repo_name
stringlengths
9
75
topic
stringclasses
30 values
issue_number
int64
1
203k
title
stringlengths
1
976
body
stringlengths
0
254k
state
stringclasses
2 values
created_at
stringlengths
20
20
updated_at
stringlengths
20
20
url
stringlengths
38
105
labels
listlengths
0
9
user_login
stringlengths
1
39
comments_count
int64
0
452
darrenburns/posting
rest-api
136
Body text editor doesn't update to reflect content-type
If I select an `application/json` request, the body editor should update to reflect that.
closed
2024-11-16T17:27:17Z
2025-03-02T18:09:33Z
https://github.com/darrenburns/posting/issues/136
[ "bug" ]
darrenburns
0
gradio-app/gradio
machine-learning
9,876
Parameter passing of button.click()
### Describe the bug When using `button.click(fn=..., inputs=[],...)`, if the input parameter is a button component, the type of the component will change after being passed to the fn target function. ### Have you searched existing issues? 🔎 - [X] I have searched and found no existing issues ### Reproduction ```python import gradio as gr def setup_feedback_buttons(like_btn: gr.Button, dislike_btn: gr.Button): print(f"Before setting visible: like_btn.visible = {like_btn.visible}, dislike_btn.visible = {dislike_btn.visible}") like_btn.visible = True dislike_btn.visible = True with gr.Blocks() as demo: like_btn = gr.Button("Like", visible=False) dislike_btn = gr.Button("Dislike", visible=False) submit_btn = gr.Button("Submit") submit_btn.click(fn=setup_feedback_buttons, inputs=[like_btn, dislike_btn], outputs=None) demo.launch(debug=True) ``` ### Screenshot _No response_ ### Logs ```shell Traceback (most recent call last): File "/usr/local/lib/python3.10/dist-packages/gradio/queueing.py", line 536, in process_events response = await route_utils.call_process_api( File "/usr/local/lib/python3.10/dist-packages/gradio/route_utils.py", line 322, in call_process_api output = await app.get_blocks().process_api( File "/usr/local/lib/python3.10/dist-packages/gradio/blocks.py", line 1935, in process_api result = await self.call_function( File "/usr/local/lib/python3.10/dist-packages/gradio/blocks.py", line 1520, in call_function prediction = await anyio.to_thread.run_sync( # type: ignore File "/usr/local/lib/python3.10/dist-packages/anyio/to_thread.py", line 33, in run_sync return await get_asynclib().run_sync_in_worker_thread( File "/usr/local/lib/python3.10/dist-packages/anyio/_backends/_asyncio.py", line 877, in run_sync_in_worker_thread return await future File "/usr/local/lib/python3.10/dist-packages/anyio/_backends/_asyncio.py", line 807, in run result = context.run(func, *args) File "/usr/local/lib/python3.10/dist-packages/gradio/utils.py", line 826, in wrapper response = f(*args, **kwargs) File "<ipython-input-4-ce9f8f625052>", line 4, in setup_feedback_buttons print(f"Before setting visible: like_btn.visible = {like_btn.visible}, dislike_btn.visible = {dislike_btn.visible}") AttributeError: 'str' object has no attribute 'visible' ``` ### System Info ```shell Package Version ------------------ ----------- aiofiles 23.2.1 annotated-types 0.7.0 anyio 4.6.2.post1 Brotli 1.1.0 certifi 2024.8.30 cffi 1.17.1 charset-normalizer 3.4.0 click 8.1.7 colorama 0.4.6 contourpy 1.3.0 cycler 0.12.1 dnspython 2.7.0 email_validator 2.2.0 exceptiongroup 1.2.2 fastapi 0.115.4 fastapi-cli 0.0.5 ffmpy 0.3.0 filelock 3.16.1 fonttools 4.54.1 fsspec 2024.10.0 gradio 5.1.0 gradio_client 1.4.0 h11 0.14.0 h2 4.1.0 hpack 4.0.0 httpcore 1.0.6 httptools 0.6.1 httpx 0.27.2 huggingface_hub 0.26.2 hyperframe 6.0.1 idna 3.10 Jinja2 3.1.4 kiwisolver 1.4.7 markdown-it-py 3.0.0 MarkupSafe 2.1.5 matplotlib 3.9.2 mdurl 0.1.2 numpy 2.1.2 orjson 3.10.10 packaging 24.1 pandas 2.2.3 pillow 10.2.0 pip 24.3.1 pycparser 2.22 pydantic 2.0.3 pydantic_core 2.3.0 pydub 0.25.1 Pygments 2.18.0 pyparsing 3.2.0 PySocks 1.7.1 python-dateutil 2.9.0 python-dotenv 1.0.1 python-multipart 0.0.16 pytz 2024.1 PyYAML 6.0.2 requests 2.32.3 rich 13.9.3 ruff 0.7.1 semantic-version 2.10.0 setuptools 75.1.0 shellingham 1.5.4 six 1.16.0 sniffio 1.3.1 starlette 0.41.2 tomlkit 0.12.0 tqdm 4.66.6 typer 0.12.5 typer-slim 0.12.5 typing_extensions 4.12.2 tzdata 2024.2 unicodedata2 15.1.0 urllib3 2.2.3 uvicorn 0.32.0 uvloop 0.21.0 watchfiles 0.24.0 websockets 12.0 wheel 0.44.0 zstandard 0.23.0 I tried using multiple different versions of python(3.10,3.11,3.12,3.13) and gradio(4.44,4.44.1,5.4) on Ubuntu 18.04 and Ubuntu 22.04, and all got the same error ``` ### Severity I can work around it
closed
2024-10-31T08:29:56Z
2024-11-01T01:43:12Z
https://github.com/gradio-app/gradio/issues/9876
[ "bug" ]
Semper4u
3
nteract/papermill
jupyter
102
Release 0.12.0
I could really use some of the recent changes in my current tasks. Any objections or particular PRs people want in this release? Was going to maybe wait for #100.
closed
2018-01-15T22:48:30Z
2018-01-16T10:37:11Z
https://github.com/nteract/papermill/issues/102
[]
MSeal
5
keras-team/keras
tensorflow
20,395
Loss documentation is wrong? Loss function actually returns means over a batch
https://keras.io/api/losses/#standalone-usage-of-losses It states: `By default, loss functions return one scalar loss value per input sample, e.g.` But the example is passing 4 samples `ops.ones((2, 2,))` , and returning 2 values `<Array: shape=(2,), dtype=float32, numpy=array([1., 1.], dtype=float32)>` So which is it?
closed
2024-10-22T16:27:13Z
2024-12-15T16:54:05Z
https://github.com/keras-team/keras/issues/20395
[ "type:docs-bug" ]
worthy7
2
sqlalchemy/sqlalchemy
sqlalchemy
10,103
Connection error on Google Cloud SQL with 2.0.18
### Describe the bug SqlAlchemy 2.0.18 fails to parse google cloud database urls, since they contain multiple `:` characters in it. The issue impacts version `2.0.18`, all is good with `2.0.16` ( I haven't tried `2.0.17`) See the repro for more details. ### Optional link from https://docs.sqlalchemy.org which documents the behavior that is expected _No response_ ### SQLAlchemy Version in Use 2.0.18 ### DBAPI (i.e. the database driver) postgresql+psycopg2 ### Database Vendor and Major Version PostgreSQL 14 ### Python Version 3.11 ### Operating system Linux ### To Reproduce this is a typical connection string for a google cloud SQL connection "postgresql+psycopg2://<user>:<pass>@/mydb?host=/cloudsql/projectid:region:dbname" ```python url = "postgresql+psycopg2://myuser:mypass@/mydatabase?host=/cloudsql/myproject:australia-southeast1:database-connection-name' import sqlalchemy as sa sa.create_engine(url=url) ``` when issuing that command the below error happens ### Error ``` Traceback (most recent call last): File "<stdin>", line 1, in <module> File "<string>", line 2, in create_engine File "/home/user/.cache/pypoetry/virtualenvs/api-RCNUpdqz-py3.11/lib/python3.11/site-packages/sqlalchemy/util/deprecations.py", line 281, in warned return fn(*args, **kwargs) # type: ignore[no-any-return] ^^^^^^^^^^^^^^^^^^^ File "/home/stefanotabacco/.cache/pypoetry/virtualenvs/api-RCNUpdqz-py3.11/lib/python3.11/site-packages/sqlalchemy/engine/create.py", line 617, in create_engine (cargs_tup, cparams) = dialect.create_connect_args(u) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/user/.cache/pypoetry/virtualenvs/api-RCNUpdqz-py3.11/lib/python3.11/site-packages/sqlalchemy/dialects/postgresql/_psycopg_common.py", line 134, in create_connect_args multihosts, multiports = self._split_multihost_from_url(url) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/user/.cache/pypoetry/virtualenvs/api-RCNUpdqz-py3.11/lib/python3.11/site-packages/sqlalchemy/dialects/postgresql/base.py", line 3124, in _split_multihost_from_url h, p = hosts[0].split(":") ^^^^ ValueError: too many values to unpack (expected 2) ``` ### Additional context I suspect this is stopping anyone using google cloud SQL to connect to the database via the url string. Moreover, if connecting via google cloud run or similar services, the gunicorn workers dies with a pretty unclear `Service unavailable` message. It took me a full day to figure out the problem. I have pinned sqlalchemy to `2.0.16` and it's all working again. I'm not sure about other cloud providers, but it might affect those as well, depending if they have multiple `:` in their connection urls.
closed
2023-07-14T00:35:00Z
2023-07-14T02:52:41Z
https://github.com/sqlalchemy/sqlalchemy/issues/10103
[ "duplicate", "postgresql" ]
stabacco
1
mitmproxy/mitmproxy
python
7,117
HTTP3 over local mode: Unable to access certain websites using firefox via HTTP3
#### Problem Description Firefox fails to access `cloudflare-quic.com` over HTTP3 while using mitmproxy in local mode. Other websites such as `http3.is` load up normally using HTTP3 refs #7025 #### Steps to reproduce the behavior: 1. Start local mode: `mitmdump --mode local:firefox --set experimental_transparent_http3=true` 2. Start firefox and access `http3.is` to ensure HTTP3 works 3. Accessing `cloudflare-quic.com` does not work over HTTP3 Error raised: `TLS Error: [('SSL routines', '', '')]` `Server QUIC handshake failed. unknown error (0x128)` `Client QUIC handshake failed. unknown error (0x179)` #### System Information Mitmproxy: 11.0.0.dev (+18, commit 6bb536e) Python: 3.11.3 OpenSSL: OpenSSL 3.2.2 4 Jun 2024 Platform: Windows-10-10.0.22631-SP0
open
2024-08-18T16:44:49Z
2024-08-29T12:11:25Z
https://github.com/mitmproxy/mitmproxy/issues/7117
[ "kind/triage" ]
errorxyz
3
seleniumbase/SeleniumBase
pytest
2,291
Twitter scraping is detected - 429 (Too Many Requests)
Hello everybody, I'm writing a bot to continuously scrape a Twitter account to retrieve the most recent tweets. After 25 refresh requests, Twitter's response is as follows: 429 (Too Many Requests). Below is the code and the response header by Twitter: ```python import traceback from seleniumbase import SB import random def manageException(sb, profile_url): print("Something went wrong in Chromedriver library.") print(traceback.format_exc()) sb.get_new_driver(undetectable=True) sb.driver.uc_open_with_reconnect(profile_url, reconnect_time=3) sb.sleep(1.2) return sb.driver.get_text("div[data-testid='tweetText']") print("Logging to Twitter...") with SB(uc=True) as sb: sb.driver.uc_open("https://www.twitter.com") # do the login in Twitter account = "daniesilvestri" # account with no blue tick profile_url = f'https://twitter.com/{account}' sb.driver.uc_open(profile_url) last_tweet = "" try: last_tweet = sb.driver.get_text("div[data-testid='tweetText']") except Exception as err: last_tweet = manageException(sb, profile_url) print(last_tweet) # do some stuff with the tweet sb.sleep(random.randint(800, 2100) / 1000.0) while 1: sb.driver.refresh() new_tweet = "" try: new_tweet = sb.driver.get_text("div[data-testid='tweetText']") except Exception as err: new_tweet = manageException(sb, profile_url) print(new_tweet) # do some stuff sb.sleep(random.randint(800, 2100) / 1000.0) ``` The response header: <img width="277" alt="Immagine 2023-11-16 122338" src="https://github.com/seleniumbase/SeleniumBase/assets/3901806/c19a31e9-fbe7-4ad2-a7c1-75ce6561f7db"> As you can see the parameter "X-Rate-Limit-Remaining" is 0. That means that it is no longer possible to make requests like this one. The bot is limited for approximately 12 minutes (the exact time at which it will be possible to refresh the page again is represented by the "X-Rate-Limit-Reset" header). Documentation on the parameters can be found here: [https://developer.twitter.com/en/docs/twitter-api/rate-limits](url) Is there a way to bypass the limits imposed by Twitter? For example, I tried logging out and logging in again but it doesn't work. Thanks in advance
closed
2023-11-16T13:26:27Z
2023-11-16T14:48:35Z
https://github.com/seleniumbase/SeleniumBase/issues/2291
[ "question", "UC Mode / CDP Mode" ]
fashionprivate
1
holoviz/panel
matplotlib
7,430
JSComponent with DataFrame almost impossible to implement
I'm on Panel 1.5.2 If one of the arguments to `.matches` below is a dataframe ![image](https://github.com/user-attachments/assets/a4e0e211-84bb-429b-854e-b75f1bc788d6) then you get ```bash ValueError: The truth value of a DataFrame is ambiguous. Use a.empty, a.bool(), a.item(), a.any() or a.all(). ``` `.matches` can only handle pandas.Series. Not pandas.DataFrame. I tried changing precedence to -1 of the DataFrame parameter because I don't need it on the client side. But then `model.lookup(attr)` fails with `ValueError`. ## Minimum, Reproducible Example When you click the button it errors ```python import panel as pn import param from panel.custom import JSComponent import pandas as pd pn.extension() class MyCustomComponent(JSComponent): value = param.DataFrame() _esm = """ export function render({ model }) { console.log(model) } """ custom_component = MyCustomComponent(value=pd.DataFrame()) button = pn.widgets.Button(name="update") @pn.depends(button, watch=True) def _update_counter_button(value): custom_component.value = pd.DataFrame({"1": [2]}) pn.Column(button, custom_component).servable() ``` ```bash File "/home/jovyan/repos/mt-pm-reporting/.venv/lib/python3.11/site-packages/panel/reactive.py", line 331, in _apply_update self._update_model(events, msg, root, model, doc, comm) File "/home/jovyan/repos/mt-pm-reporting/.venv/lib/python3.11/site-packages/panel/custom.py", line 467, in _update_model self._set_on_model(data_msg, root, model.data) File "/home/jovyan/repos/mt-pm-reporting/.venv/lib/python3.11/site-packages/panel/reactive.py", line 1586, in _set_on_model self._changing[root.ref['id']] = [ ^ File "/home/jovyan/repos/mt-pm-reporting/.venv/lib/python3.11/site-packages/panel/reactive.py", line 1586, in <listcomp> self._changing[root.ref['id']] = [ ^ File "/home/jovyan/repos/mt-pm-reporting/.venv/lib/python3.11/site-packages/pandas/core/generic.py", line 1577, in __nonzero__ raise ValueError( ValueError: The truth value of a DataFrame is ambiguous. Use a.empty, a.bool(), a.item(), a.any() or a.all(). ``` [Try on PY.CAFE](https://py.cafe/snippet/panel/v1#c=H4sIAM6IF2cAA41SwYrbMBD9FaGTA16z2bItGAJl05ZS6KUt7SEOQbEmsUCWVElO1hj_e0dSnKa7XbL2wZ6ZN--9kWagteZASypao60nhimQhDliVKXOOcvaSu2sblO9qDvnMTjVv3xfavxToPxFj-LIEoh4hVRGFfDoQTmhVTYLmUrVkjlHvvbLyHbmyC74ZmWlCD4HJjsgi2Sl-MA8-4Q_kJgCYAOuxXpF4xtT8Bid7DpVe1QlFhQHmw2kxYklGWdkSEBCaq2cllBIvc9iFXlDfkyfiTWajmY39eQQRZ9PEO0uDL90ipTbzns0gmOo4ij4HrwrHmIuU4hZVLQznHmo6OmE3iOQg0HjLkvNOTkyXzeLH7YDBHHYkU1qQkud8mA3CZg8TOf31HVxPtBLj0NF5xUtyepuPZ4coIGlll2rzvpPqWaFA3tgWxlvg-bUwu9OWGix5nCx4sbEgu9N2LSYwJAZ81PAkZY7Jh3kFLjwH1UgoqXH8XJqet9oFVp6zQWHm8Ntcfe2mGOzZL3uPC0HegAbloqWdyittf-mkXKYxCxGOa0bITnePy1X54pnWwcei3gTvqHl_P42p61Qv1L4JkWfQewb1Amh4Ni2ExIekBWHXmrlmVBgX1AI0JttwiLEsMBL6bge8-cuXrD4tw-PqzD9v92vmO76RCeH16aZBvm__ebEOn93_xpN3FNMM3lNdMIF1fCOeTxV3KvVevwD7XffAbwEAAA) ## Does not work if precedence=-1 either ```python import panel as pn import param from panel.custom import JSComponent import pandas as pd pn.extension() class MyCustomComponent(JSComponent): value = param.DataFrame(precedence=-1) _esm = """ export function render({ model }) { console.log(model) } """ custom_component = MyCustomComponent(value=pd.DataFrame()) button = pn.widgets.Button(name="update") @pn.depends(button, watch=True) def _update_counter_button(value): custom_component.value = pd.DataFrame({"1": [2]}) pn.Column(button, custom_component).servable() ``` ```bash File "/home/jovyan/repos/mt-pm-reporting/.venv/lib/python3.11/site-packages/panel/reactive.py", line 331, in _apply_update self._update_model(events, msg, root, model, doc, comm) File "/home/jovyan/repos/mt-pm-reporting/.venv/lib/python3.11/site-packages/panel/custom.py", line 467, in _update_model self._set_on_model(data_msg, root, model.data) File "/home/jovyan/repos/mt-pm-reporting/.venv/lib/python3.11/site-packages/panel/reactive.py", line 1586, in _set_on_model self._changing[root.ref['id']] = [ ^ File "/home/jovyan/repos/mt-pm-reporting/.venv/lib/python3.11/site-packages/panel/reactive.py", line 1588, in <listcomp> if not model.lookup(attr).property.matches(getattr(model, attr), value) ^^^^^^^^^^^^^^^^^^ File "/home/jovyan/repos/mt-pm-reporting/.venv/lib/python3.11/site-packages/bokeh/core/has_props.py", line 503, in lookup raise AttributeError(f"{cls.__name__}.{name} property descriptor does not exist") AttributeError: MyCustomComponent1.value property descriptor does not exist ``` [Try on PY.CAFE](https://py.cafe/snippet/panel/v1#c=H4sIADOJF2cAA41SwYrbMBD9FaGTA47ZpGwLhkDZtKUUemlLe4hDUKxJIpBHqiQnG4L_vSM5TtPdLtn4EM_MmzfvjefEayOBl1w11rjArEDQTHhmscJLzommwo0zTV8v6tYHCs71L9_nht4QMFz1oCSWSCQrorJYwGMA9MpgNoqZCmstvGdfj_PEduHIrvhGZYWMfnuhW2CzXkrxQQTxiV4gsw5qkIA1zMaTRBvRK_ANgSuenpSCxyRr02IdSAJzgBJcdmIN2desG7FTD2SsNuiNhkKbbZaqxBvzXf83sCYHSfmqHuTS0Od2kvaZlVeyR0S5bkMgIeQJi4OSWwi-eEi5DAkzq3hrpQhQ8fO63hNQgiXhPuubc3YQod7NfrgWCCRhw1Z9E0lqMYBb9cBew7DMp6qLy3avNZ4qPql4yRbTZXdWQALmRrcNXuY_pRoVHtxerDV5rJDn3MHvVjloqObpytL5pEI42nh2KUGhsPanggMvN0J7yDlIFT5iJOJlIHs5t8ewMxhbjkYqCeP9XTF9W0yoWYujaQMvT3wPLl4YL6c02pjwzRDlaRjmKMp5vVNa0vfn5eJSCWLtIVCRvkTY8XJyf5fzRuGvPnzTR59BbXc0J4ZKUttGaXggVjI9NxiEQnAvTIjQ8brHEsSKyMt5t-zy5ypekPi3j9ZV2OO_3a9wd9vRWeEtN4OR_8vfnVkn7-5fM5PulNJC3xo64OLU-HR52ird1WLZ_QE979oCyQQAAA)
closed
2024-10-22T11:01:08Z
2024-10-29T17:01:06Z
https://github.com/holoviz/panel/issues/7430
[]
MarcSkovMadsen
3
proplot-dev/proplot
matplotlib
330
Remove this
Hi, Thank you for your amazing work. I think the first example on page https://proplot.readthedocs.io/en/stable/basics.html should use `pplt.subplots()` instead of `pplt.subplot()`, right? There is figure.subplot() but no pplt.subplot(). EDIT: I am blind. Everything alright in docs.
closed
2022-01-28T12:13:54Z
2022-01-29T17:27:57Z
https://github.com/proplot-dev/proplot/issues/330
[ "documentation" ]
lkugler
4
RobertCraigie/prisma-client-py
asyncio
118
Fields using the `Bytes` type cannot be serialised to json
<!-- Thanks for helping us improve Prisma Client Python! 🙏 Please follow the sections in the template and provide as much information as possible about your problem, e.g. by enabling additional logging output. See https://prisma-client-py.readthedocs.io/en/latest/logging/ for how to enable additional logging output. --> ## Bug description <!-- A clear and concise description of what the bug is. --> ```py from prisma.models import Types from prisma.fields import Base64 model = await Types.prisma().create( data={ 'bytes': Base64.encode(b'foo'), }, ) print(model.json(indent=2)) ``` ``` File ".venv/lib/python3.9/site-packages/pydantic/json.py", line 95, in pydantic_encoder raise TypeError(f"Object of type '{obj.__class__.__name__}' is not JSON serializable") TypeError: Object of type 'Base64' is not JSON serializable ```
closed
2021-11-13T21:04:43Z
2021-11-13T21:20:54Z
https://github.com/RobertCraigie/prisma-client-py/issues/118
[ "bug/2-confirmed", "kind/bug" ]
RobertCraigie
0
supabase/supabase-py
flask
699
increasing the storage list limit beyond 100
Rather than doing something like this: ``` # Function to list all files with pagination def list_all_files(storage, bucket_name): offset = 0 limit = 100 # The maximum number of files to retrieve per request all_files = [] while True: response = storage.from_(bucket_name).list(limit=limit, offset=offset) files = response.data if files: all_files.extend(files) offset += limit else: break return all_files # List all files in the bucket all_files = list_all_files(supabase.storage, bucket_name) print(f"Total files: {len(all_files)}") ``` I prefer to get a list of all file names in a bucket like ``` url: str = os.getenv("SUPABASE_URL") #key: str = os.getenv("SUPABASE_SERVICE_ROLE_KEY") key: str = os.getenv("SUPABASE_ANON_KEY") supabase: Client = create_client(url, key) SUPABASE_EMAIL = os.environ.get("SUPABASE_EMAIL") SUPABASE_PASSWORD = os.environ.get("SUPABASE_PASSWORD") # print secrets print(SUPABASE_EMAIL, SUPABASE_PASSWORD) my_session = supabase.auth.sign_in_with_password({"email": SUPABASE_EMAIL, "password":SUPABASE_PASSWORD}) # # Your storage bucket name bucket_name = "scratch-assignments" #%% # List files in the bucket files = supabase.storage.from_("scratch-assignments").list() #%% print(len(files)) #prints 100 but there are 104 files in the storage #%% ``` That's a list of dictionaries but the contents are not that large so I'm not sure why it's set to such a low limit. Can you parameterize it like ``` files = supabase.storage.from_("scratch-assignments", max_ret=1000) ```
closed
2024-02-22T09:34:29Z
2024-06-25T11:13:57Z
https://github.com/supabase/supabase-py/issues/699
[]
nyck33
1
wkentaro/labelme
computer-vision
1,427
JSON file integration
Why does the latest version of labelme's annotated JSON file not appear in the same JSON file?
open
2024-04-14T02:12:06Z
2024-04-14T02:12:06Z
https://github.com/wkentaro/labelme/issues/1427
[]
xhlho
0
miguelgrinberg/python-socketio
asyncio
821
Client background thread doesn't stop after Timeout
If I am right there are some background threads/tasks to handle incoming message. While I am calling : ```python try: v = sio.call('get_v, 'data', timeout=5) except socketio.exceptions.TimeoutError as e: print("error") finally: sio.disconnect() #main thread exit here, but the python process doesn't ``` Assume that the sever will return after 10s, I will have to wait for 10s **with or without** `sio.disconnect()` for the python process to end. It seems some background threads are preventing the process from terminating. In case of timeout, why does it have to wait? Or is there anyway to abort those non-daemon threads? I'm running the latest client on a windows PC.
closed
2021-11-25T05:34:50Z
2022-04-29T23:42:36Z
https://github.com/miguelgrinberg/python-socketio/issues/821
[ "enhancement" ]
goyzhang
6
apache/airflow
automation
47,800
Rename the triggerer's `default_capacity` config to just `capacity`
### Apache Airflow version main (development) ### If "Other Airflow 2 version" selected, which one? _No response_ ### What happened? The [default_capacity config](https://airflow.apache.org/docs/apache-airflow/stable/configurations-ref.html#default-capacity) doesn't really make sense. Once you change the value, it's no longer the default value, but it's still called `default_capacity`. ### What you think should happen instead? The config name should just be `capacity` ### How to reproduce n/a ### Operating System n/a ### Versions of Apache Airflow Providers _No response_ ### Deployment Official Apache Airflow Helm Chart ### Deployment details _No response_ ### Anything else? _No response_ ### Are you willing to submit PR? - [ ] Yes I am willing to submit a PR! ### Code of Conduct - [x] I agree to follow this project's [Code of Conduct](https://github.com/apache/airflow/blob/main/CODE_OF_CONDUCT.md)
closed
2025-03-14T20:34:32Z
2025-03-22T04:12:42Z
https://github.com/apache/airflow/issues/47800
[ "kind:bug", "affected_version:main_branch", "area:Triggerer", "affected_version:3.0.0beta" ]
RNHTTR
1
PrefectHQ/prefect
data-science
16,955
Logs missing in parent flow when running subflows in different processes
### Bug summary Original slack message: https://prefect-community.slack.com/archives/CL09KU1K7/p1738591882063619 Thanks to the latest release (3.1.15), I'm trying to make use of the new utility function `run_flow_in_subprocess` to create and run subflows with multiprocessing. Here is a simplified example of what i'm trying to do: ```py import asyncio import multiprocessing from prefect import flow, task from prefect.flow_engine import run_flow_in_subprocess @task async def long_running_task(sleep: int): await asyncio.sleep(sleep) @flow async def my_flow(items: list[int]): return await asyncio.gather(*[long_running_task(i) for i in items]) @flow async def my_flow_distributed(items: list[int]): n_procs = multiprocessing.cpu_count() batch_size = len(items) // n_procs procs = [] for i in range(0, len(items), batch_size): proc = run_flow_in_subprocess(flow=my_flow, parameters={"items": items[i : i + batch_size]}) procs.append(proc) exit_codes = [p.join() for p in procs] if any(exit_codes): raise ValueError() return True if __name__ == "__main__": items = list(range(10000)) asyncio.run(my_flow_distributed(items)) ``` It works but logs are missing in the parent flow: * Logs not showing in the parent flow ![Image](https://github.com/user-attachments/assets/7795d6de-d7e5-4441-9730-28b12e28b07b) * Tasks and logs missing in the sub flows ![Image](https://github.com/user-attachments/assets/820900f2-3833-4367-8346-40667b1ceaac) ![Image](https://github.com/user-attachments/assets/739a5898-5fd5-44ff-9907-de8995fb0a89) while locally I can see the logs: ![Image](https://github.com/user-attachments/assets/54dad67b-2952-4e1b-9865-ff99d39b376a) ### Version info ```Text Version: 3.1.15 API version: 0.8.4 Python version: 3.12.3 Git commit: 3ac3d548 Built: Thu, Jan 30, 2025 11:31 AM OS/Arch: linux/x86_64 Profile: production Server type: server Pydantic version: 2.10.6 Integrations: prefect-slack: 0.3.1 prefect-dask: 0.3.2 prefect-aws: 0.5.3 ``` ### Additional context _No response_
open
2025-02-04T10:59:10Z
2025-02-17T19:28:58Z
https://github.com/PrefectHQ/prefect/issues/16955
[ "bug" ]
obendidi
1
albumentations-team/albumentations
machine-learning
1,551
[tech debt] Add linting rule to check two arrays addition
Add linting rule that checks when two arrays are added with coefficients, we use `cv2.addWeighted` and not `array1 * alpha + array2 * beta`
closed
2024-02-29T16:13:38Z
2024-06-19T03:41:06Z
https://github.com/albumentations-team/albumentations/issues/1551
[ "Tech debt" ]
ternaus
0
explosion/spaCy
nlp
13,434
Spacy problem with whitespace or punctuation
Hi everyone ! I have a problem when i train my NER model spacy. I have a annoted span like $400 in a text. But when i train my model i have this error : ``` ValueError: [E024] Could not find an optimal move to supervise the parser. Usually, this means that the model can't be updated in a way that's valid and satisfies the correct annotations specified in the GoldParse. For example, are all labels added to the model? If you're training a named entity recognizer, also make sure that none of your annotated entity spans have leading or trailing whitespace or punctuation. You can also use the `debug data` command to validate your JSON-formatted training data. For details, run: python -m spacy debug data --help ``` So how can i add $ in spacy caracters?
closed
2024-04-11T12:49:42Z
2024-05-16T00:02:26Z
https://github.com/explosion/spaCy/issues/13434
[ "usage" ]
salma2302
2
desec-io/desec-stack
rest-api
479
Support for Handshake names
Hi. I'm trying to host a zone for a Handshake name on deSEC. From what I can tell, it is possible to add second-level domains (`my.whatevername.`), but not the name itself (`whatevername.`). It's great that deSEC does not limit to domains with an ICANN tld like other services and hopefully will be able to host records for just the name too. Adding 2 domains (say `apple.whatevername.` and `orange.whatevername.`) is possible right now as the NS required to be added in the registry is the same (`ns1.desec.io` and `ns2.desec.org`). The problem is when setting up **DS** records. 2 different domains on deSEC ask different DS records to be added. So if deSEC allows adding the name itself (`whatevername.` in the example), then a common DS record would work for all "sub" domains. To be clear, deSEC does not have to interact with Handshake at all, only allow the name to be added, not just SLDs. What is Handshake? > Handshake is a UTXO-based blockchain protocol that manages the registration, renewal, and transfer of DNS top-level domains (TLDs). Our naming protocol differs from its predecessors in that it has no concept of namespacing or subdomains at the consensus layer. Its purpose is not to replace DNS, but to replace the root zone file and the root servers. Official website: https://handshake.org/ Documentation: https://hsd-dev.org/
closed
2020-11-19T18:16:28Z
2020-11-20T12:33:55Z
https://github.com/desec-io/desec-stack/issues/479
[ "more info needed" ]
rithvikvibhu
10
deepspeedai/DeepSpeed
machine-learning
6,772
[BUG] [Fix-Suggested] ZeRO Stage 3 Overwrites Module ID Attribute Causing Incorrect Expert Placement on GPUs
## Description We experienced wrong GPU placement when doing MoE with ZeRO Stage 3. We use `module.id` to control which expert to be loaded onto which GPU for finegrained controlm and we find out that `module.id` got corrupted after `deepspeed.initialize`. ## Suspected Root Cause DeepSpeed uses `.id` in ZeRO Stage 3 optimization to manage states, as seen in [`runtime/zero/parameter_offload.py:L271`](https://github.com/microsoft/DeepSpeed/blob/master/deepspeed/runtime/zero/parameter_offload.py#L269-L271). This practice is very brittle in that: 1. `id` is an overly generic attribute name, might get easilly collided with some user-defined attributes. 2. There's no special check on `.id` attribute before setting it, this allows for accidental overwrites of the attribute, causing hard-to-diagnose problems. In the specific bug we've encountered (bug.py provided below), each expert module is identified by the `.id` attribute, but during initialization, the `.id` is overwritten by the `_register_hooks_recursively` function in `deepspeed/runtime/zero/stage3.py`, leading to a mess on expert-GPU placement. ### To reproduce The following code in ZeRO Stage 3 is responsible for overwriting the `.id` attribute: 1. Install deepspeed `0.15.4` 2. run `bug.py` using `deepspeed --num_gpus=2 bug.py` (num_gpus argument here doesn't matter, use 1 if you don't have multigpu nodes.) ```python import torch import deepspeed from torch.nn import Module, Linear # Define a simple expert module class Expert(Module): def __init__(self, id): super().__init__() self.id = id # ID for custom GPU placement self.fc = Linear(128, 128) def forward(self, x): return self.fc(x) # Create a model with 60 experts class MoEModel(Module): def __init__(self): super().__init__() self.experts = torch.nn.ModuleList([Expert(i) for i in range(60)]) def forward(self, x, expert_id): return self.experts[expert_id](x) # Helper function to log expert ids def log_expert_ids(model, rank): loaded_experts = [e.id for e in model.experts] def main(): deepspeed.init_distributed() rank = torch.distributed.get_rank() # Create model model = MoEModel() log_expert_ids(model, rank) # prints 0, 1, 2, .., 59 # Configure DeepSpeed model_engine, optimizer, _, _ = deepspeed.initialize( model=model, optimizer=torch.optim.Adam(model.parameters(), lr=3e-5), config={ "train_micro_batch_size_per_gpu": 1, "gradient_accumulation_steps": 1, "steps_per_print": 1, "zero_optimization": {"stage": 3,} } ) # print model ids again after deepspeed.initialize log_expert_ids(model, rank) # prints 0, 2, 4, 6, ... # if you do a deepspeed.intialize here again, you will see the id itself completely messed up. dummy_input = torch.randn(1, 128).cuda(rank) for expert_id in range(60): model_engine(dummy_input, expert_id=expert_id) if __name__ == "__main__": main() ``` 3. We print `id`s of all experts twice, one before deepspeed.initialize and one after that. Observe that the first print gives `0, 1, 2, ..., 59` while the second one gives `2, 4, 6, 8, .., 120` In this code, `module.id` is set to a value based on a counter (`my_count`), which conflicts with user-defined `.id` attributes used for expert placement. ## Bug Significance This bug can significantly affect model behavior when expert modules are incorrectly placed across GPUs, leading to incorrect training outcomes or potential crashes. Ensuring that internal DeepSpeed modifications do not overwrite user-defined attributes is crucial for stability and expected functionality. Even if user-side conflicts are not in your scope, deepspeed itself can accidently modify these attributes as well. For example, you can reproduce the same problem by calling `deepspeed.initialize` multiple times. Thus, we argue for two fixes / engineering practices for this issue. ## Expected Behavior / Suggested Fix 1. **Use a Specific Attribute for Internal IDs**: Instead of overwriting `.id`, use a more specific attribute name such as `_deepspeed_id` to avoid conflicts with user-defined attributes. 2. **Restrict Attribute Modification**: Modify the `__setattr__` method to only allow setting fields that have not been previously set, preventing unintentional overwrites of user-defined attributes. 3. **Forbid Duplicated `deepspeed.initialize`: We observe a lot of issue with accidental duplicate calls to `deepspeed.initialize`. Thus we suggest to forbid duplicate calls by recording the models / optimizers that have already been inited, as mentioned in #6770 . ## ds_report output <details> <summary>Click to Show</summary> <br> <pre><code>collect2: error: ld returned 1 exit status gds .................... [NO] ....... [NO] transformer_inference .. [NO] ....... [OKAY] inference_core_ops ..... [NO] ....... [OKAY] cutlass_ops ............ [NO] ....... [OKAY] quantizer .............. [NO] ....... [OKAY] ragged_device_ops ...... [NO] ....... [OKAY] ragged_ops ............. [NO] ....... [OKAY] random_ltd ............. [NO] ....... [OKAY] [WARNING] sparse_attn requires a torch version >= 1.5 and < 2.0 but detected 2.2 [WARNING] using untested triton version (2.2.0), only 1.0.0 is known to be compatible sparse_attn ............ [NO] ....... [NO] spatial_inference ...... [NO] ....... [OKAY] transformer ............ [NO] ....... [OKAY] stochastic_transformer . [NO] ....... [OKAY] -------------------------------------------------- DeepSpeed general environment info: torch install path ............... ['/home/xxx/python3.10/site-packages/torch'] torch version .................... 2.2.2+cu121 deepspeed install path ........... ['/home/xxx/python3.10/site-packages/deepspeed'] deepspeed info ................... 0.15.4, unknown, unknown torch cuda version ............... 12.1 torch hip version ................ None nvcc version ..................... 12.3 deepspeed wheel compiled w. ...... torch 2.2, cuda 12.1 shared memory (/dev/shm) size .... 31.24 GB </code></pre> </details> **I will be more than happy to contribute to the two suggested fixes, let me know what you think!**
closed
2024-11-20T23:05:43Z
2025-01-31T18:02:58Z
https://github.com/deepspeedai/DeepSpeed/issues/6772
[ "bug", "training" ]
traincheck-team
4
yzhao062/pyod
data-science
89
CBLOF not converging expected different data type
I have been unable to flag anomalies using this algorithm. I have found that when I run the CBLOF algorithm it throws the following error: ValueError: Buffer dtype mismatch, expected 'INT' but got 'long long' Exception ignored in: 'sklearn.cluster._k_means._assign_labels_csr' ValueError: Buffer dtype mismatch, expected 'INT' but got 'long long' Which results in: ValueError: Could not form valid cluster separation. Please change n_clusters or change clustering method It appears that the CBLOF algorithm is dependent on sklearn.cluster and the expected data type that is being passed to skelearn from pyod is not what is expected. Below are four scenarios that I have prepared using different parameters for CBLOF. Note that the same error is thrown regardless of changing theses parameters. I have also tried changing the cluster size using the elbow method to find the optimal K in the Kmeans scenario. from pyod.models.cblof import CBLOF import pyod.utils as ut from sklearn import cluster #create some data data = ut.data.generate_data()[0] #scenario 1 - use default CBLOF parameters model = CBLOF() clusters = model.fit_predict(data) #scenario 2 - use kmeans as a centroid estimator n_clusters = 3 kmeans = cluster.KMeans(n_clusters) model = CBLOF(n_clusters = n_clusters, clustering_estimator = kmeans) clusters = model.fit_predict(data) #test if scaling the data makes a difference data_scaled = (data - data.min())/(data.max()-data.min()) #scenario 3 - no clusters specified, use defaults, scaled data model = CBLOF() clusters = model.fit_predict(data_scaled) #scenario 4 - use kmeans as a centroid estimator, scaled data n_clusters = 3 kmeans = cluster.KMeans(n_clusters) model = CBLOF(n_clusters = n_clusters, clustering_estimator = kmeans) clusters = model.fit_predict(data_scaled)
closed
2019-05-09T07:30:25Z
2020-05-08T14:15:22Z
https://github.com/yzhao062/pyod/issues/89
[]
wbarich
7
Nekmo/amazon-dash
dash
73
Evaluate to change sniff filters
Put an `x` into all the boxes [ ] relevant to your *issue* (like this: `[x]`) ### What is the purpose of your *issue*? - [X] Bug report (encountered problems with amazon-dash) - [ ] Feature request (request for a new functionality) - [ ] Question - [ ] Other ### Guideline for bug reports * amazon-dash version: 1.1.1 * Python version: 2.7.9 * Pip & Setuptools version: 18.0 * Operating System: Raspbian (Linux version 4.9.35-v7+) - [X] The `pip install` or `setup install` command has been completed without errors - [X] The `python -m amazon_dash.install` command has been completed without errors - [X] The `amazon-dash discovery` command works without errors - [X] I have created/edited the configuration file - [X] *Amazon-dash service* or `amazon-dash --debug run` works #### Description It seems amazon-dash service consumes a relevant share of CPU (around 15% average) in stand by. I think this is too much for a service like this, especially if you are using a Raspberry Pi as a server. In the same Raspberry Pi, other services like lighttpd, plexmediaserver, transmission and home assistant do not consume more than 2% in stand by. #### What I Did I ran 'top' and 'htop' for a while and observed the results (sorted by cpu usage).
closed
2018-08-11T12:12:51Z
2018-09-03T18:21:32Z
https://github.com/Nekmo/amazon-dash/issues/73
[]
etatus
6
jpadilla/django-rest-framework-jwt
django
406
'ReverseManyToOneDescriptor' object has no attribute 'get_by_natural_key'
```ttributeError at /api/v0/lockers/ 'ReverseManyToOneDescriptor' object has no attribute 'get_by_natural_key' Request Method: GET Request URL: http://172.16.0.89:8000/api/v0/lockers/ Django Version: 1.11.8 Python Executable: /var/webapps/locker_project/env/bin/python Python Version: 3.5.2 Python Path: ['/var/webapps/locker_project/code', '/var/webapps/locker_project/env/lib/python35.zip', '/var/webapps/locker_project/env/lib/python3.5', '/var/webapps/locker_project/env/lib/python3.5/plat-x86_64-linux-gnu', '/var/webapps/locker_project/env/lib/python3.5/lib-dynload', '/usr/lib/python3.5', '/usr/lib/python3.5/plat-x86_64-linux-gnu', '/var/webapps/locker_project/env/lib/python3.5/site-packages'] Server time: Fri, 15 Dec 2017 12:43:02 +0000 Installed Applications: ['grappelli', 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'django.contrib.sites', 'ckeditor', 'django_cleanup', 'imagekit', 'rest_framework', 'rest_framework.authtoken', 'locker_project.accounts', 'locker_project.lockers', 'locker_project.operations'] Installed Middleware: ['django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware'] Traceback: File "/var/webapps/locker_project/env/lib/python3.5/site-packages/rest_framework/request.py" in __getattribute__ 385. return getattr(self._request, attr) During handling of the above exception ('WSGIRequest' object has no attribute 'successful_authenticator'), another exception occurred: File "/var/webapps/locker_project/env/lib/python3.5/site-packages/django/core/handlers/exception.py" in inner 41. response = get_response(request) File "/var/webapps/locker_project/env/lib/python3.5/site-packages/django/core/handlers/base.py" in _get_response 187. response = self.process_exception_by_middleware(e, request) File "/var/webapps/locker_project/env/lib/python3.5/site-packages/django/core/handlers/base.py" in _get_response 185. response = wrapped_callback(request, *callback_args, **callback_kwargs) File "/var/webapps/locker_project/env/lib/python3.5/site-packages/django/views/decorators/csrf.py" in wrapped_view 58. return view_func(*args, **kwargs) File "/var/webapps/locker_project/env/lib/python3.5/site-packages/django/views/generic/base.py" in view 68. return self.dispatch(request, *args, **kwargs) File "/var/webapps/locker_project/env/lib/python3.5/site-packages/rest_framework/views.py" in dispatch 489. response = self.handle_exception(exc) File "/var/webapps/locker_project/env/lib/python3.5/site-packages/rest_framework/views.py" in handle_exception 449. self.raise_uncaught_exception(exc) File "/var/webapps/locker_project/env/lib/python3.5/site-packages/rest_framework/views.py" in dispatch 477. self.initial(request, *args, **kwargs) File "/var/webapps/locker_project/env/lib/python3.5/site-packages/rest_framework/views.py" in initial 395. self.check_permissions(request) File "/var/webapps/locker_project/env/lib/python3.5/site-packages/rest_framework/views.py" in check_permissions 330. request, message=getattr(permission, 'message', None) File "/var/webapps/locker_project/env/lib/python3.5/site-packages/rest_framework/views.py" in permission_denied 169. if request.authenticators and not request.successful_authenticator: File "/var/webapps/locker_project/env/lib/python3.5/site-packages/rest_framework/request.py" in __getattribute__ 387. six.reraise(info[0], info[1], info[2].tb_next) File "/var/webapps/locker_project/env/lib/python3.5/site-packages/django/utils/six.py" in reraise 685. raise value.with_traceback(tb) File "/var/webapps/locker_project/env/lib/python3.5/site-packages/rest_framework/request.py" in successful_authenticator 238. self._authenticate() File "/var/webapps/locker_project/env/lib/python3.5/site-packages/rest_framework/request.py" in _authenticate 345. user_auth_tuple = authenticator.authenticate(self) File "/var/webapps/locker_project/env/lib/python3.5/site-packages/rest_framework_jwt/authentication.py" in authenticate 43. user = self.authenticate_credentials(payload) File "/var/webapps/locker_project/env/lib/python3.5/site-packages/rest_framework_jwt/authentication.py" in authenticate_credentials 59. user = User.objects.get_by_natural_key(username)```
closed
2017-12-15T12:44:55Z
2017-12-15T13:12:57Z
https://github.com/jpadilla/django-rest-framework-jwt/issues/406
[]
ArtemBernatskyy
1
marimo-team/marimo
data-science
4,161
Github integration in the community cloud
### Description I would like to be able to make pull requests from edits to notebooks and files for projects mirrored from github. ### Suggested solution Add a "Preview Pull Request" button next to `$+/- Compare` on History tab of project in dashboard. This option might only make sense if the project is mirrored from GitHub. ### Alternative None that I could think of. ### Additional context _No response_
open
2025-03-19T15:02:37Z
2025-03-19T15:05:00Z
https://github.com/marimo-team/marimo/issues/4161
[ "enhancement" ]
dchassin
0
ebhy/budgetml
fastapi
9
Extra files/scripts in Docker container
Hi @htahir1 , thanks for the super handy library ! I am wondering whether or not it is possible to include some extra python file when creating the Docker container? I am attempting to infer a custom model and thus I need a bunch of files like: checkpoint, model file, config and so on.. I couldn't find anything mentioning this in the docs. Thanks for your help 😄
closed
2021-03-02T17:08:07Z
2021-03-09T15:24:09Z
https://github.com/ebhy/budgetml/issues/9
[]
JulesBelveze
4
junyanz/pytorch-CycleGAN-and-pix2pix
deep-learning
825
Training works only with gray scale images
Hi, I have used pix2pix model to train my model using custom dataset with pairs. A is the real image while B is the black & white version of A. When i trained the model with 3 channel ie RGB image(--n_channels 3), the model does not learn anything but just outputs a black image. But when i use gray scale images(--n_channels 1), it learns perfectly. Btw, i use resnet9 for G and basic for D. Can you please explain the behaviour?
closed
2019-11-05T09:13:37Z
2019-11-06T19:15:51Z
https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/issues/825
[]
kalai2033
4
biolab/orange3
scikit-learn
6,001
Recursive imputer
Use case: We have a model with 200 features. We apply a “Model base imputer (simple tree)” to fill in missing data. Problem: The “Imputer” widget fills in just a part of the missing data (that's the limit of the default 1-NN regressor used). Current workaround: We have chained 5 instances of the same imputer, that’s to say, as much as needed to “complete” the imputing procedure for our data. At each stage, more data are imputed, up until the point where the regressor cannot produce further predictions. Proposed solution: Add a check-box in the Impute widget, to activate iteration. The process will be repeated leveraging the imputed data from the previous iteration. Loop until no more changes are produced.
closed
2022-06-02T15:41:36Z
2022-09-30T08:49:45Z
https://github.com/biolab/orange3/issues/6001
[ "bug" ]
hydrastarmaster
5
tensorpack/tensorpack
tensorflow
1,072
Some questions for image mean subtraction
1. for per_pixel_mean(), it is better to avoid using test_files. It is unfair to use test_files for training datas which apply subtle distribution from test_files, and I am not sure if it will affect final test eval 2. for test, it is better to use image mean retrieved from training images. and it is better to save the image mean in the model for further usage at prediction. wondering is there easy way to save/restore it along with model? ``` def get_per_pixel_mean(self): """ Returns: a mean image of all (train and test) images of size 32x32x3 """ train_files, test_files, _ = get_filenames(self.dir, self.cifar_classnum) all_imgs = [x[0] for x in read_cifar(train_files + test_files, self.cifar_classnum)] arr = np.array(all_imgs, dtype='float32') mean = np.mean(arr, axis=0) return mean ```
closed
2019-02-07T11:42:54Z
2019-02-08T04:11:55Z
https://github.com/tensorpack/tensorpack/issues/1072
[]
cloudseasail
2
microsoft/nlp-recipes
nlp
45
Get datasets/packages approved by CELA
- BERT PyTorch Repo - Yahoo Answers - IMDb Large Movie Review Dataset
closed
2019-05-07T14:46:25Z
2019-08-02T14:14:38Z
https://github.com/microsoft/nlp-recipes/issues/45
[ "engineering" ]
nikhilrj
3
inventree/InvenTree
django
8,452
Email Notification When Stock Level Drops Below Minimum?
### Please verify that this bug has NOT been raised before. - [x] I checked and didn't find a similar issue ### Describe the bug* I'm not receiving email notifications when a part's stock level drops below the set minimum, even though email functionality is working, and notifications are enabled in the user settings. Could this issue (https://github.com/inventree/InvenTree/issues/7866) be addressing the same question? ### Steps to Reproduce 1. Set a minimum stock level for a part. 1. Ensure email notifications are enabled in the user settings. 1. Allow the stock level of that part to drop below the minimum. ### Expected behaviour An email notification should be sent when the stock level falls below the minimum threshold. ### Deployment Method - [ ] Docker - [ ] Package - [x] Bare metal - [ ] Other - added info in Steps to Reproduce ### Version Information # Version Information: InvenTree-Version: 0.16.8 Django Version: 4.2.15 Database: sqlite3 Debug-Mode: False Deployed using Docker: False Platform: Linux-6.8.12-2-pve-x86_64-with-glibc2.31 Installer: None Active plugins: [{'name': 'InvenTreeBarcode', 'slug': 'inventreebarcode', 'version': '2.1.0'}, {'name': 'InvenTreeCoreNotificationsPlugin', 'slug': 'inventreecorenotificationsplugin', 'version': '1.0.0'}, {'name': 'InvenTreeCurrencyExchange', 'slug': 'inventreecurrencyexchange', 'version': '1.0.0'}, {'name': 'InvenTreeLabel', 'slug': 'inventreelabel', 'version': '1.1.0'}, {'name': 'InvenTreeLabelMachine', 'slug': 'inventreelabelmachine', 'version': '1.0.0'}, {'name': 'InvenTreeLabelSheet', 'slug': 'inventreelabelsheet', 'version': '1.0.0'}, {'name': 'DigiKeyPlugin', 'slug': 'digikeyplugin', 'version': '1.0.0'}, {'name': 'LCSCPlugin', 'slug': 'lcscplugin', 'version': '1.0.0'}, {'name': 'MouserPlugin', 'slug': 'mouserplugin', 'version': '1.0.0'}, {'name': 'TMEPlugin', 'slug': 'tmeplugin', 'version': '1.0.0'}, {'name': 'IPNGenerator', 'slug': 'ipngen', 'version': '0.1'}] ### Please verify if you can reproduce this bug on the demo site. - [ ] I can reproduce this bug on the demo site. ### Relevant log output _No response_
closed
2024-11-08T09:51:12Z
2024-11-25T11:02:24Z
https://github.com/inventree/InvenTree/issues/8452
[ "bug", "question" ]
skydiablo
16
microsoft/MMdnn
tensorflow
104
can we directly convert tensorflow pb file to IR???
can we directly convert tensorflow pb file to IR???
closed
2018-03-14T03:28:55Z
2018-07-05T05:10:21Z
https://github.com/microsoft/MMdnn/issues/104
[ "enhancement" ]
dinglong1020
3
KaiyangZhou/deep-person-reid
computer-vision
267
PyTorch is not using the GPU specified by gpu_devices
When I set gpu_devices = 0, it will run all gpus in the server. And I tried to put "CUDA_VISIBLE_DEVICES=0" before "python scripts/main.py", the same thing occurred.
closed
2019-12-02T05:27:57Z
2019-12-03T10:42:32Z
https://github.com/KaiyangZhou/deep-person-reid/issues/267
[]
justopit
8
ryfeus/lambda-packs
numpy
35
Upgrade Scipy to v1.2.0
Thanks for sharing this, I've been using it for over a year. Would it be possible to upgrade the sklearn/scipy/numpy bundle to use the latest Scipy version v1.2.0 ?
closed
2019-02-07T12:35:12Z
2019-02-08T11:00:39Z
https://github.com/ryfeus/lambda-packs/issues/35
[]
tomaso909
2
SciTools/cartopy
matplotlib
2,063
Getting error Proj version 0.0.0 is installed, but cartopy requires at least version 8.0.0 (while trying to install cartopy)
### Description Hello, I was trying to install cartopy so that I can import and use it on jupyter notebook and I am using a windows computer. However, when I try to install it using pip the following error comes. Can anyone please help me to find the best solution to solve this error? Thanks for your help. #1981 </details> C:\Users\barok> pip install cartopy Collecting cartopy Using cached Cartopy-0.20.3.tar.gz (10.8 MB) Installing build dependencies ... done Getting requirements to build wheel ... error ERROR: Command errored out with exit status 1: command: 'C:\Users\barok\miniconda3\python.exe' 'C:\Users\barok\miniconda3\lib\site-packages\pip\_vendor\pep517\in_process\_in_process.py' get_requires_for_build_wheel 'C:\Users\barok\AppData\Local\Temp\tmpr6c28j1_' cwd: C:\Users\barok\AppData\Local\Temp\pip-install-abtwr2_1\cartopy_61ba9a4cccce421bbb67eada722140b7 Complete output (3 lines): <string>:117: UserWarning: Unable to determine GEOS version. Ensure you have 3.7.2 or later installed, or installation may fail. <string>:166: UserWarning: Unable to determine Proj version. Ensure you have 8.0.0 or later installed, or installation may fail. Proj version 0.0.0 is installed, but cartopy requires at least version 8.0.0. ---------------------------------------- WARNING: Discarding https://files.pythonhosted.org/packages/98/a9/0e4000eabadfcff6373c0fec790863b543b919cbfec18aed60d71ba67d5d/Cartopy-0.20.3.tar.gz#sha256=0d60fa2e2fbd77c4d1f6b1f9d3b588966147f07c1b179d2d34570ac1e1b49006 (from https://pypi.org/simple/cartopy/) (requires-python:>=3.7). Command errored out with exit status 1: 'C:\Users\barok\miniconda3\python.exe' 'C:\Users\barok\miniconda3\lib\site-packages\pip\_vendor\pep517\in_process\_in_process.py' get_requires_for_build_wheel 'C:\Users\barok\AppData\Local\Temp\tmpr6c28j1_' Check the logs for full command output. Using cached Cartopy-0.20.2.tar.gz (10.8 MB) Installing build dependencies ... done Getting requirements to build wheel ... error ERROR: Command errored out with exit status 1: command: 'C:\Users\barok\miniconda3\python.exe' 'C:\Users\barok\miniconda3\lib\site-packages\pip\_vendor\pep517\in_process\_in_process.py' get_requires_for_build_wheel 'C:\Users\barok\AppData\Local\Temp\tmp76fblfvu' cwd: C:\Users\barok\AppData\Local\Temp\pip-install-abtwr2_1\cartopy_72929b0ca95c4775aa3c63cacbbd652e Complete output (3 lines): <string>:117: UserWarning: Unable to determine GEOS version. Ensure you have 3.7.2 or later installed, or installation may fail. <string>:166: UserWarning: Unable to determine Proj version. Ensure you have 8.0.0 or later installed, or installation may fail. Proj version 0.0.0 is installed, but cartopy requires at least version 8.0.0. ---------------------------------------- WARNING: Discarding https://files.pythonhosted.org/packages/0f/c0/58453b036e79046d211f083880d58dcce787e7e07647ac25dc46c6555099/Cartopy-0.20.0.tar.gz#sha256=eae58aff26806e63cf115b2bce9477cedc4aa9f578c5e477b2c25cfa404f2b7a (from https://pypi.org/simple/cartopy/) (requires-python:>=3.7). Command errored out with exit status 1: 'C:\Users\barok\miniconda3\python.exe' 'C:\Users\barok\miniconda3\lib\site-packages\pip\_vendor\pep517\in_process\_in_process.py' get_requires_for_build_wheel 'C:\Users\barok\AppData\Local\Temp\tmpcc19xy_c' Check the logs for full command output. Using cached Cartopy-0.19.0.post1.tar.gz (12.1 MB) Installing build dependencies ... done Getting requirements to build wheel ... error ERROR: Command errored out with exit status 1: command: 'C:\Users\barok\miniconda3\python.exe' 'C:\Users\barok\miniconda3\lib\site-packages\pip\_vendor\pep517\in_process\_in_process.py' get_requires_for_build_wheel 'C:\Users\barok\AppData\Local\Temp\tmp606auhag' cwd: C:\Users\barok\AppData\Local\Temp\pip-install-abtwr2_1\cartopy_ccec1e993dd44c0d80035dacf2c46fd4 Complete output (3 lines): <string>:117: UserWarning: Unable to determine GEOS version. Ensure you have 3.3.3 or later installed, or installation may fail. <string>:166: UserWarning: Unable to determine Proj version. Ensure you have 4.9.0 or later installed, or installation may fail. Proj version 0.0.0 is installed, but cartopy requires at least version 4.9.0. ---------------------------------------- WARNING: Discarding https://files.pythonhosted.org/packages/ed/ca/524ce33692df3faeaa56852fb6a33b0b410be94cc288417565b96fef3f64/Cartopy-0.19.0.post1.tar.gz#sha256=4b8b4773a98ed7009fe17d9b6ec87ac3ac62b7d14634d7768c190eadc647d576 (from https://pypi.org/simple/cartopy/) (requires-python:>=3.5). Command errored out with exit status 1: 'C:\Users\barok\miniconda3\python.exe' 'C:\Users\barok\miniconda3\lib\site-packages\pip\_vendor\pep517\in_process\_in_process.py' get_requires_for_build_wheel 'C:\Users\barok\AppData\Local\Temp\tmp606auhag' Check the logs for full command output. Using cached Cartopy-0.18.0.tar.gz (14.4 MB) ERROR: Command errored out with exit status 1: command: 'C:\Users\barok\miniconda3\python.exe' -c 'import io, os, sys, setuptools, tokenize; sys.argv[0] = '"'"'C:\\Users\\barok\\AppData\\Local\\Temp\\pip-install-abtwr2_1\\cartopy_f1e5d9d6f39f4a9caa97e7cc6d1c0c2e\\setup.py'"'"'; __file__='"'"'C:\\Users\\barok\\AppData\\Local\\Temp\\pip-install-abtwr2_1\\cartopy_f1e5d9d6f39f4a9caa97e7cc6d1c0c2e\\setup.py'"'"';f = getattr(tokenize, '"'"'open'"'"', open)(__file__) if os.path.exists(__file__) else io.StringIO('"'"'from setuptools import setup; setup()'"'"');code = f.read().replace('"'"'\r\n'"'"', '"'"'\n'"'"');f.close();exec(compile(code, __file__, '"'"'exec'"'"'))' egg_info --egg-base 'C:\Users\barok\AppData\Local\Temp\pip-pip-egg-info-hwuvi3le' cwd: C:\Users\barok\AppData\Local\Temp\pip-install-abtwr2_1\cartopy_f1e5d9d6f39f4a9caa97e7cc6d1c0c2e\ Complete output (5 lines): C:\Users\barok\AppData\Local\Temp\pip-install-abtwr2_1\cartopy_f1e5d9d6f39f4a9caa97e7cc6d1c0c2e\setup.py:104: UserWarning: **Unable to determine GEOS version**. Ensure you have 3.3.3 or later installed, or installation may fail. warnings.warn( C:\Users\barok\AppData\Local\Temp\pip-install-abtwr2_1\cartopy_f1e5d9d6f39f4a9caa97e7cc6d1c0c2e\setup.py:157: UserWarning: Unable to determine Proj version. Ensure you have 4.9.0 or later installed, or installation may fail. warnings.warn( **Proj version 0.0.0 is installed**, but cartopy requires at least version 4.9.0. PS C:\Users\barok> pip show proj Name: proj Version: 0.2.0 PS C:\Users\barok> pip show geos Name: geos Version: 0.2.3
closed
2022-07-31T14:12:58Z
2022-09-11T02:18:37Z
https://github.com/SciTools/cartopy/issues/2063
[]
Barokirving1
4
matplotlib/matplotlib
matplotlib
29,385
[MNT]: new public method to help title positioning
### Summary 1. The change that broke #29381 would have been fine if the [logic that calculates `top` within `Axes._update_title_position`](https://github.com/matplotlib/matplotlib/blob/c11175d142403ff9af6e55ccb1feabccb990a7f6/lib/matplotlib/axes/_base.py#L3068-L3090) only needed to work for ordinary `Axes` instances. 2. Cartopy has artists separate from the `XAxis` and `YAxis` which must be considered for title placement. Currently, it does that by [overriding `_update_title_position`](https://github.com/SciTools/cartopy/blob/113be8ee587a6a57e20a5cc46bb27247b8f31fea/lib/cartopy/mpl/geoaxes.py#L511). Overriding a private method is not ideal, neither is repeating some of the code that is already in the parent method. ### Proposed fix Factor out a public method that returns `top`. Making it public means it can safely be overridden in subclasses such as `PolarAxes` and Cartopy's `GeoAxes`. Knowing it can/should be overridden in subclasses means that in the parent `Axes` we can use the most efficient approach that works for `Axes`.
open
2024-12-29T15:06:57Z
2025-01-06T20:39:08Z
https://github.com/matplotlib/matplotlib/issues/29385
[ "New feature", "topic: ticks axis labels", "Maintenance" ]
rcomer
2
aeon-toolkit/aeon
scikit-learn
2,190
[SAX_Fast] is STALE
@patrickzib, SAX_Fast has had no activity for 146 days. This branch will be automatically deleted in 29 days.
closed
2024-10-14T01:27:56Z
2024-11-18T01:28:18Z
https://github.com/aeon-toolkit/aeon/issues/2190
[ "stale branch" ]
aeon-actions-bot[bot]
5
ultralytics/yolov5
pytorch
13,142
I observe that the validation phase is much slower than the training phase on large validation sets and multi-GPU machines
### Search before asking - [X] I have searched the YOLOv5 [issues](https://github.com/ultralytics/yolov5/issues) and [discussions](https://github.com/ultralytics/yolov5/discussions) and found no similar questions. ### Question Hello, dear author. I observed that validation was very slow using only one GPU regardless of how many Gpus there were. Here's a question I'd like to ask from a novice perspective: why not make the validation part multi-GPU parallel as well? Is it impossible or unnecessary or you don't have time to do it? Since I was recently looking for a way to reduce the validation part of the time, I was wondering if there was an existing solution that could save me some time. If not, I'm trying multi-GPU parallel validation, just like multi-GPU training. Does this work? Please forgive me if I have caused any offence ### Additional _No response_
closed
2024-06-27T07:18:11Z
2024-10-20T19:48:59Z
https://github.com/ultralytics/yolov5/issues/13142
[ "question", "Stale" ]
ASharpSword
6
matterport/Mask_RCNN
tensorflow
3,022
Unresolved reference hdf5_format
open
2024-03-01T08:06:51Z
2024-03-01T08:06:51Z
https://github.com/matterport/Mask_RCNN/issues/3022
[]
whh1204
0
faif/python-patterns
python
239
[question]should the borg design pattern override __deepcopy__() ?
- borg as i see it is equivalent of singleton for python - but it does not handle deepcopy very well - shouldn't there be a \_\_deepcopy\_\_ method? - correct me if i am wrong
closed
2018-08-20T05:37:52Z
2019-02-08T13:42:29Z
https://github.com/faif/python-patterns/issues/239
[ "question" ]
sak96
3
mckinsey/vizro
plotly
713
[Docs] Remove redundant provision of `id` in docs examples
We still have some examples where an `id` is provided to a component even though it is not required. 1. Look through the code examples in our docs e.g. `vizro-core/docs` and `vizro-ai/docs` 2. Remove the `id` from `vm.Graph`, `vm.Table`, `vm.AgGrid` or `vm.Card` if **it is not required** #### When is it not required? The `id` is normally not required if that component is not the target of any kind of action e.g. filter_interaction, export, filters or parameters. A good rule of thumb is, if the `id` appears only once in the entire app configuration, it's probably not required. **Example of a redundant `id` provision** (and the first example where you can remove it from the docs): In the first example the `id="scatter_chart"` is not required, because the Graph is not being targeted by any action. Also the `id` only appears once in the entire app configuration. In the second example it is required though, because it is now the target of the Filter. ``` from vizro import Vizro import vizro.plotly.express as px import vizro.models as vm iris = px.data.iris() page = vm.Page( title="My first page", components=[ vm.Graph(id="scatter_chart", figure=px.scatter(iris, x="sepal_length", y="petal_width", color="species")), ], ) dashboard = vm.Dashboard(pages=[page]) Vizro().build(dashboard).run() ``` **Example where the `id` is required:** ``` from vizro import Vizro import vizro.plotly.express as px import vizro.models as vm iris = px.data.iris() page = vm.Page( title="My first page", components=[ vm.Graph(id="scatter_chart", figure=px.scatter(iris, x="sepal_length", y="petal_width", color="species")), vm.Graph(id="scatter_chart2", figure=px.scatter(iris, x="petal_length", y="sepal_width", color="species")), ], controls=[ vm.Filter(column="petal_length",targets=["scatter_chart"],selector=vm.RangeSlider(step=1)), ], ) dashboard = vm.Dashboard(pages=[page]) Vizro().build(dashboard).run() ```
closed
2024-09-17T13:10:10Z
2024-11-25T14:37:34Z
https://github.com/mckinsey/vizro/issues/713
[ "Docs :spiral_notepad:", "Good first issue :baby_chick:", "hacktoberfest" ]
huong-li-nguyen
3
apache/airflow
automation
47,702
Invalid keys in executor_config should raise an error
### Apache Airflow Provider(s) cncf-kubernetes ### Versions of Apache Airflow Providers 10.0.1 ### Apache Airflow version 2.10.5 ### Operating System Debian GNU/Linux 12 (bookworm) ### Deployment Astronomer ### Deployment details _No response_ ### What happened The `executor_config` dictionary used to configure worker pods with the Kubernetes executor does not raise an error if any keys besides "pod_override" or "pod_template_file" are used. Even with invalid keys, the DAG is imported and will run as expected. The invalid `executor_config` will simply be disregarded. ### What you think should happen instead If any keys besides "pod_override" or "pod_template_file" are used in `executor_config`, and error (maybe a DAG import error) should be raised. This should give the user feedback that their `executor_config` keys are invalid and need to be removed or changed. ### How to reproduce 1. Create an Airflow instance that uses the Kubernetes Executor. 2. Create a DAG with the following code including an invalid key in `executor_config`. ``` import datetime from airflow.decorators import dag from airflow.decorators import task executor_config = { "key": "value" } @dag(start_date=datetime.datetime(2024, 10, 1), schedule="@daily", catchup=False) def dag_1(): @task(executor_config=executor_config) def task_1(): print("task 1") task_1() dag_1() ``` 3. Observe that the DAG will be imported and run on the Airflow instance without any issues. ### Anything else _No response_ ### Are you willing to submit PR? - [ ] Yes I am willing to submit a PR! ### Code of Conduct - [x] I agree to follow this project's [Code of Conduct](https://github.com/apache/airflow/blob/main/CODE_OF_CONDUCT.md)
open
2025-03-12T22:16:51Z
2025-03-13T16:31:53Z
https://github.com/apache/airflow/issues/47702
[ "kind:bug", "area:providers", "provider:cncf-kubernetes" ]
karenbraganz
2
PokeAPI/pokeapi
api
644
official_artwork is currently official-artwork
Hi - I was working with the API yesterday and noticed the API began to fail on my end of the application. I noticed that after going back onto pokeapi.co that the response from a pokemon's official artwork sprite has changed from `official_artwork` to `official-artwork` which was causing the error, not sure if this was an intentional change or not but just flagging it :)
closed
2021-08-25T11:09:15Z
2021-08-25T14:53:59Z
https://github.com/PokeAPI/pokeapi/issues/644
[]
OliverHeward
5
tflearn/tflearn
tensorflow
1,115
Binary prediction with LSTM
I'm trying to implement an LSTM model to make binary (or multiclass) classification from raw log data(Mooc courses log data -> user-level droput/grade prediction ). I have read lots of publication and tutorials which seems to be what I'm looking for, but couldn't find any example on how to use it. Do you have a link or something about this topic? (RNN, ConvLSTM2D, LSTM, GRU on Keras or TF)
open
2019-01-30T16:09:31Z
2019-01-30T16:09:31Z
https://github.com/tflearn/tflearn/issues/1115
[]
korosig
0
neuml/txtai
nlp
563
Dates fail in example
Hi, I just tried the examples in the following page: https://neuml.github.io/txtai/embeddings/query/ and found it did something wrong with dates: ``` desktop:~/txtai$ python3 Python 3.10.12 (main, Jun 11 2023, 05:26:28) [GCC 11.4.0] on linux Type "help", "copyright", "credits" or "license" for more information. >>> from txtai.embeddings import Embeddings >>> embeddings = Embeddings(path="sentence-transformers/nli-mpnet-base-v2", content=True) >>> embeddings.index([{"text": "text to index", "flag": True, "entry": "2022-01-01"}]) >>> embeddings.search("SELECT text, flag, entry FROM txtai WHERE similar('query') AND flag = 1 AND entry >= '2022-01-01'") [{'text': 'text to index', 'flag': 1, 'entry': '2023-09-23 15:21:29.714090'}] ``` As you can see the act of inserting a date inserts the current date regardless of what's supplied (check the date of "entry" during insert and then on return from querying). The expected result for the last "search" command should be ``` [{'text': 'text to index', 'flag': 1, 'entry': '2022-01-01 00:00:00.000000'}] ``` shouldn't it ?
closed
2023-09-23T14:25:44Z
2023-09-25T12:23:23Z
https://github.com/neuml/txtai/issues/563
[ "bug" ]
rickknowles-cognitant
1
huggingface/text-generation-inference
nlp
2,572
OutOfMemory error running Meta-Llama-3.1-405B-Instruct-fp8 on 8xH100
### System Info TGI version: 2.2.0 (but I tested 2.3.0 too) Machine: 8x H100 (640 GPU RAM) ``` 2024-09-25T14:29:44.260160Z INFO text_generation_launcher: Runtime environment: Target: x86_64-unknown-linux-gnu Cargo version: 1.79.0 Commit sha: db7e043ded45e14ed24188d5a963911c96049618 Docker label: sha-db7e043 nvidia-smi: Wed Sep 25 14:29:43 2024 +---------------------------------------------------------------------------------------+ | NVIDIA-SMI 535.154.05 Driver Version: 535.154.05 CUDA Version: 12.2 | |-----------------------------------------+----------------------+----------------------+ | GPU Name Persistence-M | Bus-Id Disp.A | Volatile Uncorr. ECC | | Fan Temp Perf Pwr:Usage/Cap | Memory-Usage | GPU-Util Compute M. | | | | MIG M. | |=========================================+======================+======================| | 0 NVIDIA H100 80GB HBM3 On | 00000000:0F:00.0 Off | 0 | | N/A 30C P0 114W / 700W | 0MiB / 81559MiB | 0% Default | | | | Disabled | +-----------------------------------------+----------------------+----------------------+ | 1 NVIDIA H100 80GB HBM3 On | 00000000:2D:00.0 Off | 0 | | N/A 35C P0 120W / 700W | 0MiB / 81559MiB | 0% Default | | | | Disabled | +-----------------------------------------+----------------------+----------------------+ | 2 NVIDIA H100 80GB HBM3 On | 00000000:44:00.0 Off | 0 | | N/A 31C P0 115W / 700W | 0MiB / 81559MiB | 0% Default | | | | Disabled | +-----------------------------------------+----------------------+----------------------+ | 3 NVIDIA H100 80GB HBM3 On | 00000000:5B:00.0 Off | 0 | | N/A 36C P0 115W / 700W | 0MiB / 81559MiB | 0% Default | | | | Disabled | +-----------------------------------------+----------------------+----------------------+ | 4 NVIDIA H100 80GB HBM3 On | 00000000:89:00.0 Off | 0 | | N/A 31C P0 114W / 700W | 0MiB / 81559MiB | 0% Default | | | | Disabled | +-----------------------------------------+----------------------+----------------------+ | 5 NVIDIA H100 80GB HBM3 On | 00000000:A8:00.0 Off | 0 | | N/A 35C P0 118W / 700W | 0MiB / 81559MiB | 0% Default | | | | Disabled | +-----------------------------------------+----------------------+----------------------+ | 6 NVIDIA H100 80GB HBM3 On | 00000000:C0:00.0 Off | 0 | | N/A 36C P0 116W / 700W | 0MiB / 81559MiB | 0% Default | | | | Disabled | +-----------------------------------------+----------------------+----------------------+ | 7 NVIDIA H100 80GB HBM3 On | 00000000:D8:00.0 Off | 0 | | N/A 32C P0 116W / 700W | 0MiB / 81559MiB | 0% Default | | | | Disabled | +-----------------------------------------+----------------------+----------------------+ +---------------------------------------------------------------------------------------+ | Processes: | | GPU GI CI PID Type Process name GPU Memory | | ID ID Usage | |=======================================================================================| | No running processes found | +---------------------------------------------------------------------------------------+ xpu-smi: N/A ``` ### Information - [X] Docker - [ ] The CLI directly ### Tasks - [ ] An officially supported command - [ ] My own modifications ### Reproduction 1. My deployment yaml: ``` apiVersion: apps/v1 kind: Deployment metadata: labels: app: tgi-llama name: tgi-llama namespace: llama-31 spec: selector: matchLabels: app: tgi-llama template: metadata: labels: app: tgi-llama spec: containers: - name: tgi-llama image: "ghcr.io/huggingface/text-generation-inference:2.2.0" args: ["--model-id", "meta-llama/Meta-Llama-3.1-405B-Instruct-fp8", "--sharded", "true", "--num-shard ", "8", "--env"] imagePullPolicy: IfNotPresent resources: limits: cpu: 100 memory: 1000G nvidia.com/gpu: 8 ports: - containerPort: 80 volumeMounts: - mountPath: /data name: tgi-llama-disk - mountPath: /dev/shm name: dshm env: - name: HUGGING_FACE_HUB_TOKEN value: "" - name: MAX_TOTAL_TOKENS value: "13107" - name: MAX_INPUT_LENGTH value: "500" - name: MAX_BATCH_PREFILL_TOKENS value: "550" - name: HUGGINGFACE_HUB_CACHE value: "/data" restartPolicy: Always volumes: - name: tgi-llama-disk persistentVolumeClaim: claimName: tgi-llama-disk - name: dshm emptyDir: medium: Memory tolerations: - key: "nvidia.com/gpu" operator: "Exists" effect: NoSchedule - key: "model" operator: "Equal" effect: NoSchedule value: "llama31" ``` 2. Logs: ``` 2024-09-25T14:29:44.260191Z INFO text_generation_launcher: Args { model_id: "meta-llama/Meta-Llama-3.1-405B-Instruct-fp8", revision: None, validation_workers: 2, sharded: None, num_shard: Some( 8, ), quantize: None, speculate: None, dtype: None, trust_remote_code: false, max_concurrent_requests: 128, max_best_of: 2, max_stop_sequences: 4, max_top_n_tokens: 5, max_input_tokens: None, max_input_length: Some( 500, ), max_total_tokens: Some( 13107, ), waiting_served_ratio: 0.3, max_batch_prefill_tokens: Some( 550, ), max_batch_total_tokens: None, max_waiting_tokens: 20, max_batch_size: None, cuda_graphs: None, hostname: "tgi-llama-6dfd4d944f-vmdkw", port: 80, shard_uds_path: "/tmp/text-generation-server", master_addr: "localhost", master_port: 29500, huggingface_hub_cache: Some( "/data", ), weights_cache_override: None, disable_custom_kernels: false, cuda_memory_fraction: 1.0, rope_scaling: None, rope_factor: None, json_output: false, otlp_endpoint: None, otlp_service_name: "text-generation-inference.router", cors_allow_origin: [], watermark_gamma: None, watermark_delta: None, ngrok: false, ngrok_authtoken: None, ngrok_edge: None, tokenizer_config_path: None, disable_grammar_support: false, env: true, max_client_batch_size: 4, lora_adapters: None, disable_usage_stats: false, disable_crash_reports: false, } 2024-09-25T14:29:44.260260Z INFO hf_hub: Token file not found "/root/.cache/huggingface/token" 2024-09-25T14:29:44.441323Z INFO text_generation_launcher: Using default cuda graphs [1, 2, 4, 8, 16, 32] 2024-09-25T14:29:44.441331Z INFO text_generation_launcher: Sharding model on 8 processes 2024-09-25T14:29:44.441452Z INFO download: text_generation_launcher: Starting check and download process for meta-llama/Meta-Llama-3.1-405B-Instruct-fp8 2024-09-25T15:00:51.799015Z INFO download: text_generation_launcher: Successfully downloaded weights for meta-llama/Meta-Llama-3.1-405B-Instruct-fp8 2024-09-25T15:00:51.799235Z INFO shard-manager: text_generation_launcher: Starting shard rank=0 2024-09-25T15:00:51.799251Z INFO shard-manager: text_generation_launcher: Starting shard rank=1 2024-09-25T15:00:51.799601Z INFO shard-manager: text_generation_launcher: Starting shard rank=2 2024-09-25T15:00:51.800066Z INFO shard-manager: text_generation_launcher: Starting shard rank=3 2024-09-25T15:00:51.800097Z INFO shard-manager: text_generation_launcher: Starting shard rank=4 2024-09-25T15:00:51.801546Z INFO shard-manager: text_generation_launcher: Starting shard rank=5 2024-09-25T15:00:51.801585Z INFO shard-manager: text_generation_launcher: Starting shard rank=6 2024-09-25T15:00:51.802622Z INFO shard-manager: text_generation_launcher: Starting shard rank=7 2024-09-25T15:00:56.515337Z INFO text_generation_launcher: Auto selecting quantization method fp8 2024-09-25T15:01:01.806057Z INFO shard-manager: text_generation_launcher: Waiting for shard to be ready... rank=0 2024-09-25T15:01:01.807285Z INFO shard-manager: text_generation_launcher: Waiting for shard to be ready... rank=1 2024-09-25T15:01:01.807322Z INFO shard-manager: text_generation_launcher: Waiting for shard to be ready... rank=2 2024-09-25T15:01:01.807360Z INFO shard-manager: text_generation_launcher: Waiting for shard to be ready... rank=4 2024-09-25T15:01:01.808804Z INFO shard-manager: text_generation_launcher: Waiting for shard to be ready... rank=3 2024-09-25T15:01:01.809297Z INFO shard-manager: text_generation_launcher: Waiting for shard to be ready... rank=6 2024-09-25T15:01:01.809605Z INFO shard-manager: text_generation_launcher: Waiting for shard to be ready... rank=7 2024-09-25T15:01:01.814302Z INFO shard-manager: text_generation_launcher: Waiting for shard to be ready... rank=5 2024-09-25T15:01:05.514208Z INFO text_generation_launcher: Using FBGEMM fp8 optimized kernels 2024-09-25T15:04:30.363596Z INFO text_generation_launcher: Server started at unix:///tmp/text-generation-server-2 2024-09-25T15:04:30.371516Z INFO text_generation_launcher: Server started at unix:///tmp/text-generation-server-3 2024-09-25T15:04:30.372803Z INFO text_generation_launcher: Server started at unix:///tmp/text-generation-server-4 2024-09-25T15:04:30.372919Z INFO text_generation_launcher: Server started at unix:///tmp/text-generation-server-5 2024-09-25T15:04:30.372927Z INFO text_generation_launcher: Server started at unix:///tmp/text-generation-server-7 2024-09-25T15:04:30.373540Z INFO text_generation_launcher: Server started at unix:///tmp/text-generation-server-0 2024-09-25T15:04:30.373927Z INFO text_generation_launcher: Server started at unix:///tmp/text-generation-server-1 2024-09-25T15:04:30.420621Z INFO shard-manager: text_generation_launcher: Shard ready in 218.618910525s rank=4 2024-09-25T15:04:30.426690Z INFO shard-manager: text_generation_launcher: Shard ready in 218.622944116s rank=7 2024-09-25T15:04:30.427452Z INFO shard-manager: text_generation_launcher: Shard ready in 218.62400201s rank=5 2024-09-25T15:04:30.444388Z INFO shard-manager: text_generation_launcher: Shard ready in 218.644204722s rank=0 2024-09-25T15:04:30.460515Z INFO shard-manager: text_generation_launcher: Shard ready in 218.658884257s rank=2 2024-09-25T15:04:30.460530Z INFO shard-manager: text_generation_launcher: Shard ready in 218.658891373s rank=1 2024-09-25T15:04:30.460532Z INFO shard-manager: text_generation_launcher: Shard ready in 218.657400525s rank=3 2024-09-25T15:04:30.556841Z INFO text_generation_launcher: Starting Webserver 2024-09-25T15:04:30.664794Z INFO text_generation_router: router/src/main.rs:228: Using the Hugging Face API 2024-09-25T15:04:30.664836Z INFO hf_hub: /usr/local/cargo/registry/src/index.crates.io-6f17d22bba15001f/hf-hub-0.3.2/src/lib.rs:55: Token file not found "/root/.cache/huggingface/token" 2024-09-25T15:04:31.378511Z INFO text_generation_router: router/src/main.rs:577: Serving revision 2147c7e74f1bf338ad11843e450ee174df547589 of model meta-llama/Meta-Llama-3.1-405B-Instruct-FP8 2024-09-25T15:04:31.597861Z INFO text_generation_router: router/src/main.rs:357: Using config Some(Llama) 2024-09-25T15:04:31.597869Z WARN text_generation_router: router/src/main.rs:384: Invalid hostname, defaulting to 0.0.0.0 2024-09-25T15:04:31.851898Z INFO text_generation_router::server: router/src/server.rs:1572: Warming up model 2024-09-25T15:04:33.037820Z INFO text_generation_launcher: Cuda Graphs are enabled for sizes [32, 16, 8, 4, 2, 1] 2024-09-25T15:04:34.456876Z ERROR text_generation_launcher: Method Warmup encountered an error. Traceback (most recent call last): 2024-09-25T15:04:34.519240Z ERROR text_generation_launcher: Method Warmup encountered an error. Traceback (most recent call last): File "/opt/conda/bin/text-generation-server", line 8, in <module> sys.exit(app()) File "/opt/conda/lib/python3.10/site-packages/typer/main.py", line 311, in __call__ return get_command(self)(*args, **kwargs) File "/opt/conda/lib/python3.10/site-packages/click/core.py", line 1157, in __call__ return self.main(*args, **kwargs) File "/opt/conda/lib/python3.10/site-packages/typer/core.py", line 778, in main return _main( File "/opt/conda/lib/python3.10/site-packages/typer/core.py", line 216, in _main rv = self.invoke(ctx) File "/opt/conda/lib/python3.10/site-packages/click/core.py", line 1688, in invoke return _process_result(sub_ctx.command.invoke(sub_ctx)) File "/opt/conda/lib/python3.10/site-packages/click/core.py", line 1434, in invoke return ctx.invoke(self.callback, **ctx.params) File "/opt/conda/lib/python3.10/site-packages/click/core.py", line 783, in invoke return __callback(*args, **kwargs) File "/opt/conda/lib/python3.10/site-packages/typer/main.py", line 683, in wrapper return callback(**use_params) # type: ignore File "/opt/conda/lib/python3.10/site-packages/text_generation_server/cli.py", line 118, in serve server.serve( File "/opt/conda/lib/python3.10/site-packages/text_generation_server/server.py", line 297, in serve asyncio.run( File "/opt/conda/lib/python3.10/asyncio/runners.py", line 44, in run return loop.run_until_complete(main) File "/opt/conda/lib/python3.10/asyncio/base_events.py", line 636, in run_until_complete self.run_forever() File "/opt/conda/lib/python3.10/asyncio/base_events.py", line 603, in run_forever self._run_once() File "/opt/conda/lib/python3.10/asyncio/base_events.py", line 1909, in _run_once handle._run() File "/opt/conda/lib/python3.10/asyncio/events.py", line 80, in _run self._context.run(self._callback, *self._args) File "/opt/conda/lib/python3.10/site-packages/grpc_interceptor/server.py", line 165, in invoke_intercept_method return await self.intercept( > File "/opt/conda/lib/python3.10/site-packages/text_generation_server/interceptor.py", line 21, in intercept return await response File "/opt/conda/lib/python3.10/site-packages/opentelemetry/instrumentation/grpc/_aio_server.py", line 120, in _unary_interceptor raise error File "/opt/conda/lib/python3.10/site-packages/opentelemetry/instrumentation/grpc/_aio_server.py", line 111, in _unary_interceptor return await behavior(request_or_iterator, context) File "/opt/conda/lib/python3.10/site-packages/text_generation_server/server.py", line 125, in Warmup max_supported_total_tokens = self.model.warmup(batch) File "/opt/conda/lib/python3.10/site-packages/text_generation_server/models/flash_causal_lm.py", line 1196, in warmup self.cuda_graph_warmup(bs, max_s, max_bt) File "/opt/conda/lib/python3.10/site-packages/text_generation_server/models/flash_causal_lm.py", line 1065, in cuda_graph_warmup with torch.cuda.graph(graph, pool=MEM_POOL): File "/opt/conda/lib/python3.10/site-packages/torch/cuda/graphs.py", line 184, in __exit__ self.cuda_graph.capture_end() File "/opt/conda/lib/python3.10/site-packages/torch/cuda/graphs.py", line 82, in capture_end super().capture_end() RuntimeError: CUDA error: out of memory CUDA kernel errors might be asynchronously reported at some other API call, so the stacktrace below might be incorrect. For debugging consider passing CUDA_LAUNCH_BLOCKING=1. Compile with `TORCH_USE_CUDA_DSA` to enable device-side assertions. 2024-09-25T15:04:34.598137Z ERROR warmup{max_input_length=500 max_prefill_tokens=550 max_total_tokens=13107 max_batch_size=None}:warmup: text_generation_client: router/client/src/lib.rs:46: Server error: CANCELLED 2024-09-25T15:04:34.617895Z ERROR warmup{max_input_length=500 max_prefill_tokens=550 max_total_tokens=13107 max_batch_size=None}:warmup: text_generation_client: router/client/src/lib.rs:46: Server error: CANCELLED 2024-09-25T15:04:34.650181Z ERROR warmup{max_input_length=500 max_prefill_tokens=550 max_total_tokens=13107 max_batch_size=None}:warmup: text_generation_client: router/client/src/lib.rs:46: Server error: CANCELLED 2024-09-25T15:04:34.677632Z ERROR warmup{max_input_length=500 max_prefill_tokens=550 max_total_tokens=13107 max_batch_size=None}:warmup: text_generation_client: router/client/src/lib.rs:46: Server error: CANCELLED 2024-09-25T15:04:34.680492Z ERROR warmup{max_input_length=500 max_prefill_tokens=550 max_total_tokens=13107 max_batch_size=None}:warmup: text_generation_client: router/client/src/lib.rs:46: Server error: CANCELLED 2024-09-25T15:04:34.701973Z ERROR warmup{max_input_length=500 max_prefill_tokens=550 max_total_tokens=13107 max_batch_size=None}:warmup: text_generation_client: router/client/src/lib.rs:46: Server error: CANCELLED 2024-09-25T15:04:34.707007Z ERROR warmup{max_input_length=500 max_prefill_tokens=550 max_total_tokens=13107 max_batch_size=None}:warmup: text_generation_client: router/client/src/lib.rs:46: Server error: CANCELLED 2024-09-25T15:04:34.713119Z ERROR warmup{max_input_length=500 max_prefill_tokens=550 max_total_tokens=13107 max_batch_size=None}:warmup: text_generation_client: router/client/src/lib.rs:46: Server error: CANCELLED Error: WebServer(Warmup(Generation("CANCELLED"))) 2024-09-25T15:04:34.954646Z ERROR text_generation_launcher: Webserver Crashed 2024-09-25T15:04:34.954664Z INFO text_generation_launcher: Shutting down shards 2024-09-25T15:04:34.963134Z INFO shard-manager: text_generation_launcher: Terminating shard rank=2 2024-09-25T15:04:34.963148Z INFO shard-manager: text_generation_launcher: Terminating shard rank=3 2024-09-25T15:04:34.963165Z INFO shard-manager: text_generation_launcher: Terminating shard rank=1 2024-09-25T15:04:34.964271Z INFO shard-manager: text_generation_launcher: Waiting for shard to gracefully shutdown rank=2 2024-09-25T15:04:34.964340Z INFO shard-manager: text_generation_launcher: Waiting for shard to gracefully shutdown rank=3 2024-09-25T15:04:34.964421Z INFO shard-manager: text_generation_launcher: Waiting for shard to gracefully shutdown rank=1 2024-09-25T15:04:35.023355Z INFO shard-manager: text_generation_launcher: Terminating shard rank=4 2024-09-25T15:04:35.024172Z INFO shard-manager: text_generation_launcher: Waiting for shard to gracefully shutdown rank=4 2024-09-25T15:04:35.029462Z INFO shard-manager: text_generation_launcher: Terminating shard rank=7 2024-09-25T15:04:35.030347Z INFO shard-manager: text_generation_launcher: Waiting for shard to gracefully shutdown rank=7 2024-09-25T15:04:35.030945Z INFO shard-manager: text_generation_launcher: Terminating shard rank=6 2024-09-25T15:04:35.032281Z INFO shard-manager: text_generation_launcher: Waiting for shard to gracefully shutdown rank=6 2024-09-25T15:04:35.032512Z INFO shard-manager: text_generation_launcher: Terminating shard rank=5 2024-09-25T15:04:35.034027Z INFO shard-manager: text_generation_launcher: Waiting for shard to gracefully shutdown rank=5 2024-09-25T15:04:35.047083Z INFO shard-manager: text_generation_launcher: Terminating shard rank=0 2024-09-25T15:04:35.047903Z INFO shard-manager: text_generation_launcher: Waiting for shard to gracefully shutdown rank=0 2024-09-25T15:04:35.364752Z INFO shard-manager: text_generation_launcher: shard terminated rank=3 2024-09-25T15:04:35.465564Z INFO shard-manager: text_generation_launcher: shard terminated rank=1 2024-09-25T15:04:35.764901Z INFO shard-manager: text_generation_launcher: shard terminated rank=2 2024-09-25T15:04:35.931027Z INFO shard-manager: text_generation_launcher: shard terminated rank=7 2024-09-25T15:04:36.024913Z INFO shard-manager: text_generation_launcher: shard terminated rank=4 2024-09-25T15:04:36.248767Z INFO shard-manager: text_generation_launcher: shard terminated rank=0 2024-09-25T15:04:36.333451Z INFO shard-manager: text_generation_launcher: shard terminated rank=6 2024-09-25T15:04:36.635381Z INFO shard-manager: text_generation_launcher: shard terminated rank=5 Error: WebserverFailed ``` ### Expected behavior Meta-Llama-3.1-405B-Instruct-fp8 starts with at least 10k token. I'm aware that there are reported problems with llama3.1 to run with full context 128k, but I can't even go with 500 due to OOM error. Meta-Llama-3.1-405B-Instruct-fp8 requires 400 GPU RAM to start the model and my chine contains totally 640 so I thought it should be sufficient value.
open
2024-09-26T08:29:18Z
2024-12-10T00:36:38Z
https://github.com/huggingface/text-generation-inference/issues/2572
[]
ad01bl
3
noirbizarre/flask-restplus
flask
748
Duplicate "doc" and "root" endpoints on reregistering blueprints?
As the title says.. I think this might be a bug ### **Code** ##### api_v1.py ```python from flask import Blueprint from flask_restplus import Api blueprint = Blueprint('api_v1', __name__, url_prefix='/api/v1') api = Api(blueprint, title='My Title', version='1.0', description='A description', doc='/docs') ``` ##### app.py ```python import copy from flask import Flask app = Flask(__name__) # ... from api_v1 import blueprint blueprint_copy = copy.copy(blueprint) blueprint_copy.name = "api" # Renamed for collision app.register_blueprint(blueprint, url_prefix="/api") app.register_blueprint(blueprint_copy, url_prefix="/api_copy") ``` ### **Repro Steps** (if applicable) 1. Setup a flask app with flask restplus. 2. Register the blueprint twice (same as code). 3. `$ flask routes` ### **Expected Behavior** Endpoints should be only defined once. ### **Actual Behavior** Endpoints **api.doc** and **api.root** are shown to be defined twice. ### **Error Messages/Stack Trace** The following is what I get when I type `flask routes` in my specific app terminal. ```cmd Endpoint Methods Rule ------------------- --------- -------------------------- api.doc GET /api/docs api.root GET /api/ api.specs GET /api/swagger.json api_v1.doc GET /api_copy/docs api_v1.doc GET /api_copy/docs api_v1.root GET /api_copy/ api_v1.root GET /api_copy/ api_v1.specs GET /api_copy/swagger.json index GET / restplus_doc.static GET /swaggerui/<path:filename> static GET /static/<path:filename> ``` ### **Environment** - Python version **3.7.3** - Flask version **1.1.1** - Flask-RESTPlus version **0.13.0** - Requirements.txt: ``` alembic==1.3.0 aniso8601==8.0.0 astroid==2.3.2 attrs==19.3.0 Click==7.0 colorama==0.4.1 Flask==1.1.1 Flask-Login==0.4.1 Flask-Migrate==2.5.2 flask-restplus==0.13.0 Flask-SQLAlchemy==2.4.1 Flask-WTF==0.14.2 importlib-metadata==0.23 isort==4.3.21 itsdangerous==1.1.0 Jinja2==2.10.3 jsonschema==3.1.1 lazy-object-proxy==1.4.3 Mako==1.1.0 MarkupSafe==1.1.1 mccabe==0.6.1 more-itertools==7.2.0 pylint==2.4.3 pylint-flask==0.6 pylint-flask-sqlalchemy==0.1.0 pylint-plugin-utils==0.6 pyrsistent==0.15.5 python-dateutil==2.8.0 python-dotenv==0.10.3 python-editor==1.0.4 pytz==2019.3 six==1.12.0 SQLAlchemy==1.3.10 typed-ast==1.4.0 Werkzeug==0.16.0 wrapt==1.11.2 WTForms==2.2.1 zipp==0.6.0 ```
closed
2019-11-04T12:15:27Z
2019-11-15T11:38:45Z
https://github.com/noirbizarre/flask-restplus/issues/748
[ "bug" ]
knno
0
brightmart/text_classification
nlp
49
There is no file named "test-zhihu-forpredict-title-desc-v6.txt" in the Hierarchical Attention Network
There is no file named "test-zhihu-forpredict-title-desc-v6.txt",when i run the p1_HierarchicalAttention_predict.py in the Hierarchical Attention Network. Also i have tried to use the test-zhihu6-title-desc.txt instead, but there will be an error. Can you give me some advice? @brightmart
closed
2018-04-29T13:34:35Z
2018-05-02T08:25:16Z
https://github.com/brightmart/text_classification/issues/49
[]
Fannjh
1
JaidedAI/EasyOCR
deep-learning
512
Suggestion: setup.py
It would be nice if the `install` command could carry an optional argument to install torch with cuda, the default is CPU. This will save time when installing packages specially for those who have bad internet connection :). It's just a suggestion 😄 Thank you either ways!!
closed
2021-08-09T12:39:12Z
2022-03-02T09:25:32Z
https://github.com/JaidedAI/EasyOCR/issues/512
[]
NinaM31
0
plotly/dash
dash
2,984
[QUESTION] Does Dash have an official logo
Does Dash have a purely official logo image that doesn't include the word `plotly`.
closed
2024-09-05T09:17:24Z
2024-09-26T16:19:08Z
https://github.com/plotly/dash/issues/2984
[ "feature", "P2" ]
CNFeffery
5
vi3k6i5/flashtext
nlp
6
remove keyword feature
``` from flashtext.keyword import KeywordProcessor keyword_processor = KeywordProcessor() keyword_processor.add_keyword('NCR Area') ``` Can we also have a feature to remove the keyword. ``` keyword_processor.remove_keyword('NCR Area') ``` So we can add it back in a different form. ``` keyword_processor.add_keyword('NCR Region') ``` Use case: We have a distributed processing system where there is a central ontology layer. Ontology layer has 10K keywords. When the ontology cache is updated for one value, we don't want to restart all apps/workers, or rebuild the `KeywordProcessor()` all over again. Just want to take out one key and add back another key.
closed
2017-09-14T17:15:47Z
2017-09-25T17:30:32Z
https://github.com/vi3k6i5/flashtext/issues/6
[ "enhancement" ]
vi3k6i5
1
Lightning-AI/pytorch-lightning
data-science
19,980
autocast to float16/bfloat16 fails on transformer encoder
### Bug description `bf16` precision in Trainer yields an error ### What version are you seeing the problem on? v2.3 ### How to reproduce the bug My model includes this encoder: ```python self.encoder = nn.Sequential( nn.Flatten(start_dim=2), nn.Dropout(0.15), nn.Linear(math.prod(pose_dims), hidden_dim, bias=False), PositionalEncoding(d_model=hidden_dim), nn.TransformerEncoder( nn.TransformerEncoderLayer(d_model=hidden_dim, nhead=nhead, dim_feedforward=dim_feedforward, batch_first=True), num_layers=num_layers ) ) ``` Then, run the Trainer with `precision="bf16-mixed"` (Note! "bf16-true" works, but yields a very bad learning curve) ### Error messages and logs ``` Traceback (most recent call last): File "<frozen runpy>", line 198, in _run_module_as_main File "<frozen runpy>", line 88, in _run_code File "/Users/amitmoryossef/dev/sign-language-processing/vq/sign_vq/train.py", line 147, in <module> main() File "/Users/amitmoryossef/dev/sign-language-processing/vq/sign_vq/train.py", line 143, in main trainer.fit(model, train_dataloaders=train_dataset, val_dataloaders=validation_dataset) File "/opt/homebrew/anaconda3/envs/vq/lib/python3.11/site-packages/pytorch_lightning/trainer/trainer.py", line 543, in fit call._call_and_handle_interrupt( File "/opt/homebrew/anaconda3/envs/vq/lib/python3.11/site-packages/pytorch_lightning/trainer/call.py", line 44, in _call_and_handle_interrupt return trainer_fn(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/homebrew/anaconda3/envs/vq/lib/python3.11/site-packages/pytorch_lightning/trainer/trainer.py", line 579, in _fit_impl self._run(model, ckpt_path=ckpt_path) File "/opt/homebrew/anaconda3/envs/vq/lib/python3.11/site-packages/pytorch_lightning/trainer/trainer.py", line 986, in _run results = self._run_stage() ^^^^^^^^^^^^^^^^^ File "/opt/homebrew/anaconda3/envs/vq/lib/python3.11/site-packages/pytorch_lightning/trainer/trainer.py", line 1028, in _run_stage self._run_sanity_check() File "/opt/homebrew/anaconda3/envs/vq/lib/python3.11/site-packages/pytorch_lightning/trainer/trainer.py", line 1057, in _run_sanity_check val_loop.run() File "/opt/homebrew/anaconda3/envs/vq/lib/python3.11/site-packages/pytorch_lightning/loops/utilities.py", line 182, in _decorator return loop_run(self, *args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/homebrew/anaconda3/envs/vq/lib/python3.11/site-packages/pytorch_lightning/loops/evaluation_loop.py", line 135, in run self._evaluation_step(batch, batch_idx, dataloader_idx, dataloader_iter) File "/opt/homebrew/anaconda3/envs/vq/lib/python3.11/site-packages/pytorch_lightning/loops/evaluation_loop.py", line 396, in _evaluation_step output = call._call_strategy_hook(trainer, hook_name, *step_args) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/homebrew/anaconda3/envs/vq/lib/python3.11/site-packages/pytorch_lightning/trainer/call.py", line 311, in _call_strategy_hook output = fn(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^ File "/opt/homebrew/anaconda3/envs/vq/lib/python3.11/site-packages/pytorch_lightning/strategies/strategy.py", line 411, in validation_step return self.lightning_module.validation_step(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/Users/amitmoryossef/dev/sign-language-processing/vq/sign_vq/model.py", line 234, in validation_step loss, prediction = self.step(batch) ^^^^^^^^^^^^^^^^ File "/Users/amitmoryossef/dev/sign-language-processing/vq/sign_vq/model.py", line 215, in step x_hat, indices = self(x) ^^^^^^^ File "/opt/homebrew/anaconda3/envs/vq/lib/python3.11/site-packages/torch/nn/modules/module.py", line 1511, in _wrapped_call_impl return self._call_impl(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/homebrew/anaconda3/envs/vq/lib/python3.11/site-packages/torch/nn/modules/module.py", line 1520, in _call_impl return forward_call(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/Users/amitmoryossef/dev/sign-language-processing/vq/sign_vq/model.py", line 170, in forward return self.model(batch) ^^^^^^^^^^^^^^^^^ File "/opt/homebrew/anaconda3/envs/vq/lib/python3.11/site-packages/torch/nn/modules/module.py", line 1511, in _wrapped_call_impl return self._call_impl(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/homebrew/anaconda3/envs/vq/lib/python3.11/site-packages/torch/nn/modules/module.py", line 1520, in _call_impl return forward_call(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/Users/amitmoryossef/dev/sign-language-processing/vq/sign_vq/model.py", line 129, in forward x = self.encoder(x) ^^^^^^^^^^^^^^^ File "/opt/homebrew/anaconda3/envs/vq/lib/python3.11/site-packages/torch/nn/modules/module.py", line 1511, in _wrapped_call_impl return self._call_impl(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/homebrew/anaconda3/envs/vq/lib/python3.11/site-packages/torch/nn/modules/module.py", line 1520, in _call_impl return forward_call(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/homebrew/anaconda3/envs/vq/lib/python3.11/site-packages/torch/nn/modules/container.py", line 217, in forward input = module(input) ^^^^^^^^^^^^^ File "/opt/homebrew/anaconda3/envs/vq/lib/python3.11/site-packages/torch/nn/modules/module.py", line 1511, in _wrapped_call_impl return self._call_impl(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/homebrew/anaconda3/envs/vq/lib/python3.11/site-packages/torch/nn/modules/module.py", line 1520, in _call_impl return forward_call(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/homebrew/anaconda3/envs/vq/lib/python3.11/site-packages/torch/nn/modules/transformer.py", line 391, in forward output = mod(output, src_mask=mask, is_causal=is_causal, src_key_padding_mask=src_key_padding_mask_for_layers) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/homebrew/anaconda3/envs/vq/lib/python3.11/site-packages/torch/nn/modules/module.py", line 1511, in _wrapped_call_impl return self._call_impl(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/homebrew/anaconda3/envs/vq/lib/python3.11/site-packages/torch/nn/modules/module.py", line 1520, in _call_impl return forward_call(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/homebrew/anaconda3/envs/vq/lib/python3.11/site-packages/torch/nn/modules/transformer.py", line 685, in forward return torch._transformer_encoder_layer_fwd( ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ RuntimeError: mat1 and mat2 must have the same dtype, but got BFloat16 and Float ``` ### Environment <details> <summary>Current environment</summary> * CUDA: - GPU: None - available: False - version: None * Lightning: - lightning-utilities: 0.11.2 - pytorch-lightning: 2.3.0 - torch: 2.2.2 - torchmetrics: 1.4.0.post0 - vector-quantize-pytorch: 1.14.24 * Packages: - aiohttp: 3.9.5 - aiosignal: 1.3.1 - astroid: 3.2.2 - attrs: 23.2.0 - certifi: 2024.6.2 - charset-normalizer: 3.3.2 - click: 8.1.7 - datasets: 2.20.0 - decorator: 4.4.2 - dill: 0.3.8 - docker-pycreds: 0.4.0 - einops: 0.8.0 - einx: 0.3.0 - filelock: 3.15.1 - frozendict: 2.4.4 - frozenlist: 1.4.1 - fsspec: 2024.5.0 - gitdb: 4.0.11 - gitpython: 3.1.43 - huggingface-hub: 0.23.3 - idna: 3.7 - imageio: 2.34.1 - imageio-ffmpeg: 0.5.1 - iniconfig: 2.0.0 - isort: 5.13.2 - jinja2: 3.1.4 - lightning-utilities: 0.11.2 - markupsafe: 2.1.5 - mccabe: 0.7.0 - moviepy: 1.0.3 - mpmath: 1.3.0 - multidict: 6.0.5 - multiprocess: 0.70.16 - networkx: 3.3 - numpy: 1.26.4 - opencv-python: 4.10.0.82 - packaging: 24.1 - pandas: 2.2.2 - pillow: 10.3.0 - pip: 24.0 - platformdirs: 4.2.2 - pluggy: 1.5.0 - pose-format: 0.4.1 - proglog: 0.1.10 - protobuf: 5.27.1 - psutil: 5.9.8 - pyarrow: 16.1.0 - pyarrow-hotfix: 0.6 - pylint: 3.2.3 - pytest: 8.2.2 - python-dateutil: 2.9.0.post0 - pytorch-lightning: 2.3.0 - pytz: 2024.1 - pyyaml: 6.0.1 - requests: 2.32.3 - scipy: 1.13.1 - sentry-sdk: 2.5.1 - setproctitle: 1.3.3 - setuptools: 69.5.1 - sign-vq: 0.0.1 - six: 1.16.0 - smmap: 5.0.1 - sympy: 1.12.1 - tomlkit: 0.12.5 - torch: 2.2.2 - torchmetrics: 1.4.0.post0 - tqdm: 4.66.4 - typing-extensions: 4.12.2 - tzdata: 2024.1 - urllib3: 2.2.1 - vector-quantize-pytorch: 1.14.24 - wandb: 0.17.1 - wheel: 0.43.0 - xxhash: 3.4.1 - yarl: 1.9.4 * System: - OS: Darwin - architecture: - 64bit - - processor: i386 - python: 3.11.9 - release: 23.5.0 - version: Darwin Kernel Version 23.5.0: Wed May 1 20:12:58 PDT 2024; root:xnu-10063.121.3~5/RELEASE_ARM64_T6000 </details> ### More info I tried to follow https://github.com/Lightning-AI/pytorch-lightning/issues/15006 and feed the batch directly as `bf16`. that does not change the error
closed
2024-06-16T07:28:11Z
2024-08-04T09:46:35Z
https://github.com/Lightning-AI/pytorch-lightning/issues/19980
[ "bug", "question" ]
AmitMY
4
minimaxir/textgenrnn
tensorflow
80
UnicodeEncodeError: 'ascii' codec can't encode character
I just got around to testing textgenrnn over ROCm, and upon generating some text, I encountered this error: ``` File "/root/textgenrnn/textgenrnn/textgenrnn.py", line 89, in generate print("{}\n".format(gen_text)) UnicodeEncodeError: 'ascii' codec can't encode character '\u201c' in position 51: ordinal not in range(128) ``` I could quickly fix it based on [this answer](https://stackoverflow.com/a/25402141/635587), although I have a feeling that this is not a proper solution.
open
2018-11-17T21:20:32Z
2019-01-31T21:48:17Z
https://github.com/minimaxir/textgenrnn/issues/80
[]
torokati44
1
seleniumbase/SeleniumBase
pytest
3,346
understanding the cpd mode click
with SB(uc=True,maximize=True) as sb: url = "https://google.com" sb.activate_cdp_mode(url) sb.sleep(2) sb.cdp.find_element('[name="q"]') for i in "facebook.com": sb.sleep(0.5) ,sb.cdp.press_keys('[name="q"]', i) # Wait for the search input field to be visible sb.cdp.click('input[class="gNO89b"]') sb.cdp.sleep(4) try: sb.cdp.click('div[class="sjVJQd"]') except: print("box not found") sb.cdp.sleep(2) sb.cdp.click('h3[class="LC20lb MBeuO DKV0Md"]') sb.cdp.sleep(60) hello i am using SB CDP for automation to reproduce web traffic but in the 2022 the traffic is appeared in google search console as a real traffic but today when i use it it didnt appear any clicks on google search console i want to know what is the difference the logic of click using seleniumbase from today and in year 2022 finally thanks for developing this project
closed
2024-12-17T12:39:40Z
2024-12-17T15:51:28Z
https://github.com/seleniumbase/SeleniumBase/issues/3346
[ "question", "UC Mode / CDP Mode" ]
pythondeveloperz
1
rthalley/dnspython
asyncio
648
processing_order breaks for HTTPS without "priming" using a suitable extraneous query
Applying *processing_order()* to the RRset returned in response to an HTTPS query causes an AttributeError. However, if an extraneous (eg. MX) query is placed, this is no longer the case, even without issuing a fresh HTTPS query. Interactive session shown below illustrates this. ``` vagrant@vagrant:~$ pip3 show dnspython Name: dnspython Version: 2.1.0 Summary: DNS toolkit Home-page: http://www.dnspython.org Author: Bob Halley Author-email: halley@dnspython.org License: ISC Location: /usr/local/lib/python3.6/dist-packages Requires: vagrant@vagrant:~$ python3 Python 3.6.9 (default, Jan 26 2021, 15:33:00) [GCC 8.4.0] on linux Type "help", "copyright", "credits" or "license" for more information. >>> import dns.resolver >>> ans = dns.resolver.resolve('crypto.cloudflare.com', 'https') >>> ans.rrset.processing_order() Traceback (most recent call last): File "<stdin>", line 1, in <module> File "/usr/local/lib/python3.6/dist-packages/dns/rdataset.py", line 324, in processing_order return self[0]._processing_order(iter(self)) File "/usr/local/lib/python3.6/dist-packages/dns/rdtypes/svcbbase.py", line 543, in _processing_order return dns.rdtypes.util.priority_processing_order(iterable) AttributeError: module 'dns.rdtypes' has no attribute 'util' >>> alt = dns.resolver.resolve('github.com', 'mx') >>> ans.rrset.processing_order() [<DNS IN HTTPS rdata: 1 . alpn="h2" ipv4hint="162.159.135.79,162.159.136.79" echconfig="AEf+CQBDABNjbG91ZGZsYXJlLWVzbmkuY29tACCwkoUYgWT6cX2qc5RjgnyS9SgXaz51fKkzOqJr1g6tPQAgAAQAAQABAAAAAA==" ipv6hint="2606:4700:7::a29f:874f,2606:4700:7::a29f:884f">] >>> >>> vagrant@vagrant:~$ ```
closed
2021-03-09T12:40:16Z
2021-03-09T22:00:04Z
https://github.com/rthalley/dnspython/issues/648
[ "Bug", "Fixed" ]
niallor
2
coqui-ai/TTS
pytorch
4,045
A portable version is great
Hello admin and everyone For many people like me who don't use code clearly, a portable version on windows is great Can anyone make a portble version for the community? Thank you very much
closed
2024-11-03T23:56:17Z
2024-12-28T11:58:23Z
https://github.com/coqui-ai/TTS/issues/4045
[ "wontfix", "feature request" ]
kerlynla
2
SYSTRAN/faster-whisper
deep-learning
688
distil + word_timestamps=True => CRASH
Hello, When using [this finetuned version of distil whisper](https://huggingface.co/bofenghuang/whisper-large-v3-french-distil-dec16) and trying to use `word_timestamps=True` it crashes when starting the transcription, no issue when `word_timestamps=False` It's a CRASH, not a python error, it straight exits the python instance, no crash message, nothing, just byebye amigo hasta la vista
closed
2024-02-15T12:43:00Z
2024-11-19T23:18:56Z
https://github.com/SYSTRAN/faster-whisper/issues/688
[]
ExtReMLapin
4
biolab/orange3
numpy
6,980
Possible help improvement
There are plenty on awesome teaching videos on Youtube made by the Biolab. The widget help has already links to Wikipedia and probably other sites. Should we include links as part of the Example sections to relevant Youtube videos from the Biolab channel? If this would be useful I can start adding them.
closed
2025-01-06T17:58:54Z
2025-01-10T16:10:56Z
https://github.com/biolab/orange3/issues/6980
[]
borondics
1
gevent/gevent
asyncio
2,036
Socket timeouts when using gevent
* gevent version: `gevent==24.2.1` from PyPI (can reproduce on previous versions) * greenlet version: `greenlet==3.0.3` from PyPI (can reproduce on previous versions) * Python version: `Python 3.8.10` from `apt` * Operating System: `uname -a` returns `aarch64 aarch64 aarch64 GNU/Linux` ### Description: **REPLACE ME**: What are you trying to get done, what has happened, what went wrong, and what did you expect? Hey there! We're running a Python + Django + gunicon + wsgi stack, pretty high traffic (thousands of QPS). Recently, we noticed this stack trace starting to occur. First off, reading https://www.gevent.org/api/gevent.greenlet.html, we think > [gevent.Greenlet](https://www.gevent.org/api/gevent.greenlet.html#gevent.Greenlet) is a light-weight cooperatively-scheduled execution unit. It is a more powerful version of [greenlet.greenlet](https://www.gevent.org/api/gevent.greenlet.html#gevent.greenlet.greenlet). For general information, see [Lightweight pseudothreads](https://www.gevent.org/intro.html#greenlet-basics). this means we should be filing with you and not greenlet. Next, we're reading up on gevent internals to get a sense of what's going on here. I traced this code from [here](https://github.com/gevent/gevent/blob/master/src/gevent/_hub_primitives.py#L295) to [here](https://github.com/gevent/gevent/blob/master/src/gevent/_greenlet_primitives.py#L65) but I'm a bit confused here. Because it looks like we do ```python from greenlet import greenlet locals()['_greenlet_switch'] = greenlet.switch ``` so we are using the greenlet library here, which makes me wonder if I **should file this with greenlet instead?** Anyways, from the trace itself, as I understand it, we're making a network request, so gevent tells this Greenlet thread to start waiting while we I/O, and switch to another greenlet thread. It looks like we finish waiting and try to get a thread to switch into [here](https://github.com/gevent/gevent/blob/master/src/gevent/_hub_primitives.py#L55). But it looks like when we try to perform the switch to the new thread [here](https://github.com/gevent/gevent/blob/master/src/gevent/_gevent_c_greenlet_primitives.pxd#L35) but we fail due to socket timeout. And unfortunately the stacktrace ends here. Does this directly link with this greenlet code [here](https://github.com/python-greenlet/greenlet/blob/937f150e07823ee03344aeeb5111c0bb371a831d/src/greenlet/greenlet.cpp#L889)? **Am I understanding the trace correctly?** Another potential understanding would be that the greenlet thread we try to wait on threw a socket.timeout. After reading the code I think this is not what happened, but could use a confirmation. Is this just a simple case of switching back to an existing waiting greenlet just to find that the network request has timed out and the socket closed? Or is there something deeper going on here? We're still investigating this internally but would love to get some expertise / starting guidance / previous experience. While we are seeing this consistently, it may be hard to reproduce deterministically, since as far as we can tell, there's no consistent input factors that cause this besides potentially scale. ```python-traceback Traceback (most recent call last): File "/usr/local/lib/python3.8/dist-packages/urllib3/connectionpool.py", line 426, in _make_request six.raise_from(e, None) File "<string>", line 3, in raise_from File "/usr/local/lib/python3.8/dist-packages/urllib3/connectionpool.py", line 421, in _make_request httplib_response = conn.getresponse() File "/usr/lib/python3.8/http/client.py", line 1348, in getresponse response.begin() File "/usr/lib/python3.8/http/client.py", line 316, in begin version, status, reason = self._read_status() File "/usr/lib/python3.8/http/client.py", line 277, in _read_status line = str(self.fp.readline(_MAXLINE + 1), "iso-8859-1") File "/usr/lib/python3.8/socket.py", line 669, in readinto return self._sock.recv_into(b) File "/usr/local/lib/python3.8/dist-packages/gevent/_socketcommon.py", line 696, in recv_into self._wait(self._read_event) File "src/gevent/_hub_primitives.py", line 317, in gevent._gevent_c_hub_primitives.wait_on_socket File "src/gevent/_hub_primitives.py", line 322, in gevent._gevent_c_hub_primitives.wait_on_socket File "src/gevent/_hub_primitives.py", line 313, in gevent._gevent_c_hub_primitives._primitive_wait File "src/gevent/_hub_primitives.py", line 314, in gevent._gevent_c_hub_primitives._primitive_wait File "src/gevent/_hub_primitives.py", line 46, in gevent._gevent_c_hub_primitives.WaitOperationsGreenlet.wait File "src/gevent/_hub_primitives.py", line 46, in gevent._gevent_c_hub_primitives.WaitOperationsGreenlet.wait File "src/gevent/_hub_primitives.py", line 55, in gevent._gevent_c_hub_primitives.WaitOperationsGreenlet.wait File "src/gevent/_waiter.py", line 154, in gevent._gevent_c_waiter.Waiter.get File "src/gevent/_greenlet_primitives.py", line 61, in gevent._gevent_c_greenlet_primitives.SwitchOutGreenletWithLoop.switch File "src/gevent/_greenlet_primitives.py", line 61, in gevent._gevent_c_greenlet_primitives.SwitchOutGreenletWithLoop.switch File "src/gevent/_greenlet_primitives.py", line 65, in gevent._gevent_c_greenlet_primitives.SwitchOutGreenletWithLoop.switch File "src/gevent/_gevent_c_greenlet_primitives.pxd", line 35, in gevent._gevent_c_greenlet_primitives._greenlet_switch socket.timeout: timed out ``` ### What I've run: in `guincorn.py` ```python worker_class = "gevent" ... # Enable Gevent coroutine optimization with our third-party libraries def on_starting(server): import grpc.experimental.gevent as grpc_gevent # 1.45.0rc1 import psycogreen.gevent # 1.0 psycogreen.gevent.patch_psycopg() grpc_gevent.init_gevent() ``` note: some names are replaced in <business_logic>.py ```python @traced(name="run_a_bunch_of_functions_in_parallel", inject_span=True) def run_a_bunch_of_functions_in_parallel( a_bunch_of_functions: list[Callable[[], None]], span: Span ) -> None: span.set_tag("num_functions.count", len(a_bunch_of_functions)) workers = [gevent.spawn(_thread, fn, span) for fn in a_bunch_of_functions] gevent.joinall(workers, timeout=settings.SOME_GLOBAL_TIMEOUT) # 5 seconds _rethrow_exceptions_if_any(workers) def _rethrow_exceptions_if_any(workers: list[Greenlet]) -> None: for worker in workers: if isinstance(worker.value, WorkerException): einfo = worker.value.args try: raise einfo[0](einfo[1]).with_traceback(einfo[2]) except AttributeError: raise einfo[0](einfo[1]) ```
closed
2024-06-08T19:31:57Z
2024-10-10T09:43:27Z
https://github.com/gevent/gevent/issues/2036
[ "Type: Question" ]
wayne-li2
5
sqlalchemy/sqlalchemy
sqlalchemy
10,632
hybrid_method and Postgres array filtering
### Describe the bug Can't use `hybrid_method` or `hybrid_property` to filter result set. ### Optional link from https://docs.sqlalchemy.org which documents the behavior that is expected https://docs.sqlalchemy.org/en/20/orm/extensions/hybrid.html ### SQLAlchemy Version in Use 2.0.20 ### DBAPI (i.e. the database driver) asyncpg ### Database Vendor and Major Version PostgreSQL 14 ### Python Version 3.11 ### Operating system Linux ### To Reproduce ```python class ClientContactsNotification(BaseModel): __tablename__ = "client_contacts_notification" __table_args__ = {"schema": "delivery"} id: Mapped[int] = mapped_column(Integer, primary_key=True) id_post_operation: Mapped[int] = mapped_column( ForeignKey("delivery.post_operation.id") ) phones: Mapped[List[str]] = mapped_column(ARRAY(String)) emails: Mapped[List[str]] = mapped_column(ARRAY(String)) identifiers: Mapped[List[str]] = mapped_column(ARRAY(String)) @hybrid_property def phones_str(self): return ",".join(self.phones) @hybrid_method def phone_like(self, phone: str) -> bool: return any([phone in item for item in self.phones]) @pytest.mark.parametrize(argnames="q", argvalues=["11111111"]) async def test_client_db_contacts(plain_db_session, q): stmt = select(ClientContactsNotification) stmt = stmt.filter( ClientContactsNotification.phone_like(q) == True, ) result = await plain_db_session.execute(stmt) data = result.scalars.all() assert data ``` ### Error ``` /tests/test_orders.py::test_client_db_contacts[9222298749] Failed: [undefined]NotImplementedError: Operator 'contains' is not supported on this expression plain_db_session = <sqlalchemy.ext.asyncio.session.AsyncSession object at 0x7f057edf1450> q = '9222298749' @pytest.mark.parametrize(argnames="q", argvalues=["11111111"]) async def test_client_db_contacts(plain_db_session, q): stmt = select(ClientContactsNotification) stmt = stmt.filter( > ClientContactsNotification.phone_like(q), ) tests/test_orders.py:85: _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ src/database/models/delivery.py:235: in phone_like return any([phone in item for item in self.phones]) src/database/models/delivery.py:235: in <listcomp> return any([phone in item for item in self.phones]) .venv/lib64/python3.11/site-packages/sqlalchemy/sql/operators.py:657: in __contains__ return self.operate(contains, other) .venv/lib64/python3.11/site-packages/sqlalchemy/sql/elements.py:1616: in operate return op(self.comparator, *other, **kwargs) # type: ignore[no-any-return] # noqa: E501 .venv/lib64/python3.11/site-packages/sqlalchemy/sql/operators.py:657: in __contains__ return self.operate(contains, other) .venv/lib64/python3.11/site-packages/sqlalchemy/sql/type_api.py:194: in operate return op_fn(self.expr, op, *other, **addtl_kw) _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ expr = <sqlalchemy.sql.elements.BinaryExpression object at 0x7f057f0c4c10> op = <built-in function contains>, arg = ('11111111',), kw = {} def _unsupported_impl( expr: ColumnElement[Any], op: OperatorType, *arg: Any, **kw: Any ) -> NoReturn: > raise NotImplementedError( "Operator '%s' is not supported on " "this expression" % op.__name__ ) E NotImplementedError: Operator 'contains' is not supported on this expression .venv/lib64/python3.11/site-packages/sqlalchemy/sql/default_comparator.py:250: NotImplementedError ``` ### Additional context In current version there is no solution to compare each element of array to value or use `like` operator
closed
2023-11-14T16:09:24Z
2023-11-14T20:24:07Z
https://github.com/sqlalchemy/sqlalchemy/issues/10632
[]
rsaleev
0
babysor/MockingBird
pytorch
402
我用aidatatang_200zh数据训练了150k 发现模拟出来的声音全是电流
我用aidatatang_200zh数据训练了150k 发现模拟出来的声音全都是电流 声音模糊不清
open
2022-02-25T05:38:35Z
2022-04-29T14:08:59Z
https://github.com/babysor/MockingBird/issues/402
[]
907811175
4
supabase/supabase-py
fastapi
801
When using asynchronous client(acreate_client) error "detail": "'coroutine' object has no attribute 'auth'"
# Bug report ## Describe the bug when you create the client with acreate_client and use async functions that awaits for the supabase.auth.signin(credentials) you get the error above A clear and concise description of what the bug is. ## To Reproduce Steps to reproduce the behavior, please provide code snippets or a repository: 1. Go to '…' 2. Click on '…' 3. Scroll down to '…' 4. See error ## Expected behavior A clear and concise description of what you expected to happen. ## Screenshots If applicable, add screenshots to help explain your problem. ## System information - OS: [e.g. macOS, Windows] - Browser (if applies) [e.g. chrome, safari] - Version of supabase-js: [e.g. 6.0.2] - Version of Node.js: [e.g. 10.10.0] ## Additional context Add any other context about the problem here.
closed
2024-05-16T14:35:41Z
2024-05-21T21:42:05Z
https://github.com/supabase/supabase-py/issues/801
[ "bug" ]
Bradkibs
1
gradio-app/gradio
machine-learning
10,606
413 Payload Too Large Error When Using Chatbot Share Button in Multistep Agent UI
### Describe the bug Using the share button in the open-deep-research chatbot component triggers a 413 (Payload Too Large) error from CloudFront. This happens when trying to share agent response (usually with more than four agent steps) to Hugging Face Spaces Discussions using the share button. However, no error occurs if the agent response is small. **Error Message** ``` 413 ERROR The request could not be satisfied. Bad request. We can't connect to the server for this app or website at this time. There might be too much traffic or a configuration error. Generated by cloudfront (CloudFront) Request ID: lFs_dgTYdKp1rZUj8S7bKI1lTA_4XBgccTL_KbtRDRX-D2WDIJtCcw== ``` **Suggested Solutions** 1. It would be helpful to have either built-in handling for large payloads or adding docs about size limitations for the share functionality. 2. Can we add a `gr.Warning` when content exceeds the shareable limits 3. One possible solution could be to offer a configurable parameter that allows sharing only the last N messages. However, if the agent's response is too lengthy for certain chats, sharing with `N=1` might still result in a 413 Error. ### Have you searched existing issues? 🔎 - [x] I have searched and found no existing issues ### Reproduction 1. Create a Gradio chatbot with `show_share_button=True` 2. Accumulate larger chat history through conversation 3. Click the share button in the chatbot component 4. Observe the 413 error from CloudFront ### Screenshot _No response_ ### Logs ```shell ``` ### System Info ```shell - Gradio Version: `5.16.0` - Error is encountered on Spaces ``` ### Severity I can work around it
closed
2025-02-17T13:59:32Z
2025-02-20T20:13:59Z
https://github.com/gradio-app/gradio/issues/10606
[ "bug", "💬 Chatbot" ]
yvrjsharma
0
agronholm/anyio
asyncio
503
Thread leaks in async tests marked with @pytest.mark.anyio
This is because TestRunner doesn't call `loop.shutdown_default_executor()` at the end of a test. It calls [`loop.close()`](https://github.com/agronholm/anyio/blob/master/src/anyio/_backends/_asyncio.py#L1730-L1733) that [doesn't join threads (`wait=False`)](https://github.com/python/cpython/blob/3.11/Lib/asyncio/base_events.py#L684). A cleaner approach would call `loop.shutdown_default_executor()` right after [shutting down asyncgens](https://github.com/agronholm/anyio/blob/master/src/anyio/_backends/_asyncio.py#L1730). The approach is adopted in `IsolatedAsyncioTestCase` from the standard library: `asyncio.Runner.close` [called on tear down](https://github.com/python/cpython/blob/3.11/Lib/unittest/async_case.py#L124-L126) shuts down the loop's [default executor](https://github.com/python/cpython/blob/3.11/Lib/asyncio/runners.py#L73).
closed
2022-11-23T08:07:51Z
2022-11-26T15:29:48Z
https://github.com/agronholm/anyio/issues/503
[]
marcinbarczynski
0
voila-dashboards/voila
jupyter
1,307
[Voila] WARNING | Unrecognized alias: 'ip', it will have no effect.
How to bind ip to 0.0.0.0? voila --ip=0.0.0.0 not work ```bash (py311) ubuntu@VM-4-12-ubuntu:~/notebook$ voila --ip=0.0.0.0 [Voila] WARNING | Unrecognized alias: 'ip', it will have no effect. [Voila] Using /tmp to store connection files [Voila] Storing connection files in /tmp/voila_k36ohco_. [Voila] Serving static files from /home/ubuntu/miniconda3/envs/py311/lib/python3.11/site-packages/voila/static. [Voila] Voilà is running at: http://localhost:8866/ ``` voila version 0.4.0
closed
2023-03-19T05:38:35Z
2023-03-19T11:48:13Z
https://github.com/voila-dashboards/voila/issues/1307
[ "bug" ]
wukan1986
2
sgl-project/sglang
pytorch
3,874
[Bug] `pip install sglang` no longer installs all dependencies of the frontend
### Checklist - [x] 1. I have searched related issues but cannot get the expected help. - [x] 2. The bug has not been fixed in the latest version. - [x] 3. Please note that if the bug-related issue you submitted lacks corresponding environment info and a minimal reproducible demo, it will be challenging for us to reproduce and resolve the issue, reducing the likelihood of receiving feedback. - [ ] 4. If the issue you raised is not a bug but a question, please raise a discussion at https://github.com/sgl-project/sglang/discussions/new/choose Otherwise, it will be closed. - [x] 5. Please use English, otherwise it will be closed. ### Describe the bug The documentation suggests using `pip install sglang` to set up the dependencies for frontend language and that's correct only for versions before (not including) [v0.4.1.post7](https://github.com/sgl-project/sglang/releases/tag/v0.4.1.post7). The [PR that moves `Runtime` to frontend](https://github.com/sgl-project/sglang/pull/2990) breaks the situation by introducing a new dependency `aiohttp`, which is neither necessary for powering the frontend nor included in the dependencies. This regression was originally discovered by @starwolves123 in an internal project. ### Reproduction Just start from a new virtual environment and run `pip install sglang`. `from sglang import RuntimeEndpoint` will raise `ModuleNotFoundError: No module named 'aiohttp'`. ### Environment This script is not really runnable because it imports `torch` without checking for its existence. As far as I can tell, it's basically equal to have `sglang` and [these dependencies](https://github.com/sgl-project/sglang/blob/3dc9ff3ce8bb88dcbcf2655f616bd5439f224c11/python/pyproject.toml#L16) installed, which doesn't contain `aiohttp`.
closed
2025-02-26T06:52:31Z
2025-02-26T08:25:47Z
https://github.com/sgl-project/sglang/issues/3874
[]
stevapple
3
jina-ai/clip-as-service
pytorch
275
why the same sentence show different embedding?
Hi, I try to embed 200000 sentence, and I use two way to embed as follow: one is that "data" contain all the list of string: with open('a1') as fp: data = [v.strip('\n') for v in fp] vectors = bc.encode(data) the other is that "line" contain one list of string: line = f3.readline() line = line.strip('\n') while line: vectors = bc.encode([line]) line = f3.readline() but results show that the embedding of the same sentence are different in different way mentioned above. anyone tell me why? Here is my code: import sys import time from bert_serving.client import BertClient if __name__ == '__main__': bc = BertClient(port=int(sys.argv[1]), port_out=int(sys.argv[2]), show_server_config=True, output_fmt='list') with open('a1') as fp: data = [v.strip('\n') for v in fp] vectors = bc.encode(data) f3 = open("a1") f4 = open("output2.txt", 'a+') line = f3.readline() line = line.strip('\n') print([line]) while line: vectors = bc.encode([line]) f4.write(str(vectors)) line = f3.readline() f3.close() f4.close()
closed
2019-03-15T04:40:28Z
2019-03-15T09:21:01Z
https://github.com/jina-ai/clip-as-service/issues/275
[]
wingsyuan
6
davidsandberg/facenet
computer-vision
279
how to use my own trained model?
stackoverflow : https://stackoverflow.com/questions/44017147/how-to-use-my-own-trained-model-with-facenet-implemented-in-tensorflow
closed
2017-05-17T06:49:28Z
2017-07-15T17:12:04Z
https://github.com/davidsandberg/facenet/issues/279
[]
pine-byte
2
mljar/mercury
data-visualization
58
Reading notebook without utf-8 encoding
Hi, Thank you for your amazing work ! I have a problem when I try to convert my notebook with mercury run, I have the following message : Error during notebook initialization. 'charmap' codec can't decode byte 0x9d in position 3522922: character maps to <undefined> the notebook runs fine in jupyter and I have no issues ... I can't understand from where it can come from ... Please help ! Thank you in advance. Best Regards
closed
2022-03-10T08:44:33Z
2022-03-15T21:13:56Z
https://github.com/mljar/mercury/issues/58
[ "bug" ]
doubianimehdi
18
plotly/dash-core-components
dash
717
allow Location component to target window.parent.location
A common pattern is to embed a Dash app inside an iframe within a Flask app. Linking from inside the nested Dash app to redirect the parent window to a route in the Flask app can be done using an anchor tag with `target="_parent"`. This can't be achieved however with a redirect from a callback that changes the `href` of a `Location` component, because the `Location` component is limited to targeting `window.location`. A potential extension could be to allow a user to specify targeting `window.parent.location`, potentially with a `target` prop that imitates the `target` attribute on anchor tags. See this [motivating context in the Dash forum](https://community.plot.ly/t/getting-out-of-an-iframe/32508), where someone is trying to have clicking on different cells in a DataTable redirect the parent window to routes in the Flask app.
open
2019-12-16T07:41:50Z
2019-12-16T07:43:20Z
https://github.com/plotly/dash-core-components/issues/717
[]
ned2
0
google-research/bert
nlp
1,082
how to used fine tuned model as initial checkpoint for another task?
Hi, I fined tuned a classification model with 19 classes and then I add several new classes and i want to use the old model as an initial checkpoint to fine tune the new model. After i point the initial checkpoint in the training command to the previous fined model, i got this error ```ValueError: Shape of variable loss/output_bias:0 ((23,)) doesn't match with shape of tensor loss/output_bias ([19]) from checkpoint reader.``` What is the correct way to save the fine tuned model in order to accomplish this? Thank you!
closed
2020-05-10T08:16:13Z
2020-05-11T21:33:55Z
https://github.com/google-research/bert/issues/1082
[]
bohanbo
0
mwaskom/seaborn
matplotlib
2,982
Line + Band with variables that Band does not support is awkward
`Band` does not support `linestyle`, so this plot is wrong in a confusing way: ```python ( so.Plot(fmri, "timepoint", "signal", color="region", linestyle="event") .add(so.Line(), so.Agg()) .add(so.Band(), so.Est()) ) ``` <img width="495" alt="image" src="https://user-images.githubusercontent.com/315810/187090315-f0d2a444-b92b-4519-984b-f75d818e2ea7.png"> One needs to do this: ```python ( so.Plot(fmri, "timepoint", "signal", color="region", linestyle="event") .add(so.Line(), so.Agg()) .add(so.Band(), so.Est(), group="event") ) ``` <img width="500" alt="image" src="https://user-images.githubusercontent.com/315810/187089845-5b15af88-1b12-46ce-b5dc-ff3532c0dc5a.png"> Perhaps the stat grouping should use any variables defined at the common level or in that layer, not just those the mark accepts? This will have some implications as we address #2911
open
2022-08-28T18:58:16Z
2022-08-28T18:59:52Z
https://github.com/mwaskom/seaborn/issues/2982
[ "rough-edge", "objects-plot" ]
mwaskom
0
PrefectHQ/prefect
data-science
17,225
The Flow diagram cannot be displayed when Prefect is deployed locally
### Bug summary When trying to deploy locally by referring to the quick start document (https://docs.prefect.io/v3/get-started/quickstart), I cannot see the Flow image ![Image](https://github.com/user-attachments/assets/adcf3837-65f9-451b-8c27-e5fa711f0dd5) ### Version info ```Text Version: 3.2.6 API version: 0.8.4 Python version: 3.10.13 Git commit: 5ceb3ada Built: Wed, Feb 19, 2025 9:24 PM OS/Arch: linux/x86_64 Profile: local Server type: server Pydantic version: 2.9.2 ``` ### Additional context _No response_
closed
2025-02-21T07:28:14Z
2025-03-21T01:55:30Z
https://github.com/PrefectHQ/prefect/issues/17225
[ "bug" ]
Moonquakes
5
hyperspy/hyperspy
data-visualization
2,927
Inversion of indices in axes_manager.set_axis
**This was reported by @magnunor in https://github.com/hyperspy/hyperspy/pull/2830#issuecomment-1086916555:** I tested `axes_manager.set_axis`, and there seems to be an "inversion" of the indices: ```python import numpy as np import hyperspy.api as hs s0 = hs.signals.Signal1D(np.zeros((5, 10, 15))) s0.axes_manager.navigation_axes[0].scale = 0.1 s0.axes_manager.navigation_axes[1].scale = 0.2 s1 = hs.signals.Signal1D(np.zeros((5, 10, 20))) s1.axes_manager.set_axis(s0.axes_manager.navigation_axes[0], 0) s1.axes_manager.set_axis(s0.axes_manager.navigation_axes[1], 1) ``` ```python print(s0.axes_manager) <Axes manager, axes: (10, 5|15)> Name | size | index | offset | scale | units ================ | ====== | ====== | ======= | ======= | ====== <undefined> | 10 | 7 | 0 | 0.1 | <undefined> <undefined> | 5 | 3 | 0 | 0.2 | <undefined> ---------------- | ------ | ------ | ------- | ------- | ------ <undefined> | 15 | 0 | 0 | 1 | <undefined> print(s1.axes_manager) <Axes manager, axes: (5, 10|20)> Name | size | index | offset | scale | units ================ | ====== | ====== | ======= | ======= | ====== <undefined> | 5 | 3 | 0 | 0.2 | <undefined> <undefined> | 10 | 7 | 0 | 0.1 | <undefined> ---------------- | ------ | ------ | ------- | ------- | ------ <undefined> | 20 | 0 | 0 | 1 | <undefined> ``` --------------------- Ergo, to properly "copy" the navigation axes: ```python s1.axes_manager.set_axis(s0.axes_manager.navigation_axes[0], 1) s1.axes_manager.set_axis(s0.axes_manager.navigation_axes[1], 0) ```
open
2022-04-15T10:18:29Z
2022-04-15T10:19:00Z
https://github.com/hyperspy/hyperspy/issues/2927
[ "type: bug?" ]
jlaehne
1
sloria/TextBlob
nlp
152
Translation issues
I made a very easy script to play around with the translation module: ``` from textblob import TextBlob en_text = TextBlob('You shall find of the king a husband, madam; you, sir, a father: he that so generally is at all times good must of necessity hold his virtue to you; whose worthiness would stir it up where it wanted rather than lack it where there is such abundance.') nl_text = en_text.translate(from_lang='en', to='nl') print(nl_text) ``` But this results in a couple of errors of which I hardly can make any sense: ``` Traceback (most recent call last): File "C:\Users\Gebruiker\Desktop\TEXTBLOW.py", line 4, in <module> nl_text = en_text.translate(from_lang='en', to='nl') File "C:\Users\Gebruiker\AppData\Local\Programs\Python\Python35\lib\site-packages\textblob\blob.py", line 505, in translate from_lang=from_lang, to_lang=to)) File "C:\Users\Gebruiker\AppData\Local\Programs\Python\Python35\lib\site-packages\textblob\translate.py", line 52, in translate response = self._request(self.url, host=host, type_=type_, data=data) File "C:\Users\Gebruiker\AppData\Local\Programs\Python\Python35\lib\site-packages\textblob\translate.py", line 92, in _request resp = request.urlopen(req) File "C:\Users\Gebruiker\AppData\Local\Programs\Python\Python35\lib\urllib\request.py", line 162, in urlopen return opener.open(url, data, timeout) File "C:\Users\Gebruiker\AppData\Local\Programs\Python\Python35\lib\urllib\request.py", line 471, in open response = meth(req, response) File "C:\Users\Gebruiker\AppData\Local\Programs\Python\Python35\lib\urllib\request.py", line 581, in http_response 'http', request, response, code, msg, hdrs) File "C:\Users\Gebruiker\AppData\Local\Programs\Python\Python35\lib\urllib\request.py", line 503, in error result = self._call_chain(*args) File "C:\Users\Gebruiker\AppData\Local\Programs\Python\Python35\lib\urllib\request.py", line 443, in _call_chain result = func(*args) File "C:\Users\Gebruiker\AppData\Local\Programs\Python\Python35\lib\urllib\request.py", line 686, in http_error_302 return self.parent.open(new, timeout=req.timeout) File "C:\Users\Gebruiker\AppData\Local\Programs\Python\Python35\lib\urllib\request.py", line 471, in open response = meth(req, response) File "C:\Users\Gebruiker\AppData\Local\Programs\Python\Python35\lib\urllib\request.py", line 581, in http_response 'http', request, response, code, msg, hdrs) File "C:\Users\Gebruiker\AppData\Local\Programs\Python\Python35\lib\urllib\request.py", line 509, in error return self._call_chain(*args) File "C:\Users\Gebruiker\AppData\Local\Programs\Python\Python35\lib\urllib\request.py", line 443, in _call_chain result = func(*args) File "C:\Users\Gebruiker\AppData\Local\Programs\Python\Python35\lib\urllib\request.py", line 589, in http_error_default raise HTTPError(req.full_url, code, msg, hdrs, fp) urllib.error.HTTPError: HTTP Error 503: Service Unavailable ```
closed
2017-02-16T12:31:03Z
2017-02-16T12:34:07Z
https://github.com/sloria/TextBlob/issues/152
[]
DutchDandy
0
littlecodersh/ItChat
api
290
群里被别人@时,为什么有的会自动空格,有的却是\u2005?
都是iphone,都是微信6.5的情况下,机器人在群里被别人@时,为什么有的在名字后会自动空格,有的却是\u2005? 比如: @机器人 空格 内容 @机器人 \u2005 内容
closed
2017-03-19T14:04:30Z
2017-03-22T07:49:49Z
https://github.com/littlecodersh/ItChat/issues/290
[ "question" ]
pengyuwei
1
jupyterlab/jupyter-ai
jupyter
437
Use JSON mode with /generate command for models that support it
<!-- Welcome! Thank you for contributing. These HTML comments will not render in the issue, but you can delete them once you've read them if you prefer! --> <!-- Thanks for thinking of a way to improve JupyterLab. If this solves a problem for you, then it probably solves that problem for lots of people! So the whole community will benefit from this request. Before creating a new feature request please search the issues for relevant feature requests. --> ### Problem Some generative models, when asked to generate JSON, may generate output that is not valid JSON. This will cause the `/generate` command to fail. ### Proposed Solution For models that support it (see below) enable JSON mode when a user runs the `/generate` command. ### Additional context As of November 6, 2023, OpenAI's `gpt-4-vision-preview` and `gpt-3.5-turbo` models support [JSON mode](https://platform.openai.com/docs/guides/text-generation/json-mode). Clients must include the string `"JSON"` in their system message, and clients using these models must set `response_format` to `{ type: "json_object" }`, to enable this mode. See #435 for another issue related to generative models that fail to output valid JSON.
open
2023-11-06T23:35:00Z
2023-11-06T23:35:53Z
https://github.com/jupyterlab/jupyter-ai/issues/437
[ "enhancement", "scope:chat-ux", "scope:generate" ]
JasonWeill
0
gradio-app/gradio
machine-learning
10,201
Accordion - Expanding vertically to the right
- [x] I have searched to see if a similar issue already exists. I would really like to have the ability to place an accordion vertically and expand to the right. I have scenarios where this would be a better UI solution, as doing so would automatically push the other components to the right of it forward. I have no idea how to tweak this in CSS to make it work. If you have a simple CSS solution I would appreciate it until we have this feature. I am actually developing something that would really need this feature. I made this drawing of what it would be like. ![image](https://github.com/user-attachments/assets/1b9bd1d4-ef2a-4f18-a994-fcd4beaeb391)
closed
2024-12-14T23:51:34Z
2024-12-16T16:46:38Z
https://github.com/gradio-app/gradio/issues/10201
[]
elismasilva
1
Lightning-AI/pytorch-lightning
deep-learning
20,171
Inconsistent input io type between `to_onnx` and `torch.onnx.export`.
### Bug description Currently the filetype supported in `torch.onnx.export` includes `io.BytesIO`, whereas in `lightning`, it only supports `str` and `PathLike` object. Before lightning `2.3.3` , passing a `BytesIO` wouldn't be a problem since `to_onnx` did not do anything with `file_path`, but since this version, it changed by passing `str(file_path)`, which will cause problems when passing an `BytesIO` instance. ### What version are you seeing the problem on? v2.3 ### How to reproduce the bug ```python from io import BytesIO model = LightningModel() onnx_io = BytesIO() model.to_onnx(onnx_io) ``` ### Error messages and logs ``` OSError: [Errno 22] Invalid argument: '<_io.BytesIO object at 0x000002487558E3B0>' ``` ### Environment <details> <summary>Current environment</summary> ``` #- PyTorch Lightning Version (e.g., 2.4.0): #- PyTorch Version (e.g., 2.4): #- Python version (e.g., 3.12): #- OS (e.g., Linux): #- CUDA/cuDNN version: #- GPU models and configuration: #- How you installed Lightning(`conda`, `pip`, source): ``` </details> ### More info _No response_
closed
2024-08-06T14:05:07Z
2024-08-07T15:07:40Z
https://github.com/Lightning-AI/pytorch-lightning/issues/20171
[ "bug", "ver: 2.3.x" ]
GdoongMathew
0
onnx/onnx
pytorch
6,172
How to use onnx.utils.extract_model to extract more than 2GB child onnx model ?
` input_name = "sample" #'/conv_in/Conv_output_0' output_name = "/down_blocks.1/resnets.0/norm1/Reshape_output_0" # onnx.utils.extract_model(original_model_path, extracted_model_path, [input_name], [output_name]) ` onnx.utils.extract_model(original_model_path, extracted_model_path, [input_name], [output_name]) File "/home/tiger/.local/lib/python3.10/site-packages/onnx/utils.py", line 209, in extract_model e = Extractor(model) File "/home/tiger/.local/lib/python3.10/site-packages/onnx/utils.py", line 16, in __init__ self.model = onnx.shape_inference.infer_shapes(model) File "/home/tiger/.local/lib/python3.10/site-packages/onnx/shape_inference.py", line 45, in infer_shapes model_str = model if isinstance(model, bytes) else model.SerializeToString() ValueError: Message onnx.ModelProto exceeds maximum protobuf size of 2GB: 10275992708
closed
2024-06-12T07:42:11Z
2024-06-20T08:52:06Z
https://github.com/onnx/onnx/issues/6172
[ "question" ]
Lenan22
2
ymcui/Chinese-LLaMA-Alpaca-2
nlp
546
finetune之后的模型使用
### 提交前必须检查以下项目 - [X] 请确保使用的是仓库最新代码(git pull),一些问题已被解决和修复。 - [X] 我已阅读[项目文档](https://github.com/ymcui/Chinese-LLaMA-Alpaca-2/wiki)和[FAQ章节](https://github.com/ymcui/Chinese-LLaMA-Alpaca-2/wiki/常见问题)并且已在Issue中对问题进行了搜索,没有找到相似问题和解决方案。 - [X] 第三方插件问题:例如[llama.cpp](https://github.com/ggerganov/llama.cpp)、[LangChain](https://github.com/hwchase17/langchain)、[text-generation-webui](https://github.com/oobabooga/text-generation-webui)等,同时建议到对应的项目中查找解决方案。 ### 问题类型 模型训练与精调 ### 基础模型 Chinese-LLaMA-2 (7B/13B) ### 操作系统 None ### 详细描述问题 ``` # 请在此处粘贴运行代码(请粘贴在本代码块里) ``` 使用finetune之后的模型(output/checkpoint-400),把finetune前的原始模型删掉后,运行失败。因为在adapter_config.json文件中有base_model_name_or_path,运行finetune之后的模型还是会读取这个路径,报OSError: Can't load the configuration of ‘xxx’错误。 我的问题是,因为想在容器环境内运行,不想让容器太辎重了,所以删掉了原始模型,我想问为什么还是会要读取原始模型? ### 依赖情况(代码类问题务必提供) ``` # 请在此处粘贴依赖情况(请粘贴在本代码块里) ``` ### 运行日志或截图 ``` # 请在此处粘贴运行日志(请粘贴在本代码块里) ```
closed
2024-03-19T03:38:53Z
2024-04-11T23:45:24Z
https://github.com/ymcui/Chinese-LLaMA-Alpaca-2/issues/546
[ "stale" ]
xiaoToby
3
Evil0ctal/Douyin_TikTok_Download_API
fastapi
313
[BUG] Can't download video from douyin
I use the sample python code, then return the follow error when download the video URL: https://www.douyin.com/video/6914948781100338440 ERROR The above exception was the direct cause of the following exception: Traceback (most recent call last): File "/Users/jame/Code/home/video/download.py", line 12, in <module> asyncio.run(hybrid_parsing(url=input("Paste Douyin/TikTok/Bilibili share URL here: "))) File "/opt/homebrew/Cellar/python@3.11/3.11.5/Frameworks/Python.framework/Versions/3.11/lib/python3.11/asyncio/runners.py", line 190, in run return runner.run(main) ^^^^^^^^^^^^^^^^ File "/opt/homebrew/Cellar/python@3.11/3.11.5/Frameworks/Python.framework/Versions/3.11/lib/python3.11/asyncio/runners.py", line 118, in run return self._loop.run_until_complete(task) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/homebrew/Cellar/python@3.11/3.11.5/Frameworks/Python.framework/Versions/3.11/lib/python3.11/asyncio/base_events.py", line 653, in run_until_complete return future.result() ^^^^^^^^^^^^^^^ File "/Users/jame/Code/home/video/download.py", line 8, in hybrid_parsing result = await api.hybrid_parsing(url) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/Users/jame/.local/share/virtualenvs/video-hF2q1l9e/lib/python3.11/site-packages/douyin_tiktok_scraper/scraper.py", line 467, in hybrid_parsing data = await self.get_douyin_video_data(video_id) if url_platform == 'douyin' \ ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/Users/jame/.local/share/virtualenvs/video-hF2q1l9e/lib/python3.11/site-packages/tenacity/_asyncio.py", line 88, in async_wrapped return await fn(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^ File "/Users/jame/.local/share/virtualenvs/video-hF2q1l9e/lib/python3.11/site-packages/tenacity/_asyncio.py", line 47, in __call__ do = self.iter(retry_state=retry_state) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/Users/jame/.local/share/virtualenvs/video-hF2q1l9e/lib/python3.11/site-packages/tenacity/__init__.py", line 326, in iter raise retry_exc from fut.exception() tenacity.RetryError: RetryError[<Future at 0x103763b90 state=finished raised ValueError>]
closed
2023-11-02T08:57:37Z
2024-02-07T03:45:27Z
https://github.com/Evil0ctal/Douyin_TikTok_Download_API/issues/313
[ "BUG", "enhancement" ]
nhannguyentrong
6
encode/databases
sqlalchemy
407
Postgres backend Record is a Mapping but some Mapping methods are deprecated
Since https://github.com/encode/databases/pull/299 upgraded to sqlalchemy 1.4, the postgres backend's Record object now mimics the behavior of sqlalchemy's Row which is meant to behave similarly to a NamedTuple (and inherits from collections.abc.Sequence) https://docs.sqlalchemy.org/en/14/changelog/migration_14.html#change-4710-core Meanwhile, postgres backend's Record object inherits from collections.abc.Mapping and is therefore required to fulfill the Mapping interface, which includes keys() and values() which are now deprecated. Sqlalchemy provides a `mapping()` method on Result which will cause it to return RowMapping objects rather than Row objects, and those look like Mappings. I encountered this issue working with fastapi and pydantic. Returning Records as pydantic models worked in the past, but now produces a deprecation warning (and i guess will eventually stop working) since pydantic's builtin validator treats the Record as a Mapping and attempts to call `dict(record)`
closed
2021-10-11T18:22:31Z
2021-10-23T10:34:37Z
https://github.com/encode/databases/issues/407
[ "clean up" ]
ugtar
5
ultralytics/yolov5
machine-learning
12,418
Folder YOLOv5 does not appear in the directory after its installation.
### Search before asking - [X] I have searched the YOLOv5 [issues](https://github.com/ultralytics/yolov5/issues) and [discussions](https://github.com/ultralytics/yolov5/discussions) and found no similar questions. ### Question Hi everybody! I am new with the use of Yolov5 tool. I have followed the steps indicated in the webpage for yolov5 installation in my laptop. ![Captura](https://github.com/ultralytics/yolov5/assets/148674315/b817b831-caf1-4610-a93c-376d3c68fdc3) And the docker has properly installed as you can see the container in the docker desktop application. ![image](https://github.com/ultralytics/yolov5/assets/148674315/9a78781e-7fe3-46cf-ba14-e768536bf5c6) However, when I have checked if the folder was created in my local directory root no "Yolov5" folder appears. I have followed similar steps for other dockers such as cvat, where you can see that the foder was properly created. ![image](https://github.com/ultralytics/yolov5/assets/148674315/56c1d36b-d07d-4c04-a046-f9527c98ebdd) And CVAT folder contains the typical structure of a docker ![image](https://github.com/ultralytics/yolov5/assets/148674315/bd244a44-5eff-44a7-bd9c-7b6e9ffdc411) Is there any step that I do not follow properly? Do I need to do something else to finish with the installation of yolov5 ? ### Additional _No response_
closed
2023-11-23T07:31:59Z
2024-10-20T19:32:20Z
https://github.com/ultralytics/yolov5/issues/12418
[ "question" ]
frl93
8
man-group/arctic
pandas
537
Installation on mac fails: ValueError("You must install clang-6.0 or gcc/g++
#### Arctic Version ``` latest (1.66) ``` #### Arctic Store ``` # VersionStore, TickStore, or ChunkStore ``` #### Platform and version MacOS High Sierra 10.13.4, conda 4.5.1, Python 3.6.5 #### Description of problem and/or code sample that reproduces the issue pip install git+https://github.com/manahl/arctic.git Collecting git+https://github.com/manahl/arctic.git Cloning https://github.com/manahl/arctic.git to /private/var/folders/37/pj3q445120nbrg_jd778320c0000gp/T/pip-zmoq6jbu-build Complete output from command python setup.py egg_info: Traceback (most recent call last): File "<string>", line 1, in <module> File "/private/var/folders/37/pj3q445120nbrg_jd778320c0000gp/T/pip-zmoq6jbu-build/setup.py", line 44, in <module> raise ValueError("You must install clang-6.0 or gcc/g++. You can install with homebrew: brew install gcc or brew install llvm") ValueError: You must install clang-6.0 or gcc/g++. You can install with homebrew: brew install gcc or brew install llvm ---------------------------------------- Command "python setup.py egg_info" failed with error code 1 in /private/var/folders/37/pj3q445120nbrg_jd778320c0000gp/T/pip-zmoq6jbu-build/ Both clang and gcc are installed. Any guidance how get it installed will be hugely appreciated.
closed
2018-04-18T06:22:33Z
2018-04-19T13:07:34Z
https://github.com/man-group/arctic/issues/537
[]
stnatter
8
Lightning-AI/pytorch-lightning
machine-learning
19,858
Dynamically link arguments in `LightningCLI`?
### Description & Motivation Is it possible to _dynamically_ link arguments in the `LightningCLI`, say, depending on the module or datamodule subclass that is specified in a config file or at the command line? ### Pitch _No response_ ### Alternatives _No response_ ### Additional context _No response_ cc @borda @carmocca @mauvilsa
closed
2024-05-09T17:17:19Z
2024-05-14T20:11:52Z
https://github.com/Lightning-AI/pytorch-lightning/issues/19858
[ "feature", "lightningcli" ]
EthanMarx
2
ultralytics/ultralytics
machine-learning
19,546
Label tools recommendation of keypoints
### Search before asking - [x] I have searched the Ultralytics YOLO [issues](https://github.com/ultralytics/ultralytics/issues) and [discussions](https://github.com/orgs/ultralytics/discussions) and found no similar questions. ### Question Hello! Since keypoints detection is combined with object detection, I must prepare the dataset labels as required. Namely, I must put [class+xywh] with n*[xy+visible] together. Sometimes its a little complicated for some labeling tools. So can you please recommend some labeling tools of this? Besides, each keypoint should be assigned to a bounding box in the labeling tools, otherwise if they are not associate, its meaningless. Thanks a lot! ### Additional _No response_
closed
2025-03-06T07:16:51Z
2025-03-07T04:24:02Z
https://github.com/ultralytics/ultralytics/issues/19546
[ "question", "pose" ]
JasonSloan
3
napari/napari
numpy
7,434
Add tests for world to data normal vector transformation
## 🧰 Task #7422 was merged without a proper regression test. It would be good to minimally check some reference values and test against that. See comment: https://github.com/napari/napari/pull/7422#issuecomment-2511605560
closed
2024-12-06T03:50:45Z
2024-12-06T14:24:49Z
https://github.com/napari/napari/issues/7434
[ "task" ]
jni
2
HIT-SCIR/ltp
nlp
430
请问4.X版本的pip安装,在windows环境下可以使用吗?我安装提示torch版本问题,谢谢了
如题
closed
2020-11-02T03:57:38Z
2020-11-02T06:22:05Z
https://github.com/HIT-SCIR/ltp/issues/430
[]
vitoman
1
aio-libs/aiohttp
asyncio
10,287
Please Add Host Resolver Rules
### Is your feature request related to a problem? I am in China and I want to make a tool to scan ip and port which can access blocked websites. I have written a tool to bypass DPI, it's a http proxy. When i scan ip, I need to send a request to a current ip, not the proxy to resolve the ip. ### Describe the solution you'd like Add a param like `resolve="127.0.0.1:2500"` of `get`. ### Describe alternatives you've considered I've tried to redine some funtions, but failed. An way to do this is to modify the CONNECT: On the first line: ``` CONNECT www.python.org:443 HTTP/1.1 ``` simply modify it to ``` CONNECT 127.0.0.1:80 HTTP/1.1 ``` is okay. ### Related component Client ### Additional context `curl` on unix like support `--resolve`. So you can use: ```bash curl https://www.google.com.hk -x 127.0.0.1:2500 --resolve www.google.com.hk:1445:35.190.240.148 ``` --- notice the differences of sni on tls layer, host on http layer and ip on AF_NET layer! ### Code of Conduct - [X] I agree to follow the aio-libs Code of Conduct
closed
2024-12-31T23:51:09Z
2025-01-04T18:06:55Z
https://github.com/aio-libs/aiohttp/issues/10287
[ "enhancement" ]
louiesun
1
521xueweihan/HelloGitHub
python
2,093
github.com/matsuwin/proctop
## 项目推荐 - 项目地址:https://github.com/matsuwin/proctop - 类别:Go - 项目后续更新计划:持续完善 - 项目描述:适用于 Linux 的性能分析工具,实时显示进程的资源占用状态,类似于 TOP。支持 Java 同名进程拆分。*同样适用于 Raspberry Pi (树莓派)。 - 单核 CPU 使用率 TOP 进程列表,自动刷新 2s/次。 - 分等级的彩色页面渲染:红 > 黄 > 青 > 蓝。 - 同名进程自动合并,资源利用累加。 - 主机信息和处理器型号抬头展示。 - 处理器温度实时预览。 - 一键安装。 - 推荐理由:ProcTop 提供了好看直观的 TOP 视图,是 top 命令的增强。除此之外还提供了丰富的机器信息枚举,CPU型号、温度、whoami、IP 等。 <img src="https://raw.githubusercontent.com/matsuwin/proctop/main/demo.png">
closed
2022-02-03T05:29:04Z
2022-02-22T11:45:55Z
https://github.com/521xueweihan/HelloGitHub/issues/2093
[]
2yanyi
1
indico/indico
flask
6,508
Preserve translations when moving things from jinja to react...
**Is your feature request related to a problem? Please describe.** All current context provided in issue https://github.com/indico/indico/pull/6489#issuecomment-2307068700 **Describe the solution you'd like** A mechanism to automatically parse translation files and put them in other formats so that we do not lose translations. The issue is fairly complex and therefore needs refinement by @tomasr8 . Made the issue already for administrative purposes. **Update 25/10** This feature will be implemented on the CLI transifex (TBD) push command: 1. Untranslated POT files are generated by babel 2. Translated PO files are pulled 3. Check which translations are missing each environment (Jinja, React, JS) that another environment can supplement (We will have to think about double translations) 4. Push to transfixes translation for empty string in environment based on another environments translation 5. Pull PO files again, which now should all be in sync with duplicates **Sub-issues for now** - [ ] Get missing translations that are translated in other PO files (@AjobK ) - [ ] Push bunch of translations at once to Transifex (@micsucmed ) **Concerns for later** - [ ] Formatted strings, how to deal with those - [ ] Doubly translated strings, which to pick for empty message string - [ ] Implementing this feature as a whole into the Indico CLI
closed
2024-08-27T09:13:59Z
2024-12-12T14:22:15Z
https://github.com/indico/indico/issues/6508
[ "enhancement" ]
AjobK
8
lucidrains/vit-pytorch
computer-vision
322
Multi-GPU training of NaViT model
Hello! I have a question about multi-GPU training using [NaViT](https://github.com/lucidrains/vit-pytorch/blob/main/vit_pytorch/na_vit.py#L186) model. I am able to run the training on 1 GPU, but not on several. Any suggestions or ideas how it's possible to use multiple GPUs for training this particular model? FYI: DP doesn't work straightaway. Thank you in advance.
closed
2024-07-04T11:30:25Z
2024-07-12T07:50:18Z
https://github.com/lucidrains/vit-pytorch/issues/322
[]
b5y
1
CorentinJ/Real-Time-Voice-Cloning
python
407
OSError: [WinError 126] The specified module could not be found (Real-Time-Voice-Cloning-master)
PS C:\Users\Pritam> cd D:\Game\Real-Time-Voice-Cloning-master PS D:\Game\Real-Time-Voice-Cloning-master> python demo_cli.py 2020-07-08 12:18:00.259919: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cudart64_100.dll Traceback (most recent call last): File "demo_cli.py", line 3, in <module> from synthesizer.inference import Synthesizer File "D:\Game\Real-Time-Voice-Cloning-master\synthesizer\inference.py", line 1, in <module> from synthesizer.tacotron2 import Tacotron2 File "D:\Game\Real-Time-Voice-Cloning-master\synthesizer\tacotron2.py", line 3, in <module> from synthesizer.models import create_model File "D:\Game\Real-Time-Voice-Cloning-master\synthesizer\models\__init__.py", line 1, in <module> from .tacotron import Tacotron File "D:\Game\Real-Time-Voice-Cloning-master\synthesizer\models\tacotron.py", line 5, in <module> from synthesizer.models.modules import * File "D:\Game\Real-Time-Voice-Cloning-master\synthesizer\models\modules.py", line 2, in <module> import torch File "C:\Users\Pritam\AppData\Local\Programs\Python\Python37\lib\site-packages\torch\__init__.py", line 81, in <module> ctypes.CDLL(dll) File "C:\Users\Pritam\AppData\Local\Programs\Python\Python37\lib\ctypes\__init__.py", line 364, in __init__ self._handle = _dlopen(self._name, mode) OSError: [WinError 126] The specified module could not be found PS D:\Game\Real-Time-Voice-Cloning-master> This is what i get after i run this in Powershell. I'm pretty sure I've done everything right at every step! Can anyone figure out what may be missing here?
closed
2020-07-08T06:52:32Z
2020-07-10T20:19:50Z
https://github.com/CorentinJ/Real-Time-Voice-Cloning/issues/407
[]
pritxm
30
d2l-ai/d2l-en
computer-vision
2,508
SageMaker Studio Lab link is outdated and is only for PyTorch
I started trying out Amazon SageMaker Studio Lab recently, ![image](https://github.com/d2l-ai/d2l-en/assets/66750082/869c5bb4-30db-4db7-9247-274454574744) and the button on D2L links you to: https://studiolab.sagemaker.aws/import/github/d2l-ai/d2l-pytorch-sagemaker-studio-lab/blob/main/GettingStarted-D2L.ipynb This makes you clone this project: d2l-pytorch-sagemaker-studio-lab (https://github.com/d2l-ai/d2l-pytorch-sagemaker-studio-lab) ![image](https://github.com/d2l-ai/d2l-en/assets/66750082/ac0f9ea4-970f-465a-bfda-6d8f1ad48554) I noticed that this repo hasn't been updated since 2022 and even though I clicked on JAX as my preference on D2L, the SageMaker Studio Lab button still brings me to this PyTorch repo. Here's an image where you can clearly see the difference between D2L (on the left) and this repo (on the right). ![image](https://github.com/d2l-ai/d2l-en/assets/66750082/77109b6f-9714-41cc-871e-ea2a44a40487) I am currently following along the d2l-jax-sagemaker repo (https://github.com/d2l-ai/d2l-jax-sagemaker), and it seems up to date. But I would really appreciate it if the button on the actually D2L site actually brought us to an updated D2L repo for Studio Lab, and corresponds to a ML framework preference. Studio Lab seems like a cool environment to learn ML and I would like to follow D2L in JAX.
closed
2023-06-07T17:17:17Z
2023-08-28T08:48:32Z
https://github.com/d2l-ai/d2l-en/issues/2508
[ "bug", "feature request" ]
AngelynDisguise
1
JaidedAI/EasyOCR
pytorch
446
Performance on TextOCR Dataset
**Motivation** Improve the benchmark performance of all algorithms based on TextOCR dataset released by Facebook AI research team Related resources https://textvqa.org/textocr **Overview** TextOCR requires models to perform text-recognition on arbitrary shaped scene-text present on natural images. TextOCR provides ~1M high quality word annotations on TextVQA images allowing application of end-to-end reasoning on downstream tasks such as visual question answering or image captioning. **Statistics** 28,134 natural images from TextVQA 903,069 annotated scene-text words 32 words per image on average
closed
2021-06-03T08:56:50Z
2022-03-02T09:25:00Z
https://github.com/JaidedAI/EasyOCR/issues/446
[]
jkcg-learning
0
yaroslaff/nudecrawler
web-scraping
4
Not an issue just a question
Hello, how come when I search a term on your application it returns 1 or 2 results, but then I use another search service that I found online it returns many more for the exact search term?
closed
2023-04-11T22:52:13Z
2023-06-08T11:55:49Z
https://github.com/yaroslaff/nudecrawler/issues/4
[]
6R1M4C3
4
pytest-dev/pytest-html
pytest
565
Release 3.2.0 is missing as release in your repo
Hi. The latest release as shown in Github is 3.1.1 dating back to July. There is only a tag 3.2.0. However it seems you published it already to PyPi and the changelog also shows 2022-10-25 as release date for the 3.2.0. Please make it a real release in Github as well.
closed
2022-11-10T12:42:00Z
2022-11-11T08:17:30Z
https://github.com/pytest-dev/pytest-html/issues/565
[]
WSADEERLBB
1
huggingface/datasets
pytorch
7,457
Document the HF_DATASETS_CACHE env variable
### Feature request Hello, I have a use case where my team is sharing models and dataset in shared directory to avoid duplication. I noticed that the [cache documentation for datasets](https://huggingface.co/docs/datasets/main/en/cache) only mention the `HF_HOME` environment variable but never the `HF_DATASETS_CACHE`. It should be nice to add `HF_DATASETS_CACHE` to datasets documentation if it's an intended feature. If it's not, I think a depreciation warning would be appreciated. ### Motivation This variable is fully working and similar to what `HF_HUB_CACHE` does for models, so it's nice to know that this exists. This seems to be a quick change to implement. ### Your contribution I could contribute since this is only affecting a small portion of the documentation
open
2025-03-17T12:24:50Z
2025-03-20T10:36:46Z
https://github.com/huggingface/datasets/issues/7457
[ "enhancement" ]
LSerranoPEReN
4
horovod/horovod
tensorflow
3,162
Spark with Horovod fails with py4j.protocol.Py4JJavaError
**Environment:** 1. Framework: TensorFlow, Keras 2. Framework version: tensorflow-2.4.3, keras-2.6.0 3. Horovod version: horovod-0.22.1 4. MPI version: 5. CUDA version: 6. NCCL version: 7. Python version: python-3.6.9 8. Spark / PySpark version: Spark-3.1.2 9. Ray version: 10. OS and version: Ubuntu 18 11. GCC version: gcc-7.5.0 12. CMake version: cmake-3.21.2 When running the sample script keras_spark_rossmann_estimator.py, spark app fails at model training with the following error: ``` Total params: 2,715,603 Trainable params: 2,715,567 Non-trainable params: 36 __________________________________________________________________________________________________ /home/cc/.local/lib/python3.6/site-packages/keras/optimizer_v2/optimizer_v2.py:356: UserWarning: The `lr` argument is deprecated, use `learning_rate` instead. "The `lr` argument is deprecated, use `learning_rate` instead.") num_partitions=80 writing dataframes train_data_path=file:///tmp/intermediate_train_data.0 val_data_path=file:///tmp/intermediate_val_data.0 train_partitions=76===========================================> (15 + 1) / 16] val_partitions=8 /home/cc/.local/lib/python3.6/site-packages/horovod/spark/common/util.py:479: FutureWarning: The 'field_by_name' method is deprecated, use 'field' instead metadata, avg_row_size = make_metadata_dictionary(train_data_schema) train_rows=806871 val_rows=37467 Exception in thread Thread-3: (0 + 8) / 8] Traceback (most recent call last): File "/usr/lib/python3.6/threading.py", line 916, in _bootstrap_inner self.run() File "/usr/lib/python3.6/threading.py", line 864, in run self._target(*self._args, **self._kwargs) File "/home/cc/.local/lib/python3.6/site-packages/horovod/spark/runner.py", line 140, in run_spark result = procs.mapPartitionsWithIndex(mapper).collect() File "/usr/local/lib/python3.6/dist-packages/pyspark/rdd.py", line 949, in collect sock_info = self.ctx._jvm.PythonRDD.collectAndServe(self._jrdd.rdd()) File "/home/cc/.local/lib/python3.6/site-packages/py4j/java_gateway.py", line 1310, in __call__ answer, self.gateway_client, self.target_id, self.name) File "/usr/local/lib/python3.6/dist-packages/pyspark/sql/utils.py", line 111, in deco return f(*a, **kw) File "/home/cc/.local/lib/python3.6/site-packages/py4j/protocol.py", line 328, in get_return_value format(target_id, ".", name), value) py4j.protocol.Py4JJavaError: An error occurred while calling z:org.apache.spark.api.python.PythonRDD.collectAndServe. : org.apache.spark.SparkException: Job 63 cancelled part of cancelled job group horovod.spark.run.0 at org.apache.spark.scheduler.DAGScheduler.failJobAndIndependentStages(DAGScheduler.scala:2258) at org.apache.spark.scheduler.DAGScheduler.handleJobCancellation(DAGScheduler.scala:2154) at org.apache.spark.scheduler.DAGScheduler.$anonfun$handleJobGroupCancelled$4(DAGScheduler.scala:1048) at scala.runtime.java8.JFunction1$mcVI$sp.apply(JFunction1$mcVI$sp.java:23) at scala.collection.mutable.HashSet.foreach(HashSet.scala:79) at org.apache.spark.scheduler.DAGScheduler.handleJobGroupCancelled(DAGScheduler.scala:1047) at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:2407) at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2387) at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2376) at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:49) at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:868) at org.apache.spark.SparkContext.runJob(SparkContext.scala:2196) at org.apache.spark.SparkContext.runJob(SparkContext.scala:2217) at org.apache.spark.SparkContext.runJob(SparkContext.scala:2236) at org.apache.spark.SparkContext.runJob(SparkContext.scala:2261) at org.apache.spark.rdd.RDD.$anonfun$collect$1(RDD.scala:1030) at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151) at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:112) at org.apache.spark.rdd.RDD.withScope(RDD.scala:414) at org.apache.spark.rdd.RDD.collect(RDD.scala:1029) at org.apache.spark.api.python.PythonRDD$.collectAndServe(PythonRDD.scala:180) at org.apache.spark.api.python.PythonRDD.collectAndServe(PythonRDD.scala) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) at java.lang.reflect.Method.invoke(Method.java:498) at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244) at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357) at py4j.Gateway.invoke(Gateway.java:282) at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132) at py4j.commands.CallCommand.execute(CallCommand.java:79) at py4j.GatewayConnection.run(GatewayConnection.java:238) at java.lang.Thread.run(Thread.java:748) Traceback (most recent call last): File "keras_spark_rossmann_estimator.py", line 397, in <module> keras_model = keras_estimator.fit(train_df).setOutputCols(['Sales_output']) File "/home/cc/.local/lib/python3.6/site-packages/horovod/spark/common/estimator.py", line 35, in fit return super(HorovodEstimator, self).fit(df, params) File "/usr/local/lib/python3.6/dist-packages/pyspark/ml/base.py", line 161, in fit return self._fit(dataset) File "/home/cc/.local/lib/python3.6/site-packages/horovod/spark/common/estimator.py", line 81, in _fit backend, train_rows, val_rows, metadata, avg_row_size, dataset_idx) File "/home/cc/.local/lib/python3.6/site-packages/horovod/spark/keras/estimator.py", line 317, in _fit_on_prepared_data env=env) File "/home/cc/.local/lib/python3.6/site-packages/horovod/spark/common/backend.py", line 85, in run **self._kwargs) File "/home/cc/.local/lib/python3.6/site-packages/horovod/spark/runner.py", line 284, in run _launch_job(use_mpi, use_gloo, settings, driver, env, stdout, stderr) File "/home/cc/.local/lib/python3.6/site-packages/horovod/spark/runner.py", line 155, in _launch_job settings.verbose) File "/home/cc/.local/lib/python3.6/site-packages/horovod/runner/launch.py", line 706, in run_controller gloo_run() File "/home/cc/.local/lib/python3.6/site-packages/horovod/spark/runner.py", line 152, in <lambda> run_controller(use_gloo, lambda: gloo_run(settings, nics, driver, env, stdout, stderr), File "/home/cc/.local/lib/python3.6/site-packages/horovod/spark/gloo_run.py", line 67, in gloo_run launch_gloo(command, exec_command, settings, nics, {}, server_ip) File "/home/cc/.local/lib/python3.6/site-packages/horovod/runner/gloo_run.py", line 271, in launch_gloo .format(name=name, code=exit_code)) RuntimeError: Horovod detected that one or more processes exited with non-zero status, thus causing the job to be terminated. The first process to do so was: Process name: 0 Exit code: 255 ``` This is followed by the following thread dump ``` 21/09/13 04:12:33 ERROR TransportRequestHandler: Error while invoking RpcHandler#receive() for one-way message. org.apache.spark.SparkException: Could not find CoarseGrainedScheduler. at org.apache.spark.rpc.netty.Dispatcher.postMessage(Dispatcher.scala:176) at org.apache.spark.rpc.netty.Dispatcher.postOneWayMessage(Dispatcher.scala:150) at org.apache.spark.rpc.netty.NettyRpcHandler.receive(NettyRpcEnv.scala:691) at org.apache.spark.network.server.TransportRequestHandler.processOneWayMessage(TransportRequestHandler.java:255) at org.apache.spark.network.server.TransportRequestHandler.handle(TransportRequestHandler.java:111) at org.apache.spark.network.server.TransportChannelHandler.channelRead0(TransportChannelHandler.java:140) at org.apache.spark.network.server.TransportChannelHandler.channelRead0(TransportChannelHandler.java:53) at io.netty.channel.SimpleChannelInboundHandler.channelRead(SimpleChannelInboundHandler.java:99) at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:379) at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:365) at io.netty.channel.AbstractChannelHandlerContext.fireChannelRead(AbstractChannelHandlerContext.java:357) at io.netty.handler.timeout.IdleStateHandler.channelRead(IdleStateHandler.java:286) at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:379) at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:365) at io.netty.channel.AbstractChannelHandlerContext.fireChannelRead(AbstractChannelHandlerContext.java:357) at io.netty.handler.codec.MessageToMessageDecoder.channelRead(MessageToMessageDecoder.java:103) at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:379) at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:365) at io.netty.channel.AbstractChannelHandlerContext.fireChannelRead(AbstractChannelHandlerContext.java:357) at org.apache.spark.network.util.TransportFrameDecoder.channelRead(TransportFrameDecoder.java:102) at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:379) at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:365) at io.netty.channel.AbstractChannelHandlerContext.fireChannelRead(AbstractChannelHandlerContext.java:357) at io.netty.channel.DefaultChannelPipeline$HeadContext.channelRead(DefaultChannelPipeline.java:1410) at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:379) at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:365) at io.netty.channel.DefaultChannelPipeline.fireChannelRead(DefaultChannelPipeline.java:919) at io.netty.channel.nio.AbstractNioByteChannel$NioByteUnsafe.read(AbstractNioByteChannel.java:163) at io.netty.channel.nio.NioEventLoop.processSelectedKey(NioEventLoop.java:714) at io.netty.channel.nio.NioEventLoop.processSelectedKeysOptimized(NioEventLoop.java:650) at io.netty.channel.nio.NioEventLoop.processSelectedKeys(NioEventLoop.java:576) at io.netty.channel.nio.NioEventLoop.run(NioEventLoop.java:493) at io.netty.util.concurrent.SingleThreadEventExecutor$4.run(SingleThreadEventExecutor.java:989) at io.netty.util.internal.ThreadExecutorMap$2.run(ThreadExecutorMap.java:74) at io.netty.util.concurrent.FastThreadLocalRunnable.run(FastThreadLocalRunnable.java:30) at java.lang.Thread.run(Thread.java:748) 21/09/13 04:12:33 ERROR TransportRequestHandler: Error while invoking RpcHandler#receive() for one-way message. org.apache.spark.SparkException: Could not find CoarseGrainedScheduler. at org.apache.spark.rpc.netty.Dispatcher.postMessage(Dispatcher.scala:176) at org.apache.spark.rpc.netty.Dispatcher.postOneWayMessage(Dispatcher.scala:150) at org.apache.spark.rpc.netty.NettyRpcHandler.receive(NettyRpcEnv.scala:691) at org.apache.spark.network.server.TransportRequestHandler.processOneWayMessage(TransportRequestHandler.java:255) at org.apache.spark.network.server.TransportRequestHandler.handle(TransportRequestHandler.java:111) at org.apache.spark.network.server.TransportChannelHandler.channelRead0(TransportChannelHandler.java:140) at org.apache.spark.network.server.TransportChannelHandler.channelRead0(TransportChannelHandler.java:53) at io.netty.channel.SimpleChannelInboundHandler.channelRead(SimpleChannelInboundHandler.java:99) at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:379) at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:365) at io.netty.channel.AbstractChannelHandlerContext.fireChannelRead(AbstractChannelHandlerContext.java:357) at io.netty.handler.timeout.IdleStateHandler.channelRead(IdleStateHandler.java:286) at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:379) at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:365) at io.netty.channel.AbstractChannelHandlerContext.fireChannelRead(AbstractChannelHandlerContext.java:357) at io.netty.handler.codec.MessageToMessageDecoder.channelRead(MessageToMessageDecoder.java:103) at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:379) at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:365) at io.netty.channel.AbstractChannelHandlerContext.fireChannelRead(AbstractChannelHandlerContext.java:357) at org.apache.spark.network.util.TransportFrameDecoder.channelRead(TransportFrameDecoder.java:102) at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:379) at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:365) at io.netty.channel.AbstractChannelHandlerContext.fireChannelRead(AbstractChannelHandlerContext.java:357) at io.netty.channel.DefaultChannelPipeline$HeadContext.channelRead(DefaultChannelPipeline.java:1410) at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:379) at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:365) at io.netty.channel.DefaultChannelPipeline.fireChannelRead(DefaultChannelPipeline.java:919) at io.netty.channel.nio.AbstractNioByteChannel$NioByteUnsafe.read(AbstractNioByteChannel.java:163) at io.netty.channel.nio.NioEventLoop.processSelectedKey(NioEventLoop.java:714) at io.netty.channel.nio.NioEventLoop.processSelectedKeysOptimized(NioEventLoop.java:650) at io.netty.channel.nio.NioEventLoop.processSelectedKeys(NioEventLoop.java:576) at io.netty.channel.nio.NioEventLoop.run(NioEventLoop.java:493) at io.netty.util.concurrent.SingleThreadEventExecutor$4.run(SingleThreadEventExecutor.java:989) at io.netty.util.internal.ThreadExecutorMap$2.run(ThreadExecutorMap.java:74) at io.netty.util.concurrent.FastThreadLocalRunnable.run(FastThreadLocalRunnable.java:30) at java.lang.Thread.run(Thread.java:748) ```
open
2021-09-13T05:06:05Z
2021-09-14T22:34:34Z
https://github.com/horovod/horovod/issues/3162
[ "bug" ]
aakash-sharma
2
mwaskom/seaborn
pandas
3,245
Several test failures due to matplotlib no longer auto-flattening inputs to pcolormesh
Context: We noticed some seaborn failures downstream when testing on the nightly matplotlib wheels. It turns out that a recent change in matplotlib's dev branch (https://github.com/matplotlib/matplotlib/pull/24638) is causing `matrix._HeatMapper._annotate_heatmap` to fail because calls to pcolormesh are no longer flattened and by consequence changes the return value of `get_facecolor`. There are also various test failures in `test_matrix` and `test_distribution` which fail due to comparisions between flattened & non-flatttened arrays.
closed
2023-02-05T21:45:21Z
2023-08-27T19:53:54Z
https://github.com/mwaskom/seaborn/issues/3245
[ "mod:matrix", "upstream" ]
IAlibay
9
pandas-dev/pandas
python
60,471
BUG: DataFrameGroupBy.apply ignores group_keys setting when empty
### Pandas version checks - [X] I have checked that this issue has not already been reported. - [X] I have confirmed this bug exists on the [latest version](https://pandas.pydata.org/docs/whatsnew/index.html) of pandas. - [ ] I have confirmed this bug exists on the [main branch](https://pandas.pydata.org/docs/dev/getting_started/install.html#installing-the-development-version-of-pandas) of pandas. ### Reproducible Example ```python df = pd.DataFrame({'A': 'a a b'.split(), 'B': [1, 2, 3], 'C': [4, 6, 5]}) g1 = df.groupby('A', group_keys=False) df = pd.DataFrame({'A': [], 'B': [], 'C': []}) g2 = df.groupby('A', group_keys=False) g3 = df.groupby('A', group_keys=True) r1 = g1.apply(lambda x: x / x.sum()) r2 = g2.apply(lambda x: x / x.sum()) r3 = g3.apply(lambda x: x / x.sum()) print(r1.index) # Index([0, 1, 2], dtype='int64') print(r2.index) # Index([], dtype='float64', name='A') print(r3.index) # Index([], dtype='float64', name='A') ``` ### Issue Description The group_keys parameter has no effect when the source dataframe is empty ### Expected Behavior group_keys=False should not include the group keys into the index regardless of whether the source dataframe is empty I would expect results such as: ```python print(r2.index) # Index([], dtype='float64') print(r2.index) # RangeIndex(start=0, stop=0, step=1) ``` ### Installed Versions <details> INSTALLED VERSIONS ------------------ commit : 0691c5cf90477d3503834d983f69350f250a6ff7 python : 3.10.11 python-bits : 64 OS : Windows OS-release : 10 Version : 10.0.22631 machine : AMD64 processor : Intel64 Family 6 Model 141 Stepping 1, GenuineIntel byteorder : little LC_ALL : None LANG : None LOCALE : es_ES.cp1252 pandas : 2.2.3 numpy : 1.26.4 pytz : 2024.2 dateutil : 2.9.0.post0 pip : 23.0.1 Cython : None sphinx : None IPython : 8.30.0 adbc-driver-postgresql: None ... zstandard : None tzdata : 2024.2 qtpy : None pyqt5 : None </details>
closed
2024-12-02T16:40:19Z
2024-12-06T18:13:47Z
https://github.com/pandas-dev/pandas/issues/60471
[ "Bug", "Groupby", "Apply" ]
ManelBH
2