repo_name
stringlengths
9
75
topic
stringclasses
30 values
issue_number
int64
1
203k
title
stringlengths
1
976
body
stringlengths
0
254k
state
stringclasses
2 values
created_at
stringlengths
20
20
updated_at
stringlengths
20
20
url
stringlengths
38
105
labels
listlengths
0
9
user_login
stringlengths
1
39
comments_count
int64
0
452
jowilf/starlette-admin
sqlalchemy
552
Bug: UUID pk gives JSON serialization error when excluded from the list
**Describe the bug** When I have a model with the pk (id) field of UUID type and include it in the list, it works fine. But if I exclude it, while leaving among the fields, it gives an error: ``` File "/Users/alg/p/template-fastapi/.venv/lib/python3.11/site-packages/starlette/responses.py", line 187, in render return json.dumps( ^^^^^^^^^^^ File "/opt/homebrew/Cellar/python@3.11/3.11.9/Frameworks/Python.framework/Versions/3.11/lib/python3.11/json/__init__.py", line 238, in dumps **kw).encode(obj) ^^^^^^^^^^^ File "/opt/homebrew/Cellar/python@3.11/3.11.9/Frameworks/Python.framework/Versions/3.11/lib/python3.11/json/encoder.py", line 200, in encode chunks = self.iterencode(o, _one_shot=True) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/homebrew/Cellar/python@3.11/3.11.9/Frameworks/Python.framework/Versions/3.11/lib/python3.11/json/encoder.py", line 258, in iterencode return _iterencode(o, 0) ^^^^^^^^^^^^^^^^^ File "/opt/homebrew/Cellar/python@3.11/3.11.9/Frameworks/Python.framework/Versions/3.11/lib/python3.11/json/encoder.py", line 180, in default raise TypeError(f'Object of type {o.__class__.__name__} ' TypeError: Object of type UUID is not JSON serializable ``` **To Reproduce** - Create a model with the id field of type UUID. - List it among fields in the model. - Exclude it from the list. **Environment (please complete the following information):** - Starlette-Admin version: 0.14.0 - ORM/ODMs: SQLAlchemy
closed
2024-06-25T08:29:24Z
2024-07-12T19:22:21Z
https://github.com/jowilf/starlette-admin/issues/552
[ "bug" ]
alg
5
zappa/Zappa
django
514
[Migrated] Using Wildcard Subdomains with API Gateway
Originally from: https://github.com/Miserlou/Zappa/issues/1355 by [atkallie](https://github.com/atkallie) ## Context I have developed a Django project that makes use of the [django-hosts ](https://django-hosts.readthedocs.io/en/latest/) library and now I am trying to deploy it. After working through the Zappa tutorials, I became convinced that Zappa was the way to go. However, I later realized that API Gateway does not support wildcard subdomains. While this is not strictly a Zappa issue, I was wondering if there was anyone who had any success in circumventing this issue since [it doesn't look like the API Gateway developers have any intention of enabling this in the near future](https://forums.aws.amazon.com/message.jspa?messageID=798965). ## Expected Behavior Allow *.example.com to host a Django project and let Django map to a view based on the subdomain. ## Actual Behavior Wildcard subdomains are not permitted by API Gateway; only subdomains that are explicitly defined are passed. ## Possible Fix I tried to manually create a CloudFront distribution that allows "*.example.com" as a CNAME and set the raw API gateway URL as the origin. However, due to CloudFront's default caching behavior, the problem then becomes that any subdomain (e.g. api.example.com) returns a 301 redirect to the raw API Gateway URL. Not sure how the hidden CloudFront distribution created via the Custom Domains tab in API Gateway handles this. ## Steps to Reproduce (for possible fix) * Create a CloudFront distribution and select 'Web' Distribution * Use the Zappa distribution domain name from API Gateway as the Origin Domain Name,(e.g. ajnfioanpsda.execute-api.us-east-1.amazonaws.com) * For alternate domain names, enter in "*.example.com, example.com" * Use the Zappa deployment name (e.g. dev) as the Origin Path * For Object Caching select 'Use Origin Cache Headers' * Turn on "compress objects automatically" * Associate the CloudFront distribution with your ACM SSL/TLS certificate
closed
2021-02-20T09:43:45Z
2024-04-13T16:36:52Z
https://github.com/zappa/Zappa/issues/514
[ "enhancement", "aws", "feature-request", "good-idea", "no-activity", "auto-closed" ]
jneves
2
aio-libs/aiomysql
asyncio
11
rename Connection.wait_closed()
`asyncio.AbstractServer` uses the following idiom: - `close()` closes connection asynchronously, it's regular function. - `wait_closed()` is a coroutine that waits for actual closing. `Connection.wait_closed()` has different behavior: it sends disconnection signal to server and after that closes connection. I guess rename it to `.ensure_closed()`.
closed
2015-04-20T17:19:55Z
2015-04-26T18:33:02Z
https://github.com/aio-libs/aiomysql/issues/11
[]
asvetlov
1
horovod/horovod
pytorch
3,011
System env variables are not captured when using Spark as backend.
**Environment:** 1. Framework: (TensorFlow, Keras, PyTorch, MXNet) TensorFlow 2. Framework version: 2.5.0 3. Horovod version: 0.22.1 4. MPI version: 4.0.2 5. CUDA version: 11.2 6. NCCL version: 2.9.9 7. Python version: 3.8 8. Spark / PySpark version: 3.1.2 9. Ray version: 10. OS and version: Ubuntu20.04 11. GCC version: 9.3 12. CMake version: 3.19 **Checklist:** 1. Did you search issues to find if somebody asked this question before? Y 2. If your question is about hang, did you read [this doc](https://github.com/horovod/horovod/blob/master/docs/running.rst)? 3. If your question is about docker, did you read [this doc](https://github.com/horovod/horovod/blob/master/docs/docker.rst)? 4. Did you check if you question is answered in the [troubleshooting guide](https://github.com/horovod/horovod/blob/master/docs/troubleshooting.rst)? Y **Bug report:** When using horovod.spark.run API, if `env` parameter is not set the following error could be seen: ``` Was unable to run mpirun --version: /bin/sh: 1: mpirun: not found ``` my environment: ``` (base) allxu@allxu-home:~/github/e2e-train$ which mpirun /home/allxu/miniconda3/bin/mpirun ``` The whole demo for this error could be found here: https://github.com/wjxiz1992/e2e-train I've seen similar issue: https://github.com/horovod/horovod/issues/2002 but it's not the spark case.
open
2021-06-30T07:36:11Z
2021-07-09T16:59:22Z
https://github.com/horovod/horovod/issues/3011
[ "bug" ]
wjxiz1992
1
huggingface/transformers
pytorch
36,623
Why are there so many variables named layrnorm in the codebase?
Running `grep -R -n --color=auto "layrnorm" .` gives these results when ran in src/tranformers ``` ./models/idefics/vision.py:441: self.pre_layrnorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps) ./models/idefics/vision.py:468: hidden_states = self.pre_layrnorm(hidden_states) ./models/idefics/vision_tf.py:506: self.pre_layrnorm = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="pre_layrnorm") ./models/idefics/vision_tf.py:534: hidden_states = self.pre_layrnorm(hidden_states) ./models/idefics/vision_tf.py:564: if getattr(self, "pre_layrnorm", None) is not None: ./models/idefics/vision_tf.py:565: with tf.name_scope(self.pre_layrnorm.name): ./models/idefics/vision_tf.py:566: self.pre_layrnorm.build([None, None, self.embed_dim]) ./models/altclip/modeling_altclip.py:1140: self.pre_layrnorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps) ./models/altclip/modeling_altclip.py:1168: hidden_states = self.pre_layrnorm(hidden_states) ./models/git/convert_git_to_pytorch.py:88: rename_keys.append((f"{prefix}image_encoder.ln_pre.weight", "git.image_encoder.vision_model.pre_layrnorm.weight")) ./models/git/convert_git_to_pytorch.py:89: rename_keys.append((f"{prefix}image_encoder.ln_pre.bias", "git.image_encoder.vision_model.pre_layrnorm.bias")) ./models/git/modeling_git.py:997: self.pre_layrnorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps) ./models/git/modeling_git.py:1025: hidden_states = self.pre_layrnorm(hidden_states) ./models/clipseg/modeling_clipseg.py:849: self.pre_layrnorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps) ./models/clipseg/modeling_clipseg.py:874: hidden_states = self.pre_layrnorm(hidden_states) ./models/clipseg/convert_clipseg_original_pytorch_to_hf.py:87: name = name.replace("visual.ln_pre", "vision_model.pre_layrnorm") ./models/chinese_clip/convert_chinese_clip_original_pytorch_to_hf.py:84: copy_linear(hf_model.vision_model.pre_layrnorm, pt_weights, "visual.ln_pre") ./models/chinese_clip/modeling_chinese_clip.py:1097: self.pre_layrnorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps) ./models/chinese_clip/modeling_chinese_clip.py:1124: hidden_states = self.pre_layrnorm(hidden_states) ./models/clip/modeling_tf_clip.py:719: self.pre_layernorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="pre_layrnorm") ./models/clip/modeling_clip.py:1073: self.pre_layrnorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps) ./models/clip/modeling_clip.py:1101: hidden_states = self.pre_layrnorm(hidden_states) ./models/clip/convert_clip_original_pytorch_to_hf.py:96: copy_linear(hf_model.vision_model.pre_layrnorm, pt_model.visual.ln_pre) ./models/clip/modeling_flax_clip.py:584: self.pre_layrnorm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype) ./models/clip/modeling_flax_clip.py:603: hidden_states = self.pre_layrnorm(hidden_states) ./models/kosmos2/modeling_kosmos2.py:748: self.pre_layrnorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps) ./models/kosmos2/modeling_kosmos2.py:770: hidden_states = self.pre_layrnorm(hidden_states) ./models/kosmos2/modeling_kosmos2.py:1440: module.pre_layrnorm.bias.data.zero_() ./models/kosmos2/modeling_kosmos2.py:1441: module.pre_layrnorm.weight.data.fill_(1.0) ./models/kosmos2/convert_kosmos2_original_pytorch_checkpoint_to_pytorch.py:16: "ln_pre": "pre_layrnorm", ``` Why are there so many layernorm variables named layrnorm? Is it a typo or is this intended?
closed
2025-03-10T01:10:24Z
2025-03-10T14:26:12Z
https://github.com/huggingface/transformers/issues/36623
[]
jere357
1
kynan/nbstripout
jupyter
100
documentation: .gitattributes and .git/config - install still required after cloning
I thought writing to `.gitattributes` would make someone cloning the repo to get the nbstripout functionality out of the box assuming `nbstripout` and a `.gitattributes` file was provided in the repo. But, after thorough inspection I realized that the `.gitattributes` file only references a name (`nbstripout` / `ipynb`) that needs to be defined somewhere. __`.gitattributes` (in repo) or `.git/info/attributes` (local)__ ``` *.ipynb filter=nbstripout *.ipynb diff=ipynb ``` The git configuration with the actual definitions of referenced functionality (`nbstripout` / `ipynb`) can either in the local `.git/config` or system wide in `/etc/gitconfig`. __`.git/config` (local), `~/.gitconfig` (global), or `/etc/gitconfig` (system)__ ``` [filter "nbstripout"] clean = \"/opt/conda/bin/python3.6\" \"/opt/conda/lib/python3.6/site-packages/nbstripout\" smudge = cat required = true [diff "ipynb"] textconv = \"/opt/conda/bin/python3.6\" \"/opt/conda/lib/python3.6/site-packages/nbstripout\" -t ``` Learning this, I realized that someone cloning the repo would also need to run `nbstripout --install` unless they were provided with a system wide git configuration with these definitions. --- It would be useful to have this understanding communicated in the repo! Thanks for providing that excellent video earlier btw, that was great!
closed
2019-06-19T12:29:31Z
2020-05-09T10:17:17Z
https://github.com/kynan/nbstripout/issues/100
[ "type:documentation", "resolution:fixed" ]
consideRatio
4
ultralytics/ultralytics
python
19,518
Metrics all 0 after TensorRT INT8 export for mode val, only INT8 ONNX performs well
### Search before asking - [x] I have searched the Ultralytics YOLO [issues](https://github.com/ultralytics/ultralytics/issues) and [discussions](https://github.com/orgs/ultralytics/discussions) and found no similar questions. ### Question I succesfully exported my FP32 YOLOv8 OBB (s) model to FP16 and INT8. For FP16 I get nearly the same metrics values like FP32, but the INT8 model performs very bad. My calibration set are 3699 images, I tried with training calibration set (18536 images) too, but the metrics stay all at 0. Different export `batch_sizes=1,8,16` didn't helped. Update: The problem, must be between the conversion from `ONNX` to `engine` format (see below). There must be a bug between the conversion process, which leads to 0 in all metrics using `engine` model. Exporter Code: ```python from ultralytics import YOLO import argparse def export_model(model, export_args): model.export(**export_args) def main(): parser = argparse.ArgumentParser(description='Export YOLOv8 OBB model to TensorRT with user-configurable parameters.') parser.add_argument('--model_path', type=str, required=True, help='Path to the trained YOLOv8 model (.pt file).') parser.add_argument('--export_fp16', type=bool, default=False, help='Export to FP16 TensorRT model.') parser.add_argument('--export_int8', type=bool, default=False, help='Export to INT8 TensorRT model.') parser.add_argument('--format', type=str, default='engine', help="Format to export to (e.g., 'engine', 'onnx').") parser.add_argument('--imgsz', type=int, default=640, help='Desired image size for the model input. Can be an integer for square images or a tuple (height, width) for specific dimensions.') parser.add_argument('--keras', type=bool, default=False, help='Enables export to Keras format for TensorFlow SavedModel, providing compatibility with TensorFlow serving and APIs.') parser.add_argument('--optimize', type=bool, default=False, help='Applies optimization for mobile devices when exporting to TorchScript, potentially reducing model size and improving performance.') parser.add_argument('--half', type=bool, default=False, help='Enables FP16 (half-precision) quantization, reducing model size and potentially speeding up inference on supported hardware.') parser.add_argument('--int8', type=bool, default=False, help='Activates INT8 quantization, further compressing the model and speeding up inference with minimal accuracy loss, primarily for edge devices.') parser.add_argument('--dynamic', type=bool, default=False, help='Allows dynamic input sizes for ONNX, TensorRT and OpenVINO exports, enhancing flexibility in handling varying image dimensions (enforced).') parser.add_argument('--simplify', type=bool, default=False, help='Simplifies the model graph for ONNX exports with onnxslim, potentially improving performance and compatibility.') parser.add_argument('--opset', type=int, default=None, help='Specifies the ONNX opset version for compatibility with different ONNX parsers and runtimes. If not set, uses the latest supported version.') parser.add_argument('--workspace', type=int, default=None, help='Sets the maximum workspace size in GiB for TensorRT optimizations, balancing memory usage and performance; use None for auto-allocation by TensorRT up to device maximum.') parser.add_argument('--nms', type=bool, default=False, help='Adds Non-Maximum Suppression (NMS) to the exported model when supported (see Export Formats), improving detection post-processing efficiency.') parser.add_argument('--batch', type=int, default=1, help="Batch size for export. For INT8 it's recommended using a larger batch like batch=8 (calibrated as batch=16))") parser.add_argument('--device', type=str, default='0', help="Device to use for export (e.g., '0' for GPU 0).") parser.add_argument('--data', type=str, default=None, help="Path to the dataset configuration file for INT8 calibration.") args = parser.parse_args() # Load the final trained YOLOv8 model model = YOLO(args.model_path, task='obb') export_args = { 'format': args.format, 'imgsz': args.imgsz, 'keras': args.keras, 'optimize': args.optimize, 'half': args.half, 'int8': args.int8, 'dynamic': args.dynamic, 'simplify': args.simplify, 'opset': args.opset, 'workspace': args.workspace, 'nms': args.nms, 'batch': args.batch, 'device': args.device, 'data': args.data, } if args.export_fp16: # data argument isn't needed for FP16 exports since no calibration is required print('Exporting to FP16 TensorRT model...') fp16_args = export_args.copy() fp16_args['half'] = True fp16_args['int8'] = False export_model(model, fp16_args) print('FP16 export completed.') if args.export_int8: # NOTE: https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html#enable_int8_c, for INT8 calibration, the kitti_bev.yaml val split with 3769 images is used. print('Exporting to INT8 TensorRT model...') int8_args = export_args.copy() int8_args['half'] = False int8_args['int8'] = True export_model(model, int8_args) print('INT8 export completed.\nThe calibration .cache which can be reused to speed up export of future model weights using the same data, but this may result in poor calibration when the data is vastly different or if the batch value is changed drastically. In these circumstances, the existing .cache should be renamed and moved to a different directory or deleted entirely.') if not args.export_fp16 and not args.export_int8: print('No export option selected. Please specify --export_fp16 and/or --export_int8.') if __name__ == '__main__': main() ``` Used export command: ```txt python export_kitti_obb.py --model_path /home/heizung1/ultralytics_yolov8-obb_ob_kitti/ultralytics/kitti_bev_yolo/run_94_Adam_88.8_87.2/weights/best.pt --export_int8 True --int8 True --dynamic=True --batch 1 --data /home/heizung1/ultralytics_yolov8-obb_ob_kitti/ultralytics/cfg/datasets/kitti_bev.yaml ``` Validation script: ```python from ultralytics import YOLO model = YOLO('/home/heizung1/ultralytics_yolov8-obb_ob_kitti/ultralytics/kitti_bev_yolo/run_94_Adam_88.8_87.2/weights/best_1.engine', task='obb', verbose=False) metrics = model.val(data='/home/heizung1/ultralytics_yolov8-obb_ob_kitti/ultralytics/cfg/datasets/kitti_bev.yaml', imgsz=640, batch=16, save_json=False, save_hybrid=False, conf=0.001, iou=0.5, max_det=300, half=False, device='0', dnn=False, plots=False, rect=False, split='val', project=None, name=None) ``` Validation output with INT8 TensorRT: ![Image](https://github.com/user-attachments/assets/1998340a-ffbb-4f23-9290-0c39b63c2e30) Validation output with INT8 ONNX: ![Image](https://github.com/user-attachments/assets/237143c2-7a38-400c-b177-5acfe0ae160a) Thank you very much! ### Additional _No response_
open
2025-03-04T17:11:26Z
2025-03-14T01:33:53Z
https://github.com/ultralytics/ultralytics/issues/19518
[ "question", "OBB", "exports" ]
Petros626
19
TheAlgorithms/Python
python
12,531
Football questions
### What would you like to share? Questions about football ### Additional information _No response_
closed
2025-01-18T18:19:16Z
2025-01-19T00:45:37Z
https://github.com/TheAlgorithms/Python/issues/12531
[ "awaiting triage" ]
ninostudio
0
Guovin/iptv-api
api
636
一直执行不起来,lite版本,用标准版好像也不行
[2024_12_9 13_52_58_log.txt](https://github.com/user-attachments/files/18056923/2024_12_9.13_52_58_log.txt)
closed
2024-12-09T05:54:42Z
2024-12-13T08:43:10Z
https://github.com/Guovin/iptv-api/issues/636
[ "duplicate", "incomplete" ]
Andy-Home
4
Lightning-AI/pytorch-lightning
deep-learning
20,116
Error when disabling an optimizer with native AMP turned on
### Bug description I'm using 2 optimizers and trying to train with AMP (FP16). I can take steps with my first optimizer. When I take my first step with the second optimizer I get the following error: ``` File "/home/sahil/.cache/pypoetry/virtualenvs/env-auw7Hy33-py3.10/lib/python3.10/site-packages/torch/amp/grad_scaler.py", line 450, in step len(optimizer_state["found_inf_per_device"]) > 0 AssertionError: No inf checks were recorded for this optimizer. ``` I can train this correctly in FP32 -- so it seems to be an issue with AMP. ### What version are you seeing the problem on? version 2.3.3 ### How to reproduce the bug ```python def training_step(self, batch: Dict, batch_idx: int): """ We have 2 sets of optimizers. Every N batches (self.n_batches_per_optimizer), we make an optimizer update and switch the optimizer to update. If self.n_batches_per_optimizer = 1, then we make updates every batch and alternate optimizers every batch. If self.n_batches_per_optimizer > 1, then we're doing gradient accumulartion, where we are making updates evern n_batches_per_optimizer batches and alternating optimizers every n_batches_per_optimizer batches. """ opts = self.optimizers() current_cycle = (batch_idx // self.n_batches_per_optimizer) % len(opts) opt = opts[current_cycle] opt.zero_grad() if current_cycle == 0: compute_model_1_loss = True elif current_cycle == 1: compute_model_1_loss = False else: raise NotImplementedError(f"Unknown optimizer {current_cycle}") with opt.toggle_model(): loss = self.inner_training_step(batch=batch, compute_model_1_loss=compute_model_1_loss) self.manual_backward(loss=loss) # Perform the optimization step every accumulate_grad_batches steps if (batch_idx + 1) % self.n_batches_per_optimizer == 0: if not compute_model_1_loss: print("About to take compute model 2 loss ...") opt.step() opt.zero_grad() ``` ### Error messages and logs ``` Traceback (most recent call last): File "/home/sahil/train.py", line 82, in <module> main(config) File "/home/sahil/train.py", line 62, in main trainer.fit(model, datamodule=data_module, ckpt_path=ckpt) File "/home/sahil/.cache/pypoetry/virtualenvs/env-auw7Hy33-py3.10/lib/python3.10/site-packages/pytorch_lightning/trainer/trainer.py", line 543, in fit call._call_and_handle_interrupt( File "/home/sahil/.cache/pypoetry/virtualenvs/env-auw7Hy33-py3.10/lib/python3.10/site-packages/pytorch_lightning/trainer/call.py", line 44, in _call_and_handle_interrupt return trainer_fn(*args, **kwargs) File "/home/sahil/.cache/pypoetry/virtualenvs/env-auw7Hy33-py3.10/lib/python3.10/site-packages/pytorch_lightning/trainer/trainer.py", line 579, in _fit_impl self._run(model, ckpt_path=ckpt_path) File "/home/sahil/.cache/pypoetry/virtualenvs/env-auw7Hy33-py3.10/lib/python3.10/site-packages/pytorch_lightning/trainer/trainer.py", line 986, in _run results = self._run_stage() File "/home/sahil/.cache/pypoetry/virtualenvs/env-auw7Hy33-py3.10/lib/python3.10/site-packages/pytorch_lightning/trainer/trainer.py", line 1030, in _run_stage self.fit_loop.run() File "/home/sahil/.cache/pypoetry/virtualenvs/env-auw7Hy33-py3.10/lib/python3.10/site-packages/pytorch_lightning/loops/fit_loop.py", line 205, in run self.advance() File "/home/sahil/.cache/pypoetry/virtualenvs/env-auw7Hy33-py3.10/lib/python3.10/site-packages/pytorch_lightning/loops/fit_loop.py", line 363, in advance self.epoch_loop.run(self._data_fetcher) File "/home/sahil/.cache/pypoetry/virtualenvs/env-auw7Hy33-py3.10/lib/python3.10/site-packages/pytorch_lightning/loops/training_epoch_loop.py", line 140, in run self.advance(data_fetcher) File "/home/sahil/.cache/pypoetry/virtualenvs/env-auw7Hy33-py3.10/lib/python3.10/site-packages/pytorch_lightning/loops/training_epoch_loop.py", line 252, in advance batch_output = self.manual_optimization.run(kwargs) File "/home/sahil/.cache/pypoetry/virtualenvs/env-auw7Hy33-py3.10/lib/python3.10/site-packages/pytorch_lightning/loops/optimization/manual.py", line 94, in run self.advance(kwargs) File "/home/sahil/.cache/pypoetry/virtualenvs/env-auw7Hy33-py3.10/lib/python3.10/site-packages/pytorch_lightning/loops/optimization/manual.py", line 114, in advance training_step_output = call._call_strategy_hook(trainer, "training_step", *kwargs.values()) File "/home/sahil/.cache/pypoetry/virtualenvs/env-auw7Hy33-py3.10/lib/python3.10/site-packages/pytorch_lightning/trainer/call.py", line 311, in _call_strategy_hook output = fn(*args, **kwargs) File "/home/sahil/.cache/pypoetry/virtualenvs/env-auw7Hy33-py3.10/lib/python3.10/site-packages/pytorch_lightning/strategies/strategy.py", line 390, in training_step return self.lightning_module.training_step(*args, **kwargs) File "/home/sahil/model/model.py", line 169, in training_step opt.step() File "/home/sahil/.cache/pypoetry/virtualenvs/env-auw7Hy33-py3.10/lib/python3.10/site-packages/pytorch_lightning/core/optimizer.py", line 153, in step step_output = self._strategy.optimizer_step(self._optimizer, closure, **kwargs) File "/home/sahil/.cache/pypoetry/virtualenvs/env-auw7Hy33-py3.10/lib/python3.10/site-packages/pytorch_lightning/strategies/strategy.py", line 238, in optimizer_step return self.precision_plugin.optimizer_step(optimizer, model=model, closure=closure, **kwargs) File "/home/sahil/.cache/pypoetry/virtualenvs/env-auw7Hy33-py3.10/lib/python3.10/site-packages/pytorch_lightning/plugins/precision/amp.py", line 93, in optimizer_step step_output = self.scaler.step(optimizer, **kwargs) # type: ignore[arg-type] File "/home/sahil/.cache/pypoetry/virtualenvs/env-auw7Hy33-py3.10/lib/python3.10/site-packages/torch/amp/grad_scaler.py", line 450, in step len(optimizer_state["found_inf_per_device"]) > 0 AssertionError: No inf checks were recorded for this optimizer. ``` ### Environment <details> <summary>Current environment</summary> ``` * CUDA: - GPU: - NVIDIA A100-SXM4-80GB - available: True - version: 12.1 * Lightning: - lightning-utilities: 0.11.5 - pytorch-lightning: 2.3.3 - torch: 2.3.1 - torchmetrics: 1.4.0.post0 - torchvision: 0.18.1 * Packages: - aiohttp: 3.9.5 - aiosignal: 1.3.1 - annotated-types: 0.7.0 - antlr4-python3-runtime: 4.9.3 - anyio: 4.4.0 - argon2-cffi: 23.1.0 - argon2-cffi-bindings: 21.2.0 - arrow: 1.3.0 - asttokens: 2.4.1 - async-lru: 2.0.4 - async-timeout: 4.0.3 - attrs: 23.2.0 - autocommand: 2.2.2 - babel: 2.15.0 - backports.tarfile: 1.2.0 - beautifulsoup4: 4.12.3 - bitsandbytes: 0.43.1 - bleach: 6.1.0 - boto3: 1.34.144 - botocore: 1.34.144 - braceexpand: 0.1.7 - certifi: 2024.7.4 - nvidia-curand-cu12: 10.3.2.106 - nvidia-cusolver-cu12: 11.4.5.107 - nvidia-cusparse-cu12: 12.1.0.106 - nvidia-nccl-cu12: 2.20.5 - nvidia-nvjitlink-cu12: 12.5.82 - nvidia-nvtx-cu12: 12.1.105 - omegaconf: 2.3.0 - opencv-python: 4.10.0.84 - ordered-set: 4.1.0 - overrides: 7.7.0 - packaging: 24.1 - pandocfilters: 1.5.1 - parso: 0.8.4 - pexpect: 4.9.0 - pillow: 10.4.0 - pip: 24.1 - platformdirs: 4.2.2 - pre-commit: 3.7.1 - proglog: 0.1.10 - prometheus-client: 0.20.0 - prompt-toolkit: 3.0.47 - protobuf: 5.27.2 - psutil: 6.0.0 - ptyprocess: 0.7.0 - pure-eval: 0.2.2 - pycparser: 2.22 - pydantic: 2.8.2 - pydantic-core: 2.20.1 - pydantic-settings: 2.3.4 - pygments: 2.18.0 - python-dateutil: 2.9.0.post0 - python-dotenv: 1.0.1 - python-json-logger: 2.0.7 - pytorch-lightning: 2.3.3 - pyyaml: 6.0.1 - pyzmq: 26.0.3 - referencing: 0.35.1 - requests: 2.32.3 - rfc3339-validator: 0.1.4 - rfc3986-validator: 0.1.1 - rpds-py: 0.19.0 - s3transfer: 0.10.2 - send2trash: 1.8.3 - sentry-sdk: 2.10.0 - setproctitle: 1.3.3 - setuptools: 71.0.2 - six: 1.16.0 - smmap: 5.0.1 - sniffio: 1.3.1 - soupsieve: 2.5 - stack-data: 0.6.3 - sympy: 1.13.0 - terminado: 0.18.1 - tinycss2: 1.3.0 - tomli: 2.0.1 - torch: 2.3.1 - torchmetrics: 1.4.0.post0 - torchvision: 0.18.1 - tornado: 6.4.1 - tqdm: 4.66.4 - traitlets: 5.14.3 - triton: 2.3.1 - typeguard: 4.3.0 - types-python-dateutil: 2.9.0.20240316 - typing-extensions: 4.12.2 - uri-template: 1.3.0 - urllib3: 2.2.2 - virtualenv: 20.26.3 - wandb: 0.17.4 - wcwidth: 0.2.13 - webcolors: 24.6.0 - webdataset: 0.2.86 - webencodings: 0.5.1 - websocket-client: 1.8.0 - wheel: 0.43.0 - yarl: 1.9.4 - zipp: 3.19.2 * System: - OS: Linux - architecture: - 64bit - ELF - processor: - python: 3.10.14 - release: 5.10.0-31-cloud-amd64 - version: #1 SMP Debian 5.10.221-1 (2024-07-14) ``` </details> ### More info _No response_
open
2024-07-22T18:15:07Z
2024-07-22T18:17:32Z
https://github.com/Lightning-AI/pytorch-lightning/issues/20116
[ "bug", "needs triage", "ver: 2.2.x" ]
schopra8
1
encode/httpx
asyncio
2,677
[Bug] Logged issue with Pygments #2418
The starting point for issues should usually be a discussion... - What if not: I have a syntax update issue with a dependency of yours - compatibility 3.11. Easy fix https://github.com/encode/httpx/discussions Possible bugs may be raised as a "Potential Issue" discussion, feature requests may be raised as an "Ideas" discussion. We can then determine if the discussion needs to be escalated into an "Issue" or not. This will help us ensure that the "Issues" list properly reflects ongoing or needed work on the project. --- - [ ] Initially raised as discussion #... https://github.com/pygments/pygments/issues/2418 for `import pygments.lexers` Issue with your transitive dependency on `Pygments.lexers` import. I logged it with the pygments. Details are as per that issue https://github.com/pygments/pygments/issues/2418
closed
2023-04-24T15:07:28Z
2023-04-26T10:21:40Z
https://github.com/encode/httpx/issues/2677
[]
iPoetDev
0
sinaptik-ai/pandas-ai
data-visualization
993
File exists error when creating a `SmartDataframe` object
### System Info OS version: Ubuntu 20.04.6 LTS Python version: 3.11.8 The current version of `pandasai` being used: 2.0.3 ### 🐛 Describe the bug Here is the code (simple flask API) that I'm using right now: ```python # Route to get all books @app.route('/run', methods=['POST']) def run_pandasai(): data = request.get_json() engine = create_engine(SQLALCHEMY_BASE_DATABASE_URI) df = None with engine.connect() as conn: df = pd.read_sql(text(f'SELECT * FROM some_table;'), conn) llm = OpenAI(api_token='<my_api_key>') df = SmartDataframe(df, config={"llm": llm}) response = df.chat(some prompt?') return jsonify({'response': response}) ``` I get the following error while running this: ``` Traceback (most recent call last): File "/usr/local/lib/python3.11/site-packages/flask/app.py", line 1463, in wsgi_app response = self.full_dispatch_request() ^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.11/site-packages/flask/app.py", line 872, in full_dispatch_request rv = self.handle_user_exception(e) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.11/site-packages/flask/app.py", line 870, in full_dispatch_request rv = self.dispatch_request() ^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.11/site-packages/flask/app.py", line 855, in dispatch_request return self.ensure_sync(self.view_functions[rule.endpoint])(**view_args) # type: ignore[no-any-return] ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/app/app.py", line 20, in run_pandasai df = SmartDataframe(df, config={"llm": llm}) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.11/site-packages/pandasai/smart_dataframe/__init__.py", line 64, in __init__ self._agent = Agent([df], config=config) ^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.11/site-packages/pandasai/agent/base.py", line 75, in __init__ self.context = PipelineContext( ^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.11/site-packages/pandasai/pipelines/pipeline_context.py", line 35, in __init__ self.cache = cache if cache is not None else Cache() ^^^^^^^ File "/usr/local/lib/python3.11/site-packages/pandasai/helpers/cache.py", line 29, in __init__ os.makedirs(cache_dir, mode=DEFAULT_FILE_PERMISSIONS, exist_ok=True) File "<frozen os>", line 225, in makedirs FileExistsError: [Errno 17] File exists: '/app/cache' ``` I can understand that this issue is because it is trying to create the dir that already exists, and even though the exist_ok is `True` the `DEFAULT_FILE_PERMISSIONS` is such that it can't create in and it fails, is this a bug?
closed
2024-03-04T15:06:35Z
2024-03-07T18:54:46Z
https://github.com/sinaptik-ai/pandas-ai/issues/993
[ "wontfix" ]
araghuvanshi-systango
2
graphistry/pygraphistry
pandas
269
[FEA] validator
**Is your feature request related to a problem? Please describe.** A recent viz had some null titles -- would help to check validate somehow! **Describe the solution you'd like** Ex: https://gist.github.com/lmeyerov/423df6b3b5bd85d12fd74b85eca4a17a - nodes not in edges - edges referencing non-existent nodes - na nodes/edges - if colors/sizes/icons/titles, NA vals - if no title and defaulting to guess title, NAs there
open
2021-10-15T05:45:44Z
2024-12-16T17:25:38Z
https://github.com/graphistry/pygraphistry/issues/269
[ "enhancement", "good-first-issue" ]
lmeyerov
0
TracecatHQ/tracecat
pydantic
342
[FEATURE IDEA] Add UI to show action if `run_if` is specified
## Why - It's hard to tell if a node has a conditional attached unless you select the node or gave it a meaningful title ## Suggested solution - Add a greenish `#C1DEAF` border that shows up around the node - Prompt the the user to give the "condition" a human-readable name (why? because the expression will probably be too long) - If no human-readable name is given. Take the last `.attribute` and `operator value` part of the expression as the condition name.
open
2024-08-22T17:08:12Z
2024-08-22T17:17:01Z
https://github.com/TracecatHQ/tracecat/issues/342
[ "enhancement", "frontend" ]
topher-lo
2
CorentinJ/Real-Time-Voice-Cloning
pytorch
385
What versions of everything does one need to avoid errors during setup?
Hi all, I'm on Ubuntu 20.04 with Python 3.7 in a conda env. I have a Nvidia GTX660 GPU installed. I'm currently rockin' torch 1.2, cuda-10-0, tensorflow 1.14.0, tensorflow-gpu 1.14.0, and torchvision 0.4.0, along with everything else in requirements.txt. I am using python 3.7. For the life of me, I can't figure out how to get demo_cli.py to not give the error a bunch of people get: ```Your PyTorch installation is not configured to use CUDA. If you have a GPU ready for deep learning, ensure that the drivers are properly installed, and that your CUDA version matches your PyTorch installation. CPU-only inference is currently not supported.``` Could someone give me the lowdown on precisely what packages and version numbers I need to make this thing fire up?
closed
2020-06-27T04:21:48Z
2020-06-29T21:58:11Z
https://github.com/CorentinJ/Real-Time-Voice-Cloning/issues/385
[]
deltabravozulu
4
JaidedAI/EasyOCR
pytorch
584
AttributeError: 'Reader' object has no attribute 'detector'
I'm following the api documentation (https://www.jaided.ai/easyocr/documentation/), which points to the detector as a parameter, but I can't use it! :/ The traceback follows... ```bash Traceback (most recent call last): File "/home/lead/Documents/wal-project/ocr/icaro-ocr/.venv/lib/python3.8/site-packages/uvicorn/protocols/http/h11_impl.py", line 396, in run_asgi result = await app(self.scope, self.receive, self.send) File "/home/lead/Documents/wal-project/ocr/icaro-ocr/.venv/lib/python3.8/site-packages/uvicorn/middleware/proxy_headers.py", line 45, in __call__ return await self.app(scope, receive, send) File "/home/lead/Documents/wal-project/ocr/icaro-ocr/.venv/lib/python3.8/site-packages/fastapi/applications.py", line 199, in __call__ await super().__call__(scope, receive, send) File "/home/lead/Documents/wal-project/ocr/icaro-ocr/.venv/lib/python3.8/site-packages/starlette/applications.py", line 111, in __call__ await self.middleware_stack(scope, receive, send) File "/home/lead/Documents/wal-project/ocr/icaro-ocr/.venv/lib/python3.8/site-packages/starlette/middleware/errors.py", line 181, in __call__ raise exc from None File "/home/lead/Documents/wal-project/ocr/icaro-ocr/.venv/lib/python3.8/site-packages/starlette/middleware/errors.py", line 159, in __call__ await self.app(scope, receive, _send) File "/home/lead/Documents/wal-project/ocr/icaro-ocr/.venv/lib/python3.8/site-packages/starlette/middleware/cors.py", line 78, in __call__ await self.app(scope, receive, send) File "/home/lead/Documents/wal-project/ocr/icaro-ocr/.venv/lib/python3.8/site-packages/starlette/exceptions.py", line 82, in __call__ raise exc from None File "/home/lead/Documents/wal-project/ocr/icaro-ocr/.venv/lib/python3.8/site-packages/starlette/exceptions.py", line 71, in __call__ await self.app(scope, receive, sender) File "/home/lead/Documents/wal-project/ocr/icaro-ocr/.venv/lib/python3.8/site-packages/starlette/routing.py", line 566, in __call__ await route.handle(scope, receive, send) File "/home/lead/Documents/wal-project/ocr/icaro-ocr/.venv/lib/python3.8/site-packages/starlette/routing.py", line 227, in handle await self.app(scope, receive, send) File "/home/lead/Documents/wal-project/ocr/icaro-ocr/.venv/lib/python3.8/site-packages/starlette/routing.py", line 41, in app response = await func(request) File "/home/lead/Documents/wal-project/ocr/icaro-ocr/.venv/lib/python3.8/site-packages/fastapi/routing.py", line 201, in app raw_response = await run_endpoint_function( File "/home/lead/Documents/wal-project/ocr/icaro-ocr/.venv/lib/python3.8/site-packages/fastapi/routing.py", line 148, in run_endpoint_function return await dependant.call(**values) File "/home/lead/Documents/wal-project/ocr/icaro-ocr/./web_ocr/routers/v2/ocr.py", line 71, in ocr_extract result = await runner.run_pipeline(postprocesses=postprocesses, File "/home/lead/Documents/wal-project/ocr/icaro-ocr/./web_ocr/repository/ocr.py", line 259, in run_pipeline text, conf = await self.apply_ocr(*args, **kwargs) File "/home/lead/Documents/wal-project/ocr/icaro-ocr/./web_ocr/repository/ocr.py", line 246, in apply_ocr text, conf = await self.framework.predict(self.im, *args, **kwargs) File "/home/lead/Documents/wal-project/ocr/icaro-ocr/./web_ocr/repository/ocr.py", line 141, in predict results = reader.readtext(image, **config) File "/home/lead/Documents/wal-project/ocr/icaro-ocr/.venv/lib/python3.8/site-packages/easyocr/easyocr.py", line 376, in readtext horizontal_list, free_list = self.detect(img, min_size, text_threshold,\ File "/home/lead/Documents/wal-project/ocr/icaro-ocr/.venv/lib/python3.8/site-packages/easyocr/easyocr.py", line 274, in detect text_box = get_textbox(self.detector, img, canvas_size, mag_ratio,\ AttributeError: 'Reader' object has no attribute 'detector' ERROR:uvicorn.error:Exception in ASGI application Traceback (most recent call last): File "/home/lead/Documents/wal-project/ocr/icaro-ocr/.venv/lib/python3.8/site-packages/uvicorn/protocols/http/h11_impl.py", line 396, in run_asgi result = await app(self.scope, self.receive, self.send) File "/home/lead/Documents/wal-project/ocr/icaro-ocr/.venv/lib/python3.8/site-packages/uvicorn/middleware/proxy_headers.py", line 45, in __call__ return await self.app(scope, receive, send) File "/home/lead/Documents/wal-project/ocr/icaro-ocr/.venv/lib/python3.8/site-packages/fastapi/applications.py", line 199, in __call__ await super().__call__(scope, receive, send) File "/home/lead/Documents/wal-project/ocr/icaro-ocr/.venv/lib/python3.8/site-packages/starlette/applications.py", line 111, in __call__ await self.middleware_stack(scope, receive, send) File "/home/lead/Documents/wal-project/ocr/icaro-ocr/.venv/lib/python3.8/site-packages/starlette/middleware/errors.py", line 181, in __call__ raise exc from None File "/home/lead/Documents/wal-project/ocr/icaro-ocr/.venv/lib/python3.8/site-packages/starlette/middleware/errors.py", line 159, in __call__ await self.app(scope, receive, _send) File "/home/lead/Documents/wal-project/ocr/icaro-ocr/.venv/lib/python3.8/site-packages/starlette/middleware/cors.py", line 78, in __call__ await self.app(scope, receive, send) File "/home/lead/Documents/wal-project/ocr/icaro-ocr/.venv/lib/python3.8/site-packages/starlette/exceptions.py", line 82, in __call__ raise exc from None File "/home/lead/Documents/wal-project/ocr/icaro-ocr/.venv/lib/python3.8/site-packages/starlette/exceptions.py", line 71, in __call__ await self.app(scope, receive, sender) File "/home/lead/Documents/wal-project/ocr/icaro-ocr/.venv/lib/python3.8/site-packages/starlette/routing.py", line 566, in __call__ await route.handle(scope, receive, send) File "/home/lead/Documents/wal-project/ocr/icaro-ocr/.venv/lib/python3.8/site-packages/starlette/routing.py", line 227, in handle await self.app(scope, receive, send) File "/home/lead/Documents/wal-project/ocr/icaro-ocr/.venv/lib/python3.8/site-packages/starlette/routing.py", line 41, in app response = await func(request) File "/home/lead/Documents/wal-project/ocr/icaro-ocr/.venv/lib/python3.8/site-packages/fastapi/routing.py", line 201, in app raw_response = await run_endpoint_function( File "/home/lead/Documents/wal-project/ocr/icaro-ocr/.venv/lib/python3.8/site-packages/fastapi/routing.py", line 148, in run_endpoint_function return await dependant.call(**values) File "/home/lead/Documents/wal-project/ocr/icaro-ocr/./web_ocr/routers/v2/ocr.py", line 71, in ocr_extract result = await runner.run_pipeline(postprocesses=postprocesses, File "/home/lead/Documents/wal-project/ocr/icaro-ocr/./web_ocr/repository/ocr.py", line 259, in run_pipeline text, conf = await self.apply_ocr(*args, **kwargs) File "/home/lead/Documents/wal-project/ocr/icaro-ocr/./web_ocr/repository/ocr.py", line 246, in apply_ocr text, conf = await self.framework.predict(self.im, *args, **kwargs) File "/home/lead/Documents/wal-project/ocr/icaro-ocr/./web_ocr/repository/ocr.py", line 141, in predict results = reader.readtext(image, **config) File "/home/lead/Documents/wal-project/ocr/icaro-ocr/.venv/lib/python3.8/site-packages/easyocr/easyocr.py", line 376, in readtext horizontal_list, free_list = self.detect(img, min_size, text_threshold,\ File "/home/lead/Documents/wal-project/ocr/icaro-ocr/.venv/lib/python3.8/site-packages/easyocr/easyocr.py", line 274, in detect text_box = get_textbox(self.detector, img, canvas_size, mag_ratio,\ AttributeError: 'Reader' object has no attribute 'detector' ```
closed
2021-11-03T18:39:29Z
2022-08-07T05:00:33Z
https://github.com/JaidedAI/EasyOCR/issues/584
[]
igormcsouza
0
SYSTRAN/faster-whisper
deep-learning
1,215
Service Execution Failure: when Running FasterWhisper as a Service on Ubuntu
# Issue: Service Execution Failure - `status=6/ABRT` The following code executes successfully when run directly on an Ubuntu-based system like say python3 make_transcript.py. However, when executed as a service file, it fails and exits with the error: ``` code=dumped, status=6/ABRT ``` ## Code Snippet ```python segments, _ = model.transcribe(audio_file, task='translate', vad_filter=True) print("[Transcribing COMPLETE]") cleaned_segments = [] stX = time.time() for idx, segment in enumerate(tqdm(segments)): print(f"current running {idx} xxxxxxxxxxxxx") text = segment.text cleaned_segments.append({ 'start': segment.start, 'end': segment.end, 'text': cleaned_text.strip() }) ``` ## Observed Behavior 1. The code runs without any issues when executed directly in a terminal or Python environment. 2. When the code is run as part of a systemd service file, it crashes with the following error and basically it does not execute properly. 3. It runs properly until it starts entering the for loop there it crashes ``` code=dumped, status=6/ABRT ``` 5. Observe the failure in logs. I would be very grateful if anyone can identify the cause of the failure and provide a resolution or guidance on debugging this issue further.
open
2024-12-24T11:39:49Z
2024-12-24T11:39:49Z
https://github.com/SYSTRAN/faster-whisper/issues/1215
[]
manashb96
0
hankcs/HanLP
nlp
1,319
安装过程出现的问题,以及最后安装成功的版本号,汇报一下
<!-- 注意事项和版本号必填,否则不回复。若希望尽快得到回复,请按模板认真填写,谢谢合作。 --> ## 注意事项 请确认下列注意事项: * 我已仔细阅读下列文档,都没有找到答案: - [首页文档](https://github.com/hankcs/HanLP) - [wiki](https://github.com/hankcs/HanLP/wiki) - [常见问题](https://github.com/hankcs/HanLP/wiki/FAQ) * 我已经通过[Google](https://www.google.com/#newwindow=1&q=HanLP)和[issue区检索功能](https://github.com/hankcs/HanLP/issues)搜索了我的问题,也没有找到答案。 * 我明白开源社区是出于兴趣爱好聚集起来的自由社区,不承担任何责任或义务。我会礼貌发言,向每一个帮助我的人表示感谢。 * [x] 我在此括号内输入x打钩,代表上述事项确认完毕。 ## 版本号 <!-- 发行版请注明jar文件名去掉拓展名的部分;GitHub仓库版请注明master还是portable分支 --> 当前最新版本号是:pyhanlp 0.1.50 我使用的版本是:pyhanlp 0.1.47 <!--以上属于必填项,以下可自由发挥--> ## 我的问题 <!-- 请详细描述问题,越详细越可能得到解决 --> 环境参数: * win10 * jdk 1.8 * python 3.7 失败安装过程: * 第一次:直接`pip install pyhanlp` (版本0.1.50),自动安装依赖jpype1(版本0.7.0),下载data文件执行`hanlp`报错:`startJVM() got an unexpected keyword argument 'convertStrings'` * 第二次:`pip install pyhanlp=0.1.47`,`pip install jpype1=0.6.2`,执行报错:`AttributeError: module '_jpype' has no attribute 'setResource'` 成功过程: * `pip install pyhanlp=0.1.47` * `pip install jpype1=0.6.3`
closed
2019-11-07T01:48:48Z
2019-11-07T02:03:00Z
https://github.com/hankcs/HanLP/issues/1319
[ "discussion" ]
chenwenhang
3
PaddlePaddle/ERNIE
nlp
134
训练任务killed
下载了bert的demo,在开发机本地运行train.sh,任务直接被killed ![image](https://user-images.githubusercontent.com/14048056/57620381-30d35080-75bb-11e9-8b5d-7e991a8177ba.png)
closed
2019-05-13T12:11:04Z
2019-10-12T09:15:09Z
https://github.com/PaddlePaddle/ERNIE/issues/134
[]
MaxLingwei
5
deepfakes/faceswap
deep-learning
1,282
No Module Decorator
Tried to run training.py crashed with this in console ``` Traceback (most recent call last): File "C:\Users\Admin\faceswap\lib\cli\launcher.py", line 217, in execute_script process.process() File "C:\Users\Admin\faceswap\scripts\train.py", line 218, in process self._end_thread(thread, err) File "C:\Users\Admin\faceswap\scripts\train.py", line 258, in _end_thread thread.join() File "C:\Users\Admin\faceswap\lib\multithreading.py", line 217, in join raise thread.err[1].with_traceback(thread.err[2]) File "C:\Users\Admin\faceswap\lib\multithreading.py", line 96, in run self._target(*self._args, **self._kwargs) File "C:\Users\Admin\faceswap\scripts\train.py", line 280, in _training raise err File "C:\Users\Admin\faceswap\scripts\train.py", line 268, in _training model = self._load_model() File "C:\Users\Admin\faceswap\scripts\train.py", line 292, in _load_model model: "ModelBase" = PluginLoader.get_model(self._args.trainer)( File "C:\Users\Admin\faceswap\plugins\plugin_loader.py", line 131, in get_model return PluginLoader._import("train.model", name, disable_logging) File "C:\Users\Admin\faceswap\plugins\plugin_loader.py", line 197, in _import module = import_module(mod) File "C:\Users\Admin\anaconda3\envs\faceswap\lib\importlib\__init__.py", line 127, in import_module return _bootstrap._gcd_import(name[level:], package, level) File "<frozen importlib._bootstrap>", line 1030, in _gcd_import File "<frozen importlib._bootstrap>", line 1007, in _find_and_load File "<frozen importlib._bootstrap>", line 986, in _find_and_load_unlocked File "<frozen importlib._bootstrap>", line 680, in _load_unlocked File "<frozen importlib._bootstrap_external>", line 850, in exec_module File "<frozen importlib._bootstrap>", line 228, in _call_with_frames_removed File "C:\Users\Admin\faceswap\plugins\train\model\original.py", line 11, in <module> from ._base import KerasModel, ModelBase File "C:\Users\Admin\faceswap\plugins\train\model\_base\__init__.py", line 4, in <module> from .model import get_all_sub_models, KerasModel, ModelBase # noqa File "C:\Users\Admin\faceswap\plugins\train\model\_base\model.py", line 23, in <module> from .settings import Loss, Optimizer, Settings File "C:\Users\Admin\faceswap\plugins\train\model\_base\settings.py", line 37, in <module> from lib.model.autoclip import AutoClipper # pylint:disable=ungrouped-imports File "C:\Users\Admin\faceswap\lib\model\autoclip.py", line 8, in <module> import tensorflow_probability as tfp File "C:\Users\Admin\anaconda3\envs\faceswap\lib\site-packages\tensorflow_probability\__init__.py", line 75, in <module> from tensorflow_probability.python import * # pylint: disable=wildcard-import File "C:\Users\Admin\anaconda3\envs\faceswap\lib\site-packages\tensorflow_probability\python\__init__.py", line 21, in <module> from tensorflow_probability.python import bijectors File "C:\Users\Admin\anaconda3\envs\faceswap\lib\site-packages\tensorflow_probability\python\bijectors\__init__.py", line 23, in <module> from tensorflow_probability.python.bijectors.absolute_value import AbsoluteValue File "C:\Users\Admin\anaconda3\envs\faceswap\lib\site-packages\tensorflow_probability\python\bijectors\absolute_value.py", line 23, in <module> from tensorflow_probability.python.bijectors import bijector File "C:\Users\Admin\anaconda3\envs\faceswap\lib\site-packages\tensorflow_probability\python\bijectors\bijector.py", line 33, in <module> from tensorflow_probability.python.internal import distribution_util File "C:\Users\Admin\anaconda3\envs\faceswap\lib\site-packages\tensorflow_probability\python\internal\distribution_util.py", line 29, in <module> from tensorflow_probability.python.internal import prefer_static File "C:\Users\Admin\anaconda3\envs\faceswap\lib\site-packages\tensorflow_probability\python\internal\prefer_static.py", line 22, in <module> import decorator ModuleNotFoundError: No module named 'decorator' 11/15/2022 21:24:55 CRITICAL An unexpected crash has occurred. Crash report written to 'C:\Users\Admin\faceswap\crash_report.2022.11.15.212446667521.log'. You MUST provide this file if seeking assistance. Please verify you are running the latest version of faceswap before reporting ` `11/15/2022 21:24:44 MainProcess MainThread __init__ wrapper DEBUG CONFIGDIR=C:\Users\Admin\.matplotlib 11/15/2022 21:24:44 MainProcess MainThread __init__ <module> DEBUG interactive is False 11/15/2022 21:24:44 MainProcess MainThread __init__ <module> DEBUG platform is win32 11/15/2022 21:24:44 MainProcess MainThread __init__ wrapper DEBUG CACHEDIR=C:\Users\Admin\.matplotlib 11/15/2022 21:24:44 MainProcess MainThread font_manager _load_fontmanager DEBUG Using fontManager instance from C:\Users\Admin\.matplotlib\fontlist-v330.json 11/15/2022 21:24:44 MainProcess MainThread queue_manager __init__ DEBUG Initializing _QueueManager 11/15/2022 21:24:44 MainProcess MainThread queue_manager __init__ DEBUG Initialized _QueueManager 11/15/2022 21:24:45 MainProcess MainThread stats __init__ DEBUG Initializing GlobalSession 11/15/2022 21:24:45 MainProcess MainThread stats __init__ DEBUG Initialized GlobalSession 11/15/2022 21:24:45 MainProcess MainThread train __init__ DEBUG Initializing Train: (args: Namespace(func=<bound method ScriptExecutor.execute_script of <lib.cli.launcher.ScriptExecutor object at 0x00000268DF228E80>>, exclude_gpus=None, configfile=None, loglevel='INFO', logfile=None, redirect_gui=True, colab=False, input_a='C:\\Users\\Admin\\Desktop\\faces\\A', input_b='C:\\Users\\Admin\\Desktop\\faces\\B', model_dir='C:\\Users\\Admin\\Desktop\\faces', load_weights=None, trainer='original', summary=False, freeze_weights=False, batch_size=16, iterations=1180000, distributed=False, distribution_strategy='default', save_interval=250, snapshot_interval=25000, timelapse_input_a=None, timelapse_input_b=None, timelapse_output=None, preview=True, write_image=False, no_logs=False, warp_to_landmarks=False, no_flip=False, no_augment_color=False, no_warp=False) 11/15/2022 21:24:45 MainProcess MainThread train _get_images DEBUG Getting image paths 11/15/2022 21:24:45 MainProcess MainThread utils get_image_paths DEBUG Scanned Folder contains 33 files 11/15/2022 21:24:45 MainProcess MainThread utils get_image_paths DEBUG Returning 33 images 11/15/2022 21:24:45 MainProcess MainThread train _get_images DEBUG Test file: (filename: C:\Users\Admin\Desktop\faces\A\2020-04-17 22.55.41 2289591023441328516_291158439_0.png, metadata: {'width': 512, 'height': 512, 'itxt': {'alignments': {'x': 202, 'w': 124, 'y': 179, 'h': 175, 'landmarks_xy': [[186.1354217529297, 263.46875], [193.3229217529297, 282.63543701171875], [200.5104217529297, 299.40625], [207.6979217529297, 313.78125], [219.67709350585938, 330.55206298828125], [236.44790649414062, 342.53125], [255.6145782470703, 352.11456298828125], [279.57293701171875, 361.69793701171875], [301.13543701171875, 364.09375], [315.51043701171875, 356.90625], [317.90625, 349.71875], [317.90625, 337.73956298828125], [320.30206298828125, 318.57293701171875], [327.48956298828125, 297.01043701171875], [329.88543701171875, 280.23956298828125], [327.48956298828125, 265.86456298828125], [322.69793701171875, 249.09375], [231.65625, 241.90625], [243.6354217529297, 234.71875], [258.01043701171875, 229.9270782470703], [267.59375, 229.9270782470703], [277.17706298828125, 234.71875], [303.53125, 229.9270782470703], [308.32293701171875, 227.53125], [313.11456298828125, 227.53125], [317.90625, 229.9270782470703], [317.90625, 234.71875], [296.34375, 249.09375], [303.53125, 261.07293701171875], [313.11456298828125, 270.65625], [315.51043701171875, 280.23956298828125], [289.15625, 289.82293701171875], [296.34375, 289.82293701171875], [303.53125, 289.82293701171875], [308.32293701171875, 287.42706298828125], [310.71875, 287.42706298828125], [250.8229217529297, 256.28125], [260.40625, 253.8854217529297], [267.59375, 253.8854217529297], [272.38543701171875, 256.28125], [267.59375, 258.67706298828125], [258.01043701171875, 258.67706298828125], [298.73956298828125, 251.4895782470703], [305.92706298828125, 246.6979217529297], [313.11456298828125, 246.6979217529297], [313.11456298828125, 249.09375], [313.11456298828125, 251.4895782470703], [305.92706298828125, 251.4895782470703], [265.19793701171875, 311.38543701171875], [281.96875, 306.59375], [298.73956298828125, 301.80206298828125], [305.92706298828125, 301.80206298828125], [310.71875, 299.40625], [315.51043701171875, 301.80206298828125], [313.11456298828125, 306.59375], [313.11456298828125, 318.57293701171875], [310.71875, 323.36456298828125], [305.92706298828125, 325.7604064941406], [296.34375, 325.7604064941406], [284.36456298828125, 320.96875], [267.59375, 311.38543701171875], [293.94793701171875, 306.59375], [303.53125, 306.59375], [308.32293701171875, 306.59375], [313.11456298828125, 306.59375], [308.32293701171875, 313.78125], [303.53125, 316.17706298828125], [293.94793701171875, 316.17706298828125]], 'mask': {'components': {'mask': b"x\x9c\xed\x9a[\x92\xc2@\x08E\xdd\x19Kci,-\xa3\xd1\xa91>:\x81{i\xa6*\x9c\x0f\x7f\x0f\rD#\xcd\xe5\xd24M\xd34M\xd34M\xd34M\xd34M\xf3?P\xd5eY\xae\x9f:\xdb,\xaby\xcb5\x0c\x99cW{\x93\xffa\xc9\xe9\x90\x91|\x9b\x0e~\x1c\xf2\x9e\xf6\xbd0h5\x91a\xda\x07\x110\xe4\x1f\xfa\xed0\x06\x1f<\xee^\x81\xdc\x06\xca\x81\xf3\x13\xdc7B\r\x80\x14\x1c\xf53\x92\xfe\x8cO\xceu\xbb\xfdJ\xd7;\xcf\xcf\xf7\xfb\x1a\xe0\xec~\xe3\x07\xe0\xf2\xeb\xc9\xfdR\xecOh@\xdf;\x08\xdf_\xfd\x00\xf8\xfczr?\xbf\x01\x9co@t\xbf\xf3\x01\xd4\x93\xfb\xa5\xd8\xcfo\x00\xa7\xdf\x8a\xfdZ\xec\x97b?\xbd\x01\xbc~+\xf6k\xb1\x9f]\x00\xb7\xdf\xa8z\xff?`\xa5\xfa\xfd3 \xa1\xfa\xddzn\x03D\x06\x10Z\xec\x17\xa2?\xa0g\x16 6\x7fR\x9a?8\x80\xa4\xf9czZ\x02\xc2\xe3?\x92?<\x80V\x8e?\xaa'%\x00\x18\x7f+\xc3\x8f\xcc\xff\tzh\xf8\xae\xb8\x1f\xbb}\xc0\xfd\x90\x1e\xff\x15\x80\xef>@?|\xfb\x04\x06\x80\xea\xc1\x00\x18w_\n\xf8)\x97\x7f\x16\xd6\xa3\xdd\x87\x06\xc0\xba\x80\x8d\x06@\xd2G\x03 \xa5?\x1c\x00s\x1d@\x03~\xa2>\xf2=\xc0\xbe\xfe7\xa7\x9f\xbe\x8d\xa1.=\xb1\xfb~\x11\x8f?e\x0b\xc4\x8e\xfb3\xf4\x8e\x1a$\xa4\x7f\xe5h\r\xf2v\x81\x8e\xa5 M\x7f\xec\x8a>w%k\xbf\x08\xd9\xabX;E\xc8\xea\xbe'\x86E\x98\xb1\x896h\x83\t\xc7\xbf\xf1\xb5\x08\x93\x16\xf1\xbeE0s\x1f\xf1\xc3v\xd6\xecu\xc8\xcd\xbe\xd0\xac%\xc8\x17\xee!\x14\xc9\x1f!T\xca\x19\xfc\x00=Z\x92s", 'affine_matrix': [[0.5971773365351224, -0.10676463488366382, -77.57558414093813], [0.10676463488366382, 0.5971773365351223, -123.80531080504358]], 'interpolator': 3, 'stored_size': 128, 'stored_centering': 'face'}, 'extended': {'mask': b"x\x9c\xed\xda\x81m\xc30\x0c\x04@o\xc6\xd1~4\x8d\xe6\xb6i\x02\x18\xa8\xea\x9a\xfc\xa7\xd8\xc0\xfc\x05\x8e!\x95\xb4\x90\xb8m\x9dN\xa7\xd3\xe9t:\x9dN\xa7\xd3\xe9t:\xff.\x06X\x11\r`\x7ff\x00\x8b\xed\xb1\xff\x0cVUa\x13\xfc\xd0\x8a\xec\x81\xe0\x84\xcf\x1f\x88\xcdZ?O\xc6@\xcez?o\x85r\x1c\x8e\x0f\x7f\xa8\xa0T\x97\xb5`\xfa\x9d\xbb\x18\x81\x1e\xc7\xf9\tD\x1b\xff\n\xf75`\xf5}g\xe6\x0f\x16\xdf\x99\xf1+\xf4\xb0\xcf7\x9e\xf1ez\xc8\x87\x0c\x0f\xf8&\xd5\xbd\xbe\xb0\xf1\xcfx\xbe\x7fz\xdd\xf7\xfb\x03=\xef\xf2\xad\xd8\xdf\xee\xee\x8fb\x1f7\xf7\xad\xd8O8\x80\xef\xe5\x0f\xb9\xef\xfb\xff\x13r\xdf\xf7\x07\xb0\xdaO8\x00\xef\xe5\xe3\xe6\xbe\x15\xfb\xfa\x03\xe0\xf4G\xb1\x8fb\xdf\x8a}\xf9\x01\xf0\xfa\xa3\xd8G\xb1\xaf\x1e\x80\xdb\x1fR\xde\x7f\xff\x03\xa9\xef\xbf\xff1\xa9\xef\xe6\xb5\x07 r\xfd\x86b\xdf\x84~\x80W\x0e v\xfb\n\x99\x1f\xbc}\x95\xf91^\xd6\x80\xf0\xe5\xb7\xc8\x0f_>C\xe3GyQ\x03\x88\xbb\x7f(|\xe6\xee_\xc0SO/\xe0}\xee\xe9\x85\xf7)\x9e\xff+@\xbf|\x91>\xfd\xf2H\x16\xc0\xf2d\x01\x8a\xf7o\x10\xbe\xe4\xe1w\x84y\xd1\xcbw\xb8\x00\xd5\xfaA\xb4\x00\x11\x1f-@\xb6x\x10,@\xb9y\x81\x80/\xe4#\xbf\x03\xea\xe5\x97\xe1\xf4\xe5{Hp\xf1\xc2\xd3\xf7\x8ay\xfc\x94\r\xa8q\xdd\xcf\xe0\x1d3Hh\xff#Wg\x90\xb7\x05w\xad\x05i\xfc\xb5'\xfa\xdcU\xc4\xbf\x87P\xbc\x84\x98u\xfa\x0e9\x1d\xc2\x8a\xa5\xd8\x93c\xb0\xe0\xe3\x7f\xe5\xd7!,\xdb\t\x9eW\xb0r\x1bx\xb2+\xb4x\x19\xf9\xb3\x84\xc3I(\xda\xc7\xfe.\xa1l\x19\xfcQB%\xae\xc8\x07D\xd6_\xbc", 'affine_matrix': [[0.5971773365351224, -0.10676463488366382, -77.57558414093813], [0.10676463488366382, 0.5971773365351223, -123.80531080504358]], 'interpolator': 3, 'stored_size': 128, 'stored_centering': 'face'}}, 'identity': {}}, 'source': {'alignments_version': 2.3, 'original_filename': '2020-04-17 22.55.41 2289591023441328516_291158439_0.png', 'face_index': 0, 'source_filename': '2020-04-17 22.55.41 2289591023441328516_291158439.jpg', 'source_is_video': False, 'source_frame_dims': (1349, 1080)}}}) 11/15/2022 21:24:45 MainProcess MainThread train _get_images INFO Model A Directory: 'C:\Users\Admin\Desktop\faces\A' (33 images) 11/15/2022 21:24:45 MainProcess MainThread utils get_image_paths DEBUG Scanned Folder contains 180 files 11/15/2022 21:24:45 MainProcess MainThread utils get_image_paths DEBUG Returning 180 images 11/15/2022 21:24:45 MainProcess MainThread train _get_images DEBUG Test file: (filename: C:\Users\Admin\Desktop\faces\B\2019-07-14 10.37.45 2087731961133796176_380280568_0.png, metadata: {'width': 512, 'height': 512, 'itxt': {'alignments': {'x': 308, 'w': 631, 'y': 78, 'h': 937, 'landmarks_xy': [[328.24359130859375, 427.7779541015625], [315.67950439453125, 528.290771484375], [315.67950439453125, 603.6753540039062], [328.24359130859375, 679.0599975585938], [340.80767822265625, 767.0087280273438], [365.9359130859375, 842.3933715820312], [403.62823486328125, 892.6497192382812], [441.32049560546875, 942.9061889648438], [529.2692260742188, 1005.7266235351562], [629.7820434570312, 993.1625366210938], [692.6025390625, 955.4702758789062], [742.8589477539062, 917.7778930664062], [805.6795043945312, 854.9574584960938], [843.3717651367188, 779.5728149414062], [881.0640869140625, 704.1881713867188], [906.1922607421875, 628.8035888671875], [931.320556640625, 540.8548583984375], [365.9359130859375, 339.8292236328125], [416.19232177734375, 302.13690185546875], [466.44873046875, 314.7010498046875], [504.14105224609375, 327.26513671875], [541.8333129882812, 352.393310546875], [730.2948608398438, 390.08563232421875], [767.9871826171875, 377.52154541015625], [830.8076782226562, 377.52154541015625], [881.0640869140625, 390.08563232421875], [906.1922607421875, 440.342041015625], [604.6538696289062, 490.59844970703125], [604.6538696289062, 553.4189453125], [592.0897216796875, 603.6753540039062], [579.525634765625, 653.9317626953125], [516.7051391601562, 679.0599975585938], [541.8333129882812, 691.6240844726562], [566.9615478515625, 704.1881713867188], [604.6538696289062, 704.1881713867188], [629.7820434570312, 704.1881713867188], [416.19232177734375, 427.7779541015625], [441.32049560546875, 427.7779541015625], [491.576904296875, 427.7779541015625], [529.2692260742188, 465.47027587890625], [479.0128173828125, 465.47027587890625], [441.32049560546875, 452.9061279296875], [705.1666870117188, 490.59844970703125], [755.423095703125, 490.59844970703125], [793.1153564453125, 490.59844970703125], [830.8076782226562, 515.7266845703125], [793.1153564453125, 528.290771484375], [742.8589477539062, 515.7266845703125], [453.8846435546875, 792.1369018554688], [479.0128173828125, 767.0087280273438], [541.8333129882812, 754.4446411132812], [566.9615478515625, 754.4446411132812], [592.0897216796875, 754.4446411132812], [629.7820434570312, 792.1369018554688], [667.474365234375, 829.8291625976562], [629.7820434570312, 867.5215454101562], [579.525634765625, 880.0856323242188], [541.8333129882812, 880.0856323242188], [504.14105224609375, 867.5215454101562], [479.0128173828125, 842.3933715820312], [453.8846435546875, 792.1369018554688], [529.2692260742188, 779.5728149414062], [554.3974609375, 792.1369018554688], [592.0897216796875, 804.7009887695312], [654.9102783203125, 829.8291625976562], [579.525634765625, 829.8291625976562], [554.3974609375, 829.8291625976562], [516.7051391601562, 817.2650756835938]], 'mask': {'components': {'mask': b'x\x9c\xed\x99Q\xae\xc20\x0c\x04{\xb3\x1c-G\xf3\xd1\xca\xa3| D\x81\xc4\xb3I@o\xe7\x02\xb3\xb5\xe3Tr\xb6\xcd\x18c\x8c1\xc6\x18c\x8c1\xc6\x18c\xcc7R\xea)bK\xec\xfd\x94\xb5za\x80\x9c~\xdfE\xfa\x92\xd4\xef\xb1V/\n\x90\xd7K\x8e\x00\xf8|I\x01*\xf1\x0b\n\xc0\xfc\xbc\x00H/\x98A\xe8\xa77q\x81~Z\x80J\xfd\xb0\x00\xd8\x0f\x0b\x80\xf5\xb0\x00\xf6S\xd8\x15\xc8\xfdH\xbf\xdc\x1f\x8b\xfd\xf5\xd7\xfd\xf0\x0f\x88\xfd\xab\xef_\xfb\x19\xd4\x0f\xf5\xff\xde_\x7f\xdb\x8f7\x01e\xb1\x1f\x1e\x00\xee\x0f\xe4\xc7zx\x00\xb8\x1f5@\xb1\x88\n\xe0W\xec\x80\n\xf0\x0b\xf4\xa4\x01\x9a\rPM\xfb5{\xc8\x92\xf6K\xf4\xa0\x01"\x7fM\xeaUk\xe0\x92\xf4\xcb6\xb0I\xbfJ\x9fl\x80f\xfa\x0eR~\xe1+@d\xfc:}\xae\x01B\x7f\xa6\x01\xd2G\x98D\x01\x94\xfaD\x01\x84\xef?WJ\xa7^8|7\xa2\xcf\xaf\xd6w\x16@\\\xfd+\xb5C\xaf~\x80<h\xd7\xcb\x9b\x7f\xd0\xde\x81\x01\xd5\xef\t0H\xff\x17 \x96\xea\xb7\xa6)\x1c\xd3\xfc\xe6\x00c\xf5\x1f\x03\x8c\xd6\x7f\x080^\xffv\x0c\x86\xdc;\xed\x01F\x9e\xfc\x87\x00\xe7=\x98\xa5?O0\xa3\xf5\xaf\x13\xd4\x89\x1f\xff\x94 \xe6\xcb\xef\tb\xce\xa1\x7f\x91`\xa5\xdc\x18cL\x9a\x0bJ\xab\xda&', 'affine_matrix': [[0.10563867057061942, 0.02008655320207599, -11.293521284931124], [-0.020086553202075995, 0.10563867057061942, 20.28065738741556]], 'interpolator': 2, 'stored_size': 128, 'stored_centering': 'face'}, 'extended': {'mask': b"x\x9c\xed\x99\x8b\x8d\x03!\x0cD\xb73\x97\xe6\xd2\\\x1a\x97\x8f\xa2\xe8\x94\x90\x80g\xc0Ze^\x01y\x13\xc6 \xc4\x1e\x87\x10B\x08!\x84\x10B\x08!\x84\x10\xf3\xb8;\xed\xb7\xac]\xf0\x0e\xad\x0b-@\xf4\x1d\x1f\xb1Z}k\x14\xbd\xa5\xf5-j\xf5\x94\x06\x02\xf1\xe3\x010=\xdc\x80azx\x04\x1d\xf5\x83\x87\x80\xfc(\xf2\xd7\xfa\xc1\x01\x90\x1fE\xfeZ?6\x00\xf2\x9f\xdd\x8f]\xc1p?\xa4/\xf7G\xb1\xdf\xcf\xee\x07o\xe0\xb0\xbf\xfa\x02(?\x06\xea\x07\xf5?\xef\xf7s\xfb\xe1G0+\xf6\x83\x03\x80\xfb\x03\xf2\xc3zp\x00p?T\x00\xe3\r6\x00?\xe3\t\xd6\x00?A\x8f\x14\xc0x\x80E&\x90\xf3\x04oi?E\x0f\x14@\xf2{R\xcf\xfa\x02bI?\xe9\x03H\xba\x00\x96>Y\x00g\xf7\xddH\xf9y_\xe0rg0O\x9f+\x80\xe8\xcf\x14@\\\xfe\xd4\x020\xf5\x89\x05\xa0m\xfe;6\xa9'n\xbe;1\xe7g\xeb'\x17\x80\xbc\xfaW|BO\x9d\xfd\x07\xe3zz\xf97\xc6\x1bX\xb0\xfa3\x01\x16\xe9/\x01\xa2T\x7f\x0c\xed\xc25\xe5\x0f\x07X\xab\xff\x1a`\xb5\xfeK\x80\xf5\xfa\x8f\xdb`\xc9\xb93\x1e`\xe5\xe4\xff\x0b\xf0\xbe\x83]\xfa\xf7\tvT\xdfO\xe0\x1b\xff\xfcK\x82\xd8/\x7f&\x88=C\xdfIP)\x17B\x08\x91\xe6\x0f\xfc\xf7\xa9.", 'affine_matrix': [[0.10563867057061942, 0.02008655320207599, -11.293521284931124], [-0.020086553202075995, 0.10563867057061942, 20.28065738741556]], 'interpolator': 2, 'stored_size': 128, 'stored_centering': 'face'}}, 'identity': {}}, 'source': {'alignments_version': 2.3, 'original_filename': '2019-07-14 10.37.45 2087731961133796176_380280568_0.png', 'face_index': 0, 'source_filename': '2019-07-14 10.37.45 2087731961133796176_380280568.jpg', 'source_is_video': False, 'source_frame_dims': (1350, 1080)}}}) 11/15/2022 21:24:45 MainProcess MainThread train _get_images INFO Model B Directory: 'C:\Users\Admin\Desktop\faces\B' (180 images) 11/15/2022 21:24:45 MainProcess MainThread train _get_images DEBUG Got image paths: [('a', '33 images'), ('b', '180 images')] 11/15/2022 21:24:45 MainProcess MainThread train _validate_image_counts WARNING At least one of your input folders contains fewer than 250 images. Results are likely to be poor. 11/15/2022 21:24:45 MainProcess MainThread train _validate_image_counts WARNING You need to provide a significant number of images to successfully train a Neural Network. Aim for between 500 - 5000 images per side. 11/15/2022 21:24:45 MainProcess MainThread preview_cv __init__ DEBUG Initializing: PreviewBuffer 11/15/2022 21:24:45 MainProcess MainThread preview_cv __init__ DEBUG Initialized: PreviewBuffer 11/15/2022 21:24:45 MainProcess preview preview_tk __init__ DEBUG Initializing PreviewTk (parent: 'None') 11/15/2022 21:24:45 MainProcess preview preview_cv __init__ DEBUG Initializing PreviewTk parent (triggers: {'toggle_mask': <threading.Event object at 0x00000268DF24EC10>, 'refresh': <threading.Event object at 0x00000268EA541A90>, 'save': <threading.Event object at 0x00000268EA549700>, 'quit': <threading.Event object at 0x00000268EA5A8700>, 'shutdown': <threading.Event object at 0x00000268EA5A8A60>}) 11/15/2022 21:24:45 MainProcess preview preview_cv __init__ DEBUG Initialized PreviewTk parent 11/15/2022 21:24:45 MainProcess MainThread train __init__ DEBUG Initialized Train 11/15/2022 21:24:45 MainProcess MainThread train process DEBUG Starting Training Process 11/15/2022 21:24:45 MainProcess MainThread train process INFO Training data directory: C:\Users\Admin\Desktop\faces 11/15/2022 21:24:45 MainProcess MainThread train _start_thread DEBUG Launching Trainer thread 11/15/2022 21:24:45 MainProcess MainThread multithreading __init__ DEBUG Initializing MultiThread: (target: '_training', thread_count: 1) 11/15/2022 21:24:45 MainProcess MainThread multithreading __init__ DEBUG Initialized MultiThread: '_training' 11/15/2022 21:24:45 MainProcess MainThread multithreading start DEBUG Starting thread(s): '_training' 11/15/2022 21:24:45 MainProcess MainThread multithreading start DEBUG Starting thread 1 of 1: '_training' 11/15/2022 21:24:45 MainProcess preview preview_tk __init__ DEBUG Initializing _Taskbar (parent: '.!frame', taskbar: None) 11/15/2022 21:24:45 MainProcess preview preview_tk _add_scale_combo DEBUG Adding scale combo 11/15/2022 21:24:45 MainProcess MainThread multithreading start DEBUG Started all threads '_training': 1 11/15/2022 21:24:45 MainProcess MainThread train _start_thread DEBUG Launched Trainer thread 11/15/2022 21:24:45 MainProcess MainThread train _output_startup_info DEBUG Launching Monitor 11/15/2022 21:24:45 MainProcess MainThread train _output_startup_info INFO =================================================== 11/15/2022 21:24:45 MainProcess MainThread train _output_startup_info INFO Starting 11/15/2022 21:24:45 MainProcess MainThread train _output_startup_info INFO Using live preview 11/15/2022 21:24:45 MainProcess MainThread train _output_startup_info INFO =================================================== 11/15/2022 21:24:45 MainProcess preview preview_tk _add_scale_combo DEBUG Added scale combo: '.!frame.!frame.!combobox' 11/15/2022 21:24:45 MainProcess preview preview_tk _add_scale_slider DEBUG Adding scale slider 11/15/2022 21:24:45 MainProcess preview preview_tk _add_scale_slider DEBUG Added scale slider: '.!frame.!frame.!scale' 11/15/2022 21:24:45 MainProcess preview preview_tk _add_interpolator_radio DEBUG Adding nearest_neighbour radio button 11/15/2022 21:24:45 MainProcess preview preview_tk _add_interpolator_radio DEBUG Added .!frame.!frame.!frame.!radiobutton radio button 11/15/2022 21:24:45 MainProcess preview preview_tk _add_interpolator_radio DEBUG Adding bicubic radio button 11/15/2022 21:24:45 MainProcess preview preview_tk _add_interpolator_radio DEBUG Added .!frame.!frame.!frame.!radiobutton2 radio button 11/15/2022 21:24:45 MainProcess preview preview_tk _add_save_button DEBUG Adding save button 11/15/2022 21:24:45 MainProcess preview preview_tk _add_save_button DEBUG Added save burron: '.!frame.!frame.!button' 11/15/2022 21:24:45 MainProcess preview preview_tk __init__ DEBUG Initialized _Taskbar ('<lib.training.preview_tk._Taskbar object at 0x00000268EA5A8BE0>') 11/15/2022 21:24:45 MainProcess preview preview_tk _get_geometry DEBUG Obtaining screen geometry 11/15/2022 21:24:45 MainProcess preview preview_tk _get_geometry DEBUG Obtained screen geometry: (1920, 1080) 11/15/2022 21:24:45 MainProcess preview preview_tk __init__ DEBUG Initializing _PreviewCanvas (parent: '.!frame', scale_var: PY_VAR1, screen_dimensions: (1920, 1080)) 11/15/2022 21:24:45 MainProcess preview preview_tk _configure_scrollbars DEBUG Configuring scrollbars 11/15/2022 21:24:45 MainProcess preview preview_tk _configure_scrollbars DEBUG Configured scrollbars. x: '.!frame.!frame2.!scrollbar', y: '.!frame.!frame2.!scrollbar2' 11/15/2022 21:24:45 MainProcess preview preview_tk __init__ DEBUG Initialized _PreviewCanvas ('.!frame.!frame2.!_previewcanvas') 11/15/2022 21:24:45 MainProcess preview preview_tk __init__ DEBUG Initializing _Image: (save_variable: PY_VAR0, is_standalone: True) 11/15/2022 21:24:45 MainProcess preview preview_tk __init__ DEBUG Initialized _Image 11/15/2022 21:24:45 MainProcess preview preview_tk __init__ DEBUG Initializing _Bindings (canvas: '.!frame.!frame2.!_previewcanvas', taskbar: '<lib.training.preview_tk._Taskbar object at 0x00000268EA5A8BE0>', image: '<lib.training.preview_tk._Image object at 0x00000268EA5D78E0>') 11/15/2022 21:24:45 MainProcess preview preview_tk _set_mouse_bindings DEBUG Binding mouse events 11/15/2022 21:24:45 MainProcess preview preview_tk _set_mouse_bindings DEBUG Bound mouse events 11/15/2022 21:24:45 MainProcess preview preview_tk _set_key_bindings DEBUG Binding key events 11/15/2022 21:24:45 MainProcess preview preview_tk _set_key_bindings DEBUG Bound key events 11/15/2022 21:24:45 MainProcess preview preview_tk __init__ DEBUG Initialized _Bindings 11/15/2022 21:24:45 MainProcess preview preview_tk _process_triggers DEBUG Processing triggers 11/15/2022 21:24:45 MainProcess preview preview_tk _process_triggers DEBUG Adding trigger for key: 'm' 11/15/2022 21:24:45 MainProcess preview preview_tk _process_triggers DEBUG Adding trigger for key: 'r' 11/15/2022 21:24:45 MainProcess preview preview_tk _process_triggers DEBUG Adding trigger for key: 's' 11/15/2022 21:24:45 MainProcess preview preview_tk _process_triggers DEBUG Adding trigger for key: 'Return' 11/15/2022 21:24:45 MainProcess preview preview_tk _process_triggers DEBUG Processed triggers 11/15/2022 21:24:45 MainProcess preview preview_tk pack DEBUG Packing master frame: (args: (), kwargs: {'fill': 'both', 'expand': True}) 11/15/2022 21:24:45 MainProcess preview preview_tk _output_helptext INFO --------------------------------------------------- 11/15/2022 21:24:45 MainProcess preview preview_tk _output_helptext INFO Preview key bindings: 11/15/2022 21:24:45 MainProcess preview preview_tk _output_helptext INFO Zoom: +/- 11/15/2022 21:24:45 MainProcess preview preview_tk _output_helptext INFO Toggle Zoom Mode: i 11/15/2022 21:24:45 MainProcess preview preview_tk _output_helptext INFO Move: arrow keys 11/15/2022 21:24:45 MainProcess preview preview_tk _output_helptext INFO Save Preview: Ctrl+s 11/15/2022 21:24:45 MainProcess preview preview_tk _output_helptext INFO --------------------------------------------------- 11/15/2022 21:24:45 MainProcess preview preview_tk __init__ DEBUG Initialized PreviewTk 11/15/2022 21:24:45 MainProcess preview preview_cv _launch DEBUG Launching PreviewTk 11/15/2022 21:24:45 MainProcess preview preview_cv _launch DEBUG Waiting for preview image 11/15/2022 21:24:46 MainProcess _training train _training DEBUG Commencing Training 11/15/2022 21:24:46 MainProcess _training train _training INFO Loading data, this may take a while... 11/15/2022 21:24:46 MainProcess _training train _load_model DEBUG Loading Model 11/15/2022 21:24:46 MainProcess _training utils get_folder DEBUG Requested path: 'C:\Users\Admin\Desktop\faces' 11/15/2022 21:24:46 MainProcess _training utils get_folder DEBUG Returning: 'C:\Users\Admin\Desktop\faces' 11/15/2022 21:24:46 MainProcess _training plugin_loader _import INFO Loading Model from Original plugin... 11/15/2022 21:24:46 MainProcess _training multithreading run DEBUG Error in thread (_training): No module named 'decorator' 11/15/2022 21:24:46 MainProcess MainThread train _monitor DEBUG Thread error detected 11/15/2022 21:24:46 MainProcess MainThread train shutdown DEBUG Sending shutdown to preview viewer 11/15/2022 21:24:46 MainProcess MainThread train _monitor DEBUG Closed Monitor 11/15/2022 21:24:46 MainProcess MainThread train _end_thread DEBUG Ending Training thread 11/15/2022 21:24:46 MainProcess MainThread train _end_thread CRITICAL Error caught! Exiting... 11/15/2022 21:24:46 MainProcess MainThread multithreading join DEBUG Joining Threads: '_training' 11/15/2022 21:24:46 MainProcess MainThread multithreading join DEBUG Joining Thread: '_training' 11/15/2022 21:24:46 MainProcess MainThread multithreading join ERROR Caught exception in thread: '_training' Traceback (most recent call last): File "C:\Users\Admin\faceswap\lib\cli\launcher.py", line 217, in execute_script process.process() File "C:\Users\Admin\faceswap\scripts\train.py", line 218, in process self._end_thread(thread, err) File "C:\Users\Admin\faceswap\scripts\train.py", line 258, in _end_thread thread.join() File "C:\Users\Admin\faceswap\lib\multithreading.py", line 217, in join raise thread.err[1].with_traceback(thread.err[2]) File "C:\Users\Admin\faceswap\lib\multithreading.py", line 96, in run self._target(*self._args, **self._kwargs) File "C:\Users\Admin\faceswap\scripts\train.py", line 280, in _training raise err File "C:\Users\Admin\faceswap\scripts\train.py", line 268, in _training model = self._load_model() File "C:\Users\Admin\faceswap\scripts\train.py", line 292, in _load_model model: "ModelBase" = PluginLoader.get_model(self._args.trainer)( File "C:\Users\Admin\faceswap\plugins\plugin_loader.py", line 131, in get_model return PluginLoader._import("train.model", name, disable_logging) File "C:\Users\Admin\faceswap\plugins\plugin_loader.py", line 197, in _import module = import_module(mod) File "C:\Users\Admin\anaconda3\envs\faceswap\lib\importlib\__init__.py", line 127, in import_module return _bootstrap._gcd_import(name[level:], package, level) File "<frozen importlib._bootstrap>", line 1030, in _gcd_import File "<frozen importlib._bootstrap>", line 1007, in _find_and_load File "<frozen importlib._bootstrap>", line 986, in _find_and_load_unlocked File "<frozen importlib._bootstrap>", line 680, in _load_unlocked File "<frozen importlib._bootstrap_external>", line 850, in exec_module File "<frozen importlib._bootstrap>", line 228, in _call_with_frames_removed File "C:\Users\Admin\faceswap\plugins\train\model\original.py", line 11, in <module> from ._base import KerasModel, ModelBase File "C:\Users\Admin\faceswap\plugins\train\model\_base\__init__.py", line 4, in <module> from .model import get_all_sub_models, KerasModel, ModelBase # noqa File "C:\Users\Admin\faceswap\plugins\train\model\_base\model.py", line 23, in <module> from .settings import Loss, Optimizer, Settings File "C:\Users\Admin\faceswap\plugins\train\model\_base\settings.py", line 37, in <module> from lib.model.autoclip import AutoClipper # pylint:disable=ungrouped-imports File "C:\Users\Admin\faceswap\lib\model\autoclip.py", line 8, in <module> import tensorflow_probability as tfp File "C:\Users\Admin\anaconda3\envs\faceswap\lib\site-packages\tensorflow_probability\__init__.py", line 75, in <module> from tensorflow_probability.python import * # pylint: disable=wildcard-import File "C:\Users\Admin\anaconda3\envs\faceswap\lib\site-packages\tensorflow_probability\python\__init__.py", line 21, in <module> from tensorflow_probability.python import bijectors File "C:\Users\Admin\anaconda3\envs\faceswap\lib\site-packages\tensorflow_probability\python\bijectors\__init__.py", line 23, in <module> from tensorflow_probability.python.bijectors.absolute_value import AbsoluteValue File "C:\Users\Admin\anaconda3\envs\faceswap\lib\site-packages\tensorflow_probability\python\bijectors\absolute_value.py", line 23, in <module> from tensorflow_probability.python.bijectors import bijector File "C:\Users\Admin\anaconda3\envs\faceswap\lib\site-packages\tensorflow_probability\python\bijectors\bijector.py", line 33, in <module> from tensorflow_probability.python.internal import distribution_util File "C:\Users\Admin\anaconda3\envs\faceswap\lib\site-packages\tensorflow_probability\python\internal\distribution_util.py", line 29, in <module> from tensorflow_probability.python.internal import prefer_static File "C:\Users\Admin\anaconda3\envs\faceswap\lib\site-packages\tensorflow_probability\python\internal\prefer_static.py", line 22, in <module> import decorator ModuleNotFoundError: No module named 'decorator' ============ System Information ============ encoding: cp1252 git_branch: Not Found git_commits: Not Found gpu_cuda: No global version found. Check Conda packages for Conda Cuda gpu_cudnn: No global version found. Check Conda packages for Conda cuDNN gpu_devices: GPU_0: NVIDIA GeForce GTX 1070 gpu_devices_active: GPU_0 gpu_driver: 511.79 gpu_vram: GPU_0: 8192MB os_machine: AMD64 os_platform: Windows-10-10.0.19044-SP0 os_release: 10 py_command: C:\Users\Admin\faceswap\faceswap.py train -A C:/Users/Admin/Desktop/faces/A -B C:/Users/Admin/Desktop/faces/B -m C:/Users/Admin/Desktop/faces -t original -bs 16 -it 1180000 -D default -s 250 -ss 25000 -p -L INFO -gui py_conda_version: conda 4.13.0 py_implementation: CPython py_version: 3.9.13 py_virtual_env: True sys_cores: 8 sys_processor: Intel64 Family 6 Model 94 Stepping 3, GenuineIntel sys_ram: Total: 32720MB, Available: 21423MB, Used: 11296MB, Free: 21423MB =============== Pip Packages =============== absl-py==1.3.0 astunparse==1.6.3 cachetools==5.2.0 certifi==2022.9.24 charset-normalizer==2.1.1 colorama @ file:///home/conda/feedstock_root/build_artifacts/colorama_1666700638685/work contourpy @ file:///D:/bld/contourpy_1667248269651/work cycler @ file:///home/conda/feedstock_root/build_artifacts/cycler_1635519461629/work fastcluster @ file:///D:/bld/fastcluster_1667859058636/work ffmpy @ file:///home/conda/feedstock_root/build_artifacts/ffmpy_1659474992694/work flatbuffers==1.12 fonttools @ file:///D:/bld/fonttools_1666827219016/work gast==0.4.0 google-auth==2.14.1 google-auth-oauthlib==0.4.6 google-pasta==0.2.0 grpcio==1.50.0 h5py==3.7.0 idna==3.4 imageio @ file:///home/conda/feedstock_root/build_artifacts/imageio_1663572338894/work imageio-ffmpeg @ file:///home/conda/feedstock_root/build_artifacts/imageio-ffmpeg_1649960641006/work importlib-metadata==5.0.0 joblib @ file:///home/conda/feedstock_root/build_artifacts/joblib_1663332044897/work keras==2.9.0 Keras-Preprocessing==1.1.2 kiwisolver @ file:///D:/bld/kiwisolver_1666805897768/work libclang==14.0.6 Markdown==3.4.1 MarkupSafe==2.1.1 matplotlib @ file:///D:/bld/matplotlib-suite_1667505027923/work munkres==1.1.4 numexpr @ file:///D:/bld/numexpr_1666816820577/work numpy @ file:///D:/bld/numpy_1666788367701/work nvidia-ml-py @ file:///home/conda/feedstock_root/build_artifacts/nvidia-ml-py_1664523937022/work oauthlib==3.2.2 opencv-python==4.6.0.66 opt-einsum==3.3.0 packaging @ file:///home/conda/feedstock_root/build_artifacts/packaging_1637239678211/work Pillow @ file:///D:/bld/pillow_1666920708409/work ply==3.11 protobuf==3.19.6 psutil @ file:///D:/bld/psutil_1667886042967/work pyasn1==0.4.8 pyasn1-modules==0.2.8 pyparsing @ file:///home/conda/feedstock_root/build_artifacts/pyparsing_1652235407899/work PyQt5==5.15.7 PyQt5-sip @ file:///D:/bld/pyqt-split_1666830111760/work/pyqt_sip python-dateutil @ file:///home/conda/feedstock_root/build_artifacts/python-dateutil_1626286286081/work pywin32==304 pywinpty @ file:///D:/bld/pywinpty_1643992546220/work/target/wheels/pywinpty-2.0.2-cp39-none-win_amd64.whl requests==2.28.1 requests-oauthlib==1.3.1 rsa==4.9 scikit-learn @ file:///D:/bld/scikit-learn_1666884817551/work scipy==1.9.3 sip @ file:///D:/bld/sip_1667565633471/work six @ file:///home/conda/feedstock_root/build_artifacts/six_1620240208055/work tensorboard==2.9.1 tensorboard-data-server==0.6.1 tensorboard-plugin-wit==1.8.1 tensorflow-estimator==2.9.0 tensorflow-gpu==2.9.2 tensorflow-io-gcs-filesystem==0.27.0 tensorflow-probability==0.7.0 termcolor==2.1.0 threadpoolctl @ file:///home/conda/feedstock_root/build_artifacts/threadpoolctl_1643647933166/work toml @ file:///home/conda/feedstock_root/build_artifacts/toml_1604308577558/work tornado @ file:///D:/bld/tornado_1666788767305/work tqdm @ file:///home/conda/feedstock_root/build_artifacts/tqdm_1662214488106/work typing_extensions @ file:///home/conda/feedstock_root/build_artifacts/typing_extensions_1665144421445/work unicodedata2 @ file:///D:/bld/unicodedata2_1667240049903/work urllib3==1.26.12 Werkzeug==2.2.2 wrapt==1.14.1 zipp==3.10.0 ============== Conda Packages ============== # packages in environment at C:\Users\Admin\anaconda3\envs\faceswap: # # Name Version Build Channel absl-py 1.3.0 pypi_0 pypi aom 3.5.0 h63175ca_0 conda-forge astunparse 1.6.3 pypi_0 pypi brotli 1.0.9 hcfcfb64_8 conda-forge brotli-bin 1.0.9 hcfcfb64_8 conda-forge bzip2 1.0.8 h8ffe710_4 conda-forge ca-certificates 2022.9.24 h5b45459_0 conda-forge cachetools 5.2.0 pypi_0 pypi certifi 2022.9.24 pyhd8ed1ab_0 conda-forge charset-normalizer 2.1.1 pypi_0 pypi colorama 0.4.6 pyhd8ed1ab_0 conda-forge contourpy 1.0.6 py39h1f6ef14_0 conda-forge cudatoolkit 11.2.2 h933977f_10 conda-forge cudnn 8.1.0.77 h3e0f4f4_0 conda-forge cycler 0.11.0 pyhd8ed1ab_0 conda-forge expat 2.5.0 h1537add_0 conda-forge fastcluster 1.2.6 py39h2ba5b7c_2 conda-forge ffmpeg 5.1.2 gpl_h6a9407d_103 conda-forge ffmpy 0.3.0 pyhb6f538c_0 conda-forge flatbuffers 1.12 pypi_0 pypi font-ttf-dejavu-sans-mono 2.37 hab24e00_0 conda-forge font-ttf-inconsolata 3.000 h77eed37_0 conda-forge font-ttf-source-code-pro 2.038 h77eed37_0 conda-forge font-ttf-ubuntu 0.83 hab24e00_0 conda-forge fontconfig 2.14.1 hbde0cde_0 conda-forge fonts-conda-ecosystem 1 0 conda-forge fonts-conda-forge 1 0 conda-forge fonttools 4.38.0 py39ha55989b_1 conda-forge freetype 2.12.1 h546665d_0 conda-forge gast 0.4.0 pypi_0 pypi gettext 0.21.1 h5728263_0 conda-forge git 2.38.1 h57928b3_1 conda-forge glib 2.74.1 h12be248_1 conda-forge glib-tools 2.74.1 h12be248_1 conda-forge google-auth 2.14.1 pypi_0 pypi google-auth-oauthlib 0.4.6 pypi_0 pypi google-pasta 0.2.0 pypi_0 pypi grpcio 1.50.0 pypi_0 pypi gst-plugins-base 1.21.1 h001b923_1 conda-forge gstreamer 1.21.1 h6b5321d_1 conda-forge h5py 3.7.0 pypi_0 pypi icu 70.1 h0e60522_0 conda-forge idna 3.4 pypi_0 pypi imageio 2.22.0 pyhfa7a67d_0 conda-forge imageio-ffmpeg 0.4.7 pyhd8ed1ab_0 conda-forge importlib-metadata 5.0.0 pypi_0 pypi intel-openmp 2022.1.0 h57928b3_3787 conda-forge joblib 1.2.0 pyhd8ed1ab_0 conda-forge jpeg 9e h8ffe710_2 conda-forge keras 2.9.0 pypi_0 pypi keras-preprocessing 1.1.2 pypi_0 pypi kiwisolver 1.4.4 py39h1f6ef14_1 conda-forge krb5 1.19.3 h1176d77_0 conda-forge lcms2 2.14 h90d422f_0 conda-forge lerc 4.0.0 h63175ca_0 conda-forge libblas 3.9.0 16_win64_mkl conda-forge libbrotlicommon 1.0.9 hcfcfb64_8 conda-forge libbrotlidec 1.0.9 hcfcfb64_8 conda-forge libbrotlienc 1.0.9 hcfcfb64_8 conda-forge libcblas 3.9.0 16_win64_mkl conda-forge libclang 14.0.6 pypi_0 pypi libclang13 15.0.4 default_h77d9078_0 conda-forge libdeflate 1.14 hcfcfb64_0 conda-forge libffi 3.4.2 h8ffe710_5 conda-forge libglib 2.74.1 he8f3873_1 conda-forge libiconv 1.17 h8ffe710_0 conda-forge liblapack 3.9.0 16_win64_mkl conda-forge libogg 1.3.4 h8ffe710_1 conda-forge libpng 1.6.38 h19919ed_0 conda-forge libsqlite 3.39.4 hcfcfb64_0 conda-forge libtiff 4.4.0 h8e97e67_4 conda-forge libvorbis 1.3.7 h0e60522_0 conda-forge libwebp-base 1.2.4 h8ffe710_0 conda-forge libxcb 1.13 hcd874cb_1004 conda-forge libxml2 2.10.3 hc3477c8_0 conda-forge libzlib 1.2.13 hcfcfb64_4 conda-forge m2w64-gcc-libgfortran 5.3.0 6 conda-forge m2w64-gcc-libs 5.3.0 7 conda-forge m2w64-gcc-libs-core 5.3.0 7 conda-forge m2w64-gmp 6.1.0 2 conda-forge m2w64-libwinpthread-git 5.0.0.4634.697f757 2 conda-forge markdown 3.4.1 pypi_0 pypi markupsafe 2.1.1 pypi_0 pypi matplotlib 3.6.2 py39hcbf5309_0 conda-forge matplotlib-base 3.6.2 py39haf65ace_0 conda-forge mkl 2022.1.0 h6a75c08_874 conda-forge msys2-conda-epoch 20160418 1 conda-forge munkres 1.1.4 pyh9f0ad1d_0 conda-forge numexpr 2.8.3 mkl_py39h013c7a2_1 conda-forge numpy 1.23.4 py39hbccbffa_1 conda-forge nvidia-ml-py 11.515.75 pyhd8ed1ab_0 conda-forge oauthlib 3.2.2 pypi_0 pypi opencv-python 4.6.0.66 pypi_0 pypi openh264 2.3.1 h63175ca_1 conda-forge openjpeg 2.5.0 hc9384bd_1 conda-forge openssl 1.1.1s hcfcfb64_0 conda-forge opt-einsum 3.3.0 pypi_0 pypi packaging 21.3 pyhd8ed1ab_0 conda-forge pcre2 10.40 h17e33f8_0 conda-forge pillow 9.2.0 py39h595c93f_3 conda-forge pip 22.3.1 pyhd8ed1ab_0 conda-forge ply 3.11 py_1 conda-forge protobuf 3.19.6 pypi_0 pypi psutil 5.9.4 py39ha55989b_0 conda-forge pthread-stubs 0.4 hcd874cb_1001 conda-forge pyasn1 0.4.8 pypi_0 pypi pyasn1-modules 0.2.8 pypi_0 pypi pyparsing 3.0.9 pyhd8ed1ab_0 conda-forge pyqt 5.15.7 py39hb77abff_2 conda-forge pyqt5-sip 12.11.0 py39h99910a6_2 conda-forge python 3.9.13 h9a09f29_0_cpython conda-forge python-dateutil 2.8.2 pyhd8ed1ab_0 conda-forge python_abi 3.9 2_cp39 conda-forge pywin32 304 py39h99910a6_2 conda-forge pywinpty 2.0.2 py39h99910a6_0 conda-forge qt-main 5.15.6 h9c3277a_1 conda-forge requests 2.28.1 pypi_0 pypi requests-oauthlib 1.3.1 pypi_0 pypi rsa 4.9 pypi_0 pypi scikit-learn 1.1.3 py39h6fe01c0_1 conda-forge scipy 1.9.3 py39hfbf2dce_1 conda-forge setuptools 65.5.1 pyhd8ed1ab_0 conda-forge sip 6.7.4 py39h99910a6_0 conda-forge six 1.16.0 pyh6c4a22f_0 conda-forge sqlite 3.39.4 hcfcfb64_0 conda-forge svt-av1 1.3.0 h63175ca_0 conda-forge tbb 2021.6.0 h91493d7_1 conda-forge tensorboard 2.9.1 pypi_0 pypi tensorboard-data-server 0.6.1 pypi_0 pypi tensorboard-plugin-wit 1.8.1 pypi_0 pypi tensorflow-estimator 2.9.0 pypi_0 pypi tensorflow-gpu 2.9.2 pypi_0 pypi tensorflow-io-gcs-filesystem 0.27.0 pypi_0 pypi tensorflow-probability 0.7 py_1 conda-forge termcolor 2.1.0 pypi_0 pypi threadpoolctl 3.1.0 pyh8a188c0_0 conda-forge tk 8.6.12 h8ffe710_0 conda-forge toml 0.10.2 pyhd8ed1ab_0 conda-forge tornado 6.2 py39ha55989b_1 conda-forge tqdm 4.64.1 pyhd8ed1ab_0 conda-forge typing-extensions 4.4.0 hd8ed1ab_0 conda-forge typing_extensions 4.4.0 pyha770c72_0 conda-forge tzdata 2022f h191b570_0 conda-forge ucrt 10.0.22621.0 h57928b3_0 conda-forge unicodedata2 15.0.0 py39ha55989b_0 conda-forge urllib3 1.26.12 pypi_0 pypi vc 14.3 h3d8a991_9 conda-forge vs2015_runtime 14.32.31332 h1d6e394_9 conda-forge werkzeug 2.2.2 pypi_0 pypi wheel 0.38.3 pyhd8ed1ab_0 conda-forge winpty 0.4.3 4 conda-forge wrapt 1.14.1 pypi_0 pypi x264 1!164.3095 h8ffe710_2 conda-forge x265 3.5 h2d74725_3 conda-forge xorg-libxau 1.0.9 hcd874cb_0 conda-forge xorg-libxdmcp 1.1.3 hcd874cb_0 conda-forge xz 5.2.6 h8d14728_0 conda-forge zipp 3.10.0 pypi_0 pypi zstd 1.5.2 h7755175_4 conda-forge ================= Configs ================== --------- .faceswap --------- backend: nvidia --------- convert.ini --------- [color.color_transfer] clip: True preserve_paper: True [color.manual_balance] colorspace: HSV balance_1: 0.0 balance_2: 0.0 balance_3: 0.0 contrast: 0.0 brightness: 0.0 [color.match_hist] threshold: 99.0 [mask.mask_blend] type: normalized kernel_size: 3 passes: 4 threshold: 4 erosion: 0.0 erosion_top: 0.0 erosion_bottom: 0.0 erosion_left: 0.0 erosion_right: 0.0 [scaling.sharpen] method: none amount: 150 radius: 0.3 threshold: 5.0 [writer.ffmpeg] container: mp4 codec: libx264 crf: 23 preset: medium tune: none profile: auto level: auto skip_mux: False [writer.gif] fps: 25 loop: 0 palettesize: 256 subrectangles: False [writer.opencv] format: png draw_transparent: False separate_mask: False jpg_quality: 75 png_compress_level: 3 [writer.pillow] format: png draw_transparent: False separate_mask: False optimize: False gif_interlace: True jpg_quality: 75 png_compress_level: 3 tif_compression: tiff_deflate --------- extract.ini --------- [global] allow_growth: False aligner_min_scale: 0.07 aligner_max_scale: 2.0 aligner_distance: 22.5 aligner_roll: 45.0 filter_refeed: True save_filtered: False [align.fan] batch-size: 12 [detect.cv2_dnn] confidence: 50 [detect.mtcnn] minsize: 20 scalefactor: 0.709 batch-size: 8 cpu: True threshold_1: 0.6 threshold_2: 0.7 threshold_3: 0.7 [detect.s3fd] confidence: 70 batch-size: 4 [mask.bisenet_fp] batch-size: 8 cpu: False weights: faceswap include_ears: False include_hair: False include_glasses: True [mask.custom] batch-size: 8 centering: face fill: False [mask.unet_dfl] batch-size: 8 [mask.vgg_clear] batch-size: 6 [mask.vgg_obstructed] batch-size: 2 [recognition.vgg_face2] batch-size: 16 cpu: False --------- gui.ini --------- [global] fullscreen: False tab: extract options_panel_width: 30 console_panel_height: 20 icon_size: 14 font: default font_size: 9 autosave_last_session: prompt timeout: 120 auto_load_model_stats: True --------- train.ini --------- [global] centering: face coverage: 87.5 icnr_init: False conv_aware_init: False optimizer: adam learning_rate: 5e-05 epsilon_exponent: -7 autoclip: False reflect_padding: False allow_growth: False mixed_precision: False nan_protection: True convert_batchsize: 16 [global.loss] loss_function: ssim loss_function_2: mse loss_weight_2: 100 loss_function_3: none loss_weight_3: 0 loss_function_4: none loss_weight_4: 0 mask_loss_function: mse eye_multiplier: 3 mouth_multiplier: 2 penalized_mask_loss: True mask_type: extended mask_blur_kernel: 3 mask_threshold: 4 learn_mask: False [model.dfaker] output_size: 128 [model.dfl_h128] lowmem: False [model.dfl_sae] input_size: 128 architecture: df autoencoder_dims: 0 encoder_dims: 42 decoder_dims: 21 multiscale_decoder: False [model.dlight] features: best details: good output_size: 256 [model.original] lowmem: False [model.phaze_a] output_size: 128 shared_fc: none enable_gblock: True split_fc: True split_gblock: False split_decoders: False enc_architecture: fs_original enc_scaling: 7 enc_load_weights: True bottleneck_type: dense bottleneck_norm: none bottleneck_size: 1024 bottleneck_in_encoder: True fc_depth: 1 fc_min_filters: 1024 fc_max_filters: 1024 fc_dimensions: 4 fc_filter_slope: -0.5 fc_dropout: 0.0 fc_upsampler: upsample2d fc_upsamples: 1 fc_upsample_filters: 512 fc_gblock_depth: 3 fc_gblock_min_nodes: 512 fc_gblock_max_nodes: 512 fc_gblock_filter_slope: -0.5 fc_gblock_dropout: 0.0 dec_upscale_method: subpixel dec_upscales_in_fc: 0 dec_norm: none dec_min_filters: 64 dec_max_filters: 512 dec_slope_mode: full dec_filter_slope: -0.45 dec_res_blocks: 1 dec_output_kernel: 5 dec_gaussian: True dec_skip_last_residual: True freeze_layers: keras_encoder load_layers: encoder fs_original_depth: 4 fs_original_min_filters: 128 fs_original_max_filters: 1024 fs_original_use_alt: False mobilenet_width: 1.0 mobilenet_depth: 1 mobilenet_dropout: 0.001 mobilenet_minimalistic: False [model.realface] input_size: 64 output_size: 128 dense_nodes: 1536 complexity_encoder: 128 complexity_decoder: 512 [model.unbalanced] input_size: 128 lowmem: False nodes: 1024 complexity_encoder: 128 complexity_decoder_a: 384 complexity_decoder_b: 512 [model.villain] lowmem: False [trainer.original] preview_images: 14 zoom_amount: 5 rotation_range: 10 shift_range: 5 flip_chance: 50 color_lightness: 30 color_ab: 8 color_clahe_chance: 50 color_clahe_max_size: 4 ```
closed
2022-11-15T21:27:36Z
2022-11-16T01:07:12Z
https://github.com/deepfakes/faceswap/issues/1282
[]
Pytoolbox
1
ymcui/Chinese-LLaMA-Alpaca
nlp
574
指令精调已按wiki安装相应版本的peft还是出现attributeError
合并chinese alpaca 7b 权重后配置脚本如下: ![微信图片_20230612164426](https://github.com/ymcui/Chinese-LLaMA-Alpaca/assets/49928618/ea70ca94-dd9b-4c7c-8564-bd7e248ebb9f) ![微信图片_20230612164224](https://github.com/ymcui/Chinese-LLaMA-Alpaca/assets/49928618/7a6ce14c-3eca-4971-947b-55c2aef5b47e) (myenv) root@autodl-container-cc0c11a652-b6d7390e:/Chinese-LLaMA-Alpaca/scripts/training# bash run_sft.sh Traceback (most recent call last): File "/root/miniconda3/envs/myenv/bin/torchrun", line 8, in <module> sys.exit(main()) ^^^^^^ File "/root/miniconda3/envs/myenv/lib/python3.11/site-packages/torch/distributed/elastic/multiprocessing/errors/__init__.py", line 346, in wrapper return f(*args, **kwargs) ^^^^^^^^^^^^^^^^^^ File "/root/miniconda3/envs/myenv/lib/python3.11/site-packages/torch/distributed/run.py", line 762, in main run(args) File "/root/miniconda3/envs/myenv/lib/python3.11/site-packages/torch/distributed/run.py", line 753, in run elastic_launch( File "/root/miniconda3/envs/myenv/lib/python3.11/site-packages/torch/distributed/launcher/api.py", line 132, in __call__ return launch_agent(self._config, self._entrypoint, list(args)) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/root/miniconda3/envs/myenv/lib/python3.11/site-packages/torch/distributed/launcher/api.py", line 237, in launch_agent result = agent.run() ^^^^^^^^^^^ File "/root/miniconda3/envs/myenv/lib/python3.11/site-packages/torch/distributed/elastic/metrics/api.py", line 129, in wrapper result = f(*args, **kwargs) ^^^^^^^^^^^^^^^^^^ File "/root/miniconda3/envs/myenv/lib/python3.11/site-packages/torch/distributed/elastic/agent/server/api.py", line 709, in run result = self._invoke_run(role) ^^^^^^^^^^^^^^^^^^^^^^ File "/root/miniconda3/envs/myenv/lib/python3.11/site-packages/torch/distributed/elastic/agent/server/api.py", line 844, in _invoke_run self._initialize_workers(self._worker_group) File "/root/miniconda3/envs/myenv/lib/python3.11/site-packages/torch/distributed/elastic/metrics/api.py", line 129, in wrapper result = f(*args, **kwargs) ^^^^^^^^^^^^^^^^^^ File "/root/miniconda3/envs/myenv/lib/python3.11/site-packages/torch/distributed/elastic/agent/server/api.py", line 681, in _initialize_workers worker_ids = self._start_workers(worker_group) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/root/miniconda3/envs/myenv/lib/python3.11/site-packages/torch/distributed/elastic/metrics/api.py", line 129, in wrapper result = f(*args, **kwargs) ^^^^^^^^^^^^^^^^^^ File "/root/miniconda3/envs/myenv/lib/python3.11/site-packages/torch/distributed/elastic/agent/server/local_elastic_agent.py", line 271, in _start_workers self._pcontext = start_processes( ^^^^^^^^^^^^^^^^ File "/root/miniconda3/envs/myenv/lib/python3.11/site-packages/torch/distributed/elastic/multiprocessing/__init__.py", line 207, in start_processes redirs = to_map(redirects, nprocs) ^^^^^^^^^^^^^^^^^^^^^^^^^ File "/root/miniconda3/envs/myenv/lib/python3.11/site-packages/torch/distributed/elastic/multiprocessing/api.py", line 162, in to_map map[i] = val_or_map.get(i, Std.NONE) ^^^^^^^^^^^^^^ AttributeError: 'NoneType' object has no attribute 'get' run_sft.sh: line 56: --lora_dropout: command not found run_sft.sh: line 61: --ddp_find_unused_parameters: command not found - [*] **基础模型**:Alpaca(7B) - [*] **运行系统**:Linux - [*] **问题分类**:模型训练与精调 - [*] (必选)由于相关依赖频繁更新,请确保按照[Wiki](https://github.com/ymcui/Chinese-LLaMA-Alpaca/wiki)中的相关步骤执行 - [*] (必选)我已阅读[FAQ章节](https://github.com/ymcui/Chinese-LLaMA-Alpaca/wiki/常见问题)并且已在Issue中对问题进行了搜索,没有找到相似问题和解决方案
closed
2023-06-12T08:44:49Z
2023-06-13T00:42:39Z
https://github.com/ymcui/Chinese-LLaMA-Alpaca/issues/574
[]
HuXinjing
6
ray-project/ray
data-science
50,672
[core] Split giant ray core C++ targets into small ones (raylet client)
This is a sub-issue of https://github.com/ray-project/ray/issues/50586 to split the raylet client bazel target. - [x] Split out `raylet_client_connection_lib` from the `raylet_client_lib` target. - [x] Flatten dependencies related to `src/ray/common` and `src/ray/util`.
closed
2025-02-17T23:33:00Z
2025-02-18T13:26:40Z
https://github.com/ray-project/ray/issues/50672
[]
rueian
0
huggingface/datasets
tensorflow
7,346
OSError: Invalid flatbuffers message.
### Describe the bug When loading a large 2D data (1000 × 1152) with a large number of (2,000 data in this case) in `load_dataset`, the error message `OSError: Invalid flatbuffers message` is reported. When only 300 pieces of data of this size (1000 × 1152) are stored, they can be loaded correctly. When 2,000 2D arrays are stored in each file, about 100 files are generated, each with a file size of about 5-6GB. But when 300 2D arrays are stored in each file, **about 600 files are generated, which is too many files**. ### Steps to reproduce the bug error: ```python --------------------------------------------------------------------------- OSError Traceback (most recent call last) Cell In[2], line 4 1 from datasets import Dataset 2 from datasets import load_dataset ----> 4 real_dataset = load_dataset("arrow", data_files='tensorData/real_ResidueTensor/*', split="train")#.with_format("torch") # , split="train" 5 # sim_dataset = load_dataset("arrow", data_files='tensorData/sim_ResidueTensor/*', split="train").with_format("torch") 6 real_dataset File [~/miniforge3/envs/esmIne3/lib/python3.12/site-packages/datasets/load.py:2151](http://localhost:8899/lab/tree/RTC%3Anew_world/esm3/~/miniforge3/envs/esmIne3/lib/python3.12/site-packages/datasets/load.py#line=2150), in load_dataset(path, name, data_dir, data_files, split, cache_dir, features, download_config, download_mode, verification_mode, keep_in_memory, save_infos, revision, token, streaming, num_proc, storage_options, trust_remote_code, **config_kwargs) 2148 return builder_instance.as_streaming_dataset(split=split) 2150 # Download and prepare data -> 2151 builder_instance.download_and_prepare( 2152 download_config=download_config, 2153 download_mode=download_mode, 2154 verification_mode=verification_mode, 2155 num_proc=num_proc, 2156 storage_options=storage_options, 2157 ) 2159 # Build dataset for splits 2160 keep_in_memory = ( 2161 keep_in_memory if keep_in_memory is not None else is_small_dataset(builder_instance.info.dataset_size) 2162 ) File [~/miniforge3/envs/esmIne3/lib/python3.12/site-packages/datasets/builder.py:924](http://localhost:8899/lab/tree/RTC%3Anew_world/esm3/~/miniforge3/envs/esmIne3/lib/python3.12/site-packages/datasets/builder.py#line=923), in DatasetBuilder.download_and_prepare(self, output_dir, download_config, download_mode, verification_mode, dl_manager, base_path, file_format, max_shard_size, num_proc, storage_options, **download_and_prepare_kwargs) 922 if num_proc is not None: 923 prepare_split_kwargs["num_proc"] = num_proc --> 924 self._download_and_prepare( 925 dl_manager=dl_manager, 926 verification_mode=verification_mode, 927 **prepare_split_kwargs, 928 **download_and_prepare_kwargs, 929 ) 930 # Sync info 931 self.info.dataset_size = sum(split.num_bytes for split in self.info.splits.values()) File [~/miniforge3/envs/esmIne3/lib/python3.12/site-packages/datasets/builder.py:978](http://localhost:8899/lab/tree/RTC%3Anew_world/esm3/~/miniforge3/envs/esmIne3/lib/python3.12/site-packages/datasets/builder.py#line=977), in DatasetBuilder._download_and_prepare(self, dl_manager, verification_mode, **prepare_split_kwargs) 976 split_dict = SplitDict(dataset_name=self.dataset_name) 977 split_generators_kwargs = self._make_split_generators_kwargs(prepare_split_kwargs) --> 978 split_generators = self._split_generators(dl_manager, **split_generators_kwargs) 980 # Checksums verification 981 if verification_mode == VerificationMode.ALL_CHECKS and dl_manager.record_checksums: File [~/miniforge3/envs/esmIne3/lib/python3.12/site-packages/datasets/packaged_modules/arrow/arrow.py:47](http://localhost:8899/lab/tree/RTC%3Anew_world/esm3/~/miniforge3/envs/esmIne3/lib/python3.12/site-packages/datasets/packaged_modules/arrow/arrow.py#line=46), in Arrow._split_generators(self, dl_manager) 45 with open(file, "rb") as f: 46 try: ---> 47 reader = pa.ipc.open_stream(f) 48 except pa.lib.ArrowInvalid: 49 reader = pa.ipc.open_file(f) File [~/miniforge3/envs/esmIne3/lib/python3.12/site-packages/pyarrow/ipc.py:190](http://localhost:8899/lab/tree/RTC%3Anew_world/esm3/~/miniforge3/envs/esmIne3/lib/python3.12/site-packages/pyarrow/ipc.py#line=189), in open_stream(source, options, memory_pool) 171 def open_stream(source, *, options=None, memory_pool=None): 172 """ 173 Create reader for Arrow streaming format. 174 (...) 188 A reader for the given source 189 """ --> 190 return RecordBatchStreamReader(source, options=options, 191 memory_pool=memory_pool) File [~/miniforge3/envs/esmIne3/lib/python3.12/site-packages/pyarrow/ipc.py:52](http://localhost:8899/lab/tree/RTC%3Anew_world/esm3/~/miniforge3/envs/esmIne3/lib/python3.12/site-packages/pyarrow/ipc.py#line=51), in RecordBatchStreamReader.__init__(self, source, options, memory_pool) 50 def __init__(self, source, *, options=None, memory_pool=None): 51 options = _ensure_default_ipc_read_options(options) ---> 52 self._open(source, options=options, memory_pool=memory_pool) File [~/miniforge3/envs/esmIne3/lib/python3.12/site-packages/pyarrow/ipc.pxi:1006](http://localhost:8899/lab/tree/RTC%3Anew_world/esm3/~/miniforge3/envs/esmIne3/lib/python3.12/site-packages/pyarrow/ipc.pxi#line=1005), in pyarrow.lib._RecordBatchStreamReader._open() File [~/miniforge3/envs/esmIne3/lib/python3.12/site-packages/pyarrow/error.pxi:155](http://localhost:8899/lab/tree/RTC%3Anew_world/esm3/~/miniforge3/envs/esmIne3/lib/python3.12/site-packages/pyarrow/error.pxi#line=154), in pyarrow.lib.pyarrow_internal_check_status() File [~/miniforge3/envs/esmIne3/lib/python3.12/site-packages/pyarrow/error.pxi:92](http://localhost:8899/lab/tree/RTC%3Anew_world/esm3/~/miniforge3/envs/esmIne3/lib/python3.12/site-packages/pyarrow/error.pxi#line=91), in pyarrow.lib.check_status() OSError: Invalid flatbuffers message. ``` reproduce:Here is just an example result, the real 2D matrix is the output of the ESM large model, and the matrix size is approximate ```python import numpy as np import pyarrow as pa random_arrays_list = [np.random.rand(1000, 1152) for _ in range(2000)] table = pa.Table.from_pydict({ 'tensor': [tensor.tolist() for tensor in random_arrays_list] }) import pyarrow.feather as feather feather.write_feather(table, 'test.arrow') from datasets import load_dataset dataset = load_dataset("arrow", data_files='test.arrow', split="train") ``` ### Expected behavior `load_dataset` load the dataset as normal as `feather.read_feather` ```python import pyarrow.feather as feather feather.read_feather('tensorData/real_ResidueTensor/real_tensor_1.arrow') ``` Plus `load_dataset("parquet", data_files='test.arrow', split="train")` works fine ### Environment info - `datasets` version: 3.2.0 - Platform: Linux-6.8.0-49-generic-x86_64-with-glibc2.39 - Python version: 3.12.3 - `huggingface_hub` version: 0.26.5 - PyArrow version: 18.1.0 - Pandas version: 2.2.3 - `fsspec` version: 2024.9.0
closed
2024-12-25T11:38:52Z
2025-01-09T14:25:29Z
https://github.com/huggingface/datasets/issues/7346
[]
antecede
3
OpenInterpreter/open-interpreter
python
914
--local on windows lmstudio via interpreter ran via wsl
### Is your feature request related to a problem? Please describe. i tried to run ur interpreter with --local via wsl windows linux ( debian python 3.12 venv pip ) before , run lmstudio windows version , and start there <-> but the linux part didnt make it to the windows one so it aborted ### Describe the solution you'd like i suppose some general windows style forward firewalling rule anywhere .. or use some special localhost notation that actually makes a connection .. in both the the windows parts i dunno much of , as i dunno many windows cmds ### Describe alternatives you've considered _No response_ ### Additional context thers simply windows localhost not accessable ( or the like ) via wsl .. so finding out and making such a rule seems my solution
closed
2024-01-13T22:47:58Z
2024-01-14T11:48:01Z
https://github.com/OpenInterpreter/open-interpreter/issues/914
[ "Enhancement" ]
fxmbsw7
4
mitmproxy/pdoc
api
2
Template files are searched for in the wrong location
I'm trying to use pdoc on a installed-two-weeks-ago Debian Jessie machine, but I get this message: ``` $ pdoc --html some-module Traceback (most recent call last): File "/usr/local/bin/pdoc", line 487, in <module> html_out(module) File "/usr/local/bin/pdoc", line 334, in html_out raise e IOError: [Errno 2] No template at any of: /usr/share/pdoc/templates/html.mako, /usr/local/lib/python2.7/dist-packages/templates/html.mako ``` I installed python (2.7.6) and pip via apt-get: ``` sudo apt-get install python sudo apt-get install python-pip ``` I installed pdoc via pip: ``` sudo pip install pdoc ``` I can see that the html.mako template file exists in the `/usr/local/share/pdoc` tree, but pdoc seems to look for it in `/usr/share/pdoc`. After a quick glance at the pdoc code, it seems to get the prefix from the `sys.prefix` attribute, which seems to have the value `/usr` on my computer. Apparently pip used another prefix when it installed the files. I don't think I have set up things in a weird way, but please tell me if you want me to try something. I would be happy to help debugging this, but I don't know where to start.
closed
2014-02-20T17:57:14Z
2018-06-01T11:52:47Z
https://github.com/mitmproxy/pdoc/issues/2
[]
raek
13
vllm-project/vllm
pytorch
15,340
[Bug][V0][Trition MLA][GGUF]: Deepseek R1 GGUF starts producing gibberish towards the end of a longer generation
### Your current environment <details> <summary>The output of `python collect_env.py`</summary> ```text vllm docker 0.8.1 openai server image ``` </details> ### 🐛 Describe the bug When inferencing with DeepSeek R1 `Q3_K_M` gguf quant it starts to produce gibberish towards the end of a longer generation. I have followed direction in https://github.com/vllm-project/vllm/pull/13167#issue-2848824985 in terms of the `--tokenizer and ---hf-config-path` configuration. I have tested various different images with nightly, and most recent `0.8.1` release, the issue persists. I would appreciate some direction on this, as vLLM is by far the fastest inference engine for GGUF on my 16x3090 config, but this bug (which @SzymonOzog had said he experienced a similar issue with model overflowing and producing NaNs, but that got fixed - ref here https://github.com/vllm-project/vllm/pull/13167#issuecomment-2728111595). Unfortunately I'm at a bit of a loss to fix this myself. Run command: ``` networks: vllm-dev: external: true name: br1 services: vllm-dev: image: vllm/vllm-openai:v0.8.1 runtime: nvidia restart: unless-stopped networks: vllm-dev: ipv4_address: 192.168.x.x environment: - HUGGING_FACE_HUB_TOKEN=${HUGGING_FACE_HUB_TOKEN} - NVIDIA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15 - VLLM_RPC_TIMEOUT=180000 - VLLM_PP_LAYER_PARTITION=31,30 - VLLM_WORKER_MULTIPROC_METHOD=spawn ports: - "8000:8000" volumes: - /mnt/user/appdata/models:/models ipc: "host" command: --swap-space 2 --model /models/dp-config/DeepSeek-R1-Q3_K_M.gguf \ --enable-reasoning --reasoning-parser deepseek_r1 \ --seed 3407 \ --served-model-name deepseek-ai/DeepSeek-R1 \ --hf-config-path /models/dp-v2/ --tokenizer /models/dp-v2/ \ --gpu-memory-utilization 0.945 \ --max-model-len 8192 \ --max-num-seqs 3 \ --trust-remote-code \ --tensor-parallel-size 8 \ --pipeline-parallel-size 2 \ --host 192.168.10.225 \ --port 8000 \ --enable-chunked-prefill=True ``` <details> <summary>Run log</summary> ``` INFO 03-22 18:40:10 [__init__.py:256] Automatically detected platform cuda. INFO 03-22 18:40:14 [api_server.py:977] vLLM API server version 0.8.1 INFO 03-22 18:40:14 [api_server.py:978] args: Namespace(host='192.168.10.225', port=8000, uvicorn_log_level='info', allow_credentials=False, allowed_origins=['*'], allowed_methods=['*'], allowed_headers=['*'], api_key='b18766c98a9b8092dcb66033afabff4f', lora_modules=None, prompt_adapters=None, chat_template=None, chat_template_content_format='auto', response_role='assistant', ssl_keyfile=None, ssl_certfile=None, ssl_ca_certs=None, enable_ssl_refresh=False, ssl_cert_reqs=0, root_path=None, middleware=[], return_tokens_as_token_ids=False, disable_frontend_multiprocessing=False, enable_request_id_headers=False, enable_auto_tool_choice=False, tool_call_parser=None, tool_parser_plugin='', model='/models/dp-config/DeepSeek-R1-Q3_K_M.gguf', task='auto', tokenizer='/models/dp-v2/', hf_config_path='/models/dp-v2/', skip_tokenizer_init=False, revision=None, code_revision=None, tokenizer_revision=None, tokenizer_mode='auto', trust_remote_code=True, allowed_local_media_path=None, download_dir=None, load_format='auto', config_format=<ConfigFormat.AUTO: 'auto'>, dtype='auto', kv_cache_dtype='auto', max_model_len=8192, guided_decoding_backend='xgrammar', logits_processor_pattern=None, model_impl='auto', distributed_executor_backend=None, pipeline_parallel_size=2, tensor_parallel_size=8, enable_expert_parallel=False, max_parallel_loading_workers=None, ray_workers_use_nsight=False, block_size=None, enable_prefix_caching=None, disable_sliding_window=False, use_v2_block_manager=True, num_lookahead_slots=0, seed=3407, swap_space=2.0, cpu_offload_gb=0, gpu_memory_utilization=0.945, num_gpu_blocks_override=None, max_num_batched_tokens=None, max_num_partial_prefills=1, max_long_partial_prefills=1, long_prefill_token_threshold=0, max_num_seqs=3, max_logprobs=20, disable_log_stats=False, quantization=None, rope_scaling=None, rope_theta=None, hf_overrides=None, enforce_eager=False, max_seq_len_to_capture=8192, disable_custom_all_reduce=False, tokenizer_pool_size=0, tokenizer_pool_type='ray', tokenizer_pool_extra_config=None, limit_mm_per_prompt=None, mm_processor_kwargs=None, disable_mm_preprocessor_cache=False, enable_lora=False, enable_lora_bias=False, max_loras=1, max_lora_rank=16, lora_extra_vocab_size=256, lora_dtype='auto', long_lora_scaling_factors=None, max_cpu_loras=None, fully_sharded_loras=False, enable_prompt_adapter=False, max_prompt_adapters=1, max_prompt_adapter_token=0, device='auto', num_scheduler_steps=1, use_tqdm_on_load=True, multi_step_stream_outputs=True, scheduler_delay_factor=0.0, enable_chunked_prefill=True, speculative_model=None, speculative_model_quantization=None, num_speculative_tokens=None, speculative_disable_mqa_scorer=False, speculative_draft_tensor_parallel_size=None, speculative_max_model_len=None, speculative_disable_by_batch_size=None, ngram_prompt_lookup_max=None, ngram_prompt_lookup_min=None, spec_decoding_acceptance_method='rejection_sampler', typical_acceptance_sampler_posterior_threshold=None, typical_acceptance_sampler_posterior_alpha=None, disable_logprobs_during_spec_decoding=None, model_loader_extra_config=None, ignore_patterns=[], preemption_mode=None, served_model_name=['deepseek-ai/DeepSeek-R1'], qlora_adapter_name_or_path=None, show_hidden_metrics_for_version=None, otlp_traces_endpoint=None, collect_detailed_traces=None, disable_async_output_proc=False, scheduling_policy='fcfs', scheduler_cls='vllm.core.scheduler.Scheduler', override_neuron_config=None, override_pooler_config=None, compilation_config=None, kv_transfer_config=None, worker_cls='auto', worker_extension_cls='', generation_config='auto', override_generation_config=None, enable_sleep_mode=False, calculate_kv_scales=False, additional_config=None, enable_reasoning=True, reasoning_parser='deepseek_r1', disable_log_requests=False, max_log_len=None, disable_fastapi_docs=False, enable_prompt_tokens_details=False, enable_server_load_tracking=False) WARNING 03-22 18:40:14 [utils.py:2079] Found ulimit of 40960 and failed to automatically increase with error current limit exceeds maximum limit. This can cause fd limit errors like `OSError: [Errno 24] Too many open files`. Consider increasing with ulimit -n INFO 03-22 18:40:14 [config.py:208] Replacing legacy 'type' key with 'rope_type' INFO 03-22 18:40:23 [config.py:583] This model supports multiple tasks: {'score', 'classify', 'generate', 'embed', 'reward'}. Defaulting to 'generate'. WARNING 03-22 18:40:23 [config.py:662] gguf quantization is not fully optimized yet. The speed can be slower than non-quantized models. WARNING 03-22 18:40:23 [arg_utils.py:1765] --quantization gguf is not supported by the V1 Engine. Falling back to V0. INFO 03-22 18:40:23 [config.py:1515] Defaulting to use mp for distributed inference INFO 03-22 18:40:23 [config.py:1693] Chunked prefill is enabled with max_num_batched_tokens=2048. INFO 03-22 18:40:24 [llm_engine.py:241] Initializing a V0 LLM engine (v0.8.1) with config: model='/models/dp-config/DeepSeek-R1-Q3_K_M.gguf', speculative_config=None, tokenizer='/models/dp-v2/', skip_tokenizer_init=False, tokenizer_mode=auto, revision=None, override_neuron_config=None, tokenizer_revision=None, trust_remote_code=True, dtype=torch.bfloat16, max_seq_len=8192, download_dir=None, load_format=LoadFormat.GGUF, tensor_parallel_size=8, pipeline_parallel_size=2, disable_custom_all_reduce=False, quantization=gguf, enforce_eager=False, kv_cache_dtype=auto, device_config=cuda, decoding_config=DecodingConfig(guided_decoding_backend='xgrammar', reasoning_backend='deepseek_r1'), observability_config=ObservabilityConfig(show_hidden_metrics=False, otlp_traces_endpoint=None, collect_model_forward_time=False, collect_model_execute_time=False), seed=3407, served_model_name=deepseek-ai/DeepSeek-R1, num_scheduler_steps=1, multi_step_stream_outputs=True, enable_prefix_caching=None, chunked_prefill_enabled=True, use_async_output_proc=False, disable_mm_preprocessor_cache=False, mm_processor_kwargs=None, pooler_config=None, compilation_config={"splitting_ops":[],"compile_sizes":[],"cudagraph_capture_sizes":[4,2,1],"max_capture_size":4}, use_cached_outputs=False, WARNING 03-22 18:40:25 [multiproc_worker_utils.py:306] Reducing Torch parallelism from 64 threads to 1 to avoid unnecessary CPU contention. Set OMP_NUM_THREADS in the external environment to tune this value as needed. INFO 03-22 18:40:25 [cuda.py:190] Using Triton MLA backend. WARNING 03-22 18:40:28 [triton_decode_attention.py:44] The following error message 'operation scheduled before its operands' can be ignored. INFO 03-22 18:40:29 [__init__.py:256] Automatically detected platform cuda. INFO 03-22 18:40:29 [__init__.py:256] Automatically detected platform cuda. INFO 03-22 18:40:29 [__init__.py:256] Automatically detected platform cuda. INFO 03-22 18:40:29 [__init__.py:256] Automatically detected platform cuda. INFO 03-22 18:40:29 [__init__.py:256] Automatically detected platform cuda. INFO 03-22 18:40:29 [__init__.py:256] Automatically detected platform cuda. INFO 03-22 18:40:30 [__init__.py:256] Automatically detected platform cuda. INFO 03-22 18:40:30 [__init__.py:256] Automatically detected platform cuda. INFO 03-22 18:40:30 [__init__.py:256] Automatically detected platform cuda. INFO 03-22 18:40:30 [__init__.py:256] Automatically detected platform cuda. INFO 03-22 18:40:30 [__init__.py:256] Automatically detected platform cuda. INFO 03-22 18:40:30 [__init__.py:256] Automatically detected platform cuda. INFO 03-22 18:40:30 [__init__.py:256] Automatically detected platform cuda. INFO 03-22 18:40:30 [__init__.py:256] Automatically detected platform cuda. INFO 03-22 18:40:30 [__init__.py:256] Automatically detected platform cuda. (VllmWorkerProcess pid=279) INFO 03-22 18:40:33 [multiproc_worker_utils.py:225] Worker ready; awaiting tasks (VllmWorkerProcess pid=281) INFO 03-22 18:40:33 [multiproc_worker_utils.py:225] Worker ready; awaiting tasks (VllmWorkerProcess pid=283) INFO 03-22 18:40:33 [multiproc_worker_utils.py:225] Worker ready; awaiting tasks (VllmWorkerProcess pid=279) INFO 03-22 18:40:33 [cuda.py:190] Using Triton MLA backend. (VllmWorkerProcess pid=275) INFO 03-22 18:40:33 [multiproc_worker_utils.py:225] Worker ready; awaiting tasks (VllmWorkerProcess pid=281) INFO 03-22 18:40:33 [cuda.py:190] Using Triton MLA backend. (VllmWorkerProcess pid=283) INFO 03-22 18:40:33 [cuda.py:190] Using Triton MLA backend. (VllmWorkerProcess pid=276) INFO 03-22 18:40:34 [multiproc_worker_utils.py:225] Worker ready; awaiting tasks (VllmWorkerProcess pid=275) INFO 03-22 18:40:34 [cuda.py:190] Using Triton MLA backend. (VllmWorkerProcess pid=277) INFO 03-22 18:40:34 [multiproc_worker_utils.py:225] Worker ready; awaiting tasks (VllmWorkerProcess pid=278) INFO 03-22 18:40:34 [multiproc_worker_utils.py:225] Worker ready; awaiting tasks (VllmWorkerProcess pid=276) INFO 03-22 18:40:34 [cuda.py:190] Using Triton MLA backend. (VllmWorkerProcess pid=274) INFO 03-22 18:40:34 [multiproc_worker_utils.py:225] Worker ready; awaiting tasks (VllmWorkerProcess pid=277) INFO 03-22 18:40:34 [cuda.py:190] Using Triton MLA backend. (VllmWorkerProcess pid=278) INFO 03-22 18:40:34 [cuda.py:190] Using Triton MLA backend. (VllmWorkerProcess pid=272) INFO 03-22 18:40:34 [multiproc_worker_utils.py:225] Worker ready; awaiting tasks (VllmWorkerProcess pid=271) INFO 03-22 18:40:34 [multiproc_worker_utils.py:225] Worker ready; awaiting tasks (VllmWorkerProcess pid=274) INFO 03-22 18:40:34 [cuda.py:190] Using Triton MLA backend. (VllmWorkerProcess pid=285) INFO 03-22 18:40:34 [multiproc_worker_utils.py:225] Worker ready; awaiting tasks (VllmWorkerProcess pid=280) INFO 03-22 18:40:34 [multiproc_worker_utils.py:225] Worker ready; awaiting tasks (VllmWorkerProcess pid=273) INFO 03-22 18:40:34 [multiproc_worker_utils.py:225] Worker ready; awaiting tasks (VllmWorkerProcess pid=282) INFO 03-22 18:40:34 [multiproc_worker_utils.py:225] Worker ready; awaiting tasks (VllmWorkerProcess pid=284) INFO 03-22 18:40:34 [multiproc_worker_utils.py:225] Worker ready; awaiting tasks (VllmWorkerProcess pid=272) INFO 03-22 18:40:34 [cuda.py:190] Using Triton MLA backend. (VllmWorkerProcess pid=271) INFO 03-22 18:40:34 [cuda.py:190] Using Triton MLA backend. (VllmWorkerProcess pid=285) INFO 03-22 18:40:34 [cuda.py:190] Using Triton MLA backend. (VllmWorkerProcess pid=282) INFO 03-22 18:40:35 [cuda.py:190] Using Triton MLA backend. (VllmWorkerProcess pid=284) INFO 03-22 18:40:35 [cuda.py:190] Using Triton MLA backend. (VllmWorkerProcess pid=279) WARNING 03-22 18:40:36 [triton_decode_attention.py:44] The following error message 'operation scheduled before its operands' can be ignored. (VllmWorkerProcess pid=283) WARNING 03-22 18:40:38 [triton_decode_attention.py:44] The following error message 'operation scheduled before its operands' can be ignored. (VllmWorkerProcess pid=281) WARNING 03-22 18:40:39 [triton_decode_attention.py:44] The following error message 'operation scheduled before its operands' can be ignored. (VllmWorkerProcess pid=275) WARNING 03-22 18:40:39 [triton_decode_attention.py:44] The following error message 'operation scheduled before its operands' can be ignored. (VllmWorkerProcess pid=276) WARNING 03-22 18:40:40 [triton_decode_attention.py:44] The following error message 'operation scheduled before its operands' can be ignored. (VllmWorkerProcess pid=277) WARNING 03-22 18:40:40 [triton_decode_attention.py:44] The following error message 'operation scheduled before its operands' can be ignored. (VllmWorkerProcess pid=273) WARNING 03-22 18:40:40 [triton_decode_attention.py:44] The following error message 'operation scheduled before its operands' can be ignored. (VllmWorkerProcess pid=278) WARNING 03-22 18:40:40 [triton_decode_attention.py:44] The following error message 'operation scheduled before its operands' can be ignored. (VllmWorkerProcess pid=285) WARNING 03-22 18:40:40 [triton_decode_attention.py:44] The following error message 'operation scheduled before its operands' can be ignored. (VllmWorkerProcess pid=284) WARNING 03-22 18:40:40 [triton_decode_attention.py:44] The following error message 'operation scheduled before its operands' can be ignored. (VllmWorkerProcess pid=272) WARNING 03-22 18:40:40 [triton_decode_attention.py:44] The following error message 'operation scheduled before its operands' can be ignored. (VllmWorkerProcess pid=271) WARNING 03-22 18:40:41 [triton_decode_attention.py:44] The following error message 'operation scheduled before its operands' can be ignored. (VllmWorkerProcess pid=282) WARNING 03-22 18:40:41 [triton_decode_attention.py:44] The following error message 'operation scheduled before its operands' can be ignored. (VllmWorkerProcess pid=274) WARNING 03-22 18:40:41 [triton_decode_attention.py:44] The following error message 'operation scheduled before its operands' can be ignored. (VllmWorkerProcess pid=280) WARNING 03-22 18:40:41 [triton_decode_attention.py:44] The following error message 'operation scheduled before its operands' can be ignored. (VllmWorkerProcess pid=272) INFO 03-22 18:40:45 [utils.py:925] Found nccl from library libnccl.so.2 (VllmWorkerProcess pid=272) INFO 03-22 18:40:45 [pynccl.py:69] vLLM is using nccl==2.21.5 (VllmWorkerProcess pid=284) INFO 03-22 18:40:45 [utils.py:925] Found nccl from library libnccl.so.2 INFO 03-22 18:40:45 [utils.py:925] Found nccl from library libnccl.so.2 (VllmWorkerProcess pid=275) INFO 03-22 18:40:45 [utils.py:925] Found nccl from library libnccl.so.2 (VllmWorkerProcess pid=284) INFO 03-22 18:40:45 [pynccl.py:69] vLLM is using nccl==2.21.5 INFO 03-22 18:40:45 [pynccl.py:69] vLLM is using nccl==2.21.5 (VllmWorkerProcess pid=275) INFO 03-22 18:40:45 [pynccl.py:69] vLLM is using nccl==2.21.5 (VllmWorkerProcess pid=283) INFO 03-22 18:40:45 [utils.py:925] Found nccl from library libnccl.so.2 (VllmWorkerProcess pid=277) INFO 03-22 18:40:45 [utils.py:925] Found nccl from library libnccl.so.2 (VllmWorkerProcess pid=283) INFO 03-22 18:40:45 [pynccl.py:69] vLLM is using nccl==2.21.5 (VllmWorkerProcess pid=282) INFO 03-22 18:40:45 [utils.py:925] Found nccl from library libnccl.so.2 (VllmWorkerProcess pid=285) INFO 03-22 18:40:45 [utils.py:925] Found nccl from library libnccl.so.2 (VllmWorkerProcess pid=279) WARNING 03-22 18:40:47 [custom_all_reduce.py:137] Custom allreduce is disabled because it's not supported on more than two PCIe-only GPUs. To silence this warning, specify disable_custom_all_reduce=True explicitly. (VllmWorkerProcess pid=281) WARNING 03-22 18:40:47 [custom_all_reduce.py:137] Custom allreduce is disabled because it's not supported on more than two PCIe-only GPUs. To silence this warning, specify disable_custom_all_reduce=True explicitly. (VllmWorkerProcess pid=282) WARNING 03-22 18:40:47 [custom_all_reduce.py:137] Custom allreduce is disabled because it's not supported on more than two PCIe-only GPUs. To silence this warning, specify disable_custom_all_reduce=True explicitly. (VllmWorkerProcess pid=285) WARNING 03-22 18:40:47 [custom_all_reduce.py:137] Custom allreduce is disabled because it's not supported on more than two PCIe-only GPUs. To silence this warning, specify disable_custom_all_reduce=True explicitly. (VllmWorkerProcess pid=278) INFO 03-22 18:40:47 [shm_broadcast.py:258] vLLM message queue communication handle: Handle(local_reader_ranks=[1, 2, 3, 4, 5, 6, 7], buffer_handle=(7, 4194304, 6, 'psm_c8657217'), local_subscribe_addr='ipc:///tmp/59169403-03a0-4321-9215-d9317b8825e8', remote_subscribe_addr=None, remote_addr_ipv6=False) (VllmWorkerProcess pid=271) WARNING 03-22 18:40:47 [custom_all_reduce.py:137] Custom allreduce is disabled because it's not supported on more than two PCIe-only GPUs. To silence this warning, specify disable_custom_all_reduce=True explicitly. (VllmWorkerProcess pid=273) WARNING 03-22 18:40:47 [custom_all_reduce.py:137] Custom allreduce is disabled because it's not supported on more than two PCIe-only GPUs. To silence this warning, specify disable_custom_all_reduce=True explicitly. WARNING 03-22 18:40:47 [custom_all_reduce.py:137] Custom allreduce is disabled because it's not supported on more than two PCIe-only GPUs. To silence this warning, specify disable_custom_all_reduce=True explicitly. (VllmWorkerProcess pid=274) WARNING 03-22 18:40:47 [custom_all_reduce.py:137] Custom allreduce is disabled because it's not supported on more than two PCIe-only GPUs. To silence this warning, specify disable_custom_all_reduce=True explicitly. (VllmWorkerProcess pid=272) WARNING 03-22 18:40:47 [custom_all_reduce.py:137] Custom allreduce is disabled because it's not supported on more than two PCIe-only GPUs. To silence this warning, specify disable_custom_all_reduce=True explicitly. (VllmWorkerProcess pid=275) WARNING 03-22 18:40:47 [custom_all_reduce.py:137] Custom allreduce is disabled because it's not supported on more than two PCIe-only GPUs. To silence this warning, specify disable_custom_all_reduce=True explicitly. (VllmWorkerProcess pid=276) WARNING 03-22 18:40:47 [custom_all_reduce.py:137] Custom allreduce is disabled because it's not supported on more than two PCIe-only GPUs. To silence this warning, specify disable_custom_all_reduce=True explicitly. (VllmWorkerProcess pid=277) WARNING 03-22 18:40:47 [custom_all_reduce.py:137] Custom allreduce is disabled because it's not supported on more than two PCIe-only GPUs. To silence this warning, specify disable_custom_all_reduce=True explicitly. INFO 03-22 18:40:47 [shm_broadcast.py:258] vLLM message queue communication handle: Handle(local_reader_ranks=[1, 2, 3, 4, 5, 6, 7], buffer_handle=(7, 4194304, 6, 'psm_4f24e55b'), local_subscribe_addr='ipc:///tmp/e6521145-fa0f-478e-896e-d5466e72273b', remote_subscribe_addr=None, remote_addr_ipv6=False) INFO 03-22 18:40:47 [utils.py:925] Found nccl from library libnccl.so.2 INFO 03-22 18:40:47 [pynccl.py:69] vLLM is using nccl==2.21.5 (VllmWorkerProcess pid=278) INFO 03-22 18:40:47 [utils.py:925] Found nccl from library libnccl.so.2 (VllmWorkerProcess pid=278) INFO 03-22 18:40:47 [pynccl.py:69] vLLM is using nccl==2.21.5 (VllmWorkerProcess pid=280) INFO 03-22 18:40:47 [utils.py:925] Found nccl from library libnccl.so.2 (VllmWorkerProcess pid=273) INFO 03-22 18:40:47 [utils.py:925] Found nccl from library libnccl.so.2 (VllmWorkerProcess pid=285) INFO 03-22 18:40:47 [utils.py:925] Found nccl from library libnccl.so.2 (VllmWorkerProcess pid=275) INFO 03-22 18:40:47 [utils.py:925] Found nccl from library libnccl.so.2 (VllmWorkerProcess pid=279) INFO 03-22 18:40:47 [utils.py:925] Found nccl from library libnccl.so.2 (VllmWorkerProcess pid=284) INFO 03-22 18:40:47 [utils.py:925] Found nccl from library libnccl.so.2 (VllmWorkerProcess pid=272) INFO 03-22 18:40:47 [utils.py:925] Found nccl from library libnccl.so.2 (VllmWorkerProcess pid=284) INFO 03-22 18:40:47 [parallel_state.py:967] rank 14 in world size 16 is assigned as DP rank 0, PP rank 1, TP rank 6 (VllmWorkerProcess pid=276) INFO 03-22 18:40:47 [parallel_state.py:967] rank 6 in world size 16 is assigned as DP rank 0, PP rank 0, TP rank 6 (VllmWorkerProcess pid=271) INFO 03-22 18:40:47 [parallel_state.py:967] rank 1 in world size 16 is assigned as DP rank 0, PP rank 0, TP rank 1 (VllmWorkerProcess pid=273) INFO 03-22 18:40:47 [parallel_state.py:967] rank 3 in world size 16 is assigned as DP rank 0, PP rank 0, TP rank 3 (VllmWorkerProcess pid=279) INFO 03-22 18:40:47 [parallel_state.py:967] rank 9 in world size 16 is assigned as DP rank 0, PP rank 1, TP rank 1 (VllmWorkerProcess pid=282) INFO 03-22 18:40:47 [parallel_state.py:967] rank 12 in world size 16 is assigned as DP rank 0, PP rank 1, TP rank 4 (VllmWorkerProcess pid=274) INFO 03-22 18:40:47 [parallel_state.py:967] rank 4 in world size 16 is assigned as DP rank 0, PP rank 0, TP rank 4 (VllmWorkerProcess pid=285) INFO 03-22 18:40:47 [parallel_state.py:967] rank 15 in world size 16 is assigned as DP rank 0, PP rank 1, TP rank 7 (VllmWorkerProcess pid=277) INFO 03-22 18:40:47 [parallel_state.py:967] rank 7 in world size 16 is assigned as DP rank 0, PP rank 0, TP rank 7 (VllmWorkerProcess pid=281) INFO 03-22 18:40:47 [parallel_state.py:967] rank 11 in world size 16 is assigned as DP rank 0, PP rank 1, TP rank 3 (VllmWorkerProcess pid=280) INFO 03-22 18:40:47 [parallel_state.py:967] rank 10 in world size 16 is assigned as DP rank 0, PP rank 1, TP rank 2 (VllmWorkerProcess pid=278) INFO 03-22 18:40:47 [model_runner.py:1110] Starting to load model /models/dp-config/DeepSeek-R1-Q3_K_M.gguf... (VllmWorkerProcess pid=282) INFO 03-22 18:40:47 [model_runner.py:1110] Starting to load model /models/dp-config/DeepSeek-R1-Q3_K_M.gguf... INFO 03-22 18:40:47 [model_runner.py:1110] Starting to load model /models/dp-config/DeepSeek-R1-Q3_K_M.gguf... (VllmWorkerProcess pid=276) INFO 03-22 18:40:47 [model_runner.py:1110] Starting to load model /models/dp-config/DeepSeek-R1-Q3_K_M.gguf... (VllmWorkerProcess pid=285) INFO 03-22 18:40:47 [model_runner.py:1110] Starting to load model /models/dp-config/DeepSeek-R1-Q3_K_M.gguf... (VllmWorkerProcess pid=283) WARNING 03-22 18:41:18 [utils.py:169] The model class DeepseekV3ForCausalLM has not defined `packed_modules_mapping`, this may lead to incorrect mapping of quantized or ignored modules (VllmWorkerProcess pid=279) WARNING 03-22 18:41:18 [utils.py:169] The model class DeepseekV3ForCausalLM has not defined `packed_modules_mapping`, this may lead to incorrect mapping of quantized or ignored modules (VllmWorkerProcess pid=278) WARNING 03-22 18:41:18 [utils.py:169] The model class DeepseekV3ForCausalLM has not defined `packed_modules_mapping`, this may lead to incorrect mapping of quantized or ignored modules (VllmWorkerProcess pid=285) WARNING 03-22 18:41:18 [utils.py:169] The model class DeepseekV3ForCausalLM has not defined `packed_modules_mapping`, this may lead to incorrect mapping of quantized or ignored modules (VllmWorkerProcess pid=276) WARNING 03-22 18:41:18 [utils.py:169] The model class DeepseekV3ForCausalLM has not defined `packed_modules_mapping`, this may lead to incorrect mapping of quantized or ignored modules (VllmWorkerProcess pid=273) WARNING 03-22 18:41:18 [utils.py:169] The model class DeepseekV3ForCausalLM has not defined `packed_modules_mapping`, this may lead to incorrect mapping of quantized or ignored modules WARNING 03-22 18:41:19 [utils.py:169] The model class DeepseekV3ForCausalLM has not defined `packed_modules_mapping`, this may lead to incorrect mapping of quantized or ignored modules (VllmWorkerProcess pid=282) WARNING 03-22 18:41:19 [utils.py:169] The model class DeepseekV3ForCausalLM has not defined `packed_modules_mapping`, this may lead to incorrect mapping of quantized or ignored modules (VllmWorkerProcess pid=280) WARNING 03-22 18:41:19 [utils.py:169] The model class DeepseekV3ForCausalLM has not defined `packed_modules_mapping`, this may lead to incorrect mapping of quantized or ignored modules (VllmWorkerProcess pid=275) WARNING 03-22 18:41:19 [utils.py:169] The model class DeepseekV3ForCausalLM has not defined `packed_modules_mapping`, this may lead to incorrect mapping of quantized or ignored modules (VllmWorkerProcess pid=272) WARNING 03-22 18:41:20 [utils.py:169] The model class DeepseekV3ForCausalLM has not defined `packed_modules_mapping`, this may lead to incorrect mapping of quantized or ignored modules (VllmWorkerProcess pid=275) /opt/venv/lib/python3.12/site-packages/torch/nested/__init__.py:228: UserWarning: The PyTorch API of nested tensors is in prototype stage and will change in the near future. We recommend specifying layout=torch.jagged when constructing a nested tensor, as this layout receives active development, has better operator coverage, and works with torch.compile. (Triggered internally at /pytorch/aten/src/ATen/NestedTensorImpl.cpp:178.) (VllmWorkerProcess pid=275) return _nested.nested_tensor( (VllmWorkerProcess pid=277) /opt/venv/lib/python3.12/site-packages/torch/nested/__init__.py:228: UserWarning: The PyTorch API of nested tensors is in prototype stage and will change in the near future. We recommend specifying layout=torch.jagged when constructing a nested tensor, as this layout receives active development, has better operator coverage, and works with torch.compile. (Triggered internally at /pytorch/aten/src/ATen/NestedTensorImpl.cpp:178.) (VllmWorkerProcess pid=277) return _nested.nested_tensor( (VllmWorkerProcess pid=271) /opt/venv/lib/python3.12/site-packages/torch/nested/__init__.py:228: UserWarning: The PyTorch API of nested tensors is in prototype stage and will change in the near future. We recommend specifying layout=torch.jagged when constructing a nested tensor, as this layout receives active development, has better operator coverage, and works with torch.compile. (Triggered internally at /pytorch/aten/src/ATen/NestedTensorImpl.cpp:178.) (VllmWorkerProcess pid=276) /opt/venv/lib/python3.12/site-packages/torch/nested/__init__.py:228: UserWarning: The PyTorch API of nested tensors is in prototype stage and will change in the near future. We recommend specifying layout=torch.jagged when constructing a nested tensor, as this layout receives active development, has better operator coverage, and works with torch.compile. (Triggered internally at /pytorch/aten/src/ATen/NestedTensorImpl.cpp:178.) (VllmWorkerProcess pid=273) /opt/venv/lib/python3.12/site-packages/torch/nested/__init__.py:228: UserWarning: The PyTorch API of nested tensors is in prototype stage and will change in the near future. We recommend specifying layout=torch.jagged when constructing a nested tensor, as this layout receives active development, has better operator coverage, and works with torch.compile. (Triggered internally at /pytorch/aten/src/ATen/NestedTensorImpl.cpp:178.) (VllmWorkerProcess pid=273) return _nested.nested_tensor( /opt/venv/lib/python3.12/site-packages/torch/nested/__init__.py:228: UserWarning: The PyTorch API of nested tensors is in prototype stage and will change in the near future. We recommend specifying layout=torch.jagged when constructing a nested tensor, as this layout receives active development, has better operator coverage, and works with torch.compile. (Triggered internally at /pytorch/aten/src/ATen/NestedTensorImpl.cpp:178.) return _nested.nested_tensor( (VllmWorkerProcess pid=279) /opt/venv/lib/python3.12/site-packages/torch/nested/__init__.py:228: UserWarning: The PyTorch API of nested tensors is in prototype stage and will change in the near future. We recommend specifying layout=torch.jagged when constructing a nested tensor, as this layout receives active development, has better operator coverage, and works with torch.compile. (Triggered internally at /pytorch/aten/src/ATen/NestedTensorImpl.cpp:178.) (VllmWorkerProcess pid=284) /opt/venv/lib/python3.12/site-packages/torch/nested/__init__.py:228: UserWarning: The PyTorch API of nested tensors is in prototype stage and will change in the near future. We recommend specifying layout=torch.jagged when constructing a nested tensor, as this layout receives active development, has better operator coverage, and works with torch.compile. (Triggered internally at /pytorch/aten/src/ATen/NestedTensorImpl.cpp:178.) (VllmWorkerProcess pid=282) /opt/venv/lib/python3.12/site-packages/torch/nested/__init__.py:228: UserWarning: The PyTorch API of nested tensors is in prototype stage and will change in the near future. We recommend specifying layout=torch.jagged when constructing a nested tensor, as this layout receives active development, has better operator coverage, and works with torch.compile. (Triggered internally at /pytorch/aten/src/ATen/NestedTensorImpl.cpp:178.) (VllmWorkerProcess pid=285) /opt/venv/lib/python3.12/site-packages/torch/nested/__init__.py:228: UserWarning: The PyTorch API of nested tensors is in prototype stage and will change in the near future. We recommend specifying layout=torch.jagged when constructing a nested tensor, as this layout receives active development, has better operator coverage, and works with torch.compile. (Triggered internally at /pytorch/aten/src/ATen/NestedTensorImpl.cpp:178.) (VllmWorkerProcess pid=283) /opt/venv/lib/python3.12/site-packages/torch/nested/__init__.py:228: UserWarning: The PyTorch API of nested tensors is in prototype stage and will change in the near future. We recommend specifying layout=torch.jagged when constructing a nested tensor, as this layout receives active development, has better operator coverage, and works with torch.compile. (Triggered internally at /pytorch/aten/src/ATen/NestedTensorImpl.cpp:178.) (VllmWorkerProcess pid=280) /opt/venv/lib/python3.12/site-packages/torch/nested/__init__.py:228: UserWarning: The PyTorch API of nested tensors is in prototype stage and will change in the near future. We recommend specifying layout=torch.jagged when constructing a nested tensor, as this layout receives active development, has better operator coverage, and works with torch.compile. (Triggered internally at /pytorch/aten/src/ATen/NestedTensorImpl.cpp:178.) (VllmWorkerProcess pid=279) return _nested.nested_tensor( (VllmWorkerProcess pid=284) return _nested.nested_tensor( (VllmWorkerProcess pid=278) /opt/venv/lib/python3.12/site-packages/torch/nested/__init__.py:228: UserWarning: The PyTorch API of nested tensors is in prototype stage and will change in the near future. We recommend specifying layout=torch.jagged when constructing a nested tensor, as this layout receives active development, has better operator coverage, and works with torch.compile. (Triggered internally at /pytorch/aten/src/ATen/NestedTensorImpl.cpp:178.) (VllmWorkerProcess pid=282) return _nested.nested_tensor( (VllmWorkerProcess pid=281) /opt/venv/lib/python3.12/site-packages/torch/nested/__init__.py:228: UserWarning: The PyTorch API of nested tensors is in prototype stage and will change in the near future. We recommend specifying layout=torch.jagged when constructing a nested tensor, as this layout receives active development, has better operator coverage, and works with torch.compile. (Triggered internally at /pytorch/aten/src/ATen/NestedTensorImpl.cpp:178.) (VllmWorkerProcess pid=285) return _nested.nested_tensor( (VllmWorkerProcess pid=283) return _nested.nested_tensor( (VllmWorkerProcess pid=280) return _nested.nested_tensor( (VllmWorkerProcess pid=278) return _nested.nested_tensor( (VllmWorkerProcess pid=281) return _nested.nested_tensor( (VllmWorkerProcess pid=276) INFO 03-22 18:52:51 [model_runner.py:1146] Model loading took 18.3843 GB and 724.014383 seconds (VllmWorkerProcess pid=285) INFO 03-22 18:52:52 [model_runner.py:1146] Model loading took 19.5904 GB and 724.529272 seconds (VllmWorkerProcess pid=273) INFO 03-22 18:52:52 [model_runner.py:1146] Model loading took 18.3843 GB and 724.529966 seconds (VllmWorkerProcess pid=277) INFO 03-22 18:52:52 [model_runner.py:1146] Model loading took 18.3843 GB and 724.544103 seconds (VllmWorkerProcess pid=274) INFO 03-22 18:52:52 [model_runner.py:1146] Model loading took 18.3843 GB and 724.542021 seconds (VllmWorkerProcess pid=275) INFO 03-22 18:52:52 [model_runner.py:1146] Model loading took 18.3843 GB and 724.558444 seconds (VllmWorkerProcess pid=271) INFO 03-22 18:52:52 [model_runner.py:1146] Model loading took 18.3843 GB and 724.543127 seconds (VllmWorkerProcess pid=283) INFO 03-22 18:52:52 [model_runner.py:1146] Model loading took 19.5904 GB and 724.573560 seconds INFO 03-22 18:52:52 [model_runner.py:1146] Model loading took 18.3843 GB and 724.537170 seconds (VllmWorkerProcess pid=282) INFO 03-22 18:52:52 [model_runner.py:1146] Model loading took 19.5904 GB and 724.575245 seconds (VllmWorkerProcess pid=272) INFO 03-22 18:52:52 [model_runner.py:1146] Model loading took 18.3843 GB and 724.618766 seconds (VllmWorkerProcess pid=281) INFO 03-22 18:52:52 [model_runner.py:1146] Model loading took 19.5904 GB and 724.653382 seconds (VllmWorkerProcess pid=280) INFO 03-22 18:52:52 [model_runner.py:1146] Model loading took 19.5904 GB and 724.653049 seconds (VllmWorkerProcess pid=279) INFO 03-22 18:52:52 [model_runner.py:1146] Model loading took 19.5904 GB and 724.657291 seconds (VllmWorkerProcess pid=278) INFO 03-22 18:52:52 [model_runner.py:1146] Model loading took 19.5904 GB and 724.662290 seconds (VllmWorkerProcess pid=284) INFO 03-22 18:52:55 [model_runner.py:1146] Model loading took 19.5904 GB and 727.899927 seconds (VllmWorkerProcess pid=280) INFO 03-22 18:53:21 [worker.py:267] Memory profiling takes 25.52 seconds (VllmWorkerProcess pid=280) INFO 03-22 18:53:21 [worker.py:267] the current vLLM instance can use total_gpu_memory (23.58GiB) x gpu_memory_utilization (0.94) = 22.29GiB (VllmWorkerProcess pid=280) INFO 03-22 18:53:21 [worker.py:267] model weights take 19.59GiB; non_torch_memory takes 0.20GiB; PyTorch activation peak memory takes 0.82GiB; the rest of the memory reserved for KV Cache is 1.68GiB. (VllmWorkerProcess pid=279) INFO 03-22 18:53:21 [worker.py:267] Memory profiling takes 25.54 seconds (VllmWorkerProcess pid=279) INFO 03-22 18:53:21 [worker.py:267] the current vLLM instance can use total_gpu_memory (23.58GiB) x gpu_memory_utilization (0.94) = 22.29GiB (VllmWorkerProcess pid=279) INFO 03-22 18:53:21 [worker.py:267] model weights take 19.59GiB; non_torch_memory takes 0.20GiB; PyTorch activation peak memory takes 0.82GiB; the rest of the memory reserved for KV Cache is 1.68GiB. (VllmWorkerProcess pid=284) INFO 03-22 18:53:21 [worker.py:267] Memory profiling takes 25.58 seconds (VllmWorkerProcess pid=284) INFO 03-22 18:53:21 [worker.py:267] the current vLLM instance can use total_gpu_memory (23.58GiB) x gpu_memory_utilization (0.94) = 22.29GiB (VllmWorkerProcess pid=284) INFO 03-22 18:53:21 [worker.py:267] model weights take 19.59GiB; non_torch_memory takes 0.20GiB; PyTorch activation peak memory takes 0.82GiB; the rest of the memory reserved for KV Cache is 1.68GiB. (VllmWorkerProcess pid=283) INFO 03-22 18:53:21 [worker.py:267] Memory profiling takes 25.59 seconds (VllmWorkerProcess pid=283) INFO 03-22 18:53:21 [worker.py:267] the current vLLM instance can use total_gpu_memory (23.58GiB) x gpu_memory_utilization (0.94) = 22.29GiB (VllmWorkerProcess pid=283) INFO 03-22 18:53:21 [worker.py:267] model weights take 19.59GiB; non_torch_memory takes 0.20GiB; PyTorch activation peak memory takes 0.82GiB; the rest of the memory reserved for KV Cache is 1.68GiB. (VllmWorkerProcess pid=282) INFO 03-22 18:53:21 [worker.py:267] Memory profiling takes 25.58 seconds (VllmWorkerProcess pid=282) INFO 03-22 18:53:21 [worker.py:267] the current vLLM instance can use total_gpu_memory (23.58GiB) x gpu_memory_utilization (0.94) = 22.29GiB (VllmWorkerProcess pid=282) INFO 03-22 18:53:21 [worker.py:267] model weights take 19.59GiB; non_torch_memory takes 0.20GiB; PyTorch activation peak memory takes 0.82GiB; the rest of the memory reserved for KV Cache is 1.68GiB. (VllmWorkerProcess pid=281) INFO 03-22 18:53:21 [worker.py:267] Memory profiling takes 25.58 seconds (VllmWorkerProcess pid=281) INFO 03-22 18:53:21 [worker.py:267] the current vLLM instance can use total_gpu_memory (23.58GiB) x gpu_memory_utilization (0.94) = 22.29GiB (VllmWorkerProcess pid=281) INFO 03-22 18:53:21 [worker.py:267] model weights take 19.59GiB; non_torch_memory takes 0.20GiB; PyTorch activation peak memory takes 0.82GiB; the rest of the memory reserved for KV Cache is 1.68GiB. (VllmWorkerProcess pid=285) INFO 03-22 18:53:21 [worker.py:267] Memory profiling takes 25.59 seconds (VllmWorkerProcess pid=285) INFO 03-22 18:53:21 [worker.py:267] the current vLLM instance can use total_gpu_memory (23.58GiB) x gpu_memory_utilization (0.94) = 22.29GiB (VllmWorkerProcess pid=285) INFO 03-22 18:53:21 [worker.py:267] model weights take 19.59GiB; non_torch_memory takes 0.20GiB; PyTorch activation peak memory takes 0.82GiB; the rest of the memory reserved for KV Cache is 1.68GiB. (VllmWorkerProcess pid=278) INFO 03-22 18:53:21 [worker.py:267] Memory profiling takes 25.78 seconds (VllmWorkerProcess pid=278) INFO 03-22 18:53:21 [worker.py:267] the current vLLM instance can use total_gpu_memory (23.58GiB) x gpu_memory_utilization (0.94) = 22.29GiB (VllmWorkerProcess pid=278) INFO 03-22 18:53:21 [worker.py:267] model weights take 19.59GiB; non_torch_memory takes 0.20GiB; PyTorch activation peak memory takes 0.82GiB; the rest of the memory reserved for KV Cache is 1.68GiB. (VllmWorkerProcess pid=271) INFO 03-22 18:53:23 [worker.py:267] Memory profiling takes 27.79 seconds (VllmWorkerProcess pid=271) INFO 03-22 18:53:23 [worker.py:267] the current vLLM instance can use total_gpu_memory (23.58GiB) x gpu_memory_utilization (0.94) = 22.29GiB (VllmWorkerProcess pid=271) INFO 03-22 18:53:23 [worker.py:267] model weights take 18.38GiB; non_torch_memory takes 0.15GiB; PyTorch activation peak memory takes 0.79GiB; the rest of the memory reserved for KV Cache is 2.96GiB. (VllmWorkerProcess pid=273) INFO 03-22 18:53:23 [worker.py:267] Memory profiling takes 27.80 seconds (VllmWorkerProcess pid=273) INFO 03-22 18:53:23 [worker.py:267] the current vLLM instance can use total_gpu_memory (23.58GiB) x gpu_memory_utilization (0.94) = 22.29GiB (VllmWorkerProcess pid=273) INFO 03-22 18:53:23 [worker.py:267] model weights take 18.38GiB; non_torch_memory takes 0.15GiB; PyTorch activation peak memory takes 0.79GiB; the rest of the memory reserved for KV Cache is 2.96GiB. (VllmWorkerProcess pid=277) INFO 03-22 18:53:23 [worker.py:267] Memory profiling takes 27.81 seconds (VllmWorkerProcess pid=277) INFO 03-22 18:53:23 [worker.py:267] the current vLLM instance can use total_gpu_memory (23.58GiB) x gpu_memory_utilization (0.94) = 22.29GiB (VllmWorkerProcess pid=277) INFO 03-22 18:53:23 [worker.py:267] model weights take 18.38GiB; non_torch_memory takes 0.15GiB; PyTorch activation peak memory takes 0.79GiB; the rest of the memory reserved for KV Cache is 2.96GiB. INFO 03-22 18:53:23 [worker.py:267] Memory profiling takes 27.78 seconds INFO 03-22 18:53:23 [worker.py:267] the current vLLM instance can use total_gpu_memory (23.58GiB) x gpu_memory_utilization (0.94) = 22.29GiB INFO 03-22 18:53:23 [worker.py:267] model weights take 18.38GiB; non_torch_memory takes 0.15GiB; PyTorch activation peak memory takes 0.79GiB; the rest of the memory reserved for KV Cache is 2.96GiB. (VllmWorkerProcess pid=275) INFO 03-22 18:53:23 [worker.py:267] Memory profiling takes 27.82 seconds (VllmWorkerProcess pid=275) INFO 03-22 18:53:23 [worker.py:267] the current vLLM instance can use total_gpu_memory (23.58GiB) x gpu_memory_utilization (0.94) = 22.29GiB (VllmWorkerProcess pid=274) INFO 03-22 18:53:23 [worker.py:267] model weights take 18.38GiB; non_torch_memory takes 0.15GiB; PyTorch activation peak memory takes 0.79GiB; the rest of the memory reserved for KV Cache is 2.96GiB. (VllmWorkerProcess pid=276) INFO 03-22 18:53:23 [worker.py:267] Memory profiling takes 27.82 seconds (VllmWorkerProcess pid=276) INFO 03-22 18:53:23 [worker.py:267] the current vLLM instance can use total_gpu_memory (23.58GiB) x gpu_memory_utilization (0.94) = 22.29GiB (VllmWorkerProcess pid=276) INFO 03-22 18:53:23 [worker.py:267] model weights take 18.38GiB; non_torch_memory takes 0.15GiB; PyTorch activation peak memory takes 0.79GiB; the rest of the memory reserved for KV Cache is 2.96GiB. INFO 03-22 18:53:23 [executor_base.py:111] # cuda blocks: 3258, # CPU blocks: 3758 INFO 03-22 18:53:23 [executor_base.py:116] Maximum concurrency for 8192 tokens per request: 6.36x (VllmWorkerProcess pid=285) INFO 03-22 18:53:34 [model_runner.py:1442] Capturing cudagraphs for decoding. This may lead to unexpected consequences if the model is not static. To run the model in eager mode, set 'enforce_eager=True' or use '--enforce-eager' in the CLI. If out-of-memory error occurs during cudagraph capture, consider decreasing `gpu_memory_utilization` or switching to eager mode. You can also reduce the `max_num_seqs` as needed to decrease memory usage. (VllmWorkerProcess pid=282) INFO 03-22 18:53:35 [model_runner.py:1442] Capturing cudagraphs for decoding. This may lead to unexpected consequences if the model is not static. To run the model in eager mode, set 'enforce_eager=True' or use '--enforce-eager' in the CLI. If out-of-memory error occurs during cudagraph capture, consider decreasing `gpu_memory_utilization` or switching to eager mode. You can also reduce the `max_num_seqs` as needed to decrease memory usage. (VllmWorkerProcess pid=283) INFO 03-22 18:53:35 [model_runner.py:1442] Capturing cudagraphs for decoding. This may lead to unexpected consequences if the model is not static. To run the model in eager mode, set 'enforce_eager=True' or use '--enforce-eager' in the CLI. If out-of-memory error occurs during cudagraph capture, consider decreasing `gpu_memory_utilization` or switching to eager mode. You can also reduce the `max_num_seqs` as needed to decrease memory usage. INFO 03-22 18:53:38 [model_runner.py:1442] Capturing cudagraphs for decoding. This may lead to unexpected consequences if the model is not static. To run the model in eager mode, set 'enforce_eager=True' or use '--enforce-eager' in the CLI. If out-of-memory error occurs during cudagraph capture, consider decreasing `gpu_memory_utilization` or switching to eager mode. You can also reduce the `max_num_seqs` as needed to decrease memory usage. (VllmWorkerProcess pid=272) INFO 03-22 18:53:38 [model_runner.py:1442] Capturing cudagraphs for decoding. This may lead to unexpected consequences if the model is not static. To run the model in eager mode, set 'enforce_eager=True' or use '--enforce-eager' in the CLI. If out-of-memory error occurs during cudagraph capture, consider decreasing `gpu_memory_utilization` or switching to eager mode. You can also reduce the `max_num_seqs` as needed to decrease memory usage. Capturing CUDA graph shapes: 100%|██████████| 3/3 [00:09<00:00, 3.32s/it] Capturing CUDA graph shapes: 100%|██████████| 3/3 [00:08<00:00, 2.67s/it] (VllmWorkerProcess pid=280) INFO 03-22 18:53:48 [model_runner.py:1570] Graph capturing finished in 11 secs, took 0.17 GiB Capturing CUDA graph shapes: 100%|██████████| 3/3 [00:02<00:00, 1.05it/s] (VllmWorkerProcess pid=278) INFO 03-22 18:53:48 [model_runner.py:1570] Graph capturing finished in 13 secs, took 0.17 GiB (VllmWorkerProcess pid=283) INFO 03-22 18:53:48 [model_runner.py:1570] Graph capturing finished in 13 secs, took 0.17 GiB (VllmWorkerProcess pid=284) INFO 03-22 18:53:48 [model_runner.py:1570] Graph capturing finished in 10 secs, took 0.17 GiB (VllmWorkerProcess pid=279) INFO 03-22 18:53:48 [model_runner.py:1570] Graph capturing finished in 11 secs, took 0.17 GiB (VllmWorkerProcess pid=282) INFO 03-22 18:53:48 [model_runner.py:1570] Graph capturing finished in 13 secs, took 0.17 GiB (VllmWorkerProcess pid=281) INFO 03-22 18:53:48 [model_runner.py:1570] Graph capturing finished in 12 secs, took 0.17 GiB (VllmWorkerProcess pid=285) INFO 03-22 18:53:48 [model_runner.py:1570] Graph capturing finished in 14 secs, took 0.17 GiB (VllmWorkerProcess pid=276) INFO 03-22 18:53:49 [model_runner.py:1570] Graph capturing finished in 11 secs, took 0.19 GiB (VllmWorkerProcess pid=274) INFO 03-22 18:53:49 [model_runner.py:1570] Graph capturing finished in 12 secs, took 0.19 GiB (VllmWorkerProcess pid=272) INFO 03-22 18:53:49 [model_runner.py:1570] Graph capturing finished in 11 secs, took 0.19 GiB (VllmWorkerProcess pid=275) INFO 03-22 18:53:49 [model_runner.py:1570] Graph capturing finished in 11 secs, took 0.19 GiB (VllmWorkerProcess pid=273) INFO 03-22 18:53:49 [model_runner.py:1570] Graph capturing finished in 11 secs, took 0.19 GiB (VllmWorkerProcess pid=277) INFO 03-22 18:53:49 [model_runner.py:1570] Graph capturing finished in 11 secs, took 0.19 GiB (VllmWorkerProcess pid=271) INFO 03-22 18:53:49 [model_runner.py:1570] Graph capturing finished in 12 secs, took 0.19 GiB Capturing CUDA graph shapes: 100%|██████████| 3/3 [00:02<00:00, 1.01it/s] INFO 03-22 18:53:49 [model_runner.py:1570] Graph capturing finished in 11 secs, took 0.19 GiB INFO 03-22 18:53:49 [llm_engine.py:447] init engine (profile, create kv cache, warmup model) took 54.39 seconds INFO 03-22 18:53:50 [serving_chat.py:115] Using default chat sampling params from model: {'temperature': 0.6, 'top_p': 0.95} INFO 03-22 18:53:50 [serving_completion.py:61] Using default completion sampling params from model: {'temperature': 0.6, 'top_p': 0.95} INFO 03-22 18:53:50 [api_server.py:1024] Starting vLLM API server on http://192.168.10.225:8000 INFO 03-22 18:53:50 [launcher.py:26] Available routes are: INFO 03-22 18:53:50 [launcher.py:34] Route: /openapi.json, Methods: HEAD, GET INFO 03-22 18:53:50 [launcher.py:34] Route: /docs, Methods: HEAD, GET INFO 03-22 18:53:50 [launcher.py:34] Route: /docs/oauth2-redirect, Methods: HEAD, GET INFO 03-22 18:53:50 [launcher.py:34] Route: /redoc, Methods: HEAD, GET INFO 03-22 18:53:50 [launcher.py:34] Route: /health, Methods: GET INFO 03-22 18:53:50 [launcher.py:34] Route: /load, Methods: GET INFO: Started server process [1] INFO: Waiting for application startup. INFO: Application startup complete. INFO 03-22 18:54:25 [chat_utils.py:346] Detected the chat template content format to be 'string'. You can set `--chat-template-content-format` to override this. INFO 03-22 18:54:25 [logger.py:39] Received request chatcmpl-39c6bdfde1e143c19c76dfe72ce3cc3e: prompt: "<|begin▁of▁sentence|><|User|>Show me a code snippet of a website's sticky header in CSS and JavaScript.<|Assistant|><think>\n", params: SamplingParams(n=1, presence_penalty=0.0, frequency_penalty=0.0, repetition_penalty=1.0, temperature=0.6, top_p=0.95, top_k=-1, min_p=0.0, seed=None, stop=[], stop_token_ids=[], bad_words=[], include_stop_str_in_output=False, ignore_eos=False, max_tokens=8171, min_tokens=0, logprobs=None, prompt_logprobs=None, skip_special_tokens=True, spaces_between_special_tokens=True, truncate_prompt_tokens=None, guided_decoding=None, extra_args=None), prompt_token_ids: None, lora_request: None, prompt_adapter_request: None. INFO 03-22 18:54:25 [async_llm_engine.py:211] Added request chatcmpl-39c6bdfde1e143c19c76dfe72ce3cc3e. INFO: 192.168.1.64:44616 - "POST /v1/chat/completions HTTP/1.1" 200 OK (VllmWorkerProcess pid=277) /opt/venv/lib/python3.12/site-packages/vllm/distributed/parallel_state.py:408: UserWarning: The given buffer is not writable, and PyTorch does not support non-writable tensors. This means you can write to the underlying (supposedly non-writable) buffer using the tensor. You may want to copy the buffer to protect its data or make it writable before converting it to a tensor. This type of warning will be suppressed for the rest of this program. (Triggered internally at /pytorch/torch/csrc/utils/tensor_new.cpp:1561.) (VllmWorkerProcess pid=277) object_tensor = torch.frombuffer(pickle.dumps(obj), dtype=torch.uint8) [rank7]:[W322 18:54:27.377827544 ProcessGroupNCCL.cpp:3436] Warning: TORCH_NCCL_AVOID_RECORD_STREAMS=1 has no effect for point-to-point collectives. (function operator()) [rank15]:[W322 18:54:27.377957486 ProcessGroupNCCL.cpp:3436] Warning: TORCH_NCCL_AVOID_RECORD_STREAMS=1 has no effect for point-to-point collectives. (function operator()) (VllmWorkerProcess pid=271) /opt/venv/lib/python3.12/site-packages/vllm/distributed/parallel_state.py:408: UserWarning: The given buffer is not writable, and PyTorch does not support non-writable tensors. This means you can write to the underlying (supposedly non-writable) buffer using the tensor. You may want to copy the buffer to protect its data or make it writable before converting it to a tensor. This type of warning will be suppressed for the rest of this program. (Triggered internally at /pytorch/torch/csrc/utils/tensor_new.cpp:1561.) (VllmWorkerProcess pid=271) object_tensor = torch.frombuffer(pickle.dumps(obj), dtype=torch.uint8) (VllmWorkerProcess pid=275) /opt/venv/lib/python3.12/site-packages/vllm/distributed/parallel_state.py:408: UserWarning: The given buffer is not writable, and PyTorch does not support non-writable tensors. This means you can write to the underlying (supposedly non-writable) buffer using the tensor. You may want to copy the buffer to protect its data or make it writable before converting it to a tensor. This type of warning will be suppressed for the rest of this program. (Triggered internally at /pytorch/torch/csrc/utils/tensor_new.cpp:1561.) (VllmWorkerProcess pid=273) /opt/venv/lib/python3.12/site-packages/vllm/distributed/parallel_state.py:408: UserWarning: The given buffer is not writable, and PyTorch does not support non-writable tensors. This means you can write to the underlying (supposedly non-writable) buffer using the tensor. You may want to copy the buffer to protect its data or make it writable before converting it to a tensor. This type of warning will be suppressed for the rest of this program. (Triggered internally at /pytorch/torch/csrc/utils/tensor_new.cpp:1561.) (VllmWorkerProcess pid=272) /opt/venv/lib/python3.12/site-packages/vllm/distributed/parallel_state.py:408: UserWarning: The given buffer is not writable, and PyTorch does not support non-writable tensors. This means you can write to the underlying (supposedly non-writable) buffer using the tensor. You may want to copy the buffer to protect its data or make it writable before converting it to a tensor. This type of warning will be suppressed for the rest of this program. (Triggered internally at /pytorch/torch/csrc/utils/tensor_new.cpp:1561.) (VllmWorkerProcess pid=275) object_tensor = torch.frombuffer(pickle.dumps(obj), dtype=torch.uint8) (VllmWorkerProcess pid=273) object_tensor = torch.frombuffer(pickle.dumps(obj), dtype=torch.uint8) (VllmWorkerProcess pid=272) object_tensor = torch.frombuffer(pickle.dumps(obj), dtype=torch.uint8) (VllmWorkerProcess pid=274) /opt/venv/lib/python3.12/site-packages/vllm/distributed/parallel_state.py:408: UserWarning: The given buffer is not writable, and PyTorch does not support non-writable tensors. This means you can write to the underlying (supposedly non-writable) buffer using the tensor. You may want to copy the buffer to protect its data or make it writable before converting it to a tensor. This type of warning will be suppressed for the rest of this program. (Triggered internally at /pytorch/torch/csrc/utils/tensor_new.cpp:1561.) (VllmWorkerProcess pid=274) object_tensor = torch.frombuffer(pickle.dumps(obj), dtype=torch.uint8) (VllmWorkerProcess pid=276) /opt/venv/lib/python3.12/site-packages/vllm/distributed/parallel_state.py:408: UserWarning: The given buffer is not writable, and PyTorch does not support non-writable tensors. This means you can write to the underlying (supposedly non-writable) buffer using the tensor. You may want to copy the buffer to protect its data or make it writable before converting it to a tensor. This type of warning will be suppressed for the rest of this program. (Triggered internally at /pytorch/torch/csrc/utils/tensor_new.cpp:1561.) (VllmWorkerProcess pid=276) object_tensor = torch.frombuffer(pickle.dumps(obj), dtype=torch.uint8) [rank1]:[W322 18:54:27.380129008 ProcessGroupNCCL.cpp:3436] Warning: TORCH_NCCL_AVOID_RECORD_STREAMS=1 has no effect for point-to-point collectives. (function operator()) [rank4]:[W322 18:54:27.380217129 ProcessGroupNCCL.cpp:3436] Warning: TORCH_NCCL_AVOID_RECORD_STREAMS=1 has no effect for point-to-point collectives. (function operator()) [rank2]:[W322 18:54:27.380218309 ProcessGroupNCCL.cpp:3436] Warning: TORCH_NCCL_AVOID_RECORD_STREAMS=1 has no effect for point-to-point collectives. (function operator()) [rank3]:[W322 18:54:27.380219399 ProcessGroupNCCL.cpp:3436] Warning: TORCH_NCCL_AVOID_RECORD_STREAMS=1 has no effect for point-to-point collectives. (function operator()) [rank5]:[W322 18:54:27.380248339 ProcessGroupNCCL.cpp:3436] Warning: TORCH_NCCL_AVOID_RECORD_STREAMS=1 has no effect for point-to-point collectives. (function operator()) [rank6]:[W322 18:54:27.380314470 ProcessGroupNCCL.cpp:3436] Warning: TORCH_NCCL_AVOID_RECORD_STREAMS=1 has no effect for point-to-point collectives. (function operator()) [rank9]:[W322 18:54:27.380311840 ProcessGroupNCCL.cpp:3436] Warning: TORCH_NCCL_AVOID_RECORD_STREAMS=1 has no effect for point-to-point collectives. (function operator()) [rank11]:[W322 18:54:27.380335620 ProcessGroupNCCL.cpp:3436] Warning: TORCH_NCCL_AVOID_RECORD_STREAMS=1 has no effect for point-to-point collectives. (function operator()) [rank12]:[W322 18:54:27.380335960 ProcessGroupNCCL.cpp:3436] Warning: TORCH_NCCL_AVOID_RECORD_STREAMS=1 has no effect for point-to-point collectives. (function operator()) [rank13]:[W322 18:54:27.380351460 ProcessGroupNCCL.cpp:3436] Warning: TORCH_NCCL_AVOID_RECORD_STREAMS=1 has no effect for point-to-point collectives. (function operator()) [rank10]:[W322 18:54:27.380370780 ProcessGroupNCCL.cpp:3436] Warning: TORCH_NCCL_AVOID_RECORD_STREAMS=1 has no effect for point-to-point collectives. (function operator()) [rank14]:[W322 18:54:27.380446631 ProcessGroupNCCL.cpp:3436] Warning: TORCH_NCCL_AVOID_RECORD_STREAMS=1 has no effect for point-to-point collectives. (function operator()) /opt/venv/lib/python3.12/site-packages/vllm/distributed/parallel_state.py:408: UserWarning: The given buffer is not writable, and PyTorch does not support non-writable tensors. This means you can write to the underlying (supposedly non-writable) buffer using the tensor. You may want to copy the buffer to protect its data or make it writable before converting it to a tensor. This type of warning will be suppressed for the rest of this program. (Triggered internally at /pytorch/torch/csrc/utils/tensor_new.cpp:1561.) object_tensor = torch.frombuffer(pickle.dumps(obj), dtype=torch.uint8) [rank8]:[W322 18:54:27.389643976 ProcessGroupNCCL.cpp:3436] Warning: TORCH_NCCL_AVOID_RECORD_STREAMS=1 has no effect for point-to-point collectives. (function operator()) [rank0]:[W322 18:54:27.389699367 ProcessGroupNCCL.cpp:3436] Warning: TORCH_NCCL_AVOID_RECORD_STREAMS=1 has no effect for point-to-point collectives. (function operator()) INFO 03-22 18:54:28 [async_llm_engine.py:223] Aborted request chatcmpl-39c6bdfde1e143c19c76dfe72ce3cc3e. INFO 03-22 18:54:40 [metrics.py:481] Avg prompt throughput: 1.4 tokens/s, Avg generation throughput: 0.3 tokens/s, Running: 0 reqs, Swapped: 0 reqs, Pending: 0 reqs, GPU KV cache usage: 0.0%, CPU KV cache usage: 0.0%. INFO 03-22 18:54:50 [metrics.py:481] Avg prompt throughput: 0.0 tokens/s, Avg generation throughput: 0.0 tokens/s, Running: 0 reqs, Swapped: 0 reqs, Pending: 0 reqs, GPU KV cache usage: 0.0%, CPU KV cache usage: 0.0%. INFO 03-22 18:54:56 [logger.py:39] Received request chatcmpl-3b4a21965d0a4add83f94e8cd2d84d7d: prompt: "<|begin▁of▁sentence|><|User|>Show me a code snippet of a website's sticky header in CSS and JavaScript.<|Assistant|><think>\n", params: SamplingParams(n=1, presence_penalty=0.0, frequency_penalty=0.0, repetition_penalty=1.0, temperature=0.6, top_p=0.95, top_k=-1, min_p=0.0, seed=None, stop=[], stop_token_ids=[], bad_words=[], include_stop_str_in_output=False, ignore_eos=False, max_tokens=8171, min_tokens=0, logprobs=None, prompt_logprobs=None, skip_special_tokens=True, spaces_between_special_tokens=True, truncate_prompt_tokens=None, guided_decoding=None, extra_args=None), prompt_token_ids: None, lora_request: None, prompt_adapter_request: None. INFO 03-22 18:54:56 [async_llm_engine.py:211] Added request chatcmpl-3b4a21965d0a4add83f94e8cd2d84d7d. INFO: 192.168.1.64:34600 - "POST /v1/chat/completions HTTP/1.1" 200 OK INFO 03-22 18:55:01 [metrics.py:481] Avg prompt throughput: 4.2 tokens/s, Avg generation throughput: 29.9 tokens/s, Running: 1 reqs, Swapped: 0 reqs, Pending: 0 reqs, GPU KV cache usage: 0.3%, CPU KV cache usage: 0.0%. INFO 03-22 18:55:06 [metrics.py:481] Avg prompt throughput: 0.0 tokens/s, Avg generation throughput: 31.2 tokens/s, Running: 1 reqs, Swapped: 0 reqs, Pending: 0 reqs, GPU KV cache usage: 0.6%, CPU KV cache usage: 0.0%. INFO 03-22 18:55:11 [metrics.py:481] Avg prompt throughput: 0.0 tokens/s, Avg generation throughput: 29.1 tokens/s, Running: 1 reqs, Swapped: 0 reqs, Pending: 0 reqs, GPU KV cache usage: 0.9%, CPU KV cache usage: 0.0%. INFO 03-22 18:55:16 [metrics.py:481] Avg prompt throughput: 0.0 tokens/s, Avg generation throughput: 29.6 tokens/s, Running: 1 reqs, Swapped: 0 reqs, Pending: 0 reqs, GPU KV cache usage: 1.2%, CPU KV cache usage: 0.0%. INFO 03-22 18:55:21 [metrics.py:481] Avg prompt throughput: 0.0 tokens/s, Avg generation throughput: 29.0 tokens/s, Running: 1 reqs, Swapped: 0 reqs, Pending: 0 reqs, GPU KV cache usage: 1.5%, CPU KV cache usage: 0.0%. INFO 03-22 18:55:26 [metrics.py:481] Avg prompt throughput: 0.0 tokens/s, Avg generation throughput: 30.2 tokens/s, Running: 1 reqs, Swapped: 0 reqs, Pending: 0 reqs, GPU KV cache usage: 1.8%, CPU KV cache usage: 0.0%. INFO 03-22 18:55:31 [metrics.py:481] Avg prompt throughput: 0.0 tokens/s, Avg generation throughput: 30.1 tokens/s, Running: 1 reqs, Swapped: 0 reqs, Pending: 0 reqs, GPU KV cache usage: 2.1%, CPU KV cache usage: 0.0%. INFO 03-22 18:55:36 [metrics.py:481] Avg prompt throughput: 0.0 tokens/s, Avg generation throughput: 29.6 tokens/s, Running: 1 reqs, Swapped: 0 reqs, Pending: 0 reqs, GPU KV cache usage: 2.3%, CPU KV cache usage: 0.0%. INFO 03-22 18:55:41 [metrics.py:481] Avg prompt throughput: 0.0 tokens/s, Avg generation throughput: 29.7 tokens/s, Running: 1 reqs, Swapped: 0 reqs, Pending: 0 reqs, GPU KV cache usage: 2.6%, CPU KV cache usage: 0.0%. INFO 03-22 18:55:46 [metrics.py:481] Avg prompt throughput: 0.0 tokens/s, Avg generation throughput: 29.4 tokens/s, Running: 1 reqs, Swapped: 0 reqs, Pending: 0 reqs, GPU KV cache usage: 2.9%, CPU KV cache usage: 0.0%. INFO 03-22 18:55:51 [metrics.py:481] Avg prompt throughput: 0.0 tokens/s, Avg generation throughput: 28.4 tokens/s, Running: 1 reqs, Swapped: 0 reqs, Pending: 0 reqs, GPU KV cache usage: 3.2%, CPU KV cache usage: 0.0%. INFO 03-22 18:55:56 [metrics.py:481] Avg prompt throughput: 0.0 tokens/s, Avg generation throughput: 28.2 tokens/s, Running: 1 reqs, Swapped: 0 reqs, Pending: 0 reqs, GPU KV cache usage: 3.5%, CPU KV cache usage: 0.0%. INFO 03-22 18:56:01 [metrics.py:481] Avg prompt throughput: 0.0 tokens/s, Avg generation throughput: 28.3 tokens/s, Running: 1 reqs, Swapped: 0 reqs, Pending: 0 reqs, GPU KV cache usage: 3.7%, CPU KV cache usage: 0.0%. INFO 03-22 18:56:06 [metrics.py:481] Avg prompt throughput: 0.0 tokens/s, Avg generation throughput: 27.6 tokens/s, Running: 1 reqs, Swapped: 0 reqs, Pending: 0 reqs, GPU KV cache usage: 4.0%, CPU KV cache usage: 0.0%. INFO 03-22 18:56:11 [metrics.py:481] Avg prompt throughput: 0.0 tokens/s, Avg generation throughput: 27.9 tokens/s, Running: 1 reqs, Swapped: 0 reqs, Pending: 0 reqs, GPU KV cache usage: 4.3%, CPU KV cache usage: 0.0%. INFO 03-22 18:56:16 [metrics.py:481] Avg prompt throughput: 0.0 tokens/s, Avg generation throughput: 27.5 tokens/s, Running: 1 reqs, Swapped: 0 reqs, Pending: 0 reqs, GPU KV cache usage: 4.5%, CPU KV cache usage: 0.0%. INFO 03-22 18:56:21 [metrics.py:481] Avg prompt throughput: 0.0 tokens/s, Avg generation throughput: 27.6 tokens/s, Running: 1 reqs, Swapped: 0 reqs, Pending: 0 reqs, GPU KV cache usage: 4.8%, CPU KV cache usage: 0.0%. INFO 03-22 18:56:26 [metrics.py:481] Avg prompt throughput: 0.0 tokens/s, Avg generation throughput: 27.6 tokens/s, Running: 1 reqs, Swapped: 0 reqs, Pending: 0 reqs, GPU KV cache usage: 5.1%, CPU KV cache usage: 0.0%. INFO 03-22 18:56:31 [metrics.py:481] Avg prompt throughput: 0.0 tokens/s, Avg generation throughput: 27.5 tokens/s, Running: 1 reqs, Swapped: 0 reqs, Pending: 0 reqs, GPU KV cache usage: 5.3%, CPU KV cache usage: 0.0%. INFO 03-22 18:56:36 [metrics.py:481] Avg prompt throughput: 0.0 tokens/s, Avg generation throughput: 27.3 tokens/s, Running: 1 reqs, Swapped: 0 reqs, Pending: 0 reqs, GPU KV cache usage: 5.6%, CPU KV cache usage: 0.0%. INFO 03-22 18:56:41 [metrics.py:481] Avg prompt throughput: 0.0 tokens/s, Avg generation throughput: 27.3 tokens/s, Running: 1 reqs, Swapped: 0 reqs, Pending: 0 reqs, GPU KV cache usage: 5.9%, CPU KV cache usage: 0.0%. INFO 03-22 18:56:46 [metrics.py:481] Avg prompt throughput: 0.0 tokens/s, Avg generation throughput: 26.8 tokens/s, Running: 1 reqs, Swapped: 0 reqs, Pending: 0 reqs, GPU KV cache usage: 6.1%, CPU KV cache usage: 0.0%. INFO 03-22 18:56:51 [metrics.py:481] Avg prompt throughput: 0.0 tokens/s, Avg generation throughput: 26.6 tokens/s, Running: 1 reqs, Swapped: 0 reqs, Pending: 0 reqs, GPU KV cache usage: 6.4%, CPU KV cache usage: 0.0%. INFO 03-22 18:56:56 [metrics.py:481] Avg prompt throughput: 0.0 tokens/s, Avg generation throughput: 26.3 tokens/s, Running: 1 reqs, Swapped: 0 reqs, Pending: 0 reqs, GPU KV cache usage: 6.6%, CPU KV cache usage: 0.0%. INFO 03-22 18:57:01 [metrics.py:481] Avg prompt throughput: 0.0 tokens/s, Avg generation throughput: 26.6 tokens/s, Running: 1 reqs, Swapped: 0 reqs, Pending: 0 reqs, GPU KV cache usage: 6.9%, CPU KV cache usage: 0.0%. INFO 03-22 18:57:06 [metrics.py:481] Avg prompt throughput: 0.0 tokens/s, Avg generation throughput: 25.4 tokens/s, Running: 1 reqs, Swapped: 0 reqs, Pending: 0 reqs, GPU KV cache usage: 7.1%, CPU KV cache usage: 0.0%. INFO 03-22 18:57:11 [metrics.py:481] Avg prompt throughput: 0.0 tokens/s, Avg generation throughput: 23.1 tokens/s, Running: 1 reqs, Swapped: 0 reqs, Pending: 0 reqs, GPU KV cache usage: 7.3%, CPU KV cache usage: 0.0%. INFO 03-22 18:57:16 [metrics.py:481] Avg prompt throughput: 0.0 tokens/s, Avg generation throughput: 24.0 tokens/s, Running: 1 reqs, Swapped: 0 reqs, Pending: 0 reqs, GPU KV cache usage: 7.6%, CPU KV cache usage: 0.0%. INFO 03-22 18:57:46 [metrics.py:481] Avg prompt throughput: 0.0 tokens/s, Avg generation throughput: 25.1 tokens/s, Running: 1 reqs, Swapped: 0 reqs, Pending: 0 reqs, GPU KV cache usage: 9.0%, CPU KV cache usage: 0.0%. INFO 03-22 18:57:51 [metrics.py:481] Avg prompt throughput: 0.0 tokens/s, Avg generation throughput: 24.3 tokens/s, Running: 1 reqs, Swapped: 0 reqs, Pending: 0 reqs, GPU KV cache usage: 9.2%, CPU KV cache usage: 0.0%. INFO 03-22 18:57:56 [metrics.py:481] Avg prompt throughput: 0.0 tokens/s, Avg generation throughput: 24.7 tokens/s, Running: 1 reqs, Swapped: 0 reqs, Pending: 0 reqs, GPU KV cache usage: 9.5%, CPU KV cache usage: 0.0%. ... I have to kill generation ... ``` </details> ### Before submitting a new issue... - [x] Make sure you already searched for relevant issues, and asked the chatbot living at the bottom right corner of the [documentation page](https://docs.vllm.ai/en/latest/), which can answer lots of frequently asked questions.
open
2025-03-22T19:12:30Z
2025-03-23T08:31:08Z
https://github.com/vllm-project/vllm/issues/15340
[ "bug" ]
davidsyoung
5
jupyterlab/jupyter-ai
jupyter
1,117
Problem with the Chat backend bug in kubeflow Jupyter Notebook
<!-- Welcome! Thank you for contributing. These HTML comments will not render in the issue. Before creating a new issue: * Search for relevant issues * Follow the issue reporting guidelines: https://jupyterlab.readthedocs.io/en/latest/getting_started/issue.html --> ## Description I'm installing jupyter-ai package to integrate it with self-hosted ollama model, inside the kubeflow jupyter notebook. I've tried several images from kubeflownotebookswg and none of them worked for me, after installing jupyter-ai I was getting "There seems to be a problem with the Chat backend, please look at the JupyterLab server logs or contact your administrator to correct this problem." and in the kubernetes logs(repeatedly): [W 2024-11-22 10:12:24.663 ServerApp] 404 GET /notebook/mlflow/ai-test-3/api/ai/chats (f2446b1d028f4a6f8aecc051007baedd@127.0.0.6) 1.10ms referer=None ## Reproduce 1. Create a jupyter notebook in kubeflow dashboard with kubeflownotebookswg/jupyter:v1.9.2 image (I believe it can be any other, this one is the most lightweight). I've tried the other ones, but result is the same. 2. Create a new terminal session and run there ```pip install jupyter-ai```. (I'm using pip because conda install jupyter-ai fails on solving environment). 3. Refresh browser page for chat icon to appear. 4. <img width="233" alt="image" src="https://github.com/user-attachments/assets/db70c2c5-5a07-4b53-8e5f-642f86971a43"> I got the same error with local docker testing, testing with another versions of kubeflownotebookswg/jupyter, so I'm sure it's not env-specific. As well, following this instruction I tried both Minimal and Quich installation with pip. ## Expected behavior As it is described in https://jupyter-ai.readthedocs.io/en/latest/users/index.html#prerequisites, I expect chat configuration to appear so I can configure models connections. ## Context <!--Complete the following for context, and add any other relevant context--> - Docker image: kubeflownotebookswg/jupyter:v1.9.2 - Python version(from image): Python 3.11.10 - JupyterLab version: <img width="405" alt="image" src="https://github.com/user-attachments/assets/37ee7033-cbdf-4416-a989-6608b8d25b90"> <!--The more content you provide, the more we can help!--> <details><summary>Troubleshoot Output</summary> (base) jovyan@ai-test-4-0:~$ jupyter troubleshoot $PATH: /opt/conda/bin /opt/conda/condabin /command /opt/conda/bin /usr/local/sbin /usr/local/bin /usr/sbin /usr/bin /sbin /bin sys.path: /opt/conda/bin /opt/conda/lib/python311.zip /opt/conda/lib/python3.11 /opt/conda/lib/python3.11/lib-dynload /opt/conda/lib/python3.11/site-packages sys.executable: /opt/conda/bin/python3.11 sys.version: 3.11.10 | packaged by conda-forge | (main, Sep 30 2024, 18:08:57) [GCC 13.3.0] platform.platform(): Linux-5.14.0-427.33.1.el9_4.x86_64-x86_64-with-glibc2.35 which -a jupyter: /opt/conda/bin/jupyter /opt/conda/bin/jupyter pip list: Package Version ----------------------------- --------------- ai21 3.0.0 ai21-tokenizer 0.12.0 aiohappyeyeballs 2.4.3 aiohttp 3.11.7 aiolimiter 1.1.0 aiosignal 1.3.1 aiosqlite 0.20.0 annotated-types 0.7.0 anthropic 0.39.0 anyio 4.6.0 archspec 0.2.3 argon2-cffi 23.1.0 argon2-cffi-bindings 21.2.0 arrow 1.3.0 arxiv 2.1.3 asttokens 2.4.1 async-lru 2.0.4 attrs 24.2.0 Babel 2.14.0 bce-python-sdk 0.9.23 beautifulsoup4 4.12.3 bleach 6.1.0 boltons 24.0.0 boto3 1.34.162 botocore 1.34.162 Brotli 1.1.0 cached-property 1.5.2 cachetools 5.5.0 certifi 2024.8.30 cffi 1.17.1 charset-normalizer 3.3.2 click 8.1.7 cloudpickle 3.1.0 cohere 5.11.4 colorama 0.4.6 comm 0.2.2 conda 24.9.0 conda-libmamba-solver 24.9.0 conda-package-handling 2.3.0 conda_package_streaming 0.10.0 dask 2024.11.2 dataclasses-json 0.6.7 debugpy 1.8.6 decorator 5.1.1 deepmerge 2.0 defusedxml 0.7.1 dill 0.3.9 diskcache 5.6.3 distributed 2024.11.2 distro 1.9.0 entrypoints 0.4 eval_type_backport 0.2.0 exceptiongroup 1.2.2 executing 2.1.0 faiss-cpu 1.9.0.post1 fastavro 1.9.7 fastjsonschema 2.20.0 feedparser 6.0.11 filelock 3.16.1 fqdn 1.5.1 frozendict 2.4.4 frozenlist 1.5.0 fsspec 2024.10.0 future 1.0.0 google-ai-generativelanguage 0.6.6 google-api-core 2.23.0 google-api-python-client 2.154.0 google-auth 2.36.0 google-auth-httplib2 0.2.0 google-generativeai 0.7.2 googleapis-common-protos 1.66.0 gpt4all 2.8.2 greenlet 3.1.1 grpcio 1.68.0 grpcio-status 1.62.3 h11 0.14.0 h2 4.1.0 hpack 4.0.0 httpcore 1.0.6 httplib2 0.22.0 httpx 0.27.2 httpx-sse 0.4.0 huggingface-hub 0.26.2 hyperframe 6.0.1 idna 3.10 importlib_metadata 8.5.0 importlib_resources 6.4.5 ipykernel 6.29.5 ipython 8.27.0 ipywidgets 8.1.5 isoduration 20.11.0 jedi 0.19.1 Jinja2 3.1.4 jiter 0.7.1 jmespath 1.0.1 json5 0.9.25 jsonpatch 1.33 jsonpath-ng 1.7.0 jsonpointer 3.0.0 jsonschema 4.23.0 jsonschema-specifications 2023.12.1 jupyter_ai 2.28.2 jupyter_ai_magics 2.28.2 jupyter_client 8.6.3 jupyter_core 5.7.2 jupyter-events 0.10.0 jupyter-lsp 2.2.5 jupyter_server 2.14.2 jupyter_server_terminals 0.5.3 jupyterlab 4.2.5 jupyterlab_pygments 0.3.0 jupyterlab_server 2.27.3 jupyterlab_widgets 3.0.13 langchain 0.2.17 langchain-anthropic 0.1.23 langchain-aws 0.1.18 langchain-cohere 0.2.4 langchain-community 0.2.19 langchain-core 0.2.43 langchain-experimental 0.0.65 langchain-google-genai 1.0.10 langchain-mistralai 0.1.13 langchain-nvidia-ai-endpoints 0.2.2 langchain-ollama 0.1.3 langchain-openai 0.1.25 langchain-text-splitters 0.2.4 langsmith 0.1.144 libmambapy 1.5.10 locket 1.0.0 mamba 1.5.10 markdown-it-py 3.0.0 MarkupSafe 2.1.5 marshmallow 3.23.1 matplotlib-inline 0.1.7 mdurl 0.1.2 menuinst 2.1.2 mistune 3.0.2 msgpack 1.1.0 multidict 6.1.0 multiprocess 0.70.17 mypy-extensions 1.0.0 nbclient 0.10.0 nbconvert 7.16.4 nbformat 5.10.4 nest_asyncio 1.6.0 notebook 7.2.2 notebook_shim 0.2.4 numpy 1.26.4 ollama 0.4.0 openai 1.55.0 orjson 3.10.11 overrides 7.7.0 packaging 24.1 pandas 2.2.3 pandocfilters 1.5.0 parameterized 0.9.0 parso 0.8.4 partd 1.4.2 pexpect 4.9.0 pickleshare 0.7.5 pillow 10.4.0 pip 24.2 pkgutil_resolve_name 1.3.10 platformdirs 4.3.6 pluggy 1.5.0 ply 3.11 prometheus_client 0.21.0 prompt_toolkit 3.0.48 propcache 0.2.0 proto-plus 1.25.0 protobuf 4.25.5 psutil 6.0.0 ptyprocess 0.7.0 pure_eval 0.2.3 pyarrow 18.0.0 pyasn1 0.6.1 pyasn1_modules 0.4.1 pycosat 0.6.6 pycparser 2.22 pycryptodome 3.21.0 pydantic 2.10.1 pydantic_core 2.27.1 Pygments 2.18.0 pyparsing 3.2.0 pypdf 5.1.0 PySocks 1.7.1 python-dateutil 2.9.0 python-dotenv 1.0.1 python-json-logger 2.0.7 pytz 2024.2 PyYAML 6.0.2 pyzmq 26.2.0 qianfan 0.4.12.1 referencing 0.35.1 regex 2024.11.6 requests 2.32.3 requests-toolbelt 1.0.0 rfc3339-validator 0.1.4 rfc3986-validator 0.1.1 rich 13.9.4 rpds-py 0.20.0 rsa 4.9 ruamel.yaml 0.18.6 ruamel.yaml.clib 0.2.8 s3transfer 0.10.4 Send2Trash 1.8.3 sentencepiece 0.2.0 setuptools 75.1.0 sgmllib3k 1.0.0 shellingham 1.5.4 six 1.16.0 sniffio 1.3.1 sortedcontainers 2.4.0 soupsieve 2.5 SQLAlchemy 2.0.36 stack-data 0.6.2 tabulate 0.9.0 tblib 3.0.0 tenacity 8.5.0 terminado 0.18.1 tiktoken 0.8.0 tinycss2 1.3.0 together 1.3.5 tokenizers 0.20.3 tomli 2.0.1 toolz 1.0.0 tornado 6.4.1 tqdm 4.66.5 traitlets 5.14.3 truststore 0.9.2 typer 0.13.1 types-python-dateutil 2.9.0.20240906 types-requests 2.32.0.20241016 typing_extensions 4.12.2 typing-inspect 0.9.0 typing-utils 0.1.0 tzdata 2024.2 uri-template 1.3.0 uritemplate 4.1.1 urllib3 2.2.3 wcwidth 0.2.13 webcolors 24.8.0 webencodings 0.5.1 websocket-client 1.8.0 wheel 0.44.0 widgetsnbextension 4.0.13 yarl 1.18.0 zict 3.0.0 zipp 3.20.2 zstandard 0.23.0 conda list: # packages in environment at /opt/conda: # # Name Version Build Channel _libgcc_mutex 0.1 conda_forge conda-forge _openmp_mutex 4.5 2_gnu conda-forge ai21 3.0.0 pypi_0 pypi ai21-tokenizer 0.12.0 pypi_0 pypi aiohappyeyeballs 2.4.3 pypi_0 pypi aiohttp 3.11.7 pypi_0 pypi aiolimiter 1.1.0 pypi_0 pypi aiosignal 1.3.1 pypi_0 pypi aiosqlite 0.20.0 pypi_0 pypi annotated-types 0.7.0 pypi_0 pypi anthropic 0.39.0 pypi_0 pypi anyio 4.6.0 pyhd8ed1ab_1 conda-forge archspec 0.2.3 pyhd8ed1ab_0 conda-forge argon2-cffi 23.1.0 pyhd8ed1ab_0 conda-forge argon2-cffi-bindings 21.2.0 py311h9ecbd09_5 conda-forge arrow 1.3.0 pyhd8ed1ab_0 conda-forge arxiv 2.1.3 pypi_0 pypi asttokens 2.4.1 pyhd8ed1ab_0 conda-forge async-lru 2.0.4 pyhd8ed1ab_0 conda-forge attrs 24.2.0 pyh71513ae_0 conda-forge babel 2.14.0 pyhd8ed1ab_0 conda-forge bce-python-sdk 0.9.23 pypi_0 pypi beautifulsoup4 4.12.3 pyha770c72_0 conda-forge bleach 6.1.0 pyhd8ed1ab_0 conda-forge boltons 24.0.0 pyhd8ed1ab_0 conda-forge boto3 1.34.162 pypi_0 pypi botocore 1.34.162 pypi_0 pypi brotli-python 1.1.0 py311hfdbb021_2 conda-forge bzip2 1.0.8 h4bc722e_7 conda-forge c-ares 1.33.1 heb4867d_0 conda-forge ca-certificates 2024.8.30 hbcca054_0 conda-forge cached-property 1.5.2 hd8ed1ab_1 conda-forge cached_property 1.5.2 pyha770c72_1 conda-forge cachetools 5.5.0 pypi_0 pypi certifi 2024.8.30 pyhd8ed1ab_0 conda-forge cffi 1.17.1 py311hf29c0ef_0 conda-forge charset-normalizer 3.3.2 pyhd8ed1ab_0 conda-forge click 8.1.7 pypi_0 pypi cloudpickle 3.1.0 pypi_0 pypi cohere 5.11.4 pypi_0 pypi colorama 0.4.6 pyhd8ed1ab_0 conda-forge comm 0.2.2 pyhd8ed1ab_0 conda-forge conda 24.9.0 py311h38be061_0 conda-forge conda-libmamba-solver 24.9.0 pyhd8ed1ab_0 conda-forge conda-package-handling 2.3.0 pyh7900ff3_0 conda-forge conda-package-streaming 0.10.0 pyhd8ed1ab_0 conda-forge dask 2024.11.2 pypi_0 pypi dataclasses-json 0.6.7 pypi_0 pypi debugpy 1.8.6 py311hfdbb021_0 conda-forge decorator 5.1.1 pyhd8ed1ab_0 conda-forge deepmerge 2.0 pypi_0 pypi defusedxml 0.7.1 pyhd8ed1ab_0 conda-forge dill 0.3.9 pypi_0 pypi diskcache 5.6.3 pypi_0 pypi distributed 2024.11.2 pypi_0 pypi distro 1.9.0 pyhd8ed1ab_0 conda-forge entrypoints 0.4 pyhd8ed1ab_0 conda-forge eval-type-backport 0.2.0 pypi_0 pypi exceptiongroup 1.2.2 pyhd8ed1ab_0 conda-forge executing 2.1.0 pyhd8ed1ab_0 conda-forge faiss-cpu 1.9.0.post1 pypi_0 pypi fastavro 1.9.7 pypi_0 pypi feedparser 6.0.11 pypi_0 pypi filelock 3.16.1 pypi_0 pypi fmt 10.2.1 h00ab1b0_0 conda-forge fqdn 1.5.1 pyhd8ed1ab_0 conda-forge frozendict 2.4.4 py311h9ecbd09_1 conda-forge frozenlist 1.5.0 pypi_0 pypi fsspec 2024.10.0 pypi_0 pypi future 1.0.0 pypi_0 pypi google-ai-generativelanguage 0.6.6 pypi_0 pypi google-api-core 2.23.0 pypi_0 pypi google-api-python-client 2.154.0 pypi_0 pypi google-auth 2.36.0 pypi_0 pypi google-auth-httplib2 0.2.0 pypi_0 pypi google-generativeai 0.7.2 pypi_0 pypi googleapis-common-protos 1.66.0 pypi_0 pypi gpt4all 2.8.2 pypi_0 pypi greenlet 3.1.1 pypi_0 pypi grpcio 1.68.0 pypi_0 pypi grpcio-status 1.62.3 pypi_0 pypi h11 0.14.0 pyhd8ed1ab_0 conda-forge h2 4.1.0 pyhd8ed1ab_0 conda-forge hpack 4.0.0 pyh9f0ad1d_0 conda-forge httpcore 1.0.6 pyhd8ed1ab_0 conda-forge httplib2 0.22.0 pypi_0 pypi httpx 0.27.2 pyhd8ed1ab_0 conda-forge httpx-sse 0.4.0 pypi_0 pypi huggingface-hub 0.26.2 pypi_0 pypi hyperframe 6.0.1 pyhd8ed1ab_0 conda-forge icu 75.1 he02047a_0 conda-forge idna 3.10 pyhd8ed1ab_0 conda-forge importlib-metadata 8.5.0 pyha770c72_0 conda-forge importlib_metadata 8.5.0 hd8ed1ab_0 conda-forge importlib_resources 6.4.5 pyhd8ed1ab_0 conda-forge ipykernel 6.29.5 pyh3099207_0 conda-forge ipython 8.27.0 pyh707e725_0 conda-forge ipywidgets 8.1.5 pypi_0 pypi isoduration 20.11.0 pyhd8ed1ab_0 conda-forge jedi 0.19.1 pyhd8ed1ab_0 conda-forge jinja2 3.1.4 pyhd8ed1ab_0 conda-forge jiter 0.7.1 pypi_0 pypi jmespath 1.0.1 pypi_0 pypi json5 0.9.25 pyhd8ed1ab_0 conda-forge jsonpatch 1.33 pyhd8ed1ab_0 conda-forge jsonpath-ng 1.7.0 pypi_0 pypi jsonpointer 3.0.0 py311h38be061_1 conda-forge jsonschema 4.23.0 pyhd8ed1ab_0 conda-forge jsonschema-specifications 2023.12.1 pyhd8ed1ab_0 conda-forge jsonschema-with-format-nongpl 4.23.0 hd8ed1ab_0 conda-forge jupyter-ai 2.28.2 pypi_0 pypi jupyter-ai-magics 2.28.2 pypi_0 pypi jupyter-lsp 2.2.5 pyhd8ed1ab_0 conda-forge jupyter_client 8.6.3 pyhd8ed1ab_0 conda-forge jupyter_core 5.7.2 pyh31011fe_1 conda-forge jupyter_events 0.10.0 pyhd8ed1ab_0 conda-forge jupyter_server 2.14.2 pyhd8ed1ab_0 conda-forge jupyter_server_terminals 0.5.3 pyhd8ed1ab_0 conda-forge jupyterlab 4.2.5 pyhd8ed1ab_0 conda-forge jupyterlab-widgets 3.0.13 pypi_0 pypi jupyterlab_pygments 0.3.0 pyhd8ed1ab_1 conda-forge jupyterlab_server 2.27.3 pyhd8ed1ab_0 conda-forge keyutils 1.6.1 h166bdaf_0 conda-forge krb5 1.21.3 h659f571_0 conda-forge langchain 0.2.17 pypi_0 pypi langchain-anthropic 0.1.23 pypi_0 pypi langchain-aws 0.1.18 pypi_0 pypi langchain-cohere 0.2.4 pypi_0 pypi langchain-community 0.2.19 pypi_0 pypi langchain-core 0.2.43 pypi_0 pypi langchain-experimental 0.0.65 pypi_0 pypi langchain-google-genai 1.0.10 pypi_0 pypi langchain-mistralai 0.1.13 pypi_0 pypi langchain-nvidia-ai-endpoints 0.2.2 pypi_0 pypi langchain-ollama 0.1.3 pypi_0 pypi langchain-openai 0.1.25 pypi_0 pypi langchain-text-splitters 0.2.4 pypi_0 pypi langsmith 0.1.144 pypi_0 pypi ld_impl_linux-64 2.43 h712a8e2_1 conda-forge libarchive 3.7.4 hfca40fe_0 conda-forge libcurl 8.10.1 hbbe4b11_0 conda-forge libedit 3.1.20191231 he28a2e2_2 conda-forge libev 4.33 hd590300_2 conda-forge libexpat 2.6.3 h5888daf_0 conda-forge libffi 3.4.2 h7f98852_5 conda-forge libgcc 14.1.0 h77fa898_1 conda-forge libgcc-ng 14.1.0 h69a702a_1 conda-forge libgomp 14.1.0 h77fa898_1 conda-forge libiconv 1.17 hd590300_2 conda-forge libmamba 1.5.10 h4cc3d14_0 conda-forge libmambapy 1.5.10 py311h7f1ffb1_0 conda-forge libnghttp2 1.58.0 h47da74e_1 conda-forge libnsl 2.0.1 hd590300_0 conda-forge libsodium 1.0.20 h4ab18f5_0 conda-forge libsolv 0.7.30 h3509ff9_0 conda-forge libsqlite 3.46.1 hadc24fc_0 conda-forge libssh2 1.11.0 h0841786_0 conda-forge libstdcxx 14.1.0 hc0a3c3a_1 conda-forge libstdcxx-ng 14.1.0 h4852527_1 conda-forge libuuid 2.38.1 h0b41bf4_0 conda-forge libxcrypt 4.4.36 hd590300_1 conda-forge libxml2 2.12.7 he7c6b58_4 conda-forge libzlib 1.3.1 h4ab18f5_1 conda-forge locket 1.0.0 pypi_0 pypi lz4-c 1.9.4 hcb278e6_0 conda-forge lzo 2.10 hd590300_1001 conda-forge mamba 1.5.10 py311h3072747_0 conda-forge markdown-it-py 3.0.0 pypi_0 pypi markupsafe 2.1.5 py311h9ecbd09_1 conda-forge marshmallow 3.23.1 pypi_0 pypi matplotlib-inline 0.1.7 pyhd8ed1ab_0 conda-forge mdurl 0.1.2 pypi_0 pypi menuinst 2.1.2 py311h38be061_1 conda-forge mistune 3.0.2 pyhd8ed1ab_0 conda-forge msgpack 1.1.0 pypi_0 pypi multidict 6.1.0 pypi_0 pypi multiprocess 0.70.17 pypi_0 pypi mypy-extensions 1.0.0 pypi_0 pypi nbclient 0.10.0 pyhd8ed1ab_0 conda-forge nbconvert-core 7.16.4 pyhd8ed1ab_1 conda-forge nbformat 5.10.4 pyhd8ed1ab_0 conda-forge ncurses 6.5 he02047a_1 conda-forge nest-asyncio 1.6.0 pyhd8ed1ab_0 conda-forge notebook 7.2.2 pyhd8ed1ab_0 conda-forge notebook-shim 0.2.4 pyhd8ed1ab_0 conda-forge numpy 1.26.4 pypi_0 pypi ollama 0.4.0 pypi_0 pypi openai 1.55.0 pypi_0 pypi openssl 3.3.2 hb9d3cd8_0 conda-forge orjson 3.10.11 pypi_0 pypi overrides 7.7.0 pyhd8ed1ab_0 conda-forge packaging 24.1 pyhd8ed1ab_0 conda-forge pandas 2.2.3 pypi_0 pypi pandocfilters 1.5.0 pyhd8ed1ab_0 conda-forge parameterized 0.9.0 pypi_0 pypi parso 0.8.4 pyhd8ed1ab_0 conda-forge partd 1.4.2 pypi_0 pypi pexpect 4.9.0 pyhd8ed1ab_0 conda-forge pickleshare 0.7.5 py_1003 conda-forge pillow 10.4.0 pypi_0 pypi pip 24.2 pyh8b19718_1 conda-forge pkgutil-resolve-name 1.3.10 pyhd8ed1ab_1 conda-forge platformdirs 4.3.6 pyhd8ed1ab_0 conda-forge pluggy 1.5.0 pyhd8ed1ab_0 conda-forge ply 3.11 pypi_0 pypi prometheus_client 0.21.0 pyhd8ed1ab_0 conda-forge prompt-toolkit 3.0.48 pyha770c72_0 conda-forge propcache 0.2.0 pypi_0 pypi proto-plus 1.25.0 pypi_0 pypi protobuf 4.25.5 pypi_0 pypi psutil 6.0.0 py311h9ecbd09_1 conda-forge ptyprocess 0.7.0 pyhd3deb0d_0 conda-forge pure_eval 0.2.3 pyhd8ed1ab_0 conda-forge pyarrow 18.0.0 pypi_0 pypi pyasn1 0.6.1 pypi_0 pypi pyasn1-modules 0.4.1 pypi_0 pypi pybind11-abi 4 hd8ed1ab_3 conda-forge pycosat 0.6.6 py311h459d7ec_0 conda-forge pycparser 2.22 pyhd8ed1ab_0 conda-forge pycryptodome 3.21.0 pypi_0 pypi pydantic 2.10.1 pypi_0 pypi pydantic-core 2.27.1 pypi_0 pypi pygments 2.18.0 pyhd8ed1ab_0 conda-forge pyparsing 3.2.0 pypi_0 pypi pypdf 5.1.0 pypi_0 pypi pysocks 1.7.1 pyha2e5f31_6 conda-forge python 3.11.10 hc5c86c4_2_cpython conda-forge python-dateutil 2.9.0 pyhd8ed1ab_0 conda-forge python-dotenv 1.0.1 pypi_0 pypi python-fastjsonschema 2.20.0 pyhd8ed1ab_0 conda-forge python-json-logger 2.0.7 pyhd8ed1ab_0 conda-forge python_abi 3.11 5_cp311 conda-forge pytz 2024.2 pyhd8ed1ab_0 conda-forge pyyaml 6.0.2 py311h9ecbd09_1 conda-forge pyzmq 26.2.0 py311h7deb3e3_2 conda-forge qianfan 0.4.12.1 pypi_0 pypi readline 8.2 h8228510_1 conda-forge referencing 0.35.1 pyhd8ed1ab_0 conda-forge regex 2024.11.6 pypi_0 pypi reproc 14.2.4.post0 hd590300_1 conda-forge reproc-cpp 14.2.4.post0 h59595ed_1 conda-forge requests 2.32.3 pyhd8ed1ab_0 conda-forge requests-toolbelt 1.0.0 pypi_0 pypi rfc3339-validator 0.1.4 pyhd8ed1ab_0 conda-forge rfc3986-validator 0.1.1 pyh9f0ad1d_0 conda-forge rich 13.9.4 pypi_0 pypi rpds-py 0.20.0 py311h9e33e62_1 conda-forge rsa 4.9 pypi_0 pypi ruamel.yaml 0.18.6 py311h459d7ec_0 conda-forge ruamel.yaml.clib 0.2.8 py311h459d7ec_0 conda-forge s3transfer 0.10.4 pypi_0 pypi send2trash 1.8.3 pyh0d859eb_0 conda-forge sentencepiece 0.2.0 pypi_0 pypi setuptools 75.1.0 pyhd8ed1ab_0 conda-forge sgmllib3k 1.0.0 pypi_0 pypi shellingham 1.5.4 pypi_0 pypi six 1.16.0 pyh6c4a22f_0 conda-forge sniffio 1.3.1 pyhd8ed1ab_0 conda-forge sortedcontainers 2.4.0 pypi_0 pypi soupsieve 2.5 pyhd8ed1ab_1 conda-forge sqlalchemy 2.0.36 pypi_0 pypi stack_data 0.6.2 pyhd8ed1ab_0 conda-forge tabulate 0.9.0 pypi_0 pypi tblib 3.0.0 pypi_0 pypi tenacity 8.5.0 pypi_0 pypi terminado 0.18.1 pyh0d859eb_0 conda-forge tiktoken 0.8.0 pypi_0 pypi tinycss2 1.3.0 pyhd8ed1ab_0 conda-forge tk 8.6.13 noxft_h4845f30_101 conda-forge together 1.3.5 pypi_0 pypi tokenizers 0.20.3 pypi_0 pypi tomli 2.0.1 pyhd8ed1ab_0 conda-forge toolz 1.0.0 pypi_0 pypi tornado 6.4.1 py311h9ecbd09_1 conda-forge tqdm 4.66.5 pyhd8ed1ab_0 conda-forge traitlets 5.14.3 pyhd8ed1ab_0 conda-forge truststore 0.9.2 pyhd8ed1ab_0 conda-forge typer 0.13.1 pypi_0 pypi types-python-dateutil 2.9.0.20240906 pyhd8ed1ab_0 conda-forge types-requests 2.32.0.20241016 pypi_0 pypi typing-extensions 4.12.2 hd8ed1ab_0 conda-forge typing-inspect 0.9.0 pypi_0 pypi typing_extensions 4.12.2 pyha770c72_0 conda-forge typing_utils 0.1.0 pyhd8ed1ab_0 conda-forge tzdata 2024.2 pypi_0 pypi uri-template 1.3.0 pyhd8ed1ab_0 conda-forge uritemplate 4.1.1 pypi_0 pypi urllib3 2.2.3 pyhd8ed1ab_0 conda-forge wcwidth 0.2.13 pyhd8ed1ab_0 conda-forge webcolors 24.8.0 pyhd8ed1ab_0 conda-forge webencodings 0.5.1 pyhd8ed1ab_2 conda-forge websocket-client 1.8.0 pyhd8ed1ab_0 conda-forge wheel 0.44.0 pyhd8ed1ab_0 conda-forge widgetsnbextension 4.0.13 pypi_0 pypi xz 5.2.6 h166bdaf_0 conda-forge yaml 0.2.5 h7f98852_2 conda-forge yaml-cpp 0.8.0 h59595ed_0 conda-forge yarl 1.18.0 pypi_0 pypi zeromq 4.3.5 ha4adb4c_5 conda-forge zict 3.0.0 pypi_0 pypi zipp 3.20.2 pyhd8ed1ab_0 conda-forge zstandard 0.23.0 py311hbc35293_1 conda-forge zstd 1.5.6 ha6fb4c9_0 conda-forge conda env: name: base channels: - conda-forge dependencies: - _libgcc_mutex=0.1=conda_forge - _openmp_mutex=4.5=2_gnu - anyio=4.6.0=pyhd8ed1ab_1 - archspec=0.2.3=pyhd8ed1ab_0 - argon2-cffi=23.1.0=pyhd8ed1ab_0 - argon2-cffi-bindings=21.2.0=py311h9ecbd09_5 - arrow=1.3.0=pyhd8ed1ab_0 - asttokens=2.4.1=pyhd8ed1ab_0 - async-lru=2.0.4=pyhd8ed1ab_0 - attrs=24.2.0=pyh71513ae_0 - babel=2.14.0=pyhd8ed1ab_0 - beautifulsoup4=4.12.3=pyha770c72_0 - bleach=6.1.0=pyhd8ed1ab_0 - boltons=24.0.0=pyhd8ed1ab_0 - brotli-python=1.1.0=py311hfdbb021_2 - bzip2=1.0.8=h4bc722e_7 - c-ares=1.33.1=heb4867d_0 - ca-certificates=2024.8.30=hbcca054_0 - cached-property=1.5.2=hd8ed1ab_1 - cached_property=1.5.2=pyha770c72_1 - certifi=2024.8.30=pyhd8ed1ab_0 - cffi=1.17.1=py311hf29c0ef_0 - charset-normalizer=3.3.2=pyhd8ed1ab_0 - colorama=0.4.6=pyhd8ed1ab_0 - comm=0.2.2=pyhd8ed1ab_0 - conda=24.9.0=py311h38be061_0 - conda-libmamba-solver=24.9.0=pyhd8ed1ab_0 - conda-package-handling=2.3.0=pyh7900ff3_0 - conda-package-streaming=0.10.0=pyhd8ed1ab_0 - debugpy=1.8.6=py311hfdbb021_0 - decorator=5.1.1=pyhd8ed1ab_0 - defusedxml=0.7.1=pyhd8ed1ab_0 - distro=1.9.0=pyhd8ed1ab_0 - entrypoints=0.4=pyhd8ed1ab_0 - exceptiongroup=1.2.2=pyhd8ed1ab_0 - executing=2.1.0=pyhd8ed1ab_0 - fmt=10.2.1=h00ab1b0_0 - fqdn=1.5.1=pyhd8ed1ab_0 - frozendict=2.4.4=py311h9ecbd09_1 - h11=0.14.0=pyhd8ed1ab_0 - h2=4.1.0=pyhd8ed1ab_0 - hpack=4.0.0=pyh9f0ad1d_0 - httpcore=1.0.6=pyhd8ed1ab_0 - httpx=0.27.2=pyhd8ed1ab_0 - hyperframe=6.0.1=pyhd8ed1ab_0 - icu=75.1=he02047a_0 - idna=3.10=pyhd8ed1ab_0 - importlib-metadata=8.5.0=pyha770c72_0 - importlib_metadata=8.5.0=hd8ed1ab_0 - importlib_resources=6.4.5=pyhd8ed1ab_0 - ipykernel=6.29.5=pyh3099207_0 - ipython=8.27.0=pyh707e725_0 - isoduration=20.11.0=pyhd8ed1ab_0 - jedi=0.19.1=pyhd8ed1ab_0 - jinja2=3.1.4=pyhd8ed1ab_0 - json5=0.9.25=pyhd8ed1ab_0 - jsonpatch=1.33=pyhd8ed1ab_0 - jsonpointer=3.0.0=py311h38be061_1 - jsonschema=4.23.0=pyhd8ed1ab_0 - jsonschema-specifications=2023.12.1=pyhd8ed1ab_0 - jsonschema-with-format-nongpl=4.23.0=hd8ed1ab_0 - jupyter-lsp=2.2.5=pyhd8ed1ab_0 - jupyter_client=8.6.3=pyhd8ed1ab_0 - jupyter_core=5.7.2=pyh31011fe_1 - jupyter_events=0.10.0=pyhd8ed1ab_0 - jupyter_server=2.14.2=pyhd8ed1ab_0 - jupyter_server_terminals=0.5.3=pyhd8ed1ab_0 - jupyterlab=4.2.5=pyhd8ed1ab_0 - jupyterlab_pygments=0.3.0=pyhd8ed1ab_1 - jupyterlab_server=2.27.3=pyhd8ed1ab_0 - keyutils=1.6.1=h166bdaf_0 - krb5=1.21.3=h659f571_0 - ld_impl_linux-64=2.43=h712a8e2_1 - libarchive=3.7.4=hfca40fe_0 - libcurl=8.10.1=hbbe4b11_0 - libedit=3.1.20191231=he28a2e2_2 - libev=4.33=hd590300_2 - libexpat=2.6.3=h5888daf_0 - libffi=3.4.2=h7f98852_5 - libgcc=14.1.0=h77fa898_1 - libgcc-ng=14.1.0=h69a702a_1 - libgomp=14.1.0=h77fa898_1 - libiconv=1.17=hd590300_2 - libmamba=1.5.10=h4cc3d14_0 - libmambapy=1.5.10=py311h7f1ffb1_0 - libnghttp2=1.58.0=h47da74e_1 - libnsl=2.0.1=hd590300_0 - libsodium=1.0.20=h4ab18f5_0 - libsolv=0.7.30=h3509ff9_0 - libsqlite=3.46.1=hadc24fc_0 - libssh2=1.11.0=h0841786_0 - libstdcxx=14.1.0=hc0a3c3a_1 - libstdcxx-ng=14.1.0=h4852527_1 - libuuid=2.38.1=h0b41bf4_0 - libxcrypt=4.4.36=hd590300_1 - libxml2=2.12.7=he7c6b58_4 - libzlib=1.3.1=h4ab18f5_1 - lz4-c=1.9.4=hcb278e6_0 - lzo=2.10=hd590300_1001 - mamba=1.5.10=py311h3072747_0 - markupsafe=2.1.5=py311h9ecbd09_1 - matplotlib-inline=0.1.7=pyhd8ed1ab_0 - menuinst=2.1.2=py311h38be061_1 - mistune=3.0.2=pyhd8ed1ab_0 - nbclient=0.10.0=pyhd8ed1ab_0 - nbconvert-core=7.16.4=pyhd8ed1ab_1 - nbformat=5.10.4=pyhd8ed1ab_0 - ncurses=6.5=he02047a_1 - nest-asyncio=1.6.0=pyhd8ed1ab_0 - notebook=7.2.2=pyhd8ed1ab_0 - notebook-shim=0.2.4=pyhd8ed1ab_0 - openssl=3.3.2=hb9d3cd8_0 - overrides=7.7.0=pyhd8ed1ab_0 - packaging=24.1=pyhd8ed1ab_0 - pandocfilters=1.5.0=pyhd8ed1ab_0 - parso=0.8.4=pyhd8ed1ab_0 - pexpect=4.9.0=pyhd8ed1ab_0 - pickleshare=0.7.5=py_1003 - pip=24.2=pyh8b19718_1 - pkgutil-resolve-name=1.3.10=pyhd8ed1ab_1 - platformdirs=4.3.6=pyhd8ed1ab_0 - pluggy=1.5.0=pyhd8ed1ab_0 - prometheus_client=0.21.0=pyhd8ed1ab_0 - prompt-toolkit=3.0.48=pyha770c72_0 - psutil=6.0.0=py311h9ecbd09_1 - ptyprocess=0.7.0=pyhd3deb0d_0 - pure_eval=0.2.3=pyhd8ed1ab_0 - pybind11-abi=4=hd8ed1ab_3 - pycosat=0.6.6=py311h459d7ec_0 - pycparser=2.22=pyhd8ed1ab_0 - pygments=2.18.0=pyhd8ed1ab_0 - pysocks=1.7.1=pyha2e5f31_6 - python=3.11.10=hc5c86c4_2_cpython - python-dateutil=2.9.0=pyhd8ed1ab_0 - python-fastjsonschema=2.20.0=pyhd8ed1ab_0 - python-json-logger=2.0.7=pyhd8ed1ab_0 - python_abi=3.11=5_cp311 - pytz=2024.2=pyhd8ed1ab_0 - pyyaml=6.0.2=py311h9ecbd09_1 - pyzmq=26.2.0=py311h7deb3e3_2 - readline=8.2=h8228510_1 - referencing=0.35.1=pyhd8ed1ab_0 - reproc=14.2.4.post0=hd590300_1 - reproc-cpp=14.2.4.post0=h59595ed_1 - requests=2.32.3=pyhd8ed1ab_0 - rfc3339-validator=0.1.4=pyhd8ed1ab_0 - rfc3986-validator=0.1.1=pyh9f0ad1d_0 - rpds-py=0.20.0=py311h9e33e62_1 - ruamel.yaml=0.18.6=py311h459d7ec_0 - ruamel.yaml.clib=0.2.8=py311h459d7ec_0 - send2trash=1.8.3=pyh0d859eb_0 - setuptools=75.1.0=pyhd8ed1ab_0 - six=1.16.0=pyh6c4a22f_0 - sniffio=1.3.1=pyhd8ed1ab_0 - soupsieve=2.5=pyhd8ed1ab_1 - stack_data=0.6.2=pyhd8ed1ab_0 - terminado=0.18.1=pyh0d859eb_0 - tinycss2=1.3.0=pyhd8ed1ab_0 - tk=8.6.13=noxft_h4845f30_101 - tomli=2.0.1=pyhd8ed1ab_0 - tornado=6.4.1=py311h9ecbd09_1 - tqdm=4.66.5=pyhd8ed1ab_0 - traitlets=5.14.3=pyhd8ed1ab_0 - truststore=0.9.2=pyhd8ed1ab_0 - types-python-dateutil=2.9.0.20240906=pyhd8ed1ab_0 - typing-extensions=4.12.2=hd8ed1ab_0 - typing_extensions=4.12.2=pyha770c72_0 - typing_utils=0.1.0=pyhd8ed1ab_0 - uri-template=1.3.0=pyhd8ed1ab_0 - urllib3=2.2.3=pyhd8ed1ab_0 - wcwidth=0.2.13=pyhd8ed1ab_0 - webcolors=24.8.0=pyhd8ed1ab_0 - webencodings=0.5.1=pyhd8ed1ab_2 - websocket-client=1.8.0=pyhd8ed1ab_0 - wheel=0.44.0=pyhd8ed1ab_0 - xz=5.2.6=h166bdaf_0 - yaml=0.2.5=h7f98852_2 - yaml-cpp=0.8.0=h59595ed_0 - zeromq=4.3.5=ha4adb4c_5 - zipp=3.20.2=pyhd8ed1ab_0 - zstandard=0.23.0=py311hbc35293_1 - zstd=1.5.6=ha6fb4c9_0 - pip: - ai21==3.0.0 - ai21-tokenizer==0.12.0 - aiohappyeyeballs==2.4.3 - aiohttp==3.11.7 - aiolimiter==1.1.0 - aiosignal==1.3.1 - aiosqlite==0.20.0 - annotated-types==0.7.0 - anthropic==0.39.0 - arxiv==2.1.3 - bce-python-sdk==0.9.23 - boto3==1.34.162 - botocore==1.34.162 - cachetools==5.5.0 - click==8.1.7 - cloudpickle==3.1.0 - cohere==5.11.4 - dask==2024.11.2 - dataclasses-json==0.6.7 - deepmerge==2.0 - dill==0.3.9 - diskcache==5.6.3 - distributed==2024.11.2 - eval-type-backport==0.2.0 - faiss-cpu==1.9.0.post1 - fastavro==1.9.7 - feedparser==6.0.11 - filelock==3.16.1 - frozenlist==1.5.0 - fsspec==2024.10.0 - future==1.0.0 - google-ai-generativelanguage==0.6.6 - google-api-core==2.23.0 - google-api-python-client==2.154.0 - google-auth==2.36.0 - google-auth-httplib2==0.2.0 - google-generativeai==0.7.2 - googleapis-common-protos==1.66.0 - gpt4all==2.8.2 - greenlet==3.1.1 - grpcio==1.68.0 - grpcio-status==1.62.3 - httplib2==0.22.0 - httpx-sse==0.4.0 - huggingface-hub==0.26.2 - ipywidgets==8.1.5 - jiter==0.7.1 - jmespath==1.0.1 - jsonpath-ng==1.7.0 - jupyter-ai==2.28.2 - jupyter-ai-magics==2.28.2 - jupyterlab-widgets==3.0.13 - langchain==0.2.17 - langchain-anthropic==0.1.23 - langchain-aws==0.1.18 - langchain-cohere==0.2.4 - langchain-community==0.2.19 - langchain-core==0.2.43 - langchain-experimental==0.0.65 - langchain-google-genai==1.0.10 - langchain-mistralai==0.1.13 - langchain-nvidia-ai-endpoints==0.2.2 - langchain-ollama==0.1.3 - langchain-openai==0.1.25 - langchain-text-splitters==0.2.4 - langsmith==0.1.144 - locket==1.0.0 - markdown-it-py==3.0.0 - marshmallow==3.23.1 - mdurl==0.1.2 - msgpack==1.1.0 - multidict==6.1.0 - multiprocess==0.70.17 - mypy-extensions==1.0.0 - numpy==1.26.4 - ollama==0.4.0 - openai==1.55.0 - orjson==3.10.11 - pandas==2.2.3 - parameterized==0.9.0 - partd==1.4.2 - pillow==10.4.0 - ply==3.11 - propcache==0.2.0 - proto-plus==1.25.0 - protobuf==4.25.5 - pyarrow==18.0.0 - pyasn1==0.6.1 - pyasn1-modules==0.4.1 - pycryptodome==3.21.0 - pydantic==2.10.1 - pydantic-core==2.27.1 - pyparsing==3.2.0 - pypdf==5.1.0 - python-dotenv==1.0.1 - qianfan==0.4.12.1 - regex==2024.11.6 - requests-toolbelt==1.0.0 - rich==13.9.4 - rsa==4.9 - s3transfer==0.10.4 - sentencepiece==0.2.0 - sgmllib3k==1.0.0 - shellingham==1.5.4 - sortedcontainers==2.4.0 - sqlalchemy==2.0.36 - tabulate==0.9.0 - tblib==3.0.0 - tenacity==8.5.0 - tiktoken==0.8.0 - together==1.3.5 - tokenizers==0.20.3 - toolz==1.0.0 - typer==0.13.1 - types-requests==2.32.0.20241016 - typing-inspect==0.9.0 - tzdata==2024.2 - uritemplate==4.1.1 - widgetsnbextension==4.0.13 - yarl==1.18.0 - zict==3.0.0 prefix: /opt/conda <details><summary>Command Line Output</summary> <pre> Paste the output from your command line running `jupyter lab` here, use `--debug` if possible. </pre> </details> <details><summary>Browser Output</summary> (base) jovyan@ai-test-4-0:~$ jupyter lab [I 2024-11-22 10:41:38.027 ServerApp] jupyter_ai | extension was successfully linked. [I 2024-11-22 10:41:38.027 ServerApp] jupyter_lsp | extension was successfully linked. [I 2024-11-22 10:41:38.030 ServerApp] jupyter_server_terminals | extension was successfully linked. [I 2024-11-22 10:41:38.033 ServerApp] jupyterlab | extension was successfully linked. [I 2024-11-22 10:41:38.036 ServerApp] notebook | extension was successfully linked. [I 2024-11-22 10:41:38.039 ServerApp] notebook_shim | extension was successfully linked. [I 2024-11-22 10:41:38.083 ServerApp] notebook_shim | extension was successfully loaded. [I 2024-11-22 10:41:38.083 AiExtension] Configured provider allowlist: None [I 2024-11-22 10:41:38.083 AiExtension] Configured provider blocklist: None [I 2024-11-22 10:41:38.083 AiExtension] Configured model allowlist: None [I 2024-11-22 10:41:38.083 AiExtension] Configured model blocklist: None [I 2024-11-22 10:41:38.083 AiExtension] Configured model parameters: {} [I 2024-11-22 10:41:38.091 AiExtension] Registered model provider `ai21`. [I 2024-11-22 10:41:38.339 AiExtension] Registered model provider `bedrock`. [I 2024-11-22 10:41:38.339 AiExtension] Registered model provider `bedrock-chat`. [I 2024-11-22 10:41:38.339 AiExtension] Registered model provider `bedrock-custom`. [I 2024-11-22 10:41:38.528 AiExtension] Registered model provider `anthropic-chat`. [I 2024-11-22 10:41:38.888 AiExtension] Registered model provider `azure-chat-openai`. [I 2024-11-22 10:41:40.344 AiExtension] Registered model provider `cohere`. [I 2024-11-22 10:41:40.737 AiExtension] Registered model provider `gemini`. [I 2024-11-22 10:41:40.737 AiExtension] Registered model provider `gpt4all`. [I 2024-11-22 10:41:40.738 AiExtension] Registered model provider `huggingface_hub`. [I 2024-11-22 10:41:40.785 AiExtension] Registered model provider `mistralai`. [I 2024-11-22 10:41:40.800 AiExtension] Registered model provider `nvidia-chat`. [I 2024-11-22 10:41:40.920 AiExtension] Registered model provider `ollama`. [I 2024-11-22 10:41:40.920 AiExtension] Registered model provider `openai`. [I 2024-11-22 10:41:40.920 AiExtension] Registered model provider `openai-chat`. [I 2024-11-22 10:41:40.929 AiExtension] Registered model provider `openrouter`. [I 2024-11-22 10:41:40.929 AiExtension] Registered model provider `qianfan`. [I 2024-11-22 10:41:40.929 AiExtension] Registered model provider `sagemaker-endpoint`. [I 2024-11-22 10:41:40.929 AiExtension] Registered model provider `togetherai`. [I 2024-11-22 10:41:40.936 AiExtension] Registered embeddings model provider `azure`. [I 2024-11-22 10:41:40.936 AiExtension] Registered embeddings model provider `bedrock`. [I 2024-11-22 10:41:40.936 AiExtension] Registered embeddings model provider `cohere`. [I 2024-11-22 10:41:40.936 AiExtension] Registered embeddings model provider `gpt4all`. [I 2024-11-22 10:41:40.936 AiExtension] Registered embeddings model provider `huggingface_hub`. [I 2024-11-22 10:41:40.936 AiExtension] Registered embeddings model provider `mistralai`. [I 2024-11-22 10:41:40.936 AiExtension] Registered embeddings model provider `ollama`. [I 2024-11-22 10:41:40.936 AiExtension] Registered embeddings model provider `openai`. [I 2024-11-22 10:41:40.936 AiExtension] Registered embeddings model provider `qianfan`. [I 2024-11-22 10:41:40.942 AiExtension] Registered providers. [I 2024-11-22 10:41:40.942 AiExtension] Registered jupyter_ai server extension [I 2024-11-22 10:41:41.231 AiExtension] Registered context provider `file`. [I 2024-11-22 10:41:41.232 AiExtension] Initialized Jupyter AI server extension in 3149 ms. [I 2024-11-22 10:41:41.233 ServerApp] jupyter_ai | extension was successfully loaded. [I 2024-11-22 10:41:41.235 ServerApp] jupyter_lsp | extension was successfully loaded. [I 2024-11-22 10:41:41.236 ServerApp] jupyter_server_terminals | extension was successfully loaded. [I 2024-11-22 10:41:41.237 LabApp] JupyterLab extension loaded from /opt/conda/lib/python3.11/site-packages/jupyterlab [I 2024-11-22 10:41:41.237 LabApp] JupyterLab application directory is /opt/conda/share/jupyter/lab [I 2024-11-22 10:41:41.237 LabApp] Extension Manager is 'pypi'. [I 2024-11-22 10:41:41.291 ServerApp] jupyterlab | extension was successfully loaded. [I 2024-11-22 10:41:41.294 ServerApp] notebook | extension was successfully loaded. [I 2024-11-22 10:41:41.295 ServerApp] The port 8888 is already in use, trying another port. [I 2024-11-22 10:41:41.295 ServerApp] Serving notebooks from local directory: /home/jovyan [I 2024-11-22 10:41:41.295 ServerApp] Jupyter Server 2.14.2 is running at: [I 2024-11-22 10:41:41.295 ServerApp] http://localhost:8889/lab?token=d1a97ac9ca8a95fccb9d37f45ae2a32f9853041f63517ce5 [I 2024-11-22 10:41:41.295 ServerApp] http://127.0.0.1:8889/lab?token=d1a97ac9ca8a95fccb9d37f45ae2a32f9853041f63517ce5 [I 2024-11-22 10:41:41.295 ServerApp] Use Control-C to stop this server and shut down all kernels (twice to skip confirmation). [W 2024-11-22 10:41:41.299 ServerApp] No web browser found: Error('could not locate runnable browser'). [C 2024-11-22 10:41:41.299 ServerApp] To access the server, open this file in a browser: file:///tmp/jupyter_runtime/jpserver-383-open.html Or copy and paste one of these URLs: http://localhost:8889/lab?token=d1a97ac9ca8a95fccb9d37f45ae2a32f9853041f63517ce5 http://127.0.0.1:8889/lab?token=d1a97ac9ca8a95fccb9d37f45ae2a32f9853041f63517ce5 [I 2024-11-22 10:41:41.523 ServerApp] Skipped non-installed server(s): bash-language-server, dockerfile-language-server-nodejs, javascript-typescript-langserver, jedi-language-server, julia-language-server, pyright, python-language-server, python-lsp-server, r-languageserver, sql-language-server, texlab, typescript-language-server, unified-language-server, vscode-css-languageserver-bin, vscode-html-languageserver-bin, vscode-json-languageserver-bin, yaml-language-server ^C[I 2024-11-22 10:42:17.991 ServerApp] interrupted [I 2024-11-22 10:42:17.991 ServerApp] Serving notebooks from local directory: /home/jovyan 0 active kernels Jupyter Server 2.14.2 is running at: http://localhost:8889/lab?token=d1a97ac9ca8a95fccb9d37f45ae2a32f9853041f63517ce5 http://127.0.0.1:8889/lab?token=d1a97ac9ca8a95fccb9d37f45ae2a32f9853041f63517ce5 Shut down this Jupyter server (y/[n])? y [C 2024-11-22 10:42:19.982 ServerApp] Shutdown confirmed [I 2024-11-22 10:42:19.983 ServerApp] Shutting down 6 extensions [I 2024-11-22 10:42:19.983 AiExtension] Closing Dask client. </details>
open
2024-11-22T10:42:56Z
2025-02-09T13:57:53Z
https://github.com/jupyterlab/jupyter-ai/issues/1117
[ "bug" ]
IvanLapchenko
3
biolab/orange3
scikit-learn
7,033
Web version
Hi, can you tell me if there is a web version that can be deployed directly, such as using vue? Thanks.
closed
2025-02-19T02:55:46Z
2025-02-19T08:29:07Z
https://github.com/biolab/orange3/issues/7033
[]
WilliaJing
0
autogluon/autogluon
scikit-learn
4,371
Adding F2 to evaluation metrics
## Description Please add F2 as an evaluation metric. It is very useful when modeling with an emphasis on recall. Even better than F2 would perhaps be fbeta, which allows you to specify the degree to which recall is more important. ## References https://scikit-learn.org/stable/modules/generated/sklearn.metrics.fbeta_score.html
open
2024-08-07T17:23:48Z
2024-11-25T23:04:34Z
https://github.com/autogluon/autogluon/issues/4371
[ "enhancement", "module: tabular" ]
jack-hillesheim
0
CTFd/CTFd
flask
2,307
forgot email does not sent
<!-- If this is a bug report please fill out the template below. If this is a feature request please describe the behavior that you'd like to see. --> **Environment**: - CTFd Version/Commit: 3.5.0 - Operating System: Docker Container on Linux - Web Browser and Version: Chrome 113.0.5672.127 **What happened?** We set up the Email server(we have used in many production environemnt) in admin panel and we click the forgot password button in the front page, then fill in the registerd email in the field, we got a response said "If that account exists you will receive an email, please check your inbox", after that, we doesn't get any forgot password email in the mailbox. **What did you expect to happen?** Get the forgot password email when we click forgot password in the login page. **How to reproduce your issue** fill in a registerd email in the forgot password page. **Any associated stack traces or error logs** no error logs
closed
2023-05-23T13:02:45Z
2023-07-12T03:44:03Z
https://github.com/CTFd/CTFd/issues/2307
[]
Gary827
1
pydantic/pydantic-core
pydantic
1,504
build error for python 3.14 (alpha)
``` Failed to build pydantic-core qa: exit 1 (13.40 seconds) /home/runner/work/luma.core/luma.core> python -I -m pip install '.[qa]' pid=2954 Compiling static_assertions v1.1.0 Compiling cfg-if v1.0.0 Compiling memchr v2.7.4 Compiling pyo3-ffi v0.22.2 Compiling pyo3-macros-backend v0.22.2 error: failed to run custom build command for `pyo3-ffi v0.22.2` Caused by: process didn't exit successfully: `/tmp/pip-install-vmyi7r9j/pydantic-core_f98f83e4570a40c49a602e2d60c388c9/target/release/build/pyo3-ffi-b6cb14e247bfd858/build-script-build` (exit status: 1) --- stdout cargo:rustc-check-cfg=cfg(Py_LIMITED_API) cargo:rustc-check-cfg=cfg(PyPy) cargo:rustc-check-cfg=cfg(GraalPy) cargo:rustc-check-cfg=cfg(py_sys_config, values("Py_DEBUG", "Py_REF_DEBUG", "Py_TRACE_REFS", "COUNT_ALLOCS")) cargo:rustc-check-cfg=cfg(invalid_from_utf8_lint) cargo:rustc-check-cfg=cfg(pyo3_disable_reference_pool) cargo:rustc-check-cfg=cfg(pyo3_leak_on_drop_without_reference_pool) cargo:rustc-check-cfg=cfg(diagnostic_namespace) cargo:rustc-check-cfg=cfg(c_str_lit) cargo:rustc-check-cfg=cfg(Py_3_7) cargo:rustc-check-cfg=cfg(Py_3_8) cargo:rustc-check-cfg=cfg(Py_3_9) cargo:rustc-check-cfg=cfg(Py_3_10) cargo:rustc-check-cfg=cfg(Py_3_11) cargo:rustc-check-cfg=cfg(Py_3_12) cargo:rustc-check-cfg=cfg(Py_3_13) cargo:rerun-if-env-changed=PYO3_CROSS cargo:rerun-if-env-changed=PYO3_CROSS_LIB_DIR cargo:rerun-if-env-changed=PYO3_CROSS_PYTHON_VERSION cargo:rerun-if-env-changed=PYO3_CROSS_PYTHON_IMPLEMENTATION cargo:rerun-if-env-changed=PYO3_PRINT_CONFIG cargo:rerun-if-env-changed=PYO3_USE_ABI3_FORWARD_COMPATIBILITY --- stderr error: the configured Python interpreter version (3.14) is newer than PyO3's maximum supported version (3.13) = help: please check if an updated version of PyO3 is available. Current version: 0.22.2 = help: set PYO3_USE_ABI3_FORWARD_COMPATIBILITY=1 to suppress this check and build anyway using the stable ABI warning: build failed, waiting for other jobs to finish... 💥 maturin failed Caused by: Failed to build a native library through cargo Caused by: Cargo build finished with "exit status: 101": `env -u CARGO PYO3_ENVIRONMENT_SIGNATURE="cpython-3.14-64bit" PYO3_PYTHON="/home/runner/work/luma.core/luma.core/.tox/qa/bin/python" PYTHON_SYS_EXECUTABLE="/home/runner/work/luma.core/luma.core/.tox/qa/bin/python" "cargo" "rustc" "--features" "pyo3/extension-module" "--message-format" "json-render-diagnostics" "--manifest-path" "/tmp/pip-install-vmyi7r9j/pydantic-core_f98f83e4570a40c49a602e2d60c388c9/Cargo.toml" "--release" "--lib" "--crate-type" "cdylib"` Error: command ['maturin', 'pep517', 'build-wheel', '-i', '/home/runner/work/luma.core/luma.core/.tox/qa/bin/python', '--compatibility', 'off'] returned non-zero exit status 1 [end of output] note: This error originates from a subprocess, and is likely not a problem with pip. ERROR: Failed building wheel for pydantic-core ERROR: ERROR: Failed to build installable wheels for some pyproject.toml based projects (pydantic-core) ```
closed
2024-10-26T13:44:15Z
2025-03-21T11:52:54Z
https://github.com/pydantic/pydantic-core/issues/1504
[]
thijstriemstra
2
huggingface/transformers
deep-learning
36,548
Facing issue while getting model from Rag,pretrained
**Code** `# Initialize the tokenizer and model model_name = "facebook/rag-token-nq" tokenizer = RagTokenizer.from_pretrained(model_name) model = RagTokenForGeneration.from_pretrained(model_name) # Initialize the retriever retriever = RagRetriever.from_pretrained(model_name) # Tokenization function def tokenize_function(examples): return tokenizer( examples['text'], truncation=True, padding='max_length', max_length=512 ) # Tokenize the dataset tokenized_dataset = dataset.map( tokenize_function, batched=True, remove_columns=dataset.column_names )` **error** `HFValidationError: Repo id must be in the form 'repo_name' or 'namespace/repo_name': 'https://storage.googleapis.com/huggingface-nlp/datasets/wiki_dpr/'. Use `repo_type` argument if needed. The above exception was the direct cause of the following exception: OSError Traceback (most recent call last) OSError: Incorrect path_or_model_id: 'https://storage.googleapis.com/huggingface-nlp/datasets/wiki_dpr/'. Please provide either the path to a local folder or the repo_id of a model on the Hub. During handling of the above exception, another exception occurred: OSError Traceback (most recent call last) /usr/local/lib/python3.11/dist-packages/transformers/models/rag/retrieval_rag.py in _resolve_path(self, index_path, filename) 122 f"- or '{index_path}' is the correct path to a directory containing a file named {filename}.\n\n" 123 ) --> 124 raise EnvironmentError(msg) 125 if is_local: 126 logger.info(f"loading file {resolved_archive_file}") OSError: Can't load 'psgs_w100.tsv.pkl'. Make sure that: - 'https://storage.googleapis.com/huggingface-nlp/datasets/wiki_dpr/' is a correct remote path to a directory containing a file named psgs_w100.tsv.pkl - or 'https://storage.googleapis.com/huggingface-nlp/datasets/wiki_dpr/' is the correct path to a directory containing a file named psgs_w100.tsv.pkl.`
open
2025-03-05T03:18:44Z
2025-03-05T03:18:44Z
https://github.com/huggingface/transformers/issues/36548
[]
MAHESH18TECH
0
oegedijk/explainerdashboard
plotly
93
Shap Dependence toggle outlier treatment
Problem: sometimes its very useful to see on shap values (Shap Dependence plot) with and without outliers. It will be very useful if there is a toggle switch button on plot which enable/disable outlier treatment. Outliers often make a lot of mess on shap dependence plot, and if exist you often not can view correct colored interaction with dependent features. We of course can treat it before passing to explainer, but look on data without treatment also very useful, so has both options will be great! What do you think about it @oegedijk ? Maybe if we can provide both dataset (with and without treatment) or just option to calculate shap values on both origin dataset and dataset with outlier treatment internally?
closed
2021-03-02T15:20:13Z
2021-04-06T07:01:12Z
https://github.com/oegedijk/explainerdashboard/issues/93
[]
oleg-savko
15
nalepae/pandarallel
pandas
73
Python quit unexpectedlly
Hi guys, I got python crashing on my MacBook, even with only one process. Has it happened to anyone before? Thanks, Hector
open
2020-01-24T12:24:41Z
2024-04-27T07:00:55Z
https://github.com/nalepae/pandarallel/issues/73
[]
hector-orkestro
3
LAION-AI/Open-Assistant
python
2,861
License of OpenAssistant/oasst-sft-4-pythia-12b-epoch-3.5
I would like to understand whether the apache 2.0 license on [this](https://huggingface.co/OpenAssistant/oasst-sft-4-pythia-12b-epoch-3.5) particular model card is appropriate. I noticed a related discussion about this [here](https://huggingface.co/OpenAssistant/oasst-sft-4-pythia-12b-epoch-3.5/discussions/1).
closed
2023-04-23T17:40:32Z
2023-04-24T20:11:18Z
https://github.com/LAION-AI/Open-Assistant/issues/2861
[ "question" ]
debraj135
3
huggingface/transformers
python
36,766
ValueError: weight is on the meta device, we need a `value` to put in on 0. `Gemma3`
### System Info **Error trace** ```python --------------------------------------------------------------------------- ValueError Traceback (most recent call last) Cell In[64], line 2 1 tokenizer = AutoTokenizer.from_pretrained(model_id) ----> 2 model = Gemma3ForCausalLM.from_pretrained(model_id, device_map="auto") 3 input_ids = tokenizer("Write me a poem about Machine Learning.", return_tensors="pt").to(model.device) 4 outputs = model.generate(**input_ids, max_new_tokens=100) File [~/.conda/envs/ai4scisci/lib/python3.12/site-packages/transformers/modeling_utils.py:273](http://localhost:3126/lab/tree/users/uig2924/notebooks/~/.conda/envs/ai4scisci/lib/python3.12/site-packages/transformers/modeling_utils.py#line=272), in restore_default_torch_dtype.<locals>._wrapper(*args, **kwargs) 271 old_dtype = torch.get_default_dtype() 272 try: --> 273 return func(*args, **kwargs) 274 finally: 275 torch.set_default_dtype(old_dtype) File [~/.conda/envs/ai4scisci/lib/python3.12/site-packages/transformers/modeling_utils.py:4531](http://localhost:3126/lab/tree/users/uig2924/notebooks/~/.conda/envs/ai4scisci/lib/python3.12/site-packages/transformers/modeling_utils.py#line=4530), in PreTrainedModel.from_pretrained(cls, pretrained_model_name_or_path, config, cache_dir, ignore_mismatched_sizes, force_download, local_files_only, token, revision, use_safetensors, weights_only, *model_args, **kwargs) 4528 device_map_kwargs["offload_buffers"] = True 4530 if not is_fsdp_enabled() and not is_deepspeed_zero3_enabled(): -> 4531 dispatch_model(model, **device_map_kwargs) 4533 # This is needed for the RotaryEmbedding, which was not initialized on the correct device as it is 4534 # not part of the state_dict (persistent=False) 4535 if device_mesh is not None: File [~/.conda/envs/ai4scisci/lib/python3.12/site-packages/accelerate/big_modeling.py:420](http://localhost:3126/lab/tree/users/uig2924/notebooks/~/.conda/envs/ai4scisci/lib/python3.12/site-packages/accelerate/big_modeling.py#line=419), in dispatch_model(model, device_map, main_device, state_dict, offload_dir, offload_index, offload_buffers, skip_keys, preload_module_classes, force_hooks) 415 tied_params_map[data_ptr] = {} 417 # Note: To handle the disk offloading case, we can not simply use weights_map[param_name].data_ptr() as the reference pointer, 418 # as we have no guarantee that safetensors' `file.get_tensor()` will always give the same pointer. --> 420 attach_align_device_hook_on_blocks( 421 model, 422 execution_device=execution_device, 423 offload=offload, 424 offload_buffers=offload_buffers, 425 weights_map=weights_map, 426 skip_keys=skip_keys, 427 preload_module_classes=preload_module_classes, 428 tied_params_map=tied_params_map, 429 ) 431 # warn if there is any params on the meta device 432 offloaded_devices_str = " and ".join( 433 [device for device in set(device_map.values()) if device in ("cpu", "disk")] 434 ) File [~/.conda/envs/ai4scisci/lib/python3.12/site-packages/accelerate/hooks.py:656](http://localhost:3126/lab/tree/users/uig2924/notebooks/~/.conda/envs/ai4scisci/lib/python3.12/site-packages/accelerate/hooks.py#line=655), in attach_align_device_hook_on_blocks(module, execution_device, offload, weights_map, offload_buffers, module_name, skip_keys, preload_module_classes, tied_params_map) 654 for child_name, child in module.named_children(): 655 child_name = f"{module_name}.{child_name}" if len(module_name) > 0 else child_name --> 656 attach_align_device_hook_on_blocks( 657 child, 658 execution_device=execution_device, 659 offload=offload, 660 weights_map=weights_map, 661 offload_buffers=offload_buffers, 662 module_name=child_name, 663 preload_module_classes=preload_module_classes, 664 skip_keys=skip_keys, 665 tied_params_map=tied_params_map, 666 ) File [~/.conda/envs/ai4scisci/lib/python3.12/site-packages/accelerate/hooks.py:656](http://localhost:3126/lab/tree/users/uig2924/notebooks/~/.conda/envs/ai4scisci/lib/python3.12/site-packages/accelerate/hooks.py#line=655), in attach_align_device_hook_on_blocks(module, execution_device, offload, weights_map, offload_buffers, module_name, skip_keys, preload_module_classes, tied_params_map) 654 for child_name, child in module.named_children(): 655 child_name = f"{module_name}.{child_name}" if len(module_name) > 0 else child_name --> 656 attach_align_device_hook_on_blocks( 657 child, 658 execution_device=execution_device, 659 offload=offload, 660 weights_map=weights_map, 661 offload_buffers=offload_buffers, 662 module_name=child_name, 663 preload_module_classes=preload_module_classes, 664 skip_keys=skip_keys, 665 tied_params_map=tied_params_map, 666 ) File [~/.conda/envs/ai4scisci/lib/python3.12/site-packages/accelerate/hooks.py:616](http://localhost:3126/lab/tree/users/uig2924/notebooks/~/.conda/envs/ai4scisci/lib/python3.12/site-packages/accelerate/hooks.py#line=615), in attach_align_device_hook_on_blocks(module, execution_device, offload, weights_map, offload_buffers, module_name, skip_keys, preload_module_classes, tied_params_map) 607 if module_name in execution_device and module_name in offload and not offload[module_name]: 608 hook = AlignDevicesHook( 609 execution_device=execution_device[module_name], 610 offload_buffers=offload_buffers, (...) 614 tied_params_map=tied_params_map, 615 ) --> 616 add_hook_to_module(module, hook) 617 attach_execution_device_hook(module, execution_device[module_name], tied_params_map=tied_params_map) 618 elif module_name in execution_device and module_name in offload: File [~/.conda/envs/ai4scisci/lib/python3.12/site-packages/accelerate/hooks.py:161](http://localhost:3126/lab/tree/users/uig2924/notebooks/~/.conda/envs/ai4scisci/lib/python3.12/site-packages/accelerate/hooks.py#line=160), in add_hook_to_module(module, hook, append) 158 old_forward = module.forward 159 module._old_forward = old_forward --> 161 module = hook.init_hook(module) 162 module._hf_hook = hook 164 def new_forward(module, *args, **kwargs): File [~/.conda/envs/ai4scisci/lib/python3.12/site-packages/accelerate/hooks.py:283](http://localhost:3126/lab/tree/users/uig2924/notebooks/~/.conda/envs/ai4scisci/lib/python3.12/site-packages/accelerate/hooks.py#line=282), in AlignDevicesHook.init_hook(self, module) 281 if not self.offload and self.execution_device is not None: 282 for name, _ in named_module_tensors(module, recurse=self.place_submodules): --> 283 set_module_tensor_to_device(module, name, self.execution_device, tied_params_map=self.tied_params_map) 284 elif self.offload: 285 self.original_devices = { 286 name: param.device for name, param in named_module_tensors(module, recurse=self.place_submodules) 287 } File [~/.conda/envs/ai4scisci/lib/python3.12/site-packages/accelerate/utils/modeling.py:364](http://localhost:3126/lab/tree/users/uig2924/notebooks/~/.conda/envs/ai4scisci/lib/python3.12/site-packages/accelerate/utils/modeling.py#line=363), in set_module_tensor_to_device(module, tensor_name, device, value, dtype, fp16_statistics, tied_params_map) 361 return 363 if old_value.device == torch.device("meta") and device not in ["meta", torch.device("meta")] and value is None: --> 364 raise ValueError(f"{tensor_name} is on the meta device, we need a `value` to put in on {device}.") 366 param = module._parameters[tensor_name] if tensor_name in module._parameters else None 367 param_cls = type(param) ValueError: weight is on the meta device, we need a `value` to put in on 0. ``` **Code to reproduce** ```python tokenizer = AutoTokenizer.from_pretrained(model_id) model = Gemma3ForCausalLM.from_pretrained(model_id, device_map="auto") input_ids = tokenizer("Write me a poem about Machine Learning.", return_tensors="pt").to(model.device) outputs = model.generate(**input_ids, max_new_tokens=100) text = tokenizer.batch_decode(outputs, skip_special_tokens=True) ``` taken from https://huggingface.co/docs/transformers/main/en/model_doc/gemma3#transformers.Gemma3TextConfig. **Hardware accelerator** ```python !nvidia-smi -L GPU 0: NVIDIA A100 80GB PCIe (UUID: GPU-cf881215-9c35-ed1c-cfc3-fb7a629e34fe) ``` **Library information** ```python print(transformers.__version__) print(torch.__version__) 4.50.0.dev0 2.4.1+cu121 ``` **Kernel** ```shell Linux qgpu0518 3.10.0-1160.95.1.el7.x86_64 #1 SMP Fri Jun 23 08:44:55 EDT 2023 x86_64 x86_64 x86_64 GNU/Linux ``` **OS** ```shell LSB Version: :core-4.1-amd64:core-4.1-noarch:cxx-4.1-amd64:cxx-4.1-noarch:desktop-4.1-amd64:desktop-4.1-noarch:languages-4.1-amd64:languages-4.1-noarch:printing-4.1-amd64:printing-4.1-noarch Distributor ID: RedHatEnterpriseServer Description: Red Hat Enterprise Linux Server release 7.9 (Maipo) Release: 7.9 Codename: Maipo ``` > NOTE: I've disabled the `device_map` yet the meta device issue wouldn't go away. The only circumstance the above snippet works is when i use `cpu`. ### Who can help? _No response_ ### Information - [x] The official example scripts - [ ] My own modified scripts ### Tasks - [ ] An officially supported task in the `examples` folder (such as GLUE/SQuAD, ...) - [ ] My own task or dataset (give details below) ### Reproduction Run the following code ```python tokenizer = AutoTokenizer.from_pretrained(model_id) model = Gemma3ForCausalLM.from_pretrained(model_id, device_map="auto") input_ids = tokenizer("Write me a poem about Machine Learning.", return_tensors="pt").to(model.device) outputs = model.generate(**input_ids, max_new_tokens=100) text = tokenizer.batch_decode(outputs, skip_special_tokens=True) ``` ### Expected behavior `ValueError` ```python ValueError: weight is on the meta device, we need a `value` to put in on 0. ```
closed
2025-03-17T16:07:05Z
2025-03-17T19:25:51Z
https://github.com/huggingface/transformers/issues/36766
[ "bug" ]
akhilpandey95
2
twopirllc/pandas-ta
pandas
179
ImportError: cannot import name 'version' from partially initialized module 'pandas_ta'
pandas_ta-0.2.23b ```python import pandas_ta as ta ``` <br/> Error: ```sh File "/.pyenv/versions/covesting/lib/python3.8/site-packages/pandas_ta/__init__.py", line 96, in <module> from pandas_ta.core import * File "/.pyenv/versions/covesting/lib/python3.8/site-packages/pandas_ta/core.py", line 12, in <module> from pandas_ta import version, Category ImportError: cannot import name 'version' from partially initialized module 'pandas_ta' (most likely due to a circular import) (/.pyenv/versions/covesting/lib/python3.8/site-packages/pandas_ta/__init__.py) ``` Using Python 3.8.5 (default, Sep 11 2020, 11:13:06) on mac I can use the git repo version directly, which 28 I think, but then using `.ta.<anything>` does not work and does not add anything onto the dataframe.
closed
2020-12-29T11:46:09Z
2021-02-15T22:21:44Z
https://github.com/twopirllc/pandas-ta/issues/179
[ "bug" ]
Tjorriemorrie
4
httpie/cli
python
812
config.json cannot be load occassionally in multiprocess usecase
It seems that during http request, the file config.json will be cleaned and update. In multiprocess usecase, sometimes httpie would read an empty config file and occurs an error. The thrown exception are: ```python Traceback (most recent call last): File "c:\python36\lib\site-packages\httpie\config.py", line 47, in load data = json.load(f) File "c:\python36\lib\json\__init__.py", line 299, in load parse_constant=parse_constant, object_pairs_hook=object_pairs_hook, **kw) File "c:\python36\lib\json\__init__.py", line 354, in loads return _default_decoder.decode(s) File "c:\python36\lib\json\decoder.py", line 339, in decode obj, end = self.raw_decode(s, idx=_w(s, 0).end()) File "c:\python36\lib\json\decoder.py", line 357, in raw_decode raise JSONDecodeError("Expecting value", s, err.value) from None json.decoder.JSONDecodeError: Expecting value: line 1 column 1 (char 0) During handling of the above exception, another exception occurred: Traceback (most recent call last): File "c:\python36\lib\runpy.py", line 193, in _run_module_as_main "__main__", mod_spec) File "c:\python36\lib\runpy.py", line 85, in _run_code exec(code, run_globals) File "C:\Python36\Scripts\http.exe\__main__.py", line 9, in <module> File "c:\python36\lib\site-packages\httpie\__main__.py", line 11, in main sys.exit(main()) File "c:\python36\lib\site-packages\httpie\core.py", line 193, in main if env.config.default_options: File "c:\python36\lib\site-packages\httpie\context.py", line 84, in config self._config.load() File "c:\python36\lib\site-packages\httpie\config.py", line 96, in load super(Config, self).load() File "c:\python36\lib\site-packages\httpie\config.py", line 51, in load (type(self).__name__, str(e), self.path) ValueError: Invalid Config JSON: Expecting value: line 1 column 1 (char 0) [D:\Users\xxxx\AppData\Roaming\\httpie\config.json] Traceback (most recent call last): File "c:\python36\lib\site-packages\httpie\config.py", line 47, in load data = json.load(f) File "c:\python36\lib\json\__init__.py", line 299, in load parse_constant=parse_constant, object_pairs_hook=object_pairs_hook, **kw) File "c:\python36\lib\json\__init__.py", line 354, in loads return _default_decoder.decode(s) File "c:\python36\lib\json\decoder.py", line 339, in decode obj, end = self.raw_decode(s, idx=_w(s, 0).end()) File "c:\python36\lib\json\decoder.py", line 357, in raw_decode raise JSONDecodeError("Expecting value", s, err.value) from None json.decoder.JSONDecodeError: Expecting value: line 1 column 1 (char 0) During handling of the above exception, another exception occurred: Traceback (most recent call last): File "c:\python36\lib\runpy.py", line 193, in _run_module_as_main "__main__", mod_spec) File "c:\python36\lib\runpy.py", line 85, in _run_code exec(code, run_globals) File "C:\Python36\Scripts\http.exe\__main__.py", line 9, in <module> File "c:\python36\lib\site-packages\httpie\__main__.py", line 11, in main sys.exit(main()) File "c:\python36\lib\site-packages\httpie\core.py", line 193, in main if env.config.default_options: File "c:\python36\lib\site-packages\httpie\context.py", line 84, in config self._config.load() File "c:\python36\lib\site-packages\httpie\config.py", line 96, in load super(Config, self).load() File "c:\python36\lib\site-packages\httpie\config.py", line 51, in load (type(self).__name__, str(e), self.path) ValueError: Invalid Config JSON: Expecting value: line 1 column 1 (char 0) [D:\Users\xxxx\AppData\Roaming\\httpie\config.json] ```
closed
2019-10-31T14:09:16Z
2019-12-02T16:45:32Z
https://github.com/httpie/cli/issues/812
[]
onriv
2
coqui-ai/TTS
python
3,483
[Bug] Update current_rl XTTS
### Describe the bug Hi! Is the learning rate update actually happening? ![2024-01-01-113616_640x162_scrot](https://github.com/coqui-ai/TTS/assets/88548335/c757f546-6b62-4bae-9375-e5babb338ba0) ![2024-01-01-113625_630x153_scrot](https://github.com/coqui-ai/TTS/assets/88548335/361736c5-3c98-414a-b28e-c124b519e0df) Is the learning rate update actually happening? After 10,000 steps it should be 0.004, but I constantly see the initial learning rate. It's annoying. ### To Reproduce def main(): model_args = GPTArgs( max_conditioning_length=132300, min_conditioning_length=66150, debug_loading_failures=False, max_wav_length=384000, max_text_length=180, mel_norm_file=MEL_NORM_FILE, dvae_checkpoint=DVAE_CHECKPOINT, xtts_checkpoint=XTTS_CHECKPOINT, tokenizer_file=TOKENIZER_FILE, gpt_num_audio_tokens=1026, gpt_start_audio_token=1024, gpt_stop_audio_token=1025, gpt_use_masking_gt_prompt_approach=True, gpt_use_perceiver_resampler=True, ) audio_config = XttsAudioConfig(sample_rate=22050, dvae_sample_rate=22050, output_sample_rate=24000) config = GPTTrainerConfig( epochs=1000, output_path=OUT_PATH, model_args=model_args, run_name=RUN_NAME, project_name=PROJECT_NAME, run_description=""" GPT XTTS training """, dashboard_logger=DASHBOARD_LOGGER, logger_uri=LOGGER_URI, audio=audio_config, batch_size=BATCH_SIZE, batch_group_size=48, eval_batch_size=BATCH_SIZE, num_loader_workers=16, eval_split_max_size=512, print_step=1130, plot_step=1130, log_model_step=1000, save_step=100000, save_n_checkpoints=1, save_checkpoints=True, #text_cleaner="phoneme_cleaners", use_phonemes=True, phoneme_language="ru-ru", #mixed_precision=True, # target_loss="loss", print_eval=False, optimizer="AdamW", optimizer_wd_only_on_weights=OPTIMIZER_WD_ONLY_ON_WEIGHTS, optimizer_params={"betas": [0.9, 0.96], "eps": 1e-8, "weight_decay": 1e-2}, lr=5e-04, lr_scheduler="StepwiseGradualLR", lr_scheduler_params={ "gradual_learning_rates": [ [0, 5e-4], [10000, 4e-4], [20000, 3e-4], [30000, 2e-4], [40000, 1e-4], [50000, 9e-5], [60000, 8e-5], [70000, 7e-5], [80000, 6e-5] ] }, scheduler_after_epoch=True, test_sentences=[ { "text": "На стуле у оловянного тазика висела куртка Тамары, две узкие кровати были сдвинуты, шерстяные одеяла смяты, окно оставили открытым, и через него проникало осеннее солнце.", "speaker_wav": SPEAKER_REFERENCE, "language": LANGUAGE, }, ], ) # init the model from config model = GPTTrainer.init_from_config(config) # load training samples train_samples, eval_samples = load_tts_samples( DATASETS_CONFIG_LIST, eval_split=True, eval_split_max_size=config.eval_split_max_size, eval_split_size=config.eval_split_size, ) import torch torch.cuda.set_device(0) # init the trainer and trainer = Trainer( TrainerArgs( restore_path=None, # xtts checkpoint is restored via xtts_checkpoint key so no need of restore it using Trainer restore_path parameter skip_train_epoch=False, start_with_eval=START_WITH_EVAL, grad_accum_steps=GRAD_ACUMM_STEPS, ), config, output_path=OUT_PATH, model=model, train_samples=train_samples, eval_samples=eval_samples, ) trainer.fit() ### Expected behavior Correct learning rate ### Logs _No response_ ### Environment ```shell { "CUDA": { "GPU": [ "NVIDIA GeForce RTX 4090", "NVIDIA GeForce GTX 1060 6GB", "NVIDIA GeForce GTX 1060 6GB" ], "available": true, "version": "12.1" }, "Packages": { "PyTorch_debug": false, "PyTorch_version": "2.1.2", "TTS": "0.22.0", "numpy": "1.26.2" }, "System": { "OS": "Linux", "architecture": [ "64bit", "ELF" ], "processor": "x86_64", "python": "3.11.7", "version": "#101-Ubuntu SMP Tue Nov 14 13:30:08 UTC 2023" } } ``` ### Additional context _No response_
closed
2024-01-01T08:50:00Z
2024-03-21T14:53:07Z
https://github.com/coqui-ai/TTS/issues/3483
[ "bug", "wontfix" ]
insomnia777
2
Asabeneh/30-Days-Of-Python
numpy
189
programacion
closed
2022-02-14T18:27:35Z
2023-07-08T22:21:37Z
https://github.com/Asabeneh/30-Days-Of-Python/issues/189
[]
Carlos188125
0
pytest-dev/pytest-qt
pytest
251
[Question] How to use with QML applications?
I came across #204; but as the issue is closed and more than 6 months old, I figured I would open a new one. I'm trying to make use of pytest-qt with a QML application, my understanding is that qtbot needs to add a widget, but from `QQmlApplicationEngine` I can only get a `QWindow`, not a widget. ```python @pytest.fixture() def window(qtbot): engine = QQmlApplicationEngine() engine.load(QUrl("main.qml") window = engine.rootObjects()[0] # this gives a QWindow object qtbot.add_widget(window) # probably not what I actually want to do window.show() return window def test_window_title(window): assert window.title() == "some title" ``` Running this results in: ``` ____________________ ERROR at teardown of test_window_title ____________________ item = <Function 'test_window_title'> @pytest.mark.hookwrapper @pytest.mark.trylast def pytest_runtest_teardown(item): """ Hook called after each test tear down, to process any pending events and avoiding leaking events to the next test. Also, if exceptions have been captured during fixtures teardown, fail the test. """ _process_events() > _close_widgets(item) .venv/lib/python3.7/site-packages/pytestqt/plugin.py:181: _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ item = <Function 'test_window_title'> def _close_widgets(item): """ Close all widgets registered in the pytest item. """ widgets = getattr(item, "qt_widgets", None) if widgets: for w in item.qt_widgets: w = w() if w is not None: > w.close() E RuntimeError: Internal C++ object (PySide2.QtGui.QWindow) already deleted. ``` Should I be trying something else? BTW thanks for the awesome pytest plugin, it's been very helpful w/ my non-QML based PyQt based applications.
closed
2018-12-07T19:23:18Z
2018-12-14T23:36:34Z
https://github.com/pytest-dev/pytest-qt/issues/251
[]
j9ac9k
3
Skyvern-AI/skyvern
automation
1,166
Error while running docker compose using podman
Hi I am trying to run docker compose with podman and I get the below error: PS C:\Users\xxxxx\skyvern\skyvern> podman compose up -d >>>> Executing external compose provider "C:\\Users\\xxxxx\\AppData\\Local\\Microsoft\\WindowsApps\\docker-compose.exe". Please see podman-compose(1) for how to disable this message. <<<< time="2024-11-11T17:38:46+05:30" level=warning msg="C:\\Users\\xxxx\\skyvern\\skyvern\\docker-compose.yml: the attribute `version` is obsolete, it will be ignored, please remove it to avoid potential confusion" [+] Running 0/1 - Container skyvern-postgres-1 Creating 0.1s Error response from daemon: container create: statfs /mnt/c/Users/anuthakur/skyvern/skyvern/postgres-data: no such file or directory Error: executing C:\Users\xxxx\AppData\Local\Microsoft\WindowsApps\docker-compose.exe up -d: exit status 1
open
2024-11-11T12:11:25Z
2024-11-13T05:06:05Z
https://github.com/Skyvern-AI/skyvern/issues/1166
[ "help wanted" ]
ThakurAnunaya
1
jonaswinkler/paperless-ng
django
152
FR: Searchable dropdowns
As the list of correspondents might grow, it would be nice to be able to search in the correspondents dropdown. For example by using [Select2](www.select2.org) or something else.
closed
2020-12-17T19:41:09Z
2020-12-22T15:12:59Z
https://github.com/jonaswinkler/paperless-ng/issues/152
[ "feature request", "fixed in next release" ]
zjean
6
robotframework/robotframework
automation
4,759
performance drop for remote libraries
**The problem** We are just upgrading from 3.x to 6.0.2. We experienced a drop in performance. Running the test started taking a lot longer: from ~2:30h to ~2:50, from 1:05 to 1:15. **Analysis** We have narrowed down the problem to the start-phase of tests suites - and specifically to setting up the remote libraries. The tests themselves seem to be running at the same speed as earlier. In log.html, we see that there's a long delay between the start time of the suite and the start time of the suite setup. In robot syslog, we can see that the "Creates keyword"-entries are running for 10s of seconds and even minutes for remote libraries. We are using jrobotremoteserver. We upgraded from 3.0 to 4.1.0 - with no effect. Only the spurious error messages changed from "_No such handler: get_keyword_tags_" to "_Failed to invoke method get_library_information in class org.robotframework.remoteserver.servlet.ServerMethods: Duplicate key stop_remote_server_" **During the suite setups, we noticed load spikes in the nodes running the jrobotremoteserver:** CPU( greenish=Priviledged, brownish=User) - note that the spikes are on the Priviledged side: ![image](https://user-images.githubusercontent.com/5871676/237040489-bcd93cf7-cf76-415f-9cfd-16017a00e782.png) Network packets ( grid-lines are for 5Kp/s, 10Kp/s,15 Kp/s, greenish=Received, brownish=Sent): ![image](https://user-images.githubusercontent.com/5871676/237041261-e87ef37f-3356-481b-84df-5025be899feb.png) We have not captured network traffic, but from the figures and metrics, it would seem that the new version of robot framework bombards the remote server for some reason. We found out that this issue has probably been found out in these tickets: * https://github.com/robotframework/jrobotremoteserver/issues/58 * https://github.com/d-biehl/robotcode/issues/24 **Workaround** We also found out that in one ticket, someone has published a forked version of jrobotremoteserver, which fixes the "duplicate key stop_remote_server"-error: https://github.com/robotframework/jrobotremoteserver/pull/66. We gave that version a go -and the performance issue was resolved, the run times are now back to what they used to be and also the metrics are no more showing the spikes: ![image](https://user-images.githubusercontent.com/5871676/237047220-1e80b0a9-afc9-42c8-b6af-cb8c3fd00706.png) ![image](https://user-images.githubusercontent.com/5871676/237047367-f901e448-446b-4138-acf3-186130de4240.png) **Conclusions** I'm reporting this to robot framework instead of jrobotremoteserver - because it would seem that robot framework is doing some bombarding and causes the problem in the jrobotremoteserver. Of course, the issue might be resolved - or rather hidden - when the jrobotremoteserver gets a new release with the seemingly unrelated(?) "Duplicate key stop_remote_server_"-issue resolved.
closed
2023-05-09T09:11:51Z
2023-12-20T08:25:44Z
https://github.com/robotframework/robotframework/issues/4759
[]
karniemi
4
Evil0ctal/Douyin_TikTok_Download_API
api
248
[BUG] 无法下载
<html> <body> <!--StartFragment--> 视频下载-无水印 | 点击下载 -- | -- <!--EndFragment--> </body> </html> http://api.douyin.wtf/download?url=https://v.douyin.com/iJp9BVd9/&prefix=true&watermark=false { "status": "endpoint closed", "message": "此端点已关闭请在配置文件中开启/This endpoint is closed, please enable it in the configuration file" } ![IMG_7382(20230822-051110)](https://github.com/Evil0ctal/Douyin_TikTok_Download_API/assets/28617728/7935fc8b-3118-45a4-b61d-24d221e47aeb) 视频下载-无水印 [点击下载](http://api.douyin.wtf/download?url=https://v.douyin.com/iJp9BVd9/&prefix=true&watermark=false)
closed
2023-08-21T21:13:22Z
2023-08-23T07:20:01Z
https://github.com/Evil0ctal/Douyin_TikTok_Download_API/issues/248
[ "BUG" ]
Kwaiyu
2
kangvcar/InfoSpider
automation
13
![image](https://user-images.githubusercontent.com/70186641/91119003-cf0dfb80-e6c4-11ea-80cf-e1a3a7dce54d.png)
closed
2020-08-25T03:19:04Z
2020-12-15T03:34:34Z
https://github.com/kangvcar/InfoSpider/issues/13
[ "bug" ]
locatomlion
3
pydata/xarray
numpy
9,656
mypy failure for Variable + Dataset arithmetic in test_typed_ops.py with Python 3.12 only
### What is your issue? I get the following error when I run mypy in a Python 3.12 environment: ``` $ python -m mypy --install-types --non-interactive xarray/tests/test_typed_ops.py: note: In function "test_dataset_typed_ops": xarray/tests/test_typed_ops.py:139: error: Argument 1 to "_test" has incompatible type "Variable"; expected "Dataset" [arg-type] xarray/tests/test_typed_ops.py:140: error: Argument 1 to "_test" has incompatible type "DataArray"; expected "Dataset" [arg-type] xarray/tests/test_typed_ops.py:151: error: Argument 1 to "_test" has incompatible type "Variable"; expected "Dataset" [arg-type] xarray/tests/test_typed_ops.py:152: error: Argument 1 to "_test" has incompatible type "DataArray"; expected "Dataset" [arg-type] xarray/tests/test_typed_ops.py:163: error: Argument 1 to "_test" has incompatible type "Variable"; expected "Dataset" [arg-type] xarray/tests/test_typed_ops.py:164: error: Argument 1 to "_test" has incompatible type "DataArray"; expected "Dataset" [arg-type] Found 6 errors in 1 file (checked 167 source files) ``` When I run this using an identical Python 3.11 setup, mypy passes without any errors. The [offending lines](https://github.com/pydata/xarray/blob/ed32ba722cbc289cd44f931966dedbee46461642/xarray/tests/test_typed_ops.py#L139-L140) are doing arithmetic operations like `Variable + Dataset` or `DataArray + Dataset`. Enviroment details: <details> ## Python 3.12 commit: df87f692ea3d68ec90bc19fb227996413ee083a0 python: 3.12.7 | packaged by conda-forge | (main, Oct 4 2024, 15:57:01) [Clang 17.0.6 ] python-bits: 64 OS: Darwin OS-release: 23.6.0 machine: arm64 processor: arm byteorder: little LC_ALL: None LANG: en_US.UTF-8 LOCALE: ('en_US', 'UTF-8') libhdf5: 1.14.3 libnetcdf: 4.9.2 xarray: 2024.9.1.dev81+g994550f0 pandas: 2.2.3 numpy: 2.0.2 scipy: 1.14.1 netCDF4: 1.7.1 pydap: 3.5 h5netcdf: 1.4.0 h5py: 3.12.1 zarr: 2.18.3 cftime: 1.6.4 nc_time_axis: 1.4.1 iris: 3.9.0 bottleneck: 1.4.2 dask: 2024.10.0 distributed: 2024.10.0 matplotlib: 3.9.2 cartopy: 0.24.0 seaborn: 0.13.2 numbagg: 0.8.2 fsspec: 2024.9.0 cupy: None pint: None sparse: 0.15.4 flox: 0.9.12 numpy_groupies: 0.11.2 setuptools: 75.1.0 pip: 24.2 conda: None pytest: 8.3.3 mypy: 1.11.2 IPython: None sphinx: None ## Python 3.11 commit: df87f692ea3d68ec90bc19fb227996413ee083a0 python: 3.11.10 | packaged by conda-forge | (main, Oct 16 2024, 01:26:25) [Clang 17.0.6 ] python-bits: 64 OS: Darwin OS-release: 23.6.0 machine: arm64 processor: arm byteorder: little LC_ALL: None LANG: en_US.UTF-8 LOCALE: ('en_US', 'UTF-8') libhdf5: 1.14.3 libnetcdf: 4.9.2 xarray: 2024.9.1.dev77+gdf87f692 pandas: 2.2.3 numpy: 2.0.2 scipy: 1.14.1 netCDF4: 1.7.1 pydap: 3.5 h5netcdf: 1.4.0 h5py: 3.12.1 zarr: 2.18.3 cftime: 1.6.4 nc_time_axis: 1.4.1 iris: 3.9.0 bottleneck: 1.4.2 dask: 2024.10.0 distributed: 2024.10.0 matplotlib: 3.9.2 cartopy: 0.24.0 seaborn: 0.13.2 numbagg: 0.8.2 fsspec: 2024.9.0 cupy: None pint: None sparse: 0.15.4 flox: 0.9.12 numpy_groupies: 0.11.2 setuptools: 75.1.0 pip: 24.2 conda: None pytest: 8.3.3 mypy: 1.11.2 IPython: None sphinx: None </details>
closed
2024-10-21T21:38:03Z
2024-10-28T22:08:25Z
https://github.com/pydata/xarray/issues/9656
[ "bug", "topic-typing" ]
shoyer
0
TencentARC/GFPGAN
deep-learning
571
Fix a picture
![IMG_٢٠٢٤٠٨٢٤_١٦٠٢٤٨](https://github.com/user-attachments/assets/e361997d-c04f-4909-b21a-444e62298580)
closed
2024-08-24T13:08:57Z
2024-08-24T13:10:00Z
https://github.com/TencentARC/GFPGAN/issues/571
[]
mn3m28
1
opengeos/leafmap
streamlit
379
Errors in 00_key_features.ipynb (in colab)
## Errors found when running 00_key_features.ipynb on colab: 1. **Missing package: pycrs** - "Add shapefile". Add a cell with `!pip install pycrs` & execute it before running the related code cell. 2. **Missing import: subprocess** - "Add KML" ``` #[...] except ImportError: print('Installing geopandas ...') import subprocess # missing ``` 3. **Missing import: os** - "Add Planet imagery" ``` import os # missing os.environ["PLANET_API_KEY"] = "12345" ``` That import should be done early on, with the leafmap import cell, imho. No need to repeat `import os` and `import leafmap.heremap as leafmap` as done in "Use heremap plotting backend"
closed
2023-03-03T00:11:05Z
2023-03-04T20:59:17Z
https://github.com/opengeos/leafmap/issues/379
[ "bug" ]
CatChenal
0
explosion/spaCy
data-science
12,906
LOWER does not always work when presented with random casing
## How to reproduce the behavior Create a matcher with the following pattern: ``` [{'LOWER': 'git'}] ``` Then match on this sentence: ``` GitHub is a platform and cloud-based service for software development and version control using gIT. ``` Observe that "gIT" is correctly matched. Then try matching on this sentence: ``` GitHub is a platform and cloud-based service for software development and version control using giT. ``` This time, observe that "giT" is not matched. [Here's a demo of the problem](https://demos.explosion.ai/matcher?text=GitHub%20is%20a%20platform%20and%20cloud-based%20service%20for%20software%20development%20and%20version%20control%20using%20giT.%0A%0AGitHub%20is%20a%20platform%20and%20cloud-based%20service%20for%20software%20development%20and%20version%20control%20using%20gIT.%0A&model=en_core_web_sm&pattern=%5B%7B%22id%22%3A0%2C%22attrs%22%3A%5B%7B%22name%22%3A%22LOWER%22%2C%22value%22%3A%22git%22%7D%5D%7D%5D) I made using the online rule-based matcher explorer. Alternatively, here's a code snippet: ```python from spacy.matcher import Matcher import spacy spacy.cli.download('en_core_web_sm') model = spacy.load('en_core_web_sm') matcher = Matcher(model.vocab) matcher.add(key=0, patterns=[[{'LOWER': 'git'}]]) sentence1 = "GitHub is a platform and cloud-based service for software development and version control using gIT." sentence2 = "GitHub is a platform and cloud-based service for software development and version control using giT." doc1 = model(sentence1) matches1 = matcher(doc1, as_spans=True) print(f"{sentence1} {matches1}") doc2 = model(sentence2) matches2 = matcher(doc2, as_spans=True) print(f"{sentence2} {matches2}") ``` Punctuation seems to play a role, but I'm not sure how. If you remove the period from the end of the failing sentence, the matcher works. ## Your Environment - **spaCy version:** 3.6.1 - **Platform:** macOS-13.5-arm64-arm-64bit - **Python version:** 3.9.17 - **Pipelines:** en_core_web_sm (3.6.0)
closed
2023-08-11T19:46:53Z
2023-09-23T00:02:06Z
https://github.com/explosion/spaCy/issues/12906
[ "feat / matcher", "feat / tokenizer" ]
mjsonofharry
3
open-mmlab/mmdetection
pytorch
11,400
is it possible to load a pretrained model and reinitialize a specific layer?
I'm using a YOLOX model with a custom bbox head. I've essentially added a new layer identical to the objectness head (`multi_level_conv_obj`) to predict an additional property. Let's say it's called `multi_level_conv_prop`. What I want to do is load a pretrained checkpoint of this model and finetune only `multi_level_conv_prop`. I also want to reinitialize the weights of `multi_level_conv_prop` before starting finetuning. Is that possible to do in the config? I think maybe a pre-training hook can do this, but I'm not sure if that's the best way. And in case this info matters - I'm also using a custom optim wrapper constructor since I couldn't find a way to freeze the entire model except the `multi_level_conv_prop` layer.
open
2024-01-18T13:25:09Z
2024-01-18T13:25:24Z
https://github.com/open-mmlab/mmdetection/issues/11400
[]
SchizoidBat
0
xinntao/Real-ESRGAN
pytorch
77
怎麽能在Cupscale GUI裏調用Real-ESRGAN的pytorch AI網絡?
現在有個Cupscale GUI,目前沒辦法使用AI network:Real-ESRGAN(Pytorch)。只能用Real-ESRGAN(ncnnn)網絡。能指點一下把源碼的什麽部分拷貝出來或者怎麽搞一下,能讓這個圖形化界面能使用到Real-ESRGAN(Pytorch)網絡 嗎? 個人是接觸這個的新手,對這個深度學習模型很感興趣,能加一下您的微信聯係方式,便於請教一些具體問題不?
open
2021-09-13T05:58:16Z
2021-09-19T15:06:12Z
https://github.com/xinntao/Real-ESRGAN/issues/77
[]
Battlecraft369
5
koxudaxi/datamodel-code-generator
fastapi
1,495
Missing constr import when --collapse-root-models and using directory input
**Describe the bug** When using a directory input and multiple input files the resulting python module is missing a `from pydantic import constr` Note that this occurs for both pydantic v1 and pydantic v2 output types. **To Reproduce** ``` $ tree schemas schemas ├── common.yml └── test.yml $ datamodel-codegen --input schemas --input-file-type jsonschema --output src --disable-timestamp --enable-version-header --collapse-root-models --output-model-type pydantic_v2.BaseModel $ tree src src ├── __init__.py ├── common.py └── test.py # Note the missing constr import in the `from pydantic ...` line $ cat test.py # generated by datamodel-codegen: # filename: test.yml # version: 0.21.4 from __future__ import annotations from pydantic import BaseModel, Field from . import common class Test(BaseModel): uid: constr(pattern=r'[0-9ABCDEFGHJKMNPQRSTVWXYZ]{26,26}') = Field( ..., description='ulid of this object' ) ``` Example schema: - schemas/common.yml ```yaml --- $schema: https://json-schema.org/draft/2020-12/schema $id: common.yml definitions: ulid: type: string pattern: '[0-9ABCDEFGHJKMNPQRSTVWXYZ]{26,26}' ``` - schemas/test.yml ```yaml --- $schema: https://json-schema.org/draft/2020-12/schema $id: test.yml title: test required: - uid properties: uid: description: ulid of this object $ref: ./common.yml#/definitions/ulid ``` Used commandline: ``` $ datamodel-codegen --input schemas --input-file-type jsonschema --output src --disable-timestamp --enable-version-header --collapse-root-models --output-model-type pydantic_v2.BaseModel ``` **Expected behavior** The import in `test.py` should include `constr` eg: ```python from pydantic import BaseModel, Field, constr ``` Without the `constr` import a `pydantic.errors.PydanticUserError` is raised stating that the model '... is not fully defined, you should define `constr`, then call ...rebuild. Separately, `common.py` is generated with the `constr` import despite not using it in that module or having any other schema models defined in it and ends up being: ```python # generated by datamodel-codegen: # filename: common.yml # version: 0.21.4 from __future__ import annotations from typing import Any from pydantic import RootModel, constr class Model(RootModel): root: Any ``` **Version:** - OS: Linux, debian 12. - Python version: 3.11 - datamodel-code-generator version: 0.21.4
closed
2023-08-18T01:58:45Z
2023-10-07T16:23:59Z
https://github.com/koxudaxi/datamodel-code-generator/issues/1495
[ "bug" ]
indrat
1
benbusby/whoogle-search
flask
104
[FEATURE] Option to use privacy-respecting services
**Describe the feature you'd like to see added** It would be nice if we could activate an option to transform all "*twitter.com*" links to "*nitter.net*", "*youtube.com*" to "*invidio.us*", "*maps.google.com*" to "*openstreetmaps.org*" and "*instagram.com*" to "*bibliogram.art*" (or any instance of preference from users). **Describe which parts of the project this would modify (/app/filter.py)** I think "filter.py" should be modified (I may be wrong as I'm not very familiarized with the project). Maybe a string.replace("service.bad", "service.good") would do as (at least invidious and nitter) share the exact same links with their respective pairs (eg. twitter.com/Snowden/status/... == nitter.net/Snowden/status/... and same for invidio.us) **Additional context** Those services fully respect the privacy from users and allow them to navigate through those privative networks.
closed
2020-07-11T08:37:11Z
2020-07-26T17:54:00Z
https://github.com/benbusby/whoogle-search/issues/104
[ "enhancement" ]
hialvaro
1
django-import-export/django-import-export
django
1,960
Explicit field declaration with no attribute is not exported
**Describe the bug** Create Resources as follows: ```python class BookResource(ModelResource): author_email = Field(column_name='aut_em') class Meta: fields = ("author_email",) model = Book ``` Run an export via admin page. The output is an empty `aut_em` column. The column should be exported with the correct data. Adding the attribute declaration fixes the issue: ```python author_email = Field(attribute="author_email", column_name='aut_em') ``` **Versions (please complete the following information):** - Django Import Export: 4.1.1 - Python 3.12 - Django 5.1 v3 also has this bug.
closed
2024-10-10T15:10:50Z
2024-10-10T17:17:29Z
https://github.com/django-import-export/django-import-export/issues/1960
[ "bug" ]
matthewhegarty
1
ipython/ipython
jupyter
14,439
: documentation build fails with `cannot import name 'system' from 'IPython.utils.process'` error
Looks like something is wrong ant with new version is no longer possible to build documentation ```console + /usr/bin/sphinx-build -n -T -b man docs/source build/sphinx/man Running Sphinx v7.3.7 Traceback (most recent call last): File "/usr/lib/python3.10/site-packages/sphinx/registry.py", line 453, in load_extension mod = import_module(extname) File "/usr/lib64/python3.10/importlib/__init__.py", line 126, in import_module return _bootstrap._gcd_import(name[level:], package, level) File "<frozen importlib._bootstrap>", line 1050, in _gcd_import File "<frozen importlib._bootstrap>", line 1027, in _find_and_load File "<frozen importlib._bootstrap>", line 992, in _find_and_load_unlocked File "<frozen importlib._bootstrap>", line 241, in _call_with_frames_removed File "<frozen importlib._bootstrap>", line 1050, in _gcd_import File "<frozen importlib._bootstrap>", line 1027, in _find_and_load File "<frozen importlib._bootstrap>", line 992, in _find_and_load_unlocked File "<frozen importlib._bootstrap>", line 241, in _call_with_frames_removed File "<frozen importlib._bootstrap>", line 1050, in _gcd_import File "<frozen importlib._bootstrap>", line 1027, in _find_and_load File "<frozen importlib._bootstrap>", line 1006, in _find_and_load_unlocked File "<frozen importlib._bootstrap>", line 688, in _load_unlocked File "<frozen importlib._bootstrap_external>", line 883, in exec_module File "<frozen importlib._bootstrap>", line 241, in _call_with_frames_removed File "/home/tkloczko/rpmbuild/BUILD/ipython-8.24.0/IPython/__init__.py", line 54, in <module> from .core.application import Application File "/home/tkloczko/rpmbuild/BUILD/ipython-8.24.0/IPython/core/application.py", line 26, in <module> from IPython.core import release, crashhandler File "/home/tkloczko/rpmbuild/BUILD/ipython-8.24.0/IPython/core/crashhandler.py", line 27, in <module> from IPython.core import ultratb File "/home/tkloczko/rpmbuild/BUILD/ipython-8.24.0/IPython/core/ultratb.py", line 115, in <module> from IPython.utils import path as util_path File "/home/tkloczko/rpmbuild/BUILD/ipython-8.24.0/IPython/utils/path.py", line 17, in <module> from IPython.utils.process import system ImportError: cannot import name 'system' from 'IPython.utils.process' (/home/tkloczko/rpmbuild/BUILD/ipython-8.24.0/IPython/utils/process.py) The above exception was the direct cause of the following exception: Traceback (most recent call last): File "/usr/lib/python3.10/site-packages/sphinx/cmd/build.py", line 332, in build_main app = Sphinx(args.sourcedir, args.confdir, args.outputdir, File "/usr/lib/python3.10/site-packages/sphinx/application.py", line 229, in __init__ self.setup_extension(extension) File "/usr/lib/python3.10/site-packages/sphinx/application.py", line 402, in setup_extension self.registry.load_extension(self, extname) File "/usr/lib/python3.10/site-packages/sphinx/registry.py", line 456, in load_extension raise ExtensionError(__('Could not import extension %s') % extname, sphinx.errors.ExtensionError: Could not import extension IPython.sphinxext.ipython_console_highlighting (exception: cannot import name 'system' from 'IPython.utils.process' (/home/tkloczko/rpmbuild/BUILD/ipython-8.24.0/IPython/utils/process.py)) Extension error: Could not import extension IPython.sphinxext.ipython_console_highlighting (exception: cannot import name 'system' from 'IPython.utils.process' (/home/tkloczko/rpmbuild/BUILD/ipython-8.24.0/IPython/utils/process.py)) Adding Tag: ipystable ```
open
2024-05-17T12:03:44Z
2024-05-20T18:25:16Z
https://github.com/ipython/ipython/issues/14439
[]
kloczek
2
aio-libs-abandoned/aioredis-py
asyncio
1,050
aioredis==1.3.1 & Redis 6.0.12 connection error with reader at end of file.
After upgrading Redis to 6.0.12, now every time we trying to make a connection it closed the connection. it works perfectly with Redis = 5.4.10 and Aio 1.3.1 We are using tornado as app server and make call to redis using aioredis=1.3.1 , I always get 503 from tornado and get this error in tornado logs. ``` Traceback (most recent call last): File "/usr/local/lib/python3.8/site-packages/tornado/web.py", line 1592, in _execute result = yield result File "/usr/local/lib/python3.8/site-packages/tornado/gen.py", line 1133, in run value = future.result() File "/app/routes/entitlementsync.py", line 27, in post status = await self.redis.hget(entitlement_status_hash, "status") aioredis.errors.ConnectionClosedError: Reader at end of file ``` let me know if you guys need more details.
open
2021-07-06T17:25:43Z
2021-07-16T22:52:03Z
https://github.com/aio-libs-abandoned/aioredis-py/issues/1050
[ "need investigation" ]
linux2000in
7
polarsource/polar
fastapi
4,926
link is broken
### Description a link is broken in _`welcome-to-polar`_ page [Contributions welcome](https://docs.polar.sh/docs/developers/open-source) ### Current Behavior ![Image](https://github.com/user-attachments/assets/b108ac78-e01b-4067-9553-e962a56fec38) ### Expected Behavior The page should redirect to contributions.md ### Environment: - Operating System: Windows 10 - Browser (if applicable): Chrome --- <!-- Thank you for contributing to Polar! We appreciate your help in improving it. --> <!-- Questions: [Discord Server](https://discord.com/invite/Pnhfz3UThd). -->
closed
2025-01-30T06:46:35Z
2025-01-31T08:14:24Z
https://github.com/polarsource/polar/issues/4926
[ "bug" ]
Boby900
1
explosion/spaCy
data-science
12,544
token.sentiment is only outputting 0.0
in any polarity token token.sentiement attribute is giving 0.0 score, why is that? Thank you for any suggestion
closed
2023-04-19T06:05:51Z
2023-04-19T11:46:37Z
https://github.com/explosion/spaCy/issues/12544
[ "feat / doc" ]
Ibrokhimsadikov
1
zappa/Zappa
django
848
[Migrated] assume_policy setting mostly without effect
Originally from: https://github.com/Miserlou/Zappa/issues/2094 by [tommie-lie](https://github.com/tommie-lie) ## Context I create a trust relationship between `ZappaLambdaExecutionRole` and itself (to call AssumeRole with a session policy in the authorizer to drop certain privileges). To that end, I created a policy document like this: ```json { "Version": "2012-10-17", "Statement": [ { "Effect": "Allow", "Principal": { "AWS": [ "arn:aws:iam::XXXX:role/zappa-project-dev-ZappaLambdaExecutionRole" ], "Service": [ "apigateway.amazonaws.com", "lambda.amazonaws.com", "events.amazonaws.com" ] }, "Action": "sts:AssumeRole" } ] } ``` and set it's filename as `assume_policy` in the Zappa settings. ## Expected Behavior After `zappa update`, the trust relationship should appear in the IAM console and a call to `AssumeRole` should work. ## Actual Behavior The IAM console shows only the default trust relationships: > The identity provider(s) events.amazonaws.com > The identity provider(s) lambda.amazonaws.com > The identity provider(s) apigateway.amazonaws.com and calls to `AssumeRole` fail with permission denied. ## Possible Fix There is a strange check in https://github.com/Miserlou/Zappa/blob/80a6881f0ec0be525a8fd7835b5a1157f9e66100/zappa/core.py#L2583-L2584 This check causes the policy to only be update if the policy reported from IAM and the local one differ *and* their first Statement's **service principals** differ as well. As we normally want the apigateway and lambda service principals in a Zappa app, and events.amazonaws.com is often handy, too, this default set of service principals never change. Therefore, the manually added other principals are never added. If two statements are used in the policy, the check even causes a `KeyError`, because the first statement does not have service principals: ```json { "Version": "2012-10-17", "Statement": [ { "Effect": "Allow", "Principal": { "AWS": [ "arn:aws:iam::XXXX:role/zappa-project-dev-ZappaLambdaExecutionRole" ], }, "Action": "sts:AssumeRole" }, { "Effect": "Allow", "Principal": { "Service": [ "apigateway.amazonaws.com", "lambda.amazonaws.com", "events.amazonaws.com" ] }, "Action": "sts:AssumeRole" } ] } ``` The bogus check was added in 937dbf5a8c39f19bf38f8024e1b8c091f93d9c01 for an unknown reason. Python dict comparison is invariant for the order of the dict entries and JSON lists are order-sensitive, so the normal check `role.assume_role_policy_document != assume_policy_obj` would be perfectly fine. Coincidentally, it's the same check that is used for the more common `attach_policy` setting: https://github.com/Miserlou/Zappa/blob/80a6881f0ec0be525a8fd7835b5a1157f9e66100/zappa/core.py#L2572 Therefore, the check should be simplified to ``` if role.assume_role_policy_document != assume_policy_obj: ``` ## Steps to Reproduce 1. Create a zappa project and copy the above policy into a file called `assume-policy.json`, replace `arn:aws:iam::XXXX:role/zappa-project-dev-` with your project's account ID, project name and stage, respectively 2. `zappa update` 3. go to https://console.aws.amazon.com/iam/home, select your policy and check the tab "Trust relationships" 4. there is no entry for the ZappaLambdaExecutionRole is missing from the "Trusted entities" section ## Your Environment <!--- Include as many relevant details about the environment you experienced the bug in --> * Zappa version used: 0.51.0 * Operating System and Python version: Linux, Python 3.8 * The output of `pip freeze`: irrelevant * Your `zappa_settings.yaml`: abbreviated: ```yaml dev: project_name: zappa-project runtime: python3.8 attach_policy: app-exec-policy.json assume_policy: assume-policy.json ```
closed
2021-02-20T12:52:26Z
2024-04-13T19:10:24Z
https://github.com/zappa/Zappa/issues/848
[ "no-activity", "auto-closed" ]
jneves
2
wandb/wandb
tensorflow
9,299
[Q]: When does Wandb generate a name if none is provided for the run?
### Ask your question Hi! I'm writing a small script that will generate names for my wandb run using words from my own custom word bank. I know I can manually provide new names, but I experiment a lot and prefer having names automatically generated from a specified set. I found that the word bank is private [here](https://github.com/wandb/wandb/issues/3478), but I'm struggling to locate where in the code this request to the corpus is made. Can you help me find it?
open
2025-01-18T15:36:12Z
2025-01-28T16:24:32Z
https://github.com/wandb/wandb/issues/9299
[ "ty:question" ]
TitovSergey
3
nschloe/tikzplotlib
matplotlib
474
IndexError when saving
Using tikzplotlib for `contourf` sometimes leads to: ``` File "D:\Local_Repositories\Studium\Semester_7\bachelorarbeit\code\env\lib\site-packages\tikzplotlib\_save.py", line 260, in save code = get_tikz_code(*args, filepath=filepath, **kwargs) File "D:\Local_Repositories\Studium\Semester_7\bachelorarbeit\code\env\lib\site-packages\tikzplotlib\_save.py", line 209, in get_tikz_code data, content = _recurse(data, figure) File "D:\Local_Repositories\Studium\Semester_7\bachelorarbeit\code\env\lib\site-packages\tikzplotlib\_save.py", line 353, in _recurse data, children_content = _recurse(data, child) File "D:\Local_Repositories\Studium\Semester_7\bachelorarbeit\code\env\lib\site-packages\tikzplotlib\_save.py", line 378, in _recurse data, cont = _draw_collection(data, child) File "D:\Local_Repositories\Studium\Semester_7\bachelorarbeit\code\env\lib\site-packages\tikzplotlib\_save.py", line 319, in _draw_collection return _path.draw_pathcollection(data, child) File "D:\Local_Repositories\Studium\Semester_7\bachelorarbeit\code\env\lib\site-packages\tikzplotlib\_path.py", line 214, in draw_pathcollection p = obj.get_paths()[0] IndexError: list index out of range ``` A solution is to check here: https://github.com/nschloe/tikzplotlib/blob/1b9139cf642f9a392892dfcf556eb0ba729154fd/tikzplotlib/_path.py#L212-L228 if `get_paths()` returns an empty list and in this case setting `marker0 = None`.
closed
2021-03-29T12:44:06Z
2021-04-08T14:00:22Z
https://github.com/nschloe/tikzplotlib/issues/474
[]
LDAP
0
MaartenGr/BERTopic
nlp
1,076
remove stop words from saved model
Hi. @MaartenGr I want to remove stop words from the saved BERTopic model and update the model again. I looked up the official document and found that there was no method to update the keywords. Maybe I didn't find it?
closed
2023-03-07T02:26:44Z
2023-05-23T09:33:16Z
https://github.com/MaartenGr/BERTopic/issues/1076
[]
kimkyulim
2
plotly/dash
data-science
2,290
add new search_indexes prop on dropdown
When "label" is a component (img and div for example), and I provide "value", "label" and "search" arguments in options is there a way to tell it to search options only by "search"? It is very slow if searching by value and search for 2k items, "value " is email, I would like to disable searching "value".
open
2022-10-27T12:33:22Z
2024-08-13T19:22:01Z
https://github.com/plotly/dash/issues/2290
[ "feature", "P3" ]
MarkoPuntaric
3
agronholm/anyio
asyncio
186
`BrokenResourceError` raised by `MemoryObjectStream.send` after successful send
I'm unsure if this is working as designed - it's slightly unclear in the docs. Running the following: ```python import anyio async def demo() -> None: send_stream, receive_stream = anyio.create_memory_object_stream() async def send() -> None: async with send_stream: await send_stream.send(None) print("sent") async def receive() -> None: async with receive_stream: await receive_stream.receive() print("received") async with anyio.create_task_group() as task_group: await task_group.spawn(send) await task_group.spawn(receive) ``` prints only ``` received ``` before raising `anyio.BrokenResourceError`. It seems like we're falling afoul of https://github.com/agronholm/anyio/blob/master/src/anyio/streams/memory.py#L161. My guess for what's happening is: - we enter the context of the send stream and attempt the send; - we first attempt `send_nowait`, which fails as the `receive` coroutine has not yet called `receive_stream.receive()`; - we create the send event and await on it, suspending the `send` coroutine; - the `receive` coroutine is scheduled, receives the item, and closes `receive_stream` without the `send` coroutine being scheduled; - the `send` coroutine resumes, notices that no receive channels are open, and raises. I would've expected either: - no exception to be raised, with an exception raised if another send was attempted; - some kind of end-of-stream exception. The `BrokenResourceError` seems inconsistent with the fact that the item has actually been sent. Tested on 2.0.2 and current master (83a0cbd), on all three event loops.
closed
2021-01-10T13:02:56Z
2021-01-30T14:20:52Z
https://github.com/agronholm/anyio/issues/186
[ "bug" ]
tomwatson1024
1
autogluon/autogluon
computer-vision
4,423
[tabular] [BUG] Ensure val has sample of each class for metrics like `roc_auc_ovr_macro`
Metrics such as `roc_auc_ovr_macro` will raise an exception in multiclass tasks if the validation set does not contain at least 1 instance of every class. This was discovered in #4411 as when `test_data` was passed, we couldn't drop rare classes, but with small amounts of rows, we didn't ensure all validation splits had at least one of each class (while ensuring each training row had one of each class). This leads to the following exception: ``` ValueError: Only one class present in y_true. ROC AUC score is not defined in that case. ``` We should add `min_cls_count_test` to `generate_train_test_split` function to mitigate this issue. For bagging, we will want to add a helpful error message and a check to ensure one of each class is present in both the train and val splits for each bag.
open
2024-08-23T21:23:59Z
2024-11-25T23:04:34Z
https://github.com/autogluon/autogluon/issues/4423
[ "bug", "module: tabular", "priority: 1" ]
Innixma
0
faif/python-patterns
python
376
random seed does not take effect in doctest
Thanks for your awesome works on the pythonic design pattern, I'm reviewing some strategies in the design patterns. However, I tried your first abstract_factory.py `random. seed(1234)` in the main function will not take effect in doctest random. choice(), and it returns fake random depend on machine time or some other kind of random parameter. I tried to fix this problem by this >>> random.seed(1234) >>> shop = PetShop(random_animal) then you can get the same result every time you rerun it.
closed
2021-06-11T09:59:07Z
2022-07-04T19:28:26Z
https://github.com/faif/python-patterns/issues/376
[ "bug" ]
qitianliang
3
pydantic/pydantic-settings
pydantic
136
Validation error if environment variable contains an integer
I'm trying to load a `PORT` environment variable into pydantic settings. In v1 it was annotated like this ```python from pydantic import BaseSettings class MySettings(BaseSettings): PORT: str | None = None ``` and it used to be able to load the following values: `5432`, `5432,5433`. When I use the following code in pydantic v2 with pydantic-settings, I get an error parsing a single port: ```python import os from pydantic_settings import BaseSettings class MyNewSettings(BaseSettings): PORT: str | None = None os.environ["PORT"] = "5432" MyNewSettings() ``` ``` --------------------------------------------------------------------------- ValidationError Traceback (most recent call last) Cell In[1], line 8 5 PORT: str | None = None 7 os.environ["PORT"] = "5432" ----> 8 MyNewSettings() File ~/.local/share/virtualenvs/theenv/lib/python3.10/site-packages/pydantic_settings/main.py:71, in BaseSettings.__init__(__pydantic_self__, _case_sensitive, _env_prefix, _env_file, _env_file_encoding, _env_nested_delimiter, _secrets_dir, **values) 60 def __init__( 61 __pydantic_self__, 62 _case_sensitive: bool | None = None, (...) 69 ) -> None: 70 # Uses something other than `self` the first arg to allow "self" as a settable attribute ---> 71 super().__init__( 72 **__pydantic_self__._settings_build_values( 73 values, 74 _case_sensitive=_case_sensitive, 75 _env_prefix=_env_prefix, 76 _env_file=_env_file, 77 _env_file_encoding=_env_file_encoding, 78 _env_nested_delimiter=_env_nested_delimiter, 79 _secrets_dir=_secrets_dir, 80 ) 81 ) File ~/.local/share/virtualenvs/theenv/lib/python3.10/site-packages/pydantic/main.py:159, in BaseModel.__init__(__pydantic_self__, **data) 157 # `__tracebackhide__` tells pytest and some other tools to omit this function from tracebacks 158 __tracebackhide__ = True --> 159 __pydantic_self__.__pydantic_validator__.validate_python(data, self_instance=__pydantic_self__) ValidationError: 1 validation error for MyNewSettings PORT Input should be a valid string [type=string_type, input_value=5432, input_type=int] For further information visit https://errors.pydantic.dev/2.1/v/string_type ``` However, if the `PORT`'s value can't be parsed to an integer, it works: ```python In [2]: os.environ["PORT"] = "5432,5433" In [3]: MyNewSettings() Out[3]: MyNewSettings(PORT='5432,5433') ``` Environment ``` pydantic==2.1.1 pydantic-extra-types==2.0.0 pydantic-settings==2.0.2 pydantic_core==2.4.0 ``` Selected Assignee: @hramezani
closed
2023-07-31T11:37:16Z
2023-08-08T07:07:41Z
https://github.com/pydantic/pydantic-settings/issues/136
[ "unconfirmed" ]
xome4ok
3
flairNLP/flair
nlp
2,874
🎓 New position for PhD candidate available at HU Berlin!
Hello all, we now have another **position for a PhD candidate** available! It is a full-time and fully paid research associate position in my group, intended for persons with a master degree in computer science that aim to pursue a PhD in machine learning or NLP. **The project:** This is the first of multiple positions in a big project in which we aim to create powerful language models a la BERT and GPT-3 - but with the difference that our models should only require a fraction of the computational resources and data to train. We will therefore take a deep look at the internals of language models and pursue algorithmic improvements of training objectives and internal representations. **To apply:** If you're looking to pursue a PhD in this topic, consider applying! You should: - have an M.Sc. degree (or be close to graduating) in computer science or computational linguistics with a focus on ML and NLP - already have relevant experience in deep learning research, for instance gathered as part of your M.Sc. - strong coding skills, especially in deep learning frameworks such as PyTorch - ideally have your first publications - love open source - love NLP ;) (Note that the M.Sc. is a mandatory requirement, as otherwise we cannot initiate the formal hiring process.) The link to the job ad is [here](https://www.personalabteilung.hu-berlin.de/de/stellenausschreibungen/wiss-mitarbeiter-in-m-w-d-mit-vorauss-vollzeit-e-13-tv-l-hu-drittmittelfinanzierung-befristet-bis-30-06-2024) (in German) - applications can be in English, as the working language of our research group is English. **Consider applying**, and contact me in case of interest! Cheers, Alan
closed
2022-07-26T11:26:01Z
2022-09-23T15:46:32Z
https://github.com/flairNLP/flair/issues/2874
[]
alanakbik
2
MagicStack/asyncpg
asyncio
1,206
Why is asyncpg doing type introspection on json types?
* **asyncpg version**: `0.30.0` * **PostgreSQL version**: `15.3` * **Do you use a PostgreSQL SaaS? If so, which? Can you reproduce the issue with a local PostgreSQL install?**: RDS, and yes * **Python version**: `3.12.6` * **Platform**: MacOS and Linux * **Do you use pgbouncer?**: No * **Did you install asyncpg with pip?**: No, `poetry` * **If you built asyncpg locally, which version of Cython did you use?**: n/a * **Can the issue be reproduced under both asyncio and [uvloop](https://github.com/magicstack/uvloop)?**: Have not tried. Happy to if you think it would be beneficial Spinning out of https://github.com/MagicStack/asyncpg/issues/1138#issuecomment-2451097693 because it feels like a different discussion. --- I'm running a FastAPI service that connects to AWS RDS, and needs to refresh credentials every 15 minutes. Normally, the type introspection queries don't take up much time because they run once per connection, but I have a lot of churn in my connection pool so run them a decent number of times. Recently I'm seen more traffic and thus more connections being created, and with more connections, the more often we're likely to see slow queries on things that are normally fast. At a very high level, my service is set to connect to the database with: ```python engine = create_async_engine( postgres_url(use_asyncpg=True), pool_size=10, max_overflow=25, pool_recycle=600, # IAM credentials expire after 15 mins pool_pre_ping=True, ) @event.listens_for(engine.sync_engine, "do_connect") def provide_token(dialect, conn_rec, cargs, cparams) -> None: cparams["password"] = boto3.client("rds").generate_db_auth_token( config.POSTGRES_HOST, config.POSTGRES_PORT, config.POSTGRES_USER, ) ``` Even abnormally slow type introspection queries aren't horrible but they are noticeable, as in the example below these 2 queries took more than 50% of the service's total response time. ![Screenshot 2024-10-31 at 17 57 49](https://github.com/user-attachments/assets/3625c92d-cbff-4b2e-a8f9-3e325c7d695c) Debugging locally a little with `command: ["postgres", "-c", "log_statement=all"]` in my `docker-compose.yml`, I can see what type `asyncpg` needs to examine: ```text 2024-11-01 20:52:52.239 UTC [491] LOG: execute __asyncpg_stmt_1__: SELECT t.oid, t.typelem AS elemtype, t.typtype AS kind FROM pg_catalog.pg_type AS t WHERE t.oid = $1 2024-11-01 20:52:52.239 UTC [491] DETAIL: parameters: $1 = '114' 2024-11-01 20:52:52.240 UTC [491] LOG: execute __asyncpg_stmt_2__: SELECT t.oid, t.typelem AS elemtype, t.typtype AS kind FROM pg_catalog.pg_type AS t WHERE t.oid = $1 2024-11-01 20:52:52.240 UTC [491] DETAIL: parameters: $1 = '3802' ``` These correspond to the `JSON` and `JSONB` types, respectively, not even custom types. --- The actual question: how can I pre-register the `JSON` and `JSONB` types in each connection so I don't have to keep running the introspection query? I've tried the `json_{de,}serializer` argument to the SQLAlchemy engine, as well as trying to hook into SQLAlchemy events to intercept connection creation and set the codecs.
closed
2024-11-01T22:49:32Z
2025-03-19T19:04:19Z
https://github.com/MagicStack/asyncpg/issues/1206
[]
swanysimon
8
jupyter/docker-stacks
jupyter
1,334
how to add maven dependency in jupyter/pyspark-notebook
**What docker image you are using?** `jupyter/pyspark-notebook` **What complete docker command do you run to launch the container (omitting sensitive values)?** Example: `docker run -it --rm -p 8888:8888 jupyter/pyspark-notebook:latest` **What steps do you take once the container is running to reproduce the issue?** I want to connect to a local docker instance via the hadoop connector ``` import random import pyspark import random from pyspark.sql import SparkSession from datetime import datetime import pandas as pd start = datetime.now() ss = SparkSession.builder.config("spark.driver.memory", "8g").appName('ES').getOrCreate() es_reader = (ss.read .format("org.elasticsearch.spark.sql") .option("inferSchema", "true") .option("es.read.field.as.array.include", "tags") .option("es.nodes","elasticsearch:9200") .option("es.net.https.auth.user","elastic") ) sysmon_df = es_reader.load("test_index-*/") end = datetime.now() time_taken = end - start print('Time: ',time_taken) ss.stop() ``` **What do you expect to happen?** I would like to know how to add a maven dependency for the ES connector: https://www.elastic.co/guide/en/elasticsearch/hadoop/current/install.html **What actually happens?** The command fails because it is unable to find the JAR files: ` java.lang.ClassNotFoundException: Failed to find data source: org.elasticsearch.spark.sql `
closed
2021-05-25T22:53:18Z
2021-06-02T21:19:24Z
https://github.com/jupyter/docker-stacks/issues/1334
[]
priamai
4
python-visualization/folium
data-visualization
1,944
HTML does not work when run on mobile.
Suddenly, starting today, HTML does not work when run on mobile. The results of testing several types of devices are the same.
closed
2024-05-02T03:44:37Z
2024-05-06T09:02:01Z
https://github.com/python-visualization/folium/issues/1944
[]
Yheionsung
2
marimo-team/marimo
data-visualization
3,670
Methods have the same color as variables in dark mode
### Describe the bug In dark mode, everything accessed by a dot like methods or objects from modules have the same color as variables which isn't the case in light mode. Maybe it's just the theme marimo uses but it would be nice if the color is different which is the case in light mode as it makes the code more readable. ### Environment <details> ``` { "marimo": "0.10.19", "OS": "Linux", "OS Version": "6.12.10-arch1-1", "Processor": "", "Python Version": "3.12.8", "Binaries": { "Browser": "--", "Node": "--" }, "Dependencies": { "click": "8.1.8", "docutils": "0.21.2", "itsdangerous": "2.2.0", "jedi": "0.19.2", "markdown": "3.7", "narwhals": "1.24.2", "packaging": "24.2", "psutil": "6.1.1", "pygments": "2.19.1", "pymdown-extensions": "10.14.3", "pyyaml": "6.0.2", "ruff": "0.9.4", "starlette": "0.45.3", "tomlkit": "0.13.2", "typing-extensions": "4.12.2", "uvicorn": "0.34.0", "websockets": "14.2" }, "Optional Dependencies": { "pandas": "2.2.3" }, "Experimental Flags": { "rtc": true } } ``` </details> ### Code to reproduce It doesn't have to do anything with code. It's the standard behavior in dark mode.
closed
2025-02-03T13:09:39Z
2025-02-03T15:36:57Z
https://github.com/marimo-team/marimo/issues/3670
[ "bug" ]
nojovo
0
FactoryBoy/factory_boy
sqlalchemy
151
delete old instance before creating new
To speed up unittesting, we don't delete the whole database before running each test. This way a test needs to clean up old data before running. Does factory boy support deleting before creating? I could not find anything in the docs about deleting objects. Do you have a hint how to implement a "delete before create" helper method? Background: we use django, but don't use the "delete whole DB before each test" pattern.
closed
2014-08-12T07:16:25Z
2025-02-06T23:05:54Z
https://github.com/FactoryBoy/factory_boy/issues/151
[ "Q&A" ]
guettli
8
errbotio/errbot
automation
1,549
send_card and send_stream_request don't reply in-thread
### I am... * [X] Reporting a bug * [ ] Suggesting a new feature * [ ] Requesting help with running my bot * [ ] Requesting help writing plugins * [ ] Here about something else ### I am running... Errbot version: 6.1.8 OS version: Debian (`python:3.9-slim` container) Python version: 3.9 Using a virtual environment: no (using Docker instead) Backend: `Slack` ### Issue description When invoked in a Slack thread, [`send_card`](https://errbot.readthedocs.io/en/latest/user_guide/plugin_development/messaging.html#cards) and [`send_stream_request`](https://errbot.readthedocs.io/en/latest/user_guide/plugin_development/streams.html) replies in thread's channel instead of in the thread itself. ### Steps to reproduce Write a bot command that replies using either `send_card` and `send_stream_request`, and invoke it in a Slack thread. The command reply will appear in the channel instead of in the thread where it were invoked.
closed
2022-01-04T12:55:13Z
2024-01-04T09:35:31Z
https://github.com/errbotio/errbot/issues/1549
[]
torgeirl
6
awtkns/fastapi-crudrouter
fastapi
74
Example for more than one table.
Is there an example for doing more then one table. Potato - table 1 Meat - table 2
closed
2021-06-10T02:17:54Z
2021-06-13T01:00:30Z
https://github.com/awtkns/fastapi-crudrouter/issues/74
[ "question" ]
dawnpatrol04
4
pytorch/pytorch
python
149,008
[AOTI][Debug logger] Min value: Error: "min_all_cuda" not implemented for 'Float8_e4m3fn'
### 🐛 Describe the bug Problem is with AOTI intermediate debug logger with FP8. repro: ``` import torch import torch._inductor.config as config config.aot_inductor.debug_intermediate_value_printer = "2" config.aot_inductor.filtered_kernel_names = "triton_poi_fused__to_copy_add_0" class Model(torch.nn.Module): def forward(self, x): x = x.to(torch.float) return x + 1 model = Model().cuda() x = torch.randn(10).cuda().to(torch.float8_e4m3fn) ep = torch.export.export(model, (x,)) path = torch._inductor.aoti_compile_and_package(ep) aot_model = torch._inductor.aoti_load_package(path) aot_model(x) print("done") ``` logs: ``` [ CUDAFloat8_e4m3fnType{10} ] Number of elements: 10 Dtype: c10::Float8_e4m3fn Mean value: -0.124023 Min value: Error: "min_all_cuda" not implemented for 'Float8_e4m3fn' ``` ### Versions trunk cc @yanbing-j @vkuzo @albanD @kadeng @penguinwu @desertfire @chenyang78 @yushangdi @benjaminglass1 @chauhang @avikchaudhuri @gmagogsfm @zhxchen17 @tugsbayasgalan @angelayi @suo @ydwu4
open
2025-03-11T23:09:57Z
2025-03-21T13:53:58Z
https://github.com/pytorch/pytorch/issues/149008
[ "triaged", "module: float8", "module: aotinductor" ]
henrylhtsang
1
Buuntu/fastapi-react
fastapi
160
script build.sh continues to execute even if the docker is not available
It happens that I start the build.sh at the moment when docker is not running yet. The script shows the trace of the error from the "docker-compose up" but does not quit, but continues executing commands This is not critical at the moment, but in the future it may have destructive actions.
closed
2021-06-12T12:41:55Z
2021-07-30T19:40:40Z
https://github.com/Buuntu/fastapi-react/issues/160
[]
numbnp
1
tensorpack/tensorpack
tensorflow
898
Differences with Cascade-RCNN paper
Thanks for sharing your code. Some questions about your cascadeRCNN implementation: 1) The scale_gradient implementation for cascade-rcnn: https://github.com/tensorpack/tensorpack/blob/master/examples/FasterRCNN/model_cascade.py#L29, seems to stabilize the training, but I did not find the corresponding description in the original paper, is it needed? 2) It seems that neither mean nor variance normalization is performed during bounding box regression hope for your response :)
closed
2018-09-18T02:46:36Z
2018-09-18T15:35:21Z
https://github.com/tensorpack/tensorpack/issues/898
[ "examples" ]
LandyGuo
2
ionelmc/pytest-benchmark
pytest
1
Add function wrapper support
Eg: ``` def test_stuff(benchmark): assert benchmark(func)(1, 2, 3) = 'blabla' ```
closed
2014-10-11T03:02:35Z
2015-02-02T05:07:03Z
https://github.com/ionelmc/pytest-benchmark/issues/1
[]
ionelmc
0
Avaiga/taipy
data-visualization
1,683
[🐛 BUG] Table width issue with persistent pane and d-flex
### What went wrong? 🤔 The table takes more than the screen width when having a persistent pane. I am using *with* to create the content of the pane. If I use another page to put it inside the pane, the persistent pane will not even work. ### Expected Behavior This shouldn't change the layout of the application where there is no pane. And if there is a pane, the layout should just change so that the pane appears by the side of the app. ### Steps to Reproduce Issue Create a folder data and put this CSV in it. [modified_supermarkt_sales_plus.csv](https://github.com/user-attachments/files/16664692/modified_supermarkt_sales_plus.csv) Add this code and run it: ```python from taipy.gui import Gui, notify import pandas as pd import taipy.gui.builder as tgb import json # Load and prepare data data = pd.read_csv("data/modified_supermarkt_sales_plus.csv") data["Date"] = pd.to_datetime(data["Date"]) data["Review"] = ["[Review](Review)" for _ in range(len(data))] data["Total ($)"] = data["Total"] data["Total (€)"] = data["Total"] * 1.2 displayed_data = data.copy() # Initialize state variables with default values show_city_info_pane = True selected_view = "Simple view" selected_currency = "USD" selected_dates = [data["Date"].min().date(), data["Date"].max().date()] selected_prices = [0, 5000] selected_city = "All" selected_product_line = "All" selected_branch = "All" rate_info = "Good" rate_price = "Good" open_dialog_review = False selected_row_for_review = None # Load city information from a JSON file city_info_dict = {} # Function to filter the data based on selected criteria def filter(state): filtered_data = state.data if state.selected_city != "All": filtered_data = filtered_data[filtered_data["City"] == state.selected_city] if state.selected_product_line != "All": filtered_data = filtered_data[ filtered_data["Product_line"] == state.selected_product_line ] if state.selected_branch != "All": filtered_data = filtered_data[filtered_data["Branch"] == state.selected_branch] filtered_data = filtered_data[ (filtered_data["Date"].dt.date >= state.selected_dates[0]) & (filtered_data["Total"] >= state.selected_prices[0]) & (filtered_data["Total"] <= state.selected_prices[1]) ] state.displayed_data = filtered_data state.city_info_partial.update_content(state, build_city_info(state.displayed_data)) # Function to convert the total values based on the selected currency def convert(state): if state.selected_currency == "USD": state.displayed_data["Total"] = state.displayed_data["Total ($)"] elif state.selected_currency == "EUR": state.displayed_data["Total"] = state.displayed_data["Total (€)"] state.refresh("displayed_data") # Function to handle the review submission def send_review(state, id, payload): state.open_dialog_review = False # Build basic filters section def build_basic_filters(): tgb.text("### Basic Filters", mode="md") tgb.selector( value="{selected_product_line}", lov=["All"] + data["Product_line"].unique().tolist(), dropdown=True, filter=True, label="Product Line", on_change=filter, class_name="fullwidth", ) tgb.selector( value="{selected_city}", lov=["All"] + data["City"].unique().tolist(), dropdown=True, filter=True, label="City", on_change=filter, class_name="fullwidth", ) tgb.selector( value="{selected_branch}", lov=["All"] + data["Branch"].unique().tolist(), dropdown=True, filter=True, label="Branch", on_change=filter, class_name="fullwidth", ) # Build conversion section def build_conversion(): tgb.text("### Conversion", mode="md") tgb.selector( value="{selected_currency}", lov=["USD", "EUR"], dropdown=True, label="Currency", on_change=convert, class_name="fullwidth", ) tgb.text("Date Range") tgb.date_range( "{selected_dates}", label_start="Start", label_end="End", on_change=filter ) tgb.text("Price Range") tgb.slider( "{selected_prices}", min=0, max=5000, on_change=filter, continuous=False, width="100%", ) # Function to handle the review process def open_review(state: State, var_name: str, payload: dict): index = payload["index"] data = getattr(state, var_name).copy() state.selected_row_for_review = data.iloc[index].to_frame().T state.open_dialog_review = True with tgb.Page() as review_page: tgb.text("Rate info", mode="md") tgb.table("{selected_row_for_review}") tgb.selector( value="{rate_info}", lov=["Good", "Bad"], dropdown=True, label="Rate info", class_name="fullwidth", # native in 4.0 ) tgb.text("Rate price", mode="md") tgb.selector( value="{rate_price}", lov=["Good", "Bad"], dropdown=True, label="Rate price", class_name="fullwidth", # native in 4.0 ) # Build city information pane def build_city_info(displayed_data): with tgb.Page() as page: tgb.text("### City Information", mode="md") for city in displayed_data["City"].unique(): with tgb.expandable(title=city, expanded=False): tgb.text( city_info_dict.get(city, "No information available."), mode="md" ) return page # Build the main GUI page with tgb.Page() as page: with tgb.part(class_name="container d-flex"): with tgb.part(): tgb.text("Sales Insights", class_name="h1 text-center") with tgb.layout("1 1 1", gap="20px", columns__mobile="1"): with tgb.part(): build_basic_filters() with tgb.part(): build_conversion() tgb.html("hr") tgb.toggle( value="{selected_view}", lov=["Simple view", "Advanced view", "Raw view"], ) with tgb.part(render="{selected_view=='Raw view'}"): tgb.table( "{data}", on_action=open_review, filter=True, ) with tgb.part(render="{selected_view=='Simple view'}"): tgb.table( "{displayed_data}", columns=["Date", "City", "Product_line", "Total", "Review"], group_by__City=True, group_by__Product_line=True, apply_Total="mean", filter=True, on_action=open_review, ) with tgb.part(render="{selected_view=='Advanced view'}"): tgb.table( "{displayed_data}", columns=[ "City", "Product_line", "Total", "Quantity", "Tax_5%", "Total", "Date", "Review", ], filter=True, on_action=open_review, ) def open_info_pane(state): state.show_city_info_pane = True tgb.button( "City info", on_action=open_info_pane, id="open_pane", ) with tgb.pane( open="{show_city_info_pane}", width="300px", persistent=True, anchor="right", ): tgb.part(partial="{city_info_partial}") tgb.dialog( page="review_page", open="{open_dialog_review}", on_action=send_review, labels=["Cancel", "Send"], width="500px", title="Review the selected row", ) # Define pages for the GUI pages = {"page": page, "review_page": review_page} # Run the GUI application if __name__ == "__main__": gui = Gui(pages=pages) city_info_partial = gui.add_partial(build_city_info(displayed_data)) gui.run(title="Sales", port=2452) ``` ### Version of Taipy develop - 4.0.0.dev0 ### Acceptance Criteria - [ ] Ensure new code is unit tested, and check code coverage is at least 90%. - [ ] Create related issue in taipy-doc for documentation and Release Notes. ### Code of Conduct - [X] I have checked the [existing issues](https://github.com/Avaiga/taipy/issues?q=is%3Aissue+). - [ ] I am willing to work on this issue (optional)
closed
2024-08-19T19:51:35Z
2024-08-23T14:37:33Z
https://github.com/Avaiga/taipy/issues/1683
[ "🖰 GUI", "💥Malfunction", "🟨 Priority: Medium" ]
FlorianJacta
1
globaleaks/globaleaks-whistleblowing-software
sqlalchemy
4,399
Error reports list as Whistleblower on 5.0.48
### What version of GlobaLeaks are you using? 5.0.48 ### What browser(s) are you seeing the problem on? All ### What operating system(s) are you seeing the problem on? All ### Describe the issue Hi to all, after login as Whistleblower, i see all reports disabled [as screen below] ![Image](https://github.com/user-attachments/assets/cd503001-f521-4e00-84f8-1ab5101fb13c) Opening the developer tool into browser, i see this error ![Image](https://github.com/user-attachments/assets/c27a9fe6-934b-4bfc-983f-fdda08c41f66) ### Proposed solution _No response_
closed
2025-02-11T14:05:48Z
2025-02-11T14:27:29Z
https://github.com/globaleaks/globaleaks-whistleblowing-software/issues/4399
[ "T: Bug", "Triage" ]
andreagigliola
0
jpadilla/django-rest-framework-jwt
django
441
Can't use multiple authentication classes
I'm trying to allow two different forms of authentication and am listing them as authentication classes in my views file like so: `authentication_classes = (JSONWebTokenAuthentication, MyCustomAuthentication,)` I'm finding that either one works on it's own, but that if I try to use both, it will either authenticate or return a 401 based on the FIRST authentication class listed, instead of as this document suggests, iterating through them and returning the values for the first class for which it successfully authenticates. http://www.tomchristie.com/rest-framework-2-docs/api-guide/authentication Do you have an idea of why that might be?
open
2018-05-24T19:41:29Z
2018-11-20T09:45:32Z
https://github.com/jpadilla/django-rest-framework-jwt/issues/441
[]
nancyhawa
3
junyanz/pytorch-CycleGAN-and-pix2pix
computer-vision
1,155
pix2pix test input with only sketch?
Do I need to get a photo with sketch and the sketch model? Could I just input a sketch?
closed
2020-10-03T15:07:18Z
2022-08-19T06:30:14Z
https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/issues/1155
[]
darrenleeleelee1
1
KevinMusgrave/pytorch-metric-learning
computer-vision
302
Question about using distributed loss
Hi, I am working with torch.DistributedDataParallel. I am following your /pytorch-metric-learning/examples/notebooks/DistributedTripletMarginLossMNIST.ipynb. I noticed that all the gpus have the same loss value in each epoch. I am trying to understand why. According to torch.DistributedDataParallel, each gpu will get its replica of data, and calculate the loss with that part of data. The losses among different gpus are not reduced (the gradients do). Thus, different gpus should have different loss values. My question is, how is the loss calculated here? Is it an average of all gpus' losses? Thanks.
closed
2021-04-12T22:18:30Z
2021-05-10T15:22:33Z
https://github.com/KevinMusgrave/pytorch-metric-learning/issues/302
[ "question" ]
liangyuandg
2
randyzwitch/streamlit-folium
streamlit
218
Could I get the coordinates of the map without running as a service?
I used `fit_bounds()` in folium to focus a specific place but folium doesn't inform me the new corner coordinates of the canvas map. I need to use the coordinates to crop a rectangle area. Can I just call a function or api to get them without launching a service?
closed
2024-09-27T01:42:18Z
2024-09-28T13:47:38Z
https://github.com/randyzwitch/streamlit-folium/issues/218
[]
LZY-SPCA
1
pallets-eco/flask-sqlalchemy
sqlalchemy
444
Need help in finding the memory leak for master/slave check latency
Hi guys, I'm trying to split read and writes on the database. I found some sources online but now, i'm having issues with slave replica lag. I have a query to check the latency on postgres but somehow when i implemented it, it was causing some memory leaks. Any tips would be helpful. I have list of slaves, and I wanted check the latency first before picking them. ```python class RoutingSession(orm.Session): _name = None def __init__(self, db, autocommit=False, autoflush=False, **options): self.db = db self.app = db.get_app() self._model_changes = {} self.slaves = None orm.Session.__init__( self, autocommit=autocommit, autoflush=autoflush, bind=db.engine, binds=db.get_binds(self.app), **options ) def get_bind(self, mapper=None, clause=None): try: state = get_state(self.app) except (AssertionError, AttributeError, TypeError) as err: self.app.logger.error( "Unable to get Flask-SQLAlchemy configuration." " Outputting default bind. Error:" + err) return orm.Session.get_bind(self, mapper, clause) # If there are no binds configured # connect using the default SQLALCHEMY_DATABASE_URI if state is None or not self.app.config['SQLALCHEMY_BINDS']: return orm.Session.get_bind(self, mapper, clause) elif self._name: return state.db.get_engine(self.app, bind=self._name) elif self._flushing: self.app.logger.debug("Connecting -> MASTER") self.mark_as_write() return state.db.get_engine(self.app, bind='master') elif hasattr(self, '_db_write') and self._db_write: self.app.logger.debug("Connecting -> MASTER due to recent writes") return state.db.get_engine(self.app, bind='master') else: if not self.slaves: slaves = [] for key in self.app.config['SQLALCHEMY_BINDS'].keys(): if re.match(r"^slave", key): slaves.append(key) self.slaves = slaves while len(self.slaves): slave = random.choice(self.slaves) self.app.logger.debug("Connecting -> " + slave) dbengine = state.db.get_engine(self.app, bind=slave) latency = self.get_latency(slave, dbengine) if latency <= self.app.config['SLAVE_MAX_LATENCY']: return dbengine self.app.logger.error("Slave {} has very high latency {} seconds".\ format(slave, latency) ) self.slaves.remove(slave) self.app.logger.warn("Reverted to master db instead") # Revert to master in the end return state.db.get_engine(self.app, bind='master') def using_bind(self, name): s = RoutingSession(self.db) vars(s).update(vars(self)) s._name = name return s """ Checks what latency if it is connecting to if it's slave a.) It it's in recovery = false, it means it's master no latency here b.) It it's xlog location is the same, it means it's sync c.) Returns the number of seconds of lag """ def get_latency(self, name, engine): if not self.app.config['SLAVE_CHECK_LATENCY']: return 0 connection = engine.connect() query = """ SELECT CASE WHEN NOT pg_is_in_recovery() THEN 0 WHEN pg_last_xlog_receive_location() = pg_last_xlog_replay_location() THEN 0 ELSE EXTRACT (EPOCH FROM now() - pg_last_xact_replay_timestamp())::INTEGER END AS replication_lag; """ result = connection.execute(query) return result.fetchone()[0] ```
closed
2016-11-03T15:41:36Z
2020-12-05T21:18:20Z
https://github.com/pallets-eco/flask-sqlalchemy/issues/444
[]
christopher-abastar
1
jupyter-book/jupyter-book
jupyter
2,076
Sphinx config `navigation with keys` removes links to Github
### Describe the bug **context** When I add `navigation_with_keys: True` or `False` to ```yaml sphinx: config: html_theme_options: navigation_with_keys: true ``` in `_config.yml`, the repository buttons dissapear **expectation** I expected Github repository buttons to appear if they are set to true. **bug** But instead they disappear. ### Reproduce the bug 1. Install jupyterbook (I use venv with the following commands) ```bash python3 -m venv --clear ./test_jb source test_jb/bin/activate python3 -m pip install jupyter-book ``` 2. Create book template ```bash python3 -m jupyter book create test_book ``` 3. Test building ```bash python3 -m jupyter book build . ``` which gives ![image](https://github.com/executablebooks/jupyter-book/assets/8554300/7346fd06-4a99-487e-8bd1-69b6fa55fd8b) 4. add ```yaml sphinx: config: html_theme_options: navigation_with_keys: true ``` to config and rebuild. Returns ![image](https://github.com/executablebooks/jupyter-book/assets/8554300/141c2f7d-4633-45d0-814e-90813c2c2aac) ### List your environment ``` python3 -m jupyter book --version Jupyter Book : 0.15.1 External ToC : 0.3.1 MyST-Parser : 0.18.1 MyST-NB : 0.17.2 Sphinx Book Theme : 1.0.1 Jupyter-Cache : 0.6.1 NbClient : 0.7.4 ``` Python 3.10.12 Ubuntu 22.04
open
2023-11-15T08:59:17Z
2023-11-21T10:54:10Z
https://github.com/jupyter-book/jupyter-book/issues/2076
[ "bug" ]
jorgensd
1
deepspeedai/DeepSpeed
deep-learning
5,898
[BUG] Gradient accumulation causing training loss differences in Deepspeed vs FSDP
**Describe the bug** I am trying to pretrain an [Olmo ](https://github.com/allenai/OLMo)1B model on 8 MI 250 GPUs with Docker image: rocm/pytorch:latest (ROCm 6.1). I'm using a small subset of Dolma dataset for pretraining. I see that training loss is comparable between FSDP and Deepspeed when gradient accumulation is small but as the gradient accumulation increases, the training loss seems to be different <img width="280" alt="image" src="https://github.com/user-attachments/assets/836f0135-5a9f-4d6d-addf-d51f44357740"> ^ for instance the above run, im using a gradient accumulation of 16 (dark blue is FSDP and purple is deepspeed) I'm testing all my training runs in mixed precision amp_fp16. The reduce_dtype in FSDP.MixedPrecision is set to fp32 and I also make sure to set "data_types": { "grad_accum_dtype": "fp32" } in ds_config. Here are the relevant ds_config im using: ds_config = { "train_batch_size": 1024, "train_micro_batch_size_per_gpu": 8, # grad_acc of 16 will get 1024 effective batch size "prescale_gradients": True | False, # ive tried both "zero_optimization": { "stage": 0, "cpu_offload": False, "overlap_comm": True | False, # ive tried both "reduce_scatter": True, "reduce_bucket_size": model_hidden_size * model_hidden_size, "contiguous_gradients": True, }, "gradient_clipping": 1.0, "data_types": { "grad_accum_dtype": "fp32" }, "bf16": { "enabled": True }, } <img width="269" alt="image" src="https://github.com/user-attachments/assets/f87c1c03-710e-4355-902a-b4527c58cb75"> ^ I also tried to run a full precision FP32 run with per_gpu_batch_size of 2 and a high gradient accumulation of 128 and I still see a big difference in training losses (Blue is Deepspeed, yellow is FSDP) Given the other settings are same (lr, lr_Scheduler, optimizer etc), what could be causing this difference? **To Reproduce** For deepspeed version of Olmo, Im using the changes in this [pull request](https://github.com/allenai/OLMo/pull/384) with the latest code changes. I can share more details if needed **ds_report output** [WARNING] async_io requires the dev libaio .so object and headers but these were not found. [WARNING] async_io: please install the libaio-dev package with apt [WARNING] If libaio is already installed (perhaps from source), try setting the CFLAGS and LDFLAGS environment variables to where it can be found. [WARNING] Please specify the CUTLASS repo directory as environment variable $CUTLASS_PATH [WARNING] sparse_attn is not compatible with ROCM -------------------------------------------------- DeepSpeed C++/CUDA extension op report -------------------------------------------------- NOTE: Ops not installed will be just-in-time (JIT) compiled at runtime if needed. Op compatibility means that your system meet the required dependencies to JIT install the op. -------------------------------------------------- JIT compiled ops requires ninja ninja .................. [OKAY] -------------------------------------------------- op name ................ installed .. compatible -------------------------------------------------- [WARNING] async_io requires the dev libaio .so object and headers but these were not found. [WARNING] async_io: please install the libaio-dev package with apt [WARNING] If libaio is already installed (perhaps from source), try setting the CFLAGS and LDFLAGS environment variables to where it can be found. async_io ............... [NO] ....... [NO] fused_adam ............. [NO] ....... [OKAY] cpu_adam ............... [NO] ....... [OKAY] cpu_adagrad ............ [NO] ....... [OKAY] cpu_lion ............... [NO] ....... [OKAY] [WARNING] Please specify the CUTLASS repo directory as environment variable $CUTLASS_PATH evoformer_attn ......... [NO] ....... [NO] fp_quantizer ........... [NO] ....... [OKAY] fused_lamb ............. [NO] ....... [OKAY] fused_lion ............. [NO] ....... [OKAY] inference_core_ops ..... [NO] ....... [OKAY] cutlass_ops ............ [NO] ....... [OKAY] transformer_inference .. [NO] ....... [OKAY] quantizer .............. [NO] ....... [OKAY] ragged_device_ops ...... [NO] ....... [OKAY] ragged_ops ............. [NO] ....... [OKAY] random_ltd ............. [NO] ....... [OKAY] [WARNING] sparse_attn is not compatible with ROCM sparse_attn ............ [NO] ....... [NO] spatial_inference ...... [NO] ....... [OKAY] transformer ............ [NO] ....... [OKAY] stochastic_transformer . [NO] ....... [OKAY] -------------------------------------------------- DeepSpeed general environment info: torch install path ............... ['/opt/conda/envs/olmo/lib/python3.9/site-packages/torch'] torch version .................... 2.3.0a0+gitae01701 deepspeed install path ........... ['/opt/conda/envs/olmo/lib/python3.9/site-packages/deepspeed'] deepspeed info ................... 0.14.5+unknown, unknown, unknown torch cuda version ............... None torch hip version ................ 6.1.40091-a8dbc0c19 nvcc version ..................... None deepspeed wheel compiled w. ...... torch 2.3, hip 6.1 shared memory (/dev/shm) size .... 503.85 GB **System info (please complete the following information):** - GPU count and types: 8 Mi250 - Interconnects (if applicable) [e.g., two machines connected with 100 Gbps IB]: single node - Python version: 3.9 **Launcher context** Are you launching your experiment with the `deepspeed` launcher, MPI, or something else?: im using torchrun **Docker context** Are you using a specific docker image that you can share? rocm/pytorch:latest (ROCm 6.1) **Additional context** Add any other context about the problem here.
closed
2024-08-09T10:57:49Z
2024-09-25T20:32:03Z
https://github.com/deepspeedai/DeepSpeed/issues/5898
[ "bug", "training" ]
gramesh-amd
3
Ehco1996/django-sspanel
django
308
如何修改网站图标 favicon
没有使用docker,使用了nginx反代,该如何修改favicon呢
closed
2020-04-22T12:47:52Z
2020-05-17T02:13:35Z
https://github.com/Ehco1996/django-sspanel/issues/308
[]
chengziorange
1
yt-dlp/yt-dlp
python
12,062
Unable Download Video Instagram
### DO NOT REMOVE OR SKIP THE ISSUE TEMPLATE - [X] I understand that I will be **blocked** if I *intentionally* remove or skip any mandatory\* field ### Checklist - [X] I'm reporting a bug unrelated to a specific site - [X] I've verified that I have **updated yt-dlp to nightly or master** ([update instructions](https://github.com/yt-dlp/yt-dlp#update-channels)) - [X] I've checked that all provided URLs are playable in a browser with the same IP and same login details - [X] I've checked that all URLs and arguments with special characters are [properly quoted or escaped](https://github.com/yt-dlp/yt-dlp/wiki/FAQ#video-url-contains-an-ampersand--and-im-getting-some-strange-output-1-2839-or-v-is-not-recognized-as-an-internal-or-external-command) - [X] I've searched [known issues](https://github.com/yt-dlp/yt-dlp/issues/3766) and the [bugtracker](https://github.com/yt-dlp/yt-dlp/issues?q=) for similar issues **including closed ones**. DO NOT post duplicates - [X] I've read the [guidelines for opening an issue](https://github.com/yt-dlp/yt-dlp/blob/master/CONTRIBUTING.md#opening-an-issue) ### Provide a description that is worded well enough to be understood There is not much to explain, an Instagram video where you copy the link you share, paste it directly into the seal app to download it but it is not possible and it shows an error, the error report was copied and placed in this report. ### Provide verbose output that clearly demonstrates the problem - [X] Run **your** yt-dlp command with **-vU** flag added (`yt-dlp -vU <your command line>`) - [x] If using API, add `'verbose': True` to `YoutubeDL` params instead - [X] Copy the WHOLE output (starting with `[debug] Command-line config`) and insert it below ### Complete Verbose Output ```shell App version: 1.13.1 (11312) Device information: Android 14 (API 34) Supported ABIs: [arm64-v8a] Yt-dlp version: 2024.12.26.232815 URL: https://www.instagram.com/reel/C_FJQUZM0TB/?igsh=MXh1aTBsOWt0MW85NA== WARNING: [Instagram] unable to extract username; please report this issue on https://github.com/yt-dlp/yt-dlp/issues?q= , filling out the appropriate issue template. Confirm you are on the latest version using yt-dlp -U ERROR: [Instagram] C_FJQUZM0TB: Unable to extract video url; please report this issue on https://github.com/yt-dlp/yt-dlp/issues?q= , filling out the appropriate issue template. Confirm you are on the latest version using yt-dlp -U ```
closed
2025-01-12T03:11:34Z
2025-01-12T10:00:23Z
https://github.com/yt-dlp/yt-dlp/issues/12062
[ "spam" ]
VickTC
1
xorbitsai/xorbits
numpy
288
REF: use Xoscar as dependency
Before, Xoscar is included in Xorbits itself, now, it's separated and hosted at: https://github.com/xprobe-inc/xoscar . Hence Xoscar can be a dependency for this repo.
closed
2023-03-20T09:51:51Z
2023-03-22T06:48:22Z
https://github.com/xorbitsai/xorbits/issues/288
[ "refactor" ]
qianduoduo0904
0
d2l-ai/d2l-en
data-science
1,664
17.1. Generative Adversarial Networks
Second paragraph ~ >But there is more to machine learning than just solving discriminative tasks. For example, given a large dataset, without any labels, we might want to **learn a model** that concisely captures the characteristics of this data. Given such a model, we could sample synthetic data examples that resemble the distribution of the training data. For example, given a large corpus of photographs of faces, we might want to be able to generate a new photorealistic image that looks like it might plausibly have come from the same dataset. This kind of learning is called generative modeling. (1) What does learn a model mean here? Something different than the commonly used phrase train a model? (2) This paragraph is little bit like word soup, consider revising for clarity. Below is one option. There is more to machine learning than just solving discriminative tasks. If you have a large dataset without any labels you might want train a model that can concisely captures the characteristics of this data. You cold then could sample synthetic data examples that resemble the distribution of the training data... *and then what?!*. For example, given a large corpus of photographs of faces, we might want to be able to generate new photo realistic images which look like they could have came from original dataset. This kind of learning is called generative modeling.
open
2021-02-25T19:39:02Z
2023-11-05T20:08:25Z
https://github.com/d2l-ai/d2l-en/issues/1664
[]
froggie901
1
glumpy/glumpy
numpy
124
Problem with fonts on Windows and TypeError: 'float'
setup: Windows 10 64 bit... This is an output: c:\Users\levan\Desktop\glumpy-master\examples> c:\Users\levan\Desktop\glumpy-master\examples>python lorenz.py [i] Using GLFW (GL 4.6) [i] Requesting "OpenSans-Regular.ttf" from remote server [w] Data not available on remote server [w] Falling back to default font [i] Requesting "OpenSans-Bold.ttf" from remote server [w] Data not available on remote server [w] Falling back to default font Traceback (most recent call last): File "lorenz.py", line 59, in <module> anchor_x = "left", anchor_y = "center") File "C:\Python36\lib\site-packages\glumpy\graphics\collections\sdf_glyph_collection.py", line 76, in append V, I = self.bake(text, font, anchor_x, anchor_y) File "C:\Python36\lib\site-packages\glumpy\graphics\collections\sdf_glyph_collection.py", line 128, in bake glyph = font[charcode] File "C:\Python36\lib\site-packages\glumpy\graphics\text\sdf_font.py", line 75, in __getitem__ self.load('%c' % charcode) File "C:\Python36\lib\site-packages\glumpy\graphics\text\sdf_font.py", line 130, in load data,offset,advance = self.load_glyph(face, charcode) File "C:\Python36\lib\site-packages\glumpy\graphics\text\sdf_font.py", line 102, in load_glyph hires_data = np.zeros( (hires_height,hires_width), np.double) TypeError: 'float' object cannot be interpreted as an integer c:\Users\levan\Desktop\glumpy-master\examples>
closed
2017-11-21T14:25:29Z
2017-11-22T11:17:56Z
https://github.com/glumpy/glumpy/issues/124
[]
shoshia
3
feder-cr/Jobs_Applier_AI_Agent_AIHawk
automation
635
[HELP WANTED]: Apply for multiple positions at a company?
### Issue description My question is in regards to the field "apply_once_at_company". If I select true, does this mean it will only apply once at a company for only one position? I'd want to apply multiple times to a company if there are multiple appropriate positions or the position is with the same company but at different locations. Furthermore, does this apply only to each instance the script is once, or will it never apply to the same company again if it already applied to the company? ### Specific tasks apply_once_at_company ### Additional resources _No response_ ### Additional context _No response_
closed
2024-10-28T13:47:35Z
2024-10-29T15:29:56Z
https://github.com/feder-cr/Jobs_Applier_AI_Agent_AIHawk/issues/635
[ "help wanted" ]
shiboby
6
httpie/cli
api
1,201
http://external.system.id=
https://github.com/plaid/plaid-link-examples/blob/master/webviews/android/link-android-webview-example.iml#L1-L21
closed
2021-11-08T07:21:06Z
2021-11-23T09:03:19Z
https://github.com/httpie/cli/issues/1201
[ "invalid" ]
transmatecode
1
donnemartin/data-science-ipython-notebooks
matplotlib
108
Data science
open
2024-07-17T05:22:04Z
2024-07-17T05:22:04Z
https://github.com/donnemartin/data-science-ipython-notebooks/issues/108
[]
rjagathe
0
plotly/dash
jupyter
3,094
Allow_duplicate=True Fails with More Than Two Duplicate Callbacks
## Bug Report: `allow_duplicate=True` Fails with More Than Two Duplicate Callbacks **Description:** The `allow_duplicate=True` parameter does not function correctly when there are more than two duplicate callbacks. **Reproducible Example:** The following examples demonstrate the issue: **Working Examples (Two Duplicate Callbacks):** ```python # Example 1: Works Output("layout_ctx-train", "children") Input('button1', 'n_clicks'), ... Output("layout_ctx-train", "children", allow_duplicate=True) Input('button2', 'n_clicks'), ... ``` ```python # Example 2: Works Output("layout_ctx-train", "children", allow_duplicate=True) Input('button1', 'n_clicks'), ... Output("layout_ctx-train", "children") Input('button2', 'n_clicks'), ... ``` ```python # Example 3: Works Output("layout_ctx-train", "children", allow_duplicate=True) Input('button1', 'n_clicks'), ... Output("layout_ctx-train", "children", allow_duplicate=True) Input('button2', 'n_clicks'), ... ``` **Failing Examples (More Than Two Duplicate Callbacks):** ```python # Example 4: Fails Output("layout_ctx-train", "children", allow_duplicate=True) Input('button1', 'n_clicks'), ... Output("layout_ctx-train", "children") Input('button2', 'n_clicks'), ... Output("layout_ctx-train", "children") Input('button3', 'n_clicks'), ... Output("layout_ctx-train", "children") Input('button4', 'n_clicks'), ... ``` ```python # Example 5: Fails Output("layout_ctx-train", "children") Input('button1', 'n_clicks'), ... Output("layout_ctx-train", "children") Input('button2', 'n_clicks'), ... Output("layout_ctx-train", "children") Input('button3', 'n_clicks'), ... Output("layout_ctx-train", "children", allow_duplicate=True) Input('button4', 'n_clicks'), ... ``` ```python # Example 6: Fails Output("layout_ctx-train", "children", allow_duplicate=True) Input('button1', 'n_clicks'), ... Output("layout_ctx-train", "children", allow_duplicate=True) Input('button2', 'n_clicks'), ... Output("layout_ctx-train", "children", allow_duplicate=True) Input('button3', 'n_clicks'), ... Output("layout_ctx-train", "children", allow_duplicate=True) Input('button4', 'n_clicks'), ... ``` **Expected Behavior:** Duplicate callbacks should function correctly when at least one of the components has `allow_duplicate=True` set. **Additional Comments:** This functionality worked correctly in Dash version 2.9.1 for more than two duplicate callbacks as long as `allow_duplicate=True` was present on all relevant components. The issue was encountered in Dash versions 2.17.1+.
closed
2024-11-26T12:01:25Z
2024-11-27T15:35:24Z
https://github.com/plotly/dash/issues/3094
[ "bug", "P2" ]
Kissabi
1
jazzband/django-oauth-toolkit
django
1,120
Django Lazy Reference ValueError after upgrading to the latest version and running migrations,
``` raise ValueError("\n".join(error.msg for error in errors)) ValueError: The field oauth2_provider.AccessToken.application was declared with a lazy reference to 'oauth.clientapplication', but app 'oauth' isn't installed. The field oauth2_provider.AccessToken.source_refresh_token was declared with a lazy reference to 'oauth.clientrefreshtoken', but app 'oauth' isn't installed. The field oauth2_provider.Grant.application was declared with a lazy reference to 'oauth.clientapplication', but app 'oauth' isn't installed. The field oauth2_provider.RefreshToken.access_token was declared with a lazy reference to 'oauth.clientaccesstoken', but app 'oauth' isn't installed. The field oauth2_provider.RefreshToken.application was declared with a lazy reference to 'oauth.clientapplication', but app 'oauth' isn't installed. ``` I am constantly facing this issues. Is there any solutions for this one, oauth2_provider setting configurations: ```python OAUTH2_PROVIDER_APPLICATION_MODEL = "oauth.ClientApplication" OAUTH2_PROVIDER_ACCESS_TOKEN_MODEL = "oauth.ClientAccessToken" OAUTH2_PROVIDER_GRANT_MODEL = "oauth.ClientGrant" OAUTH2_PROVIDER_REFRESH_TOKEN_MODEL = "oauth.ClientRefreshToken" OAUTH2_PROVIDER_ID_TOKEN_MODEL = "oauth.ClientIdToken" OAUTH2_PROVIDER = { "ACCESS_TOKEN_EXPIRE_SECONDS": 1800, "SCOPES": { "uid": "User ID read access", }, } ``` **Even, I tried to apply `run_before` to my custom initial migrations. But No luck.** ```python run_before = [ ('oauth2_provider', '0001_initial'), ] ``` This is with `Django==3.2.11` and `django-oauth-toolkit==1.7.0` Below is the order of Apply migrations. ```bash Applying oauth.0001_initial_squashed_0004_auto_20220218_1009...accounts_ui client does not exist accounts_ui client created OK Applying oauth2_provider.0001_initial... OK Applying oauth2_provider.0002_auto_20190406_1805... OK Applying oauth2_provider.0003_auto_20201211_1314... OK Applying oauth2_provider.0004_auto_20200902_2022... OK Applying oauth2_provider.0005_auto_20211222_2352... OK ``` But still i am facing the above error. I have tried everything that i could from other open issues. Such as ... Swappable models. Clean migrations, run before.
open
2022-02-18T11:47:41Z
2022-06-26T13:37:45Z
https://github.com/jazzband/django-oauth-toolkit/issues/1120
[ "bug" ]
smit-mehta25
7
vllm-project/vllm
pytorch
15,264
[Bug]: qwen2.5vl cannot use fp8 quantization
### Your current environment <details> <summary>The output of `python collect_env.py`</summary> ```text PyTorch version: 2.6.0+cu124 Is debug build: False CUDA used to build PyTorch: 12.4 ROCM used to build PyTorch: N/A OS: Ubuntu 22.04.4 LTS (x86_64) GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 Clang version: Could not collect CMake version: version 3.31.6 Libc version: glibc-2.35 Python version: 3.12.9 (main, Mar 17 2025, 21:01:58) [Clang 20.1.0 ] (64-bit runtime) Python platform: Linux-5.15.0-122-generic-x86_64-with-glibc2.35 Is CUDA available: True CUDA runtime version: 12.4.131 CUDA_MODULE_LOADING set to: LAZY GPU models and configuration: GPU 0: NVIDIA L20 GPU 1: NVIDIA L20 GPU 2: NVIDIA L20 GPU 3: NVIDIA L20 Nvidia driver version: 535.216.01 cuDNN version: Could not collect HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Address sizes: 52 bits physical, 48 bits virtual Byte Order: Little Endian CPU(s): 384 On-line CPU(s) list: 0-383 Vendor ID: AuthenticAMD Model name: AMD EPYC 9K84 96-Core Processor CPU family: 25 Model: 17 Thread(s) per core: 2 Core(s) per socket: 96 Socket(s): 2 Stepping: 0 BogoMIPS: 5200.43 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl nonstop_tsc cpuid extd_apicid amd_dcm tsc_known_freq pni pclmulqdq monitor ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand hypervisor lahf_lm cmp_legacy cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw topoext perfctr_core invpcid_single ibpb vmmcall fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 avx512_bf16 clzero xsaveerptr wbnoinvd arat avx512vbmi umip avx512_vbmi2 vaes vpclmulqdq avx512_vnni avx512_bitalg avx512_vpopcntdq rdpid fsrm Hypervisor vendor: KVM Virtualization type: full L1d cache: 6 MiB (192 instances) L1i cache: 6 MiB (192 instances) L2 cache: 192 MiB (192 instances) L3 cache: 768 MiB (24 instances) NUMA node(s): 2 NUMA node0 CPU(s): 0-191 NUMA node1 CPU(s): 192-383 Vulnerability Gather data sampling: Not affected Vulnerability Itlb multihit: Not affected Vulnerability L1tf: Not affected Vulnerability Mds: Not affected Vulnerability Meltdown: Not affected Vulnerability Mmio stale data: Not affected Vulnerability Reg file data sampling: Not affected Vulnerability Retbleed: Not affected Vulnerability Spec rstack overflow: Mitigation; safe RET, no microcode Vulnerability Spec store bypass: Vulnerable Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; Retpolines; IBPB conditional; STIBP disabled; RSB filling; PBRSB-eIBRS Not affected; BHI Not affected Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Not affected Versions of relevant libraries: [pip3] flashinfer-python==0.2.1.post2+cu124torch2.6 [pip3] numpy==1.26.4 [pip3] nvidia-cublas-cu12==12.4.5.8 [pip3] nvidia-cuda-cupti-cu12==12.4.127 [pip3] nvidia-cuda-nvrtc-cu12==12.4.127 [pip3] nvidia-cuda-runtime-cu12==12.4.127 [pip3] nvidia-cudnn-cu12==9.1.0.70 [pip3] nvidia-cufft-cu12==11.2.1.3 [pip3] nvidia-curand-cu12==10.3.5.147 [pip3] nvidia-cusolver-cu12==11.6.1.9 [pip3] nvidia-cusparse-cu12==12.3.1.170 [pip3] nvidia-cusparselt-cu12==0.6.2 [pip3] nvidia-nccl-cu12==2.21.5 [pip3] nvidia-nvjitlink-cu12==12.4.127 [pip3] nvidia-nvtx-cu12==12.4.127 [pip3] pyzmq==26.3.0 [pip3] torch==2.6.0 [pip3] torchaudio==2.6.0 [pip3] torchvision==0.21.0 [pip3] transformers==4.49.0 [pip3] triton==3.2.0 [conda] Could not collect ROCM Version: Could not collect Neuron SDK Version: N/A vLLM Version: 0.8.1 vLLM Build Flags: CUDA Archs: Not Set; ROCm: Disabled; Neuron: Disabled GPU Topology: GPU0 GPU1 GPU2 GPU3 CPU Affinity NUMA Affinity GPU NUMA ID GPU0 X NODE NODE NODE 0-191 0 N/A GPU1 NODE X PIX NODE 0-191 0 N/A GPU2 NODE PIX X NODE 0-191 0 N/A GPU3 NODE NODE NODE X 0-191 0 N/A Legend: X = Self SYS = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI) NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node PHB = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU) PXB = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge) PIX = Connection traversing at most a single PCIe bridge NV# = Connection traversing a bonded set of # NVLinks NVIDIA_VISIBLE_DEVICES=0,1,2,3 NVIDIA_REQUIRE_CUDA=cuda>=12.4 brand=tesla,driver>=470,driver<471 brand=unknown,driver>=470,driver<471 brand=nvidia,driver>=470,driver<471 brand=nvidiartx,driver>=470,driver<471 brand=geforce,driver>=470,driver<471 brand=geforcertx,driver>=470,driver<471 brand=quadro,driver>=470,driver<471 brand=quadrortx,driver>=470,driver<471 brand=titan,driver>=470,driver<471 brand=titanrtx,driver>=470,driver<471 brand=tesla,driver>=525,driver<526 brand=unknown,driver>=525,driver<526 brand=nvidia,driver>=525,driver<526 brand=nvidiartx,driver>=525,driver<526 brand=geforce,driver>=525,driver<526 brand=geforcertx,driver>=525,driver<526 brand=quadro,driver>=525,driver<526 brand=quadrortx,driver>=525,driver<526 brand=titan,driver>=525,driver<526 brand=titanrtx,driver>=525,driver<526 brand=tesla,driver>=535,driver<536 brand=unknown,driver>=535,driver<536 brand=nvidia,driver>=535,driver<536 brand=nvidiartx,driver>=535,driver<536 brand=geforce,driver>=535,driver<536 brand=geforcertx,driver>=535,driver<536 brand=quadro,driver>=535,driver<536 brand=quadrortx,driver>=535,driver<536 brand=titan,driver>=535,driver<536 brand=titanrtx,driver>=535,driver<536 NCCL_VERSION=2.20.5-1 NVIDIA_DRIVER_CAPABILITIES=compute,utility NVIDIA_PRODUCT_NAME=CUDA VLLM_USAGE_SOURCE=production-docker-image CUDA_VERSION=12.4.0 LD_LIBRARY_PATH=/opt/venv/lib/python3.12/site-packages/cv2/../../lib64:/usr/local/nvidia/lib:/usr/local/nvidia/lib64 NCCL_CUMEM_ENABLE=0 TORCHINDUCTOR_COMPILE_THREADS=1 CUDA_MODULE_LOADING=LAZY ``` </details> ### 🐛 Describe the bug When using vllm 0.8.1 to deploy the qwen2.5-vl-7B model, fp8 quantization cannot be used. How can I solve this problem? The deployment command is as follows: `vllm serve Qwen2.5-VL/Qwen2.5-VL-7B-Instruct --port 8083 --quantization fp8` The error is as follows: ``` ...... Loading safetensors checkpoint shards: 100% Completed | 5/5 [00:03<00:00, 1.51it/s] INFO 03-21 02:21:53 [loader.py:429] Loading weights took 3.47 seconds INFO 03-21 02:21:53 [gpu_model_runner.py:1176] Model loading took 8.9031 GB and 3.891568 seconds INFO 03-21 02:21:53 [gpu_model_runner.py:1421] Encoder cache will be initialized with a budget of 98304 tokens, and profiled with 1 video items of the maximum feature size. ERROR 03-21 02:21:57 [core.py:340] EngineCore hit an exception: Traceback (most recent call last): ERROR 03-21 02:21:57 [core.py:340] File "/opt/venv/lib/python3.12/site-packages/vllm/v1/engine/core.py", line 332, in run_engine_core ERROR 03-21 02:21:57 [core.py:340] engine_core = EngineCoreProc(*args, **kwargs) ERROR 03-21 02:21:57 [core.py:340] ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ ERROR 03-21 02:21:57 [core.py:340] File "/opt/venv/lib/python3.12/site-packages/vllm/v1/engine/core.py", line 287, in __init__ ERROR 03-21 02:21:57 [core.py:340] super().__init__(vllm_config, executor_class, log_stats) ERROR 03-21 02:21:57 [core.py:340] File "/opt/venv/lib/python3.12/site-packages/vllm/v1/engine/core.py", line 62, in __init__ ERROR 03-21 02:21:57 [core.py:340] num_gpu_blocks, num_cpu_blocks = self._initialize_kv_caches( ERROR 03-21 02:21:57 [core.py:340] ^^^^^^^^^^^^^^^^^^^^^^^^^^^ ERROR 03-21 02:21:57 [core.py:340] File "/opt/venv/lib/python3.12/site-packages/vllm/v1/engine/core.py", line 121, in _initialize_kv_caches ERROR 03-21 02:21:57 [core.py:340] available_gpu_memory = self.model_executor.determine_available_memory() ERROR 03-21 02:21:57 [core.py:340] ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ ERROR 03-21 02:21:57 [core.py:340] File "/opt/venv/lib/python3.12/site-packages/vllm/v1/executor/abstract.py", line 66, in determine_available_memory ERROR 03-21 02:21:57 [core.py:340] output = self.collective_rpc("determine_available_memory") ERROR 03-21 02:21:57 [core.py:340] ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ ERROR 03-21 02:21:57 [core.py:340] File "/opt/venv/lib/python3.12/site-packages/vllm/executor/uniproc_executor.py", line 56, in collective_rpc ERROR 03-21 02:21:57 [core.py:340] answer = run_method(self.driver_worker, method, args, kwargs) ERROR 03-21 02:21:57 [core.py:340] ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ ERROR 03-21 02:21:57 [core.py:340] File "/opt/venv/lib/python3.12/site-packages/vllm/utils.py", line 2216, in run_method ERROR 03-21 02:21:57 [core.py:340] return func(*args, **kwargs) ERROR 03-21 02:21:57 [core.py:340] ^^^^^^^^^^^^^^^^^^^^^ ERROR 03-21 02:21:57 [core.py:340] File "/opt/venv/lib/python3.12/site-packages/torch/utils/_contextlib.py", line 116, in decorate_context ERROR 03-21 02:21:57 [core.py:340] return func(*args, **kwargs) ERROR 03-21 02:21:57 [core.py:340] ^^^^^^^^^^^^^^^^^^^^^ ERROR 03-21 02:21:57 [core.py:340] File "/opt/venv/lib/python3.12/site-packages/vllm/v1/worker/gpu_worker.py", line 157, in determine_available_memory ERROR 03-21 02:21:57 [core.py:340] self.model_runner.profile_run() ERROR 03-21 02:21:57 [core.py:340] File "/opt/venv/lib/python3.12/site-packages/vllm/v1/worker/gpu_model_runner.py", line 1452, in profile_run ERROR 03-21 02:21:57 [core.py:340] dummy_encoder_outputs = self.model.get_multimodal_embeddings( ERROR 03-21 02:21:57 [core.py:340] ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ ERROR 03-21 02:21:57 [core.py:340] File "/opt/venv/lib/python3.12/site-packages/vllm/model_executor/models/qwen2_5_vl.py", line 975, in get_multimodal_embeddings ERROR 03-21 02:21:57 [core.py:340] video_embeddings = self._process_video_input(video_input) ERROR 03-21 02:21:57 [core.py:340] ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ ERROR 03-21 02:21:57 [core.py:340] File "/opt/venv/lib/python3.12/site-packages/vllm/model_executor/models/qwen2_5_vl.py", line 931, in _process_video_input ERROR 03-21 02:21:57 [core.py:340] video_embeds = self.visual(pixel_values_videos, grid_thw=grid_thw) ERROR 03-21 02:21:57 [core.py:340] ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ ERROR 03-21 02:21:57 [core.py:340] File "/opt/venv/lib/python3.12/site-packages/torch/nn/modules/module.py", line 1739, in _wrapped_call_impl ERROR 03-21 02:21:57 [core.py:340] return self._call_impl(*args, **kwargs) ERROR 03-21 02:21:57 [core.py:340] ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ ERROR 03-21 02:21:57 [core.py:340] File "/opt/venv/lib/python3.12/site-packages/torch/nn/modules/module.py", line 1750, in _call_impl ERROR 03-21 02:21:57 [core.py:340] return forward_call(*args, **kwargs) ERROR 03-21 02:21:57 [core.py:340] ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ ERROR 03-21 02:21:57 [core.py:340] File "/opt/venv/lib/python3.12/site-packages/vllm/model_executor/models/qwen2_5_vl.py", line 659, in forward ERROR 03-21 02:21:57 [core.py:340] hidden_states = blk( ERROR 03-21 02:21:57 [core.py:340] ^^^^ ERROR 03-21 02:21:57 [core.py:340] File "/opt/venv/lib/python3.12/site-packages/torch/nn/modules/module.py", line 1739, in _wrapped_call_impl ERROR 03-21 02:21:57 [core.py:340] return self._call_impl(*args, **kwargs) ERROR 03-21 02:21:57 [core.py:340] ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ ERROR 03-21 02:21:57 [core.py:340] File "/opt/venv/lib/python3.12/site-packages/torch/nn/modules/module.py", line 1750, in _call_impl ERROR 03-21 02:21:57 [core.py:340] return forward_call(*args, **kwargs) ERROR 03-21 02:21:57 [core.py:340] ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ ERROR 03-21 02:21:57 [core.py:340] File "/opt/venv/lib/python3.12/site-packages/vllm/model_executor/models/qwen2_5_vl.py", line 382, in forward ERROR 03-21 02:21:57 [core.py:340] x = x + self.mlp(self.norm2(x)) ERROR 03-21 02:21:57 [core.py:340] ^^^^^^^^^^^^^^^^^^^^^^^ ERROR 03-21 02:21:57 [core.py:340] File "/opt/venv/lib/python3.12/site-packages/torch/nn/modules/module.py", line 1739, in _wrapped_call_impl ERROR 03-21 02:21:57 [core.py:340] return self._call_impl(*args, **kwargs) ERROR 03-21 02:21:57 [core.py:340] ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ ERROR 03-21 02:21:57 [core.py:340] File "/opt/venv/lib/python3.12/site-packages/torch/nn/modules/module.py", line 1750, in _call_impl ERROR 03-21 02:21:57 [core.py:340] return forward_call(*args, **kwargs) ERROR 03-21 02:21:57 [core.py:340] ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ ERROR 03-21 02:21:57 [core.py:340] File "/opt/venv/lib/python3.12/site-packages/vllm/model_executor/models/qwen2_5_vl.py", line 191, in forward ERROR 03-21 02:21:57 [core.py:340] x_gate, _ = self.gate_proj(x) ERROR 03-21 02:21:57 [core.py:340] ^^^^^^^^^^^^^^^^^ ERROR 03-21 02:21:57 [core.py:340] File "/opt/venv/lib/python3.12/site-packages/torch/nn/modules/module.py", line 1739, in _wrapped_call_impl ERROR 03-21 02:21:57 [core.py:340] return self._call_impl(*args, **kwargs) ERROR 03-21 02:21:57 [core.py:340] ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ ERROR 03-21 02:21:57 [core.py:340] File "/opt/venv/lib/python3.12/site-packages/torch/nn/modules/module.py", line 1750, in _call_impl ERROR 03-21 02:21:57 [core.py:340] return forward_call(*args, **kwargs) ERROR 03-21 02:21:57 [core.py:340] ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ ERROR 03-21 02:21:57 [core.py:340] File "/opt/venv/lib/python3.12/site-packages/vllm/model_executor/layers/linear.py", line 474, in forward ERROR 03-21 02:21:57 [core.py:340] output_parallel = self.quant_method.apply(self, input_, bias) ERROR 03-21 02:21:57 [core.py:340] ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ ERROR 03-21 02:21:57 [core.py:340] File "/opt/venv/lib/python3.12/site-packages/vllm/model_executor/layers/quantization/fp8.py", line 386, in apply ERROR 03-21 02:21:57 [core.py:340] return self.fp8_linear.apply(input=x, ERROR 03-21 02:21:57 [core.py:340] ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ ERROR 03-21 02:21:57 [core.py:340] File "/opt/venv/lib/python3.12/site-packages/vllm/model_executor/layers/quantization/utils/w8a8_utils.py", line 184, in apply ERROR 03-21 02:21:57 [core.py:340] output = ops.cutlass_scaled_mm(qinput, ERROR 03-21 02:21:57 [core.py:340] ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ ERROR 03-21 02:21:57 [core.py:340] File "/opt/venv/lib/python3.12/site-packages/vllm/_custom_ops.py", line 523, in cutlass_scaled_mm ERROR 03-21 02:21:57 [core.py:340] assert (b.shape[0] % 16 == 0 and b.shape[1] % 16 == 0) ERROR 03-21 02:21:57 [core.py:340] ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ ERROR 03-21 02:21:57 [core.py:340] AssertionError ... ``` ### Before submitting a new issue... - [x] Make sure you already searched for relevant issues, and asked the chatbot living at the bottom right corner of the [documentation page](https://docs.vllm.ai/en/latest/), which can answer lots of frequently asked questions.
open
2025-03-21T03:04:00Z
2025-03-24T09:23:19Z
https://github.com/vllm-project/vllm/issues/15264
[ "bug" ]
lessmore991
1