "/content/YOLOv6/yolov6/data/seg_datasets.py", line 329, in get_imgs_labels assert img_paths, f"No images found in {img_dir}." AssertionError: No images found in /content/drive/MyDrive/[DILab_data]/Computer_Vision/Fire_detection/FST1/FST1/train/images.)
closed
2024-04-01T08:33:15Z
2024-10-20T19:42:37Z
https://github.com/ultralytics/yolov5/issues/12865
[ "question", "Stale" ]
Cho-Hong-Seok
5
nolar/kopf
asyncio
164
kopf can't post events
> <a href="https://github.com/olivier-mauras"><img align="left" height="50" src="https://avatars3.githubusercontent.com/u/1299371?v=4"></a> An issue by [olivier-mauras](https://github.com/olivier-mauras) at _2019-08-05 15:27:11+00:00_ > Original URL: https://github.com/zalando-incubator/kopf/issues/164 > &nbsp; ## Expected Behavior Be able to post events either custom of defaults. ## Actual Behavior ``` text Custom event with kopf.info() [2019-08-05 15:09:56,422] kopf.clients.events [WARNING ] Failed to post an event. Ignoring and continuing. Error: HTTPError('Event "kopf-event-tvlgd" is invalid: involvedObject.namespace: Invalid value: "": does not match event.namespace'). Event: type='Normal', reason='SA_DELETED', message='Managed service account got deleted'. Default events: [2019-08-05 15:12:47,217] kopf.clients.events [WARNING ] Failed to post an event. Ignoring and continuing. Error: HTTPError('Event "kopf-event-5zplb" is invalid: involvedObject.namespace: Invalid value: "": does not match event.namespace'). Event: type='Normal', reason='Logging', message="Handler 'create_ns' succeeded.". ``` ## Steps to Reproduce the Problem No particular code is actually running My controller is running with a cluster-admin role in it's own namespace. ``` yaml --- apiVersion: v1 kind: ServiceAccount metadata: namespace: kopf-controllers name: namespace-manager --- apiVersion: rbac.authorization.k8s.io/v1beta1 kind: ClusterRoleBinding metadata: name: namespace-manager-rolebinding-cluster roleRef: apiGroup: rbac.authorization.k8s.io kind: ClusterRole name: cluster-admin subjects: - kind: ServiceAccount name: namespace-manager namespace: kopf-controllers ``` A simple example like this gives the same result: ``` yaml import kopf @kopf.on.resume('', 'v1', 'namespaces') @kopf.on.create('', 'v1', 'namespaces') def create_fn(spec, **kwargs): print(f"And here we are! Creating: {spec}") return {'message': 'hello world'} # will be the new status ``` Run with: `kopf run --standalone ./example.py ` ``` text ... [2019-08-05 15:19:54,389] kopf.clients.events [WARNING ] Failed to post an event. Ignoring and continuing. Error: HTTPError('Event "kopf-event-27kj9" is invalid: involvedObject.namespace: Invalid value: "": does not match event.namespace'). Event: type='Normal', reason='Logging', message='All handlers succeeded for resuming.'. [2019-08-05 15:19:54,402] kopf.clients.events [WARNING ] Failed to post an event. Ignoring and continuing. Error: HTTPError('Event "kopf-event-vdnqq" is invalid: involvedObject.namespace: Invalid value: "": does not match event.namespace'). Event: type='Normal', reason='Logging', message="Handler 'create_fn' succeeded.". [2019-08-05 15:19:54,416] kopf.clients.events [WARNING ] Failed to post an event. Ignoring and continuing. Error: HTTPError('Event "kopf-event-xf2ht" is invalid: involvedObject.namespace: Invalid value: "": does not match event.namespace'). Event: type='Normal', reason='Logging', message='All handlers succeeded for update.'. ... ``` ## Specifications - Platform: Linux - Kubernetes version: ``` text Client Version: version.Info{Major:"1", Minor:"12", GitVersion:"v1.12.7", GitCommit:"6f482974b76db3f1e0f5d24605a9d1d38fad9a2b", GitTreeState:"clean", BuildDate:"2019-03-25T02:52:13Z", GoVersion:"go1.10.8", Compiler:"gc", Platform:"linux/amd64"} Server Version: version.Info{Major:"1", Minor:"11", GitVersion:"v1.11.6", GitCommit:"b1d75deca493a24a2f87eb1efde1a569e52fc8d9", GitTreeState:"clean", BuildDate:"2018-12-16T04:30:10Z", GoVersion:"go1.10.3", Compiler:"gc", Platform:"linux/amd64"} ``` - Python version: `Python 3.7.4` - Python packages installed: ``` text # pip freeze --all aiohttp==3.5.4 aiojobs==0.2.2 async-timeout==3.0.1 attrs==19.1.0 cachetools==3.1.1 certifi==2019.6.16 chardet==3.0.4 Click==7.0 google-auth==1.6.3 idna==2.8 iso8601==0.1.12 kopf==0.20 kubernetes==10.0.0 multidict==4.5.2 oauthlib==3.0.2 pip==19.1.1 pyasn1==0.4.5 pyasn1-modules==0.2.5 pykube-ng==0.28 python-dateutil==2.8.0 PyYAML==5.1.2 requests==2.22.0 requests-oauthlib==1.2.0 rsa==4.0 setuptools==41.0.1 six==1.12.0 urllib3==1.25.3 websocket-client==0.56.0 wheel==0.33.4 yarl==1.3.0 ``` --- > <a href="https://github.com/nolar"><img align="left" height="30" src="https://avatars0.githubusercontent.com/u/544296?v=4"></a> Commented by [nolar](https://github.com/nolar) at _2019-08-05 17:25:59+00:00_ > &nbsp; [olivier-mauras](https://github.com/olivier-mauras) Thanks for reporting. I fought with this issue few times, to no avail. **Brief summary:** K8s events are namespaced, there are no cluster-scoped events. Also, k8s events can refer to an object via `spec.involvedObject` of type `ObjectReference`. This structure contains `namespace` field, to refer to the involved object's namespace (also, name, uid, etc). I could not find a way to post _namespaced events for cluster-scoped resources_. It always fails with namespace mismatch (regardless of which library is used). For an isolated example, here is an attempt to do this for `kind: Node`. The same happens for any cluster-scoped `involvedObject` though. ```bash minikube start curl -i \ --cacert ~/.minikube/ca.crt --cert ~/.minikube/client.crt --key ~/.minikube/client.key \ -X POST -H "Content-Type: application/json" \ https://192.168.64.15:8443/api/v1/namespaces/default/events \ -d '{ "metadata": {"namespace": "default", "generateName": "kopf-event-"}, "action": "Action?", "type": "SomeType", "reason": "SomeReason", "message": "Some message", "reportingComponent": "kopf", "reportingInstance": "dev", "source": {"component": "kopf"}, "firstTimestamp": "2019-08-05T16:44:56.078476Z", "lastTimestamp": "2019-08-05T16:44:56.078476Z", "eventTime": "2019-08-05T16:44:56.078476Z", "involvedObject": {"kind": "Node", "name": "minikube", "uid": "minikube"}}' HTTP/2 422 content-type: application/json content-length: 532 date: Mon, 05 Aug 2019 17:19:09 GMT { "kind": "Status", "apiVersion": "v1", "metadata": { }, "status": "Failure", "message": "Event \"kopf-event-8h65p\" is invalid: involvedObject.namespace: Invalid value: \"\": does not match event.namespace", "reason": "Invalid", "details": { "name": "kopf-event-8h65p", "kind": "Event", "causes": [ { "reason": "FieldValueInvalid", "message": "Invalid value: \"\": does not match event.namespace", "field": "involvedObject.namespace" } ] }, "code": 422 } ``` If I assign a namespace to the involved object, in the assumption that the cluster-scoped object kind of "exists" in all namespaces at once, then the event is created. However, it is not shown on `kubectl describe`, as the attachment is wrong. --- Surprisingly, in the same minikube deployment, I can see such events for `kind: Node` via: ```bash kubectl get events -o yaml | less ``` ```yaml - apiVersion: v1 count: 1 eventTime: null firstTimestamp: "2019-08-05T16:38:01Z" involvedObject: kind: Node name: minikube uid: minikube kind: Event lastTimestamp: "2019-08-05T16:38:01Z" message: Starting kubelet. metadata: creationTimestamp: "2019-08-05T16:38:11Z" name: minikube.15b8143362eeb00f namespace: default resourceVersion: "193" selfLink: /api/v1/namespaces/default/events/minikube.15b8143362eeb00f uid: d23980be-d745-40c7-8378-656fe2b31cb7 reason: Starting reportingComponent: "" reportingInstance: "" source: component: kubelet host: minikube type: Normal ``` So, conceptually it is possible for a namespaced event to refer to a non-namespaced object. But the API does not allow to do this, or I do it somehow wrong. The API documentation gives no clues on how to post such events. --- Any help on how such events can or should be posted, is welcomed. What I can do here, is to fix a little bit, to post the events to the current context's namespace (i.e. with the broken link, as explained above). At least, they will be visible there via `kubectl get events`. Though, it is unclear what is the use-case of the events except for `kubectl describe`. But the error messages in Kopf will be gone. --- > <a href="https://github.com/olivier-mauras"><img align="left" height="30" src="https://avatars3.githubusercontent.com/u/1299371?v=4"></a> Commented by [olivier-mauras](https://github.com/olivier-mauras) at _2019-08-06 06:16:03+00:00_ > &nbsp; [nolar](https://github.com/nolar) Thanks for your extended reply. Maybe I should describe my usecase to make things a bit more clear and maybe find an acceptable workaround. I actually don't mind at all the noise of the default events and had already ran kopf in quiet mode :) Right now my controller is handling namespaces creations/update. For each namespace handled, the controller will create a set of predefined namespaced resources - service acounts, network policies. I've seen your other comments about handling children deletions and indeed I thought it would be smart and as non convoluted as possible to have an on.delete handler for the children resources that would actually send a "delete" event to the namespace. So here's my code ``` python @kopf.on.delete('', 'v1', 'serviceaccounts', annotations={'custom/created_by': 'namespace-manager'}) async def sa_delete(body, namespace, **kwargs): try: api = kubernetes.client.CoreV1Api() ns = api.read_namespace(name=namespace) except ApiException as err: sprint('ERROR', 'Exception when calling CoreV1Api->read_namespace: {}'.format(err)) kopf.info(ns.to_dict(), reason='SA_DELETED', message='Managed service account got deleted') return ``` And so here's the problem with the event not working is that I can't "notify" the namespace of the modification. What would be the best solution for this problem if we can't send event at this point? --- > <a href="https://github.com/olivier-mauras"><img align="left" height="30" src="https://avatars3.githubusercontent.com/u/1299371?v=4"></a> Commented by [olivier-mauras](https://github.com/olivier-mauras) at _2019-08-06 07:07:50+00:00_ > &nbsp; Answering myself, something along the following that you posted in https://github.com/nolar/kopf/issues/153 would certainly work well ```python @kopf.on.event('', 'v1', 'services') def service_event(meta, name, namespace, event, **_): # filter out irrelevant services if not meta.get('labels', {}).get('my-app'): return # Now, it is surely our service. # NB: the old service is already absent at this event, so there will be no HTTP 409 conflict. if event['type'] == 'DELETED': _recreate_service(name, namespace) ``` --- > <a href="https://github.com/nolar"><img align="left" height="30" src="https://avatars0.githubusercontent.com/u/544296?v=4"></a> Commented by [nolar](https://github.com/nolar) at _2019-08-06 08:49:02+00:00_ > &nbsp; [olivier-mauras](https://github.com/olivier-mauras) Ah, I see your point. Just to clarify: Kopf is not a K8s client library, and is not going to be such. It only tries to be friendly to all existing K8s client libraries, leaving this choice to the developers. The k8s-events support in Kopf is rudimentary: only to the extent needed for K8s<->Python integration of per-object logging (i.e. Python's `logging` system posting to `/api/v1/.../events` transparently). Plus some methods are publicly exposed also for the current object's logging. This is the main purpose of Kopf: to marshal K8s activities/structures into Python primitives/functions/libraries, and back from Python to K8s. Non-current object's logging is not intended as a feature (though, may work as a side effect, as in your example). If you need to post some other sophisticated events for some other objects, you can use a client library API calls directly. In case of `kubernetes` client, it is [`CoreV1Api.create_namespaced_event`](https://github.com/kubernetes-client/python/blob/master/kubernetes/docs/CoreV1Api.md#create_namespaced_event). Some hints on the body's content can be taken from Kopf ([`kopf.clients.events`](https://github.com/nolar/kopf/blob/e53a598c856cf9f8e02ef3cb207f15efea85d5f9/kopf/clients/events.py#L45-L65)). --- > <a href="https://github.com/nolar"><img align="left" height="30" src="https://avatars0.githubusercontent.com/u/544296?v=4"></a> Commented by [nolar](https://github.com/nolar) at _2019-08-06 08:50:34+00:00_ > &nbsp; [olivier-mauras](https://github.com/olivier-mauras) Regarding the code example, please note, that label-filtering is now possible via the decorator kwargs, so that it will suppress excessive logging for not-matching objects: https://kopf.readthedocs.io/en/latest/handlers/#filtering --- > <a href="https://github.com/olivier-mauras"><img align="left" height="30" src="https://avatars3.githubusercontent.com/u/1299371?v=4"></a> Commented by [olivier-mauras](https://github.com/olivier-mauras) at _2019-08-06 08:53:42+00:00_ > &nbsp; [nolar](https://github.com/nolar) Thanks for your clarification, as you say what I thought as a feature is more a side effect :) I just implemented the on.event() sample and it's works well enough in my use case --- > <a href="https://github.com/nolar"><img align="left" height="30" src="https://avatars0.githubusercontent.com/u/544296?v=4"></a> Commented by [nolar](https://github.com/nolar) at _2019-09-26 14:30:41+00:00_ > &nbsp; The changes are now in [`kopf==0.21`](https://github.com/nolar/kopf/releases/tag/0.21). If the issue reappears, feel free to re-open. --- > <a href="https://github.com/cliffburdick"><img align="left" height="30" src="https://avatars1.githubusercontent.com/u/30670611?v=4"></a> Commented by [cliffburdick](https://github.com/cliffburdick) at _2020-05-28 02:17:23+00:00_ > &nbsp; [nolar](https://github.com/nolar) for what it's worth, I'm seeing this in 0.27rc6. Periodically I see the following messages in the logs: ``` Failed to post an event. Ignoring and continuing. Status: 500. Message: Internal Server Error. Event: type='Normal', reason='Logging', message="Timer 'MonitorTriadSets' succeeded.". Failed to post an event. Ignoring and continuing. Status: 500. Message: Internal Server Error. Event: type='Normal', reason='Logging', message="Timer 'MonitorTriadSets' succeeded.". ``` I have a timer called MonitorTriadSets that's set to interval=3, idle=3. --- > <a href="https://github.com/cliffburdick"><img align="left" height="30" src="https://avatars1.githubusercontent.com/u/30670611?v=4"></a> Commented by [cliffburdick](https://github.com/cliffburdick) at _2020-08-01 04:17:01+00:00_ > &nbsp; > [nolar](https://github.com/nolar) for what it's worth, I'm seeing this in 0.27rc6. Periodically I see the following messages in the logs: > > ``` > Failed to post an event. Ignoring and continuing. Status: 500. Message: Internal Server Error. Event: type='Normal', reason='Logging', message="Timer 'MonitorTriadSets' succeeded.". > Failed to post an event. Ignoring and continuing. Status: 500. Message: Internal Server Error. Event: type='Normal', reason='Logging', message="Timer 'MonitorTriadSets' succeeded.". > ``` > > I have a timer called MonitorTriadSets that's set to interval=3, idle=3. [nolar](https://github.com/nolar) do you think this can be reopened since it appears to be occurring on timers? I'm not sure if there's a newer version maybe, but it seems the project hasn't been updated in many months.
closed
2020-08-18T19:57:50Z
2022-10-12T05:13:34Z
https://github.com/nolar/kopf/issues/164
[ "bug", "archive" ]
kopf-archiver[bot]
2
littlecodersh/ItChat
api
314
怎么转发一个转发过来的消息?
```python @itchat.msg_register(SHARING) def text_reply(msg): msg.user.send(msg.Url.replace('&amp;', '&')) ``` 尝试过这样发送,但是发出去的消息收到是个url,怎么做才能有转发的效果呢?
closed
2017-04-09T18:12:17Z
2017-04-10T02:36:43Z
https://github.com/littlecodersh/ItChat/issues/314
[]
tofuli
1
xlwings/xlwings
automation
1,830
support python strftime format for range.number_format
The formatting of range in Excel is notoriously difficult to handle as it depends on the locale of the Excel application. It would be nice to be able to support the standard python notation for datetime to format a range containing a datetime. It is a matter of converting a string like "%m/%d/%y, %H:%M:%S" to e.g. "mm/jj/aaaa, hh:mm:ss" (if App is in a french locale). The following monkey patch implements this idea ```python import xlwings from xlwings.constants import ApplicationInternational def convert_datetime_format(app: xlwings.App, s: str) -> str: """Transform the string 's' with datetime format to an excel number_format string adapted to the locale of the 'app' TODO: cache the construction of the map_py2xl and the pattern within the app an alternative is to have the have a function convert_datetime_format(app) => return the interpret_re with a use like: formatter = app.convert_datetime_format() excel_format = formatter("%m/%d/%y, %H:%M:%S") TODO: have some automagic in the Range.number_format property (or have a Range.number_pyformat property who automatically do the conversion. References: - (datetime in excel) https://support.microsoft.com/en-us/office/format-numbers-as-dates-or-times-418bd3fe-0577-47c8-8caa-b4d30c528309 - (datetime in python) https://pandas.pydata.org/docs/reference/api/pandas.Period.strftime.html TODO: do the same but for number format - (numbers) https://support.microsoft.com/en-us/office/number-format-codes-5026bbd6-04bc-48cd-bf33-80f18b4eae68 """ # check minutes come after hour, otherwise not manageable in excel minute = {"%M", "%-M", "%#M"} hour_second = {"%I", "%H", "%-H", "%#H", "%S", "%-S", "%#S"} minute_found = next((s.index(m) for m in minute if m in s), None) hour_second_found = next((s.index(hs) for hs in hour_second if hs in s[:minute_found]), None) if minute_found is not None and hour_second_found is None: raise ValueError( f"Unsupported python format '{s}' has it has minutes coming before hours or seconds (Excel limitations)" ) # build a map between python formats and excel formats codes = (None,) + app.api.International map_py2xl = { "%Y": codes[ApplicationInternational.xlYearCode] * 2, # year two-digit "%y": codes[ApplicationInternational.xlYearCode] * 4, # year four-digit "%#m": codes[ApplicationInternational.xlMonthCode] * 1, # month 1,12 "%-m": codes[ApplicationInternational.xlMonthCode] * 1, # month 1,12 "%m": codes[ApplicationInternational.xlMonthCode] * 2, # month 01,12 "%b": codes[ApplicationInternational.xlMonthCode] * 3, # month Jan "%B": codes[ApplicationInternational.xlMonthCode] * 4, # month January "%-d": codes[ApplicationInternational.xlDayCode] * 1, # day 1,12 "%#d": codes[ApplicationInternational.xlDayCode] * 1, # day 1,12 "%d": codes[ApplicationInternational.xlDayCode] * 2, # day 01,12 "%a": codes[ApplicationInternational.xlDayCode] * 3, # day Mon "%A": codes[ApplicationInternational.xlDayCode] * 4, # day Monday "%-H": codes[ApplicationInternational.xlHourCode] * 1, # hour 0,23 "%#H": codes[ApplicationInternational.xlHourCode] * 1, # hour 0,23 "%H": codes[ApplicationInternational.xlHourCode] * 2, # hour 00,23 "%#M": codes[ApplicationInternational.xlMinuteCode] * 1, # minute 0-59 "%-M": codes[ApplicationInternational.xlMinuteCode] * 1, # minute 0-59 "%M": codes[ApplicationInternational.xlMinuteCode] * 2, # minute 00-59 "%-S": codes[ApplicationInternational.xlSecondCode] * 1, # second 0-59 "%#S": codes[ApplicationInternational.xlSecondCode] * 1, # second 0-59 "%S": codes[ApplicationInternational.xlSecondCode] * 2, # second 00-59 } # add %I notation for hours in AM/PM format (does not cover all combinations but the most natural ones) map_py2xl = { "%I:%M:%S": "{%H}:{%M}:{%S} AM/PM".format(**map_py2xl), "%I:%M": "{%H}:{%M} AM/PM".format(**map_py2xl), "%I": "{%H} AM/PM".format(**map_py2xl), **map_py2xl, } # build regexp to find python formats pattern = re.compile("|".join(map(re.escape, map_py2xl))) def replace_py2xl(s): # replace within a string the python format with the excel format return pattern.sub(lambda m: map_py2xl.get(m.group()), s) return replace_py2xl(s) xlwings.App.convert_datetime_format = convert_datetime_format ``` And can be used as: ```python app = list(xlwings.apps)[0] print(app.format("%m/%d/%y, %H:%M:%S")) print(app.format("%Y/%m %S:%M:%H")) print(app.format("%H %M%b %B %I")) print(app.format("%S %M%b %B %I")) print(app.format("%M%b %B %I")) # raises a ValueError as minutes formatted before any hours/seconds # outputs # mm/jj/aaaa, hh:mm:ss # aa/mm ss:mm:hh # hh mmmmm mmmm hh AM/PM # ss mmmmm mmmm hh AM/PM # Traceback (most recent call last): # File ".../expr_eval.py", line nn, in <module> # print(app.format("%M%b %B %I")) # should raise an error # File ".../expr_eval.py", line nn, in transform_datetime_format # raise ValueError(f"Unsupported python format '{s}' has it has minutes coming before hours or seconds (Excel limitations)") # ValueError: Unsupported python format '%M%b %B %I' has it has minutes coming before hours or seconds (Excel limitations) ```
open
2022-02-12T13:25:01Z
2022-02-14T12:53:28Z
https://github.com/xlwings/xlwings/issues/1830
[]
sdementen
2
netbox-community/netbox
django
17,867
Dropdowns for all forms appear empty after upgrade
### Deployment Type Self-hosted ### Triage priority N/A ### NetBox Version v4.1.3 ### Python Version 3.12 ### Steps to Reproduce 1. Beginning on v3.7.8, add data (device roles, for example) 2. Upgrade to v4.1.3 3. Attempt to create a device using the previously created device role ### Expected Behavior The dropdowns should be populated with the corresponding data. ### Observed Behavior Dropdowns are empty, despite having data available. ![CleanShot 2024-10-27 at 00 03 08@2x](https://github.com/user-attachments/assets/9423a9f8-7b12-40d9-a31a-bd9d4604ecfa) ![CleanShot 2024-10-27 at 00 03 45@2x](https://github.com/user-attachments/assets/134e2e11-7ee8-45ca-98f9-787a45f83e7e)
closed
2024-10-27T04:04:21Z
2025-02-06T03:03:47Z
https://github.com/netbox-community/netbox/issues/17867
[]
ethnt
4
yt-dlp/yt-dlp
python
12,219
Youtube Cookie Issue
### DO NOT REMOVE OR SKIP THE ISSUE TEMPLATE - [x] I understand that I will be **blocked** if I *intentionally* remove or skip any mandatory\* field ### Checklist - [x] I'm reporting that yt-dlp is broken on a **supported** site - [x] I've verified that I have **updated yt-dlp to nightly or master** ([update instructions](https://github.com/yt-dlp/yt-dlp#update-channels)) - [x] I've checked that all provided URLs are playable in a browser with the same IP and same login details - [x] I've checked that all URLs and arguments with special characters are [properly quoted or escaped](https://github.com/yt-dlp/yt-dlp/wiki/FAQ#video-url-contains-an-ampersand--and-im-getting-some-strange-output-1-2839-or-v-is-not-recognized-as-an-internal-or-external-command) - [x] I've searched [known issues](https://github.com/yt-dlp/yt-dlp/issues/3766) and the [bugtracker](https://github.com/yt-dlp/yt-dlp/issues?q=) for similar issues **including closed ones**. DO NOT post duplicates - [x] I've read the [guidelines for opening an issue](https://github.com/yt-dlp/yt-dlp/blob/master/CONTRIBUTING.md#opening-an-issue) - [x] I've read about [sharing account credentials](https://github.com/yt-dlp/yt-dlp/blob/master/CONTRIBUTING.md#are-you-willing-to-share-account-details-if-needed) and I'm willing to share it if required ### Region North America ### Provide a description that is worded well enough to be understood Seems Youtube changed things again without warning. No youtube content is currently being downloaded without cookies, even on latest nightly. Note: Using cookies allows downloading. ### Provide verbose output that clearly demonstrates the problem - [x] Run **your** yt-dlp command with **-vU** flag added (`yt-dlp -vU <your command line>`) - [ ] If using API, add `'verbose': True` to `YoutubeDL` params instead - [x] Copy the WHOLE output (starting with `[debug] Command-line config`) and insert it below ### Complete Verbose Output ```shell [debug] Command-line config: ['-vU', 'https://www.youtube.com/watch?v=zAqvh9KaZJc'] [debug] Encodings: locale cp1252, fs utf-8, pref cp1252, out utf-8, error utf-8, screen utf-8 [debug] yt-dlp version nightly@2025.01.26.034637 from yt-dlp/yt-dlp-nightly-builds [3b4531934] (win_exe) [debug] Python 3.10.11 (CPython AMD64 64bit) - Windows-10-10.0.19045-SP0 (OpenSSL 1.1.1t 7 Feb 2023) [debug] exe versions: ffmpeg 2024-03-28-git-5d71f97e0e-full_build-www.gyan.dev (setts), ffprobe 2024-03-28-git-5d71f97e0e-full_build-www.gyan.dev [debug] Optional libraries: Cryptodome-3.21.0, brotli-1.1.0, certifi-2024.12.14, curl_cffi-0.5.10, mutagen-1.47.0, requests-2.32.3, sqlite3-3.40.1, urllib3-2.3.0, websockets-14.2 [debug] Proxy map: {} [debug] Request Handlers: urllib, requests, websockets, curl_cffi [debug] Extractor Plugins: TTUser (TikTokUserIE) [debug] Plugin directories: ['C:\\Users\\gojigoodra\\Documents\\CMD Files\\yt-dlp-plugins\\yt_dlp_ttuser-2024.3.18-py3-none-any.whl\\yt_dlp_plugins'] [debug] Loaded 1839 extractors [debug] Fetching release info: https://api.github.com/repos/yt-dlp/yt-dlp-nightly-builds/releases/latest Latest version: nightly@2025.01.26.034637 from yt-dlp/yt-dlp-nightly-builds yt-dlp is up to date (nightly@2025.01.26.034637 from yt-dlp/yt-dlp-nightly-builds) [youtube] Extracting URL: https://www.youtube.com/watch?v=zAqvh9KaZJc [youtube] zAqvh9KaZJc: Downloading webpage [youtube] zAqvh9KaZJc: Downloading tv client config [youtube] zAqvh9KaZJc: Downloading player 37364e28 [youtube] zAqvh9KaZJc: Downloading tv player API JSON [youtube] zAqvh9KaZJc: Downloading ios player API JSON ERROR: [youtube] zAqvh9KaZJc: Sign in to confirm you’re not a bot. Use --cookies-from-browser or --cookies for the authentication. See https://github.com/yt-dlp/yt-dlp/wiki/FAQ#how-do-i-pass-cookies-to-yt-dlp for how to manually pass cookies. Also see https://github.com/yt-dlp/yt-dlp/wiki/Extractors#exporting-youtube-cookies for tips on effectively exporting YouTube cookies File "yt_dlp\extractor\common.py", line 742, in extract File "yt_dlp\extractor\youtube.py", line 4706, in _real_extract File "yt_dlp\extractor\common.py", line 1276, in raise_no_formats ```
closed
2025-01-28T01:05:53Z
2025-02-17T07:33:01Z
https://github.com/yt-dlp/yt-dlp/issues/12219
[ "duplicate", "site-bug", "site:youtube" ]
Bonboon229
8
roboflow/supervision
tensorflow
1,218
tflite with supervison
### Search before asking - [X] I have searched the Supervision [issues](https://github.com/roboflow/supervision/issues) and found no similar feature requests. ### Question Hi, does supervsion support tflite detection results? If not, is there a way to convert tflite outputs to the Detections class format? ### Additional _No response_
closed
2024-05-21T15:38:18Z
2024-11-02T17:22:19Z
https://github.com/roboflow/supervision/issues/1218
[ "question" ]
abichoi
4
aio-libs/aiopg
sqlalchemy
105
Why is only ISOLATION_LEVEL_READ_COMMITTED supported?
As the title states, I'm curious to know why the documentation states that only `ISOLATION_LEVEL_READ_COMMITTED` is supported. **Edit:** I've just been looking at the `psycopg2` documentation. Would I be correct to assume that other isolation levels are actually supported, but **setting** them using the `set_isolation_level` api is unsupported?
closed
2016-02-14T21:52:31Z
2016-02-17T13:35:34Z
https://github.com/aio-libs/aiopg/issues/105
[]
TimNN
2
davidteather/TikTok-Api
api
311
[BUG] - Getting "Access Denied" when trying to download user videos, only works with trending() method
I'm trying to download the videos for some specific TikTok user. When I do this, instead of the video file I get a "Access Denied" error like this: ``` Access Denied You don't have permission to access "http://v16-web.tiktok.com/video/tos/useast2a/tos-useast2a-ve-0068c001/ba7ff9409cc74e98b41a20b81b999d4f/?" on this server. Reference #18.e376868.1604401690.3f78b68 ``` The only time the download works is if I get the trending videos, instead of a specific user. The following is a code that reproduces this bug: ``` from TikTokApi import TikTokApi api = TikTokApi() tiktoks = api.byUsername("yodelinghaley") # This download will not work: Access Denied data = api.get_Video_By_TikTok(tiktoks[0]) with open("downloads/user.mp4", 'wb') as output: output.write(data) tiktoks = api.trending() # This download will work data = api.get_Video_By_TikTok(tiktoks[0]) with open("downloads/trending.mp4", 'wb') as output: output.write(data) ``` The file `user.mp4` will contain the Access Denied error I pasted earlier. The trending.mp4 will correctly contain a video from the trending section. **Desktop:** - OS: Ubuntu 18.04 - TikTokApi Version 3.6.0
closed
2020-11-03T11:13:56Z
2020-11-09T02:41:28Z
https://github.com/davidteather/TikTok-Api/issues/311
[ "bug" ]
frankelia
3
CorentinJ/Real-Time-Voice-Cloning
deep-learning
1,192
ost vram
closed
2023-04-14T22:03:24Z
2023-04-14T22:03:41Z
https://github.com/CorentinJ/Real-Time-Voice-Cloning/issues/1192
[]
jhuebner79
0
litestar-org/litestar
asyncio
3,778
Docs: SerializationPluginProtocol example is cut off
### Summary It seems the source has changed (https://docs.advanced-alchemy.litestar.dev/latest/reference/extensions/litestar/plugins/serialization.html#advanced_alchemy.extensions.litestar.plugins.serialization.SQLAlchemySerializationPlugin.supports_type) and the example is missing quite a bit: <img width="915" alt="image" src="https://github.com/user-attachments/assets/af00a0fe-8c2a-45ed-ba80-1a5b6799ed40">
open
2024-10-04T06:20:04Z
2025-03-20T15:54:57Z
https://github.com/litestar-org/litestar/issues/3778
[ "Documentation :books:", "Help Wanted :sos:", "Good First Issue" ]
JacobCoffee
0
onnx/onnx
tensorflow
6,295
Build Error: Protobuf pinned version missing `<cstdint>` definition on its headers
# Bug Report ### Is the issue related to model conversion? N/A ### Describe the bug Have setup a C++ project that tries to build ONNX to make use of it as a library. Using CMake and fetching the onnx repo fixing the v1.16.2. It tries to compile onnx and its dependencies, but it throws an error while trying to build the pinned Protobuf version. It is missing its `<cstdint>` include for a couple of files: ``` <path>/bld/_deps/protobuf-src/src/google/protobuf/port.h:186:67: error: ‘uint32_t’ was not declared in this scope 186 | : absl::disjunction<std::is_same<T, int32_t>, std::is_same<T, uint32_t>, ... <path>/bld/_deps/protobuf-src/src/google/protobuf/compiler/java/kotlin_generator.cc:47:10: error: no declaration matches ‘uint64_t google::protobuf::compiler::java::KotlinGenerator::GetSupportedFeatures() const’ ... <path>/bld/_deps/protobuf-src/src/google/protobuf/compiler/code_generator.h:50:1: note: ‘uint64_t’ is defined in header ‘<cstdint>’; did you forget to ‘#include <cstdint>’? ``` Related issue https://github.com/google/mozc/issues/742 from the mozc project. Related pull request https://github.com/protocolbuffers/protobuf/pull/12331. It seems that the proper include was added on version 22.5. It seems to be a known issue in protobuf, and it has already been addressed in newer versions. As the latest file contains the afformentioned `<cstdint>` include. We also appear to have an open pr that updates protobuf to v22.5 https://github.com/onnx/onnx/pull/6167. Same setup in Windows using MSVC compiles without an issue. ### System information - WSL Ubuntu noble 24.04 x86_64 - ONNX Version v1.16.2 - Python version: 3.12.3 - GCC version: 13.2.0 (Ubuntu 13.2.0-23ubuntu4) - CMake version: 3.29.6 - Protobuf version: 22.3 ```cmake set(ProtobufURL https://github.com/protocolbuffers/protobuf/releases/download/v22.3/protobuf-22.3.tar.gz) set(ProtobufSHA1 310938afea334b98d7cf915b099ec5de5ae3b5c5) ``` ### Reproduction instructions Described above ### Expected behavior A clean compilation of the dependencies and onnx.
closed
2024-08-13T16:42:46Z
2025-01-04T16:01:01Z
https://github.com/onnx/onnx/issues/6295
[ "bug", "topic: build" ]
lmariscal
1
numpy/numpy
numpy
28,384
DOC: numpy.char.encode example is for numpy.strings.encode
### Issue with current documentation: The example for numpy.char.encode is the following import numpy as np a = np.array(['aAaAaA', ' aA ', 'abBABba']) np.strings.encode(a, encoding='cp037') ### Idea or request for content: Update for example of numpy.char.encode instead of np.strings.encode
closed
2025-02-23T13:48:15Z
2025-02-23T17:04:55Z
https://github.com/numpy/numpy/issues/28384
[ "04 - Documentation" ]
mturnansky
1
PokeAPI/pokeapi
graphql
728
Can't get sprites from graphql API
I'm making an app that needs to get the some data from all the pokemons, so i decided to use graphql for it, and while i was testing the web interface i noticed i am not able to get any sprite, the returned json from "sprites" has just null values. My Query: ```graphql query MyQuery { pokemon_v2_pokemon(where: {is_default: {_eq: true}, id: {_is_null: false}}) { id name pokemon_v2_pokemonspecy { is_legendary is_mythical pokemon_v2_pokemoncolor { name } } pokemon_v2_pokemonsprites(where: {}) { sprites } } } ``` The returned data(only for the first pokemon): ```json "pokemon_v2_pokemon": [ { "id": 1, "name": "bulbasaur", "pokemon_v2_pokemonspecy": { "is_legendary": false, "is_mythical": false, "pokemon_v2_pokemoncolor": { "name": "green" } }, "pokemon_v2_pokemonsprites": [ { "sprites": "{\"front_default\": null, \"front_female\": null, \"front_shiny\": null, \"front_shiny_female\": null, \"back_default\": null, \"back_female\": null, \"back_shiny\": null, \"back_shiny_female\": null, \"other\": {\"dream_world\": {\"front_default\": null, \"front_female\": null}, \"home\": {\"front_default\": null, \"front_female\": null, \"front_shiny\": null, \"front_shiny_female\": null}, \"official-artwork\": {\"front_default\": null}}, \"versions\": {\"generation-i\": {\"red-blue\": {\"front_default\": null, \"front_gray\": null, \"back_default\": null, \"back_gray\": null, \"front_transparent\": null, \"back_transparent\": null}, \"yellow\": {\"front_default\": null, \"front_gray\": null, \"back_default\": null, \"back_gray\": null, \"front_transparent\": null, \"back_transparent\": null}}, \"generation-ii\": {\"crystal\": {\"front_default\": null, \"front_shiny\": null, \"back_default\": null, \"back_shiny\": null, \"front_transparent\": null, \"front_shiny_transparent\": null, \"back_transparent\": null, \"back_shiny_transparent\": null}, \"gold\": {\"front_default\": null, \"front_shiny\": null, \"back_default\": null, \"back_shiny\": null, \"front_transparent\": null}, \"silver\": {\"front_default\": null, \"front_shiny\": null, \"back_default\": null, \"back_shiny\": null, \"front_transparent\": null}}, \"generation-iii\": {\"emerald\": {\"front_default\": null, \"front_shiny\": null}, \"firered-leafgreen\": {\"front_default\": null, \"front_shiny\": null, \"back_default\": null, \"back_shiny\": null}, \"ruby-sapphire\": {\"front_default\": null, \"front_shiny\": null, \"back_default\": null, \"back_shiny\": null}}, \"generation-iv\": {\"diamond-pearl\": {\"front_default\": null, \"front_female\": null, \"front_shiny\": null, \"front_shiny_female\": null, \"back_default\": null, \"back_female\": null, \"back_shiny\": null, \"back_shiny_female\": null}, \"heartgold-soulsilver\": {\"front_default\": null, \"front_female\": null, \"front_shiny\": null, \"front_shiny_female\": null, \"back_default\": null, \"back_female\": null, \"back_shiny\": null, \"back_shiny_female\": null}, \"platinum\": {\"front_default\": null, \"front_female\": null, \"front_shiny\": null, \"front_shiny_female\": null, \"back_default\": null, \"back_female\": null, \"back_shiny\": null, \"back_shiny_female\": null}}, \"generation-v\": {\"black-white\": {\"front_default\": null, \"front_female\": null, \"front_shiny\": null, \"front_shiny_female\": null, \"back_default\": null, \"back_female\": null, \"back_shiny\": null, \"back_shiny_female\": null, \"animated\": {\"front_default\": null, \"front_female\": null, \"front_shiny\": null, \"front_shiny_female\": null, \"back_default\": null, \"back_female\": null, \"back_shiny\": null, \"back_shiny_female\": null}}}, \"generation-vi\": {\"omegaruby-alphasapphire\": {\"front_default\": null, \"front_female\": null, \"front_shiny\": null, \"front_shiny_female\": null}, \"x-y\": {\"front_default\": null, \"front_female\": null, \"front_shiny\": null, \"front_shiny_female\": null}}, \"generation-vii\": {\"ultra-sun-ultra-moon\": {\"front_default\": null, \"front_female\": null, \"front_shiny\": null, \"front_shiny_female\": null}, \"icons\": {\"front_default\": null, \"front_female\": null}}, \"generation-viii\": {\"icons\": {\"front_default\": null, \"front_female\": null}}}}" } ] } ``` For readability, here's the json tag returned from "sprites" with syling ```json { "front_default":null, "front_female":null, "front_shiny":null, "front_shiny_female":null, "back_default":null, "back_female":null, "back_shiny":null, "back_shiny_female":null, "other":{ "dream_world":{ "front_default":null, "front_female":null }, "home":{ "front_default":null, "front_female":null, "front_shiny":null, "front_shiny_female":null }, "official-artwork":{ "front_default":null } }, "versions":{ "generation-i":{ "red-blue":{ "front_default":null, "front_gray":null, "back_default":null, "back_gray":null, "front_transparent":null, "back_transparent":null }, "yellow":{ "front_default":null, "front_gray":null, "back_default":null, "back_gray":null, "front_transparent":null, "back_transparent":null } }, "generation-ii":{ "crystal":{ "front_default":null, "front_shiny":null, "back_default":null, "back_shiny":null, "front_transparent":null, "front_shiny_transparent":null, "back_transparent":null, "back_shiny_transparent":null }, "gold":{ "front_default":null, "front_shiny":null, "back_default":null, "back_shiny":null, "front_transparent":null }, "silver":{ "front_default":null, "front_shiny":null, "back_default":null, "back_shiny":null, "front_transparent":null } }, "generation-iii":{ "emerald":{ "front_default":null, "front_shiny":null }, "firered-leafgreen":{ "front_default":null, "front_shiny":null, "back_default":null, "back_shiny":null }, "ruby-sapphire":{ "front_default":null, "front_shiny":null, "back_default":null, "back_shiny":null } }, "generation-iv":{ "diamond-pearl":{ "front_default":null, "front_female":null, "front_shiny":null, "front_shiny_female":null, "back_default":null, "back_female":null, "back_shiny":null, "back_shiny_female":null }, "heartgold-soulsilver":{ "front_default":null, "front_female":null, "front_shiny":null, "front_shiny_female":null, "back_default":null, "back_female":null, "back_shiny":null, "back_shiny_female":null }, "platinum":{ "front_default":null, "front_female":null, "front_shiny":null, "front_shiny_female":null, "back_default":null, "back_female":null, "back_shiny":null, "back_shiny_female":null } }, "generation-v":{ "black-white":{ "front_default":null, "front_female":null, "front_shiny":null, "front_shiny_female":null, "back_default":null, "back_female":null, "back_shiny":null, "back_shiny_female":null, "animated":{ "front_default":null, "front_female":null, "front_shiny":null, "front_shiny_female":null, "back_default":null, "back_female":null, "back_shiny":null, "back_shiny_female":null } } }, "generation-vi":{ "omegaruby-alphasapphire":{ "front_default":null, "front_female":null, "front_shiny":null, "front_shiny_female":null }, "x-y":{ "front_default":null, "front_female":null, "front_shiny":null, "front_shiny_female":null } }, "generation-vii":{ "ultra-sun-ultra-moon":{ "front_default":null, "front_female":null, "front_shiny":null, "front_shiny_female":null }, "icons":{ "front_default":null, "front_female":null } }, "generation-viii":{ "icons":{ "front_default":null, "front_female":null } } } } ```
closed
2022-06-27T17:46:15Z
2022-06-28T13:11:35Z
https://github.com/PokeAPI/pokeapi/issues/728
[]
ZeroKun265
1
koxudaxi/datamodel-code-generator
fastapi
1,423
const fields and discriminators seem lost when using `--output-model-type pydantic_v2.BaseModel` flag
**Describe the bug** const fields and discriminators seem ignored when using `--output-model-type pydantic_v2.BaseModel` flag. **To Reproduce** Example schema: ```json { "openapi": "3.1.0", "info": { "title": "FastAPI", "version": "0.1.0" }, "paths": { "/polymorphic_dict_response": { "get": { "summary": "Get", "operationId": "get_polymorphic_dict_response_get", "responses": { "200": { "description": "Successful Response", "content": { "application/json": { "schema": { "$ref": "#/components/schemas/PolymorphicDictResponse" } } } } } } } }, "components": { "schemas": { "ChoiceRule": { "properties": { "suggestions": { "items": { "type": "string" }, "type": "array", "title": "Suggestions", "default": [] }, "rule": { "const": "ChoiceRule", "title": "Rule", "default": "ChoiceRule" }, "choices": { "items": { "type": "string" }, "type": "array", "minItems": 1, "title": "Choices" } }, "type": "object", "required": ["choices"], "title": "ChoiceRule" }, "DataIDRule": { "properties": { "suggestions": { "items": { "type": "string" }, "type": "array", "title": "Suggestions", "default": [] }, "rule": { "const": "DataIDRule", "title": "Rule", "default": "DataIDRule" } }, "type": "object", "title": "DataIDRule" }, "PolymorphicDictResponse": { "properties": { "name": { "type": "string", "title": "Name" }, "rules": { "additionalProperties": { "oneOf": [ { "$ref": "#/components/schemas/DataIDRule" }, { "$ref": "#/components/schemas/ChoiceRule" } ], "discriminator": { "propertyName": "rule", "mapping": { "ChoiceRule": "#/components/schemas/ChoiceRule", "DataIDRule": "#/components/schemas/DataIDRule" } } }, "type": "object", "title": "Rules" } }, "type": "object", "required": ["name", "rules"], "title": "PolymorphicDictResponse" } } } } ``` Used commandline: ``` $ datamodel-codegen \ --input ./openapi.json \ --input-file-type openapi \ --target-python-version 3.10 \ --output-model-type pydantic_v2.BaseModel \ --use-one-literal-as-default \ --enum-field-as-literal one \ --output _generated_models.py \ --validation ``` **Expected behavior** The generated output was: ``` class ChoiceRule(BaseModel): suggestions: Optional[List[str]] = Field([], title='Suggestions') rule: str = Field('ChoiceRule', title='Rule') choices: List[str] = Field(..., min_length=1, title='Choices') class DataIDRule(BaseModel): suggestions: Optional[List[str]] = Field([], title='Suggestions') rule: str = Field('DataIDRule', title='Rule') class PolymorphicDictResponse(BaseModel): name: str = Field(..., title='Name') rules: Dict[str, Union[DataIDRule, ChoiceRule]] = Field(..., title='Rules') ``` I expected: ``` class ChoiceRule(BaseModel): suggestions: Optional[List[str]] = Field([], title='Suggestions') rule: Literal["ChoiceRule"] = "ChoiceRule" <=== The important part choices: List[str] = Field(..., min_length=1, title='Choices') class DataIDRule(BaseModel): suggestions: Optional[List[str]] = Field([], title='Suggestions') rule: Literal['DataIDRule'] = 'DataIdRule' <=== The important part class PolymorphicDictResponse(BaseModel): name: str = Field(..., title='Name') rules: Dict[ str, Annotated[ Union[ DataIDRule, ChoiceRule, ], Field(discriminator="rule"), <=== The important part ], ] = Field(..., title="Rules") ``` **Version:** - OS: Ubuntu - Python version: Python 3.10.6 - datamodel-code-generator version: 0.21.1 **Additional context** I have attached a script and a test case that pre-produces the problem. It defines a FastAPI application to illustrate the problem. In the application I am defining pydantic types as response-models, then exporting the resulting openapi schema, and then uses this for generating the types once again. When I parse a response from the same app, the polymorphic types get mixed up. The wrong classes gets instantiated. When you follow the trail, you see that FastAPI generated openapi specification correctly states that the `rule` fields are consts, and also describes the discriminator for the Rule components. This information seems lost after datamodel-code-generation. Additionally, this worked well, when FastAPI used pydantic 1.x, as it would emit a single valued enum field in the openapi spec. And running the datamodel-code-generator without the '--output-model-type' gave the desired result. How to reproduce: - Run generate_models.py - Run test_pydantic.py [test_pydantic.zip](https://github.com/koxudaxi/datamodel-code-generator/files/12028939/test_pydantic.zip)
closed
2023-07-12T14:24:24Z
2023-08-24T08:23:43Z
https://github.com/koxudaxi/datamodel-code-generator/issues/1423
[]
tomjelen
1
deepfakes/faceswap
deep-learning
1,296
Faceswap Gui Crashes On Launch
Hello, I've been following the faceswap install guide as I had to start a new virtual environment again, but every-time I load up the gui it crashes. I've also tried to update everything, but nothing seems to be working and it takes me around in loops. I'm using a Mac on CPU, so it's probably a dinosaur here, but I'm hoping it can still be resolved. Here's my crash report: ``` 01/17/2023 11:39:46 MainProcess MainThread logger log_setup INFO Log level set to: INFO 01/17/2023 11:39:50 MainProcess MainThread __init__ <module> DEBUG Creating converter from 7 to 5 01/17/2023 11:39:50 MainProcess MainThread __init__ <module> DEBUG Creating converter from 5 to 7 01/17/2023 11:39:50 MainProcess MainThread __init__ <module> DEBUG Creating converter from 7 to 5 01/17/2023 11:39:50 MainProcess MainThread __init__ <module> DEBUG Creating converter from 5 to 7 Traceback (most recent call last): File "/Users/USERS/opt/anaconda3/envs/faceswap/lib/python3.8/site-packages/requests/compat.py", line 11, in <module> import chardet ModuleNotFoundError: No module named 'chardet' During handling of the above exception, another exception occurred: Traceback (most recent call last): File "/Users/USERS/faceswap/lib/cli/launcher.py", line 224, in execute_script script = self._import_script() File "/Users/USERS/faceswap/lib/cli/launcher.py", line 46, in _import_script self._test_for_tf_version() File "/Users/USERS/faceswap/lib/cli/launcher.py", line 95, in _test_for_tf_version import tensorflow as tf # noqa pylint:disable=import-outside-toplevel,unused-import File "/Users/USERS/opt/anaconda3/envs/faceswap/lib/python3.8/site-packages/tensorflow/__init__.py", line 51, in <module> from ._api.v2 import compat File "/Users/USERS/opt/anaconda3/envs/faceswap/lib/python3.8/site-packages/tensorflow/_api/v2/compat/__init__.py", line 37, in <module> from . import v1 File "/Users/USERS/opt/anaconda3/envs/faceswap/lib/python3.8/site-packages/tensorflow/_api/v2/compat/v1/__init__.py", line 30, in <module> from . import compat File "/Users/USERS/opt/anaconda3/envs/faceswap/lib/python3.8/site-packages/tensorflow/_api/v2/compat/v1/compat/__init__.py", line 38, in <module> from . import v2 File "/Users/USERS/opt/anaconda3/envs/faceswap/lib/python3.8/site-packages/tensorflow/_api/v2/compat/v1/compat/v2/__init__.py", line 28, in <module> from tensorflow._api.v2.compat.v2 import __internal__ File "/Users/USERS/opt/anaconda3/envs/faceswap/lib/python3.8/site-packages/tensorflow/_api/v2/compat/v2/__init__.py", line 33, in <module> from . import compat File "/Users/USERS/opt/anaconda3/envs/faceswap/lib/python3.8/site-packages/tensorflow/_api/v2/compat/v2/compat/__init__.py", line 38, in <module> from . import v2 File "/Users/USERS/opt/anaconda3/envs/faceswap/lib/python3.8/site-packages/tensorflow/_api/v2/compat/v2/compat/v2/__init__.py", line 37, in <module> from tensorflow._api.v2.compat.v2 import distribute File "/Users/USERS/opt/anaconda3/envs/faceswap/lib/python3.8/site-packages/tensorflow/_api/v2/compat/v2/distribute/__init__.py", line 182, in <module> from . import experimental File "/Users/USERS/opt/anaconda3/envs/faceswap/lib/python3.8/site-packages/tensorflow/_api/v2/compat/v2/distribute/experimental/__init__.py", line 10, in <module> from . import rpc File "/Users/USERS/opt/anaconda3/envs/faceswap/lib/python3.8/site-packages/tensorflow/_api/v2/compat/v2/distribute/experimental/rpc/__init__.py", line 8, in <module> from tensorflow.python.distribute.experimental.rpc.rpc_ops import Client File "/Users/USERS/opt/anaconda3/envs/faceswap/lib/python3.8/site-packages/tensorflow/python/distribute/experimental/__init__.py", line 22, in <module> from tensorflow.python.distribute.failure_handling import failure_handling File "/Users/USERS/opt/anaconda3/envs/faceswap/lib/python3.8/site-packages/tensorflow/python/distribute/failure_handling/failure_handling.py", line 33, in <module> from tensorflow.python.distribute.failure_handling import gce_util File "/Users/USERS/opt/anaconda3/envs/faceswap/lib/python3.8/site-packages/tensorflow/python/distribute/failure_handling/gce_util.py", line 20, in <module> import requests File "/Users/USERS/opt/anaconda3/envs/faceswap/lib/python3.8/site-packages/requests/__init__.py", line 45, in <module> from .exceptions import RequestsDependencyWarning File "/Users/USERS/opt/anaconda3/envs/faceswap/lib/python3.8/site-packages/requests/exceptions.py", line 9, in <module> from .compat import JSONDecodeError as CompatJSONDecodeError File "/Users/USERS/opt/anaconda3/envs/faceswap/lib/python3.8/site-packages/requests/compat.py", line 13, in <module> import charset_normalizer as chardet File "/Users/USERS/opt/anaconda3/envs/faceswap/lib/python3.8/site-packages/charset_normalizer/__init__.py", line 23, in <module> from charset_normalizer.api import from_fp, from_path, from_bytes, normalize File "/Users/USERS/opt/anaconda3/envs/faceswap/lib/python3.8/site-packages/charset_normalizer/api.py", line 10, in <module> from charset_normalizer.md import mess_ratio AttributeError: partially initialized module 'charset_normalizer' has no attribute 'md__mypyc' (most likely due to a circular import) ============ System Information ============ backend: amd encoding: UTF-8 git_branch: master git_commits: 80f6328 Bugfixes - plugin.train.unbalanced - decoder b - gui.stats - crash when log folder deleted - setup.py - install gcc=12.1.0 on linux (scipy dep) - setup.py - don't test ROCm unless valid - typofix - cli_args extract singleprocess help typing - lib.gui.analysis.event_reader - lib.gpu_stats.directml - make platform specific unit tests - lib.gui.analysis.event_reader. 28cb2fc Unhide options for ROCm. c455601 Linux - ROCm (AMD) support. edd7e52 docs: typofix. 0dbeafb bugfix: sysinfo - Fix getting free Vram on Nvidia - Don't halt sysinfo on GPU stats error - lib.sysinfo unit test gpu_cuda: No global version found. Check Conda packages for Conda Cuda gpu_cudnn: No global version found. Check Conda packages for Conda cuDNN gpu_devices: GPU_0: llvm_cpu.0 - CPU (via LLVM) (experimental) gpu_devices_active: GPU_0 gpu_driver: No Driver Found gpu_vram: GPU_0: 4096MB (4096MB free) os_machine: x86_64 os_platform: macOS-10.15.6-x86_64-i386-64bit os_release: 19.6.0 py_command: faceswap.py gui py_conda_version: conda 22.11.1 py_implementation: CPython py_version: 3.8.15 py_virtual_env: True sys_cores: 8 sys_processor: i386 sys_ram: Total: 16384MB, Available: 8017MB, Used: 8203MB, Free: 60MB =============== Pip Packages =============== absl-py @ file:///private/var/folders/sy/f16zz6x50xz3113nwtb9bvq00000gp/T/abs_09tbpzfe9v/croot/absl-py_1666362946999/work aiohttp @ file:///private/var/folders/sy/f16zz6x50xz3113nwtb9bvq00000gp/T/abs_690hlorvpy/croot/aiohttp_1670009554132/work aiosignal @ file:///tmp/build/80754af9/aiosignal_1637843061372/work astunparse==1.6.3 async-timeout @ file:///private/var/folders/sy/f16zz6x50xz3113nwtb9bvq00000gp/T/abs_732x52axrd/croots/recipe/async-timeout_1664876366763/work attrs @ file:///private/var/folders/sy/f16zz6x50xz3113nwtb9bvq00000gp/T/abs_33k1uces4n/croot/attrs_1668696162258/work blinker==1.4 brotlipy==0.7.0 cachetools==4.2.4 certifi @ file:///private/var/folders/sy/f16zz6x50xz3113nwtb9bvq00000gp/T/abs_477u68wvzm/croot/certifi_1671487773341/work/certifi cffi @ file:///private/var/folders/sy/f16zz6x50xz3113nwtb9bvq00000gp/T/abs_1b0qzba5nr/croot/cffi_1670423213150/work charset-normalizer==3.0.1 click @ file:///opt/concourse/worker/volumes/live/709f530a-8ffd-4e02-4f5f-9b3cfddd0e0b/volume/click_1646056616410/work cloud-tpu-client==0.10 cloudpickle @ file:///tmp/build/80754af9/cloudpickle_1632508026186/work cryptography @ file:///private/var/folders/sy/f16zz6x50xz3113nwtb9bvq00000gp/T/abs_0ayq9hu973/croot/cryptography_1673298756837/work cycler @ file:///tmp/build/80754af9/cycler_1637851556182/work decorator @ file:///opt/conda/conda-bld/decorator_1643638310831/work dm-tree @ file:///private/var/folders/sy/f16zz6x50xz3113nwtb9bvq00000gp/T/abs_1fp7e2h87y/croot/dm-tree_1671027438289/work enum34==1.1.10 fastcluster @ file:///Users/runner/miniforge3/conda-bld/fastcluster_1646148981469/work ffmpy==0.3.0 flatbuffers==23.1.4 flit_core @ file:///opt/conda/conda-bld/flit-core_1644941570762/work/source/flit_core fonttools==4.25.0 frozenlist @ file:///private/var/folders/sy/f16zz6x50xz3113nwtb9bvq00000gp/T/abs_5eiq5594pj/croot/frozenlist_1670004516635/work gast @ file:///Users/ktietz/demo/mc3/conda-bld/gast_1628588903283/work google-api-core==1.34.0 google-api-python-client==1.8.0 google-auth @ file:///opt/conda/conda-bld/google-auth_1646735974934/work google-auth-httplib2==0.1.0 google-auth-oauthlib==0.4.6 google-pasta @ file:///Users/ktietz/demo/mc3/conda-bld/google-pasta_1630577991354/work googleapis-common-protos==1.58.0 grpcio==1.51.1 h5py @ file:///private/var/folders/sy/f16zz6x50xz3113nwtb9bvq00000gp/T/abs_7fnj4n39p5/croots/recipe/h5py_1659091379933/work httplib2==0.21.0 idna @ file:///private/var/folders/sy/f16zz6x50xz3113nwtb9bvq00000gp/T/abs_00jf0h4zbt/croot/idna_1666125573348/work imageio @ file:///private/var/folders/sy/f16zz6x50xz3113nwtb9bvq00000gp/T/abs_5460df32-49d6-4565-9afb-ddc7de276101dvh8sph9/croots/recipe/imageio_1658785049436/work imageio-ffmpeg @ file:///home/conda/feedstock_root/build_artifacts/imageio-ffmpeg_1673483481485/work importlib-metadata==6.0.0 joblib @ file:///home/conda/feedstock_root/build_artifacts/joblib_1663332044897/work keras @ file:///Users/ec2-user/miniconda3/conda-bld/keras_1669750590284/work/keras-2.10.0-py2.py3-none-any.whl Keras-Applications==1.0.8 Keras-Preprocessing @ file:///tmp/build/80754af9/keras-preprocessing_1612283640596/work kiwisolver @ file:///private/var/folders/sy/f16zz6x50xz3113nwtb9bvq00000gp/T/abs_e26jwrjf6j/croot/kiwisolver_1672387151391/work libclang==15.0.6.1 Markdown @ file:///private/var/folders/sy/f16zz6x50xz3113nwtb9bvq00000gp/T/abs_90m_zl2p10/croot/markdown_1671541913695/work MarkupSafe @ file:///private/var/folders/sy/f16zz6x50xz3113nwtb9bvq00000gp/T/abs_d4a9444f-bd4c-4043-b47d-cede33979b0fve7bm42r/croots/recipe/markupsafe_1654597878200/work matplotlib @ file:///opt/concourse/worker/volumes/live/f670ab63-e220-495e-450b-14c9591f195b/volume/matplotlib-suite_1634667037960/work mkl-fft==1.3.1 mkl-random @ file:///opt/concourse/worker/volumes/live/f196a661-8e33-4aac-63bc-efb2ff50e035/volume/mkl_random_1626186080069/work mkl-service==2.4.0 multidict @ file:///private/var/folders/sy/f16zz6x50xz3113nwtb9bvq00000gp/T/abs_81upqwhecp/croot/multidict_1665674236996/work munkres==1.1.4 numexpr @ file:///private/var/folders/sy/f16zz6x50xz3113nwtb9bvq00000gp/T/abs_cef3ah6r8w/croot/numexpr_1668713880672/work numpy @ file:///private/var/folders/sy/f16zz6x50xz3113nwtb9bvq00000gp/T/abs_e3f85f54-0572-4c0e-b190-4bc4766fc3fenewxarhq/croots/recipe/numpy_and_numpy_base_1652801682879/work nvidia-ml-py==11.525.84 oauth2client==4.1.3 oauthlib==3.2.2 opencv-python==4.7.0.68 opt-einsum @ file:///tmp/build/80754af9/opt_einsum_1621500238896/work packaging==23.0 pexpect @ file:///tmp/build/80754af9/pexpect_1605563209008/work Pillow==9.3.0 plaidml==0.7.0 plaidml-keras==0.7.0 protobuf==3.20.1 psutil @ file:///private/var/folders/sy/f16zz6x50xz3113nwtb9bvq00000gp/T/abs_c9b604bf-685f-47f6-8304-238e4e70557e1o7mmsot/croots/recipe/psutil_1656431274701/work ptyprocess @ file:///tmp/build/80754af9/ptyprocess_1609355006118/work/dist/ptyprocess-0.7.0-py2.py3-none-any.whl pyasn1 @ file:///Users/ktietz/demo/mc3/conda-bld/pyasn1_1629708007385/work pyasn1-modules==0.2.8 pycparser @ file:///tmp/build/80754af9/pycparser_1636541352034/work PyJWT @ file:///private/var/folders/sy/f16zz6x50xz3113nwtb9bvq00000gp/T/abs_eec47dd9-fcc8-4e06-bbca-6138d11dbbcch6zasfc4/croots/recipe/pyjwt_1657544589510/work pyOpenSSL @ file:///opt/conda/conda-bld/pyopenssl_1643788558760/work pyparsing @ file:///private/var/folders/sy/f16zz6x50xz3113nwtb9bvq00000gp/T/abs_3a17y2delq/croots/recipe/pyparsing_1661452538853/work PySocks @ file:///opt/concourse/worker/volumes/live/85a5b906-0e08-41d9-6f59-084cee4e9492/volume/pysocks_1594394636991/work python-dateutil @ file:///tmp/build/80754af9/python-dateutil_1626374649649/work PyYAML==6.0 requests==2.28.2 requests-oauthlib==1.3.1 rsa==4.9 scikit-learn @ file:///opt/concourse/worker/volumes/live/09b793c0-41c8-469b-7e31-b4a39bc68d95/volume/scikit-learn_1642617120730/work scipy @ file:///opt/concourse/worker/volumes/live/7554f9b4-1616-4d3d-50f8-914545975614/volume/scipy_1641555024289/work six @ file:///tmp/build/80754af9/six_1644875935023/work tensorboard==2.10.1 tensorboard-data-server @ file:///var/folders/sy/f16zz6x50xz3113nwtb9bvq00000gp/T/abs_b8sq3zgkhr/croot/tensorboard-data-server_1670853593214/work/tensorboard_data_server-0.6.1-py3-none-macosx_10_9_x86_64.whl tensorboard-plugin-wit==1.8.1 tensorflow @ file:///Users/ec2-user/miniconda3/conda-bld/tensorflow-base_1669830675347/work/tensorflow_pkg/tensorflow-2.10.0-cp38-cp38-macosx_10_14_x86_64.whl tensorflow-cpu==2.10.1 tensorflow-estimator @ file:///Users/ec2-user/miniconda3/conda-bld/tensorflow-estimator_1669751680663/work/tensorflow_estimator-2.10.0-py2.py3-none-any.whl tensorflow-io-gcs-filesystem==0.29.0 tensorflow-probability @ file:///tmp/build/80754af9/tensorflow-probability_1633017132682/work termcolor==2.2.0 threadpoolctl @ file:///home/conda/feedstock_root/build_artifacts/threadpoolctl_1643647933166/work tornado @ file:///private/var/folders/sy/f16zz6x50xz3113nwtb9bvq00000gp/T/abs_1fimz6o0gc/croots/recipe/tornado_1662061695695/work tqdm @ file:///private/var/folders/sy/f16zz6x50xz3113nwtb9bvq00000gp/T/abs_2adqcbsqqd/croots/recipe/tqdm_1664392689227/work typing_extensions @ file:///private/var/folders/sy/f16zz6x50xz3113nwtb9bvq00000gp/T/abs_4b7xacf029/croot/typing_extensions_1669923792404/work uritemplate==3.0.1 urllib3==1.26.14 Werkzeug @ file:///private/var/folders/sy/f16zz6x50xz3113nwtb9bvq00000gp/T/abs_322nlonnpf/croot/werkzeug_1671215993374/work wrapt @ file:///private/var/folders/sy/f16zz6x50xz3113nwtb9bvq00000gp/T/abs_1ade1f68-8354-4db8-830b-ff3072015779vd_2hm7k/croots/recipe/wrapt_1657814407132/work yarl @ file:///private/var/folders/sy/f16zz6x50xz3113nwtb9bvq00000gp/T/abs_d8a27nidjc/croots/recipe/yarl_1661437080982/work zipp @ file:///private/var/folders/sy/f16zz6x50xz3113nwtb9bvq00000gp/T/abs_b71z79bye2/croot/zipp_1672387125902/work ============== Conda Packages ============== # packages in environment at /Users/USERS/opt/anaconda3/envs/faceswap: # # Name Version Build Channel _tflow_select 2.2.0 eigen abseil-cpp 20211102.0 he9d5cce_0 absl-py 1.3.0 py38hecd8cb5_0 aiohttp 3.8.3 py38h6c40b1e_0 aiosignal 1.2.0 pyhd3eb1b0_0 astunparse 1.6.3 py_0 async-timeout 4.0.2 py38hecd8cb5_0 attrs 22.1.0 py38hecd8cb5_0 blas 1.0 mkl blinker 1.4 py38hecd8cb5_0 brotli 1.0.9 hca72f7f_7 brotli-bin 1.0.9 hca72f7f_7 brotlipy 0.7.0 py38h9ed2024_1003 bzip2 1.0.8 h0d85af4_4 conda-forge c-ares 1.18.1 hca72f7f_0 ca-certificates 2022.10.11 hecd8cb5_0 cachetools 4.2.4 pypi_0 pypi certifi 2022.12.7 py38hecd8cb5_0 cffi 1.15.1 py38h6c40b1e_3 charset-normalizer 3.0.1 pypi_0 pypi click 8.0.4 py38hecd8cb5_0 cloud-tpu-client 0.10 pypi_0 pypi cloudpickle 2.0.0 pyhd3eb1b0_0 cryptography 38.0.4 py38hf6deb26_0 cycler 0.11.0 pyhd3eb1b0_0 decorator 5.1.1 pyhd3eb1b0_0 dm-tree 0.1.7 py38hcec6c5f_1 enum34 1.1.10 pypi_0 pypi fastcluster 1.2.6 py38h52e9a12_0 conda-forge ffmpeg 4.2.2 h97e5cf8_0 flatbuffers 23.1.4 pypi_0 pypi flit-core 3.6.0 pyhd3eb1b0_0 fonttools 4.25.0 pyhd3eb1b0_0 freetype 2.12.1 hd8bbffd_0 frozenlist 1.3.3 py38h6c40b1e_0 gast 0.3.3 pypi_0 pypi gettext 0.21.1 h8a4c099_0 conda-forge giflib 5.2.1 haf1e3a3_0 gmp 6.2.1 h2e338ed_0 conda-forge gnutls 3.6.13 h756fd2b_1 conda-forge google-api-core 1.34.0 pypi_0 pypi google-api-python-client 1.8.0 pypi_0 pypi google-auth 1.35.0 pypi_0 pypi google-auth-httplib2 0.1.0 pypi_0 pypi google-auth-oauthlib 0.4.6 pypi_0 pypi google-pasta 0.2.0 pyhd3eb1b0_0 googleapis-common-protos 1.58.0 pypi_0 pypi grpc-cpp 1.46.1 h067a048_0 grpcio 1.51.1 pypi_0 pypi h5py 2.10.0 pypi_0 pypi hdf5 1.10.6 hdbbcd12_0 httplib2 0.21.0 pypi_0 pypi icu 58.2 h0a44026_3 idna 3.4 py38hecd8cb5_0 imageio 2.19.3 py38hecd8cb5_0 imageio-ffmpeg 0.4.8 pyhd8ed1ab_0 conda-forge importlib-metadata 6.0.0 pypi_0 pypi intel-openmp 2021.4.0 hecd8cb5_3538 joblib 1.2.0 pyhd8ed1ab_0 conda-forge jpeg 9e hca72f7f_0 keras 2.10.0 py38hecd8cb5_0 keras-applications 1.0.8 pypi_0 pypi keras-preprocessing 1.1.2 pyhd3eb1b0_0 kiwisolver 1.4.4 py38hcec6c5f_0 krb5 1.19.2 hcd88c3b_0 lame 3.100 hb7f2c08_1003 conda-forge lcms2 2.12 hf1fd2bf_0 lerc 3.0 he9d5cce_0 libbrotlicommon 1.0.9 hca72f7f_7 libbrotlidec 1.0.9 hca72f7f_7 libbrotlienc 1.0.9 hca72f7f_7 libclang 15.0.6.1 pypi_0 pypi libcurl 7.86.0 ha585b31_0 libcxx 14.0.6 h9765a3e_0 libdeflate 1.8 h9ed2024_5 libedit 3.1.20221030 h6c40b1e_0 libev 4.33 h9ed2024_1 libffi 3.4.2 hecd8cb5_6 libgfortran 3.0.1 h93005f0_2 libiconv 1.17 hac89ed1_0 conda-forge libnghttp2 1.46.0 ha29bfda_0 libopus 1.3.1 hc929b4f_1 conda-forge libpng 1.6.37 ha441bb4_0 libprotobuf 3.20.1 h8346a28_0 libssh2 1.10.0 h0a4fc7d_0 libtiff 4.5.0 h2cd0358_0 libvpx 1.7.0 h378b8a2_0 libwebp 1.2.4 h56c3ce4_0 libwebp-base 1.2.4 hca72f7f_0 llvm-openmp 15.0.7 h61d9ccf_0 conda-forge lz4-c 1.9.4 hcec6c5f_0 markdown 3.4.1 py38hecd8cb5_0 markupsafe 2.1.1 py38hca72f7f_0 matplotlib 3.4.3 py38hecd8cb5_0 matplotlib-base 3.4.3 py38h0a11d32_0 mkl 2021.4.0 hecd8cb5_637 mkl-service 2.4.0 py38h9ed2024_0 mkl_fft 1.3.1 py38h4ab4a9b_0 mkl_random 1.2.2 py38hb2f4e1b_0 multidict 6.0.2 py38hca72f7f_0 munkres 1.1.4 py_0 ncurses 6.3 hca72f7f_3 nettle 3.6 hedd7734_0 conda-forge numexpr 2.8.4 py38he696674_0 numpy 1.16.0 pypi_0 pypi numpy-base 1.22.3 py38h3b1a694_0 oauth2client 4.1.3 pypi_0 pypi oauthlib 3.2.2 pypi_0 pypi openh264 2.1.1 h8346a28_0 openssl 1.1.1s hca72f7f_0 opt_einsum 3.3.0 pyhd3eb1b0_1 packaging 23.0 pypi_0 pypi pexpect 4.8.0 pyhd3eb1b0_3 pillow 9.3.0 py38h81888ad_1 pip 22.3.1 py38hecd8cb5_0 plaidml 0.7.0 pypi_0 pypi plaidml-keras 0.7.0 pypi_0 pypi protobuf 3.19.6 pypi_0 pypi psutil 5.9.0 py38hca72f7f_0 ptyprocess 0.7.0 pyhd3eb1b0_2 pyasn1 0.4.8 pyhd3eb1b0_0 pyasn1-modules 0.2.8 pypi_0 pypi pycparser 2.21 pyhd3eb1b0_0 pyjwt 2.4.0 py38hecd8cb5_0 pyopenssl 22.0.0 pyhd3eb1b0_0 pyparsing 3.0.9 py38hecd8cb5_0 pysocks 1.7.1 py38_1 python 3.8.15 h218abb5_2 python-dateutil 2.8.2 pyhd3eb1b0_0 python-flatbuffers 2.0 pyhd3eb1b0_0 python_abi 3.8 2_cp38 conda-forge pyyaml 6.0 pypi_0 pypi re2 2022.04.01 he9d5cce_0 readline 8.2 hca72f7f_0 requests 2.28.2 pypi_0 pypi requests-oauthlib 1.3.1 pypi_0 pypi rsa 4.9 pypi_0 pypi scikit-learn 1.0.2 py38hae1ba45_1 scipy 1.7.3 py38h8c7af03_0 setuptools 65.6.3 py38hecd8cb5_0 six 1.16.0 pyhd3eb1b0_1 snappy 1.1.9 he9d5cce_0 sqlite 3.40.1 h880c91c_0 tensorboard 2.10.1 pypi_0 pypi tensorboard-data-server 0.6.1 py38h7242b5c_0 tensorboard-plugin-wit 1.8.1 pypi_0 pypi tensorflow 2.2.3 pypi_0 pypi tensorflow-base 2.10.0 eigen_py38h61e1807_0 tensorflow-cpu 2.10.1 pypi_0 pypi tensorflow-estimator 2.10.0 py38hecd8cb5_0 tensorflow-io-gcs-filesystem 0.29.0 pypi_0 pypi tensorflow-probability 0.14.0 pyhd3eb1b0_0 termcolor 2.2.0 pypi_0 pypi threadpoolctl 3.1.0 pyh8a188c0_0 conda-forge tk 8.6.12 h5d9f67b_0 tornado 6.2 py38hca72f7f_0 tqdm 4.64.1 py38hecd8cb5_0 typing-extensions 4.4.0 py38hecd8cb5_0 typing_extensions 4.4.0 py38hecd8cb5_0 uritemplate 3.0.1 pypi_0 pypi urllib3 1.26.14 pypi_0 pypi werkzeug 2.2.2 py38hecd8cb5_0 wheel 0.35.1 pyhd3eb1b0_0 wrapt 1.14.1 py38hca72f7f_0 x264 1!157.20191217 h1de35cc_0 xz 5.2.8 h6c40b1e_0 yarl 1.8.1 py38hca72f7f_0 zipp 3.11.0 py38hecd8cb5_0 zlib 1.2.13 h4dc903c_0 zstd 1.5.2 hcb37349_0 ================= Configs ================== --------- convert.ini --------- [color.color_transfer] clip: True preserve_paper: True [color.match_hist] threshold: 99.0 [color.manual_balance] colorspace: HSV balance_1: 0.0 balance_2: 0.0 balance_3: 0.0 contrast: 0.0 brightness: 0.0 [writer.pillow] format: png draw_transparent: False optimize: False gif_interlace: True jpg_quality: 75 png_compress_level: 3 tif_compression: tiff_deflate [writer.ffmpeg] container: mp4 codec: libx264 crf: 23 preset: medium tune: None profile: auto level: auto skip_mux: False [writer.gif] fps: 25 loop: 0 palettesize: 256 subrectangles: False [writer.opencv] format: png draw_transparent: False jpg_quality: 75 png_compress_level: 3 [mask.mask_blend] type: normalized kernel_size: 3 passes: 4 threshold: 6 erosion: 1.2 [mask.box_blend] type: gaussian distance: 11.0 radius: 5.0 passes: 1 [scaling.sharpen] method: unsharp_mask amount: 150 radius: 0.3 threshold: 5.0 --------- gui.ini --------- [global] fullscreen: False tab: extract options_panel_width: 30 console_panel_height: 20 icon_size: 14 font: default font_size: 9 autosave_last_session: prompt timeout: 120 auto_load_model_stats: True --------- .faceswap --------- backend: amd --------- extract.ini --------- [global] allow_growth: False [detect.mtcnn] minsize: 20 scalefactor: 0.709 batch-size: 8 threshold_1: 0.6 threshold_2: 0.7 threshold_3: 0.7 [detect.cv2_dnn] confidence: 50 [detect.s3fd] confidence: 70 batch-size: 4 [align.fan] batch-size: 12 [mask.unet_dfl] batch-size: 8 [mask.vgg_obstructed] batch-size: 2 [mask.vgg_clear] batch-size: 6 [mask.bisenet_fp] batch-size: 8 weights: faceswap include_ears: False include_hair: False include_glasses: True --------- train.ini --------- [global] centering: face coverage: 68.75 icnr_init: False conv_aware_init: False optimizer: adam learning_rate: 5e-05 epsilon_exponent: -7 reflect_padding: False allow_growth: False mixed_precision: False nan_protection: True convert_batchsize: 16 [global.loss] loss_function: ssim mask_loss_function: mse l2_reg_term: 100 eye_multiplier: 3 mouth_multiplier: 2 penalized_mask_loss: True mask_type: extended mask_blur_kernel: 3 mask_threshold: 4 learn_mask: False [model.phaze_a] output_size: 128 shared_fc: None enable_gblock: True split_fc: True split_gblock: False split_decoders: False enc_architecture: fs_original enc_scaling: 40 enc_load_weights: True bottleneck_type: dense bottleneck_norm: None bottleneck_size: 1024 bottleneck_in_encoder: True fc_depth: 1 fc_min_filters: 1024 fc_max_filters: 1024 fc_dimensions: 4 fc_filter_slope: -0.5 fc_dropout: 0.0 fc_upsampler: upsample2d fc_upsamples: 1 fc_upsample_filters: 512 fc_gblock_depth: 3 fc_gblock_min_nodes: 512 fc_gblock_max_nodes: 512 fc_gblock_filter_slope: -0.5 fc_gblock_dropout: 0.0 dec_upscale_method: subpixel dec_norm: None dec_min_filters: 64 dec_max_filters: 512 dec_filter_slope: -0.45 dec_res_blocks: 1 dec_output_kernel: 5 dec_gaussian: True dec_skip_last_residual: True freeze_layers: keras_encoder load_layers: encoder fs_original_depth: 4 fs_original_min_filters: 128 fs_original_max_filters: 1024 mobilenet_width: 1.0 mobilenet_depth: 1 mobilenet_dropout: 0.001 [model.realface] input_size: 64 output_size: 128 dense_nodes: 1536 complexity_encoder: 128 complexity_decoder: 512 [model.dfl_sae] input_size: 128 clipnorm: True architecture: df autoencoder_dims: 0 encoder_dims: 42 decoder_dims: 21 multiscale_decoder: False [model.unbalanced] input_size: 128 lowmem: False clipnorm: True nodes: 1024 complexity_encoder: 128 complexity_decoder_a: 384 complexity_decoder_b: 512 [model.dlight] features: best details: good output_size: 256 [model.villain] lowmem: False [model.dfaker] output_size: 128 [model.original] lowmem: False [model.dfl_h128] lowmem: False [trainer.original] preview_images: 14 zoom_amount: 5 rotation_range: 10 shift_range: 5 flip_chance: 50 color_lightness: 30 color_ab: 8 color_clahe_chance: 50 color_clahe_max_size: 4 ```
closed
2023-01-17T12:07:09Z
2023-01-20T13:05:03Z
https://github.com/deepfakes/faceswap/issues/1296
[]
DrDreGFunk
1
apache/airflow
data-science
47,810
Old asset is also displayed on the UI after updating the method name decorated by an asset decorator
### Apache Airflow version 3.0.0 ### If "Other Airflow 2 version" selected, which one? _No response_ ### What happened? Old asset is also displayed on the UI after updating the method name decorated by an asset decorator <img width="1707" alt="Image" src="https://github.com/user-attachments/assets/46de77aa-64a9-4335-a681-32ff00ca4a73" /> <img width="1434" alt="Image" src="https://github.com/user-attachments/assets/a6624fee-8a20-42f4-8099-fccca99e5333" /> ### What you think should happen instead? Only latest asset should be displayed on the UI ### How to reproduce 1. Trigger the below DAG: ```python @asset(schedule=None) def abc(): pass ``` 2. Notice an asset is created on thr asset page by name 'abc' 3. Update the method name from abc to abcde and trigger the Dag again. 4. See 2 assets 'abc' and 'abcde' on assets page on UI. ### Operating System Linux ### Versions of Apache Airflow Providers _No response_ ### Deployment Other ### Deployment details _No response_ ### Anything else? _No response_ ### Are you willing to submit PR? - [ ] Yes I am willing to submit a PR! ### Code of Conduct - [x] I agree to follow this project's [Code of Conduct](https://github.com/apache/airflow/blob/main/CODE_OF_CONDUCT.md)
closed
2025-03-15T10:26:50Z
2025-03-19T18:23:34Z
https://github.com/apache/airflow/issues/47810
[ "kind:bug", "priority:high", "area:core", "area:UI", "area:datasets", "area:task-execution-interface-aip72", "area:task-sdk", "affected_version:3.0.0beta" ]
atul-astronomer
6
junyanz/pytorch-CycleGAN-and-pix2pix
computer-vision
1,490
CUDA version
I followed readme to install the environment but come across this issue "NVIDIA GeForce RTX 3080 Laptop GPU with CUDA capability sm_86 is not compatible with the current PyTorch installation.The current PyTorch install supports CUDA capabilities sm_37 sm_50 sm_60 sm_61 sm_70 sm_75 compute_37." I changed cuda version to 10.2,11.0,11.2,but all don't work well,does anyone know how to fix it?
open
2022-10-06T14:23:59Z
2024-03-12T03:11:53Z
https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/issues/1490
[]
AriaZiyanYang
2
nteract/papermill
jupyter
568
Papermill raises error for id field when running jupyter-notebook 6.2 with the -p flag
When running papermill v2.2.1 in an environment where jupyter-notebook v6.2 is installed I am seeing the following error when running with parameters (-p flag) papermill notebook.ipynb outputs/notebook.ipynb -p my_config --no-progress-bar --log-output Output: ``` [NbConvertApp] ERROR | Notebook JSON is invalid: Additional properties are not allowed ('id' was unexpected) [2021-01-18T09:44:24.218Z] Failed validating 'additionalProperties' in code_cell: [2021-01-18T09:44:24.218Z] On instance['cells'][0]: [2021-01-18T09:44:24.218Z] {'cell_type': 'code', [2021-01-18T09:44:24.218Z] 'execution_count': 1, [2021-01-18T09:44:24.218Z] 'id': 'nasty-bearing', [2021-01-18T09:44:24.218Z] 'metadata': {'execution': {'iopub.execute_input': '2021-01-18T09:44:22.903942Z', [2021-01-18T09:44:24.218Z] 'iopub.status.busy': '2021-01-18T09:44:22.903349Z', [2021-01-18T09:44:24.218Z] 'iopub.status.idle': '2021-01-18T09:44:22.905999Z', [2021-01-18T09:44:24.218Z] 'shell.execute_reply': '2021-01-18T09:44:22.905474Z'}, [2021-01-18T09:44:24.218Z] 'papermill': {'duration': 0.01294, [2021-01-18T09:44:24.218Z] 'end_time': '2021-01-18T09:44:22.906187', [2021-01-18T09:44:24.218Z] 'exception': False, [2021-01-18T09:44:24.218Z] 'start_time': '2021-01-18T09:44:22.893247', [2021-01-18T09:44:24.218Z] 'status': 'completed'}, [2021-01-18T09:44:24.218Z] 'tags': ['injected-parameters']} ``` I think this may be due to a change in jupyter-notebook v6.2 that has added an "id" field to the cell properties : https://github.com/jupyter/notebook/pull/5928/ . The error does not occur when jupyter-notebook v6.1.6 or earlier is running
closed
2021-01-18T10:30:14Z
2022-01-31T15:41:20Z
https://github.com/nteract/papermill/issues/568
[]
malcolmbovey
16
ageitgey/face_recognition
machine-learning
730
about clf file
* face_recognition version: * Python version: 3.4 * Operating System: ubuntu 16.04 ### Description since .clf file is binary format, after recognising a face, i just want to extract its featuresof recognised face from clf file. so that one of requirement will get solved. please suggest me in this, whether it's having some methods or or any other alternate. ### What I Did its not an issue i just want to upgrade to next level of coding in it.
open
2019-01-29T10:46:54Z
2019-01-29T10:46:54Z
https://github.com/ageitgey/face_recognition/issues/730
[]
saideepthik
0
apachecn/ailearning
python
582
机器学习
NULL
closed
2020-04-09T04:03:19Z
2020-04-09T04:07:10Z
https://github.com/apachecn/ailearning/issues/582
[]
dabaozizhang
0
iMerica/dj-rest-auth
rest-api
301
Auto refresh
Currently my rest api has a middleware where I create a cookie with the expiration date every time I login or refresh. ```python from django.utils import timezone from django.conf import settings from rest_framework_simplejwt.settings import api_settings as jwt_settings class CustomMiddleware(object): def __init__(self, get_response): """ One-time configuration and initialisation. """ self.get_response = get_response def __call__(self, request): """ Code to be executed for each request before the view (and later middleware) are called. """ response = self.get_response(request) loginPath = '/dj-rest-auth/login/' refreshPath = '/dj-rest-auth/token/refresh/' if request.path == loginPath or request.path == refreshPath: access_token_expiration = (timezone.now() + jwt_settings.ACCESS_TOKEN_LIFETIME) refresh_token_expiration = (timezone.now() + jwt_settings.REFRESH_TOKEN_LIFETIME) cookie_secure = getattr(settings, 'JWT_AUTH_SECURE', False) cookie_samesite = getattr(settings, 'JWT_AUTH_SAMESITE', 'Lax') refresh_cookie_path = getattr(settings, 'JWT_AUTH_REFRESH_COOKIE_PATH', '/') response.set_cookie( settings.JWT_TOKEN_EXPIRATION_COOKIE, access_token_expiration.strftime('%Y-%m-%dT%H:%M:%SZ'), expires=refresh_token_expiration, secure=cookie_secure, httponly=False, samesite=cookie_samesite, path=refresh_cookie_path, ) return response def process_view(self, request, view_func, view_args, view_kwargs): # ... ``` So, in the react application I use an axios interceptor, to check the expiration date and if it expired, it refreshes before any other request. ```javascript instance.interceptors.request.use(async (config) => { await refreshToken(); return config; }, (error) => { return Promise.reject(error); }) const refreshToken = async () => { const exp = Cookies.get(process.env.REACT_APP_TOKEN_EXPIRATION_COOKIE); if (exp !== undefined && new Date() >= new Date(exp)) { await axios.post('/dj-rest-auth/token/refresh/') .catch(error => window.location.href = '/login') } } // ... ``` This doesn't seem like a good practice to me, I would like to refresh inside the middleware. I've even tried to generate the token via simplejwt in the middleware and then use the "set_jwt_cookies" method, however, error 401 occurs in the first request. ```python import re from django.utils import timezone, dateparse from django.conf import settings from rest_framework import serializers from rest_framework_simplejwt.settings import api_settings as jwt_settings from rest_framework_simplejwt.serializers import TokenRefreshSerializer from dj_rest_auth import jwt_auth # ... def __call__(self, request): """ Code to be executed for each request before the view (and later middleware) are called. """ refresh_cookie_name = getattr(settings, 'JWT_AUTH_REFRESH_COOKIE', None) expiration_cookie_name = getattr(settings, 'JWT_TOKEN_EXPIRATION_COOKIE', None) refresh_cookie_value = request.COOKIES.get(refresh_cookie_name) expiration_cookie_value = request.COOKIES.get(expiration_cookie_name) if refresh_cookie_value and expiration_cookie_value: exp = dateparse.parse_datetime(expiration_cookie_value) if timezone.now() >= exp: serializer = TokenRefreshSerializer(data={'refresh': refresh_cookie_value}) if serializer.is_valid(): response = self.get_response(request) jwt_auth.set_jwt_cookies( response, serializer.validated_data['access'], serializer.validated_data['refresh'] ) response = self.get_response(request) # ... ``` Is an auto refresh mechanism possible? I mean, refresh to the backend?
open
2021-08-09T13:16:39Z
2021-08-09T13:23:13Z
https://github.com/iMerica/dj-rest-auth/issues/301
[]
lcsjunior
0
WZMIAOMIAO/deep-learning-for-image-processing
pytorch
292
用了tf.function修饰器就出现了警告
WARNING:tensorflow:AutoGraph could not transform <bound method MyModel.call of <model.MyModel object at 0x00000172D60EA898>> and will run it as-is. Please report this to the TensorFlow team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: No module named 'tensorflow_core.estimator' 警告如上,重新安装tensorflow-estimator也没用,好像是转换图结构有问题,如果不用修饰器,就不会出现警告,请问怎么解决了?大佬
closed
2021-06-05T16:05:53Z
2021-06-07T05:35:38Z
https://github.com/WZMIAOMIAO/deep-learning-for-image-processing/issues/292
[]
dianjxu
2
developmentseed/lonboard
data-visualization
742
[BUG] Panel tutorial is out of date with geopandas 1.X
## Context I was attempting to run this example: https://developmentseed.org/lonboard/latest/ecosystem/panel/#tutorial ## Resulting behaviour, error message or logs The dataset referenced in the tutorial is no longer available inside of geopandas ``` raise AttributeError(error_msg) AttributeError: The geopandas.dataset has been deprecated and was removed in GeoPandas 1.0. You can get the original 'naturalearth_cities' data from https://www.naturalearthdata.com/downloads/110m-cultural-vectors/. ``` ## Environment - OS: Ubuntu - Browser: Firefox - Lonboard Version: 0.10.3 - Geopandas Version: 1.0.1 - ## Steps to reproduce the bug Literally just follow the tutorial. Probably should update the tutorial with version dependencies or new instructions to get the dataset.
closed
2025-02-04T23:25:52Z
2025-02-06T23:10:29Z
https://github.com/developmentseed/lonboard/issues/742
[ "bug" ]
j-carson
6